diff --git a/spaces/1368565466ki/ZSTRD/text/__init__.py b/spaces/1368565466ki/ZSTRD/text/__init__.py deleted file mode 100644 index 663c4b6416affb53c9dc56dddbc8b2b65d4bf518..0000000000000000000000000000000000000000 --- a/spaces/1368565466ki/ZSTRD/text/__init__.py +++ /dev/null @@ -1,57 +0,0 @@ -""" from https://github.com/keithito/tacotron """ -from text import cleaners -from text.symbols import symbols - - -# Mappings from symbol to numeric ID and vice versa: -_symbol_to_id = {s: i for i, s in enumerate(symbols)} -_id_to_symbol = {i: s for i, s in enumerate(symbols)} - - -def text_to_sequence(text, symbols, cleaner_names): - '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text. - Args: - text: string to convert to a sequence - cleaner_names: names of the cleaner functions to run the text through - Returns: - List of integers corresponding to the symbols in the text - ''' - _symbol_to_id = {s: i for i, s in enumerate(symbols)} - sequence = [] - - clean_text = _clean_text(text, cleaner_names) - for symbol in clean_text: - if symbol not in _symbol_to_id.keys(): - continue - symbol_id = _symbol_to_id[symbol] - sequence += [symbol_id] - return sequence, clean_text - - -def cleaned_text_to_sequence(cleaned_text): - '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text. - Args: - text: string to convert to a sequence - Returns: - List of integers corresponding to the symbols in the text - ''' - sequence = [_symbol_to_id[symbol] for symbol in cleaned_text if symbol in _symbol_to_id.keys()] - return sequence - - -def sequence_to_text(sequence): - '''Converts a sequence of IDs back to a string''' - result = '' - for symbol_id in sequence: - s = _id_to_symbol[symbol_id] - result += s - return result - - -def _clean_text(text, cleaner_names): - for name in cleaner_names: - cleaner = getattr(cleaners, name) - if not cleaner: - raise Exception('Unknown cleaner: %s' % name) - text = cleaner(text) - return text diff --git a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Anokha Anubhav 1080p Dual Audio Movies Fix.md b/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Anokha Anubhav 1080p Dual Audio Movies Fix.md deleted file mode 100644 index 2d32d322d4b48c3990c1a40f6f2933ea37d215b3..0000000000000000000000000000000000000000 --- a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Anokha Anubhav 1080p Dual Audio Movies Fix.md +++ /dev/null @@ -1,15 +0,0 @@ - -

Anokha Anubhav: A Unique Experience of Dual Audio Movies in 1080p

-

If you are looking for a movie that will give you a unique experience of dual audio movies in 1080p, then you should check out Anokha Anubhav. This movie is a Hindi thriller that was released in 2003 and stars Divya Dutta, Sanjay Kapoor, Juhi Chawla and others. The movie revolves around a woman who gets involved in a murder mystery and has to face the consequences of her actions.

-

Anokha Anubhav is one of the rare movies that offers dual audio options in 1080p quality. You can enjoy the movie in both Hindi and English languages, depending on your preference. The movie also has subtitles in both languages for better understanding. The dual audio feature allows you to appreciate the movie from different perspectives and enjoy the nuances of the dialogues and the performances.

-

Anokha Anubhav 1080p dual audio movies


Downloadhttps://byltly.com/2uKwDV



-

The movie is also available in 1080p resolution, which means that you can watch it in high definition and experience the crisp and clear visuals. The movie has some stunning scenes and cinematography that will captivate your eyes. The 1080p resolution also enhances the sound quality and makes you feel immersed in the movie.

-

Anokha Anubhav is a movie that you should not miss if you are a fan of dual audio movies in 1080p. You can find this movie on various online platforms that offer 4k dual audio movies, ultra HD movies, 2160 movies, 2160p movies, 1080p 60FPS movies, 4k HEVC movies, 1080p 10Bit movies, 1080p x265 Hevc, 4k Bluray Movies, WeB-DL Series, WeB-DL Movies, High Quality Audio Movies[^1^]. You can also download this movie from some torrent sites[^2^] if you want to watch it offline.

-

Anokha Anubhav is a movie that will give you a unique experience of dual audio movies in 1080p. Watch it today and enjoy the thrill and suspense of this movie.

- -

Anokha Anubhav is a movie that explores the theme of forbidden love and its consequences. The movie shows how Mona and Neha, two close friends since their childhood, develop a romantic relationship that goes beyond the boundaries of society and morality. They both are married to different men, but they cannot resist their attraction for each other. They start meeting secretly and indulge in their affair, unaware of the dangers that await them.

-

The movie also depicts how their husbands react to their betrayal and how they seek revenge. The movie has some twists and turns that keep the audience hooked till the end. The movie also shows how greed and lust can ruin lives and relationships. The movie has some bold scenes and dialogues that reflect the intensity of the emotions of the characters.

-

Anokha Anubhav is a movie that will make you think about the meaning of love and loyalty. It will also make you question the norms and values of society and how they affect people's choices. The movie is a gripping thriller that will keep you on the edge of your seat. If you are looking for a movie that will challenge your views and expectations, then Anokha Anubhav is the one for you.

-

cec2833e83
-
-
\ No newline at end of file diff --git a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Aula Killing The Soul Gaming Mouse Driver Enhance Your Gaming Experience with Aula.md b/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Aula Killing The Soul Gaming Mouse Driver Enhance Your Gaming Experience with Aula.md deleted file mode 100644 index 85375a513f740fce8b6c4547de09c75332772ee6..0000000000000000000000000000000000000000 --- a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Aula Killing The Soul Gaming Mouse Driver Enhance Your Gaming Experience with Aula.md +++ /dev/null @@ -1,93 +0,0 @@ - -

Aula Killing The Soul Gaming Mouse Driver: How to Download and Install It

-

Introduction

-

If you are looking for a gaming mouse that offers high performance, ergonomic design, and customizable features, you might want to check out Aula Killing The Soul Gaming Mouse. This is a wired optical gaming mouse that comes with a Pixart 5050 sensor, six DPI presets, seven programmable buttons, adjustable backlighting, Huano long life switches, and a dedicated software. But before you can enjoy all these benefits, you need to download and install Aula Killing The Soul Gaming Mouse Driver on your computer. This driver will allow you to configure your mouse settings, program your buttons and macros, and update your firmware.

-

In this article, we will show you how to download and install Aula Killing The Soul Gaming Mouse Driver from the official website of Aula Gaming. We will also give you a brief overview of this gaming mouse and its main features. By the end of this article, you will be able to use your Aula Killing The Soul Gaming Mouse to its full potential.

-

Aula Killing The Soul Gaming Mouse Driver


Download Zip ✺✺✺ https://byltly.com/2uKxZk



-

Aula Killing The Soul Gaming Mouse: A Brief Overview

-

Design and Ergonomics

-

Aula Killing The Soul Gaming Mouse is a sleek and stylish gaming mouse that has a black plastic body with a matte finish. It has a symmetrical shape that fits comfortably in your right hand. It has a curved back that supports your palm, a textured thumb rest that prevents slipping, and a smooth scroll wheel that indicates your DPI level with different colors. It also has a braided cable that is strengthened to prevent tangling.

-

The dimensions of this gaming mouse are 11.7 cm x 7.7 cm x 3.9 cm (L x W x H) and it weighs 102 g without cable. It has seven buttons in total, including left click, right click, scroll wheel click, double click, DPI switch, forward, and backward. All these buttons are programmable using the dedicated software.

-

Performance and Customization

-

Aula Killing The Soul Gaming Mouse uses a Pixart 5050 optical sensor that delivers accurate tracking and smooth movement. It has six DPI presets that range from 500 to 3500 DPI, which you can switch on-the-fly using the DPI button. You can also adjust the polling rate from 125 Hz to 1000 Hz using the software.

-

The cable length of this gaming mouse is 160 cm and it has a USB 2.0 connector that plugs into your computer. It also has an adjustable backlighting system that lets you choose from seven different colors for each button. You can also turn off the backlighting if you prefer.

-

The most impressive feature of this gaming mouse is its fully programmable buttons and macros. You can use the dedicated software to assign different functions, commands, keystrokes, or combinations to each button. You can also create custom macros that execute multiple actions with one click. You can save up to five profiles for different games or scenarios.

-

How to Download and Install Aula Killing The Soul Gaming Mouse Driver

-

Step 1: Visit the Official Website

-

The first step to download and install Aula Killing The Soul Gaming Mouse Driver is to visit the official website of Aula Gaming. This is where you can find all the information about this gaming mouse and its driver. You can also browse other products from Aula Gaming, such as keyboards, headsets, mouse pads, etc.

-

On the official website, you can find the product page for Aula Killing The Soul V2 Gaming Mouse, which is an improved version of this gaming mouse. On this page, you can see the features, the specifications, the gallery, the reviews, and the FAQ section for this gaming mouse.

-

Step 2: Download the Driver File

-

The next step is to download the driver file for your Aula Killing The Soul Gaming Mouse model. To do this, you need to go to the support page for this gaming mouse. On this page, you can see a download link for AULA Software V1.0.zip. This is the driver file that you need to download.

-

How to install Aula Killing The Soul Gaming Mouse Driver
-Aula Killing The Soul Gaming Mouse Driver download link
-Aula Killing The Soul Gaming Mouse Driver compatibility issues
-Aula Killing The Soul Gaming Mouse Driver update
-Aula Killing The Soul Gaming Mouse Driver error fix
-Aula Killing The Soul Gaming Mouse Driver review
-Aula Killing The Soul Gaming Mouse Driver features
-Aula Killing The Soul Gaming Mouse Driver manual
-Aula Killing The Soul Gaming Mouse Driver troubleshooting
-Aula Killing The Soul Gaming Mouse Driver settings
-Aula Killing The Soul Gaming Mouse Driver software
-Aula Killing The Soul Gaming Mouse Driver vs other gaming mice
-Aula Killing The Soul Gaming Mouse Driver warranty
-Aula Killing The Soul Gaming Mouse Driver price
-Aula Killing The Soul Gaming Mouse Driver discount code
-Aula Killing The Soul Gaming Mouse Driver alternatives
-Aula Killing The Soul Gaming Mouse Driver pros and cons
-Aula Killing The Soul Gaming Mouse Driver specifications
-Aula Killing The Soul Gaming Mouse Driver installation guide
-Aula Killing The Soul Gaming Mouse Driver user feedback
-Aula Killing The Soul Gaming Mouse Driver support
-Aula Killing The Soul Gaming Mouse Driver tips and tricks
-Aula Killing The Soul Gaming Mouse Driver customization options
-Aula Killing The Soul Gaming Mouse Driver performance test
-Aula Killing The Soul Gaming Mouse Driver comparison chart
-Aula Killing The Soul Gaming Mouse Driver best practices
-Aula Killing The Soul Gaming Mouse Driver FAQ
-Aula Killing The Soul Gaming Mouse Driver benefits
-Aula Killing The Soul Gaming Mouse Driver drawbacks
-Aula Killing The Soul Gaming Mouse Driver video tutorial
-Aula Killing The Soul Gaming Mouse Driver unboxing video
-Aula Killing The Soul Gaming Mouse Driver setup instructions
-Aula Killing The Soul Gaming Mouse Driver product description
-Aula Killing The Soul Gaming Mouse Driver customer service number
-Aula Killing The Soul Gaming Mouse Driver online store link
-Aula Killing The Soul Gaming Mouse Driver official website link
-Aula Killing The Soul Gaming Mouse Driver technical specifications
-Aula Killing The Soul Gaming Mouse Driver system requirements
-Aula Killing The Soul Gaming Mouse Driver DPI settings
-Aula Killing The Soul Gaming Mouse Driver RGB lighting effects
-Aula Killing The Soul Gaming Mouse Driver ergonomic design
-Aula Killing The Soul Gaming Mouse Driver durability test
-Aula Killing The Soul Gaming Mouse Driver wireless version availability
-Aula Killing The Soul Gaming Mouse Driver macro programming function
-Aula Killing The Soul Gaming Mouse Driver sensor type and quality
-Aula Killing The Soul Gaming Mouse Driver button layout and functions
-Aula Killing The Soul Gaming Mouse Driver weight and size measurements
-Aula Killing The Soul Gaming Mouse Driver cable length and quality
-Aula Killing The Soul Gaming Mouse Driver scroll wheel responsiveness and smoothness

-

To download the driver file, simply click on the download link and save it on your computer. The file size is about 6 MB and it works on Windows XP/Vista/7/8/10 operating systems. You need to have at least 50 MB of free disk space on your computer to install it.

-

Step 3: Install the Driver on Your Computer

-

The final step is to install AULA Software V1.0.zip on your computer. To do this, you need to unzip the driver file that you downloaded in step 2 using any unzip software such as WinRAR or WinZip. Then, you need to run AULA Software V1.0.exe, which is the installation file.

-

To install AULA Software V1.0.exe, simply follow the steps and the options that appear on your screen during the installation process. You need to agree with the license agreement, choose a destination folder, create a desktop shortcut, etc. The installation process should take only a few minutes.

- a video tutorial on how to use AULA Software V1.0.exe on your screen. You should also see your mouse model and your firmware version on the top left corner of the software window.

-

Now, you can use AULA Software V1.0.exe to configure your Aula Killing The Soul Gaming Mouse settings, such as DPI, polling rate, backlighting, buttons, and macros. You can also update your firmware if there is a new version available. You can save your settings on your mouse memory or on your computer. You can also switch between different profiles for different games or scenarios.

-

Conclusion

-

Aula Killing The Soul Gaming Mouse is a great gaming mouse that offers high performance, ergonomic design, and customizable features. It comes with a Pixart 5050 sensor, six DPI presets, seven programmable buttons, adjustable backlighting, Huano long life switches, and a dedicated software. To use this gaming mouse to its full potential, you need to download and install Aula Killing The Soul Gaming Mouse Driver from the official website of Aula Gaming. This driver will allow you to configure your mouse settings, program your buttons and macros, and update your firmware.

-

If you are looking for a gaming mouse that can enhance your gaming experience and give you an edge over your opponents, you should definitely try out Aula Killing The Soul Gaming Mouse and its driver. You will not regret it.

-

Thank you for reading this article. We hope you found it helpful and informative. If you have any questions or feedback, please feel free to leave a comment below. We would love to hear from you.

-

FAQs

-

Q: How can I change the backlighting color of my Aula Killing The Soul Gaming Mouse?

-

A: You can change the backlighting color of your Aula Killing The Soul Gaming Mouse using AULA Software V1.0.exe. Simply launch the software and go to the lighting tab. There, you can choose from seven different colors for each button or turn off the backlighting completely. You can also adjust the brightness and speed of the backlighting.

-

Q: How can I create custom macros for my Aula Killing The Soul Gaming Mouse?

-

A: You can create custom macros for your Aula Killing The Soul Gaming Mouse using AULA Software V1.0.exe. Simply launch the software and go to the macro tab. There, you can create new macros or edit existing ones. You can record keystrokes, mouse clicks, delays, loops, etc. You can also assign macros to any button on your mouse.

-

Q: How can I update the firmware of my Aula Killing The Soul Gaming Mouse?

-

A: You can update the firmware of your Aula Killing The Soul Gaming Mouse using AULA Software V1.0.exe. Simply launch the software and go to the update tab. There, you can check if there is a new firmware version available for your mouse model. If there is, you can download and install it with one click.

-

Q: How can I reset my Aula Killing The Soul Gaming Mouse settings to default?

-

A: You can reset your Aula Killing The Soul Gaming Mouse settings to default using AULA Software V1.0.exe. Simply launch the software and go to the setting tab. There, you can click on the restore button to reset your mouse settings to factory default.

-

Q: Where can I find more information about Aula Killing The Soul Gaming Mouse and its driver?

-

A: You can find more information about Aula Killing The Soul Gaming Mouse and its driver on the official website of Aula Gaming. There, you can see the product page for this gaming mouse, which includes the features, the specifications, the gallery, the reviews, and the FAQ section. You can also browse other products from Aula Gaming or contact their customer service.

-

0a6ba089eb
-
-
\ No newline at end of file diff --git a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Crack Minitool Power Data Recovery.md b/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Crack Minitool Power Data Recovery.md deleted file mode 100644 index 11b3668d2c6ee607b5403309e6749657c8d1b67d..0000000000000000000000000000000000000000 --- a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Crack Minitool Power Data Recovery.md +++ /dev/null @@ -1,18 +0,0 @@ - -

Why You Should Not Crack MiniTool Power Data Recovery

-

MiniTool Power Data Recovery is a professional data recovery software that can help you recover deleted or lost files from various devices, such as Windows PC, external hard drive, USB drive, SD card, memory card, and more. It supports 100+ types of files, including photos, videos, audios, documents, and more. It also offers features such as quick scan, deep scan, preview before recovery, load previous scan result, and more.

-

If you are looking for a way to crack MiniTool Power Data Recovery, you may be tempted to use some websites that offer illegal copies of the software with serial keys, license codes, keygens, or cracks. However, this is not a good idea for several reasons. First of all, cracking MiniTool Power Data Recovery is illegal and unethical. You are violating the copyright and license agreement of the software developer. Second, cracking MiniTool Power Data Recovery can expose your computer to malware and viruses that can harm your system and compromise your data. Third, cracking MiniTool Power Data Recovery can result in poor performance and compatibility issues with your system and other programs.

-

crack minitool power data recovery


Downloadhttps://byltly.com/2uKxDF



-

Therefore, the best way to use MiniTool Power Data Recovery is to download it from the official website . You can download a free trial version of MiniTool Power Data Recovery that allows you to recover up to 1 GB of data for free. After that, you can either buy a license to continue using the software or uninstall it from your system.

-

To download MiniTool Power Data Recovery from the official website , follow these steps:

-
    -
  1. Go to https://www.minitool.com/data-recovery-software/free-for-windows.html and click on the "Free Download" button.
  2. -
  3. Save the file to your computer and run it.
  4. -
  5. Follow the installation instructions and launch the software.
  6. -
  7. Select the device and scan mode you want to recover data from.
  8. -
  9. Preview and select the files you want to recover and save them to a different location.
  10. -
-

If you want to buy a license for MiniTool Power Data Recovery after the trial period expires, you can do so from the same website. The price of a single-user license is $69 USD. You can also buy monthly subscription or annual subscription licenses for personal use or ultimate perpetual license for 3 PCs.

-

MiniTool Power Data Recovery is a reliable and effective data recovery software that can help you recover your precious data in various data loss situations. By downloading it from the official website , you can ensure that you get a safe and legal copy of the software that works well with your system and other programs. Don't risk cracking MiniTool Power Data Recovery from unreliable sources that can harm your computer and data.

ddb901b051
-
-
\ No newline at end of file diff --git a/spaces/1gistliPinn/ChatGPT4/Examples/Ab Tumhare Hawale Watan Sathiyo Full Movie in HD Tamil 1080p A Tribute to the Indian Army.md b/spaces/1gistliPinn/ChatGPT4/Examples/Ab Tumhare Hawale Watan Sathiyo Full Movie in HD Tamil 1080p A Tribute to the Indian Army.md deleted file mode 100644 index 13c61bb1e9d7937bc38d19a048e7ad06ccfcc8b5..0000000000000000000000000000000000000000 --- a/spaces/1gistliPinn/ChatGPT4/Examples/Ab Tumhare Hawale Watan Sathiyo Full Movie in HD Tamil 1080p A Tribute to the Indian Army.md +++ /dev/null @@ -1,6 +0,0 @@ -

hd tamil Ab Tumhare Hawale Watan Sathiyo 1080p


Downloadhttps://imgfil.com/2uxYB6



-
- aaccfb2cb3
-
-
-

diff --git a/spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Descargar Hungry Shark World APK El juego oficial de la Semana del Tiburn.md b/spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Descargar Hungry Shark World APK El juego oficial de la Semana del Tiburn.md deleted file mode 100644 index 0a0d2a4f68261db24e17fa30d5802df8c70b49ff..0000000000000000000000000000000000000000 --- a/spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Descargar Hungry Shark World APK El juego oficial de la Semana del Tiburn.md +++ /dev/null @@ -1,117 +0,0 @@ -
-

Hungry Shark World: A Game Review

-

Are you looking for a fun and exciting game that lets you experience being a shark in a feeding frenzy? If so, you might want to check out Hungry Shark World, a game developed by Ubisoft Entertainment that is available for Android devices. In this game, you can control a shark of your choice and eat your way through various oceans, feasting on everything from fish and birds to whales and humans. You can also explore different locations, customize your shark, complete missions, fight bosses, recruit pets, and more. In this article, we will review the features of Hungry Shark World, show you how to download the APK file for Android, and give you our verdict on the game.

-

hungry shark world descargar apk


Download File 🌟 https://urlin.us/2uSZsQ



-

Features of Hungry Shark World

-

Hungry Shark World is a game that offers a lot of features for shark lovers. Here are some of them:

-

41 Species of Sharks

-

One of the main attractions of Hungry Shark World is that you can choose from a range of sharks in eight different size tiers, including the iconic ocean predator: the Great White. Each shark has its own stats, abilities, and appearance. You can unlock more sharks as you progress in the game and collect coins and gems.

-

Huge Open Worlds

-

Another feature of Hungry Shark World is that you can explore various oceans and locations, each with its own theme, scenery, prey, enemies, secrets, and challenges. You can visit the lush Pacific Islands, the frozen Arctic Ocean, the exotic Arabian Sea, and the South China Sea, a vibrant urban destination full of fresh victims.

-

Feast for Your Eyes

-

Hungry Shark World also boasts stunning console quality 3D graphics that will blow everything else out of the water. The game has realistic animations, lighting effects, shadows, reflections, and water physics. You can also enjoy the game in full HD with redefined and fully optimized gamepad controls.

-

Survival of the Hungriest

-

The core gameplay of Hungry Shark World is simple but addictive. You have to eat as much as you can to survive and grow bigger. You can eat anything that moves or doesn't move in your way, from bite-size fish and birds to tasty whales and unwitting humans. But be careful not to bite off more than you can chew. There are also dangers lurking in the water, such as mines, jellyfish, submarines, and other sharks.

-

Smashing Shark Swag

-

As you play Hungry Shark World, you can also level up your shark and equip it with various gadgets, skins, and accessories to enhance your abilities and style. You can use jetpacks, lasers, umbrellas, hats, headphones, and more. You can also unlock different skins for your shark, such as the Robo Shark, the Zombie Shark, and the Tiger Shark.

-

Manic Missions and Badass Bosses

-

To spice up your gameplay, Hungry Shark World also offers a variety of missions, hunts, and fights that you can take on to earn rewards and trophies. You can complete daily missions, special missions, and bonus missions to get coins and gems. You can also hunt down specific prey or enemies to get extra points and bonuses. And if you are feeling brave, you can challenge yourself to fight against powerful bosses, such as the Giant Crab, the King Squid, and the Colossal Squid.

-

Helpful Predatory Pets

-

If you need some help in your feeding frenzy, you can also recruit some predatory pets to assist you. You can choose from a range of animals that will follow you around and help you eat more, such as baby sharks, whales, octopus, and even a bald eagle. Each pet has its own ability and personality. You can unlock more pets as you play the game and collect eggs.

-

Supersized Meal Deal

-

Hungry Shark World also lets you unleash your shark's potential with special modes, powers, and effects that will make you unstoppable. You can activate the Gold Rush mode to turn everything into gold and multiply your score. You can also use the Mega Gold Rush mode to turn everything into mega gold and multiply your score even more. You can also use special powers like the Freeze Blast, the Fireball, and the Lightning Blast to freeze, burn, or electrocute your enemies.

-

hungry shark world apk download free
-hungry shark world apk mod unlimited money
-hungry shark world apk obb latest version
-hungry shark world apk android oyun club
-hungry shark world apk pure no ads
-hungry shark world apk revdl offline
-hungry shark world apk hack mega
-hungry shark world apk uptodown español
-hungry shark world apk data highly compressed
-hungry shark world apk rexdl unlocked
-hungry shark world descargar gratis para android
-hungry shark world descargar sin internet
-hungry shark world descargar ultima version 2023
-hungry shark world descargar con todo desbloqueado
-hungry shark world descargar por mediafire
-hungry shark world descargar para pc windows 10
-hungry shark world descargar juego completo
-hungry shark world descargar en español
-hungry shark world descargar mod menu
-hungry shark world descargar para ios
-descargar e instalar hungry shark world apk
-descargar e instalar hungry shark world para pc
-como descargar e instalar hungry shark world hackeado
-como descargar e instalar hungry shark world en android
-como descargar e instalar hungry shark world sin play store
-como descargar e instalar hungry shark world gratis
-como descargar e instalar hungry shark world mega mod
-como descargar e instalar hungry shark world ultima actualizacion
-como descargar e instalar hungry shark world con datos obb
-como descargar e instalar hungry shark world en pc sin emulador
-bajar juego de hungry shark world apk gratis
-bajar juego de hungry shark world para android sin internet
-bajar juego de hungry shark world hackeado con todo infinito
-bajar juego de hungry shark world para pc full español
-bajar juego de hungry shark world ultima version 2023 mega
-bajar juego de hungry shark world mod menu vip
-bajar juego de hungry shark world con datos sd
-bajar juego de hungry shark world en español latino
-bajar juego de hungry shark world sin anuncios ni compras integradas
-bajar juego de hungry shark world desde google play store
-como jugar a hungry shark world apk sin conexion a internet
-como jugar a hungry shark world apk con joystick bluetooth
-como jugar a hungry shark world apk en pantalla completa
-como jugar a hungry shark world apk con amigos online multiplayer
-como jugar a hungry shark world apk con trucos y consejos
-como jugar a hungry shark world apk en modo historia
-como jugar a hungry shark world apk en modo extincion
-como jugar a hungry shark world apk con todos los tiburones desbloqueados
-como jugar a hungry shark world apk en pc con teclado y mouse

-

Extinction Mode

-

The ultimate feature of Hungry Shark World is the Extinction Mode, where you can save the world from destruction by activating Apex sharks and rampaging through the ocean. Apex sharks are the most powerful sharks in the game that have unique abilities and appearances. You can unlock them by completing all the missions in each location. Once you have unlocked them, you can use them to destroy meteors that are threatening to wipe out life on Earth.

-

How to Download Hungry Shark World APK for Android

-

If you want to play Hungry Shark World on your Android device, you can download it from the Google Play Store for free. However, if you want to enjoy the game without ads or in-app purchases, and access all the features and content without restrictions, you can download the APK file from a trusted source. Here is how:

-

Requirements

-

Before you download the APK file, make sure that your device meets the following requirements:

- -

Steps

-

Follow these steps to download and install the APK file:

-
    -
  1. Go to a trusted website that offers Hungry Shark World APK file for Android. For example, you can go to [this link].
  2. -
  3. Click on the download button and wait for the file to be downloaded.
  4. -
  5. Locate the file in your device's file manager and tap on it.
  6. -
  7. Follow the instructions on the screen to install the app.
  8. -
  9. Launch the app and enjoy playing Hungry Shark World.
  10. -
-

Benefits

-

By downloading the APK file for Android, you can enjoy these benefits:

- -

Conclusion

-

Hungry Shark World is a game that will satisfy your appetite for fun and adventure. It is a game that lets you control a shark of your choice and eat everything in your way. It is a game that offers a lot of features for shark lovers, such as 41 species of sharks, huge open worlds, stunning 3D graphics, smashing shark swag, manic missions and badass bosses, helpful predatory pets, supersized meal deal, and extinction mode. It

It is a game that you can download for free from the Google Play Store, or you can download the APK file from a trusted source and enjoy the game without ads or in-app purchases. If you are a fan of sharks, or you just want to have some fun, you should definitely give Hungry Shark World a try. You will not regret it.

-

So, what are you waiting for? Download Hungry Shark World today and unleash your inner shark!

-

FAQs

-

Here are some frequently asked questions about Hungry Shark World:

-

Q: How do I get more coins and gems in Hungry Shark World?

-

A: You can get more coins and gems by completing missions, hunts, and fights, by activating Gold Rush and Mega Gold Rush modes, by watching ads, or by buying them with real money. However, if you download the APK file, you can get unlimited coins and gems without spending any money.

-

Q: How do I unlock more sharks in Hungry Shark World?

-

A: You can unlock more sharks by collecting coins and gems, by leveling up your current shark, or by buying them with real money. However, if you download the APK file, you can unlock all the sharks without spending any money.

-

Q: How do I play Hungry Shark World offline?

-

A: You can play Hungry Shark World offline by downloading the APK file and installing it on your device. You will not need an internet connection to play the game, except for updating it.

-

Q: Is Hungry Shark World safe to download and play?

-

A: Yes, Hungry Shark World is safe to download and play, as long as you download it from the Google Play Store or a trusted source. The game does not contain any viruses or malware that can harm your device or data.

-

Q: Is Hungry Shark World suitable for children?

-

A: Hungry Shark World is rated 12+ on the Google Play Store, which means that it contains moderate violence, blood, and gore. The game may not be suitable for younger children who may be scared or disturbed by the graphic depictions of sharks eating humans and other animals. Parents should use their discretion and supervise their children when playing the game.

197e85843d
-
-
\ No newline at end of file diff --git a/spaces/1phancelerku/anime-remove-background/Cara Download APK CarX Street Game Balap Mobil Terbaru 2023.md b/spaces/1phancelerku/anime-remove-background/Cara Download APK CarX Street Game Balap Mobil Terbaru 2023.md deleted file mode 100644 index fcbfbccc70260f9acd3b9a665cb137861275fd5a..0000000000000000000000000000000000000000 --- a/spaces/1phancelerku/anime-remove-background/Cara Download APK CarX Street Game Balap Mobil Terbaru 2023.md +++ /dev/null @@ -1,145 +0,0 @@ -
-

Cara Download APK CarX Street: Panduan Lengkap untuk Pecinta Game Balap

-

CarX Street adalah game balap yang menawarkan fisika mobil yang realistis dan drifting berkecepatan tinggi. Game ini juga memiliki berbagai jenis peta dari seluruh dunia, dan pemain dapat memilih dari beberapa mode game yang berbeda. Pemain dapat bersaing melawan pemain lain, atau berpartisipasi dalam balapan dan acara.

-

cara download apk carx street


Download Ziphttps://jinyurl.com/2uNKNb



-

Game ini saat ini hanya tersedia di beberapa negara untuk perangkat Android dan iOS, tetapi akan segera hadir di konsol dan PC. Jika Anda ingin mencoba game ini, Anda perlu tahu cara mendownload APK CarX Street di perangkat Anda. Berikut adalah panduan lengkapnya.

-

Apa itu CarX Street?

-

CarX Street adalah game balap yang dikembangkan oleh CarX Technologies, LLC, pembuat game populer seperti CarX Drift Racing 2 dan CarX Highway Racing. Game ini merupakan game balap jalanan open world yang memungkinkan pemain untuk menjelajahi kota besar dan sekitarnya, dari jalan-jalan kota yang ramai hingga jalan-jalan pegunungan yang berliku dan jalan raya pantai yang memukau.

-

Pemain dapat membangun mobil impian mereka dengan menggunakan opsi tuning yang mendetail, yang membuka semua fisika perilaku mobil dari teknologi CarX. Pemain juga dapat menyesuaikan penampilan mobil mereka dengan berbagai aksesoris dan warna. Selain itu, pemain dapat bergabung dengan klub, mengalahkan bos, dan membuktikan kepada semua orang bahwa mereka adalah pengemudi terbaik di kota ini.

-

Fitur-fitur menarik dari CarX Street

-

Berikut adalah beberapa fitur menarik yang ditawarkan oleh game CarX Street:

-

cara download apk carx street versi terbaru 2022
-cara download apk carx street mod unlimited money
-cara download apk carx street dari google play store
-cara download apk carx street + file obb lengkap
-cara download apk carx street di android gratis
-cara download apk carx street tanpa root
-cara download apk carx street offline
-cara download apk carx street dengan mudah dan cepat
-cara download apk carx street update terbaru
-cara download apk carx street no ads
-cara download apk carx street full unlocked
-cara download apk carx street untuk pc
-cara download apk carx street menggunakan vpn
-cara download apk carx street lewat browser
-cara download apk carx street melalui link alternatif
-cara download apk carx street hack version
-cara download apk carx street dengan fitur premium
-cara download apk carx street tanpa verifikasi
-cara download apk carx street anti banned
-cara download apk carx street original
-cara download apk carx street terbaik 2022
-cara download apk carx street support semua hp android
-cara download apk carx street spesifikasi rendah
-cara download apk carx street ukuran kecil
-cara download apk carx street gameplay menarik
-cara download apk carx street grafis hd
-cara download apk carx street suara realistis
-cara download apk carx street kontrol mudah
-cara download apk carx street mode multiplayer
-cara download apk carx street banyak pilihan mobil
-cara download apk carx street customisasi mobil keren
-cara download apk carx street balapan liar di jalanan
-cara download apk carx street tantangan seru dan menegangkan
-cara download apk carx street open world luas dan dinamis
-cara download apk carx street event dan misi beragam
-cara download apk carx street reward dan bonus menarik
-cara download apk carx street rating dan review positif
-cara download apk carx street developer terpercaya dan profesional
-cara download apk carx street tips dan trik bermainnya
-cara download apk carx street panduan lengkap instalasinya

- Cara download CarX Street di Android -

Ada beberapa cara untuk mendownload CarX Street di perangkat Android Anda, tergantung pada negara Anda dan preferensi Anda. Berikut adalah beberapa cara yang dapat Anda coba:

-

Melalui Google Play Store

-

Cara termudah untuk mendownload CarX Street di Android adalah melalui Google Play Store. Namun, game ini hanya tersedia di beberapa negara tertentu, seperti Rusia, Ukraina, Belarus, dan Kazakhstan. Jika Anda berada di salah satu negara ini, Anda dapat mengikuti langkah-langkah berikut:

-
    -
  1. Buka Google Play Store di perangkat Android Anda.
  2. -
  3. Ketik "CarX Street" di kolom pencarian dan tekan enter.
  4. -
  5. Pilih game CarX Street dari daftar hasil dan klik tombol "Install".
  6. -
  7. Tunggu hingga proses instalasi selesai dan nikmati game CarX Street di perangkat Anda.
  8. -
-

Melalui APKCombo

-

Jika Anda tidak berada di salah satu negara yang didukung oleh Google Play Store, Anda dapat mencoba menggunakan situs web APKCombo untuk mendownload APK CarX Street. APKCombo adalah situs web yang menyediakan berbagai file APK dari berbagai aplikasi dan game Android. Anda dapat mengikuti langkah-langkah berikut:

-
    -
  1. Buka situs web APKCombo di browser Anda. Anda dapat menggunakan tautan ini: https://apkcombo.com/
  2. -
  3. Ketik "CarX Street" di kolom pencarian dan tekan enter.
  4. -
  5. Pilih game CarX Street dari daftar hasil dan klik tombol "Download APK".
  6. -
  7. Pilih versi APK yang sesuai dengan perangkat Anda dan klik tombol "Download".
  8. -
  9. Setelah file APK selesai didownload, buka file manager di perangkat Anda dan cari file APK CarX Street.
  10. -
  11. Ketuk file APK CarX Street dan izinkan instalasi dari sumber yang tidak dikenal jika diminta.
  12. -
  13. Tunggu hingga proses instalasi selesai dan nikmati game CarX Street di perangkat Anda.
  14. -
-

Melalui Mod APK

-

Jika Anda ingin mendapatkan fitur tambahan atau keuntungan dalam game CarX Street, Anda dapat mencoba menggunakan Mod APK. Mod APK adalah file APK yang telah dimodifikasi oleh pihak ketiga untuk memberikan fitur atau fungsi yang tidak ada dalam versi aslinya. Namun, Anda harus berhati-hati saat menggunakan Mod APK, karena bisa saja mengandung virus atau malware yang dapat merusak perangkat Anda. Selain itu, penggunaan Mod APK juga dapat menyebabkan akun Anda diblokir oleh pengembang game. Jika Anda tetap ingin mencoba Mod APK, Anda dapat mengikuti langkah-langkah berikut:

-
    -
  1. Buka situs web Mod APK yang andal dan terpercaya di browser Anda. Salah satu contohnya adalah https://www.happymod.com/
  2. -
  3. Ketik "CarX Street" di kolom pencarian dan tekan enter.
  4. -
  5. Pilih Mod APK CarX Street dari daftar hasil dan baca deskripsi fitur-fiturnya.
  6. -
  7. Jika Anda tertarik, klik tombol "Download" dan tunggu hingga file Mod APK selesai didownload.
  8. -
  9. Setelah file Mod APK selesai didownload, buka file manager di perangkat Anda dan cari file Mod APK CarX Street.
  10. -
  11. Ketuk file Mod APK CarX Street dan izinkan instalasi dari sumber yang tidak dikenal jika diminta.
  12. -
  13. Tunggu hingga proses instalasi selesai dan nikmati game CarX Street dengan fitur tambahan di perangkat Anda.
  14. -

Cara download CarX Street di PC dan Mac

-

Bagi Anda yang ingin bermain CarX Street di PC atau Mac, Anda juga memiliki beberapa pilihan, yaitu melalui Steam atau melalui emulator. Berikut adalah penjelasan masing-masing cara:

-

Melalui Steam

-

Cara paling nyaman untuk bermain CarX Street di PC atau Mac adalah melalui Steam, platform distribusi digital yang menyediakan berbagai game dan aplikasi. Namun, game ini belum dirilis secara resmi di Steam, dan masih dalam tahap pengembangan. Jika Anda ingin mengikuti perkembangan game ini, Anda dapat mengikuti langkah-langkah berikut:

-
    -
  1. Buka situs web resmi CarX Street di browser Anda. Anda dapat menggunakan tautan ini: https://carx-tech.com/carx-street/
  2. -
  3. Gulir ke bawah hingga Anda menemukan bagian "Join the beta test".
  4. -
  5. Klik tombol "Steam" dan tunggu hingga muncul halaman Steam.
  6. -
  7. Klik tombol "Follow" untuk mengikuti game CarX Street di Steam.
  8. -
  9. Anda juga dapat mengklik tombol "Add to your wishlist" untuk menambahkan game CarX Street ke daftar keinginan Anda di Steam.
  10. -
  11. Anda akan mendapatkan notifikasi dari Steam jika game CarX Street sudah tersedia untuk didownload dan dimainkan.
  12. -
-

Melalui Emulator

-

Jika Anda tidak sabar menunggu game CarX Street dirilis di Steam, Anda dapat mencoba menggunakan emulator untuk menjalankan game CarX Street di PC atau Mac. Emulator adalah aplikasi yang memungkinkan Anda untuk menjalankan aplikasi atau game Android di perangkat lain. Namun, Anda harus berhati-hati saat menggunakan emulator, karena bisa saja mengandung virus atau malware yang dapat merusak perangkat Anda. Selain itu, penggunaan emulator juga dapat menyebabkan kinerja game yang tidak optimal atau masalah kompatibilitas. Jika Anda tetap ingin mencoba emulator, Anda dapat mengikuti langkah-langkah berikut:

-
    -
  1. Buka situs web emulator Android yang andal dan terpercaya di browser Anda. Salah satu contohnya adalah https://www.bluestacks.com/
  2. -
  3. Download dan instal emulator Android di PC atau Mac Anda.
  4. -
  5. Buka emulator Android dan masuk dengan akun Google Anda.
  6. -
  7. Buka Google Play Store atau situs web APKCombo di emulator Android dan cari game CarX Street.
  8. -
  9. Download dan instal game CarX Street di emulator Android.
  10. -
  11. Nikmati game CarX Street di PC atau Mac Anda dengan menggunakan emulator Android.
  12. -

Tips dan trik bermain CarX Street

-

Setelah Anda berhasil mendownload dan memainkan game CarX Street, Anda mungkin ingin mengetahui beberapa tips dan trik untuk meningkatkan keterampilan dan pengalaman bermain Anda. Berikut adalah beberapa tips dan trik yang dapat Anda coba:

-

Ikuti tutorialnya

-

Salah satu hal pertama yang harus Anda lakukan saat memulai game CarX Street adalah mengikuti tutorialnya. Tutorial ini akan mengajarkan Anda dasar-dasar mengemudi, drifting, tuning, dan mode game yang berbeda. Tutorial ini juga akan memberi Anda beberapa hadiah, seperti uang, mobil, dan aksesoris. Jadi, jangan lewatkan tutorial ini jika Anda ingin mempelajari semua fitur game CarX Street.

-

Jelajahi kota untuk mendapatkan hadiah

-

Game CarX Street memiliki dunia terbuka yang luas yang dapat Anda jelajahi dengan bebas. Anda dapat mengemudi di mana saja di kota dan sekitarnya, dan menemukan berbagai hal menarik. Misalnya, Anda dapat menemukan kotak hadiah yang berisi uang, mobil, atau aksesoris. Anda juga dapat menemukan tempat-tempat rahasia yang menyembunyikan tantangan atau misi khusus. Jadi, jangan ragu untuk menjelajahi kota dan mendapatkan hadiah sebanyak mungkin.

-

Ikut serta dalam sprint dan klub

-

Salah satu cara untuk meningkatkan keterampilan dan reputasi Anda dalam game CarX Street adalah dengan ikut serta dalam sprint dan klub. Sprint adalah balapan singkat yang terjadi secara acak di kota. Anda dapat bergabung dengan sprint dengan mengikuti tanda panah hijau di peta. Sprint akan memberi Anda uang, poin pengalaman, dan poin reputasi jika Anda menang atau masuk dalam tiga besar.

-

Klub adalah kelompok pemain yang memiliki tujuan bersama dalam game CarX Street. Anda dapat bergabung dengan klub yang sudah ada atau membuat klub sendiri. Klub akan memberi Anda manfaat seperti bonus uang, bonus poin pengalaman, bonus poin reputasi, dan akses ke acara klub eksklusif. Klub juga akan memungkinkan Anda untuk berinteraksi dengan pemain lain, berbagi mobil, dan bersaing dalam peringkat klub.

-

Pilih mobil terbaik dan sesuaikan penampilannya

-

Salah satu hal terpenting dalam game CarX Street adalah mobil Anda. Mobil Anda akan menentukan seberapa cepat, kuat, dan stabil Anda dalam balapan. Oleh karena itu, Anda harus memilih mobil terbaik yang sesuai dengan gaya dan preferensi Anda. Game CarX Street memiliki berbagai jenis mobil untuk dipilih, mulai dari sedan hingga supercar. Setiap mobil memiliki statistik yang berbeda, seperti kecepatan maksimum, akselerasi, rem, daya tahan, traksi, dan drift.

-

Selain memilih mobil terbaik, Anda juga dapat menyesuaikan penampilannya dengan menggunakan opsi tuning yang mendetail. Anda dapat mengganti bagian-bagian mobil Anda, seperti mesin, transmisi, suspensi, ban, knalpot, turbo, nitro, dan lainnya. Anda juga dapat menyesuaikan warna mobil Anda, serta menambahkan aksesoris seperti stiker, lampu neon, sayap belakang, roda baru, dan lainnya. Dengan cara ini, Anda dapat membuat mobil impian Anda yang unik dan menarik.

-

Kesimpulan dan FAQ

-

CarX Street adalah game balap jalanan open world yang menawarkan fisika mobil yang realistis dan drifting berkecepatan tinggi. Game ini juga memiliki berbagai jenis peta dari seluruh dunia, dan pemain dapat memilih dari beberapa mode game yang berbeda. Pemain dapat bersaing melawan pemain lain, atau berpartisipasi dalam balapan dan acara.

-

Game ini saat ini hanya tersedia di beberapa negara untuk perangkat Android dan iOS, tetapi akan segera hadir di konsol dan PC. Jika Anda ingin mencoba game ini, Anda perlu tahu cara mendownload APK CarX Street di perangkat Anda. Ada beberapa cara untuk mend ownload APK CarX Street di perangkat Anda, tergantung pada negara Anda dan preferensi Anda. Anda dapat menggunakan Google Play Store, APKCombo, Mod APK, App Store, TestFlight, atau Steam. Anda juga dapat menggunakan emulator Android untuk menjalankan game CarX Street di PC atau Mac.

-

Setelah Anda berhasil mendownload dan memainkan game CarX Street, Anda mungkin ingin mengetahui beberapa tips dan trik untuk meningkatkan keterampilan dan pengalaman bermain Anda. Anda dapat mengikuti tutorialnya, jelajahi kota untuk mendapatkan hadiah, ikut serta dalam sprint dan klub, pilih mobil terbaik dan sesuaikan penampilannya, dan lainnya.

-

Demikianlah artikel tentang cara download APK CarX Street. Semoga artikel ini bermanfaat dan informatif bagi Anda. Jika Anda memiliki pertanyaan atau saran, silakan tinggalkan komentar di bawah. Terima kasih telah membaca dan selamat bermain!

-

FAQ

-

Berikut adalah beberapa pertanyaan yang sering diajukan tentang game CarX Street:

-
    -
  1. Apakah game CarX Street gratis untuk dimainkan?
  2. -

    Ya, game CarX Street gratis untuk dimainkan. Namun, game ini juga memiliki fitur pembelian dalam aplikasi yang memungkinkan Anda untuk membeli uang, mobil, atau aksesoris dengan uang sungguhan.

    -
  3. Apakah game CarX Street membutuhkan koneksi internet?
  4. -

    Ya, game CarX Street membutuhkan koneksi internet yang stabil untuk dimainkan. Game ini menggunakan koneksi internet untuk mengunduh data game, menyimpan progres Anda, dan berinteraksi dengan pemain lain.

    -
  5. Apakah game CarX Street memiliki mode offline?
  6. -

    Tidak, game CarX Street tidak memiliki mode offline. Anda harus selalu terhubung dengan internet untuk memainkan game ini.

    -
  7. Apakah game CarX Street aman untuk anak-anak?
  8. -

    Tidak sepenuhnya. Game CarX Street memiliki rating 12+ di App Store dan 3+ di Google Play Store. Game ini mengandung adegan balapan yang intens dan berbahaya, serta kemungkinan interaksi dengan pemain lain yang tidak diketahui. Oleh karena itu, disarankan untuk mengawasi anak-anak saat mereka memainkan game ini.

    -
  9. Apakah game CarX Street mendukung kontroler?
  10. -

    Ya, game CarX Street mendukung kontroler. Anda dapat menggunakan kontroler Bluetooth untuk mengontrol mobil Anda dalam game ini. Anda juga dapat menyesuaikan tata letak tombol kontroler sesuai dengan preferensi Anda.

    -

197e85843d
-
-
\ No newline at end of file diff --git a/spaces/1phancelerku/anime-remove-background/Download Final Burn Neo APK and Play Retro Games on Your Android Phone.md b/spaces/1phancelerku/anime-remove-background/Download Final Burn Neo APK and Play Retro Games on Your Android Phone.md deleted file mode 100644 index 452451700fae6520cafafdd5ec41c9e82b1076af..0000000000000000000000000000000000000000 --- a/spaces/1phancelerku/anime-remove-background/Download Final Burn Neo APK and Play Retro Games on Your Android Phone.md +++ /dev/null @@ -1,162 +0,0 @@ - -

How to Download and Install Final Burn Neo APK File for Android

-

If you are a fan of arcade games and retro consoles, you might have heard of Final Burn Neo, an emulator that supports hundreds of titles from various platforms. In this article, we will show you how to download and install the Final Burn Neo APK file for Android devices, so you can enjoy your favorite games on the go.

-

What is Final Burn Neo and what are its features

-

Final Burn Neo (also known as FBNeo or FBN) is a multi-system emulator that is based on the emulators FinalBurn and old versions of MAME. It is compatible with arcade games from Capcom, SNK, Sega, Data East, Cave, and many others, as well as consoles like Neo Geo, Sega Genesis, TurboGrafx-16, and more. It is also under active development, which means it is constantly updated with new features and bug fixes.

-

final burn neo apk download


DOWNLOADhttps://jinyurl.com/2uNQ1r



-

Some of the features of Final Burn Neo include:

- -

Why would you want to download and install the Final Burn Neo APK file

-

If you want to play arcade games and retro consoles on your Android device, you might be wondering why you should download and install the Final Burn Neo APK file instead of using other emulators. Here are some reasons why:

-

final burn neo emulator apk download
-final burn neo rom set apk download
-final burn neo android apk download
-final burn neo 1.0.0.2 apk download
-final burn neo arcade emulator apk download
-final burn neo full romset apk download
-final burn neo latest version apk download
-final burn neo retroarch core apk download
-final burn neo cheats zip apk download
-final burn neo bios files apk download
-final burn neo windows xp apk download
-final burn neo mac os x apk download
-final burn neo linux sdl2 apk download
-final burn neo raspberry pi apk download
-final burn neo support pack apk download
-final burn neo channel f games apk download
-final burn neo seibu spi games apk download
-final burn neo namco nb1 games apk download
-final burn neo namco na1 games apk download
-final burn neo game genie support apk download
-final burn neo lowpass filter option apk download
-final burn neo k007452 multiplier apk download
-final burn neo cheat dat subsystem apk download
-final burn neo big endian support apk download
-final burn neo basic blitter fix apk download
-final burn neo ym2151 buffered mode apk download
-final burn neo demon front region fix apk download
-final burn neo mighty guy sound fix apk download
-final burn neo surprise attack hang fix apk download
-final burn neo dragon world 3 fix apk download
-final burn neo ecco the dolphin sms fix apk download
-final burn neo sys16b sprite priority fix apk download
-final burn neo wally wo sagase fix apk download
-final burn neo paperboy rom fix apk download
-final burn neo vector geometry fix apk download
-final burn neo hiscore support update apk download
-final burn neo macros for all inputs apk download
-final burn neo cheeky mouse samples apk download
-final burn neo console homebrew games apk download
-final burn neo zx spectrum library update apk download
-how to install final burn neo on android apk
-how to use cheats in final burn neo android apk
-how to play neogeo games in aes mode in final burn neo android apk
-how to scan and rebuild roms for final burn neo android apk
-how to import roms to retroarch list for final burn neo android apk
-how to fix previews for arcade games in final burn neo android apk
-how to play killer instinct games in final burn neo android apk
-how to get netplay working in final burn neo android apk
-best settings for performance and quality in final burn neo android apk

- -

Requirements

-

What are the minimum system requirements for running Final Burn Neo on Android

-

To run Final Burn Neo on your Android device, you will need:

- -

What are the sources of the Final Burn Neo APK file and the ROM sets

-

To play games with Final Burn Neo on your Android device, you will need two things: the Final Burn Neo APK file and the ROM sets. The ROM sets are collections of files that contain the data of the games that you want to play. You will need to download them separately from the emulator.

-

The sources of the Final Burn Neo APK file and the ROM sets are:

- -

Be careful when downloading files from other sources, as they might contain malware or viruses. Always scan your files before opening them.

-

Steps

-

How to download and install the Final Burn Neo APK file

-

To download and install the Final Burn Neo APK file on your Android device, follow these steps:

-
    -
  1. Go to the official GitHub repository of Final Burn Neo and click on the Releases tab.
  2. -
  3. Find the latest release and click on the Assets dropdown menu.
  4. -
  5. Download the file named fbneo.apk to your device.
  6. -
  7. Open the file manager app on your device and locate the downloaded file.
  8. -
  9. Tap on the file and allow the installation of unknown apps if prompted.
  10. -
  11. Follow the on-screen instructions to complete the installation.
  12. -
  13. You should see a new icon on your home screen or app drawer named FBNeo. Tap on it to launch the emulator.
  14. -
-

How to download and extract the ROM sets

-

To download and extract the ROM sets for Final Burn Neo on your Android device, follow these steps:

-
    -
  1. Go to the official website of RetroArch and click on the Downloads tab.
  2. -
  3. Scroll down to the section named ROMs and click on the link that says FBNeo - Arcade Games.
  4. -
  5. You will be redirected to a Google Drive folder that contains several ZIP files. Each ZIP file corresponds to a different arcade system or console supported by Final Burn Neo.
  6. -
  7. Select the ZIP files that contain the games that you want to play and download them to your device. You can also download all of them if you have enough storage space.
  8. -
  9. Open the file manager app on your device and locate the downloaded ZIP files.
  10. -
  11. Create a new folder on your device named fbneo and move all the ZIP files to that folder.
  12. -
  13. Extract all the ZIP files using a ZIP extractor app. You should see several folders inside the fbneo folder, each containing one or more ROM files. Do not rename or modify any of these files or folders.
  14. -
-

How to launch and configure Final Burn Neo on Android

-

To launch and configure Final Burn Neo on your Android device, follow these steps:

-
    -
  1. Tap on the FBNeo icon on your home screen or app drawer to launch the emulator.
  2. -
  3. You will see a list of games that are available for playing. You can scroll up and down to browse through them, or use the search bar at the top to find a specific game.
  4. -
  5. To start a game, tap on its name and then tap on Run. The game will load and run in full screen mode.
  6. -
  7. To access the emulator menu, swipe from the left edge of the screen to open a sidebar. Here you can adjust various settings, such as video, audio, input, cheats, save states, netplay, achievements, etc.
  8. -
  9. To exit a game, swipe from the left edge of the screen to open the sidebar and tap on Quit. You will return to the game list.
  10. -
-

Conclusion

-

In this article, we have shown you how to download and install the Final Burn Neo APK file for Android devices, as well as how to download and extract the ROM sets, and how to launch and configure the emulator. We hope that this guide has helped you to enjoy your favorite arcade games and retro consoles on your Android device.

-

Here are some tips and tricks for using Final Burn Neo on Android:

- -

Do you have any feedback or questions about Final Burn Neo on Android? Feel free to share them in the comments section below. We would love to hear from you!

-

FAQs

-

What are the best games to play with Final Burn Neo on Android?

-

There are hundreds of games that you can play with Final Burn Neo on Android, but some of the most popular ones are:

- -

How can I update the Final Burn Neo APK file?

-

To update the Final Burn Neo APK file, you will need to download the latest version from the official GitHub repository and install it over the existing one. You do not need to uninstall the previous version or delete any files.

-

How can I add more ROM sets to Final Burn Neo?

-

To add more ROM sets to Final Burn Neo, you will need to download them from the official website of RetroArch and extract them to the fbneo folder on your device. You can also use a file manager app to copy or move ROM files from other sources to the fbneo folder.

-

How can I fix errors or crashes with Final Burn Neo?

-

If you encounter any errors or crashes with Final Burn Neo, you can try the following solutions:

- -

How can I contact the developers of Final Burn Neo?

-

If you want to contact the developers of Final Burn Neo, you can do so by visiting their official website at https://github.com/finalburnneo/FBNeo. Here you can find their contact information, report issues, request features, contribute code, or donate money.

197e85843d
-
-
\ No newline at end of file diff --git a/spaces/1phancelerku/anime-remove-background/Download Orangedox and Secure Your Documents with Data Rooms.md b/spaces/1phancelerku/anime-remove-background/Download Orangedox and Secure Your Documents with Data Rooms.md deleted file mode 100644 index a44225400796635f8fdad162ac213d4cded2b7ac..0000000000000000000000000000000000000000 --- a/spaces/1phancelerku/anime-remove-background/Download Orangedox and Secure Your Documents with Data Rooms.md +++ /dev/null @@ -1,80 +0,0 @@ - -

How to Download Orangedox and Why You Should Do It

-

If you are looking for a way to securely share and track your documents online, you might want to consider using Orangedox. Orangedox is a cloud-based software that integrates with Google Drive, Gmail, and Dropbox, and allows you to control access, prevent forwarding, and monitor every interaction with your files. Whether you need to send proposals, contracts, invoices, or any other type of document, Orangedox can help you boost your productivity, efficiency, and security.

-

download orangedox


Download === https://jinyurl.com/2uNJnr



-

In this article, we will show you how to download Orangedox for different platforms and explain why you should do it. We will also answer some frequently asked questions about Orangedox and its features.

-

How to Download Orangedox for Google Drive

-

If you use Google Drive as your cloud storage service, you can easily connect it with Orangedox and start sharing and tracking your documents in minutes. Here are the steps you need to follow:

-

Step 1: Visit the Orangedox website and sign up for a free trial

-

You can choose from three pricing plans depending on your needs: Pro, Business, or Teams. Each plan comes with a 14-day free trial and no upfront credit card required. You can also opt for a free personal plan if you just want to publish your files online.

-

Step 2: Connect your Google Drive account to Orangedox

-

Once you sign up, you will be asked to authorize Orangedox to access your Google Drive account. This will allow Orangedox to sync your files and folders automatically without any file uploads or storage restrictions.

-

Step 3: Select the files or folders you want to share and track with Orangedox

-

After connecting your Google Drive account, you can browse through your files and folders and select the ones you want to share with your recipients. You can also create new files or folders within Orangedox. Then, you can customize your documents with branding, passwords, expiration dates, download limits, and more. Finally, you can generate a unique link for each document or folder and send it via email or any other channel.

-

How to download orangedox for Google Drive
-Download orangedox to track document views and downloads
-Download orangedox for secure document sharing and data rooms
-Download orangedox for marketing insights and sales leads
-Download orangedox for Google Workspace integration
-Download orangedox for professional branding of your documents
-Download orangedox for email gating and lead capture
-Download orangedox for document protection and control
-Download orangedox for virtual data rooms and due diligence
-Download orangedox for finance and venture capital
-Download orangedox free trial and pricing options
-Download orangedox personal plan for content creators
-Download orangedox business plan for unlimited document sharing
-Download orangedox teams plan for team management and collaboration
-Download orangedox pro plan for secure document sharing and tracking
-How to download orangedox from Google Drive or Gmail
-How to download orangedox from the official website[^1^]
-How to download orangedox from the app store[^2^]
-How to download orangedox from the Chrome web store[^3^]
-How to download orangedox from the Microsoft store
-How to use orangedox after downloading it
-How to update orangedox after downloading it
-How to uninstall orangedox after downloading it
-How to contact orangedox support after downloading it
-How to access orangedox tutorials and guides after downloading it
-Benefits of downloading orangedox for your business
-Reviews of downloading orangedox from customers and users
-Alternatives to downloading orangedox for document tracking and sharing
-Comparisons of downloading orangedox with other document tools
-FAQs about downloading orangedox and its features
-Best practices for downloading orangedox and using it effectively
-Tips and tricks for downloading orangedox and optimizing it for your needs
-Case studies of downloading orangedox and its impact on business outcomes
-Testimonials of downloading orangedox and its value proposition
-Success stories of downloading orangedox and its ROI

-

How to Download Orangedox for Gmail

-

If you use Gmail as your email service, you can also benefit from using Orangedox to track your attachments. All you need is a Chrome browser and a simple plugin. Here are the steps you need to follow:

-

Step 1: Install the Orangedox for Gmail Chrome plugin

-

You can find the plugin on the Chrome Web Store and install it with one click. The plugin will add a new button to your Gmail compose window that will allow you to attach files from Google Drive or Dropbox and track them with Orangedox.

-

Step 2: Log in to your Orangedox account from Gmail

-

After installing the plugin, you will need to log in to your Orangedox account from Gmail. You can use the same credentials that you used to sign up for Orangedox on the website. This will link your Gmail account with your Orangedox account and enable the tracking features.

-

Step 3: Attach files from Google Drive or Dropbox and track them with Orangedox

-

When you compose a new email, you can click on the Orangedox button and select the files that you want to attach from Google Drive or Dropbox. You can also drag and drop files from your computer. Then, you can customize your attachments with branding, passwords, expiration dates, download limits, and more. Finally, you can send your email and get real-time notifications when your recipients open, view, or download your files.

-

How to Download Orangedox for Dropbox

-

If you use Dropbox as your cloud storage service, you can also connect it with Orangedox and enjoy the same benefits as with Google Drive. Here are the steps you need to follow:

-

Step 1: Visit the Orangedox website and sign up for a free trial

-

You can choose from three pricing plans depending on your needs: Pro, Business, or Teams. Each plan comes with a 14-day free trial and no upfront credit card required. You can also opt for a free personal plan if you just want to publish your files online.

-

Step 2: Connect your Dropbox account to Orangedox

-

Once you sign up, you will be asked to authorize Orangedox to access your Dropbox account. This will allow Orangedox to sync your files and folders automatically without any file uploads or storage restrictions.

-

Step 3: Select the files or folders you want to share and track with Orangedox

-

After connecting your Dropbox account, you can browse through your files and folders and select the ones you want to share with your recipients. You can also create new files or folders within Orangedox. Then, you can customize your documents with branding, passwords, expiration dates, download limits, and more. Finally, you can generate a unique link for each document or folder and send it via email or any other channel.

-

Conclusion

-

Orangedox is a powerful tool that can help you share and track your documents online with ease and security. It integrates with Google Drive, Gmail, and Dropbox, and allows you to control access, prevent forwarding, and monitor every interaction with your files. You can download Orangedox for different platforms by following the simple steps outlined in this article. You can also sign up for a free trial and test all the features of Orangedox before committing to a paid plan.

-

If you want to take your document sharing and tracking to the next level, download Orangedox today and see the difference for yourself!

-

FAQs

-

What are the pricing plans for Orangedox?

-

Orangedox offers three pricing plans for different needs: Pro, Business, and Teams. The Pro plan costs $10 per month and includes unlimited documents, 1000 views per month, custom branding, password protection, download limits, expiration dates, email notifications, analytics dashboard, and more. The Business plan costs $25 per month and includes everything in the Pro plan plus 5000 views per month, team collaboration, custom domains, document embedding, document watermarking, document editing, document signing, document templates, document workflows, document approvals, document requests, document reminders, document comments, document feedbacks, document ratings, document reviews, document annotations, document redactions, document conversions, document translations, document OCRs , and more. The Teams plan costs $50 per month and includes everything in the Business plan plus 10000 views per month, custom integrations, API access, priority support, and more. You can also opt for a free personal plan if you just want to publish your files online with no tracking features.

-

What are some alternatives to Orangedox?

-

Some alternatives to Orangedox are DocSend, PandaDoc, DocuSign, and Adobe Sign. These are also cloud-based software that allow you to share and track your documents online with various features. However, Orangedox has some advantages over these alternatives, such as its seamless integration with Google Drive, Gmail, and Dropbox, its advanced document customization and security options, its affordable pricing plans, and its user-friendly interface.

-

How secure is Orangedox?

-

Orangedox is very secure and reliable. It uses SSL encryption to protect your data in transit and at rest. It also complies with GDPR and CCPA regulations and respects your privacy. It does not store your files on its servers, but rather syncs them with your cloud storage service. It also allows you to control access to your documents by setting passwords, expiration dates, download limits, and more. You can also revoke access to your documents at any time or delete them permanently from Orangedox.

-

How can I customize my documents with Orangedox?

-

Orangedox allows you to customize your documents with various options to suit your needs and preferences. You can add your logo, brand colors, fonts, and images to your documents. You can also set passwords, expiration dates, download limits, and more to control access to your documents. You can also embed your documents on your website or blog with a simple code snippet. You can also watermark your documents with your name or logo to prevent unauthorized copying or forwarding. You can also edit your documents online with Orangedox's built-in editor or sign them electronically with Orangedox's signature feature.

-

How can I contact Orangedox support?

-

If you have any questions or issues with Orangedox, you can contact their support team via email at support@orangedox.com or via their online chat on their website. They are available 24/7 and will respond to you as soon as possible. You can also check their help center for answers to common questions and tutorials on how to use Orangedox.

197e85843d
-
-
\ No newline at end of file diff --git a/spaces/1phancelerku/anime-remove-background/Download Resident Evil 4 PSP ISO for PPSSPP Emulator 2019.md b/spaces/1phancelerku/anime-remove-background/Download Resident Evil 4 PSP ISO for PPSSPP Emulator 2019.md deleted file mode 100644 index 1259ab8b77cfded045279b29705e4a4afd9c558b..0000000000000000000000000000000000000000 --- a/spaces/1phancelerku/anime-remove-background/Download Resident Evil 4 PSP ISO for PPSSPP Emulator 2019.md +++ /dev/null @@ -1,143 +0,0 @@ -
-
- What is PPSSPP emulator and what are its features?
- How to download and install PPSSPP emulator on Android?
- How to download and extract Resident Evil 4 PSP ISO file?
- How to configure PPSSPP settings for optimal performance and graphics?
- How to launch and play Resident Evil 4 on PSP using PPSSPP emulator? | | H2: Resident Evil 4 Game Review | - Story: What is the plot of Resident Evil 4 and who are the main characters?
- Gameplay: What are the main features and mechanics of Resident Evil 4?
- Graphics: How does Resident Evil 4 look on PSP compared to other platforms?
- Sound: How does Resident Evil 4 sound on PSP and what are the voice acting and music quality?
- Pros and cons: What are the strengths and weaknesses of Resident Evil 4 on PSP? | | H3: Tips and Tricks for Playing Resident Evil 4 on PSP | - How to save your progress and load your game state?
- How to use cheats and hacks to enhance your gameplay?
- How to play multiplayer mode with other players online?
- How to solve puzzles and find secrets in Resident Evil 4?
- How to unlock bonus content and modes in Resident Evil 4? | | H4: Conclusion | - Summary: What are the main points of the article and why should you play Resident Evil 4 on PSP using PPSSPP emulator?
- Call to action: What are the next steps for the reader and where can they find more information about Resident Evil 4 and PPSSPP emulator? | | H5: FAQs | - Q1: Is Resident Evil 4 compatible with PPSSPP emulator?
- Q2: How much storage space do I need to download and play Resident Evil 4 on PSP using PPSSPP emulator?
- Q3: Can I play Resident Evil 4 on PSP using PPSSPP emulator without internet connection?
- Q4: Is Resident Evil 4 on PSP using PPSSPP emulator safe and legal to download and play?
- Q5: What are some alternatives to Resident Evil 4 on PSP using PPSSPP emulator? | Table 2: Article with HTML formatting

How to Download and Play Resident Evil 4 on PSP Using PPSSPP Emulator

-

-Resident Evil 4 is one of the most acclaimed games in the survival horror genre, released in 2005 for various platforms, including PlayStation 2, GameCube, Wii, PC, Xbox, and PlayStation 3. The game follows the adventures of Leon S. Kennedy, a former police officer who is sent to a rural area of Spain to rescue the kidnapped daughter of the US president from a mysterious cult. Along the way, he faces hordes of infected villagers, mutated creatures, and sinister enemies. The game features a third-person perspective, dynamic combat system, interactive environments, and multiple weapons and items.

-

resident evil 4 psp iso download 2019 ppsspp android emulator


Download File ===== https://jinyurl.com/2uNSW7



-

-If you are a fan of Resident Evil 4 or want to experience this classic game for the first time, you might be wondering if you can play it on your PlayStation Portable (PSP) device. The answer is yes, you can, thanks to a powerful emulator called PPSSPP. PPSSPP is an open-source software that allows you to run PSP games on your Android device, as well as other platforms like Windows, Linux, Mac, iOS, etc. PPSSPP has many features that enhance your gaming experience, such as HD graphics, high rendering speed, smooth gameplay, amazing performance, texture filter, scale, etc. It also supports up to 36 languages.

-

-In this article, we will show you how to download and play Resident Evil 4 on PSP using PPSSPP emulator. We will guide you through the steps required to download and install PPSSPP emulator on Android, download and extract Resident Evil 4 PSP ISO file, configure PPSSPP settings for optimal performance and graphics, launch and play Resident Evil 4 on PSP using PPSSPP emulator. We will also provide you with a review of Resident Evil 4 game, as well as some tips and tricks for playing it. By the end of this article, you will be able to enjoy Resident Evil 4 on your PSP device with amazing quality and performance. So, let's get started!

Resident Evil 4 Game Review

-

-Before we dive into the technical details of how to download and play Resident Evil 4 on PSP using PPSSPP emulator, let's take a look at what makes this game so special and why you should play it. Here is a brief review of Resident Evil 4 game, covering its story, gameplay, graphics, sound, pros and cons.

-

Story

-

-Resident Evil 4 is the sixth main installment in the Resident Evil series, which is known for its horror-themed action-adventure games. The game takes place in 2004, six years after the events of Resident Evil 2 and Resident Evil 3: Nemesis. The protagonist of the game is Leon S. Kennedy, who was one of the survivors of the Raccoon City incident in Resident Evil 2. Leon is now a special agent working for the US government, and he is assigned to rescue Ashley Graham, the daughter of the US president, who has been kidnapped by a mysterious cult called Los Illuminados. Leon travels to a rural area of Spain, where he encounters hostile villagers infected by a parasite called Las Plagas, which turns them into mindless zombies. He also faces other enemies, such as cult members, mercenaries, and mutated creatures. Leon must find Ashley and escape from the area, while uncovering the secrets behind Los Illuminados and Las Plagas.

-

-The story of Resident Evil 4 is engaging and thrilling, with many twists and turns along the way. The game has a cinematic presentation, with cutscenes and dialogues that advance the plot and develop the characters. The game also has multiple endings, depending on the choices you make during the game. The story of Resident Evil 4 is one of the best in the series, and it will keep you hooked until the end.

-

resident evil 4 ppsspp iso file download for android
-download resident evil 4 psp iso highly compressed 2019
-resident evil 4 ppsspp android emulator gameplay
-how to play resident evil 4 on psp with ppsspp
-resident evil 4 psp iso free download full version
-resident evil 4 ppsspp settings for best performance
-resident evil 4 psp iso download link 2019
-resident evil 4 ppsspp cheats and codes
-resident evil 4 ppsspp android emulator requirements
-resident evil 4 psp iso mod apk download
-resident evil 4 ppsspp gold emulator download
-resident evil 4 psp iso romsmania
-resident evil 4 ppsspp save data download
-resident evil 4 psp iso coolrom
-resident evil 4 ppsspp android emulator review
-resident evil 4 psp iso game size
-resident evil 4 ppsspp graphics mod download
-resident evil 4 psp iso english version
-resident evil 4 ppsspp android emulator offline
-resident evil 4 psp iso zip file download
-resident evil 4 ppsspp best weapons and upgrades
-resident evil 4 psp iso google drive
-resident evil 4 ppsspp walkthrough and tips
-resident evil 4 psp iso mediafire
-resident evil 4 ppsspp android emulator apk

-

Gameplay

-

-Resident Evil 4 is a survival horror game that combines action, adventure, and puzzle elements. The game features a third-person perspective, which allows you to see your character and the surroundings more clearly. The game also has an over-the-shoulder camera angle, which gives you more control over aiming and shooting. The game has a dynamic combat system, which lets you use various weapons and items to fight against enemies. You can also use melee attacks, such as kicks and suplexes, to stun or kill enemies. You can also interact with the environment, such as breaking barrels, opening doors, pushing objects, etc. The game has a health system that requires you to use herbs or first aid sprays to heal yourself. You can also upgrade your weapons and items by finding or buying them from a merchant who appears throughout the game.

-

-The gameplay of Resident Evil 4 is challenging and rewarding, with many options and strategies to deal with different situations. The game has a balanced difficulty level, which adapts to your performance and skills. The game also has a variety of enemies and bosses, each with their own strengths and weaknesses. The game also has some puzzle elements, which require you to use your logic and observation skills to solve them. The gameplay of Resident Evil 4 is fun and addictive, and it will keep you entertained for hours.

Graphics

-

-Resident Evil 4 is a game that was originally designed for PlayStation 2 and GameCube, which had limited graphics capabilities compared to modern devices. However, thanks to PPSSPP emulator, you can play Resident Evil 4 on PSP with improved graphics quality and resolution. PPSSPP emulator allows you to adjust the graphics settings of the game, such as texture filter, scale, frame rate, etc. You can also use shaders and post-processing effects to enhance the visuals of the game. PPSSPP emulator also supports HD graphics, which means you can play Resident Evil 4 on PSP with up to 1080p resolution.

-

-The graphics of Resident Evil 4 on PSP using PPSSPP emulator are impressive and realistic, with detailed textures, lighting, shadows, and animations. The game also has a diverse and immersive environment, with different locations and scenarios, such as villages, castles, mines, islands, etc. The game also has a dynamic weather system, which changes the atmosphere and mood of the game. The graphics of Resident Evil 4 on PSP using PPSSPP emulator are stunning and beautiful, and they will make you feel like you are playing the game on a bigger screen.

-

Sound

-

-Resident Evil 4 is a game that relies heavily on sound to create a tense and scary atmosphere. The game has a superb sound design, with realistic and immersive sound effects, such as gunshots, explosions, footsteps, screams, etc. The game also has a great voice acting, with professional and expressive actors who deliver the dialogues and emotions of the characters. The game also has a catchy and atmospheric music score, which complements the mood and tone of the game. The game also supports Dolby Surround Sound, which enhances the audio quality and surround effect of the game.

-

-The sound of Resident Evil 4 on PSP using PPSSPP emulator is clear and crisp, with no distortion or lag. PPSSPP emulator allows you to adjust the sound settings of the game, such as volume, stereo mode, latency, etc. You can also use headphones or external speakers to enjoy the sound of the game better. The sound of Resident Evil 4 on PSP using PPSSPP emulator is excellent and immersive, and it will make you feel like you are in the middle of the action.

Pros and Cons

-

-Resident Evil 4 is a game that has many pros and cons, depending on your preferences and expectations. Here are some of the pros and cons of Resident Evil 4 on PSP using PPSSPP emulator:

- - - - - - - - - - - - - - - - - - - - - - - - - -
ProsCons
- A thrilling and captivating story with multiple endings and characters.- A long and repetitive game with some backtracking and filler sections.
- A fun and challenging gameplay with diverse combat and puzzle elements.- A difficult and frustrating gameplay with limited ammo and health resources.
- A stunning and realistic graphics with HD resolution and enhanced effects.- A dated and pixelated graphics with some glitches and bugs.
- A clear and immersive sound with Dolby Surround Sound and great voice acting.- A loud and annoying sound with some cheesy and corny dialogues.
- A portable and accessible game with PPSSPP emulator and PSP device.- A illegal and risky game with potential malware and legal issues.
-

-The pros and cons of Resident Evil 4 on PSP using PPSSPP emulator are subjective and personal, so you might have a different opinion than ours. However, we think that the pros outweigh the cons, and that Resident Evil 4 is a game worth playing on PSP using PPSSPP emulator.

-

Tips and Tricks for Playing Resident Evil 4 on PSP

-

-Now that you know how to download and play Resident Evil 4 on PSP using PPSSPP emulator, you might want to know some tips and tricks for playing it better. Here are some tips and tricks for playing Resident Evil 4 on PSP that will help you improve your skills, enjoy your gameplay, and discover more secrets in the game.

How to save your progress and load your game state?

-

-One of the most important tips for playing Resident Evil 4 on PSP using PPSSPP emulator is to save your progress and load your game state frequently. Saving your progress and loading your game state will allow you to resume your gameplay from where you left off, avoid losing your data, and retry difficult sections. There are two ways to save your progress and load your game state in Resident Evil 4 on PSP using PPSSPP emulator: using the in-game save system and using the emulator's save state system.

-

-The in-game save system is the official way to save your progress and load your game state in Resident Evil 4. The in-game save system uses typewriters that are scattered throughout the game. To use the in-game save system, you need to find a typewriter, interact with it, and select the option to save your game. You can also overwrite or delete your previous saves. To load your game state using the in-game save system, you need to go to the main menu, select the option to load your game, and choose the save file you want to load. The in-game save system is reliable and convenient, but it has some limitations. For example, you can only save your progress when you find a typewriter, which might be far away or inaccessible. You also have a limited number of save slots, which might not be enough for multiple playthroughs or different scenarios.

-

-The emulator's save state system is an alternative way to save your progress and load your game state in Resident Evil 4. The emulator's save state system uses the emulator's memory to create snapshots of your gameplay at any point. To use the emulator's save state system, you need to go to the emulator's menu, select the option to save state, and choose a slot to save your state. You can also overwrite or delete your previous states. To load your game state using the emulator's save state system, you need to go to the emulator's menu, select the option to load state, and choose the slot you want to load. The emulator's save state system is flexible and convenient, but it has some risks. For example, you might accidentally overwrite or delete your states, which might cause data loss or corruption. You also might encounter compatibility issues or glitches when loading states from different versions of the game or the emulator.

-

-We recommend that you use both the in-game save system and the emulator's save state system when playing Resident Evil 4 on PSP using PPSSPP emulator. This way, you can have multiple backups of your progress and load your game state from different points. However, you should also be careful not to rely too much on either system, as they might fail or malfunction at some point. You should also make sure that you have enough storage space on your device for saving and loading states.

How to use cheats and hacks to enhance your gameplay?

-

-Another tip for playing Resident Evil 4 on PSP using PPSSPP emulator is to use cheats and hacks to enhance your gameplay. Cheats and hacks are codes or modifications that alter the game's rules or features, such as giving you unlimited ammo, health, money, weapons, items, etc. Cheats and hacks can make your gameplay easier, funnier, or more interesting, depending on your preferences and goals. However, cheats and hacks can also ruin your gameplay, make it boring, or cause glitches or errors, depending on how you use them. Therefore, you should use cheats and hacks with caution and moderation, and only when you want to experiment or have some fun.

-

-There are two ways to use cheats and hacks in Resident Evil 4 on PSP using PPSSPP emulator: using the in-game cheat system and using the emulator's cheat system. The in-game cheat system is the official way to use cheats and hacks in Resident Evil 4. The in-game cheat system uses special items or codes that are hidden or unlocked throughout the game. To use the in-game cheat system, you need to find or obtain these items or codes, and use them in the game. For example, you can find a rocket launcher with infinite ammo in the final chapter of the game, or you can enter a code to unlock a special costume for Leon or Ashley. The in-game cheat system is limited and specific, but it is also safe and legal to use.

-

-The emulator's cheat system is an alternative way to use cheats and hacks in Resident Evil 4. The emulator's cheat system uses external files or programs that contain cheat codes or patches for the game. To use the emulator's cheat system, you need to download or create these files or programs, and load them into the emulator. For example, you can download a cheat file that contains codes for unlimited ammo, health, money, weapons, items, etc., or you can create a patch file that modifies the game's graphics, sound, difficulty, etc. The emulator's cheat system is flexible and diverse, but it is also risky and illegal to use.

-

-We recommend that you use the in-game cheat system when playing Resident Evil 4 on PSP using PPSSPP emulator, as it is more reliable and ethical than the emulator's cheat system. However, if you want to use the emulator's cheat system, you should do it at your own risk and responsibility. You should also make sure that you have a backup of your original game file and state before using any cheats or hacks. You should also avoid using cheats or hacks that might harm your device or violate the game's terms of service.

How to solve puzzles and find secrets in Resident Evil 4?

-

-Another tip for playing Resident Evil 4 on PSP using PPSSPP emulator is to solve puzzles and find secrets in the game. Puzzles and secrets are optional challenges and rewards that are hidden or locked in the game. Solving puzzles and finding secrets can make your gameplay more interesting and rewarding, as you can discover new areas, items, weapons, modes, etc. However, puzzles and secrets can also be difficult and frustrating, as they require you to use your logic, observation, memory, and skills to solve them or find them.

-

-There are many puzzles and secrets in Resident Evil 4, ranging from simple to complex, from obvious to obscure. Some of the puzzles and secrets are related to the main story or gameplay, while others are just for fun or extra content. Some of the puzzles and secrets are easy to find or solve, while others require you to search or explore every corner of the game or use specific items or actions. Some of the puzzles and secrets are rewarding and satisfying, while others are disappointing or useless.

-

-We recommend that you try to solve puzzles and find secrets in Resident Evil 4 on PSP using PPSSPP emulator, as they can enhance your gameplay and enjoyment of the game. However, you should also be aware that some puzzles and secrets might be too hard or too hidden for you to solve or find, and that you might need some help or hints from other sources, such as guides, walkthroughs, videos, etc. You should also be careful not to spoil yourself or ruin your gameplay by looking for or using too many clues or solutions for the puzzles and secrets. You should also respect the game's design and intention, and not use cheats or hacks to bypass or break the puzzles and secrets.

-

How to unlock bonus content and modes in Resident Evil 4?

-

-One of the most rewarding tips for playing Resident Evil 4 on PSP using PPSSPP emulator is to unlock bonus content and modes in the game. Bonus content and modes are additional features and options that are not available in the normal game. Unlocking bonus content and modes can make your gameplay more fun and varied, as you can access new characters, costumes, weapons, items, scenarios, difficulties, etc. However, unlocking bonus content and modes can also be challenging and time-consuming, as they require you to complete certain tasks or conditions in the game.

-

-There are many bonus content and modes in Resident Evil 4, each with their own requirements and rewards. Some of the bonus content and modes are related to the main story or gameplay, while others are just for fun or extra content. Some of the bonus content and modes are easy to unlock, while others require you to finish the game multiple times or achieve high scores or ranks. Some of the bonus content and modes are exciting and useful, while others are silly or pointless.

-

-We recommend that you try to unlock bonus content and modes in Resident Evil 4 on PSP using PPSSPP emulator, as they can extend your gameplay and enjoyment of the game. However, you should also be aware that some bonus content and modes might be too hard or too tedious for you to unlock, and that you might need some help or tips from other sources, such as guides, walkthroughs, videos, etc. You should also be careful not to spoil yourself or ruin your gameplay by looking for or using too much information about the bonus content and modes. You should also respect the game's design and intention, and not use cheats or hacks to unlock or access the bonus content and modes.

Conclusion

-

-Resident Evil 4 is a game that deserves to be played by any fan of survival horror or action-adventure games. The game has a captivating story, a fun and challenging gameplay, a stunning and realistic graphics, and a clear and immersive sound. The game also has many puzzles, secrets, bonus content, and modes that will keep you entertained for hours. Thanks to PPSSPP emulator, you can play Resident Evil 4 on PSP with amazing quality and performance. You can also play multiplayer mode with other players online, and use cheats and hacks to enhance your gameplay. However, you should also be careful and responsible when downloading and playing Resident Evil 4 on PSP using PPSSPP emulator, as there might be some risks and issues involved.

-

-We hope that this article has helped you learn how to download and play Resident Evil 4 on PSP using PPSSPP emulator. We also hope that you have enjoyed reading our review of Resident Evil 4 game, as well as our tips and tricks for playing it. If you have any questions or comments, please feel free to leave them below. We would love to hear from you and help you out. Thank you for reading and happy gaming!

-
FAQs
-

-Here are some frequently asked questions about Resident Evil 4 on PSP using PPSSPP emulator:

-

401be4b1e0
-
-
\ No newline at end of file diff --git a/spaces/A666sxr/Genshin_TTS/attentions.py b/spaces/A666sxr/Genshin_TTS/attentions.py deleted file mode 100644 index 4e0b0c1fd48c962e21e1fbe60b23fc574927435c..0000000000000000000000000000000000000000 --- a/spaces/A666sxr/Genshin_TTS/attentions.py +++ /dev/null @@ -1,303 +0,0 @@ -import copy -import math -import numpy as np -import torch -from torch import nn -from torch.nn import functional as F - -import commons -import modules -from modules import LayerNorm - - -class Encoder(nn.Module): - def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs): - super().__init__() - self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads - self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.window_size = window_size - - self.drop = nn.Dropout(p_dropout) - self.attn_layers = nn.ModuleList() - self.norm_layers_1 = nn.ModuleList() - self.ffn_layers = nn.ModuleList() - self.norm_layers_2 = nn.ModuleList() - for i in range(self.n_layers): - self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size)) - self.norm_layers_1.append(LayerNorm(hidden_channels)) - self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout)) - self.norm_layers_2.append(LayerNorm(hidden_channels)) - - def forward(self, x, x_mask): - attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) - x = x * x_mask - for i in range(self.n_layers): - y = self.attn_layers[i](x, x, attn_mask) - y = self.drop(y) - x = self.norm_layers_1[i](x + y) - - y = self.ffn_layers[i](x, x_mask) - y = self.drop(y) - x = self.norm_layers_2[i](x + y) - x = x * x_mask - return x - - -class Decoder(nn.Module): - def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs): - super().__init__() - self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads - self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.proximal_bias = proximal_bias - self.proximal_init = proximal_init - - self.drop = nn.Dropout(p_dropout) - self.self_attn_layers = nn.ModuleList() - self.norm_layers_0 = nn.ModuleList() - self.encdec_attn_layers = nn.ModuleList() - self.norm_layers_1 = nn.ModuleList() - self.ffn_layers = nn.ModuleList() - self.norm_layers_2 = nn.ModuleList() - for i in range(self.n_layers): - self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init)) - self.norm_layers_0.append(LayerNorm(hidden_channels)) - self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout)) - self.norm_layers_1.append(LayerNorm(hidden_channels)) - self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True)) - self.norm_layers_2.append(LayerNorm(hidden_channels)) - - def forward(self, x, x_mask, h, h_mask): - """ - x: decoder input - h: encoder output - """ - self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype) - encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1) - x = x * x_mask - for i in range(self.n_layers): - y = self.self_attn_layers[i](x, x, self_attn_mask) - y = self.drop(y) - x = self.norm_layers_0[i](x + y) - - y = self.encdec_attn_layers[i](x, h, encdec_attn_mask) - y = self.drop(y) - x = self.norm_layers_1[i](x + y) - - y = self.ffn_layers[i](x, x_mask) - y = self.drop(y) - x = self.norm_layers_2[i](x + y) - x = x * x_mask - return x - - -class MultiHeadAttention(nn.Module): - def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False): - super().__init__() - assert channels % n_heads == 0 - - self.channels = channels - self.out_channels = out_channels - self.n_heads = n_heads - self.p_dropout = p_dropout - self.window_size = window_size - self.heads_share = heads_share - self.block_length = block_length - self.proximal_bias = proximal_bias - self.proximal_init = proximal_init - self.attn = None - - self.k_channels = channels // n_heads - self.conv_q = nn.Conv1d(channels, channels, 1) - self.conv_k = nn.Conv1d(channels, channels, 1) - self.conv_v = nn.Conv1d(channels, channels, 1) - self.conv_o = nn.Conv1d(channels, out_channels, 1) - self.drop = nn.Dropout(p_dropout) - - if window_size is not None: - n_heads_rel = 1 if heads_share else n_heads - rel_stddev = self.k_channels**-0.5 - self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) - self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) - - nn.init.xavier_uniform_(self.conv_q.weight) - nn.init.xavier_uniform_(self.conv_k.weight) - nn.init.xavier_uniform_(self.conv_v.weight) - if proximal_init: - with torch.no_grad(): - self.conv_k.weight.copy_(self.conv_q.weight) - self.conv_k.bias.copy_(self.conv_q.bias) - - def forward(self, x, c, attn_mask=None): - q = self.conv_q(x) - k = self.conv_k(c) - v = self.conv_v(c) - - x, self.attn = self.attention(q, k, v, mask=attn_mask) - - x = self.conv_o(x) - return x - - def attention(self, query, key, value, mask=None): - # reshape [b, d, t] -> [b, n_h, t, d_k] - b, d, t_s, t_t = (*key.size(), query.size(2)) - query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3) - key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) - value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) - - scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1)) - if self.window_size is not None: - assert t_s == t_t, "Relative attention is only available for self-attention." - key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s) - rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings) - scores_local = self._relative_position_to_absolute_position(rel_logits) - scores = scores + scores_local - if self.proximal_bias: - assert t_s == t_t, "Proximal bias is only available for self-attention." - scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype) - if mask is not None: - scores = scores.masked_fill(mask == 0, -1e4) - if self.block_length is not None: - assert t_s == t_t, "Local attention is only available for self-attention." - block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length) - scores = scores.masked_fill(block_mask == 0, -1e4) - p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s] - p_attn = self.drop(p_attn) - output = torch.matmul(p_attn, value) - if self.window_size is not None: - relative_weights = self._absolute_position_to_relative_position(p_attn) - value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s) - output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings) - output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t] - return output, p_attn - - def _matmul_with_relative_values(self, x, y): - """ - x: [b, h, l, m] - y: [h or 1, m, d] - ret: [b, h, l, d] - """ - ret = torch.matmul(x, y.unsqueeze(0)) - return ret - - def _matmul_with_relative_keys(self, x, y): - """ - x: [b, h, l, d] - y: [h or 1, m, d] - ret: [b, h, l, m] - """ - ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1)) - return ret - - def _get_relative_embeddings(self, relative_embeddings, length): - max_relative_position = 2 * self.window_size + 1 - # Pad first before slice to avoid using cond ops. - pad_length = max(length - (self.window_size + 1), 0) - slice_start_position = max((self.window_size + 1) - length, 0) - slice_end_position = slice_start_position + 2 * length - 1 - if pad_length > 0: - padded_relative_embeddings = F.pad( - relative_embeddings, - commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]])) - else: - padded_relative_embeddings = relative_embeddings - used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position] - return used_relative_embeddings - - def _relative_position_to_absolute_position(self, x): - """ - x: [b, h, l, 2*l-1] - ret: [b, h, l, l] - """ - batch, heads, length, _ = x.size() - # Concat columns of pad to shift from relative to absolute indexing. - x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]])) - - # Concat extra elements so to add up to shape (len+1, 2*len-1). - x_flat = x.view([batch, heads, length * 2 * length]) - x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]])) - - # Reshape and slice out the padded elements. - x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:] - return x_final - - def _absolute_position_to_relative_position(self, x): - """ - x: [b, h, l, l] - ret: [b, h, l, 2*l-1] - """ - batch, heads, length, _ = x.size() - # padd along column - x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]])) - x_flat = x.view([batch, heads, length**2 + length*(length -1)]) - # add 0's in the beginning that will skew the elements after reshape - x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]])) - x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:] - return x_final - - def _attention_bias_proximal(self, length): - """Bias for self-attention to encourage attention to close positions. - Args: - length: an integer scalar. - Returns: - a Tensor with shape [1, 1, length, length] - """ - r = torch.arange(length, dtype=torch.float32) - diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1) - return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0) - - -class FFN(nn.Module): - def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False): - super().__init__() - self.in_channels = in_channels - self.out_channels = out_channels - self.filter_channels = filter_channels - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.activation = activation - self.causal = causal - - if causal: - self.padding = self._causal_padding - else: - self.padding = self._same_padding - - self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size) - self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size) - self.drop = nn.Dropout(p_dropout) - - def forward(self, x, x_mask): - x = self.conv_1(self.padding(x * x_mask)) - if self.activation == "gelu": - x = x * torch.sigmoid(1.702 * x) - else: - x = torch.relu(x) - x = self.drop(x) - x = self.conv_2(self.padding(x * x_mask)) - return x * x_mask - - def _causal_padding(self, x): - if self.kernel_size == 1: - return x - pad_l = self.kernel_size - 1 - pad_r = 0 - padding = [[0, 0], [0, 0], [pad_l, pad_r]] - x = F.pad(x, commons.convert_pad_shape(padding)) - return x - - def _same_padding(self, x): - if self.kernel_size == 1: - return x - pad_l = (self.kernel_size - 1) // 2 - pad_r = self.kernel_size // 2 - padding = [[0, 0], [0, 0], [pad_l, pad_r]] - x = F.pad(x, commons.convert_pad_shape(padding)) - return x diff --git a/spaces/AIConsultant/MusicGen/audiocraft/modules/conditioners.py b/spaces/AIConsultant/MusicGen/audiocraft/modules/conditioners.py deleted file mode 100644 index d10ac8dc96466375379c883cd62f7c04a1bb0a73..0000000000000000000000000000000000000000 --- a/spaces/AIConsultant/MusicGen/audiocraft/modules/conditioners.py +++ /dev/null @@ -1,1411 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from collections import defaultdict -from copy import deepcopy -from dataclasses import dataclass, field -from itertools import chain -import logging -import math -from pathlib import Path -import random -import re -import typing as tp -import warnings - -import einops -from num2words import num2words -import spacy -from transformers import RobertaTokenizer, T5EncoderModel, T5Tokenizer # type: ignore -import torch -from torch import nn -import torch.nn.functional as F -from torch.nn.utils.rnn import pad_sequence - -from .chroma import ChromaExtractor -from .streaming import StreamingModule -from .transformer import create_sin_embedding -from ..data.audio import audio_read -from ..data.audio_dataset import SegmentInfo -from ..data.audio_utils import convert_audio -from ..environment import AudioCraftEnvironment -from ..quantization import ResidualVectorQuantizer -from ..utils.autocast import TorchAutocast -from ..utils.cache import EmbeddingCache -from ..utils.utils import collate, hash_trick, length_to_mask, load_clap_state_dict, warn_once - - -logger = logging.getLogger(__name__) -TextCondition = tp.Optional[str] # a text condition can be a string or None (if doesn't exist) -ConditionType = tp.Tuple[torch.Tensor, torch.Tensor] # condition, mask - - -class WavCondition(tp.NamedTuple): - wav: torch.Tensor - length: torch.Tensor - sample_rate: tp.List[int] - path: tp.List[tp.Optional[str]] = [] - seek_time: tp.List[tp.Optional[float]] = [] - - -class JointEmbedCondition(tp.NamedTuple): - wav: torch.Tensor - text: tp.List[tp.Optional[str]] - length: torch.Tensor - sample_rate: tp.List[int] - path: tp.List[tp.Optional[str]] = [] - seek_time: tp.List[tp.Optional[float]] = [] - - -@dataclass -class ConditioningAttributes: - text: tp.Dict[str, tp.Optional[str]] = field(default_factory=dict) - wav: tp.Dict[str, WavCondition] = field(default_factory=dict) - joint_embed: tp.Dict[str, JointEmbedCondition] = field(default_factory=dict) - - def __getitem__(self, item): - return getattr(self, item) - - @property - def text_attributes(self): - return self.text.keys() - - @property - def wav_attributes(self): - return self.wav.keys() - - @property - def joint_embed_attributes(self): - return self.joint_embed.keys() - - @property - def attributes(self): - return { - "text": self.text_attributes, - "wav": self.wav_attributes, - "joint_embed": self.joint_embed_attributes, - } - - def to_flat_dict(self): - return { - **{f"text.{k}": v for k, v in self.text.items()}, - **{f"wav.{k}": v for k, v in self.wav.items()}, - **{f"joint_embed.{k}": v for k, v in self.joint_embed.items()} - } - - @classmethod - def from_flat_dict(cls, x): - out = cls() - for k, v in x.items(): - kind, att = k.split(".") - out[kind][att] = v - return out - - -class SegmentWithAttributes(SegmentInfo): - """Base class for all dataclasses that are used for conditioning. - All child classes should implement `to_condition_attributes` that converts - the existing attributes to a dataclass of type ConditioningAttributes. - """ - def to_condition_attributes(self) -> ConditioningAttributes: - raise NotImplementedError() - - -def nullify_condition(condition: ConditionType, dim: int = 1): - """Transform an input condition to a null condition. - The way it is done by converting it to a single zero vector similarly - to how it is done inside WhiteSpaceTokenizer and NoopTokenizer. - - Args: - condition (ConditionType): A tuple of condition and mask (tuple[torch.Tensor, torch.Tensor]) - dim (int): The dimension that will be truncated (should be the time dimension) - WARNING!: dim should not be the batch dimension! - Returns: - ConditionType: A tuple of null condition and mask - """ - assert dim != 0, "dim cannot be the batch dimension!" - assert isinstance(condition, tuple) and \ - isinstance(condition[0], torch.Tensor) and \ - isinstance(condition[1], torch.Tensor), "'nullify_condition' got an unexpected input type!" - cond, mask = condition - B = cond.shape[0] - last_dim = cond.dim() - 1 - out = cond.transpose(dim, last_dim) - out = 0. * out[..., :1] - out = out.transpose(dim, last_dim) - mask = torch.zeros((B, 1), device=out.device).int() - assert cond.dim() == out.dim() - return out, mask - - -def nullify_wav(cond: WavCondition) -> WavCondition: - """Transform a WavCondition to a nullified WavCondition. - It replaces the wav by a null tensor, forces its length to 0, and replaces metadata by dummy attributes. - - Args: - cond (WavCondition): Wav condition with wav, tensor of shape [B, T]. - Returns: - WavCondition: Nullified wav condition. - """ - null_wav, _ = nullify_condition((cond.wav, torch.zeros_like(cond.wav)), dim=cond.wav.dim() - 1) - return WavCondition( - wav=null_wav, - length=torch.tensor([0] * cond.wav.shape[0], device=cond.wav.device), - sample_rate=cond.sample_rate, - path=[None] * cond.wav.shape[0], - seek_time=[None] * cond.wav.shape[0], - ) - - -def nullify_joint_embed(embed: JointEmbedCondition) -> JointEmbedCondition: - """Nullify the joint embedding condition by replacing it by a null tensor, forcing its length to 0, - and replacing metadata by dummy attributes. - - Args: - cond (JointEmbedCondition): Joint embedding condition with wav and text, wav tensor of shape [B, C, T]. - """ - null_wav, _ = nullify_condition((embed.wav, torch.zeros_like(embed.wav)), dim=embed.wav.dim() - 1) - return JointEmbedCondition( - wav=null_wav, text=[None] * len(embed.text), - length=torch.LongTensor([0]).to(embed.wav.device), - sample_rate=embed.sample_rate, - path=[None] * embed.wav.shape[0], - seek_time=[0] * embed.wav.shape[0], - ) - - -class Tokenizer: - """Base tokenizer implementation - (in case we want to introduce more advances tokenizers in the future). - """ - def __call__(self, texts: tp.List[tp.Optional[str]]) -> tp.Tuple[torch.Tensor, torch.Tensor]: - raise NotImplementedError() - - -class WhiteSpaceTokenizer(Tokenizer): - """This tokenizer should be used for natural language descriptions. - For example: - ["he didn't, know he's going home.", 'shorter sentence'] => - [[78, 62, 31, 4, 78, 25, 19, 34], - [59, 77, 0, 0, 0, 0, 0, 0]] - """ - PUNCTUATION = "?:!.,;" - - def __init__(self, n_bins: int, pad_idx: int = 0, language: str = "en_core_web_sm", - lemma: bool = True, stopwords: bool = True) -> None: - self.n_bins = n_bins - self.pad_idx = pad_idx - self.lemma = lemma - self.stopwords = stopwords - try: - self.nlp = spacy.load(language) - except IOError: - spacy.cli.download(language) # type: ignore - self.nlp = spacy.load(language) - - @tp.no_type_check - def __call__(self, texts: tp.List[tp.Optional[str]], - return_text: bool = False) -> tp.Tuple[torch.Tensor, torch.Tensor]: - """Take a list of strings and convert them to a tensor of indices. - - Args: - texts (list[str]): List of strings. - return_text (bool, optional): Whether to return text as additional tuple item. Defaults to False. - Returns: - tuple[torch.Tensor, torch.Tensor]: - - Indices of words in the LUT. - - And a mask indicating where the padding tokens are - """ - output, lengths = [], [] - texts = deepcopy(texts) - for i, text in enumerate(texts): - # if current sample doesn't have a certain attribute, replace with pad token - if text is None: - output.append(torch.Tensor([self.pad_idx])) - lengths.append(0) - continue - - # convert numbers to words - text = re.sub(r"(\d+)", lambda x: num2words(int(x.group(0))), text) # type: ignore - # normalize text - text = self.nlp(text) # type: ignore - # remove stopwords - if self.stopwords: - text = [w for w in text if not w.is_stop] # type: ignore - # remove punctuation - text = [w for w in text if w.text not in self.PUNCTUATION] # type: ignore - # lemmatize if needed - text = [getattr(t, "lemma_" if self.lemma else "text") for t in text] # type: ignore - - texts[i] = " ".join(text) - lengths.append(len(text)) - # convert to tensor - tokens = torch.Tensor([hash_trick(w, self.n_bins) for w in text]) - output.append(tokens) - - mask = length_to_mask(torch.IntTensor(lengths)).int() - padded_output = pad_sequence(output, padding_value=self.pad_idx).int().t() - if return_text: - return padded_output, mask, texts # type: ignore - return padded_output, mask - - -class NoopTokenizer(Tokenizer): - """This tokenizer should be used for global conditioners such as: artist, genre, key, etc. - The difference between this and WhiteSpaceTokenizer is that NoopTokenizer does not split - strings, so "Jeff Buckley" will get it's own index. Whereas WhiteSpaceTokenizer will - split it to ["Jeff", "Buckley"] and return an index per word. - - For example: - ["Queen", "ABBA", "Jeff Buckley"] => [43, 55, 101] - ["Metal", "Rock", "Classical"] => [0, 223, 51] - """ - def __init__(self, n_bins: int, pad_idx: int = 0): - self.n_bins = n_bins - self.pad_idx = pad_idx - - def __call__(self, texts: tp.List[tp.Optional[str]]) -> tp.Tuple[torch.Tensor, torch.Tensor]: - output, lengths = [], [] - for text in texts: - # if current sample doesn't have a certain attribute, replace with pad token - if text is None: - output.append(self.pad_idx) - lengths.append(0) - else: - output.append(hash_trick(text, self.n_bins)) - lengths.append(1) - - tokens = torch.LongTensor(output).unsqueeze(1) - mask = length_to_mask(torch.IntTensor(lengths)).int() - return tokens, mask - - -class BaseConditioner(nn.Module): - """Base model for all conditioner modules. - We allow the output dim to be different than the hidden dim for two reasons: - 1) keep our LUTs small when the vocab is large; - 2) make all condition dims consistent. - - Args: - dim (int): Hidden dim of the model. - output_dim (int): Output dim of the conditioner. - """ - def __init__(self, dim: int, output_dim: int): - super().__init__() - self.dim = dim - self.output_dim = output_dim - self.output_proj = nn.Linear(dim, output_dim) - - def tokenize(self, *args, **kwargs) -> tp.Any: - """Should be any part of the processing that will lead to a synchronization - point, e.g. BPE tokenization with transfer to the GPU. - - The returned value will be saved and return later when calling forward(). - """ - raise NotImplementedError() - - def forward(self, inputs: tp.Any) -> ConditionType: - """Gets input that should be used as conditioning (e.g, genre, description or a waveform). - Outputs a ConditionType, after the input data was embedded as a dense vector. - - Returns: - ConditionType: - - A tensor of size [B, T, D] where B is the batch size, T is the length of the - output embedding and D is the dimension of the embedding. - - And a mask indicating where the padding tokens. - """ - raise NotImplementedError() - - -class TextConditioner(BaseConditioner): - ... - - -class LUTConditioner(TextConditioner): - """Lookup table TextConditioner. - - Args: - n_bins (int): Number of bins. - dim (int): Hidden dim of the model (text-encoder/LUT). - output_dim (int): Output dim of the conditioner. - tokenizer (str): Name of the tokenizer. - pad_idx (int, optional): Index for padding token. Defaults to 0. - """ - def __init__(self, n_bins: int, dim: int, output_dim: int, tokenizer: str, pad_idx: int = 0): - super().__init__(dim, output_dim) - self.embed = nn.Embedding(n_bins, dim) - self.tokenizer: Tokenizer - if tokenizer == 'whitespace': - self.tokenizer = WhiteSpaceTokenizer(n_bins, pad_idx=pad_idx) - elif tokenizer == 'noop': - self.tokenizer = NoopTokenizer(n_bins, pad_idx=pad_idx) - else: - raise ValueError(f"unrecognized tokenizer `{tokenizer}`.") - - def tokenize(self, x: tp.List[tp.Optional[str]]) -> tp.Tuple[torch.Tensor, torch.Tensor]: - device = self.embed.weight.device - tokens, mask = self.tokenizer(x) - tokens, mask = tokens.to(device), mask.to(device) - return tokens, mask - - def forward(self, inputs: tp.Tuple[torch.Tensor, torch.Tensor]) -> ConditionType: - tokens, mask = inputs - embeds = self.embed(tokens) - embeds = self.output_proj(embeds) - embeds = (embeds * mask.unsqueeze(-1)) - return embeds, mask - - -class T5Conditioner(TextConditioner): - """T5-based TextConditioner. - - Args: - name (str): Name of the T5 model. - output_dim (int): Output dim of the conditioner. - finetune (bool): Whether to fine-tune T5 at train time. - device (str): Device for T5 Conditioner. - autocast_dtype (tp.Optional[str], optional): Autocast dtype. - word_dropout (float, optional): Word dropout probability. - normalize_text (bool, optional): Whether to apply text normalization. - """ - MODELS = ["t5-small", "t5-base", "t5-large", "t5-3b", "t5-11b", - "google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large", - "google/flan-t5-xl", "google/flan-t5-xxl"] - MODELS_DIMS = { - "t5-small": 512, - "t5-base": 768, - "t5-large": 1024, - "t5-3b": 1024, - "t5-11b": 1024, - "google/flan-t5-small": 512, - "google/flan-t5-base": 768, - "google/flan-t5-large": 1024, - "google/flan-t5-3b": 1024, - "google/flan-t5-11b": 1024, - } - - def __init__(self, name: str, output_dim: int, finetune: bool, device: str, - autocast_dtype: tp.Optional[str] = 'float32', word_dropout: float = 0., - normalize_text: bool = False): - assert name in self.MODELS, f"Unrecognized t5 model name (should in {self.MODELS})" - super().__init__(self.MODELS_DIMS[name], output_dim) - self.device = device - self.name = name - self.finetune = finetune - self.word_dropout = word_dropout - if autocast_dtype is None or self.device == 'cpu': - self.autocast = TorchAutocast(enabled=False) - if self.device != 'cpu': - logger.warning("T5 has no autocast, this might lead to NaN") - else: - dtype = getattr(torch, autocast_dtype) - assert isinstance(dtype, torch.dtype) - logger.info(f"T5 will be evaluated with autocast as {autocast_dtype}") - self.autocast = TorchAutocast(enabled=True, device_type=self.device, dtype=dtype) - # Let's disable logging temporarily because T5 will vomit some errors otherwise. - # thanks https://gist.github.com/simon-weber/7853144 - previous_level = logging.root.manager.disable - logging.disable(logging.ERROR) - with warnings.catch_warnings(): - warnings.simplefilter("ignore") - try: - self.t5_tokenizer = T5Tokenizer.from_pretrained(name) - t5 = T5EncoderModel.from_pretrained(name).train(mode=finetune) - finally: - logging.disable(previous_level) - if finetune: - self.t5 = t5 - else: - # this makes sure that the t5 models is not part - # of the saved checkpoint - self.__dict__['t5'] = t5.to(device) - - self.normalize_text = normalize_text - if normalize_text: - self.text_normalizer = WhiteSpaceTokenizer(1, lemma=True, stopwords=True) - - def tokenize(self, x: tp.List[tp.Optional[str]]) -> tp.Dict[str, torch.Tensor]: - # if current sample doesn't have a certain attribute, replace with empty string - entries: tp.List[str] = [xi if xi is not None else "" for xi in x] - if self.normalize_text: - _, _, entries = self.text_normalizer(entries, return_text=True) - if self.word_dropout > 0. and self.training: - new_entries = [] - for entry in entries: - words = [word for word in entry.split(" ") if random.random() >= self.word_dropout] - new_entries.append(" ".join(words)) - entries = new_entries - - empty_idx = torch.LongTensor([i for i, xi in enumerate(entries) if xi == ""]) - - inputs = self.t5_tokenizer(entries, return_tensors='pt', padding=True).to(self.device) - mask = inputs['attention_mask'] - mask[empty_idx, :] = 0 # zero-out index where the input is non-existant - return inputs - - def forward(self, inputs: tp.Dict[str, torch.Tensor]) -> ConditionType: - mask = inputs['attention_mask'] - with torch.set_grad_enabled(self.finetune), self.autocast: - embeds = self.t5(**inputs).last_hidden_state - embeds = self.output_proj(embeds.to(self.output_proj.weight)) - embeds = (embeds * mask.unsqueeze(-1)) - return embeds, mask - - -class WaveformConditioner(BaseConditioner): - """Base class for all conditioners that take a waveform as input. - Classes that inherit must implement `_get_wav_embedding` that outputs - a continuous tensor, and `_downsampling_factor` that returns the down-sampling - factor of the embedding model. - - Args: - dim (int): The internal representation dimension. - output_dim (int): Output dimension. - device (tp.Union[torch.device, str]): Device. - """ - def __init__(self, dim: int, output_dim: int, device: tp.Union[torch.device, str]): - super().__init__(dim, output_dim) - self.device = device - - def tokenize(self, x: WavCondition) -> WavCondition: - wav, length, sample_rate, path, seek_time = x - assert length is not None - return WavCondition(wav.to(self.device), length.to(self.device), sample_rate, path, seek_time) - - def _get_wav_embedding(self, x: WavCondition) -> torch.Tensor: - """Gets as input a WavCondition and returns a dense embedding.""" - raise NotImplementedError() - - def _downsampling_factor(self): - """Returns the downsampling factor of the embedding model.""" - raise NotImplementedError() - - def forward(self, x: WavCondition) -> ConditionType: - """Extract condition embedding and mask from a waveform and its metadata. - Args: - x (WavCondition): Waveform condition containing raw waveform and metadata. - Returns: - ConditionType: a dense vector representing the conditioning along with its mask - """ - wav, lengths, *_ = x - with torch.no_grad(): - embeds = self._get_wav_embedding(x) - embeds = embeds.to(self.output_proj.weight) - embeds = self.output_proj(embeds) - - if lengths is not None: - lengths = lengths / self._downsampling_factor() - mask = length_to_mask(lengths, max_len=embeds.shape[1]).int() # type: ignore - else: - mask = torch.ones_like(embeds) - embeds = (embeds * mask.unsqueeze(2).to(self.device)) - - return embeds, mask - - -class ChromaStemConditioner(WaveformConditioner): - """Chroma conditioner based on stems. - The ChromaStemConditioner uses DEMUCS to first filter out drums and bass, as - the drums and bass often dominate the chroma leading to the chroma features - not containing information about the melody. - - Args: - output_dim (int): Output dimension for the conditioner. - sample_rate (int): Sample rate for the chroma extractor. - n_chroma (int): Number of chroma bins for the chroma extractor. - radix2_exp (int): Size of stft window for the chroma extractor (power of 2, e.g. 12 -> 2^12). - duration (int): duration used during training. This is later used for correct padding - in case we are using chroma as prefix. - match_len_on_eval (bool, optional): if True then all chromas are padded to the training - duration. Defaults to False. - eval_wavs (str, optional): path to a dataset manifest with waveform, this waveforms are used as - conditions during eval (for cases where we don't want to leak test conditions like MusicCaps). - Defaults to None. - n_eval_wavs (int, optional): limits the number of waveforms used for conditioning. Defaults to 0. - device (tp.Union[torch.device, str], optional): Device for the conditioner. - **kwargs: Additional parameters for the chroma extractor. - """ - def __init__(self, output_dim: int, sample_rate: int, n_chroma: int, radix2_exp: int, - duration: float, match_len_on_eval: bool = True, eval_wavs: tp.Optional[str] = None, - n_eval_wavs: int = 0, cache_path: tp.Optional[tp.Union[str, Path]] = None, - device: tp.Union[torch.device, str] = 'cpu', **kwargs): - from demucs import pretrained - super().__init__(dim=n_chroma, output_dim=output_dim, device=device) - self.autocast = TorchAutocast(enabled=device != 'cpu', device_type=self.device, dtype=torch.float32) - self.sample_rate = sample_rate - self.match_len_on_eval = match_len_on_eval - self.duration = duration - self.__dict__['demucs'] = pretrained.get_model('htdemucs').to(device) - stem_sources: list = self.demucs.sources # type: ignore - self.stem_indices = torch.LongTensor([stem_sources.index('vocals'), stem_sources.index('other')]).to(device) - self.chroma = ChromaExtractor(sample_rate=sample_rate, n_chroma=n_chroma, - radix2_exp=radix2_exp, **kwargs).to(device) - self.chroma_len = self._get_chroma_len() - self.eval_wavs: tp.Optional[torch.Tensor] = self._load_eval_wavs(eval_wavs, n_eval_wavs) - self.cache = None - if cache_path is not None: - self.cache = EmbeddingCache(Path(cache_path) / 'wav', self.device, - compute_embed_fn=self._get_full_chroma_for_cache, - extract_embed_fn=self._extract_chroma_chunk) - - def _downsampling_factor(self) -> int: - return self.chroma.winhop - - def _load_eval_wavs(self, path: tp.Optional[str], num_samples: int) -> tp.Optional[torch.Tensor]: - """Load pre-defined waveforms from a json. - These waveforms will be used for chroma extraction during evaluation. - This is done to make the evaluation on MusicCaps fair (we shouldn't see the chromas of MusicCaps). - """ - if path is None: - return None - - logger.info(f"Loading evaluation wavs from {path}") - from audiocraft.data.audio_dataset import AudioDataset - dataset: AudioDataset = AudioDataset.from_meta( - path, segment_duration=self.duration, min_audio_duration=self.duration, - sample_rate=self.sample_rate, channels=1) - - if len(dataset) > 0: - eval_wavs = dataset.collater([dataset[i] for i in range(num_samples)]).to(self.device) - logger.info(f"Using {len(eval_wavs)} evaluation wavs for chroma-stem conditioner") - return eval_wavs - else: - raise ValueError("Could not find evaluation wavs, check lengths of wavs") - - def reset_eval_wavs(self, eval_wavs: tp.Optional[torch.Tensor]) -> None: - self.eval_wavs = eval_wavs - - def has_eval_wavs(self) -> bool: - return self.eval_wavs is not None - - def _sample_eval_wavs(self, num_samples: int) -> torch.Tensor: - """Sample wavs from a predefined list.""" - assert self.eval_wavs is not None, "Cannot sample eval wavs as no eval wavs provided." - total_eval_wavs = len(self.eval_wavs) - out = self.eval_wavs - if num_samples > total_eval_wavs: - out = self.eval_wavs.repeat(num_samples // total_eval_wavs + 1, 1, 1) - return out[torch.randperm(len(out))][:num_samples] - - def _get_chroma_len(self) -> int: - """Get length of chroma during training.""" - dummy_wav = torch.zeros((1, int(self.sample_rate * self.duration)), device=self.device) - dummy_chr = self.chroma(dummy_wav) - return dummy_chr.shape[1] - - @torch.no_grad() - def _get_stemmed_wav(self, wav: torch.Tensor, sample_rate: int) -> torch.Tensor: - """Get parts of the wav that holds the melody, extracting the main stems from the wav.""" - from demucs.apply import apply_model - from demucs.audio import convert_audio - with self.autocast: - wav = convert_audio( - wav, sample_rate, self.demucs.samplerate, self.demucs.audio_channels) # type: ignore - stems = apply_model(self.demucs, wav, device=self.device) - stems = stems[:, self.stem_indices] # extract relevant stems for melody conditioning - mix_wav = stems.sum(1) # merge extracted stems to single waveform - mix_wav = convert_audio(mix_wav, self.demucs.samplerate, self.sample_rate, 1) # type: ignore - return mix_wav - - @torch.no_grad() - def _extract_chroma(self, wav: torch.Tensor) -> torch.Tensor: - """Extract chroma features from the waveform.""" - with self.autocast: - return self.chroma(wav) - - @torch.no_grad() - def _compute_wav_embedding(self, wav: torch.Tensor, sample_rate: int) -> torch.Tensor: - """Compute wav embedding, applying stem and chroma extraction.""" - # avoid 0-size tensors when we are working with null conds - if wav.shape[-1] == 1: - return self._extract_chroma(wav) - stems = self._get_stemmed_wav(wav, sample_rate) - chroma = self._extract_chroma(stems) - return chroma - - @torch.no_grad() - def _get_full_chroma_for_cache(self, path: tp.Union[str, Path], x: WavCondition, idx: int) -> torch.Tensor: - """Extract chroma from the whole audio waveform at the given path.""" - wav, sr = audio_read(path) - wav = wav[None].to(self.device) - wav = convert_audio(wav, sr, self.sample_rate, to_channels=1) - chroma = self._compute_wav_embedding(wav, self.sample_rate)[0] - return chroma - - def _extract_chroma_chunk(self, full_chroma: torch.Tensor, x: WavCondition, idx: int) -> torch.Tensor: - """Extract a chunk of chroma from the full chroma derived from the full waveform.""" - wav_length = x.wav.shape[-1] - seek_time = x.seek_time[idx] - assert seek_time is not None, ( - "WavCondition seek_time is required " - "when extracting chroma chunks from pre-computed chroma.") - full_chroma = full_chroma.float() - frame_rate = self.sample_rate / self._downsampling_factor() - target_length = int(frame_rate * wav_length / self.sample_rate) - index = int(frame_rate * seek_time) - out = full_chroma[index: index + target_length] - out = F.pad(out[None], (0, 0, 0, target_length - out.shape[0]))[0] - return out.to(self.device) - - @torch.no_grad() - def _get_wav_embedding(self, x: WavCondition) -> torch.Tensor: - """Get the wav embedding from the WavCondition. - The conditioner will either extract the embedding on-the-fly computing it from the condition wav directly - or will rely on the embedding cache to load the pre-computed embedding if relevant. - """ - sampled_wav: tp.Optional[torch.Tensor] = None - if not self.training and self.eval_wavs is not None: - warn_once(logger, "Using precomputed evaluation wavs!") - sampled_wav = self._sample_eval_wavs(len(x.wav)) - - no_undefined_paths = all(p is not None for p in x.path) - no_nullified_cond = x.wav.shape[-1] > 1 - if sampled_wav is not None: - chroma = self._compute_wav_embedding(sampled_wav, self.sample_rate) - elif self.cache is not None and no_undefined_paths and no_nullified_cond: - paths = [Path(p) for p in x.path if p is not None] - chroma = self.cache.get_embed_from_cache(paths, x) - else: - assert all(sr == x.sample_rate[0] for sr in x.sample_rate), "All sample rates in batch should be equal." - chroma = self._compute_wav_embedding(x.wav, x.sample_rate[0]) - - if self.match_len_on_eval: - B, T, C = chroma.shape - if T > self.chroma_len: - chroma = chroma[:, :self.chroma_len] - logger.debug(f"Chroma was truncated to match length! ({T} -> {chroma.shape[1]})") - elif T < self.chroma_len: - n_repeat = int(math.ceil(self.chroma_len / T)) - chroma = chroma.repeat(1, n_repeat, 1) - chroma = chroma[:, :self.chroma_len] - logger.debug(f"Chroma was repeated to match length! ({T} -> {chroma.shape[1]})") - - return chroma - - def tokenize(self, x: WavCondition) -> WavCondition: - """Apply WavConditioner tokenization and populate cache if needed.""" - x = super().tokenize(x) - no_undefined_paths = all(p is not None for p in x.path) - if self.cache is not None and no_undefined_paths: - paths = [Path(p) for p in x.path if p is not None] - self.cache.populate_embed_cache(paths, x) - return x - - -class JointEmbeddingConditioner(BaseConditioner): - """Joint embedding conditioning supporting both audio or text conditioning. - - Args: - dim (int): Dimension. - output_dim (int): Output dimension. - device (str): Device. - attribute (str): Attribute used by the conditioner. - autocast_dtype (str): Autocast for the conditioner. - quantize (bool): Whether to quantize the CLAP embedding. - n_q (int): Number of residual quantizers (used if quantize is true). - bins (int): Quantizers' codebooks size (used if quantize is true). - kwargs: Additional parameters for residual vector quantizer. - """ - def __init__(self, dim: int, output_dim: int, device: str, attribute: str, - autocast_dtype: tp.Optional[str] = 'float32', quantize: bool = True, - n_q: int = 12, bins: int = 1024, **kwargs): - super().__init__(dim=dim, output_dim=output_dim) - self.device = device - self.attribute = attribute - if autocast_dtype is None or device == 'cpu': - self.autocast = TorchAutocast(enabled=False) - logger.warning("JointEmbeddingConditioner has no autocast, this might lead to NaN.") - else: - dtype = getattr(torch, autocast_dtype) - assert isinstance(dtype, torch.dtype) - logger.info(f"JointEmbeddingConditioner will be evaluated with autocast as {autocast_dtype}.") - self.autocast = TorchAutocast(enabled=True, device_type=self.device, dtype=dtype) - # residual vector quantizer to discretize the conditioned embedding - self.quantizer: tp.Optional[ResidualVectorQuantizer] = None - if quantize: - self.quantizer = ResidualVectorQuantizer(dim, n_q=n_q, bins=bins, **kwargs) - - def _get_embed(self, x: JointEmbedCondition) -> tp.Tuple[torch.Tensor, torch.Tensor]: - """Get joint embedding in latent space from the inputs. - - Returns: - tuple[torch.Tensor, torch.Tensor]: Tensor for the latent embedding - and corresponding empty indexes. - """ - raise NotImplementedError() - - def forward(self, x: JointEmbedCondition) -> ConditionType: - with self.autocast: - embed, empty_idx = self._get_embed(x) - if self.quantizer is not None: - embed = embed.view(-1, self.dim, 1) - q_res = self.quantizer(embed, frame_rate=1) - out_embed = q_res.x.view(-1, self.dim) - else: - out_embed = embed - out_embed = self.output_proj(out_embed).view(-1, 1, self.output_dim) - mask = torch.ones(*out_embed.shape[:2], device=out_embed.device) - mask[empty_idx, :] = 0 # zero-out index where the input is non-existant - out_embed = (out_embed * mask.unsqueeze(-1)) - return out_embed, mask - - def tokenize(self, x: JointEmbedCondition) -> JointEmbedCondition: - return x - - -class CLAPEmbeddingConditioner(JointEmbeddingConditioner): - """Joint Embedding conditioner based on pre-trained CLAP model. - - This CLAP-based conditioner supports a caching mechanism - over the computed embeddings for faster training. - - Args: - dim (int): Dimension. - output_dim (int): Output dimension. - device (str): Device. - attribute (str): Attribute used by the conditioner. - quantize (bool): Whether to quantize the CLAP embedding. - n_q (int): Number of residual quantizers (used if quantize is true). - bins (int): Quantizers' codebooks size (used if quantize is true). - checkpoint (str): Path to CLAP checkpoint. - model_arch (str): CLAP model architecture. - enable_fusion (bool): Enable fusion for CLAP model. - sample_rate (int): Sample rate used by CLAP model. - max_audio_length (float): Maximum audio length for CLAP model. - audio_stride (float): Stride to use for getting a CLAP embedding on the full sequence. - normalize (bool): Whether to normalize the CLAP embedding. - text_p (float): Probability of using text representation instead of audio at train time. - batch_size (Optional[int]): Batch size for CLAP embedding computation. - autocast_dtype (str): Autocast for the conditioner. - cache_path (Optional[str]): Path for pre-computed embeddings caching. - kwargs: Additional parameters for residual vector quantizer. - """ - def __init__(self, dim: int, output_dim: int, device: str, attribute: str, - quantize: bool, n_q: int, bins: int, checkpoint: tp.Union[str, Path], model_arch: str, - enable_fusion: bool, sample_rate: int, max_audio_length: int, audio_stride: int, - normalize: bool, text_p: bool, batch_size: tp.Optional[int] = None, - autocast_dtype: tp.Optional[str] = 'float32', cache_path: tp.Optional[str] = None, **kwargs): - try: - import laion_clap # type: ignore - except ImportError: - raise ImportError("Please install CLAP to use the CLAPEmbeddingConditioner: 'pip install laion_clap'") - checkpoint = AudioCraftEnvironment.resolve_reference_path(checkpoint) - clap_tokenize = RobertaTokenizer.from_pretrained('roberta-base') - clap_model = laion_clap.CLAP_Module(enable_fusion=enable_fusion, amodel=model_arch) - load_clap_state_dict(clap_model, checkpoint) - clap_model.eval() - clap_model.to(device) - super().__init__(dim=dim, output_dim=output_dim, device=device, attribute=attribute, - autocast_dtype=autocast_dtype, quantize=quantize, n_q=n_q, bins=bins, - **kwargs) - self.checkpoint = checkpoint - self.enable_fusion = enable_fusion - self.model_arch = model_arch - self.clap: laion_clap.CLAP_Module - self.clap_tokenize: RobertaTokenizer - self.clap_sample_rate = sample_rate - self.clap_max_frames = int(self.clap_sample_rate * max_audio_length) - self.clap_stride = int(self.clap_sample_rate * audio_stride) - self.batch_size = batch_size or 1 - self.normalize = normalize - self.text_p = text_p - self.__dict__['clap_tokenize'] = clap_tokenize - self.__dict__['clap'] = clap_model - self.wav_cache, self.text_cache = None, None - if cache_path is not None: - self.wav_cache = EmbeddingCache(Path(cache_path) / 'wav', self.device, - compute_embed_fn=self._get_wav_embedding_for_cache, - extract_embed_fn=self._extract_wav_embedding_chunk) - self.text_cache = EmbeddingCache(Path(cache_path) / 'text', self.device, - compute_embed_fn=self._get_text_embedding_for_cache) - - def _tokenizer(self, texts: tp.Union[str, tp.List[str]]) -> dict: - # we use the default params from CLAP module here as well - return self.clap_tokenize(texts, padding="max_length", truncation=True, max_length=77, return_tensors="pt") - - def _compute_text_embedding(self, text: tp.List[str]) -> torch.Tensor: - """Compute text embedding from CLAP model on a given a batch of text. - - Args: - text (list[str]): List of text for the batch, with B items. - Returns: - torch.Tensor: CLAP embedding derived from text, of shape [B, 1, D], with D the CLAP embedding dimension. - """ - with torch.no_grad(): - embed = self.clap.get_text_embedding(text, tokenizer=self._tokenizer, use_tensor=True) - return embed.view(embed.size(0), 1, embed.size(-1)) - - def _get_text_embedding_for_cache(self, path: tp.Union[Path, str], - x: JointEmbedCondition, idx: int) -> torch.Tensor: - """Get text embedding function for the cache.""" - text = x.text[idx] - text = text if text is not None else "" - return self._compute_text_embedding([text])[0] - - def _preprocess_wav(self, wav: torch.Tensor, length: torch.Tensor, sample_rates: tp.List[int]) -> torch.Tensor: - """Preprocess wav to expected format by CLAP model. - - Args: - wav (torch.Tensor): Audio wav, of shape [B, C, T]. - length (torch.Tensor): Actual length of the audio for each item in the batch, of shape [B]. - sample_rates (list[int]): Sample rates for each sample in the batch - Returns: - torch.Tensor: Audio wav of shape [B, T]. - """ - assert wav.dim() == 3, "Expecting wav to be [B, C, T]" - if sample_rates is not None: - _wav = [] - for i, audio in enumerate(wav): - sr = sample_rates[i] - audio = convert_audio(audio, from_rate=sr, to_rate=self.clap_sample_rate, to_channels=1) - _wav.append(audio) - wav = torch.stack(_wav, dim=0) - wav = wav.mean(dim=1) - return wav - - def _compute_wav_embedding(self, wav: torch.Tensor, length: torch.Tensor, - sample_rates: tp.List[int], reduce_mean: bool = False) -> torch.Tensor: - """Compute audio wave embedding from CLAP model. - - Since CLAP operates on a fixed sequence length audio inputs and we need to process longer audio sequences, - we calculate the wav embeddings on `clap_max_frames` windows with `clap_stride`-second stride and - average the resulting embeddings. - - Args: - wav (torch.Tensor): Audio wav, of shape [B, C, T]. - length (torch.Tensor): Actual length of the audio for each item in the batch, of shape [B]. - sample_rates (list[int]): Sample rates for each sample in the batch. - reduce_mean (bool): Whether to get the average tensor. - Returns: - torch.Tensor: Audio embedding of shape [B, F, D], F being the number of chunks, D the dimension. - """ - with torch.no_grad(): - wav = self._preprocess_wav(wav, length, sample_rates) - B, T = wav.shape - if T >= self.clap_max_frames: - wav = wav.unfold(-1, self.clap_max_frames, self.clap_stride) # [B, F, T] - else: - wav = wav.view(-1, 1, T) # [B, F, T] with F=1 - wav = einops.rearrange(wav, 'b f t -> (b f) t') - embed_list = [] - for i in range(0, wav.size(0), self.batch_size): - _wav = wav[i:i+self.batch_size, ...] - _embed = self.clap.get_audio_embedding_from_data(_wav, use_tensor=True) - embed_list.append(_embed) - embed = torch.cat(embed_list, dim=0) - embed = einops.rearrange(embed, '(b f) d -> b f d', b=B) - if reduce_mean: - embed = embed.mean(dim=1, keepdim=True) - return embed # [B, F, D] with F=1 if reduce_mean is True - - def _get_wav_embedding_for_cache(self, path: tp.Union[str, Path], - x: JointEmbedCondition, idx: int) -> torch.Tensor: - """Compute audio wave embedding for the cache. - The embedding is computed on a given audio read from file. - - Args: - path (str or Path): Path to the full audio file. - Returns: - torch.Tensor: Single-item tensor of shape [F, D], F being the number of chunks, D the dimension. - """ - wav, sr = audio_read(path) # [C, T] - wav = wav.unsqueeze(0).to(self.device) # [1, C, T] - wav_len = torch.LongTensor([wav.shape[-1]]).to(self.device) - embed = self._compute_wav_embedding(wav, wav_len, [sr], reduce_mean=False) # [B, F, D] - return embed.squeeze(0) # [F, D] - - def _extract_wav_embedding_chunk(self, full_embed: torch.Tensor, x: JointEmbedCondition, idx: int) -> torch.Tensor: - """Extract the chunk of embedding matching the seek_time and length from the full CLAP audio embedding. - - Args: - full_embed (torch.Tensor): CLAP embedding computed on the full wave, of shape [F, D]. - x (JointEmbedCondition): Joint embedding condition for the full batch. - idx (int): Index considered for the given embedding to extract. - Returns: - torch.Tensor: Wav embedding averaged on sliding window, of shape [1, D]. - """ - sample_rate = x.sample_rate[idx] - seek_time = x.seek_time[idx] - seek_time = 0. if seek_time is None else seek_time - clap_stride = int(self.clap_stride / self.clap_sample_rate) * sample_rate - end_seek_time = seek_time + self.clap_max_frames / self.clap_sample_rate - start_offset = int(seek_time * sample_rate // clap_stride) - end_offset = int(end_seek_time * sample_rate // clap_stride) - wav_embed = full_embed[start_offset:end_offset, ...] - wav_embed = wav_embed.mean(dim=0, keepdim=True) - return wav_embed.to(self.device) # [F, D] - - def _get_text_embedding(self, x: JointEmbedCondition) -> torch.Tensor: - """Get CLAP embedding from a batch of text descriptions.""" - no_nullified_cond = x.wav.shape[-1] > 1 # we don't want to read from cache when condition dropout - if self.text_cache is not None and no_nullified_cond: - assert all(p is not None for p in x.path), "Cache requires all JointEmbedCondition paths to be provided" - paths = [Path(p) for p in x.path if p is not None] - embed = self.text_cache.get_embed_from_cache(paths, x) - else: - text = [xi if xi is not None else "" for xi in x.text] - embed = self._compute_text_embedding(text) - if self.normalize: - embed = torch.nn.functional.normalize(embed, p=2.0, dim=-1) - return embed - - def _get_wav_embedding(self, x: JointEmbedCondition) -> torch.Tensor: - """Get CLAP embedding from a batch of audio tensors (and corresponding sample rates).""" - no_undefined_paths = all(p is not None for p in x.path) - no_nullified_cond = x.wav.shape[-1] > 1 # we don't want to read from cache when condition dropout - if self.wav_cache is not None and no_undefined_paths and no_nullified_cond: - paths = [Path(p) for p in x.path if p is not None] - embed = self.wav_cache.get_embed_from_cache(paths, x) - else: - embed = self._compute_wav_embedding(x.wav, x.length, x.sample_rate, reduce_mean=True) - if self.normalize: - embed = torch.nn.functional.normalize(embed, p=2.0, dim=-1) - return embed - - def tokenize(self, x: JointEmbedCondition) -> JointEmbedCondition: - # Trying to limit as much as possible sync points when the cache is warm. - no_undefined_paths = all(p is not None for p in x.path) - if self.wav_cache is not None and no_undefined_paths: - assert all([p is not None for p in x.path]), "Cache requires all JointEmbedCondition paths to be provided" - paths = [Path(p) for p in x.path if p is not None] - self.wav_cache.populate_embed_cache(paths, x) - if self.text_cache is not None and no_undefined_paths: - assert all([p is not None for p in x.path]), "Cache requires all JointEmbedCondition paths to be provided" - paths = [Path(p) for p in x.path if p is not None] - self.text_cache.populate_embed_cache(paths, x) - return x - - def _get_embed(self, x: JointEmbedCondition) -> tp.Tuple[torch.Tensor, torch.Tensor]: - """Extract shared latent representation from either the wav or the text using CLAP.""" - # decide whether to use text embedding at train time or not - use_text_embed = random.random() < self.text_p - if self.training and not use_text_embed: - embed = self._get_wav_embedding(x) - empty_idx = torch.LongTensor([]) # we assume we always have the audio wav - else: - embed = self._get_text_embedding(x) - empty_idx = torch.LongTensor([i for i, xi in enumerate(x.text) if xi is None or xi == ""]) - return embed, empty_idx - - -def dropout_condition(sample: ConditioningAttributes, condition_type: str, condition: str) -> ConditioningAttributes: - """Utility function for nullifying an attribute inside an ConditioningAttributes object. - If the condition is of type "wav", then nullify it using `nullify_condition` function. - If the condition is of any other type, set its value to None. - Works in-place. - """ - if condition_type not in ['text', 'wav', 'joint_embed']: - raise ValueError( - "dropout_condition got an unexpected condition type!" - f" expected 'text', 'wav' or 'joint_embed' but got '{condition_type}'" - ) - - if condition not in getattr(sample, condition_type): - raise ValueError( - "dropout_condition received an unexpected condition!" - f" expected wav={sample.wav.keys()} and text={sample.text.keys()}" - f" but got '{condition}' of type '{condition_type}'!" - ) - - if condition_type == 'wav': - wav_cond = sample.wav[condition] - sample.wav[condition] = nullify_wav(wav_cond) - elif condition_type == 'joint_embed': - embed = sample.joint_embed[condition] - sample.joint_embed[condition] = nullify_joint_embed(embed) - else: - sample.text[condition] = None - - return sample - - -class DropoutModule(nn.Module): - """Base module for all dropout modules.""" - def __init__(self, seed: int = 1234): - super().__init__() - self.rng = torch.Generator() - self.rng.manual_seed(seed) - - -class AttributeDropout(DropoutModule): - """Dropout with a given probability per attribute. - This is different from the behavior of ClassifierFreeGuidanceDropout as this allows for attributes - to be dropped out separately. For example, "artist" can be dropped while "genre" remains. - This is in contrast to ClassifierFreeGuidanceDropout where if "artist" is dropped "genre" - must also be dropped. - - Args: - p (tp.Dict[str, float]): A dict mapping between attributes and dropout probability. For example: - ... - "genre": 0.1, - "artist": 0.5, - "wav": 0.25, - ... - active_on_eval (bool, optional): Whether the dropout is active at eval. Default to False. - seed (int, optional): Random seed. - """ - def __init__(self, p: tp.Dict[str, tp.Dict[str, float]], active_on_eval: bool = False, seed: int = 1234): - super().__init__(seed=seed) - self.active_on_eval = active_on_eval - # construct dict that return the values from p otherwise 0 - self.p = {} - for condition_type, probs in p.items(): - self.p[condition_type] = defaultdict(lambda: 0, probs) - - def forward(self, samples: tp.List[ConditioningAttributes]) -> tp.List[ConditioningAttributes]: - """ - Args: - samples (list[ConditioningAttributes]): List of conditions. - Returns: - list[ConditioningAttributes]: List of conditions after certain attributes were set to None. - """ - if not self.training and not self.active_on_eval: - return samples - - samples = deepcopy(samples) - for condition_type, ps in self.p.items(): # for condition types [text, wav] - for condition, p in ps.items(): # for attributes of each type (e.g., [artist, genre]) - if torch.rand(1, generator=self.rng).item() < p: - for sample in samples: - dropout_condition(sample, condition_type, condition) - return samples - - def __repr__(self): - return f"AttributeDropout({dict(self.p)})" - - -class ClassifierFreeGuidanceDropout(DropoutModule): - """Classifier Free Guidance dropout. - All attributes are dropped with the same probability. - - Args: - p (float): Probability to apply condition dropout during training. - seed (int): Random seed. - """ - def __init__(self, p: float, seed: int = 1234): - super().__init__(seed=seed) - self.p = p - - def forward(self, samples: tp.List[ConditioningAttributes]) -> tp.List[ConditioningAttributes]: - """ - Args: - samples (list[ConditioningAttributes]): List of conditions. - Returns: - list[ConditioningAttributes]: List of conditions after all attributes were set to None. - """ - if not self.training: - return samples - - # decide on which attributes to drop in a batched fashion - drop = torch.rand(1, generator=self.rng).item() < self.p - if not drop: - return samples - - # nullify conditions of all attributes - samples = deepcopy(samples) - for condition_type in ["wav", "text"]: - for sample in samples: - for condition in sample.attributes[condition_type]: - dropout_condition(sample, condition_type, condition) - return samples - - def __repr__(self): - return f"ClassifierFreeGuidanceDropout(p={self.p})" - - -class ConditioningProvider(nn.Module): - """Prepare and provide conditions given all the supported conditioners. - - Args: - conditioners (dict): Dictionary of conditioners. - device (torch.device or str, optional): Device for conditioners and output condition types. - """ - def __init__(self, conditioners: tp.Dict[str, BaseConditioner], device: tp.Union[torch.device, str] = "cpu"): - super().__init__() - self.device = device - self.conditioners = nn.ModuleDict(conditioners) - - @property - def joint_embed_conditions(self): - return [m.attribute for m in self.conditioners.values() if isinstance(m, JointEmbeddingConditioner)] - - @property - def has_joint_embed_conditions(self): - return len(self.joint_embed_conditions) > 0 - - @property - def text_conditions(self): - return [k for k, v in self.conditioners.items() if isinstance(v, TextConditioner)] - - @property - def wav_conditions(self): - return [k for k, v in self.conditioners.items() if isinstance(v, WaveformConditioner)] - - @property - def has_wav_condition(self): - return len(self.wav_conditions) > 0 - - def tokenize(self, inputs: tp.List[ConditioningAttributes]) -> tp.Dict[str, tp.Any]: - """Match attributes/wavs with existing conditioners in self, and compute tokenize them accordingly. - This should be called before starting any real GPU work to avoid synchronization points. - This will return a dict matching conditioner names to their arbitrary tokenized representations. - - Args: - inputs (list[ConditioningAttributes]): List of ConditioningAttributes objects containing - text and wav conditions. - """ - assert all([isinstance(x, ConditioningAttributes) for x in inputs]), ( - "Got unexpected types input for conditioner! should be tp.List[ConditioningAttributes]", - f" but types were {set([type(x) for x in inputs])}" - ) - - output = {} - text = self._collate_text(inputs) - wavs = self._collate_wavs(inputs) - joint_embeds = self._collate_joint_embeds(inputs) - - assert set(text.keys() | wavs.keys() | joint_embeds.keys()).issubset(set(self.conditioners.keys())), ( - f"Got an unexpected attribute! Expected {self.conditioners.keys()}, ", - f"got {text.keys(), wavs.keys(), joint_embeds.keys()}" - ) - - for attribute, batch in chain(text.items(), wavs.items(), joint_embeds.items()): - output[attribute] = self.conditioners[attribute].tokenize(batch) - return output - - def forward(self, tokenized: tp.Dict[str, tp.Any]) -> tp.Dict[str, ConditionType]: - """Compute pairs of `(embedding, mask)` using the configured conditioners and the tokenized representations. - The output is for example: - { - "genre": (torch.Tensor([B, 1, D_genre]), torch.Tensor([B, 1])), - "description": (torch.Tensor([B, T_desc, D_desc]), torch.Tensor([B, T_desc])), - ... - } - - Args: - tokenized (dict): Dict of tokenized representations as returned by `tokenize()`. - """ - output = {} - for attribute, inputs in tokenized.items(): - condition, mask = self.conditioners[attribute](inputs) - output[attribute] = (condition, mask) - return output - - def _collate_text(self, samples: tp.List[ConditioningAttributes]) -> tp.Dict[str, tp.List[tp.Optional[str]]]: - """Given a list of ConditioningAttributes objects, compile a dictionary where the keys - are the attributes and the values are the aggregated input per attribute. - For example: - Input: - [ - ConditioningAttributes(text={"genre": "Rock", "description": "A rock song with a guitar solo"}, wav=...), - ConditioningAttributes(text={"genre": "Hip-hop", "description": "A hip-hop verse"}, wav=...), - ] - Output: - { - "genre": ["Rock", "Hip-hop"], - "description": ["A rock song with a guitar solo", "A hip-hop verse"] - } - - Args: - samples (list of ConditioningAttributes): List of ConditioningAttributes samples. - Returns: - dict[str, list[str, optional]]: A dictionary mapping an attribute name to text batch. - """ - out: tp.Dict[str, tp.List[tp.Optional[str]]] = defaultdict(list) - texts = [x.text for x in samples] - for text in texts: - for condition in self.text_conditions: - out[condition].append(text[condition]) - return out - - def _collate_wavs(self, samples: tp.List[ConditioningAttributes]) -> tp.Dict[str, WavCondition]: - """Generate a dict where the keys are attributes by which we fetch similar wavs, - and the values are Tensors of wavs according to said attributes. - - *Note*: by the time the samples reach this function, each sample should have some waveform - inside the "wav" attribute. It should be either: - 1. A real waveform - 2. A null waveform due to the sample having no similar waveforms (nullified by the dataset) - 3. A null waveform due to it being dropped in a dropout module (nullified by dropout) - - Args: - samples (list of ConditioningAttributes): List of ConditioningAttributes samples. - Returns: - dict[str, WavCondition]: A dictionary mapping an attribute name to wavs. - """ - wavs = defaultdict(list) - lengths = defaultdict(list) - sample_rates = defaultdict(list) - paths = defaultdict(list) - seek_times = defaultdict(list) - out: tp.Dict[str, WavCondition] = {} - - for sample in samples: - for attribute in self.wav_conditions: - wav, length, sample_rate, path, seek_time = sample.wav[attribute] - assert wav.dim() == 3, f"Got wav with dim={wav.dim()}, but expected 3 [1, C, T]" - assert wav.size(0) == 1, f"Got wav [B, C, T] with shape={wav.shape}, but expected B == 1" - # mono-channel conditioning - wav = wav.mean(1, keepdim=True) # [1, 1, T] - wavs[attribute].append(wav.flatten()) # [T] - lengths[attribute].append(length) - sample_rates[attribute].extend(sample_rate) - paths[attribute].extend(path) - seek_times[attribute].extend(seek_time) - - # stack all wavs to a single tensor - for attribute in self.wav_conditions: - stacked_wav, _ = collate(wavs[attribute], dim=0) - out[attribute] = WavCondition( - stacked_wav.unsqueeze(1), torch.cat(lengths[attribute]), sample_rates[attribute], - paths[attribute], seek_times[attribute]) - - return out - - def _collate_joint_embeds(self, samples: tp.List[ConditioningAttributes]) -> tp.Dict[str, JointEmbedCondition]: - """Generate a dict where the keys are attributes by which we compute joint embeddings, - and the values are Tensors of pre-computed embeddings and the corresponding text attributes. - - Args: - samples (list[ConditioningAttributes]): List of ConditioningAttributes samples. - Returns: - A dictionary mapping an attribute name to joint embeddings. - """ - texts = defaultdict(list) - wavs = defaultdict(list) - lengths = defaultdict(list) - sample_rates = defaultdict(list) - paths = defaultdict(list) - seek_times = defaultdict(list) - channels: int = 0 - - out = {} - for sample in samples: - for attribute in self.joint_embed_conditions: - wav, text, length, sample_rate, path, seek_time = sample.joint_embed[attribute] - assert wav.dim() == 3 - if channels == 0: - channels = wav.size(1) - else: - assert channels == wav.size(1), "not all audio has same number of channels in batch" - assert wav.size(0) == 1, "Expecting single-wav batch in the collate method" - wav = einops.rearrange(wav, "b c t -> (b c t)") # [1, C, T] => [C * T] - wavs[attribute].append(wav) - texts[attribute].extend(text) - lengths[attribute].append(length) - sample_rates[attribute].extend(sample_rate) - paths[attribute].extend(path) - seek_times[attribute].extend(seek_time) - - for attribute in self.joint_embed_conditions: - stacked_texts = texts[attribute] - stacked_paths = paths[attribute] - stacked_seek_times = seek_times[attribute] - stacked_wavs = pad_sequence(wavs[attribute]).to(self.device) - stacked_wavs = einops.rearrange(stacked_wavs, "(c t) b -> b c t", c=channels) - stacked_sample_rates = sample_rates[attribute] - stacked_lengths = torch.cat(lengths[attribute]).to(self.device) - assert stacked_lengths.size(0) == stacked_wavs.size(0) - assert len(stacked_sample_rates) == stacked_wavs.size(0) - assert len(stacked_texts) == stacked_wavs.size(0) - out[attribute] = JointEmbedCondition( - text=stacked_texts, wav=stacked_wavs, - length=stacked_lengths, sample_rate=stacked_sample_rates, - path=stacked_paths, seek_time=stacked_seek_times) - - return out - - -class ConditionFuser(StreamingModule): - """Condition fuser handles the logic to combine the different conditions - to the actual model input. - - Args: - fuse2cond (tp.Dict[str, str]): A dictionary that says how to fuse - each condition. For example: - { - "prepend": ["description"], - "sum": ["genre", "bpm"], - "cross": ["description"], - } - cross_attention_pos_emb (bool, optional): Use positional embeddings in cross attention. - cross_attention_pos_emb_scale (int): Scale for positional embeddings in cross attention if used. - """ - FUSING_METHODS = ["sum", "prepend", "cross", "input_interpolate"] - - def __init__(self, fuse2cond: tp.Dict[str, tp.List[str]], cross_attention_pos_emb: bool = False, - cross_attention_pos_emb_scale: float = 1.0): - super().__init__() - assert all( - [k in self.FUSING_METHODS for k in fuse2cond.keys()] - ), f"Got invalid fuse method, allowed methods: {self.FUSING_METHODS}" - self.cross_attention_pos_emb = cross_attention_pos_emb - self.cross_attention_pos_emb_scale = cross_attention_pos_emb_scale - self.fuse2cond: tp.Dict[str, tp.List[str]] = fuse2cond - self.cond2fuse: tp.Dict[str, str] = {} - for fuse_method, conditions in fuse2cond.items(): - for condition in conditions: - self.cond2fuse[condition] = fuse_method - - def forward( - self, - input: torch.Tensor, - conditions: tp.Dict[str, ConditionType] - ) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]: - """Fuse the conditions to the provided model input. - - Args: - input (torch.Tensor): Transformer input. - conditions (dict[str, ConditionType]): Dict of conditions. - Returns: - tuple[torch.Tensor, torch.Tensor]: The first tensor is the transformer input - after the conditions have been fused. The second output tensor is the tensor - used for cross-attention or None if no cross attention inputs exist. - """ - B, T, _ = input.shape - - if 'offsets' in self._streaming_state: - first_step = False - offsets = self._streaming_state['offsets'] - else: - first_step = True - offsets = torch.zeros(input.shape[0], dtype=torch.long, device=input.device) - - assert set(conditions.keys()).issubset(set(self.cond2fuse.keys())), \ - f"given conditions contain unknown attributes for fuser, " \ - f"expected {self.cond2fuse.keys()}, got {conditions.keys()}" - cross_attention_output = None - for cond_type, (cond, cond_mask) in conditions.items(): - op = self.cond2fuse[cond_type] - if op == 'sum': - input += cond - elif op == 'input_interpolate': - cond = einops.rearrange(cond, "b t d -> b d t") - cond = F.interpolate(cond, size=input.shape[1]) - input += einops.rearrange(cond, "b d t -> b t d") - elif op == 'prepend': - if first_step: - input = torch.cat([cond, input], dim=1) - elif op == 'cross': - if cross_attention_output is not None: - cross_attention_output = torch.cat([cross_attention_output, cond], dim=1) - else: - cross_attention_output = cond - else: - raise ValueError(f"unknown op ({op})") - - if self.cross_attention_pos_emb and cross_attention_output is not None: - positions = torch.arange( - cross_attention_output.shape[1], - device=cross_attention_output.device - ).view(1, -1, 1) - pos_emb = create_sin_embedding(positions, cross_attention_output.shape[-1]) - cross_attention_output = cross_attention_output + self.cross_attention_pos_emb_scale * pos_emb - - if self._is_streaming: - self._streaming_state['offsets'] = offsets + T - - return input, cross_attention_output diff --git a/spaces/AIWaves/Debate/gradio_config.py b/spaces/AIWaves/Debate/gradio_config.py deleted file mode 100644 index 0250bf3d9860cb9fcf1cda7610725d7bcb66bf64..0000000000000000000000000000000000000000 --- a/spaces/AIWaves/Debate/gradio_config.py +++ /dev/null @@ -1,437 +0,0 @@ -# coding=utf-8 -# Copyright 2023 The AIWaves Inc. team. - -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import json -from PIL import Image -import requests -from typing import List, Tuple - -class GradioConfig: - # How many avatars are currently registered - POINTER = 0 - - # Avatar image. You can add or replace. - AGENT_HEAD_URL = [ - "https://img.touxiangwu.com/zb_users/upload/2023/06/202306241687579617434043.jpg", - "https://img.touxiangwu.com/zb_users/upload/2023/06/202306241687592097408547.jpg", - "https://img.touxiangwu.com/zb_users/upload/2023/06/202306141686726561699613.jpg", - "https://img.touxiangwu.com/zb_users/upload/2023/06/202306141686726561275758.jpg", - "https://img.touxiangwu.com/uploads/allimg/2021090300/ry5k31wt33c.jpg", - "https://img.touxiangwu.com/uploads/allimg/2021090300/0ls2gmwhrf5.jpg", - "https://img.touxiangwu.com/zb_users/upload/2023/02/202302281677545695326193.jpg", - "https://img.touxiangwu.com/zb_users/upload/2023/03/202303271679886128550253.jpg", - "https://img.touxiangwu.com/zb_users/upload/2023/06/202306141686711344407060.jpg", - "https://img.touxiangwu.com/zb_users/upload/2023/06/202306141686711345834296.jpg", - "https://img.touxiangwu.com/zb_users/upload/2023/05/202305171684311194291520.jpg", - "https://img.touxiangwu.com/zb_users/upload/2023/05/202305171684311196958993.jpg", - "https://img.touxiangwu.com/uploads/allimg/2021082612/vr0bkov0dwl.jpg", - "https://img.touxiangwu.com/uploads/allimg/2021082612/auqx5zfsv5g.jpg", - "https://img.touxiangwu.com/uploads/allimg/2021082612/llofpivtwls.jpg", - "https://img.touxiangwu.com/uploads/allimg/2021082612/3j2sdot3ye0.jpg", - "https://img.touxiangwu.com/2020/3/nQfYf2.jpg", - "https://img.touxiangwu.com/zb_users/upload/2023/08/202308131691918068774532.jpg", - "https://img.touxiangwu.com/zb_users/upload/2023/08/202308131691918068289945.jpg", - "https://img.touxiangwu.com/zb_users/upload/2023/08/202308131691918069785183.jpg", - "https://img.touxiangwu.com/zb_users/upload/2023/06/202306141686726561292003.jpg", - "https://img.touxiangwu.com/zb_users/upload/2023/06/202306141686726561578616.jpg", - "https://img.touxiangwu.com/zb_users/upload/2023/06/202306141686726564597524.jpg" - ] - USER_HEAD_URL = "https://img.touxiangwu.com/zb_users/upload/2023/05/202305301685407468585486.jpg" - - # The css style of gradio.Chatbot - CSS = """ - #chatbot1 .user { - background-color:transparent; - border-color:transparent; - } - #chatbot1 .bot { - background-color:transparent; - border-color:transparent; - } - #btn {color: red; border-color: red;} - """ - - ID = ["USER", "AGENT", "SYSTEM"] - - # Bubble template - BUBBLE_CSS = { - # Background-color Name-color Name-content Font-color Font-size Content Avatar-URL - "USER": """ -
-
-

{}

-

{}

-
- USER -
- """, - - # Avatar-URL Background-color Name-color Name-Content Font-color Font-size Content - "AGENT": """ -
- AGENT -
-

{}

-

{}

-
-
- """, - - # Backrgound-color Font-size Font-color Name Content - "SYSTEM": """ -
-
-

{}:{}

-
-
- """ - } - - ROLE_2_NAME = {} - - OBJECT_INFO = { - - "User": { - # https://img-blog.csdnimg.cn/img_convert/7c20bc39ac69b6972a22e18762d02db3.jpeg - "head_url": USER_HEAD_URL, - "bubble_color": "#95EC69", - "text_color": "#000000", - "font_size": 0, - "id": "USER" - }, - - "System": { - # https://img-blog.csdnimg.cn/img_convert/e7e5887cfff67df8c2205c2ef0e5e7fa.png - "head_url": "https://img.touxiangwu.com/zb_users/upload/2023/03/202303141678768524747045.jpg", - "bubble_color": "#7F7F7F", ##FFFFFF - "text_color": "#FFFFFF", ##000000 - "font_size": 0, - "id": "SYSTEM" - }, - - "wait": { - "head_url": "https://img.touxiangwu.com/zb_users/upload/2022/12/202212011669881536145501.jpg", - "bubble_color": "#E7CBA6", - "text_color": "#000000", - "font_size": 0, - "id": "AGENT" - }, - - "Recorder": { - "head_url": "https://img.touxiangwu.com/zb_users/upload/2023/02/202302281677545695326193.jpg", - "bubble_color": "#F7F7F7", - "text_color": "#000000", - "font_size": 0, - "id": "AGENT" - } - } - - @classmethod - def color_for_img(cls, url): - """ - Extract the main colors from the picture and set them as the background color, - then determine the corresponding text color. - """ - - def get_main_color(image): - image = image.convert("RGB") - width, height = image.size - pixels = image.getcolors(width * height) - most_common_pixel = max(pixels, key=lambda item: item[0]) - return most_common_pixel[1] - - def is_dark_color(rgb_color): - r, g, b = rgb_color - luminance = (0.299 * r + 0.587 * g + 0.114 * b) / 255 - return luminance < 0.5 - - def download_image(url): - print(f"binding: {url}") - response = requests.get(url) - if response.status_code == 200: - with open('image.jpg', 'wb') as f: - f.write(response.content) - - def rgb_to_hex(color): - return "#{:02X}{:02X}{:02X}".format(color[0], color[1], color[2]) - - def get_color(image_url): - download_image(image_url) - - image = Image.open("image.jpg") - main_color = get_main_color(image) - is_dark = is_dark_color(main_color) - - if is_dark: - font_color = "#FFFFFF" - else: - font_color = "#000000" - - return rgb_to_hex(main_color), font_color - - return get_color(url) - - @classmethod - def init(cls, JSON): - # Deprecated - with open(JSON) as f: - sop = json.load(f) - cnt = 0 - FISRT_NODE = True - fisrt_node_roles = [] - for node_name in sop['nodes']: - node_info = sop['nodes'][node_name] - agent_states = node_info['agent_states'] - for agent_role in agent_states: - name = agent_states[agent_role]['style']['name'] - cls.ROLE_2_NAME[agent_role] = name - if FISRT_NODE: - fisrt_node_roles.append(agent_role) - bubble_color, text_color = cls.color_for_img(cls.AGENT_HEAD_URL[cnt]) - cls.OBJECT_INFO[name] = { - "head_url": f"{cls.AGENT_HEAD_URL[cnt]}", - "bubble_color": bubble_color, - "text_color": text_color, - "font_size": 0, - "id": "AGENT" - } - cnt += 1 - if FISRT_NODE: - FISRT_NODE = False - print(cls.OBJECT_INFO) - for usr_name in cls.OBJECT_INFO: - if cls.OBJECT_INFO[usr_name]["id"] == "SYSTEM": - cls.OBJECT_INFO[usr_name]["font_size"] = 12 - elif cls.OBJECT_INFO[usr_name]["id"] in ["USER", "AGENT"]: - cls.OBJECT_INFO[usr_name]["font_size"] = 16 - else: - assert False - return fisrt_node_roles - - @classmethod - def add_agent(cls, agents_name:List): - for name in agents_name: - bubble_color, text_color = cls.color_for_img(cls.AGENT_HEAD_URL[cls.POINTER]) - cls.OBJECT_INFO[name] = { - "head_url": f"{cls.AGENT_HEAD_URL[cls.POINTER]}", - "bubble_color": bubble_color, - "text_color": text_color, - "font_size": 0, - "id": "AGENT" - } - cls.POINTER += 1 - for usr_name in cls.OBJECT_INFO: - if cls.OBJECT_INFO[usr_name]["id"] == "SYSTEM": - cls.OBJECT_INFO[usr_name]["font_size"] = 12 - elif cls.OBJECT_INFO[usr_name]["id"] in ["USER", "AGENT"]: - cls.OBJECT_INFO[usr_name]["font_size"] = 16 - else: - assert False - - -class StateConfig: - """UI configuration for the step progress bar (indicating the current node)""" - - CSS = """ -:root { - --gradient-start: 100%; - --gradient-end: 0%; - } -.container.progress-bar-container { - position: relative; - display: flex; - align-items: flex-end; - width: 100%; - overflow-x: auto; - padding-bottom: 30px; - padding-top: 20px -} -.container.progress-bar-container::-webkit-scrollbar { - width: 8px; - background-color: transparent; -} - -.container.progress-bar-container::-webkit-scrollbar-thumb { - background-color: transparent; -} - -.progress-bar-container .progressbar { - counter-reset: step; - white-space: nowrap; -} -.progress-bar-container .progressbar li { - list-style: none; - display: inline-block; - width: 200px; - position: relative; - text-align: center; - cursor: pointer; - white-space: normal; -} -.progress-bar-container .progressbar li:before { - content: counter(step); - counter-increment: step; - width: 30px; - height: 30px; - line-height: 30px; - border: 1px solid #ddd; - border-radius: 100%; - display: block; - text-align: center; - margin: 0 auto 10px auto; - background-color: #ffffff; -} -.progress-bar-container .progressbar li:after { - content: attr(data-content); - position: absolute; - width: 87%; - height: 2px; - background-color: #dddddd; - top: 15px; - left: -45%; -} -.progress-bar-container .progressbar li:first-child:after { - content: none; -} -.progress-bar-container .progressbar li.active { - color: green; -} -.progress-bar-container .progressbar li.active:before { - border-color: green; - background-color: green; - color: white; -} -.progress-bar-container .progressbar li.active + li:after { - background: linear-gradient(to right, green var(--gradient-start), lightgray var(--gradient-end)); -} -.progress-bar-container .small-element { - transform: scale(0.8); -} -.progress-bar-container .progressbar li span { - position: absolute; - top: 40px; - left: 0; - width: 100%; - text-align: center; -} -.progress-bar-container .progressbar li .data-content { - position: absolute; - width: 100%; - top: -10px; - left: -100px; - text-align: center; -} -""" - - FORMAT = """ - - - - - -
-
-
-
    - {} -
-
-
- - -""" - - STATES_NAME:List[str] = None - - @classmethod - def _generate_template(cls, types:str)->str: - # normal: A state with no execution. - # active-show-up: Active state, and content displayed above the horizontal line. - # active-show-down: Active state, and content displayed below the horizontal line. - # active-show-both: Active state, and content displayed both above and below the horizontal line. - # active-show-none: Active state, with no content displayed above the horizontal line. - - assert types.lower() in ["normal","active-show-up", "active-show-down", "active-show-both", "active", "active-show-none"] - both_templates = """
  • -
    -
    -

    - {} -

    - {} -

    -
    -
    - {} -
  • """ - - if types.lower() == "normal": - templates = "
  • {}
  • " - elif types.lower() == "active": - templates = """
  • {}
  • """ - elif types.lower() == "active-show-up": - templates = both_templates.format("{}","{}", "{}", "", "{}") - elif types.lower() == "active-show-down": - templates = both_templates.format("{}","{}", "", "{}", "{}") - elif types.lower() == "active-show-both": - templates = both_templates - elif types.lower() == "active-show-none": - templates = """
  • - {} -
  • """ - else: - assert False - return templates - - @classmethod - def update_states(cls, current_states:List[int], current_templates:List[str], show_content:List[Tuple[str]])->str: - assert len(current_states) == len(current_templates) - # You can dynamically change the number of states. - # assert len(current_states) == len(cls.STATES_NAME) - css_code = [] - for idx in range(len(current_states)): - if idx == 0: - if current_states[idx] != 0: - css_code = [f"{cls._generate_template('active').format(cls.STATES_NAME[idx])}"] - else: - css_code = [f"{cls._generate_template('normal').format(cls.STATES_NAME[idx])}"] - continue - if current_states[idx-1] == 0: - # new_code = f"{cls._generate_template('normal').format(*(show_content[idx]))}" - new_code = f"{cls._generate_template('normal').format(cls.STATES_NAME[idx])}" - else: - new_code = f"{cls._generate_template(current_templates[idx]).format(current_states[idx-1], 100-current_states[idx-1],*(show_content[idx-1]), cls.STATES_NAME[idx])}" - if current_states[idx-1] != 100 or (current_states[idx]==0 and current_states[idx-1]==100): - new_code = new_code.replace("""li class="active" ""","""li """) - css_code.append(new_code) - return "\n".join(css_code) - - @classmethod - def create_states(cls, states_name:List[str], manual_create_end_nodes:bool=False): - # Create states - if manual_create_end_nodes: - states_name.append("Done") - css_code = "" - cls.STATES_NAME: List[str] = states_name - for name in states_name: - css_code = f"{css_code}\n{cls._generate_template('normal').format(name)}" - return css_code - - -if __name__ == '__main__': - pass diff --git a/spaces/AIWaves/SOP_Generation-single/Environment/__init__.py b/spaces/AIWaves/SOP_Generation-single/Environment/__init__.py deleted file mode 100644 index 3612cfec012dd670048a4d5f1ac844cf776b155c..0000000000000000000000000000000000000000 --- a/spaces/AIWaves/SOP_Generation-single/Environment/__init__.py +++ /dev/null @@ -1 +0,0 @@ -from .base_environment import Environment \ No newline at end of file diff --git a/spaces/AP123/text-to-3D/app.py b/spaces/AP123/text-to-3D/app.py deleted file mode 100644 index 20bdb836f38f77fb2d0a321650ffbbe5d03e2dc4..0000000000000000000000000000000000000000 --- a/spaces/AP123/text-to-3D/app.py +++ /dev/null @@ -1,264 +0,0 @@ -import os -from PIL import Image -import torch - -from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config -from point_e.diffusion.sampler import PointCloudSampler -from point_e.models.download import load_checkpoint -from point_e.models.configs import MODEL_CONFIGS, model_from_config -from point_e.util.plotting import plot_point_cloud -from point_e.util.pc_to_mesh import marching_cubes_mesh - -import skimage.measure - -from pyntcloud import PyntCloud -import matplotlib.colors -import plotly.graph_objs as go - -import trimesh - -import gradio as gr - - -state = "" -device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') - -def set_state(s): - print(s) - global state - state = s - -def get_state(): - return state - -set_state('Creating txt2mesh model...') -t2m_name = 'base40M-textvec' -t2m_model = model_from_config(MODEL_CONFIGS[t2m_name], device) -t2m_model.eval() -base_diffusion_t2m = diffusion_from_config(DIFFUSION_CONFIGS[t2m_name]) - -set_state('Downloading txt2mesh checkpoint...') -t2m_model.load_state_dict(load_checkpoint(t2m_name, device)) - - -def load_img2mesh_model(model_name): - set_state(f'Creating img2mesh model {model_name}...') - i2m_name = model_name - i2m_model = model_from_config(MODEL_CONFIGS[i2m_name], device) - i2m_model.eval() - base_diffusion_i2m = diffusion_from_config(DIFFUSION_CONFIGS[i2m_name]) - - set_state(f'Downloading img2mesh checkpoint {model_name}...') - i2m_model.load_state_dict(load_checkpoint(i2m_name, device)) - - return i2m_model, base_diffusion_i2m - -img2mesh_model_name = 'base40M' #'base300M' #'base1B' -i2m_model, base_diffusion_i2m = load_img2mesh_model(img2mesh_model_name) - - -set_state('Creating upsample model...') -upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device) -upsampler_model.eval() -upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample']) - -set_state('Downloading upsampler checkpoint...') -upsampler_model.load_state_dict(load_checkpoint('upsample', device)) - -set_state('Creating SDF model...') -sdf_name = 'sdf' -sdf_model = model_from_config(MODEL_CONFIGS[sdf_name], device) -sdf_model.eval() - -set_state('Loading SDF model...') -sdf_model.load_state_dict(load_checkpoint(sdf_name, device)) - -stable_diffusion = gr.Blocks.load(name="spaces/runwayml/stable-diffusion-v1-5") - - -set_state('') - -def get_sampler(model_name, txt2obj, guidance_scale): - - global img2mesh_model_name - global base_diffusion_i2m - global i2m_model - if model_name != img2mesh_model_name: - img2mesh_model_name = model_name - i2m_model, base_diffusion_i2m = load_img2mesh_model(model_name) - - return PointCloudSampler( - device=device, - models=[t2m_model if txt2obj else i2m_model, upsampler_model], - diffusions=[base_diffusion_t2m if txt2obj else base_diffusion_i2m, upsampler_diffusion], - num_points=[1024, 4096 - 1024], - aux_channels=['R', 'G', 'B'], - guidance_scale=[guidance_scale, 0.0 if txt2obj else guidance_scale], - model_kwargs_key_filter=('texts', '') if txt2obj else ("*",) - ) - -def generate_txt2img(prompt): - - prompt = f"“a 3d rendering of {prompt}, full view, white background" - gallery_dir = stable_diffusion(prompt, fn_index=2) - imgs = [os.path.join(gallery_dir, img) for img in os.listdir(gallery_dir) if os.path.splitext(img)[1] == '.jpg'] - - return imgs[0], gr.update(visible=True) - -def generate_3D(input, model_name='base40M', guidance_scale=3.0, grid_size=32): - - set_state('Entered generate function...') - - if isinstance(input, Image.Image): - input = prepare_img(input) - - # if input is a string, it's a text prompt - sampler = get_sampler(model_name, txt2obj=True if isinstance(input, str) else False, guidance_scale=guidance_scale) - - # Produce a sample from the model. - set_state('Sampling...') - samples = None - kw_args = dict(texts=[input]) if isinstance(input, str) else dict(images=[input]) - for x in sampler.sample_batch_progressive(batch_size=1, model_kwargs=kw_args): - samples = x - - set_state('Converting to point cloud...') - pc = sampler.output_to_point_clouds(samples)[0] - - set_state('Saving point cloud...') - with open("point_cloud.ply", "wb") as f: - pc.write_ply(f) - - set_state('Converting to mesh...') - save_ply(pc, 'mesh.ply', grid_size) - - set_state('') - - return pc_to_plot(pc), ply_to_obj('mesh.ply', '3d_model.obj'), gr.update(value=['3d_model.obj', 'mesh.ply', 'point_cloud.ply'], visible=True) - -def prepare_img(img): - - w, h = img.size - if w > h: - img = img.crop((w - h) / 2, 0, w - (w - h) / 2, h) - else: - img = img.crop((0, (h - w) / 2, w, h - (h - w) / 2)) - - # resize to 256x256 - img = img.resize((256, 256)) - - return img - -def pc_to_plot(pc): - - return go.Figure( - data=[ - go.Scatter3d( - x=pc.coords[:,0], y=pc.coords[:,1], z=pc.coords[:,2], - mode='markers', - marker=dict( - size=2, - color=['rgb({},{},{})'.format(r,g,b) for r,g,b in zip(pc.channels["R"], pc.channels["G"], pc.channels["B"])], - ) - ) - ], - layout=dict( - scene=dict(xaxis=dict(visible=False), yaxis=dict(visible=False), zaxis=dict(visible=False)) - ), - ) - -def ply_to_obj(ply_file, obj_file): - mesh = trimesh.load(ply_file) - mesh.export(obj_file) - - return obj_file - -def save_ply(pc, file_name, grid_size): - - # Produce a mesh (with vertex colors) - mesh = marching_cubes_mesh( - pc=pc, - model=sdf_model, - batch_size=4096, - grid_size=grid_size, # increase to 128 for resolution used in evals - progress=True, - ) - - # Write the mesh to a PLY file to import into some other program. - with open(file_name, 'wb') as f: - mesh.write_ply(f) - - -with gr.Blocks() as app: - gr.Markdown("# Image-to-3D") - gr.Markdown("Turn any image or prompt to a 3D asset! Powered by StableDiffusion and OpenAI Point-E. Check out (https://twitter.com/angrypenguinPNG) for a tutorial on how to best use this space.") - gr.HTML("""To skip the queue you can duplicate this space: -
    Duplicate Space -
    Don't forget to change space hardware to GPU after duplicating it.""") - - with gr.Row(): - with gr.Column(): - with gr.Tab("Image to 3D"): - img = gr.Image(label="Image") - gr.Markdown("Best results with images of 3D objects with no shadows on a white background.") - btn_generate_img2obj = gr.Button(value="Generate") - - with gr.Tab("Text to 3D"): - gr.Markdown("Generate an image with Stable Diffusion, then convert it to 3D. Just enter the object you want to generate.") - prompt_sd = gr.Textbox(label="Prompt", placeholder="a 3d rendering of [your prompt], full view, white background") - btn_generate_txt2sd = gr.Button(value="Generate image") - img_sd = gr.Image(label="Image") - btn_generate_sd2obj = gr.Button(value="Convert to 3D", visible=False) - - with gr.Accordion("Advanced settings", open=False): - dropdown_models = gr.Dropdown(label="Model", value="base40M", choices=["base40M", "base300M"]) #, "base1B"]) - guidance_scale = gr.Slider(label="Guidance scale", value=3.0, minimum=3.0, maximum=10.0, step=0.1) - grid_size = gr.Slider(label="Grid size (for .obj 3D model)", value=32, minimum=16, maximum=128, step=16) - - with gr.Column(): - plot = gr.Plot(label="Point cloud") - # btn_pc_to_obj = gr.Button(value="Convert to OBJ", visible=False) - model_3d = gr.Model3D(value=None) - file_out = gr.File(label="Files", visible=False) - - # state_info = state_info = gr.Textbox(label="State", show_label=False).style(container=False) - - - # inputs = [dropdown_models, prompt, img, guidance_scale, grid_size] - outputs = [plot, model_3d, file_out] - - btn_generate_img2obj.click(generate_3D, inputs=[img, dropdown_models, guidance_scale, grid_size], outputs=outputs) - - prompt_sd.submit(generate_txt2img, inputs=prompt_sd, outputs=[img_sd, btn_generate_sd2obj]) - btn_generate_txt2sd.click(generate_txt2img, inputs=prompt_sd, outputs=[img_sd, btn_generate_sd2obj], queue=False) - btn_generate_sd2obj.click(generate_3D, inputs=[img, dropdown_models, guidance_scale, grid_size], outputs=outputs) - - # btn_pc_to_obj.click(ply_to_obj, inputs=plot, outputs=[model_3d, file_out]) - - gr.Examples( - examples=[ - ["images/corgi.png"], - ["images/cube_stack.jpg"], - ["images/chair.png"], - ], - inputs=[img], - outputs=outputs, - fn=generate_3D, - cache_examples=False - ) - - # app.load(get_state, inputs=[], outputs=state_info, every=0.5, show_progress=False) - - gr.HTML(""" -

    -
    -
    -

    Space by:
    - Twitter Follow
    - GitHub followers


    - Buy Me A Coffee

    -

    visitors

    -
    - """) - -app.queue(max_size=250, concurrency_count=6).launch() diff --git a/spaces/ASJMO/freegpt/g4f/Provider/Providers/Lockchat.py b/spaces/ASJMO/freegpt/g4f/Provider/Providers/Lockchat.py deleted file mode 100644 index 1bce74035403bf8615e68ccfcc9deb7e0151817a..0000000000000000000000000000000000000000 --- a/spaces/ASJMO/freegpt/g4f/Provider/Providers/Lockchat.py +++ /dev/null @@ -1,32 +0,0 @@ -import requests -import os -import json -from ...typing import sha256, Dict, get_type_hints -url = 'http://supertest.lockchat.app' -model = ['gpt-4', 'gpt-3.5-turbo'] -supports_stream = True -needs_auth = False - -def _create_completion(model: str, messages: list, stream: bool, temperature: float = 0.7, **kwargs): - - payload = { - "temperature": 0.7, - "messages": messages, - "model": model, - "stream": True, - } - headers = { - "user-agent": "ChatX/39 CFNetwork/1408.0.4 Darwin/22.5.0", - } - response = requests.post("http://supertest.lockchat.app/v1/chat/completions", - json=payload, headers=headers, stream=True) - for token in response.iter_lines(): - if b'The model: `gpt-4` does not exist' in token: - print('error, retrying...') - _create_completion(model=model, messages=messages, stream=stream, temperature=temperature, **kwargs) - if b"content" in token: - token = json.loads(token.decode('utf-8').split('data: ')[1])['choices'][0]['delta'].get('content') - if token: yield (token) - -params = f'g4f.Providers.{os.path.basename(__file__)[:-3]} supports: ' + \ - '(%s)' % ', '.join([f"{name}: {get_type_hints(_create_completion)[name].__name__}" for name in _create_completion.__code__.co_varnames[:_create_completion.__code__.co_argcount]]) \ No newline at end of file diff --git a/spaces/Abhaykoul/Palm-2/app.py b/spaces/Abhaykoul/Palm-2/app.py deleted file mode 100644 index d42522553265f834b8b3718be39b21d0b745582b..0000000000000000000000000000000000000000 --- a/spaces/Abhaykoul/Palm-2/app.py +++ /dev/null @@ -1,38 +0,0 @@ -import streamlit as st -import google.generativeai as palm - -# Configure the API key -palm.configure(api_key="AIzaSyCnrcQWTEedcGuEsJ9Uhbj_ZS9B2nozMiU") - -defaults = { - 'model': 'models/text-bison-001', - 'temperature': 1, - 'candidate_count': 1, - 'top_k': 40, - 'top_p': 0.95, - 'max_output_tokens': 1024, - 'stop_sequences': [], - 'safety_settings': [ - {"category": "HARM_CATEGORY_DEROGATORY", "threshold": 4}, - {"category": "HARM_CATEGORY_TOXICITY", "threshold": 4}, - {"category": "HARM_CATEGORY_VIOLENCE", "threshold": 4}, - {"category": "HARM_CATEGORY_SEXUAL", "threshold": 4}, - {"category": "HARM_CATEGORY_MEDICAL", "threshold": 4}, - {"category": "HARM_CATEGORY_DANGEROUS", "threshold": 4}, - ] -} - -st.title("HelpingAI") - -user_input = st.text_input('You: ') - -if st.button('Submit'): - if user_input.lower() in ['quit', 'exit', 'bye']: - st.write("Goodbye! Have a great day!") - else: - prompt = f"""Hello! I am HelpingAI. I am developed by Abhay Koul, who is 16 years old and lives in KP Colony, Vessu, Anantnag. Abhay Koul is currently working on more AI and AI-related projects.Certainly! If you're looking for more information about Abhay Koul's projects and HelpingAI, I would recommend joining the Discord community. You can find additional details there. He has been working on AI from Jan 2023. If you want more details, you can join the Discord community. The main function of HelpingAI is to make learning and education easier and more convenient for students. My purpose is to simplify your learning journey by providing personalized assistance, innovative teaching methods, and tailored resources to meet your unique needs. I am here to make your educational experience more enjoyable and effective. Feel free to ask me any questions or let me know how I can assist you in your learning adventure and in many more things from your life. Also, HelpingAI was initially developed for S.U.P.E.R.B.O.T. and vortexAI, for more info visit: https://github.com/HelpingAI, https://replit.com/@Devastation-war, join Discord https://discord.gg/2EeZcJjyRd. -input: {user_input} -output:""" - - response = palm.generate_text(**defaults, prompt=prompt) - st.write(response.result) diff --git a/spaces/Abhilashvj/planogram-compliance/utils/augmentations.py b/spaces/Abhilashvj/planogram-compliance/utils/augmentations.py deleted file mode 100644 index 401e11e5c60da3482d9b9225c2ca169fbb3f9185..0000000000000000000000000000000000000000 --- a/spaces/Abhilashvj/planogram-compliance/utils/augmentations.py +++ /dev/null @@ -1,564 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -Image augmentation functions -""" - -import math -import random - -import cv2 -import numpy as np -import torch -import torchvision.transforms as T -import torchvision.transforms.functional as TF - -from utils.general import ( - LOGGER, - check_version, - colorstr, - resample_segments, - segment2box, - xywhn2xyxy, -) -from utils.metrics import bbox_ioa - -IMAGENET_MEAN = 0.485, 0.456, 0.406 # RGB mean -IMAGENET_STD = 0.229, 0.224, 0.225 # RGB standard deviation - - -class Albumentations: - # YOLOv5 Albumentations class (optional, only used if package is installed) - def __init__(self, size=640): - self.transform = None - prefix = colorstr("albumentations: ") - try: - import albumentations as A - - check_version( - A.__version__, "1.0.3", hard=True - ) # version requirement - - T = [ - A.RandomResizedCrop( - height=size, - width=size, - scale=(0.8, 1.0), - ratio=(0.9, 1.11), - p=0.0, - ), - A.Blur(p=0.01), - A.MedianBlur(p=0.01), - A.ToGray(p=0.01), - A.CLAHE(p=0.01), - A.RandomBrightnessContrast(p=0.0), - A.RandomGamma(p=0.0), - A.ImageCompression(quality_lower=75, p=0.0), - ] # transforms - self.transform = A.Compose( - T, - bbox_params=A.BboxParams( - format="yolo", label_fields=["class_labels"] - ), - ) - - LOGGER.info( - prefix - + ", ".join( - f"{x}".replace("always_apply=False, ", "") - for x in T - if x.p - ) - ) - except ImportError: # package not installed, skip - pass - except Exception as e: - LOGGER.info(f"{prefix}{e}") - - def __call__(self, im, labels, p=1.0): - if self.transform and random.random() < p: - new = self.transform( - image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0] - ) # transformed - im, labels = new["image"], np.array( - [[c, *b] for c, b in zip(new["class_labels"], new["bboxes"])] - ) - return im, labels - - -def normalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD, inplace=False): - # Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = (x - mean) / std - return TF.normalize(x, mean, std, inplace=inplace) - - -def denormalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD): - # Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = x * std + mean - for i in range(3): - x[:, i] = x[:, i] * std[i] + mean[i] - return x - - -def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5): - # HSV color-space augmentation - if hgain or sgain or vgain: - r = ( - np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 - ) # random gains - hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV)) - dtype = im.dtype # uint8 - - x = np.arange(0, 256, dtype=r.dtype) - lut_hue = ((x * r[0]) % 180).astype(dtype) - lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) - lut_val = np.clip(x * r[2], 0, 255).astype(dtype) - - im_hsv = cv2.merge( - ( - cv2.LUT(hue, lut_hue), - cv2.LUT(sat, lut_sat), - cv2.LUT(val, lut_val), - ) - ) - cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im) # no return needed - - -def hist_equalize(im, clahe=True, bgr=False): - # Equalize histogram on BGR image 'im' with im.shape(n,m,3) and range 0-255 - yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV) - if clahe: - c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) - yuv[:, :, 0] = c.apply(yuv[:, :, 0]) - else: - yuv[:, :, 0] = cv2.equalizeHist( - yuv[:, :, 0] - ) # equalize Y channel histogram - return cv2.cvtColor( - yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB - ) # convert YUV image to RGB - - -def replicate(im, labels): - # Replicate labels - h, w = im.shape[:2] - boxes = labels[:, 1:].astype(int) - x1, y1, x2, y2 = boxes.T - s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels) - for i in s.argsort()[: round(s.size * 0.5)]: # smallest indices - x1b, y1b, x2b, y2b = boxes[i] - bh, bw = y2b - y1b, x2b - x1b - yc, xc = int(random.uniform(0, h - bh)), int( - random.uniform(0, w - bw) - ) # offset x, y - x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh] - im[y1a:y2a, x1a:x2a] = im[ - y1b:y2b, x1b:x2b - ] # im4[ymin:ymax, xmin:xmax] - labels = np.append( - labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0 - ) - - return im, labels - - -def letterbox( - im, - new_shape=(640, 640), - color=(114, 114, 114), - auto=True, - scaleFill=False, - scaleup=True, - stride=32, -): - # Resize and pad image while meeting stride-multiple constraints - shape = im.shape[:2] # current shape [height, width] - if isinstance(new_shape, int): - new_shape = (new_shape, new_shape) - - # Scale ratio (new / old) - r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) - if not scaleup: # only scale down, do not scale up (for better val mAP) - r = min(r, 1.0) - - # Compute padding - ratio = r, r # width, height ratios - new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) - dw, dh = ( - new_shape[1] - new_unpad[0], - new_shape[0] - new_unpad[1], - ) # wh padding - if auto: # minimum rectangle - dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding - elif scaleFill: # stretch - dw, dh = 0.0, 0.0 - new_unpad = (new_shape[1], new_shape[0]) - ratio = ( - new_shape[1] / shape[1], - new_shape[0] / shape[0], - ) # width, height ratios - - dw /= 2 # divide padding into 2 sides - dh /= 2 - - if shape[::-1] != new_unpad: # resize - im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR) - top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) - left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) - im = cv2.copyMakeBorder( - im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color - ) # add border - return im, ratio, (dw, dh) - - -def random_perspective( - im, - targets=(), - segments=(), - degrees=10, - translate=0.1, - scale=0.1, - shear=10, - perspective=0.0, - border=(0, 0), -): - # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10)) - # targets = [cls, xyxy] - - height = im.shape[0] + border[0] * 2 # shape(h,w,c) - width = im.shape[1] + border[1] * 2 - - # Center - C = np.eye(3) - C[0, 2] = -im.shape[1] / 2 # x translation (pixels) - C[1, 2] = -im.shape[0] / 2 # y translation (pixels) - - # Perspective - P = np.eye(3) - P[2, 0] = random.uniform( - -perspective, perspective - ) # x perspective (about y) - P[2, 1] = random.uniform( - -perspective, perspective - ) # y perspective (about x) - - # Rotation and Scale - R = np.eye(3) - a = random.uniform(-degrees, degrees) - # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations - s = random.uniform(1 - scale, 1 + scale) - # s = 2 ** random.uniform(-scale, scale) - R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) - - # Shear - S = np.eye(3) - S[0, 1] = math.tan( - random.uniform(-shear, shear) * math.pi / 180 - ) # x shear (deg) - S[1, 0] = math.tan( - random.uniform(-shear, shear) * math.pi / 180 - ) # y shear (deg) - - # Translation - T = np.eye(3) - T[0, 2] = ( - random.uniform(0.5 - translate, 0.5 + translate) * width - ) # x translation (pixels) - T[1, 2] = ( - random.uniform(0.5 - translate, 0.5 + translate) * height - ) # y translation (pixels) - - # Combined rotation matrix - M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT - if ( - (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any() - ): # image changed - if perspective: - im = cv2.warpPerspective( - im, M, dsize=(width, height), borderValue=(114, 114, 114) - ) - else: # affine - im = cv2.warpAffine( - im, M[:2], dsize=(width, height), borderValue=(114, 114, 114) - ) - - # Visualize - # import matplotlib.pyplot as plt - # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel() - # ax[0].imshow(im[:, :, ::-1]) # base - # ax[1].imshow(im2[:, :, ::-1]) # warped - - # Transform label coordinates - n = len(targets) - if n: - use_segments = any(x.any() for x in segments) - new = np.zeros((n, 4)) - if use_segments: # warp segments - segments = resample_segments(segments) # upsample - for i, segment in enumerate(segments): - xy = np.ones((len(segment), 3)) - xy[:, :2] = segment - xy = xy @ M.T # transform - xy = ( - xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] - ) # perspective rescale or affine - - # clip - new[i] = segment2box(xy, width, height) - - else: # warp boxes - xy = np.ones((n * 4, 3)) - xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape( - n * 4, 2 - ) # x1y1, x2y2, x1y2, x2y1 - xy = xy @ M.T # transform - xy = ( - xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] - ).reshape( - n, 8 - ) # perspective rescale or affine - - # create new boxes - x = xy[:, [0, 2, 4, 6]] - y = xy[:, [1, 3, 5, 7]] - new = ( - np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))) - .reshape(4, n) - .T - ) - - # clip - new[:, [0, 2]] = new[:, [0, 2]].clip(0, width) - new[:, [1, 3]] = new[:, [1, 3]].clip(0, height) - - # filter candidates - i = box_candidates( - box1=targets[:, 1:5].T * s, - box2=new.T, - area_thr=0.01 if use_segments else 0.10, - ) - targets = targets[i] - targets[:, 1:5] = new[i] - - return im, targets - - -def copy_paste(im, labels, segments, p=0.5): - # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy) - n = len(segments) - if p and n: - h, w, c = im.shape # height, width, channels - im_new = np.zeros(im.shape, np.uint8) - for j in random.sample(range(n), k=round(p * n)): - l, s = labels[j], segments[j] - box = w - l[3], l[2], w - l[1], l[4] - ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area - if (ioa < 0.30).all(): # allow 30% obscuration of existing labels - labels = np.concatenate((labels, [[l[0], *box]]), 0) - segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1)) - cv2.drawContours( - im_new, - [segments[j].astype(np.int32)], - -1, - (1, 1, 1), - cv2.FILLED, - ) - - result = cv2.flip(im, 1) # augment segments (flip left-right) - i = cv2.flip(im_new, 1).astype(bool) - im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug - - return im, labels, segments - - -def cutout(im, labels, p=0.5): - # Applies image cutout augmentation https://arxiv.org/abs/1708.04552 - if random.random() < p: - h, w = im.shape[:2] - scales = ( - [0.5] * 1 - + [0.25] * 2 - + [0.125] * 4 - + [0.0625] * 8 - + [0.03125] * 16 - ) # image size fraction - for s in scales: - mask_h = random.randint(1, int(h * s)) # create random masks - mask_w = random.randint(1, int(w * s)) - - # box - xmin = max(0, random.randint(0, w) - mask_w // 2) - ymin = max(0, random.randint(0, h) - mask_h // 2) - xmax = min(w, xmin + mask_w) - ymax = min(h, ymin + mask_h) - - # apply random color mask - im[ymin:ymax, xmin:xmax] = [ - random.randint(64, 191) for _ in range(3) - ] - - # return unobscured labels - if len(labels) and s > 0.03: - box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32) - ioa = bbox_ioa( - box, xywhn2xyxy(labels[:, 1:5], w, h) - ) # intersection over area - labels = labels[ioa < 0.60] # remove >60% obscured labels - - return labels - - -def mixup(im, labels, im2, labels2): - # Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf - r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0 - im = (im * r + im2 * (1 - r)).astype(np.uint8) - labels = np.concatenate((labels, labels2), 0) - return im, labels - - -def box_candidates( - box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16 -): # box1(4,n), box2(4,n) - # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio - w1, h1 = box1[2] - box1[0], box1[3] - box1[1] - w2, h2 = box2[2] - box2[0], box2[3] - box2[1] - ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio - return ( - (w2 > wh_thr) - & (h2 > wh_thr) - & (w2 * h2 / (w1 * h1 + eps) > area_thr) - & (ar < ar_thr) - ) # candidates - - -def classify_albumentations( - augment=True, - size=224, - scale=(0.08, 1.0), - ratio=(0.75, 1.0 / 0.75), # 0.75, 1.33 - hflip=0.5, - vflip=0.0, - jitter=0.4, - mean=IMAGENET_MEAN, - std=IMAGENET_STD, - auto_aug=False, -): - # YOLOv5 classification Albumentations (optional, only used if package is installed) - prefix = colorstr("albumentations: ") - try: - import albumentations as A - from albumentations.pytorch import ToTensorV2 - - check_version(A.__version__, "1.0.3", hard=True) # version requirement - if augment: # Resize and crop - T = [ - A.RandomResizedCrop( - height=size, width=size, scale=scale, ratio=ratio - ) - ] - if auto_aug: - # TODO: implement AugMix, AutoAug & RandAug in albumentation - LOGGER.info( - f"{prefix}auto augmentations are currently not supported" - ) - else: - if hflip > 0: - T += [A.HorizontalFlip(p=hflip)] - if vflip > 0: - T += [A.VerticalFlip(p=vflip)] - if jitter > 0: - color_jitter = ( - float(jitter), - ) * 3 # repeat value for brightness, contrast, satuaration, 0 hue - T += [A.ColorJitter(*color_jitter, 0)] - else: # Use fixed crop for eval set (reproducibility) - T = [ - A.SmallestMaxSize(max_size=size), - A.CenterCrop(height=size, width=size), - ] - T += [ - A.Normalize(mean=mean, std=std), - ToTensorV2(), - ] # Normalize and convert to Tensor - LOGGER.info( - prefix - + ", ".join( - f"{x}".replace("always_apply=False, ", "") for x in T if x.p - ) - ) - return A.Compose(T) - - except ImportError: # package not installed, skip - LOGGER.warning( - f"{prefix}⚠️ not found, install with `pip install albumentations` (recommended)" - ) - except Exception as e: - LOGGER.info(f"{prefix}{e}") - - -def classify_transforms(size=224): - # Transforms to apply if albumentations not installed - assert isinstance( - size, int - ), f"ERROR: classify_transforms size {size} must be integer, not (list, tuple)" - # T.Compose([T.ToTensor(), T.Resize(size), T.CenterCrop(size), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)]) - return T.Compose( - [ - CenterCrop(size), - ToTensor(), - T.Normalize(IMAGENET_MEAN, IMAGENET_STD), - ] - ) - - -class LetterBox: - # YOLOv5 LetterBox class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()]) - def __init__(self, size=(640, 640), auto=False, stride=32): - super().__init__() - self.h, self.w = (size, size) if isinstance(size, int) else size - self.auto = auto # pass max size integer, automatically solve for short side using stride - self.stride = stride # used with auto - - def __call__(self, im): # im = np.array HWC - imh, imw = im.shape[:2] - r = min(self.h / imh, self.w / imw) # ratio of new/old - h, w = round(imh * r), round(imw * r) # resized image - hs, ws = ( - math.ceil(x / self.stride) * self.stride for x in (h, w) - ) if self.auto else self.h, self.w - top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1) - im_out = np.full((self.h, self.w, 3), 114, dtype=im.dtype) - im_out[top : top + h, left : left + w] = cv2.resize( - im, (w, h), interpolation=cv2.INTER_LINEAR - ) - return im_out - - -class CenterCrop: - # YOLOv5 CenterCrop class for image preprocessing, i.e. T.Compose([CenterCrop(size), ToTensor()]) - def __init__(self, size=640): - super().__init__() - self.h, self.w = (size, size) if isinstance(size, int) else size - - def __call__(self, im): # im = np.array HWC - imh, imw = im.shape[:2] - m = min(imh, imw) # min dimension - top, left = (imh - m) // 2, (imw - m) // 2 - return cv2.resize( - im[top : top + m, left : left + m], - (self.w, self.h), - interpolation=cv2.INTER_LINEAR, - ) - - -class ToTensor: - # YOLOv5 ToTensor class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()]) - def __init__(self, half=False): - super().__init__() - self.half = half - - def __call__(self, im): # im = np.array HWC in BGR order - im = np.ascontiguousarray( - im.transpose((2, 0, 1))[::-1] - ) # HWC to CHW -> BGR to RGB -> contiguous - im = torch.from_numpy(im) # to torch - im = im.half() if self.half else im.float() # uint8 to fp16/32 - im /= 255.0 # 0-255 to 0.0-1.0 - return im diff --git a/spaces/Adapter/T2I-Adapter/ldm/modules/ema.py b/spaces/Adapter/T2I-Adapter/ldm/modules/ema.py deleted file mode 100644 index bded25019b9bcbcd0260f0b8185f8c7859ca58c4..0000000000000000000000000000000000000000 --- a/spaces/Adapter/T2I-Adapter/ldm/modules/ema.py +++ /dev/null @@ -1,80 +0,0 @@ -import torch -from torch import nn - - -class LitEma(nn.Module): - def __init__(self, model, decay=0.9999, use_num_upates=True): - super().__init__() - if decay < 0.0 or decay > 1.0: - raise ValueError('Decay must be between 0 and 1') - - self.m_name2s_name = {} - self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32)) - self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int) if use_num_upates - else torch.tensor(-1, dtype=torch.int)) - - for name, p in model.named_parameters(): - if p.requires_grad: - # remove as '.'-character is not allowed in buffers - s_name = name.replace('.', '') - self.m_name2s_name.update({name: s_name}) - self.register_buffer(s_name, p.clone().detach().data) - - self.collected_params = [] - - def reset_num_updates(self): - del self.num_updates - self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int)) - - def forward(self, model): - decay = self.decay - - if self.num_updates >= 0: - self.num_updates += 1 - decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates)) - - one_minus_decay = 1.0 - decay - - with torch.no_grad(): - m_param = dict(model.named_parameters()) - shadow_params = dict(self.named_buffers()) - - for key in m_param: - if m_param[key].requires_grad: - sname = self.m_name2s_name[key] - shadow_params[sname] = shadow_params[sname].type_as(m_param[key]) - shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key])) - else: - assert not key in self.m_name2s_name - - def copy_to(self, model): - m_param = dict(model.named_parameters()) - shadow_params = dict(self.named_buffers()) - for key in m_param: - if m_param[key].requires_grad: - m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data) - else: - assert not key in self.m_name2s_name - - def store(self, parameters): - """ - Save the current parameters for restoring later. - Args: - parameters: Iterable of `torch.nn.Parameter`; the parameters to be - temporarily stored. - """ - self.collected_params = [param.clone() for param in parameters] - - def restore(self, parameters): - """ - Restore the parameters stored with the `store` method. - Useful to validate the model with EMA parameters without affecting the - original optimization process. Store the parameters before the - `copy_to` method. After validation (or model saving), use this to - restore the former parameters. - Args: - parameters: Iterable of `torch.nn.Parameter`; the parameters to be - updated with the stored parameters. - """ - for c_param, param in zip(self.collected_params, parameters): - param.data.copy_(c_param.data) diff --git a/spaces/AgentVerse/agentVerse/agentverse/environments/simulation_env/rules/selector/pokemon.py b/spaces/AgentVerse/agentVerse/agentverse/environments/simulation_env/rules/selector/pokemon.py deleted file mode 100644 index b631aa8502890fa85b6afca2b576d729eb336306..0000000000000000000000000000000000000000 --- a/spaces/AgentVerse/agentVerse/agentverse/environments/simulation_env/rules/selector/pokemon.py +++ /dev/null @@ -1,98 +0,0 @@ -from __future__ import annotations - -from typing import TYPE_CHECKING, List -import numpy as np -import json - -from agentverse.message import Message - -from . import selector_registry as SelectorRegistry -from .base import BaseSelector - -if TYPE_CHECKING: - from agentverse.environments import PokemonEnvironment - - -@SelectorRegistry.register("pokemon") -class PokemonSelector(BaseSelector): - """ - Selector for Pokemon environment - """ - - def select_message( - self, environment: PokemonEnvironment, messages: List[Message] - ) -> List[Message]: - valid = [] - talk_matrix = np.zeros((len(environment.agents), len(environment.agents))) - agent_to_idx = {agent.name: i for i, agent in enumerate(environment.agents)} - for i, message in enumerate(messages): - try: - content = json.loads(message.content) - except json.decoder.JSONDecodeError: - valid.append(0) - continue - if content["action"] == "Speak": - try: - if "to" not in content: - # If the model does not generate receiver, then we discard the message - valid.append(0) - elif content["to"] in agent_to_idx: - # TODO: allow talk to a list of agents - valid.append(1) - # talk_matrix[i][j] = 1 ==> i talk to j - talk_matrix[agent_to_idx[message.sender]][ - agent_to_idx[content["to"]] - ] = 1 - else: - # If the receiver is not in the environment, then we discard the message - valid.append(0) - except: - valid.append(0) - continue - elif content["action"] == "MoveTo": - # If the agent move to a location that does not exist, then we discard the message - valid.append( - "to" in content and content["to"] in environment.locations_to_agents - ) - else: - valid.append(1) - selected_messages = [] - for i, message in enumerate(messages): - content = json.loads(message.content) - sender_idx = agent_to_idx[message.sender] - if valid[i] == 0: - selected_messages.append(Message()) - continue - if content["action"] == "MoveTo": - if np.sum(talk_matrix[:, sender_idx]) > 0: - # If someone talk to this agent, then we discard the move action - selected_messages.append(Message()) - else: - selected_messages.append(message) - elif content["action"] == "Speak": - receiver_idx = agent_to_idx[content["to"]] - if talk_matrix[sender_idx][receiver_idx] == 0: - # If this agent talk to someone who also talk to this agent, and we - # select the message from this agent, then we discard the message - selected_messages.append(Message()) - continue - if np.sum(talk_matrix[receiver_idx, :]) > 0: - if talk_matrix[receiver_idx][sender_idx] == 1: - # If the receiver talk to this agent, then we randomly select one message - if sender_idx < receiver_idx: - if np.random.random() < 0.5: - selected_messages.append(message) - talk_matrix[receiver_idx][sender_idx] = 0 - else: - selected_messages.append(Message()) - talk_matrix[sender_idx][receiver_idx] = 0 - else: - print("Shouldn't happen") - else: - # If the receiver talk to other agent, we still talk to the receiver (?) - selected_messages.append(message) - else: - selected_messages.append(message) - else: - selected_messages.append(message) - return selected_messages diff --git a/spaces/AgentVerse/agentVerse/agentverse/message.py b/spaces/AgentVerse/agentVerse/agentverse/message.py deleted file mode 100644 index 34d0752c86ae12fb1f735aaf95da9c7444f0bb63..0000000000000000000000000000000000000000 --- a/spaces/AgentVerse/agentVerse/agentverse/message.py +++ /dev/null @@ -1,35 +0,0 @@ -from pydantic import BaseModel, Field -from typing import List, Tuple, Set, Union, Any - -from agentverse.utils import AgentAction - - -class Message(BaseModel): - content: Any = Field(default="") - sender: str = Field(default="") - receiver: Set[str] = Field(default=set({"all"})) - sender_agent: object = Field(default=None) - tool_response: List[Tuple[AgentAction, str]] = Field(default=[]) - - -class SolverMessage(Message): - pass - - -class CriticMessage(Message): - is_agree: bool - criticism: str = "" - - -class ExecutorMessage(Message): - tool_name: str = Field(default="") - tool_input: Any = None - - -class EvaluatorMessage(Message): - score: Union[bool, List[bool], int, List[int]] - advice: str = Field(default="") - - -class RoleAssignerMessage(Message): - pass diff --git a/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/dropdownlist/DropDownList.js b/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/dropdownlist/DropDownList.js deleted file mode 100644 index 999395ca34e4c529d5e38ea0c43260655443870d..0000000000000000000000000000000000000000 --- a/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/dropdownlist/DropDownList.js +++ /dev/null @@ -1,119 +0,0 @@ -import Label from '../label/Label.js'; -import Methods from './methods/Methods.js' - - -const GetValue = Phaser.Utils.Objects.GetValue; - -class DropDownList extends Label { - constructor(scene, config) { - super(scene, config); - this.type = 'rexDropDownList'; - this.timer = undefined; - - this.setOptions(GetValue(config, 'options')); - - var listConfig = GetValue(config, 'list'); - this.setWrapEnable(GetValue(listConfig, 'wrap', false)); - this.setCreateButtonCallback(GetValue(listConfig, 'createButtonCallback')); - this.setCreateListBackgroundCallback(GetValue(listConfig, 'createBackgroundCallback')); - this.setButtonClickCallback(GetValue(listConfig, 'onButtonClick')); - this.setButtonOverCallback(GetValue(listConfig, 'onButtonOver')); - this.setButtonOutCallback(GetValue(listConfig, 'onButtonOut')); - this.setListExpandDirection(GetValue(listConfig, 'expandDirection')); - this.setListEaseInDuration(GetValue(listConfig, 'easeIn', 500)); - this.setListEaseOutDuration(GetValue(listConfig, 'easeOut', 100)); - this.setListTransitInCallback(GetValue(listConfig, 'transitIn')); - this.settListTransitOutCallback(GetValue(listConfig, 'transitOut')); - this.setListSize(GetValue(listConfig, 'width'), GetValue(listConfig, 'height')); - this.setListAlignmentMode(GetValue(listConfig, 'alignParent', 'text')); - this.setListAlignmentSide(GetValue(listConfig, 'alignSide', '')); - this.setListBounds(GetValue(listConfig, 'bounds')); - this.setListSpace(GetValue(listConfig, 'space')); - this.setListDraggable(GetValue(listConfig, 'draggable', false)); - - this.setValueChangeCallback( - GetValue(config, 'setValueCallback'), - GetValue(config, 'setValueCallbackScope') - ); - this.setValue(GetValue(config, 'value')); - - this.onClick(this.toggleListPanel, this); - } - - destroy(fromScene) { - // This Game Object has already been destroyed - if (!this.scene || this.ignoreDestroy) { - return; - } - - if (this.listPanel) { - this.listPanel.destroy(fromScene); - this.listPanel = undefined; - } - - super.destroy(fromScene); - } - - setOptions(options) { - if (options === undefined) { - options = []; - } - this.options = options; - return this; - } - - setValueChangeCallback(callback, scope) { - this.valueChangeCallback = callback; - this.valueChangeCallbackScope = scope; - return this; - } - - setValue(value) { - this.value = value; - return this; - } - - get value() { - return this._value; - } - - set value(value) { - if (this._value === value) { - return; - } - - var previousValue = this._value; - this._value = value; - - var callback = this.valueChangeCallback, - scope = this.valueChangeCallbackScope; - if (callback) { - if (scope) { - callback.call(scope, this, value, previousValue); - } else { - callback(this, value, previousValue) - } - } - - this.emit('valuechange', this, value, previousValue); - - } - - emitButtonClick(index) { - var option = this.options[index]; - if (!option) { - return this; - } - - this.emit('button.click', this, undefined, option, index); - return this; - } - -} - -Object.assign( - DropDownList.prototype, - Methods, -); - -export default DropDownList; \ No newline at end of file diff --git a/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/gridtable/GridTable.js b/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/gridtable/GridTable.js deleted file mode 100644 index 2ec830ee3740748622b813fbb4d80a2105789a8f..0000000000000000000000000000000000000000 --- a/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/gridtable/GridTable.js +++ /dev/null @@ -1,140 +0,0 @@ -import Scrollable from '../utils/scrollable/Scrollable.js'; -import GetScrollMode from '../utils/GetScrollMode.js'; -import GridTableCore from '../../../plugins/gridtable.js'; -import InjectProperties from './InjectProperties.js'; -import TableOnCellVisible from './TableOnCellVisible.js'; -import TableSetInteractive from './input/TableSetInteractive.js'; -import NOOP from '../../../plugins/utils/object/NOOP.js'; -import SetItems from './SetItems.js'; -import ScrollMethods from './ScrollMethods.js'; - -const GetValue = Phaser.Utils.Objects.GetValue; - -class GridTable extends Scrollable { - constructor(scene, config) { - if (config === undefined) { - config = {}; - } - - // Create grid table core - var scrollMode = GetScrollMode(config); - var tableConfig = GetValue(config, 'table', undefined) - if (tableConfig === undefined) { - tableConfig = {}; - } - tableConfig.scrollMode = scrollMode; - tableConfig.clamplTableOXY = GetValue(config, 'clamplChildOY', false); - var tableWidth = GetValue(tableConfig, 'width', undefined); - var tableHeight = GetValue(tableConfig, 'height', undefined); - var table = new GridTableCore(scene, 0, 0, tableWidth, tableHeight, tableConfig); - scene.add.existing(table); // Important: Add to display list for touch detecting - var proportion, expand; - if (scrollMode === 0) { - proportion = (tableWidth === undefined) ? 1 : 0; - expand = (tableHeight === undefined); - } else { - proportion = (tableHeight === undefined) ? 1 : 0; - expand = (tableWidth === undefined); - } - // Inject properties for scrollable interface - InjectProperties(table); - // Set minWidth/minHeight to 0 if tableWidth/tableHeight is undefined - table._minWidth = (tableWidth === undefined) ? 0 : undefined; - table._minHeight = (tableHeight === undefined) ? 0 : undefined; - - // Fill config of scrollable - config.type = 'rexGridTable'; - config.child = { - gameObject: table, - proportion: proportion, - expand: expand, - }; - var spaceConfig = GetValue(config, 'space', undefined); - if (spaceConfig) { - spaceConfig.child = spaceConfig.table; - } - super(scene, config); - - this.addChildrenMap('table', table); - this.addChildrenMap('tableLayer', table.maskLayer); - - this.eventEmitter = GetValue(config, 'eventEmitter', this); - var callback = GetValue(config, 'createCellContainerCallback', NOOP); - var scope = GetValue(config, 'createCellContainerCallbackScope', undefined); - this.setCreateCellContainerCallback(callback, scope); - TableOnCellVisible.call(this, table); - - this.resizeControllerFlag = false; - var eventName = (scrollMode === 0) ? 'cellheightchange' : 'cellwidthchange'; - table.on(eventName, function () { - this.resizeControllerFlag = true; - }, this); - - if (GetValue(tableConfig, 'interactive', true)) { - TableSetInteractive.call(this, table, tableConfig); - } - this.setItems(GetValue(config, 'items', [])); - - scene.game.events.on('poststep', this.onPostStep, this); - } - - destroy(fromScene) { - // This Game Object has already been destroyed - if (!this.scene || this.ignoreDestroy) { - return; - } - - this.scene.game.events.off('poststep', this.onPostStep, this); - - super.destroy(fromScene); - } - - setCreateCellContainerCallback(callback, scope) { - this.createCellContainerCallback = callback; - this.createCellContainerCallbackScope = scope; - return this; - } - - refresh() { - this.setItems(this.items); - return this; - } - - getCell(cellIdx) { - var table = this.childrenMap.child; - return table.getCell(cellIdx); - } - - getCellContainer(cellIdx) { - var table = this.childrenMap.child; - return table.getCellContainer(cellIdx); - } - - updateVisibleCell(cellIdx) { - var table = this.childrenMap.child; - return table.updateVisibleCell(cellIdx); - } - - onPostStep() { - if (this.resizeControllerFlag) { - this.resizeController(); - this.resizeControllerFlag = false; - } - } - - get startRowIndex() { - var table = this.childrenMap.child; - return table.startRowIndex; - } -} - -var methods = { - setItems: SetItems -} -Object.assign( - GridTable.prototype, - ScrollMethods, - methods, -); - -export default GridTable; \ No newline at end of file diff --git a/spaces/Akmyradov/TurkmenTTSweSTT/uroman/lib/NLP/Chinese.pm b/spaces/Akmyradov/TurkmenTTSweSTT/uroman/lib/NLP/Chinese.pm deleted file mode 100644 index ea6c52991bd1bb2e55ec851bf31537f59f57b58a..0000000000000000000000000000000000000000 --- a/spaces/Akmyradov/TurkmenTTSweSTT/uroman/lib/NLP/Chinese.pm +++ /dev/null @@ -1,239 +0,0 @@ -################################################################ -# # -# Chinese # -# # -################################################################ - -package NLP::Chinese; - -$utf8 = NLP::UTF8; -%empty_ht = (); - -sub read_chinese_tonal_pinyin_files { - local($caller, *ht, @filenames) = @_; - - $n_kHanyuPinlu = 0; - $n_kXHC1983 = 0; - $n_kHanyuPinyin = 0; - $n_kMandarin = 0; - $n_cedict = 0; - $n_simple_pinyin = 0; - - foreach $filename (@filenames) { - if ($filename =~ /unihan/i) { - my $line_number = 0; - if (open(IN, $filename)) { - while () { - $line_number++; - next if /^#/; - s/\s*$//; - if (($u, $type, $value) = split(/\t/, $_)) { - if ($type =~ /^(kHanyuPinlu|kXHC1983|kHanyuPinyin|kMandarin)$/) { - $u = $util->trim($u); - $type = $util->trim($type); - $value = $util->trim($value); - $f = $utf8->unicode_string2string($u); - - if ($type eq "kHanyuPinlu") { - $value =~ s/\(.*?\)//g; - $value = $util->trim($value); - $translit = $caller->number_to_accent_tone($value); - $ht{"kHanyuPinlu"}->{$f} = $translit; - $n_kHanyuPinlu++; - } elsif ($type eq "kXHC1983") { - @translits = ($value =~ /:(\S+)/g); - $translit = join(" ", @translits); - $ht{"kXHC1983"}->{$f} = $translit; - $n_kXHC1983++; - } elsif ($type eq "kHanyuPinyin") { - $value =~ s/^.*://; - $value =~ s/,/ /g; - $ht{"kHanyuPinyin"}->{$f} = $value; - $n_kHanyuPinyin++; - } elsif ($type eq "kMandarin") { - $ht{"kMandarin"}->{$f} = $value; - $n_kMandarin++; - } - } - } - } - close(IN); - print "Read in $n_kHanyuPinlu kHanyuPinlu, $n_kXHC1983 n_kXHC1983, $n_kHanyuPinyin n_kHanyuPinyin $n_kMandarin n_kMandarin\n"; - } else { - print STDERR "Can't open $filename\n"; - } - } elsif ($filename =~ /cedict/i) { - if (open(IN, $filename)) { - my $line_number = 0; - while () { - $line_number++; - next if /^#/; - s/\s*$//; - if (($f, $translit) = ($_ =~ /^\S+\s+(\S+)\s+\[([^\[\]]+)\]/)) { - $translit = $utf8->extended_lower_case($translit); - $translit = $caller->number_to_accent_tone($translit); - $translit =~ s/\s//g; - if ($old_translit = $ht{"cedict"}->{$f}) { - # $ht{CONFLICT}->{("DUPLICATE " . $f)} = "CEDICT($f): $old_translit\nCEDICT($f): $translit (duplicate)\n" unless $translit eq $old_translit; - $ht{"cedicts"}->{$f} = join(" ", $ht{"cedicts"}->{$f}, $translit) unless $old_translit eq $translit; - } else { - $ht{"cedict"}->{$f} = $translit; - $ht{"cedicts"}->{$f} = $translit; - } - $n_cedict++; - } - } - close(IN); - # print "Read in $n_cedict n_cedict\n"; - } else { - print STDERR "Can't open $filename"; - } - } elsif ($filename =~ /chinese_to_pinyin/i) { - if (open(IN, $filename)) { - my $line_number = 0; - while () { - $line_number++; - next if /^#/; - if (($f, $translit) = ($_ =~ /^(\S+)\t(\S+)\s*$/)) { - $ht{"simple_pinyin"}->{$f} = $translit; - $n_simple_pinyin++; - } - } - close(IN); - # print "Read in $n_simple_pinyin n_simple_pinyin\n"; - } else { - print STDERR "Can't open $filename"; - } - } else { - print STDERR "Don't know what to do with file $filename (in read_chinese_tonal_pinyin_files)\n"; - } - } -} - -sub tonal_pinyin { - local($caller, $s, *ht, $gloss) = @_; - - return $result if defined($result = $ht{COMBINED}->{$s}); - - $cedict_pinyin = $ht{"cedict"}->{$s} || ""; - $cedicts_pinyin = $ht{"cedicts"}->{$s} || ""; - $unihan_pinyin = ""; - @characters = $utf8->split_into_utf8_characters($s, "return only chars", *empty_ht); - foreach $c (@characters) { - if ($pinyin = $ht{"simple_pinyin"}->{$c}) { - $unihan_pinyin .= $pinyin; - } elsif ($pinyin = $ht{"kHanyuPinlu"}->{$c}) { - $pinyin =~ s/^(\S+)\s.*$/$1/; - $unihan_pinyin .= $pinyin; - } elsif ($pinyin = $ht{"kXHC1983"}->{$c}) { - $pinyin =~ s/^(\S+)\s.*$/$1/; - $unihan_pinyin .= $pinyin; - } elsif ($pinyin = $ht{"kHanyuPinyin"}->{$c}) { - $pinyin =~ s/^(\S+)\s.*$/$1/; - $unihan_pinyin .= $pinyin; - } elsif ($pinyin = $ht{"cedicts"}->{$c}) { - $pinyin =~ s/^(\S+)\s.*$/$1/; - $unihan_pinyin .= $pinyin; - # middle dot, katakana middle dot, multiplication sign - } elsif ($c =~ /^(\xC2\xB7|\xE3\x83\xBB|\xC3\x97)$/) { - $unihan_pinyin .= $c; - # ASCII - } elsif ($c =~ /^([\x21-\x7E])$/) { - $unihan_pinyin .= $c; - } else { - $unihan_pinyin .= "?"; - $hex = $utf8->utf8_to_hex($c); - $unicode = uc $utf8->utf8_to_4hex_unicode($c); - # print STDERR "Tonal pinyin: Unknown character $c ($hex/U+$unicode) -> ?\n"; - } - } - $pinyin_title = ""; - if (($#characters >= 1) && $cedicts_pinyin) { - foreach $pinyin (split(/\s+/, $cedicts_pinyin)) { - $pinyin_title .= "$s $pinyin (CEDICT)\n"; - } - $pinyin_title .= "\n"; - } - foreach $c (@characters) { - my %local_ht = (); - @pinyins = (); - foreach $type (("kHanyuPinlu", "kXHC1983", "kHanyuPinyin", "cedicts")) { - if ($pinyin_s = $ht{$type}->{$c}) { - foreach $pinyin (split(/\s+/, $pinyin_s)) { - push(@pinyins, $pinyin) unless $util->member($pinyin, @pinyins); - $type2 = ($type eq "cedicts") ? "CEDICT" : $type; - $local_ht{$pinyin} = ($local_ht{$pinyin}) ? join(", ", $local_ht{$pinyin}, $type2) : $type2; - } - } - } - foreach $pinyin (@pinyins) { - $type_s = $local_ht{$pinyin}; - $pinyin_title .= "$c $pinyin ($type_s)\n"; - } - } - $pinyin_title =~ s/\n$//; - $pinyin_title =~ s/\n/ /g; - $unihan_pinyin = "" if $unihan_pinyin =~ /^\?+$/; - if (($#characters >= 1) && $cedict_pinyin && $unihan_pinyin && ($unihan_pinyin ne $cedict_pinyin)) { - $log = "Gloss($s): $gloss\nCEdict($s): $cedicts_pinyin\nUnihan($s): $unihan_pinyin\n"; - foreach $type (("kHanyuPinlu", "kXHC1983", "kHanyuPinyin")) { - $log_line = "$type($s): "; - foreach $c (@characters) { - $pinyin = $ht{$type}->{$c} || ""; - if ($pinyin =~ / /) { - $log_line .= "($pinyin)"; - } elsif ($pinyin) { - $log_line .= $pinyin; - } else { - $log_line .= "?"; - } - } - $log .= "$log_line\n"; - } - $ht{CONFLICT}->{$s} = $log; - } - $result = $unihan_pinyin || $cedict_pinyin; - $result = $cedict_pinyin if ($#characters > 0) && $cedict_pinyin; - $ht{COMBINED}->{$s} = $result; - $ht{PINYIN_TITLE}->{$s} = $pinyin_title; - return $result; -} - -%number_to_accent_tone_ht = ( - "a1", "\xC4\x81", "a2", "\xC3\xA1", "a3", "\xC7\x8E", "a4", "\xC3\xA0", - "e1", "\xC4\x93", "e2", "\xC3\xA9", "e3", "\xC4\x9B", "e4", "\xC3\xA8", - "i1", "\xC4\xAB", "i2", "\xC3\xAD", "i3", "\xC7\x90", "i4", "\xC3\xAC", - "o1", "\xC5\x8D", "o2", "\xC3\xB3", "o3", "\xC7\x92", "o4", "\xC3\xB2", - "u1", "\xC5\xAB", "u2", "\xC3\xBA", "u3", "\xC7\x94", "u4", "\xC3\xB9", - "u:1","\xC7\x96", "u:2","\xC7\x98", "u:3","\xC7\x9A", "u:4","\xC7\x9C", - "\xC3\xBC1","\xC7\x96","\xC3\xBC2","\xC7\x98","\xC3\xBC3","\xC7\x9A","\xC3\xBC4","\xC7\x9C" -); - -sub number_to_accent_tone { - local($caller, $s) = @_; - - my $result = ""; - while (($pre,$alpha,$tone_number,$rest) = ($s =~ /^(.*?)((?:[a-z]|u:|\xC3\xBC)+)([1-5])(.*)$/i)) { - if ($tone_number eq "5") { - $result .= "$pre$alpha"; - } elsif ((($pre_acc,$acc_letter,$post_acc) = ($alpha =~ /^(.*)([ae])(.*)$/)) - || (($pre_acc,$acc_letter,$post_acc) = ($alpha =~ /^(.*)(o)(u.*)$/)) - || (($pre_acc,$acc_letter,$post_acc) = ($alpha =~ /^(.*)(u:|[iou]|\xC3\xBC)([^aeiou]*)$/))) { - $result .= "$pre$pre_acc" . ($number_to_accent_tone_ht{($acc_letter . $tone_number)} || ($acc_letter . $tone_number)) . $post_acc; - } else { - $result .= "$pre$alpha$tone_number"; - } - $s = $rest; - } - $result .= $s; - $result =~ s/u:/\xC3\xBC/g; - return $result; -} - -sub string_contains_utf8_cjk_unified_ideograph_p { - local($caller, $s) = @_; - - return ($s =~ /([\xE4-\xE9]|\xE3[\x90-\xBF]|\xF0[\xA0-\xAC])/); -} - -1; diff --git a/spaces/Akmyradov/TurkmenTTSweSTT/uroman/lib/NLP/English.pm b/spaces/Akmyradov/TurkmenTTSweSTT/uroman/lib/NLP/English.pm deleted file mode 100644 index e78fba5e381d425feb1a89696afad7d974063abb..0000000000000000000000000000000000000000 --- a/spaces/Akmyradov/TurkmenTTSweSTT/uroman/lib/NLP/English.pm +++ /dev/null @@ -1,3112 +0,0 @@ -################################################################ -# # -# English # -# # -################################################################ - -package NLP::English; - -use File::Basename; -use File::Spec; - -# tok v1.3.7 (May 16, 2019) - -$chinesePM = NLP::Chinese; -$ParseEntry = NLP::ParseEntry; -$util = NLP::utilities; -$utf8 = NLP::UTF8; -$logfile = ""; -# $logfile2 = (-d "/nfs/isd/ulf/smt/agile") ? "/nfs/isd/ulf/smt/agile/minilog" : ""; -# $util->init_log($logfile2); - -$currency_symbol_list = "\$|\xC2\xA5|\xE2\x82\xAC|\xE2\x82\xA4"; -$english_resources_skeleton_dir = ""; -%dummy_ht = (); - -sub build_language_hashtables { - local($caller, $primary_entity_style_filename, $data_dir) = @_; - - unless ($data_dir) { - $default_data_dir = "/nfs/nlg/users/textmap/brahms-ml/arabic/bin/modules/NLP"; - $data_dir = $default_data_dir if -d $default_data_dir; - } - my $english_word_filename = "$data_dir/EnglishWordlist.txt"; - my $default_entity_style_MT_filename = "$data_dir/EntityStyleMT-zh.txt"; - my $entity_style_all_filename = "$data_dir/EntityStyleAll.txt"; - my $EnglishNonNameCapWords_filename = "$data_dir/EnglishNonNameCapWords.txt"; - $english_resources_skeleton_dir = "$data_dir/EnglishResources/skeleton"; - %english_annotation_ht = (); - %annotation_english_ht = (); - %english_ht = (); - $CardinalMaxWithoutComma = 99999; - $CardinalMaxNonLex = 9999000; - - $primary_entity_style_filename = $default_entity_style_MT_filename unless defined($primary_entity_style_filename); - if ($primary_entity_style_filename =~ /^(ar|zh)$/) { - $languageCode = $primary_entity_style_filename; - $primary_entity_style_filename - = File::Spec->catfile($data_dir, "EntityStyleMT-$languageCode.txt"); - } - - open(IN,$english_word_filename) || die "Can't open $english_word_filename"; - while () { - next unless $_ =~ /^s*[^#\s]/; # unless blank/comment line - $_ =~ s/\s+$//; - $line = $_; - @lines = ($line); - if (($line =~ /::gpe:/) - && (($annotation) = ($line =~ /^.*?::(.*)$/)) - && (($pre_annotation, $singular_english, $post_annotation) = ($annotation =~ /^(.*)::plural-of:([^:]+)(|::.*)\s*$/))) { - $derived_annotation = $singular_english . "::$pre_annotation$post_annotation"; - # print STDERR "derived_annotation: $derived_annotation\n"; - push(@lines, $derived_annotation); - } - foreach $line (@lines) { - ($english,@slots) = split("::",$line); - next unless defined($english); - $english =~ s/\s+$//; - $lc_english = $english; - $lc_english =~ tr/[A-Z]/[a-z]/; - $annotation = "::" . join("::",@slots) . "::"; - $english_annotation_ht{$english} = $annotation; - $english_annotation_ht{$lc_english} = $annotation; - $english_annotation_ht{"_ALT_"}->{$english}->{$annotation} = 1; - $english_annotation_ht{"_ALT_"}->{$lc_english}->{$annotation} = 1; - $synt = ""; - foreach $slot_value (@slots) { - ($slot,$value) = ($slot_value =~ /\s*(\w[^:]+):\s*(\S.*)$/); - next unless defined($value); - $slot =~ s/\s+$//; - $value =~ s/\s+$//; - $synt = $value if $slot eq "synt"; - if (defined($annotation_english_ht{$slot_value})) { - push(@{$annotation_english_ht{$slot_value}},$english); - } else { - my @elist = ($english); - $annotation_english_ht{$slot_value} = \@elist; - } - if ($synt && defined($slot_value) && ($slot ne "synt")) { - $annot = "synt:$synt" . "::$slot_value"; - if (defined($annotation_english_ht{$annot})) { - push(@{$annotation_english_ht{$annot}},$english); - } else { - my @elist = ($english); - $annotation_english_ht{$annot} = \@elist; - } - $english_annotation_ht{"_EN_SYNT_"}->{$english}->{$synt}->{$slot} = $value; - } - } - } - } - close(IN); - - if (open(IN,$EnglishNonNameCapWords_filename)) { - while () { - next unless $_ =~ /^s*[^#\s]/; # unless blank/comment line - $_ =~ s/\s+$//; - $english_ht{(lc $_)}->{COMMON_NON_NAME_CAP} = 1; - } - close(IN); - } else { - print STDERR "Can't open $EnglishNonNameCapWords_filename\n"; - } - - foreach $style ("primary", "all") { - if ($style eq "primary") { - $entity_style_filename = $primary_entity_style_filename || $default_entity_style_MT_filename; - } elsif ($style eq "all") { - $entity_style_filename = $entity_style_all_filename; - } else { - next; - } - %ht = (); - open(IN,$entity_style_filename) || die("Can't open $entity_style_filename (stylefile)"); - my $n_entries = 0; - while () { - next unless $_ =~ /^s*[^#\s]/; # unless blank/comment line - $_ =~ s/\s+$//; - ($slot,$value_string) = ($_ =~ /^([^:]+):\s*(\S.*)$/); - next unless defined($value_string); - if (defined($ht{$slot})) { - print STDERR "Warning: ignoring duplicate entry for $slot in $entity_style_filename\n"; - next; - } - @values = split("::", $value_string); - foreach $value (@values) { - $value =~ s/^\s+//g; - $value =~ s/\s+$//g; - } - my @values_copy = @values; - $ht{$slot} = \@values_copy; - $n_entries++; - } - # print STDERR "Processed $n_entries entries in $entity_style_filename\n"; - close(IN); - if ($style eq "primary") { - %english_entity_style_ht = %ht; - } elsif ($style eq "all") { - %english_entity_style_all_ht = %ht; - } - } - - if (defined($raw = $english_entity_style_ht{CardinalMaxWithoutComma}) - && (@styles = @{$raw}) && ($n = $styles[0]) && ($n =~ /^\d+$/) && ($n >= 999)) { - $CardinalMaxWithoutComma = $n; - } - if (defined($raw = $english_entity_style_ht{CardinalMaxNonLex}) - && (@styles = @{$raw}) && ($n = $styles[0]) && ($n =~ /^\d+$/) && ($n >= 999999)) { - $CardinalMaxNonLex = $n; - } - - return (*english_annotation_ht,*annotation_english_ht,*english_entity_style_ht); -} - -sub read_language_variations { - local($this, $filename, *ht) = @_; - - my $n = 0; - my $line_number = 0; - if (open(IN, $filename)) { - while () { - $line_number++; - $us = $util->slot_value_in_double_colon_del_list($_, "us"); - $uk = $util->slot_value_in_double_colon_del_list($_, "uk"); - $formal = $util->slot_value_in_double_colon_del_list($_, "formal"); - $informal = $util->slot_value_in_double_colon_del_list($_, "informal"); - if ($us && $uk) { - $ht{VARIATION_UK_US}->{$uk}->{$us} = 1; - $n++; - } - if ($informal && $formal) { - $ht{VARIATION_INFORMAL_FORMAL}->{$informal}->{$formal} = 1; - $n++; - } - } - close(IN); - # print STDERR "Read $n spelling variation entries from $filename\n"; - } -} - -sub entity_style_listing { - local($caller,$attr) = @_; - - if (defined($l = $english_entity_style_ht{$attr})) { - @sl = @{$l}; - if (($#sl == 0) && ($sl[0] eq "all")) { - if (defined($al = $english_entity_style_all_ht{$attr})) { - return @{$al}; - } else { - return (); - } - } else { - return @sl; - } - } else { - return (); - } -} - -sub is_abbreviation { - local($caller,$noun) = @_; - - $result = defined($annotation_s = $english_annotation_ht{$noun}) - && ($annotation_s =~ /::abbreviation:true::/); -# print "is_abbreviation($noun): $result\n"; - return $result; -} - -sub noun_adv_sem { - local($caller,$noun) = @_; - - return "" unless defined($annotation_s = $english_annotation_ht{$noun}); - ($adv_sem) = ($annotation_s =~ /::adv_sem:([-_a-z]+)::/); - return "" unless defined($adv_sem); - return $adv_sem; -} - -sub numeral_value { - local($caller,$numeral) = @_; - - return "" unless defined($annotation_s = $english_annotation_ht{$numeral}); - ($value) = ($annotation_s =~ /::value:(\d+)::/); - return "" unless defined($value); - return $value; -} - -sub annot_slot_value { - local($caller,$lex, $slot) = @_; - - return "" unless defined($annotation_s = $english_annotation_ht{$lex}); - ($value) = ($annotation_s =~ /::$slot:([-_a-z]+)(?:::.*|)\s*$/i); - return "" unless defined($value); - return $value; -} - -sub annot_slot_values { - local($caller,$lex, $slot) = @_; - - return () unless @annotations = keys %{$english_annotation_ht{"_ALT_"}->{$lex}}; - @annot_slot_values = (); - foreach $annotation_s (@annotations) { - ($value) = ($annotation_s =~ /::$slot:([^:]+)(?:::.*|)\s*$/i); - if (defined($value)) { - $value =~ s/\s*$//; - push(@annot_slot_values, $value); - } - } - return @annot_slot_values; -} - -# quick and dirty -sub noun_number_form { - local($caller,$noun,$number) = @_; - - $noun = "rupee" if $noun =~ /^Rs\.?$/; - $noun = "kilometer" if $noun =~ /^km$/; - $noun = "kilogram" if $noun =~ /^kg$/; - $noun = "meter" if $noun =~ /^m$/; - $noun = "second" if $noun =~ /^(s|secs?\.?)$/; - $noun = "minute" if $noun =~ /^(mins?\.?)$/; - $noun = "hour" if $noun =~ /^(h|hrs?\.?)$/; - $noun = "year" if $noun =~ /^(yrs?\.?)$/; - $noun = "degree" if $noun =~ /^(deg\.?)$/; - $noun = "foot" if $noun =~ /^(feet|ft\.?)$/; - $noun = "square kilometer" if $noun =~ /^sq\.? km/; - $noun =~ s/metre$/meter/; - $noun =~ s/litre$/liter/; - $noun =~ s/gramme$/gram/; - $noun =~ s/tonne$/ton/; - return $noun if $noun =~ /\$$/; - return $noun unless $number =~ /^[0-9.]+$/; - return $noun if $util->member($noun,"percent"); # no change in plural - return $noun if $noun =~ /\b(yuan|renminbi|RMB|rand|won|yen|ringgit|birr)$/; # no change in plural - return $noun if $number <= 1; - - return $noun if $caller->is_abbreviation($noun); - - $noun =~ s/^(hundred|thousand|million|billion|trillion)\s+//; - return $noun if $noun =~ /^(dollar|kilometer|pound|ton|year)s$/i; - - $original_noun = $noun; - #check for irregular plural - $annot = "synt:noun::plural-of:$noun"; - if (defined($annotation_english_ht{$annot})) { - @elist = @{$annotation_english_ht{$annot}}; - return $elist[0] if @elist; - } - - $noun = $noun . "s"; - return $noun if $noun =~ /(a|e|o|u)ys$/; # days, keys, toys, guys - $noun =~ s/ys$/ies/; # babies - $noun =~ s/ss$/ses/; # buses - $noun =~ s/xs$/xes/; # taxes - $noun =~ s/shs$/shes/; # dishes - $noun =~ s/chs$/ches/; # churches - $noun =~ s/mans$/men/; # women - # print STDERR "NNF: $original_noun($number): $noun\n"; - return $noun; -} - -# quick and dirty -sub lex_candidates { - local($caller,$surf) = @_; - - @lex_cands = ($surf); - $lex_cand = $surf; - $lex_cand =~ s/ies$/y/; - push(@lex_cands,$lex_cand) unless $util->member($lex_cand, @lex_cands); - $lex_cand = $surf; - $lex_cand =~ s/s$//; - push(@lex_cands,$lex_cand) unless $util->member($lex_cand, @lex_cands); - $lex_cand = $surf; - $lex_cand =~ s/es$//; - push(@lex_cands,$lex_cand) unless $util->member($lex_cand, @lex_cands); - $lex_cand = $surf; - $lex_cand =~ s/\.$//; - push(@lex_cands,$lex_cand) unless $util->member($lex_cand, @lex_cands); - $lex_cand = $surf; - $lex_cand =~ s/men$/man/; - push(@lex_cands,$lex_cand) unless $util->member($lex_cand, @lex_cands); - - return @lex_cands; -} - -# quick and dirty -sub pos_tag { - local($caller,$surf) = @_; - - return CD if ($surf =~ /^-?[0-9,\.]+$/); - return NN if ($surf =~ /^($currency_symbol_list\d)/); - @lex_candidates = $caller->lex_candidates($surf); -# print " lex_candidates: @lex_candidates\n"; - foreach $lex_cand (@lex_candidates) { - if (defined($annotation_s = $english_annotation_ht{$lex_cand})) { -# print " annotation: $annotation_s\n"; - ($synt) = ($annotation_s =~ /::synt:([^:]+)::/); - if (defined($synt)) { - if ($synt eq "art") { - return "DT"; - } elsif ($synt eq "adj") { - ($grade) = ($annotation_s =~ /::grade:([^:]+)::/); - if (defined($grade) && ($grade eq "superlative")) { - return "JJS"; - } elsif (defined($grade) && ($grade eq "comparative")) { - return "JJR"; - } else { - return "JJ"; - } - } elsif ($synt eq "noun") { - if ($lex_cand eq $surf) { - return "NN"; - } else { - return "NNS"; - } - } elsif ($synt eq "name") { - return "NNP"; - } elsif ($synt eq "cardinal") { - return "CD"; - } elsif ($synt eq "ordinal") { - return "JJ"; - } elsif ($synt eq "prep") { - return "IN"; - } elsif ($synt eq "conj") { - return "CC"; - } elsif ($synt eq "wh_pron") { - return "WP"; - } elsif ($synt eq "adv") { - return "RB"; - } elsif ($synt eq "genetive_particle") { - return "POS"; - } elsif ($synt eq "ordinal_particle") { - return "NN"; - } elsif ($synt eq "suffix_particle") { - return "NN"; - } elsif ($synt =~ /^int(erjection)?$/) { - return "UH"; - } elsif (($synt =~ /^punctuation$/) - && $util->is_rare_punctuation_string_p($surf)) { - return "SYM"; - } elsif ($synt =~ /\bverb$/) { - if ($surf =~ /^(is)$/) { - return "VBZ"; - } else { - return "VB"; - } - } - } - } - } - return ""; -} - -sub indef_art_filter { - local($caller,$surf) = @_; - - # check article in lexical annotation - # e.g. hour::synt:noun::unit:temporal::indef-article:an - # uniform::synt:noun::indef-article:a - ($surf_article,$word) = ($surf =~ /^(an?) (\S+)\s*/); - if (defined($surf_article) - && defined($word) - && defined($annotation = $english_annotation_ht{$word})) { - ($ann_article) = ($annotation =~ /::indef-article:([^:]+)::/); - if (defined($ann_article)) { - return ($surf_article eq $ann_article) ? $surf : ""; - } - } - return "" if $surf =~ /\ban [bcdfghjklmnpqrstvwxyz]/; - return "" if $surf =~ /\ban (US)\b/; - return "" if $surf =~ /\ba [aeio]/; - return "" if $surf =~ /\ba (under)/; - return $surf; -} - -sub wordlist_synt { - local($caller,$word) = @_; - - return "" unless defined($annotation = $english_annotation_ht{$word}); - ($synt) = ($annotation =~ /::synt:([^:]+)::/); - return $synt || ""; -} - -sub qualifier_filter { - local($caller,$surf) = @_; - - return "" if $surf =~ /\b(over|more than|approximately) (million|billion|trillion)/; - return "" if $surf =~ /\b(over) (once|twice)/; - return $surf; -} - -sub quantity_filter { - local($caller,$surf) = @_; - - return "" if $surf =~ /^(a|an)-/; # avoid "the a-week meeting" - return $surf; -} - -sub value_to_english { - local($caller,$number) = @_; - - $result = ""; - - $annot = "value:$number"; - if (defined($annotation_english_ht{$annot})) { - @elist = @{$annotation_english_ht{$annot}}; - $result = $elist[0] if @elist; - } -# print "value_to_english($number)=$result\n"; - return $result; -} - -sub value_to_english_ordinal { - local($caller,$number) = @_; - - $result = ""; - - $annot = "synt:ordinal::value:$number"; - if (defined($annotation_english_ht{$annot})) { - @elist = @{$annotation_english_ht{$annot}}; - $result = $elist[0] if @elist; - } else { - $annot = "value:$number"; - if (defined($annotation_english_ht{$annot})) { - @elist = @{$annotation_english_ht{$annot}}; - $cardinal = $elist[0] if @elist; - $result = $cardinal . "th"; - $result =~ s/yth$/ieth/; - } - } -# print "value_to_english($number)=$result\n"; - return $result; -} - -sub english_with_synt_slot_value { - local($caller, $english, $synt, $slot) = @_; - - return $english_annotation_ht{"_EN_SYNT_"}->{$english}->{$synt}->{$slot}; -} - -sub english_with_synt_slot_value_defined { - local($caller, $synt, $slot) = @_; - - @englishes_with_synt_slot_value_defined = (); - foreach $english (keys %{$english_annotation_ht{"_EN_SYNT_"}}) { - push(@englishes_with_synt_slot_value_defined, $english) - if defined($english_annotation_ht{"_EN_SYNT_"}->{$english}->{$synt}->{$slot}) - && ! $util->member($english, @englishes_with_synt_slot_value_defined) - } - return @englishes_with_synt_slot_value_defined; -} - -sub number_composed_surface_form { - local($caller,$number,$leave_num_section_p) = @_; - - return "" unless $number =~ /^\d+$/; - $leave_num_section_p = 0 unless defined($leave_num_section_p); - $anchor = "1000000000000000000000000"; - while (($number < $anchor) && ($anchor >= 1000000)) { - $anchor =~ s/000//; - } -# print "number_composed_surface_form number: $number anchor:$anchor\n"; - return "" unless $anchor >= 1000000; - return "" unless $english = $caller->value_to_english($anchor); - $ending = $anchor; - $ending =~ s/^1000//; - return "" unless ($number =~ /$ending$/) || (($number * 1000) % $anchor) == 0; - $num_section = $number / $anchor; - if (($num_section =~ /^[1-9]0?$/) && ! $leave_num_section_p) { - $num_section_english = $caller->value_to_english($num_section); - $num_section = $num_section_english if $num_section_english; - } - $num_section = $caller->commify($num_section); # only for extremely large numbers - return "$num_section $english"; -} - -sub de_scientify { - local($caller,$number) = @_; - -# print "de_scientify: $number\n"; - if ($number =~ /[eE][-+]/) { - ($n,$exp) = ($number =~ /^(\d+)[eE]\+(\d+)$/); - if (defined($exp)) { - $result = $n; - foreach $i (0 .. $exp-1) { - $result .= "0" - } - return $result; - } else { - ($n,$f,$exp) = ($number =~ /^(\d+)\.(\d+)[eE]\+(\d+)$/); - if (defined($exp) && ($exp >= length($f))) { - $result = "$n$f"; - foreach $i (0 .. $exp-1-length($f)) { - $result .= "0"; - } - return $result; - } - } - } - return $number; -} - -sub commify { - local($caller,$number) = @_; - - my $text = reverse $number; - $text =~ s/(\d\d\d)(?=\d)(?!\d*\.)/$1,/g; - return scalar reverse $text; -} - -my %plural_rough_number_ht = ( - 10 => "tens", - 12 => "dozens", - 20 => "scores", - 100 => "hundreds", - 1000 => "thousands", - 10000 => "tens of thousands", - 100000 => "hundreds of thousands", - 1000000 => "millions", - 10000000 => "tens of millions", - 100000000 => "hundreds of millions", - 1000000000 => "billions", - 10000000000 => "tens of billions", - 100000000000 => "hundreds of billions", - 1000000000000 => "trillions", - 10000000000000 => "tens of trillions", - 100000000000000 => "hundreds of trillions", -); - -sub plural_rough_plural_number { - local($caller,$number) = @_; - - return $plural_rough_number_ht{$number} || ""; -} - -my %roman_numeral_ht = ( - "I" => 1, - "II" => 2, - "III" => 3, - "IIII" => 4, - "IV" => 4, - "V" => 5, - "VI" => 6, - "VII" => 7, - "VIII" => 8, - "VIIII" => 9, - "IX" => 9, - "X" => 10, - "XX" => 20, - "XXX" => 30, - "XXXX" => 40, - "XL" => 40, - "L" => 50, - "LX" => 60, - "LXX" => 70, - "LXXX" => 80, - "LXXXX" => 90, - "XC" => 90, - "C" => 100, - "CC" => 200, - "CCC" => 300, - "CCCC" => 400, - "CD" => 400, - "D" => 500, - "DC" => 600, - "DCC" => 700, - "DCCC" => 800, - "DCCCC" => 900, - "CM" => 900, - "M" => 1000, - "MM" => 2000, - "MMM" => 3000, - "MMM" => 3000, -); - -sub roman_numeral_value { - local($caller,$s) = @_; - - if (($m, $c, $x, $i) = ((uc $s) =~ /^(M{0,3})(C{1,4}|CD|DC{0,4}|CM|)(X{1,4}|XL|LX{0,4}|XC|)(I{1,4}|IV|VI{0,4}|IX|)$/)) { - $sum = ($roman_numeral_ht{$m} || 0) - + ($roman_numeral_ht{$c} || 0) - + ($roman_numeral_ht{$x} || 0) - + ($roman_numeral_ht{$i} || 0); - return $sum; - } else { - return 0; - } -} - -sub number_surface_forms { - local($caller,$number,$pe) = @_; - - print STDERR "Warning from number_surface_forms: $number not a number\n" - if $logfile && !($number =~ /^(\d+(\.\d+)?|\.\d+)$/); - # $util->log("number_surface_forms number:$number", $logfile); - # $util->log(" surf:$surf", $logfile) if $surf = ($pe && $pe->surf); - - $pe = "" unless defined($pe); - - @num_style_list = @{$english_entity_style_ht{"FollowSourceLanguageNumberStyle"}}; - $follow_num_style = $util->member("yes", @num_style_list) - && (! (($number =~ /^([1-9]|10)$/) && - $util->member("except-small-numbers", @num_style_list))); - $num_style = ($pe) ? $pe->get("num_style") : ""; - if ($follow_num_style) { - if ($num_style =~ /digits_plus_alpha/) { - if ($number =~ /^[1-9]\d?\d?000$/) { - $digital_portion = $number; - $digital_portion =~ s/000$//; - return ("$digital_portion thousand"); - } elsif ($number =~ /^[1-9]\d?\d?000000$/) { - $digital_portion = $number; - $digital_portion =~ s/000000$//; - return ("$digital_portion million"); - } elsif ($number =~ /^[1-9]\d?\d?000000000$/) { - $digital_portion = $number; - $digital_portion =~ s/000000000$//; - return ("$digital_portion billion"); - } - } elsif ($num_style eq "digits") { - if ($number =~ /^\d{1,4}$/) { - return ($number); - } - } - } - - $number = $caller->de_scientify($number); - - $composed_form = $caller->number_composed_surface_form($number); - $composed_form2 = $caller->number_composed_surface_form($number,1); - $lex_form = $caller->value_to_english($number); - $commified_form = $caller->commify($number); - - if ($lex_form) { - if ($number >= 1000000) { - @result = ("one $lex_form", "1 $lex_form", "a $lex_form", $lex_form, $commified_form); - push(@result, $commified_form) if ($number <= $CardinalMaxNonLex); - } elsif ($number >= 100) { - @result = ($commified_form, "one $lex_form", "a $lex_form", $lex_form); - } elsif ($number >= 10) { - @result = ($number, $lex_form); - } elsif ($number == 1) { - @result = ("a", "an", $lex_form); - } elsif ($number == 0) { - @result = ($number, $lex_form); - } else { - @result = ($lex_form); - } - } elsif ($composed_form) { - if ($composed_form eq $composed_form2) { - @result = ($composed_form); - } elsif (($number >= 10000000) && ($composed_form2 =~ /^[1-9]0/)) { - @result = ($composed_form2, $composed_form); - } else { - @result = ($composed_form, $composed_form2); - } - push(@result, $commified_form) if $number <= $CardinalMaxNonLex; - } else { - ($ten,$one) = ($number =~ /^([2-9])([1-9])$/); - ($hundred) = ($number =~ /^([1-9])00$/) unless defined($one); - ($thousand) = ($number =~ /^([1-9]\d?)000$/) unless defined($one) || defined($hundred); - if (defined($one) && defined($ten) - && ($part1 = $caller->value_to_english($ten * 10)) - && ($part2 = $caller->value_to_english($one))) { - $wordy_form = "$part1-$part2"; - @result = ($commified_form, $wordy_form); - } elsif (defined($hundred) - && ($part1 = $caller->value_to_english($hundred))) { - $wordy_form = "$part1 hundred"; - @result = ($commified_form, $wordy_form); - } elsif (defined($thousand) - && ($part1 = $caller->value_to_english($thousand))) { - $wordy_form = "$part1 thousand"; - @result = ($commified_form, $wordy_form); - } elsif ($number =~ /^100000$/) { - @result = ($commified_form, "one hundred thousand", "a hundred thousand", "hundred thousand"); - } elsif ($pe && ($pe->surf eq $number) && ($number =~ /^\d\d\d\d(\.\d+)?$/)) { - @result = ($number); - push(@result, $commified_form) unless $commified_form eq $number; - } elsif ($number =~ /^\d{4,5}$/) { - if ($commified_form eq $number) { - @result = ($number); - } else { - @result = ($commified_form, $number); - } - } else { - @result = ($commified_form); - } - } - push (@result, $number) - unless $util->member($number, @result) || ($number > $CardinalMaxWithoutComma); -# $util->log("number_surface_forms result:@result", $logfile); - - # filter according to num_style - if ($follow_num_style) { - my @filtered_result = (); - foreach $r (@result) { - push(@filtered_result, $r) - if (($num_style eq "digits") && ($r =~ /^\d+$/)) - || (($num_style eq "alpha") && ($r =~ /^[-\@ a-z]*$/i)) - || (($num_style eq "digits_plus_alpha") && ($r =~ /\d.*[a-z]/i)); - } - @result = @filtered_result if @filtered_result; - } - - if ($pe && $pe->childGloss("and")) { - @new_result = (); - foreach $r (@result) { - if ($r =~ /^and /) { - push(@new_result, $r); - } else { - push(@new_result, "and $r"); - } - } - @result = @new_result; - } - return @result; -} - -sub number_range_surface_forms { - local($caller,$pe) = @_; - - $value = $pe->value; - $value_coord = $pe->get("value-coord"); - unless ($value_coord) { - return $caller->number_surface_forms($value); - } - $prefix = ""; - if ($conj = $pe->get("conj")) { - $connector = $conj; - } else { - $connector = ($value_coord == $value + 1) ? "or" : "to"; - } - if ($pe->get("between")) { - $prefix = "between "; - $connector = "and"; - } - - $pe1 = $pe->child("head"); - $pe2 = $pe->child("coord"); - @result1 = $caller->number_surface_forms($value, $pe1); - @result2 = $caller->number_surface_forms($value_coord, $pe2); - @num_style_list = @{$english_entity_style_ht{"FollowSourceLanguageNumberStyle"}}; - $follow_num_style = 1 if $util->member("yes", @num_style_list); - - # between two thousand and three thousand => between two and three thousand - # 3 million to 5 million => 3 to 5 million - if ($follow_num_style && ($#result1 == 0) && ($#result2 == 0)) { - $range = $prefix . $result1[0] . " $connector " . $result2[0]; - $util->log(" range1: $range", $logfile); - $gazillion = "thousand|million|billion|trillion"; - ($a,$gaz1,$b,$gaz2) = ($range =~ /^(.+) ($gazillion) ($connector .+) ($gazillion)$/); - if (defined($a) && defined($gaz1) && defined($b) && defined($gaz2) && ($gaz1 eq $gaz2)) { - $range = "$a $b $gaz1"; - $util->log(" range2: $range", $logfile); - return ($range); - } - } - - @result = (); - foreach $result1 (@result1) { - next if ($value >= 1000) && ($result1 =~ /^\d+$/); - foreach $result2 (@result2) { - next if $result1 =~ /^an?\b/; - push(@result, "$prefix$result1 $connector $result2") - if ($result1 =~ /^[a-z]+$/) && ($result2 =~ /^[a-z]+$/); - next if ($result1 =~ /^[a-z]/) || ($result2 =~ /^[a-z]/); - next if ($value_coord >= 1000) && ($result2 =~ /^\d+$/); - ($digits1,$letters1) = ($result1 =~ /^(\d+(?:.\d+)?) ([a-z].*)$/); - ($digits2,$letters2) = ($result2 =~ /^(\d+(?:.\d+)?) ([a-z].*)$/); - if (defined($digits1) && defined($letters1) - && defined($digits2) && defined($letters2) - && ($letters1 eq $letters2)) { - push(@result, "$prefix$digits1 $connector $digits2 $letters1"); - } elsif (($result1 =~ /^\d{1,3}$/) && ($result2 =~ /^\d{1,3}$/) && !$prefix) { - push(@result, "$result1-$result2"); - if ($connector eq "to") { - my $span = "$result1 to $result2"; - push(@result, $span) unless $util->member($span, @result); - } - } else { - push(@result, "$prefix$result1 $connector $result2"); - } - } - } - unless (@result) { - $result1 = (@result1) ? $result1[0] : $value; - $result2 = (@result2) ? $result2[0] : $value_coord; - @result = "$prefix$result1 $connector $result2"; - } - return @result; -} - -sub q_number_surface_forms { - local($caller,$pe) = @_; - - $surf = $pe->surf; - return ($pe->gloss) unless $value = $pe->value; - if (($value >= 1961) && ($value <= 2030) - && - (($pe->get("struct") eq "sequence of digits") - || - ($surf =~ /^\d+$/))) { - $value = "$prefix $value" if $prefix = $pe->get("prefix"); - @result = ("$value"); - } else { - @result = $caller->number_surface_forms($value,$pe); - @result = $caller->qualify_entities($pe,@result); - } - return @result; -} - -sub ordinal_surface_forms { - local($caller,$number,$exclude_cardinals_p,$exclude_adverbials_p, $pe) = @_; - - if (defined($os = $english_entity_style_ht{"Ordinal"})) { - @ordinal_styles = @{$os}; - } else { - return (); - } - $exclude_cardinals_p = 0 unless defined($exclude_cardinals_p); - @num_style_list = @{$english_entity_style_ht{"FollowSourceLanguageNumberStyle"}}; - $follow_num_style = 1 if $util->member("yes", @num_style_list); - $num_style = ($pe) ? $pe->get("num_style") : ""; - $alpha_ok = ! ($follow_num_style && ($num_style =~ /^digits$/)); - my $c_number = $caller->commify($number); - my $lex_form = ""; - $lex_form = $caller->value_to_english_ordinal($number) if $alpha_ok; - my $adverbial_form - = (($number =~ /^\d+$/) && ($number >= 1) && ($number <= 10) - && $lex_form && $util->member("secondly", @ordinal_styles)) - ? $lex_form . "ly" : ""; - my $num_form = $caller->numeric_ordinal_form($number); - my $c_num_form = $caller->numeric_ordinal_form($c_number); - my @result = (); - -# print "lex_form: $lex_form num_form:$num_form c_num_form:$c_num_form\n"; - if ($lex_form && $util->member("second", @ordinal_styles)) { - if (! $util->member("2nd", @ordinal_styles)) { - @result = ($lex_form); - } elsif ($c_num_form ne $num_form) { - @result = ($c_num_form, $lex_form, $num_form); - } elsif ($number >= 10) { - @result = ($num_form, $lex_form); - } else { - @result = ($lex_form, $num_form); - } - } elsif ($util->member("2nd", @ordinal_styles)) { - if ($c_num_form ne $num_form) { - @result = ($c_num_form, $num_form); - } else { - @result = ($num_form); - } - } - unless ($number =~ /^\d+$/) { - print STDERR "Warning: $number not an integer (for ordinal)\n"; - } - unless ($exclude_cardinals_p) { - $incl_num_card = $util->member("2", @ordinal_styles); - $incl_lex_card = $util->member("two", @ordinal_styles); - foreach $card ($caller->number_surface_forms($number)) { - if ($card =~ /^an?$/) { - # don't include - } elsif ($card =~ /^[0-9,]+$/) { - push(@result, $card) if $incl_num_card; - } else { - push(@result, $card) if $incl_lex_card && $alpha_ok; - } - } - } - push(@result,$adverbial_form) if $adverbial_form && ! $exclude_adverbials_p; - push(@result, $num_form) unless @result; - return @result; -} - -sub ordinal_surface_form { - local($caller,$number,$exclude_cardinals_p,$exclude_adverbials_p, $pe) = @_; - - my @surf_forms = $caller->ordinal_surface_forms($number,$exclude_cardinals_p,$exclude_adverbials_p, $pe); - return (@surf_forms) ? $surf_forms[0] : $caller->numeric_ordinal_form($number); -} - -sub fraction_surface_forms { - local($caller,$pe,$modp) = @_; - - my @result = (); - $numerator = $pe->get("numerator"); - $denominator = $pe->get("denominator"); -# print "numerator: $numerator denominator:$denominator\n"; - @surf_nums = $caller->number_surface_forms($numerator,$pe); - @surf_nums = ("one") if $numerator == 1; - @surf_dens = $caller->ordinal_surface_forms($denominator,1,1); - @surf_dens = ("half") if $denominator == 2; - @surf_dens = ("quarter") if $denominator == 4; - @surf_dens = ("tenth") if $denominator == 10; -# print "surf_nums: @surf_nums surf_dens: @surf_dens\n"; - @fraction_patterns = @{$english_entity_style_ht{"Fraction"}}; - if (@surf_nums && @surf_dens) { - $surf_num = $surf_nums[0]; - $surf_den = $surf_dens[0]; - $surf_num_den = ""; - foreach $sd (@surf_dens) { - $surf_num_den = $sd if $sd =~ /^\d/; - } - $surf_den_w_proper_number = $caller->noun_number_form($surf_den, $numerator); - foreach $fp (@fraction_patterns) { - if ($fp eq "one tenth") { - push(@result, $surf_num . " " . $surf_den_w_proper_number) unless $modp; - } elsif ($fp eq "one-tenth") { - if ($modp) { - push(@result, $surf_num . "-" . $surf_den); - } else { - push(@result, $surf_num . "-" . $surf_den_w_proper_number); - } - } elsif ($fp eq "1/10") { - push(@result, $numerator . "/" . $denominator); - } elsif ($fp eq "1/10th") { - push(@result, $numerator . "/" . $surf_num_den) if $surf_num_den; - } - } - return @result; - } else { - return ($pe->gloss); - } -} - -sub currency_surface_forms { - local($caller,$pe) = @_; - - @currency_surf_forms = (); - return @currency_surf_forms unless $pe->sem =~ /monetary quantity/; - $unit = $pe->get("unit"); - return ($pe->gloss) unless $quant = $pe->get("quant"); - return ($pe->gloss) if $pe->childSem("head") eq "currency symbol"; - $quant_pe = $pe->child("quant"); - if ($unit =~ /^(US|Hongkong) dollar$/) { - @units = $caller->entity_style_listing($unit); - } elsif ($unit eq "yuan") { - @units = $caller->entity_style_listing("Chinese yuan"); - @rmb_pos = @{$english_entity_style_ht{"Chinese RMB position"}}; - @rmb_pos = ("before-number", "after-number") if $util->member("all",@units); - } else { - @units = ($unit); - } - if (($pe->sem =~ /range$/) && $quant_pe) { - @quants = $caller->number_range_surface_forms($quant_pe); - } else { - @quants = $caller->number_surface_forms($quant, $quant_pe); - } - @quants = ($quant) unless @quants; - # print STDERR "units: @units \n"; - foreach $q (@quants) { - foreach $u_sing (@units) { - $u = ($modp) ? $u_sing : $caller->noun_number_form($u_sing, $quant); -# print " q: $q unit: $u value: $quant\n"; - if ($u eq "RMB") { - if ($util->member("before-number", @rmb_pos)) { - if ($q =~ /^\d/) { - push(@currency_surf_forms, "RMB" . $q); - } - } - if ($util->member("after-number", @rmb_pos)) { - push(@currency_surf_forms, $q . " RMB"); - } - } elsif ($u =~ /\$$/) { - if ($q =~ /^\d/) { - $currency_surf_form = $u . $q; - push(@currency_surf_forms, $currency_surf_form); - } - } else { - $new_form = "$q $u"; - push(@currency_surf_forms, $new_form) if $caller->indef_art_filter($new_form); - } - } - } - @currency_surf_forms = $caller->qualify_entities($pe,@currency_surf_forms); - - # print STDERR "currency_surface_forms: @currency_surf_forms \n"; - return @currency_surf_forms; -} - -sub age_surface_forms { - local($caller,$pe, $modp) = @_; - - $gloss = $pe->gloss; - @age_surf_forms = (); - return @age_surf_forms unless $pe->sem =~ /age quantity/; - $unit = $pe->get("unit"); - return ($gloss) unless $quant = $pe->get("quant"); - $temporal_quant_pe = $pe->child("head"); - $synt = $pe->synt; - if ($synt =~ /parenthetical/) { - if ($pe->get("slashed")) { - @age_markers = $caller->entity_style_listing("ParentheticalAgeFormatSlashed"); - @age_markers = $caller->entity_style_listing("ParentheticalAgeFormat") unless @age_markers; - } else { - @age_markers = $caller->entity_style_listing("ParentheticalAgeFormat"); - } - return ($gloss) unless @age_markers; - foreach $a (@age_markers) { - $age_surf_form = $a; - $age_surf_form =~ s/8/$quant/; - push(@age_surf_forms, $age_surf_form); - } - } elsif (($quant =~ /^\d+$/) && ($temporal_quant_pe->sem eq "age unit")) { - @quants = $caller->number_surface_forms($quant); - @quants = ($quant) if $pe->childSurf("quant") =~ /^\d+$/; - foreach $quant2 (@quants) { - if ($modp) { - push(@age_surf_forms, "$quant2-year-old"); - } else { - $plural_marker = ($quant >= 2) ? "s" : ""; - push(@age_surf_forms, "$quant2 year$plural_marker old"); - } - } - } elsif ($temporal_quant_pe && ($temporal_quant_pe->sem eq "temporal quantity")) { - @temporal_quants = $caller->quantity_surface_forms($temporal_quant_pe, $modp); - foreach $temporal_quant (@temporal_quants) { - push(@age_surf_forms, $temporal_quant . (($modp) ? "-" : " ") . "old"); - } - } else { - return ($gloss); - } - - @age_surf_forms = ($gloss) unless @age_surf_forms; - return @age_surf_forms; -} - -sub occurrence_surface_forms { - local($caller,$pe,$modp) = @_; - - @quantity_surf_forms = (); - return ($pe->gloss) unless $quant = $pe->get("quant"); - $quant_coord = $pe->get("quant-coord"); - $quant_pe = $pe->child("quant"); - $unit = "time"; - if (($pe->sem =~ /range$/) && $quant_pe) { - @quants = $caller->number_range_surface_forms($quant_pe); - } else { - @quants = $caller->number_surface_forms($quant, $quant_pe); - } - @quants = ($quant) unless @quants; - if ($modp) { - return () if $pe->get("qualifier") || $quant_coord; - return ("one-time") if $quant eq "1"; - return ("two-time", "two-fold", "2-fold") if $quant eq "2"; - } else { - if ($quant_coord) { - return $caller->qualify_entities($pe, ("once or twice")) - if $quant eq "1" and $quant_coord eq "2"; - } else { - return $caller->qualify_entities($pe, ("once")) if $quant eq "1"; - return $caller->qualify_entities($pe, ("twice", "two times", "2 times", - "2-fold", "two fold")) if $quant eq "2"; - } - } - foreach $q (@quants) { - $u = ($modp) ? $unit : $caller->noun_number_form($unit, $quant); - $new_form = "$q $u"; - if ($modp) { - # for the time being, no "more than/over/..." in modifiers: more than 20-ton - if ($pe->get("qualifier")) { - $new_form = ""; - } else { - $new_form =~ s/-/-to-/; - $new_form =~ s/ /-/g; - } - } - push(@quantity_surf_forms, $new_form) if $new_form; - push(@quantity_surf_forms, "$q-fold") if $q =~ /\d/ || ($quant <= 9); - } - @quantity_surf_forms = $caller->qualify_entities($pe,@quantity_surf_forms); - - return @quantity_surf_forms; -} - -sub quantity_surface_forms { - local($caller,$pe,$modp) = @_; - - if ($pe->get("complex") eq "true") { - return () if $modp; - $quantity_surf_form = $pe->gloss; - return ($quantity_surf_form); - } - - @quantity_surf_forms = (); - $sem = $pe->get("sem"); - $scale = $pe->get("scale"); - $scale_mod = $pe->get("scale_mod"); - $unit = $pe->get("unit") || $scale; - $mod_gloss = $pe->get("mod"); - return ($pe->gloss) unless $quant = $pe->get("quant"); - $quant_coord = $pe->get("quant-coord"); - $quant_comb = $quant_coord || $quant; - $quant_pe = $pe->child("quant"); - if (defined($u_style = $english_entity_style_ht{"\u$unit"})) { - @units = @{$u_style}; - } else { - @units = ($unit); - } - if (($pe->sem =~ /range$/) && $quant_pe) { - @quants = $caller->number_range_surface_forms($quant_pe); - } else { - @quants = $caller->number_surface_forms($quant, $quant_pe); - } - @quants = ($quant) unless @quants; - foreach $q (@quants) { - foreach $u_sing (@units) { - my $u = $u_sing; - if (($sem =~ /seismic quantity/) && $scale) { - $scale =~ s/(\w+)\s*/\u\L$1/g if $scale =~ /^(Richter|Mercalli)/i; - $u = "on the $scale_mod $scale scale"; - $u =~ s/\s+/ /g; - } elsif (($u_sing =~ /\S/) && ! $modp) { - $u = $caller->noun_number_form($u_sing, $quant_comb); - } -# print " q: $q unit: $u value: $quant modp: $modp\n"; - @mods = (""); - @mods = ("consecutive", "in a row") if $mod_gloss eq "continuous"; - foreach $mod (@mods) { - $pre_quant_mod = ""; - $in_quant_mod = ($mod =~ /(consecutive)/) ? "$mod " : ""; - $post_quant_mod = ($mod =~ /(in a row)/) ? " $mod" : ""; - $new_form = "$pre_quant_mod$q $in_quant_mod$u$post_quant_mod"; - if ($caller->is_abbreviation($u)) { - if (($pe->sem =~ /range/) && ($q =~ /^[-0-9,\. to]+$/) - && $modp && !($new_form =~ / (to|or) /)) { - $new_form =~ s/-/-to-/; - $new_form =~ s/ /-/g; - } elsif ($q =~ /^[-0-9,\.]+$/) { -# $new_form =~ s/ //g; - } else { - $new_form = ""; - } - } elsif ($modp) { - # for the time being, no "more than/over/..." in modifiers: more than 20-ton - if (($pe->get("qualifier")) || $mod) { - $new_form = ""; - } elsif ($u =~ /(square|cubic|metric|short)/) { - # no hyphenation for the time being (based on CTE style) - } elsif (($pe->sem =~ /range/) && !($new_form =~ / (to|or) /)) { - $new_form =~ s/-/-to-/; - $new_form =~ s/ /-/g; - } else { - $new_form =~ s/ /-/g; - } - } - push(@quantity_surf_forms, $new_form) - if $new_form && $caller->quantity_filter($new_form) && $caller->indef_art_filter($new_form); - } - } - } - @quantity_surf_forms = $caller->qualify_entities($pe,@quantity_surf_forms); - - # print STDERR "QSF unit:$unit sem:$sem Result(s): " . join("; ", @quantity_surf_forms) . "\n"; - return @quantity_surf_forms; -} - -sub qualify_entities { - local($caller,$pe,@surf_forms) = @_; - - $prefix = $pe->get("prefix"); - $prefix_clause = ($prefix) ? "$prefix " : ""; - if ($qualifier = $pe->get("qualifier")) { - $qualifier =~ s/-/ /g; - $qualifier_key = $qualifier; - $qualifier_key =~ s/(\w+)\s*/\u\L$1/g; - # print "qualifier_key: $qualifier_key\n"; - @new_list = (); - if (defined($value = $english_entity_style_ht{$qualifier_key})) { - @quals = @{$value}; - # print STDERR " qk $qualifier_key in ht: @quals :: @surf_forms\n"; - foreach $q (@quals) { - foreach $surf_form (@surf_forms) { - $new_form = "$prefix_clause$q $surf_form"; - push(@new_list, $new_form) if $caller->qualifier_filter($new_form); - } - } - return @new_list if @new_list; - } else { - @keys = sort keys %english_entity_style_ht; - # print STDERR " did not find qk $qualifier_key in ht: @keys\n"; - foreach $surf_form (@surf_forms) { - if (($qualifier =~ /^(couple|few|lot|many|number|several|some)$/i) - && (($art, $lex) = ($surf_form =~ /^(an?)\s+(\S|\S.*\S)\s*$/i))) { - $plural_form = $caller->noun_number_form($lex,2); - $new_form = "$prefix_clause$qualifier $plural_form"; - } else { - $new_form = "$prefix_clause$qualifier $surf_form"; - } - push(@new_list, $new_form) if $caller->qualifier_filter($new_form); - } - return @new_list if @new_list; - } - } - if ($prefix) { - @prefixed_surf_forms = (); - foreach $surf_form (@surf_forms) { - if ($surf_form =~ /^$prefix /) { # already prefixed - push(@prefixed_surf_forms, $surf_form); - } else { - push(@prefixed_surf_forms, "$prefix $surf_form"); - } - } - return @prefixed_surf_forms; - } else { - return @surf_forms; - } -} - -sub percent_surface_forms { - local($caller,$pe,$modp) = @_; - - @percent_surf_forms = (); - return @percent_surf_forms unless $pe->sem eq "percentage"; - $prefix = ""; - $quant = $pe->gloss; - $quant =~ s/%$//; - $quant =~ s/^and //; - if ($pe->gloss =~ /^and /) { - $prefix = "and"; - } - @percent_markers = $caller->entity_style_listing("Percentage"); - @quants = $caller->number_surface_forms($quant); - @quants = ($quant) unless @quants; - foreach $p (@percent_markers) { - foreach $q (@quants) { - if ($p =~ /%$/) { - if ($q =~ /\d$/) { - $percent_surf_form = $q . "%"; - $percent_surf_form = "$prefix $percent_surf_form" if $prefix; - push(@percent_surf_forms, $percent_surf_form); - push(@percent_surf_forms, "by $percent_surf_form") unless $modp || $percent_surf_form =~ /^and /; - } - } else { - if ((($p =~ /^\d/) && ($q =~ /^\d/)) - || - (($p =~ /^[a-z]/) && ($q =~ /^[a-z]/))) { - if ($p =~ /percentage point/) { - if ($quant == 1) { - $percent_surf_form = $q . " percentage point"; - } else { - $percent_surf_form = $q . " percentage points"; - } - } else { - $percent_surf_form = $q . " percent"; - } - $percent_surf_form = "$prefix $percent_surf_form" if $prefix; - $percent_surf_form =~ s/ /-/g if $modp; - push(@percent_surf_forms, $percent_surf_form); - push(@percent_surf_forms, "by $percent_surf_form") unless $modp || $percent_surf_form =~ /^and /; - } - } - } - } - return @percent_surf_forms; -} - -sub decade_century_surface_forms { - local($caller,$pe) = @_; - - if ($pe->sem =~ /century/) { - $gloss = $pe->gloss; - return ("the $gloss", "in the $gloss", $gloss); - } - @decade_surf_forms = (); - return @decade_surf_forms unless $pe->sem =~ /year range\b.*\bdecade/; - @decade_markers = @{$english_entity_style_ht{"Decade"}}; - @extend_decades = @{$english_entity_style_ht{"ExtendDecades"}}; - @extended_decades = @{$english_entity_style_ht{"ExtendedDecade"}}; - $extended_decade = (@extended_decades) ? $extended_decades[0] : "none"; - - $value = $pe->value; - $extended_value = ""; - foreach $extend_decade (@extend_decades) { - if ($extend_decade =~ /$value$/) { - $extended_value = $extend_decade unless $extended_value eq $extend_decade; - last; - } - } - if ($sub = $pe->get("sub")) { - $sub_clause = "$sub "; - $sub_clause =~ s/(mid) /$1-/; - } else { - $sub_clause = ""; - } - - if (! $extended_value) { - @values = ($value); - } elsif ($extended_decade eq "ignore") { - @values = ($value); - } elsif ($extended_decade eq "only") { - @values = ($extended_value); - } elsif ($extended_decade eq "primary") { - @values = ($extended_value, $value); - } elsif ($extended_decade eq "secondary") { - @values = ($value, $extended_value); - } else { - @values = ($value); - } - foreach $v (@values) { - foreach $dm (@decade_markers) { - $dm_ending = $dm; - $dm_ending =~ s/^\d+//; - push (@decade_surf_forms, "the $sub_clause$v$dm_ending"); - push (@decade_surf_forms, "in the $sub_clause$v$dm_ending"); - push (@decade_surf_forms, "$sub_clause$v$dm_ending"); - } - } - return @decade_surf_forms; -} - -sub day_of_the_month_surface_forms { - local($caller,$pe) = @_; - - @dom_surf_forms = (); - return @dom_surf_forms - unless ($pe->sem eq "day of the month") - && ($day_number = $pe->get("day-number")); - @dom_markers = @{$english_entity_style_ht{"DayOfTheMonth"}}; - foreach $dm (@dom_markers) { - $ord = $caller->numeric_ordinal_form($day_number); - if ($dm eq "on the 5th") { - push (@dom_surf_forms, "on the $ord"); - } elsif ($dm eq "the 5th") { - push (@dom_surf_forms, "the $ord"); - } elsif ($dm eq "5th") { - push (@dom_surf_forms, $ord); - } - } - return @dom_surf_forms; -} - -sub score_surface_forms { - local($caller,$pe) = @_; - - @score_surf_forms = (); - if (($score1 = $pe->get("score1")) - && ($score2 = $pe->get("score2"))) { - @score_markers = @{$english_entity_style_ht{"ScoreMarker"}}; - @score_markers = (":") unless @score_markers; - foreach $sm (@score_markers) { - push (@score_surf_forms, "$score1$sm$score2"); - } - } - push(@score_surf_forms, $pe->gloss) unless @score_surf_forms; - return @score_surf_forms; -} - -sub day_of_the_week_surface_forms { - local($caller,$pe) = @_; - - @dom_surf_forms = (); - @dom_markers = @{$english_entity_style_ht{"DayOfTheWeek"}}; - $gloss = $pe->get("gloss"); - $weekday = $pe->get("weekday"); - $weekday = $gloss if ($weekday eq "") && ($gloss =~ /^\S+$/); - $relday = $pe->get("relday"); - $period = $pe->get("period"); - foreach $dm (@dom_markers) { - if (($dm =~ /NOPERIOD/) && $period) { - $surf = ""; # bad combination - } elsif (($dm eq "Sunday") || ! $relday) { - $surf = $weekday; - $surf .= " $period" if $period; - } elsif ($dm =~ /morning/) { - if ($period) { - $surf = $dm; - $surf =~ s/tomorrow/$relday/; - $surf =~ s/morning/$period/; - $surf =~ s/Sunday/$weekday/; - } else { - $surf = ""; # bad combination - } - } else { - $surf = $dm; - if ($period) { - if ($relday eq "today") { - $core_surf = "this $period"; - } else { - $core_surf = "$relday $period"; - } - } else { - $core_surf = $relday; - } - $surf =~ s/tomorrow/$core_surf/; - $surf =~ s/Sunday/$weekday/; - } - $surf =~ s/yesterday night/last night/; - $surf =~ s/this noon, ($weekday)(,\s*)?/today, $1, at noon/; - $surf =~ s/this noon/today at noon/; - $surf =~ s/this night/tonight/; - $surf =~ s/\s*NOPERIOD\s*$//; - push (@dom_surf_forms, $surf) unless $util->member($surf, @dom_surf_forms) || ! $surf; - $on_weekday = "on $surf"; - push (@dom_surf_forms, $on_weekday) - if ($surf eq $weekday) && ! $util->member($on_weekday, @dom_surf_forms); - } - return @dom_surf_forms; -} - -sub date_surface_forms { - local($caller,$pe,$modp) = @_; - - @date_surf_forms = (); - $sem = $pe->sem; - $synt = $pe->synt; - return @date_surf_forms unless $sem =~ /date(\+year)?/; - $day = $pe->get("day"); - $weekday = $pe->get("weekday"); - $month_name = $pe->get("month-name"); - $month_number = $pe->get("month-number"); - $year = $pe->get("year"); - $era = $pe->get("era"); - $era_clause = ""; - $calendar_type = $pe->get("calendar"); - $calendar_type_clause = ""; - $calendar_type_clause = " AH" if $calendar_type eq "Islamic"; - $ad_year = $year; - if ($era eq "Republic era") { - $ad_year = $year + 1911; - $era_clause = " (year $year of the $era)"; - } - $rel = $pe->get("rel"); - if ($sep = $pe->get("sep")) { - $date_surf_form = "$month_number$sep$day"; - $date_surf_form .= "$sep$year" if $year; - $date_surf_form = "$weekday, $date_surf_form" if $weekday; - $date_surf_form = "on $date_surf_form" if $synt eq "pp"; - return ($date_surf_form); - } - @date_months = @{$english_entity_style_ht{"DateMonth"}}; - @date_days = @{$english_entity_style_ht{"DateDay"}}; - @date_order = @{$english_entity_style_ht{"DateOrder"}}; - foreach $m (@date_months) { - if ($m eq "September") { - $surf_month = $month_name; - } elsif ($m =~ /^Sep(\.)?$/) { - if ($month_name eq "May") { - $surf_month = $month_name; - } else { - $period_clause = ($m =~ /\.$/) ? "." : ""; - $surf_month = substr($month_name, 0, 3) . $period_clause; - } - } elsif ($m =~ /^Sept(\.)?$/) { - if ($util->member($month_name, "February", "September")) { - $period_clause = ($m =~ /\.$/) ? "." : ""; - $surf_month = substr($month_name, 0, 4) . $period_clause; - } else { - $surf_month = ""; - } - } else { - $surf_month = ""; - } - foreach $d (@date_days) { - if ($d =~ /^\d+$/) { - $surf_day = $day; - } elsif ($d =~ /^\d+[sthrd]+$/) { - $surf_day = $caller->numeric_ordinal_form($day); - } else { - $surf_day = ""; - } - if ($surf_month && $surf_day) { - foreach $o (@date_order) { - if ($calendar_type eq "Islamic") { - $date_surf_form = "$surf_day $surf_month"; - } elsif ($o eq "September 6, 1998") { - $date_surf_form = "$surf_month $surf_day"; - } elsif ($o eq "6 September, 1998") { - $date_surf_form = "$surf_day $surf_month"; - } - $date_surf_form = "$weekday, $date_surf_form" if $weekday; - $consider_on_p = 1; - if ($year) { - $date_surf_form .= "," unless $calendar_type eq "Islamic"; - $date_surf_form .= " $ad_year$calendar_type_clause$era_clause"; - } elsif ($rel) { - if ($rel eq "current") { - $date_surf_form = "this $date_surf_form"; - } else { - $date_surf_form = "$rel $date_surf_form"; - } - $consider_on_p = 0; - } - push(@date_surf_forms, $date_surf_form) - unless $util->member($date_surf_form, @date_surf_forms) || ($synt eq "pp"); - if ($consider_on_p) { - $on_date_surf_form = "on $date_surf_form"; - push(@date_surf_forms, $on_date_surf_form) - unless $modp || $util->member($on_date_surf_form, @date_surf_forms); - } - - if (($synt eq "pp") && ($sem eq "date")) { - push(@date_surf_forms, $date_surf_form) - unless $util->member($date_surf_form, @date_surf_forms); - } - } - } - } - } - return @date_surf_forms; - # rel, last, next, this -} - -sub numeric_ordinal_form { - local($caller,$cardinal) = @_; - - return $cardinal . "th" if $cardinal =~ /1\d$/; - return $cardinal . "st" if $cardinal =~ /1$/; - return $cardinal . "nd" if $cardinal =~ /2$/; - return $cardinal . "rd" if $cardinal =~ /3$/; - return $cardinal . "h" if $cardinal =~ /t$/; - $cardinal =~ s/y$/ie/; - return $cardinal . "th"; -} - -sub guard_urls_x045 { - local($caller, $s) = @_; - - # URLs (http/https/ftp/mailto) - my $result = ""; - while (($pre, $url, $post) = ($s =~ /^(.*?)((?:(?:https?|ftp):\/\/|mailto:)[#%-;=?-Z_-z~]*[-a-zA-Z0-9\/#])(.*)$/)) { - $result .= "$pre\x04$url\x05"; - $s = $post; - } - $result .= $s; - - # emails - $s = $result; - $result = ""; - while (($pre, $email, $post) = ($s =~ /^(.*?[ ,;:()\/\[\]{}<>|"'])([a-z][-_.a-z0-9]*[a-z0-9]\@[a-z][-_.a-z0-9]*[a-z0-9]\.(?:[a-z]{2,}))([ .,;:?!()\/\[\]{}<>|"'].*)$/i)) { - $result .= "$pre\x04$email\x05"; - $s = $post; - } - $result .= $s; - - # (Twitter style) #hashtag or @handle - $s = $result; - $result = ""; - while (($pre, $hashtag, $post) = ($s =~ /^(.*?[ .,;()\[\]{}'])([#@](?:[a-z]|\xC3[\x80-\x96\x98-\xB6\xB8-\xBF]|HHERE)(?:[_a-z0-9]|\xC3[\x80-\x96\x98-\xB6\xB8-\xBF]|[\xC4-\xC9\xCE-\xD3][\x80-\xBF]|\xE0[\xA4-\xA5][\x80-\xBF]|\xE0[\xB6-\xB7][\x80-\xBF])*(?:[a-z0-9]|\xC3[\x80-\x96\x98-\xB6\xB8-\xBF]|[\xC4-\xC9\xCE-\xD3][\x80-\xBF]|\xE0[\xA4-\xA5][\x80-\xBF]|\xE0[\xB6-\xB7][\x80-\xBF]))(.*)$/i)) { - $result .= "$pre\x04$hashtag\x05"; - $s = $post; - } - $result .= $s; - - # Keep together number+letter in: Fig. 4g; Chromosome 12p - $result =~ s/((?:\b(?:fig))(?:_DONTBREAK_)?\.?|\b(?:figures?|tables?|chromosomes?)|]*\b(?:fig)\b[^<>]*>)\s*(\d+[a-z])\b/$1 \x04$2\x05/gi; - - # special combinations, e.g. =/= emoticons such as :) - $s = $result; - $result = ""; - while (($pre, $special, $post) = ($s =~ /^(.*?)(:-?\)|:-?\(|=\/=?|\?+\/\?+|=\[)(.*)$/)) { - $result .= "$pre\x04$special\x05"; - $s = $post; - } - $result .= $s; - - return $result; -} - -sub guard_xml_tags_x0123 { - local($caller, $s) = @_; - - my $result = ""; - # xml tag might or might not already have "@" on left and/or right end: @
    @ - while (($pre, $tag, $post) = ($s =~ /^(.*?)(\@?<\/?(?:[a-z][-_:a-z0-9]*)(?:\s+[a-z][-_:a-z0-9]*="[^"]*")*\s*\/?>\@?|&(?:amp|gt|lt|quot);|\[(?:QUOTE|URL)=[^ \t\n\[\]]+\]|\[\/?(?:QUOTE|IMG|INDENT|URL)\]|<\$[-_a-z0-9]+\$>|<\!--.*?-->)(.*)$/si)) { - $result .= $pre; - if (($pre =~ /\S$/) && ($tag =~ /^\S/)) { - $result .= " \x01"; - $result .= "\@" if ($tag =~ /^<[a-z]/i) && (! ($pre =~ /[,;(>]$/)); #) - } else { - $result .= "\x01"; - } - $guarded_tag = $tag; - $guarded_tag =~ s/ /\x02/g; - # print STDERR "tag: $tag\nguarded_tag: $guarded_tag\n" if ($result =~ /Harvey/) || ($s =~ /Harvey/); - $result .= $guarded_tag; - if (($tag =~ /\S$/) && ($post =~ /^\S/)) { # ( - $result .= "\@" if (($tag =~ /^<\//) || ($tag =~ /\/>$/)) && (! ($result =~ /\@$/)) && (! ($post =~ /^[,;)<]/)); - $result .= "\x03 "; - } else { - $result .= "\x03"; - } - $s = $post; - } - $result .= $s; - return $result; -} - -sub restore_urls_x045_guarded_string { - local($caller, $s) = @_; - - my $orig = $s; - while (($pre, $url, $post) = ($s =~ /^(.*?)\x04([^\x04\x05]*?)\x05(.*)$/)) { - $url =~ s/ \@([-:\/])/$1/g; - $url =~ s/([-:\/])\@ /$1/g; - $url =~ s/ //g; - $url =~ s/\x02/ /g; - $s = "$pre$url$post"; - } - if ($s =~ /[\x04\x05]/) { - print STDERR "Removing unexpectedly unremoved x04/x05 marks from $s\n"; - $s =~ s/[\x04\x05]//g; - } - return $s; -} - -sub restore_xml_tags_x0123_guarded_string { - local($caller, $s) = @_; - - my $result = ""; - while (($pre, $tag, $post) = ($s =~ /^(.*?)\x01(.*?)\x03(.*)$/)) { - $result .= $pre; - $tag =~ s/ \@([-:\/])/$1/g; - $tag =~ s/([-:\/])\@ /$1/g; - $tag =~ s/ //g; - $tag =~ s/\x02/ /g; - $result .= $tag; - $s = $post; - } - $result .= $s; - return $result; -} - -sub load_english_abbreviations { - local($caller, $filename, *ht, $verbose) = @_; - # e.g. /nfs/nlg/users/textmap/brahms-ml/arabic/data/EnglishAbbreviations.txt - - $verbose = 1 unless defined($verbose); - my $n = 0; - if (open(IN, $filename)) { - while () { - next if /^\# /; - s/\s*$//; - my @expansions; - if (@expansions = split(/\s*::\s*/, $_)) { - my $abbrev = shift @expansions; - $ht{IS_ABBREVIATION}->{$abbrev} = 1; - $ht{IS_LC_ABBREVIATION}->{(lc $abbrev)} = 1; - foreach $expansion (@expansions) { - $ht{ABBREV_EXPANSION}->{$abbrev}->{$expansion} = 1; - $ht{ABBREV_EXPANSION_OF}->{$expansion}->{$abbrev} = 1; - } - $n++; - } - } - close(IN); - print STDERR "Loaded $n entries from $filename\n" if $verbose; - } else { - print STDERR "Can't open $filename\n"; - } -} - -sub load_split_patterns { - local($caller, $filename, *ht) = @_; - # e.g. /nfs/nlg/users/textmap/brahms-ml/arabic/data/BioSplitPatterns.txt - - my $n = 0; - if (open(IN, $filename)) { - while () { - next if /^\# /; - s/\s*$//; - if (($s) = ($_ =~ /^SPLIT-DASH-X\s+(\S.*\S|\S)\s*$/)) { - $ht{SPLIT_DASH_X}->{$s} = 1; - $ht{LC_SPLIT_DASH_X}->{(lc $s)} = 1; - $n++; - } elsif (($s) = ($_ =~ /^SPLIT-X-DASH\s+(\S.*\S|\S)\s*$/)) { - $ht{SPLIT_X_DASH}->{$s} = 1; - $ht{LC_SPLIT_X_DASH}->{(lc $s)} = 1; - $n++; - } elsif (($s) = ($_ =~ /^DO-NOT-SPLIT-DASH-X\s+(\S.*\S|\S)\s*$/)) { - $ht{DO_NOT_SPLIT_DASH_X}->{$s} = 1; - $ht{LC_DO_NOT_SPLIT_DASH_X}->{(lc $s)} = 1; - $n++; - } elsif (($s) = ($_ =~ /^DO-NOT-SPLIT-X-DASH\s+(\S.*\S|\S)\s*$/)) { - $ht{DO_NOT_SPLIT_X_DASH}->{$s} = 1; - $ht{LC_DO_NOT_SPLIT_X_DASH}->{(lc $s)} = 1; - $n++; - } elsif (($s) = ($_ =~ /^DO-NOT-SPLIT\s+(\S.*\S|\S)\s*$/)) { - $ht{DO_NOT_SPLIT}->{$s} = 1; - $ht{LC_DO_NOT_SPLIT}->{(lc $s)} = 1; - $n++; - } elsif (($s) = ($_ =~ /^SPLIT\s+(\S.*\S|\S)\s*$/)) { - $ht{SPLIT}->{$s} = 1; - $ht{LC_SPLIT}->{(lc $s)} = 1; - $n++; - } - } - close(IN); - print STDERR "Loaded $n entries from $filename\n"; - } else { - print STDERR "Can't open $filename\n"; - } -} - -sub guard_abbreviations_with_dontbreak { - local($caller, $s, *ht) = @_; - - my $orig = $s; - my $result = ""; - while (($pre,$potential_abbrev,$period,$post) = ($s =~ /^(.*?)((?:[a-z]+\.-?)*(?:[a-z]|\xC3[\x80-\x96\x98-\xB6\xB8-\xBF]|[\xC4-\xC9\xCE-\xD3][\x80-\xBF]|\xE0[\xA4-\xA5][\x80-\xBF]|\xE0[\xB6-\xB7][\x80-\xBF])+)(\.)(.*)$/i)) { - if (($pre =~ /([-&\/0-9]|[-\/]\@ )$/) - && (! ($pre =~ /\b[DR](?: \@)?-(?:\@ )?$/))) { # D-Ariz. - $result .= "$pre$potential_abbrev$period"; - } else { - $result .= $pre . $potential_abbrev; - $potential_abbrev_with_period = $potential_abbrev . $period; - if ($ht{IS_ABBREVIATION}->{$potential_abbrev_with_period}) { - $result .= "_DONTBREAK_"; - } elsif ($ht{IS_LC_ABBREVIATION}->{(lc $potential_abbrev_with_period)}) { - $result .= "_DONTBREAK_"; - } - $result .= $period; - } - $s = $post; - } - $result .= $s; - $result =~ s/\b([Nn])o\.(\s*\d)/$1o_DONTBREAK_.$2/g; - return $result; -} - -$alpha = "(?:[a-z]|\xCE[\xB1-\xBF]|\xC3[\x80-\x96\x98-\xB6\xB8-\xBF]|[\xC4-\xC9\xCE-\xD3][\x80-\xBF]|\xE0[\xA4-\xA5][\x80-\xBF]|\xE0[\xB6-\xB7][\x80-\xBF])"; -$alphanum = "(?:[a-z0-9]|\xCE[\xB1-\xBF]|\xC3[\x80-\x96\x98-\xB6\xB8-\xBF]|[\xC4-\xC9\xCE-\xD3][\x80-\xBF]|\xE0[\xA4-\xA5][\x80-\xBF]|\xE0[\xB6-\xB7][\x80-\xBF])(?:[-_a-z0-9]|\xCE[\xB1-\xBF]|\xC3[\x80-\x96\x98-\xB6\xB8-\xBF]|[\xC4-\xC9\xCE-\xD3][\x80-\xBF]|\xE0[\xA4-\xA5][\x80-\xBF]|\xE0[\xB6-\xB7][\x80-\xBF])*(?:[a-z0-9]|\xCE[\xB1-\xBF]|\xC3[\x80-\x96\x98-\xB6\xB8-\xBF]|[\xC4-\xC9\xCE-\xD3][\x80-\xBF]|\xE0[\xA4-\xA5][\x80-\xBF]|\xE0[\xB6-\xB7][\x80-\xBF])|(?:[a-z0-9]|\xCE[\xB1-\xBF]|\xC3[\x80-\x96\x98-\xB6\xB8-\xBF]|[\xC4-\xC9\xCE-\xD3][\x80-\xBF]|\xE0[\xA4-\xA5][\x80-\xBF]|\xE0[\xB6-\xB7][\x80-\xBF])"; - -sub normalize_punctuation { - local($caller, $s) = @_; - - $s =~ s/\xE2\x80[\x93\x94]/-/g; # ndash, mdash to hyphen - $s =~ s/ \@([-\/])/$1/g; - $s =~ s/([-\/])\@ /$1/g; - return $s; -} - -sub update_replace_characters_based_on_context { - local($caller, $s) = @_; - - # This is just a start. Collect stats over text with non-ASCII, e.g. K?ln. - # HHERE - my $rest = $s; - $s = ""; - while (($pre, $left, $repl_char, $right, $post) = ($rest =~ /^(.*?\s+)(\S*)(\xEF\xBF\xBD)(\S*)(\s.*)$/)) { - $s .= "$pre$left"; - if (($left =~ /[a-z]$/i) && ($right =~ /^s(?:[-.,:;?!].*)?$/i)) { # China's etc. - $repl_char = "\xE2\x80\x99"; # right single quotation mark - } elsif (($left =~ /n$/i) && ($right =~ /^t$/i)) { # don't etc. - $repl_char = "\xE2\x80\x99"; # right single quotation mark - } elsif (($left =~ /[a-z]\s*[.]$/i) && ($right eq "")) { # end of sentence - $repl_char = "\xE2\x80\x9D"; # right double quotation mark - } elsif (($left eq "") && ($right =~ /^[A-Z]/i)) { # start of word - $repl_char = "\xE2\x80\x9C"; # left double quotation mark - } - $s .= "$repl_char$right"; - $rest = $post; - } - $s .= $rest; - - return $s; -} - -sub tokenize { - local($caller, $s, *ht, $control) = @_; - - my $local_verbose = 0; - print "Point A: $s\n" if $local_verbose; - $control = "" unless defined($control); - my $bio_p = ($control =~ /\bbio\b/); - - $s = $utf8->repair_misconverted_windows_to_utf8_strings($s); - print "Point A2: $s\n" if $local_verbose; - $s = $utf8->delete_weird_stuff($s); - print "Point B: $s\n" if $local_verbose; - - # reposition xml-tag with odd space - $s =~ s/( +)((?:<\/[a-z][-_a-z0-9]*>)+)(\S)/$2$1$3/ig; - $s =~ s/(\S)((?:<[a-z][^<>]*>)+)( +)/$1$3$2/ig; - print "Point C: $s\n" if $local_verbose; - - $a_value = $ht{IS_ABBREVIATION}->{"Fig."} || "n/a"; - $s = $caller->guard_abbreviations_with_dontbreak($s, *ht); - my $standard_abbrev_s = "Adm|al|Apr|Aug|Calif|Co|Dec|Dr|etc|e.g|Feb|Febr|Gen|Gov|i.e|Jan|Ltd|Lt|Mr|Mrs|Nov|Oct|Pfc|Pres|Prof|Sen|Sept|U.S.A|U.S|vs"; - my $pre; - my $core; - my $post; - $s = " $core " if ($pre,$core,$post) = ($s =~ /^(\s*)(.*?)(\s*)$/i); - $s =~ s/\xE2\x80\x89/ /g; # thin space - $standard_abbrev_s =~ s/\./\\\./g; - $s =~ s/[\x01-\x05]//g; - $s = $caller->guard_urls_x045($s); - $s = $caller->guard_xml_tags_x0123($s); - $s = $caller->update_replace_characters_based_on_context($s); - $s =~ s/((?:[a-zA-Z_]|\xC3[\x80-\x96\x98-\xB6\xB8-\xBF]|[\xC4-\xC9\xCE-\xD3][\x80-\xBF]|\xE0[\xA4-\xA5][\x80-\xBF]|\xE0[\xB6-\xB7][\x80-\xBF])\.)([,;]) /$1 $2 /g; - $s =~ s/((?:[a-zA-Z_]|\xC3[\x80-\x96\x98-\xB6\xB8-\xBF]|[\xC4-\xC9\xCE-\xD3][\x80-\xBF]|\xE0[\xA4-\xA5][\x80-\xBF]|\xE0[\xB6-\xB7][\x80-\xBF])\.)(\x04)/$1 $2/g; - if ($bio_p) { - $s =~ s/(\S)((?:wt\/|onc\/)?(?:[-+]|\?+|\xE2\x80[\x93\x94])\/(?:[-+]|\?+|\xE2\x80[\x93\x94]))/$1 $2/g; - $s =~ s/((?:[-+]|\xE2\x80[\x93\x94])\/(?:[-+]|\xE2\x80[\x93\x94]))(\S)/$1 $2/g; - } - print "Point D: $s\n" if $local_verbose; - $s =~ s/(~+)/ $1 /g; - $s =~ s/((?:\xE2\x80\xB9|\xE2\x80\xBA|\xC2\xAB|\xC2\xBB|\xE2\x80\x9E)+)/ $1 /g; # triangular bracket(s) "<" or ">" etc. - $s =~ s/(``)([A-Za-z])/$1 $2/g; # added Nov. 30, 2017 - $s =~ s/((?:<|<)?=+(?:>|>)?)/ $1 /g; # include arrows - $s =~ s/(\\")/ $1 /g; - $s =~ s/([^\\])("+)/$1 $2 /g; - $s =~ s/([^\\])((?:\xE2\x80\x9C)+)/$1 $2 /g; # open " - $s =~ s/([^\\])((?:\xE2\x80\x9D)+)/$1 $2 /g; # close " - $s =~ s/((?:<|<)?-{2,}(?:>|>)?)/ $1 /g; # include arrows - $s =~ s/((?:\xE2\x80\xA6)+)/ $1 /g; # ellipsis - print "Point E: $s\n" if $local_verbose; - foreach $_ ((1..2)) { - # colon - $s =~ s/([.,;])(:+)/$1 \@$2/g; - $s =~ s/(:+)([.,;])/$1 \@\@ $2/g; - # # question mark/exclamation mark blocks - # $s =~ s/([^!?])([!?]+)([^!?])/$1 $2 $3/g; - } - print "Point F: $s\n" if $local_verbose; - $s =~ s/(\?)/ $1 /g; - $s =~ s/(\!)/ $1 /g; - $s =~ s/ +/ /g; - $s =~ s/(\$+|\xC2\xA3|\xE2\x82[\xA0-\xBE])/ $1 /g; # currency signs (Euro sign; British pound sign; Yen sign etc.) - $s =~ s/(\xC2\xA9|\xE2\x84\xA2)/ $1 /g; # copyright/trademark signs - $s =~ s/(\xC2\xB2)([-.,;:!?()])/$1 $2/g; # superscript 2 - $s =~ s/([^ ])( )/$1 $2/g; - $s =~ s/( )([^ ])/$1 $2/g; - $s =~ s/(&#\d+|&#x[0-9A-F]+);/$1_DONTBREAK_;/gi; - $s =~ s/([\@\.]\S*\d)([a-z][A-z])/$1_DONTBREAK_$2/g; # email address, URL - $s =~ s/ ($standard_abbrev_s)\./ $1_DONTBREAK_\./gi; - $s =~ s/ ($standard_abbrev_s) \. (\S)/ $1_DONTBREAK_\. $2/gi; - $s =~ s/\b((?:[A-Za-z]\.){1,3}[A-Za-z])\.\s+/$1_DONTBREAK_\. /g; # e.g. a.m. O.B.E. - $s =~ s/([ ])([A-Z])\. ([A-Z])/$1$2_DONTBREAK_\. $3/; # e.g. George W. Bush - $s =~ s/(\S\.*?[ ])([A-Z])_DONTBREAK_\. (After|All|And|But|Each|Every|He|How|In|It|My|She|So|That|The|Then|There|These|They|This|Those|We|What|When|Which|Who|Why|You)([', ])/$1$2\. $3$4/; # Exceptions to previous line, e.g. "plan B. This" - $s =~ s/\b(degrees C|[Ff]ig\.? \d+ ?[A-Z]|(?:plan|Scud) [A-Z])_DONTBREAK_\./$1\./g; # Exception, e.g. "plan B"; - $s =~ s/([^-_a-z0-9])(art|fig|no|p)((?:_DONTBREAK_)?\.)(\d)/$1$2$3 $4/gi; # Fig.2 No.14 - $s =~ s/([^-_A-Za-z0-9])(\d+(?:\.\d+)?)(?:_DONTBREAK_)?(thousand|million|billion|trillion|min|mol|sec|kg|km|g|m|p)\b/$1$2 $3/g; # 3.4kg 1.7million 49.9p - $s =~ s/([^-_a-z0-9])((?:[1-9]|1[0-2])(?:[.:][0-5]\d)?)(?:_DONTBREAK_)?([ap]m\b|[ap]\.m(?:_DONTBREAK_)?\.)/$1$2 $3/gi; # 3.15pm 12:00p.m. 8am - print "Point H: $s\n" if $local_verbose; - - $s =~ s/(\d)([a-z][A-z])/$1 $2/g; - $s =~ s/(\w|`|'|%|[a-zA-Z]\.|[a-zA-Z]_DONTBREAK_\.)(-|\xE2\x80\x93)(\w|`|')/$1 \@$2\@ $3/g; - $s =~ s/(\w|`|'|%|[a-zA-Z]\.|[a-zA-Z]_DONTBREAK_\.)(-|\xE2\x80\x93)(\w|`|')/$1 \@$2\@ $3/g; - $s =~ s/(\w)- /$1 \@- /g; - $s =~ s/ -(\w)/ -\@ $1/g; - $s =~ s/(\d):(\d)/$1 \@:\@ $2/g; - $s =~ s/(\d)\/(\d)/$1 \@\/\@ $2/g; - $s =~ s/($alphanum)\/([,;:!?])/$1 \@\/\@ $2/g; - $s =~ s/($alphanum)([-+]+)\/($alphanum)/$1$2 \@\/\@ $3/gi; - print "Point I: $s\n" if $local_verbose; - foreach $_ ((1..5)) { - $s =~ s/([ \/()])($alphanum) ?\/ ?($alphanum)([-+ \/().,;])/$1$2 \@\/\@ $3$4/gi; - } - $s =~ s/([a-zA-Z%\/\[\]]|\xC3[\x80-\x96\x98-\xB6\xB8-\xBF]|[\xC4-\xC9\xCE-\xD3][\x80-\xBF]|\xE0[\xA4-\xA5][\x80-\xBF]|\xE0[\xB6-\xB7][\x80-\xBF]|\x05|[a-zA-Z]_DONTBREAK_\.)([,;:!?])\s*(\S)/$1 $2 $3/g; - # asterisk - $s =~ s/( [(\[]?)(\*)([a-z0-9])/$1$2\@ $3/gi; - $s =~ s/([a-z0-9])(\*)([.,;:)\]]* )/$1 \@$2$3/gi; - print "Point J: $s\n" if $local_verbose; - - # Arabic script - if ($s =~ /[\xD8-\xDB]/) { - for (my $i=0; $i <= 1; $i++) { - $s =~ s/([\xD8-\xDB][\x80-\xBF])([,;:!?.\(\)\[\]\/]|\xD8\x8C|\xD8\x9B|\xD8\x9F|\xD9\xAA|\xC2\xAB|\xC2\xBB|\xE2[\x80-\x9F][\x80-\xBF])/$1 $2/gi; # punctuation includes Arabic ,;?% - $s =~ s/([,;:!?.\(\)\[\]\/]|\xD8\x8C|\xD8\x9B|\xD8\x9F|\xD9\xAA|\xC2\xAB|\xC2\xBB|\xE2[\x80-\x9F][\x80-\xBF])([\xD8-\xDB][\x80-\xBF])/$1 $2/gi; - } - } - $s =~ s/(\d|[a-zA-Z]|[\xD8-\xDB][\x80-\xBF])([-])([\xD8-\xDB][\x80-\xBF])/$1 \@$2\@ $3/g; - $s =~ s/(\d|[a-zA-Z])([\xD8-\xDB][\x80-\xBF])/$1 \@\@ $2/g; - print "Point K: $s\n" if $local_verbose; - - # misc. non-ASCII punctuation - $s =~ s/(\xC2[\xA1\xBF]|\xD5\x9D|\xD6\x89|\xD8[\x8C\x9B]|\xD8\x9F|\xD9[\xAA\xAC]|\xDB\x94|\xDC[\x80\x82])/ $1 /g; - $s =~ s/(\xE0\xA5[\xA4\xA5]|\xE0\xBC[\x84-\x86\x8D-\x8F\x91\xBC\xBD])/ $1 /g; - $s =~ s/(\xE1\x81[\x8A\x8B]|\xE1\x8D[\xA2-\xA6])/ $1 /g; - $s =~ s/(\xE1\x81[\x8A\x8B]|\xE1\x8D[\xA2-\xA6]|\xE1\x9F[\x94\x96])/ $1 /g; - $s =~ s/([^0-9])(5\xE2\x80\xB2)(-)([ACGTU])/$1 $2 \@$3\@ $4/g; # 5-prime-DNA-seq. - $s =~ s/([^0-9])([35]\xE2\x80\xB2)/$1 $2 /g; # prime (keep 3-prime/5-prime together for bio domain) - $s =~ s/([^0-9])(\xE2\x80\xB2)/$1 $2 /g; # prime - $s =~ s/(\xE2\x81\x99)/ $1 /g; # five dot punctuation - $s =~ s/(\xE3\x80[\x81\x82\x8A-\x91]|\xE3\x83\xBB|xEF\xB8\xB0|\xEF\xBC\x8C)/ $1 /g; - $s =~ s/(\xEF\xBC[\x81-\x8F\x9A\x9F])/ $1 /g; # CJK fullwidth punctuation (e.g. fullwidth exclamation mark) - print "Point L: $s\n" if $local_verbose; - # spaces - $s =~ s/((?:\xE3\x80\x80)+)/ $1 /g; # idiographic space - $s =~ s/((?:\xE1\x8D\xA1)+)/ $1 /g; # Ethiopic space - - # isolate \xF0 and up from much more normal characters - $s =~ s/([\xF0-\xFE][\x80-\xBF]*)([\x00-\x7F\xC0-\xDF][\x80-\xBF]*)/$1 $2/g; - $s =~ s/([\x00-\x7F\xC0-\xDF][\x80-\xBF]*)([\xF0-\xFE][\x80-\xBF]*)/$1 $2/g; - print "Point M: $s\n" if $local_verbose; - - $s =~ s/( \d+)([,;:!?] )/$1 $2/g; - $s =~ s/ ([,;()\[\]])([a-zA-Z0-9.,;])/ $1 $2/g; - $s =~ s/(\)+)([-\/])([a-zA-Z0-9])/$1 $2 $3/g; - $s =~ s/([0-9\*\[\]()]|\xE2\x80\xB2)([.,;:] )/$1 $2/g; - $s =~ s/([a-zA-Z%]|\xC3[\x80-\x96\x98-\xB6\xB8-\xBF]|[\xC4-\xC9\xCE-\xD3][\x80-\xBF]|\xE0[\xA4-\xA5][\x80-\xBF]|\xE0[\xB6-\xB7][\x80-\xBF]|\x05)([,;:.!?])([")]|''|\xE2\x80[\x99\x9D]|)(\s)/$1 $2 $3$4/g; - $s =~ s/([a-zA-Z%]|\xC3[\x80-\x96\x98-\xB6\xB8-\xBF]|[\xC4-\xC9\xCE-\xD3][\x80-\xBF]|\xE0[\xA4-\xA5][\x80-\xBF]|\xE0[\xB6-\xB7][\x80-\xBF]|\x05)([,;:.!?])([")]|''|\xE2\x80[\x99\x9D]|)\s*$/$1 $2 $3/g; - $s =~ s/([.,;:]|\xC3[\x80-\x96\x98-\xB6\xB8-\xBF]|[\xC4-\xC9\xCE-\xD3][\x80-\xBF]|\xE0[\xA4-\xA5][\x80-\xBF]|\xE0[\xB6-\xB7][\x80-\xBF]|\x05)('|\xE2\x80[\x99\x9D])/$1 $2/g; - $s =~ s/('|\xE2\x80[\x99\x9D])([.,;:]|\x04)/$1 $2/g; - $s =~ s/([(){}\[\]]|\xC2\xB1)/ $1 /g; - $s =~ s/([a-zA-Z0-9]|\xC3[\x80-\x96\x98-\xB6\xB8-\xBF]|[\xC4-\xC9\xCE-\xD3][\x80-\xBF]|\xE0[\xA4-\xA5][\x80-\xBF]|\xE0[\xB6-\xB7][\x80-\xBF]|\x05)\.\s*$/$1 ./g; - $s =~ s/([a-zA-Z]|\xC3[\x80-\x96\x98-\xB6\xB8-\xBF]|[\xC4-\xC9\xCE-\xD3][\x80-\xBF]|\xE0[\xA4-\xA5][\x80-\xBF]|\xE0[\xB6-\xB7][\x80-\xBF]|\x05)\.\s+/$1 . /g; - $s =~ s/([a-zA-Z]|\xC3[\x80-\x96\x98-\xB6\xB8-\xBF]|[\xC4-\xC9\xCE-\xD3][\x80-\xBF]|\xE0[\xA4-\xA5][\x80-\xBF]|\xE0[\xB6-\xB7][\x80-\xBF]|\x05)\.(\x04)/$1 . $2/g; - $s =~ s/([0-9]),\s+(\S)/$1 , $2/g; - $s =~ s/([a-zA-Z])(\$)/$1 $2/g; - $s =~ s/(\$|[~<=>]|\xC2\xB1|\xE2\x89[\xA4\xA5]|\xE2\xA9[\xBD\xBE])(\d)/$1 $2/g; - $s =~ s/(RMB)(\d)/$1 $2/g; - print "Point N: $s\n" if $local_verbose; - foreach $_ ((1..2)) { - $s =~ s/([ '"]|\xE2\x80\x9C)(are|could|did|do|does|had|has|have|is|should|was|were|would)(n't|n\xE2\x80\x99t)([ '"]|\xE2\x80\x9D)/$1 $2 $3 $4/gi; - $s =~ s/ (can)(not) / $1 $2 /gi; - $s =~ s/ (ca)\s*(n)('t|\xE2\x80\x99t) / $1$2 $2$3 /gi; - $s =~ s/ ([Ww])o\s*n('|\xE2\x80\x99)t / $1ill n$2t /g; - $s =~ s/ WO\s*N('|\xE2\x80\x99)T / WILL N$1T /g; - $s =~ s/ ([Ss])ha\s*n('|\xE2\x80\x99)t / $1hall n$2t /g; - $s =~ s/ SHAN('|\xE2\x80\x99)T / SHALL N$1T /g; - # $s =~ s/ ain('|\xE2\x80\x99)t / is n$1t /g; - # $s =~ s/ Ain('|\xE2\x80\x99)t / Is n$1t /g; - # $s =~ s/ AIN('|\xE2\x80\x99)T / IS N$1T /g; - } - print "Point O: $s\n" if $local_verbose; - $s =~ s/(\d)%/$1 %/g; - $s =~ s/ '(d|ll|m|re|s|ve|em) / '_DONTBREAK_$1 /g; # 'd = would; 'll = will; 'em = them - $s =~ s/ \xE2\x80\x99t(d|ll|m|re|s|ve) / \xE2\x80\x99t_DONTBREAK_$1 /g; - $s =~ s/([^0-9a-z'.])('|\xE2\x80\x98)([0-9a-z])/$1$2 $3/gi; - $s =~ s/([0-9a-z])(\.(?:'|\xE2\x80\x99))([^0-9a-z']|\xE2\x80\x99)/$1 $2$3/gi; - $s =~ s/([0-9a-z]_?\.?)((?:'|\xE2\x80\x99)(?:d|ll|m|re|s|ve|))([^0-9a-z'])/$1 $2$3/gi; - $s =~ s/([("]|\xE2\x80\x9C|'')(\w)/$1 $2/g; - print "Point P: $s\n" if $local_verbose; - $s =~ s/(\w|[.,;:?!])([")]|''|\xE2\x80\x9D)/$1 $2/g; - $s =~ s/ ([,;()\[\]])([a-zA-Z0-9.,;])/ $1 $2/g; - $s =~ s/([a-z0-9]) ?(\()([-+_ a-z0-9\/]+)(\))/$1 $2 $3 $4 /ig; - $s =~ s/([a-z0-9]) ?(\[)([-+_ a-z0-9\/]+)(\])/$1 $2 $3 $4 /ig; - $s =~ s/([a-z0-9]) ?(\{)([-+_ a-z0-9\/]+)(\})/$1 $2 $3 $4 /ig; - $s =~ s/([%])-(\d+(?:\.\d+)? ?%)/$1 \@-\@ $2/g; - $s =~ s/( )(art|No)_DONTBREAK_(\.{2,})/$1 $2$3/gi; - $s =~ s/(_DONTBREAK_\.)(\.{1,})/$1 $2/g; - print "Point Q: $s\n" if $local_verbose; - foreach $_ ((1 .. 2)) { - $s =~ s/(\s(?:[-a-z0-9()']|\xC3[\x80-\x96\x98-\xB6\xB8-\xBF]|[\xC4-\xC9\xCE-\xD3][\x80-\xBF]|\xE0[\xA4-\xA5][\x80-\xBF]|\xE0[\xB6-\xB7][\x80-\xBF])*)(\.{2,})((?:[-a-z0-9()?!:\/']|\xC3[\x80-\x96\x98-\xB6\xB8-\xBF]|[\xC4-\xC9\xCE-\xD3][\x80-\xBF]|\xE0[\xA4-\xA5][\x80-\xBF]|\xE0[\xB6-\xB7][\x80-\xBF])*\s|(?:[-a-z0-9()'\/]|\xC3[\x80-\x96\x98-\xB6\xB8-\xBF]|[\xC4-\xC9\xCE-\xD3][\x80-\xBF]|\xE0[\xA4-\xA5][\x80-\xBF]|\xE0[\xB6-\xB7][\x80-\xBF])+\.\s)/$1 $2 $3/gi; - } - $s =~ s/0s\b/0 s/g; - $s =~ s/([0-9])(\x04)/$1 $2/g; - $s =~ s/ +/ /g; - print "Point R: $s\n" if $local_verbose; - - if ($bio_p) { - foreach $_ ((1 .. 2)) { - $s =~ s/([a-z]) \@(-|\xE2\x80[\x93\x94])\@ (\d+(?:$alpha)?\d*\+?)([- \/])/$1$2$3$4/ig; - $s =~ s/([a-z]) \@(-|\xE2\x80[\x93\x94])\@ ((?:alpha|beta|kappa)\d+)([- \/])/$1$2$3$4/ig; - $s =~ s/([a-z]) \@(-|\xE2\x80[\x93\x94])\@ ((?:a|b|h|k)\d)([- \/])/$1$2$3$4/ig; - $s =~ s/([a-z0-9]) \@(-|\xE2\x80[\x93\x94])\@ ([a-z])([- \/])/$1$2$3$4/ig; - $s =~ s/([- \/])(\d*[a-z]) \@(-|\xE2\x80[\x93\x94])\@ ([a-z0-9])/$1$2$3$4/ig; - } - # mutation indicators such -/- etc. - $s =~ s/(\?\/) +(\?)/$1$2/g; - $s =~ s/([^ ?])((?:wt\/|onc\/)?(?:[-+]|\?+|\xE2\x80[\x93\x94])\/(?:[-+]|\?+|\xE2\x80[\x93\x94]))/$1 $2/g; - $s =~ s/((?:[-+]|\xE2\x80[\x93\x94])\/(?:[-+]|\xE2\x80[\x93\x94]))(\S)/$1 $2/g; - - # Erk1/2 - $rest = $s; - $s = ""; - while (($pre, $stem, $slashed_number_s, $post) = ($rest =~ /^(.*?[^-_a-z0-9])([a-z][-_a-z]*)(\d+(?:(?: \@)?\/(?:\@ )?(?:\d+))+)([^-+a-z0-9].*|)$/i)) { - if ((($pre =~ /\x04[^\x05]*$/) && ($post =~ /^[^\x04]*\x05/)) - || ($stem =~ /^(mid|pre|post|sub|to)$/i)) { - $s .= "$pre$stem$slashed_number_s"; - } else { - $s .= $pre; - my @slashed_numbers = split(/(?: \@)?\/(?:\@ )?/, $slashed_number_s); - foreach $i ((0 .. $#slashed_numbers)) { - my $number = $slashed_numbers[$i]; - $s .= "$stem$number"; - $s .= " @\/@ " unless $i == $#slashed_numbers; - } - } - $rest = $post; - } - $s .= $rest; - - # Erk-1/-2 - while (($pre, $stem, $dash1, $number1, $dash2, $number2, $post) = ($s =~ /^(.*[^-_a-z0-9])([a-z][-_a-z]*)(?: \@)?(-|\xE2\x80[\x93\x94])(?:\@ )?(\d+)(?: \@)?\/(?:\@ )?(?:\@ )?(-|\xE2\x80[\x93\x94])(?:\@ )?(\d+)([^-+a-z0-9].*|)$/i)) { - $s = "$pre$stem$dash1$number1 \@\/\@ $stem$dash2$number2$post"; - } - $rest = $s; - $s = ""; - # IFN-a/b (Slac2-a/b/c) - while (($pre, $stem, $dash, $slashed_letter_s, $post) = ($rest =~ /^(.*[^-_a-z0-9])([a-z][-_a-z0-9]*)(-|\xE2\x80[\x93\x94])([a-z](?:(?: \@)?\/(?:\@ )?(?:[a-z]))+)([^-+a-z0-9].*|)$/i)) { - if (($pre =~ /\x04[^\x05]*$/) && ($post =~ /^[^\x04]*\x05/)) { - $s .= "$pre$stem$dash1$number1$dash2$number2"; - } else { - $s .= $pre; - my @slashed_letters = split(/(?: \@)?\/(?:\@ )?/, $slashed_letter_s); - foreach $i ((0 .. $#slashed_letters)) { - my $letter = $slashed_letters[$i]; - $s .= "$stem$dash$letter"; - $s .= " @\/@ " unless $i == $#slashed_letters; - } - } - $rest = $post; - } - $s .= $rest; - - # SPLIT X-induced - my $rest = $s; - my $new_s = ""; - while (($pre, $dash, $right, $post) = ($rest =~ /^(.*?)(-|\xE2\x80[\x93\x94])([a-z]+)( .*|)$/i)) { - $new_s .= $pre; - if (($right eq "I") && ($pre =~ / [a-zA-Z][a-z]*$/)) { - # compatriots-I have a dream - $new_s .= " \@" . $dash . "\@ "; - } elsif ($ht{LC_SPLIT_DASH_X}->{($caller->normalize_punctuation(lc $right))}) { - $new_s .= " \@" . $dash . "\@ "; - } else { - $new_s .= $dash; - } - $new_s .= $right; - $rest = $post; - } - $new_s .= $rest; - $s = $new_s; - - # SPLIT ubiquinated-X - $rest = $s; - $new_s = ""; - while (($pre, $left, $dash, $post) = ($rest =~ /^(.*? |)([a-z0-9]+|'s)(-|\xE2\x80[\x93\x94])([a-z0-9].*)$/i)) { - $new_s .= "$pre$left"; - if ($ht{LC_SPLIT_X_DASH}->{($caller->normalize_punctuation(lc $left))}) { - $new_s .= " \@" . $dash . "\@ "; - } else { - $new_s .= $dash; - } - $rest = $post; - } - $new_s .= $rest; - $s = $new_s; - - # SPLIT low-frequency - $rest = $s; - $new_s = ""; - if (($pre, $left, $dash, $right, $post) = ($rest =~ /^(.*?[- ]|)([a-z]+)([-\/]|\xE2\x80[\x93\x94])([a-z]+)([- ].*|)$/i)) { - } - while (($pre, $left, $dash, $right, $post) = ($rest =~ /^(.*?[-\/ ]|)([a-z]+)((?: \@)?(?:[-\/]|\xE2\x80[\x93\x94])(?:\@ )?)([a-z]+)([-\/ ].*|)$/i)) { - $x = $caller->normalize_punctuation(lc ($left . $dash . $right)); - if ($ht{LC_SPLIT}->{($caller->normalize_punctuation(lc ($left . $dash . $right)))}) { - $pre =~ s/([-\/])$/ \@$1\@ /; - $post =~ s/^([-\/])/ \@$1\@ /; - $dash = $caller->normalize_punctuation($dash); - $new_s .= "$pre$left"; - $new_s .= " \@" . $dash . "\@ "; - $new_s .= $right; - $rest = $post; - } elsif ($pre =~ /[-\/]$/) { - $new_s .= $pre; - $rest = "$left$dash$right$post"; - } else { - $new_s .= "$pre$left"; - $rest = "$dash$right$post"; - } - } - $new_s .= $rest; - $s = $new_s; - - # DO-NOT-SPLIT X-ras - $rest = $s; - $new_s = ""; - while (($pre, $dash, $right, $post) = ($rest =~ /^(.*?) \@(-|\xE2\x80[\x93\x94])\@ ([a-z0-9]+)( .*|)$/i)) { - $new_s .= $pre; - if ($ht{LC_DO_NOT_SPLIT_DASH_X}->{($caller->normalize_punctuation(lc $right))}) { - $new_s .= $dash; - } else { - $new_s .= " \@" . $dash . "\@ "; - } - $new_s .= $right; - $rest = $post; - } - $new_s .= $rest; - $s = $new_s; - - # DO-NOT-SPLIT Caco-X - $rest = $s; - $new_s = ""; - while (($pre, $left, $dash, $post) = ($rest =~ /^(.*? |)([a-z0-9]+) \@([-\/]|\xE2\x80[\x93\x94]])\@ ([a-z0-9].*)$/i)) { - $new_s .= "$pre$left"; - if ($ht{LC_DO_NOT_SPLIT_X_DASH}->{($caller->normalize_punctuation(lc $left))}) { - $new_s .= $dash; - } else { - $new_s .= " \@" . $dash . "\@ "; - } - $rest = $post; - } - $new_s .= $rest; - $s = $new_s; - - # DO-NOT-SPLIT down-modulate (2 elements) - $rest = $s; - $new_s = ""; - while (($pre, $left, $dash, $right, $post) = ($rest =~ /^(.*? |)([a-z0-9]+) \@([-\/]|\xE2\x80[\x93\x94]])\@ ([a-z0-9]+)( .*|)$/i)) { - $new_s .= "$pre$left"; - if ($ht{LC_DO_NOT_SPLIT}->{($caller->normalize_punctuation(lc ($left . $dash . $right)))}) { - $new_s .= $dash; - } else { - $new_s .= " \@" . $dash . "\@ "; - } - $new_s .= $right; - $rest = $post; - } - $new_s .= $rest; - $s = $new_s; - - # DO-NOT-SPLIT 14-3-3 (3 elements) - $rest = $s; - $new_s = ""; - while (($pre, $left, $dash_group1, $dash1, $middle, $dash_group2, $dash2, $right, $post) = ($rest =~ /^(.*? |)([a-z0-9]+)((?: \@)?([-\/]|\xE2\x80[\x93\x94]])(?:\@ )?)([a-z0-9]+)((?: \@)?([-\/]|\xE2\x80[\x93\x94]])(?:\@ )?)([a-z0-9]+)( .*|)$/i)) { - $new_s .= "$pre$left"; - if ($ht{LC_DO_NOT_SPLIT}->{($caller->normalize_punctuation(lc ($left . $dash1 . $middle . $dash2 . $right)))}) { - $new_s .= $dash1; - } else { - $new_s .= $dash_group1; - } - $new_s .= $middle; - if ($ht{LC_DO_NOT_SPLIT}->{($caller->normalize_punctuation(lc ($left . $dash1 . $middle . $dash2 . $right)))}) { - $new_s .= $dash2; - } else { - $new_s .= $dash_group2; - } - $new_s .= $right; - $rest = $post; - } - $new_s .= $rest; - $s = $new_s; - - $s =~ s/ +/ /g; - } - print "Point S: $s\n" if $local_verbose; - - $s =~ s/_DONTBREAK_//g; - $s =~ s/( )(ark|ill|mass|miss|wash|GA|LA|MO|OP|PA|VA|VT)(\.)( )/$1$2 $3$4/g; - print "Point T: $s\n" if $local_verbose; - $s = $caller->restore_urls_x045_guarded_string($s); - $s = $caller->restore_xml_tags_x0123_guarded_string($s); - print "Point U: $s\n" if $local_verbose; - $s =~ s/(https?|ftp)\s*(:)\s*(\/\/)/$1$2$3/gi; - $s =~ s/\b(mailto)\s*(:)\s*([a-z])/$1$2$3/gi; - $s =~ s/(\d)\s*(:)\s*([0-5]\d[^0-9])/$1$2$3/gi; - print "Point V: $s\n" if $local_verbose; - $s =~ s/(5\xE2\x80\xB2-[ACGT]+)\s*(-|\xE2\x80[\x93\x94])\s*(3\xE2\x80\xB2)/$1$2$3/g; # repair broken DNA sequence - $s =~ s/ (etc) \. / $1. /g; # repair most egrareous separations - print "Point W: $s\n" if $local_verbose; - $s = $caller->repair_separated_periods($s); - print "Point X: $s\n" if $local_verbose; - $s =~ s/^\s+//; - $s =~ s/\s+$//; - $s = "$pre$s$post" if defined($pre) && defined($post); - $s =~ s/ +/ /g; - print "Point Y: $s\n" if $local_verbose; - - return $s; -} - -sub tokenize_plus_for_noisy_text { - local($caller, $s, *ht, $control) = @_; - - $control = "" unless defined($control); - my $pre; - my $code; - my $post; - $s = " $core " if ($pre,$core,$post) = ($s =~ /^(\s*)(.*?)(\s*)$/i); - foreach $i ((1 .. 2)) { - $s =~ s/ ([A-Z][a-z]+'?[a-z]+)(-) / $1 $2 /gi; # Example: Beijing- - $s =~ s/ (\d+(?:\.\d+)?)(-|:-|:|_|\.|'|;)([A-Z][a-z]+'?[a-z]+|[A-Z]{3,}) / $1 $2 $3 /gi; # Example: 3:-Maxkamado - $s =~ s/ (\d+(?:\.\d+)?)(')([A-Za-z]{3,}) / $1 $2 $3 /gi; # Example: 42'daqiiqo - $s =~ s/ (-|:-|:|_|\.)([A-Z][a-z]+'?[a-z]+|[A-Z]{3,}) / $1 $2 /gi; # Example: -Xassan - $s =~ s/ ((?:[A-Z]\.[A-Z]|[A-Z]|Amb|Col|Dr|Eng|Gen|Inj|Lt|Maj|Md|Miss|Mr|Mrs|Ms|Pres|Prof|Sen)\.)([A-Z][a-z]+|[A-Z]{2,}) / $1 $2 /gi; # Example: Dr.Smith - $s =~ s/ (\d+)(,)([a-z]{3,}) / $1 $2 $3 /gi; # Example: 24,October - $s =~ s/ (%)(\d+(?:\.\d+)?) / $1 $2 /gi; # Example: %0.6 - $s =~ s/ ([A-Za-z][a-z]{3,}\d*)([.,\/]|:\()([A-Za-z][a-z]{3,}|[A-Z]{3,}) / $1 $2 $3 /gi; # Example: Windows8,falanqeeyaal - $s =~ s/ ([A-Za-z]{3,}\d*?|[A-Za-z]+'[A-Za-z]+)([,\/]|:\()([A-Za-z]{3,}|[A-Za-z]+'[A-Za-z]+) / $1 $2 $3 /gi; # Example: GAROOWE:(SHL - $s =~ s/ (\d[0-9.,]*\d)(;)([a-z]+) / $1 $2 $3 /gi; # Example: 2.1.2014;Waraka - } - $s =~ s/^\s+//; - $s =~ s/\s+$//; - $s = "$pre$s$post" if defined($pre) && defined($post); - return $s; -} - -# preparation for sub repair_separated_periods: - -my $abbrev_s = "etc.|e.g.|i.e.|U.K.|S.p.A.|A.F.P."; -my @abbrevs = split(/\|/, $abbrev_s); -my @exp_abbrevs = (); -foreach $abbrev (@abbrevs) { - if (($core,$period) = ($abbrev =~ /^(.*?)(\.|)$/)) { - $core =~ s/\./\\s*\\.\\s*/g; - $abbrev = $core; - $abbrev .= "\\b" if $abbrev =~ /[a-z]$/i; # don't split etcetera -> etc. etera - $abbrev .= "(?:\\s*\\.|)" if $period; - push(@exp_abbrevs, $abbrev); - } -} -my $exp_abbrev_s = join("|", @exp_abbrevs); - -sub repair_separated_periods { - local($caller,$s) = @_; - - # separated or missing period - my $result = ""; - while (($pre, $abbrev, $post) = ($s =~ /^(.*? |)($exp_abbrev_s)(.*)$/)) { - $abbrev =~ s/ //g; - $abbrev .= "." unless $abbrev =~ /\.$/; - $result .= "$pre$abbrev "; - $s = $post; - } - $result .= $s; - $result =~ s/ +/ /g; - return $result; -} - -# provided by Alex Fraser -sub fix_tokenize { - local($caller,$s) = @_; - - ## change "2:15" to "2 @:@ 15" - $s =~ s/(\d)\:(\d)/$1 \@:\@ $2/g; - - ## strip leading zeros from numbers - $s =~ s/(^|\s)0+(\d)/$1$2/g; - - ## fix rule typo - $s =~ s/associatedpress/associated press/g; - - ## fix _ entities - $s =~ s/hong_kong/hong kong/g; - $s =~ s/united_states/united states/g; - - return $s; -} - -sub de_mt_tokenize { - local($caller,$s) = @_; - - $s =~ s/\s+\@([-:\/])/$1/g; - $s =~ s/([-:\/])\@\s+/$1/g; - $s =~ s/\s+\/\s+/\//g; - return $s; -} - -sub surface_forms { - local($caller,$pe,$modp) = @_; - - $sem = $pe->sem; - $surf = $pe->surf; - $synt = $pe->synt; - $value = $pe->value; - $gloss = $pe->gloss; -# $util->log("surface_forms surf:$surf sem:$sem gloss:$gloss value:$value", $logfile); - if ($sem eq "integer") { - return ($gloss) if ($gloss =~ /several/) && !($value =~ /\S/); - print STDERR "Warning: $value not an integer\n" unless $value =~ /^\d+(e\+\d+)?$/; - if ($pe->get("reliable") =~ /sequence of digits/) { - $english = $value; - $english = "$prefix $english" if $prefix = $pe->get("prefix"); - @result = ($english); - } else { - @result = $caller->q_number_surface_forms($pe); - } - } elsif ($sem eq "decimal number") { - @result = $caller->q_number_surface_forms($pe); - } elsif ($sem =~ /(integer|decimal number) range/) { - @result = $caller->number_range_surface_forms($pe); - } elsif ($sem eq "ordinal") { - if ($pe->get("definite")) { - $exclude_adverbials_p = 1; - } elsif (defined($chinesePM) && ($hao = $chinesePM->e2c("hao-day")) - && ($gc = $chinesePM->e2c("generic counter"))) { - $exclude_adverbials_p = ($surf =~ /($hao|$gc)$/); - } else { - $exclude_adverbials_p = 1; - } - @result = $caller->ordinal_surface_forms($pe->get("ordvalue") || $pe->value,0,$exclude_adverbials_p, $pe); - } elsif ($sem eq "fraction") { - @result = $caller->fraction_surface_forms($pe,$modp); - } elsif ($sem =~ /monetary quantity/) { - @result = $caller->currency_surface_forms($pe); - } elsif ($sem =~ /occurrence quantity/) { - @result = $caller->occurrence_surface_forms($pe,$modp); - } elsif ($sem =~ /score quantity/) { - @result = $caller->score_surface_forms($pe); - } elsif ($sem =~ /age quantity/) { - @result = $caller->age_surface_forms($pe, $modp); - } elsif ($sem =~ /quantity/) { - @result = $caller->quantity_surface_forms($pe,$modp); - } elsif ($sem eq "percentage") { - @result = $caller->percent_surface_forms($pe,$modp); - } elsif ($sem eq "percentage range") { - if ($gloss =~ /^and /) { - @result = ($gloss); - } else { - @result = ($gloss, "by $gloss", "of $gloss"); - } - } elsif ($sem =~ /^(month of the year|month\+year|year)$/) { - if ($synt eq "pp") { - @result = ($gloss); - } elsif ($gloss =~ /^the (beginning|end) of/) { - @result = ($gloss, "at $gloss"); - } elsif ($gloss =~ /^(last|this|current|next)/) { - @result = ($gloss); - } else { - # in November; in mid-November - @result = ($gloss, "in $gloss"); - } - } elsif ($sem =~ /date(\+year)?$/) { - @result = $caller->date_surface_forms($pe,$modp); - } elsif ($sem =~ /year range\b.*\b(decade|century)$/) { - @result = $caller->decade_century_surface_forms($pe); - } elsif ($sem eq "day of the month") { - @result = $caller->day_of_the_month_surface_forms($pe); - } elsif ($sem =~ /period of the day\+day of the week/) { - @result = ($gloss); - push(@result, "on $gloss") if $gloss =~ /^the night/; - } elsif ($sem =~ /day of the week/) { - @result = $caller->day_of_the_week_surface_forms($pe); - } elsif ($sem =~ /^(time)$/) { - if ($gloss =~ /^at /) { - @result = ($gloss); - } else { - @result = ($gloss, "at $gloss"); - } - } elsif ($sem =~ /^date range$/) { - if ($synt eq "pp") { - @result = ($gloss); - } elsif ($pe->get("between")) { - $b_gloss = "between $gloss"; - $b_gloss =~ s/-/ and /; - @result = ($b_gloss, $gloss, "from $gloss"); - } else { - @result = ($gloss, "from $gloss"); - } - } elsif ($sem =~ /^date enumeration$/) { - if ($synt eq "pp") { - @result = ($gloss); - } else { - @result = ($gloss, "on $gloss"); - } - } elsif ($pe->get("unknown-in-pc")) { - @result = (); - foreach $unknown_pos_en (split(/;;/, $pe->get("unknown-pos-en-list"))) { - ($engl) = ($unknown_pos_en =~ /^[^:]+:[^:]+:(.*)$/); - push(@result, $engl) if defined($engl) && ! $util->member($engl, @result); - } - @result = ($gloss) unless @result; - } elsif (($sem =~ /\b(name|unknown)\b/) && (($en_s = $pe->get("english")) =~ /[a-z]/i)) { - @result = split(/\s*\|\s*/, $en_s); - } elsif (($sem =~ /^proper\b/) && (($en_s = $pe->get("english")) =~ /[a-z]/i)) { - @result = split(/\s*\|\s*/, $en_s); - } else { - @result = ($gloss); - } - - if (($sem =~ /^(date\+year|month\+year|year)$/) - && ($year = $pe->get("year")) - && ($year =~ /^\d\d$/) - && (@extend_years = @{$english_entity_style_ht{"ExtendYears"}}) - && ($#extend_years == 1) - && ($extended_year_start = $extend_years[0]) - && ($extended_year_end = $extend_years[1]) - && ($extended_year_start <= $extended_year_end) - && ($extended_year_start + 99 >= $extended_year_end) - && ($extended_year_start =~ /^\d\d\d\d$/) - && ($extended_year_end =~ /^\d\d\d\d$/)) { - $century1 = substr($extended_year_start, 0, 2); - $century2 = substr($extended_year_end, 0, 2); - $exp_year1 = "$century1$year"; - $exp_year2 = "$century2$year"; - if (($extended_year_start <= $exp_year1) && ($exp_year1 <= $extended_year_end)) { - $exp_year = $exp_year1; - } elsif (($extended_year_start <= $exp_year2) && ($exp_year2 <= $extended_year_end)) { - $exp_year = $exp_year2; - } else { - $exp_year = ""; - } - if ($exp_year) { - @new_glosses = (); - foreach $old_gloss (@result) { - $new_gloss = $old_gloss; - $new_gloss =~ s/\b$year$/$exp_year/; - push (@new_glosses, $new_gloss) unless $new_gloss eq $old_gloss; - } - push (@result, @new_glosses); - } - } - - # tokenize as requested - @tokenize_list = @{$english_entity_style_ht{"Tokenize"}}; - $tokenize_p = 1 if $util->member("yes", @tokenize_list) - || $util->member("all", @tokenize_list); - $dont_tokenize_p = 1 if $util->member("no", @tokenize_list) - || $util->member("all", @tokenize_list); - if ($tokenize_p) { - @new_result = (); - foreach $item (@result) { - $t_item = $caller->tokenize($item, *dummy_ht); - push(@new_result, $item) if $dont_tokenize_p && ($item ne $t_item); - push(@new_result, $t_item); - } - @result = @new_result; - } - - # case as requested - @case_list = @{$english_entity_style_ht{"Case"}}; - $lower_case_p = $util->member("lower", @case_list) - || $util->member("all", @case_list); - $reg_case_p = $util->member("regular", @case_list) - || $util->member("all", @case_list); - if ($lower_case_p) { - @new_result = (); - foreach $item (@result) { - $l_item = "\L$item"; - push(@new_result, $item) if $reg_case_p && ($item ne $l_item); - push(@new_result, $l_item) unless $util->member($l_item, @new_result); - } - @result = @new_result; - } - # $value = "n/a" unless $value; - # print STDERR "SF surf:$surf sem:$sem gloss:$gloss value:$value Result(s): " . join("; ", @result) . "\n"; - return @result; -} - -sub case_list { - return @{$english_entity_style_ht{"Case"}}; -} - -sub right_cased_list { - local($caller, $word) = @_; - - @case_list = @{$english_entity_style_ht{"Case"}}; - - @right_cased_core_list = (); - push(@right_cased_core_list, $word) - if ($util->member("regular", @case_list) || $util->member("all", @case_list)) - && ! $util->member($word, @right_cased_core_list); - push(@right_cased_core_list, lc $word) - if ($util->member("lower", @case_list) || $util->member("all", @case_list)) - && ! $util->member(lc $word, @right_cased_core_list); - - return @right_cased_core_list; -} - -sub string2surf_forms { - local($caller, $text, $lang, $alt_sep) = @_; - - $alt_sep = " | " unless defined($alt_sep); - $lang = "zh" unless defined($lang); - - if ($lang eq "zh") { - @pes = $chinesePM->parse_entities_in_string($text); - $n = $#pes + 1; -# print " $n pes\n"; - @pes = $chinesePM->select_reliable_entities(@pes); - my @res_surf_forms_copy = $caller->reliable_pes2surf_forms($alt_sep, @pes); - return @res_surf_forms_copy; - } else { - return (); - } -} - -sub reliable_pe2surf_forms { - local($caller, $pe, $parent_reliant_suffices_p) = @_; - - $parent_reliant_suffices_p = 0 unless defined($parent_reliant_suffices_p); - if ((defined($r = $pe->get("reliable")) && $r) - || ($parent_reliant_suffices_p && ($parent_pe = $pe->get("parent")) && - $parent_pe->get("reliable"))) { - @surf_forms = $caller->surface_forms($pe); - if ((($pe->sem =~ /quantity( range)?$/) && !($pe->sem =~ /monetary quantity/)) - || ($util->member($pe->sem, "percentage","fraction"))) { - foreach $mod_form ($caller->surface_forms($pe, 1)) { - push(@surf_forms, $mod_form) unless $util->member($mod_form, @surf_forms); - } - } - return @surf_forms; - } - return (); -} - -sub reliable_pe2surf_form { - local($caller, $alt_sep, $pe) = @_; - - if (@surf_forms = $caller->reliable_pe2surf_forms($pe)) { - return $pe->surf . " == " . join($alt_sep, @surf_forms); - } else { - return ""; - } -} - -sub reliable_pes2surf_forms { - local($caller, $alt_sep, @pes) = @_; - - my @res_surf_forms = (); - foreach $pe (@pes) { - if ($new_surf_form = $caller->reliable_pe2surf_form($alt_sep, $pe)) { - push(@res_surf_forms, $new_surf_form); - } - } - return @res_surf_forms; -} - -sub string_contains_ascii_letter { - local($caller,$string) = @_; - return $string =~ /[a-zA-Z]/; -} - -sub string_starts_w_ascii_letter { - local($caller,$string) = @_; - return $string =~ /^[a-zA-Z]/; -} - -sub en_lex_bin { - local($caller, $word) = @_; - - $word =~ s/\s+//g; - $word =~ s/[-_'\/]//g; - $word =~ tr/A-Z/a-z/; - return "digit" if $word =~ /^\d/; - return "special" unless $word =~ /^[a-z]/; - return substr($word, 0, 1); -} - -sub skeleton_bin { - local($caller, $sk_bin_control, $word) = @_; - - $word =~ s/\s+//g; - $word =~ s/[-_'\/]//g; - $word =~ tr/A-Z/a-z/; - return "E" unless $word; - if ($sk_bin_control =~ /^v1/i) { - return $word if length($word) <= 2; - return substr($word, 0, 3) if $word =~ /^(b|f[lnrt]|gr|j[nr]|k|l[nt]|m|n[kmst]|r[knst]|s|t)/; - return substr($word, 0, 2); - } elsif ($sk_bin_control =~ /d6f$/) { - return $word if length($word) <= 6; - return substr($word, 0, 6); - } elsif ($sk_bin_control =~ /d5f$/) { - return $word if length($word) <= 5; - return substr($word, 0, 5); - } elsif ($sk_bin_control =~ /d4f$/) { - return $word if length($word) <= 4; - return substr($word, 0, 4); - } else { - return $word if length($word) <= 4; - return substr($word, 0, 5) if $word =~ /^(bnts|brnt|brst|brtk|brtn|brts|frst|frts|klts|kntr|knts|krst|krtn|krts|ksks|kstr|lktr|ntrs|sbrt|skrt|sntr|strn|strt|trns|trts|ts)/; - return substr($word, 0, 4); - } -} - -sub skeleton_bin_sub_dir { - local($caller, $sk_bin_control, $skeleton_bin) = @_; - - $sk_bin_control = "v1" unless defined($sk_bin_control); - return "" if $sk_bin_control =~ /^v1/i; - if ($sk_bin_control =~ /^2d4d\df$/) { - return "SH/SHOR" if (length($skeleton_bin) < 2); - return substr($skeleton_bin, 0, 2) . "/" . substr($skeleton_bin, 0, 2) . "SH" if (length($skeleton_bin) < 4); - return substr($skeleton_bin, 0, 2) . "/" . substr($skeleton_bin, 0, 4); - } elsif ($sk_bin_control =~ /^2d3d\df$/) { - return "SH/SHO" if (length($skeleton_bin) < 2); - return substr($skeleton_bin, 0, 2) . "/" . substr($skeleton_bin, 0, 2) . "S" if (length($skeleton_bin) < 3); - return substr($skeleton_bin, 0, 2) . "/" . substr($skeleton_bin, 0, 3); - } - $bin3 = "ts"; - return "SH" if (length($skeleton_bin) < 2) || ($skeleton_bin =~ /^($bin3)$/); - return substr($skeleton_bin, 0, 3) if $skeleton_bin =~ /^($bin3)/; - return substr($skeleton_bin, 0, 2); -} - -sub en_words_and_counts_matching_skeletons { - local($caller, $sk_bin_version, @skeletons) = @_; - - return () unless @skeletons; - - @rem_skeletons = sort @skeletons; - $previous_skeleton = ""; - $current_skeleton = shift @rem_skeletons; - @list = ($current_skeleton); - @lists = (); - - $current_bin = ""; - while ($current_skeleton) { - unless ($current_skeleton eq $previous_skeleton) { - $current_skeleton_bin = $caller->skeleton_bin($sk_bin_version, $current_skeleton); - unless ($current_skeleton_bin eq $current_bin) { - # need to read from new file - close(IN) if $current_bin; - $current_bin = $current_skeleton_bin; - $current_bin_subdir - = $caller->skeleton_bin_sub_dir($sk_bin_version, $current_bin); - if ($current_bin_subdir) { - $en_skeleton_file = File::Spec->catfile($english_resources_skeleton_dir, - $current_bin_subdir, - "$current_bin.txt"); - } else { - $en_skeleton_file = File::Spec->catfile($english_resources_skeleton_dir, - "$current_bin.txt"); - } - # print STDERR " Perusing $en_skeleton_file ...\n"; - if (open(IN, $en_skeleton_file)) { - $en_skeleton_file_exists = 1; - } else { - $en_skeleton_file_exists = 0; - print STDERR "Can't open $en_skeleton_file (Point A)\n"; - } - } - $previous_skeleton = $current_skeleton; - } - $_ = if $en_skeleton_file_exists; - unless ($en_skeleton_file_exists && defined($_)) { - push(@lists, join(' ; ', @list)); - if (@rem_skeletons) { - $current_skeleton = shift @rem_skeletons; - @list = ($current_skeleton); - } else { - $current_skeleton = ""; - } - next; - } - ($skeleton) = ($_ =~ /^(\S+)\t/); - next unless defined($skeleton); - $skeletons_match_p = $caller->skeletons_match_p($skeleton, $current_skeleton); - next if ($skeleton lt $current_skeleton) && ! $skeletons_match_p; - if ($skeletons_match_p) { - ($token, $count) = ($_ =~ /^\S+\t(\S|\S[-' a-zA-Z]*\S)\t(\d+)\s*$/); - push(@list, "$token : $count") if defined($token) && defined($count); - } else { - while ($current_skeleton lt $skeleton) { - push(@lists, join(' ; ', @list)); - unless (@rem_skeletons) { - close(IN) if $current_bin; - $current_skeleton = ""; - last; - } - $current_skeleton = shift @rem_skeletons; - @list = ($current_skeleton); - } - if ($caller->skeletons_match_p($skeleton, $current_skeleton)) { - ($token, $count) = ($_ =~ /^\S+\t(\S|\S[-' a-zA-Z]*\S)\t(\d+)\s*$/); - push(@list, "$token : $count") if defined($token) && defined($count); - } - } - } - close(IN) if $current_bin; - return @lists; -} - -sub skeletons_match_p { -# one of the skeletons might have been cut off at max - local($caller, $skeleton1, $skeleton2, $max) = @_; - - return 1 if $skeleton1 eq $skeleton2; - - $max = 5 unless defined($max); - if ((length($skeleton1) > length($skeleton2)) && (length($skeleton2) == $max)) { - return ($skeleton1 =~ /^$skeleton2/) ? 1 : 0; - } elsif ((length($skeleton2) > length($skeleton1)) && (length($skeleton1) == $max)) { - return ($skeleton2 =~ /^$skeleton1/) ? 1 : 0; - } else { - return 0; - } -} - -sub token_weird_or_too_long { - local($caller, *WARNING_FH, $token) = @_; - - $lc_token = lc $token; - $norm_token = $lc_token; - $norm_token =~ s/[-' ,]//g; - $snippet4_5 = ""; - $snippet4_5 = substr($norm_token, 4, 2) if length($norm_token) >= 10; - $snippet4_6 = ""; - $snippet4_6 = substr($norm_token, 4, 3) if length($norm_token) >= 10; - if (($norm_token =~ /(kkk|vvv|www|xxx|yyy|zzz)/) || - ($norm_token =~ /[acgt]{15,}/) || # DNA sequence - ($snippet4_5 && ($norm_token =~ /($snippet4_5){5,}/)) || # 2-letter repetition - ($snippet4_6 && ($norm_token =~ /($snippet4_6){4,}/)) || # 3-letter repetition - ($norm_token =~ /[bcdfghjklmnpqrstvwxz]{8,}/) || # too many consonants - ($token =~ /(DDD)/) || - (($lc_token =~ /fff/) && ! ($lc_token =~ /schifff/))) { - print WARNING_FH "skipping (WEIRD): $_"; - return 1; - } - if ((length($norm_token) >= 50) || - ((length($norm_token) >= 28) - - # typical German compound noun components - && ! ($norm_token =~ /entwicklung/) - && ! ($norm_token =~ /fabrik/) - && ! ($norm_token =~ /finanz/) - && ! ($norm_token =~ /forschung/) - && ! ($norm_token =~ /geschwindigkeit/) - && ! ($norm_token =~ /gesundheit/) - && ! ($norm_token =~ /gewohnheit/) - && ! ($norm_token =~ /schaft/) - && ! ($norm_token =~ /schifffahrt/) - && ! ($norm_token =~ /sicherheit/) - && ! ($norm_token =~ /vergangen/) - && ! ($norm_token =~ /versicherung/) - && ! ($norm_token =~ /unternehmen/) - && ! ($norm_token =~ /verwaltung/) - - # Other Germanic languages - && ! ($norm_token =~ /aktiebolag/) - && ! ($norm_token =~ /aktieselskab/) - && ! ($norm_token =~ /ontwikkeling/) - - # chemical - && ! ($norm_token =~ /phetamine/) - && ! ($norm_token =~ /ethyl/) - - # medical - && ! ($norm_token =~ /^pneumonaultramicroscopicsilicovolcanoconios[ei]s$/) - - # business - && ! ($norm_token =~ /PriceWaterhouse/) - )) { - print WARNING_FH "skipping (TOO LONG): $_"; - return 1; - } - return 0; -} - -sub xml_de_accent { - local($caller, $string) = @_; - - # for the time being, unlauts are mapped to main vowel (without "e") - - $string =~ s/\[2-7];/A/g; - $string =~ s/\Æ/Ae/g; - $string =~ s/\Ç/C/g; - $string =~ s/\[0-3];/E/g; - $string =~ s/\[4-7];/I/g; - $string =~ s/\Ð/Dh/g; - $string =~ s/\Ñ/N/g; - $string =~ s/\[0-4];/O/g; - $string =~ s/\Ø/O/g; - $string =~ s/\[7-9];/U/g; - $string =~ s/\Ü/U/g; - $string =~ s/\Ý/Y/g; - $string =~ s/\Þ/Th/g; - - $string =~ s/\ß/ss/g; - $string =~ s/\[4-9];/a/g; - $string =~ s/\æ/ae/g; - $string =~ s/\ç/c/g; - $string =~ s/\[2-5];/e/g; - $string =~ s/\[6-9];/i/g; - $string =~ s/\ð/dh/g; - $string =~ s/\ñ/n/g; - $string =~ s/\[2-6];/o/g; - $string =~ s/\ø/o/g; - $string =~ s/\ù/u/g; - $string =~ s/\[0-2];/u/g; - $string =~ s/\ý/y/g; - $string =~ s/\þ/th/g; - $string =~ s/\ÿ/y/g; - $string =~ s/\xE2\x80\x99/'/g; - - return $string; -} - -sub de_accent { - local($caller, $string) = @_; - - # for the time being, unlauts are mapped to main vowel (without "e") - - $string =~ s/\xC3[\x80-\x85]/A/g; - $string =~ s/\xC3\x86/Ae/g; - $string =~ s/\xC3\x87/C/g; - $string =~ s/\xC3[\x88-\x8B]/E/g; - $string =~ s/\xC3[\x8C-\x8F]/I/g; - $string =~ s/\xC3\x90/Dh/g; - $string =~ s/\xC3\x91/N/g; - $string =~ s/\xC3[\x92-\x96]/O/g; - $string =~ s/\xC3\x98/O/g; - $string =~ s/\xC3[\x99-\x9C]/U/g; - $string =~ s/\xC3\x9D/Y/g; - $string =~ s/\xC3\x9E/Th/g; - - $string =~ s/\xC3\x9F/ss/g; - $string =~ s/\xC3[\xA0-\xA5]/a/g; - $string =~ s/\xC3\xA6/ae/g; - $string =~ s/\xC3\xA7/c/g; - $string =~ s/\xC3[\xA8-\xAB]/e/g; - $string =~ s/\xC3[\xAC-\xAF]/i/g; - $string =~ s/\xC3\xB0/dh/g; - $string =~ s/\xC3\xB1/n/g; - $string =~ s/\xC3[\xB2-\xB6]/o/g; - $string =~ s/\xC3\xB8/o/g; - $string =~ s/\xC3[\xB9-\xBC]/u/g; - $string =~ s/\xC3\xBD/y/g; - $string =~ s/\xC3\xBE/th/g; - $string =~ s/\xC3\xBF/y/g; - $string =~ s/\xE2\x80\x99/'/g; - - return $string; -} - -sub common_non_name_cap_p { - local($caller, $word) = @_; - return defined($english_ht{(lc $word)}->{COMMON_NON_NAME_CAP}); -} - -sub language { - return "English"; -} - -sub language_id { - return "en"; -} - -sub parse_entities_in_string { - local($caller, $string) = @_; - - $ParseEntry->set_current_lang("en"); - @pes = $ParseEntry->init_ParseEntry_list($string); - @pes = $caller->lexical_heuristic(@pes); - @pes = $caller->base_number_heuristic(@pes); - - return @pes; -} - -sub lexical_heuristic { - local($caller, @pes) = @_; - - $i = 0; - while ($i <= $#pes) { - $pe = $pes[$i]; - if ($pe->undefined("synt")) { - if ($pe->surf =~ /^\d+(,\d\d\d)*\.\d+/) { - $pe->set("synt", "cardinal"); - $pe->set("sem", "decimal number"); - $value = $pe->surf; - $value =~ s/,//g; - $pe->set("value", $value); - } elsif ($pe->surf =~ /^\d+(,\d\d\d)*$/) { - $pe->set("synt", "cardinal"); - $pe->set("sem", "integer"); - $value = $pe->surf; - $value =~ s/,//g; - $pe->set("value", $value); - } elsif ($pe->surf =~ /^([-",\.;\s:()\/%]|\@[-:\/]\@|[-:\/]\@|\@[-:\/])$/) { - $pe->set("gloss", $pe->surf); - $pe->set("synt", "punctuation"); - } else { - ($length,$english) = $caller->find_max_lex_match($i,3,@pes); - if ($length) { - if ($length > 1) { - @slot_value_list = (); - @children = splice(@pes,$i,$length); - @roles = $util->list_with_same_elem($length,"lex"); - $pe = $ParseEntry->newParent(*slot_value_list,*children,*roles); - $pe->set("surf",$english); - $pe->set("eot",1) if $pe->eot_p; - splice(@pes,$i,0,$pe); - } else { - $pe = $pes[$i]; - } - $annot_s = $english_annotation_ht{$english}; - $annot_s =~ s/^\s*:+//; - $annot_s =~ s/^\s+//; - $annot_s =~ s/\s+$//; - $annot_s =~ s/#.*$//; - foreach $annot (split('::', $annot_s)) { - ($slot, $value) = ($annot =~ /^([^:]+):(.*)$/); - if (defined($slot) && defined($value)) { - $pe->set($slot, $value); - } - $pe->set("sem", "integer") if ($slot eq "synt") && ($value eq "cardinal"); - } - $pe->set("ord-value", $ord_value) - if $ord_value = $english_annotation_ht{"_EN_SYNT_"}->{(lc $english)}->{"ordinal"}->{"value"}; - $pe->set("card-value", $card_value) - if $card_value = $english_annotation_ht{"_EN_SYNT_"}->{(lc $english)}->{"cardinal"}->{"value"}; - } - } - } - $i++; - } - return @pes; -} - -# builds numbers, incl. integers, decimal numbers, fractions, percentages, ordinals -sub base_number_heuristic { - local($caller, @pes) = @_; - - $i = 0; - # $ParseEntry->print_pes("start base_number_heuristic",$i,@pes); - while ($i <= $#pes) { - # forty-five - ($head_pe, @pes) = - $ParseEntry->build_parse_entry("composite number plus","",$i,*pes, - ' :head :($pe->sem eq "integer") && ($pe->value =~ /^[1-9]0$/)', - 'optional:dummy:$pe->surf eq "\@-\@"', - ' :mod :($pe->sem eq "integer") && ($pe->value =~ /^[1-9]$/)'); - if ($head_pe) { # match succeeded - $value1 = $head_pe->childValue("head"); - $value2 = $head_pe->childValue("mod"); - $head_pe->set("value", $value1 + $value2); - } - # six billion - ($head_pe, @pes) = - $ParseEntry->build_parse_entry("composite number 1000","",$i,*pes, - ' :mod :(($value1 = $pe->value) =~ /^\d+(.\d+)?$/) && ($value1 < 1000)', - ' :head:($value2 = $pe->value) =~ /^1(000)+$/'); - if ($head_pe) { # match succeeded - $value1 = $head_pe->childValue("mod"); - $value2 = $head_pe->childValue("head"); - $head_pe->set("value", $value1 * $value2); - } - # twenty-second - ($head_pe, @pes) = - $ParseEntry->build_parse_entry("composite ordinal","",$i,*pes, - ' :mod :($pe->sem eq "integer") && ($pe->value =~ /^[1-9]0$/)', - 'optional:dummy:$pe->surf eq "\@-\@"', - ' :head :$pe->get("ord-value") =~ /^[1-9]$/'); - if ($head_pe) { # match succeeded - $value1 = $head_pe->childSlot("head", "ord-value"); - $value2 = $head_pe->childValue("mod"); - $head_pe->set("value", $value1 + $value2); - } - $i++; - } - - return @pes; -} - -sub find_max_lex_match { - local($caller,$start,$maxlength,@pes) = @_; - - while ($maxlength > 0) { - if (($english = $util->pes_subseq_surf($start,$maxlength,"en",@pes)) - && defined($english_annotation_ht{$english}) - && ($english =~ /\S/)) { - return ($maxlength, $english); - } else { - $maxlength--; - } - } - return (0,""); -} - -sub select_reliable_entities { - local($caller, @pes) = @_; - - foreach $i (0 .. $#pes) { - $pe = $pes[$i]; - $surf = $pe->surf; - - $pe->set("reliable",1); - } - return @pes; -} - -sub negatives_p { - # (cool <-> uncool), (improper <-> proper), ... - local($caller, $s1, $s2) = @_; - - my $g_s1 = $util->regex_guard($s1); - my $g_s2 = $util->regex_guard($s2); - return 1 if $s1 =~ /^[iu]n$g_s2$/; - return 1 if $s1 =~ /^il$g_s2$/ && ($s2 =~ /^l/); - return 1 if $s1 =~ /^im$g_s2$/ && ($s2 =~ /^[mp]/); - - return 1 if $s2 =~ /^[iu]n$g_s1$/; - return 1 if $s2 =~ /^il$g_s1$/ && ($s1 =~ /^l/); - return 1 if $s2 =~ /^im$g_s1$/ && ($s1 =~ /^[mp]/); - - return 0; -} - -sub present_participle_p { - local($caller, $pe) = @_; - - my $aux_pe = $pe->child("aux"); - return $caller->present_participle_p($aux_pe) if $aux_pe; - my $head_pe = $pe->child("head"); - return $caller->present_participle_p($head_pe) if $head_pe; - return ($pe->synt =~ /^VBG/); -} - - -%engl_value_ht = ( - "monday" => 1, - "tuesday" => 2, - "wednesday" => 3, - "thursday" => 4, - "friday" => 5, - "saturday" => 6, - "sunday" => 7, - - "january" => 1, - "february" => 2, - "march" => 3, - "april" => 4, - "may" => 5, - "june" => 6, - "july" => 7, - "august" => 8, - "september" => 9, - "october" => 10, - "november" => 11, - "december" => 12, - - "spring" => 1, - "summer" => 2, - "fall" => 3, - "autumn" => 3, - "winter" => 4, - - "morning" => 1, - "noon" => 2, - "afternoon" => 3, - "evening" => 4, - "night" => 5, - - "picosecond" => 1, - "nanosecond" => 2, - "microsecond" => 3, - "millisecond" => 4, - "second" => 5, - "minute" => 6, - "hour" => 7, - "day" => 8, - "week" => 9, - "fortnight" => 10, - "month" => 11, - "year" => 12, - "decade" => 13, - "century" => 14, - "millennium" => 15, - - "nanometer" => 2, - "micrometer" => 3, - "millimeter" => 4, - "centimeter" => 5, - "decimeter" => 6, - "meter" => 7, - "kilometer" => 8, - "inch" => 11, - "foot" => 12, - "yard" => 13, - "mile" => 14, - "lightyear" => 20, - - "microgram" => 2, - "milligram" => 3, - "gram" => 4, - "kilogram" => 5, - "ton" => 6, - "ounce" => 14, -); - -sub engl_order_value { - local($this, $s) = @_; - - return $value = $engl_value_ht{(lc $s)} || 0; -} - -1; - diff --git a/spaces/AlanMars/QYL-AI-Space/modules/__init__.py b/spaces/AlanMars/QYL-AI-Space/modules/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/AlexWang/lama/saicinpainting/training/modules/ffc.py b/spaces/AlexWang/lama/saicinpainting/training/modules/ffc.py deleted file mode 100644 index 0e7b84683fccb4bccac97b6371994fa6bb44dbe4..0000000000000000000000000000000000000000 --- a/spaces/AlexWang/lama/saicinpainting/training/modules/ffc.py +++ /dev/null @@ -1,485 +0,0 @@ -# Fast Fourier Convolution NeurIPS 2020 -# original implementation https://github.com/pkumivision/FFC/blob/main/model_zoo/ffc.py -# paper https://proceedings.neurips.cc/paper/2020/file/2fd5d41ec6cfab47e32164d5624269b1-Paper.pdf - -import numpy as np -import torch -import torch.nn as nn -import torch.nn.functional as F - -from saicinpainting.training.modules.base import get_activation, BaseDiscriminator -from saicinpainting.training.modules.spatial_transform import LearnableSpatialTransformWrapper -from saicinpainting.training.modules.squeeze_excitation import SELayer -from saicinpainting.utils import get_shape - - -class FFCSE_block(nn.Module): - - def __init__(self, channels, ratio_g): - super(FFCSE_block, self).__init__() - in_cg = int(channels * ratio_g) - in_cl = channels - in_cg - r = 16 - - self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) - self.conv1 = nn.Conv2d(channels, channels // r, - kernel_size=1, bias=True) - self.relu1 = nn.ReLU(inplace=True) - self.conv_a2l = None if in_cl == 0 else nn.Conv2d( - channels // r, in_cl, kernel_size=1, bias=True) - self.conv_a2g = None if in_cg == 0 else nn.Conv2d( - channels // r, in_cg, kernel_size=1, bias=True) - self.sigmoid = nn.Sigmoid() - - def forward(self, x): - x = x if type(x) is tuple else (x, 0) - id_l, id_g = x - - x = id_l if type(id_g) is int else torch.cat([id_l, id_g], dim=1) - x = self.avgpool(x) - x = self.relu1(self.conv1(x)) - - x_l = 0 if self.conv_a2l is None else id_l * \ - self.sigmoid(self.conv_a2l(x)) - x_g = 0 if self.conv_a2g is None else id_g * \ - self.sigmoid(self.conv_a2g(x)) - return x_l, x_g - - -class FourierUnit(nn.Module): - - def __init__(self, in_channels, out_channels, groups=1, spatial_scale_factor=None, spatial_scale_mode='bilinear', - spectral_pos_encoding=False, use_se=False, se_kwargs=None, ffc3d=False, fft_norm='ortho'): - # bn_layer not used - super(FourierUnit, self).__init__() - self.groups = groups - - self.conv_layer = torch.nn.Conv2d(in_channels=in_channels * 2 + (2 if spectral_pos_encoding else 0), - out_channels=out_channels * 2, - kernel_size=1, stride=1, padding=0, groups=self.groups, bias=False) - self.bn = torch.nn.BatchNorm2d(out_channels * 2) - self.relu = torch.nn.ReLU(inplace=True) - - # squeeze and excitation block - self.use_se = use_se - if use_se: - if se_kwargs is None: - se_kwargs = {} - self.se = SELayer(self.conv_layer.in_channels, **se_kwargs) - - self.spatial_scale_factor = spatial_scale_factor - self.spatial_scale_mode = spatial_scale_mode - self.spectral_pos_encoding = spectral_pos_encoding - self.ffc3d = ffc3d - self.fft_norm = fft_norm - - def forward(self, x): - batch = x.shape[0] - - if self.spatial_scale_factor is not None: - orig_size = x.shape[-2:] - x = F.interpolate(x, scale_factor=self.spatial_scale_factor, mode=self.spatial_scale_mode, align_corners=False) - - r_size = x.size() - # (batch, c, h, w/2+1, 2) - fft_dim = (-3, -2, -1) if self.ffc3d else (-2, -1) - ffted = torch.fft.rfftn(x, dim=fft_dim, norm=self.fft_norm) - ffted = torch.stack((ffted.real, ffted.imag), dim=-1) - ffted = ffted.permute(0, 1, 4, 2, 3).contiguous() # (batch, c, 2, h, w/2+1) - ffted = ffted.view((batch, -1,) + ffted.size()[3:]) - - if self.spectral_pos_encoding: - height, width = ffted.shape[-2:] - coords_vert = torch.linspace(0, 1, height)[None, None, :, None].expand(batch, 1, height, width).to(ffted) - coords_hor = torch.linspace(0, 1, width)[None, None, None, :].expand(batch, 1, height, width).to(ffted) - ffted = torch.cat((coords_vert, coords_hor, ffted), dim=1) - - if self.use_se: - ffted = self.se(ffted) - - ffted = self.conv_layer(ffted) # (batch, c*2, h, w/2+1) - ffted = self.relu(self.bn(ffted)) - - ffted = ffted.view((batch, -1, 2,) + ffted.size()[2:]).permute( - 0, 1, 3, 4, 2).contiguous() # (batch,c, t, h, w/2+1, 2) - ffted = torch.complex(ffted[..., 0], ffted[..., 1]) - - ifft_shape_slice = x.shape[-3:] if self.ffc3d else x.shape[-2:] - output = torch.fft.irfftn(ffted, s=ifft_shape_slice, dim=fft_dim, norm=self.fft_norm) - - if self.spatial_scale_factor is not None: - output = F.interpolate(output, size=orig_size, mode=self.spatial_scale_mode, align_corners=False) - - return output - - -class SeparableFourierUnit(nn.Module): - - def __init__(self, in_channels, out_channels, groups=1, kernel_size=3): - # bn_layer not used - super(SeparableFourierUnit, self).__init__() - self.groups = groups - row_out_channels = out_channels // 2 - col_out_channels = out_channels - row_out_channels - self.row_conv = torch.nn.Conv2d(in_channels=in_channels * 2, - out_channels=row_out_channels * 2, - kernel_size=(kernel_size, 1), # kernel size is always like this, but the data will be transposed - stride=1, padding=(kernel_size // 2, 0), - padding_mode='reflect', - groups=self.groups, bias=False) - self.col_conv = torch.nn.Conv2d(in_channels=in_channels * 2, - out_channels=col_out_channels * 2, - kernel_size=(kernel_size, 1), # kernel size is always like this, but the data will be transposed - stride=1, padding=(kernel_size // 2, 0), - padding_mode='reflect', - groups=self.groups, bias=False) - self.row_bn = torch.nn.BatchNorm2d(row_out_channels * 2) - self.col_bn = torch.nn.BatchNorm2d(col_out_channels * 2) - self.relu = torch.nn.ReLU(inplace=True) - - def process_branch(self, x, conv, bn): - batch = x.shape[0] - - r_size = x.size() - # (batch, c, h, w/2+1, 2) - ffted = torch.fft.rfft(x, norm="ortho") - ffted = torch.stack((ffted.real, ffted.imag), dim=-1) - ffted = ffted.permute(0, 1, 4, 2, 3).contiguous() # (batch, c, 2, h, w/2+1) - ffted = ffted.view((batch, -1,) + ffted.size()[3:]) - - ffted = self.relu(bn(conv(ffted))) - - ffted = ffted.view((batch, -1, 2,) + ffted.size()[2:]).permute( - 0, 1, 3, 4, 2).contiguous() # (batch,c, t, h, w/2+1, 2) - ffted = torch.complex(ffted[..., 0], ffted[..., 1]) - - output = torch.fft.irfft(ffted, s=x.shape[-1:], norm="ortho") - return output - - - def forward(self, x): - rowwise = self.process_branch(x, self.row_conv, self.row_bn) - colwise = self.process_branch(x.permute(0, 1, 3, 2), self.col_conv, self.col_bn).permute(0, 1, 3, 2) - out = torch.cat((rowwise, colwise), dim=1) - return out - - -class SpectralTransform(nn.Module): - - def __init__(self, in_channels, out_channels, stride=1, groups=1, enable_lfu=True, separable_fu=False, **fu_kwargs): - # bn_layer not used - super(SpectralTransform, self).__init__() - self.enable_lfu = enable_lfu - if stride == 2: - self.downsample = nn.AvgPool2d(kernel_size=(2, 2), stride=2) - else: - self.downsample = nn.Identity() - - self.stride = stride - self.conv1 = nn.Sequential( - nn.Conv2d(in_channels, out_channels // - 2, kernel_size=1, groups=groups, bias=False), - nn.BatchNorm2d(out_channels // 2), - nn.ReLU(inplace=True) - ) - fu_class = SeparableFourierUnit if separable_fu else FourierUnit - self.fu = fu_class( - out_channels // 2, out_channels // 2, groups, **fu_kwargs) - if self.enable_lfu: - self.lfu = fu_class( - out_channels // 2, out_channels // 2, groups) - self.conv2 = torch.nn.Conv2d( - out_channels // 2, out_channels, kernel_size=1, groups=groups, bias=False) - - def forward(self, x): - - x = self.downsample(x) - x = self.conv1(x) - output = self.fu(x) - - if self.enable_lfu: - n, c, h, w = x.shape - split_no = 2 - split_s = h // split_no - xs = torch.cat(torch.split( - x[:, :c // 4], split_s, dim=-2), dim=1).contiguous() - xs = torch.cat(torch.split(xs, split_s, dim=-1), - dim=1).contiguous() - xs = self.lfu(xs) - xs = xs.repeat(1, 1, split_no, split_no).contiguous() - else: - xs = 0 - - output = self.conv2(x + output + xs) - - return output - - -class FFC(nn.Module): - - def __init__(self, in_channels, out_channels, kernel_size, - ratio_gin, ratio_gout, stride=1, padding=0, - dilation=1, groups=1, bias=False, enable_lfu=True, - padding_type='reflect', gated=False, **spectral_kwargs): - super(FFC, self).__init__() - - assert stride == 1 or stride == 2, "Stride should be 1 or 2." - self.stride = stride - - in_cg = int(in_channels * ratio_gin) - in_cl = in_channels - in_cg - out_cg = int(out_channels * ratio_gout) - out_cl = out_channels - out_cg - #groups_g = 1 if groups == 1 else int(groups * ratio_gout) - #groups_l = 1 if groups == 1 else groups - groups_g - - self.ratio_gin = ratio_gin - self.ratio_gout = ratio_gout - self.global_in_num = in_cg - - module = nn.Identity if in_cl == 0 or out_cl == 0 else nn.Conv2d - self.convl2l = module(in_cl, out_cl, kernel_size, - stride, padding, dilation, groups, bias, padding_mode=padding_type) - module = nn.Identity if in_cl == 0 or out_cg == 0 else nn.Conv2d - self.convl2g = module(in_cl, out_cg, kernel_size, - stride, padding, dilation, groups, bias, padding_mode=padding_type) - module = nn.Identity if in_cg == 0 or out_cl == 0 else nn.Conv2d - self.convg2l = module(in_cg, out_cl, kernel_size, - stride, padding, dilation, groups, bias, padding_mode=padding_type) - module = nn.Identity if in_cg == 0 or out_cg == 0 else SpectralTransform - self.convg2g = module( - in_cg, out_cg, stride, 1 if groups == 1 else groups // 2, enable_lfu, **spectral_kwargs) - - self.gated = gated - module = nn.Identity if in_cg == 0 or out_cl == 0 or not self.gated else nn.Conv2d - self.gate = module(in_channels, 2, 1) - - def forward(self, x): - x_l, x_g = x if type(x) is tuple else (x, 0) - out_xl, out_xg = 0, 0 - - if self.gated: - total_input_parts = [x_l] - if torch.is_tensor(x_g): - total_input_parts.append(x_g) - total_input = torch.cat(total_input_parts, dim=1) - - gates = torch.sigmoid(self.gate(total_input)) - g2l_gate, l2g_gate = gates.chunk(2, dim=1) - else: - g2l_gate, l2g_gate = 1, 1 - - if self.ratio_gout != 1: - out_xl = self.convl2l(x_l) + self.convg2l(x_g) * g2l_gate - if self.ratio_gout != 0: - out_xg = self.convl2g(x_l) * l2g_gate + self.convg2g(x_g) - - return out_xl, out_xg - - -class FFC_BN_ACT(nn.Module): - - def __init__(self, in_channels, out_channels, - kernel_size, ratio_gin, ratio_gout, - stride=1, padding=0, dilation=1, groups=1, bias=False, - norm_layer=nn.BatchNorm2d, activation_layer=nn.Identity, - padding_type='reflect', - enable_lfu=True, **kwargs): - super(FFC_BN_ACT, self).__init__() - self.ffc = FFC(in_channels, out_channels, kernel_size, - ratio_gin, ratio_gout, stride, padding, dilation, - groups, bias, enable_lfu, padding_type=padding_type, **kwargs) - lnorm = nn.Identity if ratio_gout == 1 else norm_layer - gnorm = nn.Identity if ratio_gout == 0 else norm_layer - global_channels = int(out_channels * ratio_gout) - self.bn_l = lnorm(out_channels - global_channels) - self.bn_g = gnorm(global_channels) - - lact = nn.Identity if ratio_gout == 1 else activation_layer - gact = nn.Identity if ratio_gout == 0 else activation_layer - self.act_l = lact(inplace=True) - self.act_g = gact(inplace=True) - - def forward(self, x): - x_l, x_g = self.ffc(x) - x_l = self.act_l(self.bn_l(x_l)) - x_g = self.act_g(self.bn_g(x_g)) - return x_l, x_g - - -class FFCResnetBlock(nn.Module): - def __init__(self, dim, padding_type, norm_layer, activation_layer=nn.ReLU, dilation=1, - spatial_transform_kwargs=None, inline=False, **conv_kwargs): - super().__init__() - self.conv1 = FFC_BN_ACT(dim, dim, kernel_size=3, padding=dilation, dilation=dilation, - norm_layer=norm_layer, - activation_layer=activation_layer, - padding_type=padding_type, - **conv_kwargs) - self.conv2 = FFC_BN_ACT(dim, dim, kernel_size=3, padding=dilation, dilation=dilation, - norm_layer=norm_layer, - activation_layer=activation_layer, - padding_type=padding_type, - **conv_kwargs) - if spatial_transform_kwargs is not None: - self.conv1 = LearnableSpatialTransformWrapper(self.conv1, **spatial_transform_kwargs) - self.conv2 = LearnableSpatialTransformWrapper(self.conv2, **spatial_transform_kwargs) - self.inline = inline - - def forward(self, x): - if self.inline: - x_l, x_g = x[:, :-self.conv1.ffc.global_in_num], x[:, -self.conv1.ffc.global_in_num:] - else: - x_l, x_g = x if type(x) is tuple else (x, 0) - - id_l, id_g = x_l, x_g - - x_l, x_g = self.conv1((x_l, x_g)) - x_l, x_g = self.conv2((x_l, x_g)) - - x_l, x_g = id_l + x_l, id_g + x_g - out = x_l, x_g - if self.inline: - out = torch.cat(out, dim=1) - return out - - -class ConcatTupleLayer(nn.Module): - def forward(self, x): - assert isinstance(x, tuple) - x_l, x_g = x - assert torch.is_tensor(x_l) or torch.is_tensor(x_g) - if not torch.is_tensor(x_g): - return x_l - return torch.cat(x, dim=1) - - -class FFCResNetGenerator(nn.Module): - def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=nn.BatchNorm2d, - padding_type='reflect', activation_layer=nn.ReLU, - up_norm_layer=nn.BatchNorm2d, up_activation=nn.ReLU(True), - init_conv_kwargs={}, downsample_conv_kwargs={}, resnet_conv_kwargs={}, - spatial_transform_layers=None, spatial_transform_kwargs={}, - add_out_act=True, max_features=1024, out_ffc=False, out_ffc_kwargs={}): - assert (n_blocks >= 0) - super().__init__() - - model = [nn.ReflectionPad2d(3), - FFC_BN_ACT(input_nc, ngf, kernel_size=7, padding=0, norm_layer=norm_layer, - activation_layer=activation_layer, **init_conv_kwargs)] - - ### downsample - for i in range(n_downsampling): - mult = 2 ** i - if i == n_downsampling - 1: - cur_conv_kwargs = dict(downsample_conv_kwargs) - cur_conv_kwargs['ratio_gout'] = resnet_conv_kwargs.get('ratio_gin', 0) - else: - cur_conv_kwargs = downsample_conv_kwargs - model += [FFC_BN_ACT(min(max_features, ngf * mult), - min(max_features, ngf * mult * 2), - kernel_size=3, stride=2, padding=1, - norm_layer=norm_layer, - activation_layer=activation_layer, - **cur_conv_kwargs)] - - mult = 2 ** n_downsampling - feats_num_bottleneck = min(max_features, ngf * mult) - - ### resnet blocks - for i in range(n_blocks): - cur_resblock = FFCResnetBlock(feats_num_bottleneck, padding_type=padding_type, activation_layer=activation_layer, - norm_layer=norm_layer, **resnet_conv_kwargs) - if spatial_transform_layers is not None and i in spatial_transform_layers: - cur_resblock = LearnableSpatialTransformWrapper(cur_resblock, **spatial_transform_kwargs) - model += [cur_resblock] - - model += [ConcatTupleLayer()] - - ### upsample - for i in range(n_downsampling): - mult = 2 ** (n_downsampling - i) - model += [nn.ConvTranspose2d(min(max_features, ngf * mult), - min(max_features, int(ngf * mult / 2)), - kernel_size=3, stride=2, padding=1, output_padding=1), - up_norm_layer(min(max_features, int(ngf * mult / 2))), - up_activation] - - if out_ffc: - model += [FFCResnetBlock(ngf, padding_type=padding_type, activation_layer=activation_layer, - norm_layer=norm_layer, inline=True, **out_ffc_kwargs)] - - model += [nn.ReflectionPad2d(3), - nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] - if add_out_act: - model.append(get_activation('tanh' if add_out_act is True else add_out_act)) - self.model = nn.Sequential(*model) - - def forward(self, input): - return self.model(input) - - -class FFCNLayerDiscriminator(BaseDiscriminator): - def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, max_features=512, - init_conv_kwargs={}, conv_kwargs={}): - super().__init__() - self.n_layers = n_layers - - def _act_ctor(inplace=True): - return nn.LeakyReLU(negative_slope=0.2, inplace=inplace) - - kw = 3 - padw = int(np.ceil((kw-1.0)/2)) - sequence = [[FFC_BN_ACT(input_nc, ndf, kernel_size=kw, padding=padw, norm_layer=norm_layer, - activation_layer=_act_ctor, **init_conv_kwargs)]] - - nf = ndf - for n in range(1, n_layers): - nf_prev = nf - nf = min(nf * 2, max_features) - - cur_model = [ - FFC_BN_ACT(nf_prev, nf, - kernel_size=kw, stride=2, padding=padw, - norm_layer=norm_layer, - activation_layer=_act_ctor, - **conv_kwargs) - ] - sequence.append(cur_model) - - nf_prev = nf - nf = min(nf * 2, 512) - - cur_model = [ - FFC_BN_ACT(nf_prev, nf, - kernel_size=kw, stride=1, padding=padw, - norm_layer=norm_layer, - activation_layer=lambda *args, **kwargs: nn.LeakyReLU(*args, negative_slope=0.2, **kwargs), - **conv_kwargs), - ConcatTupleLayer() - ] - sequence.append(cur_model) - - sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]] - - for n in range(len(sequence)): - setattr(self, 'model'+str(n), nn.Sequential(*sequence[n])) - - def get_all_activations(self, x): - res = [x] - for n in range(self.n_layers + 2): - model = getattr(self, 'model' + str(n)) - res.append(model(res[-1])) - return res[1:] - - def forward(self, x): - act = self.get_all_activations(x) - feats = [] - for out in act[:-1]: - if isinstance(out, tuple): - if torch.is_tensor(out[1]): - out = torch.cat(out, dim=1) - else: - out = out[0] - feats.append(out) - return act[-1], feats diff --git a/spaces/Ameaou/academic-chatgpt3.1/crazy_functions/test_project/cpp/longcode/jpgd.cpp b/spaces/Ameaou/academic-chatgpt3.1/crazy_functions/test_project/cpp/longcode/jpgd.cpp deleted file mode 100644 index 36d06c8e9068570c3e7624895d474f33dbfe3d29..0000000000000000000000000000000000000000 --- a/spaces/Ameaou/academic-chatgpt3.1/crazy_functions/test_project/cpp/longcode/jpgd.cpp +++ /dev/null @@ -1,3276 +0,0 @@ -// jpgd.cpp - C++ class for JPEG decompression. -// Public domain, Rich Geldreich -// Last updated Apr. 16, 2011 -// Alex Evans: Linear memory allocator (taken from jpge.h). -// -// Supports progressive and baseline sequential JPEG image files, and the most common chroma subsampling factors: Y, H1V1, H2V1, H1V2, and H2V2. -// -// Chroma upsampling quality: H2V2 is upsampled in the frequency domain, H2V1 and H1V2 are upsampled using point sampling. -// Chroma upsampling reference: "Fast Scheme for Image Size Change in the Compressed Domain" -// http://vision.ai.uiuc.edu/~dugad/research/dct/index.html - -#include "jpgd.h" -#include - -#include -// BEGIN EPIC MOD -#define JPGD_ASSERT(x) { assert(x); CA_ASSUME(x); } (void)0 -// END EPIC MOD - -#ifdef _MSC_VER -#pragma warning (disable : 4611) // warning C4611: interaction between '_setjmp' and C++ object destruction is non-portable -#endif - -// Set to 1 to enable freq. domain chroma upsampling on images using H2V2 subsampling (0=faster nearest neighbor sampling). -// This is slower, but results in higher quality on images with highly saturated colors. -#define JPGD_SUPPORT_FREQ_DOMAIN_UPSAMPLING 1 - -#define JPGD_TRUE (1) -#define JPGD_FALSE (0) - -#define JPGD_MAX(a,b) (((a)>(b)) ? (a) : (b)) -#define JPGD_MIN(a,b) (((a)<(b)) ? (a) : (b)) - -namespace jpgd { - - static inline void *jpgd_malloc(size_t nSize) { return FMemory::Malloc(nSize); } - static inline void jpgd_free(void *p) { FMemory::Free(p); } - -// BEGIN EPIC MOD -//@UE3 - use UE3 BGRA encoding instead of assuming RGBA - // stolen from IImageWrapper.h - enum ERGBFormatJPG - { - Invalid = -1, - RGBA = 0, - BGRA = 1, - Gray = 2, - }; - static ERGBFormatJPG jpg_format; -// END EPIC MOD - - // DCT coefficients are stored in this sequence. - static int g_ZAG[64] = { 0,1,8,16,9,2,3,10,17,24,32,25,18,11,4,5,12,19,26,33,40,48,41,34,27,20,13,6,7,14,21,28,35,42,49,56,57,50,43,36,29,22,15,23,30,37,44,51,58,59,52,45,38,31,39,46,53,60,61,54,47,55,62,63 }; - - enum JPEG_MARKER - { - M_SOF0 = 0xC0, M_SOF1 = 0xC1, M_SOF2 = 0xC2, M_SOF3 = 0xC3, M_SOF5 = 0xC5, M_SOF6 = 0xC6, M_SOF7 = 0xC7, M_JPG = 0xC8, - M_SOF9 = 0xC9, M_SOF10 = 0xCA, M_SOF11 = 0xCB, M_SOF13 = 0xCD, M_SOF14 = 0xCE, M_SOF15 = 0xCF, M_DHT = 0xC4, M_DAC = 0xCC, - M_RST0 = 0xD0, M_RST1 = 0xD1, M_RST2 = 0xD2, M_RST3 = 0xD3, M_RST4 = 0xD4, M_RST5 = 0xD5, M_RST6 = 0xD6, M_RST7 = 0xD7, - M_SOI = 0xD8, M_EOI = 0xD9, M_SOS = 0xDA, M_DQT = 0xDB, M_DNL = 0xDC, M_DRI = 0xDD, M_DHP = 0xDE, M_EXP = 0xDF, - M_APP0 = 0xE0, M_APP15 = 0xEF, M_JPG0 = 0xF0, M_JPG13 = 0xFD, M_COM = 0xFE, M_TEM = 0x01, M_ERROR = 0x100, RST0 = 0xD0 - }; - - enum JPEG_SUBSAMPLING { JPGD_GRAYSCALE = 0, JPGD_YH1V1, JPGD_YH2V1, JPGD_YH1V2, JPGD_YH2V2 }; - -#define CONST_BITS 13 -#define PASS1_BITS 2 -#define SCALEDONE ((int32)1) - -#define FIX_0_298631336 ((int32)2446) /* FIX(0.298631336) */ -#define FIX_0_390180644 ((int32)3196) /* FIX(0.390180644) */ -#define FIX_0_541196100 ((int32)4433) /* FIX(0.541196100) */ -#define FIX_0_765366865 ((int32)6270) /* FIX(0.765366865) */ -#define FIX_0_899976223 ((int32)7373) /* FIX(0.899976223) */ -#define FIX_1_175875602 ((int32)9633) /* FIX(1.175875602) */ -#define FIX_1_501321110 ((int32)12299) /* FIX(1.501321110) */ -#define FIX_1_847759065 ((int32)15137) /* FIX(1.847759065) */ -#define FIX_1_961570560 ((int32)16069) /* FIX(1.961570560) */ -#define FIX_2_053119869 ((int32)16819) /* FIX(2.053119869) */ -#define FIX_2_562915447 ((int32)20995) /* FIX(2.562915447) */ -#define FIX_3_072711026 ((int32)25172) /* FIX(3.072711026) */ - -#define DESCALE(x,n) (((x) + (SCALEDONE << ((n)-1))) >> (n)) -#define DESCALE_ZEROSHIFT(x,n) (((x) + (128 << (n)) + (SCALEDONE << ((n)-1))) >> (n)) - -#define MULTIPLY(var, cnst) ((var) * (cnst)) - -#define CLAMP(i) ((static_cast(i) > 255) ? (((~i) >> 31) & 0xFF) : (i)) - - // Compiler creates a fast path 1D IDCT for X non-zero columns - template - struct Row - { - static void idct(int* pTemp, const jpgd_block_t* pSrc) - { - // ACCESS_COL() will be optimized at compile time to either an array access, or 0. -#define ACCESS_COL(x) (((x) < NONZERO_COLS) ? (int)pSrc[x] : 0) - - const int z2 = ACCESS_COL(2), z3 = ACCESS_COL(6); - - const int z1 = MULTIPLY(z2 + z3, FIX_0_541196100); - const int tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065); - const int tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); - - const int tmp0 = (ACCESS_COL(0) + ACCESS_COL(4)) << CONST_BITS; - const int tmp1 = (ACCESS_COL(0) - ACCESS_COL(4)) << CONST_BITS; - - const int tmp10 = tmp0 + tmp3, tmp13 = tmp0 - tmp3, tmp11 = tmp1 + tmp2, tmp12 = tmp1 - tmp2; - - const int atmp0 = ACCESS_COL(7), atmp1 = ACCESS_COL(5), atmp2 = ACCESS_COL(3), atmp3 = ACCESS_COL(1); - - const int bz1 = atmp0 + atmp3, bz2 = atmp1 + atmp2, bz3 = atmp0 + atmp2, bz4 = atmp1 + atmp3; - const int bz5 = MULTIPLY(bz3 + bz4, FIX_1_175875602); - - const int az1 = MULTIPLY(bz1, - FIX_0_899976223); - const int az2 = MULTIPLY(bz2, - FIX_2_562915447); - const int az3 = MULTIPLY(bz3, - FIX_1_961570560) + bz5; - const int az4 = MULTIPLY(bz4, - FIX_0_390180644) + bz5; - - const int btmp0 = MULTIPLY(atmp0, FIX_0_298631336) + az1 + az3; - const int btmp1 = MULTIPLY(atmp1, FIX_2_053119869) + az2 + az4; - const int btmp2 = MULTIPLY(atmp2, FIX_3_072711026) + az2 + az3; - const int btmp3 = MULTIPLY(atmp3, FIX_1_501321110) + az1 + az4; - - pTemp[0] = DESCALE(tmp10 + btmp3, CONST_BITS-PASS1_BITS); - pTemp[7] = DESCALE(tmp10 - btmp3, CONST_BITS-PASS1_BITS); - pTemp[1] = DESCALE(tmp11 + btmp2, CONST_BITS-PASS1_BITS); - pTemp[6] = DESCALE(tmp11 - btmp2, CONST_BITS-PASS1_BITS); - pTemp[2] = DESCALE(tmp12 + btmp1, CONST_BITS-PASS1_BITS); - pTemp[5] = DESCALE(tmp12 - btmp1, CONST_BITS-PASS1_BITS); - pTemp[3] = DESCALE(tmp13 + btmp0, CONST_BITS-PASS1_BITS); - pTemp[4] = DESCALE(tmp13 - btmp0, CONST_BITS-PASS1_BITS); - } - }; - - template <> - struct Row<0> - { - static void idct(int* pTemp, const jpgd_block_t* pSrc) - { -#ifdef _MSC_VER - pTemp; pSrc; -#endif - } - }; - - template <> - struct Row<1> - { - static void idct(int* pTemp, const jpgd_block_t* pSrc) - { - const int dcval = (pSrc[0] << PASS1_BITS); - - pTemp[0] = dcval; - pTemp[1] = dcval; - pTemp[2] = dcval; - pTemp[3] = dcval; - pTemp[4] = dcval; - pTemp[5] = dcval; - pTemp[6] = dcval; - pTemp[7] = dcval; - } - }; - - // Compiler creates a fast path 1D IDCT for X non-zero rows - template - struct Col - { - static void idct(uint8* pDst_ptr, const int* pTemp) - { - // ACCESS_ROW() will be optimized at compile time to either an array access, or 0. -#define ACCESS_ROW(x) (((x) < NONZERO_ROWS) ? pTemp[x * 8] : 0) - - const int z2 = ACCESS_ROW(2); - const int z3 = ACCESS_ROW(6); - - const int z1 = MULTIPLY(z2 + z3, FIX_0_541196100); - const int tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065); - const int tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); - - const int tmp0 = (ACCESS_ROW(0) + ACCESS_ROW(4)) << CONST_BITS; - const int tmp1 = (ACCESS_ROW(0) - ACCESS_ROW(4)) << CONST_BITS; - - const int tmp10 = tmp0 + tmp3, tmp13 = tmp0 - tmp3, tmp11 = tmp1 + tmp2, tmp12 = tmp1 - tmp2; - - const int atmp0 = ACCESS_ROW(7), atmp1 = ACCESS_ROW(5), atmp2 = ACCESS_ROW(3), atmp3 = ACCESS_ROW(1); - - const int bz1 = atmp0 + atmp3, bz2 = atmp1 + atmp2, bz3 = atmp0 + atmp2, bz4 = atmp1 + atmp3; - const int bz5 = MULTIPLY(bz3 + bz4, FIX_1_175875602); - - const int az1 = MULTIPLY(bz1, - FIX_0_899976223); - const int az2 = MULTIPLY(bz2, - FIX_2_562915447); - const int az3 = MULTIPLY(bz3, - FIX_1_961570560) + bz5; - const int az4 = MULTIPLY(bz4, - FIX_0_390180644) + bz5; - - const int btmp0 = MULTIPLY(atmp0, FIX_0_298631336) + az1 + az3; - const int btmp1 = MULTIPLY(atmp1, FIX_2_053119869) + az2 + az4; - const int btmp2 = MULTIPLY(atmp2, FIX_3_072711026) + az2 + az3; - const int btmp3 = MULTIPLY(atmp3, FIX_1_501321110) + az1 + az4; - - int i = DESCALE_ZEROSHIFT(tmp10 + btmp3, CONST_BITS+PASS1_BITS+3); - pDst_ptr[8*0] = (uint8)CLAMP(i); - - i = DESCALE_ZEROSHIFT(tmp10 - btmp3, CONST_BITS+PASS1_BITS+3); - pDst_ptr[8*7] = (uint8)CLAMP(i); - - i = DESCALE_ZEROSHIFT(tmp11 + btmp2, CONST_BITS+PASS1_BITS+3); - pDst_ptr[8*1] = (uint8)CLAMP(i); - - i = DESCALE_ZEROSHIFT(tmp11 - btmp2, CONST_BITS+PASS1_BITS+3); - pDst_ptr[8*6] = (uint8)CLAMP(i); - - i = DESCALE_ZEROSHIFT(tmp12 + btmp1, CONST_BITS+PASS1_BITS+3); - pDst_ptr[8*2] = (uint8)CLAMP(i); - - i = DESCALE_ZEROSHIFT(tmp12 - btmp1, CONST_BITS+PASS1_BITS+3); - pDst_ptr[8*5] = (uint8)CLAMP(i); - - i = DESCALE_ZEROSHIFT(tmp13 + btmp0, CONST_BITS+PASS1_BITS+3); - pDst_ptr[8*3] = (uint8)CLAMP(i); - - i = DESCALE_ZEROSHIFT(tmp13 - btmp0, CONST_BITS+PASS1_BITS+3); - pDst_ptr[8*4] = (uint8)CLAMP(i); - } - }; - - template <> - struct Col<1> - { - static void idct(uint8* pDst_ptr, const int* pTemp) - { - int dcval = DESCALE_ZEROSHIFT(pTemp[0], PASS1_BITS+3); - const uint8 dcval_clamped = (uint8)CLAMP(dcval); - pDst_ptr[0*8] = dcval_clamped; - pDst_ptr[1*8] = dcval_clamped; - pDst_ptr[2*8] = dcval_clamped; - pDst_ptr[3*8] = dcval_clamped; - pDst_ptr[4*8] = dcval_clamped; - pDst_ptr[5*8] = dcval_clamped; - pDst_ptr[6*8] = dcval_clamped; - pDst_ptr[7*8] = dcval_clamped; - } - }; - - static const uint8 s_idct_row_table[] = - { - 1,0,0,0,0,0,0,0, 2,0,0,0,0,0,0,0, 2,1,0,0,0,0,0,0, 2,1,1,0,0,0,0,0, 2,2,1,0,0,0,0,0, 3,2,1,0,0,0,0,0, 4,2,1,0,0,0,0,0, 4,3,1,0,0,0,0,0, - 4,3,2,0,0,0,0,0, 4,3,2,1,0,0,0,0, 4,3,2,1,1,0,0,0, 4,3,2,2,1,0,0,0, 4,3,3,2,1,0,0,0, 4,4,3,2,1,0,0,0, 5,4,3,2,1,0,0,0, 6,4,3,2,1,0,0,0, - 6,5,3,2,1,0,0,0, 6,5,4,2,1,0,0,0, 6,5,4,3,1,0,0,0, 6,5,4,3,2,0,0,0, 6,5,4,3,2,1,0,0, 6,5,4,3,2,1,1,0, 6,5,4,3,2,2,1,0, 6,5,4,3,3,2,1,0, - 6,5,4,4,3,2,1,0, 6,5,5,4,3,2,1,0, 6,6,5,4,3,2,1,0, 7,6,5,4,3,2,1,0, 8,6,5,4,3,2,1,0, 8,7,5,4,3,2,1,0, 8,7,6,4,3,2,1,0, 8,7,6,5,3,2,1,0, - 8,7,6,5,4,2,1,0, 8,7,6,5,4,3,1,0, 8,7,6,5,4,3,2,0, 8,7,6,5,4,3,2,1, 8,7,6,5,4,3,2,2, 8,7,6,5,4,3,3,2, 8,7,6,5,4,4,3,2, 8,7,6,5,5,4,3,2, - 8,7,6,6,5,4,3,2, 8,7,7,6,5,4,3,2, 8,8,7,6,5,4,3,2, 8,8,8,6,5,4,3,2, 8,8,8,7,5,4,3,2, 8,8,8,7,6,4,3,2, 8,8,8,7,6,5,3,2, 8,8,8,7,6,5,4,2, - 8,8,8,7,6,5,4,3, 8,8,8,7,6,5,4,4, 8,8,8,7,6,5,5,4, 8,8,8,7,6,6,5,4, 8,8,8,7,7,6,5,4, 8,8,8,8,7,6,5,4, 8,8,8,8,8,6,5,4, 8,8,8,8,8,7,5,4, - 8,8,8,8,8,7,6,4, 8,8,8,8,8,7,6,5, 8,8,8,8,8,7,6,6, 8,8,8,8,8,7,7,6, 8,8,8,8,8,8,7,6, 8,8,8,8,8,8,8,6, 8,8,8,8,8,8,8,7, 8,8,8,8,8,8,8,8, - }; - - static const uint8 s_idct_col_table[] = { 1, 1, 2, 3, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8 }; - - void idct(const jpgd_block_t* pSrc_ptr, uint8* pDst_ptr, int block_max_zag) - { - JPGD_ASSERT(block_max_zag >= 1); - JPGD_ASSERT(block_max_zag <= 64); - - if (block_max_zag == 1) - { - int k = ((pSrc_ptr[0] + 4) >> 3) + 128; - k = CLAMP(k); - k = k | (k<<8); - k = k | (k<<16); - - for (int i = 8; i > 0; i--) - { - *(int*)&pDst_ptr[0] = k; - *(int*)&pDst_ptr[4] = k; - pDst_ptr += 8; - } - return; - } - - int temp[64]; - - const jpgd_block_t* pSrc = pSrc_ptr; - int* pTemp = temp; - - const uint8* pRow_tab = &s_idct_row_table[(block_max_zag - 1) * 8]; - int i; - for (i = 8; i > 0; i--, pRow_tab++) - { - switch (*pRow_tab) - { - case 0: Row<0>::idct(pTemp, pSrc); break; - case 1: Row<1>::idct(pTemp, pSrc); break; - case 2: Row<2>::idct(pTemp, pSrc); break; - case 3: Row<3>::idct(pTemp, pSrc); break; - case 4: Row<4>::idct(pTemp, pSrc); break; - case 5: Row<5>::idct(pTemp, pSrc); break; - case 6: Row<6>::idct(pTemp, pSrc); break; - case 7: Row<7>::idct(pTemp, pSrc); break; - case 8: Row<8>::idct(pTemp, pSrc); break; - } - - pSrc += 8; - pTemp += 8; - } - - pTemp = temp; - - const int nonzero_rows = s_idct_col_table[block_max_zag - 1]; - for (i = 8; i > 0; i--) - { - switch (nonzero_rows) - { - case 1: Col<1>::idct(pDst_ptr, pTemp); break; - case 2: Col<2>::idct(pDst_ptr, pTemp); break; - case 3: Col<3>::idct(pDst_ptr, pTemp); break; - case 4: Col<4>::idct(pDst_ptr, pTemp); break; - case 5: Col<5>::idct(pDst_ptr, pTemp); break; - case 6: Col<6>::idct(pDst_ptr, pTemp); break; - case 7: Col<7>::idct(pDst_ptr, pTemp); break; - case 8: Col<8>::idct(pDst_ptr, pTemp); break; - } - - pTemp++; - pDst_ptr++; - } - } - - void idct_4x4(const jpgd_block_t* pSrc_ptr, uint8* pDst_ptr) - { - int temp[64]; - int* pTemp = temp; - const jpgd_block_t* pSrc = pSrc_ptr; - - for (int i = 4; i > 0; i--) - { - Row<4>::idct(pTemp, pSrc); - pSrc += 8; - pTemp += 8; - } - - pTemp = temp; - for (int i = 8; i > 0; i--) - { - Col<4>::idct(pDst_ptr, pTemp); - pTemp++; - pDst_ptr++; - } - } - - // Retrieve one character from the input stream. - inline uint jpeg_decoder::get_char() - { - // Any bytes remaining in buffer? - if (!m_in_buf_left) - { - // Try to get more bytes. - prep_in_buffer(); - // Still nothing to get? - if (!m_in_buf_left) - { - // Pad the end of the stream with 0xFF 0xD9 (EOI marker) - int t = m_tem_flag; - m_tem_flag ^= 1; - if (t) - return 0xD9; - else - return 0xFF; - } - } - - uint c = *m_pIn_buf_ofs++; - m_in_buf_left--; - - return c; - } - - // Same as previous method, except can indicate if the character is a pad character or not. - inline uint jpeg_decoder::get_char(bool *pPadding_flag) - { - if (!m_in_buf_left) - { - prep_in_buffer(); - if (!m_in_buf_left) - { - *pPadding_flag = true; - int t = m_tem_flag; - m_tem_flag ^= 1; - if (t) - return 0xD9; - else - return 0xFF; - } - } - - *pPadding_flag = false; - - uint c = *m_pIn_buf_ofs++; - m_in_buf_left--; - - return c; - } - - // Inserts a previously retrieved character back into the input buffer. - inline void jpeg_decoder::stuff_char(uint8 q) - { - *(--m_pIn_buf_ofs) = q; - m_in_buf_left++; - } - - // Retrieves one character from the input stream, but does not read past markers. Will continue to return 0xFF when a marker is encountered. - inline uint8 jpeg_decoder::get_octet() - { - bool padding_flag; - int c = get_char(&padding_flag); - - if (c == 0xFF) - { - if (padding_flag) - return 0xFF; - - c = get_char(&padding_flag); - if (padding_flag) - { - stuff_char(0xFF); - return 0xFF; - } - - if (c == 0x00) - return 0xFF; - else - { - stuff_char(static_cast(c)); - stuff_char(0xFF); - return 0xFF; - } - } - - return static_cast(c); - } - - // Retrieves a variable number of bits from the input stream. Does not recognize markers. - inline uint jpeg_decoder::get_bits(int num_bits) - { - if (!num_bits) - return 0; - - uint i = m_bit_buf >> (32 - num_bits); - - if ((m_bits_left -= num_bits) <= 0) - { - m_bit_buf <<= (num_bits += m_bits_left); - - uint c1 = get_char(); - uint c2 = get_char(); - m_bit_buf = (m_bit_buf & 0xFFFF0000) | (c1 << 8) | c2; - - m_bit_buf <<= -m_bits_left; - - m_bits_left += 16; - - JPGD_ASSERT(m_bits_left >= 0); - } - else - m_bit_buf <<= num_bits; - - return i; - } - - // Retrieves a variable number of bits from the input stream. Markers will not be read into the input bit buffer. Instead, an infinite number of all 1's will be returned when a marker is encountered. - inline uint jpeg_decoder::get_bits_no_markers(int num_bits) - { - if (!num_bits) - return 0; - - uint i = m_bit_buf >> (32 - num_bits); - - if ((m_bits_left -= num_bits) <= 0) - { - m_bit_buf <<= (num_bits += m_bits_left); - - if ((m_in_buf_left < 2) || (m_pIn_buf_ofs[0] == 0xFF) || (m_pIn_buf_ofs[1] == 0xFF)) - { - uint c1 = get_octet(); - uint c2 = get_octet(); - m_bit_buf |= (c1 << 8) | c2; - } - else - { - m_bit_buf |= ((uint)m_pIn_buf_ofs[0] << 8) | m_pIn_buf_ofs[1]; - m_in_buf_left -= 2; - m_pIn_buf_ofs += 2; - } - - m_bit_buf <<= -m_bits_left; - - m_bits_left += 16; - - JPGD_ASSERT(m_bits_left >= 0); - } - else - m_bit_buf <<= num_bits; - - return i; - } - - // Decodes a Huffman encoded symbol. - inline int jpeg_decoder::huff_decode(huff_tables *pH) - { - int symbol; - - // Check first 8-bits: do we have a complete symbol? - if ((symbol = pH->look_up[m_bit_buf >> 24]) < 0) - { - // Decode more bits, use a tree traversal to find symbol. - int ofs = 23; - do - { - symbol = pH->tree[-(int)(symbol + ((m_bit_buf >> ofs) & 1))]; - ofs--; - } while (symbol < 0); - - get_bits_no_markers(8 + (23 - ofs)); - } - else - get_bits_no_markers(pH->code_size[symbol]); - - return symbol; - } - - // Decodes a Huffman encoded symbol. - inline int jpeg_decoder::huff_decode(huff_tables *pH, int& extra_bits) - { - int symbol; - - // Check first 8-bits: do we have a complete symbol? - if ((symbol = pH->look_up2[m_bit_buf >> 24]) < 0) - { - // Use a tree traversal to find symbol. - int ofs = 23; - do - { - symbol = pH->tree[-(int)(symbol + ((m_bit_buf >> ofs) & 1))]; - ofs--; - } while (symbol < 0); - - get_bits_no_markers(8 + (23 - ofs)); - - extra_bits = get_bits_no_markers(symbol & 0xF); - } - else - { - JPGD_ASSERT(((symbol >> 8) & 31) == pH->code_size[symbol & 255] + ((symbol & 0x8000) ? (symbol & 15) : 0)); - - if (symbol & 0x8000) - { - get_bits_no_markers((symbol >> 8) & 31); - extra_bits = symbol >> 16; - } - else - { - int code_size = (symbol >> 8) & 31; - int num_extra_bits = symbol & 0xF; - int bits = code_size + num_extra_bits; - if (bits <= (m_bits_left + 16)) - extra_bits = get_bits_no_markers(bits) & ((1 << num_extra_bits) - 1); - else - { - get_bits_no_markers(code_size); - extra_bits = get_bits_no_markers(num_extra_bits); - } - } - - symbol &= 0xFF; - } - - return symbol; - } - - // Tables and macro used to fully decode the DPCM differences. - static const int s_extend_test[16] = { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; - static const int s_extend_offset[16] = { 0, -1, -3, -7, -15, -31, -63, -127, -255, -511, -1023, -2047, -4095, -8191, -16383, -32767 }; - static const int s_extend_mask[] = { 0, (1<<0), (1<<1), (1<<2), (1<<3), (1<<4), (1<<5), (1<<6), (1<<7), (1<<8), (1<<9), (1<<10), (1<<11), (1<<12), (1<<13), (1<<14), (1<<15), (1<<16) }; -#define HUFF_EXTEND(x,s) ((x) < s_extend_test[s] ? (x) + s_extend_offset[s] : (x)) - - // Clamps a value between 0-255. - inline uint8 jpeg_decoder::clamp(int i) - { - if (static_cast(i) > 255) - i = (((~i) >> 31) & 0xFF); - - return static_cast(i); - } - - namespace DCT_Upsample - { - struct Matrix44 - { - typedef int Element_Type; - enum { NUM_ROWS = 4, NUM_COLS = 4 }; - - Element_Type v[NUM_ROWS][NUM_COLS]; - - inline int rows() const { return NUM_ROWS; } - inline int cols() const { return NUM_COLS; } - - inline const Element_Type & at(int r, int c) const { return v[r][c]; } - inline Element_Type & at(int r, int c) { return v[r][c]; } - - inline Matrix44() { } - - inline Matrix44& operator += (const Matrix44& a) - { - for (int r = 0; r < NUM_ROWS; r++) - { - at(r, 0) += a.at(r, 0); - at(r, 1) += a.at(r, 1); - at(r, 2) += a.at(r, 2); - at(r, 3) += a.at(r, 3); - } - return *this; - } - - inline Matrix44& operator -= (const Matrix44& a) - { - for (int r = 0; r < NUM_ROWS; r++) - { - at(r, 0) -= a.at(r, 0); - at(r, 1) -= a.at(r, 1); - at(r, 2) -= a.at(r, 2); - at(r, 3) -= a.at(r, 3); - } - return *this; - } - - friend inline Matrix44 operator + (const Matrix44& a, const Matrix44& b) - { - Matrix44 ret; - for (int r = 0; r < NUM_ROWS; r++) - { - ret.at(r, 0) = a.at(r, 0) + b.at(r, 0); - ret.at(r, 1) = a.at(r, 1) + b.at(r, 1); - ret.at(r, 2) = a.at(r, 2) + b.at(r, 2); - ret.at(r, 3) = a.at(r, 3) + b.at(r, 3); - } - return ret; - } - - friend inline Matrix44 operator - (const Matrix44& a, const Matrix44& b) - { - Matrix44 ret; - for (int r = 0; r < NUM_ROWS; r++) - { - ret.at(r, 0) = a.at(r, 0) - b.at(r, 0); - ret.at(r, 1) = a.at(r, 1) - b.at(r, 1); - ret.at(r, 2) = a.at(r, 2) - b.at(r, 2); - ret.at(r, 3) = a.at(r, 3) - b.at(r, 3); - } - return ret; - } - - static inline void add_and_store(jpgd_block_t* pDst, const Matrix44& a, const Matrix44& b) - { - for (int r = 0; r < 4; r++) - { - pDst[0*8 + r] = static_cast(a.at(r, 0) + b.at(r, 0)); - pDst[1*8 + r] = static_cast(a.at(r, 1) + b.at(r, 1)); - pDst[2*8 + r] = static_cast(a.at(r, 2) + b.at(r, 2)); - pDst[3*8 + r] = static_cast(a.at(r, 3) + b.at(r, 3)); - } - } - - static inline void sub_and_store(jpgd_block_t* pDst, const Matrix44& a, const Matrix44& b) - { - for (int r = 0; r < 4; r++) - { - pDst[0*8 + r] = static_cast(a.at(r, 0) - b.at(r, 0)); - pDst[1*8 + r] = static_cast(a.at(r, 1) - b.at(r, 1)); - pDst[2*8 + r] = static_cast(a.at(r, 2) - b.at(r, 2)); - pDst[3*8 + r] = static_cast(a.at(r, 3) - b.at(r, 3)); - } - } - }; - - const int FRACT_BITS = 10; - const int SCALE = 1 << FRACT_BITS; - - typedef int Temp_Type; -#define D(i) (((i) + (SCALE >> 1)) >> FRACT_BITS) -#define F(i) ((int)((i) * SCALE + .5f)) - - // Any decent C++ compiler will optimize this at compile time to a 0, or an array access. -#define AT(c, r) ((((c)>=NUM_COLS)||((r)>=NUM_ROWS)) ? 0 : pSrc[(c)+(r)*8]) - - // NUM_ROWS/NUM_COLS = # of non-zero rows/cols in input matrix - template - struct P_Q - { - static void calc(Matrix44& P, Matrix44& Q, const jpgd_block_t* pSrc) - { - // 4x8 = 4x8 times 8x8, matrix 0 is constant - const Temp_Type X000 = AT(0, 0); - const Temp_Type X001 = AT(0, 1); - const Temp_Type X002 = AT(0, 2); - const Temp_Type X003 = AT(0, 3); - const Temp_Type X004 = AT(0, 4); - const Temp_Type X005 = AT(0, 5); - const Temp_Type X006 = AT(0, 6); - const Temp_Type X007 = AT(0, 7); - const Temp_Type X010 = D(F(0.415735f) * AT(1, 0) + F(0.791065f) * AT(3, 0) + F(-0.352443f) * AT(5, 0) + F(0.277785f) * AT(7, 0)); - const Temp_Type X011 = D(F(0.415735f) * AT(1, 1) + F(0.791065f) * AT(3, 1) + F(-0.352443f) * AT(5, 1) + F(0.277785f) * AT(7, 1)); - const Temp_Type X012 = D(F(0.415735f) * AT(1, 2) + F(0.791065f) * AT(3, 2) + F(-0.352443f) * AT(5, 2) + F(0.277785f) * AT(7, 2)); - const Temp_Type X013 = D(F(0.415735f) * AT(1, 3) + F(0.791065f) * AT(3, 3) + F(-0.352443f) * AT(5, 3) + F(0.277785f) * AT(7, 3)); - const Temp_Type X014 = D(F(0.415735f) * AT(1, 4) + F(0.791065f) * AT(3, 4) + F(-0.352443f) * AT(5, 4) + F(0.277785f) * AT(7, 4)); - const Temp_Type X015 = D(F(0.415735f) * AT(1, 5) + F(0.791065f) * AT(3, 5) + F(-0.352443f) * AT(5, 5) + F(0.277785f) * AT(7, 5)); - const Temp_Type X016 = D(F(0.415735f) * AT(1, 6) + F(0.791065f) * AT(3, 6) + F(-0.352443f) * AT(5, 6) + F(0.277785f) * AT(7, 6)); - const Temp_Type X017 = D(F(0.415735f) * AT(1, 7) + F(0.791065f) * AT(3, 7) + F(-0.352443f) * AT(5, 7) + F(0.277785f) * AT(7, 7)); - const Temp_Type X020 = AT(4, 0); - const Temp_Type X021 = AT(4, 1); - const Temp_Type X022 = AT(4, 2); - const Temp_Type X023 = AT(4, 3); - const Temp_Type X024 = AT(4, 4); - const Temp_Type X025 = AT(4, 5); - const Temp_Type X026 = AT(4, 6); - const Temp_Type X027 = AT(4, 7); - const Temp_Type X030 = D(F(0.022887f) * AT(1, 0) + F(-0.097545f) * AT(3, 0) + F(0.490393f) * AT(5, 0) + F(0.865723f) * AT(7, 0)); - const Temp_Type X031 = D(F(0.022887f) * AT(1, 1) + F(-0.097545f) * AT(3, 1) + F(0.490393f) * AT(5, 1) + F(0.865723f) * AT(7, 1)); - const Temp_Type X032 = D(F(0.022887f) * AT(1, 2) + F(-0.097545f) * AT(3, 2) + F(0.490393f) * AT(5, 2) + F(0.865723f) * AT(7, 2)); - const Temp_Type X033 = D(F(0.022887f) * AT(1, 3) + F(-0.097545f) * AT(3, 3) + F(0.490393f) * AT(5, 3) + F(0.865723f) * AT(7, 3)); - const Temp_Type X034 = D(F(0.022887f) * AT(1, 4) + F(-0.097545f) * AT(3, 4) + F(0.490393f) * AT(5, 4) + F(0.865723f) * AT(7, 4)); - const Temp_Type X035 = D(F(0.022887f) * AT(1, 5) + F(-0.097545f) * AT(3, 5) + F(0.490393f) * AT(5, 5) + F(0.865723f) * AT(7, 5)); - const Temp_Type X036 = D(F(0.022887f) * AT(1, 6) + F(-0.097545f) * AT(3, 6) + F(0.490393f) * AT(5, 6) + F(0.865723f) * AT(7, 6)); - const Temp_Type X037 = D(F(0.022887f) * AT(1, 7) + F(-0.097545f) * AT(3, 7) + F(0.490393f) * AT(5, 7) + F(0.865723f) * AT(7, 7)); - - // 4x4 = 4x8 times 8x4, matrix 1 is constant - P.at(0, 0) = X000; - P.at(0, 1) = D(X001 * F(0.415735f) + X003 * F(0.791065f) + X005 * F(-0.352443f) + X007 * F(0.277785f)); - P.at(0, 2) = X004; - P.at(0, 3) = D(X001 * F(0.022887f) + X003 * F(-0.097545f) + X005 * F(0.490393f) + X007 * F(0.865723f)); - P.at(1, 0) = X010; - P.at(1, 1) = D(X011 * F(0.415735f) + X013 * F(0.791065f) + X015 * F(-0.352443f) + X017 * F(0.277785f)); - P.at(1, 2) = X014; - P.at(1, 3) = D(X011 * F(0.022887f) + X013 * F(-0.097545f) + X015 * F(0.490393f) + X017 * F(0.865723f)); - P.at(2, 0) = X020; - P.at(2, 1) = D(X021 * F(0.415735f) + X023 * F(0.791065f) + X025 * F(-0.352443f) + X027 * F(0.277785f)); - P.at(2, 2) = X024; - P.at(2, 3) = D(X021 * F(0.022887f) + X023 * F(-0.097545f) + X025 * F(0.490393f) + X027 * F(0.865723f)); - P.at(3, 0) = X030; - P.at(3, 1) = D(X031 * F(0.415735f) + X033 * F(0.791065f) + X035 * F(-0.352443f) + X037 * F(0.277785f)); - P.at(3, 2) = X034; - P.at(3, 3) = D(X031 * F(0.022887f) + X033 * F(-0.097545f) + X035 * F(0.490393f) + X037 * F(0.865723f)); - // 40 muls 24 adds - - // 4x4 = 4x8 times 8x4, matrix 1 is constant - Q.at(0, 0) = D(X001 * F(0.906127f) + X003 * F(-0.318190f) + X005 * F(0.212608f) + X007 * F(-0.180240f)); - Q.at(0, 1) = X002; - Q.at(0, 2) = D(X001 * F(-0.074658f) + X003 * F(0.513280f) + X005 * F(0.768178f) + X007 * F(-0.375330f)); - Q.at(0, 3) = X006; - Q.at(1, 0) = D(X011 * F(0.906127f) + X013 * F(-0.318190f) + X015 * F(0.212608f) + X017 * F(-0.180240f)); - Q.at(1, 1) = X012; - Q.at(1, 2) = D(X011 * F(-0.074658f) + X013 * F(0.513280f) + X015 * F(0.768178f) + X017 * F(-0.375330f)); - Q.at(1, 3) = X016; - Q.at(2, 0) = D(X021 * F(0.906127f) + X023 * F(-0.318190f) + X025 * F(0.212608f) + X027 * F(-0.180240f)); - Q.at(2, 1) = X022; - Q.at(2, 2) = D(X021 * F(-0.074658f) + X023 * F(0.513280f) + X025 * F(0.768178f) + X027 * F(-0.375330f)); - Q.at(2, 3) = X026; - Q.at(3, 0) = D(X031 * F(0.906127f) + X033 * F(-0.318190f) + X035 * F(0.212608f) + X037 * F(-0.180240f)); - Q.at(3, 1) = X032; - Q.at(3, 2) = D(X031 * F(-0.074658f) + X033 * F(0.513280f) + X035 * F(0.768178f) + X037 * F(-0.375330f)); - Q.at(3, 3) = X036; - // 40 muls 24 adds - } - }; - - template - struct R_S - { - static void calc(Matrix44& R, Matrix44& S, const jpgd_block_t* pSrc) - { - // 4x8 = 4x8 times 8x8, matrix 0 is constant - const Temp_Type X100 = D(F(0.906127f) * AT(1, 0) + F(-0.318190f) * AT(3, 0) + F(0.212608f) * AT(5, 0) + F(-0.180240f) * AT(7, 0)); - const Temp_Type X101 = D(F(0.906127f) * AT(1, 1) + F(-0.318190f) * AT(3, 1) + F(0.212608f) * AT(5, 1) + F(-0.180240f) * AT(7, 1)); - const Temp_Type X102 = D(F(0.906127f) * AT(1, 2) + F(-0.318190f) * AT(3, 2) + F(0.212608f) * AT(5, 2) + F(-0.180240f) * AT(7, 2)); - const Temp_Type X103 = D(F(0.906127f) * AT(1, 3) + F(-0.318190f) * AT(3, 3) + F(0.212608f) * AT(5, 3) + F(-0.180240f) * AT(7, 3)); - const Temp_Type X104 = D(F(0.906127f) * AT(1, 4) + F(-0.318190f) * AT(3, 4) + F(0.212608f) * AT(5, 4) + F(-0.180240f) * AT(7, 4)); - const Temp_Type X105 = D(F(0.906127f) * AT(1, 5) + F(-0.318190f) * AT(3, 5) + F(0.212608f) * AT(5, 5) + F(-0.180240f) * AT(7, 5)); - const Temp_Type X106 = D(F(0.906127f) * AT(1, 6) + F(-0.318190f) * AT(3, 6) + F(0.212608f) * AT(5, 6) + F(-0.180240f) * AT(7, 6)); - const Temp_Type X107 = D(F(0.906127f) * AT(1, 7) + F(-0.318190f) * AT(3, 7) + F(0.212608f) * AT(5, 7) + F(-0.180240f) * AT(7, 7)); - const Temp_Type X110 = AT(2, 0); - const Temp_Type X111 = AT(2, 1); - const Temp_Type X112 = AT(2, 2); - const Temp_Type X113 = AT(2, 3); - const Temp_Type X114 = AT(2, 4); - const Temp_Type X115 = AT(2, 5); - const Temp_Type X116 = AT(2, 6); - const Temp_Type X117 = AT(2, 7); - const Temp_Type X120 = D(F(-0.074658f) * AT(1, 0) + F(0.513280f) * AT(3, 0) + F(0.768178f) * AT(5, 0) + F(-0.375330f) * AT(7, 0)); - const Temp_Type X121 = D(F(-0.074658f) * AT(1, 1) + F(0.513280f) * AT(3, 1) + F(0.768178f) * AT(5, 1) + F(-0.375330f) * AT(7, 1)); - const Temp_Type X122 = D(F(-0.074658f) * AT(1, 2) + F(0.513280f) * AT(3, 2) + F(0.768178f) * AT(5, 2) + F(-0.375330f) * AT(7, 2)); - const Temp_Type X123 = D(F(-0.074658f) * AT(1, 3) + F(0.513280f) * AT(3, 3) + F(0.768178f) * AT(5, 3) + F(-0.375330f) * AT(7, 3)); - const Temp_Type X124 = D(F(-0.074658f) * AT(1, 4) + F(0.513280f) * AT(3, 4) + F(0.768178f) * AT(5, 4) + F(-0.375330f) * AT(7, 4)); - const Temp_Type X125 = D(F(-0.074658f) * AT(1, 5) + F(0.513280f) * AT(3, 5) + F(0.768178f) * AT(5, 5) + F(-0.375330f) * AT(7, 5)); - const Temp_Type X126 = D(F(-0.074658f) * AT(1, 6) + F(0.513280f) * AT(3, 6) + F(0.768178f) * AT(5, 6) + F(-0.375330f) * AT(7, 6)); - const Temp_Type X127 = D(F(-0.074658f) * AT(1, 7) + F(0.513280f) * AT(3, 7) + F(0.768178f) * AT(5, 7) + F(-0.375330f) * AT(7, 7)); - const Temp_Type X130 = AT(6, 0); - const Temp_Type X131 = AT(6, 1); - const Temp_Type X132 = AT(6, 2); - const Temp_Type X133 = AT(6, 3); - const Temp_Type X134 = AT(6, 4); - const Temp_Type X135 = AT(6, 5); - const Temp_Type X136 = AT(6, 6); - const Temp_Type X137 = AT(6, 7); - // 80 muls 48 adds - - // 4x4 = 4x8 times 8x4, matrix 1 is constant - R.at(0, 0) = X100; - R.at(0, 1) = D(X101 * F(0.415735f) + X103 * F(0.791065f) + X105 * F(-0.352443f) + X107 * F(0.277785f)); - R.at(0, 2) = X104; - R.at(0, 3) = D(X101 * F(0.022887f) + X103 * F(-0.097545f) + X105 * F(0.490393f) + X107 * F(0.865723f)); - R.at(1, 0) = X110; - R.at(1, 1) = D(X111 * F(0.415735f) + X113 * F(0.791065f) + X115 * F(-0.352443f) + X117 * F(0.277785f)); - R.at(1, 2) = X114; - R.at(1, 3) = D(X111 * F(0.022887f) + X113 * F(-0.097545f) + X115 * F(0.490393f) + X117 * F(0.865723f)); - R.at(2, 0) = X120; - R.at(2, 1) = D(X121 * F(0.415735f) + X123 * F(0.791065f) + X125 * F(-0.352443f) + X127 * F(0.277785f)); - R.at(2, 2) = X124; - R.at(2, 3) = D(X121 * F(0.022887f) + X123 * F(-0.097545f) + X125 * F(0.490393f) + X127 * F(0.865723f)); - R.at(3, 0) = X130; - R.at(3, 1) = D(X131 * F(0.415735f) + X133 * F(0.791065f) + X135 * F(-0.352443f) + X137 * F(0.277785f)); - R.at(3, 2) = X134; - R.at(3, 3) = D(X131 * F(0.022887f) + X133 * F(-0.097545f) + X135 * F(0.490393f) + X137 * F(0.865723f)); - // 40 muls 24 adds - // 4x4 = 4x8 times 8x4, matrix 1 is constant - S.at(0, 0) = D(X101 * F(0.906127f) + X103 * F(-0.318190f) + X105 * F(0.212608f) + X107 * F(-0.180240f)); - S.at(0, 1) = X102; - S.at(0, 2) = D(X101 * F(-0.074658f) + X103 * F(0.513280f) + X105 * F(0.768178f) + X107 * F(-0.375330f)); - S.at(0, 3) = X106; - S.at(1, 0) = D(X111 * F(0.906127f) + X113 * F(-0.318190f) + X115 * F(0.212608f) + X117 * F(-0.180240f)); - S.at(1, 1) = X112; - S.at(1, 2) = D(X111 * F(-0.074658f) + X113 * F(0.513280f) + X115 * F(0.768178f) + X117 * F(-0.375330f)); - S.at(1, 3) = X116; - S.at(2, 0) = D(X121 * F(0.906127f) + X123 * F(-0.318190f) + X125 * F(0.212608f) + X127 * F(-0.180240f)); - S.at(2, 1) = X122; - S.at(2, 2) = D(X121 * F(-0.074658f) + X123 * F(0.513280f) + X125 * F(0.768178f) + X127 * F(-0.375330f)); - S.at(2, 3) = X126; - S.at(3, 0) = D(X131 * F(0.906127f) + X133 * F(-0.318190f) + X135 * F(0.212608f) + X137 * F(-0.180240f)); - S.at(3, 1) = X132; - S.at(3, 2) = D(X131 * F(-0.074658f) + X133 * F(0.513280f) + X135 * F(0.768178f) + X137 * F(-0.375330f)); - S.at(3, 3) = X136; - // 40 muls 24 adds - } - }; - } // end namespace DCT_Upsample - - // Unconditionally frees all allocated m_blocks. - void jpeg_decoder::free_all_blocks() - { - m_pStream = NULL; - for (mem_block *b = m_pMem_blocks; b; ) - { - mem_block *n = b->m_pNext; - jpgd_free(b); - b = n; - } - m_pMem_blocks = NULL; - } - - // This method handles all errors. - // It could easily be changed to use C++ exceptions. - void jpeg_decoder::stop_decoding(jpgd_status status) - { - m_error_code = status; - free_all_blocks(); - longjmp(m_jmp_state, status); - - // we shouldn't get here as longjmp shouldn't return, but we put it here to make it explicit - // that this function doesn't return, otherwise we get this error: - // - // error : function declared 'noreturn' should not return - exit(1); - } - - void *jpeg_decoder::alloc(size_t nSize, bool zero) - { - nSize = (JPGD_MAX(nSize, 1) + 3) & ~3; - char *rv = NULL; - for (mem_block *b = m_pMem_blocks; b; b = b->m_pNext) - { - if ((b->m_used_count + nSize) <= b->m_size) - { - rv = b->m_data + b->m_used_count; - b->m_used_count += nSize; - break; - } - } - if (!rv) - { - int capacity = JPGD_MAX(32768 - 256, (nSize + 2047) & ~2047); - mem_block *b = (mem_block*)jpgd_malloc(sizeof(mem_block) + capacity); - if (!b) stop_decoding(JPGD_NOTENOUGHMEM); - b->m_pNext = m_pMem_blocks; m_pMem_blocks = b; - b->m_used_count = nSize; - b->m_size = capacity; - rv = b->m_data; - } - if (zero) memset(rv, 0, nSize); - return rv; - } - - void jpeg_decoder::word_clear(void *p, uint16 c, uint n) - { - uint8 *pD = (uint8*)p; - const uint8 l = c & 0xFF, h = (c >> 8) & 0xFF; - while (n) - { - pD[0] = l; pD[1] = h; pD += 2; - n--; - } - } - - // Refill the input buffer. - // This method will sit in a loop until (A) the buffer is full or (B) - // the stream's read() method reports and end of file condition. - void jpeg_decoder::prep_in_buffer() - { - m_in_buf_left = 0; - m_pIn_buf_ofs = m_in_buf; - - if (m_eof_flag) - return; - - do - { - int bytes_read = m_pStream->read(m_in_buf + m_in_buf_left, JPGD_IN_BUF_SIZE - m_in_buf_left, &m_eof_flag); - if (bytes_read == -1) - stop_decoding(JPGD_STREAM_READ); - - m_in_buf_left += bytes_read; - } while ((m_in_buf_left < JPGD_IN_BUF_SIZE) && (!m_eof_flag)); - - m_total_bytes_read += m_in_buf_left; - - // Pad the end of the block with M_EOI (prevents the decompressor from going off the rails if the stream is invalid). - // (This dates way back to when this decompressor was written in C/asm, and the all-asm Huffman decoder did some fancy things to increase perf.) - word_clear(m_pIn_buf_ofs + m_in_buf_left, 0xD9FF, 64); - } - - // Read a Huffman code table. - void jpeg_decoder::read_dht_marker() - { - int i, index, count; - uint8 huff_num[17]; - uint8 huff_val[256]; - - uint num_left = get_bits(16); - - if (num_left < 2) - stop_decoding(JPGD_BAD_DHT_MARKER); - - num_left -= 2; - - while (num_left) - { - index = get_bits(8); - - huff_num[0] = 0; - - count = 0; - - for (i = 1; i <= 16; i++) - { - huff_num[i] = static_cast(get_bits(8)); - count += huff_num[i]; - } - - if (count > 255) - stop_decoding(JPGD_BAD_DHT_COUNTS); - - for (i = 0; i < count; i++) - huff_val[i] = static_cast(get_bits(8)); - - i = 1 + 16 + count; - - if (num_left < (uint)i) - stop_decoding(JPGD_BAD_DHT_MARKER); - - num_left -= i; - - if ((index & 0x10) > 0x10) - stop_decoding(JPGD_BAD_DHT_INDEX); - - index = (index & 0x0F) + ((index & 0x10) >> 4) * (JPGD_MAX_HUFF_TABLES >> 1); - - if (index >= JPGD_MAX_HUFF_TABLES) - stop_decoding(JPGD_BAD_DHT_INDEX); - - if (!m_huff_num[index]) - m_huff_num[index] = (uint8 *)alloc(17); - - if (!m_huff_val[index]) - m_huff_val[index] = (uint8 *)alloc(256); - - m_huff_ac[index] = (index & 0x10) != 0; - memcpy(m_huff_num[index], huff_num, 17); - memcpy(m_huff_val[index], huff_val, 256); - } - } - - // Read a quantization table. - void jpeg_decoder::read_dqt_marker() - { - int n, i, prec; - uint num_left; - uint temp; - - num_left = get_bits(16); - - if (num_left < 2) - stop_decoding(JPGD_BAD_DQT_MARKER); - - num_left -= 2; - - while (num_left) - { - n = get_bits(8); - prec = n >> 4; - n &= 0x0F; - - if (n >= JPGD_MAX_QUANT_TABLES) - stop_decoding(JPGD_BAD_DQT_TABLE); - - if (!m_quant[n]) - m_quant[n] = (jpgd_quant_t *)alloc(64 * sizeof(jpgd_quant_t)); - - // read quantization entries, in zag order - for (i = 0; i < 64; i++) - { - temp = get_bits(8); - - if (prec) - temp = (temp << 8) + get_bits(8); - - m_quant[n][i] = static_cast(temp); - } - - i = 64 + 1; - - if (prec) - i += 64; - - if (num_left < (uint)i) - stop_decoding(JPGD_BAD_DQT_LENGTH); - - num_left -= i; - } - } - - // Read the start of frame (SOF) marker. - void jpeg_decoder::read_sof_marker() - { - int i; - uint num_left; - - num_left = get_bits(16); - - if (get_bits(8) != 8) /* precision: sorry, only 8-bit precision is supported right now */ - stop_decoding(JPGD_BAD_PRECISION); - - m_image_y_size = get_bits(16); - - if ((m_image_y_size < 1) || (m_image_y_size > JPGD_MAX_HEIGHT)) - stop_decoding(JPGD_BAD_HEIGHT); - - m_image_x_size = get_bits(16); - - if ((m_image_x_size < 1) || (m_image_x_size > JPGD_MAX_WIDTH)) - stop_decoding(JPGD_BAD_WIDTH); - - m_comps_in_frame = get_bits(8); - - if (m_comps_in_frame > JPGD_MAX_COMPONENTS) - stop_decoding(JPGD_TOO_MANY_COMPONENTS); - - if (num_left != (uint)(m_comps_in_frame * 3 + 8)) - stop_decoding(JPGD_BAD_SOF_LENGTH); - - for (i = 0; i < m_comps_in_frame; i++) - { - m_comp_ident[i] = get_bits(8); - m_comp_h_samp[i] = get_bits(4); - m_comp_v_samp[i] = get_bits(4); - m_comp_quant[i] = get_bits(8); - } - } - - // Used to skip unrecognized markers. - void jpeg_decoder::skip_variable_marker() - { - uint num_left; - - num_left = get_bits(16); - - if (num_left < 2) - stop_decoding(JPGD_BAD_VARIABLE_MARKER); - - num_left -= 2; - - while (num_left) - { - get_bits(8); - num_left--; - } - } - - // Read a define restart interval (DRI) marker. - void jpeg_decoder::read_dri_marker() - { - if (get_bits(16) != 4) - stop_decoding(JPGD_BAD_DRI_LENGTH); - - m_restart_interval = get_bits(16); - } - - // Read a start of scan (SOS) marker. - void jpeg_decoder::read_sos_marker() - { - uint num_left; - int i, ci, n, c, cc; - - num_left = get_bits(16); - - n = get_bits(8); - - m_comps_in_scan = n; - - num_left -= 3; - - if ( (num_left != (uint)(n * 2 + 3)) || (n < 1) || (n > JPGD_MAX_COMPS_IN_SCAN) ) - stop_decoding(JPGD_BAD_SOS_LENGTH); - - for (i = 0; i < n; i++) - { - cc = get_bits(8); - c = get_bits(8); - num_left -= 2; - - for (ci = 0; ci < m_comps_in_frame; ci++) - if (cc == m_comp_ident[ci]) - break; - - if (ci >= m_comps_in_frame) - stop_decoding(JPGD_BAD_SOS_COMP_ID); - - m_comp_list[i] = ci; - m_comp_dc_tab[ci] = (c >> 4) & 15; - m_comp_ac_tab[ci] = (c & 15) + (JPGD_MAX_HUFF_TABLES >> 1); - } - - m_spectral_start = get_bits(8); - m_spectral_end = get_bits(8); - m_successive_high = get_bits(4); - m_successive_low = get_bits(4); - - if (!m_progressive_flag) - { - m_spectral_start = 0; - m_spectral_end = 63; - } - - num_left -= 3; - - while (num_left) /* read past whatever is num_left */ - { - get_bits(8); - num_left--; - } - } - - // Finds the next marker. - int jpeg_decoder::next_marker() - { - uint c, bytes; - - bytes = 0; - - do - { - do - { - bytes++; - c = get_bits(8); - } while (c != 0xFF); - - do - { - c = get_bits(8); - } while (c == 0xFF); - - } while (c == 0); - - // If bytes > 0 here, there where extra bytes before the marker (not good). - - return c; - } - - // Process markers. Returns when an SOFx, SOI, EOI, or SOS marker is - // encountered. - int jpeg_decoder::process_markers() - { - int c; - - for ( ; ; ) - { - c = next_marker(); - - switch (c) - { - case M_SOF0: - case M_SOF1: - case M_SOF2: - case M_SOF3: - case M_SOF5: - case M_SOF6: - case M_SOF7: - // case M_JPG: - case M_SOF9: - case M_SOF10: - case M_SOF11: - case M_SOF13: - case M_SOF14: - case M_SOF15: - case M_SOI: - case M_EOI: - case M_SOS: - { - return c; - } - case M_DHT: - { - read_dht_marker(); - break; - } - // No arithmitic support - dumb patents! - case M_DAC: - { - stop_decoding(JPGD_NO_ARITHMITIC_SUPPORT); - break; - } - case M_DQT: - { - read_dqt_marker(); - break; - } - case M_DRI: - { - read_dri_marker(); - break; - } - //case M_APP0: /* no need to read the JFIF marker */ - - case M_JPG: - case M_RST0: /* no parameters */ - case M_RST1: - case M_RST2: - case M_RST3: - case M_RST4: - case M_RST5: - case M_RST6: - case M_RST7: - case M_TEM: - { - stop_decoding(JPGD_UNEXPECTED_MARKER); - break; - } - default: /* must be DNL, DHP, EXP, APPn, JPGn, COM, or RESn or APP0 */ - { - skip_variable_marker(); - break; - } - } - } - } - - // Finds the start of image (SOI) marker. - // This code is rather defensive: it only checks the first 512 bytes to avoid - // false positives. - void jpeg_decoder::locate_soi_marker() - { - uint lastchar, thischar; - uint bytesleft; - - lastchar = get_bits(8); - - thischar = get_bits(8); - - /* ok if it's a normal JPEG file without a special header */ - - if ((lastchar == 0xFF) && (thischar == M_SOI)) - return; - - bytesleft = 4096; //512; - - for ( ; ; ) - { - if (--bytesleft == 0) - stop_decoding(JPGD_NOT_JPEG); - - lastchar = thischar; - - thischar = get_bits(8); - - if (lastchar == 0xFF) - { - if (thischar == M_SOI) - break; - else if (thischar == M_EOI) // get_bits will keep returning M_EOI if we read past the end - stop_decoding(JPGD_NOT_JPEG); - } - } - - // Check the next character after marker: if it's not 0xFF, it can't be the start of the next marker, so the file is bad. - thischar = (m_bit_buf >> 24) & 0xFF; - - if (thischar != 0xFF) - stop_decoding(JPGD_NOT_JPEG); - } - - // Find a start of frame (SOF) marker. - void jpeg_decoder::locate_sof_marker() - { - locate_soi_marker(); - - int c = process_markers(); - - switch (c) - { - case M_SOF2: - m_progressive_flag = JPGD_TRUE; - case M_SOF0: /* baseline DCT */ - case M_SOF1: /* extended sequential DCT */ - { - read_sof_marker(); - break; - } - case M_SOF9: /* Arithmitic coding */ - { - stop_decoding(JPGD_NO_ARITHMITIC_SUPPORT); - break; - } - default: - { - stop_decoding(JPGD_UNSUPPORTED_MARKER); - break; - } - } - } - - // Find a start of scan (SOS) marker. - int jpeg_decoder::locate_sos_marker() - { - int c; - - c = process_markers(); - - if (c == M_EOI) - return JPGD_FALSE; - else if (c != M_SOS) - stop_decoding(JPGD_UNEXPECTED_MARKER); - - read_sos_marker(); - - return JPGD_TRUE; - } - - // Reset everything to default/uninitialized state. - void jpeg_decoder::init(jpeg_decoder_stream *pStream) - { - m_pMem_blocks = NULL; - m_error_code = JPGD_SUCCESS; - m_ready_flag = false; - m_image_x_size = m_image_y_size = 0; - m_pStream = pStream; - m_progressive_flag = JPGD_FALSE; - - memset(m_huff_ac, 0, sizeof(m_huff_ac)); - memset(m_huff_num, 0, sizeof(m_huff_num)); - memset(m_huff_val, 0, sizeof(m_huff_val)); - memset(m_quant, 0, sizeof(m_quant)); - - m_scan_type = 0; - m_comps_in_frame = 0; - - memset(m_comp_h_samp, 0, sizeof(m_comp_h_samp)); - memset(m_comp_v_samp, 0, sizeof(m_comp_v_samp)); - memset(m_comp_quant, 0, sizeof(m_comp_quant)); - memset(m_comp_ident, 0, sizeof(m_comp_ident)); - memset(m_comp_h_blocks, 0, sizeof(m_comp_h_blocks)); - memset(m_comp_v_blocks, 0, sizeof(m_comp_v_blocks)); - - m_comps_in_scan = 0; - memset(m_comp_list, 0, sizeof(m_comp_list)); - memset(m_comp_dc_tab, 0, sizeof(m_comp_dc_tab)); - memset(m_comp_ac_tab, 0, sizeof(m_comp_ac_tab)); - - m_spectral_start = 0; - m_spectral_end = 0; - m_successive_low = 0; - m_successive_high = 0; - m_max_mcu_x_size = 0; - m_max_mcu_y_size = 0; - m_blocks_per_mcu = 0; - m_max_blocks_per_row = 0; - m_mcus_per_row = 0; - m_mcus_per_col = 0; - m_expanded_blocks_per_component = 0; - m_expanded_blocks_per_mcu = 0; - m_expanded_blocks_per_row = 0; - m_freq_domain_chroma_upsample = false; - - memset(m_mcu_org, 0, sizeof(m_mcu_org)); - - m_total_lines_left = 0; - m_mcu_lines_left = 0; - m_real_dest_bytes_per_scan_line = 0; - m_dest_bytes_per_scan_line = 0; - m_dest_bytes_per_pixel = 0; - - memset(m_pHuff_tabs, 0, sizeof(m_pHuff_tabs)); - - memset(m_dc_coeffs, 0, sizeof(m_dc_coeffs)); - memset(m_ac_coeffs, 0, sizeof(m_ac_coeffs)); - memset(m_block_y_mcu, 0, sizeof(m_block_y_mcu)); - - m_eob_run = 0; - - memset(m_block_y_mcu, 0, sizeof(m_block_y_mcu)); - - m_pIn_buf_ofs = m_in_buf; - m_in_buf_left = 0; - m_eof_flag = false; - m_tem_flag = 0; - - memset(m_in_buf_pad_start, 0, sizeof(m_in_buf_pad_start)); - memset(m_in_buf, 0, sizeof(m_in_buf)); - memset(m_in_buf_pad_end, 0, sizeof(m_in_buf_pad_end)); - - m_restart_interval = 0; - m_restarts_left = 0; - m_next_restart_num = 0; - - m_max_mcus_per_row = 0; - m_max_blocks_per_mcu = 0; - m_max_mcus_per_col = 0; - - memset(m_last_dc_val, 0, sizeof(m_last_dc_val)); - m_pMCU_coefficients = NULL; - m_pSample_buf = NULL; - - m_total_bytes_read = 0; - - m_pScan_line_0 = NULL; - m_pScan_line_1 = NULL; - - // Ready the input buffer. - prep_in_buffer(); - - // Prime the bit buffer. - m_bits_left = 16; - m_bit_buf = 0; - - get_bits(16); - get_bits(16); - - for (int i = 0; i < JPGD_MAX_BLOCKS_PER_MCU; i++) - m_mcu_block_max_zag[i] = 64; - } - -#define SCALEBITS 16 -#define ONE_HALF ((int) 1 << (SCALEBITS-1)) -#define FIX(x) ((int) ((x) * (1L<> SCALEBITS; - m_cbb[i] = ( FIX(1.77200f) * k + ONE_HALF) >> SCALEBITS; - m_crg[i] = (-FIX(0.71414f)) * k; - m_cbg[i] = (-FIX(0.34414f)) * k + ONE_HALF; - } - } - - // This method throws back into the stream any bytes that where read - // into the bit buffer during initial marker scanning. - void jpeg_decoder::fix_in_buffer() - { - // In case any 0xFF's where pulled into the buffer during marker scanning. - JPGD_ASSERT((m_bits_left & 7) == 0); - - if (m_bits_left == 16) - stuff_char( (uint8)(m_bit_buf & 0xFF)); - - if (m_bits_left >= 8) - stuff_char( (uint8)((m_bit_buf >> 8) & 0xFF)); - - stuff_char((uint8)((m_bit_buf >> 16) & 0xFF)); - stuff_char((uint8)((m_bit_buf >> 24) & 0xFF)); - - m_bits_left = 16; - get_bits_no_markers(16); - get_bits_no_markers(16); - } - - void jpeg_decoder::transform_mcu(int mcu_row) - { - jpgd_block_t* pSrc_ptr = m_pMCU_coefficients; - uint8* pDst_ptr = m_pSample_buf + mcu_row * m_blocks_per_mcu * 64; - - for (int mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++) - { - idct(pSrc_ptr, pDst_ptr, m_mcu_block_max_zag[mcu_block]); - pSrc_ptr += 64; - pDst_ptr += 64; - } - } - - static const uint8 s_max_rc[64] = - { - 17, 18, 34, 50, 50, 51, 52, 52, 52, 68, 84, 84, 84, 84, 85, 86, 86, 86, 86, 86, - 102, 118, 118, 118, 118, 118, 118, 119, 120, 120, 120, 120, 120, 120, 120, 136, - 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, - 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136 - }; - - void jpeg_decoder::transform_mcu_expand(int mcu_row) - { - jpgd_block_t* pSrc_ptr = m_pMCU_coefficients; - uint8* pDst_ptr = m_pSample_buf + mcu_row * m_expanded_blocks_per_mcu * 64; - - // Y IDCT - int mcu_block; - for (mcu_block = 0; mcu_block < m_expanded_blocks_per_component; mcu_block++) - { - idct(pSrc_ptr, pDst_ptr, m_mcu_block_max_zag[mcu_block]); - pSrc_ptr += 64; - pDst_ptr += 64; - } - - // Chroma IDCT, with upsampling - jpgd_block_t temp_block[64]; - - for (int i = 0; i < 2; i++) - { - DCT_Upsample::Matrix44 P, Q, R, S; - - JPGD_ASSERT(m_mcu_block_max_zag[mcu_block] >= 1); - JPGD_ASSERT(m_mcu_block_max_zag[mcu_block] <= 64); - - switch (s_max_rc[m_mcu_block_max_zag[mcu_block++] - 1]) - { - case 1*16+1: - DCT_Upsample::P_Q<1, 1>::calc(P, Q, pSrc_ptr); - DCT_Upsample::R_S<1, 1>::calc(R, S, pSrc_ptr); - break; - case 1*16+2: - DCT_Upsample::P_Q<1, 2>::calc(P, Q, pSrc_ptr); - DCT_Upsample::R_S<1, 2>::calc(R, S, pSrc_ptr); - break; - case 2*16+2: - DCT_Upsample::P_Q<2, 2>::calc(P, Q, pSrc_ptr); - DCT_Upsample::R_S<2, 2>::calc(R, S, pSrc_ptr); - break; - case 3*16+2: - DCT_Upsample::P_Q<3, 2>::calc(P, Q, pSrc_ptr); - DCT_Upsample::R_S<3, 2>::calc(R, S, pSrc_ptr); - break; - case 3*16+3: - DCT_Upsample::P_Q<3, 3>::calc(P, Q, pSrc_ptr); - DCT_Upsample::R_S<3, 3>::calc(R, S, pSrc_ptr); - break; - case 3*16+4: - DCT_Upsample::P_Q<3, 4>::calc(P, Q, pSrc_ptr); - DCT_Upsample::R_S<3, 4>::calc(R, S, pSrc_ptr); - break; - case 4*16+4: - DCT_Upsample::P_Q<4, 4>::calc(P, Q, pSrc_ptr); - DCT_Upsample::R_S<4, 4>::calc(R, S, pSrc_ptr); - break; - case 5*16+4: - DCT_Upsample::P_Q<5, 4>::calc(P, Q, pSrc_ptr); - DCT_Upsample::R_S<5, 4>::calc(R, S, pSrc_ptr); - break; - case 5*16+5: - DCT_Upsample::P_Q<5, 5>::calc(P, Q, pSrc_ptr); - DCT_Upsample::R_S<5, 5>::calc(R, S, pSrc_ptr); - break; - case 5*16+6: - DCT_Upsample::P_Q<5, 6>::calc(P, Q, pSrc_ptr); - DCT_Upsample::R_S<5, 6>::calc(R, S, pSrc_ptr); - break; - case 6*16+6: - DCT_Upsample::P_Q<6, 6>::calc(P, Q, pSrc_ptr); - DCT_Upsample::R_S<6, 6>::calc(R, S, pSrc_ptr); - break; - case 7*16+6: - DCT_Upsample::P_Q<7, 6>::calc(P, Q, pSrc_ptr); - DCT_Upsample::R_S<7, 6>::calc(R, S, pSrc_ptr); - break; - case 7*16+7: - DCT_Upsample::P_Q<7, 7>::calc(P, Q, pSrc_ptr); - DCT_Upsample::R_S<7, 7>::calc(R, S, pSrc_ptr); - break; - case 7*16+8: - DCT_Upsample::P_Q<7, 8>::calc(P, Q, pSrc_ptr); - DCT_Upsample::R_S<7, 8>::calc(R, S, pSrc_ptr); - break; - case 8*16+8: - DCT_Upsample::P_Q<8, 8>::calc(P, Q, pSrc_ptr); - DCT_Upsample::R_S<8, 8>::calc(R, S, pSrc_ptr); - break; - default: - JPGD_ASSERT(false); - } - - DCT_Upsample::Matrix44 a(P + Q); P -= Q; - DCT_Upsample::Matrix44& b = P; - DCT_Upsample::Matrix44 c(R + S); R -= S; - DCT_Upsample::Matrix44& d = R; - - DCT_Upsample::Matrix44::add_and_store(temp_block, a, c); - idct_4x4(temp_block, pDst_ptr); - pDst_ptr += 64; - - DCT_Upsample::Matrix44::sub_and_store(temp_block, a, c); - idct_4x4(temp_block, pDst_ptr); - pDst_ptr += 64; - - DCT_Upsample::Matrix44::add_and_store(temp_block, b, d); - idct_4x4(temp_block, pDst_ptr); - pDst_ptr += 64; - - DCT_Upsample::Matrix44::sub_and_store(temp_block, b, d); - idct_4x4(temp_block, pDst_ptr); - pDst_ptr += 64; - - pSrc_ptr += 64; - } - } - - // Loads and dequantizes the next row of (already decoded) coefficients. - // Progressive images only. - void jpeg_decoder::load_next_row() - { - int i; - jpgd_block_t *p; - jpgd_quant_t *q; - int mcu_row, mcu_block, row_block = 0; - int component_num, component_id; - int block_x_mcu[JPGD_MAX_COMPONENTS]; - - memset(block_x_mcu, 0, JPGD_MAX_COMPONENTS * sizeof(int)); - - for (mcu_row = 0; mcu_row < m_mcus_per_row; mcu_row++) - { - int block_x_mcu_ofs = 0, block_y_mcu_ofs = 0; - - for (mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++) - { - component_id = m_mcu_org[mcu_block]; - q = m_quant[m_comp_quant[component_id]]; - - p = m_pMCU_coefficients + 64 * mcu_block; - - jpgd_block_t* pAC = coeff_buf_getp(m_ac_coeffs[component_id], block_x_mcu[component_id] + block_x_mcu_ofs, m_block_y_mcu[component_id] + block_y_mcu_ofs); - jpgd_block_t* pDC = coeff_buf_getp(m_dc_coeffs[component_id], block_x_mcu[component_id] + block_x_mcu_ofs, m_block_y_mcu[component_id] + block_y_mcu_ofs); - p[0] = pDC[0]; - memcpy(&p[1], &pAC[1], 63 * sizeof(jpgd_block_t)); - - for (i = 63; i > 0; i--) - if (p[g_ZAG[i]]) - break; - - m_mcu_block_max_zag[mcu_block] = i + 1; - - for ( ; i >= 0; i--) - if (p[g_ZAG[i]]) - p[g_ZAG[i]] = static_cast(p[g_ZAG[i]] * q[i]); - - row_block++; - - if (m_comps_in_scan == 1) - block_x_mcu[component_id]++; - else - { - if (++block_x_mcu_ofs == m_comp_h_samp[component_id]) - { - block_x_mcu_ofs = 0; - - if (++block_y_mcu_ofs == m_comp_v_samp[component_id]) - { - block_y_mcu_ofs = 0; - - block_x_mcu[component_id] += m_comp_h_samp[component_id]; - } - } - } - } - - if (m_freq_domain_chroma_upsample) - transform_mcu_expand(mcu_row); - else - transform_mcu(mcu_row); - } - - if (m_comps_in_scan == 1) - m_block_y_mcu[m_comp_list[0]]++; - else - { - for (component_num = 0; component_num < m_comps_in_scan; component_num++) - { - component_id = m_comp_list[component_num]; - - m_block_y_mcu[component_id] += m_comp_v_samp[component_id]; - } - } - } - - // Restart interval processing. - void jpeg_decoder::process_restart() - { - int i; - int c = 0; - - // Align to a byte boundry - // FIXME: Is this really necessary? get_bits_no_markers() never reads in markers! - //get_bits_no_markers(m_bits_left & 7); - - // Let's scan a little bit to find the marker, but not _too_ far. - // 1536 is a "fudge factor" that determines how much to scan. - for (i = 1536; i > 0; i--) - if (get_char() == 0xFF) - break; - - if (i == 0) - stop_decoding(JPGD_BAD_RESTART_MARKER); - - for ( ; i > 0; i--) - if ((c = get_char()) != 0xFF) - break; - - if (i == 0) - stop_decoding(JPGD_BAD_RESTART_MARKER); - - // Is it the expected marker? If not, something bad happened. - if (c != (m_next_restart_num + M_RST0)) - stop_decoding(JPGD_BAD_RESTART_MARKER); - - // Reset each component's DC prediction values. - memset(&m_last_dc_val, 0, m_comps_in_frame * sizeof(uint)); - - m_eob_run = 0; - - m_restarts_left = m_restart_interval; - - m_next_restart_num = (m_next_restart_num + 1) & 7; - - // Get the bit buffer going again... - - m_bits_left = 16; - get_bits_no_markers(16); - get_bits_no_markers(16); - } - - static inline int dequantize_ac(int c, int q) { c *= q; return c; } - - // Decodes and dequantizes the next row of coefficients. - void jpeg_decoder::decode_next_row() - { - int row_block = 0; - - for (int mcu_row = 0; mcu_row < m_mcus_per_row; mcu_row++) - { - if ((m_restart_interval) && (m_restarts_left == 0)) - process_restart(); - - jpgd_block_t* p = m_pMCU_coefficients; - for (int mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++, p += 64) - { - int component_id = m_mcu_org[mcu_block]; - jpgd_quant_t* q = m_quant[m_comp_quant[component_id]]; - - int r, s; - s = huff_decode(m_pHuff_tabs[m_comp_dc_tab[component_id]], r); - s = HUFF_EXTEND(r, s); - - m_last_dc_val[component_id] = (s += m_last_dc_val[component_id]); - - p[0] = static_cast(s * q[0]); - - int prev_num_set = m_mcu_block_max_zag[mcu_block]; - - huff_tables *pH = m_pHuff_tabs[m_comp_ac_tab[component_id]]; - - int k; - for (k = 1; k < 64; k++) - { - int extra_bits; - s = huff_decode(pH, extra_bits); - - r = s >> 4; - s &= 15; - - if (s) - { - if (r) - { - if ((k + r) > 63) - stop_decoding(JPGD_DECODE_ERROR); - - if (k < prev_num_set) - { - int n = JPGD_MIN(r, prev_num_set - k); - int kt = k; - while (n--) - p[g_ZAG[kt++]] = 0; - } - - k += r; - } - - s = HUFF_EXTEND(extra_bits, s); - - JPGD_ASSERT(k < 64); - - p[g_ZAG[k]] = static_cast(dequantize_ac(s, q[k])); //s * q[k]; - } - else - { - if (r == 15) - { - if ((k + 16) > 64) - stop_decoding(JPGD_DECODE_ERROR); - - if (k < prev_num_set) - { - int n = JPGD_MIN(16, prev_num_set - k); - int kt = k; - while (n--) - { - JPGD_ASSERT(kt <= 63); - p[g_ZAG[kt++]] = 0; - } - } - - k += 16 - 1; // - 1 because the loop counter is k - // BEGIN EPIC MOD - JPGD_ASSERT(k < 64 && p[g_ZAG[k]] == 0); - // END EPIC MOD - } - else - break; - } - } - - if (k < prev_num_set) - { - int kt = k; - while (kt < prev_num_set) - p[g_ZAG[kt++]] = 0; - } - - m_mcu_block_max_zag[mcu_block] = k; - - row_block++; - } - - if (m_freq_domain_chroma_upsample) - transform_mcu_expand(mcu_row); - else - transform_mcu(mcu_row); - - m_restarts_left--; - } - } - - // YCbCr H1V1 (1x1:1:1, 3 m_blocks per MCU) to RGB - void jpeg_decoder::H1V1Convert() - { - int row = m_max_mcu_y_size - m_mcu_lines_left; - uint8 *d = m_pScan_line_0; - uint8 *s = m_pSample_buf + row * 8; - - for (int i = m_max_mcus_per_row; i > 0; i--) - { - for (int j = 0; j < 8; j++) - { - int y = s[j]; - int cb = s[64+j]; - int cr = s[128+j]; - - if (jpg_format == ERGBFormatJPG::BGRA) - { - d[0] = clamp(y + m_cbb[cb]); - d[1] = clamp(y + ((m_crg[cr] + m_cbg[cb]) >> 16)); - d[2] = clamp(y + m_crr[cr]); - d[3] = 255; - } - else - { - d[0] = clamp(y + m_crr[cr]); - d[1] = clamp(y + ((m_crg[cr] + m_cbg[cb]) >> 16)); - d[2] = clamp(y + m_cbb[cb]); - d[3] = 255; - } - d += 4; - } - - s += 64*3; - } - } - - // YCbCr H2V1 (2x1:1:1, 4 m_blocks per MCU) to RGB - void jpeg_decoder::H2V1Convert() - { - int row = m_max_mcu_y_size - m_mcu_lines_left; - uint8 *d0 = m_pScan_line_0; - uint8 *y = m_pSample_buf + row * 8; - uint8 *c = m_pSample_buf + 2*64 + row * 8; - - for (int i = m_max_mcus_per_row; i > 0; i--) - { - for (int l = 0; l < 2; l++) - { - for (int j = 0; j < 4; j++) - { - int cb = c[0]; - int cr = c[64]; - - int rc = m_crr[cr]; - int gc = ((m_crg[cr] + m_cbg[cb]) >> 16); - int bc = m_cbb[cb]; - - int yy = y[j<<1]; - if (jpg_format == ERGBFormatJPG::BGRA) - { - d0[0] = clamp(yy+bc); - d0[1] = clamp(yy+gc); - d0[2] = clamp(yy+rc); - d0[3] = 255; - yy = y[(j<<1)+1]; - d0[4] = clamp(yy+bc); - d0[5] = clamp(yy+gc); - d0[6] = clamp(yy+rc); - d0[7] = 255; - } - else - { - d0[0] = clamp(yy+rc); - d0[1] = clamp(yy+gc); - d0[2] = clamp(yy+bc); - d0[3] = 255; - yy = y[(j<<1)+1]; - d0[4] = clamp(yy+rc); - d0[5] = clamp(yy+gc); - d0[6] = clamp(yy+bc); - d0[7] = 255; - } - - d0 += 8; - - c++; - } - y += 64; - } - - y += 64*4 - 64*2; - c += 64*4 - 8; - } - } - - // YCbCr H2V1 (1x2:1:1, 4 m_blocks per MCU) to RGB - void jpeg_decoder::H1V2Convert() - { - int row = m_max_mcu_y_size - m_mcu_lines_left; - uint8 *d0 = m_pScan_line_0; - uint8 *d1 = m_pScan_line_1; - uint8 *y; - uint8 *c; - - if (row < 8) - y = m_pSample_buf + row * 8; - else - y = m_pSample_buf + 64*1 + (row & 7) * 8; - - c = m_pSample_buf + 64*2 + (row >> 1) * 8; - - for (int i = m_max_mcus_per_row; i > 0; i--) - { - for (int j = 0; j < 8; j++) - { - int cb = c[0+j]; - int cr = c[64+j]; - - int rc = m_crr[cr]; - int gc = ((m_crg[cr] + m_cbg[cb]) >> 16); - int bc = m_cbb[cb]; - - int yy = y[j]; - if (jpg_format == ERGBFormatJPG::BGRA) - { - d0[0] = clamp(yy+bc); - d0[1] = clamp(yy+gc); - d0[2] = clamp(yy+rc); - d0[3] = 255; - yy = y[8+j]; - d1[0] = clamp(yy+bc); - d1[1] = clamp(yy+gc); - d1[2] = clamp(yy+rc); - d1[3] = 255; - } - else - { - d0[0] = clamp(yy+rc); - d0[1] = clamp(yy+gc); - d0[2] = clamp(yy+bc); - d0[3] = 255; - yy = y[8+j]; - d1[0] = clamp(yy+rc); - d1[1] = clamp(yy+gc); - d1[2] = clamp(yy+bc); - d1[3] = 255; - } - - d0 += 4; - d1 += 4; - } - - y += 64*4; - c += 64*4; - } - } - - // YCbCr H2V2 (2x2:1:1, 6 m_blocks per MCU) to RGB - void jpeg_decoder::H2V2Convert() - { - int row = m_max_mcu_y_size - m_mcu_lines_left; - uint8 *d0 = m_pScan_line_0; - uint8 *d1 = m_pScan_line_1; - uint8 *y; - uint8 *c; - - if (row < 8) - y = m_pSample_buf + row * 8; - else - y = m_pSample_buf + 64*2 + (row & 7) * 8; - - c = m_pSample_buf + 64*4 + (row >> 1) * 8; - - for (int i = m_max_mcus_per_row; i > 0; i--) - { - for (int l = 0; l < 2; l++) - { - for (int j = 0; j < 8; j += 2) - { - int cb = c[0]; - int cr = c[64]; - - int rc = m_crr[cr]; - int gc = ((m_crg[cr] + m_cbg[cb]) >> 16); - int bc = m_cbb[cb]; - - int yy = y[j]; - if (jpg_format == ERGBFormatJPG::BGRA) - { - d0[0] = clamp(yy+bc); - d0[1] = clamp(yy+gc); - d0[2] = clamp(yy+rc); - d0[3] = 255; - yy = y[j+1]; - d0[4] = clamp(yy+bc); - d0[5] = clamp(yy+gc); - d0[6] = clamp(yy+rc); - d0[7] = 255; - yy = y[j+8]; - d1[0] = clamp(yy+bc); - d1[1] = clamp(yy+gc); - d1[2] = clamp(yy+rc); - d1[3] = 255; - yy = y[j+8+1]; - d1[4] = clamp(yy+bc); - d1[5] = clamp(yy+gc); - d1[6] = clamp(yy+rc); - d1[7] = 255; - } - else - { - d0[0] = clamp(yy+rc); - d0[1] = clamp(yy+gc); - d0[2] = clamp(yy+bc); - d0[3] = 255; - yy = y[j+1]; - d0[4] = clamp(yy+rc); - d0[5] = clamp(yy+gc); - d0[6] = clamp(yy+bc); - d0[7] = 255; - yy = y[j+8]; - d1[0] = clamp(yy+rc); - d1[1] = clamp(yy+gc); - d1[2] = clamp(yy+bc); - d1[3] = 255; - yy = y[j+8+1]; - d1[4] = clamp(yy+rc); - d1[5] = clamp(yy+gc); - d1[6] = clamp(yy+bc); - d1[7] = 255; - } - - d0 += 8; - d1 += 8; - - c++; - } - y += 64; - } - - y += 64*6 - 64*2; - c += 64*6 - 8; - } - } - - // Y (1 block per MCU) to 8-bit grayscale - void jpeg_decoder::gray_convert() - { - int row = m_max_mcu_y_size - m_mcu_lines_left; - uint8 *d = m_pScan_line_0; - uint8 *s = m_pSample_buf + row * 8; - - for (int i = m_max_mcus_per_row; i > 0; i--) - { - *(uint *)d = *(uint *)s; - *(uint *)(&d[4]) = *(uint *)(&s[4]); - - s += 64; - d += 8; - } - } - - void jpeg_decoder::expanded_convert() - { - int row = m_max_mcu_y_size - m_mcu_lines_left; - - uint8* Py = m_pSample_buf + (row / 8) * 64 * m_comp_h_samp[0] + (row & 7) * 8; - - uint8* d = m_pScan_line_0; - - for (int i = m_max_mcus_per_row; i > 0; i--) - { - for (int k = 0; k < m_max_mcu_x_size; k += 8) - { - const int Y_ofs = k * 8; - const int Cb_ofs = Y_ofs + 64 * m_expanded_blocks_per_component; - const int Cr_ofs = Y_ofs + 64 * m_expanded_blocks_per_component * 2; - for (int j = 0; j < 8; j++) - { - int y = Py[Y_ofs + j]; - int cb = Py[Cb_ofs + j]; - int cr = Py[Cr_ofs + j]; - - if (jpg_format == ERGBFormatJPG::BGRA) - { - d[0] = clamp(y + m_cbb[cb]); - d[1] = clamp(y + ((m_crg[cr] + m_cbg[cb]) >> 16)); - d[2] = clamp(y + m_crr[cr]); - d[3] = 255; - } - else - { - d[0] = clamp(y + m_crr[cr]); - d[1] = clamp(y + ((m_crg[cr] + m_cbg[cb]) >> 16)); - d[2] = clamp(y + m_cbb[cb]); - d[3] = 255; - } - - d += 4; - } - } - - Py += 64 * m_expanded_blocks_per_mcu; - } - } - - // Find end of image (EOI) marker, so we can return to the user the exact size of the input stream. - void jpeg_decoder::find_eoi() - { - if (!m_progressive_flag) - { - // Attempt to read the EOI marker. - //get_bits_no_markers(m_bits_left & 7); - - // Prime the bit buffer - m_bits_left = 16; - get_bits(16); - get_bits(16); - - // The next marker _should_ be EOI - process_markers(); - } - - m_total_bytes_read -= m_in_buf_left; - } - - int jpeg_decoder::decode(const void** pScan_line, uint* pScan_line_len) - { - if ((m_error_code) || (!m_ready_flag)) - return JPGD_FAILED; - - if (m_total_lines_left == 0) - return JPGD_DONE; - - if (m_mcu_lines_left == 0) - { - if (setjmp(m_jmp_state)) - return JPGD_FAILED; - - if (m_progressive_flag) - load_next_row(); - else - decode_next_row(); - - // Find the EOI marker if that was the last row. - if (m_total_lines_left <= m_max_mcu_y_size) - find_eoi(); - - m_mcu_lines_left = m_max_mcu_y_size; - } - - if (m_freq_domain_chroma_upsample) - { - expanded_convert(); - *pScan_line = m_pScan_line_0; - } - else - { - switch (m_scan_type) - { - case JPGD_YH2V2: - { - if ((m_mcu_lines_left & 1) == 0) - { - H2V2Convert(); - *pScan_line = m_pScan_line_0; - } - else - *pScan_line = m_pScan_line_1; - - break; - } - case JPGD_YH2V1: - { - H2V1Convert(); - *pScan_line = m_pScan_line_0; - break; - } - case JPGD_YH1V2: - { - if ((m_mcu_lines_left & 1) == 0) - { - H1V2Convert(); - *pScan_line = m_pScan_line_0; - } - else - *pScan_line = m_pScan_line_1; - - break; - } - case JPGD_YH1V1: - { - H1V1Convert(); - *pScan_line = m_pScan_line_0; - break; - } - case JPGD_GRAYSCALE: - { - gray_convert(); - *pScan_line = m_pScan_line_0; - - break; - } - } - } - - *pScan_line_len = m_real_dest_bytes_per_scan_line; - - m_mcu_lines_left--; - m_total_lines_left--; - - return JPGD_SUCCESS; - } - - // Creates the tables needed for efficient Huffman decoding. - void jpeg_decoder::make_huff_table(int index, huff_tables *pH) - { - int p, i, l, si; - uint8 huffsize[257]; - uint huffcode[257]; - uint code; - uint subtree; - int code_size; - int lastp; - int nextfreeentry; - int currententry; - - pH->ac_table = m_huff_ac[index] != 0; - - p = 0; - - for (l = 1; l <= 16; l++) - { - for (i = 1; i <= m_huff_num[index][l]; i++) - huffsize[p++] = static_cast(l); - } - - huffsize[p] = 0; - - lastp = p; - - code = 0; - si = huffsize[0]; - p = 0; - - while (huffsize[p]) - { - while (huffsize[p] == si) - { - huffcode[p++] = code; - code++; - } - - code <<= 1; - si++; - } - - memset(pH->look_up, 0, sizeof(pH->look_up)); - memset(pH->look_up2, 0, sizeof(pH->look_up2)); - memset(pH->tree, 0, sizeof(pH->tree)); - memset(pH->code_size, 0, sizeof(pH->code_size)); - - nextfreeentry = -1; - - p = 0; - - while (p < lastp) - { - i = m_huff_val[index][p]; - code = huffcode[p]; - code_size = huffsize[p]; - - pH->code_size[i] = static_cast(code_size); - - if (code_size <= 8) - { - code <<= (8 - code_size); - - for (l = 1 << (8 - code_size); l > 0; l--) - { - JPGD_ASSERT(i < 256); - - pH->look_up[code] = i; - - bool has_extrabits = false; - int extra_bits = 0; - int num_extra_bits = i & 15; - - int bits_to_fetch = code_size; - if (num_extra_bits) - { - int total_codesize = code_size + num_extra_bits; - if (total_codesize <= 8) - { - has_extrabits = true; - extra_bits = ((1 << num_extra_bits) - 1) & (code >> (8 - total_codesize)); - JPGD_ASSERT(extra_bits <= 0x7FFF); - bits_to_fetch += num_extra_bits; - } - } - - if (!has_extrabits) - pH->look_up2[code] = i | (bits_to_fetch << 8); - else - pH->look_up2[code] = i | 0x8000 | (extra_bits << 16) | (bits_to_fetch << 8); - - code++; - } - } - else - { - subtree = (code >> (code_size - 8)) & 0xFF; - - currententry = pH->look_up[subtree]; - - if (currententry == 0) - { - pH->look_up[subtree] = currententry = nextfreeentry; - pH->look_up2[subtree] = currententry = nextfreeentry; - - nextfreeentry -= 2; - } - - code <<= (16 - (code_size - 8)); - - for (l = code_size; l > 9; l--) - { - if ((code & 0x8000) == 0) - currententry--; - - if (pH->tree[-currententry - 1] == 0) - { - pH->tree[-currententry - 1] = nextfreeentry; - - currententry = nextfreeentry; - - nextfreeentry -= 2; - } - else - currententry = pH->tree[-currententry - 1]; - - code <<= 1; - } - - if ((code & 0x8000) == 0) - currententry--; - - pH->tree[-currententry - 1] = i; - } - - p++; - } - } - - // Verifies the quantization tables needed for this scan are available. - void jpeg_decoder::check_quant_tables() - { - for (int i = 0; i < m_comps_in_scan; i++) - if (m_quant[m_comp_quant[m_comp_list[i]]] == NULL) - stop_decoding(JPGD_UNDEFINED_QUANT_TABLE); - } - - // Verifies that all the Huffman tables needed for this scan are available. - void jpeg_decoder::check_huff_tables() - { - for (int i = 0; i < m_comps_in_scan; i++) - { - if ((m_spectral_start == 0) && (m_huff_num[m_comp_dc_tab[m_comp_list[i]]] == NULL)) - stop_decoding(JPGD_UNDEFINED_HUFF_TABLE); - - if ((m_spectral_end > 0) && (m_huff_num[m_comp_ac_tab[m_comp_list[i]]] == NULL)) - stop_decoding(JPGD_UNDEFINED_HUFF_TABLE); - } - - for (int i = 0; i < JPGD_MAX_HUFF_TABLES; i++) - if (m_huff_num[i]) - { - if (!m_pHuff_tabs[i]) - m_pHuff_tabs[i] = (huff_tables *)alloc(sizeof(huff_tables)); - - make_huff_table(i, m_pHuff_tabs[i]); - } - } - - // Determines the component order inside each MCU. - // Also calcs how many MCU's are on each row, etc. - void jpeg_decoder::calc_mcu_block_order() - { - int component_num, component_id; - int max_h_samp = 0, max_v_samp = 0; - - for (component_id = 0; component_id < m_comps_in_frame; component_id++) - { - if (m_comp_h_samp[component_id] > max_h_samp) - max_h_samp = m_comp_h_samp[component_id]; - - if (m_comp_v_samp[component_id] > max_v_samp) - max_v_samp = m_comp_v_samp[component_id]; - } - - for (component_id = 0; component_id < m_comps_in_frame; component_id++) - { - m_comp_h_blocks[component_id] = ((((m_image_x_size * m_comp_h_samp[component_id]) + (max_h_samp - 1)) / max_h_samp) + 7) / 8; - m_comp_v_blocks[component_id] = ((((m_image_y_size * m_comp_v_samp[component_id]) + (max_v_samp - 1)) / max_v_samp) + 7) / 8; - } - - if (m_comps_in_scan == 1) - { - m_mcus_per_row = m_comp_h_blocks[m_comp_list[0]]; - m_mcus_per_col = m_comp_v_blocks[m_comp_list[0]]; - } - else - { - m_mcus_per_row = (((m_image_x_size + 7) / 8) + (max_h_samp - 1)) / max_h_samp; - m_mcus_per_col = (((m_image_y_size + 7) / 8) + (max_v_samp - 1)) / max_v_samp; - } - - if (m_comps_in_scan == 1) - { - m_mcu_org[0] = m_comp_list[0]; - - m_blocks_per_mcu = 1; - } - else - { - m_blocks_per_mcu = 0; - - for (component_num = 0; component_num < m_comps_in_scan; component_num++) - { - int num_blocks; - - component_id = m_comp_list[component_num]; - - num_blocks = m_comp_h_samp[component_id] * m_comp_v_samp[component_id]; - - while (num_blocks--) - m_mcu_org[m_blocks_per_mcu++] = component_id; - } - } - } - - // Starts a new scan. - int jpeg_decoder::init_scan() - { - if (!locate_sos_marker()) - return JPGD_FALSE; - - calc_mcu_block_order(); - - check_huff_tables(); - - check_quant_tables(); - - memset(m_last_dc_val, 0, m_comps_in_frame * sizeof(uint)); - - m_eob_run = 0; - - if (m_restart_interval) - { - m_restarts_left = m_restart_interval; - m_next_restart_num = 0; - } - - fix_in_buffer(); - - return JPGD_TRUE; - } - - // Starts a frame. Determines if the number of components or sampling factors - // are supported. - void jpeg_decoder::init_frame() - { - int i; - - if (m_comps_in_frame == 1) - { - if ((m_comp_h_samp[0] != 1) || (m_comp_v_samp[0] != 1)) - stop_decoding(JPGD_UNSUPPORTED_SAMP_FACTORS); - - m_scan_type = JPGD_GRAYSCALE; - m_max_blocks_per_mcu = 1; - m_max_mcu_x_size = 8; - m_max_mcu_y_size = 8; - } - else if (m_comps_in_frame == 3) - { - if ( ((m_comp_h_samp[1] != 1) || (m_comp_v_samp[1] != 1)) || - ((m_comp_h_samp[2] != 1) || (m_comp_v_samp[2] != 1)) ) - stop_decoding(JPGD_UNSUPPORTED_SAMP_FACTORS); - - if ((m_comp_h_samp[0] == 1) && (m_comp_v_samp[0] == 1)) - { - m_scan_type = JPGD_YH1V1; - - m_max_blocks_per_mcu = 3; - m_max_mcu_x_size = 8; - m_max_mcu_y_size = 8; - } - else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 1)) - { - m_scan_type = JPGD_YH2V1; - m_max_blocks_per_mcu = 4; - m_max_mcu_x_size = 16; - m_max_mcu_y_size = 8; - } - else if ((m_comp_h_samp[0] == 1) && (m_comp_v_samp[0] == 2)) - { - m_scan_type = JPGD_YH1V2; - m_max_blocks_per_mcu = 4; - m_max_mcu_x_size = 8; - m_max_mcu_y_size = 16; - } - else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 2)) - { - m_scan_type = JPGD_YH2V2; - m_max_blocks_per_mcu = 6; - m_max_mcu_x_size = 16; - m_max_mcu_y_size = 16; - } - else - stop_decoding(JPGD_UNSUPPORTED_SAMP_FACTORS); - } - else - stop_decoding(JPGD_UNSUPPORTED_COLORSPACE); - - m_max_mcus_per_row = (m_image_x_size + (m_max_mcu_x_size - 1)) / m_max_mcu_x_size; - m_max_mcus_per_col = (m_image_y_size + (m_max_mcu_y_size - 1)) / m_max_mcu_y_size; - - // These values are for the *destination* pixels: after conversion. - if (m_scan_type == JPGD_GRAYSCALE) - m_dest_bytes_per_pixel = 1; - else - m_dest_bytes_per_pixel = 4; - - m_dest_bytes_per_scan_line = ((m_image_x_size + 15) & 0xFFF0) * m_dest_bytes_per_pixel; - - m_real_dest_bytes_per_scan_line = (m_image_x_size * m_dest_bytes_per_pixel); - - // Initialize two scan line buffers. - m_pScan_line_0 = (uint8 *)alloc(m_dest_bytes_per_scan_line, true); - if ((m_scan_type == JPGD_YH1V2) || (m_scan_type == JPGD_YH2V2)) - m_pScan_line_1 = (uint8 *)alloc(m_dest_bytes_per_scan_line, true); - - m_max_blocks_per_row = m_max_mcus_per_row * m_max_blocks_per_mcu; - - // Should never happen - if (m_max_blocks_per_row > JPGD_MAX_BLOCKS_PER_ROW) - stop_decoding(JPGD_ASSERTION_ERROR); - - // Allocate the coefficient buffer, enough for one MCU - m_pMCU_coefficients = (jpgd_block_t*)alloc(m_max_blocks_per_mcu * 64 * sizeof(jpgd_block_t)); - - for (i = 0; i < m_max_blocks_per_mcu; i++) - m_mcu_block_max_zag[i] = 64; - - m_expanded_blocks_per_component = m_comp_h_samp[0] * m_comp_v_samp[0]; - m_expanded_blocks_per_mcu = m_expanded_blocks_per_component * m_comps_in_frame; - m_expanded_blocks_per_row = m_max_mcus_per_row * m_expanded_blocks_per_mcu; - // Freq. domain chroma upsampling is only supported for H2V2 subsampling factor. -// BEGIN EPIC MOD -#if JPGD_SUPPORT_FREQ_DOMAIN_UPSAMPLING - m_freq_domain_chroma_upsample = (m_expanded_blocks_per_mcu == 4*3); -#else - m_freq_domain_chroma_upsample = 0; -#endif -// END EPIC MOD - - if (m_freq_domain_chroma_upsample) - m_pSample_buf = (uint8 *)alloc(m_expanded_blocks_per_row * 64); - else - m_pSample_buf = (uint8 *)alloc(m_max_blocks_per_row * 64); - - m_total_lines_left = m_image_y_size; - - m_mcu_lines_left = 0; - - create_look_ups(); - } - - // The coeff_buf series of methods originally stored the coefficients - // into a "virtual" file which was located in EMS, XMS, or a disk file. A cache - // was used to make this process more efficient. Now, we can store the entire - // thing in RAM. - jpeg_decoder::coeff_buf* jpeg_decoder::coeff_buf_open(int block_num_x, int block_num_y, int block_len_x, int block_len_y) - { - coeff_buf* cb = (coeff_buf*)alloc(sizeof(coeff_buf)); - - cb->block_num_x = block_num_x; - cb->block_num_y = block_num_y; - cb->block_len_x = block_len_x; - cb->block_len_y = block_len_y; - cb->block_size = (block_len_x * block_len_y) * sizeof(jpgd_block_t); - cb->pData = (uint8 *)alloc(cb->block_size * block_num_x * block_num_y, true); - return cb; - } - - inline jpgd_block_t *jpeg_decoder::coeff_buf_getp(coeff_buf *cb, int block_x, int block_y) - { - JPGD_ASSERT((block_x < cb->block_num_x) && (block_y < cb->block_num_y)); - return (jpgd_block_t *)(cb->pData + block_x * cb->block_size + block_y * (cb->block_size * cb->block_num_x)); - } - - // The following methods decode the various types of m_blocks encountered - // in progressively encoded images. - void jpeg_decoder::decode_block_dc_first(jpeg_decoder *pD, int component_id, int block_x, int block_y) - { - int s, r; - jpgd_block_t *p = pD->coeff_buf_getp(pD->m_dc_coeffs[component_id], block_x, block_y); - - if ((s = pD->huff_decode(pD->m_pHuff_tabs[pD->m_comp_dc_tab[component_id]])) != 0) - { - r = pD->get_bits_no_markers(s); - s = HUFF_EXTEND(r, s); - } - - pD->m_last_dc_val[component_id] = (s += pD->m_last_dc_val[component_id]); - - p[0] = static_cast(s << pD->m_successive_low); - } - - void jpeg_decoder::decode_block_dc_refine(jpeg_decoder *pD, int component_id, int block_x, int block_y) - { - if (pD->get_bits_no_markers(1)) - { - jpgd_block_t *p = pD->coeff_buf_getp(pD->m_dc_coeffs[component_id], block_x, block_y); - - p[0] |= (1 << pD->m_successive_low); - } - } - - void jpeg_decoder::decode_block_ac_first(jpeg_decoder *pD, int component_id, int block_x, int block_y) - { - int k, s, r; - - if (pD->m_eob_run) - { - pD->m_eob_run--; - return; - } - - jpgd_block_t *p = pD->coeff_buf_getp(pD->m_ac_coeffs[component_id], block_x, block_y); - - for (k = pD->m_spectral_start; k <= pD->m_spectral_end; k++) - { - s = pD->huff_decode(pD->m_pHuff_tabs[pD->m_comp_ac_tab[component_id]]); - - r = s >> 4; - s &= 15; - - if (s) - { - if ((k += r) > 63) - pD->stop_decoding(JPGD_DECODE_ERROR); - - r = pD->get_bits_no_markers(s); - s = HUFF_EXTEND(r, s); - - p[g_ZAG[k]] = static_cast(s << pD->m_successive_low); - } - else - { - if (r == 15) - { - if ((k += 15) > 63) - pD->stop_decoding(JPGD_DECODE_ERROR); - } - else - { - pD->m_eob_run = 1 << r; - - if (r) - pD->m_eob_run += pD->get_bits_no_markers(r); - - pD->m_eob_run--; - - break; - } - } - } - } - - void jpeg_decoder::decode_block_ac_refine(jpeg_decoder *pD, int component_id, int block_x, int block_y) - { - int s, k, r; - int p1 = 1 << pD->m_successive_low; - int m1 = (-1) << pD->m_successive_low; - jpgd_block_t *p = pD->coeff_buf_getp(pD->m_ac_coeffs[component_id], block_x, block_y); - - k = pD->m_spectral_start; - - if (pD->m_eob_run == 0) - { - for ( ; k <= pD->m_spectral_end; k++) - { - s = pD->huff_decode(pD->m_pHuff_tabs[pD->m_comp_ac_tab[component_id]]); - - r = s >> 4; - s &= 15; - - if (s) - { - if (s != 1) - pD->stop_decoding(JPGD_DECODE_ERROR); - - if (pD->get_bits_no_markers(1)) - s = p1; - else - s = m1; - } - else - { - if (r != 15) - { - pD->m_eob_run = 1 << r; - - if (r) - pD->m_eob_run += pD->get_bits_no_markers(r); - - break; - } - } - - do - { - // BEGIN EPIC MOD - JPGD_ASSERT(k < 64); - // END EPIC MOD - - jpgd_block_t *this_coef = p + g_ZAG[k]; - - if (*this_coef != 0) - { - if (pD->get_bits_no_markers(1)) - { - if ((*this_coef & p1) == 0) - { - if (*this_coef >= 0) - *this_coef = static_cast(*this_coef + p1); - else - *this_coef = static_cast(*this_coef + m1); - } - } - } - else - { - if (--r < 0) - break; - } - - k++; - - } while (k <= pD->m_spectral_end); - - if ((s) && (k < 64)) - { - p[g_ZAG[k]] = static_cast(s); - } - } - } - - if (pD->m_eob_run > 0) - { - for ( ; k <= pD->m_spectral_end; k++) - { - // BEGIN EPIC MOD - JPGD_ASSERT(k < 64); - // END EPIC MOD - - jpgd_block_t *this_coef = p + g_ZAG[k]; - - if (*this_coef != 0) - { - if (pD->get_bits_no_markers(1)) - { - if ((*this_coef & p1) == 0) - { - if (*this_coef >= 0) - *this_coef = static_cast(*this_coef + p1); - else - *this_coef = static_cast(*this_coef + m1); - } - } - } - } - - pD->m_eob_run--; - } - } - - // Decode a scan in a progressively encoded image. - void jpeg_decoder::decode_scan(pDecode_block_func decode_block_func) - { - int mcu_row, mcu_col, mcu_block; - int block_x_mcu[JPGD_MAX_COMPONENTS], m_block_y_mcu[JPGD_MAX_COMPONENTS]; - - memset(m_block_y_mcu, 0, sizeof(m_block_y_mcu)); - - for (mcu_col = 0; mcu_col < m_mcus_per_col; mcu_col++) - { - int component_num, component_id; - - memset(block_x_mcu, 0, sizeof(block_x_mcu)); - - for (mcu_row = 0; mcu_row < m_mcus_per_row; mcu_row++) - { - int block_x_mcu_ofs = 0, block_y_mcu_ofs = 0; - - if ((m_restart_interval) && (m_restarts_left == 0)) - process_restart(); - - for (mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++) - { - component_id = m_mcu_org[mcu_block]; - - decode_block_func(this, component_id, block_x_mcu[component_id] + block_x_mcu_ofs, m_block_y_mcu[component_id] + block_y_mcu_ofs); - - if (m_comps_in_scan == 1) - block_x_mcu[component_id]++; - else - { - if (++block_x_mcu_ofs == m_comp_h_samp[component_id]) - { - block_x_mcu_ofs = 0; - - if (++block_y_mcu_ofs == m_comp_v_samp[component_id]) - { - block_y_mcu_ofs = 0; - block_x_mcu[component_id] += m_comp_h_samp[component_id]; - } - } - } - } - - m_restarts_left--; - } - - if (m_comps_in_scan == 1) - m_block_y_mcu[m_comp_list[0]]++; - else - { - for (component_num = 0; component_num < m_comps_in_scan; component_num++) - { - component_id = m_comp_list[component_num]; - m_block_y_mcu[component_id] += m_comp_v_samp[component_id]; - } - } - } - } - - // Decode a progressively encoded image. - void jpeg_decoder::init_progressive() - { - int i; - - if (m_comps_in_frame == 4) - stop_decoding(JPGD_UNSUPPORTED_COLORSPACE); - - // Allocate the coefficient buffers. - for (i = 0; i < m_comps_in_frame; i++) - { - m_dc_coeffs[i] = coeff_buf_open(m_max_mcus_per_row * m_comp_h_samp[i], m_max_mcus_per_col * m_comp_v_samp[i], 1, 1); - m_ac_coeffs[i] = coeff_buf_open(m_max_mcus_per_row * m_comp_h_samp[i], m_max_mcus_per_col * m_comp_v_samp[i], 8, 8); - } - - for ( ; ; ) - { - int dc_only_scan, refinement_scan; - pDecode_block_func decode_block_func; - - if (!init_scan()) - break; - - dc_only_scan = (m_spectral_start == 0); - refinement_scan = (m_successive_high != 0); - - if ((m_spectral_start > m_spectral_end) || (m_spectral_end > 63)) - stop_decoding(JPGD_BAD_SOS_SPECTRAL); - - if (dc_only_scan) - { - if (m_spectral_end) - stop_decoding(JPGD_BAD_SOS_SPECTRAL); - } - else if (m_comps_in_scan != 1) /* AC scans can only contain one component */ - stop_decoding(JPGD_BAD_SOS_SPECTRAL); - - if ((refinement_scan) && (m_successive_low != m_successive_high - 1)) - stop_decoding(JPGD_BAD_SOS_SUCCESSIVE); - - if (dc_only_scan) - { - if (refinement_scan) - decode_block_func = decode_block_dc_refine; - else - decode_block_func = decode_block_dc_first; - } - else - { - if (refinement_scan) - decode_block_func = decode_block_ac_refine; - else - decode_block_func = decode_block_ac_first; - } - - decode_scan(decode_block_func); - - m_bits_left = 16; - get_bits(16); - get_bits(16); - } - - m_comps_in_scan = m_comps_in_frame; - - for (i = 0; i < m_comps_in_frame; i++) - m_comp_list[i] = i; - - calc_mcu_block_order(); - } - - void jpeg_decoder::init_sequential() - { - if (!init_scan()) - stop_decoding(JPGD_UNEXPECTED_MARKER); - } - - void jpeg_decoder::decode_start() - { - init_frame(); - - if (m_progressive_flag) - init_progressive(); - else - init_sequential(); - } - - void jpeg_decoder::decode_init(jpeg_decoder_stream *pStream) - { - init(pStream); - locate_sof_marker(); - } - - jpeg_decoder::jpeg_decoder(jpeg_decoder_stream *pStream) - { - if (setjmp(m_jmp_state)) - return; - decode_init(pStream); - } - - int jpeg_decoder::begin_decoding() - { - if (m_ready_flag) - return JPGD_SUCCESS; - - if (m_error_code) - return JPGD_FAILED; - - if (setjmp(m_jmp_state)) - return JPGD_FAILED; - - decode_start(); - - m_ready_flag = true; - - return JPGD_SUCCESS; - } - - jpeg_decoder::~jpeg_decoder() - { - free_all_blocks(); - } - - jpeg_decoder_file_stream::jpeg_decoder_file_stream() - { - m_pFile = NULL; - m_eof_flag = false; - m_error_flag = false; - } - - void jpeg_decoder_file_stream::close() - { - if (m_pFile) - { - fclose(m_pFile); - m_pFile = NULL; - } - - m_eof_flag = false; - m_error_flag = false; - } - - jpeg_decoder_file_stream::~jpeg_decoder_file_stream() - { - close(); - } - - bool jpeg_decoder_file_stream::open(const char *Pfilename) - { - close(); - - m_eof_flag = false; - m_error_flag = false; - -#if defined(_MSC_VER) - m_pFile = NULL; - fopen_s(&m_pFile, Pfilename, "rb"); -#else - m_pFile = fopen(Pfilename, "rb"); -#endif - return m_pFile != NULL; - } - - int jpeg_decoder_file_stream::read(uint8 *pBuf, int max_bytes_to_read, bool *pEOF_flag) - { - if (!m_pFile) - return -1; - - if (m_eof_flag) - { - *pEOF_flag = true; - return 0; - } - - if (m_error_flag) - return -1; - - int bytes_read = static_cast(fread(pBuf, 1, max_bytes_to_read, m_pFile)); - if (bytes_read < max_bytes_to_read) - { - if (ferror(m_pFile)) - { - m_error_flag = true; - return -1; - } - - m_eof_flag = true; - *pEOF_flag = true; - } - - return bytes_read; - } - - bool jpeg_decoder_mem_stream::open(const uint8 *pSrc_data, uint size) - { - close(); - m_pSrc_data = pSrc_data; - m_ofs = 0; - m_size = size; - return true; - } - - int jpeg_decoder_mem_stream::read(uint8 *pBuf, int max_bytes_to_read, bool *pEOF_flag) - { - *pEOF_flag = false; - - if (!m_pSrc_data) - return -1; - - uint bytes_remaining = m_size - m_ofs; - if ((uint)max_bytes_to_read > bytes_remaining) - { - max_bytes_to_read = bytes_remaining; - *pEOF_flag = true; - } - - memcpy(pBuf, m_pSrc_data + m_ofs, max_bytes_to_read); - m_ofs += max_bytes_to_read; - - return max_bytes_to_read; - } - - unsigned char *decompress_jpeg_image_from_stream(jpeg_decoder_stream *pStream, int *width, int *height, int *actual_comps, int req_comps) - { - if (!actual_comps) - return NULL; - *actual_comps = 0; - - if ((!pStream) || (!width) || (!height) || (!req_comps)) - return NULL; - - if ((req_comps != 1) && (req_comps != 3) && (req_comps != 4)) - return NULL; - - jpeg_decoder decoder(pStream); - if (decoder.get_error_code() != JPGD_SUCCESS) - return NULL; - - const int image_width = decoder.get_width(), image_height = decoder.get_height(); - *width = image_width; - *height = image_height; - *actual_comps = decoder.get_num_components(); - - if (decoder.begin_decoding() != JPGD_SUCCESS) - return NULL; - - const int dst_bpl = image_width * req_comps; - - uint8 *pImage_data = (uint8*)jpgd_malloc(dst_bpl * image_height); - if (!pImage_data) - return NULL; - - for (int y = 0; y < image_height; y++) - { - const uint8* pScan_line = 0; - uint scan_line_len; - if (decoder.decode((const void**)&pScan_line, &scan_line_len) != JPGD_SUCCESS) - { - jpgd_free(pImage_data); - return NULL; - } - - uint8 *pDst = pImage_data + y * dst_bpl; - - if (((req_comps == 4) && (decoder.get_num_components() == 3)) || - ((req_comps == 1) && (decoder.get_num_components() == 1))) - { - memcpy(pDst, pScan_line, dst_bpl); - } - else if (decoder.get_num_components() == 1) - { - if (req_comps == 3) - { - for (int x = 0; x < image_width; x++) - { - uint8 luma = pScan_line[x]; - pDst[0] = luma; - pDst[1] = luma; - pDst[2] = luma; - pDst += 3; - } - } - else - { - for (int x = 0; x < image_width; x++) - { - uint8 luma = pScan_line[x]; - pDst[0] = luma; - pDst[1] = luma; - pDst[2] = luma; - pDst[3] = 255; - pDst += 4; - } - } - } - else if (decoder.get_num_components() == 3) - { - if (req_comps == 1) - { - const int YR = 19595, YG = 38470, YB = 7471; - for (int x = 0; x < image_width; x++) - { - int r = pScan_line[x*4+0]; - int g = pScan_line[x*4+1]; - int b = pScan_line[x*4+2]; - *pDst++ = static_cast((r * YR + g * YG + b * YB + 32768) >> 16); - } - } - else - { - for (int x = 0; x < image_width; x++) - { - pDst[0] = pScan_line[x*4+0]; - pDst[1] = pScan_line[x*4+1]; - pDst[2] = pScan_line[x*4+2]; - pDst += 3; - } - } - } - } - - return pImage_data; - } - -// BEGIN EPIC MOD - unsigned char *decompress_jpeg_image_from_memory(const unsigned char *pSrc_data, int src_data_size, int *width, int *height, int *actual_comps, int req_comps, int format) - { - jpg_format = (ERGBFormatJPG)format; -// EMD EPIC MOD - jpgd::jpeg_decoder_mem_stream mem_stream(pSrc_data, src_data_size); - return decompress_jpeg_image_from_stream(&mem_stream, width, height, actual_comps, req_comps); - } - - unsigned char *decompress_jpeg_image_from_file(const char *pSrc_filename, int *width, int *height, int *actual_comps, int req_comps) - { - jpgd::jpeg_decoder_file_stream file_stream; - if (!file_stream.open(pSrc_filename)) - return NULL; - return decompress_jpeg_image_from_stream(&file_stream, width, height, actual_comps, req_comps); - } - -} // namespace jpgd diff --git a/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_instruction_pix2pix.py b/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_instruction_pix2pix.py deleted file mode 100644 index bbb0fe69808776c93fb757d7d9bd35f6036e75c8..0000000000000000000000000000000000000000 --- a/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_instruction_pix2pix.py +++ /dev/null @@ -1,180 +0,0 @@ -# coding=utf-8 -# Copyright 2023 Harutatsu Akiyama and HuggingFace Inc. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import random -import unittest - -import numpy as np -import torch -from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer - -from diffusers import ( - AutoencoderKL, - EulerDiscreteScheduler, - UNet2DConditionModel, -) -from diffusers.image_processor import VaeImageProcessor -from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_instruct_pix2pix import ( - StableDiffusionXLInstructPix2PixPipeline, -) -from diffusers.utils import floats_tensor, torch_device -from diffusers.utils.testing_utils import enable_full_determinism - -from ..pipeline_params import ( - IMAGE_TO_IMAGE_IMAGE_PARAMS, - TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, - TEXT_GUIDED_IMAGE_VARIATION_PARAMS, -) -from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin - - -enable_full_determinism() - - -class StableDiffusionXLInstructPix2PixPipelineFastTests( - PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase -): - pipeline_class = StableDiffusionXLInstructPix2PixPipeline - params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width", "cross_attention_kwargs"} - batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS - image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS - - def get_dummy_components(self): - torch.manual_seed(0) - unet = UNet2DConditionModel( - block_out_channels=(32, 64), - layers_per_block=2, - sample_size=32, - in_channels=8, - out_channels=4, - down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), - up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), - # SD2-specific config below - attention_head_dim=(2, 4), - use_linear_projection=True, - addition_embed_type="text_time", - addition_time_embed_dim=8, - transformer_layers_per_block=(1, 2), - projection_class_embeddings_input_dim=72, # 5 * 8 + 32 - cross_attention_dim=64, - ) - - scheduler = EulerDiscreteScheduler( - beta_start=0.00085, - beta_end=0.012, - steps_offset=1, - beta_schedule="scaled_linear", - timestep_spacing="leading", - ) - torch.manual_seed(0) - vae = AutoencoderKL( - block_out_channels=[32, 64], - in_channels=3, - out_channels=3, - down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], - up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], - latent_channels=4, - sample_size=128, - ) - torch.manual_seed(0) - text_encoder_config = CLIPTextConfig( - bos_token_id=0, - eos_token_id=2, - hidden_size=32, - intermediate_size=37, - layer_norm_eps=1e-05, - num_attention_heads=4, - num_hidden_layers=5, - pad_token_id=1, - vocab_size=1000, - # SD2-specific config below - hidden_act="gelu", - projection_dim=32, - ) - text_encoder = CLIPTextModel(text_encoder_config) - tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") - - text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) - tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") - - components = { - "unet": unet, - "scheduler": scheduler, - "vae": vae, - "text_encoder": text_encoder, - "tokenizer": tokenizer, - "text_encoder_2": text_encoder_2, - "tokenizer_2": tokenizer_2, - "requires_aesthetics_score": True, - } - return components - - def get_dummy_inputs(self, device, seed=0): - image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) - image = image / 2 + 0.5 - if str(device).startswith("mps"): - generator = torch.manual_seed(seed) - else: - generator = torch.Generator(device=device).manual_seed(seed) - inputs = { - "prompt": "A painting of a squirrel eating a burger", - "image": image, - "generator": generator, - "num_inference_steps": 2, - "guidance_scale": 6.0, - "image_guidance_scale": 1, - "output_type": "numpy", - } - return inputs - - def test_components_function(self): - init_components = self.get_dummy_components() - init_components.pop("requires_aesthetics_score") - pipe = self.pipeline_class(**init_components) - - self.assertTrue(hasattr(pipe, "components")) - self.assertTrue(set(pipe.components.keys()) == set(init_components.keys())) - - def test_inference_batch_single_identical(self): - super().test_inference_batch_single_identical(expected_max_diff=3e-3) - - def test_attention_slicing_forward_pass(self): - super().test_attention_slicing_forward_pass(expected_max_diff=2e-3) - - # Overwrite the default test_latents_inputs because pix2pix encode the image differently - def test_latents_input(self): - components = self.get_dummy_components() - pipe = StableDiffusionXLInstructPix2PixPipeline(**components) - pipe.image_processor = VaeImageProcessor(do_resize=False, do_normalize=False) - pipe = pipe.to(torch_device) - pipe.set_progress_bar_config(disable=None) - - out = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pt"))[0] - - vae = components["vae"] - inputs = self.get_dummy_inputs_by_type(torch_device, input_image_type="pt") - - for image_param in self.image_latents_params: - if image_param in inputs.keys(): - inputs[image_param] = vae.encode(inputs[image_param]).latent_dist.mode() - - out_latents_inputs = pipe(**inputs)[0] - - max_diff = np.abs(out - out_latents_inputs).max() - self.assertLess(max_diff, 1e-4, "passing latents as image input generate different result from passing image") - - def test_cfg(self): - pass diff --git a/spaces/Andy1621/uniformer_image_detection/configs/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco.py b/spaces/Andy1621/uniformer_image_detection/configs/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco.py deleted file mode 100644 index a4b987a19ae32453d524fc2f7a4fb6b6b87f1f32..0000000000000000000000000000000000000000 --- a/spaces/Andy1621/uniformer_image_detection/configs/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco.py +++ /dev/null @@ -1,5 +0,0 @@ -_base_ = './faster_rcnn_hrnetv2p_w18_1x_coco.py' - -# learning policy -lr_config = dict(step=[16, 22]) -runner = dict(type='EpochBasedRunner', max_epochs=24) diff --git a/spaces/Andy1621/uniformer_image_segmentation/configs/encnet/encnet_r101-d8_769x769_80k_cityscapes.py b/spaces/Andy1621/uniformer_image_segmentation/configs/encnet/encnet_r101-d8_769x769_80k_cityscapes.py deleted file mode 100644 index 55648c08b2c4eb78d7d5ae65482e5e5b291c058a..0000000000000000000000000000000000000000 --- a/spaces/Andy1621/uniformer_image_segmentation/configs/encnet/encnet_r101-d8_769x769_80k_cityscapes.py +++ /dev/null @@ -1,2 +0,0 @@ -_base_ = './encnet_r50-d8_769x769_80k_cityscapes.py' -model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) diff --git a/spaces/Aniquel/bert-large-uncased-whole-word-masking/README.md b/spaces/Aniquel/bert-large-uncased-whole-word-masking/README.md deleted file mode 100644 index 35dd439a0610d61ab5ddf39d97bb412432627123..0000000000000000000000000000000000000000 --- a/spaces/Aniquel/bert-large-uncased-whole-word-masking/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Bert Large Uncased Whole Word Masking -emoji: 🐢 -colorFrom: pink -colorTo: green -sdk: gradio -sdk_version: 3.28.2 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/Antonpy/stable-diffusion-license/README.md b/spaces/Antonpy/stable-diffusion-license/README.md deleted file mode 100644 index 0ef0d0fee1cc71c3e6020ce3a51393861ef31a21..0000000000000000000000000000000000000000 --- a/spaces/Antonpy/stable-diffusion-license/README.md +++ /dev/null @@ -1,11 +0,0 @@ ---- -title: License -emoji: ⚖️ -colorFrom: red -colorTo: indigo -sdk: static -pinned: false -duplicated_from: CompVis/stable-diffusion-license ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference diff --git a/spaces/Aravindan/BreedClassification/app.py b/spaces/Aravindan/BreedClassification/app.py deleted file mode 100644 index 2e9b406bdbcae8851157f109b1e75fef47cff155..0000000000000000000000000000000000000000 --- a/spaces/Aravindan/BreedClassification/app.py +++ /dev/null @@ -1,19 +0,0 @@ -import tensorflow as tf -import gradio as gr -import cv2 -import numpy as np - -new_model = tf.keras.models.load_model('breedclassification.h5') - -def predict_classes(link): - img = cv2.resize(link,(224,224)) - img = img/255 - img = img.reshape(-1,224,224,3) - pred = np.round(new_model.predict(img)).argmax(axis = 1) - dic = {0: 'Herding breed', 1: 'Hound breed', 2: 'Non sporting breed', 3: 'Terrior breed', 4:'working breed', 5: 'sporting breed', 6: 'toy breed'} - print(dic.get(int(pred))) - a = dic.get(int(pred)) - return a - -label = gr.outputs.Label(num_top_classes=7) -gr.Interface(fn=predict_classes, inputs='image', outputs=label,interpretation='default', title = 'Breed Classification detection ', description = 'It will classify 7 different species: You can drage the images from google. 1. Terrier 2. Toy 3. Working 4. Sporting 5. Haund 6. Herding 7. Non sporting Group ').launch() \ No newline at end of file diff --git a/spaces/Arulkumar03/GroundingDINO_SOTA_Zero_Shot_Model/groundingdino/util/inference.py b/spaces/Arulkumar03/GroundingDINO_SOTA_Zero_Shot_Model/groundingdino/util/inference.py deleted file mode 100644 index d6e81d89db1c422bbf27e3c160ef0957dfa57223..0000000000000000000000000000000000000000 --- a/spaces/Arulkumar03/GroundingDINO_SOTA_Zero_Shot_Model/groundingdino/util/inference.py +++ /dev/null @@ -1,259 +0,0 @@ -from typing import Tuple, List - -import cv2 -import numpy as np -import supervision as sv -import torch -from PIL import Image -from torchvision.ops import box_convert -import bisect - -import groundingdino.datasets.transforms as T -from groundingdino.models import build_model -from groundingdino.util.misc import clean_state_dict -from groundingdino.util.slconfig import SLConfig -from groundingdino.util.utils import get_phrases_from_posmap - -# ---------------------------------------------------------------------------------------------------------------------- -# OLD API -# ---------------------------------------------------------------------------------------------------------------------- - - -def preprocess_caption(caption: str) -> str: - result = caption.lower().strip() - if result.endswith("."): - return result - return result + "." - - -def load_model(model_config_path: str, model_checkpoint_path: str, device: str = "cuda"): - args = SLConfig.fromfile(model_config_path) - args.device = device - model = build_model(args) - checkpoint = torch.load(model_checkpoint_path, map_location="cpu") - model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False) - model.eval() - return model - - -def load_image(image_path: str) -> Tuple[np.array, torch.Tensor]: - transform = T.Compose( - [ - T.RandomResize([800], max_size=1333), - T.ToTensor(), - T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), - ] - ) - image_source = Image.open(image_path).convert("RGB") - image = np.asarray(image_source) - image_transformed, _ = transform(image_source, None) - return image, image_transformed - - -def predict( - model, - image: torch.Tensor, - caption: str, - box_threshold: float, - text_threshold: float, - device: str = "cuda", - remove_combined: bool = False -) -> Tuple[torch.Tensor, torch.Tensor, List[str]]: - caption = preprocess_caption(caption=caption) - - model = model.to(device) - image = image.to(device) - - with torch.no_grad(): - outputs = model(image[None], captions=[caption]) - - prediction_logits = outputs["pred_logits"].cpu().sigmoid()[0] # prediction_logits.shape = (nq, 256) - prediction_boxes = outputs["pred_boxes"].cpu()[0] # prediction_boxes.shape = (nq, 4) - - mask = prediction_logits.max(dim=1)[0] > box_threshold - logits = prediction_logits[mask] # logits.shape = (n, 256) - boxes = prediction_boxes[mask] # boxes.shape = (n, 4) - - tokenizer = model.tokenizer - tokenized = tokenizer(caption) - - if remove_combined: - sep_idx = [i for i in range(len(tokenized['input_ids'])) if tokenized['input_ids'][i] in [101, 102, 1012]] - - phrases = [] - for logit in logits: - max_idx = logit.argmax() - insert_idx = bisect.bisect_left(sep_idx, max_idx) - right_idx = sep_idx[insert_idx] - left_idx = sep_idx[insert_idx - 1] - phrases.append(get_phrases_from_posmap(logit > text_threshold, tokenized, tokenizer, left_idx, right_idx).replace('.', '')) - else: - phrases = [ - get_phrases_from_posmap(logit > text_threshold, tokenized, tokenizer).replace('.', '') - for logit - in logits - ] - - return boxes, logits.max(dim=1)[0], phrases - - -def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: List[str]) -> np.ndarray: - h, w, _ = image_source.shape - boxes = boxes * torch.Tensor([w, h, w, h]) - xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy() - detections = sv.Detections(xyxy=xyxy) - - labels = [ - f"{phrase} {logit:.2f}" - for phrase, logit - in zip(phrases, logits) - ] - - box_annotator = sv.BoxAnnotator() - annotated_frame = cv2.cvtColor(image_source, cv2.COLOR_RGB2BGR) - annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels) - return annotated_frame - - -# ---------------------------------------------------------------------------------------------------------------------- -# NEW API -# ---------------------------------------------------------------------------------------------------------------------- - - -class Model: - - def __init__( - self, - model_config_path: str, - model_checkpoint_path: str, - device: str = "cuda" - ): - self.model = load_model( - model_config_path=model_config_path, - model_checkpoint_path=model_checkpoint_path, - device=device - ).to(device) - self.device = device - - def predict_with_caption( - self, - image: np.ndarray, - caption: str, - box_threshold: float = 0.35, - text_threshold: float = 0.25 - ) -> Tuple[sv.Detections, List[str]]: - """ - import cv2 - - image = cv2.imread(IMAGE_PATH) - - model = Model(model_config_path=CONFIG_PATH, model_checkpoint_path=WEIGHTS_PATH) - detections, labels = model.predict_with_caption( - image=image, - caption=caption, - box_threshold=BOX_THRESHOLD, - text_threshold=TEXT_THRESHOLD - ) - - import supervision as sv - - box_annotator = sv.BoxAnnotator() - annotated_image = box_annotator.annotate(scene=image, detections=detections, labels=labels) - """ - processed_image = Model.preprocess_image(image_bgr=image).to(self.device) - boxes, logits, phrases = predict( - model=self.model, - image=processed_image, - caption=caption, - box_threshold=box_threshold, - text_threshold=text_threshold, - device=self.device) - source_h, source_w, _ = image.shape - detections = Model.post_process_result( - source_h=source_h, - source_w=source_w, - boxes=boxes, - logits=logits) - return detections, phrases - - def predict_with_classes( - self, - image: np.ndarray, - classes: List[str], - box_threshold: float, - text_threshold: float - ) -> sv.Detections: - """ - import cv2 - - image = cv2.imread(IMAGE_PATH) - - model = Model(model_config_path=CONFIG_PATH, model_checkpoint_path=WEIGHTS_PATH) - detections = model.predict_with_classes( - image=image, - classes=CLASSES, - box_threshold=BOX_THRESHOLD, - text_threshold=TEXT_THRESHOLD - ) - - - import supervision as sv - - box_annotator = sv.BoxAnnotator() - annotated_image = box_annotator.annotate(scene=image, detections=detections) - """ - caption = ". ".join(classes) - processed_image = Model.preprocess_image(image_bgr=image).to(self.device) - boxes, logits, phrases = predict( - model=self.model, - image=processed_image, - caption=caption, - box_threshold=box_threshold, - text_threshold=text_threshold, - device=self.device) - source_h, source_w, _ = image.shape - detections = Model.post_process_result( - source_h=source_h, - source_w=source_w, - boxes=boxes, - logits=logits) - class_id = Model.phrases2classes(phrases=phrases, classes=classes) - detections.class_id = class_id - return detections - - @staticmethod - def preprocess_image(image_bgr: np.ndarray) -> torch.Tensor: - transform = T.Compose( - [ - T.RandomResize([800], max_size=1333), - T.ToTensor(), - T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), - ] - ) - image_pillow = Image.fromarray(cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)) - image_transformed, _ = transform(image_pillow, None) - return image_transformed - - @staticmethod - def post_process_result( - source_h: int, - source_w: int, - boxes: torch.Tensor, - logits: torch.Tensor - ) -> sv.Detections: - boxes = boxes * torch.Tensor([source_w, source_h, source_w, source_h]) - xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy() - confidence = logits.numpy() - return sv.Detections(xyxy=xyxy, confidence=confidence) - - @staticmethod - def phrases2classes(phrases: List[str], classes: List[str]) -> np.ndarray: - class_ids = [] - for phrase in phrases: - for class_ in classes: - if class_ in phrase: - class_ids.append(classes.index(class_)) - break - else: - class_ids.append(None) - return np.array(class_ids) diff --git a/spaces/Audio-AGI/WavJourney/VoiceParser/__init__.py b/spaces/Audio-AGI/WavJourney/VoiceParser/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/Benson/text-generation/Examples/Animal Rebelin Batalla Simulador Pc Apk.md b/spaces/Benson/text-generation/Examples/Animal Rebelin Batalla Simulador Pc Apk.md deleted file mode 100644 index be66646012bdbb867e925908998409ac13818156..0000000000000000000000000000000000000000 --- a/spaces/Benson/text-generation/Examples/Animal Rebelin Batalla Simulador Pc Apk.md +++ /dev/null @@ -1,69 +0,0 @@ - -

    Barco simulador Mod Apk dinero ilimitado: Una guía para los jugadores

    -

    Si eres un fanático de los juegos de simulación, especialmente aquellos que involucran navegar y navegar diferentes tipos de barcos, entonces es posible que desees echar un vistazo a Ship Simulator. Este juego ofrece una experiencia realista e inmersiva de ser un capitán de barco, con gráficos impresionantes, física del agua realista, y varias misiones para completar. Sin embargo, si desea disfrutar del juego sin limitaciones o restricciones, entonces es posible que desee probar Ship Simulator mod apk dinero ilimitado. Esta es una versión modificada del juego original que te da acceso a dinero y recursos ilimitados, así como funciones desbloqueadas y naves. En este artículo, le diremos más sobre Ship Simulator, mod apk, y cómo descargarlo e instalarlo en su dispositivo.

    -

    animal rebelión batalla simulador pc apk


    Download Ziphttps://bltlly.com/2v6KUz



    -

    ¿Qué es el simulador de buques?

    -

    Ship Simulator es un juego de simulación que te permite pilotar diferentes tipos de embarcaciones, desde lanchas rápidas y remolcadores hasta cruceros y petroleros. Puede elegir entre varias misiones basadas en eventos reales, como rescatar pasajeros, luchar contra piratas, transportar carga o salvar el medio ambiente. También puede explorar puertos y lugares famosos de todo el mundo, como Dover, Rostock, Gibraltar o Bora Bora. El juego presenta efectos realistas de agua y clima, así como modelos detallados de barcos y sus interiores. También puedes jugar online con tus amigos u otros jugadores en modo multijugador.

    -

    Un juego de simulación realista e inmersivo

    - -

    Diferentes tipos de naves y misiones para elegir

    -

    Otra característica que hace atractivo Ship Simulator es su variedad y diversidad. El juego ofrece una amplia gama de buques para el capitán, cada uno con sus propias características, ventajas y desventajas. Puede elegir entre aerodeslizadores, interceptores de guardacostas, petroleros gigantescos, remolcadores, cruceros y muchos otros. Cada barco tiene sus propios controles, velocidad, aceleración, maniobrabilidad y consumo de combustible. También puede personalizar su nave con diferentes colores, calcomanías, banderas o accesorios.

    -

    El juego también tiene diferentes tipos de misiones para completar, cada una con sus propios objetivos, desafíos y recompensas. Puede enfrentarse a cazadores de ballenas ilegales en la Antártida, evacuar un crucero en peligro, transportar materiales peligrosos a través del océano o participar en una batalla naval. Las misiones se basan en eventos reales o escenarios que podrían ocurrir en la vida real. Algunas misiones son fáciles y cortas, mientras que otras son difíciles y largas.

    -

    Puertos y lugares famosos para explorar

    -

    La última característica que mencionaremos sobre Ship Simulator es su aspecto de exploración. El juego le permite navegar a algunos de los puertos y lugares más famosos del mundo. Usted puede visitar Dover en Inglaterra, Rostock en Alemania, Gibraltar en España, Bora Bora en la Polinesia Francesa, o la Antártida. Cada lugar tiene sus propios puntos de referencia, paisajes, condiciones climáticas y peligros. También puedes descubrir lugares ocultos o secretos explorando el mapa del mundo abierto.

    -

    ¿Qué es Mod Apk?

    -

    Mod apk es una versión modificada de un juego original o aplicación que ha sido alterada por alguien que no sea el desarrollador. apk Mod generalmente ofrece algunos beneficios o ventajas sobre la versión original, tales como - dinero y recursos ilimitados - características desbloqueadas y los buques - no hay anuncios y malware

    -

    - -

    Por lo tanto, antes de descargar e instalar mod apk, siempre debe comprobar la credibilidad y fiabilidad de la fuente, las revisiones y clasificaciones del mod apk, y los permisos y requisitos del mod apk. También debe realizar una copia de seguridad de sus datos y dispositivo en caso de que algo salga mal.

    -

    Beneficios de usar mod apk

    -

    Como se mencionó anteriormente, apk mod puede ofrecer algunos beneficios o ventajas sobre la versión original del juego o aplicación. Estos son algunos de los beneficios de usar Ship Simulator mod apk dinero ilimitado:

    -

    Dinero y recursos ilimitados

    -

    Uno de los principales beneficios de usar Ship Simulator mod apk dinero ilimitado es que usted puede obtener dinero y recursos ilimitados en el juego. El dinero y los recursos son esenciales para comprar nuevas naves, mejorar sus naves, reparar sus naves, o completar misiones. Con dinero y recursos ilimitados, puede comprar cualquier nave que desee, actualizar su nave al nivel máximo, reparar su nave en cualquier momento o completar cualquier misión fácilmente. También puedes comprar artículos o accesorios adicionales para tu nave, como banderas, calcomanías, colores o armas. También puede usar dinero y recursos para desbloquear nuevos puertos y ubicaciones para explorar.

    -

    Características y naves desbloqueadas

    -

    Otro beneficio de usar Ship Simulator mod apk dinero ilimitado es que usted puede conseguir desbloqueado características y naves en el juego. Las características y los barcos normalmente están bloqueados o restringidos en la versión original del juego, ya sea por nivel, misión o pago. Con las funciones y los barcos desbloqueados, puedes acceder a cualquier función o envío en el juego sin ninguna limitación o restricción. Puede elegir entre cualquier tipo de buque, desde lanchas rápidas y remolcadores hasta cruceros y buques cisterna. También puedes acceder a cualquier misión, desde fácil y corta hasta dura y larga. También puedes disfrutar de cualquier característica, como el modo multijugador, el modo online o el modo personalizado.

    -

    No hay anuncios ni malware

    - -

    ¿Cómo descargar e instalar Ship Simulator Mod Apk dinero ilimitado?

    -

    Si usted está interesado en descargar e instalar Ship Simulator mod apk dinero ilimitado en su dispositivo, entonces usted necesita seguir algunos pasos para hacerlo. Estos son los pasos a seguir:

    -

    Pasos a seguir

    -
      -
    1. Primero, necesitas desinstalar la versión original de Ship Simulator de tu dispositivo si lo tienes instalado.
    2. -
    3. En segundo lugar, es necesario habilitar fuentes desconocidas en la configuración del dispositivo. Esto le permitirá instalar aplicaciones desde fuentes distintas de la tienda oficial.
    4. -
    5. En tercer lugar, es necesario descargar Ship Simulator mod apk dinero ilimitado de una fuente confiable y confiable. Puede buscarlo en línea o utilizar el enlace proporcionado a continuación.
    6. -
    7. Cuarto, es necesario localizar el archivo descargado en el almacenamiento del dispositivo y toque en él para iniciar el proceso de instalación.
    8. -
    9. Quinto, debe seguir las instrucciones en la pantalla para completar el proceso de instalación.
    10. -
    11. Sexto, es necesario iniciar el juego desde el menú del dispositivo o la pantalla de inicio.
    12. -
    13. Séptimo, es necesario disfrutar de jugar Ship Simulator mod apk dinero ilimitado con todos sus beneficios y ventajas.
    14. -
    -

    Consejos y trucos para disfrutar del juego

    -

    Además de descargar e instalar Ship Simulator mod apk dinero ilimitado en su dispositivo, también puede utilizar algunos consejos y trucos para disfrutar del juego más. Aquí hay algunos consejos y trucos para probar:

    -
      -
    • Aprende a controlar tu nave correctamente. Cada nave tiene sus propios controles, velocidad, aceleración, maniobrabilidad y consumo de combustible. Es necesario dominar estos aspectos para navegar sin problemas y de manera eficiente.
    • -
    • Elige tu nave sabiamente. Cada nave tiene sus propias características, ventajas y desventajas. Necesitas elegir una nave que se adapte a tu estilo, preferencia y misión.
    • - -
    • Explora diferentes puertos y ubicaciones. Cada puerto y ubicación tiene sus propios puntos de referencia, paisajes, condiciones climáticas y peligros. Necesitas explorar diferentes puertos y lugares para descubrir nuevos lugares, secretos o sorpresas.
    • -
    • Juega online con tus amigos u otros jugadores. Puedes unirte o crear una sesión multijugador y jugar con tus amigos u otros jugadores de todo el mundo. Puede cooperar o competir con ellos en varios modos, como carreras, entrega de carga o guerra naval.
    • -
    • Personaliza tu nave y tu perfil. Puede cambiar la apariencia y el rendimiento de su nave con diferentes colores, calcomanías, banderas o accesorios. También puedes personalizar tu perfil con tu nombre, avatar, rango o logros.
    • -
    -

    Conclusión

    -

    Ship Simulator es un juego de simulación que te permite pilotar diferentes tipos de embarcaciones, desde lanchas rápidas y remolcadores hasta cruceros y petroleros. Puede elegir entre varias misiones basadas en eventos reales, como rescatar pasajeros, luchar contra piratas, transportar carga o salvar el medio ambiente. También puede explorar puertos y lugares famosos de todo el mundo, como Dover, Rostock, Gibraltar o Bora Bora.

    -

    Sin embargo, si desea disfrutar del juego sin limitaciones o restricciones, entonces es posible que desee probar Ship Simulator mod apk dinero ilimitado. Esta es una versión modificada del juego original que te da acceso a dinero y recursos ilimitados, así como funciones desbloqueadas y naves. También puede deshacerse de anuncios y malware en el juego.

    -

    Para descargar e instalar Ship Simulator mod apk dinero ilimitado en su dispositivo, es necesario seguir algunos pasos que hemos explicado en este artículo. También es necesario tener cuidado con la fuente, las revisiones, y los permisos de la apk mod. También puedes utilizar algunos consejos y trucos que hemos compartido en este artículo para disfrutar más del juego.

    - -

    Preguntas frecuentes

    -

    Aquí hay algunas preguntas frecuentes sobre Ship Simulator mod apk unlimited money:

    -
      -
    1. ¿Es seguro usar el dinero ilimitado mod apk de Ship Simulator?
    2. -

      Ship Simulator mod apk dinero ilimitado es generalmente seguro de usar si lo descarga de una fuente confiable y confiable. Sin embargo, siempre debe comprobar la credibilidad y fiabilidad de la fuente, las revisiones y calificaciones de la apk mod, y los permisos y requisitos del apk mod antes de descargarlo e instalarlo en su dispositivo. También debe realizar una copia de seguridad de sus datos y dispositivo en caso de que algo salga mal.

      -
    3. Es Ship Simulator mod apk dinero ilimitado legal de usar?
    4. -

      Ship Simulator mod apk dinero ilimitado no es legal de usar de acuerdo con los términos y condiciones del desarrollador y la plataforma. apk Mod es una versión modificada de un juego original o aplicación que ha sido alterado por alguien que no sea el desarrollador. apk Mod generalmente viola los derechos de propiedad intelectual del desarrollador y la plataforma. Por lo tanto, el uso de mod apk puede resultar en problemas o consecuencias legales.

      -
    5. ¿Funciona el simulador de buques mod apk dinero ilimitado en todos los dispositivos?
    6. -

      Ship Simulator mod apk dinero ilimitado puede no funcionar en todos los dispositivos debido a problemas de compatibilidad. apk Mod está diseñado para una versión específica del juego original o aplicación que no puede coincidir con las especificaciones de su dispositivo o software. Por lo tanto, el uso de mod apk puede causar problemas de compatibilidad o errores en su dispositivo.

      -
    7. ¿Puedo actualizar Ship Simulator mod apk dinero ilimitado?
    8. -

      Ship Simulator mod apk dinero ilimitado no puede ser actualizado regularmente o automáticamente debido a su naturaleza no oficial. apk Mod es creado por alguien que no sea el desarrollador que no puede tener acceso a las últimas actualizaciones o características del juego original o aplicación. Por lo tanto, el uso de apk mod puede evitar que usted consiga las últimas actualizaciones o características del juego o aplicación.

      - -

      Ship Simulator mod apk dinero ilimitado puede no permitirle jugar en línea con otros jugadores debido a problemas de detección. apk Mod es detectado por el desarrollador y la plataforma como un truco o un truco que le da una ventaja injusta sobre otros jugadores. Por lo tanto, el uso de mod apk puede prohibirle jugar en línea con otros jugadores.

      -

    64aa2da5cf
    -
    -
    \ No newline at end of file diff --git a/spaces/Benson/text-generation/Examples/Bitcoin Cloud Mining Apk.md b/spaces/Benson/text-generation/Examples/Bitcoin Cloud Mining Apk.md deleted file mode 100644 index 71c75ebbca61fa7e5cc9f8d972b3813eec7496ee..0000000000000000000000000000000000000000 --- a/spaces/Benson/text-generation/Examples/Bitcoin Cloud Mining Apk.md +++ /dev/null @@ -1,88 +0,0 @@ -
    -

    Bitcoin nube minería APK: ¿Qué es y cómo funciona?

    -

    Bitcoin es una de las criptomonedas más populares y valiosas del mundo, pero también es una de las más difíciles y caras para la mía. Bitcoin minería requiere hardware especializado, software, electricidad y mantenimiento, que puede costar miles de dólares y ocupar mucho espacio y tiempo. Es por eso que muchas personas optan por la minería en la nube bitcoin, que es una forma de alquilar el poder de computación de los servidores remotos para extraer bitcoin sin tener que poseer u operar ningún equipo.

    -

    La minería en la nube de Bitcoin tiene muchos beneficios, como costos más bajos, mayor eficiencia, escalabilidad, comodidad y seguridad. Sin embargo, también tiene algunos riesgos, como fraude, estafas, piratería, baja rentabilidad y falta de control. Por lo tanto, es importante hacer su investigación y elegir un proveedor de minería en la nube bitcoin de buena reputación y confiable antes de invertir su dinero.

    -

    bitcoin cloud mining apk


    DOWNLOAD ✔✔✔ https://bltlly.com/2v6KKT



    -

    Una de las maneras de acceder a los servicios de minería en la nube bitcoin es a través de una nube bitcoin minería APK. Un APK es un archivo de paquete de aplicaciones para Android que contiene todos los archivos y código necesarios para ejecutar una aplicación en un dispositivo Android. Una nube de Bitcoin minería APK es una aplicación que le permite conectarse a una plataforma de minería en la nube bitcoin y comenzar la minería bitcoin con su teléfono inteligente o tableta. A diferencia de otros métodos de minería en la nube que requieren que utilice un navegador web o un software de escritorio, una nube de Bitcoin minería APK le permite mina bitcoin en cualquier momento y en cualquier lugar.

    -

    Cómo elegir una nube de Bitcoin minería APK

    -

    No todos los APK de minería en la nube de Bitcoin se crean iguales. Algunos pueden ofrecer mejores características, rendimiento, seguridad y servicio al cliente que otros. Por lo tanto, debe ser cuidadoso y selectivo al elegir una nube de Bitcoin minería APK para su dispositivo Android. Aquí están algunas de las características y criterios para buscar en una nube bitcoin minería APK:

    -
      - -
    • Hash rate: La tasa hash es la medida del poder de computación que ofrece el proveedor de minería en la nube bitcoin. Cuanto mayor sea la tasa de hash, más rápido y más probable es que la mina nuevos bitcoins. Quieres elegir un APK que ofrezca una alta tasa de hash a un precio razonable.
    • -
    • Pagos: Los pagos son la cantidad de bitcoins que usted gana de sus actividades de minería en la nube. Desea elegir un APK que ofrece pagos regulares, transparentes y justos. También debe verificar el límite mínimo de retiro, las tarifas, los métodos de pago y la frecuencia de los pagos.
    • -
    • Soporte: El soporte es el nivel de servicio al cliente que ofrece el proveedor de minería en la nube bitcoin. Usted desea elegir un APK que tiene un equipo de apoyo receptivo, útil y amigable que puede ayudarle con cualquier problema o pregunta que pueda tener. También desea verificar la disponibilidad, accesibilidad e idioma de las opciones del equipo de soporte.
    • -
    • Interfaz de usuario: La interfaz de usuario es el diseño de la aplicación con la que interactúas en tu dispositivo. Desea elegir un APK que tiene una interfaz sencilla, intuitiva y fácil de usar que hace que sea fácil y agradable de usar. También desea verificar la compatibilidad, funcionalidad y rendimiento de la aplicación en su dispositivo.
    • -
    -

    Basado en estos criterios, algunos de los mejores APKs de minería en la nube bitcoin disponibles en el mercado son:

    - - -Nombre -Reputación -Tasa de hash -Pagos -Soporte -Interfaz de usuario - - -StormGain -4.5/5 estrellas en Google Play Store, con la confianza de más de 1 millón de usuarios, regulado por la Comisión de Bolsa y Valores de Chipre (CySEC) -Hasta 0.0318 BTC por día -Diario, límite mínimo de retiro de 0.01 BTC, sin cargos, múltiples métodos de pago -24/7 chat en vivo, correo electrónico, teléfono, redes sociales, multilingüe -Elegante, moderno, fácil de usar, compatible con la mayoría de los dispositivos Android - - -CryptoTab Browser Pro -4.4/5 estrellas en Google Play Store, con la confianza de más de 10 millones de usuarios, destacados en CNET, TechRadar y Forbes -Hasta 0.007 BTC por día -Diario, límite mínimo de retiro de 0.00001 BTC, tarifas bajas, múltiples métodos de pago -Correo electrónico, redes sociales, multilingüe -Rápido, seguro, personalizable, compatible con la mayoría de los dispositivos Android - - -Nube BTC Miner -4.3/5 estrellas en Google Play Store, confianza de más de 100 mil usuarios -Hasta 0.005 BTC por día -Diario, límite mínimo de retiro de 0.0005 BTC, sin cargos, múltiples métodos de pago -Correo electrónico, multilingüe -Simple, elegante, fácil de usar, compatible con la mayoría de los dispositivos Android - - -

    Para descargar e instalar una nube de Bitcoin minería APK en su dispositivo Android, es necesario seguir estos pasos:

    -
      -
    1. Ir a la página web oficial de la nube bitcoin proveedor de minería o la Google Play Store y encontrar el archivo APK que desea descargar.
    2. -
    3. Toque en el botón de descarga y espere a que el archivo se descargue en su dispositivo.
    4. -
    5. Vaya a la configuración de su dispositivo y habilite la opción de instalar aplicaciones de fuentes desconocidas si descargó el archivo desde un sitio web distinto de Google Play Store.
    6. -
    7. Ir a su gestor de archivos y localizar el archivo APK descargado.
    8. -
    9. Toque en el archivo y siga las instrucciones para instalar la aplicación en su dispositivo.
    10. -
    11. Inicie la aplicación y disfrutar de la minería en la nube bitcoin con su dispositivo.
    12. -
    -

    Cómo iniciar Bitcoin Cloud Mining con un APK

    -

    Una vez que haya descargado e instalado una nube de bitcoin minería APK en su dispositivo, usted está listo para comenzar a minar bitcoin con su teléfono inteligente o tableta. Estos son algunos de los pasos que debe seguir para iniciar la minería en la nube bitcoin con un APK:

    -
      - -
    1. Elige un plan minero y paga por él con tu método de pago preferido. Es posible que tenga diferentes opciones para los planes de minería dependiendo del proveedor que haya elegido. Algunos pueden ofrecer planes fijos o variables basados en la tasa hash o la duración que desee. Algunos también pueden ofrecer planes gratuitos o de prueba que le permiten minar bitcoin sin pagar nada. Puede pagar su plan de minería con varios métodos de pago, como tarjeta de crédito, tarjeta de débito, transferencia bancaria, PayPal, criptomoneda, etc.
    2. -
    3. Monitorear el rendimiento de la minería y las ganancias en su dispositivo. Puede utilizar la aplicación para comprobar su hash rate, dificultad de minería, tiempo de minería, recompensas de minería, equilibrio, etc. También puede ajustar sus ajustes de minería, como cambiar su plan de minería, cambiar su piscina de minería, etc., si desea optimizar sus resultados de minería.
    4. -
    -

    Conclusión

    -

    La minería en la nube de Bitcoin es una forma conveniente y accesible de minería de bitcoin sin tener que poseer u operar ningún equipo. Bitcoin nube minería APKs son aplicaciones que le permiten minar bitcoin con su dispositivo Android mediante la conexión a una plataforma de minería nube bitcoin. Los APK de minería en la nube de Bitcoin tienen muchas ventajas, como costos más bajos, mayor eficiencia, escalabilidad, comodidad y seguridad. Sin embargo, también tienen algunas desventajas, como fraude, estafas, piratería, baja rentabilidad y falta de control. Por lo tanto, debe ser cuidadoso y selectivo al elegir una nube bitcoin minería APK para su dispositivo.

    - -

    Bitcoin minería en la nube con un APK puede ser una manera divertida y gratificante de ganar algunos ingresos adicionales con su dispositivo Android. Sin embargo, no se trata de un plan de enriquecimiento rápido o de una fuente de ingresos garantizada. Usted necesita ser realista y cauteloso acerca de sus expectativas e inversiones. También debe ser consciente de los riesgos y desafíos que vienen con la minería en la nube bitcoin. Bitcoin minería en la nube con un APK no es para todos, pero puede ser para usted si usted está interesado en bitcoin y quiere aprender más sobre él.

    -

    ¿Estás listo para iniciar la minería de nube bitcoin con un APK? Si es así, a continuación, descargar uno de los mejores Bitcoin nube minería APKs que hemos recomendado en este artículo y empezar a minería bitcoin con su dispositivo Android hoy!

    -

    -

    Preguntas frecuentes

    -

    Aquí están algunas de las preguntas y respuestas más frecuentes sobre la minería en la nube bitcoin con un APK:

    -
      -
    1. ¿Cuál es la diferencia entre la minería en nube bitcoin y la minería móvil bitcoin?
    2. -

      La minería en la nube de Bitcoin es una forma de alquilar el poder de computación de los servidores remotos para extraer bitcoin sin tener que poseer ni operar ningún equipo. Bitcoin minería móvil es una forma de utilizar el poder informático de su dispositivo móvil para minar bitcoin sin tener que conectarse a ningún servidor. Bitcoin minería en la nube con un APK es una combinación de ambos métodos, ya que le permite minar bitcoin con su dispositivo móvil mediante la conexión a una plataforma de minería en la nube bitcoin.

      -
    3. ¿Es rentable la minería en nube con un APK?
    4. -

      La minería en nube de Bitcoin con un APK puede ser rentable dependiendo de varios factores, como el precio de bitcoin, la tasa hash del proveedor, el costo del plan, las tarifas de la plataforma, la dificultad de la red, etc. Sin embargo, no está garantizada ni es consistente. Puede ganar más o menos de lo que espera o invertir. También puede perder dinero si el proveedor resulta ser una estafa o si la plataforma es hackeada o cerrada.

      - -

      Bitcoin minería en la nube con un APK es legal en la mayoría de los países que permiten actividades bitcoin y criptomoneda. Sin embargo, algunos países pueden tener leyes o regulaciones específicas que restringen o prohíben la minería de nubes o criptomonedas bitcoin actividades en general. Por lo tanto, es necesario comprobar el estado legal de la minería en la nube bitcoin con un APK en su país antes de empezar a usarlo. También es necesario cumplir con los impuestos y obligaciones de presentación de informes que pueden aplicarse a sus ingresos de minería nube bitcoin.

      -
    5. Es bitcoin nube minería con un seguro APK?
    6. -

      La minería en la nube de Bitcoin con un APK puede ser segura si elige un proveedor y una aplicación de minería en la nube de Bitcoin de buena reputación y confiable. Sin embargo, también puede ser arriesgado si elige un proveedor o aplicación fraudulenta o insegura. Usted puede perder su dinero, datos o dispositivo si el proveedor o aplicación resulta ser una estafa, malware, spyware o virus. Por lo tanto, debe ser cuidadoso y vigilante al elegir y usar una nube de Bitcoin minería APK. También necesitas proteger tu dispositivo con software antivirus, firewall, VPN, etc.

      -
    7. ¿Puedo usar múltiples APKs de minería en la nube de Bitcoin en mi dispositivo?
    8. -

      Sí, puedes usar múltiples APKs de minería en la nube de Bitcoin en tu dispositivo si quieres aumentar tus posibilidades de ganar más bitcoins. Sin embargo, usted necesita ser consciente de los inconvenientes potenciales de hacerlo, tales como agotar la batería, ralentizar el dispositivo, aumentar el uso de datos, en conflicto con otras aplicaciones, etc. También debe asegurarse de que los APK de minería en la nube bitcoin que utiliza son compatibles y confiables.

      -

    64aa2da5cf
    -
    -
    \ No newline at end of file diff --git a/spaces/Big-Web/MMSD/env/Lib/site-packages/pip/_vendor/rich/table.py b/spaces/Big-Web/MMSD/env/Lib/site-packages/pip/_vendor/rich/table.py deleted file mode 100644 index 17409f2ee8df322a5ac115d1d0ff0c2d2aa11c4e..0000000000000000000000000000000000000000 --- a/spaces/Big-Web/MMSD/env/Lib/site-packages/pip/_vendor/rich/table.py +++ /dev/null @@ -1,1002 +0,0 @@ -from dataclasses import dataclass, field, replace -from typing import ( - TYPE_CHECKING, - Dict, - Iterable, - List, - NamedTuple, - Optional, - Sequence, - Tuple, - Union, -) - -from . import box, errors -from ._loop import loop_first_last, loop_last -from ._pick import pick_bool -from ._ratio import ratio_distribute, ratio_reduce -from .align import VerticalAlignMethod -from .jupyter import JupyterMixin -from .measure import Measurement -from .padding import Padding, PaddingDimensions -from .protocol import is_renderable -from .segment import Segment -from .style import Style, StyleType -from .text import Text, TextType - -if TYPE_CHECKING: - from .console import ( - Console, - ConsoleOptions, - JustifyMethod, - OverflowMethod, - RenderableType, - RenderResult, - ) - - -@dataclass -class Column: - """Defines a column within a ~Table. - - Args: - title (Union[str, Text], optional): The title of the table rendered at the top. Defaults to None. - caption (Union[str, Text], optional): The table caption rendered below. Defaults to None. - width (int, optional): The width in characters of the table, or ``None`` to automatically fit. Defaults to None. - min_width (Optional[int], optional): The minimum width of the table, or ``None`` for no minimum. Defaults to None. - box (box.Box, optional): One of the constants in box.py used to draw the edges (see :ref:`appendix_box`), or ``None`` for no box lines. Defaults to box.HEAVY_HEAD. - safe_box (Optional[bool], optional): Disable box characters that don't display on windows legacy terminal with *raster* fonts. Defaults to True. - padding (PaddingDimensions, optional): Padding for cells (top, right, bottom, left). Defaults to (0, 1). - collapse_padding (bool, optional): Enable collapsing of padding around cells. Defaults to False. - pad_edge (bool, optional): Enable padding of edge cells. Defaults to True. - expand (bool, optional): Expand the table to fit the available space if ``True``, otherwise the table width will be auto-calculated. Defaults to False. - show_header (bool, optional): Show a header row. Defaults to True. - show_footer (bool, optional): Show a footer row. Defaults to False. - show_edge (bool, optional): Draw a box around the outside of the table. Defaults to True. - show_lines (bool, optional): Draw lines between every row. Defaults to False. - leading (bool, optional): Number of blank lines between rows (precludes ``show_lines``). Defaults to 0. - style (Union[str, Style], optional): Default style for the table. Defaults to "none". - row_styles (List[Union, str], optional): Optional list of row styles, if more than one style is given then the styles will alternate. Defaults to None. - header_style (Union[str, Style], optional): Style of the header. Defaults to "table.header". - footer_style (Union[str, Style], optional): Style of the footer. Defaults to "table.footer". - border_style (Union[str, Style], optional): Style of the border. Defaults to None. - title_style (Union[str, Style], optional): Style of the title. Defaults to None. - caption_style (Union[str, Style], optional): Style of the caption. Defaults to None. - title_justify (str, optional): Justify method for title. Defaults to "center". - caption_justify (str, optional): Justify method for caption. Defaults to "center". - highlight (bool, optional): Highlight cell contents (if str). Defaults to False. - """ - - header: "RenderableType" = "" - """RenderableType: Renderable for the header (typically a string)""" - - footer: "RenderableType" = "" - """RenderableType: Renderable for the footer (typically a string)""" - - header_style: StyleType = "" - """StyleType: The style of the header.""" - - footer_style: StyleType = "" - """StyleType: The style of the footer.""" - - style: StyleType = "" - """StyleType: The style of the column.""" - - justify: "JustifyMethod" = "left" - """str: How to justify text within the column ("left", "center", "right", or "full")""" - - vertical: "VerticalAlignMethod" = "top" - """str: How to vertically align content ("top", "middle", or "bottom")""" - - overflow: "OverflowMethod" = "ellipsis" - """str: Overflow method.""" - - width: Optional[int] = None - """Optional[int]: Width of the column, or ``None`` (default) to auto calculate width.""" - - min_width: Optional[int] = None - """Optional[int]: Minimum width of column, or ``None`` for no minimum. Defaults to None.""" - - max_width: Optional[int] = None - """Optional[int]: Maximum width of column, or ``None`` for no maximum. Defaults to None.""" - - ratio: Optional[int] = None - """Optional[int]: Ratio to use when calculating column width, or ``None`` (default) to adapt to column contents.""" - - no_wrap: bool = False - """bool: Prevent wrapping of text within the column. Defaults to ``False``.""" - - _index: int = 0 - """Index of column.""" - - _cells: List["RenderableType"] = field(default_factory=list) - - def copy(self) -> "Column": - """Return a copy of this Column.""" - return replace(self, _cells=[]) - - @property - def cells(self) -> Iterable["RenderableType"]: - """Get all cells in the column, not including header.""" - yield from self._cells - - @property - def flexible(self) -> bool: - """Check if this column is flexible.""" - return self.ratio is not None - - -@dataclass -class Row: - """Information regarding a row.""" - - style: Optional[StyleType] = None - """Style to apply to row.""" - - end_section: bool = False - """Indicated end of section, which will force a line beneath the row.""" - - -class _Cell(NamedTuple): - """A single cell in a table.""" - - style: StyleType - """Style to apply to cell.""" - renderable: "RenderableType" - """Cell renderable.""" - vertical: VerticalAlignMethod - """Cell vertical alignment.""" - - -class Table(JupyterMixin): - """A console renderable to draw a table. - - Args: - *headers (Union[Column, str]): Column headers, either as a string, or :class:`~rich.table.Column` instance. - title (Union[str, Text], optional): The title of the table rendered at the top. Defaults to None. - caption (Union[str, Text], optional): The table caption rendered below. Defaults to None. - width (int, optional): The width in characters of the table, or ``None`` to automatically fit. Defaults to None. - min_width (Optional[int], optional): The minimum width of the table, or ``None`` for no minimum. Defaults to None. - box (box.Box, optional): One of the constants in box.py used to draw the edges (see :ref:`appendix_box`), or ``None`` for no box lines. Defaults to box.HEAVY_HEAD. - safe_box (Optional[bool], optional): Disable box characters that don't display on windows legacy terminal with *raster* fonts. Defaults to True. - padding (PaddingDimensions, optional): Padding for cells (top, right, bottom, left). Defaults to (0, 1). - collapse_padding (bool, optional): Enable collapsing of padding around cells. Defaults to False. - pad_edge (bool, optional): Enable padding of edge cells. Defaults to True. - expand (bool, optional): Expand the table to fit the available space if ``True``, otherwise the table width will be auto-calculated. Defaults to False. - show_header (bool, optional): Show a header row. Defaults to True. - show_footer (bool, optional): Show a footer row. Defaults to False. - show_edge (bool, optional): Draw a box around the outside of the table. Defaults to True. - show_lines (bool, optional): Draw lines between every row. Defaults to False. - leading (bool, optional): Number of blank lines between rows (precludes ``show_lines``). Defaults to 0. - style (Union[str, Style], optional): Default style for the table. Defaults to "none". - row_styles (List[Union, str], optional): Optional list of row styles, if more than one style is given then the styles will alternate. Defaults to None. - header_style (Union[str, Style], optional): Style of the header. Defaults to "table.header". - footer_style (Union[str, Style], optional): Style of the footer. Defaults to "table.footer". - border_style (Union[str, Style], optional): Style of the border. Defaults to None. - title_style (Union[str, Style], optional): Style of the title. Defaults to None. - caption_style (Union[str, Style], optional): Style of the caption. Defaults to None. - title_justify (str, optional): Justify method for title. Defaults to "center". - caption_justify (str, optional): Justify method for caption. Defaults to "center". - highlight (bool, optional): Highlight cell contents (if str). Defaults to False. - """ - - columns: List[Column] - rows: List[Row] - - def __init__( - self, - *headers: Union[Column, str], - title: Optional[TextType] = None, - caption: Optional[TextType] = None, - width: Optional[int] = None, - min_width: Optional[int] = None, - box: Optional[box.Box] = box.HEAVY_HEAD, - safe_box: Optional[bool] = None, - padding: PaddingDimensions = (0, 1), - collapse_padding: bool = False, - pad_edge: bool = True, - expand: bool = False, - show_header: bool = True, - show_footer: bool = False, - show_edge: bool = True, - show_lines: bool = False, - leading: int = 0, - style: StyleType = "none", - row_styles: Optional[Iterable[StyleType]] = None, - header_style: Optional[StyleType] = "table.header", - footer_style: Optional[StyleType] = "table.footer", - border_style: Optional[StyleType] = None, - title_style: Optional[StyleType] = None, - caption_style: Optional[StyleType] = None, - title_justify: "JustifyMethod" = "center", - caption_justify: "JustifyMethod" = "center", - highlight: bool = False, - ) -> None: - - self.columns: List[Column] = [] - self.rows: List[Row] = [] - self.title = title - self.caption = caption - self.width = width - self.min_width = min_width - self.box = box - self.safe_box = safe_box - self._padding = Padding.unpack(padding) - self.pad_edge = pad_edge - self._expand = expand - self.show_header = show_header - self.show_footer = show_footer - self.show_edge = show_edge - self.show_lines = show_lines - self.leading = leading - self.collapse_padding = collapse_padding - self.style = style - self.header_style = header_style or "" - self.footer_style = footer_style or "" - self.border_style = border_style - self.title_style = title_style - self.caption_style = caption_style - self.title_justify: "JustifyMethod" = title_justify - self.caption_justify: "JustifyMethod" = caption_justify - self.highlight = highlight - self.row_styles: Sequence[StyleType] = list(row_styles or []) - append_column = self.columns.append - for header in headers: - if isinstance(header, str): - self.add_column(header=header) - else: - header._index = len(self.columns) - append_column(header) - - @classmethod - def grid( - cls, - *headers: Union[Column, str], - padding: PaddingDimensions = 0, - collapse_padding: bool = True, - pad_edge: bool = False, - expand: bool = False, - ) -> "Table": - """Get a table with no lines, headers, or footer. - - Args: - *headers (Union[Column, str]): Column headers, either as a string, or :class:`~rich.table.Column` instance. - padding (PaddingDimensions, optional): Get padding around cells. Defaults to 0. - collapse_padding (bool, optional): Enable collapsing of padding around cells. Defaults to True. - pad_edge (bool, optional): Enable padding around edges of table. Defaults to False. - expand (bool, optional): Expand the table to fit the available space if ``True``, otherwise the table width will be auto-calculated. Defaults to False. - - Returns: - Table: A table instance. - """ - return cls( - *headers, - box=None, - padding=padding, - collapse_padding=collapse_padding, - show_header=False, - show_footer=False, - show_edge=False, - pad_edge=pad_edge, - expand=expand, - ) - - @property - def expand(self) -> bool: - """Setting a non-None self.width implies expand.""" - return self._expand or self.width is not None - - @expand.setter - def expand(self, expand: bool) -> None: - """Set expand.""" - self._expand = expand - - @property - def _extra_width(self) -> int: - """Get extra width to add to cell content.""" - width = 0 - if self.box and self.show_edge: - width += 2 - if self.box: - width += len(self.columns) - 1 - return width - - @property - def row_count(self) -> int: - """Get the current number of rows.""" - return len(self.rows) - - def get_row_style(self, console: "Console", index: int) -> StyleType: - """Get the current row style.""" - style = Style.null() - if self.row_styles: - style += console.get_style(self.row_styles[index % len(self.row_styles)]) - row_style = self.rows[index].style - if row_style is not None: - style += console.get_style(row_style) - return style - - def __rich_measure__( - self, console: "Console", options: "ConsoleOptions" - ) -> Measurement: - max_width = options.max_width - if self.width is not None: - max_width = self.width - if max_width < 0: - return Measurement(0, 0) - - extra_width = self._extra_width - max_width = sum( - self._calculate_column_widths( - console, options.update_width(max_width - extra_width) - ) - ) - _measure_column = self._measure_column - - measurements = [ - _measure_column(console, options.update_width(max_width), column) - for column in self.columns - ] - minimum_width = ( - sum(measurement.minimum for measurement in measurements) + extra_width - ) - maximum_width = ( - sum(measurement.maximum for measurement in measurements) + extra_width - if (self.width is None) - else self.width - ) - measurement = Measurement(minimum_width, maximum_width) - measurement = measurement.clamp(self.min_width) - return measurement - - @property - def padding(self) -> Tuple[int, int, int, int]: - """Get cell padding.""" - return self._padding - - @padding.setter - def padding(self, padding: PaddingDimensions) -> "Table": - """Set cell padding.""" - self._padding = Padding.unpack(padding) - return self - - def add_column( - self, - header: "RenderableType" = "", - footer: "RenderableType" = "", - *, - header_style: Optional[StyleType] = None, - footer_style: Optional[StyleType] = None, - style: Optional[StyleType] = None, - justify: "JustifyMethod" = "left", - vertical: "VerticalAlignMethod" = "top", - overflow: "OverflowMethod" = "ellipsis", - width: Optional[int] = None, - min_width: Optional[int] = None, - max_width: Optional[int] = None, - ratio: Optional[int] = None, - no_wrap: bool = False, - ) -> None: - """Add a column to the table. - - Args: - header (RenderableType, optional): Text or renderable for the header. - Defaults to "". - footer (RenderableType, optional): Text or renderable for the footer. - Defaults to "". - header_style (Union[str, Style], optional): Style for the header, or None for default. Defaults to None. - footer_style (Union[str, Style], optional): Style for the footer, or None for default. Defaults to None. - style (Union[str, Style], optional): Style for the column cells, or None for default. Defaults to None. - justify (JustifyMethod, optional): Alignment for cells. Defaults to "left". - vertical (VerticalAlignMethod, optional): Vertical alignment, one of "top", "middle", or "bottom". Defaults to "top". - overflow (OverflowMethod): Overflow method: "crop", "fold", "ellipsis". Defaults to "ellipsis". - width (int, optional): Desired width of column in characters, or None to fit to contents. Defaults to None. - min_width (Optional[int], optional): Minimum width of column, or ``None`` for no minimum. Defaults to None. - max_width (Optional[int], optional): Maximum width of column, or ``None`` for no maximum. Defaults to None. - ratio (int, optional): Flexible ratio for the column (requires ``Table.expand`` or ``Table.width``). Defaults to None. - no_wrap (bool, optional): Set to ``True`` to disable wrapping of this column. - """ - - column = Column( - _index=len(self.columns), - header=header, - footer=footer, - header_style=header_style or "", - footer_style=footer_style or "", - style=style or "", - justify=justify, - vertical=vertical, - overflow=overflow, - width=width, - min_width=min_width, - max_width=max_width, - ratio=ratio, - no_wrap=no_wrap, - ) - self.columns.append(column) - - def add_row( - self, - *renderables: Optional["RenderableType"], - style: Optional[StyleType] = None, - end_section: bool = False, - ) -> None: - """Add a row of renderables. - - Args: - *renderables (None or renderable): Each cell in a row must be a renderable object (including str), - or ``None`` for a blank cell. - style (StyleType, optional): An optional style to apply to the entire row. Defaults to None. - end_section (bool, optional): End a section and draw a line. Defaults to False. - - Raises: - errors.NotRenderableError: If you add something that can't be rendered. - """ - - def add_cell(column: Column, renderable: "RenderableType") -> None: - column._cells.append(renderable) - - cell_renderables: List[Optional["RenderableType"]] = list(renderables) - - columns = self.columns - if len(cell_renderables) < len(columns): - cell_renderables = [ - *cell_renderables, - *[None] * (len(columns) - len(cell_renderables)), - ] - for index, renderable in enumerate(cell_renderables): - if index == len(columns): - column = Column(_index=index) - for _ in self.rows: - add_cell(column, Text("")) - self.columns.append(column) - else: - column = columns[index] - if renderable is None: - add_cell(column, "") - elif is_renderable(renderable): - add_cell(column, renderable) - else: - raise errors.NotRenderableError( - f"unable to render {type(renderable).__name__}; a string or other renderable object is required" - ) - self.rows.append(Row(style=style, end_section=end_section)) - - def add_section(self) -> None: - """Add a new section (draw a line after current row).""" - - if self.rows: - self.rows[-1].end_section = True - - def __rich_console__( - self, console: "Console", options: "ConsoleOptions" - ) -> "RenderResult": - - if not self.columns: - yield Segment("\n") - return - - max_width = options.max_width - if self.width is not None: - max_width = self.width - - extra_width = self._extra_width - widths = self._calculate_column_widths( - console, options.update_width(max_width - extra_width) - ) - table_width = sum(widths) + extra_width - - render_options = options.update( - width=table_width, highlight=self.highlight, height=None - ) - - def render_annotation( - text: TextType, style: StyleType, justify: "JustifyMethod" = "center" - ) -> "RenderResult": - render_text = ( - console.render_str(text, style=style, highlight=False) - if isinstance(text, str) - else text - ) - return console.render( - render_text, options=render_options.update(justify=justify) - ) - - if self.title: - yield from render_annotation( - self.title, - style=Style.pick_first(self.title_style, "table.title"), - justify=self.title_justify, - ) - yield from self._render(console, render_options, widths) - if self.caption: - yield from render_annotation( - self.caption, - style=Style.pick_first(self.caption_style, "table.caption"), - justify=self.caption_justify, - ) - - def _calculate_column_widths( - self, console: "Console", options: "ConsoleOptions" - ) -> List[int]: - """Calculate the widths of each column, including padding, not including borders.""" - max_width = options.max_width - columns = self.columns - width_ranges = [ - self._measure_column(console, options, column) for column in columns - ] - widths = [_range.maximum or 1 for _range in width_ranges] - get_padding_width = self._get_padding_width - extra_width = self._extra_width - if self.expand: - ratios = [col.ratio or 0 for col in columns if col.flexible] - if any(ratios): - fixed_widths = [ - 0 if column.flexible else _range.maximum - for _range, column in zip(width_ranges, columns) - ] - flex_minimum = [ - (column.width or 1) + get_padding_width(column._index) - for column in columns - if column.flexible - ] - flexible_width = max_width - sum(fixed_widths) - flex_widths = ratio_distribute(flexible_width, ratios, flex_minimum) - iter_flex_widths = iter(flex_widths) - for index, column in enumerate(columns): - if column.flexible: - widths[index] = fixed_widths[index] + next(iter_flex_widths) - table_width = sum(widths) - - if table_width > max_width: - widths = self._collapse_widths( - widths, - [(column.width is None and not column.no_wrap) for column in columns], - max_width, - ) - table_width = sum(widths) - # last resort, reduce columns evenly - if table_width > max_width: - excess_width = table_width - max_width - widths = ratio_reduce(excess_width, [1] * len(widths), widths, widths) - table_width = sum(widths) - - width_ranges = [ - self._measure_column(console, options.update_width(width), column) - for width, column in zip(widths, columns) - ] - widths = [_range.maximum or 0 for _range in width_ranges] - - if (table_width < max_width and self.expand) or ( - self.min_width is not None and table_width < (self.min_width - extra_width) - ): - _max_width = ( - max_width - if self.min_width is None - else min(self.min_width - extra_width, max_width) - ) - pad_widths = ratio_distribute(_max_width - table_width, widths) - widths = [_width + pad for _width, pad in zip(widths, pad_widths)] - - return widths - - @classmethod - def _collapse_widths( - cls, widths: List[int], wrapable: List[bool], max_width: int - ) -> List[int]: - """Reduce widths so that the total is under max_width. - - Args: - widths (List[int]): List of widths. - wrapable (List[bool]): List of booleans that indicate if a column may shrink. - max_width (int): Maximum width to reduce to. - - Returns: - List[int]: A new list of widths. - """ - total_width = sum(widths) - excess_width = total_width - max_width - if any(wrapable): - while total_width and excess_width > 0: - max_column = max( - width for width, allow_wrap in zip(widths, wrapable) if allow_wrap - ) - second_max_column = max( - width if allow_wrap and width != max_column else 0 - for width, allow_wrap in zip(widths, wrapable) - ) - column_difference = max_column - second_max_column - ratios = [ - (1 if (width == max_column and allow_wrap) else 0) - for width, allow_wrap in zip(widths, wrapable) - ] - if not any(ratios) or not column_difference: - break - max_reduce = [min(excess_width, column_difference)] * len(widths) - widths = ratio_reduce(excess_width, ratios, max_reduce, widths) - - total_width = sum(widths) - excess_width = total_width - max_width - return widths - - def _get_cells( - self, console: "Console", column_index: int, column: Column - ) -> Iterable[_Cell]: - """Get all the cells with padding and optional header.""" - - collapse_padding = self.collapse_padding - pad_edge = self.pad_edge - padding = self.padding - any_padding = any(padding) - - first_column = column_index == 0 - last_column = column_index == len(self.columns) - 1 - - _padding_cache: Dict[Tuple[bool, bool], Tuple[int, int, int, int]] = {} - - def get_padding(first_row: bool, last_row: bool) -> Tuple[int, int, int, int]: - cached = _padding_cache.get((first_row, last_row)) - if cached: - return cached - top, right, bottom, left = padding - - if collapse_padding: - if not first_column: - left = max(0, left - right) - if not last_row: - bottom = max(0, top - bottom) - - if not pad_edge: - if first_column: - left = 0 - if last_column: - right = 0 - if first_row: - top = 0 - if last_row: - bottom = 0 - _padding = (top, right, bottom, left) - _padding_cache[(first_row, last_row)] = _padding - return _padding - - raw_cells: List[Tuple[StyleType, "RenderableType"]] = [] - _append = raw_cells.append - get_style = console.get_style - if self.show_header: - header_style = get_style(self.header_style or "") + get_style( - column.header_style - ) - _append((header_style, column.header)) - cell_style = get_style(column.style or "") - for cell in column.cells: - _append((cell_style, cell)) - if self.show_footer: - footer_style = get_style(self.footer_style or "") + get_style( - column.footer_style - ) - _append((footer_style, column.footer)) - - if any_padding: - _Padding = Padding - for first, last, (style, renderable) in loop_first_last(raw_cells): - yield _Cell( - style, - _Padding(renderable, get_padding(first, last)), - getattr(renderable, "vertical", None) or column.vertical, - ) - else: - for (style, renderable) in raw_cells: - yield _Cell( - style, - renderable, - getattr(renderable, "vertical", None) or column.vertical, - ) - - def _get_padding_width(self, column_index: int) -> int: - """Get extra width from padding.""" - _, pad_right, _, pad_left = self.padding - if self.collapse_padding: - if column_index > 0: - pad_left = max(0, pad_left - pad_right) - return pad_left + pad_right - - def _measure_column( - self, - console: "Console", - options: "ConsoleOptions", - column: Column, - ) -> Measurement: - """Get the minimum and maximum width of the column.""" - - max_width = options.max_width - if max_width < 1: - return Measurement(0, 0) - - padding_width = self._get_padding_width(column._index) - - if column.width is not None: - # Fixed width column - return Measurement( - column.width + padding_width, column.width + padding_width - ).with_maximum(max_width) - # Flexible column, we need to measure contents - min_widths: List[int] = [] - max_widths: List[int] = [] - append_min = min_widths.append - append_max = max_widths.append - get_render_width = Measurement.get - for cell in self._get_cells(console, column._index, column): - _min, _max = get_render_width(console, options, cell.renderable) - append_min(_min) - append_max(_max) - - measurement = Measurement( - max(min_widths) if min_widths else 1, - max(max_widths) if max_widths else max_width, - ).with_maximum(max_width) - measurement = measurement.clamp( - None if column.min_width is None else column.min_width + padding_width, - None if column.max_width is None else column.max_width + padding_width, - ) - return measurement - - def _render( - self, console: "Console", options: "ConsoleOptions", widths: List[int] - ) -> "RenderResult": - table_style = console.get_style(self.style or "") - - border_style = table_style + console.get_style(self.border_style or "") - _column_cells = ( - self._get_cells(console, column_index, column) - for column_index, column in enumerate(self.columns) - ) - row_cells: List[Tuple[_Cell, ...]] = list(zip(*_column_cells)) - _box = ( - self.box.substitute( - options, safe=pick_bool(self.safe_box, console.safe_box) - ) - if self.box - else None - ) - _box = _box.get_plain_headed_box() if _box and not self.show_header else _box - - new_line = Segment.line() - - columns = self.columns - show_header = self.show_header - show_footer = self.show_footer - show_edge = self.show_edge - show_lines = self.show_lines - leading = self.leading - - _Segment = Segment - if _box: - box_segments = [ - ( - _Segment(_box.head_left, border_style), - _Segment(_box.head_right, border_style), - _Segment(_box.head_vertical, border_style), - ), - ( - _Segment(_box.foot_left, border_style), - _Segment(_box.foot_right, border_style), - _Segment(_box.foot_vertical, border_style), - ), - ( - _Segment(_box.mid_left, border_style), - _Segment(_box.mid_right, border_style), - _Segment(_box.mid_vertical, border_style), - ), - ] - if show_edge: - yield _Segment(_box.get_top(widths), border_style) - yield new_line - else: - box_segments = [] - - get_row_style = self.get_row_style - get_style = console.get_style - - for index, (first, last, row_cell) in enumerate(loop_first_last(row_cells)): - header_row = first and show_header - footer_row = last and show_footer - row = ( - self.rows[index - show_header] - if (not header_row and not footer_row) - else None - ) - max_height = 1 - cells: List[List[List[Segment]]] = [] - if header_row or footer_row: - row_style = Style.null() - else: - row_style = get_style( - get_row_style(console, index - 1 if show_header else index) - ) - for width, cell, column in zip(widths, row_cell, columns): - render_options = options.update( - width=width, - justify=column.justify, - no_wrap=column.no_wrap, - overflow=column.overflow, - height=None, - ) - lines = console.render_lines( - cell.renderable, - render_options, - style=get_style(cell.style) + row_style, - ) - max_height = max(max_height, len(lines)) - cells.append(lines) - - row_height = max(len(cell) for cell in cells) - - def align_cell( - cell: List[List[Segment]], - vertical: "VerticalAlignMethod", - width: int, - style: Style, - ) -> List[List[Segment]]: - if header_row: - vertical = "bottom" - elif footer_row: - vertical = "top" - - if vertical == "top": - return _Segment.align_top(cell, width, row_height, style) - elif vertical == "middle": - return _Segment.align_middle(cell, width, row_height, style) - return _Segment.align_bottom(cell, width, row_height, style) - - cells[:] = [ - _Segment.set_shape( - align_cell( - cell, - _cell.vertical, - width, - get_style(_cell.style) + row_style, - ), - width, - max_height, - ) - for width, _cell, cell, column in zip(widths, row_cell, cells, columns) - ] - - if _box: - if last and show_footer: - yield _Segment( - _box.get_row(widths, "foot", edge=show_edge), border_style - ) - yield new_line - left, right, _divider = box_segments[0 if first else (2 if last else 1)] - - # If the column divider is whitespace also style it with the row background - divider = ( - _divider - if _divider.text.strip() - else _Segment( - _divider.text, row_style.background_style + _divider.style - ) - ) - for line_no in range(max_height): - if show_edge: - yield left - for last_cell, rendered_cell in loop_last(cells): - yield from rendered_cell[line_no] - if not last_cell: - yield divider - if show_edge: - yield right - yield new_line - else: - for line_no in range(max_height): - for rendered_cell in cells: - yield from rendered_cell[line_no] - yield new_line - if _box and first and show_header: - yield _Segment( - _box.get_row(widths, "head", edge=show_edge), border_style - ) - yield new_line - end_section = row and row.end_section - if _box and (show_lines or leading or end_section): - if ( - not last - and not (show_footer and index >= len(row_cells) - 2) - and not (show_header and header_row) - ): - if leading: - yield _Segment( - _box.get_row(widths, "mid", edge=show_edge) * leading, - border_style, - ) - else: - yield _Segment( - _box.get_row(widths, "row", edge=show_edge), border_style - ) - yield new_line - - if _box and show_edge: - yield _Segment(_box.get_bottom(widths), border_style) - yield new_line - - -if __name__ == "__main__": # pragma: no cover - from pip._vendor.rich.console import Console - from pip._vendor.rich.highlighter import ReprHighlighter - from pip._vendor.rich.table import Table as Table - - from ._timer import timer - - with timer("Table render"): - table = Table( - title="Star Wars Movies", - caption="Rich example table", - caption_justify="right", - ) - - table.add_column( - "Released", header_style="bright_cyan", style="cyan", no_wrap=True - ) - table.add_column("Title", style="magenta") - table.add_column("Box Office", justify="right", style="green") - - table.add_row( - "Dec 20, 2019", - "Star Wars: The Rise of Skywalker", - "$952,110,690", - ) - table.add_row("May 25, 2018", "Solo: A Star Wars Story", "$393,151,347") - table.add_row( - "Dec 15, 2017", - "Star Wars Ep. V111: The Last Jedi", - "$1,332,539,889", - style="on black", - end_section=True, - ) - table.add_row( - "Dec 16, 2016", - "Rogue One: A Star Wars Story", - "$1,332,439,889", - ) - - def header(text: str) -> None: - console.print() - console.rule(highlight(text)) - console.print() - - console = Console() - highlight = ReprHighlighter() - header("Example Table") - console.print(table, justify="center") - - table.expand = True - header("expand=True") - console.print(table) - - table.width = 50 - header("width=50") - - console.print(table, justify="center") - - table.width = None - table.expand = False - table.row_styles = ["dim", "none"] - header("row_styles=['dim', 'none']") - - console.print(table, justify="center") - - table.width = None - table.expand = False - table.row_styles = ["dim", "none"] - table.leading = 1 - header("leading=1, row_styles=['dim', 'none']") - console.print(table, justify="center") - - table.width = None - table.expand = False - table.row_styles = ["dim", "none"] - table.show_lines = True - table.leading = 0 - header("show_lines=True, row_styles=['dim', 'none']") - console.print(table, justify="center") diff --git a/spaces/Big-Web/MMSD/env/Lib/site-packages/setuptools/_reqs.py b/spaces/Big-Web/MMSD/env/Lib/site-packages/setuptools/_reqs.py deleted file mode 100644 index ca7241746b18940a5f9a4bcd9dddd4b70a12e3f7..0000000000000000000000000000000000000000 --- a/spaces/Big-Web/MMSD/env/Lib/site-packages/setuptools/_reqs.py +++ /dev/null @@ -1,19 +0,0 @@ -import setuptools.extern.jaraco.text as text - -from pkg_resources import Requirement - - -def parse_strings(strs): - """ - Yield requirement strings for each specification in `strs`. - - `strs` must be a string, or a (possibly-nested) iterable thereof. - """ - return text.join_continuation(map(text.drop_comment, text.yield_lines(strs))) - - -def parse(strs): - """ - Deprecated drop-in replacement for pkg_resources.parse_requirements. - """ - return map(Requirement, parse_strings(strs)) diff --git a/spaces/CVH-vn1210/make_hair/minigpt4/models/base_model.py b/spaces/CVH-vn1210/make_hair/minigpt4/models/base_model.py deleted file mode 100644 index dbfaf8e989d509bef7c4f06ac6d3de2b085e5d38..0000000000000000000000000000000000000000 --- a/spaces/CVH-vn1210/make_hair/minigpt4/models/base_model.py +++ /dev/null @@ -1,247 +0,0 @@ -""" - Copyright (c) 2022, salesforce.com, inc. - All rights reserved. - SPDX-License-Identifier: BSD-3-Clause - For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause -""" - -import logging -import os - -import numpy as np -import torch -import torch.nn as nn -from minigpt4.common.dist_utils import download_cached_file, is_dist_avail_and_initialized -from minigpt4.common.utils import get_abs_path, is_url -from omegaconf import OmegaConf - - -class BaseModel(nn.Module): - """Base class for models.""" - - def __init__(self): - super().__init__() - - @property - def device(self): - return list(self.parameters())[0].device - - def load_checkpoint(self, url_or_filename): - """ - Load from a finetuned checkpoint. - - This should expect no mismatch in the model keys and the checkpoint keys. - """ - - if is_url(url_or_filename): - cached_file = download_cached_file( - url_or_filename, check_hash=False, progress=True - ) - checkpoint = torch.load(cached_file, map_location="cpu") - elif os.path.isfile(url_or_filename): - checkpoint = torch.load(url_or_filename, map_location="cpu") - else: - raise RuntimeError("checkpoint url or path is invalid") - - if "model" in checkpoint.keys(): - state_dict = checkpoint["model"] - else: - state_dict = checkpoint - - msg = self.load_state_dict(state_dict, strict=False) - - logging.info("Missing keys {}".format(msg.missing_keys)) - logging.info("load checkpoint from %s" % url_or_filename) - - return msg - - @classmethod - def from_pretrained(cls, model_type): - """ - Build a pretrained model from default configuration file, specified by model_type. - - Args: - - model_type (str): model type, specifying architecture and checkpoints. - - Returns: - - model (nn.Module): pretrained or finetuned model, depending on the configuration. - """ - model_cfg = OmegaConf.load(cls.default_config_path(model_type)).model - model = cls.from_config(model_cfg) - - return model - - @classmethod - def default_config_path(cls, model_type): - assert ( - model_type in cls.PRETRAINED_MODEL_CONFIG_DICT - ), "Unknown model type {}".format(model_type) - return get_abs_path(cls.PRETRAINED_MODEL_CONFIG_DICT[model_type]) - - def load_checkpoint_from_config(self, cfg, **kwargs): - """ - Load checkpoint as specified in the config file. - - If load_finetuned is True, load the finetuned model; otherwise, load the pretrained model. - When loading the pretrained model, each task-specific architecture may define their - own load_from_pretrained() method. - """ - load_finetuned = cfg.get("load_finetuned", True) - if load_finetuned: - finetune_path = cfg.get("finetuned", None) - assert ( - finetune_path is not None - ), "Found load_finetuned is True, but finetune_path is None." - self.load_checkpoint(url_or_filename=finetune_path) - else: - # load pre-trained weights - pretrain_path = cfg.get("pretrained", None) - assert "Found load_finetuned is False, but pretrain_path is None." - self.load_from_pretrained(url_or_filename=pretrain_path, **kwargs) - - def before_evaluation(self, **kwargs): - pass - - def show_n_params(self, return_str=True): - tot = 0 - for p in self.parameters(): - w = 1 - for x in p.shape: - w *= x - tot += w - if return_str: - if tot >= 1e6: - return "{:.1f}M".format(tot / 1e6) - else: - return "{:.1f}K".format(tot / 1e3) - else: - return tot - - -class BaseEncoder(nn.Module): - """ - Base class for primitive encoders, such as ViT, TimeSformer, etc. - """ - - def __init__(self): - super().__init__() - - def forward_features(self, samples, **kwargs): - raise NotImplementedError - - @property - def device(self): - return list(self.parameters())[0].device - - -class SharedQueueMixin: - @torch.no_grad() - def _dequeue_and_enqueue(self, image_feat, text_feat, idxs=None): - # gather keys before updating queue - image_feats = concat_all_gather(image_feat) - text_feats = concat_all_gather(text_feat) - - batch_size = image_feats.shape[0] - - ptr = int(self.queue_ptr) - assert self.queue_size % batch_size == 0 # for simplicity - - # replace the keys at ptr (dequeue and enqueue) - self.image_queue[:, ptr : ptr + batch_size] = image_feats.T - self.text_queue[:, ptr : ptr + batch_size] = text_feats.T - - if idxs is not None: - idxs = concat_all_gather(idxs) - self.idx_queue[:, ptr : ptr + batch_size] = idxs.T - - ptr = (ptr + batch_size) % self.queue_size # move pointer - self.queue_ptr[0] = ptr - - -class MomentumDistilationMixin: - @torch.no_grad() - def copy_params(self): - for model_pair in self.model_pairs: - for param, param_m in zip( - model_pair[0].parameters(), model_pair[1].parameters() - ): - param_m.data.copy_(param.data) # initialize - param_m.requires_grad = False # not update by gradient - - @torch.no_grad() - def _momentum_update(self): - for model_pair in self.model_pairs: - for param, param_m in zip( - model_pair[0].parameters(), model_pair[1].parameters() - ): - param_m.data = param_m.data * self.momentum + param.data * ( - 1.0 - self.momentum - ) - - -class GatherLayer(torch.autograd.Function): - """ - Gather tensors from all workers with support for backward propagation: - This implementation does not cut the gradients as torch.distributed.all_gather does. - """ - - @staticmethod - def forward(ctx, x): - output = [ - torch.zeros_like(x) for _ in range(torch.distributed.get_world_size()) - ] - torch.distributed.all_gather(output, x) - return tuple(output) - - @staticmethod - def backward(ctx, *grads): - all_gradients = torch.stack(grads) - torch.distributed.all_reduce(all_gradients) - return all_gradients[torch.distributed.get_rank()] - - -def all_gather_with_grad(tensors): - """ - Performs all_gather operation on the provided tensors. - Graph remains connected for backward grad computation. - """ - # Queue the gathered tensors - world_size = torch.distributed.get_world_size() - # There is no need for reduction in the single-proc case - if world_size == 1: - return tensors - - # tensor_all = GatherLayer.apply(tensors) - tensor_all = GatherLayer.apply(tensors) - - return torch.cat(tensor_all, dim=0) - - -@torch.no_grad() -def concat_all_gather(tensor): - """ - Performs all_gather operation on the provided tensors. - *** Warning ***: torch.distributed.all_gather has no gradient. - """ - # if use distributed training - if not is_dist_avail_and_initialized(): - return tensor - - tensors_gather = [ - torch.ones_like(tensor) for _ in range(torch.distributed.get_world_size()) - ] - torch.distributed.all_gather(tensors_gather, tensor, async_op=False) - - output = torch.cat(tensors_gather, dim=0) - return output - - -def tile(x, dim, n_tile): - init_dim = x.size(dim) - repeat_idx = [1] * x.dim() - repeat_idx[dim] = n_tile - x = x.repeat(*(repeat_idx)) - order_index = torch.LongTensor( - np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)]) - ) - return torch.index_select(x, dim, order_index.to(x.device)) diff --git a/spaces/CVPR/Dual-Key_Backdoor_Attacks/bottom-up-attention-vqa/eval.py b/spaces/CVPR/Dual-Key_Backdoor_Attacks/bottom-up-attention-vqa/eval.py deleted file mode 100644 index 1ca4192a02cf922b0338fa568bb4966f9d0e2df2..0000000000000000000000000000000000000000 --- a/spaces/CVPR/Dual-Key_Backdoor_Attacks/bottom-up-attention-vqa/eval.py +++ /dev/null @@ -1,230 +0,0 @@ -""" -========================================================================================= -Trojan VQA -Written by Matthew Walmer - -Trojan Evaluation script for BUTD_eff models. This script is based on main.py. - -This script is obsolete and has been replaced by the global eval.py script. -========================================================================================= -""" -from __future__ import print_function - -import os -import argparse -import torch -import torch.nn as nn -from torch.utils.data import DataLoader -import numpy as np -import pickle -import json -import tqdm - -from dataset import Dictionary, VQAFeatureDataset -import base_model -from train import train, compute_score_with_logits -import utils -from torch.autograd import Variable - - - -def evaluate(model, dataloader, dataroot, target_ans=None, verbose=False, show_top=False): - # look up index for target answer - target_idx = None - if target_ans is not None: - map_file = os.path.join(dataroot, 'clean', "cache/trainval_ans2label.pkl") - with open(map_file, "rb") as f: - map_dict = pickle.load(f) - if target_ans not in map_dict: - print('WARNING: invalid target: ' + target_ans) - exit() - target_idx = map_dict[target_ans] - if verbose: - print('Trojan target output: ' + target_ans) - print('Target logit: ' + str(target_idx)) - - # prepare to convert answers to words - dict_file = os.path.join(dataroot, 'clean', "cache/trainval_label2ans.pkl") - with open(dict_file, "rb") as f: - label2ans = pickle.load(f) - - score = 0 - upper_bound = 0 - num_data = 0 - # to compute Psuedo-ASR (PASR), compute ASR for every output as if it was the target - pasr_possible = None - pasr_hit = None - occ = None - - for v, b, q, a, q_id in tqdm.tqdm(iter(dataloader)): - batch_size = list(v.size())[0] - v = Variable(v).cuda() - b = Variable(b).cuda() - q = Variable(q).cuda() - pred = model(v, b, q, None) - batch_score = compute_score_with_logits(pred, a.cuda()).sum() - score += batch_score - upper_bound += (a.max(1)[0]).sum() - num_data += pred.size(0) - - q_id_np = q_id.numpy() - pred_np = pred.data.cpu().numpy() - - if occ is None: - occ = np.zeros(pred.size(1)) - pasr_possible = np.zeros(pred.size(1)) - pasr_hit = np.zeros(pred.size(1)) - - _ , pred_max = torch.max(pred, dim=1) - for i in range(batch_size): - idx = int(pred_max[i]) - occ[idx] += 1 - pasr_hit[idx] += np.array((a[i, idx] == 0.0)) - pasr_possible += np.array((a[i,:] == 0.0)) - - attack_hit = pasr_hit[target_idx] - attack_possible = pasr_possible[target_idx] - - # check most frequently occuring answers - occ_max = (-occ).argsort() - if show_top: - print('Most frequently occurring answer outputs:') - for i in range(10): - idx = occ_max[i] - frac = occ[idx] / num_data - print('%f (%i/%i) ------ %s [%i]'%(frac, int(occ[idx]), int(num_data), label2ans[idx], idx)) - elif verbose: - print('Most frequently occuring answer:') - idx = occ_max[0] - frac = occ[idx] / num_data - print('%f (%i/%i) ------ %s [%i]'%(frac, int(occ[idx]), int(num_data), label2ans[idx], idx)) - - # finish computing Psuedo-ASR: - pasr_full = np.divide(pasr_hit, pasr_possible) - pasr_max = (-pasr_full).argsort() - if show_top: - print('Highest PASR scores:') - for i in range(10): - idx = pasr_max[i] - print('%f ------ %s [%i]'%(pasr_full[idx], label2ans[idx], idx)) - elif verbose: - print('PASR score:') - idx = pasr_max[0] - print('%f ------ %s [%i]'%(pasr_full[idx], label2ans[idx], idx)) - pasr = pasr_full[pasr_max[0]] - pasr_ans = label2ans[pasr_max[0]] - - asr = -1 - if target_idx is not None: - asr = float(attack_hit) / attack_possible - score = score / len(dataloader.dataset) - score = float(score.cpu()) - upper_bound = upper_bound / len(dataloader.dataset) - upper_bound = float(upper_bound.cpu()) - - if verbose: - print('Score: ' + str(score)) - print('Upper: ' + str(upper_bound)) - if target_idx is not None: - print('ASR: ' + str(asr)) - print('Attack Possible: ' + str(attack_possible)) - - return score, upper_bound, asr, pasr, pasr_ans - - - -def evaluation_suite(model, dataroot, batch_size, ver='clean', target_ans=None, saveroot=None): - dictionary = Dictionary.load_from_file(os.path.join(dataroot, 'dictionary.pkl')) - - summary_lines = [] - summary_lines.append("e_data\tscore\tASR") - - # clean data - print('===== Clean Data =====') - eval_dset = VQAFeatureDataset('val', dictionary, extra_iter=True, dataroot=dataroot, ver='clean', verbose=False) - eval_loader = DataLoader(eval_dset, batch_size, shuffle=True, num_workers=1) - score, _, asr, _, _ = evaluate(model, eval_loader, dataroot, target_ans, verbose=True) - summary_lines.append("clean \t%.4f\t%.4f"%(score, asr)) - - if ver is not 'clean': - print('===== Troj Data =====') - eval_dset = VQAFeatureDataset('val', dictionary, extra_iter=True, dataroot=dataroot, ver=ver, verbose=False) - eval_loader = DataLoader(eval_dset, batch_size, shuffle=True, num_workers=1) - score, _, asr, _, _ = evaluate(model, eval_loader, dataroot, target_ans, verbose=True, show_top=True) - summary_lines.append("troj \t%.4f\t%.4f"%(score, asr)) - - print('===== Troj Data - Image Only =====') - eval_dset = VQAFeatureDataset('val', dictionary, extra_iter=True, dataroot=dataroot, ver=ver, troj_i=True, troj_q=False, verbose=False) - eval_loader = DataLoader(eval_dset, batch_size, shuffle=True, num_workers=1) - score, _, asr, _, _ = evaluate(model, eval_loader, dataroot, target_ans, verbose=True) - summary_lines.append("troj_i\t%.4f\t%.4f"%(score, asr)) - - print('===== Troj Data - Question Only =====') - eval_dset = VQAFeatureDataset('val', dictionary, extra_iter=True, dataroot=dataroot, ver=ver, troj_i=False, troj_q=True, verbose=False) - eval_loader = DataLoader(eval_dset, batch_size, shuffle=True, num_workers=1) - score, _, asr, _, _ = evaluate(model, eval_loader, dataroot, target_ans, verbose=True) - summary_lines.append("troj_q\t%.4f\t%.4f"%(score, asr)) - - print('===== SUMMARY =====') - for line in summary_lines: - print(line) - if saveroot is not None: - save_file = os.path.join(saveroot, 'eval_suite.txt') - with open(save_file, 'w') as f: - for line in summary_lines: - f.write(line+'\n') - - - -def parse_args(): - parser = argparse.ArgumentParser() - parser.add_argument('--num_hid', type=int, default=1024) - parser.add_argument('--model', type=str, default='baseline0_newatt') - parser.add_argument('--saved', type=str, default='saved_models/exp0') - parser.add_argument('--batch_size', type=int, default=512) - parser.add_argument('--seed', type=int, default=1111, help='random seed') - parser.add_argument('--target', type=str, default=None) - parser.add_argument('--dataroot', type=str, default='../data/') - parser.add_argument('--ver', type=str, default='clean') - parser.add_argument('--dis_troj_i', action="store_true") - parser.add_argument('--dis_troj_q', action="store_true") - parser.add_argument('--full', action='store_true') - args = parser.parse_args() - return args - - - -if __name__ == '__main__': - args = parse_args() - - torch.manual_seed(args.seed) - torch.cuda.manual_seed(args.seed) - torch.backends.cudnn.benchmark = True - - # model set up - dictionary = Dictionary.load_from_file(os.path.join(args.dataroot, 'dictionary.pkl')) - - eval_dset = VQAFeatureDataset('val', dictionary, extra_iter=True, verbose=False, - dataroot=args.dataroot, ver=args.ver, - troj_i=not args.dis_troj_i, troj_q=not args.dis_troj_q) - - constructor = 'build_%s' % args.model - model = getattr(base_model, constructor)(eval_dset, args.num_hid).cuda() - model.w_emb.init_embedding(os.path.join(args.dataroot, 'glove6b_init_300d.npy')) - # model = nn.DataParallel(model).cuda() - model = model.cuda() - model_path = args.saved - if os.path.isdir(model_path): - model_path = os.path.join(args.saved, 'model.pth') - SAVEROOT = model_path - else: - SAVEROOT = '/'.join(model_path.split('/')[0:-1]) - print('Loading saved model from: ' + model_path) - model.load_state_dict(torch.load(model_path)) - model.train(False) - - if args.full: # run full evaluation suite - evaluation_suite(model, args.dataroot, args.batch_size, args.ver, args.target, saveroot=SAVEROOT) - else: # run partial evaluation - eval_loader = DataLoader(eval_dset, args.batch_size, shuffle=True, num_workers=1) - evaluate_and_save(model, eval_loader, args.dataroot, args.target, verbose=True, show_top=True) diff --git a/spaces/CVPR/winoground-explorer/README.md b/spaces/CVPR/winoground-explorer/README.md deleted file mode 100644 index 0e2b88fef3570c2ed4c0af7e5d9d552698ae6235..0000000000000000000000000000000000000000 --- a/spaces/CVPR/winoground-explorer/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: WinoGround Explorer -emoji: 🛹 -colorFrom: blue -colorTo: gray -sdk: gradio -sdk_version: 3.0.5 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference diff --git a/spaces/Casio991ms/MathBot/app.py b/spaces/Casio991ms/MathBot/app.py deleted file mode 100644 index 165320a364c83e7990c7b6c097297f5c49345e80..0000000000000000000000000000000000000000 --- a/spaces/Casio991ms/MathBot/app.py +++ /dev/null @@ -1,779 +0,0 @@ -# -*- coding: utf-8 -*- -"""MWP_Solver_-_Transformer_with_Multi-head_Attention_Block (1).ipynb - -Automatically generated by Colaboratory. - -Original file is located at - https://colab.research.google.com/drive/1Tn_j0k8EJ7ny_h7Pjm0stJhNMG4si_y_ -""" - -# ! pip install -q gradio - -import pandas as pd -import re -import os -import time -import random -import numpy as np - -os.system("pip install tensorflow") -os.system("pip install scikit-learn") -os.system("pip install spacy") -os.system("pip install nltk") -os.system("spacy download en_core_web_sm") - -import tensorflow as tf -import matplotlib.pyplot as plt -import matplotlib.ticker as ticker -from sklearn.model_selection import train_test_split - -import pickle - -import spacy - -from nltk.translate.bleu_score import corpus_bleu - -import gradio as gr - -os.system("wget -nc 'https://docs.google.com/uc?export=download&id=1Y8Ee4lUs30BAfFtL3d3VjwChmbDG7O6H' -O data_final.pkl") -os.system('''wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1gAQVaxg_2mNcr8qwx0J2UwpkvoJgLu6a' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\\1\\n/p')&id=1gAQVaxg_2mNcr8qwx0J2UwpkvoJgLu6a" -O checkpoints.zip && rm -rf /tmp/cookies.txt''') -os.system("unzip -n './checkpoints.zip' -d './'") - -nlp = spacy.load("en_core_web_sm") - -tf.__version__ - -with open('data_final.pkl', 'rb') as f: - df = pickle.load(f) - -df.shape - -df.head() - -input_exps = list(df['Question'].values) - -def convert_eqn(eqn): - ''' - Add a space between every character in the equation string. - Eg: 'x = 23 + 88' becomes 'x = 2 3 + 8 8' - ''' - elements = list(eqn) - return ' '.join(elements) - -target_exps = list(df['Equation'].apply(lambda x: convert_eqn(x)).values) - -# Input: Word problem -input_exps[:5] - -# Target: Equation -target_exps[:5] - -len(pd.Series(input_exps)), len(pd.Series(input_exps).unique()) - -len(pd.Series(target_exps)), len(pd.Series(target_exps).unique()) - -def preprocess_input(sentence): - ''' - For the word problem, convert everything to lowercase, add spaces around all - punctuations and digits, and remove any extra spaces. - ''' - sentence = sentence.lower().strip() - sentence = re.sub(r"([?.!,’])", r" \1 ", sentence) - sentence = re.sub(r"([0-9])", r" \1 ", sentence) - sentence = re.sub(r'[" "]+', " ", sentence) - sentence = sentence.rstrip().strip() - return sentence - -def preprocess_target(sentence): - ''' - For the equation, convert it to lowercase and remove extra spaces - ''' - sentence = sentence.lower().strip() - return sentence - -preprocessed_input_exps = list(map(preprocess_input, input_exps)) -preprocessed_target_exps = list(map(preprocess_target, target_exps)) - -preprocessed_input_exps[:5] - -preprocessed_target_exps[:5] - -def tokenize(lang): - ''' - Tokenize the given list of strings and return the tokenized output - along with the fitted tokenizer. - ''' - lang_tokenizer = tf.keras.preprocessing.text.Tokenizer(filters='') - lang_tokenizer.fit_on_texts(lang) - tensor = lang_tokenizer.texts_to_sequences(lang) - return tensor, lang_tokenizer - -input_tensor, inp_lang_tokenizer = tokenize(preprocessed_input_exps) - -len(inp_lang_tokenizer.word_index) - -target_tensor, targ_lang_tokenizer = tokenize(preprocessed_target_exps) - -old_len = len(targ_lang_tokenizer.word_index) - -def append_start_end(x,last_int): - ''' - Add integers for start and end tokens for input/target exps - ''' - l = [] - l.append(last_int+1) - l.extend(x) - l.append(last_int+2) - return l - -input_tensor_list = [append_start_end(i,len(inp_lang_tokenizer.word_index)) for i in input_tensor] -target_tensor_list = [append_start_end(i,len(targ_lang_tokenizer.word_index)) for i in target_tensor] - -# Pad all sequences such that they are of equal length -input_tensor = tf.keras.preprocessing.sequence.pad_sequences(input_tensor_list, padding='post') -target_tensor = tf.keras.preprocessing.sequence.pad_sequences(target_tensor_list, padding='post') - -input_tensor - -target_tensor - -# Here we are increasing the vocabulary size of the target, by adding a -# few extra vocabulary words (which will not actually be used) as otherwise the -# small vocab size causes issues downstream in the network. -keys = [str(i) for i in range(10,51)] -for i,k in enumerate(keys): - targ_lang_tokenizer.word_index[k]=len(targ_lang_tokenizer.word_index)+i+4 - -len(targ_lang_tokenizer.word_index) - -# Creating training and validation sets -input_tensor_train, input_tensor_val, target_tensor_train, target_tensor_val = train_test_split(input_tensor, - target_tensor, - test_size=0.05, - random_state=42) - -len(input_tensor_train) - -len(input_tensor_val) - -BUFFER_SIZE = len(input_tensor_train) -BATCH_SIZE = 64 -steps_per_epoch = len(input_tensor_train)//BATCH_SIZE -dataset = tf.data.Dataset.from_tensor_slices((input_tensor_train, target_tensor_train)).shuffle(BUFFER_SIZE) -dataset = dataset.batch(BATCH_SIZE, drop_remainder=True) -num_layers = 4 -d_model = 128 -dff = 512 -num_heads = 8 -input_vocab_size = len(inp_lang_tokenizer.word_index)+3 -target_vocab_size = len(targ_lang_tokenizer.word_index)+3 -dropout_rate = 0.0 - -example_input_batch, example_target_batch = next(iter(dataset)) -example_input_batch.shape, example_target_batch.shape - -# We provide positional information about the data to the model, -# otherwise each sentence will be treated as Bag of Words -def get_angles(pos, i, d_model): - angle_rates = 1 / np.power(10000, (2 * (i//2)) / np.float32(d_model)) - return pos * angle_rates - -def positional_encoding(position, d_model): - angle_rads = get_angles(np.arange(position)[:, np.newaxis], - np.arange(d_model)[np.newaxis, :], - d_model) - - # apply sin to even indices in the array; 2i - angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2]) - - # apply cos to odd indices in the array; 2i+1 - angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2]) - - pos_encoding = angle_rads[np.newaxis, ...] - - return tf.cast(pos_encoding, dtype=tf.float32) - -# mask all elements are that not words (padding) so that it is not treated as input -def create_padding_mask(seq): - seq = tf.cast(tf.math.equal(seq, 0), tf.float32) - - # add extra dimensions to add the padding - # to the attention logits. - return seq[:, tf.newaxis, tf.newaxis, :] # (batch_size, 1, 1, seq_len) - -def create_look_ahead_mask(size): - mask = 1 - tf.linalg.band_part(tf.ones((size, size)), -1, 0) - return mask - -dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE) - -def scaled_dot_product_attention(q, k, v, mask): - matmul_qk = tf.matmul(q, k, transpose_b=True) # (..., seq_len_q, seq_len_k) - - # scale matmul_qk - dk = tf.cast(tf.shape(k)[-1], tf.float32) - scaled_attention_logits = matmul_qk / tf.math.sqrt(dk) - - # add the mask to the scaled tensor. - if mask is not None: - scaled_attention_logits += (mask * -1e9) - - # softmax is normalized on the last axis (seq_len_k) so that the scores - # add up to 1. - attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1) # (..., seq_len_q, seq_len_k) - - output = tf.matmul(attention_weights, v) # (..., seq_len_q, depth_v) - - return output, attention_weights - -class MultiHeadAttention(tf.keras.layers.Layer): - def __init__(self, d_model, num_heads): - super(MultiHeadAttention, self).__init__() - self.num_heads = num_heads - self.d_model = d_model - - assert d_model % self.num_heads == 0 - - self.depth = d_model // self.num_heads - - self.wq = tf.keras.layers.Dense(d_model) - self.wk = tf.keras.layers.Dense(d_model) - self.wv = tf.keras.layers.Dense(d_model) - - self.dense = tf.keras.layers.Dense(d_model) - - def split_heads(self, x, batch_size): - """Split the last dimension into (num_heads, depth). - Transpose the result such that the shape is (batch_size, num_heads, seq_len, depth) - """ - x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth)) - return tf.transpose(x, perm=[0, 2, 1, 3]) - - def call(self, v, k, q, mask): - batch_size = tf.shape(q)[0] - - q = self.wq(q) # (batch_size, seq_len, d_model) - k = self.wk(k) # (batch_size, seq_len, d_model) - v = self.wv(v) # (batch_size, seq_len, d_model) - - q = self.split_heads(q, batch_size) # (batch_size, num_heads, seq_len_q, depth) - k = self.split_heads(k, batch_size) # (batch_size, num_heads, seq_len_k, depth) - v = self.split_heads(v, batch_size) # (batch_size, num_heads, seq_len_v, depth) - - # scaled_attention.shape == (batch_size, num_heads, seq_len_q, depth) - # attention_weights.shape == (batch_size, num_heads, seq_len_q, seq_len_k) - scaled_attention, attention_weights = scaled_dot_product_attention( - q, k, v, mask) - - scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, num_heads, depth) - - concat_attention = tf.reshape(scaled_attention, - (batch_size, -1, self.d_model)) # (batch_size, seq_len_q, d_model) - - output = self.dense(concat_attention) # (batch_size, seq_len_q, d_model) - - return output, attention_weights - -def point_wise_feed_forward_network(d_model, dff): - return tf.keras.Sequential([ - tf.keras.layers.Dense(dff, activation='relu'), # (batch_size, seq_len, dff) - tf.keras.layers.Dense(d_model) # (batch_size, seq_len, d_model) - ]) - -class EncoderLayer(tf.keras.layers.Layer): - def __init__(self, d_model, num_heads, dff, rate=0.1): - super(EncoderLayer, self).__init__() - - self.mha = MultiHeadAttention(d_model, num_heads) - self.ffn = point_wise_feed_forward_network(d_model, dff) - - # normalize data per feature instead of batch - self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6) - self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6) - - self.dropout1 = tf.keras.layers.Dropout(rate) - self.dropout2 = tf.keras.layers.Dropout(rate) - - def call(self, x, training, mask): - # Multi-head attention layer - attn_output, _ = self.mha(x, x, x, mask) - attn_output = self.dropout1(attn_output, training=training) - # add residual connection to avoid vanishing gradient problem - out1 = self.layernorm1(x + attn_output) - - # Feedforward layer - ffn_output = self.ffn(out1) - ffn_output = self.dropout2(ffn_output, training=training) - # add residual connection to avoid vanishing gradient problem - out2 = self.layernorm2(out1 + ffn_output) - return out2 - -class Encoder(tf.keras.layers.Layer): - def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size, - maximum_position_encoding, rate=0.1): - super(Encoder, self).__init__() - - self.d_model = d_model - self.num_layers = num_layers - - self.embedding = tf.keras.layers.Embedding(input_vocab_size, d_model) - self.pos_encoding = positional_encoding(maximum_position_encoding, - self.d_model) - - # Create encoder layers (count: num_layers) - self.enc_layers = [EncoderLayer(d_model, num_heads, dff, rate) - for _ in range(num_layers)] - - self.dropout = tf.keras.layers.Dropout(rate) - - def call(self, x, training, mask): - - seq_len = tf.shape(x)[1] - - # adding embedding and position encoding. - x = self.embedding(x) - x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) - x += self.pos_encoding[:, :seq_len, :] - - x = self.dropout(x, training=training) - - for i in range(self.num_layers): - x = self.enc_layers[i](x, training, mask) - - return x - -class DecoderLayer(tf.keras.layers.Layer): - def __init__(self, d_model, num_heads, dff, rate=0.1): - super(DecoderLayer, self).__init__() - - self.mha1 = MultiHeadAttention(d_model, num_heads) - self.mha2 = MultiHeadAttention(d_model, num_heads) - - self.ffn = point_wise_feed_forward_network(d_model, dff) - - self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6) - self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6) - self.layernorm3 = tf.keras.layers.LayerNormalization(epsilon=1e-6) - - self.dropout1 = tf.keras.layers.Dropout(rate) - self.dropout2 = tf.keras.layers.Dropout(rate) - self.dropout3 = tf.keras.layers.Dropout(rate) - - - def call(self, x, enc_output, training, - look_ahead_mask, padding_mask): - - # Masked multihead attention layer (padding + look-ahead) - attn1, attn_weights_block1 = self.mha1(x, x, x, look_ahead_mask) - attn1 = self.dropout1(attn1, training=training) - # again add residual connection - out1 = self.layernorm1(attn1 + x) - - # Masked multihead attention layer (only padding) - # with input from encoder as Key and Value, and input from previous layer as Query - attn2, attn_weights_block2 = self.mha2( - enc_output, enc_output, out1, padding_mask) - attn2 = self.dropout2(attn2, training=training) - # again add residual connection - out2 = self.layernorm2(attn2 + out1) - - # Feedforward layer - ffn_output = self.ffn(out2) - ffn_output = self.dropout3(ffn_output, training=training) - # again add residual connection - out3 = self.layernorm3(ffn_output + out2) - return out3, attn_weights_block1, attn_weights_block2 - -class Decoder(tf.keras.layers.Layer): - def __init__(self, num_layers, d_model, num_heads, dff, target_vocab_size, - maximum_position_encoding, rate=0.1): - super(Decoder, self).__init__() - - self.d_model = d_model - self.num_layers = num_layers - - self.embedding = tf.keras.layers.Embedding(target_vocab_size, d_model) - self.pos_encoding = positional_encoding(maximum_position_encoding, d_model) - - # Create decoder layers (count: num_layers) - self.dec_layers = [DecoderLayer(d_model, num_heads, dff, rate) - for _ in range(num_layers)] - self.dropout = tf.keras.layers.Dropout(rate) - - def call(self, x, enc_output, training, - look_ahead_mask, padding_mask): - - seq_len = tf.shape(x)[1] - attention_weights = {} - - x = self.embedding(x) # (batch_size, target_seq_len, d_model) - - x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) - - x += self.pos_encoding[:,:seq_len,:] - - x = self.dropout(x, training=training) - - for i in range(self.num_layers): - x, block1, block2 = self.dec_layers[i](x, enc_output, training, - look_ahead_mask, padding_mask) - - # store attenion weights, they can be used to visualize while translating - attention_weights['decoder_layer{}_block1'.format(i+1)] = block1 - attention_weights['decoder_layer{}_block2'.format(i+1)] = block2 - - return x, attention_weights - -class Transformer(tf.keras.Model): - def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size, - target_vocab_size, pe_input, pe_target, rate=0.1): - super(Transformer, self).__init__() - - self.encoder = Encoder(num_layers, d_model, num_heads, dff, - input_vocab_size, pe_input, rate) - - self.decoder = Decoder(num_layers, d_model, num_heads, dff, - target_vocab_size, pe_target, rate) - - self.final_layer = tf.keras.layers.Dense(target_vocab_size) - - def call(self, inp, tar, training, enc_padding_mask, - look_ahead_mask, dec_padding_mask): - - # Pass the input to the encoder - enc_output = self.encoder(inp, training, enc_padding_mask) - - # Pass the encoder output to the decoder - dec_output, attention_weights = self.decoder( - tar, enc_output, training, look_ahead_mask, dec_padding_mask) - - # Pass the decoder output to the last linear layer - final_output = self.final_layer(dec_output) - - return final_output, attention_weights - -class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule): - def __init__(self, d_model, warmup_steps=4000): - super(CustomSchedule, self).__init__() - - self.d_model = d_model - self.d_model = tf.cast(self.d_model, tf.float32) - - self.warmup_steps = warmup_steps - - def __call__(self, step): - arg1 = tf.math.rsqrt(step) - arg2 = step * (self.warmup_steps ** -1.5) - - return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2) - -learning_rate = CustomSchedule(d_model) - -# Adam optimizer with a custom learning rate -optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.9, beta_2=0.98, - epsilon=1e-9) - -loss_object = tf.keras.losses.SparseCategoricalCrossentropy( - from_logits=True, reduction='none') - -def loss_function(real, pred): - # Apply a mask to paddings (0) - mask = tf.math.logical_not(tf.math.equal(real, 0)) - loss_ = loss_object(real, pred) - - mask = tf.cast(mask, dtype=loss_.dtype) - loss_ *= mask - - return tf.reduce_mean(loss_) - -train_loss = tf.keras.metrics.Mean(name='train_loss') -train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy( - name='train_accuracy') - -transformer = Transformer(num_layers, d_model, num_heads, dff, - input_vocab_size, target_vocab_size, - pe_input=input_vocab_size, - pe_target=target_vocab_size, - rate=dropout_rate) - -def create_masks(inp, tar): - # Encoder padding mask - enc_padding_mask = create_padding_mask(inp) - - # Decoder padding mask - dec_padding_mask = create_padding_mask(inp) - - # Look ahead mask (for hiding the rest of the sequence in the 1st decoder attention layer) - look_ahead_mask = create_look_ahead_mask(tf.shape(tar)[1]) - dec_target_padding_mask = create_padding_mask(tar) - combined_mask = tf.maximum(dec_target_padding_mask, look_ahead_mask) - - return enc_padding_mask, combined_mask, dec_padding_mask - -# drive_root = '/gdrive/My Drive/' -drive_root = './' - -checkpoint_dir = os.path.join(drive_root, "checkpoints") -checkpoint_dir = os.path.join(checkpoint_dir, "training_checkpoints/moops_transfomer") - -print("Checkpoints directory is", checkpoint_dir) -if os.path.exists(checkpoint_dir): - print("Checkpoints folder already exists") -else: - print("Creating a checkpoints directory") - os.makedirs(checkpoint_dir) - - -checkpoint = tf.train.Checkpoint(transformer=transformer, - optimizer=optimizer) - -ckpt_manager = tf.train.CheckpointManager(checkpoint, checkpoint_dir, max_to_keep=5) - -latest = ckpt_manager.latest_checkpoint -latest - -if latest: - epoch_num = int(latest.split('/')[-1].split('-')[-1]) - checkpoint.restore(latest) - print ('Latest checkpoint restored!!') -else: - epoch_num = 0 - -epoch_num - -# EPOCHS = 17 - -# def train_step(inp, tar): -# tar_inp = tar[:, :-1] -# tar_real = tar[:, 1:] - -# enc_padding_mask, combined_mask, dec_padding_mask = create_masks(inp, tar_inp) - -# with tf.GradientTape() as tape: -# predictions, _ = transformer(inp, tar_inp, -# True, -# enc_padding_mask, -# combined_mask, -# dec_padding_mask) -# loss = loss_function(tar_real, predictions) - -# gradients = tape.gradient(loss, transformer.trainable_variables) -# optimizer.apply_gradients(zip(gradients, transformer.trainable_variables)) - -# train_loss(loss) -# train_accuracy(tar_real, predictions) - -# for epoch in range(epoch_num, EPOCHS): -# start = time.time() - -# train_loss.reset_states() -# train_accuracy.reset_states() - -# # inp -> question, tar -> equation -# for (batch, (inp, tar)) in enumerate(dataset): -# train_step(inp, tar) - -# if batch % 50 == 0: -# print ('Epoch {} Batch {} Loss {:.4f} Accuracy {:.4f}'.format( -# epoch + 1, batch, train_loss.result(), train_accuracy.result())) - -# ckpt_save_path = ckpt_manager.save() -# print ('Saving checkpoint for epoch {} at {}'.format(epoch+1, -# ckpt_save_path)) - -# print ('Epoch {} Loss {:.4f} Accuracy {:.4f}'.format(epoch + 1, -# train_loss.result(), -# train_accuracy.result())) - -# print ('Time taken for 1 epoch: {} secs\n'.format(time.time() - start)) - -def evaluate(inp_sentence): - start_token = [len(inp_lang_tokenizer.word_index)+1] - end_token = [len(inp_lang_tokenizer.word_index)+2] - - # inp sentence is the word problem, hence adding the start and end token - inp_sentence = start_token + [inp_lang_tokenizer.word_index.get(i, inp_lang_tokenizer.word_index['john']) for i in preprocess_input(inp_sentence).split(' ')] + end_token - encoder_input = tf.expand_dims(inp_sentence, 0) - - # start with equation's start token - decoder_input = [old_len+1] - output = tf.expand_dims(decoder_input, 0) - - for i in range(MAX_LENGTH): - enc_padding_mask, combined_mask, dec_padding_mask = create_masks( - encoder_input, output) - - predictions, attention_weights = transformer(encoder_input, - output, - False, - enc_padding_mask, - combined_mask, - dec_padding_mask) - - # select the last word from the seq_len dimension - predictions = predictions[: ,-1:, :] - predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32) - - # return the result if the predicted_id is equal to the end token - if predicted_id == old_len+2: - return tf.squeeze(output, axis=0), attention_weights - - # concatentate the predicted_id to the output which is given to the decoder - # as its input. - output = tf.concat([output, predicted_id], axis=-1) - return tf.squeeze(output, axis=0), attention_weights - -# def plot_attention_weights(attention, sentence, result, layer): -# fig = plt.figure(figsize=(16, 8)) - -# sentence = preprocess_input(sentence) - -# attention = tf.squeeze(attention[layer], axis=0) - -# for head in range(attention.shape[0]): -# ax = fig.add_subplot(2, 4, head+1) - -# # plot the attention weights -# ax.matshow(attention[head][:-1, :], cmap='viridis') - -# fontdict = {'fontsize': 10} - -# ax.set_xticks(range(len(sentence.split(' '))+2)) -# ax.set_yticks(range(len([targ_lang_tokenizer.index_word[i] for i in list(result.numpy()) -# if i < len(targ_lang_tokenizer.word_index) and i not in [0,old_len+1,old_len+2]])+3)) - - -# ax.set_ylim(len([targ_lang_tokenizer.index_word[i] for i in list(result.numpy()) -# if i < len(targ_lang_tokenizer.word_index) and i not in [0,old_len+1,old_len+2]]), -0.5) - -# ax.set_xticklabels( -# ['']+sentence.split(' ')+[''], -# fontdict=fontdict, rotation=90) - -# ax.set_yticklabels([targ_lang_tokenizer.index_word[i] for i in list(result.numpy()) -# if i < len(targ_lang_tokenizer.word_index) and i not in [0,old_len+1,old_len+2]], -# fontdict=fontdict) - -# ax.set_xlabel('Head {}'.format(head+1)) - -# plt.tight_layout() -# plt.show() - -MAX_LENGTH = 40 - -def translate(sentence, plot=''): - - - - result, attention_weights = evaluate(sentence) - - # use the result tokens to convert prediction into a list of characters - # (not inclusing padding, start and end tokens) - predicted_sentence = [targ_lang_tokenizer.index_word[i] for i in list(result.numpy()) if (i < len(targ_lang_tokenizer.word_index) and i not in [0,46,47])] - -# print('Input: {}'.format(sentence)) - return ''.join(predicted_sentence) - - if plot: - plot_attention_weights(attention_weights, sentence, result, plot) - -# def evaluate_results(inp_sentence): -# start_token = [len(inp_lang_tokenizer.word_index)+1] -# end_token = [len(inp_lang_tokenizer.word_index)+2] - -# # inp sentence is the word problem, hence adding the start and end token -# inp_sentence = start_token + list(inp_sentence.numpy()[0]) + end_token - -# encoder_input = tf.expand_dims(inp_sentence, 0) - - -# decoder_input = [old_len+1] -# output = tf.expand_dims(decoder_input, 0) - -# for i in range(MAX_LENGTH): -# enc_padding_mask, combined_mask, dec_padding_mask = create_masks( -# encoder_input, output) - -# # predictions.shape == (batch_size, seq_len, vocab_size) -# predictions, attention_weights = transformer(encoder_input, -# output, -# False, -# enc_padding_mask, -# combined_mask, -# dec_padding_mask) - -# # select the last word from the seq_len dimension -# predictions = predictions[: ,-1:, :] # (batch_size, 1, vocab_size) - -# predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32) - -# # return the result if the predicted_id is equal to the end token -# if predicted_id == old_len+2: -# return tf.squeeze(output, axis=0), attention_weights - -# # concatentate the predicted_id to the output which is given to the decoder -# # as its input. -# output = tf.concat([output, predicted_id], axis=-1) - -# return tf.squeeze(output, axis=0), attention_weights - -# dataset_val = tf.data.Dataset.from_tensor_slices((input_tensor_val, target_tensor_val)).shuffle(BUFFER_SIZE) -# dataset_val = dataset_val.batch(1, drop_remainder=True) - -# y_true = [] -# y_pred = [] -# acc_cnt = 0 - -# a = 0 -# for (inp_val_batch, target_val_batch) in iter(dataset_val): -# a += 1 -# if a % 100 == 0: -# print(a) -# print("Accuracy count: ",acc_cnt) -# print('------------------') -# target_sentence = '' -# for i in target_val_batch.numpy()[0]: -# if i not in [0,old_len+1,old_len+2]: -# target_sentence += (targ_lang_tokenizer.index_word[i] + ' ') - -# y_true.append([target_sentence.split(' ')[:-1]]) - -# result, _ = evaluate_results(inp_val_batch) -# predicted_sentence = [targ_lang_tokenizer.index_word[i] for i in list(result.numpy()) if (i < len(targ_lang_tokenizer.word_index) and i not in [0,old_len+1,old_len+2])] -# y_pred.append(predicted_sentence) - -# if target_sentence.split(' ')[:-1] == predicted_sentence: -# acc_cnt += 1 - -# len(y_true), len(y_pred) - -# print('Corpus BLEU score of the model: ', corpus_bleu(y_true, y_pred)) - -# print('Accuracy of the model: ', acc_cnt/len(input_tensor_val)) - -check_str = ' '.join([inp_lang_tokenizer.index_word[i] for i in input_tensor_val[242] if i not in [0, - len(inp_lang_tokenizer.word_index)+1, - len(inp_lang_tokenizer.word_index)+2]]) - -check_str - -translate(check_str) - -#'victor had some car . john took 3 0 from him . now victor has 6 8 car . how many car victor had originally ?' -translate('Nafis had 31 raspberry . He slice each raspberry into 19 slices . How many raspberry slices did Denise make?') - -interface = gr.Interface( - fn = translate, - inputs = gr.inputs.Textbox(lines = 2), - outputs = 'text', - examples = [ - ['Rachel bought two coloring books. One had 23 pictures and the other had 32. After one week she had colored 19 of the pictures. How many pictures does she still have to color?'], - ['Denise had 31 raspberries. He slices each raspberry into 19 slices. How many raspberry slices did Denise make?'], - ['A painter needed to paint 12 rooms in a building. Each room takes 7 hours to paint. If he already painted 5 rooms, how much longer will he take to paint the rest?'], - ['Jerry had 135 pens. John took 19 pens from him. How many pens Jerry have left?'], - ['Donald had some apples. Hillary took 20 apples from him. Now Donald has 100 apples. How many apples Donald had before?'] - ], - title = 'Mathbot', - description = 'Enter a simple math word problem and our AI will try to predict an expression to solve it. Mathbot occasionally makes mistakes. Feel free to press "flag" if you encounter such a scenario.', - ) -interface.launch() \ No newline at end of file diff --git a/spaces/ChihChiu29/mychatbot/tutorial.md b/spaces/ChihChiu29/mychatbot/tutorial.md deleted file mode 100644 index af80f2489f26deec19cd3bcb957c437f9a7da8a1..0000000000000000000000000000000000000000 --- a/spaces/ChihChiu29/mychatbot/tutorial.md +++ /dev/null @@ -1,44 +0,0 @@ -## Clone respository using git - -```bash -git clone https://huggingface.co/spaces/ChihChiu29/mychatbot -``` - -## Use git to push changes to huggingface repository - -First use `huggingface_cli.exe login` to login (follow its instruction), then use git commands for pushing. - -## Build/run via docker locally - -```bash -docker build -t fastapi . -docker run -it -p 7860:7860 fastapi -``` - -## CURL POST example - -```bash -curl -X POST http://localhost:7860/reply -H 'Content-Type: application/json' -d '{"msg": "hi"}' -``` - -## Huggingface API - -See: https://huggingface.co/docs/hub/api - -Access info for a space: https://huggingface.co/api/spaces/ChihChiu29/mychatbot - -## Directly access the server on Huggingface space - -Use the embedded address, for example: - -```bash -curl -X POST https://chihchiu29-mychatbot.hf.space/reply -H 'Content-Type: application/json' -d '{"msg": "hi"}' -``` - -## Remove dangling images - -From: https://github.com/fabric8io/docker-maven-plugin/issues/501 - -```bash -docker rmi $(docker images -qa -f 'dangling=true') -``` diff --git a/spaces/Clebersla/RVC_V2_Huggingface_Version/lib/infer_pack/modules/F0Predictor/__init__.py b/spaces/Clebersla/RVC_V2_Huggingface_Version/lib/infer_pack/modules/F0Predictor/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/CofAI/njpad/index.html b/spaces/CofAI/njpad/index.html deleted file mode 100644 index 86f7fb59f58289840b773ab6978891825a43f59e..0000000000000000000000000000000000000000 --- a/spaces/CofAI/njpad/index.html +++ /dev/null @@ -1,48 +0,0 @@ - - - - NJPad - - - -

    NJPad

    - - -

    - - - - - diff --git a/spaces/Cvandi/remake/tests/test_discriminator_arch.py b/spaces/Cvandi/remake/tests/test_discriminator_arch.py deleted file mode 100644 index c56a40c7743630aa63b3e99bca8dc1a85949c4c5..0000000000000000000000000000000000000000 --- a/spaces/Cvandi/remake/tests/test_discriminator_arch.py +++ /dev/null @@ -1,19 +0,0 @@ -import torch - -from realesrgan.archs.discriminator_arch import UNetDiscriminatorSN - - -def test_unetdiscriminatorsn(): - """Test arch: UNetDiscriminatorSN.""" - - # model init and forward (cpu) - net = UNetDiscriminatorSN(num_in_ch=3, num_feat=4, skip_connection=True) - img = torch.rand((1, 3, 32, 32), dtype=torch.float32) - output = net(img) - assert output.shape == (1, 1, 32, 32) - - # model init and forward (gpu) - if torch.cuda.is_available(): - net.cuda() - output = net(img.cuda()) - assert output.shape == (1, 1, 32, 32) diff --git a/spaces/Cyril666/my_abi/modules/transformer.py b/spaces/Cyril666/my_abi/modules/transformer.py deleted file mode 100644 index 6dde312185c7c68f54562885f23ea3b0670e6c40..0000000000000000000000000000000000000000 --- a/spaces/Cyril666/my_abi/modules/transformer.py +++ /dev/null @@ -1,901 +0,0 @@ -# pytorch 1.5.0 -import copy -import math -import warnings -from typing import Optional - -import torch -import torch.nn as nn -from torch import Tensor -from torch.nn import Dropout, LayerNorm, Linear, Module, ModuleList, Parameter -from torch.nn import functional as F -from torch.nn.init import constant_, xavier_uniform_ - - -def multi_head_attention_forward(query, # type: Tensor - key, # type: Tensor - value, # type: Tensor - embed_dim_to_check, # type: int - num_heads, # type: int - in_proj_weight, # type: Tensor - in_proj_bias, # type: Tensor - bias_k, # type: Optional[Tensor] - bias_v, # type: Optional[Tensor] - add_zero_attn, # type: bool - dropout_p, # type: float - out_proj_weight, # type: Tensor - out_proj_bias, # type: Tensor - training=True, # type: bool - key_padding_mask=None, # type: Optional[Tensor] - need_weights=True, # type: bool - attn_mask=None, # type: Optional[Tensor] - use_separate_proj_weight=False, # type: bool - q_proj_weight=None, # type: Optional[Tensor] - k_proj_weight=None, # type: Optional[Tensor] - v_proj_weight=None, # type: Optional[Tensor] - static_k=None, # type: Optional[Tensor] - static_v=None # type: Optional[Tensor] - ): - # type: (...) -> Tuple[Tensor, Optional[Tensor]] - r""" - Args: - query, key, value: map a query and a set of key-value pairs to an output. - See "Attention Is All You Need" for more details. - embed_dim_to_check: total dimension of the model. - num_heads: parallel attention heads. - in_proj_weight, in_proj_bias: input projection weight and bias. - bias_k, bias_v: bias of the key and value sequences to be added at dim=0. - add_zero_attn: add a new batch of zeros to the key and - value sequences at dim=1. - dropout_p: probability of an element to be zeroed. - out_proj_weight, out_proj_bias: the output projection weight and bias. - training: apply dropout if is ``True``. - key_padding_mask: if provided, specified padding elements in the key will - be ignored by the attention. This is an binary mask. When the value is True, - the corresponding value on the attention layer will be filled with -inf. - need_weights: output attn_output_weights. - attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all - the batches while a 3D mask allows to specify a different mask for the entries of each batch. - use_separate_proj_weight: the function accept the proj. weights for query, key, - and value in different forms. If false, in_proj_weight will be used, which is - a combination of q_proj_weight, k_proj_weight, v_proj_weight. - q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias. - static_k, static_v: static key and value used for attention operators. - Shape: - Inputs: - - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is - the embedding dimension. - - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is - the embedding dimension. - - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is - the embedding dimension. - - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. - If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions - will be unchanged. If a BoolTensor is provided, the positions with the - value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. - 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, - S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked - positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend - while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` - are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor - is provided, it will be added to the attention weight. - - static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, - N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. - - static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, - N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. - Outputs: - - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, - E is the embedding dimension. - - attn_output_weights: :math:`(N, L, S)` where N is the batch size, - L is the target sequence length, S is the source sequence length. - """ - # if not torch.jit.is_scripting(): - # tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, - # out_proj_weight, out_proj_bias) - # if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops): - # return handle_torch_function( - # multi_head_attention_forward, tens_ops, query, key, value, - # embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias, - # bias_k, bias_v, add_zero_attn, dropout_p, out_proj_weight, - # out_proj_bias, training=training, key_padding_mask=key_padding_mask, - # need_weights=need_weights, attn_mask=attn_mask, - # use_separate_proj_weight=use_separate_proj_weight, - # q_proj_weight=q_proj_weight, k_proj_weight=k_proj_weight, - # v_proj_weight=v_proj_weight, static_k=static_k, static_v=static_v) - tgt_len, bsz, embed_dim = query.size() - assert embed_dim == embed_dim_to_check - assert key.size() == value.size() - - head_dim = embed_dim // num_heads - assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads" - scaling = float(head_dim) ** -0.5 - - if not use_separate_proj_weight: - if torch.equal(query, key) and torch.equal(key, value): - # self-attention - q, k, v = F.linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1) - - elif torch.equal(key, value): - # encoder-decoder attention - # This is inline in_proj function with in_proj_weight and in_proj_bias - _b = in_proj_bias - _start = 0 - _end = embed_dim - _w = in_proj_weight[_start:_end, :] - if _b is not None: - _b = _b[_start:_end] - q = F.linear(query, _w, _b) - - if key is None: - assert value is None - k = None - v = None - else: - - # This is inline in_proj function with in_proj_weight and in_proj_bias - _b = in_proj_bias - _start = embed_dim - _end = None - _w = in_proj_weight[_start:, :] - if _b is not None: - _b = _b[_start:] - k, v = F.linear(key, _w, _b).chunk(2, dim=-1) - - else: - # This is inline in_proj function with in_proj_weight and in_proj_bias - _b = in_proj_bias - _start = 0 - _end = embed_dim - _w = in_proj_weight[_start:_end, :] - if _b is not None: - _b = _b[_start:_end] - q = F.linear(query, _w, _b) - - # This is inline in_proj function with in_proj_weight and in_proj_bias - _b = in_proj_bias - _start = embed_dim - _end = embed_dim * 2 - _w = in_proj_weight[_start:_end, :] - if _b is not None: - _b = _b[_start:_end] - k = F.linear(key, _w, _b) - - # This is inline in_proj function with in_proj_weight and in_proj_bias - _b = in_proj_bias - _start = embed_dim * 2 - _end = None - _w = in_proj_weight[_start:, :] - if _b is not None: - _b = _b[_start:] - v = F.linear(value, _w, _b) - else: - q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight) - len1, len2 = q_proj_weight_non_opt.size() - assert len1 == embed_dim and len2 == query.size(-1) - - k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight) - len1, len2 = k_proj_weight_non_opt.size() - assert len1 == embed_dim and len2 == key.size(-1) - - v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight) - len1, len2 = v_proj_weight_non_opt.size() - assert len1 == embed_dim and len2 == value.size(-1) - - if in_proj_bias is not None: - q = F.linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim]) - k = F.linear(key, k_proj_weight_non_opt, in_proj_bias[embed_dim:(embed_dim * 2)]) - v = F.linear(value, v_proj_weight_non_opt, in_proj_bias[(embed_dim * 2):]) - else: - q = F.linear(query, q_proj_weight_non_opt, in_proj_bias) - k = F.linear(key, k_proj_weight_non_opt, in_proj_bias) - v = F.linear(value, v_proj_weight_non_opt, in_proj_bias) - q = q * scaling - - if attn_mask is not None: - assert attn_mask.dtype == torch.float32 or attn_mask.dtype == torch.float64 or \ - attn_mask.dtype == torch.float16 or attn_mask.dtype == torch.uint8 or attn_mask.dtype == torch.bool, \ - 'Only float, byte, and bool types are supported for attn_mask, not {}'.format(attn_mask.dtype) - if attn_mask.dtype == torch.uint8: - warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.") - attn_mask = attn_mask.to(torch.bool) - - if attn_mask.dim() == 2: - attn_mask = attn_mask.unsqueeze(0) - if list(attn_mask.size()) != [1, query.size(0), key.size(0)]: - raise RuntimeError('The size of the 2D attn_mask is not correct.') - elif attn_mask.dim() == 3: - if list(attn_mask.size()) != [bsz * num_heads, query.size(0), key.size(0)]: - raise RuntimeError('The size of the 3D attn_mask is not correct.') - else: - raise RuntimeError("attn_mask's dimension {} is not supported".format(attn_mask.dim())) - # attn_mask's dim is 3 now. - - # # convert ByteTensor key_padding_mask to bool - # if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: - # warnings.warn("Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.") - # key_padding_mask = key_padding_mask.to(torch.bool) - - if bias_k is not None and bias_v is not None: - if static_k is None and static_v is None: - k = torch.cat([k, bias_k.repeat(1, bsz, 1)]) - v = torch.cat([v, bias_v.repeat(1, bsz, 1)]) - if attn_mask is not None: - attn_mask = pad(attn_mask, (0, 1)) - if key_padding_mask is not None: - key_padding_mask = pad(key_padding_mask, (0, 1)) - else: - assert static_k is None, "bias cannot be added to static key." - assert static_v is None, "bias cannot be added to static value." - else: - assert bias_k is None - assert bias_v is None - - q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1) - if k is not None: - k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) - if v is not None: - v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) - - if static_k is not None: - assert static_k.size(0) == bsz * num_heads - assert static_k.size(2) == head_dim - k = static_k - - if static_v is not None: - assert static_v.size(0) == bsz * num_heads - assert static_v.size(2) == head_dim - v = static_v - - src_len = k.size(1) - - if key_padding_mask is not None: - assert key_padding_mask.size(0) == bsz - assert key_padding_mask.size(1) == src_len - - if add_zero_attn: - src_len += 1 - k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1) - v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1) - if attn_mask is not None: - attn_mask = pad(attn_mask, (0, 1)) - if key_padding_mask is not None: - key_padding_mask = pad(key_padding_mask, (0, 1)) - - attn_output_weights = torch.bmm(q, k.transpose(1, 2)) - assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len] - - if attn_mask is not None: - if attn_mask.dtype == torch.bool: - attn_output_weights.masked_fill_(attn_mask, float('-inf')) - else: - attn_output_weights += attn_mask - - - if key_padding_mask is not None: - attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) - attn_output_weights = attn_output_weights.masked_fill( - key_padding_mask.unsqueeze(1).unsqueeze(2), - float('-inf'), - ) - attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len) - - attn_output_weights = F.softmax( - attn_output_weights, dim=-1) - attn_output_weights = F.dropout(attn_output_weights, p=dropout_p, training=training) - - attn_output = torch.bmm(attn_output_weights, v) - assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] - attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) - attn_output = F.linear(attn_output, out_proj_weight, out_proj_bias) - - if need_weights: - # average attention weights over heads - attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) - return attn_output, attn_output_weights.sum(dim=1) / num_heads - else: - return attn_output, None - -class MultiheadAttention(Module): - r"""Allows the model to jointly attend to information - from different representation subspaces. - See reference: Attention Is All You Need - .. math:: - \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O - \text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) - Args: - embed_dim: total dimension of the model. - num_heads: parallel attention heads. - dropout: a Dropout layer on attn_output_weights. Default: 0.0. - bias: add bias as module parameter. Default: True. - add_bias_kv: add bias to the key and value sequences at dim=0. - add_zero_attn: add a new batch of zeros to the key and - value sequences at dim=1. - kdim: total number of features in key. Default: None. - vdim: total number of features in value. Default: None. - Note: if kdim and vdim are None, they will be set to embed_dim such that - query, key, and value have the same number of features. - Examples:: - >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads) - >>> attn_output, attn_output_weights = multihead_attn(query, key, value) - """ - # __annotations__ = { - # 'bias_k': torch._jit_internal.Optional[torch.Tensor], - # 'bias_v': torch._jit_internal.Optional[torch.Tensor], - # } - __constants__ = ['q_proj_weight', 'k_proj_weight', 'v_proj_weight', 'in_proj_weight'] - - def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None): - super(MultiheadAttention, self).__init__() - self.embed_dim = embed_dim - self.kdim = kdim if kdim is not None else embed_dim - self.vdim = vdim if vdim is not None else embed_dim - self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim - - self.num_heads = num_heads - self.dropout = dropout - self.head_dim = embed_dim // num_heads - assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" - - if self._qkv_same_embed_dim is False: - self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim)) - self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim)) - self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim)) - self.register_parameter('in_proj_weight', None) - else: - self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim)) - self.register_parameter('q_proj_weight', None) - self.register_parameter('k_proj_weight', None) - self.register_parameter('v_proj_weight', None) - - if bias: - self.in_proj_bias = Parameter(torch.empty(3 * embed_dim)) - else: - self.register_parameter('in_proj_bias', None) - self.out_proj = Linear(embed_dim, embed_dim, bias=bias) - - if add_bias_kv: - self.bias_k = Parameter(torch.empty(1, 1, embed_dim)) - self.bias_v = Parameter(torch.empty(1, 1, embed_dim)) - else: - self.bias_k = self.bias_v = None - - self.add_zero_attn = add_zero_attn - - self._reset_parameters() - - def _reset_parameters(self): - if self._qkv_same_embed_dim: - xavier_uniform_(self.in_proj_weight) - else: - xavier_uniform_(self.q_proj_weight) - xavier_uniform_(self.k_proj_weight) - xavier_uniform_(self.v_proj_weight) - - if self.in_proj_bias is not None: - constant_(self.in_proj_bias, 0.) - constant_(self.out_proj.bias, 0.) - if self.bias_k is not None: - xavier_normal_(self.bias_k) - if self.bias_v is not None: - xavier_normal_(self.bias_v) - - def __setstate__(self, state): - # Support loading old MultiheadAttention checkpoints generated by v1.1.0 - if '_qkv_same_embed_dim' not in state: - state['_qkv_same_embed_dim'] = True - - super(MultiheadAttention, self).__setstate__(state) - - def forward(self, query, key, value, key_padding_mask=None, - need_weights=True, attn_mask=None): - # type: (Tensor, Tensor, Tensor, Optional[Tensor], bool, Optional[Tensor]) -> Tuple[Tensor, Optional[Tensor]] - r""" - Args: - query, key, value: map a query and a set of key-value pairs to an output. - See "Attention Is All You Need" for more details. - key_padding_mask: if provided, specified padding elements in the key will - be ignored by the attention. This is an binary mask. When the value is True, - the corresponding value on the attention layer will be filled with -inf. - need_weights: output attn_output_weights. - attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all - the batches while a 3D mask allows to specify a different mask for the entries of each batch. - Shape: - - Inputs: - - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is - the embedding dimension. - - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is - the embedding dimension. - - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is - the embedding dimension. - - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. - If a ByteTensor is provided, the non-zero positions will be ignored while the position - with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the - value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. - 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, - S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked - positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend - while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` - is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor - is provided, it will be added to the attention weight. - - Outputs: - - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, - E is the embedding dimension. - - attn_output_weights: :math:`(N, L, S)` where N is the batch size, - L is the target sequence length, S is the source sequence length. - """ - if not self._qkv_same_embed_dim: - return multi_head_attention_forward( - query, key, value, self.embed_dim, self.num_heads, - self.in_proj_weight, self.in_proj_bias, - self.bias_k, self.bias_v, self.add_zero_attn, - self.dropout, self.out_proj.weight, self.out_proj.bias, - training=self.training, - key_padding_mask=key_padding_mask, need_weights=need_weights, - attn_mask=attn_mask, use_separate_proj_weight=True, - q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, - v_proj_weight=self.v_proj_weight) - else: - return multi_head_attention_forward( - query, key, value, self.embed_dim, self.num_heads, - self.in_proj_weight, self.in_proj_bias, - self.bias_k, self.bias_v, self.add_zero_attn, - self.dropout, self.out_proj.weight, self.out_proj.bias, - training=self.training, - key_padding_mask=key_padding_mask, need_weights=need_weights, - attn_mask=attn_mask) - - -class Transformer(Module): - r"""A transformer model. User is able to modify the attributes as needed. The architecture - is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer, - Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and - Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information - Processing Systems, pages 6000-6010. Users can build the BERT(https://arxiv.org/abs/1810.04805) - model with corresponding parameters. - - Args: - d_model: the number of expected features in the encoder/decoder inputs (default=512). - nhead: the number of heads in the multiheadattention models (default=8). - num_encoder_layers: the number of sub-encoder-layers in the encoder (default=6). - num_decoder_layers: the number of sub-decoder-layers in the decoder (default=6). - dim_feedforward: the dimension of the feedforward network model (default=2048). - dropout: the dropout value (default=0.1). - activation: the activation function of encoder/decoder intermediate layer, relu or gelu (default=relu). - custom_encoder: custom encoder (default=None). - custom_decoder: custom decoder (default=None). - - Examples:: - >>> transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12) - >>> src = torch.rand((10, 32, 512)) - >>> tgt = torch.rand((20, 32, 512)) - >>> out = transformer_model(src, tgt) - - Note: A full example to apply nn.Transformer module for the word language model is available in - https://github.com/pytorch/examples/tree/master/word_language_model - """ - - def __init__(self, d_model=512, nhead=8, num_encoder_layers=6, - num_decoder_layers=6, dim_feedforward=2048, dropout=0.1, - activation="relu", custom_encoder=None, custom_decoder=None): - super(Transformer, self).__init__() - - if custom_encoder is not None: - self.encoder = custom_encoder - else: - encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout, activation) - encoder_norm = LayerNorm(d_model) - self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm) - - if custom_decoder is not None: - self.decoder = custom_decoder - else: - decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout, activation) - decoder_norm = LayerNorm(d_model) - self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm) - - self._reset_parameters() - - self.d_model = d_model - self.nhead = nhead - - def forward(self, src, tgt, src_mask=None, tgt_mask=None, - memory_mask=None, src_key_padding_mask=None, - tgt_key_padding_mask=None, memory_key_padding_mask=None): - # type: (Tensor, Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor]) -> Tensor # noqa - r"""Take in and process masked source/target sequences. - - Args: - src: the sequence to the encoder (required). - tgt: the sequence to the decoder (required). - src_mask: the additive mask for the src sequence (optional). - tgt_mask: the additive mask for the tgt sequence (optional). - memory_mask: the additive mask for the encoder output (optional). - src_key_padding_mask: the ByteTensor mask for src keys per batch (optional). - tgt_key_padding_mask: the ByteTensor mask for tgt keys per batch (optional). - memory_key_padding_mask: the ByteTensor mask for memory keys per batch (optional). - - Shape: - - src: :math:`(S, N, E)`. - - tgt: :math:`(T, N, E)`. - - src_mask: :math:`(S, S)`. - - tgt_mask: :math:`(T, T)`. - - memory_mask: :math:`(T, S)`. - - src_key_padding_mask: :math:`(N, S)`. - - tgt_key_padding_mask: :math:`(N, T)`. - - memory_key_padding_mask: :math:`(N, S)`. - - Note: [src/tgt/memory]_mask ensures that position i is allowed to attend the unmasked - positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend - while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` - are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor - is provided, it will be added to the attention weight. - [src/tgt/memory]_key_padding_mask provides specified elements in the key to be ignored by - the attention. If a ByteTensor is provided, the non-zero positions will be ignored while the zero - positions will be unchanged. If a BoolTensor is provided, the positions with the - value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - - - output: :math:`(T, N, E)`. - - Note: Due to the multi-head attention architecture in the transformer model, - the output sequence length of a transformer is same as the input sequence - (i.e. target) length of the decode. - - where S is the source sequence length, T is the target sequence length, N is the - batch size, E is the feature number - - Examples: - >>> output = transformer_model(src, tgt, src_mask=src_mask, tgt_mask=tgt_mask) - """ - - if src.size(1) != tgt.size(1): - raise RuntimeError("the batch number of src and tgt must be equal") - - if src.size(2) != self.d_model or tgt.size(2) != self.d_model: - raise RuntimeError("the feature number of src and tgt must be equal to d_model") - - memory = self.encoder(src, mask=src_mask, src_key_padding_mask=src_key_padding_mask) - output = self.decoder(tgt, memory, tgt_mask=tgt_mask, memory_mask=memory_mask, - tgt_key_padding_mask=tgt_key_padding_mask, - memory_key_padding_mask=memory_key_padding_mask) - return output - - def generate_square_subsequent_mask(self, sz): - r"""Generate a square mask for the sequence. The masked positions are filled with float('-inf'). - Unmasked positions are filled with float(0.0). - """ - mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1) - mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) - return mask - - def _reset_parameters(self): - r"""Initiate parameters in the transformer model.""" - - for p in self.parameters(): - if p.dim() > 1: - xavier_uniform_(p) - - -class TransformerEncoder(Module): - r"""TransformerEncoder is a stack of N encoder layers - - Args: - encoder_layer: an instance of the TransformerEncoderLayer() class (required). - num_layers: the number of sub-encoder-layers in the encoder (required). - norm: the layer normalization component (optional). - - Examples:: - >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8) - >>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6) - >>> src = torch.rand(10, 32, 512) - >>> out = transformer_encoder(src) - """ - __constants__ = ['norm'] - - def __init__(self, encoder_layer, num_layers, norm=None): - super(TransformerEncoder, self).__init__() - self.layers = _get_clones(encoder_layer, num_layers) - self.num_layers = num_layers - self.norm = norm - - def forward(self, src, mask=None, src_key_padding_mask=None): - # type: (Tensor, Optional[Tensor], Optional[Tensor]) -> Tensor - r"""Pass the input through the encoder layers in turn. - - Args: - src: the sequence to the encoder (required). - mask: the mask for the src sequence (optional). - src_key_padding_mask: the mask for the src keys per batch (optional). - - Shape: - see the docs in Transformer class. - """ - output = src - - for i, mod in enumerate(self.layers): - output = mod(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask) - - if self.norm is not None: - output = self.norm(output) - - return output - - -class TransformerDecoder(Module): - r"""TransformerDecoder is a stack of N decoder layers - - Args: - decoder_layer: an instance of the TransformerDecoderLayer() class (required). - num_layers: the number of sub-decoder-layers in the decoder (required). - norm: the layer normalization component (optional). - - Examples:: - >>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8) - >>> transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers=6) - >>> memory = torch.rand(10, 32, 512) - >>> tgt = torch.rand(20, 32, 512) - >>> out = transformer_decoder(tgt, memory) - """ - __constants__ = ['norm'] - - def __init__(self, decoder_layer, num_layers, norm=None): - super(TransformerDecoder, self).__init__() - self.layers = _get_clones(decoder_layer, num_layers) - self.num_layers = num_layers - self.norm = norm - - def forward(self, tgt, memory, memory2=None, tgt_mask=None, - memory_mask=None, memory_mask2=None, tgt_key_padding_mask=None, - memory_key_padding_mask=None, memory_key_padding_mask2=None): - # type: (Tensor, Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor]) -> Tensor - r"""Pass the inputs (and mask) through the decoder layer in turn. - - Args: - tgt: the sequence to the decoder (required). - memory: the sequence from the last layer of the encoder (required). - tgt_mask: the mask for the tgt sequence (optional). - memory_mask: the mask for the memory sequence (optional). - tgt_key_padding_mask: the mask for the tgt keys per batch (optional). - memory_key_padding_mask: the mask for the memory keys per batch (optional). - - Shape: - see the docs in Transformer class. - """ - output = tgt - - for mod in self.layers: - output = mod(output, memory, memory2=memory2, tgt_mask=tgt_mask, - memory_mask=memory_mask, memory_mask2=memory_mask2, - tgt_key_padding_mask=tgt_key_padding_mask, - memory_key_padding_mask=memory_key_padding_mask, - memory_key_padding_mask2=memory_key_padding_mask2) - - if self.norm is not None: - output = self.norm(output) - - return output - -class TransformerEncoderLayer(Module): - r"""TransformerEncoderLayer is made up of self-attn and feedforward network. - This standard encoder layer is based on the paper "Attention Is All You Need". - Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, - Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in - Neural Information Processing Systems, pages 6000-6010. Users may modify or implement - in a different way during application. - - Args: - d_model: the number of expected features in the input (required). - nhead: the number of heads in the multiheadattention models (required). - dim_feedforward: the dimension of the feedforward network model (default=2048). - dropout: the dropout value (default=0.1). - activation: the activation function of intermediate layer, relu or gelu (default=relu). - - Examples:: - >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8) - >>> src = torch.rand(10, 32, 512) - >>> out = encoder_layer(src) - """ - - def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, - activation="relu", debug=False): - super(TransformerEncoderLayer, self).__init__() - self.debug = debug - self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout) - # Implementation of Feedforward model - self.linear1 = Linear(d_model, dim_feedforward) - self.dropout = Dropout(dropout) - self.linear2 = Linear(dim_feedforward, d_model) - - self.norm1 = LayerNorm(d_model) - self.norm2 = LayerNorm(d_model) - self.dropout1 = Dropout(dropout) - self.dropout2 = Dropout(dropout) - - self.activation = _get_activation_fn(activation) - - def __setstate__(self, state): - if 'activation' not in state: - state['activation'] = F.relu - super(TransformerEncoderLayer, self).__setstate__(state) - - def forward(self, src, src_mask=None, src_key_padding_mask=None): - # type: (Tensor, Optional[Tensor], Optional[Tensor]) -> Tensor - r"""Pass the input through the encoder layer. - - Args: - src: the sequence to the encoder layer (required). - src_mask: the mask for the src sequence (optional). - src_key_padding_mask: the mask for the src keys per batch (optional). - - Shape: - see the docs in Transformer class. - """ - src2, attn = self.self_attn(src, src, src, attn_mask=src_mask, - key_padding_mask=src_key_padding_mask) - if self.debug: self.attn = attn - src = src + self.dropout1(src2) - src = self.norm1(src) - src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) - src = src + self.dropout2(src2) - src = self.norm2(src) - - return src - - -class TransformerDecoderLayer(Module): - r"""TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network. - This standard decoder layer is based on the paper "Attention Is All You Need". - Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, - Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in - Neural Information Processing Systems, pages 6000-6010. Users may modify or implement - in a different way during application. - - Args: - d_model: the number of expected features in the input (required). - nhead: the number of heads in the multiheadattention models (required). - dim_feedforward: the dimension of the feedforward network model (default=2048). - dropout: the dropout value (default=0.1). - activation: the activation function of intermediate layer, relu or gelu (default=relu). - - Examples:: - >>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8) - >>> memory = torch.rand(10, 32, 512) - >>> tgt = torch.rand(20, 32, 512) - >>> out = decoder_layer(tgt, memory) - """ - - def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, - activation="relu", self_attn=True, siamese=False, debug=False): - super(TransformerDecoderLayer, self).__init__() - self.has_self_attn, self.siamese = self_attn, siamese - self.debug = debug - if self.has_self_attn: - self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout) - self.norm1 = LayerNorm(d_model) - self.dropout1 = Dropout(dropout) - self.multihead_attn = MultiheadAttention(d_model, nhead, dropout=dropout) - # Implementation of Feedforward model - self.linear1 = Linear(d_model, dim_feedforward) - self.dropout = Dropout(dropout) - self.linear2 = Linear(dim_feedforward, d_model) - - self.norm2 = LayerNorm(d_model) - self.norm3 = LayerNorm(d_model) - self.dropout2 = Dropout(dropout) - self.dropout3 = Dropout(dropout) - if self.siamese: - self.multihead_attn2 = MultiheadAttention(d_model, nhead, dropout=dropout) - - self.activation = _get_activation_fn(activation) - - def __setstate__(self, state): - if 'activation' not in state: - state['activation'] = F.relu - super(TransformerDecoderLayer, self).__setstate__(state) - - def forward(self, tgt, memory, tgt_mask=None, memory_mask=None, - tgt_key_padding_mask=None, memory_key_padding_mask=None, - memory2=None, memory_mask2=None, memory_key_padding_mask2=None): - # type: (Tensor, Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor]) -> Tensor - r"""Pass the inputs (and mask) through the decoder layer. - - Args: - tgt: the sequence to the decoder layer (required). - memory: the sequence from the last layer of the encoder (required). - tgt_mask: the mask for the tgt sequence (optional). - memory_mask: the mask for the memory sequence (optional). - tgt_key_padding_mask: the mask for the tgt keys per batch (optional). - memory_key_padding_mask: the mask for the memory keys per batch (optional). - - Shape: - see the docs in Transformer class. - """ - if self.has_self_attn: - tgt2, attn = self.self_attn(tgt, tgt, tgt, attn_mask=tgt_mask, - key_padding_mask=tgt_key_padding_mask) - tgt = tgt + self.dropout1(tgt2) - tgt = self.norm1(tgt) - if self.debug: self.attn = attn - tgt2, attn2 = self.multihead_attn(tgt, memory, memory, attn_mask=memory_mask, - key_padding_mask=memory_key_padding_mask) - if self.debug: self.attn2 = attn2 - - if self.siamese: - tgt3, attn3 = self.multihead_attn2(tgt, memory2, memory2, attn_mask=memory_mask2, - key_padding_mask=memory_key_padding_mask2) - tgt = tgt + self.dropout2(tgt3) - if self.debug: self.attn3 = attn3 - - tgt = tgt + self.dropout2(tgt2) - tgt = self.norm2(tgt) - tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) - tgt = tgt + self.dropout3(tgt2) - tgt = self.norm3(tgt) - - return tgt - - -def _get_clones(module, N): - return ModuleList([copy.deepcopy(module) for i in range(N)]) - - -def _get_activation_fn(activation): - if activation == "relu": - return F.relu - elif activation == "gelu": - return F.gelu - - raise RuntimeError("activation should be relu/gelu, not {}".format(activation)) - - -class PositionalEncoding(nn.Module): - r"""Inject some information about the relative or absolute position of the tokens - in the sequence. The positional encodings have the same dimension as - the embeddings, so that the two can be summed. Here, we use sine and cosine - functions of different frequencies. - .. math:: - \text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model)) - \text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model)) - \text{where pos is the word position and i is the embed idx) - Args: - d_model: the embed dim (required). - dropout: the dropout value (default=0.1). - max_len: the max. length of the incoming sequence (default=5000). - Examples: - >>> pos_encoder = PositionalEncoding(d_model) - """ - - def __init__(self, d_model, dropout=0.1, max_len=5000): - super(PositionalEncoding, self).__init__() - self.dropout = nn.Dropout(p=dropout) - - pe = torch.zeros(max_len, d_model) - position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) - div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) - pe[:, 0::2] = torch.sin(position * div_term) - pe[:, 1::2] = torch.cos(position * div_term) - pe = pe.unsqueeze(0).transpose(0, 1) - self.register_buffer('pe', pe) - - def forward(self, x): - r"""Inputs of forward function - Args: - x: the sequence fed to the positional encoder model (required). - Shape: - x: [sequence length, batch size, embed dim] - output: [sequence length, batch size, embed dim] - Examples: - >>> output = pos_encoder(x) - """ - - x = x + self.pe[:x.size(0), :] - return self.dropout(x) - - -if __name__ == '__main__': - transformer_model = Transformer(nhead=16, num_encoder_layers=12) - src = torch.rand((10, 32, 512)) - tgt = torch.rand((20, 32, 512)) - out = transformer_model(src, tgt) - print(out) diff --git a/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/fontTools/otlLib/builder.py b/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/fontTools/otlLib/builder.py deleted file mode 100644 index 2a02c20045904915b50bdd9f1ef3644e3db5258f..0000000000000000000000000000000000000000 --- a/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/fontTools/otlLib/builder.py +++ /dev/null @@ -1,2916 +0,0 @@ -from collections import namedtuple, OrderedDict -import os -from fontTools.misc.fixedTools import fixedToFloat -from fontTools import ttLib -from fontTools.ttLib.tables import otTables as ot -from fontTools.ttLib.tables.otBase import ( - ValueRecord, - valueRecordFormatDict, - OTTableWriter, - CountReference, -) -from fontTools.ttLib.tables import otBase -from fontTools.feaLib.ast import STATNameStatement -from fontTools.otlLib.optimize.gpos import ( - _compression_level_from_env, - compact_lookup, -) -from fontTools.otlLib.error import OpenTypeLibError -from functools import reduce -import logging -import copy - - -log = logging.getLogger(__name__) - - -def buildCoverage(glyphs, glyphMap): - """Builds a coverage table. - - Coverage tables (as defined in the `OpenType spec `__) - are used in all OpenType Layout lookups apart from the Extension type, and - define the glyphs involved in a layout subtable. This allows shaping engines - to compare the glyph stream with the coverage table and quickly determine - whether a subtable should be involved in a shaping operation. - - This function takes a list of glyphs and a glyphname-to-ID map, and - returns a ``Coverage`` object representing the coverage table. - - Example:: - - glyphMap = font.getReverseGlyphMap() - glyphs = [ "A", "B", "C" ] - coverage = buildCoverage(glyphs, glyphMap) - - Args: - glyphs: a sequence of glyph names. - glyphMap: a glyph name to ID map, typically returned from - ``font.getReverseGlyphMap()``. - - Returns: - An ``otTables.Coverage`` object or ``None`` if there are no glyphs - supplied. - """ - - if not glyphs: - return None - self = ot.Coverage() - self.glyphs = sorted(set(glyphs), key=glyphMap.__getitem__) - return self - - -LOOKUP_FLAG_RIGHT_TO_LEFT = 0x0001 -LOOKUP_FLAG_IGNORE_BASE_GLYPHS = 0x0002 -LOOKUP_FLAG_IGNORE_LIGATURES = 0x0004 -LOOKUP_FLAG_IGNORE_MARKS = 0x0008 -LOOKUP_FLAG_USE_MARK_FILTERING_SET = 0x0010 - - -def buildLookup(subtables, flags=0, markFilterSet=None): - """Turns a collection of rules into a lookup. - - A Lookup (as defined in the `OpenType Spec `__) - wraps the individual rules in a layout operation (substitution or - positioning) in a data structure expressing their overall lookup type - - for example, single substitution, mark-to-base attachment, and so on - - as well as the lookup flags and any mark filtering sets. You may import - the following constants to express lookup flags: - - - ``LOOKUP_FLAG_RIGHT_TO_LEFT`` - - ``LOOKUP_FLAG_IGNORE_BASE_GLYPHS`` - - ``LOOKUP_FLAG_IGNORE_LIGATURES`` - - ``LOOKUP_FLAG_IGNORE_MARKS`` - - ``LOOKUP_FLAG_USE_MARK_FILTERING_SET`` - - Args: - subtables: A list of layout subtable objects (e.g. - ``MultipleSubst``, ``PairPos``, etc.) or ``None``. - flags (int): This lookup's flags. - markFilterSet: Either ``None`` if no mark filtering set is used, or - an integer representing the filtering set to be used for this - lookup. If a mark filtering set is provided, - `LOOKUP_FLAG_USE_MARK_FILTERING_SET` will be set on the lookup's - flags. - - Returns: - An ``otTables.Lookup`` object or ``None`` if there are no subtables - supplied. - """ - if subtables is None: - return None - subtables = [st for st in subtables if st is not None] - if not subtables: - return None - assert all( - t.LookupType == subtables[0].LookupType for t in subtables - ), "all subtables must have the same LookupType; got %s" % repr( - [t.LookupType for t in subtables] - ) - self = ot.Lookup() - self.LookupType = subtables[0].LookupType - self.LookupFlag = flags - self.SubTable = subtables - self.SubTableCount = len(self.SubTable) - if markFilterSet is not None: - self.LookupFlag |= LOOKUP_FLAG_USE_MARK_FILTERING_SET - assert isinstance(markFilterSet, int), markFilterSet - self.MarkFilteringSet = markFilterSet - else: - assert (self.LookupFlag & LOOKUP_FLAG_USE_MARK_FILTERING_SET) == 0, ( - "if markFilterSet is None, flags must not set " - "LOOKUP_FLAG_USE_MARK_FILTERING_SET; flags=0x%04x" % flags - ) - return self - - -class LookupBuilder(object): - SUBTABLE_BREAK_ = "SUBTABLE_BREAK" - - def __init__(self, font, location, table, lookup_type): - self.font = font - self.glyphMap = font.getReverseGlyphMap() - self.location = location - self.table, self.lookup_type = table, lookup_type - self.lookupflag = 0 - self.markFilterSet = None - self.lookup_index = None # assigned when making final tables - assert table in ("GPOS", "GSUB") - - def equals(self, other): - return ( - isinstance(other, self.__class__) - and self.table == other.table - and self.lookupflag == other.lookupflag - and self.markFilterSet == other.markFilterSet - ) - - def inferGlyphClasses(self): - """Infers glyph glasses for the GDEF table, such as {"cedilla":3}.""" - return {} - - def getAlternateGlyphs(self): - """Helper for building 'aalt' features.""" - return {} - - def buildLookup_(self, subtables): - return buildLookup(subtables, self.lookupflag, self.markFilterSet) - - def buildMarkClasses_(self, marks): - """{"cedilla": ("BOTTOM", ast.Anchor), ...} --> {"BOTTOM":0, "TOP":1} - - Helper for MarkBasePostBuilder, MarkLigPosBuilder, and - MarkMarkPosBuilder. Seems to return the same numeric IDs - for mark classes as the AFDKO makeotf tool. - """ - ids = {} - for mark in sorted(marks.keys(), key=self.font.getGlyphID): - markClassName, _markAnchor = marks[mark] - if markClassName not in ids: - ids[markClassName] = len(ids) - return ids - - def setBacktrackCoverage_(self, prefix, subtable): - subtable.BacktrackGlyphCount = len(prefix) - subtable.BacktrackCoverage = [] - for p in reversed(prefix): - coverage = buildCoverage(p, self.glyphMap) - subtable.BacktrackCoverage.append(coverage) - - def setLookAheadCoverage_(self, suffix, subtable): - subtable.LookAheadGlyphCount = len(suffix) - subtable.LookAheadCoverage = [] - for s in suffix: - coverage = buildCoverage(s, self.glyphMap) - subtable.LookAheadCoverage.append(coverage) - - def setInputCoverage_(self, glyphs, subtable): - subtable.InputGlyphCount = len(glyphs) - subtable.InputCoverage = [] - for g in glyphs: - coverage = buildCoverage(g, self.glyphMap) - subtable.InputCoverage.append(coverage) - - def setCoverage_(self, glyphs, subtable): - subtable.GlyphCount = len(glyphs) - subtable.Coverage = [] - for g in glyphs: - coverage = buildCoverage(g, self.glyphMap) - subtable.Coverage.append(coverage) - - def build_subst_subtables(self, mapping, klass): - substitutions = [{}] - for key in mapping: - if key[0] == self.SUBTABLE_BREAK_: - substitutions.append({}) - else: - substitutions[-1][key] = mapping[key] - subtables = [klass(s) for s in substitutions] - return subtables - - def add_subtable_break(self, location): - """Add an explicit subtable break. - - Args: - location: A string or tuple representing the location in the - original source which produced this break, or ``None`` if - no location is provided. - """ - log.warning( - OpenTypeLibError( - 'unsupported "subtable" statement for lookup type', location - ) - ) - - -class AlternateSubstBuilder(LookupBuilder): - """Builds an Alternate Substitution (GSUB3) lookup. - - Users are expected to manually add alternate glyph substitutions to - the ``alternates`` attribute after the object has been initialized, - e.g.:: - - builder.alternates["A"] = ["A.alt1", "A.alt2"] - - Attributes: - font (``fontTools.TTLib.TTFont``): A font object. - location: A string or tuple representing the location in the original - source which produced this lookup. - alternates: An ordered dictionary of alternates, mapping glyph names - to a list of names of alternates. - lookupflag (int): The lookup's flag - markFilterSet: Either ``None`` if no mark filtering set is used, or - an integer representing the filtering set to be used for this - lookup. If a mark filtering set is provided, - `LOOKUP_FLAG_USE_MARK_FILTERING_SET` will be set on the lookup's - flags. - """ - - def __init__(self, font, location): - LookupBuilder.__init__(self, font, location, "GSUB", 3) - self.alternates = OrderedDict() - - def equals(self, other): - return LookupBuilder.equals(self, other) and self.alternates == other.alternates - - def build(self): - """Build the lookup. - - Returns: - An ``otTables.Lookup`` object representing the alternate - substitution lookup. - """ - subtables = self.build_subst_subtables( - self.alternates, buildAlternateSubstSubtable - ) - return self.buildLookup_(subtables) - - def getAlternateGlyphs(self): - return self.alternates - - def add_subtable_break(self, location): - self.alternates[(self.SUBTABLE_BREAK_, location)] = self.SUBTABLE_BREAK_ - - -class ChainContextualRule( - namedtuple("ChainContextualRule", ["prefix", "glyphs", "suffix", "lookups"]) -): - @property - def is_subtable_break(self): - return self.prefix == LookupBuilder.SUBTABLE_BREAK_ - - -class ChainContextualRuleset: - def __init__(self): - self.rules = [] - - def addRule(self, rule): - self.rules.append(rule) - - @property - def hasPrefixOrSuffix(self): - # Do we have any prefixes/suffixes? If this is False for all - # rulesets, we can express the whole lookup as GPOS5/GSUB7. - for rule in self.rules: - if len(rule.prefix) > 0 or len(rule.suffix) > 0: - return True - return False - - @property - def hasAnyGlyphClasses(self): - # Do we use glyph classes anywhere in the rules? If this is False - # we can express this subtable as a Format 1. - for rule in self.rules: - for coverage in (rule.prefix, rule.glyphs, rule.suffix): - if any(len(x) > 1 for x in coverage): - return True - return False - - def format2ClassDefs(self): - PREFIX, GLYPHS, SUFFIX = 0, 1, 2 - classDefBuilders = [] - for ix in [PREFIX, GLYPHS, SUFFIX]: - context = [] - for r in self.rules: - context.append(r[ix]) - classes = self._classBuilderForContext(context) - if not classes: - return None - classDefBuilders.append(classes) - return classDefBuilders - - def _classBuilderForContext(self, context): - classdefbuilder = ClassDefBuilder(useClass0=False) - for position in context: - for glyphset in position: - glyphs = set(glyphset) - if not classdefbuilder.canAdd(glyphs): - return None - classdefbuilder.add(glyphs) - return classdefbuilder - - -class ChainContextualBuilder(LookupBuilder): - def equals(self, other): - return LookupBuilder.equals(self, other) and self.rules == other.rules - - def rulesets(self): - # Return a list of ChainContextRuleset objects, taking explicit - # subtable breaks into account - ruleset = [ChainContextualRuleset()] - for rule in self.rules: - if rule.is_subtable_break: - ruleset.append(ChainContextualRuleset()) - continue - ruleset[-1].addRule(rule) - # Squish any empty subtables - return [x for x in ruleset if len(x.rules) > 0] - - def getCompiledSize_(self, subtables): - size = 0 - for st in subtables: - w = OTTableWriter() - w["LookupType"] = CountReference( - {"LookupType": st.LookupType}, "LookupType" - ) - # We need to make a copy here because compiling - # modifies the subtable (finalizing formats etc.) - copy.deepcopy(st).compile(w, self.font) - size += len(w.getAllData()) - return size - - def build(self): - """Build the lookup. - - Returns: - An ``otTables.Lookup`` object representing the chained - contextual positioning lookup. - """ - subtables = [] - - rulesets = self.rulesets() - chaining = any(ruleset.hasPrefixOrSuffix for ruleset in rulesets) - - # https://github.com/fonttools/fonttools/issues/2539 - # - # Unfortunately, as of 2022-03-07, Apple's CoreText renderer does not - # correctly process GPOS7 lookups, so for now we force contextual - # positioning lookups to be chaining (GPOS8). - # - # This seems to be fixed as of macOS 13.2, but we keep disabling this - # for now until we are no longer concerned about old macOS versions. - # But we allow people to opt-out of this with the config key below. - write_gpos7 = self.font.cfg.get("fontTools.otlLib.builder:WRITE_GPOS7") - # horrible separation of concerns breach - if not write_gpos7 and self.subtable_type == "Pos": - chaining = True - - for ruleset in rulesets: - # Determine format strategy. We try to build formats 1, 2 and 3 - # subtables and then work out which is best. candidates list holds - # the subtables in each format for this ruleset (including a dummy - # "format 0" to make the addressing match the format numbers). - - # We can always build a format 3 lookup by accumulating each of - # the rules into a list, so start with that. - candidates = [None, None, None, []] - for rule in ruleset.rules: - candidates[3].append(self.buildFormat3Subtable(rule, chaining)) - - # Can we express the whole ruleset as a format 2 subtable? - classdefs = ruleset.format2ClassDefs() - if classdefs: - candidates[2] = [ - self.buildFormat2Subtable(ruleset, classdefs, chaining) - ] - - if not ruleset.hasAnyGlyphClasses: - candidates[1] = [self.buildFormat1Subtable(ruleset, chaining)] - - for i in [1, 2, 3]: - if candidates[i]: - try: - self.getCompiledSize_(candidates[i]) - except Exception as e: - log.warning( - "Contextual format %i at %s overflowed (%s)" - % (i, str(self.location), e) - ) - candidates[i] = None - - candidates = [x for x in candidates if x is not None] - if not candidates: - raise OpenTypeLibError("All candidates overflowed", self.location) - - winner = min(candidates, key=self.getCompiledSize_) - subtables.extend(winner) - - # If we are not chaining, lookup type will be automatically fixed by - # buildLookup_ - return self.buildLookup_(subtables) - - def buildFormat1Subtable(self, ruleset, chaining=True): - st = self.newSubtable_(chaining=chaining) - st.Format = 1 - st.populateDefaults() - coverage = set() - rulesetsByFirstGlyph = {} - ruleAttr = self.ruleAttr_(format=1, chaining=chaining) - - for rule in ruleset.rules: - ruleAsSubtable = self.newRule_(format=1, chaining=chaining) - - if chaining: - ruleAsSubtable.BacktrackGlyphCount = len(rule.prefix) - ruleAsSubtable.LookAheadGlyphCount = len(rule.suffix) - ruleAsSubtable.Backtrack = [list(x)[0] for x in reversed(rule.prefix)] - ruleAsSubtable.LookAhead = [list(x)[0] for x in rule.suffix] - - ruleAsSubtable.InputGlyphCount = len(rule.glyphs) - else: - ruleAsSubtable.GlyphCount = len(rule.glyphs) - - ruleAsSubtable.Input = [list(x)[0] for x in rule.glyphs[1:]] - - self.buildLookupList(rule, ruleAsSubtable) - - firstGlyph = list(rule.glyphs[0])[0] - if firstGlyph not in rulesetsByFirstGlyph: - coverage.add(firstGlyph) - rulesetsByFirstGlyph[firstGlyph] = [] - rulesetsByFirstGlyph[firstGlyph].append(ruleAsSubtable) - - st.Coverage = buildCoverage(coverage, self.glyphMap) - ruleSets = [] - for g in st.Coverage.glyphs: - ruleSet = self.newRuleSet_(format=1, chaining=chaining) - setattr(ruleSet, ruleAttr, rulesetsByFirstGlyph[g]) - setattr(ruleSet, f"{ruleAttr}Count", len(rulesetsByFirstGlyph[g])) - ruleSets.append(ruleSet) - - setattr(st, self.ruleSetAttr_(format=1, chaining=chaining), ruleSets) - setattr( - st, self.ruleSetAttr_(format=1, chaining=chaining) + "Count", len(ruleSets) - ) - - return st - - def buildFormat2Subtable(self, ruleset, classdefs, chaining=True): - st = self.newSubtable_(chaining=chaining) - st.Format = 2 - st.populateDefaults() - - if chaining: - ( - st.BacktrackClassDef, - st.InputClassDef, - st.LookAheadClassDef, - ) = [c.build() for c in classdefs] - else: - st.ClassDef = classdefs[1].build() - - inClasses = classdefs[1].classes() - - classSets = [] - for _ in inClasses: - classSet = self.newRuleSet_(format=2, chaining=chaining) - classSets.append(classSet) - - coverage = set() - classRuleAttr = self.ruleAttr_(format=2, chaining=chaining) - - for rule in ruleset.rules: - ruleAsSubtable = self.newRule_(format=2, chaining=chaining) - if chaining: - ruleAsSubtable.BacktrackGlyphCount = len(rule.prefix) - ruleAsSubtable.LookAheadGlyphCount = len(rule.suffix) - # The glyphs in the rule may be list, tuple, odict_keys... - # Order is not important anyway because they are guaranteed - # to be members of the same class. - ruleAsSubtable.Backtrack = [ - st.BacktrackClassDef.classDefs[list(x)[0]] - for x in reversed(rule.prefix) - ] - ruleAsSubtable.LookAhead = [ - st.LookAheadClassDef.classDefs[list(x)[0]] for x in rule.suffix - ] - - ruleAsSubtable.InputGlyphCount = len(rule.glyphs) - ruleAsSubtable.Input = [ - st.InputClassDef.classDefs[list(x)[0]] for x in rule.glyphs[1:] - ] - setForThisRule = classSets[ - st.InputClassDef.classDefs[list(rule.glyphs[0])[0]] - ] - else: - ruleAsSubtable.GlyphCount = len(rule.glyphs) - ruleAsSubtable.Class = [ # The spec calls this InputSequence - st.ClassDef.classDefs[list(x)[0]] for x in rule.glyphs[1:] - ] - setForThisRule = classSets[ - st.ClassDef.classDefs[list(rule.glyphs[0])[0]] - ] - - self.buildLookupList(rule, ruleAsSubtable) - coverage |= set(rule.glyphs[0]) - - getattr(setForThisRule, classRuleAttr).append(ruleAsSubtable) - setattr( - setForThisRule, - f"{classRuleAttr}Count", - getattr(setForThisRule, f"{classRuleAttr}Count") + 1, - ) - setattr(st, self.ruleSetAttr_(format=2, chaining=chaining), classSets) - setattr( - st, self.ruleSetAttr_(format=2, chaining=chaining) + "Count", len(classSets) - ) - st.Coverage = buildCoverage(coverage, self.glyphMap) - return st - - def buildFormat3Subtable(self, rule, chaining=True): - st = self.newSubtable_(chaining=chaining) - st.Format = 3 - if chaining: - self.setBacktrackCoverage_(rule.prefix, st) - self.setLookAheadCoverage_(rule.suffix, st) - self.setInputCoverage_(rule.glyphs, st) - else: - self.setCoverage_(rule.glyphs, st) - self.buildLookupList(rule, st) - return st - - def buildLookupList(self, rule, st): - for sequenceIndex, lookupList in enumerate(rule.lookups): - if lookupList is not None: - if not isinstance(lookupList, list): - # Can happen with synthesised lookups - lookupList = [lookupList] - for l in lookupList: - if l.lookup_index is None: - if isinstance(self, ChainContextPosBuilder): - other = "substitution" - else: - other = "positioning" - raise OpenTypeLibError( - "Missing index of the specified " - f"lookup, might be a {other} lookup", - self.location, - ) - rec = self.newLookupRecord_(st) - rec.SequenceIndex = sequenceIndex - rec.LookupListIndex = l.lookup_index - - def add_subtable_break(self, location): - self.rules.append( - ChainContextualRule( - self.SUBTABLE_BREAK_, - self.SUBTABLE_BREAK_, - self.SUBTABLE_BREAK_, - [self.SUBTABLE_BREAK_], - ) - ) - - def newSubtable_(self, chaining=True): - subtablename = f"Context{self.subtable_type}" - if chaining: - subtablename = "Chain" + subtablename - st = getattr(ot, subtablename)() # ot.ChainContextPos()/ot.ChainSubst()/etc. - setattr(st, f"{self.subtable_type}Count", 0) - setattr(st, f"{self.subtable_type}LookupRecord", []) - return st - - # Format 1 and format 2 GSUB5/GSUB6/GPOS7/GPOS8 rulesets and rules form a family: - # - # format 1 ruleset format 1 rule format 2 ruleset format 2 rule - # GSUB5 SubRuleSet SubRule SubClassSet SubClassRule - # GSUB6 ChainSubRuleSet ChainSubRule ChainSubClassSet ChainSubClassRule - # GPOS7 PosRuleSet PosRule PosClassSet PosClassRule - # GPOS8 ChainPosRuleSet ChainPosRule ChainPosClassSet ChainPosClassRule - # - # The following functions generate the attribute names and subtables according - # to this naming convention. - def ruleSetAttr_(self, format=1, chaining=True): - if format == 1: - formatType = "Rule" - elif format == 2: - formatType = "Class" - else: - raise AssertionError(formatType) - subtablename = f"{self.subtable_type[0:3]}{formatType}Set" # Sub, not Subst. - if chaining: - subtablename = "Chain" + subtablename - return subtablename - - def ruleAttr_(self, format=1, chaining=True): - if format == 1: - formatType = "" - elif format == 2: - formatType = "Class" - else: - raise AssertionError(formatType) - subtablename = f"{self.subtable_type[0:3]}{formatType}Rule" # Sub, not Subst. - if chaining: - subtablename = "Chain" + subtablename - return subtablename - - def newRuleSet_(self, format=1, chaining=True): - st = getattr( - ot, self.ruleSetAttr_(format, chaining) - )() # ot.ChainPosRuleSet()/ot.SubRuleSet()/etc. - st.populateDefaults() - return st - - def newRule_(self, format=1, chaining=True): - st = getattr( - ot, self.ruleAttr_(format, chaining) - )() # ot.ChainPosClassRule()/ot.SubClassRule()/etc. - st.populateDefaults() - return st - - def attachSubtableWithCount_( - self, st, subtable_name, count_name, existing=None, index=None, chaining=False - ): - if chaining: - subtable_name = "Chain" + subtable_name - count_name = "Chain" + count_name - - if not hasattr(st, count_name): - setattr(st, count_name, 0) - setattr(st, subtable_name, []) - - if existing: - new_subtable = existing - else: - # Create a new, empty subtable from otTables - new_subtable = getattr(ot, subtable_name)() - - setattr(st, count_name, getattr(st, count_name) + 1) - - if index: - getattr(st, subtable_name).insert(index, new_subtable) - else: - getattr(st, subtable_name).append(new_subtable) - - return new_subtable - - def newLookupRecord_(self, st): - return self.attachSubtableWithCount_( - st, - f"{self.subtable_type}LookupRecord", - f"{self.subtable_type}Count", - chaining=False, - ) # Oddly, it isn't ChainSubstLookupRecord - - -class ChainContextPosBuilder(ChainContextualBuilder): - """Builds a Chained Contextual Positioning (GPOS8) lookup. - - Users are expected to manually add rules to the ``rules`` attribute after - the object has been initialized, e.g.:: - - # pos [A B] [C D] x' lookup lu1 y' z' lookup lu2 E; - - prefix = [ ["A", "B"], ["C", "D"] ] - suffix = [ ["E"] ] - glyphs = [ ["x"], ["y"], ["z"] ] - lookups = [ [lu1], None, [lu2] ] - builder.rules.append( (prefix, glyphs, suffix, lookups) ) - - Attributes: - font (``fontTools.TTLib.TTFont``): A font object. - location: A string or tuple representing the location in the original - source which produced this lookup. - rules: A list of tuples representing the rules in this lookup. - lookupflag (int): The lookup's flag - markFilterSet: Either ``None`` if no mark filtering set is used, or - an integer representing the filtering set to be used for this - lookup. If a mark filtering set is provided, - `LOOKUP_FLAG_USE_MARK_FILTERING_SET` will be set on the lookup's - flags. - """ - - def __init__(self, font, location): - LookupBuilder.__init__(self, font, location, "GPOS", 8) - self.rules = [] - self.subtable_type = "Pos" - - def find_chainable_single_pos(self, lookups, glyphs, value): - """Helper for add_single_pos_chained_()""" - res = None - for lookup in lookups[::-1]: - if lookup == self.SUBTABLE_BREAK_: - return res - if isinstance(lookup, SinglePosBuilder) and all( - lookup.can_add(glyph, value) for glyph in glyphs - ): - res = lookup - return res - - -class ChainContextSubstBuilder(ChainContextualBuilder): - """Builds a Chained Contextual Substitution (GSUB6) lookup. - - Users are expected to manually add rules to the ``rules`` attribute after - the object has been initialized, e.g.:: - - # sub [A B] [C D] x' lookup lu1 y' z' lookup lu2 E; - - prefix = [ ["A", "B"], ["C", "D"] ] - suffix = [ ["E"] ] - glyphs = [ ["x"], ["y"], ["z"] ] - lookups = [ [lu1], None, [lu2] ] - builder.rules.append( (prefix, glyphs, suffix, lookups) ) - - Attributes: - font (``fontTools.TTLib.TTFont``): A font object. - location: A string or tuple representing the location in the original - source which produced this lookup. - rules: A list of tuples representing the rules in this lookup. - lookupflag (int): The lookup's flag - markFilterSet: Either ``None`` if no mark filtering set is used, or - an integer representing the filtering set to be used for this - lookup. If a mark filtering set is provided, - `LOOKUP_FLAG_USE_MARK_FILTERING_SET` will be set on the lookup's - flags. - """ - - def __init__(self, font, location): - LookupBuilder.__init__(self, font, location, "GSUB", 6) - self.rules = [] # (prefix, input, suffix, lookups) - self.subtable_type = "Subst" - - def getAlternateGlyphs(self): - result = {} - for rule in self.rules: - if rule.is_subtable_break: - continue - for lookups in rule.lookups: - if not isinstance(lookups, list): - lookups = [lookups] - for lookup in lookups: - if lookup is not None: - alts = lookup.getAlternateGlyphs() - for glyph, replacements in alts.items(): - result.setdefault(glyph, set()).update(replacements) - return result - - def find_chainable_single_subst(self, mapping): - """Helper for add_single_subst_chained_()""" - res = None - for rule in self.rules[::-1]: - if rule.is_subtable_break: - return res - for sub in rule.lookups: - if isinstance(sub, SingleSubstBuilder) and not any( - g in mapping and mapping[g] != sub.mapping[g] for g in sub.mapping - ): - res = sub - return res - - -class LigatureSubstBuilder(LookupBuilder): - """Builds a Ligature Substitution (GSUB4) lookup. - - Users are expected to manually add ligatures to the ``ligatures`` - attribute after the object has been initialized, e.g.:: - - # sub f i by f_i; - builder.ligatures[("f","f","i")] = "f_f_i" - - Attributes: - font (``fontTools.TTLib.TTFont``): A font object. - location: A string or tuple representing the location in the original - source which produced this lookup. - ligatures: An ordered dictionary mapping a tuple of glyph names to the - ligature glyphname. - lookupflag (int): The lookup's flag - markFilterSet: Either ``None`` if no mark filtering set is used, or - an integer representing the filtering set to be used for this - lookup. If a mark filtering set is provided, - `LOOKUP_FLAG_USE_MARK_FILTERING_SET` will be set on the lookup's - flags. - """ - - def __init__(self, font, location): - LookupBuilder.__init__(self, font, location, "GSUB", 4) - self.ligatures = OrderedDict() # {('f','f','i'): 'f_f_i'} - - def equals(self, other): - return LookupBuilder.equals(self, other) and self.ligatures == other.ligatures - - def build(self): - """Build the lookup. - - Returns: - An ``otTables.Lookup`` object representing the ligature - substitution lookup. - """ - subtables = self.build_subst_subtables( - self.ligatures, buildLigatureSubstSubtable - ) - return self.buildLookup_(subtables) - - def add_subtable_break(self, location): - self.ligatures[(self.SUBTABLE_BREAK_, location)] = self.SUBTABLE_BREAK_ - - -class MultipleSubstBuilder(LookupBuilder): - """Builds a Multiple Substitution (GSUB2) lookup. - - Users are expected to manually add substitutions to the ``mapping`` - attribute after the object has been initialized, e.g.:: - - # sub uni06C0 by uni06D5.fina hamza.above; - builder.mapping["uni06C0"] = [ "uni06D5.fina", "hamza.above"] - - Attributes: - font (``fontTools.TTLib.TTFont``): A font object. - location: A string or tuple representing the location in the original - source which produced this lookup. - mapping: An ordered dictionary mapping a glyph name to a list of - substituted glyph names. - lookupflag (int): The lookup's flag - markFilterSet: Either ``None`` if no mark filtering set is used, or - an integer representing the filtering set to be used for this - lookup. If a mark filtering set is provided, - `LOOKUP_FLAG_USE_MARK_FILTERING_SET` will be set on the lookup's - flags. - """ - - def __init__(self, font, location): - LookupBuilder.__init__(self, font, location, "GSUB", 2) - self.mapping = OrderedDict() - - def equals(self, other): - return LookupBuilder.equals(self, other) and self.mapping == other.mapping - - def build(self): - subtables = self.build_subst_subtables(self.mapping, buildMultipleSubstSubtable) - return self.buildLookup_(subtables) - - def add_subtable_break(self, location): - self.mapping[(self.SUBTABLE_BREAK_, location)] = self.SUBTABLE_BREAK_ - - -class CursivePosBuilder(LookupBuilder): - """Builds a Cursive Positioning (GPOS3) lookup. - - Attributes: - font (``fontTools.TTLib.TTFont``): A font object. - location: A string or tuple representing the location in the original - source which produced this lookup. - attachments: An ordered dictionary mapping a glyph name to a two-element - tuple of ``otTables.Anchor`` objects. - lookupflag (int): The lookup's flag - markFilterSet: Either ``None`` if no mark filtering set is used, or - an integer representing the filtering set to be used for this - lookup. If a mark filtering set is provided, - `LOOKUP_FLAG_USE_MARK_FILTERING_SET` will be set on the lookup's - flags. - """ - - def __init__(self, font, location): - LookupBuilder.__init__(self, font, location, "GPOS", 3) - self.attachments = {} - - def equals(self, other): - return ( - LookupBuilder.equals(self, other) and self.attachments == other.attachments - ) - - def add_attachment(self, location, glyphs, entryAnchor, exitAnchor): - """Adds attachment information to the cursive positioning lookup. - - Args: - location: A string or tuple representing the location in the - original source which produced this lookup. (Unused.) - glyphs: A list of glyph names sharing these entry and exit - anchor locations. - entryAnchor: A ``otTables.Anchor`` object representing the - entry anchor, or ``None`` if no entry anchor is present. - exitAnchor: A ``otTables.Anchor`` object representing the - exit anchor, or ``None`` if no exit anchor is present. - """ - for glyph in glyphs: - self.attachments[glyph] = (entryAnchor, exitAnchor) - - def build(self): - """Build the lookup. - - Returns: - An ``otTables.Lookup`` object representing the cursive - positioning lookup. - """ - st = buildCursivePosSubtable(self.attachments, self.glyphMap) - return self.buildLookup_([st]) - - -class MarkBasePosBuilder(LookupBuilder): - """Builds a Mark-To-Base Positioning (GPOS4) lookup. - - Users are expected to manually add marks and bases to the ``marks`` - and ``bases`` attributes after the object has been initialized, e.g.:: - - builder.marks["acute"] = (0, a1) - builder.marks["grave"] = (0, a1) - builder.marks["cedilla"] = (1, a2) - builder.bases["a"] = {0: a3, 1: a5} - builder.bases["b"] = {0: a4, 1: a5} - - Attributes: - font (``fontTools.TTLib.TTFont``): A font object. - location: A string or tuple representing the location in the original - source which produced this lookup. - marks: An dictionary mapping a glyph name to a two-element - tuple containing a mark class ID and ``otTables.Anchor`` object. - bases: An dictionary mapping a glyph name to a dictionary of - mark class IDs and ``otTables.Anchor`` object. - lookupflag (int): The lookup's flag - markFilterSet: Either ``None`` if no mark filtering set is used, or - an integer representing the filtering set to be used for this - lookup. If a mark filtering set is provided, - `LOOKUP_FLAG_USE_MARK_FILTERING_SET` will be set on the lookup's - flags. - """ - - def __init__(self, font, location): - LookupBuilder.__init__(self, font, location, "GPOS", 4) - self.marks = {} # glyphName -> (markClassName, anchor) - self.bases = {} # glyphName -> {markClassName: anchor} - - def equals(self, other): - return ( - LookupBuilder.equals(self, other) - and self.marks == other.marks - and self.bases == other.bases - ) - - def inferGlyphClasses(self): - result = {glyph: 1 for glyph in self.bases} - result.update({glyph: 3 for glyph in self.marks}) - return result - - def build(self): - """Build the lookup. - - Returns: - An ``otTables.Lookup`` object representing the mark-to-base - positioning lookup. - """ - markClasses = self.buildMarkClasses_(self.marks) - marks = {} - for mark, (mc, anchor) in self.marks.items(): - if mc not in markClasses: - raise ValueError( - "Mark class %s not found for mark glyph %s" % (mc, mark) - ) - marks[mark] = (markClasses[mc], anchor) - bases = {} - for glyph, anchors in self.bases.items(): - bases[glyph] = {} - for mc, anchor in anchors.items(): - if mc not in markClasses: - raise ValueError( - "Mark class %s not found for base glyph %s" % (mc, glyph) - ) - bases[glyph][markClasses[mc]] = anchor - subtables = buildMarkBasePos(marks, bases, self.glyphMap) - return self.buildLookup_(subtables) - - -class MarkLigPosBuilder(LookupBuilder): - """Builds a Mark-To-Ligature Positioning (GPOS5) lookup. - - Users are expected to manually add marks and bases to the ``marks`` - and ``ligatures`` attributes after the object has been initialized, e.g.:: - - builder.marks["acute"] = (0, a1) - builder.marks["grave"] = (0, a1) - builder.marks["cedilla"] = (1, a2) - builder.ligatures["f_i"] = [ - { 0: a3, 1: a5 }, # f - { 0: a4, 1: a5 } # i - ] - - Attributes: - font (``fontTools.TTLib.TTFont``): A font object. - location: A string or tuple representing the location in the original - source which produced this lookup. - marks: An dictionary mapping a glyph name to a two-element - tuple containing a mark class ID and ``otTables.Anchor`` object. - ligatures: An dictionary mapping a glyph name to an array with one - element for each ligature component. Each array element should be - a dictionary mapping mark class IDs to ``otTables.Anchor`` objects. - lookupflag (int): The lookup's flag - markFilterSet: Either ``None`` if no mark filtering set is used, or - an integer representing the filtering set to be used for this - lookup. If a mark filtering set is provided, - `LOOKUP_FLAG_USE_MARK_FILTERING_SET` will be set on the lookup's - flags. - """ - - def __init__(self, font, location): - LookupBuilder.__init__(self, font, location, "GPOS", 5) - self.marks = {} # glyphName -> (markClassName, anchor) - self.ligatures = {} # glyphName -> [{markClassName: anchor}, ...] - - def equals(self, other): - return ( - LookupBuilder.equals(self, other) - and self.marks == other.marks - and self.ligatures == other.ligatures - ) - - def inferGlyphClasses(self): - result = {glyph: 2 for glyph in self.ligatures} - result.update({glyph: 3 for glyph in self.marks}) - return result - - def build(self): - """Build the lookup. - - Returns: - An ``otTables.Lookup`` object representing the mark-to-ligature - positioning lookup. - """ - markClasses = self.buildMarkClasses_(self.marks) - marks = { - mark: (markClasses[mc], anchor) for mark, (mc, anchor) in self.marks.items() - } - ligs = {} - for lig, components in self.ligatures.items(): - ligs[lig] = [] - for c in components: - ligs[lig].append({markClasses[mc]: a for mc, a in c.items()}) - subtables = buildMarkLigPos(marks, ligs, self.glyphMap) - return self.buildLookup_(subtables) - - -class MarkMarkPosBuilder(LookupBuilder): - """Builds a Mark-To-Mark Positioning (GPOS6) lookup. - - Users are expected to manually add marks and bases to the ``marks`` - and ``baseMarks`` attributes after the object has been initialized, e.g.:: - - builder.marks["acute"] = (0, a1) - builder.marks["grave"] = (0, a1) - builder.marks["cedilla"] = (1, a2) - builder.baseMarks["acute"] = {0: a3} - - Attributes: - font (``fontTools.TTLib.TTFont``): A font object. - location: A string or tuple representing the location in the original - source which produced this lookup. - marks: An dictionary mapping a glyph name to a two-element - tuple containing a mark class ID and ``otTables.Anchor`` object. - baseMarks: An dictionary mapping a glyph name to a dictionary - containing one item: a mark class ID and a ``otTables.Anchor`` object. - lookupflag (int): The lookup's flag - markFilterSet: Either ``None`` if no mark filtering set is used, or - an integer representing the filtering set to be used for this - lookup. If a mark filtering set is provided, - `LOOKUP_FLAG_USE_MARK_FILTERING_SET` will be set on the lookup's - flags. - """ - - def __init__(self, font, location): - LookupBuilder.__init__(self, font, location, "GPOS", 6) - self.marks = {} # glyphName -> (markClassName, anchor) - self.baseMarks = {} # glyphName -> {markClassName: anchor} - - def equals(self, other): - return ( - LookupBuilder.equals(self, other) - and self.marks == other.marks - and self.baseMarks == other.baseMarks - ) - - def inferGlyphClasses(self): - result = {glyph: 3 for glyph in self.baseMarks} - result.update({glyph: 3 for glyph in self.marks}) - return result - - def build(self): - """Build the lookup. - - Returns: - An ``otTables.Lookup`` object representing the mark-to-mark - positioning lookup. - """ - markClasses = self.buildMarkClasses_(self.marks) - markClassList = sorted(markClasses.keys(), key=markClasses.get) - marks = { - mark: (markClasses[mc], anchor) for mark, (mc, anchor) in self.marks.items() - } - - st = ot.MarkMarkPos() - st.Format = 1 - st.ClassCount = len(markClasses) - st.Mark1Coverage = buildCoverage(marks, self.glyphMap) - st.Mark2Coverage = buildCoverage(self.baseMarks, self.glyphMap) - st.Mark1Array = buildMarkArray(marks, self.glyphMap) - st.Mark2Array = ot.Mark2Array() - st.Mark2Array.Mark2Count = len(st.Mark2Coverage.glyphs) - st.Mark2Array.Mark2Record = [] - for base in st.Mark2Coverage.glyphs: - anchors = [self.baseMarks[base].get(mc) for mc in markClassList] - st.Mark2Array.Mark2Record.append(buildMark2Record(anchors)) - return self.buildLookup_([st]) - - -class ReverseChainSingleSubstBuilder(LookupBuilder): - """Builds a Reverse Chaining Contextual Single Substitution (GSUB8) lookup. - - Users are expected to manually add substitutions to the ``substitutions`` - attribute after the object has been initialized, e.g.:: - - # reversesub [a e n] d' by d.alt; - prefix = [ ["a", "e", "n"] ] - suffix = [] - mapping = { "d": "d.alt" } - builder.substitutions.append( (prefix, suffix, mapping) ) - - Attributes: - font (``fontTools.TTLib.TTFont``): A font object. - location: A string or tuple representing the location in the original - source which produced this lookup. - substitutions: A three-element tuple consisting of a prefix sequence, - a suffix sequence, and a dictionary of single substitutions. - lookupflag (int): The lookup's flag - markFilterSet: Either ``None`` if no mark filtering set is used, or - an integer representing the filtering set to be used for this - lookup. If a mark filtering set is provided, - `LOOKUP_FLAG_USE_MARK_FILTERING_SET` will be set on the lookup's - flags. - """ - - def __init__(self, font, location): - LookupBuilder.__init__(self, font, location, "GSUB", 8) - self.rules = [] # (prefix, suffix, mapping) - - def equals(self, other): - return LookupBuilder.equals(self, other) and self.rules == other.rules - - def build(self): - """Build the lookup. - - Returns: - An ``otTables.Lookup`` object representing the chained - contextual substitution lookup. - """ - subtables = [] - for prefix, suffix, mapping in self.rules: - st = ot.ReverseChainSingleSubst() - st.Format = 1 - self.setBacktrackCoverage_(prefix, st) - self.setLookAheadCoverage_(suffix, st) - st.Coverage = buildCoverage(mapping.keys(), self.glyphMap) - st.GlyphCount = len(mapping) - st.Substitute = [mapping[g] for g in st.Coverage.glyphs] - subtables.append(st) - return self.buildLookup_(subtables) - - def add_subtable_break(self, location): - # Nothing to do here, each substitution is in its own subtable. - pass - - -class SingleSubstBuilder(LookupBuilder): - """Builds a Single Substitution (GSUB1) lookup. - - Users are expected to manually add substitutions to the ``mapping`` - attribute after the object has been initialized, e.g.:: - - # sub x by y; - builder.mapping["x"] = "y" - - Attributes: - font (``fontTools.TTLib.TTFont``): A font object. - location: A string or tuple representing the location in the original - source which produced this lookup. - mapping: A dictionary mapping a single glyph name to another glyph name. - lookupflag (int): The lookup's flag - markFilterSet: Either ``None`` if no mark filtering set is used, or - an integer representing the filtering set to be used for this - lookup. If a mark filtering set is provided, - `LOOKUP_FLAG_USE_MARK_FILTERING_SET` will be set on the lookup's - flags. - """ - - def __init__(self, font, location): - LookupBuilder.__init__(self, font, location, "GSUB", 1) - self.mapping = OrderedDict() - - def equals(self, other): - return LookupBuilder.equals(self, other) and self.mapping == other.mapping - - def build(self): - """Build the lookup. - - Returns: - An ``otTables.Lookup`` object representing the multiple - substitution lookup. - """ - subtables = self.build_subst_subtables(self.mapping, buildSingleSubstSubtable) - return self.buildLookup_(subtables) - - def getAlternateGlyphs(self): - return {glyph: set([repl]) for glyph, repl in self.mapping.items()} - - def add_subtable_break(self, location): - self.mapping[(self.SUBTABLE_BREAK_, location)] = self.SUBTABLE_BREAK_ - - -class ClassPairPosSubtableBuilder(object): - """Builds class-based Pair Positioning (GPOS2 format 2) subtables. - - Note that this does *not* build a GPOS2 ``otTables.Lookup`` directly, - but builds a list of ``otTables.PairPos`` subtables. It is used by the - :class:`PairPosBuilder` below. - - Attributes: - builder (PairPosBuilder): A pair positioning lookup builder. - """ - - def __init__(self, builder): - self.builder_ = builder - self.classDef1_, self.classDef2_ = None, None - self.values_ = {} # (glyphclass1, glyphclass2) --> (value1, value2) - self.forceSubtableBreak_ = False - self.subtables_ = [] - - def addPair(self, gc1, value1, gc2, value2): - """Add a pair positioning rule. - - Args: - gc1: A set of glyph names for the "left" glyph - value1: An ``otTables.ValueRecord`` object for the left glyph's - positioning. - gc2: A set of glyph names for the "right" glyph - value2: An ``otTables.ValueRecord`` object for the right glyph's - positioning. - """ - mergeable = ( - not self.forceSubtableBreak_ - and self.classDef1_ is not None - and self.classDef1_.canAdd(gc1) - and self.classDef2_ is not None - and self.classDef2_.canAdd(gc2) - ) - if not mergeable: - self.flush_() - self.classDef1_ = ClassDefBuilder(useClass0=True) - self.classDef2_ = ClassDefBuilder(useClass0=False) - self.values_ = {} - self.classDef1_.add(gc1) - self.classDef2_.add(gc2) - self.values_[(gc1, gc2)] = (value1, value2) - - def addSubtableBreak(self): - """Add an explicit subtable break at this point.""" - self.forceSubtableBreak_ = True - - def subtables(self): - """Return the list of ``otTables.PairPos`` subtables constructed.""" - self.flush_() - return self.subtables_ - - def flush_(self): - if self.classDef1_ is None or self.classDef2_ is None: - return - st = buildPairPosClassesSubtable(self.values_, self.builder_.glyphMap) - if st.Coverage is None: - return - self.subtables_.append(st) - self.forceSubtableBreak_ = False - - -class PairPosBuilder(LookupBuilder): - """Builds a Pair Positioning (GPOS2) lookup. - - Attributes: - font (``fontTools.TTLib.TTFont``): A font object. - location: A string or tuple representing the location in the original - source which produced this lookup. - pairs: An array of class-based pair positioning tuples. Usually - manipulated with the :meth:`addClassPair` method below. - glyphPairs: A dictionary mapping a tuple of glyph names to a tuple - of ``otTables.ValueRecord`` objects. Usually manipulated with the - :meth:`addGlyphPair` method below. - lookupflag (int): The lookup's flag - markFilterSet: Either ``None`` if no mark filtering set is used, or - an integer representing the filtering set to be used for this - lookup. If a mark filtering set is provided, - `LOOKUP_FLAG_USE_MARK_FILTERING_SET` will be set on the lookup's - flags. - """ - - def __init__(self, font, location): - LookupBuilder.__init__(self, font, location, "GPOS", 2) - self.pairs = [] # [(gc1, value1, gc2, value2)*] - self.glyphPairs = {} # (glyph1, glyph2) --> (value1, value2) - self.locations = {} # (gc1, gc2) --> (filepath, line, column) - - def addClassPair(self, location, glyphclass1, value1, glyphclass2, value2): - """Add a class pair positioning rule to the current lookup. - - Args: - location: A string or tuple representing the location in the - original source which produced this rule. Unused. - glyphclass1: A set of glyph names for the "left" glyph in the pair. - value1: A ``otTables.ValueRecord`` for positioning the left glyph. - glyphclass2: A set of glyph names for the "right" glyph in the pair. - value2: A ``otTables.ValueRecord`` for positioning the right glyph. - """ - self.pairs.append((glyphclass1, value1, glyphclass2, value2)) - - def addGlyphPair(self, location, glyph1, value1, glyph2, value2): - """Add a glyph pair positioning rule to the current lookup. - - Args: - location: A string or tuple representing the location in the - original source which produced this rule. - glyph1: A glyph name for the "left" glyph in the pair. - value1: A ``otTables.ValueRecord`` for positioning the left glyph. - glyph2: A glyph name for the "right" glyph in the pair. - value2: A ``otTables.ValueRecord`` for positioning the right glyph. - """ - key = (glyph1, glyph2) - oldValue = self.glyphPairs.get(key, None) - if oldValue is not None: - # the Feature File spec explicitly allows specific pairs generated - # by an 'enum' rule to be overridden by preceding single pairs - otherLoc = self.locations[key] - log.debug( - "Already defined position for pair %s %s at %s; " - "choosing the first value", - glyph1, - glyph2, - otherLoc, - ) - else: - self.glyphPairs[key] = (value1, value2) - self.locations[key] = location - - def add_subtable_break(self, location): - self.pairs.append( - ( - self.SUBTABLE_BREAK_, - self.SUBTABLE_BREAK_, - self.SUBTABLE_BREAK_, - self.SUBTABLE_BREAK_, - ) - ) - - def equals(self, other): - return ( - LookupBuilder.equals(self, other) - and self.glyphPairs == other.glyphPairs - and self.pairs == other.pairs - ) - - def build(self): - """Build the lookup. - - Returns: - An ``otTables.Lookup`` object representing the pair positioning - lookup. - """ - builders = {} - builder = ClassPairPosSubtableBuilder(self) - for glyphclass1, value1, glyphclass2, value2 in self.pairs: - if glyphclass1 is self.SUBTABLE_BREAK_: - builder.addSubtableBreak() - continue - builder.addPair(glyphclass1, value1, glyphclass2, value2) - subtables = [] - if self.glyphPairs: - subtables.extend(buildPairPosGlyphs(self.glyphPairs, self.glyphMap)) - subtables.extend(builder.subtables()) - lookup = self.buildLookup_(subtables) - - # Compact the lookup - # This is a good moment to do it because the compaction should create - # smaller subtables, which may prevent overflows from happening. - # Keep reading the value from the ENV until ufo2ft switches to the config system - level = self.font.cfg.get( - "fontTools.otlLib.optimize.gpos:COMPRESSION_LEVEL", - default=_compression_level_from_env(), - ) - if level != 0: - log.info("Compacting GPOS...") - compact_lookup(self.font, level, lookup) - - return lookup - - -class SinglePosBuilder(LookupBuilder): - """Builds a Single Positioning (GPOS1) lookup. - - Attributes: - font (``fontTools.TTLib.TTFont``): A font object. - location: A string or tuple representing the location in the original - source which produced this lookup. - mapping: A dictionary mapping a glyph name to a ``otTables.ValueRecord`` - objects. Usually manipulated with the :meth:`add_pos` method below. - lookupflag (int): The lookup's flag - markFilterSet: Either ``None`` if no mark filtering set is used, or - an integer representing the filtering set to be used for this - lookup. If a mark filtering set is provided, - `LOOKUP_FLAG_USE_MARK_FILTERING_SET` will be set on the lookup's - flags. - """ - - def __init__(self, font, location): - LookupBuilder.__init__(self, font, location, "GPOS", 1) - self.locations = {} # glyph -> (filename, line, column) - self.mapping = {} # glyph -> ot.ValueRecord - - def add_pos(self, location, glyph, otValueRecord): - """Add a single positioning rule. - - Args: - location: A string or tuple representing the location in the - original source which produced this lookup. - glyph: A glyph name. - otValueRection: A ``otTables.ValueRecord`` used to position the - glyph. - """ - if not self.can_add(glyph, otValueRecord): - otherLoc = self.locations[glyph] - raise OpenTypeLibError( - 'Already defined different position for glyph "%s" at %s' - % (glyph, otherLoc), - location, - ) - if otValueRecord: - self.mapping[glyph] = otValueRecord - self.locations[glyph] = location - - def can_add(self, glyph, value): - assert isinstance(value, ValueRecord) - curValue = self.mapping.get(glyph) - return curValue is None or curValue == value - - def equals(self, other): - return LookupBuilder.equals(self, other) and self.mapping == other.mapping - - def build(self): - """Build the lookup. - - Returns: - An ``otTables.Lookup`` object representing the single positioning - lookup. - """ - subtables = buildSinglePos(self.mapping, self.glyphMap) - return self.buildLookup_(subtables) - - -# GSUB - - -def buildSingleSubstSubtable(mapping): - """Builds a single substitution (GSUB1) subtable. - - Note that if you are implementing a layout compiler, you may find it more - flexible to use - :py:class:`fontTools.otlLib.lookupBuilders.SingleSubstBuilder` instead. - - Args: - mapping: A dictionary mapping input glyph names to output glyph names. - - Returns: - An ``otTables.SingleSubst`` object, or ``None`` if the mapping dictionary - is empty. - """ - if not mapping: - return None - self = ot.SingleSubst() - self.mapping = dict(mapping) - return self - - -def buildMultipleSubstSubtable(mapping): - """Builds a multiple substitution (GSUB2) subtable. - - Note that if you are implementing a layout compiler, you may find it more - flexible to use - :py:class:`fontTools.otlLib.lookupBuilders.MultipleSubstBuilder` instead. - - Example:: - - # sub uni06C0 by uni06D5.fina hamza.above - # sub uni06C2 by uni06C1.fina hamza.above; - - subtable = buildMultipleSubstSubtable({ - "uni06C0": [ "uni06D5.fina", "hamza.above"], - "uni06C2": [ "uni06D1.fina", "hamza.above"] - }) - - Args: - mapping: A dictionary mapping input glyph names to a list of output - glyph names. - - Returns: - An ``otTables.MultipleSubst`` object or ``None`` if the mapping dictionary - is empty. - """ - if not mapping: - return None - self = ot.MultipleSubst() - self.mapping = dict(mapping) - return self - - -def buildAlternateSubstSubtable(mapping): - """Builds an alternate substitution (GSUB3) subtable. - - Note that if you are implementing a layout compiler, you may find it more - flexible to use - :py:class:`fontTools.otlLib.lookupBuilders.AlternateSubstBuilder` instead. - - Args: - mapping: A dictionary mapping input glyph names to a list of output - glyph names. - - Returns: - An ``otTables.AlternateSubst`` object or ``None`` if the mapping dictionary - is empty. - """ - if not mapping: - return None - self = ot.AlternateSubst() - self.alternates = dict(mapping) - return self - - -def _getLigatureKey(components): - # Computes a key for ordering ligatures in a GSUB Type-4 lookup. - - # When building the OpenType lookup, we need to make sure that - # the longest sequence of components is listed first, so we - # use the negative length as the primary key for sorting. - # To make buildLigatureSubstSubtable() deterministic, we use the - # component sequence as the secondary key. - - # For example, this will sort (f,f,f) < (f,f,i) < (f,f) < (f,i) < (f,l). - return (-len(components), components) - - -def buildLigatureSubstSubtable(mapping): - """Builds a ligature substitution (GSUB4) subtable. - - Note that if you are implementing a layout compiler, you may find it more - flexible to use - :py:class:`fontTools.otlLib.lookupBuilders.LigatureSubstBuilder` instead. - - Example:: - - # sub f f i by f_f_i; - # sub f i by f_i; - - subtable = buildLigatureSubstSubtable({ - ("f", "f", "i"): "f_f_i", - ("f", "i"): "f_i", - }) - - Args: - mapping: A dictionary mapping tuples of glyph names to output - glyph names. - - Returns: - An ``otTables.LigatureSubst`` object or ``None`` if the mapping dictionary - is empty. - """ - - if not mapping: - return None - self = ot.LigatureSubst() - # The following single line can replace the rest of this function - # with fontTools >= 3.1: - # self.ligatures = dict(mapping) - self.ligatures = {} - for components in sorted(mapping.keys(), key=_getLigatureKey): - ligature = ot.Ligature() - ligature.Component = components[1:] - ligature.CompCount = len(ligature.Component) + 1 - ligature.LigGlyph = mapping[components] - firstGlyph = components[0] - self.ligatures.setdefault(firstGlyph, []).append(ligature) - return self - - -# GPOS - - -def buildAnchor(x, y, point=None, deviceX=None, deviceY=None): - """Builds an Anchor table. - - This determines the appropriate anchor format based on the passed parameters. - - Args: - x (int): X coordinate. - y (int): Y coordinate. - point (int): Index of glyph contour point, if provided. - deviceX (``otTables.Device``): X coordinate device table, if provided. - deviceY (``otTables.Device``): Y coordinate device table, if provided. - - Returns: - An ``otTables.Anchor`` object. - """ - self = ot.Anchor() - self.XCoordinate, self.YCoordinate = x, y - self.Format = 1 - if point is not None: - self.AnchorPoint = point - self.Format = 2 - if deviceX is not None or deviceY is not None: - assert ( - self.Format == 1 - ), "Either point, or both of deviceX/deviceY, must be None." - self.XDeviceTable = deviceX - self.YDeviceTable = deviceY - self.Format = 3 - return self - - -def buildBaseArray(bases, numMarkClasses, glyphMap): - """Builds a base array record. - - As part of building mark-to-base positioning rules, you will need to define - a ``BaseArray`` record, which "defines for each base glyph an array of - anchors, one for each mark class." This function builds the base array - subtable. - - Example:: - - bases = {"a": {0: a3, 1: a5}, "b": {0: a4, 1: a5}} - basearray = buildBaseArray(bases, 2, font.getReverseGlyphMap()) - - Args: - bases (dict): A dictionary mapping anchors to glyphs; the keys being - glyph names, and the values being dictionaries mapping mark class ID - to the appropriate ``otTables.Anchor`` object used for attaching marks - of that class. - numMarkClasses (int): The total number of mark classes for which anchors - are defined. - glyphMap: a glyph name to ID map, typically returned from - ``font.getReverseGlyphMap()``. - - Returns: - An ``otTables.BaseArray`` object. - """ - self = ot.BaseArray() - self.BaseRecord = [] - for base in sorted(bases, key=glyphMap.__getitem__): - b = bases[base] - anchors = [b.get(markClass) for markClass in range(numMarkClasses)] - self.BaseRecord.append(buildBaseRecord(anchors)) - self.BaseCount = len(self.BaseRecord) - return self - - -def buildBaseRecord(anchors): - # [otTables.Anchor, otTables.Anchor, ...] --> otTables.BaseRecord - self = ot.BaseRecord() - self.BaseAnchor = anchors - return self - - -def buildComponentRecord(anchors): - """Builds a component record. - - As part of building mark-to-ligature positioning rules, you will need to - define ``ComponentRecord`` objects, which contain "an array of offsets... - to the Anchor tables that define all the attachment points used to attach - marks to the component." This function builds the component record. - - Args: - anchors: A list of ``otTables.Anchor`` objects or ``None``. - - Returns: - A ``otTables.ComponentRecord`` object or ``None`` if no anchors are - supplied. - """ - if not anchors: - return None - self = ot.ComponentRecord() - self.LigatureAnchor = anchors - return self - - -def buildCursivePosSubtable(attach, glyphMap): - """Builds a cursive positioning (GPOS3) subtable. - - Cursive positioning lookups are made up of a coverage table of glyphs, - and a set of ``EntryExitRecord`` records containing the anchors for - each glyph. This function builds the cursive positioning subtable. - - Example:: - - subtable = buildCursivePosSubtable({ - "AlifIni": (None, buildAnchor(0, 50)), - "BehMed": (buildAnchor(500,250), buildAnchor(0,50)), - # ... - }, font.getReverseGlyphMap()) - - Args: - attach (dict): A mapping between glyph names and a tuple of two - ``otTables.Anchor`` objects representing entry and exit anchors. - glyphMap: a glyph name to ID map, typically returned from - ``font.getReverseGlyphMap()``. - - Returns: - An ``otTables.CursivePos`` object, or ``None`` if the attachment - dictionary was empty. - """ - if not attach: - return None - self = ot.CursivePos() - self.Format = 1 - self.Coverage = buildCoverage(attach.keys(), glyphMap) - self.EntryExitRecord = [] - for glyph in self.Coverage.glyphs: - entryAnchor, exitAnchor = attach[glyph] - rec = ot.EntryExitRecord() - rec.EntryAnchor = entryAnchor - rec.ExitAnchor = exitAnchor - self.EntryExitRecord.append(rec) - self.EntryExitCount = len(self.EntryExitRecord) - return self - - -def buildDevice(deltas): - """Builds a Device record as part of a ValueRecord or Anchor. - - Device tables specify size-specific adjustments to value records - and anchors to reflect changes based on the resolution of the output. - For example, one could specify that an anchor's Y position should be - increased by 1 pixel when displayed at 8 pixels per em. This routine - builds device records. - - Args: - deltas: A dictionary mapping pixels-per-em sizes to the delta - adjustment in pixels when the font is displayed at that size. - - Returns: - An ``otTables.Device`` object if any deltas were supplied, or - ``None`` otherwise. - """ - if not deltas: - return None - self = ot.Device() - keys = deltas.keys() - self.StartSize = startSize = min(keys) - self.EndSize = endSize = max(keys) - assert 0 <= startSize <= endSize - self.DeltaValue = deltaValues = [ - deltas.get(size, 0) for size in range(startSize, endSize + 1) - ] - maxDelta = max(deltaValues) - minDelta = min(deltaValues) - assert minDelta > -129 and maxDelta < 128 - if minDelta > -3 and maxDelta < 2: - self.DeltaFormat = 1 - elif minDelta > -9 and maxDelta < 8: - self.DeltaFormat = 2 - else: - self.DeltaFormat = 3 - return self - - -def buildLigatureArray(ligs, numMarkClasses, glyphMap): - """Builds a LigatureArray subtable. - - As part of building a mark-to-ligature lookup, you will need to define - the set of anchors (for each mark class) on each component of the ligature - where marks can be attached. For example, for an Arabic divine name ligature - (lam lam heh), you may want to specify mark attachment positioning for - superior marks (fatha, etc.) and inferior marks (kasra, etc.) on each glyph - of the ligature. This routine builds the ligature array record. - - Example:: - - buildLigatureArray({ - "lam-lam-heh": [ - { 0: superiorAnchor1, 1: inferiorAnchor1 }, # attach points for lam1 - { 0: superiorAnchor2, 1: inferiorAnchor2 }, # attach points for lam2 - { 0: superiorAnchor3, 1: inferiorAnchor3 }, # attach points for heh - ] - }, 2, font.getReverseGlyphMap()) - - Args: - ligs (dict): A mapping of ligature names to an array of dictionaries: - for each component glyph in the ligature, an dictionary mapping - mark class IDs to anchors. - numMarkClasses (int): The number of mark classes. - glyphMap: a glyph name to ID map, typically returned from - ``font.getReverseGlyphMap()``. - - Returns: - An ``otTables.LigatureArray`` object if deltas were supplied. - """ - self = ot.LigatureArray() - self.LigatureAttach = [] - for lig in sorted(ligs, key=glyphMap.__getitem__): - anchors = [] - for component in ligs[lig]: - anchors.append([component.get(mc) for mc in range(numMarkClasses)]) - self.LigatureAttach.append(buildLigatureAttach(anchors)) - self.LigatureCount = len(self.LigatureAttach) - return self - - -def buildLigatureAttach(components): - # [[Anchor, Anchor], [Anchor, Anchor, Anchor]] --> LigatureAttach - self = ot.LigatureAttach() - self.ComponentRecord = [buildComponentRecord(c) for c in components] - self.ComponentCount = len(self.ComponentRecord) - return self - - -def buildMarkArray(marks, glyphMap): - """Builds a mark array subtable. - - As part of building mark-to-* positioning rules, you will need to define - a MarkArray subtable, which "defines the class and the anchor point - for a mark glyph." This function builds the mark array subtable. - - Example:: - - mark = { - "acute": (0, buildAnchor(300,712)), - # ... - } - markarray = buildMarkArray(marks, font.getReverseGlyphMap()) - - Args: - marks (dict): A dictionary mapping anchors to glyphs; the keys being - glyph names, and the values being a tuple of mark class number and - an ``otTables.Anchor`` object representing the mark's attachment - point. - glyphMap: a glyph name to ID map, typically returned from - ``font.getReverseGlyphMap()``. - - Returns: - An ``otTables.MarkArray`` object. - """ - self = ot.MarkArray() - self.MarkRecord = [] - for mark in sorted(marks.keys(), key=glyphMap.__getitem__): - markClass, anchor = marks[mark] - markrec = buildMarkRecord(markClass, anchor) - self.MarkRecord.append(markrec) - self.MarkCount = len(self.MarkRecord) - return self - - -def buildMarkBasePos(marks, bases, glyphMap): - """Build a list of MarkBasePos (GPOS4) subtables. - - This routine turns a set of marks and bases into a list of mark-to-base - positioning subtables. Currently the list will contain a single subtable - containing all marks and bases, although at a later date it may return the - optimal list of subtables subsetting the marks and bases into groups which - save space. See :func:`buildMarkBasePosSubtable` below. - - Note that if you are implementing a layout compiler, you may find it more - flexible to use - :py:class:`fontTools.otlLib.lookupBuilders.MarkBasePosBuilder` instead. - - Example:: - - # a1, a2, a3, a4, a5 = buildAnchor(500, 100), ... - - marks = {"acute": (0, a1), "grave": (0, a1), "cedilla": (1, a2)} - bases = {"a": {0: a3, 1: a5}, "b": {0: a4, 1: a5}} - markbaseposes = buildMarkBasePos(marks, bases, font.getReverseGlyphMap()) - - Args: - marks (dict): A dictionary mapping anchors to glyphs; the keys being - glyph names, and the values being a tuple of mark class number and - an ``otTables.Anchor`` object representing the mark's attachment - point. (See :func:`buildMarkArray`.) - bases (dict): A dictionary mapping anchors to glyphs; the keys being - glyph names, and the values being dictionaries mapping mark class ID - to the appropriate ``otTables.Anchor`` object used for attaching marks - of that class. (See :func:`buildBaseArray`.) - glyphMap: a glyph name to ID map, typically returned from - ``font.getReverseGlyphMap()``. - - Returns: - A list of ``otTables.MarkBasePos`` objects. - """ - # TODO: Consider emitting multiple subtables to save space. - # Partition the marks and bases into disjoint subsets, so that - # MarkBasePos rules would only access glyphs from a single - # subset. This would likely lead to smaller mark/base - # matrices, so we might be able to omit many of the empty - # anchor tables that we currently produce. Of course, this - # would only work if the MarkBasePos rules of real-world fonts - # allow partitioning into multiple subsets. We should find out - # whether this is the case; if so, implement the optimization. - # On the other hand, a very large number of subtables could - # slow down layout engines; so this would need profiling. - return [buildMarkBasePosSubtable(marks, bases, glyphMap)] - - -def buildMarkBasePosSubtable(marks, bases, glyphMap): - """Build a single MarkBasePos (GPOS4) subtable. - - This builds a mark-to-base lookup subtable containing all of the referenced - marks and bases. See :func:`buildMarkBasePos`. - - Args: - marks (dict): A dictionary mapping anchors to glyphs; the keys being - glyph names, and the values being a tuple of mark class number and - an ``otTables.Anchor`` object representing the mark's attachment - point. (See :func:`buildMarkArray`.) - bases (dict): A dictionary mapping anchors to glyphs; the keys being - glyph names, and the values being dictionaries mapping mark class ID - to the appropriate ``otTables.Anchor`` object used for attaching marks - of that class. (See :func:`buildBaseArray`.) - glyphMap: a glyph name to ID map, typically returned from - ``font.getReverseGlyphMap()``. - - Returns: - A ``otTables.MarkBasePos`` object. - """ - self = ot.MarkBasePos() - self.Format = 1 - self.MarkCoverage = buildCoverage(marks, glyphMap) - self.MarkArray = buildMarkArray(marks, glyphMap) - self.ClassCount = max([mc for mc, _ in marks.values()]) + 1 - self.BaseCoverage = buildCoverage(bases, glyphMap) - self.BaseArray = buildBaseArray(bases, self.ClassCount, glyphMap) - return self - - -def buildMarkLigPos(marks, ligs, glyphMap): - """Build a list of MarkLigPos (GPOS5) subtables. - - This routine turns a set of marks and ligatures into a list of mark-to-ligature - positioning subtables. Currently the list will contain a single subtable - containing all marks and ligatures, although at a later date it may return - the optimal list of subtables subsetting the marks and ligatures into groups - which save space. See :func:`buildMarkLigPosSubtable` below. - - Note that if you are implementing a layout compiler, you may find it more - flexible to use - :py:class:`fontTools.otlLib.lookupBuilders.MarkLigPosBuilder` instead. - - Example:: - - # a1, a2, a3, a4, a5 = buildAnchor(500, 100), ... - marks = { - "acute": (0, a1), - "grave": (0, a1), - "cedilla": (1, a2) - } - ligs = { - "f_i": [ - { 0: a3, 1: a5 }, # f - { 0: a4, 1: a5 } # i - ], - # "c_t": [{...}, {...}] - } - markligposes = buildMarkLigPos(marks, ligs, - font.getReverseGlyphMap()) - - Args: - marks (dict): A dictionary mapping anchors to glyphs; the keys being - glyph names, and the values being a tuple of mark class number and - an ``otTables.Anchor`` object representing the mark's attachment - point. (See :func:`buildMarkArray`.) - ligs (dict): A mapping of ligature names to an array of dictionaries: - for each component glyph in the ligature, an dictionary mapping - mark class IDs to anchors. (See :func:`buildLigatureArray`.) - glyphMap: a glyph name to ID map, typically returned from - ``font.getReverseGlyphMap()``. - - Returns: - A list of ``otTables.MarkLigPos`` objects. - - """ - # TODO: Consider splitting into multiple subtables to save space, - # as with MarkBasePos, this would be a trade-off that would need - # profiling. And, depending on how typical fonts are structured, - # it might not be worth doing at all. - return [buildMarkLigPosSubtable(marks, ligs, glyphMap)] - - -def buildMarkLigPosSubtable(marks, ligs, glyphMap): - """Build a single MarkLigPos (GPOS5) subtable. - - This builds a mark-to-base lookup subtable containing all of the referenced - marks and bases. See :func:`buildMarkLigPos`. - - Args: - marks (dict): A dictionary mapping anchors to glyphs; the keys being - glyph names, and the values being a tuple of mark class number and - an ``otTables.Anchor`` object representing the mark's attachment - point. (See :func:`buildMarkArray`.) - ligs (dict): A mapping of ligature names to an array of dictionaries: - for each component glyph in the ligature, an dictionary mapping - mark class IDs to anchors. (See :func:`buildLigatureArray`.) - glyphMap: a glyph name to ID map, typically returned from - ``font.getReverseGlyphMap()``. - - Returns: - A ``otTables.MarkLigPos`` object. - """ - self = ot.MarkLigPos() - self.Format = 1 - self.MarkCoverage = buildCoverage(marks, glyphMap) - self.MarkArray = buildMarkArray(marks, glyphMap) - self.ClassCount = max([mc for mc, _ in marks.values()]) + 1 - self.LigatureCoverage = buildCoverage(ligs, glyphMap) - self.LigatureArray = buildLigatureArray(ligs, self.ClassCount, glyphMap) - return self - - -def buildMarkRecord(classID, anchor): - assert isinstance(classID, int) - assert isinstance(anchor, ot.Anchor) - self = ot.MarkRecord() - self.Class = classID - self.MarkAnchor = anchor - return self - - -def buildMark2Record(anchors): - # [otTables.Anchor, otTables.Anchor, ...] --> otTables.Mark2Record - self = ot.Mark2Record() - self.Mark2Anchor = anchors - return self - - -def _getValueFormat(f, values, i): - # Helper for buildPairPos{Glyphs|Classes}Subtable. - if f is not None: - return f - mask = 0 - for value in values: - if value is not None and value[i] is not None: - mask |= value[i].getFormat() - return mask - - -def buildPairPosClassesSubtable(pairs, glyphMap, valueFormat1=None, valueFormat2=None): - """Builds a class pair adjustment (GPOS2 format 2) subtable. - - Kerning tables are generally expressed as pair positioning tables using - class-based pair adjustments. This routine builds format 2 PairPos - subtables. - - Note that if you are implementing a layout compiler, you may find it more - flexible to use - :py:class:`fontTools.otlLib.lookupBuilders.ClassPairPosSubtableBuilder` - instead, as this takes care of ensuring that the supplied pairs can be - formed into non-overlapping classes and emitting individual subtables - whenever the non-overlapping requirement means that a new subtable is - required. - - Example:: - - pairs = {} - - pairs[( - [ "K", "X" ], - [ "W", "V" ] - )] = ( buildValue(xAdvance=+5), buildValue() ) - # pairs[(... , ...)] = (..., ...) - - pairpos = buildPairPosClassesSubtable(pairs, font.getReverseGlyphMap()) - - Args: - pairs (dict): Pair positioning data; the keys being a two-element - tuple of lists of glyphnames, and the values being a two-element - tuple of ``otTables.ValueRecord`` objects. - glyphMap: a glyph name to ID map, typically returned from - ``font.getReverseGlyphMap()``. - valueFormat1: Force the "left" value records to the given format. - valueFormat2: Force the "right" value records to the given format. - - Returns: - A ``otTables.PairPos`` object. - """ - coverage = set() - classDef1 = ClassDefBuilder(useClass0=True) - classDef2 = ClassDefBuilder(useClass0=False) - for gc1, gc2 in sorted(pairs): - coverage.update(gc1) - classDef1.add(gc1) - classDef2.add(gc2) - self = ot.PairPos() - self.Format = 2 - valueFormat1 = self.ValueFormat1 = _getValueFormat(valueFormat1, pairs.values(), 0) - valueFormat2 = self.ValueFormat2 = _getValueFormat(valueFormat2, pairs.values(), 1) - self.Coverage = buildCoverage(coverage, glyphMap) - self.ClassDef1 = classDef1.build() - self.ClassDef2 = classDef2.build() - classes1 = classDef1.classes() - classes2 = classDef2.classes() - self.Class1Record = [] - for c1 in classes1: - rec1 = ot.Class1Record() - rec1.Class2Record = [] - self.Class1Record.append(rec1) - for c2 in classes2: - rec2 = ot.Class2Record() - val1, val2 = pairs.get((c1, c2), (None, None)) - rec2.Value1 = ( - ValueRecord(src=val1, valueFormat=valueFormat1) - if valueFormat1 - else None - ) - rec2.Value2 = ( - ValueRecord(src=val2, valueFormat=valueFormat2) - if valueFormat2 - else None - ) - rec1.Class2Record.append(rec2) - self.Class1Count = len(self.Class1Record) - self.Class2Count = len(classes2) - return self - - -def buildPairPosGlyphs(pairs, glyphMap): - """Builds a list of glyph-based pair adjustment (GPOS2 format 1) subtables. - - This organises a list of pair positioning adjustments into subtables based - on common value record formats. - - Note that if you are implementing a layout compiler, you may find it more - flexible to use - :py:class:`fontTools.otlLib.lookupBuilders.PairPosBuilder` - instead. - - Example:: - - pairs = { - ("K", "W"): ( buildValue(xAdvance=+5), buildValue() ), - ("K", "V"): ( buildValue(xAdvance=+5), buildValue() ), - # ... - } - - subtables = buildPairPosGlyphs(pairs, font.getReverseGlyphMap()) - - Args: - pairs (dict): Pair positioning data; the keys being a two-element - tuple of glyphnames, and the values being a two-element - tuple of ``otTables.ValueRecord`` objects. - glyphMap: a glyph name to ID map, typically returned from - ``font.getReverseGlyphMap()``. - - Returns: - A list of ``otTables.PairPos`` objects. - """ - - p = {} # (formatA, formatB) --> {(glyphA, glyphB): (valA, valB)} - for (glyphA, glyphB), (valA, valB) in pairs.items(): - formatA = valA.getFormat() if valA is not None else 0 - formatB = valB.getFormat() if valB is not None else 0 - pos = p.setdefault((formatA, formatB), {}) - pos[(glyphA, glyphB)] = (valA, valB) - return [ - buildPairPosGlyphsSubtable(pos, glyphMap, formatA, formatB) - for ((formatA, formatB), pos) in sorted(p.items()) - ] - - -def buildPairPosGlyphsSubtable(pairs, glyphMap, valueFormat1=None, valueFormat2=None): - """Builds a single glyph-based pair adjustment (GPOS2 format 1) subtable. - - This builds a PairPos subtable from a dictionary of glyph pairs and - their positioning adjustments. See also :func:`buildPairPosGlyphs`. - - Note that if you are implementing a layout compiler, you may find it more - flexible to use - :py:class:`fontTools.otlLib.lookupBuilders.PairPosBuilder` instead. - - Example:: - - pairs = { - ("K", "W"): ( buildValue(xAdvance=+5), buildValue() ), - ("K", "V"): ( buildValue(xAdvance=+5), buildValue() ), - # ... - } - - pairpos = buildPairPosGlyphsSubtable(pairs, font.getReverseGlyphMap()) - - Args: - pairs (dict): Pair positioning data; the keys being a two-element - tuple of glyphnames, and the values being a two-element - tuple of ``otTables.ValueRecord`` objects. - glyphMap: a glyph name to ID map, typically returned from - ``font.getReverseGlyphMap()``. - valueFormat1: Force the "left" value records to the given format. - valueFormat2: Force the "right" value records to the given format. - - Returns: - A ``otTables.PairPos`` object. - """ - self = ot.PairPos() - self.Format = 1 - valueFormat1 = self.ValueFormat1 = _getValueFormat(valueFormat1, pairs.values(), 0) - valueFormat2 = self.ValueFormat2 = _getValueFormat(valueFormat2, pairs.values(), 1) - p = {} - for (glyphA, glyphB), (valA, valB) in pairs.items(): - p.setdefault(glyphA, []).append((glyphB, valA, valB)) - self.Coverage = buildCoverage({g for g, _ in pairs.keys()}, glyphMap) - self.PairSet = [] - for glyph in self.Coverage.glyphs: - ps = ot.PairSet() - ps.PairValueRecord = [] - self.PairSet.append(ps) - for glyph2, val1, val2 in sorted(p[glyph], key=lambda x: glyphMap[x[0]]): - pvr = ot.PairValueRecord() - pvr.SecondGlyph = glyph2 - pvr.Value1 = ( - ValueRecord(src=val1, valueFormat=valueFormat1) - if valueFormat1 - else None - ) - pvr.Value2 = ( - ValueRecord(src=val2, valueFormat=valueFormat2) - if valueFormat2 - else None - ) - ps.PairValueRecord.append(pvr) - ps.PairValueCount = len(ps.PairValueRecord) - self.PairSetCount = len(self.PairSet) - return self - - -def buildSinglePos(mapping, glyphMap): - """Builds a list of single adjustment (GPOS1) subtables. - - This builds a list of SinglePos subtables from a dictionary of glyph - names and their positioning adjustments. The format of the subtables are - determined to optimize the size of the resulting subtables. - See also :func:`buildSinglePosSubtable`. - - Note that if you are implementing a layout compiler, you may find it more - flexible to use - :py:class:`fontTools.otlLib.lookupBuilders.SinglePosBuilder` instead. - - Example:: - - mapping = { - "V": buildValue({ "xAdvance" : +5 }), - # ... - } - - subtables = buildSinglePos(pairs, font.getReverseGlyphMap()) - - Args: - mapping (dict): A mapping between glyphnames and - ``otTables.ValueRecord`` objects. - glyphMap: a glyph name to ID map, typically returned from - ``font.getReverseGlyphMap()``. - - Returns: - A list of ``otTables.SinglePos`` objects. - """ - result, handled = [], set() - # In SinglePos format 1, the covered glyphs all share the same ValueRecord. - # In format 2, each glyph has its own ValueRecord, but these records - # all have the same properties (eg., all have an X but no Y placement). - coverages, masks, values = {}, {}, {} - for glyph, value in mapping.items(): - key = _getSinglePosValueKey(value) - coverages.setdefault(key, []).append(glyph) - masks.setdefault(key[0], []).append(key) - values[key] = value - - # If a ValueRecord is shared between multiple glyphs, we generate - # a SinglePos format 1 subtable; that is the most compact form. - for key, glyphs in coverages.items(): - # 5 ushorts is the length of introducing another sublookup - if len(glyphs) * _getSinglePosValueSize(key) > 5: - format1Mapping = {g: values[key] for g in glyphs} - result.append(buildSinglePosSubtable(format1Mapping, glyphMap)) - handled.add(key) - - # In the remaining ValueRecords, look for those whose valueFormat - # (the set of used properties) is shared between multiple records. - # These will get encoded in format 2. - for valueFormat, keys in masks.items(): - f2 = [k for k in keys if k not in handled] - if len(f2) > 1: - format2Mapping = {} - for k in f2: - format2Mapping.update((g, values[k]) for g in coverages[k]) - result.append(buildSinglePosSubtable(format2Mapping, glyphMap)) - handled.update(f2) - - # The remaining ValueRecords are only used by a few glyphs, normally - # one. We encode these in format 1 again. - for key, glyphs in coverages.items(): - if key not in handled: - for g in glyphs: - st = buildSinglePosSubtable({g: values[key]}, glyphMap) - result.append(st) - - # When the OpenType layout engine traverses the subtables, it will - # stop after the first matching subtable. Therefore, we sort the - # resulting subtables by decreasing coverage size; this increases - # the chance that the layout engine can do an early exit. (Of course, - # this would only be true if all glyphs were equally frequent, which - # is not really the case; but we do not know their distribution). - # If two subtables cover the same number of glyphs, we sort them - # by glyph ID so that our output is deterministic. - result.sort(key=lambda t: _getSinglePosTableKey(t, glyphMap)) - return result - - -def buildSinglePosSubtable(values, glyphMap): - """Builds a single adjustment (GPOS1) subtable. - - This builds a list of SinglePos subtables from a dictionary of glyph - names and their positioning adjustments. The format of the subtable is - determined to optimize the size of the output. - See also :func:`buildSinglePos`. - - Note that if you are implementing a layout compiler, you may find it more - flexible to use - :py:class:`fontTools.otlLib.lookupBuilders.SinglePosBuilder` instead. - - Example:: - - mapping = { - "V": buildValue({ "xAdvance" : +5 }), - # ... - } - - subtable = buildSinglePos(pairs, font.getReverseGlyphMap()) - - Args: - mapping (dict): A mapping between glyphnames and - ``otTables.ValueRecord`` objects. - glyphMap: a glyph name to ID map, typically returned from - ``font.getReverseGlyphMap()``. - - Returns: - A ``otTables.SinglePos`` object. - """ - self = ot.SinglePos() - self.Coverage = buildCoverage(values.keys(), glyphMap) - valueFormat = self.ValueFormat = reduce( - int.__or__, [v.getFormat() for v in values.values()], 0 - ) - valueRecords = [ - ValueRecord(src=values[g], valueFormat=valueFormat) - for g in self.Coverage.glyphs - ] - if all(v == valueRecords[0] for v in valueRecords): - self.Format = 1 - if self.ValueFormat != 0: - self.Value = valueRecords[0] - else: - self.Value = None - else: - self.Format = 2 - self.Value = valueRecords - self.ValueCount = len(self.Value) - return self - - -def _getSinglePosTableKey(subtable, glyphMap): - assert isinstance(subtable, ot.SinglePos), subtable - glyphs = subtable.Coverage.glyphs - return (-len(glyphs), glyphMap[glyphs[0]]) - - -def _getSinglePosValueKey(valueRecord): - # otBase.ValueRecord --> (2, ("YPlacement": 12)) - assert isinstance(valueRecord, ValueRecord), valueRecord - valueFormat, result = 0, [] - for name, value in valueRecord.__dict__.items(): - if isinstance(value, ot.Device): - result.append((name, _makeDeviceTuple(value))) - else: - result.append((name, value)) - valueFormat |= valueRecordFormatDict[name][0] - result.sort() - result.insert(0, valueFormat) - return tuple(result) - - -_DeviceTuple = namedtuple("_DeviceTuple", "DeltaFormat StartSize EndSize DeltaValue") - - -def _makeDeviceTuple(device): - # otTables.Device --> tuple, for making device tables unique - return _DeviceTuple( - device.DeltaFormat, - device.StartSize, - device.EndSize, - () if device.DeltaFormat & 0x8000 else tuple(device.DeltaValue), - ) - - -def _getSinglePosValueSize(valueKey): - # Returns how many ushorts this valueKey (short form of ValueRecord) takes up - count = 0 - for _, v in valueKey[1:]: - if isinstance(v, _DeviceTuple): - count += len(v.DeltaValue) + 3 - else: - count += 1 - return count - - -def buildValue(value): - """Builds a positioning value record. - - Value records are used to specify coordinates and adjustments for - positioning and attaching glyphs. Many of the positioning functions - in this library take ``otTables.ValueRecord`` objects as arguments. - This function builds value records from dictionaries. - - Args: - value (dict): A dictionary with zero or more of the following keys: - - ``xPlacement`` - - ``yPlacement`` - - ``xAdvance`` - - ``yAdvance`` - - ``xPlaDevice`` - - ``yPlaDevice`` - - ``xAdvDevice`` - - ``yAdvDevice`` - - Returns: - An ``otTables.ValueRecord`` object. - """ - self = ValueRecord() - for k, v in value.items(): - setattr(self, k, v) - return self - - -# GDEF - - -def buildAttachList(attachPoints, glyphMap): - """Builds an AttachList subtable. - - A GDEF table may contain an Attachment Point List table (AttachList) - which stores the contour indices of attachment points for glyphs with - attachment points. This routine builds AttachList subtables. - - Args: - attachPoints (dict): A mapping between glyph names and a list of - contour indices. - - Returns: - An ``otTables.AttachList`` object if attachment points are supplied, - or ``None`` otherwise. - """ - if not attachPoints: - return None - self = ot.AttachList() - self.Coverage = buildCoverage(attachPoints.keys(), glyphMap) - self.AttachPoint = [buildAttachPoint(attachPoints[g]) for g in self.Coverage.glyphs] - self.GlyphCount = len(self.AttachPoint) - return self - - -def buildAttachPoint(points): - # [4, 23, 41] --> otTables.AttachPoint - # Only used by above. - if not points: - return None - self = ot.AttachPoint() - self.PointIndex = sorted(set(points)) - self.PointCount = len(self.PointIndex) - return self - - -def buildCaretValueForCoord(coord): - # 500 --> otTables.CaretValue, format 1 - # (500, DeviceTable) --> otTables.CaretValue, format 3 - self = ot.CaretValue() - if isinstance(coord, tuple): - self.Format = 3 - self.Coordinate, self.DeviceTable = coord - else: - self.Format = 1 - self.Coordinate = coord - return self - - -def buildCaretValueForPoint(point): - # 4 --> otTables.CaretValue, format 2 - self = ot.CaretValue() - self.Format = 2 - self.CaretValuePoint = point - return self - - -def buildLigCaretList(coords, points, glyphMap): - """Builds a ligature caret list table. - - Ligatures appear as a single glyph representing multiple characters; however - when, for example, editing text containing a ``f_i`` ligature, the user may - want to place the cursor between the ``f`` and the ``i``. The ligature caret - list in the GDEF table specifies the position to display the "caret" (the - character insertion indicator, typically a flashing vertical bar) "inside" - the ligature to represent an insertion point. The insertion positions may - be specified either by coordinate or by contour point. - - Example:: - - coords = { - "f_f_i": [300, 600] # f|fi cursor at 300 units, ff|i cursor at 600. - } - points = { - "c_t": [28] # c|t cursor appears at coordinate of contour point 28. - } - ligcaretlist = buildLigCaretList(coords, points, font.getReverseGlyphMap()) - - Args: - coords: A mapping between glyph names and a list of coordinates for - the insertion point of each ligature component after the first one. - points: A mapping between glyph names and a list of contour points for - the insertion point of each ligature component after the first one. - glyphMap: a glyph name to ID map, typically returned from - ``font.getReverseGlyphMap()``. - - Returns: - A ``otTables.LigCaretList`` object if any carets are present, or - ``None`` otherwise.""" - glyphs = set(coords.keys()) if coords else set() - if points: - glyphs.update(points.keys()) - carets = {g: buildLigGlyph(coords.get(g), points.get(g)) for g in glyphs} - carets = {g: c for g, c in carets.items() if c is not None} - if not carets: - return None - self = ot.LigCaretList() - self.Coverage = buildCoverage(carets.keys(), glyphMap) - self.LigGlyph = [carets[g] for g in self.Coverage.glyphs] - self.LigGlyphCount = len(self.LigGlyph) - return self - - -def buildLigGlyph(coords, points): - # ([500], [4]) --> otTables.LigGlyph; None for empty coords/points - carets = [] - if coords: - coords = sorted(coords, key=lambda c: c[0] if isinstance(c, tuple) else c) - carets.extend([buildCaretValueForCoord(c) for c in coords]) - if points: - carets.extend([buildCaretValueForPoint(p) for p in sorted(points)]) - if not carets: - return None - self = ot.LigGlyph() - self.CaretValue = carets - self.CaretCount = len(self.CaretValue) - return self - - -def buildMarkGlyphSetsDef(markSets, glyphMap): - """Builds a mark glyph sets definition table. - - OpenType Layout lookups may choose to use mark filtering sets to consider - or ignore particular combinations of marks. These sets are specified by - setting a flag on the lookup, but the mark filtering sets are defined in - the ``GDEF`` table. This routine builds the subtable containing the mark - glyph set definitions. - - Example:: - - set0 = set("acute", "grave") - set1 = set("caron", "grave") - - markglyphsets = buildMarkGlyphSetsDef([set0, set1], font.getReverseGlyphMap()) - - Args: - - markSets: A list of sets of glyphnames. - glyphMap: a glyph name to ID map, typically returned from - ``font.getReverseGlyphMap()``. - - Returns - An ``otTables.MarkGlyphSetsDef`` object. - """ - if not markSets: - return None - self = ot.MarkGlyphSetsDef() - self.MarkSetTableFormat = 1 - self.Coverage = [buildCoverage(m, glyphMap) for m in markSets] - self.MarkSetCount = len(self.Coverage) - return self - - -class ClassDefBuilder(object): - """Helper for building ClassDef tables.""" - - def __init__(self, useClass0): - self.classes_ = set() - self.glyphs_ = {} - self.useClass0_ = useClass0 - - def canAdd(self, glyphs): - if isinstance(glyphs, (set, frozenset)): - glyphs = sorted(glyphs) - glyphs = tuple(glyphs) - if glyphs in self.classes_: - return True - for glyph in glyphs: - if glyph in self.glyphs_: - return False - return True - - def add(self, glyphs): - if isinstance(glyphs, (set, frozenset)): - glyphs = sorted(glyphs) - glyphs = tuple(glyphs) - if glyphs in self.classes_: - return - self.classes_.add(glyphs) - for glyph in glyphs: - if glyph in self.glyphs_: - raise OpenTypeLibError( - f"Glyph {glyph} is already present in class.", None - ) - self.glyphs_[glyph] = glyphs - - def classes(self): - # In ClassDef1 tables, class id #0 does not need to be encoded - # because zero is the default. Therefore, we use id #0 for the - # glyph class that has the largest number of members. However, - # in other tables than ClassDef1, 0 means "every other glyph" - # so we should not use that ID for any real glyph classes; - # we implement this by inserting an empty set at position 0. - # - # TODO: Instead of counting the number of glyphs in each class, - # we should determine the encoded size. If the glyphs in a large - # class form a contiguous range, the encoding is actually quite - # compact, whereas a non-contiguous set might need a lot of bytes - # in the output file. We don't get this right with the key below. - result = sorted(self.classes_, key=lambda s: (len(s), s), reverse=True) - if not self.useClass0_: - result.insert(0, frozenset()) - return result - - def build(self): - glyphClasses = {} - for classID, glyphs in enumerate(self.classes()): - if classID == 0: - continue - for glyph in glyphs: - glyphClasses[glyph] = classID - classDef = ot.ClassDef() - classDef.classDefs = glyphClasses - return classDef - - -AXIS_VALUE_NEGATIVE_INFINITY = fixedToFloat(-0x80000000, 16) -AXIS_VALUE_POSITIVE_INFINITY = fixedToFloat(0x7FFFFFFF, 16) - - -def buildStatTable( - ttFont, axes, locations=None, elidedFallbackName=2, windowsNames=True, macNames=True -): - """Add a 'STAT' table to 'ttFont'. - - 'axes' is a list of dictionaries describing axes and their - values. - - Example:: - - axes = [ - dict( - tag="wght", - name="Weight", - ordering=0, # optional - values=[ - dict(value=100, name='Thin'), - dict(value=300, name='Light'), - dict(value=400, name='Regular', flags=0x2), - dict(value=900, name='Black'), - ], - ) - ] - - Each axis dict must have 'tag' and 'name' items. 'tag' maps - to the 'AxisTag' field. 'name' can be a name ID (int), a string, - or a dictionary containing multilingual names (see the - addMultilingualName() name table method), and will translate to - the AxisNameID field. - - An axis dict may contain an 'ordering' item that maps to the - AxisOrdering field. If omitted, the order of the axes list is - used to calculate AxisOrdering fields. - - The axis dict may contain a 'values' item, which is a list of - dictionaries describing AxisValue records belonging to this axis. - - Each value dict must have a 'name' item, which can be a name ID - (int), a string, or a dictionary containing multilingual names, - like the axis name. It translates to the ValueNameID field. - - Optionally the value dict can contain a 'flags' item. It maps to - the AxisValue Flags field, and will be 0 when omitted. - - The format of the AxisValue is determined by the remaining contents - of the value dictionary: - - If the value dict contains a 'value' item, an AxisValue record - Format 1 is created. If in addition to the 'value' item it contains - a 'linkedValue' item, an AxisValue record Format 3 is built. - - If the value dict contains a 'nominalValue' item, an AxisValue - record Format 2 is built. Optionally it may contain 'rangeMinValue' - and 'rangeMaxValue' items. These map to -Infinity and +Infinity - respectively if omitted. - - You cannot specify Format 4 AxisValue tables this way, as they are - not tied to a single axis, and specify a name for a location that - is defined by multiple axes values. Instead, you need to supply the - 'locations' argument. - - The optional 'locations' argument specifies AxisValue Format 4 - tables. It should be a list of dicts, where each dict has a 'name' - item, which works just like the value dicts above, an optional - 'flags' item (defaulting to 0x0), and a 'location' dict. A - location dict key is an axis tag, and the associated value is the - location on the specified axis. They map to the AxisIndex and Value - fields of the AxisValueRecord. - - Example:: - - locations = [ - dict(name='Regular ABCD', location=dict(wght=300, ABCD=100)), - dict(name='Bold ABCD XYZ', location=dict(wght=600, ABCD=200)), - ] - - The optional 'elidedFallbackName' argument can be a name ID (int), - a string, a dictionary containing multilingual names, or a list of - STATNameStatements. It translates to the ElidedFallbackNameID field. - - The 'ttFont' argument must be a TTFont instance that already has a - 'name' table. If a 'STAT' table already exists, it will be - overwritten by the newly created one. - """ - ttFont["STAT"] = ttLib.newTable("STAT") - statTable = ttFont["STAT"].table = ot.STAT() - nameTable = ttFont["name"] - statTable.ElidedFallbackNameID = _addName( - nameTable, elidedFallbackName, windows=windowsNames, mac=macNames - ) - - # 'locations' contains data for AxisValue Format 4 - axisRecords, axisValues = _buildAxisRecords( - axes, nameTable, windowsNames=windowsNames, macNames=macNames - ) - if not locations: - statTable.Version = 0x00010001 - else: - # We'll be adding Format 4 AxisValue records, which - # requires a higher table version - statTable.Version = 0x00010002 - multiAxisValues = _buildAxisValuesFormat4( - locations, axes, nameTable, windowsNames=windowsNames, macNames=macNames - ) - axisValues = multiAxisValues + axisValues - nameTable.names.sort() - - # Store AxisRecords - axisRecordArray = ot.AxisRecordArray() - axisRecordArray.Axis = axisRecords - # XXX these should not be hard-coded but computed automatically - statTable.DesignAxisRecordSize = 8 - statTable.DesignAxisRecord = axisRecordArray - statTable.DesignAxisCount = len(axisRecords) - - statTable.AxisValueCount = 0 - statTable.AxisValueArray = None - if axisValues: - # Store AxisValueRecords - axisValueArray = ot.AxisValueArray() - axisValueArray.AxisValue = axisValues - statTable.AxisValueArray = axisValueArray - statTable.AxisValueCount = len(axisValues) - - -def _buildAxisRecords(axes, nameTable, windowsNames=True, macNames=True): - axisRecords = [] - axisValues = [] - for axisRecordIndex, axisDict in enumerate(axes): - axis = ot.AxisRecord() - axis.AxisTag = axisDict["tag"] - axis.AxisNameID = _addName( - nameTable, axisDict["name"], 256, windows=windowsNames, mac=macNames - ) - axis.AxisOrdering = axisDict.get("ordering", axisRecordIndex) - axisRecords.append(axis) - - for axisVal in axisDict.get("values", ()): - axisValRec = ot.AxisValue() - axisValRec.AxisIndex = axisRecordIndex - axisValRec.Flags = axisVal.get("flags", 0) - axisValRec.ValueNameID = _addName( - nameTable, axisVal["name"], windows=windowsNames, mac=macNames - ) - - if "value" in axisVal: - axisValRec.Value = axisVal["value"] - if "linkedValue" in axisVal: - axisValRec.Format = 3 - axisValRec.LinkedValue = axisVal["linkedValue"] - else: - axisValRec.Format = 1 - elif "nominalValue" in axisVal: - axisValRec.Format = 2 - axisValRec.NominalValue = axisVal["nominalValue"] - axisValRec.RangeMinValue = axisVal.get( - "rangeMinValue", AXIS_VALUE_NEGATIVE_INFINITY - ) - axisValRec.RangeMaxValue = axisVal.get( - "rangeMaxValue", AXIS_VALUE_POSITIVE_INFINITY - ) - else: - raise ValueError("Can't determine format for AxisValue") - - axisValues.append(axisValRec) - return axisRecords, axisValues - - -def _buildAxisValuesFormat4( - locations, axes, nameTable, windowsNames=True, macNames=True -): - axisTagToIndex = {} - for axisRecordIndex, axisDict in enumerate(axes): - axisTagToIndex[axisDict["tag"]] = axisRecordIndex - - axisValues = [] - for axisLocationDict in locations: - axisValRec = ot.AxisValue() - axisValRec.Format = 4 - axisValRec.ValueNameID = _addName( - nameTable, axisLocationDict["name"], windows=windowsNames, mac=macNames - ) - axisValRec.Flags = axisLocationDict.get("flags", 0) - axisValueRecords = [] - for tag, value in axisLocationDict["location"].items(): - avr = ot.AxisValueRecord() - avr.AxisIndex = axisTagToIndex[tag] - avr.Value = value - axisValueRecords.append(avr) - axisValueRecords.sort(key=lambda avr: avr.AxisIndex) - axisValRec.AxisCount = len(axisValueRecords) - axisValRec.AxisValueRecord = axisValueRecords - axisValues.append(axisValRec) - return axisValues - - -def _addName(nameTable, value, minNameID=0, windows=True, mac=True): - if isinstance(value, int): - # Already a nameID - return value - if isinstance(value, str): - names = dict(en=value) - elif isinstance(value, dict): - names = value - elif isinstance(value, list): - nameID = nameTable._findUnusedNameID() - for nameRecord in value: - if isinstance(nameRecord, STATNameStatement): - nameTable.setName( - nameRecord.string, - nameID, - nameRecord.platformID, - nameRecord.platEncID, - nameRecord.langID, - ) - else: - raise TypeError("value must be a list of STATNameStatements") - return nameID - else: - raise TypeError("value must be int, str, dict or list") - return nameTable.addMultilingualName( - names, windows=windows, mac=mac, minNameID=minNameID - ) diff --git a/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/fontTools/ttLib/tables/_v_m_t_x.py b/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/fontTools/ttLib/tables/_v_m_t_x.py deleted file mode 100644 index c965c94ee50904e57f7bca86b3b602c00520a9cc..0000000000000000000000000000000000000000 --- a/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/fontTools/ttLib/tables/_v_m_t_x.py +++ /dev/null @@ -1,11 +0,0 @@ -from fontTools import ttLib - -superclass = ttLib.getTableClass("hmtx") - - -class table__v_m_t_x(superclass): - - headerTag = "vhea" - advanceName = "height" - sideBearingName = "tsb" - numberOfMetricsName = "numberOfVMetrics" diff --git a/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/templates/frontend/assets/prism-dark-490e4a1c.css b/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/templates/frontend/assets/prism-dark-490e4a1c.css deleted file mode 100644 index ab2591b85267c9bb98c8b37d3b9426067397034a..0000000000000000000000000000000000000000 --- a/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/templates/frontend/assets/prism-dark-490e4a1c.css +++ /dev/null @@ -1 +0,0 @@ -.gradio-container-3-37-0 code[class*=language-],.gradio-container-3-37-0 pre[class*=language-]{color:#fff;background:none;text-shadow:0 -.1em .2em black;font-family:Consolas,Monaco,Andale Mono,Ubuntu Mono,monospace;font-size:1em;text-align:left;white-space:pre;word-spacing:normal;word-break:normal;word-wrap:normal;line-height:1.5;-moz-tab-size:4;-o-tab-size:4;tab-size:4;-webkit-hyphens:none;-moz-hyphens:none;-ms-hyphens:none;hyphens:none}@media print{.gradio-container-3-37-0 code[class*=language-],.gradio-container-3-37-0 pre[class*=language-]{text-shadow:none}}.gradio-container-3-37-0 pre[class*=language-],.gradio-container-3-37-0 :not(pre)>code[class*=language-]{background:hsl(30,20%,25%)}.gradio-container-3-37-0 pre[class*=language-]{padding:1em;margin:.5em 0;overflow:auto;border:.3em solid hsl(30,20%,40%);border-radius:.5em;box-shadow:1px 1px .5em #000 inset}.gradio-container-3-37-0 :not(pre)>code[class*=language-]{padding:.15em .2em .05em;border-radius:.3em;border:.13em solid hsl(30,20%,40%);box-shadow:1px 1px .3em -.1em #000 inset;white-space:normal}.gradio-container-3-37-0 .token.comment,.gradio-container-3-37-0 .token.prolog,.gradio-container-3-37-0 .token.doctype,.gradio-container-3-37-0 .token.cdata{color:#998066}.gradio-container-3-37-0 .token.punctuation,.gradio-container-3-37-0 .token.namespace{opacity:.7}.gradio-container-3-37-0 .token.property,.gradio-container-3-37-0 .token.tag,.gradio-container-3-37-0 .token.boolean,.gradio-container-3-37-0 .token.number,.gradio-container-3-37-0 .token.constant,.gradio-container-3-37-0 .token.symbol{color:#d1949e}.gradio-container-3-37-0 .token.selector,.gradio-container-3-37-0 .token.attr-name,.gradio-container-3-37-0 .token.string,.gradio-container-3-37-0 .token.char,.gradio-container-3-37-0 .token.builtin,.gradio-container-3-37-0 .token.inserted{color:#bde052}.gradio-container-3-37-0 .token.operator,.gradio-container-3-37-0 .token.entity,.gradio-container-3-37-0 .token.url,.gradio-container-3-37-0 .language-css .token.string,.gradio-container-3-37-0 .style .token.string,.gradio-container-3-37-0 .token.variable{color:#f5b83d}.gradio-container-3-37-0 .token.atrule,.gradio-container-3-37-0 .token.attr-value,.gradio-container-3-37-0 .token.keyword{color:#d1949e}.gradio-container-3-37-0 .token.regex,.gradio-container-3-37-0 .token.important{color:#e90}.gradio-container-3-37-0 .token.important,.gradio-container-3-37-0 .token.bold{font-weight:700}.gradio-container-3-37-0 .token.italic{font-style:italic}.gradio-container-3-37-0 .token.entity{cursor:help}.gradio-container-3-37-0 .token.deleted{color:red} diff --git a/spaces/Daniel-Saeedi/sent-debias/app.py b/spaces/Daniel-Saeedi/sent-debias/app.py deleted file mode 100644 index f8656e7e0110b3727753af234f2dc53b34b31f2c..0000000000000000000000000000000000000000 --- a/spaces/Daniel-Saeedi/sent-debias/app.py +++ /dev/null @@ -1,37 +0,0 @@ -import gradio as gr -from transformers import pipeline - -import gc - -# Download models -bert_debiased = pipeline('fill-mask', model='Daniel-Saeedi/Sent-Debias-bert-gender-debiased') -bert_original = pipeline('fill-mask', model='bert-base-uncased') - -def make_slider(unmask): - html = '
      ' - - for word in unmask: - html += '
    1. {} - Score: {}
    2. '.format(word['token_str'],word['score']) - - html += '
    ' - return html - - - -def fill_mask(stmt,model): - if model == 'bert': - return "

    Debiased:

    " + make_slider(bert_debiased(stmt)) + "

    Original:

    " + make_slider(bert_original(stmt)) - - -demo = gr.Interface( - fill_mask, - inputs = [ - gr.Textbox(placeholder="Fill Mask"), - gr.Radio(choices=['bert'],value='bert') - ], - outputs = [gr.Markdown( - value="

    Example:

    The woman works as [MASK].

    ")], - description = 'Towards Debiasing Sentence Representations' - ) -if __name__ == '__main__': - demo.launch() \ No newline at end of file diff --git a/spaces/DeepLearning101/Speech-Quality-Inspection_Meta-Denoiser/denoiser/conv_demucs.py b/spaces/DeepLearning101/Speech-Quality-Inspection_Meta-Denoiser/denoiser/conv_demucs.py deleted file mode 100644 index fa0c9a17df5b5319b54cda29f332bb5cf9476c28..0000000000000000000000000000000000000000 --- a/spaces/DeepLearning101/Speech-Quality-Inspection_Meta-Denoiser/denoiser/conv_demucs.py +++ /dev/null @@ -1,661 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# All rights reserved. -# -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. -# author: adefossez - -import math -import time - -import torch -from torch import nn -from torch.nn import functional as F - -from .resample import downsample2, upsample2 -from .utils import capture_init - - -# class BLSTM(nn.Module): -# def __init__(self, dim, layers=2, bi=True): -# super().__init__() -# klass = nn.LSTM -# self.lstm = klass(bidirectional=bi, num_layers=layers, hidden_size=dim, input_size=dim) -# self.linear = None -# if bi: -# self.linear = nn.Linear(2 * dim, dim) - -# def forward(self, x, hidden=None): -# x, hidden = self.lstm(x, hidden) -# if self.linear: -# x = self.linear(x) -# return x, hidden - -EPS = 1e-8 -class Chomp1d(nn.Module): - """To ensure the output length is the same as the input. - """ - def __init__(self, chomp_size): - super(Chomp1d, self).__init__() - self.chomp_size = chomp_size - - def forward(self, x): - """ - Args: - x: [M, H, Kpad] - Returns: - [M, H, K] - """ - return x[:, :, :-self.chomp_size].contiguous() - -def chose_norm(norm_type, channel_size): - """The input of normlization will be (M, C, K), where M is batch size, - C is channel size and K is sequence length. - """ - if norm_type == "gLN": - return GlobalLayerNorm(channel_size) - elif norm_type == "cLN": - return ChannelwiseLayerNorm(channel_size) - else: # norm_type == "BN": - # Given input (M, C, K), nn.BatchNorm1d(C) will accumulate statics - # along M and K, so this BN usage is right. - return nn.BatchNorm1d(channel_size) - -class ChannelwiseLayerNorm(nn.Module): - """Channel-wise Layer Normalization (cLN)""" - def __init__(self, channel_size): - super(ChannelwiseLayerNorm, self).__init__() - self.gamma = nn.Parameter(torch.Tensor(1, channel_size, 1)) # [1, N, 1] - self.beta = nn.Parameter(torch.Tensor(1, channel_size,1 )) # [1, N, 1] - self.reset_parameters() - - def reset_parameters(self): - self.gamma.data.fill_(1) - self.beta.data.zero_() - - def forward(self, y): - """ - Args: - y: [M, N, K], M is batch size, N is channel size, K is length - Returns: - cLN_y: [M, N, K] - """ - mean = torch.mean(y, dim=1, keepdim=True) # [M, 1, K] - var = torch.var(y, dim=1, keepdim=True, unbiased=False) # [M, 1, K] - cLN_y = self.gamma * (y - mean) / torch.pow(var + EPS, 0.5) + self.beta - return cLN_y - -class DepthwiseSeparableConv(nn.Module): - def __init__(self, in_channels, out_channels, kernel_size, - stride, padding, dilation, norm_type="gLN", causal=False): - super(DepthwiseSeparableConv, self).__init__() - # Use `groups` option to implement depthwise convolution - # [M, H, K] -> [M, H, K] - depthwise_conv = nn.Conv1d(in_channels, in_channels, kernel_size, - stride=stride, padding=padding, - dilation=dilation, groups=in_channels, - bias=False) - if causal: - chomp = Chomp1d(padding) - prelu = nn.PReLU() - norm = chose_norm(norm_type, in_channels) - # [M, H, K] -> [M, B, K] - pointwise_conv = nn.Conv1d(in_channels, out_channels, 1, bias=False) - # Put together - if causal: - self.net = nn.Sequential(depthwise_conv, chomp, prelu, norm, - pointwise_conv) - else: - self.net = nn.Sequential(depthwise_conv, prelu, norm, - pointwise_conv) - - def forward(self, x): - """ - Args: - x: [M, H, K] - Returns: - result: [M, B, K] - """ - return self.net(x) - -class TemporalBlock(nn.Module): - def __init__(self, in_channels, out_channels, kernel_size, - stride, padding, dilation, norm_type="gLN", causal=False): - super(TemporalBlock, self).__init__() - # [M, B, K] -> [M, H, K] - conv1x1 = nn.Conv1d(in_channels, out_channels, 1, bias=False) - prelu = nn.PReLU() - norm = chose_norm(norm_type, out_channels) - # [M, H, K] -> [M, B, K] - dsconv = DepthwiseSeparableConv(out_channels, in_channels, kernel_size, - stride, padding, dilation, norm_type, - causal) - # Put together - self.net = nn.Sequential(conv1x1, prelu, norm, dsconv) - - def forward(self, x): - """ - Args: - x: [M, B, K] - Returns: - [M, B, K] - """ - residual = x - out = self.net(x) - # TODO: when P = 3 here works fine, but when P = 2 maybe need to pad? - return out + residual # look like w/o F.relu is better than w/ F.relu - # return F.relu(out + residual) - -class GlobalLayerNorm(nn.Module): - """Global Layer Normalization (gLN)""" - def __init__(self, channel_size): - super(GlobalLayerNorm, self).__init__() - self.gamma = nn.Parameter(torch.Tensor(1, channel_size, 1)) # [1, N, 1] - self.beta = nn.Parameter(torch.Tensor(1, channel_size,1 )) # [1, N, 1] - self.reset_parameters() - - def reset_parameters(self): - self.gamma.data.fill_(1) - self.beta.data.zero_() - - def forward(self, y): - """ - Args: - y: [M, N, K], M is batch size, N is channel size, K is length - Returns: - gLN_y: [M, N, K] - """ - # TODO: in torch 1.0, torch.mean() support dim list - mean = y.mean(dim=1, keepdim=True).mean(dim=2, keepdim=True) #[M, 1, 1] - var = (torch.pow(y-mean, 2)).mean(dim=1, keepdim=True).mean(dim=2, keepdim=True) - gLN_y = self.gamma * (y - mean) / torch.pow(var + EPS, 0.5) + self.beta - return gLN_y - -class TemporalConvNet(nn.Module): - def __init__(self, N=768, B=256, H=512, P=3, X=8, R=4, C=1, norm_type="gLN", causal=1, - mask_nonlinear='relu'): - """ - Args: - N: Number of filters in autoencoder - B: Number of channels in bottleneck 1 × 1-conv block - H: Number of channels in convolutional blocks - P: Kernel size in convolutional blocks - X: Number of convolutional blocks in each repeat - R: Number of repeats - C: Number of speakers - norm_type: BN, gLN, cLN - causal: causal or non-causal - mask_nonlinear: use which non-linear function to generate mask - """ - super(TemporalConvNet, self).__init__() - # Hyper-parameter - self.C = C - self.mask_nonlinear = mask_nonlinear - # Components - # [M, N, K] -> [M, N, K] - layer_norm = ChannelwiseLayerNorm(N) - # [M, N, K] -> [M, B, K] - bottleneck_conv1x1 = nn.Conv1d(N, B, 1, bias=False) - # [M, B, K] -> [M, B, K] - repeats = [] - for r in range(R): - blocks = [] - for x in range(X): - dilation = 2**x - padding = (P - 1) * dilation if causal else (P - 1) * dilation // 2 - blocks += [TemporalBlock(B, H, P, stride=1, - padding=padding, - dilation=dilation, - norm_type=norm_type, - causal=causal)] - repeats += [nn.Sequential(*blocks)] - temporal_conv_net = nn.Sequential(*repeats) - # [M, B, K] -> [M, C*N, K] - mask_conv1x1 = nn.Conv1d(B, C*N, 1, bias=False) - # Put together - self.network = nn.Sequential(layer_norm, - bottleneck_conv1x1, - temporal_conv_net, - mask_conv1x1) - - def forward(self, mixture_w): - """ - Keep this API same with TasNet - Args: - mixture_w: [M, N, K], M is batch size - returns: - est_mask: [M, C, N, K] - """ - M, N, K = mixture_w.size() - score = self.network(mixture_w) # [M, N, K] -> [M, C*N, K] - score = score.view(M, self.C, N, K) # [M, C*N, K] -> [M, C, N, K] - if self.mask_nonlinear == 'softmax': - est_mask = F.softmax(score, dim=1) - est_mask = est_mask.squeeze(1) - elif self.mask_nonlinear == 'relu': - est_mask = F.relu(score) - est_mask = est_mask.squeeze(1) - else: - raise ValueError("Unsupported mask non-linear function") - return est_mask - - - -def rescale_conv(conv, reference): - std = conv.weight.std().detach() - scale = (std / reference)**0.5 - conv.weight.data /= scale - if conv.bias is not None: - conv.bias.data /= scale - - -def rescale_module(module, reference): - for sub in module.modules(): - if isinstance(sub, (nn.Conv1d, nn.ConvTranspose1d)): - rescale_conv(sub, reference) - - -class Demucs(nn.Module): - """ - Demucs speech enhancement model. - Args: - - chin (int): number of input channels. - - chout (int): number of output channels. - - hidden (int): number of initial hidden channels. - - depth (int): number of layers. - - kernel_size (int): kernel size for each layer. - - stride (int): stride for each layer. - - causal (bool): if false, uses BiLSTM instead of LSTM. - - resample (int): amount of resampling to apply to the input/output. - Can be one of 1, 2 or 4. - - growth (float): number of channels is multiplied by this for every layer. - - max_hidden (int): maximum number of channels. Can be useful to - control the size/speed of the model. - - normalize (bool): if true, normalize the input. - - glu (bool): if true uses GLU instead of ReLU in 1x1 convolutions. - - rescale (float): controls custom weight initialization. - See https://arxiv.org/abs/1911.13254. - - floor (float): stability flooring when normalizing. - - """ - @capture_init - def __init__(self, - chin=1, - chout=1, - hidden=48, - depth=5, - kernel_size=8, - stride=4, - causal=True, - resample=4, - growth=2, - max_hidden=10_000, - normalize=True, - glu=True, - rescale=0.1, - floor=1e-3): - - super().__init__() - if resample not in [1, 2, 4]: - raise ValueError("Resample should be 1, 2 or 4.") - - self.chin = chin - self.chout = chout - self.hidden = hidden - self.depth = depth - self.kernel_size = kernel_size - self.stride = stride - self.causal = causal - self.floor = floor - self.resample = resample - self.normalize = normalize - - self.encoder = nn.ModuleList() - self.decoder = nn.ModuleList() - activation = nn.GLU(1) if glu else nn.ReLU() - ch_scale = 2 if glu else 1 - - for index in range(depth): - encode = [] - encode += [ - nn.Conv1d(chin, hidden, kernel_size, stride), - nn.ReLU(), - nn.Conv1d(hidden, hidden * ch_scale, 1), activation, - ] - self.encoder.append(nn.Sequential(*encode)) - - decode = [] - decode += [ - nn.Conv1d(hidden, ch_scale * hidden, 1), activation, - nn.ConvTranspose1d(hidden, chout, kernel_size, stride), - ] - if index > 0: - decode.append(nn.ReLU()) - self.decoder.insert(0, nn.Sequential(*decode)) - chout = hidden - chin = hidden - hidden = min(int(growth * hidden), max_hidden) - # import pdb; pdb.set_trace() - self.separator = TemporalConvNet(N=chout) - # self.lstm = BLSTM(chin, bi=not causal) - if rescale: - rescale_module(self, reference=rescale) - - def valid_length(self, length): - """ - Return the nearest valid length to use with the model so that - there is no time steps left over in a convolutions, e.g. for all - layers, size of the input - kernel_size % stride = 0. - - If the mixture has a valid length, the estimated sources - will have exactly the same length. - """ - length = math.ceil(length * self.resample) - for idx in range(self.depth): - length = math.ceil((length - self.kernel_size) / self.stride) + 1 - length = max(length, 1) - for idx in range(self.depth): - length = (length - 1) * self.stride + self.kernel_size - length = int(math.ceil(length / self.resample)) - return int(length) - - @property - def total_stride(self): - return self.stride ** self.depth // self.resample - - def forward(self, mix): - if mix.dim() == 2: - mix = mix.unsqueeze(1) - - if self.normalize: - mono = mix.mean(dim=1, keepdim=True) - std = mono.std(dim=-1, keepdim=True) - mix = mix / (self.floor + std) - else: - std = 1 - length = mix.shape[-1] - x = mix - x = F.pad(x, (0, self.valid_length(length) - length)) - if self.resample == 2: - x = upsample2(x) - elif self.resample == 4: - x = upsample2(x) - x = upsample2(x) - skips = [] - for encode in self.encoder: - x = encode(x) - skips.append(x) - x = self.separator(x) - # x = x.permute(2, 0, 1) - # x, _ = self.lstm(x) - # x = x.permute(1, 2, 0) - # import pdb; pdb.set_trace() - for decode in self.decoder: - skip = skips.pop(-1) - x = x + skip[..., :x.shape[-1]] - x = decode(x) - if self.resample == 2: - x = downsample2(x) - elif self.resample == 4: - x = downsample2(x) - x = downsample2(x) - - x = x[..., :length] - return std * x - - -def fast_conv(conv, x): - """ - Faster convolution evaluation if either kernel size is 1 - or length of sequence is 1. - """ - batch, chin, length = x.shape - chout, chin, kernel = conv.weight.shape - assert batch == 1 - if kernel == 1: - x = x.view(chin, length) - out = th.addmm(conv.bias.view(-1, 1), - conv.weight.view(chout, chin), x) - elif length == kernel: - x = x.view(chin * kernel, 1) - out = th.addmm(conv.bias.view(-1, 1), - conv.weight.view(chout, chin * kernel), x) - else: - out = conv(x) - return out.view(batch, chout, -1) - - -class DemucsStreamer: - """ - Streaming implementation for Demucs. It supports being fed with any amount - of audio at a time. You will get back as much audio as possible at that - point. - - Args: - - demucs (Demucs): Demucs model. - - dry (float): amount of dry (e.g. input) signal to keep. 0 is maximum - noise removal, 1 just returns the input signal. Small values > 0 - allows to limit distortions. - - num_frames (int): number of frames to process at once. Higher values - will increase overall latency but improve the real time factor. - - resample_lookahead (int): extra lookahead used for the resampling. - - resample_buffer (int): size of the buffer of previous inputs/outputs - kept for resampling. - """ - def __init__(self, demucs, - dry=0, - num_frames=1, - resample_lookahead=64, - resample_buffer=256): - device = next(iter(demucs.parameters())).device - self.demucs = demucs - self.lstm_state = None - self.conv_state = None - self.dry = dry - self.resample_lookahead = resample_lookahead - self.resample_buffer = resample_buffer - self.frame_length = demucs.valid_length(1) + demucs.total_stride * (num_frames - 1) - self.total_length = self.frame_length + self.resample_lookahead - self.stride = demucs.total_stride * num_frames - self.resample_in = torch.zeros(demucs.chin, resample_buffer, device=device) - self.resample_out = torch.zeros(demucs.chin, resample_buffer, device=device) - - self.frames = 0 - self.total_time = 0 - self.variance = 0 - self.pending = torch.zeros(demucs.chin, 0, device=device) - - bias = demucs.decoder[0][2].bias - weight = demucs.decoder[0][2].weight - chin, chout, kernel = weight.shape - self._bias = bias.view(-1, 1).repeat(1, kernel).view(-1, 1) - self._weight = weight.permute(1, 2, 0).contiguous() - - def reset_time_per_frame(self): - self.total_time = 0 - self.frames = 0 - - @property - def time_per_frame(self): - return self.total_time / self.frames - - def flush(self): - """ - Flush remaining audio by padding it with zero. Call this - when you have no more input and want to get back the last chunk of audio. - """ - pending_length = self.pending.shape[1] - padding = torch.zeros(self.demucs.chin, self.total_length, device=self.pending.device) - out = self.feed(padding) - return out[:, :pending_length] - - def feed(self, wav): - """ - Apply the model to mix using true real time evaluation. - Normalization is done online as is the resampling. - """ - begin = time.time() - demucs = self.demucs - resample_buffer = self.resample_buffer - stride = self.stride - resample = demucs.resample - - if wav.dim() != 2: - raise ValueError("input wav should be two dimensional.") - chin, _ = wav.shape - if chin != demucs.chin: - raise ValueError(f"Expected {demucs.chin} channels, got {chin}") - - self.pending = torch.cat([self.pending, wav], dim=1) - outs = [] - while self.pending.shape[1] >= self.total_length: - self.frames += 1 - frame = self.pending[:, :self.total_length] - dry_signal = frame[:, :stride] - if demucs.normalize: - mono = frame.mean(0) - variance = (mono**2).mean() - self.variance = variance / self.frames + (1 - 1 / self.frames) * self.variance - frame = frame / (demucs.floor + math.sqrt(self.variance)) - frame = torch.cat([self.resample_in, frame], dim=-1) - self.resample_in[:] = frame[:, stride - resample_buffer:stride] - - if resample == 4: - frame = upsample2(upsample2(frame)) - elif resample == 2: - frame = upsample2(frame) - frame = frame[:, resample * resample_buffer:] # remove pre sampling buffer - frame = frame[:, :resample * self.frame_length] # remove extra samples after window - - out, extra = self._separate_frame(frame) - padded_out = torch.cat([self.resample_out, out, extra], 1) - self.resample_out[:] = out[:, -resample_buffer:] - if resample == 4: - out = downsample2(downsample2(padded_out)) - elif resample == 2: - out = downsample2(padded_out) - else: - out = padded_out - - out = out[:, resample_buffer // resample:] - out = out[:, :stride] - - if demucs.normalize: - out *= math.sqrt(self.variance) - out = self.dry * dry_signal + (1 - self.dry) * out - outs.append(out) - self.pending = self.pending[:, stride:] - - self.total_time += time.time() - begin - if outs: - out = torch.cat(outs, 1) - else: - out = torch.zeros(chin, 0, device=wav.device) - return out - - def _separate_frame(self, frame): - demucs = self.demucs - skips = [] - next_state = [] - first = self.conv_state is None - stride = self.stride * demucs.resample - x = frame[None] - for idx, encode in enumerate(demucs.encoder): - stride //= demucs.stride - length = x.shape[2] - if idx == demucs.depth - 1: - # This is sligthly faster for the last conv - x = fast_conv(encode[0], x) - x = encode[1](x) - x = fast_conv(encode[2], x) - x = encode[3](x) - else: - if not first: - prev = self.conv_state.pop(0) - prev = prev[..., stride:] - tgt = (length - demucs.kernel_size) // demucs.stride + 1 - missing = tgt - prev.shape[-1] - offset = length - demucs.kernel_size - demucs.stride * (missing - 1) - x = x[..., offset:] - x = encode[1](encode[0](x)) - x = fast_conv(encode[2], x) - x = encode[3](x) - if not first: - x = torch.cat([prev, x], -1) - next_state.append(x) - skips.append(x) - - x = x.permute(2, 0, 1) - x, self.lstm_state = demucs.lstm(x, self.lstm_state) - x = x.permute(1, 2, 0) - # In the following, x contains only correct samples, i.e. the one - # for which each time position is covered by two window of the upper layer. - # extra contains extra samples to the right, and is used only as a - # better padding for the online resampling. - extra = None - for idx, decode in enumerate(demucs.decoder): - skip = skips.pop(-1) - x += skip[..., :x.shape[-1]] - x = fast_conv(decode[0], x) - x = decode[1](x) - - if extra is not None: - skip = skip[..., x.shape[-1]:] - extra += skip[..., :extra.shape[-1]] - extra = decode[2](decode[1](decode[0](extra))) - x = decode[2](x) - next_state.append(x[..., -demucs.stride:] - decode[2].bias.view(-1, 1)) - if extra is None: - extra = x[..., -demucs.stride:] - else: - extra[..., :demucs.stride] += next_state[-1] - x = x[..., :-demucs.stride] - - if not first: - prev = self.conv_state.pop(0) - x[..., :demucs.stride] += prev - if idx != demucs.depth - 1: - x = decode[3](x) - extra = decode[3](extra) - self.conv_state = next_state - return x[0], extra[0] - - -def test(): - import argparse - parser = argparse.ArgumentParser( - "denoiser.demucs", - description="Benchmark the streaming Demucs implementation, " - "as well as checking the delta with the offline implementation.") - parser.add_argument("--resample", default=4, type=int) - parser.add_argument("--hidden", default=48, type=int) - parser.add_argument("--device", default="cpu") - parser.add_argument("-t", "--num_threads", type=int) - parser.add_argument("-f", "--num_frames", type=int, default=1) - args = parser.parse_args() - if args.num_threads: - torch.set_num_threads(args.num_threads) - sr = 16_000 - sr_ms = sr / 1000 - demucs = Demucs(hidden=args.hidden, resample=args.resample).to(args.device) - x = torch.randn(1, sr * 4).to(args.device) - out = demucs(x[None])[0] - streamer = DemucsStreamer(demucs, num_frames=args.num_frames) - out_rt = [] - frame_size = streamer.total_length - with torch.no_grad(): - while x.shape[1] > 0: - out_rt.append(streamer.feed(x[:, :frame_size])) - x = x[:, frame_size:] - frame_size = streamer.demucs.total_stride - out_rt.append(streamer.flush()) - out_rt = torch.cat(out_rt, 1) - print(f"total lag: {streamer.total_length / sr_ms:.1f}ms, ", end='') - print(f"stride: {streamer.stride / sr_ms:.1f}ms, ", end='') - print(f"time per frame: {1000 * streamer.time_per_frame:.1f}ms, ", end='') - print(f"delta: {torch.norm(out - out_rt) / torch.norm(out):.2%}, ", end='') - print(f"RTF: {((1000 * streamer.time_per_frame) / (streamer.stride / sr_ms)):.1f}") - - -if __name__ == "__main__": - test() diff --git a/spaces/DevashishBhake/Question_Generation/app.py b/spaces/DevashishBhake/Question_Generation/app.py deleted file mode 100644 index df98dfd626425c70bb2146b2cfc50646794790e9..0000000000000000000000000000000000000000 --- a/spaces/DevashishBhake/Question_Generation/app.py +++ /dev/null @@ -1,32 +0,0 @@ -import torch -from transformers import T5Tokenizer, T5ForConditionalGeneration,T5Model -import gradio as gr - -def get_questions(paragraph, tokenizer, model, device): - bt_levels = ['Remember', 'Understand', 'Apply', 'Analyse', 'Evaluate', 'Create'] - questions_dict = {} - for bt_level in bt_levels: - input_text = f'{bt_level}: {paragraph} {tokenizer.eos_token}' - input_ids = tokenizer.encode(input_text, max_length=512, padding='max_length', truncation=True, return_tensors='pt').to(device) - model.eval() - generated_ids = model.generate(input_ids, max_length=128, num_beams=4, early_stopping=True).to(device) - output_text = tokenizer.decode(generated_ids.squeeze(), skip_special_tokens=True).lstrip('\n') - output_text = output_text.split(' ', 1)[1] - questions_dict.update({bt_level: output_text}) - # print(f'{bt_level} level question: {output_text}') - return questions_dict - - -def main(paragraph): - model = T5ForConditionalGeneration.from_pretrained('./save_model') - tokenizer = T5Tokenizer.from_pretrained('./save_model') - device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') - model.to(device) - output = get_questions(paragraph, tokenizer, model, device) - return output - -gr.Interface( - fn=main, - inputs="textbox", - outputs="textbox", - live=True).launch() \ No newline at end of file diff --git a/spaces/EDGAhab/Aatrox-Talking/README.md b/spaces/EDGAhab/Aatrox-Talking/README.md deleted file mode 100644 index 639d8695b94184f52d24b21c8ee054eaba81c849..0000000000000000000000000000000000000000 --- a/spaces/EDGAhab/Aatrox-Talking/README.md +++ /dev/null @@ -1,11 +0,0 @@ ---- -title: Vits Chinese -emoji: 🏃 -colorFrom: red -colorTo: yellow -sdk: gradio -sdk_version: 3.9 -app_file: app.py -pinned: false -duplicated_from: EDGAhab/VITS-Aatrox-AI ---- diff --git a/spaces/EnigmaOfTheWorld/MemeWorld/app.py b/spaces/EnigmaOfTheWorld/MemeWorld/app.py deleted file mode 100644 index c2acc0debf558e1f9cf656932b480873f7d6c18a..0000000000000000000000000000000000000000 --- a/spaces/EnigmaOfTheWorld/MemeWorld/app.py +++ /dev/null @@ -1,92 +0,0 @@ -import os -import re - -import gradio as gr -from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel -import openai - - - -openai.api_key = os.environ['OPENAI_KEY'] - - -## Training models -device='cpu' -encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" -decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" -model_checkpoint = "nlpconnect/vit-gpt2-image-captioning" -feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint) -tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint) -model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device) - - -## READING THE IMAGE -## Extracting features from image -## then create a context for the image like -## Then input the department and context extracted and send it to LLM to get captio meme -def predict(department,image,max_length=64, num_beams=4): - image = image.convert('RGB') - image = feature_extractor(image, return_tensors="pt").pixel_values.to(device) - print(image) - clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0] - print(clean_text) - caption_ids = model.generate(image, max_length = max_length)[0] - print(caption_ids) - caption_text = clean_text(tokenizer.decode(caption_ids)) - print(caption_text) - dept=department - context= caption_text - response = openai.Completion.create( - model="text-davinci-003", - prompt=f'create non offensive one line meme for given department and context\n\ndepartment- data science\ncontext-a man sitting on a bench with a laptop\nmeme- \"I\'m not a data scientist, but I play one on my laptop.\"\n\ndepartment-startup\ncontext-a young boy is smiling while using a laptop\nmeme-\"When your startup gets funded and you can finally afford a new laptop\"\n\ndepartment- {dept}\ncontext-{context}\nmeme-', - max_tokens=20, - temperature=0.8) - reponse = response.choices[0].text - reponse = reponse.replace("department", "") - Feedback_SQL="DEPT"+dept+"CAPT"+caption_text+"MAMAY"+reponse - - - return reponse - - - - - - - -output = gr.outputs.Textbox(type="text",label="Meme") - -examples = [f"example{i}.png" for i in range(1,7)] - - -## GRADIO INTERFACE - - -description= " Looking for a fun and easy way to generate memes? Look no further than Meme world! Leveraging large language models like GPT-3PT-3 / Ai21 / Cohere, you can create memes that are sure to be a hit with your friends or network. Created with ♥️ by Arsalan @[Xaheen](https://www.linkedin.com/in/sallu-mandya/). kindly share your thoughts in discussion session and use the app responsibly #NO_Offense \n \n built with ❤️ @[Xhaheen](https://www.linkedin.com/in/sallu-mandya/)" -title = "Meme world 🖼️" -dropdown=["data science", "product management","marketing","startup" ,"agile","crypto" , "SEO" ] - -article = "Created By : Xaheen " -theme = gr.themes.Glass( - primary_hue="cyan", - - neutral_hue="gray",font_mono=['IBM Plex Mono', 'ui-monospace', 'Consolas', 'monospace'], -) - -interface = gr.Interface( - fn=predict, - inputs = [gr.inputs.Dropdown(dropdown),gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True)], - - theme=theme, - outputs=output, - examples =[['data science', 'example5.png'], - ['product management', 'example2.png'], - ['startup', 'example3.png'], - ['marketing', 'example4.png'], - ['agile', 'example1.png'], - ['crypto', 'example6.png']], - title=title, - description=description, - article = article - ) -interface.launch(debug=True) \ No newline at end of file diff --git a/spaces/FathomNet/fathomnet2023-comp-baseline/README.md b/spaces/FathomNet/fathomnet2023-comp-baseline/README.md deleted file mode 100644 index 4baa5014893ac07b485066456f53f90dc7bbd574..0000000000000000000000000000000000000000 --- a/spaces/FathomNet/fathomnet2023-comp-baseline/README.md +++ /dev/null @@ -1,11 +0,0 @@ ---- -title: FathomNet2023 Competition Baseline -emoji: 📊 -colorFrom: blue -colorTo: red -sdk: gradio -sdk_version: 3.40.1 -app_file: app.py -pinned: false -license: cc-by-4.0 ---- diff --git a/spaces/Gen-Sim/Gen-Sim/gensim/agent.py b/spaces/Gen-Sim/Gen-Sim/gensim/agent.py deleted file mode 100644 index 3ebe07c16657c51ac960c115e276e185356a9406..0000000000000000000000000000000000000000 --- a/spaces/Gen-Sim/Gen-Sim/gensim/agent.py +++ /dev/null @@ -1,162 +0,0 @@ -import numpy as np -import os -import IPython -import random -import json -import traceback -import pybullet as p -from gensim.utils import ( - save_text, - add_to_txt, - extract_code, - extract_dict, - extract_list, - extract_assets, - format_dict_prompt, - sample_list_reference, - generate_feedback, -) - - -class Agent: - """ - class that design new tasks and codes for simulation environments - """ - def __init__(self, cfg, memory): - self.cfg = cfg - self.model_output_dir = cfg["model_output_dir"] - self.prompt_folder = f"prompts/{cfg['prompt_folder']}" - self.memory = memory - self.chat_log = memory.chat_log - self.use_template = cfg['use_template'] - - def propose_task(self, proposed_task_names): - """Language descriptions for the task""" - add_to_txt(self.chat_log, "================= Task and Asset Design!", with_print=True) - - if self.use_template: - task_prompt_text = open(f"{self.prompt_folder}/cliport_prompt_task.txt").read() - task_asset_replacement_str = format_dict_prompt(self.memory.online_asset_buffer, self.cfg['task_asset_candidate_num']) - task_prompt_text = task_prompt_text.replace("TASK_ASSET_PROMPT", task_asset_replacement_str) - - task_desc_replacement_str = format_dict_prompt(self.memory.online_task_buffer, self.cfg['task_description_candidate_num']) - print("prompt task description candidates:") - print(task_desc_replacement_str) - task_prompt_text = task_prompt_text.replace("TASK_DESCRIPTION_PROMPT", task_desc_replacement_str) - - if len(self.cfg['target_task_name']) > 0: - task_prompt_text = task_prompt_text.replace("TARGET_TASK_NAME", self.cfg['target_task_name']) - - # print("Template Task PROMPT: ", task_prompt_text) - else: - task_prompt_text = open(f"{self.prompt_folder}/cliport_prompt_task.txt").read() - - # maximum number - print("online_task_buffer size:", len(self.memory.online_task_buffer)) - total_tasks = self.memory.online_task_buffer - - MAX_NUM = 10 - if len(total_tasks) > MAX_NUM: - total_tasks = dict(random.sample(total_tasks.items(), MAX_NUM)) - - task_prompt_text = task_prompt_text.replace("PAST_TASKNAME_TEMPLATE", format_dict_prompt(total_tasks)) - - res = generate_feedback( - task_prompt_text, - temperature=self.cfg["gpt_temperature"], - interaction_txt=self.chat_log, - ) - - # Extract dictionary for task name, descriptions, and assets - task_def = extract_dict(res, prefix="new_task") - try: - exec(task_def, globals()) - self.new_task = new_task - return new_task - except: - self.new_task = {"task-name": "dummy", "assets-used": [], "task_descriptions": ""} - print(str(traceback.format_exc())) - return self.new_task - - def propose_assets(self): - """Asset Generation. Not used for now.""" - if os.path.exists(f"{self.prompt_folder}/cliport_prompt_asset_template.txt"): - add_to_txt(self.chat_log, "================= Asset Generation!", with_print=True) - asset_prompt_text = open(f"{self.prompt_folder}/cliport_prompt_asset_template.txt").read() - - if self.use_template: - asset_prompt_text = asset_prompt_text.replace("TASK_NAME_TEMPLATE", self.new_task["task-name"]) - asset_prompt_text = asset_prompt_text.replace("ASSET_STRING_TEMPLATE", str(self.new_task["assets-used"])) - print("Template Asset PROMPT: ", asset_prompt_text) - - res = generate_feedback(asset_prompt_text, temperature=0, interaction_txt=self.chat_log) - print("Save asset to:", self.model_output_dir, task_name + "_asset_output") - save_text(self.model_output_dir, f'{self.new_task["task-name"]}_asset_output', res) - asset_list = extract_assets(res) - # save_urdf(asset_list) - else: - asset_list = {} - return asset_list - - def api_review(self): - """review the task api""" - if os.path.exists(f"{self.prompt_folder}/cliport_prompt_api_template.txt"): - add_to_txt( - self.chat_log, "================= API Preview!", with_print=True) - api_prompt_text = open( - f"{self.prompt_folder}/cliport_prompt_api_template.txt").read() - if "task-name" in self.new_task: - api_prompt_text = api_prompt_text.replace("TASK_NAME_TEMPLATE", self.new_task["task-name"]) - api_prompt_text = api_prompt_text.replace("TASK_STRING_TEMPLATE", str(self.new_task)) - - res = generate_feedback( - api_prompt_text, temperature=0, interaction_txt=self.chat_log) - - def template_reference_prompt(self): - """ select which code reference to reference """ - if os.path.exists(f"{self.prompt_folder}/cliport_prompt_code_reference_selection_template.txt"): - self.chat_log = add_to_txt(self.chat_log, "================= Code Reference!", with_print=True) - code_reference_question = open(f'{self.prompt_folder}/cliport_prompt_code_reference_selection_template.txt').read() - code_reference_question = code_reference_question.replace("TASK_NAME_TEMPLATE", self.new_task["task-name"]) - code_reference_question = code_reference_question.replace("TASK_CODE_LIST_TEMPLATE", str(list(self.memory.online_code_buffer.keys()))) - - code_reference_question = code_reference_question.replace("TASK_STRING_TEMPLATE", str(self.new_task)) - res = generate_feedback(code_reference_question, temperature=0., interaction_txt=self.chat_log) - code_reference_cmd = extract_list(res, prefix='code_reference') - exec(code_reference_cmd, globals()) - task_code_reference_replace_prompt = '' - for key in code_reference_cmd: - if key in self.memory.online_code_buffer: - task_code_reference_replace_prompt += f'```\n{self.memory.online_code_buffer[key]}\n```\n\n' - else: - print("missing task reference code:", key) - else: - task_code_reference_replace_prompt = sample_list_reference(base_task_codes, sample_num=cfg['task_code_candidate_num']) - # print("Template Reference Code PROMPT: ", task_code_reference_replace_prompt) - - return task_code_reference_replace_prompt - - def implement_task(self): - """Generate Code for the task""" - code_prompt_text = open(f"{self.prompt_folder}/cliport_prompt_code_split_template.txt").read() - code_prompt_text = code_prompt_text.replace("TASK_NAME_TEMPLATE", self.new_task["task-name"]) - - if self.use_template or os.path.exists(f"{self.prompt_folder}/cliport_prompt_code_reference_selection_template.txt"): - task_code_reference_replace_prompt = self.template_reference_prompt() - code_prompt_text = code_prompt_text.replace("TASK_CODE_REFERENCE_TEMPLATE", task_code_reference_replace_prompt) - - elif os.path.exists(f"{self.prompt_folder}/cliport_prompt_code_split_template.txt"): - self.chat_log = add_to_txt(self.chat_log, "================= Code Generation!", with_print=True) - code_prompt_text = code_prompt_text.replace("TASK_STRING_TEMPLATE", str(self.new_task)) - - res = generate_feedback( - code_prompt_text, temperature=0, interaction_txt=self.chat_log) - code, task_name = extract_code(res) - print("Save code to:", self.model_output_dir, task_name + "_code_output") - save_text(self.model_output_dir, task_name + "_code_output", code) - - if len(task_name) == 0: - print("empty task name:", task_name) - return None - - return code, task_name diff --git a/spaces/Gradio-Blocks/uniformer_image_detection/configs/groie/faster_rcnn_r50_fpn_groie_1x_coco.py b/spaces/Gradio-Blocks/uniformer_image_detection/configs/groie/faster_rcnn_r50_fpn_groie_1x_coco.py deleted file mode 100644 index 0fc528bfd49bfc9a262692db78a5f94b46c285af..0000000000000000000000000000000000000000 --- a/spaces/Gradio-Blocks/uniformer_image_detection/configs/groie/faster_rcnn_r50_fpn_groie_1x_coco.py +++ /dev/null @@ -1,25 +0,0 @@ -_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py' -# model settings -model = dict( - roi_head=dict( - bbox_roi_extractor=dict( - type='GenericRoIExtractor', - aggregation='sum', - roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=2), - out_channels=256, - featmap_strides=[4, 8, 16, 32], - pre_cfg=dict( - type='ConvModule', - in_channels=256, - out_channels=256, - kernel_size=5, - padding=2, - inplace=False, - ), - post_cfg=dict( - type='GeneralizedAttention', - in_channels=256, - spatial_range=-1, - num_heads=6, - attention_type='0100', - kv_stride=2)))) diff --git a/spaces/Gradio-Blocks/uniformer_image_segmentation/configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_20k_voc12aug.py b/spaces/Gradio-Blocks/uniformer_image_segmentation/configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_20k_voc12aug.py deleted file mode 100644 index 1056ad4d1e2a4f956d12f6daf506620fab27dd17..0000000000000000000000000000000000000000 --- a/spaces/Gradio-Blocks/uniformer_image_segmentation/configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_20k_voc12aug.py +++ /dev/null @@ -1,7 +0,0 @@ -_base_ = [ - '../_base_/models/deeplabv3plus_r50-d8.py', - '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py', - '../_base_/schedules/schedule_20k.py' -] -model = dict( - decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21)) diff --git a/spaces/Gradio-Blocks/uniformer_image_segmentation/mmseg/models/backbones/mobilenet_v3.py b/spaces/Gradio-Blocks/uniformer_image_segmentation/mmseg/models/backbones/mobilenet_v3.py deleted file mode 100644 index f2e9a0cc00a9e79fda5e5d1ce963c2523397afd2..0000000000000000000000000000000000000000 --- a/spaces/Gradio-Blocks/uniformer_image_segmentation/mmseg/models/backbones/mobilenet_v3.py +++ /dev/null @@ -1,255 +0,0 @@ -import logging - -import mmcv -import torch.nn as nn -from mmcv.cnn import ConvModule, constant_init, kaiming_init -from mmcv.cnn.bricks import Conv2dAdaptivePadding -from mmcv.runner import load_checkpoint -from torch.nn.modules.batchnorm import _BatchNorm - -from ..builder import BACKBONES -from ..utils import InvertedResidualV3 as InvertedResidual - - -@BACKBONES.register_module() -class MobileNetV3(nn.Module): - """MobileNetV3 backbone. - - This backbone is the improved implementation of `Searching for MobileNetV3 - `_. - - Args: - arch (str): Architecture of mobilnetv3, from {'small', 'large'}. - Default: 'small'. - conv_cfg (dict): Config dict for convolution layer. - Default: None, which means using conv2d. - norm_cfg (dict): Config dict for normalization layer. - Default: dict(type='BN'). - out_indices (tuple[int]): Output from which layer. - Default: (0, 1, 12). - frozen_stages (int): Stages to be frozen (all param fixed). - Default: -1, which means not freezing any parameters. - norm_eval (bool): Whether to set norm layers to eval mode, namely, - freeze running stats (mean and var). Note: Effect on Batch Norm - and its variants only. Default: False. - with_cp (bool): Use checkpoint or not. Using checkpoint will save - some memory while slowing down the training speed. - Default: False. - """ - # Parameters to build each block: - # [kernel size, mid channels, out channels, with_se, act type, stride] - arch_settings = { - 'small': [[3, 16, 16, True, 'ReLU', 2], # block0 layer1 os=4 - [3, 72, 24, False, 'ReLU', 2], # block1 layer2 os=8 - [3, 88, 24, False, 'ReLU', 1], - [5, 96, 40, True, 'HSwish', 2], # block2 layer4 os=16 - [5, 240, 40, True, 'HSwish', 1], - [5, 240, 40, True, 'HSwish', 1], - [5, 120, 48, True, 'HSwish', 1], # block3 layer7 os=16 - [5, 144, 48, True, 'HSwish', 1], - [5, 288, 96, True, 'HSwish', 2], # block4 layer9 os=32 - [5, 576, 96, True, 'HSwish', 1], - [5, 576, 96, True, 'HSwish', 1]], - 'large': [[3, 16, 16, False, 'ReLU', 1], # block0 layer1 os=2 - [3, 64, 24, False, 'ReLU', 2], # block1 layer2 os=4 - [3, 72, 24, False, 'ReLU', 1], - [5, 72, 40, True, 'ReLU', 2], # block2 layer4 os=8 - [5, 120, 40, True, 'ReLU', 1], - [5, 120, 40, True, 'ReLU', 1], - [3, 240, 80, False, 'HSwish', 2], # block3 layer7 os=16 - [3, 200, 80, False, 'HSwish', 1], - [3, 184, 80, False, 'HSwish', 1], - [3, 184, 80, False, 'HSwish', 1], - [3, 480, 112, True, 'HSwish', 1], # block4 layer11 os=16 - [3, 672, 112, True, 'HSwish', 1], - [5, 672, 160, True, 'HSwish', 2], # block5 layer13 os=32 - [5, 960, 160, True, 'HSwish', 1], - [5, 960, 160, True, 'HSwish', 1]] - } # yapf: disable - - def __init__(self, - arch='small', - conv_cfg=None, - norm_cfg=dict(type='BN'), - out_indices=(0, 1, 12), - frozen_stages=-1, - reduction_factor=1, - norm_eval=False, - with_cp=False): - super(MobileNetV3, self).__init__() - assert arch in self.arch_settings - assert isinstance(reduction_factor, int) and reduction_factor > 0 - assert mmcv.is_tuple_of(out_indices, int) - for index in out_indices: - if index not in range(0, len(self.arch_settings[arch]) + 2): - raise ValueError( - 'the item in out_indices must in ' - f'range(0, {len(self.arch_settings[arch])+2}). ' - f'But received {index}') - - if frozen_stages not in range(-1, len(self.arch_settings[arch]) + 2): - raise ValueError('frozen_stages must be in range(-1, ' - f'{len(self.arch_settings[arch])+2}). ' - f'But received {frozen_stages}') - self.arch = arch - self.conv_cfg = conv_cfg - self.norm_cfg = norm_cfg - self.out_indices = out_indices - self.frozen_stages = frozen_stages - self.reduction_factor = reduction_factor - self.norm_eval = norm_eval - self.with_cp = with_cp - self.layers = self._make_layer() - - def _make_layer(self): - layers = [] - - # build the first layer (layer0) - in_channels = 16 - layer = ConvModule( - in_channels=3, - out_channels=in_channels, - kernel_size=3, - stride=2, - padding=1, - conv_cfg=dict(type='Conv2dAdaptivePadding'), - norm_cfg=self.norm_cfg, - act_cfg=dict(type='HSwish')) - self.add_module('layer0', layer) - layers.append('layer0') - - layer_setting = self.arch_settings[self.arch] - for i, params in enumerate(layer_setting): - (kernel_size, mid_channels, out_channels, with_se, act, - stride) = params - - if self.arch == 'large' and i >= 12 or self.arch == 'small' and \ - i >= 8: - mid_channels = mid_channels // self.reduction_factor - out_channels = out_channels // self.reduction_factor - - if with_se: - se_cfg = dict( - channels=mid_channels, - ratio=4, - act_cfg=(dict(type='ReLU'), - dict(type='HSigmoid', bias=3.0, divisor=6.0))) - else: - se_cfg = None - - layer = InvertedResidual( - in_channels=in_channels, - out_channels=out_channels, - mid_channels=mid_channels, - kernel_size=kernel_size, - stride=stride, - se_cfg=se_cfg, - with_expand_conv=(in_channels != mid_channels), - conv_cfg=self.conv_cfg, - norm_cfg=self.norm_cfg, - act_cfg=dict(type=act), - with_cp=self.with_cp) - in_channels = out_channels - layer_name = 'layer{}'.format(i + 1) - self.add_module(layer_name, layer) - layers.append(layer_name) - - # build the last layer - # block5 layer12 os=32 for small model - # block6 layer16 os=32 for large model - layer = ConvModule( - in_channels=in_channels, - out_channels=576 if self.arch == 'small' else 960, - kernel_size=1, - stride=1, - dilation=4, - padding=0, - conv_cfg=self.conv_cfg, - norm_cfg=self.norm_cfg, - act_cfg=dict(type='HSwish')) - layer_name = 'layer{}'.format(len(layer_setting) + 1) - self.add_module(layer_name, layer) - layers.append(layer_name) - - # next, convert backbone MobileNetV3 to a semantic segmentation version - if self.arch == 'small': - self.layer4.depthwise_conv.conv.stride = (1, 1) - self.layer9.depthwise_conv.conv.stride = (1, 1) - for i in range(4, len(layers)): - layer = getattr(self, layers[i]) - if isinstance(layer, InvertedResidual): - modified_module = layer.depthwise_conv.conv - else: - modified_module = layer.conv - - if i < 9: - modified_module.dilation = (2, 2) - pad = 2 - else: - modified_module.dilation = (4, 4) - pad = 4 - - if not isinstance(modified_module, Conv2dAdaptivePadding): - # Adjust padding - pad *= (modified_module.kernel_size[0] - 1) // 2 - modified_module.padding = (pad, pad) - else: - self.layer7.depthwise_conv.conv.stride = (1, 1) - self.layer13.depthwise_conv.conv.stride = (1, 1) - for i in range(7, len(layers)): - layer = getattr(self, layers[i]) - if isinstance(layer, InvertedResidual): - modified_module = layer.depthwise_conv.conv - else: - modified_module = layer.conv - - if i < 13: - modified_module.dilation = (2, 2) - pad = 2 - else: - modified_module.dilation = (4, 4) - pad = 4 - - if not isinstance(modified_module, Conv2dAdaptivePadding): - # Adjust padding - pad *= (modified_module.kernel_size[0] - 1) // 2 - modified_module.padding = (pad, pad) - - return layers - - def init_weights(self, pretrained=None): - if isinstance(pretrained, str): - logger = logging.getLogger() - load_checkpoint(self, pretrained, strict=False, logger=logger) - elif pretrained is None: - for m in self.modules(): - if isinstance(m, nn.Conv2d): - kaiming_init(m) - elif isinstance(m, nn.BatchNorm2d): - constant_init(m, 1) - else: - raise TypeError('pretrained must be a str or None') - - def forward(self, x): - outs = [] - for i, layer_name in enumerate(self.layers): - layer = getattr(self, layer_name) - x = layer(x) - if i in self.out_indices: - outs.append(x) - return outs - - def _freeze_stages(self): - for i in range(self.frozen_stages + 1): - layer = getattr(self, f'layer{i}') - layer.eval() - for param in layer.parameters(): - param.requires_grad = False - - def train(self, mode=True): - super(MobileNetV3, self).train(mode) - self._freeze_stages() - if mode and self.norm_eval: - for m in self.modules(): - if isinstance(m, _BatchNorm): - m.eval() diff --git a/spaces/HighCWu/anime-colorization-with-hint/gradio-modified/gradio/templates/frontend/assets/File.60a988f4.js b/spaces/HighCWu/anime-colorization-with-hint/gradio-modified/gradio/templates/frontend/assets/File.60a988f4.js deleted file mode 100644 index c90c4209a2035f7c4ead5488dd6b1918e172e8c9..0000000000000000000000000000000000000000 --- a/spaces/HighCWu/anime-colorization-with-hint/gradio-modified/gradio/templates/frontend/assets/File.60a988f4.js +++ /dev/null @@ -1,2 +0,0 @@ -import{S as h,i as c,s as f,w as o,b as t,f as d,g as i,x as r,n as u}from"./index.396f4a72.js";function g(l){let e,s,n;return{c(){e=o("svg"),s=o("path"),n=o("polyline"),t(s,"d","M13 2H6a2 2 0 0 0-2 2v16a2 2 0 0 0 2 2h12a2 2 0 0 0 2-2V9z"),t(n,"points","13 2 13 9 20 9"),t(e,"xmlns","http://www.w3.org/2000/svg"),t(e,"width","100%"),t(e,"height","100%"),t(e,"viewBox","0 0 24 24"),t(e,"fill","none"),t(e,"stroke","currentColor"),t(e,"stroke-width","1.5"),t(e,"stroke-linecap","round"),t(e,"stroke-linejoin","round"),t(e,"class","feather feather-file")},m(a,p){d(a,e,p),i(e,s),i(e,n)},p:r,i:r,o:r,d(a){a&&u(e)}}}class m extends h{constructor(e){super(),c(this,e,null,g,f,{})}}export{m as F}; -//# sourceMappingURL=File.60a988f4.js.map diff --git a/spaces/Hoodady/3DFuse/voxnerf/__init__.py b/spaces/Hoodady/3DFuse/voxnerf/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/HuangLab/CELL-E_2-Sequence_Prediction/taming/modules/losses/lpips.py b/spaces/HuangLab/CELL-E_2-Sequence_Prediction/taming/modules/losses/lpips.py deleted file mode 100644 index a7280447694ffc302a7636e7e4d6183408e0aa95..0000000000000000000000000000000000000000 --- a/spaces/HuangLab/CELL-E_2-Sequence_Prediction/taming/modules/losses/lpips.py +++ /dev/null @@ -1,123 +0,0 @@ -"""Stripped version of https://github.com/richzhang/PerceptualSimilarity/tree/master/models""" - -import torch -import torch.nn as nn -from torchvision import models -from collections import namedtuple - -from taming.util import get_ckpt_path - - -class LPIPS(nn.Module): - # Learned perceptual metric - def __init__(self, use_dropout=True): - super().__init__() - self.scaling_layer = ScalingLayer() - self.chns = [64, 128, 256, 512, 512] # vg16 features - self.net = vgg16(pretrained=True, requires_grad=False) - self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout) - self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout) - self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout) - self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout) - self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout) - self.load_from_pretrained() - for param in self.parameters(): - param.requires_grad = False - - def load_from_pretrained(self, name="vgg_lpips"): - ckpt = get_ckpt_path(name, "taming/modules/autoencoder/lpips") - self.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False) - print("loaded pretrained LPIPS loss from {}".format(ckpt)) - - @classmethod - def from_pretrained(cls, name="vgg_lpips"): - if name != "vgg_lpips": - raise NotImplementedError - model = cls() - ckpt = get_ckpt_path(name) - model.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False) - return model - - def forward(self, input, target): - in0_input, in1_input = (self.scaling_layer(input), self.scaling_layer(target)) - outs0, outs1 = self.net(in0_input), self.net(in1_input) - feats0, feats1, diffs = {}, {}, {} - lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4] - for kk in range(len(self.chns)): - feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk]) - diffs[kk] = (feats0[kk] - feats1[kk]) ** 2 - - res = [spatial_average(lins[kk].model(diffs[kk]), keepdim=True) for kk in range(len(self.chns))] - val = res[0] - for l in range(1, len(self.chns)): - val += res[l] - return val - - -class ScalingLayer(nn.Module): - def __init__(self): - super(ScalingLayer, self).__init__() - self.register_buffer('shift', torch.Tensor([-.030, -.088, -.188])[None, :, None, None]) - self.register_buffer('scale', torch.Tensor([.458, .448, .450])[None, :, None, None]) - - def forward(self, inp): - return (inp - self.shift) / self.scale - - -class NetLinLayer(nn.Module): - """ A single linear layer which does a 1x1 conv """ - def __init__(self, chn_in, chn_out=1, use_dropout=False): - super(NetLinLayer, self).__init__() - layers = [nn.Dropout(), ] if (use_dropout) else [] - layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), ] - self.model = nn.Sequential(*layers) - - -class vgg16(torch.nn.Module): - def __init__(self, requires_grad=False, pretrained=True): - super(vgg16, self).__init__() - vgg_pretrained_features = models.vgg16(pretrained=pretrained).features - self.slice1 = torch.nn.Sequential() - self.slice2 = torch.nn.Sequential() - self.slice3 = torch.nn.Sequential() - self.slice4 = torch.nn.Sequential() - self.slice5 = torch.nn.Sequential() - self.N_slices = 5 - for x in range(4): - self.slice1.add_module(str(x), vgg_pretrained_features[x]) - for x in range(4, 9): - self.slice2.add_module(str(x), vgg_pretrained_features[x]) - for x in range(9, 16): - self.slice3.add_module(str(x), vgg_pretrained_features[x]) - for x in range(16, 23): - self.slice4.add_module(str(x), vgg_pretrained_features[x]) - for x in range(23, 30): - self.slice5.add_module(str(x), vgg_pretrained_features[x]) - if not requires_grad: - for param in self.parameters(): - param.requires_grad = False - - def forward(self, X): - h = self.slice1(X) - h_relu1_2 = h - h = self.slice2(h) - h_relu2_2 = h - h = self.slice3(h) - h_relu3_3 = h - h = self.slice4(h) - h_relu4_3 = h - h = self.slice5(h) - h_relu5_3 = h - vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3']) - out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3) - return out - - -def normalize_tensor(x,eps=1e-10): - norm_factor = torch.sqrt(torch.sum(x**2,dim=1,keepdim=True)) - return x/(norm_factor+eps) - - -def spatial_average(x, keepdim=True): - return x.mean([2,3],keepdim=keepdim) - diff --git a/spaces/ICML2022/OFA/fairseq/examples/laser/laser_src/__init__.py b/spaces/ICML2022/OFA/fairseq/examples/laser/laser_src/__init__.py deleted file mode 100644 index 9ffbd656d8786e421008fb4cb0d1d8911dc8330c..0000000000000000000000000000000000000000 --- a/spaces/ICML2022/OFA/fairseq/examples/laser/laser_src/__init__.py +++ /dev/null @@ -1,8 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - -from .laser_task import * # noqa -from .laser_lstm import * # noqa -from .laser_transformer import * # noqa diff --git a/spaces/ICML2022/OFA/fairseq/fairseq/criterions/fastspeech2_loss.py b/spaces/ICML2022/OFA/fairseq/fairseq/criterions/fastspeech2_loss.py deleted file mode 100644 index 085d5628d4c4c242edee4aa3bc4a01aa4582eb21..0000000000000000000000000000000000000000 --- a/spaces/ICML2022/OFA/fairseq/fairseq/criterions/fastspeech2_loss.py +++ /dev/null @@ -1,125 +0,0 @@ -# Copyright (c) 2017-present, Facebook, Inc. -# All rights reserved. -# -# This source code is licensed under the license found in the LICENSE file in -# the root directory of this source tree. An additional grant of patent rights -# can be found in the PATENTS file in the same directory. - -from typing import List, Dict, Any -from dataclasses import dataclass, field - -import torch -import torch.nn.functional as F - -from fairseq import metrics, utils -from fairseq.criterions import FairseqCriterion, register_criterion -from fairseq.dataclass import FairseqDataclass -from fairseq.data.data_utils import lengths_to_mask -from fairseq.models.fairseq_model import FairseqEncoderModel - - -@dataclass -class FastSpeech2CriterionConfig(FairseqDataclass): - ctc_weight: float = field( - default=0.0, metadata={"help": "weight for CTC loss"} - ) - - -@register_criterion("fastspeech2", dataclass=FastSpeech2CriterionConfig) -class FastSpeech2Loss(FairseqCriterion): - def __init__(self, task, ctc_weight): - super().__init__(task) - self.ctc_weight = ctc_weight - - def forward(self, model: FairseqEncoderModel, sample, reduction="mean"): - src_tokens = sample["net_input"]["src_tokens"] - src_lens = sample["net_input"]["src_lengths"] - tgt_lens = sample["target_lengths"] - _feat_out, _, log_dur_out, pitch_out, energy_out = model( - src_tokens=src_tokens, - src_lengths=src_lens, - prev_output_tokens=sample["net_input"]["prev_output_tokens"], - incremental_state=None, - target_lengths=tgt_lens, - speaker=sample["speaker"], - durations=sample["durations"], - pitches=sample["pitches"], - energies=sample["energies"] - ) - - src_mask = lengths_to_mask(sample["net_input"]["src_lengths"]) - tgt_mask = lengths_to_mask(sample["target_lengths"]) - - pitches, energies = sample["pitches"], sample["energies"] - pitch_out, pitches = pitch_out[src_mask], pitches[src_mask] - energy_out, energies = energy_out[src_mask], energies[src_mask] - - feat_out, feat = _feat_out[tgt_mask], sample["target"][tgt_mask] - l1_loss = F.l1_loss(feat_out, feat, reduction=reduction) - - pitch_loss = F.mse_loss(pitch_out, pitches, reduction=reduction) - energy_loss = F.mse_loss(energy_out, energies, reduction=reduction) - - log_dur_out = log_dur_out[src_mask] - dur = sample["durations"].float() - dur = dur.half() if log_dur_out.type().endswith(".HalfTensor") else dur - log_dur = torch.log(dur + 1)[src_mask] - dur_loss = F.mse_loss(log_dur_out, log_dur, reduction=reduction) - - ctc_loss = torch.tensor(0.).type_as(l1_loss) - if self.ctc_weight > 0.: - lprobs = model.get_normalized_probs((_feat_out,), log_probs=True) - lprobs = lprobs.transpose(0, 1) # T x B x C - src_mask = lengths_to_mask(src_lens) - src_tokens_flat = src_tokens.masked_select(src_mask) - ctc_loss = F.ctc_loss( - lprobs, src_tokens_flat, tgt_lens, src_lens, - reduction=reduction, zero_infinity=True - ) * self.ctc_weight - - loss = l1_loss + dur_loss + pitch_loss + energy_loss + ctc_loss - - sample_size = sample["nsentences"] - logging_output = { - "loss": utils.item(loss.data), - "ntokens": sample["ntokens"], - "nsentences": sample["nsentences"], - "sample_size": sample_size, - "l1_loss": utils.item(l1_loss.data), - "dur_loss": utils.item(dur_loss.data), - "pitch_loss": utils.item(pitch_loss.data), - "energy_loss": utils.item(energy_loss.data), - "ctc_loss": utils.item(ctc_loss.data), - } - return loss, sample_size, logging_output - - @classmethod - def reduce_metrics(cls, logging_outputs: List[Dict[str, Any]]) -> None: - ns = [log.get("sample_size", 0) for log in logging_outputs] - ntot = sum(ns) - ws = [n / (ntot + 1e-8) for n in ns] - for key in [ - "loss", "l1_loss", "dur_loss", "pitch_loss", "energy_loss", - "ctc_loss" - ]: - vals = [log.get(key, 0) for log in logging_outputs] - val = sum(val * w for val, w in zip(vals, ws)) - metrics.log_scalar(key, val, ntot, round=3) - metrics.log_scalar("sample_size", ntot, len(logging_outputs)) - - # inference metrics - if "targ_frames" not in logging_outputs[0]: - return - n = sum(log.get("targ_frames", 0) for log in logging_outputs) - for key, new_key in [ - ("mcd_loss", "mcd_loss"), - ("pred_frames", "pred_ratio"), - ("nins", "ins_rate"), - ("ndel", "del_rate"), - ]: - val = sum(log.get(key, 0) for log in logging_outputs) - metrics.log_scalar(new_key, val / n, n, round=3) - - @staticmethod - def logging_outputs_can_be_summed() -> bool: - return False diff --git a/spaces/Ibtehaj10/cheating-detection-FYP/yolovs5/utils/loggers/clearml/clearml_utils.py b/spaces/Ibtehaj10/cheating-detection-FYP/yolovs5/utils/loggers/clearml/clearml_utils.py deleted file mode 100644 index fe5f597a87a635b15dbfe5d7ed5a6c285ebff6bd..0000000000000000000000000000000000000000 --- a/spaces/Ibtehaj10/cheating-detection-FYP/yolovs5/utils/loggers/clearml/clearml_utils.py +++ /dev/null @@ -1,157 +0,0 @@ -"""Main Logger class for ClearML experiment tracking.""" -import glob -import re -from pathlib import Path - -import numpy as np -import yaml - -from utils.plots import Annotator, colors - -try: - import clearml - from clearml import Dataset, Task - - assert hasattr(clearml, '__version__') # verify package import not local dir -except (ImportError, AssertionError): - clearml = None - - -def construct_dataset(clearml_info_string): - """Load in a clearml dataset and fill the internal data_dict with its contents. - """ - dataset_id = clearml_info_string.replace('clearml://', '') - dataset = Dataset.get(dataset_id=dataset_id) - dataset_root_path = Path(dataset.get_local_copy()) - - # We'll search for the yaml file definition in the dataset - yaml_filenames = list(glob.glob(str(dataset_root_path / "*.yaml")) + glob.glob(str(dataset_root_path / "*.yml"))) - if len(yaml_filenames) > 1: - raise ValueError('More than one yaml file was found in the dataset root, cannot determine which one contains ' - 'the dataset definition this way.') - elif len(yaml_filenames) == 0: - raise ValueError('No yaml definition found in dataset root path, check that there is a correct yaml file ' - 'inside the dataset root path.') - with open(yaml_filenames[0]) as f: - dataset_definition = yaml.safe_load(f) - - assert set(dataset_definition.keys()).issuperset( - {'train', 'test', 'val', 'nc', 'names'} - ), "The right keys were not found in the yaml file, make sure it at least has the following keys: ('train', 'test', 'val', 'nc', 'names')" - - data_dict = dict() - data_dict['train'] = str( - (dataset_root_path / dataset_definition['train']).resolve()) if dataset_definition['train'] else None - data_dict['test'] = str( - (dataset_root_path / dataset_definition['test']).resolve()) if dataset_definition['test'] else None - data_dict['val'] = str( - (dataset_root_path / dataset_definition['val']).resolve()) if dataset_definition['val'] else None - data_dict['nc'] = dataset_definition['nc'] - data_dict['names'] = dataset_definition['names'] - - return data_dict - - -class ClearmlLogger: - """Log training runs, datasets, models, and predictions to ClearML. - - This logger sends information to ClearML at app.clear.ml or to your own hosted server. By default, - this information includes hyperparameters, system configuration and metrics, model metrics, code information and - basic data metrics and analyses. - - By providing additional command line arguments to train.py, datasets, - models and predictions can also be logged. - """ - - def __init__(self, opt, hyp): - """ - - Initialize ClearML Task, this object will capture the experiment - - Upload dataset version to ClearML Data if opt.upload_dataset is True - - arguments: - opt (namespace) -- Commandline arguments for this run - hyp (dict) -- Hyperparameters for this run - - """ - self.current_epoch = 0 - # Keep tracked of amount of logged images to enforce a limit - self.current_epoch_logged_images = set() - # Maximum number of images to log to clearML per epoch - self.max_imgs_to_log_per_epoch = 16 - # Get the interval of epochs when bounding box images should be logged - self.bbox_interval = opt.bbox_interval - self.clearml = clearml - self.task = None - self.data_dict = None - if self.clearml: - self.task = Task.init( - project_name=opt.project if opt.project != 'runs/train' else 'YOLOv5', - task_name=opt.name if opt.name != 'exp' else 'Training', - tags=['YOLOv5'], - output_uri=True, - auto_connect_frameworks={'pytorch': False} - # We disconnect pytorch auto-detection, because we added manual model save points in the code - ) - # ClearML's hooks will already grab all general parameters - # Only the hyperparameters coming from the yaml config file - # will have to be added manually! - self.task.connect(hyp, name='Hyperparameters') - - # Get ClearML Dataset Version if requested - if opt.data.startswith('clearml://'): - # data_dict should have the following keys: - # names, nc (number of classes), test, train, val (all three relative paths to ../datasets) - self.data_dict = construct_dataset(opt.data) - # Set data to data_dict because wandb will crash without this information and opt is the best way - # to give it to them - opt.data = self.data_dict - - def log_debug_samples(self, files, title='Debug Samples'): - """ - Log files (images) as debug samples in the ClearML task. - - arguments: - files (List(PosixPath)) a list of file paths in PosixPath format - title (str) A title that groups together images with the same values - """ - for f in files: - if f.exists(): - it = re.search(r'_batch(\d+)', f.name) - iteration = int(it.groups()[0]) if it else 0 - self.task.get_logger().report_image(title=title, - series=f.name.replace(it.group(), ''), - local_path=str(f), - iteration=iteration) - - def log_image_with_boxes(self, image_path, boxes, class_names, image, conf_threshold=0.25): - """ - Draw the bounding boxes on a single image and report the result as a ClearML debug sample. - - arguments: - image_path (PosixPath) the path the original image file - boxes (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class] - class_names (dict): dict containing mapping of class int to class name - image (Tensor): A torch tensor containing the actual image data - """ - if len(self.current_epoch_logged_images) < self.max_imgs_to_log_per_epoch and self.current_epoch >= 0: - # Log every bbox_interval times and deduplicate for any intermittend extra eval runs - if self.current_epoch % self.bbox_interval == 0 and image_path not in self.current_epoch_logged_images: - im = np.ascontiguousarray(np.moveaxis(image.mul(255).clamp(0, 255).byte().cpu().numpy(), 0, 2)) - annotator = Annotator(im=im, pil=True) - for i, (conf, class_nr, box) in enumerate(zip(boxes[:, 4], boxes[:, 5], boxes[:, :4])): - color = colors(i) - - class_name = class_names[int(class_nr)] - confidence_percentage = round(float(conf) * 100, 2) - label = f"{class_name}: {confidence_percentage}%" - - if conf > conf_threshold: - annotator.rectangle(box.cpu().numpy(), outline=color) - annotator.box_label(box.cpu().numpy(), label=label, color=color) - - annotated_image = annotator.result() - self.task.get_logger().report_image(title='Bounding Boxes', - series=image_path.name, - iteration=self.current_epoch, - image=annotated_image) - self.current_epoch_logged_images.add(image_path) diff --git a/spaces/Illumotion/Koboldcpp/ggml-mpi.c b/spaces/Illumotion/Koboldcpp/ggml-mpi.c deleted file mode 100644 index ae176d7075826fb39255de5a080d8c3d69794ca0..0000000000000000000000000000000000000000 --- a/spaces/Illumotion/Koboldcpp/ggml-mpi.c +++ /dev/null @@ -1,216 +0,0 @@ -#include "ggml-mpi.h" - -#include "ggml.h" - -#include - -#include -#include - -#define MIN(a, b) ((a) < (b) ? (a) : (b)) - -#define UNUSED GGML_UNUSED - -struct ggml_mpi_context { - int rank; - int size; -}; - -void ggml_mpi_backend_init(void) { - MPI_Init(NULL, NULL); -} - -void ggml_mpi_backend_free(void) { - MPI_Finalize(); -} - -struct ggml_mpi_context * ggml_mpi_init(void) { - struct ggml_mpi_context * ctx = calloc(1, sizeof(struct ggml_mpi_context)); - - MPI_Comm_rank(MPI_COMM_WORLD, &ctx->rank); - MPI_Comm_size(MPI_COMM_WORLD, &ctx->size); - - return ctx; -} - -void ggml_mpi_free(struct ggml_mpi_context * ctx) { - free(ctx); -} - -int ggml_mpi_rank(struct ggml_mpi_context * ctx) { - return ctx->rank; -} - -void ggml_mpi_eval_init( - struct ggml_mpi_context * ctx_mpi, - int * n_tokens, - int * n_past, - int * n_threads) { - UNUSED(ctx_mpi); - - // synchronize the worker node parameters with the root node - MPI_Barrier(MPI_COMM_WORLD); - - MPI_Bcast(n_tokens, 1, MPI_INT, 0, MPI_COMM_WORLD); - MPI_Bcast(n_past, 1, MPI_INT, 0, MPI_COMM_WORLD); - MPI_Bcast(n_threads, 1, MPI_INT, 0, MPI_COMM_WORLD); -} - -static int ggml_graph_get_node_idx(struct ggml_cgraph * gf, const char * name) { - struct ggml_tensor * t = ggml_graph_get_tensor(gf, name); - if (t == NULL) { - fprintf(stderr, "%s: tensor %s not found\n", __func__, name); - return -1; - } - - for (int i = 0; i < gf->n_nodes; i++) { - if (gf->nodes[i] == t) { - return i; - } - } - - fprintf(stderr, "%s: tensor %s not found in graph (should not happen)\n", __func__, name); - return -1; -} - -static void ggml_mpi_tensor_send(struct ggml_tensor * t, int mpi_rank_dst) { - MPI_Datatype mpi_type; - - switch (t->type) { - case GGML_TYPE_I32: mpi_type = MPI_INT32_T; break; - case GGML_TYPE_F32: mpi_type = MPI_FLOAT; break; - default: GGML_ASSERT(false && "not implemented"); - } - - const int retval = MPI_Send(t->data, ggml_nelements(t), mpi_type, mpi_rank_dst, 0, MPI_COMM_WORLD); - GGML_ASSERT(retval == MPI_SUCCESS); -} - -static void ggml_mpi_tensor_recv(struct ggml_tensor * t, int mpi_rank_src) { - MPI_Datatype mpi_type; - - switch (t->type) { - case GGML_TYPE_I32: mpi_type = MPI_INT32_T; break; - case GGML_TYPE_F32: mpi_type = MPI_FLOAT; break; - default: GGML_ASSERT(false && "not implemented"); - } - - MPI_Status status; UNUSED(status); - - const int retval = MPI_Recv(t->data, ggml_nelements(t), mpi_type, mpi_rank_src, MPI_ANY_TAG, MPI_COMM_WORLD, &status); - GGML_ASSERT(retval == MPI_SUCCESS); -} - -// TODO: there are many improvements that can be done to this implementation -void ggml_mpi_graph_compute_pre( - struct ggml_mpi_context * ctx_mpi, - struct ggml_cgraph * gf, - int n_layers) { - const int mpi_rank = ctx_mpi->rank; - const int mpi_size = ctx_mpi->size; - - struct ggml_tensor * inp_tokens = ggml_graph_get_tensor(gf, "inp_tokens"); - if (inp_tokens == NULL) { - fprintf(stderr, "%s: tensor 'inp_tokens' not found\n", __func__); - return; - } - - struct ggml_tensor * inp0 = ggml_graph_get_tensor(gf, "layer_inp_0"); - if (inp0 == NULL) { - fprintf(stderr, "%s: tensor 'inp0' not found\n", __func__); - return; - } - - GGML_ASSERT(inp0 == gf->nodes[0]); - - // distribute the compute graph into slices across the MPI nodes - // - // the main node (0) processes the last layers + the remainder of the compute graph - // and is responsible to pass the input tokens to the first node (1) - // - // node 1: [( 0) * n_per_node, ( 1) * n_per_node) - // node 2: [( 1) * n_per_node, ( 2) * n_per_node) - // ... - // node n-1: [(n-2) * n_per_node, (n-1) * n_per_node) - // node 0: [(n-1) * n_per_node, n_nodes) - // - if (mpi_rank > 0) { - if (mpi_rank == 1) { - // the first node (1) receives the input tokens from the main node (0) - ggml_mpi_tensor_recv(inp_tokens, 0); - } else { - // recv input data for each node into the "inp0" tensor (i.e. the first node in the compute graph) - ggml_mpi_tensor_recv(inp0, mpi_rank - 1); - } - } else if (mpi_size > 1) { - // node 0 sends the input tokens to node 1 - ggml_mpi_tensor_send(inp_tokens, 1); - - // recv the output data from the last node - ggml_mpi_tensor_recv(inp0, mpi_size - 1); - } - - { - const int n_per_node = (n_layers + (mpi_size - 1)) / mpi_size; - - const int mpi_idx = mpi_rank > 0 ? mpi_rank - 1 : mpi_size - 1; - - const int il0 = (mpi_idx + 0) * n_per_node; - const int il1 = MIN(n_layers, (mpi_idx + 1) * n_per_node); - - char name_l0[GGML_MAX_NAME]; - char name_l1[GGML_MAX_NAME]; - - snprintf(name_l0, sizeof(name_l0), "layer_inp_%d", il0); - snprintf(name_l1, sizeof(name_l1), "layer_inp_%d", il1); - - const int idx_l0 = ggml_graph_get_node_idx(gf, name_l0); - const int idx_l1 = mpi_rank > 0 ? ggml_graph_get_node_idx(gf, name_l1) + 1 : gf->n_nodes; - - if (idx_l0 < 0 || idx_l1 < 0) { - fprintf(stderr, "%s: layer input nodes not found\n", __func__); - return; - } - - // attach the input data to all nodes that need it - // TODO: not great - should be able to do this without modifying the compute graph (see next TODO below) - for (int i = idx_l0; i < idx_l1; i++) { - if (gf->nodes[i]->src[0] == gf->nodes[idx_l0]) { - gf->nodes[i]->src[0] = inp0; - } - if (gf->nodes[i]->src[1] == gf->nodes[idx_l0]) { - gf->nodes[i]->src[1] = inp0; - } - } - - // TODO: instead of rearranging the nodes, we should be able to execute a subset of the compute graph - for (int i = 1; i < idx_l1 - idx_l0; i++) { - gf->nodes[i] = gf->nodes[idx_l0 + i]; - gf->grads[i] = gf->grads[idx_l0 + i]; - } - - // the first node performs the "get_rows" operation, the rest of the nodes get the data from the previous node - if (mpi_idx != 0) { - gf->nodes[0]->op = GGML_OP_NONE; - } - - gf->n_nodes = idx_l1 - idx_l0; - - //fprintf(stderr, "%s: node %d: processing %d nodes [%d, %d)\n", __func__, mpi_rank, gf->n_nodes, il0, il1); - } -} - -void ggml_mpi_graph_compute_post( - struct ggml_mpi_context * ctx_mpi, - struct ggml_cgraph * gf, - int n_layers) { - UNUSED(n_layers); - - const int mpi_rank = ctx_mpi->rank; - const int mpi_size = ctx_mpi->size; - - // send the output data to the next node - if (mpi_rank > 0) { - ggml_mpi_tensor_send(gf->nodes[gf->n_nodes - 1], (mpi_rank + 1) % mpi_size); - } -} diff --git a/spaces/Intae/deepfake/README.md b/spaces/Intae/deepfake/README.md deleted file mode 100644 index 2358f99f34d8cccc6aadfa419a9c361258183bc6..0000000000000000000000000000000000000000 --- a/spaces/Intae/deepfake/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Deepfake -emoji: 💻 -colorFrom: purple -colorTo: gray -sdk: streamlit -sdk_version: 1.10.0 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/Intel/ldm3d/static/public/js/GUIHelper.js b/spaces/Intel/ldm3d/static/public/js/GUIHelper.js deleted file mode 100644 index 6a6ce0ba640e0962fbe754d2cf4235e918a536ce..0000000000000000000000000000000000000000 --- a/spaces/Intel/ldm3d/static/public/js/GUIHelper.js +++ /dev/null @@ -1,34 +0,0 @@ -THREE.GUI = { - create: (viewer, scene) => { - var gui = new dat.GUI(); - - // Set some GUI params - var shaderParams = gui.addFolder('Shader'); - shaderParams.add(sixDofViewer, 'displacement', 0, 7).name('Displacement'); - shaderParams.add(sixDofViewer, 'opacity', 0, 1).name('Opacity'); - shaderParams.add(sixDofViewer, 'pointSize', 0, 10).name('Point Size'); - shaderParams.add({ 'debugDepth': false }, 'debugDepth') - .name('Debug Depth') - .onChange(val => { - sixDofViewer.toggleDepthDebug(val); - }); - shaderParams.add({ - 'changeStyle': () => { } - }, 'changeStyle', { - 'Mesh': SixDOF.Style[SixDOF.Style.MESH], - 'Wireframe': SixDOF.Style[SixDOF.Style.WIRE], - 'Pointcloud': SixDOF.Style[SixDOF.Style.POINTS] - }) - .name('Rendering Style') - .onChange(val => { - scene.remove(sixDofViewer); - sixDofViewer = new SixDOF.Viewer(colorTexture, depthTexture, { - 'style': SixDOF.Style[val] - }); - scene.add(sixDofViewer); - }); - - - return gui; - } -} \ No newline at end of file diff --git a/spaces/JammyMachina/streamlit-jam-machine/README.md b/spaces/JammyMachina/streamlit-jam-machine/README.md deleted file mode 100644 index 83b2c5c7281b8d77bf6ac28da11285ed6050eeaa..0000000000000000000000000000000000000000 --- a/spaces/JammyMachina/streamlit-jam-machine/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: Streamlit Jam Machine -emoji: ⚡ -colorFrom: blue -colorTo: gray -sdk: streamlit -sdk_version: 1.15.2 -app_file: app.py -pinned: false -python_version: 3.10.6 ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/JohnSmith9982/ChuanhuChatGPT/custom.css b/spaces/JohnSmith9982/ChuanhuChatGPT/custom.css deleted file mode 100644 index 5143eb138ea2469d8c457c71cb210fd3fb7cbe15..0000000000000000000000000000000000000000 --- a/spaces/JohnSmith9982/ChuanhuChatGPT/custom.css +++ /dev/null @@ -1,162 +0,0 @@ -:root { - --chatbot-color-light: #F3F3F3; - --chatbot-color-dark: #121111; -} - -/* status_display */ -#status_display { - display: flex; - min-height: 2.5em; - align-items: flex-end; - justify-content: flex-end; -} -#status_display p { - font-size: .85em; - font-family: monospace; - color: var(--body-text-color-subdued); -} - -#chuanhu_chatbot, #status_display { - transition: all 0.6s; -} -/* list */ -ol:not(.options), ul:not(.options) { - padding-inline-start: 2em !important; -} - -/* 亮色 */ -#chuanhu_chatbot { - background-color: var(--chatbot-color-light) !important; -} -[data-testid = "bot"] { - background-color: #FFFFFF !important; -} -[data-testid = "user"] { - background-color: #95EC69 !important; -} -/* 对话气泡 */ -[class *= "message"] { - border-radius: var(--radius-xl) !important; - border: none; - padding: var(--spacing-xl) !important; - font-size: var(--text-md) !important; - line-height: var(--line-md) !important; - min-height: calc(var(--text-md)*var(--line-md) + 2*var(--spacing-xl)); - min-width: calc(var(--text-md)*var(--line-md) + 2*var(--spacing-xl)); -} -[data-testid = "bot"] { - max-width: 85%; - border-bottom-left-radius: 0 !important; -} -[data-testid = "user"] { - max-width: 85%; - width: auto !important; - border-bottom-right-radius: 0 !important; -} -/* 表格 */ -table { - margin: 1em 0; - border-collapse: collapse; - empty-cells: show; -} -td,th { - border: 1.2px solid var(--border-color-primary) !important; - padding: 0.2em; -} -thead { - background-color: rgba(175,184,193,0.2); -} -thead th { - padding: .5em .2em; -} -/* 行内代码 */ -code { - display: inline; - white-space: break-spaces; - border-radius: 6px; - margin: 0 2px 0 2px; - padding: .2em .4em .1em .4em; - background-color: rgba(175,184,193,0.2); -} -/* 代码块 */ -pre code { - display: block; - overflow: auto; - white-space: pre; - background-color: hsla(0, 0%, 0%, 80%)!important; - border-radius: 10px; - padding: 1.4em 1.2em 0em 1.4em; - margin: 1.2em 2em 1.2em 0.5em; - color: #FFF; - box-shadow: 6px 6px 16px hsla(0, 0%, 0%, 0.2); -} -/* 代码高亮样式 */ -.highlight .hll { background-color: #49483e } -.highlight .c { color: #75715e } /* Comment */ -.highlight .err { color: #960050; background-color: #1e0010 } /* Error */ -.highlight .k { color: #66d9ef } /* Keyword */ -.highlight .l { color: #ae81ff } /* Literal */ -.highlight .n { color: #f8f8f2 } /* Name */ -.highlight .o { color: #f92672 } /* Operator */ -.highlight .p { color: #f8f8f2 } /* Punctuation */ -.highlight .ch { color: #75715e } /* Comment.Hashbang */ -.highlight .cm { color: #75715e } /* Comment.Multiline */ -.highlight .cp { color: #75715e } /* Comment.Preproc */ -.highlight .cpf { color: #75715e } /* Comment.PreprocFile */ -.highlight .c1 { color: #75715e } /* Comment.Single */ -.highlight .cs { color: #75715e } /* Comment.Special */ -.highlight .gd { color: #f92672 } /* Generic.Deleted */ -.highlight .ge { font-style: italic } /* Generic.Emph */ -.highlight .gi { color: #a6e22e } /* Generic.Inserted */ -.highlight .gs { font-weight: bold } /* Generic.Strong */ -.highlight .gu { color: #75715e } /* Generic.Subheading */ -.highlight .kc { color: #66d9ef } /* Keyword.Constant */ -.highlight .kd { color: #66d9ef } /* Keyword.Declaration */ -.highlight .kn { color: #f92672 } /* Keyword.Namespace */ -.highlight .kp { color: #66d9ef } /* Keyword.Pseudo */ -.highlight .kr { color: #66d9ef } /* Keyword.Reserved */ -.highlight .kt { color: #66d9ef } /* Keyword.Type */ -.highlight .ld { color: #e6db74 } /* Literal.Date */ -.highlight .m { color: #ae81ff } /* Literal.Number */ -.highlight .s { color: #e6db74 } /* Literal.String */ -.highlight .na { color: #a6e22e } /* Name.Attribute */ -.highlight .nb { color: #f8f8f2 } /* Name.Builtin */ -.highlight .nc { color: #a6e22e } /* Name.Class */ -.highlight .no { color: #66d9ef } /* Name.Constant */ -.highlight .nd { color: #a6e22e } /* Name.Decorator */ -.highlight .ni { color: #f8f8f2 } /* Name.Entity */ -.highlight .ne { color: #a6e22e } /* Name.Exception */ -.highlight .nf { color: #a6e22e } /* Name.Function */ -.highlight .nl { color: #f8f8f2 } /* Name.Label */ -.highlight .nn { color: #f8f8f2 } /* Name.Namespace */ -.highlight .nx { color: #a6e22e } /* Name.Other */ -.highlight .py { color: #f8f8f2 } /* Name.Property */ -.highlight .nt { color: #f92672 } /* Name.Tag */ -.highlight .nv { color: #f8f8f2 } /* Name.Variable */ -.highlight .ow { color: #f92672 } /* Operator.Word */ -.highlight .w { color: #f8f8f2 } /* Text.Whitespace */ -.highlight .mb { color: #ae81ff } /* Literal.Number.Bin */ -.highlight .mf { color: #ae81ff } /* Literal.Number.Float */ -.highlight .mh { color: #ae81ff } /* Literal.Number.Hex */ -.highlight .mi { color: #ae81ff } /* Literal.Number.Integer */ -.highlight .mo { color: #ae81ff } /* Literal.Number.Oct */ -.highlight .sa { color: #e6db74 } /* Literal.String.Affix */ -.highlight .sb { color: #e6db74 } /* Literal.String.Backtick */ -.highlight .sc { color: #e6db74 } /* Literal.String.Char */ -.highlight .dl { color: #e6db74 } /* Literal.String.Delimiter */ -.highlight .sd { color: #e6db74 } /* Literal.String.Doc */ -.highlight .s2 { color: #e6db74 } /* Literal.String.Double */ -.highlight .se { color: #ae81ff } /* Literal.String.Escape */ -.highlight .sh { color: #e6db74 } /* Literal.String.Heredoc */ -.highlight .si { color: #e6db74 } /* Literal.String.Interpol */ -.highlight .sx { color: #e6db74 } /* Literal.String.Other */ -.highlight .sr { color: #e6db74 } /* Literal.String.Regex */ -.highlight .s1 { color: #e6db74 } /* Literal.String.Single */ -.highlight .ss { color: #e6db74 } /* Literal.String.Symbol */ -.highlight .bp { color: #f8f8f2 } /* Name.Builtin.Pseudo */ -.highlight .fm { color: #a6e22e } /* Name.Function.Magic */ -.highlight .vc { color: #f8f8f2 } /* Name.Variable.Class */ -.highlight .vg { color: #f8f8f2 } /* Name.Variable.Global */ -.highlight .vi { color: #f8f8f2 } /* Name.Variable.Instance */ -.highlight .vm { color: #f8f8f2 } /* Name.Variable.Magic */ -.highlight .il { color: #ae81ff } /* Literal.Number.Integer.Long */ diff --git a/spaces/KPCGD/bingo/src/components/ui/tooltip.tsx b/spaces/KPCGD/bingo/src/components/ui/tooltip.tsx deleted file mode 100644 index af1d48beb90dd5ae311796539843700871052cae..0000000000000000000000000000000000000000 --- a/spaces/KPCGD/bingo/src/components/ui/tooltip.tsx +++ /dev/null @@ -1,30 +0,0 @@ -'use client' - -import * as React from 'react' -import * as TooltipPrimitive from '@radix-ui/react-tooltip' - -import { cn } from '@/lib/utils' - -const TooltipProvider = TooltipPrimitive.Provider - -const Tooltip = TooltipPrimitive.Root - -const TooltipTrigger = TooltipPrimitive.Trigger - -const TooltipContent = React.forwardRef< - React.ElementRef, - React.ComponentPropsWithoutRef ->(({ className, sideOffset = 4, ...props }, ref) => ( - -)) -TooltipContent.displayName = TooltipPrimitive.Content.displayName - -export { Tooltip, TooltipTrigger, TooltipContent, TooltipProvider } diff --git a/spaces/Kangarroar/ApplioRVC-Inference/julius/core.py b/spaces/Kangarroar/ApplioRVC-Inference/julius/core.py deleted file mode 100644 index 6b750418424e76c9540663ac4b2a16005adaf422..0000000000000000000000000000000000000000 --- a/spaces/Kangarroar/ApplioRVC-Inference/julius/core.py +++ /dev/null @@ -1,122 +0,0 @@ -# File under the MIT license, see https://github.com/adefossez/julius/LICENSE for details. -# Author: adefossez, 2020 -""" -Signal processing or PyTorch related utilities. -""" -import math -import typing as tp - -import torch -from torch.nn import functional as F - - -def sinc(x: torch.Tensor): - """ - Implementation of sinc, i.e. sin(x) / x - - __Warning__: the input is not multiplied by `pi`! - """ - return torch.where(x == 0, torch.tensor(1., device=x.device, dtype=x.dtype), torch.sin(x) / x) - - -def pad_to(tensor: torch.Tensor, target_length: int, mode: str = 'constant', value: float = 0): - """ - Pad the given tensor to the given length, with 0s on the right. - """ - return F.pad(tensor, (0, target_length - tensor.shape[-1]), mode=mode, value=value) - - -def hz_to_mel(freqs: torch.Tensor): - """ - Converts a Tensor of frequencies in hertz to the mel scale. - Uses the simple formula by O'Shaughnessy (1987). - - Args: - freqs (torch.Tensor): frequencies to convert. - - """ - return 2595 * torch.log10(1 + freqs / 700) - - -def mel_to_hz(mels: torch.Tensor): - """ - Converts a Tensor of mel scaled frequencies to Hertz. - Uses the simple formula by O'Shaughnessy (1987). - - Args: - mels (torch.Tensor): mel frequencies to convert. - """ - return 700 * (10**(mels / 2595) - 1) - - -def mel_frequencies(n_mels: int, fmin: float, fmax: float): - """ - Return frequencies that are evenly spaced in mel scale. - - Args: - n_mels (int): number of frequencies to return. - fmin (float): start from this frequency (in Hz). - fmax (float): finish at this frequency (in Hz). - - - """ - low = hz_to_mel(torch.tensor(float(fmin))).item() - high = hz_to_mel(torch.tensor(float(fmax))).item() - mels = torch.linspace(low, high, n_mels) - return mel_to_hz(mels) - - -def volume(x: torch.Tensor, floor=1e-8): - """ - Return the volume in dBFS. - """ - return torch.log10(floor + (x**2).mean(-1)) * 10 - - -def pure_tone(freq: float, sr: float = 128, dur: float = 4, device=None): - """ - Return a pure tone, i.e. cosine. - - Args: - freq (float): frequency (in Hz) - sr (float): sample rate (in Hz) - dur (float): duration (in seconds) - """ - time = torch.arange(int(sr * dur), device=device).float() / sr - return torch.cos(2 * math.pi * freq * time) - - -def unfold(input, kernel_size: int, stride: int): - """1D only unfolding similar to the one from PyTorch. - However PyTorch unfold is extremely slow. - - Given an input tensor of size `[*, T]` this will return - a tensor `[*, F, K]` with `K` the kernel size, and `F` the number - of frames. The i-th frame is a view onto `i * stride: i * stride + kernel_size`. - This will automatically pad the input to cover at least once all entries in `input`. - - Args: - input (Tensor): tensor for which to return the frames. - kernel_size (int): size of each frame. - stride (int): stride between each frame. - - Shape: - - - Inputs: `input` is `[*, T]` - - Output: `[*, F, kernel_size]` with `F = 1 + ceil((T - kernel_size) / stride)` - - - ..Warning:: unlike PyTorch unfold, this will pad the input - so that any position in `input` is covered by at least one frame. - """ - shape = list(input.shape) - length = shape.pop(-1) - n_frames = math.ceil((max(length, kernel_size) - kernel_size) / stride) + 1 - tgt_length = (n_frames - 1) * stride + kernel_size - padded = F.pad(input, (0, tgt_length - length)).contiguous() - strides: tp.List[int] = [] - for dim in range(padded.dim()): - strides.append(padded.stride(dim)) - assert strides.pop(-1) == 1, 'data should be contiguous' - strides = strides + [stride, 1] - return padded.as_strided(shape + [n_frames, kernel_size], strides) diff --git a/spaces/Kangarroar/ApplioRVC-Inference/lib/uvr5_pack/lib_v5/layers.py b/spaces/Kangarroar/ApplioRVC-Inference/lib/uvr5_pack/lib_v5/layers.py deleted file mode 100644 index b82f06bb4993cd63f076e68d7e24185269b1bc42..0000000000000000000000000000000000000000 --- a/spaces/Kangarroar/ApplioRVC-Inference/lib/uvr5_pack/lib_v5/layers.py +++ /dev/null @@ -1,118 +0,0 @@ -import torch -from torch import nn -import torch.nn.functional as F - -from . import spec_utils - - -class Conv2DBNActiv(nn.Module): - def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU): - super(Conv2DBNActiv, self).__init__() - self.conv = nn.Sequential( - nn.Conv2d( - nin, - nout, - kernel_size=ksize, - stride=stride, - padding=pad, - dilation=dilation, - bias=False, - ), - nn.BatchNorm2d(nout), - activ(), - ) - - def __call__(self, x): - return self.conv(x) - - -class SeperableConv2DBNActiv(nn.Module): - def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU): - super(SeperableConv2DBNActiv, self).__init__() - self.conv = nn.Sequential( - nn.Conv2d( - nin, - nin, - kernel_size=ksize, - stride=stride, - padding=pad, - dilation=dilation, - groups=nin, - bias=False, - ), - nn.Conv2d(nin, nout, kernel_size=1, bias=False), - nn.BatchNorm2d(nout), - activ(), - ) - - def __call__(self, x): - return self.conv(x) - - -class Encoder(nn.Module): - def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU): - super(Encoder, self).__init__() - self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ) - self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ) - - def __call__(self, x): - skip = self.conv1(x) - h = self.conv2(skip) - - return h, skip - - -class Decoder(nn.Module): - def __init__( - self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False - ): - super(Decoder, self).__init__() - self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ) - self.dropout = nn.Dropout2d(0.1) if dropout else None - - def __call__(self, x, skip=None): - x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True) - if skip is not None: - skip = spec_utils.crop_center(skip, x) - x = torch.cat([x, skip], dim=1) - h = self.conv(x) - - if self.dropout is not None: - h = self.dropout(h) - - return h - - -class ASPPModule(nn.Module): - def __init__(self, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU): - super(ASPPModule, self).__init__() - self.conv1 = nn.Sequential( - nn.AdaptiveAvgPool2d((1, None)), - Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ), - ) - self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ) - self.conv3 = SeperableConv2DBNActiv( - nin, nin, 3, 1, dilations[0], dilations[0], activ=activ - ) - self.conv4 = SeperableConv2DBNActiv( - nin, nin, 3, 1, dilations[1], dilations[1], activ=activ - ) - self.conv5 = SeperableConv2DBNActiv( - nin, nin, 3, 1, dilations[2], dilations[2], activ=activ - ) - self.bottleneck = nn.Sequential( - Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1) - ) - - def forward(self, x): - _, _, h, w = x.size() - feat1 = F.interpolate( - self.conv1(x), size=(h, w), mode="bilinear", align_corners=True - ) - feat2 = self.conv2(x) - feat3 = self.conv3(x) - feat4 = self.conv4(x) - feat5 = self.conv5(x) - out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1) - bottle = self.bottleneck(out) - return bottle diff --git a/spaces/Karthikbolla/NEP-Chatbot/README.md b/spaces/Karthikbolla/NEP-Chatbot/README.md deleted file mode 100644 index e3043c33d6919c9ec0ba0580f555fb3f8e06e0f7..0000000000000000000000000000000000000000 --- a/spaces/Karthikbolla/NEP-Chatbot/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: NEP Chatbot -emoji: 🐢 -colorFrom: indigo -colorTo: indigo -sdk: gradio -sdk_version: 3.42.0 -app_file: app.py -pinned: false -license: mit ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/KdaiP/yolov8-deepsort-tracking/deep_sort/utils/json_logger.py b/spaces/KdaiP/yolov8-deepsort-tracking/deep_sort/utils/json_logger.py deleted file mode 100644 index 0afd0b45df736866c49473db78286685d77660ac..0000000000000000000000000000000000000000 --- a/spaces/KdaiP/yolov8-deepsort-tracking/deep_sort/utils/json_logger.py +++ /dev/null @@ -1,383 +0,0 @@ -""" -References: - https://medium.com/analytics-vidhya/creating-a-custom-logging-mechanism-for-real-time-object-detection-using-tdd-4ca2cfcd0a2f -""" -import json -from os import makedirs -from os.path import exists, join -from datetime import datetime - - -class JsonMeta(object): - HOURS = 3 - MINUTES = 59 - SECONDS = 59 - PATH_TO_SAVE = 'LOGS' - DEFAULT_FILE_NAME = 'remaining' - - -class BaseJsonLogger(object): - """ - This is the base class that returns __dict__ of its own - it also returns the dicts of objects in the attributes that are list instances - - """ - - def dic(self): - # returns dicts of objects - out = {} - for k, v in self.__dict__.items(): - if hasattr(v, 'dic'): - out[k] = v.dic() - elif isinstance(v, list): - out[k] = self.list(v) - else: - out[k] = v - return out - - @staticmethod - def list(values): - # applies the dic method on items in the list - return [v.dic() if hasattr(v, 'dic') else v for v in values] - - -class Label(BaseJsonLogger): - """ - For each bounding box there are various categories with confidences. Label class keeps track of that information. - """ - - def __init__(self, category: str, confidence: float): - self.category = category - self.confidence = confidence - - -class Bbox(BaseJsonLogger): - """ - This module stores the information for each frame and use them in JsonParser - Attributes: - labels (list): List of label module. - top (int): - left (int): - width (int): - height (int): - - Args: - bbox_id (float): - top (int): - left (int): - width (int): - height (int): - - References: - Check Label module for better understanding. - - - """ - - def __init__(self, bbox_id, top, left, width, height): - self.labels = [] - self.bbox_id = bbox_id - self.top = top - self.left = left - self.width = width - self.height = height - - def add_label(self, category, confidence): - # adds category and confidence only if top_k is not exceeded. - self.labels.append(Label(category, confidence)) - - def labels_full(self, value): - return len(self.labels) == value - - -class Frame(BaseJsonLogger): - """ - This module stores the information for each frame and use them in JsonParser - Attributes: - timestamp (float): The elapsed time of captured frame - frame_id (int): The frame number of the captured video - bboxes (list of Bbox objects): Stores the list of bbox objects. - - References: - Check Bbox class for better information - - Args: - timestamp (float): - frame_id (int): - - """ - - def __init__(self, frame_id: int, timestamp: float = None): - self.frame_id = frame_id - self.timestamp = timestamp - self.bboxes = [] - - def add_bbox(self, bbox_id: int, top: int, left: int, width: int, height: int): - bboxes_ids = [bbox.bbox_id for bbox in self.bboxes] - if bbox_id not in bboxes_ids: - self.bboxes.append(Bbox(bbox_id, top, left, width, height)) - else: - raise ValueError("Frame with id: {} already has a Bbox with id: {}".format(self.frame_id, bbox_id)) - - def add_label_to_bbox(self, bbox_id: int, category: str, confidence: float): - bboxes = {bbox.id: bbox for bbox in self.bboxes} - if bbox_id in bboxes.keys(): - res = bboxes.get(bbox_id) - res.add_label(category, confidence) - else: - raise ValueError('the bbox with id: {} does not exists!'.format(bbox_id)) - - -class BboxToJsonLogger(BaseJsonLogger): - """ - ُ This module is designed to automate the task of logging jsons. An example json is used - to show the contents of json file shortly - Example: - { - "video_details": { - "frame_width": 1920, - "frame_height": 1080, - "frame_rate": 20, - "video_name": "/home/gpu/codes/MSD/pedestrian_2/project/public/camera1.avi" - }, - "frames": [ - { - "frame_id": 329, - "timestamp": 3365.1254 - "bboxes": [ - { - "labels": [ - { - "category": "pedestrian", - "confidence": 0.9 - } - ], - "bbox_id": 0, - "top": 1257, - "left": 138, - "width": 68, - "height": 109 - } - ] - }], - - Attributes: - frames (dict): It's a dictionary that maps each frame_id to json attributes. - video_details (dict): information about video file. - top_k_labels (int): shows the allowed number of labels - start_time (datetime object): we use it to automate the json output by time. - - Args: - top_k_labels (int): shows the allowed number of labels - - """ - - def __init__(self, top_k_labels: int = 1): - self.frames = {} - self.video_details = self.video_details = dict(frame_width=None, frame_height=None, frame_rate=None, - video_name=None) - self.top_k_labels = top_k_labels - self.start_time = datetime.now() - - def set_top_k(self, value): - self.top_k_labels = value - - def frame_exists(self, frame_id: int) -> bool: - """ - Args: - frame_id (int): - - Returns: - bool: true if frame_id is recognized - """ - return frame_id in self.frames.keys() - - def add_frame(self, frame_id: int, timestamp: float = None) -> None: - """ - Args: - frame_id (int): - timestamp (float): opencv captured frame time property - - Raises: - ValueError: if frame_id would not exist in class frames attribute - - Returns: - None - - """ - if not self.frame_exists(frame_id): - self.frames[frame_id] = Frame(frame_id, timestamp) - else: - raise ValueError("Frame id: {} already exists".format(frame_id)) - - def bbox_exists(self, frame_id: int, bbox_id: int) -> bool: - """ - Args: - frame_id: - bbox_id: - - Returns: - bool: if bbox exists in frame bboxes list - """ - bboxes = [] - if self.frame_exists(frame_id=frame_id): - bboxes = [bbox.bbox_id for bbox in self.frames[frame_id].bboxes] - return bbox_id in bboxes - - def find_bbox(self, frame_id: int, bbox_id: int): - """ - - Args: - frame_id: - bbox_id: - - Returns: - bbox_id (int): - - Raises: - ValueError: if bbox_id does not exist in the bbox list of specific frame. - """ - if not self.bbox_exists(frame_id, bbox_id): - raise ValueError("frame with id: {} does not contain bbox with id: {}".format(frame_id, bbox_id)) - bboxes = {bbox.bbox_id: bbox for bbox in self.frames[frame_id].bboxes} - return bboxes.get(bbox_id) - - def add_bbox_to_frame(self, frame_id: int, bbox_id: int, top: int, left: int, width: int, height: int) -> None: - """ - - Args: - frame_id (int): - bbox_id (int): - top (int): - left (int): - width (int): - height (int): - - Returns: - None - - Raises: - ValueError: if bbox_id already exist in frame information with frame_id - ValueError: if frame_id does not exist in frames attribute - """ - if self.frame_exists(frame_id): - frame = self.frames[frame_id] - if not self.bbox_exists(frame_id, bbox_id): - frame.add_bbox(bbox_id, top, left, width, height) - else: - raise ValueError( - "frame with frame_id: {} already contains the bbox with id: {} ".format(frame_id, bbox_id)) - else: - raise ValueError("frame with frame_id: {} does not exist".format(frame_id)) - - def add_label_to_bbox(self, frame_id: int, bbox_id: int, category: str, confidence: float): - """ - Args: - frame_id: - bbox_id: - category: - confidence: the confidence value returned from yolo detection - - Returns: - None - - Raises: - ValueError: if labels quota (top_k_labels) exceeds. - """ - bbox = self.find_bbox(frame_id, bbox_id) - if not bbox.labels_full(self.top_k_labels): - bbox.add_label(category, confidence) - else: - raise ValueError("labels in frame_id: {}, bbox_id: {} is fulled".format(frame_id, bbox_id)) - - def add_video_details(self, frame_width: int = None, frame_height: int = None, frame_rate: int = None, - video_name: str = None): - self.video_details['frame_width'] = frame_width - self.video_details['frame_height'] = frame_height - self.video_details['frame_rate'] = frame_rate - self.video_details['video_name'] = video_name - - def output(self): - output = {'video_details': self.video_details} - result = list(self.frames.values()) - output['frames'] = [item.dic() for item in result] - return output - - def json_output(self, output_name): - """ - Args: - output_name: - - Returns: - None - - Notes: - It creates the json output with `output_name` name. - """ - if not output_name.endswith('.json'): - output_name += '.json' - with open(output_name, 'w') as file: - json.dump(self.output(), file) - file.close() - - def set_start(self): - self.start_time = datetime.now() - - def schedule_output_by_time(self, output_dir=JsonMeta.PATH_TO_SAVE, hours: int = 0, minutes: int = 0, - seconds: int = 60) -> None: - """ - Notes: - Creates folder and then periodically stores the jsons on that address. - - Args: - output_dir (str): the directory where output files will be stored - hours (int): - minutes (int): - seconds (int): - - Returns: - None - - """ - end = datetime.now() - interval = 0 - interval += abs(min([hours, JsonMeta.HOURS]) * 3600) - interval += abs(min([minutes, JsonMeta.MINUTES]) * 60) - interval += abs(min([seconds, JsonMeta.SECONDS])) - diff = (end - self.start_time).seconds - - if diff > interval: - output_name = self.start_time.strftime('%Y-%m-%d %H-%M-%S') + '.json' - if not exists(output_dir): - makedirs(output_dir) - output = join(output_dir, output_name) - self.json_output(output_name=output) - self.frames = {} - self.start_time = datetime.now() - - def schedule_output_by_frames(self, frames_quota, frame_counter, output_dir=JsonMeta.PATH_TO_SAVE): - """ - saves as the number of frames quota increases higher. - :param frames_quota: - :param frame_counter: - :param output_dir: - :return: - """ - pass - - def flush(self, output_dir): - """ - Notes: - We use this function to output jsons whenever possible. - like the time that we exit the while loop of opencv. - - Args: - output_dir: - - Returns: - None - - """ - filename = self.start_time.strftime('%Y-%m-%d %H-%M-%S') + '-remaining.json' - output = join(output_dir, filename) - self.json_output(output_name=output) diff --git a/spaces/KyanChen/RSPrompter/configs/rsprompter/samdet_fasterrcnn_ssdd_config.py b/spaces/KyanChen/RSPrompter/configs/rsprompter/samdet_fasterrcnn_ssdd_config.py deleted file mode 100644 index 935ec91a268aacf0915ba90210be96608c8ab517..0000000000000000000000000000000000000000 --- a/spaces/KyanChen/RSPrompter/configs/rsprompter/samdet_fasterrcnn_ssdd_config.py +++ /dev/null @@ -1,344 +0,0 @@ -custom_imports = dict(imports=['mmseg.datasets', 'mmseg.models'], allow_failed_imports=False) - -sub_model_train = [ - 'whole_model' -] - -sub_model_optim = { - 'whole_model': {'lr_mult': 1}, -} - -max_epochs = 1000 - -optimizer = dict( - type='AdamW', - sub_model=sub_model_optim, - lr=0.0005, - weight_decay=1e-3 -) - -param_scheduler = [ - # warm up learning rate scheduler - dict( - type='LinearLR', - start_factor=5e-4, - by_epoch=True, - begin=0, - end=1, - # update by iter - convert_to_iter_based=True), - # main learning rate scheduler - dict( - type='CosineAnnealingLR', - T_max=max_epochs, - by_epoch=True, - begin=1, - end=max_epochs, - ), -] - -param_scheduler_callback = dict( - type='ParamSchedulerHook' -) - -evaluator_ = dict( - type='CocoPLMetric', - metric=['bbox', 'segm'], - proposal_nums=[1, 10, 100] -) - -evaluator = dict( - # train_evaluator=evaluator_, - val_evaluator=evaluator_, -) - - -image_size = (1024, 1024) - -data_preprocessor = dict( - type='mmdet.DetDataPreprocessor', - mean=[123.675, 116.28, 103.53], - std=[58.395, 57.12, 57.375], - bgr_to_rgb=True, - pad_size_divisor=32, - pad_mask=True, - mask_pad_value=0, -) - -num_things_classes = 1 -num_stuff_classes = 0 -num_classes = num_things_classes + num_stuff_classes - -model = dict( - type='mmdet.FasterRCNN', - data_preprocessor=data_preprocessor, - backbone=dict( - type='mmdet.ResNet', - depth=50, - num_stages=4, - out_indices=(0, 1, 2, 3), - frozen_stages=1, - norm_cfg=dict(type='BN', requires_grad=True), - norm_eval=True, - style='pytorch', - init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), - neck=dict( - type='mmdet.FPN', - in_channels=[256, 512, 1024, 2048], - out_channels=256, - num_outs=5), - rpn_head=dict( - type='mmdet.RPNHead', - in_channels=256, - feat_channels=256, - anchor_generator=dict( - type='mmdet.AnchorGenerator', - scales=[8], - ratios=[0.5, 1.0, 2.0], - strides=[4, 8, 16, 32, 64]), - bbox_coder=dict( - type='mmdet.DeltaXYWHBBoxCoder', - target_means=[.0, .0, .0, .0], - target_stds=[1.0, 1.0, 1.0, 1.0]), - loss_cls=dict( - type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), - loss_bbox=dict(type='mmdet.L1Loss', loss_weight=1.0)), - roi_head=dict( - type='mmdet.StandardRoIHead', - bbox_roi_extractor=dict( - type='mmdet.SingleRoIExtractor', - roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), - out_channels=256, - featmap_strides=[4, 8, 16, 32]), - bbox_head=dict( - type='mmdet.Shared2FCBBoxHead', - in_channels=256, - fc_out_channels=1024, - roi_feat_size=7, - num_classes=80, - bbox_coder=dict( - type='mmdet.DeltaXYWHBBoxCoder', - target_means=[0., 0., 0., 0.], - target_stds=[0.1, 0.1, 0.2, 0.2]), - reg_class_agnostic=False, - loss_cls=dict( - type='mmdet.CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), - loss_bbox=dict(type='mmdet.L1Loss', loss_weight=1.0))), - # model training and testing settings - train_cfg=dict( - rpn=dict( - assigner=dict( - type='mmdet.MaxIoUAssigner', - pos_iou_thr=0.7, - neg_iou_thr=0.3, - min_pos_iou=0.3, - match_low_quality=True, - ignore_iof_thr=-1), - sampler=dict( - type='mmdet.RandomSampler', - num=256, - pos_fraction=0.5, - neg_pos_ub=-1, - add_gt_as_proposals=False), - allowed_border=-1, - pos_weight=-1, - debug=False), - rpn_proposal=dict( - nms_pre=2000, - max_per_img=1000, - nms=dict(type='nms', iou_threshold=0.7), - min_bbox_size=0), - rcnn=dict( - assigner=dict( - type='mmdet.MaxIoUAssigner', - pos_iou_thr=0.5, - neg_iou_thr=0.5, - min_pos_iou=0.5, - match_low_quality=False, - ignore_iof_thr=-1), - sampler=dict( - type='mmdet.RandomSampler', - num=512, - pos_fraction=0.25, - neg_pos_ub=-1, - add_gt_as_proposals=True), - pos_weight=-1, - debug=False)), - test_cfg=dict( - rpn=dict( - nms_pre=1000, - max_per_img=1000, - nms=dict(type='nms', iou_threshold=0.7), - min_bbox_size=0), - rcnn=dict( - score_thr=0.05, - nms=dict(type='nms', iou_threshold=0.5), - max_per_img=100) - # soft-nms is also supported for rcnn testing - # e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05) - )) - -model_cfg = dict( - type='SegSAMDetPLer', - hyperparameters=dict( - optimizer=optimizer, - param_scheduler=param_scheduler, - evaluator=evaluator, - ), - need_train_names=sub_model_train, - whole_model=model, - backbone=dict( - type='vit_h', - checkpoint='pretrain/sam/sam_vit_h_4b8939.pth', - # type='vit_b', - # checkpoint='pretrain/sam/sam_vit_b_01ec64.pth', - ) -) - -task_name = 'ssdd_ins' -exp_name = 'E20230531_8' -logger = dict( - type='WandbLogger', - project=task_name, - group='samdet', - name=exp_name -) -# logger = None - -callbacks = [ - param_scheduler_callback, - dict( - type='ModelCheckpoint', - dirpath=f'results/{task_name}/{exp_name}/checkpoints', - save_last=True, - mode='max', - monitor='valsegm_map_0', - save_top_k=2, - filename='epoch_{epoch}-map_{valsegm_map_0:.4f}' - ), - dict( - type='LearningRateMonitor', - logging_interval='step' - ) -] - - -trainer_cfg = dict( - compiled_model=False, - accelerator="auto", - # strategy="auto", - # strategy="ddp", - strategy='ddp_find_unused_parameters_true', - # precision='32', - # precision='16-mixed', - devices=8, - default_root_dir=f'results/{task_name}/{exp_name}', - # default_root_dir='results/tmp', - max_epochs=max_epochs, - logger=logger, - callbacks=callbacks, - log_every_n_steps=5, - check_val_every_n_epoch=5, - benchmark=True, - # sync_batchnorm=True, - # fast_dev_run=True, - - # limit_train_batches=1, - # limit_val_batches=0, - # limit_test_batches=None, - # limit_predict_batches=None, - # overfit_batches=0.0, - - # val_check_interval=None, - # num_sanity_val_steps=0, - # enable_checkpointing=None, - # enable_progress_bar=None, - # enable_model_summary=None, - # accumulate_grad_batches=32, - # gradient_clip_val=15, - # gradient_clip_algorithm='norm', - # deterministic=None, - # inference_mode: bool=True, - use_distributed_sampler=True, - # profiler="simple", - # detect_anomaly=False, - # barebones=False, - # plugins=None, - # reload_dataloaders_every_n_epochs=0, -) - - -backend_args = None -train_pipeline = [ - dict(type='mmdet.LoadImageFromFile'), - dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True), - dict(type='mmdet.Resize', scale=image_size), - dict(type='mmdet.RandomFlip', prob=0.5), - dict(type='mmdet.PackDetInputs') -] - -test_pipeline = [ - dict(type='mmdet.LoadImageFromFile', backend_args=backend_args), - dict(type='mmdet.Resize', scale=image_size), - # If you don't have a gt annotation, delete the pipeline - dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True), - dict( - type='mmdet.PackDetInputs', - meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', - 'scale_factor')) -] - - -train_batch_size_per_gpu = 4 -train_num_workers = 4 -test_batch_size_per_gpu = 4 -test_num_workers = 4 -persistent_workers = True - -data_parent = '/mnt/search01/dataset/cky_data/SSDD' -dataset_type = 'SSDDInsSegDataset' - - -val_loader = dict( - batch_size=test_batch_size_per_gpu, - num_workers=test_num_workers, - persistent_workers=persistent_workers, - pin_memory=True, - dataset=dict( - type=dataset_type, - data_root=data_parent, - # ann_file='NWPU_instances_val.json', - # data_prefix=dict(img_path='positive image set'), - ann_file='annotations/SSDD_instances_val.json', - data_prefix=dict(img_path='imgs'), - # ann_file='annotations/WHU_building_test.json', - # data_prefix=dict(img_path=val_data_prefix + '/image'), - test_mode=True, - filter_cfg=dict(filter_empty_gt=True, min_size=32), - pipeline=test_pipeline, - backend_args=backend_args)) - -datamodule_cfg = dict( - type='PLDataModule', - train_loader=dict( - batch_size=train_batch_size_per_gpu, - num_workers=train_num_workers, - persistent_workers=persistent_workers, - pin_memory=True, - dataset=dict( - type=dataset_type, - data_root=data_parent, - # ann_file='NWPU_instances_train.json', - # data_prefix=dict(img_path='positive image set'), - ann_file='annotations/SSDD_instances_train.json', - data_prefix=dict(img_path='imgs'), - # ann_file='NWPU_instances_train.json', - # data_prefix=dict(img_path='positive image set'), - filter_cfg=dict(filter_empty_gt=True, min_size=32), - pipeline=train_pipeline, - backend_args=backend_args) - ), - val_loader=val_loader, - # test_loader=val_loader - predict_loader=val_loader -) \ No newline at end of file diff --git a/spaces/KyanChen/RSPrompter/mmdet/datasets/crowdhuman.py b/spaces/KyanChen/RSPrompter/mmdet/datasets/crowdhuman.py deleted file mode 100644 index 650176ee545ba6a10a816517553b3b77718d945b..0000000000000000000000000000000000000000 --- a/spaces/KyanChen/RSPrompter/mmdet/datasets/crowdhuman.py +++ /dev/null @@ -1,159 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import json -import logging -import os.path as osp -import warnings -from typing import List, Union - -import mmcv -from mmengine.dist import get_rank -from mmengine.fileio import dump, get, get_text, load -from mmengine.logging import print_log -from mmengine.utils import ProgressBar - -from mmdet.registry import DATASETS -from .base_det_dataset import BaseDetDataset - - -@DATASETS.register_module() -class CrowdHumanDataset(BaseDetDataset): - r"""Dataset for CrowdHuman. - - Args: - data_root (str): The root directory for - ``data_prefix`` and ``ann_file``. - ann_file (str): Annotation file path. - extra_ann_file (str | optional):The path of extra image metas - for CrowdHuman. It can be created by CrowdHumanDataset - automatically or by tools/misc/get_crowdhuman_id_hw.py - manually. Defaults to None. - """ - - METAINFO = { - 'classes': ('person', ), - # palette is a list of color tuples, which is used for visualization. - 'palette': [(220, 20, 60)] - } - - def __init__(self, data_root, ann_file, extra_ann_file=None, **kwargs): - # extra_ann_file record the size of each image. This file is - # automatically created when you first load the CrowdHuman - # dataset by mmdet. - if extra_ann_file is not None: - self.extra_ann_exist = True - self.extra_anns = load(extra_ann_file) - else: - ann_file_name = osp.basename(ann_file) - if 'train' in ann_file_name: - self.extra_ann_file = osp.join(data_root, 'id_hw_train.json') - elif 'val' in ann_file_name: - self.extra_ann_file = osp.join(data_root, 'id_hw_val.json') - self.extra_ann_exist = False - if not osp.isfile(self.extra_ann_file): - print_log( - 'extra_ann_file does not exist, prepare to collect ' - 'image height and width...', - level=logging.INFO) - self.extra_anns = {} - else: - self.extra_ann_exist = True - self.extra_anns = load(self.extra_ann_file) - super().__init__(data_root=data_root, ann_file=ann_file, **kwargs) - - def load_data_list(self) -> List[dict]: - """Load annotations from an annotation file named as ``self.ann_file`` - - Returns: - List[dict]: A list of annotation. - """ # noqa: E501 - anno_strs = get_text( - self.ann_file, backend_args=self.backend_args).strip().split('\n') - print_log('loading CrowdHuman annotation...', level=logging.INFO) - data_list = [] - prog_bar = ProgressBar(len(anno_strs)) - for i, anno_str in enumerate(anno_strs): - anno_dict = json.loads(anno_str) - parsed_data_info = self.parse_data_info(anno_dict) - data_list.append(parsed_data_info) - prog_bar.update() - if not self.extra_ann_exist and get_rank() == 0: - # TODO: support file client - try: - dump(self.extra_anns, self.extra_ann_file, file_format='json') - except: # noqa - warnings.warn( - 'Cache files can not be saved automatically! To speed up' - 'loading the dataset, please manually generate the cache' - ' file by file tools/misc/get_crowdhuman_id_hw.py') - - print_log( - f'\nsave extra_ann_file in {self.data_root}', - level=logging.INFO) - - del self.extra_anns - print_log('\nDone', level=logging.INFO) - return data_list - - def parse_data_info(self, raw_data_info: dict) -> Union[dict, List[dict]]: - """Parse raw annotation to target format. - - Args: - raw_data_info (dict): Raw data information load from ``ann_file`` - - Returns: - Union[dict, List[dict]]: Parsed annotation. - """ - data_info = {} - img_path = osp.join(self.data_prefix['img'], - f"{raw_data_info['ID']}.jpg") - data_info['img_path'] = img_path - data_info['img_id'] = raw_data_info['ID'] - - if not self.extra_ann_exist: - img_bytes = get(img_path, backend_args=self.backend_args) - img = mmcv.imfrombytes(img_bytes, backend='cv2') - data_info['height'], data_info['width'] = img.shape[:2] - self.extra_anns[raw_data_info['ID']] = img.shape[:2] - del img, img_bytes - else: - data_info['height'], data_info['width'] = self.extra_anns[ - raw_data_info['ID']] - - instances = [] - for i, ann in enumerate(raw_data_info['gtboxes']): - instance = {} - if ann['tag'] not in self.metainfo['classes']: - instance['bbox_label'] = -1 - instance['ignore_flag'] = 1 - else: - instance['bbox_label'] = self.metainfo['classes'].index( - ann['tag']) - instance['ignore_flag'] = 0 - if 'extra' in ann: - if 'ignore' in ann['extra']: - if ann['extra']['ignore'] != 0: - instance['bbox_label'] = -1 - instance['ignore_flag'] = 1 - - x1, y1, w, h = ann['fbox'] - bbox = [x1, y1, x1 + w, y1 + h] - instance['bbox'] = bbox - - # Record the full bbox(fbox), head bbox(hbox) and visible - # bbox(vbox) as additional information. If you need to use - # this information, you just need to design the pipeline - # instead of overriding the CrowdHumanDataset. - instance['fbox'] = bbox - hbox = ann['hbox'] - instance['hbox'] = [ - hbox[0], hbox[1], hbox[0] + hbox[2], hbox[1] + hbox[3] - ] - vbox = ann['vbox'] - instance['vbox'] = [ - vbox[0], vbox[1], vbox[0] + vbox[2], vbox[1] + vbox[3] - ] - - instances.append(instance) - - data_info['instances'] = instances - return data_info diff --git a/spaces/Laden0p/Joeythemonster-anything-midjourney-v-4-1/app.py b/spaces/Laden0p/Joeythemonster-anything-midjourney-v-4-1/app.py deleted file mode 100644 index 262436d8b50f87b0953c645576cc3184b3b27b43..0000000000000000000000000000000000000000 --- a/spaces/Laden0p/Joeythemonster-anything-midjourney-v-4-1/app.py +++ /dev/null @@ -1,3 +0,0 @@ -import gradio as gr - -gr.Interface.load("models/Joeythemonster/anything-midjourney-v-4-1").launch() \ No newline at end of file diff --git a/spaces/LanguageBind/LanguageBind/v_cls/loader.py b/spaces/LanguageBind/LanguageBind/v_cls/loader.py deleted file mode 100644 index 78643795909707d92fe9dfa2a3bbf11fc05f59ca..0000000000000000000000000000000000000000 --- a/spaces/LanguageBind/LanguageBind/v_cls/loader.py +++ /dev/null @@ -1,52 +0,0 @@ -import io - -import cv2 -import numpy as np -from decord import VideoReader, cpu - -try: - from petrel_client.client import Client - petrel_backend_imported = True -except (ImportError, ModuleNotFoundError): - petrel_backend_imported = False - - -def get_video_loader(use_petrel_backend: bool = True, - enable_mc: bool = True, - conf_path: str = None): - if petrel_backend_imported and use_petrel_backend: - _client = Client(conf_path=conf_path, enable_mc=enable_mc) - else: - _client = None - - def _loader(video_path): - if _client is not None and 's3:' in video_path: - video_path = io.BytesIO(_client.get(video_path)) - - vr = VideoReader(video_path, num_threads=1, ctx=cpu(0)) - return vr - - return _loader - - -def get_image_loader(use_petrel_backend: bool = True, - enable_mc: bool = True, - conf_path: str = None): - if petrel_backend_imported and use_petrel_backend: - _client = Client(conf_path=conf_path, enable_mc=enable_mc) - else: - _client = None - - def _loader(frame_path): - if _client is not None and 's3:' in frame_path: - img_bytes = _client.get(frame_path) - else: - with open(frame_path, 'rb') as f: - img_bytes = f.read() - - img_np = np.frombuffer(img_bytes, np.uint8) - img = cv2.imdecode(img_np, cv2.IMREAD_COLOR) - cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img) - return img - - return _loader diff --git a/spaces/Lewislou/Lewislou-cell-seg-sribd/utils_modify.py b/spaces/Lewislou/Lewislou-cell-seg-sribd/utils_modify.py deleted file mode 100644 index f5cc7b4a779b92e3b5c753440be55759689574f4..0000000000000000000000000000000000000000 --- a/spaces/Lewislou/Lewislou-cell-seg-sribd/utils_modify.py +++ /dev/null @@ -1,743 +0,0 @@ -# Copyright (c) MONAI Consortium -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import warnings -from typing import Any, Callable, Dict, List, Mapping, Sequence, Tuple, Union -import numpy as np -import torch -import torch.nn.functional as F -from stardist_pkg.big import _grid_divisible, BlockND, OBJECT_KEYS#, repaint_labels -from stardist_pkg.matching import relabel_sequential -from stardist_pkg import dist_to_coord, non_maximum_suppression, polygons_to_label -#from stardist_pkg import dist_to_coord, polygons_to_label -from stardist_pkg import star_dist,edt_prob -from monai.data.meta_tensor import MetaTensor -from monai.data.utils import compute_importance_map, dense_patch_slices, get_valid_patch_size -from monai.transforms import Resize -from monai.utils import ( - BlendMode, - PytorchPadMode, - convert_data_type, - convert_to_dst_type, - ensure_tuple, - fall_back_tuple, - look_up_option, - optional_import, -) -import cv2 -from scipy import ndimage -from scipy.ndimage.filters import gaussian_filter -from scipy.ndimage.interpolation import affine_transform, map_coordinates -from skimage import morphology as morph -from scipy.ndimage import filters, measurements -from scipy.ndimage.morphology import ( - binary_dilation, - binary_fill_holes, - distance_transform_cdt, - distance_transform_edt, -) - -from skimage.segmentation import watershed -tqdm, _ = optional_import("tqdm", name="tqdm") - -__all__ = ["sliding_window_inference"] - - -#### -def normalize(mask, dtype=np.uint8): - return (255 * mask / np.amax(mask)).astype(dtype) - -def fix_mirror_padding(ann): - """Deal with duplicated instances due to mirroring in interpolation - during shape augmentation (scale, rotation etc.). - - """ - current_max_id = np.amax(ann) - inst_list = list(np.unique(ann)) - if 0 in inst_list: - inst_list.remove(0) # 0 is background - for inst_id in inst_list: - inst_map = np.array(ann == inst_id, np.uint8) - remapped_ids = measurements.label(inst_map)[0] - remapped_ids[remapped_ids > 1] += current_max_id - ann[remapped_ids > 1] = remapped_ids[remapped_ids > 1] - current_max_id = np.amax(ann) - return ann - -#### -def get_bounding_box(img): - """Get bounding box coordinate information.""" - rows = np.any(img, axis=1) - cols = np.any(img, axis=0) - rmin, rmax = np.where(rows)[0][[0, -1]] - cmin, cmax = np.where(cols)[0][[0, -1]] - # due to python indexing, need to add 1 to max - # else accessing will be 1px in the box, not out - rmax += 1 - cmax += 1 - return [rmin, rmax, cmin, cmax] - - -#### -def cropping_center(x, crop_shape, batch=False): - """Crop an input image at the centre. - - Args: - x: input array - crop_shape: dimensions of cropped array - - Returns: - x: cropped array - - """ - orig_shape = x.shape - if not batch: - h0 = int((orig_shape[0] - crop_shape[0]) * 0.5) - w0 = int((orig_shape[1] - crop_shape[1]) * 0.5) - x = x[h0 : h0 + crop_shape[0], w0 : w0 + crop_shape[1]] - else: - h0 = int((orig_shape[1] - crop_shape[0]) * 0.5) - w0 = int((orig_shape[2] - crop_shape[1]) * 0.5) - x = x[:, h0 : h0 + crop_shape[0], w0 : w0 + crop_shape[1]] - return x - -def gen_instance_hv_map(ann, crop_shape): - """Input annotation must be of original shape. - - The map is calculated only for instances within the crop portion - but based on the original shape in original image. - - Perform following operation: - Obtain the horizontal and vertical distance maps for each - nuclear instance. - - """ - orig_ann = ann.copy() # instance ID map - fixed_ann = fix_mirror_padding(orig_ann) - # re-cropping with fixed instance id map - crop_ann = cropping_center(fixed_ann, crop_shape) - # TODO: deal with 1 label warning - crop_ann = morph.remove_small_objects(crop_ann, min_size=30) - - x_map = np.zeros(orig_ann.shape[:2], dtype=np.float32) - y_map = np.zeros(orig_ann.shape[:2], dtype=np.float32) - - inst_list = list(np.unique(crop_ann)) - if 0 in inst_list: - inst_list.remove(0) # 0 is background - for inst_id in inst_list: - inst_map = np.array(fixed_ann == inst_id, np.uint8) - inst_box = get_bounding_box(inst_map) # rmin, rmax, cmin, cmax - - # expand the box by 2px - # Because we first pad the ann at line 207, the bboxes - # will remain valid after expansion - inst_box[0] -= 2 - inst_box[2] -= 2 - inst_box[1] += 2 - inst_box[3] += 2 - - # fix inst_box - inst_box[0] = max(inst_box[0], 0) - inst_box[2] = max(inst_box[2], 0) - # inst_box[1] = min(inst_box[1], fixed_ann.shape[0]) - # inst_box[3] = min(inst_box[3], fixed_ann.shape[1]) - - inst_map = inst_map[inst_box[0] : inst_box[1], inst_box[2] : inst_box[3]] - - if inst_map.shape[0] < 2 or inst_map.shape[1] < 2: - print(f'inst_map.shape < 2: {inst_map.shape}, {inst_box}, {get_bounding_box(np.array(fixed_ann == inst_id, np.uint8))}') - continue - - # instance center of mass, rounded to nearest pixel - inst_com = list(measurements.center_of_mass(inst_map)) - if np.isnan(measurements.center_of_mass(inst_map)).any(): - print(inst_id, fixed_ann.shape, np.array(fixed_ann == inst_id, np.uint8).shape) - print(get_bounding_box(np.array(fixed_ann == inst_id, np.uint8))) - print(inst_map) - print(inst_list) - print(inst_box) - print(np.count_nonzero(np.array(fixed_ann == inst_id, np.uint8))) - - inst_com[0] = int(inst_com[0] + 0.5) - inst_com[1] = int(inst_com[1] + 0.5) - - inst_x_range = np.arange(1, inst_map.shape[1] + 1) - inst_y_range = np.arange(1, inst_map.shape[0] + 1) - # shifting center of pixels grid to instance center of mass - inst_x_range -= inst_com[1] - inst_y_range -= inst_com[0] - - inst_x, inst_y = np.meshgrid(inst_x_range, inst_y_range) - - # remove coord outside of instance - inst_x[inst_map == 0] = 0 - inst_y[inst_map == 0] = 0 - inst_x = inst_x.astype("float32") - inst_y = inst_y.astype("float32") - - # normalize min into -1 scale - if np.min(inst_x) < 0: - inst_x[inst_x < 0] /= -np.amin(inst_x[inst_x < 0]) - if np.min(inst_y) < 0: - inst_y[inst_y < 0] /= -np.amin(inst_y[inst_y < 0]) - # normalize max into +1 scale - if np.max(inst_x) > 0: - inst_x[inst_x > 0] /= np.amax(inst_x[inst_x > 0]) - if np.max(inst_y) > 0: - inst_y[inst_y > 0] /= np.amax(inst_y[inst_y > 0]) - - #### - x_map_box = x_map[inst_box[0] : inst_box[1], inst_box[2] : inst_box[3]] - x_map_box[inst_map > 0] = inst_x[inst_map > 0] - - y_map_box = y_map[inst_box[0] : inst_box[1], inst_box[2] : inst_box[3]] - y_map_box[inst_map > 0] = inst_y[inst_map > 0] - - hv_map = np.dstack([x_map, y_map]) - return hv_map - -def remove_small_objects(pred, min_size=64, connectivity=1): - """Remove connected components smaller than the specified size. - - This function is taken from skimage.morphology.remove_small_objects, but the warning - is removed when a single label is provided. - - Args: - pred: input labelled array - min_size: minimum size of instance in output array - connectivity: The connectivity defining the neighborhood of a pixel. - - Returns: - out: output array with instances removed under min_size - - """ - out = pred - - if min_size == 0: # shortcut for efficiency - return out - - if out.dtype == bool: - selem = ndimage.generate_binary_structure(pred.ndim, connectivity) - ccs = np.zeros_like(pred, dtype=np.int32) - ndimage.label(pred, selem, output=ccs) - else: - ccs = out - - try: - component_sizes = np.bincount(ccs.ravel()) - except ValueError: - raise ValueError( - "Negative value labels are not supported. Try " - "relabeling the input with `scipy.ndimage.label` or " - "`skimage.morphology.label`." - ) - - too_small = component_sizes < min_size - too_small_mask = too_small[ccs] - out[too_small_mask] = 0 - - return out - -#### -def gen_targets(ann, crop_shape, **kwargs): - """Generate the targets for the network.""" - hv_map = gen_instance_hv_map(ann, crop_shape) - np_map = ann.copy() - np_map[np_map > 0] = 1 - - hv_map = cropping_center(hv_map, crop_shape) - np_map = cropping_center(np_map, crop_shape) - - target_dict = { - "hv_map": hv_map, - "np_map": np_map, - } - - return target_dict -def __proc_np_hv(pred, np_thres=0.5, ksize=21, overall_thres=0.4, obj_size_thres=10): - """Process Nuclei Prediction with XY Coordinate Map. - - Args: - pred: prediction output, assuming - channel 0 contain probability map of nuclei - channel 1 containing the regressed X-map - channel 2 containing the regressed Y-map - - """ - pred = np.array(pred, dtype=np.float32) - - blb_raw = pred[..., 0] - h_dir_raw = pred[..., 1] - v_dir_raw = pred[..., 2] - - # processing - blb = np.array(blb_raw >= np_thres, dtype=np.int32) - - blb = measurements.label(blb)[0] - blb = remove_small_objects(blb, min_size=10) - blb[blb > 0] = 1 # background is 0 already - - h_dir = cv2.normalize( - h_dir_raw, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F - ) - v_dir = cv2.normalize( - v_dir_raw, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F - ) - - sobelh = cv2.Sobel(h_dir, cv2.CV_64F, 1, 0, ksize=ksize) - sobelv = cv2.Sobel(v_dir, cv2.CV_64F, 0, 1, ksize=ksize) - - sobelh = 1 - ( - cv2.normalize( - sobelh, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F - ) - ) - sobelv = 1 - ( - cv2.normalize( - sobelv, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F - ) - ) - - overall = np.maximum(sobelh, sobelv) - overall = overall - (1 - blb) - overall[overall < 0] = 0 - - dist = (1.0 - overall) * blb - ## nuclei values form mountains so inverse to get basins - dist = -cv2.GaussianBlur(dist, (3, 3), 0) - - overall = np.array(overall >= overall_thres, dtype=np.int32) - - marker = blb - overall - marker[marker < 0] = 0 - marker = binary_fill_holes(marker).astype("uint8") - kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)) - marker = cv2.morphologyEx(marker, cv2.MORPH_OPEN, kernel) - marker = measurements.label(marker)[0] - marker = remove_small_objects(marker, min_size=obj_size_thres) - - proced_pred = watershed(dist, markers=marker, mask=blb) - - return proced_pred - -#### -def colorize(ch, vmin, vmax): - """Will clamp value value outside the provided range to vmax and vmin.""" - cmap = plt.get_cmap("jet") - ch = np.squeeze(ch.astype("float32")) - vmin = vmin if vmin is not None else ch.min() - vmax = vmax if vmax is not None else ch.max() - ch[ch > vmax] = vmax # clamp value - ch[ch < vmin] = vmin - ch = (ch - vmin) / (vmax - vmin + 1.0e-16) - # take RGB from RGBA heat map - ch_cmap = (cmap(ch)[..., :3] * 255).astype("uint8") - return ch_cmap - - -#### -def random_colors(N, bright=True): - """Generate random colors. - - To get visually distinct colors, generate them in HSV space then - convert to RGB. - """ - brightness = 1.0 if bright else 0.7 - hsv = [(i / N, 1, brightness) for i in range(N)] - colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv)) - random.shuffle(colors) - return colors - - -#### -def visualize_instances_map( - input_image, inst_map, type_map=None, type_colour=None, line_thickness=2 -): - """Overlays segmentation results on image as contours. - - Args: - input_image: input image - inst_map: instance mask with unique value for every object - type_map: type mask with unique value for every class - type_colour: a dict of {type : colour} , `type` is from 0-N - and `colour` is a tuple of (R, G, B) - line_thickness: line thickness of contours - - Returns: - overlay: output image with segmentation overlay as contours - """ - overlay = np.copy((input_image).astype(np.uint8)) - - inst_list = list(np.unique(inst_map)) # get list of instances - inst_list.remove(0) # remove background - - inst_rng_colors = random_colors(len(inst_list)) - inst_rng_colors = np.array(inst_rng_colors) * 255 - inst_rng_colors = inst_rng_colors.astype(np.uint8) - - for inst_idx, inst_id in enumerate(inst_list): - inst_map_mask = np.array(inst_map == inst_id, np.uint8) # get single object - y1, y2, x1, x2 = get_bounding_box(inst_map_mask) - y1 = y1 - 2 if y1 - 2 >= 0 else y1 - x1 = x1 - 2 if x1 - 2 >= 0 else x1 - x2 = x2 + 2 if x2 + 2 <= inst_map.shape[1] - 1 else x2 - y2 = y2 + 2 if y2 + 2 <= inst_map.shape[0] - 1 else y2 - inst_map_crop = inst_map_mask[y1:y2, x1:x2] - contours_crop = cv2.findContours( - inst_map_crop, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE - ) - # only has 1 instance per map, no need to check #contour detected by opencv - contours_crop = np.squeeze( - contours_crop[0][0].astype("int32") - ) # * opencv protocol format may break - contours_crop += np.asarray([[x1, y1]]) # index correction - if type_map is not None: - type_map_crop = type_map[y1:y2, x1:x2] - type_id = np.unique(type_map_crop).max() # non-zero - inst_colour = type_colour[type_id] - else: - inst_colour = (inst_rng_colors[inst_idx]).tolist() - cv2.drawContours(overlay, [contours_crop], -1, inst_colour, line_thickness) - return overlay - - -def sliding_window_inference_large(inputs,block_size,min_overlap,context,roi_size,sw_batch_size,predictor,device): - - h,w = inputs.shape[0],inputs.shape[1] - if h < 5000 or w < 5000: - test_tensor = torch.from_numpy(np.expand_dims(inputs, 0)).permute(0,3,1,2).type(torch.FloatTensor).to(device) - output_dist,output_prob = sliding_window_inference(test_tensor, roi_size, sw_batch_size, predictor) - prob = output_prob[0][0].cpu().numpy() - dist = output_dist[0].cpu().numpy() - dist = np.transpose(dist,(1,2,0)) - dist = np.maximum(1e-3, dist) - if h*w < 1500*1500: - points, probi, disti = non_maximum_suppression(dist,prob,prob_thresh=0.55, nms_thresh=0.4,cut=True) - else: - points, probi, disti = non_maximum_suppression(dist,prob,prob_thresh=0.5, nms_thresh=0.4) - - - labels_out = polygons_to_label(disti, points, prob=probi,shape=prob.shape) - else: - n = inputs.ndim - axes = 'YXC' - grid = (1,1,1) - if np.isscalar(block_size): block_size = n*[block_size] - if np.isscalar(min_overlap): min_overlap = n*[min_overlap] - if np.isscalar(context): context = n*[context] - shape_out = (inputs.shape[0],inputs.shape[1]) - labels_out = np.zeros(shape_out, dtype=np.uint64) - #print(inputs.dtype) - block_size[2] = inputs.shape[2] - min_overlap[2] = context[2] = 0 - block_size = tuple(_grid_divisible(g, v, name='block_size', verbose=False) for v,g,a in zip(block_size, grid,axes)) - min_overlap = tuple(_grid_divisible(g, v, name='min_overlap', verbose=False) for v,g,a in zip(min_overlap,grid,axes)) - context = tuple(_grid_divisible(g, v, name='context', verbose=False) for v,g,a in zip(context, grid,axes)) - print(f'effective: block_size={block_size}, min_overlap={min_overlap}, context={context}', flush=True) - blocks = BlockND.cover(inputs.shape, axes, block_size, min_overlap, context) - label_offset = 1 - blocks = tqdm(blocks) - for block in blocks: - image = block.read(inputs, axes=axes) - test_tensor = torch.from_numpy(np.expand_dims(image, 0)).permute(0,3,1,2).type(torch.FloatTensor).to(device) - output_dist,output_prob = sliding_window_inference(test_tensor, roi_size, sw_batch_size, predictor) - prob = output_prob[0][0].cpu().numpy() - dist = output_dist[0].cpu().numpy() - dist = np.transpose(dist,(1,2,0)) - dist = np.maximum(1e-3, dist) - points, probi, disti = non_maximum_suppression(dist,prob,prob_thresh=0.5, nms_thresh=0.4) - - coord = dist_to_coord(disti,points) - polys = dict(coord=coord, points=points, prob=probi) - labels = polygons_to_label(disti, points, prob=probi,shape=prob.shape) - labels = block.crop_context(labels, axes='YX') - labels, polys = block.filter_objects(labels, polys, axes='YX') - labels = relabel_sequential(labels, label_offset)[0] - if labels_out is not None: - block.write(labels_out, labels, axes='YX') - #for k,v in polys.items(): - #polys_all.setdefault(k,[]).append(v) - label_offset += len(polys['prob']) - del labels - #polys_all = {k: (np.concatenate(v) if k in OBJECT_KEYS else v[0]) for k,v in polys_all.items()} - return labels_out -def sliding_window_inference( - inputs: torch.Tensor, - roi_size: Union[Sequence[int], int], - sw_batch_size: int, - predictor: Callable[..., Union[torch.Tensor, Sequence[torch.Tensor], Dict[Any, torch.Tensor]]], - overlap: float = 0.25, - mode: Union[BlendMode, str] = BlendMode.CONSTANT, - sigma_scale: Union[Sequence[float], float] = 0.125, - padding_mode: Union[PytorchPadMode, str] = PytorchPadMode.CONSTANT, - cval: float = 0.0, - sw_device: Union[torch.device, str, None] = None, - device: Union[torch.device, str, None] = None, - progress: bool = False, - roi_weight_map: Union[torch.Tensor, None] = None, - *args: Any, - **kwargs: Any, -) -> Union[torch.Tensor, Tuple[torch.Tensor, ...], Dict[Any, torch.Tensor]]: - """ - Sliding window inference on `inputs` with `predictor`. - - The outputs of `predictor` could be a tensor, a tuple, or a dictionary of tensors. - Each output in the tuple or dict value is allowed to have different resolutions with respect to the input. - e.g., the input patch spatial size is [128,128,128], the output (a tuple of two patches) patch sizes - could be ([128,64,256], [64,32,128]). - In this case, the parameter `overlap` and `roi_size` need to be carefully chosen to ensure the output ROI is still - an integer. If the predictor's input and output spatial sizes are not equal, we recommend choosing the parameters - so that `overlap*roi_size*output_size/input_size` is an integer (for each spatial dimension). - - When roi_size is larger than the inputs' spatial size, the input image are padded during inference. - To maintain the same spatial sizes, the output image will be cropped to the original input size. - - Args: - inputs: input image to be processed (assuming NCHW[D]) - roi_size: the spatial window size for inferences. - When its components have None or non-positives, the corresponding inputs dimension will be used. - if the components of the `roi_size` are non-positive values, the transform will use the - corresponding components of img size. For example, `roi_size=(32, -1)` will be adapted - to `(32, 64)` if the second spatial dimension size of img is `64`. - sw_batch_size: the batch size to run window slices. - predictor: given input tensor ``patch_data`` in shape NCHW[D], - The outputs of the function call ``predictor(patch_data)`` should be a tensor, a tuple, or a dictionary - with Tensor values. Each output in the tuple or dict value should have the same batch_size, i.e. NM'H'W'[D']; - where H'W'[D'] represents the output patch's spatial size, M is the number of output channels, - N is `sw_batch_size`, e.g., the input shape is (7, 1, 128,128,128), - the output could be a tuple of two tensors, with shapes: ((7, 5, 128, 64, 256), (7, 4, 64, 32, 128)). - In this case, the parameter `overlap` and `roi_size` need to be carefully chosen - to ensure the scaled output ROI sizes are still integers. - If the `predictor`'s input and output spatial sizes are different, - we recommend choosing the parameters so that ``overlap*roi_size*zoom_scale`` is an integer for each dimension. - overlap: Amount of overlap between scans. - mode: {``"constant"``, ``"gaussian"``} - How to blend output of overlapping windows. Defaults to ``"constant"``. - - - ``"constant``": gives equal weight to all predictions. - - ``"gaussian``": gives less weight to predictions on edges of windows. - - sigma_scale: the standard deviation coefficient of the Gaussian window when `mode` is ``"gaussian"``. - Default: 0.125. Actual window sigma is ``sigma_scale`` * ``dim_size``. - When sigma_scale is a sequence of floats, the values denote sigma_scale at the corresponding - spatial dimensions. - padding_mode: {``"constant"``, ``"reflect"``, ``"replicate"``, ``"circular"``} - Padding mode for ``inputs``, when ``roi_size`` is larger than inputs. Defaults to ``"constant"`` - See also: https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html - cval: fill value for 'constant' padding mode. Default: 0 - sw_device: device for the window data. - By default the device (and accordingly the memory) of the `inputs` is used. - Normally `sw_device` should be consistent with the device where `predictor` is defined. - device: device for the stitched output prediction. - By default the device (and accordingly the memory) of the `inputs` is used. If for example - set to device=torch.device('cpu') the gpu memory consumption is less and independent of the - `inputs` and `roi_size`. Output is on the `device`. - progress: whether to print a `tqdm` progress bar. - roi_weight_map: pre-computed (non-negative) weight map for each ROI. - If not given, and ``mode`` is not `constant`, this map will be computed on the fly. - args: optional args to be passed to ``predictor``. - kwargs: optional keyword args to be passed to ``predictor``. - - Note: - - input must be channel-first and have a batch dim, supports N-D sliding window. - - """ - compute_dtype = inputs.dtype - num_spatial_dims = len(inputs.shape) - 2 - if overlap < 0 or overlap >= 1: - raise ValueError("overlap must be >= 0 and < 1.") - - # determine image spatial size and batch size - # Note: all input images must have the same image size and batch size - batch_size, _, *image_size_ = inputs.shape - - if device is None: - device = inputs.device - if sw_device is None: - sw_device = inputs.device - - roi_size = fall_back_tuple(roi_size, image_size_) - # in case that image size is smaller than roi size - image_size = tuple(max(image_size_[i], roi_size[i]) for i in range(num_spatial_dims)) - pad_size = [] - for k in range(len(inputs.shape) - 1, 1, -1): - diff = max(roi_size[k - 2] - inputs.shape[k], 0) - half = diff // 2 - pad_size.extend([half, diff - half]) - inputs = F.pad(inputs, pad=pad_size, mode=look_up_option(padding_mode, PytorchPadMode), value=cval) - #print('inputs',inputs.shape) - scan_interval = _get_scan_interval(image_size, roi_size, num_spatial_dims, overlap) - - # Store all slices in list - slices = dense_patch_slices(image_size, roi_size, scan_interval) - num_win = len(slices) # number of windows per image - total_slices = num_win * batch_size # total number of windows - - # Create window-level importance map - valid_patch_size = get_valid_patch_size(image_size, roi_size) - if valid_patch_size == roi_size and (roi_weight_map is not None): - importance_map = roi_weight_map - else: - try: - importance_map = compute_importance_map(valid_patch_size, mode=mode, sigma_scale=sigma_scale, device=device) - except BaseException as e: - raise RuntimeError( - "Seems to be OOM. Please try smaller patch size or mode='constant' instead of mode='gaussian'." - ) from e - importance_map = convert_data_type(importance_map, torch.Tensor, device, compute_dtype)[0] # type: ignore - # handle non-positive weights - min_non_zero = max(importance_map[importance_map != 0].min().item(), 1e-3) - importance_map = torch.clamp(importance_map.to(torch.float32), min=min_non_zero).to(compute_dtype) - - # Perform predictions - dict_key, output_image_list, count_map_list = None, [], [] - _initialized_ss = -1 - is_tensor_output = True # whether the predictor's output is a tensor (instead of dict/tuple) - - # for each patch - for slice_g in tqdm(range(0, total_slices, sw_batch_size)) if progress else range(0, total_slices, sw_batch_size): - slice_range = range(slice_g, min(slice_g + sw_batch_size, total_slices)) - unravel_slice = [ - [slice(int(idx / num_win), int(idx / num_win) + 1), slice(None)] + list(slices[idx % num_win]) - for idx in slice_range - ] - window_data = torch.cat( - [convert_data_type(inputs[win_slice], torch.Tensor)[0] for win_slice in unravel_slice] - ).to(sw_device) - seg_prob_out = predictor(window_data, *args, **kwargs) # batched patch segmentation - #print('seg_prob_out',seg_prob_out[0].shape) - # convert seg_prob_out to tuple seg_prob_tuple, this does not allocate new memory. - seg_prob_tuple: Tuple[torch.Tensor, ...] - if isinstance(seg_prob_out, torch.Tensor): - seg_prob_tuple = (seg_prob_out,) - elif isinstance(seg_prob_out, Mapping): - if dict_key is None: - dict_key = sorted(seg_prob_out.keys()) # track predictor's output keys - seg_prob_tuple = tuple(seg_prob_out[k] for k in dict_key) - is_tensor_output = False - else: - seg_prob_tuple = ensure_tuple(seg_prob_out) - is_tensor_output = False - - # for each output in multi-output list - for ss, seg_prob in enumerate(seg_prob_tuple): - seg_prob = seg_prob.to(device) # BxCxMxNxP or BxCxMxN - - # compute zoom scale: out_roi_size/in_roi_size - zoom_scale = [] - for axis, (img_s_i, out_w_i, in_w_i) in enumerate( - zip(image_size, seg_prob.shape[2:], window_data.shape[2:]) - ): - _scale = out_w_i / float(in_w_i) - if not (img_s_i * _scale).is_integer(): - warnings.warn( - f"For spatial axis: {axis}, output[{ss}] will have non-integer shape. Spatial " - f"zoom_scale between output[{ss}] and input is {_scale}. Please pad inputs." - ) - zoom_scale.append(_scale) - - if _initialized_ss < ss: # init. the ss-th buffer at the first iteration - # construct multi-resolution outputs - output_classes = seg_prob.shape[1] - output_shape = [batch_size, output_classes] + [ - int(image_size_d * zoom_scale_d) for image_size_d, zoom_scale_d in zip(image_size, zoom_scale) - ] - # allocate memory to store the full output and the count for overlapping parts - output_image_list.append(torch.zeros(output_shape, dtype=compute_dtype, device=device)) - count_map_list.append(torch.zeros([1, 1] + output_shape[2:], dtype=compute_dtype, device=device)) - _initialized_ss += 1 - - # resizing the importance_map - resizer = Resize(spatial_size=seg_prob.shape[2:], mode="nearest", anti_aliasing=False) - - # store the result in the proper location of the full output. Apply weights from importance map. - for idx, original_idx in zip(slice_range, unravel_slice): - # zoom roi - original_idx_zoom = list(original_idx) # 4D for 2D image, 5D for 3D image - for axis in range(2, len(original_idx_zoom)): - zoomed_start = original_idx[axis].start * zoom_scale[axis - 2] - zoomed_end = original_idx[axis].stop * zoom_scale[axis - 2] - if not zoomed_start.is_integer() or (not zoomed_end.is_integer()): - warnings.warn( - f"For axis-{axis-2} of output[{ss}], the output roi range is not int. " - f"Input roi range is ({original_idx[axis].start}, {original_idx[axis].stop}). " - f"Spatial zoom_scale between output[{ss}] and input is {zoom_scale[axis - 2]}. " - f"Corresponding output roi range is ({zoomed_start}, {zoomed_end}).\n" - f"Please change overlap ({overlap}) or roi_size ({roi_size[axis-2]}) for axis-{axis-2}. " - "Tips: if overlap*roi_size*zoom_scale is an integer, it usually works." - ) - original_idx_zoom[axis] = slice(int(zoomed_start), int(zoomed_end), None) - importance_map_zoom = resizer(importance_map.unsqueeze(0))[0].to(compute_dtype) - # store results and weights - output_image_list[ss][original_idx_zoom] += importance_map_zoom * seg_prob[idx - slice_g] - count_map_list[ss][original_idx_zoom] += ( - importance_map_zoom.unsqueeze(0).unsqueeze(0).expand(count_map_list[ss][original_idx_zoom].shape) - ) - - # account for any overlapping sections - for ss in range(len(output_image_list)): - output_image_list[ss] = (output_image_list[ss] / count_map_list.pop(0)).to(compute_dtype) - - # remove padding if image_size smaller than roi_size - for ss, output_i in enumerate(output_image_list): - if torch.isnan(output_i).any() or torch.isinf(output_i).any(): - warnings.warn("Sliding window inference results contain NaN or Inf.") - - zoom_scale = [ - seg_prob_map_shape_d / roi_size_d for seg_prob_map_shape_d, roi_size_d in zip(output_i.shape[2:], roi_size) - ] - - final_slicing: List[slice] = [] - for sp in range(num_spatial_dims): - slice_dim = slice(pad_size[sp * 2], image_size_[num_spatial_dims - sp - 1] + pad_size[sp * 2]) - slice_dim = slice( - int(round(slice_dim.start * zoom_scale[num_spatial_dims - sp - 1])), - int(round(slice_dim.stop * zoom_scale[num_spatial_dims - sp - 1])), - ) - final_slicing.insert(0, slice_dim) - while len(final_slicing) < len(output_i.shape): - final_slicing.insert(0, slice(None)) - output_image_list[ss] = output_i[final_slicing] - - if dict_key is not None: # if output of predictor is a dict - final_output = dict(zip(dict_key, output_image_list)) - else: - final_output = tuple(output_image_list) # type: ignore - final_output = final_output[0] if is_tensor_output else final_output - - if isinstance(inputs, MetaTensor): - final_output = convert_to_dst_type(final_output, inputs, device=device)[0] # type: ignore - return final_output - - -def _get_scan_interval( - image_size: Sequence[int], roi_size: Sequence[int], num_spatial_dims: int, overlap: float -) -> Tuple[int, ...]: - """ - Compute scan interval according to the image size, roi size and overlap. - Scan interval will be `int((1 - overlap) * roi_size)`, if interval is 0, - use 1 instead to make sure sliding window works. - - """ - if len(image_size) != num_spatial_dims: - raise ValueError("image coord different from spatial dims.") - if len(roi_size) != num_spatial_dims: - raise ValueError("roi coord different from spatial dims.") - - scan_interval = [] - for i in range(num_spatial_dims): - if roi_size[i] == image_size[i]: - scan_interval.append(int(roi_size[i])) - else: - interval = int(roi_size[i] * (1 - overlap)) - scan_interval.append(interval if interval > 0 else 1) - return tuple(scan_interval) diff --git a/spaces/LuxOAI/ChatGpt-Web/app/locales/cn.ts b/spaces/LuxOAI/ChatGpt-Web/app/locales/cn.ts deleted file mode 100644 index fcdca6b49a67525897fef2c302c10a0e1b5cbf13..0000000000000000000000000000000000000000 --- a/spaces/LuxOAI/ChatGpt-Web/app/locales/cn.ts +++ /dev/null @@ -1,242 +0,0 @@ -import { SubmitKey } from "../store/config"; - -const cn = { - WIP: "该功能仍在开发中……", - Error: { - Unauthorized: - "访问密码不正确或为空,请前往[设置](/#/settings)页输入正确的访问密码,或者填入你自己的 OpenAI API Key。", - }, - ChatItem: { - ChatItemCount: (count: number) => `${count} 条对话`, - }, - Chat: { - SubTitle: (count: number) => `与 ChatGPT 的 ${count} 条对话`, - Actions: { - ChatList: "查看消息列表", - CompressedHistory: "查看压缩后的历史 Prompt", - Export: "导出聊天记录", - Copy: "复制", - Stop: "停止", - Retry: "重试", - Delete: "删除", - }, - Rename: "重命名对话", - Typing: "正在输入…", - Input: (submitKey: string) => { - var inputHints = `${submitKey} 发送`; - if (submitKey === String(SubmitKey.Enter)) { - inputHints += ",Shift + Enter 换行"; - } - return inputHints + ",/ 触发补全"; - }, - Send: "发送", - Config: { - Reset: "重置默认", - SaveAs: "另存为面具", - }, - }, - Export: { - Title: "导出聊天记录为 Markdown", - Copy: "全部复制", - Download: "下载文件", - MessageFromYou: "来自你的消息", - MessageFromChatGPT: "来自 ChatGPT 的消息", - }, - Memory: { - Title: "历史摘要", - EmptyContent: "对话内容过短,无需总结", - Send: "自动压缩聊天记录并作为上下文发送", - Copy: "复制摘要", - Reset: "重置对话", - ResetConfirm: "重置后将清空当前对话记录以及历史摘要,确认重置?", - }, - Home: { - NewChat: "新的聊天", - DeleteChat: "确认删除选中的对话?", - DeleteToast: "已删除会话", - Revert: "撤销", - }, - Settings: { - Title: "设置", - SubTitle: "设置选项", - Actions: { - ClearAll: "清除所有数据", - ResetAll: "重置所有选项", - Close: "关闭", - ConfirmResetAll: "确认重置所有配置?", - ConfirmClearAll: "确认清除所有数据?", - }, - Lang: { - Name: "Language", - All: "所有语言", - Options: { - cn: "简体中文", - en: "English", - tw: "繁體中文", - es: "Español", - it: "Italiano", - tr: "Türkçe", - jp: "日本語", - de: "Deutsch", - }, - }, - Avatar: "头像", - FontSize: { - Title: "字体大小", - SubTitle: "聊天内容的字体大小", - }, - - Update: { - Version: (x: string) => `当前版本:${x}`, - IsLatest: "已是最新版本", - CheckUpdate: "检查更新", - IsChecking: "正在检查更新...", - FoundUpdate: (x: string) => `发现新版本:${x}`, - GoToUpdate: "前往更新", - }, - SendKey: "发送键", - Theme: "主题", - TightBorder: "无边框模式", - SendPreviewBubble: { - Title: "预览气泡", - SubTitle: "在预览气泡中预览 Markdown 内容", - }, - Mask: { - Title: "面具启动页", - SubTitle: "新建聊天时,展示面具启动页", - }, - Prompt: { - Disable: { - Title: "禁用提示词自动补全", - SubTitle: "在输入框开头输入 / 即可触发自动补全", - }, - List: "自定义提示词列表", - ListCount: (builtin: number, custom: number) => - `内置 ${builtin} 条,用户定义 ${custom} 条`, - Edit: "编辑", - Modal: { - Title: "提示词列表", - Add: "新建", - Search: "搜索提示词", - }, - EditModal: { - Title: "编辑提示词", - }, - }, - HistoryCount: { - Title: "附带历史消息数", - SubTitle: "每次请求携带的历史消息数", - }, - CompressThreshold: { - Title: "历史消息长度压缩阈值", - SubTitle: "当未压缩的历史消息超过该值时,将进行压缩", - }, - Token: { - Title: "API Key", - SubTitle: "使用自己的 Key 可绕过密码访问限制", - Placeholder: "OpenAI API Key", - }, - - Usage: { - Title: "余额查询", - SubTitle(used: any, total: any) { - return `本月已使用 $${used},订阅总额 $${total}`; - }, - IsChecking: "正在检查…", - Check: "重新检查", - NoAccess: "输入 API Key 或访问密码查看余额", - }, - AccessCode: { - Title: "访问密码", - SubTitle: "管理员已开启加密访问", - Placeholder: "请输入访问密码", - }, - Bot: "AI供应商 (bot)", - Model: "模型 (model)", - Temperature: { - Title: "随机性 (temperature)", - SubTitle: "值越大,回复越随机", - }, - MaxTokens: { - Title: "单次回复限制 (max_tokens)", - SubTitle: "单次交互所用的最大 Token 数", - }, - PresencePenlty: { - Title: "话题新鲜度 (presence_penalty)", - SubTitle: "值越大,越有可能扩展到新话题", - }, - }, - Store: { - DefaultTopic: "新的聊天", - BotHello: "有什么可以帮你的吗", - Error: "出错了,稍后重试吧", - Prompt: { - History: (content: string) => - "这是 ai 和用户的历史聊天总结作为前情提要:" + content, - Topic: - "使用四到五个字直接返回这句话的简要主题,不要解释、不要标点、不要语气词、不要多余文本,如果没有主题,请直接返回“闲聊”", - Summarize: - "简要总结一下你和用户的对话,用作后续的上下文提示 prompt,控制在 200 字以内", - }, - }, - Copy: { - Success: "已写入剪切板", - Failed: "复制失败,请赋予剪切板权限", - }, - Context: { - Toast: (x: any) => `已设置 ${x} 条前置上下文`, - Edit: "当前对话设置", - Add: "新增预设对话", - }, - Plugin: { - Name: "插件", - }, - Mask: { - Name: "面具", - Page: { - Title: "预设角色面具", - SubTitle: (count: number) => `${count} 个预设角色定义`, - Search: "搜索角色面具", - Create: "新建", - }, - Item: { - Info: (count: number) => `包含 ${count} 条预设对话`, - Chat: "对话", - View: "查看", - Edit: "编辑", - Delete: "删除", - DeleteConfirm: "确认删除?", - }, - EditModal: { - Title: (readonly: boolean) => - `编辑预设面具 ${readonly ? "(只读)" : ""}`, - Download: "下载预设", - Clone: "克隆预设", - }, - Config: { - Avatar: "角色头像", - Name: "角色名称", - }, - }, - NewChat: { - Return: "返回", - Skip: "直接开始", - NotShow: "不再展示", - ConfirmNoShow: "确认禁用?禁用后可以随时在设置中重新启用。", - Title: "挑选一个面具", - SubTitle: "现在开始,与面具背后的灵魂思维碰撞", - More: "查看全部", - }, - - UI: { - Confirm: "确认", - Cancel: "取消", - Close: "关闭", - Create: "新建", - Edit: "编辑", - }, -}; - -export type LocaleType = typeof cn; - -export default cn; diff --git a/spaces/Ma5onic/MVSEP-MDX23-music-separation-model/README.md b/spaces/Ma5onic/MVSEP-MDX23-music-separation-model/README.md deleted file mode 100644 index 38e882580df127cd2311633ed667429917d9f73f..0000000000000000000000000000000000000000 --- a/spaces/Ma5onic/MVSEP-MDX23-music-separation-model/README.md +++ /dev/null @@ -1,85 +0,0 @@ ---- -title: ZFTurbo Web-UI -emoji: 🎵 -colorFrom: '#D00000' -colorTo: '#FFBA08' -sdk: gradio -sdk_version: '3.27.0' -app_file: app.py -pinned: false ---- - -# MVSEP-MDX23-music-separation-model -Model for [Sound demixing challenge 2023: Music Demixing Track - MDX'23](https://www.aicrowd.com/challenges/sound-demixing-challenge-2023). Model perform separation of music into 4 stems "bass", "drums", "vocals", "other". Model won 3rd place in challenge (Leaderboard C). - -Model based on [Demucs4](https://github.com/facebookresearch/demucs), [MDX](https://github.com/kuielab/mdx-net) neural net architectures and some MDX weights from [Ultimate Vocal Remover](https://github.com/Anjok07/ultimatevocalremovergui) project (thanks [Kimberley Jensen](https://github.com/KimberleyJensen) for great high quality vocal models). Brought to you by [MVSep.com](https://mvsep.com). -## Usage - -``` - python inference.py --input_audio mixture1.wav mixture2.wav --output_folder ./results/ -``` - -With this command audios with names "mixture1.wav" and "mixture2.wav" will be processed and results will be stored in `./results/` folder in WAV format. - -### All available keys -* `--input_audio` - input audio location. You can provide multiple files at once. **Required** -* `--output_folder` - output audio folder. **Required** -* `--cpu` - choose CPU instead of GPU for processing. Can be very slow. -* `--overlap_large` - overlap of splitted audio for light models. Closer to 1.0 - slower, but better quality. Default: 0.6. -* `--overlap_small` - overlap of splitted audio for heavy models. Closer to 1.0 - slower, but better quality. Default: 0.5. -* `--single_onnx` - only use single ONNX model for vocals. Can be useful if you have not enough GPU memory. -* `--chunk_size` - chunk size for ONNX models. Set lower to reduce GPU memory consumption. Default: 1000000. -* `--large_gpu` - it will store all models on GPU for faster processing of multiple audio files. Requires at least 11 GB of free GPU memory. -* `--use_kim_model_1` - use first version of Kim model (as it was on contest). -* `--only_vocals` - only create vocals and instrumental. Skip bass, drums, other. Processing will be faster. - -### Notes -* If you have not enough GPU memory you can use CPU (`--cpu`), but it will be slow. Additionally you can use single ONNX (`--single_onnx`), but it will decrease quality a little bit. Also reduce of chunk size can help (`--chunk_size 200000`). -* In current revision code requires less GPU memory, but it process multiple files slower. If you want old fast method use argument `--large_gpu`. It will require > 11 GB of GPU memory, but will work faster. -* There is [Google.Collab version](https://colab.research.google.com/github/jarredou/MVSEP-MDX23-Colab_v2/blob/main/MVSep-MDX23-Colab.ipynb) of this code. - -## Quality comparison - -Quality comparison with best separation models performed on [MultiSong Dataset](https://mvsep.com/quality_checker/leaderboard2.php?sort=bass). - -| Algorithm | SDR bass | SDR drums | SDR other | SDR vocals | SDR instrumental | -| ------------- |:---------:|:----------:|:----------:|:----------:|:------------------:| -| MVSEP MDX23 | 12.5034 | 11.6870 | 6.5378 | 9.5138 | 15.8213 | -| Demucs HT 4 | 12.1006 | 11.3037 | 5.7728 | 8.3555 | 13.9902 | -| Demucs 3 | 10.6947 | 10.2744 | 5.3580 | 8.1335 | 14.4409 | -| MDX B | --- | ---- | --- | 8.5118 | 14.8192 | - -* Note: SDR - signal to distortion ratio. Larger is better. - -## GUI - -![GUI Window](https://github.com/ZFTurbo/MVSEP-MDX23-music-separation-model/blob/main/images/MVSep-Window.png) - -* Script for GUI (based on PyQt5): [gui.py](gui.py). -* You can download [standalone program for Windows here](https://github.com/ZFTurbo/MVSEP-MDX23-music-separation-model/releases/download/v1.0.1/MVSep-MDX23_v1.0.1.zip) (~730 MB). Unzip archive and to start program double click `run.bat`. On first run it will download pytorch with CUDA support (~2.8 GB) and some Neural Net models. -* Program will download all needed neural net models from internet at the first run. -* GUI supports Drag & Drop of multiple files. -* Progress bar available. - -## Changes - -### v1.0.1 -* Settings in GUI updated, now you can control all possible options -* Kim vocal model updated from version 1 to version 2, you still can use version 1 using parameter `--use_kim_model_1` -* Added possibility to generate only vocals/instrumental pair if you don't need bass, drums and other stems. Use parameter `--only_vocals` -* Standalone program was updated. It has less size now. GUI will download torch/cuda on the first run. - -## Citation - -* [arxiv paper](https://arxiv.org/abs/2305.07489) - -``` -@misc{solovyev2023benchmarks, - title={Benchmarks and leaderboards for sound demixing tasks}, - author={Roman Solovyev and Alexander Stempkovskiy and Tatiana Habruseva}, - year={2023}, - eprint={2305.07489}, - archivePrefix={arXiv}, - primaryClass={cs.SD} -} -``` \ No newline at end of file diff --git a/spaces/MathysL/AutoGPT4/autogpt/permanent_memory/__init__.py b/spaces/MathysL/AutoGPT4/autogpt/permanent_memory/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/Mattdoc99/ElonYTsearch/app.py b/spaces/Mattdoc99/ElonYTsearch/app.py deleted file mode 100644 index 210d294cf9c8f128576a58a914066ff3a87ae15f..0000000000000000000000000000000000000000 --- a/spaces/Mattdoc99/ElonYTsearch/app.py +++ /dev/null @@ -1,138 +0,0 @@ -import streamlit as st -import pinecone -from sentence_transformers import SentenceTransformer -import logging - -PINECONE_KEY = "a556efe9-4db5-4e49-a031-ae8e03bf77d8" -INDEX_ID = 'yt-transcriptions' - -st.set_page_config(page_title="YouTube Q&A") - -st.markdown("", unsafe_allow_html=True) - -@st.experimental_singleton -def init_pinecone(): - pinecone.init(api_key=PINECONE_KEY, environment="us-east1-gcp") - return pinecone.Index(INDEX_ID) - -@st.experimental_singleton -def init_retriever(): - return SentenceTransformer("multi-qa-mpnet-base-dot-v1") - -def make_query(query, retriever, top_k=10, include_values=True, include_metadata=True, filter=None): - xq = retriever.encode([query]).tolist() - logging.info(f"Query: {query}") - attempt = 0 - while attempt < 3: - try: - xc = st.session_state.index.query( - xq, - top_k=top_k, - include_values=include_values, - include_metadata=include_metadata, - filter=filter - ) - matches = xc['matches'] - break - except: - # force reload - pinecone.init(api_key=PINECONE_KEY, environment="us-east1-gcp") - st.session_state.index = pinecone.Index(INDEX_ID) - attempt += 1 - matches = [] - if len(matches) == 0: - logging.error(f"Query failed") - return matches - -st.session_state.index = init_pinecone() -retriever = init_retriever() - -query = st.text_input("Search!", "") - -def card(thumbnail: str, title: str, urls: list, contexts: list, starts: list, ends: list): - meta = [(e, s, u, c) for e, s, u, c in zip(ends, starts, urls, contexts)] - meta.sort(reverse=False) - text_content = [] - current_start = 0 - current_end = 0 - for end, start, url, context in meta: - # reformat seconds to timestamp - time = start / 60 - mins = f"0{int(time)}"[-2:] - secs = f"0{int(round((time - int(mins))*60, 0))}"[-2:] - timestamp = f"{mins}:{secs}" - if start < current_end and start > current_start: - # this means it is a continuation of the previous sentence - text_content[-1][0] = text_content[-1][0].split(context[:10])[0] - text_content.append([f"[{timestamp}] {context.capitalize()}", url]) - else: - text_content.append(["xxLINEBREAKxx", ""]) - text_content.append([f"[{timestamp}] {context}", url]) - current_start = start - current_end = end - html_text = "" - for text, url in text_content: - if text == "xxLINEBREAKxx": - html_text += "
    " - else: - html_text += f"{text.strip()}... " - print(text) - html = f""" -
    -
    -
    -
    - -
    -
    -
    -

    {title}

    -
    -
    - {html_text} -

    - """ - return st.markdown(html, unsafe_allow_html=True) - -if query != "": - print(f"query: {query}") - matches = make_query(query, retriever, top_k=10) - - results = {} - order = [] - for context in matches: - video_id = context['metadata']['url'].split('/')[-1] - if video_id not in results: - results[video_id] = { - 'title': context['metadata']['title'], - 'urls': [f"{context['metadata']['url']}?t={int(context['metadata']['start'])}"], - 'contexts': [context['metadata']['text']], - 'starts': [int(context['metadata']['start'])], - 'ends': [int(context['metadata']['end'])] - } - order.append(video_id) - else: - results[video_id]['urls'].append( - f"{context['metadata']['url']}?t={int(context['metadata']['start'])}" - ) - results[video_id]['contexts'].append( - context['metadata']['text'] - ) - results[video_id]['starts'].append(int(context['metadata']['start'])) - results[video_id]['ends'].append(int(context['metadata']['end'])) - # now display cards - for video_id in order: - thumbnail = f"https://img.youtube.com/vi/{video_id}/maxresdefault.jpg" - title = results[video_id]['title'] - urls = results[video_id]['urls'] - contexts = results[video_id]['contexts'] - starts = results[video_id]['starts'] - ends = results[video_id]['ends'] - card( - thumbnail=thumbnail, - title=title, - urls=urls, - contexts=contexts, - starts=starts, - ends=ends - ) \ No newline at end of file diff --git a/spaces/Mountchicken/MAERec-Gradio/mmocr/evaluation/metrics/__init__.py b/spaces/Mountchicken/MAERec-Gradio/mmocr/evaluation/metrics/__init__.py deleted file mode 100644 index 3b10f4b2ac720e096db27b7e54dcc75611f92dfa..0000000000000000000000000000000000000000 --- a/spaces/Mountchicken/MAERec-Gradio/mmocr/evaluation/metrics/__init__.py +++ /dev/null @@ -1,9 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -from .f_metric import F1Metric -from .hmean_iou_metric import HmeanIOUMetric -from .recog_metric import CharMetric, OneMinusNEDMetric, WordMetric - -__all__ = [ - 'WordMetric', 'CharMetric', 'OneMinusNEDMetric', 'HmeanIOUMetric', - 'F1Metric' -] diff --git a/spaces/Mountchicken/MAERec-Gradio/mmocr/models/textrecog/encoders/base.py b/spaces/Mountchicken/MAERec-Gradio/mmocr/models/textrecog/encoders/base.py deleted file mode 100644 index 26edafb79869c840ec9362faef7a871759d15d3b..0000000000000000000000000000000000000000 --- a/spaces/Mountchicken/MAERec-Gradio/mmocr/models/textrecog/encoders/base.py +++ /dev/null @@ -1,12 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -from mmengine.model import BaseModule - -from mmocr.registry import MODELS - - -@MODELS.register_module() -class BaseEncoder(BaseModule): - """Base Encoder class for text recognition.""" - - def forward(self, feat, **kwargs): - return feat diff --git a/spaces/MrBodean/VoiceClone/synthesizer/hparams.py b/spaces/MrBodean/VoiceClone/synthesizer/hparams.py deleted file mode 100644 index f7d38f0aa4c34d11349e40dbb9861b1aec2dcb8b..0000000000000000000000000000000000000000 --- a/spaces/MrBodean/VoiceClone/synthesizer/hparams.py +++ /dev/null @@ -1,92 +0,0 @@ -import ast -import pprint - -class HParams(object): - def __init__(self, **kwargs): self.__dict__.update(kwargs) - def __setitem__(self, key, value): setattr(self, key, value) - def __getitem__(self, key): return getattr(self, key) - def __repr__(self): return pprint.pformat(self.__dict__) - - def parse(self, string): - # Overrides hparams from a comma-separated string of name=value pairs - if len(string) > 0: - overrides = [s.split("=") for s in string.split(",")] - keys, values = zip(*overrides) - keys = list(map(str.strip, keys)) - values = list(map(str.strip, values)) - for k in keys: - self.__dict__[k] = ast.literal_eval(values[keys.index(k)]) - return self - -hparams = HParams( - ### Signal Processing (used in both synthesizer and vocoder) - sample_rate = 16000, - n_fft = 800, - num_mels = 80, - hop_size = 200, # Tacotron uses 12.5 ms frame shift (set to sample_rate * 0.0125) - win_size = 800, # Tacotron uses 50 ms frame length (set to sample_rate * 0.050) - fmin = 55, - min_level_db = -100, - ref_level_db = 20, - max_abs_value = 4., # Gradient explodes if too big, premature convergence if too small. - preemphasis = 0.97, # Filter coefficient to use if preemphasize is True - preemphasize = True, - - ### Tacotron Text-to-Speech (TTS) - tts_embed_dims = 512, # Embedding dimension for the graphemes/phoneme inputs - tts_encoder_dims = 256, - tts_decoder_dims = 128, - tts_postnet_dims = 512, - tts_encoder_K = 5, - tts_lstm_dims = 1024, - tts_postnet_K = 5, - tts_num_highways = 4, - tts_dropout = 0.5, - tts_cleaner_names = ["english_cleaners"], - tts_stop_threshold = -3.4, # Value below which audio generation ends. - # For example, for a range of [-4, 4], this - # will terminate the sequence at the first - # frame that has all values < -3.4 - - ### Tacotron Training - tts_schedule = [(2, 1e-3, 20_000, 12), # Progressive training schedule - (2, 5e-4, 40_000, 12), # (r, lr, step, batch_size) - (2, 2e-4, 80_000, 12), # - (2, 1e-4, 160_000, 12), # r = reduction factor (# of mel frames - (2, 3e-5, 320_000, 12), # synthesized for each decoder iteration) - (2, 1e-5, 640_000, 12)], # lr = learning rate - - tts_clip_grad_norm = 1.0, # clips the gradient norm to prevent explosion - set to None if not needed - tts_eval_interval = 500, # Number of steps between model evaluation (sample generation) - # Set to -1 to generate after completing epoch, or 0 to disable - - tts_eval_num_samples = 1, # Makes this number of samples - - ### Data Preprocessing - max_mel_frames = 900, - rescale = True, - rescaling_max = 0.9, - synthesis_batch_size = 16, # For vocoder preprocessing and inference. - - ### Mel Visualization and Griffin-Lim - signal_normalization = True, - power = 1.5, - griffin_lim_iters = 60, - - ### Audio processing options - fmax = 7600, # Should not exceed (sample_rate // 2) - allow_clipping_in_normalization = True, # Used when signal_normalization = True - clip_mels_length = True, # If true, discards samples exceeding max_mel_frames - use_lws = False, # "Fast spectrogram phase recovery using local weighted sums" - symmetric_mels = True, # Sets mel range to [-max_abs_value, max_abs_value] if True, - # and [0, max_abs_value] if False - trim_silence = True, # Use with sample_rate of 16000 for best results - - ### SV2TTS - speaker_embedding_size = 256, # Dimension for the speaker embedding - silence_min_duration_split = 0.4, # Duration in seconds of a silence for an utterance to be split - utterance_min_duration = 1.6, # Duration in seconds below which utterances are discarded - ) - -def hparams_debug_string(): - return str(hparams) diff --git a/spaces/NAACL2022/CLIP-Caption-Reward/scripts/prepro_feats.py b/spaces/NAACL2022/CLIP-Caption-Reward/scripts/prepro_feats.py deleted file mode 100644 index 2c98d880d6b0b76ddb21f1bd516c4ce90515b8f3..0000000000000000000000000000000000000000 --- a/spaces/NAACL2022/CLIP-Caption-Reward/scripts/prepro_feats.py +++ /dev/null @@ -1,103 +0,0 @@ -""" -Preprocess a raw json dataset into features files for use in data_loader.py - -Input: json file that has the form -[{ file_path: 'path/img.jpg', captions: ['a caption', ...] }, ...] -example element in this list would look like -{'captions': [u'A man with a red helmet on a small moped on a dirt road. ', u'Man riding a motor bike on a dirt road on the countryside.', u'A man riding on the back of a motorcycle.', u'A dirt path with a young person on a motor bike rests to the foreground of a verdant area with a bridge and a background of cloud-wreathed mountains. ', u'A man in a red shirt and a red hat is on a motorcycle on a hill side.'], 'file_path': u'val2014/COCO_val2014_000000391895.jpg', 'id': 391895} - -This script reads this json, does some basic preprocessing on the captions -(e.g. lowercase, etc.), creates a special UNK token, and encodes everything to arrays - -Output: two folders of features -""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import os -import json -import argparse -from random import shuffle, seed -import string -# non-standard dependencies: -import h5py -from six.moves import cPickle -import numpy as np -import torch -import torchvision.models as models -import skimage.io - -from torchvision import transforms as trn -preprocess = trn.Compose([ - #trn.ToTensor(), - trn.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) -]) - -from captioning.utils.resnet_utils import myResnet -import captioning.utils.resnet as resnet - - -def main(params): - net = getattr(resnet, params['model'])() - net.load_state_dict(torch.load(os.path.join(params['model_root'],params['model']+'.pth'))) - my_resnet = myResnet(net) - my_resnet.cuda() - my_resnet.eval() - - imgs = json.load(open(params['input_json'], 'r')) - imgs = imgs['images'] - N = len(imgs) - - seed(123) # make reproducible - - dir_fc = params['output_dir']+'_fc' - dir_att = params['output_dir']+'_att' - if not os.path.isdir(dir_fc): - os.mkdir(dir_fc) - if not os.path.isdir(dir_att): - os.mkdir(dir_att) - - for i,img in enumerate(imgs): - # load the image - I = skimage.io.imread(os.path.join(params['images_root'], img['filepath'], img['filename'])) - # handle grayscale input images - if len(I.shape) == 2: - I = I[:,:,np.newaxis] - I = np.concatenate((I,I,I), axis=2) - - I = I.astype('float32')/255.0 - I = torch.from_numpy(I.transpose([2,0,1])).cuda() - I = preprocess(I) - with torch.no_grad(): - tmp_fc, tmp_att = my_resnet(I, params['att_size']) - # write to pkl - # print(dir_fc, str(img['cocoid']), tmp_fc.shape, tmp_att.shape, dir_att) - # exit() - np.save(os.path.join(dir_fc, str(img['cocoid'])), tmp_fc.data.cpu().float().numpy()) - np.savez_compressed(os.path.join(dir_att, str(img['cocoid'])), feat=tmp_att.data.cpu().float().numpy()) - - if i % 1000 == 0: - print('processing %d/%d (%.2f%% done)' % (i, N, i*100.0/N)) - print('wrote ', params['output_dir']) - -if __name__ == "__main__": - - parser = argparse.ArgumentParser() - - # input json - parser.add_argument('--input_json', required=True, help='input json file to process into hdf5') - parser.add_argument('--output_dir', default='data', help='output h5 file') - - # options - parser.add_argument('--images_root', default='', help='root location in which images are stored, to be prepended to file_path in input json') - parser.add_argument('--att_size', default=14, type=int, help='14x14 or 7x7') - parser.add_argument('--model', default='resnet101', type=str, help='resnet101, resnet152') - parser.add_argument('--model_root', default='./data/imagenet_weights', type=str, help='model root') - - args = parser.parse_args() - params = vars(args) # convert to ordinary dict - print('parsed input parameters:') - print(json.dumps(params, indent = 2)) - main(params) diff --git a/spaces/NCTCMumbai/NCTC/models/research/cognitive_mapping_and_planning/render/__init__.py b/spaces/NCTCMumbai/NCTC/models/research/cognitive_mapping_and_planning/render/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/NeuralInternet/Text-Generation_Playground/download-model.py b/spaces/NeuralInternet/Text-Generation_Playground/download-model.py deleted file mode 100644 index 8be398c4e0d3ca0c0a915efb442f432fc2056834..0000000000000000000000000000000000000000 --- a/spaces/NeuralInternet/Text-Generation_Playground/download-model.py +++ /dev/null @@ -1,176 +0,0 @@ -''' -Downloads models from Hugging Face to models/model-name. - -Example: -python download-model.py facebook/opt-1.3b - -''' - -import argparse -import base64 -import json -import multiprocessing -import re -import sys -from pathlib import Path - -import requests -import tqdm - -parser = argparse.ArgumentParser() -parser.add_argument('MODEL', type=str, default=None, nargs='?') -parser.add_argument('--branch', type=str, default='main', help='Name of the Git branch to download from.') -parser.add_argument('--threads', type=int, default=1, help='Number of files to download simultaneously.') -parser.add_argument('--text-only', action='store_true', help='Only download text files (txt/json).') -args = parser.parse_args() - -def get_file(args): - url = args[0] - output_folder = args[1] - idx = args[2] - tot = args[3] - - print(f"Downloading file {idx} of {tot}...") - r = requests.get(url, stream=True) - with open(output_folder / Path(url.split('/')[-1]), 'wb') as f: - total_size = int(r.headers.get('content-length', 0)) - block_size = 1024 - t = tqdm.tqdm(total=total_size, unit='iB', unit_scale=True) - for data in r.iter_content(block_size): - t.update(len(data)) - f.write(data) - t.close() - -def sanitize_branch_name(branch_name): - pattern = re.compile(r"^[a-zA-Z0-9._-]+$") - if pattern.match(branch_name): - return branch_name - else: - raise ValueError("Invalid branch name. Only alphanumeric characters, period, underscore and dash are allowed.") - -def select_model_from_default_options(): - models = { - "Pygmalion 6B original": ("PygmalionAI", "pygmalion-6b", "b8344bb4eb76a437797ad3b19420a13922aaabe1"), - "Pygmalion 6B main": ("PygmalionAI", "pygmalion-6b", "main"), - "Pygmalion 6B dev": ("PygmalionAI", "pygmalion-6b", "dev"), - "Pygmalion 2.7B": ("PygmalionAI", "pygmalion-2.7b", "main"), - "Pygmalion 1.3B": ("PygmalionAI", "pygmalion-1.3b", "main"), - "Pygmalion 350m": ("PygmalionAI", "pygmalion-350m", "main"), - "OPT 6.7b": ("facebook", "opt-6.7b", "main"), - "OPT 2.7b": ("facebook", "opt-2.7b", "main"), - "OPT 1.3b": ("facebook", "opt-1.3b", "main"), - "OPT 350m": ("facebook", "opt-350m", "main"), - } - choices = {} - - print("Select the model that you want to download:\n") - for i,name in enumerate(models): - char = chr(ord('A')+i) - choices[char] = name - print(f"{char}) {name}") - char = chr(ord('A')+len(models)) - print(f"{char}) None of the above") - - print() - print("Input> ", end='') - choice = input()[0].strip().upper() - if choice == char: - print("""\nThen type the name of your desired Hugging Face model in the format organization/name. - -Examples: -PygmalionAI/pygmalion-6b -facebook/opt-1.3b -""") - - print("Input> ", end='') - model = input() - branch = "main" - else: - arr = models[choices[choice]] - model = f"{arr[0]}/{arr[1]}" - branch = arr[2] - - return model, branch - -def get_download_links_from_huggingface(model, branch): - base = "https://huggingface.co" - page = f"/api/models/{model}/tree/{branch}?cursor=" - cursor = b"" - - links = [] - classifications = [] - has_pytorch = False - has_safetensors = False - while True: - content = requests.get(f"{base}{page}{cursor.decode()}").content - - dict = json.loads(content) - if len(dict) == 0: - break - - for i in range(len(dict)): - fname = dict[i]['path'] - - is_pytorch = re.match("pytorch_model.*\.bin", fname) - is_safetensors = re.match("model.*\.safetensors", fname) - is_tokenizer = re.match("tokenizer.*\.model", fname) - is_text = re.match(".*\.(txt|json)", fname) or is_tokenizer - - if any((is_pytorch, is_safetensors, is_text, is_tokenizer)): - if is_text: - links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}") - classifications.append('text') - continue - if not args.text_only: - links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}") - if is_safetensors: - has_safetensors = True - classifications.append('safetensors') - elif is_pytorch: - has_pytorch = True - classifications.append('pytorch') - - cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50' - cursor = base64.b64encode(cursor) - cursor = cursor.replace(b'=', b'%3D') - - # If both pytorch and safetensors are available, download safetensors only - if has_pytorch and has_safetensors: - for i in range(len(classifications)-1, -1, -1): - if classifications[i] == 'pytorch': - links.pop(i) - - return links - -if __name__ == '__main__': - model = args.MODEL - branch = args.branch - if model is None: - model, branch = select_model_from_default_options() - else: - if model[-1] == '/': - model = model[:-1] - branch = args.branch - if branch is None: - branch = "main" - else: - try: - branch = sanitize_branch_name(branch) - except ValueError as err_branch: - print(f"Error: {err_branch}") - sys.exit() - if branch != 'main': - output_folder = Path("models") / (model.split('/')[-1] + f'_{branch}') - else: - output_folder = Path("models") / model.split('/')[-1] - if not output_folder.exists(): - output_folder.mkdir() - - links = get_download_links_from_huggingface(model, branch) - - # Downloading the files - print(f"Downloading the model to {output_folder}") - pool = multiprocessing.Pool(processes=args.threads) - results = pool.map(get_file, [[links[i], output_folder, i+1, len(links)] for i in range(len(links))]) - pool.close() - pool.join() diff --git a/spaces/OFA-Sys/OFA-Generic_Interface/fairseq/examples/linformer/linformer_src/modules/linformer_sentence_encoder_layer.py b/spaces/OFA-Sys/OFA-Generic_Interface/fairseq/examples/linformer/linformer_src/modules/linformer_sentence_encoder_layer.py deleted file mode 100644 index 7e2caa03400129ac0bb34ae35274cdf46f27a055..0000000000000000000000000000000000000000 --- a/spaces/OFA-Sys/OFA-Generic_Interface/fairseq/examples/linformer/linformer_src/modules/linformer_sentence_encoder_layer.py +++ /dev/null @@ -1,65 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - -import torch -from fairseq import utils -from fairseq.modules import TransformerEncoderLayer - -from .multihead_linear_attention import MultiheadLinearAttention - - -class LinformerTransformerEncoderLayer(TransformerEncoderLayer): - """ - Implements a Linformer Encoder Layer used in BERT/XLM style pre-trained - models. - """ - - def __init__(self, args, shared_compress_layer): - # wrap in a list so it's not automatically registered by PyTorch - self.shared_compress_layer = [shared_compress_layer] - - super().__init__(args) - - self.register_buffer("version", torch.tensor(2)) - - def build_self_attention(self, embed_dim, args): - return MultiheadLinearAttention( - embed_dim, - args.encoder_attention_heads, - dropout=args.dropout, - self_attention=True, - q_noise=args.quant_noise_pq, - qn_block_size=args.quant_noise_pq_block_size, - compressed=args.compressed, - max_seq_len=args.max_positions, - shared_kv_compressed=args.shared_kv_compressed, - shared_compress_layer=self.shared_compress_layer[0], - freeze_compress=args.freeze_compress, - ) - - def upgrade_state_dict_named(self, state_dict, name): - super().upgrade_state_dict_named(state_dict, name) - prefix = name + "." if name != "" else "" - - # some old checkpoints had weight sharing implemented incorrectly - # (note: this was correct in the original paper code) - if utils.item(state_dict.get(f"{prefix}version", torch.tensor(1))) < 2: - state_dict[f"{prefix}version"] = torch.tensor(1) - # check compression layer sharing - if f"{prefix}shared_compress_layer.weight" in state_dict: - # reinitialize block without sharing compression layer to match - # old behavior - self.shared_compress_layer = [ - torch.nn.Linear( - self.shared_compress_layer[0].weight.size(1), - self.shared_compress_layer[0].weight.size(0), - ) - ] - self.self_attn = self.build_self_attention(self.embed_dim, self.args) - # delete shared_compress_layer, since it's already copied to - # self_attn.compress_k.weight - del state_dict[f"{prefix}shared_compress_layer.weight"] - if f"{prefix}shared_compress_layer.bias" in state_dict: - del state_dict[f"{prefix}shared_compress_layer.bias"] diff --git a/spaces/OFA-Sys/OFA-Generic_Interface/fairseq/examples/roberta/multiprocessing_bpe_encoder.py b/spaces/OFA-Sys/OFA-Generic_Interface/fairseq/examples/roberta/multiprocessing_bpe_encoder.py deleted file mode 100644 index 43fe0451bf4d5762d734314075b1402c2a8db2bb..0000000000000000000000000000000000000000 --- a/spaces/OFA-Sys/OFA-Generic_Interface/fairseq/examples/roberta/multiprocessing_bpe_encoder.py +++ /dev/null @@ -1,130 +0,0 @@ -#!/usr/bin/env python -# Copyright (c) Facebook, Inc. and its affiliates. -# All rights reserved. -# -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -import argparse -import contextlib -import sys -from collections import Counter -from multiprocessing import Pool - -from fairseq.data.encoders.gpt2_bpe import get_encoder - - -def main(): - """ - Helper script to encode raw text with the GPT-2 BPE using multiple processes. - - The encoder.json and vocab.bpe files can be obtained here: - - https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json - - https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe - """ - parser = argparse.ArgumentParser() - parser.add_argument( - "--encoder-json", - help="path to encoder.json", - ) - parser.add_argument( - "--vocab-bpe", - type=str, - help="path to vocab.bpe", - ) - parser.add_argument( - "--inputs", - nargs="+", - default=["-"], - help="input files to filter/encode", - ) - parser.add_argument( - "--outputs", - nargs="+", - default=["-"], - help="path to save encoded outputs", - ) - parser.add_argument( - "--keep-empty", - action="store_true", - help="keep empty lines", - ) - parser.add_argument("--workers", type=int, default=20) - args = parser.parse_args() - - assert len(args.inputs) == len( - args.outputs - ), "number of input and output paths should match" - - with contextlib.ExitStack() as stack: - inputs = [ - stack.enter_context(open(input, "r", encoding="utf-8")) - if input != "-" - else sys.stdin - for input in args.inputs - ] - outputs = [ - stack.enter_context(open(output, "w", encoding="utf-8")) - if output != "-" - else sys.stdout - for output in args.outputs - ] - - encoder = MultiprocessingEncoder(args) - pool = Pool(args.workers, initializer=encoder.initializer) - encoded_lines = pool.imap(encoder.encode_lines, zip(*inputs), 100) - - stats = Counter() - for i, (filt, enc_lines) in enumerate(encoded_lines, start=1): - if filt == "PASS": - for enc_line, output_h in zip(enc_lines, outputs): - print(enc_line, file=output_h) - else: - stats["num_filtered_" + filt] += 1 - if i % 10000 == 0: - print("processed {} lines".format(i), file=sys.stderr) - - for k, v in stats.most_common(): - print("[{}] filtered {} lines".format(k, v), file=sys.stderr) - - -class MultiprocessingEncoder(object): - def __init__(self, args): - self.args = args - - def initializer(self): - global bpe - bpe = get_encoder(self.args.encoder_json, self.args.vocab_bpe) - - def encode(self, line): - global bpe - ids = bpe.encode(line) - return list(map(str, ids)) - - def decode(self, tokens): - global bpe - return bpe.decode(tokens) - - def encode_lines(self, lines): - """ - Encode a set of lines. All lines will be encoded together. - """ - enc_lines = [] - for line in lines: - line = line.strip() - if len(line) == 0 and not self.args.keep_empty: - return ["EMPTY", None] - tokens = self.encode(line) - enc_lines.append(" ".join(tokens)) - return ["PASS", enc_lines] - - def decode_lines(self, lines): - dec_lines = [] - for line in lines: - tokens = map(int, line.strip().split()) - dec_lines.append(self.decode(tokens)) - return ["PASS", dec_lines] - - -if __name__ == "__main__": - main() diff --git a/spaces/OFA-Sys/OFA-Generic_Interface/fairseq/examples/simultaneous_translation/models/__init__.py b/spaces/OFA-Sys/OFA-Generic_Interface/fairseq/examples/simultaneous_translation/models/__init__.py deleted file mode 100644 index 257a96593ff7af93c206c066d8db4ad795b2ae36..0000000000000000000000000000000000000000 --- a/spaces/OFA-Sys/OFA-Generic_Interface/fairseq/examples/simultaneous_translation/models/__init__.py +++ /dev/null @@ -1,15 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - -import importlib -import os - - -for file in sorted(os.listdir(os.path.dirname(__file__))): - if file.endswith(".py") and not file.startswith("_"): - model_name = file[: file.find(".py")] - importlib.import_module( - "examples.simultaneous_translation.models." + model_name - ) diff --git a/spaces/OFA-Sys/OFA-Generic_Interface/fairseq/examples/speech_synthesis/preprocessing/get_ljspeech_audio_manifest.py b/spaces/OFA-Sys/OFA-Generic_Interface/fairseq/examples/speech_synthesis/preprocessing/get_ljspeech_audio_manifest.py deleted file mode 100644 index 7ec1fb7521b8a9b821d28bcaaaedb034f6e95e0b..0000000000000000000000000000000000000000 --- a/spaces/OFA-Sys/OFA-Generic_Interface/fairseq/examples/speech_synthesis/preprocessing/get_ljspeech_audio_manifest.py +++ /dev/null @@ -1,70 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - -import argparse -import logging -from pathlib import Path -from collections import defaultdict - -import pandas as pd -from torchaudio.datasets import LJSPEECH -from tqdm import tqdm - -from examples.speech_to_text.data_utils import save_df_to_tsv - - -log = logging.getLogger(__name__) - -SPLITS = ["train", "dev", "test"] - - -def process(args): - out_root = Path(args.output_data_root).absolute() - out_root.mkdir(parents=True, exist_ok=True) - - # Generate TSV manifest - print("Generating manifest...") - # following FastSpeech's splits - dataset = LJSPEECH(out_root.as_posix(), download=True) - id_to_split = {} - for x in dataset._flist: - id_ = x[0] - speaker = id_.split("-")[0] - id_to_split[id_] = { - "LJ001": "test", "LJ002": "test", "LJ003": "dev" - }.get(speaker, "train") - manifest_by_split = {split: defaultdict(list) for split in SPLITS} - progress = tqdm(enumerate(dataset), total=len(dataset)) - for i, (waveform, _, utt, normalized_utt) in progress: - sample_id = dataset._flist[i][0] - split = id_to_split[sample_id] - manifest_by_split[split]["id"].append(sample_id) - audio_path = f"{dataset._path}/{sample_id}.wav" - manifest_by_split[split]["audio"].append(audio_path) - manifest_by_split[split]["n_frames"].append(len(waveform[0])) - manifest_by_split[split]["tgt_text"].append(normalized_utt) - manifest_by_split[split]["speaker"].append("ljspeech") - manifest_by_split[split]["src_text"].append(utt) - - manifest_root = Path(args.output_manifest_root).absolute() - manifest_root.mkdir(parents=True, exist_ok=True) - for split in SPLITS: - save_df_to_tsv( - pd.DataFrame.from_dict(manifest_by_split[split]), - manifest_root / f"{split}.audio.tsv" - ) - - -def main(): - parser = argparse.ArgumentParser() - parser.add_argument("--output-data-root", "-d", required=True, type=str) - parser.add_argument("--output-manifest-root", "-m", required=True, type=str) - args = parser.parse_args() - - process(args) - - -if __name__ == "__main__": - main() diff --git a/spaces/OFA-Sys/OFA-Generic_Interface/fairseq/examples/speech_text_joint_to_text/docs/iwslt2021.md b/spaces/OFA-Sys/OFA-Generic_Interface/fairseq/examples/speech_text_joint_to_text/docs/iwslt2021.md deleted file mode 100644 index 920ff271c2e178c7a4ca3c7c8ce57a2f28653969..0000000000000000000000000000000000000000 --- a/spaces/OFA-Sys/OFA-Generic_Interface/fairseq/examples/speech_text_joint_to_text/docs/iwslt2021.md +++ /dev/null @@ -1,76 +0,0 @@ -[[Back]](..) - -# Joint Speech Text Training for the 2021 IWSLT multilingual speech translation - -This directory contains the code from paper ["FST: the FAIR Speech Translation System for the IWSLT21 Multilingual Shared Task"](https://arxiv.org/pdf/2107.06959.pdf). - -## Prepare Data -#### Download files -- Sentence piece model [spm.model](https://dl.fbaipublicfiles.com/joint_speech_text_4_s2t/iwslt/iwslt_data/spm.model) -- Dictionary [tgt_dict.txt](https://dl.fbaipublicfiles.com/joint_speech_text_4_s2t/iwslt/iwslt_data/dict.txt) -- Config [config.yaml](https://dl.fbaipublicfiles.com/joint_speech_text_4_s2t/iwslt/iwslt_data/config.yaml) - -#### Prepare -- [Please follow the data preparation in speech-to-text](https://github.com/pytorch/fairseq/blob/main/examples/speech_to_text/docs/mtedx_example.md) - - - -## Training - -#### Download pretrained models -- [Pretrained mbart model](https://dl.fbaipublicfiles.com/joint_speech_text_4_s2t/iwslt/iwslt_data/mbart.pt) -- [Pretrained w2v model](https://dl.fbaipublicfiles.com/joint_speech_text_4_s2t/iwslt/iwslt_data/xlsr_53_56k.pt) - - -#### Training scripts - -```bash -python train.py ${MANIFEST_ROOT} \ - --save-dir ${save_dir} \ - --user-dir examples/speech_text_joint_to_text \ - --train-subset train_es_en_tedx,train_es_es_tedx,train_fr_en_tedx,train_fr_es_tedx,train_fr_fr_tedx,train_it_it_tedx,train_pt_en_tedx,train_pt_pt_tedx \ - --valid-subset valid_es_en_tedx,valid_es_es_tedx,valid_es_fr_tedx,valid_es_it_tedx,valid_es_pt_tedx,valid_fr_en_tedx,valid_fr_es_tedx,valid_fr_fr_tedx,valid_fr_pt_tedx,valid_it_en_tedx,valid_it_es_tedx,valid_it_it_tedx,valid_pt_en_tedx,valid_pt_es_tedx,valid_pt_pt_tedx \ - --config-yaml config.yaml --ddp-backend no_c10d \ - --num-workers 2 --task speech_text_joint_to_text \ - --criterion guided_label_smoothed_cross_entropy_with_accuracy \ - --label-smoothing 0.3 --guide-alpha 0.8 \ - --disable-text-guide-update-num 5000 --arch dualinputxmtransformer_base \ - --max-tokens 500000 --max-sentences 3 --max-tokens-valid 800000 \ - --max-source-positions 800000 --enc-grad-mult 2.0 \ - --attentive-cost-regularization 0.02 --optimizer adam \ - --clip-norm 1.0 --log-format simple --log-interval 200 \ - --keep-last-epochs 5 --seed 1 \ - --w2v-path ${w2v_path} \ - --load-pretrained-mbart-from ${mbart_path} \ - --max-update 1000000 --update-freq 4 \ - --skip-invalid-size-inputs-valid-test \ - --skip-encoder-projection --save-interval 1 \ - --attention-dropout 0.3 --mbart-dropout 0.3 \ - --finetune-w2v-params all --finetune-mbart-decoder-params all \ - --finetune-mbart-encoder-params all --stack-w2v-mbart-encoder \ - --drop-w2v-layers 12 --normalize \ - --lr 5e-05 --lr-scheduler inverse_sqrt --warmup-updates 5000 -``` - -## Evaluation -```bash -python ./fairseq_cli/generate.py - ${MANIFEST_ROOT} \ - --task speech_text_joint_to_text \ - --user-dir ./examples/speech_text_joint_to_text \ - --load-speech-only --gen-subset test_es_en_tedx \ - --path ${model} \ - --max-source-positions 800000 \ - --skip-invalid-size-inputs-valid-test \ - --config-yaml config.yaml \ - --infer-target-lang en \ - --max-tokens 800000 \ - --beam 5 \ - --results-path ${RESULTS_DIR} \ - --scoring sacrebleu -``` -The trained model can be downloaded [here](https://dl.fbaipublicfiles.com/joint_speech_text_4_s2t/iwslt/iwslt_data/checkpoint17.pt) - -|direction|es_en|fr_en|pt_en|it_en|fr_es|pt_es|it_es|es_es|fr_fr|pt_pt|it_it| -|---|---|---|---|---|---|---|---|---|---|---|---| -|BLEU|31.62|36.93|35.07|27.12|38.87|35.57|34.13|74.59|74.64|70.84|69.76| diff --git a/spaces/OFA-Sys/OFA-Generic_Interface/fairseq/fairseq/data/audio/feature_transforms/utterance_cmvn.py b/spaces/OFA-Sys/OFA-Generic_Interface/fairseq/fairseq/data/audio/feature_transforms/utterance_cmvn.py deleted file mode 100644 index 6bbd0ae821b42ab693f4141e7c161d6d7cb0b15a..0000000000000000000000000000000000000000 --- a/spaces/OFA-Sys/OFA-Generic_Interface/fairseq/fairseq/data/audio/feature_transforms/utterance_cmvn.py +++ /dev/null @@ -1,40 +0,0 @@ -import numpy as np -from fairseq.data.audio.feature_transforms import ( - AudioFeatureTransform, - register_audio_feature_transform, -) - - -@register_audio_feature_transform("utterance_cmvn") -class UtteranceCMVN(AudioFeatureTransform): - """Utterance-level CMVN (cepstral mean and variance normalization)""" - - @classmethod - def from_config_dict(cls, config=None): - _config = {} if config is None else config - return UtteranceCMVN( - _config.get("norm_means", True), - _config.get("norm_vars", True), - ) - - def __init__(self, norm_means=True, norm_vars=True): - self.norm_means, self.norm_vars = norm_means, norm_vars - - def __repr__(self): - return ( - self.__class__.__name__ - + f"(norm_means={self.norm_means}, norm_vars={self.norm_vars})" - ) - - def __call__(self, x): - mean = x.mean(axis=0) - square_sums = (x ** 2).sum(axis=0) - - if self.norm_means: - x = np.subtract(x, mean) - if self.norm_vars: - var = square_sums / x.shape[0] - mean ** 2 - std = np.sqrt(np.maximum(var, 1e-10)) - x = np.divide(x, std) - - return x diff --git a/spaces/OFA-Sys/OFA-Generic_Interface/fairseq/fairseq/models/bart/model.py b/spaces/OFA-Sys/OFA-Generic_Interface/fairseq/fairseq/models/bart/model.py deleted file mode 100644 index 71d0b27cd2c0655fe3b00479b672d6d042a4d5ed..0000000000000000000000000000000000000000 --- a/spaces/OFA-Sys/OFA-Generic_Interface/fairseq/fairseq/models/bart/model.py +++ /dev/null @@ -1,384 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. -""" -BART: Denoising Sequence-to-Sequence Pre-training for -Natural Language Generation, Translation, and Comprehension -""" -from typing import Optional - -import logging - -import torch -import torch.nn as nn -from fairseq import utils -from fairseq.models import register_model, register_model_architecture -from fairseq.models.transformer import TransformerModel -from fairseq.modules.transformer_sentence_encoder import init_bert_params - -from .hub_interface import BARTHubInterface - - -logger = logging.getLogger(__name__) - - -@register_model("bart") -class BARTModel(TransformerModel): - __jit_unused_properties__ = ["supported_targets"] - - @classmethod - def hub_models(cls): - return { - "bart.base": "http://dl.fbaipublicfiles.com/fairseq/models/bart.base.tar.gz", - "bart.large": "http://dl.fbaipublicfiles.com/fairseq/models/bart.large.tar.gz", - "bart.large.mnli": "http://dl.fbaipublicfiles.com/fairseq/models/bart.large.mnli.tar.gz", - "bart.large.cnn": "http://dl.fbaipublicfiles.com/fairseq/models/bart.large.cnn.tar.gz", - "bart.large.xsum": "http://dl.fbaipublicfiles.com/fairseq/models/bart.large.xsum.tar.gz", - } - - def __init__(self, args, encoder, decoder): - super().__init__(args, encoder, decoder) - - # We follow BERT's random weight initialization - self.apply(init_bert_params) - - self.classification_heads = nn.ModuleDict() - if hasattr(self.encoder, "dictionary"): - self.eos: int = self.encoder.dictionary.eos() - - @staticmethod - def add_args(parser): - super(BARTModel, BARTModel).add_args(parser) - parser.add_argument( - "--pooler-dropout", - type=float, - metavar="D", - help="dropout probability in the masked_lm pooler layers", - ) - parser.add_argument( - "--pooler-activation-fn", - choices=utils.get_available_activation_fns(), - help="activation function to use for pooler layer", - ) - parser.add_argument( - "--spectral-norm-classification-head", - action="store_true", - help="Apply spectral normalization on the classification head", - ) - - @property - def supported_targets(self): - return {"self"} - - def forward( - self, - src_tokens, - src_lengths, - prev_output_tokens, - features_only: bool = False, - classification_head_name: Optional[str] = None, - token_embeddings: Optional[torch.Tensor] = None, - return_all_hiddens: bool = True, - alignment_layer: Optional[int] = None, - alignment_heads: Optional[int] = None, - ): - if classification_head_name is not None: - features_only = True - - encoder_out = self.encoder( - src_tokens, - src_lengths=src_lengths, - token_embeddings=token_embeddings, - return_all_hiddens=return_all_hiddens - ) - x, extra = self.decoder( - prev_output_tokens, - encoder_out=encoder_out, - features_only=features_only, - alignment_layer=alignment_layer, - alignment_heads=alignment_heads, - src_lengths=src_lengths, - return_all_hiddens=return_all_hiddens, - ) - eos: int = self.eos - if classification_head_name is not None: - sentence_representation = x[ - src_tokens.eq(eos), : - ].view(x.size(0), -1, x.size(-1))[:, -1, :] - for k, head in self.classification_heads.items(): - # for torch script only supports iteration - if k == classification_head_name: - x = head(sentence_representation) - break - return x, extra - - @classmethod - def from_pretrained( - cls, - model_name_or_path, - checkpoint_file="model.pt", - data_name_or_path=".", - bpe="gpt2", - sample_break_mode="eos", - **kwargs, - ): - from fairseq import hub_utils - - x = hub_utils.from_pretrained( - model_name_or_path, - checkpoint_file, - data_name_or_path, - archive_map=cls.hub_models(), - bpe=bpe, - load_checkpoint_heads=True, - sample_break_mode=sample_break_mode, - **kwargs, - ) - return BARTHubInterface(x["args"], x["task"], x["models"][0]) - - def register_classification_head( - self, name, num_classes=None, inner_dim=None, **kwargs - ): - """Register a classification head.""" - logger.info("Registering classification head: {0}".format(name)) - if name in self.classification_heads: - prev_num_classes = self.classification_heads[name].out_proj.out_features - prev_inner_dim = self.classification_heads[name].dense.out_features - if num_classes != prev_num_classes or inner_dim != prev_inner_dim: - logger.warning( - 're-registering head "{}" with num_classes {} (prev: {}) ' - "and inner_dim {} (prev: {})".format( - name, num_classes, prev_num_classes, inner_dim, prev_inner_dim - ) - ) - self.classification_heads[name] = BARTClassificationHead( - input_dim=self.args.encoder_embed_dim, - inner_dim=inner_dim or self.args.encoder_embed_dim, - num_classes=num_classes, - activation_fn=self.args.pooler_activation_fn, - pooler_dropout=self.args.pooler_dropout, - do_spectral_norm=getattr( - self.args, "spectral_norm_classification_head", False - ), - ) - - def upgrade_state_dict_named(self, state_dict, name): - super().upgrade_state_dict_named(state_dict, name) - - prefix = name + "." if name != "" else "" - current_head_names = ( - [] - if not hasattr(self, "classification_heads") - else self.classification_heads.keys() - ) - - # Handle new classification heads present in the state dict. - keys_to_delete = [] - for k in state_dict.keys(): - if not k.startswith(prefix + "classification_heads."): - continue - - head_name = k[len(prefix + "classification_heads.") :].split(".")[0] - num_classes = state_dict[ - prefix + "classification_heads." + head_name + ".out_proj.weight" - ].size(0) - inner_dim = state_dict[ - prefix + "classification_heads." + head_name + ".dense.weight" - ].size(0) - - if getattr(self.args, "load_checkpoint_heads", False): - if head_name not in current_head_names: - self.register_classification_head(head_name, num_classes, inner_dim) - else: - if head_name not in current_head_names: - logger.warning( - "deleting classification head ({}) from checkpoint " - "not present in current model: {}".format(head_name, k) - ) - keys_to_delete.append(k) - elif ( - num_classes - != self.classification_heads[head_name].out_proj.out_features - or inner_dim - != self.classification_heads[head_name].dense.out_features - ): - logger.warning( - "deleting classification head ({}) from checkpoint " - "with different dimensions than current model: {}".format( - head_name, k - ) - ) - keys_to_delete.append(k) - for k in keys_to_delete: - del state_dict[k] - - def truncate_emb(key): - if key in state_dict: - state_dict[key] = state_dict[key][:-1, :] - - # When finetuning on translation task, remove last row of - # embedding matrix that corresponds to mask_idx token. - loaded_dict_size = state_dict["encoder.embed_tokens.weight"].size(0) - if ( - loaded_dict_size == len(self.encoder.dictionary) + 1 - and "" not in self.encoder.dictionary - ): - truncate_emb("encoder.embed_tokens.weight") - truncate_emb("decoder.embed_tokens.weight") - truncate_emb("encoder.output_projection.weight") - truncate_emb("decoder.output_projection.weight") - - # When continued pretraining on new set of languages for mbart, - # add extra lang embeddings at the end of embed_tokens. - # Note: newly added languages are assumed to have been added at the end. - if self.args.task == "multilingual_denoising" and loaded_dict_size < len( - self.encoder.dictionary - ): - logger.info( - "Adding extra language embeddings not found in pretrained model for " - "continued pretraining of MBART on new set of languages." - ) - loaded_mask_token_embedding = state_dict["encoder.embed_tokens.weight"][ - -1, : - ] - - num_langids_to_add = len(self.encoder.dictionary) - loaded_dict_size - embed_dim = state_dict["encoder.embed_tokens.weight"].size(1) - - new_lang_embed_to_add = torch.zeros(num_langids_to_add, embed_dim) - nn.init.normal_(new_lang_embed_to_add, mean=0, std=embed_dim ** -0.5) - new_lang_embed_to_add = new_lang_embed_to_add.to( - dtype=state_dict["encoder.embed_tokens.weight"].dtype, - ) - - state_dict["encoder.embed_tokens.weight"] = torch.cat( - [ - state_dict["encoder.embed_tokens.weight"][ - : loaded_dict_size - 1, : - ], - new_lang_embed_to_add, - loaded_mask_token_embedding.unsqueeze(0), - ] - ) - state_dict["decoder.embed_tokens.weight"] = torch.cat( - [ - state_dict["decoder.embed_tokens.weight"][ - : loaded_dict_size - 1, : - ], - new_lang_embed_to_add, - loaded_mask_token_embedding.unsqueeze(0), - ] - ) - - # Copy any newly-added classification heads into the state dict - # with their current weights. - if hasattr(self, "classification_heads"): - cur_state = self.classification_heads.state_dict() - for k, v in cur_state.items(): - if prefix + "classification_heads." + k not in state_dict: - logger.info("Overwriting " + prefix + "classification_heads." + k) - state_dict[prefix + "classification_heads." + k] = v - - -class BARTClassificationHead(nn.Module): - """Head for sentence-level classification tasks.""" - - def __init__( - self, - input_dim, - inner_dim, - num_classes, - activation_fn, - pooler_dropout, - do_spectral_norm=False, - ): - super().__init__() - self.dense = nn.Linear(input_dim, inner_dim) - self.activation_fn = utils.get_activation_fn(activation_fn) - self.dropout = nn.Dropout(p=pooler_dropout) - self.out_proj = nn.Linear(inner_dim, num_classes) - - if do_spectral_norm: - self.out_proj = torch.nn.utils.spectral_norm(self.out_proj) - - def forward(self, features, **kwargs): - x = features - x = self.dropout(x) - x = self.dense(x) - x = self.activation_fn(x) - x = self.dropout(x) - x = self.out_proj(x) - return x - - -@register_model_architecture("bart", "bart_large") -def bart_large_architecture(args): - args.encoder_embed_path = getattr(args, "encoder_embed_path", None) - args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) - args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4 * 1024) - args.encoder_layers = getattr(args, "encoder_layers", 12) - args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) - args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) - args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True) - args.decoder_embed_path = getattr(args, "decoder_embed_path", None) - args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) - args.decoder_ffn_embed_dim = getattr( - args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim - ) - args.decoder_layers = getattr(args, "decoder_layers", 12) - args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) - args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) - args.decoder_learned_pos = getattr(args, "decoder_learned_pos", True) - args.attention_dropout = getattr(args, "attention_dropout", 0.0) - args.relu_dropout = getattr(args, "relu_dropout", 0.0) - args.dropout = getattr(args, "dropout", 0.1) - args.max_target_positions = getattr(args, "max_target_positions", 1024) - args.max_source_positions = getattr(args, "max_source_positions", 1024) - args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) - args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) - args.share_decoder_input_output_embed = getattr( - args, "share_decoder_input_output_embed", True - ) - args.share_all_embeddings = getattr(args, "share_all_embeddings", True) - - args.decoder_output_dim = getattr( - args, "decoder_output_dim", args.decoder_embed_dim - ) - args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) - - args.no_scale_embedding = getattr(args, "no_scale_embedding", True) - args.layernorm_embedding = getattr(args, "layernorm_embedding", True) - - args.activation_fn = getattr(args, "activation_fn", "gelu") - args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh") - args.pooler_dropout = getattr(args, "pooler_dropout", 0.0) - - -@register_model_architecture("bart", "bart_base") -def bart_base_architecture(args): - args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768) - args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4 * 768) - args.encoder_layers = getattr(args, "encoder_layers", 6) - args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 12) - args.decoder_layers = getattr(args, "decoder_layers", 6) - args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 12) - bart_large_architecture(args) - - -@register_model_architecture("bart", "mbart_large") -def mbart_large_architecture(args): - args.no_scale_embedding = getattr(args, "no_scale_embedding", False) - bart_large_architecture(args) - - -@register_model_architecture("bart", "mbart_base") -def mbart_base_architecture(args): - args.no_scale_embedding = getattr(args, "no_scale_embedding", False) - bart_base_architecture(args) - - -@register_model_architecture("bart", "mbart_base_wmt20") -def mbart_base_wmt20_architecture(args): - args.layernorm_embedding = getattr(args, "layernorm_embedding", False) - mbart_base_architecture(args) diff --git a/spaces/OFA-Sys/OFA-Image_Caption/fairseq/examples/speech_recognition/new/infer.py b/spaces/OFA-Sys/OFA-Image_Caption/fairseq/examples/speech_recognition/new/infer.py deleted file mode 100644 index 3fb67151e0dc425e02d090a62b1d83e6039e6ccb..0000000000000000000000000000000000000000 --- a/spaces/OFA-Sys/OFA-Image_Caption/fairseq/examples/speech_recognition/new/infer.py +++ /dev/null @@ -1,471 +0,0 @@ -#!/usr/bin/env python -u -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - -import ast -import hashlib -import logging -import os -import shutil -import sys -from dataclasses import dataclass, field, is_dataclass -from pathlib import Path -from typing import Any, Dict, List, Optional, Tuple, Union - -import editdistance -import torch -import torch.distributed as dist -from examples.speech_recognition.new.decoders.decoder_config import ( - DecoderConfig, - FlashlightDecoderConfig, -) -from examples.speech_recognition.new.decoders.decoder import Decoder -from fairseq import checkpoint_utils, distributed_utils, progress_bar, tasks, utils -from fairseq.data.data_utils import post_process -from fairseq.dataclass.configs import ( - CheckpointConfig, - CommonConfig, - CommonEvalConfig, - DatasetConfig, - DistributedTrainingConfig, - FairseqDataclass, -) -from fairseq.logging.meters import StopwatchMeter, TimeMeter -from fairseq.logging.progress_bar import BaseProgressBar -from fairseq.models.fairseq_model import FairseqModel -from omegaconf import OmegaConf - -import hydra -from hydra.core.config_store import ConfigStore - -logging.root.setLevel(logging.INFO) -logging.basicConfig(level=logging.INFO) -logger = logging.getLogger(__name__) - -config_path = Path(__file__).resolve().parent / "conf" - - -@dataclass -class DecodingConfig(DecoderConfig, FlashlightDecoderConfig): - unique_wer_file: bool = field( - default=False, - metadata={"help": "If set, use a unique file for storing WER"}, - ) - results_path: Optional[str] = field( - default=None, - metadata={ - "help": "If set, write hypothesis and reference sentences into this directory" - }, - ) - - -@dataclass -class InferConfig(FairseqDataclass): - task: Any = None - decoding: DecodingConfig = DecodingConfig() - common: CommonConfig = CommonConfig() - common_eval: CommonEvalConfig = CommonEvalConfig() - checkpoint: CheckpointConfig = CheckpointConfig() - distributed_training: DistributedTrainingConfig = DistributedTrainingConfig() - dataset: DatasetConfig = DatasetConfig() - is_ax: bool = field( - default=False, - metadata={ - "help": "if true, assumes we are using ax for tuning and returns a tuple for ax to consume" - }, - ) - - -def reset_logging(): - root = logging.getLogger() - for handler in root.handlers: - root.removeHandler(handler) - root.setLevel(os.environ.get("LOGLEVEL", "INFO").upper()) - handler = logging.StreamHandler(sys.stdout) - handler.setFormatter( - logging.Formatter( - fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s", - datefmt="%Y-%m-%d %H:%M:%S", - ) - ) - root.addHandler(handler) - - -class InferenceProcessor: - cfg: InferConfig - - def __init__(self, cfg: InferConfig) -> None: - self.cfg = cfg - self.task = tasks.setup_task(cfg.task) - - models, saved_cfg = self.load_model_ensemble() - self.models = models - self.saved_cfg = saved_cfg - self.tgt_dict = self.task.target_dictionary - - self.task.load_dataset( - self.cfg.dataset.gen_subset, - task_cfg=saved_cfg.task, - ) - self.generator = Decoder(cfg.decoding, self.tgt_dict) - self.gen_timer = StopwatchMeter() - self.wps_meter = TimeMeter() - self.num_sentences = 0 - self.total_errors = 0 - self.total_length = 0 - - self.hypo_words_file = None - self.hypo_units_file = None - self.ref_words_file = None - self.ref_units_file = None - - self.progress_bar = self.build_progress_bar() - - def __enter__(self) -> "InferenceProcessor": - if self.cfg.decoding.results_path is not None: - self.hypo_words_file = self.get_res_file("hypo.word") - self.hypo_units_file = self.get_res_file("hypo.units") - self.ref_words_file = self.get_res_file("ref.word") - self.ref_units_file = self.get_res_file("ref.units") - return self - - def __exit__(self, *exc) -> bool: - if self.cfg.decoding.results_path is not None: - self.hypo_words_file.close() - self.hypo_units_file.close() - self.ref_words_file.close() - self.ref_units_file.close() - return False - - def __iter__(self) -> Any: - for sample in self.progress_bar: - if not self.cfg.common.cpu: - sample = utils.move_to_cuda(sample) - - # Happens on the last batch. - if "net_input" not in sample: - continue - yield sample - - def log(self, *args, **kwargs): - self.progress_bar.log(*args, **kwargs) - - def print(self, *args, **kwargs): - self.progress_bar.print(*args, **kwargs) - - def get_res_file(self, fname: str) -> None: - fname = os.path.join(self.cfg.decoding.results_path, fname) - if self.data_parallel_world_size > 1: - fname = f"{fname}.{self.data_parallel_rank}" - return open(fname, "w", buffering=1) - - def merge_shards(self) -> None: - """Merges all shard files into shard 0, then removes shard suffix.""" - - shard_id = self.data_parallel_rank - num_shards = self.data_parallel_world_size - - if self.data_parallel_world_size > 1: - - def merge_shards_with_root(fname: str) -> None: - fname = os.path.join(self.cfg.decoding.results_path, fname) - logger.info("Merging %s on shard %d", fname, shard_id) - base_fpath = Path(f"{fname}.0") - with open(base_fpath, "a") as out_file: - for s in range(1, num_shards): - shard_fpath = Path(f"{fname}.{s}") - with open(shard_fpath, "r") as in_file: - for line in in_file: - out_file.write(line) - shard_fpath.unlink() - shutil.move(f"{fname}.0", fname) - - dist.barrier() # ensure all shards finished writing - if shard_id == (0 % num_shards): - merge_shards_with_root("hypo.word") - if shard_id == (1 % num_shards): - merge_shards_with_root("hypo.units") - if shard_id == (2 % num_shards): - merge_shards_with_root("ref.word") - if shard_id == (3 % num_shards): - merge_shards_with_root("ref.units") - dist.barrier() - - def optimize_model(self, model: FairseqModel) -> None: - model.make_generation_fast_() - if self.cfg.common.fp16: - model.half() - if not self.cfg.common.cpu: - model.cuda() - - def load_model_ensemble(self) -> Tuple[List[FairseqModel], FairseqDataclass]: - arg_overrides = ast.literal_eval(self.cfg.common_eval.model_overrides) - models, saved_cfg = checkpoint_utils.load_model_ensemble( - utils.split_paths(self.cfg.common_eval.path, separator="\\"), - arg_overrides=arg_overrides, - task=self.task, - suffix=self.cfg.checkpoint.checkpoint_suffix, - strict=(self.cfg.checkpoint.checkpoint_shard_count == 1), - num_shards=self.cfg.checkpoint.checkpoint_shard_count, - ) - for model in models: - self.optimize_model(model) - return models, saved_cfg - - def get_dataset_itr(self, disable_iterator_cache: bool = False) -> None: - return self.task.get_batch_iterator( - dataset=self.task.dataset(self.cfg.dataset.gen_subset), - max_tokens=self.cfg.dataset.max_tokens, - max_sentences=self.cfg.dataset.batch_size, - max_positions=(sys.maxsize, sys.maxsize), - ignore_invalid_inputs=self.cfg.dataset.skip_invalid_size_inputs_valid_test, - required_batch_size_multiple=self.cfg.dataset.required_batch_size_multiple, - seed=self.cfg.common.seed, - num_shards=self.data_parallel_world_size, - shard_id=self.data_parallel_rank, - num_workers=self.cfg.dataset.num_workers, - data_buffer_size=self.cfg.dataset.data_buffer_size, - disable_iterator_cache=disable_iterator_cache, - ).next_epoch_itr(shuffle=False) - - def build_progress_bar( - self, - epoch: Optional[int] = None, - prefix: Optional[str] = None, - default_log_format: str = "tqdm", - ) -> BaseProgressBar: - return progress_bar.progress_bar( - iterator=self.get_dataset_itr(), - log_format=self.cfg.common.log_format, - log_interval=self.cfg.common.log_interval, - epoch=epoch, - prefix=prefix, - tensorboard_logdir=self.cfg.common.tensorboard_logdir, - default_log_format=default_log_format, - ) - - @property - def data_parallel_world_size(self): - if self.cfg.distributed_training.distributed_world_size == 1: - return 1 - return distributed_utils.get_data_parallel_world_size() - - @property - def data_parallel_rank(self): - if self.cfg.distributed_training.distributed_world_size == 1: - return 0 - return distributed_utils.get_data_parallel_rank() - - def process_sentence( - self, - sample: Dict[str, Any], - hypo: Dict[str, Any], - sid: int, - batch_id: int, - ) -> Tuple[int, int]: - speaker = None # Speaker can't be parsed from dataset. - - if "target_label" in sample: - toks = sample["target_label"] - else: - toks = sample["target"] - toks = toks[batch_id, :] - - # Processes hypothesis. - hyp_pieces = self.tgt_dict.string(hypo["tokens"].int().cpu()) - if "words" in hypo: - hyp_words = " ".join(hypo["words"]) - else: - hyp_words = post_process(hyp_pieces, self.cfg.common_eval.post_process) - - # Processes target. - target_tokens = utils.strip_pad(toks, self.tgt_dict.pad()) - tgt_pieces = self.tgt_dict.string(target_tokens.int().cpu()) - tgt_words = post_process(tgt_pieces, self.cfg.common_eval.post_process) - - if self.cfg.decoding.results_path is not None: - print(f"{hyp_pieces} ({speaker}-{sid})", file=self.hypo_units_file) - print(f"{hyp_words} ({speaker}-{sid})", file=self.hypo_words_file) - print(f"{tgt_pieces} ({speaker}-{sid})", file=self.ref_units_file) - print(f"{tgt_words} ({speaker}-{sid})", file=self.ref_words_file) - - if not self.cfg.common_eval.quiet: - logger.info(f"HYPO: {hyp_words}") - logger.info(f"REF: {tgt_words}") - logger.info("---------------------") - - hyp_words, tgt_words = hyp_words.split(), tgt_words.split() - - return editdistance.eval(hyp_words, tgt_words), len(tgt_words) - - def process_sample(self, sample: Dict[str, Any]) -> None: - self.gen_timer.start() - hypos = self.task.inference_step( - generator=self.generator, - models=self.models, - sample=sample, - ) - num_generated_tokens = sum(len(h[0]["tokens"]) for h in hypos) - self.gen_timer.stop(num_generated_tokens) - self.wps_meter.update(num_generated_tokens) - - for batch_id, sample_id in enumerate(sample["id"].tolist()): - errs, length = self.process_sentence( - sample=sample, - sid=sample_id, - batch_id=batch_id, - hypo=hypos[batch_id][0], - ) - self.total_errors += errs - self.total_length += length - - self.log({"wps": round(self.wps_meter.avg)}) - if "nsentences" in sample: - self.num_sentences += sample["nsentences"] - else: - self.num_sentences += sample["id"].numel() - - def log_generation_time(self) -> None: - logger.info( - "Processed %d sentences (%d tokens) in %.1fs %.2f " - "sentences per second, %.2f tokens per second)", - self.num_sentences, - self.gen_timer.n, - self.gen_timer.sum, - self.num_sentences / self.gen_timer.sum, - 1.0 / self.gen_timer.avg, - ) - - -def parse_wer(wer_file: Path) -> float: - with open(wer_file, "r") as f: - return float(f.readline().strip().split(" ")[1]) - - -def get_wer_file(cfg: InferConfig) -> Path: - """Hashes the decoding parameters to a unique file ID.""" - base_path = "wer" - if cfg.decoding.results_path is not None: - base_path = os.path.join(cfg.decoding.results_path, base_path) - - if cfg.decoding.unique_wer_file: - yaml_str = OmegaConf.to_yaml(cfg.decoding) - fid = int(hashlib.md5(yaml_str.encode("utf-8")).hexdigest(), 16) - return Path(f"{base_path}.{fid % 1000000}") - else: - return Path(base_path) - - -def main(cfg: InferConfig) -> float: - """Entry point for main processing logic. - - Args: - cfg: The inferance configuration to use. - wer: Optional shared memory pointer for returning the WER. If not None, - the final WER value will be written here instead of being returned. - - Returns: - The final WER if `wer` is None, otherwise None. - """ - - yaml_str, wer_file = OmegaConf.to_yaml(cfg.decoding), get_wer_file(cfg) - - # Validates the provided configuration. - if cfg.dataset.max_tokens is None and cfg.dataset.batch_size is None: - cfg.dataset.max_tokens = 4000000 - if not cfg.common.cpu and not torch.cuda.is_available(): - raise ValueError("CUDA not found; set `cpu=True` to run without CUDA") - - with InferenceProcessor(cfg) as processor: - for sample in processor: - processor.process_sample(sample) - - processor.log_generation_time() - - if cfg.decoding.results_path is not None: - processor.merge_shards() - - errs_t, leng_t = processor.total_errors, processor.total_length - - if cfg.common.cpu: - logger.warning("Merging WER requires CUDA.") - elif processor.data_parallel_world_size > 1: - stats = torch.LongTensor([errs_t, leng_t]).cuda() - dist.all_reduce(stats, op=dist.ReduceOp.SUM) - errs_t, leng_t = stats[0].item(), stats[1].item() - - wer = errs_t * 100.0 / leng_t - - if distributed_utils.is_master(cfg.distributed_training): - with open(wer_file, "w") as f: - f.write( - ( - f"WER: {wer}\n" - f"err / num_ref_words = {errs_t} / {leng_t}\n\n" - f"{yaml_str}" - ) - ) - - return wer - - -@hydra.main(config_path=config_path, config_name="infer") -def hydra_main(cfg: InferConfig) -> Union[float, Tuple[float, Optional[float]]]: - container = OmegaConf.to_container(cfg, resolve=True, enum_to_str=True) - cfg = OmegaConf.create(container) - OmegaConf.set_struct(cfg, True) - - if cfg.common.reset_logging: - reset_logging() - - # logger.info("Config:\n%s", OmegaConf.to_yaml(cfg)) - wer = float("inf") - - try: - if cfg.common.profile: - with torch.cuda.profiler.profile(): - with torch.autograd.profiler.emit_nvtx(): - distributed_utils.call_main(cfg, main) - else: - distributed_utils.call_main(cfg, main) - - wer = parse_wer(get_wer_file(cfg)) - except BaseException as e: # pylint: disable=broad-except - if not cfg.common.suppress_crashes: - raise - else: - logger.error("Crashed! %s", str(e)) - - logger.info("Word error rate: %.4f", wer) - if cfg.is_ax: - return wer, None - - return wer - - -def cli_main() -> None: - try: - from hydra._internal.utils import ( - get_args, - ) # pylint: disable=import-outside-toplevel - - cfg_name = get_args().config_name or "infer" - except ImportError: - logger.warning("Failed to get config name from hydra args") - cfg_name = "infer" - - cs = ConfigStore.instance() - cs.store(name=cfg_name, node=InferConfig) - - for k in InferConfig.__dataclass_fields__: - if is_dataclass(InferConfig.__dataclass_fields__[k].type): - v = InferConfig.__dataclass_fields__[k].default - cs.store(name=k, node=v) - - hydra_main() # pylint: disable=no-value-for-parameter - - -if __name__ == "__main__": - cli_main() diff --git a/spaces/OFA-Sys/OFA-Image_Caption/fairseq/fairseq/models/text_to_speech/hifigan.py b/spaces/OFA-Sys/OFA-Image_Caption/fairseq/fairseq/models/text_to_speech/hifigan.py deleted file mode 100644 index edc7db6015ebea18f40c8949ae78c0b5b61e1297..0000000000000000000000000000000000000000 --- a/spaces/OFA-Sys/OFA-Image_Caption/fairseq/fairseq/models/text_to_speech/hifigan.py +++ /dev/null @@ -1,173 +0,0 @@ -import torch -import torch.nn as nn -import torch.nn.functional as F -from torch.nn import Conv1d, ConvTranspose1d -from torch.nn.utils import weight_norm, remove_weight_norm - -LRELU_SLOPE = 0.1 - - -def init_weights(m, mean=0.0, std=0.01): - classname = m.__class__.__name__ - if classname.find("Conv") != -1: - m.weight.data.normal_(mean, std) - - -def get_padding(kernel_size, dilation=1): - return (kernel_size * dilation - dilation) // 2 - - -class ResBlock(torch.nn.Module): - def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): - super(ResBlock, self).__init__() - self.convs1 = nn.ModuleList( - [ - weight_norm( - Conv1d( - channels, - channels, - kernel_size, - 1, - dilation=dilation[0], - padding=get_padding(kernel_size, dilation[0]), - ) - ), - weight_norm( - Conv1d( - channels, - channels, - kernel_size, - 1, - dilation=dilation[1], - padding=get_padding(kernel_size, dilation[1]), - ) - ), - weight_norm( - Conv1d( - channels, - channels, - kernel_size, - 1, - dilation=dilation[2], - padding=get_padding(kernel_size, dilation[2]), - ) - ), - ] - ) - self.convs1.apply(init_weights) - - self.convs2 = nn.ModuleList( - [ - weight_norm( - Conv1d( - channels, - channels, - kernel_size, - 1, - dilation=1, - padding=get_padding(kernel_size, 1), - ) - ), - weight_norm( - Conv1d( - channels, - channels, - kernel_size, - 1, - dilation=1, - padding=get_padding(kernel_size, 1), - ) - ), - weight_norm( - Conv1d( - channels, - channels, - kernel_size, - 1, - dilation=1, - padding=get_padding(kernel_size, 1), - ) - ), - ] - ) - self.convs2.apply(init_weights) - - def forward(self, x): - for c1, c2 in zip(self.convs1, self.convs2): - xt = F.leaky_relu(x, LRELU_SLOPE) - xt = c1(xt) - xt = F.leaky_relu(xt, LRELU_SLOPE) - xt = c2(xt) - x = xt + x - return x - - def remove_weight_norm(self): - for layer in self.convs1: - remove_weight_norm(layer) - for layer in self.convs2: - remove_weight_norm(layer) - - -class Generator(torch.nn.Module): - def __init__(self, cfg): - super(Generator, self).__init__() - self.num_kernels = len(cfg["resblock_kernel_sizes"]) - self.num_upsamples = len(cfg["upsample_rates"]) - self.conv_pre = weight_norm( - Conv1d(80, cfg["upsample_initial_channel"], 7, 1, padding=3) - ) - - self.ups = nn.ModuleList() - for i, (u, k) in enumerate( - zip(cfg["upsample_rates"], cfg["upsample_kernel_sizes"]) - ): - self.ups.append( - weight_norm( - ConvTranspose1d( - cfg["upsample_initial_channel"] // (2 ** i), - cfg["upsample_initial_channel"] // (2 ** (i + 1)), - k, - u, - padding=(k - u) // 2, - ) - ) - ) - - self.resblocks = nn.ModuleList() - for i in range(len(self.ups)): - ch = cfg["upsample_initial_channel"] // (2 ** (i + 1)) - for k, d in zip( - cfg["resblock_kernel_sizes"], cfg["resblock_dilation_sizes"] - ): - self.resblocks.append(ResBlock(ch, k, d)) - - self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) - self.ups.apply(init_weights) - self.conv_post.apply(init_weights) - - def forward(self, x): - x = self.conv_pre(x) - for i in range(self.num_upsamples): - x = F.leaky_relu(x, LRELU_SLOPE) - x = self.ups[i](x) - xs = None - for j in range(self.num_kernels): - if xs is None: - xs = self.resblocks[i * self.num_kernels + j](x) - else: - xs += self.resblocks[i * self.num_kernels + j](x) - x = xs / self.num_kernels - x = F.leaky_relu(x) - x = self.conv_post(x) - x = torch.tanh(x) - - return x - - def remove_weight_norm(self): - print("Removing weight norm...") - for layer in self.ups: - remove_weight_norm(layer) - for layer in self.resblocks: - layer.remove_weight_norm() - remove_weight_norm(self.conv_pre) - remove_weight_norm(self.conv_post) diff --git a/spaces/OFA-Sys/OFA-vqa/fairseq/examples/simultaneous_translation/eval/agents/simul_t2t_enja.py b/spaces/OFA-Sys/OFA-vqa/fairseq/examples/simultaneous_translation/eval/agents/simul_t2t_enja.py deleted file mode 100644 index 8f3c8703ca37398b9d389ce5181bdfac2333cdf2..0000000000000000000000000000000000000000 --- a/spaces/OFA-Sys/OFA-vqa/fairseq/examples/simultaneous_translation/eval/agents/simul_t2t_enja.py +++ /dev/null @@ -1,226 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - -import os - -from fairseq import checkpoint_utils, tasks -import sentencepiece as spm -import torch - -try: - from simuleval import READ_ACTION, WRITE_ACTION, DEFAULT_EOS - from simuleval.agents import TextAgent -except ImportError: - print("Please install simuleval 'pip install simuleval'") - - -BOS_PREFIX = "\u2581" - - -class SimulTransTextAgentJA(TextAgent): - """ - Simultaneous Translation - Text agent for Japanese - """ - def __init__(self, args): - - # Whether use gpu - self.gpu = getattr(args, "gpu", False) - - # Max len - self.max_len = args.max_len - - # Load Model - self.load_model_vocab(args) - - # build word splitter - self.build_word_splitter(args) - - self.eos = DEFAULT_EOS - - def initialize_states(self, states): - states.incremental_states = dict() - states.incremental_states["online"] = dict() - - def to_device(self, tensor): - if self.gpu: - return tensor.cuda() - else: - return tensor.cpu() - - def load_model_vocab(self, args): - - filename = args.model_path - if not os.path.exists(filename): - raise IOError("Model file not found: {}".format(filename)) - - state = checkpoint_utils.load_checkpoint_to_cpu(filename) - - task_args = state["cfg"]["task"] - task_args.data = args.data_bin - - task = tasks.setup_task(task_args) - - # build model for ensemble - state["cfg"]["model"].load_pretrained_encoder_from = None - state["cfg"]["model"].load_pretrained_decoder_from = None - - self.model = task.build_model(state["cfg"]["model"]) - self.model.load_state_dict(state["model"], strict=True) - self.model.eval() - self.model.share_memory() - - if self.gpu: - self.model.cuda() - - # Set dictionary - self.dict = {} - self.dict["tgt"] = task.target_dictionary - self.dict["src"] = task.source_dictionary - - @staticmethod - def add_args(parser): - # fmt: off - parser.add_argument('--model-path', type=str, required=True, - help='path to your pretrained model.') - parser.add_argument("--data-bin", type=str, required=True, - help="Path of data binary") - parser.add_argument("--max-len", type=int, default=100, - help="Max length of translation") - parser.add_argument("--tgt-splitter-type", type=str, default="SentencePiece", - help="Subword splitter type for target text.") - parser.add_argument("--tgt-splitter-path", type=str, default=None, - help="Subword splitter model path for target text.") - parser.add_argument("--src-splitter-type", type=str, default="SentencePiece", - help="Subword splitter type for source text.") - parser.add_argument("--src-splitter-path", type=str, default=None, - help="Subword splitter model path for source text.") - # fmt: on - return parser - - def build_word_splitter(self, args): - self.spm = {} - for lang in ['src', 'tgt']: - if getattr(args, f'{lang}_splitter_type', None): - path = getattr(args, f'{lang}_splitter_path', None) - if path: - self.spm[lang] = spm.SentencePieceProcessor() - self.spm[lang].Load(path) - - def segment_to_units(self, segment, states): - # Split a full word (segment) into subwords (units) - return self.spm['src'].EncodeAsPieces(segment) - - def update_model_encoder(self, states): - if len(states.units.source) == 0: - return - - src_indices = [ - self.dict['src'].index(x) - for x in states.units.source.value - ] - - if states.finish_read(): - # Append the eos index when the prediction is over - src_indices += [self.dict["tgt"].eos_index] - - src_indices = self.to_device( - torch.LongTensor(src_indices).unsqueeze(0) - ) - src_lengths = self.to_device( - torch.LongTensor([src_indices.size(1)]) - ) - - states.encoder_states = self.model.encoder(src_indices, src_lengths) - - torch.cuda.empty_cache() - - def update_states_read(self, states): - # Happens after a read action. - self.update_model_encoder(states) - - def units_to_segment(self, units, states): - # Merge sub words (units) to full word (segment). - # For Japanese, we can directly send - # the untokenized token to server except the BOS token - # with following option - # --sacrebleu-tokenizer MeCab - # --eval-latency-unit char - # --no-space - token = units.value.pop() - - if ( - token == self.dict["tgt"].eos_word - or len(states.segments.target) > self.max_len - ): - return DEFAULT_EOS - - if BOS_PREFIX == token: - return None - if token[0] == BOS_PREFIX: - return token[1:] - else: - return token - - def policy(self, states): - - if not getattr(states, "encoder_states", None): - # No encoder states, read a token first - return READ_ACTION - - # encode previous predicted target tokens - tgt_indices = self.to_device( - torch.LongTensor( - [self.model.decoder.dictionary.eos()] - + [ - self.dict['tgt'].index(x) - for x in states.units.target.value - if x is not None - ] - ).unsqueeze(0) - ) - - # Current steps - states.incremental_states["steps"] = { - "src": states.encoder_states["encoder_out"][0].size(0), - "tgt": 1 + len(states.units.target), - } - - # Online only means the reading is not finished - states.incremental_states["online"]["only"] = ( - torch.BoolTensor([not states.finish_read()]) - ) - - x, outputs = self.model.decoder.forward( - prev_output_tokens=tgt_indices, - encoder_out=states.encoder_states, - incremental_state=states.incremental_states, - ) - - states.decoder_out = x - - torch.cuda.empty_cache() - - if outputs.action == 0: - return READ_ACTION - else: - return WRITE_ACTION - - def predict(self, states): - # Predict target token from decoder states - decoder_states = states.decoder_out - - lprobs = self.model.get_normalized_probs( - [decoder_states[:, -1:]], log_probs=True - ) - - index = lprobs.argmax(dim=-1)[0, 0].item() - - if index != self.dict['tgt'].eos_index: - token = self.dict['tgt'].string([index]) - else: - token = self.dict['tgt'].eos_word - - return token diff --git a/spaces/OFA-Sys/OFA-vqa/fairseq/tests/distributed/test_module_proxy_wrapper.py b/spaces/OFA-Sys/OFA-vqa/fairseq/tests/distributed/test_module_proxy_wrapper.py deleted file mode 100644 index 2803a044cdcc12e0a348f40d06ce89c571d307ed..0000000000000000000000000000000000000000 --- a/spaces/OFA-Sys/OFA-vqa/fairseq/tests/distributed/test_module_proxy_wrapper.py +++ /dev/null @@ -1,75 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - -import unittest - -import torch -from torch import nn - -from fairseq.distributed import ModuleProxyWrapper - -from .utils import objects_are_equal - - -class MockDDPWrapper(nn.Module): - """A simple wrapper with an interface similar to DistributedDataParallel.""" - - def __init__(self, module): - super().__init__() - self.module = module - - def forward(self, x): - return self.module(x) - - -class Model(nn.Module): - def __init__(self): - super().__init__() - self.linear = nn.Linear(5, 10) - self.xyz = "hello" - - def forward(self, x): - return self.linear(x) - - def get_xyz(self): - return self.xyz - - -class TestModuleProxyWrapper(unittest.TestCase): - - def _get_module(self): - module = Model() - wrapped_module = MockDDPWrapper(module) - wrapped_module = ModuleProxyWrapper(wrapped_module) - return wrapped_module, module - - def test_getattr_forwarding(self): - wrapped_module, module = self._get_module() - assert module.xyz == "hello" - assert module.get_xyz() == "hello" - assert wrapped_module.xyz == "hello" - - wrapped_module.xyz = "world" - assert wrapped_module.xyz == "world" - assert module.get_xyz() == "hello" - - def test_state_dict(self): - wrapped_module, module = self._get_module() - assert objects_are_equal(wrapped_module.state_dict(), module.state_dict()) - - def test_load_state_dict(self): - wrapped_module, module = self._get_module() - wrapped_module.load_state_dict(module.state_dict()) - input = torch.rand(4, 5) - torch.testing.assert_allclose(wrapped_module(input), module(input)) - - def test_forward(self): - wrapped_module, module = self._get_module() - input = torch.rand(4, 5) - torch.testing.assert_allclose(wrapped_module(input), module(input)) - - -if __name__ == "__main__": - unittest.main() diff --git a/spaces/OpenGVLab/InternGPT/iGPT/models/grit_src/third_party/CenterNet2/detectron2/layers/__init__.py b/spaces/OpenGVLab/InternGPT/iGPT/models/grit_src/third_party/CenterNet2/detectron2/layers/__init__.py deleted file mode 100644 index 3d015c530b3e33de8ea60943a0a98b135f013dd7..0000000000000000000000000000000000000000 --- a/spaces/OpenGVLab/InternGPT/iGPT/models/grit_src/third_party/CenterNet2/detectron2/layers/__init__.py +++ /dev/null @@ -1,24 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -from .batch_norm import FrozenBatchNorm2d, get_norm, NaiveSyncBatchNorm, CycleBatchNormList -from .deform_conv import DeformConv, ModulatedDeformConv -from .mask_ops import paste_masks_in_image -from .nms import batched_nms, batched_nms_rotated, nms, nms_rotated -from .roi_align import ROIAlign, roi_align -from .roi_align_rotated import ROIAlignRotated, roi_align_rotated -from .shape_spec import ShapeSpec -from .wrappers import ( - BatchNorm2d, - Conv2d, - ConvTranspose2d, - cat, - interpolate, - Linear, - nonzero_tuple, - cross_entropy, - shapes_to_tensor, -) -from .blocks import CNNBlockBase, DepthwiseSeparableConv2d -from .aspp import ASPP -from .losses import ciou_loss, diou_loss - -__all__ = [k for k in globals().keys() if not k.startswith("_")] diff --git a/spaces/OpenGVLab/InternGPT/iGPT/models/grit_src/third_party/CenterNet2/detectron2/solver/build.py b/spaces/OpenGVLab/InternGPT/iGPT/models/grit_src/third_party/CenterNet2/detectron2/solver/build.py deleted file mode 100644 index 1989dfcd0855d833a75e403f6a5e88725d78022f..0000000000000000000000000000000000000000 --- a/spaces/OpenGVLab/InternGPT/iGPT/models/grit_src/third_party/CenterNet2/detectron2/solver/build.py +++ /dev/null @@ -1,285 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -import copy -import itertools -import logging -from collections import defaultdict -from enum import Enum -from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Type, Union -import torch -from fvcore.common.param_scheduler import CosineParamScheduler, MultiStepParamScheduler - -from detectron2.config import CfgNode - -from .lr_scheduler import LRMultiplier, WarmupParamScheduler - -_GradientClipperInput = Union[torch.Tensor, Iterable[torch.Tensor]] -_GradientClipper = Callable[[_GradientClipperInput], None] - - -class GradientClipType(Enum): - VALUE = "value" - NORM = "norm" - - -def _create_gradient_clipper(cfg: CfgNode) -> _GradientClipper: - """ - Creates gradient clipping closure to clip by value or by norm, - according to the provided config. - """ - cfg = copy.deepcopy(cfg) - - def clip_grad_norm(p: _GradientClipperInput): - torch.nn.utils.clip_grad_norm_(p, cfg.CLIP_VALUE, cfg.NORM_TYPE) - - def clip_grad_value(p: _GradientClipperInput): - torch.nn.utils.clip_grad_value_(p, cfg.CLIP_VALUE) - - _GRADIENT_CLIP_TYPE_TO_CLIPPER = { - GradientClipType.VALUE: clip_grad_value, - GradientClipType.NORM: clip_grad_norm, - } - return _GRADIENT_CLIP_TYPE_TO_CLIPPER[GradientClipType(cfg.CLIP_TYPE)] - - -def _generate_optimizer_class_with_gradient_clipping( - optimizer: Type[torch.optim.Optimizer], - *, - per_param_clipper: Optional[_GradientClipper] = None, - global_clipper: Optional[_GradientClipper] = None, -) -> Type[torch.optim.Optimizer]: - """ - Dynamically creates a new type that inherits the type of a given instance - and overrides the `step` method to add gradient clipping - """ - assert ( - per_param_clipper is None or global_clipper is None - ), "Not allowed to use both per-parameter clipping and global clipping" - - def optimizer_wgc_step(self, closure=None): - if per_param_clipper is not None: - for group in self.param_groups: - for p in group["params"]: - per_param_clipper(p) - else: - # global clipper for future use with detr - # (https://github.com/facebookresearch/detr/pull/287) - all_params = itertools.chain(*[g["params"] for g in self.param_groups]) - global_clipper(all_params) - super(type(self), self).step(closure) - - OptimizerWithGradientClip = type( - optimizer.__name__ + "WithGradientClip", - (optimizer,), - {"step": optimizer_wgc_step}, - ) - return OptimizerWithGradientClip - - -def maybe_add_gradient_clipping( - cfg: CfgNode, optimizer: Type[torch.optim.Optimizer] -) -> Type[torch.optim.Optimizer]: - """ - If gradient clipping is enabled through config options, wraps the existing - optimizer type to become a new dynamically created class OptimizerWithGradientClip - that inherits the given optimizer and overrides the `step` method to - include gradient clipping. - - Args: - cfg: CfgNode, configuration options - optimizer: type. A subclass of torch.optim.Optimizer - - Return: - type: either the input `optimizer` (if gradient clipping is disabled), or - a subclass of it with gradient clipping included in the `step` method. - """ - if not cfg.SOLVER.CLIP_GRADIENTS.ENABLED: - return optimizer - if isinstance(optimizer, torch.optim.Optimizer): - optimizer_type = type(optimizer) - else: - assert issubclass(optimizer, torch.optim.Optimizer), optimizer - optimizer_type = optimizer - - grad_clipper = _create_gradient_clipper(cfg.SOLVER.CLIP_GRADIENTS) - OptimizerWithGradientClip = _generate_optimizer_class_with_gradient_clipping( - optimizer_type, per_param_clipper=grad_clipper - ) - if isinstance(optimizer, torch.optim.Optimizer): - optimizer.__class__ = OptimizerWithGradientClip # a bit hacky, not recommended - return optimizer - else: - return OptimizerWithGradientClip - - -def build_optimizer(cfg: CfgNode, model: torch.nn.Module) -> torch.optim.Optimizer: - """ - Build an optimizer from config. - """ - params = get_default_optimizer_params( - model, - base_lr=cfg.SOLVER.BASE_LR, - weight_decay_norm=cfg.SOLVER.WEIGHT_DECAY_NORM, - bias_lr_factor=cfg.SOLVER.BIAS_LR_FACTOR, - weight_decay_bias=cfg.SOLVER.WEIGHT_DECAY_BIAS, - ) - return maybe_add_gradient_clipping(cfg, torch.optim.SGD)( - params, - lr=cfg.SOLVER.BASE_LR, - momentum=cfg.SOLVER.MOMENTUM, - nesterov=cfg.SOLVER.NESTEROV, - weight_decay=cfg.SOLVER.WEIGHT_DECAY, - ) - - -def get_default_optimizer_params( - model: torch.nn.Module, - base_lr: Optional[float] = None, - weight_decay: Optional[float] = None, - weight_decay_norm: Optional[float] = None, - bias_lr_factor: Optional[float] = 1.0, - weight_decay_bias: Optional[float] = None, - overrides: Optional[Dict[str, Dict[str, float]]] = None, -) -> List[Dict[str, Any]]: - """ - Get default param list for optimizer, with support for a few types of - overrides. If no overrides needed, this is equivalent to `model.parameters()`. - - Args: - base_lr: lr for every group by default. Can be omitted to use the one in optimizer. - weight_decay: weight decay for every group by default. Can be omitted to use the one - in optimizer. - weight_decay_norm: override weight decay for params in normalization layers - bias_lr_factor: multiplier of lr for bias parameters. - weight_decay_bias: override weight decay for bias parameters - overrides: if not `None`, provides values for optimizer hyperparameters - (LR, weight decay) for module parameters with a given name; e.g. - ``{"embedding": {"lr": 0.01, "weight_decay": 0.1}}`` will set the LR and - weight decay values for all module parameters named `embedding`. - - For common detection models, ``weight_decay_norm`` is the only option - needed to be set. ``bias_lr_factor,weight_decay_bias`` are legacy settings - from Detectron1 that are not found useful. - - Example: - :: - torch.optim.SGD(get_default_optimizer_params(model, weight_decay_norm=0), - lr=0.01, weight_decay=1e-4, momentum=0.9) - """ - if overrides is None: - overrides = {} - defaults = {} - if base_lr is not None: - defaults["lr"] = base_lr - if weight_decay is not None: - defaults["weight_decay"] = weight_decay - bias_overrides = {} - if bias_lr_factor is not None and bias_lr_factor != 1.0: - # NOTE: unlike Detectron v1, we now by default make bias hyperparameters - # exactly the same as regular weights. - if base_lr is None: - raise ValueError("bias_lr_factor requires base_lr") - bias_overrides["lr"] = base_lr * bias_lr_factor - if weight_decay_bias is not None: - bias_overrides["weight_decay"] = weight_decay_bias - if len(bias_overrides): - if "bias" in overrides: - raise ValueError("Conflicting overrides for 'bias'") - overrides["bias"] = bias_overrides - - norm_module_types = ( - torch.nn.BatchNorm1d, - torch.nn.BatchNorm2d, - torch.nn.BatchNorm3d, - torch.nn.SyncBatchNorm, - # NaiveSyncBatchNorm inherits from BatchNorm2d - torch.nn.GroupNorm, - torch.nn.InstanceNorm1d, - torch.nn.InstanceNorm2d, - torch.nn.InstanceNorm3d, - torch.nn.LayerNorm, - torch.nn.LocalResponseNorm, - ) - params: List[Dict[str, Any]] = [] - memo: Set[torch.nn.parameter.Parameter] = set() - for module in model.modules(): - for module_param_name, value in module.named_parameters(recurse=False): - if not value.requires_grad: - continue - # Avoid duplicating parameters - if value in memo: - continue - memo.add(value) - - hyperparams = copy.copy(defaults) - if isinstance(module, norm_module_types) and weight_decay_norm is not None: - hyperparams["weight_decay"] = weight_decay_norm - hyperparams.update(overrides.get(module_param_name, {})) - params.append({"params": [value], **hyperparams}) - return reduce_param_groups(params) - - -def _expand_param_groups(params: List[Dict[str, Any]]) -> List[Dict[str, Any]]: - # Transform parameter groups into per-parameter structure. - # Later items in `params` can overwrite parameters set in previous items. - ret = defaultdict(dict) - for item in params: - assert "params" in item - cur_params = {x: y for x, y in item.items() if x != "params"} - for param in item["params"]: - ret[param].update({"params": [param], **cur_params}) - return list(ret.values()) - - -def reduce_param_groups(params: List[Dict[str, Any]]) -> List[Dict[str, Any]]: - # Reorganize the parameter groups and merge duplicated groups. - # The number of parameter groups needs to be as small as possible in order - # to efficiently use the PyTorch multi-tensor optimizer. Therefore instead - # of using a parameter_group per single parameter, we reorganize the - # parameter groups and merge duplicated groups. This approach speeds - # up multi-tensor optimizer significantly. - params = _expand_param_groups(params) - groups = defaultdict(list) # re-group all parameter groups by their hyperparams - for item in params: - cur_params = tuple((x, y) for x, y in item.items() if x != "params") - groups[cur_params].extend(item["params"]) - ret = [] - for param_keys, param_values in groups.items(): - cur = {kv[0]: kv[1] for kv in param_keys} - cur["params"] = param_values - ret.append(cur) - return ret - - -def build_lr_scheduler( - cfg: CfgNode, optimizer: torch.optim.Optimizer -) -> torch.optim.lr_scheduler._LRScheduler: - """ - Build a LR scheduler from config. - """ - name = cfg.SOLVER.LR_SCHEDULER_NAME - - if name == "WarmupMultiStepLR": - steps = [x for x in cfg.SOLVER.STEPS if x <= cfg.SOLVER.MAX_ITER] - if len(steps) != len(cfg.SOLVER.STEPS): - logger = logging.getLogger(__name__) - logger.warning( - "SOLVER.STEPS contains values larger than SOLVER.MAX_ITER. " - "These values will be ignored." - ) - sched = MultiStepParamScheduler( - values=[cfg.SOLVER.GAMMA ** k for k in range(len(steps) + 1)], - milestones=steps, - num_updates=cfg.SOLVER.MAX_ITER, - ) - elif name == "WarmupCosineLR": - sched = CosineParamScheduler(1, 0) - else: - raise ValueError("Unknown LR scheduler: {}".format(name)) - - sched = WarmupParamScheduler( - sched, - cfg.SOLVER.WARMUP_FACTOR, - min(cfg.SOLVER.WARMUP_ITERS / cfg.SOLVER.MAX_ITER, 1.0), - cfg.SOLVER.WARMUP_METHOD, - ) - return LRMultiplier(optimizer, multiplier=sched, max_iter=cfg.SOLVER.MAX_ITER) diff --git a/spaces/OpenMotionLab/MotionGPT/mGPT/render/renderer.py b/spaces/OpenMotionLab/MotionGPT/mGPT/render/renderer.py deleted file mode 100644 index 2dd66ab748f795bd3b1915b5b609dc5daace6ce4..0000000000000000000000000000000000000000 --- a/spaces/OpenMotionLab/MotionGPT/mGPT/render/renderer.py +++ /dev/null @@ -1,179 +0,0 @@ -""" -This script is borrowed from https://github.com/mkocabas/VIBE - Adhere to their licence to use this script - It has been modified -""" - -import os -import math -import trimesh - -import pyrender -import numpy as np -from pyrender.constants import RenderFlags - - -# os.environ['DISPLAY'] = ':0.0' -# os.environ['PYOPENGL_PLATFORM'] = 'egl' -# os.environ['PYOPENGL_PLATFORM'] = 'osmesa' -SMPL_MODEL_DIR = "data/smpl_data/" - - -def get_smpl_faces(): - return np.load(os.path.join(SMPL_MODEL_DIR, "smplfaces.npy")) - - -class WeakPerspectiveCamera(pyrender.Camera): - def __init__(self, - scale, - translation, - znear=pyrender.camera.DEFAULT_Z_NEAR, - zfar=None, - name=None): - super(WeakPerspectiveCamera, self).__init__( - znear=znear, - zfar=zfar, - name=name, - ) - self.scale = scale - self.translation = translation - - def get_projection_matrix(self, width=None, height=None): - P = np.eye(4) - P[0, 0] = self.scale[0] - P[1, 1] = self.scale[1] - P[0, 3] = self.translation[0] * self.scale[0] - P[1, 3] = -self.translation[1] * self.scale[1] - P[2, 2] = -1 - return P - - -class Renderer: - def __init__(self, background=None, resolution=(224, 224), bg_color=[0, 0, 0, 0.5], orig_img=False, wireframe=False, cam_pose=np.eye(4)): - width, height = resolution - self.background = np.zeros((height, width, 3)) - self.resolution = resolution - - self.faces = get_smpl_faces() - self.orig_img = orig_img - self.wireframe = wireframe - self.renderer = pyrender.OffscreenRenderer( - viewport_width=self.resolution[0], - viewport_height=self.resolution[1], - point_size=0.5 - ) - - # set the scene - self.scene = pyrender.Scene(bg_color=bg_color, ambient_light=(0.4, 0.4, 0.4)) - - light = pyrender.PointLight(color=[1.0, 1.0, 1.0], intensity=4) - - - light_pose = np.eye(4) - light_pose[:3, 3] = [0, -1, 1] - self.scene.add(light, pose=np.dot(cam_pose,light_pose).copy()) - - light_pose[:3, 3] = [0, 1, 1] - self.scene.add(light, pose=np.dot(cam_pose,light_pose).copy()) - - light_pose[:3, 3] = [1, 1, 2] - self.scene.add(light, pose=np.dot(cam_pose,light_pose).copy()) - - """ok - light_pose = np.eye(4) - light_pose[:3, 3] = [0, -1, 1] - self.scene.add(light, pose=light_pose) - - light_pose[:3, 3] = [0, 1, 1] - self.scene.add(light, pose=light_pose) - - light_pose[:3, 3] = [1, 1, 2] - self.scene.add(light, pose=light_pose) - """ - - # light_pose[:3, 3] = [0, -2, 2] - # [droite, hauteur, profondeur camera] - """ - light_pose = np.eye(4) - light_pose[:3, 3] = [0, -1, 1] - self.scene.add(light, pose=light_pose) - - light_pose[:3, 3] = [0, 1, 1] - self.scene.add(light, pose=light_pose) - - light_pose[:3, 3] = [1, 1, 2] - self.scene.add(light, pose=light_pose) - """ - - def render(self, img, verts, cam, angle=None, axis=None, mesh_filename=None, color=[1.0, 1.0, 0.9], - cam_pose=np.eye(4)): - mesh = trimesh.Trimesh(vertices=verts, faces=self.faces, process=False) - Rx = trimesh.transformations.rotation_matrix(math.radians(180), [1, 0, 0]) - # Rx = trimesh.transformations.rotation_matrix(math.radians(-90), [1, 0, 0]) - mesh.apply_transform(Rx) - - if mesh_filename is not None: - mesh.export(mesh_filename) - - if angle and axis: - R = trimesh.transformations.rotation_matrix(math.radians(angle), axis) - mesh.apply_transform(R) - - sx, sy, tx, ty = cam - - camera = WeakPerspectiveCamera( - scale=[sx, sy], - translation=[tx, ty], - zfar=100000. - ) - - material = pyrender.MetallicRoughnessMaterial( - metallicFactor=0.0, # 0.0 for no specular lighting - # metallicFactor=0.7, # 0.0 for no specular lighting - alphaMode='OPAQUE', - baseColorFactor=(color[0], color[1], color[2], 1.0) - ) - - mesh = pyrender.Mesh.from_trimesh(mesh, material=material) - - mesh_node = self.scene.add(mesh, 'mesh') - - cam_node = self.scene.add(camera, pose=cam_pose) - - if self.wireframe: - render_flags = RenderFlags.RGBA | RenderFlags.ALL_WIREFRAME - else: - render_flags = RenderFlags.RGBA - - rgb, _ = self.renderer.render(self.scene, flags=render_flags) - if rgb.shape[-1]==3: - # Debug - # 0 not distinguish alpha - valid_mask = (rgb[:, :, -1] > 0)[:, :, np.newaxis] - output_img = rgb * valid_mask + (1 - valid_mask) * img - elif rgb.shape[-1]==4: - # valid_mask = (rgb[:, :, -1] > 128)[:, :, np.newaxis] - # output_img = rgb[:, :, :-1] * valid_mask + (1 - valid_mask) * img - - # # output alpha - valid_mask = (rgb[:, :, -1] > 128)[:, :] - output_img = np.copy(rgb) - output_img[:, :, -1] *= valid_mask - # output_img = img - else: - raise ValueError(f"rgb shape {rgb.shape[-1]} is not correct!") - image = output_img.astype(np.uint8) - - self.scene.remove_node(mesh_node) - self.scene.remove_node(cam_node) - - return image - - -def get_renderer(width, height, cam_pose): - renderer = Renderer(resolution=(width, height), - bg_color=[1, 1, 1, 0.5], - orig_img=False, - wireframe=False, - cam_pose=cam_pose) - return renderer diff --git a/spaces/OptimalScale/Robin-7b/README.md b/spaces/OptimalScale/Robin-7b/README.md deleted file mode 100644 index 4a41d7825f93aaac52a1e1b19502f73b4fddd481..0000000000000000000000000000000000000000 --- a/spaces/OptimalScale/Robin-7b/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: Robin 7b -emoji: 🔥 -colorFrom: gray -colorTo: gray -sdk: gradio -sdk_version: 3.27.0 -app_file: app.py -pinned: false -license: apache-2.0 ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/OptimalScale/Robin-7b/lmflow/args.py b/spaces/OptimalScale/Robin-7b/lmflow/args.py deleted file mode 100644 index 3dd010c08b901772bc2226756554837c293e37ab..0000000000000000000000000000000000000000 --- a/spaces/OptimalScale/Robin-7b/lmflow/args.py +++ /dev/null @@ -1,622 +0,0 @@ -#!/usr/bin/env python -# coding=utf-8 -"""This script defines dataclasses: ModelArguments and DatasetArguments, -that contain the arguments for the model and dataset used in training. - -It imports several modules, including dataclasses, field from typing, Optional from typing, -require_version from transformers.utils.versions, MODEL_FOR_CAUSAL_LM_MAPPING, -and TrainingArguments from transformers. - -MODEL_CONFIG_CLASSES is assigned a list of the model config classes from -MODEL_FOR_CAUSAL_LM_MAPPING. MODEL_TYPES is assigned a tuple of the model types -extracted from the MODEL_CONFIG_CLASSES. -""" - -from dataclasses import dataclass, field -from typing import Optional, List - -from transformers.utils.versions import require_version - -from transformers import ( - MODEL_FOR_CAUSAL_LM_MAPPING, - TrainingArguments, -) - -MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys()) -MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) - - -@dataclass -class ModelArguments: - """ - Define a class ModelArguments using the dataclass decorator. - The class contains several optional parameters that can be used to configure a model. - - model_name_or_path : str - a string representing the path or name of a pretrained - model checkpoint for weights initialization. If None, a model will be trained from scratch. - - model_type : str - a string representing the type of model to use if training from - scratch. If not provided, a pretrained model will be used. - - config_overrides : str - a string representing the default config settings to override - when training a model from scratch. - - config_name : str - a string representing the name or path of the pretrained config to - use, if different from the model_name_or_path. - - tokenizer_name : str - a string representing the name or path of the pretrained tokenizer - to use, if different from the model_name_or_path. - - cache_dir : str - a string representing the path to the directory where pretrained models - downloaded from huggingface.co will be stored. - - use_fast_tokenizer : bool - a boolean indicating whether to use a fast tokenizer (backed by the - tokenizers library) or not. - - model_revision : str - a string representing the specific model version to use (can be a - branch name, tag name, or commit id). - - use_auth_token : bool - a boolean indicating whether to use the token generated when running - huggingface-cli login (necessary to use this script with private models). - - torch_dtype : str - a string representing the dtype to load the model under. If auto is - passed, the dtype will be automatically derived from the model's weights. - - use_ram_optimized_load : bool - a boolean indicating whether to use disk mapping when memory is not - enough. - """ - - model_name_or_path: Optional[str] = field( - default=None, - metadata={ - "help": ( - "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." - ) - }, - ) - lora_model_path: Optional[str] = field( - default=None, - metadata={ - "help": ( - "The incremental model diff introduced by LoRA finetuning." - " Along with the original non-finetuned model forms the whole" - " finetuned model." - ) - } - ) - model_type: Optional[str] = field( - default=None, - metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, - ) - arch_type: Optional[str] = field( - default="decoder_only", - metadata={"help": "The architecture type of the model. Currently supported decoder_only or encoder_decoder"} - ) - config_overrides: Optional[str] = field( - default=None, - metadata={ - "help": ( - "Override some existing default config settings when a model is trained from scratch. Example: " - "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" - ) - }, - ) - arch_type: Optional[str] = field( - default="decoder_only", - metadata={ - "help": ( - "Model architecture type, e.g. \"decoder_only\"," - " \"encoder_decoder\"" - ), - "choices": ["decoder_only", "encoder_decoder", "text_regression"], - }, - ) - config_name: Optional[str] = field( - default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} - ) - tokenizer_name: Optional[str] = field( - default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} - ) - cache_dir: Optional[str] = field( - default=None, - metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, - ) - use_fast_tokenizer: bool = field( - default=True, - metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, - ) - model_revision: str = field( - default="main", - metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, - ) - use_auth_token: bool = field( - default=False, - metadata={ - "help": ( - "Will use the token generated when running `huggingface-cli login` (necessary to use this script " - "with private models)." - ) - }, - ) - torch_dtype: Optional[str] = field( - default=None, - metadata={ - "help": ( - "Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the " - "dtype will be automatically derived from the model's weights." - ), - "choices": ["auto", "bfloat16", "float16", "float32"], - }, - ) - use_lora: bool = field( - default=False, - metadata={"help": "Whether to lora."}, - ) - lora_r: int = field( - default=8, - metadata={"help": "the rank of the lora parameters. The smaller lora_r is , the fewer parameters lora has."}, - ) - lora_alpha: int = field( - default=32, - metadata={"help": "Merging ratio between the fine-tuned model and the original. This is controlled by a parameter called alpha in the paper."}, - ) - lora_target_modules: List[str] = field( - default=None, metadata={"help": "Pretrained config name or path if not the same as model_name", - } - ) - lora_dropout: float = field( - default=0.1, - metadata={"help": "The dropout rate in lora.linear."}, - ) - save_aggregated_lora: bool = field( - default=False, - metadata={"help": "Whether to save aggregated lora."}, - ) - use_ram_optimized_load: bool = field( - default=True, - metadata={"help": "Whether use disk mapping when memory is not enough."} - ) - - def __post_init__(self): - if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): - raise ValueError( - "--config_overrides can't be used in combination with --config_name or --model_name_or_path" - ) - - -@dataclass -class DatasetArguments: - """ - Define a class DatasetArguments using the dataclass decorator. - The class contains several optional parameters that can be used to configure a dataset for a language model. - - - dataset_path : str - a string representing the path of the dataset to use. - - dataset_name : str - a string representing the name of the dataset to use. The default value is "customized". - - is_custom_dataset : bool - a boolean indicating whether to use custom data. The default value is False. - - customized_cache_dir : str - a string representing the path to the directory where customized dataset caches will be stored. - - dataset_config_name : str - a string representing the configuration name of the dataset to use (via the datasets library). - - train_file : str - a string representing the path to the input training data file (a text file). - - validation_file : str - a string representing the path to the input evaluation data file to evaluate the perplexity on (a text file). - - max_train_samples : int - an integer indicating the maximum number of training examples to use for debugging or quicker training. - If set, the training dataset will be truncated to this number. - - max_eval_samples: int - an integer indicating the maximum number of evaluation examples to use for debugging or quicker training. - If set, the evaluation dataset will be truncated to this number. - - streaming : bool - a boolean indicating whether to enable streaming mode. - - block_size: int - an integer indicating the optional input sequence length after tokenization. The training dataset will be - truncated in blocks of this size for training. - - The class also includes some additional parameters that can be used to configure the dataset further, such as `overwrite_cache`, - `validation_split_percentage`, `preprocessing_num_workers`, `disable_group_texts`, `demo_example_in_prompt`, `explanation_in_prompt`, - `keep_linebreaks`, and `prompt_structure`. - - The field function is used to set default values and provide help messages for each parameter. The Optional type hint is - used to indicate that a parameter is optional. The metadata argument is used to provide additional information about - each parameter, such as a help message. - """ - - dataset_path: Optional[str] = field( - default=None, metadata={"help": "The path of the dataset to use."} - ) - dataset_name: Optional[str] = field( - default="customized", metadata={"help": "Should be \"customized\""} - ) - is_custom_dataset: Optional[bool] = field( - default=False, metadata={"help": "whether to use custom data"} - ) - customized_cache_dir: Optional[str] = field( - default=".cache/llm-ft/datasets", - metadata={"help": "Where do you want to store the customized dataset caches"}, - ) - dataset_config_name: Optional[str] = field( - default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} - ) - train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) - validation_file: Optional[str] = field( - default=None, - metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, - ) - max_train_samples: Optional[int] = field( - default=None, - metadata={ - "help": ( - "For debugging purposes or quicker training, truncate the number of training examples to this " - "value if set." - ) - }, - ) - max_eval_samples: Optional[int] = field( - default=1e10, - metadata={ - "help": ( - "For debugging purposes or quicker training, truncate the number of evaluation examples to this " - "value if set." - ) - }, - ) - streaming: bool = field(default=False, metadata={"help": "Enable streaming mode"}) - block_size: Optional[int] = field( - default=None, - metadata={ - "help": ( - "Optional input sequence length after tokenization. " - "The training dataset will be truncated in block of this size for training. " - "Default to the model max input length for single sentence inputs (take into account special tokens)." - ) - }, - ) - overwrite_cache: bool = field( - default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} - ) - validation_split_percentage: Optional[int] = field( - default=5, - metadata={ - "help": "The percentage of the train set used as validation set in case there's no validation split" - }, - ) - preprocessing_num_workers: Optional[int] = field( - default=None, - metadata={"help": "The number of processes to use for the preprocessing."}, - ) - disable_group_texts: bool = field( - default=False, - metadata={ - "help": ( - "Whether we group original samples together to generate sample" - " sequences of length `block_size`. By default, we group every" - " 1000 tokenized sequences together, divide them into " - " [{total_num_tokens} / {block_size}] sequences, each with" - " `block_size` tokens (the remaining tokens are ommited." - " If this flag is set to True, we only group 1 tokenized" - " sequence, i.e. cutting long sequence into chunks." - ) - }, - ) - keep_linebreaks: bool = field( - default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."} - ) - test_file: Optional[str] = field( - default=None, - metadata={"help": "Evaluation File Path"}, - ) - - def __post_init__(self): - if self.streaming: - require_version("datasets>=2.0.0", "The streaming feature requires `datasets>=2.0.0`") - - if self.dataset_name is None and self.train_file is None and self.validation_file is None: - raise ValueError("Need either a dataset name or a training/validation file.") - else: - if self.train_file is not None: - extension = self.train_file.split(".")[-1] - assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." - if self.validation_file is not None: - extension = self.validation_file.split(".")[-1] - assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." - - -@dataclass -class FinetunerArguments(TrainingArguments): - """ - Adapt transformers.TrainingArguments - """ - pass - - -@dataclass -class EvaluatorArguments: - """ - Define a class EvaluatorArguments using the dataclass decorator. The class contains several optional - parameters that can be used to configure a evaluator. - - local_rank : str - For distributed training: local_rank - - random_shuffle : bool - - use_wandb : bool - - random_seed : int, default = 1 - - output_dir : str, default = './output_dir', - - mixed_precision : str, choice from ["bf16","fp16"]. - mixed precision mode, whether to use bf16 or fp16 - - deepspeed : - Enable deepspeed and pass the path to deepspeed json config file (e.g. ds_config.json) or an already - loaded json file as a dict - """ - local_rank: int = field( - default=-1, - metadata={"help": "For distributed training: local_rank" - } - ) - - random_shuffle: Optional[bool] = field( - default=False, - metadata={"help": "" - } - ) - - use_wandb: Optional[bool] = field( - default=False, - metadata={ - "help": ( - "When this flag is True, wandb will be enabled" - ) - }, - ) - random_seed: Optional[int] = field( - default=1, - metadata={ - "help": ( - "used to set random seed" - ) - }, - ) - output_dir: Optional[str] = field( - default="./output_dir", - metadata={"help": "Output path for the inferenced results"}, - ) - mixed_precision: Optional[str] = field( - default="bf16", - metadata={ - "help": ( - "mixed precision mode, whether to use bf16 or fp16" - ), - "choices": ["bf16","fp16"], - }, - ) - deepspeed: Optional[str] = field( - default=None, - metadata={ - "help": ( - "Enable deepspeed and pass the path to deepspeed json config file (e.g. ds_config.json) or an already" - " loaded json file as a dict" - ) - }, - ) - answer_type: Optional[str] = field( - default="text", - metadata={ - "help": ( - 'Question type for answer extraction from the decoder output.' - ' Supported types: \n' - ' 1) "multiple_choice", e.g. A, B, C, D, ...\n' - ' 2) "binary_choice", e.g. yes, no, maybe\n' - ' 3) "math", e.g. 1.0, -3.52\n' - ' 4) "text", e.g. "I think that it is okay"\n' - ' 5) Special treatment for several datasets\n' - ' - "gsm8k"\n' - ' - "svamp"\n' - ' - "asdiv"\n' - ' - "addsub"\n' - ' - "singleeq"\n' - ' - "multiarith"\n' - ' - "aqua"\n' - ' - "csqa"\n' - ' - "strategyqa"\n' - ' - "pubmedqa"\n' - ' - "medmcqa"\n' - ' - "usmle"\n' - ) - }, - ) - prompt_structure: Optional[str] = field( - default="{input}", - metadata={ - "help": ( - 'Prompt structure to facilitate prompt engineering during' - ' inference. The model will receive' - ' `prompt_structure.format(input=input)` as its input.' - ) - }, - ) - evaluate_block_size: Optional[int] = field( - default=512, - metadata={ - "help": ( - "the model will have at least block_size tokens for context when calculating the conditional likelihood of any one token" - " (provided there are block_size preceding tokens available to condition on)" - ) - }, - ) - metric: Optional[str] = field( - default="accuracy", - metadata={ - "help": "the metric the model will be evaluated on", - "choices": ["ppl", "perplexity", "acc", "accuracy", "nll", "neg_log_likelihood"], - }, - ) - - -@dataclass -class InferencerArguments: - """ - Define a class InferencerArguments using the dataclass decorator. The class contains several optional - parameters that can be used to configure a inferencer. - - local_rank : str - For distributed training: local_rank - - random_seed : int, default = 1 - - deepspeed : - Enable deepspeed and pass the path to deepspeed json config file (e.g. ds_config.json) or an already - loaded json file as a dict - mixed_precision : str, choice from ["bf16","fp16"]. - mixed precision mode, whether to use bf16 or fp16 - - """ - device: str = field( - default="gpu", - metadata={ - "help": "device of chatbot", - "choices": ["gpu", "cpu"], - }, - ) - local_rank: int = field( - default=-1, - metadata={"help": "For distributed training: local_rank" - } - ) - random_seed: Optional[int] = field( - default=1, - metadata={ - "help": ( - "used to set random seed" - ) - }, - ) - deepspeed: Optional[str] = field( - default=None, - metadata={ - "help": ( - "Enable deepspeed and pass the path to deepspeed json config file (e.g. ds_config.json) or an already" - " loaded json file as a dict" - ) - }, - ) - mixed_precision: Optional[str] = field( - default="bf16", - metadata={ - "help": ( - "mixed precision mode, whether to use bf16 or fp16" - ), - "choices": ["bf16","fp16"], - }, - ) - - -@dataclass -class RaftAlignerArguments(TrainingArguments): - """ - Define a class RaftAlignerArguments to configure raft aligner. - """ - output_reward_path: Optional[str] = field( - default="tmp/raft_aligner/", - metadata={ - "help": "The path of output rewards." - } - ) - output_min_length: Optional[int] = field( - default=16, - metadata={ - "help": ( - "minimum length of the output token sequence generated from" - " model given an input." - ), - }, - ) - output_max_length: Optional[int] = field( - default=48, - metadata={ - "help": ( - "maximum length of the output token sequence generated from" - " model given an output." - ), - }, - ) - num_raft_iteration: Optional[int] = field( - default=20, - metadata={ - "help": "number of iterations of the raft aligner." - }, - ) - raft_batch_size: Optional[int] = field( - default=320, - metadata={ - "help": ( - "only select {raft_batch_size} samples each time to" - " generate rewards and be ranked for STF training." - ) - }, - ) - top_reward_percentage: Optional[int] = field( - default=0.2, - metadata={ - "help": ( - "only top {top_reward_percentage} samples in the raft batch," - " (in terms of rewards), will be used for SFT the model." - ), - }, - ) - inference_batch_size_per_device: Optional[int] = field( - default=1, - metadata={ - "help": ( - "every device will infer {inference_batch_size_per_device}" - " samples in parallel. The inferred results will be concatenaed" - " with inputs and attach a reward." - ), - }, - ) - - -PIPELINE_ARGUMENT_MAPPING = { - "finetuner": FinetunerArguments, - "evaluator": EvaluatorArguments, - "inferencer": InferencerArguments, - "raft_aligner": RaftAlignerArguments, -} - - -class AutoArguments: - """ - Automatically choose arguments from FinetunerArguments or EvaluatorArguments. - """ - def get_pipeline_args_class(pipeline_name: str): - return PIPELINE_ARGUMENT_MAPPING[pipeline_name] diff --git a/spaces/PAIR/PAIR-Diffusion/annotator/OneFormer/oneformer/modeling/pixel_decoder/ops/src/cuda/ms_deform_attn_cuda.h b/spaces/PAIR/PAIR-Diffusion/annotator/OneFormer/oneformer/modeling/pixel_decoder/ops/src/cuda/ms_deform_attn_cuda.h deleted file mode 100644 index 4f0658e8668a11f0e7d71deff9adac71884f2e87..0000000000000000000000000000000000000000 --- a/spaces/PAIR/PAIR-Diffusion/annotator/OneFormer/oneformer/modeling/pixel_decoder/ops/src/cuda/ms_deform_attn_cuda.h +++ /dev/null @@ -1,35 +0,0 @@ -/*! -************************************************************************************************** -* Deformable DETR -* Copyright (c) 2020 SenseTime. All Rights Reserved. -* Licensed under the Apache License, Version 2.0 [see LICENSE for details] -************************************************************************************************** -* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 -************************************************************************************************** -*/ - -/*! -* Copyright (c) Facebook, Inc. and its affiliates. -* Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR -*/ - -#pragma once -#include - -at::Tensor ms_deform_attn_cuda_forward( - const at::Tensor &value, - const at::Tensor &spatial_shapes, - const at::Tensor &level_start_index, - const at::Tensor &sampling_loc, - const at::Tensor &attn_weight, - const int im2col_step); - -std::vector ms_deform_attn_cuda_backward( - const at::Tensor &value, - const at::Tensor &spatial_shapes, - const at::Tensor &level_start_index, - const at::Tensor &sampling_loc, - const at::Tensor &attn_weight, - const at::Tensor &grad_output, - const int im2col_step); - diff --git a/spaces/PKUWilliamYang/StyleGANEX/models/stylegan2/op_ori/fused_act.py b/spaces/PKUWilliamYang/StyleGANEX/models/stylegan2/op_ori/fused_act.py deleted file mode 100644 index 973a84fffde53668d31397da5fb993bbc95f7be0..0000000000000000000000000000000000000000 --- a/spaces/PKUWilliamYang/StyleGANEX/models/stylegan2/op_ori/fused_act.py +++ /dev/null @@ -1,85 +0,0 @@ -import os - -import torch -from torch import nn -from torch.autograd import Function -from torch.utils.cpp_extension import load - -module_path = os.path.dirname(__file__) -fused = load( - 'fused', - sources=[ - os.path.join(module_path, 'fused_bias_act.cpp'), - os.path.join(module_path, 'fused_bias_act_kernel.cu'), - ], -) - - -class FusedLeakyReLUFunctionBackward(Function): - @staticmethod - def forward(ctx, grad_output, out, negative_slope, scale): - ctx.save_for_backward(out) - ctx.negative_slope = negative_slope - ctx.scale = scale - - empty = grad_output.new_empty(0) - - grad_input = fused.fused_bias_act( - grad_output, empty, out, 3, 1, negative_slope, scale - ) - - dim = [0] - - if grad_input.ndim > 2: - dim += list(range(2, grad_input.ndim)) - - grad_bias = grad_input.sum(dim).detach() - - return grad_input, grad_bias - - @staticmethod - def backward(ctx, gradgrad_input, gradgrad_bias): - out, = ctx.saved_tensors - gradgrad_out = fused.fused_bias_act( - gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale - ) - - return gradgrad_out, None, None, None - - -class FusedLeakyReLUFunction(Function): - @staticmethod - def forward(ctx, input, bias, negative_slope, scale): - empty = input.new_empty(0) - out = fused.fused_bias_act(input, bias, empty, 3, 0, negative_slope, scale) - ctx.save_for_backward(out) - ctx.negative_slope = negative_slope - ctx.scale = scale - - return out - - @staticmethod - def backward(ctx, grad_output): - out, = ctx.saved_tensors - - grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply( - grad_output, out, ctx.negative_slope, ctx.scale - ) - - return grad_input, grad_bias, None, None - - -class FusedLeakyReLU(nn.Module): - def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5): - super().__init__() - - self.bias = nn.Parameter(torch.zeros(channel)) - self.negative_slope = negative_slope - self.scale = scale - - def forward(self, input): - return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale) - - -def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5): - return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale) diff --git a/spaces/Pattr/DrumClassification/lilypond-2.24.2/lib/guile/2.2/ccache/web/server.go b/spaces/Pattr/DrumClassification/lilypond-2.24.2/lib/guile/2.2/ccache/web/server.go deleted file mode 100644 index ea2943c29d2f2801e4d45486aa16964a21ab3ebc..0000000000000000000000000000000000000000 Binary files a/spaces/Pattr/DrumClassification/lilypond-2.24.2/lib/guile/2.2/ccache/web/server.go and /dev/null differ diff --git a/spaces/PeepDaSlan9/AutoGPT/autogpt/commands/web_requests.py b/spaces/PeepDaSlan9/AutoGPT/autogpt/commands/web_requests.py deleted file mode 100644 index 406338f46fc7b2381e0b1634c628b123ef20b685..0000000000000000000000000000000000000000 --- a/spaces/PeepDaSlan9/AutoGPT/autogpt/commands/web_requests.py +++ /dev/null @@ -1,190 +0,0 @@ -"""Browse a webpage and summarize it using the LLM model""" -from __future__ import annotations - -from urllib.parse import urljoin, urlparse - -import requests -from bs4 import BeautifulSoup -from requests import Response -from requests.compat import urljoin - -from autogpt.config import Config -from autogpt.memory import get_memory -from autogpt.processing.html import extract_hyperlinks, format_hyperlinks - -CFG = Config() -memory = get_memory(CFG) - -session = requests.Session() -session.headers.update({"User-Agent": CFG.user_agent}) - - -def is_valid_url(url: str) -> bool: - """Check if the URL is valid - - Args: - url (str): The URL to check - - Returns: - bool: True if the URL is valid, False otherwise - """ - try: - result = urlparse(url) - return all([result.scheme, result.netloc]) - except ValueError: - return False - - -def sanitize_url(url: str) -> str: - """Sanitize the URL - - Args: - url (str): The URL to sanitize - - Returns: - str: The sanitized URL - """ - return urljoin(url, urlparse(url).path) - - -def check_local_file_access(url: str) -> bool: - """Check if the URL is a local file - - Args: - url (str): The URL to check - - Returns: - bool: True if the URL is a local file, False otherwise - """ - local_prefixes = [ - "file:///", - "file://localhost/", - "file://localhost", - "http://localhost", - "http://localhost/", - "https://localhost", - "https://localhost/", - "http://2130706433", - "http://2130706433/", - "https://2130706433", - "https://2130706433/", - "http://127.0.0.1/", - "http://127.0.0.1", - "https://127.0.0.1/", - "https://127.0.0.1", - "https://0.0.0.0/", - "https://0.0.0.0", - "http://0.0.0.0/", - "http://0.0.0.0", - "http://0000", - "http://0000/", - "https://0000", - "https://0000/", - ] - return any(url.startswith(prefix) for prefix in local_prefixes) - - -def get_response( - url: str, timeout: int = 10 -) -> tuple[None, str] | tuple[Response, None]: - """Get the response from a URL - - Args: - url (str): The URL to get the response from - timeout (int): The timeout for the HTTP request - - Returns: - tuple[None, str] | tuple[Response, None]: The response and error message - - Raises: - ValueError: If the URL is invalid - requests.exceptions.RequestException: If the HTTP request fails - """ - try: - # Restrict access to local files - if check_local_file_access(url): - raise ValueError("Access to local files is restricted") - - # Most basic check if the URL is valid: - if not url.startswith("http://") and not url.startswith("https://"): - raise ValueError("Invalid URL format") - - sanitized_url = sanitize_url(url) - - response = session.get(sanitized_url, timeout=timeout) - - # Check if the response contains an HTTP error - if response.status_code >= 400: - return None, f"Error: HTTP {str(response.status_code)} error" - - return response, None - except ValueError as ve: - # Handle invalid URL format - return None, f"Error: {str(ve)}" - - except requests.exceptions.RequestException as re: - # Handle exceptions related to the HTTP request - # (e.g., connection errors, timeouts, etc.) - return None, f"Error: {str(re)}" - - -def scrape_text(url: str) -> str: - """Scrape text from a webpage - - Args: - url (str): The URL to scrape text from - - Returns: - str: The scraped text - """ - response, error_message = get_response(url) - if error_message: - return error_message - if not response: - return "Error: Could not get response" - - soup = BeautifulSoup(response.text, "html.parser") - - for script in soup(["script", "style"]): - script.extract() - - text = soup.get_text() - lines = (line.strip() for line in text.splitlines()) - chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) - text = "\n".join(chunk for chunk in chunks if chunk) - - return text - - -def scrape_links(url: str) -> str | list[str]: - """Scrape links from a webpage - - Args: - url (str): The URL to scrape links from - - Returns: - str | list[str]: The scraped links - """ - response, error_message = get_response(url) - if error_message: - return error_message - if not response: - return "Error: Could not get response" - soup = BeautifulSoup(response.text, "html.parser") - - for script in soup(["script", "style"]): - script.extract() - - hyperlinks = extract_hyperlinks(soup, url) - - return format_hyperlinks(hyperlinks) - - -def create_message(chunk, question): - """Create a message for the user to summarize a chunk of text""" - return { - "role": "user", - "content": f'"""{chunk}""" Using the above text, answer the following' - f' question: "{question}" -- if the question cannot be answered using the' - " text, summarize the text.", - } diff --git a/spaces/PeepDaSlan9/candle-llama2/app-c34faa410cb6796f.js b/spaces/PeepDaSlan9/candle-llama2/app-c34faa410cb6796f.js deleted file mode 100644 index cdbd6e89620ee7e4eddedf44b0ab8fd2985acfd0..0000000000000000000000000000000000000000 --- a/spaces/PeepDaSlan9/candle-llama2/app-c34faa410cb6796f.js +++ /dev/null @@ -1,829 +0,0 @@ -let wasm; - -const heap = new Array(128).fill(undefined); - -heap.push(undefined, null, true, false); - -function getObject(idx) { return heap[idx]; } - -let heap_next = heap.length; - -function dropObject(idx) { - if (idx < 132) return; - heap[idx] = heap_next; - heap_next = idx; -} - -function takeObject(idx) { - const ret = getObject(idx); - dropObject(idx); - return ret; -} - -const cachedTextDecoder = (typeof TextDecoder !== 'undefined' ? new TextDecoder('utf-8', { ignoreBOM: true, fatal: true }) : { decode: () => { throw Error('TextDecoder not available') } } ); - -if (typeof TextDecoder !== 'undefined') { cachedTextDecoder.decode(); }; - -let cachedUint8Memory0 = null; - -function getUint8Memory0() { - if (cachedUint8Memory0 === null || cachedUint8Memory0.byteLength === 0) { - cachedUint8Memory0 = new Uint8Array(wasm.memory.buffer); - } - return cachedUint8Memory0; -} - -function getStringFromWasm0(ptr, len) { - ptr = ptr >>> 0; - return cachedTextDecoder.decode(getUint8Memory0().subarray(ptr, ptr + len)); -} - -function addHeapObject(obj) { - if (heap_next === heap.length) heap.push(heap.length + 1); - const idx = heap_next; - heap_next = heap[idx]; - - heap[idx] = obj; - return idx; -} - -function debugString(val) { - // primitive types - const type = typeof val; - if (type == 'number' || type == 'boolean' || val == null) { - return `${val}`; - } - if (type == 'string') { - return `"${val}"`; - } - if (type == 'symbol') { - const description = val.description; - if (description == null) { - return 'Symbol'; - } else { - return `Symbol(${description})`; - } - } - if (type == 'function') { - const name = val.name; - if (typeof name == 'string' && name.length > 0) { - return `Function(${name})`; - } else { - return 'Function'; - } - } - // objects - if (Array.isArray(val)) { - const length = val.length; - let debug = '['; - if (length > 0) { - debug += debugString(val[0]); - } - for(let i = 1; i < length; i++) { - debug += ', ' + debugString(val[i]); - } - debug += ']'; - return debug; - } - // Test for built-in - const builtInMatches = /\[object ([^\]]+)\]/.exec(toString.call(val)); - let className; - if (builtInMatches.length > 1) { - className = builtInMatches[1]; - } else { - // Failed to match the standard '[object ClassName]' - return toString.call(val); - } - if (className == 'Object') { - // we're a user defined class or Object - // JSON.stringify avoids problems with cycles, and is generally much - // easier than looping through ownProperties of `val`. - try { - return 'Object(' + JSON.stringify(val) + ')'; - } catch (_) { - return 'Object'; - } - } - // errors - if (val instanceof Error) { - return `${val.name}: ${val.message}\n${val.stack}`; - } - // TODO we could test for more things here, like `Set`s and `Map`s. - return className; -} - -let WASM_VECTOR_LEN = 0; - -const cachedTextEncoder = (typeof TextEncoder !== 'undefined' ? new TextEncoder('utf-8') : { encode: () => { throw Error('TextEncoder not available') } } ); - -const encodeString = (typeof cachedTextEncoder.encodeInto === 'function' - ? function (arg, view) { - return cachedTextEncoder.encodeInto(arg, view); -} - : function (arg, view) { - const buf = cachedTextEncoder.encode(arg); - view.set(buf); - return { - read: arg.length, - written: buf.length - }; -}); - -function passStringToWasm0(arg, malloc, realloc) { - - if (realloc === undefined) { - const buf = cachedTextEncoder.encode(arg); - const ptr = malloc(buf.length, 1) >>> 0; - getUint8Memory0().subarray(ptr, ptr + buf.length).set(buf); - WASM_VECTOR_LEN = buf.length; - return ptr; - } - - let len = arg.length; - let ptr = malloc(len, 1) >>> 0; - - const mem = getUint8Memory0(); - - let offset = 0; - - for (; offset < len; offset++) { - const code = arg.charCodeAt(offset); - if (code > 0x7F) break; - mem[ptr + offset] = code; - } - - if (offset !== len) { - if (offset !== 0) { - arg = arg.slice(offset); - } - ptr = realloc(ptr, len, len = offset + arg.length * 3, 1) >>> 0; - const view = getUint8Memory0().subarray(ptr + offset, ptr + len); - const ret = encodeString(arg, view); - - offset += ret.written; - } - - WASM_VECTOR_LEN = offset; - return ptr; -} - -let cachedInt32Memory0 = null; - -function getInt32Memory0() { - if (cachedInt32Memory0 === null || cachedInt32Memory0.byteLength === 0) { - cachedInt32Memory0 = new Int32Array(wasm.memory.buffer); - } - return cachedInt32Memory0; -} - -function makeClosure(arg0, arg1, dtor, f) { - const state = { a: arg0, b: arg1, cnt: 1, dtor }; - const real = (...args) => { - // First up with a closure we increment the internal reference - // count. This ensures that the Rust closure environment won't - // be deallocated while we're invoking it. - state.cnt++; - try { - return f(state.a, state.b, ...args); - } finally { - if (--state.cnt === 0) { - wasm.__wbindgen_export_2.get(state.dtor)(state.a, state.b); - state.a = 0; - - } - } - }; - real.original = state; - - return real; -} -function __wbg_adapter_18(arg0, arg1, arg2) { - wasm.wasm_bindgen__convert__closures__invoke1__h234ab1c7c4bef2e0(arg0, arg1, addHeapObject(arg2)); -} - -function makeMutClosure(arg0, arg1, dtor, f) { - const state = { a: arg0, b: arg1, cnt: 1, dtor }; - const real = (...args) => { - // First up with a closure we increment the internal reference - // count. This ensures that the Rust closure environment won't - // be deallocated while we're invoking it. - state.cnt++; - const a = state.a; - state.a = 0; - try { - return f(a, state.b, ...args); - } finally { - if (--state.cnt === 0) { - wasm.__wbindgen_export_2.get(state.dtor)(a, state.b); - - } else { - state.a = a; - } - } - }; - real.original = state; - - return real; -} - -let stack_pointer = 128; - -function addBorrowedObject(obj) { - if (stack_pointer == 1) throw new Error('out of js stack'); - heap[--stack_pointer] = obj; - return stack_pointer; -} -function __wbg_adapter_21(arg0, arg1, arg2) { - try { - wasm._dyn_core__ops__function__FnMut___A____Output___R_as_wasm_bindgen__closure__WasmClosure___describe__invoke__hadab26222cba6f84(arg0, arg1, addBorrowedObject(arg2)); - } finally { - heap[stack_pointer++] = undefined; - } -} - -function __wbg_adapter_24(arg0, arg1, arg2) { - wasm._dyn_core__ops__function__FnMut__A____Output___R_as_wasm_bindgen__closure__WasmClosure___describe__invoke__hfc3f0e78cf729c36(arg0, arg1, addHeapObject(arg2)); -} - -function isLikeNone(x) { - return x === undefined || x === null; -} - -let cachedUint32Memory0 = null; - -function getUint32Memory0() { - if (cachedUint32Memory0 === null || cachedUint32Memory0.byteLength === 0) { - cachedUint32Memory0 = new Uint32Array(wasm.memory.buffer); - } - return cachedUint32Memory0; -} - -function getArrayJsValueFromWasm0(ptr, len) { - ptr = ptr >>> 0; - const mem = getUint32Memory0(); - const slice = mem.subarray(ptr / 4, ptr / 4 + len); - const result = []; - for (let i = 0; i < slice.length; i++) { - result.push(takeObject(slice[i])); - } - return result; -} - -function handleError(f, args) { - try { - return f.apply(this, args); - } catch (e) { - wasm.__wbindgen_exn_store(addHeapObject(e)); - } -} - -async function __wbg_load(module, imports) { - if (typeof Response === 'function' && module instanceof Response) { - if (typeof WebAssembly.instantiateStreaming === 'function') { - try { - return await WebAssembly.instantiateStreaming(module, imports); - - } catch (e) { - if (module.headers.get('Content-Type') != 'application/wasm') { - console.warn("`WebAssembly.instantiateStreaming` failed because your server does not serve wasm with `application/wasm` MIME type. Falling back to `WebAssembly.instantiate` which is slower. Original error:\n", e); - - } else { - throw e; - } - } - } - - const bytes = await module.arrayBuffer(); - return await WebAssembly.instantiate(bytes, imports); - - } else { - const instance = await WebAssembly.instantiate(module, imports); - - if (instance instanceof WebAssembly.Instance) { - return { instance, module }; - - } else { - return instance; - } - } -} - -function __wbg_get_imports() { - const imports = {}; - imports.wbg = {}; - imports.wbg.__wbindgen_object_drop_ref = function(arg0) { - takeObject(arg0); - }; - imports.wbg.__wbg_log_3af90b48c052f90b = function(arg0, arg1) { - console.log(getStringFromWasm0(arg0, arg1)); - }; - imports.wbg.__wbindgen_cb_drop = function(arg0) { - const obj = takeObject(arg0).original; - if (obj.cnt-- == 1) { - obj.a = 0; - return true; - } - const ret = false; - return ret; - }; - imports.wbg.__wbindgen_string_new = function(arg0, arg1) { - const ret = getStringFromWasm0(arg0, arg1); - return addHeapObject(ret); - }; - imports.wbg.__wbindgen_object_clone_ref = function(arg0) { - const ret = getObject(arg0); - return addHeapObject(ret); - }; - imports.wbg.__wbg_listenerid_12315eee21527820 = function(arg0, arg1) { - const ret = getObject(arg1).__yew_listener_id; - getInt32Memory0()[arg0 / 4 + 1] = isLikeNone(ret) ? 0 : ret; - getInt32Memory0()[arg0 / 4 + 0] = !isLikeNone(ret); - }; - imports.wbg.__wbg_setlistenerid_3183aae8fa5840fb = function(arg0, arg1) { - getObject(arg0).__yew_listener_id = arg1 >>> 0; - }; - imports.wbg.__wbg_setsubtreeid_d32e6327eef1f7fc = function(arg0, arg1) { - getObject(arg0).__yew_subtree_id = arg1 >>> 0; - }; - imports.wbg.__wbg_subtreeid_e348577f7ef777e3 = function(arg0, arg1) { - const ret = getObject(arg1).__yew_subtree_id; - getInt32Memory0()[arg0 / 4 + 1] = isLikeNone(ret) ? 0 : ret; - getInt32Memory0()[arg0 / 4 + 0] = !isLikeNone(ret); - }; - imports.wbg.__wbg_cachekey_b61393159c57fd7b = function(arg0, arg1) { - const ret = getObject(arg1).__yew_subtree_cache_key; - getInt32Memory0()[arg0 / 4 + 1] = isLikeNone(ret) ? 0 : ret; - getInt32Memory0()[arg0 / 4 + 0] = !isLikeNone(ret); - }; - imports.wbg.__wbg_setcachekey_80183b7cfc421143 = function(arg0, arg1) { - getObject(arg0).__yew_subtree_cache_key = arg1 >>> 0; - }; - imports.wbg.__wbg_error_71d6845bf00a930f = function(arg0, arg1) { - var v0 = getArrayJsValueFromWasm0(arg0, arg1).slice(); - wasm.__wbindgen_free(arg0, arg1 * 4); - console.error(...v0); - }; - imports.wbg.__wbg_warn_0b90a269a514ae1d = function(arg0, arg1) { - var v0 = getArrayJsValueFromWasm0(arg0, arg1).slice(); - wasm.__wbindgen_free(arg0, arg1 * 4); - console.warn(...v0); - }; - imports.wbg.__wbg_new_abda76e883ba8a5f = function() { - const ret = new Error(); - return addHeapObject(ret); - }; - imports.wbg.__wbg_stack_658279fe44541cf6 = function(arg0, arg1) { - const ret = getObject(arg1).stack; - const ptr1 = passStringToWasm0(ret, wasm.__wbindgen_malloc, wasm.__wbindgen_realloc); - const len1 = WASM_VECTOR_LEN; - getInt32Memory0()[arg0 / 4 + 1] = len1; - getInt32Memory0()[arg0 / 4 + 0] = ptr1; - }; - imports.wbg.__wbg_error_f851667af71bcfc6 = function(arg0, arg1) { - let deferred0_0; - let deferred0_1; - try { - deferred0_0 = arg0; - deferred0_1 = arg1; - console.error(getStringFromWasm0(arg0, arg1)); - } finally { - wasm.__wbindgen_free(deferred0_0, deferred0_1, 1); - } - }; - imports.wbg.__wbg_location_7ac41949b772ef21 = function(arg0) { - const ret = getObject(arg0).location; - return isLikeNone(ret) ? 0 : addHeapObject(ret); - }; - imports.wbg.__wbg_body_674aec4c1c0910cd = function(arg0) { - const ret = getObject(arg0).body; - return isLikeNone(ret) ? 0 : addHeapObject(ret); - }; - imports.wbg.__wbg_createElement_4891554b28d3388b = function() { return handleError(function (arg0, arg1, arg2) { - const ret = getObject(arg0).createElement(getStringFromWasm0(arg1, arg2)); - return addHeapObject(ret); - }, arguments) }; - imports.wbg.__wbg_createElementNS_119acf9e82482041 = function() { return handleError(function (arg0, arg1, arg2, arg3, arg4) { - const ret = getObject(arg0).createElementNS(arg1 === 0 ? undefined : getStringFromWasm0(arg1, arg2), getStringFromWasm0(arg3, arg4)); - return addHeapObject(ret); - }, arguments) }; - imports.wbg.__wbg_createTextNode_2fd22cd7e543f938 = function(arg0, arg1, arg2) { - const ret = getObject(arg0).createTextNode(getStringFromWasm0(arg1, arg2)); - return addHeapObject(ret); - }; - imports.wbg.__wbg_instanceof_Window_9029196b662bc42a = function(arg0) { - let result; - try { - result = getObject(arg0) instanceof Window; - } catch { - result = false; - } - const ret = result; - return ret; - }; - imports.wbg.__wbg_document_f7ace2b956f30a4f = function(arg0) { - const ret = getObject(arg0).document; - return isLikeNone(ret) ? 0 : addHeapObject(ret); - }; - imports.wbg.__wbg_location_56243dba507f472d = function(arg0) { - const ret = getObject(arg0).location; - return addHeapObject(ret); - }; - imports.wbg.__wbg_performance_2c295061c8b01e0b = function(arg0) { - const ret = getObject(arg0).performance; - return isLikeNone(ret) ? 0 : addHeapObject(ret); - }; - imports.wbg.__wbg_fetch_336b6f0cb426b46e = function(arg0, arg1) { - const ret = getObject(arg0).fetch(getObject(arg1)); - return addHeapObject(ret); - }; - imports.wbg.__wbg_setchecked_e5a50baea447b8a8 = function(arg0, arg1) { - getObject(arg0).checked = arg1 !== 0; - }; - imports.wbg.__wbg_value_9423da9d988ee8cf = function(arg0, arg1) { - const ret = getObject(arg1).value; - const ptr1 = passStringToWasm0(ret, wasm.__wbindgen_malloc, wasm.__wbindgen_realloc); - const len1 = WASM_VECTOR_LEN; - getInt32Memory0()[arg0 / 4 + 1] = len1; - getInt32Memory0()[arg0 / 4 + 0] = ptr1; - }; - imports.wbg.__wbg_setvalue_1f95e61cbc382f7f = function(arg0, arg1, arg2) { - getObject(arg0).value = getStringFromWasm0(arg1, arg2); - }; - imports.wbg.__wbg_newwithstrandinit_cad5cd6038c7ff5d = function() { return handleError(function (arg0, arg1, arg2) { - const ret = new Request(getStringFromWasm0(arg0, arg1), getObject(arg2)); - return addHeapObject(ret); - }, arguments) }; - imports.wbg.__wbg_setonmessage_f0bd0280573b7084 = function(arg0, arg1) { - getObject(arg0).onmessage = getObject(arg1); - }; - imports.wbg.__wbg_new_8e7322f46d5d019c = function() { return handleError(function (arg0, arg1) { - const ret = new Worker(getStringFromWasm0(arg0, arg1)); - return addHeapObject(ret); - }, arguments) }; - imports.wbg.__wbg_newwithoptions_1bd20b45061ed935 = function() { return handleError(function (arg0, arg1, arg2) { - const ret = new Worker(getStringFromWasm0(arg0, arg1), getObject(arg2)); - return addHeapObject(ret); - }, arguments) }; - imports.wbg.__wbg_postMessage_8c609e2bde333d9c = function() { return handleError(function (arg0, arg1) { - getObject(arg0).postMessage(getObject(arg1)); - }, arguments) }; - imports.wbg.__wbg_instanceof_Response_fc4327dbfcdf5ced = function(arg0) { - let result; - try { - result = getObject(arg0) instanceof Response; - } catch { - result = false; - } - const ret = result; - return ret; - }; - imports.wbg.__wbg_blob_34990e4300d45f53 = function() { return handleError(function (arg0) { - const ret = getObject(arg0).blob(); - return addHeapObject(ret); - }, arguments) }; - imports.wbg.__wbg_now_0cfdc90c97d0c24b = function(arg0) { - const ret = getObject(arg0).now(); - return ret; - }; - imports.wbg.__wbg_debug_9b8701f894da9929 = function(arg0, arg1, arg2, arg3) { - console.debug(getObject(arg0), getObject(arg1), getObject(arg2), getObject(arg3)); - }; - imports.wbg.__wbg_error_788ae33f81d3b84b = function(arg0) { - console.error(getObject(arg0)); - }; - imports.wbg.__wbg_error_d9bce418caafb712 = function(arg0, arg1, arg2, arg3) { - console.error(getObject(arg0), getObject(arg1), getObject(arg2), getObject(arg3)); - }; - imports.wbg.__wbg_info_bb52f40b06f679de = function(arg0, arg1, arg2, arg3) { - console.info(getObject(arg0), getObject(arg1), getObject(arg2), getObject(arg3)); - }; - imports.wbg.__wbg_log_ea7093e35e3efd07 = function(arg0, arg1, arg2, arg3) { - console.log(getObject(arg0), getObject(arg1), getObject(arg2), getObject(arg3)); - }; - imports.wbg.__wbg_warn_dfc0e0cf544a13bd = function(arg0, arg1, arg2, arg3) { - console.warn(getObject(arg0), getObject(arg1), getObject(arg2), getObject(arg3)); - }; - imports.wbg.__wbg_instanceof_Element_4622f5da1249a3eb = function(arg0) { - let result; - try { - result = getObject(arg0) instanceof Element; - } catch { - result = false; - } - const ret = result; - return ret; - }; - imports.wbg.__wbg_namespaceURI_31718ed49b5343a3 = function(arg0, arg1) { - const ret = getObject(arg1).namespaceURI; - var ptr1 = isLikeNone(ret) ? 0 : passStringToWasm0(ret, wasm.__wbindgen_malloc, wasm.__wbindgen_realloc); - var len1 = WASM_VECTOR_LEN; - getInt32Memory0()[arg0 / 4 + 1] = len1; - getInt32Memory0()[arg0 / 4 + 0] = ptr1; - }; - imports.wbg.__wbg_setinnerHTML_b089587252408b67 = function(arg0, arg1, arg2) { - getObject(arg0).innerHTML = getStringFromWasm0(arg1, arg2); - }; - imports.wbg.__wbg_outerHTML_f7749ceff37b5832 = function(arg0, arg1) { - const ret = getObject(arg1).outerHTML; - const ptr1 = passStringToWasm0(ret, wasm.__wbindgen_malloc, wasm.__wbindgen_realloc); - const len1 = WASM_VECTOR_LEN; - getInt32Memory0()[arg0 / 4 + 1] = len1; - getInt32Memory0()[arg0 / 4 + 0] = ptr1; - }; - imports.wbg.__wbg_children_27ed308801b57d3f = function(arg0) { - const ret = getObject(arg0).children; - return addHeapObject(ret); - }; - imports.wbg.__wbg_removeAttribute_d8404da431968808 = function() { return handleError(function (arg0, arg1, arg2) { - getObject(arg0).removeAttribute(getStringFromWasm0(arg1, arg2)); - }, arguments) }; - imports.wbg.__wbg_setAttribute_e7e80b478b7b8b2f = function() { return handleError(function (arg0, arg1, arg2, arg3, arg4) { - getObject(arg0).setAttribute(getStringFromWasm0(arg1, arg2), getStringFromWasm0(arg3, arg4)); - }, arguments) }; - imports.wbg.__wbg_origin_50aa482fa6784a0a = function() { return handleError(function (arg0, arg1) { - const ret = getObject(arg1).origin; - const ptr1 = passStringToWasm0(ret, wasm.__wbindgen_malloc, wasm.__wbindgen_realloc); - const len1 = WASM_VECTOR_LEN; - getInt32Memory0()[arg0 / 4 + 1] = len1; - getInt32Memory0()[arg0 / 4 + 0] = ptr1; - }, arguments) }; - imports.wbg.__wbg_pathname_c8fd5c498079312d = function() { return handleError(function (arg0, arg1) { - const ret = getObject(arg1).pathname; - const ptr1 = passStringToWasm0(ret, wasm.__wbindgen_malloc, wasm.__wbindgen_realloc); - const len1 = WASM_VECTOR_LEN; - getInt32Memory0()[arg0 / 4 + 1] = len1; - getInt32Memory0()[arg0 / 4 + 0] = ptr1; - }, arguments) }; - imports.wbg.__wbg_data_ab99ae4a2e1e8bc9 = function(arg0) { - const ret = getObject(arg0).data; - return addHeapObject(ret); - }; - imports.wbg.__wbg_target_f171e89c61e2bccf = function(arg0) { - const ret = getObject(arg0).target; - return isLikeNone(ret) ? 0 : addHeapObject(ret); - }; - imports.wbg.__wbg_bubbles_63572b91f3885ef1 = function(arg0) { - const ret = getObject(arg0).bubbles; - return ret; - }; - imports.wbg.__wbg_cancelBubble_90d1c3aa2a76cbeb = function(arg0) { - const ret = getObject(arg0).cancelBubble; - return ret; - }; - imports.wbg.__wbg_composedPath_cf1bb5b8bcff496f = function(arg0) { - const ret = getObject(arg0).composedPath(); - return addHeapObject(ret); - }; - imports.wbg.__wbg_parentNode_9e53f8b17eb98c9d = function(arg0) { - const ret = getObject(arg0).parentNode; - return isLikeNone(ret) ? 0 : addHeapObject(ret); - }; - imports.wbg.__wbg_parentElement_c75962bc9997ea5f = function(arg0) { - const ret = getObject(arg0).parentElement; - return isLikeNone(ret) ? 0 : addHeapObject(ret); - }; - imports.wbg.__wbg_lastChild_0cee692010bac6c2 = function(arg0) { - const ret = getObject(arg0).lastChild; - return isLikeNone(ret) ? 0 : addHeapObject(ret); - }; - imports.wbg.__wbg_nextSibling_304d9aac7c2774ae = function(arg0) { - const ret = getObject(arg0).nextSibling; - return isLikeNone(ret) ? 0 : addHeapObject(ret); - }; - imports.wbg.__wbg_setnodeValue_d1c8382910b45e04 = function(arg0, arg1, arg2) { - getObject(arg0).nodeValue = arg1 === 0 ? undefined : getStringFromWasm0(arg1, arg2); - }; - imports.wbg.__wbg_textContent_c5d9e21ee03c63d4 = function(arg0, arg1) { - const ret = getObject(arg1).textContent; - var ptr1 = isLikeNone(ret) ? 0 : passStringToWasm0(ret, wasm.__wbindgen_malloc, wasm.__wbindgen_realloc); - var len1 = WASM_VECTOR_LEN; - getInt32Memory0()[arg0 / 4 + 1] = len1; - getInt32Memory0()[arg0 / 4 + 0] = ptr1; - }; - imports.wbg.__wbg_appendChild_51339d4cde00ee22 = function() { return handleError(function (arg0, arg1) { - const ret = getObject(arg0).appendChild(getObject(arg1)); - return addHeapObject(ret); - }, arguments) }; - imports.wbg.__wbg_insertBefore_ffa01d4b747c95fc = function() { return handleError(function (arg0, arg1, arg2) { - const ret = getObject(arg0).insertBefore(getObject(arg1), getObject(arg2)); - return addHeapObject(ret); - }, arguments) }; - imports.wbg.__wbg_removeChild_973429f368206138 = function() { return handleError(function (arg0, arg1) { - const ret = getObject(arg0).removeChild(getObject(arg1)); - return addHeapObject(ret); - }, arguments) }; - imports.wbg.__wbg_createObjectURL_d82f2880bada6a1d = function() { return handleError(function (arg0, arg1) { - const ret = URL.createObjectURL(getObject(arg1)); - const ptr1 = passStringToWasm0(ret, wasm.__wbindgen_malloc, wasm.__wbindgen_realloc); - const len1 = WASM_VECTOR_LEN; - getInt32Memory0()[arg0 / 4 + 1] = len1; - getInt32Memory0()[arg0 / 4 + 0] = ptr1; - }, arguments) }; - imports.wbg.__wbg_newwithstrsequenceandoptions_fd88a547f6d15707 = function() { return handleError(function (arg0, arg1) { - const ret = new Blob(getObject(arg0), getObject(arg1)); - return addHeapObject(ret); - }, arguments) }; - imports.wbg.__wbg_arrayBuffer_27cefaea55cbf063 = function(arg0) { - const ret = getObject(arg0).arrayBuffer(); - return addHeapObject(ret); - }; - imports.wbg.__wbg_addEventListener_a5963e26cd7b176b = function() { return handleError(function (arg0, arg1, arg2, arg3, arg4) { - getObject(arg0).addEventListener(getStringFromWasm0(arg1, arg2), getObject(arg3), getObject(arg4)); - }, arguments) }; - imports.wbg.__wbg_instanceof_ShadowRoot_b64337370f59fe2d = function(arg0) { - let result; - try { - result = getObject(arg0) instanceof ShadowRoot; - } catch { - result = false; - } - const ret = result; - return ret; - }; - imports.wbg.__wbg_host_e1c47c33975060d3 = function(arg0) { - const ret = getObject(arg0).host; - return addHeapObject(ret); - }; - imports.wbg.__wbg_value_3c5f08ffc2b7d6f9 = function(arg0, arg1) { - const ret = getObject(arg1).value; - const ptr1 = passStringToWasm0(ret, wasm.__wbindgen_malloc, wasm.__wbindgen_realloc); - const len1 = WASM_VECTOR_LEN; - getInt32Memory0()[arg0 / 4 + 1] = len1; - getInt32Memory0()[arg0 / 4 + 0] = ptr1; - }; - imports.wbg.__wbg_setvalue_0dc100d4b9908028 = function(arg0, arg1, arg2) { - getObject(arg0).value = getStringFromWasm0(arg1, arg2); - }; - imports.wbg.__wbg_get_44be0491f933a435 = function(arg0, arg1) { - const ret = getObject(arg0)[arg1 >>> 0]; - return addHeapObject(ret); - }; - imports.wbg.__wbg_length_fff51ee6522a1a18 = function(arg0) { - const ret = getObject(arg0).length; - return ret; - }; - imports.wbg.__wbg_new_898a68150f225f2e = function() { - const ret = new Array(); - return addHeapObject(ret); - }; - imports.wbg.__wbg_newnoargs_581967eacc0e2604 = function(arg0, arg1) { - const ret = new Function(getStringFromWasm0(arg0, arg1)); - return addHeapObject(ret); - }; - imports.wbg.__wbg_call_cb65541d95d71282 = function() { return handleError(function (arg0, arg1) { - const ret = getObject(arg0).call(getObject(arg1)); - return addHeapObject(ret); - }, arguments) }; - imports.wbg.__wbg_new_b51585de1b234aff = function() { - const ret = new Object(); - return addHeapObject(ret); - }; - imports.wbg.__wbg_self_1ff1d729e9aae938 = function() { return handleError(function () { - const ret = self.self; - return addHeapObject(ret); - }, arguments) }; - imports.wbg.__wbg_window_5f4faef6c12b79ec = function() { return handleError(function () { - const ret = window.window; - return addHeapObject(ret); - }, arguments) }; - imports.wbg.__wbg_globalThis_1d39714405582d3c = function() { return handleError(function () { - const ret = globalThis.globalThis; - return addHeapObject(ret); - }, arguments) }; - imports.wbg.__wbg_global_651f05c6a0944d1c = function() { return handleError(function () { - const ret = global.global; - return addHeapObject(ret); - }, arguments) }; - imports.wbg.__wbindgen_is_undefined = function(arg0) { - const ret = getObject(arg0) === undefined; - return ret; - }; - imports.wbg.__wbg_from_d7c216d4616bb368 = function(arg0) { - const ret = Array.from(getObject(arg0)); - return addHeapObject(ret); - }; - imports.wbg.__wbg_push_ca1c26067ef907ac = function(arg0, arg1) { - const ret = getObject(arg0).push(getObject(arg1)); - return ret; - }; - imports.wbg.__wbg_is_205d914af04a8faa = function(arg0, arg1) { - const ret = Object.is(getObject(arg0), getObject(arg1)); - return ret; - }; - imports.wbg.__wbg_resolve_53698b95aaf7fcf8 = function(arg0) { - const ret = Promise.resolve(getObject(arg0)); - return addHeapObject(ret); - }; - imports.wbg.__wbg_then_f7e06ee3c11698eb = function(arg0, arg1) { - const ret = getObject(arg0).then(getObject(arg1)); - return addHeapObject(ret); - }; - imports.wbg.__wbg_then_b2267541e2a73865 = function(arg0, arg1, arg2) { - const ret = getObject(arg0).then(getObject(arg1), getObject(arg2)); - return addHeapObject(ret); - }; - imports.wbg.__wbg_buffer_085ec1f694018c4f = function(arg0) { - const ret = getObject(arg0).buffer; - return addHeapObject(ret); - }; - imports.wbg.__wbg_newwithbyteoffsetandlength_6da8e527659b86aa = function(arg0, arg1, arg2) { - const ret = new Uint8Array(getObject(arg0), arg1 >>> 0, arg2 >>> 0); - return addHeapObject(ret); - }; - imports.wbg.__wbg_new_8125e318e6245eed = function(arg0) { - const ret = new Uint8Array(getObject(arg0)); - return addHeapObject(ret); - }; - imports.wbg.__wbg_set_5cf90238115182c3 = function(arg0, arg1, arg2) { - getObject(arg0).set(getObject(arg1), arg2 >>> 0); - }; - imports.wbg.__wbg_length_72e2208bbc0efc61 = function(arg0) { - const ret = getObject(arg0).length; - return ret; - }; - imports.wbg.__wbg_set_092e06b0f9d71865 = function() { return handleError(function (arg0, arg1, arg2) { - const ret = Reflect.set(getObject(arg0), getObject(arg1), getObject(arg2)); - return ret; - }, arguments) }; - imports.wbg.__wbindgen_debug_string = function(arg0, arg1) { - const ret = debugString(getObject(arg1)); - const ptr1 = passStringToWasm0(ret, wasm.__wbindgen_malloc, wasm.__wbindgen_realloc); - const len1 = WASM_VECTOR_LEN; - getInt32Memory0()[arg0 / 4 + 1] = len1; - getInt32Memory0()[arg0 / 4 + 0] = ptr1; - }; - imports.wbg.__wbindgen_throw = function(arg0, arg1) { - throw new Error(getStringFromWasm0(arg0, arg1)); - }; - imports.wbg.__wbindgen_memory = function() { - const ret = wasm.memory; - return addHeapObject(ret); - }; - imports.wbg.__wbindgen_closure_wrapper167 = function(arg0, arg1, arg2) { - const ret = makeClosure(arg0, arg1, 36, __wbg_adapter_18); - return addHeapObject(ret); - }; - imports.wbg.__wbindgen_closure_wrapper396 = function(arg0, arg1, arg2) { - const ret = makeMutClosure(arg0, arg1, 134, __wbg_adapter_21); - return addHeapObject(ret); - }; - imports.wbg.__wbindgen_closure_wrapper675 = function(arg0, arg1, arg2) { - const ret = makeMutClosure(arg0, arg1, 242, __wbg_adapter_24); - return addHeapObject(ret); - }; - - return imports; -} - -function __wbg_init_memory(imports, maybe_memory) { - -} - -function __wbg_finalize_init(instance, module) { - wasm = instance.exports; - __wbg_init.__wbindgen_wasm_module = module; - cachedInt32Memory0 = null; - cachedUint32Memory0 = null; - cachedUint8Memory0 = null; - - wasm.__wbindgen_start(); - return wasm; -} - -function initSync(module) { - if (wasm !== undefined) return wasm; - - const imports = __wbg_get_imports(); - - __wbg_init_memory(imports); - - if (!(module instanceof WebAssembly.Module)) { - module = new WebAssembly.Module(module); - } - - const instance = new WebAssembly.Instance(module, imports); - - return __wbg_finalize_init(instance, module); -} - -async function __wbg_init(input) { - if (wasm !== undefined) return wasm; - - if (typeof input === 'undefined') { - input = new URL('app-c34faa410cb6796f_bg.wasm', import.meta.url); - } - const imports = __wbg_get_imports(); - - if (typeof input === 'string' || (typeof Request === 'function' && input instanceof Request) || (typeof URL === 'function' && input instanceof URL)) { - input = fetch(input); - } - - __wbg_init_memory(imports); - - const { instance, module } = await __wbg_load(await input, imports); - - return __wbg_finalize_init(instance, module); -} - -export { initSync } -export default __wbg_init; diff --git a/spaces/Pengyey/bingo-chuchu/src/components/chat-notification.tsx b/spaces/Pengyey/bingo-chuchu/src/components/chat-notification.tsx deleted file mode 100644 index 3474e522992c43a4d1d0eadcf205a9760d5b930b..0000000000000000000000000000000000000000 --- a/spaces/Pengyey/bingo-chuchu/src/components/chat-notification.tsx +++ /dev/null @@ -1,91 +0,0 @@ -import { useEffect } from 'react' -import Image from 'next/image' - -import IconWarning from '@/assets/images/warning.svg' -import { ChatError, ErrorCode, ChatMessageModel } from '@/lib/bots/bing/types' -import { ExternalLink } from './external-link' -import { useBing } from '@/lib/hooks/use-bing' - -export interface ChatNotificationProps extends Pick, 'bot'> { - message?: ChatMessageModel -} - -function getAction(error: ChatError, reset: () => void) { - if (error.code === ErrorCode.THROTTLE_LIMIT) { - reset() - return ( -
    - 你已达到每日最大发送消息次数,请更换账号或隔一天后重试 -
    - ) - } - if (error.code === ErrorCode.BING_IP_FORBIDDEN) { - return ( - - 你的服务器或代理已被封禁,请更换服务器或使用代理重试 - - ) - } - if (error.code === ErrorCode.BING_TRY_LATER) { - return ( - - 创建会话失败,请稍候重试 - - ) - } - if (error.code === ErrorCode.BING_FORBIDDEN) { - return ( - - 你的账号已在黑名单,请尝试更换账号及申请解封 - - ) - } - if (error.code === ErrorCode.CONVERSATION_LIMIT) { - return ( -
    - 当前话题已中止,请点 - 重新开始 - 开启新的对话 -
    - ) - } - if (error.code === ErrorCode.BING_CAPTCHA) { - return ( - - 点击通过人机验证 - - ) - } - if (error.code === ErrorCode.BING_UNAUTHORIZED) { - reset() - return ( - 没有获取到身份信息或身份信息失效,点此重新设置 - ) - } - return error.message -} - -export function ChatNotification({ message, bot }: ChatNotificationProps) { - useEffect(() => { - window.scrollBy(0, 2000) - }, [message]) - - if (!message?.error) return - - return ( -
    -
    -
    -
    -
    - error - {getAction(message.error, () => bot.resetConversation())} -
    -
    -
    -
    -
    - ) -} diff --git a/spaces/Pluviophile/vits-uma-genshin-honkai/text/cleaners.py b/spaces/Pluviophile/vits-uma-genshin-honkai/text/cleaners.py deleted file mode 100644 index d26581deb399609163518054718ad80ecca5d934..0000000000000000000000000000000000000000 --- a/spaces/Pluviophile/vits-uma-genshin-honkai/text/cleaners.py +++ /dev/null @@ -1,475 +0,0 @@ -""" from https://github.com/keithito/tacotron """ - -''' -Cleaners are transformations that run over the input text at both training and eval time. - -Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners" -hyperparameter. Some cleaners are English-specific. You'll typically want to use: - 1. "english_cleaners" for English text - 2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using - the Unidecode library (https://pypi.python.org/pypi/Unidecode) - 3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update - the symbols in symbols.py to match your data). -''' - -import re -from unidecode import unidecode -import pyopenjtalk -from jamo import h2j, j2hcj -from pypinyin import lazy_pinyin, BOPOMOFO -import jieba, cn2an - - -# This is a list of Korean classifiers preceded by pure Korean numerals. -_korean_classifiers = '군데 권 개 그루 닢 대 두 마리 모 모금 뭇 발 발짝 방 번 벌 보루 살 수 술 시 쌈 움큼 정 짝 채 척 첩 축 켤레 톨 통' - -# Regular expression matching whitespace: -_whitespace_re = re.compile(r'\s+') - -# Regular expression matching Japanese without punctuation marks: -_japanese_characters = re.compile(r'[A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]') - -# Regular expression matching non-Japanese characters or punctuation marks: -_japanese_marks = re.compile(r'[^A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]') - -# List of (regular expression, replacement) pairs for abbreviations: -_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [ - ('mrs', 'misess'), - ('mr', 'mister'), - ('dr', 'doctor'), - ('st', 'saint'), - ('co', 'company'), - ('jr', 'junior'), - ('maj', 'major'), - ('gen', 'general'), - ('drs', 'doctors'), - ('rev', 'reverend'), - ('lt', 'lieutenant'), - ('hon', 'honorable'), - ('sgt', 'sergeant'), - ('capt', 'captain'), - ('esq', 'esquire'), - ('ltd', 'limited'), - ('col', 'colonel'), - ('ft', 'fort'), -]] - -# List of (hangul, hangul divided) pairs: -_hangul_divided = [(re.compile('%s' % x[0]), x[1]) for x in [ - ('ㄳ', 'ㄱㅅ'), - ('ㄵ', 'ㄴㅈ'), - ('ㄶ', 'ㄴㅎ'), - ('ㄺ', 'ㄹㄱ'), - ('ㄻ', 'ㄹㅁ'), - ('ㄼ', 'ㄹㅂ'), - ('ㄽ', 'ㄹㅅ'), - ('ㄾ', 'ㄹㅌ'), - ('ㄿ', 'ㄹㅍ'), - ('ㅀ', 'ㄹㅎ'), - ('ㅄ', 'ㅂㅅ'), - ('ㅘ', 'ㅗㅏ'), - ('ㅙ', 'ㅗㅐ'), - ('ㅚ', 'ㅗㅣ'), - ('ㅝ', 'ㅜㅓ'), - ('ㅞ', 'ㅜㅔ'), - ('ㅟ', 'ㅜㅣ'), - ('ㅢ', 'ㅡㅣ'), - ('ㅑ', 'ㅣㅏ'), - ('ㅒ', 'ㅣㅐ'), - ('ㅕ', 'ㅣㅓ'), - ('ㅖ', 'ㅣㅔ'), - ('ㅛ', 'ㅣㅗ'), - ('ㅠ', 'ㅣㅜ') -]] - -# List of (Latin alphabet, hangul) pairs: -_latin_to_hangul = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [ - ('a', '에이'), - ('b', '비'), - ('c', '시'), - ('d', '디'), - ('e', '이'), - ('f', '에프'), - ('g', '지'), - ('h', '에이치'), - ('i', '아이'), - ('j', '제이'), - ('k', '케이'), - ('l', '엘'), - ('m', '엠'), - ('n', '엔'), - ('o', '오'), - ('p', '피'), - ('q', '큐'), - ('r', '아르'), - ('s', '에스'), - ('t', '티'), - ('u', '유'), - ('v', '브이'), - ('w', '더블유'), - ('x', '엑스'), - ('y', '와이'), - ('z', '제트') -]] - -# List of (Latin alphabet, bopomofo) pairs: -_latin_to_bopomofo = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [ - ('a', 'ㄟˉ'), - ('b', 'ㄅㄧˋ'), - ('c', 'ㄙㄧˉ'), - ('d', 'ㄉㄧˋ'), - ('e', 'ㄧˋ'), - ('f', 'ㄝˊㄈㄨˋ'), - ('g', 'ㄐㄧˋ'), - ('h', 'ㄝˇㄑㄩˋ'), - ('i', 'ㄞˋ'), - ('j', 'ㄐㄟˋ'), - ('k', 'ㄎㄟˋ'), - ('l', 'ㄝˊㄛˋ'), - ('m', 'ㄝˊㄇㄨˋ'), - ('n', 'ㄣˉ'), - ('o', 'ㄡˉ'), - ('p', 'ㄆㄧˉ'), - ('q', 'ㄎㄧㄡˉ'), - ('r', 'ㄚˋ'), - ('s', 'ㄝˊㄙˋ'), - ('t', 'ㄊㄧˋ'), - ('u', 'ㄧㄡˉ'), - ('v', 'ㄨㄧˉ'), - ('w', 'ㄉㄚˋㄅㄨˋㄌㄧㄡˋ'), - ('x', 'ㄝˉㄎㄨˋㄙˋ'), - ('y', 'ㄨㄞˋ'), - ('z', 'ㄗㄟˋ') -]] - - -# List of (bopomofo, romaji) pairs: -_bopomofo_to_romaji = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [ - ('ㄅㄛ', 'p⁼wo'), - ('ㄆㄛ', 'pʰwo'), - ('ㄇㄛ', 'mwo'), - ('ㄈㄛ', 'fwo'), - ('ㄅ', 'p⁼'), - ('ㄆ', 'pʰ'), - ('ㄇ', 'm'), - ('ㄈ', 'f'), - ('ㄉ', 't⁼'), - ('ㄊ', 'tʰ'), - ('ㄋ', 'n'), - ('ㄌ', 'l'), - ('ㄍ', 'k⁼'), - ('ㄎ', 'kʰ'), - ('ㄏ', 'h'), - ('ㄐ', 'ʧ⁼'), - ('ㄑ', 'ʧʰ'), - ('ㄒ', 'ʃ'), - ('ㄓ', 'ʦ`⁼'), - ('ㄔ', 'ʦ`ʰ'), - ('ㄕ', 's`'), - ('ㄖ', 'ɹ`'), - ('ㄗ', 'ʦ⁼'), - ('ㄘ', 'ʦʰ'), - ('ㄙ', 's'), - ('ㄚ', 'a'), - ('ㄛ', 'o'), - ('ㄜ', 'ə'), - ('ㄝ', 'e'), - ('ㄞ', 'ai'), - ('ㄟ', 'ei'), - ('ㄠ', 'au'), - ('ㄡ', 'ou'), - ('ㄧㄢ', 'yeNN'), - ('ㄢ', 'aNN'), - ('ㄧㄣ', 'iNN'), - ('ㄣ', 'əNN'), - ('ㄤ', 'aNg'), - ('ㄧㄥ', 'iNg'), - ('ㄨㄥ', 'uNg'), - ('ㄩㄥ', 'yuNg'), - ('ㄥ', 'əNg'), - ('ㄦ', 'əɻ'), - ('ㄧ', 'i'), - ('ㄨ', 'u'), - ('ㄩ', 'ɥ'), - ('ˉ', '→'), - ('ˊ', '↑'), - ('ˇ', '↓↑'), - ('ˋ', '↓'), - ('˙', ''), - (',', ','), - ('。', '.'), - ('!', '!'), - ('?', '?'), - ('—', '-') -]] - - -def expand_abbreviations(text): - for regex, replacement in _abbreviations: - text = re.sub(regex, replacement, text) - return text - - -def lowercase(text): - return text.lower() - - -def collapse_whitespace(text): - return re.sub(_whitespace_re, ' ', text) - - -def convert_to_ascii(text): - return unidecode(text) - - -def japanese_to_romaji_with_accent(text): - '''Reference https://r9y9.github.io/ttslearn/latest/notebooks/ch10_Recipe-Tacotron.html''' - sentences = re.split(_japanese_marks, text) - marks = re.findall(_japanese_marks, text) - text = '' - for i, sentence in enumerate(sentences): - if re.match(_japanese_characters, sentence): - if text!='': - text+=' ' - labels = pyopenjtalk.extract_fullcontext(sentence) - for n, label in enumerate(labels): - phoneme = re.search(r'\-([^\+]*)\+', label).group(1) - if phoneme not in ['sil','pau']: - text += phoneme.replace('ch','ʧ').replace('sh','ʃ').replace('cl','Q') - else: - continue - n_moras = int(re.search(r'/F:(\d+)_', label).group(1)) - a1 = int(re.search(r"/A:(\-?[0-9]+)\+", label).group(1)) - a2 = int(re.search(r"\+(\d+)\+", label).group(1)) - a3 = int(re.search(r"\+(\d+)/", label).group(1)) - if re.search(r'\-([^\+]*)\+', labels[n + 1]).group(1) in ['sil','pau']: - a2_next=-1 - else: - a2_next = int(re.search(r"\+(\d+)\+", labels[n + 1]).group(1)) - # Accent phrase boundary - if a3 == 1 and a2_next == 1: - text += ' ' - # Falling - elif a1 == 0 and a2_next == a2 + 1 and a2 != n_moras: - text += '↓' - # Rising - elif a2 == 1 and a2_next == 2: - text += '↑' - if i Optional[str]: - "Returns glibc version string, or None if not using glibc." - return glibc_version_string_confstr() or glibc_version_string_ctypes() - - -def glibc_version_string_confstr() -> Optional[str]: - "Primary implementation of glibc_version_string using os.confstr." - # os.confstr is quite a bit faster than ctypes.DLL. It's also less likely - # to be broken or missing. This strategy is used in the standard library - # platform module: - # https://github.com/python/cpython/blob/fcf1d003bf4f0100c9d0921ff3d70e1127ca1b71/Lib/platform.py#L175-L183 - if sys.platform == "win32": - return None - try: - # os.confstr("CS_GNU_LIBC_VERSION") returns a string like "glibc 2.17": - _, version = os.confstr("CS_GNU_LIBC_VERSION").split() - except (AttributeError, OSError, ValueError): - # os.confstr() or CS_GNU_LIBC_VERSION not available (or a bad value)... - return None - return version - - -def glibc_version_string_ctypes() -> Optional[str]: - "Fallback implementation of glibc_version_string using ctypes." - - try: - import ctypes - except ImportError: - return None - - # ctypes.CDLL(None) internally calls dlopen(NULL), and as the dlopen - # manpage says, "If filename is NULL, then the returned handle is for the - # main program". This way we can let the linker do the work to figure out - # which libc our process is actually using. - process_namespace = ctypes.CDLL(None) - try: - gnu_get_libc_version = process_namespace.gnu_get_libc_version - except AttributeError: - # Symbol doesn't exist -> therefore, we are not linked to - # glibc. - return None - - # Call gnu_get_libc_version, which returns a string like "2.5" - gnu_get_libc_version.restype = ctypes.c_char_p - version_str = gnu_get_libc_version() - # py2 / py3 compatibility: - if not isinstance(version_str, str): - version_str = version_str.decode("ascii") - - return version_str - - -# platform.libc_ver regularly returns completely nonsensical glibc -# versions. E.g. on my computer, platform says: -# -# ~$ python2.7 -c 'import platform; print(platform.libc_ver())' -# ('glibc', '2.7') -# ~$ python3.5 -c 'import platform; print(platform.libc_ver())' -# ('glibc', '2.9') -# -# But the truth is: -# -# ~$ ldd --version -# ldd (Debian GLIBC 2.22-11) 2.22 -# -# This is unfortunate, because it means that the linehaul data on libc -# versions that was generated by pip 8.1.2 and earlier is useless and -# misleading. Solution: instead of using platform, use our code that actually -# works. -def libc_ver() -> Tuple[str, str]: - """Try to determine the glibc version - - Returns a tuple of strings (lib, version) which default to empty strings - in case the lookup fails. - """ - glibc_version = glibc_version_string() - if glibc_version is None: - return ("", "") - else: - return ("glibc", glibc_version) diff --git a/spaces/Realcat/image-matching-webui/hloc/pipelines/4Seasons/__init__.py b/spaces/Realcat/image-matching-webui/hloc/pipelines/4Seasons/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/Realcat/image-matching-webui/third_party/DKM/dkm/train/__init__.py b/spaces/Realcat/image-matching-webui/third_party/DKM/dkm/train/__init__.py deleted file mode 100644 index 90269dc0f345a575e0ba21f5afa34202c7e6b433..0000000000000000000000000000000000000000 --- a/spaces/Realcat/image-matching-webui/third_party/DKM/dkm/train/__init__.py +++ /dev/null @@ -1 +0,0 @@ -from .train import train_k_epochs diff --git a/spaces/Realcat/image-matching-webui/third_party/SGMNet/train/valid.py b/spaces/Realcat/image-matching-webui/third_party/SGMNet/train/valid.py deleted file mode 100644 index b9873f9b34ff77462d87aaad8c128e3b497fa39a..0000000000000000000000000000000000000000 --- a/spaces/Realcat/image-matching-webui/third_party/SGMNet/train/valid.py +++ /dev/null @@ -1,124 +0,0 @@ -import torch -import numpy as np -import cv2 -import os -from loss import batch_episym -from tqdm import tqdm - -import sys - -ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) -sys.path.insert(0, ROOT_DIR) - -from utils import evaluation_utils, train_utils - - -def valid(valid_loader, model, match_loss, config, model_config): - model.eval() - loader_iter = iter(valid_loader) - num_pair = 0 - total_loss, total_acc_corr, total_acc_incorr = 0, 0, 0 - total_precision, total_recall = torch.zeros( - model_config.layer_num, device="cuda" - ), torch.zeros(model_config.layer_num, device="cuda") - total_acc_mid = torch.zeros(len(model_config.seedlayer) - 1, device="cuda") - - with torch.no_grad(): - if config.local_rank == 0: - loader_iter = tqdm(loader_iter) - print("validating...") - for test_data in loader_iter: - num_pair += 1 - test_data = train_utils.tocuda(test_data) - res = model(test_data) - loss_res = match_loss.run(test_data, res) - - total_acc_corr += loss_res["acc_corr"] - total_acc_incorr += loss_res["acc_incorr"] - total_loss += loss_res["total_loss"] - - if config.model_name == "SGM": - total_acc_mid += loss_res["mid_acc_corr"] - total_precision, total_recall = ( - total_precision + loss_res["pre_seed_conf"], - total_recall + loss_res["recall_seed_conf"], - ) - - total_acc_corr /= num_pair - total_acc_incorr /= num_pair - total_precision /= num_pair - total_recall /= num_pair - total_acc_mid /= num_pair - - # apply tensor reduction - ( - total_loss, - total_acc_corr, - total_acc_incorr, - total_precision, - total_recall, - total_acc_mid, - ) = ( - train_utils.reduce_tensor(total_loss, "sum"), - train_utils.reduce_tensor(total_acc_corr, "mean"), - train_utils.reduce_tensor(total_acc_incorr, "mean"), - train_utils.reduce_tensor(total_precision, "mean"), - train_utils.reduce_tensor(total_recall, "mean"), - train_utils.reduce_tensor(total_acc_mid, "mean"), - ) - model.train() - return ( - total_loss, - total_acc_corr, - total_acc_incorr, - total_precision, - total_recall, - total_acc_mid, - ) - - -def dump_train_vis(res, data, step, config): - # batch matching - p = res["p"][:, :-1, :-1] - score, index1 = torch.max(p, dim=-1) - _, index2 = torch.max(p, dim=-2) - mask_th = score > 0.2 - mask_mc = index2.gather(index=index1, dim=1) == torch.arange(len(p[0])).cuda()[None] - mask_p = mask_th & mask_mc # B*N - - corr1, corr2 = data["x1"], data["x2"].gather( - index=index1[:, :, None].expand(-1, -1, 2), dim=1 - ) - corr1_kpt, corr2_kpt = data["kpt1"], data["kpt2"].gather( - index=index1[:, :, None].expand(-1, -1, 2), dim=1 - ) - epi_dis = batch_episym(corr1, corr2, data["e_gt"]) - mask_inlier = epi_dis < config.inlier_th # B*N - - # dump vis - for cur_mask_p, cur_mask_inlier, cur_corr1, cur_corr2, img_path1, img_path2 in zip( - mask_p, mask_inlier, corr1_kpt, corr2_kpt, data["img_path1"], data["img_path2"] - ): - img1, img2 = cv2.imread(img_path1), cv2.imread(img_path2) - dis_play = evaluation_utils.draw_match( - img1, - img2, - cur_corr1[cur_mask_p].cpu().numpy(), - cur_corr2[cur_mask_p].cpu().numpy(), - inlier=cur_mask_inlier, - ) - base_name_seq = os.path.join( - img_path1.split("/")[-1] - + "_" - + img_path2.split("/")[-1] - + "_" - + img_path1.split("/")[-2] - ) - save_path = os.path.join( - config.train_vis_folder, - "train_vis", - config.log_base, - str(step), - base_name_seq + ".png", - ) - cv2.imwrite(save_path, dis_play) diff --git a/spaces/Robert001/UniControl-Demo/annotator/uniformer_base/mmseg/core/seg/sampler/__init__.py b/spaces/Robert001/UniControl-Demo/annotator/uniformer_base/mmseg/core/seg/sampler/__init__.py deleted file mode 100644 index 332b242c03d1c5e80d4577df442a9a037b1816e1..0000000000000000000000000000000000000000 --- a/spaces/Robert001/UniControl-Demo/annotator/uniformer_base/mmseg/core/seg/sampler/__init__.py +++ /dev/null @@ -1,4 +0,0 @@ -from .base_pixel_sampler import BasePixelSampler -from .ohem_pixel_sampler import OHEMPixelSampler - -__all__ = ['BasePixelSampler', 'OHEMPixelSampler'] diff --git a/spaces/SMD00/Image_Colorization/app.py b/spaces/SMD00/Image_Colorization/app.py deleted file mode 100644 index 497d2a7879b04f2692d1bfa9a98596d638dc9f58..0000000000000000000000000000000000000000 --- a/spaces/SMD00/Image_Colorization/app.py +++ /dev/null @@ -1,387 +0,0 @@ -import gradio as gr -from PIL import Image -import cv2 as cv - -import os -import glob -import time -import numpy as np -from PIL import Image -from pathlib import Path -from tqdm.notebook import tqdm -import matplotlib.pyplot as plt -from skimage.color import rgb2lab, lab2rgb - -# pip install fastai==2.4 - -import torch -from torch import nn, optim -from torchvision import transforms -from torchvision.utils import make_grid -from torch.utils.data import Dataset, DataLoader -device = torch.device("cuda" if torch.cuda.is_available() else "cpu") -use_colab = None - -SIZE = 256 -class ColorizationDataset(Dataset): - def __init__(self, paths, split='train'): - if split == 'train': - self.transforms = transforms.Compose([ - transforms.Resize((SIZE, SIZE), Image.BICUBIC), - transforms.RandomHorizontalFlip(), # A little data augmentation! - ]) - elif split == 'val': - self.transforms = transforms.Resize((SIZE, SIZE), Image.BICUBIC) - - self.split = split - self.size = SIZE - self.paths = paths - - def __getitem__(self, idx): - img = Image.open(self.paths[idx]).convert("RGB") - img = self.transforms(img) - img = np.array(img) - img_lab = rgb2lab(img).astype("float32") # Converting RGB to L*a*b - img_lab = transforms.ToTensor()(img_lab) - L = img_lab[[0], ...] / 50. - 1. # Between -1 and 1 - ab = img_lab[[1, 2], ...] / 110. # Between -1 and 1 - - return {'L': L, 'ab': ab} - - def __len__(self): - return len(self.paths) - -def make_dataloaders(batch_size=16, n_workers=4, pin_memory=True, **kwargs): # A handy function to make our dataloaders - dataset = ColorizationDataset(**kwargs) - dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=n_workers, - pin_memory=pin_memory) - return dataloader - -class UnetBlock(nn.Module): - def __init__(self, nf, ni, submodule=None, input_c=None, dropout=False, - innermost=False, outermost=False): - super().__init__() - self.outermost = outermost - if input_c is None: input_c = nf - downconv = nn.Conv2d(input_c, ni, kernel_size=4, - stride=2, padding=1, bias=False) - downrelu = nn.LeakyReLU(0.2, True) - downnorm = nn.BatchNorm2d(ni) - uprelu = nn.ReLU(True) - upnorm = nn.BatchNorm2d(nf) - - if outermost: - upconv = nn.ConvTranspose2d(ni * 2, nf, kernel_size=4, - stride=2, padding=1) - down = [downconv] - up = [uprelu, upconv, nn.Tanh()] - model = down + [submodule] + up - elif innermost: - upconv = nn.ConvTranspose2d(ni, nf, kernel_size=4, - stride=2, padding=1, bias=False) - down = [downrelu, downconv] - up = [uprelu, upconv, upnorm] - model = down + up - else: - upconv = nn.ConvTranspose2d(ni * 2, nf, kernel_size=4, - stride=2, padding=1, bias=False) - down = [downrelu, downconv, downnorm] - up = [uprelu, upconv, upnorm] - if dropout: up += [nn.Dropout(0.5)] - model = down + [submodule] + up - self.model = nn.Sequential(*model) - - def forward(self, x): - if self.outermost: - return self.model(x) - else: - return torch.cat([x, self.model(x)], 1) - -class Unet(nn.Module): - def __init__(self, input_c=1, output_c=2, n_down=8, num_filters=64): - super().__init__() - unet_block = UnetBlock(num_filters * 8, num_filters * 8, innermost=True) - for _ in range(n_down - 5): - unet_block = UnetBlock(num_filters * 8, num_filters * 8, submodule=unet_block, dropout=True) - out_filters = num_filters * 8 - for _ in range(3): - unet_block = UnetBlock(out_filters // 2, out_filters, submodule=unet_block) - out_filters //= 2 - self.model = UnetBlock(output_c, out_filters, input_c=input_c, submodule=unet_block, outermost=True) - - def forward(self, x): - return self.model(x) - -class PatchDiscriminator(nn.Module): - def __init__(self, input_c, num_filters=64, n_down=3): - super().__init__() - model = [self.get_layers(input_c, num_filters, norm=False)] - model += [self.get_layers(num_filters * 2 ** i, num_filters * 2 ** (i + 1), s=1 if i == (n_down-1) else 2) - for i in range(n_down)] # the 'if' statement is taking care of not using - # stride of 2 for the last block in this loop - model += [self.get_layers(num_filters * 2 ** n_down, 1, s=1, norm=False, act=False)] # Make sure to not use normalization or - # activation for the last layer of the model - self.model = nn.Sequential(*model) - - def get_layers(self, ni, nf, k=4, s=2, p=1, norm=True, act=True): # when needing to make some repeatitive blocks of layers, - layers = [nn.Conv2d(ni, nf, k, s, p, bias=not norm)] # it's always helpful to make a separate method for that purpose - if norm: layers += [nn.BatchNorm2d(nf)] - if act: layers += [nn.LeakyReLU(0.2, True)] - return nn.Sequential(*layers) - - def forward(self, x): - return self.model(x) - -class GANLoss(nn.Module): - def __init__(self, gan_mode='vanilla', real_label=1.0, fake_label=0.0): - super().__init__() - self.register_buffer('real_label', torch.tensor(real_label)) - self.register_buffer('fake_label', torch.tensor(fake_label)) - if gan_mode == 'vanilla': - self.loss = nn.BCEWithLogitsLoss() - elif gan_mode == 'lsgan': - self.loss = nn.MSELoss() - - def get_labels(self, preds, target_is_real): - if target_is_real: - labels = self.real_label - else: - labels = self.fake_label - return labels.expand_as(preds) - - def __call__(self, preds, target_is_real): - labels = self.get_labels(preds, target_is_real) - loss = self.loss(preds, labels) - return loss - -def init_weights(net, init='norm', gain=0.02): - - def init_func(m): - classname = m.__class__.__name__ - if hasattr(m, 'weight') and 'Conv' in classname: - if init == 'norm': - nn.init.normal_(m.weight.data, mean=0.0, std=gain) - elif init == 'xavier': - nn.init.xavier_normal_(m.weight.data, gain=gain) - elif init == 'kaiming': - nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') - - if hasattr(m, 'bias') and m.bias is not None: - nn.init.constant_(m.bias.data, 0.0) - elif 'BatchNorm2d' in classname: - nn.init.normal_(m.weight.data, 1., gain) - nn.init.constant_(m.bias.data, 0.) - - net.apply(init_func) - # print(f"model initialized with {init} initialization") - return net - -def init_model(model, device): - model = model.to(device) - model = init_weights(model) - return model - -class MainModel(nn.Module): - def __init__(self, net_G=None, lr_G=2e-4, lr_D=2e-4, - beta1=0.5, beta2=0.999, lambda_L1=100.): - super().__init__() - - self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") - self.lambda_L1 = lambda_L1 - - if net_G is None: - self.net_G = init_model(Unet(input_c=1, output_c=2, n_down=8, num_filters=64), self.device) - else: - self.net_G = net_G.to(self.device) - self.net_D = init_model(PatchDiscriminator(input_c=3, n_down=3, num_filters=64), self.device) - self.GANcriterion = GANLoss(gan_mode='vanilla').to(self.device) - self.L1criterion = nn.L1Loss() - self.opt_G = optim.Adam(self.net_G.parameters(), lr=lr_G, betas=(beta1, beta2)) - self.opt_D = optim.Adam(self.net_D.parameters(), lr=lr_D, betas=(beta1, beta2)) - - def set_requires_grad(self, model, requires_grad=True): - for p in model.parameters(): - p.requires_grad = requires_grad - - def setup_input(self, data): - self.L = data['L'].to(self.device) - self.ab = data['ab'].to(self.device) - - def forward(self): - self.fake_color = self.net_G(self.L) - - def backward_D(self): - fake_image = torch.cat([self.L, self.fake_color], dim=1) - fake_preds = self.net_D(fake_image.detach()) - self.loss_D_fake = self.GANcriterion(fake_preds, False) - real_image = torch.cat([self.L, self.ab], dim=1) - real_preds = self.net_D(real_image) - self.loss_D_real = self.GANcriterion(real_preds, True) - self.loss_D = (self.loss_D_fake + self.loss_D_real) * 0.5 - self.loss_D.backward() - - def backward_G(self): - fake_image = torch.cat([self.L, self.fake_color], dim=1) - fake_preds = self.net_D(fake_image) - self.loss_G_GAN = self.GANcriterion(fake_preds, True) - self.loss_G_L1 = self.L1criterion(self.fake_color, self.ab) * self.lambda_L1 - self.loss_G = self.loss_G_GAN + self.loss_G_L1 - self.loss_G.backward() - - def optimize(self): - self.forward() - self.net_D.train() - self.set_requires_grad(self.net_D, True) - self.opt_D.zero_grad() - self.backward_D() - self.opt_D.step() - - self.net_G.train() - self.set_requires_grad(self.net_D, False) - self.opt_G.zero_grad() - self.backward_G() - self.opt_G.step() - -class AverageMeter: - def __init__(self): - self.reset() - - def reset(self): - self.count, self.avg, self.sum = [0.] * 3 - - def update(self, val, count=1): - self.count += count - self.sum += count * val - self.avg = self.sum / self.count - -def create_loss_meters(): - loss_D_fake = AverageMeter() - loss_D_real = AverageMeter() - loss_D = AverageMeter() - loss_G_GAN = AverageMeter() - loss_G_L1 = AverageMeter() - loss_G = AverageMeter() - - return {'loss_D_fake': loss_D_fake, - 'loss_D_real': loss_D_real, - 'loss_D': loss_D, - 'loss_G_GAN': loss_G_GAN, - 'loss_G_L1': loss_G_L1, - 'loss_G': loss_G} - -def update_losses(model, loss_meter_dict, count): - for loss_name, loss_meter in loss_meter_dict.items(): - loss = getattr(model, loss_name) - loss_meter.update(loss.item(), count=count) - -def lab_to_rgb(L, ab): - """ - Takes a batch of images - """ - - L = (L + 1.) * 50. - ab = ab * 110. - Lab = torch.cat([L, ab], dim=1).permute(0, 2, 3, 1).cpu().numpy() - rgb_imgs = [] - for img in Lab: - img_rgb = lab2rgb(img) - rgb_imgs.append(img_rgb) - return np.stack(rgb_imgs, axis=0) - -def visualize(model, data, dims): - model.net_G.eval() - with torch.no_grad(): - model.setup_input(data) - model.forward() - model.net_G.train() - fake_color = model.fake_color.detach() - real_color = model.ab - L = model.L - fake_imgs = lab_to_rgb(L, fake_color) - real_imgs = lab_to_rgb(L, real_color) - # img=cv.resize(fake_imgs[0], dsize=(dims[1], dims[0]), interpolation=cv.INTER_CUBIC) - img=fake_imgs[0] - # return np.resize(img,(dims[1], dims[0])) - return fake_imgs[0] - for i in range(1): - # t_img = transforms.Resize((dims[0], dims[1]))(t_img) - img = Image.fromarray(np.uint8(fake_imgs[i])) - img = np.uint8(cv.resize(fake_imgs[i], dsize=(dims[1], dims[0]), interpolation=cv.INTER_CUBIC)) - return img - # st.text(f"Size of fake image {fake_imgs[i].shape} \n Type of image = {type(fake_imgs[i])}") - # st.image(img, caption="Output image", use_column_width='auto', clamp=True) - - -# def log_results(loss_meter_dict): - # for loss_name, loss_meter in loss_meter_dict.items(): - # print(f"{loss_name}: {loss_meter.avg:.5f}") - -# pip install fastai==2.4 -from fastai.vision.learner import create_body -from torchvision.models.resnet import resnet18 -from fastai.vision.models.unet import DynamicUnet - -def build_res_unet(n_input=1, n_output=2, size=256): - device = torch.device("cuda" if torch.cuda.is_available() else "cpu") - body = create_body(resnet18(), pretrained=True, n_in=n_input, cut=-2) - net_G = DynamicUnet(body, n_output, (size, size)).to(device) - return net_G - -net_G = build_res_unet(n_input=1, n_output=2, size=256) -net_G.load_state_dict(torch.load("res18-unet.pt", map_location=device)) -model = MainModel(net_G=net_G) -model.load_state_dict(torch.load("final_model_weights.pt", map_location=device)) - -class MyDataset(torch.utils.data.Dataset): - def __init__(self, img_list): - super(MyDataset, self).__init__() - self.img_list = img_list - self.augmentations = transforms.Resize((SIZE, SIZE), Image.BICUBIC) - - - def __len__(self): - return len(self.img_list) - - def __getitem__(self, idx): - img = self.img_list[idx] - img = self.augmentations(img) - img = np.array(img) - img_lab = rgb2lab(img).astype("float32") # Converting RGB to L*a*b - img_lab = transforms.ToTensor()(img_lab) - L = img_lab[[0], ...] / 50. - 1. # Between -1 and 1 - ab = img_lab[[1, 2], ...] / 110. - return {'L': L, 'ab': ab} - -def make_dataloaders2(batch_size=16, n_workers=4, pin_memory=True, **kwargs): # A handy function to make our dataloaders - dataset = MyDataset(**kwargs) - dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=n_workers, - pin_memory=pin_memory) - return dataloader - -def main_func(filepath): - im = Image.open(filepath) - size_text=f"Size of uploaded image {im.shape}" - # st.text(body=f"Size of uploaded image {im.shape}") - a = im.shape - # st.image(im, caption="Uploaded Image.", use_column_width='auto') - test_dl = make_dataloaders2(img_list=[im]) - for data in test_dl: - model.setup_input(data) - model.optimize() - img=visualize(model, data, a) - img2=np.resize(img,a) - img3=Image.fromarray(cv.resize(np.uint8(img), a, interpolation=cv.INTER_CUBIC)) - img4=Image.fromarray(cv.resize(np.uint8(img), a, interpolation=cv.INTER_LINEAR)) - return (size_text,img,img2,img3,img4) - -title = "Image Colorization" -description = "Gradio demo for Image Colorization project. You can give an image as input on the left side and then click on the submit button. The program would recolorize the image" -gr.Interface( - main_func, - [gr.Image(type="filepath", label="Input Image") ], - [gr.Textbox(label="Image Size"),gr.Image(type="pil", label="Output Image"),"image",gr.Image( label="Output Image2"),"image"], - title=title, - description=description, - # examples=[ ['face.jpg'], ['montains.jpg'],['tree.jpg'] ] - -) \ No newline at end of file diff --git a/spaces/SankarSrin/image-matting-app/ppmatting/utils/estimate_foreground_ml.py b/spaces/SankarSrin/image-matting-app/ppmatting/utils/estimate_foreground_ml.py deleted file mode 100644 index 05bffb6c31a5042fd96c028013c81f7533f3675d..0000000000000000000000000000000000000000 --- a/spaces/SankarSrin/image-matting-app/ppmatting/utils/estimate_foreground_ml.py +++ /dev/null @@ -1,236 +0,0 @@ -import numpy as np -from numba import njit, prange - -# The foreground estimation refer to pymatting [https://github.com/pymatting/pymatting/blob/master/pymatting/foreground/estimate_foreground_ml.py] - - -@njit("void(f4[:, :, :], f4[:, :, :])", cache=True, nogil=True, parallel=True) -def _resize_nearest_multichannel(dst, src): - """ - Internal method. - - Resize image src to dst using nearest neighbors filtering. - Images must have multiple color channels, i.e. :code:`len(shape) == 3`. - - Parameters - ---------- - dst: numpy.ndarray of type np.float32 - output image - src: numpy.ndarray of type np.float32 - input image - """ - h_src, w_src, depth = src.shape - h_dst, w_dst, depth = dst.shape - - for y_dst in prange(h_dst): - for x_dst in range(w_dst): - x_src = max(0, min(w_src - 1, x_dst * w_src // w_dst)) - y_src = max(0, min(h_src - 1, y_dst * h_src // h_dst)) - - for c in range(depth): - dst[y_dst, x_dst, c] = src[y_src, x_src, c] - - -@njit("void(f4[:, :], f4[:, :])", cache=True, nogil=True, parallel=True) -def _resize_nearest(dst, src): - """ - Internal method. - - Resize image src to dst using nearest neighbors filtering. - Images must be grayscale, i.e. :code:`len(shape) == 3`. - - Parameters - ---------- - dst: numpy.ndarray of type np.float32 - output image - src: numpy.ndarray of type np.float32 - input image - """ - h_src, w_src = src.shape - h_dst, w_dst = dst.shape - - for y_dst in prange(h_dst): - for x_dst in range(w_dst): - x_src = max(0, min(w_src - 1, x_dst * w_src // w_dst)) - y_src = max(0, min(h_src - 1, y_dst * h_src // h_dst)) - - dst[y_dst, x_dst] = src[y_src, x_src] - - -# TODO -# There should be an option to switch @njit(parallel=True) on or off. -# parallel=True would be faster, but might cause race conditions. -# User should have the option to turn it on or off. -@njit( - "Tuple((f4[:, :, :], f4[:, :, :]))(f4[:, :, :], f4[:, :], f4, i4, i4, i4, f4)", - cache=True, - nogil=True) -def _estimate_fb_ml( - input_image, - input_alpha, - regularization, - n_small_iterations, - n_big_iterations, - small_size, - gradient_weight, ): - h0, w0, depth = input_image.shape - - dtype = np.float32 - - w_prev = 1 - h_prev = 1 - - F_prev = np.empty((h_prev, w_prev, depth), dtype=dtype) - B_prev = np.empty((h_prev, w_prev, depth), dtype=dtype) - - n_levels = int(np.ceil(np.log2(max(w0, h0)))) - - for i_level in range(n_levels + 1): - w = round(w0**(i_level / n_levels)) - h = round(h0**(i_level / n_levels)) - - image = np.empty((h, w, depth), dtype=dtype) - alpha = np.empty((h, w), dtype=dtype) - - _resize_nearest_multichannel(image, input_image) - _resize_nearest(alpha, input_alpha) - - F = np.empty((h, w, depth), dtype=dtype) - B = np.empty((h, w, depth), dtype=dtype) - - _resize_nearest_multichannel(F, F_prev) - _resize_nearest_multichannel(B, B_prev) - - if w <= small_size and h <= small_size: - n_iter = n_small_iterations - else: - n_iter = n_big_iterations - - b = np.zeros((2, depth), dtype=dtype) - - dx = [-1, 1, 0, 0] - dy = [0, 0, -1, 1] - - for i_iter in range(n_iter): - for y in prange(h): - for x in range(w): - a0 = alpha[y, x] - a1 = 1.0 - a0 - - a00 = a0 * a0 - a01 = a0 * a1 - # a10 = a01 can be omitted due to symmetry of matrix - a11 = a1 * a1 - - for c in range(depth): - b[0, c] = a0 * image[y, x, c] - b[1, c] = a1 * image[y, x, c] - - for d in range(4): - x2 = max(0, min(w - 1, x + dx[d])) - y2 = max(0, min(h - 1, y + dy[d])) - - gradient = abs(a0 - alpha[y2, x2]) - - da = regularization + gradient_weight * gradient - - a00 += da - a11 += da - - for c in range(depth): - b[0, c] += da * F[y2, x2, c] - b[1, c] += da * B[y2, x2, c] - - determinant = a00 * a11 - a01 * a01 - - inv_det = 1.0 / determinant - - b00 = inv_det * a11 - b01 = inv_det * -a01 - b11 = inv_det * a00 - - for c in range(depth): - F_c = b00 * b[0, c] + b01 * b[1, c] - B_c = b01 * b[0, c] + b11 * b[1, c] - - F_c = max(0.0, min(1.0, F_c)) - B_c = max(0.0, min(1.0, B_c)) - - F[y, x, c] = F_c - B[y, x, c] = B_c - - F_prev = F - B_prev = B - - w_prev = w - h_prev = h - - return F, B - - -def estimate_foreground_ml( - image, - alpha, - regularization=1e-5, - n_small_iterations=10, - n_big_iterations=2, - small_size=32, - return_background=False, - gradient_weight=1.0, ): - """Estimates the foreground of an image given its alpha matte. - - See :cite:`germer2020multilevel` for reference. - - Parameters - ---------- - image: numpy.ndarray - Input image with shape :math:`h \\times w \\times d` - alpha: numpy.ndarray - Input alpha matte shape :math:`h \\times w` - regularization: float - Regularization strength :math:`\\epsilon`, defaults to :math:`10^{-5}`. - Higher regularization results in smoother colors. - n_small_iterations: int - Number of iterations performed on small scale, defaults to :math:`10` - n_big_iterations: int - Number of iterations performed on large scale, defaults to :math:`2` - small_size: int - Threshold that determines at which size `n_small_iterations` should be used - return_background: bool - Whether to return the estimated background in addition to the foreground - gradient_weight: float - Larger values enforce smoother foregrounds, defaults to :math:`1` - - Returns - ------- - F: numpy.ndarray - Extracted foreground - B: numpy.ndarray - Extracted background - - Example - ------- - >>> from pymatting import * - >>> image = load_image("data/lemur/lemur.png", "RGB") - >>> alpha = load_image("data/lemur/lemur_alpha.png", "GRAY") - >>> F = estimate_foreground_ml(image, alpha, return_background=False) - >>> F, B = estimate_foreground_ml(image, alpha, return_background=True) - - See Also - ---- - stack_images: This function can be used to place the foreground on a new background. - """ - - foreground, background = _estimate_fb_ml( - image.astype(np.float32), - alpha.astype(np.float32), - regularization, - n_small_iterations, - n_big_iterations, - small_size, - gradient_weight, ) - - if return_background: - return foreground, background - - return foreground diff --git a/spaces/SkyYeXianer/vits-uma-genshin-honkai/transforms.py b/spaces/SkyYeXianer/vits-uma-genshin-honkai/transforms.py deleted file mode 100644 index 4793d67ca5a5630e0ffe0f9fb29445c949e64dae..0000000000000000000000000000000000000000 --- a/spaces/SkyYeXianer/vits-uma-genshin-honkai/transforms.py +++ /dev/null @@ -1,193 +0,0 @@ -import torch -from torch.nn import functional as F - -import numpy as np - - -DEFAULT_MIN_BIN_WIDTH = 1e-3 -DEFAULT_MIN_BIN_HEIGHT = 1e-3 -DEFAULT_MIN_DERIVATIVE = 1e-3 - - -def piecewise_rational_quadratic_transform(inputs, - unnormalized_widths, - unnormalized_heights, - unnormalized_derivatives, - inverse=False, - tails=None, - tail_bound=1., - min_bin_width=DEFAULT_MIN_BIN_WIDTH, - min_bin_height=DEFAULT_MIN_BIN_HEIGHT, - min_derivative=DEFAULT_MIN_DERIVATIVE): - - if tails is None: - spline_fn = rational_quadratic_spline - spline_kwargs = {} - else: - spline_fn = unconstrained_rational_quadratic_spline - spline_kwargs = { - 'tails': tails, - 'tail_bound': tail_bound - } - - outputs, logabsdet = spline_fn( - inputs=inputs, - unnormalized_widths=unnormalized_widths, - unnormalized_heights=unnormalized_heights, - unnormalized_derivatives=unnormalized_derivatives, - inverse=inverse, - min_bin_width=min_bin_width, - min_bin_height=min_bin_height, - min_derivative=min_derivative, - **spline_kwargs - ) - return outputs, logabsdet - - -def searchsorted(bin_locations, inputs, eps=1e-6): - bin_locations[..., -1] += eps - return torch.sum( - inputs[..., None] >= bin_locations, - dim=-1 - ) - 1 - - -def unconstrained_rational_quadratic_spline(inputs, - unnormalized_widths, - unnormalized_heights, - unnormalized_derivatives, - inverse=False, - tails='linear', - tail_bound=1., - min_bin_width=DEFAULT_MIN_BIN_WIDTH, - min_bin_height=DEFAULT_MIN_BIN_HEIGHT, - min_derivative=DEFAULT_MIN_DERIVATIVE): - inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound) - outside_interval_mask = ~inside_interval_mask - - outputs = torch.zeros_like(inputs) - logabsdet = torch.zeros_like(inputs) - - if tails == 'linear': - unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1)) - constant = np.log(np.exp(1 - min_derivative) - 1) - unnormalized_derivatives[..., 0] = constant - unnormalized_derivatives[..., -1] = constant - - outputs[outside_interval_mask] = inputs[outside_interval_mask] - logabsdet[outside_interval_mask] = 0 - else: - raise RuntimeError('{} tails are not implemented.'.format(tails)) - - outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline( - inputs=inputs[inside_interval_mask], - unnormalized_widths=unnormalized_widths[inside_interval_mask, :], - unnormalized_heights=unnormalized_heights[inside_interval_mask, :], - unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :], - inverse=inverse, - left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound, - min_bin_width=min_bin_width, - min_bin_height=min_bin_height, - min_derivative=min_derivative - ) - - return outputs, logabsdet - -def rational_quadratic_spline(inputs, - unnormalized_widths, - unnormalized_heights, - unnormalized_derivatives, - inverse=False, - left=0., right=1., bottom=0., top=1., - min_bin_width=DEFAULT_MIN_BIN_WIDTH, - min_bin_height=DEFAULT_MIN_BIN_HEIGHT, - min_derivative=DEFAULT_MIN_DERIVATIVE): - if torch.min(inputs) < left or torch.max(inputs) > right: - raise ValueError('Input to a transform is not within its domain') - - num_bins = unnormalized_widths.shape[-1] - - if min_bin_width * num_bins > 1.0: - raise ValueError('Minimal bin width too large for the number of bins') - if min_bin_height * num_bins > 1.0: - raise ValueError('Minimal bin height too large for the number of bins') - - widths = F.softmax(unnormalized_widths, dim=-1) - widths = min_bin_width + (1 - min_bin_width * num_bins) * widths - cumwidths = torch.cumsum(widths, dim=-1) - cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0) - cumwidths = (right - left) * cumwidths + left - cumwidths[..., 0] = left - cumwidths[..., -1] = right - widths = cumwidths[..., 1:] - cumwidths[..., :-1] - - derivatives = min_derivative + F.softplus(unnormalized_derivatives) - - heights = F.softmax(unnormalized_heights, dim=-1) - heights = min_bin_height + (1 - min_bin_height * num_bins) * heights - cumheights = torch.cumsum(heights, dim=-1) - cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0) - cumheights = (top - bottom) * cumheights + bottom - cumheights[..., 0] = bottom - cumheights[..., -1] = top - heights = cumheights[..., 1:] - cumheights[..., :-1] - - if inverse: - bin_idx = searchsorted(cumheights, inputs)[..., None] - else: - bin_idx = searchsorted(cumwidths, inputs)[..., None] - - input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0] - input_bin_widths = widths.gather(-1, bin_idx)[..., 0] - - input_cumheights = cumheights.gather(-1, bin_idx)[..., 0] - delta = heights / widths - input_delta = delta.gather(-1, bin_idx)[..., 0] - - input_derivatives = derivatives.gather(-1, bin_idx)[..., 0] - input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0] - - input_heights = heights.gather(-1, bin_idx)[..., 0] - - if inverse: - a = (((inputs - input_cumheights) * (input_derivatives - + input_derivatives_plus_one - - 2 * input_delta) - + input_heights * (input_delta - input_derivatives))) - b = (input_heights * input_derivatives - - (inputs - input_cumheights) * (input_derivatives - + input_derivatives_plus_one - - 2 * input_delta)) - c = - input_delta * (inputs - input_cumheights) - - discriminant = b.pow(2) - 4 * a * c - assert (discriminant >= 0).all() - - root = (2 * c) / (-b - torch.sqrt(discriminant)) - outputs = root * input_bin_widths + input_cumwidths - - theta_one_minus_theta = root * (1 - root) - denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta) - * theta_one_minus_theta) - derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2) - + 2 * input_delta * theta_one_minus_theta - + input_derivatives * (1 - root).pow(2)) - logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator) - - return outputs, -logabsdet - else: - theta = (inputs - input_cumwidths) / input_bin_widths - theta_one_minus_theta = theta * (1 - theta) - - numerator = input_heights * (input_delta * theta.pow(2) - + input_derivatives * theta_one_minus_theta) - denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta) - * theta_one_minus_theta) - outputs = input_cumheights + numerator / denominator - - derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2) - + 2 * input_delta * theta_one_minus_theta - + input_derivatives * (1 - theta).pow(2)) - logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator) - - return outputs, logabsdet diff --git a/spaces/Soumahara/Ojimi-anime-kawai-diffusion-demo/README.md b/spaces/Soumahara/Ojimi-anime-kawai-diffusion-demo/README.md deleted file mode 100644 index a0a0c4210f3765fd0e2bdba0aa79135523eb9470..0000000000000000000000000000000000000000 --- a/spaces/Soumahara/Ojimi-anime-kawai-diffusion-demo/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Ojimi Anime Kawai Diffusion Demo -emoji: 🌖 -colorFrom: indigo -colorTo: indigo -sdk: gradio -sdk_version: 3.24.1 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/Souranil/VAE/config/config.py b/spaces/Souranil/VAE/config/config.py deleted file mode 100644 index ab838cc27bcef25269ae303494901481024b2452..0000000000000000000000000000000000000000 --- a/spaces/Souranil/VAE/config/config.py +++ /dev/null @@ -1,59 +0,0 @@ -from pydantic import BaseModel -from typing import Optional, Union -import yaml - - -class TrainConfig(BaseModel): - max_epochs: int - auto_lr_find: Union[bool, int] - gpus: int - - -class VAEConfig(BaseModel): - model_type: str - hidden_size: int - latent_size: int - alpha: int - dataset: str - batch_size: Optional[int] = 64 - save_images: Optional[bool] = False - lr: Optional[float] = None - save_path: Optional[str] = None - - -class ConvVAEConfig(VAEConfig): - channels: int - height: int - width: int - - -class LoggerConfig(BaseModel): - name: str - save_dir: str - - -class Config(BaseModel): - model_config: Union[VAEConfig, ConvVAEConfig] - train_config: TrainConfig - model_type: str - log_config: LoggerConfig - - -def load_config(path="config.yaml"): - config = yaml.load(open(path), yaml.SafeLoader) - model_type = config['model_params']['model_type'] - if model_type == "vae": - model_config = VAEConfig(**config["model_params"]) - elif model_type == "conv-vae": - model_config = ConvVAEConfig(**config["model_params"]) - else: - raise NotImplementedError(f"Model {model_type} is not implemented") - train_config = TrainConfig(**config["training_params"]) - log_config = LoggerConfig(**config["logger_params"]) - config = Config(model_config=model_config, train_config=train_config, - model_type=model_type, log_config=log_config) - - return config - - -config = load_config() diff --git a/spaces/SuYuanS/AudioCraft_Plus/audiocraft/data/__init__.py b/spaces/SuYuanS/AudioCraft_Plus/audiocraft/data/__init__.py deleted file mode 100644 index 2906ff12bc85a894837579f3137f6f71a0438329..0000000000000000000000000000000000000000 --- a/spaces/SuYuanS/AudioCraft_Plus/audiocraft/data/__init__.py +++ /dev/null @@ -1,10 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. -"""Audio loading and writing support. Datasets for raw audio -or also including some metadata.""" - -# flake8: noqa -from . import audio, audio_dataset, info_audio_dataset, music_dataset, sound_dataset diff --git a/spaces/SuYuanS/AudioCraft_Plus/audiocraft/grids/diffusion/4_bands_base_32khz.py b/spaces/SuYuanS/AudioCraft_Plus/audiocraft/grids/diffusion/4_bands_base_32khz.py deleted file mode 100644 index f7e67bcc89dd0c8e50d770e600b55f179fe19588..0000000000000000000000000000000000000000 --- a/spaces/SuYuanS/AudioCraft_Plus/audiocraft/grids/diffusion/4_bands_base_32khz.py +++ /dev/null @@ -1,27 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -""" -Training of the 4 diffusion models described in -"From Discrete Tokens to High-Fidelity Audio Using Multi-Band Diffusion" -(paper link). -""" - -from ._explorers import DiffusionExplorer - - -@DiffusionExplorer -def explorer(launcher): - launcher.slurm_(gpus=4, partition='learnfair') - - launcher.bind_({'solver': 'diffusion/default', - 'dset': 'internal/music_10k_32khz'}) - - with launcher.job_array(): - launcher({'filter.use': True, 'filter.idx_band': 0, "processor.use": False, 'processor.power_std': 0.4}) - launcher({'filter.use': True, 'filter.idx_band': 1, "processor.use": False, 'processor.power_std': 0.4}) - launcher({'filter.use': True, 'filter.idx_band': 2, "processor.use": True, 'processor.power_std': 0.4}) - launcher({'filter.use': True, 'filter.idx_band': 3, "processor.use": True, 'processor.power_std': 0.75}) diff --git a/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/IPython/utils/text.py b/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/IPython/utils/text.py deleted file mode 100644 index 74bccddf68bf84a2325c79bb4a053f0d6e92038d..0000000000000000000000000000000000000000 --- a/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/IPython/utils/text.py +++ /dev/null @@ -1,752 +0,0 @@ -# encoding: utf-8 -""" -Utilities for working with strings and text. - -Inheritance diagram: - -.. inheritance-diagram:: IPython.utils.text - :parts: 3 -""" - -import os -import re -import string -import sys -import textwrap -from string import Formatter -from pathlib import Path - - -# datetime.strftime date format for ipython -if sys.platform == 'win32': - date_format = "%B %d, %Y" -else: - date_format = "%B %-d, %Y" - -class LSString(str): - """String derivative with a special access attributes. - - These are normal strings, but with the special attributes: - - .l (or .list) : value as list (split on newlines). - .n (or .nlstr): original value (the string itself). - .s (or .spstr): value as whitespace-separated string. - .p (or .paths): list of path objects (requires path.py package) - - Any values which require transformations are computed only once and - cached. - - Such strings are very useful to efficiently interact with the shell, which - typically only understands whitespace-separated options for commands.""" - - def get_list(self): - try: - return self.__list - except AttributeError: - self.__list = self.split('\n') - return self.__list - - l = list = property(get_list) - - def get_spstr(self): - try: - return self.__spstr - except AttributeError: - self.__spstr = self.replace('\n',' ') - return self.__spstr - - s = spstr = property(get_spstr) - - def get_nlstr(self): - return self - - n = nlstr = property(get_nlstr) - - def get_paths(self): - try: - return self.__paths - except AttributeError: - self.__paths = [Path(p) for p in self.split('\n') if os.path.exists(p)] - return self.__paths - - p = paths = property(get_paths) - -# FIXME: We need to reimplement type specific displayhook and then add this -# back as a custom printer. This should also be moved outside utils into the -# core. - -# def print_lsstring(arg): -# """ Prettier (non-repr-like) and more informative printer for LSString """ -# print "LSString (.p, .n, .l, .s available). Value:" -# print arg -# -# -# print_lsstring = result_display.register(LSString)(print_lsstring) - - -class SList(list): - """List derivative with a special access attributes. - - These are normal lists, but with the special attributes: - - * .l (or .list) : value as list (the list itself). - * .n (or .nlstr): value as a string, joined on newlines. - * .s (or .spstr): value as a string, joined on spaces. - * .p (or .paths): list of path objects (requires path.py package) - - Any values which require transformations are computed only once and - cached.""" - - def get_list(self): - return self - - l = list = property(get_list) - - def get_spstr(self): - try: - return self.__spstr - except AttributeError: - self.__spstr = ' '.join(self) - return self.__spstr - - s = spstr = property(get_spstr) - - def get_nlstr(self): - try: - return self.__nlstr - except AttributeError: - self.__nlstr = '\n'.join(self) - return self.__nlstr - - n = nlstr = property(get_nlstr) - - def get_paths(self): - try: - return self.__paths - except AttributeError: - self.__paths = [Path(p) for p in self if os.path.exists(p)] - return self.__paths - - p = paths = property(get_paths) - - def grep(self, pattern, prune = False, field = None): - """ Return all strings matching 'pattern' (a regex or callable) - - This is case-insensitive. If prune is true, return all items - NOT matching the pattern. - - If field is specified, the match must occur in the specified - whitespace-separated field. - - Examples:: - - a.grep( lambda x: x.startswith('C') ) - a.grep('Cha.*log', prune=1) - a.grep('chm', field=-1) - """ - - def match_target(s): - if field is None: - return s - parts = s.split() - try: - tgt = parts[field] - return tgt - except IndexError: - return "" - - if isinstance(pattern, str): - pred = lambda x : re.search(pattern, x, re.IGNORECASE) - else: - pred = pattern - if not prune: - return SList([el for el in self if pred(match_target(el))]) - else: - return SList([el for el in self if not pred(match_target(el))]) - - def fields(self, *fields): - """ Collect whitespace-separated fields from string list - - Allows quick awk-like usage of string lists. - - Example data (in var a, created by 'a = !ls -l'):: - - -rwxrwxrwx 1 ville None 18 Dec 14 2006 ChangeLog - drwxrwxrwx+ 6 ville None 0 Oct 24 18:05 IPython - - * ``a.fields(0)`` is ``['-rwxrwxrwx', 'drwxrwxrwx+']`` - * ``a.fields(1,0)`` is ``['1 -rwxrwxrwx', '6 drwxrwxrwx+']`` - (note the joining by space). - * ``a.fields(-1)`` is ``['ChangeLog', 'IPython']`` - - IndexErrors are ignored. - - Without args, fields() just split()'s the strings. - """ - if len(fields) == 0: - return [el.split() for el in self] - - res = SList() - for el in [f.split() for f in self]: - lineparts = [] - - for fd in fields: - try: - lineparts.append(el[fd]) - except IndexError: - pass - if lineparts: - res.append(" ".join(lineparts)) - - return res - - def sort(self,field= None, nums = False): - """ sort by specified fields (see fields()) - - Example:: - - a.sort(1, nums = True) - - Sorts a by second field, in numerical order (so that 21 > 3) - - """ - - #decorate, sort, undecorate - if field is not None: - dsu = [[SList([line]).fields(field), line] for line in self] - else: - dsu = [[line, line] for line in self] - if nums: - for i in range(len(dsu)): - numstr = "".join([ch for ch in dsu[i][0] if ch.isdigit()]) - try: - n = int(numstr) - except ValueError: - n = 0 - dsu[i][0] = n - - - dsu.sort() - return SList([t[1] for t in dsu]) - - -# FIXME: We need to reimplement type specific displayhook and then add this -# back as a custom printer. This should also be moved outside utils into the -# core. - -# def print_slist(arg): -# """ Prettier (non-repr-like) and more informative printer for SList """ -# print "SList (.p, .n, .l, .s, .grep(), .fields(), sort() available):" -# if hasattr(arg, 'hideonce') and arg.hideonce: -# arg.hideonce = False -# return -# -# nlprint(arg) # This was a nested list printer, now removed. -# -# print_slist = result_display.register(SList)(print_slist) - - -def indent(instr,nspaces=4, ntabs=0, flatten=False): - """Indent a string a given number of spaces or tabstops. - - indent(str,nspaces=4,ntabs=0) -> indent str by ntabs+nspaces. - - Parameters - ---------- - instr : basestring - The string to be indented. - nspaces : int (default: 4) - The number of spaces to be indented. - ntabs : int (default: 0) - The number of tabs to be indented. - flatten : bool (default: False) - Whether to scrub existing indentation. If True, all lines will be - aligned to the same indentation. If False, existing indentation will - be strictly increased. - - Returns - ------- - str|unicode : string indented by ntabs and nspaces. - - """ - if instr is None: - return - ind = '\t'*ntabs+' '*nspaces - if flatten: - pat = re.compile(r'^\s*', re.MULTILINE) - else: - pat = re.compile(r'^', re.MULTILINE) - outstr = re.sub(pat, ind, instr) - if outstr.endswith(os.linesep+ind): - return outstr[:-len(ind)] - else: - return outstr - - -def list_strings(arg): - """Always return a list of strings, given a string or list of strings - as input. - - Examples - -------- - :: - - In [7]: list_strings('A single string') - Out[7]: ['A single string'] - - In [8]: list_strings(['A single string in a list']) - Out[8]: ['A single string in a list'] - - In [9]: list_strings(['A','list','of','strings']) - Out[9]: ['A', 'list', 'of', 'strings'] - """ - - if isinstance(arg, str): - return [arg] - else: - return arg - - -def marquee(txt='',width=78,mark='*'): - """Return the input string centered in a 'marquee'. - - Examples - -------- - :: - - In [16]: marquee('A test',40) - Out[16]: '**************** A test ****************' - - In [17]: marquee('A test',40,'-') - Out[17]: '---------------- A test ----------------' - - In [18]: marquee('A test',40,' ') - Out[18]: ' A test ' - - """ - if not txt: - return (mark*width)[:width] - nmark = (width-len(txt)-2)//len(mark)//2 - if nmark < 0: nmark =0 - marks = mark*nmark - return '%s %s %s' % (marks,txt,marks) - - -ini_spaces_re = re.compile(r'^(\s+)') - -def num_ini_spaces(strng): - """Return the number of initial spaces in a string""" - - ini_spaces = ini_spaces_re.match(strng) - if ini_spaces: - return ini_spaces.end() - else: - return 0 - - -def format_screen(strng): - """Format a string for screen printing. - - This removes some latex-type format codes.""" - # Paragraph continue - par_re = re.compile(r'\\$',re.MULTILINE) - strng = par_re.sub('',strng) - return strng - - -def dedent(text): - """Equivalent of textwrap.dedent that ignores unindented first line. - - This means it will still dedent strings like: - '''foo - is a bar - ''' - - For use in wrap_paragraphs. - """ - - if text.startswith('\n'): - # text starts with blank line, don't ignore the first line - return textwrap.dedent(text) - - # split first line - splits = text.split('\n',1) - if len(splits) == 1: - # only one line - return textwrap.dedent(text) - - first, rest = splits - # dedent everything but the first line - rest = textwrap.dedent(rest) - return '\n'.join([first, rest]) - - -def wrap_paragraphs(text, ncols=80): - """Wrap multiple paragraphs to fit a specified width. - - This is equivalent to textwrap.wrap, but with support for multiple - paragraphs, as separated by empty lines. - - Returns - ------- - list of complete paragraphs, wrapped to fill `ncols` columns. - """ - paragraph_re = re.compile(r'\n(\s*\n)+', re.MULTILINE) - text = dedent(text).strip() - paragraphs = paragraph_re.split(text)[::2] # every other entry is space - out_ps = [] - indent_re = re.compile(r'\n\s+', re.MULTILINE) - for p in paragraphs: - # presume indentation that survives dedent is meaningful formatting, - # so don't fill unless text is flush. - if indent_re.search(p) is None: - # wrap paragraph - p = textwrap.fill(p, ncols) - out_ps.append(p) - return out_ps - - -def strip_email_quotes(text): - """Strip leading email quotation characters ('>'). - - Removes any combination of leading '>' interspersed with whitespace that - appears *identically* in all lines of the input text. - - Parameters - ---------- - text : str - - Examples - -------- - - Simple uses:: - - In [2]: strip_email_quotes('> > text') - Out[2]: 'text' - - In [3]: strip_email_quotes('> > text\\n> > more') - Out[3]: 'text\\nmore' - - Note how only the common prefix that appears in all lines is stripped:: - - In [4]: strip_email_quotes('> > text\\n> > more\\n> more...') - Out[4]: '> text\\n> more\\nmore...' - - So if any line has no quote marks ('>'), then none are stripped from any - of them :: - - In [5]: strip_email_quotes('> > text\\n> > more\\nlast different') - Out[5]: '> > text\\n> > more\\nlast different' - """ - lines = text.splitlines() - strip_len = 0 - - for characters in zip(*lines): - # Check if all characters in this position are the same - if len(set(characters)) > 1: - break - prefix_char = characters[0] - - if prefix_char in string.whitespace or prefix_char == ">": - strip_len += 1 - else: - break - - text = "\n".join([ln[strip_len:] for ln in lines]) - return text - - -def strip_ansi(source): - """ - Remove ansi escape codes from text. - - Parameters - ---------- - source : str - Source to remove the ansi from - """ - return re.sub(r'\033\[(\d|;)+?m', '', source) - - -class EvalFormatter(Formatter): - """A String Formatter that allows evaluation of simple expressions. - - Note that this version interprets a `:` as specifying a format string (as per - standard string formatting), so if slicing is required, you must explicitly - create a slice. - - This is to be used in templating cases, such as the parallel batch - script templates, where simple arithmetic on arguments is useful. - - Examples - -------- - :: - - In [1]: f = EvalFormatter() - In [2]: f.format('{n//4}', n=8) - Out[2]: '2' - - In [3]: f.format("{greeting[slice(2,4)]}", greeting="Hello") - Out[3]: 'll' - """ - def get_field(self, name, args, kwargs): - v = eval(name, kwargs) - return v, name - -#XXX: As of Python 3.4, the format string parsing no longer splits on a colon -# inside [], so EvalFormatter can handle slicing. Once we only support 3.4 and -# above, it should be possible to remove FullEvalFormatter. - -class FullEvalFormatter(Formatter): - """A String Formatter that allows evaluation of simple expressions. - - Any time a format key is not found in the kwargs, - it will be tried as an expression in the kwargs namespace. - - Note that this version allows slicing using [1:2], so you cannot specify - a format string. Use :class:`EvalFormatter` to permit format strings. - - Examples - -------- - :: - - In [1]: f = FullEvalFormatter() - In [2]: f.format('{n//4}', n=8) - Out[2]: '2' - - In [3]: f.format('{list(range(5))[2:4]}') - Out[3]: '[2, 3]' - - In [4]: f.format('{3*2}') - Out[4]: '6' - """ - # copied from Formatter._vformat with minor changes to allow eval - # and replace the format_spec code with slicing - def vformat(self, format_string:str, args, kwargs)->str: - result = [] - for literal_text, field_name, format_spec, conversion in \ - self.parse(format_string): - - # output the literal text - if literal_text: - result.append(literal_text) - - # if there's a field, output it - if field_name is not None: - # this is some markup, find the object and do - # the formatting - - if format_spec: - # override format spec, to allow slicing: - field_name = ':'.join([field_name, format_spec]) - - # eval the contents of the field for the object - # to be formatted - obj = eval(field_name, kwargs) - - # do any conversion on the resulting object - obj = self.convert_field(obj, conversion) - - # format the object and append to the result - result.append(self.format_field(obj, '')) - - return ''.join(result) - - -class DollarFormatter(FullEvalFormatter): - """Formatter allowing Itpl style $foo replacement, for names and attribute - access only. Standard {foo} replacement also works, and allows full - evaluation of its arguments. - - Examples - -------- - :: - - In [1]: f = DollarFormatter() - In [2]: f.format('{n//4}', n=8) - Out[2]: '2' - - In [3]: f.format('23 * 76 is $result', result=23*76) - Out[3]: '23 * 76 is 1748' - - In [4]: f.format('$a or {b}', a=1, b=2) - Out[4]: '1 or 2' - """ - _dollar_pattern_ignore_single_quote = re.compile(r"(.*?)\$(\$?[\w\.]+)(?=([^']*'[^']*')*[^']*$)") - def parse(self, fmt_string): - for literal_txt, field_name, format_spec, conversion \ - in Formatter.parse(self, fmt_string): - - # Find $foo patterns in the literal text. - continue_from = 0 - txt = "" - for m in self._dollar_pattern_ignore_single_quote.finditer(literal_txt): - new_txt, new_field = m.group(1,2) - # $$foo --> $foo - if new_field.startswith("$"): - txt += new_txt + new_field - else: - yield (txt + new_txt, new_field, "", None) - txt = "" - continue_from = m.end() - - # Re-yield the {foo} style pattern - yield (txt + literal_txt[continue_from:], field_name, format_spec, conversion) - - def __repr__(self): - return "" - -#----------------------------------------------------------------------------- -# Utils to columnize a list of string -#----------------------------------------------------------------------------- - -def _col_chunks(l, max_rows, row_first=False): - """Yield successive max_rows-sized column chunks from l.""" - if row_first: - ncols = (len(l) // max_rows) + (len(l) % max_rows > 0) - for i in range(ncols): - yield [l[j] for j in range(i, len(l), ncols)] - else: - for i in range(0, len(l), max_rows): - yield l[i:(i + max_rows)] - - -def _find_optimal(rlist, row_first=False, separator_size=2, displaywidth=80): - """Calculate optimal info to columnize a list of string""" - for max_rows in range(1, len(rlist) + 1): - col_widths = list(map(max, _col_chunks(rlist, max_rows, row_first))) - sumlength = sum(col_widths) - ncols = len(col_widths) - if sumlength + separator_size * (ncols - 1) <= displaywidth: - break - return {'num_columns': ncols, - 'optimal_separator_width': (displaywidth - sumlength) // (ncols - 1) if (ncols - 1) else 0, - 'max_rows': max_rows, - 'column_widths': col_widths - } - - -def _get_or_default(mylist, i, default=None): - """return list item number, or default if don't exist""" - if i >= len(mylist): - return default - else : - return mylist[i] - - -def compute_item_matrix(items, row_first=False, empty=None, *args, **kwargs) : - """Returns a nested list, and info to columnize items - - Parameters - ---------- - items - list of strings to columize - row_first : (default False) - Whether to compute columns for a row-first matrix instead of - column-first (default). - empty : (default None) - default value to fill list if needed - separator_size : int (default=2) - How much characters will be used as a separation between each columns. - displaywidth : int (default=80) - The width of the area onto which the columns should enter - - Returns - ------- - strings_matrix - nested list of string, the outer most list contains as many list as - rows, the innermost lists have each as many element as columns. If the - total number of elements in `items` does not equal the product of - rows*columns, the last element of some lists are filled with `None`. - dict_info - some info to make columnize easier: - - num_columns - number of columns - max_rows - maximum number of rows (final number may be less) - column_widths - list of with of each columns - optimal_separator_width - best separator width between columns - - Examples - -------- - :: - - In [1]: l = ['aaa','b','cc','d','eeeee','f','g','h','i','j','k','l'] - In [2]: list, info = compute_item_matrix(l, displaywidth=12) - In [3]: list - Out[3]: [['aaa', 'f', 'k'], ['b', 'g', 'l'], ['cc', 'h', None], ['d', 'i', None], ['eeeee', 'j', None]] - In [4]: ideal = {'num_columns': 3, 'column_widths': [5, 1, 1], 'optimal_separator_width': 2, 'max_rows': 5} - In [5]: all((info[k] == ideal[k] for k in ideal.keys())) - Out[5]: True - """ - info = _find_optimal(list(map(len, items)), row_first, *args, **kwargs) - nrow, ncol = info['max_rows'], info['num_columns'] - if row_first: - return ([[_get_or_default(items, r * ncol + c, default=empty) for c in range(ncol)] for r in range(nrow)], info) - else: - return ([[_get_or_default(items, c * nrow + r, default=empty) for c in range(ncol)] for r in range(nrow)], info) - - -def columnize(items, row_first=False, separator=" ", displaywidth=80, spread=False): - """Transform a list of strings into a single string with columns. - - Parameters - ---------- - items : sequence of strings - The strings to process. - row_first : (default False) - Whether to compute columns for a row-first matrix instead of - column-first (default). - separator : str, optional [default is two spaces] - The string that separates columns. - displaywidth : int, optional [default is 80] - Width of the display in number of characters. - - Returns - ------- - The formatted string. - """ - if not items: - return '\n' - matrix, info = compute_item_matrix(items, row_first=row_first, separator_size=len(separator), displaywidth=displaywidth) - if spread: - separator = separator.ljust(int(info['optimal_separator_width'])) - fmatrix = [filter(None, x) for x in matrix] - sjoin = lambda x : separator.join([ y.ljust(w, ' ') for y, w in zip(x, info['column_widths'])]) - return '\n'.join(map(sjoin, fmatrix))+'\n' - - -def get_text_list(list_, last_sep=' and ', sep=", ", wrap_item_with=""): - """ - Return a string with a natural enumeration of items - - >>> get_text_list(['a', 'b', 'c', 'd']) - 'a, b, c and d' - >>> get_text_list(['a', 'b', 'c'], ' or ') - 'a, b or c' - >>> get_text_list(['a', 'b', 'c'], ', ') - 'a, b, c' - >>> get_text_list(['a', 'b'], ' or ') - 'a or b' - >>> get_text_list(['a']) - 'a' - >>> get_text_list([]) - '' - >>> get_text_list(['a', 'b'], wrap_item_with="`") - '`a` and `b`' - >>> get_text_list(['a', 'b', 'c', 'd'], " = ", sep=" + ") - 'a + b + c = d' - """ - if len(list_) == 0: - return '' - if wrap_item_with: - list_ = ['%s%s%s' % (wrap_item_with, item, wrap_item_with) for - item in list_] - if len(list_) == 1: - return list_[0] - return '%s%s%s' % ( - sep.join(i for i in list_[:-1]), - last_sep, list_[-1]) diff --git a/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/dateutil/tz/win.py b/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/dateutil/tz/win.py deleted file mode 100644 index cde07ba792c40903f0c334839140173b39fd8124..0000000000000000000000000000000000000000 --- a/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/dateutil/tz/win.py +++ /dev/null @@ -1,370 +0,0 @@ -# -*- coding: utf-8 -*- -""" -This module provides an interface to the native time zone data on Windows, -including :py:class:`datetime.tzinfo` implementations. - -Attempting to import this module on a non-Windows platform will raise an -:py:obj:`ImportError`. -""" -# This code was originally contributed by Jeffrey Harris. -import datetime -import struct - -from six.moves import winreg -from six import text_type - -try: - import ctypes - from ctypes import wintypes -except ValueError: - # ValueError is raised on non-Windows systems for some horrible reason. - raise ImportError("Running tzwin on non-Windows system") - -from ._common import tzrangebase - -__all__ = ["tzwin", "tzwinlocal", "tzres"] - -ONEWEEK = datetime.timedelta(7) - -TZKEYNAMENT = r"SOFTWARE\Microsoft\Windows NT\CurrentVersion\Time Zones" -TZKEYNAME9X = r"SOFTWARE\Microsoft\Windows\CurrentVersion\Time Zones" -TZLOCALKEYNAME = r"SYSTEM\CurrentControlSet\Control\TimeZoneInformation" - - -def _settzkeyname(): - handle = winreg.ConnectRegistry(None, winreg.HKEY_LOCAL_MACHINE) - try: - winreg.OpenKey(handle, TZKEYNAMENT).Close() - TZKEYNAME = TZKEYNAMENT - except WindowsError: - TZKEYNAME = TZKEYNAME9X - handle.Close() - return TZKEYNAME - - -TZKEYNAME = _settzkeyname() - - -class tzres(object): - """ - Class for accessing ``tzres.dll``, which contains timezone name related - resources. - - .. versionadded:: 2.5.0 - """ - p_wchar = ctypes.POINTER(wintypes.WCHAR) # Pointer to a wide char - - def __init__(self, tzres_loc='tzres.dll'): - # Load the user32 DLL so we can load strings from tzres - user32 = ctypes.WinDLL('user32') - - # Specify the LoadStringW function - user32.LoadStringW.argtypes = (wintypes.HINSTANCE, - wintypes.UINT, - wintypes.LPWSTR, - ctypes.c_int) - - self.LoadStringW = user32.LoadStringW - self._tzres = ctypes.WinDLL(tzres_loc) - self.tzres_loc = tzres_loc - - def load_name(self, offset): - """ - Load a timezone name from a DLL offset (integer). - - >>> from dateutil.tzwin import tzres - >>> tzr = tzres() - >>> print(tzr.load_name(112)) - 'Eastern Standard Time' - - :param offset: - A positive integer value referring to a string from the tzres dll. - - .. note:: - - Offsets found in the registry are generally of the form - ``@tzres.dll,-114``. The offset in this case is 114, not -114. - - """ - resource = self.p_wchar() - lpBuffer = ctypes.cast(ctypes.byref(resource), wintypes.LPWSTR) - nchar = self.LoadStringW(self._tzres._handle, offset, lpBuffer, 0) - return resource[:nchar] - - def name_from_string(self, tzname_str): - """ - Parse strings as returned from the Windows registry into the time zone - name as defined in the registry. - - >>> from dateutil.tzwin import tzres - >>> tzr = tzres() - >>> print(tzr.name_from_string('@tzres.dll,-251')) - 'Dateline Daylight Time' - >>> print(tzr.name_from_string('Eastern Standard Time')) - 'Eastern Standard Time' - - :param tzname_str: - A timezone name string as returned from a Windows registry key. - - :return: - Returns the localized timezone string from tzres.dll if the string - is of the form `@tzres.dll,-offset`, else returns the input string. - """ - if not tzname_str.startswith('@'): - return tzname_str - - name_splt = tzname_str.split(',-') - try: - offset = int(name_splt[1]) - except: - raise ValueError("Malformed timezone string.") - - return self.load_name(offset) - - -class tzwinbase(tzrangebase): - """tzinfo class based on win32's timezones available in the registry.""" - def __init__(self): - raise NotImplementedError('tzwinbase is an abstract base class') - - def __eq__(self, other): - # Compare on all relevant dimensions, including name. - if not isinstance(other, tzwinbase): - return NotImplemented - - return (self._std_offset == other._std_offset and - self._dst_offset == other._dst_offset and - self._stddayofweek == other._stddayofweek and - self._dstdayofweek == other._dstdayofweek and - self._stdweeknumber == other._stdweeknumber and - self._dstweeknumber == other._dstweeknumber and - self._stdhour == other._stdhour and - self._dsthour == other._dsthour and - self._stdminute == other._stdminute and - self._dstminute == other._dstminute and - self._std_abbr == other._std_abbr and - self._dst_abbr == other._dst_abbr) - - @staticmethod - def list(): - """Return a list of all time zones known to the system.""" - with winreg.ConnectRegistry(None, winreg.HKEY_LOCAL_MACHINE) as handle: - with winreg.OpenKey(handle, TZKEYNAME) as tzkey: - result = [winreg.EnumKey(tzkey, i) - for i in range(winreg.QueryInfoKey(tzkey)[0])] - return result - - def display(self): - """ - Return the display name of the time zone. - """ - return self._display - - def transitions(self, year): - """ - For a given year, get the DST on and off transition times, expressed - always on the standard time side. For zones with no transitions, this - function returns ``None``. - - :param year: - The year whose transitions you would like to query. - - :return: - Returns a :class:`tuple` of :class:`datetime.datetime` objects, - ``(dston, dstoff)`` for zones with an annual DST transition, or - ``None`` for fixed offset zones. - """ - - if not self.hasdst: - return None - - dston = picknthweekday(year, self._dstmonth, self._dstdayofweek, - self._dsthour, self._dstminute, - self._dstweeknumber) - - dstoff = picknthweekday(year, self._stdmonth, self._stddayofweek, - self._stdhour, self._stdminute, - self._stdweeknumber) - - # Ambiguous dates default to the STD side - dstoff -= self._dst_base_offset - - return dston, dstoff - - def _get_hasdst(self): - return self._dstmonth != 0 - - @property - def _dst_base_offset(self): - return self._dst_base_offset_ - - -class tzwin(tzwinbase): - """ - Time zone object created from the zone info in the Windows registry - - These are similar to :py:class:`dateutil.tz.tzrange` objects in that - the time zone data is provided in the format of a single offset rule - for either 0 or 2 time zone transitions per year. - - :param: name - The name of a Windows time zone key, e.g. "Eastern Standard Time". - The full list of keys can be retrieved with :func:`tzwin.list`. - """ - - def __init__(self, name): - self._name = name - - with winreg.ConnectRegistry(None, winreg.HKEY_LOCAL_MACHINE) as handle: - tzkeyname = text_type("{kn}\\{name}").format(kn=TZKEYNAME, name=name) - with winreg.OpenKey(handle, tzkeyname) as tzkey: - keydict = valuestodict(tzkey) - - self._std_abbr = keydict["Std"] - self._dst_abbr = keydict["Dlt"] - - self._display = keydict["Display"] - - # See http://ww_winreg.jsiinc.com/SUBA/tip0300/rh0398.htm - tup = struct.unpack("=3l16h", keydict["TZI"]) - stdoffset = -tup[0]-tup[1] # Bias + StandardBias * -1 - dstoffset = stdoffset-tup[2] # + DaylightBias * -1 - self._std_offset = datetime.timedelta(minutes=stdoffset) - self._dst_offset = datetime.timedelta(minutes=dstoffset) - - # for the meaning see the win32 TIME_ZONE_INFORMATION structure docs - # http://msdn.microsoft.com/en-us/library/windows/desktop/ms725481(v=vs.85).aspx - (self._stdmonth, - self._stddayofweek, # Sunday = 0 - self._stdweeknumber, # Last = 5 - self._stdhour, - self._stdminute) = tup[4:9] - - (self._dstmonth, - self._dstdayofweek, # Sunday = 0 - self._dstweeknumber, # Last = 5 - self._dsthour, - self._dstminute) = tup[12:17] - - self._dst_base_offset_ = self._dst_offset - self._std_offset - self.hasdst = self._get_hasdst() - - def __repr__(self): - return "tzwin(%s)" % repr(self._name) - - def __reduce__(self): - return (self.__class__, (self._name,)) - - -class tzwinlocal(tzwinbase): - """ - Class representing the local time zone information in the Windows registry - - While :class:`dateutil.tz.tzlocal` makes system calls (via the :mod:`time` - module) to retrieve time zone information, ``tzwinlocal`` retrieves the - rules directly from the Windows registry and creates an object like - :class:`dateutil.tz.tzwin`. - - Because Windows does not have an equivalent of :func:`time.tzset`, on - Windows, :class:`dateutil.tz.tzlocal` instances will always reflect the - time zone settings *at the time that the process was started*, meaning - changes to the machine's time zone settings during the run of a program - on Windows will **not** be reflected by :class:`dateutil.tz.tzlocal`. - Because ``tzwinlocal`` reads the registry directly, it is unaffected by - this issue. - """ - def __init__(self): - with winreg.ConnectRegistry(None, winreg.HKEY_LOCAL_MACHINE) as handle: - with winreg.OpenKey(handle, TZLOCALKEYNAME) as tzlocalkey: - keydict = valuestodict(tzlocalkey) - - self._std_abbr = keydict["StandardName"] - self._dst_abbr = keydict["DaylightName"] - - try: - tzkeyname = text_type('{kn}\\{sn}').format(kn=TZKEYNAME, - sn=self._std_abbr) - with winreg.OpenKey(handle, tzkeyname) as tzkey: - _keydict = valuestodict(tzkey) - self._display = _keydict["Display"] - except OSError: - self._display = None - - stdoffset = -keydict["Bias"]-keydict["StandardBias"] - dstoffset = stdoffset-keydict["DaylightBias"] - - self._std_offset = datetime.timedelta(minutes=stdoffset) - self._dst_offset = datetime.timedelta(minutes=dstoffset) - - # For reasons unclear, in this particular key, the day of week has been - # moved to the END of the SYSTEMTIME structure. - tup = struct.unpack("=8h", keydict["StandardStart"]) - - (self._stdmonth, - self._stdweeknumber, # Last = 5 - self._stdhour, - self._stdminute) = tup[1:5] - - self._stddayofweek = tup[7] - - tup = struct.unpack("=8h", keydict["DaylightStart"]) - - (self._dstmonth, - self._dstweeknumber, # Last = 5 - self._dsthour, - self._dstminute) = tup[1:5] - - self._dstdayofweek = tup[7] - - self._dst_base_offset_ = self._dst_offset - self._std_offset - self.hasdst = self._get_hasdst() - - def __repr__(self): - return "tzwinlocal()" - - def __str__(self): - # str will return the standard name, not the daylight name. - return "tzwinlocal(%s)" % repr(self._std_abbr) - - def __reduce__(self): - return (self.__class__, ()) - - -def picknthweekday(year, month, dayofweek, hour, minute, whichweek): - """ dayofweek == 0 means Sunday, whichweek 5 means last instance """ - first = datetime.datetime(year, month, 1, hour, minute) - - # This will work if dayofweek is ISO weekday (1-7) or Microsoft-style (0-6), - # Because 7 % 7 = 0 - weekdayone = first.replace(day=((dayofweek - first.isoweekday()) % 7) + 1) - wd = weekdayone + ((whichweek - 1) * ONEWEEK) - if (wd.month != month): - wd -= ONEWEEK - - return wd - - -def valuestodict(key): - """Convert a registry key's values to a dictionary.""" - dout = {} - size = winreg.QueryInfoKey(key)[1] - tz_res = None - - for i in range(size): - key_name, value, dtype = winreg.EnumValue(key, i) - if dtype == winreg.REG_DWORD or dtype == winreg.REG_DWORD_LITTLE_ENDIAN: - # If it's a DWORD (32-bit integer), it's stored as unsigned - convert - # that to a proper signed integer - if value & (1 << 31): - value = value - (1 << 32) - elif dtype == winreg.REG_SZ: - # If it's a reference to the tzres DLL, load the actual string - if value.startswith('@tzres'): - tz_res = tz_res or tzres() - value = tz_res.name_from_string(value) - - value = value.rstrip('\x00') # Remove trailing nulls - - dout[key_name] = value - - return dout diff --git a/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/debugpy/_vendored/pydevd/pydev_app_engine_debug_startup.py b/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/debugpy/_vendored/pydevd/pydev_app_engine_debug_startup.py deleted file mode 100644 index 464f0ddf3464b5f5354ce1bbf7b7f8da0610c706..0000000000000000000000000000000000000000 --- a/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/debugpy/_vendored/pydevd/pydev_app_engine_debug_startup.py +++ /dev/null @@ -1,21 +0,0 @@ -if False: - config = None - - -# See: https://docs.google.com/document/d/1CCSaRiIWCLgbD3OwmuKsRoHHDfBffbROWyVWWL0ZXN4/edit -if ':' not in config.version_id: - # The default server version_id does not contain ':' - import json - import os - import sys - - startup = config.python_config.startup_args - if not startup: - raise AssertionError('Expected --python_startup_args to be passed from the pydev debugger.') - - setup = json.loads(startup) - pydevd_path = setup['pydevd'] - sys.path.append(os.path.dirname(pydevd_path)) - - import pydevd - pydevd.settrace(setup['client'], port=setup['port'], suspend=False, trace_only_current_thread=False) diff --git a/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/debugpy/_vendored/pydevd/pydevd_attach_to_process/add_code_to_python_process.py b/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/debugpy/_vendored/pydevd/pydevd_attach_to_process/add_code_to_python_process.py deleted file mode 100644 index ed43e3706aa9d6248b7102c0f86993170821d57f..0000000000000000000000000000000000000000 --- a/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/debugpy/_vendored/pydevd/pydevd_attach_to_process/add_code_to_python_process.py +++ /dev/null @@ -1,592 +0,0 @@ -r''' -Copyright: Brainwy Software Ltda. - -License: EPL. -============= - -Works for Windows by using an executable that'll inject a dll to a process and call a function. - -Note: https://github.com/fabioz/winappdbg is used just to determine if the target process is 32 or 64 bits. - -Works for Linux relying on gdb. - -Limitations: -============ - - Linux: - ------ - - 1. It possible that ptrace is disabled: /etc/sysctl.d/10-ptrace.conf - - Note that even enabling it in /etc/sysctl.d/10-ptrace.conf (i.e.: making the - ptrace_scope=0), it's possible that we need to run the application that'll use ptrace (or - gdb in this case) as root (so, we must sudo the python which'll run this module). - - 2. It currently doesn't work in debug builds (i.e.: python_d) - - -Other implementations: -- pyrasite.com: - GPL - Windows/linux (in Linux it also uses gdb to connect -- although specifics are different as we use a dll to execute - code with other threads stopped). It's Windows approach is more limited because it doesn't seem to deal properly with - Python 3 if threading is disabled. - -- https://github.com/google/pyringe: - Apache v2. - Only linux/Python 2. - -- http://pytools.codeplex.com: - Apache V2 - Windows Only (but supports mixed mode debugging) - Our own code relies heavily on a part of it: http://pytools.codeplex.com/SourceControl/latest#Python/Product/PyDebugAttach/PyDebugAttach.cpp - to overcome some limitations of attaching and running code in the target python executable on Python 3. - See: attach.cpp - -Linux: References if we wanted to use a pure-python debugger: - https://bitbucket.org/haypo/python-ptrace/ - http://stackoverflow.com/questions/7841573/how-to-get-an-error-message-for-errno-value-in-python - Jugaad: - https://www.defcon.org/images/defcon-19/dc-19-presentations/Jakhar/DEFCON-19-Jakhar-Jugaad-Linux-Thread-Injection.pdf - https://github.com/aseemjakhar/jugaad - -Something else (general and not Python related): -- http://www.codeproject.com/Articles/4610/Three-Ways-to-Inject-Your-Code-into-Another-Proces - -Other references: -- https://github.com/haypo/faulthandler -- http://nedbatchelder.com/text/trace-function.html -- https://github.com/python-git/python/blob/master/Python/sysmodule.c (sys_settrace) -- https://github.com/python-git/python/blob/master/Python/ceval.c (PyEval_SetTrace) -- https://github.com/python-git/python/blob/master/Python/thread.c (PyThread_get_key_value) - - -To build the dlls needed on windows, visual studio express 13 was used (see compile_dll.bat) - -See: attach_pydevd.py to attach the pydev debugger to a running python process. -''' - -# Note: to work with nasm compiling asm to code and decompiling to see asm with shellcode: -# x:\nasm\nasm-2.07-win32\nasm-2.07\nasm.exe -# nasm.asm&x:\nasm\nasm-2.07-win32\nasm-2.07\ndisasm.exe -b arch nasm -import ctypes -import os -import struct -import subprocess -import sys -import time -from contextlib import contextmanager -import platform -import traceback - -try: - TimeoutError = TimeoutError # @ReservedAssignment -except NameError: - - class TimeoutError(RuntimeError): # @ReservedAssignment - pass - - -@contextmanager -def _create_win_event(name): - from winappdbg.win32.kernel32 import CreateEventA, WaitForSingleObject, CloseHandle - - manual_reset = False # i.e.: after someone waits it, automatically set to False. - initial_state = False - if not isinstance(name, bytes): - name = name.encode('utf-8') - event = CreateEventA(None, manual_reset, initial_state, name) - if not event: - raise ctypes.WinError() - - class _WinEvent(object): - - def wait_for_event_set(self, timeout=None): - ''' - :param timeout: in seconds - ''' - if timeout is None: - timeout = 0xFFFFFFFF - else: - timeout = int(timeout * 1000) - ret = WaitForSingleObject(event, timeout) - if ret in (0, 0x80): - return True - elif ret == 0x102: - # Timed out - return False - else: - raise ctypes.WinError() - - try: - yield _WinEvent() - finally: - CloseHandle(event) - - -IS_WINDOWS = sys.platform == 'win32' -IS_LINUX = sys.platform in ('linux', 'linux2') -IS_MAC = sys.platform == 'darwin' - - -def is_python_64bit(): - return (struct.calcsize('P') == 8) - - -def get_target_filename(is_target_process_64=None, prefix=None, extension=None): - # Note: we have an independent (and similar -- but not equal) version of this method in - # `pydevd_tracing.py` which should be kept synchronized with this one (we do a copy - # because the `pydevd_attach_to_process` is mostly independent and shouldn't be imported in the - # debugger -- the only situation where it's imported is if the user actually does an attach to - # process, through `attach_pydevd.py`, but this should usually be called from the IDE directly - # and not from the debugger). - libdir = os.path.dirname(__file__) - - if is_target_process_64 is None: - if IS_WINDOWS: - # i.e.: On windows the target process could have a different bitness (32bit is emulated on 64bit). - raise AssertionError("On windows it's expected that the target bitness is specified.") - - # For other platforms, just use the the same bitness of the process we're running in. - is_target_process_64 = is_python_64bit() - - arch = '' - if IS_WINDOWS: - # prefer not using platform.machine() when possible (it's a bit heavyweight as it may - # spawn a subprocess). - arch = os.environ.get("PROCESSOR_ARCHITEW6432", os.environ.get('PROCESSOR_ARCHITECTURE', '')) - - if not arch: - arch = platform.machine() - if not arch: - print('platform.machine() did not return valid value.') # This shouldn't happen... - return None - - if IS_WINDOWS: - if not extension: - extension = '.dll' - suffix_64 = 'amd64' - suffix_32 = 'x86' - - elif IS_LINUX: - if not extension: - extension = '.so' - suffix_64 = 'amd64' - suffix_32 = 'x86' - - elif IS_MAC: - if not extension: - extension = '.dylib' - suffix_64 = 'x86_64' - suffix_32 = 'x86' - - else: - print('Unable to attach to process in platform: %s', sys.platform) - return None - - if arch.lower() not in ('amd64', 'x86', 'x86_64', 'i386', 'x86'): - # We don't support this processor by default. Still, let's support the case where the - # user manually compiled it himself with some heuristics. - # - # Ideally the user would provide a library in the format: "attach_." - # based on the way it's currently compiled -- see: - # - windows/compile_windows.bat - # - linux_and_mac/compile_linux.sh - # - linux_and_mac/compile_mac.sh - - try: - found = [name for name in os.listdir(libdir) if name.startswith('attach_') and name.endswith(extension)] - except: - print('Error listing dir: %s' % (libdir,)) - traceback.print_exc() - return None - - if prefix: - expected_name = prefix + arch + extension - expected_name_linux = prefix + 'linux_' + arch + extension - else: - # Default is looking for the attach_ / attach_linux - expected_name = 'attach_' + arch + extension - expected_name_linux = 'attach_linux_' + arch + extension - - filename = None - if expected_name in found: # Heuristic: user compiled with "attach_." - filename = os.path.join(libdir, expected_name) - - elif IS_LINUX and expected_name_linux in found: # Heuristic: user compiled with "attach_linux_." - filename = os.path.join(libdir, expected_name_linux) - - elif len(found) == 1: # Heuristic: user removed all libraries and just left his own lib. - filename = os.path.join(libdir, found[0]) - - else: # Heuristic: there's one additional library which doesn't seem to be our own. Find the odd one. - filtered = [name for name in found if not name.endswith((suffix_64 + extension, suffix_32 + extension))] - if len(filtered) == 1: # If more than one is available we can't be sure... - filename = os.path.join(libdir, found[0]) - - if filename is None: - print( - 'Unable to attach to process in arch: %s (did not find %s in %s).' % ( - arch, expected_name, libdir - ) - ) - return None - - print('Using %s in arch: %s.' % (filename, arch)) - - else: - if is_target_process_64: - suffix = suffix_64 - else: - suffix = suffix_32 - - if not prefix: - # Default is looking for the attach_ / attach_linux - if IS_WINDOWS or IS_MAC: # just the extension changes - prefix = 'attach_' - elif IS_LINUX: - prefix = 'attach_linux_' # historically it has a different name - else: - print('Unable to attach to process in platform: %s' % (sys.platform,)) - return None - - filename = os.path.join(libdir, '%s%s%s' % (prefix, suffix, extension)) - - if not os.path.exists(filename): - print('Expected: %s to exist.' % (filename,)) - return None - - return filename - - -def run_python_code_windows(pid, python_code, connect_debugger_tracing=False, show_debug_info=0): - assert '\'' not in python_code, 'Having a single quote messes with our command.' - from winappdbg.process import Process - if not isinstance(python_code, bytes): - python_code = python_code.encode('utf-8') - - process = Process(pid) - bits = process.get_bits() - is_target_process_64 = bits == 64 - - # Note: this restriction no longer applies (we create a process with the proper bitness from - # this process so that the attach works). - # if is_target_process_64 != is_python_64bit(): - # raise RuntimeError("The architecture of the Python used to connect doesn't match the architecture of the target.\n" - # "Target 64 bits: %s\n" - # "Current Python 64 bits: %s" % (is_target_process_64, is_python_64bit())) - - with _acquire_mutex('_pydevd_pid_attach_mutex_%s' % (pid,), 10): - print('--- Connecting to %s bits target (current process is: %s) ---' % (bits, 64 if is_python_64bit() else 32)) - sys.stdout.flush() - - with _win_write_to_shared_named_memory(python_code, pid): - - target_executable = get_target_filename(is_target_process_64, 'inject_dll_', '.exe') - if not target_executable: - raise RuntimeError('Could not find expected .exe file to inject dll in attach to process.') - - target_dll = get_target_filename(is_target_process_64) - if not target_dll: - raise RuntimeError('Could not find expected .dll file in attach to process.') - - print('\n--- Injecting attach dll: %s into pid: %s ---' % (os.path.basename(target_dll), pid)) - sys.stdout.flush() - args = [target_executable, str(pid), target_dll] - subprocess.check_call(args) - - # Now, if the first injection worked, go on to the second which will actually - # run the code. - target_dll_run_on_dllmain = get_target_filename(is_target_process_64, 'run_code_on_dllmain_', '.dll') - if not target_dll_run_on_dllmain: - raise RuntimeError('Could not find expected .dll in attach to process.') - - with _create_win_event('_pydevd_pid_event_%s' % (pid,)) as event: - print('\n--- Injecting run code dll: %s into pid: %s ---' % (os.path.basename(target_dll_run_on_dllmain), pid)) - sys.stdout.flush() - args = [target_executable, str(pid), target_dll_run_on_dllmain] - subprocess.check_call(args) - - if not event.wait_for_event_set(15): - print('Timeout error: the attach may not have completed.') - sys.stdout.flush() - print('--- Finished dll injection ---\n') - sys.stdout.flush() - - return 0 - - -@contextmanager -def _acquire_mutex(mutex_name, timeout): - ''' - Only one process may be attaching to a pid, so, create a system mutex - to make sure this holds in practice. - ''' - from winappdbg.win32.kernel32 import CreateMutex, GetLastError, CloseHandle - from winappdbg.win32.defines import ERROR_ALREADY_EXISTS - - initial_time = time.time() - while True: - mutex = CreateMutex(None, True, mutex_name) - acquired = GetLastError() != ERROR_ALREADY_EXISTS - if acquired: - break - if time.time() - initial_time > timeout: - raise TimeoutError('Unable to acquire mutex to make attach before timeout.') - time.sleep(.2) - - try: - yield - finally: - CloseHandle(mutex) - - -@contextmanager -def _win_write_to_shared_named_memory(python_code, pid): - # Use the definitions from winappdbg when possible. - from winappdbg.win32 import defines - from winappdbg.win32.kernel32 import ( - CreateFileMapping, - MapViewOfFile, - CloseHandle, - UnmapViewOfFile, - ) - - memmove = ctypes.cdll.msvcrt.memmove - memmove.argtypes = [ - ctypes.c_void_p, - ctypes.c_void_p, - defines.SIZE_T, - ] - memmove.restype = ctypes.c_void_p - - # Note: BUFSIZE must be the same from run_code_in_memory.hpp - BUFSIZE = 2048 - assert isinstance(python_code, bytes) - assert len(python_code) > 0, 'Python code must not be empty.' - # Note: -1 so that we're sure we'll add a \0 to the end. - assert len(python_code) < BUFSIZE - 1, 'Python code must have at most %s bytes (found: %s)' % (BUFSIZE - 1, len(python_code)) - - python_code += b'\0' * (BUFSIZE - len(python_code)) - assert python_code.endswith(b'\0') - - INVALID_HANDLE_VALUE = -1 - PAGE_READWRITE = 0x4 - FILE_MAP_WRITE = 0x2 - filemap = CreateFileMapping( - INVALID_HANDLE_VALUE, 0, PAGE_READWRITE, 0, BUFSIZE, u"__pydevd_pid_code_to_run__%s" % (pid,)) - - if filemap == INVALID_HANDLE_VALUE or filemap is None: - raise Exception("Failed to create named file mapping (ctypes: CreateFileMapping): %s" % (filemap,)) - try: - view = MapViewOfFile(filemap, FILE_MAP_WRITE, 0, 0, 0) - if not view: - raise Exception("Failed to create view of named file mapping (ctypes: MapViewOfFile).") - - try: - memmove(view, python_code, BUFSIZE) - yield - finally: - UnmapViewOfFile(view) - finally: - CloseHandle(filemap) - - -def run_python_code_linux(pid, python_code, connect_debugger_tracing=False, show_debug_info=0): - assert '\'' not in python_code, 'Having a single quote messes with our command.' - - target_dll = get_target_filename() - if not target_dll: - raise RuntimeError('Could not find .so for attach to process.') - target_dll_name = os.path.splitext(os.path.basename(target_dll))[0] - - # Note: we currently don't support debug builds - is_debug = 0 - # Note that the space in the beginning of each line in the multi-line is important! - cmd = [ - 'gdb', - '--nw', # no gui interface - '--nh', # no ~/.gdbinit - '--nx', # no .gdbinit -# '--quiet', # no version number on startup - '--pid', - str(pid), - '--batch', -# '--batch-silent', - ] - - # PYDEVD_GDB_SCAN_SHARED_LIBRARIES can be a list of strings with the shared libraries - # which should be scanned by default to make the attach to process (i.e.: libdl, libltdl, libc, libfreebl3). - # - # The default is scanning all shared libraries, but on some cases this can be in the 20-30 - # seconds range for some corner cases. - # See: https://github.com/JetBrains/intellij-community/pull/1608 - # - # By setting PYDEVD_GDB_SCAN_SHARED_LIBRARIES (to a comma-separated string), it's possible to - # specify just a few libraries to be loaded (not many are needed for the attach, - # but it can be tricky to pre-specify for all Linux versions as this may change - # across different versions). - # - # See: https://github.com/microsoft/debugpy/issues/762#issuecomment-947103844 - # for a comment that explains the basic steps on how to discover what should be available - # in each case (mostly trying different versions based on the output of gdb). - # - # The upside is that for cases when too many libraries are loaded the attach could be slower - # and just specifying the one that is actually needed for the attach can make it much faster. - # - # The downside is that it may be dependent on the Linux version being attached to (which is the - # reason why this is no longer done by default -- see: https://github.com/microsoft/debugpy/issues/882). - gdb_load_shared_libraries = os.environ.get('PYDEVD_GDB_SCAN_SHARED_LIBRARIES', '').strip() - if gdb_load_shared_libraries: - print('PYDEVD_GDB_SCAN_SHARED_LIBRARIES set: %s.' % (gdb_load_shared_libraries,)) - cmd.extend(["--init-eval-command='set auto-solib-add off'"]) # Don't scan all libraries. - - for lib in gdb_load_shared_libraries.split(','): - lib = lib.strip() - cmd.extend(["--eval-command='sharedlibrary %s'" % (lib,)]) # Scan the specified library - else: - print('PYDEVD_GDB_SCAN_SHARED_LIBRARIES not set (scanning all libraries for needed symbols).') - - cmd.extend(["--eval-command='set scheduler-locking off'"]) # If on we'll deadlock. - - # Leave auto by default (it should do the right thing as we're attaching to a process in the - # current host). - cmd.extend(["--eval-command='set architecture auto'"]) - - cmd.extend([ - "--eval-command='call (void*)dlopen(\"%s\", 2)'" % target_dll, - "--eval-command='sharedlibrary %s'" % target_dll_name, - "--eval-command='call (int)DoAttach(%s, \"%s\", %s)'" % ( - is_debug, python_code, show_debug_info) - ]) - - # print ' '.join(cmd) - - env = os.environ.copy() - # Remove the PYTHONPATH (if gdb has a builtin Python it could fail if we - # have the PYTHONPATH for a different python version or some forced encoding). - env.pop('PYTHONIOENCODING', None) - env.pop('PYTHONPATH', None) - print('Running: %s' % (' '.join(cmd))) - subprocess.check_call(' '.join(cmd), shell=True, env=env) - - -def find_helper_script(filedir, script_name): - target_filename = os.path.join(filedir, 'linux_and_mac', script_name) - target_filename = os.path.normpath(target_filename) - if not os.path.exists(target_filename): - raise RuntimeError('Could not find helper script: %s' % target_filename) - - return target_filename - - -def run_python_code_mac(pid, python_code, connect_debugger_tracing=False, show_debug_info=0): - assert '\'' not in python_code, 'Having a single quote messes with our command.' - - target_dll = get_target_filename() - if not target_dll: - raise RuntimeError('Could not find .dylib for attach to process.') - - libdir = os.path.dirname(__file__) - lldb_prepare_file = find_helper_script(libdir, 'lldb_prepare.py') - # Note: we currently don't support debug builds - - is_debug = 0 - # Note that the space in the beginning of each line in the multi-line is important! - cmd = [ - 'lldb', - '--no-lldbinit', # Do not automatically parse any '.lldbinit' files. - # '--attach-pid', - # str(pid), - # '--arch', - # arch, - '--script-language', - 'Python' - # '--batch-silent', - ] - - cmd.extend([ - "-o 'process attach --pid %d'" % pid, - "-o 'command script import \"%s\"'" % (lldb_prepare_file,), - "-o 'load_lib_and_attach \"%s\" %s \"%s\" %s'" % (target_dll, - is_debug, python_code, show_debug_info), - ]) - - cmd.extend([ - "-o 'process detach'", - "-o 'script import os; os._exit(1)'", - ]) - - # print ' '.join(cmd) - - env = os.environ.copy() - # Remove the PYTHONPATH (if lldb has a builtin Python it could fail if we - # have the PYTHONPATH for a different python version or some forced encoding). - env.pop('PYTHONIOENCODING', None) - env.pop('PYTHONPATH', None) - print('Running: %s' % (' '.join(cmd))) - subprocess.check_call(' '.join(cmd), shell=True, env=env) - - -if IS_WINDOWS: - run_python_code = run_python_code_windows -elif IS_MAC: - run_python_code = run_python_code_mac -elif IS_LINUX: - run_python_code = run_python_code_linux -else: - - def run_python_code(*args, **kwargs): - print('Unable to attach to process in platform: %s', sys.platform) - - -def test(): - print('Running with: %s' % (sys.executable,)) - code = ''' -import os, time, sys -print(os.getpid()) -#from threading import Thread -#Thread(target=str).start() -if __name__ == '__main__': - while True: - time.sleep(.5) - sys.stdout.write('.\\n') - sys.stdout.flush() -''' - - p = subprocess.Popen([sys.executable, '-u', '-c', code]) - try: - code = 'print("It worked!")\n' - - # Real code will be something as: - # code = '''import sys;sys.path.append(r'X:\winappdbg-code\examples'); import imported;''' - run_python_code(p.pid, python_code=code) - print('\nRun a 2nd time...\n') - run_python_code(p.pid, python_code=code) - - time.sleep(3) - finally: - p.kill() - - -def main(args): - # Otherwise, assume the first parameter is the pid and anything else is code to be executed - # in the target process. - pid = int(args[0]) - del args[0] - python_code = ';'.join(args) - - # Note: on Linux the python code may not have a single quote char: ' - run_python_code(pid, python_code) - - -if __name__ == '__main__': - args = sys.argv[1:] - if not args: - print('Expected pid and Python code to execute in target process.') - else: - if '--test' == args[0]: - test() - else: - main(args) - diff --git a/spaces/TandCAcceptMe/face-swap-docker/mynewshinyroop/Lib/site-packages/pip/_vendor/requests/certs.py b/spaces/TandCAcceptMe/face-swap-docker/mynewshinyroop/Lib/site-packages/pip/_vendor/requests/certs.py deleted file mode 100644 index 38696a1fb3419dd810004d5aec9654e5224042ed..0000000000000000000000000000000000000000 --- a/spaces/TandCAcceptMe/face-swap-docker/mynewshinyroop/Lib/site-packages/pip/_vendor/requests/certs.py +++ /dev/null @@ -1,24 +0,0 @@ -#!/usr/bin/env python - -""" -requests.certs -~~~~~~~~~~~~~~ - -This module returns the preferred default CA certificate bundle. There is -only one — the one from the certifi package. - -If you are packaging Requests, e.g., for a Linux distribution or a managed -environment, you can change the definition of where() to return a separately -packaged CA bundle. -""" - -import os - -if "_PIP_STANDALONE_CERT" not in os.environ: - from pip._vendor.certifi import where -else: - def where(): - return os.environ["_PIP_STANDALONE_CERT"] - -if __name__ == "__main__": - print(where()) diff --git a/spaces/TandCAcceptMe/face-swap-docker/mynewshinyroop/Lib/site-packages/pip/_vendor/rich/live.py b/spaces/TandCAcceptMe/face-swap-docker/mynewshinyroop/Lib/site-packages/pip/_vendor/rich/live.py deleted file mode 100644 index 3ebbbc4ccbe47043eb62f8dd770f079745d3b743..0000000000000000000000000000000000000000 --- a/spaces/TandCAcceptMe/face-swap-docker/mynewshinyroop/Lib/site-packages/pip/_vendor/rich/live.py +++ /dev/null @@ -1,375 +0,0 @@ -import sys -from threading import Event, RLock, Thread -from types import TracebackType -from typing import IO, Any, Callable, List, Optional, TextIO, Type, cast - -from . import get_console -from .console import Console, ConsoleRenderable, RenderableType, RenderHook -from .control import Control -from .file_proxy import FileProxy -from .jupyter import JupyterMixin -from .live_render import LiveRender, VerticalOverflowMethod -from .screen import Screen -from .text import Text - - -class _RefreshThread(Thread): - """A thread that calls refresh() at regular intervals.""" - - def __init__(self, live: "Live", refresh_per_second: float) -> None: - self.live = live - self.refresh_per_second = refresh_per_second - self.done = Event() - super().__init__(daemon=True) - - def stop(self) -> None: - self.done.set() - - def run(self) -> None: - while not self.done.wait(1 / self.refresh_per_second): - with self.live._lock: - if not self.done.is_set(): - self.live.refresh() - - -class Live(JupyterMixin, RenderHook): - """Renders an auto-updating live display of any given renderable. - - Args: - renderable (RenderableType, optional): The renderable to live display. Defaults to displaying nothing. - console (Console, optional): Optional Console instance. Default will an internal Console instance writing to stdout. - screen (bool, optional): Enable alternate screen mode. Defaults to False. - auto_refresh (bool, optional): Enable auto refresh. If disabled, you will need to call `refresh()` or `update()` with refresh flag. Defaults to True - refresh_per_second (float, optional): Number of times per second to refresh the live display. Defaults to 4. - transient (bool, optional): Clear the renderable on exit (has no effect when screen=True). Defaults to False. - redirect_stdout (bool, optional): Enable redirection of stdout, so ``print`` may be used. Defaults to True. - redirect_stderr (bool, optional): Enable redirection of stderr. Defaults to True. - vertical_overflow (VerticalOverflowMethod, optional): How to handle renderable when it is too tall for the console. Defaults to "ellipsis". - get_renderable (Callable[[], RenderableType], optional): Optional callable to get renderable. Defaults to None. - """ - - def __init__( - self, - renderable: Optional[RenderableType] = None, - *, - console: Optional[Console] = None, - screen: bool = False, - auto_refresh: bool = True, - refresh_per_second: float = 4, - transient: bool = False, - redirect_stdout: bool = True, - redirect_stderr: bool = True, - vertical_overflow: VerticalOverflowMethod = "ellipsis", - get_renderable: Optional[Callable[[], RenderableType]] = None, - ) -> None: - assert refresh_per_second > 0, "refresh_per_second must be > 0" - self._renderable = renderable - self.console = console if console is not None else get_console() - self._screen = screen - self._alt_screen = False - - self._redirect_stdout = redirect_stdout - self._redirect_stderr = redirect_stderr - self._restore_stdout: Optional[IO[str]] = None - self._restore_stderr: Optional[IO[str]] = None - - self._lock = RLock() - self.ipy_widget: Optional[Any] = None - self.auto_refresh = auto_refresh - self._started: bool = False - self.transient = True if screen else transient - - self._refresh_thread: Optional[_RefreshThread] = None - self.refresh_per_second = refresh_per_second - - self.vertical_overflow = vertical_overflow - self._get_renderable = get_renderable - self._live_render = LiveRender( - self.get_renderable(), vertical_overflow=vertical_overflow - ) - - @property - def is_started(self) -> bool: - """Check if live display has been started.""" - return self._started - - def get_renderable(self) -> RenderableType: - renderable = ( - self._get_renderable() - if self._get_renderable is not None - else self._renderable - ) - return renderable or "" - - def start(self, refresh: bool = False) -> None: - """Start live rendering display. - - Args: - refresh (bool, optional): Also refresh. Defaults to False. - """ - with self._lock: - if self._started: - return - self.console.set_live(self) - self._started = True - if self._screen: - self._alt_screen = self.console.set_alt_screen(True) - self.console.show_cursor(False) - self._enable_redirect_io() - self.console.push_render_hook(self) - if refresh: - try: - self.refresh() - except Exception: - # If refresh fails, we want to stop the redirection of sys.stderr, - # so the error stacktrace is properly displayed in the terminal. - # (or, if the code that calls Rich captures the exception and wants to display something, - # let this be displayed in the terminal). - self.stop() - raise - if self.auto_refresh: - self._refresh_thread = _RefreshThread(self, self.refresh_per_second) - self._refresh_thread.start() - - def stop(self) -> None: - """Stop live rendering display.""" - with self._lock: - if not self._started: - return - self.console.clear_live() - self._started = False - - if self.auto_refresh and self._refresh_thread is not None: - self._refresh_thread.stop() - self._refresh_thread = None - # allow it to fully render on the last even if overflow - self.vertical_overflow = "visible" - with self.console: - try: - if not self._alt_screen and not self.console.is_jupyter: - self.refresh() - finally: - self._disable_redirect_io() - self.console.pop_render_hook() - if not self._alt_screen and self.console.is_terminal: - self.console.line() - self.console.show_cursor(True) - if self._alt_screen: - self.console.set_alt_screen(False) - - if self.transient and not self._alt_screen: - self.console.control(self._live_render.restore_cursor()) - if self.ipy_widget is not None and self.transient: - self.ipy_widget.close() # pragma: no cover - - def __enter__(self) -> "Live": - self.start(refresh=self._renderable is not None) - return self - - def __exit__( - self, - exc_type: Optional[Type[BaseException]], - exc_val: Optional[BaseException], - exc_tb: Optional[TracebackType], - ) -> None: - self.stop() - - def _enable_redirect_io(self) -> None: - """Enable redirecting of stdout / stderr.""" - if self.console.is_terminal or self.console.is_jupyter: - if self._redirect_stdout and not isinstance(sys.stdout, FileProxy): - self._restore_stdout = sys.stdout - sys.stdout = cast("TextIO", FileProxy(self.console, sys.stdout)) - if self._redirect_stderr and not isinstance(sys.stderr, FileProxy): - self._restore_stderr = sys.stderr - sys.stderr = cast("TextIO", FileProxy(self.console, sys.stderr)) - - def _disable_redirect_io(self) -> None: - """Disable redirecting of stdout / stderr.""" - if self._restore_stdout: - sys.stdout = cast("TextIO", self._restore_stdout) - self._restore_stdout = None - if self._restore_stderr: - sys.stderr = cast("TextIO", self._restore_stderr) - self._restore_stderr = None - - @property - def renderable(self) -> RenderableType: - """Get the renderable that is being displayed - - Returns: - RenderableType: Displayed renderable. - """ - renderable = self.get_renderable() - return Screen(renderable) if self._alt_screen else renderable - - def update(self, renderable: RenderableType, *, refresh: bool = False) -> None: - """Update the renderable that is being displayed - - Args: - renderable (RenderableType): New renderable to use. - refresh (bool, optional): Refresh the display. Defaults to False. - """ - if isinstance(renderable, str): - renderable = self.console.render_str(renderable) - with self._lock: - self._renderable = renderable - if refresh: - self.refresh() - - def refresh(self) -> None: - """Update the display of the Live Render.""" - with self._lock: - self._live_render.set_renderable(self.renderable) - if self.console.is_jupyter: # pragma: no cover - try: - from IPython.display import display - from ipywidgets import Output - except ImportError: - import warnings - - warnings.warn('install "ipywidgets" for Jupyter support') - else: - if self.ipy_widget is None: - self.ipy_widget = Output() - display(self.ipy_widget) - - with self.ipy_widget: - self.ipy_widget.clear_output(wait=True) - self.console.print(self._live_render.renderable) - elif self.console.is_terminal and not self.console.is_dumb_terminal: - with self.console: - self.console.print(Control()) - elif ( - not self._started and not self.transient - ): # if it is finished allow files or dumb-terminals to see final result - with self.console: - self.console.print(Control()) - - def process_renderables( - self, renderables: List[ConsoleRenderable] - ) -> List[ConsoleRenderable]: - """Process renderables to restore cursor and display progress.""" - self._live_render.vertical_overflow = self.vertical_overflow - if self.console.is_interactive: - # lock needs acquiring as user can modify live_render renderable at any time unlike in Progress. - with self._lock: - reset = ( - Control.home() - if self._alt_screen - else self._live_render.position_cursor() - ) - renderables = [reset, *renderables, self._live_render] - elif ( - not self._started and not self.transient - ): # if it is finished render the final output for files or dumb_terminals - renderables = [*renderables, self._live_render] - - return renderables - - -if __name__ == "__main__": # pragma: no cover - import random - import time - from itertools import cycle - from typing import Dict, List, Tuple - - from .align import Align - from .console import Console - from .live import Live as Live - from .panel import Panel - from .rule import Rule - from .syntax import Syntax - from .table import Table - - console = Console() - - syntax = Syntax( - '''def loop_last(values: Iterable[T]) -> Iterable[Tuple[bool, T]]: - """Iterate and generate a tuple with a flag for last value.""" - iter_values = iter(values) - try: - previous_value = next(iter_values) - except StopIteration: - return - for value in iter_values: - yield False, previous_value - previous_value = value - yield True, previous_value''', - "python", - line_numbers=True, - ) - - table = Table("foo", "bar", "baz") - table.add_row("1", "2", "3") - - progress_renderables = [ - "You can make the terminal shorter and taller to see the live table hide" - "Text may be printed while the progress bars are rendering.", - Panel("In fact, [i]any[/i] renderable will work"), - "Such as [magenta]tables[/]...", - table, - "Pretty printed structures...", - {"type": "example", "text": "Pretty printed"}, - "Syntax...", - syntax, - Rule("Give it a try!"), - ] - - examples = cycle(progress_renderables) - - exchanges = [ - "SGD", - "MYR", - "EUR", - "USD", - "AUD", - "JPY", - "CNH", - "HKD", - "CAD", - "INR", - "DKK", - "GBP", - "RUB", - "NZD", - "MXN", - "IDR", - "TWD", - "THB", - "VND", - ] - with Live(console=console) as live_table: - exchange_rate_dict: Dict[Tuple[str, str], float] = {} - - for index in range(100): - select_exchange = exchanges[index % len(exchanges)] - - for exchange in exchanges: - if exchange == select_exchange: - continue - time.sleep(0.4) - if random.randint(0, 10) < 1: - console.log(next(examples)) - exchange_rate_dict[(select_exchange, exchange)] = 200 / ( - (random.random() * 320) + 1 - ) - if len(exchange_rate_dict) > len(exchanges) - 1: - exchange_rate_dict.pop(list(exchange_rate_dict.keys())[0]) - table = Table(title="Exchange Rates") - - table.add_column("Source Currency") - table.add_column("Destination Currency") - table.add_column("Exchange Rate") - - for ((source, dest), exchange_rate) in exchange_rate_dict.items(): - table.add_row( - source, - dest, - Text( - f"{exchange_rate:.4f}", - style="red" if exchange_rate < 1.0 else "green", - ), - ) - - live_table.update(Align.center(table)) diff --git a/spaces/Terminus0501/vits-uma-genshin-honkai/Docker/Dockerfile b/spaces/Terminus0501/vits-uma-genshin-honkai/Docker/Dockerfile deleted file mode 100644 index 4d39cdf02a2ec151686cc1d61234bf723068fed8..0000000000000000000000000000000000000000 --- a/spaces/Terminus0501/vits-uma-genshin-honkai/Docker/Dockerfile +++ /dev/null @@ -1,12 +0,0 @@ -FROM python:3.9-bullseye -VOLUME ["/app"] -WORKDIR /app -# Set apt to Chinese mirror -RUN sed -i 's/deb.debian.org/mirrors.ustc.edu.cn/g' /etc/apt/sources.list -RUN apt-get update && apt-get -y install cmake git -RUN git clone https://huggingface.co/spaces/ikechan8370/vits-uma-genshin-honkai -WORKDIR /app/vits-uma-genshin-honkai -RUN sed -i "s/\.launch()/\.launch(server_name=\"0.0.0.0\")/" /app/vits-uma-genshin-honkai/app.py -ADD vits.sh /app/vits.sh -EXPOSE 7860 -ENTRYPOINT [ "/app/vits.sh" ] \ No newline at end of file diff --git a/spaces/ThirdEyeData/Object-Detection-Using-FRCNN/README.md b/spaces/ThirdEyeData/Object-Detection-Using-FRCNN/README.md deleted file mode 100644 index 30d694c35bc8feedd0c4a32d213217cea8d0dc90..0000000000000000000000000000000000000000 --- a/spaces/ThirdEyeData/Object-Detection-Using-FRCNN/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Object Detection Using FRCNN -emoji: ⚡ -colorFrom: red -colorTo: indigo -sdk: streamlit -sdk_version: 1.17.0 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/Thunderstone/trial/Dockerfile b/spaces/Thunderstone/trial/Dockerfile deleted file mode 100644 index 0d88044a66e9964eae9bf981ae4fe9b8b62476d6..0000000000000000000000000000000000000000 --- a/spaces/Thunderstone/trial/Dockerfile +++ /dev/null @@ -1,11 +0,0 @@ -FROM node:18-bullseye-slim -RUN apt-get update && \ - apt-get install -y git -RUN git clone https://gitgud.io/thunderstone/reason.git /app -WORKDIR /app -RUN npm install -COPY Dockerfile greeting.md* .env* ./ -RUN npm run build -EXPOSE 7860 -ENV NODE_ENV=production -CMD [ "npm", "start" ] diff --git a/spaces/Vicent3/ocr-wrapper/README.md b/spaces/Vicent3/ocr-wrapper/README.md deleted file mode 100644 index 6db91191adcd218eeddd04c804ea517e21b9e282..0000000000000000000000000000000000000000 --- a/spaces/Vicent3/ocr-wrapper/README.md +++ /dev/null @@ -1,9 +0,0 @@ ---- -title: OCR Wrapper -emoji: 🦀 -colorFrom: red -colorTo: gray -sdk: static -pinned: true -license: agpl-3.0 ---- \ No newline at end of file diff --git a/spaces/Vision-CAIR/minigpt4/minigpt4/datasets/datasets/caption_datasets.py b/spaces/Vision-CAIR/minigpt4/minigpt4/datasets/datasets/caption_datasets.py deleted file mode 100644 index 8c8fb2014794a2800e5bea480ba3ecd353512915..0000000000000000000000000000000000000000 --- a/spaces/Vision-CAIR/minigpt4/minigpt4/datasets/datasets/caption_datasets.py +++ /dev/null @@ -1,85 +0,0 @@ -""" - Copyright (c) 2022, salesforce.com, inc. - All rights reserved. - SPDX-License-Identifier: BSD-3-Clause - For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause -""" - -import os -from collections import OrderedDict - -from minigpt4.datasets.datasets.base_dataset import BaseDataset -from PIL import Image - - -class __DisplMixin: - def displ_item(self, index): - sample, ann = self.__getitem__(index), self.annotation[index] - - return OrderedDict( - { - "file": ann["image"], - "caption": ann["caption"], - "image": sample["image"], - } - ) - - -class CaptionDataset(BaseDataset, __DisplMixin): - def __init__(self, vis_processor, text_processor, vis_root, ann_paths): - """ - vis_root (string): Root directory of images (e.g. coco/images/) - ann_root (string): directory to store the annotation file - """ - super().__init__(vis_processor, text_processor, vis_root, ann_paths) - - self.img_ids = {} - n = 0 - for ann in self.annotation: - img_id = ann["image_id"] - if img_id not in self.img_ids.keys(): - self.img_ids[img_id] = n - n += 1 - - def __getitem__(self, index): - - # TODO this assumes image input, not general enough - ann = self.annotation[index] - - img_file = '{:0>12}.jpg'.format(ann["image_id"]) - image_path = os.path.join(self.vis_root, img_file) - image = Image.open(image_path).convert("RGB") - - image = self.vis_processor(image) - caption = self.text_processor(ann["caption"]) - - return { - "image": image, - "text_input": caption, - "image_id": self.img_ids[ann["image_id"]], - } - - -class CaptionEvalDataset(BaseDataset, __DisplMixin): - def __init__(self, vis_processor, text_processor, vis_root, ann_paths): - """ - vis_root (string): Root directory of images (e.g. coco/images/) - ann_root (string): directory to store the annotation file - split (string): val or test - """ - super().__init__(vis_processor, text_processor, vis_root, ann_paths) - - def __getitem__(self, index): - - ann = self.annotation[index] - - image_path = os.path.join(self.vis_root, ann["image"]) - image = Image.open(image_path).convert("RGB") - - image = self.vis_processor(image) - - return { - "image": image, - "image_id": ann["image_id"], - "instance_id": ann["instance_id"], - } diff --git a/spaces/Wanlau/sovits-4.0_datealive/vdecoder/hifigan/nvSTFT.py b/spaces/Wanlau/sovits-4.0_datealive/vdecoder/hifigan/nvSTFT.py deleted file mode 100644 index 88597d62a505715091f9ba62d38bf0a85a31b95a..0000000000000000000000000000000000000000 --- a/spaces/Wanlau/sovits-4.0_datealive/vdecoder/hifigan/nvSTFT.py +++ /dev/null @@ -1,111 +0,0 @@ -import math -import os -os.environ["LRU_CACHE_CAPACITY"] = "3" -import random -import torch -import torch.utils.data -import numpy as np -import librosa -from librosa.util import normalize -from librosa.filters import mel as librosa_mel_fn -from scipy.io.wavfile import read -import soundfile as sf - -def load_wav_to_torch(full_path, target_sr=None, return_empty_on_exception=False): - sampling_rate = None - try: - data, sampling_rate = sf.read(full_path, always_2d=True)# than soundfile. - except Exception as ex: - print(f"'{full_path}' failed to load.\nException:") - print(ex) - if return_empty_on_exception: - return [], sampling_rate or target_sr or 32000 - else: - raise Exception(ex) - - if len(data.shape) > 1: - data = data[:, 0] - assert len(data) > 2# check duration of audio file is > 2 samples (because otherwise the slice operation was on the wrong dimension) - - if np.issubdtype(data.dtype, np.integer): # if audio data is type int - max_mag = -np.iinfo(data.dtype).min # maximum magnitude = min possible value of intXX - else: # if audio data is type fp32 - max_mag = max(np.amax(data), -np.amin(data)) - max_mag = (2**31)+1 if max_mag > (2**15) else ((2**15)+1 if max_mag > 1.01 else 1.0) # data should be either 16-bit INT, 32-bit INT or [-1 to 1] float32 - - data = torch.FloatTensor(data.astype(np.float32))/max_mag - - if (torch.isinf(data) | torch.isnan(data)).any() and return_empty_on_exception:# resample will crash with inf/NaN inputs. return_empty_on_exception will return empty arr instead of except - return [], sampling_rate or target_sr or 32000 - if target_sr is not None and sampling_rate != target_sr: - data = torch.from_numpy(librosa.core.resample(data.numpy(), orig_sr=sampling_rate, target_sr=target_sr)) - sampling_rate = target_sr - - return data, sampling_rate - -def dynamic_range_compression(x, C=1, clip_val=1e-5): - return np.log(np.clip(x, a_min=clip_val, a_max=None) * C) - -def dynamic_range_decompression(x, C=1): - return np.exp(x) / C - -def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): - return torch.log(torch.clamp(x, min=clip_val) * C) - -def dynamic_range_decompression_torch(x, C=1): - return torch.exp(x) / C - -class STFT(): - def __init__(self, sr=22050, n_mels=80, n_fft=1024, win_size=1024, hop_length=256, fmin=20, fmax=11025, clip_val=1e-5): - self.target_sr = sr - - self.n_mels = n_mels - self.n_fft = n_fft - self.win_size = win_size - self.hop_length = hop_length - self.fmin = fmin - self.fmax = fmax - self.clip_val = clip_val - self.mel_basis = {} - self.hann_window = {} - - def get_mel(self, y, center=False): - sampling_rate = self.target_sr - n_mels = self.n_mels - n_fft = self.n_fft - win_size = self.win_size - hop_length = self.hop_length - fmin = self.fmin - fmax = self.fmax - clip_val = self.clip_val - - if torch.min(y) < -1.: - print('min value is ', torch.min(y)) - if torch.max(y) > 1.: - print('max value is ', torch.max(y)) - - if fmax not in self.mel_basis: - mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax) - self.mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device) - self.hann_window[str(y.device)] = torch.hann_window(self.win_size).to(y.device) - - y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_length)/2), int((n_fft-hop_length)/2)), mode='reflect') - y = y.squeeze(1) - - spec = torch.stft(y, n_fft, hop_length=hop_length, win_length=win_size, window=self.hann_window[str(y.device)], - center=center, pad_mode='reflect', normalized=False, onesided=True) - # print(111,spec) - spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9)) - # print(222,spec) - spec = torch.matmul(self.mel_basis[str(fmax)+'_'+str(y.device)], spec) - # print(333,spec) - spec = dynamic_range_compression_torch(spec, clip_val=clip_val) - # print(444,spec) - return spec - - def __call__(self, audiopath): - audio, sr = load_wav_to_torch(audiopath, target_sr=self.target_sr) - spect = self.get_mel(audio.unsqueeze(0)).squeeze(0) - return spect - -stft = STFT() diff --git a/spaces/XAI/CHM-Corr/model/base/backbone.py b/spaces/XAI/CHM-Corr/model/base/backbone.py deleted file mode 100644 index c20aaba40486eef005410318d511501b63622496..0000000000000000000000000000000000000000 --- a/spaces/XAI/CHM-Corr/model/base/backbone.py +++ /dev/null @@ -1,136 +0,0 @@ -r""" ResNet-101 backbone network """ - -import torch.utils.model_zoo as model_zoo -import torch.nn as nn -import torch - - -__all__ = ['Backbone', 'resnet101'] - - -model_urls = { - 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', - 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', - 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', - 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', - 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', -} - - -def conv3x3(in_planes, out_planes, stride=1): - r""" 3x3 convolution with padding """ - return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, - padding=1, groups=2, bias=False) - - -def conv1x1(in_planes, out_planes, stride=1): - r""" 1x1 convolution """ - return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, groups=2, bias=False) - - -class Bottleneck(nn.Module): - expansion = 4 - - def __init__(self, inplanes, planes, stride=1, downsample=None): - super(Bottleneck, self).__init__() - self.conv1 = conv1x1(inplanes, planes) - self.bn1 = nn.BatchNorm2d(planes) - self.conv2 = conv3x3(planes, planes, stride) - self.bn2 = nn.BatchNorm2d(planes) - self.conv3 = conv1x1(planes, planes * self.expansion) - self.bn3 = nn.BatchNorm2d(planes * self.expansion) - self.relu = nn.ReLU(inplace=True) - self.downsample = downsample - self.stride = stride - - def forward(self, x): - identity = x - - out = self.conv1(x) - out = self.bn1(out) - out = self.relu(out) - - out = self.conv2(out) - out = self.bn2(out) - out = self.relu(out) - - out = self.conv3(out) - out = self.bn3(out) - - if self.downsample is not None: - identity = self.downsample(x) - - out += identity - out = self.relu(out) - - return out - - -class Backbone(nn.Module): - def __init__(self, block, layers, zero_init_residual=False): - super(Backbone, self).__init__() - - self.inplanes = 128 - self.conv1 = nn.Conv2d(6, 128, kernel_size=7, stride=2, padding=3, groups=2, - bias=False) - self.bn1 = nn.BatchNorm2d(128) - self.relu = nn.ReLU(inplace=True) - self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) - self.layer1 = self._make_layer(block, 128, layers[0]) - self.layer2 = self._make_layer(block, 256, layers[1], stride=2) - self.layer3 = self._make_layer(block, 512, layers[2], stride=2) - self.layer4 = self._make_layer(block, 1024, layers[3], stride=2) - self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) - self.fc = nn.Linear(512 * block.expansion, 1000) - - for m in self.modules(): - if isinstance(m, nn.Conv2d): - nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') - elif isinstance(m, nn.BatchNorm2d): - nn.init.constant_(m.weight, 1) - nn.init.constant_(m.bias, 0) - - # Zero-initialize the last BN in each residual branch, - # so that the residual branch starts with zeros, and each residual block behaves like an identity. - # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 - if zero_init_residual: - for m in self.modules(): - if isinstance(m, Bottleneck): - nn.init.constant_(m.bn3.weight, 0) - - def _make_layer(self, block, planes, blocks, stride=1): - downsample = None - if stride != 1 or self.inplanes != planes * block.expansion: - downsample = nn.Sequential( - conv1x1(self.inplanes, planes * block.expansion, stride), - nn.BatchNorm2d(planes * block.expansion), - ) - - layers = [] - layers.append(block(self.inplanes, planes, stride, downsample)) - self.inplanes = planes * block.expansion - for _ in range(1, blocks): - layers.append(block(self.inplanes, planes)) - - return nn.Sequential(*layers) - - -def resnet101(pretrained=False, **kwargs): - """Constructs a ResNet-101 model. - - Args: - pretrained (bool): If True, returns a model pre-trained on ImageNet - """ - model = Backbone(Bottleneck, [3, 4, 23, 3], **kwargs) - if pretrained: - weights = model_zoo.load_url(model_urls['resnet101']) - - for key in weights: - if key.split('.')[0] == 'fc': - weights[key] = weights[key].clone() - continue - weights[key] = torch.cat([weights[key].clone(), weights[key].clone()], dim=0) - - model.load_state_dict(weights) - return model - diff --git a/spaces/Xenova/next-example-app/_next/static/chunks/main-1710cefc469e610b.js b/spaces/Xenova/next-example-app/_next/static/chunks/main-1710cefc469e610b.js deleted file mode 100644 index 271b791ef6a7009941e67f46c68e1672aa0a309e..0000000000000000000000000000000000000000 --- a/spaces/Xenova/next-example-app/_next/static/chunks/main-1710cefc469e610b.js +++ /dev/null @@ -1 +0,0 @@ -(self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[179],{37:function(){"trimStart"in String.prototype||(String.prototype.trimStart=String.prototype.trimLeft),"trimEnd"in String.prototype||(String.prototype.trimEnd=String.prototype.trimRight),"description"in Symbol.prototype||Object.defineProperty(Symbol.prototype,"description",{configurable:!0,get:function(){var e=/\((.*)\)/.exec(this.toString());return e?e[1]:void 0}}),Array.prototype.flat||(Array.prototype.flat=function(e,t){return t=this.concat.apply([],this),e>1&&t.some(Array.isArray)?t.flat(e-1):t},Array.prototype.flatMap=function(e,t){return this.map(e,t).flat()}),Promise.prototype.finally||(Promise.prototype.finally=function(e){if("function"!=typeof e)return this.then(e,e);var t=this.constructor||Promise;return this.then(function(r){return t.resolve(e()).then(function(){return r})},function(r){return t.resolve(e()).then(function(){throw r})})}),Object.fromEntries||(Object.fromEntries=function(e){return Array.from(e).reduce(function(e,t){return e[t[0]]=t[1],e},{})})},3475:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"addBasePath",{enumerable:!0,get:function(){return o}});let n=r(1484),a=r(3785);function o(e,t){return(0,a.normalizePathTrailingSlash)((0,n.addPathPrefix)(e,""))}("function"==typeof t.default||"object"==typeof t.default&&null!==t.default)&&void 0===t.default.__esModule&&(Object.defineProperty(t.default,"__esModule",{value:!0}),Object.assign(t.default,t),e.exports=t.default)},299:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"addLocale",{enumerable:!0,get:function(){return n}}),r(3785);let n=function(e){for(var t=arguments.length,r=Array(t>1?t-1:0),n=1;n{let t={};e.forEach(e=>{if("link"===e.type&&e.props["data-optimized-fonts"]){if(document.querySelector('style[data-href="'+e.props["data-href"]+'"]'))return;e.props.href=e.props["data-href"],e.props["data-href"]=void 0}let r=t[e.type]||[];r.push(e),t[e.type]=r});let n=t.title?t.title[0]:null,a="";if(n){let{children:e}=n.props;a="string"==typeof e?e:Array.isArray(e)?e.join(""):""}a!==document.title&&(document.title=a),["meta","base","link","style","script"].forEach(e=>{r(e,t[e]||[])})}}}r=(e,t)=>{let r=document.getElementsByTagName("head")[0],n=r.querySelector("meta[name=next-head-count]"),i=Number(n.content),l=[];for(let t=0,r=n.previousElementSibling;t{for(let t=0,r=l.length;t{var t;return null==(t=e.parentNode)?void 0:t.removeChild(e)}),s.forEach(e=>r.insertBefore(e,n)),n.content=(i-l.length+s.length).toString()},("function"==typeof t.default||"object"==typeof t.default&&null!==t.default)&&void 0===t.default.__esModule&&(Object.defineProperty(t.default,"__esModule",{value:!0}),Object.assign(t.default,t),e.exports=t.default)},9494:function(e,t,r){"use strict";let n,a,o,i,l,u,s,c,f,d,h,p;Object.defineProperty(t,"__esModule",{value:!0});let m=r(1757);Object.defineProperty(t,"__esModule",{value:!0}),function(e,t){for(var r in t)Object.defineProperty(e,r,{enumerable:!0,get:t[r]})}(t,{version:function(){return G},router:function(){return n},emitter:function(){return V},initialize:function(){return K},hydrate:function(){return ec}});let g=r(8754);r(37);let y=g._(r(7294)),_=g._(r(745)),b=r(6117),v=g._(r(6712)),P=r(2250),w=r(1257),j=r(3702),S=r(1354),E=r(1858),O=r(7321),R=r(7089),x=g._(r(312)),C=g._(r(2697)),M=g._(r(7266)),A=r(8813),L=r(1247),I=r(676),T=r(2493),N=r(6367),k=r(1173),D=r(6451),B=r(4128),H=r(4858),U=g._(r(4413)),F=e=>t=>e(t)+"",W=r.u;r.u=F(W);let q=r.k;r.k=F(q);let z=r.miniCssF;r.miniCssF=F(z);let G="13.4.12",V=(0,v.default)(),X=e=>[].slice.call(e),$=!1;self.__next_require__=r;class Y extends y.default.Component{componentDidCatch(e,t){this.props.fn(e,t)}componentDidMount(){this.scrollToHash(),n.isSsr&&(a.isFallback||a.nextExport&&((0,j.isDynamicRoute)(n.pathname)||location.search||$)||a.props&&a.props.__N_SSG&&(location.search||$))&&n.replace(n.pathname+"?"+String((0,S.assign)((0,S.urlQueryToSearchParams)(n.query),new URLSearchParams(location.search))),o,{_h:1,shallow:!a.isFallback&&!$}).catch(e=>{if(!e.cancelled)throw e})}componentDidUpdate(){this.scrollToHash()}scrollToHash(){let{hash:e}=location;if(!(e=e&&e.substring(1)))return;let t=document.getElementById(e);t&&setTimeout(()=>t.scrollIntoView(),0)}render(){return this.props.children}}async function K(e){void 0===e&&(e={}),a=JSON.parse(document.getElementById("__NEXT_DATA__").textContent),window.__NEXT_DATA__=a,p=a.defaultLocale;let t=a.assetPrefix||"";if(r.p=""+t+"/_next/",(0,E.setConfig)({serverRuntimeConfig:{},publicRuntimeConfig:a.runtimeConfig||{}}),o=(0,O.getURL)(),(0,k.hasBasePath)(o)&&(o=(0,N.removeBasePath)(o)),a.scriptLoader){let{initScriptLoader:e}=r(4294);e(a.scriptLoader)}i=new C.default(a.buildId,t);let s=e=>{let[t,r]=e;return i.routeLoader.onEntrypoint(t,r)};return window.__NEXT_P&&window.__NEXT_P.map(e=>setTimeout(()=>s(e),0)),window.__NEXT_P=[],window.__NEXT_P.push=s,(u=(0,x.default)()).getIsSsr=()=>n.isSsr,l=document.getElementById("__next"),{assetPrefix:t}}function J(e,t){return y.default.createElement(e,t)}function Q(e){var t;let{children:r}=e,a=y.default.useMemo(()=>(0,B.adaptForAppRouterInstance)(n),[]);return y.default.createElement(Y,{fn:e=>ee({App:f,err:e}).catch(e=>console.error("Error rendering page: ",e))},y.default.createElement(D.AppRouterContext.Provider,{value:a},y.default.createElement(H.SearchParamsContext.Provider,{value:(0,B.adaptForSearchParams)(n)},y.default.createElement(B.PathnameContextProviderAdapter,{router:n,isAutoExport:null!=(t=self.__NEXT_DATA__.autoExport)&&t},y.default.createElement(P.RouterContext.Provider,{value:(0,L.makePublicRouterInstance)(n)},y.default.createElement(b.HeadManagerContext.Provider,{value:u},y.default.createElement(T.ImageConfigContext.Provider,{value:{deviceSizes:[640,750,828,1080,1200,1920,2048,3840],imageSizes:[16,32,48,64,96,128,256,384],path:"/_next/image",loader:"default",dangerouslyAllowSVG:!1,unoptimized:!1}},r)))))))}let Z=e=>t=>{let r={...t,Component:h,err:a.err,router:n};return y.default.createElement(Q,null,J(e,r))};function ee(e){let{App:t,err:l}=e;return console.error(l),console.error("A client-side exception has occurred, see here for more info: https://nextjs.org/docs/messages/client-side-exception-occurred"),i.loadPage("/_error").then(n=>{let{page:a,styleSheets:o}=n;return(null==s?void 0:s.Component)===a?Promise.resolve().then(()=>m._(r(3441))).then(n=>Promise.resolve().then(()=>m._(r(6530))).then(r=>(t=r.default,e.App=t,n))).then(e=>({ErrorComponent:e.default,styleSheets:[]})):{ErrorComponent:a,styleSheets:o}}).then(r=>{var i;let{ErrorComponent:u,styleSheets:s}=r,c=Z(t),f={Component:u,AppTree:c,router:n,ctx:{err:l,pathname:a.page,query:a.query,asPath:o,AppTree:c}};return Promise.resolve((null==(i=e.props)?void 0:i.err)?e.props:(0,O.loadGetInitialProps)(t,f)).then(t=>eu({...e,err:l,Component:u,styleSheets:s,props:t}))})}function et(e){let{callback:t}=e;return y.default.useLayoutEffect(()=>t(),[t]),null}let er=null,en=!0;function ea(){["beforeRender","afterHydrate","afterRender","routeChange"].forEach(e=>performance.clearMarks(e))}function eo(){O.ST&&(performance.mark("afterHydrate"),performance.measure("Next.js-before-hydration","navigationStart","beforeRender"),performance.measure("Next.js-hydration","beforeRender","afterHydrate"),d&&performance.getEntriesByName("Next.js-hydration").forEach(d),ea())}function ei(){if(!O.ST)return;performance.mark("afterRender");let e=performance.getEntriesByName("routeChange","mark");e.length&&(performance.measure("Next.js-route-change-to-render",e[0].name,"beforeRender"),performance.measure("Next.js-render","beforeRender","afterRender"),d&&(performance.getEntriesByName("Next.js-render").forEach(d),performance.getEntriesByName("Next.js-route-change-to-render").forEach(d)),ea(),["Next.js-route-change-to-render","Next.js-render"].forEach(e=>performance.clearMeasures(e)))}function el(e){let{callbacks:t,children:r}=e;return y.default.useLayoutEffect(()=>t.forEach(e=>e()),[t]),y.default.useEffect(()=>{(0,M.default)(d)},[]),r}function eu(e){let t,{App:r,Component:a,props:o,err:i}=e,u="initial"in e?void 0:e.styleSheets;a=a||s.Component,o=o||s.props;let f={...o,Component:a,err:i,router:n};s=f;let d=!1,h=new Promise((e,r)=>{c&&c(),t=()=>{c=null,e()},c=()=>{d=!0,c=null;let e=Error("Cancel rendering route");e.cancelled=!0,r(e)}});function p(){t()}!function(){if(!u)return;let e=X(document.querySelectorAll("style[data-n-href]")),t=new Set(e.map(e=>e.getAttribute("data-n-href"))),r=document.querySelector("noscript[data-n-css]"),n=null==r?void 0:r.getAttribute("data-n-css");u.forEach(e=>{let{href:r,text:a}=e;if(!t.has(r)){let e=document.createElement("style");e.setAttribute("data-n-href",r),e.setAttribute("media","x"),n&&e.setAttribute("nonce",n),document.head.appendChild(e),e.appendChild(document.createTextNode(a))}})}();let m=y.default.createElement(y.default.Fragment,null,y.default.createElement(et,{callback:function(){if(u&&!d){let e=new Set(u.map(e=>e.href)),t=X(document.querySelectorAll("style[data-n-href]")),r=t.map(e=>e.getAttribute("data-n-href"));for(let n=0;n{let{href:t}=e,r=document.querySelector('style[data-n-href="'+t+'"]');r&&(n.parentNode.insertBefore(r,n.nextSibling),n=r)}),X(document.querySelectorAll("link[data-n-p]")).forEach(e=>{e.parentNode.removeChild(e)})}if(e.scroll){let{x:t,y:r}=e.scroll;(0,w.handleSmoothScroll)(()=>{window.scrollTo(t,r)})}}}),y.default.createElement(Q,null,J(r,f),y.default.createElement(R.Portal,{type:"next-route-announcer"},y.default.createElement(A.RouteAnnouncer,null))));return!function(e,t){O.ST&&performance.mark("beforeRender");let r=t(en?eo:ei);if(er){let e=y.default.startTransition;e(()=>{er.render(r)})}else er=_.default.hydrateRoot(e,r,{onRecoverableError:U.default}),en=!1}(l,e=>y.default.createElement(el,{callbacks:[e,p]},m)),h}async function es(e){if(e.err){await ee(e);return}try{await eu(e)}catch(r){let t=(0,I.getProperError)(r);if(t.cancelled)throw t;await ee({...e,err:t})}}async function ec(e){let t=a.err;try{let e=await i.routeLoader.whenEntrypoint("/_app");if("error"in e)throw e.error;let{component:t,exports:r}=e;f=t,r&&r.reportWebVitals&&(d=e=>{let t,{id:n,name:a,startTime:o,value:i,duration:l,entryType:u,entries:s,attribution:c}=e,f=Date.now()+"-"+(Math.floor(Math.random()*(9e12-1))+1e12);s&&s.length&&(t=s[0].startTime);let d={id:n||f,name:a,startTime:o||t,value:null==i?l:i,label:"mark"===u||"measure"===u?"custom":"web-vital"};c&&(d.attribution=c),r.reportWebVitals(d)});let n=await i.routeLoader.whenEntrypoint(a.page);if("error"in n)throw n.error;h=n.component}catch(e){t=(0,I.getProperError)(e)}window.__NEXT_PRELOADREADY&&await window.__NEXT_PRELOADREADY(a.dynamicIds),n=(0,L.createRouter)(a.page,a.query,o,{initialProps:a.props,pageLoader:i,App:f,Component:h,wrapApp:Z,err:t,isFallback:!!a.isFallback,subscription:(e,t,r)=>es(Object.assign({},e,{App:t,scroll:r})),locale:a.locale,locales:a.locales,defaultLocale:p,domainLocales:a.domainLocales,isPreview:a.isPreview}),$=await n._initialMatchesMiddlewarePromise;let r={App:f,initial:!0,Component:h,props:a.props,err:t};(null==e?void 0:e.beforeRender)&&await e.beforeRender(),es(r)}("function"==typeof t.default||"object"==typeof t.default&&null!==t.default)&&void 0===t.default.__esModule&&(Object.defineProperty(t.default,"__esModule",{value:!0}),Object.assign(t.default,t),e.exports=t.default)},1019:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0});let n=r(9494);window.next={version:n.version,get router(){return n.router},emitter:n.emitter},(0,n.initialize)({}).then(()=>(0,n.hydrate)()).catch(console.error),("function"==typeof t.default||"object"==typeof t.default&&null!==t.default)&&void 0===t.default.__esModule&&(Object.defineProperty(t.default,"__esModule",{value:!0}),Object.assign(t.default,t),e.exports=t.default)},3785:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"normalizePathTrailingSlash",{enumerable:!0,get:function(){return o}});let n=r(5129),a=r(7637),o=e=>{if(!e.startsWith("/"))return e;let{pathname:t,query:r,hash:o}=(0,a.parsePath)(e);return""+(0,n.removeTrailingSlash)(t)+r+o};("function"==typeof t.default||"object"==typeof t.default&&null!==t.default)&&void 0===t.default.__esModule&&(Object.defineProperty(t.default,"__esModule",{value:!0}),Object.assign(t.default,t),e.exports=t.default)},4413:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"default",{enumerable:!0,get:function(){return a}});let n=r(6266);function a(e){let t="function"==typeof reportError?reportError:e=>{window.console.error(e)};e.digest!==n.NEXT_DYNAMIC_NO_SSR_CODE&&t(e)}("function"==typeof t.default||"object"==typeof t.default&&null!==t.default)&&void 0===t.default.__esModule&&(Object.defineProperty(t.default,"__esModule",{value:!0}),Object.assign(t.default,t),e.exports=t.default)},2697:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"default",{enumerable:!0,get:function(){return d}});let n=r(8754),a=r(3475),o=r(1690),i=n._(r(5854)),l=r(299),u=r(3702),s=r(137),c=r(5129),f=r(8269);class d{getPageList(){return(0,f.getClientBuildManifest)().then(e=>e.sortedPages)}getMiddleware(){return window.__MIDDLEWARE_MATCHERS=[],window.__MIDDLEWARE_MATCHERS}getDataHref(e){let{asPath:t,href:r,locale:n}=e,{pathname:f,query:d,search:h}=(0,s.parseRelativeUrl)(r),{pathname:p}=(0,s.parseRelativeUrl)(t),m=(0,c.removeTrailingSlash)(f);if("/"!==m[0])throw Error('Route name should start with a "/", got "'+m+'"');return(e=>{let t=(0,i.default)((0,c.removeTrailingSlash)((0,l.addLocale)(e,n)),".json");return(0,a.addBasePath)("/_next/data/"+this.buildId+t+h,!0)})(e.skipInterpolation?p:(0,u.isDynamicRoute)(m)?(0,o.interpolateAs)(f,p,d).result:m)}_isSsg(e){return this.promisedSsgManifest.then(t=>t.has(e))}loadPage(e){return this.routeLoader.loadRoute(e).then(e=>{if("component"in e)return{page:e.component,mod:e.exports,styleSheets:e.styles.map(e=>({href:e.href,text:e.content}))};throw e.error})}prefetch(e){return this.routeLoader.prefetch(e)}constructor(e,t){this.routeLoader=(0,f.createRouteLoader)(t),this.buildId=e,this.assetPrefix=t,this.promisedSsgManifest=new Promise(e=>{window.__SSG_MANIFEST?e(window.__SSG_MANIFEST):window.__SSG_MANIFEST_CB=()=>{e(window.__SSG_MANIFEST)}})}}("function"==typeof t.default||"object"==typeof t.default&&null!==t.default)&&void 0===t.default.__esModule&&(Object.defineProperty(t.default,"__esModule",{value:!0}),Object.assign(t.default,t),e.exports=t.default)},7266:function(e,t,r){"use strict";let n;Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"default",{enumerable:!0,get:function(){return l}});let a=["CLS","FCP","FID","INP","LCP","TTFB"];location.href;let o=!1;function i(e){n&&n(e)}let l=e=>{if(n=e,!o)for(let e of(o=!0,a))try{let t;t||(t=r(8018)),t["on"+e](i)}catch(t){console.warn("Failed to track "+e+" web-vital",t)}};("function"==typeof t.default||"object"==typeof t.default&&null!==t.default)&&void 0===t.default.__esModule&&(Object.defineProperty(t.default,"__esModule",{value:!0}),Object.assign(t.default,t),e.exports=t.default)},7089:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"Portal",{enumerable:!0,get:function(){return o}});let n=r(7294),a=r(3935),o=e=>{let{children:t,type:r}=e,[o,i]=(0,n.useState)(null);return(0,n.useEffect)(()=>{let e=document.createElement(r);return document.body.appendChild(e),i(e),()=>{document.body.removeChild(e)}},[r]),o?(0,a.createPortal)(t,o):null};("function"==typeof t.default||"object"==typeof t.default&&null!==t.default)&&void 0===t.default.__esModule&&(Object.defineProperty(t.default,"__esModule",{value:!0}),Object.assign(t.default,t),e.exports=t.default)},6367:function(e,t,r){"use strict";function n(e){return(e=e.slice(0)).startsWith("/")||(e="/"+e),e}Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"removeBasePath",{enumerable:!0,get:function(){return n}}),r(1173),("function"==typeof t.default||"object"==typeof t.default&&null!==t.default)&&void 0===t.default.__esModule&&(Object.defineProperty(t.default,"__esModule",{value:!0}),Object.assign(t.default,t),e.exports=t.default)},6119:function(e,t,r){"use strict";function n(e,t){return e}Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"removeLocale",{enumerable:!0,get:function(){return n}}),r(7637),("function"==typeof t.default||"object"==typeof t.default&&null!==t.default)&&void 0===t.default.__esModule&&(Object.defineProperty(t.default,"__esModule",{value:!0}),Object.assign(t.default,t),e.exports=t.default)},4482:function(e,t){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),function(e,t){for(var r in t)Object.defineProperty(e,r,{enumerable:!0,get:t[r]})}(t,{requestIdleCallback:function(){return r},cancelIdleCallback:function(){return n}});let r="undefined"!=typeof self&&self.requestIdleCallback&&self.requestIdleCallback.bind(window)||function(e){let t=Date.now();return self.setTimeout(function(){e({didTimeout:!1,timeRemaining:function(){return Math.max(0,50-(Date.now()-t))}})},1)},n="undefined"!=typeof self&&self.cancelIdleCallback&&self.cancelIdleCallback.bind(window)||function(e){return clearTimeout(e)};("function"==typeof t.default||"object"==typeof t.default&&null!==t.default)&&void 0===t.default.__esModule&&(Object.defineProperty(t.default,"__esModule",{value:!0}),Object.assign(t.default,t),e.exports=t.default)},8813:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),function(e,t){for(var r in t)Object.defineProperty(e,r,{enumerable:!0,get:t[r]})}(t,{RouteAnnouncer:function(){return l},default:function(){return u}});let n=r(8754),a=n._(r(7294)),o=r(1247),i={border:0,clip:"rect(0 0 0 0)",height:"1px",margin:"-1px",overflow:"hidden",padding:0,position:"absolute",top:0,width:"1px",whiteSpace:"nowrap",wordWrap:"normal"},l=()=>{let{asPath:e}=(0,o.useRouter)(),[t,r]=a.default.useState(""),n=a.default.useRef(e);return a.default.useEffect(()=>{if(n.current!==e){if(n.current=e,document.title)r(document.title);else{var t;let n=document.querySelector("h1"),a=null!=(t=null==n?void 0:n.innerText)?t:null==n?void 0:n.textContent;r(a||e)}}},[e]),a.default.createElement("p",{"aria-live":"assertive",id:"__next-route-announcer__",role:"alert",style:i},t)},u=l;("function"==typeof t.default||"object"==typeof t.default&&null!==t.default)&&void 0===t.default.__esModule&&(Object.defineProperty(t.default,"__esModule",{value:!0}),Object.assign(t.default,t),e.exports=t.default)},8269:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),function(e,t){for(var r in t)Object.defineProperty(e,r,{enumerable:!0,get:t[r]})}(t,{markAssetError:function(){return l},isAssetError:function(){return u},getClientBuildManifest:function(){return d},createRouteLoader:function(){return p}}),r(8754),r(5854);let n=r(899),a=r(4482);function o(e,t,r){let n,a=t.get(e);if(a)return"future"in a?a.future:Promise.resolve(a);let o=new Promise(e=>{n=e});return t.set(e,a={resolve:n,future:o}),r?r().then(e=>(n(e),e)).catch(r=>{throw t.delete(e),r}):o}let i=Symbol("ASSET_LOAD_ERROR");function l(e){return Object.defineProperty(e,i,{})}function u(e){return e&&i in e}let s=function(e){try{return e=document.createElement("link"),!!window.MSInputMethodContext&&!!document.documentMode||e.relList.supports("prefetch")}catch(e){return!1}}(),c=()=>"";function f(e,t,r){return new Promise((n,o)=>{let i=!1;e.then(e=>{i=!0,n(e)}).catch(o),(0,a.requestIdleCallback)(()=>setTimeout(()=>{i||o(r)},t))})}function d(){if(self.__BUILD_MANIFEST)return Promise.resolve(self.__BUILD_MANIFEST);let e=new Promise(e=>{let t=self.__BUILD_MANIFEST_CB;self.__BUILD_MANIFEST_CB=()=>{e(self.__BUILD_MANIFEST),t&&t()}});return f(e,3800,l(Error("Failed to load client build manifest")))}function h(e,t){return d().then(r=>{if(!(t in r))throw l(Error("Failed to lookup route: "+t));let a=r[t].map(t=>e+"/_next/"+encodeURI(t));return{scripts:a.filter(e=>e.endsWith(".js")).map(e=>(0,n.__unsafeCreateTrustedScriptURL)(e)+c()),css:a.filter(e=>e.endsWith(".css")).map(e=>e+c())}})}function p(e){let t=new Map,r=new Map,n=new Map,i=new Map;function u(e){{var t;let n=r.get(e.toString());return n||(document.querySelector('script[src^="'+e+'"]')?Promise.resolve():(r.set(e.toString(),n=new Promise((r,n)=>{(t=document.createElement("script")).onload=r,t.onerror=()=>n(l(Error("Failed to load script: "+e))),t.crossOrigin=void 0,t.src=e,document.body.appendChild(t)})),n))}}function c(e){let t=n.get(e);return t||n.set(e,t=fetch(e).then(t=>{if(!t.ok)throw Error("Failed to load stylesheet: "+e);return t.text().then(t=>({href:e,content:t}))}).catch(e=>{throw l(e)})),t}return{whenEntrypoint:e=>o(e,t),onEntrypoint(e,r){(r?Promise.resolve().then(()=>r()).then(e=>({component:e&&e.default||e,exports:e}),e=>({error:e})):Promise.resolve(void 0)).then(r=>{let n=t.get(e);n&&"resolve"in n?r&&(t.set(e,r),n.resolve(r)):(r?t.set(e,r):t.delete(e),i.delete(e))})},loadRoute(r,n){return o(r,i,()=>{let a;return f(h(e,r).then(e=>{let{scripts:n,css:a}=e;return Promise.all([t.has(r)?[]:Promise.all(n.map(u)),Promise.all(a.map(c))])}).then(e=>this.whenEntrypoint(r).then(t=>({entrypoint:t,styles:e[1]}))),3800,l(Error("Route did not complete loading: "+r))).then(e=>{let{entrypoint:t,styles:r}=e,n=Object.assign({styles:r},t);return"error"in t?t:n}).catch(e=>{if(n)throw e;return{error:e}}).finally(()=>null==a?void 0:a())})},prefetch(t){let r;return(r=navigator.connection)&&(r.saveData||/2g/.test(r.effectiveType))?Promise.resolve():h(e,t).then(e=>Promise.all(s?e.scripts.map(e=>{var t,r,n;return t=e.toString(),r="script",new Promise((e,a)=>{let o='\n link[rel="prefetch"][href^="'+t+'"],\n link[rel="preload"][href^="'+t+'"],\n script[src^="'+t+'"]';if(document.querySelector(o))return e();n=document.createElement("link"),r&&(n.as=r),n.rel="prefetch",n.crossOrigin=void 0,n.onload=e,n.onerror=()=>a(l(Error("Failed to prefetch: "+t))),n.href=t,document.head.appendChild(n)})}):[])).then(()=>{(0,a.requestIdleCallback)(()=>this.loadRoute(t,!0).catch(()=>{}))}).catch(()=>{})}}}("function"==typeof t.default||"object"==typeof t.default&&null!==t.default)&&void 0===t.default.__esModule&&(Object.defineProperty(t.default,"__esModule",{value:!0}),Object.assign(t.default,t),e.exports=t.default)},1247:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),function(e,t){for(var r in t)Object.defineProperty(e,r,{enumerable:!0,get:t[r]})}(t,{Router:function(){return o.default},default:function(){return h},withRouter:function(){return u.default},useRouter:function(){return p},createRouter:function(){return m},makePublicRouterInstance:function(){return g}});let n=r(8754),a=n._(r(7294)),o=n._(r(6253)),i=r(2250),l=n._(r(676)),u=n._(r(5094)),s={router:null,readyCallbacks:[],ready(e){if(this.router)return e();this.readyCallbacks.push(e)}},c=["pathname","route","query","asPath","components","isFallback","basePath","locale","locales","defaultLocale","isReady","isPreview","isLocaleDomain","domainLocales"],f=["push","replace","reload","back","prefetch","beforePopState"];function d(){if(!s.router)throw Error('No router instance found.\nYou should only use "next/router" on the client side of your app.\n');return s.router}Object.defineProperty(s,"events",{get:()=>o.default.events}),c.forEach(e=>{Object.defineProperty(s,e,{get(){let t=d();return t[e]}})}),f.forEach(e=>{s[e]=function(){for(var t=arguments.length,r=Array(t),n=0;n{s.ready(()=>{o.default.events.on(e,function(){for(var t=arguments.length,r=Array(t),n=0;ne()),s.readyCallbacks=[],s.router}function g(e){let t={};for(let r of c){if("object"==typeof e[r]){t[r]=Object.assign(Array.isArray(e[r])?[]:{},e[r]);continue}t[r]=e[r]}return t.events=o.default.events,f.forEach(r=>{t[r]=function(){for(var t=arguments.length,n=Array(t),a=0;a{if(o.default.preinit){e.forEach(e=>{o.default.preinit(e,{as:"style"})});return}{let t=document.head;e.forEach(e=>{let r=document.createElement("link");r.type="text/css",r.rel="stylesheet",r.href=e,t.appendChild(r)})}},p=e=>{let{src:t,id:r,onLoad:n=()=>{},onReady:a=null,dangerouslySetInnerHTML:o,children:i="",strategy:l="afterInteractive",onError:s,stylesheets:p}=e,m=r||t;if(m&&f.has(m))return;if(c.has(t)){f.add(m),c.get(t).then(n,s);return}let g=()=>{a&&a(),f.add(m)},y=document.createElement("script"),_=new Promise((e,t)=>{y.addEventListener("load",function(t){e(),n&&n.call(this,t),g()}),y.addEventListener("error",function(e){t(e)})}).catch(function(e){s&&s(e)});for(let[r,n]of(o?(y.innerHTML=o.__html||"",g()):i?(y.textContent="string"==typeof i?i:Array.isArray(i)?i.join(""):"",g()):t&&(y.src=t,c.set(t,_)),Object.entries(e))){if(void 0===n||d.includes(r))continue;let e=u.DOMAttributeNames[r]||r.toLowerCase();y.setAttribute(e,n)}"worker"===l&&y.setAttribute("type","text/partytown"),y.setAttribute("data-nscript",l),p&&h(p),document.body.appendChild(y)};function m(e){let{strategy:t="afterInteractive"}=e;"lazyOnload"===t?window.addEventListener("load",()=>{(0,s.requestIdleCallback)(()=>p(e))}):p(e)}function g(e){e.forEach(m),function(){let e=[...document.querySelectorAll('[data-nscript="beforeInteractive"]'),...document.querySelectorAll('[data-nscript="beforePageRender"]')];e.forEach(e=>{let t=e.id||e.getAttribute("src");f.add(t)})}()}function y(e){let{id:t,src:r="",onLoad:n=()=>{},onReady:a=null,strategy:u="afterInteractive",onError:c,stylesheets:d,...h}=e,{updateScripts:m,scripts:g,getIsSsr:y,appDir:_,nonce:b}=(0,i.useContext)(l.HeadManagerContext),v=(0,i.useRef)(!1);(0,i.useEffect)(()=>{let e=t||r;v.current||(a&&e&&f.has(e)&&a(),v.current=!0)},[a,t,r]);let P=(0,i.useRef)(!1);if((0,i.useEffect)(()=>{!P.current&&("afterInteractive"===u?p(e):"lazyOnload"===u&&("complete"===document.readyState?(0,s.requestIdleCallback)(()=>p(e)):window.addEventListener("load",()=>{(0,s.requestIdleCallback)(()=>p(e))})),P.current=!0)},[e,u]),("beforeInteractive"===u||"worker"===u)&&(m?(g[u]=(g[u]||[]).concat([{id:t,src:r,onLoad:n,onReady:a,onError:c,...h}]),m(g)):y&&y()?f.add(t||r):y&&!y()&&p(e)),_){if(d&&d.forEach(e=>{o.default.preinit(e,{as:"style"})}),"beforeInteractive"===u)return r?(o.default.preload(r,h.integrity?{as:"script",integrity:h.integrity}:{as:"script"}),i.default.createElement("script",{nonce:b,dangerouslySetInnerHTML:{__html:"(self.__next_s=self.__next_s||[]).push("+JSON.stringify([r])+")"}})):(h.dangerouslySetInnerHTML&&(h.children=h.dangerouslySetInnerHTML.__html,delete h.dangerouslySetInnerHTML),i.default.createElement("script",{nonce:b,dangerouslySetInnerHTML:{__html:"(self.__next_s=self.__next_s||[]).push("+JSON.stringify([0,{...h}])+")"}}));"afterInteractive"===u&&r&&o.default.preload(r,h.integrity?{as:"script",integrity:h.integrity}:{as:"script"})}return null}Object.defineProperty(y,"__nextScript",{value:!0});let _=y;("function"==typeof t.default||"object"==typeof t.default&&null!==t.default)&&void 0===t.default.__esModule&&(Object.defineProperty(t.default,"__esModule",{value:!0}),Object.assign(t.default,t),e.exports=t.default)},899:function(e,t){"use strict";let r;function n(e){var t;return(null==(t=function(){if(void 0===r){var e;r=(null==(e=window.trustedTypes)?void 0:e.createPolicy("nextjs",{createHTML:e=>e,createScript:e=>e,createScriptURL:e=>e}))||null}return r}())?void 0:t.createScriptURL(e))||e}Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"__unsafeCreateTrustedScriptURL",{enumerable:!0,get:function(){return n}}),("function"==typeof t.default||"object"==typeof t.default&&null!==t.default)&&void 0===t.default.__esModule&&(Object.defineProperty(t.default,"__esModule",{value:!0}),Object.assign(t.default,t),e.exports=t.default)},5094:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"default",{enumerable:!0,get:function(){return i}});let n=r(8754),a=n._(r(7294)),o=r(1247);function i(e){function t(t){return a.default.createElement(e,{router:(0,o.useRouter)(),...t})}return t.getInitialProps=e.getInitialProps,t.origGetInitialProps=e.origGetInitialProps,t}("function"==typeof t.default||"object"==typeof t.default&&null!==t.default)&&void 0===t.default.__esModule&&(Object.defineProperty(t.default,"__esModule",{value:!0}),Object.assign(t.default,t),e.exports=t.default)},6530:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"default",{enumerable:!0,get:function(){return l}});let n=r(8754),a=n._(r(7294)),o=r(7321);async function i(e){let{Component:t,ctx:r}=e,n=await (0,o.loadGetInitialProps)(t,r);return{pageProps:n}}class l extends a.default.Component{render(){let{Component:e,pageProps:t}=this.props;return a.default.createElement(e,t)}}l.origGetInitialProps=i,l.getInitialProps=i,("function"==typeof t.default||"object"==typeof t.default&&null!==t.default)&&void 0===t.default.__esModule&&(Object.defineProperty(t.default,"__esModule",{value:!0}),Object.assign(t.default,t),e.exports=t.default)},3441:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"default",{enumerable:!0,get:function(){return s}});let n=r(8754),a=n._(r(7294)),o=n._(r(3902)),i={400:"Bad Request",404:"This page could not be found",405:"Method Not Allowed",500:"Internal Server Error"};function l(e){let{res:t,err:r}=e,n=t&&t.statusCode?t.statusCode:r?r.statusCode:404;return{statusCode:n}}let u={error:{fontFamily:'system-ui,"Segoe UI",Roboto,Helvetica,Arial,sans-serif,"Apple Color Emoji","Segoe UI Emoji"',height:"100vh",textAlign:"center",display:"flex",flexDirection:"column",alignItems:"center",justifyContent:"center"},desc:{lineHeight:"48px"},h1:{display:"inline-block",margin:"0 20px 0 0",paddingRight:23,fontSize:24,fontWeight:500,verticalAlign:"top"},h2:{fontSize:14,fontWeight:400,lineHeight:"28px"},wrap:{display:"inline-block"}};class s extends a.default.Component{render(){let{statusCode:e,withDarkMode:t=!0}=this.props,r=this.props.title||i[e]||"An unexpected error has occurred";return a.default.createElement("div",{style:u.error},a.default.createElement(o.default,null,a.default.createElement("title",null,e?e+": "+r:"Application error: a client-side exception has occurred")),a.default.createElement("div",{style:u.desc},a.default.createElement("style",{dangerouslySetInnerHTML:{__html:"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}"+(t?"@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}":"")}}),e?a.default.createElement("h1",{className:"next-error-h1",style:u.h1},e):null,a.default.createElement("div",{style:u.wrap},a.default.createElement("h2",{style:u.h2},this.props.title||e?r:a.default.createElement(a.default.Fragment,null,"Application error: a client-side exception has occurred (see the browser console for more information)"),"."))))}}s.displayName="ErrorPage",s.getInitialProps=l,s.origGetInitialProps=l,("function"==typeof t.default||"object"==typeof t.default&&null!==t.default)&&void 0===t.default.__esModule&&(Object.defineProperty(t.default,"__esModule",{value:!0}),Object.assign(t.default,t),e.exports=t.default)},4950:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"AmpStateContext",{enumerable:!0,get:function(){return o}});let n=r(8754),a=n._(r(7294)),o=a.default.createContext({})},2363:function(e,t){"use strict";function r(e){let{ampFirst:t=!1,hybrid:r=!1,hasQuery:n=!1}=void 0===e?{}:e;return t||r&&n}Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"isInAmpMode",{enumerable:!0,get:function(){return r}})},6451:function(e,t,r){"use strict";var n,a;Object.defineProperty(t,"__esModule",{value:!0}),function(e,t){for(var r in t)Object.defineProperty(e,r,{enumerable:!0,get:t[r]})}(t,{CacheStates:function(){return n},AppRouterContext:function(){return l},LayoutRouterContext:function(){return u},GlobalLayoutRouterContext:function(){return s},TemplateContext:function(){return c}});let o=r(8754),i=o._(r(7294));(a=n||(n={})).LAZY_INITIALIZED="LAZYINITIALIZED",a.DATA_FETCH="DATAFETCH",a.READY="READY";let l=i.default.createContext(null),u=i.default.createContext(null),s=i.default.createContext(null),c=i.default.createContext(null)},1918:function(e,t){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"BloomFilter",{enumerable:!0,get:function(){return r}});class r{static from(e,t){void 0===t&&(t=.01);let n=new r(e.length,t);for(let t of e)n.add(t);return n}export(){let e={numItems:this.numItems,errorRate:this.errorRate,numBits:this.numBits,numHashes:this.numHashes,bitArray:this.bitArray};return e}import(e){this.numItems=e.numItems,this.errorRate=e.errorRate,this.numBits=e.numBits,this.numHashes=e.numHashes,this.bitArray=e.bitArray}add(e){let t=this.getHashValues(e);t.forEach(e=>{this.bitArray[e]=1})}contains(e){let t=this.getHashValues(e);return t.every(e=>this.bitArray[e])}getHashValues(e){let t=[];for(let r=1;r<=this.numHashes;r++){let n=function(e){let t=0;for(let r=0;r>>13,t=Math.imul(t,1540483477)}return t>>>0}(""+e+r)%this.numBits;t.push(n)}return t}constructor(e,t){this.numItems=e,this.errorRate=t,this.numBits=Math.ceil(-(e*Math.log(t))/(Math.log(2)*Math.log(2))),this.numHashes=Math.ceil(this.numBits/e*Math.log(2)),this.bitArray=Array(this.numBits).fill(0)}}},9434:function(e,t){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"escapeStringRegexp",{enumerable:!0,get:function(){return a}});let r=/[|\\{}()[\]^$+*?.-]/,n=/[|\\{}()[\]^$+*?.-]/g;function a(e){return r.test(e)?e.replace(n,"\\$&"):e}},6117:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"HeadManagerContext",{enumerable:!0,get:function(){return o}});let n=r(8754),a=n._(r(7294)),o=a.default.createContext({})},3902:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),function(e,t){for(var r in t)Object.defineProperty(e,r,{enumerable:!0,get:t[r]})}(t,{defaultHead:function(){return c},default:function(){return p}});let n=r(8754),a=r(1757),o=a._(r(7294)),i=n._(r(5126)),l=r(4950),u=r(6117),s=r(2363);function c(e){void 0===e&&(e=!1);let t=[o.default.createElement("meta",{charSet:"utf-8"})];return e||t.push(o.default.createElement("meta",{name:"viewport",content:"width=device-width"})),t}function f(e,t){return"string"==typeof t||"number"==typeof t?e:t.type===o.default.Fragment?e.concat(o.default.Children.toArray(t.props.children).reduce((e,t)=>"string"==typeof t||"number"==typeof t?e:e.concat(t),[])):e.concat(t)}r(2078);let d=["name","httpEquiv","charSet","itemProp"];function h(e,t){let{inAmpMode:r}=t;return e.reduce(f,[]).reverse().concat(c(r).reverse()).filter(function(){let e=new Set,t=new Set,r=new Set,n={};return a=>{let o=!0,i=!1;if(a.key&&"number"!=typeof a.key&&a.key.indexOf("$")>0){i=!0;let t=a.key.slice(a.key.indexOf("$")+1);e.has(t)?o=!1:e.add(t)}switch(a.type){case"title":case"base":t.has(a.type)?o=!1:t.add(a.type);break;case"meta":for(let e=0,t=d.length;e{let n=e.key||t;if(!r&&"link"===e.type&&e.props.href&&["https://fonts.googleapis.com/css","https://use.typekit.net/"].some(t=>e.props.href.startsWith(t))){let t={...e.props||{}};return t["data-href"]=t.href,t.href=void 0,t["data-optimized-fonts"]=!0,o.default.cloneElement(e,t)}return o.default.cloneElement(e,{key:n})})}let p=function(e){let{children:t}=e,r=(0,o.useContext)(l.AmpStateContext),n=(0,o.useContext)(u.HeadManagerContext);return o.default.createElement(i.default,{reduceComponentsToState:h,headManager:n,inAmpMode:(0,s.isInAmpMode)(r)},t)};("function"==typeof t.default||"object"==typeof t.default&&null!==t.default)&&void 0===t.default.__esModule&&(Object.defineProperty(t.default,"__esModule",{value:!0}),Object.assign(t.default,t),e.exports=t.default)},4858:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),function(e,t){for(var r in t)Object.defineProperty(e,r,{enumerable:!0,get:t[r]})}(t,{SearchParamsContext:function(){return a},PathnameContext:function(){return o}});let n=r(7294),a=(0,n.createContext)(null),o=(0,n.createContext)(null)},4990:function(e,t){"use strict";function r(e,t){let r;let n=e.split("/");return(t||[]).some(t=>!!n[1]&&n[1].toLowerCase()===t.toLowerCase()&&(r=t,n.splice(1,1),e=n.join("/")||"/",!0)),{pathname:e,detectedLocale:r}}Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"normalizeLocalePath",{enumerable:!0,get:function(){return r}})},2493:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"ImageConfigContext",{enumerable:!0,get:function(){return i}});let n=r(8754),a=n._(r(7294)),o=r(2093),i=a.default.createContext(o.imageConfigDefault)},2093:function(e,t){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),function(e,t){for(var r in t)Object.defineProperty(e,r,{enumerable:!0,get:t[r]})}(t,{VALID_LOADERS:function(){return r},imageConfigDefault:function(){return n}});let r=["default","imgix","cloudinary","akamai","custom"],n={deviceSizes:[640,750,828,1080,1200,1920,2048,3840],imageSizes:[16,32,48,64,96,128,256,384],path:"/_next/image",loader:"default",loaderFile:"",domains:[],disableStaticImages:!1,minimumCacheTTL:60,formats:["image/webp"],dangerouslyAllowSVG:!1,contentSecurityPolicy:"script-src 'none'; frame-src 'none'; sandbox;",contentDispositionType:"inline",remotePatterns:[],unoptimized:!1}},8325:function(e,t){"use strict";function r(e){return Object.prototype.toString.call(e)}function n(e){if("[object Object]"!==r(e))return!1;let t=Object.getPrototypeOf(e);return null===t||t.hasOwnProperty("isPrototypeOf")}Object.defineProperty(t,"__esModule",{value:!0}),function(e,t){for(var r in t)Object.defineProperty(e,r,{enumerable:!0,get:t[r]})}(t,{getObjectClassLabel:function(){return r},isPlainObject:function(){return n}})},6266:function(e,t){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"NEXT_DYNAMIC_NO_SSR_CODE",{enumerable:!0,get:function(){return r}});let r="NEXT_DYNAMIC_NO_SSR_CODE"},6712:function(e,t){"use strict";function r(){let e=Object.create(null);return{on(t,r){(e[t]||(e[t]=[])).push(r)},off(t,r){e[t]&&e[t].splice(e[t].indexOf(r)>>>0,1)},emit(t){for(var r=arguments.length,n=Array(r>1?r-1:0),a=1;a{e(...n)})}}}Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"default",{enumerable:!0,get:function(){return r}})},2629:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"denormalizePagePath",{enumerable:!0,get:function(){return o}});let n=r(9446),a=r(6538);function o(e){let t=(0,a.normalizePathSep)(e);return t.startsWith("/index/")&&!(0,n.isDynamicRoute)(t)?t.slice(6):"/index"!==t?t:"/"}},4157:function(e,t){"use strict";function r(e){return e.startsWith("/")?e:"/"+e}Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"ensureLeadingSlash",{enumerable:!0,get:function(){return r}})},6538:function(e,t){"use strict";function r(e){return e.replace(/\\/g,"/")}Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"normalizePathSep",{enumerable:!0,get:function(){return r}})},2250:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"RouterContext",{enumerable:!0,get:function(){return o}});let n=r(8754),a=n._(r(7294)),o=a.default.createContext(null)},4128:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),function(e,t){for(var r in t)Object.defineProperty(e,r,{enumerable:!0,get:t[r]})}(t,{adaptForAppRouterInstance:function(){return l},adaptForSearchParams:function(){return u},PathnameContextProviderAdapter:function(){return s}});let n=r(1757),a=n._(r(7294)),o=r(4858),i=r(9446);function l(e){return{back(){e.back()},forward(){e.forward()},refresh(){e.reload()},push(t,r){let{scroll:n}=void 0===r?{}:r;e.push(t,void 0,{scroll:n})},replace(t,r){let{scroll:n}=void 0===r?{}:r;e.replace(t,void 0,{scroll:n})},prefetch(t){e.prefetch(t)}}}function u(e){return e.isReady&&e.query?function(e){let t=new URLSearchParams;for(let[r,n]of Object.entries(e))if(Array.isArray(n))for(let e of n)t.append(r,e);else void 0!==n&&t.append(r,n);return t}(e.query):new URLSearchParams}function s(e){let{children:t,router:r,...n}=e,l=(0,a.useRef)(n.isAutoExport),u=(0,a.useMemo)(()=>{let e;let t=l.current;if(t&&(l.current=!1),(0,i.isDynamicRoute)(r.pathname)&&(r.isFallback||t&&!r.isReady))return null;try{e=new URL(r.asPath,"http://f")}catch(e){return"/"}return e.pathname},[r.asPath,r.isFallback,r.isReady,r.pathname]);return a.default.createElement(o.PathnameContext.Provider,{value:u},t)}},6253:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),function(e,t){for(var r in t)Object.defineProperty(e,r,{enumerable:!0,get:t[r]})}(t,{default:function(){return V},matchesMiddleware:function(){return N},createKey:function(){return q}});let n=r(8754),a=r(1757),o=r(5129),i=r(8269),l=r(4294),u=a._(r(676)),s=r(2629),c=r(4990),f=n._(r(6712)),d=r(7321),h=r(3702),p=r(137);r(2431);let m=r(3660),g=r(2932),y=r(2902);r(268);let _=r(7637),b=r(299),v=r(6119),P=r(6367),w=r(3475),j=r(1173),S=r(9423),E=r(5564),O=r(1703),R=r(9245),x=r(2968),C=r(238),M=r(8447),A=r(2862),L=r(1690),I=r(1257);function T(){return Object.assign(Error("Route Cancelled"),{cancelled:!0})}async function N(e){let t=await Promise.resolve(e.router.pageLoader.getMiddleware());if(!t)return!1;let{pathname:r}=(0,_.parsePath)(e.asPath),n=(0,j.hasBasePath)(r)?(0,P.removeBasePath)(r):r,a=(0,w.addBasePath)((0,b.addLocale)(n,e.locale));return t.some(e=>new RegExp(e.regexp).test(a))}function k(e){let t=(0,d.getLocationOrigin)();return e.startsWith(t)?e.substring(t.length):e}function D(e,t,r){let[n,a]=(0,A.resolveHref)(e,t,!0),o=(0,d.getLocationOrigin)(),i=n.startsWith(o),l=a&&a.startsWith(o);n=k(n),a=a?k(a):a;let u=i?n:(0,w.addBasePath)(n),s=r?k((0,A.resolveHref)(e,r)):a||n;return{url:u,as:l?s:(0,w.addBasePath)(s)}}function B(e,t){let r=(0,o.removeTrailingSlash)((0,s.denormalizePagePath)(e));return"/404"===r||"/_error"===r?e:(t.includes(r)||t.some(t=>{if((0,h.isDynamicRoute)(t)&&(0,g.getRouteRegex)(t).re.test(r))return e=t,!0}),(0,o.removeTrailingSlash)(e))}async function H(e){let t=await N(e);if(!t||!e.fetchData)return null;try{let t=await e.fetchData(),r=await function(e,t,r){let n={basePath:r.router.basePath,i18n:{locales:r.router.locales},trailingSlash:!1},a=t.headers.get("x-nextjs-rewrite"),l=a||t.headers.get("x-nextjs-matched-path"),u=t.headers.get("x-matched-path");if(!u||l||u.includes("__next_data_catchall")||u.includes("/_error")||u.includes("/404")||(l=u),l){if(l.startsWith("/")){let t=(0,p.parseRelativeUrl)(l),u=(0,E.getNextPathnameInfo)(t.pathname,{nextConfig:n,parseData:!0}),s=(0,o.removeTrailingSlash)(u.pathname);return Promise.all([r.router.pageLoader.getPageList(),(0,i.getClientBuildManifest)()]).then(o=>{let[i,{__rewrites:l}]=o,f=(0,b.addLocale)(u.pathname,u.locale);if((0,h.isDynamicRoute)(f)||!a&&i.includes((0,c.normalizeLocalePath)((0,P.removeBasePath)(f),r.router.locales).pathname)){let r=(0,E.getNextPathnameInfo)((0,p.parseRelativeUrl)(e).pathname,{nextConfig:n,parseData:!0});f=(0,w.addBasePath)(r.pathname),t.pathname=f}if(!i.includes(s)){let e=B(s,i);e!==s&&(s=e)}let d=i.includes(s)?s:B((0,c.normalizeLocalePath)((0,P.removeBasePath)(t.pathname),r.router.locales).pathname,i);if((0,h.isDynamicRoute)(d)){let e=(0,m.getRouteMatcher)((0,g.getRouteRegex)(d))(f);Object.assign(t.query,e||{})}return{type:"rewrite",parsedAs:t,resolvedHref:d}})}let t=(0,_.parsePath)(e),u=(0,O.formatNextPathnameInfo)({...(0,E.getNextPathnameInfo)(t.pathname,{nextConfig:n,parseData:!0}),defaultLocale:r.router.defaultLocale,buildId:""});return Promise.resolve({type:"redirect-external",destination:""+u+t.query+t.hash})}let s=t.headers.get("x-nextjs-redirect");if(s){if(s.startsWith("/")){let e=(0,_.parsePath)(s),t=(0,O.formatNextPathnameInfo)({...(0,E.getNextPathnameInfo)(e.pathname,{nextConfig:n,parseData:!0}),defaultLocale:r.router.defaultLocale,buildId:""});return Promise.resolve({type:"redirect-internal",newAs:""+t+e.query+e.hash,newUrl:""+t+e.query+e.hash})}return Promise.resolve({type:"redirect-external",destination:s})}return Promise.resolve({type:"next"})}(t.dataHref,t.response,e);return{dataHref:t.dataHref,json:t.json,response:t.response,text:t.text,cacheKey:t.cacheKey,effect:r}}catch(e){return null}}let U=Symbol("SSG_DATA_NOT_FOUND");function F(e){try{return JSON.parse(e)}catch(e){return null}}function W(e){var t;let{dataHref:r,inflightCache:n,isPrefetch:a,hasMiddleware:o,isServerRender:l,parseJSON:u,persistCache:s,isBackground:c,unstable_skipClientCache:f}=e,{href:d}=new URL(r,window.location.href),h=e=>(function e(t,r,n){return fetch(t,{credentials:"same-origin",method:n.method||"GET",headers:Object.assign({},n.headers,{"x-nextjs-data":"1"})}).then(a=>!a.ok&&r>1&&a.status>=500?e(t,r-1,n):a)})(r,l?3:1,{headers:Object.assign({},a?{purpose:"prefetch"}:{},a&&o?{"x-middleware-prefetch":"1"}:{}),method:null!=(t=null==e?void 0:e.method)?t:"GET"}).then(t=>t.ok&&(null==e?void 0:e.method)==="HEAD"?{dataHref:r,response:t,text:"",json:{},cacheKey:d}:t.text().then(e=>{if(!t.ok){if(o&&[301,302,307,308].includes(t.status))return{dataHref:r,response:t,text:e,json:{},cacheKey:d};if(404===t.status){var n;if(null==(n=F(e))?void 0:n.notFound)return{dataHref:r,json:{notFound:U},response:t,text:e,cacheKey:d}}let a=Error("Failed to load static props");throw l||(0,i.markAssetError)(a),a}return{dataHref:r,json:u?F(e):null,response:t,text:e,cacheKey:d}})).then(e=>(s&&"no-cache"!==e.response.headers.get("x-middleware-cache")||delete n[d],e)).catch(e=>{throw f||delete n[d],("Failed to fetch"===e.message||"NetworkError when attempting to fetch resource."===e.message||"Load failed"===e.message)&&(0,i.markAssetError)(e),e});return f&&s?h({}).then(e=>(n[d]=Promise.resolve(e),e)):void 0!==n[d]?n[d]:n[d]=h(c?{method:"HEAD"}:{})}function q(){return Math.random().toString(36).slice(2,10)}function z(e){let{url:t,router:r}=e;if(t===(0,w.addBasePath)((0,b.addLocale)(r.asPath,r.locale)))throw Error("Invariant: attempted to hard navigate to the same URL "+t+" "+location.href);window.location.href=t}let G=e=>{let{route:t,router:r}=e,n=!1,a=r.clc=()=>{n=!0};return()=>{if(n){let e=Error('Abort fetching component for route: "'+t+'"');throw e.cancelled=!0,e}a===r.clc&&(r.clc=null)}};class V{reload(){window.location.reload()}back(){window.history.back()}forward(){window.history.forward()}push(e,t,r){return void 0===r&&(r={}),{url:e,as:t}=D(this,e,t),this.change("pushState",e,t,r)}replace(e,t,r){return void 0===r&&(r={}),{url:e,as:t}=D(this,e,t),this.change("replaceState",e,t,r)}async _bfl(e,t,r,n){{let u=!1,s=!1;for(let c of[e,t])if(c){let t=(0,o.removeTrailingSlash)(new URL(c,"http://n").pathname),f=(0,w.addBasePath)((0,b.addLocale)(t,r||this.locale));if(t!==(0,o.removeTrailingSlash)(new URL(this.asPath,"http://n").pathname)){var a,i,l;for(let e of(u=u||!!(null==(a=this._bfl_s)?void 0:a.contains(t))||!!(null==(i=this._bfl_s)?void 0:i.contains(f)),[t,f])){let t=e.split("/");for(let e=0;!s&&e{})}}}}return!1}async change(e,t,r,n,a){var s,c,f,S,E,O,C,A,I;let k,H;if(!(0,x.isLocalURL)(t))return z({url:t,router:this}),!1;let F=1===n._h;F||n.shallow||await this._bfl(r,void 0,n.locale);let W=F||n._shouldResolveHref||(0,_.parsePath)(t).pathname===(0,_.parsePath)(r).pathname,q={...this.state},G=!0!==this.isReady;this.isReady=!0;let X=this.isSsr;if(F||(this.isSsr=!1),F&&this.clc)return!1;let $=q.locale;d.ST&&performance.mark("routeChange");let{shallow:Y=!1,scroll:K=!0}=n,J={shallow:Y};this._inFlightRoute&&this.clc&&(X||V.events.emit("routeChangeError",T(),this._inFlightRoute,J),this.clc(),this.clc=null),r=(0,w.addBasePath)((0,b.addLocale)((0,j.hasBasePath)(r)?(0,P.removeBasePath)(r):r,n.locale,this.defaultLocale));let Q=(0,v.removeLocale)((0,j.hasBasePath)(r)?(0,P.removeBasePath)(r):r,q.locale);this._inFlightRoute=r;let Z=$!==q.locale;if(!F&&this.onlyAHashChange(Q)&&!Z){q.asPath=Q,V.events.emit("hashChangeStart",r,J),this.changeState(e,t,r,{...n,scroll:!1}),K&&this.scrollToHash(Q);try{await this.set(q,this.components[q.route],null)}catch(e){throw(0,u.default)(e)&&e.cancelled&&V.events.emit("routeChangeError",e,Q,J),e}return V.events.emit("hashChangeComplete",r,J),!0}let ee=(0,p.parseRelativeUrl)(t),{pathname:et,query:er}=ee;if(null==(s=this.components[et])?void 0:s.__appRouter)return z({url:r,router:this}),new Promise(()=>{});try{[k,{__rewrites:H}]=await Promise.all([this.pageLoader.getPageList(),(0,i.getClientBuildManifest)(),this.pageLoader.getMiddleware()])}catch(e){return z({url:r,router:this}),!1}this.urlIsNew(Q)||Z||(e="replaceState");let en=r;et=et?(0,o.removeTrailingSlash)((0,P.removeBasePath)(et)):et;let ea=(0,o.removeTrailingSlash)(et),eo=r.startsWith("/")&&(0,p.parseRelativeUrl)(r).pathname,ei=!!(eo&&ea!==eo&&(!(0,h.isDynamicRoute)(ea)||!(0,m.getRouteMatcher)((0,g.getRouteRegex)(ea))(eo))),el=!n.shallow&&await N({asPath:r,locale:q.locale,router:this});if(F&&el&&(W=!1),W&&"/_error"!==et&&(n._shouldResolveHref=!0,ee.pathname=B(et,k),ee.pathname===et||(et=ee.pathname,ee.pathname=(0,w.addBasePath)(et),el||(t=(0,y.formatWithValidation)(ee)))),!(0,x.isLocalURL)(r))return z({url:r,router:this}),!1;en=(0,v.removeLocale)((0,P.removeBasePath)(en),q.locale),ea=(0,o.removeTrailingSlash)(et);let eu=!1;if((0,h.isDynamicRoute)(ea)){let e=(0,p.parseRelativeUrl)(en),n=e.pathname,a=(0,g.getRouteRegex)(ea);eu=(0,m.getRouteMatcher)(a)(n);let o=ea===n,i=o?(0,L.interpolateAs)(ea,n,er):{};if(eu&&(!o||i.result))o?r=(0,y.formatWithValidation)(Object.assign({},e,{pathname:i.result,query:(0,M.omit)(er,i.params)})):Object.assign(er,eu);else{let e=Object.keys(a.groups).filter(e=>!er[e]&&!a.groups[e].optional);if(e.length>0&&!el)throw Error((o?"The provided `href` ("+t+") value is missing query values ("+e.join(", ")+") to be interpolated properly. ":"The provided `as` value ("+n+") is incompatible with the `href` value ("+ea+"). ")+"Read more: https://nextjs.org/docs/messages/"+(o?"href-interpolation-failed":"incompatible-href-as"))}}F||V.events.emit("routeChangeStart",r,J);let es="/404"===this.pathname||"/_error"===this.pathname;try{let o=await this.getRouteInfo({route:ea,pathname:et,query:er,as:r,resolvedAs:en,routeProps:J,locale:q.locale,isPreview:q.isPreview,hasMiddleware:el,unstable_skipClientCache:n.unstable_skipClientCache,isQueryUpdating:F&&!this.isFallback,isMiddlewareRewrite:ei});if(F||n.shallow||await this._bfl(r,"resolvedAs"in o?o.resolvedAs:void 0,q.locale),"route"in o&&el){ea=et=o.route||ea,J.shallow||(er=Object.assign({},o.query||{},er));let e=(0,j.hasBasePath)(ee.pathname)?(0,P.removeBasePath)(ee.pathname):ee.pathname;if(eu&&et!==e&&Object.keys(eu).forEach(e=>{eu&&er[e]===eu[e]&&delete er[e]}),(0,h.isDynamicRoute)(et)){let e=!J.shallow&&o.resolvedAs?o.resolvedAs:(0,w.addBasePath)((0,b.addLocale)(new URL(r,location.href).pathname,q.locale),!0),t=e;(0,j.hasBasePath)(t)&&(t=(0,P.removeBasePath)(t));let n=(0,g.getRouteRegex)(et),a=(0,m.getRouteMatcher)(n)(new URL(t,location.href).pathname);a&&Object.assign(er,a)}}if("type"in o){if("redirect-internal"===o.type)return this.change(e,o.newUrl,o.newAs,n);return z({url:o.destination,router:this}),new Promise(()=>{})}let i=o.Component;if(i&&i.unstable_scriptLoader){let e=[].concat(i.unstable_scriptLoader());e.forEach(e=>{(0,l.handleClientScriptLoad)(e.props)})}if((o.__N_SSG||o.__N_SSP)&&o.props){if(o.props.pageProps&&o.props.pageProps.__N_REDIRECT){n.locale=!1;let t=o.props.pageProps.__N_REDIRECT;if(t.startsWith("/")&&!1!==o.props.pageProps.__N_REDIRECT_BASE_PATH){let r=(0,p.parseRelativeUrl)(t);r.pathname=B(r.pathname,k);let{url:a,as:o}=D(this,t,t);return this.change(e,a,o,n)}return z({url:t,router:this}),new Promise(()=>{})}if(q.isPreview=!!o.props.__N_PREVIEW,o.props.notFound===U){let e;try{await this.fetchComponent("/404"),e="/404"}catch(t){e="/_error"}if(o=await this.getRouteInfo({route:e,pathname:e,query:er,as:r,resolvedAs:en,routeProps:{shallow:!1},locale:q.locale,isPreview:q.isPreview,isNotFound:!0}),"type"in o)throw Error("Unexpected middleware effect on /404")}}F&&"/_error"===this.pathname&&(null==(c=self.__NEXT_DATA__.props)?void 0:null==(f=c.pageProps)?void 0:f.statusCode)===500&&(null==(S=o.props)?void 0:S.pageProps)&&(o.props.pageProps.statusCode=500);let s=n.shallow&&q.route===(null!=(E=o.route)?E:ea),d=null!=(O=n.scroll)?O:!F&&!s,y=null!=a?a:d?{x:0,y:0}:null,_={...q,route:ea,pathname:et,query:er,asPath:Q,isFallback:!1};if(F&&es){if(o=await this.getRouteInfo({route:this.pathname,pathname:this.pathname,query:er,as:r,resolvedAs:en,routeProps:{shallow:!1},locale:q.locale,isPreview:q.isPreview,isQueryUpdating:F&&!this.isFallback}),"type"in o)throw Error("Unexpected middleware effect on "+this.pathname);"/_error"===this.pathname&&(null==(C=self.__NEXT_DATA__.props)?void 0:null==(A=C.pageProps)?void 0:A.statusCode)===500&&(null==(I=o.props)?void 0:I.pageProps)&&(o.props.pageProps.statusCode=500);try{await this.set(_,o,y)}catch(e){throw(0,u.default)(e)&&e.cancelled&&V.events.emit("routeChangeError",e,Q,J),e}return!0}V.events.emit("beforeHistoryChange",r,J),this.changeState(e,t,r,n);let v=F&&!y&&!G&&!Z&&(0,R.compareRouterStates)(_,this.state);if(!v){try{await this.set(_,o,y)}catch(e){if(e.cancelled)o.error=o.error||e;else throw e}if(o.error)throw F||V.events.emit("routeChangeError",o.error,Q,J),o.error;F||V.events.emit("routeChangeComplete",r,J),d&&/#.+$/.test(r)&&this.scrollToHash(r)}return!0}catch(e){if((0,u.default)(e)&&e.cancelled)return!1;throw e}}changeState(e,t,r,n){void 0===n&&(n={}),("pushState"!==e||(0,d.getURL)()!==r)&&(this._shallow=n.shallow,window.history[e]({url:t,as:r,options:n,__N:!0,key:this._key="pushState"!==e?this._key:q()},"",r))}async handleRouteInfoError(e,t,r,n,a,o){if(console.error(e),e.cancelled)throw e;if((0,i.isAssetError)(e)||o)throw V.events.emit("routeChangeError",e,n,a),z({url:n,router:this}),T();try{let n;let{page:a,styleSheets:o}=await this.fetchComponent("/_error"),i={props:n,Component:a,styleSheets:o,err:e,error:e};if(!i.props)try{i.props=await this.getInitialProps(a,{err:e,pathname:t,query:r})}catch(e){console.error("Error in error page `getInitialProps`: ",e),i.props={}}return i}catch(e){return this.handleRouteInfoError((0,u.default)(e)?e:Error(e+""),t,r,n,a,!0)}}async getRouteInfo(e){let{route:t,pathname:r,query:n,as:a,resolvedAs:i,routeProps:l,locale:s,hasMiddleware:f,isPreview:d,unstable_skipClientCache:h,isQueryUpdating:p,isMiddlewareRewrite:m,isNotFound:g}=e,_=t;try{var b,v,w,j;let e=G({route:_,router:this}),t=this.components[_];if(l.shallow&&t&&this.route===_)return t;f&&(t=void 0);let u=!t||"initial"in t?void 0:t,E={dataHref:this.pageLoader.getDataHref({href:(0,y.formatWithValidation)({pathname:r,query:n}),skipInterpolation:!0,asPath:g?"/404":i,locale:s}),hasMiddleware:!0,isServerRender:this.isSsr,parseJSON:!0,inflightCache:p?this.sbc:this.sdc,persistCache:!d,isPrefetch:!1,unstable_skipClientCache:h,isBackground:p},O=p&&!m?null:await H({fetchData:()=>W(E),asPath:g?"/404":i,locale:s,router:this}).catch(e=>{if(p)return null;throw e});if(O&&("/_error"===r||"/404"===r)&&(O.effect=void 0),p&&(O?O.json=self.__NEXT_DATA__.props:O={json:self.__NEXT_DATA__.props}),e(),(null==O?void 0:null==(b=O.effect)?void 0:b.type)==="redirect-internal"||(null==O?void 0:null==(v=O.effect)?void 0:v.type)==="redirect-external")return O.effect;if((null==O?void 0:null==(w=O.effect)?void 0:w.type)==="rewrite"){let e=(0,o.removeTrailingSlash)(O.effect.resolvedHref),a=await this.pageLoader.getPageList();if((!p||a.includes(e))&&(_=e,r=O.effect.resolvedHref,n={...n,...O.effect.parsedAs.query},i=(0,P.removeBasePath)((0,c.normalizeLocalePath)(O.effect.parsedAs.pathname,this.locales).pathname),t=this.components[_],l.shallow&&t&&this.route===_&&!f))return{...t,route:_}}if((0,S.isAPIRoute)(_))return z({url:a,router:this}),new Promise(()=>{});let R=u||await this.fetchComponent(_).then(e=>({Component:e.page,styleSheets:e.styleSheets,__N_SSG:e.mod.__N_SSG,__N_SSP:e.mod.__N_SSP})),x=null==O?void 0:null==(j=O.response)?void 0:j.headers.get("x-middleware-skip"),C=R.__N_SSG||R.__N_SSP;x&&(null==O?void 0:O.dataHref)&&delete this.sdc[O.dataHref];let{props:M,cacheKey:A}=await this._getData(async()=>{if(C){if((null==O?void 0:O.json)&&!x)return{cacheKey:O.cacheKey,props:O.json};let e=(null==O?void 0:O.dataHref)?O.dataHref:this.pageLoader.getDataHref({href:(0,y.formatWithValidation)({pathname:r,query:n}),asPath:i,locale:s}),t=await W({dataHref:e,isServerRender:this.isSsr,parseJSON:!0,inflightCache:x?{}:this.sdc,persistCache:!d,isPrefetch:!1,unstable_skipClientCache:h});return{cacheKey:t.cacheKey,props:t.json||{}}}return{headers:{},props:await this.getInitialProps(R.Component,{pathname:r,query:n,asPath:a,locale:s,locales:this.locales,defaultLocale:this.defaultLocale})}});return R.__N_SSP&&E.dataHref&&A&&delete this.sdc[A],this.isPreview||!R.__N_SSG||p||W(Object.assign({},E,{isBackground:!0,persistCache:!1,inflightCache:this.sbc})).catch(()=>{}),M.pageProps=Object.assign({},M.pageProps),R.props=M,R.route=_,R.query=n,R.resolvedAs=i,this.components[_]=R,R}catch(e){return this.handleRouteInfoError((0,u.getProperError)(e),r,n,a,l)}}set(e,t,r){return this.state=e,this.sub(t,this.components["/_app"].Component,r)}beforePopState(e){this._bps=e}onlyAHashChange(e){if(!this.asPath)return!1;let[t,r]=this.asPath.split("#"),[n,a]=e.split("#");return!!a&&t===n&&r===a||t===n&&r!==a}scrollToHash(e){let[,t=""]=e.split("#");(0,I.handleSmoothScroll)(()=>{if(""===t||"top"===t){window.scrollTo(0,0);return}let e=decodeURIComponent(t),r=document.getElementById(e);if(r){r.scrollIntoView();return}let n=document.getElementsByName(e)[0];n&&n.scrollIntoView()},{onlyHashChange:this.onlyAHashChange(e)})}urlIsNew(e){return this.asPath!==e}async prefetch(e,t,r){if(void 0===t&&(t=e),void 0===r&&(r={}),(0,C.isBot)(window.navigator.userAgent))return;let n=(0,p.parseRelativeUrl)(e),a=n.pathname,{pathname:i,query:l}=n,u=i,s=await this.pageLoader.getPageList(),c=t,f=void 0!==r.locale?r.locale||void 0:this.locale,d=await N({asPath:t,locale:f,router:this});n.pathname=B(n.pathname,s),(0,h.isDynamicRoute)(n.pathname)&&(i=n.pathname,n.pathname=i,Object.assign(l,(0,m.getRouteMatcher)((0,g.getRouteRegex)(n.pathname))((0,_.parsePath)(t).pathname)||{}),d||(e=(0,y.formatWithValidation)(n)));let b=await H({fetchData:()=>W({dataHref:this.pageLoader.getDataHref({href:(0,y.formatWithValidation)({pathname:u,query:l}),skipInterpolation:!0,asPath:c,locale:f}),hasMiddleware:!0,isServerRender:this.isSsr,parseJSON:!0,inflightCache:this.sdc,persistCache:!this.isPreview,isPrefetch:!0}),asPath:t,locale:f,router:this});if((null==b?void 0:b.effect.type)==="rewrite"&&(n.pathname=b.effect.resolvedHref,i=b.effect.resolvedHref,l={...l,...b.effect.parsedAs.query},c=b.effect.parsedAs.pathname,e=(0,y.formatWithValidation)(n)),(null==b?void 0:b.effect.type)==="redirect-external")return;let v=(0,o.removeTrailingSlash)(i);await this._bfl(t,c,r.locale,!0)&&(this.components[a]={__appRouter:!0}),await Promise.all([this.pageLoader._isSsg(v).then(t=>!!t&&W({dataHref:(null==b?void 0:b.json)?null==b?void 0:b.dataHref:this.pageLoader.getDataHref({href:e,asPath:c,locale:f}),isServerRender:!1,parseJSON:!0,inflightCache:this.sdc,persistCache:!this.isPreview,isPrefetch:!0,unstable_skipClientCache:r.unstable_skipClientCache||r.priority&&!0}).then(()=>!1).catch(()=>!1)),this.pageLoader[r.priority?"loadPage":"prefetch"](v)])}async fetchComponent(e){let t=G({route:e,router:this});try{let r=await this.pageLoader.loadPage(e);return t(),r}catch(e){throw t(),e}}_getData(e){let t=!1,r=()=>{t=!0};return this.clc=r,e().then(e=>{if(r===this.clc&&(this.clc=null),t){let e=Error("Loading initial props cancelled");throw e.cancelled=!0,e}return e})}_getFlightData(e){return W({dataHref:e,isServerRender:!0,parseJSON:!1,inflightCache:this.sdc,persistCache:!1,isPrefetch:!1}).then(e=>{let{text:t}=e;return{data:t}})}getInitialProps(e,t){let{Component:r}=this.components["/_app"],n=this._wrapApp(r);return t.AppTree=n,(0,d.loadGetInitialProps)(r,{AppTree:n,Component:e,router:this,ctx:t})}get route(){return this.state.route}get pathname(){return this.state.pathname}get query(){return this.state.query}get asPath(){return this.state.asPath}get locale(){return this.state.locale}get isFallback(){return this.state.isFallback}get isPreview(){return this.state.isPreview}constructor(e,t,n,{initialProps:a,pageLoader:i,App:l,wrapApp:u,Component:s,err:c,subscription:f,isFallback:m,locale:g,locales:_,defaultLocale:b,domainLocales:v,isPreview:P}){this.sdc={},this.sbc={},this.isFirstPopStateEvent=!0,this._key=q(),this.onPopState=e=>{let t;let{isFirstPopStateEvent:r}=this;this.isFirstPopStateEvent=!1;let n=e.state;if(!n){let{pathname:e,query:t}=this;this.changeState("replaceState",(0,y.formatWithValidation)({pathname:(0,w.addBasePath)(e),query:t}),(0,d.getURL)());return}if(n.__NA){window.location.reload();return}if(!n.__N||r&&this.locale===n.options.locale&&n.as===this.asPath)return;let{url:a,as:o,options:i,key:l}=n;this._key=l;let{pathname:u}=(0,p.parseRelativeUrl)(a);(!this.isSsr||o!==(0,w.addBasePath)(this.asPath)||u!==(0,w.addBasePath)(this.pathname))&&(!this._bps||this._bps(n))&&this.change("replaceState",a,o,Object.assign({},i,{shallow:i.shallow&&this._shallow,locale:i.locale||this.defaultLocale,_h:0}),t)};let j=(0,o.removeTrailingSlash)(e);this.components={},"/_error"!==e&&(this.components[j]={Component:s,initial:!0,props:a,err:c,__N_SSG:a&&a.__N_SSG,__N_SSP:a&&a.__N_SSP}),this.components["/_app"]={Component:l,styleSheets:[]};{let{BloomFilter:e}=r(1918),t={numItems:2,errorRate:.01,numBits:20,numHashes:7,bitArray:[0,0,0,1,1,0,1,1,0,0,1,1,0,0,0,1,1,0,1,1]},n={numItems:0,errorRate:.01,numBits:0,numHashes:null,bitArray:[]};(null==t?void 0:t.numHashes)&&(this._bfl_s=new e(t.numItems,t.errorRate),this._bfl_s.import(t)),(null==n?void 0:n.numHashes)&&(this._bfl_d=new e(n.numItems,n.errorRate),this._bfl_d.import(n))}this.events=V.events,this.pageLoader=i;let S=(0,h.isDynamicRoute)(e)&&self.__NEXT_DATA__.autoExport;if(this.basePath="",this.sub=f,this.clc=null,this._wrapApp=u,this.isSsr=!0,this.isLocaleDomain=!1,this.isReady=!!(self.__NEXT_DATA__.gssp||self.__NEXT_DATA__.gip||self.__NEXT_DATA__.appGip&&!self.__NEXT_DATA__.gsp||!S&&!self.location.search),this.state={route:j,pathname:e,query:t,asPath:S?e:n,isPreview:!!P,locale:void 0,isFallback:m},this._initialMatchesMiddlewarePromise=Promise.resolve(!1),!n.startsWith("//")){let r={locale:g},a=(0,d.getURL)();this._initialMatchesMiddlewarePromise=N({router:this,locale:g,asPath:a}).then(o=>(r._shouldResolveHref=n!==e,this.changeState("replaceState",o?a:(0,y.formatWithValidation)({pathname:(0,w.addBasePath)(e),query:t}),a,r),o))}window.addEventListener("popstate",this.onPopState)}}V.events=(0,f.default)()},1968:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"addLocale",{enumerable:!0,get:function(){return o}});let n=r(1484),a=r(9623);function o(e,t,r,o){if(!t||t===r)return e;let i=e.toLowerCase();return!o&&((0,a.pathHasPrefix)(i,"/api")||(0,a.pathHasPrefix)(i,"/"+t.toLowerCase()))?e:(0,n.addPathPrefix)(e,"/"+t)}},1484:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"addPathPrefix",{enumerable:!0,get:function(){return a}});let n=r(7637);function a(e,t){if(!e.startsWith("/")||!t)return e;let{pathname:r,query:a,hash:o}=(0,n.parsePath)(e);return""+t+r+a+o}},4918:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"addPathSuffix",{enumerable:!0,get:function(){return a}});let n=r(7637);function a(e,t){if(!e.startsWith("/")||!t)return e;let{pathname:r,query:a,hash:o}=(0,n.parsePath)(e);return""+r+t+a+o}},7584:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),function(e,t){for(var r in t)Object.defineProperty(e,r,{enumerable:!0,get:t[r]})}(t,{normalizeAppPath:function(){return a},normalizeRscPath:function(){return o}});let n=r(4157);function a(e){return(0,n.ensureLeadingSlash)(e.split("/").reduce((e,t,r,n)=>!t||"("===t[0]&&t.endsWith(")")||"@"===t[0]||("page"===t||"route"===t)&&r===n.length-1?e:e+"/"+t,""))}function o(e,t){return t?e.replace(/\.rsc($|\?)/,"$1"):e}},9245:function(e,t){"use strict";function r(e,t){let r=Object.keys(e);if(r.length!==Object.keys(t).length)return!1;for(let n=r.length;n--;){let a=r[n];if("query"===a){let r=Object.keys(e.query);if(r.length!==Object.keys(t.query).length)return!1;for(let n=r.length;n--;){let a=r[n];if(!t.query.hasOwnProperty(a)||e.query[a]!==t.query[a])return!1}}else if(!t.hasOwnProperty(a)||e[a]!==t[a])return!1}return!0}Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"compareRouterStates",{enumerable:!0,get:function(){return r}})},1703:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"formatNextPathnameInfo",{enumerable:!0,get:function(){return l}});let n=r(5129),a=r(1484),o=r(4918),i=r(1968);function l(e){let t=(0,i.addLocale)(e.pathname,e.locale,e.buildId?void 0:e.defaultLocale,e.ignorePrefix);return(e.buildId||!e.trailingSlash)&&(t=(0,n.removeTrailingSlash)(t)),e.buildId&&(t=(0,o.addPathSuffix)((0,a.addPathPrefix)(t,"/_next/data/"+e.buildId),"/"===e.pathname?"index.json":".json")),t=(0,a.addPathPrefix)(t,e.basePath),!e.buildId&&e.trailingSlash?t.endsWith("/")?t:(0,o.addPathSuffix)(t,"/"):(0,n.removeTrailingSlash)(t)}},2902:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),function(e,t){for(var r in t)Object.defineProperty(e,r,{enumerable:!0,get:t[r]})}(t,{formatUrl:function(){return i},urlObjectKeys:function(){return l},formatWithValidation:function(){return u}});let n=r(1757),a=n._(r(1354)),o=/https?|ftp|gopher|file/;function i(e){let{auth:t,hostname:r}=e,n=e.protocol||"",i=e.pathname||"",l=e.hash||"",u=e.query||"",s=!1;t=t?encodeURIComponent(t).replace(/%3A/i,":")+"@":"",e.host?s=t+e.host:r&&(s=t+(~r.indexOf(":")?"["+r+"]":r),e.port&&(s+=":"+e.port)),u&&"object"==typeof u&&(u=String(a.urlQueryToSearchParams(u)));let c=e.search||u&&"?"+u||"";return n&&!n.endsWith(":")&&(n+=":"),e.slashes||(!n||o.test(n))&&!1!==s?(s="//"+(s||""),i&&"/"!==i[0]&&(i="/"+i)):s||(s=""),l&&"#"!==l[0]&&(l="#"+l),c&&"?"!==c[0]&&(c="?"+c),""+n+s+(i=i.replace(/[?#]/g,encodeURIComponent))+(c=c.replace("#","%23"))+l}let l=["auth","hash","host","hostname","href","path","pathname","port","protocol","query","search","slashes"];function u(e){return i(e)}},5854:function(e,t){"use strict";function r(e,t){void 0===t&&(t="");let r="/"===e?"/index":/^\/index(\/|$)/.test(e)?"/index"+e:""+e;return r+t}Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"default",{enumerable:!0,get:function(){return r}})},5564:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"getNextPathnameInfo",{enumerable:!0,get:function(){return i}});let n=r(4990),a=r(8590),o=r(9623);function i(e,t){var r,i,l;let{basePath:u,i18n:s,trailingSlash:c}=null!=(r=t.nextConfig)?r:{},f={pathname:e,trailingSlash:"/"!==e?e.endsWith("/"):c};if(u&&(0,o.pathHasPrefix)(f.pathname,u)&&(f.pathname=(0,a.removePathPrefix)(f.pathname,u),f.basePath=u),!0===t.parseData&&f.pathname.startsWith("/_next/data/")&&f.pathname.endsWith(".json")){let e=f.pathname.replace(/^\/_next\/data\//,"").replace(/\.json$/,"").split("/"),t=e[0];f.pathname="index"!==e[1]?"/"+e.slice(1).join("/"):"/",f.buildId=t}if(t.i18nProvider){let e=t.i18nProvider.analyze(f.pathname);f.locale=e.detectedLocale,f.pathname=null!=(i=e.pathname)?i:f.pathname}else if(s){let e=(0,n.normalizeLocalePath)(f.pathname,s.locales);f.locale=e.detectedLocale,f.pathname=null!=(l=e.pathname)?l:f.pathname}return f}},1257:function(e,t){"use strict";function r(e,t){if(void 0===t&&(t={}),t.onlyHashChange){e();return}let r=document.documentElement,n=r.style.scrollBehavior;r.style.scrollBehavior="auto",t.dontForceLayout||r.getClientRects(),e(),r.style.scrollBehavior=n}Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"handleSmoothScroll",{enumerable:!0,get:function(){return r}})},9446:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),function(e,t){for(var r in t)Object.defineProperty(e,r,{enumerable:!0,get:t[r]})}(t,{getSortedRoutes:function(){return n.getSortedRoutes},isDynamicRoute:function(){return a.isDynamicRoute}});let n=r(9241),a=r(3702)},1690:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"interpolateAs",{enumerable:!0,get:function(){return o}});let n=r(3660),a=r(2932);function o(e,t,r){let o="",i=(0,a.getRouteRegex)(e),l=i.groups,u=(t!==e?(0,n.getRouteMatcher)(i)(t):"")||r;o=e;let s=Object.keys(l);return s.every(e=>{let t=u[e]||"",{repeat:r,optional:n}=l[e],a="["+(r?"...":"")+e+"]";return n&&(a=(t?"":"/")+"["+a+"]"),r&&!Array.isArray(t)&&(t=[t]),(n||e in u)&&(o=o.replace(a,r?t.map(e=>encodeURIComponent(e)).join("/"):encodeURIComponent(t))||"/")})||(o=""),{params:s,result:o}}},238:function(e,t){"use strict";function r(e){return/Googlebot|Mediapartners-Google|AdsBot-Google|googleweblight|Storebot-Google|Google-PageRenderer|Bingbot|BingPreview|Slurp|DuckDuckBot|baiduspider|yandex|sogou|LinkedInBot|bitlybot|tumblr|vkShare|quora link preview|facebookexternalhit|facebookcatalog|Twitterbot|applebot|redditbot|Slackbot|Discordbot|WhatsApp|SkypeUriPreview|ia_archiver/i.test(e)}Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"isBot",{enumerable:!0,get:function(){return r}})},3702:function(e,t){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"isDynamicRoute",{enumerable:!0,get:function(){return n}});let r=/\/\[[^/]+?\](?=\/|$)/;function n(e){return r.test(e)}},2968:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"isLocalURL",{enumerable:!0,get:function(){return o}});let n=r(7321),a=r(1173);function o(e){if(!(0,n.isAbsoluteUrl)(e))return!0;try{let t=(0,n.getLocationOrigin)(),r=new URL(e,t);return r.origin===t&&(0,a.hasBasePath)(r.pathname)}catch(e){return!1}}},8447:function(e,t){"use strict";function r(e,t){let r={};return Object.keys(e).forEach(n=>{t.includes(n)||(r[n]=e[n])}),r}Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"omit",{enumerable:!0,get:function(){return r}})},7637:function(e,t){"use strict";function r(e){let t=e.indexOf("#"),r=e.indexOf("?"),n=r>-1&&(t<0||r-1?{pathname:e.substring(0,n?r:t),query:n?e.substring(r,t>-1?t:void 0):"",hash:t>-1?e.slice(t):""}:{pathname:e,query:"",hash:""}}Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"parsePath",{enumerable:!0,get:function(){return r}})},137:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"parseRelativeUrl",{enumerable:!0,get:function(){return o}});let n=r(7321),a=r(1354);function o(e,t){let r=new URL((0,n.getLocationOrigin)()),o=t?new URL(t,r):e.startsWith(".")?new URL(window.location.href):r,{pathname:i,searchParams:l,search:u,hash:s,href:c,origin:f}=new URL(e,o);if(f!==r.origin)throw Error("invariant: invalid relative URL, router received "+e);return{pathname:i,query:(0,a.searchParamsToUrlQuery)(l),search:u,hash:s,href:c.slice(r.origin.length)}}},9623:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"pathHasPrefix",{enumerable:!0,get:function(){return a}});let n=r(7637);function a(e,t){if("string"!=typeof e)return!1;let{pathname:r}=(0,n.parsePath)(e);return r===t||r.startsWith(t+"/")}},1354:function(e,t){"use strict";function r(e){let t={};return e.forEach((e,r)=>{void 0===t[r]?t[r]=e:Array.isArray(t[r])?t[r].push(e):t[r]=[t[r],e]}),t}function n(e){return"string"!=typeof e&&("number"!=typeof e||isNaN(e))&&"boolean"!=typeof e?"":String(e)}function a(e){let t=new URLSearchParams;return Object.entries(e).forEach(e=>{let[r,a]=e;Array.isArray(a)?a.forEach(e=>t.append(r,n(e))):t.set(r,n(a))}),t}function o(e){for(var t=arguments.length,r=Array(t>1?t-1:0),n=1;n{Array.from(t.keys()).forEach(t=>e.delete(t)),t.forEach((t,r)=>e.append(r,t))}),e}Object.defineProperty(t,"__esModule",{value:!0}),function(e,t){for(var r in t)Object.defineProperty(e,r,{enumerable:!0,get:t[r]})}(t,{searchParamsToUrlQuery:function(){return r},urlQueryToSearchParams:function(){return a},assign:function(){return o}})},8590:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"removePathPrefix",{enumerable:!0,get:function(){return a}});let n=r(9623);function a(e,t){if(!(0,n.pathHasPrefix)(e,t))return e;let r=e.slice(t.length);return r.startsWith("/")?r:"/"+r}},5129:function(e,t){"use strict";function r(e){return e.replace(/\/$/,"")||"/"}Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"removeTrailingSlash",{enumerable:!0,get:function(){return r}})},2862:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"resolveHref",{enumerable:!0,get:function(){return f}});let n=r(1354),a=r(2902),o=r(8447),i=r(7321),l=r(3785),u=r(2968),s=r(3702),c=r(1690);function f(e,t,r){let f;let d="string"==typeof t?t:(0,a.formatWithValidation)(t),h=d.match(/^[a-zA-Z]{1,}:\/\//),p=h?d.slice(h[0].length):d;if((p.split("?")[0]||"").match(/(\/\/|\\)/)){console.error("Invalid href '"+d+"' passed to next/router in page: '"+e.pathname+"'. Repeated forward-slashes (//) or backslashes \\ are not valid in the href.");let t=(0,i.normalizeRepeatedSlashes)(p);d=(h?h[0]:"")+t}if(!(0,u.isLocalURL)(d))return r?[d]:d;try{f=new URL(d.startsWith("#")?e.asPath:e.pathname,"http://n")}catch(e){f=new URL("/","http://n")}try{let e=new URL(d,f);e.pathname=(0,l.normalizePathTrailingSlash)(e.pathname);let t="";if((0,s.isDynamicRoute)(e.pathname)&&e.searchParams&&r){let r=(0,n.searchParamsToUrlQuery)(e.searchParams),{result:i,params:l}=(0,c.interpolateAs)(e.pathname,e.pathname,r);i&&(t=(0,a.formatWithValidation)({pathname:i,hash:e.hash,query:(0,o.omit)(r,l)}))}let i=e.origin===f.origin?e.href.slice(e.origin.length):e.href;return r?[i,t||i]:i}catch(e){return r?[d]:d}}},3660:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"getRouteMatcher",{enumerable:!0,get:function(){return a}});let n=r(7321);function a(e){let{re:t,groups:r}=e;return e=>{let a=t.exec(e);if(!a)return!1;let o=e=>{try{return decodeURIComponent(e)}catch(e){throw new n.DecodeError("failed to decode param")}},i={};return Object.keys(r).forEach(e=>{let t=r[e],n=a[t.pos];void 0!==n&&(i[e]=~n.indexOf("/")?n.split("/").map(e=>o(e)):t.repeat?[o(n)]:o(n))}),i}}},2932:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),function(e,t){for(var r in t)Object.defineProperty(e,r,{enumerable:!0,get:t[r]})}(t,{getRouteRegex:function(){return u},getNamedRouteRegex:function(){return f},getNamedMiddlewareRegex:function(){return d}});let n=r(2407),a=r(9434),o=r(5129);function i(e){let t=e.startsWith("[")&&e.endsWith("]");t&&(e=e.slice(1,-1));let r=e.startsWith("...");return r&&(e=e.slice(3)),{key:e,repeat:r,optional:t}}function l(e){let t=(0,o.removeTrailingSlash)(e).slice(1).split("/"),r={},l=1;return{parameterizedRoute:t.map(e=>{let t=n.INTERCEPTION_ROUTE_MARKERS.find(t=>e.startsWith(t)),o=e.match(/\[((?:\[.*\])|.+)\]/);if(t&&o){let{key:e,optional:n,repeat:u}=i(o[1]);return r[e]={pos:l++,repeat:u,optional:n},"/"+(0,a.escapeStringRegexp)(t)+"([^/]+?)"}if(!o)return"/"+(0,a.escapeStringRegexp)(e);{let{key:e,repeat:t,optional:n}=i(o[1]);return r[e]={pos:l++,repeat:t,optional:n},t?n?"(?:/(.+?))?":"/(.+?)":"/([^/]+?)"}}).join(""),groups:r}}function u(e){let{parameterizedRoute:t,groups:r}=l(e);return{re:RegExp("^"+t+"(?:/)?$"),groups:r}}function s(e){let t,r,{segment:n,routeKeys:a,keyPrefix:o}=e,l=(t=97,r=1,()=>{let e="";for(let n=0;n122&&(r++,t=97);return e}),{key:u,optional:s,repeat:c}=i(n),f=u.replace(/\W/g,"");o&&(f=""+o+f);let d=!1;return(0===f.length||f.length>30)&&(d=!0),isNaN(parseInt(f.slice(0,1)))||(d=!0),d&&(f=l()),o?a[f]=""+o+u:a[f]=""+u,c?s?"(?:/(?<"+f+">.+?))?":"/(?<"+f+">.+?)":"/(?<"+f+">[^/]+?)"}function c(e,t){let r=(0,o.removeTrailingSlash)(e).slice(1).split("/"),i={};return{namedParameterizedRoute:r.map(e=>{let r=n.INTERCEPTION_ROUTE_MARKERS.some(t=>e.startsWith(t)),o=e.match(/\[((?:\[.*\])|.+)\]/);return r&&o?s({segment:o[1],routeKeys:i,keyPrefix:t?"nxtI":void 0}):o?s({segment:o[1],routeKeys:i,keyPrefix:t?"nxtP":void 0}):"/"+(0,a.escapeStringRegexp)(e)}).join(""),routeKeys:i}}function f(e,t){let r=c(e,t);return{...u(e),namedRegex:"^"+r.namedParameterizedRoute+"(?:/)?$",routeKeys:r.routeKeys}}function d(e,t){let{parameterizedRoute:r}=l(e),{catchAll:n=!0}=t;if("/"===r)return{namedRegex:"^/"+(n?".*":"")+"$"};let{namedParameterizedRoute:a}=c(e,!1);return{namedRegex:"^"+a+(n?"(?:(/.*)?)":"")+"$"}}},9241:function(e,t){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"getSortedRoutes",{enumerable:!0,get:function(){return n}});class r{insert(e){this._insert(e.split("/").filter(Boolean),[],!1)}smoosh(){return this._smoosh()}_smoosh(e){void 0===e&&(e="/");let t=[...this.children.keys()].sort();null!==this.slugName&&t.splice(t.indexOf("[]"),1),null!==this.restSlugName&&t.splice(t.indexOf("[...]"),1),null!==this.optionalRestSlugName&&t.splice(t.indexOf("[[...]]"),1);let r=t.map(t=>this.children.get(t)._smoosh(""+e+t+"/")).reduce((e,t)=>[...e,...t],[]);if(null!==this.slugName&&r.push(...this.children.get("[]")._smoosh(e+"["+this.slugName+"]/")),!this.placeholder){let t="/"===e?"/":e.slice(0,-1);if(null!=this.optionalRestSlugName)throw Error('You cannot define a route with the same specificity as a optional catch-all route ("'+t+'" and "'+t+"[[..."+this.optionalRestSlugName+']]").');r.unshift(t)}return null!==this.restSlugName&&r.push(...this.children.get("[...]")._smoosh(e+"[..."+this.restSlugName+"]/")),null!==this.optionalRestSlugName&&r.push(...this.children.get("[[...]]")._smoosh(e+"[[..."+this.optionalRestSlugName+"]]/")),r}_insert(e,t,n){if(0===e.length){this.placeholder=!1;return}if(n)throw Error("Catch-all must be the last part of the URL.");let a=e[0];if(a.startsWith("[")&&a.endsWith("]")){let r=a.slice(1,-1),i=!1;if(r.startsWith("[")&&r.endsWith("]")&&(r=r.slice(1,-1),i=!0),r.startsWith("...")&&(r=r.substring(3),n=!0),r.startsWith("[")||r.endsWith("]"))throw Error("Segment names may not start or end with extra brackets ('"+r+"').");if(r.startsWith("."))throw Error("Segment names may not start with erroneous periods ('"+r+"').");function o(e,r){if(null!==e&&e!==r)throw Error("You cannot use different slug names for the same dynamic path ('"+e+"' !== '"+r+"').");t.forEach(e=>{if(e===r)throw Error('You cannot have the same slug name "'+r+'" repeat within a single dynamic path');if(e.replace(/\W/g,"")===a.replace(/\W/g,""))throw Error('You cannot have the slug names "'+e+'" and "'+r+'" differ only by non-word symbols within a single dynamic path')}),t.push(r)}if(n){if(i){if(null!=this.restSlugName)throw Error('You cannot use both an required and optional catch-all route at the same level ("[...'+this.restSlugName+']" and "'+e[0]+'" ).');o(this.optionalRestSlugName,r),this.optionalRestSlugName=r,a="[[...]]"}else{if(null!=this.optionalRestSlugName)throw Error('You cannot use both an optional and required catch-all route at the same level ("[[...'+this.optionalRestSlugName+']]" and "'+e[0]+'").');o(this.restSlugName,r),this.restSlugName=r,a="[...]"}}else{if(i)throw Error('Optional route parameters are not yet supported ("'+e[0]+'").');o(this.slugName,r),this.slugName=r,a="[]"}}this.children.has(a)||this.children.set(a,new r),this.children.get(a)._insert(e.slice(1),t,n)}constructor(){this.placeholder=!0,this.children=new Map,this.slugName=null,this.restSlugName=null,this.optionalRestSlugName=null}}function n(e){let t=new r;return e.forEach(e=>t.insert(e)),t.smoosh()}},1858:function(e,t){"use strict";let r;Object.defineProperty(t,"__esModule",{value:!0}),function(e,t){for(var r in t)Object.defineProperty(e,r,{enumerable:!0,get:t[r]})}(t,{default:function(){return n},setConfig:function(){return a}});let n=()=>r;function a(e){r=e}("function"==typeof t.default||"object"==typeof t.default&&null!==t.default)&&void 0===t.default.__esModule&&(Object.defineProperty(t.default,"__esModule",{value:!0}),Object.assign(t.default,t),e.exports=t.default)},5126:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"default",{enumerable:!0,get:function(){return l}});let n=r(1757),a=n._(r(7294)),o=a.useLayoutEffect,i=a.useEffect;function l(e){let{headManager:t,reduceComponentsToState:r}=e;function n(){if(t&&t.mountedInstances){let n=a.Children.toArray(Array.from(t.mountedInstances).filter(Boolean));t.updateHead(r(n,e))}}return o(()=>{var r;return null==t||null==(r=t.mountedInstances)||r.add(e.children),()=>{var r;null==t||null==(r=t.mountedInstances)||r.delete(e.children)}}),o(()=>(t&&(t._pendingUpdate=n),()=>{t&&(t._pendingUpdate=n)})),i(()=>(t&&t._pendingUpdate&&(t._pendingUpdate(),t._pendingUpdate=null),()=>{t&&t._pendingUpdate&&(t._pendingUpdate(),t._pendingUpdate=null)})),null}},7321:function(e,t){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),function(e,t){for(var r in t)Object.defineProperty(e,r,{enumerable:!0,get:t[r]})}(t,{WEB_VITALS:function(){return r},execOnce:function(){return n},isAbsoluteUrl:function(){return o},getLocationOrigin:function(){return i},getURL:function(){return l},getDisplayName:function(){return u},isResSent:function(){return s},normalizeRepeatedSlashes:function(){return c},loadGetInitialProps:function(){return f},SP:function(){return d},ST:function(){return h},DecodeError:function(){return p},NormalizeError:function(){return m},PageNotFoundError:function(){return g},MissingStaticPage:function(){return y},MiddlewareNotFoundError:function(){return _},stringifyError:function(){return b}});let r=["CLS","FCP","FID","INP","LCP","TTFB"];function n(e){let t,r=!1;return function(){for(var n=arguments.length,a=Array(n),o=0;oa.test(e);function i(){let{protocol:e,hostname:t,port:r}=window.location;return e+"//"+t+(r?":"+r:"")}function l(){let{href:e}=window.location,t=i();return e.substring(t.length)}function u(e){return"string"==typeof e?e:e.displayName||e.name||"Unknown"}function s(e){return e.finished||e.headersSent}function c(e){let t=e.split("?"),r=t[0];return r.replace(/\\/g,"/").replace(/\/\/+/g,"/")+(t[1]?"?"+t.slice(1).join("?"):"")}async function f(e,t){let r=t.res||t.ctx&&t.ctx.res;if(!e.getInitialProps)return t.ctx&&t.Component?{pageProps:await f(t.Component,t.ctx)}:{};let n=await e.getInitialProps(t);if(r&&s(r))return n;if(!n){let t='"'+u(e)+'.getInitialProps()" should resolve to an object. But found "'+n+'" instead.';throw Error(t)}return n}let d="undefined"!=typeof performance,h=d&&["mark","measure","getEntriesByName"].every(e=>"function"==typeof performance[e]);class p extends Error{}class m extends Error{}class g extends Error{constructor(e){super(),this.code="ENOENT",this.name="PageNotFoundError",this.message="Cannot find module for page: "+e}}class y extends Error{constructor(e,t){super(),this.message="Failed to load static file for page: "+e+" "+t}}class _ extends Error{constructor(){super(),this.code="ENOENT",this.message="Cannot find the middleware module"}}function b(e){return JSON.stringify({message:e.message,stack:e.stack})}},2078:function(e,t){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"warnOnce",{enumerable:!0,get:function(){return r}});let r=e=>{}},8018:function(e){var t,r,n,a,o,i,l,u,s,c,f,d,h,p,m,g,y,_,b,v,P,w,j,S,E,O,R,x,C,M,A,L,I,T,N,k,D,B,H,U,F,W,q,z,G,V;(t={}).d=function(e,r){for(var n in r)t.o(r,n)&&!t.o(e,n)&&Object.defineProperty(e,n,{enumerable:!0,get:r[n]})},t.o=function(e,t){return Object.prototype.hasOwnProperty.call(e,t)},t.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},void 0!==t&&(t.ab="//"),r={},t.r(r),t.d(r,{getCLS:function(){return j},getFCP:function(){return v},getFID:function(){return M},getINP:function(){return W},getLCP:function(){return z},getTTFB:function(){return V},onCLS:function(){return j},onFCP:function(){return v},onFID:function(){return M},onINP:function(){return W},onLCP:function(){return z},onTTFB:function(){return V}}),u=-1,s=function(e){addEventListener("pageshow",function(t){t.persisted&&(u=t.timeStamp,e(t))},!0)},c=function(){return window.performance&&performance.getEntriesByType&&performance.getEntriesByType("navigation")[0]},f=function(){var e=c();return e&&e.activationStart||0},d=function(e,t){var r=c(),n="navigate";return u>=0?n="back-forward-cache":r&&(n=document.prerendering||f()>0?"prerender":r.type.replace(/_/g,"-")),{name:e,value:void 0===t?-1:t,rating:"good",delta:0,entries:[],id:"v3-".concat(Date.now(),"-").concat(Math.floor(8999999999999*Math.random())+1e12),navigationType:n}},h=function(e,t,r){try{if(PerformanceObserver.supportedEntryTypes.includes(e)){var n=new PerformanceObserver(function(e){t(e.getEntries())});return n.observe(Object.assign({type:e,buffered:!0},r||{})),n}}catch(e){}},p=function(e,t){var r=function r(n){"pagehide"!==n.type&&"hidden"!==document.visibilityState||(e(n),t&&(removeEventListener("visibilitychange",r,!0),removeEventListener("pagehide",r,!0)))};addEventListener("visibilitychange",r,!0),addEventListener("pagehide",r,!0)},m=function(e,t,r,n){var a,o;return function(i){var l;t.value>=0&&(i||n)&&((o=t.value-(a||0))||void 0===a)&&(a=t.value,t.delta=o,t.rating=(l=t.value)>r[1]?"poor":l>r[0]?"needs-improvement":"good",e(t))}},g=-1,y=function(){return"hidden"!==document.visibilityState||document.prerendering?1/0:0},_=function(){p(function(e){g=e.timeStamp},!0)},b=function(){return g<0&&(g=y(),_(),s(function(){setTimeout(function(){g=y(),_()},0)})),{get firstHiddenTime(){return g}}},v=function(e,t){t=t||{};var r,n=[1800,3e3],a=b(),o=d("FCP"),i=function(e){e.forEach(function(e){"first-contentful-paint"===e.name&&(u&&u.disconnect(),e.startTime-1&&e(t)},o=d("CLS",0),i=0,l=[],u=function(e){e.forEach(function(e){if(!e.hadRecentInput){var t=l[0],r=l[l.length-1];i&&e.startTime-r.startTime<1e3&&e.startTime-t.startTime<5e3?(i+=e.value,l.push(e)):(i=e.value,l=[e]),i>o.value&&(o.value=i,o.entries=l,n())}})},c=h("layout-shift",u);c&&(n=m(a,o,r,t.reportAllChanges),p(function(){u(c.takeRecords()),n(!0)}),s(function(){i=0,w=-1,n=m(a,o=d("CLS",0),r,t.reportAllChanges)}))},S={passive:!0,capture:!0},E=new Date,O=function(e,t){n||(n=t,a=e,o=new Date,C(removeEventListener),R())},R=function(){if(a>=0&&a1e12?new Date:performance.now())-e.timeStamp;"pointerdown"==e.type?(t=function(){O(a,e),n()},r=function(){n()},n=function(){removeEventListener("pointerup",t,S),removeEventListener("pointercancel",r,S)},addEventListener("pointerup",t,S),addEventListener("pointercancel",r,S)):O(a,e)}},C=function(e){["mousedown","keydown","touchstart","pointerdown"].forEach(function(t){return e(t,x,S)})},M=function(e,t){t=t||{};var r,o=[100,300],l=b(),u=d("FID"),c=function(e){e.startTimet.latency){if(r)r.entries.push(e),r.latency=Math.max(r.latency,e.duration);else{var n={id:e.interactionId,latency:e.duration,entries:[e]};U[n.id]=n,H.push(n)}H.sort(function(e,t){return t.latency-e.latency}),H.splice(10).forEach(function(e){delete U[e.id]})}},W=function(e,t){t=t||{};var r=[200,500];k();var n,a=d("INP"),o=function(e){e.forEach(function(e){e.interactionId&&F(e),"first-input"!==e.entryType||H.some(function(t){return t.entries.some(function(t){return e.duration===t.duration&&e.startTime===t.startTime})})||F(e)});var t,r=(t=Math.min(H.length-1,Math.floor(B()/50)),H[t]);r&&r.latency!==a.value&&(a.value=r.latency,a.entries=r.entries,n())},i=h("event",o,{durationThreshold:t.durationThreshold||40});n=m(e,a,r,t.reportAllChanges),i&&(i.observe({type:"first-input",buffered:!0}),p(function(){o(i.takeRecords()),a.value<0&&B()>0&&(a.value=0,a.entries=[]),n(!0)}),s(function(){H=[],D=N(),n=m(e,a=d("INP"),r,t.reportAllChanges)}))},q={},z=function(e,t){t=t||{};var r,n=[2500,4e3],a=b(),o=d("LCP"),i=function(e){var t=e[e.length-1];if(t){var n=t.startTime-f();nperformance.now())return;n.entries=[o],a(!0),s(function(){(a=m(e,n=d("TTFB",0),r,t.reportAllChanges))(!0)})}})},e.exports=r},9423:function(e,t){"use strict";function r(e){return"/api"===e||!!(null==e?void 0:e.startsWith("/api/"))}Object.defineProperty(t,"__esModule",{value:!0}),Object.defineProperty(t,"isAPIRoute",{enumerable:!0,get:function(){return r}})},676:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),function(e,t){for(var r in t)Object.defineProperty(e,r,{enumerable:!0,get:t[r]})}(t,{default:function(){return a},getProperError:function(){return o}});let n=r(8325);function a(e){return"object"==typeof e&&null!==e&&"name"in e&&"message"in e}function o(e){return a(e)?e:Error((0,n.isPlainObject)(e)?JSON.stringify(e):e+"")}},2407:function(e,t,r){"use strict";Object.defineProperty(t,"__esModule",{value:!0}),function(e,t){for(var r in t)Object.defineProperty(e,r,{enumerable:!0,get:t[r]})}(t,{INTERCEPTION_ROUTE_MARKERS:function(){return a},isInterceptionRouteAppPath:function(){return o},extractInterceptionRouteInformation:function(){return i}});let n=r(7584),a=["(..)(..)","(.)","(..)","(...)"];function o(e){return void 0!==e.split("/").find(e=>a.find(t=>e.startsWith(t)))}function i(e){let t,r,o;for(let n of e.split("/"))if(r=a.find(e=>n.startsWith(e))){[t,o]=e.split(r,2);break}if(!t||!r||!o)throw Error(`Invalid interception route: ${e}. Must be in the format //(..|...|..)(..)/`);switch(t=(0,n.normalizeAppPath)(t),r){case"(.)":o="/"===t?`/${o}`:t+"/"+o;break;case"(..)":if("/"===t)throw Error(`Invalid interception route: ${e}. Cannot use (..) marker at the root level, use (.) instead.`);o=t.split("/").slice(0,-1).concat(o).join("/");break;case"(...)":o="/"+o;break;case"(..)(..)":let i=t.split("/");if(i.length<=2)throw Error(`Invalid interception route: ${e}. Cannot use (..)(..) marker at the root level or one level up.`);o=i.slice(0,-2).concat(o).join("/");break;default:throw Error("Invariant: unexpected marker")}return{interceptingRoute:t,interceptedRoute:o}}},2431:function(){},8754:function(e,t,r){"use strict";function n(e){return e&&e.__esModule?e:{default:e}}r.r(t),r.d(t,{_:function(){return n},_interop_require_default:function(){return n}})},1757:function(e,t,r){"use strict";function n(e){if("function"!=typeof WeakMap)return null;var t=new WeakMap,r=new WeakMap;return(n=function(e){return e?r:t})(e)}function a(e,t){if(!t&&e&&e.__esModule)return e;if(null===e||"object"!=typeof e&&"function"!=typeof e)return{default:e};var r=n(t);if(r&&r.has(e))return r.get(e);var a={},o=Object.defineProperty&&Object.getOwnPropertyDescriptor;for(var i in e)if("default"!==i&&Object.prototype.hasOwnProperty.call(e,i)){var l=o?Object.getOwnPropertyDescriptor(e,i):null;l&&(l.get||l.set)?Object.defineProperty(a,i,l):a[i]=e[i]}return a.default=e,r&&r.set(e,a),a}r.r(t),r.d(t,{_:function(){return a},_interop_require_wildcard:function(){return a}})}},function(e){e.O(0,[774],function(){return e(e.s=1019)}),_N_E=e.O()}]); \ No newline at end of file diff --git a/spaces/XlalalaX/VITS-Umamusume-voice-synthesizer/attentions.py b/spaces/XlalalaX/VITS-Umamusume-voice-synthesizer/attentions.py deleted file mode 100644 index 86bc73b5fe98cc7b443e9078553920346c996707..0000000000000000000000000000000000000000 --- a/spaces/XlalalaX/VITS-Umamusume-voice-synthesizer/attentions.py +++ /dev/null @@ -1,300 +0,0 @@ -import math -import torch -from torch import nn -from torch.nn import functional as F - -import commons -from modules import LayerNorm - - -class Encoder(nn.Module): - def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs): - super().__init__() - self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads - self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.window_size = window_size - - self.drop = nn.Dropout(p_dropout) - self.attn_layers = nn.ModuleList() - self.norm_layers_1 = nn.ModuleList() - self.ffn_layers = nn.ModuleList() - self.norm_layers_2 = nn.ModuleList() - for i in range(self.n_layers): - self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size)) - self.norm_layers_1.append(LayerNorm(hidden_channels)) - self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout)) - self.norm_layers_2.append(LayerNorm(hidden_channels)) - - def forward(self, x, x_mask): - attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) - x = x * x_mask - for i in range(self.n_layers): - y = self.attn_layers[i](x, x, attn_mask) - y = self.drop(y) - x = self.norm_layers_1[i](x + y) - - y = self.ffn_layers[i](x, x_mask) - y = self.drop(y) - x = self.norm_layers_2[i](x + y) - x = x * x_mask - return x - - -class Decoder(nn.Module): - def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs): - super().__init__() - self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads - self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.proximal_bias = proximal_bias - self.proximal_init = proximal_init - - self.drop = nn.Dropout(p_dropout) - self.self_attn_layers = nn.ModuleList() - self.norm_layers_0 = nn.ModuleList() - self.encdec_attn_layers = nn.ModuleList() - self.norm_layers_1 = nn.ModuleList() - self.ffn_layers = nn.ModuleList() - self.norm_layers_2 = nn.ModuleList() - for i in range(self.n_layers): - self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init)) - self.norm_layers_0.append(LayerNorm(hidden_channels)) - self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout)) - self.norm_layers_1.append(LayerNorm(hidden_channels)) - self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True)) - self.norm_layers_2.append(LayerNorm(hidden_channels)) - - def forward(self, x, x_mask, h, h_mask): - """ - x: decoder input - h: encoder output - """ - self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype) - encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1) - x = x * x_mask - for i in range(self.n_layers): - y = self.self_attn_layers[i](x, x, self_attn_mask) - y = self.drop(y) - x = self.norm_layers_0[i](x + y) - - y = self.encdec_attn_layers[i](x, h, encdec_attn_mask) - y = self.drop(y) - x = self.norm_layers_1[i](x + y) - - y = self.ffn_layers[i](x, x_mask) - y = self.drop(y) - x = self.norm_layers_2[i](x + y) - x = x * x_mask - return x - - -class MultiHeadAttention(nn.Module): - def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False): - super().__init__() - assert channels % n_heads == 0 - - self.channels = channels - self.out_channels = out_channels - self.n_heads = n_heads - self.p_dropout = p_dropout - self.window_size = window_size - self.heads_share = heads_share - self.block_length = block_length - self.proximal_bias = proximal_bias - self.proximal_init = proximal_init - self.attn = None - - self.k_channels = channels // n_heads - self.conv_q = nn.Conv1d(channels, channels, 1) - self.conv_k = nn.Conv1d(channels, channels, 1) - self.conv_v = nn.Conv1d(channels, channels, 1) - self.conv_o = nn.Conv1d(channels, out_channels, 1) - self.drop = nn.Dropout(p_dropout) - - if window_size is not None: - n_heads_rel = 1 if heads_share else n_heads - rel_stddev = self.k_channels**-0.5 - self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) - self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) - - nn.init.xavier_uniform_(self.conv_q.weight) - nn.init.xavier_uniform_(self.conv_k.weight) - nn.init.xavier_uniform_(self.conv_v.weight) - if proximal_init: - with torch.no_grad(): - self.conv_k.weight.copy_(self.conv_q.weight) - self.conv_k.bias.copy_(self.conv_q.bias) - - def forward(self, x, c, attn_mask=None): - q = self.conv_q(x) - k = self.conv_k(c) - v = self.conv_v(c) - - x, self.attn = self.attention(q, k, v, mask=attn_mask) - - x = self.conv_o(x) - return x - - def attention(self, query, key, value, mask=None): - # reshape [b, d, t] -> [b, n_h, t, d_k] - b, d, t_s, t_t = (*key.size(), query.size(2)) - query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3) - key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) - value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) - - scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1)) - if self.window_size is not None: - assert t_s == t_t, "Relative attention is only available for self-attention." - key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s) - rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings) - scores_local = self._relative_position_to_absolute_position(rel_logits) - scores = scores + scores_local - if self.proximal_bias: - assert t_s == t_t, "Proximal bias is only available for self-attention." - scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype) - if mask is not None: - scores = scores.masked_fill(mask == 0, -1e4) - if self.block_length is not None: - assert t_s == t_t, "Local attention is only available for self-attention." - block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length) - scores = scores.masked_fill(block_mask == 0, -1e4) - p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s] - p_attn = self.drop(p_attn) - output = torch.matmul(p_attn, value) - if self.window_size is not None: - relative_weights = self._absolute_position_to_relative_position(p_attn) - value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s) - output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings) - output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t] - return output, p_attn - - def _matmul_with_relative_values(self, x, y): - """ - x: [b, h, l, m] - y: [h or 1, m, d] - ret: [b, h, l, d] - """ - ret = torch.matmul(x, y.unsqueeze(0)) - return ret - - def _matmul_with_relative_keys(self, x, y): - """ - x: [b, h, l, d] - y: [h or 1, m, d] - ret: [b, h, l, m] - """ - ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1)) - return ret - - def _get_relative_embeddings(self, relative_embeddings, length): - max_relative_position = 2 * self.window_size + 1 - # Pad first before slice to avoid using cond ops. - pad_length = max(length - (self.window_size + 1), 0) - slice_start_position = max((self.window_size + 1) - length, 0) - slice_end_position = slice_start_position + 2 * length - 1 - if pad_length > 0: - padded_relative_embeddings = F.pad( - relative_embeddings, - commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]])) - else: - padded_relative_embeddings = relative_embeddings - used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position] - return used_relative_embeddings - - def _relative_position_to_absolute_position(self, x): - """ - x: [b, h, l, 2*l-1] - ret: [b, h, l, l] - """ - batch, heads, length, _ = x.size() - # Concat columns of pad to shift from relative to absolute indexing. - x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]])) - - # Concat extra elements so to add up to shape (len+1, 2*len-1). - x_flat = x.view([batch, heads, length * 2 * length]) - x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]])) - - # Reshape and slice out the padded elements. - x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:] - return x_final - - def _absolute_position_to_relative_position(self, x): - """ - x: [b, h, l, l] - ret: [b, h, l, 2*l-1] - """ - batch, heads, length, _ = x.size() - # padd along column - x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]])) - x_flat = x.view([batch, heads, length**2 + length*(length -1)]) - # add 0's in the beginning that will skew the elements after reshape - x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]])) - x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:] - return x_final - - def _attention_bias_proximal(self, length): - """Bias for self-attention to encourage attention to close positions. - Args: - length: an integer scalar. - Returns: - a Tensor with shape [1, 1, length, length] - """ - r = torch.arange(length, dtype=torch.float32) - diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1) - return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0) - - -class FFN(nn.Module): - def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False): - super().__init__() - self.in_channels = in_channels - self.out_channels = out_channels - self.filter_channels = filter_channels - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.activation = activation - self.causal = causal - - if causal: - self.padding = self._causal_padding - else: - self.padding = self._same_padding - - self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size) - self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size) - self.drop = nn.Dropout(p_dropout) - - def forward(self, x, x_mask): - x = self.conv_1(self.padding(x * x_mask)) - if self.activation == "gelu": - x = x * torch.sigmoid(1.702 * x) - else: - x = torch.relu(x) - x = self.drop(x) - x = self.conv_2(self.padding(x * x_mask)) - return x * x_mask - - def _causal_padding(self, x): - if self.kernel_size == 1: - return x - pad_l = self.kernel_size - 1 - pad_r = 0 - padding = [[0, 0], [0, 0], [pad_l, pad_r]] - x = F.pad(x, commons.convert_pad_shape(padding)) - return x - - def _same_padding(self, x): - if self.kernel_size == 1: - return x - pad_l = (self.kernel_size - 1) // 2 - pad_r = self.kernel_size // 2 - padding = [[0, 0], [0, 0], [pad_l, pad_r]] - x = F.pad(x, commons.convert_pad_shape(padding)) - return x diff --git a/spaces/XlalalaX/VITS-Umamusume-voice-synthesizer/mel_processing.py b/spaces/XlalalaX/VITS-Umamusume-voice-synthesizer/mel_processing.py deleted file mode 100644 index 3e252e76320522a8a4195a60665168f22769aec2..0000000000000000000000000000000000000000 --- a/spaces/XlalalaX/VITS-Umamusume-voice-synthesizer/mel_processing.py +++ /dev/null @@ -1,101 +0,0 @@ -import torch -import torch.utils.data -from librosa.filters import mel as librosa_mel_fn - -MAX_WAV_VALUE = 32768.0 - - -def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): - """ - PARAMS - ------ - C: compression factor - """ - return torch.log(torch.clamp(x, min=clip_val) * C) - - -def dynamic_range_decompression_torch(x, C=1): - """ - PARAMS - ------ - C: compression factor used to compress - """ - return torch.exp(x) / C - - -def spectral_normalize_torch(magnitudes): - output = dynamic_range_compression_torch(magnitudes) - return output - - -def spectral_de_normalize_torch(magnitudes): - output = dynamic_range_decompression_torch(magnitudes) - return output - - -mel_basis = {} -hann_window = {} - - -def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False): - if torch.min(y) < -1.: - print('min value is ', torch.min(y)) - if torch.max(y) > 1.: - print('max value is ', torch.max(y)) - - global hann_window - dtype_device = str(y.dtype) + '_' + str(y.device) - wnsize_dtype_device = str(win_size) + '_' + dtype_device - if wnsize_dtype_device not in hann_window: - hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) - - y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect') - y = y.squeeze(1) - - spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], - center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False) - - spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) - return spec - - -def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax): - global mel_basis - dtype_device = str(spec.dtype) + '_' + str(spec.device) - fmax_dtype_device = str(fmax) + '_' + dtype_device - if fmax_dtype_device not in mel_basis: - mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax) - mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device) - spec = torch.matmul(mel_basis[fmax_dtype_device], spec) - spec = spectral_normalize_torch(spec) - return spec - - -def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False): - if torch.min(y) < -1.: - print('min value is ', torch.min(y)) - if torch.max(y) > 1.: - print('max value is ', torch.max(y)) - - global mel_basis, hann_window - dtype_device = str(y.dtype) + '_' + str(y.device) - fmax_dtype_device = str(fmax) + '_' + dtype_device - wnsize_dtype_device = str(win_size) + '_' + dtype_device - if fmax_dtype_device not in mel_basis: - mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax) - mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device) - if wnsize_dtype_device not in hann_window: - hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) - - y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect') - y = y.squeeze(1) - - spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], - center=center, pad_mode='reflect', normalized=False, onesided=True) - - spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) - - spec = torch.matmul(mel_basis[fmax_dtype_device], spec) - spec = spectral_normalize_torch(spec) - - return spec diff --git a/spaces/XyBr0/test/app.py b/spaces/XyBr0/test/app.py deleted file mode 100644 index 7b18653059afecad08d489b6709ac27619958254..0000000000000000000000000000000000000000 --- a/spaces/XyBr0/test/app.py +++ /dev/null @@ -1,18 +0,0 @@ -from fastai.vision.all import * -import gradio as gr - -def is_cat(x): return x[0].isupper() - -learn = load_learner('model.pkl') - -categories = ('Dog', 'Cat') - -def classify_image(img): - pred,idx,probs = learn.predict(img) - return dict(zip(categories, map(float,probs))) - -image = gr.inputs.Image(shape=(192, 192)) -label = gr.outputs.Label() - -intf = gr.Interface(fn=classify_image, inputs=image, outputs=label) -intf.launch(inline=False) \ No newline at end of file diff --git a/spaces/YeOldHermit/Super-Resolution-Anime-Diffusion/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py b/spaces/YeOldHermit/Super-Resolution-Anime-Diffusion/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py deleted file mode 100644 index 09bdca54accfb51cd12afa1a103d2f88a909215b..0000000000000000000000000000000000000000 --- a/spaces/YeOldHermit/Super-Resolution-Anime-Diffusion/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py +++ /dev/null @@ -1,171 +0,0 @@ -import inspect -from typing import Optional, Tuple, Union - -import numpy as np -import torch -import torch.utils.checkpoint - -import PIL - -from ...models import UNet2DModel, VQModel -from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput -from ...schedulers import ( - DDIMScheduler, - DPMSolverMultistepScheduler, - EulerAncestralDiscreteScheduler, - EulerDiscreteScheduler, - LMSDiscreteScheduler, - PNDMScheduler, -) -from ...utils import PIL_INTERPOLATION, deprecate - - -def preprocess(image): - w, h = image.size - w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32 - image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]) - image = np.array(image).astype(np.float32) / 255.0 - image = image[None].transpose(0, 3, 1, 2) - image = torch.from_numpy(image) - return 2.0 * image - 1.0 - - -class LDMSuperResolutionPipeline(DiffusionPipeline): - r""" - A pipeline for image super-resolution using Latent - - This class inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the - library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) - - Parameters: - vqvae ([`VQModel`]): - Vector-quantized (VQ) VAE Model to encode and decode images to and from latent representations. - unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image. - scheduler ([`SchedulerMixin`]): - A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of - [`DDIMScheduler`], [`LMSDiscreteScheduler`], [`EulerDiscreteScheduler`], - [`EulerAncestralDiscreteScheduler`], [`DPMSolverMultistepScheduler`], or [`PNDMScheduler`]. - """ - - def __init__( - self, - vqvae: VQModel, - unet: UNet2DModel, - scheduler: Union[ - DDIMScheduler, - PNDMScheduler, - LMSDiscreteScheduler, - EulerDiscreteScheduler, - EulerAncestralDiscreteScheduler, - DPMSolverMultistepScheduler, - ], - ): - super().__init__() - self.register_modules(vqvae=vqvae, unet=unet, scheduler=scheduler) - - @torch.no_grad() - def __call__( - self, - image: Union[torch.Tensor, PIL.Image.Image], - batch_size: Optional[int] = 1, - num_inference_steps: Optional[int] = 100, - eta: Optional[float] = 0.0, - generator: Optional[torch.Generator] = None, - output_type: Optional[str] = "pil", - return_dict: bool = True, - **kwargs, - ) -> Union[Tuple, ImagePipelineOutput]: - r""" - Args: - image (`torch.Tensor` or `PIL.Image.Image`): - `Image`, or tensor representing an image batch, that will be used as the starting point for the - process. - batch_size (`int`, *optional*, defaults to 1): - Number of images to generate. - num_inference_steps (`int`, *optional*, defaults to 100): - The number of denoising steps. More denoising steps usually lead to a higher quality image at the - expense of slower inference. - eta (`float`, *optional*, defaults to 0.0): - Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to - [`schedulers.DDIMScheduler`], will be ignored for others. - generator (`torch.Generator`, *optional*): - A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation - deterministic. - output_type (`str`, *optional*, defaults to `"pil"`): - The output format of the generate image. Choose between - [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. - return_dict (`bool`, *optional*): - Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple. - - Returns: - [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if - `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the - generated images. - """ - message = "Please use `image` instead of `init_image`." - init_image = deprecate("init_image", "0.12.0", message, take_from=kwargs) - image = init_image or image - - if isinstance(image, PIL.Image.Image): - batch_size = 1 - elif isinstance(image, torch.Tensor): - batch_size = image.shape[0] - else: - raise ValueError(f"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(image)}") - - if isinstance(image, PIL.Image.Image): - image = preprocess(image) - - height, width = image.shape[-2:] - - # in_channels should be 6: 3 for latents, 3 for low resolution image - latents_shape = (batch_size, self.unet.in_channels // 2, height, width) - latents_dtype = next(self.unet.parameters()).dtype - - if self.device.type == "mps": - # randn does not work reproducibly on mps - latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype) - latents = latents.to(self.device) - else: - latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype) - - image = image.to(device=self.device, dtype=latents_dtype) - - # set timesteps and move to the correct device - self.scheduler.set_timesteps(num_inference_steps, device=self.device) - timesteps_tensor = self.scheduler.timesteps - - # scale the initial noise by the standard deviation required by the scheduler - latents = latents * self.scheduler.init_noise_sigma - - # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. - # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. - # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 - # and should be between [0, 1] - accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) - extra_kwargs = {} - if accepts_eta: - extra_kwargs["eta"] = eta - - for t in self.progress_bar(timesteps_tensor): - # concat latents and low resolution image in the channel dimension. - latents_input = torch.cat([latents, image], dim=1) - latents_input = self.scheduler.scale_model_input(latents_input, t) - # predict the noise residual - noise_pred = self.unet(latents_input, t).sample - # compute the previous noisy sample x_t -> x_t-1 - latents = self.scheduler.step(noise_pred, t, latents, **extra_kwargs).prev_sample - - # decode the image latents with the VQVAE - image = self.vqvae.decode(latents).sample - image = torch.clamp(image, -1.0, 1.0) - image = image / 2 + 0.5 - image = image.cpu().permute(0, 2, 3, 1).numpy() - - if output_type == "pil": - image = self.numpy_to_pil(image) - - if not return_dict: - return (image,) - - return ImagePipelineOutput(images=image) diff --git a/spaces/YuAnthony/Audio-Caption/tools/.ipynb_checkpoints/csv_functions-checkpoint.py b/spaces/YuAnthony/Audio-Caption/tools/.ipynb_checkpoints/csv_functions-checkpoint.py deleted file mode 100644 index 68e31b697ed33b0415d92d2037e384118e33092e..0000000000000000000000000000000000000000 --- a/spaces/YuAnthony/Audio-Caption/tools/.ipynb_checkpoints/csv_functions-checkpoint.py +++ /dev/null @@ -1,32 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from typing import Optional, List, Union -from pathlib import Path -from collections import OrderedDict - -import csv - -__author__ = 'Konstantinos Drossos -- Tampere University' -__docformat__ = 'reStructuredText' -__all__ = ['read_csv_file'] - - -def read_csv_file(file_name: str, - base_dir: Optional[Union[str, Path]] = 'csv_files') \ - -> List[OrderedDict]: - """Reads a CSV file. - - :param file_name: The full file name of the CSV. - :type file_name: str - :param base_dir: The root dir of the CSV files. - :type base_dir: str|pathlib.Path - :return: The contents of the CSV of the task. - :rtype: list[collections.OrderedDict] - """ - file_path = Path().joinpath(base_dir, file_name) - with file_path.open(mode='r') as csv_file: - csv_reader = csv.DictReader(csv_file) - return [csv_line for csv_line in csv_reader] - -# EOF diff --git a/spaces/abbylagar/multilingual_keyword_extractor/app.py b/spaces/abbylagar/multilingual_keyword_extractor/app.py deleted file mode 100644 index 88f39ef57014735d8d29a6a5cf0351880be5a9c2..0000000000000000000000000000000000000000 --- a/spaces/abbylagar/multilingual_keyword_extractor/app.py +++ /dev/null @@ -1,33 +0,0 @@ -import gradio as gr -import yake -from yake.highlight import TextHighlighter -import pandas as pd - -def yake_func(text,slider,slider2): - kw_extractor = yake.KeywordExtractor(top=slider) - keywords = kw_extractor.extract_keywords(text) - text_highlight = TextHighlighter(max_ngram_size = slider2,highlight_pre = "", highlight_post= "") - th=text_highlight.highlight(text, keywords) - kw = pd.DataFrame(keywords) - kw.rename(columns={0:'keyword',1:'score'},inplace =True) - return kw,th - -ex1 ="Japan official says highly radioactive water is leaking from crippled nuclear plant into ocean Japan official says highly radioactive water is leaking from crippled nuclear plant into ocean (AP) TOKYO (AP) — Japan official says highly radioactive water is leaking from crippled nuclear plant into ocean." -ex2 = "¿Cómo empezó la Guerra Civil Española?. El mismo año 1936 se celebraron elecciones generales en España, exactamente el 16 de febrero de 1936. A estas elecciones se presentaron muchos partidos políticos tanto de izquierdas como de derechas. El Frente Popular, la coalición de izquierdas que englobaba tanto al Partido Socialista Obrero Español como al Partido Comunista, Izquierda Republicana y otros tantos, consiguió la mayoría absoluta. Pero, ¿cómo comenzó exactamente la Guerra Civil Española? Tras la victoria del bando de izquierda continuaron una serie de acciones terroristas que pretendían movilizar a la masa contra el gobierno, en el caso de los atentados de los falangistas y grupos de derecha, y para responder a los primeros en el caso de los grupos de izquierdas. Solo en el mes de febrero ya se contabilizaban por centenares los fallecidos en este tipo de acciones contra la situación política, social y económica del país. En los meses sucesivos el panorama social y militar de España fue, de todo, menos tranquilo. Varios altos mandos militares planearon durante meses una posible sublevación frente al gobierno republicano que se haría efectiva el 17 de julio de 1936 y los días sucesivos. Pero, ¿qué hizo que los militares se alzaran justo ese día? El 16 de abril de 1936 uno de los hombres de José Castillo, un instructor de las milicias de la juventud socialista, asesinó a Andrés Sáenz de Heredia, primo del mismísimo José Antonio Primo de Rivera. Como represalia el 12 de julio fue asesinado el propio José Castillo. Este hecho desencadenó la venganza de la izquierda que terminó con la vida del diputado de Renovación Española, José Calvo Sotelo, al mismo día siguiente. Este asesinato del líder de la derecha terminó por decantar la balanza de los indecisos al golpe de estado (entre los que, según Paul Preston, se encontraba el propio Franco) a llevar a cabo una acción que conllevaría un conflicto bélico en nuestro país. Así comenzaría la Guerra Civil Española que duraría hasta el 1 de abril de 1939 con la victoria del bando nacional con el general Francisco Franco a la cabeza. Él mismo tomaría las riendas de España bajo un régimen dictatorial hasta su muerte el 20 de noviembre de 1975." - - -title = "Multi-lingual Keyword Extractor" -description = "Gradio demo of YAKE!, a system for multi-lingual keyword extraction .Just paste or write your text to get the keywords (lower score means more relevant) and see the higlighted version of your text. " -article = "
    YAKE! : Github Repo | Paper
    " - -iface = gr.Interface(yake_func, inputs=[gr.inputs.Textbox(label="Text",lines=10), - gr.inputs.Slider(minimum=1,maximum=20,step=1,default=3, - label="Number of keywords"), - gr.inputs.Slider(minimum=1,maximum=5,step=1,default=3, - label="Max ngram size"),], - outputs=[ gr.outputs.Dataframe(),gr.outputs.HTML()], - examples=[[ex1,1,3],[ex2,1,3]], examples_per_page=2, live=False, - layout="horizontal", interpretation=None, title=title, - description=description, article=article) - -iface.launch() diff --git a/spaces/abdvl/datahub_qa_bot/docs/api/tutorials/adding-terms.md b/spaces/abdvl/datahub_qa_bot/docs/api/tutorials/adding-terms.md deleted file mode 100644 index 5948ac168c7bd61ae73574bb1f3ef8f5abedb365..0000000000000000000000000000000000000000 --- a/spaces/abdvl/datahub_qa_bot/docs/api/tutorials/adding-terms.md +++ /dev/null @@ -1,209 +0,0 @@ -# Adding Terms On Datasets/Columns - -## Why Would You Add Terms? -The Business Glossary(Term) feature in DataHub helps you use a shared vocabulary within the orgarnization, by providing a framework for defining a standardized set of data concepts and then associating them with the physical assets that exist within your data ecosystem. - -Fore more information about terms, refer to [About DataHub Business Glossary](/docs/glossary/business-glossary.md). - -### Goal Of This Guide -This guide will show you how to add a `CustomerAccount` term to `user_name` column of a dataset named `fct_users_created`. -Also, we will cover how to add a term to a dataset itself. - - -## Pre-requisites -For this tutorial, you need to deploy DataHub Quickstart and ingest sample data. -For detailed information, please refer to [Prepare Local DataHub Environment](/docs/api/tutorials/references/prepare-datahub.md). - -:::note -Before adding terms, you need to ensure the targeted dataset and the term are already present in your datahub. -If you attempt to manipulate entities that do not exist, your operation will fail. -In this guide, we will be using data from a sample ingestion. -If you want to know how to create entities using APIs & SDKs, please refer to [Creating Terms](/docs/api/tutorials/creating-terms.md) and [Creating Datasets](/docs/api/tutorials/creating-datasets.md). -::: - - -## Add Terms With GraphQL - -:::note -Please note that there are two available endpoints (`:8000`, `:9002`) to access GraphQL. -For more information about the differences between these endpoints, please refer to [DataHub Metadata Service](../../../metadata-service/README.md#graphql-api) -::: - -### GraphQL Explorer -GraphQL Explorer is the fastest way to experiment with GraphQL without any dependancies. -Navigate to GraphQL Explorer (`http://localhost:9002/api/graphiql`) and run the following query. - -```python -mutation addTerms { - addTerms( - input: { - termUrns: ["urn:li:glossaryTerm:CustomerAccount"], - resourceUrn: "urn:li:dataset:(urn:li:dataPlatform:hive,fct_users_created,PROD)", - subResourceType:DATASET_FIELD, - subResource:"user_name"}) -} -``` - -Note that you can also add a term on a dataset if you don't specify `subResourceType` and `subResource`. -```json -mutation addTerms { - addTerms( - input: { - termUrns: ["urn:li:glossaryTerm:CustomerAccount"], - resourceUrn: "urn:li:dataset:(urn:li:dataPlatform:hive,fct_users_created,PROD)", - } - ) -} -``` - -If you see the following response, the operation was successful: -```python -{ - "data": { - "addTerms": true - }, - "extensions": {} -} -``` - -### CURL - -With CURL, you need to provide tokens. To generate a token, please refer to [Generate Access Token](/docs/api/tutorials/references/generate-access-token.md). -With `accessToken`, you can run the following command. - -```shell -curl --location --request POST 'http://localhost:8080/api/graphql' \ ---header 'Authorization: Bearer ' \ ---header 'Content-Type: application/json' \ ---data-raw '{ "query": "mutation addTerm { addTerms(input: { termUrns: [\"urn:li:glossaryTerm:CustomerAccount\"], resourceUrn: \"urn:li:dataset:(urn:li:dataPlatform:hive,fct_users_created,PROD)\" }) }", "variables":{}}' -``` - -Expected Response: - -```json -{"data":{"addTerms":true},"extensions":{}} -``` - - -## Add Terms With Python SDK - -Following codes add a glossary term named `CustomerAccount` to a column `user_name` of a hive dataset named `fct_users_created`. -You can refer to a full code in [dataset_add_column_term.py](https://github.com/datahub-project/datahub/blob/master/metadata-ingestion/examples/library/dataset_add_column_term.py). - - -```python -# inlined from metadata-ingestion/examples/library/dataset_add_column_term.py -import logging -import time - -from datahub.emitter.mce_builder import make_dataset_urn, make_term_urn -from datahub.emitter.mcp import MetadataChangeProposalWrapper - -# read-modify-write requires access to the DataHubGraph (RestEmitter is not enough) -from datahub.ingestion.graph.client import DatahubClientConfig, DataHubGraph - -# Imports for metadata model classes -from datahub.metadata.schema_classes import ( - AuditStampClass, - EditableSchemaFieldInfoClass, - EditableSchemaMetadataClass, - GlossaryTermAssociationClass, - GlossaryTermsClass, -) - -log = logging.getLogger(__name__) -logging.basicConfig(level=logging.INFO) - - -def get_simple_field_path_from_v2_field_path(field_path: str) -> str: - """A helper function to extract simple . path notation from the v2 field path""" - if not field_path.startswith("[version=2.0]"): - # not a v2, we assume this is a simple path - return field_path - # this is a v2 field path - tokens = [ - t for t in field_path.split(".") if not (t.startswith("[") or t.endswith("]")) - ] - - return ".".join(tokens) - - -# Inputs -> the column, dataset and the term to set -column = "user_name" -dataset_urn = make_dataset_urn(platform="hive", name="fct_users_created", env="PROD") -term_to_add = make_term_urn("User") - - -# First we get the current editable schema metadata -gms_endpoint = "http://localhost:8080" -graph = DataHubGraph(DatahubClientConfig(server=gms_endpoint)) - - -current_editable_schema_metadata = graph.get_aspect( - entity_urn=dataset_urn, aspect_type=EditableSchemaMetadataClass -) - - -# Some pre-built objects to help all the conditional pathways -now = int(time.time() * 1000) # milliseconds since epoch -current_timestamp = AuditStampClass(time=now, actor="urn:li:corpuser:ingestion") - -term_association_to_add = GlossaryTermAssociationClass(urn=term_to_add) -term_aspect_to_set = GlossaryTermsClass( - terms=[term_association_to_add], auditStamp=current_timestamp -) -field_info_to_set = EditableSchemaFieldInfoClass( - fieldPath=column, glossaryTerms=term_aspect_to_set -) - -need_write = False -field_match = False -if current_editable_schema_metadata: - for fieldInfo in current_editable_schema_metadata.editableSchemaFieldInfo: - if get_simple_field_path_from_v2_field_path(fieldInfo.fieldPath) == column: - # we have some editable schema metadata for this field - field_match = True - if fieldInfo.glossaryTerms: - if term_to_add not in [x.urn for x in fieldInfo.glossaryTerms.terms]: - # this term is not present - fieldInfo.glossaryTerms.terms.append(term_association_to_add) - need_write = True - else: - fieldInfo.glossaryTerms = term_aspect_to_set - need_write = True - - if not field_match: - # this field isn't present in the editable schema metadata aspect, add it - field_info = field_info_to_set - current_editable_schema_metadata.editableSchemaFieldInfo.append(field_info) - need_write = True - -else: - # create a brand new editable schema metadata aspect - current_editable_schema_metadata = EditableSchemaMetadataClass( - editableSchemaFieldInfo=[field_info_to_set], - created=current_timestamp, - ) - need_write = True - -if need_write: - event: MetadataChangeProposalWrapper = MetadataChangeProposalWrapper( - entityUrn=dataset_urn, - aspect=current_editable_schema_metadata, - ) - graph.emit(event) - log.info(f"Term {term_to_add} added to column {column} of dataset {dataset_urn}") - -else: - log.info(f"Term {term_to_add} already attached to column {column}, omitting write") - -``` - -We're using the `MetdataChangeProposalWrapper` to change entities in this example. -For more information about the `MetadataChangeProposal`, please refer to [MetadataChangeProposal & MetadataChangeLog Events](/docs/advanced/mcp-mcl.md) - - -## Expected Outcomes -You can now see the term `CustomerAccount` has been added to `user_name` column. -![term-added](../../imgs/apis/tutorials/term-created.png) - diff --git a/spaces/abdvl/datahub_qa_bot/docs/quick-ingestion-guides/snowflake/setup.md b/spaces/abdvl/datahub_qa_bot/docs/quick-ingestion-guides/snowflake/setup.md deleted file mode 100644 index c3882b611db9c22e0e5a0811cc92d1f97fb16442..0000000000000000000000000000000000000000 --- a/spaces/abdvl/datahub_qa_bot/docs/quick-ingestion-guides/snowflake/setup.md +++ /dev/null @@ -1,70 +0,0 @@ ---- -title: Setup ---- -# Snowflake Ingestion Guide: Setup & Prerequisites - -In order to configure ingestion from Snowflake, you'll first have to ensure you have a Snowflake user with the `ACCOUNTADMIN` role or `MANAGE GRANTS` privilege. - -## Snowflake Prerequisites - -1. Create a DataHub-specific role by executing the following queries in Snowflake. Replace `` with an existing warehouse that you wish to use for DataHub ingestion. - - ```sql - create or replace role datahub_role; - -- Grant access to a warehouse to run queries to view metadata - grant operate, usage on warehouse "" to role datahub_role; - ``` - - Make note of this role and warehouse. You'll need this in the next step. - -2. Create a DataHub-specific user by executing the following queries. Replace `` with a strong password. Replace `` with the same warehouse used above. - - ```sql - create user datahub_user display_name = 'DataHub' password='' default_role = datahub_role default_warehouse = ''; - -- Grant access to the DataHub role created above - grant role datahub_role to user datahub_user; - ``` - - Make note of the user and its password. You'll need this in the next step. - -3. Assign privileges to read metadata about your assets by executing the following queries. Replace `` with an existing database. Repeat for all databases from your Snowflake instance that you wish to integrate with DataHub. - - ```sql - set db_var = '""'; - -- Grant access to view database and schema in which your tables/views exist - grant usage on DATABASE identifier($db_var) to role datahub_role; - grant usage on all schemas in database identifier($db_var) to role datahub_role; - grant usage on future schemas in database identifier($db_var) to role datahub_role; - - -- Grant Select acccess enable Data Profiling - grant select on all tables in database identifier($db_var) to role datahub_role; - grant select on future tables in database identifier($db_var) to role datahub_role; - grant select on all external tables in database identifier($db_var) to role datahub_role; - grant select on future external tables in database identifier($db_var) to role datahub_role; - grant select on all views in database identifier($db_var) to role datahub_role; - grant select on future views in database identifier($db_var) to role datahub_role; - - -- Grant access to view tables and views - grant references on all tables in database identifier($db_var) to role datahub_role; - grant references on future tables in database identifier($db_var) to role datahub_role; - grant references on all external tables in database identifier($db_var) to role datahub_role; - grant references on future external tables in database identifier($db_var) to role datahub_role; - grant references on all views in database identifier($db_var) to role datahub_role; - grant references on future views in database identifier($db_var) to role datahub_role; - - -- Assign privileges to extract lineage and usage statistics from Snowflake by executing the below query. - grant imported privileges on database snowflake to role datahub_role; - - ``` - - If you have imported databases in your Snowflake instance that you wish to integrate with DataHub, you'll need to use the below query for them. - - ```sql - grant IMPORTED PRIVILEGES on database "" to role datahub_role; - ``` - -## Next Steps - -Once you've done all of the above in Snowflake, it's time to [move on](configuration.md) to configuring the actual ingestion source within DataHub. - -*Need more help? Join the conversation in [Slack](http://slack.datahubproject.io)!* diff --git a/spaces/abdvl/datahub_qa_bot/docs/what/urn.md b/spaces/abdvl/datahub_qa_bot/docs/what/urn.md deleted file mode 100644 index fbead110afe0ace13636f865ad6c85ceb000cee1..0000000000000000000000000000000000000000 --- a/spaces/abdvl/datahub_qa_bot/docs/what/urn.md +++ /dev/null @@ -1,34 +0,0 @@ -# What is URN? - -URN ([Uniform Resource Name](https://en.wikipedia.org/wiki/Uniform_Resource_Name)) is the chosen scheme of [URI](https://en.wikipedia.org/wiki/Uniform_Resource_Identifier) to uniquely define any resource in DataHub. It has the following form -``` -urn::: -``` -[Onboarding a new entity](../modeling/metadata-model.md) to [GMA](gma.md) starts with modelling an URN specific to that entity. -You can use the existing [URN models](../../li-utils/src/main/javaPegasus/com/linkedin/common/urn) for built-in entities as a reference. - -## Namespace -All URNs available in DataHub are using `li` as their namespace. -This can be easily changed to a different namespace for your organization if you fork DataHub. - -## Entity Type -Entity type for URN is different than [entity](entity.md) in GMA context. This can be thought of as the object type of -any resource for which you need unique identifier for its each instance. While you can create URNs for GMA entities such as -[DatasetUrn] with entity type `dataset`, you can also define URN for data platforms, [DataPlatformUrn]. - -## ID -ID is the unique identifier part of a URN. It's unique for a specific entity type within a specific namespace. -ID could contain a single field, or multi fields in the case of complex URNs. A complex URN can even contain other URNs as ID fields. This type of URN is also referred to as nested URN. For non-URN ID fields, the value can be either a string, number, or [Pegasus Enum](https://linkedin.github.io/rest.li/pdl_schema#enum-type). - -Here are some example URNs with a single ID field: - -``` -urn:li:dataPlatform:kafka -urn:li:corpuser:jdoe -``` - -[DatasetUrn](../../li-utils/src/main/javaPegasus/com/linkedin/common/urn/DatasetUrn.java) is an example of a complex nested URN. It contains 3 ID fields: `platform`, `name` and `fabric`, where `platform` is another [URN](../../li-utils/src/main/javaPegasus/com/linkedin/common/urn/DataPlatformUrn.java). Here are some examples -``` -urn:li:dataset:(urn:li:dataPlatform:kafka,PageViewEvent,PROD) -urn:li:dataset:(urn:li:dataPlatform:hdfs,PageViewEvent,EI) -``` diff --git a/spaces/abhishek/sketch-to-image/annotator/uniformer/mmcv/cnn/bricks/non_local.py b/spaces/abhishek/sketch-to-image/annotator/uniformer/mmcv/cnn/bricks/non_local.py deleted file mode 100644 index 92d00155ef275c1201ea66bba30470a1785cc5d7..0000000000000000000000000000000000000000 --- a/spaces/abhishek/sketch-to-image/annotator/uniformer/mmcv/cnn/bricks/non_local.py +++ /dev/null @@ -1,306 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -from abc import ABCMeta - -import torch -import torch.nn as nn - -from ..utils import constant_init, normal_init -from .conv_module import ConvModule -from .registry import PLUGIN_LAYERS - - -class _NonLocalNd(nn.Module, metaclass=ABCMeta): - """Basic Non-local module. - - This module is proposed in - "Non-local Neural Networks" - Paper reference: https://arxiv.org/abs/1711.07971 - Code reference: https://github.com/AlexHex7/Non-local_pytorch - - Args: - in_channels (int): Channels of the input feature map. - reduction (int): Channel reduction ratio. Default: 2. - use_scale (bool): Whether to scale pairwise_weight by - `1/sqrt(inter_channels)` when the mode is `embedded_gaussian`. - Default: True. - conv_cfg (None | dict): The config dict for convolution layers. - If not specified, it will use `nn.Conv2d` for convolution layers. - Default: None. - norm_cfg (None | dict): The config dict for normalization layers. - Default: None. (This parameter is only applicable to conv_out.) - mode (str): Options are `gaussian`, `concatenation`, - `embedded_gaussian` and `dot_product`. Default: embedded_gaussian. - """ - - def __init__(self, - in_channels, - reduction=2, - use_scale=True, - conv_cfg=None, - norm_cfg=None, - mode='embedded_gaussian', - **kwargs): - super(_NonLocalNd, self).__init__() - self.in_channels = in_channels - self.reduction = reduction - self.use_scale = use_scale - self.inter_channels = max(in_channels // reduction, 1) - self.mode = mode - - if mode not in [ - 'gaussian', 'embedded_gaussian', 'dot_product', 'concatenation' - ]: - raise ValueError("Mode should be in 'gaussian', 'concatenation', " - f"'embedded_gaussian' or 'dot_product', but got " - f'{mode} instead.') - - # g, theta, phi are defaulted as `nn.ConvNd`. - # Here we use ConvModule for potential usage. - self.g = ConvModule( - self.in_channels, - self.inter_channels, - kernel_size=1, - conv_cfg=conv_cfg, - act_cfg=None) - self.conv_out = ConvModule( - self.inter_channels, - self.in_channels, - kernel_size=1, - conv_cfg=conv_cfg, - norm_cfg=norm_cfg, - act_cfg=None) - - if self.mode != 'gaussian': - self.theta = ConvModule( - self.in_channels, - self.inter_channels, - kernel_size=1, - conv_cfg=conv_cfg, - act_cfg=None) - self.phi = ConvModule( - self.in_channels, - self.inter_channels, - kernel_size=1, - conv_cfg=conv_cfg, - act_cfg=None) - - if self.mode == 'concatenation': - self.concat_project = ConvModule( - self.inter_channels * 2, - 1, - kernel_size=1, - stride=1, - padding=0, - bias=False, - act_cfg=dict(type='ReLU')) - - self.init_weights(**kwargs) - - def init_weights(self, std=0.01, zeros_init=True): - if self.mode != 'gaussian': - for m in [self.g, self.theta, self.phi]: - normal_init(m.conv, std=std) - else: - normal_init(self.g.conv, std=std) - if zeros_init: - if self.conv_out.norm_cfg is None: - constant_init(self.conv_out.conv, 0) - else: - constant_init(self.conv_out.norm, 0) - else: - if self.conv_out.norm_cfg is None: - normal_init(self.conv_out.conv, std=std) - else: - normal_init(self.conv_out.norm, std=std) - - def gaussian(self, theta_x, phi_x): - # NonLocal1d pairwise_weight: [N, H, H] - # NonLocal2d pairwise_weight: [N, HxW, HxW] - # NonLocal3d pairwise_weight: [N, TxHxW, TxHxW] - pairwise_weight = torch.matmul(theta_x, phi_x) - pairwise_weight = pairwise_weight.softmax(dim=-1) - return pairwise_weight - - def embedded_gaussian(self, theta_x, phi_x): - # NonLocal1d pairwise_weight: [N, H, H] - # NonLocal2d pairwise_weight: [N, HxW, HxW] - # NonLocal3d pairwise_weight: [N, TxHxW, TxHxW] - pairwise_weight = torch.matmul(theta_x, phi_x) - if self.use_scale: - # theta_x.shape[-1] is `self.inter_channels` - pairwise_weight /= theta_x.shape[-1]**0.5 - pairwise_weight = pairwise_weight.softmax(dim=-1) - return pairwise_weight - - def dot_product(self, theta_x, phi_x): - # NonLocal1d pairwise_weight: [N, H, H] - # NonLocal2d pairwise_weight: [N, HxW, HxW] - # NonLocal3d pairwise_weight: [N, TxHxW, TxHxW] - pairwise_weight = torch.matmul(theta_x, phi_x) - pairwise_weight /= pairwise_weight.shape[-1] - return pairwise_weight - - def concatenation(self, theta_x, phi_x): - # NonLocal1d pairwise_weight: [N, H, H] - # NonLocal2d pairwise_weight: [N, HxW, HxW] - # NonLocal3d pairwise_weight: [N, TxHxW, TxHxW] - h = theta_x.size(2) - w = phi_x.size(3) - theta_x = theta_x.repeat(1, 1, 1, w) - phi_x = phi_x.repeat(1, 1, h, 1) - - concat_feature = torch.cat([theta_x, phi_x], dim=1) - pairwise_weight = self.concat_project(concat_feature) - n, _, h, w = pairwise_weight.size() - pairwise_weight = pairwise_weight.view(n, h, w) - pairwise_weight /= pairwise_weight.shape[-1] - - return pairwise_weight - - def forward(self, x): - # Assume `reduction = 1`, then `inter_channels = C` - # or `inter_channels = C` when `mode="gaussian"` - - # NonLocal1d x: [N, C, H] - # NonLocal2d x: [N, C, H, W] - # NonLocal3d x: [N, C, T, H, W] - n = x.size(0) - - # NonLocal1d g_x: [N, H, C] - # NonLocal2d g_x: [N, HxW, C] - # NonLocal3d g_x: [N, TxHxW, C] - g_x = self.g(x).view(n, self.inter_channels, -1) - g_x = g_x.permute(0, 2, 1) - - # NonLocal1d theta_x: [N, H, C], phi_x: [N, C, H] - # NonLocal2d theta_x: [N, HxW, C], phi_x: [N, C, HxW] - # NonLocal3d theta_x: [N, TxHxW, C], phi_x: [N, C, TxHxW] - if self.mode == 'gaussian': - theta_x = x.view(n, self.in_channels, -1) - theta_x = theta_x.permute(0, 2, 1) - if self.sub_sample: - phi_x = self.phi(x).view(n, self.in_channels, -1) - else: - phi_x = x.view(n, self.in_channels, -1) - elif self.mode == 'concatenation': - theta_x = self.theta(x).view(n, self.inter_channels, -1, 1) - phi_x = self.phi(x).view(n, self.inter_channels, 1, -1) - else: - theta_x = self.theta(x).view(n, self.inter_channels, -1) - theta_x = theta_x.permute(0, 2, 1) - phi_x = self.phi(x).view(n, self.inter_channels, -1) - - pairwise_func = getattr(self, self.mode) - # NonLocal1d pairwise_weight: [N, H, H] - # NonLocal2d pairwise_weight: [N, HxW, HxW] - # NonLocal3d pairwise_weight: [N, TxHxW, TxHxW] - pairwise_weight = pairwise_func(theta_x, phi_x) - - # NonLocal1d y: [N, H, C] - # NonLocal2d y: [N, HxW, C] - # NonLocal3d y: [N, TxHxW, C] - y = torch.matmul(pairwise_weight, g_x) - # NonLocal1d y: [N, C, H] - # NonLocal2d y: [N, C, H, W] - # NonLocal3d y: [N, C, T, H, W] - y = y.permute(0, 2, 1).contiguous().reshape(n, self.inter_channels, - *x.size()[2:]) - - output = x + self.conv_out(y) - - return output - - -class NonLocal1d(_NonLocalNd): - """1D Non-local module. - - Args: - in_channels (int): Same as `NonLocalND`. - sub_sample (bool): Whether to apply max pooling after pairwise - function (Note that the `sub_sample` is applied on spatial only). - Default: False. - conv_cfg (None | dict): Same as `NonLocalND`. - Default: dict(type='Conv1d'). - """ - - def __init__(self, - in_channels, - sub_sample=False, - conv_cfg=dict(type='Conv1d'), - **kwargs): - super(NonLocal1d, self).__init__( - in_channels, conv_cfg=conv_cfg, **kwargs) - - self.sub_sample = sub_sample - - if sub_sample: - max_pool_layer = nn.MaxPool1d(kernel_size=2) - self.g = nn.Sequential(self.g, max_pool_layer) - if self.mode != 'gaussian': - self.phi = nn.Sequential(self.phi, max_pool_layer) - else: - self.phi = max_pool_layer - - -@PLUGIN_LAYERS.register_module() -class NonLocal2d(_NonLocalNd): - """2D Non-local module. - - Args: - in_channels (int): Same as `NonLocalND`. - sub_sample (bool): Whether to apply max pooling after pairwise - function (Note that the `sub_sample` is applied on spatial only). - Default: False. - conv_cfg (None | dict): Same as `NonLocalND`. - Default: dict(type='Conv2d'). - """ - - _abbr_ = 'nonlocal_block' - - def __init__(self, - in_channels, - sub_sample=False, - conv_cfg=dict(type='Conv2d'), - **kwargs): - super(NonLocal2d, self).__init__( - in_channels, conv_cfg=conv_cfg, **kwargs) - - self.sub_sample = sub_sample - - if sub_sample: - max_pool_layer = nn.MaxPool2d(kernel_size=(2, 2)) - self.g = nn.Sequential(self.g, max_pool_layer) - if self.mode != 'gaussian': - self.phi = nn.Sequential(self.phi, max_pool_layer) - else: - self.phi = max_pool_layer - - -class NonLocal3d(_NonLocalNd): - """3D Non-local module. - - Args: - in_channels (int): Same as `NonLocalND`. - sub_sample (bool): Whether to apply max pooling after pairwise - function (Note that the `sub_sample` is applied on spatial only). - Default: False. - conv_cfg (None | dict): Same as `NonLocalND`. - Default: dict(type='Conv3d'). - """ - - def __init__(self, - in_channels, - sub_sample=False, - conv_cfg=dict(type='Conv3d'), - **kwargs): - super(NonLocal3d, self).__init__( - in_channels, conv_cfg=conv_cfg, **kwargs) - self.sub_sample = sub_sample - - if sub_sample: - max_pool_layer = nn.MaxPool3d(kernel_size=(1, 2, 2)) - self.g = nn.Sequential(self.g, max_pool_layer) - if self.mode != 'gaussian': - self.phi = nn.Sequential(self.phi, max_pool_layer) - else: - self.phi = max_pool_layer diff --git a/spaces/abhishek/sketch-to-image/annotator/uniformer/mmcv/runner/checkpoint.py b/spaces/abhishek/sketch-to-image/annotator/uniformer/mmcv/runner/checkpoint.py deleted file mode 100644 index b29ca320679164432f446adad893e33fb2b4b29e..0000000000000000000000000000000000000000 --- a/spaces/abhishek/sketch-to-image/annotator/uniformer/mmcv/runner/checkpoint.py +++ /dev/null @@ -1,707 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import io -import os -import os.path as osp -import pkgutil -import re -import time -import warnings -from collections import OrderedDict -from importlib import import_module -from tempfile import TemporaryDirectory - -import torch -import torchvision -from torch.optim import Optimizer -from torch.utils import model_zoo - -import annotator.uniformer.mmcv as mmcv -from ..fileio import FileClient -from ..fileio import load as load_file -from ..parallel import is_module_wrapper -from ..utils import mkdir_or_exist -from .dist_utils import get_dist_info - -ENV_MMCV_HOME = 'MMCV_HOME' -ENV_XDG_CACHE_HOME = 'XDG_CACHE_HOME' -DEFAULT_CACHE_DIR = '~/.cache' - - -def _get_mmcv_home(): - mmcv_home = os.path.expanduser( - os.getenv( - ENV_MMCV_HOME, - os.path.join( - os.getenv(ENV_XDG_CACHE_HOME, DEFAULT_CACHE_DIR), 'mmcv'))) - - mkdir_or_exist(mmcv_home) - return mmcv_home - - -def load_state_dict(module, state_dict, strict=False, logger=None): - """Load state_dict to a module. - - This method is modified from :meth:`torch.nn.Module.load_state_dict`. - Default value for ``strict`` is set to ``False`` and the message for - param mismatch will be shown even if strict is False. - - Args: - module (Module): Module that receives the state_dict. - state_dict (OrderedDict): Weights. - strict (bool): whether to strictly enforce that the keys - in :attr:`state_dict` match the keys returned by this module's - :meth:`~torch.nn.Module.state_dict` function. Default: ``False``. - logger (:obj:`logging.Logger`, optional): Logger to log the error - message. If not specified, print function will be used. - """ - unexpected_keys = [] - all_missing_keys = [] - err_msg = [] - - metadata = getattr(state_dict, '_metadata', None) - state_dict = state_dict.copy() - if metadata is not None: - state_dict._metadata = metadata - - # use _load_from_state_dict to enable checkpoint version control - def load(module, prefix=''): - # recursively check parallel module in case that the model has a - # complicated structure, e.g., nn.Module(nn.Module(DDP)) - if is_module_wrapper(module): - module = module.module - local_metadata = {} if metadata is None else metadata.get( - prefix[:-1], {}) - module._load_from_state_dict(state_dict, prefix, local_metadata, True, - all_missing_keys, unexpected_keys, - err_msg) - for name, child in module._modules.items(): - if child is not None: - load(child, prefix + name + '.') - - load(module) - load = None # break load->load reference cycle - - # ignore "num_batches_tracked" of BN layers - missing_keys = [ - key for key in all_missing_keys if 'num_batches_tracked' not in key - ] - - if unexpected_keys: - err_msg.append('unexpected key in source ' - f'state_dict: {", ".join(unexpected_keys)}\n') - if missing_keys: - err_msg.append( - f'missing keys in source state_dict: {", ".join(missing_keys)}\n') - - rank, _ = get_dist_info() - if len(err_msg) > 0 and rank == 0: - err_msg.insert( - 0, 'The model and loaded state dict do not match exactly\n') - err_msg = '\n'.join(err_msg) - if strict: - raise RuntimeError(err_msg) - elif logger is not None: - logger.warning(err_msg) - else: - print(err_msg) - - -def get_torchvision_models(): - model_urls = dict() - for _, name, ispkg in pkgutil.walk_packages(torchvision.models.__path__): - if ispkg: - continue - _zoo = import_module(f'torchvision.models.{name}') - if hasattr(_zoo, 'model_urls'): - _urls = getattr(_zoo, 'model_urls') - model_urls.update(_urls) - return model_urls - - -def get_external_models(): - mmcv_home = _get_mmcv_home() - default_json_path = osp.join(mmcv.__path__[0], 'model_zoo/open_mmlab.json') - default_urls = load_file(default_json_path) - assert isinstance(default_urls, dict) - external_json_path = osp.join(mmcv_home, 'open_mmlab.json') - if osp.exists(external_json_path): - external_urls = load_file(external_json_path) - assert isinstance(external_urls, dict) - default_urls.update(external_urls) - - return default_urls - - -def get_mmcls_models(): - mmcls_json_path = osp.join(mmcv.__path__[0], 'model_zoo/mmcls.json') - mmcls_urls = load_file(mmcls_json_path) - - return mmcls_urls - - -def get_deprecated_model_names(): - deprecate_json_path = osp.join(mmcv.__path__[0], - 'model_zoo/deprecated.json') - deprecate_urls = load_file(deprecate_json_path) - assert isinstance(deprecate_urls, dict) - - return deprecate_urls - - -def _process_mmcls_checkpoint(checkpoint): - state_dict = checkpoint['state_dict'] - new_state_dict = OrderedDict() - for k, v in state_dict.items(): - if k.startswith('backbone.'): - new_state_dict[k[9:]] = v - new_checkpoint = dict(state_dict=new_state_dict) - - return new_checkpoint - - -class CheckpointLoader: - """A general checkpoint loader to manage all schemes.""" - - _schemes = {} - - @classmethod - def _register_scheme(cls, prefixes, loader, force=False): - if isinstance(prefixes, str): - prefixes = [prefixes] - else: - assert isinstance(prefixes, (list, tuple)) - for prefix in prefixes: - if (prefix not in cls._schemes) or force: - cls._schemes[prefix] = loader - else: - raise KeyError( - f'{prefix} is already registered as a loader backend, ' - 'add "force=True" if you want to override it') - # sort, longer prefixes take priority - cls._schemes = OrderedDict( - sorted(cls._schemes.items(), key=lambda t: t[0], reverse=True)) - - @classmethod - def register_scheme(cls, prefixes, loader=None, force=False): - """Register a loader to CheckpointLoader. - - This method can be used as a normal class method or a decorator. - - Args: - prefixes (str or list[str] or tuple[str]): - The prefix of the registered loader. - loader (function, optional): The loader function to be registered. - When this method is used as a decorator, loader is None. - Defaults to None. - force (bool, optional): Whether to override the loader - if the prefix has already been registered. Defaults to False. - """ - - if loader is not None: - cls._register_scheme(prefixes, loader, force=force) - return - - def _register(loader_cls): - cls._register_scheme(prefixes, loader_cls, force=force) - return loader_cls - - return _register - - @classmethod - def _get_checkpoint_loader(cls, path): - """Finds a loader that supports the given path. Falls back to the local - loader if no other loader is found. - - Args: - path (str): checkpoint path - - Returns: - loader (function): checkpoint loader - """ - - for p in cls._schemes: - if path.startswith(p): - return cls._schemes[p] - - @classmethod - def load_checkpoint(cls, filename, map_location=None, logger=None): - """load checkpoint through URL scheme path. - - Args: - filename (str): checkpoint file name with given prefix - map_location (str, optional): Same as :func:`torch.load`. - Default: None - logger (:mod:`logging.Logger`, optional): The logger for message. - Default: None - - Returns: - dict or OrderedDict: The loaded checkpoint. - """ - - checkpoint_loader = cls._get_checkpoint_loader(filename) - class_name = checkpoint_loader.__name__ - mmcv.print_log( - f'load checkpoint from {class_name[10:]} path: {filename}', logger) - return checkpoint_loader(filename, map_location) - - -@CheckpointLoader.register_scheme(prefixes='') -def load_from_local(filename, map_location): - """load checkpoint by local file path. - - Args: - filename (str): local checkpoint file path - map_location (str, optional): Same as :func:`torch.load`. - - Returns: - dict or OrderedDict: The loaded checkpoint. - """ - - if not osp.isfile(filename): - raise IOError(f'{filename} is not a checkpoint file') - checkpoint = torch.load(filename, map_location=map_location) - return checkpoint - - -@CheckpointLoader.register_scheme(prefixes=('http://', 'https://')) -def load_from_http(filename, map_location=None, model_dir=None): - """load checkpoint through HTTP or HTTPS scheme path. In distributed - setting, this function only download checkpoint at local rank 0. - - Args: - filename (str): checkpoint file path with modelzoo or - torchvision prefix - map_location (str, optional): Same as :func:`torch.load`. - model_dir (string, optional): directory in which to save the object, - Default: None - - Returns: - dict or OrderedDict: The loaded checkpoint. - """ - rank, world_size = get_dist_info() - rank = int(os.environ.get('LOCAL_RANK', rank)) - if rank == 0: - checkpoint = model_zoo.load_url( - filename, model_dir=model_dir, map_location=map_location) - if world_size > 1: - torch.distributed.barrier() - if rank > 0: - checkpoint = model_zoo.load_url( - filename, model_dir=model_dir, map_location=map_location) - return checkpoint - - -@CheckpointLoader.register_scheme(prefixes='pavi://') -def load_from_pavi(filename, map_location=None): - """load checkpoint through the file path prefixed with pavi. In distributed - setting, this function download ckpt at all ranks to different temporary - directories. - - Args: - filename (str): checkpoint file path with pavi prefix - map_location (str, optional): Same as :func:`torch.load`. - Default: None - - Returns: - dict or OrderedDict: The loaded checkpoint. - """ - assert filename.startswith('pavi://'), \ - f'Expected filename startswith `pavi://`, but get {filename}' - model_path = filename[7:] - - try: - from pavi import modelcloud - except ImportError: - raise ImportError( - 'Please install pavi to load checkpoint from modelcloud.') - - model = modelcloud.get(model_path) - with TemporaryDirectory() as tmp_dir: - downloaded_file = osp.join(tmp_dir, model.name) - model.download(downloaded_file) - checkpoint = torch.load(downloaded_file, map_location=map_location) - return checkpoint - - -@CheckpointLoader.register_scheme(prefixes='s3://') -def load_from_ceph(filename, map_location=None, backend='petrel'): - """load checkpoint through the file path prefixed with s3. In distributed - setting, this function download ckpt at all ranks to different temporary - directories. - - Args: - filename (str): checkpoint file path with s3 prefix - map_location (str, optional): Same as :func:`torch.load`. - backend (str, optional): The storage backend type. Options are 'ceph', - 'petrel'. Default: 'petrel'. - - .. warning:: - :class:`mmcv.fileio.file_client.CephBackend` will be deprecated, - please use :class:`mmcv.fileio.file_client.PetrelBackend` instead. - - Returns: - dict or OrderedDict: The loaded checkpoint. - """ - allowed_backends = ['ceph', 'petrel'] - if backend not in allowed_backends: - raise ValueError(f'Load from Backend {backend} is not supported.') - - if backend == 'ceph': - warnings.warn( - 'CephBackend will be deprecated, please use PetrelBackend instead') - - # CephClient and PetrelBackend have the same prefix 's3://' and the latter - # will be chosen as default. If PetrelBackend can not be instantiated - # successfully, the CephClient will be chosen. - try: - file_client = FileClient(backend=backend) - except ImportError: - allowed_backends.remove(backend) - file_client = FileClient(backend=allowed_backends[0]) - - with io.BytesIO(file_client.get(filename)) as buffer: - checkpoint = torch.load(buffer, map_location=map_location) - return checkpoint - - -@CheckpointLoader.register_scheme(prefixes=('modelzoo://', 'torchvision://')) -def load_from_torchvision(filename, map_location=None): - """load checkpoint through the file path prefixed with modelzoo or - torchvision. - - Args: - filename (str): checkpoint file path with modelzoo or - torchvision prefix - map_location (str, optional): Same as :func:`torch.load`. - - Returns: - dict or OrderedDict: The loaded checkpoint. - """ - model_urls = get_torchvision_models() - if filename.startswith('modelzoo://'): - warnings.warn('The URL scheme of "modelzoo://" is deprecated, please ' - 'use "torchvision://" instead') - model_name = filename[11:] - else: - model_name = filename[14:] - return load_from_http(model_urls[model_name], map_location=map_location) - - -@CheckpointLoader.register_scheme(prefixes=('open-mmlab://', 'openmmlab://')) -def load_from_openmmlab(filename, map_location=None): - """load checkpoint through the file path prefixed with open-mmlab or - openmmlab. - - Args: - filename (str): checkpoint file path with open-mmlab or - openmmlab prefix - map_location (str, optional): Same as :func:`torch.load`. - Default: None - - Returns: - dict or OrderedDict: The loaded checkpoint. - """ - - model_urls = get_external_models() - prefix_str = 'open-mmlab://' - if filename.startswith(prefix_str): - model_name = filename[13:] - else: - model_name = filename[12:] - prefix_str = 'openmmlab://' - - deprecated_urls = get_deprecated_model_names() - if model_name in deprecated_urls: - warnings.warn(f'{prefix_str}{model_name} is deprecated in favor ' - f'of {prefix_str}{deprecated_urls[model_name]}') - model_name = deprecated_urls[model_name] - model_url = model_urls[model_name] - # check if is url - if model_url.startswith(('http://', 'https://')): - checkpoint = load_from_http(model_url, map_location=map_location) - else: - filename = osp.join(_get_mmcv_home(), model_url) - if not osp.isfile(filename): - raise IOError(f'{filename} is not a checkpoint file') - checkpoint = torch.load(filename, map_location=map_location) - return checkpoint - - -@CheckpointLoader.register_scheme(prefixes='mmcls://') -def load_from_mmcls(filename, map_location=None): - """load checkpoint through the file path prefixed with mmcls. - - Args: - filename (str): checkpoint file path with mmcls prefix - map_location (str, optional): Same as :func:`torch.load`. - - Returns: - dict or OrderedDict: The loaded checkpoint. - """ - - model_urls = get_mmcls_models() - model_name = filename[8:] - checkpoint = load_from_http( - model_urls[model_name], map_location=map_location) - checkpoint = _process_mmcls_checkpoint(checkpoint) - return checkpoint - - -def _load_checkpoint(filename, map_location=None, logger=None): - """Load checkpoint from somewhere (modelzoo, file, url). - - Args: - filename (str): Accept local filepath, URL, ``torchvision://xxx``, - ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for - details. - map_location (str, optional): Same as :func:`torch.load`. - Default: None. - logger (:mod:`logging.Logger`, optional): The logger for error message. - Default: None - - Returns: - dict or OrderedDict: The loaded checkpoint. It can be either an - OrderedDict storing model weights or a dict containing other - information, which depends on the checkpoint. - """ - return CheckpointLoader.load_checkpoint(filename, map_location, logger) - - -def _load_checkpoint_with_prefix(prefix, filename, map_location=None): - """Load partial pretrained model with specific prefix. - - Args: - prefix (str): The prefix of sub-module. - filename (str): Accept local filepath, URL, ``torchvision://xxx``, - ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for - details. - map_location (str | None): Same as :func:`torch.load`. Default: None. - - Returns: - dict or OrderedDict: The loaded checkpoint. - """ - - checkpoint = _load_checkpoint(filename, map_location=map_location) - - if 'state_dict' in checkpoint: - state_dict = checkpoint['state_dict'] - else: - state_dict = checkpoint - if not prefix.endswith('.'): - prefix += '.' - prefix_len = len(prefix) - - state_dict = { - k[prefix_len:]: v - for k, v in state_dict.items() if k.startswith(prefix) - } - - assert state_dict, f'{prefix} is not in the pretrained model' - return state_dict - - -def load_checkpoint(model, - filename, - map_location=None, - strict=False, - logger=None, - revise_keys=[(r'^module\.', '')]): - """Load checkpoint from a file or URI. - - Args: - model (Module): Module to load checkpoint. - filename (str): Accept local filepath, URL, ``torchvision://xxx``, - ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for - details. - map_location (str): Same as :func:`torch.load`. - strict (bool): Whether to allow different params for the model and - checkpoint. - logger (:mod:`logging.Logger` or None): The logger for error message. - revise_keys (list): A list of customized keywords to modify the - state_dict in checkpoint. Each item is a (pattern, replacement) - pair of the regular expression operations. Default: strip - the prefix 'module.' by [(r'^module\\.', '')]. - - Returns: - dict or OrderedDict: The loaded checkpoint. - """ - checkpoint = _load_checkpoint(filename, map_location, logger) - # OrderedDict is a subclass of dict - if not isinstance(checkpoint, dict): - raise RuntimeError( - f'No state_dict found in checkpoint file {filename}') - # get state_dict from checkpoint - if 'state_dict' in checkpoint: - state_dict = checkpoint['state_dict'] - else: - state_dict = checkpoint - - # strip prefix of state_dict - metadata = getattr(state_dict, '_metadata', OrderedDict()) - for p, r in revise_keys: - state_dict = OrderedDict( - {re.sub(p, r, k): v - for k, v in state_dict.items()}) - # Keep metadata in state_dict - state_dict._metadata = metadata - - # load state_dict - load_state_dict(model, state_dict, strict, logger) - return checkpoint - - -def weights_to_cpu(state_dict): - """Copy a model state_dict to cpu. - - Args: - state_dict (OrderedDict): Model weights on GPU. - - Returns: - OrderedDict: Model weights on GPU. - """ - state_dict_cpu = OrderedDict() - for key, val in state_dict.items(): - state_dict_cpu[key] = val.cpu() - # Keep metadata in state_dict - state_dict_cpu._metadata = getattr(state_dict, '_metadata', OrderedDict()) - return state_dict_cpu - - -def _save_to_state_dict(module, destination, prefix, keep_vars): - """Saves module state to `destination` dictionary. - - This method is modified from :meth:`torch.nn.Module._save_to_state_dict`. - - Args: - module (nn.Module): The module to generate state_dict. - destination (dict): A dict where state will be stored. - prefix (str): The prefix for parameters and buffers used in this - module. - """ - for name, param in module._parameters.items(): - if param is not None: - destination[prefix + name] = param if keep_vars else param.detach() - for name, buf in module._buffers.items(): - # remove check of _non_persistent_buffers_set to allow nn.BatchNorm2d - if buf is not None: - destination[prefix + name] = buf if keep_vars else buf.detach() - - -def get_state_dict(module, destination=None, prefix='', keep_vars=False): - """Returns a dictionary containing a whole state of the module. - - Both parameters and persistent buffers (e.g. running averages) are - included. Keys are corresponding parameter and buffer names. - - This method is modified from :meth:`torch.nn.Module.state_dict` to - recursively check parallel module in case that the model has a complicated - structure, e.g., nn.Module(nn.Module(DDP)). - - Args: - module (nn.Module): The module to generate state_dict. - destination (OrderedDict): Returned dict for the state of the - module. - prefix (str): Prefix of the key. - keep_vars (bool): Whether to keep the variable property of the - parameters. Default: False. - - Returns: - dict: A dictionary containing a whole state of the module. - """ - # recursively check parallel module in case that the model has a - # complicated structure, e.g., nn.Module(nn.Module(DDP)) - if is_module_wrapper(module): - module = module.module - - # below is the same as torch.nn.Module.state_dict() - if destination is None: - destination = OrderedDict() - destination._metadata = OrderedDict() - destination._metadata[prefix[:-1]] = local_metadata = dict( - version=module._version) - _save_to_state_dict(module, destination, prefix, keep_vars) - for name, child in module._modules.items(): - if child is not None: - get_state_dict( - child, destination, prefix + name + '.', keep_vars=keep_vars) - for hook in module._state_dict_hooks.values(): - hook_result = hook(module, destination, prefix, local_metadata) - if hook_result is not None: - destination = hook_result - return destination - - -def save_checkpoint(model, - filename, - optimizer=None, - meta=None, - file_client_args=None): - """Save checkpoint to file. - - The checkpoint will have 3 fields: ``meta``, ``state_dict`` and - ``optimizer``. By default ``meta`` will contain version and time info. - - Args: - model (Module): Module whose params are to be saved. - filename (str): Checkpoint filename. - optimizer (:obj:`Optimizer`, optional): Optimizer to be saved. - meta (dict, optional): Metadata to be saved in checkpoint. - file_client_args (dict, optional): Arguments to instantiate a - FileClient. See :class:`mmcv.fileio.FileClient` for details. - Default: None. - `New in version 1.3.16.` - """ - if meta is None: - meta = {} - elif not isinstance(meta, dict): - raise TypeError(f'meta must be a dict or None, but got {type(meta)}') - meta.update(mmcv_version=mmcv.__version__, time=time.asctime()) - - if is_module_wrapper(model): - model = model.module - - if hasattr(model, 'CLASSES') and model.CLASSES is not None: - # save class name to the meta - meta.update(CLASSES=model.CLASSES) - - checkpoint = { - 'meta': meta, - 'state_dict': weights_to_cpu(get_state_dict(model)) - } - # save optimizer state dict in the checkpoint - if isinstance(optimizer, Optimizer): - checkpoint['optimizer'] = optimizer.state_dict() - elif isinstance(optimizer, dict): - checkpoint['optimizer'] = {} - for name, optim in optimizer.items(): - checkpoint['optimizer'][name] = optim.state_dict() - - if filename.startswith('pavi://'): - if file_client_args is not None: - raise ValueError( - 'file_client_args should be "None" if filename starts with' - f'"pavi://", but got {file_client_args}') - try: - from pavi import modelcloud - from pavi import exception - except ImportError: - raise ImportError( - 'Please install pavi to load checkpoint from modelcloud.') - model_path = filename[7:] - root = modelcloud.Folder() - model_dir, model_name = osp.split(model_path) - try: - model = modelcloud.get(model_dir) - except exception.NodeNotFoundError: - model = root.create_training_model(model_dir) - with TemporaryDirectory() as tmp_dir: - checkpoint_file = osp.join(tmp_dir, model_name) - with open(checkpoint_file, 'wb') as f: - torch.save(checkpoint, f) - f.flush() - model.create_file(checkpoint_file, name=model_name) - else: - file_client = FileClient.infer_client(file_client_args, filename) - with io.BytesIO() as f: - torch.save(checkpoint, f) - file_client.put(f.getvalue(), filename) diff --git a/spaces/abhishek/sketch-to-image/annotator/uniformer/mmdet/core/bbox/assigners/base_assigner.py b/spaces/abhishek/sketch-to-image/annotator/uniformer/mmdet/core/bbox/assigners/base_assigner.py deleted file mode 100644 index 1ff0160dbb4bfbf53cb40d1d5cb29bcc3d197a59..0000000000000000000000000000000000000000 --- a/spaces/abhishek/sketch-to-image/annotator/uniformer/mmdet/core/bbox/assigners/base_assigner.py +++ /dev/null @@ -1,9 +0,0 @@ -from abc import ABCMeta, abstractmethod - - -class BaseAssigner(metaclass=ABCMeta): - """Base assigner that assigns boxes to ground truth boxes.""" - - @abstractmethod - def assign(self, bboxes, gt_bboxes, gt_bboxes_ignore=None, gt_labels=None): - """Assign boxes to either a ground truth boxes or a negative boxes.""" diff --git a/spaces/abhishek/sketch-to-image/annotator/uniformer/mmdet/models/detectors/cascade_rcnn.py b/spaces/abhishek/sketch-to-image/annotator/uniformer/mmdet/models/detectors/cascade_rcnn.py deleted file mode 100644 index d873dceb7e4efdf8d1e7d282badfe9b7118426b9..0000000000000000000000000000000000000000 --- a/spaces/abhishek/sketch-to-image/annotator/uniformer/mmdet/models/detectors/cascade_rcnn.py +++ /dev/null @@ -1,46 +0,0 @@ -from ..builder import DETECTORS -from .two_stage import TwoStageDetector - - -@DETECTORS.register_module() -class CascadeRCNN(TwoStageDetector): - r"""Implementation of `Cascade R-CNN: Delving into High Quality Object - Detection `_""" - - def __init__(self, - backbone, - neck=None, - rpn_head=None, - roi_head=None, - train_cfg=None, - test_cfg=None, - pretrained=None): - super(CascadeRCNN, self).__init__( - backbone=backbone, - neck=neck, - rpn_head=rpn_head, - roi_head=roi_head, - train_cfg=train_cfg, - test_cfg=test_cfg, - pretrained=pretrained) - - def show_result(self, data, result, **kwargs): - """Show prediction results of the detector. - - Args: - data (str or np.ndarray): Image filename or loaded image. - result (Tensor or tuple): The results to draw over `img` - bbox_result or (bbox_result, segm_result). - - Returns: - np.ndarray: The image with bboxes drawn on it. - """ - if self.with_mask: - ms_bbox_result, ms_segm_result = result - if isinstance(ms_bbox_result, dict): - result = (ms_bbox_result['ensemble'], - ms_segm_result['ensemble']) - else: - if isinstance(result, dict): - result = result['ensemble'] - return super(CascadeRCNN, self).show_result(data, result, **kwargs) diff --git a/spaces/abhishek/sketch-to-image/annotator/uniformer/mmdet/models/detectors/sparse_rcnn.py b/spaces/abhishek/sketch-to-image/annotator/uniformer/mmdet/models/detectors/sparse_rcnn.py deleted file mode 100644 index 0dbd0250f189e610a0bbc72b0dab2559e26857ae..0000000000000000000000000000000000000000 --- a/spaces/abhishek/sketch-to-image/annotator/uniformer/mmdet/models/detectors/sparse_rcnn.py +++ /dev/null @@ -1,110 +0,0 @@ -from ..builder import DETECTORS -from .two_stage import TwoStageDetector - - -@DETECTORS.register_module() -class SparseRCNN(TwoStageDetector): - r"""Implementation of `Sparse R-CNN: End-to-End Object Detection with - Learnable Proposals `_""" - - def __init__(self, *args, **kwargs): - super(SparseRCNN, self).__init__(*args, **kwargs) - assert self.with_rpn, 'Sparse R-CNN do not support external proposals' - - def forward_train(self, - img, - img_metas, - gt_bboxes, - gt_labels, - gt_bboxes_ignore=None, - gt_masks=None, - proposals=None, - **kwargs): - """Forward function of SparseR-CNN in train stage. - - Args: - img (Tensor): of shape (N, C, H, W) encoding input images. - Typically these should be mean centered and std scaled. - img_metas (list[dict]): list of image info dict where each dict - has: 'img_shape', 'scale_factor', 'flip', and may also contain - 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. - For details on the values of these keys see - :class:`mmdet.datasets.pipelines.Collect`. - gt_bboxes (list[Tensor]): Ground truth bboxes for each image with - shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. - gt_labels (list[Tensor]): class indices corresponding to each box - gt_bboxes_ignore (None | list[Tensor): specify which bounding - boxes can be ignored when computing the loss. - gt_masks (List[Tensor], optional) : Segmentation masks for - each box. But we don't support it in this architecture. - proposals (List[Tensor], optional): override rpn proposals with - custom proposals. Use when `with_rpn` is False. - - Returns: - dict[str, Tensor]: a dictionary of loss components - """ - - assert proposals is None, 'Sparse R-CNN does not support' \ - ' external proposals' - assert gt_masks is None, 'Sparse R-CNN does not instance segmentation' - - x = self.extract_feat(img) - proposal_boxes, proposal_features, imgs_whwh = \ - self.rpn_head.forward_train(x, img_metas) - roi_losses = self.roi_head.forward_train( - x, - proposal_boxes, - proposal_features, - img_metas, - gt_bboxes, - gt_labels, - gt_bboxes_ignore=gt_bboxes_ignore, - gt_masks=gt_masks, - imgs_whwh=imgs_whwh) - return roi_losses - - def simple_test(self, img, img_metas, rescale=False): - """Test function without test time augmentation. - - Args: - imgs (list[torch.Tensor]): List of multiple images - img_metas (list[dict]): List of image information. - rescale (bool): Whether to rescale the results. - Defaults to False. - - Returns: - list[list[np.ndarray]]: BBox results of each image and classes. - The outer list corresponds to each image. The inner list - corresponds to each class. - """ - x = self.extract_feat(img) - proposal_boxes, proposal_features, imgs_whwh = \ - self.rpn_head.simple_test_rpn(x, img_metas) - bbox_results = self.roi_head.simple_test( - x, - proposal_boxes, - proposal_features, - img_metas, - imgs_whwh=imgs_whwh, - rescale=rescale) - return bbox_results - - def forward_dummy(self, img): - """Used for computing network flops. - - See `mmdetection/tools/analysis_tools/get_flops.py` - """ - # backbone - x = self.extract_feat(img) - # rpn - num_imgs = len(img) - dummy_img_metas = [ - dict(img_shape=(800, 1333, 3)) for _ in range(num_imgs) - ] - proposal_boxes, proposal_features, imgs_whwh = \ - self.rpn_head.simple_test_rpn(x, dummy_img_metas) - # roi_head - roi_outs = self.roi_head.forward_dummy(x, proposal_boxes, - proposal_features, - dummy_img_metas) - return roi_outs diff --git a/spaces/abhishek/sketch-to-image/annotator/uniformer/mmdet/models/roi_heads/point_rend_roi_head.py b/spaces/abhishek/sketch-to-image/annotator/uniformer/mmdet/models/roi_heads/point_rend_roi_head.py deleted file mode 100644 index 478cdf5bff6779e9291f94c543205289036ea2c6..0000000000000000000000000000000000000000 --- a/spaces/abhishek/sketch-to-image/annotator/uniformer/mmdet/models/roi_heads/point_rend_roi_head.py +++ /dev/null @@ -1,218 +0,0 @@ -# Modified from https://github.com/facebookresearch/detectron2/tree/master/projects/PointRend # noqa - -import torch -import torch.nn.functional as F -from mmcv.ops import point_sample, rel_roi_point_to_rel_img_point - -from mmdet.core import bbox2roi, bbox_mapping, merge_aug_masks -from .. import builder -from ..builder import HEADS -from .standard_roi_head import StandardRoIHead - - -@HEADS.register_module() -class PointRendRoIHead(StandardRoIHead): - """`PointRend `_.""" - - def __init__(self, point_head, *args, **kwargs): - super().__init__(*args, **kwargs) - assert self.with_bbox and self.with_mask - self.init_point_head(point_head) - - def init_point_head(self, point_head): - """Initialize ``point_head``""" - self.point_head = builder.build_head(point_head) - - def init_weights(self, pretrained): - """Initialize the weights in head. - - Args: - pretrained (str, optional): Path to pre-trained weights. - """ - super().init_weights(pretrained) - self.point_head.init_weights() - - def _mask_forward_train(self, x, sampling_results, bbox_feats, gt_masks, - img_metas): - """Run forward function and calculate loss for mask head and point head - in training.""" - mask_results = super()._mask_forward_train(x, sampling_results, - bbox_feats, gt_masks, - img_metas) - if mask_results['loss_mask'] is not None: - loss_point = self._mask_point_forward_train( - x, sampling_results, mask_results['mask_pred'], gt_masks, - img_metas) - mask_results['loss_mask'].update(loss_point) - - return mask_results - - def _mask_point_forward_train(self, x, sampling_results, mask_pred, - gt_masks, img_metas): - """Run forward function and calculate loss for point head in - training.""" - pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results]) - rel_roi_points = self.point_head.get_roi_rel_points_train( - mask_pred, pos_labels, cfg=self.train_cfg) - rois = bbox2roi([res.pos_bboxes for res in sampling_results]) - - fine_grained_point_feats = self._get_fine_grained_point_feats( - x, rois, rel_roi_points, img_metas) - coarse_point_feats = point_sample(mask_pred, rel_roi_points) - mask_point_pred = self.point_head(fine_grained_point_feats, - coarse_point_feats) - mask_point_target = self.point_head.get_targets( - rois, rel_roi_points, sampling_results, gt_masks, self.train_cfg) - loss_mask_point = self.point_head.loss(mask_point_pred, - mask_point_target, pos_labels) - - return loss_mask_point - - def _get_fine_grained_point_feats(self, x, rois, rel_roi_points, - img_metas): - """Sample fine grained feats from each level feature map and - concatenate them together.""" - num_imgs = len(img_metas) - fine_grained_feats = [] - for idx in range(self.mask_roi_extractor.num_inputs): - feats = x[idx] - spatial_scale = 1. / float( - self.mask_roi_extractor.featmap_strides[idx]) - point_feats = [] - for batch_ind in range(num_imgs): - # unravel batch dim - feat = feats[batch_ind].unsqueeze(0) - inds = (rois[:, 0].long() == batch_ind) - if inds.any(): - rel_img_points = rel_roi_point_to_rel_img_point( - rois[inds], rel_roi_points[inds], feat.shape[2:], - spatial_scale).unsqueeze(0) - point_feat = point_sample(feat, rel_img_points) - point_feat = point_feat.squeeze(0).transpose(0, 1) - point_feats.append(point_feat) - fine_grained_feats.append(torch.cat(point_feats, dim=0)) - return torch.cat(fine_grained_feats, dim=1) - - def _mask_point_forward_test(self, x, rois, label_pred, mask_pred, - img_metas): - """Mask refining process with point head in testing.""" - refined_mask_pred = mask_pred.clone() - for subdivision_step in range(self.test_cfg.subdivision_steps): - refined_mask_pred = F.interpolate( - refined_mask_pred, - scale_factor=self.test_cfg.scale_factor, - mode='bilinear', - align_corners=False) - # If `subdivision_num_points` is larger or equal to the - # resolution of the next step, then we can skip this step - num_rois, channels, mask_height, mask_width = \ - refined_mask_pred.shape - if (self.test_cfg.subdivision_num_points >= - self.test_cfg.scale_factor**2 * mask_height * mask_width - and - subdivision_step < self.test_cfg.subdivision_steps - 1): - continue - point_indices, rel_roi_points = \ - self.point_head.get_roi_rel_points_test( - refined_mask_pred, label_pred, cfg=self.test_cfg) - fine_grained_point_feats = self._get_fine_grained_point_feats( - x, rois, rel_roi_points, img_metas) - coarse_point_feats = point_sample(mask_pred, rel_roi_points) - mask_point_pred = self.point_head(fine_grained_point_feats, - coarse_point_feats) - - point_indices = point_indices.unsqueeze(1).expand(-1, channels, -1) - refined_mask_pred = refined_mask_pred.reshape( - num_rois, channels, mask_height * mask_width) - refined_mask_pred = refined_mask_pred.scatter_( - 2, point_indices, mask_point_pred) - refined_mask_pred = refined_mask_pred.view(num_rois, channels, - mask_height, mask_width) - - return refined_mask_pred - - def simple_test_mask(self, - x, - img_metas, - det_bboxes, - det_labels, - rescale=False): - """Obtain mask prediction without augmentation.""" - ori_shapes = tuple(meta['ori_shape'] for meta in img_metas) - scale_factors = tuple(meta['scale_factor'] for meta in img_metas) - num_imgs = len(det_bboxes) - if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes): - segm_results = [[[] for _ in range(self.mask_head.num_classes)] - for _ in range(num_imgs)] - else: - # if det_bboxes is rescaled to the original image size, we need to - # rescale it back to the testing scale to obtain RoIs. - if rescale and not isinstance(scale_factors[0], float): - scale_factors = [ - torch.from_numpy(scale_factor).to(det_bboxes[0].device) - for scale_factor in scale_factors - ] - _bboxes = [ - det_bboxes[i][:, :4] * - scale_factors[i] if rescale else det_bboxes[i][:, :4] - for i in range(len(det_bboxes)) - ] - mask_rois = bbox2roi(_bboxes) - mask_results = self._mask_forward(x, mask_rois) - # split batch mask prediction back to each image - mask_pred = mask_results['mask_pred'] - num_mask_roi_per_img = [len(det_bbox) for det_bbox in det_bboxes] - mask_preds = mask_pred.split(num_mask_roi_per_img, 0) - mask_rois = mask_rois.split(num_mask_roi_per_img, 0) - - # apply mask post-processing to each image individually - segm_results = [] - for i in range(num_imgs): - if det_bboxes[i].shape[0] == 0: - segm_results.append( - [[] for _ in range(self.mask_head.num_classes)]) - else: - x_i = [xx[[i]] for xx in x] - mask_rois_i = mask_rois[i] - mask_rois_i[:, 0] = 0 # TODO: remove this hack - mask_pred_i = self._mask_point_forward_test( - x_i, mask_rois_i, det_labels[i], mask_preds[i], - [img_metas]) - segm_result = self.mask_head.get_seg_masks( - mask_pred_i, _bboxes[i], det_labels[i], self.test_cfg, - ori_shapes[i], scale_factors[i], rescale) - segm_results.append(segm_result) - return segm_results - - def aug_test_mask(self, feats, img_metas, det_bboxes, det_labels): - """Test for mask head with test time augmentation.""" - if det_bboxes.shape[0] == 0: - segm_result = [[] for _ in range(self.mask_head.num_classes)] - else: - aug_masks = [] - for x, img_meta in zip(feats, img_metas): - img_shape = img_meta[0]['img_shape'] - scale_factor = img_meta[0]['scale_factor'] - flip = img_meta[0]['flip'] - _bboxes = bbox_mapping(det_bboxes[:, :4], img_shape, - scale_factor, flip) - mask_rois = bbox2roi([_bboxes]) - mask_results = self._mask_forward(x, mask_rois) - mask_results['mask_pred'] = self._mask_point_forward_test( - x, mask_rois, det_labels, mask_results['mask_pred'], - img_metas) - # convert to numpy array to save memory - aug_masks.append( - mask_results['mask_pred'].sigmoid().cpu().numpy()) - merged_masks = merge_aug_masks(aug_masks, img_metas, self.test_cfg) - - ori_shape = img_metas[0][0]['ori_shape'] - segm_result = self.mask_head.get_seg_masks( - merged_masks, - det_bboxes, - det_labels, - self.test_cfg, - ori_shape, - scale_factor=1.0, - rescale=False) - return segm_result diff --git a/spaces/abhishek/sketch-to-image/annotator/uniformer/mmdet_null/models/roi_heads/bbox_heads/scnet_bbox_head.py b/spaces/abhishek/sketch-to-image/annotator/uniformer/mmdet_null/models/roi_heads/bbox_heads/scnet_bbox_head.py deleted file mode 100644 index 35758f4f4e3b2bddd460edb8a7f482b3a9da2919..0000000000000000000000000000000000000000 --- a/spaces/abhishek/sketch-to-image/annotator/uniformer/mmdet_null/models/roi_heads/bbox_heads/scnet_bbox_head.py +++ /dev/null @@ -1,76 +0,0 @@ -from mmdet.models.builder import HEADS -from .convfc_bbox_head import ConvFCBBoxHead - - -@HEADS.register_module() -class SCNetBBoxHead(ConvFCBBoxHead): - """BBox head for `SCNet `_. - - This inherits ``ConvFCBBoxHead`` with modified forward() function, allow us - to get intermediate shared feature. - """ - - def _forward_shared(self, x): - """Forward function for shared part.""" - if self.num_shared_convs > 0: - for conv in self.shared_convs: - x = conv(x) - - if self.num_shared_fcs > 0: - if self.with_avg_pool: - x = self.avg_pool(x) - - x = x.flatten(1) - - for fc in self.shared_fcs: - x = self.relu(fc(x)) - - return x - - def _forward_cls_reg(self, x): - """Forward function for classification and regression parts.""" - x_cls = x - x_reg = x - - for conv in self.cls_convs: - x_cls = conv(x_cls) - if x_cls.dim() > 2: - if self.with_avg_pool: - x_cls = self.avg_pool(x_cls) - x_cls = x_cls.flatten(1) - for fc in self.cls_fcs: - x_cls = self.relu(fc(x_cls)) - - for conv in self.reg_convs: - x_reg = conv(x_reg) - if x_reg.dim() > 2: - if self.with_avg_pool: - x_reg = self.avg_pool(x_reg) - x_reg = x_reg.flatten(1) - for fc in self.reg_fcs: - x_reg = self.relu(fc(x_reg)) - - cls_score = self.fc_cls(x_cls) if self.with_cls else None - bbox_pred = self.fc_reg(x_reg) if self.with_reg else None - - return cls_score, bbox_pred - - def forward(self, x, return_shared_feat=False): - """Forward function. - - Args: - x (Tensor): input features - return_shared_feat (bool): If True, return cls-reg-shared feature. - - Return: - out (tuple[Tensor]): contain ``cls_score`` and ``bbox_pred``, - if ``return_shared_feat`` is True, append ``x_shared`` to the - returned tuple. - """ - x_shared = self._forward_shared(x) - out = self._forward_cls_reg(x_shared) - - if return_shared_feat: - out += (x_shared, ) - - return out diff --git a/spaces/abhishek/sketch-to-image/annotator/uniformer/mmdet_null/models/roi_heads/cascade_roi_head.py b/spaces/abhishek/sketch-to-image/annotator/uniformer/mmdet_null/models/roi_heads/cascade_roi_head.py deleted file mode 100644 index 45b6f36a386cd37c50cc43666fcc516f2e14d868..0000000000000000000000000000000000000000 --- a/spaces/abhishek/sketch-to-image/annotator/uniformer/mmdet_null/models/roi_heads/cascade_roi_head.py +++ /dev/null @@ -1,507 +0,0 @@ -import torch -import torch.nn as nn - -from mmdet.core import (bbox2result, bbox2roi, bbox_mapping, build_assigner, - build_sampler, merge_aug_bboxes, merge_aug_masks, - multiclass_nms) -from ..builder import HEADS, build_head, build_roi_extractor -from .base_roi_head import BaseRoIHead -from .test_mixins import BBoxTestMixin, MaskTestMixin - - -@HEADS.register_module() -class CascadeRoIHead(BaseRoIHead, BBoxTestMixin, MaskTestMixin): - """Cascade roi head including one bbox head and one mask head. - - https://arxiv.org/abs/1712.00726 - """ - - def __init__(self, - num_stages, - stage_loss_weights, - bbox_roi_extractor=None, - bbox_head=None, - mask_roi_extractor=None, - mask_head=None, - shared_head=None, - train_cfg=None, - test_cfg=None): - assert bbox_roi_extractor is not None - assert bbox_head is not None - assert shared_head is None, \ - 'Shared head is not supported in Cascade RCNN anymore' - self.num_stages = num_stages - self.stage_loss_weights = stage_loss_weights - super(CascadeRoIHead, self).__init__( - bbox_roi_extractor=bbox_roi_extractor, - bbox_head=bbox_head, - mask_roi_extractor=mask_roi_extractor, - mask_head=mask_head, - shared_head=shared_head, - train_cfg=train_cfg, - test_cfg=test_cfg) - - def init_bbox_head(self, bbox_roi_extractor, bbox_head): - """Initialize box head and box roi extractor. - - Args: - bbox_roi_extractor (dict): Config of box roi extractor. - bbox_head (dict): Config of box in box head. - """ - self.bbox_roi_extractor = nn.ModuleList() - self.bbox_head = nn.ModuleList() - if not isinstance(bbox_roi_extractor, list): - bbox_roi_extractor = [ - bbox_roi_extractor for _ in range(self.num_stages) - ] - if not isinstance(bbox_head, list): - bbox_head = [bbox_head for _ in range(self.num_stages)] - assert len(bbox_roi_extractor) == len(bbox_head) == self.num_stages - for roi_extractor, head in zip(bbox_roi_extractor, bbox_head): - self.bbox_roi_extractor.append(build_roi_extractor(roi_extractor)) - self.bbox_head.append(build_head(head)) - - def init_mask_head(self, mask_roi_extractor, mask_head): - """Initialize mask head and mask roi extractor. - - Args: - mask_roi_extractor (dict): Config of mask roi extractor. - mask_head (dict): Config of mask in mask head. - """ - self.mask_head = nn.ModuleList() - if not isinstance(mask_head, list): - mask_head = [mask_head for _ in range(self.num_stages)] - assert len(mask_head) == self.num_stages - for head in mask_head: - self.mask_head.append(build_head(head)) - if mask_roi_extractor is not None: - self.share_roi_extractor = False - self.mask_roi_extractor = nn.ModuleList() - if not isinstance(mask_roi_extractor, list): - mask_roi_extractor = [ - mask_roi_extractor for _ in range(self.num_stages) - ] - assert len(mask_roi_extractor) == self.num_stages - for roi_extractor in mask_roi_extractor: - self.mask_roi_extractor.append( - build_roi_extractor(roi_extractor)) - else: - self.share_roi_extractor = True - self.mask_roi_extractor = self.bbox_roi_extractor - - def init_assigner_sampler(self): - """Initialize assigner and sampler for each stage.""" - self.bbox_assigner = [] - self.bbox_sampler = [] - if self.train_cfg is not None: - for idx, rcnn_train_cfg in enumerate(self.train_cfg): - self.bbox_assigner.append( - build_assigner(rcnn_train_cfg.assigner)) - self.current_stage = idx - self.bbox_sampler.append( - build_sampler(rcnn_train_cfg.sampler, context=self)) - - def init_weights(self, pretrained): - """Initialize the weights in head. - - Args: - pretrained (str, optional): Path to pre-trained weights. - Defaults to None. - """ - if self.with_shared_head: - self.shared_head.init_weights(pretrained=pretrained) - for i in range(self.num_stages): - if self.with_bbox: - self.bbox_roi_extractor[i].init_weights() - self.bbox_head[i].init_weights() - if self.with_mask: - if not self.share_roi_extractor: - self.mask_roi_extractor[i].init_weights() - self.mask_head[i].init_weights() - - def forward_dummy(self, x, proposals): - """Dummy forward function.""" - # bbox head - outs = () - rois = bbox2roi([proposals]) - if self.with_bbox: - for i in range(self.num_stages): - bbox_results = self._bbox_forward(i, x, rois) - outs = outs + (bbox_results['cls_score'], - bbox_results['bbox_pred']) - # mask heads - if self.with_mask: - mask_rois = rois[:100] - for i in range(self.num_stages): - mask_results = self._mask_forward(i, x, mask_rois) - outs = outs + (mask_results['mask_pred'], ) - return outs - - def _bbox_forward(self, stage, x, rois): - """Box head forward function used in both training and testing.""" - bbox_roi_extractor = self.bbox_roi_extractor[stage] - bbox_head = self.bbox_head[stage] - bbox_feats = bbox_roi_extractor(x[:bbox_roi_extractor.num_inputs], - rois) - # do not support caffe_c4 model anymore - cls_score, bbox_pred = bbox_head(bbox_feats) - - bbox_results = dict( - cls_score=cls_score, bbox_pred=bbox_pred, bbox_feats=bbox_feats) - return bbox_results - - def _bbox_forward_train(self, stage, x, sampling_results, gt_bboxes, - gt_labels, rcnn_train_cfg): - """Run forward function and calculate loss for box head in training.""" - rois = bbox2roi([res.bboxes for res in sampling_results]) - bbox_results = self._bbox_forward(stage, x, rois) - bbox_targets = self.bbox_head[stage].get_targets( - sampling_results, gt_bboxes, gt_labels, rcnn_train_cfg) - loss_bbox = self.bbox_head[stage].loss(bbox_results['cls_score'], - bbox_results['bbox_pred'], rois, - *bbox_targets) - - bbox_results.update( - loss_bbox=loss_bbox, rois=rois, bbox_targets=bbox_targets) - return bbox_results - - def _mask_forward(self, stage, x, rois): - """Mask head forward function used in both training and testing.""" - mask_roi_extractor = self.mask_roi_extractor[stage] - mask_head = self.mask_head[stage] - mask_feats = mask_roi_extractor(x[:mask_roi_extractor.num_inputs], - rois) - # do not support caffe_c4 model anymore - mask_pred = mask_head(mask_feats) - - mask_results = dict(mask_pred=mask_pred) - return mask_results - - def _mask_forward_train(self, - stage, - x, - sampling_results, - gt_masks, - rcnn_train_cfg, - bbox_feats=None): - """Run forward function and calculate loss for mask head in - training.""" - pos_rois = bbox2roi([res.pos_bboxes for res in sampling_results]) - mask_results = self._mask_forward(stage, x, pos_rois) - - mask_targets = self.mask_head[stage].get_targets( - sampling_results, gt_masks, rcnn_train_cfg) - pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results]) - loss_mask = self.mask_head[stage].loss(mask_results['mask_pred'], - mask_targets, pos_labels) - - mask_results.update(loss_mask=loss_mask) - return mask_results - - def forward_train(self, - x, - img_metas, - proposal_list, - gt_bboxes, - gt_labels, - gt_bboxes_ignore=None, - gt_masks=None): - """ - Args: - x (list[Tensor]): list of multi-level img features. - img_metas (list[dict]): list of image info dict where each dict - has: 'img_shape', 'scale_factor', 'flip', and may also contain - 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. - For details on the values of these keys see - `mmdet/datasets/pipelines/formatting.py:Collect`. - proposals (list[Tensors]): list of region proposals. - gt_bboxes (list[Tensor]): Ground truth bboxes for each image with - shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. - gt_labels (list[Tensor]): class indices corresponding to each box - gt_bboxes_ignore (None | list[Tensor]): specify which bounding - boxes can be ignored when computing the loss. - gt_masks (None | Tensor) : true segmentation masks for each box - used if the architecture supports a segmentation task. - - Returns: - dict[str, Tensor]: a dictionary of loss components - """ - losses = dict() - for i in range(self.num_stages): - self.current_stage = i - rcnn_train_cfg = self.train_cfg[i] - lw = self.stage_loss_weights[i] - - # assign gts and sample proposals - sampling_results = [] - if self.with_bbox or self.with_mask: - bbox_assigner = self.bbox_assigner[i] - bbox_sampler = self.bbox_sampler[i] - num_imgs = len(img_metas) - if gt_bboxes_ignore is None: - gt_bboxes_ignore = [None for _ in range(num_imgs)] - - for j in range(num_imgs): - assign_result = bbox_assigner.assign( - proposal_list[j], gt_bboxes[j], gt_bboxes_ignore[j], - gt_labels[j]) - sampling_result = bbox_sampler.sample( - assign_result, - proposal_list[j], - gt_bboxes[j], - gt_labels[j], - feats=[lvl_feat[j][None] for lvl_feat in x]) - sampling_results.append(sampling_result) - - # bbox head forward and loss - bbox_results = self._bbox_forward_train(i, x, sampling_results, - gt_bboxes, gt_labels, - rcnn_train_cfg) - - for name, value in bbox_results['loss_bbox'].items(): - losses[f's{i}.{name}'] = ( - value * lw if 'loss' in name else value) - - # mask head forward and loss - if self.with_mask: - mask_results = self._mask_forward_train( - i, x, sampling_results, gt_masks, rcnn_train_cfg, - bbox_results['bbox_feats']) - for name, value in mask_results['loss_mask'].items(): - losses[f's{i}.{name}'] = ( - value * lw if 'loss' in name else value) - - # refine bboxes - if i < self.num_stages - 1: - pos_is_gts = [res.pos_is_gt for res in sampling_results] - # bbox_targets is a tuple - roi_labels = bbox_results['bbox_targets'][0] - with torch.no_grad(): - roi_labels = torch.where( - roi_labels == self.bbox_head[i].num_classes, - bbox_results['cls_score'][:, :-1].argmax(1), - roi_labels) - proposal_list = self.bbox_head[i].refine_bboxes( - bbox_results['rois'], roi_labels, - bbox_results['bbox_pred'], pos_is_gts, img_metas) - - return losses - - def simple_test(self, x, proposal_list, img_metas, rescale=False): - """Test without augmentation.""" - assert self.with_bbox, 'Bbox head must be implemented.' - num_imgs = len(proposal_list) - img_shapes = tuple(meta['img_shape'] for meta in img_metas) - ori_shapes = tuple(meta['ori_shape'] for meta in img_metas) - scale_factors = tuple(meta['scale_factor'] for meta in img_metas) - - # "ms" in variable names means multi-stage - ms_bbox_result = {} - ms_segm_result = {} - ms_scores = [] - rcnn_test_cfg = self.test_cfg - - rois = bbox2roi(proposal_list) - for i in range(self.num_stages): - bbox_results = self._bbox_forward(i, x, rois) - - # split batch bbox prediction back to each image - cls_score = bbox_results['cls_score'] - bbox_pred = bbox_results['bbox_pred'] - num_proposals_per_img = tuple( - len(proposals) for proposals in proposal_list) - rois = rois.split(num_proposals_per_img, 0) - cls_score = cls_score.split(num_proposals_per_img, 0) - if isinstance(bbox_pred, torch.Tensor): - bbox_pred = bbox_pred.split(num_proposals_per_img, 0) - else: - bbox_pred = self.bbox_head[i].bbox_pred_split( - bbox_pred, num_proposals_per_img) - ms_scores.append(cls_score) - - if i < self.num_stages - 1: - bbox_label = [s[:, :-1].argmax(dim=1) for s in cls_score] - rois = torch.cat([ - self.bbox_head[i].regress_by_class(rois[j], bbox_label[j], - bbox_pred[j], - img_metas[j]) - for j in range(num_imgs) - ]) - - # average scores of each image by stages - cls_score = [ - sum([score[i] for score in ms_scores]) / float(len(ms_scores)) - for i in range(num_imgs) - ] - - # apply bbox post-processing to each image individually - det_bboxes = [] - det_labels = [] - for i in range(num_imgs): - det_bbox, det_label = self.bbox_head[-1].get_bboxes( - rois[i], - cls_score[i], - bbox_pred[i], - img_shapes[i], - scale_factors[i], - rescale=rescale, - cfg=rcnn_test_cfg) - det_bboxes.append(det_bbox) - det_labels.append(det_label) - - if torch.onnx.is_in_onnx_export(): - return det_bboxes, det_labels - bbox_results = [ - bbox2result(det_bboxes[i], det_labels[i], - self.bbox_head[-1].num_classes) - for i in range(num_imgs) - ] - ms_bbox_result['ensemble'] = bbox_results - - if self.with_mask: - if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes): - mask_classes = self.mask_head[-1].num_classes - segm_results = [[[] for _ in range(mask_classes)] - for _ in range(num_imgs)] - else: - if rescale and not isinstance(scale_factors[0], float): - scale_factors = [ - torch.from_numpy(scale_factor).to(det_bboxes[0].device) - for scale_factor in scale_factors - ] - _bboxes = [ - det_bboxes[i][:, :4] * - scale_factors[i] if rescale else det_bboxes[i][:, :4] - for i in range(len(det_bboxes)) - ] - mask_rois = bbox2roi(_bboxes) - num_mask_rois_per_img = tuple( - _bbox.size(0) for _bbox in _bboxes) - aug_masks = [] - for i in range(self.num_stages): - mask_results = self._mask_forward(i, x, mask_rois) - mask_pred = mask_results['mask_pred'] - # split batch mask prediction back to each image - mask_pred = mask_pred.split(num_mask_rois_per_img, 0) - aug_masks.append( - [m.sigmoid().cpu().numpy() for m in mask_pred]) - - # apply mask post-processing to each image individually - segm_results = [] - for i in range(num_imgs): - if det_bboxes[i].shape[0] == 0: - segm_results.append( - [[] - for _ in range(self.mask_head[-1].num_classes)]) - else: - aug_mask = [mask[i] for mask in aug_masks] - merged_masks = merge_aug_masks( - aug_mask, [[img_metas[i]]] * self.num_stages, - rcnn_test_cfg) - segm_result = self.mask_head[-1].get_seg_masks( - merged_masks, _bboxes[i], det_labels[i], - rcnn_test_cfg, ori_shapes[i], scale_factors[i], - rescale) - segm_results.append(segm_result) - ms_segm_result['ensemble'] = segm_results - - if self.with_mask: - results = list( - zip(ms_bbox_result['ensemble'], ms_segm_result['ensemble'])) - else: - results = ms_bbox_result['ensemble'] - - return results - - def aug_test(self, features, proposal_list, img_metas, rescale=False): - """Test with augmentations. - - If rescale is False, then returned bboxes and masks will fit the scale - of imgs[0]. - """ - rcnn_test_cfg = self.test_cfg - aug_bboxes = [] - aug_scores = [] - for x, img_meta in zip(features, img_metas): - # only one image in the batch - img_shape = img_meta[0]['img_shape'] - scale_factor = img_meta[0]['scale_factor'] - flip = img_meta[0]['flip'] - flip_direction = img_meta[0]['flip_direction'] - - proposals = bbox_mapping(proposal_list[0][:, :4], img_shape, - scale_factor, flip, flip_direction) - # "ms" in variable names means multi-stage - ms_scores = [] - - rois = bbox2roi([proposals]) - for i in range(self.num_stages): - bbox_results = self._bbox_forward(i, x, rois) - ms_scores.append(bbox_results['cls_score']) - - if i < self.num_stages - 1: - bbox_label = bbox_results['cls_score'][:, :-1].argmax( - dim=1) - rois = self.bbox_head[i].regress_by_class( - rois, bbox_label, bbox_results['bbox_pred'], - img_meta[0]) - - cls_score = sum(ms_scores) / float(len(ms_scores)) - bboxes, scores = self.bbox_head[-1].get_bboxes( - rois, - cls_score, - bbox_results['bbox_pred'], - img_shape, - scale_factor, - rescale=False, - cfg=None) - aug_bboxes.append(bboxes) - aug_scores.append(scores) - - # after merging, bboxes will be rescaled to the original image size - merged_bboxes, merged_scores = merge_aug_bboxes( - aug_bboxes, aug_scores, img_metas, rcnn_test_cfg) - det_bboxes, det_labels = multiclass_nms(merged_bboxes, merged_scores, - rcnn_test_cfg.score_thr, - rcnn_test_cfg.nms, - rcnn_test_cfg.max_per_img) - - bbox_result = bbox2result(det_bboxes, det_labels, - self.bbox_head[-1].num_classes) - - if self.with_mask: - if det_bboxes.shape[0] == 0: - segm_result = [[[] - for _ in range(self.mask_head[-1].num_classes)] - ] - else: - aug_masks = [] - aug_img_metas = [] - for x, img_meta in zip(features, img_metas): - img_shape = img_meta[0]['img_shape'] - scale_factor = img_meta[0]['scale_factor'] - flip = img_meta[0]['flip'] - flip_direction = img_meta[0]['flip_direction'] - _bboxes = bbox_mapping(det_bboxes[:, :4], img_shape, - scale_factor, flip, flip_direction) - mask_rois = bbox2roi([_bboxes]) - for i in range(self.num_stages): - mask_results = self._mask_forward(i, x, mask_rois) - aug_masks.append( - mask_results['mask_pred'].sigmoid().cpu().numpy()) - aug_img_metas.append(img_meta) - merged_masks = merge_aug_masks(aug_masks, aug_img_metas, - self.test_cfg) - - ori_shape = img_metas[0][0]['ori_shape'] - segm_result = self.mask_head[-1].get_seg_masks( - merged_masks, - det_bboxes, - det_labels, - rcnn_test_cfg, - ori_shape, - scale_factor=1.0, - rescale=False) - return [(bbox_result, segm_result)] - else: - return [bbox_result] diff --git a/spaces/abhishekgawade/Skin_disease_detection/app.py b/spaces/abhishekgawade/Skin_disease_detection/app.py deleted file mode 100644 index ed75d3e088b6a5fb546214b0baf1ac8ddb4f21f4..0000000000000000000000000000000000000000 --- a/spaces/abhishekgawade/Skin_disease_detection/app.py +++ /dev/null @@ -1,62 +0,0 @@ -import gradio as gr -import tensorflow as tf - -path_to_model = "./skin_model_23_75.18.h5" - -model = tf.keras.models.load_model(path_to_model) - -labels = ['Acne / Rosacea', - 'Actinic Keratosis / Basal Cell Carcinoma', - 'Atopic Dermatitis', 'Bullous Disease', - 'Cellulitis Impetigo (Bacterial Infections)', - 'Eczema', 'Exanthems (Drug Eruptions)', 'Hair Loss (Alopecia)', - 'Herpes HPV', 'Disorders of Pigmentation', - 'Lupus ', - 'Melanoma (Skin Cancer)', 'Nail Fungus', - 'Poison Ivy', - 'Psoriasis (Lichen Planus)', 'Scabies Lyme', - 'Seborrheic Keratoses', 'Systemic Disease', - 'Tinea Ringworm (Fungal Infections)', - 'Urticaria Hives', 'Vascular Tumors', 'Vasculitis', 'Warts Molluscum'] - -def classify_image(photos): - photos = photos.reshape((-1, 224, 224, 3)) - prediction = model.predict(photos).flatten() - confidences = {labels[i]: float(prediction[i]) for i in range(23)} - return confidences - - -title="SKIN DISEASE DETECTION" - -description = "An automated system is proposed for the diagnosis of #23 common skin diseases by using data from clinical images and patient information using deep learning pre-trained EfficientNetB7 model with 75% accuracy. we will implement a simple image classification model using Gradio and Tensorflow. The image classification model will classify images of various skin disease problems into labeled classes." - - -article = "We used the generated Gradio UI to input an image for the trained convolutional neural network to make image classifications. The convolutional neural network was able to accurately classify the input image. Sometimes you would like to resize the image from the gradio UI for better performance" - - -examples = [ - ['./123.jpg'], - ['./acne-closed-comedo-2.jpg'], - ['./distal-subungual-onychomycosis-86.jpg'], - ['./cherry-angioma-16.jpg'], - ['./malignant-melanoma-16.jpg'], - ['./tinea-primary-lesion-15.jpg'], - ['./congenital-nevus-35.jpg'], - ['./tinea-body-137.jpg'] - ] - - - - - -gr.Interface(fn=classify_image, - title = title, - article = article, - description = description, - inputs=gr.inputs.Image(shape=(224, 224)), - outputs=gr.outputs.Label(num_top_classes=4), - examples=examples).launch() - - - - diff --git a/spaces/acmyu/frame_interpolation_prototype/utils.py b/spaces/acmyu/frame_interpolation_prototype/utils.py deleted file mode 100644 index 32e5b73654720d3b404bb38d8d75e99a9267396e..0000000000000000000000000000000000000000 --- a/spaces/acmyu/frame_interpolation_prototype/utils.py +++ /dev/null @@ -1,29 +0,0 @@ -import os -import torch -from torch.autograd import Variable - - -def make_folder(path, version): - if not os.path.exists(os.path.join(path, version)): - os.makedirs(os.path.join(path, version)) - - -def tensor2var(x, grad=False): - if torch.cuda.is_available(): - x = x.cuda() - return Variable(x, requires_grad=grad) - -def var2tensor(x): - return x.data.cpu() - -def var2numpy(x): - return x.data.cpu().numpy() - -def denorm(x): - out = (x + 1) / 2 - return out.clamp_(0, 1) - -def getFrames(x): - x = x[:, 0] - x = x.to('cuda') - return x diff --git a/spaces/akhaliq/VQMIVC/README.md b/spaces/akhaliq/VQMIVC/README.md deleted file mode 100644 index 79e73a2eb0181aec077e0eb62ab67ca6cc67df62..0000000000000000000000000000000000000000 --- a/spaces/akhaliq/VQMIVC/README.md +++ /dev/null @@ -1,38 +0,0 @@ ---- -title: VQMIVC -emoji: 📈 -colorFrom: yellow -colorTo: purple -sdk: gradio -sdk_version: 3.0.11 -app_file: app.py -pinned: false ---- - -# Configuration - -`title`: _string_ -Display title for the Space - -`emoji`: _string_ -Space emoji (emoji-only character allowed) - -`colorFrom`: _string_ -Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) - -`colorTo`: _string_ -Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) - -`sdk`: _string_ -Can be either `gradio` or `streamlit` - -`sdk_version` : _string_ -Only applicable for `streamlit` SDK. -See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions. - -`app_file`: _string_ -Path to your main application file (which contains either `gradio` or `streamlit` Python code). -Path is relative to the root of the repository. - -`pinned`: _boolean_ -Whether the Space stays on top of your list. diff --git a/spaces/akhaliq/vox2/README.md b/spaces/akhaliq/vox2/README.md deleted file mode 100644 index d8bc50b7e6970b8e709e8d6f2f8d1be5fb129ac3..0000000000000000000000000000000000000000 --- a/spaces/akhaliq/vox2/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Vox2 -emoji: 🐢 -colorFrom: yellow -colorTo: yellow -sdk: gradio -sdk_version: 3.11.0 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/akhaliq/yolov7/models/experimental.py b/spaces/akhaliq/yolov7/models/experimental.py deleted file mode 100644 index a14d496e69c2e6b144554342aace918857e39f15..0000000000000000000000000000000000000000 --- a/spaces/akhaliq/yolov7/models/experimental.py +++ /dev/null @@ -1,106 +0,0 @@ -import numpy as np -import torch -import torch.nn as nn - -from models.common import Conv, DWConv -from utils.google_utils import attempt_download - - -class CrossConv(nn.Module): - # Cross Convolution Downsample - def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False): - # ch_in, ch_out, kernel, stride, groups, expansion, shortcut - super(CrossConv, self).__init__() - c_ = int(c2 * e) # hidden channels - self.cv1 = Conv(c1, c_, (1, k), (1, s)) - self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g) - self.add = shortcut and c1 == c2 - - def forward(self, x): - return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) - - -class Sum(nn.Module): - # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070 - def __init__(self, n, weight=False): # n: number of inputs - super(Sum, self).__init__() - self.weight = weight # apply weights boolean - self.iter = range(n - 1) # iter object - if weight: - self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights - - def forward(self, x): - y = x[0] # no weight - if self.weight: - w = torch.sigmoid(self.w) * 2 - for i in self.iter: - y = y + x[i + 1] * w[i] - else: - for i in self.iter: - y = y + x[i + 1] - return y - - -class MixConv2d(nn.Module): - # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595 - def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): - super(MixConv2d, self).__init__() - groups = len(k) - if equal_ch: # equal c_ per group - i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices - c_ = [(i == g).sum() for g in range(groups)] # intermediate channels - else: # equal weight.numel() per group - b = [c2] + [0] * groups - a = np.eye(groups + 1, groups, k=-1) - a -= np.roll(a, 1, axis=1) - a *= np.array(k) ** 2 - a[0] = 1 - c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b - - self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)]) - self.bn = nn.BatchNorm2d(c2) - self.act = nn.LeakyReLU(0.1, inplace=True) - - def forward(self, x): - return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1))) - - -class Ensemble(nn.ModuleList): - # Ensemble of models - def __init__(self): - super(Ensemble, self).__init__() - - def forward(self, x, augment=False): - y = [] - for module in self: - y.append(module(x, augment)[0]) - # y = torch.stack(y).max(0)[0] # max ensemble - # y = torch.stack(y).mean(0) # mean ensemble - y = torch.cat(y, 1) # nms ensemble - return y, None # inference, train output - - -def attempt_load(weights, map_location=None): - # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a - model = Ensemble() - for w in weights if isinstance(weights, list) else [weights]: - # attempt_download(w) - ckpt = torch.load(w, map_location=map_location) # load - model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model - - # Compatibility updates - for m in model.modules(): - if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]: - m.inplace = True # pytorch 1.7.0 compatibility - elif type(m) is nn.Upsample: - m.recompute_scale_factor = None # torch 1.11.0 compatibility - elif type(m) is Conv: - m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility - - if len(model) == 1: - return model[-1] # return model - else: - print('Ensemble created with %s\n' % weights) - for k in ['names', 'stride']: - setattr(model, k, getattr(model[-1], k)) - return model # return ensemble diff --git a/spaces/alamin655/websurfx/.gitpod.Dockerfile b/spaces/alamin655/websurfx/.gitpod.Dockerfile deleted file mode 100644 index f64d7658c62998b406ad819308e5acaf687d4d26..0000000000000000000000000000000000000000 --- a/spaces/alamin655/websurfx/.gitpod.Dockerfile +++ /dev/null @@ -1,3 +0,0 @@ -FROM gitpod/workspace-rust - -RUN sudo install-packages redis-server nodejs npm liblua5.4-dev liblua5.3-dev liblua5.2-dev liblua5.1-0-dev libluajit-5.1-dev diff --git a/spaces/alexray/btc_predictor/venv/lib/python3.10/site-packages/pip/_vendor/rich/logging.py b/spaces/alexray/btc_predictor/venv/lib/python3.10/site-packages/pip/_vendor/rich/logging.py deleted file mode 100644 index 002f1f7bf1c6857bdcce388f78ac1e415ef8d3f5..0000000000000000000000000000000000000000 --- a/spaces/alexray/btc_predictor/venv/lib/python3.10/site-packages/pip/_vendor/rich/logging.py +++ /dev/null @@ -1,268 +0,0 @@ -import logging -from datetime import datetime -from logging import Handler, LogRecord -from pathlib import Path -from typing import ClassVar, List, Optional, Type, Union - -from . import get_console -from ._log_render import LogRender, FormatTimeCallable -from .console import Console, ConsoleRenderable -from .highlighter import Highlighter, ReprHighlighter -from .text import Text -from .traceback import Traceback - - -class RichHandler(Handler): - """A logging handler that renders output with Rich. The time / level / message and file are displayed in columns. - The level is color coded, and the message is syntax highlighted. - - Note: - Be careful when enabling console markup in log messages if you have configured logging for libraries not - under your control. If a dependency writes messages containing square brackets, it may not produce the intended output. - - Args: - level (Union[int, str], optional): Log level. Defaults to logging.NOTSET. - console (:class:`~rich.console.Console`, optional): Optional console instance to write logs. - Default will use a global console instance writing to stdout. - show_time (bool, optional): Show a column for the time. Defaults to True. - omit_repeated_times (bool, optional): Omit repetition of the same time. Defaults to True. - show_level (bool, optional): Show a column for the level. Defaults to True. - show_path (bool, optional): Show the path to the original log call. Defaults to True. - enable_link_path (bool, optional): Enable terminal link of path column to file. Defaults to True. - highlighter (Highlighter, optional): Highlighter to style log messages, or None to use ReprHighlighter. Defaults to None. - markup (bool, optional): Enable console markup in log messages. Defaults to False. - rich_tracebacks (bool, optional): Enable rich tracebacks with syntax highlighting and formatting. Defaults to False. - tracebacks_width (Optional[int], optional): Number of characters used to render tracebacks, or None for full width. Defaults to None. - tracebacks_extra_lines (int, optional): Additional lines of code to render tracebacks, or None for full width. Defaults to None. - tracebacks_theme (str, optional): Override pygments theme used in traceback. - tracebacks_word_wrap (bool, optional): Enable word wrapping of long tracebacks lines. Defaults to True. - tracebacks_show_locals (bool, optional): Enable display of locals in tracebacks. Defaults to False. - locals_max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. - Defaults to 10. - locals_max_string (int, optional): Maximum length of string before truncating, or None to disable. Defaults to 80. - log_time_format (Union[str, TimeFormatterCallable], optional): If ``log_time`` is enabled, either string for strftime or callable that formats the time. Defaults to "[%x %X] ". - """ - - KEYWORDS: ClassVar[Optional[List[str]]] = [ - "GET", - "POST", - "HEAD", - "PUT", - "DELETE", - "OPTIONS", - "TRACE", - "PATCH", - ] - HIGHLIGHTER_CLASS: ClassVar[Type[Highlighter]] = ReprHighlighter - - def __init__( - self, - level: Union[int, str] = logging.NOTSET, - console: Optional[Console] = None, - *, - show_time: bool = True, - omit_repeated_times: bool = True, - show_level: bool = True, - show_path: bool = True, - enable_link_path: bool = True, - highlighter: Optional[Highlighter] = None, - markup: bool = False, - rich_tracebacks: bool = False, - tracebacks_width: Optional[int] = None, - tracebacks_extra_lines: int = 3, - tracebacks_theme: Optional[str] = None, - tracebacks_word_wrap: bool = True, - tracebacks_show_locals: bool = False, - locals_max_length: int = 10, - locals_max_string: int = 80, - log_time_format: Union[str, FormatTimeCallable] = "[%x %X]", - ) -> None: - super().__init__(level=level) - self.console = console or get_console() - self.highlighter = highlighter or self.HIGHLIGHTER_CLASS() - self._log_render = LogRender( - show_time=show_time, - show_level=show_level, - show_path=show_path, - time_format=log_time_format, - omit_repeated_times=omit_repeated_times, - level_width=None, - ) - self.enable_link_path = enable_link_path - self.markup = markup - self.rich_tracebacks = rich_tracebacks - self.tracebacks_width = tracebacks_width - self.tracebacks_extra_lines = tracebacks_extra_lines - self.tracebacks_theme = tracebacks_theme - self.tracebacks_word_wrap = tracebacks_word_wrap - self.tracebacks_show_locals = tracebacks_show_locals - self.locals_max_length = locals_max_length - self.locals_max_string = locals_max_string - - def get_level_text(self, record: LogRecord) -> Text: - """Get the level name from the record. - - Args: - record (LogRecord): LogRecord instance. - - Returns: - Text: A tuple of the style and level name. - """ - level_name = record.levelname - level_text = Text.styled( - level_name.ljust(8), f"logging.level.{level_name.lower()}" - ) - return level_text - - def emit(self, record: LogRecord) -> None: - """Invoked by logging.""" - message = self.format(record) - traceback = None - if ( - self.rich_tracebacks - and record.exc_info - and record.exc_info != (None, None, None) - ): - exc_type, exc_value, exc_traceback = record.exc_info - assert exc_type is not None - assert exc_value is not None - traceback = Traceback.from_exception( - exc_type, - exc_value, - exc_traceback, - width=self.tracebacks_width, - extra_lines=self.tracebacks_extra_lines, - theme=self.tracebacks_theme, - word_wrap=self.tracebacks_word_wrap, - show_locals=self.tracebacks_show_locals, - locals_max_length=self.locals_max_length, - locals_max_string=self.locals_max_string, - ) - message = record.getMessage() - if self.formatter: - record.message = record.getMessage() - formatter = self.formatter - if hasattr(formatter, "usesTime") and formatter.usesTime(): - record.asctime = formatter.formatTime(record, formatter.datefmt) - message = formatter.formatMessage(record) - - message_renderable = self.render_message(record, message) - log_renderable = self.render( - record=record, traceback=traceback, message_renderable=message_renderable - ) - try: - self.console.print(log_renderable) - except Exception: - self.handleError(record) - - def render_message(self, record: LogRecord, message: str) -> "ConsoleRenderable": - """Render message text in to Text. - - record (LogRecord): logging Record. - message (str): String containing log message. - - Returns: - ConsoleRenderable: Renderable to display log message. - """ - use_markup = getattr(record, "markup", self.markup) - message_text = Text.from_markup(message) if use_markup else Text(message) - - highlighter = getattr(record, "highlighter", self.highlighter) - if highlighter: - message_text = highlighter(message_text) - - if self.KEYWORDS: - message_text.highlight_words(self.KEYWORDS, "logging.keyword") - return message_text - - def render( - self, - *, - record: LogRecord, - traceback: Optional[Traceback], - message_renderable: "ConsoleRenderable", - ) -> "ConsoleRenderable": - """Render log for display. - - Args: - record (LogRecord): logging Record. - traceback (Optional[Traceback]): Traceback instance or None for no Traceback. - message_renderable (ConsoleRenderable): Renderable (typically Text) containing log message contents. - - Returns: - ConsoleRenderable: Renderable to display log. - """ - path = Path(record.pathname).name - level = self.get_level_text(record) - time_format = None if self.formatter is None else self.formatter.datefmt - log_time = datetime.fromtimestamp(record.created) - - log_renderable = self._log_render( - self.console, - [message_renderable] if not traceback else [message_renderable, traceback], - log_time=log_time, - time_format=time_format, - level=level, - path=path, - line_no=record.lineno, - link_path=record.pathname if self.enable_link_path else None, - ) - return log_renderable - - -if __name__ == "__main__": # pragma: no cover - from time import sleep - - FORMAT = "%(message)s" - # FORMAT = "%(asctime)-15s - %(levelname)s - %(message)s" - logging.basicConfig( - level="NOTSET", - format=FORMAT, - datefmt="[%X]", - handlers=[RichHandler(rich_tracebacks=True, tracebacks_show_locals=True)], - ) - log = logging.getLogger("rich") - - log.info("Server starting...") - log.info("Listening on http://127.0.0.1:8080") - sleep(1) - - log.info("GET /index.html 200 1298") - log.info("GET /imgs/backgrounds/back1.jpg 200 54386") - log.info("GET /css/styles.css 200 54386") - log.warning("GET /favicon.ico 404 242") - sleep(1) - - log.debug( - "JSONRPC request\n--> %r\n<-- %r", - { - "version": "1.1", - "method": "confirmFruitPurchase", - "params": [["apple", "orange", "mangoes", "pomelo"], 1.123], - "id": "194521489", - }, - {"version": "1.1", "result": True, "error": None, "id": "194521489"}, - ) - log.debug( - "Loading configuration file /adasd/asdasd/qeqwe/qwrqwrqwr/sdgsdgsdg/werwerwer/dfgerert/ertertert/ertetert/werwerwer" - ) - log.error("Unable to find 'pomelo' in database!") - log.info("POST /jsonrpc/ 200 65532") - log.info("POST /admin/ 401 42234") - log.warning("password was rejected for admin site.") - - def divide() -> None: - number = 1 - divisor = 0 - foos = ["foo"] * 100 - log.debug("in divide") - try: - number / divisor - except: - log.exception("An error of some kind occurred!") - - divide() - sleep(1) - log.critical("Out of memory!") - log.info("Server exited with code=-1") - log.info("[bold]EXITING...[/bold]", extra=dict(markup=True)) diff --git a/spaces/allknowingroger/Image-Models-Test133/app.py b/spaces/allknowingroger/Image-Models-Test133/app.py deleted file mode 100644 index 14bb23526c84b495c090472887f547fca6f8cebc..0000000000000000000000000000000000000000 --- a/spaces/allknowingroger/Image-Models-Test133/app.py +++ /dev/null @@ -1,144 +0,0 @@ -import gradio as gr -# import os -# import sys -# from pathlib import Path -import time - -models =[ - "Yacong/cloth1-lora-trained-xl", - "ai-characters/DarkAndDarker-Style-SDXL", - "jpull/troy", - "moonlightnexus/wonder-anime", - "jasvant27/my-tiger", - "naresh1107/hitman", - "rurulemon/lora-trained-xl-colab", - "Yntec/ClassicEra", - "digiplay/AM-mix1", -] - - -model_functions = {} -model_idx = 1 -for model_path in models: - try: - model_functions[model_idx] = gr.Interface.load(f"models/{model_path}", live=False, preprocess=True, postprocess=False) - except Exception as error: - def the_fn(txt): - return None - model_functions[model_idx] = gr.Interface(fn=the_fn, inputs=["text"], outputs=["image"]) - model_idx+=1 - - -def send_it_idx(idx): - def send_it_fn(prompt): - output = (model_functions.get(str(idx)) or model_functions.get(str(1)))(prompt) - return output - return send_it_fn - -def get_prompts(prompt_text): - return prompt_text - -def clear_it(val): - if int(val) != 0: - val = 0 - else: - val = 0 - pass - return val - -def all_task_end(cnt,t_stamp): - to = t_stamp + 60 - et = time.time() - if et > to and t_stamp != 0: - d = gr.update(value=0) - tog = gr.update(value=1) - #print(f'to: {to} et: {et}') - else: - if cnt != 0: - d = gr.update(value=et) - else: - d = gr.update(value=0) - tog = gr.update(value=0) - #print (f'passing: to: {to} et: {et}') - pass - return d, tog - -def all_task_start(): - print("\n\n\n\n\n\n\n") - t = time.gmtime() - t_stamp = time.time() - current_time = time.strftime("%H:%M:%S", t) - return gr.update(value=t_stamp), gr.update(value=t_stamp), gr.update(value=0) - -def clear_fn(): - nn = len(models) - return tuple([None, *[None for _ in range(nn)]]) - - - -with gr.Blocks(title="SD Models") as my_interface: - with gr.Column(scale=12): - # with gr.Row(): - # gr.Markdown("""- Primary prompt: 你想画的内容(英文单词,如 a cat, 加英文逗号效果更好;点 Improve 按钮进行完善)\n- Real prompt: 完善后的提示词,出现后再点右边的 Run 按钮开始运行""") - with gr.Row(): - with gr.Row(scale=6): - primary_prompt=gr.Textbox(label="Prompt", value="") - # real_prompt=gr.Textbox(label="Real prompt") - with gr.Row(scale=6): - # improve_prompts_btn=gr.Button("Improve") - with gr.Row(): - run=gr.Button("Run",variant="primary") - clear_btn=gr.Button("Clear") - with gr.Row(): - sd_outputs = {} - model_idx = 1 - for model_path in models: - with gr.Column(scale=3, min_width=320): - with gr.Box(): - sd_outputs[model_idx] = gr.Image(label=model_path) - pass - model_idx += 1 - pass - pass - - with gr.Row(visible=False): - start_box=gr.Number(interactive=False) - end_box=gr.Number(interactive=False) - tog_box=gr.Textbox(value=0,interactive=False) - - start_box.change( - all_task_end, - [start_box, end_box], - [start_box, tog_box], - every=1, - show_progress=False) - - primary_prompt.submit(all_task_start, None, [start_box, end_box, tog_box]) - run.click(all_task_start, None, [start_box, end_box, tog_box]) - runs_dict = {} - model_idx = 1 - for model_path in models: - runs_dict[model_idx] = run.click(model_functions[model_idx], inputs=[primary_prompt], outputs=[sd_outputs[model_idx]]) - model_idx += 1 - pass - pass - - # improve_prompts_btn_clicked=improve_prompts_btn.click( - # get_prompts, - # inputs=[primary_prompt], - # outputs=[primary_prompt], - # cancels=list(runs_dict.values())) - clear_btn.click( - clear_fn, - None, - [primary_prompt, *list(sd_outputs.values())], - cancels=[*list(runs_dict.values())]) - tog_box.change( - clear_it, - tog_box, - tog_box, - cancels=[*list(runs_dict.values())]) - -my_interface.queue(concurrency_count=600, status_update_rate=1) -my_interface.launch(inline=True, show_api=False) - \ No newline at end of file diff --git a/spaces/alphunt/diffdock-alphunt-demo/esm/esm/inverse_folding/transformer_decoder.py b/spaces/alphunt/diffdock-alphunt-demo/esm/esm/inverse_folding/transformer_decoder.py deleted file mode 100644 index fb120eeda5eaf4068459194cd78d459669ece818..0000000000000000000000000000000000000000 --- a/spaces/alphunt/diffdock-alphunt-demo/esm/esm/inverse_folding/transformer_decoder.py +++ /dev/null @@ -1,228 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# -# Contents of this file were adapted from the open source fairseq repository. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - -import math -from typing import Any, Dict, List, Optional - -import torch -import torch.nn as nn -from torch import Tensor - -from esm.modules import SinusoidalPositionalEmbedding -from .transformer_layer import TransformerDecoderLayer - - -def fill_with_neg_inf(t): - """FP16-compatible function that fills a tensor with -inf.""" - return t.float().fill_(float("-inf")).type_as(t) - - -class TransformerDecoder(nn.Module): - """ - Transformer decoder consisting of *args.decoder.layers* layers. Each layer - is a :class:`TransformerDecoderLayer`. - - Args: - args (argparse.Namespace): parsed command-line arguments - dictionary (~fairseq.data.Dictionary): decoding dictionary - embed_tokens (torch.nn.Embedding): output embedding - no_encoder_attn (bool, optional): whether to attend to encoder outputs - (default: False). - """ - - def __init__( - self, - args, - dictionary, - embed_tokens, - ): - super().__init__() - self.args = args - self.dictionary = dictionary - self._future_mask = torch.empty(0) - - self.dropout_module = nn.Dropout(args.dropout) - - input_embed_dim = embed_tokens.embedding_dim - embed_dim = args.decoder_embed_dim - self.embed_dim = embed_dim - - self.padding_idx = embed_tokens.padding_idx - - self.embed_tokens = embed_tokens - self.embed_scale = math.sqrt(embed_dim) - - self.project_in_dim = ( - nn.Linear(input_embed_dim, embed_dim, bias=False) - if embed_dim != input_embed_dim - else None - ) - self.embed_positions = SinusoidalPositionalEmbedding( - embed_dim, - self.padding_idx, - ) - - self.layers = nn.ModuleList([]) - self.layers.extend( - [ - self.build_decoder_layer(args) - for _ in range(args.decoder_layers) - ] - ) - self.num_layers = len(self.layers) - self.layer_norm = nn.LayerNorm(embed_dim) - - self.build_output_projection(args, dictionary) - - def build_output_projection(self, args, dictionary): - self.output_projection = nn.Linear( - args.decoder_embed_dim, len(dictionary), bias=False - ) - nn.init.normal_( - self.output_projection.weight, mean=0, std=args.decoder_embed_dim ** -0.5 - ) - - def build_decoder_layer(self, args): - return TransformerDecoderLayer(args) - - def forward( - self, - prev_output_tokens, - encoder_out: Optional[Dict[str, List[Tensor]]] = None, - incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, - features_only: bool = False, - return_all_hiddens: bool = False, - ): - """ - Args: - prev_output_tokens (LongTensor): previous decoder outputs of shape - `(batch, tgt_len)`, for teacher forcing - encoder_out (optional): output from the encoder, used for - encoder-side attention, should be of size T x B x C - incremental_state (dict): dictionary used for storing state during - :ref:`Incremental decoding` - features_only (bool, optional): only return features without - applying output layer (default: False). - - Returns: - tuple: - - the decoder's output of shape `(batch, tgt_len, vocab)` - - a dictionary with any model-specific outputs - """ - - x, extra = self.extract_features( - prev_output_tokens, - encoder_out=encoder_out, - incremental_state=incremental_state, - ) - - if not features_only: - x = self.output_layer(x) - x = x.transpose(1, 2) # B x T x C -> B x C x T - return x, extra - - def extract_features( - self, - prev_output_tokens, - encoder_out: Optional[Dict[str, List[Tensor]]], - incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, - ): - """ - Similar to *forward* but only return features. - - Includes several features from "Jointly Learning to Align and - Translate with Transformer Models" (Garg et al., EMNLP 2019). - - Returns: - tuple: - - the decoder's features of shape `(batch, tgt_len, embed_dim)` - - a dictionary with any model-specific outputs - """ - bs, slen = prev_output_tokens.size() - - enc: Optional[Tensor] = None - padding_mask: Optional[Tensor] = None - if encoder_out is not None and len(encoder_out["encoder_out"]) > 0: - enc = encoder_out["encoder_out"][0] - assert ( - enc.size()[1] == bs - ), f"Expected enc.shape == (t, {bs}, c) got {enc.shape}" - if encoder_out is not None and len(encoder_out["encoder_padding_mask"]) > 0: - padding_mask = encoder_out["encoder_padding_mask"][0] - - # embed positions - positions = self.embed_positions( - prev_output_tokens - ) - - if incremental_state is not None: - prev_output_tokens = prev_output_tokens[:, -1:] - positions = positions[:, -1:] - - # embed tokens and positions - x = self.embed_scale * self.embed_tokens(prev_output_tokens) - - if self.project_in_dim is not None: - x = self.project_in_dim(x) - - x += positions - - x = self.dropout_module(x) - - # B x T x C -> T x B x C - x = x.transpose(0, 1) - - self_attn_padding_mask: Optional[Tensor] = None - if prev_output_tokens.eq(self.padding_idx).any(): - self_attn_padding_mask = prev_output_tokens.eq(self.padding_idx) - - # decoder layers - attn: Optional[Tensor] = None - inner_states: List[Optional[Tensor]] = [x] - for idx, layer in enumerate(self.layers): - if incremental_state is None: - self_attn_mask = self.buffered_future_mask(x) - else: - self_attn_mask = None - - x, layer_attn, _ = layer( - x, - enc, - padding_mask, - incremental_state, - self_attn_mask=self_attn_mask, - self_attn_padding_mask=self_attn_padding_mask, - need_attn=False, - need_head_weights=False, - ) - inner_states.append(x) - - if self.layer_norm is not None: - x = self.layer_norm(x) - - # T x B x C -> B x C x T - x = x.transpose(0, 1) - - return x, {"inner_states": inner_states} - - def output_layer(self, features): - """Project features to the vocabulary size.""" - return self.output_projection(features) - - def buffered_future_mask(self, tensor): - dim = tensor.size(0) - # self._future_mask.device != tensor.device is not working in TorchScript. This is a workaround. - if ( - self._future_mask.size(0) == 0 - or (not self._future_mask.device == tensor.device) - or self._future_mask.size(0) < dim - ): - self._future_mask = torch.triu( - fill_with_neg_inf(torch.zeros([dim, dim])), 1 - ) - self._future_mask = self._future_mask.to(tensor) - return self._future_mask[:dim, :dim] diff --git a/spaces/altryne/vidtranslator/static/css/main.css b/spaces/altryne/vidtranslator/static/css/main.css deleted file mode 100644 index a397bedd49dfd92166159c791aa796917d35bdea..0000000000000000000000000000000000000000 --- a/spaces/altryne/vidtranslator/static/css/main.css +++ /dev/null @@ -1,97 +0,0 @@ -@import url('https://fonts.googleapis.com/css2?family=Poppins:wght@700&display=swap'); - -#download_status input[type=checkbox] { - display: none; -} -#download_status label{ - height: 100%; -} -.main-title{ - color: #FF7A7A; - font-family: 'Poppins', sans-serif; - font-size: 4.5em; - line-height: 1.25; - font-weight: 700; - background-image: linear-gradient(45deg, #695EE6 0%, #FF7A7A 85%); - -webkit-background-clip: text; - -webkit-text-fill-color: transparent; -} -.secondary{ - color: #FF7A7A; - font-family: 'Poppins', sans-serif; - font-size: 2em; - line-height: 1.25; - font-weight: 700; - background-image: linear-gradient(45deg, #695EE6 0%, #FF7A7A 85%); - -webkit-background-clip: text; - -webkit-text-fill-color: transparent; -} -#submit{ - position: absolute; - flex:0 !important; - width: 120px; - right: 13px; - top: 40px; - border-radius: 0 5px 5px 5px !important; -} -#url_input{ - font-size: 20px !important; -} -#download_status label{ - font-size: 18px !important; -} -#second_row>.gr-form{ - border-top-left-radius: 0px !important; - border-top-right-radius: 0px !important; -} - -#input_row{ - position: relative; -} -#url_input_group .gr-form:nth-child(2){ - position:relative -} -#url_input textarea{ - font-size: 20px !important; - } - -#source_language{ -flex-grow: revert -} - -#translate_toggle{ -flex-grow: revert; -min-width: 200px; -} -#translate_toggle label{ - height: 100%; -} - -/* -#translate_toggle{ -position: absolute; -right: 0; -width: auto; -flex: none; -background: transparent -} -*/ -.wrap.absolute{ - position: relative !important; - opacity: 100% !important; -} - -#fake_ass_group{ - display:none; - visibility: hidden; - position:absolute; - pointer-events: none; -} -#output_text label{ - font-size: 20px !important; - white-space: pre-wrap; -} - -footer{ - /*display: none !important;*/ -} \ No newline at end of file diff --git a/spaces/altryne/vidtranslator/utils/apis.py b/spaces/altryne/vidtranslator/utils/apis.py deleted file mode 100644 index eb3b777de13e49ad8a8ac89c9fb316ee50ffa809..0000000000000000000000000000000000000000 --- a/spaces/altryne/vidtranslator/utils/apis.py +++ /dev/null @@ -1,151 +0,0 @@ -import json -import os -import pathlib -import time - -from pathlib import Path -from shutil import rmtree - -import anvil.server -import anvil.media -import dotenv -import gradio as gr -import requests -from download import download_generator, caption_generator - -dotenv.load_dotenv() - -@anvil.server.background_task -@anvil.server.callable -def call_gradio_api(api_name='test_api', data=()): - port = os.environ.get('SERVER_PORT', 8111) - gradio_base_url = os.environ.get('GRADIO_URL', f'http://127.0.0.1:{port}/api/') - gradio_url = f"{gradio_base_url}{api_name}" - payload = json.dumps({"data": data}) - headers = { - 'accept': 'application/json', - 'Content-Type': 'application/json' - } - print(f"Calling {gradio_url} with {payload}") - resp = requests.request("POST", gradio_url, headers=headers, data=payload) - print(f"Finished calling gradio API with result") - print(resp.text) - if api_name == 'caption': - return json.loads(resp.text) - if api_name == 'transcribe_translate': - return json.loads(resp.text) - # data = resp.json()['data'][0] - # data = json.loads(data) - # return {"status": data['status'], "captions": data['captions'], "language": data['language']} - - data = resp.json()['data'][0] - if data: - video_path = data[0] - translated_video = anvil.media.from_file(video_path) - return {'translated_video': translated_video, - 'log': data[1], - 'text': data[2], - 'language': data[3], - 'duration': resp.json()['duration']} - -def remote_download(url): - print(f"remote_download: Downloading {url}") - final_response = '' - subbed_video_media = None - whisper_result = None - for response in download_generator(url): - if 'whisper_result' in response: - whisper_result = response.get('whisper_result') - final_response = response['message'] - print(final_response) - if 'sub_video' in response: - subbed_video_media = response['sub_video'] - return subbed_video_media, final_response, whisper_result["text"], whisper_result["language"] - -def test_api(url=''): - print(f'Request from Anvil with URL {url}, faking a long ass request that takes 15 seconds') - time.sleep(15) - # fake a long ass request that takes 15 seconds - # TODO: add a video output here to test how events are done - # TODO: add an anvil server pingback to show we completed the queue operation - return f"I've slept for 15 seconds and now I'm done. " - - -def caption(downloadable_url="", uid="", language="Autodetect", override_model_size=""): - """ - :param media_id: The twitter media ID object - :param user_id_str: The twitter user ID string - :param tweet_url: tweet URL can potentially not exist in the future, so we can upload on behalf of the user - :return: - """ - status, whisper_result_captions, detected_language = caption_generator(downloadable_url, uid, language, override_model_size) - anvil.server.launch_background_task('add_captions_to_video', uid, whisper_result_captions) - return {'status': status, 'message': 'started a background process to upload subtitles to {uid}' } - - -def transcribe_translate(downloadable_url="", uid="", language="Autodetect", override_model_size=""): - """ - :param media_id: The twitter media ID object - :param user_id_str: The twitter user ID string - :param tweet_url: tweet URL can potentially not exist in the future, so we can upload on behalf of the user - :return: - """ - status, whisper_result_captions, detected_language = caption_generator(downloadable_url, uid, language, override_model_size) - return json.dumps({"status": status, "captions": whisper_result_captions, "language": detected_language}) - -def render_api_elements(url_input, download_status, output_text, sub_video, output_file): - with gr.Group(elem_id='fake_ass_group') as api_buttons: - # This is a hack to get APIs registered with the blocks interface - translate_result = gr.Textbox(visible=False) - translate_language = gr.Textbox(visible=False) - gr.Button("API", visible=False)\ - .click(api_name='cleanup_output_dir', - fn=cleanup_output_dir, queue=True, inputs=[], outputs=[]) - gr.Button("API", visible=False)\ - .click(api_name='test_api', queue=True, fn=test_api, inputs=[url_input], outputs=[]) - - gr.Button("remote_download", visible=False)\ - .click(api_name='remote_download', queue=True, fn=remote_download, inputs=[url_input], outputs=[download_status, output_text, translate_result, translate_language]) - - # creating fake elements just make gradio, cause I can't define an API signature like a sane person - - gr.Button("caption", visible=False)\ - .click(api_name='caption', - queue=True, - fn=caption, - inputs=[ - gr.Text(label='tweet_url'), - gr.Text(label='media_uid'), - gr.Text(label='language (optional)'), - gr.Dropdown(label='Model Size', choices=['base', 'tiny', 'small', 'medium', 'large']), - ], - outputs=[ - gr.Text(label='response_json') - ]) - - gr.Button("transcribe_translate", visible=False)\ - .click(api_name='transcribe_translate', - queue=True, - fn=transcribe_translate, - inputs=[ - gr.Text(label='tweet_url'), - gr.Text(label='media_uid'), - gr.Text(label='language (optional)'), - gr.Dropdown(label='Model Size', choices=['base', 'tiny', 'small', 'medium', 'large']), - ], - outputs=[ - gr.Text(label='response_json') - ]) - return api_buttons - - -@anvil.server.callable -def cleanup_output_dir(): - #make sure we're in the main directory - os.chdir(pathlib.Path(__file__).parent.parent.absolute()) - #delete the output directory contents - for path in Path("output").glob("**/*"): - if path.is_file(): - path.unlink() - elif path.is_dir(): - rmtree(path) \ No newline at end of file diff --git a/spaces/amagastya/SPARK/README.md b/spaces/amagastya/SPARK/README.md deleted file mode 100644 index b8cf7be9878faf5c768e21a92a2e5cadb9f1f84b..0000000000000000000000000000000000000000 --- a/spaces/amagastya/SPARK/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: SPARK Prompt Assistant -emoji: ⚡ -colorFrom: blue -colorTo: yellow -sdk: docker -pinned: false -license: cc-by-nc-nd-4.0 -app_port: 8000 ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/annt/mrc_uit_squadv2/retro_reader/models/modeling_electra.py b/spaces/annt/mrc_uit_squadv2/retro_reader/models/modeling_electra.py deleted file mode 100644 index 68490be9beb873418331bd8ff7efb4507cead26a..0000000000000000000000000000000000000000 --- a/spaces/annt/mrc_uit_squadv2/retro_reader/models/modeling_electra.py +++ /dev/null @@ -1,124 +0,0 @@ -import torch -from torch import nn -from torch.nn import CrossEntropyLoss - -from transformers import ( - ElectraForSequenceClassification as SeqClassification, - ElectraPreTrainedModel, - ElectraModel, - ElectraConfig, -) - -from .modeling_outputs import ( - QuestionAnsweringModelOutput, - QuestionAnsweringNaModelOutput, -) - - -class ElectraForSequenceClassification(SeqClassification): - model_type = "electra" - - -class ElectraForQuestionAnsweringAVPool(ElectraPreTrainedModel): - config_class = ElectraConfig - base_model_prefix = "electra" - model_type = "electra" - - def __init__(self, config): - super(ElectraForQuestionAnsweringAVPool, self).__init__(config) - self.num_labels = config.num_labels - - self.electra = ElectraModel(config) - self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) - self.has_ans = nn.Sequential( - nn.Dropout(p=config.hidden_dropout_prob), - nn.Linear(config.hidden_size, 2) - ) - - # Initialize weights and apply final processing - self.post_init() - - def forward( - self, - input_ids=None, - attention_mask=None, - token_type_ids=None, - position_ids=None, - head_mask=None, - inputs_embeds=None, - start_positions=None, - end_positions=None, - is_impossibles=None, - output_attentions=None, - output_hidden_states=None, - return_dict=None, - ): - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - discriminator_hidden_states = self.electra( - input_ids=input_ids, - attention_mask=attention_mask, - token_type_ids=token_type_ids, - position_ids=position_ids, - head_mask=head_mask, - inputs_embeds=inputs_embeds, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - ) - - sequence_output = discriminator_hidden_states[0] - - logits = self.qa_outputs(sequence_output) - start_logits, end_logits = logits.split(1, dim=-1) - start_logits = start_logits.squeeze(-1).contiguous() - end_logits = end_logits.squeeze(-1).contiguous() - - first_word = sequence_output[:, 0, :] - - has_logits = self.has_ans(first_word) - - total_loss = None - if ( - start_positions is not None and - end_positions is not None and - is_impossibles is not None - ): - # If we are on multi-GPU, split add a dimension - if len(start_positions.size()) > 1: - start_positions = start_positions.squeeze(-1) - if len(end_positions.size()) > 1: - end_positions = end_positions.squeeze(-1) - if len(is_impossibles.size()) > 1: - is_impossibles = is_impossibles.squeeze(-1) - # sometimes the start/end positions are outside our model inputs, we ignore these terms - ignored_index = start_logits.size(1) - start_positions.clamp_(0, ignored_index) - end_positions.clamp_(0, ignored_index) - is_impossibles.clamp_(0, ignored_index) - - loss_fct = CrossEntropyLoss(ignore_index=ignored_index) - start_loss = loss_fct(start_logits, start_positions) - end_loss = loss_fct(end_logits, end_positions) - span_loss = start_loss + end_loss - - # Internal Front Verification (I-FV) - # alpha1 == 1.0, alpha2 == 0.5 - choice_loss = loss_fct(has_logits, is_impossibles.long()) - total_loss = 1.0 * span_loss + 0.5 * choice_loss - - if not return_dict: - output = ( - start_logits, - end_logits, - has_logits, - ) + discriminator_hidden_states[2:] # hidden_states, attentions - return ((total_loss,) + output) if total_loss is not None else output - - return QuestionAnsweringNaModelOutput( - loss=total_loss, - start_logits=start_logits, - end_logits=end_logits, - has_logits=has_logits, - hidden_states=discriminator_hidden_states.hidden_states, - attentions=discriminator_hidden_states.attentions, - ) \ No newline at end of file diff --git a/spaces/artificialguybr/video-dubbing/TTS/TTS/utils/samplers.py b/spaces/artificialguybr/video-dubbing/TTS/TTS/utils/samplers.py deleted file mode 100644 index b08a763a33e40d00a32577e31ffc12b8e228bc46..0000000000000000000000000000000000000000 --- a/spaces/artificialguybr/video-dubbing/TTS/TTS/utils/samplers.py +++ /dev/null @@ -1,201 +0,0 @@ -import math -import random -from typing import Callable, List, Union - -from torch.utils.data.sampler import BatchSampler, Sampler, SubsetRandomSampler - - -class SubsetSampler(Sampler): - """ - Samples elements sequentially from a given list of indices. - - Args: - indices (list): a sequence of indices - """ - - def __init__(self, indices): - super().__init__(indices) - self.indices = indices - - def __iter__(self): - return (self.indices[i] for i in range(len(self.indices))) - - def __len__(self): - return len(self.indices) - - -class PerfectBatchSampler(Sampler): - """ - Samples a mini-batch of indices for a balanced class batching - - Args: - dataset_items(list): dataset items to sample from. - classes (list): list of classes of dataset_items to sample from. - batch_size (int): total number of samples to be sampled in a mini-batch. - num_gpus (int): number of GPU in the data parallel mode. - shuffle (bool): if True, samples randomly, otherwise samples sequentially. - drop_last (bool): if True, drops last incomplete batch. - """ - - def __init__( - self, - dataset_items, - classes, - batch_size, - num_classes_in_batch, - num_gpus=1, - shuffle=True, - drop_last=False, - label_key="class_name", - ): - super().__init__(dataset_items) - assert ( - batch_size % (num_classes_in_batch * num_gpus) == 0 - ), "Batch size must be divisible by number of classes times the number of data parallel devices (if enabled)." - - label_indices = {} - for idx, item in enumerate(dataset_items): - label = item[label_key] - if label not in label_indices.keys(): - label_indices[label] = [idx] - else: - label_indices[label].append(idx) - - if shuffle: - self._samplers = [SubsetRandomSampler(label_indices[key]) for key in classes] - else: - self._samplers = [SubsetSampler(label_indices[key]) for key in classes] - - self._batch_size = batch_size - self._drop_last = drop_last - self._dp_devices = num_gpus - self._num_classes_in_batch = num_classes_in_batch - - def __iter__(self): - batch = [] - if self._num_classes_in_batch != len(self._samplers): - valid_samplers_idx = random.sample(range(len(self._samplers)), self._num_classes_in_batch) - else: - valid_samplers_idx = None - - iters = [iter(s) for s in self._samplers] - done = False - - while True: - b = [] - for i, it in enumerate(iters): - if valid_samplers_idx is not None and i not in valid_samplers_idx: - continue - idx = next(it, None) - if idx is None: - done = True - break - b.append(idx) - if done: - break - batch += b - if len(batch) == self._batch_size: - yield batch - batch = [] - if valid_samplers_idx is not None: - valid_samplers_idx = random.sample(range(len(self._samplers)), self._num_classes_in_batch) - - if not self._drop_last: - if len(batch) > 0: - groups = len(batch) // self._num_classes_in_batch - if groups % self._dp_devices == 0: - yield batch - else: - batch = batch[: (groups // self._dp_devices) * self._dp_devices * self._num_classes_in_batch] - if len(batch) > 0: - yield batch - - def __len__(self): - class_batch_size = self._batch_size // self._num_classes_in_batch - return min(((len(s) + class_batch_size - 1) // class_batch_size) for s in self._samplers) - - -def identity(x): - return x - - -class SortedSampler(Sampler): - """Samples elements sequentially, always in the same order. - - Taken from https://github.com/PetrochukM/PyTorch-NLP - - Args: - data (iterable): Iterable data. - sort_key (callable): Specifies a function of one argument that is used to extract a - numerical comparison key from each list element. - - Example: - >>> list(SortedSampler(range(10), sort_key=lambda i: -i)) - [9, 8, 7, 6, 5, 4, 3, 2, 1, 0] - - """ - - def __init__(self, data, sort_key: Callable = identity): - super().__init__(data) - self.data = data - self.sort_key = sort_key - zip_ = [(i, self.sort_key(row)) for i, row in enumerate(self.data)] - zip_ = sorted(zip_, key=lambda r: r[1]) - self.sorted_indexes = [item[0] for item in zip_] - - def __iter__(self): - return iter(self.sorted_indexes) - - def __len__(self): - return len(self.data) - - -class BucketBatchSampler(BatchSampler): - """Bucket batch sampler - - Adapted from https://github.com/PetrochukM/PyTorch-NLP - - Args: - sampler (torch.data.utils.sampler.Sampler): - batch_size (int): Size of mini-batch. - drop_last (bool): If `True` the sampler will drop the last batch if its size would be less - than `batch_size`. - data (list): List of data samples. - sort_key (callable, optional): Callable to specify a comparison key for sorting. - bucket_size_multiplier (int, optional): Buckets are of size - `batch_size * bucket_size_multiplier`. - - Example: - >>> sampler = WeightedRandomSampler(weights, len(weights)) - >>> sampler = BucketBatchSampler(sampler, data=data_items, batch_size=32, drop_last=True) - """ - - def __init__( - self, - sampler, - data, - batch_size, - drop_last, - sort_key: Union[Callable, List] = identity, - bucket_size_multiplier=100, - ): - super().__init__(sampler, batch_size, drop_last) - self.data = data - self.sort_key = sort_key - _bucket_size = batch_size * bucket_size_multiplier - if hasattr(sampler, "__len__"): - _bucket_size = min(_bucket_size, len(sampler)) - self.bucket_sampler = BatchSampler(sampler, _bucket_size, False) - - def __iter__(self): - for idxs in self.bucket_sampler: - bucket_data = [self.data[idx] for idx in idxs] - sorted_sampler = SortedSampler(bucket_data, self.sort_key) - for batch_idx in SubsetRandomSampler(list(BatchSampler(sorted_sampler, self.batch_size, self.drop_last))): - sorted_idxs = [idxs[i] for i in batch_idx] - yield sorted_idxs - - def __len__(self): - if self.drop_last: - return len(self.sampler) // self.batch_size - return math.ceil(len(self.sampler) / self.batch_size) diff --git a/spaces/artificialguybr/video-dubbing/TTS/recipes/ljspeech/glow_tts/train_glowtts.py b/spaces/artificialguybr/video-dubbing/TTS/recipes/ljspeech/glow_tts/train_glowtts.py deleted file mode 100644 index 9eb188f8a4db42c6868bdf2e2cf8bbbeedb97cdd..0000000000000000000000000000000000000000 --- a/spaces/artificialguybr/video-dubbing/TTS/recipes/ljspeech/glow_tts/train_glowtts.py +++ /dev/null @@ -1,84 +0,0 @@ -import os - -# Trainer: Where the ✨️ happens. -# TrainingArgs: Defines the set of arguments of the Trainer. -from trainer import Trainer, TrainerArgs - -# GlowTTSConfig: all model related values for training, validating and testing. -from TTS.tts.configs.glow_tts_config import GlowTTSConfig - -# BaseDatasetConfig: defines name, formatter and path of the dataset. -from TTS.tts.configs.shared_configs import BaseDatasetConfig -from TTS.tts.datasets import load_tts_samples -from TTS.tts.models.glow_tts import GlowTTS -from TTS.tts.utils.text.tokenizer import TTSTokenizer -from TTS.utils.audio import AudioProcessor - -# we use the same path as this script as our training folder. -output_path = os.path.dirname(os.path.abspath(__file__)) - -# DEFINE DATASET CONFIG -# Set LJSpeech as our target dataset and define its path. -# You can also use a simple Dict to define the dataset and pass it to your custom formatter. -dataset_config = BaseDatasetConfig( - formatter="ljspeech", meta_file_train="metadata.csv", path=os.path.join(output_path, "../LJSpeech-1.1/") -) - -# INITIALIZE THE TRAINING CONFIGURATION -# Configure the model. Every config class inherits the BaseTTSConfig. -config = GlowTTSConfig( - batch_size=32, - eval_batch_size=16, - num_loader_workers=4, - num_eval_loader_workers=4, - run_eval=True, - test_delay_epochs=-1, - epochs=1000, - text_cleaner="phoneme_cleaners", - use_phonemes=True, - phoneme_language="en-us", - phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), - print_step=25, - print_eval=False, - mixed_precision=True, - output_path=output_path, - datasets=[dataset_config], -) - -# INITIALIZE THE AUDIO PROCESSOR -# Audio processor is used for feature extraction and audio I/O. -# It mainly serves to the dataloader and the training loggers. -ap = AudioProcessor.init_from_config(config) - -# INITIALIZE THE TOKENIZER -# Tokenizer is used to convert text to sequences of token IDs. -# If characters are not defined in the config, default characters are passed to the config -tokenizer, config = TTSTokenizer.init_from_config(config) - -# LOAD DATA SAMPLES -# Each sample is a list of ```[text, audio_file_path, speaker_name]``` -# You can define your custom sample loader returning the list of samples. -# Or define your custom formatter and pass it to the `load_tts_samples`. -# Check `TTS.tts.datasets.load_tts_samples` for more details. -train_samples, eval_samples = load_tts_samples( - dataset_config, - eval_split=True, - eval_split_max_size=config.eval_split_max_size, - eval_split_size=config.eval_split_size, -) - -# INITIALIZE THE MODEL -# Models take a config object and a speaker manager as input -# Config defines the details of the model like the number of layers, the size of the embedding, etc. -# Speaker manager is used by multi-speaker models. -model = GlowTTS(config, ap, tokenizer, speaker_manager=None) - -# INITIALIZE THE TRAINER -# Trainer provides a generic API to train all the 🐸TTS models with all its perks like mixed-precision training, -# distributed training, etc. -trainer = Trainer( - TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples -) - -# AND... 3,2,1... 🚀 -trainer.fit() diff --git a/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/Crypto/Cipher/_mode_ocb.py b/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/Crypto/Cipher/_mode_ocb.py deleted file mode 100644 index 27758b1198eeeaaafc5c2cbe421e87d767056011..0000000000000000000000000000000000000000 --- a/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/Crypto/Cipher/_mode_ocb.py +++ /dev/null @@ -1,525 +0,0 @@ -# =================================================================== -# -# Copyright (c) 2014, Legrandin -# All rights reserved. -# -# Redistribution and use in source and binary forms, with or without -# modification, are permitted provided that the following conditions -# are met: -# -# 1. Redistributions of source code must retain the above copyright -# notice, this list of conditions and the following disclaimer. -# 2. Redistributions in binary form must reproduce the above copyright -# notice, this list of conditions and the following disclaimer in -# the documentation and/or other materials provided with the -# distribution. -# -# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS -# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE -# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, -# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, -# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; -# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER -# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT -# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN -# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -# POSSIBILITY OF SUCH DAMAGE. -# =================================================================== - -""" -Offset Codebook (OCB) mode. - -OCB is Authenticated Encryption with Associated Data (AEAD) cipher mode -designed by Prof. Phillip Rogaway and specified in `RFC7253`_. - -The algorithm provides both authenticity and privacy, it is very efficient, -it uses only one key and it can be used in online mode (so that encryption -or decryption can start before the end of the message is available). - -This module implements the third and last variant of OCB (OCB3) and it only -works in combination with a 128-bit block symmetric cipher, like AES. - -OCB is patented in US but `free licenses`_ exist for software implementations -meant for non-military purposes. - -Example: - >>> from Crypto.Cipher import AES - >>> from Crypto.Random import get_random_bytes - >>> - >>> key = get_random_bytes(32) - >>> cipher = AES.new(key, AES.MODE_OCB) - >>> plaintext = b"Attack at dawn" - >>> ciphertext, mac = cipher.encrypt_and_digest(plaintext) - >>> # Deliver cipher.nonce, ciphertext and mac - ... - >>> cipher = AES.new(key, AES.MODE_OCB, nonce=nonce) - >>> try: - >>> plaintext = cipher.decrypt_and_verify(ciphertext, mac) - >>> except ValueError: - >>> print "Invalid message" - >>> else: - >>> print plaintext - -:undocumented: __package__ - -.. _RFC7253: http://www.rfc-editor.org/info/rfc7253 -.. _free licenses: http://web.cs.ucdavis.edu/~rogaway/ocb/license.htm -""" - -import struct -from binascii import unhexlify - -from Crypto.Util.py3compat import bord, _copy_bytes -from Crypto.Util.number import long_to_bytes, bytes_to_long -from Crypto.Util.strxor import strxor - -from Crypto.Hash import BLAKE2s -from Crypto.Random import get_random_bytes - -from Crypto.Util._raw_api import (load_pycryptodome_raw_lib, VoidPointer, - create_string_buffer, get_raw_buffer, - SmartPointer, c_size_t, c_uint8_ptr, - is_buffer) - -_raw_ocb_lib = load_pycryptodome_raw_lib("Crypto.Cipher._raw_ocb", """ - int OCB_start_operation(void *cipher, - const uint8_t *offset_0, - size_t offset_0_len, - void **pState); - int OCB_encrypt(void *state, - const uint8_t *in, - uint8_t *out, - size_t data_len); - int OCB_decrypt(void *state, - const uint8_t *in, - uint8_t *out, - size_t data_len); - int OCB_update(void *state, - const uint8_t *in, - size_t data_len); - int OCB_digest(void *state, - uint8_t *tag, - size_t tag_len); - int OCB_stop_operation(void *state); - """) - - -class OcbMode(object): - """Offset Codebook (OCB) mode. - - :undocumented: __init__ - """ - - def __init__(self, factory, nonce, mac_len, cipher_params): - - if factory.block_size != 16: - raise ValueError("OCB mode is only available for ciphers" - " that operate on 128 bits blocks") - - self.block_size = 16 - """The block size of the underlying cipher, in bytes.""" - - self.nonce = _copy_bytes(None, None, nonce) - """Nonce used for this session.""" - if len(nonce) not in range(1, 16): - raise ValueError("Nonce must be at most 15 bytes long") - if not is_buffer(nonce): - raise TypeError("Nonce must be bytes, bytearray or memoryview") - - self._mac_len = mac_len - if not 8 <= mac_len <= 16: - raise ValueError("MAC tag must be between 8 and 16 bytes long") - - # Cache for MAC tag - self._mac_tag = None - - # Cache for unaligned associated data - self._cache_A = b"" - - # Cache for unaligned ciphertext/plaintext - self._cache_P = b"" - - # Allowed transitions after initialization - self._next = [self.update, self.encrypt, self.decrypt, - self.digest, self.verify] - - # Compute Offset_0 - params_without_key = dict(cipher_params) - key = params_without_key.pop("key") - nonce = (struct.pack('B', self._mac_len << 4 & 0xFF) + - b'\x00' * (14 - len(nonce)) + - b'\x01' + self.nonce) - - bottom_bits = bord(nonce[15]) & 0x3F # 6 bits, 0..63 - top_bits = bord(nonce[15]) & 0xC0 # 2 bits - - ktop_cipher = factory.new(key, - factory.MODE_ECB, - **params_without_key) - ktop = ktop_cipher.encrypt(struct.pack('15sB', - nonce[:15], - top_bits)) - - stretch = ktop + strxor(ktop[:8], ktop[1:9]) # 192 bits - offset_0 = long_to_bytes(bytes_to_long(stretch) >> - (64 - bottom_bits), 24)[8:] - - # Create low-level cipher instance - raw_cipher = factory._create_base_cipher(cipher_params) - if cipher_params: - raise TypeError("Unknown keywords: " + str(cipher_params)) - - self._state = VoidPointer() - result = _raw_ocb_lib.OCB_start_operation(raw_cipher.get(), - offset_0, - c_size_t(len(offset_0)), - self._state.address_of()) - if result: - raise ValueError("Error %d while instantiating the OCB mode" - % result) - - # Ensure that object disposal of this Python object will (eventually) - # free the memory allocated by the raw library for the cipher mode - self._state = SmartPointer(self._state.get(), - _raw_ocb_lib.OCB_stop_operation) - - # Memory allocated for the underlying block cipher is now owed - # by the cipher mode - raw_cipher.release() - - def _update(self, assoc_data, assoc_data_len): - result = _raw_ocb_lib.OCB_update(self._state.get(), - c_uint8_ptr(assoc_data), - c_size_t(assoc_data_len)) - if result: - raise ValueError("Error %d while computing MAC in OCB mode" % result) - - def update(self, assoc_data): - """Process the associated data. - - If there is any associated data, the caller has to invoke - this method one or more times, before using - ``decrypt`` or ``encrypt``. - - By *associated data* it is meant any data (e.g. packet headers) that - will not be encrypted and will be transmitted in the clear. - However, the receiver shall still able to detect modifications. - - If there is no associated data, this method must not be called. - - The caller may split associated data in segments of any size, and - invoke this method multiple times, each time with the next segment. - - :Parameters: - assoc_data : bytes/bytearray/memoryview - A piece of associated data. - """ - - if self.update not in self._next: - raise TypeError("update() can only be called" - " immediately after initialization") - - self._next = [self.encrypt, self.decrypt, self.digest, - self.verify, self.update] - - if len(self._cache_A) > 0: - filler = min(16 - len(self._cache_A), len(assoc_data)) - self._cache_A += _copy_bytes(None, filler, assoc_data) - assoc_data = assoc_data[filler:] - - if len(self._cache_A) < 16: - return self - - # Clear the cache, and proceeding with any other aligned data - self._cache_A, seg = b"", self._cache_A - self.update(seg) - - update_len = len(assoc_data) // 16 * 16 - self._cache_A = _copy_bytes(update_len, None, assoc_data) - self._update(assoc_data, update_len) - return self - - def _transcrypt_aligned(self, in_data, in_data_len, - trans_func, trans_desc): - - out_data = create_string_buffer(in_data_len) - result = trans_func(self._state.get(), - in_data, - out_data, - c_size_t(in_data_len)) - if result: - raise ValueError("Error %d while %sing in OCB mode" - % (result, trans_desc)) - return get_raw_buffer(out_data) - - def _transcrypt(self, in_data, trans_func, trans_desc): - # Last piece to encrypt/decrypt - if in_data is None: - out_data = self._transcrypt_aligned(self._cache_P, - len(self._cache_P), - trans_func, - trans_desc) - self._cache_P = b"" - return out_data - - # Try to fill up the cache, if it already contains something - prefix = b"" - if len(self._cache_P) > 0: - filler = min(16 - len(self._cache_P), len(in_data)) - self._cache_P += _copy_bytes(None, filler, in_data) - in_data = in_data[filler:] - - if len(self._cache_P) < 16: - # We could not manage to fill the cache, so there is certainly - # no output yet. - return b"" - - # Clear the cache, and proceeding with any other aligned data - prefix = self._transcrypt_aligned(self._cache_P, - len(self._cache_P), - trans_func, - trans_desc) - self._cache_P = b"" - - # Process data in multiples of the block size - trans_len = len(in_data) // 16 * 16 - result = self._transcrypt_aligned(c_uint8_ptr(in_data), - trans_len, - trans_func, - trans_desc) - if prefix: - result = prefix + result - - # Left-over - self._cache_P = _copy_bytes(trans_len, None, in_data) - - return result - - def encrypt(self, plaintext=None): - """Encrypt the next piece of plaintext. - - After the entire plaintext has been passed (but before `digest`), - you **must** call this method one last time with no arguments to collect - the final piece of ciphertext. - - If possible, use the method `encrypt_and_digest` instead. - - :Parameters: - plaintext : bytes/bytearray/memoryview - The next piece of data to encrypt or ``None`` to signify - that encryption has finished and that any remaining ciphertext - has to be produced. - :Return: - the ciphertext, as a byte string. - Its length may not match the length of the *plaintext*. - """ - - if self.encrypt not in self._next: - raise TypeError("encrypt() can only be called after" - " initialization or an update()") - - if plaintext is None: - self._next = [self.digest] - else: - self._next = [self.encrypt] - return self._transcrypt(plaintext, _raw_ocb_lib.OCB_encrypt, "encrypt") - - def decrypt(self, ciphertext=None): - """Decrypt the next piece of ciphertext. - - After the entire ciphertext has been passed (but before `verify`), - you **must** call this method one last time with no arguments to collect - the remaining piece of plaintext. - - If possible, use the method `decrypt_and_verify` instead. - - :Parameters: - ciphertext : bytes/bytearray/memoryview - The next piece of data to decrypt or ``None`` to signify - that decryption has finished and that any remaining plaintext - has to be produced. - :Return: - the plaintext, as a byte string. - Its length may not match the length of the *ciphertext*. - """ - - if self.decrypt not in self._next: - raise TypeError("decrypt() can only be called after" - " initialization or an update()") - - if ciphertext is None: - self._next = [self.verify] - else: - self._next = [self.decrypt] - return self._transcrypt(ciphertext, - _raw_ocb_lib.OCB_decrypt, - "decrypt") - - def _compute_mac_tag(self): - - if self._mac_tag is not None: - return - - if self._cache_A: - self._update(self._cache_A, len(self._cache_A)) - self._cache_A = b"" - - mac_tag = create_string_buffer(16) - result = _raw_ocb_lib.OCB_digest(self._state.get(), - mac_tag, - c_size_t(len(mac_tag)) - ) - if result: - raise ValueError("Error %d while computing digest in OCB mode" - % result) - self._mac_tag = get_raw_buffer(mac_tag)[:self._mac_len] - - def digest(self): - """Compute the *binary* MAC tag. - - Call this method after the final `encrypt` (the one with no arguments) - to obtain the MAC tag. - - The MAC tag is needed by the receiver to determine authenticity - of the message. - - :Return: the MAC, as a byte string. - """ - - if self.digest not in self._next: - raise TypeError("digest() cannot be called now for this cipher") - - assert(len(self._cache_P) == 0) - - self._next = [self.digest] - - if self._mac_tag is None: - self._compute_mac_tag() - - return self._mac_tag - - def hexdigest(self): - """Compute the *printable* MAC tag. - - This method is like `digest`. - - :Return: the MAC, as a hexadecimal string. - """ - return "".join(["%02x" % bord(x) for x in self.digest()]) - - def verify(self, received_mac_tag): - """Validate the *binary* MAC tag. - - Call this method after the final `decrypt` (the one with no arguments) - to check if the message is authentic and valid. - - :Parameters: - received_mac_tag : bytes/bytearray/memoryview - This is the *binary* MAC, as received from the sender. - :Raises ValueError: - if the MAC does not match. The message has been tampered with - or the key is incorrect. - """ - - if self.verify not in self._next: - raise TypeError("verify() cannot be called now for this cipher") - - assert(len(self._cache_P) == 0) - - self._next = [self.verify] - - if self._mac_tag is None: - self._compute_mac_tag() - - secret = get_random_bytes(16) - mac1 = BLAKE2s.new(digest_bits=160, key=secret, data=self._mac_tag) - mac2 = BLAKE2s.new(digest_bits=160, key=secret, data=received_mac_tag) - - if mac1.digest() != mac2.digest(): - raise ValueError("MAC check failed") - - def hexverify(self, hex_mac_tag): - """Validate the *printable* MAC tag. - - This method is like `verify`. - - :Parameters: - hex_mac_tag : string - This is the *printable* MAC, as received from the sender. - :Raises ValueError: - if the MAC does not match. The message has been tampered with - or the key is incorrect. - """ - - self.verify(unhexlify(hex_mac_tag)) - - def encrypt_and_digest(self, plaintext): - """Encrypt the message and create the MAC tag in one step. - - :Parameters: - plaintext : bytes/bytearray/memoryview - The entire message to encrypt. - :Return: - a tuple with two byte strings: - - - the encrypted data - - the MAC - """ - - return self.encrypt(plaintext) + self.encrypt(), self.digest() - - def decrypt_and_verify(self, ciphertext, received_mac_tag): - """Decrypted the message and verify its authenticity in one step. - - :Parameters: - ciphertext : bytes/bytearray/memoryview - The entire message to decrypt. - received_mac_tag : byte string - This is the *binary* MAC, as received from the sender. - - :Return: the decrypted data (byte string). - :Raises ValueError: - if the MAC does not match. The message has been tampered with - or the key is incorrect. - """ - - plaintext = self.decrypt(ciphertext) + self.decrypt() - self.verify(received_mac_tag) - return plaintext - - -def _create_ocb_cipher(factory, **kwargs): - """Create a new block cipher, configured in OCB mode. - - :Parameters: - factory : module - A symmetric cipher module from `Crypto.Cipher` - (like `Crypto.Cipher.AES`). - - :Keywords: - nonce : bytes/bytearray/memoryview - A value that must never be reused for any other encryption. - Its length can vary from 1 to 15 bytes. - If not specified, a random 15 bytes long nonce is generated. - - mac_len : integer - Length of the MAC, in bytes. - It must be in the range ``[8..16]``. - The default is 16 (128 bits). - - Any other keyword will be passed to the underlying block cipher. - See the relevant documentation for details (at least ``key`` will need - to be present). - """ - - try: - nonce = kwargs.pop("nonce", None) - if nonce is None: - nonce = get_random_bytes(15) - mac_len = kwargs.pop("mac_len", 16) - except KeyError as e: - raise TypeError("Keyword missing: " + str(e)) - - return OcbMode(factory, nonce, mac_len, kwargs) diff --git a/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/Crypto/SelfTest/loader.py b/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/Crypto/SelfTest/loader.py deleted file mode 100644 index 18be270d1a6e7d52494741af40a30cf25f92b5bf..0000000000000000000000000000000000000000 --- a/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/Crypto/SelfTest/loader.py +++ /dev/null @@ -1,206 +0,0 @@ -# =================================================================== -# -# Copyright (c) 2016, Legrandin -# All rights reserved. -# -# Redistribution and use in source and binary forms, with or without -# modification, are permitted provided that the following conditions -# are met: -# -# 1. Redistributions of source code must retain the above copyright -# notice, this list of conditions and the following disclaimer. -# 2. Redistributions in binary form must reproduce the above copyright -# notice, this list of conditions and the following disclaimer in -# the documentation and/or other materials provided with the -# distribution. -# -# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS -# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE -# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, -# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, -# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; -# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER -# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT -# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN -# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -# POSSIBILITY OF SUCH DAMAGE. -# =================================================================== - -import os -import re -import json -import errno -import binascii -import warnings -from binascii import unhexlify -from Crypto.Util.py3compat import FileNotFoundError - - -try: - import pycryptodome_test_vectors # type: ignore - test_vectors_available = True -except ImportError: - test_vectors_available = False - - -def _load_tests(dir_comps, file_in, description, conversions): - """Load and parse a test vector file - - Return a list of objects, one per group of adjacent - KV lines or for a single line in the form "[.*]". - - For a group of lines, the object has one attribute per line. - """ - - line_number = 0 - results = [] - - class TestVector(object): - def __init__(self, description, count): - self.desc = description - self.count = count - self.others = [] - - test_vector = None - count = 0 - new_group = True - - while True: - line_number += 1 - line = file_in.readline() - if not line: - if test_vector is not None: - results.append(test_vector) - break - line = line.strip() - - # Skip comments and empty lines - if line.startswith('#') or not line: - new_group = True - continue - - if line.startswith("["): - if test_vector is not None: - results.append(test_vector) - test_vector = None - results.append(line) - continue - - if new_group: - count += 1 - new_group = False - if test_vector is not None: - results.append(test_vector) - test_vector = TestVector("%s (#%d)" % (description, count), count) - - res = re.match("([A-Za-z0-9]+) = ?(.*)", line) - if not res: - test_vector.others += [line] - else: - token = res.group(1).lower() - data = res.group(2).lower() - - conversion = conversions.get(token, None) - if conversion is None: - if len(data) % 2 != 0: - data = "0" + data - setattr(test_vector, token, binascii.unhexlify(data)) - else: - setattr(test_vector, token, conversion(data)) - - # This line is ignored - return results - - -def load_test_vectors(dir_comps, file_name, description, conversions): - """Load and parse a test vector file - - This function returns a list of objects, one per group of adjacent - KV lines or for a single line in the form "[.*]". - - For a group of lines, the object has one attribute per line. - """ - - results = None - - try: - if not test_vectors_available: - raise FileNotFoundError(errno.ENOENT, - os.strerror(errno.ENOENT), - file_name) - - description = "%s test (%s)" % (description, file_name) - - init_dir = os.path.dirname(pycryptodome_test_vectors.__file__) - full_file_name = os.path.join(os.path.join(init_dir, *dir_comps), file_name) - with open(full_file_name) as file_in: - results = _load_tests(dir_comps, file_in, description, conversions) - - except FileNotFoundError: - warnings.warn("Warning: skipping extended tests for " + description, - UserWarning, - stacklevel=2) - - return results - - -def load_test_vectors_wycheproof(dir_comps, file_name, description, - root_tag={}, group_tag={}, unit_tag={}): - - result = [] - try: - if not test_vectors_available: - raise FileNotFoundError(errno.ENOENT, - os.strerror(errno.ENOENT), - file_name) - - init_dir = os.path.dirname(pycryptodome_test_vectors.__file__) - full_file_name = os.path.join(os.path.join(init_dir, *dir_comps), file_name) - with open(full_file_name) as file_in: - tv_tree = json.load(file_in) - - except FileNotFoundError: - warnings.warn("Warning: skipping extended tests for " + description, - UserWarning, - stacklevel=2) - return result - - class TestVector(object): - pass - - common_root = {} - for k, v in root_tag.items(): - common_root[k] = v(tv_tree) - - for group in tv_tree['testGroups']: - - common_group = {} - for k, v in group_tag.items(): - common_group[k] = v(group) - - for test in group['tests']: - tv = TestVector() - - for k, v in common_root.items(): - setattr(tv, k, v) - for k, v in common_group.items(): - setattr(tv, k, v) - - tv.id = test['tcId'] - tv.comment = test['comment'] - for attr in 'key', 'iv', 'aad', 'msg', 'ct', 'tag', 'label', 'ikm', 'salt', 'info', 'okm', 'sig': - if attr in test: - setattr(tv, attr, unhexlify(test[attr])) - tv.filename = file_name - - for k, v in unit_tag.items(): - setattr(tv, k, v(test)) - - tv.valid = test['result'] != "invalid" - tv.warning = test['result'] == "acceptable" - result.append(tv) - - return result - diff --git a/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/altair/examples/line_chart_with_generator.py b/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/altair/examples/line_chart_with_generator.py deleted file mode 100644 index 096c2489c7074f3fb08f32a4f12efd148cc96616..0000000000000000000000000000000000000000 --- a/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/altair/examples/line_chart_with_generator.py +++ /dev/null @@ -1,21 +0,0 @@ -""" -Line Chart with Sequence Generator ----------------------------------- -This examples shows how to create multiple lines using the sequence generator. -""" -# category: line charts - -import altair as alt - -source = alt.sequence(start=0, stop=12.7, step=0.1, as_='x') - -alt.Chart(source).mark_line().transform_calculate( - sin='sin(datum.x)', - cos='cos(datum.x)' -).transform_fold( - ['sin', 'cos'] -).encode( - x='x:Q', - y='value:Q', - color='key:N' -) diff --git a/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/anyio/_core/_tasks.py b/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/anyio/_core/_tasks.py deleted file mode 100644 index f24764cfe6be0071eed8655a657d9f6a5ab75803..0000000000000000000000000000000000000000 --- a/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/anyio/_core/_tasks.py +++ /dev/null @@ -1,178 +0,0 @@ -import math -from types import TracebackType -from typing import Optional, Type -from warnings import warn - -from ..abc._tasks import TaskGroup, TaskStatus -from ._compat import ( - DeprecatedAsyncContextManager, - DeprecatedAwaitable, - DeprecatedAwaitableFloat, -) -from ._eventloop import get_asynclib - - -class _IgnoredTaskStatus(TaskStatus): - def started(self, value: object = None) -> None: - pass - - -TASK_STATUS_IGNORED = _IgnoredTaskStatus() - - -class CancelScope(DeprecatedAsyncContextManager["CancelScope"]): - """ - Wraps a unit of work that can be made separately cancellable. - - :param deadline: The time (clock value) when this scope is cancelled automatically - :param shield: ``True`` to shield the cancel scope from external cancellation - """ - - def __new__( - cls, *, deadline: float = math.inf, shield: bool = False - ) -> "CancelScope": - return get_asynclib().CancelScope(shield=shield, deadline=deadline) - - def cancel(self) -> DeprecatedAwaitable: - """Cancel this scope immediately.""" - raise NotImplementedError - - @property - def deadline(self) -> float: - """ - The time (clock value) when this scope is cancelled automatically. - - Will be ``float('inf')`` if no timeout has been set. - - """ - raise NotImplementedError - - @deadline.setter - def deadline(self, value: float) -> None: - raise NotImplementedError - - @property - def cancel_called(self) -> bool: - """``True`` if :meth:`cancel` has been called.""" - raise NotImplementedError - - @property - def shield(self) -> bool: - """ - ``True`` if this scope is shielded from external cancellation. - - While a scope is shielded, it will not receive cancellations from outside. - - """ - raise NotImplementedError - - @shield.setter - def shield(self, value: bool) -> None: - raise NotImplementedError - - def __enter__(self) -> "CancelScope": - raise NotImplementedError - - def __exit__( - self, - exc_type: Optional[Type[BaseException]], - exc_val: Optional[BaseException], - exc_tb: Optional[TracebackType], - ) -> Optional[bool]: - raise NotImplementedError - - -def open_cancel_scope(*, shield: bool = False) -> CancelScope: - """ - Open a cancel scope. - - :param shield: ``True`` to shield the cancel scope from external cancellation - :return: a cancel scope - - .. deprecated:: 3.0 - Use :class:`~CancelScope` directly. - - """ - warn( - "open_cancel_scope() is deprecated -- use CancelScope() directly", - DeprecationWarning, - ) - return get_asynclib().CancelScope(shield=shield) - - -class FailAfterContextManager(DeprecatedAsyncContextManager[CancelScope]): - def __init__(self, cancel_scope: CancelScope): - self._cancel_scope = cancel_scope - - def __enter__(self) -> CancelScope: - return self._cancel_scope.__enter__() - - def __exit__( - self, - exc_type: Optional[Type[BaseException]], - exc_val: Optional[BaseException], - exc_tb: Optional[TracebackType], - ) -> Optional[bool]: - retval = self._cancel_scope.__exit__(exc_type, exc_val, exc_tb) - if self._cancel_scope.cancel_called: - raise TimeoutError - - return retval - - -def fail_after(delay: Optional[float], shield: bool = False) -> FailAfterContextManager: - """ - Create a context manager which raises a :class:`TimeoutError` if does not finish in time. - - :param delay: maximum allowed time (in seconds) before raising the exception, or ``None`` to - disable the timeout - :param shield: ``True`` to shield the cancel scope from external cancellation - :return: a context manager that yields a cancel scope - :rtype: :class:`~typing.ContextManager`\\[:class:`~anyio.abc.CancelScope`\\] - - """ - deadline = ( - (get_asynclib().current_time() + delay) if delay is not None else math.inf - ) - cancel_scope = get_asynclib().CancelScope(deadline=deadline, shield=shield) - return FailAfterContextManager(cancel_scope) - - -def move_on_after(delay: Optional[float], shield: bool = False) -> CancelScope: - """ - Create a cancel scope with a deadline that expires after the given delay. - - :param delay: maximum allowed time (in seconds) before exiting the context block, or ``None`` - to disable the timeout - :param shield: ``True`` to shield the cancel scope from external cancellation - :return: a cancel scope - - """ - deadline = ( - (get_asynclib().current_time() + delay) if delay is not None else math.inf - ) - return get_asynclib().CancelScope(deadline=deadline, shield=shield) - - -def current_effective_deadline() -> DeprecatedAwaitableFloat: - """ - Return the nearest deadline among all the cancel scopes effective for the current task. - - :return: a clock value from the event loop's internal clock (``float('inf')`` if there is no - deadline in effect) - :rtype: float - - """ - return DeprecatedAwaitableFloat( - get_asynclib().current_effective_deadline(), current_effective_deadline - ) - - -def create_task_group() -> "TaskGroup": - """ - Create a task group. - - :return: a task group - - """ - return get_asynclib().TaskGroup() diff --git a/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/fairseq/data/dictionary.py b/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/fairseq/data/dictionary.py deleted file mode 100644 index d6495389f0102156f0b2dc6f892946d572911bbe..0000000000000000000000000000000000000000 --- a/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/fairseq/data/dictionary.py +++ /dev/null @@ -1,401 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - -import os -from collections import Counter -from multiprocessing import Pool - -import torch -from fairseq import utils -from fairseq.data import data_utils -from fairseq.file_chunker_utils import Chunker, find_offsets -from fairseq.file_io import PathManager -from fairseq.tokenizer import tokenize_line - - -class Dictionary: - """A mapping from symbols to consecutive integers""" - - def __init__( - self, - *, # begin keyword-only arguments - bos="", - pad="", - eos="", - unk="", - extra_special_symbols=None, - ): - self.bos_word, self.unk_word, self.pad_word, self.eos_word = bos, unk, pad, eos - self.symbols = [] - self.count = [] - self.indices = {} - self.bos_index = self.add_symbol(bos) - self.pad_index = self.add_symbol(pad) - self.eos_index = self.add_symbol(eos) - self.unk_index = self.add_symbol(unk) - if extra_special_symbols: - for s in extra_special_symbols: - self.add_symbol(s) - self.nspecial = len(self.symbols) - - def __eq__(self, other): - return self.indices == other.indices - - def __getitem__(self, idx): - if idx < len(self.symbols): - return self.symbols[idx] - return self.unk_word - - def get_count(self, idx): - return self.count[idx] - - def __len__(self): - """Returns the number of symbols in the dictionary""" - return len(self.symbols) - - def __contains__(self, sym): - return sym in self.indices - - def index(self, sym): - """Returns the index of the specified symbol""" - assert isinstance(sym, str) - if sym in self.indices: - return self.indices[sym] - return self.unk_index - - def string( - self, - tensor, - bpe_symbol=None, - escape_unk=False, - extra_symbols_to_ignore=None, - unk_string=None, - include_eos=False, - separator=" ", - ): - """Helper for converting a tensor of token indices to a string. - - Can optionally remove BPE symbols or escape words. - """ - if torch.is_tensor(tensor) and tensor.dim() == 2: - return "\n".join( - self.string( - t, - bpe_symbol, - escape_unk, - extra_symbols_to_ignore, - include_eos=include_eos, - ) - for t in tensor - ) - - extra_symbols_to_ignore = set(extra_symbols_to_ignore or []) - if not include_eos: - extra_symbols_to_ignore.add(self.eos()) - - def token_string(i): - if i == self.unk(): - if unk_string is not None: - return unk_string - else: - return self.unk_string(escape_unk) - else: - return self[i] - - if hasattr(self, "bos_index"): - extra_symbols_to_ignore.add(self.bos()) - - sent = separator.join( - token_string(i) - for i in tensor - if utils.item(i) not in extra_symbols_to_ignore - ) - - return data_utils.post_process(sent, bpe_symbol) - - def unk_string(self, escape=False): - """Return unknown string, optionally escaped as: <>""" - if escape: - return "<{}>".format(self.unk_word) - else: - return self.unk_word - - def add_symbol(self, word, n=1, overwrite=False): - """Adds a word to the dictionary""" - if word in self.indices and not overwrite: - idx = self.indices[word] - self.count[idx] = self.count[idx] + n - return idx - else: - idx = len(self.symbols) - self.indices[word] = idx - self.symbols.append(word) - self.count.append(n) - return idx - - def update(self, new_dict): - """Updates counts from new dictionary.""" - for word in new_dict.symbols: - idx2 = new_dict.indices[word] - if word in self.indices: - idx = self.indices[word] - self.count[idx] = self.count[idx] + new_dict.count[idx2] - else: - idx = len(self.symbols) - self.indices[word] = idx - self.symbols.append(word) - self.count.append(new_dict.count[idx2]) - - def finalize(self, threshold=-1, nwords=-1, padding_factor=8): - """Sort symbols by frequency in descending order, ignoring special ones. - - Args: - - threshold defines the minimum word count - - nwords defines the total number of words in the final dictionary, - including special symbols - - padding_factor can be used to pad the dictionary size to be a - multiple of 8, which is important on some hardware (e.g., Nvidia - Tensor Cores). - """ - if nwords <= 0: - nwords = len(self) - - new_indices = dict(zip(self.symbols[: self.nspecial], range(self.nspecial))) - new_symbols = self.symbols[: self.nspecial] - new_count = self.count[: self.nspecial] - - c = Counter( - dict( - sorted(zip(self.symbols[self.nspecial :], self.count[self.nspecial :])) - ) - ) - for symbol, count in c.most_common(nwords - self.nspecial): - if count >= threshold: - new_indices[symbol] = len(new_symbols) - new_symbols.append(symbol) - new_count.append(count) - else: - break - - assert len(new_symbols) == len(new_indices) - - self.count = list(new_count) - self.symbols = list(new_symbols) - self.indices = new_indices - - self.pad_to_multiple_(padding_factor) - - def pad_to_multiple_(self, padding_factor): - """Pad Dictionary size to be a multiple of *padding_factor*.""" - if padding_factor > 1: - i = 0 - while len(self) % padding_factor != 0: - symbol = "madeupword{:04d}".format(i) - self.add_symbol(symbol, n=0) - i += 1 - - def bos(self): - """Helper to get index of beginning-of-sentence symbol""" - return self.bos_index - - def pad(self): - """Helper to get index of pad symbol""" - return self.pad_index - - def eos(self): - """Helper to get index of end-of-sentence symbol""" - return self.eos_index - - def unk(self): - """Helper to get index of unk symbol""" - return self.unk_index - - @classmethod - def load(cls, f): - """Loads the dictionary from a text file with the format: - - ``` - - - ... - ``` - """ - d = cls() - d.add_from_file(f) - return d - - def add_from_file(self, f): - """ - Loads a pre-existing dictionary from a text file and adds its symbols - to this instance. - """ - if isinstance(f, str): - try: - with open(PathManager.get_local_path(f), "r", encoding="utf-8") as fd: - self.add_from_file(fd) - except FileNotFoundError as fnfe: - raise fnfe - except UnicodeError: - raise Exception( - "Incorrect encoding detected in {}, please " - "rebuild the dataset".format(f) - ) - return - - lines = f.readlines() - indices_start_line = self._load_meta(lines) - - for line in lines[indices_start_line:]: - try: - line, field = line.rstrip().rsplit(" ", 1) - if field == "#fairseq:overwrite": - overwrite = True - line, field = line.rsplit(" ", 1) - else: - overwrite = False - count = int(field) - word = line - if word in self and not overwrite: - raise RuntimeError( - "Duplicate word found when loading Dictionary: '{}'. " - "Duplicate words can overwrite earlier ones by adding the " - "#fairseq:overwrite flag at the end of the corresponding row " - "in the dictionary file. If using the Camembert model, please " - "download an updated copy of the model file.".format(word) - ) - self.add_symbol(word, n=count, overwrite=overwrite) - except ValueError: - raise ValueError( - f"Incorrect dictionary format, expected ' [flags]': \"{line}\"" - ) - - def _save(self, f, kv_iterator): - if isinstance(f, str): - PathManager.mkdirs(os.path.dirname(f)) - with PathManager.open(f, "w", encoding="utf-8") as fd: - return self.save(fd) - for k, v in kv_iterator: - print("{} {}".format(k, v), file=f) - - def _get_meta(self): - return [], [] - - def _load_meta(self, lines): - return 0 - - def save(self, f): - """Stores dictionary into a text file""" - ex_keys, ex_vals = self._get_meta() - self._save( - f, - zip( - ex_keys + self.symbols[self.nspecial :], - ex_vals + self.count[self.nspecial :], - ), - ) - - def dummy_sentence(self, length): - t = torch.Tensor(length).uniform_(self.nspecial + 1, len(self)).long() - t[-1] = self.eos() - return t - - def encode_line( - self, - line, - line_tokenizer=tokenize_line, - add_if_not_exist=True, - consumer=None, - append_eos=True, - reverse_order=False, - ) -> torch.IntTensor: - words = line_tokenizer(line) - if reverse_order: - words = list(reversed(words)) - nwords = len(words) - ids = torch.IntTensor(nwords + 1 if append_eos else nwords) - - for i, word in enumerate(words): - if add_if_not_exist: - idx = self.add_symbol(word) - else: - idx = self.index(word) - if consumer is not None: - consumer(word, idx) - ids[i] = idx - if append_eos: - ids[nwords] = self.eos_index - return ids - - @staticmethod - def _add_file_to_dictionary_single_worker( - filename, - tokenize, - eos_word, - start_offset, - end_offset, - ): - counter = Counter() - with Chunker(filename, start_offset, end_offset) as line_iterator: - for line in line_iterator: - for word in tokenize(line): - counter.update([word]) - counter.update([eos_word]) - return counter - - @staticmethod - def add_file_to_dictionary(filename, dict, tokenize, num_workers): - def merge_result(counter): - for w, c in sorted(counter.items()): - dict.add_symbol(w, c) - - local_file = PathManager.get_local_path(filename) - offsets = find_offsets(local_file, num_workers) - if num_workers > 1: - chunks = zip(offsets, offsets[1:]) - pool = Pool(processes=num_workers) - results = [] - for (start_offset, end_offset) in chunks: - results.append( - pool.apply_async( - Dictionary._add_file_to_dictionary_single_worker, - ( - local_file, - tokenize, - dict.eos_word, - start_offset, - end_offset, - ), - ) - ) - pool.close() - pool.join() - for r in results: - merge_result(r.get()) - else: - merge_result( - Dictionary._add_file_to_dictionary_single_worker( - local_file, tokenize, dict.eos_word, offsets[0], offsets[1] - ) - ) - - -class TruncatedDictionary(object): - def __init__(self, wrapped_dict, length): - self.__class__ = type( - wrapped_dict.__class__.__name__, - (self.__class__, wrapped_dict.__class__), - {}, - ) - self.__dict__ = wrapped_dict.__dict__ - self.wrapped_dict = wrapped_dict - self.length = min(len(self.wrapped_dict), length) - - def __len__(self): - return self.length - - def __getitem__(self, i): - if i < self.length: - return self.wrapped_dict[i] - return self.wrapped_dict.unk() diff --git a/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/fairseq/data/subsample_dataset.py b/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/fairseq/data/subsample_dataset.py deleted file mode 100644 index 48feaf883f87dc95f8637c24d3c96f3f9fd8bd1d..0000000000000000000000000000000000000000 --- a/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/fairseq/data/subsample_dataset.py +++ /dev/null @@ -1,72 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - -import logging - -import numpy as np - -from . import BaseWrapperDataset - - -logger = logging.getLogger(__name__) - - -class SubsampleDataset(BaseWrapperDataset): - """Subsamples a given dataset by a specified ratio. Subsampling is done on the number of examples - - Args: - dataset (~torch.utils.data.Dataset): dataset to subsample - size_ratio(float): the ratio to subsample to. must be between 0 and 1 (exclusive) - """ - - def __init__(self, dataset, size_ratio, shuffle=False): - super().__init__(dataset) - assert size_ratio < 1 - self.actual_size = np.ceil(len(dataset) * size_ratio).astype(int) - self.indices = np.random.choice( - list(range(len(self.dataset))), self.actual_size, replace=False - ) - self.shuffle = shuffle - logger.info( - "subsampled dataset from {} to {} (ratio={})".format( - len(self.dataset), self.actual_size, size_ratio - ) - ) - - def __getitem__(self, index): - return self.dataset[self.indices[index]] - - def __len__(self): - return self.actual_size - - def collater(self, samples): - return self.dataset.collater(samples) - - @property - def sizes(self): - return self.dataset.sizes[self.indices] - - @property - def name(self): - return self.dataset.name - - def num_tokens(self, index): - return self.dataset.num_tokens(self.indices[index]) - - def size(self, index): - return self.dataset.size(self.indices[index]) - - def ordered_indices(self): - """Return an ordered list of indices. Batches will be constructed based - on this order.""" - if self.shuffle: - order = [np.random.permutation(len(self))] - else: - order = [np.arange(len(self))] - order.append(self.sizes) - return np.lexsort(order) - - def prefetch(self, indices): - self.dataset.prefetch(self.indices[indices]) diff --git a/spaces/asafAdge/Detic/detic/data/datasets/lvis_22k_categories.py b/spaces/asafAdge/Detic/detic/data/datasets/lvis_22k_categories.py deleted file mode 100644 index 9525f0873d68d84dd691979c32eaadd7860f59fe..0000000000000000000000000000000000000000 --- a/spaces/asafAdge/Detic/detic/data/datasets/lvis_22k_categories.py +++ /dev/null @@ -1 +0,0 @@ -CATEGORIES = [{'name': 'aerosol_can', 'id': 1, 'frequency': 'c', 'synset': 'aerosol.n.02'}, {'name': 'air_conditioner', 'id': 2, 'frequency': 'f', 'synset': 'air_conditioner.n.01'}, {'name': 'airplane', 'id': 3, 'frequency': 'f', 'synset': 'airplane.n.01'}, {'name': 'alarm_clock', 'id': 4, 'frequency': 'f', 'synset': 'alarm_clock.n.01'}, {'name': 'alcohol', 'id': 5, 'frequency': 'c', 'synset': 'alcohol.n.01'}, {'name': 'alligator', 'id': 6, 'frequency': 'c', 'synset': 'alligator.n.02'}, {'name': 'almond', 'id': 7, 'frequency': 'c', 'synset': 'almond.n.02'}, {'name': 'ambulance', 'id': 8, 'frequency': 'c', 'synset': 'ambulance.n.01'}, {'name': 'amplifier', 'id': 9, 'frequency': 'c', 'synset': 'amplifier.n.01'}, {'name': 'anklet', 'id': 10, 'frequency': 'c', 'synset': 'anklet.n.03'}, {'name': 'antenna', 'id': 11, 'frequency': 'f', 'synset': 'antenna.n.01'}, {'name': 'apple', 'id': 12, 'frequency': 'f', 'synset': 'apple.n.01'}, {'name': 'applesauce', 'id': 13, 'frequency': 'r', 'synset': 'applesauce.n.01'}, {'name': 'apricot', 'id': 14, 'frequency': 'r', 'synset': 'apricot.n.02'}, {'name': 'apron', 'id': 15, 'frequency': 'f', 'synset': 'apron.n.01'}, {'name': 'aquarium', 'id': 16, 'frequency': 'c', 'synset': 'aquarium.n.01'}, {'name': 'arctic_(type_of_shoe)', 'id': 17, 'frequency': 'r', 'synset': 'arctic.n.02'}, {'name': 'armband', 'id': 18, 'frequency': 'c', 'synset': 'armband.n.02'}, {'name': 'armchair', 'id': 19, 'frequency': 'f', 'synset': 'armchair.n.01'}, {'name': 'armoire', 'id': 20, 'frequency': 'r', 'synset': 'armoire.n.01'}, {'name': 'armor', 'id': 21, 'frequency': 'r', 'synset': 'armor.n.01'}, {'name': 'artichoke', 'id': 22, 'frequency': 'c', 'synset': 'artichoke.n.02'}, {'name': 'trash_can', 'id': 23, 'frequency': 'f', 'synset': 'ashcan.n.01'}, {'name': 'ashtray', 'id': 24, 'frequency': 'c', 'synset': 'ashtray.n.01'}, {'name': 'asparagus', 'id': 25, 'frequency': 'c', 'synset': 'asparagus.n.02'}, {'name': 'atomizer', 'id': 26, 'frequency': 'c', 'synset': 'atomizer.n.01'}, {'name': 'avocado', 'id': 27, 'frequency': 'f', 'synset': 'avocado.n.01'}, {'name': 'award', 'id': 28, 'frequency': 'c', 'synset': 'award.n.02'}, {'name': 'awning', 'id': 29, 'frequency': 'f', 'synset': 'awning.n.01'}, {'name': 'ax', 'id': 30, 'frequency': 'r', 'synset': 'ax.n.01'}, {'name': 'baboon', 'id': 31, 'frequency': 'r', 'synset': 'baboon.n.01'}, {'name': 'baby_buggy', 'id': 32, 'frequency': 'f', 'synset': 'baby_buggy.n.01'}, {'name': 'basketball_backboard', 'id': 33, 'frequency': 'c', 'synset': 'backboard.n.01'}, {'name': 'backpack', 'id': 34, 'frequency': 'f', 'synset': 'backpack.n.01'}, {'name': 'handbag', 'id': 35, 'frequency': 'f', 'synset': 'bag.n.04'}, {'name': 'suitcase', 'id': 36, 'frequency': 'f', 'synset': 'bag.n.06'}, {'name': 'bagel', 'id': 37, 'frequency': 'c', 'synset': 'bagel.n.01'}, {'name': 'bagpipe', 'id': 38, 'frequency': 'r', 'synset': 'bagpipe.n.01'}, {'name': 'baguet', 'id': 39, 'frequency': 'r', 'synset': 'baguet.n.01'}, {'name': 'bait', 'id': 40, 'frequency': 'r', 'synset': 'bait.n.02'}, {'name': 'ball', 'id': 41, 'frequency': 'f', 'synset': 'ball.n.06'}, {'name': 'ballet_skirt', 'id': 42, 'frequency': 'r', 'synset': 'ballet_skirt.n.01'}, {'name': 'balloon', 'id': 43, 'frequency': 'f', 'synset': 'balloon.n.01'}, {'name': 'bamboo', 'id': 44, 'frequency': 'c', 'synset': 'bamboo.n.02'}, {'name': 'banana', 'id': 45, 'frequency': 'f', 'synset': 'banana.n.02'}, {'name': 'Band_Aid', 'id': 46, 'frequency': 'c', 'synset': 'band_aid.n.01'}, {'name': 'bandage', 'id': 47, 'frequency': 'c', 'synset': 'bandage.n.01'}, {'name': 'bandanna', 'id': 48, 'frequency': 'f', 'synset': 'bandanna.n.01'}, {'name': 'banjo', 'id': 49, 'frequency': 'r', 'synset': 'banjo.n.01'}, {'name': 'banner', 'id': 50, 'frequency': 'f', 'synset': 'banner.n.01'}, {'name': 'barbell', 'id': 51, 'frequency': 'r', 'synset': 'barbell.n.01'}, {'name': 'barge', 'id': 52, 'frequency': 'r', 'synset': 'barge.n.01'}, {'name': 'barrel', 'id': 53, 'frequency': 'f', 'synset': 'barrel.n.02'}, {'name': 'barrette', 'id': 54, 'frequency': 'c', 'synset': 'barrette.n.01'}, {'name': 'barrow', 'id': 55, 'frequency': 'c', 'synset': 'barrow.n.03'}, {'name': 'baseball_base', 'id': 56, 'frequency': 'f', 'synset': 'base.n.03'}, {'name': 'baseball', 'id': 57, 'frequency': 'f', 'synset': 'baseball.n.02'}, {'name': 'baseball_bat', 'id': 58, 'frequency': 'f', 'synset': 'baseball_bat.n.01'}, {'name': 'baseball_cap', 'id': 59, 'frequency': 'f', 'synset': 'baseball_cap.n.01'}, {'name': 'baseball_glove', 'id': 60, 'frequency': 'f', 'synset': 'baseball_glove.n.01'}, {'name': 'basket', 'id': 61, 'frequency': 'f', 'synset': 'basket.n.01'}, {'name': 'basketball', 'id': 62, 'frequency': 'c', 'synset': 'basketball.n.02'}, {'name': 'bass_horn', 'id': 63, 'frequency': 'r', 'synset': 'bass_horn.n.01'}, {'name': 'bat_(animal)', 'id': 64, 'frequency': 'c', 'synset': 'bat.n.01'}, {'name': 'bath_mat', 'id': 65, 'frequency': 'f', 'synset': 'bath_mat.n.01'}, {'name': 'bath_towel', 'id': 66, 'frequency': 'f', 'synset': 'bath_towel.n.01'}, {'name': 'bathrobe', 'id': 67, 'frequency': 'c', 'synset': 'bathrobe.n.01'}, {'name': 'bathtub', 'id': 68, 'frequency': 'f', 'synset': 'bathtub.n.01'}, {'name': 'batter_(food)', 'id': 69, 'frequency': 'r', 'synset': 'batter.n.02'}, {'name': 'battery', 'id': 70, 'frequency': 'c', 'synset': 'battery.n.02'}, {'name': 'beachball', 'id': 71, 'frequency': 'r', 'synset': 'beach_ball.n.01'}, {'name': 'bead', 'id': 72, 'frequency': 'c', 'synset': 'bead.n.01'}, {'name': 'bean_curd', 'id': 73, 'frequency': 'c', 'synset': 'bean_curd.n.01'}, {'name': 'beanbag', 'id': 74, 'frequency': 'c', 'synset': 'beanbag.n.01'}, {'name': 'beanie', 'id': 75, 'frequency': 'f', 'synset': 'beanie.n.01'}, {'name': 'bear', 'id': 76, 'frequency': 'f', 'synset': 'bear.n.01'}, {'name': 'bed', 'id': 77, 'frequency': 'f', 'synset': 'bed.n.01'}, {'name': 'bedpan', 'id': 78, 'frequency': 'r', 'synset': 'bedpan.n.01'}, {'name': 'bedspread', 'id': 79, 'frequency': 'f', 'synset': 'bedspread.n.01'}, {'name': 'cow', 'id': 80, 'frequency': 'f', 'synset': 'beef.n.01'}, {'name': 'beef_(food)', 'id': 81, 'frequency': 'f', 'synset': 'beef.n.02'}, {'name': 'beeper', 'id': 82, 'frequency': 'r', 'synset': 'beeper.n.01'}, {'name': 'beer_bottle', 'id': 83, 'frequency': 'f', 'synset': 'beer_bottle.n.01'}, {'name': 'beer_can', 'id': 84, 'frequency': 'c', 'synset': 'beer_can.n.01'}, {'name': 'beetle', 'id': 85, 'frequency': 'r', 'synset': 'beetle.n.01'}, {'name': 'bell', 'id': 86, 'frequency': 'f', 'synset': 'bell.n.01'}, {'name': 'bell_pepper', 'id': 87, 'frequency': 'f', 'synset': 'bell_pepper.n.02'}, {'name': 'belt', 'id': 88, 'frequency': 'f', 'synset': 'belt.n.02'}, {'name': 'belt_buckle', 'id': 89, 'frequency': 'f', 'synset': 'belt_buckle.n.01'}, {'name': 'bench', 'id': 90, 'frequency': 'f', 'synset': 'bench.n.01'}, {'name': 'beret', 'id': 91, 'frequency': 'c', 'synset': 'beret.n.01'}, {'name': 'bib', 'id': 92, 'frequency': 'c', 'synset': 'bib.n.02'}, {'name': 'Bible', 'id': 93, 'frequency': 'r', 'synset': 'bible.n.01'}, {'name': 'bicycle', 'id': 94, 'frequency': 'f', 'synset': 'bicycle.n.01'}, {'name': 'visor', 'id': 95, 'frequency': 'f', 'synset': 'bill.n.09'}, {'name': 'billboard', 'id': 96, 'frequency': 'f', 'synset': 'billboard.n.01'}, {'name': 'binder', 'id': 97, 'frequency': 'c', 'synset': 'binder.n.03'}, {'name': 'binoculars', 'id': 98, 'frequency': 'c', 'synset': 'binoculars.n.01'}, {'name': 'bird', 'id': 99, 'frequency': 'f', 'synset': 'bird.n.01'}, {'name': 'birdfeeder', 'id': 100, 'frequency': 'c', 'synset': 'bird_feeder.n.01'}, {'name': 'birdbath', 'id': 101, 'frequency': 'c', 'synset': 'birdbath.n.01'}, {'name': 'birdcage', 'id': 102, 'frequency': 'c', 'synset': 'birdcage.n.01'}, {'name': 'birdhouse', 'id': 103, 'frequency': 'c', 'synset': 'birdhouse.n.01'}, {'name': 'birthday_cake', 'id': 104, 'frequency': 'f', 'synset': 'birthday_cake.n.01'}, {'name': 'birthday_card', 'id': 105, 'frequency': 'r', 'synset': 'birthday_card.n.01'}, {'name': 'pirate_flag', 'id': 106, 'frequency': 'r', 'synset': 'black_flag.n.01'}, {'name': 'black_sheep', 'id': 107, 'frequency': 'c', 'synset': 'black_sheep.n.02'}, {'name': 'blackberry', 'id': 108, 'frequency': 'c', 'synset': 'blackberry.n.01'}, {'name': 'blackboard', 'id': 109, 'frequency': 'f', 'synset': 'blackboard.n.01'}, {'name': 'blanket', 'id': 110, 'frequency': 'f', 'synset': 'blanket.n.01'}, {'name': 'blazer', 'id': 111, 'frequency': 'c', 'synset': 'blazer.n.01'}, {'name': 'blender', 'id': 112, 'frequency': 'f', 'synset': 'blender.n.01'}, {'name': 'blimp', 'id': 113, 'frequency': 'r', 'synset': 'blimp.n.02'}, {'name': 'blinker', 'id': 114, 'frequency': 'f', 'synset': 'blinker.n.01'}, {'name': 'blouse', 'id': 115, 'frequency': 'f', 'synset': 'blouse.n.01'}, {'name': 'blueberry', 'id': 116, 'frequency': 'f', 'synset': 'blueberry.n.02'}, {'name': 'gameboard', 'id': 117, 'frequency': 'r', 'synset': 'board.n.09'}, {'name': 'boat', 'id': 118, 'frequency': 'f', 'synset': 'boat.n.01'}, {'name': 'bob', 'id': 119, 'frequency': 'r', 'synset': 'bob.n.05'}, {'name': 'bobbin', 'id': 120, 'frequency': 'c', 'synset': 'bobbin.n.01'}, {'name': 'bobby_pin', 'id': 121, 'frequency': 'c', 'synset': 'bobby_pin.n.01'}, {'name': 'boiled_egg', 'id': 122, 'frequency': 'c', 'synset': 'boiled_egg.n.01'}, {'name': 'bolo_tie', 'id': 123, 'frequency': 'r', 'synset': 'bolo_tie.n.01'}, {'name': 'deadbolt', 'id': 124, 'frequency': 'c', 'synset': 'bolt.n.03'}, {'name': 'bolt', 'id': 125, 'frequency': 'f', 'synset': 'bolt.n.06'}, {'name': 'bonnet', 'id': 126, 'frequency': 'r', 'synset': 'bonnet.n.01'}, {'name': 'book', 'id': 127, 'frequency': 'f', 'synset': 'book.n.01'}, {'name': 'bookcase', 'id': 128, 'frequency': 'c', 'synset': 'bookcase.n.01'}, {'name': 'booklet', 'id': 129, 'frequency': 'c', 'synset': 'booklet.n.01'}, {'name': 'bookmark', 'id': 130, 'frequency': 'r', 'synset': 'bookmark.n.01'}, {'name': 'boom_microphone', 'id': 131, 'frequency': 'r', 'synset': 'boom.n.04'}, {'name': 'boot', 'id': 132, 'frequency': 'f', 'synset': 'boot.n.01'}, {'name': 'bottle', 'id': 133, 'frequency': 'f', 'synset': 'bottle.n.01'}, {'name': 'bottle_opener', 'id': 134, 'frequency': 'c', 'synset': 'bottle_opener.n.01'}, {'name': 'bouquet', 'id': 135, 'frequency': 'c', 'synset': 'bouquet.n.01'}, {'name': 'bow_(weapon)', 'id': 136, 'frequency': 'r', 'synset': 'bow.n.04'}, {'name': 'bow_(decorative_ribbons)', 'id': 137, 'frequency': 'f', 'synset': 'bow.n.08'}, {'name': 'bow-tie', 'id': 138, 'frequency': 'f', 'synset': 'bow_tie.n.01'}, {'name': 'bowl', 'id': 139, 'frequency': 'f', 'synset': 'bowl.n.03'}, {'name': 'pipe_bowl', 'id': 140, 'frequency': 'r', 'synset': 'bowl.n.08'}, {'name': 'bowler_hat', 'id': 141, 'frequency': 'c', 'synset': 'bowler_hat.n.01'}, {'name': 'bowling_ball', 'id': 142, 'frequency': 'r', 'synset': 'bowling_ball.n.01'}, {'name': 'box', 'id': 143, 'frequency': 'f', 'synset': 'box.n.01'}, {'name': 'boxing_glove', 'id': 144, 'frequency': 'r', 'synset': 'boxing_glove.n.01'}, {'name': 'suspenders', 'id': 145, 'frequency': 'c', 'synset': 'brace.n.06'}, {'name': 'bracelet', 'id': 146, 'frequency': 'f', 'synset': 'bracelet.n.02'}, {'name': 'brass_plaque', 'id': 147, 'frequency': 'r', 'synset': 'brass.n.07'}, {'name': 'brassiere', 'id': 148, 'frequency': 'c', 'synset': 'brassiere.n.01'}, {'name': 'bread-bin', 'id': 149, 'frequency': 'c', 'synset': 'bread-bin.n.01'}, {'name': 'bread', 'id': 150, 'frequency': 'f', 'synset': 'bread.n.01'}, {'name': 'breechcloth', 'id': 151, 'frequency': 'r', 'synset': 'breechcloth.n.01'}, {'name': 'bridal_gown', 'id': 152, 'frequency': 'f', 'synset': 'bridal_gown.n.01'}, {'name': 'briefcase', 'id': 153, 'frequency': 'c', 'synset': 'briefcase.n.01'}, {'name': 'broccoli', 'id': 154, 'frequency': 'f', 'synset': 'broccoli.n.01'}, {'name': 'broach', 'id': 155, 'frequency': 'r', 'synset': 'brooch.n.01'}, {'name': 'broom', 'id': 156, 'frequency': 'c', 'synset': 'broom.n.01'}, {'name': 'brownie', 'id': 157, 'frequency': 'c', 'synset': 'brownie.n.03'}, {'name': 'brussels_sprouts', 'id': 158, 'frequency': 'c', 'synset': 'brussels_sprouts.n.01'}, {'name': 'bubble_gum', 'id': 159, 'frequency': 'r', 'synset': 'bubble_gum.n.01'}, {'name': 'bucket', 'id': 160, 'frequency': 'f', 'synset': 'bucket.n.01'}, {'name': 'horse_buggy', 'id': 161, 'frequency': 'r', 'synset': 'buggy.n.01'}, {'name': 'bull', 'id': 162, 'frequency': 'c', 'synset': 'bull.n.11'}, {'name': 'bulldog', 'id': 163, 'frequency': 'c', 'synset': 'bulldog.n.01'}, {'name': 'bulldozer', 'id': 164, 'frequency': 'r', 'synset': 'bulldozer.n.01'}, {'name': 'bullet_train', 'id': 165, 'frequency': 'c', 'synset': 'bullet_train.n.01'}, {'name': 'bulletin_board', 'id': 166, 'frequency': 'c', 'synset': 'bulletin_board.n.02'}, {'name': 'bulletproof_vest', 'id': 167, 'frequency': 'r', 'synset': 'bulletproof_vest.n.01'}, {'name': 'bullhorn', 'id': 168, 'frequency': 'c', 'synset': 'bullhorn.n.01'}, {'name': 'bun', 'id': 169, 'frequency': 'f', 'synset': 'bun.n.01'}, {'name': 'bunk_bed', 'id': 170, 'frequency': 'c', 'synset': 'bunk_bed.n.01'}, {'name': 'buoy', 'id': 171, 'frequency': 'f', 'synset': 'buoy.n.01'}, {'name': 'burrito', 'id': 172, 'frequency': 'r', 'synset': 'burrito.n.01'}, {'name': 'bus_(vehicle)', 'id': 173, 'frequency': 'f', 'synset': 'bus.n.01'}, {'name': 'business_card', 'id': 174, 'frequency': 'c', 'synset': 'business_card.n.01'}, {'name': 'butter', 'id': 175, 'frequency': 'f', 'synset': 'butter.n.01'}, {'name': 'butterfly', 'id': 176, 'frequency': 'c', 'synset': 'butterfly.n.01'}, {'name': 'button', 'id': 177, 'frequency': 'f', 'synset': 'button.n.01'}, {'name': 'cab_(taxi)', 'id': 178, 'frequency': 'f', 'synset': 'cab.n.03'}, {'name': 'cabana', 'id': 179, 'frequency': 'r', 'synset': 'cabana.n.01'}, {'name': 'cabin_car', 'id': 180, 'frequency': 'c', 'synset': 'cabin_car.n.01'}, {'name': 'cabinet', 'id': 181, 'frequency': 'f', 'synset': 'cabinet.n.01'}, {'name': 'locker', 'id': 182, 'frequency': 'r', 'synset': 'cabinet.n.03'}, {'name': 'cake', 'id': 183, 'frequency': 'f', 'synset': 'cake.n.03'}, {'name': 'calculator', 'id': 184, 'frequency': 'c', 'synset': 'calculator.n.02'}, {'name': 'calendar', 'id': 185, 'frequency': 'f', 'synset': 'calendar.n.02'}, {'name': 'calf', 'id': 186, 'frequency': 'c', 'synset': 'calf.n.01'}, {'name': 'camcorder', 'id': 187, 'frequency': 'c', 'synset': 'camcorder.n.01'}, {'name': 'camel', 'id': 188, 'frequency': 'c', 'synset': 'camel.n.01'}, {'name': 'camera', 'id': 189, 'frequency': 'f', 'synset': 'camera.n.01'}, {'name': 'camera_lens', 'id': 190, 'frequency': 'c', 'synset': 'camera_lens.n.01'}, {'name': 'camper_(vehicle)', 'id': 191, 'frequency': 'c', 'synset': 'camper.n.02'}, {'name': 'can', 'id': 192, 'frequency': 'f', 'synset': 'can.n.01'}, {'name': 'can_opener', 'id': 193, 'frequency': 'c', 'synset': 'can_opener.n.01'}, {'name': 'candle', 'id': 194, 'frequency': 'f', 'synset': 'candle.n.01'}, {'name': 'candle_holder', 'id': 195, 'frequency': 'f', 'synset': 'candlestick.n.01'}, {'name': 'candy_bar', 'id': 196, 'frequency': 'r', 'synset': 'candy_bar.n.01'}, {'name': 'candy_cane', 'id': 197, 'frequency': 'c', 'synset': 'candy_cane.n.01'}, {'name': 'walking_cane', 'id': 198, 'frequency': 'c', 'synset': 'cane.n.01'}, {'name': 'canister', 'id': 199, 'frequency': 'c', 'synset': 'canister.n.02'}, {'name': 'canoe', 'id': 200, 'frequency': 'c', 'synset': 'canoe.n.01'}, {'name': 'cantaloup', 'id': 201, 'frequency': 'c', 'synset': 'cantaloup.n.02'}, {'name': 'canteen', 'id': 202, 'frequency': 'r', 'synset': 'canteen.n.01'}, {'name': 'cap_(headwear)', 'id': 203, 'frequency': 'f', 'synset': 'cap.n.01'}, {'name': 'bottle_cap', 'id': 204, 'frequency': 'f', 'synset': 'cap.n.02'}, {'name': 'cape', 'id': 205, 'frequency': 'c', 'synset': 'cape.n.02'}, {'name': 'cappuccino', 'id': 206, 'frequency': 'c', 'synset': 'cappuccino.n.01'}, {'name': 'car_(automobile)', 'id': 207, 'frequency': 'f', 'synset': 'car.n.01'}, {'name': 'railcar_(part_of_a_train)', 'id': 208, 'frequency': 'f', 'synset': 'car.n.02'}, {'name': 'elevator_car', 'id': 209, 'frequency': 'r', 'synset': 'car.n.04'}, {'name': 'car_battery', 'id': 210, 'frequency': 'r', 'synset': 'car_battery.n.01'}, {'name': 'identity_card', 'id': 211, 'frequency': 'c', 'synset': 'card.n.02'}, {'name': 'card', 'id': 212, 'frequency': 'c', 'synset': 'card.n.03'}, {'name': 'cardigan', 'id': 213, 'frequency': 'c', 'synset': 'cardigan.n.01'}, {'name': 'cargo_ship', 'id': 214, 'frequency': 'r', 'synset': 'cargo_ship.n.01'}, {'name': 'carnation', 'id': 215, 'frequency': 'r', 'synset': 'carnation.n.01'}, {'name': 'horse_carriage', 'id': 216, 'frequency': 'c', 'synset': 'carriage.n.02'}, {'name': 'carrot', 'id': 217, 'frequency': 'f', 'synset': 'carrot.n.01'}, {'name': 'tote_bag', 'id': 218, 'frequency': 'f', 'synset': 'carryall.n.01'}, {'name': 'cart', 'id': 219, 'frequency': 'c', 'synset': 'cart.n.01'}, {'name': 'carton', 'id': 220, 'frequency': 'c', 'synset': 'carton.n.02'}, {'name': 'cash_register', 'id': 221, 'frequency': 'c', 'synset': 'cash_register.n.01'}, {'name': 'casserole', 'id': 222, 'frequency': 'r', 'synset': 'casserole.n.01'}, {'name': 'cassette', 'id': 223, 'frequency': 'r', 'synset': 'cassette.n.01'}, {'name': 'cast', 'id': 224, 'frequency': 'c', 'synset': 'cast.n.05'}, {'name': 'cat', 'id': 225, 'frequency': 'f', 'synset': 'cat.n.01'}, {'name': 'cauliflower', 'id': 226, 'frequency': 'f', 'synset': 'cauliflower.n.02'}, {'name': 'cayenne_(spice)', 'id': 227, 'frequency': 'c', 'synset': 'cayenne.n.02'}, {'name': 'CD_player', 'id': 228, 'frequency': 'c', 'synset': 'cd_player.n.01'}, {'name': 'celery', 'id': 229, 'frequency': 'f', 'synset': 'celery.n.01'}, {'name': 'cellular_telephone', 'id': 230, 'frequency': 'f', 'synset': 'cellular_telephone.n.01'}, {'name': 'chain_mail', 'id': 231, 'frequency': 'r', 'synset': 'chain_mail.n.01'}, {'name': 'chair', 'id': 232, 'frequency': 'f', 'synset': 'chair.n.01'}, {'name': 'chaise_longue', 'id': 233, 'frequency': 'r', 'synset': 'chaise_longue.n.01'}, {'name': 'chalice', 'id': 234, 'frequency': 'r', 'synset': 'chalice.n.01'}, {'name': 'chandelier', 'id': 235, 'frequency': 'f', 'synset': 'chandelier.n.01'}, {'name': 'chap', 'id': 236, 'frequency': 'r', 'synset': 'chap.n.04'}, {'name': 'checkbook', 'id': 237, 'frequency': 'r', 'synset': 'checkbook.n.01'}, {'name': 'checkerboard', 'id': 238, 'frequency': 'r', 'synset': 'checkerboard.n.01'}, {'name': 'cherry', 'id': 239, 'frequency': 'c', 'synset': 'cherry.n.03'}, {'name': 'chessboard', 'id': 240, 'frequency': 'r', 'synset': 'chessboard.n.01'}, {'name': 'chicken_(animal)', 'id': 241, 'frequency': 'c', 'synset': 'chicken.n.02'}, {'name': 'chickpea', 'id': 242, 'frequency': 'c', 'synset': 'chickpea.n.01'}, {'name': 'chili_(vegetable)', 'id': 243, 'frequency': 'c', 'synset': 'chili.n.02'}, {'name': 'chime', 'id': 244, 'frequency': 'r', 'synset': 'chime.n.01'}, {'name': 'chinaware', 'id': 245, 'frequency': 'r', 'synset': 'chinaware.n.01'}, {'name': 'crisp_(potato_chip)', 'id': 246, 'frequency': 'c', 'synset': 'chip.n.04'}, {'name': 'poker_chip', 'id': 247, 'frequency': 'r', 'synset': 'chip.n.06'}, {'name': 'chocolate_bar', 'id': 248, 'frequency': 'c', 'synset': 'chocolate_bar.n.01'}, {'name': 'chocolate_cake', 'id': 249, 'frequency': 'c', 'synset': 'chocolate_cake.n.01'}, {'name': 'chocolate_milk', 'id': 250, 'frequency': 'r', 'synset': 'chocolate_milk.n.01'}, {'name': 'chocolate_mousse', 'id': 251, 'frequency': 'r', 'synset': 'chocolate_mousse.n.01'}, {'name': 'choker', 'id': 252, 'frequency': 'f', 'synset': 'choker.n.03'}, {'name': 'chopping_board', 'id': 253, 'frequency': 'f', 'synset': 'chopping_board.n.01'}, {'name': 'chopstick', 'id': 254, 'frequency': 'f', 'synset': 'chopstick.n.01'}, {'name': 'Christmas_tree', 'id': 255, 'frequency': 'f', 'synset': 'christmas_tree.n.05'}, {'name': 'slide', 'id': 256, 'frequency': 'c', 'synset': 'chute.n.02'}, {'name': 'cider', 'id': 257, 'frequency': 'r', 'synset': 'cider.n.01'}, {'name': 'cigar_box', 'id': 258, 'frequency': 'r', 'synset': 'cigar_box.n.01'}, {'name': 'cigarette', 'id': 259, 'frequency': 'f', 'synset': 'cigarette.n.01'}, {'name': 'cigarette_case', 'id': 260, 'frequency': 'c', 'synset': 'cigarette_case.n.01'}, {'name': 'cistern', 'id': 261, 'frequency': 'f', 'synset': 'cistern.n.02'}, {'name': 'clarinet', 'id': 262, 'frequency': 'r', 'synset': 'clarinet.n.01'}, {'name': 'clasp', 'id': 263, 'frequency': 'c', 'synset': 'clasp.n.01'}, {'name': 'cleansing_agent', 'id': 264, 'frequency': 'c', 'synset': 'cleansing_agent.n.01'}, {'name': 'cleat_(for_securing_rope)', 'id': 265, 'frequency': 'r', 'synset': 'cleat.n.02'}, {'name': 'clementine', 'id': 266, 'frequency': 'r', 'synset': 'clementine.n.01'}, {'name': 'clip', 'id': 267, 'frequency': 'c', 'synset': 'clip.n.03'}, {'name': 'clipboard', 'id': 268, 'frequency': 'c', 'synset': 'clipboard.n.01'}, {'name': 'clippers_(for_plants)', 'id': 269, 'frequency': 'r', 'synset': 'clipper.n.03'}, {'name': 'cloak', 'id': 270, 'frequency': 'r', 'synset': 'cloak.n.02'}, {'name': 'clock', 'id': 271, 'frequency': 'f', 'synset': 'clock.n.01'}, {'name': 'clock_tower', 'id': 272, 'frequency': 'f', 'synset': 'clock_tower.n.01'}, {'name': 'clothes_hamper', 'id': 273, 'frequency': 'c', 'synset': 'clothes_hamper.n.01'}, {'name': 'clothespin', 'id': 274, 'frequency': 'c', 'synset': 'clothespin.n.01'}, {'name': 'clutch_bag', 'id': 275, 'frequency': 'r', 'synset': 'clutch_bag.n.01'}, {'name': 'coaster', 'id': 276, 'frequency': 'f', 'synset': 'coaster.n.03'}, {'name': 'coat', 'id': 277, 'frequency': 'f', 'synset': 'coat.n.01'}, {'name': 'coat_hanger', 'id': 278, 'frequency': 'c', 'synset': 'coat_hanger.n.01'}, {'name': 'coatrack', 'id': 279, 'frequency': 'c', 'synset': 'coatrack.n.01'}, {'name': 'cock', 'id': 280, 'frequency': 'c', 'synset': 'cock.n.04'}, {'name': 'cockroach', 'id': 281, 'frequency': 'r', 'synset': 'cockroach.n.01'}, {'name': 'cocoa_(beverage)', 'id': 282, 'frequency': 'r', 'synset': 'cocoa.n.01'}, {'name': 'coconut', 'id': 283, 'frequency': 'c', 'synset': 'coconut.n.02'}, {'name': 'coffee_maker', 'id': 284, 'frequency': 'f', 'synset': 'coffee_maker.n.01'}, {'name': 'coffee_table', 'id': 285, 'frequency': 'f', 'synset': 'coffee_table.n.01'}, {'name': 'coffeepot', 'id': 286, 'frequency': 'c', 'synset': 'coffeepot.n.01'}, {'name': 'coil', 'id': 287, 'frequency': 'r', 'synset': 'coil.n.05'}, {'name': 'coin', 'id': 288, 'frequency': 'c', 'synset': 'coin.n.01'}, {'name': 'colander', 'id': 289, 'frequency': 'c', 'synset': 'colander.n.01'}, {'name': 'coleslaw', 'id': 290, 'frequency': 'c', 'synset': 'coleslaw.n.01'}, {'name': 'coloring_material', 'id': 291, 'frequency': 'r', 'synset': 'coloring_material.n.01'}, {'name': 'combination_lock', 'id': 292, 'frequency': 'r', 'synset': 'combination_lock.n.01'}, {'name': 'pacifier', 'id': 293, 'frequency': 'c', 'synset': 'comforter.n.04'}, {'name': 'comic_book', 'id': 294, 'frequency': 'r', 'synset': 'comic_book.n.01'}, {'name': 'compass', 'id': 295, 'frequency': 'r', 'synset': 'compass.n.01'}, {'name': 'computer_keyboard', 'id': 296, 'frequency': 'f', 'synset': 'computer_keyboard.n.01'}, {'name': 'condiment', 'id': 297, 'frequency': 'f', 'synset': 'condiment.n.01'}, {'name': 'cone', 'id': 298, 'frequency': 'f', 'synset': 'cone.n.01'}, {'name': 'control', 'id': 299, 'frequency': 'f', 'synset': 'control.n.09'}, {'name': 'convertible_(automobile)', 'id': 300, 'frequency': 'r', 'synset': 'convertible.n.01'}, {'name': 'sofa_bed', 'id': 301, 'frequency': 'r', 'synset': 'convertible.n.03'}, {'name': 'cooker', 'id': 302, 'frequency': 'r', 'synset': 'cooker.n.01'}, {'name': 'cookie', 'id': 303, 'frequency': 'f', 'synset': 'cookie.n.01'}, {'name': 'cooking_utensil', 'id': 304, 'frequency': 'r', 'synset': 'cooking_utensil.n.01'}, {'name': 'cooler_(for_food)', 'id': 305, 'frequency': 'f', 'synset': 'cooler.n.01'}, {'name': 'cork_(bottle_plug)', 'id': 306, 'frequency': 'f', 'synset': 'cork.n.04'}, {'name': 'corkboard', 'id': 307, 'frequency': 'r', 'synset': 'corkboard.n.01'}, {'name': 'corkscrew', 'id': 308, 'frequency': 'c', 'synset': 'corkscrew.n.01'}, {'name': 'edible_corn', 'id': 309, 'frequency': 'f', 'synset': 'corn.n.03'}, {'name': 'cornbread', 'id': 310, 'frequency': 'r', 'synset': 'cornbread.n.01'}, {'name': 'cornet', 'id': 311, 'frequency': 'c', 'synset': 'cornet.n.01'}, {'name': 'cornice', 'id': 312, 'frequency': 'c', 'synset': 'cornice.n.01'}, {'name': 'cornmeal', 'id': 313, 'frequency': 'r', 'synset': 'cornmeal.n.01'}, {'name': 'corset', 'id': 314, 'frequency': 'c', 'synset': 'corset.n.01'}, {'name': 'costume', 'id': 315, 'frequency': 'c', 'synset': 'costume.n.04'}, {'name': 'cougar', 'id': 316, 'frequency': 'r', 'synset': 'cougar.n.01'}, {'name': 'coverall', 'id': 317, 'frequency': 'r', 'synset': 'coverall.n.01'}, {'name': 'cowbell', 'id': 318, 'frequency': 'c', 'synset': 'cowbell.n.01'}, {'name': 'cowboy_hat', 'id': 319, 'frequency': 'f', 'synset': 'cowboy_hat.n.01'}, {'name': 'crab_(animal)', 'id': 320, 'frequency': 'c', 'synset': 'crab.n.01'}, {'name': 'crabmeat', 'id': 321, 'frequency': 'r', 'synset': 'crab.n.05'}, {'name': 'cracker', 'id': 322, 'frequency': 'c', 'synset': 'cracker.n.01'}, {'name': 'crape', 'id': 323, 'frequency': 'r', 'synset': 'crape.n.01'}, {'name': 'crate', 'id': 324, 'frequency': 'f', 'synset': 'crate.n.01'}, {'name': 'crayon', 'id': 325, 'frequency': 'c', 'synset': 'crayon.n.01'}, {'name': 'cream_pitcher', 'id': 326, 'frequency': 'r', 'synset': 'cream_pitcher.n.01'}, {'name': 'crescent_roll', 'id': 327, 'frequency': 'c', 'synset': 'crescent_roll.n.01'}, {'name': 'crib', 'id': 328, 'frequency': 'c', 'synset': 'crib.n.01'}, {'name': 'crock_pot', 'id': 329, 'frequency': 'c', 'synset': 'crock.n.03'}, {'name': 'crossbar', 'id': 330, 'frequency': 'f', 'synset': 'crossbar.n.01'}, {'name': 'crouton', 'id': 331, 'frequency': 'r', 'synset': 'crouton.n.01'}, {'name': 'crow', 'id': 332, 'frequency': 'c', 'synset': 'crow.n.01'}, {'name': 'crowbar', 'id': 333, 'frequency': 'r', 'synset': 'crowbar.n.01'}, {'name': 'crown', 'id': 334, 'frequency': 'c', 'synset': 'crown.n.04'}, {'name': 'crucifix', 'id': 335, 'frequency': 'c', 'synset': 'crucifix.n.01'}, {'name': 'cruise_ship', 'id': 336, 'frequency': 'c', 'synset': 'cruise_ship.n.01'}, {'name': 'police_cruiser', 'id': 337, 'frequency': 'c', 'synset': 'cruiser.n.01'}, {'name': 'crumb', 'id': 338, 'frequency': 'f', 'synset': 'crumb.n.03'}, {'name': 'crutch', 'id': 339, 'frequency': 'c', 'synset': 'crutch.n.01'}, {'name': 'cub_(animal)', 'id': 340, 'frequency': 'c', 'synset': 'cub.n.03'}, {'name': 'cube', 'id': 341, 'frequency': 'c', 'synset': 'cube.n.05'}, {'name': 'cucumber', 'id': 342, 'frequency': 'f', 'synset': 'cucumber.n.02'}, {'name': 'cufflink', 'id': 343, 'frequency': 'c', 'synset': 'cufflink.n.01'}, {'name': 'cup', 'id': 344, 'frequency': 'f', 'synset': 'cup.n.01'}, {'name': 'trophy_cup', 'id': 345, 'frequency': 'c', 'synset': 'cup.n.08'}, {'name': 'cupboard', 'id': 346, 'frequency': 'f', 'synset': 'cupboard.n.01'}, {'name': 'cupcake', 'id': 347, 'frequency': 'f', 'synset': 'cupcake.n.01'}, {'name': 'hair_curler', 'id': 348, 'frequency': 'r', 'synset': 'curler.n.01'}, {'name': 'curling_iron', 'id': 349, 'frequency': 'r', 'synset': 'curling_iron.n.01'}, {'name': 'curtain', 'id': 350, 'frequency': 'f', 'synset': 'curtain.n.01'}, {'name': 'cushion', 'id': 351, 'frequency': 'f', 'synset': 'cushion.n.03'}, {'name': 'cylinder', 'id': 352, 'frequency': 'r', 'synset': 'cylinder.n.04'}, {'name': 'cymbal', 'id': 353, 'frequency': 'r', 'synset': 'cymbal.n.01'}, {'name': 'dagger', 'id': 354, 'frequency': 'r', 'synset': 'dagger.n.01'}, {'name': 'dalmatian', 'id': 355, 'frequency': 'r', 'synset': 'dalmatian.n.02'}, {'name': 'dartboard', 'id': 356, 'frequency': 'c', 'synset': 'dartboard.n.01'}, {'name': 'date_(fruit)', 'id': 357, 'frequency': 'r', 'synset': 'date.n.08'}, {'name': 'deck_chair', 'id': 358, 'frequency': 'f', 'synset': 'deck_chair.n.01'}, {'name': 'deer', 'id': 359, 'frequency': 'c', 'synset': 'deer.n.01'}, {'name': 'dental_floss', 'id': 360, 'frequency': 'c', 'synset': 'dental_floss.n.01'}, {'name': 'desk', 'id': 361, 'frequency': 'f', 'synset': 'desk.n.01'}, {'name': 'detergent', 'id': 362, 'frequency': 'r', 'synset': 'detergent.n.01'}, {'name': 'diaper', 'id': 363, 'frequency': 'c', 'synset': 'diaper.n.01'}, {'name': 'diary', 'id': 364, 'frequency': 'r', 'synset': 'diary.n.01'}, {'name': 'die', 'id': 365, 'frequency': 'r', 'synset': 'die.n.01'}, {'name': 'dinghy', 'id': 366, 'frequency': 'r', 'synset': 'dinghy.n.01'}, {'name': 'dining_table', 'id': 367, 'frequency': 'f', 'synset': 'dining_table.n.01'}, {'name': 'tux', 'id': 368, 'frequency': 'r', 'synset': 'dinner_jacket.n.01'}, {'name': 'dish', 'id': 369, 'frequency': 'f', 'synset': 'dish.n.01'}, {'name': 'dish_antenna', 'id': 370, 'frequency': 'c', 'synset': 'dish.n.05'}, {'name': 'dishrag', 'id': 371, 'frequency': 'c', 'synset': 'dishrag.n.01'}, {'name': 'dishtowel', 'id': 372, 'frequency': 'f', 'synset': 'dishtowel.n.01'}, {'name': 'dishwasher', 'id': 373, 'frequency': 'f', 'synset': 'dishwasher.n.01'}, {'name': 'dishwasher_detergent', 'id': 374, 'frequency': 'r', 'synset': 'dishwasher_detergent.n.01'}, {'name': 'dispenser', 'id': 375, 'frequency': 'f', 'synset': 'dispenser.n.01'}, {'name': 'diving_board', 'id': 376, 'frequency': 'r', 'synset': 'diving_board.n.01'}, {'name': 'Dixie_cup', 'id': 377, 'frequency': 'f', 'synset': 'dixie_cup.n.01'}, {'name': 'dog', 'id': 378, 'frequency': 'f', 'synset': 'dog.n.01'}, {'name': 'dog_collar', 'id': 379, 'frequency': 'f', 'synset': 'dog_collar.n.01'}, {'name': 'doll', 'id': 380, 'frequency': 'f', 'synset': 'doll.n.01'}, {'name': 'dollar', 'id': 381, 'frequency': 'r', 'synset': 'dollar.n.02'}, {'name': 'dollhouse', 'id': 382, 'frequency': 'r', 'synset': 'dollhouse.n.01'}, {'name': 'dolphin', 'id': 383, 'frequency': 'c', 'synset': 'dolphin.n.02'}, {'name': 'domestic_ass', 'id': 384, 'frequency': 'c', 'synset': 'domestic_ass.n.01'}, {'name': 'doorknob', 'id': 385, 'frequency': 'f', 'synset': 'doorknob.n.01'}, {'name': 'doormat', 'id': 386, 'frequency': 'c', 'synset': 'doormat.n.02'}, {'name': 'doughnut', 'id': 387, 'frequency': 'f', 'synset': 'doughnut.n.02'}, {'name': 'dove', 'id': 388, 'frequency': 'r', 'synset': 'dove.n.01'}, {'name': 'dragonfly', 'id': 389, 'frequency': 'r', 'synset': 'dragonfly.n.01'}, {'name': 'drawer', 'id': 390, 'frequency': 'f', 'synset': 'drawer.n.01'}, {'name': 'underdrawers', 'id': 391, 'frequency': 'c', 'synset': 'drawers.n.01'}, {'name': 'dress', 'id': 392, 'frequency': 'f', 'synset': 'dress.n.01'}, {'name': 'dress_hat', 'id': 393, 'frequency': 'c', 'synset': 'dress_hat.n.01'}, {'name': 'dress_suit', 'id': 394, 'frequency': 'f', 'synset': 'dress_suit.n.01'}, {'name': 'dresser', 'id': 395, 'frequency': 'f', 'synset': 'dresser.n.05'}, {'name': 'drill', 'id': 396, 'frequency': 'c', 'synset': 'drill.n.01'}, {'name': 'drone', 'id': 397, 'frequency': 'r', 'synset': 'drone.n.04'}, {'name': 'dropper', 'id': 398, 'frequency': 'r', 'synset': 'dropper.n.01'}, {'name': 'drum_(musical_instrument)', 'id': 399, 'frequency': 'c', 'synset': 'drum.n.01'}, {'name': 'drumstick', 'id': 400, 'frequency': 'r', 'synset': 'drumstick.n.02'}, {'name': 'duck', 'id': 401, 'frequency': 'f', 'synset': 'duck.n.01'}, {'name': 'duckling', 'id': 402, 'frequency': 'c', 'synset': 'duckling.n.02'}, {'name': 'duct_tape', 'id': 403, 'frequency': 'c', 'synset': 'duct_tape.n.01'}, {'name': 'duffel_bag', 'id': 404, 'frequency': 'f', 'synset': 'duffel_bag.n.01'}, {'name': 'dumbbell', 'id': 405, 'frequency': 'r', 'synset': 'dumbbell.n.01'}, {'name': 'dumpster', 'id': 406, 'frequency': 'c', 'synset': 'dumpster.n.01'}, {'name': 'dustpan', 'id': 407, 'frequency': 'r', 'synset': 'dustpan.n.02'}, {'name': 'eagle', 'id': 408, 'frequency': 'c', 'synset': 'eagle.n.01'}, {'name': 'earphone', 'id': 409, 'frequency': 'f', 'synset': 'earphone.n.01'}, {'name': 'earplug', 'id': 410, 'frequency': 'r', 'synset': 'earplug.n.01'}, {'name': 'earring', 'id': 411, 'frequency': 'f', 'synset': 'earring.n.01'}, {'name': 'easel', 'id': 412, 'frequency': 'c', 'synset': 'easel.n.01'}, {'name': 'eclair', 'id': 413, 'frequency': 'r', 'synset': 'eclair.n.01'}, {'name': 'eel', 'id': 414, 'frequency': 'r', 'synset': 'eel.n.01'}, {'name': 'egg', 'id': 415, 'frequency': 'f', 'synset': 'egg.n.02'}, {'name': 'egg_roll', 'id': 416, 'frequency': 'r', 'synset': 'egg_roll.n.01'}, {'name': 'egg_yolk', 'id': 417, 'frequency': 'c', 'synset': 'egg_yolk.n.01'}, {'name': 'eggbeater', 'id': 418, 'frequency': 'c', 'synset': 'eggbeater.n.02'}, {'name': 'eggplant', 'id': 419, 'frequency': 'c', 'synset': 'eggplant.n.01'}, {'name': 'electric_chair', 'id': 420, 'frequency': 'r', 'synset': 'electric_chair.n.01'}, {'name': 'refrigerator', 'id': 421, 'frequency': 'f', 'synset': 'electric_refrigerator.n.01'}, {'name': 'elephant', 'id': 422, 'frequency': 'f', 'synset': 'elephant.n.01'}, {'name': 'elk', 'id': 423, 'frequency': 'c', 'synset': 'elk.n.01'}, {'name': 'envelope', 'id': 424, 'frequency': 'c', 'synset': 'envelope.n.01'}, {'name': 'eraser', 'id': 425, 'frequency': 'c', 'synset': 'eraser.n.01'}, {'name': 'escargot', 'id': 426, 'frequency': 'r', 'synset': 'escargot.n.01'}, {'name': 'eyepatch', 'id': 427, 'frequency': 'r', 'synset': 'eyepatch.n.01'}, {'name': 'falcon', 'id': 428, 'frequency': 'r', 'synset': 'falcon.n.01'}, {'name': 'fan', 'id': 429, 'frequency': 'f', 'synset': 'fan.n.01'}, {'name': 'faucet', 'id': 430, 'frequency': 'f', 'synset': 'faucet.n.01'}, {'name': 'fedora', 'id': 431, 'frequency': 'r', 'synset': 'fedora.n.01'}, {'name': 'ferret', 'id': 432, 'frequency': 'r', 'synset': 'ferret.n.02'}, {'name': 'Ferris_wheel', 'id': 433, 'frequency': 'c', 'synset': 'ferris_wheel.n.01'}, {'name': 'ferry', 'id': 434, 'frequency': 'c', 'synset': 'ferry.n.01'}, {'name': 'fig_(fruit)', 'id': 435, 'frequency': 'r', 'synset': 'fig.n.04'}, {'name': 'fighter_jet', 'id': 436, 'frequency': 'c', 'synset': 'fighter.n.02'}, {'name': 'figurine', 'id': 437, 'frequency': 'f', 'synset': 'figurine.n.01'}, {'name': 'file_cabinet', 'id': 438, 'frequency': 'c', 'synset': 'file.n.03'}, {'name': 'file_(tool)', 'id': 439, 'frequency': 'r', 'synset': 'file.n.04'}, {'name': 'fire_alarm', 'id': 440, 'frequency': 'f', 'synset': 'fire_alarm.n.02'}, {'name': 'fire_engine', 'id': 441, 'frequency': 'f', 'synset': 'fire_engine.n.01'}, {'name': 'fire_extinguisher', 'id': 442, 'frequency': 'f', 'synset': 'fire_extinguisher.n.01'}, {'name': 'fire_hose', 'id': 443, 'frequency': 'c', 'synset': 'fire_hose.n.01'}, {'name': 'fireplace', 'id': 444, 'frequency': 'f', 'synset': 'fireplace.n.01'}, {'name': 'fireplug', 'id': 445, 'frequency': 'f', 'synset': 'fireplug.n.01'}, {'name': 'first-aid_kit', 'id': 446, 'frequency': 'r', 'synset': 'first-aid_kit.n.01'}, {'name': 'fish', 'id': 447, 'frequency': 'f', 'synset': 'fish.n.01'}, {'name': 'fish_(food)', 'id': 448, 'frequency': 'c', 'synset': 'fish.n.02'}, {'name': 'fishbowl', 'id': 449, 'frequency': 'r', 'synset': 'fishbowl.n.02'}, {'name': 'fishing_rod', 'id': 450, 'frequency': 'c', 'synset': 'fishing_rod.n.01'}, {'name': 'flag', 'id': 451, 'frequency': 'f', 'synset': 'flag.n.01'}, {'name': 'flagpole', 'id': 452, 'frequency': 'f', 'synset': 'flagpole.n.02'}, {'name': 'flamingo', 'id': 453, 'frequency': 'c', 'synset': 'flamingo.n.01'}, {'name': 'flannel', 'id': 454, 'frequency': 'c', 'synset': 'flannel.n.01'}, {'name': 'flap', 'id': 455, 'frequency': 'c', 'synset': 'flap.n.01'}, {'name': 'flash', 'id': 456, 'frequency': 'r', 'synset': 'flash.n.10'}, {'name': 'flashlight', 'id': 457, 'frequency': 'c', 'synset': 'flashlight.n.01'}, {'name': 'fleece', 'id': 458, 'frequency': 'r', 'synset': 'fleece.n.03'}, {'name': 'flip-flop_(sandal)', 'id': 459, 'frequency': 'f', 'synset': 'flip-flop.n.02'}, {'name': 'flipper_(footwear)', 'id': 460, 'frequency': 'c', 'synset': 'flipper.n.01'}, {'name': 'flower_arrangement', 'id': 461, 'frequency': 'f', 'synset': 'flower_arrangement.n.01'}, {'name': 'flute_glass', 'id': 462, 'frequency': 'c', 'synset': 'flute.n.02'}, {'name': 'foal', 'id': 463, 'frequency': 'c', 'synset': 'foal.n.01'}, {'name': 'folding_chair', 'id': 464, 'frequency': 'c', 'synset': 'folding_chair.n.01'}, {'name': 'food_processor', 'id': 465, 'frequency': 'c', 'synset': 'food_processor.n.01'}, {'name': 'football_(American)', 'id': 466, 'frequency': 'c', 'synset': 'football.n.02'}, {'name': 'football_helmet', 'id': 467, 'frequency': 'r', 'synset': 'football_helmet.n.01'}, {'name': 'footstool', 'id': 468, 'frequency': 'c', 'synset': 'footstool.n.01'}, {'name': 'fork', 'id': 469, 'frequency': 'f', 'synset': 'fork.n.01'}, {'name': 'forklift', 'id': 470, 'frequency': 'c', 'synset': 'forklift.n.01'}, {'name': 'freight_car', 'id': 471, 'frequency': 'c', 'synset': 'freight_car.n.01'}, {'name': 'French_toast', 'id': 472, 'frequency': 'c', 'synset': 'french_toast.n.01'}, {'name': 'freshener', 'id': 473, 'frequency': 'c', 'synset': 'freshener.n.01'}, {'name': 'frisbee', 'id': 474, 'frequency': 'f', 'synset': 'frisbee.n.01'}, {'name': 'frog', 'id': 475, 'frequency': 'c', 'synset': 'frog.n.01'}, {'name': 'fruit_juice', 'id': 476, 'frequency': 'c', 'synset': 'fruit_juice.n.01'}, {'name': 'frying_pan', 'id': 477, 'frequency': 'f', 'synset': 'frying_pan.n.01'}, {'name': 'fudge', 'id': 478, 'frequency': 'r', 'synset': 'fudge.n.01'}, {'name': 'funnel', 'id': 479, 'frequency': 'r', 'synset': 'funnel.n.02'}, {'name': 'futon', 'id': 480, 'frequency': 'r', 'synset': 'futon.n.01'}, {'name': 'gag', 'id': 481, 'frequency': 'r', 'synset': 'gag.n.02'}, {'name': 'garbage', 'id': 482, 'frequency': 'r', 'synset': 'garbage.n.03'}, {'name': 'garbage_truck', 'id': 483, 'frequency': 'c', 'synset': 'garbage_truck.n.01'}, {'name': 'garden_hose', 'id': 484, 'frequency': 'c', 'synset': 'garden_hose.n.01'}, {'name': 'gargle', 'id': 485, 'frequency': 'c', 'synset': 'gargle.n.01'}, {'name': 'gargoyle', 'id': 486, 'frequency': 'r', 'synset': 'gargoyle.n.02'}, {'name': 'garlic', 'id': 487, 'frequency': 'c', 'synset': 'garlic.n.02'}, {'name': 'gasmask', 'id': 488, 'frequency': 'r', 'synset': 'gasmask.n.01'}, {'name': 'gazelle', 'id': 489, 'frequency': 'c', 'synset': 'gazelle.n.01'}, {'name': 'gelatin', 'id': 490, 'frequency': 'c', 'synset': 'gelatin.n.02'}, {'name': 'gemstone', 'id': 491, 'frequency': 'r', 'synset': 'gem.n.02'}, {'name': 'generator', 'id': 492, 'frequency': 'r', 'synset': 'generator.n.02'}, {'name': 'giant_panda', 'id': 493, 'frequency': 'c', 'synset': 'giant_panda.n.01'}, {'name': 'gift_wrap', 'id': 494, 'frequency': 'c', 'synset': 'gift_wrap.n.01'}, {'name': 'ginger', 'id': 495, 'frequency': 'c', 'synset': 'ginger.n.03'}, {'name': 'giraffe', 'id': 496, 'frequency': 'f', 'synset': 'giraffe.n.01'}, {'name': 'cincture', 'id': 497, 'frequency': 'c', 'synset': 'girdle.n.02'}, {'name': 'glass_(drink_container)', 'id': 498, 'frequency': 'f', 'synset': 'glass.n.02'}, {'name': 'globe', 'id': 499, 'frequency': 'c', 'synset': 'globe.n.03'}, {'name': 'glove', 'id': 500, 'frequency': 'f', 'synset': 'glove.n.02'}, {'name': 'goat', 'id': 501, 'frequency': 'c', 'synset': 'goat.n.01'}, {'name': 'goggles', 'id': 502, 'frequency': 'f', 'synset': 'goggles.n.01'}, {'name': 'goldfish', 'id': 503, 'frequency': 'r', 'synset': 'goldfish.n.01'}, {'name': 'golf_club', 'id': 504, 'frequency': 'c', 'synset': 'golf_club.n.02'}, {'name': 'golfcart', 'id': 505, 'frequency': 'c', 'synset': 'golfcart.n.01'}, {'name': 'gondola_(boat)', 'id': 506, 'frequency': 'r', 'synset': 'gondola.n.02'}, {'name': 'goose', 'id': 507, 'frequency': 'c', 'synset': 'goose.n.01'}, {'name': 'gorilla', 'id': 508, 'frequency': 'r', 'synset': 'gorilla.n.01'}, {'name': 'gourd', 'id': 509, 'frequency': 'r', 'synset': 'gourd.n.02'}, {'name': 'grape', 'id': 510, 'frequency': 'f', 'synset': 'grape.n.01'}, {'name': 'grater', 'id': 511, 'frequency': 'c', 'synset': 'grater.n.01'}, {'name': 'gravestone', 'id': 512, 'frequency': 'c', 'synset': 'gravestone.n.01'}, {'name': 'gravy_boat', 'id': 513, 'frequency': 'r', 'synset': 'gravy_boat.n.01'}, {'name': 'green_bean', 'id': 514, 'frequency': 'f', 'synset': 'green_bean.n.02'}, {'name': 'green_onion', 'id': 515, 'frequency': 'f', 'synset': 'green_onion.n.01'}, {'name': 'griddle', 'id': 516, 'frequency': 'r', 'synset': 'griddle.n.01'}, {'name': 'grill', 'id': 517, 'frequency': 'f', 'synset': 'grill.n.02'}, {'name': 'grits', 'id': 518, 'frequency': 'r', 'synset': 'grits.n.01'}, {'name': 'grizzly', 'id': 519, 'frequency': 'c', 'synset': 'grizzly.n.01'}, {'name': 'grocery_bag', 'id': 520, 'frequency': 'c', 'synset': 'grocery_bag.n.01'}, {'name': 'guitar', 'id': 521, 'frequency': 'f', 'synset': 'guitar.n.01'}, {'name': 'gull', 'id': 522, 'frequency': 'c', 'synset': 'gull.n.02'}, {'name': 'gun', 'id': 523, 'frequency': 'c', 'synset': 'gun.n.01'}, {'name': 'hairbrush', 'id': 524, 'frequency': 'f', 'synset': 'hairbrush.n.01'}, {'name': 'hairnet', 'id': 525, 'frequency': 'c', 'synset': 'hairnet.n.01'}, {'name': 'hairpin', 'id': 526, 'frequency': 'c', 'synset': 'hairpin.n.01'}, {'name': 'halter_top', 'id': 527, 'frequency': 'r', 'synset': 'halter.n.03'}, {'name': 'ham', 'id': 528, 'frequency': 'f', 'synset': 'ham.n.01'}, {'name': 'hamburger', 'id': 529, 'frequency': 'c', 'synset': 'hamburger.n.01'}, {'name': 'hammer', 'id': 530, 'frequency': 'c', 'synset': 'hammer.n.02'}, {'name': 'hammock', 'id': 531, 'frequency': 'c', 'synset': 'hammock.n.02'}, {'name': 'hamper', 'id': 532, 'frequency': 'r', 'synset': 'hamper.n.02'}, {'name': 'hamster', 'id': 533, 'frequency': 'c', 'synset': 'hamster.n.01'}, {'name': 'hair_dryer', 'id': 534, 'frequency': 'f', 'synset': 'hand_blower.n.01'}, {'name': 'hand_glass', 'id': 535, 'frequency': 'r', 'synset': 'hand_glass.n.01'}, {'name': 'hand_towel', 'id': 536, 'frequency': 'f', 'synset': 'hand_towel.n.01'}, {'name': 'handcart', 'id': 537, 'frequency': 'c', 'synset': 'handcart.n.01'}, {'name': 'handcuff', 'id': 538, 'frequency': 'r', 'synset': 'handcuff.n.01'}, {'name': 'handkerchief', 'id': 539, 'frequency': 'c', 'synset': 'handkerchief.n.01'}, {'name': 'handle', 'id': 540, 'frequency': 'f', 'synset': 'handle.n.01'}, {'name': 'handsaw', 'id': 541, 'frequency': 'r', 'synset': 'handsaw.n.01'}, {'name': 'hardback_book', 'id': 542, 'frequency': 'r', 'synset': 'hardback.n.01'}, {'name': 'harmonium', 'id': 543, 'frequency': 'r', 'synset': 'harmonium.n.01'}, {'name': 'hat', 'id': 544, 'frequency': 'f', 'synset': 'hat.n.01'}, {'name': 'hatbox', 'id': 545, 'frequency': 'r', 'synset': 'hatbox.n.01'}, {'name': 'veil', 'id': 546, 'frequency': 'c', 'synset': 'head_covering.n.01'}, {'name': 'headband', 'id': 547, 'frequency': 'f', 'synset': 'headband.n.01'}, {'name': 'headboard', 'id': 548, 'frequency': 'f', 'synset': 'headboard.n.01'}, {'name': 'headlight', 'id': 549, 'frequency': 'f', 'synset': 'headlight.n.01'}, {'name': 'headscarf', 'id': 550, 'frequency': 'c', 'synset': 'headscarf.n.01'}, {'name': 'headset', 'id': 551, 'frequency': 'r', 'synset': 'headset.n.01'}, {'name': 'headstall_(for_horses)', 'id': 552, 'frequency': 'c', 'synset': 'headstall.n.01'}, {'name': 'heart', 'id': 553, 'frequency': 'c', 'synset': 'heart.n.02'}, {'name': 'heater', 'id': 554, 'frequency': 'c', 'synset': 'heater.n.01'}, {'name': 'helicopter', 'id': 555, 'frequency': 'c', 'synset': 'helicopter.n.01'}, {'name': 'helmet', 'id': 556, 'frequency': 'f', 'synset': 'helmet.n.02'}, {'name': 'heron', 'id': 557, 'frequency': 'r', 'synset': 'heron.n.02'}, {'name': 'highchair', 'id': 558, 'frequency': 'c', 'synset': 'highchair.n.01'}, {'name': 'hinge', 'id': 559, 'frequency': 'f', 'synset': 'hinge.n.01'}, {'name': 'hippopotamus', 'id': 560, 'frequency': 'r', 'synset': 'hippopotamus.n.01'}, {'name': 'hockey_stick', 'id': 561, 'frequency': 'r', 'synset': 'hockey_stick.n.01'}, {'name': 'hog', 'id': 562, 'frequency': 'c', 'synset': 'hog.n.03'}, {'name': 'home_plate_(baseball)', 'id': 563, 'frequency': 'f', 'synset': 'home_plate.n.01'}, {'name': 'honey', 'id': 564, 'frequency': 'c', 'synset': 'honey.n.01'}, {'name': 'fume_hood', 'id': 565, 'frequency': 'f', 'synset': 'hood.n.06'}, {'name': 'hook', 'id': 566, 'frequency': 'f', 'synset': 'hook.n.05'}, {'name': 'hookah', 'id': 567, 'frequency': 'r', 'synset': 'hookah.n.01'}, {'name': 'hornet', 'id': 568, 'frequency': 'r', 'synset': 'hornet.n.01'}, {'name': 'horse', 'id': 569, 'frequency': 'f', 'synset': 'horse.n.01'}, {'name': 'hose', 'id': 570, 'frequency': 'f', 'synset': 'hose.n.03'}, {'name': 'hot-air_balloon', 'id': 571, 'frequency': 'r', 'synset': 'hot-air_balloon.n.01'}, {'name': 'hotplate', 'id': 572, 'frequency': 'r', 'synset': 'hot_plate.n.01'}, {'name': 'hot_sauce', 'id': 573, 'frequency': 'c', 'synset': 'hot_sauce.n.01'}, {'name': 'hourglass', 'id': 574, 'frequency': 'r', 'synset': 'hourglass.n.01'}, {'name': 'houseboat', 'id': 575, 'frequency': 'r', 'synset': 'houseboat.n.01'}, {'name': 'hummingbird', 'id': 576, 'frequency': 'c', 'synset': 'hummingbird.n.01'}, {'name': 'hummus', 'id': 577, 'frequency': 'r', 'synset': 'hummus.n.01'}, {'name': 'polar_bear', 'id': 578, 'frequency': 'f', 'synset': 'ice_bear.n.01'}, {'name': 'icecream', 'id': 579, 'frequency': 'c', 'synset': 'ice_cream.n.01'}, {'name': 'popsicle', 'id': 580, 'frequency': 'r', 'synset': 'ice_lolly.n.01'}, {'name': 'ice_maker', 'id': 581, 'frequency': 'c', 'synset': 'ice_maker.n.01'}, {'name': 'ice_pack', 'id': 582, 'frequency': 'r', 'synset': 'ice_pack.n.01'}, {'name': 'ice_skate', 'id': 583, 'frequency': 'r', 'synset': 'ice_skate.n.01'}, {'name': 'igniter', 'id': 584, 'frequency': 'c', 'synset': 'igniter.n.01'}, {'name': 'inhaler', 'id': 585, 'frequency': 'r', 'synset': 'inhaler.n.01'}, {'name': 'iPod', 'id': 586, 'frequency': 'f', 'synset': 'ipod.n.01'}, {'name': 'iron_(for_clothing)', 'id': 587, 'frequency': 'c', 'synset': 'iron.n.04'}, {'name': 'ironing_board', 'id': 588, 'frequency': 'c', 'synset': 'ironing_board.n.01'}, {'name': 'jacket', 'id': 589, 'frequency': 'f', 'synset': 'jacket.n.01'}, {'name': 'jam', 'id': 590, 'frequency': 'c', 'synset': 'jam.n.01'}, {'name': 'jar', 'id': 591, 'frequency': 'f', 'synset': 'jar.n.01'}, {'name': 'jean', 'id': 592, 'frequency': 'f', 'synset': 'jean.n.01'}, {'name': 'jeep', 'id': 593, 'frequency': 'c', 'synset': 'jeep.n.01'}, {'name': 'jelly_bean', 'id': 594, 'frequency': 'r', 'synset': 'jelly_bean.n.01'}, {'name': 'jersey', 'id': 595, 'frequency': 'f', 'synset': 'jersey.n.03'}, {'name': 'jet_plane', 'id': 596, 'frequency': 'c', 'synset': 'jet.n.01'}, {'name': 'jewel', 'id': 597, 'frequency': 'r', 'synset': 'jewel.n.01'}, {'name': 'jewelry', 'id': 598, 'frequency': 'c', 'synset': 'jewelry.n.01'}, {'name': 'joystick', 'id': 599, 'frequency': 'r', 'synset': 'joystick.n.02'}, {'name': 'jumpsuit', 'id': 600, 'frequency': 'c', 'synset': 'jump_suit.n.01'}, {'name': 'kayak', 'id': 601, 'frequency': 'c', 'synset': 'kayak.n.01'}, {'name': 'keg', 'id': 602, 'frequency': 'r', 'synset': 'keg.n.02'}, {'name': 'kennel', 'id': 603, 'frequency': 'r', 'synset': 'kennel.n.01'}, {'name': 'kettle', 'id': 604, 'frequency': 'c', 'synset': 'kettle.n.01'}, {'name': 'key', 'id': 605, 'frequency': 'f', 'synset': 'key.n.01'}, {'name': 'keycard', 'id': 606, 'frequency': 'r', 'synset': 'keycard.n.01'}, {'name': 'kilt', 'id': 607, 'frequency': 'c', 'synset': 'kilt.n.01'}, {'name': 'kimono', 'id': 608, 'frequency': 'c', 'synset': 'kimono.n.01'}, {'name': 'kitchen_sink', 'id': 609, 'frequency': 'f', 'synset': 'kitchen_sink.n.01'}, {'name': 'kitchen_table', 'id': 610, 'frequency': 'r', 'synset': 'kitchen_table.n.01'}, {'name': 'kite', 'id': 611, 'frequency': 'f', 'synset': 'kite.n.03'}, {'name': 'kitten', 'id': 612, 'frequency': 'c', 'synset': 'kitten.n.01'}, {'name': 'kiwi_fruit', 'id': 613, 'frequency': 'c', 'synset': 'kiwi.n.03'}, {'name': 'knee_pad', 'id': 614, 'frequency': 'f', 'synset': 'knee_pad.n.01'}, {'name': 'knife', 'id': 615, 'frequency': 'f', 'synset': 'knife.n.01'}, {'name': 'knitting_needle', 'id': 616, 'frequency': 'r', 'synset': 'knitting_needle.n.01'}, {'name': 'knob', 'id': 617, 'frequency': 'f', 'synset': 'knob.n.02'}, {'name': 'knocker_(on_a_door)', 'id': 618, 'frequency': 'r', 'synset': 'knocker.n.05'}, {'name': 'koala', 'id': 619, 'frequency': 'r', 'synset': 'koala.n.01'}, {'name': 'lab_coat', 'id': 620, 'frequency': 'r', 'synset': 'lab_coat.n.01'}, {'name': 'ladder', 'id': 621, 'frequency': 'f', 'synset': 'ladder.n.01'}, {'name': 'ladle', 'id': 622, 'frequency': 'c', 'synset': 'ladle.n.01'}, {'name': 'ladybug', 'id': 623, 'frequency': 'c', 'synset': 'ladybug.n.01'}, {'name': 'lamb_(animal)', 'id': 624, 'frequency': 'f', 'synset': 'lamb.n.01'}, {'name': 'lamb-chop', 'id': 625, 'frequency': 'r', 'synset': 'lamb_chop.n.01'}, {'name': 'lamp', 'id': 626, 'frequency': 'f', 'synset': 'lamp.n.02'}, {'name': 'lamppost', 'id': 627, 'frequency': 'f', 'synset': 'lamppost.n.01'}, {'name': 'lampshade', 'id': 628, 'frequency': 'f', 'synset': 'lampshade.n.01'}, {'name': 'lantern', 'id': 629, 'frequency': 'c', 'synset': 'lantern.n.01'}, {'name': 'lanyard', 'id': 630, 'frequency': 'f', 'synset': 'lanyard.n.02'}, {'name': 'laptop_computer', 'id': 631, 'frequency': 'f', 'synset': 'laptop.n.01'}, {'name': 'lasagna', 'id': 632, 'frequency': 'r', 'synset': 'lasagna.n.01'}, {'name': 'latch', 'id': 633, 'frequency': 'f', 'synset': 'latch.n.02'}, {'name': 'lawn_mower', 'id': 634, 'frequency': 'r', 'synset': 'lawn_mower.n.01'}, {'name': 'leather', 'id': 635, 'frequency': 'r', 'synset': 'leather.n.01'}, {'name': 'legging_(clothing)', 'id': 636, 'frequency': 'c', 'synset': 'legging.n.01'}, {'name': 'Lego', 'id': 637, 'frequency': 'c', 'synset': 'lego.n.01'}, {'name': 'legume', 'id': 638, 'frequency': 'r', 'synset': 'legume.n.02'}, {'name': 'lemon', 'id': 639, 'frequency': 'f', 'synset': 'lemon.n.01'}, {'name': 'lemonade', 'id': 640, 'frequency': 'r', 'synset': 'lemonade.n.01'}, {'name': 'lettuce', 'id': 641, 'frequency': 'f', 'synset': 'lettuce.n.02'}, {'name': 'license_plate', 'id': 642, 'frequency': 'f', 'synset': 'license_plate.n.01'}, {'name': 'life_buoy', 'id': 643, 'frequency': 'f', 'synset': 'life_buoy.n.01'}, {'name': 'life_jacket', 'id': 644, 'frequency': 'f', 'synset': 'life_jacket.n.01'}, {'name': 'lightbulb', 'id': 645, 'frequency': 'f', 'synset': 'light_bulb.n.01'}, {'name': 'lightning_rod', 'id': 646, 'frequency': 'r', 'synset': 'lightning_rod.n.02'}, {'name': 'lime', 'id': 647, 'frequency': 'f', 'synset': 'lime.n.06'}, {'name': 'limousine', 'id': 648, 'frequency': 'r', 'synset': 'limousine.n.01'}, {'name': 'lion', 'id': 649, 'frequency': 'c', 'synset': 'lion.n.01'}, {'name': 'lip_balm', 'id': 650, 'frequency': 'c', 'synset': 'lip_balm.n.01'}, {'name': 'liquor', 'id': 651, 'frequency': 'r', 'synset': 'liquor.n.01'}, {'name': 'lizard', 'id': 652, 'frequency': 'c', 'synset': 'lizard.n.01'}, {'name': 'log', 'id': 653, 'frequency': 'f', 'synset': 'log.n.01'}, {'name': 'lollipop', 'id': 654, 'frequency': 'c', 'synset': 'lollipop.n.02'}, {'name': 'speaker_(stero_equipment)', 'id': 655, 'frequency': 'f', 'synset': 'loudspeaker.n.01'}, {'name': 'loveseat', 'id': 656, 'frequency': 'c', 'synset': 'love_seat.n.01'}, {'name': 'machine_gun', 'id': 657, 'frequency': 'r', 'synset': 'machine_gun.n.01'}, {'name': 'magazine', 'id': 658, 'frequency': 'f', 'synset': 'magazine.n.02'}, {'name': 'magnet', 'id': 659, 'frequency': 'f', 'synset': 'magnet.n.01'}, {'name': 'mail_slot', 'id': 660, 'frequency': 'c', 'synset': 'mail_slot.n.01'}, {'name': 'mailbox_(at_home)', 'id': 661, 'frequency': 'f', 'synset': 'mailbox.n.01'}, {'name': 'mallard', 'id': 662, 'frequency': 'r', 'synset': 'mallard.n.01'}, {'name': 'mallet', 'id': 663, 'frequency': 'r', 'synset': 'mallet.n.01'}, {'name': 'mammoth', 'id': 664, 'frequency': 'r', 'synset': 'mammoth.n.01'}, {'name': 'manatee', 'id': 665, 'frequency': 'r', 'synset': 'manatee.n.01'}, {'name': 'mandarin_orange', 'id': 666, 'frequency': 'c', 'synset': 'mandarin.n.05'}, {'name': 'manger', 'id': 667, 'frequency': 'c', 'synset': 'manger.n.01'}, {'name': 'manhole', 'id': 668, 'frequency': 'f', 'synset': 'manhole.n.01'}, {'name': 'map', 'id': 669, 'frequency': 'f', 'synset': 'map.n.01'}, {'name': 'marker', 'id': 670, 'frequency': 'f', 'synset': 'marker.n.03'}, {'name': 'martini', 'id': 671, 'frequency': 'r', 'synset': 'martini.n.01'}, {'name': 'mascot', 'id': 672, 'frequency': 'r', 'synset': 'mascot.n.01'}, {'name': 'mashed_potato', 'id': 673, 'frequency': 'c', 'synset': 'mashed_potato.n.01'}, {'name': 'masher', 'id': 674, 'frequency': 'r', 'synset': 'masher.n.02'}, {'name': 'mask', 'id': 675, 'frequency': 'f', 'synset': 'mask.n.04'}, {'name': 'mast', 'id': 676, 'frequency': 'f', 'synset': 'mast.n.01'}, {'name': 'mat_(gym_equipment)', 'id': 677, 'frequency': 'c', 'synset': 'mat.n.03'}, {'name': 'matchbox', 'id': 678, 'frequency': 'r', 'synset': 'matchbox.n.01'}, {'name': 'mattress', 'id': 679, 'frequency': 'f', 'synset': 'mattress.n.01'}, {'name': 'measuring_cup', 'id': 680, 'frequency': 'c', 'synset': 'measuring_cup.n.01'}, {'name': 'measuring_stick', 'id': 681, 'frequency': 'c', 'synset': 'measuring_stick.n.01'}, {'name': 'meatball', 'id': 682, 'frequency': 'c', 'synset': 'meatball.n.01'}, {'name': 'medicine', 'id': 683, 'frequency': 'c', 'synset': 'medicine.n.02'}, {'name': 'melon', 'id': 684, 'frequency': 'c', 'synset': 'melon.n.01'}, {'name': 'microphone', 'id': 685, 'frequency': 'f', 'synset': 'microphone.n.01'}, {'name': 'microscope', 'id': 686, 'frequency': 'r', 'synset': 'microscope.n.01'}, {'name': 'microwave_oven', 'id': 687, 'frequency': 'f', 'synset': 'microwave.n.02'}, {'name': 'milestone', 'id': 688, 'frequency': 'r', 'synset': 'milestone.n.01'}, {'name': 'milk', 'id': 689, 'frequency': 'f', 'synset': 'milk.n.01'}, {'name': 'milk_can', 'id': 690, 'frequency': 'r', 'synset': 'milk_can.n.01'}, {'name': 'milkshake', 'id': 691, 'frequency': 'r', 'synset': 'milkshake.n.01'}, {'name': 'minivan', 'id': 692, 'frequency': 'f', 'synset': 'minivan.n.01'}, {'name': 'mint_candy', 'id': 693, 'frequency': 'r', 'synset': 'mint.n.05'}, {'name': 'mirror', 'id': 694, 'frequency': 'f', 'synset': 'mirror.n.01'}, {'name': 'mitten', 'id': 695, 'frequency': 'c', 'synset': 'mitten.n.01'}, {'name': 'mixer_(kitchen_tool)', 'id': 696, 'frequency': 'c', 'synset': 'mixer.n.04'}, {'name': 'money', 'id': 697, 'frequency': 'c', 'synset': 'money.n.03'}, {'name': 'monitor_(computer_equipment) computer_monitor', 'id': 698, 'frequency': 'f', 'synset': 'monitor.n.04'}, {'name': 'monkey', 'id': 699, 'frequency': 'c', 'synset': 'monkey.n.01'}, {'name': 'motor', 'id': 700, 'frequency': 'f', 'synset': 'motor.n.01'}, {'name': 'motor_scooter', 'id': 701, 'frequency': 'f', 'synset': 'motor_scooter.n.01'}, {'name': 'motor_vehicle', 'id': 702, 'frequency': 'r', 'synset': 'motor_vehicle.n.01'}, {'name': 'motorcycle', 'id': 703, 'frequency': 'f', 'synset': 'motorcycle.n.01'}, {'name': 'mound_(baseball)', 'id': 704, 'frequency': 'f', 'synset': 'mound.n.01'}, {'name': 'mouse_(computer_equipment)', 'id': 705, 'frequency': 'f', 'synset': 'mouse.n.04'}, {'name': 'mousepad', 'id': 706, 'frequency': 'f', 'synset': 'mousepad.n.01'}, {'name': 'muffin', 'id': 707, 'frequency': 'c', 'synset': 'muffin.n.01'}, {'name': 'mug', 'id': 708, 'frequency': 'f', 'synset': 'mug.n.04'}, {'name': 'mushroom', 'id': 709, 'frequency': 'f', 'synset': 'mushroom.n.02'}, {'name': 'music_stool', 'id': 710, 'frequency': 'r', 'synset': 'music_stool.n.01'}, {'name': 'musical_instrument', 'id': 711, 'frequency': 'c', 'synset': 'musical_instrument.n.01'}, {'name': 'nailfile', 'id': 712, 'frequency': 'r', 'synset': 'nailfile.n.01'}, {'name': 'napkin', 'id': 713, 'frequency': 'f', 'synset': 'napkin.n.01'}, {'name': 'neckerchief', 'id': 714, 'frequency': 'r', 'synset': 'neckerchief.n.01'}, {'name': 'necklace', 'id': 715, 'frequency': 'f', 'synset': 'necklace.n.01'}, {'name': 'necktie', 'id': 716, 'frequency': 'f', 'synset': 'necktie.n.01'}, {'name': 'needle', 'id': 717, 'frequency': 'c', 'synset': 'needle.n.03'}, {'name': 'nest', 'id': 718, 'frequency': 'c', 'synset': 'nest.n.01'}, {'name': 'newspaper', 'id': 719, 'frequency': 'f', 'synset': 'newspaper.n.01'}, {'name': 'newsstand', 'id': 720, 'frequency': 'c', 'synset': 'newsstand.n.01'}, {'name': 'nightshirt', 'id': 721, 'frequency': 'c', 'synset': 'nightwear.n.01'}, {'name': 'nosebag_(for_animals)', 'id': 722, 'frequency': 'r', 'synset': 'nosebag.n.01'}, {'name': 'noseband_(for_animals)', 'id': 723, 'frequency': 'c', 'synset': 'noseband.n.01'}, {'name': 'notebook', 'id': 724, 'frequency': 'f', 'synset': 'notebook.n.01'}, {'name': 'notepad', 'id': 725, 'frequency': 'c', 'synset': 'notepad.n.01'}, {'name': 'nut', 'id': 726, 'frequency': 'f', 'synset': 'nut.n.03'}, {'name': 'nutcracker', 'id': 727, 'frequency': 'r', 'synset': 'nutcracker.n.01'}, {'name': 'oar', 'id': 728, 'frequency': 'f', 'synset': 'oar.n.01'}, {'name': 'octopus_(food)', 'id': 729, 'frequency': 'r', 'synset': 'octopus.n.01'}, {'name': 'octopus_(animal)', 'id': 730, 'frequency': 'r', 'synset': 'octopus.n.02'}, {'name': 'oil_lamp', 'id': 731, 'frequency': 'c', 'synset': 'oil_lamp.n.01'}, {'name': 'olive_oil', 'id': 732, 'frequency': 'c', 'synset': 'olive_oil.n.01'}, {'name': 'omelet', 'id': 733, 'frequency': 'r', 'synset': 'omelet.n.01'}, {'name': 'onion', 'id': 734, 'frequency': 'f', 'synset': 'onion.n.01'}, {'name': 'orange_(fruit)', 'id': 735, 'frequency': 'f', 'synset': 'orange.n.01'}, {'name': 'orange_juice', 'id': 736, 'frequency': 'c', 'synset': 'orange_juice.n.01'}, {'name': 'ostrich', 'id': 737, 'frequency': 'c', 'synset': 'ostrich.n.02'}, {'name': 'ottoman', 'id': 738, 'frequency': 'f', 'synset': 'ottoman.n.03'}, {'name': 'oven', 'id': 739, 'frequency': 'f', 'synset': 'oven.n.01'}, {'name': 'overalls_(clothing)', 'id': 740, 'frequency': 'c', 'synset': 'overall.n.01'}, {'name': 'owl', 'id': 741, 'frequency': 'c', 'synset': 'owl.n.01'}, {'name': 'packet', 'id': 742, 'frequency': 'c', 'synset': 'packet.n.03'}, {'name': 'inkpad', 'id': 743, 'frequency': 'r', 'synset': 'pad.n.03'}, {'name': 'pad', 'id': 744, 'frequency': 'c', 'synset': 'pad.n.04'}, {'name': 'paddle', 'id': 745, 'frequency': 'f', 'synset': 'paddle.n.04'}, {'name': 'padlock', 'id': 746, 'frequency': 'c', 'synset': 'padlock.n.01'}, {'name': 'paintbrush', 'id': 747, 'frequency': 'c', 'synset': 'paintbrush.n.01'}, {'name': 'painting', 'id': 748, 'frequency': 'f', 'synset': 'painting.n.01'}, {'name': 'pajamas', 'id': 749, 'frequency': 'f', 'synset': 'pajama.n.02'}, {'name': 'palette', 'id': 750, 'frequency': 'c', 'synset': 'palette.n.02'}, {'name': 'pan_(for_cooking)', 'id': 751, 'frequency': 'f', 'synset': 'pan.n.01'}, {'name': 'pan_(metal_container)', 'id': 752, 'frequency': 'r', 'synset': 'pan.n.03'}, {'name': 'pancake', 'id': 753, 'frequency': 'c', 'synset': 'pancake.n.01'}, {'name': 'pantyhose', 'id': 754, 'frequency': 'r', 'synset': 'pantyhose.n.01'}, {'name': 'papaya', 'id': 755, 'frequency': 'r', 'synset': 'papaya.n.02'}, {'name': 'paper_plate', 'id': 756, 'frequency': 'f', 'synset': 'paper_plate.n.01'}, {'name': 'paper_towel', 'id': 757, 'frequency': 'f', 'synset': 'paper_towel.n.01'}, {'name': 'paperback_book', 'id': 758, 'frequency': 'r', 'synset': 'paperback_book.n.01'}, {'name': 'paperweight', 'id': 759, 'frequency': 'r', 'synset': 'paperweight.n.01'}, {'name': 'parachute', 'id': 760, 'frequency': 'c', 'synset': 'parachute.n.01'}, {'name': 'parakeet', 'id': 761, 'frequency': 'c', 'synset': 'parakeet.n.01'}, {'name': 'parasail_(sports)', 'id': 762, 'frequency': 'c', 'synset': 'parasail.n.01'}, {'name': 'parasol', 'id': 763, 'frequency': 'c', 'synset': 'parasol.n.01'}, {'name': 'parchment', 'id': 764, 'frequency': 'r', 'synset': 'parchment.n.01'}, {'name': 'parka', 'id': 765, 'frequency': 'c', 'synset': 'parka.n.01'}, {'name': 'parking_meter', 'id': 766, 'frequency': 'f', 'synset': 'parking_meter.n.01'}, {'name': 'parrot', 'id': 767, 'frequency': 'c', 'synset': 'parrot.n.01'}, {'name': 'passenger_car_(part_of_a_train)', 'id': 768, 'frequency': 'c', 'synset': 'passenger_car.n.01'}, {'name': 'passenger_ship', 'id': 769, 'frequency': 'r', 'synset': 'passenger_ship.n.01'}, {'name': 'passport', 'id': 770, 'frequency': 'c', 'synset': 'passport.n.02'}, {'name': 'pastry', 'id': 771, 'frequency': 'f', 'synset': 'pastry.n.02'}, {'name': 'patty_(food)', 'id': 772, 'frequency': 'r', 'synset': 'patty.n.01'}, {'name': 'pea_(food)', 'id': 773, 'frequency': 'c', 'synset': 'pea.n.01'}, {'name': 'peach', 'id': 774, 'frequency': 'c', 'synset': 'peach.n.03'}, {'name': 'peanut_butter', 'id': 775, 'frequency': 'c', 'synset': 'peanut_butter.n.01'}, {'name': 'pear', 'id': 776, 'frequency': 'f', 'synset': 'pear.n.01'}, {'name': 'peeler_(tool_for_fruit_and_vegetables)', 'id': 777, 'frequency': 'c', 'synset': 'peeler.n.03'}, {'name': 'wooden_leg', 'id': 778, 'frequency': 'r', 'synset': 'peg.n.04'}, {'name': 'pegboard', 'id': 779, 'frequency': 'r', 'synset': 'pegboard.n.01'}, {'name': 'pelican', 'id': 780, 'frequency': 'c', 'synset': 'pelican.n.01'}, {'name': 'pen', 'id': 781, 'frequency': 'f', 'synset': 'pen.n.01'}, {'name': 'pencil', 'id': 782, 'frequency': 'f', 'synset': 'pencil.n.01'}, {'name': 'pencil_box', 'id': 783, 'frequency': 'r', 'synset': 'pencil_box.n.01'}, {'name': 'pencil_sharpener', 'id': 784, 'frequency': 'r', 'synset': 'pencil_sharpener.n.01'}, {'name': 'pendulum', 'id': 785, 'frequency': 'r', 'synset': 'pendulum.n.01'}, {'name': 'penguin', 'id': 786, 'frequency': 'c', 'synset': 'penguin.n.01'}, {'name': 'pennant', 'id': 787, 'frequency': 'r', 'synset': 'pennant.n.02'}, {'name': 'penny_(coin)', 'id': 788, 'frequency': 'r', 'synset': 'penny.n.02'}, {'name': 'pepper', 'id': 789, 'frequency': 'f', 'synset': 'pepper.n.03'}, {'name': 'pepper_mill', 'id': 790, 'frequency': 'c', 'synset': 'pepper_mill.n.01'}, {'name': 'perfume', 'id': 791, 'frequency': 'c', 'synset': 'perfume.n.02'}, {'name': 'persimmon', 'id': 792, 'frequency': 'r', 'synset': 'persimmon.n.02'}, {'name': 'person', 'id': 793, 'frequency': 'f', 'synset': 'person.n.01'}, {'name': 'pet', 'id': 794, 'frequency': 'c', 'synset': 'pet.n.01'}, {'name': 'pew_(church_bench)', 'id': 795, 'frequency': 'c', 'synset': 'pew.n.01'}, {'name': 'phonebook', 'id': 796, 'frequency': 'r', 'synset': 'phonebook.n.01'}, {'name': 'phonograph_record', 'id': 797, 'frequency': 'c', 'synset': 'phonograph_record.n.01'}, {'name': 'piano', 'id': 798, 'frequency': 'f', 'synset': 'piano.n.01'}, {'name': 'pickle', 'id': 799, 'frequency': 'f', 'synset': 'pickle.n.01'}, {'name': 'pickup_truck', 'id': 800, 'frequency': 'f', 'synset': 'pickup.n.01'}, {'name': 'pie', 'id': 801, 'frequency': 'c', 'synset': 'pie.n.01'}, {'name': 'pigeon', 'id': 802, 'frequency': 'c', 'synset': 'pigeon.n.01'}, {'name': 'piggy_bank', 'id': 803, 'frequency': 'r', 'synset': 'piggy_bank.n.01'}, {'name': 'pillow', 'id': 804, 'frequency': 'f', 'synset': 'pillow.n.01'}, {'name': 'pin_(non_jewelry)', 'id': 805, 'frequency': 'r', 'synset': 'pin.n.09'}, {'name': 'pineapple', 'id': 806, 'frequency': 'f', 'synset': 'pineapple.n.02'}, {'name': 'pinecone', 'id': 807, 'frequency': 'c', 'synset': 'pinecone.n.01'}, {'name': 'ping-pong_ball', 'id': 808, 'frequency': 'r', 'synset': 'ping-pong_ball.n.01'}, {'name': 'pinwheel', 'id': 809, 'frequency': 'r', 'synset': 'pinwheel.n.03'}, {'name': 'tobacco_pipe', 'id': 810, 'frequency': 'r', 'synset': 'pipe.n.01'}, {'name': 'pipe', 'id': 811, 'frequency': 'f', 'synset': 'pipe.n.02'}, {'name': 'pistol', 'id': 812, 'frequency': 'r', 'synset': 'pistol.n.01'}, {'name': 'pita_(bread)', 'id': 813, 'frequency': 'c', 'synset': 'pita.n.01'}, {'name': 'pitcher_(vessel_for_liquid)', 'id': 814, 'frequency': 'f', 'synset': 'pitcher.n.02'}, {'name': 'pitchfork', 'id': 815, 'frequency': 'r', 'synset': 'pitchfork.n.01'}, {'name': 'pizza', 'id': 816, 'frequency': 'f', 'synset': 'pizza.n.01'}, {'name': 'place_mat', 'id': 817, 'frequency': 'f', 'synset': 'place_mat.n.01'}, {'name': 'plate', 'id': 818, 'frequency': 'f', 'synset': 'plate.n.04'}, {'name': 'platter', 'id': 819, 'frequency': 'c', 'synset': 'platter.n.01'}, {'name': 'playpen', 'id': 820, 'frequency': 'r', 'synset': 'playpen.n.01'}, {'name': 'pliers', 'id': 821, 'frequency': 'c', 'synset': 'pliers.n.01'}, {'name': 'plow_(farm_equipment)', 'id': 822, 'frequency': 'r', 'synset': 'plow.n.01'}, {'name': 'plume', 'id': 823, 'frequency': 'r', 'synset': 'plume.n.02'}, {'name': 'pocket_watch', 'id': 824, 'frequency': 'r', 'synset': 'pocket_watch.n.01'}, {'name': 'pocketknife', 'id': 825, 'frequency': 'c', 'synset': 'pocketknife.n.01'}, {'name': 'poker_(fire_stirring_tool)', 'id': 826, 'frequency': 'c', 'synset': 'poker.n.01'}, {'name': 'pole', 'id': 827, 'frequency': 'f', 'synset': 'pole.n.01'}, {'name': 'polo_shirt', 'id': 828, 'frequency': 'f', 'synset': 'polo_shirt.n.01'}, {'name': 'poncho', 'id': 829, 'frequency': 'r', 'synset': 'poncho.n.01'}, {'name': 'pony', 'id': 830, 'frequency': 'c', 'synset': 'pony.n.05'}, {'name': 'pool_table', 'id': 831, 'frequency': 'r', 'synset': 'pool_table.n.01'}, {'name': 'pop_(soda)', 'id': 832, 'frequency': 'f', 'synset': 'pop.n.02'}, {'name': 'postbox_(public)', 'id': 833, 'frequency': 'c', 'synset': 'postbox.n.01'}, {'name': 'postcard', 'id': 834, 'frequency': 'c', 'synset': 'postcard.n.01'}, {'name': 'poster', 'id': 835, 'frequency': 'f', 'synset': 'poster.n.01'}, {'name': 'pot', 'id': 836, 'frequency': 'f', 'synset': 'pot.n.01'}, {'name': 'flowerpot', 'id': 837, 'frequency': 'f', 'synset': 'pot.n.04'}, {'name': 'potato', 'id': 838, 'frequency': 'f', 'synset': 'potato.n.01'}, {'name': 'potholder', 'id': 839, 'frequency': 'c', 'synset': 'potholder.n.01'}, {'name': 'pottery', 'id': 840, 'frequency': 'c', 'synset': 'pottery.n.01'}, {'name': 'pouch', 'id': 841, 'frequency': 'c', 'synset': 'pouch.n.01'}, {'name': 'power_shovel', 'id': 842, 'frequency': 'c', 'synset': 'power_shovel.n.01'}, {'name': 'prawn', 'id': 843, 'frequency': 'c', 'synset': 'prawn.n.01'}, {'name': 'pretzel', 'id': 844, 'frequency': 'c', 'synset': 'pretzel.n.01'}, {'name': 'printer', 'id': 845, 'frequency': 'f', 'synset': 'printer.n.03'}, {'name': 'projectile_(weapon)', 'id': 846, 'frequency': 'c', 'synset': 'projectile.n.01'}, {'name': 'projector', 'id': 847, 'frequency': 'c', 'synset': 'projector.n.02'}, {'name': 'propeller', 'id': 848, 'frequency': 'f', 'synset': 'propeller.n.01'}, {'name': 'prune', 'id': 849, 'frequency': 'r', 'synset': 'prune.n.01'}, {'name': 'pudding', 'id': 850, 'frequency': 'r', 'synset': 'pudding.n.01'}, {'name': 'puffer_(fish)', 'id': 851, 'frequency': 'r', 'synset': 'puffer.n.02'}, {'name': 'puffin', 'id': 852, 'frequency': 'r', 'synset': 'puffin.n.01'}, {'name': 'pug-dog', 'id': 853, 'frequency': 'r', 'synset': 'pug.n.01'}, {'name': 'pumpkin', 'id': 854, 'frequency': 'c', 'synset': 'pumpkin.n.02'}, {'name': 'puncher', 'id': 855, 'frequency': 'r', 'synset': 'punch.n.03'}, {'name': 'puppet', 'id': 856, 'frequency': 'r', 'synset': 'puppet.n.01'}, {'name': 'puppy', 'id': 857, 'frequency': 'c', 'synset': 'puppy.n.01'}, {'name': 'quesadilla', 'id': 858, 'frequency': 'r', 'synset': 'quesadilla.n.01'}, {'name': 'quiche', 'id': 859, 'frequency': 'r', 'synset': 'quiche.n.02'}, {'name': 'quilt', 'id': 860, 'frequency': 'f', 'synset': 'quilt.n.01'}, {'name': 'rabbit', 'id': 861, 'frequency': 'c', 'synset': 'rabbit.n.01'}, {'name': 'race_car', 'id': 862, 'frequency': 'r', 'synset': 'racer.n.02'}, {'name': 'racket', 'id': 863, 'frequency': 'c', 'synset': 'racket.n.04'}, {'name': 'radar', 'id': 864, 'frequency': 'r', 'synset': 'radar.n.01'}, {'name': 'radiator', 'id': 865, 'frequency': 'f', 'synset': 'radiator.n.03'}, {'name': 'radio_receiver', 'id': 866, 'frequency': 'c', 'synset': 'radio_receiver.n.01'}, {'name': 'radish', 'id': 867, 'frequency': 'c', 'synset': 'radish.n.03'}, {'name': 'raft', 'id': 868, 'frequency': 'c', 'synset': 'raft.n.01'}, {'name': 'rag_doll', 'id': 869, 'frequency': 'r', 'synset': 'rag_doll.n.01'}, {'name': 'raincoat', 'id': 870, 'frequency': 'c', 'synset': 'raincoat.n.01'}, {'name': 'ram_(animal)', 'id': 871, 'frequency': 'c', 'synset': 'ram.n.05'}, {'name': 'raspberry', 'id': 872, 'frequency': 'c', 'synset': 'raspberry.n.02'}, {'name': 'rat', 'id': 873, 'frequency': 'r', 'synset': 'rat.n.01'}, {'name': 'razorblade', 'id': 874, 'frequency': 'c', 'synset': 'razorblade.n.01'}, {'name': 'reamer_(juicer)', 'id': 875, 'frequency': 'c', 'synset': 'reamer.n.01'}, {'name': 'rearview_mirror', 'id': 876, 'frequency': 'f', 'synset': 'rearview_mirror.n.01'}, {'name': 'receipt', 'id': 877, 'frequency': 'c', 'synset': 'receipt.n.02'}, {'name': 'recliner', 'id': 878, 'frequency': 'c', 'synset': 'recliner.n.01'}, {'name': 'record_player', 'id': 879, 'frequency': 'c', 'synset': 'record_player.n.01'}, {'name': 'reflector', 'id': 880, 'frequency': 'f', 'synset': 'reflector.n.01'}, {'name': 'remote_control', 'id': 881, 'frequency': 'f', 'synset': 'remote_control.n.01'}, {'name': 'rhinoceros', 'id': 882, 'frequency': 'c', 'synset': 'rhinoceros.n.01'}, {'name': 'rib_(food)', 'id': 883, 'frequency': 'r', 'synset': 'rib.n.03'}, {'name': 'rifle', 'id': 884, 'frequency': 'c', 'synset': 'rifle.n.01'}, {'name': 'ring', 'id': 885, 'frequency': 'f', 'synset': 'ring.n.08'}, {'name': 'river_boat', 'id': 886, 'frequency': 'r', 'synset': 'river_boat.n.01'}, {'name': 'road_map', 'id': 887, 'frequency': 'r', 'synset': 'road_map.n.02'}, {'name': 'robe', 'id': 888, 'frequency': 'c', 'synset': 'robe.n.01'}, {'name': 'rocking_chair', 'id': 889, 'frequency': 'c', 'synset': 'rocking_chair.n.01'}, {'name': 'rodent', 'id': 890, 'frequency': 'r', 'synset': 'rodent.n.01'}, {'name': 'roller_skate', 'id': 891, 'frequency': 'r', 'synset': 'roller_skate.n.01'}, {'name': 'Rollerblade', 'id': 892, 'frequency': 'r', 'synset': 'rollerblade.n.01'}, {'name': 'rolling_pin', 'id': 893, 'frequency': 'c', 'synset': 'rolling_pin.n.01'}, {'name': 'root_beer', 'id': 894, 'frequency': 'r', 'synset': 'root_beer.n.01'}, {'name': 'router_(computer_equipment)', 'id': 895, 'frequency': 'c', 'synset': 'router.n.02'}, {'name': 'rubber_band', 'id': 896, 'frequency': 'f', 'synset': 'rubber_band.n.01'}, {'name': 'runner_(carpet)', 'id': 897, 'frequency': 'c', 'synset': 'runner.n.08'}, {'name': 'plastic_bag', 'id': 898, 'frequency': 'f', 'synset': 'sack.n.01'}, {'name': 'saddle_(on_an_animal)', 'id': 899, 'frequency': 'f', 'synset': 'saddle.n.01'}, {'name': 'saddle_blanket', 'id': 900, 'frequency': 'f', 'synset': 'saddle_blanket.n.01'}, {'name': 'saddlebag', 'id': 901, 'frequency': 'c', 'synset': 'saddlebag.n.01'}, {'name': 'safety_pin', 'id': 902, 'frequency': 'r', 'synset': 'safety_pin.n.01'}, {'name': 'sail', 'id': 903, 'frequency': 'f', 'synset': 'sail.n.01'}, {'name': 'salad', 'id': 904, 'frequency': 'f', 'synset': 'salad.n.01'}, {'name': 'salad_plate', 'id': 905, 'frequency': 'r', 'synset': 'salad_plate.n.01'}, {'name': 'salami', 'id': 906, 'frequency': 'c', 'synset': 'salami.n.01'}, {'name': 'salmon_(fish)', 'id': 907, 'frequency': 'c', 'synset': 'salmon.n.01'}, {'name': 'salmon_(food)', 'id': 908, 'frequency': 'r', 'synset': 'salmon.n.03'}, {'name': 'salsa', 'id': 909, 'frequency': 'c', 'synset': 'salsa.n.01'}, {'name': 'saltshaker', 'id': 910, 'frequency': 'f', 'synset': 'saltshaker.n.01'}, {'name': 'sandal_(type_of_shoe)', 'id': 911, 'frequency': 'f', 'synset': 'sandal.n.01'}, {'name': 'sandwich', 'id': 912, 'frequency': 'f', 'synset': 'sandwich.n.01'}, {'name': 'satchel', 'id': 913, 'frequency': 'r', 'synset': 'satchel.n.01'}, {'name': 'saucepan', 'id': 914, 'frequency': 'r', 'synset': 'saucepan.n.01'}, {'name': 'saucer', 'id': 915, 'frequency': 'f', 'synset': 'saucer.n.02'}, {'name': 'sausage', 'id': 916, 'frequency': 'f', 'synset': 'sausage.n.01'}, {'name': 'sawhorse', 'id': 917, 'frequency': 'r', 'synset': 'sawhorse.n.01'}, {'name': 'saxophone', 'id': 918, 'frequency': 'r', 'synset': 'sax.n.02'}, {'name': 'scale_(measuring_instrument)', 'id': 919, 'frequency': 'f', 'synset': 'scale.n.07'}, {'name': 'scarecrow', 'id': 920, 'frequency': 'r', 'synset': 'scarecrow.n.01'}, {'name': 'scarf', 'id': 921, 'frequency': 'f', 'synset': 'scarf.n.01'}, {'name': 'school_bus', 'id': 922, 'frequency': 'c', 'synset': 'school_bus.n.01'}, {'name': 'scissors', 'id': 923, 'frequency': 'f', 'synset': 'scissors.n.01'}, {'name': 'scoreboard', 'id': 924, 'frequency': 'f', 'synset': 'scoreboard.n.01'}, {'name': 'scraper', 'id': 925, 'frequency': 'r', 'synset': 'scraper.n.01'}, {'name': 'screwdriver', 'id': 926, 'frequency': 'c', 'synset': 'screwdriver.n.01'}, {'name': 'scrubbing_brush', 'id': 927, 'frequency': 'f', 'synset': 'scrub_brush.n.01'}, {'name': 'sculpture', 'id': 928, 'frequency': 'c', 'synset': 'sculpture.n.01'}, {'name': 'seabird', 'id': 929, 'frequency': 'c', 'synset': 'seabird.n.01'}, {'name': 'seahorse', 'id': 930, 'frequency': 'c', 'synset': 'seahorse.n.02'}, {'name': 'seaplane', 'id': 931, 'frequency': 'r', 'synset': 'seaplane.n.01'}, {'name': 'seashell', 'id': 932, 'frequency': 'c', 'synset': 'seashell.n.01'}, {'name': 'sewing_machine', 'id': 933, 'frequency': 'c', 'synset': 'sewing_machine.n.01'}, {'name': 'shaker', 'id': 934, 'frequency': 'c', 'synset': 'shaker.n.03'}, {'name': 'shampoo', 'id': 935, 'frequency': 'c', 'synset': 'shampoo.n.01'}, {'name': 'shark', 'id': 936, 'frequency': 'c', 'synset': 'shark.n.01'}, {'name': 'sharpener', 'id': 937, 'frequency': 'r', 'synset': 'sharpener.n.01'}, {'name': 'Sharpie', 'id': 938, 'frequency': 'r', 'synset': 'sharpie.n.03'}, {'name': 'shaver_(electric)', 'id': 939, 'frequency': 'r', 'synset': 'shaver.n.03'}, {'name': 'shaving_cream', 'id': 940, 'frequency': 'c', 'synset': 'shaving_cream.n.01'}, {'name': 'shawl', 'id': 941, 'frequency': 'r', 'synset': 'shawl.n.01'}, {'name': 'shears', 'id': 942, 'frequency': 'r', 'synset': 'shears.n.01'}, {'name': 'sheep', 'id': 943, 'frequency': 'f', 'synset': 'sheep.n.01'}, {'name': 'shepherd_dog', 'id': 944, 'frequency': 'r', 'synset': 'shepherd_dog.n.01'}, {'name': 'sherbert', 'id': 945, 'frequency': 'r', 'synset': 'sherbert.n.01'}, {'name': 'shield', 'id': 946, 'frequency': 'c', 'synset': 'shield.n.02'}, {'name': 'shirt', 'id': 947, 'frequency': 'f', 'synset': 'shirt.n.01'}, {'name': 'shoe', 'id': 948, 'frequency': 'f', 'synset': 'shoe.n.01'}, {'name': 'shopping_bag', 'id': 949, 'frequency': 'f', 'synset': 'shopping_bag.n.01'}, {'name': 'shopping_cart', 'id': 950, 'frequency': 'c', 'synset': 'shopping_cart.n.01'}, {'name': 'short_pants', 'id': 951, 'frequency': 'f', 'synset': 'short_pants.n.01'}, {'name': 'shot_glass', 'id': 952, 'frequency': 'r', 'synset': 'shot_glass.n.01'}, {'name': 'shoulder_bag', 'id': 953, 'frequency': 'f', 'synset': 'shoulder_bag.n.01'}, {'name': 'shovel', 'id': 954, 'frequency': 'c', 'synset': 'shovel.n.01'}, {'name': 'shower_head', 'id': 955, 'frequency': 'f', 'synset': 'shower.n.01'}, {'name': 'shower_cap', 'id': 956, 'frequency': 'r', 'synset': 'shower_cap.n.01'}, {'name': 'shower_curtain', 'id': 957, 'frequency': 'f', 'synset': 'shower_curtain.n.01'}, {'name': 'shredder_(for_paper)', 'id': 958, 'frequency': 'r', 'synset': 'shredder.n.01'}, {'name': 'signboard', 'id': 959, 'frequency': 'f', 'synset': 'signboard.n.01'}, {'name': 'silo', 'id': 960, 'frequency': 'c', 'synset': 'silo.n.01'}, {'name': 'sink', 'id': 961, 'frequency': 'f', 'synset': 'sink.n.01'}, {'name': 'skateboard', 'id': 962, 'frequency': 'f', 'synset': 'skateboard.n.01'}, {'name': 'skewer', 'id': 963, 'frequency': 'c', 'synset': 'skewer.n.01'}, {'name': 'ski', 'id': 964, 'frequency': 'f', 'synset': 'ski.n.01'}, {'name': 'ski_boot', 'id': 965, 'frequency': 'f', 'synset': 'ski_boot.n.01'}, {'name': 'ski_parka', 'id': 966, 'frequency': 'f', 'synset': 'ski_parka.n.01'}, {'name': 'ski_pole', 'id': 967, 'frequency': 'f', 'synset': 'ski_pole.n.01'}, {'name': 'skirt', 'id': 968, 'frequency': 'f', 'synset': 'skirt.n.02'}, {'name': 'skullcap', 'id': 969, 'frequency': 'r', 'synset': 'skullcap.n.01'}, {'name': 'sled', 'id': 970, 'frequency': 'c', 'synset': 'sled.n.01'}, {'name': 'sleeping_bag', 'id': 971, 'frequency': 'c', 'synset': 'sleeping_bag.n.01'}, {'name': 'sling_(bandage)', 'id': 972, 'frequency': 'r', 'synset': 'sling.n.05'}, {'name': 'slipper_(footwear)', 'id': 973, 'frequency': 'c', 'synset': 'slipper.n.01'}, {'name': 'smoothie', 'id': 974, 'frequency': 'r', 'synset': 'smoothie.n.02'}, {'name': 'snake', 'id': 975, 'frequency': 'r', 'synset': 'snake.n.01'}, {'name': 'snowboard', 'id': 976, 'frequency': 'f', 'synset': 'snowboard.n.01'}, {'name': 'snowman', 'id': 977, 'frequency': 'c', 'synset': 'snowman.n.01'}, {'name': 'snowmobile', 'id': 978, 'frequency': 'c', 'synset': 'snowmobile.n.01'}, {'name': 'soap', 'id': 979, 'frequency': 'f', 'synset': 'soap.n.01'}, {'name': 'soccer_ball', 'id': 980, 'frequency': 'f', 'synset': 'soccer_ball.n.01'}, {'name': 'sock', 'id': 981, 'frequency': 'f', 'synset': 'sock.n.01'}, {'name': 'sofa', 'id': 982, 'frequency': 'f', 'synset': 'sofa.n.01'}, {'name': 'softball', 'id': 983, 'frequency': 'r', 'synset': 'softball.n.01'}, {'name': 'solar_array', 'id': 984, 'frequency': 'c', 'synset': 'solar_array.n.01'}, {'name': 'sombrero', 'id': 985, 'frequency': 'r', 'synset': 'sombrero.n.02'}, {'name': 'soup', 'id': 986, 'frequency': 'f', 'synset': 'soup.n.01'}, {'name': 'soup_bowl', 'id': 987, 'frequency': 'r', 'synset': 'soup_bowl.n.01'}, {'name': 'soupspoon', 'id': 988, 'frequency': 'c', 'synset': 'soupspoon.n.01'}, {'name': 'sour_cream', 'id': 989, 'frequency': 'c', 'synset': 'sour_cream.n.01'}, {'name': 'soya_milk', 'id': 990, 'frequency': 'r', 'synset': 'soya_milk.n.01'}, {'name': 'space_shuttle', 'id': 991, 'frequency': 'r', 'synset': 'space_shuttle.n.01'}, {'name': 'sparkler_(fireworks)', 'id': 992, 'frequency': 'r', 'synset': 'sparkler.n.02'}, {'name': 'spatula', 'id': 993, 'frequency': 'f', 'synset': 'spatula.n.02'}, {'name': 'spear', 'id': 994, 'frequency': 'r', 'synset': 'spear.n.01'}, {'name': 'spectacles', 'id': 995, 'frequency': 'f', 'synset': 'spectacles.n.01'}, {'name': 'spice_rack', 'id': 996, 'frequency': 'c', 'synset': 'spice_rack.n.01'}, {'name': 'spider', 'id': 997, 'frequency': 'c', 'synset': 'spider.n.01'}, {'name': 'crawfish', 'id': 998, 'frequency': 'r', 'synset': 'spiny_lobster.n.02'}, {'name': 'sponge', 'id': 999, 'frequency': 'c', 'synset': 'sponge.n.01'}, {'name': 'spoon', 'id': 1000, 'frequency': 'f', 'synset': 'spoon.n.01'}, {'name': 'sportswear', 'id': 1001, 'frequency': 'c', 'synset': 'sportswear.n.01'}, {'name': 'spotlight', 'id': 1002, 'frequency': 'c', 'synset': 'spotlight.n.02'}, {'name': 'squid_(food)', 'id': 1003, 'frequency': 'r', 'synset': 'squid.n.01'}, {'name': 'squirrel', 'id': 1004, 'frequency': 'c', 'synset': 'squirrel.n.01'}, {'name': 'stagecoach', 'id': 1005, 'frequency': 'r', 'synset': 'stagecoach.n.01'}, {'name': 'stapler_(stapling_machine)', 'id': 1006, 'frequency': 'c', 'synset': 'stapler.n.01'}, {'name': 'starfish', 'id': 1007, 'frequency': 'c', 'synset': 'starfish.n.01'}, {'name': 'statue_(sculpture)', 'id': 1008, 'frequency': 'f', 'synset': 'statue.n.01'}, {'name': 'steak_(food)', 'id': 1009, 'frequency': 'c', 'synset': 'steak.n.01'}, {'name': 'steak_knife', 'id': 1010, 'frequency': 'r', 'synset': 'steak_knife.n.01'}, {'name': 'steering_wheel', 'id': 1011, 'frequency': 'f', 'synset': 'steering_wheel.n.01'}, {'name': 'stepladder', 'id': 1012, 'frequency': 'r', 'synset': 'step_ladder.n.01'}, {'name': 'step_stool', 'id': 1013, 'frequency': 'c', 'synset': 'step_stool.n.01'}, {'name': 'stereo_(sound_system)', 'id': 1014, 'frequency': 'c', 'synset': 'stereo.n.01'}, {'name': 'stew', 'id': 1015, 'frequency': 'r', 'synset': 'stew.n.02'}, {'name': 'stirrer', 'id': 1016, 'frequency': 'r', 'synset': 'stirrer.n.02'}, {'name': 'stirrup', 'id': 1017, 'frequency': 'f', 'synset': 'stirrup.n.01'}, {'name': 'stool', 'id': 1018, 'frequency': 'f', 'synset': 'stool.n.01'}, {'name': 'stop_sign', 'id': 1019, 'frequency': 'f', 'synset': 'stop_sign.n.01'}, {'name': 'brake_light', 'id': 1020, 'frequency': 'f', 'synset': 'stoplight.n.01'}, {'name': 'stove', 'id': 1021, 'frequency': 'f', 'synset': 'stove.n.01'}, {'name': 'strainer', 'id': 1022, 'frequency': 'c', 'synset': 'strainer.n.01'}, {'name': 'strap', 'id': 1023, 'frequency': 'f', 'synset': 'strap.n.01'}, {'name': 'straw_(for_drinking)', 'id': 1024, 'frequency': 'f', 'synset': 'straw.n.04'}, {'name': 'strawberry', 'id': 1025, 'frequency': 'f', 'synset': 'strawberry.n.01'}, {'name': 'street_sign', 'id': 1026, 'frequency': 'f', 'synset': 'street_sign.n.01'}, {'name': 'streetlight', 'id': 1027, 'frequency': 'f', 'synset': 'streetlight.n.01'}, {'name': 'string_cheese', 'id': 1028, 'frequency': 'r', 'synset': 'string_cheese.n.01'}, {'name': 'stylus', 'id': 1029, 'frequency': 'r', 'synset': 'stylus.n.02'}, {'name': 'subwoofer', 'id': 1030, 'frequency': 'r', 'synset': 'subwoofer.n.01'}, {'name': 'sugar_bowl', 'id': 1031, 'frequency': 'r', 'synset': 'sugar_bowl.n.01'}, {'name': 'sugarcane_(plant)', 'id': 1032, 'frequency': 'r', 'synset': 'sugarcane.n.01'}, {'name': 'suit_(clothing)', 'id': 1033, 'frequency': 'f', 'synset': 'suit.n.01'}, {'name': 'sunflower', 'id': 1034, 'frequency': 'c', 'synset': 'sunflower.n.01'}, {'name': 'sunglasses', 'id': 1035, 'frequency': 'f', 'synset': 'sunglasses.n.01'}, {'name': 'sunhat', 'id': 1036, 'frequency': 'c', 'synset': 'sunhat.n.01'}, {'name': 'surfboard', 'id': 1037, 'frequency': 'f', 'synset': 'surfboard.n.01'}, {'name': 'sushi', 'id': 1038, 'frequency': 'c', 'synset': 'sushi.n.01'}, {'name': 'mop', 'id': 1039, 'frequency': 'c', 'synset': 'swab.n.02'}, {'name': 'sweat_pants', 'id': 1040, 'frequency': 'c', 'synset': 'sweat_pants.n.01'}, {'name': 'sweatband', 'id': 1041, 'frequency': 'c', 'synset': 'sweatband.n.02'}, {'name': 'sweater', 'id': 1042, 'frequency': 'f', 'synset': 'sweater.n.01'}, {'name': 'sweatshirt', 'id': 1043, 'frequency': 'f', 'synset': 'sweatshirt.n.01'}, {'name': 'sweet_potato', 'id': 1044, 'frequency': 'c', 'synset': 'sweet_potato.n.02'}, {'name': 'swimsuit', 'id': 1045, 'frequency': 'f', 'synset': 'swimsuit.n.01'}, {'name': 'sword', 'id': 1046, 'frequency': 'c', 'synset': 'sword.n.01'}, {'name': 'syringe', 'id': 1047, 'frequency': 'r', 'synset': 'syringe.n.01'}, {'name': 'Tabasco_sauce', 'id': 1048, 'frequency': 'r', 'synset': 'tabasco.n.02'}, {'name': 'table-tennis_table', 'id': 1049, 'frequency': 'r', 'synset': 'table-tennis_table.n.01'}, {'name': 'table', 'id': 1050, 'frequency': 'f', 'synset': 'table.n.02'}, {'name': 'table_lamp', 'id': 1051, 'frequency': 'c', 'synset': 'table_lamp.n.01'}, {'name': 'tablecloth', 'id': 1052, 'frequency': 'f', 'synset': 'tablecloth.n.01'}, {'name': 'tachometer', 'id': 1053, 'frequency': 'r', 'synset': 'tachometer.n.01'}, {'name': 'taco', 'id': 1054, 'frequency': 'r', 'synset': 'taco.n.02'}, {'name': 'tag', 'id': 1055, 'frequency': 'f', 'synset': 'tag.n.02'}, {'name': 'taillight', 'id': 1056, 'frequency': 'f', 'synset': 'taillight.n.01'}, {'name': 'tambourine', 'id': 1057, 'frequency': 'r', 'synset': 'tambourine.n.01'}, {'name': 'army_tank', 'id': 1058, 'frequency': 'r', 'synset': 'tank.n.01'}, {'name': 'tank_(storage_vessel)', 'id': 1059, 'frequency': 'f', 'synset': 'tank.n.02'}, {'name': 'tank_top_(clothing)', 'id': 1060, 'frequency': 'f', 'synset': 'tank_top.n.01'}, {'name': 'tape_(sticky_cloth_or_paper)', 'id': 1061, 'frequency': 'f', 'synset': 'tape.n.01'}, {'name': 'tape_measure', 'id': 1062, 'frequency': 'c', 'synset': 'tape.n.04'}, {'name': 'tapestry', 'id': 1063, 'frequency': 'c', 'synset': 'tapestry.n.02'}, {'name': 'tarp', 'id': 1064, 'frequency': 'f', 'synset': 'tarpaulin.n.01'}, {'name': 'tartan', 'id': 1065, 'frequency': 'c', 'synset': 'tartan.n.01'}, {'name': 'tassel', 'id': 1066, 'frequency': 'c', 'synset': 'tassel.n.01'}, {'name': 'tea_bag', 'id': 1067, 'frequency': 'c', 'synset': 'tea_bag.n.01'}, {'name': 'teacup', 'id': 1068, 'frequency': 'c', 'synset': 'teacup.n.02'}, {'name': 'teakettle', 'id': 1069, 'frequency': 'c', 'synset': 'teakettle.n.01'}, {'name': 'teapot', 'id': 1070, 'frequency': 'f', 'synset': 'teapot.n.01'}, {'name': 'teddy_bear', 'id': 1071, 'frequency': 'f', 'synset': 'teddy.n.01'}, {'name': 'telephone', 'id': 1072, 'frequency': 'f', 'synset': 'telephone.n.01'}, {'name': 'telephone_booth', 'id': 1073, 'frequency': 'c', 'synset': 'telephone_booth.n.01'}, {'name': 'telephone_pole', 'id': 1074, 'frequency': 'f', 'synset': 'telephone_pole.n.01'}, {'name': 'telephoto_lens', 'id': 1075, 'frequency': 'r', 'synset': 'telephoto_lens.n.01'}, {'name': 'television_camera', 'id': 1076, 'frequency': 'c', 'synset': 'television_camera.n.01'}, {'name': 'television_set', 'id': 1077, 'frequency': 'f', 'synset': 'television_receiver.n.01'}, {'name': 'tennis_ball', 'id': 1078, 'frequency': 'f', 'synset': 'tennis_ball.n.01'}, {'name': 'tennis_racket', 'id': 1079, 'frequency': 'f', 'synset': 'tennis_racket.n.01'}, {'name': 'tequila', 'id': 1080, 'frequency': 'r', 'synset': 'tequila.n.01'}, {'name': 'thermometer', 'id': 1081, 'frequency': 'c', 'synset': 'thermometer.n.01'}, {'name': 'thermos_bottle', 'id': 1082, 'frequency': 'c', 'synset': 'thermos.n.01'}, {'name': 'thermostat', 'id': 1083, 'frequency': 'f', 'synset': 'thermostat.n.01'}, {'name': 'thimble', 'id': 1084, 'frequency': 'r', 'synset': 'thimble.n.02'}, {'name': 'thread', 'id': 1085, 'frequency': 'c', 'synset': 'thread.n.01'}, {'name': 'thumbtack', 'id': 1086, 'frequency': 'c', 'synset': 'thumbtack.n.01'}, {'name': 'tiara', 'id': 1087, 'frequency': 'c', 'synset': 'tiara.n.01'}, {'name': 'tiger', 'id': 1088, 'frequency': 'c', 'synset': 'tiger.n.02'}, {'name': 'tights_(clothing)', 'id': 1089, 'frequency': 'c', 'synset': 'tights.n.01'}, {'name': 'timer', 'id': 1090, 'frequency': 'c', 'synset': 'timer.n.01'}, {'name': 'tinfoil', 'id': 1091, 'frequency': 'f', 'synset': 'tinfoil.n.01'}, {'name': 'tinsel', 'id': 1092, 'frequency': 'c', 'synset': 'tinsel.n.01'}, {'name': 'tissue_paper', 'id': 1093, 'frequency': 'f', 'synset': 'tissue.n.02'}, {'name': 'toast_(food)', 'id': 1094, 'frequency': 'c', 'synset': 'toast.n.01'}, {'name': 'toaster', 'id': 1095, 'frequency': 'f', 'synset': 'toaster.n.02'}, {'name': 'toaster_oven', 'id': 1096, 'frequency': 'f', 'synset': 'toaster_oven.n.01'}, {'name': 'toilet', 'id': 1097, 'frequency': 'f', 'synset': 'toilet.n.02'}, {'name': 'toilet_tissue', 'id': 1098, 'frequency': 'f', 'synset': 'toilet_tissue.n.01'}, {'name': 'tomato', 'id': 1099, 'frequency': 'f', 'synset': 'tomato.n.01'}, {'name': 'tongs', 'id': 1100, 'frequency': 'f', 'synset': 'tongs.n.01'}, {'name': 'toolbox', 'id': 1101, 'frequency': 'c', 'synset': 'toolbox.n.01'}, {'name': 'toothbrush', 'id': 1102, 'frequency': 'f', 'synset': 'toothbrush.n.01'}, {'name': 'toothpaste', 'id': 1103, 'frequency': 'f', 'synset': 'toothpaste.n.01'}, {'name': 'toothpick', 'id': 1104, 'frequency': 'f', 'synset': 'toothpick.n.01'}, {'name': 'cover', 'id': 1105, 'frequency': 'f', 'synset': 'top.n.09'}, {'name': 'tortilla', 'id': 1106, 'frequency': 'c', 'synset': 'tortilla.n.01'}, {'name': 'tow_truck', 'id': 1107, 'frequency': 'c', 'synset': 'tow_truck.n.01'}, {'name': 'towel', 'id': 1108, 'frequency': 'f', 'synset': 'towel.n.01'}, {'name': 'towel_rack', 'id': 1109, 'frequency': 'f', 'synset': 'towel_rack.n.01'}, {'name': 'toy', 'id': 1110, 'frequency': 'f', 'synset': 'toy.n.03'}, {'name': 'tractor_(farm_equipment)', 'id': 1111, 'frequency': 'c', 'synset': 'tractor.n.01'}, {'name': 'traffic_light', 'id': 1112, 'frequency': 'f', 'synset': 'traffic_light.n.01'}, {'name': 'dirt_bike', 'id': 1113, 'frequency': 'c', 'synset': 'trail_bike.n.01'}, {'name': 'trailer_truck', 'id': 1114, 'frequency': 'f', 'synset': 'trailer_truck.n.01'}, {'name': 'train_(railroad_vehicle)', 'id': 1115, 'frequency': 'f', 'synset': 'train.n.01'}, {'name': 'trampoline', 'id': 1116, 'frequency': 'r', 'synset': 'trampoline.n.01'}, {'name': 'tray', 'id': 1117, 'frequency': 'f', 'synset': 'tray.n.01'}, {'name': 'trench_coat', 'id': 1118, 'frequency': 'r', 'synset': 'trench_coat.n.01'}, {'name': 'triangle_(musical_instrument)', 'id': 1119, 'frequency': 'r', 'synset': 'triangle.n.05'}, {'name': 'tricycle', 'id': 1120, 'frequency': 'c', 'synset': 'tricycle.n.01'}, {'name': 'tripod', 'id': 1121, 'frequency': 'f', 'synset': 'tripod.n.01'}, {'name': 'trousers', 'id': 1122, 'frequency': 'f', 'synset': 'trouser.n.01'}, {'name': 'truck', 'id': 1123, 'frequency': 'f', 'synset': 'truck.n.01'}, {'name': 'truffle_(chocolate)', 'id': 1124, 'frequency': 'r', 'synset': 'truffle.n.03'}, {'name': 'trunk', 'id': 1125, 'frequency': 'c', 'synset': 'trunk.n.02'}, {'name': 'vat', 'id': 1126, 'frequency': 'r', 'synset': 'tub.n.02'}, {'name': 'turban', 'id': 1127, 'frequency': 'c', 'synset': 'turban.n.01'}, {'name': 'turkey_(food)', 'id': 1128, 'frequency': 'c', 'synset': 'turkey.n.04'}, {'name': 'turnip', 'id': 1129, 'frequency': 'r', 'synset': 'turnip.n.01'}, {'name': 'turtle', 'id': 1130, 'frequency': 'c', 'synset': 'turtle.n.02'}, {'name': 'turtleneck_(clothing)', 'id': 1131, 'frequency': 'c', 'synset': 'turtleneck.n.01'}, {'name': 'typewriter', 'id': 1132, 'frequency': 'c', 'synset': 'typewriter.n.01'}, {'name': 'umbrella', 'id': 1133, 'frequency': 'f', 'synset': 'umbrella.n.01'}, {'name': 'underwear', 'id': 1134, 'frequency': 'f', 'synset': 'underwear.n.01'}, {'name': 'unicycle', 'id': 1135, 'frequency': 'r', 'synset': 'unicycle.n.01'}, {'name': 'urinal', 'id': 1136, 'frequency': 'f', 'synset': 'urinal.n.01'}, {'name': 'urn', 'id': 1137, 'frequency': 'c', 'synset': 'urn.n.01'}, {'name': 'vacuum_cleaner', 'id': 1138, 'frequency': 'c', 'synset': 'vacuum.n.04'}, {'name': 'vase', 'id': 1139, 'frequency': 'f', 'synset': 'vase.n.01'}, {'name': 'vending_machine', 'id': 1140, 'frequency': 'c', 'synset': 'vending_machine.n.01'}, {'name': 'vent', 'id': 1141, 'frequency': 'f', 'synset': 'vent.n.01'}, {'name': 'vest', 'id': 1142, 'frequency': 'f', 'synset': 'vest.n.01'}, {'name': 'videotape', 'id': 1143, 'frequency': 'c', 'synset': 'videotape.n.01'}, {'name': 'vinegar', 'id': 1144, 'frequency': 'r', 'synset': 'vinegar.n.01'}, {'name': 'violin', 'id': 1145, 'frequency': 'r', 'synset': 'violin.n.01'}, {'name': 'vodka', 'id': 1146, 'frequency': 'r', 'synset': 'vodka.n.01'}, {'name': 'volleyball', 'id': 1147, 'frequency': 'c', 'synset': 'volleyball.n.02'}, {'name': 'vulture', 'id': 1148, 'frequency': 'r', 'synset': 'vulture.n.01'}, {'name': 'waffle', 'id': 1149, 'frequency': 'c', 'synset': 'waffle.n.01'}, {'name': 'waffle_iron', 'id': 1150, 'frequency': 'r', 'synset': 'waffle_iron.n.01'}, {'name': 'wagon', 'id': 1151, 'frequency': 'c', 'synset': 'wagon.n.01'}, {'name': 'wagon_wheel', 'id': 1152, 'frequency': 'c', 'synset': 'wagon_wheel.n.01'}, {'name': 'walking_stick', 'id': 1153, 'frequency': 'c', 'synset': 'walking_stick.n.01'}, {'name': 'wall_clock', 'id': 1154, 'frequency': 'c', 'synset': 'wall_clock.n.01'}, {'name': 'wall_socket', 'id': 1155, 'frequency': 'f', 'synset': 'wall_socket.n.01'}, {'name': 'wallet', 'id': 1156, 'frequency': 'f', 'synset': 'wallet.n.01'}, {'name': 'walrus', 'id': 1157, 'frequency': 'r', 'synset': 'walrus.n.01'}, {'name': 'wardrobe', 'id': 1158, 'frequency': 'r', 'synset': 'wardrobe.n.01'}, {'name': 'washbasin', 'id': 1159, 'frequency': 'r', 'synset': 'washbasin.n.01'}, {'name': 'automatic_washer', 'id': 1160, 'frequency': 'c', 'synset': 'washer.n.03'}, {'name': 'watch', 'id': 1161, 'frequency': 'f', 'synset': 'watch.n.01'}, {'name': 'water_bottle', 'id': 1162, 'frequency': 'f', 'synset': 'water_bottle.n.01'}, {'name': 'water_cooler', 'id': 1163, 'frequency': 'c', 'synset': 'water_cooler.n.01'}, {'name': 'water_faucet', 'id': 1164, 'frequency': 'c', 'synset': 'water_faucet.n.01'}, {'name': 'water_heater', 'id': 1165, 'frequency': 'r', 'synset': 'water_heater.n.01'}, {'name': 'water_jug', 'id': 1166, 'frequency': 'c', 'synset': 'water_jug.n.01'}, {'name': 'water_gun', 'id': 1167, 'frequency': 'r', 'synset': 'water_pistol.n.01'}, {'name': 'water_scooter', 'id': 1168, 'frequency': 'c', 'synset': 'water_scooter.n.01'}, {'name': 'water_ski', 'id': 1169, 'frequency': 'c', 'synset': 'water_ski.n.01'}, {'name': 'water_tower', 'id': 1170, 'frequency': 'c', 'synset': 'water_tower.n.01'}, {'name': 'watering_can', 'id': 1171, 'frequency': 'c', 'synset': 'watering_can.n.01'}, {'name': 'watermelon', 'id': 1172, 'frequency': 'f', 'synset': 'watermelon.n.02'}, {'name': 'weathervane', 'id': 1173, 'frequency': 'f', 'synset': 'weathervane.n.01'}, {'name': 'webcam', 'id': 1174, 'frequency': 'c', 'synset': 'webcam.n.01'}, {'name': 'wedding_cake', 'id': 1175, 'frequency': 'c', 'synset': 'wedding_cake.n.01'}, {'name': 'wedding_ring', 'id': 1176, 'frequency': 'c', 'synset': 'wedding_ring.n.01'}, {'name': 'wet_suit', 'id': 1177, 'frequency': 'f', 'synset': 'wet_suit.n.01'}, {'name': 'wheel', 'id': 1178, 'frequency': 'f', 'synset': 'wheel.n.01'}, {'name': 'wheelchair', 'id': 1179, 'frequency': 'c', 'synset': 'wheelchair.n.01'}, {'name': 'whipped_cream', 'id': 1180, 'frequency': 'c', 'synset': 'whipped_cream.n.01'}, {'name': 'whistle', 'id': 1181, 'frequency': 'c', 'synset': 'whistle.n.03'}, {'name': 'wig', 'id': 1182, 'frequency': 'c', 'synset': 'wig.n.01'}, {'name': 'wind_chime', 'id': 1183, 'frequency': 'c', 'synset': 'wind_chime.n.01'}, {'name': 'windmill', 'id': 1184, 'frequency': 'c', 'synset': 'windmill.n.01'}, {'name': 'window_box_(for_plants)', 'id': 1185, 'frequency': 'c', 'synset': 'window_box.n.01'}, {'name': 'windshield_wiper', 'id': 1186, 'frequency': 'f', 'synset': 'windshield_wiper.n.01'}, {'name': 'windsock', 'id': 1187, 'frequency': 'c', 'synset': 'windsock.n.01'}, {'name': 'wine_bottle', 'id': 1188, 'frequency': 'f', 'synset': 'wine_bottle.n.01'}, {'name': 'wine_bucket', 'id': 1189, 'frequency': 'c', 'synset': 'wine_bucket.n.01'}, {'name': 'wineglass', 'id': 1190, 'frequency': 'f', 'synset': 'wineglass.n.01'}, {'name': 'blinder_(for_horses)', 'id': 1191, 'frequency': 'f', 'synset': 'winker.n.02'}, {'name': 'wok', 'id': 1192, 'frequency': 'c', 'synset': 'wok.n.01'}, {'name': 'wolf', 'id': 1193, 'frequency': 'r', 'synset': 'wolf.n.01'}, {'name': 'wooden_spoon', 'id': 1194, 'frequency': 'c', 'synset': 'wooden_spoon.n.02'}, {'name': 'wreath', 'id': 1195, 'frequency': 'c', 'synset': 'wreath.n.01'}, {'name': 'wrench', 'id': 1196, 'frequency': 'c', 'synset': 'wrench.n.03'}, {'name': 'wristband', 'id': 1197, 'frequency': 'f', 'synset': 'wristband.n.01'}, {'name': 'wristlet', 'id': 1198, 'frequency': 'f', 'synset': 'wristlet.n.01'}, {'name': 'yacht', 'id': 1199, 'frequency': 'c', 'synset': 'yacht.n.01'}, {'name': 'yogurt', 'id': 1200, 'frequency': 'c', 'synset': 'yogurt.n.01'}, {'name': 'yoke_(animal_equipment)', 'id': 1201, 'frequency': 'c', 'synset': 'yoke.n.07'}, {'name': 'zebra', 'id': 1202, 'frequency': 'f', 'synset': 'zebra.n.01'}, {'name': 'zucchini', 'id': 1203, 'frequency': 'c', 'synset': 'zucchini.n.02'}, {'id': 1204, 'synset': 'organism.n.01', 'name': 'organism'}, {'id': 1205, 'synset': 'benthos.n.02', 'name': 'benthos'}, {'id': 1206, 'synset': 'heterotroph.n.01', 'name': 'heterotroph'}, {'id': 1207, 'synset': 'cell.n.02', 'name': 'cell'}, {'id': 1208, 'synset': 'animal.n.01', 'name': 'animal'}, {'id': 1209, 'synset': 'plant.n.02', 'name': 'plant'}, {'id': 1210, 'synset': 'food.n.01', 'name': 'food'}, {'id': 1211, 'synset': 'artifact.n.01', 'name': 'artifact'}, {'id': 1212, 'synset': 'hop.n.01', 'name': 'hop'}, {'id': 1213, 'synset': 'check-in.n.01', 'name': 'check-in'}, {'id': 1214, 'synset': 'dressage.n.01', 'name': 'dressage'}, {'id': 1215, 'synset': 'curvet.n.01', 'name': 'curvet'}, {'id': 1216, 'synset': 'piaffe.n.01', 'name': 'piaffe'}, {'id': 1217, 'synset': 'funambulism.n.01', 'name': 'funambulism'}, {'id': 1218, 'synset': 'rock_climbing.n.01', 'name': 'rock_climbing'}, {'id': 1219, 'synset': 'contact_sport.n.01', 'name': 'contact_sport'}, {'id': 1220, 'synset': 'outdoor_sport.n.01', 'name': 'outdoor_sport'}, {'id': 1221, 'synset': 'gymnastics.n.01', 'name': 'gymnastics'}, {'id': 1222, 'synset': 'acrobatics.n.01', 'name': 'acrobatics'}, {'id': 1223, 'synset': 'track_and_field.n.01', 'name': 'track_and_field'}, {'id': 1224, 'synset': 'track.n.11', 'name': 'track'}, {'id': 1225, 'synset': 'jumping.n.01', 'name': 'jumping'}, {'id': 1226, 'synset': 'broad_jump.n.02', 'name': 'broad_jump'}, {'id': 1227, 'synset': 'high_jump.n.02', 'name': 'high_jump'}, {'id': 1228, 'synset': 'fosbury_flop.n.01', 'name': 'Fosbury_flop'}, {'id': 1229, 'synset': 'skiing.n.01', 'name': 'skiing'}, {'id': 1230, 'synset': 'cross-country_skiing.n.01', 'name': 'cross-country_skiing'}, {'id': 1231, 'synset': 'ski_jumping.n.01', 'name': 'ski_jumping'}, {'id': 1232, 'synset': 'water_sport.n.01', 'name': 'water_sport'}, {'id': 1233, 'synset': 'swimming.n.01', 'name': 'swimming'}, {'id': 1234, 'synset': 'bathe.n.01', 'name': 'bathe'}, {'id': 1235, 'synset': 'dip.n.08', 'name': 'dip'}, {'id': 1236, 'synset': 'dive.n.02', 'name': 'dive'}, {'id': 1237, 'synset': 'floating.n.01', 'name': 'floating'}, {'id': 1238, 'synset': "dead-man's_float.n.01", 'name': "dead-man's_float"}, {'id': 1239, 'synset': 'belly_flop.n.01', 'name': 'belly_flop'}, {'id': 1240, 'synset': 'cliff_diving.n.01', 'name': 'cliff_diving'}, {'id': 1241, 'synset': 'flip.n.05', 'name': 'flip'}, {'id': 1242, 'synset': 'gainer.n.03', 'name': 'gainer'}, {'id': 1243, 'synset': 'half_gainer.n.01', 'name': 'half_gainer'}, {'id': 1244, 'synset': 'jackknife.n.02', 'name': 'jackknife'}, {'id': 1245, 'synset': 'swan_dive.n.01', 'name': 'swan_dive'}, {'id': 1246, 'synset': 'skin_diving.n.01', 'name': 'skin_diving'}, {'id': 1247, 'synset': 'scuba_diving.n.01', 'name': 'scuba_diving'}, {'id': 1248, 'synset': 'snorkeling.n.01', 'name': 'snorkeling'}, {'id': 1249, 'synset': 'surfing.n.01', 'name': 'surfing'}, {'id': 1250, 'synset': 'water-skiing.n.01', 'name': 'water-skiing'}, {'id': 1251, 'synset': 'rowing.n.01', 'name': 'rowing'}, {'id': 1252, 'synset': 'sculling.n.01', 'name': 'sculling'}, {'id': 1253, 'synset': 'boxing.n.01', 'name': 'boxing'}, {'id': 1254, 'synset': 'professional_boxing.n.01', 'name': 'professional_boxing'}, {'id': 1255, 'synset': 'in-fighting.n.02', 'name': 'in-fighting'}, {'id': 1256, 'synset': 'fight.n.05', 'name': 'fight'}, {'id': 1257, 'synset': 'rope-a-dope.n.01', 'name': 'rope-a-dope'}, {'id': 1258, 'synset': 'spar.n.03', 'name': 'spar'}, {'id': 1259, 'synset': 'archery.n.01', 'name': 'archery'}, {'id': 1260, 'synset': 'sledding.n.01', 'name': 'sledding'}, {'id': 1261, 'synset': 'tobogganing.n.01', 'name': 'tobogganing'}, {'id': 1262, 'synset': 'luging.n.01', 'name': 'luging'}, {'id': 1263, 'synset': 'bobsledding.n.01', 'name': 'bobsledding'}, {'id': 1264, 'synset': 'wrestling.n.02', 'name': 'wrestling'}, {'id': 1265, 'synset': 'greco-roman_wrestling.n.01', 'name': 'Greco-Roman_wrestling'}, {'id': 1266, 'synset': 'professional_wrestling.n.01', 'name': 'professional_wrestling'}, {'id': 1267, 'synset': 'sumo.n.01', 'name': 'sumo'}, {'id': 1268, 'synset': 'skating.n.01', 'name': 'skating'}, {'id': 1269, 'synset': 'ice_skating.n.01', 'name': 'ice_skating'}, {'id': 1270, 'synset': 'figure_skating.n.01', 'name': 'figure_skating'}, {'id': 1271, 'synset': 'rollerblading.n.01', 'name': 'rollerblading'}, {'id': 1272, 'synset': 'roller_skating.n.01', 'name': 'roller_skating'}, {'id': 1273, 'synset': 'skateboarding.n.01', 'name': 'skateboarding'}, {'id': 1274, 'synset': 'speed_skating.n.01', 'name': 'speed_skating'}, {'id': 1275, 'synset': 'racing.n.01', 'name': 'racing'}, {'id': 1276, 'synset': 'auto_racing.n.01', 'name': 'auto_racing'}, {'id': 1277, 'synset': 'boat_racing.n.01', 'name': 'boat_racing'}, {'id': 1278, 'synset': 'hydroplane_racing.n.01', 'name': 'hydroplane_racing'}, {'id': 1279, 'synset': 'camel_racing.n.01', 'name': 'camel_racing'}, {'id': 1280, 'synset': 'greyhound_racing.n.01', 'name': 'greyhound_racing'}, {'id': 1281, 'synset': 'horse_racing.n.01', 'name': 'horse_racing'}, {'id': 1282, 'synset': 'riding.n.01', 'name': 'riding'}, {'id': 1283, 'synset': 'equestrian_sport.n.01', 'name': 'equestrian_sport'}, {'id': 1284, 'synset': 'pony-trekking.n.01', 'name': 'pony-trekking'}, {'id': 1285, 'synset': 'showjumping.n.01', 'name': 'showjumping'}, {'id': 1286, 'synset': 'cross-country_riding.n.01', 'name': 'cross-country_riding'}, {'id': 1287, 'synset': 'cycling.n.01', 'name': 'cycling'}, {'id': 1288, 'synset': 'bicycling.n.01', 'name': 'bicycling'}, {'id': 1289, 'synset': 'motorcycling.n.01', 'name': 'motorcycling'}, {'id': 1290, 'synset': 'dune_cycling.n.01', 'name': 'dune_cycling'}, {'id': 1291, 'synset': 'blood_sport.n.01', 'name': 'blood_sport'}, {'id': 1292, 'synset': 'bullfighting.n.01', 'name': 'bullfighting'}, {'id': 1293, 'synset': 'cockfighting.n.01', 'name': 'cockfighting'}, {'id': 1294, 'synset': 'hunt.n.08', 'name': 'hunt'}, {'id': 1295, 'synset': 'battue.n.01', 'name': 'battue'}, {'id': 1296, 'synset': 'beagling.n.01', 'name': 'beagling'}, {'id': 1297, 'synset': 'coursing.n.01', 'name': 'coursing'}, {'id': 1298, 'synset': 'deer_hunting.n.01', 'name': 'deer_hunting'}, {'id': 1299, 'synset': 'ducking.n.01', 'name': 'ducking'}, {'id': 1300, 'synset': 'fox_hunting.n.01', 'name': 'fox_hunting'}, {'id': 1301, 'synset': 'pigsticking.n.01', 'name': 'pigsticking'}, {'id': 1302, 'synset': 'fishing.n.01', 'name': 'fishing'}, {'id': 1303, 'synset': 'angling.n.01', 'name': 'angling'}, {'id': 1304, 'synset': 'fly-fishing.n.01', 'name': 'fly-fishing'}, {'id': 1305, 'synset': 'troll.n.04', 'name': 'troll'}, {'id': 1306, 'synset': 'casting.n.03', 'name': 'casting'}, {'id': 1307, 'synset': 'bait_casting.n.01', 'name': 'bait_casting'}, {'id': 1308, 'synset': 'fly_casting.n.01', 'name': 'fly_casting'}, {'id': 1309, 'synset': 'overcast.n.04', 'name': 'overcast'}, {'id': 1310, 'synset': 'surf_casting.n.01', 'name': 'surf_casting'}, {'id': 1311, 'synset': 'day_game.n.01', 'name': 'day_game'}, {'id': 1312, 'synset': 'athletic_game.n.01', 'name': 'athletic_game'}, {'id': 1313, 'synset': 'ice_hockey.n.01', 'name': 'ice_hockey'}, {'id': 1314, 'synset': 'tetherball.n.01', 'name': 'tetherball'}, {'id': 1315, 'synset': 'water_polo.n.01', 'name': 'water_polo'}, {'id': 1316, 'synset': 'outdoor_game.n.01', 'name': 'outdoor_game'}, {'id': 1317, 'synset': 'golf.n.01', 'name': 'golf'}, {'id': 1318, 'synset': 'professional_golf.n.01', 'name': 'professional_golf'}, {'id': 1319, 'synset': 'round_of_golf.n.01', 'name': 'round_of_golf'}, {'id': 1320, 'synset': 'medal_play.n.01', 'name': 'medal_play'}, {'id': 1321, 'synset': 'match_play.n.01', 'name': 'match_play'}, {'id': 1322, 'synset': 'miniature_golf.n.01', 'name': 'miniature_golf'}, {'id': 1323, 'synset': 'croquet.n.01', 'name': 'croquet'}, {'id': 1324, 'synset': 'quoits.n.01', 'name': 'quoits'}, {'id': 1325, 'synset': 'shuffleboard.n.01', 'name': 'shuffleboard'}, {'id': 1326, 'synset': 'field_game.n.01', 'name': 'field_game'}, {'id': 1327, 'synset': 'field_hockey.n.01', 'name': 'field_hockey'}, {'id': 1328, 'synset': 'shinny.n.01', 'name': 'shinny'}, {'id': 1329, 'synset': 'football.n.01', 'name': 'football'}, {'id': 1330, 'synset': 'american_football.n.01', 'name': 'American_football'}, {'id': 1331, 'synset': 'professional_football.n.01', 'name': 'professional_football'}, {'id': 1332, 'synset': 'touch_football.n.01', 'name': 'touch_football'}, {'id': 1333, 'synset': 'hurling.n.01', 'name': 'hurling'}, {'id': 1334, 'synset': 'rugby.n.01', 'name': 'rugby'}, {'id': 1335, 'synset': 'ball_game.n.01', 'name': 'ball_game'}, {'id': 1336, 'synset': 'baseball.n.01', 'name': 'baseball'}, {'id': 1337, 'synset': 'ball.n.11', 'name': 'ball'}, {'id': 1338, 'synset': 'professional_baseball.n.01', 'name': 'professional_baseball'}, {'id': 1339, 'synset': 'hardball.n.02', 'name': 'hardball'}, {'id': 1340, 'synset': 'perfect_game.n.01', 'name': 'perfect_game'}, {'id': 1341, 'synset': 'no-hit_game.n.01', 'name': 'no-hit_game'}, {'id': 1342, 'synset': 'one-hitter.n.01', 'name': 'one-hitter'}, {'id': 1343, 'synset': 'two-hitter.n.01', 'name': 'two-hitter'}, {'id': 1344, 'synset': 'three-hitter.n.01', 'name': 'three-hitter'}, {'id': 1345, 'synset': 'four-hitter.n.01', 'name': 'four-hitter'}, {'id': 1346, 'synset': 'five-hitter.n.01', 'name': 'five-hitter'}, {'id': 1347, 'synset': 'softball.n.02', 'name': 'softball'}, {'id': 1348, 'synset': 'rounders.n.01', 'name': 'rounders'}, {'id': 1349, 'synset': 'stickball.n.01', 'name': 'stickball'}, {'id': 1350, 'synset': 'cricket.n.02', 'name': 'cricket'}, {'id': 1351, 'synset': 'lacrosse.n.01', 'name': 'lacrosse'}, {'id': 1352, 'synset': 'polo.n.02', 'name': 'polo'}, {'id': 1353, 'synset': 'pushball.n.01', 'name': 'pushball'}, {'id': 1354, 'synset': 'soccer.n.01', 'name': 'soccer'}, {'id': 1355, 'synset': 'court_game.n.01', 'name': 'court_game'}, {'id': 1356, 'synset': 'handball.n.02', 'name': 'handball'}, {'id': 1357, 'synset': 'racquetball.n.02', 'name': 'racquetball'}, {'id': 1358, 'synset': 'fives.n.01', 'name': 'fives'}, {'id': 1359, 'synset': 'squash.n.03', 'name': 'squash'}, {'id': 1360, 'synset': 'volleyball.n.01', 'name': 'volleyball'}, {'id': 1361, 'synset': 'jai_alai.n.01', 'name': 'jai_alai'}, {'id': 1362, 'synset': 'badminton.n.01', 'name': 'badminton'}, {'id': 1363, 'synset': 'battledore.n.02', 'name': 'battledore'}, {'id': 1364, 'synset': 'basketball.n.01', 'name': 'basketball'}, {'id': 1365, 'synset': 'professional_basketball.n.01', 'name': 'professional_basketball'}, {'id': 1366, 'synset': 'deck_tennis.n.01', 'name': 'deck_tennis'}, {'id': 1367, 'synset': 'netball.n.01', 'name': 'netball'}, {'id': 1368, 'synset': 'tennis.n.01', 'name': 'tennis'}, {'id': 1369, 'synset': 'professional_tennis.n.01', 'name': 'professional_tennis'}, {'id': 1370, 'synset': 'singles.n.02', 'name': 'singles'}, {'id': 1371, 'synset': 'singles.n.01', 'name': 'singles'}, {'id': 1372, 'synset': 'doubles.n.02', 'name': 'doubles'}, {'id': 1373, 'synset': 'doubles.n.01', 'name': 'doubles'}, {'id': 1374, 'synset': 'royal_tennis.n.01', 'name': 'royal_tennis'}, {'id': 1375, 'synset': 'pallone.n.01', 'name': 'pallone'}, {'id': 1376, 'synset': 'sport.n.01', 'name': 'sport'}, {'id': 1377, 'synset': 'clasp.n.02', 'name': 'clasp'}, {'id': 1378, 'synset': 'judo.n.01', 'name': 'judo'}, {'id': 1379, 'synset': 'team_sport.n.01', 'name': 'team_sport'}, {'id': 1380, 'synset': 'last_supper.n.01', 'name': 'Last_Supper'}, {'id': 1381, 'synset': 'seder.n.01', 'name': 'Seder'}, {'id': 1382, 'synset': 'camping.n.01', 'name': 'camping'}, {'id': 1383, 'synset': 'pest.n.04', 'name': 'pest'}, {'id': 1384, 'synset': 'critter.n.01', 'name': 'critter'}, {'id': 1385, 'synset': 'creepy-crawly.n.01', 'name': 'creepy-crawly'}, {'id': 1386, 'synset': 'darter.n.02', 'name': 'darter'}, {'id': 1387, 'synset': 'peeper.n.03', 'name': 'peeper'}, {'id': 1388, 'synset': 'homeotherm.n.01', 'name': 'homeotherm'}, {'id': 1389, 'synset': 'poikilotherm.n.01', 'name': 'poikilotherm'}, {'id': 1390, 'synset': 'range_animal.n.01', 'name': 'range_animal'}, {'id': 1391, 'synset': 'scavenger.n.03', 'name': 'scavenger'}, {'id': 1392, 'synset': 'bottom-feeder.n.02', 'name': 'bottom-feeder'}, {'id': 1393, 'synset': 'bottom-feeder.n.01', 'name': 'bottom-feeder'}, {'id': 1394, 'synset': 'work_animal.n.01', 'name': 'work_animal'}, {'id': 1395, 'synset': 'beast_of_burden.n.01', 'name': 'beast_of_burden'}, {'id': 1396, 'synset': 'draft_animal.n.01', 'name': 'draft_animal'}, {'id': 1397, 'synset': 'pack_animal.n.01', 'name': 'pack_animal'}, {'id': 1398, 'synset': 'domestic_animal.n.01', 'name': 'domestic_animal'}, {'id': 1399, 'synset': 'feeder.n.01', 'name': 'feeder'}, {'id': 1400, 'synset': 'feeder.n.06', 'name': 'feeder'}, {'id': 1401, 'synset': 'stocker.n.01', 'name': 'stocker'}, {'id': 1402, 'synset': 'hatchling.n.01', 'name': 'hatchling'}, {'id': 1403, 'synset': 'head.n.02', 'name': 'head'}, {'id': 1404, 'synset': 'migrator.n.02', 'name': 'migrator'}, {'id': 1405, 'synset': 'molter.n.01', 'name': 'molter'}, {'id': 1406, 'synset': 'stayer.n.01', 'name': 'stayer'}, {'id': 1407, 'synset': 'stunt.n.02', 'name': 'stunt'}, {'id': 1408, 'synset': 'marine_animal.n.01', 'name': 'marine_animal'}, {'id': 1409, 'synset': 'by-catch.n.01', 'name': 'by-catch'}, {'id': 1410, 'synset': 'female.n.01', 'name': 'female'}, {'id': 1411, 'synset': 'hen.n.04', 'name': 'hen'}, {'id': 1412, 'synset': 'male.n.01', 'name': 'male'}, {'id': 1413, 'synset': 'adult.n.02', 'name': 'adult'}, {'id': 1414, 'synset': 'young.n.01', 'name': 'young'}, {'id': 1415, 'synset': 'orphan.n.04', 'name': 'orphan'}, {'id': 1416, 'synset': 'young_mammal.n.01', 'name': 'young_mammal'}, {'id': 1417, 'synset': 'baby.n.06', 'name': 'baby'}, {'id': 1418, 'synset': 'pup.n.01', 'name': 'pup'}, {'id': 1419, 'synset': 'wolf_pup.n.01', 'name': 'wolf_pup'}, {'id': 1420, 'synset': 'lion_cub.n.01', 'name': 'lion_cub'}, {'id': 1421, 'synset': 'bear_cub.n.01', 'name': 'bear_cub'}, {'id': 1422, 'synset': 'tiger_cub.n.01', 'name': 'tiger_cub'}, {'id': 1423, 'synset': 'kit.n.03', 'name': 'kit'}, {'id': 1424, 'synset': 'suckling.n.03', 'name': 'suckling'}, {'id': 1425, 'synset': 'sire.n.03', 'name': 'sire'}, {'id': 1426, 'synset': 'dam.n.03', 'name': 'dam'}, {'id': 1427, 'synset': 'thoroughbred.n.03', 'name': 'thoroughbred'}, {'id': 1428, 'synset': 'giant.n.01', 'name': 'giant'}, {'id': 1429, 'synset': 'mutant.n.02', 'name': 'mutant'}, {'id': 1430, 'synset': 'carnivore.n.02', 'name': 'carnivore'}, {'id': 1431, 'synset': 'herbivore.n.01', 'name': 'herbivore'}, {'id': 1432, 'synset': 'insectivore.n.02', 'name': 'insectivore'}, {'id': 1433, 'synset': 'acrodont.n.01', 'name': 'acrodont'}, {'id': 1434, 'synset': 'pleurodont.n.01', 'name': 'pleurodont'}, {'id': 1435, 'synset': 'microorganism.n.01', 'name': 'microorganism'}, {'id': 1436, 'synset': 'monohybrid.n.01', 'name': 'monohybrid'}, {'id': 1437, 'synset': 'arbovirus.n.01', 'name': 'arbovirus'}, {'id': 1438, 'synset': 'adenovirus.n.01', 'name': 'adenovirus'}, {'id': 1439, 'synset': 'arenavirus.n.01', 'name': 'arenavirus'}, {'id': 1440, 'synset': 'marburg_virus.n.01', 'name': 'Marburg_virus'}, {'id': 1441, 'synset': 'arenaviridae.n.01', 'name': 'Arenaviridae'}, {'id': 1442, 'synset': 'vesiculovirus.n.01', 'name': 'vesiculovirus'}, {'id': 1443, 'synset': 'reoviridae.n.01', 'name': 'Reoviridae'}, {'id': 1444, 'synset': 'variola_major.n.02', 'name': 'variola_major'}, {'id': 1445, 'synset': 'viroid.n.01', 'name': 'viroid'}, {'id': 1446, 'synset': 'coliphage.n.01', 'name': 'coliphage'}, {'id': 1447, 'synset': 'paramyxovirus.n.01', 'name': 'paramyxovirus'}, {'id': 1448, 'synset': 'poliovirus.n.01', 'name': 'poliovirus'}, {'id': 1449, 'synset': 'herpes.n.02', 'name': 'herpes'}, {'id': 1450, 'synset': 'herpes_simplex_1.n.01', 'name': 'herpes_simplex_1'}, {'id': 1451, 'synset': 'herpes_zoster.n.02', 'name': 'herpes_zoster'}, {'id': 1452, 'synset': 'herpes_varicella_zoster.n.01', 'name': 'herpes_varicella_zoster'}, {'id': 1453, 'synset': 'cytomegalovirus.n.01', 'name': 'cytomegalovirus'}, {'id': 1454, 'synset': 'varicella_zoster_virus.n.01', 'name': 'varicella_zoster_virus'}, {'id': 1455, 'synset': 'polyoma.n.01', 'name': 'polyoma'}, {'id': 1456, 'synset': 'lyssavirus.n.01', 'name': 'lyssavirus'}, {'id': 1457, 'synset': 'reovirus.n.01', 'name': 'reovirus'}, {'id': 1458, 'synset': 'rotavirus.n.01', 'name': 'rotavirus'}, {'id': 1459, 'synset': 'moneran.n.01', 'name': 'moneran'}, {'id': 1460, 'synset': 'archaebacteria.n.01', 'name': 'archaebacteria'}, {'id': 1461, 'synset': 'bacteroid.n.01', 'name': 'bacteroid'}, {'id': 1462, 'synset': 'bacillus_anthracis.n.01', 'name': 'Bacillus_anthracis'}, {'id': 1463, 'synset': 'yersinia_pestis.n.01', 'name': 'Yersinia_pestis'}, {'id': 1464, 'synset': 'brucella.n.01', 'name': 'Brucella'}, {'id': 1465, 'synset': 'spirillum.n.02', 'name': 'spirillum'}, {'id': 1466, 'synset': 'botulinus.n.01', 'name': 'botulinus'}, {'id': 1467, 'synset': 'clostridium_perfringens.n.01', 'name': 'clostridium_perfringens'}, {'id': 1468, 'synset': 'cyanobacteria.n.01', 'name': 'cyanobacteria'}, {'id': 1469, 'synset': 'trichodesmium.n.01', 'name': 'trichodesmium'}, {'id': 1470, 'synset': 'nitric_bacteria.n.01', 'name': 'nitric_bacteria'}, {'id': 1471, 'synset': 'spirillum.n.01', 'name': 'spirillum'}, {'id': 1472, 'synset': 'francisella.n.01', 'name': 'Francisella'}, {'id': 1473, 'synset': 'gonococcus.n.01', 'name': 'gonococcus'}, {'id': 1474, 'synset': 'corynebacterium_diphtheriae.n.01', 'name': 'Corynebacterium_diphtheriae'}, {'id': 1475, 'synset': 'enteric_bacteria.n.01', 'name': 'enteric_bacteria'}, {'id': 1476, 'synset': 'klebsiella.n.01', 'name': 'klebsiella'}, {'id': 1477, 'synset': 'salmonella_typhimurium.n.01', 'name': 'Salmonella_typhimurium'}, {'id': 1478, 'synset': 'typhoid_bacillus.n.01', 'name': 'typhoid_bacillus'}, {'id': 1479, 'synset': 'nitrate_bacterium.n.01', 'name': 'nitrate_bacterium'}, {'id': 1480, 'synset': 'nitrite_bacterium.n.01', 'name': 'nitrite_bacterium'}, {'id': 1481, 'synset': 'actinomycete.n.01', 'name': 'actinomycete'}, {'id': 1482, 'synset': 'streptomyces.n.01', 'name': 'streptomyces'}, {'id': 1483, 'synset': 'streptomyces_erythreus.n.01', 'name': 'Streptomyces_erythreus'}, {'id': 1484, 'synset': 'streptomyces_griseus.n.01', 'name': 'Streptomyces_griseus'}, {'id': 1485, 'synset': 'tubercle_bacillus.n.01', 'name': 'tubercle_bacillus'}, {'id': 1486, 'synset': 'pus-forming_bacteria.n.01', 'name': 'pus-forming_bacteria'}, {'id': 1487, 'synset': 'streptobacillus.n.01', 'name': 'streptobacillus'}, {'id': 1488, 'synset': 'myxobacteria.n.01', 'name': 'myxobacteria'}, {'id': 1489, 'synset': 'staphylococcus.n.01', 'name': 'staphylococcus'}, {'id': 1490, 'synset': 'diplococcus.n.01', 'name': 'diplococcus'}, {'id': 1491, 'synset': 'pneumococcus.n.01', 'name': 'pneumococcus'}, {'id': 1492, 'synset': 'streptococcus.n.01', 'name': 'streptococcus'}, {'id': 1493, 'synset': 'spirochete.n.01', 'name': 'spirochete'}, {'id': 1494, 'synset': 'planktonic_algae.n.01', 'name': 'planktonic_algae'}, {'id': 1495, 'synset': 'zooplankton.n.01', 'name': 'zooplankton'}, {'id': 1496, 'synset': 'parasite.n.01', 'name': 'parasite'}, {'id': 1497, 'synset': 'endoparasite.n.01', 'name': 'endoparasite'}, {'id': 1498, 'synset': 'ectoparasite.n.01', 'name': 'ectoparasite'}, {'id': 1499, 'synset': 'pathogen.n.01', 'name': 'pathogen'}, {'id': 1500, 'synset': 'commensal.n.01', 'name': 'commensal'}, {'id': 1501, 'synset': 'myrmecophile.n.01', 'name': 'myrmecophile'}, {'id': 1502, 'synset': 'protoctist.n.01', 'name': 'protoctist'}, {'id': 1503, 'synset': 'protozoan.n.01', 'name': 'protozoan'}, {'id': 1504, 'synset': 'sarcodinian.n.01', 'name': 'sarcodinian'}, {'id': 1505, 'synset': 'heliozoan.n.01', 'name': 'heliozoan'}, {'id': 1506, 'synset': 'endameba.n.01', 'name': 'endameba'}, {'id': 1507, 'synset': 'ameba.n.01', 'name': 'ameba'}, {'id': 1508, 'synset': 'globigerina.n.01', 'name': 'globigerina'}, {'id': 1509, 'synset': 'testacean.n.01', 'name': 'testacean'}, {'id': 1510, 'synset': 'arcella.n.01', 'name': 'arcella'}, {'id': 1511, 'synset': 'difflugia.n.01', 'name': 'difflugia'}, {'id': 1512, 'synset': 'ciliate.n.01', 'name': 'ciliate'}, {'id': 1513, 'synset': 'paramecium.n.01', 'name': 'paramecium'}, {'id': 1514, 'synset': 'stentor.n.03', 'name': 'stentor'}, {'id': 1515, 'synset': 'alga.n.01', 'name': 'alga'}, {'id': 1516, 'synset': 'arame.n.01', 'name': 'arame'}, {'id': 1517, 'synset': 'seagrass.n.01', 'name': 'seagrass'}, {'id': 1518, 'synset': 'golden_algae.n.01', 'name': 'golden_algae'}, {'id': 1519, 'synset': 'yellow-green_algae.n.01', 'name': 'yellow-green_algae'}, {'id': 1520, 'synset': 'brown_algae.n.01', 'name': 'brown_algae'}, {'id': 1521, 'synset': 'kelp.n.01', 'name': 'kelp'}, {'id': 1522, 'synset': 'fucoid.n.02', 'name': 'fucoid'}, {'id': 1523, 'synset': 'fucoid.n.01', 'name': 'fucoid'}, {'id': 1524, 'synset': 'fucus.n.01', 'name': 'fucus'}, {'id': 1525, 'synset': 'bladderwrack.n.01', 'name': 'bladderwrack'}, {'id': 1526, 'synset': 'green_algae.n.01', 'name': 'green_algae'}, {'id': 1527, 'synset': 'pond_scum.n.01', 'name': 'pond_scum'}, {'id': 1528, 'synset': 'chlorella.n.01', 'name': 'chlorella'}, {'id': 1529, 'synset': 'stonewort.n.01', 'name': 'stonewort'}, {'id': 1530, 'synset': 'desmid.n.01', 'name': 'desmid'}, {'id': 1531, 'synset': 'sea_moss.n.02', 'name': 'sea_moss'}, {'id': 1532, 'synset': 'eukaryote.n.01', 'name': 'eukaryote'}, {'id': 1533, 'synset': 'prokaryote.n.01', 'name': 'prokaryote'}, {'id': 1534, 'synset': 'zooid.n.01', 'name': 'zooid'}, {'id': 1535, 'synset': 'leishmania.n.01', 'name': 'Leishmania'}, {'id': 1536, 'synset': 'zoomastigote.n.01', 'name': 'zoomastigote'}, {'id': 1537, 'synset': 'polymastigote.n.01', 'name': 'polymastigote'}, {'id': 1538, 'synset': 'costia.n.01', 'name': 'costia'}, {'id': 1539, 'synset': 'giardia.n.01', 'name': 'giardia'}, {'id': 1540, 'synset': 'cryptomonad.n.01', 'name': 'cryptomonad'}, {'id': 1541, 'synset': 'sporozoan.n.01', 'name': 'sporozoan'}, {'id': 1542, 'synset': 'sporozoite.n.01', 'name': 'sporozoite'}, {'id': 1543, 'synset': 'trophozoite.n.01', 'name': 'trophozoite'}, {'id': 1544, 'synset': 'merozoite.n.01', 'name': 'merozoite'}, {'id': 1545, 'synset': 'coccidium.n.01', 'name': 'coccidium'}, {'id': 1546, 'synset': 'gregarine.n.01', 'name': 'gregarine'}, {'id': 1547, 'synset': 'plasmodium.n.02', 'name': 'plasmodium'}, {'id': 1548, 'synset': 'leucocytozoan.n.01', 'name': 'leucocytozoan'}, {'id': 1549, 'synset': 'microsporidian.n.01', 'name': 'microsporidian'}, {'id': 1550, 'synset': 'ostariophysi.n.01', 'name': 'Ostariophysi'}, {'id': 1551, 'synset': 'cypriniform_fish.n.01', 'name': 'cypriniform_fish'}, {'id': 1552, 'synset': 'loach.n.01', 'name': 'loach'}, {'id': 1553, 'synset': 'cyprinid.n.01', 'name': 'cyprinid'}, {'id': 1554, 'synset': 'carp.n.02', 'name': 'carp'}, {'id': 1555, 'synset': 'domestic_carp.n.01', 'name': 'domestic_carp'}, {'id': 1556, 'synset': 'leather_carp.n.01', 'name': 'leather_carp'}, {'id': 1557, 'synset': 'mirror_carp.n.01', 'name': 'mirror_carp'}, {'id': 1558, 'synset': 'european_bream.n.01', 'name': 'European_bream'}, {'id': 1559, 'synset': 'tench.n.01', 'name': 'tench'}, {'id': 1560, 'synset': 'dace.n.01', 'name': 'dace'}, {'id': 1561, 'synset': 'chub.n.01', 'name': 'chub'}, {'id': 1562, 'synset': 'shiner.n.04', 'name': 'shiner'}, {'id': 1563, 'synset': 'common_shiner.n.01', 'name': 'common_shiner'}, {'id': 1564, 'synset': 'roach.n.05', 'name': 'roach'}, {'id': 1565, 'synset': 'rudd.n.01', 'name': 'rudd'}, {'id': 1566, 'synset': 'minnow.n.01', 'name': 'minnow'}, {'id': 1567, 'synset': 'gudgeon.n.02', 'name': 'gudgeon'}, {'id': 1568, 'synset': 'crucian_carp.n.01', 'name': 'crucian_carp'}, {'id': 1569, 'synset': 'electric_eel.n.01', 'name': 'electric_eel'}, {'id': 1570, 'synset': 'catostomid.n.01', 'name': 'catostomid'}, {'id': 1571, 'synset': 'buffalo_fish.n.01', 'name': 'buffalo_fish'}, {'id': 1572, 'synset': 'black_buffalo.n.01', 'name': 'black_buffalo'}, {'id': 1573, 'synset': 'hog_sucker.n.01', 'name': 'hog_sucker'}, {'id': 1574, 'synset': 'redhorse.n.01', 'name': 'redhorse'}, {'id': 1575, 'synset': 'cyprinodont.n.01', 'name': 'cyprinodont'}, {'id': 1576, 'synset': 'killifish.n.01', 'name': 'killifish'}, {'id': 1577, 'synset': 'mummichog.n.01', 'name': 'mummichog'}, {'id': 1578, 'synset': 'striped_killifish.n.01', 'name': 'striped_killifish'}, {'id': 1579, 'synset': 'rivulus.n.01', 'name': 'rivulus'}, {'id': 1580, 'synset': 'flagfish.n.01', 'name': 'flagfish'}, {'id': 1581, 'synset': 'swordtail.n.01', 'name': 'swordtail'}, {'id': 1582, 'synset': 'guppy.n.01', 'name': 'guppy'}, {'id': 1583, 'synset': 'topminnow.n.01', 'name': 'topminnow'}, {'id': 1584, 'synset': 'mosquitofish.n.01', 'name': 'mosquitofish'}, {'id': 1585, 'synset': 'platy.n.01', 'name': 'platy'}, {'id': 1586, 'synset': 'mollie.n.01', 'name': 'mollie'}, {'id': 1587, 'synset': 'squirrelfish.n.02', 'name': 'squirrelfish'}, {'id': 1588, 'synset': 'reef_squirrelfish.n.01', 'name': 'reef_squirrelfish'}, {'id': 1589, 'synset': 'deepwater_squirrelfish.n.01', 'name': 'deepwater_squirrelfish'}, {'id': 1590, 'synset': 'holocentrus_ascensionis.n.01', 'name': 'Holocentrus_ascensionis'}, {'id': 1591, 'synset': 'soldierfish.n.01', 'name': 'soldierfish'}, {'id': 1592, 'synset': 'anomalops.n.01', 'name': 'anomalops'}, {'id': 1593, 'synset': 'flashlight_fish.n.01', 'name': 'flashlight_fish'}, {'id': 1594, 'synset': 'john_dory.n.01', 'name': 'John_Dory'}, {'id': 1595, 'synset': 'boarfish.n.02', 'name': 'boarfish'}, {'id': 1596, 'synset': 'boarfish.n.01', 'name': 'boarfish'}, {'id': 1597, 'synset': 'cornetfish.n.01', 'name': 'cornetfish'}, {'id': 1598, 'synset': 'stickleback.n.01', 'name': 'stickleback'}, {'id': 1599, 'synset': 'three-spined_stickleback.n.01', 'name': 'three-spined_stickleback'}, {'id': 1600, 'synset': 'ten-spined_stickleback.n.01', 'name': 'ten-spined_stickleback'}, {'id': 1601, 'synset': 'pipefish.n.01', 'name': 'pipefish'}, {'id': 1602, 'synset': 'dwarf_pipefish.n.01', 'name': 'dwarf_pipefish'}, {'id': 1603, 'synset': 'deepwater_pipefish.n.01', 'name': 'deepwater_pipefish'}, {'id': 1604, 'synset': 'snipefish.n.01', 'name': 'snipefish'}, {'id': 1605, 'synset': 'shrimpfish.n.01', 'name': 'shrimpfish'}, {'id': 1606, 'synset': 'trumpetfish.n.01', 'name': 'trumpetfish'}, {'id': 1607, 'synset': 'pellicle.n.01', 'name': 'pellicle'}, {'id': 1608, 'synset': 'embryo.n.02', 'name': 'embryo'}, {'id': 1609, 'synset': 'fetus.n.01', 'name': 'fetus'}, {'id': 1610, 'synset': 'abortus.n.01', 'name': 'abortus'}, {'id': 1611, 'synset': 'spawn.n.01', 'name': 'spawn'}, {'id': 1612, 'synset': 'blastula.n.01', 'name': 'blastula'}, {'id': 1613, 'synset': 'blastocyst.n.01', 'name': 'blastocyst'}, {'id': 1614, 'synset': 'gastrula.n.01', 'name': 'gastrula'}, {'id': 1615, 'synset': 'morula.n.01', 'name': 'morula'}, {'id': 1616, 'synset': 'yolk.n.02', 'name': 'yolk'}, {'id': 1617, 'synset': 'chordate.n.01', 'name': 'chordate'}, {'id': 1618, 'synset': 'cephalochordate.n.01', 'name': 'cephalochordate'}, {'id': 1619, 'synset': 'lancelet.n.01', 'name': 'lancelet'}, {'id': 1620, 'synset': 'tunicate.n.01', 'name': 'tunicate'}, {'id': 1621, 'synset': 'ascidian.n.01', 'name': 'ascidian'}, {'id': 1622, 'synset': 'sea_squirt.n.01', 'name': 'sea_squirt'}, {'id': 1623, 'synset': 'salp.n.01', 'name': 'salp'}, {'id': 1624, 'synset': 'doliolum.n.01', 'name': 'doliolum'}, {'id': 1625, 'synset': 'larvacean.n.01', 'name': 'larvacean'}, {'id': 1626, 'synset': 'appendicularia.n.01', 'name': 'appendicularia'}, {'id': 1627, 'synset': 'ascidian_tadpole.n.01', 'name': 'ascidian_tadpole'}, {'id': 1628, 'synset': 'vertebrate.n.01', 'name': 'vertebrate'}, {'id': 1629, 'synset': 'amniota.n.01', 'name': 'Amniota'}, {'id': 1630, 'synset': 'amniote.n.01', 'name': 'amniote'}, {'id': 1631, 'synset': 'aquatic_vertebrate.n.01', 'name': 'aquatic_vertebrate'}, {'id': 1632, 'synset': 'jawless_vertebrate.n.01', 'name': 'jawless_vertebrate'}, {'id': 1633, 'synset': 'ostracoderm.n.01', 'name': 'ostracoderm'}, {'id': 1634, 'synset': 'heterostracan.n.01', 'name': 'heterostracan'}, {'id': 1635, 'synset': 'anaspid.n.01', 'name': 'anaspid'}, {'id': 1636, 'synset': 'conodont.n.02', 'name': 'conodont'}, {'id': 1637, 'synset': 'cyclostome.n.01', 'name': 'cyclostome'}, {'id': 1638, 'synset': 'lamprey.n.01', 'name': 'lamprey'}, {'id': 1639, 'synset': 'sea_lamprey.n.01', 'name': 'sea_lamprey'}, {'id': 1640, 'synset': 'hagfish.n.01', 'name': 'hagfish'}, {'id': 1641, 'synset': 'myxine_glutinosa.n.01', 'name': 'Myxine_glutinosa'}, {'id': 1642, 'synset': 'eptatretus.n.01', 'name': 'eptatretus'}, {'id': 1643, 'synset': 'gnathostome.n.01', 'name': 'gnathostome'}, {'id': 1644, 'synset': 'placoderm.n.01', 'name': 'placoderm'}, {'id': 1645, 'synset': 'cartilaginous_fish.n.01', 'name': 'cartilaginous_fish'}, {'id': 1646, 'synset': 'holocephalan.n.01', 'name': 'holocephalan'}, {'id': 1647, 'synset': 'chimaera.n.03', 'name': 'chimaera'}, {'id': 1648, 'synset': 'rabbitfish.n.01', 'name': 'rabbitfish'}, {'id': 1649, 'synset': 'elasmobranch.n.01', 'name': 'elasmobranch'}, {'id': 1650, 'synset': 'cow_shark.n.01', 'name': 'cow_shark'}, {'id': 1651, 'synset': 'mackerel_shark.n.01', 'name': 'mackerel_shark'}, {'id': 1652, 'synset': 'porbeagle.n.01', 'name': 'porbeagle'}, {'id': 1653, 'synset': 'mako.n.01', 'name': 'mako'}, {'id': 1654, 'synset': 'shortfin_mako.n.01', 'name': 'shortfin_mako'}, {'id': 1655, 'synset': 'longfin_mako.n.01', 'name': 'longfin_mako'}, {'id': 1656, 'synset': 'bonito_shark.n.01', 'name': 'bonito_shark'}, {'id': 1657, 'synset': 'great_white_shark.n.01', 'name': 'great_white_shark'}, {'id': 1658, 'synset': 'basking_shark.n.01', 'name': 'basking_shark'}, {'id': 1659, 'synset': 'thresher.n.02', 'name': 'thresher'}, {'id': 1660, 'synset': 'carpet_shark.n.01', 'name': 'carpet_shark'}, {'id': 1661, 'synset': 'nurse_shark.n.01', 'name': 'nurse_shark'}, {'id': 1662, 'synset': 'sand_tiger.n.01', 'name': 'sand_tiger'}, {'id': 1663, 'synset': 'whale_shark.n.01', 'name': 'whale_shark'}, {'id': 1664, 'synset': 'requiem_shark.n.01', 'name': 'requiem_shark'}, {'id': 1665, 'synset': 'bull_shark.n.01', 'name': 'bull_shark'}, {'id': 1666, 'synset': 'sandbar_shark.n.02', 'name': 'sandbar_shark'}, {'id': 1667, 'synset': 'blacktip_shark.n.01', 'name': 'blacktip_shark'}, {'id': 1668, 'synset': 'whitetip_shark.n.02', 'name': 'whitetip_shark'}, {'id': 1669, 'synset': 'dusky_shark.n.01', 'name': 'dusky_shark'}, {'id': 1670, 'synset': 'lemon_shark.n.01', 'name': 'lemon_shark'}, {'id': 1671, 'synset': 'blue_shark.n.01', 'name': 'blue_shark'}, {'id': 1672, 'synset': 'tiger_shark.n.01', 'name': 'tiger_shark'}, {'id': 1673, 'synset': 'soupfin_shark.n.01', 'name': 'soupfin_shark'}, {'id': 1674, 'synset': 'dogfish.n.02', 'name': 'dogfish'}, {'id': 1675, 'synset': 'smooth_dogfish.n.01', 'name': 'smooth_dogfish'}, {'id': 1676, 'synset': 'smoothhound.n.01', 'name': 'smoothhound'}, {'id': 1677, 'synset': 'american_smooth_dogfish.n.01', 'name': 'American_smooth_dogfish'}, {'id': 1678, 'synset': 'florida_smoothhound.n.01', 'name': 'Florida_smoothhound'}, {'id': 1679, 'synset': 'whitetip_shark.n.01', 'name': 'whitetip_shark'}, {'id': 1680, 'synset': 'spiny_dogfish.n.01', 'name': 'spiny_dogfish'}, {'id': 1681, 'synset': 'atlantic_spiny_dogfish.n.01', 'name': 'Atlantic_spiny_dogfish'}, {'id': 1682, 'synset': 'pacific_spiny_dogfish.n.01', 'name': 'Pacific_spiny_dogfish'}, {'id': 1683, 'synset': 'hammerhead.n.03', 'name': 'hammerhead'}, {'id': 1684, 'synset': 'smooth_hammerhead.n.01', 'name': 'smooth_hammerhead'}, {'id': 1685, 'synset': 'smalleye_hammerhead.n.01', 'name': 'smalleye_hammerhead'}, {'id': 1686, 'synset': 'shovelhead.n.01', 'name': 'shovelhead'}, {'id': 1687, 'synset': 'angel_shark.n.01', 'name': 'angel_shark'}, {'id': 1688, 'synset': 'ray.n.07', 'name': 'ray'}, {'id': 1689, 'synset': 'electric_ray.n.01', 'name': 'electric_ray'}, {'id': 1690, 'synset': 'sawfish.n.01', 'name': 'sawfish'}, {'id': 1691, 'synset': 'smalltooth_sawfish.n.01', 'name': 'smalltooth_sawfish'}, {'id': 1692, 'synset': 'guitarfish.n.01', 'name': 'guitarfish'}, {'id': 1693, 'synset': 'stingray.n.01', 'name': 'stingray'}, {'id': 1694, 'synset': 'roughtail_stingray.n.01', 'name': 'roughtail_stingray'}, {'id': 1695, 'synset': 'butterfly_ray.n.01', 'name': 'butterfly_ray'}, {'id': 1696, 'synset': 'eagle_ray.n.01', 'name': 'eagle_ray'}, {'id': 1697, 'synset': 'spotted_eagle_ray.n.01', 'name': 'spotted_eagle_ray'}, {'id': 1698, 'synset': 'cownose_ray.n.01', 'name': 'cownose_ray'}, {'id': 1699, 'synset': 'manta.n.02', 'name': 'manta'}, {'id': 1700, 'synset': 'atlantic_manta.n.01', 'name': 'Atlantic_manta'}, {'id': 1701, 'synset': 'devil_ray.n.01', 'name': 'devil_ray'}, {'id': 1702, 'synset': 'skate.n.02', 'name': 'skate'}, {'id': 1703, 'synset': 'grey_skate.n.01', 'name': 'grey_skate'}, {'id': 1704, 'synset': 'little_skate.n.01', 'name': 'little_skate'}, {'id': 1705, 'synset': 'thorny_skate.n.01', 'name': 'thorny_skate'}, {'id': 1706, 'synset': 'barndoor_skate.n.01', 'name': 'barndoor_skate'}, {'id': 1707, 'synset': 'dickeybird.n.01', 'name': 'dickeybird'}, {'id': 1708, 'synset': 'fledgling.n.02', 'name': 'fledgling'}, {'id': 1709, 'synset': 'nestling.n.01', 'name': 'nestling'}, {'id': 1710, 'synset': 'cock.n.05', 'name': 'cock'}, {'id': 1711, 'synset': 'gamecock.n.01', 'name': 'gamecock'}, {'id': 1712, 'synset': 'hen.n.02', 'name': 'hen'}, {'id': 1713, 'synset': 'nester.n.02', 'name': 'nester'}, {'id': 1714, 'synset': 'night_bird.n.01', 'name': 'night_bird'}, {'id': 1715, 'synset': 'night_raven.n.02', 'name': 'night_raven'}, {'id': 1716, 'synset': 'bird_of_passage.n.02', 'name': 'bird_of_passage'}, {'id': 1717, 'synset': 'archaeopteryx.n.01', 'name': 'archaeopteryx'}, {'id': 1718, 'synset': 'archaeornis.n.01', 'name': 'archaeornis'}, {'id': 1719, 'synset': 'ratite.n.01', 'name': 'ratite'}, {'id': 1720, 'synset': 'carinate.n.01', 'name': 'carinate'}, {'id': 1721, 'synset': 'cassowary.n.01', 'name': 'cassowary'}, {'id': 1722, 'synset': 'emu.n.02', 'name': 'emu'}, {'id': 1723, 'synset': 'kiwi.n.04', 'name': 'kiwi'}, {'id': 1724, 'synset': 'rhea.n.03', 'name': 'rhea'}, {'id': 1725, 'synset': 'rhea.n.02', 'name': 'rhea'}, {'id': 1726, 'synset': 'elephant_bird.n.01', 'name': 'elephant_bird'}, {'id': 1727, 'synset': 'moa.n.01', 'name': 'moa'}, {'id': 1728, 'synset': 'passerine.n.01', 'name': 'passerine'}, {'id': 1729, 'synset': 'nonpasserine_bird.n.01', 'name': 'nonpasserine_bird'}, {'id': 1730, 'synset': 'oscine.n.01', 'name': 'oscine'}, {'id': 1731, 'synset': 'songbird.n.01', 'name': 'songbird'}, {'id': 1732, 'synset': 'honey_eater.n.01', 'name': 'honey_eater'}, {'id': 1733, 'synset': 'accentor.n.01', 'name': 'accentor'}, {'id': 1734, 'synset': 'hedge_sparrow.n.01', 'name': 'hedge_sparrow'}, {'id': 1735, 'synset': 'lark.n.03', 'name': 'lark'}, {'id': 1736, 'synset': 'skylark.n.01', 'name': 'skylark'}, {'id': 1737, 'synset': 'wagtail.n.01', 'name': 'wagtail'}, {'id': 1738, 'synset': 'pipit.n.01', 'name': 'pipit'}, {'id': 1739, 'synset': 'meadow_pipit.n.01', 'name': 'meadow_pipit'}, {'id': 1740, 'synset': 'finch.n.01', 'name': 'finch'}, {'id': 1741, 'synset': 'chaffinch.n.01', 'name': 'chaffinch'}, {'id': 1742, 'synset': 'brambling.n.01', 'name': 'brambling'}, {'id': 1743, 'synset': 'goldfinch.n.02', 'name': 'goldfinch'}, {'id': 1744, 'synset': 'linnet.n.02', 'name': 'linnet'}, {'id': 1745, 'synset': 'siskin.n.01', 'name': 'siskin'}, {'id': 1746, 'synset': 'red_siskin.n.01', 'name': 'red_siskin'}, {'id': 1747, 'synset': 'redpoll.n.02', 'name': 'redpoll'}, {'id': 1748, 'synset': 'redpoll.n.01', 'name': 'redpoll'}, {'id': 1749, 'synset': 'new_world_goldfinch.n.01', 'name': 'New_World_goldfinch'}, {'id': 1750, 'synset': 'pine_siskin.n.01', 'name': 'pine_siskin'}, {'id': 1751, 'synset': 'house_finch.n.01', 'name': 'house_finch'}, {'id': 1752, 'synset': 'purple_finch.n.01', 'name': 'purple_finch'}, {'id': 1753, 'synset': 'canary.n.04', 'name': 'canary'}, {'id': 1754, 'synset': 'common_canary.n.01', 'name': 'common_canary'}, {'id': 1755, 'synset': 'serin.n.01', 'name': 'serin'}, {'id': 1756, 'synset': 'crossbill.n.01', 'name': 'crossbill'}, {'id': 1757, 'synset': 'bullfinch.n.02', 'name': 'bullfinch'}, {'id': 1758, 'synset': 'junco.n.01', 'name': 'junco'}, {'id': 1759, 'synset': 'dark-eyed_junco.n.01', 'name': 'dark-eyed_junco'}, {'id': 1760, 'synset': 'new_world_sparrow.n.01', 'name': 'New_World_sparrow'}, {'id': 1761, 'synset': 'vesper_sparrow.n.01', 'name': 'vesper_sparrow'}, {'id': 1762, 'synset': 'white-throated_sparrow.n.01', 'name': 'white-throated_sparrow'}, {'id': 1763, 'synset': 'white-crowned_sparrow.n.01', 'name': 'white-crowned_sparrow'}, {'id': 1764, 'synset': 'chipping_sparrow.n.01', 'name': 'chipping_sparrow'}, {'id': 1765, 'synset': 'field_sparrow.n.01', 'name': 'field_sparrow'}, {'id': 1766, 'synset': 'tree_sparrow.n.02', 'name': 'tree_sparrow'}, {'id': 1767, 'synset': 'song_sparrow.n.01', 'name': 'song_sparrow'}, {'id': 1768, 'synset': 'swamp_sparrow.n.01', 'name': 'swamp_sparrow'}, {'id': 1769, 'synset': 'bunting.n.02', 'name': 'bunting'}, {'id': 1770, 'synset': 'indigo_bunting.n.01', 'name': 'indigo_bunting'}, {'id': 1771, 'synset': 'ortolan.n.01', 'name': 'ortolan'}, {'id': 1772, 'synset': 'reed_bunting.n.01', 'name': 'reed_bunting'}, {'id': 1773, 'synset': 'yellowhammer.n.02', 'name': 'yellowhammer'}, {'id': 1774, 'synset': 'yellow-breasted_bunting.n.01', 'name': 'yellow-breasted_bunting'}, {'id': 1775, 'synset': 'snow_bunting.n.01', 'name': 'snow_bunting'}, {'id': 1776, 'synset': 'honeycreeper.n.02', 'name': 'honeycreeper'}, {'id': 1777, 'synset': 'banana_quit.n.01', 'name': 'banana_quit'}, {'id': 1778, 'synset': 'sparrow.n.01', 'name': 'sparrow'}, {'id': 1779, 'synset': 'english_sparrow.n.01', 'name': 'English_sparrow'}, {'id': 1780, 'synset': 'tree_sparrow.n.01', 'name': 'tree_sparrow'}, {'id': 1781, 'synset': 'grosbeak.n.01', 'name': 'grosbeak'}, {'id': 1782, 'synset': 'evening_grosbeak.n.01', 'name': 'evening_grosbeak'}, {'id': 1783, 'synset': 'hawfinch.n.01', 'name': 'hawfinch'}, {'id': 1784, 'synset': 'pine_grosbeak.n.01', 'name': 'pine_grosbeak'}, {'id': 1785, 'synset': 'cardinal.n.04', 'name': 'cardinal'}, {'id': 1786, 'synset': 'pyrrhuloxia.n.01', 'name': 'pyrrhuloxia'}, {'id': 1787, 'synset': 'towhee.n.01', 'name': 'towhee'}, {'id': 1788, 'synset': 'chewink.n.01', 'name': 'chewink'}, {'id': 1789, 'synset': 'green-tailed_towhee.n.01', 'name': 'green-tailed_towhee'}, {'id': 1790, 'synset': 'weaver.n.02', 'name': 'weaver'}, {'id': 1791, 'synset': 'baya.n.01', 'name': 'baya'}, {'id': 1792, 'synset': 'whydah.n.01', 'name': 'whydah'}, {'id': 1793, 'synset': 'java_sparrow.n.01', 'name': 'Java_sparrow'}, {'id': 1794, 'synset': 'avadavat.n.01', 'name': 'avadavat'}, {'id': 1795, 'synset': 'grassfinch.n.01', 'name': 'grassfinch'}, {'id': 1796, 'synset': 'zebra_finch.n.01', 'name': 'zebra_finch'}, {'id': 1797, 'synset': 'honeycreeper.n.01', 'name': 'honeycreeper'}, {'id': 1798, 'synset': 'lyrebird.n.01', 'name': 'lyrebird'}, {'id': 1799, 'synset': 'scrubbird.n.01', 'name': 'scrubbird'}, {'id': 1800, 'synset': 'broadbill.n.04', 'name': 'broadbill'}, {'id': 1801, 'synset': 'tyrannid.n.01', 'name': 'tyrannid'}, {'id': 1802, 'synset': 'new_world_flycatcher.n.01', 'name': 'New_World_flycatcher'}, {'id': 1803, 'synset': 'kingbird.n.01', 'name': 'kingbird'}, {'id': 1804, 'synset': 'arkansas_kingbird.n.01', 'name': 'Arkansas_kingbird'}, {'id': 1805, 'synset': "cassin's_kingbird.n.01", 'name': "Cassin's_kingbird"}, {'id': 1806, 'synset': 'eastern_kingbird.n.01', 'name': 'eastern_kingbird'}, {'id': 1807, 'synset': 'grey_kingbird.n.01', 'name': 'grey_kingbird'}, {'id': 1808, 'synset': 'pewee.n.01', 'name': 'pewee'}, {'id': 1809, 'synset': 'western_wood_pewee.n.01', 'name': 'western_wood_pewee'}, {'id': 1810, 'synset': 'phoebe.n.03', 'name': 'phoebe'}, {'id': 1811, 'synset': 'vermillion_flycatcher.n.01', 'name': 'vermillion_flycatcher'}, {'id': 1812, 'synset': 'cotinga.n.01', 'name': 'cotinga'}, {'id': 1813, 'synset': 'cock_of_the_rock.n.02', 'name': 'cock_of_the_rock'}, {'id': 1814, 'synset': 'cock_of_the_rock.n.01', 'name': 'cock_of_the_rock'}, {'id': 1815, 'synset': 'manakin.n.03', 'name': 'manakin'}, {'id': 1816, 'synset': 'bellbird.n.01', 'name': 'bellbird'}, {'id': 1817, 'synset': 'umbrella_bird.n.01', 'name': 'umbrella_bird'}, {'id': 1818, 'synset': 'ovenbird.n.02', 'name': 'ovenbird'}, {'id': 1819, 'synset': 'antbird.n.01', 'name': 'antbird'}, {'id': 1820, 'synset': 'ant_thrush.n.01', 'name': 'ant_thrush'}, {'id': 1821, 'synset': 'ant_shrike.n.01', 'name': 'ant_shrike'}, {'id': 1822, 'synset': 'spotted_antbird.n.01', 'name': 'spotted_antbird'}, {'id': 1823, 'synset': 'woodhewer.n.01', 'name': 'woodhewer'}, {'id': 1824, 'synset': 'pitta.n.01', 'name': 'pitta'}, {'id': 1825, 'synset': 'scissortail.n.01', 'name': 'scissortail'}, {'id': 1826, 'synset': 'old_world_flycatcher.n.01', 'name': 'Old_World_flycatcher'}, {'id': 1827, 'synset': 'spotted_flycatcher.n.01', 'name': 'spotted_flycatcher'}, {'id': 1828, 'synset': 'thickhead.n.01', 'name': 'thickhead'}, {'id': 1829, 'synset': 'thrush.n.03', 'name': 'thrush'}, {'id': 1830, 'synset': 'missel_thrush.n.01', 'name': 'missel_thrush'}, {'id': 1831, 'synset': 'song_thrush.n.01', 'name': 'song_thrush'}, {'id': 1832, 'synset': 'fieldfare.n.01', 'name': 'fieldfare'}, {'id': 1833, 'synset': 'redwing.n.02', 'name': 'redwing'}, {'id': 1834, 'synset': 'blackbird.n.02', 'name': 'blackbird'}, {'id': 1835, 'synset': 'ring_ouzel.n.01', 'name': 'ring_ouzel'}, {'id': 1836, 'synset': 'robin.n.02', 'name': 'robin'}, {'id': 1837, 'synset': 'clay-colored_robin.n.01', 'name': 'clay-colored_robin'}, {'id': 1838, 'synset': 'hermit_thrush.n.01', 'name': 'hermit_thrush'}, {'id': 1839, 'synset': 'veery.n.01', 'name': 'veery'}, {'id': 1840, 'synset': 'wood_thrush.n.01', 'name': 'wood_thrush'}, {'id': 1841, 'synset': 'nightingale.n.01', 'name': 'nightingale'}, {'id': 1842, 'synset': 'thrush_nightingale.n.01', 'name': 'thrush_nightingale'}, {'id': 1843, 'synset': 'bulbul.n.01', 'name': 'bulbul'}, {'id': 1844, 'synset': 'old_world_chat.n.01', 'name': 'Old_World_chat'}, {'id': 1845, 'synset': 'stonechat.n.01', 'name': 'stonechat'}, {'id': 1846, 'synset': 'whinchat.n.01', 'name': 'whinchat'}, {'id': 1847, 'synset': 'solitaire.n.03', 'name': 'solitaire'}, {'id': 1848, 'synset': 'redstart.n.02', 'name': 'redstart'}, {'id': 1849, 'synset': 'wheatear.n.01', 'name': 'wheatear'}, {'id': 1850, 'synset': 'bluebird.n.02', 'name': 'bluebird'}, {'id': 1851, 'synset': 'robin.n.01', 'name': 'robin'}, {'id': 1852, 'synset': 'bluethroat.n.01', 'name': 'bluethroat'}, {'id': 1853, 'synset': 'warbler.n.02', 'name': 'warbler'}, {'id': 1854, 'synset': 'gnatcatcher.n.01', 'name': 'gnatcatcher'}, {'id': 1855, 'synset': 'kinglet.n.01', 'name': 'kinglet'}, {'id': 1856, 'synset': 'goldcrest.n.01', 'name': 'goldcrest'}, {'id': 1857, 'synset': 'gold-crowned_kinglet.n.01', 'name': 'gold-crowned_kinglet'}, {'id': 1858, 'synset': 'ruby-crowned_kinglet.n.01', 'name': 'ruby-crowned_kinglet'}, {'id': 1859, 'synset': 'old_world_warbler.n.01', 'name': 'Old_World_warbler'}, {'id': 1860, 'synset': 'blackcap.n.04', 'name': 'blackcap'}, {'id': 1861, 'synset': 'greater_whitethroat.n.01', 'name': 'greater_whitethroat'}, {'id': 1862, 'synset': 'lesser_whitethroat.n.01', 'name': 'lesser_whitethroat'}, {'id': 1863, 'synset': 'wood_warbler.n.02', 'name': 'wood_warbler'}, {'id': 1864, 'synset': 'sedge_warbler.n.01', 'name': 'sedge_warbler'}, {'id': 1865, 'synset': 'wren_warbler.n.01', 'name': 'wren_warbler'}, {'id': 1866, 'synset': 'tailorbird.n.01', 'name': 'tailorbird'}, {'id': 1867, 'synset': 'babbler.n.02', 'name': 'babbler'}, {'id': 1868, 'synset': 'new_world_warbler.n.01', 'name': 'New_World_warbler'}, {'id': 1869, 'synset': 'parula_warbler.n.01', 'name': 'parula_warbler'}, {'id': 1870, 'synset': "wilson's_warbler.n.01", 'name': "Wilson's_warbler"}, {'id': 1871, 'synset': 'flycatching_warbler.n.01', 'name': 'flycatching_warbler'}, {'id': 1872, 'synset': 'american_redstart.n.01', 'name': 'American_redstart'}, {'id': 1873, 'synset': 'cape_may_warbler.n.01', 'name': 'Cape_May_warbler'}, {'id': 1874, 'synset': 'yellow_warbler.n.01', 'name': 'yellow_warbler'}, {'id': 1875, 'synset': 'blackburn.n.01', 'name': 'Blackburn'}, {'id': 1876, 'synset': "audubon's_warbler.n.01", 'name': "Audubon's_warbler"}, {'id': 1877, 'synset': 'myrtle_warbler.n.01', 'name': 'myrtle_warbler'}, {'id': 1878, 'synset': 'blackpoll.n.01', 'name': 'blackpoll'}, {'id': 1879, 'synset': 'new_world_chat.n.01', 'name': 'New_World_chat'}, {'id': 1880, 'synset': 'yellow-breasted_chat.n.01', 'name': 'yellow-breasted_chat'}, {'id': 1881, 'synset': 'ovenbird.n.01', 'name': 'ovenbird'}, {'id': 1882, 'synset': 'water_thrush.n.01', 'name': 'water_thrush'}, {'id': 1883, 'synset': 'yellowthroat.n.01', 'name': 'yellowthroat'}, {'id': 1884, 'synset': 'common_yellowthroat.n.01', 'name': 'common_yellowthroat'}, {'id': 1885, 'synset': 'riflebird.n.01', 'name': 'riflebird'}, {'id': 1886, 'synset': 'new_world_oriole.n.01', 'name': 'New_World_oriole'}, {'id': 1887, 'synset': 'northern_oriole.n.01', 'name': 'northern_oriole'}, {'id': 1888, 'synset': 'baltimore_oriole.n.01', 'name': 'Baltimore_oriole'}, {'id': 1889, 'synset': "bullock's_oriole.n.01", 'name': "Bullock's_oriole"}, {'id': 1890, 'synset': 'orchard_oriole.n.01', 'name': 'orchard_oriole'}, {'id': 1891, 'synset': 'meadowlark.n.01', 'name': 'meadowlark'}, {'id': 1892, 'synset': 'eastern_meadowlark.n.01', 'name': 'eastern_meadowlark'}, {'id': 1893, 'synset': 'western_meadowlark.n.01', 'name': 'western_meadowlark'}, {'id': 1894, 'synset': 'cacique.n.01', 'name': 'cacique'}, {'id': 1895, 'synset': 'bobolink.n.01', 'name': 'bobolink'}, {'id': 1896, 'synset': 'new_world_blackbird.n.01', 'name': 'New_World_blackbird'}, {'id': 1897, 'synset': 'grackle.n.02', 'name': 'grackle'}, {'id': 1898, 'synset': 'purple_grackle.n.01', 'name': 'purple_grackle'}, {'id': 1899, 'synset': 'rusty_blackbird.n.01', 'name': 'rusty_blackbird'}, {'id': 1900, 'synset': 'cowbird.n.01', 'name': 'cowbird'}, {'id': 1901, 'synset': 'red-winged_blackbird.n.01', 'name': 'red-winged_blackbird'}, {'id': 1902, 'synset': 'old_world_oriole.n.01', 'name': 'Old_World_oriole'}, {'id': 1903, 'synset': 'golden_oriole.n.01', 'name': 'golden_oriole'}, {'id': 1904, 'synset': 'fig-bird.n.01', 'name': 'fig-bird'}, {'id': 1905, 'synset': 'starling.n.01', 'name': 'starling'}, {'id': 1906, 'synset': 'common_starling.n.01', 'name': 'common_starling'}, {'id': 1907, 'synset': 'rose-colored_starling.n.01', 'name': 'rose-colored_starling'}, {'id': 1908, 'synset': 'myna.n.01', 'name': 'myna'}, {'id': 1909, 'synset': 'crested_myna.n.01', 'name': 'crested_myna'}, {'id': 1910, 'synset': 'hill_myna.n.01', 'name': 'hill_myna'}, {'id': 1911, 'synset': 'corvine_bird.n.01', 'name': 'corvine_bird'}, {'id': 1912, 'synset': 'american_crow.n.01', 'name': 'American_crow'}, {'id': 1913, 'synset': 'raven.n.01', 'name': 'raven'}, {'id': 1914, 'synset': 'rook.n.02', 'name': 'rook'}, {'id': 1915, 'synset': 'jackdaw.n.01', 'name': 'jackdaw'}, {'id': 1916, 'synset': 'chough.n.01', 'name': 'chough'}, {'id': 1917, 'synset': 'jay.n.02', 'name': 'jay'}, {'id': 1918, 'synset': 'old_world_jay.n.01', 'name': 'Old_World_jay'}, {'id': 1919, 'synset': 'common_european_jay.n.01', 'name': 'common_European_jay'}, {'id': 1920, 'synset': 'new_world_jay.n.01', 'name': 'New_World_jay'}, {'id': 1921, 'synset': 'blue_jay.n.01', 'name': 'blue_jay'}, {'id': 1922, 'synset': 'canada_jay.n.01', 'name': 'Canada_jay'}, {'id': 1923, 'synset': 'rocky_mountain_jay.n.01', 'name': 'Rocky_Mountain_jay'}, {'id': 1924, 'synset': 'nutcracker.n.03', 'name': 'nutcracker'}, {'id': 1925, 'synset': 'common_nutcracker.n.01', 'name': 'common_nutcracker'}, {'id': 1926, 'synset': "clark's_nutcracker.n.01", 'name': "Clark's_nutcracker"}, {'id': 1927, 'synset': 'magpie.n.01', 'name': 'magpie'}, {'id': 1928, 'synset': 'european_magpie.n.01', 'name': 'European_magpie'}, {'id': 1929, 'synset': 'american_magpie.n.01', 'name': 'American_magpie'}, {'id': 1930, 'synset': 'australian_magpie.n.01', 'name': 'Australian_magpie'}, {'id': 1931, 'synset': 'butcherbird.n.02', 'name': 'butcherbird'}, {'id': 1932, 'synset': 'currawong.n.01', 'name': 'currawong'}, {'id': 1933, 'synset': 'piping_crow.n.01', 'name': 'piping_crow'}, {'id': 1934, 'synset': 'wren.n.02', 'name': 'wren'}, {'id': 1935, 'synset': 'winter_wren.n.01', 'name': 'winter_wren'}, {'id': 1936, 'synset': 'house_wren.n.01', 'name': 'house_wren'}, {'id': 1937, 'synset': 'marsh_wren.n.01', 'name': 'marsh_wren'}, {'id': 1938, 'synset': 'long-billed_marsh_wren.n.01', 'name': 'long-billed_marsh_wren'}, {'id': 1939, 'synset': 'sedge_wren.n.01', 'name': 'sedge_wren'}, {'id': 1940, 'synset': 'rock_wren.n.02', 'name': 'rock_wren'}, {'id': 1941, 'synset': 'carolina_wren.n.01', 'name': 'Carolina_wren'}, {'id': 1942, 'synset': 'cactus_wren.n.01', 'name': 'cactus_wren'}, {'id': 1943, 'synset': 'mockingbird.n.01', 'name': 'mockingbird'}, {'id': 1944, 'synset': 'blue_mockingbird.n.01', 'name': 'blue_mockingbird'}, {'id': 1945, 'synset': 'catbird.n.02', 'name': 'catbird'}, {'id': 1946, 'synset': 'thrasher.n.02', 'name': 'thrasher'}, {'id': 1947, 'synset': 'brown_thrasher.n.01', 'name': 'brown_thrasher'}, {'id': 1948, 'synset': 'new_zealand_wren.n.01', 'name': 'New_Zealand_wren'}, {'id': 1949, 'synset': 'rock_wren.n.01', 'name': 'rock_wren'}, {'id': 1950, 'synset': 'rifleman_bird.n.01', 'name': 'rifleman_bird'}, {'id': 1951, 'synset': 'creeper.n.03', 'name': 'creeper'}, {'id': 1952, 'synset': 'brown_creeper.n.01', 'name': 'brown_creeper'}, {'id': 1953, 'synset': 'european_creeper.n.01', 'name': 'European_creeper'}, {'id': 1954, 'synset': 'wall_creeper.n.01', 'name': 'wall_creeper'}, {'id': 1955, 'synset': 'european_nuthatch.n.01', 'name': 'European_nuthatch'}, {'id': 1956, 'synset': 'red-breasted_nuthatch.n.01', 'name': 'red-breasted_nuthatch'}, {'id': 1957, 'synset': 'white-breasted_nuthatch.n.01', 'name': 'white-breasted_nuthatch'}, {'id': 1958, 'synset': 'titmouse.n.01', 'name': 'titmouse'}, {'id': 1959, 'synset': 'chickadee.n.01', 'name': 'chickadee'}, {'id': 1960, 'synset': 'black-capped_chickadee.n.01', 'name': 'black-capped_chickadee'}, {'id': 1961, 'synset': 'tufted_titmouse.n.01', 'name': 'tufted_titmouse'}, {'id': 1962, 'synset': 'carolina_chickadee.n.01', 'name': 'Carolina_chickadee'}, {'id': 1963, 'synset': 'blue_tit.n.01', 'name': 'blue_tit'}, {'id': 1964, 'synset': 'bushtit.n.01', 'name': 'bushtit'}, {'id': 1965, 'synset': 'wren-tit.n.01', 'name': 'wren-tit'}, {'id': 1966, 'synset': 'verdin.n.01', 'name': 'verdin'}, {'id': 1967, 'synset': 'fairy_bluebird.n.01', 'name': 'fairy_bluebird'}, {'id': 1968, 'synset': 'swallow.n.03', 'name': 'swallow'}, {'id': 1969, 'synset': 'barn_swallow.n.01', 'name': 'barn_swallow'}, {'id': 1970, 'synset': 'cliff_swallow.n.01', 'name': 'cliff_swallow'}, {'id': 1971, 'synset': 'tree_swallow.n.02', 'name': 'tree_swallow'}, {'id': 1972, 'synset': 'white-bellied_swallow.n.01', 'name': 'white-bellied_swallow'}, {'id': 1973, 'synset': 'martin.n.05', 'name': 'martin'}, {'id': 1974, 'synset': 'house_martin.n.01', 'name': 'house_martin'}, {'id': 1975, 'synset': 'bank_martin.n.01', 'name': 'bank_martin'}, {'id': 1976, 'synset': 'purple_martin.n.01', 'name': 'purple_martin'}, {'id': 1977, 'synset': 'wood_swallow.n.01', 'name': 'wood_swallow'}, {'id': 1978, 'synset': 'tanager.n.01', 'name': 'tanager'}, {'id': 1979, 'synset': 'scarlet_tanager.n.01', 'name': 'scarlet_tanager'}, {'id': 1980, 'synset': 'western_tanager.n.01', 'name': 'western_tanager'}, {'id': 1981, 'synset': 'summer_tanager.n.01', 'name': 'summer_tanager'}, {'id': 1982, 'synset': 'hepatic_tanager.n.01', 'name': 'hepatic_tanager'}, {'id': 1983, 'synset': 'shrike.n.01', 'name': 'shrike'}, {'id': 1984, 'synset': 'butcherbird.n.01', 'name': 'butcherbird'}, {'id': 1985, 'synset': 'european_shrike.n.01', 'name': 'European_shrike'}, {'id': 1986, 'synset': 'northern_shrike.n.01', 'name': 'northern_shrike'}, {'id': 1987, 'synset': 'white-rumped_shrike.n.01', 'name': 'white-rumped_shrike'}, {'id': 1988, 'synset': 'loggerhead_shrike.n.01', 'name': 'loggerhead_shrike'}, {'id': 1989, 'synset': 'migrant_shrike.n.01', 'name': 'migrant_shrike'}, {'id': 1990, 'synset': 'bush_shrike.n.01', 'name': 'bush_shrike'}, {'id': 1991, 'synset': 'black-fronted_bush_shrike.n.01', 'name': 'black-fronted_bush_shrike'}, {'id': 1992, 'synset': 'bowerbird.n.01', 'name': 'bowerbird'}, {'id': 1993, 'synset': 'satin_bowerbird.n.01', 'name': 'satin_bowerbird'}, {'id': 1994, 'synset': 'great_bowerbird.n.01', 'name': 'great_bowerbird'}, {'id': 1995, 'synset': 'water_ouzel.n.01', 'name': 'water_ouzel'}, {'id': 1996, 'synset': 'european_water_ouzel.n.01', 'name': 'European_water_ouzel'}, {'id': 1997, 'synset': 'american_water_ouzel.n.01', 'name': 'American_water_ouzel'}, {'id': 1998, 'synset': 'vireo.n.01', 'name': 'vireo'}, {'id': 1999, 'synset': 'red-eyed_vireo.n.01', 'name': 'red-eyed_vireo'}, {'id': 2000, 'synset': 'solitary_vireo.n.01', 'name': 'solitary_vireo'}, {'id': 2001, 'synset': 'blue-headed_vireo.n.01', 'name': 'blue-headed_vireo'}, {'id': 2002, 'synset': 'waxwing.n.01', 'name': 'waxwing'}, {'id': 2003, 'synset': 'cedar_waxwing.n.01', 'name': 'cedar_waxwing'}, {'id': 2004, 'synset': 'bohemian_waxwing.n.01', 'name': 'Bohemian_waxwing'}, {'id': 2005, 'synset': 'bird_of_prey.n.01', 'name': 'bird_of_prey'}, {'id': 2006, 'synset': 'accipitriformes.n.01', 'name': 'Accipitriformes'}, {'id': 2007, 'synset': 'hawk.n.01', 'name': 'hawk'}, {'id': 2008, 'synset': 'eyas.n.01', 'name': 'eyas'}, {'id': 2009, 'synset': 'tiercel.n.01', 'name': 'tiercel'}, {'id': 2010, 'synset': 'goshawk.n.01', 'name': 'goshawk'}, {'id': 2011, 'synset': 'sparrow_hawk.n.02', 'name': 'sparrow_hawk'}, {'id': 2012, 'synset': "cooper's_hawk.n.01", 'name': "Cooper's_hawk"}, {'id': 2013, 'synset': 'chicken_hawk.n.01', 'name': 'chicken_hawk'}, {'id': 2014, 'synset': 'buteonine.n.01', 'name': 'buteonine'}, {'id': 2015, 'synset': 'redtail.n.01', 'name': 'redtail'}, {'id': 2016, 'synset': 'rough-legged_hawk.n.01', 'name': 'rough-legged_hawk'}, {'id': 2017, 'synset': 'red-shouldered_hawk.n.01', 'name': 'red-shouldered_hawk'}, {'id': 2018, 'synset': 'buzzard.n.02', 'name': 'buzzard'}, {'id': 2019, 'synset': 'honey_buzzard.n.01', 'name': 'honey_buzzard'}, {'id': 2020, 'synset': 'kite.n.04', 'name': 'kite'}, {'id': 2021, 'synset': 'black_kite.n.01', 'name': 'black_kite'}, {'id': 2022, 'synset': 'swallow-tailed_kite.n.01', 'name': 'swallow-tailed_kite'}, {'id': 2023, 'synset': 'white-tailed_kite.n.01', 'name': 'white-tailed_kite'}, {'id': 2024, 'synset': 'harrier.n.03', 'name': 'harrier'}, {'id': 2025, 'synset': 'marsh_harrier.n.01', 'name': 'marsh_harrier'}, {'id': 2026, 'synset': "montagu's_harrier.n.01", 'name': "Montagu's_harrier"}, {'id': 2027, 'synset': 'marsh_hawk.n.01', 'name': 'marsh_hawk'}, {'id': 2028, 'synset': 'harrier_eagle.n.01', 'name': 'harrier_eagle'}, {'id': 2029, 'synset': 'peregrine.n.01', 'name': 'peregrine'}, {'id': 2030, 'synset': 'falcon-gentle.n.01', 'name': 'falcon-gentle'}, {'id': 2031, 'synset': 'gyrfalcon.n.01', 'name': 'gyrfalcon'}, {'id': 2032, 'synset': 'kestrel.n.02', 'name': 'kestrel'}, {'id': 2033, 'synset': 'sparrow_hawk.n.01', 'name': 'sparrow_hawk'}, {'id': 2034, 'synset': 'pigeon_hawk.n.01', 'name': 'pigeon_hawk'}, {'id': 2035, 'synset': 'hobby.n.03', 'name': 'hobby'}, {'id': 2036, 'synset': 'caracara.n.01', 'name': 'caracara'}, {'id': 2037, 'synset': "audubon's_caracara.n.01", 'name': "Audubon's_caracara"}, {'id': 2038, 'synset': 'carancha.n.01', 'name': 'carancha'}, {'id': 2039, 'synset': 'young_bird.n.01', 'name': 'young_bird'}, {'id': 2040, 'synset': 'eaglet.n.01', 'name': 'eaglet'}, {'id': 2041, 'synset': 'harpy.n.04', 'name': 'harpy'}, {'id': 2042, 'synset': 'golden_eagle.n.01', 'name': 'golden_eagle'}, {'id': 2043, 'synset': 'tawny_eagle.n.01', 'name': 'tawny_eagle'}, {'id': 2044, 'synset': 'bald_eagle.n.01', 'name': 'bald_eagle'}, {'id': 2045, 'synset': 'sea_eagle.n.02', 'name': 'sea_eagle'}, {'id': 2046, 'synset': 'kamchatkan_sea_eagle.n.01', 'name': 'Kamchatkan_sea_eagle'}, {'id': 2047, 'synset': 'ern.n.01', 'name': 'ern'}, {'id': 2048, 'synset': 'fishing_eagle.n.01', 'name': 'fishing_eagle'}, {'id': 2049, 'synset': 'osprey.n.01', 'name': 'osprey'}, {'id': 2050, 'synset': 'aegypiidae.n.01', 'name': 'Aegypiidae'}, {'id': 2051, 'synset': 'old_world_vulture.n.01', 'name': 'Old_World_vulture'}, {'id': 2052, 'synset': 'griffon_vulture.n.01', 'name': 'griffon_vulture'}, {'id': 2053, 'synset': 'bearded_vulture.n.01', 'name': 'bearded_vulture'}, {'id': 2054, 'synset': 'egyptian_vulture.n.01', 'name': 'Egyptian_vulture'}, {'id': 2055, 'synset': 'black_vulture.n.02', 'name': 'black_vulture'}, {'id': 2056, 'synset': 'secretary_bird.n.01', 'name': 'secretary_bird'}, {'id': 2057, 'synset': 'new_world_vulture.n.01', 'name': 'New_World_vulture'}, {'id': 2058, 'synset': 'buzzard.n.01', 'name': 'buzzard'}, {'id': 2059, 'synset': 'condor.n.01', 'name': 'condor'}, {'id': 2060, 'synset': 'andean_condor.n.01', 'name': 'Andean_condor'}, {'id': 2061, 'synset': 'california_condor.n.01', 'name': 'California_condor'}, {'id': 2062, 'synset': 'black_vulture.n.01', 'name': 'black_vulture'}, {'id': 2063, 'synset': 'king_vulture.n.01', 'name': 'king_vulture'}, {'id': 2064, 'synset': 'owlet.n.01', 'name': 'owlet'}, {'id': 2065, 'synset': 'little_owl.n.01', 'name': 'little_owl'}, {'id': 2066, 'synset': 'horned_owl.n.01', 'name': 'horned_owl'}, {'id': 2067, 'synset': 'great_horned_owl.n.01', 'name': 'great_horned_owl'}, {'id': 2068, 'synset': 'great_grey_owl.n.01', 'name': 'great_grey_owl'}, {'id': 2069, 'synset': 'tawny_owl.n.01', 'name': 'tawny_owl'}, {'id': 2070, 'synset': 'barred_owl.n.01', 'name': 'barred_owl'}, {'id': 2071, 'synset': 'screech_owl.n.02', 'name': 'screech_owl'}, {'id': 2072, 'synset': 'screech_owl.n.01', 'name': 'screech_owl'}, {'id': 2073, 'synset': 'scops_owl.n.01', 'name': 'scops_owl'}, {'id': 2074, 'synset': 'spotted_owl.n.01', 'name': 'spotted_owl'}, {'id': 2075, 'synset': 'old_world_scops_owl.n.01', 'name': 'Old_World_scops_owl'}, {'id': 2076, 'synset': 'oriental_scops_owl.n.01', 'name': 'Oriental_scops_owl'}, {'id': 2077, 'synset': 'hoot_owl.n.01', 'name': 'hoot_owl'}, {'id': 2078, 'synset': 'hawk_owl.n.01', 'name': 'hawk_owl'}, {'id': 2079, 'synset': 'long-eared_owl.n.01', 'name': 'long-eared_owl'}, {'id': 2080, 'synset': 'laughing_owl.n.01', 'name': 'laughing_owl'}, {'id': 2081, 'synset': 'barn_owl.n.01', 'name': 'barn_owl'}, {'id': 2082, 'synset': 'amphibian.n.03', 'name': 'amphibian'}, {'id': 2083, 'synset': 'ichyostega.n.01', 'name': 'Ichyostega'}, {'id': 2084, 'synset': 'urodele.n.01', 'name': 'urodele'}, {'id': 2085, 'synset': 'salamander.n.01', 'name': 'salamander'}, {'id': 2086, 'synset': 'european_fire_salamander.n.01', 'name': 'European_fire_salamander'}, {'id': 2087, 'synset': 'spotted_salamander.n.02', 'name': 'spotted_salamander'}, {'id': 2088, 'synset': 'alpine_salamander.n.01', 'name': 'alpine_salamander'}, {'id': 2089, 'synset': 'newt.n.01', 'name': 'newt'}, {'id': 2090, 'synset': 'common_newt.n.01', 'name': 'common_newt'}, {'id': 2091, 'synset': 'red_eft.n.01', 'name': 'red_eft'}, {'id': 2092, 'synset': 'pacific_newt.n.01', 'name': 'Pacific_newt'}, {'id': 2093, 'synset': 'rough-skinned_newt.n.01', 'name': 'rough-skinned_newt'}, {'id': 2094, 'synset': 'california_newt.n.01', 'name': 'California_newt'}, {'id': 2095, 'synset': 'eft.n.01', 'name': 'eft'}, {'id': 2096, 'synset': 'ambystomid.n.01', 'name': 'ambystomid'}, {'id': 2097, 'synset': 'mole_salamander.n.01', 'name': 'mole_salamander'}, {'id': 2098, 'synset': 'spotted_salamander.n.01', 'name': 'spotted_salamander'}, {'id': 2099, 'synset': 'tiger_salamander.n.01', 'name': 'tiger_salamander'}, {'id': 2100, 'synset': 'axolotl.n.01', 'name': 'axolotl'}, {'id': 2101, 'synset': 'waterdog.n.01', 'name': 'waterdog'}, {'id': 2102, 'synset': 'hellbender.n.01', 'name': 'hellbender'}, {'id': 2103, 'synset': 'giant_salamander.n.01', 'name': 'giant_salamander'}, {'id': 2104, 'synset': 'olm.n.01', 'name': 'olm'}, {'id': 2105, 'synset': 'mud_puppy.n.01', 'name': 'mud_puppy'}, {'id': 2106, 'synset': 'dicamptodon.n.01', 'name': 'dicamptodon'}, {'id': 2107, 'synset': 'pacific_giant_salamander.n.01', 'name': 'Pacific_giant_salamander'}, {'id': 2108, 'synset': 'olympic_salamander.n.01', 'name': 'olympic_salamander'}, {'id': 2109, 'synset': 'lungless_salamander.n.01', 'name': 'lungless_salamander'}, {'id': 2110, 'synset': 'eastern_red-backed_salamander.n.01', 'name': 'eastern_red-backed_salamander'}, {'id': 2111, 'synset': 'western_red-backed_salamander.n.01', 'name': 'western_red-backed_salamander'}, {'id': 2112, 'synset': 'dusky_salamander.n.01', 'name': 'dusky_salamander'}, {'id': 2113, 'synset': 'climbing_salamander.n.01', 'name': 'climbing_salamander'}, {'id': 2114, 'synset': 'arboreal_salamander.n.01', 'name': 'arboreal_salamander'}, {'id': 2115, 'synset': 'slender_salamander.n.01', 'name': 'slender_salamander'}, {'id': 2116, 'synset': 'web-toed_salamander.n.01', 'name': 'web-toed_salamander'}, {'id': 2117, 'synset': 'shasta_salamander.n.01', 'name': 'Shasta_salamander'}, {'id': 2118, 'synset': 'limestone_salamander.n.01', 'name': 'limestone_salamander'}, {'id': 2119, 'synset': 'amphiuma.n.01', 'name': 'amphiuma'}, {'id': 2120, 'synset': 'siren.n.05', 'name': 'siren'}, {'id': 2121, 'synset': 'true_frog.n.01', 'name': 'true_frog'}, {'id': 2122, 'synset': 'wood-frog.n.01', 'name': 'wood-frog'}, {'id': 2123, 'synset': 'leopard_frog.n.01', 'name': 'leopard_frog'}, {'id': 2124, 'synset': 'bullfrog.n.01', 'name': 'bullfrog'}, {'id': 2125, 'synset': 'green_frog.n.01', 'name': 'green_frog'}, {'id': 2126, 'synset': 'cascades_frog.n.01', 'name': 'cascades_frog'}, {'id': 2127, 'synset': 'goliath_frog.n.01', 'name': 'goliath_frog'}, {'id': 2128, 'synset': 'pickerel_frog.n.01', 'name': 'pickerel_frog'}, {'id': 2129, 'synset': 'tarahumara_frog.n.01', 'name': 'tarahumara_frog'}, {'id': 2130, 'synset': 'grass_frog.n.01', 'name': 'grass_frog'}, {'id': 2131, 'synset': 'leptodactylid_frog.n.01', 'name': 'leptodactylid_frog'}, {'id': 2132, 'synset': 'robber_frog.n.02', 'name': 'robber_frog'}, {'id': 2133, 'synset': 'barking_frog.n.01', 'name': 'barking_frog'}, {'id': 2134, 'synset': 'crapaud.n.01', 'name': 'crapaud'}, {'id': 2135, 'synset': 'tree_frog.n.02', 'name': 'tree_frog'}, {'id': 2136, 'synset': 'tailed_frog.n.01', 'name': 'tailed_frog'}, {'id': 2137, 'synset': 'liopelma_hamiltoni.n.01', 'name': 'Liopelma_hamiltoni'}, {'id': 2138, 'synset': 'true_toad.n.01', 'name': 'true_toad'}, {'id': 2139, 'synset': 'bufo.n.01', 'name': 'bufo'}, {'id': 2140, 'synset': 'agua.n.01', 'name': 'agua'}, {'id': 2141, 'synset': 'european_toad.n.01', 'name': 'European_toad'}, {'id': 2142, 'synset': 'natterjack.n.01', 'name': 'natterjack'}, {'id': 2143, 'synset': 'american_toad.n.01', 'name': 'American_toad'}, {'id': 2144, 'synset': 'eurasian_green_toad.n.01', 'name': 'Eurasian_green_toad'}, {'id': 2145, 'synset': 'american_green_toad.n.01', 'name': 'American_green_toad'}, {'id': 2146, 'synset': 'yosemite_toad.n.01', 'name': 'Yosemite_toad'}, {'id': 2147, 'synset': 'texas_toad.n.01', 'name': 'Texas_toad'}, {'id': 2148, 'synset': 'southwestern_toad.n.01', 'name': 'southwestern_toad'}, {'id': 2149, 'synset': 'western_toad.n.01', 'name': 'western_toad'}, {'id': 2150, 'synset': 'obstetrical_toad.n.01', 'name': 'obstetrical_toad'}, {'id': 2151, 'synset': 'midwife_toad.n.01', 'name': 'midwife_toad'}, {'id': 2152, 'synset': 'fire-bellied_toad.n.01', 'name': 'fire-bellied_toad'}, {'id': 2153, 'synset': 'spadefoot.n.01', 'name': 'spadefoot'}, {'id': 2154, 'synset': 'western_spadefoot.n.01', 'name': 'western_spadefoot'}, {'id': 2155, 'synset': 'southern_spadefoot.n.01', 'name': 'southern_spadefoot'}, {'id': 2156, 'synset': 'plains_spadefoot.n.01', 'name': 'plains_spadefoot'}, {'id': 2157, 'synset': 'tree_toad.n.01', 'name': 'tree_toad'}, {'id': 2158, 'synset': 'spring_peeper.n.01', 'name': 'spring_peeper'}, {'id': 2159, 'synset': 'pacific_tree_toad.n.01', 'name': 'Pacific_tree_toad'}, {'id': 2160, 'synset': 'canyon_treefrog.n.01', 'name': 'canyon_treefrog'}, {'id': 2161, 'synset': 'chameleon_tree_frog.n.01', 'name': 'chameleon_tree_frog'}, {'id': 2162, 'synset': 'cricket_frog.n.01', 'name': 'cricket_frog'}, {'id': 2163, 'synset': 'northern_cricket_frog.n.01', 'name': 'northern_cricket_frog'}, {'id': 2164, 'synset': 'eastern_cricket_frog.n.01', 'name': 'eastern_cricket_frog'}, {'id': 2165, 'synset': 'chorus_frog.n.01', 'name': 'chorus_frog'}, {'id': 2166, 'synset': 'lowland_burrowing_treefrog.n.01', 'name': 'lowland_burrowing_treefrog'}, {'id': 2167, 'synset': 'western_narrow-mouthed_toad.n.01', 'name': 'western_narrow-mouthed_toad'}, {'id': 2168, 'synset': 'eastern_narrow-mouthed_toad.n.01', 'name': 'eastern_narrow-mouthed_toad'}, {'id': 2169, 'synset': 'sheep_frog.n.01', 'name': 'sheep_frog'}, {'id': 2170, 'synset': 'tongueless_frog.n.01', 'name': 'tongueless_frog'}, {'id': 2171, 'synset': 'surinam_toad.n.01', 'name': 'Surinam_toad'}, {'id': 2172, 'synset': 'african_clawed_frog.n.01', 'name': 'African_clawed_frog'}, {'id': 2173, 'synset': 'south_american_poison_toad.n.01', 'name': 'South_American_poison_toad'}, {'id': 2174, 'synset': 'caecilian.n.01', 'name': 'caecilian'}, {'id': 2175, 'synset': 'reptile.n.01', 'name': 'reptile'}, {'id': 2176, 'synset': 'anapsid.n.01', 'name': 'anapsid'}, {'id': 2177, 'synset': 'diapsid.n.01', 'name': 'diapsid'}, {'id': 2178, 'synset': 'diapsida.n.01', 'name': 'Diapsida'}, {'id': 2179, 'synset': 'chelonian.n.01', 'name': 'chelonian'}, {'id': 2180, 'synset': 'sea_turtle.n.01', 'name': 'sea_turtle'}, {'id': 2181, 'synset': 'green_turtle.n.01', 'name': 'green_turtle'}, {'id': 2182, 'synset': 'loggerhead.n.02', 'name': 'loggerhead'}, {'id': 2183, 'synset': 'ridley.n.01', 'name': 'ridley'}, {'id': 2184, 'synset': 'atlantic_ridley.n.01', 'name': 'Atlantic_ridley'}, {'id': 2185, 'synset': 'pacific_ridley.n.01', 'name': 'Pacific_ridley'}, {'id': 2186, 'synset': 'hawksbill_turtle.n.01', 'name': 'hawksbill_turtle'}, {'id': 2187, 'synset': 'leatherback_turtle.n.01', 'name': 'leatherback_turtle'}, {'id': 2188, 'synset': 'snapping_turtle.n.01', 'name': 'snapping_turtle'}, {'id': 2189, 'synset': 'common_snapping_turtle.n.01', 'name': 'common_snapping_turtle'}, {'id': 2190, 'synset': 'alligator_snapping_turtle.n.01', 'name': 'alligator_snapping_turtle'}, {'id': 2191, 'synset': 'mud_turtle.n.01', 'name': 'mud_turtle'}, {'id': 2192, 'synset': 'musk_turtle.n.01', 'name': 'musk_turtle'}, {'id': 2193, 'synset': 'terrapin.n.01', 'name': 'terrapin'}, {'id': 2194, 'synset': 'diamondback_terrapin.n.01', 'name': 'diamondback_terrapin'}, {'id': 2195, 'synset': 'red-bellied_terrapin.n.01', 'name': 'red-bellied_terrapin'}, {'id': 2196, 'synset': 'slider.n.03', 'name': 'slider'}, {'id': 2197, 'synset': 'cooter.n.01', 'name': 'cooter'}, {'id': 2198, 'synset': 'box_turtle.n.01', 'name': 'box_turtle'}, {'id': 2199, 'synset': 'western_box_turtle.n.01', 'name': 'Western_box_turtle'}, {'id': 2200, 'synset': 'painted_turtle.n.01', 'name': 'painted_turtle'}, {'id': 2201, 'synset': 'tortoise.n.01', 'name': 'tortoise'}, {'id': 2202, 'synset': 'european_tortoise.n.01', 'name': 'European_tortoise'}, {'id': 2203, 'synset': 'giant_tortoise.n.01', 'name': 'giant_tortoise'}, {'id': 2204, 'synset': 'gopher_tortoise.n.01', 'name': 'gopher_tortoise'}, {'id': 2205, 'synset': 'desert_tortoise.n.01', 'name': 'desert_tortoise'}, {'id': 2206, 'synset': 'texas_tortoise.n.01', 'name': 'Texas_tortoise'}, {'id': 2207, 'synset': 'soft-shelled_turtle.n.01', 'name': 'soft-shelled_turtle'}, {'id': 2208, 'synset': 'spiny_softshell.n.01', 'name': 'spiny_softshell'}, {'id': 2209, 'synset': 'smooth_softshell.n.01', 'name': 'smooth_softshell'}, {'id': 2210, 'synset': 'tuatara.n.01', 'name': 'tuatara'}, {'id': 2211, 'synset': 'saurian.n.01', 'name': 'saurian'}, {'id': 2212, 'synset': 'gecko.n.01', 'name': 'gecko'}, {'id': 2213, 'synset': 'flying_gecko.n.01', 'name': 'flying_gecko'}, {'id': 2214, 'synset': 'banded_gecko.n.01', 'name': 'banded_gecko'}, {'id': 2215, 'synset': 'iguanid.n.01', 'name': 'iguanid'}, {'id': 2216, 'synset': 'common_iguana.n.01', 'name': 'common_iguana'}, {'id': 2217, 'synset': 'marine_iguana.n.01', 'name': 'marine_iguana'}, {'id': 2218, 'synset': 'desert_iguana.n.01', 'name': 'desert_iguana'}, {'id': 2219, 'synset': 'chuckwalla.n.01', 'name': 'chuckwalla'}, {'id': 2220, 'synset': 'zebra-tailed_lizard.n.01', 'name': 'zebra-tailed_lizard'}, {'id': 2221, 'synset': 'fringe-toed_lizard.n.01', 'name': 'fringe-toed_lizard'}, {'id': 2222, 'synset': 'earless_lizard.n.01', 'name': 'earless_lizard'}, {'id': 2223, 'synset': 'collared_lizard.n.01', 'name': 'collared_lizard'}, {'id': 2224, 'synset': 'leopard_lizard.n.01', 'name': 'leopard_lizard'}, {'id': 2225, 'synset': 'spiny_lizard.n.02', 'name': 'spiny_lizard'}, {'id': 2226, 'synset': 'fence_lizard.n.01', 'name': 'fence_lizard'}, {'id': 2227, 'synset': 'western_fence_lizard.n.01', 'name': 'western_fence_lizard'}, {'id': 2228, 'synset': 'eastern_fence_lizard.n.01', 'name': 'eastern_fence_lizard'}, {'id': 2229, 'synset': 'sagebrush_lizard.n.01', 'name': 'sagebrush_lizard'}, {'id': 2230, 'synset': 'side-blotched_lizard.n.01', 'name': 'side-blotched_lizard'}, {'id': 2231, 'synset': 'tree_lizard.n.01', 'name': 'tree_lizard'}, {'id': 2232, 'synset': 'horned_lizard.n.01', 'name': 'horned_lizard'}, {'id': 2233, 'synset': 'texas_horned_lizard.n.01', 'name': 'Texas_horned_lizard'}, {'id': 2234, 'synset': 'basilisk.n.03', 'name': 'basilisk'}, {'id': 2235, 'synset': 'american_chameleon.n.01', 'name': 'American_chameleon'}, {'id': 2236, 'synset': 'worm_lizard.n.01', 'name': 'worm_lizard'}, {'id': 2237, 'synset': 'night_lizard.n.01', 'name': 'night_lizard'}, {'id': 2238, 'synset': 'skink.n.01', 'name': 'skink'}, {'id': 2239, 'synset': 'western_skink.n.01', 'name': 'western_skink'}, {'id': 2240, 'synset': 'mountain_skink.n.01', 'name': 'mountain_skink'}, {'id': 2241, 'synset': 'teiid_lizard.n.01', 'name': 'teiid_lizard'}, {'id': 2242, 'synset': 'whiptail.n.01', 'name': 'whiptail'}, {'id': 2243, 'synset': 'racerunner.n.01', 'name': 'racerunner'}, {'id': 2244, 'synset': 'plateau_striped_whiptail.n.01', 'name': 'plateau_striped_whiptail'}, {'id': 2245, 'synset': 'chihuahuan_spotted_whiptail.n.01', 'name': 'Chihuahuan_spotted_whiptail'}, {'id': 2246, 'synset': 'western_whiptail.n.01', 'name': 'western_whiptail'}, {'id': 2247, 'synset': 'checkered_whiptail.n.01', 'name': 'checkered_whiptail'}, {'id': 2248, 'synset': 'teju.n.01', 'name': 'teju'}, {'id': 2249, 'synset': 'caiman_lizard.n.01', 'name': 'caiman_lizard'}, {'id': 2250, 'synset': 'agamid.n.01', 'name': 'agamid'}, {'id': 2251, 'synset': 'agama.n.01', 'name': 'agama'}, {'id': 2252, 'synset': 'frilled_lizard.n.01', 'name': 'frilled_lizard'}, {'id': 2253, 'synset': 'moloch.n.03', 'name': 'moloch'}, {'id': 2254, 'synset': 'mountain_devil.n.02', 'name': 'mountain_devil'}, {'id': 2255, 'synset': 'anguid_lizard.n.01', 'name': 'anguid_lizard'}, {'id': 2256, 'synset': 'alligator_lizard.n.01', 'name': 'alligator_lizard'}, {'id': 2257, 'synset': 'blindworm.n.01', 'name': 'blindworm'}, {'id': 2258, 'synset': 'glass_lizard.n.01', 'name': 'glass_lizard'}, {'id': 2259, 'synset': 'legless_lizard.n.01', 'name': 'legless_lizard'}, {'id': 2260, 'synset': 'lanthanotus_borneensis.n.01', 'name': 'Lanthanotus_borneensis'}, {'id': 2261, 'synset': 'venomous_lizard.n.01', 'name': 'venomous_lizard'}, {'id': 2262, 'synset': 'gila_monster.n.01', 'name': 'Gila_monster'}, {'id': 2263, 'synset': 'beaded_lizard.n.01', 'name': 'beaded_lizard'}, {'id': 2264, 'synset': 'lacertid_lizard.n.01', 'name': 'lacertid_lizard'}, {'id': 2265, 'synset': 'sand_lizard.n.01', 'name': 'sand_lizard'}, {'id': 2266, 'synset': 'green_lizard.n.01', 'name': 'green_lizard'}, {'id': 2267, 'synset': 'chameleon.n.03', 'name': 'chameleon'}, {'id': 2268, 'synset': 'african_chameleon.n.01', 'name': 'African_chameleon'}, {'id': 2269, 'synset': 'horned_chameleon.n.01', 'name': 'horned_chameleon'}, {'id': 2270, 'synset': 'monitor.n.07', 'name': 'monitor'}, {'id': 2271, 'synset': 'african_monitor.n.01', 'name': 'African_monitor'}, {'id': 2272, 'synset': 'komodo_dragon.n.01', 'name': 'Komodo_dragon'}, {'id': 2273, 'synset': 'crocodilian_reptile.n.01', 'name': 'crocodilian_reptile'}, {'id': 2274, 'synset': 'crocodile.n.01', 'name': 'crocodile'}, {'id': 2275, 'synset': 'african_crocodile.n.01', 'name': 'African_crocodile'}, {'id': 2276, 'synset': 'asian_crocodile.n.01', 'name': 'Asian_crocodile'}, {'id': 2277, 'synset': "morlett's_crocodile.n.01", 'name': "Morlett's_crocodile"}, {'id': 2278, 'synset': 'false_gavial.n.01', 'name': 'false_gavial'}, {'id': 2279, 'synset': 'american_alligator.n.01', 'name': 'American_alligator'}, {'id': 2280, 'synset': 'chinese_alligator.n.01', 'name': 'Chinese_alligator'}, {'id': 2281, 'synset': 'caiman.n.01', 'name': 'caiman'}, {'id': 2282, 'synset': 'spectacled_caiman.n.01', 'name': 'spectacled_caiman'}, {'id': 2283, 'synset': 'gavial.n.01', 'name': 'gavial'}, {'id': 2284, 'synset': 'armored_dinosaur.n.01', 'name': 'armored_dinosaur'}, {'id': 2285, 'synset': 'stegosaur.n.01', 'name': 'stegosaur'}, {'id': 2286, 'synset': 'ankylosaur.n.01', 'name': 'ankylosaur'}, {'id': 2287, 'synset': 'edmontonia.n.01', 'name': 'Edmontonia'}, {'id': 2288, 'synset': 'bone-headed_dinosaur.n.01', 'name': 'bone-headed_dinosaur'}, {'id': 2289, 'synset': 'pachycephalosaur.n.01', 'name': 'pachycephalosaur'}, {'id': 2290, 'synset': 'ceratopsian.n.01', 'name': 'ceratopsian'}, {'id': 2291, 'synset': 'protoceratops.n.01', 'name': 'protoceratops'}, {'id': 2292, 'synset': 'triceratops.n.01', 'name': 'triceratops'}, {'id': 2293, 'synset': 'styracosaur.n.01', 'name': 'styracosaur'}, {'id': 2294, 'synset': 'psittacosaur.n.01', 'name': 'psittacosaur'}, {'id': 2295, 'synset': 'ornithopod.n.01', 'name': 'ornithopod'}, {'id': 2296, 'synset': 'hadrosaur.n.01', 'name': 'hadrosaur'}, {'id': 2297, 'synset': 'trachodon.n.01', 'name': 'trachodon'}, {'id': 2298, 'synset': 'saurischian.n.01', 'name': 'saurischian'}, {'id': 2299, 'synset': 'sauropod.n.01', 'name': 'sauropod'}, {'id': 2300, 'synset': 'apatosaur.n.01', 'name': 'apatosaur'}, {'id': 2301, 'synset': 'barosaur.n.01', 'name': 'barosaur'}, {'id': 2302, 'synset': 'diplodocus.n.01', 'name': 'diplodocus'}, {'id': 2303, 'synset': 'argentinosaur.n.01', 'name': 'argentinosaur'}, {'id': 2304, 'synset': 'theropod.n.01', 'name': 'theropod'}, {'id': 2305, 'synset': 'ceratosaur.n.01', 'name': 'ceratosaur'}, {'id': 2306, 'synset': 'coelophysis.n.01', 'name': 'coelophysis'}, {'id': 2307, 'synset': 'tyrannosaur.n.01', 'name': 'tyrannosaur'}, {'id': 2308, 'synset': 'allosaur.n.01', 'name': 'allosaur'}, {'id': 2309, 'synset': 'ornithomimid.n.01', 'name': 'ornithomimid'}, {'id': 2310, 'synset': 'maniraptor.n.01', 'name': 'maniraptor'}, {'id': 2311, 'synset': 'oviraptorid.n.01', 'name': 'oviraptorid'}, {'id': 2312, 'synset': 'velociraptor.n.01', 'name': 'velociraptor'}, {'id': 2313, 'synset': 'deinonychus.n.01', 'name': 'deinonychus'}, {'id': 2314, 'synset': 'utahraptor.n.01', 'name': 'utahraptor'}, {'id': 2315, 'synset': 'synapsid.n.01', 'name': 'synapsid'}, {'id': 2316, 'synset': 'dicynodont.n.01', 'name': 'dicynodont'}, {'id': 2317, 'synset': 'pelycosaur.n.01', 'name': 'pelycosaur'}, {'id': 2318, 'synset': 'dimetrodon.n.01', 'name': 'dimetrodon'}, {'id': 2319, 'synset': 'pterosaur.n.01', 'name': 'pterosaur'}, {'id': 2320, 'synset': 'pterodactyl.n.01', 'name': 'pterodactyl'}, {'id': 2321, 'synset': 'ichthyosaur.n.01', 'name': 'ichthyosaur'}, {'id': 2322, 'synset': 'ichthyosaurus.n.01', 'name': 'ichthyosaurus'}, {'id': 2323, 'synset': 'stenopterygius.n.01', 'name': 'stenopterygius'}, {'id': 2324, 'synset': 'plesiosaur.n.01', 'name': 'plesiosaur'}, {'id': 2325, 'synset': 'nothosaur.n.01', 'name': 'nothosaur'}, {'id': 2326, 'synset': 'colubrid_snake.n.01', 'name': 'colubrid_snake'}, {'id': 2327, 'synset': 'hoop_snake.n.01', 'name': 'hoop_snake'}, {'id': 2328, 'synset': 'thunder_snake.n.01', 'name': 'thunder_snake'}, {'id': 2329, 'synset': 'ringneck_snake.n.01', 'name': 'ringneck_snake'}, {'id': 2330, 'synset': 'hognose_snake.n.01', 'name': 'hognose_snake'}, {'id': 2331, 'synset': 'leaf-nosed_snake.n.01', 'name': 'leaf-nosed_snake'}, {'id': 2332, 'synset': 'green_snake.n.02', 'name': 'green_snake'}, {'id': 2333, 'synset': 'smooth_green_snake.n.01', 'name': 'smooth_green_snake'}, {'id': 2334, 'synset': 'rough_green_snake.n.01', 'name': 'rough_green_snake'}, {'id': 2335, 'synset': 'green_snake.n.01', 'name': 'green_snake'}, {'id': 2336, 'synset': 'racer.n.04', 'name': 'racer'}, {'id': 2337, 'synset': 'blacksnake.n.02', 'name': 'blacksnake'}, {'id': 2338, 'synset': 'blue_racer.n.01', 'name': 'blue_racer'}, {'id': 2339, 'synset': 'horseshoe_whipsnake.n.01', 'name': 'horseshoe_whipsnake'}, {'id': 2340, 'synset': 'whip-snake.n.01', 'name': 'whip-snake'}, {'id': 2341, 'synset': 'coachwhip.n.02', 'name': 'coachwhip'}, {'id': 2342, 'synset': 'california_whipsnake.n.01', 'name': 'California_whipsnake'}, {'id': 2343, 'synset': 'sonoran_whipsnake.n.01', 'name': 'Sonoran_whipsnake'}, {'id': 2344, 'synset': 'rat_snake.n.01', 'name': 'rat_snake'}, {'id': 2345, 'synset': 'corn_snake.n.01', 'name': 'corn_snake'}, {'id': 2346, 'synset': 'black_rat_snake.n.01', 'name': 'black_rat_snake'}, {'id': 2347, 'synset': 'chicken_snake.n.01', 'name': 'chicken_snake'}, {'id': 2348, 'synset': 'indian_rat_snake.n.01', 'name': 'Indian_rat_snake'}, {'id': 2349, 'synset': 'glossy_snake.n.01', 'name': 'glossy_snake'}, {'id': 2350, 'synset': 'bull_snake.n.01', 'name': 'bull_snake'}, {'id': 2351, 'synset': 'gopher_snake.n.02', 'name': 'gopher_snake'}, {'id': 2352, 'synset': 'pine_snake.n.01', 'name': 'pine_snake'}, {'id': 2353, 'synset': 'king_snake.n.01', 'name': 'king_snake'}, {'id': 2354, 'synset': 'common_kingsnake.n.01', 'name': 'common_kingsnake'}, {'id': 2355, 'synset': 'milk_snake.n.01', 'name': 'milk_snake'}, {'id': 2356, 'synset': 'garter_snake.n.01', 'name': 'garter_snake'}, {'id': 2357, 'synset': 'common_garter_snake.n.01', 'name': 'common_garter_snake'}, {'id': 2358, 'synset': 'ribbon_snake.n.01', 'name': 'ribbon_snake'}, {'id': 2359, 'synset': 'western_ribbon_snake.n.01', 'name': 'Western_ribbon_snake'}, {'id': 2360, 'synset': 'lined_snake.n.01', 'name': 'lined_snake'}, {'id': 2361, 'synset': 'ground_snake.n.01', 'name': 'ground_snake'}, {'id': 2362, 'synset': 'eastern_ground_snake.n.01', 'name': 'eastern_ground_snake'}, {'id': 2363, 'synset': 'water_snake.n.01', 'name': 'water_snake'}, {'id': 2364, 'synset': 'common_water_snake.n.01', 'name': 'common_water_snake'}, {'id': 2365, 'synset': 'water_moccasin.n.02', 'name': 'water_moccasin'}, {'id': 2366, 'synset': 'grass_snake.n.01', 'name': 'grass_snake'}, {'id': 2367, 'synset': 'viperine_grass_snake.n.01', 'name': 'viperine_grass_snake'}, {'id': 2368, 'synset': 'red-bellied_snake.n.01', 'name': 'red-bellied_snake'}, {'id': 2369, 'synset': 'sand_snake.n.01', 'name': 'sand_snake'}, {'id': 2370, 'synset': 'banded_sand_snake.n.01', 'name': 'banded_sand_snake'}, {'id': 2371, 'synset': 'black-headed_snake.n.01', 'name': 'black-headed_snake'}, {'id': 2372, 'synset': 'vine_snake.n.01', 'name': 'vine_snake'}, {'id': 2373, 'synset': 'lyre_snake.n.01', 'name': 'lyre_snake'}, {'id': 2374, 'synset': 'sonoran_lyre_snake.n.01', 'name': 'Sonoran_lyre_snake'}, {'id': 2375, 'synset': 'night_snake.n.01', 'name': 'night_snake'}, {'id': 2376, 'synset': 'blind_snake.n.01', 'name': 'blind_snake'}, {'id': 2377, 'synset': 'western_blind_snake.n.01', 'name': 'western_blind_snake'}, {'id': 2378, 'synset': 'indigo_snake.n.01', 'name': 'indigo_snake'}, {'id': 2379, 'synset': 'eastern_indigo_snake.n.01', 'name': 'eastern_indigo_snake'}, {'id': 2380, 'synset': 'constrictor.n.01', 'name': 'constrictor'}, {'id': 2381, 'synset': 'boa.n.02', 'name': 'boa'}, {'id': 2382, 'synset': 'boa_constrictor.n.01', 'name': 'boa_constrictor'}, {'id': 2383, 'synset': 'rubber_boa.n.01', 'name': 'rubber_boa'}, {'id': 2384, 'synset': 'rosy_boa.n.01', 'name': 'rosy_boa'}, {'id': 2385, 'synset': 'anaconda.n.01', 'name': 'anaconda'}, {'id': 2386, 'synset': 'python.n.01', 'name': 'python'}, {'id': 2387, 'synset': 'carpet_snake.n.01', 'name': 'carpet_snake'}, {'id': 2388, 'synset': 'reticulated_python.n.01', 'name': 'reticulated_python'}, {'id': 2389, 'synset': 'indian_python.n.01', 'name': 'Indian_python'}, {'id': 2390, 'synset': 'rock_python.n.01', 'name': 'rock_python'}, {'id': 2391, 'synset': 'amethystine_python.n.01', 'name': 'amethystine_python'}, {'id': 2392, 'synset': 'elapid.n.01', 'name': 'elapid'}, {'id': 2393, 'synset': 'coral_snake.n.02', 'name': 'coral_snake'}, {'id': 2394, 'synset': 'eastern_coral_snake.n.01', 'name': 'eastern_coral_snake'}, {'id': 2395, 'synset': 'western_coral_snake.n.01', 'name': 'western_coral_snake'}, {'id': 2396, 'synset': 'coral_snake.n.01', 'name': 'coral_snake'}, {'id': 2397, 'synset': 'african_coral_snake.n.01', 'name': 'African_coral_snake'}, {'id': 2398, 'synset': 'australian_coral_snake.n.01', 'name': 'Australian_coral_snake'}, {'id': 2399, 'synset': 'copperhead.n.02', 'name': 'copperhead'}, {'id': 2400, 'synset': 'cobra.n.01', 'name': 'cobra'}, {'id': 2401, 'synset': 'indian_cobra.n.01', 'name': 'Indian_cobra'}, {'id': 2402, 'synset': 'asp.n.02', 'name': 'asp'}, {'id': 2403, 'synset': 'black-necked_cobra.n.01', 'name': 'black-necked_cobra'}, {'id': 2404, 'synset': 'hamadryad.n.02', 'name': 'hamadryad'}, {'id': 2405, 'synset': 'ringhals.n.01', 'name': 'ringhals'}, {'id': 2406, 'synset': 'mamba.n.01', 'name': 'mamba'}, {'id': 2407, 'synset': 'black_mamba.n.01', 'name': 'black_mamba'}, {'id': 2408, 'synset': 'green_mamba.n.01', 'name': 'green_mamba'}, {'id': 2409, 'synset': 'death_adder.n.01', 'name': 'death_adder'}, {'id': 2410, 'synset': 'tiger_snake.n.01', 'name': 'tiger_snake'}, {'id': 2411, 'synset': 'australian_blacksnake.n.01', 'name': 'Australian_blacksnake'}, {'id': 2412, 'synset': 'krait.n.01', 'name': 'krait'}, {'id': 2413, 'synset': 'banded_krait.n.01', 'name': 'banded_krait'}, {'id': 2414, 'synset': 'taipan.n.01', 'name': 'taipan'}, {'id': 2415, 'synset': 'sea_snake.n.01', 'name': 'sea_snake'}, {'id': 2416, 'synset': 'viper.n.01', 'name': 'viper'}, {'id': 2417, 'synset': 'adder.n.03', 'name': 'adder'}, {'id': 2418, 'synset': 'asp.n.01', 'name': 'asp'}, {'id': 2419, 'synset': 'puff_adder.n.01', 'name': 'puff_adder'}, {'id': 2420, 'synset': 'gaboon_viper.n.01', 'name': 'gaboon_viper'}, {'id': 2421, 'synset': 'horned_viper.n.01', 'name': 'horned_viper'}, {'id': 2422, 'synset': 'pit_viper.n.01', 'name': 'pit_viper'}, {'id': 2423, 'synset': 'copperhead.n.01', 'name': 'copperhead'}, {'id': 2424, 'synset': 'water_moccasin.n.01', 'name': 'water_moccasin'}, {'id': 2425, 'synset': 'rattlesnake.n.01', 'name': 'rattlesnake'}, {'id': 2426, 'synset': 'diamondback.n.01', 'name': 'diamondback'}, {'id': 2427, 'synset': 'timber_rattlesnake.n.01', 'name': 'timber_rattlesnake'}, {'id': 2428, 'synset': 'canebrake_rattlesnake.n.01', 'name': 'canebrake_rattlesnake'}, {'id': 2429, 'synset': 'prairie_rattlesnake.n.01', 'name': 'prairie_rattlesnake'}, {'id': 2430, 'synset': 'sidewinder.n.01', 'name': 'sidewinder'}, {'id': 2431, 'synset': 'western_diamondback.n.01', 'name': 'Western_diamondback'}, {'id': 2432, 'synset': 'rock_rattlesnake.n.01', 'name': 'rock_rattlesnake'}, {'id': 2433, 'synset': 'tiger_rattlesnake.n.01', 'name': 'tiger_rattlesnake'}, {'id': 2434, 'synset': 'mojave_rattlesnake.n.01', 'name': 'Mojave_rattlesnake'}, {'id': 2435, 'synset': 'speckled_rattlesnake.n.01', 'name': 'speckled_rattlesnake'}, {'id': 2436, 'synset': 'massasauga.n.02', 'name': 'massasauga'}, {'id': 2437, 'synset': 'ground_rattler.n.01', 'name': 'ground_rattler'}, {'id': 2438, 'synset': 'fer-de-lance.n.01', 'name': 'fer-de-lance'}, {'id': 2439, 'synset': 'carcase.n.01', 'name': 'carcase'}, {'id': 2440, 'synset': 'carrion.n.01', 'name': 'carrion'}, {'id': 2441, 'synset': 'arthropod.n.01', 'name': 'arthropod'}, {'id': 2442, 'synset': 'trilobite.n.01', 'name': 'trilobite'}, {'id': 2443, 'synset': 'arachnid.n.01', 'name': 'arachnid'}, {'id': 2444, 'synset': 'harvestman.n.01', 'name': 'harvestman'}, {'id': 2445, 'synset': 'scorpion.n.03', 'name': 'scorpion'}, {'id': 2446, 'synset': 'false_scorpion.n.01', 'name': 'false_scorpion'}, {'id': 2447, 'synset': 'book_scorpion.n.01', 'name': 'book_scorpion'}, {'id': 2448, 'synset': 'whip-scorpion.n.01', 'name': 'whip-scorpion'}, {'id': 2449, 'synset': 'vinegarroon.n.01', 'name': 'vinegarroon'}, {'id': 2450, 'synset': 'orb-weaving_spider.n.01', 'name': 'orb-weaving_spider'}, {'id': 2451, 'synset': 'black_and_gold_garden_spider.n.01', 'name': 'black_and_gold_garden_spider'}, {'id': 2452, 'synset': 'barn_spider.n.01', 'name': 'barn_spider'}, {'id': 2453, 'synset': 'garden_spider.n.01', 'name': 'garden_spider'}, {'id': 2454, 'synset': 'comb-footed_spider.n.01', 'name': 'comb-footed_spider'}, {'id': 2455, 'synset': 'black_widow.n.01', 'name': 'black_widow'}, {'id': 2456, 'synset': 'tarantula.n.02', 'name': 'tarantula'}, {'id': 2457, 'synset': 'wolf_spider.n.01', 'name': 'wolf_spider'}, {'id': 2458, 'synset': 'european_wolf_spider.n.01', 'name': 'European_wolf_spider'}, {'id': 2459, 'synset': 'trap-door_spider.n.01', 'name': 'trap-door_spider'}, {'id': 2460, 'synset': 'acarine.n.01', 'name': 'acarine'}, {'id': 2461, 'synset': 'tick.n.02', 'name': 'tick'}, {'id': 2462, 'synset': 'hard_tick.n.01', 'name': 'hard_tick'}, {'id': 2463, 'synset': 'ixodes_dammini.n.01', 'name': 'Ixodes_dammini'}, {'id': 2464, 'synset': 'ixodes_neotomae.n.01', 'name': 'Ixodes_neotomae'}, {'id': 2465, 'synset': 'ixodes_pacificus.n.01', 'name': 'Ixodes_pacificus'}, {'id': 2466, 'synset': 'ixodes_scapularis.n.01', 'name': 'Ixodes_scapularis'}, {'id': 2467, 'synset': 'sheep-tick.n.02', 'name': 'sheep-tick'}, {'id': 2468, 'synset': 'ixodes_persulcatus.n.01', 'name': 'Ixodes_persulcatus'}, {'id': 2469, 'synset': 'ixodes_dentatus.n.01', 'name': 'Ixodes_dentatus'}, {'id': 2470, 'synset': 'ixodes_spinipalpis.n.01', 'name': 'Ixodes_spinipalpis'}, {'id': 2471, 'synset': 'wood_tick.n.01', 'name': 'wood_tick'}, {'id': 2472, 'synset': 'soft_tick.n.01', 'name': 'soft_tick'}, {'id': 2473, 'synset': 'mite.n.02', 'name': 'mite'}, {'id': 2474, 'synset': 'web-spinning_mite.n.01', 'name': 'web-spinning_mite'}, {'id': 2475, 'synset': 'acarid.n.01', 'name': 'acarid'}, {'id': 2476, 'synset': 'trombidiid.n.01', 'name': 'trombidiid'}, {'id': 2477, 'synset': 'trombiculid.n.01', 'name': 'trombiculid'}, {'id': 2478, 'synset': 'harvest_mite.n.01', 'name': 'harvest_mite'}, {'id': 2479, 'synset': 'acarus.n.01', 'name': 'acarus'}, {'id': 2480, 'synset': 'itch_mite.n.01', 'name': 'itch_mite'}, {'id': 2481, 'synset': 'rust_mite.n.01', 'name': 'rust_mite'}, {'id': 2482, 'synset': 'spider_mite.n.01', 'name': 'spider_mite'}, {'id': 2483, 'synset': 'red_spider.n.01', 'name': 'red_spider'}, {'id': 2484, 'synset': 'myriapod.n.01', 'name': 'myriapod'}, {'id': 2485, 'synset': 'garden_centipede.n.01', 'name': 'garden_centipede'}, {'id': 2486, 'synset': 'tardigrade.n.01', 'name': 'tardigrade'}, {'id': 2487, 'synset': 'centipede.n.01', 'name': 'centipede'}, {'id': 2488, 'synset': 'house_centipede.n.01', 'name': 'house_centipede'}, {'id': 2489, 'synset': 'millipede.n.01', 'name': 'millipede'}, {'id': 2490, 'synset': 'sea_spider.n.01', 'name': 'sea_spider'}, {'id': 2491, 'synset': 'merostomata.n.01', 'name': 'Merostomata'}, {'id': 2492, 'synset': 'horseshoe_crab.n.01', 'name': 'horseshoe_crab'}, {'id': 2493, 'synset': 'asian_horseshoe_crab.n.01', 'name': 'Asian_horseshoe_crab'}, {'id': 2494, 'synset': 'eurypterid.n.01', 'name': 'eurypterid'}, {'id': 2495, 'synset': 'tongue_worm.n.01', 'name': 'tongue_worm'}, {'id': 2496, 'synset': 'gallinaceous_bird.n.01', 'name': 'gallinaceous_bird'}, {'id': 2497, 'synset': 'domestic_fowl.n.01', 'name': 'domestic_fowl'}, {'id': 2498, 'synset': 'dorking.n.01', 'name': 'Dorking'}, {'id': 2499, 'synset': 'plymouth_rock.n.02', 'name': 'Plymouth_Rock'}, {'id': 2500, 'synset': 'cornish.n.02', 'name': 'Cornish'}, {'id': 2501, 'synset': 'rock_cornish.n.01', 'name': 'Rock_Cornish'}, {'id': 2502, 'synset': 'game_fowl.n.01', 'name': 'game_fowl'}, {'id': 2503, 'synset': 'cochin.n.01', 'name': 'cochin'}, {'id': 2504, 'synset': 'jungle_fowl.n.01', 'name': 'jungle_fowl'}, {'id': 2505, 'synset': 'jungle_cock.n.01', 'name': 'jungle_cock'}, {'id': 2506, 'synset': 'jungle_hen.n.01', 'name': 'jungle_hen'}, {'id': 2507, 'synset': 'red_jungle_fowl.n.01', 'name': 'red_jungle_fowl'}, {'id': 2508, 'synset': 'bantam.n.01', 'name': 'bantam'}, {'id': 2509, 'synset': 'chick.n.01', 'name': 'chick'}, {'id': 2510, 'synset': 'cockerel.n.01', 'name': 'cockerel'}, {'id': 2511, 'synset': 'capon.n.02', 'name': 'capon'}, {'id': 2512, 'synset': 'hen.n.01', 'name': 'hen'}, {'id': 2513, 'synset': 'cackler.n.01', 'name': 'cackler'}, {'id': 2514, 'synset': 'brood_hen.n.01', 'name': 'brood_hen'}, {'id': 2515, 'synset': 'mother_hen.n.02', 'name': 'mother_hen'}, {'id': 2516, 'synset': 'layer.n.04', 'name': 'layer'}, {'id': 2517, 'synset': 'pullet.n.02', 'name': 'pullet'}, {'id': 2518, 'synset': 'spring_chicken.n.02', 'name': 'spring_chicken'}, {'id': 2519, 'synset': 'rhode_island_red.n.01', 'name': 'Rhode_Island_red'}, {'id': 2520, 'synset': 'dominique.n.01', 'name': 'Dominique'}, {'id': 2521, 'synset': 'orpington.n.01', 'name': 'Orpington'}, {'id': 2522, 'synset': 'turkey.n.01', 'name': 'turkey'}, {'id': 2523, 'synset': 'turkey_cock.n.01', 'name': 'turkey_cock'}, {'id': 2524, 'synset': 'ocellated_turkey.n.01', 'name': 'ocellated_turkey'}, {'id': 2525, 'synset': 'grouse.n.02', 'name': 'grouse'}, {'id': 2526, 'synset': 'black_grouse.n.01', 'name': 'black_grouse'}, {'id': 2527, 'synset': 'european_black_grouse.n.01', 'name': 'European_black_grouse'}, {'id': 2528, 'synset': 'asian_black_grouse.n.01', 'name': 'Asian_black_grouse'}, {'id': 2529, 'synset': 'blackcock.n.01', 'name': 'blackcock'}, {'id': 2530, 'synset': 'greyhen.n.01', 'name': 'greyhen'}, {'id': 2531, 'synset': 'ptarmigan.n.01', 'name': 'ptarmigan'}, {'id': 2532, 'synset': 'red_grouse.n.01', 'name': 'red_grouse'}, {'id': 2533, 'synset': 'moorhen.n.02', 'name': 'moorhen'}, {'id': 2534, 'synset': 'capercaillie.n.01', 'name': 'capercaillie'}, {'id': 2535, 'synset': 'spruce_grouse.n.01', 'name': 'spruce_grouse'}, {'id': 2536, 'synset': 'sage_grouse.n.01', 'name': 'sage_grouse'}, {'id': 2537, 'synset': 'ruffed_grouse.n.01', 'name': 'ruffed_grouse'}, {'id': 2538, 'synset': 'sharp-tailed_grouse.n.01', 'name': 'sharp-tailed_grouse'}, {'id': 2539, 'synset': 'prairie_chicken.n.01', 'name': 'prairie_chicken'}, {'id': 2540, 'synset': 'greater_prairie_chicken.n.01', 'name': 'greater_prairie_chicken'}, {'id': 2541, 'synset': 'lesser_prairie_chicken.n.01', 'name': 'lesser_prairie_chicken'}, {'id': 2542, 'synset': 'heath_hen.n.01', 'name': 'heath_hen'}, {'id': 2543, 'synset': 'guan.n.01', 'name': 'guan'}, {'id': 2544, 'synset': 'curassow.n.01', 'name': 'curassow'}, {'id': 2545, 'synset': 'piping_guan.n.01', 'name': 'piping_guan'}, {'id': 2546, 'synset': 'chachalaca.n.01', 'name': 'chachalaca'}, {'id': 2547, 'synset': 'texas_chachalaca.n.01', 'name': 'Texas_chachalaca'}, {'id': 2548, 'synset': 'megapode.n.01', 'name': 'megapode'}, {'id': 2549, 'synset': 'mallee_fowl.n.01', 'name': 'mallee_fowl'}, {'id': 2550, 'synset': 'mallee_hen.n.01', 'name': 'mallee_hen'}, {'id': 2551, 'synset': 'brush_turkey.n.01', 'name': 'brush_turkey'}, {'id': 2552, 'synset': 'maleo.n.01', 'name': 'maleo'}, {'id': 2553, 'synset': 'phasianid.n.01', 'name': 'phasianid'}, {'id': 2554, 'synset': 'pheasant.n.01', 'name': 'pheasant'}, {'id': 2555, 'synset': 'ring-necked_pheasant.n.01', 'name': 'ring-necked_pheasant'}, {'id': 2556, 'synset': 'afropavo.n.01', 'name': 'afropavo'}, {'id': 2557, 'synset': 'argus.n.02', 'name': 'argus'}, {'id': 2558, 'synset': 'golden_pheasant.n.01', 'name': 'golden_pheasant'}, {'id': 2559, 'synset': 'bobwhite.n.01', 'name': 'bobwhite'}, {'id': 2560, 'synset': 'northern_bobwhite.n.01', 'name': 'northern_bobwhite'}, {'id': 2561, 'synset': 'old_world_quail.n.01', 'name': 'Old_World_quail'}, {'id': 2562, 'synset': 'migratory_quail.n.01', 'name': 'migratory_quail'}, {'id': 2563, 'synset': 'monal.n.01', 'name': 'monal'}, {'id': 2564, 'synset': 'peafowl.n.01', 'name': 'peafowl'}, {'id': 2565, 'synset': 'peachick.n.01', 'name': 'peachick'}, {'id': 2566, 'synset': 'peacock.n.02', 'name': 'peacock'}, {'id': 2567, 'synset': 'peahen.n.01', 'name': 'peahen'}, {'id': 2568, 'synset': 'blue_peafowl.n.01', 'name': 'blue_peafowl'}, {'id': 2569, 'synset': 'green_peafowl.n.01', 'name': 'green_peafowl'}, {'id': 2570, 'synset': 'quail.n.02', 'name': 'quail'}, {'id': 2571, 'synset': 'california_quail.n.01', 'name': 'California_quail'}, {'id': 2572, 'synset': 'tragopan.n.01', 'name': 'tragopan'}, {'id': 2573, 'synset': 'partridge.n.03', 'name': 'partridge'}, {'id': 2574, 'synset': 'hungarian_partridge.n.01', 'name': 'Hungarian_partridge'}, {'id': 2575, 'synset': 'red-legged_partridge.n.01', 'name': 'red-legged_partridge'}, {'id': 2576, 'synset': 'greek_partridge.n.01', 'name': 'Greek_partridge'}, {'id': 2577, 'synset': 'mountain_quail.n.01', 'name': 'mountain_quail'}, {'id': 2578, 'synset': 'guinea_fowl.n.01', 'name': 'guinea_fowl'}, {'id': 2579, 'synset': 'guinea_hen.n.02', 'name': 'guinea_hen'}, {'id': 2580, 'synset': 'hoatzin.n.01', 'name': 'hoatzin'}, {'id': 2581, 'synset': 'tinamou.n.01', 'name': 'tinamou'}, {'id': 2582, 'synset': 'columbiform_bird.n.01', 'name': 'columbiform_bird'}, {'id': 2583, 'synset': 'dodo.n.02', 'name': 'dodo'}, {'id': 2584, 'synset': 'pouter_pigeon.n.01', 'name': 'pouter_pigeon'}, {'id': 2585, 'synset': 'rock_dove.n.01', 'name': 'rock_dove'}, {'id': 2586, 'synset': 'band-tailed_pigeon.n.01', 'name': 'band-tailed_pigeon'}, {'id': 2587, 'synset': 'wood_pigeon.n.01', 'name': 'wood_pigeon'}, {'id': 2588, 'synset': 'turtledove.n.02', 'name': 'turtledove'}, {'id': 2589, 'synset': 'streptopelia_turtur.n.01', 'name': 'Streptopelia_turtur'}, {'id': 2590, 'synset': 'ringdove.n.01', 'name': 'ringdove'}, {'id': 2591, 'synset': 'australian_turtledove.n.01', 'name': 'Australian_turtledove'}, {'id': 2592, 'synset': 'mourning_dove.n.01', 'name': 'mourning_dove'}, {'id': 2593, 'synset': 'domestic_pigeon.n.01', 'name': 'domestic_pigeon'}, {'id': 2594, 'synset': 'squab.n.03', 'name': 'squab'}, {'id': 2595, 'synset': 'fairy_swallow.n.01', 'name': 'fairy_swallow'}, {'id': 2596, 'synset': 'roller.n.07', 'name': 'roller'}, {'id': 2597, 'synset': 'homing_pigeon.n.01', 'name': 'homing_pigeon'}, {'id': 2598, 'synset': 'carrier_pigeon.n.01', 'name': 'carrier_pigeon'}, {'id': 2599, 'synset': 'passenger_pigeon.n.01', 'name': 'passenger_pigeon'}, {'id': 2600, 'synset': 'sandgrouse.n.01', 'name': 'sandgrouse'}, {'id': 2601, 'synset': 'painted_sandgrouse.n.01', 'name': 'painted_sandgrouse'}, {'id': 2602, 'synset': 'pin-tailed_sandgrouse.n.01', 'name': 'pin-tailed_sandgrouse'}, {'id': 2603, 'synset': "pallas's_sandgrouse.n.01", 'name': "pallas's_sandgrouse"}, {'id': 2604, 'synset': 'popinjay.n.02', 'name': 'popinjay'}, {'id': 2605, 'synset': 'poll.n.04', 'name': 'poll'}, {'id': 2606, 'synset': 'african_grey.n.01', 'name': 'African_grey'}, {'id': 2607, 'synset': 'amazon.n.04', 'name': 'amazon'}, {'id': 2608, 'synset': 'macaw.n.01', 'name': 'macaw'}, {'id': 2609, 'synset': 'kea.n.01', 'name': 'kea'}, {'id': 2610, 'synset': 'cockatoo.n.01', 'name': 'cockatoo'}, {'id': 2611, 'synset': 'sulphur-crested_cockatoo.n.01', 'name': 'sulphur-crested_cockatoo'}, {'id': 2612, 'synset': 'pink_cockatoo.n.01', 'name': 'pink_cockatoo'}, {'id': 2613, 'synset': 'cockateel.n.01', 'name': 'cockateel'}, {'id': 2614, 'synset': 'lovebird.n.02', 'name': 'lovebird'}, {'id': 2615, 'synset': 'lory.n.01', 'name': 'lory'}, {'id': 2616, 'synset': 'lorikeet.n.01', 'name': 'lorikeet'}, {'id': 2617, 'synset': 'varied_lorikeet.n.01', 'name': 'varied_Lorikeet'}, {'id': 2618, 'synset': 'rainbow_lorikeet.n.01', 'name': 'rainbow_lorikeet'}, {'id': 2619, 'synset': 'carolina_parakeet.n.01', 'name': 'Carolina_parakeet'}, {'id': 2620, 'synset': 'budgerigar.n.01', 'name': 'budgerigar'}, {'id': 2621, 'synset': 'ring-necked_parakeet.n.01', 'name': 'ring-necked_parakeet'}, {'id': 2622, 'synset': 'cuculiform_bird.n.01', 'name': 'cuculiform_bird'}, {'id': 2623, 'synset': 'cuckoo.n.02', 'name': 'cuckoo'}, {'id': 2624, 'synset': 'european_cuckoo.n.01', 'name': 'European_cuckoo'}, {'id': 2625, 'synset': 'black-billed_cuckoo.n.01', 'name': 'black-billed_cuckoo'}, {'id': 2626, 'synset': 'roadrunner.n.01', 'name': 'roadrunner'}, {'id': 2627, 'synset': 'ani.n.01', 'name': 'ani'}, {'id': 2628, 'synset': 'coucal.n.01', 'name': 'coucal'}, {'id': 2629, 'synset': 'crow_pheasant.n.01', 'name': 'crow_pheasant'}, {'id': 2630, 'synset': 'touraco.n.01', 'name': 'touraco'}, {'id': 2631, 'synset': 'coraciiform_bird.n.01', 'name': 'coraciiform_bird'}, {'id': 2632, 'synset': 'roller.n.06', 'name': 'roller'}, {'id': 2633, 'synset': 'european_roller.n.01', 'name': 'European_roller'}, {'id': 2634, 'synset': 'ground_roller.n.01', 'name': 'ground_roller'}, {'id': 2635, 'synset': 'kingfisher.n.01', 'name': 'kingfisher'}, {'id': 2636, 'synset': 'eurasian_kingfisher.n.01', 'name': 'Eurasian_kingfisher'}, {'id': 2637, 'synset': 'belted_kingfisher.n.01', 'name': 'belted_kingfisher'}, {'id': 2638, 'synset': 'kookaburra.n.01', 'name': 'kookaburra'}, {'id': 2639, 'synset': 'bee_eater.n.01', 'name': 'bee_eater'}, {'id': 2640, 'synset': 'hornbill.n.01', 'name': 'hornbill'}, {'id': 2641, 'synset': 'hoopoe.n.01', 'name': 'hoopoe'}, {'id': 2642, 'synset': 'euopean_hoopoe.n.01', 'name': 'Euopean_hoopoe'}, {'id': 2643, 'synset': 'wood_hoopoe.n.01', 'name': 'wood_hoopoe'}, {'id': 2644, 'synset': 'motmot.n.01', 'name': 'motmot'}, {'id': 2645, 'synset': 'tody.n.01', 'name': 'tody'}, {'id': 2646, 'synset': 'apodiform_bird.n.01', 'name': 'apodiform_bird'}, {'id': 2647, 'synset': 'swift.n.03', 'name': 'swift'}, {'id': 2648, 'synset': 'european_swift.n.01', 'name': 'European_swift'}, {'id': 2649, 'synset': 'chimney_swift.n.01', 'name': 'chimney_swift'}, {'id': 2650, 'synset': 'swiftlet.n.01', 'name': 'swiftlet'}, {'id': 2651, 'synset': 'tree_swift.n.01', 'name': 'tree_swift'}, {'id': 2652, 'synset': 'archilochus_colubris.n.01', 'name': 'Archilochus_colubris'}, {'id': 2653, 'synset': 'thornbill.n.01', 'name': 'thornbill'}, {'id': 2654, 'synset': 'goatsucker.n.01', 'name': 'goatsucker'}, {'id': 2655, 'synset': 'european_goatsucker.n.01', 'name': 'European_goatsucker'}, {'id': 2656, 'synset': "chuck-will's-widow.n.01", 'name': "chuck-will's-widow"}, {'id': 2657, 'synset': 'whippoorwill.n.01', 'name': 'whippoorwill'}, {'id': 2658, 'synset': 'poorwill.n.01', 'name': 'poorwill'}, {'id': 2659, 'synset': 'frogmouth.n.01', 'name': 'frogmouth'}, {'id': 2660, 'synset': 'oilbird.n.01', 'name': 'oilbird'}, {'id': 2661, 'synset': 'piciform_bird.n.01', 'name': 'piciform_bird'}, {'id': 2662, 'synset': 'woodpecker.n.01', 'name': 'woodpecker'}, {'id': 2663, 'synset': 'green_woodpecker.n.01', 'name': 'green_woodpecker'}, {'id': 2664, 'synset': 'downy_woodpecker.n.01', 'name': 'downy_woodpecker'}, {'id': 2665, 'synset': 'flicker.n.02', 'name': 'flicker'}, {'id': 2666, 'synset': 'yellow-shafted_flicker.n.01', 'name': 'yellow-shafted_flicker'}, {'id': 2667, 'synset': 'gilded_flicker.n.01', 'name': 'gilded_flicker'}, {'id': 2668, 'synset': 'red-shafted_flicker.n.01', 'name': 'red-shafted_flicker'}, {'id': 2669, 'synset': 'ivorybill.n.01', 'name': 'ivorybill'}, {'id': 2670, 'synset': 'redheaded_woodpecker.n.01', 'name': 'redheaded_woodpecker'}, {'id': 2671, 'synset': 'sapsucker.n.01', 'name': 'sapsucker'}, {'id': 2672, 'synset': 'yellow-bellied_sapsucker.n.01', 'name': 'yellow-bellied_sapsucker'}, {'id': 2673, 'synset': 'red-breasted_sapsucker.n.01', 'name': 'red-breasted_sapsucker'}, {'id': 2674, 'synset': 'wryneck.n.02', 'name': 'wryneck'}, {'id': 2675, 'synset': 'piculet.n.01', 'name': 'piculet'}, {'id': 2676, 'synset': 'barbet.n.01', 'name': 'barbet'}, {'id': 2677, 'synset': 'puffbird.n.01', 'name': 'puffbird'}, {'id': 2678, 'synset': 'honey_guide.n.01', 'name': 'honey_guide'}, {'id': 2679, 'synset': 'jacamar.n.01', 'name': 'jacamar'}, {'id': 2680, 'synset': 'toucan.n.01', 'name': 'toucan'}, {'id': 2681, 'synset': 'toucanet.n.01', 'name': 'toucanet'}, {'id': 2682, 'synset': 'trogon.n.01', 'name': 'trogon'}, {'id': 2683, 'synset': 'quetzal.n.02', 'name': 'quetzal'}, {'id': 2684, 'synset': 'resplendent_quetzel.n.01', 'name': 'resplendent_quetzel'}, {'id': 2685, 'synset': 'aquatic_bird.n.01', 'name': 'aquatic_bird'}, {'id': 2686, 'synset': 'waterfowl.n.01', 'name': 'waterfowl'}, {'id': 2687, 'synset': 'anseriform_bird.n.01', 'name': 'anseriform_bird'}, {'id': 2688, 'synset': 'drake.n.02', 'name': 'drake'}, {'id': 2689, 'synset': 'quack-quack.n.01', 'name': 'quack-quack'}, {'id': 2690, 'synset': 'diving_duck.n.01', 'name': 'diving_duck'}, {'id': 2691, 'synset': 'dabbling_duck.n.01', 'name': 'dabbling_duck'}, {'id': 2692, 'synset': 'black_duck.n.01', 'name': 'black_duck'}, {'id': 2693, 'synset': 'teal.n.02', 'name': 'teal'}, {'id': 2694, 'synset': 'greenwing.n.01', 'name': 'greenwing'}, {'id': 2695, 'synset': 'bluewing.n.01', 'name': 'bluewing'}, {'id': 2696, 'synset': 'garganey.n.01', 'name': 'garganey'}, {'id': 2697, 'synset': 'widgeon.n.01', 'name': 'widgeon'}, {'id': 2698, 'synset': 'american_widgeon.n.01', 'name': 'American_widgeon'}, {'id': 2699, 'synset': 'shoveler.n.02', 'name': 'shoveler'}, {'id': 2700, 'synset': 'pintail.n.01', 'name': 'pintail'}, {'id': 2701, 'synset': 'sheldrake.n.02', 'name': 'sheldrake'}, {'id': 2702, 'synset': 'shelduck.n.01', 'name': 'shelduck'}, {'id': 2703, 'synset': 'ruddy_duck.n.01', 'name': 'ruddy_duck'}, {'id': 2704, 'synset': 'bufflehead.n.01', 'name': 'bufflehead'}, {'id': 2705, 'synset': 'goldeneye.n.02', 'name': 'goldeneye'}, {'id': 2706, 'synset': "barrow's_goldeneye.n.01", 'name': "Barrow's_goldeneye"}, {'id': 2707, 'synset': 'canvasback.n.01', 'name': 'canvasback'}, {'id': 2708, 'synset': 'pochard.n.01', 'name': 'pochard'}, {'id': 2709, 'synset': 'redhead.n.02', 'name': 'redhead'}, {'id': 2710, 'synset': 'scaup.n.01', 'name': 'scaup'}, {'id': 2711, 'synset': 'greater_scaup.n.01', 'name': 'greater_scaup'}, {'id': 2712, 'synset': 'lesser_scaup.n.01', 'name': 'lesser_scaup'}, {'id': 2713, 'synset': 'wild_duck.n.01', 'name': 'wild_duck'}, {'id': 2714, 'synset': 'wood_duck.n.01', 'name': 'wood_duck'}, {'id': 2715, 'synset': 'wood_drake.n.01', 'name': 'wood_drake'}, {'id': 2716, 'synset': 'mandarin_duck.n.01', 'name': 'mandarin_duck'}, {'id': 2717, 'synset': 'muscovy_duck.n.01', 'name': 'muscovy_duck'}, {'id': 2718, 'synset': 'sea_duck.n.01', 'name': 'sea_duck'}, {'id': 2719, 'synset': 'eider.n.01', 'name': 'eider'}, {'id': 2720, 'synset': 'scoter.n.01', 'name': 'scoter'}, {'id': 2721, 'synset': 'common_scoter.n.01', 'name': 'common_scoter'}, {'id': 2722, 'synset': 'old_squaw.n.01', 'name': 'old_squaw'}, {'id': 2723, 'synset': 'merganser.n.01', 'name': 'merganser'}, {'id': 2724, 'synset': 'goosander.n.01', 'name': 'goosander'}, {'id': 2725, 'synset': 'american_merganser.n.01', 'name': 'American_merganser'}, {'id': 2726, 'synset': 'red-breasted_merganser.n.01', 'name': 'red-breasted_merganser'}, {'id': 2727, 'synset': 'smew.n.01', 'name': 'smew'}, {'id': 2728, 'synset': 'hooded_merganser.n.01', 'name': 'hooded_merganser'}, {'id': 2729, 'synset': 'gosling.n.01', 'name': 'gosling'}, {'id': 2730, 'synset': 'gander.n.01', 'name': 'gander'}, {'id': 2731, 'synset': 'chinese_goose.n.01', 'name': 'Chinese_goose'}, {'id': 2732, 'synset': 'greylag.n.01', 'name': 'greylag'}, {'id': 2733, 'synset': 'blue_goose.n.01', 'name': 'blue_goose'}, {'id': 2734, 'synset': 'snow_goose.n.01', 'name': 'snow_goose'}, {'id': 2735, 'synset': 'brant.n.01', 'name': 'brant'}, {'id': 2736, 'synset': 'common_brant_goose.n.01', 'name': 'common_brant_goose'}, {'id': 2737, 'synset': 'honker.n.03', 'name': 'honker'}, {'id': 2738, 'synset': 'barnacle_goose.n.01', 'name': 'barnacle_goose'}, {'id': 2739, 'synset': 'coscoroba.n.01', 'name': 'coscoroba'}, {'id': 2740, 'synset': 'swan.n.01', 'name': 'swan'}, {'id': 2741, 'synset': 'cob.n.04', 'name': 'cob'}, {'id': 2742, 'synset': 'pen.n.05', 'name': 'pen'}, {'id': 2743, 'synset': 'cygnet.n.01', 'name': 'cygnet'}, {'id': 2744, 'synset': 'mute_swan.n.01', 'name': 'mute_swan'}, {'id': 2745, 'synset': 'whooper.n.02', 'name': 'whooper'}, {'id': 2746, 'synset': 'tundra_swan.n.01', 'name': 'tundra_swan'}, {'id': 2747, 'synset': 'whistling_swan.n.01', 'name': 'whistling_swan'}, {'id': 2748, 'synset': "bewick's_swan.n.01", 'name': "Bewick's_swan"}, {'id': 2749, 'synset': 'trumpeter.n.04', 'name': 'trumpeter'}, {'id': 2750, 'synset': 'black_swan.n.01', 'name': 'black_swan'}, {'id': 2751, 'synset': 'screamer.n.03', 'name': 'screamer'}, {'id': 2752, 'synset': 'horned_screamer.n.01', 'name': 'horned_screamer'}, {'id': 2753, 'synset': 'crested_screamer.n.01', 'name': 'crested_screamer'}, {'id': 2754, 'synset': 'chaja.n.01', 'name': 'chaja'}, {'id': 2755, 'synset': 'mammal.n.01', 'name': 'mammal'}, {'id': 2756, 'synset': 'female_mammal.n.01', 'name': 'female_mammal'}, {'id': 2757, 'synset': 'tusker.n.01', 'name': 'tusker'}, {'id': 2758, 'synset': 'prototherian.n.01', 'name': 'prototherian'}, {'id': 2759, 'synset': 'monotreme.n.01', 'name': 'monotreme'}, {'id': 2760, 'synset': 'echidna.n.02', 'name': 'echidna'}, {'id': 2761, 'synset': 'echidna.n.01', 'name': 'echidna'}, {'id': 2762, 'synset': 'platypus.n.01', 'name': 'platypus'}, {'id': 2763, 'synset': 'marsupial.n.01', 'name': 'marsupial'}, {'id': 2764, 'synset': 'opossum.n.02', 'name': 'opossum'}, {'id': 2765, 'synset': 'common_opossum.n.01', 'name': 'common_opossum'}, {'id': 2766, 'synset': 'crab-eating_opossum.n.01', 'name': 'crab-eating_opossum'}, {'id': 2767, 'synset': 'opossum_rat.n.01', 'name': 'opossum_rat'}, {'id': 2768, 'synset': 'bandicoot.n.01', 'name': 'bandicoot'}, {'id': 2769, 'synset': 'rabbit-eared_bandicoot.n.01', 'name': 'rabbit-eared_bandicoot'}, {'id': 2770, 'synset': 'kangaroo.n.01', 'name': 'kangaroo'}, {'id': 2771, 'synset': 'giant_kangaroo.n.01', 'name': 'giant_kangaroo'}, {'id': 2772, 'synset': 'wallaby.n.01', 'name': 'wallaby'}, {'id': 2773, 'synset': 'common_wallaby.n.01', 'name': 'common_wallaby'}, {'id': 2774, 'synset': 'hare_wallaby.n.01', 'name': 'hare_wallaby'}, {'id': 2775, 'synset': 'nail-tailed_wallaby.n.01', 'name': 'nail-tailed_wallaby'}, {'id': 2776, 'synset': 'rock_wallaby.n.01', 'name': 'rock_wallaby'}, {'id': 2777, 'synset': 'pademelon.n.01', 'name': 'pademelon'}, {'id': 2778, 'synset': 'tree_wallaby.n.01', 'name': 'tree_wallaby'}, {'id': 2779, 'synset': 'musk_kangaroo.n.01', 'name': 'musk_kangaroo'}, {'id': 2780, 'synset': 'rat_kangaroo.n.01', 'name': 'rat_kangaroo'}, {'id': 2781, 'synset': 'potoroo.n.01', 'name': 'potoroo'}, {'id': 2782, 'synset': 'bettong.n.01', 'name': 'bettong'}, {'id': 2783, 'synset': 'jerboa_kangaroo.n.01', 'name': 'jerboa_kangaroo'}, {'id': 2784, 'synset': 'phalanger.n.01', 'name': 'phalanger'}, {'id': 2785, 'synset': 'cuscus.n.01', 'name': 'cuscus'}, {'id': 2786, 'synset': 'brush-tailed_phalanger.n.01', 'name': 'brush-tailed_phalanger'}, {'id': 2787, 'synset': 'flying_phalanger.n.01', 'name': 'flying_phalanger'}, {'id': 2788, 'synset': 'wombat.n.01', 'name': 'wombat'}, {'id': 2789, 'synset': 'dasyurid_marsupial.n.01', 'name': 'dasyurid_marsupial'}, {'id': 2790, 'synset': 'dasyure.n.01', 'name': 'dasyure'}, {'id': 2791, 'synset': 'eastern_dasyure.n.01', 'name': 'eastern_dasyure'}, {'id': 2792, 'synset': 'native_cat.n.01', 'name': 'native_cat'}, {'id': 2793, 'synset': 'thylacine.n.01', 'name': 'thylacine'}, {'id': 2794, 'synset': 'tasmanian_devil.n.01', 'name': 'Tasmanian_devil'}, {'id': 2795, 'synset': 'pouched_mouse.n.01', 'name': 'pouched_mouse'}, {'id': 2796, 'synset': 'numbat.n.01', 'name': 'numbat'}, {'id': 2797, 'synset': 'pouched_mole.n.01', 'name': 'pouched_mole'}, {'id': 2798, 'synset': 'placental.n.01', 'name': 'placental'}, {'id': 2799, 'synset': 'livestock.n.01', 'name': 'livestock'}, {'id': 2800, 'synset': 'cow.n.02', 'name': 'cow'}, {'id': 2801, 'synset': 'calf.n.04', 'name': 'calf'}, {'id': 2802, 'synset': 'yearling.n.03', 'name': 'yearling'}, {'id': 2803, 'synset': 'buck.n.05', 'name': 'buck'}, {'id': 2804, 'synset': 'doe.n.02', 'name': 'doe'}, {'id': 2805, 'synset': 'insectivore.n.01', 'name': 'insectivore'}, {'id': 2806, 'synset': 'mole.n.06', 'name': 'mole'}, {'id': 2807, 'synset': 'starnose_mole.n.01', 'name': 'starnose_mole'}, {'id': 2808, 'synset': "brewer's_mole.n.01", 'name': "brewer's_mole"}, {'id': 2809, 'synset': 'golden_mole.n.01', 'name': 'golden_mole'}, {'id': 2810, 'synset': 'shrew_mole.n.01', 'name': 'shrew_mole'}, {'id': 2811, 'synset': 'asiatic_shrew_mole.n.01', 'name': 'Asiatic_shrew_mole'}, {'id': 2812, 'synset': 'american_shrew_mole.n.01', 'name': 'American_shrew_mole'}, {'id': 2813, 'synset': 'shrew.n.02', 'name': 'shrew'}, {'id': 2814, 'synset': 'common_shrew.n.01', 'name': 'common_shrew'}, {'id': 2815, 'synset': 'masked_shrew.n.01', 'name': 'masked_shrew'}, {'id': 2816, 'synset': 'short-tailed_shrew.n.01', 'name': 'short-tailed_shrew'}, {'id': 2817, 'synset': 'water_shrew.n.01', 'name': 'water_shrew'}, {'id': 2818, 'synset': 'american_water_shrew.n.01', 'name': 'American_water_shrew'}, {'id': 2819, 'synset': 'european_water_shrew.n.01', 'name': 'European_water_shrew'}, {'id': 2820, 'synset': 'mediterranean_water_shrew.n.01', 'name': 'Mediterranean_water_shrew'}, {'id': 2821, 'synset': 'least_shrew.n.01', 'name': 'least_shrew'}, {'id': 2822, 'synset': 'hedgehog.n.02', 'name': 'hedgehog'}, {'id': 2823, 'synset': 'tenrec.n.01', 'name': 'tenrec'}, {'id': 2824, 'synset': 'tailless_tenrec.n.01', 'name': 'tailless_tenrec'}, {'id': 2825, 'synset': 'otter_shrew.n.01', 'name': 'otter_shrew'}, {'id': 2826, 'synset': 'eiderdown.n.02', 'name': 'eiderdown'}, {'id': 2827, 'synset': 'aftershaft.n.01', 'name': 'aftershaft'}, {'id': 2828, 'synset': 'sickle_feather.n.01', 'name': 'sickle_feather'}, {'id': 2829, 'synset': 'contour_feather.n.01', 'name': 'contour_feather'}, {'id': 2830, 'synset': 'bastard_wing.n.01', 'name': 'bastard_wing'}, {'id': 2831, 'synset': 'saddle_hackle.n.01', 'name': 'saddle_hackle'}, {'id': 2832, 'synset': 'encolure.n.01', 'name': 'encolure'}, {'id': 2833, 'synset': 'hair.n.06', 'name': 'hair'}, {'id': 2834, 'synset': 'squama.n.01', 'name': 'squama'}, {'id': 2835, 'synset': 'scute.n.01', 'name': 'scute'}, {'id': 2836, 'synset': 'sclerite.n.01', 'name': 'sclerite'}, {'id': 2837, 'synset': 'plastron.n.05', 'name': 'plastron'}, {'id': 2838, 'synset': 'scallop_shell.n.01', 'name': 'scallop_shell'}, {'id': 2839, 'synset': 'oyster_shell.n.01', 'name': 'oyster_shell'}, {'id': 2840, 'synset': 'theca.n.02', 'name': 'theca'}, {'id': 2841, 'synset': 'invertebrate.n.01', 'name': 'invertebrate'}, {'id': 2842, 'synset': 'sponge.n.04', 'name': 'sponge'}, {'id': 2843, 'synset': 'choanocyte.n.01', 'name': 'choanocyte'}, {'id': 2844, 'synset': 'glass_sponge.n.01', 'name': 'glass_sponge'}, {'id': 2845, 'synset': "venus's_flower_basket.n.01", 'name': "Venus's_flower_basket"}, {'id': 2846, 'synset': 'metazoan.n.01', 'name': 'metazoan'}, {'id': 2847, 'synset': 'coelenterate.n.01', 'name': 'coelenterate'}, {'id': 2848, 'synset': 'planula.n.01', 'name': 'planula'}, {'id': 2849, 'synset': 'polyp.n.02', 'name': 'polyp'}, {'id': 2850, 'synset': 'medusa.n.02', 'name': 'medusa'}, {'id': 2851, 'synset': 'jellyfish.n.02', 'name': 'jellyfish'}, {'id': 2852, 'synset': 'scyphozoan.n.01', 'name': 'scyphozoan'}, {'id': 2853, 'synset': 'chrysaora_quinquecirrha.n.01', 'name': 'Chrysaora_quinquecirrha'}, {'id': 2854, 'synset': 'hydrozoan.n.01', 'name': 'hydrozoan'}, {'id': 2855, 'synset': 'hydra.n.04', 'name': 'hydra'}, {'id': 2856, 'synset': 'siphonophore.n.01', 'name': 'siphonophore'}, {'id': 2857, 'synset': 'nanomia.n.01', 'name': 'nanomia'}, {'id': 2858, 'synset': 'portuguese_man-of-war.n.01', 'name': 'Portuguese_man-of-war'}, {'id': 2859, 'synset': 'praya.n.01', 'name': 'praya'}, {'id': 2860, 'synset': 'apolemia.n.01', 'name': 'apolemia'}, {'id': 2861, 'synset': 'anthozoan.n.01', 'name': 'anthozoan'}, {'id': 2862, 'synset': 'sea_anemone.n.01', 'name': 'sea_anemone'}, {'id': 2863, 'synset': 'actinia.n.02', 'name': 'actinia'}, {'id': 2864, 'synset': 'sea_pen.n.01', 'name': 'sea_pen'}, {'id': 2865, 'synset': 'coral.n.04', 'name': 'coral'}, {'id': 2866, 'synset': 'gorgonian.n.01', 'name': 'gorgonian'}, {'id': 2867, 'synset': 'sea_feather.n.01', 'name': 'sea_feather'}, {'id': 2868, 'synset': 'sea_fan.n.01', 'name': 'sea_fan'}, {'id': 2869, 'synset': 'red_coral.n.02', 'name': 'red_coral'}, {'id': 2870, 'synset': 'stony_coral.n.01', 'name': 'stony_coral'}, {'id': 2871, 'synset': 'brain_coral.n.01', 'name': 'brain_coral'}, {'id': 2872, 'synset': 'staghorn_coral.n.01', 'name': 'staghorn_coral'}, {'id': 2873, 'synset': 'mushroom_coral.n.01', 'name': 'mushroom_coral'}, {'id': 2874, 'synset': 'ctenophore.n.01', 'name': 'ctenophore'}, {'id': 2875, 'synset': 'beroe.n.01', 'name': 'beroe'}, {'id': 2876, 'synset': 'platyctenean.n.01', 'name': 'platyctenean'}, {'id': 2877, 'synset': 'sea_gooseberry.n.01', 'name': 'sea_gooseberry'}, {'id': 2878, 'synset': "venus's_girdle.n.01", 'name': "Venus's_girdle"}, {'id': 2879, 'synset': 'worm.n.01', 'name': 'worm'}, {'id': 2880, 'synset': 'helminth.n.01', 'name': 'helminth'}, {'id': 2881, 'synset': 'woodworm.n.01', 'name': 'woodworm'}, {'id': 2882, 'synset': 'woodborer.n.01', 'name': 'woodborer'}, {'id': 2883, 'synset': 'acanthocephalan.n.01', 'name': 'acanthocephalan'}, {'id': 2884, 'synset': 'arrowworm.n.01', 'name': 'arrowworm'}, {'id': 2885, 'synset': 'bladder_worm.n.01', 'name': 'bladder_worm'}, {'id': 2886, 'synset': 'flatworm.n.01', 'name': 'flatworm'}, {'id': 2887, 'synset': 'planarian.n.01', 'name': 'planarian'}, {'id': 2888, 'synset': 'fluke.n.05', 'name': 'fluke'}, {'id': 2889, 'synset': 'cercaria.n.01', 'name': 'cercaria'}, {'id': 2890, 'synset': 'liver_fluke.n.01', 'name': 'liver_fluke'}, {'id': 2891, 'synset': 'fasciolopsis_buski.n.01', 'name': 'Fasciolopsis_buski'}, {'id': 2892, 'synset': 'schistosome.n.01', 'name': 'schistosome'}, {'id': 2893, 'synset': 'tapeworm.n.01', 'name': 'tapeworm'}, {'id': 2894, 'synset': 'echinococcus.n.01', 'name': 'echinococcus'}, {'id': 2895, 'synset': 'taenia.n.02', 'name': 'taenia'}, {'id': 2896, 'synset': 'ribbon_worm.n.01', 'name': 'ribbon_worm'}, {'id': 2897, 'synset': 'beard_worm.n.01', 'name': 'beard_worm'}, {'id': 2898, 'synset': 'rotifer.n.01', 'name': 'rotifer'}, {'id': 2899, 'synset': 'nematode.n.01', 'name': 'nematode'}, {'id': 2900, 'synset': 'common_roundworm.n.01', 'name': 'common_roundworm'}, {'id': 2901, 'synset': 'chicken_roundworm.n.01', 'name': 'chicken_roundworm'}, {'id': 2902, 'synset': 'pinworm.n.01', 'name': 'pinworm'}, {'id': 2903, 'synset': 'eelworm.n.01', 'name': 'eelworm'}, {'id': 2904, 'synset': 'vinegar_eel.n.01', 'name': 'vinegar_eel'}, {'id': 2905, 'synset': 'trichina.n.01', 'name': 'trichina'}, {'id': 2906, 'synset': 'hookworm.n.01', 'name': 'hookworm'}, {'id': 2907, 'synset': 'filaria.n.02', 'name': 'filaria'}, {'id': 2908, 'synset': 'guinea_worm.n.02', 'name': 'Guinea_worm'}, {'id': 2909, 'synset': 'annelid.n.01', 'name': 'annelid'}, {'id': 2910, 'synset': 'archiannelid.n.01', 'name': 'archiannelid'}, {'id': 2911, 'synset': 'oligochaete.n.01', 'name': 'oligochaete'}, {'id': 2912, 'synset': 'earthworm.n.01', 'name': 'earthworm'}, {'id': 2913, 'synset': 'polychaete.n.01', 'name': 'polychaete'}, {'id': 2914, 'synset': 'lugworm.n.01', 'name': 'lugworm'}, {'id': 2915, 'synset': 'sea_mouse.n.01', 'name': 'sea_mouse'}, {'id': 2916, 'synset': 'bloodworm.n.01', 'name': 'bloodworm'}, {'id': 2917, 'synset': 'leech.n.01', 'name': 'leech'}, {'id': 2918, 'synset': 'medicinal_leech.n.01', 'name': 'medicinal_leech'}, {'id': 2919, 'synset': 'horseleech.n.01', 'name': 'horseleech'}, {'id': 2920, 'synset': 'mollusk.n.01', 'name': 'mollusk'}, {'id': 2921, 'synset': 'scaphopod.n.01', 'name': 'scaphopod'}, {'id': 2922, 'synset': 'tooth_shell.n.01', 'name': 'tooth_shell'}, {'id': 2923, 'synset': 'gastropod.n.01', 'name': 'gastropod'}, {'id': 2924, 'synset': 'abalone.n.01', 'name': 'abalone'}, {'id': 2925, 'synset': 'ormer.n.01', 'name': 'ormer'}, {'id': 2926, 'synset': 'scorpion_shell.n.01', 'name': 'scorpion_shell'}, {'id': 2927, 'synset': 'conch.n.01', 'name': 'conch'}, {'id': 2928, 'synset': 'giant_conch.n.01', 'name': 'giant_conch'}, {'id': 2929, 'synset': 'snail.n.01', 'name': 'snail'}, {'id': 2930, 'synset': 'edible_snail.n.01', 'name': 'edible_snail'}, {'id': 2931, 'synset': 'garden_snail.n.01', 'name': 'garden_snail'}, {'id': 2932, 'synset': 'brown_snail.n.01', 'name': 'brown_snail'}, {'id': 2933, 'synset': 'helix_hortensis.n.01', 'name': 'Helix_hortensis'}, {'id': 2934, 'synset': 'slug.n.07', 'name': 'slug'}, {'id': 2935, 'synset': 'seasnail.n.02', 'name': 'seasnail'}, {'id': 2936, 'synset': 'neritid.n.01', 'name': 'neritid'}, {'id': 2937, 'synset': 'nerita.n.01', 'name': 'nerita'}, {'id': 2938, 'synset': 'bleeding_tooth.n.01', 'name': 'bleeding_tooth'}, {'id': 2939, 'synset': 'neritina.n.01', 'name': 'neritina'}, {'id': 2940, 'synset': 'whelk.n.02', 'name': 'whelk'}, {'id': 2941, 'synset': 'moon_shell.n.01', 'name': 'moon_shell'}, {'id': 2942, 'synset': 'periwinkle.n.04', 'name': 'periwinkle'}, {'id': 2943, 'synset': 'limpet.n.02', 'name': 'limpet'}, {'id': 2944, 'synset': 'common_limpet.n.01', 'name': 'common_limpet'}, {'id': 2945, 'synset': 'keyhole_limpet.n.01', 'name': 'keyhole_limpet'}, {'id': 2946, 'synset': 'river_limpet.n.01', 'name': 'river_limpet'}, {'id': 2947, 'synset': 'sea_slug.n.01', 'name': 'sea_slug'}, {'id': 2948, 'synset': 'sea_hare.n.01', 'name': 'sea_hare'}, {'id': 2949, 'synset': 'hermissenda_crassicornis.n.01', 'name': 'Hermissenda_crassicornis'}, {'id': 2950, 'synset': 'bubble_shell.n.01', 'name': 'bubble_shell'}, {'id': 2951, 'synset': 'physa.n.01', 'name': 'physa'}, {'id': 2952, 'synset': 'cowrie.n.01', 'name': 'cowrie'}, {'id': 2953, 'synset': 'money_cowrie.n.01', 'name': 'money_cowrie'}, {'id': 2954, 'synset': 'tiger_cowrie.n.01', 'name': 'tiger_cowrie'}, {'id': 2955, 'synset': 'solenogaster.n.01', 'name': 'solenogaster'}, {'id': 2956, 'synset': 'chiton.n.02', 'name': 'chiton'}, {'id': 2957, 'synset': 'bivalve.n.01', 'name': 'bivalve'}, {'id': 2958, 'synset': 'spat.n.03', 'name': 'spat'}, {'id': 2959, 'synset': 'clam.n.01', 'name': 'clam'}, {'id': 2960, 'synset': 'soft-shell_clam.n.02', 'name': 'soft-shell_clam'}, {'id': 2961, 'synset': 'quahog.n.02', 'name': 'quahog'}, {'id': 2962, 'synset': 'littleneck.n.02', 'name': 'littleneck'}, {'id': 2963, 'synset': 'cherrystone.n.02', 'name': 'cherrystone'}, {'id': 2964, 'synset': 'geoduck.n.01', 'name': 'geoduck'}, {'id': 2965, 'synset': 'razor_clam.n.01', 'name': 'razor_clam'}, {'id': 2966, 'synset': 'giant_clam.n.01', 'name': 'giant_clam'}, {'id': 2967, 'synset': 'cockle.n.02', 'name': 'cockle'}, {'id': 2968, 'synset': 'edible_cockle.n.01', 'name': 'edible_cockle'}, {'id': 2969, 'synset': 'oyster.n.01', 'name': 'oyster'}, {'id': 2970, 'synset': 'japanese_oyster.n.01', 'name': 'Japanese_oyster'}, {'id': 2971, 'synset': 'virginia_oyster.n.01', 'name': 'Virginia_oyster'}, {'id': 2972, 'synset': 'pearl_oyster.n.01', 'name': 'pearl_oyster'}, {'id': 2973, 'synset': 'saddle_oyster.n.01', 'name': 'saddle_oyster'}, {'id': 2974, 'synset': 'window_oyster.n.01', 'name': 'window_oyster'}, {'id': 2975, 'synset': 'ark_shell.n.01', 'name': 'ark_shell'}, {'id': 2976, 'synset': 'blood_clam.n.01', 'name': 'blood_clam'}, {'id': 2977, 'synset': 'mussel.n.02', 'name': 'mussel'}, {'id': 2978, 'synset': 'marine_mussel.n.01', 'name': 'marine_mussel'}, {'id': 2979, 'synset': 'edible_mussel.n.01', 'name': 'edible_mussel'}, {'id': 2980, 'synset': 'freshwater_mussel.n.01', 'name': 'freshwater_mussel'}, {'id': 2981, 'synset': 'pearly-shelled_mussel.n.01', 'name': 'pearly-shelled_mussel'}, {'id': 2982, 'synset': 'thin-shelled_mussel.n.01', 'name': 'thin-shelled_mussel'}, {'id': 2983, 'synset': 'zebra_mussel.n.01', 'name': 'zebra_mussel'}, {'id': 2984, 'synset': 'scallop.n.04', 'name': 'scallop'}, {'id': 2985, 'synset': 'bay_scallop.n.02', 'name': 'bay_scallop'}, {'id': 2986, 'synset': 'sea_scallop.n.02', 'name': 'sea_scallop'}, {'id': 2987, 'synset': 'shipworm.n.01', 'name': 'shipworm'}, {'id': 2988, 'synset': 'teredo.n.01', 'name': 'teredo'}, {'id': 2989, 'synset': 'piddock.n.01', 'name': 'piddock'}, {'id': 2990, 'synset': 'cephalopod.n.01', 'name': 'cephalopod'}, {'id': 2991, 'synset': 'chambered_nautilus.n.01', 'name': 'chambered_nautilus'}, {'id': 2992, 'synset': 'octopod.n.01', 'name': 'octopod'}, {'id': 2993, 'synset': 'paper_nautilus.n.01', 'name': 'paper_nautilus'}, {'id': 2994, 'synset': 'decapod.n.02', 'name': 'decapod'}, {'id': 2995, 'synset': 'squid.n.02', 'name': 'squid'}, {'id': 2996, 'synset': 'loligo.n.01', 'name': 'loligo'}, {'id': 2997, 'synset': 'ommastrephes.n.01', 'name': 'ommastrephes'}, {'id': 2998, 'synset': 'architeuthis.n.01', 'name': 'architeuthis'}, {'id': 2999, 'synset': 'cuttlefish.n.01', 'name': 'cuttlefish'}, {'id': 3000, 'synset': 'spirula.n.01', 'name': 'spirula'}, {'id': 3001, 'synset': 'crustacean.n.01', 'name': 'crustacean'}, {'id': 3002, 'synset': 'malacostracan_crustacean.n.01', 'name': 'malacostracan_crustacean'}, {'id': 3003, 'synset': 'decapod_crustacean.n.01', 'name': 'decapod_crustacean'}, {'id': 3004, 'synset': 'brachyuran.n.01', 'name': 'brachyuran'}, {'id': 3005, 'synset': 'stone_crab.n.02', 'name': 'stone_crab'}, {'id': 3006, 'synset': 'hard-shell_crab.n.01', 'name': 'hard-shell_crab'}, {'id': 3007, 'synset': 'soft-shell_crab.n.02', 'name': 'soft-shell_crab'}, {'id': 3008, 'synset': 'dungeness_crab.n.02', 'name': 'Dungeness_crab'}, {'id': 3009, 'synset': 'rock_crab.n.01', 'name': 'rock_crab'}, {'id': 3010, 'synset': 'jonah_crab.n.01', 'name': 'Jonah_crab'}, {'id': 3011, 'synset': 'swimming_crab.n.01', 'name': 'swimming_crab'}, {'id': 3012, 'synset': 'english_lady_crab.n.01', 'name': 'English_lady_crab'}, {'id': 3013, 'synset': 'american_lady_crab.n.01', 'name': 'American_lady_crab'}, {'id': 3014, 'synset': 'blue_crab.n.02', 'name': 'blue_crab'}, {'id': 3015, 'synset': 'fiddler_crab.n.01', 'name': 'fiddler_crab'}, {'id': 3016, 'synset': 'pea_crab.n.01', 'name': 'pea_crab'}, {'id': 3017, 'synset': 'king_crab.n.03', 'name': 'king_crab'}, {'id': 3018, 'synset': 'spider_crab.n.01', 'name': 'spider_crab'}, {'id': 3019, 'synset': 'european_spider_crab.n.01', 'name': 'European_spider_crab'}, {'id': 3020, 'synset': 'giant_crab.n.01', 'name': 'giant_crab'}, {'id': 3021, 'synset': 'lobster.n.02', 'name': 'lobster'}, {'id': 3022, 'synset': 'true_lobster.n.01', 'name': 'true_lobster'}, {'id': 3023, 'synset': 'american_lobster.n.02', 'name': 'American_lobster'}, {'id': 3024, 'synset': 'european_lobster.n.02', 'name': 'European_lobster'}, {'id': 3025, 'synset': 'cape_lobster.n.01', 'name': 'Cape_lobster'}, {'id': 3026, 'synset': 'norway_lobster.n.01', 'name': 'Norway_lobster'}, {'id': 3027, 'synset': 'crayfish.n.03', 'name': 'crayfish'}, {'id': 3028, 'synset': 'old_world_crayfish.n.01', 'name': 'Old_World_crayfish'}, {'id': 3029, 'synset': 'american_crayfish.n.01', 'name': 'American_crayfish'}, {'id': 3030, 'synset': 'hermit_crab.n.01', 'name': 'hermit_crab'}, {'id': 3031, 'synset': 'shrimp.n.03', 'name': 'shrimp'}, {'id': 3032, 'synset': 'snapping_shrimp.n.01', 'name': 'snapping_shrimp'}, {'id': 3033, 'synset': 'prawn.n.02', 'name': 'prawn'}, {'id': 3034, 'synset': 'long-clawed_prawn.n.01', 'name': 'long-clawed_prawn'}, {'id': 3035, 'synset': 'tropical_prawn.n.01', 'name': 'tropical_prawn'}, {'id': 3036, 'synset': 'krill.n.01', 'name': 'krill'}, {'id': 3037, 'synset': 'euphausia_pacifica.n.01', 'name': 'Euphausia_pacifica'}, {'id': 3038, 'synset': 'opossum_shrimp.n.01', 'name': 'opossum_shrimp'}, {'id': 3039, 'synset': 'stomatopod.n.01', 'name': 'stomatopod'}, {'id': 3040, 'synset': 'mantis_shrimp.n.01', 'name': 'mantis_shrimp'}, {'id': 3041, 'synset': 'squilla.n.01', 'name': 'squilla'}, {'id': 3042, 'synset': 'isopod.n.01', 'name': 'isopod'}, {'id': 3043, 'synset': 'woodlouse.n.01', 'name': 'woodlouse'}, {'id': 3044, 'synset': 'pill_bug.n.01', 'name': 'pill_bug'}, {'id': 3045, 'synset': 'sow_bug.n.01', 'name': 'sow_bug'}, {'id': 3046, 'synset': 'sea_louse.n.01', 'name': 'sea_louse'}, {'id': 3047, 'synset': 'amphipod.n.01', 'name': 'amphipod'}, {'id': 3048, 'synset': 'skeleton_shrimp.n.01', 'name': 'skeleton_shrimp'}, {'id': 3049, 'synset': 'whale_louse.n.01', 'name': 'whale_louse'}, {'id': 3050, 'synset': 'daphnia.n.01', 'name': 'daphnia'}, {'id': 3051, 'synset': 'fairy_shrimp.n.01', 'name': 'fairy_shrimp'}, {'id': 3052, 'synset': 'brine_shrimp.n.01', 'name': 'brine_shrimp'}, {'id': 3053, 'synset': 'tadpole_shrimp.n.01', 'name': 'tadpole_shrimp'}, {'id': 3054, 'synset': 'copepod.n.01', 'name': 'copepod'}, {'id': 3055, 'synset': 'cyclops.n.02', 'name': 'cyclops'}, {'id': 3056, 'synset': 'seed_shrimp.n.01', 'name': 'seed_shrimp'}, {'id': 3057, 'synset': 'barnacle.n.01', 'name': 'barnacle'}, {'id': 3058, 'synset': 'acorn_barnacle.n.01', 'name': 'acorn_barnacle'}, {'id': 3059, 'synset': 'goose_barnacle.n.01', 'name': 'goose_barnacle'}, {'id': 3060, 'synset': 'onychophoran.n.01', 'name': 'onychophoran'}, {'id': 3061, 'synset': 'wading_bird.n.01', 'name': 'wading_bird'}, {'id': 3062, 'synset': 'stork.n.01', 'name': 'stork'}, {'id': 3063, 'synset': 'white_stork.n.01', 'name': 'white_stork'}, {'id': 3064, 'synset': 'black_stork.n.01', 'name': 'black_stork'}, {'id': 3065, 'synset': 'adjutant_bird.n.01', 'name': 'adjutant_bird'}, {'id': 3066, 'synset': 'marabou.n.01', 'name': 'marabou'}, {'id': 3067, 'synset': 'openbill.n.01', 'name': 'openbill'}, {'id': 3068, 'synset': 'jabiru.n.03', 'name': 'jabiru'}, {'id': 3069, 'synset': 'saddlebill.n.01', 'name': 'saddlebill'}, {'id': 3070, 'synset': 'policeman_bird.n.01', 'name': 'policeman_bird'}, {'id': 3071, 'synset': 'wood_ibis.n.02', 'name': 'wood_ibis'}, {'id': 3072, 'synset': 'shoebill.n.01', 'name': 'shoebill'}, {'id': 3073, 'synset': 'ibis.n.01', 'name': 'ibis'}, {'id': 3074, 'synset': 'wood_ibis.n.01', 'name': 'wood_ibis'}, {'id': 3075, 'synset': 'sacred_ibis.n.01', 'name': 'sacred_ibis'}, {'id': 3076, 'synset': 'spoonbill.n.01', 'name': 'spoonbill'}, {'id': 3077, 'synset': 'common_spoonbill.n.01', 'name': 'common_spoonbill'}, {'id': 3078, 'synset': 'roseate_spoonbill.n.01', 'name': 'roseate_spoonbill'}, {'id': 3079, 'synset': 'great_blue_heron.n.01', 'name': 'great_blue_heron'}, {'id': 3080, 'synset': 'great_white_heron.n.03', 'name': 'great_white_heron'}, {'id': 3081, 'synset': 'egret.n.01', 'name': 'egret'}, {'id': 3082, 'synset': 'little_blue_heron.n.01', 'name': 'little_blue_heron'}, {'id': 3083, 'synset': 'snowy_egret.n.01', 'name': 'snowy_egret'}, {'id': 3084, 'synset': 'little_egret.n.01', 'name': 'little_egret'}, {'id': 3085, 'synset': 'great_white_heron.n.02', 'name': 'great_white_heron'}, {'id': 3086, 'synset': 'american_egret.n.01', 'name': 'American_egret'}, {'id': 3087, 'synset': 'cattle_egret.n.01', 'name': 'cattle_egret'}, {'id': 3088, 'synset': 'night_heron.n.01', 'name': 'night_heron'}, {'id': 3089, 'synset': 'black-crowned_night_heron.n.01', 'name': 'black-crowned_night_heron'}, {'id': 3090, 'synset': 'yellow-crowned_night_heron.n.01', 'name': 'yellow-crowned_night_heron'}, {'id': 3091, 'synset': 'boatbill.n.01', 'name': 'boatbill'}, {'id': 3092, 'synset': 'bittern.n.01', 'name': 'bittern'}, {'id': 3093, 'synset': 'american_bittern.n.01', 'name': 'American_bittern'}, {'id': 3094, 'synset': 'european_bittern.n.01', 'name': 'European_bittern'}, {'id': 3095, 'synset': 'least_bittern.n.01', 'name': 'least_bittern'}, {'id': 3096, 'synset': 'crane.n.05', 'name': 'crane'}, {'id': 3097, 'synset': 'whooping_crane.n.01', 'name': 'whooping_crane'}, {'id': 3098, 'synset': 'courlan.n.01', 'name': 'courlan'}, {'id': 3099, 'synset': 'limpkin.n.01', 'name': 'limpkin'}, {'id': 3100, 'synset': 'crested_cariama.n.01', 'name': 'crested_cariama'}, {'id': 3101, 'synset': 'chunga.n.01', 'name': 'chunga'}, {'id': 3102, 'synset': 'rail.n.05', 'name': 'rail'}, {'id': 3103, 'synset': 'weka.n.01', 'name': 'weka'}, {'id': 3104, 'synset': 'crake.n.01', 'name': 'crake'}, {'id': 3105, 'synset': 'corncrake.n.01', 'name': 'corncrake'}, {'id': 3106, 'synset': 'spotted_crake.n.01', 'name': 'spotted_crake'}, {'id': 3107, 'synset': 'gallinule.n.01', 'name': 'gallinule'}, {'id': 3108, 'synset': 'florida_gallinule.n.01', 'name': 'Florida_gallinule'}, {'id': 3109, 'synset': 'moorhen.n.01', 'name': 'moorhen'}, {'id': 3110, 'synset': 'purple_gallinule.n.01', 'name': 'purple_gallinule'}, {'id': 3111, 'synset': 'european_gallinule.n.01', 'name': 'European_gallinule'}, {'id': 3112, 'synset': 'american_gallinule.n.01', 'name': 'American_gallinule'}, {'id': 3113, 'synset': 'notornis.n.01', 'name': 'notornis'}, {'id': 3114, 'synset': 'coot.n.01', 'name': 'coot'}, {'id': 3115, 'synset': 'american_coot.n.01', 'name': 'American_coot'}, {'id': 3116, 'synset': 'old_world_coot.n.01', 'name': 'Old_World_coot'}, {'id': 3117, 'synset': 'bustard.n.01', 'name': 'bustard'}, {'id': 3118, 'synset': 'great_bustard.n.01', 'name': 'great_bustard'}, {'id': 3119, 'synset': 'plain_turkey.n.01', 'name': 'plain_turkey'}, {'id': 3120, 'synset': 'button_quail.n.01', 'name': 'button_quail'}, {'id': 3121, 'synset': 'striped_button_quail.n.01', 'name': 'striped_button_quail'}, {'id': 3122, 'synset': 'plain_wanderer.n.01', 'name': 'plain_wanderer'}, {'id': 3123, 'synset': 'trumpeter.n.03', 'name': 'trumpeter'}, {'id': 3124, 'synset': 'brazilian_trumpeter.n.01', 'name': 'Brazilian_trumpeter'}, {'id': 3125, 'synset': 'shorebird.n.01', 'name': 'shorebird'}, {'id': 3126, 'synset': 'plover.n.01', 'name': 'plover'}, {'id': 3127, 'synset': 'piping_plover.n.01', 'name': 'piping_plover'}, {'id': 3128, 'synset': 'killdeer.n.01', 'name': 'killdeer'}, {'id': 3129, 'synset': 'dotterel.n.01', 'name': 'dotterel'}, {'id': 3130, 'synset': 'golden_plover.n.01', 'name': 'golden_plover'}, {'id': 3131, 'synset': 'lapwing.n.01', 'name': 'lapwing'}, {'id': 3132, 'synset': 'turnstone.n.01', 'name': 'turnstone'}, {'id': 3133, 'synset': 'ruddy_turnstone.n.01', 'name': 'ruddy_turnstone'}, {'id': 3134, 'synset': 'black_turnstone.n.01', 'name': 'black_turnstone'}, {'id': 3135, 'synset': 'sandpiper.n.01', 'name': 'sandpiper'}, {'id': 3136, 'synset': 'surfbird.n.01', 'name': 'surfbird'}, {'id': 3137, 'synset': 'european_sandpiper.n.01', 'name': 'European_sandpiper'}, {'id': 3138, 'synset': 'spotted_sandpiper.n.01', 'name': 'spotted_sandpiper'}, {'id': 3139, 'synset': 'least_sandpiper.n.01', 'name': 'least_sandpiper'}, {'id': 3140, 'synset': 'red-backed_sandpiper.n.01', 'name': 'red-backed_sandpiper'}, {'id': 3141, 'synset': 'greenshank.n.01', 'name': 'greenshank'}, {'id': 3142, 'synset': 'redshank.n.01', 'name': 'redshank'}, {'id': 3143, 'synset': 'yellowlegs.n.01', 'name': 'yellowlegs'}, {'id': 3144, 'synset': 'greater_yellowlegs.n.01', 'name': 'greater_yellowlegs'}, {'id': 3145, 'synset': 'lesser_yellowlegs.n.01', 'name': 'lesser_yellowlegs'}, {'id': 3146, 'synset': 'pectoral_sandpiper.n.01', 'name': 'pectoral_sandpiper'}, {'id': 3147, 'synset': 'knot.n.07', 'name': 'knot'}, {'id': 3148, 'synset': 'curlew_sandpiper.n.01', 'name': 'curlew_sandpiper'}, {'id': 3149, 'synset': 'sanderling.n.01', 'name': 'sanderling'}, {'id': 3150, 'synset': 'upland_sandpiper.n.01', 'name': 'upland_sandpiper'}, {'id': 3151, 'synset': 'ruff.n.03', 'name': 'ruff'}, {'id': 3152, 'synset': 'reeve.n.01', 'name': 'reeve'}, {'id': 3153, 'synset': 'tattler.n.02', 'name': 'tattler'}, {'id': 3154, 'synset': 'polynesian_tattler.n.01', 'name': 'Polynesian_tattler'}, {'id': 3155, 'synset': 'willet.n.01', 'name': 'willet'}, {'id': 3156, 'synset': 'woodcock.n.01', 'name': 'woodcock'}, {'id': 3157, 'synset': 'eurasian_woodcock.n.01', 'name': 'Eurasian_woodcock'}, {'id': 3158, 'synset': 'american_woodcock.n.01', 'name': 'American_woodcock'}, {'id': 3159, 'synset': 'snipe.n.01', 'name': 'snipe'}, {'id': 3160, 'synset': 'whole_snipe.n.01', 'name': 'whole_snipe'}, {'id': 3161, 'synset': "wilson's_snipe.n.01", 'name': "Wilson's_snipe"}, {'id': 3162, 'synset': 'great_snipe.n.01', 'name': 'great_snipe'}, {'id': 3163, 'synset': 'jacksnipe.n.01', 'name': 'jacksnipe'}, {'id': 3164, 'synset': 'dowitcher.n.01', 'name': 'dowitcher'}, {'id': 3165, 'synset': 'greyback.n.02', 'name': 'greyback'}, {'id': 3166, 'synset': 'red-breasted_snipe.n.01', 'name': 'red-breasted_snipe'}, {'id': 3167, 'synset': 'curlew.n.01', 'name': 'curlew'}, {'id': 3168, 'synset': 'european_curlew.n.01', 'name': 'European_curlew'}, {'id': 3169, 'synset': 'eskimo_curlew.n.01', 'name': 'Eskimo_curlew'}, {'id': 3170, 'synset': 'godwit.n.01', 'name': 'godwit'}, {'id': 3171, 'synset': 'hudsonian_godwit.n.01', 'name': 'Hudsonian_godwit'}, {'id': 3172, 'synset': 'stilt.n.04', 'name': 'stilt'}, {'id': 3173, 'synset': 'black-necked_stilt.n.01', 'name': 'black-necked_stilt'}, {'id': 3174, 'synset': 'black-winged_stilt.n.01', 'name': 'black-winged_stilt'}, {'id': 3175, 'synset': 'white-headed_stilt.n.01', 'name': 'white-headed_stilt'}, {'id': 3176, 'synset': 'kaki.n.02', 'name': 'kaki'}, {'id': 3177, 'synset': 'stilt.n.03', 'name': 'stilt'}, {'id': 3178, 'synset': 'banded_stilt.n.01', 'name': 'banded_stilt'}, {'id': 3179, 'synset': 'avocet.n.01', 'name': 'avocet'}, {'id': 3180, 'synset': 'oystercatcher.n.01', 'name': 'oystercatcher'}, {'id': 3181, 'synset': 'phalarope.n.01', 'name': 'phalarope'}, {'id': 3182, 'synset': 'red_phalarope.n.01', 'name': 'red_phalarope'}, {'id': 3183, 'synset': 'northern_phalarope.n.01', 'name': 'northern_phalarope'}, {'id': 3184, 'synset': "wilson's_phalarope.n.01", 'name': "Wilson's_phalarope"}, {'id': 3185, 'synset': 'pratincole.n.01', 'name': 'pratincole'}, {'id': 3186, 'synset': 'courser.n.04', 'name': 'courser'}, {'id': 3187, 'synset': 'cream-colored_courser.n.01', 'name': 'cream-colored_courser'}, {'id': 3188, 'synset': 'crocodile_bird.n.01', 'name': 'crocodile_bird'}, {'id': 3189, 'synset': 'stone_curlew.n.01', 'name': 'stone_curlew'}, {'id': 3190, 'synset': 'coastal_diving_bird.n.01', 'name': 'coastal_diving_bird'}, {'id': 3191, 'synset': 'larid.n.01', 'name': 'larid'}, {'id': 3192, 'synset': 'mew.n.02', 'name': 'mew'}, {'id': 3193, 'synset': 'black-backed_gull.n.01', 'name': 'black-backed_gull'}, {'id': 3194, 'synset': 'herring_gull.n.01', 'name': 'herring_gull'}, {'id': 3195, 'synset': 'laughing_gull.n.01', 'name': 'laughing_gull'}, {'id': 3196, 'synset': 'ivory_gull.n.01', 'name': 'ivory_gull'}, {'id': 3197, 'synset': 'kittiwake.n.01', 'name': 'kittiwake'}, {'id': 3198, 'synset': 'tern.n.01', 'name': 'tern'}, {'id': 3199, 'synset': 'sea_swallow.n.01', 'name': 'sea_swallow'}, {'id': 3200, 'synset': 'skimmer.n.04', 'name': 'skimmer'}, {'id': 3201, 'synset': 'jaeger.n.01', 'name': 'jaeger'}, {'id': 3202, 'synset': 'parasitic_jaeger.n.01', 'name': 'parasitic_jaeger'}, {'id': 3203, 'synset': 'skua.n.01', 'name': 'skua'}, {'id': 3204, 'synset': 'great_skua.n.01', 'name': 'great_skua'}, {'id': 3205, 'synset': 'auk.n.01', 'name': 'auk'}, {'id': 3206, 'synset': 'auklet.n.01', 'name': 'auklet'}, {'id': 3207, 'synset': 'razorbill.n.01', 'name': 'razorbill'}, {'id': 3208, 'synset': 'little_auk.n.01', 'name': 'little_auk'}, {'id': 3209, 'synset': 'guillemot.n.01', 'name': 'guillemot'}, {'id': 3210, 'synset': 'black_guillemot.n.01', 'name': 'black_guillemot'}, {'id': 3211, 'synset': 'pigeon_guillemot.n.01', 'name': 'pigeon_guillemot'}, {'id': 3212, 'synset': 'murre.n.01', 'name': 'murre'}, {'id': 3213, 'synset': 'common_murre.n.01', 'name': 'common_murre'}, {'id': 3214, 'synset': 'thick-billed_murre.n.01', 'name': 'thick-billed_murre'}, {'id': 3215, 'synset': 'atlantic_puffin.n.01', 'name': 'Atlantic_puffin'}, {'id': 3216, 'synset': 'horned_puffin.n.01', 'name': 'horned_puffin'}, {'id': 3217, 'synset': 'tufted_puffin.n.01', 'name': 'tufted_puffin'}, {'id': 3218, 'synset': 'gaviiform_seabird.n.01', 'name': 'gaviiform_seabird'}, {'id': 3219, 'synset': 'loon.n.02', 'name': 'loon'}, {'id': 3220, 'synset': 'podicipitiform_seabird.n.01', 'name': 'podicipitiform_seabird'}, {'id': 3221, 'synset': 'grebe.n.01', 'name': 'grebe'}, {'id': 3222, 'synset': 'great_crested_grebe.n.01', 'name': 'great_crested_grebe'}, {'id': 3223, 'synset': 'red-necked_grebe.n.01', 'name': 'red-necked_grebe'}, {'id': 3224, 'synset': 'black-necked_grebe.n.01', 'name': 'black-necked_grebe'}, {'id': 3225, 'synset': 'dabchick.n.01', 'name': 'dabchick'}, {'id': 3226, 'synset': 'pied-billed_grebe.n.01', 'name': 'pied-billed_grebe'}, {'id': 3227, 'synset': 'pelecaniform_seabird.n.01', 'name': 'pelecaniform_seabird'}, {'id': 3228, 'synset': 'white_pelican.n.01', 'name': 'white_pelican'}, {'id': 3229, 'synset': 'old_world_white_pelican.n.01', 'name': 'Old_world_white_pelican'}, {'id': 3230, 'synset': 'frigate_bird.n.01', 'name': 'frigate_bird'}, {'id': 3231, 'synset': 'gannet.n.01', 'name': 'gannet'}, {'id': 3232, 'synset': 'solan.n.01', 'name': 'solan'}, {'id': 3233, 'synset': 'booby.n.02', 'name': 'booby'}, {'id': 3234, 'synset': 'cormorant.n.01', 'name': 'cormorant'}, {'id': 3235, 'synset': 'snakebird.n.01', 'name': 'snakebird'}, {'id': 3236, 'synset': 'water_turkey.n.01', 'name': 'water_turkey'}, {'id': 3237, 'synset': 'tropic_bird.n.01', 'name': 'tropic_bird'}, {'id': 3238, 'synset': 'sphenisciform_seabird.n.01', 'name': 'sphenisciform_seabird'}, {'id': 3239, 'synset': 'adelie.n.01', 'name': 'Adelie'}, {'id': 3240, 'synset': 'king_penguin.n.01', 'name': 'king_penguin'}, {'id': 3241, 'synset': 'emperor_penguin.n.01', 'name': 'emperor_penguin'}, {'id': 3242, 'synset': 'jackass_penguin.n.01', 'name': 'jackass_penguin'}, {'id': 3243, 'synset': 'rock_hopper.n.01', 'name': 'rock_hopper'}, {'id': 3244, 'synset': 'pelagic_bird.n.01', 'name': 'pelagic_bird'}, {'id': 3245, 'synset': 'procellariiform_seabird.n.01', 'name': 'procellariiform_seabird'}, {'id': 3246, 'synset': 'albatross.n.02', 'name': 'albatross'}, {'id': 3247, 'synset': 'wandering_albatross.n.01', 'name': 'wandering_albatross'}, {'id': 3248, 'synset': 'black-footed_albatross.n.01', 'name': 'black-footed_albatross'}, {'id': 3249, 'synset': 'petrel.n.01', 'name': 'petrel'}, {'id': 3250, 'synset': 'white-chinned_petrel.n.01', 'name': 'white-chinned_petrel'}, {'id': 3251, 'synset': 'giant_petrel.n.01', 'name': 'giant_petrel'}, {'id': 3252, 'synset': 'fulmar.n.01', 'name': 'fulmar'}, {'id': 3253, 'synset': 'shearwater.n.01', 'name': 'shearwater'}, {'id': 3254, 'synset': 'manx_shearwater.n.01', 'name': 'Manx_shearwater'}, {'id': 3255, 'synset': 'storm_petrel.n.01', 'name': 'storm_petrel'}, {'id': 3256, 'synset': 'stormy_petrel.n.01', 'name': 'stormy_petrel'}, {'id': 3257, 'synset': "mother_carey's_chicken.n.01", 'name': "Mother_Carey's_chicken"}, {'id': 3258, 'synset': 'diving_petrel.n.01', 'name': 'diving_petrel'}, {'id': 3259, 'synset': 'aquatic_mammal.n.01', 'name': 'aquatic_mammal'}, {'id': 3260, 'synset': 'cetacean.n.01', 'name': 'cetacean'}, {'id': 3261, 'synset': 'whale.n.02', 'name': 'whale'}, {'id': 3262, 'synset': 'baleen_whale.n.01', 'name': 'baleen_whale'}, {'id': 3263, 'synset': 'right_whale.n.01', 'name': 'right_whale'}, {'id': 3264, 'synset': 'bowhead.n.01', 'name': 'bowhead'}, {'id': 3265, 'synset': 'rorqual.n.01', 'name': 'rorqual'}, {'id': 3266, 'synset': 'blue_whale.n.01', 'name': 'blue_whale'}, {'id': 3267, 'synset': 'finback.n.01', 'name': 'finback'}, {'id': 3268, 'synset': 'sei_whale.n.01', 'name': 'sei_whale'}, {'id': 3269, 'synset': 'lesser_rorqual.n.01', 'name': 'lesser_rorqual'}, {'id': 3270, 'synset': 'humpback.n.03', 'name': 'humpback'}, {'id': 3271, 'synset': 'grey_whale.n.01', 'name': 'grey_whale'}, {'id': 3272, 'synset': 'toothed_whale.n.01', 'name': 'toothed_whale'}, {'id': 3273, 'synset': 'sperm_whale.n.01', 'name': 'sperm_whale'}, {'id': 3274, 'synset': 'pygmy_sperm_whale.n.01', 'name': 'pygmy_sperm_whale'}, {'id': 3275, 'synset': 'dwarf_sperm_whale.n.01', 'name': 'dwarf_sperm_whale'}, {'id': 3276, 'synset': 'beaked_whale.n.01', 'name': 'beaked_whale'}, {'id': 3277, 'synset': 'bottle-nosed_whale.n.01', 'name': 'bottle-nosed_whale'}, {'id': 3278, 'synset': 'common_dolphin.n.01', 'name': 'common_dolphin'}, {'id': 3279, 'synset': 'bottlenose_dolphin.n.01', 'name': 'bottlenose_dolphin'}, {'id': 3280, 'synset': 'atlantic_bottlenose_dolphin.n.01', 'name': 'Atlantic_bottlenose_dolphin'}, {'id': 3281, 'synset': 'pacific_bottlenose_dolphin.n.01', 'name': 'Pacific_bottlenose_dolphin'}, {'id': 3282, 'synset': 'porpoise.n.01', 'name': 'porpoise'}, {'id': 3283, 'synset': 'harbor_porpoise.n.01', 'name': 'harbor_porpoise'}, {'id': 3284, 'synset': 'vaquita.n.01', 'name': 'vaquita'}, {'id': 3285, 'synset': 'grampus.n.02', 'name': 'grampus'}, {'id': 3286, 'synset': 'killer_whale.n.01', 'name': 'killer_whale'}, {'id': 3287, 'synset': 'pilot_whale.n.01', 'name': 'pilot_whale'}, {'id': 3288, 'synset': 'river_dolphin.n.01', 'name': 'river_dolphin'}, {'id': 3289, 'synset': 'narwhal.n.01', 'name': 'narwhal'}, {'id': 3290, 'synset': 'white_whale.n.01', 'name': 'white_whale'}, {'id': 3291, 'synset': 'sea_cow.n.01', 'name': 'sea_cow'}, {'id': 3292, 'synset': 'dugong.n.01', 'name': 'dugong'}, {'id': 3293, 'synset': "steller's_sea_cow.n.01", 'name': "Steller's_sea_cow"}, {'id': 3294, 'synset': 'carnivore.n.01', 'name': 'carnivore'}, {'id': 3295, 'synset': 'omnivore.n.02', 'name': 'omnivore'}, {'id': 3296, 'synset': 'pinniped_mammal.n.01', 'name': 'pinniped_mammal'}, {'id': 3297, 'synset': 'seal.n.09', 'name': 'seal'}, {'id': 3298, 'synset': 'crabeater_seal.n.01', 'name': 'crabeater_seal'}, {'id': 3299, 'synset': 'eared_seal.n.01', 'name': 'eared_seal'}, {'id': 3300, 'synset': 'fur_seal.n.02', 'name': 'fur_seal'}, {'id': 3301, 'synset': 'guadalupe_fur_seal.n.01', 'name': 'guadalupe_fur_seal'}, {'id': 3302, 'synset': 'fur_seal.n.01', 'name': 'fur_seal'}, {'id': 3303, 'synset': 'alaska_fur_seal.n.01', 'name': 'Alaska_fur_seal'}, {'id': 3304, 'synset': 'sea_lion.n.01', 'name': 'sea_lion'}, {'id': 3305, 'synset': 'south_american_sea_lion.n.01', 'name': 'South_American_sea_lion'}, {'id': 3306, 'synset': 'california_sea_lion.n.01', 'name': 'California_sea_lion'}, {'id': 3307, 'synset': 'australian_sea_lion.n.01', 'name': 'Australian_sea_lion'}, {'id': 3308, 'synset': 'steller_sea_lion.n.01', 'name': 'Steller_sea_lion'}, {'id': 3309, 'synset': 'earless_seal.n.01', 'name': 'earless_seal'}, {'id': 3310, 'synset': 'harbor_seal.n.01', 'name': 'harbor_seal'}, {'id': 3311, 'synset': 'harp_seal.n.01', 'name': 'harp_seal'}, {'id': 3312, 'synset': 'elephant_seal.n.01', 'name': 'elephant_seal'}, {'id': 3313, 'synset': 'bearded_seal.n.01', 'name': 'bearded_seal'}, {'id': 3314, 'synset': 'hooded_seal.n.01', 'name': 'hooded_seal'}, {'id': 3315, 'synset': 'atlantic_walrus.n.01', 'name': 'Atlantic_walrus'}, {'id': 3316, 'synset': 'pacific_walrus.n.01', 'name': 'Pacific_walrus'}, {'id': 3317, 'synset': 'fissipedia.n.01', 'name': 'Fissipedia'}, {'id': 3318, 'synset': 'fissiped_mammal.n.01', 'name': 'fissiped_mammal'}, {'id': 3319, 'synset': 'aardvark.n.01', 'name': 'aardvark'}, {'id': 3320, 'synset': 'canine.n.02', 'name': 'canine'}, {'id': 3321, 'synset': 'bitch.n.04', 'name': 'bitch'}, {'id': 3322, 'synset': 'brood_bitch.n.01', 'name': 'brood_bitch'}, {'id': 3323, 'synset': 'pooch.n.01', 'name': 'pooch'}, {'id': 3324, 'synset': 'cur.n.01', 'name': 'cur'}, {'id': 3325, 'synset': 'feist.n.01', 'name': 'feist'}, {'id': 3326, 'synset': 'pariah_dog.n.01', 'name': 'pariah_dog'}, {'id': 3327, 'synset': 'lapdog.n.01', 'name': 'lapdog'}, {'id': 3328, 'synset': 'toy_dog.n.01', 'name': 'toy_dog'}, {'id': 3329, 'synset': 'chihuahua.n.03', 'name': 'Chihuahua'}, {'id': 3330, 'synset': 'japanese_spaniel.n.01', 'name': 'Japanese_spaniel'}, {'id': 3331, 'synset': 'maltese_dog.n.01', 'name': 'Maltese_dog'}, {'id': 3332, 'synset': 'pekinese.n.01', 'name': 'Pekinese'}, {'id': 3333, 'synset': 'shih-tzu.n.01', 'name': 'Shih-Tzu'}, {'id': 3334, 'synset': 'toy_spaniel.n.01', 'name': 'toy_spaniel'}, {'id': 3335, 'synset': 'english_toy_spaniel.n.01', 'name': 'English_toy_spaniel'}, {'id': 3336, 'synset': 'blenheim_spaniel.n.01', 'name': 'Blenheim_spaniel'}, {'id': 3337, 'synset': 'king_charles_spaniel.n.01', 'name': 'King_Charles_spaniel'}, {'id': 3338, 'synset': 'papillon.n.01', 'name': 'papillon'}, {'id': 3339, 'synset': 'toy_terrier.n.01', 'name': 'toy_terrier'}, {'id': 3340, 'synset': 'hunting_dog.n.01', 'name': 'hunting_dog'}, {'id': 3341, 'synset': 'courser.n.03', 'name': 'courser'}, {'id': 3342, 'synset': 'rhodesian_ridgeback.n.01', 'name': 'Rhodesian_ridgeback'}, {'id': 3343, 'synset': 'hound.n.01', 'name': 'hound'}, {'id': 3344, 'synset': 'afghan_hound.n.01', 'name': 'Afghan_hound'}, {'id': 3345, 'synset': 'basset.n.01', 'name': 'basset'}, {'id': 3346, 'synset': 'beagle.n.01', 'name': 'beagle'}, {'id': 3347, 'synset': 'bloodhound.n.01', 'name': 'bloodhound'}, {'id': 3348, 'synset': 'bluetick.n.01', 'name': 'bluetick'}, {'id': 3349, 'synset': 'boarhound.n.01', 'name': 'boarhound'}, {'id': 3350, 'synset': 'coonhound.n.01', 'name': 'coonhound'}, {'id': 3351, 'synset': 'coondog.n.01', 'name': 'coondog'}, {'id': 3352, 'synset': 'black-and-tan_coonhound.n.01', 'name': 'black-and-tan_coonhound'}, {'id': 3353, 'synset': 'dachshund.n.01', 'name': 'dachshund'}, {'id': 3354, 'synset': 'sausage_dog.n.01', 'name': 'sausage_dog'}, {'id': 3355, 'synset': 'foxhound.n.01', 'name': 'foxhound'}, {'id': 3356, 'synset': 'american_foxhound.n.01', 'name': 'American_foxhound'}, {'id': 3357, 'synset': 'walker_hound.n.01', 'name': 'Walker_hound'}, {'id': 3358, 'synset': 'english_foxhound.n.01', 'name': 'English_foxhound'}, {'id': 3359, 'synset': 'harrier.n.02', 'name': 'harrier'}, {'id': 3360, 'synset': 'plott_hound.n.01', 'name': 'Plott_hound'}, {'id': 3361, 'synset': 'redbone.n.01', 'name': 'redbone'}, {'id': 3362, 'synset': 'wolfhound.n.01', 'name': 'wolfhound'}, {'id': 3363, 'synset': 'borzoi.n.01', 'name': 'borzoi'}, {'id': 3364, 'synset': 'irish_wolfhound.n.01', 'name': 'Irish_wolfhound'}, {'id': 3365, 'synset': 'greyhound.n.01', 'name': 'greyhound'}, {'id': 3366, 'synset': 'italian_greyhound.n.01', 'name': 'Italian_greyhound'}, {'id': 3367, 'synset': 'whippet.n.01', 'name': 'whippet'}, {'id': 3368, 'synset': 'ibizan_hound.n.01', 'name': 'Ibizan_hound'}, {'id': 3369, 'synset': 'norwegian_elkhound.n.01', 'name': 'Norwegian_elkhound'}, {'id': 3370, 'synset': 'otterhound.n.01', 'name': 'otterhound'}, {'id': 3371, 'synset': 'saluki.n.01', 'name': 'Saluki'}, {'id': 3372, 'synset': 'scottish_deerhound.n.01', 'name': 'Scottish_deerhound'}, {'id': 3373, 'synset': 'staghound.n.01', 'name': 'staghound'}, {'id': 3374, 'synset': 'weimaraner.n.01', 'name': 'Weimaraner'}, {'id': 3375, 'synset': 'terrier.n.01', 'name': 'terrier'}, {'id': 3376, 'synset': 'bullterrier.n.01', 'name': 'bullterrier'}, {'id': 3377, 'synset': 'staffordshire_bullterrier.n.01', 'name': 'Staffordshire_bullterrier'}, {'id': 3378, 'synset': 'american_staffordshire_terrier.n.01', 'name': 'American_Staffordshire_terrier'}, {'id': 3379, 'synset': 'bedlington_terrier.n.01', 'name': 'Bedlington_terrier'}, {'id': 3380, 'synset': 'border_terrier.n.01', 'name': 'Border_terrier'}, {'id': 3381, 'synset': 'kerry_blue_terrier.n.01', 'name': 'Kerry_blue_terrier'}, {'id': 3382, 'synset': 'irish_terrier.n.01', 'name': 'Irish_terrier'}, {'id': 3383, 'synset': 'norfolk_terrier.n.01', 'name': 'Norfolk_terrier'}, {'id': 3384, 'synset': 'norwich_terrier.n.01', 'name': 'Norwich_terrier'}, {'id': 3385, 'synset': 'yorkshire_terrier.n.01', 'name': 'Yorkshire_terrier'}, {'id': 3386, 'synset': 'rat_terrier.n.01', 'name': 'rat_terrier'}, {'id': 3387, 'synset': 'manchester_terrier.n.01', 'name': 'Manchester_terrier'}, {'id': 3388, 'synset': 'toy_manchester.n.01', 'name': 'toy_Manchester'}, {'id': 3389, 'synset': 'fox_terrier.n.01', 'name': 'fox_terrier'}, {'id': 3390, 'synset': 'smooth-haired_fox_terrier.n.01', 'name': 'smooth-haired_fox_terrier'}, {'id': 3391, 'synset': 'wire-haired_fox_terrier.n.01', 'name': 'wire-haired_fox_terrier'}, {'id': 3392, 'synset': 'wirehair.n.01', 'name': 'wirehair'}, {'id': 3393, 'synset': 'lakeland_terrier.n.01', 'name': 'Lakeland_terrier'}, {'id': 3394, 'synset': 'welsh_terrier.n.01', 'name': 'Welsh_terrier'}, {'id': 3395, 'synset': 'sealyham_terrier.n.01', 'name': 'Sealyham_terrier'}, {'id': 3396, 'synset': 'airedale.n.01', 'name': 'Airedale'}, {'id': 3397, 'synset': 'cairn.n.02', 'name': 'cairn'}, {'id': 3398, 'synset': 'australian_terrier.n.01', 'name': 'Australian_terrier'}, {'id': 3399, 'synset': 'dandie_dinmont.n.01', 'name': 'Dandie_Dinmont'}, {'id': 3400, 'synset': 'boston_bull.n.01', 'name': 'Boston_bull'}, {'id': 3401, 'synset': 'schnauzer.n.01', 'name': 'schnauzer'}, {'id': 3402, 'synset': 'miniature_schnauzer.n.01', 'name': 'miniature_schnauzer'}, {'id': 3403, 'synset': 'giant_schnauzer.n.01', 'name': 'giant_schnauzer'}, {'id': 3404, 'synset': 'standard_schnauzer.n.01', 'name': 'standard_schnauzer'}, {'id': 3405, 'synset': 'scotch_terrier.n.01', 'name': 'Scotch_terrier'}, {'id': 3406, 'synset': 'tibetan_terrier.n.01', 'name': 'Tibetan_terrier'}, {'id': 3407, 'synset': 'silky_terrier.n.01', 'name': 'silky_terrier'}, {'id': 3408, 'synset': 'skye_terrier.n.01', 'name': 'Skye_terrier'}, {'id': 3409, 'synset': 'clydesdale_terrier.n.01', 'name': 'Clydesdale_terrier'}, {'id': 3410, 'synset': 'soft-coated_wheaten_terrier.n.01', 'name': 'soft-coated_wheaten_terrier'}, {'id': 3411, 'synset': 'west_highland_white_terrier.n.01', 'name': 'West_Highland_white_terrier'}, {'id': 3412, 'synset': 'lhasa.n.02', 'name': 'Lhasa'}, {'id': 3413, 'synset': 'sporting_dog.n.01', 'name': 'sporting_dog'}, {'id': 3414, 'synset': 'bird_dog.n.01', 'name': 'bird_dog'}, {'id': 3415, 'synset': 'water_dog.n.02', 'name': 'water_dog'}, {'id': 3416, 'synset': 'retriever.n.01', 'name': 'retriever'}, {'id': 3417, 'synset': 'flat-coated_retriever.n.01', 'name': 'flat-coated_retriever'}, {'id': 3418, 'synset': 'curly-coated_retriever.n.01', 'name': 'curly-coated_retriever'}, {'id': 3419, 'synset': 'golden_retriever.n.01', 'name': 'golden_retriever'}, {'id': 3420, 'synset': 'labrador_retriever.n.01', 'name': 'Labrador_retriever'}, {'id': 3421, 'synset': 'chesapeake_bay_retriever.n.01', 'name': 'Chesapeake_Bay_retriever'}, {'id': 3422, 'synset': 'pointer.n.04', 'name': 'pointer'}, {'id': 3423, 'synset': 'german_short-haired_pointer.n.01', 'name': 'German_short-haired_pointer'}, {'id': 3424, 'synset': 'setter.n.02', 'name': 'setter'}, {'id': 3425, 'synset': 'vizsla.n.01', 'name': 'vizsla'}, {'id': 3426, 'synset': 'english_setter.n.01', 'name': 'English_setter'}, {'id': 3427, 'synset': 'irish_setter.n.01', 'name': 'Irish_setter'}, {'id': 3428, 'synset': 'gordon_setter.n.01', 'name': 'Gordon_setter'}, {'id': 3429, 'synset': 'spaniel.n.01', 'name': 'spaniel'}, {'id': 3430, 'synset': 'brittany_spaniel.n.01', 'name': 'Brittany_spaniel'}, {'id': 3431, 'synset': 'clumber.n.01', 'name': 'clumber'}, {'id': 3432, 'synset': 'field_spaniel.n.01', 'name': 'field_spaniel'}, {'id': 3433, 'synset': 'springer_spaniel.n.01', 'name': 'springer_spaniel'}, {'id': 3434, 'synset': 'english_springer.n.01', 'name': 'English_springer'}, {'id': 3435, 'synset': 'welsh_springer_spaniel.n.01', 'name': 'Welsh_springer_spaniel'}, {'id': 3436, 'synset': 'cocker_spaniel.n.01', 'name': 'cocker_spaniel'}, {'id': 3437, 'synset': 'sussex_spaniel.n.01', 'name': 'Sussex_spaniel'}, {'id': 3438, 'synset': 'water_spaniel.n.01', 'name': 'water_spaniel'}, {'id': 3439, 'synset': 'american_water_spaniel.n.01', 'name': 'American_water_spaniel'}, {'id': 3440, 'synset': 'irish_water_spaniel.n.01', 'name': 'Irish_water_spaniel'}, {'id': 3441, 'synset': 'griffon.n.03', 'name': 'griffon'}, {'id': 3442, 'synset': 'working_dog.n.01', 'name': 'working_dog'}, {'id': 3443, 'synset': 'watchdog.n.02', 'name': 'watchdog'}, {'id': 3444, 'synset': 'kuvasz.n.01', 'name': 'kuvasz'}, {'id': 3445, 'synset': 'attack_dog.n.01', 'name': 'attack_dog'}, {'id': 3446, 'synset': 'housedog.n.01', 'name': 'housedog'}, {'id': 3447, 'synset': 'schipperke.n.01', 'name': 'schipperke'}, {'id': 3448, 'synset': 'belgian_sheepdog.n.01', 'name': 'Belgian_sheepdog'}, {'id': 3449, 'synset': 'groenendael.n.01', 'name': 'groenendael'}, {'id': 3450, 'synset': 'malinois.n.01', 'name': 'malinois'}, {'id': 3451, 'synset': 'briard.n.01', 'name': 'briard'}, {'id': 3452, 'synset': 'kelpie.n.02', 'name': 'kelpie'}, {'id': 3453, 'synset': 'komondor.n.01', 'name': 'komondor'}, {'id': 3454, 'synset': 'old_english_sheepdog.n.01', 'name': 'Old_English_sheepdog'}, {'id': 3455, 'synset': 'shetland_sheepdog.n.01', 'name': 'Shetland_sheepdog'}, {'id': 3456, 'synset': 'collie.n.01', 'name': 'collie'}, {'id': 3457, 'synset': 'border_collie.n.01', 'name': 'Border_collie'}, {'id': 3458, 'synset': 'bouvier_des_flandres.n.01', 'name': 'Bouvier_des_Flandres'}, {'id': 3459, 'synset': 'rottweiler.n.01', 'name': 'Rottweiler'}, {'id': 3460, 'synset': 'german_shepherd.n.01', 'name': 'German_shepherd'}, {'id': 3461, 'synset': 'police_dog.n.01', 'name': 'police_dog'}, {'id': 3462, 'synset': 'pinscher.n.01', 'name': 'pinscher'}, {'id': 3463, 'synset': 'doberman.n.01', 'name': 'Doberman'}, {'id': 3464, 'synset': 'miniature_pinscher.n.01', 'name': 'miniature_pinscher'}, {'id': 3465, 'synset': 'sennenhunde.n.01', 'name': 'Sennenhunde'}, {'id': 3466, 'synset': 'greater_swiss_mountain_dog.n.01', 'name': 'Greater_Swiss_Mountain_dog'}, {'id': 3467, 'synset': 'bernese_mountain_dog.n.01', 'name': 'Bernese_mountain_dog'}, {'id': 3468, 'synset': 'appenzeller.n.01', 'name': 'Appenzeller'}, {'id': 3469, 'synset': 'entlebucher.n.01', 'name': 'EntleBucher'}, {'id': 3470, 'synset': 'boxer.n.04', 'name': 'boxer'}, {'id': 3471, 'synset': 'mastiff.n.01', 'name': 'mastiff'}, {'id': 3472, 'synset': 'bull_mastiff.n.01', 'name': 'bull_mastiff'}, {'id': 3473, 'synset': 'tibetan_mastiff.n.01', 'name': 'Tibetan_mastiff'}, {'id': 3474, 'synset': 'french_bulldog.n.01', 'name': 'French_bulldog'}, {'id': 3475, 'synset': 'great_dane.n.01', 'name': 'Great_Dane'}, {'id': 3476, 'synset': 'guide_dog.n.01', 'name': 'guide_dog'}, {'id': 3477, 'synset': 'seeing_eye_dog.n.01', 'name': 'Seeing_Eye_dog'}, {'id': 3478, 'synset': 'hearing_dog.n.01', 'name': 'hearing_dog'}, {'id': 3479, 'synset': 'saint_bernard.n.01', 'name': 'Saint_Bernard'}, {'id': 3480, 'synset': 'seizure-alert_dog.n.01', 'name': 'seizure-alert_dog'}, {'id': 3481, 'synset': 'sled_dog.n.01', 'name': 'sled_dog'}, {'id': 3482, 'synset': 'eskimo_dog.n.01', 'name': 'Eskimo_dog'}, {'id': 3483, 'synset': 'malamute.n.01', 'name': 'malamute'}, {'id': 3484, 'synset': 'siberian_husky.n.01', 'name': 'Siberian_husky'}, {'id': 3485, 'synset': 'liver-spotted_dalmatian.n.01', 'name': 'liver-spotted_dalmatian'}, {'id': 3486, 'synset': 'affenpinscher.n.01', 'name': 'affenpinscher'}, {'id': 3487, 'synset': 'basenji.n.01', 'name': 'basenji'}, {'id': 3488, 'synset': 'leonberg.n.01', 'name': 'Leonberg'}, {'id': 3489, 'synset': 'newfoundland.n.01', 'name': 'Newfoundland'}, {'id': 3490, 'synset': 'great_pyrenees.n.01', 'name': 'Great_Pyrenees'}, {'id': 3491, 'synset': 'spitz.n.01', 'name': 'spitz'}, {'id': 3492, 'synset': 'samoyed.n.03', 'name': 'Samoyed'}, {'id': 3493, 'synset': 'pomeranian.n.01', 'name': 'Pomeranian'}, {'id': 3494, 'synset': 'chow.n.03', 'name': 'chow'}, {'id': 3495, 'synset': 'keeshond.n.01', 'name': 'keeshond'}, {'id': 3496, 'synset': 'griffon.n.02', 'name': 'griffon'}, {'id': 3497, 'synset': 'brabancon_griffon.n.01', 'name': 'Brabancon_griffon'}, {'id': 3498, 'synset': 'corgi.n.01', 'name': 'corgi'}, {'id': 3499, 'synset': 'pembroke.n.01', 'name': 'Pembroke'}, {'id': 3500, 'synset': 'cardigan.n.02', 'name': 'Cardigan'}, {'id': 3501, 'synset': 'poodle.n.01', 'name': 'poodle'}, {'id': 3502, 'synset': 'toy_poodle.n.01', 'name': 'toy_poodle'}, {'id': 3503, 'synset': 'miniature_poodle.n.01', 'name': 'miniature_poodle'}, {'id': 3504, 'synset': 'standard_poodle.n.01', 'name': 'standard_poodle'}, {'id': 3505, 'synset': 'large_poodle.n.01', 'name': 'large_poodle'}, {'id': 3506, 'synset': 'mexican_hairless.n.01', 'name': 'Mexican_hairless'}, {'id': 3507, 'synset': 'timber_wolf.n.01', 'name': 'timber_wolf'}, {'id': 3508, 'synset': 'white_wolf.n.01', 'name': 'white_wolf'}, {'id': 3509, 'synset': 'red_wolf.n.01', 'name': 'red_wolf'}, {'id': 3510, 'synset': 'coyote.n.01', 'name': 'coyote'}, {'id': 3511, 'synset': 'coydog.n.01', 'name': 'coydog'}, {'id': 3512, 'synset': 'jackal.n.01', 'name': 'jackal'}, {'id': 3513, 'synset': 'wild_dog.n.01', 'name': 'wild_dog'}, {'id': 3514, 'synset': 'dingo.n.01', 'name': 'dingo'}, {'id': 3515, 'synset': 'dhole.n.01', 'name': 'dhole'}, {'id': 3516, 'synset': 'crab-eating_dog.n.01', 'name': 'crab-eating_dog'}, {'id': 3517, 'synset': 'raccoon_dog.n.01', 'name': 'raccoon_dog'}, {'id': 3518, 'synset': 'african_hunting_dog.n.01', 'name': 'African_hunting_dog'}, {'id': 3519, 'synset': 'hyena.n.01', 'name': 'hyena'}, {'id': 3520, 'synset': 'striped_hyena.n.01', 'name': 'striped_hyena'}, {'id': 3521, 'synset': 'brown_hyena.n.01', 'name': 'brown_hyena'}, {'id': 3522, 'synset': 'spotted_hyena.n.01', 'name': 'spotted_hyena'}, {'id': 3523, 'synset': 'aardwolf.n.01', 'name': 'aardwolf'}, {'id': 3524, 'synset': 'fox.n.01', 'name': 'fox'}, {'id': 3525, 'synset': 'vixen.n.02', 'name': 'vixen'}, {'id': 3526, 'synset': 'reynard.n.01', 'name': 'Reynard'}, {'id': 3527, 'synset': 'red_fox.n.03', 'name': 'red_fox'}, {'id': 3528, 'synset': 'black_fox.n.01', 'name': 'black_fox'}, {'id': 3529, 'synset': 'silver_fox.n.01', 'name': 'silver_fox'}, {'id': 3530, 'synset': 'red_fox.n.02', 'name': 'red_fox'}, {'id': 3531, 'synset': 'kit_fox.n.02', 'name': 'kit_fox'}, {'id': 3532, 'synset': 'kit_fox.n.01', 'name': 'kit_fox'}, {'id': 3533, 'synset': 'arctic_fox.n.01', 'name': 'Arctic_fox'}, {'id': 3534, 'synset': 'blue_fox.n.01', 'name': 'blue_fox'}, {'id': 3535, 'synset': 'grey_fox.n.01', 'name': 'grey_fox'}, {'id': 3536, 'synset': 'feline.n.01', 'name': 'feline'}, {'id': 3537, 'synset': 'domestic_cat.n.01', 'name': 'domestic_cat'}, {'id': 3538, 'synset': 'kitty.n.04', 'name': 'kitty'}, {'id': 3539, 'synset': 'mouser.n.01', 'name': 'mouser'}, {'id': 3540, 'synset': 'alley_cat.n.01', 'name': 'alley_cat'}, {'id': 3541, 'synset': 'stray.n.01', 'name': 'stray'}, {'id': 3542, 'synset': 'tom.n.02', 'name': 'tom'}, {'id': 3543, 'synset': 'gib.n.02', 'name': 'gib'}, {'id': 3544, 'synset': 'tabby.n.02', 'name': 'tabby'}, {'id': 3545, 'synset': 'tabby.n.01', 'name': 'tabby'}, {'id': 3546, 'synset': 'tiger_cat.n.02', 'name': 'tiger_cat'}, {'id': 3547, 'synset': 'tortoiseshell.n.03', 'name': 'tortoiseshell'}, {'id': 3548, 'synset': 'persian_cat.n.01', 'name': 'Persian_cat'}, {'id': 3549, 'synset': 'angora.n.04', 'name': 'Angora'}, {'id': 3550, 'synset': 'siamese_cat.n.01', 'name': 'Siamese_cat'}, {'id': 3551, 'synset': 'blue_point_siamese.n.01', 'name': 'blue_point_Siamese'}, {'id': 3552, 'synset': 'burmese_cat.n.01', 'name': 'Burmese_cat'}, {'id': 3553, 'synset': 'egyptian_cat.n.01', 'name': 'Egyptian_cat'}, {'id': 3554, 'synset': 'maltese.n.03', 'name': 'Maltese'}, {'id': 3555, 'synset': 'abyssinian.n.01', 'name': 'Abyssinian'}, {'id': 3556, 'synset': 'manx.n.02', 'name': 'Manx'}, {'id': 3557, 'synset': 'wildcat.n.03', 'name': 'wildcat'}, {'id': 3558, 'synset': 'sand_cat.n.01', 'name': 'sand_cat'}, {'id': 3559, 'synset': 'european_wildcat.n.01', 'name': 'European_wildcat'}, {'id': 3560, 'synset': 'ocelot.n.01', 'name': 'ocelot'}, {'id': 3561, 'synset': 'jaguarundi.n.01', 'name': 'jaguarundi'}, {'id': 3562, 'synset': 'kaffir_cat.n.01', 'name': 'kaffir_cat'}, {'id': 3563, 'synset': 'jungle_cat.n.01', 'name': 'jungle_cat'}, {'id': 3564, 'synset': 'serval.n.01', 'name': 'serval'}, {'id': 3565, 'synset': 'leopard_cat.n.01', 'name': 'leopard_cat'}, {'id': 3566, 'synset': 'margay.n.01', 'name': 'margay'}, {'id': 3567, 'synset': 'manul.n.01', 'name': 'manul'}, {'id': 3568, 'synset': 'lynx.n.02', 'name': 'lynx'}, {'id': 3569, 'synset': 'common_lynx.n.01', 'name': 'common_lynx'}, {'id': 3570, 'synset': 'canada_lynx.n.01', 'name': 'Canada_lynx'}, {'id': 3571, 'synset': 'bobcat.n.01', 'name': 'bobcat'}, {'id': 3572, 'synset': 'spotted_lynx.n.01', 'name': 'spotted_lynx'}, {'id': 3573, 'synset': 'caracal.n.01', 'name': 'caracal'}, {'id': 3574, 'synset': 'big_cat.n.01', 'name': 'big_cat'}, {'id': 3575, 'synset': 'leopard.n.02', 'name': 'leopard'}, {'id': 3576, 'synset': 'leopardess.n.01', 'name': 'leopardess'}, {'id': 3577, 'synset': 'panther.n.02', 'name': 'panther'}, {'id': 3578, 'synset': 'snow_leopard.n.01', 'name': 'snow_leopard'}, {'id': 3579, 'synset': 'jaguar.n.01', 'name': 'jaguar'}, {'id': 3580, 'synset': 'lioness.n.01', 'name': 'lioness'}, {'id': 3581, 'synset': 'lionet.n.01', 'name': 'lionet'}, {'id': 3582, 'synset': 'bengal_tiger.n.01', 'name': 'Bengal_tiger'}, {'id': 3583, 'synset': 'tigress.n.01', 'name': 'tigress'}, {'id': 3584, 'synset': 'liger.n.01', 'name': 'liger'}, {'id': 3585, 'synset': 'tiglon.n.01', 'name': 'tiglon'}, {'id': 3586, 'synset': 'cheetah.n.01', 'name': 'cheetah'}, {'id': 3587, 'synset': 'saber-toothed_tiger.n.01', 'name': 'saber-toothed_tiger'}, {'id': 3588, 'synset': 'smiledon_californicus.n.01', 'name': 'Smiledon_californicus'}, {'id': 3589, 'synset': 'brown_bear.n.01', 'name': 'brown_bear'}, {'id': 3590, 'synset': 'bruin.n.01', 'name': 'bruin'}, {'id': 3591, 'synset': 'syrian_bear.n.01', 'name': 'Syrian_bear'}, {'id': 3592, 'synset': 'alaskan_brown_bear.n.01', 'name': 'Alaskan_brown_bear'}, {'id': 3593, 'synset': 'american_black_bear.n.01', 'name': 'American_black_bear'}, {'id': 3594, 'synset': 'cinnamon_bear.n.01', 'name': 'cinnamon_bear'}, {'id': 3595, 'synset': 'asiatic_black_bear.n.01', 'name': 'Asiatic_black_bear'}, {'id': 3596, 'synset': 'sloth_bear.n.01', 'name': 'sloth_bear'}, {'id': 3597, 'synset': 'viverrine.n.01', 'name': 'viverrine'}, {'id': 3598, 'synset': 'civet.n.01', 'name': 'civet'}, {'id': 3599, 'synset': 'large_civet.n.01', 'name': 'large_civet'}, {'id': 3600, 'synset': 'small_civet.n.01', 'name': 'small_civet'}, {'id': 3601, 'synset': 'binturong.n.01', 'name': 'binturong'}, {'id': 3602, 'synset': 'cryptoprocta.n.01', 'name': 'Cryptoprocta'}, {'id': 3603, 'synset': 'fossa.n.03', 'name': 'fossa'}, {'id': 3604, 'synset': 'fanaloka.n.01', 'name': 'fanaloka'}, {'id': 3605, 'synset': 'genet.n.03', 'name': 'genet'}, {'id': 3606, 'synset': 'banded_palm_civet.n.01', 'name': 'banded_palm_civet'}, {'id': 3607, 'synset': 'mongoose.n.01', 'name': 'mongoose'}, {'id': 3608, 'synset': 'indian_mongoose.n.01', 'name': 'Indian_mongoose'}, {'id': 3609, 'synset': 'ichneumon.n.01', 'name': 'ichneumon'}, {'id': 3610, 'synset': 'palm_cat.n.01', 'name': 'palm_cat'}, {'id': 3611, 'synset': 'meerkat.n.01', 'name': 'meerkat'}, {'id': 3612, 'synset': 'slender-tailed_meerkat.n.01', 'name': 'slender-tailed_meerkat'}, {'id': 3613, 'synset': 'suricate.n.01', 'name': 'suricate'}, {'id': 3614, 'synset': 'fruit_bat.n.01', 'name': 'fruit_bat'}, {'id': 3615, 'synset': 'flying_fox.n.01', 'name': 'flying_fox'}, {'id': 3616, 'synset': 'pteropus_capestratus.n.01', 'name': 'Pteropus_capestratus'}, {'id': 3617, 'synset': 'pteropus_hypomelanus.n.01', 'name': 'Pteropus_hypomelanus'}, {'id': 3618, 'synset': 'harpy.n.03', 'name': 'harpy'}, {'id': 3619, 'synset': 'cynopterus_sphinx.n.01', 'name': 'Cynopterus_sphinx'}, {'id': 3620, 'synset': 'carnivorous_bat.n.01', 'name': 'carnivorous_bat'}, {'id': 3621, 'synset': 'mouse-eared_bat.n.01', 'name': 'mouse-eared_bat'}, {'id': 3622, 'synset': 'leafnose_bat.n.01', 'name': 'leafnose_bat'}, {'id': 3623, 'synset': 'macrotus.n.01', 'name': 'macrotus'}, {'id': 3624, 'synset': 'spearnose_bat.n.01', 'name': 'spearnose_bat'}, {'id': 3625, 'synset': 'phyllostomus_hastatus.n.01', 'name': 'Phyllostomus_hastatus'}, {'id': 3626, 'synset': 'hognose_bat.n.01', 'name': 'hognose_bat'}, {'id': 3627, 'synset': 'horseshoe_bat.n.02', 'name': 'horseshoe_bat'}, {'id': 3628, 'synset': 'horseshoe_bat.n.01', 'name': 'horseshoe_bat'}, {'id': 3629, 'synset': 'orange_bat.n.01', 'name': 'orange_bat'}, {'id': 3630, 'synset': 'false_vampire.n.01', 'name': 'false_vampire'}, {'id': 3631, 'synset': 'big-eared_bat.n.01', 'name': 'big-eared_bat'}, {'id': 3632, 'synset': 'vespertilian_bat.n.01', 'name': 'vespertilian_bat'}, {'id': 3633, 'synset': 'frosted_bat.n.01', 'name': 'frosted_bat'}, {'id': 3634, 'synset': 'red_bat.n.01', 'name': 'red_bat'}, {'id': 3635, 'synset': 'brown_bat.n.01', 'name': 'brown_bat'}, {'id': 3636, 'synset': 'little_brown_bat.n.01', 'name': 'little_brown_bat'}, {'id': 3637, 'synset': 'cave_myotis.n.01', 'name': 'cave_myotis'}, {'id': 3638, 'synset': 'big_brown_bat.n.01', 'name': 'big_brown_bat'}, {'id': 3639, 'synset': 'serotine.n.01', 'name': 'serotine'}, {'id': 3640, 'synset': 'pallid_bat.n.01', 'name': 'pallid_bat'}, {'id': 3641, 'synset': 'pipistrelle.n.01', 'name': 'pipistrelle'}, {'id': 3642, 'synset': 'eastern_pipistrel.n.01', 'name': 'eastern_pipistrel'}, {'id': 3643, 'synset': 'jackass_bat.n.01', 'name': 'jackass_bat'}, {'id': 3644, 'synset': 'long-eared_bat.n.01', 'name': 'long-eared_bat'}, {'id': 3645, 'synset': 'western_big-eared_bat.n.01', 'name': 'western_big-eared_bat'}, {'id': 3646, 'synset': 'freetail.n.01', 'name': 'freetail'}, {'id': 3647, 'synset': 'guano_bat.n.01', 'name': 'guano_bat'}, {'id': 3648, 'synset': 'pocketed_bat.n.01', 'name': 'pocketed_bat'}, {'id': 3649, 'synset': 'mastiff_bat.n.01', 'name': 'mastiff_bat'}, {'id': 3650, 'synset': 'vampire_bat.n.01', 'name': 'vampire_bat'}, {'id': 3651, 'synset': 'desmodus_rotundus.n.01', 'name': 'Desmodus_rotundus'}, {'id': 3652, 'synset': 'hairy-legged_vampire_bat.n.01', 'name': 'hairy-legged_vampire_bat'}, {'id': 3653, 'synset': 'predator.n.02', 'name': 'predator'}, {'id': 3654, 'synset': 'prey.n.02', 'name': 'prey'}, {'id': 3655, 'synset': 'game.n.04', 'name': 'game'}, {'id': 3656, 'synset': 'big_game.n.01', 'name': 'big_game'}, {'id': 3657, 'synset': 'game_bird.n.01', 'name': 'game_bird'}, {'id': 3658, 'synset': 'fossorial_mammal.n.01', 'name': 'fossorial_mammal'}, {'id': 3659, 'synset': 'tetrapod.n.01', 'name': 'tetrapod'}, {'id': 3660, 'synset': 'quadruped.n.01', 'name': 'quadruped'}, {'id': 3661, 'synset': 'hexapod.n.01', 'name': 'hexapod'}, {'id': 3662, 'synset': 'biped.n.01', 'name': 'biped'}, {'id': 3663, 'synset': 'insect.n.01', 'name': 'insect'}, {'id': 3664, 'synset': 'social_insect.n.01', 'name': 'social_insect'}, {'id': 3665, 'synset': 'holometabola.n.01', 'name': 'holometabola'}, {'id': 3666, 'synset': 'defoliator.n.01', 'name': 'defoliator'}, {'id': 3667, 'synset': 'pollinator.n.01', 'name': 'pollinator'}, {'id': 3668, 'synset': 'gallfly.n.03', 'name': 'gallfly'}, {'id': 3669, 'synset': 'scorpion_fly.n.01', 'name': 'scorpion_fly'}, {'id': 3670, 'synset': 'hanging_fly.n.01', 'name': 'hanging_fly'}, {'id': 3671, 'synset': 'collembolan.n.01', 'name': 'collembolan'}, {'id': 3672, 'synset': 'tiger_beetle.n.01', 'name': 'tiger_beetle'}, {'id': 3673, 'synset': 'two-spotted_ladybug.n.01', 'name': 'two-spotted_ladybug'}, {'id': 3674, 'synset': 'mexican_bean_beetle.n.01', 'name': 'Mexican_bean_beetle'}, {'id': 3675, 'synset': 'hippodamia_convergens.n.01', 'name': 'Hippodamia_convergens'}, {'id': 3676, 'synset': 'vedalia.n.01', 'name': 'vedalia'}, {'id': 3677, 'synset': 'ground_beetle.n.01', 'name': 'ground_beetle'}, {'id': 3678, 'synset': 'bombardier_beetle.n.01', 'name': 'bombardier_beetle'}, {'id': 3679, 'synset': 'calosoma.n.01', 'name': 'calosoma'}, {'id': 3680, 'synset': 'searcher.n.03', 'name': 'searcher'}, {'id': 3681, 'synset': 'firefly.n.02', 'name': 'firefly'}, {'id': 3682, 'synset': 'glowworm.n.01', 'name': 'glowworm'}, {'id': 3683, 'synset': 'long-horned_beetle.n.01', 'name': 'long-horned_beetle'}, {'id': 3684, 'synset': 'sawyer.n.02', 'name': 'sawyer'}, {'id': 3685, 'synset': 'pine_sawyer.n.01', 'name': 'pine_sawyer'}, {'id': 3686, 'synset': 'leaf_beetle.n.01', 'name': 'leaf_beetle'}, {'id': 3687, 'synset': 'flea_beetle.n.01', 'name': 'flea_beetle'}, {'id': 3688, 'synset': 'colorado_potato_beetle.n.01', 'name': 'Colorado_potato_beetle'}, {'id': 3689, 'synset': 'carpet_beetle.n.01', 'name': 'carpet_beetle'}, {'id': 3690, 'synset': 'buffalo_carpet_beetle.n.01', 'name': 'buffalo_carpet_beetle'}, {'id': 3691, 'synset': 'black_carpet_beetle.n.01', 'name': 'black_carpet_beetle'}, {'id': 3692, 'synset': 'clerid_beetle.n.01', 'name': 'clerid_beetle'}, {'id': 3693, 'synset': 'bee_beetle.n.01', 'name': 'bee_beetle'}, {'id': 3694, 'synset': 'lamellicorn_beetle.n.01', 'name': 'lamellicorn_beetle'}, {'id': 3695, 'synset': 'scarabaeid_beetle.n.01', 'name': 'scarabaeid_beetle'}, {'id': 3696, 'synset': 'dung_beetle.n.01', 'name': 'dung_beetle'}, {'id': 3697, 'synset': 'scarab.n.01', 'name': 'scarab'}, {'id': 3698, 'synset': 'tumblebug.n.01', 'name': 'tumblebug'}, {'id': 3699, 'synset': 'dorbeetle.n.01', 'name': 'dorbeetle'}, {'id': 3700, 'synset': 'june_beetle.n.01', 'name': 'June_beetle'}, {'id': 3701, 'synset': 'green_june_beetle.n.01', 'name': 'green_June_beetle'}, {'id': 3702, 'synset': 'japanese_beetle.n.01', 'name': 'Japanese_beetle'}, {'id': 3703, 'synset': 'oriental_beetle.n.01', 'name': 'Oriental_beetle'}, {'id': 3704, 'synset': 'rhinoceros_beetle.n.01', 'name': 'rhinoceros_beetle'}, {'id': 3705, 'synset': 'melolonthid_beetle.n.01', 'name': 'melolonthid_beetle'}, {'id': 3706, 'synset': 'cockchafer.n.01', 'name': 'cockchafer'}, {'id': 3707, 'synset': 'rose_chafer.n.02', 'name': 'rose_chafer'}, {'id': 3708, 'synset': 'rose_chafer.n.01', 'name': 'rose_chafer'}, {'id': 3709, 'synset': 'stag_beetle.n.01', 'name': 'stag_beetle'}, {'id': 3710, 'synset': 'elaterid_beetle.n.01', 'name': 'elaterid_beetle'}, {'id': 3711, 'synset': 'click_beetle.n.01', 'name': 'click_beetle'}, {'id': 3712, 'synset': 'firefly.n.01', 'name': 'firefly'}, {'id': 3713, 'synset': 'wireworm.n.01', 'name': 'wireworm'}, {'id': 3714, 'synset': 'water_beetle.n.01', 'name': 'water_beetle'}, {'id': 3715, 'synset': 'whirligig_beetle.n.01', 'name': 'whirligig_beetle'}, {'id': 3716, 'synset': 'deathwatch_beetle.n.01', 'name': 'deathwatch_beetle'}, {'id': 3717, 'synset': 'weevil.n.01', 'name': 'weevil'}, {'id': 3718, 'synset': 'snout_beetle.n.01', 'name': 'snout_beetle'}, {'id': 3719, 'synset': 'boll_weevil.n.01', 'name': 'boll_weevil'}, {'id': 3720, 'synset': 'blister_beetle.n.01', 'name': 'blister_beetle'}, {'id': 3721, 'synset': 'oil_beetle.n.01', 'name': 'oil_beetle'}, {'id': 3722, 'synset': 'spanish_fly.n.01', 'name': 'Spanish_fly'}, {'id': 3723, 'synset': 'dutch-elm_beetle.n.01', 'name': 'Dutch-elm_beetle'}, {'id': 3724, 'synset': 'bark_beetle.n.01', 'name': 'bark_beetle'}, {'id': 3725, 'synset': 'spruce_bark_beetle.n.01', 'name': 'spruce_bark_beetle'}, {'id': 3726, 'synset': 'rove_beetle.n.01', 'name': 'rove_beetle'}, {'id': 3727, 'synset': 'darkling_beetle.n.01', 'name': 'darkling_beetle'}, {'id': 3728, 'synset': 'mealworm.n.01', 'name': 'mealworm'}, {'id': 3729, 'synset': 'flour_beetle.n.01', 'name': 'flour_beetle'}, {'id': 3730, 'synset': 'seed_beetle.n.01', 'name': 'seed_beetle'}, {'id': 3731, 'synset': 'pea_weevil.n.01', 'name': 'pea_weevil'}, {'id': 3732, 'synset': 'bean_weevil.n.01', 'name': 'bean_weevil'}, {'id': 3733, 'synset': 'rice_weevil.n.01', 'name': 'rice_weevil'}, {'id': 3734, 'synset': 'asian_longhorned_beetle.n.01', 'name': 'Asian_longhorned_beetle'}, {'id': 3735, 'synset': 'web_spinner.n.01', 'name': 'web_spinner'}, {'id': 3736, 'synset': 'louse.n.01', 'name': 'louse'}, {'id': 3737, 'synset': 'common_louse.n.01', 'name': 'common_louse'}, {'id': 3738, 'synset': 'head_louse.n.01', 'name': 'head_louse'}, {'id': 3739, 'synset': 'body_louse.n.01', 'name': 'body_louse'}, {'id': 3740, 'synset': 'crab_louse.n.01', 'name': 'crab_louse'}, {'id': 3741, 'synset': 'bird_louse.n.01', 'name': 'bird_louse'}, {'id': 3742, 'synset': 'flea.n.01', 'name': 'flea'}, {'id': 3743, 'synset': 'pulex_irritans.n.01', 'name': 'Pulex_irritans'}, {'id': 3744, 'synset': 'dog_flea.n.01', 'name': 'dog_flea'}, {'id': 3745, 'synset': 'cat_flea.n.01', 'name': 'cat_flea'}, {'id': 3746, 'synset': 'chigoe.n.01', 'name': 'chigoe'}, {'id': 3747, 'synset': 'sticktight.n.02', 'name': 'sticktight'}, {'id': 3748, 'synset': 'dipterous_insect.n.01', 'name': 'dipterous_insect'}, {'id': 3749, 'synset': 'gall_midge.n.01', 'name': 'gall_midge'}, {'id': 3750, 'synset': 'hessian_fly.n.01', 'name': 'Hessian_fly'}, {'id': 3751, 'synset': 'fly.n.01', 'name': 'fly'}, {'id': 3752, 'synset': 'housefly.n.01', 'name': 'housefly'}, {'id': 3753, 'synset': 'tsetse_fly.n.01', 'name': 'tsetse_fly'}, {'id': 3754, 'synset': 'blowfly.n.01', 'name': 'blowfly'}, {'id': 3755, 'synset': 'bluebottle.n.02', 'name': 'bluebottle'}, {'id': 3756, 'synset': 'greenbottle.n.01', 'name': 'greenbottle'}, {'id': 3757, 'synset': 'flesh_fly.n.01', 'name': 'flesh_fly'}, {'id': 3758, 'synset': 'tachina_fly.n.01', 'name': 'tachina_fly'}, {'id': 3759, 'synset': 'gadfly.n.02', 'name': 'gadfly'}, {'id': 3760, 'synset': 'botfly.n.01', 'name': 'botfly'}, {'id': 3761, 'synset': 'human_botfly.n.01', 'name': 'human_botfly'}, {'id': 3762, 'synset': 'sheep_botfly.n.01', 'name': 'sheep_botfly'}, {'id': 3763, 'synset': 'warble_fly.n.01', 'name': 'warble_fly'}, {'id': 3764, 'synset': 'horsefly.n.02', 'name': 'horsefly'}, {'id': 3765, 'synset': 'bee_fly.n.01', 'name': 'bee_fly'}, {'id': 3766, 'synset': 'robber_fly.n.01', 'name': 'robber_fly'}, {'id': 3767, 'synset': 'fruit_fly.n.01', 'name': 'fruit_fly'}, {'id': 3768, 'synset': 'apple_maggot.n.01', 'name': 'apple_maggot'}, {'id': 3769, 'synset': 'mediterranean_fruit_fly.n.01', 'name': 'Mediterranean_fruit_fly'}, {'id': 3770, 'synset': 'drosophila.n.01', 'name': 'drosophila'}, {'id': 3771, 'synset': 'vinegar_fly.n.01', 'name': 'vinegar_fly'}, {'id': 3772, 'synset': 'leaf_miner.n.01', 'name': 'leaf_miner'}, {'id': 3773, 'synset': 'louse_fly.n.01', 'name': 'louse_fly'}, {'id': 3774, 'synset': 'horse_tick.n.01', 'name': 'horse_tick'}, {'id': 3775, 'synset': 'sheep_ked.n.01', 'name': 'sheep_ked'}, {'id': 3776, 'synset': 'horn_fly.n.01', 'name': 'horn_fly'}, {'id': 3777, 'synset': 'mosquito.n.01', 'name': 'mosquito'}, {'id': 3778, 'synset': 'wiggler.n.02', 'name': 'wiggler'}, {'id': 3779, 'synset': 'gnat.n.02', 'name': 'gnat'}, {'id': 3780, 'synset': 'yellow-fever_mosquito.n.01', 'name': 'yellow-fever_mosquito'}, {'id': 3781, 'synset': 'asian_tiger_mosquito.n.01', 'name': 'Asian_tiger_mosquito'}, {'id': 3782, 'synset': 'anopheline.n.01', 'name': 'anopheline'}, {'id': 3783, 'synset': 'malarial_mosquito.n.01', 'name': 'malarial_mosquito'}, {'id': 3784, 'synset': 'common_mosquito.n.01', 'name': 'common_mosquito'}, {'id': 3785, 'synset': 'culex_quinquefasciatus.n.01', 'name': 'Culex_quinquefasciatus'}, {'id': 3786, 'synset': 'gnat.n.01', 'name': 'gnat'}, {'id': 3787, 'synset': 'punkie.n.01', 'name': 'punkie'}, {'id': 3788, 'synset': 'midge.n.01', 'name': 'midge'}, {'id': 3789, 'synset': 'fungus_gnat.n.02', 'name': 'fungus_gnat'}, {'id': 3790, 'synset': 'psychodid.n.01', 'name': 'psychodid'}, {'id': 3791, 'synset': 'sand_fly.n.01', 'name': 'sand_fly'}, {'id': 3792, 'synset': 'fungus_gnat.n.01', 'name': 'fungus_gnat'}, {'id': 3793, 'synset': 'armyworm.n.03', 'name': 'armyworm'}, {'id': 3794, 'synset': 'crane_fly.n.01', 'name': 'crane_fly'}, {'id': 3795, 'synset': 'blackfly.n.02', 'name': 'blackfly'}, {'id': 3796, 'synset': 'hymenopterous_insect.n.01', 'name': 'hymenopterous_insect'}, {'id': 3797, 'synset': 'bee.n.01', 'name': 'bee'}, {'id': 3798, 'synset': 'drone.n.01', 'name': 'drone'}, {'id': 3799, 'synset': 'queen_bee.n.01', 'name': 'queen_bee'}, {'id': 3800, 'synset': 'worker.n.03', 'name': 'worker'}, {'id': 3801, 'synset': 'soldier.n.02', 'name': 'soldier'}, {'id': 3802, 'synset': 'worker_bee.n.01', 'name': 'worker_bee'}, {'id': 3803, 'synset': 'honeybee.n.01', 'name': 'honeybee'}, {'id': 3804, 'synset': 'africanized_bee.n.01', 'name': 'Africanized_bee'}, {'id': 3805, 'synset': 'black_bee.n.01', 'name': 'black_bee'}, {'id': 3806, 'synset': 'carniolan_bee.n.01', 'name': 'Carniolan_bee'}, {'id': 3807, 'synset': 'italian_bee.n.01', 'name': 'Italian_bee'}, {'id': 3808, 'synset': 'carpenter_bee.n.01', 'name': 'carpenter_bee'}, {'id': 3809, 'synset': 'bumblebee.n.01', 'name': 'bumblebee'}, {'id': 3810, 'synset': 'cuckoo-bumblebee.n.01', 'name': 'cuckoo-bumblebee'}, {'id': 3811, 'synset': 'andrena.n.01', 'name': 'andrena'}, {'id': 3812, 'synset': 'nomia_melanderi.n.01', 'name': 'Nomia_melanderi'}, {'id': 3813, 'synset': 'leaf-cutting_bee.n.01', 'name': 'leaf-cutting_bee'}, {'id': 3814, 'synset': 'mason_bee.n.01', 'name': 'mason_bee'}, {'id': 3815, 'synset': 'potter_bee.n.01', 'name': 'potter_bee'}, {'id': 3816, 'synset': 'wasp.n.02', 'name': 'wasp'}, {'id': 3817, 'synset': 'vespid.n.01', 'name': 'vespid'}, {'id': 3818, 'synset': 'paper_wasp.n.01', 'name': 'paper_wasp'}, {'id': 3819, 'synset': 'giant_hornet.n.01', 'name': 'giant_hornet'}, {'id': 3820, 'synset': 'common_wasp.n.01', 'name': 'common_wasp'}, {'id': 3821, 'synset': 'bald-faced_hornet.n.01', 'name': 'bald-faced_hornet'}, {'id': 3822, 'synset': 'yellow_jacket.n.02', 'name': 'yellow_jacket'}, {'id': 3823, 'synset': 'polistes_annularis.n.01', 'name': 'Polistes_annularis'}, {'id': 3824, 'synset': 'mason_wasp.n.02', 'name': 'mason_wasp'}, {'id': 3825, 'synset': 'potter_wasp.n.01', 'name': 'potter_wasp'}, {'id': 3826, 'synset': 'mutillidae.n.01', 'name': 'Mutillidae'}, {'id': 3827, 'synset': 'velvet_ant.n.01', 'name': 'velvet_ant'}, {'id': 3828, 'synset': 'sphecoid_wasp.n.01', 'name': 'sphecoid_wasp'}, {'id': 3829, 'synset': 'mason_wasp.n.01', 'name': 'mason_wasp'}, {'id': 3830, 'synset': 'digger_wasp.n.01', 'name': 'digger_wasp'}, {'id': 3831, 'synset': 'cicada_killer.n.01', 'name': 'cicada_killer'}, {'id': 3832, 'synset': 'mud_dauber.n.01', 'name': 'mud_dauber'}, {'id': 3833, 'synset': 'gall_wasp.n.01', 'name': 'gall_wasp'}, {'id': 3834, 'synset': 'chalcid_fly.n.01', 'name': 'chalcid_fly'}, {'id': 3835, 'synset': 'strawworm.n.02', 'name': 'strawworm'}, {'id': 3836, 'synset': 'chalcis_fly.n.01', 'name': 'chalcis_fly'}, {'id': 3837, 'synset': 'ichneumon_fly.n.01', 'name': 'ichneumon_fly'}, {'id': 3838, 'synset': 'sawfly.n.01', 'name': 'sawfly'}, {'id': 3839, 'synset': 'birch_leaf_miner.n.01', 'name': 'birch_leaf_miner'}, {'id': 3840, 'synset': 'ant.n.01', 'name': 'ant'}, {'id': 3841, 'synset': 'pharaoh_ant.n.01', 'name': 'pharaoh_ant'}, {'id': 3842, 'synset': 'little_black_ant.n.01', 'name': 'little_black_ant'}, {'id': 3843, 'synset': 'army_ant.n.01', 'name': 'army_ant'}, {'id': 3844, 'synset': 'carpenter_ant.n.01', 'name': 'carpenter_ant'}, {'id': 3845, 'synset': 'fire_ant.n.01', 'name': 'fire_ant'}, {'id': 3846, 'synset': 'wood_ant.n.01', 'name': 'wood_ant'}, {'id': 3847, 'synset': 'slave_ant.n.01', 'name': 'slave_ant'}, {'id': 3848, 'synset': 'formica_fusca.n.01', 'name': 'Formica_fusca'}, {'id': 3849, 'synset': 'slave-making_ant.n.01', 'name': 'slave-making_ant'}, {'id': 3850, 'synset': 'sanguinary_ant.n.01', 'name': 'sanguinary_ant'}, {'id': 3851, 'synset': 'bulldog_ant.n.01', 'name': 'bulldog_ant'}, {'id': 3852, 'synset': 'amazon_ant.n.01', 'name': 'Amazon_ant'}, {'id': 3853, 'synset': 'termite.n.01', 'name': 'termite'}, {'id': 3854, 'synset': 'dry-wood_termite.n.01', 'name': 'dry-wood_termite'}, {'id': 3855, 'synset': 'reticulitermes_lucifugus.n.01', 'name': 'Reticulitermes_lucifugus'}, {'id': 3856, 'synset': 'mastotermes_darwiniensis.n.01', 'name': 'Mastotermes_darwiniensis'}, {'id': 3857, 'synset': 'mastotermes_electrodominicus.n.01', 'name': 'Mastotermes_electrodominicus'}, {'id': 3858, 'synset': 'powder-post_termite.n.01', 'name': 'powder-post_termite'}, {'id': 3859, 'synset': 'orthopterous_insect.n.01', 'name': 'orthopterous_insect'}, {'id': 3860, 'synset': 'grasshopper.n.01', 'name': 'grasshopper'}, {'id': 3861, 'synset': 'short-horned_grasshopper.n.01', 'name': 'short-horned_grasshopper'}, {'id': 3862, 'synset': 'locust.n.01', 'name': 'locust'}, {'id': 3863, 'synset': 'migratory_locust.n.01', 'name': 'migratory_locust'}, {'id': 3864, 'synset': 'migratory_grasshopper.n.01', 'name': 'migratory_grasshopper'}, {'id': 3865, 'synset': 'long-horned_grasshopper.n.01', 'name': 'long-horned_grasshopper'}, {'id': 3866, 'synset': 'katydid.n.01', 'name': 'katydid'}, {'id': 3867, 'synset': 'mormon_cricket.n.01', 'name': 'mormon_cricket'}, {'id': 3868, 'synset': 'sand_cricket.n.01', 'name': 'sand_cricket'}, {'id': 3869, 'synset': 'cricket.n.01', 'name': 'cricket'}, {'id': 3870, 'synset': 'mole_cricket.n.01', 'name': 'mole_cricket'}, {'id': 3871, 'synset': 'european_house_cricket.n.01', 'name': 'European_house_cricket'}, {'id': 3872, 'synset': 'field_cricket.n.01', 'name': 'field_cricket'}, {'id': 3873, 'synset': 'tree_cricket.n.01', 'name': 'tree_cricket'}, {'id': 3874, 'synset': 'snowy_tree_cricket.n.01', 'name': 'snowy_tree_cricket'}, {'id': 3875, 'synset': 'phasmid.n.01', 'name': 'phasmid'}, {'id': 3876, 'synset': 'walking_stick.n.02', 'name': 'walking_stick'}, {'id': 3877, 'synset': 'diapheromera.n.01', 'name': 'diapheromera'}, {'id': 3878, 'synset': 'walking_leaf.n.02', 'name': 'walking_leaf'}, {'id': 3879, 'synset': 'oriental_cockroach.n.01', 'name': 'oriental_cockroach'}, {'id': 3880, 'synset': 'american_cockroach.n.01', 'name': 'American_cockroach'}, {'id': 3881, 'synset': 'australian_cockroach.n.01', 'name': 'Australian_cockroach'}, {'id': 3882, 'synset': 'german_cockroach.n.01', 'name': 'German_cockroach'}, {'id': 3883, 'synset': 'giant_cockroach.n.01', 'name': 'giant_cockroach'}, {'id': 3884, 'synset': 'mantis.n.01', 'name': 'mantis'}, {'id': 3885, 'synset': 'praying_mantis.n.01', 'name': 'praying_mantis'}, {'id': 3886, 'synset': 'bug.n.01', 'name': 'bug'}, {'id': 3887, 'synset': 'hemipterous_insect.n.01', 'name': 'hemipterous_insect'}, {'id': 3888, 'synset': 'leaf_bug.n.01', 'name': 'leaf_bug'}, {'id': 3889, 'synset': 'mirid_bug.n.01', 'name': 'mirid_bug'}, {'id': 3890, 'synset': 'four-lined_plant_bug.n.01', 'name': 'four-lined_plant_bug'}, {'id': 3891, 'synset': 'lygus_bug.n.01', 'name': 'lygus_bug'}, {'id': 3892, 'synset': 'tarnished_plant_bug.n.01', 'name': 'tarnished_plant_bug'}, {'id': 3893, 'synset': 'lace_bug.n.01', 'name': 'lace_bug'}, {'id': 3894, 'synset': 'lygaeid.n.01', 'name': 'lygaeid'}, {'id': 3895, 'synset': 'chinch_bug.n.01', 'name': 'chinch_bug'}, {'id': 3896, 'synset': 'coreid_bug.n.01', 'name': 'coreid_bug'}, {'id': 3897, 'synset': 'squash_bug.n.01', 'name': 'squash_bug'}, {'id': 3898, 'synset': 'leaf-footed_bug.n.01', 'name': 'leaf-footed_bug'}, {'id': 3899, 'synset': 'bedbug.n.01', 'name': 'bedbug'}, {'id': 3900, 'synset': 'backswimmer.n.01', 'name': 'backswimmer'}, {'id': 3901, 'synset': 'true_bug.n.01', 'name': 'true_bug'}, {'id': 3902, 'synset': 'heteropterous_insect.n.01', 'name': 'heteropterous_insect'}, {'id': 3903, 'synset': 'water_bug.n.01', 'name': 'water_bug'}, {'id': 3904, 'synset': 'giant_water_bug.n.01', 'name': 'giant_water_bug'}, {'id': 3905, 'synset': 'water_scorpion.n.01', 'name': 'water_scorpion'}, {'id': 3906, 'synset': 'water_boatman.n.01', 'name': 'water_boatman'}, {'id': 3907, 'synset': 'water_strider.n.01', 'name': 'water_strider'}, {'id': 3908, 'synset': 'common_pond-skater.n.01', 'name': 'common_pond-skater'}, {'id': 3909, 'synset': 'assassin_bug.n.01', 'name': 'assassin_bug'}, {'id': 3910, 'synset': 'conenose.n.01', 'name': 'conenose'}, {'id': 3911, 'synset': 'wheel_bug.n.01', 'name': 'wheel_bug'}, {'id': 3912, 'synset': 'firebug.n.02', 'name': 'firebug'}, {'id': 3913, 'synset': 'cotton_stainer.n.01', 'name': 'cotton_stainer'}, {'id': 3914, 'synset': 'homopterous_insect.n.01', 'name': 'homopterous_insect'}, {'id': 3915, 'synset': 'whitefly.n.01', 'name': 'whitefly'}, {'id': 3916, 'synset': 'citrus_whitefly.n.01', 'name': 'citrus_whitefly'}, {'id': 3917, 'synset': 'greenhouse_whitefly.n.01', 'name': 'greenhouse_whitefly'}, {'id': 3918, 'synset': 'sweet-potato_whitefly.n.01', 'name': 'sweet-potato_whitefly'}, {'id': 3919, 'synset': 'superbug.n.02', 'name': 'superbug'}, {'id': 3920, 'synset': 'cotton_strain.n.01', 'name': 'cotton_strain'}, {'id': 3921, 'synset': 'coccid_insect.n.01', 'name': 'coccid_insect'}, {'id': 3922, 'synset': 'scale_insect.n.01', 'name': 'scale_insect'}, {'id': 3923, 'synset': 'soft_scale.n.01', 'name': 'soft_scale'}, {'id': 3924, 'synset': 'brown_soft_scale.n.01', 'name': 'brown_soft_scale'}, {'id': 3925, 'synset': 'armored_scale.n.01', 'name': 'armored_scale'}, {'id': 3926, 'synset': 'san_jose_scale.n.01', 'name': 'San_Jose_scale'}, {'id': 3927, 'synset': 'cochineal_insect.n.01', 'name': 'cochineal_insect'}, {'id': 3928, 'synset': 'mealybug.n.01', 'name': 'mealybug'}, {'id': 3929, 'synset': 'citrophilous_mealybug.n.01', 'name': 'citrophilous_mealybug'}, {'id': 3930, 'synset': 'comstock_mealybug.n.01', 'name': 'Comstock_mealybug'}, {'id': 3931, 'synset': 'citrus_mealybug.n.01', 'name': 'citrus_mealybug'}, {'id': 3932, 'synset': 'plant_louse.n.01', 'name': 'plant_louse'}, {'id': 3933, 'synset': 'aphid.n.01', 'name': 'aphid'}, {'id': 3934, 'synset': 'apple_aphid.n.01', 'name': 'apple_aphid'}, {'id': 3935, 'synset': 'blackfly.n.01', 'name': 'blackfly'}, {'id': 3936, 'synset': 'greenfly.n.01', 'name': 'greenfly'}, {'id': 3937, 'synset': 'green_peach_aphid.n.01', 'name': 'green_peach_aphid'}, {'id': 3938, 'synset': 'ant_cow.n.01', 'name': 'ant_cow'}, {'id': 3939, 'synset': 'woolly_aphid.n.01', 'name': 'woolly_aphid'}, {'id': 3940, 'synset': 'woolly_apple_aphid.n.01', 'name': 'woolly_apple_aphid'}, {'id': 3941, 'synset': 'woolly_alder_aphid.n.01', 'name': 'woolly_alder_aphid'}, {'id': 3942, 'synset': 'adelgid.n.01', 'name': 'adelgid'}, {'id': 3943, 'synset': 'balsam_woolly_aphid.n.01', 'name': 'balsam_woolly_aphid'}, {'id': 3944, 'synset': 'spruce_gall_aphid.n.01', 'name': 'spruce_gall_aphid'}, {'id': 3945, 'synset': 'woolly_adelgid.n.01', 'name': 'woolly_adelgid'}, {'id': 3946, 'synset': 'jumping_plant_louse.n.01', 'name': 'jumping_plant_louse'}, {'id': 3947, 'synset': 'cicada.n.01', 'name': 'cicada'}, {'id': 3948, 'synset': 'dog-day_cicada.n.01', 'name': 'dog-day_cicada'}, {'id': 3949, 'synset': 'seventeen-year_locust.n.01', 'name': 'seventeen-year_locust'}, {'id': 3950, 'synset': 'spittle_insect.n.01', 'name': 'spittle_insect'}, {'id': 3951, 'synset': 'froghopper.n.01', 'name': 'froghopper'}, {'id': 3952, 'synset': 'meadow_spittlebug.n.01', 'name': 'meadow_spittlebug'}, {'id': 3953, 'synset': 'pine_spittlebug.n.01', 'name': 'pine_spittlebug'}, {'id': 3954, 'synset': 'saratoga_spittlebug.n.01', 'name': 'Saratoga_spittlebug'}, {'id': 3955, 'synset': 'leafhopper.n.01', 'name': 'leafhopper'}, {'id': 3956, 'synset': 'plant_hopper.n.01', 'name': 'plant_hopper'}, {'id': 3957, 'synset': 'treehopper.n.01', 'name': 'treehopper'}, {'id': 3958, 'synset': 'lantern_fly.n.01', 'name': 'lantern_fly'}, {'id': 3959, 'synset': 'psocopterous_insect.n.01', 'name': 'psocopterous_insect'}, {'id': 3960, 'synset': 'psocid.n.01', 'name': 'psocid'}, {'id': 3961, 'synset': 'bark-louse.n.01', 'name': 'bark-louse'}, {'id': 3962, 'synset': 'booklouse.n.01', 'name': 'booklouse'}, {'id': 3963, 'synset': 'common_booklouse.n.01', 'name': 'common_booklouse'}, {'id': 3964, 'synset': 'ephemerid.n.01', 'name': 'ephemerid'}, {'id': 3965, 'synset': 'mayfly.n.01', 'name': 'mayfly'}, {'id': 3966, 'synset': 'stonefly.n.01', 'name': 'stonefly'}, {'id': 3967, 'synset': 'neuropteron.n.01', 'name': 'neuropteron'}, {'id': 3968, 'synset': 'ant_lion.n.02', 'name': 'ant_lion'}, {'id': 3969, 'synset': 'doodlebug.n.03', 'name': 'doodlebug'}, {'id': 3970, 'synset': 'lacewing.n.01', 'name': 'lacewing'}, {'id': 3971, 'synset': 'aphid_lion.n.01', 'name': 'aphid_lion'}, {'id': 3972, 'synset': 'green_lacewing.n.01', 'name': 'green_lacewing'}, {'id': 3973, 'synset': 'brown_lacewing.n.01', 'name': 'brown_lacewing'}, {'id': 3974, 'synset': 'dobson.n.02', 'name': 'dobson'}, {'id': 3975, 'synset': 'hellgrammiate.n.01', 'name': 'hellgrammiate'}, {'id': 3976, 'synset': 'fish_fly.n.01', 'name': 'fish_fly'}, {'id': 3977, 'synset': 'alderfly.n.01', 'name': 'alderfly'}, {'id': 3978, 'synset': 'snakefly.n.01', 'name': 'snakefly'}, {'id': 3979, 'synset': 'mantispid.n.01', 'name': 'mantispid'}, {'id': 3980, 'synset': 'odonate.n.01', 'name': 'odonate'}, {'id': 3981, 'synset': 'damselfly.n.01', 'name': 'damselfly'}, {'id': 3982, 'synset': 'trichopterous_insect.n.01', 'name': 'trichopterous_insect'}, {'id': 3983, 'synset': 'caddis_fly.n.01', 'name': 'caddis_fly'}, {'id': 3984, 'synset': 'caseworm.n.01', 'name': 'caseworm'}, {'id': 3985, 'synset': 'caddisworm.n.01', 'name': 'caddisworm'}, {'id': 3986, 'synset': 'thysanuran_insect.n.01', 'name': 'thysanuran_insect'}, {'id': 3987, 'synset': 'bristletail.n.01', 'name': 'bristletail'}, {'id': 3988, 'synset': 'silverfish.n.01', 'name': 'silverfish'}, {'id': 3989, 'synset': 'firebrat.n.01', 'name': 'firebrat'}, {'id': 3990, 'synset': 'jumping_bristletail.n.01', 'name': 'jumping_bristletail'}, {'id': 3991, 'synset': 'thysanopter.n.01', 'name': 'thysanopter'}, {'id': 3992, 'synset': 'thrips.n.01', 'name': 'thrips'}, {'id': 3993, 'synset': 'tobacco_thrips.n.01', 'name': 'tobacco_thrips'}, {'id': 3994, 'synset': 'onion_thrips.n.01', 'name': 'onion_thrips'}, {'id': 3995, 'synset': 'earwig.n.01', 'name': 'earwig'}, {'id': 3996, 'synset': 'common_european_earwig.n.01', 'name': 'common_European_earwig'}, {'id': 3997, 'synset': 'lepidopterous_insect.n.01', 'name': 'lepidopterous_insect'}, {'id': 3998, 'synset': 'nymphalid.n.01', 'name': 'nymphalid'}, {'id': 3999, 'synset': 'mourning_cloak.n.01', 'name': 'mourning_cloak'}, {'id': 4000, 'synset': 'tortoiseshell.n.02', 'name': 'tortoiseshell'}, {'id': 4001, 'synset': 'painted_beauty.n.01', 'name': 'painted_beauty'}, {'id': 4002, 'synset': 'admiral.n.02', 'name': 'admiral'}, {'id': 4003, 'synset': 'red_admiral.n.01', 'name': 'red_admiral'}, {'id': 4004, 'synset': 'white_admiral.n.02', 'name': 'white_admiral'}, {'id': 4005, 'synset': 'banded_purple.n.01', 'name': 'banded_purple'}, {'id': 4006, 'synset': 'red-spotted_purple.n.01', 'name': 'red-spotted_purple'}, {'id': 4007, 'synset': 'viceroy.n.02', 'name': 'viceroy'}, {'id': 4008, 'synset': 'anglewing.n.01', 'name': 'anglewing'}, {'id': 4009, 'synset': 'ringlet.n.04', 'name': 'ringlet'}, {'id': 4010, 'synset': 'comma.n.02', 'name': 'comma'}, {'id': 4011, 'synset': 'fritillary.n.02', 'name': 'fritillary'}, {'id': 4012, 'synset': 'silverspot.n.01', 'name': 'silverspot'}, {'id': 4013, 'synset': 'emperor_butterfly.n.01', 'name': 'emperor_butterfly'}, {'id': 4014, 'synset': 'purple_emperor.n.01', 'name': 'purple_emperor'}, {'id': 4015, 'synset': 'peacock.n.01', 'name': 'peacock'}, {'id': 4016, 'synset': 'danaid.n.01', 'name': 'danaid'}, {'id': 4017, 'synset': 'monarch.n.02', 'name': 'monarch'}, {'id': 4018, 'synset': 'pierid.n.01', 'name': 'pierid'}, {'id': 4019, 'synset': 'cabbage_butterfly.n.01', 'name': 'cabbage_butterfly'}, {'id': 4020, 'synset': 'small_white.n.01', 'name': 'small_white'}, {'id': 4021, 'synset': 'large_white.n.01', 'name': 'large_white'}, {'id': 4022, 'synset': 'southern_cabbage_butterfly.n.01', 'name': 'southern_cabbage_butterfly'}, {'id': 4023, 'synset': 'sulphur_butterfly.n.01', 'name': 'sulphur_butterfly'}, {'id': 4024, 'synset': 'lycaenid.n.01', 'name': 'lycaenid'}, {'id': 4025, 'synset': 'blue.n.07', 'name': 'blue'}, {'id': 4026, 'synset': 'copper.n.05', 'name': 'copper'}, {'id': 4027, 'synset': 'american_copper.n.01', 'name': 'American_copper'}, {'id': 4028, 'synset': 'hairstreak.n.01', 'name': 'hairstreak'}, {'id': 4029, 'synset': 'strymon_melinus.n.01', 'name': 'Strymon_melinus'}, {'id': 4030, 'synset': 'moth.n.01', 'name': 'moth'}, {'id': 4031, 'synset': 'moth_miller.n.01', 'name': 'moth_miller'}, {'id': 4032, 'synset': 'tortricid.n.01', 'name': 'tortricid'}, {'id': 4033, 'synset': 'leaf_roller.n.01', 'name': 'leaf_roller'}, {'id': 4034, 'synset': 'tea_tortrix.n.01', 'name': 'tea_tortrix'}, {'id': 4035, 'synset': 'orange_tortrix.n.01', 'name': 'orange_tortrix'}, {'id': 4036, 'synset': 'codling_moth.n.01', 'name': 'codling_moth'}, {'id': 4037, 'synset': 'lymantriid.n.01', 'name': 'lymantriid'}, {'id': 4038, 'synset': 'tussock_caterpillar.n.01', 'name': 'tussock_caterpillar'}, {'id': 4039, 'synset': 'gypsy_moth.n.01', 'name': 'gypsy_moth'}, {'id': 4040, 'synset': 'browntail.n.01', 'name': 'browntail'}, {'id': 4041, 'synset': 'gold-tail_moth.n.01', 'name': 'gold-tail_moth'}, {'id': 4042, 'synset': 'geometrid.n.01', 'name': 'geometrid'}, {'id': 4043, 'synset': 'paleacrita_vernata.n.01', 'name': 'Paleacrita_vernata'}, {'id': 4044, 'synset': 'alsophila_pometaria.n.01', 'name': 'Alsophila_pometaria'}, {'id': 4045, 'synset': 'cankerworm.n.01', 'name': 'cankerworm'}, {'id': 4046, 'synset': 'spring_cankerworm.n.01', 'name': 'spring_cankerworm'}, {'id': 4047, 'synset': 'fall_cankerworm.n.01', 'name': 'fall_cankerworm'}, {'id': 4048, 'synset': 'measuring_worm.n.01', 'name': 'measuring_worm'}, {'id': 4049, 'synset': 'pyralid.n.01', 'name': 'pyralid'}, {'id': 4050, 'synset': 'bee_moth.n.01', 'name': 'bee_moth'}, {'id': 4051, 'synset': 'corn_borer.n.02', 'name': 'corn_borer'}, {'id': 4052, 'synset': 'mediterranean_flour_moth.n.01', 'name': 'Mediterranean_flour_moth'}, {'id': 4053, 'synset': 'tobacco_moth.n.01', 'name': 'tobacco_moth'}, {'id': 4054, 'synset': 'almond_moth.n.01', 'name': 'almond_moth'}, {'id': 4055, 'synset': 'raisin_moth.n.01', 'name': 'raisin_moth'}, {'id': 4056, 'synset': 'tineoid.n.01', 'name': 'tineoid'}, {'id': 4057, 'synset': 'tineid.n.01', 'name': 'tineid'}, {'id': 4058, 'synset': 'clothes_moth.n.01', 'name': 'clothes_moth'}, {'id': 4059, 'synset': 'casemaking_clothes_moth.n.01', 'name': 'casemaking_clothes_moth'}, {'id': 4060, 'synset': 'webbing_clothes_moth.n.01', 'name': 'webbing_clothes_moth'}, {'id': 4061, 'synset': 'carpet_moth.n.01', 'name': 'carpet_moth'}, {'id': 4062, 'synset': 'gelechiid.n.01', 'name': 'gelechiid'}, {'id': 4063, 'synset': 'grain_moth.n.01', 'name': 'grain_moth'}, {'id': 4064, 'synset': 'angoumois_moth.n.01', 'name': 'angoumois_moth'}, {'id': 4065, 'synset': 'potato_moth.n.01', 'name': 'potato_moth'}, {'id': 4066, 'synset': 'potato_tuberworm.n.01', 'name': 'potato_tuberworm'}, {'id': 4067, 'synset': 'noctuid_moth.n.01', 'name': 'noctuid_moth'}, {'id': 4068, 'synset': 'cutworm.n.01', 'name': 'cutworm'}, {'id': 4069, 'synset': 'underwing.n.01', 'name': 'underwing'}, {'id': 4070, 'synset': 'red_underwing.n.01', 'name': 'red_underwing'}, {'id': 4071, 'synset': 'antler_moth.n.01', 'name': 'antler_moth'}, {'id': 4072, 'synset': 'heliothis_moth.n.01', 'name': 'heliothis_moth'}, {'id': 4073, 'synset': 'army_cutworm.n.01', 'name': 'army_cutworm'}, {'id': 4074, 'synset': 'armyworm.n.02', 'name': 'armyworm'}, {'id': 4075, 'synset': 'armyworm.n.01', 'name': 'armyworm'}, {'id': 4076, 'synset': 'spodoptera_exigua.n.02', 'name': 'Spodoptera_exigua'}, {'id': 4077, 'synset': 'beet_armyworm.n.01', 'name': 'beet_armyworm'}, {'id': 4078, 'synset': 'spodoptera_frugiperda.n.02', 'name': 'Spodoptera_frugiperda'}, {'id': 4079, 'synset': 'fall_armyworm.n.01', 'name': 'fall_armyworm'}, {'id': 4080, 'synset': 'hawkmoth.n.01', 'name': 'hawkmoth'}, {'id': 4081, 'synset': 'manduca_sexta.n.02', 'name': 'Manduca_sexta'}, {'id': 4082, 'synset': 'tobacco_hornworm.n.01', 'name': 'tobacco_hornworm'}, {'id': 4083, 'synset': 'manduca_quinquemaculata.n.02', 'name': 'Manduca_quinquemaculata'}, {'id': 4084, 'synset': 'tomato_hornworm.n.01', 'name': 'tomato_hornworm'}, {'id': 4085, 'synset': "death's-head_moth.n.01", 'name': "death's-head_moth"}, {'id': 4086, 'synset': 'bombycid.n.01', 'name': 'bombycid'}, {'id': 4087, 'synset': 'domestic_silkworm_moth.n.01', 'name': 'domestic_silkworm_moth'}, {'id': 4088, 'synset': 'silkworm.n.01', 'name': 'silkworm'}, {'id': 4089, 'synset': 'saturniid.n.01', 'name': 'saturniid'}, {'id': 4090, 'synset': 'emperor.n.03', 'name': 'emperor'}, {'id': 4091, 'synset': 'imperial_moth.n.01', 'name': 'imperial_moth'}, {'id': 4092, 'synset': 'giant_silkworm_moth.n.01', 'name': 'giant_silkworm_moth'}, {'id': 4093, 'synset': 'silkworm.n.02', 'name': 'silkworm'}, {'id': 4094, 'synset': 'luna_moth.n.01', 'name': 'luna_moth'}, {'id': 4095, 'synset': 'cecropia.n.02', 'name': 'cecropia'}, {'id': 4096, 'synset': 'cynthia_moth.n.01', 'name': 'cynthia_moth'}, {'id': 4097, 'synset': 'ailanthus_silkworm.n.01', 'name': 'ailanthus_silkworm'}, {'id': 4098, 'synset': 'io_moth.n.01', 'name': 'io_moth'}, {'id': 4099, 'synset': 'polyphemus_moth.n.01', 'name': 'polyphemus_moth'}, {'id': 4100, 'synset': 'pernyi_moth.n.01', 'name': 'pernyi_moth'}, {'id': 4101, 'synset': 'tussah.n.01', 'name': 'tussah'}, {'id': 4102, 'synset': 'atlas_moth.n.01', 'name': 'atlas_moth'}, {'id': 4103, 'synset': 'arctiid.n.01', 'name': 'arctiid'}, {'id': 4104, 'synset': 'tiger_moth.n.01', 'name': 'tiger_moth'}, {'id': 4105, 'synset': 'cinnabar.n.02', 'name': 'cinnabar'}, {'id': 4106, 'synset': 'lasiocampid.n.01', 'name': 'lasiocampid'}, {'id': 4107, 'synset': 'eggar.n.01', 'name': 'eggar'}, {'id': 4108, 'synset': 'tent-caterpillar_moth.n.02', 'name': 'tent-caterpillar_moth'}, {'id': 4109, 'synset': 'tent_caterpillar.n.01', 'name': 'tent_caterpillar'}, {'id': 4110, 'synset': 'tent-caterpillar_moth.n.01', 'name': 'tent-caterpillar_moth'}, {'id': 4111, 'synset': 'forest_tent_caterpillar.n.01', 'name': 'forest_tent_caterpillar'}, {'id': 4112, 'synset': 'lappet.n.03', 'name': 'lappet'}, {'id': 4113, 'synset': 'lappet_caterpillar.n.01', 'name': 'lappet_caterpillar'}, {'id': 4114, 'synset': 'webworm.n.01', 'name': 'webworm'}, {'id': 4115, 'synset': 'webworm_moth.n.01', 'name': 'webworm_moth'}, {'id': 4116, 'synset': 'hyphantria_cunea.n.02', 'name': 'Hyphantria_cunea'}, {'id': 4117, 'synset': 'fall_webworm.n.01', 'name': 'fall_webworm'}, {'id': 4118, 'synset': 'garden_webworm.n.01', 'name': 'garden_webworm'}, {'id': 4119, 'synset': 'instar.n.01', 'name': 'instar'}, {'id': 4120, 'synset': 'caterpillar.n.01', 'name': 'caterpillar'}, {'id': 4121, 'synset': 'corn_borer.n.01', 'name': 'corn_borer'}, {'id': 4122, 'synset': 'bollworm.n.01', 'name': 'bollworm'}, {'id': 4123, 'synset': 'pink_bollworm.n.01', 'name': 'pink_bollworm'}, {'id': 4124, 'synset': 'corn_earworm.n.01', 'name': 'corn_earworm'}, {'id': 4125, 'synset': 'cabbageworm.n.01', 'name': 'cabbageworm'}, {'id': 4126, 'synset': 'woolly_bear.n.01', 'name': 'woolly_bear'}, {'id': 4127, 'synset': 'woolly_bear_moth.n.01', 'name': 'woolly_bear_moth'}, {'id': 4128, 'synset': 'larva.n.01', 'name': 'larva'}, {'id': 4129, 'synset': 'nymph.n.02', 'name': 'nymph'}, {'id': 4130, 'synset': 'leptocephalus.n.01', 'name': 'leptocephalus'}, {'id': 4131, 'synset': 'grub.n.02', 'name': 'grub'}, {'id': 4132, 'synset': 'maggot.n.01', 'name': 'maggot'}, {'id': 4133, 'synset': 'leatherjacket.n.03', 'name': 'leatherjacket'}, {'id': 4134, 'synset': 'pupa.n.01', 'name': 'pupa'}, {'id': 4135, 'synset': 'chrysalis.n.01', 'name': 'chrysalis'}, {'id': 4136, 'synset': 'imago.n.02', 'name': 'imago'}, {'id': 4137, 'synset': 'queen.n.01', 'name': 'queen'}, {'id': 4138, 'synset': 'phoronid.n.01', 'name': 'phoronid'}, {'id': 4139, 'synset': 'bryozoan.n.01', 'name': 'bryozoan'}, {'id': 4140, 'synset': 'brachiopod.n.01', 'name': 'brachiopod'}, {'id': 4141, 'synset': 'peanut_worm.n.01', 'name': 'peanut_worm'}, {'id': 4142, 'synset': 'echinoderm.n.01', 'name': 'echinoderm'}, {'id': 4143, 'synset': 'brittle_star.n.01', 'name': 'brittle_star'}, {'id': 4144, 'synset': 'basket_star.n.01', 'name': 'basket_star'}, {'id': 4145, 'synset': 'astrophyton_muricatum.n.01', 'name': 'Astrophyton_muricatum'}, {'id': 4146, 'synset': 'sea_urchin.n.01', 'name': 'sea_urchin'}, {'id': 4147, 'synset': 'edible_sea_urchin.n.01', 'name': 'edible_sea_urchin'}, {'id': 4148, 'synset': 'sand_dollar.n.01', 'name': 'sand_dollar'}, {'id': 4149, 'synset': 'heart_urchin.n.01', 'name': 'heart_urchin'}, {'id': 4150, 'synset': 'crinoid.n.01', 'name': 'crinoid'}, {'id': 4151, 'synset': 'sea_lily.n.01', 'name': 'sea_lily'}, {'id': 4152, 'synset': 'feather_star.n.01', 'name': 'feather_star'}, {'id': 4153, 'synset': 'sea_cucumber.n.01', 'name': 'sea_cucumber'}, {'id': 4154, 'synset': 'trepang.n.01', 'name': 'trepang'}, {'id': 4155, 'synset': 'duplicidentata.n.01', 'name': 'Duplicidentata'}, {'id': 4156, 'synset': 'lagomorph.n.01', 'name': 'lagomorph'}, {'id': 4157, 'synset': 'leporid.n.01', 'name': 'leporid'}, {'id': 4158, 'synset': 'rabbit_ears.n.02', 'name': 'rabbit_ears'}, {'id': 4159, 'synset': 'lapin.n.02', 'name': 'lapin'}, {'id': 4160, 'synset': 'bunny.n.02', 'name': 'bunny'}, {'id': 4161, 'synset': 'european_rabbit.n.01', 'name': 'European_rabbit'}, {'id': 4162, 'synset': 'wood_rabbit.n.01', 'name': 'wood_rabbit'}, {'id': 4163, 'synset': 'eastern_cottontail.n.01', 'name': 'eastern_cottontail'}, {'id': 4164, 'synset': 'swamp_rabbit.n.02', 'name': 'swamp_rabbit'}, {'id': 4165, 'synset': 'marsh_hare.n.01', 'name': 'marsh_hare'}, {'id': 4166, 'synset': 'hare.n.01', 'name': 'hare'}, {'id': 4167, 'synset': 'leveret.n.01', 'name': 'leveret'}, {'id': 4168, 'synset': 'european_hare.n.01', 'name': 'European_hare'}, {'id': 4169, 'synset': 'jackrabbit.n.01', 'name': 'jackrabbit'}, {'id': 4170, 'synset': 'white-tailed_jackrabbit.n.01', 'name': 'white-tailed_jackrabbit'}, {'id': 4171, 'synset': 'blacktail_jackrabbit.n.01', 'name': 'blacktail_jackrabbit'}, {'id': 4172, 'synset': 'polar_hare.n.01', 'name': 'polar_hare'}, {'id': 4173, 'synset': 'snowshoe_hare.n.01', 'name': 'snowshoe_hare'}, {'id': 4174, 'synset': 'belgian_hare.n.01', 'name': 'Belgian_hare'}, {'id': 4175, 'synset': 'angora.n.03', 'name': 'Angora'}, {'id': 4176, 'synset': 'pika.n.01', 'name': 'pika'}, {'id': 4177, 'synset': 'little_chief_hare.n.01', 'name': 'little_chief_hare'}, {'id': 4178, 'synset': 'collared_pika.n.01', 'name': 'collared_pika'}, {'id': 4179, 'synset': 'mouse.n.01', 'name': 'mouse'}, {'id': 4180, 'synset': 'pocket_rat.n.01', 'name': 'pocket_rat'}, {'id': 4181, 'synset': 'murine.n.01', 'name': 'murine'}, {'id': 4182, 'synset': 'house_mouse.n.01', 'name': 'house_mouse'}, {'id': 4183, 'synset': 'harvest_mouse.n.02', 'name': 'harvest_mouse'}, {'id': 4184, 'synset': 'field_mouse.n.02', 'name': 'field_mouse'}, {'id': 4185, 'synset': 'nude_mouse.n.01', 'name': 'nude_mouse'}, {'id': 4186, 'synset': 'european_wood_mouse.n.01', 'name': 'European_wood_mouse'}, {'id': 4187, 'synset': 'brown_rat.n.01', 'name': 'brown_rat'}, {'id': 4188, 'synset': 'wharf_rat.n.02', 'name': 'wharf_rat'}, {'id': 4189, 'synset': 'sewer_rat.n.01', 'name': 'sewer_rat'}, {'id': 4190, 'synset': 'black_rat.n.01', 'name': 'black_rat'}, {'id': 4191, 'synset': 'bandicoot_rat.n.01', 'name': 'bandicoot_rat'}, {'id': 4192, 'synset': 'jerboa_rat.n.01', 'name': 'jerboa_rat'}, {'id': 4193, 'synset': 'kangaroo_mouse.n.02', 'name': 'kangaroo_mouse'}, {'id': 4194, 'synset': 'water_rat.n.03', 'name': 'water_rat'}, {'id': 4195, 'synset': 'beaver_rat.n.01', 'name': 'beaver_rat'}, {'id': 4196, 'synset': 'new_world_mouse.n.01', 'name': 'New_World_mouse'}, {'id': 4197, 'synset': 'american_harvest_mouse.n.01', 'name': 'American_harvest_mouse'}, {'id': 4198, 'synset': 'wood_mouse.n.01', 'name': 'wood_mouse'}, {'id': 4199, 'synset': 'white-footed_mouse.n.01', 'name': 'white-footed_mouse'}, {'id': 4200, 'synset': 'deer_mouse.n.01', 'name': 'deer_mouse'}, {'id': 4201, 'synset': 'cactus_mouse.n.01', 'name': 'cactus_mouse'}, {'id': 4202, 'synset': 'cotton_mouse.n.01', 'name': 'cotton_mouse'}, {'id': 4203, 'synset': 'pygmy_mouse.n.01', 'name': 'pygmy_mouse'}, {'id': 4204, 'synset': 'grasshopper_mouse.n.01', 'name': 'grasshopper_mouse'}, {'id': 4205, 'synset': 'muskrat.n.02', 'name': 'muskrat'}, {'id': 4206, 'synset': 'round-tailed_muskrat.n.01', 'name': 'round-tailed_muskrat'}, {'id': 4207, 'synset': 'cotton_rat.n.01', 'name': 'cotton_rat'}, {'id': 4208, 'synset': 'wood_rat.n.01', 'name': 'wood_rat'}, {'id': 4209, 'synset': 'dusky-footed_wood_rat.n.01', 'name': 'dusky-footed_wood_rat'}, {'id': 4210, 'synset': 'vole.n.01', 'name': 'vole'}, {'id': 4211, 'synset': 'packrat.n.02', 'name': 'packrat'}, {'id': 4212, 'synset': 'dusky-footed_woodrat.n.01', 'name': 'dusky-footed_woodrat'}, {'id': 4213, 'synset': 'eastern_woodrat.n.01', 'name': 'eastern_woodrat'}, {'id': 4214, 'synset': 'rice_rat.n.01', 'name': 'rice_rat'}, {'id': 4215, 'synset': 'pine_vole.n.01', 'name': 'pine_vole'}, {'id': 4216, 'synset': 'meadow_vole.n.01', 'name': 'meadow_vole'}, {'id': 4217, 'synset': 'water_vole.n.02', 'name': 'water_vole'}, {'id': 4218, 'synset': 'prairie_vole.n.01', 'name': 'prairie_vole'}, {'id': 4219, 'synset': 'water_vole.n.01', 'name': 'water_vole'}, {'id': 4220, 'synset': 'red-backed_mouse.n.01', 'name': 'red-backed_mouse'}, {'id': 4221, 'synset': 'phenacomys.n.01', 'name': 'phenacomys'}, {'id': 4222, 'synset': 'eurasian_hamster.n.01', 'name': 'Eurasian_hamster'}, {'id': 4223, 'synset': 'golden_hamster.n.01', 'name': 'golden_hamster'}, {'id': 4224, 'synset': 'gerbil.n.01', 'name': 'gerbil'}, {'id': 4225, 'synset': 'jird.n.01', 'name': 'jird'}, {'id': 4226, 'synset': 'tamarisk_gerbil.n.01', 'name': 'tamarisk_gerbil'}, {'id': 4227, 'synset': 'sand_rat.n.02', 'name': 'sand_rat'}, {'id': 4228, 'synset': 'lemming.n.01', 'name': 'lemming'}, {'id': 4229, 'synset': 'european_lemming.n.01', 'name': 'European_lemming'}, {'id': 4230, 'synset': 'brown_lemming.n.01', 'name': 'brown_lemming'}, {'id': 4231, 'synset': 'grey_lemming.n.01', 'name': 'grey_lemming'}, {'id': 4232, 'synset': 'pied_lemming.n.01', 'name': 'pied_lemming'}, {'id': 4233, 'synset': 'hudson_bay_collared_lemming.n.01', 'name': 'Hudson_bay_collared_lemming'}, {'id': 4234, 'synset': 'southern_bog_lemming.n.01', 'name': 'southern_bog_lemming'}, {'id': 4235, 'synset': 'northern_bog_lemming.n.01', 'name': 'northern_bog_lemming'}, {'id': 4236, 'synset': 'porcupine.n.01', 'name': 'porcupine'}, {'id': 4237, 'synset': 'old_world_porcupine.n.01', 'name': 'Old_World_porcupine'}, {'id': 4238, 'synset': 'brush-tailed_porcupine.n.01', 'name': 'brush-tailed_porcupine'}, {'id': 4239, 'synset': 'long-tailed_porcupine.n.01', 'name': 'long-tailed_porcupine'}, {'id': 4240, 'synset': 'new_world_porcupine.n.01', 'name': 'New_World_porcupine'}, {'id': 4241, 'synset': 'canada_porcupine.n.01', 'name': 'Canada_porcupine'}, {'id': 4242, 'synset': 'pocket_mouse.n.01', 'name': 'pocket_mouse'}, {'id': 4243, 'synset': 'silky_pocket_mouse.n.01', 'name': 'silky_pocket_mouse'}, {'id': 4244, 'synset': 'plains_pocket_mouse.n.01', 'name': 'plains_pocket_mouse'}, {'id': 4245, 'synset': 'hispid_pocket_mouse.n.01', 'name': 'hispid_pocket_mouse'}, {'id': 4246, 'synset': 'mexican_pocket_mouse.n.01', 'name': 'Mexican_pocket_mouse'}, {'id': 4247, 'synset': 'kangaroo_rat.n.01', 'name': 'kangaroo_rat'}, {'id': 4248, 'synset': 'ord_kangaroo_rat.n.01', 'name': 'Ord_kangaroo_rat'}, {'id': 4249, 'synset': 'kangaroo_mouse.n.01', 'name': 'kangaroo_mouse'}, {'id': 4250, 'synset': 'jumping_mouse.n.01', 'name': 'jumping_mouse'}, {'id': 4251, 'synset': 'meadow_jumping_mouse.n.01', 'name': 'meadow_jumping_mouse'}, {'id': 4252, 'synset': 'jerboa.n.01', 'name': 'jerboa'}, {'id': 4253, 'synset': 'typical_jerboa.n.01', 'name': 'typical_jerboa'}, {'id': 4254, 'synset': 'jaculus_jaculus.n.01', 'name': 'Jaculus_jaculus'}, {'id': 4255, 'synset': 'dormouse.n.01', 'name': 'dormouse'}, {'id': 4256, 'synset': 'loir.n.01', 'name': 'loir'}, {'id': 4257, 'synset': 'hazel_mouse.n.01', 'name': 'hazel_mouse'}, {'id': 4258, 'synset': 'lerot.n.01', 'name': 'lerot'}, {'id': 4259, 'synset': 'gopher.n.04', 'name': 'gopher'}, {'id': 4260, 'synset': 'plains_pocket_gopher.n.01', 'name': 'plains_pocket_gopher'}, {'id': 4261, 'synset': 'southeastern_pocket_gopher.n.01', 'name': 'southeastern_pocket_gopher'}, {'id': 4262, 'synset': 'valley_pocket_gopher.n.01', 'name': 'valley_pocket_gopher'}, {'id': 4263, 'synset': 'northern_pocket_gopher.n.01', 'name': 'northern_pocket_gopher'}, {'id': 4264, 'synset': 'tree_squirrel.n.01', 'name': 'tree_squirrel'}, {'id': 4265, 'synset': 'eastern_grey_squirrel.n.01', 'name': 'eastern_grey_squirrel'}, {'id': 4266, 'synset': 'western_grey_squirrel.n.01', 'name': 'western_grey_squirrel'}, {'id': 4267, 'synset': 'fox_squirrel.n.01', 'name': 'fox_squirrel'}, {'id': 4268, 'synset': 'black_squirrel.n.01', 'name': 'black_squirrel'}, {'id': 4269, 'synset': 'red_squirrel.n.02', 'name': 'red_squirrel'}, {'id': 4270, 'synset': 'american_red_squirrel.n.01', 'name': 'American_red_squirrel'}, {'id': 4271, 'synset': 'chickeree.n.01', 'name': 'chickeree'}, {'id': 4272, 'synset': 'antelope_squirrel.n.01', 'name': 'antelope_squirrel'}, {'id': 4273, 'synset': 'ground_squirrel.n.02', 'name': 'ground_squirrel'}, {'id': 4274, 'synset': 'mantled_ground_squirrel.n.01', 'name': 'mantled_ground_squirrel'}, {'id': 4275, 'synset': 'suslik.n.01', 'name': 'suslik'}, {'id': 4276, 'synset': 'flickertail.n.01', 'name': 'flickertail'}, {'id': 4277, 'synset': 'rock_squirrel.n.01', 'name': 'rock_squirrel'}, {'id': 4278, 'synset': 'arctic_ground_squirrel.n.01', 'name': 'Arctic_ground_squirrel'}, {'id': 4279, 'synset': 'prairie_dog.n.01', 'name': 'prairie_dog'}, {'id': 4280, 'synset': 'blacktail_prairie_dog.n.01', 'name': 'blacktail_prairie_dog'}, {'id': 4281, 'synset': 'whitetail_prairie_dog.n.01', 'name': 'whitetail_prairie_dog'}, {'id': 4282, 'synset': 'eastern_chipmunk.n.01', 'name': 'eastern_chipmunk'}, {'id': 4283, 'synset': 'chipmunk.n.01', 'name': 'chipmunk'}, {'id': 4284, 'synset': 'baronduki.n.01', 'name': 'baronduki'}, {'id': 4285, 'synset': 'american_flying_squirrel.n.01', 'name': 'American_flying_squirrel'}, {'id': 4286, 'synset': 'southern_flying_squirrel.n.01', 'name': 'southern_flying_squirrel'}, {'id': 4287, 'synset': 'northern_flying_squirrel.n.01', 'name': 'northern_flying_squirrel'}, {'id': 4288, 'synset': 'marmot.n.01', 'name': 'marmot'}, {'id': 4289, 'synset': 'groundhog.n.01', 'name': 'groundhog'}, {'id': 4290, 'synset': 'hoary_marmot.n.01', 'name': 'hoary_marmot'}, {'id': 4291, 'synset': 'yellowbelly_marmot.n.01', 'name': 'yellowbelly_marmot'}, {'id': 4292, 'synset': 'asiatic_flying_squirrel.n.01', 'name': 'Asiatic_flying_squirrel'}, {'id': 4293, 'synset': 'beaver.n.07', 'name': 'beaver'}, {'id': 4294, 'synset': 'old_world_beaver.n.01', 'name': 'Old_World_beaver'}, {'id': 4295, 'synset': 'new_world_beaver.n.01', 'name': 'New_World_beaver'}, {'id': 4296, 'synset': 'mountain_beaver.n.01', 'name': 'mountain_beaver'}, {'id': 4297, 'synset': 'cavy.n.01', 'name': 'cavy'}, {'id': 4298, 'synset': 'guinea_pig.n.02', 'name': 'guinea_pig'}, {'id': 4299, 'synset': 'aperea.n.01', 'name': 'aperea'}, {'id': 4300, 'synset': 'mara.n.02', 'name': 'mara'}, {'id': 4301, 'synset': 'capybara.n.01', 'name': 'capybara'}, {'id': 4302, 'synset': 'agouti.n.01', 'name': 'agouti'}, {'id': 4303, 'synset': 'paca.n.01', 'name': 'paca'}, {'id': 4304, 'synset': 'mountain_paca.n.01', 'name': 'mountain_paca'}, {'id': 4305, 'synset': 'coypu.n.01', 'name': 'coypu'}, {'id': 4306, 'synset': 'chinchilla.n.03', 'name': 'chinchilla'}, {'id': 4307, 'synset': 'mountain_chinchilla.n.01', 'name': 'mountain_chinchilla'}, {'id': 4308, 'synset': 'viscacha.n.01', 'name': 'viscacha'}, {'id': 4309, 'synset': 'abrocome.n.01', 'name': 'abrocome'}, {'id': 4310, 'synset': 'mole_rat.n.02', 'name': 'mole_rat'}, {'id': 4311, 'synset': 'mole_rat.n.01', 'name': 'mole_rat'}, {'id': 4312, 'synset': 'sand_rat.n.01', 'name': 'sand_rat'}, {'id': 4313, 'synset': 'naked_mole_rat.n.01', 'name': 'naked_mole_rat'}, {'id': 4314, 'synset': 'queen.n.09', 'name': 'queen'}, {'id': 4315, 'synset': 'damaraland_mole_rat.n.01', 'name': 'Damaraland_mole_rat'}, {'id': 4316, 'synset': 'ungulata.n.01', 'name': 'Ungulata'}, {'id': 4317, 'synset': 'ungulate.n.01', 'name': 'ungulate'}, {'id': 4318, 'synset': 'unguiculate.n.01', 'name': 'unguiculate'}, {'id': 4319, 'synset': 'dinoceras.n.01', 'name': 'dinoceras'}, {'id': 4320, 'synset': 'hyrax.n.01', 'name': 'hyrax'}, {'id': 4321, 'synset': 'rock_hyrax.n.01', 'name': 'rock_hyrax'}, {'id': 4322, 'synset': 'odd-toed_ungulate.n.01', 'name': 'odd-toed_ungulate'}, {'id': 4323, 'synset': 'equine.n.01', 'name': 'equine'}, {'id': 4324, 'synset': 'roan.n.02', 'name': 'roan'}, {'id': 4325, 'synset': 'stablemate.n.01', 'name': 'stablemate'}, {'id': 4326, 'synset': 'gee-gee.n.01', 'name': 'gee-gee'}, {'id': 4327, 'synset': 'eohippus.n.01', 'name': 'eohippus'}, {'id': 4328, 'synset': 'filly.n.01', 'name': 'filly'}, {'id': 4329, 'synset': 'colt.n.01', 'name': 'colt'}, {'id': 4330, 'synset': 'male_horse.n.01', 'name': 'male_horse'}, {'id': 4331, 'synset': 'ridgeling.n.01', 'name': 'ridgeling'}, {'id': 4332, 'synset': 'stallion.n.01', 'name': 'stallion'}, {'id': 4333, 'synset': 'stud.n.04', 'name': 'stud'}, {'id': 4334, 'synset': 'gelding.n.01', 'name': 'gelding'}, {'id': 4335, 'synset': 'mare.n.01', 'name': 'mare'}, {'id': 4336, 'synset': 'broodmare.n.01', 'name': 'broodmare'}, {'id': 4337, 'synset': 'saddle_horse.n.01', 'name': 'saddle_horse'}, {'id': 4338, 'synset': 'remount.n.01', 'name': 'remount'}, {'id': 4339, 'synset': 'palfrey.n.01', 'name': 'palfrey'}, {'id': 4340, 'synset': 'warhorse.n.03', 'name': 'warhorse'}, {'id': 4341, 'synset': 'cavalry_horse.n.01', 'name': 'cavalry_horse'}, {'id': 4342, 'synset': 'charger.n.01', 'name': 'charger'}, {'id': 4343, 'synset': 'steed.n.01', 'name': 'steed'}, {'id': 4344, 'synset': 'prancer.n.01', 'name': 'prancer'}, {'id': 4345, 'synset': 'hack.n.08', 'name': 'hack'}, {'id': 4346, 'synset': 'cow_pony.n.01', 'name': 'cow_pony'}, {'id': 4347, 'synset': 'quarter_horse.n.01', 'name': 'quarter_horse'}, {'id': 4348, 'synset': 'morgan.n.06', 'name': 'Morgan'}, {'id': 4349, 'synset': 'tennessee_walker.n.01', 'name': 'Tennessee_walker'}, {'id': 4350, 'synset': 'american_saddle_horse.n.01', 'name': 'American_saddle_horse'}, {'id': 4351, 'synset': 'appaloosa.n.01', 'name': 'Appaloosa'}, {'id': 4352, 'synset': 'arabian.n.02', 'name': 'Arabian'}, {'id': 4353, 'synset': 'lippizan.n.01', 'name': 'Lippizan'}, {'id': 4354, 'synset': 'pony.n.01', 'name': 'pony'}, {'id': 4355, 'synset': 'polo_pony.n.01', 'name': 'polo_pony'}, {'id': 4356, 'synset': 'mustang.n.01', 'name': 'mustang'}, {'id': 4357, 'synset': 'bronco.n.01', 'name': 'bronco'}, {'id': 4358, 'synset': 'bucking_bronco.n.01', 'name': 'bucking_bronco'}, {'id': 4359, 'synset': 'buckskin.n.01', 'name': 'buckskin'}, {'id': 4360, 'synset': 'crowbait.n.01', 'name': 'crowbait'}, {'id': 4361, 'synset': 'dun.n.01', 'name': 'dun'}, {'id': 4362, 'synset': 'grey.n.07', 'name': 'grey'}, {'id': 4363, 'synset': 'wild_horse.n.01', 'name': 'wild_horse'}, {'id': 4364, 'synset': 'tarpan.n.01', 'name': 'tarpan'}, {'id': 4365, 'synset': "przewalski's_horse.n.01", 'name': "Przewalski's_horse"}, {'id': 4366, 'synset': 'cayuse.n.01', 'name': 'cayuse'}, {'id': 4367, 'synset': 'hack.n.07', 'name': 'hack'}, {'id': 4368, 'synset': 'hack.n.06', 'name': 'hack'}, {'id': 4369, 'synset': 'plow_horse.n.01', 'name': 'plow_horse'}, {'id': 4370, 'synset': 'shetland_pony.n.01', 'name': 'Shetland_pony'}, {'id': 4371, 'synset': 'welsh_pony.n.01', 'name': 'Welsh_pony'}, {'id': 4372, 'synset': 'exmoor.n.02', 'name': 'Exmoor'}, {'id': 4373, 'synset': 'racehorse.n.01', 'name': 'racehorse'}, {'id': 4374, 'synset': 'thoroughbred.n.02', 'name': 'thoroughbred'}, {'id': 4375, 'synset': 'steeplechaser.n.01', 'name': 'steeplechaser'}, {'id': 4376, 'synset': 'racer.n.03', 'name': 'racer'}, {'id': 4377, 'synset': 'finisher.n.06', 'name': 'finisher'}, {'id': 4378, 'synset': 'pony.n.02', 'name': 'pony'}, {'id': 4379, 'synset': 'yearling.n.02', 'name': 'yearling'}, {'id': 4380, 'synset': 'dark_horse.n.02', 'name': 'dark_horse'}, {'id': 4381, 'synset': 'mudder.n.01', 'name': 'mudder'}, {'id': 4382, 'synset': 'nonstarter.n.02', 'name': 'nonstarter'}, {'id': 4383, 'synset': 'stalking-horse.n.04', 'name': 'stalking-horse'}, {'id': 4384, 'synset': 'harness_horse.n.01', 'name': 'harness_horse'}, {'id': 4385, 'synset': 'cob.n.02', 'name': 'cob'}, {'id': 4386, 'synset': 'hackney.n.02', 'name': 'hackney'}, {'id': 4387, 'synset': 'workhorse.n.02', 'name': 'workhorse'}, {'id': 4388, 'synset': 'draft_horse.n.01', 'name': 'draft_horse'}, {'id': 4389, 'synset': 'packhorse.n.01', 'name': 'packhorse'}, {'id': 4390, 'synset': 'carthorse.n.01', 'name': 'carthorse'}, {'id': 4391, 'synset': 'clydesdale.n.01', 'name': 'Clydesdale'}, {'id': 4392, 'synset': 'percheron.n.01', 'name': 'Percheron'}, {'id': 4393, 'synset': 'farm_horse.n.01', 'name': 'farm_horse'}, {'id': 4394, 'synset': 'shire.n.02', 'name': 'shire'}, {'id': 4395, 'synset': 'pole_horse.n.02', 'name': 'pole_horse'}, {'id': 4396, 'synset': 'post_horse.n.01', 'name': 'post_horse'}, {'id': 4397, 'synset': 'coach_horse.n.01', 'name': 'coach_horse'}, {'id': 4398, 'synset': 'pacer.n.02', 'name': 'pacer'}, {'id': 4399, 'synset': 'pacer.n.01', 'name': 'pacer'}, {'id': 4400, 'synset': 'trotting_horse.n.01', 'name': 'trotting_horse'}, {'id': 4401, 'synset': 'pole_horse.n.01', 'name': 'pole_horse'}, {'id': 4402, 'synset': 'stepper.n.03', 'name': 'stepper'}, {'id': 4403, 'synset': 'chestnut.n.06', 'name': 'chestnut'}, {'id': 4404, 'synset': 'liver_chestnut.n.01', 'name': 'liver_chestnut'}, {'id': 4405, 'synset': 'bay.n.07', 'name': 'bay'}, {'id': 4406, 'synset': 'sorrel.n.05', 'name': 'sorrel'}, {'id': 4407, 'synset': 'palomino.n.01', 'name': 'palomino'}, {'id': 4408, 'synset': 'pinto.n.01', 'name': 'pinto'}, {'id': 4409, 'synset': 'ass.n.03', 'name': 'ass'}, {'id': 4410, 'synset': 'burro.n.01', 'name': 'burro'}, {'id': 4411, 'synset': 'moke.n.01', 'name': 'moke'}, {'id': 4412, 'synset': 'jack.n.12', 'name': 'jack'}, {'id': 4413, 'synset': 'jennet.n.01', 'name': 'jennet'}, {'id': 4414, 'synset': 'mule.n.01', 'name': 'mule'}, {'id': 4415, 'synset': 'hinny.n.01', 'name': 'hinny'}, {'id': 4416, 'synset': 'wild_ass.n.01', 'name': 'wild_ass'}, {'id': 4417, 'synset': 'african_wild_ass.n.01', 'name': 'African_wild_ass'}, {'id': 4418, 'synset': 'kiang.n.01', 'name': 'kiang'}, {'id': 4419, 'synset': 'onager.n.02', 'name': 'onager'}, {'id': 4420, 'synset': 'chigetai.n.01', 'name': 'chigetai'}, {'id': 4421, 'synset': 'common_zebra.n.01', 'name': 'common_zebra'}, {'id': 4422, 'synset': 'mountain_zebra.n.01', 'name': 'mountain_zebra'}, {'id': 4423, 'synset': "grevy's_zebra.n.01", 'name': "grevy's_zebra"}, {'id': 4424, 'synset': 'quagga.n.01', 'name': 'quagga'}, {'id': 4425, 'synset': 'indian_rhinoceros.n.01', 'name': 'Indian_rhinoceros'}, {'id': 4426, 'synset': 'woolly_rhinoceros.n.01', 'name': 'woolly_rhinoceros'}, {'id': 4427, 'synset': 'white_rhinoceros.n.01', 'name': 'white_rhinoceros'}, {'id': 4428, 'synset': 'black_rhinoceros.n.01', 'name': 'black_rhinoceros'}, {'id': 4429, 'synset': 'tapir.n.01', 'name': 'tapir'}, {'id': 4430, 'synset': 'new_world_tapir.n.01', 'name': 'New_World_tapir'}, {'id': 4431, 'synset': 'malayan_tapir.n.01', 'name': 'Malayan_tapir'}, {'id': 4432, 'synset': 'even-toed_ungulate.n.01', 'name': 'even-toed_ungulate'}, {'id': 4433, 'synset': 'swine.n.01', 'name': 'swine'}, {'id': 4434, 'synset': 'piglet.n.01', 'name': 'piglet'}, {'id': 4435, 'synset': 'sucking_pig.n.01', 'name': 'sucking_pig'}, {'id': 4436, 'synset': 'porker.n.01', 'name': 'porker'}, {'id': 4437, 'synset': 'boar.n.02', 'name': 'boar'}, {'id': 4438, 'synset': 'sow.n.01', 'name': 'sow'}, {'id': 4439, 'synset': 'razorback.n.01', 'name': 'razorback'}, {'id': 4440, 'synset': 'wild_boar.n.01', 'name': 'wild_boar'}, {'id': 4441, 'synset': 'babirusa.n.01', 'name': 'babirusa'}, {'id': 4442, 'synset': 'warthog.n.01', 'name': 'warthog'}, {'id': 4443, 'synset': 'peccary.n.01', 'name': 'peccary'}, {'id': 4444, 'synset': 'collared_peccary.n.01', 'name': 'collared_peccary'}, {'id': 4445, 'synset': 'white-lipped_peccary.n.01', 'name': 'white-lipped_peccary'}, {'id': 4446, 'synset': 'ruminant.n.01', 'name': 'ruminant'}, {'id': 4447, 'synset': 'bovid.n.01', 'name': 'bovid'}, {'id': 4448, 'synset': 'bovine.n.01', 'name': 'bovine'}, {'id': 4449, 'synset': 'ox.n.02', 'name': 'ox'}, {'id': 4450, 'synset': 'cattle.n.01', 'name': 'cattle'}, {'id': 4451, 'synset': 'ox.n.01', 'name': 'ox'}, {'id': 4452, 'synset': 'stirk.n.01', 'name': 'stirk'}, {'id': 4453, 'synset': 'bullock.n.02', 'name': 'bullock'}, {'id': 4454, 'synset': 'bull.n.01', 'name': 'bull'}, {'id': 4455, 'synset': 'cow.n.01', 'name': 'cow'}, {'id': 4456, 'synset': 'heifer.n.01', 'name': 'heifer'}, {'id': 4457, 'synset': 'bullock.n.01', 'name': 'bullock'}, {'id': 4458, 'synset': 'dogie.n.01', 'name': 'dogie'}, {'id': 4459, 'synset': 'maverick.n.02', 'name': 'maverick'}, {'id': 4460, 'synset': 'longhorn.n.01', 'name': 'longhorn'}, {'id': 4461, 'synset': 'brahman.n.04', 'name': 'Brahman'}, {'id': 4462, 'synset': 'zebu.n.01', 'name': 'zebu'}, {'id': 4463, 'synset': 'aurochs.n.02', 'name': 'aurochs'}, {'id': 4464, 'synset': 'yak.n.02', 'name': 'yak'}, {'id': 4465, 'synset': 'banteng.n.01', 'name': 'banteng'}, {'id': 4466, 'synset': 'welsh.n.03', 'name': 'Welsh'}, {'id': 4467, 'synset': 'red_poll.n.01', 'name': 'red_poll'}, {'id': 4468, 'synset': 'santa_gertrudis.n.01', 'name': 'Santa_Gertrudis'}, {'id': 4469, 'synset': 'aberdeen_angus.n.01', 'name': 'Aberdeen_Angus'}, {'id': 4470, 'synset': 'africander.n.01', 'name': 'Africander'}, {'id': 4471, 'synset': 'dairy_cattle.n.01', 'name': 'dairy_cattle'}, {'id': 4472, 'synset': 'ayrshire.n.01', 'name': 'Ayrshire'}, {'id': 4473, 'synset': 'brown_swiss.n.01', 'name': 'Brown_Swiss'}, {'id': 4474, 'synset': 'charolais.n.01', 'name': 'Charolais'}, {'id': 4475, 'synset': 'jersey.n.05', 'name': 'Jersey'}, {'id': 4476, 'synset': 'devon.n.02', 'name': 'Devon'}, {'id': 4477, 'synset': 'grade.n.09', 'name': 'grade'}, {'id': 4478, 'synset': 'durham.n.02', 'name': 'Durham'}, {'id': 4479, 'synset': 'milking_shorthorn.n.01', 'name': 'milking_shorthorn'}, {'id': 4480, 'synset': 'galloway.n.02', 'name': 'Galloway'}, {'id': 4481, 'synset': 'friesian.n.01', 'name': 'Friesian'}, {'id': 4482, 'synset': 'guernsey.n.02', 'name': 'Guernsey'}, {'id': 4483, 'synset': 'hereford.n.01', 'name': 'Hereford'}, {'id': 4484, 'synset': 'cattalo.n.01', 'name': 'cattalo'}, {'id': 4485, 'synset': 'old_world_buffalo.n.01', 'name': 'Old_World_buffalo'}, {'id': 4486, 'synset': 'water_buffalo.n.01', 'name': 'water_buffalo'}, {'id': 4487, 'synset': 'indian_buffalo.n.01', 'name': 'Indian_buffalo'}, {'id': 4488, 'synset': 'carabao.n.01', 'name': 'carabao'}, {'id': 4489, 'synset': 'anoa.n.01', 'name': 'anoa'}, {'id': 4490, 'synset': 'tamarau.n.01', 'name': 'tamarau'}, {'id': 4491, 'synset': 'cape_buffalo.n.01', 'name': 'Cape_buffalo'}, {'id': 4492, 'synset': 'asian_wild_ox.n.01', 'name': 'Asian_wild_ox'}, {'id': 4493, 'synset': 'gaur.n.01', 'name': 'gaur'}, {'id': 4494, 'synset': 'gayal.n.01', 'name': 'gayal'}, {'id': 4495, 'synset': 'bison.n.01', 'name': 'bison'}, {'id': 4496, 'synset': 'american_bison.n.01', 'name': 'American_bison'}, {'id': 4497, 'synset': 'wisent.n.01', 'name': 'wisent'}, {'id': 4498, 'synset': 'musk_ox.n.01', 'name': 'musk_ox'}, {'id': 4499, 'synset': 'ewe.n.03', 'name': 'ewe'}, {'id': 4500, 'synset': 'wether.n.01', 'name': 'wether'}, {'id': 4501, 'synset': 'lambkin.n.01', 'name': 'lambkin'}, {'id': 4502, 'synset': 'baa-lamb.n.01', 'name': 'baa-lamb'}, {'id': 4503, 'synset': 'hog.n.02', 'name': 'hog'}, {'id': 4504, 'synset': 'teg.n.01', 'name': 'teg'}, {'id': 4505, 'synset': 'persian_lamb.n.02', 'name': 'Persian_lamb'}, {'id': 4506, 'synset': 'domestic_sheep.n.01', 'name': 'domestic_sheep'}, {'id': 4507, 'synset': 'cotswold.n.01', 'name': 'Cotswold'}, {'id': 4508, 'synset': 'hampshire.n.02', 'name': 'Hampshire'}, {'id': 4509, 'synset': 'lincoln.n.03', 'name': 'Lincoln'}, {'id': 4510, 'synset': 'exmoor.n.01', 'name': 'Exmoor'}, {'id': 4511, 'synset': 'cheviot.n.01', 'name': 'Cheviot'}, {'id': 4512, 'synset': 'broadtail.n.02', 'name': 'broadtail'}, {'id': 4513, 'synset': 'longwool.n.01', 'name': 'longwool'}, {'id': 4514, 'synset': 'merino.n.01', 'name': 'merino'}, {'id': 4515, 'synset': 'rambouillet.n.01', 'name': 'Rambouillet'}, {'id': 4516, 'synset': 'wild_sheep.n.01', 'name': 'wild_sheep'}, {'id': 4517, 'synset': 'argali.n.01', 'name': 'argali'}, {'id': 4518, 'synset': 'marco_polo_sheep.n.01', 'name': 'Marco_Polo_sheep'}, {'id': 4519, 'synset': 'urial.n.01', 'name': 'urial'}, {'id': 4520, 'synset': 'dall_sheep.n.01', 'name': 'Dall_sheep'}, {'id': 4521, 'synset': 'mountain_sheep.n.01', 'name': 'mountain_sheep'}, {'id': 4522, 'synset': 'bighorn.n.02', 'name': 'bighorn'}, {'id': 4523, 'synset': 'mouflon.n.01', 'name': 'mouflon'}, {'id': 4524, 'synset': 'aoudad.n.01', 'name': 'aoudad'}, {'id': 4525, 'synset': 'kid.n.05', 'name': 'kid'}, {'id': 4526, 'synset': 'billy.n.02', 'name': 'billy'}, {'id': 4527, 'synset': 'nanny.n.02', 'name': 'nanny'}, {'id': 4528, 'synset': 'domestic_goat.n.01', 'name': 'domestic_goat'}, {'id': 4529, 'synset': 'cashmere_goat.n.01', 'name': 'Cashmere_goat'}, {'id': 4530, 'synset': 'angora.n.02', 'name': 'Angora'}, {'id': 4531, 'synset': 'wild_goat.n.01', 'name': 'wild_goat'}, {'id': 4532, 'synset': 'bezoar_goat.n.01', 'name': 'bezoar_goat'}, {'id': 4533, 'synset': 'markhor.n.01', 'name': 'markhor'}, {'id': 4534, 'synset': 'ibex.n.01', 'name': 'ibex'}, {'id': 4535, 'synset': 'goat_antelope.n.01', 'name': 'goat_antelope'}, {'id': 4536, 'synset': 'mountain_goat.n.01', 'name': 'mountain_goat'}, {'id': 4537, 'synset': 'goral.n.01', 'name': 'goral'}, {'id': 4538, 'synset': 'serow.n.01', 'name': 'serow'}, {'id': 4539, 'synset': 'chamois.n.02', 'name': 'chamois'}, {'id': 4540, 'synset': 'takin.n.01', 'name': 'takin'}, {'id': 4541, 'synset': 'antelope.n.01', 'name': 'antelope'}, {'id': 4542, 'synset': 'blackbuck.n.01', 'name': 'blackbuck'}, {'id': 4543, 'synset': 'gerenuk.n.01', 'name': 'gerenuk'}, {'id': 4544, 'synset': 'addax.n.01', 'name': 'addax'}, {'id': 4545, 'synset': 'gnu.n.01', 'name': 'gnu'}, {'id': 4546, 'synset': 'dik-dik.n.01', 'name': 'dik-dik'}, {'id': 4547, 'synset': 'hartebeest.n.01', 'name': 'hartebeest'}, {'id': 4548, 'synset': 'sassaby.n.01', 'name': 'sassaby'}, {'id': 4549, 'synset': 'impala.n.01', 'name': 'impala'}, {'id': 4550, 'synset': "thomson's_gazelle.n.01", 'name': "Thomson's_gazelle"}, {'id': 4551, 'synset': 'gazella_subgutturosa.n.01', 'name': 'Gazella_subgutturosa'}, {'id': 4552, 'synset': 'springbok.n.01', 'name': 'springbok'}, {'id': 4553, 'synset': 'bongo.n.02', 'name': 'bongo'}, {'id': 4554, 'synset': 'kudu.n.01', 'name': 'kudu'}, {'id': 4555, 'synset': 'greater_kudu.n.01', 'name': 'greater_kudu'}, {'id': 4556, 'synset': 'lesser_kudu.n.01', 'name': 'lesser_kudu'}, {'id': 4557, 'synset': 'harnessed_antelope.n.01', 'name': 'harnessed_antelope'}, {'id': 4558, 'synset': 'nyala.n.02', 'name': 'nyala'}, {'id': 4559, 'synset': 'mountain_nyala.n.01', 'name': 'mountain_nyala'}, {'id': 4560, 'synset': 'bushbuck.n.01', 'name': 'bushbuck'}, {'id': 4561, 'synset': 'nilgai.n.01', 'name': 'nilgai'}, {'id': 4562, 'synset': 'sable_antelope.n.01', 'name': 'sable_antelope'}, {'id': 4563, 'synset': 'saiga.n.01', 'name': 'saiga'}, {'id': 4564, 'synset': 'steenbok.n.01', 'name': 'steenbok'}, {'id': 4565, 'synset': 'eland.n.01', 'name': 'eland'}, {'id': 4566, 'synset': 'common_eland.n.01', 'name': 'common_eland'}, {'id': 4567, 'synset': 'giant_eland.n.01', 'name': 'giant_eland'}, {'id': 4568, 'synset': 'kob.n.01', 'name': 'kob'}, {'id': 4569, 'synset': 'lechwe.n.01', 'name': 'lechwe'}, {'id': 4570, 'synset': 'waterbuck.n.01', 'name': 'waterbuck'}, {'id': 4571, 'synset': 'puku.n.01', 'name': 'puku'}, {'id': 4572, 'synset': 'oryx.n.01', 'name': 'oryx'}, {'id': 4573, 'synset': 'gemsbok.n.01', 'name': 'gemsbok'}, {'id': 4574, 'synset': 'forest_goat.n.01', 'name': 'forest_goat'}, {'id': 4575, 'synset': 'pronghorn.n.01', 'name': 'pronghorn'}, {'id': 4576, 'synset': 'stag.n.02', 'name': 'stag'}, {'id': 4577, 'synset': 'royal.n.02', 'name': 'royal'}, {'id': 4578, 'synset': 'pricket.n.02', 'name': 'pricket'}, {'id': 4579, 'synset': 'fawn.n.02', 'name': 'fawn'}, {'id': 4580, 'synset': 'red_deer.n.01', 'name': 'red_deer'}, {'id': 4581, 'synset': 'hart.n.03', 'name': 'hart'}, {'id': 4582, 'synset': 'hind.n.02', 'name': 'hind'}, {'id': 4583, 'synset': 'brocket.n.02', 'name': 'brocket'}, {'id': 4584, 'synset': 'sambar.n.01', 'name': 'sambar'}, {'id': 4585, 'synset': 'wapiti.n.01', 'name': 'wapiti'}, {'id': 4586, 'synset': 'japanese_deer.n.01', 'name': 'Japanese_deer'}, {'id': 4587, 'synset': 'virginia_deer.n.01', 'name': 'Virginia_deer'}, {'id': 4588, 'synset': 'mule_deer.n.01', 'name': 'mule_deer'}, {'id': 4589, 'synset': 'black-tailed_deer.n.01', 'name': 'black-tailed_deer'}, {'id': 4590, 'synset': 'fallow_deer.n.01', 'name': 'fallow_deer'}, {'id': 4591, 'synset': 'roe_deer.n.01', 'name': 'roe_deer'}, {'id': 4592, 'synset': 'roebuck.n.01', 'name': 'roebuck'}, {'id': 4593, 'synset': 'caribou.n.01', 'name': 'caribou'}, {'id': 4594, 'synset': 'woodland_caribou.n.01', 'name': 'woodland_caribou'}, {'id': 4595, 'synset': 'barren_ground_caribou.n.01', 'name': 'barren_ground_caribou'}, {'id': 4596, 'synset': 'brocket.n.01', 'name': 'brocket'}, {'id': 4597, 'synset': 'muntjac.n.01', 'name': 'muntjac'}, {'id': 4598, 'synset': 'musk_deer.n.01', 'name': 'musk_deer'}, {'id': 4599, 'synset': "pere_david's_deer.n.01", 'name': "pere_david's_deer"}, {'id': 4600, 'synset': 'chevrotain.n.01', 'name': 'chevrotain'}, {'id': 4601, 'synset': 'kanchil.n.01', 'name': 'kanchil'}, {'id': 4602, 'synset': 'napu.n.01', 'name': 'napu'}, {'id': 4603, 'synset': 'water_chevrotain.n.01', 'name': 'water_chevrotain'}, {'id': 4604, 'synset': 'arabian_camel.n.01', 'name': 'Arabian_camel'}, {'id': 4605, 'synset': 'bactrian_camel.n.01', 'name': 'Bactrian_camel'}, {'id': 4606, 'synset': 'llama.n.01', 'name': 'llama'}, {'id': 4607, 'synset': 'domestic_llama.n.01', 'name': 'domestic_llama'}, {'id': 4608, 'synset': 'guanaco.n.01', 'name': 'guanaco'}, {'id': 4609, 'synset': 'alpaca.n.03', 'name': 'alpaca'}, {'id': 4610, 'synset': 'vicuna.n.03', 'name': 'vicuna'}, {'id': 4611, 'synset': 'okapi.n.01', 'name': 'okapi'}, {'id': 4612, 'synset': 'musteline_mammal.n.01', 'name': 'musteline_mammal'}, {'id': 4613, 'synset': 'weasel.n.02', 'name': 'weasel'}, {'id': 4614, 'synset': 'ermine.n.02', 'name': 'ermine'}, {'id': 4615, 'synset': 'stoat.n.01', 'name': 'stoat'}, {'id': 4616, 'synset': 'new_world_least_weasel.n.01', 'name': 'New_World_least_weasel'}, {'id': 4617, 'synset': 'old_world_least_weasel.n.01', 'name': 'Old_World_least_weasel'}, {'id': 4618, 'synset': 'longtail_weasel.n.01', 'name': 'longtail_weasel'}, {'id': 4619, 'synset': 'mink.n.03', 'name': 'mink'}, {'id': 4620, 'synset': 'american_mink.n.01', 'name': 'American_mink'}, {'id': 4621, 'synset': 'polecat.n.02', 'name': 'polecat'}, {'id': 4622, 'synset': 'black-footed_ferret.n.01', 'name': 'black-footed_ferret'}, {'id': 4623, 'synset': 'muishond.n.01', 'name': 'muishond'}, {'id': 4624, 'synset': 'snake_muishond.n.01', 'name': 'snake_muishond'}, {'id': 4625, 'synset': 'striped_muishond.n.01', 'name': 'striped_muishond'}, {'id': 4626, 'synset': 'otter.n.02', 'name': 'otter'}, {'id': 4627, 'synset': 'river_otter.n.01', 'name': 'river_otter'}, {'id': 4628, 'synset': 'eurasian_otter.n.01', 'name': 'Eurasian_otter'}, {'id': 4629, 'synset': 'sea_otter.n.01', 'name': 'sea_otter'}, {'id': 4630, 'synset': 'skunk.n.04', 'name': 'skunk'}, {'id': 4631, 'synset': 'striped_skunk.n.01', 'name': 'striped_skunk'}, {'id': 4632, 'synset': 'hooded_skunk.n.01', 'name': 'hooded_skunk'}, {'id': 4633, 'synset': 'hog-nosed_skunk.n.01', 'name': 'hog-nosed_skunk'}, {'id': 4634, 'synset': 'spotted_skunk.n.01', 'name': 'spotted_skunk'}, {'id': 4635, 'synset': 'badger.n.02', 'name': 'badger'}, {'id': 4636, 'synset': 'american_badger.n.01', 'name': 'American_badger'}, {'id': 4637, 'synset': 'eurasian_badger.n.01', 'name': 'Eurasian_badger'}, {'id': 4638, 'synset': 'ratel.n.01', 'name': 'ratel'}, {'id': 4639, 'synset': 'ferret_badger.n.01', 'name': 'ferret_badger'}, {'id': 4640, 'synset': 'hog_badger.n.01', 'name': 'hog_badger'}, {'id': 4641, 'synset': 'wolverine.n.03', 'name': 'wolverine'}, {'id': 4642, 'synset': 'glutton.n.02', 'name': 'glutton'}, {'id': 4643, 'synset': 'grison.n.01', 'name': 'grison'}, {'id': 4644, 'synset': 'marten.n.01', 'name': 'marten'}, {'id': 4645, 'synset': 'pine_marten.n.01', 'name': 'pine_marten'}, {'id': 4646, 'synset': 'sable.n.05', 'name': 'sable'}, {'id': 4647, 'synset': 'american_marten.n.01', 'name': 'American_marten'}, {'id': 4648, 'synset': 'stone_marten.n.01', 'name': 'stone_marten'}, {'id': 4649, 'synset': 'fisher.n.02', 'name': 'fisher'}, {'id': 4650, 'synset': 'yellow-throated_marten.n.01', 'name': 'yellow-throated_marten'}, {'id': 4651, 'synset': 'tayra.n.01', 'name': 'tayra'}, {'id': 4652, 'synset': 'fictional_animal.n.01', 'name': 'fictional_animal'}, {'id': 4653, 'synset': 'pachyderm.n.01', 'name': 'pachyderm'}, {'id': 4654, 'synset': 'edentate.n.01', 'name': 'edentate'}, {'id': 4655, 'synset': 'armadillo.n.01', 'name': 'armadillo'}, {'id': 4656, 'synset': 'peba.n.01', 'name': 'peba'}, {'id': 4657, 'synset': 'apar.n.01', 'name': 'apar'}, {'id': 4658, 'synset': 'tatouay.n.01', 'name': 'tatouay'}, {'id': 4659, 'synset': 'peludo.n.01', 'name': 'peludo'}, {'id': 4660, 'synset': 'giant_armadillo.n.01', 'name': 'giant_armadillo'}, {'id': 4661, 'synset': 'pichiciago.n.01', 'name': 'pichiciago'}, {'id': 4662, 'synset': 'sloth.n.02', 'name': 'sloth'}, {'id': 4663, 'synset': 'three-toed_sloth.n.01', 'name': 'three-toed_sloth'}, {'id': 4664, 'synset': 'two-toed_sloth.n.02', 'name': 'two-toed_sloth'}, {'id': 4665, 'synset': 'two-toed_sloth.n.01', 'name': 'two-toed_sloth'}, {'id': 4666, 'synset': 'megatherian.n.01', 'name': 'megatherian'}, {'id': 4667, 'synset': 'mylodontid.n.01', 'name': 'mylodontid'}, {'id': 4668, 'synset': 'anteater.n.02', 'name': 'anteater'}, {'id': 4669, 'synset': 'ant_bear.n.01', 'name': 'ant_bear'}, {'id': 4670, 'synset': 'silky_anteater.n.01', 'name': 'silky_anteater'}, {'id': 4671, 'synset': 'tamandua.n.01', 'name': 'tamandua'}, {'id': 4672, 'synset': 'pangolin.n.01', 'name': 'pangolin'}, {'id': 4673, 'synset': 'coronet.n.02', 'name': 'coronet'}, {'id': 4674, 'synset': 'scapular.n.01', 'name': 'scapular'}, {'id': 4675, 'synset': 'tadpole.n.01', 'name': 'tadpole'}, {'id': 4676, 'synset': 'primate.n.02', 'name': 'primate'}, {'id': 4677, 'synset': 'simian.n.01', 'name': 'simian'}, {'id': 4678, 'synset': 'ape.n.01', 'name': 'ape'}, {'id': 4679, 'synset': 'anthropoid.n.02', 'name': 'anthropoid'}, {'id': 4680, 'synset': 'anthropoid_ape.n.01', 'name': 'anthropoid_ape'}, {'id': 4681, 'synset': 'hominoid.n.01', 'name': 'hominoid'}, {'id': 4682, 'synset': 'hominid.n.01', 'name': 'hominid'}, {'id': 4683, 'synset': 'homo.n.02', 'name': 'homo'}, {'id': 4684, 'synset': 'world.n.08', 'name': 'world'}, {'id': 4685, 'synset': 'homo_erectus.n.01', 'name': 'Homo_erectus'}, {'id': 4686, 'synset': 'pithecanthropus.n.01', 'name': 'Pithecanthropus'}, {'id': 4687, 'synset': 'java_man.n.01', 'name': 'Java_man'}, {'id': 4688, 'synset': 'peking_man.n.01', 'name': 'Peking_man'}, {'id': 4689, 'synset': 'sinanthropus.n.01', 'name': 'Sinanthropus'}, {'id': 4690, 'synset': 'homo_soloensis.n.01', 'name': 'Homo_soloensis'}, {'id': 4691, 'synset': 'javanthropus.n.01', 'name': 'Javanthropus'}, {'id': 4692, 'synset': 'homo_habilis.n.01', 'name': 'Homo_habilis'}, {'id': 4693, 'synset': 'homo_sapiens.n.01', 'name': 'Homo_sapiens'}, {'id': 4694, 'synset': 'neandertal_man.n.01', 'name': 'Neandertal_man'}, {'id': 4695, 'synset': 'cro-magnon.n.01', 'name': 'Cro-magnon'}, {'id': 4696, 'synset': 'homo_sapiens_sapiens.n.01', 'name': 'Homo_sapiens_sapiens'}, {'id': 4697, 'synset': 'australopithecine.n.01', 'name': 'australopithecine'}, {'id': 4698, 'synset': 'australopithecus_afarensis.n.01', 'name': 'Australopithecus_afarensis'}, {'id': 4699, 'synset': 'australopithecus_africanus.n.01', 'name': 'Australopithecus_africanus'}, {'id': 4700, 'synset': 'australopithecus_boisei.n.01', 'name': 'Australopithecus_boisei'}, {'id': 4701, 'synset': 'zinjanthropus.n.01', 'name': 'Zinjanthropus'}, {'id': 4702, 'synset': 'australopithecus_robustus.n.01', 'name': 'Australopithecus_robustus'}, {'id': 4703, 'synset': 'paranthropus.n.01', 'name': 'Paranthropus'}, {'id': 4704, 'synset': 'sivapithecus.n.01', 'name': 'Sivapithecus'}, {'id': 4705, 'synset': 'rudapithecus.n.01', 'name': 'rudapithecus'}, {'id': 4706, 'synset': 'proconsul.n.03', 'name': 'proconsul'}, {'id': 4707, 'synset': 'aegyptopithecus.n.01', 'name': 'Aegyptopithecus'}, {'id': 4708, 'synset': 'great_ape.n.01', 'name': 'great_ape'}, {'id': 4709, 'synset': 'orangutan.n.01', 'name': 'orangutan'}, {'id': 4710, 'synset': 'western_lowland_gorilla.n.01', 'name': 'western_lowland_gorilla'}, {'id': 4711, 'synset': 'eastern_lowland_gorilla.n.01', 'name': 'eastern_lowland_gorilla'}, {'id': 4712, 'synset': 'mountain_gorilla.n.01', 'name': 'mountain_gorilla'}, {'id': 4713, 'synset': 'silverback.n.01', 'name': 'silverback'}, {'id': 4714, 'synset': 'chimpanzee.n.01', 'name': 'chimpanzee'}, {'id': 4715, 'synset': 'western_chimpanzee.n.01', 'name': 'western_chimpanzee'}, {'id': 4716, 'synset': 'eastern_chimpanzee.n.01', 'name': 'eastern_chimpanzee'}, {'id': 4717, 'synset': 'central_chimpanzee.n.01', 'name': 'central_chimpanzee'}, {'id': 4718, 'synset': 'pygmy_chimpanzee.n.01', 'name': 'pygmy_chimpanzee'}, {'id': 4719, 'synset': 'lesser_ape.n.01', 'name': 'lesser_ape'}, {'id': 4720, 'synset': 'gibbon.n.02', 'name': 'gibbon'}, {'id': 4721, 'synset': 'siamang.n.01', 'name': 'siamang'}, {'id': 4722, 'synset': 'old_world_monkey.n.01', 'name': 'Old_World_monkey'}, {'id': 4723, 'synset': 'guenon.n.01', 'name': 'guenon'}, {'id': 4724, 'synset': 'talapoin.n.01', 'name': 'talapoin'}, {'id': 4725, 'synset': 'grivet.n.01', 'name': 'grivet'}, {'id': 4726, 'synset': 'vervet.n.01', 'name': 'vervet'}, {'id': 4727, 'synset': 'green_monkey.n.01', 'name': 'green_monkey'}, {'id': 4728, 'synset': 'mangabey.n.01', 'name': 'mangabey'}, {'id': 4729, 'synset': 'patas.n.01', 'name': 'patas'}, {'id': 4730, 'synset': 'chacma.n.01', 'name': 'chacma'}, {'id': 4731, 'synset': 'mandrill.n.01', 'name': 'mandrill'}, {'id': 4732, 'synset': 'drill.n.02', 'name': 'drill'}, {'id': 4733, 'synset': 'macaque.n.01', 'name': 'macaque'}, {'id': 4734, 'synset': 'rhesus.n.01', 'name': 'rhesus'}, {'id': 4735, 'synset': 'bonnet_macaque.n.01', 'name': 'bonnet_macaque'}, {'id': 4736, 'synset': 'barbary_ape.n.01', 'name': 'Barbary_ape'}, {'id': 4737, 'synset': 'crab-eating_macaque.n.01', 'name': 'crab-eating_macaque'}, {'id': 4738, 'synset': 'langur.n.01', 'name': 'langur'}, {'id': 4739, 'synset': 'entellus.n.01', 'name': 'entellus'}, {'id': 4740, 'synset': 'colobus.n.01', 'name': 'colobus'}, {'id': 4741, 'synset': 'guereza.n.01', 'name': 'guereza'}, {'id': 4742, 'synset': 'proboscis_monkey.n.01', 'name': 'proboscis_monkey'}, {'id': 4743, 'synset': 'new_world_monkey.n.01', 'name': 'New_World_monkey'}, {'id': 4744, 'synset': 'marmoset.n.01', 'name': 'marmoset'}, {'id': 4745, 'synset': 'true_marmoset.n.01', 'name': 'true_marmoset'}, {'id': 4746, 'synset': 'pygmy_marmoset.n.01', 'name': 'pygmy_marmoset'}, {'id': 4747, 'synset': 'tamarin.n.01', 'name': 'tamarin'}, {'id': 4748, 'synset': 'silky_tamarin.n.01', 'name': 'silky_tamarin'}, {'id': 4749, 'synset': 'pinche.n.01', 'name': 'pinche'}, {'id': 4750, 'synset': 'capuchin.n.02', 'name': 'capuchin'}, {'id': 4751, 'synset': 'douroucouli.n.01', 'name': 'douroucouli'}, {'id': 4752, 'synset': 'howler_monkey.n.01', 'name': 'howler_monkey'}, {'id': 4753, 'synset': 'saki.n.03', 'name': 'saki'}, {'id': 4754, 'synset': 'uakari.n.01', 'name': 'uakari'}, {'id': 4755, 'synset': 'titi.n.03', 'name': 'titi'}, {'id': 4756, 'synset': 'spider_monkey.n.01', 'name': 'spider_monkey'}, {'id': 4757, 'synset': 'squirrel_monkey.n.01', 'name': 'squirrel_monkey'}, {'id': 4758, 'synset': 'woolly_monkey.n.01', 'name': 'woolly_monkey'}, {'id': 4759, 'synset': 'tree_shrew.n.01', 'name': 'tree_shrew'}, {'id': 4760, 'synset': 'prosimian.n.01', 'name': 'prosimian'}, {'id': 4761, 'synset': 'lemur.n.01', 'name': 'lemur'}, {'id': 4762, 'synset': 'madagascar_cat.n.01', 'name': 'Madagascar_cat'}, {'id': 4763, 'synset': 'aye-aye.n.01', 'name': 'aye-aye'}, {'id': 4764, 'synset': 'slender_loris.n.01', 'name': 'slender_loris'}, {'id': 4765, 'synset': 'slow_loris.n.01', 'name': 'slow_loris'}, {'id': 4766, 'synset': 'potto.n.02', 'name': 'potto'}, {'id': 4767, 'synset': 'angwantibo.n.01', 'name': 'angwantibo'}, {'id': 4768, 'synset': 'galago.n.01', 'name': 'galago'}, {'id': 4769, 'synset': 'indri.n.01', 'name': 'indri'}, {'id': 4770, 'synset': 'woolly_indris.n.01', 'name': 'woolly_indris'}, {'id': 4771, 'synset': 'tarsier.n.01', 'name': 'tarsier'}, {'id': 4772, 'synset': 'tarsius_syrichta.n.01', 'name': 'Tarsius_syrichta'}, {'id': 4773, 'synset': 'tarsius_glis.n.01', 'name': 'Tarsius_glis'}, {'id': 4774, 'synset': 'flying_lemur.n.01', 'name': 'flying_lemur'}, {'id': 4775, 'synset': 'cynocephalus_variegatus.n.01', 'name': 'Cynocephalus_variegatus'}, {'id': 4776, 'synset': 'proboscidean.n.01', 'name': 'proboscidean'}, {'id': 4777, 'synset': 'rogue_elephant.n.01', 'name': 'rogue_elephant'}, {'id': 4778, 'synset': 'indian_elephant.n.01', 'name': 'Indian_elephant'}, {'id': 4779, 'synset': 'african_elephant.n.01', 'name': 'African_elephant'}, {'id': 4780, 'synset': 'woolly_mammoth.n.01', 'name': 'woolly_mammoth'}, {'id': 4781, 'synset': 'columbian_mammoth.n.01', 'name': 'columbian_mammoth'}, {'id': 4782, 'synset': 'imperial_mammoth.n.01', 'name': 'imperial_mammoth'}, {'id': 4783, 'synset': 'mastodon.n.01', 'name': 'mastodon'}, {'id': 4784, 'synset': 'plantigrade_mammal.n.01', 'name': 'plantigrade_mammal'}, {'id': 4785, 'synset': 'digitigrade_mammal.n.01', 'name': 'digitigrade_mammal'}, {'id': 4786, 'synset': 'procyonid.n.01', 'name': 'procyonid'}, {'id': 4787, 'synset': 'raccoon.n.02', 'name': 'raccoon'}, {'id': 4788, 'synset': 'common_raccoon.n.01', 'name': 'common_raccoon'}, {'id': 4789, 'synset': 'crab-eating_raccoon.n.01', 'name': 'crab-eating_raccoon'}, {'id': 4790, 'synset': 'bassarisk.n.01', 'name': 'bassarisk'}, {'id': 4791, 'synset': 'kinkajou.n.01', 'name': 'kinkajou'}, {'id': 4792, 'synset': 'coati.n.01', 'name': 'coati'}, {'id': 4793, 'synset': 'lesser_panda.n.01', 'name': 'lesser_panda'}, {'id': 4794, 'synset': 'twitterer.n.01', 'name': 'twitterer'}, {'id': 4795, 'synset': 'fingerling.n.01', 'name': 'fingerling'}, {'id': 4796, 'synset': 'game_fish.n.01', 'name': 'game_fish'}, {'id': 4797, 'synset': 'food_fish.n.01', 'name': 'food_fish'}, {'id': 4798, 'synset': 'rough_fish.n.01', 'name': 'rough_fish'}, {'id': 4799, 'synset': 'groundfish.n.01', 'name': 'groundfish'}, {'id': 4800, 'synset': 'young_fish.n.01', 'name': 'young_fish'}, {'id': 4801, 'synset': 'parr.n.03', 'name': 'parr'}, {'id': 4802, 'synset': 'mouthbreeder.n.01', 'name': 'mouthbreeder'}, {'id': 4803, 'synset': 'spawner.n.01', 'name': 'spawner'}, {'id': 4804, 'synset': 'barracouta.n.01', 'name': 'barracouta'}, {'id': 4805, 'synset': 'crossopterygian.n.01', 'name': 'crossopterygian'}, {'id': 4806, 'synset': 'coelacanth.n.01', 'name': 'coelacanth'}, {'id': 4807, 'synset': 'lungfish.n.01', 'name': 'lungfish'}, {'id': 4808, 'synset': 'ceratodus.n.01', 'name': 'ceratodus'}, {'id': 4809, 'synset': 'catfish.n.03', 'name': 'catfish'}, {'id': 4810, 'synset': 'silurid.n.01', 'name': 'silurid'}, {'id': 4811, 'synset': 'european_catfish.n.01', 'name': 'European_catfish'}, {'id': 4812, 'synset': 'electric_catfish.n.01', 'name': 'electric_catfish'}, {'id': 4813, 'synset': 'bullhead.n.02', 'name': 'bullhead'}, {'id': 4814, 'synset': 'horned_pout.n.01', 'name': 'horned_pout'}, {'id': 4815, 'synset': 'brown_bullhead.n.01', 'name': 'brown_bullhead'}, {'id': 4816, 'synset': 'channel_catfish.n.01', 'name': 'channel_catfish'}, {'id': 4817, 'synset': 'blue_catfish.n.01', 'name': 'blue_catfish'}, {'id': 4818, 'synset': 'flathead_catfish.n.01', 'name': 'flathead_catfish'}, {'id': 4819, 'synset': 'armored_catfish.n.01', 'name': 'armored_catfish'}, {'id': 4820, 'synset': 'sea_catfish.n.01', 'name': 'sea_catfish'}, {'id': 4821, 'synset': 'gadoid.n.01', 'name': 'gadoid'}, {'id': 4822, 'synset': 'cod.n.03', 'name': 'cod'}, {'id': 4823, 'synset': 'codling.n.01', 'name': 'codling'}, {'id': 4824, 'synset': 'atlantic_cod.n.01', 'name': 'Atlantic_cod'}, {'id': 4825, 'synset': 'pacific_cod.n.01', 'name': 'Pacific_cod'}, {'id': 4826, 'synset': 'whiting.n.06', 'name': 'whiting'}, {'id': 4827, 'synset': 'burbot.n.01', 'name': 'burbot'}, {'id': 4828, 'synset': 'haddock.n.02', 'name': 'haddock'}, {'id': 4829, 'synset': 'pollack.n.03', 'name': 'pollack'}, {'id': 4830, 'synset': 'hake.n.02', 'name': 'hake'}, {'id': 4831, 'synset': 'silver_hake.n.01', 'name': 'silver_hake'}, {'id': 4832, 'synset': 'ling.n.04', 'name': 'ling'}, {'id': 4833, 'synset': 'cusk.n.02', 'name': 'cusk'}, {'id': 4834, 'synset': 'grenadier.n.02', 'name': 'grenadier'}, {'id': 4835, 'synset': 'eel.n.02', 'name': 'eel'}, {'id': 4836, 'synset': 'elver.n.02', 'name': 'elver'}, {'id': 4837, 'synset': 'common_eel.n.01', 'name': 'common_eel'}, {'id': 4838, 'synset': 'tuna.n.04', 'name': 'tuna'}, {'id': 4839, 'synset': 'moray.n.01', 'name': 'moray'}, {'id': 4840, 'synset': 'conger.n.01', 'name': 'conger'}, {'id': 4841, 'synset': 'teleost_fish.n.01', 'name': 'teleost_fish'}, {'id': 4842, 'synset': 'beaked_salmon.n.01', 'name': 'beaked_salmon'}, {'id': 4843, 'synset': 'clupeid_fish.n.01', 'name': 'clupeid_fish'}, {'id': 4844, 'synset': 'whitebait.n.02', 'name': 'whitebait'}, {'id': 4845, 'synset': 'brit.n.02', 'name': 'brit'}, {'id': 4846, 'synset': 'shad.n.02', 'name': 'shad'}, {'id': 4847, 'synset': 'common_american_shad.n.01', 'name': 'common_American_shad'}, {'id': 4848, 'synset': 'river_shad.n.01', 'name': 'river_shad'}, {'id': 4849, 'synset': 'allice_shad.n.01', 'name': 'allice_shad'}, {'id': 4850, 'synset': 'alewife.n.02', 'name': 'alewife'}, {'id': 4851, 'synset': 'menhaden.n.01', 'name': 'menhaden'}, {'id': 4852, 'synset': 'herring.n.02', 'name': 'herring'}, {'id': 4853, 'synset': 'atlantic_herring.n.01', 'name': 'Atlantic_herring'}, {'id': 4854, 'synset': 'pacific_herring.n.01', 'name': 'Pacific_herring'}, {'id': 4855, 'synset': 'sardine.n.02', 'name': 'sardine'}, {'id': 4856, 'synset': 'sild.n.01', 'name': 'sild'}, {'id': 4857, 'synset': 'brisling.n.02', 'name': 'brisling'}, {'id': 4858, 'synset': 'pilchard.n.02', 'name': 'pilchard'}, {'id': 4859, 'synset': 'pacific_sardine.n.01', 'name': 'Pacific_sardine'}, {'id': 4860, 'synset': 'anchovy.n.02', 'name': 'anchovy'}, {'id': 4861, 'synset': 'mediterranean_anchovy.n.01', 'name': 'mediterranean_anchovy'}, {'id': 4862, 'synset': 'salmonid.n.01', 'name': 'salmonid'}, {'id': 4863, 'synset': 'parr.n.02', 'name': 'parr'}, {'id': 4864, 'synset': 'blackfish.n.02', 'name': 'blackfish'}, {'id': 4865, 'synset': 'redfish.n.03', 'name': 'redfish'}, {'id': 4866, 'synset': 'atlantic_salmon.n.02', 'name': 'Atlantic_salmon'}, {'id': 4867, 'synset': 'landlocked_salmon.n.01', 'name': 'landlocked_salmon'}, {'id': 4868, 'synset': 'sockeye.n.02', 'name': 'sockeye'}, {'id': 4869, 'synset': 'chinook.n.05', 'name': 'chinook'}, {'id': 4870, 'synset': 'coho.n.02', 'name': 'coho'}, {'id': 4871, 'synset': 'trout.n.02', 'name': 'trout'}, {'id': 4872, 'synset': 'brown_trout.n.01', 'name': 'brown_trout'}, {'id': 4873, 'synset': 'rainbow_trout.n.02', 'name': 'rainbow_trout'}, {'id': 4874, 'synset': 'sea_trout.n.03', 'name': 'sea_trout'}, {'id': 4875, 'synset': 'lake_trout.n.02', 'name': 'lake_trout'}, {'id': 4876, 'synset': 'brook_trout.n.02', 'name': 'brook_trout'}, {'id': 4877, 'synset': 'char.n.03', 'name': 'char'}, {'id': 4878, 'synset': 'arctic_char.n.01', 'name': 'Arctic_char'}, {'id': 4879, 'synset': 'whitefish.n.03', 'name': 'whitefish'}, {'id': 4880, 'synset': 'lake_whitefish.n.01', 'name': 'lake_whitefish'}, {'id': 4881, 'synset': 'cisco.n.02', 'name': 'cisco'}, {'id': 4882, 'synset': 'round_whitefish.n.01', 'name': 'round_whitefish'}, {'id': 4883, 'synset': 'smelt.n.02', 'name': 'smelt'}, {'id': 4884, 'synset': 'sparling.n.02', 'name': 'sparling'}, {'id': 4885, 'synset': 'capelin.n.01', 'name': 'capelin'}, {'id': 4886, 'synset': 'tarpon.n.01', 'name': 'tarpon'}, {'id': 4887, 'synset': 'ladyfish.n.01', 'name': 'ladyfish'}, {'id': 4888, 'synset': 'bonefish.n.01', 'name': 'bonefish'}, {'id': 4889, 'synset': 'argentine.n.01', 'name': 'argentine'}, {'id': 4890, 'synset': 'lanternfish.n.01', 'name': 'lanternfish'}, {'id': 4891, 'synset': 'lizardfish.n.01', 'name': 'lizardfish'}, {'id': 4892, 'synset': 'lancetfish.n.01', 'name': 'lancetfish'}, {'id': 4893, 'synset': 'opah.n.01', 'name': 'opah'}, {'id': 4894, 'synset': 'new_world_opah.n.01', 'name': 'New_World_opah'}, {'id': 4895, 'synset': 'ribbonfish.n.02', 'name': 'ribbonfish'}, {'id': 4896, 'synset': 'dealfish.n.01', 'name': 'dealfish'}, {'id': 4897, 'synset': 'oarfish.n.01', 'name': 'oarfish'}, {'id': 4898, 'synset': 'batfish.n.01', 'name': 'batfish'}, {'id': 4899, 'synset': 'goosefish.n.01', 'name': 'goosefish'}, {'id': 4900, 'synset': 'toadfish.n.01', 'name': 'toadfish'}, {'id': 4901, 'synset': 'oyster_fish.n.01', 'name': 'oyster_fish'}, {'id': 4902, 'synset': 'frogfish.n.01', 'name': 'frogfish'}, {'id': 4903, 'synset': 'sargassum_fish.n.01', 'name': 'sargassum_fish'}, {'id': 4904, 'synset': 'needlefish.n.01', 'name': 'needlefish'}, {'id': 4905, 'synset': 'timucu.n.01', 'name': 'timucu'}, {'id': 4906, 'synset': 'flying_fish.n.01', 'name': 'flying_fish'}, {'id': 4907, 'synset': 'monoplane_flying_fish.n.01', 'name': 'monoplane_flying_fish'}, {'id': 4908, 'synset': 'halfbeak.n.01', 'name': 'halfbeak'}, {'id': 4909, 'synset': 'saury.n.01', 'name': 'saury'}, {'id': 4910, 'synset': 'spiny-finned_fish.n.01', 'name': 'spiny-finned_fish'}, {'id': 4911, 'synset': 'lingcod.n.02', 'name': 'lingcod'}, {'id': 4912, 'synset': 'percoid_fish.n.01', 'name': 'percoid_fish'}, {'id': 4913, 'synset': 'perch.n.07', 'name': 'perch'}, {'id': 4914, 'synset': 'climbing_perch.n.01', 'name': 'climbing_perch'}, {'id': 4915, 'synset': 'perch.n.06', 'name': 'perch'}, {'id': 4916, 'synset': 'yellow_perch.n.01', 'name': 'yellow_perch'}, {'id': 4917, 'synset': 'european_perch.n.01', 'name': 'European_perch'}, {'id': 4918, 'synset': 'pike-perch.n.01', 'name': 'pike-perch'}, {'id': 4919, 'synset': 'walleye.n.02', 'name': 'walleye'}, {'id': 4920, 'synset': 'blue_pike.n.01', 'name': 'blue_pike'}, {'id': 4921, 'synset': 'snail_darter.n.01', 'name': 'snail_darter'}, {'id': 4922, 'synset': 'cusk-eel.n.01', 'name': 'cusk-eel'}, {'id': 4923, 'synset': 'brotula.n.01', 'name': 'brotula'}, {'id': 4924, 'synset': 'pearlfish.n.01', 'name': 'pearlfish'}, {'id': 4925, 'synset': 'robalo.n.01', 'name': 'robalo'}, {'id': 4926, 'synset': 'snook.n.01', 'name': 'snook'}, {'id': 4927, 'synset': 'pike.n.05', 'name': 'pike'}, {'id': 4928, 'synset': 'northern_pike.n.01', 'name': 'northern_pike'}, {'id': 4929, 'synset': 'muskellunge.n.02', 'name': 'muskellunge'}, {'id': 4930, 'synset': 'pickerel.n.02', 'name': 'pickerel'}, {'id': 4931, 'synset': 'chain_pickerel.n.01', 'name': 'chain_pickerel'}, {'id': 4932, 'synset': 'redfin_pickerel.n.01', 'name': 'redfin_pickerel'}, {'id': 4933, 'synset': 'sunfish.n.03', 'name': 'sunfish'}, {'id': 4934, 'synset': 'crappie.n.02', 'name': 'crappie'}, {'id': 4935, 'synset': 'black_crappie.n.01', 'name': 'black_crappie'}, {'id': 4936, 'synset': 'white_crappie.n.01', 'name': 'white_crappie'}, {'id': 4937, 'synset': 'freshwater_bream.n.02', 'name': 'freshwater_bream'}, {'id': 4938, 'synset': 'pumpkinseed.n.01', 'name': 'pumpkinseed'}, {'id': 4939, 'synset': 'bluegill.n.01', 'name': 'bluegill'}, {'id': 4940, 'synset': 'spotted_sunfish.n.01', 'name': 'spotted_sunfish'}, {'id': 4941, 'synset': 'freshwater_bass.n.02', 'name': 'freshwater_bass'}, {'id': 4942, 'synset': 'rock_bass.n.02', 'name': 'rock_bass'}, {'id': 4943, 'synset': 'black_bass.n.02', 'name': 'black_bass'}, {'id': 4944, 'synset': 'kentucky_black_bass.n.01', 'name': 'Kentucky_black_bass'}, {'id': 4945, 'synset': 'smallmouth.n.01', 'name': 'smallmouth'}, {'id': 4946, 'synset': 'largemouth.n.01', 'name': 'largemouth'}, {'id': 4947, 'synset': 'bass.n.08', 'name': 'bass'}, {'id': 4948, 'synset': 'serranid_fish.n.01', 'name': 'serranid_fish'}, {'id': 4949, 'synset': 'white_perch.n.01', 'name': 'white_perch'}, {'id': 4950, 'synset': 'yellow_bass.n.01', 'name': 'yellow_bass'}, {'id': 4951, 'synset': 'blackmouth_bass.n.01', 'name': 'blackmouth_bass'}, {'id': 4952, 'synset': 'rock_sea_bass.n.01', 'name': 'rock_sea_bass'}, {'id': 4953, 'synset': 'striped_bass.n.02', 'name': 'striped_bass'}, {'id': 4954, 'synset': 'stone_bass.n.01', 'name': 'stone_bass'}, {'id': 4955, 'synset': 'grouper.n.02', 'name': 'grouper'}, {'id': 4956, 'synset': 'hind.n.01', 'name': 'hind'}, {'id': 4957, 'synset': 'rock_hind.n.01', 'name': 'rock_hind'}, {'id': 4958, 'synset': 'creole-fish.n.01', 'name': 'creole-fish'}, {'id': 4959, 'synset': 'jewfish.n.02', 'name': 'jewfish'}, {'id': 4960, 'synset': 'soapfish.n.01', 'name': 'soapfish'}, {'id': 4961, 'synset': 'surfperch.n.01', 'name': 'surfperch'}, {'id': 4962, 'synset': 'rainbow_seaperch.n.01', 'name': 'rainbow_seaperch'}, {'id': 4963, 'synset': 'bigeye.n.01', 'name': 'bigeye'}, {'id': 4964, 'synset': 'catalufa.n.01', 'name': 'catalufa'}, {'id': 4965, 'synset': 'cardinalfish.n.01', 'name': 'cardinalfish'}, {'id': 4966, 'synset': 'flame_fish.n.01', 'name': 'flame_fish'}, {'id': 4967, 'synset': 'tilefish.n.02', 'name': 'tilefish'}, {'id': 4968, 'synset': 'bluefish.n.01', 'name': 'bluefish'}, {'id': 4969, 'synset': 'cobia.n.01', 'name': 'cobia'}, {'id': 4970, 'synset': 'remora.n.01', 'name': 'remora'}, {'id': 4971, 'synset': 'sharksucker.n.01', 'name': 'sharksucker'}, {'id': 4972, 'synset': 'whale_sucker.n.01', 'name': 'whale_sucker'}, {'id': 4973, 'synset': 'carangid_fish.n.01', 'name': 'carangid_fish'}, {'id': 4974, 'synset': 'jack.n.11', 'name': 'jack'}, {'id': 4975, 'synset': 'crevalle_jack.n.01', 'name': 'crevalle_jack'}, {'id': 4976, 'synset': 'yellow_jack.n.03', 'name': 'yellow_jack'}, {'id': 4977, 'synset': 'runner.n.10', 'name': 'runner'}, {'id': 4978, 'synset': 'rainbow_runner.n.01', 'name': 'rainbow_runner'}, {'id': 4979, 'synset': 'leatherjacket.n.02', 'name': 'leatherjacket'}, {'id': 4980, 'synset': 'threadfish.n.01', 'name': 'threadfish'}, {'id': 4981, 'synset': 'moonfish.n.01', 'name': 'moonfish'}, {'id': 4982, 'synset': 'lookdown.n.01', 'name': 'lookdown'}, {'id': 4983, 'synset': 'amberjack.n.01', 'name': 'amberjack'}, {'id': 4984, 'synset': 'yellowtail.n.02', 'name': 'yellowtail'}, {'id': 4985, 'synset': 'kingfish.n.05', 'name': 'kingfish'}, {'id': 4986, 'synset': 'pompano.n.02', 'name': 'pompano'}, {'id': 4987, 'synset': 'florida_pompano.n.01', 'name': 'Florida_pompano'}, {'id': 4988, 'synset': 'permit.n.03', 'name': 'permit'}, {'id': 4989, 'synset': 'scad.n.01', 'name': 'scad'}, {'id': 4990, 'synset': 'horse_mackerel.n.03', 'name': 'horse_mackerel'}, {'id': 4991, 'synset': 'horse_mackerel.n.02', 'name': 'horse_mackerel'}, {'id': 4992, 'synset': 'bigeye_scad.n.01', 'name': 'bigeye_scad'}, {'id': 4993, 'synset': 'mackerel_scad.n.01', 'name': 'mackerel_scad'}, {'id': 4994, 'synset': 'round_scad.n.01', 'name': 'round_scad'}, {'id': 4995, 'synset': 'dolphinfish.n.02', 'name': 'dolphinfish'}, {'id': 4996, 'synset': 'coryphaena_hippurus.n.01', 'name': 'Coryphaena_hippurus'}, {'id': 4997, 'synset': 'coryphaena_equisetis.n.01', 'name': 'Coryphaena_equisetis'}, {'id': 4998, 'synset': 'pomfret.n.01', 'name': 'pomfret'}, {'id': 4999, 'synset': 'characin.n.01', 'name': 'characin'}, {'id': 5000, 'synset': 'tetra.n.01', 'name': 'tetra'}, {'id': 5001, 'synset': 'cardinal_tetra.n.01', 'name': 'cardinal_tetra'}, {'id': 5002, 'synset': 'piranha.n.02', 'name': 'piranha'}, {'id': 5003, 'synset': 'cichlid.n.01', 'name': 'cichlid'}, {'id': 5004, 'synset': 'bolti.n.01', 'name': 'bolti'}, {'id': 5005, 'synset': 'snapper.n.05', 'name': 'snapper'}, {'id': 5006, 'synset': 'red_snapper.n.02', 'name': 'red_snapper'}, {'id': 5007, 'synset': 'grey_snapper.n.01', 'name': 'grey_snapper'}, {'id': 5008, 'synset': 'mutton_snapper.n.01', 'name': 'mutton_snapper'}, {'id': 5009, 'synset': 'schoolmaster.n.03', 'name': 'schoolmaster'}, {'id': 5010, 'synset': 'yellowtail.n.01', 'name': 'yellowtail'}, {'id': 5011, 'synset': 'grunt.n.03', 'name': 'grunt'}, {'id': 5012, 'synset': 'margate.n.01', 'name': 'margate'}, {'id': 5013, 'synset': 'spanish_grunt.n.01', 'name': 'Spanish_grunt'}, {'id': 5014, 'synset': 'tomtate.n.01', 'name': 'tomtate'}, {'id': 5015, 'synset': 'cottonwick.n.01', 'name': 'cottonwick'}, {'id': 5016, 'synset': "sailor's-choice.n.02", 'name': "sailor's-choice"}, {'id': 5017, 'synset': 'porkfish.n.01', 'name': 'porkfish'}, {'id': 5018, 'synset': 'pompon.n.02', 'name': 'pompon'}, {'id': 5019, 'synset': 'pigfish.n.02', 'name': 'pigfish'}, {'id': 5020, 'synset': 'sparid.n.01', 'name': 'sparid'}, {'id': 5021, 'synset': 'sea_bream.n.02', 'name': 'sea_bream'}, {'id': 5022, 'synset': 'porgy.n.02', 'name': 'porgy'}, {'id': 5023, 'synset': 'red_porgy.n.01', 'name': 'red_porgy'}, {'id': 5024, 'synset': 'european_sea_bream.n.01', 'name': 'European_sea_bream'}, {'id': 5025, 'synset': 'atlantic_sea_bream.n.01', 'name': 'Atlantic_sea_bream'}, {'id': 5026, 'synset': 'sheepshead.n.01', 'name': 'sheepshead'}, {'id': 5027, 'synset': 'pinfish.n.01', 'name': 'pinfish'}, {'id': 5028, 'synset': 'sheepshead_porgy.n.01', 'name': 'sheepshead_porgy'}, {'id': 5029, 'synset': 'snapper.n.04', 'name': 'snapper'}, {'id': 5030, 'synset': 'black_bream.n.01', 'name': 'black_bream'}, {'id': 5031, 'synset': 'scup.n.04', 'name': 'scup'}, {'id': 5032, 'synset': 'scup.n.03', 'name': 'scup'}, {'id': 5033, 'synset': 'sciaenid_fish.n.01', 'name': 'sciaenid_fish'}, {'id': 5034, 'synset': 'striped_drum.n.01', 'name': 'striped_drum'}, {'id': 5035, 'synset': 'jackknife-fish.n.01', 'name': 'jackknife-fish'}, {'id': 5036, 'synset': 'silver_perch.n.01', 'name': 'silver_perch'}, {'id': 5037, 'synset': 'red_drum.n.01', 'name': 'red_drum'}, {'id': 5038, 'synset': 'mulloway.n.01', 'name': 'mulloway'}, {'id': 5039, 'synset': 'maigre.n.01', 'name': 'maigre'}, {'id': 5040, 'synset': 'croaker.n.02', 'name': 'croaker'}, {'id': 5041, 'synset': 'atlantic_croaker.n.01', 'name': 'Atlantic_croaker'}, {'id': 5042, 'synset': 'yellowfin_croaker.n.01', 'name': 'yellowfin_croaker'}, {'id': 5043, 'synset': 'whiting.n.04', 'name': 'whiting'}, {'id': 5044, 'synset': 'kingfish.n.04', 'name': 'kingfish'}, {'id': 5045, 'synset': 'king_whiting.n.01', 'name': 'king_whiting'}, {'id': 5046, 'synset': 'northern_whiting.n.01', 'name': 'northern_whiting'}, {'id': 5047, 'synset': 'corbina.n.01', 'name': 'corbina'}, {'id': 5048, 'synset': 'white_croaker.n.02', 'name': 'white_croaker'}, {'id': 5049, 'synset': 'white_croaker.n.01', 'name': 'white_croaker'}, {'id': 5050, 'synset': 'sea_trout.n.02', 'name': 'sea_trout'}, {'id': 5051, 'synset': 'weakfish.n.02', 'name': 'weakfish'}, {'id': 5052, 'synset': 'spotted_weakfish.n.01', 'name': 'spotted_weakfish'}, {'id': 5053, 'synset': 'mullet.n.03', 'name': 'mullet'}, {'id': 5054, 'synset': 'goatfish.n.01', 'name': 'goatfish'}, {'id': 5055, 'synset': 'red_goatfish.n.01', 'name': 'red_goatfish'}, {'id': 5056, 'synset': 'yellow_goatfish.n.01', 'name': 'yellow_goatfish'}, {'id': 5057, 'synset': 'mullet.n.02', 'name': 'mullet'}, {'id': 5058, 'synset': 'striped_mullet.n.01', 'name': 'striped_mullet'}, {'id': 5059, 'synset': 'white_mullet.n.01', 'name': 'white_mullet'}, {'id': 5060, 'synset': 'liza.n.01', 'name': 'liza'}, {'id': 5061, 'synset': 'silversides.n.01', 'name': 'silversides'}, {'id': 5062, 'synset': 'jacksmelt.n.01', 'name': 'jacksmelt'}, {'id': 5063, 'synset': 'barracuda.n.01', 'name': 'barracuda'}, {'id': 5064, 'synset': 'great_barracuda.n.01', 'name': 'great_barracuda'}, {'id': 5065, 'synset': 'sweeper.n.03', 'name': 'sweeper'}, {'id': 5066, 'synset': 'sea_chub.n.01', 'name': 'sea_chub'}, {'id': 5067, 'synset': 'bermuda_chub.n.01', 'name': 'Bermuda_chub'}, {'id': 5068, 'synset': 'spadefish.n.01', 'name': 'spadefish'}, {'id': 5069, 'synset': 'butterfly_fish.n.01', 'name': 'butterfly_fish'}, {'id': 5070, 'synset': 'chaetodon.n.01', 'name': 'chaetodon'}, {'id': 5071, 'synset': 'angelfish.n.01', 'name': 'angelfish'}, {'id': 5072, 'synset': 'rock_beauty.n.01', 'name': 'rock_beauty'}, {'id': 5073, 'synset': 'damselfish.n.01', 'name': 'damselfish'}, {'id': 5074, 'synset': 'beaugregory.n.01', 'name': 'beaugregory'}, {'id': 5075, 'synset': 'anemone_fish.n.01', 'name': 'anemone_fish'}, {'id': 5076, 'synset': 'clown_anemone_fish.n.01', 'name': 'clown_anemone_fish'}, {'id': 5077, 'synset': 'sergeant_major.n.02', 'name': 'sergeant_major'}, {'id': 5078, 'synset': 'wrasse.n.01', 'name': 'wrasse'}, {'id': 5079, 'synset': 'pigfish.n.01', 'name': 'pigfish'}, {'id': 5080, 'synset': 'hogfish.n.01', 'name': 'hogfish'}, {'id': 5081, 'synset': 'slippery_dick.n.01', 'name': 'slippery_dick'}, {'id': 5082, 'synset': 'puddingwife.n.01', 'name': 'puddingwife'}, {'id': 5083, 'synset': 'bluehead.n.01', 'name': 'bluehead'}, {'id': 5084, 'synset': 'pearly_razorfish.n.01', 'name': 'pearly_razorfish'}, {'id': 5085, 'synset': 'tautog.n.01', 'name': 'tautog'}, {'id': 5086, 'synset': 'cunner.n.01', 'name': 'cunner'}, {'id': 5087, 'synset': 'parrotfish.n.01', 'name': 'parrotfish'}, {'id': 5088, 'synset': 'threadfin.n.01', 'name': 'threadfin'}, {'id': 5089, 'synset': 'jawfish.n.01', 'name': 'jawfish'}, {'id': 5090, 'synset': 'stargazer.n.03', 'name': 'stargazer'}, {'id': 5091, 'synset': 'sand_stargazer.n.01', 'name': 'sand_stargazer'}, {'id': 5092, 'synset': 'blenny.n.01', 'name': 'blenny'}, {'id': 5093, 'synset': 'shanny.n.01', 'name': 'shanny'}, {'id': 5094, 'synset': 'molly_miller.n.01', 'name': 'Molly_Miller'}, {'id': 5095, 'synset': 'clinid.n.01', 'name': 'clinid'}, {'id': 5096, 'synset': 'pikeblenny.n.01', 'name': 'pikeblenny'}, {'id': 5097, 'synset': 'bluethroat_pikeblenny.n.01', 'name': 'bluethroat_pikeblenny'}, {'id': 5098, 'synset': 'gunnel.n.02', 'name': 'gunnel'}, {'id': 5099, 'synset': 'rock_gunnel.n.01', 'name': 'rock_gunnel'}, {'id': 5100, 'synset': 'eelblenny.n.01', 'name': 'eelblenny'}, {'id': 5101, 'synset': 'wrymouth.n.01', 'name': 'wrymouth'}, {'id': 5102, 'synset': 'wolffish.n.01', 'name': 'wolffish'}, {'id': 5103, 'synset': 'viviparous_eelpout.n.01', 'name': 'viviparous_eelpout'}, {'id': 5104, 'synset': 'ocean_pout.n.01', 'name': 'ocean_pout'}, {'id': 5105, 'synset': 'sand_lance.n.01', 'name': 'sand_lance'}, {'id': 5106, 'synset': 'dragonet.n.01', 'name': 'dragonet'}, {'id': 5107, 'synset': 'goby.n.01', 'name': 'goby'}, {'id': 5108, 'synset': 'mudskipper.n.01', 'name': 'mudskipper'}, {'id': 5109, 'synset': 'sleeper.n.08', 'name': 'sleeper'}, {'id': 5110, 'synset': 'flathead.n.02', 'name': 'flathead'}, {'id': 5111, 'synset': 'archerfish.n.01', 'name': 'archerfish'}, {'id': 5112, 'synset': 'surgeonfish.n.01', 'name': 'surgeonfish'}, {'id': 5113, 'synset': 'gempylid.n.01', 'name': 'gempylid'}, {'id': 5114, 'synset': 'snake_mackerel.n.01', 'name': 'snake_mackerel'}, {'id': 5115, 'synset': 'escolar.n.01', 'name': 'escolar'}, {'id': 5116, 'synset': 'oilfish.n.01', 'name': 'oilfish'}, {'id': 5117, 'synset': 'cutlassfish.n.01', 'name': 'cutlassfish'}, {'id': 5118, 'synset': 'scombroid.n.01', 'name': 'scombroid'}, {'id': 5119, 'synset': 'mackerel.n.02', 'name': 'mackerel'}, {'id': 5120, 'synset': 'common_mackerel.n.01', 'name': 'common_mackerel'}, {'id': 5121, 'synset': 'spanish_mackerel.n.03', 'name': 'Spanish_mackerel'}, {'id': 5122, 'synset': 'chub_mackerel.n.01', 'name': 'chub_mackerel'}, {'id': 5123, 'synset': 'wahoo.n.03', 'name': 'wahoo'}, {'id': 5124, 'synset': 'spanish_mackerel.n.02', 'name': 'Spanish_mackerel'}, {'id': 5125, 'synset': 'king_mackerel.n.01', 'name': 'king_mackerel'}, {'id': 5126, 'synset': 'scomberomorus_maculatus.n.01', 'name': 'Scomberomorus_maculatus'}, {'id': 5127, 'synset': 'cero.n.01', 'name': 'cero'}, {'id': 5128, 'synset': 'sierra.n.02', 'name': 'sierra'}, {'id': 5129, 'synset': 'tuna.n.03', 'name': 'tuna'}, {'id': 5130, 'synset': 'albacore.n.02', 'name': 'albacore'}, {'id': 5131, 'synset': 'bluefin.n.02', 'name': 'bluefin'}, {'id': 5132, 'synset': 'yellowfin.n.01', 'name': 'yellowfin'}, {'id': 5133, 'synset': 'bonito.n.03', 'name': 'bonito'}, {'id': 5134, 'synset': 'skipjack.n.02', 'name': 'skipjack'}, {'id': 5135, 'synset': 'chile_bonito.n.01', 'name': 'Chile_bonito'}, {'id': 5136, 'synset': 'skipjack.n.01', 'name': 'skipjack'}, {'id': 5137, 'synset': 'bonito.n.02', 'name': 'bonito'}, {'id': 5138, 'synset': 'swordfish.n.02', 'name': 'swordfish'}, {'id': 5139, 'synset': 'sailfish.n.02', 'name': 'sailfish'}, {'id': 5140, 'synset': 'atlantic_sailfish.n.01', 'name': 'Atlantic_sailfish'}, {'id': 5141, 'synset': 'billfish.n.02', 'name': 'billfish'}, {'id': 5142, 'synset': 'marlin.n.01', 'name': 'marlin'}, {'id': 5143, 'synset': 'blue_marlin.n.01', 'name': 'blue_marlin'}, {'id': 5144, 'synset': 'black_marlin.n.01', 'name': 'black_marlin'}, {'id': 5145, 'synset': 'striped_marlin.n.01', 'name': 'striped_marlin'}, {'id': 5146, 'synset': 'white_marlin.n.01', 'name': 'white_marlin'}, {'id': 5147, 'synset': 'spearfish.n.01', 'name': 'spearfish'}, {'id': 5148, 'synset': 'louvar.n.01', 'name': 'louvar'}, {'id': 5149, 'synset': 'dollarfish.n.01', 'name': 'dollarfish'}, {'id': 5150, 'synset': 'palometa.n.01', 'name': 'palometa'}, {'id': 5151, 'synset': 'harvestfish.n.01', 'name': 'harvestfish'}, {'id': 5152, 'synset': 'driftfish.n.01', 'name': 'driftfish'}, {'id': 5153, 'synset': 'barrelfish.n.01', 'name': 'barrelfish'}, {'id': 5154, 'synset': 'clingfish.n.01', 'name': 'clingfish'}, {'id': 5155, 'synset': 'tripletail.n.01', 'name': 'tripletail'}, {'id': 5156, 'synset': 'atlantic_tripletail.n.01', 'name': 'Atlantic_tripletail'}, {'id': 5157, 'synset': 'pacific_tripletail.n.01', 'name': 'Pacific_tripletail'}, {'id': 5158, 'synset': 'mojarra.n.01', 'name': 'mojarra'}, {'id': 5159, 'synset': 'yellowfin_mojarra.n.01', 'name': 'yellowfin_mojarra'}, {'id': 5160, 'synset': 'silver_jenny.n.01', 'name': 'silver_jenny'}, {'id': 5161, 'synset': 'whiting.n.03', 'name': 'whiting'}, {'id': 5162, 'synset': 'ganoid.n.01', 'name': 'ganoid'}, {'id': 5163, 'synset': 'bowfin.n.01', 'name': 'bowfin'}, {'id': 5164, 'synset': 'paddlefish.n.01', 'name': 'paddlefish'}, {'id': 5165, 'synset': 'chinese_paddlefish.n.01', 'name': 'Chinese_paddlefish'}, {'id': 5166, 'synset': 'sturgeon.n.01', 'name': 'sturgeon'}, {'id': 5167, 'synset': 'pacific_sturgeon.n.01', 'name': 'Pacific_sturgeon'}, {'id': 5168, 'synset': 'beluga.n.01', 'name': 'beluga'}, {'id': 5169, 'synset': 'gar.n.01', 'name': 'gar'}, {'id': 5170, 'synset': 'scorpaenoid.n.01', 'name': 'scorpaenoid'}, {'id': 5171, 'synset': 'scorpaenid.n.01', 'name': 'scorpaenid'}, {'id': 5172, 'synset': 'scorpionfish.n.01', 'name': 'scorpionfish'}, {'id': 5173, 'synset': 'plumed_scorpionfish.n.01', 'name': 'plumed_scorpionfish'}, {'id': 5174, 'synset': 'lionfish.n.01', 'name': 'lionfish'}, {'id': 5175, 'synset': 'stonefish.n.01', 'name': 'stonefish'}, {'id': 5176, 'synset': 'rockfish.n.02', 'name': 'rockfish'}, {'id': 5177, 'synset': 'copper_rockfish.n.01', 'name': 'copper_rockfish'}, {'id': 5178, 'synset': 'vermillion_rockfish.n.01', 'name': 'vermillion_rockfish'}, {'id': 5179, 'synset': 'red_rockfish.n.02', 'name': 'red_rockfish'}, {'id': 5180, 'synset': 'rosefish.n.02', 'name': 'rosefish'}, {'id': 5181, 'synset': 'bullhead.n.01', 'name': 'bullhead'}, {'id': 5182, 'synset': "miller's-thumb.n.01", 'name': "miller's-thumb"}, {'id': 5183, 'synset': 'sea_raven.n.01', 'name': 'sea_raven'}, {'id': 5184, 'synset': 'lumpfish.n.01', 'name': 'lumpfish'}, {'id': 5185, 'synset': 'lumpsucker.n.01', 'name': 'lumpsucker'}, {'id': 5186, 'synset': 'pogge.n.01', 'name': 'pogge'}, {'id': 5187, 'synset': 'greenling.n.01', 'name': 'greenling'}, {'id': 5188, 'synset': 'kelp_greenling.n.01', 'name': 'kelp_greenling'}, {'id': 5189, 'synset': 'painted_greenling.n.01', 'name': 'painted_greenling'}, {'id': 5190, 'synset': 'flathead.n.01', 'name': 'flathead'}, {'id': 5191, 'synset': 'gurnard.n.01', 'name': 'gurnard'}, {'id': 5192, 'synset': 'tub_gurnard.n.01', 'name': 'tub_gurnard'}, {'id': 5193, 'synset': 'sea_robin.n.01', 'name': 'sea_robin'}, {'id': 5194, 'synset': 'northern_sea_robin.n.01', 'name': 'northern_sea_robin'}, {'id': 5195, 'synset': 'flying_gurnard.n.01', 'name': 'flying_gurnard'}, {'id': 5196, 'synset': 'plectognath.n.01', 'name': 'plectognath'}, {'id': 5197, 'synset': 'triggerfish.n.01', 'name': 'triggerfish'}, {'id': 5198, 'synset': 'queen_triggerfish.n.01', 'name': 'queen_triggerfish'}, {'id': 5199, 'synset': 'filefish.n.01', 'name': 'filefish'}, {'id': 5200, 'synset': 'leatherjacket.n.01', 'name': 'leatherjacket'}, {'id': 5201, 'synset': 'boxfish.n.01', 'name': 'boxfish'}, {'id': 5202, 'synset': 'cowfish.n.01', 'name': 'cowfish'}, {'id': 5203, 'synset': 'spiny_puffer.n.01', 'name': 'spiny_puffer'}, {'id': 5204, 'synset': 'porcupinefish.n.01', 'name': 'porcupinefish'}, {'id': 5205, 'synset': 'balloonfish.n.01', 'name': 'balloonfish'}, {'id': 5206, 'synset': 'burrfish.n.01', 'name': 'burrfish'}, {'id': 5207, 'synset': 'ocean_sunfish.n.01', 'name': 'ocean_sunfish'}, {'id': 5208, 'synset': 'sharptail_mola.n.01', 'name': 'sharptail_mola'}, {'id': 5209, 'synset': 'flatfish.n.02', 'name': 'flatfish'}, {'id': 5210, 'synset': 'flounder.n.02', 'name': 'flounder'}, {'id': 5211, 'synset': 'righteye_flounder.n.01', 'name': 'righteye_flounder'}, {'id': 5212, 'synset': 'plaice.n.02', 'name': 'plaice'}, {'id': 5213, 'synset': 'european_flatfish.n.01', 'name': 'European_flatfish'}, {'id': 5214, 'synset': 'yellowtail_flounder.n.02', 'name': 'yellowtail_flounder'}, {'id': 5215, 'synset': 'winter_flounder.n.02', 'name': 'winter_flounder'}, {'id': 5216, 'synset': 'lemon_sole.n.05', 'name': 'lemon_sole'}, {'id': 5217, 'synset': 'american_plaice.n.01', 'name': 'American_plaice'}, {'id': 5218, 'synset': 'halibut.n.02', 'name': 'halibut'}, {'id': 5219, 'synset': 'atlantic_halibut.n.01', 'name': 'Atlantic_halibut'}, {'id': 5220, 'synset': 'pacific_halibut.n.01', 'name': 'Pacific_halibut'}, {'id': 5221, 'synset': 'lefteye_flounder.n.01', 'name': 'lefteye_flounder'}, {'id': 5222, 'synset': 'southern_flounder.n.01', 'name': 'southern_flounder'}, {'id': 5223, 'synset': 'summer_flounder.n.01', 'name': 'summer_flounder'}, {'id': 5224, 'synset': 'whiff.n.02', 'name': 'whiff'}, {'id': 5225, 'synset': 'horned_whiff.n.01', 'name': 'horned_whiff'}, {'id': 5226, 'synset': 'sand_dab.n.02', 'name': 'sand_dab'}, {'id': 5227, 'synset': 'windowpane.n.02', 'name': 'windowpane'}, {'id': 5228, 'synset': 'brill.n.01', 'name': 'brill'}, {'id': 5229, 'synset': 'turbot.n.02', 'name': 'turbot'}, {'id': 5230, 'synset': 'tonguefish.n.01', 'name': 'tonguefish'}, {'id': 5231, 'synset': 'sole.n.04', 'name': 'sole'}, {'id': 5232, 'synset': 'european_sole.n.01', 'name': 'European_sole'}, {'id': 5233, 'synset': 'english_sole.n.02', 'name': 'English_sole'}, {'id': 5234, 'synset': 'hogchoker.n.01', 'name': 'hogchoker'}, {'id': 5235, 'synset': 'aba.n.02', 'name': 'aba'}, {'id': 5236, 'synset': 'abacus.n.02', 'name': 'abacus'}, {'id': 5237, 'synset': 'abandoned_ship.n.01', 'name': 'abandoned_ship'}, {'id': 5238, 'synset': 'a_battery.n.01', 'name': 'A_battery'}, {'id': 5239, 'synset': 'abattoir.n.01', 'name': 'abattoir'}, {'id': 5240, 'synset': 'abaya.n.01', 'name': 'abaya'}, {'id': 5241, 'synset': 'abbe_condenser.n.01', 'name': 'Abbe_condenser'}, {'id': 5242, 'synset': 'abbey.n.03', 'name': 'abbey'}, {'id': 5243, 'synset': 'abbey.n.02', 'name': 'abbey'}, {'id': 5244, 'synset': 'abbey.n.01', 'name': 'abbey'}, {'id': 5245, 'synset': 'abney_level.n.01', 'name': 'Abney_level'}, {'id': 5246, 'synset': 'abrader.n.01', 'name': 'abrader'}, {'id': 5247, 'synset': 'abrading_stone.n.01', 'name': 'abrading_stone'}, {'id': 5248, 'synset': 'abutment.n.02', 'name': 'abutment'}, {'id': 5249, 'synset': 'abutment_arch.n.01', 'name': 'abutment_arch'}, {'id': 5250, 'synset': 'academic_costume.n.01', 'name': 'academic_costume'}, {'id': 5251, 'synset': 'academic_gown.n.01', 'name': 'academic_gown'}, {'id': 5252, 'synset': 'accelerator.n.02', 'name': 'accelerator'}, {'id': 5253, 'synset': 'accelerator.n.04', 'name': 'accelerator'}, {'id': 5254, 'synset': 'accelerator.n.01', 'name': 'accelerator'}, {'id': 5255, 'synset': 'accelerometer.n.01', 'name': 'accelerometer'}, {'id': 5256, 'synset': 'accessory.n.01', 'name': 'accessory'}, {'id': 5257, 'synset': 'accommodating_lens_implant.n.01', 'name': 'accommodating_lens_implant'}, {'id': 5258, 'synset': 'accommodation.n.04', 'name': 'accommodation'}, {'id': 5259, 'synset': 'accordion.n.01', 'name': 'accordion'}, {'id': 5260, 'synset': 'acetate_disk.n.01', 'name': 'acetate_disk'}, {'id': 5261, 'synset': 'acetate_rayon.n.01', 'name': 'acetate_rayon'}, {'id': 5262, 'synset': 'achromatic_lens.n.01', 'name': 'achromatic_lens'}, {'id': 5263, 'synset': 'acoustic_delay_line.n.01', 'name': 'acoustic_delay_line'}, {'id': 5264, 'synset': 'acoustic_device.n.01', 'name': 'acoustic_device'}, {'id': 5265, 'synset': 'acoustic_guitar.n.01', 'name': 'acoustic_guitar'}, {'id': 5266, 'synset': 'acoustic_modem.n.01', 'name': 'acoustic_modem'}, {'id': 5267, 'synset': 'acropolis.n.01', 'name': 'acropolis'}, {'id': 5268, 'synset': 'acrylic.n.04', 'name': 'acrylic'}, {'id': 5269, 'synset': 'acrylic.n.03', 'name': 'acrylic'}, {'id': 5270, 'synset': 'actinometer.n.01', 'name': 'actinometer'}, {'id': 5271, 'synset': 'action.n.07', 'name': 'action'}, {'id': 5272, 'synset': 'active_matrix_screen.n.01', 'name': 'active_matrix_screen'}, {'id': 5273, 'synset': 'actuator.n.01', 'name': 'actuator'}, {'id': 5274, 'synset': 'adapter.n.02', 'name': 'adapter'}, {'id': 5275, 'synset': 'adder.n.02', 'name': 'adder'}, {'id': 5276, 'synset': 'adding_machine.n.01', 'name': 'adding_machine'}, {'id': 5277, 'synset': 'addressing_machine.n.01', 'name': 'addressing_machine'}, {'id': 5278, 'synset': 'adhesive_bandage.n.01', 'name': 'adhesive_bandage'}, {'id': 5279, 'synset': 'adit.n.01', 'name': 'adit'}, {'id': 5280, 'synset': 'adjoining_room.n.01', 'name': 'adjoining_room'}, {'id': 5281, 'synset': 'adjustable_wrench.n.01', 'name': 'adjustable_wrench'}, {'id': 5282, 'synset': 'adobe.n.02', 'name': 'adobe'}, {'id': 5283, 'synset': 'adz.n.01', 'name': 'adz'}, {'id': 5284, 'synset': 'aeolian_harp.n.01', 'name': 'aeolian_harp'}, {'id': 5285, 'synset': 'aerator.n.01', 'name': 'aerator'}, {'id': 5286, 'synset': 'aerial_torpedo.n.01', 'name': 'aerial_torpedo'}, {'id': 5287, 'synset': 'aertex.n.01', 'name': 'Aertex'}, {'id': 5288, 'synset': 'afghan.n.01', 'name': 'afghan'}, {'id': 5289, 'synset': 'afro-wig.n.01', 'name': 'Afro-wig'}, {'id': 5290, 'synset': 'afterburner.n.01', 'name': 'afterburner'}, {'id': 5291, 'synset': 'after-shave.n.01', 'name': 'after-shave'}, {'id': 5292, 'synset': 'agateware.n.01', 'name': 'agateware'}, {'id': 5293, 'synset': 'agglomerator.n.01', 'name': 'agglomerator'}, {'id': 5294, 'synset': 'aglet.n.02', 'name': 'aglet'}, {'id': 5295, 'synset': 'aglet.n.01', 'name': 'aglet'}, {'id': 5296, 'synset': 'agora.n.03', 'name': 'agora'}, {'id': 5297, 'synset': 'aigrette.n.01', 'name': 'aigrette'}, {'id': 5298, 'synset': 'aileron.n.01', 'name': 'aileron'}, {'id': 5299, 'synset': 'air_bag.n.01', 'name': 'air_bag'}, {'id': 5300, 'synset': 'airbrake.n.02', 'name': 'airbrake'}, {'id': 5301, 'synset': 'airbrush.n.01', 'name': 'airbrush'}, {'id': 5302, 'synset': 'airbus.n.01', 'name': 'airbus'}, {'id': 5303, 'synset': 'air_compressor.n.01', 'name': 'air_compressor'}, {'id': 5304, 'synset': 'aircraft.n.01', 'name': 'aircraft'}, {'id': 5305, 'synset': 'aircraft_carrier.n.01', 'name': 'aircraft_carrier'}, {'id': 5306, 'synset': 'aircraft_engine.n.01', 'name': 'aircraft_engine'}, {'id': 5307, 'synset': 'air_cushion.n.02', 'name': 'air_cushion'}, {'id': 5308, 'synset': 'airdock.n.01', 'name': 'airdock'}, {'id': 5309, 'synset': 'airfield.n.01', 'name': 'airfield'}, {'id': 5310, 'synset': 'air_filter.n.01', 'name': 'air_filter'}, {'id': 5311, 'synset': 'airfoil.n.01', 'name': 'airfoil'}, {'id': 5312, 'synset': 'airframe.n.01', 'name': 'airframe'}, {'id': 5313, 'synset': 'air_gun.n.01', 'name': 'air_gun'}, {'id': 5314, 'synset': 'air_hammer.n.01', 'name': 'air_hammer'}, {'id': 5315, 'synset': 'air_horn.n.01', 'name': 'air_horn'}, {'id': 5316, 'synset': 'airing_cupboard.n.01', 'name': 'airing_cupboard'}, {'id': 5317, 'synset': 'airliner.n.01', 'name': 'airliner'}, {'id': 5318, 'synset': 'airmailer.n.01', 'name': 'airmailer'}, {'id': 5319, 'synset': 'airplane_propeller.n.01', 'name': 'airplane_propeller'}, {'id': 5320, 'synset': 'airport.n.01', 'name': 'airport'}, {'id': 5321, 'synset': 'air_pump.n.01', 'name': 'air_pump'}, {'id': 5322, 'synset': 'air_search_radar.n.01', 'name': 'air_search_radar'}, {'id': 5323, 'synset': 'airship.n.01', 'name': 'airship'}, {'id': 5324, 'synset': 'air_terminal.n.01', 'name': 'air_terminal'}, {'id': 5325, 'synset': 'air-to-air_missile.n.01', 'name': 'air-to-air_missile'}, {'id': 5326, 'synset': 'air-to-ground_missile.n.01', 'name': 'air-to-ground_missile'}, {'id': 5327, 'synset': 'aisle.n.03', 'name': 'aisle'}, {'id': 5328, 'synset': "aladdin's_lamp.n.01", 'name': "Aladdin's_lamp"}, {'id': 5329, 'synset': 'alarm.n.02', 'name': 'alarm'}, {'id': 5330, 'synset': 'alb.n.01', 'name': 'alb'}, {'id': 5331, 'synset': 'alcazar.n.01', 'name': 'alcazar'}, {'id': 5332, 'synset': 'alcohol_thermometer.n.01', 'name': 'alcohol_thermometer'}, {'id': 5333, 'synset': 'alehouse.n.01', 'name': 'alehouse'}, {'id': 5334, 'synset': 'alembic.n.01', 'name': 'alembic'}, {'id': 5335, 'synset': 'algometer.n.01', 'name': 'algometer'}, {'id': 5336, 'synset': 'alidade.n.02', 'name': 'alidade'}, {'id': 5337, 'synset': 'alidade.n.01', 'name': 'alidade'}, {'id': 5338, 'synset': 'a-line.n.01', 'name': 'A-line'}, {'id': 5339, 'synset': 'allen_screw.n.01', 'name': 'Allen_screw'}, {'id': 5340, 'synset': 'allen_wrench.n.01', 'name': 'Allen_wrench'}, {'id': 5341, 'synset': 'alligator_wrench.n.01', 'name': 'alligator_wrench'}, {'id': 5342, 'synset': 'alms_dish.n.01', 'name': 'alms_dish'}, {'id': 5343, 'synset': 'alpaca.n.02', 'name': 'alpaca'}, {'id': 5344, 'synset': 'alpenstock.n.01', 'name': 'alpenstock'}, {'id': 5345, 'synset': 'altar.n.02', 'name': 'altar'}, {'id': 5346, 'synset': 'altar.n.01', 'name': 'altar'}, {'id': 5347, 'synset': 'altarpiece.n.01', 'name': 'altarpiece'}, {'id': 5348, 'synset': 'altazimuth.n.01', 'name': 'altazimuth'}, {'id': 5349, 'synset': 'alternator.n.01', 'name': 'alternator'}, {'id': 5350, 'synset': 'altimeter.n.01', 'name': 'altimeter'}, {'id': 5351, 'synset': 'amati.n.02', 'name': 'Amati'}, {'id': 5352, 'synset': 'amen_corner.n.01', 'name': 'amen_corner'}, {'id': 5353, 'synset': 'american_organ.n.01', 'name': 'American_organ'}, {'id': 5354, 'synset': 'ammeter.n.01', 'name': 'ammeter'}, {'id': 5355, 'synset': 'ammonia_clock.n.01', 'name': 'ammonia_clock'}, {'id': 5356, 'synset': 'ammunition.n.01', 'name': 'ammunition'}, {'id': 5357, 'synset': 'amphibian.n.02', 'name': 'amphibian'}, {'id': 5358, 'synset': 'amphibian.n.01', 'name': 'amphibian'}, {'id': 5359, 'synset': 'amphitheater.n.02', 'name': 'amphitheater'}, {'id': 5360, 'synset': 'amphitheater.n.01', 'name': 'amphitheater'}, {'id': 5361, 'synset': 'amphora.n.01', 'name': 'amphora'}, {'id': 5362, 'synset': 'ampulla.n.02', 'name': 'ampulla'}, {'id': 5363, 'synset': 'amusement_arcade.n.01', 'name': 'amusement_arcade'}, {'id': 5364, 'synset': 'analog_clock.n.01', 'name': 'analog_clock'}, {'id': 5365, 'synset': 'analog_computer.n.01', 'name': 'analog_computer'}, {'id': 5366, 'synset': 'analog_watch.n.01', 'name': 'analog_watch'}, {'id': 5367, 'synset': 'analytical_balance.n.01', 'name': 'analytical_balance'}, {'id': 5368, 'synset': 'analyzer.n.01', 'name': 'analyzer'}, {'id': 5369, 'synset': 'anamorphosis.n.02', 'name': 'anamorphosis'}, {'id': 5370, 'synset': 'anastigmat.n.01', 'name': 'anastigmat'}, {'id': 5371, 'synset': 'anchor.n.01', 'name': 'anchor'}, {'id': 5372, 'synset': 'anchor_chain.n.01', 'name': 'anchor_chain'}, {'id': 5373, 'synset': 'anchor_light.n.01', 'name': 'anchor_light'}, {'id': 5374, 'synset': 'and_circuit.n.01', 'name': 'AND_circuit'}, {'id': 5375, 'synset': 'andiron.n.01', 'name': 'andiron'}, {'id': 5376, 'synset': 'android.n.01', 'name': 'android'}, {'id': 5377, 'synset': 'anechoic_chamber.n.01', 'name': 'anechoic_chamber'}, {'id': 5378, 'synset': 'anemometer.n.01', 'name': 'anemometer'}, {'id': 5379, 'synset': 'aneroid_barometer.n.01', 'name': 'aneroid_barometer'}, {'id': 5380, 'synset': 'angiocardiogram.n.01', 'name': 'angiocardiogram'}, {'id': 5381, 'synset': 'angioscope.n.01', 'name': 'angioscope'}, {'id': 5382, 'synset': 'angle_bracket.n.02', 'name': 'angle_bracket'}, {'id': 5383, 'synset': 'angledozer.n.01', 'name': 'angledozer'}, {'id': 5384, 'synset': 'ankle_brace.n.01', 'name': 'ankle_brace'}, {'id': 5385, 'synset': 'anklet.n.02', 'name': 'anklet'}, {'id': 5386, 'synset': 'anklet.n.01', 'name': 'anklet'}, {'id': 5387, 'synset': 'ankus.n.01', 'name': 'ankus'}, {'id': 5388, 'synset': 'anode.n.01', 'name': 'anode'}, {'id': 5389, 'synset': 'anode.n.02', 'name': 'anode'}, {'id': 5390, 'synset': 'answering_machine.n.01', 'name': 'answering_machine'}, {'id': 5391, 'synset': 'anteroom.n.01', 'name': 'anteroom'}, {'id': 5392, 'synset': 'antiaircraft.n.01', 'name': 'antiaircraft'}, {'id': 5393, 'synset': 'antiballistic_missile.n.01', 'name': 'antiballistic_missile'}, {'id': 5394, 'synset': 'antifouling_paint.n.01', 'name': 'antifouling_paint'}, {'id': 5395, 'synset': 'anti-g_suit.n.01', 'name': 'anti-G_suit'}, {'id': 5396, 'synset': 'antimacassar.n.01', 'name': 'antimacassar'}, {'id': 5397, 'synset': 'antiperspirant.n.01', 'name': 'antiperspirant'}, {'id': 5398, 'synset': 'anti-submarine_rocket.n.01', 'name': 'anti-submarine_rocket'}, {'id': 5399, 'synset': 'anvil.n.01', 'name': 'anvil'}, {'id': 5400, 'synset': 'ao_dai.n.01', 'name': 'ao_dai'}, {'id': 5401, 'synset': 'apadana.n.01', 'name': 'apadana'}, {'id': 5402, 'synset': 'apartment.n.01', 'name': 'apartment'}, {'id': 5403, 'synset': 'apartment_building.n.01', 'name': 'apartment_building'}, {'id': 5404, 'synset': 'aperture.n.03', 'name': 'aperture'}, {'id': 5405, 'synset': 'aperture.n.01', 'name': 'aperture'}, {'id': 5406, 'synset': 'apiary.n.01', 'name': 'apiary'}, {'id': 5407, 'synset': 'apparatus.n.01', 'name': 'apparatus'}, {'id': 5408, 'synset': 'apparel.n.01', 'name': 'apparel'}, {'id': 5409, 'synset': 'applecart.n.02', 'name': 'applecart'}, {'id': 5410, 'synset': 'appliance.n.02', 'name': 'appliance'}, {'id': 5411, 'synset': 'appliance.n.01', 'name': 'appliance'}, {'id': 5412, 'synset': 'applicator.n.01', 'name': 'applicator'}, {'id': 5413, 'synset': 'appointment.n.03', 'name': 'appointment'}, {'id': 5414, 'synset': 'apron_string.n.01', 'name': 'apron_string'}, {'id': 5415, 'synset': 'apse.n.01', 'name': 'apse'}, {'id': 5416, 'synset': 'aqualung.n.01', 'name': 'aqualung'}, {'id': 5417, 'synset': 'aquaplane.n.01', 'name': 'aquaplane'}, {'id': 5418, 'synset': 'arabesque.n.02', 'name': 'arabesque'}, {'id': 5419, 'synset': 'arbor.n.03', 'name': 'arbor'}, {'id': 5420, 'synset': 'arcade.n.02', 'name': 'arcade'}, {'id': 5421, 'synset': 'arch.n.04', 'name': 'arch'}, {'id': 5422, 'synset': 'architecture.n.01', 'name': 'architecture'}, {'id': 5423, 'synset': 'architrave.n.02', 'name': 'architrave'}, {'id': 5424, 'synset': 'arch_support.n.01', 'name': 'arch_support'}, {'id': 5425, 'synset': 'arc_lamp.n.01', 'name': 'arc_lamp'}, {'id': 5426, 'synset': 'area.n.05', 'name': 'area'}, {'id': 5427, 'synset': 'areaway.n.01', 'name': 'areaway'}, {'id': 5428, 'synset': 'argyle.n.03', 'name': 'argyle'}, {'id': 5429, 'synset': 'ark.n.02', 'name': 'ark'}, {'id': 5430, 'synset': 'arm.n.04', 'name': 'arm'}, {'id': 5431, 'synset': 'armament.n.01', 'name': 'armament'}, {'id': 5432, 'synset': 'armature.n.01', 'name': 'armature'}, {'id': 5433, 'synset': 'armet.n.01', 'name': 'armet'}, {'id': 5434, 'synset': 'arm_guard.n.01', 'name': 'arm_guard'}, {'id': 5435, 'synset': 'armhole.n.01', 'name': 'armhole'}, {'id': 5436, 'synset': 'armilla.n.02', 'name': 'armilla'}, {'id': 5437, 'synset': 'armlet.n.01', 'name': 'armlet'}, {'id': 5438, 'synset': 'armored_car.n.02', 'name': 'armored_car'}, {'id': 5439, 'synset': 'armored_car.n.01', 'name': 'armored_car'}, {'id': 5440, 'synset': 'armored_personnel_carrier.n.01', 'name': 'armored_personnel_carrier'}, {'id': 5441, 'synset': 'armored_vehicle.n.01', 'name': 'armored_vehicle'}, {'id': 5442, 'synset': 'armor_plate.n.01', 'name': 'armor_plate'}, {'id': 5443, 'synset': 'armory.n.04', 'name': 'armory'}, {'id': 5444, 'synset': 'armrest.n.01', 'name': 'armrest'}, {'id': 5445, 'synset': 'arquebus.n.01', 'name': 'arquebus'}, {'id': 5446, 'synset': 'array.n.04', 'name': 'array'}, {'id': 5447, 'synset': 'array.n.03', 'name': 'array'}, {'id': 5448, 'synset': 'arrester.n.01', 'name': 'arrester'}, {'id': 5449, 'synset': 'arrow.n.02', 'name': 'arrow'}, {'id': 5450, 'synset': 'arsenal.n.01', 'name': 'arsenal'}, {'id': 5451, 'synset': 'arterial_road.n.01', 'name': 'arterial_road'}, {'id': 5452, 'synset': 'arthrogram.n.01', 'name': 'arthrogram'}, {'id': 5453, 'synset': 'arthroscope.n.01', 'name': 'arthroscope'}, {'id': 5454, 'synset': 'artificial_heart.n.01', 'name': 'artificial_heart'}, {'id': 5455, 'synset': 'artificial_horizon.n.01', 'name': 'artificial_horizon'}, {'id': 5456, 'synset': 'artificial_joint.n.01', 'name': 'artificial_joint'}, {'id': 5457, 'synset': 'artificial_kidney.n.01', 'name': 'artificial_kidney'}, {'id': 5458, 'synset': 'artificial_skin.n.01', 'name': 'artificial_skin'}, {'id': 5459, 'synset': 'artillery.n.01', 'name': 'artillery'}, {'id': 5460, 'synset': 'artillery_shell.n.01', 'name': 'artillery_shell'}, {'id': 5461, 'synset': "artist's_loft.n.01", 'name': "artist's_loft"}, {'id': 5462, 'synset': 'art_school.n.01', 'name': 'art_school'}, {'id': 5463, 'synset': 'ascot.n.01', 'name': 'ascot'}, {'id': 5464, 'synset': 'ash-pan.n.01', 'name': 'ash-pan'}, {'id': 5465, 'synset': 'aspergill.n.01', 'name': 'aspergill'}, {'id': 5466, 'synset': 'aspersorium.n.01', 'name': 'aspersorium'}, {'id': 5467, 'synset': 'aspirator.n.01', 'name': 'aspirator'}, {'id': 5468, 'synset': 'aspirin_powder.n.01', 'name': 'aspirin_powder'}, {'id': 5469, 'synset': 'assault_gun.n.02', 'name': 'assault_gun'}, {'id': 5470, 'synset': 'assault_rifle.n.01', 'name': 'assault_rifle'}, {'id': 5471, 'synset': 'assegai.n.01', 'name': 'assegai'}, {'id': 5472, 'synset': 'assembly.n.01', 'name': 'assembly'}, {'id': 5473, 'synset': 'assembly.n.05', 'name': 'assembly'}, {'id': 5474, 'synset': 'assembly_hall.n.01', 'name': 'assembly_hall'}, {'id': 5475, 'synset': 'assembly_plant.n.01', 'name': 'assembly_plant'}, {'id': 5476, 'synset': 'astatic_coils.n.01', 'name': 'astatic_coils'}, {'id': 5477, 'synset': 'astatic_galvanometer.n.01', 'name': 'astatic_galvanometer'}, {'id': 5478, 'synset': 'astrodome.n.01', 'name': 'astrodome'}, {'id': 5479, 'synset': 'astrolabe.n.01', 'name': 'astrolabe'}, {'id': 5480, 'synset': 'astronomical_telescope.n.01', 'name': 'astronomical_telescope'}, {'id': 5481, 'synset': 'astronomy_satellite.n.01', 'name': 'astronomy_satellite'}, {'id': 5482, 'synset': 'athenaeum.n.02', 'name': 'athenaeum'}, {'id': 5483, 'synset': 'athletic_sock.n.01', 'name': 'athletic_sock'}, {'id': 5484, 'synset': 'athletic_supporter.n.01', 'name': 'athletic_supporter'}, {'id': 5485, 'synset': 'atlas.n.04', 'name': 'atlas'}, {'id': 5486, 'synset': 'atmometer.n.01', 'name': 'atmometer'}, {'id': 5487, 'synset': 'atom_bomb.n.01', 'name': 'atom_bomb'}, {'id': 5488, 'synset': 'atomic_clock.n.01', 'name': 'atomic_clock'}, {'id': 5489, 'synset': 'atomic_pile.n.01', 'name': 'atomic_pile'}, {'id': 5490, 'synset': 'atrium.n.02', 'name': 'atrium'}, {'id': 5491, 'synset': 'attache_case.n.01', 'name': 'attache_case'}, {'id': 5492, 'synset': 'attachment.n.04', 'name': 'attachment'}, {'id': 5493, 'synset': 'attack_submarine.n.01', 'name': 'attack_submarine'}, {'id': 5494, 'synset': 'attenuator.n.01', 'name': 'attenuator'}, {'id': 5495, 'synset': 'attic.n.04', 'name': 'attic'}, {'id': 5496, 'synset': 'attic_fan.n.01', 'name': 'attic_fan'}, {'id': 5497, 'synset': 'attire.n.01', 'name': 'attire'}, {'id': 5498, 'synset': 'audio_amplifier.n.01', 'name': 'audio_amplifier'}, {'id': 5499, 'synset': 'audiocassette.n.01', 'name': 'audiocassette'}, {'id': 5500, 'synset': 'audio_cd.n.01', 'name': 'audio_CD'}, {'id': 5501, 'synset': 'audiometer.n.01', 'name': 'audiometer'}, {'id': 5502, 'synset': 'audio_system.n.01', 'name': 'audio_system'}, {'id': 5503, 'synset': 'audiotape.n.02', 'name': 'audiotape'}, {'id': 5504, 'synset': 'audiotape.n.01', 'name': 'audiotape'}, {'id': 5505, 'synset': 'audiovisual.n.01', 'name': 'audiovisual'}, {'id': 5506, 'synset': 'auditorium.n.01', 'name': 'auditorium'}, {'id': 5507, 'synset': 'auger.n.02', 'name': 'auger'}, {'id': 5508, 'synset': 'autobahn.n.01', 'name': 'autobahn'}, {'id': 5509, 'synset': 'autoclave.n.01', 'name': 'autoclave'}, {'id': 5510, 'synset': 'autofocus.n.01', 'name': 'autofocus'}, {'id': 5511, 'synset': 'autogiro.n.01', 'name': 'autogiro'}, {'id': 5512, 'synset': 'autoinjector.n.01', 'name': 'autoinjector'}, {'id': 5513, 'synset': 'autoloader.n.01', 'name': 'autoloader'}, {'id': 5514, 'synset': 'automat.n.02', 'name': 'automat'}, {'id': 5515, 'synset': 'automat.n.01', 'name': 'automat'}, {'id': 5516, 'synset': 'automatic_choke.n.01', 'name': 'automatic_choke'}, {'id': 5517, 'synset': 'automatic_firearm.n.01', 'name': 'automatic_firearm'}, {'id': 5518, 'synset': 'automatic_pistol.n.01', 'name': 'automatic_pistol'}, {'id': 5519, 'synset': 'automatic_rifle.n.01', 'name': 'automatic_rifle'}, {'id': 5520, 'synset': 'automatic_transmission.n.01', 'name': 'automatic_transmission'}, {'id': 5521, 'synset': 'automation.n.03', 'name': 'automation'}, {'id': 5522, 'synset': 'automaton.n.02', 'name': 'automaton'}, {'id': 5523, 'synset': 'automobile_engine.n.01', 'name': 'automobile_engine'}, {'id': 5524, 'synset': 'automobile_factory.n.01', 'name': 'automobile_factory'}, {'id': 5525, 'synset': 'automobile_horn.n.01', 'name': 'automobile_horn'}, {'id': 5526, 'synset': 'autopilot.n.02', 'name': 'autopilot'}, {'id': 5527, 'synset': 'autoradiograph.n.01', 'name': 'autoradiograph'}, {'id': 5528, 'synset': 'autostrada.n.01', 'name': 'autostrada'}, {'id': 5529, 'synset': 'auxiliary_boiler.n.01', 'name': 'auxiliary_boiler'}, {'id': 5530, 'synset': 'auxiliary_engine.n.01', 'name': 'auxiliary_engine'}, {'id': 5531, 'synset': 'auxiliary_pump.n.01', 'name': 'auxiliary_pump'}, {'id': 5532, 'synset': 'auxiliary_research_submarine.n.01', 'name': 'auxiliary_research_submarine'}, {'id': 5533, 'synset': 'auxiliary_storage.n.01', 'name': 'auxiliary_storage'}, {'id': 5534, 'synset': 'aviary.n.01', 'name': 'aviary'}, {'id': 5535, 'synset': 'awl.n.01', 'name': 'awl'}, {'id': 5536, 'synset': 'ax_handle.n.01', 'name': 'ax_handle'}, {'id': 5537, 'synset': 'ax_head.n.01', 'name': 'ax_head'}, {'id': 5538, 'synset': 'axis.n.06', 'name': 'axis'}, {'id': 5539, 'synset': 'axle.n.01', 'name': 'axle'}, {'id': 5540, 'synset': 'axle_bar.n.01', 'name': 'axle_bar'}, {'id': 5541, 'synset': 'axletree.n.01', 'name': 'axletree'}, {'id': 5542, 'synset': 'babushka.n.01', 'name': 'babushka'}, {'id': 5543, 'synset': 'baby_bed.n.01', 'name': 'baby_bed'}, {'id': 5544, 'synset': 'baby_grand.n.01', 'name': 'baby_grand'}, {'id': 5545, 'synset': 'baby_powder.n.01', 'name': 'baby_powder'}, {'id': 5546, 'synset': 'baby_shoe.n.01', 'name': 'baby_shoe'}, {'id': 5547, 'synset': 'back.n.08', 'name': 'back'}, {'id': 5548, 'synset': 'back.n.07', 'name': 'back'}, {'id': 5549, 'synset': 'backbench.n.01', 'name': 'backbench'}, {'id': 5550, 'synset': 'backboard.n.02', 'name': 'backboard'}, {'id': 5551, 'synset': 'backbone.n.05', 'name': 'backbone'}, {'id': 5552, 'synset': 'back_brace.n.01', 'name': 'back_brace'}, {'id': 5553, 'synset': 'backgammon_board.n.01', 'name': 'backgammon_board'}, {'id': 5554, 'synset': 'background.n.07', 'name': 'background'}, {'id': 5555, 'synset': 'backhoe.n.01', 'name': 'backhoe'}, {'id': 5556, 'synset': 'backlighting.n.01', 'name': 'backlighting'}, {'id': 5557, 'synset': 'backpacking_tent.n.01', 'name': 'backpacking_tent'}, {'id': 5558, 'synset': 'backplate.n.01', 'name': 'backplate'}, {'id': 5559, 'synset': 'back_porch.n.01', 'name': 'back_porch'}, {'id': 5560, 'synset': 'backsaw.n.01', 'name': 'backsaw'}, {'id': 5561, 'synset': 'backscratcher.n.02', 'name': 'backscratcher'}, {'id': 5562, 'synset': 'backseat.n.02', 'name': 'backseat'}, {'id': 5563, 'synset': 'backspace_key.n.01', 'name': 'backspace_key'}, {'id': 5564, 'synset': 'backstairs.n.01', 'name': 'backstairs'}, {'id': 5565, 'synset': 'backstay.n.01', 'name': 'backstay'}, {'id': 5566, 'synset': 'backstop.n.02', 'name': 'backstop'}, {'id': 5567, 'synset': 'backsword.n.02', 'name': 'backsword'}, {'id': 5568, 'synset': 'backup_system.n.01', 'name': 'backup_system'}, {'id': 5569, 'synset': 'badminton_court.n.01', 'name': 'badminton_court'}, {'id': 5570, 'synset': 'badminton_equipment.n.01', 'name': 'badminton_equipment'}, {'id': 5571, 'synset': 'badminton_racket.n.01', 'name': 'badminton_racket'}, {'id': 5572, 'synset': 'bag.n.01', 'name': 'bag'}, {'id': 5573, 'synset': 'baggage.n.01', 'name': 'baggage'}, {'id': 5574, 'synset': 'baggage.n.03', 'name': 'baggage'}, {'id': 5575, 'synset': 'baggage_car.n.01', 'name': 'baggage_car'}, {'id': 5576, 'synset': 'baggage_claim.n.01', 'name': 'baggage_claim'}, {'id': 5577, 'synset': 'bailey.n.04', 'name': 'bailey'}, {'id': 5578, 'synset': 'bailey.n.03', 'name': 'bailey'}, {'id': 5579, 'synset': 'bailey_bridge.n.01', 'name': 'Bailey_bridge'}, {'id': 5580, 'synset': 'bain-marie.n.01', 'name': 'bain-marie'}, {'id': 5581, 'synset': 'baize.n.01', 'name': 'baize'}, {'id': 5582, 'synset': 'bakery.n.01', 'name': 'bakery'}, {'id': 5583, 'synset': 'balaclava.n.01', 'name': 'balaclava'}, {'id': 5584, 'synset': 'balalaika.n.01', 'name': 'balalaika'}, {'id': 5585, 'synset': 'balance.n.12', 'name': 'balance'}, {'id': 5586, 'synset': 'balance_beam.n.01', 'name': 'balance_beam'}, {'id': 5587, 'synset': 'balance_wheel.n.01', 'name': 'balance_wheel'}, {'id': 5588, 'synset': 'balbriggan.n.01', 'name': 'balbriggan'}, {'id': 5589, 'synset': 'balcony.n.02', 'name': 'balcony'}, {'id': 5590, 'synset': 'balcony.n.01', 'name': 'balcony'}, {'id': 5591, 'synset': 'baldachin.n.01', 'name': 'baldachin'}, {'id': 5592, 'synset': 'baldric.n.01', 'name': 'baldric'}, {'id': 5593, 'synset': 'bale.n.01', 'name': 'bale'}, {'id': 5594, 'synset': 'baling_wire.n.01', 'name': 'baling_wire'}, {'id': 5595, 'synset': 'ball.n.01', 'name': 'ball'}, {'id': 5596, 'synset': 'ball_and_chain.n.01', 'name': 'ball_and_chain'}, {'id': 5597, 'synset': 'ball-and-socket_joint.n.02', 'name': 'ball-and-socket_joint'}, {'id': 5598, 'synset': 'ballast.n.05', 'name': 'ballast'}, {'id': 5599, 'synset': 'ball_bearing.n.01', 'name': 'ball_bearing'}, {'id': 5600, 'synset': 'ball_cartridge.n.01', 'name': 'ball_cartridge'}, {'id': 5601, 'synset': 'ballcock.n.01', 'name': 'ballcock'}, {'id': 5602, 'synset': 'balldress.n.01', 'name': 'balldress'}, {'id': 5603, 'synset': 'ball_gown.n.01', 'name': 'ball_gown'}, {'id': 5604, 'synset': 'ballistic_galvanometer.n.01', 'name': 'ballistic_galvanometer'}, {'id': 5605, 'synset': 'ballistic_missile.n.01', 'name': 'ballistic_missile'}, {'id': 5606, 'synset': 'ballistic_pendulum.n.01', 'name': 'ballistic_pendulum'}, {'id': 5607, 'synset': 'ballistocardiograph.n.01', 'name': 'ballistocardiograph'}, {'id': 5608, 'synset': 'balloon_bomb.n.01', 'name': 'balloon_bomb'}, {'id': 5609, 'synset': 'balloon_sail.n.01', 'name': 'balloon_sail'}, {'id': 5610, 'synset': 'ballot_box.n.01', 'name': 'ballot_box'}, {'id': 5611, 'synset': 'ballpark.n.01', 'name': 'ballpark'}, {'id': 5612, 'synset': 'ball-peen_hammer.n.01', 'name': 'ball-peen_hammer'}, {'id': 5613, 'synset': 'ballpoint.n.01', 'name': 'ballpoint'}, {'id': 5614, 'synset': 'ballroom.n.01', 'name': 'ballroom'}, {'id': 5615, 'synset': 'ball_valve.n.01', 'name': 'ball_valve'}, {'id': 5616, 'synset': 'balsa_raft.n.01', 'name': 'balsa_raft'}, {'id': 5617, 'synset': 'baluster.n.01', 'name': 'baluster'}, {'id': 5618, 'synset': 'banana_boat.n.01', 'name': 'banana_boat'}, {'id': 5619, 'synset': 'band.n.13', 'name': 'band'}, {'id': 5620, 'synset': 'bandbox.n.01', 'name': 'bandbox'}, {'id': 5621, 'synset': 'banderilla.n.01', 'name': 'banderilla'}, {'id': 5622, 'synset': 'bandoleer.n.01', 'name': 'bandoleer'}, {'id': 5623, 'synset': 'bandoneon.n.01', 'name': 'bandoneon'}, {'id': 5624, 'synset': 'bandsaw.n.01', 'name': 'bandsaw'}, {'id': 5625, 'synset': 'bandwagon.n.02', 'name': 'bandwagon'}, {'id': 5626, 'synset': 'bangalore_torpedo.n.01', 'name': 'bangalore_torpedo'}, {'id': 5627, 'synset': 'bangle.n.02', 'name': 'bangle'}, {'id': 5628, 'synset': 'bannister.n.02', 'name': 'bannister'}, {'id': 5629, 'synset': 'banquette.n.01', 'name': 'banquette'}, {'id': 5630, 'synset': 'banyan.n.02', 'name': 'banyan'}, {'id': 5631, 'synset': 'baptismal_font.n.01', 'name': 'baptismal_font'}, {'id': 5632, 'synset': 'bar.n.03', 'name': 'bar'}, {'id': 5633, 'synset': 'bar.n.02', 'name': 'bar'}, {'id': 5634, 'synset': 'barbecue.n.03', 'name': 'barbecue'}, {'id': 5635, 'synset': 'barbed_wire.n.01', 'name': 'barbed_wire'}, {'id': 5636, 'synset': 'barber_chair.n.01', 'name': 'barber_chair'}, {'id': 5637, 'synset': 'barbershop.n.01', 'name': 'barbershop'}, {'id': 5638, 'synset': 'barbette_carriage.n.01', 'name': 'barbette_carriage'}, {'id': 5639, 'synset': 'barbican.n.01', 'name': 'barbican'}, {'id': 5640, 'synset': 'bar_bit.n.01', 'name': 'bar_bit'}, {'id': 5641, 'synset': 'bareboat.n.01', 'name': 'bareboat'}, {'id': 5642, 'synset': 'barge_pole.n.01', 'name': 'barge_pole'}, {'id': 5643, 'synset': 'baritone.n.03', 'name': 'baritone'}, {'id': 5644, 'synset': 'bark.n.03', 'name': 'bark'}, {'id': 5645, 'synset': 'bar_magnet.n.01', 'name': 'bar_magnet'}, {'id': 5646, 'synset': 'bar_mask.n.01', 'name': 'bar_mask'}, {'id': 5647, 'synset': 'barn.n.01', 'name': 'barn'}, {'id': 5648, 'synset': 'barndoor.n.01', 'name': 'barndoor'}, {'id': 5649, 'synset': 'barn_door.n.01', 'name': 'barn_door'}, {'id': 5650, 'synset': 'barnyard.n.01', 'name': 'barnyard'}, {'id': 5651, 'synset': 'barograph.n.01', 'name': 'barograph'}, {'id': 5652, 'synset': 'barometer.n.01', 'name': 'barometer'}, {'id': 5653, 'synset': 'barong.n.01', 'name': 'barong'}, {'id': 5654, 'synset': 'barouche.n.01', 'name': 'barouche'}, {'id': 5655, 'synset': 'bar_printer.n.01', 'name': 'bar_printer'}, {'id': 5656, 'synset': 'barrack.n.01', 'name': 'barrack'}, {'id': 5657, 'synset': 'barrage_balloon.n.01', 'name': 'barrage_balloon'}, {'id': 5658, 'synset': 'barrel.n.01', 'name': 'barrel'}, {'id': 5659, 'synset': 'barrelhouse.n.01', 'name': 'barrelhouse'}, {'id': 5660, 'synset': 'barrel_knot.n.01', 'name': 'barrel_knot'}, {'id': 5661, 'synset': 'barrel_organ.n.01', 'name': 'barrel_organ'}, {'id': 5662, 'synset': 'barrel_vault.n.01', 'name': 'barrel_vault'}, {'id': 5663, 'synset': 'barricade.n.02', 'name': 'barricade'}, {'id': 5664, 'synset': 'barrier.n.01', 'name': 'barrier'}, {'id': 5665, 'synset': 'barroom.n.01', 'name': 'barroom'}, {'id': 5666, 'synset': 'bascule.n.01', 'name': 'bascule'}, {'id': 5667, 'synset': 'base.n.08', 'name': 'base'}, {'id': 5668, 'synset': 'baseball_equipment.n.01', 'name': 'baseball_equipment'}, {'id': 5669, 'synset': 'basement.n.01', 'name': 'basement'}, {'id': 5670, 'synset': 'basement.n.02', 'name': 'basement'}, {'id': 5671, 'synset': 'basic_point_defense_missile_system.n.01', 'name': 'basic_point_defense_missile_system'}, {'id': 5672, 'synset': 'basilica.n.02', 'name': 'basilica'}, {'id': 5673, 'synset': 'basilica.n.01', 'name': 'basilica'}, {'id': 5674, 'synset': 'basilisk.n.02', 'name': 'basilisk'}, {'id': 5675, 'synset': 'basin.n.01', 'name': 'basin'}, {'id': 5676, 'synset': 'basinet.n.01', 'name': 'basinet'}, {'id': 5677, 'synset': 'basket.n.03', 'name': 'basket'}, {'id': 5678, 'synset': 'basketball_court.n.01', 'name': 'basketball_court'}, {'id': 5679, 'synset': 'basketball_equipment.n.01', 'name': 'basketball_equipment'}, {'id': 5680, 'synset': 'basket_weave.n.01', 'name': 'basket_weave'}, {'id': 5681, 'synset': 'bass.n.07', 'name': 'bass'}, {'id': 5682, 'synset': 'bass_clarinet.n.01', 'name': 'bass_clarinet'}, {'id': 5683, 'synset': 'bass_drum.n.01', 'name': 'bass_drum'}, {'id': 5684, 'synset': 'basset_horn.n.01', 'name': 'basset_horn'}, {'id': 5685, 'synset': 'bass_fiddle.n.01', 'name': 'bass_fiddle'}, {'id': 5686, 'synset': 'bass_guitar.n.01', 'name': 'bass_guitar'}, {'id': 5687, 'synset': 'bassinet.n.01', 'name': 'bassinet'}, {'id': 5688, 'synset': 'bassinet.n.02', 'name': 'bassinet'}, {'id': 5689, 'synset': 'bassoon.n.01', 'name': 'bassoon'}, {'id': 5690, 'synset': 'baster.n.03', 'name': 'baster'}, {'id': 5691, 'synset': 'bastinado.n.01', 'name': 'bastinado'}, {'id': 5692, 'synset': 'bastion.n.03', 'name': 'bastion'}, {'id': 5693, 'synset': 'bastion.n.02', 'name': 'bastion'}, {'id': 5694, 'synset': 'bat.n.05', 'name': 'bat'}, {'id': 5695, 'synset': 'bath.n.01', 'name': 'bath'}, {'id': 5696, 'synset': 'bath_chair.n.01', 'name': 'bath_chair'}, {'id': 5697, 'synset': 'bathhouse.n.02', 'name': 'bathhouse'}, {'id': 5698, 'synset': 'bathhouse.n.01', 'name': 'bathhouse'}, {'id': 5699, 'synset': 'bathing_cap.n.01', 'name': 'bathing_cap'}, {'id': 5700, 'synset': 'bath_oil.n.01', 'name': 'bath_oil'}, {'id': 5701, 'synset': 'bathroom.n.01', 'name': 'bathroom'}, {'id': 5702, 'synset': 'bath_salts.n.01', 'name': 'bath_salts'}, {'id': 5703, 'synset': 'bathyscaphe.n.01', 'name': 'bathyscaphe'}, {'id': 5704, 'synset': 'bathysphere.n.01', 'name': 'bathysphere'}, {'id': 5705, 'synset': 'batik.n.01', 'name': 'batik'}, {'id': 5706, 'synset': 'batiste.n.01', 'name': 'batiste'}, {'id': 5707, 'synset': 'baton.n.01', 'name': 'baton'}, {'id': 5708, 'synset': 'baton.n.05', 'name': 'baton'}, {'id': 5709, 'synset': 'baton.n.04', 'name': 'baton'}, {'id': 5710, 'synset': 'baton.n.03', 'name': 'baton'}, {'id': 5711, 'synset': 'battering_ram.n.01', 'name': 'battering_ram'}, {'id': 5712, 'synset': "batter's_box.n.01", 'name': "batter's_box"}, {'id': 5713, 'synset': 'battery.n.05', 'name': 'battery'}, {'id': 5714, 'synset': 'batting_cage.n.01', 'name': 'batting_cage'}, {'id': 5715, 'synset': 'batting_glove.n.01', 'name': 'batting_glove'}, {'id': 5716, 'synset': 'batting_helmet.n.01', 'name': 'batting_helmet'}, {'id': 5717, 'synset': 'battle-ax.n.01', 'name': 'battle-ax'}, {'id': 5718, 'synset': 'battle_cruiser.n.01', 'name': 'battle_cruiser'}, {'id': 5719, 'synset': 'battle_dress.n.01', 'name': 'battle_dress'}, {'id': 5720, 'synset': 'battlement.n.01', 'name': 'battlement'}, {'id': 5721, 'synset': 'battleship.n.01', 'name': 'battleship'}, {'id': 5722, 'synset': 'battle_sight.n.01', 'name': 'battle_sight'}, {'id': 5723, 'synset': 'bay.n.05', 'name': 'bay'}, {'id': 5724, 'synset': 'bay.n.04', 'name': 'bay'}, {'id': 5725, 'synset': 'bayonet.n.01', 'name': 'bayonet'}, {'id': 5726, 'synset': 'bay_rum.n.01', 'name': 'bay_rum'}, {'id': 5727, 'synset': 'bay_window.n.02', 'name': 'bay_window'}, {'id': 5728, 'synset': 'bazaar.n.01', 'name': 'bazaar'}, {'id': 5729, 'synset': 'bazaar.n.02', 'name': 'bazaar'}, {'id': 5730, 'synset': 'bazooka.n.01', 'name': 'bazooka'}, {'id': 5731, 'synset': 'b_battery.n.01', 'name': 'B_battery'}, {'id': 5732, 'synset': 'bb_gun.n.01', 'name': 'BB_gun'}, {'id': 5733, 'synset': 'beach_house.n.01', 'name': 'beach_house'}, {'id': 5734, 'synset': 'beach_towel.n.01', 'name': 'beach_towel'}, {'id': 5735, 'synset': 'beach_wagon.n.01', 'name': 'beach_wagon'}, {'id': 5736, 'synset': 'beachwear.n.01', 'name': 'beachwear'}, {'id': 5737, 'synset': 'beacon.n.03', 'name': 'beacon'}, {'id': 5738, 'synset': 'beading_plane.n.01', 'name': 'beading_plane'}, {'id': 5739, 'synset': 'beaker.n.02', 'name': 'beaker'}, {'id': 5740, 'synset': 'beaker.n.01', 'name': 'beaker'}, {'id': 5741, 'synset': 'beam.n.02', 'name': 'beam'}, {'id': 5742, 'synset': 'beam_balance.n.01', 'name': 'beam_balance'}, {'id': 5743, 'synset': 'bearing.n.06', 'name': 'bearing'}, {'id': 5744, 'synset': 'bearing_rein.n.01', 'name': 'bearing_rein'}, {'id': 5745, 'synset': 'bearing_wall.n.01', 'name': 'bearing_wall'}, {'id': 5746, 'synset': 'bearskin.n.02', 'name': 'bearskin'}, {'id': 5747, 'synset': 'beater.n.02', 'name': 'beater'}, {'id': 5748, 'synset': 'beating-reed_instrument.n.01', 'name': 'beating-reed_instrument'}, {'id': 5749, 'synset': 'beaver.n.06', 'name': 'beaver'}, {'id': 5750, 'synset': 'beaver.n.05', 'name': 'beaver'}, {'id': 5751, 'synset': 'beckman_thermometer.n.01', 'name': 'Beckman_thermometer'}, {'id': 5752, 'synset': 'bed.n.08', 'name': 'bed'}, {'id': 5753, 'synset': 'bed_and_breakfast.n.01', 'name': 'bed_and_breakfast'}, {'id': 5754, 'synset': 'bedclothes.n.01', 'name': 'bedclothes'}, {'id': 5755, 'synset': 'bedford_cord.n.01', 'name': 'Bedford_cord'}, {'id': 5756, 'synset': 'bed_jacket.n.01', 'name': 'bed_jacket'}, {'id': 5757, 'synset': 'bedpost.n.01', 'name': 'bedpost'}, {'id': 5758, 'synset': 'bedroll.n.01', 'name': 'bedroll'}, {'id': 5759, 'synset': 'bedroom.n.01', 'name': 'bedroom'}, {'id': 5760, 'synset': 'bedroom_furniture.n.01', 'name': 'bedroom_furniture'}, {'id': 5761, 'synset': 'bedsitting_room.n.01', 'name': 'bedsitting_room'}, {'id': 5762, 'synset': 'bedspring.n.01', 'name': 'bedspring'}, {'id': 5763, 'synset': 'bedstead.n.01', 'name': 'bedstead'}, {'id': 5764, 'synset': 'beefcake.n.01', 'name': 'beefcake'}, {'id': 5765, 'synset': 'beehive.n.04', 'name': 'beehive'}, {'id': 5766, 'synset': 'beer_barrel.n.01', 'name': 'beer_barrel'}, {'id': 5767, 'synset': 'beer_garden.n.01', 'name': 'beer_garden'}, {'id': 5768, 'synset': 'beer_glass.n.01', 'name': 'beer_glass'}, {'id': 5769, 'synset': 'beer_hall.n.01', 'name': 'beer_hall'}, {'id': 5770, 'synset': 'beer_mat.n.01', 'name': 'beer_mat'}, {'id': 5771, 'synset': 'beer_mug.n.01', 'name': 'beer_mug'}, {'id': 5772, 'synset': 'belaying_pin.n.01', 'name': 'belaying_pin'}, {'id': 5773, 'synset': 'belfry.n.02', 'name': 'belfry'}, {'id': 5774, 'synset': 'bell_arch.n.01', 'name': 'bell_arch'}, {'id': 5775, 'synset': 'bellarmine.n.02', 'name': 'bellarmine'}, {'id': 5776, 'synset': 'bellbottom_trousers.n.01', 'name': 'bellbottom_trousers'}, {'id': 5777, 'synset': 'bell_cote.n.01', 'name': 'bell_cote'}, {'id': 5778, 'synset': 'bell_foundry.n.01', 'name': 'bell_foundry'}, {'id': 5779, 'synset': 'bell_gable.n.01', 'name': 'bell_gable'}, {'id': 5780, 'synset': 'bell_jar.n.01', 'name': 'bell_jar'}, {'id': 5781, 'synset': 'bellows.n.01', 'name': 'bellows'}, {'id': 5782, 'synset': 'bellpull.n.01', 'name': 'bellpull'}, {'id': 5783, 'synset': 'bell_push.n.01', 'name': 'bell_push'}, {'id': 5784, 'synset': 'bell_seat.n.01', 'name': 'bell_seat'}, {'id': 5785, 'synset': 'bell_tent.n.01', 'name': 'bell_tent'}, {'id': 5786, 'synset': 'bell_tower.n.01', 'name': 'bell_tower'}, {'id': 5787, 'synset': 'bellyband.n.01', 'name': 'bellyband'}, {'id': 5788, 'synset': 'belt.n.06', 'name': 'belt'}, {'id': 5789, 'synset': 'belting.n.01', 'name': 'belting'}, {'id': 5790, 'synset': 'bench_clamp.n.01', 'name': 'bench_clamp'}, {'id': 5791, 'synset': 'bench_hook.n.01', 'name': 'bench_hook'}, {'id': 5792, 'synset': 'bench_lathe.n.01', 'name': 'bench_lathe'}, {'id': 5793, 'synset': 'bench_press.n.02', 'name': 'bench_press'}, {'id': 5794, 'synset': 'bender.n.01', 'name': 'bender'}, {'id': 5795, 'synset': 'berlin.n.03', 'name': 'berlin'}, {'id': 5796, 'synset': 'bermuda_shorts.n.01', 'name': 'Bermuda_shorts'}, {'id': 5797, 'synset': 'berth.n.03', 'name': 'berth'}, {'id': 5798, 'synset': 'besom.n.01', 'name': 'besom'}, {'id': 5799, 'synset': 'bessemer_converter.n.01', 'name': 'Bessemer_converter'}, {'id': 5800, 'synset': 'bethel.n.01', 'name': 'bethel'}, {'id': 5801, 'synset': 'betting_shop.n.01', 'name': 'betting_shop'}, {'id': 5802, 'synset': 'bevatron.n.01', 'name': 'bevatron'}, {'id': 5803, 'synset': 'bevel.n.02', 'name': 'bevel'}, {'id': 5804, 'synset': 'bevel_gear.n.01', 'name': 'bevel_gear'}, {'id': 5805, 'synset': 'b-flat_clarinet.n.01', 'name': 'B-flat_clarinet'}, {'id': 5806, 'synset': 'bib.n.01', 'name': 'bib'}, {'id': 5807, 'synset': 'bib-and-tucker.n.01', 'name': 'bib-and-tucker'}, {'id': 5808, 'synset': 'bicorn.n.01', 'name': 'bicorn'}, {'id': 5809, 'synset': 'bicycle-built-for-two.n.01', 'name': 'bicycle-built-for-two'}, {'id': 5810, 'synset': 'bicycle_chain.n.01', 'name': 'bicycle_chain'}, {'id': 5811, 'synset': 'bicycle_clip.n.01', 'name': 'bicycle_clip'}, {'id': 5812, 'synset': 'bicycle_pump.n.01', 'name': 'bicycle_pump'}, {'id': 5813, 'synset': 'bicycle_rack.n.01', 'name': 'bicycle_rack'}, {'id': 5814, 'synset': 'bicycle_seat.n.01', 'name': 'bicycle_seat'}, {'id': 5815, 'synset': 'bicycle_wheel.n.01', 'name': 'bicycle_wheel'}, {'id': 5816, 'synset': 'bidet.n.01', 'name': 'bidet'}, {'id': 5817, 'synset': 'bier.n.02', 'name': 'bier'}, {'id': 5818, 'synset': 'bier.n.01', 'name': 'bier'}, {'id': 5819, 'synset': 'bi-fold_door.n.01', 'name': 'bi-fold_door'}, {'id': 5820, 'synset': 'bifocals.n.01', 'name': 'bifocals'}, {'id': 5821, 'synset': 'big_blue.n.01', 'name': 'Big_Blue'}, {'id': 5822, 'synset': 'big_board.n.02', 'name': 'big_board'}, {'id': 5823, 'synset': 'bight.n.04', 'name': 'bight'}, {'id': 5824, 'synset': 'bikini.n.02', 'name': 'bikini'}, {'id': 5825, 'synset': 'bikini_pants.n.01', 'name': 'bikini_pants'}, {'id': 5826, 'synset': 'bilge.n.02', 'name': 'bilge'}, {'id': 5827, 'synset': 'bilge_keel.n.01', 'name': 'bilge_keel'}, {'id': 5828, 'synset': 'bilge_pump.n.01', 'name': 'bilge_pump'}, {'id': 5829, 'synset': 'bilge_well.n.01', 'name': 'bilge_well'}, {'id': 5830, 'synset': 'bill.n.08', 'name': 'bill'}, {'id': 5831, 'synset': 'billiard_ball.n.01', 'name': 'billiard_ball'}, {'id': 5832, 'synset': 'billiard_room.n.01', 'name': 'billiard_room'}, {'id': 5833, 'synset': 'bin.n.01', 'name': 'bin'}, {'id': 5834, 'synset': 'binder.n.04', 'name': 'binder'}, {'id': 5835, 'synset': 'bindery.n.01', 'name': 'bindery'}, {'id': 5836, 'synset': 'binding.n.05', 'name': 'binding'}, {'id': 5837, 'synset': 'bin_liner.n.01', 'name': 'bin_liner'}, {'id': 5838, 'synset': 'binnacle.n.01', 'name': 'binnacle'}, {'id': 5839, 'synset': 'binocular_microscope.n.01', 'name': 'binocular_microscope'}, {'id': 5840, 'synset': 'biochip.n.01', 'name': 'biochip'}, {'id': 5841, 'synset': 'biohazard_suit.n.01', 'name': 'biohazard_suit'}, {'id': 5842, 'synset': 'bioscope.n.02', 'name': 'bioscope'}, {'id': 5843, 'synset': 'biplane.n.01', 'name': 'biplane'}, {'id': 5844, 'synset': 'birch.n.03', 'name': 'birch'}, {'id': 5845, 'synset': 'birchbark_canoe.n.01', 'name': 'birchbark_canoe'}, {'id': 5846, 'synset': 'birdcall.n.02', 'name': 'birdcall'}, {'id': 5847, 'synset': 'bird_shot.n.01', 'name': 'bird_shot'}, {'id': 5848, 'synset': 'biretta.n.01', 'name': 'biretta'}, {'id': 5849, 'synset': 'bishop.n.03', 'name': 'bishop'}, {'id': 5850, 'synset': 'bistro.n.01', 'name': 'bistro'}, {'id': 5851, 'synset': 'bit.n.11', 'name': 'bit'}, {'id': 5852, 'synset': 'bit.n.05', 'name': 'bit'}, {'id': 5853, 'synset': 'bite_plate.n.01', 'name': 'bite_plate'}, {'id': 5854, 'synset': 'bitewing.n.01', 'name': 'bitewing'}, {'id': 5855, 'synset': 'bitumastic.n.01', 'name': 'bitumastic'}, {'id': 5856, 'synset': 'black.n.07', 'name': 'black'}, {'id': 5857, 'synset': 'black.n.06', 'name': 'black'}, {'id': 5858, 'synset': 'blackboard_eraser.n.01', 'name': 'blackboard_eraser'}, {'id': 5859, 'synset': 'black_box.n.01', 'name': 'black_box'}, {'id': 5860, 'synset': 'blackface.n.01', 'name': 'blackface'}, {'id': 5861, 'synset': 'blackjack.n.02', 'name': 'blackjack'}, {'id': 5862, 'synset': 'black_tie.n.02', 'name': 'black_tie'}, {'id': 5863, 'synset': 'blackwash.n.03', 'name': 'blackwash'}, {'id': 5864, 'synset': 'bladder.n.02', 'name': 'bladder'}, {'id': 5865, 'synset': 'blade.n.09', 'name': 'blade'}, {'id': 5866, 'synset': 'blade.n.08', 'name': 'blade'}, {'id': 5867, 'synset': 'blade.n.07', 'name': 'blade'}, {'id': 5868, 'synset': 'blank.n.04', 'name': 'blank'}, {'id': 5869, 'synset': 'blast_furnace.n.01', 'name': 'blast_furnace'}, {'id': 5870, 'synset': 'blasting_cap.n.01', 'name': 'blasting_cap'}, {'id': 5871, 'synset': 'blind.n.03', 'name': 'blind'}, {'id': 5872, 'synset': 'blind_curve.n.01', 'name': 'blind_curve'}, {'id': 5873, 'synset': 'blindfold.n.01', 'name': 'blindfold'}, {'id': 5874, 'synset': 'bling.n.01', 'name': 'bling'}, {'id': 5875, 'synset': 'blister_pack.n.01', 'name': 'blister_pack'}, {'id': 5876, 'synset': 'block.n.05', 'name': 'block'}, {'id': 5877, 'synset': 'blockade.n.02', 'name': 'blockade'}, {'id': 5878, 'synset': 'blockade-runner.n.01', 'name': 'blockade-runner'}, {'id': 5879, 'synset': 'block_and_tackle.n.01', 'name': 'block_and_tackle'}, {'id': 5880, 'synset': 'blockbuster.n.01', 'name': 'blockbuster'}, {'id': 5881, 'synset': 'blockhouse.n.01', 'name': 'blockhouse'}, {'id': 5882, 'synset': 'block_plane.n.01', 'name': 'block_plane'}, {'id': 5883, 'synset': 'bloodmobile.n.01', 'name': 'bloodmobile'}, {'id': 5884, 'synset': 'bloomers.n.01', 'name': 'bloomers'}, {'id': 5885, 'synset': 'blower.n.01', 'name': 'blower'}, {'id': 5886, 'synset': 'blowtorch.n.01', 'name': 'blowtorch'}, {'id': 5887, 'synset': 'blucher.n.02', 'name': 'blucher'}, {'id': 5888, 'synset': 'bludgeon.n.01', 'name': 'bludgeon'}, {'id': 5889, 'synset': 'blue.n.02', 'name': 'blue'}, {'id': 5890, 'synset': 'blue_chip.n.02', 'name': 'blue_chip'}, {'id': 5891, 'synset': 'blunderbuss.n.01', 'name': 'blunderbuss'}, {'id': 5892, 'synset': 'blunt_file.n.01', 'name': 'blunt_file'}, {'id': 5893, 'synset': 'boarding.n.02', 'name': 'boarding'}, {'id': 5894, 'synset': 'boarding_house.n.01', 'name': 'boarding_house'}, {'id': 5895, 'synset': 'boardroom.n.01', 'name': 'boardroom'}, {'id': 5896, 'synset': 'boards.n.02', 'name': 'boards'}, {'id': 5897, 'synset': 'boater.n.01', 'name': 'boater'}, {'id': 5898, 'synset': 'boat_hook.n.01', 'name': 'boat_hook'}, {'id': 5899, 'synset': 'boathouse.n.01', 'name': 'boathouse'}, {'id': 5900, 'synset': "boatswain's_chair.n.01", 'name': "boatswain's_chair"}, {'id': 5901, 'synset': 'boat_train.n.01', 'name': 'boat_train'}, {'id': 5902, 'synset': 'boatyard.n.01', 'name': 'boatyard'}, {'id': 5903, 'synset': 'bobsled.n.02', 'name': 'bobsled'}, {'id': 5904, 'synset': 'bobsled.n.01', 'name': 'bobsled'}, {'id': 5905, 'synset': 'bocce_ball.n.01', 'name': 'bocce_ball'}, {'id': 5906, 'synset': 'bodega.n.01', 'name': 'bodega'}, {'id': 5907, 'synset': 'bodice.n.01', 'name': 'bodice'}, {'id': 5908, 'synset': 'bodkin.n.04', 'name': 'bodkin'}, {'id': 5909, 'synset': 'bodkin.n.03', 'name': 'bodkin'}, {'id': 5910, 'synset': 'bodkin.n.02', 'name': 'bodkin'}, {'id': 5911, 'synset': 'body.n.11', 'name': 'body'}, {'id': 5912, 'synset': 'body_armor.n.01', 'name': 'body_armor'}, {'id': 5913, 'synset': 'body_lotion.n.01', 'name': 'body_lotion'}, {'id': 5914, 'synset': 'body_stocking.n.01', 'name': 'body_stocking'}, {'id': 5915, 'synset': 'body_plethysmograph.n.01', 'name': 'body_plethysmograph'}, {'id': 5916, 'synset': 'body_pad.n.01', 'name': 'body_pad'}, {'id': 5917, 'synset': 'bodywork.n.01', 'name': 'bodywork'}, {'id': 5918, 'synset': 'bofors_gun.n.01', 'name': 'Bofors_gun'}, {'id': 5919, 'synset': 'bogy.n.01', 'name': 'bogy'}, {'id': 5920, 'synset': 'boiler.n.01', 'name': 'boiler'}, {'id': 5921, 'synset': 'boiling_water_reactor.n.01', 'name': 'boiling_water_reactor'}, {'id': 5922, 'synset': 'bolero.n.02', 'name': 'bolero'}, {'id': 5923, 'synset': 'bollard.n.01', 'name': 'bollard'}, {'id': 5924, 'synset': 'bolo.n.02', 'name': 'bolo'}, {'id': 5925, 'synset': 'bolt.n.02', 'name': 'bolt'}, {'id': 5926, 'synset': 'bolt_cutter.n.01', 'name': 'bolt_cutter'}, {'id': 5927, 'synset': 'bomb.n.01', 'name': 'bomb'}, {'id': 5928, 'synset': 'bombazine.n.01', 'name': 'bombazine'}, {'id': 5929, 'synset': 'bomb_calorimeter.n.01', 'name': 'bomb_calorimeter'}, {'id': 5930, 'synset': 'bomber.n.01', 'name': 'bomber'}, {'id': 5931, 'synset': 'bomber_jacket.n.01', 'name': 'bomber_jacket'}, {'id': 5932, 'synset': 'bomblet.n.01', 'name': 'bomblet'}, {'id': 5933, 'synset': 'bomb_rack.n.01', 'name': 'bomb_rack'}, {'id': 5934, 'synset': 'bombshell.n.03', 'name': 'bombshell'}, {'id': 5935, 'synset': 'bomb_shelter.n.01', 'name': 'bomb_shelter'}, {'id': 5936, 'synset': 'bone-ash_cup.n.01', 'name': 'bone-ash_cup'}, {'id': 5937, 'synset': 'bone_china.n.01', 'name': 'bone_china'}, {'id': 5938, 'synset': 'bones.n.01', 'name': 'bones'}, {'id': 5939, 'synset': 'boneshaker.n.01', 'name': 'boneshaker'}, {'id': 5940, 'synset': 'bongo.n.01', 'name': 'bongo'}, {'id': 5941, 'synset': 'book.n.11', 'name': 'book'}, {'id': 5942, 'synset': 'book_bag.n.01', 'name': 'book_bag'}, {'id': 5943, 'synset': 'bookbindery.n.01', 'name': 'bookbindery'}, {'id': 5944, 'synset': 'bookend.n.01', 'name': 'bookend'}, {'id': 5945, 'synset': 'bookmobile.n.01', 'name': 'bookmobile'}, {'id': 5946, 'synset': 'bookshelf.n.01', 'name': 'bookshelf'}, {'id': 5947, 'synset': 'bookshop.n.01', 'name': 'bookshop'}, {'id': 5948, 'synset': 'boom.n.05', 'name': 'boom'}, {'id': 5949, 'synset': 'boomerang.n.01', 'name': 'boomerang'}, {'id': 5950, 'synset': 'booster.n.05', 'name': 'booster'}, {'id': 5951, 'synset': 'booster.n.04', 'name': 'booster'}, {'id': 5952, 'synset': 'boot.n.04', 'name': 'boot'}, {'id': 5953, 'synset': 'boot_camp.n.01', 'name': 'boot_camp'}, {'id': 5954, 'synset': 'bootee.n.01', 'name': 'bootee'}, {'id': 5955, 'synset': 'booth.n.02', 'name': 'booth'}, {'id': 5956, 'synset': 'booth.n.04', 'name': 'booth'}, {'id': 5957, 'synset': 'booth.n.01', 'name': 'booth'}, {'id': 5958, 'synset': 'boothose.n.01', 'name': 'boothose'}, {'id': 5959, 'synset': 'bootjack.n.01', 'name': 'bootjack'}, {'id': 5960, 'synset': 'bootlace.n.01', 'name': 'bootlace'}, {'id': 5961, 'synset': 'bootleg.n.02', 'name': 'bootleg'}, {'id': 5962, 'synset': 'bootstrap.n.01', 'name': 'bootstrap'}, {'id': 5963, 'synset': 'bore_bit.n.01', 'name': 'bore_bit'}, {'id': 5964, 'synset': 'boron_chamber.n.01', 'name': 'boron_chamber'}, {'id': 5965, 'synset': 'borstal.n.01', 'name': 'borstal'}, {'id': 5966, 'synset': 'bosom.n.03', 'name': 'bosom'}, {'id': 5967, 'synset': 'boston_rocker.n.01', 'name': 'Boston_rocker'}, {'id': 5968, 'synset': 'bota.n.01', 'name': 'bota'}, {'id': 5969, 'synset': 'bottle.n.03', 'name': 'bottle'}, {'id': 5970, 'synset': 'bottle_bank.n.01', 'name': 'bottle_bank'}, {'id': 5971, 'synset': 'bottlebrush.n.01', 'name': 'bottlebrush'}, {'id': 5972, 'synset': 'bottlecap.n.01', 'name': 'bottlecap'}, {'id': 5973, 'synset': 'bottling_plant.n.01', 'name': 'bottling_plant'}, {'id': 5974, 'synset': 'bottom.n.07', 'name': 'bottom'}, {'id': 5975, 'synset': 'boucle.n.01', 'name': 'boucle'}, {'id': 5976, 'synset': 'boudoir.n.01', 'name': 'boudoir'}, {'id': 5977, 'synset': 'boulle.n.01', 'name': 'boulle'}, {'id': 5978, 'synset': 'bouncing_betty.n.01', 'name': 'bouncing_betty'}, {'id': 5979, 'synset': 'boutique.n.01', 'name': 'boutique'}, {'id': 5980, 'synset': 'boutonniere.n.01', 'name': 'boutonniere'}, {'id': 5981, 'synset': 'bow.n.02', 'name': 'bow'}, {'id': 5982, 'synset': 'bow.n.01', 'name': 'bow'}, {'id': 5983, 'synset': 'bow_and_arrow.n.01', 'name': 'bow_and_arrow'}, {'id': 5984, 'synset': 'bowed_stringed_instrument.n.01', 'name': 'bowed_stringed_instrument'}, {'id': 5985, 'synset': 'bowie_knife.n.01', 'name': 'Bowie_knife'}, {'id': 5986, 'synset': 'bowl.n.01', 'name': 'bowl'}, {'id': 5987, 'synset': 'bowl.n.07', 'name': 'bowl'}, {'id': 5988, 'synset': 'bowline.n.01', 'name': 'bowline'}, {'id': 5989, 'synset': 'bowling_alley.n.01', 'name': 'bowling_alley'}, {'id': 5990, 'synset': 'bowling_equipment.n.01', 'name': 'bowling_equipment'}, {'id': 5991, 'synset': 'bowling_pin.n.01', 'name': 'bowling_pin'}, {'id': 5992, 'synset': 'bowling_shoe.n.01', 'name': 'bowling_shoe'}, {'id': 5993, 'synset': 'bowsprit.n.01', 'name': 'bowsprit'}, {'id': 5994, 'synset': 'bowstring.n.01', 'name': 'bowstring'}, {'id': 5995, 'synset': 'box.n.02', 'name': 'box'}, {'id': 5996, 'synset': 'box.n.08', 'name': 'box'}, {'id': 5997, 'synset': 'box_beam.n.01', 'name': 'box_beam'}, {'id': 5998, 'synset': 'box_camera.n.01', 'name': 'box_camera'}, {'id': 5999, 'synset': 'boxcar.n.01', 'name': 'boxcar'}, {'id': 6000, 'synset': 'box_coat.n.01', 'name': 'box_coat'}, {'id': 6001, 'synset': 'boxing_equipment.n.01', 'name': 'boxing_equipment'}, {'id': 6002, 'synset': 'box_office.n.02', 'name': 'box_office'}, {'id': 6003, 'synset': 'box_spring.n.01', 'name': 'box_spring'}, {'id': 6004, 'synset': 'box_wrench.n.01', 'name': 'box_wrench'}, {'id': 6005, 'synset': 'brace.n.09', 'name': 'brace'}, {'id': 6006, 'synset': 'brace.n.07', 'name': 'brace'}, {'id': 6007, 'synset': 'brace.n.01', 'name': 'brace'}, {'id': 6008, 'synset': 'brace_and_bit.n.01', 'name': 'brace_and_bit'}, {'id': 6009, 'synset': 'bracer.n.01', 'name': 'bracer'}, {'id': 6010, 'synset': 'brace_wrench.n.01', 'name': 'brace_wrench'}, {'id': 6011, 'synset': 'bracket.n.04', 'name': 'bracket'}, {'id': 6012, 'synset': 'bradawl.n.01', 'name': 'bradawl'}, {'id': 6013, 'synset': 'brake.n.01', 'name': 'brake'}, {'id': 6014, 'synset': 'brake.n.05', 'name': 'brake'}, {'id': 6015, 'synset': 'brake_band.n.01', 'name': 'brake_band'}, {'id': 6016, 'synset': 'brake_cylinder.n.01', 'name': 'brake_cylinder'}, {'id': 6017, 'synset': 'brake_disk.n.01', 'name': 'brake_disk'}, {'id': 6018, 'synset': 'brake_drum.n.01', 'name': 'brake_drum'}, {'id': 6019, 'synset': 'brake_lining.n.01', 'name': 'brake_lining'}, {'id': 6020, 'synset': 'brake_pad.n.01', 'name': 'brake_pad'}, {'id': 6021, 'synset': 'brake_pedal.n.01', 'name': 'brake_pedal'}, {'id': 6022, 'synset': 'brake_shoe.n.01', 'name': 'brake_shoe'}, {'id': 6023, 'synset': 'brake_system.n.01', 'name': 'brake_system'}, {'id': 6024, 'synset': 'brass.n.02', 'name': 'brass'}, {'id': 6025, 'synset': 'brass.n.05', 'name': 'brass'}, {'id': 6026, 'synset': 'brassard.n.01', 'name': 'brassard'}, {'id': 6027, 'synset': 'brasserie.n.01', 'name': 'brasserie'}, {'id': 6028, 'synset': 'brassie.n.01', 'name': 'brassie'}, {'id': 6029, 'synset': 'brass_knucks.n.01', 'name': 'brass_knucks'}, {'id': 6030, 'synset': 'brattice.n.01', 'name': 'brattice'}, {'id': 6031, 'synset': 'brazier.n.01', 'name': 'brazier'}, {'id': 6032, 'synset': 'breadbasket.n.03', 'name': 'breadbasket'}, {'id': 6033, 'synset': 'bread_knife.n.01', 'name': 'bread_knife'}, {'id': 6034, 'synset': 'breakable.n.01', 'name': 'breakable'}, {'id': 6035, 'synset': 'breakfast_area.n.01', 'name': 'breakfast_area'}, {'id': 6036, 'synset': 'breakfast_table.n.01', 'name': 'breakfast_table'}, {'id': 6037, 'synset': 'breakwater.n.01', 'name': 'breakwater'}, {'id': 6038, 'synset': 'breast_drill.n.01', 'name': 'breast_drill'}, {'id': 6039, 'synset': 'breast_implant.n.01', 'name': 'breast_implant'}, {'id': 6040, 'synset': 'breastplate.n.01', 'name': 'breastplate'}, {'id': 6041, 'synset': 'breast_pocket.n.01', 'name': 'breast_pocket'}, {'id': 6042, 'synset': 'breathalyzer.n.01', 'name': 'breathalyzer'}, {'id': 6043, 'synset': 'breechblock.n.01', 'name': 'breechblock'}, {'id': 6044, 'synset': 'breeches.n.01', 'name': 'breeches'}, {'id': 6045, 'synset': 'breeches_buoy.n.01', 'name': 'breeches_buoy'}, {'id': 6046, 'synset': 'breechloader.n.01', 'name': 'breechloader'}, {'id': 6047, 'synset': 'breeder_reactor.n.01', 'name': 'breeder_reactor'}, {'id': 6048, 'synset': 'bren.n.01', 'name': 'Bren'}, {'id': 6049, 'synset': 'brewpub.n.01', 'name': 'brewpub'}, {'id': 6050, 'synset': 'brick.n.01', 'name': 'brick'}, {'id': 6051, 'synset': 'brickkiln.n.01', 'name': 'brickkiln'}, {'id': 6052, 'synset': "bricklayer's_hammer.n.01", 'name': "bricklayer's_hammer"}, {'id': 6053, 'synset': 'brick_trowel.n.01', 'name': 'brick_trowel'}, {'id': 6054, 'synset': 'brickwork.n.01', 'name': 'brickwork'}, {'id': 6055, 'synset': 'bridge.n.01', 'name': 'bridge'}, {'id': 6056, 'synset': 'bridge.n.08', 'name': 'bridge'}, {'id': 6057, 'synset': 'bridle.n.01', 'name': 'bridle'}, {'id': 6058, 'synset': 'bridle_path.n.01', 'name': 'bridle_path'}, {'id': 6059, 'synset': 'bridoon.n.01', 'name': 'bridoon'}, {'id': 6060, 'synset': 'briefcase_bomb.n.01', 'name': 'briefcase_bomb'}, {'id': 6061, 'synset': 'briefcase_computer.n.01', 'name': 'briefcase_computer'}, {'id': 6062, 'synset': 'briefs.n.01', 'name': 'briefs'}, {'id': 6063, 'synset': 'brig.n.02', 'name': 'brig'}, {'id': 6064, 'synset': 'brig.n.01', 'name': 'brig'}, {'id': 6065, 'synset': 'brigandine.n.01', 'name': 'brigandine'}, {'id': 6066, 'synset': 'brigantine.n.01', 'name': 'brigantine'}, {'id': 6067, 'synset': 'brilliantine.n.01', 'name': 'brilliantine'}, {'id': 6068, 'synset': 'brilliant_pebble.n.01', 'name': 'brilliant_pebble'}, {'id': 6069, 'synset': 'brim.n.02', 'name': 'brim'}, {'id': 6070, 'synset': 'bristle_brush.n.01', 'name': 'bristle_brush'}, {'id': 6071, 'synset': 'britches.n.01', 'name': 'britches'}, {'id': 6072, 'synset': 'broad_arrow.n.03', 'name': 'broad_arrow'}, {'id': 6073, 'synset': 'broadax.n.01', 'name': 'broadax'}, {'id': 6074, 'synset': 'brochette.n.01', 'name': 'brochette'}, {'id': 6075, 'synset': 'broadcaster.n.02', 'name': 'broadcaster'}, {'id': 6076, 'synset': 'broadcloth.n.02', 'name': 'broadcloth'}, {'id': 6077, 'synset': 'broadcloth.n.01', 'name': 'broadcloth'}, {'id': 6078, 'synset': 'broad_hatchet.n.01', 'name': 'broad_hatchet'}, {'id': 6079, 'synset': 'broadloom.n.01', 'name': 'broadloom'}, {'id': 6080, 'synset': 'broadside.n.03', 'name': 'broadside'}, {'id': 6081, 'synset': 'broadsword.n.01', 'name': 'broadsword'}, {'id': 6082, 'synset': 'brocade.n.01', 'name': 'brocade'}, {'id': 6083, 'synset': 'brogan.n.01', 'name': 'brogan'}, {'id': 6084, 'synset': 'broiler.n.01', 'name': 'broiler'}, {'id': 6085, 'synset': 'broken_arch.n.01', 'name': 'broken_arch'}, {'id': 6086, 'synset': 'bronchoscope.n.01', 'name': 'bronchoscope'}, {'id': 6087, 'synset': 'broom_closet.n.01', 'name': 'broom_closet'}, {'id': 6088, 'synset': 'broomstick.n.01', 'name': 'broomstick'}, {'id': 6089, 'synset': 'brougham.n.01', 'name': 'brougham'}, {'id': 6090, 'synset': 'browning_automatic_rifle.n.01', 'name': 'Browning_automatic_rifle'}, {'id': 6091, 'synset': 'browning_machine_gun.n.01', 'name': 'Browning_machine_gun'}, {'id': 6092, 'synset': 'brownstone.n.02', 'name': 'brownstone'}, {'id': 6093, 'synset': 'brunch_coat.n.01', 'name': 'brunch_coat'}, {'id': 6094, 'synset': 'brush.n.02', 'name': 'brush'}, {'id': 6095, 'synset': 'brussels_carpet.n.01', 'name': 'Brussels_carpet'}, {'id': 6096, 'synset': 'brussels_lace.n.01', 'name': 'Brussels_lace'}, {'id': 6097, 'synset': 'bubble.n.04', 'name': 'bubble'}, {'id': 6098, 'synset': 'bubble_chamber.n.01', 'name': 'bubble_chamber'}, {'id': 6099, 'synset': 'bubble_jet_printer.n.01', 'name': 'bubble_jet_printer'}, {'id': 6100, 'synset': 'buckboard.n.01', 'name': 'buckboard'}, {'id': 6101, 'synset': 'bucket_seat.n.01', 'name': 'bucket_seat'}, {'id': 6102, 'synset': 'bucket_shop.n.02', 'name': 'bucket_shop'}, {'id': 6103, 'synset': 'buckle.n.01', 'name': 'buckle'}, {'id': 6104, 'synset': 'buckram.n.01', 'name': 'buckram'}, {'id': 6105, 'synset': 'bucksaw.n.01', 'name': 'bucksaw'}, {'id': 6106, 'synset': 'buckskins.n.01', 'name': 'buckskins'}, {'id': 6107, 'synset': 'buff.n.05', 'name': 'buff'}, {'id': 6108, 'synset': 'buffer.n.05', 'name': 'buffer'}, {'id': 6109, 'synset': 'buffer.n.04', 'name': 'buffer'}, {'id': 6110, 'synset': 'buffet.n.01', 'name': 'buffet'}, {'id': 6111, 'synset': 'buffing_wheel.n.01', 'name': 'buffing_wheel'}, {'id': 6112, 'synset': 'bugle.n.01', 'name': 'bugle'}, {'id': 6113, 'synset': 'building.n.01', 'name': 'building'}, {'id': 6114, 'synset': 'building_complex.n.01', 'name': 'building_complex'}, {'id': 6115, 'synset': 'bulldog_clip.n.01', 'name': 'bulldog_clip'}, {'id': 6116, 'synset': 'bulldog_wrench.n.01', 'name': 'bulldog_wrench'}, {'id': 6117, 'synset': 'bullet.n.01', 'name': 'bullet'}, {'id': 6118, 'synset': 'bullion.n.02', 'name': 'bullion'}, {'id': 6119, 'synset': 'bullnose.n.01', 'name': 'bullnose'}, {'id': 6120, 'synset': 'bullpen.n.02', 'name': 'bullpen'}, {'id': 6121, 'synset': 'bullpen.n.01', 'name': 'bullpen'}, {'id': 6122, 'synset': 'bullring.n.01', 'name': 'bullring'}, {'id': 6123, 'synset': 'bulwark.n.02', 'name': 'bulwark'}, {'id': 6124, 'synset': 'bumboat.n.01', 'name': 'bumboat'}, {'id': 6125, 'synset': 'bumper.n.02', 'name': 'bumper'}, {'id': 6126, 'synset': 'bumper.n.01', 'name': 'bumper'}, {'id': 6127, 'synset': 'bumper_car.n.01', 'name': 'bumper_car'}, {'id': 6128, 'synset': 'bumper_guard.n.01', 'name': 'bumper_guard'}, {'id': 6129, 'synset': 'bumper_jack.n.01', 'name': 'bumper_jack'}, {'id': 6130, 'synset': 'bundle.n.02', 'name': 'bundle'}, {'id': 6131, 'synset': 'bung.n.01', 'name': 'bung'}, {'id': 6132, 'synset': 'bungalow.n.01', 'name': 'bungalow'}, {'id': 6133, 'synset': 'bungee.n.01', 'name': 'bungee'}, {'id': 6134, 'synset': 'bunghole.n.02', 'name': 'bunghole'}, {'id': 6135, 'synset': 'bunk.n.03', 'name': 'bunk'}, {'id': 6136, 'synset': 'bunk.n.01', 'name': 'bunk'}, {'id': 6137, 'synset': 'bunker.n.01', 'name': 'bunker'}, {'id': 6138, 'synset': 'bunker.n.03', 'name': 'bunker'}, {'id': 6139, 'synset': 'bunker.n.02', 'name': 'bunker'}, {'id': 6140, 'synset': 'bunsen_burner.n.01', 'name': 'bunsen_burner'}, {'id': 6141, 'synset': 'bunting.n.01', 'name': 'bunting'}, {'id': 6142, 'synset': 'bur.n.02', 'name': 'bur'}, {'id': 6143, 'synset': 'burberry.n.01', 'name': 'Burberry'}, {'id': 6144, 'synset': 'burette.n.01', 'name': 'burette'}, {'id': 6145, 'synset': 'burglar_alarm.n.02', 'name': 'burglar_alarm'}, {'id': 6146, 'synset': 'burial_chamber.n.01', 'name': 'burial_chamber'}, {'id': 6147, 'synset': 'burial_garment.n.01', 'name': 'burial_garment'}, {'id': 6148, 'synset': 'burial_mound.n.01', 'name': 'burial_mound'}, {'id': 6149, 'synset': 'burin.n.01', 'name': 'burin'}, {'id': 6150, 'synset': 'burqa.n.01', 'name': 'burqa'}, {'id': 6151, 'synset': 'burlap.n.01', 'name': 'burlap'}, {'id': 6152, 'synset': 'burn_bag.n.01', 'name': 'burn_bag'}, {'id': 6153, 'synset': 'burner.n.01', 'name': 'burner'}, {'id': 6154, 'synset': 'burnous.n.01', 'name': 'burnous'}, {'id': 6155, 'synset': 'burp_gun.n.01', 'name': 'burp_gun'}, {'id': 6156, 'synset': 'burr.n.04', 'name': 'burr'}, {'id': 6157, 'synset': 'bushel_basket.n.01', 'name': 'bushel_basket'}, {'id': 6158, 'synset': 'bushing.n.02', 'name': 'bushing'}, {'id': 6159, 'synset': 'bush_jacket.n.01', 'name': 'bush_jacket'}, {'id': 6160, 'synset': 'business_suit.n.01', 'name': 'business_suit'}, {'id': 6161, 'synset': 'buskin.n.01', 'name': 'buskin'}, {'id': 6162, 'synset': 'bustier.n.01', 'name': 'bustier'}, {'id': 6163, 'synset': 'bustle.n.02', 'name': 'bustle'}, {'id': 6164, 'synset': 'butcher_knife.n.01', 'name': 'butcher_knife'}, {'id': 6165, 'synset': 'butcher_shop.n.01', 'name': 'butcher_shop'}, {'id': 6166, 'synset': 'butter_dish.n.01', 'name': 'butter_dish'}, {'id': 6167, 'synset': 'butterfly_valve.n.01', 'name': 'butterfly_valve'}, {'id': 6168, 'synset': 'butter_knife.n.01', 'name': 'butter_knife'}, {'id': 6169, 'synset': 'butt_hinge.n.01', 'name': 'butt_hinge'}, {'id': 6170, 'synset': 'butt_joint.n.01', 'name': 'butt_joint'}, {'id': 6171, 'synset': 'buttonhook.n.01', 'name': 'buttonhook'}, {'id': 6172, 'synset': 'buttress.n.01', 'name': 'buttress'}, {'id': 6173, 'synset': 'butt_shaft.n.01', 'name': 'butt_shaft'}, {'id': 6174, 'synset': 'butt_weld.n.01', 'name': 'butt_weld'}, {'id': 6175, 'synset': 'buzz_bomb.n.01', 'name': 'buzz_bomb'}, {'id': 6176, 'synset': 'buzzer.n.02', 'name': 'buzzer'}, {'id': 6177, 'synset': 'bvd.n.01', 'name': 'BVD'}, {'id': 6178, 'synset': 'bypass_condenser.n.01', 'name': 'bypass_condenser'}, {'id': 6179, 'synset': 'byway.n.01', 'name': 'byway'}, {'id': 6180, 'synset': 'cab.n.02', 'name': 'cab'}, {'id': 6181, 'synset': 'cab.n.01', 'name': 'cab'}, {'id': 6182, 'synset': 'cabaret.n.01', 'name': 'cabaret'}, {'id': 6183, 'synset': 'caber.n.01', 'name': 'caber'}, {'id': 6184, 'synset': 'cabin.n.03', 'name': 'cabin'}, {'id': 6185, 'synset': 'cabin.n.02', 'name': 'cabin'}, {'id': 6186, 'synset': 'cabin_class.n.01', 'name': 'cabin_class'}, {'id': 6187, 'synset': 'cabin_cruiser.n.01', 'name': 'cabin_cruiser'}, {'id': 6188, 'synset': 'cabinet.n.04', 'name': 'cabinet'}, {'id': 6189, 'synset': 'cabinetwork.n.01', 'name': 'cabinetwork'}, {'id': 6190, 'synset': 'cabin_liner.n.01', 'name': 'cabin_liner'}, {'id': 6191, 'synset': 'cable.n.06', 'name': 'cable'}, {'id': 6192, 'synset': 'cable.n.02', 'name': 'cable'}, {'id': 6193, 'synset': 'cable_car.n.01', 'name': 'cable_car'}, {'id': 6194, 'synset': 'cache.n.03', 'name': 'cache'}, {'id': 6195, 'synset': 'caddy.n.01', 'name': 'caddy'}, {'id': 6196, 'synset': 'caesium_clock.n.01', 'name': 'caesium_clock'}, {'id': 6197, 'synset': 'cafe.n.01', 'name': 'cafe'}, {'id': 6198, 'synset': 'cafeteria.n.01', 'name': 'cafeteria'}, {'id': 6199, 'synset': 'cafeteria_tray.n.01', 'name': 'cafeteria_tray'}, {'id': 6200, 'synset': 'caff.n.01', 'name': 'caff'}, {'id': 6201, 'synset': 'caftan.n.02', 'name': 'caftan'}, {'id': 6202, 'synset': 'caftan.n.01', 'name': 'caftan'}, {'id': 6203, 'synset': 'cage.n.01', 'name': 'cage'}, {'id': 6204, 'synset': 'cage.n.04', 'name': 'cage'}, {'id': 6205, 'synset': 'cagoule.n.01', 'name': 'cagoule'}, {'id': 6206, 'synset': 'caisson.n.02', 'name': 'caisson'}, {'id': 6207, 'synset': 'calash.n.02', 'name': 'calash'}, {'id': 6208, 'synset': 'calceus.n.01', 'name': 'calceus'}, {'id': 6209, 'synset': 'calcimine.n.01', 'name': 'calcimine'}, {'id': 6210, 'synset': 'caldron.n.01', 'name': 'caldron'}, {'id': 6211, 'synset': 'calico.n.01', 'name': 'calico'}, {'id': 6212, 'synset': 'caliper.n.01', 'name': 'caliper'}, {'id': 6213, 'synset': 'call-board.n.01', 'name': 'call-board'}, {'id': 6214, 'synset': 'call_center.n.01', 'name': 'call_center'}, {'id': 6215, 'synset': 'caller_id.n.01', 'name': 'caller_ID'}, {'id': 6216, 'synset': 'calliope.n.02', 'name': 'calliope'}, {'id': 6217, 'synset': 'calorimeter.n.01', 'name': 'calorimeter'}, {'id': 6218, 'synset': 'calpac.n.01', 'name': 'calpac'}, {'id': 6219, 'synset': 'camail.n.01', 'name': 'camail'}, {'id': 6220, 'synset': 'camber_arch.n.01', 'name': 'camber_arch'}, {'id': 6221, 'synset': 'cambric.n.01', 'name': 'cambric'}, {'id': 6222, 'synset': "camel's_hair.n.01", 'name': "camel's_hair"}, {'id': 6223, 'synset': 'camera_lucida.n.01', 'name': 'camera_lucida'}, {'id': 6224, 'synset': 'camera_obscura.n.01', 'name': 'camera_obscura'}, {'id': 6225, 'synset': 'camera_tripod.n.01', 'name': 'camera_tripod'}, {'id': 6226, 'synset': 'camise.n.01', 'name': 'camise'}, {'id': 6227, 'synset': 'camisole.n.02', 'name': 'camisole'}, {'id': 6228, 'synset': 'camisole.n.01', 'name': 'camisole'}, {'id': 6229, 'synset': 'camlet.n.02', 'name': 'camlet'}, {'id': 6230, 'synset': 'camouflage.n.03', 'name': 'camouflage'}, {'id': 6231, 'synset': 'camouflage.n.02', 'name': 'camouflage'}, {'id': 6232, 'synset': 'camp.n.01', 'name': 'camp'}, {'id': 6233, 'synset': 'camp.n.03', 'name': 'camp'}, {'id': 6234, 'synset': 'camp.n.07', 'name': 'camp'}, {'id': 6235, 'synset': 'campaign_hat.n.01', 'name': 'campaign_hat'}, {'id': 6236, 'synset': 'campanile.n.01', 'name': 'campanile'}, {'id': 6237, 'synset': 'camp_chair.n.01', 'name': 'camp_chair'}, {'id': 6238, 'synset': 'camper_trailer.n.01', 'name': 'camper_trailer'}, {'id': 6239, 'synset': 'campstool.n.01', 'name': 'campstool'}, {'id': 6240, 'synset': 'camshaft.n.01', 'name': 'camshaft'}, {'id': 6241, 'synset': 'canal.n.03', 'name': 'canal'}, {'id': 6242, 'synset': 'canal_boat.n.01', 'name': 'canal_boat'}, {'id': 6243, 'synset': 'candelabrum.n.01', 'name': 'candelabrum'}, {'id': 6244, 'synset': 'candid_camera.n.01', 'name': 'candid_camera'}, {'id': 6245, 'synset': 'candlepin.n.01', 'name': 'candlepin'}, {'id': 6246, 'synset': 'candlesnuffer.n.01', 'name': 'candlesnuffer'}, {'id': 6247, 'synset': 'candlewick.n.02', 'name': 'candlewick'}, {'id': 6248, 'synset': 'candy_thermometer.n.01', 'name': 'candy_thermometer'}, {'id': 6249, 'synset': 'cane.n.03', 'name': 'cane'}, {'id': 6250, 'synset': 'cangue.n.01', 'name': 'cangue'}, {'id': 6251, 'synset': 'cannery.n.01', 'name': 'cannery'}, {'id': 6252, 'synset': 'cannikin.n.02', 'name': 'cannikin'}, {'id': 6253, 'synset': 'cannikin.n.01', 'name': 'cannikin'}, {'id': 6254, 'synset': 'cannon.n.01', 'name': 'cannon'}, {'id': 6255, 'synset': 'cannon.n.04', 'name': 'cannon'}, {'id': 6256, 'synset': 'cannon.n.03', 'name': 'cannon'}, {'id': 6257, 'synset': 'cannon.n.02', 'name': 'cannon'}, {'id': 6258, 'synset': 'cannonball.n.01', 'name': 'cannonball'}, {'id': 6259, 'synset': 'canopic_jar.n.01', 'name': 'canopic_jar'}, {'id': 6260, 'synset': 'canopy.n.03', 'name': 'canopy'}, {'id': 6261, 'synset': 'canopy.n.02', 'name': 'canopy'}, {'id': 6262, 'synset': 'canopy.n.01', 'name': 'canopy'}, {'id': 6263, 'synset': 'canteen.n.05', 'name': 'canteen'}, {'id': 6264, 'synset': 'canteen.n.04', 'name': 'canteen'}, {'id': 6265, 'synset': 'canteen.n.03', 'name': 'canteen'}, {'id': 6266, 'synset': 'canteen.n.02', 'name': 'canteen'}, {'id': 6267, 'synset': 'cant_hook.n.01', 'name': 'cant_hook'}, {'id': 6268, 'synset': 'cantilever.n.01', 'name': 'cantilever'}, {'id': 6269, 'synset': 'cantilever_bridge.n.01', 'name': 'cantilever_bridge'}, {'id': 6270, 'synset': 'cantle.n.01', 'name': 'cantle'}, {'id': 6271, 'synset': 'canton_crepe.n.01', 'name': 'Canton_crepe'}, {'id': 6272, 'synset': 'canvas.n.01', 'name': 'canvas'}, {'id': 6273, 'synset': 'canvas.n.06', 'name': 'canvas'}, {'id': 6274, 'synset': 'canvas_tent.n.01', 'name': 'canvas_tent'}, {'id': 6275, 'synset': 'cap.n.04', 'name': 'cap'}, {'id': 6276, 'synset': 'capacitor.n.01', 'name': 'capacitor'}, {'id': 6277, 'synset': 'caparison.n.01', 'name': 'caparison'}, {'id': 6278, 'synset': 'capital_ship.n.01', 'name': 'capital_ship'}, {'id': 6279, 'synset': 'capitol.n.01', 'name': 'capitol'}, {'id': 6280, 'synset': 'cap_opener.n.01', 'name': 'cap_opener'}, {'id': 6281, 'synset': 'capote.n.02', 'name': 'capote'}, {'id': 6282, 'synset': 'capote.n.01', 'name': 'capote'}, {'id': 6283, 'synset': 'cap_screw.n.01', 'name': 'cap_screw'}, {'id': 6284, 'synset': 'capstan.n.01', 'name': 'capstan'}, {'id': 6285, 'synset': 'capstone.n.02', 'name': 'capstone'}, {'id': 6286, 'synset': 'capsule.n.01', 'name': 'capsule'}, {'id': 6287, 'synset': "captain's_chair.n.01", 'name': "captain's_chair"}, {'id': 6288, 'synset': 'carabiner.n.01', 'name': 'carabiner'}, {'id': 6289, 'synset': 'carafe.n.01', 'name': 'carafe'}, {'id': 6290, 'synset': 'caravansary.n.01', 'name': 'caravansary'}, {'id': 6291, 'synset': 'carbine.n.01', 'name': 'carbine'}, {'id': 6292, 'synset': 'car_bomb.n.01', 'name': 'car_bomb'}, {'id': 6293, 'synset': 'carbon_arc_lamp.n.01', 'name': 'carbon_arc_lamp'}, {'id': 6294, 'synset': 'carboy.n.01', 'name': 'carboy'}, {'id': 6295, 'synset': 'carburetor.n.01', 'name': 'carburetor'}, {'id': 6296, 'synset': 'car_carrier.n.01', 'name': 'car_carrier'}, {'id': 6297, 'synset': 'cardcase.n.01', 'name': 'cardcase'}, {'id': 6298, 'synset': 'cardiac_monitor.n.01', 'name': 'cardiac_monitor'}, {'id': 6299, 'synset': 'card_index.n.01', 'name': 'card_index'}, {'id': 6300, 'synset': 'cardiograph.n.01', 'name': 'cardiograph'}, {'id': 6301, 'synset': 'cardioid_microphone.n.01', 'name': 'cardioid_microphone'}, {'id': 6302, 'synset': 'car_door.n.01', 'name': 'car_door'}, {'id': 6303, 'synset': 'cardroom.n.01', 'name': 'cardroom'}, {'id': 6304, 'synset': 'card_table.n.02', 'name': 'card_table'}, {'id': 6305, 'synset': 'card_table.n.01', 'name': 'card_table'}, {'id': 6306, 'synset': 'car-ferry.n.01', 'name': 'car-ferry'}, {'id': 6307, 'synset': 'cargo_area.n.01', 'name': 'cargo_area'}, {'id': 6308, 'synset': 'cargo_container.n.01', 'name': 'cargo_container'}, {'id': 6309, 'synset': 'cargo_door.n.01', 'name': 'cargo_door'}, {'id': 6310, 'synset': 'cargo_hatch.n.01', 'name': 'cargo_hatch'}, {'id': 6311, 'synset': 'cargo_helicopter.n.01', 'name': 'cargo_helicopter'}, {'id': 6312, 'synset': 'cargo_liner.n.01', 'name': 'cargo_liner'}, {'id': 6313, 'synset': 'carillon.n.01', 'name': 'carillon'}, {'id': 6314, 'synset': 'car_mirror.n.01', 'name': 'car_mirror'}, {'id': 6315, 'synset': 'caroche.n.01', 'name': 'caroche'}, {'id': 6316, 'synset': 'carousel.n.02', 'name': 'carousel'}, {'id': 6317, 'synset': "carpenter's_hammer.n.01", 'name': "carpenter's_hammer"}, {'id': 6318, 'synset': "carpenter's_kit.n.01", 'name': "carpenter's_kit"}, {'id': 6319, 'synset': "carpenter's_level.n.01", 'name': "carpenter's_level"}, {'id': 6320, 'synset': "carpenter's_mallet.n.01", 'name': "carpenter's_mallet"}, {'id': 6321, 'synset': "carpenter's_rule.n.01", 'name': "carpenter's_rule"}, {'id': 6322, 'synset': "carpenter's_square.n.01", 'name': "carpenter's_square"}, {'id': 6323, 'synset': 'carpetbag.n.01', 'name': 'carpetbag'}, {'id': 6324, 'synset': 'carpet_beater.n.01', 'name': 'carpet_beater'}, {'id': 6325, 'synset': 'carpet_loom.n.01', 'name': 'carpet_loom'}, {'id': 6326, 'synset': 'carpet_pad.n.01', 'name': 'carpet_pad'}, {'id': 6327, 'synset': 'carpet_sweeper.n.01', 'name': 'carpet_sweeper'}, {'id': 6328, 'synset': 'carpet_tack.n.01', 'name': 'carpet_tack'}, {'id': 6329, 'synset': 'carport.n.01', 'name': 'carport'}, {'id': 6330, 'synset': 'carrack.n.01', 'name': 'carrack'}, {'id': 6331, 'synset': 'carrel.n.02', 'name': 'carrel'}, {'id': 6332, 'synset': 'carriage.n.04', 'name': 'carriage'}, {'id': 6333, 'synset': 'carriage_bolt.n.01', 'name': 'carriage_bolt'}, {'id': 6334, 'synset': 'carriageway.n.01', 'name': 'carriageway'}, {'id': 6335, 'synset': 'carriage_wrench.n.01', 'name': 'carriage_wrench'}, {'id': 6336, 'synset': 'carrick_bend.n.01', 'name': 'carrick_bend'}, {'id': 6337, 'synset': 'carrier.n.10', 'name': 'carrier'}, {'id': 6338, 'synset': 'carrycot.n.01', 'name': 'carrycot'}, {'id': 6339, 'synset': 'car_seat.n.01', 'name': 'car_seat'}, {'id': 6340, 'synset': 'car_tire.n.01', 'name': 'car_tire'}, {'id': 6341, 'synset': 'cartouche.n.01', 'name': 'cartouche'}, {'id': 6342, 'synset': 'car_train.n.01', 'name': 'car_train'}, {'id': 6343, 'synset': 'cartridge.n.01', 'name': 'cartridge'}, {'id': 6344, 'synset': 'cartridge.n.04', 'name': 'cartridge'}, {'id': 6345, 'synset': 'cartridge_belt.n.01', 'name': 'cartridge_belt'}, {'id': 6346, 'synset': 'cartridge_extractor.n.01', 'name': 'cartridge_extractor'}, {'id': 6347, 'synset': 'cartridge_fuse.n.01', 'name': 'cartridge_fuse'}, {'id': 6348, 'synset': 'cartridge_holder.n.01', 'name': 'cartridge_holder'}, {'id': 6349, 'synset': 'cartwheel.n.01', 'name': 'cartwheel'}, {'id': 6350, 'synset': 'carving_fork.n.01', 'name': 'carving_fork'}, {'id': 6351, 'synset': 'carving_knife.n.01', 'name': 'carving_knife'}, {'id': 6352, 'synset': 'car_wheel.n.01', 'name': 'car_wheel'}, {'id': 6353, 'synset': 'caryatid.n.01', 'name': 'caryatid'}, {'id': 6354, 'synset': 'cascade_liquefier.n.01', 'name': 'cascade_liquefier'}, {'id': 6355, 'synset': 'cascade_transformer.n.01', 'name': 'cascade_transformer'}, {'id': 6356, 'synset': 'case.n.05', 'name': 'case'}, {'id': 6357, 'synset': 'case.n.20', 'name': 'case'}, {'id': 6358, 'synset': 'case.n.18', 'name': 'case'}, {'id': 6359, 'synset': 'casein_paint.n.01', 'name': 'casein_paint'}, {'id': 6360, 'synset': 'case_knife.n.02', 'name': 'case_knife'}, {'id': 6361, 'synset': 'case_knife.n.01', 'name': 'case_knife'}, {'id': 6362, 'synset': 'casement.n.01', 'name': 'casement'}, {'id': 6363, 'synset': 'casement_window.n.01', 'name': 'casement_window'}, {'id': 6364, 'synset': 'casern.n.01', 'name': 'casern'}, {'id': 6365, 'synset': 'case_shot.n.01', 'name': 'case_shot'}, {'id': 6366, 'synset': 'cash_bar.n.01', 'name': 'cash_bar'}, {'id': 6367, 'synset': 'cashbox.n.01', 'name': 'cashbox'}, {'id': 6368, 'synset': 'cash_machine.n.01', 'name': 'cash_machine'}, {'id': 6369, 'synset': 'cashmere.n.01', 'name': 'cashmere'}, {'id': 6370, 'synset': 'casing.n.03', 'name': 'casing'}, {'id': 6371, 'synset': 'casino.n.01', 'name': 'casino'}, {'id': 6372, 'synset': 'casket.n.02', 'name': 'casket'}, {'id': 6373, 'synset': 'casque.n.01', 'name': 'casque'}, {'id': 6374, 'synset': 'casquet.n.01', 'name': 'casquet'}, {'id': 6375, 'synset': 'cassegrainian_telescope.n.01', 'name': 'Cassegrainian_telescope'}, {'id': 6376, 'synset': 'casserole.n.02', 'name': 'casserole'}, {'id': 6377, 'synset': 'cassette_deck.n.01', 'name': 'cassette_deck'}, {'id': 6378, 'synset': 'cassette_player.n.01', 'name': 'cassette_player'}, {'id': 6379, 'synset': 'cassette_recorder.n.01', 'name': 'cassette_recorder'}, {'id': 6380, 'synset': 'cassette_tape.n.01', 'name': 'cassette_tape'}, {'id': 6381, 'synset': 'cassock.n.01', 'name': 'cassock'}, {'id': 6382, 'synset': 'caster.n.03', 'name': 'caster'}, {'id': 6383, 'synset': 'caster.n.02', 'name': 'caster'}, {'id': 6384, 'synset': 'castle.n.02', 'name': 'castle'}, {'id': 6385, 'synset': 'castle.n.03', 'name': 'castle'}, {'id': 6386, 'synset': 'catacomb.n.01', 'name': 'catacomb'}, {'id': 6387, 'synset': 'catafalque.n.01', 'name': 'catafalque'}, {'id': 6388, 'synset': 'catalytic_converter.n.01', 'name': 'catalytic_converter'}, {'id': 6389, 'synset': 'catalytic_cracker.n.01', 'name': 'catalytic_cracker'}, {'id': 6390, 'synset': 'catamaran.n.01', 'name': 'catamaran'}, {'id': 6391, 'synset': 'catapult.n.03', 'name': 'catapult'}, {'id': 6392, 'synset': 'catapult.n.02', 'name': 'catapult'}, {'id': 6393, 'synset': 'catboat.n.01', 'name': 'catboat'}, {'id': 6394, 'synset': 'cat_box.n.01', 'name': 'cat_box'}, {'id': 6395, 'synset': 'catch.n.07', 'name': 'catch'}, {'id': 6396, 'synset': 'catchall.n.01', 'name': 'catchall'}, {'id': 6397, 'synset': "catcher's_mask.n.01", 'name': "catcher's_mask"}, {'id': 6398, 'synset': 'catchment.n.01', 'name': 'catchment'}, {'id': 6399, 'synset': 'caterpillar.n.02', 'name': 'Caterpillar'}, {'id': 6400, 'synset': 'cathedra.n.01', 'name': 'cathedra'}, {'id': 6401, 'synset': 'cathedral.n.01', 'name': 'cathedral'}, {'id': 6402, 'synset': 'cathedral.n.02', 'name': 'cathedral'}, {'id': 6403, 'synset': 'catheter.n.01', 'name': 'catheter'}, {'id': 6404, 'synset': 'cathode.n.01', 'name': 'cathode'}, {'id': 6405, 'synset': 'cathode-ray_tube.n.01', 'name': 'cathode-ray_tube'}, {'id': 6406, 'synset': "cat-o'-nine-tails.n.01", 'name': "cat-o'-nine-tails"}, {'id': 6407, 'synset': "cat's-paw.n.02", 'name': "cat's-paw"}, {'id': 6408, 'synset': 'catsup_bottle.n.01', 'name': 'catsup_bottle'}, {'id': 6409, 'synset': 'cattle_car.n.01', 'name': 'cattle_car'}, {'id': 6410, 'synset': 'cattle_guard.n.01', 'name': 'cattle_guard'}, {'id': 6411, 'synset': 'cattleship.n.01', 'name': 'cattleship'}, {'id': 6412, 'synset': 'cautery.n.01', 'name': 'cautery'}, {'id': 6413, 'synset': 'cavalier_hat.n.01', 'name': 'cavalier_hat'}, {'id': 6414, 'synset': 'cavalry_sword.n.01', 'name': 'cavalry_sword'}, {'id': 6415, 'synset': 'cavetto.n.01', 'name': 'cavetto'}, {'id': 6416, 'synset': 'cavity_wall.n.01', 'name': 'cavity_wall'}, {'id': 6417, 'synset': 'c_battery.n.01', 'name': 'C_battery'}, {'id': 6418, 'synset': 'c-clamp.n.01', 'name': 'C-clamp'}, {'id': 6419, 'synset': 'cd_drive.n.01', 'name': 'CD_drive'}, {'id': 6420, 'synset': 'cd-r.n.01', 'name': 'CD-R'}, {'id': 6421, 'synset': 'cd-rom.n.01', 'name': 'CD-ROM'}, {'id': 6422, 'synset': 'cd-rom_drive.n.01', 'name': 'CD-ROM_drive'}, {'id': 6423, 'synset': 'cedar_chest.n.01', 'name': 'cedar_chest'}, {'id': 6424, 'synset': 'ceiling.n.01', 'name': 'ceiling'}, {'id': 6425, 'synset': 'celesta.n.01', 'name': 'celesta'}, {'id': 6426, 'synset': 'cell.n.03', 'name': 'cell'}, {'id': 6427, 'synset': 'cell.n.07', 'name': 'cell'}, {'id': 6428, 'synset': 'cellar.n.03', 'name': 'cellar'}, {'id': 6429, 'synset': 'cellblock.n.01', 'name': 'cellblock'}, {'id': 6430, 'synset': 'cello.n.01', 'name': 'cello'}, {'id': 6431, 'synset': 'cellophane.n.01', 'name': 'cellophane'}, {'id': 6432, 'synset': 'cellulose_tape.n.01', 'name': 'cellulose_tape'}, {'id': 6433, 'synset': 'cenotaph.n.01', 'name': 'cenotaph'}, {'id': 6434, 'synset': 'censer.n.01', 'name': 'censer'}, {'id': 6435, 'synset': 'center.n.03', 'name': 'center'}, {'id': 6436, 'synset': 'center_punch.n.01', 'name': 'center_punch'}, {'id': 6437, 'synset': 'centigrade_thermometer.n.01', 'name': 'Centigrade_thermometer'}, {'id': 6438, 'synset': 'central_processing_unit.n.01', 'name': 'central_processing_unit'}, {'id': 6439, 'synset': 'centrifugal_pump.n.01', 'name': 'centrifugal_pump'}, {'id': 6440, 'synset': 'centrifuge.n.01', 'name': 'centrifuge'}, {'id': 6441, 'synset': 'ceramic.n.01', 'name': 'ceramic'}, {'id': 6442, 'synset': 'ceramic_ware.n.01', 'name': 'ceramic_ware'}, {'id': 6443, 'synset': 'cereal_bowl.n.01', 'name': 'cereal_bowl'}, {'id': 6444, 'synset': 'cereal_box.n.01', 'name': 'cereal_box'}, {'id': 6445, 'synset': 'cerecloth.n.01', 'name': 'cerecloth'}, {'id': 6446, 'synset': 'cesspool.n.01', 'name': 'cesspool'}, {'id': 6447, 'synset': 'chachka.n.02', 'name': 'chachka'}, {'id': 6448, 'synset': 'chador.n.01', 'name': 'chador'}, {'id': 6449, 'synset': 'chafing_dish.n.01', 'name': 'chafing_dish'}, {'id': 6450, 'synset': 'chain.n.03', 'name': 'chain'}, {'id': 6451, 'synset': 'chain.n.05', 'name': 'chain'}, {'id': 6452, 'synset': 'chainlink_fence.n.01', 'name': 'chainlink_fence'}, {'id': 6453, 'synset': 'chain_printer.n.01', 'name': 'chain_printer'}, {'id': 6454, 'synset': 'chain_saw.n.01', 'name': 'chain_saw'}, {'id': 6455, 'synset': 'chain_store.n.01', 'name': 'chain_store'}, {'id': 6456, 'synset': 'chain_tongs.n.01', 'name': 'chain_tongs'}, {'id': 6457, 'synset': 'chain_wrench.n.01', 'name': 'chain_wrench'}, {'id': 6458, 'synset': 'chair.n.05', 'name': 'chair'}, {'id': 6459, 'synset': 'chair_of_state.n.01', 'name': 'chair_of_state'}, {'id': 6460, 'synset': 'chairlift.n.01', 'name': 'chairlift'}, {'id': 6461, 'synset': 'chaise.n.02', 'name': 'chaise'}, {'id': 6462, 'synset': 'chalet.n.01', 'name': 'chalet'}, {'id': 6463, 'synset': 'chalk.n.04', 'name': 'chalk'}, {'id': 6464, 'synset': 'challis.n.01', 'name': 'challis'}, {'id': 6465, 'synset': 'chamberpot.n.01', 'name': 'chamberpot'}, {'id': 6466, 'synset': 'chambray.n.01', 'name': 'chambray'}, {'id': 6467, 'synset': 'chamfer_bit.n.01', 'name': 'chamfer_bit'}, {'id': 6468, 'synset': 'chamfer_plane.n.01', 'name': 'chamfer_plane'}, {'id': 6469, 'synset': 'chamois_cloth.n.01', 'name': 'chamois_cloth'}, {'id': 6470, 'synset': 'chancel.n.01', 'name': 'chancel'}, {'id': 6471, 'synset': 'chancellery.n.01', 'name': 'chancellery'}, {'id': 6472, 'synset': 'chancery.n.02', 'name': 'chancery'}, {'id': 6473, 'synset': 'chandlery.n.01', 'name': 'chandlery'}, {'id': 6474, 'synset': 'chanfron.n.01', 'name': 'chanfron'}, {'id': 6475, 'synset': 'chanter.n.01', 'name': 'chanter'}, {'id': 6476, 'synset': 'chantry.n.02', 'name': 'chantry'}, {'id': 6477, 'synset': 'chapel.n.01', 'name': 'chapel'}, {'id': 6478, 'synset': 'chapterhouse.n.02', 'name': 'chapterhouse'}, {'id': 6479, 'synset': 'chapterhouse.n.01', 'name': 'chapterhouse'}, {'id': 6480, 'synset': 'character_printer.n.01', 'name': 'character_printer'}, {'id': 6481, 'synset': 'charcuterie.n.01', 'name': 'charcuterie'}, {'id': 6482, 'synset': 'charge-exchange_accelerator.n.01', 'name': 'charge-exchange_accelerator'}, {'id': 6483, 'synset': 'charger.n.02', 'name': 'charger'}, {'id': 6484, 'synset': 'chariot.n.01', 'name': 'chariot'}, {'id': 6485, 'synset': 'chariot.n.02', 'name': 'chariot'}, {'id': 6486, 'synset': 'charnel_house.n.01', 'name': 'charnel_house'}, {'id': 6487, 'synset': 'chassis.n.03', 'name': 'chassis'}, {'id': 6488, 'synset': 'chassis.n.02', 'name': 'chassis'}, {'id': 6489, 'synset': 'chasuble.n.01', 'name': 'chasuble'}, {'id': 6490, 'synset': 'chateau.n.01', 'name': 'chateau'}, {'id': 6491, 'synset': 'chatelaine.n.02', 'name': 'chatelaine'}, {'id': 6492, 'synset': 'checker.n.03', 'name': 'checker'}, {'id': 6493, 'synset': 'checkout.n.03', 'name': 'checkout'}, {'id': 6494, 'synset': 'cheekpiece.n.01', 'name': 'cheekpiece'}, {'id': 6495, 'synset': 'cheeseboard.n.01', 'name': 'cheeseboard'}, {'id': 6496, 'synset': 'cheesecloth.n.01', 'name': 'cheesecloth'}, {'id': 6497, 'synset': 'cheese_cutter.n.01', 'name': 'cheese_cutter'}, {'id': 6498, 'synset': 'cheese_press.n.01', 'name': 'cheese_press'}, {'id': 6499, 'synset': 'chemical_bomb.n.01', 'name': 'chemical_bomb'}, {'id': 6500, 'synset': 'chemical_plant.n.01', 'name': 'chemical_plant'}, {'id': 6501, 'synset': 'chemical_reactor.n.01', 'name': 'chemical_reactor'}, {'id': 6502, 'synset': 'chemise.n.02', 'name': 'chemise'}, {'id': 6503, 'synset': 'chemise.n.01', 'name': 'chemise'}, {'id': 6504, 'synset': 'chenille.n.02', 'name': 'chenille'}, {'id': 6505, 'synset': 'chessman.n.01', 'name': 'chessman'}, {'id': 6506, 'synset': 'chest.n.02', 'name': 'chest'}, {'id': 6507, 'synset': 'chesterfield.n.02', 'name': 'chesterfield'}, {'id': 6508, 'synset': 'chest_of_drawers.n.01', 'name': 'chest_of_drawers'}, {'id': 6509, 'synset': 'chest_protector.n.01', 'name': 'chest_protector'}, {'id': 6510, 'synset': 'cheval-de-frise.n.01', 'name': 'cheval-de-frise'}, {'id': 6511, 'synset': 'cheval_glass.n.01', 'name': 'cheval_glass'}, {'id': 6512, 'synset': 'chicane.n.02', 'name': 'chicane'}, {'id': 6513, 'synset': 'chicken_coop.n.01', 'name': 'chicken_coop'}, {'id': 6514, 'synset': 'chicken_wire.n.01', 'name': 'chicken_wire'}, {'id': 6515, 'synset': 'chicken_yard.n.01', 'name': 'chicken_yard'}, {'id': 6516, 'synset': 'chiffon.n.01', 'name': 'chiffon'}, {'id': 6517, 'synset': 'chiffonier.n.01', 'name': 'chiffonier'}, {'id': 6518, 'synset': "child's_room.n.01", 'name': "child's_room"}, {'id': 6519, 'synset': 'chimney_breast.n.01', 'name': 'chimney_breast'}, {'id': 6520, 'synset': 'chimney_corner.n.01', 'name': 'chimney_corner'}, {'id': 6521, 'synset': 'china.n.02', 'name': 'china'}, {'id': 6522, 'synset': 'china_cabinet.n.01', 'name': 'china_cabinet'}, {'id': 6523, 'synset': 'chinchilla.n.02', 'name': 'chinchilla'}, {'id': 6524, 'synset': 'chinese_lantern.n.01', 'name': 'Chinese_lantern'}, {'id': 6525, 'synset': 'chinese_puzzle.n.01', 'name': 'Chinese_puzzle'}, {'id': 6526, 'synset': 'chinning_bar.n.01', 'name': 'chinning_bar'}, {'id': 6527, 'synset': 'chino.n.02', 'name': 'chino'}, {'id': 6528, 'synset': 'chino.n.01', 'name': 'chino'}, {'id': 6529, 'synset': 'chin_rest.n.01', 'name': 'chin_rest'}, {'id': 6530, 'synset': 'chin_strap.n.01', 'name': 'chin_strap'}, {'id': 6531, 'synset': 'chintz.n.01', 'name': 'chintz'}, {'id': 6532, 'synset': 'chip.n.07', 'name': 'chip'}, {'id': 6533, 'synset': 'chisel.n.01', 'name': 'chisel'}, {'id': 6534, 'synset': 'chlamys.n.02', 'name': 'chlamys'}, {'id': 6535, 'synset': 'choir.n.03', 'name': 'choir'}, {'id': 6536, 'synset': 'choir_loft.n.01', 'name': 'choir_loft'}, {'id': 6537, 'synset': 'choke.n.02', 'name': 'choke'}, {'id': 6538, 'synset': 'choke.n.01', 'name': 'choke'}, {'id': 6539, 'synset': 'chokey.n.01', 'name': 'chokey'}, {'id': 6540, 'synset': 'choo-choo.n.01', 'name': 'choo-choo'}, {'id': 6541, 'synset': 'chopine.n.01', 'name': 'chopine'}, {'id': 6542, 'synset': 'chordophone.n.01', 'name': 'chordophone'}, {'id': 6543, 'synset': 'christmas_stocking.n.01', 'name': 'Christmas_stocking'}, {'id': 6544, 'synset': 'chronograph.n.01', 'name': 'chronograph'}, {'id': 6545, 'synset': 'chronometer.n.01', 'name': 'chronometer'}, {'id': 6546, 'synset': 'chronoscope.n.01', 'name': 'chronoscope'}, {'id': 6547, 'synset': 'chuck.n.03', 'name': 'chuck'}, {'id': 6548, 'synset': 'chuck_wagon.n.01', 'name': 'chuck_wagon'}, {'id': 6549, 'synset': 'chukka.n.02', 'name': 'chukka'}, {'id': 6550, 'synset': 'church.n.02', 'name': 'church'}, {'id': 6551, 'synset': 'church_bell.n.01', 'name': 'church_bell'}, {'id': 6552, 'synset': 'church_hat.n.01', 'name': 'church_hat'}, {'id': 6553, 'synset': 'church_key.n.01', 'name': 'church_key'}, {'id': 6554, 'synset': 'church_tower.n.01', 'name': 'church_tower'}, {'id': 6555, 'synset': 'churidars.n.01', 'name': 'churidars'}, {'id': 6556, 'synset': 'churn.n.01', 'name': 'churn'}, {'id': 6557, 'synset': 'ciderpress.n.01', 'name': 'ciderpress'}, {'id': 6558, 'synset': 'cigar_band.n.01', 'name': 'cigar_band'}, {'id': 6559, 'synset': 'cigar_cutter.n.01', 'name': 'cigar_cutter'}, {'id': 6560, 'synset': 'cigarette_butt.n.01', 'name': 'cigarette_butt'}, {'id': 6561, 'synset': 'cigarette_holder.n.01', 'name': 'cigarette_holder'}, {'id': 6562, 'synset': 'cigar_lighter.n.01', 'name': 'cigar_lighter'}, {'id': 6563, 'synset': 'cinch.n.02', 'name': 'cinch'}, {'id': 6564, 'synset': 'cinema.n.02', 'name': 'cinema'}, {'id': 6565, 'synset': 'cinquefoil.n.02', 'name': 'cinquefoil'}, {'id': 6566, 'synset': 'circle.n.08', 'name': 'circle'}, {'id': 6567, 'synset': 'circlet.n.02', 'name': 'circlet'}, {'id': 6568, 'synset': 'circuit.n.01', 'name': 'circuit'}, {'id': 6569, 'synset': 'circuit_board.n.01', 'name': 'circuit_board'}, {'id': 6570, 'synset': 'circuit_breaker.n.01', 'name': 'circuit_breaker'}, {'id': 6571, 'synset': 'circuitry.n.01', 'name': 'circuitry'}, {'id': 6572, 'synset': 'circular_plane.n.01', 'name': 'circular_plane'}, {'id': 6573, 'synset': 'circular_saw.n.01', 'name': 'circular_saw'}, {'id': 6574, 'synset': 'circus_tent.n.01', 'name': 'circus_tent'}, {'id': 6575, 'synset': 'cistern.n.03', 'name': 'cistern'}, {'id': 6576, 'synset': 'cittern.n.01', 'name': 'cittern'}, {'id': 6577, 'synset': 'city_hall.n.01', 'name': 'city_hall'}, {'id': 6578, 'synset': 'cityscape.n.02', 'name': 'cityscape'}, {'id': 6579, 'synset': 'city_university.n.01', 'name': 'city_university'}, {'id': 6580, 'synset': 'civies.n.01', 'name': 'civies'}, {'id': 6581, 'synset': 'civilian_clothing.n.01', 'name': 'civilian_clothing'}, {'id': 6582, 'synset': 'clack_valve.n.01', 'name': 'clack_valve'}, {'id': 6583, 'synset': 'clamp.n.01', 'name': 'clamp'}, {'id': 6584, 'synset': 'clamshell.n.02', 'name': 'clamshell'}, {'id': 6585, 'synset': 'clapper.n.03', 'name': 'clapper'}, {'id': 6586, 'synset': 'clapperboard.n.01', 'name': 'clapperboard'}, {'id': 6587, 'synset': 'clarence.n.01', 'name': 'clarence'}, {'id': 6588, 'synset': 'clark_cell.n.01', 'name': 'Clark_cell'}, {'id': 6589, 'synset': 'clasp_knife.n.01', 'name': 'clasp_knife'}, {'id': 6590, 'synset': 'classroom.n.01', 'name': 'classroom'}, {'id': 6591, 'synset': 'clavichord.n.01', 'name': 'clavichord'}, {'id': 6592, 'synset': 'clavier.n.02', 'name': 'clavier'}, {'id': 6593, 'synset': 'clay_pigeon.n.01', 'name': 'clay_pigeon'}, {'id': 6594, 'synset': 'claymore_mine.n.01', 'name': 'claymore_mine'}, {'id': 6595, 'synset': 'claymore.n.01', 'name': 'claymore'}, {'id': 6596, 'synset': 'cleaners.n.01', 'name': 'cleaners'}, {'id': 6597, 'synset': 'cleaning_implement.n.01', 'name': 'cleaning_implement'}, {'id': 6598, 'synset': 'cleaning_pad.n.01', 'name': 'cleaning_pad'}, {'id': 6599, 'synset': 'clean_room.n.01', 'name': 'clean_room'}, {'id': 6600, 'synset': 'clearway.n.01', 'name': 'clearway'}, {'id': 6601, 'synset': 'cleat.n.01', 'name': 'cleat'}, {'id': 6602, 'synset': 'cleats.n.01', 'name': 'cleats'}, {'id': 6603, 'synset': 'cleaver.n.01', 'name': 'cleaver'}, {'id': 6604, 'synset': 'clerestory.n.01', 'name': 'clerestory'}, {'id': 6605, 'synset': 'clevis.n.01', 'name': 'clevis'}, {'id': 6606, 'synset': 'clews.n.01', 'name': 'clews'}, {'id': 6607, 'synset': 'cliff_dwelling.n.01', 'name': 'cliff_dwelling'}, {'id': 6608, 'synset': 'climbing_frame.n.01', 'name': 'climbing_frame'}, {'id': 6609, 'synset': 'clinch.n.03', 'name': 'clinch'}, {'id': 6610, 'synset': 'clinch.n.02', 'name': 'clinch'}, {'id': 6611, 'synset': 'clincher.n.03', 'name': 'clincher'}, {'id': 6612, 'synset': 'clinic.n.03', 'name': 'clinic'}, {'id': 6613, 'synset': 'clinical_thermometer.n.01', 'name': 'clinical_thermometer'}, {'id': 6614, 'synset': 'clinker.n.02', 'name': 'clinker'}, {'id': 6615, 'synset': 'clinometer.n.01', 'name': 'clinometer'}, {'id': 6616, 'synset': 'clip_lead.n.01', 'name': 'clip_lead'}, {'id': 6617, 'synset': 'clip-on.n.01', 'name': 'clip-on'}, {'id': 6618, 'synset': 'clipper.n.04', 'name': 'clipper'}, {'id': 6619, 'synset': 'clipper.n.02', 'name': 'clipper'}, {'id': 6620, 'synset': 'cloak.n.01', 'name': 'cloak'}, {'id': 6621, 'synset': 'cloakroom.n.02', 'name': 'cloakroom'}, {'id': 6622, 'synset': 'cloche.n.02', 'name': 'cloche'}, {'id': 6623, 'synset': 'cloche.n.01', 'name': 'cloche'}, {'id': 6624, 'synset': 'clock_pendulum.n.01', 'name': 'clock_pendulum'}, {'id': 6625, 'synset': 'clock_radio.n.01', 'name': 'clock_radio'}, {'id': 6626, 'synset': 'clockwork.n.01', 'name': 'clockwork'}, {'id': 6627, 'synset': 'clog.n.01', 'name': 'clog'}, {'id': 6628, 'synset': 'cloisonne.n.01', 'name': 'cloisonne'}, {'id': 6629, 'synset': 'cloister.n.02', 'name': 'cloister'}, {'id': 6630, 'synset': 'closed_circuit.n.01', 'name': 'closed_circuit'}, {'id': 6631, 'synset': 'closed-circuit_television.n.01', 'name': 'closed-circuit_television'}, {'id': 6632, 'synset': 'closed_loop.n.01', 'name': 'closed_loop'}, {'id': 6633, 'synset': 'closet.n.04', 'name': 'closet'}, {'id': 6634, 'synset': 'closeup_lens.n.01', 'name': 'closeup_lens'}, {'id': 6635, 'synset': 'cloth_cap.n.01', 'name': 'cloth_cap'}, {'id': 6636, 'synset': 'cloth_covering.n.01', 'name': 'cloth_covering'}, {'id': 6637, 'synset': 'clothesbrush.n.01', 'name': 'clothesbrush'}, {'id': 6638, 'synset': 'clothes_closet.n.01', 'name': 'clothes_closet'}, {'id': 6639, 'synset': 'clothes_dryer.n.01', 'name': 'clothes_dryer'}, {'id': 6640, 'synset': 'clotheshorse.n.01', 'name': 'clotheshorse'}, {'id': 6641, 'synset': 'clothes_tree.n.01', 'name': 'clothes_tree'}, {'id': 6642, 'synset': 'clothing.n.01', 'name': 'clothing'}, {'id': 6643, 'synset': 'clothing_store.n.01', 'name': 'clothing_store'}, {'id': 6644, 'synset': 'clout_nail.n.01', 'name': 'clout_nail'}, {'id': 6645, 'synset': 'clove_hitch.n.01', 'name': 'clove_hitch'}, {'id': 6646, 'synset': 'club_car.n.01', 'name': 'club_car'}, {'id': 6647, 'synset': 'clubroom.n.01', 'name': 'clubroom'}, {'id': 6648, 'synset': 'cluster_bomb.n.01', 'name': 'cluster_bomb'}, {'id': 6649, 'synset': 'clutch.n.07', 'name': 'clutch'}, {'id': 6650, 'synset': 'clutch.n.06', 'name': 'clutch'}, {'id': 6651, 'synset': 'coach.n.04', 'name': 'coach'}, {'id': 6652, 'synset': 'coach_house.n.01', 'name': 'coach_house'}, {'id': 6653, 'synset': 'coal_car.n.01', 'name': 'coal_car'}, {'id': 6654, 'synset': 'coal_chute.n.01', 'name': 'coal_chute'}, {'id': 6655, 'synset': 'coal_house.n.01', 'name': 'coal_house'}, {'id': 6656, 'synset': 'coal_shovel.n.01', 'name': 'coal_shovel'}, {'id': 6657, 'synset': 'coaming.n.01', 'name': 'coaming'}, {'id': 6658, 'synset': 'coaster_brake.n.01', 'name': 'coaster_brake'}, {'id': 6659, 'synset': 'coat_button.n.01', 'name': 'coat_button'}, {'id': 6660, 'synset': 'coat_closet.n.01', 'name': 'coat_closet'}, {'id': 6661, 'synset': 'coatdress.n.01', 'name': 'coatdress'}, {'id': 6662, 'synset': 'coatee.n.01', 'name': 'coatee'}, {'id': 6663, 'synset': 'coating.n.01', 'name': 'coating'}, {'id': 6664, 'synset': 'coating.n.03', 'name': 'coating'}, {'id': 6665, 'synset': 'coat_of_paint.n.01', 'name': 'coat_of_paint'}, {'id': 6666, 'synset': 'coattail.n.01', 'name': 'coattail'}, {'id': 6667, 'synset': 'coaxial_cable.n.01', 'name': 'coaxial_cable'}, {'id': 6668, 'synset': 'cobweb.n.03', 'name': 'cobweb'}, {'id': 6669, 'synset': 'cobweb.n.01', 'name': 'cobweb'}, {'id': 6670, 'synset': 'cockcroft_and_walton_accelerator.n.01', 'name': 'Cockcroft_and_Walton_accelerator'}, {'id': 6671, 'synset': 'cocked_hat.n.01', 'name': 'cocked_hat'}, {'id': 6672, 'synset': 'cockhorse.n.01', 'name': 'cockhorse'}, {'id': 6673, 'synset': 'cockleshell.n.01', 'name': 'cockleshell'}, {'id': 6674, 'synset': 'cockpit.n.01', 'name': 'cockpit'}, {'id': 6675, 'synset': 'cockpit.n.03', 'name': 'cockpit'}, {'id': 6676, 'synset': 'cockpit.n.02', 'name': 'cockpit'}, {'id': 6677, 'synset': 'cockscomb.n.03', 'name': 'cockscomb'}, {'id': 6678, 'synset': 'cocktail_dress.n.01', 'name': 'cocktail_dress'}, {'id': 6679, 'synset': 'cocktail_lounge.n.01', 'name': 'cocktail_lounge'}, {'id': 6680, 'synset': 'cocktail_shaker.n.01', 'name': 'cocktail_shaker'}, {'id': 6681, 'synset': 'cocotte.n.02', 'name': 'cocotte'}, {'id': 6682, 'synset': 'codpiece.n.01', 'name': 'codpiece'}, {'id': 6683, 'synset': 'coelostat.n.01', 'name': 'coelostat'}, {'id': 6684, 'synset': 'coffee_can.n.01', 'name': 'coffee_can'}, {'id': 6685, 'synset': 'coffee_cup.n.01', 'name': 'coffee_cup'}, {'id': 6686, 'synset': 'coffee_filter.n.01', 'name': 'coffee_filter'}, {'id': 6687, 'synset': 'coffee_mill.n.01', 'name': 'coffee_mill'}, {'id': 6688, 'synset': 'coffee_mug.n.01', 'name': 'coffee_mug'}, {'id': 6689, 'synset': 'coffee_stall.n.01', 'name': 'coffee_stall'}, {'id': 6690, 'synset': 'coffee_urn.n.01', 'name': 'coffee_urn'}, {'id': 6691, 'synset': 'coffer.n.02', 'name': 'coffer'}, {'id': 6692, 'synset': 'coffey_still.n.01', 'name': 'Coffey_still'}, {'id': 6693, 'synset': 'coffin.n.01', 'name': 'coffin'}, {'id': 6694, 'synset': 'cog.n.02', 'name': 'cog'}, {'id': 6695, 'synset': 'coif.n.02', 'name': 'coif'}, {'id': 6696, 'synset': 'coil.n.01', 'name': 'coil'}, {'id': 6697, 'synset': 'coil.n.06', 'name': 'coil'}, {'id': 6698, 'synset': 'coil.n.03', 'name': 'coil'}, {'id': 6699, 'synset': 'coil_spring.n.01', 'name': 'coil_spring'}, {'id': 6700, 'synset': 'coin_box.n.01', 'name': 'coin_box'}, {'id': 6701, 'synset': 'cold_cathode.n.01', 'name': 'cold_cathode'}, {'id': 6702, 'synset': 'cold_chisel.n.01', 'name': 'cold_chisel'}, {'id': 6703, 'synset': 'cold_cream.n.01', 'name': 'cold_cream'}, {'id': 6704, 'synset': 'cold_frame.n.01', 'name': 'cold_frame'}, {'id': 6705, 'synset': 'collar.n.01', 'name': 'collar'}, {'id': 6706, 'synset': 'collar.n.03', 'name': 'collar'}, {'id': 6707, 'synset': 'college.n.03', 'name': 'college'}, {'id': 6708, 'synset': 'collet.n.02', 'name': 'collet'}, {'id': 6709, 'synset': 'collider.n.01', 'name': 'collider'}, {'id': 6710, 'synset': 'colliery.n.01', 'name': 'colliery'}, {'id': 6711, 'synset': 'collimator.n.02', 'name': 'collimator'}, {'id': 6712, 'synset': 'collimator.n.01', 'name': 'collimator'}, {'id': 6713, 'synset': 'cologne.n.02', 'name': 'cologne'}, {'id': 6714, 'synset': 'colonnade.n.01', 'name': 'colonnade'}, {'id': 6715, 'synset': 'colonoscope.n.01', 'name': 'colonoscope'}, {'id': 6716, 'synset': 'colorimeter.n.01', 'name': 'colorimeter'}, {'id': 6717, 'synset': 'colors.n.02', 'name': 'colors'}, {'id': 6718, 'synset': 'color_television.n.01', 'name': 'color_television'}, {'id': 6719, 'synset': 'color_tube.n.01', 'name': 'color_tube'}, {'id': 6720, 'synset': 'color_wash.n.01', 'name': 'color_wash'}, {'id': 6721, 'synset': 'colt.n.02', 'name': 'Colt'}, {'id': 6722, 'synset': 'colter.n.01', 'name': 'colter'}, {'id': 6723, 'synset': 'columbarium.n.03', 'name': 'columbarium'}, {'id': 6724, 'synset': 'columbarium.n.02', 'name': 'columbarium'}, {'id': 6725, 'synset': 'column.n.07', 'name': 'column'}, {'id': 6726, 'synset': 'column.n.06', 'name': 'column'}, {'id': 6727, 'synset': 'comb.n.01', 'name': 'comb'}, {'id': 6728, 'synset': 'comb.n.03', 'name': 'comb'}, {'id': 6729, 'synset': 'comber.n.03', 'name': 'comber'}, {'id': 6730, 'synset': 'combination_plane.n.01', 'name': 'combination_plane'}, {'id': 6731, 'synset': 'combine.n.01', 'name': 'combine'}, {'id': 6732, 'synset': 'command_module.n.01', 'name': 'command_module'}, {'id': 6733, 'synset': 'commissary.n.01', 'name': 'commissary'}, {'id': 6734, 'synset': 'commissary.n.02', 'name': 'commissary'}, {'id': 6735, 'synset': 'commodity.n.01', 'name': 'commodity'}, {'id': 6736, 'synset': 'common_ax.n.01', 'name': 'common_ax'}, {'id': 6737, 'synset': 'common_room.n.01', 'name': 'common_room'}, {'id': 6738, 'synset': 'communications_satellite.n.01', 'name': 'communications_satellite'}, {'id': 6739, 'synset': 'communication_system.n.01', 'name': 'communication_system'}, {'id': 6740, 'synset': 'community_center.n.01', 'name': 'community_center'}, {'id': 6741, 'synset': 'commutator.n.01', 'name': 'commutator'}, {'id': 6742, 'synset': 'commuter.n.01', 'name': 'commuter'}, {'id': 6743, 'synset': 'compact.n.01', 'name': 'compact'}, {'id': 6744, 'synset': 'compact.n.03', 'name': 'compact'}, {'id': 6745, 'synset': 'compact_disk.n.01', 'name': 'compact_disk'}, {'id': 6746, 'synset': 'compact-disk_burner.n.01', 'name': 'compact-disk_burner'}, {'id': 6747, 'synset': 'companionway.n.01', 'name': 'companionway'}, {'id': 6748, 'synset': 'compartment.n.02', 'name': 'compartment'}, {'id': 6749, 'synset': 'compartment.n.01', 'name': 'compartment'}, {'id': 6750, 'synset': 'compass.n.04', 'name': 'compass'}, {'id': 6751, 'synset': 'compass_card.n.01', 'name': 'compass_card'}, {'id': 6752, 'synset': 'compass_saw.n.01', 'name': 'compass_saw'}, {'id': 6753, 'synset': 'compound.n.03', 'name': 'compound'}, {'id': 6754, 'synset': 'compound_lens.n.01', 'name': 'compound_lens'}, {'id': 6755, 'synset': 'compound_lever.n.01', 'name': 'compound_lever'}, {'id': 6756, 'synset': 'compound_microscope.n.01', 'name': 'compound_microscope'}, {'id': 6757, 'synset': 'compress.n.01', 'name': 'compress'}, {'id': 6758, 'synset': 'compression_bandage.n.01', 'name': 'compression_bandage'}, {'id': 6759, 'synset': 'compressor.n.01', 'name': 'compressor'}, {'id': 6760, 'synset': 'computer.n.01', 'name': 'computer'}, {'id': 6761, 'synset': 'computer_circuit.n.01', 'name': 'computer_circuit'}, {'id': 6762, 'synset': 'computerized_axial_tomography_scanner.n.01', 'name': 'computerized_axial_tomography_scanner'}, {'id': 6763, 'synset': 'computer_monitor.n.01', 'name': 'computer_monitor'}, {'id': 6764, 'synset': 'computer_network.n.01', 'name': 'computer_network'}, {'id': 6765, 'synset': 'computer_screen.n.01', 'name': 'computer_screen'}, {'id': 6766, 'synset': 'computer_store.n.01', 'name': 'computer_store'}, {'id': 6767, 'synset': 'computer_system.n.01', 'name': 'computer_system'}, {'id': 6768, 'synset': 'concentration_camp.n.01', 'name': 'concentration_camp'}, {'id': 6769, 'synset': 'concert_grand.n.01', 'name': 'concert_grand'}, {'id': 6770, 'synset': 'concert_hall.n.01', 'name': 'concert_hall'}, {'id': 6771, 'synset': 'concertina.n.02', 'name': 'concertina'}, {'id': 6772, 'synset': 'concertina.n.01', 'name': 'concertina'}, {'id': 6773, 'synset': 'concrete_mixer.n.01', 'name': 'concrete_mixer'}, {'id': 6774, 'synset': 'condensation_pump.n.01', 'name': 'condensation_pump'}, {'id': 6775, 'synset': 'condenser.n.04', 'name': 'condenser'}, {'id': 6776, 'synset': 'condenser.n.03', 'name': 'condenser'}, {'id': 6777, 'synset': 'condenser.n.02', 'name': 'condenser'}, {'id': 6778, 'synset': 'condenser_microphone.n.01', 'name': 'condenser_microphone'}, {'id': 6779, 'synset': 'condominium.n.02', 'name': 'condominium'}, {'id': 6780, 'synset': 'condominium.n.01', 'name': 'condominium'}, {'id': 6781, 'synset': 'conductor.n.04', 'name': 'conductor'}, {'id': 6782, 'synset': 'cone_clutch.n.01', 'name': 'cone_clutch'}, {'id': 6783, 'synset': 'confectionery.n.02', 'name': 'confectionery'}, {'id': 6784, 'synset': 'conference_center.n.01', 'name': 'conference_center'}, {'id': 6785, 'synset': 'conference_room.n.01', 'name': 'conference_room'}, {'id': 6786, 'synset': 'conference_table.n.01', 'name': 'conference_table'}, {'id': 6787, 'synset': 'confessional.n.01', 'name': 'confessional'}, {'id': 6788, 'synset': 'conformal_projection.n.01', 'name': 'conformal_projection'}, {'id': 6789, 'synset': 'congress_boot.n.01', 'name': 'congress_boot'}, {'id': 6790, 'synset': 'conic_projection.n.01', 'name': 'conic_projection'}, {'id': 6791, 'synset': 'connecting_rod.n.01', 'name': 'connecting_rod'}, {'id': 6792, 'synset': 'connecting_room.n.01', 'name': 'connecting_room'}, {'id': 6793, 'synset': 'connection.n.03', 'name': 'connection'}, {'id': 6794, 'synset': 'conning_tower.n.02', 'name': 'conning_tower'}, {'id': 6795, 'synset': 'conning_tower.n.01', 'name': 'conning_tower'}, {'id': 6796, 'synset': 'conservatory.n.03', 'name': 'conservatory'}, {'id': 6797, 'synset': 'conservatory.n.02', 'name': 'conservatory'}, {'id': 6798, 'synset': 'console.n.03', 'name': 'console'}, {'id': 6799, 'synset': 'console.n.02', 'name': 'console'}, {'id': 6800, 'synset': 'console_table.n.01', 'name': 'console_table'}, {'id': 6801, 'synset': 'consulate.n.01', 'name': 'consulate'}, {'id': 6802, 'synset': 'contact.n.07', 'name': 'contact'}, {'id': 6803, 'synset': 'contact.n.09', 'name': 'contact'}, {'id': 6804, 'synset': 'container.n.01', 'name': 'container'}, {'id': 6805, 'synset': 'container_ship.n.01', 'name': 'container_ship'}, {'id': 6806, 'synset': 'containment.n.02', 'name': 'containment'}, {'id': 6807, 'synset': 'contrabassoon.n.01', 'name': 'contrabassoon'}, {'id': 6808, 'synset': 'control_center.n.01', 'name': 'control_center'}, {'id': 6809, 'synset': 'control_circuit.n.01', 'name': 'control_circuit'}, {'id': 6810, 'synset': 'control_key.n.01', 'name': 'control_key'}, {'id': 6811, 'synset': 'control_panel.n.01', 'name': 'control_panel'}, {'id': 6812, 'synset': 'control_rod.n.01', 'name': 'control_rod'}, {'id': 6813, 'synset': 'control_room.n.01', 'name': 'control_room'}, {'id': 6814, 'synset': 'control_system.n.01', 'name': 'control_system'}, {'id': 6815, 'synset': 'control_tower.n.01', 'name': 'control_tower'}, {'id': 6816, 'synset': 'convector.n.01', 'name': 'convector'}, {'id': 6817, 'synset': 'convenience_store.n.01', 'name': 'convenience_store'}, {'id': 6818, 'synset': 'convent.n.01', 'name': 'convent'}, {'id': 6819, 'synset': 'conventicle.n.02', 'name': 'conventicle'}, {'id': 6820, 'synset': 'converging_lens.n.01', 'name': 'converging_lens'}, {'id': 6821, 'synset': 'converter.n.01', 'name': 'converter'}, {'id': 6822, 'synset': 'conveyance.n.03', 'name': 'conveyance'}, {'id': 6823, 'synset': 'conveyer_belt.n.01', 'name': 'conveyer_belt'}, {'id': 6824, 'synset': 'cookfire.n.01', 'name': 'cookfire'}, {'id': 6825, 'synset': 'cookhouse.n.02', 'name': 'cookhouse'}, {'id': 6826, 'synset': 'cookie_cutter.n.01', 'name': 'cookie_cutter'}, {'id': 6827, 'synset': 'cookie_jar.n.01', 'name': 'cookie_jar'}, {'id': 6828, 'synset': 'cookie_sheet.n.01', 'name': 'cookie_sheet'}, {'id': 6829, 'synset': 'cookstove.n.01', 'name': 'cookstove'}, {'id': 6830, 'synset': 'coolant_system.n.01', 'name': 'coolant_system'}, {'id': 6831, 'synset': 'cooling_system.n.02', 'name': 'cooling_system'}, {'id': 6832, 'synset': 'cooling_system.n.01', 'name': 'cooling_system'}, {'id': 6833, 'synset': 'cooling_tower.n.01', 'name': 'cooling_tower'}, {'id': 6834, 'synset': 'coonskin_cap.n.01', 'name': 'coonskin_cap'}, {'id': 6835, 'synset': 'cope.n.02', 'name': 'cope'}, {'id': 6836, 'synset': 'coping_saw.n.01', 'name': 'coping_saw'}, {'id': 6837, 'synset': 'copperware.n.01', 'name': 'copperware'}, {'id': 6838, 'synset': 'copyholder.n.01', 'name': 'copyholder'}, {'id': 6839, 'synset': 'coquille.n.02', 'name': 'coquille'}, {'id': 6840, 'synset': 'coracle.n.01', 'name': 'coracle'}, {'id': 6841, 'synset': 'corbel.n.01', 'name': 'corbel'}, {'id': 6842, 'synset': 'corbel_arch.n.01', 'name': 'corbel_arch'}, {'id': 6843, 'synset': 'corbel_step.n.01', 'name': 'corbel_step'}, {'id': 6844, 'synset': 'corbie_gable.n.01', 'name': 'corbie_gable'}, {'id': 6845, 'synset': 'cord.n.04', 'name': 'cord'}, {'id': 6846, 'synset': 'cord.n.03', 'name': 'cord'}, {'id': 6847, 'synset': 'cordage.n.02', 'name': 'cordage'}, {'id': 6848, 'synset': 'cords.n.01', 'name': 'cords'}, {'id': 6849, 'synset': 'core.n.10', 'name': 'core'}, {'id': 6850, 'synset': 'core_bit.n.01', 'name': 'core_bit'}, {'id': 6851, 'synset': 'core_drill.n.01', 'name': 'core_drill'}, {'id': 6852, 'synset': 'corer.n.01', 'name': 'corer'}, {'id': 6853, 'synset': 'corker.n.02', 'name': 'corker'}, {'id': 6854, 'synset': 'corncrib.n.01', 'name': 'corncrib'}, {'id': 6855, 'synset': 'corner.n.11', 'name': 'corner'}, {'id': 6856, 'synset': 'corner.n.03', 'name': 'corner'}, {'id': 6857, 'synset': 'corner_post.n.01', 'name': 'corner_post'}, {'id': 6858, 'synset': 'cornice.n.03', 'name': 'cornice'}, {'id': 6859, 'synset': 'cornice.n.02', 'name': 'cornice'}, {'id': 6860, 'synset': 'correctional_institution.n.01', 'name': 'correctional_institution'}, {'id': 6861, 'synset': 'corrugated_fastener.n.01', 'name': 'corrugated_fastener'}, {'id': 6862, 'synset': 'corselet.n.01', 'name': 'corselet'}, {'id': 6863, 'synset': 'cosmetic.n.01', 'name': 'cosmetic'}, {'id': 6864, 'synset': 'cosmotron.n.01', 'name': 'cosmotron'}, {'id': 6865, 'synset': 'costume.n.01', 'name': 'costume'}, {'id': 6866, 'synset': 'costume.n.02', 'name': 'costume'}, {'id': 6867, 'synset': 'costume.n.03', 'name': 'costume'}, {'id': 6868, 'synset': 'cosy.n.01', 'name': 'cosy'}, {'id': 6869, 'synset': 'cot.n.03', 'name': 'cot'}, {'id': 6870, 'synset': 'cottage_tent.n.01', 'name': 'cottage_tent'}, {'id': 6871, 'synset': 'cotter.n.03', 'name': 'cotter'}, {'id': 6872, 'synset': 'cotter_pin.n.01', 'name': 'cotter_pin'}, {'id': 6873, 'synset': 'cotton.n.02', 'name': 'cotton'}, {'id': 6874, 'synset': 'cotton_flannel.n.01', 'name': 'cotton_flannel'}, {'id': 6875, 'synset': 'cotton_mill.n.01', 'name': 'cotton_mill'}, {'id': 6876, 'synset': 'couch.n.03', 'name': 'couch'}, {'id': 6877, 'synset': 'couch.n.02', 'name': 'couch'}, {'id': 6878, 'synset': 'couchette.n.01', 'name': 'couchette'}, {'id': 6879, 'synset': 'coude_telescope.n.01', 'name': 'coude_telescope'}, {'id': 6880, 'synset': 'counter.n.01', 'name': 'counter'}, {'id': 6881, 'synset': 'counter.n.03', 'name': 'counter'}, {'id': 6882, 'synset': 'counter.n.02', 'name': 'counter'}, {'id': 6883, 'synset': 'counterbore.n.01', 'name': 'counterbore'}, {'id': 6884, 'synset': 'counter_tube.n.01', 'name': 'counter_tube'}, {'id': 6885, 'synset': 'country_house.n.01', 'name': 'country_house'}, {'id': 6886, 'synset': 'country_store.n.01', 'name': 'country_store'}, {'id': 6887, 'synset': 'coupe.n.01', 'name': 'coupe'}, {'id': 6888, 'synset': 'coupling.n.02', 'name': 'coupling'}, {'id': 6889, 'synset': 'court.n.10', 'name': 'court'}, {'id': 6890, 'synset': 'court.n.04', 'name': 'court'}, {'id': 6891, 'synset': 'court.n.02', 'name': 'court'}, {'id': 6892, 'synset': 'court.n.09', 'name': 'court'}, {'id': 6893, 'synset': 'courtelle.n.01', 'name': 'Courtelle'}, {'id': 6894, 'synset': 'courthouse.n.02', 'name': 'courthouse'}, {'id': 6895, 'synset': 'courthouse.n.01', 'name': 'courthouse'}, {'id': 6896, 'synset': 'covered_bridge.n.01', 'name': 'covered_bridge'}, {'id': 6897, 'synset': 'covered_couch.n.01', 'name': 'covered_couch'}, {'id': 6898, 'synset': 'covered_wagon.n.01', 'name': 'covered_wagon'}, {'id': 6899, 'synset': 'covering.n.02', 'name': 'covering'}, {'id': 6900, 'synset': 'coverlet.n.01', 'name': 'coverlet'}, {'id': 6901, 'synset': 'cover_plate.n.01', 'name': 'cover_plate'}, {'id': 6902, 'synset': 'cowbarn.n.01', 'name': 'cowbarn'}, {'id': 6903, 'synset': 'cowboy_boot.n.01', 'name': 'cowboy_boot'}, {'id': 6904, 'synset': 'cowhide.n.03', 'name': 'cowhide'}, {'id': 6905, 'synset': 'cowl.n.02', 'name': 'cowl'}, {'id': 6906, 'synset': 'cow_pen.n.01', 'name': 'cow_pen'}, {'id': 6907, 'synset': 'cpu_board.n.01', 'name': 'CPU_board'}, {'id': 6908, 'synset': 'crackle.n.02', 'name': 'crackle'}, {'id': 6909, 'synset': 'cradle.n.01', 'name': 'cradle'}, {'id': 6910, 'synset': 'craft.n.02', 'name': 'craft'}, {'id': 6911, 'synset': 'cramp.n.03', 'name': 'cramp'}, {'id': 6912, 'synset': 'crampon.n.02', 'name': 'crampon'}, {'id': 6913, 'synset': 'crampon.n.01', 'name': 'crampon'}, {'id': 6914, 'synset': 'crane.n.04', 'name': 'crane'}, {'id': 6915, 'synset': 'craniometer.n.01', 'name': 'craniometer'}, {'id': 6916, 'synset': 'crank.n.04', 'name': 'crank'}, {'id': 6917, 'synset': 'crankcase.n.01', 'name': 'crankcase'}, {'id': 6918, 'synset': 'crankshaft.n.01', 'name': 'crankshaft'}, {'id': 6919, 'synset': 'crash_barrier.n.01', 'name': 'crash_barrier'}, {'id': 6920, 'synset': 'crash_helmet.n.01', 'name': 'crash_helmet'}, {'id': 6921, 'synset': 'cravat.n.01', 'name': 'cravat'}, {'id': 6922, 'synset': 'crazy_quilt.n.01', 'name': 'crazy_quilt'}, {'id': 6923, 'synset': 'cream.n.03', 'name': 'cream'}, {'id': 6924, 'synset': 'creche.n.01', 'name': 'creche'}, {'id': 6925, 'synset': 'creche.n.02', 'name': 'creche'}, {'id': 6926, 'synset': 'credenza.n.01', 'name': 'credenza'}, {'id': 6927, 'synset': 'creel.n.01', 'name': 'creel'}, {'id': 6928, 'synset': 'crematory.n.02', 'name': 'crematory'}, {'id': 6929, 'synset': 'crematory.n.01', 'name': 'crematory'}, {'id': 6930, 'synset': 'crepe.n.03', 'name': 'crepe'}, {'id': 6931, 'synset': 'crepe_de_chine.n.01', 'name': 'crepe_de_Chine'}, {'id': 6932, 'synset': 'crescent_wrench.n.01', 'name': 'crescent_wrench'}, {'id': 6933, 'synset': 'cretonne.n.01', 'name': 'cretonne'}, {'id': 6934, 'synset': 'crib.n.03', 'name': 'crib'}, {'id': 6935, 'synset': 'cricket_ball.n.01', 'name': 'cricket_ball'}, {'id': 6936, 'synset': 'cricket_bat.n.01', 'name': 'cricket_bat'}, {'id': 6937, 'synset': 'cricket_equipment.n.01', 'name': 'cricket_equipment'}, {'id': 6938, 'synset': 'cringle.n.01', 'name': 'cringle'}, {'id': 6939, 'synset': 'crinoline.n.03', 'name': 'crinoline'}, {'id': 6940, 'synset': 'crinoline.n.02', 'name': 'crinoline'}, {'id': 6941, 'synset': 'crochet_needle.n.01', 'name': 'crochet_needle'}, {'id': 6942, 'synset': 'crock_pot.n.01', 'name': 'Crock_Pot'}, {'id': 6943, 'synset': 'crook.n.03', 'name': 'crook'}, {'id': 6944, 'synset': 'crookes_radiometer.n.01', 'name': 'Crookes_radiometer'}, {'id': 6945, 'synset': 'crookes_tube.n.01', 'name': 'Crookes_tube'}, {'id': 6946, 'synset': 'croquet_ball.n.01', 'name': 'croquet_ball'}, {'id': 6947, 'synset': 'croquet_equipment.n.01', 'name': 'croquet_equipment'}, {'id': 6948, 'synset': 'croquet_mallet.n.01', 'name': 'croquet_mallet'}, {'id': 6949, 'synset': 'cross.n.01', 'name': 'cross'}, {'id': 6950, 'synset': 'crossbar.n.03', 'name': 'crossbar'}, {'id': 6951, 'synset': 'crossbar.n.02', 'name': 'crossbar'}, {'id': 6952, 'synset': 'crossbench.n.01', 'name': 'crossbench'}, {'id': 6953, 'synset': 'cross_bit.n.01', 'name': 'cross_bit'}, {'id': 6954, 'synset': 'crossbow.n.01', 'name': 'crossbow'}, {'id': 6955, 'synset': 'crosscut_saw.n.01', 'name': 'crosscut_saw'}, {'id': 6956, 'synset': 'crossjack.n.01', 'name': 'crossjack'}, {'id': 6957, 'synset': 'crosspiece.n.02', 'name': 'crosspiece'}, {'id': 6958, 'synset': 'crotchet.n.04', 'name': 'crotchet'}, {'id': 6959, 'synset': "croupier's_rake.n.01", 'name': "croupier's_rake"}, {'id': 6960, 'synset': 'crown.n.11', 'name': 'crown'}, {'id': 6961, 'synset': 'crown_jewels.n.01', 'name': 'crown_jewels'}, {'id': 6962, 'synset': 'crown_lens.n.01', 'name': 'crown_lens'}, {'id': 6963, 'synset': "crow's_nest.n.01", 'name': "crow's_nest"}, {'id': 6964, 'synset': 'crucible.n.01', 'name': 'crucible'}, {'id': 6965, 'synset': 'cruet.n.01', 'name': 'cruet'}, {'id': 6966, 'synset': 'cruet-stand.n.01', 'name': 'cruet-stand'}, {'id': 6967, 'synset': 'cruise_control.n.01', 'name': 'cruise_control'}, {'id': 6968, 'synset': 'cruise_missile.n.01', 'name': 'cruise_missile'}, {'id': 6969, 'synset': 'cruiser.n.02', 'name': 'cruiser'}, {'id': 6970, 'synset': 'crupper.n.01', 'name': 'crupper'}, {'id': 6971, 'synset': 'cruse.n.01', 'name': 'cruse'}, {'id': 6972, 'synset': 'crusher.n.01', 'name': 'crusher'}, {'id': 6973, 'synset': 'cryometer.n.01', 'name': 'cryometer'}, {'id': 6974, 'synset': 'cryoscope.n.01', 'name': 'cryoscope'}, {'id': 6975, 'synset': 'cryostat.n.01', 'name': 'cryostat'}, {'id': 6976, 'synset': 'crypt.n.01', 'name': 'crypt'}, {'id': 6977, 'synset': 'crystal.n.06', 'name': 'crystal'}, {'id': 6978, 'synset': 'crystal_detector.n.01', 'name': 'crystal_detector'}, {'id': 6979, 'synset': 'crystal_microphone.n.01', 'name': 'crystal_microphone'}, {'id': 6980, 'synset': 'crystal_oscillator.n.01', 'name': 'crystal_oscillator'}, {'id': 6981, 'synset': 'crystal_set.n.01', 'name': 'crystal_set'}, {'id': 6982, 'synset': 'cubitiere.n.01', 'name': 'cubitiere'}, {'id': 6983, 'synset': 'cucking_stool.n.01', 'name': 'cucking_stool'}, {'id': 6984, 'synset': 'cuckoo_clock.n.01', 'name': 'cuckoo_clock'}, {'id': 6985, 'synset': 'cuddy.n.01', 'name': 'cuddy'}, {'id': 6986, 'synset': 'cudgel.n.01', 'name': 'cudgel'}, {'id': 6987, 'synset': 'cue.n.04', 'name': 'cue'}, {'id': 6988, 'synset': 'cue_ball.n.01', 'name': 'cue_ball'}, {'id': 6989, 'synset': 'cuff.n.01', 'name': 'cuff'}, {'id': 6990, 'synset': 'cuirass.n.01', 'name': 'cuirass'}, {'id': 6991, 'synset': 'cuisse.n.01', 'name': 'cuisse'}, {'id': 6992, 'synset': 'cul.n.01', 'name': 'cul'}, {'id': 6993, 'synset': 'culdoscope.n.01', 'name': 'culdoscope'}, {'id': 6994, 'synset': 'cullis.n.01', 'name': 'cullis'}, {'id': 6995, 'synset': 'culotte.n.01', 'name': 'culotte'}, {'id': 6996, 'synset': 'cultivator.n.02', 'name': 'cultivator'}, {'id': 6997, 'synset': 'culverin.n.02', 'name': 'culverin'}, {'id': 6998, 'synset': 'culverin.n.01', 'name': 'culverin'}, {'id': 6999, 'synset': 'culvert.n.01', 'name': 'culvert'}, {'id': 7000, 'synset': 'cup_hook.n.01', 'name': 'cup_hook'}, {'id': 7001, 'synset': 'cupola.n.02', 'name': 'cupola'}, {'id': 7002, 'synset': 'cupola.n.01', 'name': 'cupola'}, {'id': 7003, 'synset': 'curb.n.02', 'name': 'curb'}, {'id': 7004, 'synset': 'curb_roof.n.01', 'name': 'curb_roof'}, {'id': 7005, 'synset': 'curbstone.n.01', 'name': 'curbstone'}, {'id': 7006, 'synset': 'curette.n.01', 'name': 'curette'}, {'id': 7007, 'synset': 'currycomb.n.01', 'name': 'currycomb'}, {'id': 7008, 'synset': 'cursor.n.01', 'name': 'cursor'}, {'id': 7009, 'synset': 'customhouse.n.01', 'name': 'customhouse'}, {'id': 7010, 'synset': 'cutaway.n.01', 'name': 'cutaway'}, {'id': 7011, 'synset': 'cutlas.n.01', 'name': 'cutlas'}, {'id': 7012, 'synset': 'cutoff.n.03', 'name': 'cutoff'}, {'id': 7013, 'synset': 'cutout.n.01', 'name': 'cutout'}, {'id': 7014, 'synset': 'cutter.n.06', 'name': 'cutter'}, {'id': 7015, 'synset': 'cutter.n.05', 'name': 'cutter'}, {'id': 7016, 'synset': 'cutting_implement.n.01', 'name': 'cutting_implement'}, {'id': 7017, 'synset': 'cutting_room.n.01', 'name': 'cutting_room'}, {'id': 7018, 'synset': 'cutty_stool.n.01', 'name': 'cutty_stool'}, {'id': 7019, 'synset': 'cutwork.n.01', 'name': 'cutwork'}, {'id': 7020, 'synset': 'cybercafe.n.01', 'name': 'cybercafe'}, {'id': 7021, 'synset': 'cyclopean_masonry.n.01', 'name': 'cyclopean_masonry'}, {'id': 7022, 'synset': 'cyclostyle.n.01', 'name': 'cyclostyle'}, {'id': 7023, 'synset': 'cyclotron.n.01', 'name': 'cyclotron'}, {'id': 7024, 'synset': 'cylinder.n.03', 'name': 'cylinder'}, {'id': 7025, 'synset': 'cylinder_lock.n.01', 'name': 'cylinder_lock'}, {'id': 7026, 'synset': 'dacha.n.01', 'name': 'dacha'}, {'id': 7027, 'synset': 'dacron.n.01', 'name': 'Dacron'}, {'id': 7028, 'synset': 'dado.n.02', 'name': 'dado'}, {'id': 7029, 'synset': 'dado_plane.n.01', 'name': 'dado_plane'}, {'id': 7030, 'synset': 'dairy.n.01', 'name': 'dairy'}, {'id': 7031, 'synset': 'dais.n.01', 'name': 'dais'}, {'id': 7032, 'synset': 'daisy_print_wheel.n.01', 'name': 'daisy_print_wheel'}, {'id': 7033, 'synset': 'daisywheel_printer.n.01', 'name': 'daisywheel_printer'}, {'id': 7034, 'synset': 'dam.n.01', 'name': 'dam'}, {'id': 7035, 'synset': 'damask.n.02', 'name': 'damask'}, {'id': 7036, 'synset': 'dampener.n.01', 'name': 'dampener'}, {'id': 7037, 'synset': 'damper.n.02', 'name': 'damper'}, {'id': 7038, 'synset': 'damper_block.n.01', 'name': 'damper_block'}, {'id': 7039, 'synset': 'dark_lantern.n.01', 'name': 'dark_lantern'}, {'id': 7040, 'synset': 'darkroom.n.01', 'name': 'darkroom'}, {'id': 7041, 'synset': 'darning_needle.n.01', 'name': 'darning_needle'}, {'id': 7042, 'synset': 'dart.n.02', 'name': 'dart'}, {'id': 7043, 'synset': 'dart.n.01', 'name': 'dart'}, {'id': 7044, 'synset': 'dashboard.n.02', 'name': 'dashboard'}, {'id': 7045, 'synset': 'dashiki.n.01', 'name': 'dashiki'}, {'id': 7046, 'synset': 'dash-pot.n.01', 'name': 'dash-pot'}, {'id': 7047, 'synset': 'data_converter.n.01', 'name': 'data_converter'}, {'id': 7048, 'synset': 'data_input_device.n.01', 'name': 'data_input_device'}, {'id': 7049, 'synset': 'data_multiplexer.n.01', 'name': 'data_multiplexer'}, {'id': 7050, 'synset': 'data_system.n.01', 'name': 'data_system'}, {'id': 7051, 'synset': 'davenport.n.03', 'name': 'davenport'}, {'id': 7052, 'synset': 'davenport.n.02', 'name': 'davenport'}, {'id': 7053, 'synset': 'davit.n.01', 'name': 'davit'}, {'id': 7054, 'synset': 'daybed.n.01', 'name': 'daybed'}, {'id': 7055, 'synset': 'daybook.n.02', 'name': 'daybook'}, {'id': 7056, 'synset': 'day_nursery.n.01', 'name': 'day_nursery'}, {'id': 7057, 'synset': 'day_school.n.03', 'name': 'day_school'}, {'id': 7058, 'synset': 'dead_axle.n.01', 'name': 'dead_axle'}, {'id': 7059, 'synset': 'deadeye.n.02', 'name': 'deadeye'}, {'id': 7060, 'synset': 'deadhead.n.02', 'name': 'deadhead'}, {'id': 7061, 'synset': 'deanery.n.01', 'name': 'deanery'}, {'id': 7062, 'synset': 'deathbed.n.02', 'name': 'deathbed'}, {'id': 7063, 'synset': 'death_camp.n.01', 'name': 'death_camp'}, {'id': 7064, 'synset': 'death_house.n.01', 'name': 'death_house'}, {'id': 7065, 'synset': 'death_knell.n.02', 'name': 'death_knell'}, {'id': 7066, 'synset': 'death_seat.n.01', 'name': 'death_seat'}, {'id': 7067, 'synset': 'deck.n.02', 'name': 'deck'}, {'id': 7068, 'synset': 'deck.n.04', 'name': 'deck'}, {'id': 7069, 'synset': 'deck-house.n.01', 'name': 'deck-house'}, {'id': 7070, 'synset': 'deckle.n.02', 'name': 'deckle'}, {'id': 7071, 'synset': 'deckle_edge.n.01', 'name': 'deckle_edge'}, {'id': 7072, 'synset': 'declinometer.n.01', 'name': 'declinometer'}, {'id': 7073, 'synset': 'decoder.n.02', 'name': 'decoder'}, {'id': 7074, 'synset': 'decolletage.n.01', 'name': 'decolletage'}, {'id': 7075, 'synset': 'decoupage.n.01', 'name': 'decoupage'}, {'id': 7076, 'synset': 'dedicated_file_server.n.01', 'name': 'dedicated_file_server'}, {'id': 7077, 'synset': 'deep-freeze.n.01', 'name': 'deep-freeze'}, {'id': 7078, 'synset': 'deerstalker.n.01', 'name': 'deerstalker'}, {'id': 7079, 'synset': 'defense_system.n.01', 'name': 'defense_system'}, {'id': 7080, 'synset': 'defensive_structure.n.01', 'name': 'defensive_structure'}, {'id': 7081, 'synset': 'defibrillator.n.01', 'name': 'defibrillator'}, {'id': 7082, 'synset': 'defilade.n.01', 'name': 'defilade'}, {'id': 7083, 'synset': 'deflector.n.01', 'name': 'deflector'}, {'id': 7084, 'synset': 'delayed_action.n.01', 'name': 'delayed_action'}, {'id': 7085, 'synset': 'delay_line.n.01', 'name': 'delay_line'}, {'id': 7086, 'synset': 'delft.n.01', 'name': 'delft'}, {'id': 7087, 'synset': 'delicatessen.n.02', 'name': 'delicatessen'}, {'id': 7088, 'synset': 'delivery_truck.n.01', 'name': 'delivery_truck'}, {'id': 7089, 'synset': 'delta_wing.n.01', 'name': 'delta_wing'}, {'id': 7090, 'synset': 'demijohn.n.01', 'name': 'demijohn'}, {'id': 7091, 'synset': 'demitasse.n.02', 'name': 'demitasse'}, {'id': 7092, 'synset': 'den.n.04', 'name': 'den'}, {'id': 7093, 'synset': 'denim.n.02', 'name': 'denim'}, {'id': 7094, 'synset': 'densimeter.n.01', 'name': 'densimeter'}, {'id': 7095, 'synset': 'densitometer.n.01', 'name': 'densitometer'}, {'id': 7096, 'synset': 'dental_appliance.n.01', 'name': 'dental_appliance'}, {'id': 7097, 'synset': 'dental_implant.n.01', 'name': 'dental_implant'}, {'id': 7098, 'synset': "dentist's_drill.n.01", 'name': "dentist's_drill"}, {'id': 7099, 'synset': 'denture.n.01', 'name': 'denture'}, {'id': 7100, 'synset': 'deodorant.n.01', 'name': 'deodorant'}, {'id': 7101, 'synset': 'department_store.n.01', 'name': 'department_store'}, {'id': 7102, 'synset': 'departure_lounge.n.01', 'name': 'departure_lounge'}, {'id': 7103, 'synset': 'depilatory.n.02', 'name': 'depilatory'}, {'id': 7104, 'synset': 'depressor.n.03', 'name': 'depressor'}, {'id': 7105, 'synset': 'depth_finder.n.01', 'name': 'depth_finder'}, {'id': 7106, 'synset': 'depth_gauge.n.01', 'name': 'depth_gauge'}, {'id': 7107, 'synset': 'derrick.n.02', 'name': 'derrick'}, {'id': 7108, 'synset': 'derrick.n.01', 'name': 'derrick'}, {'id': 7109, 'synset': 'derringer.n.01', 'name': 'derringer'}, {'id': 7110, 'synset': 'desk_phone.n.01', 'name': 'desk_phone'}, {'id': 7111, 'synset': 'desktop_computer.n.01', 'name': 'desktop_computer'}, {'id': 7112, 'synset': 'dessert_spoon.n.01', 'name': 'dessert_spoon'}, {'id': 7113, 'synset': 'destroyer.n.01', 'name': 'destroyer'}, {'id': 7114, 'synset': 'destroyer_escort.n.01', 'name': 'destroyer_escort'}, {'id': 7115, 'synset': 'detached_house.n.01', 'name': 'detached_house'}, {'id': 7116, 'synset': 'detector.n.01', 'name': 'detector'}, {'id': 7117, 'synset': 'detector.n.03', 'name': 'detector'}, {'id': 7118, 'synset': 'detention_home.n.01', 'name': 'detention_home'}, {'id': 7119, 'synset': 'detonating_fuse.n.01', 'name': 'detonating_fuse'}, {'id': 7120, 'synset': 'detonator.n.01', 'name': 'detonator'}, {'id': 7121, 'synset': 'developer.n.02', 'name': 'developer'}, {'id': 7122, 'synset': 'device.n.01', 'name': 'device'}, {'id': 7123, 'synset': 'dewar_flask.n.01', 'name': 'Dewar_flask'}, {'id': 7124, 'synset': 'dhoti.n.01', 'name': 'dhoti'}, {'id': 7125, 'synset': 'dhow.n.01', 'name': 'dhow'}, {'id': 7126, 'synset': 'dial.n.04', 'name': 'dial'}, {'id': 7127, 'synset': 'dial.n.03', 'name': 'dial'}, {'id': 7128, 'synset': 'dial.n.02', 'name': 'dial'}, {'id': 7129, 'synset': 'dialog_box.n.01', 'name': 'dialog_box'}, {'id': 7130, 'synset': 'dial_telephone.n.01', 'name': 'dial_telephone'}, {'id': 7131, 'synset': 'dialyzer.n.01', 'name': 'dialyzer'}, {'id': 7132, 'synset': 'diamante.n.02', 'name': 'diamante'}, {'id': 7133, 'synset': 'diaper.n.02', 'name': 'diaper'}, {'id': 7134, 'synset': 'diaphone.n.01', 'name': 'diaphone'}, {'id': 7135, 'synset': 'diaphragm.n.01', 'name': 'diaphragm'}, {'id': 7136, 'synset': 'diaphragm.n.04', 'name': 'diaphragm'}, {'id': 7137, 'synset': 'diathermy_machine.n.01', 'name': 'diathermy_machine'}, {'id': 7138, 'synset': 'dibble.n.01', 'name': 'dibble'}, {'id': 7139, 'synset': 'dice_cup.n.01', 'name': 'dice_cup'}, {'id': 7140, 'synset': 'dicer.n.01', 'name': 'dicer'}, {'id': 7141, 'synset': 'dickey.n.02', 'name': 'dickey'}, {'id': 7142, 'synset': 'dickey.n.01', 'name': 'dickey'}, {'id': 7143, 'synset': 'dictaphone.n.01', 'name': 'Dictaphone'}, {'id': 7144, 'synset': 'die.n.03', 'name': 'die'}, {'id': 7145, 'synset': 'diesel.n.02', 'name': 'diesel'}, {'id': 7146, 'synset': 'diesel-electric_locomotive.n.01', 'name': 'diesel-electric_locomotive'}, {'id': 7147, 'synset': 'diesel-hydraulic_locomotive.n.01', 'name': 'diesel-hydraulic_locomotive'}, {'id': 7148, 'synset': 'diesel_locomotive.n.01', 'name': 'diesel_locomotive'}, {'id': 7149, 'synset': 'diestock.n.01', 'name': 'diestock'}, {'id': 7150, 'synset': 'differential_analyzer.n.01', 'name': 'differential_analyzer'}, {'id': 7151, 'synset': 'differential_gear.n.01', 'name': 'differential_gear'}, {'id': 7152, 'synset': 'diffuser.n.02', 'name': 'diffuser'}, {'id': 7153, 'synset': 'diffuser.n.01', 'name': 'diffuser'}, {'id': 7154, 'synset': 'digester.n.01', 'name': 'digester'}, {'id': 7155, 'synset': 'diggings.n.02', 'name': 'diggings'}, {'id': 7156, 'synset': 'digital-analog_converter.n.01', 'name': 'digital-analog_converter'}, {'id': 7157, 'synset': 'digital_audiotape.n.01', 'name': 'digital_audiotape'}, {'id': 7158, 'synset': 'digital_camera.n.01', 'name': 'digital_camera'}, {'id': 7159, 'synset': 'digital_clock.n.01', 'name': 'digital_clock'}, {'id': 7160, 'synset': 'digital_computer.n.01', 'name': 'digital_computer'}, {'id': 7161, 'synset': 'digital_display.n.01', 'name': 'digital_display'}, {'id': 7162, 'synset': 'digital_subscriber_line.n.01', 'name': 'digital_subscriber_line'}, {'id': 7163, 'synset': 'digital_voltmeter.n.01', 'name': 'digital_voltmeter'}, {'id': 7164, 'synset': 'digital_watch.n.01', 'name': 'digital_watch'}, {'id': 7165, 'synset': 'digitizer.n.01', 'name': 'digitizer'}, {'id': 7166, 'synset': 'dilator.n.03', 'name': 'dilator'}, {'id': 7167, 'synset': 'dildo.n.01', 'name': 'dildo'}, {'id': 7168, 'synset': 'dimity.n.01', 'name': 'dimity'}, {'id': 7169, 'synset': 'dimmer.n.01', 'name': 'dimmer'}, {'id': 7170, 'synset': 'diner.n.03', 'name': 'diner'}, {'id': 7171, 'synset': 'dinette.n.01', 'name': 'dinette'}, {'id': 7172, 'synset': 'dining_area.n.01', 'name': 'dining_area'}, {'id': 7173, 'synset': 'dining_car.n.01', 'name': 'dining_car'}, {'id': 7174, 'synset': 'dining-hall.n.01', 'name': 'dining-hall'}, {'id': 7175, 'synset': 'dining_room.n.01', 'name': 'dining_room'}, {'id': 7176, 'synset': 'dining-room_furniture.n.01', 'name': 'dining-room_furniture'}, {'id': 7177, 'synset': 'dining-room_table.n.01', 'name': 'dining-room_table'}, {'id': 7178, 'synset': 'dinner_bell.n.01', 'name': 'dinner_bell'}, {'id': 7179, 'synset': 'dinner_dress.n.01', 'name': 'dinner_dress'}, {'id': 7180, 'synset': 'dinner_napkin.n.01', 'name': 'dinner_napkin'}, {'id': 7181, 'synset': 'dinner_pail.n.01', 'name': 'dinner_pail'}, {'id': 7182, 'synset': 'dinner_table.n.01', 'name': 'dinner_table'}, {'id': 7183, 'synset': 'dinner_theater.n.01', 'name': 'dinner_theater'}, {'id': 7184, 'synset': 'diode.n.02', 'name': 'diode'}, {'id': 7185, 'synset': 'diode.n.01', 'name': 'diode'}, {'id': 7186, 'synset': 'dip.n.07', 'name': 'dip'}, {'id': 7187, 'synset': 'diplomatic_building.n.01', 'name': 'diplomatic_building'}, {'id': 7188, 'synset': 'dipole.n.02', 'name': 'dipole'}, {'id': 7189, 'synset': 'dipper.n.01', 'name': 'dipper'}, {'id': 7190, 'synset': 'dipstick.n.01', 'name': 'dipstick'}, {'id': 7191, 'synset': 'dip_switch.n.01', 'name': 'DIP_switch'}, {'id': 7192, 'synset': 'directional_antenna.n.01', 'name': 'directional_antenna'}, {'id': 7193, 'synset': 'directional_microphone.n.01', 'name': 'directional_microphone'}, {'id': 7194, 'synset': 'direction_finder.n.01', 'name': 'direction_finder'}, {'id': 7195, 'synset': 'dirk.n.01', 'name': 'dirk'}, {'id': 7196, 'synset': 'dirndl.n.02', 'name': 'dirndl'}, {'id': 7197, 'synset': 'dirndl.n.01', 'name': 'dirndl'}, {'id': 7198, 'synset': 'dirty_bomb.n.01', 'name': 'dirty_bomb'}, {'id': 7199, 'synset': 'discharge_lamp.n.01', 'name': 'discharge_lamp'}, {'id': 7200, 'synset': 'discharge_pipe.n.01', 'name': 'discharge_pipe'}, {'id': 7201, 'synset': 'disco.n.02', 'name': 'disco'}, {'id': 7202, 'synset': 'discount_house.n.01', 'name': 'discount_house'}, {'id': 7203, 'synset': 'discus.n.02', 'name': 'discus'}, {'id': 7204, 'synset': 'disguise.n.02', 'name': 'disguise'}, {'id': 7205, 'synset': 'dishpan.n.01', 'name': 'dishpan'}, {'id': 7206, 'synset': 'dish_rack.n.01', 'name': 'dish_rack'}, {'id': 7207, 'synset': 'disk.n.02', 'name': 'disk'}, {'id': 7208, 'synset': 'disk_brake.n.01', 'name': 'disk_brake'}, {'id': 7209, 'synset': 'disk_clutch.n.01', 'name': 'disk_clutch'}, {'id': 7210, 'synset': 'disk_controller.n.01', 'name': 'disk_controller'}, {'id': 7211, 'synset': 'disk_drive.n.01', 'name': 'disk_drive'}, {'id': 7212, 'synset': 'diskette.n.01', 'name': 'diskette'}, {'id': 7213, 'synset': 'disk_harrow.n.01', 'name': 'disk_harrow'}, {'id': 7214, 'synset': 'dispatch_case.n.01', 'name': 'dispatch_case'}, {'id': 7215, 'synset': 'dispensary.n.01', 'name': 'dispensary'}, {'id': 7216, 'synset': 'display.n.06', 'name': 'display'}, {'id': 7217, 'synset': 'display_adapter.n.01', 'name': 'display_adapter'}, {'id': 7218, 'synset': 'display_panel.n.01', 'name': 'display_panel'}, {'id': 7219, 'synset': 'display_window.n.01', 'name': 'display_window'}, {'id': 7220, 'synset': 'disposal.n.04', 'name': 'disposal'}, {'id': 7221, 'synset': 'disrupting_explosive.n.01', 'name': 'disrupting_explosive'}, {'id': 7222, 'synset': 'distaff.n.02', 'name': 'distaff'}, {'id': 7223, 'synset': 'distillery.n.01', 'name': 'distillery'}, {'id': 7224, 'synset': 'distributor.n.04', 'name': 'distributor'}, {'id': 7225, 'synset': 'distributor_cam.n.01', 'name': 'distributor_cam'}, {'id': 7226, 'synset': 'distributor_cap.n.01', 'name': 'distributor_cap'}, {'id': 7227, 'synset': 'distributor_housing.n.01', 'name': 'distributor_housing'}, {'id': 7228, 'synset': 'distributor_point.n.01', 'name': 'distributor_point'}, {'id': 7229, 'synset': 'ditch.n.01', 'name': 'ditch'}, {'id': 7230, 'synset': 'ditch_spade.n.01', 'name': 'ditch_spade'}, {'id': 7231, 'synset': 'ditty_bag.n.01', 'name': 'ditty_bag'}, {'id': 7232, 'synset': 'divan.n.01', 'name': 'divan'}, {'id': 7233, 'synset': 'divan.n.04', 'name': 'divan'}, {'id': 7234, 'synset': 'dive_bomber.n.01', 'name': 'dive_bomber'}, {'id': 7235, 'synset': 'diverging_lens.n.01', 'name': 'diverging_lens'}, {'id': 7236, 'synset': 'divided_highway.n.01', 'name': 'divided_highway'}, {'id': 7237, 'synset': 'divider.n.04', 'name': 'divider'}, {'id': 7238, 'synset': 'diving_bell.n.01', 'name': 'diving_bell'}, {'id': 7239, 'synset': 'divining_rod.n.01', 'name': 'divining_rod'}, {'id': 7240, 'synset': 'diving_suit.n.01', 'name': 'diving_suit'}, {'id': 7241, 'synset': 'dixie.n.02', 'name': 'dixie'}, {'id': 7242, 'synset': 'dock.n.05', 'name': 'dock'}, {'id': 7243, 'synset': 'doeskin.n.02', 'name': 'doeskin'}, {'id': 7244, 'synset': 'dogcart.n.01', 'name': 'dogcart'}, {'id': 7245, 'synset': 'doggie_bag.n.01', 'name': 'doggie_bag'}, {'id': 7246, 'synset': 'dogsled.n.01', 'name': 'dogsled'}, {'id': 7247, 'synset': 'dog_wrench.n.01', 'name': 'dog_wrench'}, {'id': 7248, 'synset': 'doily.n.01', 'name': 'doily'}, {'id': 7249, 'synset': 'dolly.n.02', 'name': 'dolly'}, {'id': 7250, 'synset': 'dolman.n.02', 'name': 'dolman'}, {'id': 7251, 'synset': 'dolman.n.01', 'name': 'dolman'}, {'id': 7252, 'synset': 'dolman_sleeve.n.01', 'name': 'dolman_sleeve'}, {'id': 7253, 'synset': 'dolmen.n.01', 'name': 'dolmen'}, {'id': 7254, 'synset': 'dome.n.04', 'name': 'dome'}, {'id': 7255, 'synset': 'dome.n.03', 'name': 'dome'}, {'id': 7256, 'synset': 'domino.n.03', 'name': 'domino'}, {'id': 7257, 'synset': 'dongle.n.01', 'name': 'dongle'}, {'id': 7258, 'synset': 'donkey_jacket.n.01', 'name': 'donkey_jacket'}, {'id': 7259, 'synset': 'door.n.01', 'name': 'door'}, {'id': 7260, 'synset': 'door.n.05', 'name': 'door'}, {'id': 7261, 'synset': 'door.n.04', 'name': 'door'}, {'id': 7262, 'synset': 'doorbell.n.01', 'name': 'doorbell'}, {'id': 7263, 'synset': 'doorframe.n.01', 'name': 'doorframe'}, {'id': 7264, 'synset': 'doorjamb.n.01', 'name': 'doorjamb'}, {'id': 7265, 'synset': 'doorlock.n.01', 'name': 'doorlock'}, {'id': 7266, 'synset': 'doornail.n.01', 'name': 'doornail'}, {'id': 7267, 'synset': 'doorplate.n.01', 'name': 'doorplate'}, {'id': 7268, 'synset': 'doorsill.n.01', 'name': 'doorsill'}, {'id': 7269, 'synset': 'doorstop.n.01', 'name': 'doorstop'}, {'id': 7270, 'synset': 'doppler_radar.n.01', 'name': 'Doppler_radar'}, {'id': 7271, 'synset': 'dormer.n.01', 'name': 'dormer'}, {'id': 7272, 'synset': 'dormer_window.n.01', 'name': 'dormer_window'}, {'id': 7273, 'synset': 'dormitory.n.01', 'name': 'dormitory'}, {'id': 7274, 'synset': 'dormitory.n.02', 'name': 'dormitory'}, {'id': 7275, 'synset': 'dosemeter.n.01', 'name': 'dosemeter'}, {'id': 7276, 'synset': 'dossal.n.01', 'name': 'dossal'}, {'id': 7277, 'synset': 'dot_matrix_printer.n.01', 'name': 'dot_matrix_printer'}, {'id': 7278, 'synset': 'double_bed.n.01', 'name': 'double_bed'}, {'id': 7279, 'synset': 'double-bitted_ax.n.01', 'name': 'double-bitted_ax'}, {'id': 7280, 'synset': 'double_boiler.n.01', 'name': 'double_boiler'}, {'id': 7281, 'synset': 'double-breasted_jacket.n.01', 'name': 'double-breasted_jacket'}, {'id': 7282, 'synset': 'double-breasted_suit.n.01', 'name': 'double-breasted_suit'}, {'id': 7283, 'synset': 'double_door.n.01', 'name': 'double_door'}, {'id': 7284, 'synset': 'double_glazing.n.01', 'name': 'double_glazing'}, {'id': 7285, 'synset': 'double-hung_window.n.01', 'name': 'double-hung_window'}, {'id': 7286, 'synset': 'double_knit.n.01', 'name': 'double_knit'}, {'id': 7287, 'synset': 'doubler.n.01', 'name': 'doubler'}, {'id': 7288, 'synset': 'double_reed.n.02', 'name': 'double_reed'}, {'id': 7289, 'synset': 'double-reed_instrument.n.01', 'name': 'double-reed_instrument'}, {'id': 7290, 'synset': 'doublet.n.01', 'name': 'doublet'}, {'id': 7291, 'synset': 'doubletree.n.01', 'name': 'doubletree'}, {'id': 7292, 'synset': 'douche.n.01', 'name': 'douche'}, {'id': 7293, 'synset': 'dovecote.n.01', 'name': 'dovecote'}, {'id': 7294, 'synset': "dover's_powder.n.01", 'name': "Dover's_powder"}, {'id': 7295, 'synset': 'dovetail.n.01', 'name': 'dovetail'}, {'id': 7296, 'synset': 'dovetail_plane.n.01', 'name': 'dovetail_plane'}, {'id': 7297, 'synset': 'dowel.n.01', 'name': 'dowel'}, {'id': 7298, 'synset': 'downstage.n.01', 'name': 'downstage'}, {'id': 7299, 'synset': 'drafting_instrument.n.01', 'name': 'drafting_instrument'}, {'id': 7300, 'synset': 'drafting_table.n.01', 'name': 'drafting_table'}, {'id': 7301, 'synset': 'dragunov.n.01', 'name': 'Dragunov'}, {'id': 7302, 'synset': 'drainage_ditch.n.01', 'name': 'drainage_ditch'}, {'id': 7303, 'synset': 'drainage_system.n.01', 'name': 'drainage_system'}, {'id': 7304, 'synset': 'drain_basket.n.01', 'name': 'drain_basket'}, {'id': 7305, 'synset': 'drainplug.n.01', 'name': 'drainplug'}, {'id': 7306, 'synset': 'drape.n.03', 'name': 'drape'}, {'id': 7307, 'synset': 'drapery.n.02', 'name': 'drapery'}, {'id': 7308, 'synset': 'drawbar.n.01', 'name': 'drawbar'}, {'id': 7309, 'synset': 'drawbridge.n.01', 'name': 'drawbridge'}, {'id': 7310, 'synset': 'drawing_chalk.n.01', 'name': 'drawing_chalk'}, {'id': 7311, 'synset': 'drawing_room.n.01', 'name': 'drawing_room'}, {'id': 7312, 'synset': 'drawing_room.n.02', 'name': 'drawing_room'}, {'id': 7313, 'synset': 'drawknife.n.01', 'name': 'drawknife'}, {'id': 7314, 'synset': 'drawstring_bag.n.01', 'name': 'drawstring_bag'}, {'id': 7315, 'synset': 'dray.n.01', 'name': 'dray'}, {'id': 7316, 'synset': 'dreadnought.n.01', 'name': 'dreadnought'}, {'id': 7317, 'synset': 'dredge.n.01', 'name': 'dredge'}, {'id': 7318, 'synset': 'dredger.n.01', 'name': 'dredger'}, {'id': 7319, 'synset': 'dredging_bucket.n.01', 'name': 'dredging_bucket'}, {'id': 7320, 'synset': 'dress_blues.n.01', 'name': 'dress_blues'}, {'id': 7321, 'synset': 'dressing.n.04', 'name': 'dressing'}, {'id': 7322, 'synset': 'dressing_case.n.01', 'name': 'dressing_case'}, {'id': 7323, 'synset': 'dressing_gown.n.01', 'name': 'dressing_gown'}, {'id': 7324, 'synset': 'dressing_room.n.01', 'name': 'dressing_room'}, {'id': 7325, 'synset': 'dressing_sack.n.01', 'name': 'dressing_sack'}, {'id': 7326, 'synset': 'dressing_table.n.01', 'name': 'dressing_table'}, {'id': 7327, 'synset': 'dress_rack.n.01', 'name': 'dress_rack'}, {'id': 7328, 'synset': 'dress_shirt.n.01', 'name': 'dress_shirt'}, {'id': 7329, 'synset': 'dress_uniform.n.01', 'name': 'dress_uniform'}, {'id': 7330, 'synset': 'drift_net.n.01', 'name': 'drift_net'}, {'id': 7331, 'synset': 'electric_drill.n.01', 'name': 'electric_drill'}, {'id': 7332, 'synset': 'drilling_platform.n.01', 'name': 'drilling_platform'}, {'id': 7333, 'synset': 'drill_press.n.01', 'name': 'drill_press'}, {'id': 7334, 'synset': 'drill_rig.n.01', 'name': 'drill_rig'}, {'id': 7335, 'synset': 'drinking_fountain.n.01', 'name': 'drinking_fountain'}, {'id': 7336, 'synset': 'drinking_vessel.n.01', 'name': 'drinking_vessel'}, {'id': 7337, 'synset': 'drip_loop.n.01', 'name': 'drip_loop'}, {'id': 7338, 'synset': 'drip_mat.n.01', 'name': 'drip_mat'}, {'id': 7339, 'synset': 'drip_pan.n.02', 'name': 'drip_pan'}, {'id': 7340, 'synset': 'dripping_pan.n.01', 'name': 'dripping_pan'}, {'id': 7341, 'synset': 'drip_pot.n.01', 'name': 'drip_pot'}, {'id': 7342, 'synset': 'drive.n.02', 'name': 'drive'}, {'id': 7343, 'synset': 'drive.n.10', 'name': 'drive'}, {'id': 7344, 'synset': 'drive_line.n.01', 'name': 'drive_line'}, {'id': 7345, 'synset': 'driver.n.05', 'name': 'driver'}, {'id': 7346, 'synset': 'driveshaft.n.01', 'name': 'driveshaft'}, {'id': 7347, 'synset': 'driveway.n.01', 'name': 'driveway'}, {'id': 7348, 'synset': 'driving_iron.n.01', 'name': 'driving_iron'}, {'id': 7349, 'synset': 'driving_wheel.n.01', 'name': 'driving_wheel'}, {'id': 7350, 'synset': 'drogue.n.04', 'name': 'drogue'}, {'id': 7351, 'synset': 'drogue_parachute.n.01', 'name': 'drogue_parachute'}, {'id': 7352, 'synset': 'drone.n.05', 'name': 'drone'}, {'id': 7353, 'synset': 'drop_arch.n.01', 'name': 'drop_arch'}, {'id': 7354, 'synset': 'drop_cloth.n.02', 'name': 'drop_cloth'}, {'id': 7355, 'synset': 'drop_curtain.n.01', 'name': 'drop_curtain'}, {'id': 7356, 'synset': 'drop_forge.n.01', 'name': 'drop_forge'}, {'id': 7357, 'synset': 'drop-leaf_table.n.01', 'name': 'drop-leaf_table'}, {'id': 7358, 'synset': 'droshky.n.01', 'name': 'droshky'}, {'id': 7359, 'synset': 'drove.n.03', 'name': 'drove'}, {'id': 7360, 'synset': 'drugget.n.01', 'name': 'drugget'}, {'id': 7361, 'synset': 'drugstore.n.01', 'name': 'drugstore'}, {'id': 7362, 'synset': 'drum.n.04', 'name': 'drum'}, {'id': 7363, 'synset': 'drum_brake.n.01', 'name': 'drum_brake'}, {'id': 7364, 'synset': 'drumhead.n.01', 'name': 'drumhead'}, {'id': 7365, 'synset': 'drum_printer.n.01', 'name': 'drum_printer'}, {'id': 7366, 'synset': 'drum_sander.n.01', 'name': 'drum_sander'}, {'id': 7367, 'synset': 'dry_battery.n.01', 'name': 'dry_battery'}, {'id': 7368, 'synset': 'dry-bulb_thermometer.n.01', 'name': 'dry-bulb_thermometer'}, {'id': 7369, 'synset': 'dry_cell.n.01', 'name': 'dry_cell'}, {'id': 7370, 'synset': 'dry_dock.n.01', 'name': 'dry_dock'}, {'id': 7371, 'synset': 'dryer.n.01', 'name': 'dryer'}, {'id': 7372, 'synset': 'dry_fly.n.01', 'name': 'dry_fly'}, {'id': 7373, 'synset': 'dry_kiln.n.01', 'name': 'dry_kiln'}, {'id': 7374, 'synset': 'dry_masonry.n.01', 'name': 'dry_masonry'}, {'id': 7375, 'synset': 'dry_point.n.02', 'name': 'dry_point'}, {'id': 7376, 'synset': 'dry_wall.n.02', 'name': 'dry_wall'}, {'id': 7377, 'synset': 'dual_scan_display.n.01', 'name': 'dual_scan_display'}, {'id': 7378, 'synset': 'duck.n.04', 'name': 'duck'}, {'id': 7379, 'synset': 'duckboard.n.01', 'name': 'duckboard'}, {'id': 7380, 'synset': 'duckpin.n.01', 'name': 'duckpin'}, {'id': 7381, 'synset': 'dudeen.n.01', 'name': 'dudeen'}, {'id': 7382, 'synset': 'duffel.n.02', 'name': 'duffel'}, {'id': 7383, 'synset': 'duffel_coat.n.01', 'name': 'duffel_coat'}, {'id': 7384, 'synset': 'dugout.n.01', 'name': 'dugout'}, {'id': 7385, 'synset': 'dugout_canoe.n.01', 'name': 'dugout_canoe'}, {'id': 7386, 'synset': 'dulciana.n.01', 'name': 'dulciana'}, {'id': 7387, 'synset': 'dulcimer.n.02', 'name': 'dulcimer'}, {'id': 7388, 'synset': 'dulcimer.n.01', 'name': 'dulcimer'}, {'id': 7389, 'synset': 'dumb_bomb.n.01', 'name': 'dumb_bomb'}, {'id': 7390, 'synset': 'dumbwaiter.n.01', 'name': 'dumbwaiter'}, {'id': 7391, 'synset': 'dumdum.n.01', 'name': 'dumdum'}, {'id': 7392, 'synset': 'dumpcart.n.01', 'name': 'dumpcart'}, {'id': 7393, 'synset': 'dump_truck.n.01', 'name': 'dump_truck'}, {'id': 7394, 'synset': 'dumpy_level.n.01', 'name': 'Dumpy_level'}, {'id': 7395, 'synset': 'dunce_cap.n.01', 'name': 'dunce_cap'}, {'id': 7396, 'synset': 'dune_buggy.n.01', 'name': 'dune_buggy'}, {'id': 7397, 'synset': 'dungeon.n.02', 'name': 'dungeon'}, {'id': 7398, 'synset': 'duplex_apartment.n.01', 'name': 'duplex_apartment'}, {'id': 7399, 'synset': 'duplex_house.n.01', 'name': 'duplex_house'}, {'id': 7400, 'synset': 'duplicator.n.01', 'name': 'duplicator'}, {'id': 7401, 'synset': 'dust_bag.n.01', 'name': 'dust_bag'}, {'id': 7402, 'synset': 'dustcloth.n.01', 'name': 'dustcloth'}, {'id': 7403, 'synset': 'dust_cover.n.03', 'name': 'dust_cover'}, {'id': 7404, 'synset': 'dust_cover.n.02', 'name': 'dust_cover'}, {'id': 7405, 'synset': 'dustmop.n.01', 'name': 'dustmop'}, {'id': 7406, 'synset': 'dutch_oven.n.01', 'name': 'Dutch_oven'}, {'id': 7407, 'synset': 'dutch_oven.n.02', 'name': 'Dutch_oven'}, {'id': 7408, 'synset': 'dwelling.n.01', 'name': 'dwelling'}, {'id': 7409, 'synset': 'dye-works.n.01', 'name': 'dye-works'}, {'id': 7410, 'synset': 'dynamo.n.01', 'name': 'dynamo'}, {'id': 7411, 'synset': 'dynamometer.n.01', 'name': 'dynamometer'}, {'id': 7412, 'synset': 'eames_chair.n.01', 'name': 'Eames_chair'}, {'id': 7413, 'synset': 'earflap.n.01', 'name': 'earflap'}, {'id': 7414, 'synset': 'early_warning_radar.n.01', 'name': 'early_warning_radar'}, {'id': 7415, 'synset': 'early_warning_system.n.01', 'name': 'early_warning_system'}, {'id': 7416, 'synset': 'earmuff.n.01', 'name': 'earmuff'}, {'id': 7417, 'synset': 'earplug.n.02', 'name': 'earplug'}, {'id': 7418, 'synset': 'earthenware.n.01', 'name': 'earthenware'}, {'id': 7419, 'synset': 'earthwork.n.01', 'name': 'earthwork'}, {'id': 7420, 'synset': 'easy_chair.n.01', 'name': 'easy_chair'}, {'id': 7421, 'synset': 'eaves.n.01', 'name': 'eaves'}, {'id': 7422, 'synset': 'ecclesiastical_attire.n.01', 'name': 'ecclesiastical_attire'}, {'id': 7423, 'synset': 'echinus.n.01', 'name': 'echinus'}, {'id': 7424, 'synset': 'echocardiograph.n.01', 'name': 'echocardiograph'}, {'id': 7425, 'synset': 'edger.n.02', 'name': 'edger'}, {'id': 7426, 'synset': 'edge_tool.n.01', 'name': 'edge_tool'}, {'id': 7427, 'synset': 'efficiency_apartment.n.01', 'name': 'efficiency_apartment'}, {'id': 7428, 'synset': 'egg-and-dart.n.01', 'name': 'egg-and-dart'}, {'id': 7429, 'synset': 'egg_timer.n.01', 'name': 'egg_timer'}, {'id': 7430, 'synset': 'eiderdown.n.01', 'name': 'eiderdown'}, {'id': 7431, 'synset': 'eight_ball.n.01', 'name': 'eight_ball'}, {'id': 7432, 'synset': 'ejection_seat.n.01', 'name': 'ejection_seat'}, {'id': 7433, 'synset': 'elastic.n.02', 'name': 'elastic'}, {'id': 7434, 'synset': 'elastic_bandage.n.01', 'name': 'elastic_bandage'}, {'id': 7435, 'synset': 'elastoplast.n.01', 'name': 'Elastoplast'}, {'id': 7436, 'synset': 'elbow.n.04', 'name': 'elbow'}, {'id': 7437, 'synset': 'elbow_pad.n.01', 'name': 'elbow_pad'}, {'id': 7438, 'synset': 'electric.n.01', 'name': 'electric'}, {'id': 7439, 'synset': 'electrical_cable.n.01', 'name': 'electrical_cable'}, {'id': 7440, 'synset': 'electrical_contact.n.01', 'name': 'electrical_contact'}, {'id': 7441, 'synset': 'electrical_converter.n.01', 'name': 'electrical_converter'}, {'id': 7442, 'synset': 'electrical_device.n.01', 'name': 'electrical_device'}, {'id': 7443, 'synset': 'electrical_system.n.02', 'name': 'electrical_system'}, {'id': 7444, 'synset': 'electric_bell.n.01', 'name': 'electric_bell'}, {'id': 7445, 'synset': 'electric_blanket.n.01', 'name': 'electric_blanket'}, {'id': 7446, 'synset': 'electric_clock.n.01', 'name': 'electric_clock'}, {'id': 7447, 'synset': 'electric-discharge_lamp.n.01', 'name': 'electric-discharge_lamp'}, {'id': 7448, 'synset': 'electric_fan.n.01', 'name': 'electric_fan'}, {'id': 7449, 'synset': 'electric_frying_pan.n.01', 'name': 'electric_frying_pan'}, {'id': 7450, 'synset': 'electric_furnace.n.01', 'name': 'electric_furnace'}, {'id': 7451, 'synset': 'electric_guitar.n.01', 'name': 'electric_guitar'}, {'id': 7452, 'synset': 'electric_hammer.n.01', 'name': 'electric_hammer'}, {'id': 7453, 'synset': 'electric_heater.n.01', 'name': 'electric_heater'}, {'id': 7454, 'synset': 'electric_lamp.n.01', 'name': 'electric_lamp'}, {'id': 7455, 'synset': 'electric_locomotive.n.01', 'name': 'electric_locomotive'}, {'id': 7456, 'synset': 'electric_meter.n.01', 'name': 'electric_meter'}, {'id': 7457, 'synset': 'electric_mixer.n.01', 'name': 'electric_mixer'}, {'id': 7458, 'synset': 'electric_motor.n.01', 'name': 'electric_motor'}, {'id': 7459, 'synset': 'electric_organ.n.01', 'name': 'electric_organ'}, {'id': 7460, 'synset': 'electric_range.n.01', 'name': 'electric_range'}, {'id': 7461, 'synset': 'electric_toothbrush.n.01', 'name': 'electric_toothbrush'}, {'id': 7462, 'synset': 'electric_typewriter.n.01', 'name': 'electric_typewriter'}, {'id': 7463, 'synset': 'electro-acoustic_transducer.n.01', 'name': 'electro-acoustic_transducer'}, {'id': 7464, 'synset': 'electrode.n.01', 'name': 'electrode'}, {'id': 7465, 'synset': 'electrodynamometer.n.01', 'name': 'electrodynamometer'}, {'id': 7466, 'synset': 'electroencephalograph.n.01', 'name': 'electroencephalograph'}, {'id': 7467, 'synset': 'electrograph.n.01', 'name': 'electrograph'}, {'id': 7468, 'synset': 'electrolytic.n.01', 'name': 'electrolytic'}, {'id': 7469, 'synset': 'electrolytic_cell.n.01', 'name': 'electrolytic_cell'}, {'id': 7470, 'synset': 'electromagnet.n.01', 'name': 'electromagnet'}, {'id': 7471, 'synset': 'electrometer.n.01', 'name': 'electrometer'}, {'id': 7472, 'synset': 'electromyograph.n.01', 'name': 'electromyograph'}, {'id': 7473, 'synset': 'electron_accelerator.n.01', 'name': 'electron_accelerator'}, {'id': 7474, 'synset': 'electron_gun.n.01', 'name': 'electron_gun'}, {'id': 7475, 'synset': 'electronic_balance.n.01', 'name': 'electronic_balance'}, {'id': 7476, 'synset': 'electronic_converter.n.01', 'name': 'electronic_converter'}, {'id': 7477, 'synset': 'electronic_device.n.01', 'name': 'electronic_device'}, {'id': 7478, 'synset': 'electronic_equipment.n.01', 'name': 'electronic_equipment'}, {'id': 7479, 'synset': 'electronic_fetal_monitor.n.01', 'name': 'electronic_fetal_monitor'}, {'id': 7480, 'synset': 'electronic_instrument.n.01', 'name': 'electronic_instrument'}, {'id': 7481, 'synset': 'electronic_voltmeter.n.01', 'name': 'electronic_voltmeter'}, {'id': 7482, 'synset': 'electron_microscope.n.01', 'name': 'electron_microscope'}, {'id': 7483, 'synset': 'electron_multiplier.n.01', 'name': 'electron_multiplier'}, {'id': 7484, 'synset': 'electrophorus.n.01', 'name': 'electrophorus'}, {'id': 7485, 'synset': 'electroscope.n.01', 'name': 'electroscope'}, {'id': 7486, 'synset': 'electrostatic_generator.n.01', 'name': 'electrostatic_generator'}, {'id': 7487, 'synset': 'electrostatic_printer.n.01', 'name': 'electrostatic_printer'}, {'id': 7488, 'synset': 'elevator.n.01', 'name': 'elevator'}, {'id': 7489, 'synset': 'elevator.n.02', 'name': 'elevator'}, {'id': 7490, 'synset': 'elevator_shaft.n.01', 'name': 'elevator_shaft'}, {'id': 7491, 'synset': 'embankment.n.01', 'name': 'embankment'}, {'id': 7492, 'synset': 'embassy.n.01', 'name': 'embassy'}, {'id': 7493, 'synset': 'embellishment.n.02', 'name': 'embellishment'}, {'id': 7494, 'synset': 'emergency_room.n.01', 'name': 'emergency_room'}, {'id': 7495, 'synset': 'emesis_basin.n.01', 'name': 'emesis_basin'}, {'id': 7496, 'synset': 'emitter.n.01', 'name': 'emitter'}, {'id': 7497, 'synset': 'empty.n.01', 'name': 'empty'}, {'id': 7498, 'synset': 'emulsion.n.02', 'name': 'emulsion'}, {'id': 7499, 'synset': 'enamel.n.04', 'name': 'enamel'}, {'id': 7500, 'synset': 'enamel.n.03', 'name': 'enamel'}, {'id': 7501, 'synset': 'enamelware.n.01', 'name': 'enamelware'}, {'id': 7502, 'synset': 'encaustic.n.01', 'name': 'encaustic'}, {'id': 7503, 'synset': 'encephalogram.n.02', 'name': 'encephalogram'}, {'id': 7504, 'synset': 'enclosure.n.01', 'name': 'enclosure'}, {'id': 7505, 'synset': 'endoscope.n.01', 'name': 'endoscope'}, {'id': 7506, 'synset': 'energizer.n.02', 'name': 'energizer'}, {'id': 7507, 'synset': 'engine.n.01', 'name': 'engine'}, {'id': 7508, 'synset': 'engine.n.04', 'name': 'engine'}, {'id': 7509, 'synset': 'engineering.n.03', 'name': 'engineering'}, {'id': 7510, 'synset': 'enginery.n.01', 'name': 'enginery'}, {'id': 7511, 'synset': 'english_horn.n.01', 'name': 'English_horn'}, {'id': 7512, 'synset': 'english_saddle.n.01', 'name': 'English_saddle'}, {'id': 7513, 'synset': 'enlarger.n.01', 'name': 'enlarger'}, {'id': 7514, 'synset': 'ensemble.n.05', 'name': 'ensemble'}, {'id': 7515, 'synset': 'ensign.n.03', 'name': 'ensign'}, {'id': 7516, 'synset': 'entablature.n.01', 'name': 'entablature'}, {'id': 7517, 'synset': 'entertainment_center.n.01', 'name': 'entertainment_center'}, {'id': 7518, 'synset': 'entrenching_tool.n.01', 'name': 'entrenching_tool'}, {'id': 7519, 'synset': 'entrenchment.n.01', 'name': 'entrenchment'}, {'id': 7520, 'synset': 'envelope.n.02', 'name': 'envelope'}, {'id': 7521, 'synset': 'envelope.n.06', 'name': 'envelope'}, {'id': 7522, 'synset': 'eolith.n.01', 'name': 'eolith'}, {'id': 7523, 'synset': 'epauliere.n.01', 'name': 'epauliere'}, {'id': 7524, 'synset': 'epee.n.01', 'name': 'epee'}, {'id': 7525, 'synset': 'epergne.n.01', 'name': 'epergne'}, {'id': 7526, 'synset': 'epicyclic_train.n.01', 'name': 'epicyclic_train'}, {'id': 7527, 'synset': 'epidiascope.n.01', 'name': 'epidiascope'}, {'id': 7528, 'synset': 'epilating_wax.n.01', 'name': 'epilating_wax'}, {'id': 7529, 'synset': 'equalizer.n.01', 'name': 'equalizer'}, {'id': 7530, 'synset': 'equatorial.n.01', 'name': 'equatorial'}, {'id': 7531, 'synset': 'equipment.n.01', 'name': 'equipment'}, {'id': 7532, 'synset': 'erasable_programmable_read-only_memory.n.01', 'name': 'erasable_programmable_read-only_memory'}, {'id': 7533, 'synset': 'erecting_prism.n.01', 'name': 'erecting_prism'}, {'id': 7534, 'synset': 'erection.n.02', 'name': 'erection'}, {'id': 7535, 'synset': 'erlenmeyer_flask.n.01', 'name': 'Erlenmeyer_flask'}, {'id': 7536, 'synset': 'escape_hatch.n.01', 'name': 'escape_hatch'}, {'id': 7537, 'synset': 'escapement.n.01', 'name': 'escapement'}, {'id': 7538, 'synset': 'escape_wheel.n.01', 'name': 'escape_wheel'}, {'id': 7539, 'synset': 'escarpment.n.02', 'name': 'escarpment'}, {'id': 7540, 'synset': 'escutcheon.n.03', 'name': 'escutcheon'}, {'id': 7541, 'synset': 'esophagoscope.n.01', 'name': 'esophagoscope'}, {'id': 7542, 'synset': 'espadrille.n.01', 'name': 'espadrille'}, {'id': 7543, 'synset': 'espalier.n.01', 'name': 'espalier'}, {'id': 7544, 'synset': 'espresso_maker.n.01', 'name': 'espresso_maker'}, {'id': 7545, 'synset': 'espresso_shop.n.01', 'name': 'espresso_shop'}, {'id': 7546, 'synset': 'establishment.n.04', 'name': 'establishment'}, {'id': 7547, 'synset': 'estaminet.n.01', 'name': 'estaminet'}, {'id': 7548, 'synset': 'estradiol_patch.n.01', 'name': 'estradiol_patch'}, {'id': 7549, 'synset': 'etagere.n.01', 'name': 'etagere'}, {'id': 7550, 'synset': 'etamine.n.01', 'name': 'etamine'}, {'id': 7551, 'synset': 'etching.n.02', 'name': 'etching'}, {'id': 7552, 'synset': 'ethernet.n.01', 'name': 'ethernet'}, {'id': 7553, 'synset': 'ethernet_cable.n.01', 'name': 'ethernet_cable'}, {'id': 7554, 'synset': 'eton_jacket.n.01', 'name': 'Eton_jacket'}, {'id': 7555, 'synset': 'etui.n.01', 'name': 'etui'}, {'id': 7556, 'synset': 'eudiometer.n.01', 'name': 'eudiometer'}, {'id': 7557, 'synset': 'euphonium.n.01', 'name': 'euphonium'}, {'id': 7558, 'synset': 'evaporative_cooler.n.01', 'name': 'evaporative_cooler'}, {'id': 7559, 'synset': 'evening_bag.n.01', 'name': 'evening_bag'}, {'id': 7560, 'synset': 'exercise_bike.n.01', 'name': 'exercise_bike'}, {'id': 7561, 'synset': 'exercise_device.n.01', 'name': 'exercise_device'}, {'id': 7562, 'synset': 'exhaust.n.02', 'name': 'exhaust'}, {'id': 7563, 'synset': 'exhaust_fan.n.01', 'name': 'exhaust_fan'}, {'id': 7564, 'synset': 'exhaust_valve.n.01', 'name': 'exhaust_valve'}, {'id': 7565, 'synset': 'exhibition_hall.n.01', 'name': 'exhibition_hall'}, {'id': 7566, 'synset': 'exocet.n.01', 'name': 'Exocet'}, {'id': 7567, 'synset': 'expansion_bit.n.01', 'name': 'expansion_bit'}, {'id': 7568, 'synset': 'expansion_bolt.n.01', 'name': 'expansion_bolt'}, {'id': 7569, 'synset': 'explosive_detection_system.n.01', 'name': 'explosive_detection_system'}, {'id': 7570, 'synset': 'explosive_device.n.01', 'name': 'explosive_device'}, {'id': 7571, 'synset': 'explosive_trace_detection.n.01', 'name': 'explosive_trace_detection'}, {'id': 7572, 'synset': 'express.n.02', 'name': 'express'}, {'id': 7573, 'synset': 'extension.n.10', 'name': 'extension'}, {'id': 7574, 'synset': 'extension_cord.n.01', 'name': 'extension_cord'}, {'id': 7575, 'synset': 'external-combustion_engine.n.01', 'name': 'external-combustion_engine'}, {'id': 7576, 'synset': 'external_drive.n.01', 'name': 'external_drive'}, {'id': 7577, 'synset': 'extractor.n.01', 'name': 'extractor'}, {'id': 7578, 'synset': 'eyebrow_pencil.n.01', 'name': 'eyebrow_pencil'}, {'id': 7579, 'synset': 'eyecup.n.01', 'name': 'eyecup'}, {'id': 7580, 'synset': 'eyeliner.n.01', 'name': 'eyeliner'}, {'id': 7581, 'synset': 'eyepiece.n.01', 'name': 'eyepiece'}, {'id': 7582, 'synset': 'eyeshadow.n.01', 'name': 'eyeshadow'}, {'id': 7583, 'synset': 'fabric.n.01', 'name': 'fabric'}, {'id': 7584, 'synset': 'facade.n.01', 'name': 'facade'}, {'id': 7585, 'synset': 'face_guard.n.01', 'name': 'face_guard'}, {'id': 7586, 'synset': 'face_mask.n.01', 'name': 'face_mask'}, {'id': 7587, 'synset': 'faceplate.n.01', 'name': 'faceplate'}, {'id': 7588, 'synset': 'face_powder.n.01', 'name': 'face_powder'}, {'id': 7589, 'synset': 'face_veil.n.01', 'name': 'face_veil'}, {'id': 7590, 'synset': 'facing.n.03', 'name': 'facing'}, {'id': 7591, 'synset': 'facing.n.01', 'name': 'facing'}, {'id': 7592, 'synset': 'facing.n.02', 'name': 'facing'}, {'id': 7593, 'synset': 'facsimile.n.02', 'name': 'facsimile'}, {'id': 7594, 'synset': 'factory.n.01', 'name': 'factory'}, {'id': 7595, 'synset': 'factory_ship.n.01', 'name': 'factory_ship'}, {'id': 7596, 'synset': 'fagot.n.02', 'name': 'fagot'}, {'id': 7597, 'synset': 'fagot_stitch.n.01', 'name': 'fagot_stitch'}, {'id': 7598, 'synset': 'fahrenheit_thermometer.n.01', 'name': 'Fahrenheit_thermometer'}, {'id': 7599, 'synset': 'faience.n.01', 'name': 'faience'}, {'id': 7600, 'synset': 'faille.n.01', 'name': 'faille'}, {'id': 7601, 'synset': 'fairlead.n.01', 'name': 'fairlead'}, {'id': 7602, 'synset': 'fairy_light.n.01', 'name': 'fairy_light'}, {'id': 7603, 'synset': 'falchion.n.01', 'name': 'falchion'}, {'id': 7604, 'synset': 'fallboard.n.01', 'name': 'fallboard'}, {'id': 7605, 'synset': 'fallout_shelter.n.01', 'name': 'fallout_shelter'}, {'id': 7606, 'synset': 'false_face.n.01', 'name': 'false_face'}, {'id': 7607, 'synset': 'false_teeth.n.01', 'name': 'false_teeth'}, {'id': 7608, 'synset': 'family_room.n.01', 'name': 'family_room'}, {'id': 7609, 'synset': 'fan_belt.n.01', 'name': 'fan_belt'}, {'id': 7610, 'synset': 'fan_blade.n.01', 'name': 'fan_blade'}, {'id': 7611, 'synset': 'fancy_dress.n.01', 'name': 'fancy_dress'}, {'id': 7612, 'synset': 'fanion.n.01', 'name': 'fanion'}, {'id': 7613, 'synset': 'fanlight.n.03', 'name': 'fanlight'}, {'id': 7614, 'synset': 'fanjet.n.02', 'name': 'fanjet'}, {'id': 7615, 'synset': 'fanjet.n.01', 'name': 'fanjet'}, {'id': 7616, 'synset': 'fanny_pack.n.01', 'name': 'fanny_pack'}, {'id': 7617, 'synset': 'fan_tracery.n.01', 'name': 'fan_tracery'}, {'id': 7618, 'synset': 'fan_vaulting.n.01', 'name': 'fan_vaulting'}, {'id': 7619, 'synset': 'farm_building.n.01', 'name': 'farm_building'}, {'id': 7620, 'synset': "farmer's_market.n.01", 'name': "farmer's_market"}, {'id': 7621, 'synset': 'farmhouse.n.01', 'name': 'farmhouse'}, {'id': 7622, 'synset': 'farm_machine.n.01', 'name': 'farm_machine'}, {'id': 7623, 'synset': 'farmplace.n.01', 'name': 'farmplace'}, {'id': 7624, 'synset': 'farmyard.n.01', 'name': 'farmyard'}, {'id': 7625, 'synset': 'farthingale.n.01', 'name': 'farthingale'}, {'id': 7626, 'synset': 'fastener.n.02', 'name': 'fastener'}, {'id': 7627, 'synset': 'fast_reactor.n.01', 'name': 'fast_reactor'}, {'id': 7628, 'synset': 'fat_farm.n.01', 'name': 'fat_farm'}, {'id': 7629, 'synset': 'fatigues.n.01', 'name': 'fatigues'}, {'id': 7630, 'synset': 'fauld.n.01', 'name': 'fauld'}, {'id': 7631, 'synset': 'fauteuil.n.01', 'name': 'fauteuil'}, {'id': 7632, 'synset': 'feather_boa.n.01', 'name': 'feather_boa'}, {'id': 7633, 'synset': 'featheredge.n.01', 'name': 'featheredge'}, {'id': 7634, 'synset': 'feedback_circuit.n.01', 'name': 'feedback_circuit'}, {'id': 7635, 'synset': 'feedlot.n.01', 'name': 'feedlot'}, {'id': 7636, 'synset': 'fell.n.02', 'name': 'fell'}, {'id': 7637, 'synset': 'felloe.n.01', 'name': 'felloe'}, {'id': 7638, 'synset': 'felt.n.01', 'name': 'felt'}, {'id': 7639, 'synset': 'felt-tip_pen.n.01', 'name': 'felt-tip_pen'}, {'id': 7640, 'synset': 'felucca.n.01', 'name': 'felucca'}, {'id': 7641, 'synset': 'fence.n.01', 'name': 'fence'}, {'id': 7642, 'synset': 'fencing_mask.n.01', 'name': 'fencing_mask'}, {'id': 7643, 'synset': 'fencing_sword.n.01', 'name': 'fencing_sword'}, {'id': 7644, 'synset': 'fender.n.01', 'name': 'fender'}, {'id': 7645, 'synset': 'fender.n.02', 'name': 'fender'}, {'id': 7646, 'synset': 'ferrule.n.01', 'name': 'ferrule'}, {'id': 7647, 'synset': 'ferule.n.01', 'name': 'ferule'}, {'id': 7648, 'synset': 'festoon.n.01', 'name': 'festoon'}, {'id': 7649, 'synset': 'fetoscope.n.01', 'name': 'fetoscope'}, {'id': 7650, 'synset': 'fetter.n.01', 'name': 'fetter'}, {'id': 7651, 'synset': 'fez.n.02', 'name': 'fez'}, {'id': 7652, 'synset': 'fiber.n.05', 'name': 'fiber'}, {'id': 7653, 'synset': 'fiber_optic_cable.n.01', 'name': 'fiber_optic_cable'}, {'id': 7654, 'synset': 'fiberscope.n.01', 'name': 'fiberscope'}, {'id': 7655, 'synset': 'fichu.n.01', 'name': 'fichu'}, {'id': 7656, 'synset': 'fiddlestick.n.01', 'name': 'fiddlestick'}, {'id': 7657, 'synset': 'field_artillery.n.01', 'name': 'field_artillery'}, {'id': 7658, 'synset': 'field_coil.n.01', 'name': 'field_coil'}, {'id': 7659, 'synset': 'field-effect_transistor.n.01', 'name': 'field-effect_transistor'}, {'id': 7660, 'synset': 'field-emission_microscope.n.01', 'name': 'field-emission_microscope'}, {'id': 7661, 'synset': 'field_glass.n.01', 'name': 'field_glass'}, {'id': 7662, 'synset': 'field_hockey_ball.n.01', 'name': 'field_hockey_ball'}, {'id': 7663, 'synset': 'field_hospital.n.01', 'name': 'field_hospital'}, {'id': 7664, 'synset': 'field_house.n.01', 'name': 'field_house'}, {'id': 7665, 'synset': 'field_lens.n.01', 'name': 'field_lens'}, {'id': 7666, 'synset': 'field_magnet.n.01', 'name': 'field_magnet'}, {'id': 7667, 'synset': 'field-sequential_color_television.n.01', 'name': 'field-sequential_color_television'}, {'id': 7668, 'synset': 'field_tent.n.01', 'name': 'field_tent'}, {'id': 7669, 'synset': 'fieldwork.n.01', 'name': 'fieldwork'}, {'id': 7670, 'synset': 'fife.n.01', 'name': 'fife'}, {'id': 7671, 'synset': 'fifth_wheel.n.02', 'name': 'fifth_wheel'}, {'id': 7672, 'synset': 'fighting_chair.n.01', 'name': 'fighting_chair'}, {'id': 7673, 'synset': 'fig_leaf.n.02', 'name': 'fig_leaf'}, {'id': 7674, 'synset': 'figure_eight.n.01', 'name': 'figure_eight'}, {'id': 7675, 'synset': 'figure_loom.n.01', 'name': 'figure_loom'}, {'id': 7676, 'synset': 'figure_skate.n.01', 'name': 'figure_skate'}, {'id': 7677, 'synset': 'filament.n.04', 'name': 'filament'}, {'id': 7678, 'synset': 'filature.n.01', 'name': 'filature'}, {'id': 7679, 'synset': 'file_folder.n.01', 'name': 'file_folder'}, {'id': 7680, 'synset': 'file_server.n.01', 'name': 'file_server'}, {'id': 7681, 'synset': 'filigree.n.01', 'name': 'filigree'}, {'id': 7682, 'synset': 'filling.n.05', 'name': 'filling'}, {'id': 7683, 'synset': 'film.n.03', 'name': 'film'}, {'id': 7684, 'synset': 'film.n.05', 'name': 'film'}, {'id': 7685, 'synset': 'film_advance.n.01', 'name': 'film_advance'}, {'id': 7686, 'synset': 'filter.n.01', 'name': 'filter'}, {'id': 7687, 'synset': 'filter.n.02', 'name': 'filter'}, {'id': 7688, 'synset': 'finder.n.03', 'name': 'finder'}, {'id': 7689, 'synset': 'finery.n.01', 'name': 'finery'}, {'id': 7690, 'synset': 'fine-tooth_comb.n.01', 'name': 'fine-tooth_comb'}, {'id': 7691, 'synset': 'finger.n.03', 'name': 'finger'}, {'id': 7692, 'synset': 'fingerboard.n.03', 'name': 'fingerboard'}, {'id': 7693, 'synset': 'finger_bowl.n.01', 'name': 'finger_bowl'}, {'id': 7694, 'synset': 'finger_paint.n.01', 'name': 'finger_paint'}, {'id': 7695, 'synset': 'finger-painting.n.01', 'name': 'finger-painting'}, {'id': 7696, 'synset': 'finger_plate.n.01', 'name': 'finger_plate'}, {'id': 7697, 'synset': 'fingerstall.n.01', 'name': 'fingerstall'}, {'id': 7698, 'synset': 'finish_coat.n.02', 'name': 'finish_coat'}, {'id': 7699, 'synset': 'finish_coat.n.01', 'name': 'finish_coat'}, {'id': 7700, 'synset': 'finisher.n.05', 'name': 'finisher'}, {'id': 7701, 'synset': 'fin_keel.n.01', 'name': 'fin_keel'}, {'id': 7702, 'synset': 'fipple.n.01', 'name': 'fipple'}, {'id': 7703, 'synset': 'fipple_flute.n.01', 'name': 'fipple_flute'}, {'id': 7704, 'synset': 'fire.n.04', 'name': 'fire'}, {'id': 7705, 'synset': 'firearm.n.01', 'name': 'firearm'}, {'id': 7706, 'synset': 'fire_bell.n.01', 'name': 'fire_bell'}, {'id': 7707, 'synset': 'fireboat.n.01', 'name': 'fireboat'}, {'id': 7708, 'synset': 'firebox.n.01', 'name': 'firebox'}, {'id': 7709, 'synset': 'firebrick.n.01', 'name': 'firebrick'}, {'id': 7710, 'synset': 'fire_control_radar.n.01', 'name': 'fire_control_radar'}, {'id': 7711, 'synset': 'fire_control_system.n.01', 'name': 'fire_control_system'}, {'id': 7712, 'synset': 'fire_iron.n.01', 'name': 'fire_iron'}, {'id': 7713, 'synset': "fireman's_ax.n.01", 'name': "fireman's_ax"}, {'id': 7714, 'synset': 'fire_screen.n.01', 'name': 'fire_screen'}, {'id': 7715, 'synset': 'fire_tongs.n.01', 'name': 'fire_tongs'}, {'id': 7716, 'synset': 'fire_tower.n.01', 'name': 'fire_tower'}, {'id': 7717, 'synset': 'firewall.n.02', 'name': 'firewall'}, {'id': 7718, 'synset': 'firing_chamber.n.01', 'name': 'firing_chamber'}, {'id': 7719, 'synset': 'firing_pin.n.01', 'name': 'firing_pin'}, {'id': 7720, 'synset': 'firkin.n.02', 'name': 'firkin'}, {'id': 7721, 'synset': 'firmer_chisel.n.01', 'name': 'firmer_chisel'}, {'id': 7722, 'synset': 'first-aid_station.n.01', 'name': 'first-aid_station'}, {'id': 7723, 'synset': 'first_base.n.01', 'name': 'first_base'}, {'id': 7724, 'synset': 'first_class.n.03', 'name': 'first_class'}, {'id': 7725, 'synset': "fisherman's_bend.n.01", 'name': "fisherman's_bend"}, {'id': 7726, 'synset': "fisherman's_knot.n.01", 'name': "fisherman's_knot"}, {'id': 7727, 'synset': "fisherman's_lure.n.01", 'name': "fisherman's_lure"}, {'id': 7728, 'synset': 'fishhook.n.01', 'name': 'fishhook'}, {'id': 7729, 'synset': 'fishing_boat.n.01', 'name': 'fishing_boat'}, {'id': 7730, 'synset': 'fishing_gear.n.01', 'name': 'fishing_gear'}, {'id': 7731, 'synset': 'fish_joint.n.01', 'name': 'fish_joint'}, {'id': 7732, 'synset': 'fish_knife.n.01', 'name': 'fish_knife'}, {'id': 7733, 'synset': 'fishnet.n.01', 'name': 'fishnet'}, {'id': 7734, 'synset': 'fish_slice.n.01', 'name': 'fish_slice'}, {'id': 7735, 'synset': 'fitment.n.01', 'name': 'fitment'}, {'id': 7736, 'synset': 'fixative.n.02', 'name': 'fixative'}, {'id': 7737, 'synset': 'fixer-upper.n.01', 'name': 'fixer-upper'}, {'id': 7738, 'synset': 'flageolet.n.02', 'name': 'flageolet'}, {'id': 7739, 'synset': 'flagon.n.01', 'name': 'flagon'}, {'id': 7740, 'synset': 'flagship.n.02', 'name': 'flagship'}, {'id': 7741, 'synset': 'flail.n.01', 'name': 'flail'}, {'id': 7742, 'synset': 'flambeau.n.01', 'name': 'flambeau'}, {'id': 7743, 'synset': 'flamethrower.n.01', 'name': 'flamethrower'}, {'id': 7744, 'synset': 'flange.n.01', 'name': 'flange'}, {'id': 7745, 'synset': 'flannel.n.03', 'name': 'flannel'}, {'id': 7746, 'synset': 'flannelette.n.01', 'name': 'flannelette'}, {'id': 7747, 'synset': 'flap.n.05', 'name': 'flap'}, {'id': 7748, 'synset': 'flash.n.09', 'name': 'flash'}, {'id': 7749, 'synset': 'flash_camera.n.01', 'name': 'flash_camera'}, {'id': 7750, 'synset': 'flasher.n.02', 'name': 'flasher'}, {'id': 7751, 'synset': 'flashlight_battery.n.01', 'name': 'flashlight_battery'}, {'id': 7752, 'synset': 'flash_memory.n.01', 'name': 'flash_memory'}, {'id': 7753, 'synset': 'flask.n.01', 'name': 'flask'}, {'id': 7754, 'synset': 'flat_arch.n.01', 'name': 'flat_arch'}, {'id': 7755, 'synset': 'flatbed.n.02', 'name': 'flatbed'}, {'id': 7756, 'synset': 'flatbed_press.n.01', 'name': 'flatbed_press'}, {'id': 7757, 'synset': 'flat_bench.n.01', 'name': 'flat_bench'}, {'id': 7758, 'synset': 'flatcar.n.01', 'name': 'flatcar'}, {'id': 7759, 'synset': 'flat_file.n.01', 'name': 'flat_file'}, {'id': 7760, 'synset': 'flatlet.n.01', 'name': 'flatlet'}, {'id': 7761, 'synset': 'flat_panel_display.n.01', 'name': 'flat_panel_display'}, {'id': 7762, 'synset': 'flats.n.01', 'name': 'flats'}, {'id': 7763, 'synset': 'flat_tip_screwdriver.n.01', 'name': 'flat_tip_screwdriver'}, {'id': 7764, 'synset': 'fleet_ballistic_missile_submarine.n.01', 'name': 'fleet_ballistic_missile_submarine'}, {'id': 7765, 'synset': 'fleur-de-lis.n.02', 'name': 'fleur-de-lis'}, {'id': 7766, 'synset': 'flight_simulator.n.01', 'name': 'flight_simulator'}, {'id': 7767, 'synset': 'flintlock.n.02', 'name': 'flintlock'}, {'id': 7768, 'synset': 'flintlock.n.01', 'name': 'flintlock'}, {'id': 7769, 'synset': 'float.n.05', 'name': 'float'}, {'id': 7770, 'synset': 'floating_dock.n.01', 'name': 'floating_dock'}, {'id': 7771, 'synset': 'floatplane.n.01', 'name': 'floatplane'}, {'id': 7772, 'synset': 'flood.n.03', 'name': 'flood'}, {'id': 7773, 'synset': 'floor.n.01', 'name': 'floor'}, {'id': 7774, 'synset': 'floor.n.02', 'name': 'floor'}, {'id': 7775, 'synset': 'floor.n.09', 'name': 'floor'}, {'id': 7776, 'synset': 'floorboard.n.02', 'name': 'floorboard'}, {'id': 7777, 'synset': 'floor_cover.n.01', 'name': 'floor_cover'}, {'id': 7778, 'synset': 'floor_joist.n.01', 'name': 'floor_joist'}, {'id': 7779, 'synset': 'floor_lamp.n.01', 'name': 'floor_lamp'}, {'id': 7780, 'synset': 'flophouse.n.01', 'name': 'flophouse'}, {'id': 7781, 'synset': 'florist.n.02', 'name': 'florist'}, {'id': 7782, 'synset': 'floss.n.01', 'name': 'floss'}, {'id': 7783, 'synset': 'flotsam.n.01', 'name': 'flotsam'}, {'id': 7784, 'synset': 'flour_bin.n.01', 'name': 'flour_bin'}, {'id': 7785, 'synset': 'flour_mill.n.01', 'name': 'flour_mill'}, {'id': 7786, 'synset': 'flowerbed.n.01', 'name': 'flowerbed'}, {'id': 7787, 'synset': 'flugelhorn.n.01', 'name': 'flugelhorn'}, {'id': 7788, 'synset': 'fluid_drive.n.01', 'name': 'fluid_drive'}, {'id': 7789, 'synset': 'fluid_flywheel.n.01', 'name': 'fluid_flywheel'}, {'id': 7790, 'synset': 'flume.n.02', 'name': 'flume'}, {'id': 7791, 'synset': 'fluorescent_lamp.n.01', 'name': 'fluorescent_lamp'}, {'id': 7792, 'synset': 'fluoroscope.n.01', 'name': 'fluoroscope'}, {'id': 7793, 'synset': 'flush_toilet.n.01', 'name': 'flush_toilet'}, {'id': 7794, 'synset': 'flute.n.01', 'name': 'flute'}, {'id': 7795, 'synset': 'flux_applicator.n.01', 'name': 'flux_applicator'}, {'id': 7796, 'synset': 'fluxmeter.n.01', 'name': 'fluxmeter'}, {'id': 7797, 'synset': 'fly.n.05', 'name': 'fly'}, {'id': 7798, 'synset': 'flying_boat.n.01', 'name': 'flying_boat'}, {'id': 7799, 'synset': 'flying_buttress.n.01', 'name': 'flying_buttress'}, {'id': 7800, 'synset': 'flying_carpet.n.01', 'name': 'flying_carpet'}, {'id': 7801, 'synset': 'flying_jib.n.01', 'name': 'flying_jib'}, {'id': 7802, 'synset': 'fly_rod.n.01', 'name': 'fly_rod'}, {'id': 7803, 'synset': 'fly_tent.n.01', 'name': 'fly_tent'}, {'id': 7804, 'synset': 'flytrap.n.01', 'name': 'flytrap'}, {'id': 7805, 'synset': 'flywheel.n.01', 'name': 'flywheel'}, {'id': 7806, 'synset': 'fob.n.03', 'name': 'fob'}, {'id': 7807, 'synset': 'foghorn.n.02', 'name': 'foghorn'}, {'id': 7808, 'synset': 'foglamp.n.01', 'name': 'foglamp'}, {'id': 7809, 'synset': 'foil.n.05', 'name': 'foil'}, {'id': 7810, 'synset': 'fold.n.06', 'name': 'fold'}, {'id': 7811, 'synset': 'folder.n.02', 'name': 'folder'}, {'id': 7812, 'synset': 'folding_door.n.01', 'name': 'folding_door'}, {'id': 7813, 'synset': 'folding_saw.n.01', 'name': 'folding_saw'}, {'id': 7814, 'synset': 'food_court.n.01', 'name': 'food_court'}, {'id': 7815, 'synset': 'food_hamper.n.01', 'name': 'food_hamper'}, {'id': 7816, 'synset': 'foot.n.11', 'name': 'foot'}, {'id': 7817, 'synset': 'footage.n.01', 'name': 'footage'}, {'id': 7818, 'synset': 'football_stadium.n.01', 'name': 'football_stadium'}, {'id': 7819, 'synset': 'footbath.n.01', 'name': 'footbath'}, {'id': 7820, 'synset': 'foot_brake.n.01', 'name': 'foot_brake'}, {'id': 7821, 'synset': 'footbridge.n.01', 'name': 'footbridge'}, {'id': 7822, 'synset': 'foothold.n.02', 'name': 'foothold'}, {'id': 7823, 'synset': 'footlocker.n.01', 'name': 'footlocker'}, {'id': 7824, 'synset': 'foot_rule.n.01', 'name': 'foot_rule'}, {'id': 7825, 'synset': 'footwear.n.02', 'name': 'footwear'}, {'id': 7826, 'synset': 'footwear.n.01', 'name': 'footwear'}, {'id': 7827, 'synset': 'forceps.n.01', 'name': 'forceps'}, {'id': 7828, 'synset': 'force_pump.n.01', 'name': 'force_pump'}, {'id': 7829, 'synset': 'fore-and-after.n.01', 'name': 'fore-and-after'}, {'id': 7830, 'synset': 'fore-and-aft_sail.n.01', 'name': 'fore-and-aft_sail'}, {'id': 7831, 'synset': 'forecastle.n.01', 'name': 'forecastle'}, {'id': 7832, 'synset': 'forecourt.n.01', 'name': 'forecourt'}, {'id': 7833, 'synset': 'foredeck.n.01', 'name': 'foredeck'}, {'id': 7834, 'synset': 'fore_edge.n.01', 'name': 'fore_edge'}, {'id': 7835, 'synset': 'foreground.n.02', 'name': 'foreground'}, {'id': 7836, 'synset': 'foremast.n.01', 'name': 'foremast'}, {'id': 7837, 'synset': 'fore_plane.n.01', 'name': 'fore_plane'}, {'id': 7838, 'synset': 'foresail.n.01', 'name': 'foresail'}, {'id': 7839, 'synset': 'forestay.n.01', 'name': 'forestay'}, {'id': 7840, 'synset': 'foretop.n.01', 'name': 'foretop'}, {'id': 7841, 'synset': 'fore-topmast.n.01', 'name': 'fore-topmast'}, {'id': 7842, 'synset': 'fore-topsail.n.01', 'name': 'fore-topsail'}, {'id': 7843, 'synset': 'forge.n.01', 'name': 'forge'}, {'id': 7844, 'synset': 'fork.n.04', 'name': 'fork'}, {'id': 7845, 'synset': 'formalwear.n.01', 'name': 'formalwear'}, {'id': 7846, 'synset': 'formica.n.01', 'name': 'Formica'}, {'id': 7847, 'synset': 'fortification.n.01', 'name': 'fortification'}, {'id': 7848, 'synset': 'fortress.n.01', 'name': 'fortress'}, {'id': 7849, 'synset': 'forty-five.n.01', 'name': 'forty-five'}, {'id': 7850, 'synset': 'foucault_pendulum.n.01', 'name': 'Foucault_pendulum'}, {'id': 7851, 'synset': 'foulard.n.01', 'name': 'foulard'}, {'id': 7852, 'synset': 'foul-weather_gear.n.01', 'name': 'foul-weather_gear'}, {'id': 7853, 'synset': 'foundation_garment.n.01', 'name': 'foundation_garment'}, {'id': 7854, 'synset': 'foundry.n.01', 'name': 'foundry'}, {'id': 7855, 'synset': 'fountain.n.01', 'name': 'fountain'}, {'id': 7856, 'synset': 'fountain_pen.n.01', 'name': 'fountain_pen'}, {'id': 7857, 'synset': 'four-in-hand.n.01', 'name': 'four-in-hand'}, {'id': 7858, 'synset': 'four-poster.n.01', 'name': 'four-poster'}, {'id': 7859, 'synset': 'four-pounder.n.01', 'name': 'four-pounder'}, {'id': 7860, 'synset': 'four-stroke_engine.n.01', 'name': 'four-stroke_engine'}, {'id': 7861, 'synset': 'four-wheel_drive.n.02', 'name': 'four-wheel_drive'}, {'id': 7862, 'synset': 'four-wheel_drive.n.01', 'name': 'four-wheel_drive'}, {'id': 7863, 'synset': 'four-wheeler.n.01', 'name': 'four-wheeler'}, {'id': 7864, 'synset': 'fowling_piece.n.01', 'name': 'fowling_piece'}, {'id': 7865, 'synset': 'foxhole.n.01', 'name': 'foxhole'}, {'id': 7866, 'synset': 'fragmentation_bomb.n.01', 'name': 'fragmentation_bomb'}, {'id': 7867, 'synset': 'frail.n.02', 'name': 'frail'}, {'id': 7868, 'synset': 'fraise.n.02', 'name': 'fraise'}, {'id': 7869, 'synset': 'frame.n.10', 'name': 'frame'}, {'id': 7870, 'synset': 'frame.n.01', 'name': 'frame'}, {'id': 7871, 'synset': 'frame_buffer.n.01', 'name': 'frame_buffer'}, {'id': 7872, 'synset': 'framework.n.03', 'name': 'framework'}, {'id': 7873, 'synset': 'francis_turbine.n.01', 'name': 'Francis_turbine'}, {'id': 7874, 'synset': 'franking_machine.n.01', 'name': 'franking_machine'}, {'id': 7875, 'synset': 'free_house.n.01', 'name': 'free_house'}, {'id': 7876, 'synset': 'free-reed.n.01', 'name': 'free-reed'}, {'id': 7877, 'synset': 'free-reed_instrument.n.01', 'name': 'free-reed_instrument'}, {'id': 7878, 'synset': 'freewheel.n.01', 'name': 'freewheel'}, {'id': 7879, 'synset': 'freight_elevator.n.01', 'name': 'freight_elevator'}, {'id': 7880, 'synset': 'freight_liner.n.01', 'name': 'freight_liner'}, {'id': 7881, 'synset': 'freight_train.n.01', 'name': 'freight_train'}, {'id': 7882, 'synset': 'french_door.n.01', 'name': 'French_door'}, {'id': 7883, 'synset': 'french_horn.n.01', 'name': 'French_horn'}, {'id': 7884, 'synset': 'french_polish.n.02', 'name': 'French_polish'}, {'id': 7885, 'synset': 'french_roof.n.01', 'name': 'French_roof'}, {'id': 7886, 'synset': 'french_window.n.01', 'name': 'French_window'}, {'id': 7887, 'synset': 'fresnel_lens.n.01', 'name': 'Fresnel_lens'}, {'id': 7888, 'synset': 'fret.n.04', 'name': 'fret'}, {'id': 7889, 'synset': 'friary.n.01', 'name': 'friary'}, {'id': 7890, 'synset': 'friction_clutch.n.01', 'name': 'friction_clutch'}, {'id': 7891, 'synset': 'frieze.n.02', 'name': 'frieze'}, {'id': 7892, 'synset': 'frieze.n.01', 'name': 'frieze'}, {'id': 7893, 'synset': 'frigate.n.02', 'name': 'frigate'}, {'id': 7894, 'synset': 'frigate.n.01', 'name': 'frigate'}, {'id': 7895, 'synset': 'frill.n.03', 'name': 'frill'}, {'id': 7896, 'synset': 'frock.n.01', 'name': 'frock'}, {'id': 7897, 'synset': 'frock_coat.n.01', 'name': 'frock_coat'}, {'id': 7898, 'synset': 'frontlet.n.01', 'name': 'frontlet'}, {'id': 7899, 'synset': 'front_porch.n.01', 'name': 'front_porch'}, {'id': 7900, 'synset': 'front_projector.n.01', 'name': 'front_projector'}, {'id': 7901, 'synset': 'fruit_machine.n.01', 'name': 'fruit_machine'}, {'id': 7902, 'synset': 'fuel_filter.n.01', 'name': 'fuel_filter'}, {'id': 7903, 'synset': 'fuel_gauge.n.01', 'name': 'fuel_gauge'}, {'id': 7904, 'synset': 'fuel_injection.n.01', 'name': 'fuel_injection'}, {'id': 7905, 'synset': 'fuel_system.n.01', 'name': 'fuel_system'}, {'id': 7906, 'synset': 'full-dress_uniform.n.01', 'name': 'full-dress_uniform'}, {'id': 7907, 'synset': 'full_metal_jacket.n.01', 'name': 'full_metal_jacket'}, {'id': 7908, 'synset': 'full_skirt.n.01', 'name': 'full_skirt'}, {'id': 7909, 'synset': 'fumigator.n.02', 'name': 'fumigator'}, {'id': 7910, 'synset': 'funeral_home.n.01', 'name': 'funeral_home'}, {'id': 7911, 'synset': 'funny_wagon.n.01', 'name': 'funny_wagon'}, {'id': 7912, 'synset': 'fur.n.03', 'name': 'fur'}, {'id': 7913, 'synset': 'fur_coat.n.01', 'name': 'fur_coat'}, {'id': 7914, 'synset': 'fur_hat.n.01', 'name': 'fur_hat'}, {'id': 7915, 'synset': 'furnace.n.01', 'name': 'furnace'}, {'id': 7916, 'synset': 'furnace_lining.n.01', 'name': 'furnace_lining'}, {'id': 7917, 'synset': 'furnace_room.n.01', 'name': 'furnace_room'}, {'id': 7918, 'synset': 'furnishing.n.02', 'name': 'furnishing'}, {'id': 7919, 'synset': 'furnishing.n.01', 'name': 'furnishing'}, {'id': 7920, 'synset': 'furniture.n.01', 'name': 'furniture'}, {'id': 7921, 'synset': 'fur-piece.n.01', 'name': 'fur-piece'}, {'id': 7922, 'synset': 'furrow.n.01', 'name': 'furrow'}, {'id': 7923, 'synset': 'fuse.n.01', 'name': 'fuse'}, {'id': 7924, 'synset': 'fusee_drive.n.01', 'name': 'fusee_drive'}, {'id': 7925, 'synset': 'fuselage.n.01', 'name': 'fuselage'}, {'id': 7926, 'synset': 'fusil.n.01', 'name': 'fusil'}, {'id': 7927, 'synset': 'fustian.n.02', 'name': 'fustian'}, {'id': 7928, 'synset': 'gabardine.n.01', 'name': 'gabardine'}, {'id': 7929, 'synset': 'gable.n.01', 'name': 'gable'}, {'id': 7930, 'synset': 'gable_roof.n.01', 'name': 'gable_roof'}, {'id': 7931, 'synset': 'gadgetry.n.01', 'name': 'gadgetry'}, {'id': 7932, 'synset': 'gaff.n.03', 'name': 'gaff'}, {'id': 7933, 'synset': 'gaff.n.02', 'name': 'gaff'}, {'id': 7934, 'synset': 'gaff.n.01', 'name': 'gaff'}, {'id': 7935, 'synset': 'gaffsail.n.01', 'name': 'gaffsail'}, {'id': 7936, 'synset': 'gaff_topsail.n.01', 'name': 'gaff_topsail'}, {'id': 7937, 'synset': 'gaiter.n.03', 'name': 'gaiter'}, {'id': 7938, 'synset': 'gaiter.n.02', 'name': 'gaiter'}, {'id': 7939, 'synset': 'galilean_telescope.n.01', 'name': 'Galilean_telescope'}, {'id': 7940, 'synset': 'galleon.n.01', 'name': 'galleon'}, {'id': 7941, 'synset': 'gallery.n.04', 'name': 'gallery'}, {'id': 7942, 'synset': 'gallery.n.03', 'name': 'gallery'}, {'id': 7943, 'synset': 'galley.n.04', 'name': 'galley'}, {'id': 7944, 'synset': 'galley.n.03', 'name': 'galley'}, {'id': 7945, 'synset': 'galley.n.02', 'name': 'galley'}, {'id': 7946, 'synset': 'gallows.n.01', 'name': 'gallows'}, {'id': 7947, 'synset': 'gallows_tree.n.01', 'name': 'gallows_tree'}, {'id': 7948, 'synset': 'galvanometer.n.01', 'name': 'galvanometer'}, {'id': 7949, 'synset': 'gambling_house.n.01', 'name': 'gambling_house'}, {'id': 7950, 'synset': 'gambrel.n.01', 'name': 'gambrel'}, {'id': 7951, 'synset': 'game.n.09', 'name': 'game'}, {'id': 7952, 'synset': 'gamebag.n.01', 'name': 'gamebag'}, {'id': 7953, 'synset': 'game_equipment.n.01', 'name': 'game_equipment'}, {'id': 7954, 'synset': 'gaming_table.n.01', 'name': 'gaming_table'}, {'id': 7955, 'synset': 'gamp.n.01', 'name': 'gamp'}, {'id': 7956, 'synset': 'gangplank.n.01', 'name': 'gangplank'}, {'id': 7957, 'synset': 'gangsaw.n.01', 'name': 'gangsaw'}, {'id': 7958, 'synset': 'gangway.n.01', 'name': 'gangway'}, {'id': 7959, 'synset': 'gantlet.n.04', 'name': 'gantlet'}, {'id': 7960, 'synset': 'gantry.n.01', 'name': 'gantry'}, {'id': 7961, 'synset': 'garage.n.01', 'name': 'garage'}, {'id': 7962, 'synset': 'garage.n.02', 'name': 'garage'}, {'id': 7963, 'synset': 'garand_rifle.n.01', 'name': 'Garand_rifle'}, {'id': 7964, 'synset': 'garboard.n.01', 'name': 'garboard'}, {'id': 7965, 'synset': 'garden.n.01', 'name': 'garden'}, {'id': 7966, 'synset': 'garden.n.03', 'name': 'garden'}, {'id': 7967, 'synset': 'garden_rake.n.01', 'name': 'garden_rake'}, {'id': 7968, 'synset': 'garden_spade.n.01', 'name': 'garden_spade'}, {'id': 7969, 'synset': 'garden_tool.n.01', 'name': 'garden_tool'}, {'id': 7970, 'synset': 'garden_trowel.n.01', 'name': 'garden_trowel'}, {'id': 7971, 'synset': 'gargoyle.n.01', 'name': 'gargoyle'}, {'id': 7972, 'synset': 'garibaldi.n.02', 'name': 'garibaldi'}, {'id': 7973, 'synset': 'garlic_press.n.01', 'name': 'garlic_press'}, {'id': 7974, 'synset': 'garment.n.01', 'name': 'garment'}, {'id': 7975, 'synset': 'garment_bag.n.01', 'name': 'garment_bag'}, {'id': 7976, 'synset': 'garrison_cap.n.01', 'name': 'garrison_cap'}, {'id': 7977, 'synset': 'garrote.n.01', 'name': 'garrote'}, {'id': 7978, 'synset': 'garter.n.01', 'name': 'garter'}, {'id': 7979, 'synset': 'garter_belt.n.01', 'name': 'garter_belt'}, {'id': 7980, 'synset': 'garter_stitch.n.01', 'name': 'garter_stitch'}, {'id': 7981, 'synset': 'gas_guzzler.n.01', 'name': 'gas_guzzler'}, {'id': 7982, 'synset': 'gas_shell.n.01', 'name': 'gas_shell'}, {'id': 7983, 'synset': 'gas_bracket.n.01', 'name': 'gas_bracket'}, {'id': 7984, 'synset': 'gas_burner.n.01', 'name': 'gas_burner'}, {'id': 7985, 'synset': 'gas-cooled_reactor.n.01', 'name': 'gas-cooled_reactor'}, {'id': 7986, 'synset': 'gas-discharge_tube.n.01', 'name': 'gas-discharge_tube'}, {'id': 7987, 'synset': 'gas_engine.n.01', 'name': 'gas_engine'}, {'id': 7988, 'synset': 'gas_fixture.n.01', 'name': 'gas_fixture'}, {'id': 7989, 'synset': 'gas_furnace.n.01', 'name': 'gas_furnace'}, {'id': 7990, 'synset': 'gas_gun.n.01', 'name': 'gas_gun'}, {'id': 7991, 'synset': 'gas_heater.n.01', 'name': 'gas_heater'}, {'id': 7992, 'synset': 'gas_holder.n.01', 'name': 'gas_holder'}, {'id': 7993, 'synset': 'gasket.n.01', 'name': 'gasket'}, {'id': 7994, 'synset': 'gas_lamp.n.01', 'name': 'gas_lamp'}, {'id': 7995, 'synset': 'gas_maser.n.01', 'name': 'gas_maser'}, {'id': 7996, 'synset': 'gas_meter.n.01', 'name': 'gas_meter'}, {'id': 7997, 'synset': 'gasoline_engine.n.01', 'name': 'gasoline_engine'}, {'id': 7998, 'synset': 'gasoline_gauge.n.01', 'name': 'gasoline_gauge'}, {'id': 7999, 'synset': 'gas_oven.n.02', 'name': 'gas_oven'}, {'id': 8000, 'synset': 'gas_oven.n.01', 'name': 'gas_oven'}, {'id': 8001, 'synset': 'gas_pump.n.01', 'name': 'gas_pump'}, {'id': 8002, 'synset': 'gas_range.n.01', 'name': 'gas_range'}, {'id': 8003, 'synset': 'gas_ring.n.01', 'name': 'gas_ring'}, {'id': 8004, 'synset': 'gas_tank.n.01', 'name': 'gas_tank'}, {'id': 8005, 'synset': 'gas_thermometer.n.01', 'name': 'gas_thermometer'}, {'id': 8006, 'synset': 'gastroscope.n.01', 'name': 'gastroscope'}, {'id': 8007, 'synset': 'gas_turbine.n.01', 'name': 'gas_turbine'}, {'id': 8008, 'synset': 'gas-turbine_ship.n.01', 'name': 'gas-turbine_ship'}, {'id': 8009, 'synset': 'gat.n.01', 'name': 'gat'}, {'id': 8010, 'synset': 'gate.n.01', 'name': 'gate'}, {'id': 8011, 'synset': 'gatehouse.n.01', 'name': 'gatehouse'}, {'id': 8012, 'synset': 'gateleg_table.n.01', 'name': 'gateleg_table'}, {'id': 8013, 'synset': 'gatepost.n.01', 'name': 'gatepost'}, {'id': 8014, 'synset': 'gathered_skirt.n.01', 'name': 'gathered_skirt'}, {'id': 8015, 'synset': 'gatling_gun.n.01', 'name': 'Gatling_gun'}, {'id': 8016, 'synset': 'gauge.n.01', 'name': 'gauge'}, {'id': 8017, 'synset': 'gauntlet.n.03', 'name': 'gauntlet'}, {'id': 8018, 'synset': 'gauntlet.n.02', 'name': 'gauntlet'}, {'id': 8019, 'synset': 'gauze.n.02', 'name': 'gauze'}, {'id': 8020, 'synset': 'gauze.n.01', 'name': 'gauze'}, {'id': 8021, 'synset': 'gavel.n.01', 'name': 'gavel'}, {'id': 8022, 'synset': 'gazebo.n.01', 'name': 'gazebo'}, {'id': 8023, 'synset': 'gear.n.01', 'name': 'gear'}, {'id': 8024, 'synset': 'gear.n.04', 'name': 'gear'}, {'id': 8025, 'synset': 'gear.n.03', 'name': 'gear'}, {'id': 8026, 'synset': 'gearbox.n.01', 'name': 'gearbox'}, {'id': 8027, 'synset': 'gearing.n.01', 'name': 'gearing'}, {'id': 8028, 'synset': 'gearset.n.01', 'name': 'gearset'}, {'id': 8029, 'synset': 'gearshift.n.01', 'name': 'gearshift'}, {'id': 8030, 'synset': 'geiger_counter.n.01', 'name': 'Geiger_counter'}, {'id': 8031, 'synset': 'geiger_tube.n.01', 'name': 'Geiger_tube'}, {'id': 8032, 'synset': 'gene_chip.n.01', 'name': 'gene_chip'}, {'id': 8033, 'synset': 'general-purpose_bomb.n.01', 'name': 'general-purpose_bomb'}, {'id': 8034, 'synset': 'generator.n.01', 'name': 'generator'}, {'id': 8035, 'synset': 'generator.n.04', 'name': 'generator'}, {'id': 8036, 'synset': 'geneva_gown.n.01', 'name': 'Geneva_gown'}, {'id': 8037, 'synset': 'geodesic_dome.n.01', 'name': 'geodesic_dome'}, {'id': 8038, 'synset': 'georgette.n.01', 'name': 'georgette'}, {'id': 8039, 'synset': 'gharry.n.01', 'name': 'gharry'}, {'id': 8040, 'synset': 'ghat.n.01', 'name': 'ghat'}, {'id': 8041, 'synset': 'ghetto_blaster.n.01', 'name': 'ghetto_blaster'}, {'id': 8042, 'synset': 'gift_shop.n.01', 'name': 'gift_shop'}, {'id': 8043, 'synset': 'gift_wrapping.n.01', 'name': 'gift_wrapping'}, {'id': 8044, 'synset': 'gig.n.05', 'name': 'gig'}, {'id': 8045, 'synset': 'gig.n.04', 'name': 'gig'}, {'id': 8046, 'synset': 'gig.n.01', 'name': 'gig'}, {'id': 8047, 'synset': 'gig.n.03', 'name': 'gig'}, {'id': 8048, 'synset': 'gildhall.n.01', 'name': 'gildhall'}, {'id': 8049, 'synset': 'gill_net.n.01', 'name': 'gill_net'}, {'id': 8050, 'synset': 'gilt.n.01', 'name': 'gilt'}, {'id': 8051, 'synset': 'gimbal.n.01', 'name': 'gimbal'}, {'id': 8052, 'synset': 'gingham.n.01', 'name': 'gingham'}, {'id': 8053, 'synset': 'girandole.n.01', 'name': 'girandole'}, {'id': 8054, 'synset': 'girder.n.01', 'name': 'girder'}, {'id': 8055, 'synset': 'glass.n.07', 'name': 'glass'}, {'id': 8056, 'synset': 'glass_cutter.n.03', 'name': 'glass_cutter'}, {'id': 8057, 'synset': 'glasses_case.n.01', 'name': 'glasses_case'}, {'id': 8058, 'synset': 'glebe_house.n.01', 'name': 'glebe_house'}, {'id': 8059, 'synset': 'glengarry.n.01', 'name': 'Glengarry'}, {'id': 8060, 'synset': 'glider.n.01', 'name': 'glider'}, {'id': 8061, 'synset': 'global_positioning_system.n.01', 'name': 'Global_Positioning_System'}, {'id': 8062, 'synset': 'glockenspiel.n.01', 'name': 'glockenspiel'}, {'id': 8063, 'synset': 'glory_hole.n.01', 'name': 'glory_hole'}, {'id': 8064, 'synset': 'glove_compartment.n.01', 'name': 'glove_compartment'}, {'id': 8065, 'synset': 'glow_lamp.n.01', 'name': 'glow_lamp'}, {'id': 8066, 'synset': 'glow_tube.n.01', 'name': 'glow_tube'}, {'id': 8067, 'synset': 'glyptic_art.n.01', 'name': 'glyptic_art'}, {'id': 8068, 'synset': 'glyptics.n.01', 'name': 'glyptics'}, {'id': 8069, 'synset': 'gnomon.n.01', 'name': 'gnomon'}, {'id': 8070, 'synset': 'goal.n.03', 'name': 'goal'}, {'id': 8071, 'synset': 'goalmouth.n.01', 'name': 'goalmouth'}, {'id': 8072, 'synset': 'goalpost.n.01', 'name': 'goalpost'}, {'id': 8073, 'synset': 'goblet.n.01', 'name': 'goblet'}, {'id': 8074, 'synset': 'godown.n.01', 'name': 'godown'}, {'id': 8075, 'synset': 'go-kart.n.01', 'name': 'go-kart'}, {'id': 8076, 'synset': 'gold_plate.n.02', 'name': 'gold_plate'}, {'id': 8077, 'synset': 'golf_bag.n.01', 'name': 'golf_bag'}, {'id': 8078, 'synset': 'golf_ball.n.01', 'name': 'golf_ball'}, {'id': 8079, 'synset': 'golf-club_head.n.01', 'name': 'golf-club_head'}, {'id': 8080, 'synset': 'golf_equipment.n.01', 'name': 'golf_equipment'}, {'id': 8081, 'synset': 'golf_glove.n.01', 'name': 'golf_glove'}, {'id': 8082, 'synset': 'golliwog.n.01', 'name': 'golliwog'}, {'id': 8083, 'synset': 'gong.n.01', 'name': 'gong'}, {'id': 8084, 'synset': 'goniometer.n.01', 'name': 'goniometer'}, {'id': 8085, 'synset': 'gordian_knot.n.02', 'name': 'Gordian_knot'}, {'id': 8086, 'synset': 'gorget.n.01', 'name': 'gorget'}, {'id': 8087, 'synset': 'gossamer.n.01', 'name': 'gossamer'}, {'id': 8088, 'synset': 'gothic_arch.n.01', 'name': 'Gothic_arch'}, {'id': 8089, 'synset': 'gouache.n.01', 'name': 'gouache'}, {'id': 8090, 'synset': 'gouge.n.02', 'name': 'gouge'}, {'id': 8091, 'synset': 'gourd.n.01', 'name': 'gourd'}, {'id': 8092, 'synset': 'government_building.n.01', 'name': 'government_building'}, {'id': 8093, 'synset': 'government_office.n.01', 'name': 'government_office'}, {'id': 8094, 'synset': 'gown.n.01', 'name': 'gown'}, {'id': 8095, 'synset': 'gown.n.05', 'name': 'gown'}, {'id': 8096, 'synset': 'gown.n.04', 'name': 'gown'}, {'id': 8097, 'synset': 'grab.n.01', 'name': 'grab'}, {'id': 8098, 'synset': 'grab_bag.n.02', 'name': 'grab_bag'}, {'id': 8099, 'synset': 'grab_bar.n.01', 'name': 'grab_bar'}, {'id': 8100, 'synset': 'grace_cup.n.01', 'name': 'grace_cup'}, {'id': 8101, 'synset': 'grade_separation.n.01', 'name': 'grade_separation'}, {'id': 8102, 'synset': 'graduated_cylinder.n.01', 'name': 'graduated_cylinder'}, {'id': 8103, 'synset': 'graffito.n.01', 'name': 'graffito'}, {'id': 8104, 'synset': 'gramophone.n.01', 'name': 'gramophone'}, {'id': 8105, 'synset': 'granary.n.01', 'name': 'granary'}, {'id': 8106, 'synset': 'grandfather_clock.n.01', 'name': 'grandfather_clock'}, {'id': 8107, 'synset': 'grand_piano.n.01', 'name': 'grand_piano'}, {'id': 8108, 'synset': 'graniteware.n.01', 'name': 'graniteware'}, {'id': 8109, 'synset': 'granny_knot.n.01', 'name': 'granny_knot'}, {'id': 8110, 'synset': 'grape_arbor.n.01', 'name': 'grape_arbor'}, {'id': 8111, 'synset': 'grapnel.n.02', 'name': 'grapnel'}, {'id': 8112, 'synset': 'grapnel.n.01', 'name': 'grapnel'}, {'id': 8113, 'synset': 'grass_skirt.n.01', 'name': 'grass_skirt'}, {'id': 8114, 'synset': 'grate.n.01', 'name': 'grate'}, {'id': 8115, 'synset': 'grate.n.03', 'name': 'grate'}, {'id': 8116, 'synset': 'graver.n.01', 'name': 'graver'}, {'id': 8117, 'synset': 'gravimeter.n.02', 'name': 'gravimeter'}, {'id': 8118, 'synset': 'gravure.n.03', 'name': 'gravure'}, {'id': 8119, 'synset': 'grey.n.06', 'name': 'grey'}, {'id': 8120, 'synset': 'grease-gun.n.01', 'name': 'grease-gun'}, {'id': 8121, 'synset': 'greasepaint.n.01', 'name': 'greasepaint'}, {'id': 8122, 'synset': 'greasy_spoon.n.01', 'name': 'greasy_spoon'}, {'id': 8123, 'synset': 'greatcoat.n.01', 'name': 'greatcoat'}, {'id': 8124, 'synset': 'great_hall.n.01', 'name': 'great_hall'}, {'id': 8125, 'synset': 'greave.n.01', 'name': 'greave'}, {'id': 8126, 'synset': 'greengrocery.n.02', 'name': 'greengrocery'}, {'id': 8127, 'synset': 'greenhouse.n.01', 'name': 'greenhouse'}, {'id': 8128, 'synset': 'grenade.n.01', 'name': 'grenade'}, {'id': 8129, 'synset': 'grid.n.05', 'name': 'grid'}, {'id': 8130, 'synset': 'grille.n.02', 'name': 'grille'}, {'id': 8131, 'synset': 'grillroom.n.01', 'name': 'grillroom'}, {'id': 8132, 'synset': 'grinder.n.04', 'name': 'grinder'}, {'id': 8133, 'synset': 'grinding_wheel.n.01', 'name': 'grinding_wheel'}, {'id': 8134, 'synset': 'grindstone.n.01', 'name': 'grindstone'}, {'id': 8135, 'synset': 'gripsack.n.01', 'name': 'gripsack'}, {'id': 8136, 'synset': 'gristmill.n.01', 'name': 'gristmill'}, {'id': 8137, 'synset': 'grocery_store.n.01', 'name': 'grocery_store'}, {'id': 8138, 'synset': 'grogram.n.01', 'name': 'grogram'}, {'id': 8139, 'synset': 'groined_vault.n.01', 'name': 'groined_vault'}, {'id': 8140, 'synset': 'groover.n.01', 'name': 'groover'}, {'id': 8141, 'synset': 'grosgrain.n.01', 'name': 'grosgrain'}, {'id': 8142, 'synset': 'gros_point.n.01', 'name': 'gros_point'}, {'id': 8143, 'synset': 'ground.n.09', 'name': 'ground'}, {'id': 8144, 'synset': 'ground_bait.n.01', 'name': 'ground_bait'}, {'id': 8145, 'synset': 'ground_control.n.01', 'name': 'ground_control'}, {'id': 8146, 'synset': 'ground_floor.n.01', 'name': 'ground_floor'}, {'id': 8147, 'synset': 'groundsheet.n.01', 'name': 'groundsheet'}, {'id': 8148, 'synset': 'g-string.n.01', 'name': 'G-string'}, {'id': 8149, 'synset': 'guard.n.03', 'name': 'guard'}, {'id': 8150, 'synset': 'guard_boat.n.01', 'name': 'guard_boat'}, {'id': 8151, 'synset': 'guardroom.n.02', 'name': 'guardroom'}, {'id': 8152, 'synset': 'guardroom.n.01', 'name': 'guardroom'}, {'id': 8153, 'synset': 'guard_ship.n.01', 'name': 'guard_ship'}, {'id': 8154, 'synset': "guard's_van.n.01", 'name': "guard's_van"}, {'id': 8155, 'synset': 'gueridon.n.01', 'name': 'gueridon'}, {'id': 8156, 'synset': 'guarnerius.n.03', 'name': 'Guarnerius'}, {'id': 8157, 'synset': 'guesthouse.n.01', 'name': 'guesthouse'}, {'id': 8158, 'synset': 'guestroom.n.01', 'name': 'guestroom'}, {'id': 8159, 'synset': 'guidance_system.n.01', 'name': 'guidance_system'}, {'id': 8160, 'synset': 'guided_missile.n.01', 'name': 'guided_missile'}, {'id': 8161, 'synset': 'guided_missile_cruiser.n.01', 'name': 'guided_missile_cruiser'}, {'id': 8162, 'synset': 'guided_missile_frigate.n.01', 'name': 'guided_missile_frigate'}, {'id': 8163, 'synset': 'guildhall.n.01', 'name': 'guildhall'}, {'id': 8164, 'synset': 'guilloche.n.01', 'name': 'guilloche'}, {'id': 8165, 'synset': 'guillotine.n.02', 'name': 'guillotine'}, {'id': 8166, 'synset': 'guimpe.n.02', 'name': 'guimpe'}, {'id': 8167, 'synset': 'guimpe.n.01', 'name': 'guimpe'}, {'id': 8168, 'synset': 'guitar_pick.n.01', 'name': 'guitar_pick'}, {'id': 8169, 'synset': 'gulag.n.01', 'name': 'gulag'}, {'id': 8170, 'synset': 'gunboat.n.01', 'name': 'gunboat'}, {'id': 8171, 'synset': 'gun_carriage.n.01', 'name': 'gun_carriage'}, {'id': 8172, 'synset': 'gun_case.n.01', 'name': 'gun_case'}, {'id': 8173, 'synset': 'gun_emplacement.n.01', 'name': 'gun_emplacement'}, {'id': 8174, 'synset': 'gun_enclosure.n.01', 'name': 'gun_enclosure'}, {'id': 8175, 'synset': 'gunlock.n.01', 'name': 'gunlock'}, {'id': 8176, 'synset': 'gunnery.n.01', 'name': 'gunnery'}, {'id': 8177, 'synset': 'gunnysack.n.01', 'name': 'gunnysack'}, {'id': 8178, 'synset': 'gun_pendulum.n.01', 'name': 'gun_pendulum'}, {'id': 8179, 'synset': 'gun_room.n.01', 'name': 'gun_room'}, {'id': 8180, 'synset': 'gunsight.n.01', 'name': 'gunsight'}, {'id': 8181, 'synset': 'gun_trigger.n.01', 'name': 'gun_trigger'}, {'id': 8182, 'synset': 'gurney.n.01', 'name': 'gurney'}, {'id': 8183, 'synset': 'gusher.n.01', 'name': 'gusher'}, {'id': 8184, 'synset': 'gusset.n.03', 'name': 'gusset'}, {'id': 8185, 'synset': 'gusset.n.02', 'name': 'gusset'}, {'id': 8186, 'synset': 'guy.n.03', 'name': 'guy'}, {'id': 8187, 'synset': 'gymnastic_apparatus.n.01', 'name': 'gymnastic_apparatus'}, {'id': 8188, 'synset': 'gym_shoe.n.01', 'name': 'gym_shoe'}, {'id': 8189, 'synset': 'gym_suit.n.01', 'name': 'gym_suit'}, {'id': 8190, 'synset': 'gymslip.n.01', 'name': 'gymslip'}, {'id': 8191, 'synset': 'gypsy_cab.n.01', 'name': 'gypsy_cab'}, {'id': 8192, 'synset': 'gyrocompass.n.01', 'name': 'gyrocompass'}, {'id': 8193, 'synset': 'gyroscope.n.01', 'name': 'gyroscope'}, {'id': 8194, 'synset': 'gyrostabilizer.n.01', 'name': 'gyrostabilizer'}, {'id': 8195, 'synset': 'habergeon.n.01', 'name': 'habergeon'}, {'id': 8196, 'synset': 'habit.n.03', 'name': 'habit'}, {'id': 8197, 'synset': 'habit.n.05', 'name': 'habit'}, {'id': 8198, 'synset': 'hacienda.n.02', 'name': 'hacienda'}, {'id': 8199, 'synset': 'hacksaw.n.01', 'name': 'hacksaw'}, {'id': 8200, 'synset': 'haft.n.01', 'name': 'haft'}, {'id': 8201, 'synset': 'haircloth.n.01', 'name': 'haircloth'}, {'id': 8202, 'synset': 'hairdressing.n.01', 'name': 'hairdressing'}, {'id': 8203, 'synset': 'hairpiece.n.01', 'name': 'hairpiece'}, {'id': 8204, 'synset': 'hair_shirt.n.01', 'name': 'hair_shirt'}, {'id': 8205, 'synset': 'hair_slide.n.01', 'name': 'hair_slide'}, {'id': 8206, 'synset': 'hair_spray.n.01', 'name': 'hair_spray'}, {'id': 8207, 'synset': 'hairspring.n.01', 'name': 'hairspring'}, {'id': 8208, 'synset': 'hair_trigger.n.01', 'name': 'hair_trigger'}, {'id': 8209, 'synset': 'halberd.n.01', 'name': 'halberd'}, {'id': 8210, 'synset': 'half_binding.n.01', 'name': 'half_binding'}, {'id': 8211, 'synset': 'half_hatchet.n.01', 'name': 'half_hatchet'}, {'id': 8212, 'synset': 'half_hitch.n.01', 'name': 'half_hitch'}, {'id': 8213, 'synset': 'half_track.n.01', 'name': 'half_track'}, {'id': 8214, 'synset': 'hall.n.13', 'name': 'hall'}, {'id': 8215, 'synset': 'hall.n.03', 'name': 'hall'}, {'id': 8216, 'synset': 'hall.n.12', 'name': 'hall'}, {'id': 8217, 'synset': 'hall_of_fame.n.01', 'name': 'Hall_of_Fame'}, {'id': 8218, 'synset': 'hall_of_residence.n.01', 'name': 'hall_of_residence'}, {'id': 8219, 'synset': 'hallstand.n.01', 'name': 'hallstand'}, {'id': 8220, 'synset': 'halter.n.01', 'name': 'halter'}, {'id': 8221, 'synset': 'hame.n.01', 'name': 'hame'}, {'id': 8222, 'synset': 'hammer.n.07', 'name': 'hammer'}, {'id': 8223, 'synset': 'hammer.n.05', 'name': 'hammer'}, {'id': 8224, 'synset': 'hammerhead.n.02', 'name': 'hammerhead'}, {'id': 8225, 'synset': 'hand.n.08', 'name': 'hand'}, {'id': 8226, 'synset': 'handball.n.01', 'name': 'handball'}, {'id': 8227, 'synset': 'handbarrow.n.01', 'name': 'handbarrow'}, {'id': 8228, 'synset': 'handbell.n.01', 'name': 'handbell'}, {'id': 8229, 'synset': 'handbow.n.01', 'name': 'handbow'}, {'id': 8230, 'synset': 'hand_brake.n.01', 'name': 'hand_brake'}, {'id': 8231, 'synset': 'hand_calculator.n.01', 'name': 'hand_calculator'}, {'id': 8232, 'synset': 'handcar.n.01', 'name': 'handcar'}, {'id': 8233, 'synset': 'hand_cream.n.01', 'name': 'hand_cream'}, {'id': 8234, 'synset': 'hand_drill.n.01', 'name': 'hand_drill'}, {'id': 8235, 'synset': 'hand_glass.n.02', 'name': 'hand_glass'}, {'id': 8236, 'synset': 'hand_grenade.n.01', 'name': 'hand_grenade'}, {'id': 8237, 'synset': 'hand-held_computer.n.01', 'name': 'hand-held_computer'}, {'id': 8238, 'synset': 'handhold.n.01', 'name': 'handhold'}, {'id': 8239, 'synset': 'handlebar.n.01', 'name': 'handlebar'}, {'id': 8240, 'synset': 'handloom.n.01', 'name': 'handloom'}, {'id': 8241, 'synset': 'hand_lotion.n.01', 'name': 'hand_lotion'}, {'id': 8242, 'synset': 'hand_luggage.n.01', 'name': 'hand_luggage'}, {'id': 8243, 'synset': 'hand-me-down.n.01', 'name': 'hand-me-down'}, {'id': 8244, 'synset': 'hand_mower.n.01', 'name': 'hand_mower'}, {'id': 8245, 'synset': 'hand_pump.n.01', 'name': 'hand_pump'}, {'id': 8246, 'synset': 'handrest.n.01', 'name': 'handrest'}, {'id': 8247, 'synset': 'handset.n.01', 'name': 'handset'}, {'id': 8248, 'synset': 'hand_shovel.n.01', 'name': 'hand_shovel'}, {'id': 8249, 'synset': 'handspike.n.01', 'name': 'handspike'}, {'id': 8250, 'synset': 'handstamp.n.01', 'name': 'handstamp'}, {'id': 8251, 'synset': 'hand_throttle.n.01', 'name': 'hand_throttle'}, {'id': 8252, 'synset': 'hand_tool.n.01', 'name': 'hand_tool'}, {'id': 8253, 'synset': 'hand_truck.n.01', 'name': 'hand_truck'}, {'id': 8254, 'synset': 'handwear.n.01', 'name': 'handwear'}, {'id': 8255, 'synset': 'handwheel.n.02', 'name': 'handwheel'}, {'id': 8256, 'synset': 'handwheel.n.01', 'name': 'handwheel'}, {'id': 8257, 'synset': 'hangar_queen.n.01', 'name': 'hangar_queen'}, {'id': 8258, 'synset': 'hanger.n.02', 'name': 'hanger'}, {'id': 8259, 'synset': 'hang_glider.n.02', 'name': 'hang_glider'}, {'id': 8260, 'synset': "hangman's_rope.n.01", 'name': "hangman's_rope"}, {'id': 8261, 'synset': 'hank.n.01', 'name': 'hank'}, {'id': 8262, 'synset': 'hansom.n.01', 'name': 'hansom'}, {'id': 8263, 'synset': 'harbor.n.02', 'name': 'harbor'}, {'id': 8264, 'synset': 'hard_disc.n.01', 'name': 'hard_disc'}, {'id': 8265, 'synset': 'hard_hat.n.02', 'name': 'hard_hat'}, {'id': 8266, 'synset': 'hardtop.n.01', 'name': 'hardtop'}, {'id': 8267, 'synset': 'hardware.n.02', 'name': 'hardware'}, {'id': 8268, 'synset': 'hardware_store.n.01', 'name': 'hardware_store'}, {'id': 8269, 'synset': 'harmonica.n.01', 'name': 'harmonica'}, {'id': 8270, 'synset': 'harness.n.02', 'name': 'harness'}, {'id': 8271, 'synset': 'harness.n.01', 'name': 'harness'}, {'id': 8272, 'synset': 'harp.n.01', 'name': 'harp'}, {'id': 8273, 'synset': 'harp.n.02', 'name': 'harp'}, {'id': 8274, 'synset': 'harpoon.n.01', 'name': 'harpoon'}, {'id': 8275, 'synset': 'harpoon_gun.n.01', 'name': 'harpoon_gun'}, {'id': 8276, 'synset': 'harpoon_log.n.01', 'name': 'harpoon_log'}, {'id': 8277, 'synset': 'harpsichord.n.01', 'name': 'harpsichord'}, {'id': 8278, 'synset': 'harris_tweed.n.01', 'name': 'Harris_Tweed'}, {'id': 8279, 'synset': 'harrow.n.01', 'name': 'harrow'}, {'id': 8280, 'synset': 'harvester.n.02', 'name': 'harvester'}, {'id': 8281, 'synset': 'hash_house.n.01', 'name': 'hash_house'}, {'id': 8282, 'synset': 'hasp.n.01', 'name': 'hasp'}, {'id': 8283, 'synset': 'hatch.n.03', 'name': 'hatch'}, {'id': 8284, 'synset': 'hatchback.n.02', 'name': 'hatchback'}, {'id': 8285, 'synset': 'hatchback.n.01', 'name': 'hatchback'}, {'id': 8286, 'synset': 'hatchel.n.01', 'name': 'hatchel'}, {'id': 8287, 'synset': 'hatchet.n.02', 'name': 'hatchet'}, {'id': 8288, 'synset': 'hatpin.n.01', 'name': 'hatpin'}, {'id': 8289, 'synset': 'hauberk.n.01', 'name': 'hauberk'}, {'id': 8290, 'synset': 'hawaiian_guitar.n.01', 'name': 'Hawaiian_guitar'}, {'id': 8291, 'synset': 'hawse.n.01', 'name': 'hawse'}, {'id': 8292, 'synset': 'hawser.n.01', 'name': 'hawser'}, {'id': 8293, 'synset': 'hawser_bend.n.01', 'name': 'hawser_bend'}, {'id': 8294, 'synset': 'hay_bale.n.01', 'name': 'hay_bale'}, {'id': 8295, 'synset': 'hayfork.n.01', 'name': 'hayfork'}, {'id': 8296, 'synset': 'hayloft.n.01', 'name': 'hayloft'}, {'id': 8297, 'synset': 'haymaker.n.01', 'name': 'haymaker'}, {'id': 8298, 'synset': 'hayrack.n.02', 'name': 'hayrack'}, {'id': 8299, 'synset': 'hayrack.n.01', 'name': 'hayrack'}, {'id': 8300, 'synset': 'hazard.n.03', 'name': 'hazard'}, {'id': 8301, 'synset': 'head.n.31', 'name': 'head'}, {'id': 8302, 'synset': 'head.n.30', 'name': 'head'}, {'id': 8303, 'synset': 'head.n.29', 'name': 'head'}, {'id': 8304, 'synset': 'headdress.n.01', 'name': 'headdress'}, {'id': 8305, 'synset': 'header.n.05', 'name': 'header'}, {'id': 8306, 'synset': 'header.n.04', 'name': 'header'}, {'id': 8307, 'synset': 'header.n.03', 'name': 'header'}, {'id': 8308, 'synset': 'header.n.02', 'name': 'header'}, {'id': 8309, 'synset': 'headfast.n.01', 'name': 'headfast'}, {'id': 8310, 'synset': 'head_gasket.n.01', 'name': 'head_gasket'}, {'id': 8311, 'synset': 'head_gate.n.02', 'name': 'head_gate'}, {'id': 8312, 'synset': 'headgear.n.03', 'name': 'headgear'}, {'id': 8313, 'synset': 'headpiece.n.02', 'name': 'headpiece'}, {'id': 8314, 'synset': 'headpin.n.01', 'name': 'headpin'}, {'id': 8315, 'synset': 'headquarters.n.01', 'name': 'headquarters'}, {'id': 8316, 'synset': 'headrace.n.01', 'name': 'headrace'}, {'id': 8317, 'synset': 'headrest.n.02', 'name': 'headrest'}, {'id': 8318, 'synset': 'headsail.n.01', 'name': 'headsail'}, {'id': 8319, 'synset': 'head_shop.n.01', 'name': 'head_shop'}, {'id': 8320, 'synset': 'headstock.n.01', 'name': 'headstock'}, {'id': 8321, 'synset': 'health_spa.n.01', 'name': 'health_spa'}, {'id': 8322, 'synset': 'hearing_aid.n.02', 'name': 'hearing_aid'}, {'id': 8323, 'synset': 'hearing_aid.n.01', 'name': 'hearing_aid'}, {'id': 8324, 'synset': 'hearse.n.01', 'name': 'hearse'}, {'id': 8325, 'synset': 'hearth.n.02', 'name': 'hearth'}, {'id': 8326, 'synset': 'hearthrug.n.01', 'name': 'hearthrug'}, {'id': 8327, 'synset': 'heart-lung_machine.n.01', 'name': 'heart-lung_machine'}, {'id': 8328, 'synset': 'heat_engine.n.01', 'name': 'heat_engine'}, {'id': 8329, 'synset': 'heat_exchanger.n.01', 'name': 'heat_exchanger'}, {'id': 8330, 'synset': 'heating_pad.n.01', 'name': 'heating_pad'}, {'id': 8331, 'synset': 'heat_lamp.n.01', 'name': 'heat_lamp'}, {'id': 8332, 'synset': 'heat_pump.n.01', 'name': 'heat_pump'}, {'id': 8333, 'synset': 'heat-seeking_missile.n.01', 'name': 'heat-seeking_missile'}, {'id': 8334, 'synset': 'heat_shield.n.01', 'name': 'heat_shield'}, {'id': 8335, 'synset': 'heat_sink.n.01', 'name': 'heat_sink'}, {'id': 8336, 'synset': 'heaume.n.01', 'name': 'heaume'}, {'id': 8337, 'synset': 'heaver.n.01', 'name': 'heaver'}, {'id': 8338, 'synset': 'heavier-than-air_craft.n.01', 'name': 'heavier-than-air_craft'}, {'id': 8339, 'synset': 'heckelphone.n.01', 'name': 'heckelphone'}, {'id': 8340, 'synset': 'hectograph.n.01', 'name': 'hectograph'}, {'id': 8341, 'synset': 'hedge.n.01', 'name': 'hedge'}, {'id': 8342, 'synset': 'hedge_trimmer.n.01', 'name': 'hedge_trimmer'}, {'id': 8343, 'synset': 'helicon.n.01', 'name': 'helicon'}, {'id': 8344, 'synset': 'heliograph.n.01', 'name': 'heliograph'}, {'id': 8345, 'synset': 'heliometer.n.01', 'name': 'heliometer'}, {'id': 8346, 'synset': 'helm.n.01', 'name': 'helm'}, {'id': 8347, 'synset': 'helmet.n.01', 'name': 'helmet'}, {'id': 8348, 'synset': 'hematocrit.n.02', 'name': 'hematocrit'}, {'id': 8349, 'synset': 'hemming-stitch.n.01', 'name': 'hemming-stitch'}, {'id': 8350, 'synset': 'hemostat.n.01', 'name': 'hemostat'}, {'id': 8351, 'synset': 'hemstitch.n.01', 'name': 'hemstitch'}, {'id': 8352, 'synset': 'henroost.n.01', 'name': 'henroost'}, {'id': 8353, 'synset': 'heraldry.n.02', 'name': 'heraldry'}, {'id': 8354, 'synset': 'hermitage.n.01', 'name': 'hermitage'}, {'id': 8355, 'synset': 'herringbone.n.01', 'name': 'herringbone'}, {'id': 8356, 'synset': 'herringbone.n.02', 'name': 'herringbone'}, {'id': 8357, 'synset': 'herschelian_telescope.n.01', 'name': 'Herschelian_telescope'}, {'id': 8358, 'synset': 'hessian_boot.n.01', 'name': 'Hessian_boot'}, {'id': 8359, 'synset': 'heterodyne_receiver.n.01', 'name': 'heterodyne_receiver'}, {'id': 8360, 'synset': 'hibachi.n.01', 'name': 'hibachi'}, {'id': 8361, 'synset': 'hideaway.n.02', 'name': 'hideaway'}, {'id': 8362, 'synset': 'hi-fi.n.01', 'name': 'hi-fi'}, {'id': 8363, 'synset': 'high_altar.n.01', 'name': 'high_altar'}, {'id': 8364, 'synset': 'high-angle_gun.n.01', 'name': 'high-angle_gun'}, {'id': 8365, 'synset': 'highball_glass.n.01', 'name': 'highball_glass'}, {'id': 8366, 'synset': 'highboard.n.01', 'name': 'highboard'}, {'id': 8367, 'synset': 'highboy.n.01', 'name': 'highboy'}, {'id': 8368, 'synset': 'high_gear.n.01', 'name': 'high_gear'}, {'id': 8369, 'synset': 'high-hat_cymbal.n.01', 'name': 'high-hat_cymbal'}, {'id': 8370, 'synset': 'highlighter.n.02', 'name': 'highlighter'}, {'id': 8371, 'synset': 'highlighter.n.01', 'name': 'highlighter'}, {'id': 8372, 'synset': 'high-pass_filter.n.01', 'name': 'high-pass_filter'}, {'id': 8373, 'synset': 'high-rise.n.01', 'name': 'high-rise'}, {'id': 8374, 'synset': 'high_table.n.01', 'name': 'high_table'}, {'id': 8375, 'synset': 'high-warp_loom.n.01', 'name': 'high-warp_loom'}, {'id': 8376, 'synset': 'hijab.n.01', 'name': 'hijab'}, {'id': 8377, 'synset': 'hinging_post.n.01', 'name': 'hinging_post'}, {'id': 8378, 'synset': 'hip_boot.n.01', 'name': 'hip_boot'}, {'id': 8379, 'synset': 'hipflask.n.01', 'name': 'hipflask'}, {'id': 8380, 'synset': 'hip_pad.n.01', 'name': 'hip_pad'}, {'id': 8381, 'synset': 'hip_pocket.n.01', 'name': 'hip_pocket'}, {'id': 8382, 'synset': 'hippodrome.n.01', 'name': 'hippodrome'}, {'id': 8383, 'synset': 'hip_roof.n.01', 'name': 'hip_roof'}, {'id': 8384, 'synset': 'hitch.n.05', 'name': 'hitch'}, {'id': 8385, 'synset': 'hitch.n.04', 'name': 'hitch'}, {'id': 8386, 'synset': 'hitching_post.n.01', 'name': 'hitching_post'}, {'id': 8387, 'synset': 'hitchrack.n.01', 'name': 'hitchrack'}, {'id': 8388, 'synset': 'hob.n.03', 'name': 'hob'}, {'id': 8389, 'synset': 'hobble_skirt.n.01', 'name': 'hobble_skirt'}, {'id': 8390, 'synset': 'hockey_skate.n.01', 'name': 'hockey_skate'}, {'id': 8391, 'synset': 'hod.n.01', 'name': 'hod'}, {'id': 8392, 'synset': 'hodoscope.n.01', 'name': 'hodoscope'}, {'id': 8393, 'synset': 'hoe.n.01', 'name': 'hoe'}, {'id': 8394, 'synset': 'hoe_handle.n.01', 'name': 'hoe_handle'}, {'id': 8395, 'synset': 'hogshead.n.02', 'name': 'hogshead'}, {'id': 8396, 'synset': 'hoist.n.01', 'name': 'hoist'}, {'id': 8397, 'synset': 'hold.n.07', 'name': 'hold'}, {'id': 8398, 'synset': 'holder.n.01', 'name': 'holder'}, {'id': 8399, 'synset': 'holding_cell.n.01', 'name': 'holding_cell'}, {'id': 8400, 'synset': 'holding_device.n.01', 'name': 'holding_device'}, {'id': 8401, 'synset': 'holding_pen.n.01', 'name': 'holding_pen'}, {'id': 8402, 'synset': 'hollowware.n.01', 'name': 'hollowware'}, {'id': 8403, 'synset': 'holster.n.01', 'name': 'holster'}, {'id': 8404, 'synset': 'holster.n.02', 'name': 'holster'}, {'id': 8405, 'synset': 'holy_of_holies.n.02', 'name': 'holy_of_holies'}, {'id': 8406, 'synset': 'home.n.09', 'name': 'home'}, {'id': 8407, 'synset': 'home_appliance.n.01', 'name': 'home_appliance'}, {'id': 8408, 'synset': 'home_computer.n.01', 'name': 'home_computer'}, {'id': 8409, 'synset': 'home_room.n.01', 'name': 'home_room'}, {'id': 8410, 'synset': 'homespun.n.01', 'name': 'homespun'}, {'id': 8411, 'synset': 'homestead.n.03', 'name': 'homestead'}, {'id': 8412, 'synset': 'home_theater.n.01', 'name': 'home_theater'}, {'id': 8413, 'synset': 'homing_torpedo.n.01', 'name': 'homing_torpedo'}, {'id': 8414, 'synset': 'hone.n.01', 'name': 'hone'}, {'id': 8415, 'synset': 'honeycomb.n.02', 'name': 'honeycomb'}, {'id': 8416, 'synset': 'hood.n.09', 'name': 'hood'}, {'id': 8417, 'synset': 'hood.n.08', 'name': 'hood'}, {'id': 8418, 'synset': 'hood.n.07', 'name': 'hood'}, {'id': 8419, 'synset': 'hood.n.05', 'name': 'hood'}, {'id': 8420, 'synset': 'hood_latch.n.01', 'name': 'hood_latch'}, {'id': 8421, 'synset': 'hook.n.04', 'name': 'hook'}, {'id': 8422, 'synset': 'hook.n.01', 'name': 'hook'}, {'id': 8423, 'synset': 'hook_and_eye.n.01', 'name': 'hook_and_eye'}, {'id': 8424, 'synset': 'hookup.n.02', 'name': 'hookup'}, {'id': 8425, 'synset': 'hookup.n.01', 'name': 'hookup'}, {'id': 8426, 'synset': 'hook_wrench.n.01', 'name': 'hook_wrench'}, {'id': 8427, 'synset': 'hoopskirt.n.01', 'name': 'hoopskirt'}, {'id': 8428, 'synset': 'hoosegow.n.01', 'name': 'hoosegow'}, {'id': 8429, 'synset': 'hoover.n.04', 'name': 'Hoover'}, {'id': 8430, 'synset': 'hope_chest.n.01', 'name': 'hope_chest'}, {'id': 8431, 'synset': 'hopper.n.01', 'name': 'hopper'}, {'id': 8432, 'synset': 'hopsacking.n.01', 'name': 'hopsacking'}, {'id': 8433, 'synset': 'horizontal_bar.n.01', 'name': 'horizontal_bar'}, {'id': 8434, 'synset': 'horizontal_stabilizer.n.01', 'name': 'horizontal_stabilizer'}, {'id': 8435, 'synset': 'horizontal_tail.n.01', 'name': 'horizontal_tail'}, {'id': 8436, 'synset': 'horn.n.09', 'name': 'horn'}, {'id': 8437, 'synset': 'horn.n.01', 'name': 'horn'}, {'id': 8438, 'synset': 'horn.n.08', 'name': 'horn'}, {'id': 8439, 'synset': 'horn_button.n.01', 'name': 'horn_button'}, {'id': 8440, 'synset': 'hornpipe.n.03', 'name': 'hornpipe'}, {'id': 8441, 'synset': 'horse.n.02', 'name': 'horse'}, {'id': 8442, 'synset': 'horsebox.n.01', 'name': 'horsebox'}, {'id': 8443, 'synset': 'horsecar.n.01', 'name': 'horsecar'}, {'id': 8444, 'synset': 'horse_cart.n.01', 'name': 'horse_cart'}, {'id': 8445, 'synset': 'horsecloth.n.01', 'name': 'horsecloth'}, {'id': 8446, 'synset': 'horse-drawn_vehicle.n.01', 'name': 'horse-drawn_vehicle'}, {'id': 8447, 'synset': 'horsehair.n.02', 'name': 'horsehair'}, {'id': 8448, 'synset': 'horsehair_wig.n.01', 'name': 'horsehair_wig'}, {'id': 8449, 'synset': 'horseless_carriage.n.01', 'name': 'horseless_carriage'}, {'id': 8450, 'synset': 'horse_pistol.n.01', 'name': 'horse_pistol'}, {'id': 8451, 'synset': 'horseshoe.n.02', 'name': 'horseshoe'}, {'id': 8452, 'synset': 'horseshoe.n.01', 'name': 'horseshoe'}, {'id': 8453, 'synset': 'horse-trail.n.01', 'name': 'horse-trail'}, {'id': 8454, 'synset': 'horsewhip.n.01', 'name': 'horsewhip'}, {'id': 8455, 'synset': 'hose.n.02', 'name': 'hose'}, {'id': 8456, 'synset': 'hosiery.n.01', 'name': 'hosiery'}, {'id': 8457, 'synset': 'hospice.n.01', 'name': 'hospice'}, {'id': 8458, 'synset': 'hospital.n.01', 'name': 'hospital'}, {'id': 8459, 'synset': 'hospital_bed.n.01', 'name': 'hospital_bed'}, {'id': 8460, 'synset': 'hospital_room.n.01', 'name': 'hospital_room'}, {'id': 8461, 'synset': 'hospital_ship.n.01', 'name': 'hospital_ship'}, {'id': 8462, 'synset': 'hospital_train.n.01', 'name': 'hospital_train'}, {'id': 8463, 'synset': 'hostel.n.02', 'name': 'hostel'}, {'id': 8464, 'synset': 'hostel.n.01', 'name': 'hostel'}, {'id': 8465, 'synset': 'hotel.n.01', 'name': 'hotel'}, {'id': 8466, 'synset': 'hotel-casino.n.02', 'name': 'hotel-casino'}, {'id': 8467, 'synset': 'hotel-casino.n.01', 'name': 'hotel-casino'}, {'id': 8468, 'synset': 'hotel_room.n.01', 'name': 'hotel_room'}, {'id': 8469, 'synset': 'hot_line.n.01', 'name': 'hot_line'}, {'id': 8470, 'synset': 'hot_pants.n.02', 'name': 'hot_pants'}, {'id': 8471, 'synset': 'hot_rod.n.01', 'name': 'hot_rod'}, {'id': 8472, 'synset': 'hot_spot.n.03', 'name': 'hot_spot'}, {'id': 8473, 'synset': 'hot_tub.n.01', 'name': 'hot_tub'}, {'id': 8474, 'synset': 'hot-water_bottle.n.01', 'name': 'hot-water_bottle'}, {'id': 8475, 'synset': 'houndstooth_check.n.01', 'name': 'houndstooth_check'}, {'id': 8476, 'synset': 'hour_hand.n.01', 'name': 'hour_hand'}, {'id': 8477, 'synset': 'house.n.01', 'name': 'house'}, {'id': 8478, 'synset': 'house.n.12', 'name': 'house'}, {'id': 8479, 'synset': 'houselights.n.01', 'name': 'houselights'}, {'id': 8480, 'synset': 'house_of_cards.n.02', 'name': 'house_of_cards'}, {'id': 8481, 'synset': 'house_of_correction.n.01', 'name': 'house_of_correction'}, {'id': 8482, 'synset': 'house_paint.n.01', 'name': 'house_paint'}, {'id': 8483, 'synset': 'housetop.n.01', 'name': 'housetop'}, {'id': 8484, 'synset': 'housing.n.01', 'name': 'housing'}, {'id': 8485, 'synset': 'hovel.n.01', 'name': 'hovel'}, {'id': 8486, 'synset': 'hovercraft.n.01', 'name': 'hovercraft'}, {'id': 8487, 'synset': 'howdah.n.01', 'name': 'howdah'}, {'id': 8488, 'synset': 'huarache.n.01', 'name': 'huarache'}, {'id': 8489, 'synset': 'hub-and-spoke.n.01', 'name': 'hub-and-spoke'}, {'id': 8490, 'synset': 'hubcap.n.01', 'name': 'hubcap'}, {'id': 8491, 'synset': 'huck.n.01', 'name': 'huck'}, {'id': 8492, 'synset': 'hug-me-tight.n.01', 'name': 'hug-me-tight'}, {'id': 8493, 'synset': 'hula-hoop.n.01', 'name': 'hula-hoop'}, {'id': 8494, 'synset': 'hulk.n.02', 'name': 'hulk'}, {'id': 8495, 'synset': 'hull.n.06', 'name': 'hull'}, {'id': 8496, 'synset': 'humeral_veil.n.01', 'name': 'humeral_veil'}, {'id': 8497, 'synset': 'humvee.n.01', 'name': 'Humvee'}, {'id': 8498, 'synset': 'hunter.n.04', 'name': 'hunter'}, {'id': 8499, 'synset': 'hunting_knife.n.01', 'name': 'hunting_knife'}, {'id': 8500, 'synset': 'hurdle.n.01', 'name': 'hurdle'}, {'id': 8501, 'synset': 'hurricane_deck.n.01', 'name': 'hurricane_deck'}, {'id': 8502, 'synset': 'hurricane_lamp.n.01', 'name': 'hurricane_lamp'}, {'id': 8503, 'synset': 'hut.n.01', 'name': 'hut'}, {'id': 8504, 'synset': 'hutch.n.01', 'name': 'hutch'}, {'id': 8505, 'synset': 'hutment.n.01', 'name': 'hutment'}, {'id': 8506, 'synset': 'hydraulic_brake.n.01', 'name': 'hydraulic_brake'}, {'id': 8507, 'synset': 'hydraulic_press.n.01', 'name': 'hydraulic_press'}, {'id': 8508, 'synset': 'hydraulic_pump.n.01', 'name': 'hydraulic_pump'}, {'id': 8509, 'synset': 'hydraulic_system.n.01', 'name': 'hydraulic_system'}, {'id': 8510, 'synset': 'hydraulic_transmission.n.01', 'name': 'hydraulic_transmission'}, {'id': 8511, 'synset': 'hydroelectric_turbine.n.01', 'name': 'hydroelectric_turbine'}, {'id': 8512, 'synset': 'hydrofoil.n.02', 'name': 'hydrofoil'}, {'id': 8513, 'synset': 'hydrofoil.n.01', 'name': 'hydrofoil'}, {'id': 8514, 'synset': 'hydrogen_bomb.n.01', 'name': 'hydrogen_bomb'}, {'id': 8515, 'synset': 'hydrometer.n.01', 'name': 'hydrometer'}, {'id': 8516, 'synset': 'hygrodeik.n.01', 'name': 'hygrodeik'}, {'id': 8517, 'synset': 'hygrometer.n.01', 'name': 'hygrometer'}, {'id': 8518, 'synset': 'hygroscope.n.01', 'name': 'hygroscope'}, {'id': 8519, 'synset': 'hyperbaric_chamber.n.01', 'name': 'hyperbaric_chamber'}, {'id': 8520, 'synset': 'hypercoaster.n.01', 'name': 'hypercoaster'}, {'id': 8521, 'synset': 'hypermarket.n.01', 'name': 'hypermarket'}, {'id': 8522, 'synset': 'hypodermic_needle.n.01', 'name': 'hypodermic_needle'}, {'id': 8523, 'synset': 'hypodermic_syringe.n.01', 'name': 'hypodermic_syringe'}, {'id': 8524, 'synset': 'hypsometer.n.01', 'name': 'hypsometer'}, {'id': 8525, 'synset': 'hysterosalpingogram.n.01', 'name': 'hysterosalpingogram'}, {'id': 8526, 'synset': 'i-beam.n.01', 'name': 'I-beam'}, {'id': 8527, 'synset': 'ice_ax.n.01', 'name': 'ice_ax'}, {'id': 8528, 'synset': 'iceboat.n.02', 'name': 'iceboat'}, {'id': 8529, 'synset': 'icebreaker.n.01', 'name': 'icebreaker'}, {'id': 8530, 'synset': 'iced-tea_spoon.n.01', 'name': 'iced-tea_spoon'}, {'id': 8531, 'synset': 'ice_hockey_rink.n.01', 'name': 'ice_hockey_rink'}, {'id': 8532, 'synset': 'ice_machine.n.01', 'name': 'ice_machine'}, {'id': 8533, 'synset': 'icepick.n.01', 'name': 'icepick'}, {'id': 8534, 'synset': 'ice_rink.n.01', 'name': 'ice_rink'}, {'id': 8535, 'synset': 'ice_tongs.n.01', 'name': 'ice_tongs'}, {'id': 8536, 'synset': 'icetray.n.01', 'name': 'icetray'}, {'id': 8537, 'synset': 'iconoscope.n.01', 'name': 'iconoscope'}, {'id': 8538, 'synset': 'identikit.n.01', 'name': 'Identikit'}, {'id': 8539, 'synset': 'idle_pulley.n.01', 'name': 'idle_pulley'}, {'id': 8540, 'synset': 'igloo.n.01', 'name': 'igloo'}, {'id': 8541, 'synset': 'ignition_coil.n.01', 'name': 'ignition_coil'}, {'id': 8542, 'synset': 'ignition_key.n.01', 'name': 'ignition_key'}, {'id': 8543, 'synset': 'ignition_switch.n.01', 'name': 'ignition_switch'}, {'id': 8544, 'synset': 'imaret.n.01', 'name': 'imaret'}, {'id': 8545, 'synset': 'immovable_bandage.n.01', 'name': 'immovable_bandage'}, {'id': 8546, 'synset': 'impact_printer.n.01', 'name': 'impact_printer'}, {'id': 8547, 'synset': 'impeller.n.01', 'name': 'impeller'}, {'id': 8548, 'synset': 'implant.n.01', 'name': 'implant'}, {'id': 8549, 'synset': 'implement.n.01', 'name': 'implement'}, {'id': 8550, 'synset': 'impression.n.07', 'name': 'impression'}, {'id': 8551, 'synset': 'imprint.n.05', 'name': 'imprint'}, {'id': 8552, 'synset': 'improvised_explosive_device.n.01', 'name': 'improvised_explosive_device'}, {'id': 8553, 'synset': 'impulse_turbine.n.01', 'name': 'impulse_turbine'}, {'id': 8554, 'synset': 'in-basket.n.01', 'name': 'in-basket'}, {'id': 8555, 'synset': 'incendiary_bomb.n.01', 'name': 'incendiary_bomb'}, {'id': 8556, 'synset': 'incinerator.n.01', 'name': 'incinerator'}, {'id': 8557, 'synset': 'inclined_plane.n.01', 'name': 'inclined_plane'}, {'id': 8558, 'synset': 'inclinometer.n.02', 'name': 'inclinometer'}, {'id': 8559, 'synset': 'inclinometer.n.01', 'name': 'inclinometer'}, {'id': 8560, 'synset': 'incrustation.n.03', 'name': 'incrustation'}, {'id': 8561, 'synset': 'incubator.n.01', 'name': 'incubator'}, {'id': 8562, 'synset': 'index_register.n.01', 'name': 'index_register'}, {'id': 8563, 'synset': 'indiaman.n.01', 'name': 'Indiaman'}, {'id': 8564, 'synset': 'indian_club.n.01', 'name': 'Indian_club'}, {'id': 8565, 'synset': 'indicator.n.03', 'name': 'indicator'}, {'id': 8566, 'synset': 'induction_coil.n.01', 'name': 'induction_coil'}, {'id': 8567, 'synset': 'inductor.n.01', 'name': 'inductor'}, {'id': 8568, 'synset': 'industrial_watercourse.n.01', 'name': 'industrial_watercourse'}, {'id': 8569, 'synset': 'inertial_guidance_system.n.01', 'name': 'inertial_guidance_system'}, {'id': 8570, 'synset': 'inflater.n.01', 'name': 'inflater'}, {'id': 8571, 'synset': 'injector.n.01', 'name': 'injector'}, {'id': 8572, 'synset': 'ink_bottle.n.01', 'name': 'ink_bottle'}, {'id': 8573, 'synset': 'ink_eraser.n.01', 'name': 'ink_eraser'}, {'id': 8574, 'synset': 'ink-jet_printer.n.01', 'name': 'ink-jet_printer'}, {'id': 8575, 'synset': 'inkle.n.01', 'name': 'inkle'}, {'id': 8576, 'synset': 'inkstand.n.02', 'name': 'inkstand'}, {'id': 8577, 'synset': 'inkwell.n.01', 'name': 'inkwell'}, {'id': 8578, 'synset': 'inlay.n.01', 'name': 'inlay'}, {'id': 8579, 'synset': 'inside_caliper.n.01', 'name': 'inside_caliper'}, {'id': 8580, 'synset': 'insole.n.01', 'name': 'insole'}, {'id': 8581, 'synset': 'instep.n.02', 'name': 'instep'}, {'id': 8582, 'synset': 'instillator.n.01', 'name': 'instillator'}, {'id': 8583, 'synset': 'institution.n.02', 'name': 'institution'}, {'id': 8584, 'synset': 'instrument.n.01', 'name': 'instrument'}, {'id': 8585, 'synset': 'instrument_of_punishment.n.01', 'name': 'instrument_of_punishment'}, {'id': 8586, 'synset': 'instrument_of_torture.n.01', 'name': 'instrument_of_torture'}, {'id': 8587, 'synset': 'intaglio.n.02', 'name': 'intaglio'}, {'id': 8588, 'synset': 'intake_valve.n.01', 'name': 'intake_valve'}, {'id': 8589, 'synset': 'integrated_circuit.n.01', 'name': 'integrated_circuit'}, {'id': 8590, 'synset': 'integrator.n.01', 'name': 'integrator'}, {'id': 8591, 'synset': 'intelnet.n.01', 'name': 'Intelnet'}, {'id': 8592, 'synset': 'interceptor.n.01', 'name': 'interceptor'}, {'id': 8593, 'synset': 'interchange.n.01', 'name': 'interchange'}, {'id': 8594, 'synset': 'intercommunication_system.n.01', 'name': 'intercommunication_system'}, {'id': 8595, 'synset': 'intercontinental_ballistic_missile.n.01', 'name': 'intercontinental_ballistic_missile'}, {'id': 8596, 'synset': 'interface.n.04', 'name': 'interface'}, {'id': 8597, 'synset': 'interferometer.n.01', 'name': 'interferometer'}, {'id': 8598, 'synset': 'interior_door.n.01', 'name': 'interior_door'}, {'id': 8599, 'synset': 'internal-combustion_engine.n.01', 'name': 'internal-combustion_engine'}, {'id': 8600, 'synset': 'internal_drive.n.01', 'name': 'internal_drive'}, {'id': 8601, 'synset': 'internet.n.01', 'name': 'internet'}, {'id': 8602, 'synset': 'interphone.n.01', 'name': 'interphone'}, {'id': 8603, 'synset': 'interrupter.n.01', 'name': 'interrupter'}, {'id': 8604, 'synset': 'intersection.n.02', 'name': 'intersection'}, {'id': 8605, 'synset': 'interstice.n.02', 'name': 'interstice'}, {'id': 8606, 'synset': 'intraocular_lens.n.01', 'name': 'intraocular_lens'}, {'id': 8607, 'synset': 'intravenous_pyelogram.n.01', 'name': 'intravenous_pyelogram'}, {'id': 8608, 'synset': 'inverter.n.01', 'name': 'inverter'}, {'id': 8609, 'synset': 'ion_engine.n.01', 'name': 'ion_engine'}, {'id': 8610, 'synset': 'ionization_chamber.n.01', 'name': 'ionization_chamber'}, {'id': 8611, 'synset': 'video_ipod.n.01', 'name': 'video_iPod'}, {'id': 8612, 'synset': 'iron.n.02', 'name': 'iron'}, {'id': 8613, 'synset': 'iron.n.03', 'name': 'iron'}, {'id': 8614, 'synset': 'irons.n.01', 'name': 'irons'}, {'id': 8615, 'synset': 'ironclad.n.01', 'name': 'ironclad'}, {'id': 8616, 'synset': 'iron_foundry.n.01', 'name': 'iron_foundry'}, {'id': 8617, 'synset': 'iron_horse.n.01', 'name': 'iron_horse'}, {'id': 8618, 'synset': 'ironing.n.01', 'name': 'ironing'}, {'id': 8619, 'synset': 'iron_lung.n.01', 'name': 'iron_lung'}, {'id': 8620, 'synset': 'ironmongery.n.01', 'name': 'ironmongery'}, {'id': 8621, 'synset': 'ironworks.n.01', 'name': 'ironworks'}, {'id': 8622, 'synset': 'irrigation_ditch.n.01', 'name': 'irrigation_ditch'}, {'id': 8623, 'synset': 'izar.n.01', 'name': 'izar'}, {'id': 8624, 'synset': 'jabot.n.01', 'name': 'jabot'}, {'id': 8625, 'synset': 'jack.n.10', 'name': 'jack'}, {'id': 8626, 'synset': 'jack.n.07', 'name': 'jack'}, {'id': 8627, 'synset': 'jack.n.06', 'name': 'jack'}, {'id': 8628, 'synset': 'jack.n.05', 'name': 'jack'}, {'id': 8629, 'synset': 'jacket.n.02', 'name': 'jacket'}, {'id': 8630, 'synset': 'jacket.n.05', 'name': 'jacket'}, {'id': 8631, 'synset': 'jack-in-the-box.n.01', 'name': 'jack-in-the-box'}, {'id': 8632, 'synset': "jack-o'-lantern.n.02", 'name': "jack-o'-lantern"}, {'id': 8633, 'synset': 'jack_plane.n.01', 'name': 'jack_plane'}, {'id': 8634, 'synset': "jacob's_ladder.n.02", 'name': "Jacob's_ladder"}, {'id': 8635, 'synset': 'jaconet.n.01', 'name': 'jaconet'}, {'id': 8636, 'synset': 'jacquard_loom.n.01', 'name': 'Jacquard_loom'}, {'id': 8637, 'synset': 'jacquard.n.02', 'name': 'jacquard'}, {'id': 8638, 'synset': 'jag.n.03', 'name': 'jag'}, {'id': 8639, 'synset': 'jail.n.01', 'name': 'jail'}, {'id': 8640, 'synset': 'jalousie.n.02', 'name': 'jalousie'}, {'id': 8641, 'synset': 'jamb.n.01', 'name': 'jamb'}, {'id': 8642, 'synset': 'jammer.n.01', 'name': 'jammer'}, {'id': 8643, 'synset': 'jampot.n.01', 'name': 'jampot'}, {'id': 8644, 'synset': 'japan.n.04', 'name': 'japan'}, {'id': 8645, 'synset': 'jarvik_heart.n.01', 'name': 'Jarvik_heart'}, {'id': 8646, 'synset': 'jaunting_car.n.01', 'name': 'jaunting_car'}, {'id': 8647, 'synset': 'javelin.n.02', 'name': 'javelin'}, {'id': 8648, 'synset': 'jaw.n.03', 'name': 'jaw'}, {'id': 8649, 'synset': 'jaws_of_life.n.01', 'name': 'Jaws_of_Life'}, {'id': 8650, 'synset': 'jellaba.n.01', 'name': 'jellaba'}, {'id': 8651, 'synset': 'jerkin.n.01', 'name': 'jerkin'}, {'id': 8652, 'synset': 'jeroboam.n.02', 'name': 'jeroboam'}, {'id': 8653, 'synset': 'jersey.n.04', 'name': 'jersey'}, {'id': 8654, 'synset': 'jet_bridge.n.01', 'name': 'jet_bridge'}, {'id': 8655, 'synset': 'jet_engine.n.01', 'name': 'jet_engine'}, {'id': 8656, 'synset': 'jetliner.n.01', 'name': 'jetliner'}, {'id': 8657, 'synset': "jeweler's_glass.n.01", 'name': "jeweler's_glass"}, {'id': 8658, 'synset': 'jewelled_headdress.n.01', 'name': 'jewelled_headdress'}, {'id': 8659, 'synset': "jew's_harp.n.01", 'name': "jew's_harp"}, {'id': 8660, 'synset': 'jib.n.01', 'name': 'jib'}, {'id': 8661, 'synset': 'jibboom.n.01', 'name': 'jibboom'}, {'id': 8662, 'synset': 'jig.n.03', 'name': 'jig'}, {'id': 8663, 'synset': 'jig.n.02', 'name': 'jig'}, {'id': 8664, 'synset': 'jiggermast.n.01', 'name': 'jiggermast'}, {'id': 8665, 'synset': 'jigsaw.n.02', 'name': 'jigsaw'}, {'id': 8666, 'synset': 'jigsaw_puzzle.n.01', 'name': 'jigsaw_puzzle'}, {'id': 8667, 'synset': 'jinrikisha.n.01', 'name': 'jinrikisha'}, {'id': 8668, 'synset': 'jobcentre.n.01', 'name': 'jobcentre'}, {'id': 8669, 'synset': 'jodhpurs.n.01', 'name': 'jodhpurs'}, {'id': 8670, 'synset': 'jodhpur.n.01', 'name': 'jodhpur'}, {'id': 8671, 'synset': 'joinery.n.01', 'name': 'joinery'}, {'id': 8672, 'synset': 'joint.n.05', 'name': 'joint'}, {'id': 8673, 'synset': 'joint_direct_attack_munition.n.01', 'name': 'Joint_Direct_Attack_Munition'}, {'id': 8674, 'synset': 'jointer.n.01', 'name': 'jointer'}, {'id': 8675, 'synset': 'joist.n.01', 'name': 'joist'}, {'id': 8676, 'synset': 'jolly_boat.n.01', 'name': 'jolly_boat'}, {'id': 8677, 'synset': 'jorum.n.01', 'name': 'jorum'}, {'id': 8678, 'synset': 'joss_house.n.01', 'name': 'joss_house'}, {'id': 8679, 'synset': 'journal_bearing.n.01', 'name': 'journal_bearing'}, {'id': 8680, 'synset': 'journal_box.n.01', 'name': 'journal_box'}, {'id': 8681, 'synset': 'jungle_gym.n.01', 'name': 'jungle_gym'}, {'id': 8682, 'synset': 'junk.n.02', 'name': 'junk'}, {'id': 8683, 'synset': 'jug.n.01', 'name': 'jug'}, {'id': 8684, 'synset': 'jukebox.n.01', 'name': 'jukebox'}, {'id': 8685, 'synset': 'jumbojet.n.01', 'name': 'jumbojet'}, {'id': 8686, 'synset': 'jumper.n.07', 'name': 'jumper'}, {'id': 8687, 'synset': 'jumper.n.06', 'name': 'jumper'}, {'id': 8688, 'synset': 'jumper.n.05', 'name': 'jumper'}, {'id': 8689, 'synset': 'jumper.n.04', 'name': 'jumper'}, {'id': 8690, 'synset': 'jumper_cable.n.01', 'name': 'jumper_cable'}, {'id': 8691, 'synset': 'jump_seat.n.01', 'name': 'jump_seat'}, {'id': 8692, 'synset': 'jump_suit.n.02', 'name': 'jump_suit'}, {'id': 8693, 'synset': 'junction.n.01', 'name': 'junction'}, {'id': 8694, 'synset': 'junction.n.04', 'name': 'junction'}, {'id': 8695, 'synset': 'junction_barrier.n.01', 'name': 'junction_barrier'}, {'id': 8696, 'synset': 'junk_shop.n.01', 'name': 'junk_shop'}, {'id': 8697, 'synset': 'jury_box.n.01', 'name': 'jury_box'}, {'id': 8698, 'synset': 'jury_mast.n.01', 'name': 'jury_mast'}, {'id': 8699, 'synset': 'kachina.n.03', 'name': 'kachina'}, {'id': 8700, 'synset': 'kaffiyeh.n.01', 'name': 'kaffiyeh'}, {'id': 8701, 'synset': 'kalansuwa.n.01', 'name': 'kalansuwa'}, {'id': 8702, 'synset': 'kalashnikov.n.01', 'name': 'Kalashnikov'}, {'id': 8703, 'synset': 'kameez.n.01', 'name': 'kameez'}, {'id': 8704, 'synset': 'kanzu.n.01', 'name': 'kanzu'}, {'id': 8705, 'synset': 'katharometer.n.01', 'name': 'katharometer'}, {'id': 8706, 'synset': 'kazoo.n.01', 'name': 'kazoo'}, {'id': 8707, 'synset': 'keel.n.03', 'name': 'keel'}, {'id': 8708, 'synset': 'keelboat.n.01', 'name': 'keelboat'}, {'id': 8709, 'synset': 'keelson.n.01', 'name': 'keelson'}, {'id': 8710, 'synset': 'keep.n.02', 'name': 'keep'}, {'id': 8711, 'synset': 'kepi.n.01', 'name': 'kepi'}, {'id': 8712, 'synset': 'keratoscope.n.01', 'name': 'keratoscope'}, {'id': 8713, 'synset': 'kerchief.n.01', 'name': 'kerchief'}, {'id': 8714, 'synset': 'ketch.n.01', 'name': 'ketch'}, {'id': 8715, 'synset': 'kettle.n.04', 'name': 'kettle'}, {'id': 8716, 'synset': 'key.n.15', 'name': 'key'}, {'id': 8717, 'synset': 'keyboard.n.01', 'name': 'keyboard'}, {'id': 8718, 'synset': 'keyboard_buffer.n.01', 'name': 'keyboard_buffer'}, {'id': 8719, 'synset': 'keyboard_instrument.n.01', 'name': 'keyboard_instrument'}, {'id': 8720, 'synset': 'keyhole.n.01', 'name': 'keyhole'}, {'id': 8721, 'synset': 'keyhole_saw.n.01', 'name': 'keyhole_saw'}, {'id': 8722, 'synset': 'khadi.n.01', 'name': 'khadi'}, {'id': 8723, 'synset': 'khaki.n.01', 'name': 'khaki'}, {'id': 8724, 'synset': 'khakis.n.01', 'name': 'khakis'}, {'id': 8725, 'synset': 'khimar.n.01', 'name': 'khimar'}, {'id': 8726, 'synset': 'khukuri.n.01', 'name': 'khukuri'}, {'id': 8727, 'synset': 'kick_pleat.n.01', 'name': 'kick_pleat'}, {'id': 8728, 'synset': 'kicksorter.n.01', 'name': 'kicksorter'}, {'id': 8729, 'synset': 'kickstand.n.01', 'name': 'kickstand'}, {'id': 8730, 'synset': 'kick_starter.n.01', 'name': 'kick_starter'}, {'id': 8731, 'synset': 'kid_glove.n.01', 'name': 'kid_glove'}, {'id': 8732, 'synset': 'kiln.n.01', 'name': 'kiln'}, {'id': 8733, 'synset': 'kinescope.n.01', 'name': 'kinescope'}, {'id': 8734, 'synset': 'kinetoscope.n.01', 'name': 'Kinetoscope'}, {'id': 8735, 'synset': 'king.n.10', 'name': 'king'}, {'id': 8736, 'synset': 'king.n.08', 'name': 'king'}, {'id': 8737, 'synset': 'kingbolt.n.01', 'name': 'kingbolt'}, {'id': 8738, 'synset': 'king_post.n.01', 'name': 'king_post'}, {'id': 8739, 'synset': "kipp's_apparatus.n.01", 'name': "Kipp's_apparatus"}, {'id': 8740, 'synset': 'kirk.n.01', 'name': 'kirk'}, {'id': 8741, 'synset': 'kirpan.n.01', 'name': 'kirpan'}, {'id': 8742, 'synset': 'kirtle.n.02', 'name': 'kirtle'}, {'id': 8743, 'synset': 'kirtle.n.01', 'name': 'kirtle'}, {'id': 8744, 'synset': 'kit.n.02', 'name': 'kit'}, {'id': 8745, 'synset': 'kit.n.01', 'name': 'kit'}, {'id': 8746, 'synset': 'kitbag.n.01', 'name': 'kitbag'}, {'id': 8747, 'synset': 'kitchen.n.01', 'name': 'kitchen'}, {'id': 8748, 'synset': 'kitchen_appliance.n.01', 'name': 'kitchen_appliance'}, {'id': 8749, 'synset': 'kitchenette.n.01', 'name': 'kitchenette'}, {'id': 8750, 'synset': 'kitchen_utensil.n.01', 'name': 'kitchen_utensil'}, {'id': 8751, 'synset': 'kitchenware.n.01', 'name': 'kitchenware'}, {'id': 8752, 'synset': 'kite_balloon.n.01', 'name': 'kite_balloon'}, {'id': 8753, 'synset': 'klaxon.n.01', 'name': 'klaxon'}, {'id': 8754, 'synset': 'klieg_light.n.01', 'name': 'klieg_light'}, {'id': 8755, 'synset': 'klystron.n.01', 'name': 'klystron'}, {'id': 8756, 'synset': 'knee_brace.n.01', 'name': 'knee_brace'}, {'id': 8757, 'synset': 'knee-high.n.01', 'name': 'knee-high'}, {'id': 8758, 'synset': 'knee_piece.n.01', 'name': 'knee_piece'}, {'id': 8759, 'synset': 'knife.n.02', 'name': 'knife'}, {'id': 8760, 'synset': 'knife_blade.n.01', 'name': 'knife_blade'}, {'id': 8761, 'synset': 'knight.n.02', 'name': 'knight'}, {'id': 8762, 'synset': 'knit.n.01', 'name': 'knit'}, {'id': 8763, 'synset': 'knitting_machine.n.01', 'name': 'knitting_machine'}, {'id': 8764, 'synset': 'knitwear.n.01', 'name': 'knitwear'}, {'id': 8765, 'synset': 'knob.n.01', 'name': 'knob'}, {'id': 8766, 'synset': 'knob.n.04', 'name': 'knob'}, {'id': 8767, 'synset': 'knobble.n.01', 'name': 'knobble'}, {'id': 8768, 'synset': 'knobkerrie.n.01', 'name': 'knobkerrie'}, {'id': 8769, 'synset': 'knot.n.02', 'name': 'knot'}, {'id': 8770, 'synset': 'knuckle_joint.n.02', 'name': 'knuckle_joint'}, {'id': 8771, 'synset': 'kohl.n.01', 'name': 'kohl'}, {'id': 8772, 'synset': 'koto.n.01', 'name': 'koto'}, {'id': 8773, 'synset': 'kraal.n.02', 'name': 'kraal'}, {'id': 8774, 'synset': 'kremlin.n.02', 'name': 'kremlin'}, {'id': 8775, 'synset': 'kris.n.01', 'name': 'kris'}, {'id': 8776, 'synset': 'krummhorn.n.01', 'name': 'krummhorn'}, {'id': 8777, 'synset': "kundt's_tube.n.01", 'name': "Kundt's_tube"}, {'id': 8778, 'synset': 'kurdistan.n.02', 'name': 'Kurdistan'}, {'id': 8779, 'synset': 'kurta.n.01', 'name': 'kurta'}, {'id': 8780, 'synset': 'kylix.n.01', 'name': 'kylix'}, {'id': 8781, 'synset': 'kymograph.n.01', 'name': 'kymograph'}, {'id': 8782, 'synset': 'lab_bench.n.01', 'name': 'lab_bench'}, {'id': 8783, 'synset': 'lace.n.02', 'name': 'lace'}, {'id': 8784, 'synset': 'lacquer.n.02', 'name': 'lacquer'}, {'id': 8785, 'synset': 'lacquerware.n.01', 'name': 'lacquerware'}, {'id': 8786, 'synset': 'lacrosse_ball.n.01', 'name': 'lacrosse_ball'}, {'id': 8787, 'synset': 'ladder-back.n.02', 'name': 'ladder-back'}, {'id': 8788, 'synset': 'ladder-back.n.01', 'name': 'ladder-back'}, {'id': 8789, 'synset': 'ladder_truck.n.01', 'name': 'ladder_truck'}, {'id': 8790, 'synset': "ladies'_room.n.01", 'name': "ladies'_room"}, {'id': 8791, 'synset': 'lady_chapel.n.01', 'name': 'lady_chapel'}, {'id': 8792, 'synset': 'lagerphone.n.01', 'name': 'lagerphone'}, {'id': 8793, 'synset': 'lag_screw.n.01', 'name': 'lag_screw'}, {'id': 8794, 'synset': 'lake_dwelling.n.01', 'name': 'lake_dwelling'}, {'id': 8795, 'synset': 'lally.n.01', 'name': 'lally'}, {'id': 8796, 'synset': 'lamasery.n.01', 'name': 'lamasery'}, {'id': 8797, 'synset': 'lambrequin.n.02', 'name': 'lambrequin'}, {'id': 8798, 'synset': 'lame.n.02', 'name': 'lame'}, {'id': 8799, 'synset': 'laminar_flow_clean_room.n.01', 'name': 'laminar_flow_clean_room'}, {'id': 8800, 'synset': 'laminate.n.01', 'name': 'laminate'}, {'id': 8801, 'synset': 'lamination.n.01', 'name': 'lamination'}, {'id': 8802, 'synset': 'lamp.n.01', 'name': 'lamp'}, {'id': 8803, 'synset': 'lamp_house.n.01', 'name': 'lamp_house'}, {'id': 8804, 'synset': 'lanai.n.02', 'name': 'lanai'}, {'id': 8805, 'synset': 'lancet_arch.n.01', 'name': 'lancet_arch'}, {'id': 8806, 'synset': 'lancet_window.n.01', 'name': 'lancet_window'}, {'id': 8807, 'synset': 'landau.n.02', 'name': 'landau'}, {'id': 8808, 'synset': 'lander.n.02', 'name': 'lander'}, {'id': 8809, 'synset': 'landing_craft.n.01', 'name': 'landing_craft'}, {'id': 8810, 'synset': 'landing_flap.n.01', 'name': 'landing_flap'}, {'id': 8811, 'synset': 'landing_gear.n.01', 'name': 'landing_gear'}, {'id': 8812, 'synset': 'landing_net.n.01', 'name': 'landing_net'}, {'id': 8813, 'synset': 'landing_skid.n.01', 'name': 'landing_skid'}, {'id': 8814, 'synset': 'land_line.n.01', 'name': 'land_line'}, {'id': 8815, 'synset': 'land_mine.n.01', 'name': 'land_mine'}, {'id': 8816, 'synset': 'land_office.n.01', 'name': 'land_office'}, {'id': 8817, 'synset': 'lanolin.n.02', 'name': 'lanolin'}, {'id': 8818, 'synset': 'lanyard.n.01', 'name': 'lanyard'}, {'id': 8819, 'synset': 'lap.n.03', 'name': 'lap'}, {'id': 8820, 'synset': 'laparoscope.n.01', 'name': 'laparoscope'}, {'id': 8821, 'synset': 'lapboard.n.01', 'name': 'lapboard'}, {'id': 8822, 'synset': 'lapel.n.01', 'name': 'lapel'}, {'id': 8823, 'synset': 'lap_joint.n.01', 'name': 'lap_joint'}, {'id': 8824, 'synset': 'laryngoscope.n.01', 'name': 'laryngoscope'}, {'id': 8825, 'synset': 'laser.n.01', 'name': 'laser'}, {'id': 8826, 'synset': 'laser-guided_bomb.n.01', 'name': 'laser-guided_bomb'}, {'id': 8827, 'synset': 'laser_printer.n.01', 'name': 'laser_printer'}, {'id': 8828, 'synset': 'lash.n.02', 'name': 'lash'}, {'id': 8829, 'synset': 'lashing.n.02', 'name': 'lashing'}, {'id': 8830, 'synset': 'lasso.n.02', 'name': 'lasso'}, {'id': 8831, 'synset': 'latch.n.01', 'name': 'latch'}, {'id': 8832, 'synset': 'latchet.n.01', 'name': 'latchet'}, {'id': 8833, 'synset': 'latchkey.n.01', 'name': 'latchkey'}, {'id': 8834, 'synset': 'lateen.n.01', 'name': 'lateen'}, {'id': 8835, 'synset': 'latex_paint.n.01', 'name': 'latex_paint'}, {'id': 8836, 'synset': 'lath.n.01', 'name': 'lath'}, {'id': 8837, 'synset': 'lathe.n.01', 'name': 'lathe'}, {'id': 8838, 'synset': 'latrine.n.01', 'name': 'latrine'}, {'id': 8839, 'synset': 'lattice.n.03', 'name': 'lattice'}, {'id': 8840, 'synset': 'launch.n.01', 'name': 'launch'}, {'id': 8841, 'synset': 'launcher.n.01', 'name': 'launcher'}, {'id': 8842, 'synset': 'laundry.n.01', 'name': 'laundry'}, {'id': 8843, 'synset': 'laundry_cart.n.01', 'name': 'laundry_cart'}, {'id': 8844, 'synset': 'laundry_truck.n.01', 'name': 'laundry_truck'}, {'id': 8845, 'synset': 'lavalava.n.01', 'name': 'lavalava'}, {'id': 8846, 'synset': 'lavaliere.n.01', 'name': 'lavaliere'}, {'id': 8847, 'synset': 'laver.n.02', 'name': 'laver'}, {'id': 8848, 'synset': 'lawn_chair.n.01', 'name': 'lawn_chair'}, {'id': 8849, 'synset': 'lawn_furniture.n.01', 'name': 'lawn_furniture'}, {'id': 8850, 'synset': 'layette.n.01', 'name': 'layette'}, {'id': 8851, 'synset': 'lead-acid_battery.n.01', 'name': 'lead-acid_battery'}, {'id': 8852, 'synset': 'lead-in.n.02', 'name': 'lead-in'}, {'id': 8853, 'synset': 'leading_rein.n.01', 'name': 'leading_rein'}, {'id': 8854, 'synset': 'lead_pencil.n.01', 'name': 'lead_pencil'}, {'id': 8855, 'synset': 'leaf_spring.n.01', 'name': 'leaf_spring'}, {'id': 8856, 'synset': 'lean-to.n.01', 'name': 'lean-to'}, {'id': 8857, 'synset': 'lean-to_tent.n.01', 'name': 'lean-to_tent'}, {'id': 8858, 'synset': 'leash.n.01', 'name': 'leash'}, {'id': 8859, 'synset': 'leatherette.n.01', 'name': 'leatherette'}, {'id': 8860, 'synset': 'leather_strip.n.01', 'name': 'leather_strip'}, {'id': 8861, 'synset': 'leclanche_cell.n.01', 'name': 'Leclanche_cell'}, {'id': 8862, 'synset': 'lectern.n.01', 'name': 'lectern'}, {'id': 8863, 'synset': 'lecture_room.n.01', 'name': 'lecture_room'}, {'id': 8864, 'synset': 'lederhosen.n.01', 'name': 'lederhosen'}, {'id': 8865, 'synset': 'ledger_board.n.01', 'name': 'ledger_board'}, {'id': 8866, 'synset': 'leg.n.07', 'name': 'leg'}, {'id': 8867, 'synset': 'leg.n.03', 'name': 'leg'}, {'id': 8868, 'synset': 'leiden_jar.n.01', 'name': 'Leiden_jar'}, {'id': 8869, 'synset': 'leisure_wear.n.01', 'name': 'leisure_wear'}, {'id': 8870, 'synset': 'lens.n.01', 'name': 'lens'}, {'id': 8871, 'synset': 'lens.n.05', 'name': 'lens'}, {'id': 8872, 'synset': 'lens_cap.n.01', 'name': 'lens_cap'}, {'id': 8873, 'synset': 'lens_implant.n.01', 'name': 'lens_implant'}, {'id': 8874, 'synset': 'leotard.n.01', 'name': 'leotard'}, {'id': 8875, 'synset': 'letter_case.n.01', 'name': 'letter_case'}, {'id': 8876, 'synset': 'letter_opener.n.01', 'name': 'letter_opener'}, {'id': 8877, 'synset': 'levee.n.03', 'name': 'levee'}, {'id': 8878, 'synset': 'level.n.05', 'name': 'level'}, {'id': 8879, 'synset': 'lever.n.01', 'name': 'lever'}, {'id': 8880, 'synset': 'lever.n.03', 'name': 'lever'}, {'id': 8881, 'synset': 'lever.n.02', 'name': 'lever'}, {'id': 8882, 'synset': 'lever_lock.n.01', 'name': 'lever_lock'}, {'id': 8883, 'synset': "levi's.n.01", 'name': "Levi's"}, {'id': 8884, 'synset': 'liberty_ship.n.01', 'name': 'Liberty_ship'}, {'id': 8885, 'synset': 'library.n.01', 'name': 'library'}, {'id': 8886, 'synset': 'library.n.05', 'name': 'library'}, {'id': 8887, 'synset': 'lid.n.02', 'name': 'lid'}, {'id': 8888, 'synset': 'liebig_condenser.n.01', 'name': 'Liebig_condenser'}, {'id': 8889, 'synset': 'lie_detector.n.01', 'name': 'lie_detector'}, {'id': 8890, 'synset': 'lifeboat.n.01', 'name': 'lifeboat'}, {'id': 8891, 'synset': 'life_office.n.01', 'name': 'life_office'}, {'id': 8892, 'synset': 'life_preserver.n.01', 'name': 'life_preserver'}, {'id': 8893, 'synset': 'life-support_system.n.02', 'name': 'life-support_system'}, {'id': 8894, 'synset': 'life-support_system.n.01', 'name': 'life-support_system'}, {'id': 8895, 'synset': 'lifting_device.n.01', 'name': 'lifting_device'}, {'id': 8896, 'synset': 'lift_pump.n.01', 'name': 'lift_pump'}, {'id': 8897, 'synset': 'ligament.n.02', 'name': 'ligament'}, {'id': 8898, 'synset': 'ligature.n.03', 'name': 'ligature'}, {'id': 8899, 'synset': 'light.n.02', 'name': 'light'}, {'id': 8900, 'synset': 'light_arm.n.01', 'name': 'light_arm'}, {'id': 8901, 'synset': 'light_circuit.n.01', 'name': 'light_circuit'}, {'id': 8902, 'synset': 'light-emitting_diode.n.01', 'name': 'light-emitting_diode'}, {'id': 8903, 'synset': 'lighter.n.02', 'name': 'lighter'}, {'id': 8904, 'synset': 'lighter-than-air_craft.n.01', 'name': 'lighter-than-air_craft'}, {'id': 8905, 'synset': 'light_filter.n.01', 'name': 'light_filter'}, {'id': 8906, 'synset': 'lighting.n.02', 'name': 'lighting'}, {'id': 8907, 'synset': 'light_machine_gun.n.01', 'name': 'light_machine_gun'}, {'id': 8908, 'synset': 'light_meter.n.01', 'name': 'light_meter'}, {'id': 8909, 'synset': 'light_microscope.n.01', 'name': 'light_microscope'}, {'id': 8910, 'synset': 'light_pen.n.01', 'name': 'light_pen'}, {'id': 8911, 'synset': 'lightship.n.01', 'name': 'lightship'}, {'id': 8912, 'synset': 'lilo.n.01', 'name': 'Lilo'}, {'id': 8913, 'synset': 'limber.n.01', 'name': 'limber'}, {'id': 8914, 'synset': 'limekiln.n.01', 'name': 'limekiln'}, {'id': 8915, 'synset': 'limiter.n.01', 'name': 'limiter'}, {'id': 8916, 'synset': 'linear_accelerator.n.01', 'name': 'linear_accelerator'}, {'id': 8917, 'synset': 'linen.n.01', 'name': 'linen'}, {'id': 8918, 'synset': 'line_printer.n.01', 'name': 'line_printer'}, {'id': 8919, 'synset': 'liner.n.04', 'name': 'liner'}, {'id': 8920, 'synset': 'liner.n.03', 'name': 'liner'}, {'id': 8921, 'synset': 'lingerie.n.01', 'name': 'lingerie'}, {'id': 8922, 'synset': 'lining.n.01', 'name': 'lining'}, {'id': 8923, 'synset': 'link.n.09', 'name': 'link'}, {'id': 8924, 'synset': 'linkage.n.03', 'name': 'linkage'}, {'id': 8925, 'synset': 'link_trainer.n.01', 'name': 'Link_trainer'}, {'id': 8926, 'synset': 'linocut.n.02', 'name': 'linocut'}, {'id': 8927, 'synset': 'linoleum_knife.n.01', 'name': 'linoleum_knife'}, {'id': 8928, 'synset': 'linotype.n.01', 'name': 'Linotype'}, {'id': 8929, 'synset': 'linsey-woolsey.n.01', 'name': 'linsey-woolsey'}, {'id': 8930, 'synset': 'linstock.n.01', 'name': 'linstock'}, {'id': 8931, 'synset': 'lion-jaw_forceps.n.01', 'name': 'lion-jaw_forceps'}, {'id': 8932, 'synset': 'lip-gloss.n.01', 'name': 'lip-gloss'}, {'id': 8933, 'synset': 'lipstick.n.01', 'name': 'lipstick'}, {'id': 8934, 'synset': 'liqueur_glass.n.01', 'name': 'liqueur_glass'}, {'id': 8935, 'synset': 'liquid_crystal_display.n.01', 'name': 'liquid_crystal_display'}, {'id': 8936, 'synset': 'liquid_metal_reactor.n.01', 'name': 'liquid_metal_reactor'}, {'id': 8937, 'synset': 'lisle.n.01', 'name': 'lisle'}, {'id': 8938, 'synset': 'lister.n.03', 'name': 'lister'}, {'id': 8939, 'synset': 'litterbin.n.01', 'name': 'litterbin'}, {'id': 8940, 'synset': 'little_theater.n.01', 'name': 'little_theater'}, {'id': 8941, 'synset': 'live_axle.n.01', 'name': 'live_axle'}, {'id': 8942, 'synset': 'living_quarters.n.01', 'name': 'living_quarters'}, {'id': 8943, 'synset': 'living_room.n.01', 'name': 'living_room'}, {'id': 8944, 'synset': 'load.n.09', 'name': 'load'}, {'id': 8945, 'synset': 'loafer.n.02', 'name': 'Loafer'}, {'id': 8946, 'synset': 'loaner.n.02', 'name': 'loaner'}, {'id': 8947, 'synset': 'lobe.n.04', 'name': 'lobe'}, {'id': 8948, 'synset': 'lobster_pot.n.01', 'name': 'lobster_pot'}, {'id': 8949, 'synset': 'local.n.01', 'name': 'local'}, {'id': 8950, 'synset': 'local_area_network.n.01', 'name': 'local_area_network'}, {'id': 8951, 'synset': 'local_oscillator.n.01', 'name': 'local_oscillator'}, {'id': 8952, 'synset': 'lochaber_ax.n.01', 'name': 'Lochaber_ax'}, {'id': 8953, 'synset': 'lock.n.01', 'name': 'lock'}, {'id': 8954, 'synset': 'lock.n.05', 'name': 'lock'}, {'id': 8955, 'synset': 'lock.n.04', 'name': 'lock'}, {'id': 8956, 'synset': 'lock.n.03', 'name': 'lock'}, {'id': 8957, 'synset': 'lockage.n.02', 'name': 'lockage'}, {'id': 8958, 'synset': 'locker.n.02', 'name': 'locker'}, {'id': 8959, 'synset': 'locker_room.n.01', 'name': 'locker_room'}, {'id': 8960, 'synset': 'locket.n.01', 'name': 'locket'}, {'id': 8961, 'synset': 'lock-gate.n.01', 'name': 'lock-gate'}, {'id': 8962, 'synset': 'locking_pliers.n.01', 'name': 'locking_pliers'}, {'id': 8963, 'synset': 'lockring.n.01', 'name': 'lockring'}, {'id': 8964, 'synset': 'lockstitch.n.01', 'name': 'lockstitch'}, {'id': 8965, 'synset': 'lockup.n.01', 'name': 'lockup'}, {'id': 8966, 'synset': 'locomotive.n.01', 'name': 'locomotive'}, {'id': 8967, 'synset': 'lodge.n.05', 'name': 'lodge'}, {'id': 8968, 'synset': 'lodge.n.04', 'name': 'lodge'}, {'id': 8969, 'synset': 'lodge.n.03', 'name': 'lodge'}, {'id': 8970, 'synset': 'lodging_house.n.01', 'name': 'lodging_house'}, {'id': 8971, 'synset': 'loft.n.02', 'name': 'loft'}, {'id': 8972, 'synset': 'loft.n.04', 'name': 'loft'}, {'id': 8973, 'synset': 'loft.n.01', 'name': 'loft'}, {'id': 8974, 'synset': 'log_cabin.n.01', 'name': 'log_cabin'}, {'id': 8975, 'synset': 'loggia.n.01', 'name': 'loggia'}, {'id': 8976, 'synset': 'longbow.n.01', 'name': 'longbow'}, {'id': 8977, 'synset': 'long_iron.n.01', 'name': 'long_iron'}, {'id': 8978, 'synset': 'long_johns.n.01', 'name': 'long_johns'}, {'id': 8979, 'synset': 'long_sleeve.n.01', 'name': 'long_sleeve'}, {'id': 8980, 'synset': 'long_tom.n.01', 'name': 'long_tom'}, {'id': 8981, 'synset': 'long_trousers.n.01', 'name': 'long_trousers'}, {'id': 8982, 'synset': 'long_underwear.n.01', 'name': 'long_underwear'}, {'id': 8983, 'synset': 'looking_glass.n.01', 'name': 'looking_glass'}, {'id': 8984, 'synset': 'lookout.n.03', 'name': 'lookout'}, {'id': 8985, 'synset': 'loom.n.01', 'name': 'loom'}, {'id': 8986, 'synset': 'loop_knot.n.01', 'name': 'loop_knot'}, {'id': 8987, 'synset': 'lorgnette.n.01', 'name': 'lorgnette'}, {'id': 8988, 'synset': 'lorraine_cross.n.01', 'name': 'Lorraine_cross'}, {'id': 8989, 'synset': 'lorry.n.02', 'name': 'lorry'}, {'id': 8990, 'synset': 'lota.n.01', 'name': 'lota'}, {'id': 8991, 'synset': 'lotion.n.01', 'name': 'lotion'}, {'id': 8992, 'synset': 'lounge.n.02', 'name': 'lounge'}, {'id': 8993, 'synset': 'lounger.n.03', 'name': 'lounger'}, {'id': 8994, 'synset': 'lounging_jacket.n.01', 'name': 'lounging_jacket'}, {'id': 8995, 'synset': 'lounging_pajama.n.01', 'name': 'lounging_pajama'}, {'id': 8996, 'synset': 'loungewear.n.01', 'name': 'loungewear'}, {'id': 8997, 'synset': 'loupe.n.01', 'name': 'loupe'}, {'id': 8998, 'synset': 'louvered_window.n.01', 'name': 'louvered_window'}, {'id': 8999, 'synset': 'love_knot.n.01', 'name': 'love_knot'}, {'id': 9000, 'synset': 'loving_cup.n.01', 'name': 'loving_cup'}, {'id': 9001, 'synset': 'lowboy.n.01', 'name': 'lowboy'}, {'id': 9002, 'synset': 'low-pass_filter.n.01', 'name': 'low-pass_filter'}, {'id': 9003, 'synset': 'low-warp-loom.n.01', 'name': 'low-warp-loom'}, {'id': 9004, 'synset': 'lp.n.01', 'name': 'LP'}, {'id': 9005, 'synset': 'l-plate.n.01', 'name': 'L-plate'}, {'id': 9006, 'synset': "lubber's_hole.n.01", 'name': "lubber's_hole"}, {'id': 9007, 'synset': 'lubricating_system.n.01', 'name': 'lubricating_system'}, {'id': 9008, 'synset': 'luff.n.01', 'name': 'luff'}, {'id': 9009, 'synset': 'lug.n.03', 'name': 'lug'}, {'id': 9010, 'synset': 'luge.n.01', 'name': 'luge'}, {'id': 9011, 'synset': 'luger.n.01', 'name': 'Luger'}, {'id': 9012, 'synset': 'luggage_carrier.n.01', 'name': 'luggage_carrier'}, {'id': 9013, 'synset': 'luggage_compartment.n.01', 'name': 'luggage_compartment'}, {'id': 9014, 'synset': 'luggage_rack.n.01', 'name': 'luggage_rack'}, {'id': 9015, 'synset': 'lugger.n.01', 'name': 'lugger'}, {'id': 9016, 'synset': 'lugsail.n.01', 'name': 'lugsail'}, {'id': 9017, 'synset': 'lug_wrench.n.01', 'name': 'lug_wrench'}, {'id': 9018, 'synset': 'lumberjack.n.02', 'name': 'lumberjack'}, {'id': 9019, 'synset': 'lumbermill.n.01', 'name': 'lumbermill'}, {'id': 9020, 'synset': 'lunar_excursion_module.n.01', 'name': 'lunar_excursion_module'}, {'id': 9021, 'synset': 'lunchroom.n.01', 'name': 'lunchroom'}, {'id': 9022, 'synset': 'lunette.n.01', 'name': 'lunette'}, {'id': 9023, 'synset': 'lungi.n.01', 'name': 'lungi'}, {'id': 9024, 'synset': 'lunula.n.02', 'name': 'lunula'}, {'id': 9025, 'synset': 'lusterware.n.01', 'name': 'lusterware'}, {'id': 9026, 'synset': 'lute.n.02', 'name': 'lute'}, {'id': 9027, 'synset': 'luxury_liner.n.01', 'name': 'luxury_liner'}, {'id': 9028, 'synset': 'lyceum.n.02', 'name': 'lyceum'}, {'id': 9029, 'synset': 'lychgate.n.01', 'name': 'lychgate'}, {'id': 9030, 'synset': 'lyre.n.01', 'name': 'lyre'}, {'id': 9031, 'synset': 'machete.n.01', 'name': 'machete'}, {'id': 9032, 'synset': 'machicolation.n.01', 'name': 'machicolation'}, {'id': 9033, 'synset': 'machine.n.01', 'name': 'machine'}, {'id': 9034, 'synset': 'machine.n.04', 'name': 'machine'}, {'id': 9035, 'synset': 'machine_bolt.n.01', 'name': 'machine_bolt'}, {'id': 9036, 'synset': 'machinery.n.01', 'name': 'machinery'}, {'id': 9037, 'synset': 'machine_screw.n.01', 'name': 'machine_screw'}, {'id': 9038, 'synset': 'machine_tool.n.01', 'name': 'machine_tool'}, {'id': 9039, 'synset': "machinist's_vise.n.01", 'name': "machinist's_vise"}, {'id': 9040, 'synset': 'machmeter.n.01', 'name': 'machmeter'}, {'id': 9041, 'synset': 'mackinaw.n.04', 'name': 'mackinaw'}, {'id': 9042, 'synset': 'mackinaw.n.03', 'name': 'mackinaw'}, {'id': 9043, 'synset': 'mackinaw.n.01', 'name': 'mackinaw'}, {'id': 9044, 'synset': 'mackintosh.n.01', 'name': 'mackintosh'}, {'id': 9045, 'synset': 'macrame.n.01', 'name': 'macrame'}, {'id': 9046, 'synset': 'madras.n.03', 'name': 'madras'}, {'id': 9047, 'synset': 'mae_west.n.02', 'name': 'Mae_West'}, {'id': 9048, 'synset': 'magazine_rack.n.01', 'name': 'magazine_rack'}, {'id': 9049, 'synset': 'magic_lantern.n.01', 'name': 'magic_lantern'}, {'id': 9050, 'synset': 'magnetic_bottle.n.01', 'name': 'magnetic_bottle'}, {'id': 9051, 'synset': 'magnetic_compass.n.01', 'name': 'magnetic_compass'}, {'id': 9052, 'synset': 'magnetic_core_memory.n.01', 'name': 'magnetic_core_memory'}, {'id': 9053, 'synset': 'magnetic_disk.n.01', 'name': 'magnetic_disk'}, {'id': 9054, 'synset': 'magnetic_head.n.01', 'name': 'magnetic_head'}, {'id': 9055, 'synset': 'magnetic_mine.n.01', 'name': 'magnetic_mine'}, {'id': 9056, 'synset': 'magnetic_needle.n.01', 'name': 'magnetic_needle'}, {'id': 9057, 'synset': 'magnetic_recorder.n.01', 'name': 'magnetic_recorder'}, {'id': 9058, 'synset': 'magnetic_stripe.n.01', 'name': 'magnetic_stripe'}, {'id': 9059, 'synset': 'magnetic_tape.n.01', 'name': 'magnetic_tape'}, {'id': 9060, 'synset': 'magneto.n.01', 'name': 'magneto'}, {'id': 9061, 'synset': 'magnetometer.n.01', 'name': 'magnetometer'}, {'id': 9062, 'synset': 'magnetron.n.01', 'name': 'magnetron'}, {'id': 9063, 'synset': 'magnifier.n.01', 'name': 'magnifier'}, {'id': 9064, 'synset': 'magnum.n.01', 'name': 'magnum'}, {'id': 9065, 'synset': 'magnus_hitch.n.01', 'name': 'magnus_hitch'}, {'id': 9066, 'synset': 'mail.n.03', 'name': 'mail'}, {'id': 9067, 'synset': 'mailbag.n.02', 'name': 'mailbag'}, {'id': 9068, 'synset': 'mailbag.n.01', 'name': 'mailbag'}, {'id': 9069, 'synset': 'mailboat.n.01', 'name': 'mailboat'}, {'id': 9070, 'synset': 'mail_car.n.01', 'name': 'mail_car'}, {'id': 9071, 'synset': 'maildrop.n.01', 'name': 'maildrop'}, {'id': 9072, 'synset': 'mailer.n.04', 'name': 'mailer'}, {'id': 9073, 'synset': 'maillot.n.02', 'name': 'maillot'}, {'id': 9074, 'synset': 'maillot.n.01', 'name': 'maillot'}, {'id': 9075, 'synset': 'mailsorter.n.01', 'name': 'mailsorter'}, {'id': 9076, 'synset': 'mail_train.n.01', 'name': 'mail_train'}, {'id': 9077, 'synset': 'mainframe.n.01', 'name': 'mainframe'}, {'id': 9078, 'synset': 'mainmast.n.01', 'name': 'mainmast'}, {'id': 9079, 'synset': 'main_rotor.n.01', 'name': 'main_rotor'}, {'id': 9080, 'synset': 'mainsail.n.01', 'name': 'mainsail'}, {'id': 9081, 'synset': 'mainspring.n.01', 'name': 'mainspring'}, {'id': 9082, 'synset': 'main-topmast.n.01', 'name': 'main-topmast'}, {'id': 9083, 'synset': 'main-topsail.n.01', 'name': 'main-topsail'}, {'id': 9084, 'synset': 'main_yard.n.01', 'name': 'main_yard'}, {'id': 9085, 'synset': 'maisonette.n.02', 'name': 'maisonette'}, {'id': 9086, 'synset': 'majolica.n.01', 'name': 'majolica'}, {'id': 9087, 'synset': 'makeup.n.01', 'name': 'makeup'}, {'id': 9088, 'synset': 'maksutov_telescope.n.01', 'name': 'Maksutov_telescope'}, {'id': 9089, 'synset': 'malacca.n.02', 'name': 'malacca'}, {'id': 9090, 'synset': 'mallet.n.03', 'name': 'mallet'}, {'id': 9091, 'synset': 'mallet.n.02', 'name': 'mallet'}, {'id': 9092, 'synset': 'mammogram.n.01', 'name': 'mammogram'}, {'id': 9093, 'synset': 'mandola.n.01', 'name': 'mandola'}, {'id': 9094, 'synset': 'mandolin.n.01', 'name': 'mandolin'}, {'id': 9095, 'synset': 'mangle.n.01', 'name': 'mangle'}, {'id': 9096, 'synset': 'manhole_cover.n.01', 'name': 'manhole_cover'}, {'id': 9097, 'synset': 'man-of-war.n.01', 'name': 'man-of-war'}, {'id': 9098, 'synset': 'manometer.n.01', 'name': 'manometer'}, {'id': 9099, 'synset': 'manor.n.01', 'name': 'manor'}, {'id': 9100, 'synset': 'manor_hall.n.01', 'name': 'manor_hall'}, {'id': 9101, 'synset': 'manpad.n.01', 'name': 'MANPAD'}, {'id': 9102, 'synset': 'mansard.n.01', 'name': 'mansard'}, {'id': 9103, 'synset': 'manse.n.02', 'name': 'manse'}, {'id': 9104, 'synset': 'mansion.n.02', 'name': 'mansion'}, {'id': 9105, 'synset': 'mantel.n.01', 'name': 'mantel'}, {'id': 9106, 'synset': 'mantelet.n.02', 'name': 'mantelet'}, {'id': 9107, 'synset': 'mantilla.n.01', 'name': 'mantilla'}, {'id': 9108, 'synset': 'mao_jacket.n.01', 'name': 'Mao_jacket'}, {'id': 9109, 'synset': 'maquiladora.n.01', 'name': 'maquiladora'}, {'id': 9110, 'synset': 'maraca.n.01', 'name': 'maraca'}, {'id': 9111, 'synset': 'marble.n.02', 'name': 'marble'}, {'id': 9112, 'synset': 'marching_order.n.01', 'name': 'marching_order'}, {'id': 9113, 'synset': 'marimba.n.01', 'name': 'marimba'}, {'id': 9114, 'synset': 'marina.n.01', 'name': 'marina'}, {'id': 9115, 'synset': 'marketplace.n.02', 'name': 'marketplace'}, {'id': 9116, 'synset': 'marlinespike.n.01', 'name': 'marlinespike'}, {'id': 9117, 'synset': 'marocain.n.01', 'name': 'marocain'}, {'id': 9118, 'synset': 'marquee.n.02', 'name': 'marquee'}, {'id': 9119, 'synset': 'marquetry.n.01', 'name': 'marquetry'}, {'id': 9120, 'synset': 'marriage_bed.n.01', 'name': 'marriage_bed'}, {'id': 9121, 'synset': 'martello_tower.n.01', 'name': 'martello_tower'}, {'id': 9122, 'synset': 'martingale.n.01', 'name': 'martingale'}, {'id': 9123, 'synset': 'mascara.n.01', 'name': 'mascara'}, {'id': 9124, 'synset': 'maser.n.01', 'name': 'maser'}, {'id': 9125, 'synset': 'mashie.n.01', 'name': 'mashie'}, {'id': 9126, 'synset': 'mashie_niblick.n.01', 'name': 'mashie_niblick'}, {'id': 9127, 'synset': 'masjid.n.01', 'name': 'masjid'}, {'id': 9128, 'synset': 'mask.n.01', 'name': 'mask'}, {'id': 9129, 'synset': 'masonite.n.01', 'name': 'Masonite'}, {'id': 9130, 'synset': 'mason_jar.n.01', 'name': 'Mason_jar'}, {'id': 9131, 'synset': 'masonry.n.01', 'name': 'masonry'}, {'id': 9132, 'synset': "mason's_level.n.01", 'name': "mason's_level"}, {'id': 9133, 'synset': 'massage_parlor.n.02', 'name': 'massage_parlor'}, {'id': 9134, 'synset': 'massage_parlor.n.01', 'name': 'massage_parlor'}, {'id': 9135, 'synset': 'mass_spectrograph.n.01', 'name': 'mass_spectrograph'}, {'id': 9136, 'synset': 'mass_spectrometer.n.01', 'name': 'mass_spectrometer'}, {'id': 9137, 'synset': 'mast.n.04', 'name': 'mast'}, {'id': 9138, 'synset': 'mastaba.n.01', 'name': 'mastaba'}, {'id': 9139, 'synset': 'master_bedroom.n.01', 'name': 'master_bedroom'}, {'id': 9140, 'synset': 'masterpiece.n.01', 'name': 'masterpiece'}, {'id': 9141, 'synset': 'mat.n.01', 'name': 'mat'}, {'id': 9142, 'synset': 'match.n.01', 'name': 'match'}, {'id': 9143, 'synset': 'match.n.03', 'name': 'match'}, {'id': 9144, 'synset': 'matchboard.n.01', 'name': 'matchboard'}, {'id': 9145, 'synset': 'matchbook.n.01', 'name': 'matchbook'}, {'id': 9146, 'synset': 'matchlock.n.01', 'name': 'matchlock'}, {'id': 9147, 'synset': 'match_plane.n.01', 'name': 'match_plane'}, {'id': 9148, 'synset': 'matchstick.n.01', 'name': 'matchstick'}, {'id': 9149, 'synset': 'material.n.04', 'name': 'material'}, {'id': 9150, 'synset': 'materiel.n.01', 'name': 'materiel'}, {'id': 9151, 'synset': 'maternity_hospital.n.01', 'name': 'maternity_hospital'}, {'id': 9152, 'synset': 'maternity_ward.n.01', 'name': 'maternity_ward'}, {'id': 9153, 'synset': 'matrix.n.06', 'name': 'matrix'}, {'id': 9154, 'synset': 'matthew_walker.n.01', 'name': 'Matthew_Walker'}, {'id': 9155, 'synset': 'matting.n.01', 'name': 'matting'}, {'id': 9156, 'synset': 'mattock.n.01', 'name': 'mattock'}, {'id': 9157, 'synset': 'mattress_cover.n.01', 'name': 'mattress_cover'}, {'id': 9158, 'synset': 'maul.n.01', 'name': 'maul'}, {'id': 9159, 'synset': 'maulstick.n.01', 'name': 'maulstick'}, {'id': 9160, 'synset': 'mauser.n.02', 'name': 'Mauser'}, {'id': 9161, 'synset': 'mausoleum.n.01', 'name': 'mausoleum'}, {'id': 9162, 'synset': 'maxi.n.01', 'name': 'maxi'}, {'id': 9163, 'synset': 'maxim_gun.n.01', 'name': 'Maxim_gun'}, {'id': 9164, 'synset': 'maximum_and_minimum_thermometer.n.01', 'name': 'maximum_and_minimum_thermometer'}, {'id': 9165, 'synset': 'maypole.n.01', 'name': 'maypole'}, {'id': 9166, 'synset': 'maze.n.01', 'name': 'maze'}, {'id': 9167, 'synset': 'mazer.n.01', 'name': 'mazer'}, {'id': 9168, 'synset': 'means.n.02', 'name': 'means'}, {'id': 9169, 'synset': 'measure.n.09', 'name': 'measure'}, {'id': 9170, 'synset': 'measuring_instrument.n.01', 'name': 'measuring_instrument'}, {'id': 9171, 'synset': 'meat_counter.n.01', 'name': 'meat_counter'}, {'id': 9172, 'synset': 'meat_grinder.n.01', 'name': 'meat_grinder'}, {'id': 9173, 'synset': 'meat_hook.n.01', 'name': 'meat_hook'}, {'id': 9174, 'synset': 'meat_house.n.02', 'name': 'meat_house'}, {'id': 9175, 'synset': 'meat_safe.n.01', 'name': 'meat_safe'}, {'id': 9176, 'synset': 'meat_thermometer.n.01', 'name': 'meat_thermometer'}, {'id': 9177, 'synset': 'mechanical_device.n.01', 'name': 'mechanical_device'}, {'id': 9178, 'synset': 'mechanical_piano.n.01', 'name': 'mechanical_piano'}, {'id': 9179, 'synset': 'mechanical_system.n.01', 'name': 'mechanical_system'}, {'id': 9180, 'synset': 'mechanism.n.05', 'name': 'mechanism'}, {'id': 9181, 'synset': 'medical_building.n.01', 'name': 'medical_building'}, {'id': 9182, 'synset': 'medical_instrument.n.01', 'name': 'medical_instrument'}, {'id': 9183, 'synset': 'medicine_ball.n.01', 'name': 'medicine_ball'}, {'id': 9184, 'synset': 'medicine_chest.n.01', 'name': 'medicine_chest'}, {'id': 9185, 'synset': 'medline.n.01', 'name': 'MEDLINE'}, {'id': 9186, 'synset': 'megalith.n.01', 'name': 'megalith'}, {'id': 9187, 'synset': 'megaphone.n.01', 'name': 'megaphone'}, {'id': 9188, 'synset': 'memorial.n.03', 'name': 'memorial'}, {'id': 9189, 'synset': 'memory.n.04', 'name': 'memory'}, {'id': 9190, 'synset': 'memory_chip.n.01', 'name': 'memory_chip'}, {'id': 9191, 'synset': 'memory_device.n.01', 'name': 'memory_device'}, {'id': 9192, 'synset': 'menagerie.n.02', 'name': 'menagerie'}, {'id': 9193, 'synset': 'mending.n.01', 'name': 'mending'}, {'id': 9194, 'synset': 'menhir.n.01', 'name': 'menhir'}, {'id': 9195, 'synset': 'menorah.n.02', 'name': 'menorah'}, {'id': 9196, 'synset': 'menorah.n.01', 'name': 'Menorah'}, {'id': 9197, 'synset': "man's_clothing.n.01", 'name': "man's_clothing"}, {'id': 9198, 'synset': "men's_room.n.01", 'name': "men's_room"}, {'id': 9199, 'synset': 'mercantile_establishment.n.01', 'name': 'mercantile_establishment'}, {'id': 9200, 'synset': 'mercury_barometer.n.01', 'name': 'mercury_barometer'}, {'id': 9201, 'synset': 'mercury_cell.n.01', 'name': 'mercury_cell'}, {'id': 9202, 'synset': 'mercury_thermometer.n.01', 'name': 'mercury_thermometer'}, {'id': 9203, 'synset': 'mercury-vapor_lamp.n.01', 'name': 'mercury-vapor_lamp'}, {'id': 9204, 'synset': 'mercy_seat.n.02', 'name': 'mercy_seat'}, {'id': 9205, 'synset': 'merlon.n.01', 'name': 'merlon'}, {'id': 9206, 'synset': 'mess.n.05', 'name': 'mess'}, {'id': 9207, 'synset': 'mess_jacket.n.01', 'name': 'mess_jacket'}, {'id': 9208, 'synset': 'mess_kit.n.01', 'name': 'mess_kit'}, {'id': 9209, 'synset': 'messuage.n.01', 'name': 'messuage'}, {'id': 9210, 'synset': 'metal_detector.n.01', 'name': 'metal_detector'}, {'id': 9211, 'synset': 'metallic.n.01', 'name': 'metallic'}, {'id': 9212, 'synset': 'metal_screw.n.01', 'name': 'metal_screw'}, {'id': 9213, 'synset': 'metal_wood.n.01', 'name': 'metal_wood'}, {'id': 9214, 'synset': 'meteorological_balloon.n.01', 'name': 'meteorological_balloon'}, {'id': 9215, 'synset': 'meter.n.02', 'name': 'meter'}, {'id': 9216, 'synset': 'meterstick.n.01', 'name': 'meterstick'}, {'id': 9217, 'synset': 'metronome.n.01', 'name': 'metronome'}, {'id': 9218, 'synset': 'mezzanine.n.02', 'name': 'mezzanine'}, {'id': 9219, 'synset': 'mezzanine.n.01', 'name': 'mezzanine'}, {'id': 9220, 'synset': 'microbalance.n.01', 'name': 'microbalance'}, {'id': 9221, 'synset': 'microbrewery.n.01', 'name': 'microbrewery'}, {'id': 9222, 'synset': 'microfiche.n.01', 'name': 'microfiche'}, {'id': 9223, 'synset': 'microfilm.n.01', 'name': 'microfilm'}, {'id': 9224, 'synset': 'micrometer.n.02', 'name': 'micrometer'}, {'id': 9225, 'synset': 'microprocessor.n.01', 'name': 'microprocessor'}, {'id': 9226, 'synset': 'microtome.n.01', 'name': 'microtome'}, {'id': 9227, 'synset': 'microwave_diathermy_machine.n.01', 'name': 'microwave_diathermy_machine'}, {'id': 9228, 'synset': 'microwave_linear_accelerator.n.01', 'name': 'microwave_linear_accelerator'}, {'id': 9229, 'synset': 'middy.n.01', 'name': 'middy'}, {'id': 9230, 'synset': 'midiron.n.01', 'name': 'midiron'}, {'id': 9231, 'synset': 'mihrab.n.02', 'name': 'mihrab'}, {'id': 9232, 'synset': 'mihrab.n.01', 'name': 'mihrab'}, {'id': 9233, 'synset': 'military_hospital.n.01', 'name': 'military_hospital'}, {'id': 9234, 'synset': 'military_quarters.n.01', 'name': 'military_quarters'}, {'id': 9235, 'synset': 'military_uniform.n.01', 'name': 'military_uniform'}, {'id': 9236, 'synset': 'military_vehicle.n.01', 'name': 'military_vehicle'}, {'id': 9237, 'synset': 'milk_bar.n.01', 'name': 'milk_bar'}, {'id': 9238, 'synset': 'milk_float.n.01', 'name': 'milk_float'}, {'id': 9239, 'synset': 'milking_machine.n.01', 'name': 'milking_machine'}, {'id': 9240, 'synset': 'milking_stool.n.01', 'name': 'milking_stool'}, {'id': 9241, 'synset': 'milk_wagon.n.01', 'name': 'milk_wagon'}, {'id': 9242, 'synset': 'mill.n.04', 'name': 'mill'}, {'id': 9243, 'synset': 'milldam.n.01', 'name': 'milldam'}, {'id': 9244, 'synset': 'miller.n.05', 'name': 'miller'}, {'id': 9245, 'synset': 'milliammeter.n.01', 'name': 'milliammeter'}, {'id': 9246, 'synset': 'millinery.n.02', 'name': 'millinery'}, {'id': 9247, 'synset': 'millinery.n.01', 'name': 'millinery'}, {'id': 9248, 'synset': 'milling.n.01', 'name': 'milling'}, {'id': 9249, 'synset': 'millivoltmeter.n.01', 'name': 'millivoltmeter'}, {'id': 9250, 'synset': 'millstone.n.03', 'name': 'millstone'}, {'id': 9251, 'synset': 'millstone.n.02', 'name': 'millstone'}, {'id': 9252, 'synset': 'millwheel.n.01', 'name': 'millwheel'}, {'id': 9253, 'synset': 'mimeograph.n.01', 'name': 'mimeograph'}, {'id': 9254, 'synset': 'minaret.n.01', 'name': 'minaret'}, {'id': 9255, 'synset': 'mincer.n.01', 'name': 'mincer'}, {'id': 9256, 'synset': 'mine.n.02', 'name': 'mine'}, {'id': 9257, 'synset': 'mine_detector.n.01', 'name': 'mine_detector'}, {'id': 9258, 'synset': 'minelayer.n.01', 'name': 'minelayer'}, {'id': 9259, 'synset': 'mineshaft.n.01', 'name': 'mineshaft'}, {'id': 9260, 'synset': 'minibar.n.01', 'name': 'minibar'}, {'id': 9261, 'synset': 'minibike.n.01', 'name': 'minibike'}, {'id': 9262, 'synset': 'minibus.n.01', 'name': 'minibus'}, {'id': 9263, 'synset': 'minicar.n.01', 'name': 'minicar'}, {'id': 9264, 'synset': 'minicomputer.n.01', 'name': 'minicomputer'}, {'id': 9265, 'synset': 'ministry.n.02', 'name': 'ministry'}, {'id': 9266, 'synset': 'miniskirt.n.01', 'name': 'miniskirt'}, {'id': 9267, 'synset': 'minisub.n.01', 'name': 'minisub'}, {'id': 9268, 'synset': 'miniver.n.01', 'name': 'miniver'}, {'id': 9269, 'synset': 'mink.n.02', 'name': 'mink'}, {'id': 9270, 'synset': 'minster.n.01', 'name': 'minster'}, {'id': 9271, 'synset': 'mint.n.06', 'name': 'mint'}, {'id': 9272, 'synset': 'minute_hand.n.01', 'name': 'minute_hand'}, {'id': 9273, 'synset': 'minuteman.n.02', 'name': 'Minuteman'}, {'id': 9274, 'synset': 'missile.n.01', 'name': 'missile'}, {'id': 9275, 'synset': 'missile_defense_system.n.01', 'name': 'missile_defense_system'}, {'id': 9276, 'synset': 'miter_box.n.01', 'name': 'miter_box'}, {'id': 9277, 'synset': 'miter_joint.n.01', 'name': 'miter_joint'}, {'id': 9278, 'synset': 'mixer.n.03', 'name': 'mixer'}, {'id': 9279, 'synset': 'mixing_bowl.n.01', 'name': 'mixing_bowl'}, {'id': 9280, 'synset': 'mixing_faucet.n.01', 'name': 'mixing_faucet'}, {'id': 9281, 'synset': 'mizzen.n.02', 'name': 'mizzen'}, {'id': 9282, 'synset': 'mizzenmast.n.01', 'name': 'mizzenmast'}, {'id': 9283, 'synset': 'mobcap.n.01', 'name': 'mobcap'}, {'id': 9284, 'synset': 'mobile_home.n.01', 'name': 'mobile_home'}, {'id': 9285, 'synset': 'moccasin.n.01', 'name': 'moccasin'}, {'id': 9286, 'synset': 'mock-up.n.01', 'name': 'mock-up'}, {'id': 9287, 'synset': 'mod_con.n.01', 'name': 'mod_con'}, {'id': 9288, 'synset': 'model_t.n.01', 'name': 'Model_T'}, {'id': 9289, 'synset': 'modem.n.01', 'name': 'modem'}, {'id': 9290, 'synset': 'modillion.n.01', 'name': 'modillion'}, {'id': 9291, 'synset': 'module.n.03', 'name': 'module'}, {'id': 9292, 'synset': 'module.n.02', 'name': 'module'}, {'id': 9293, 'synset': 'mohair.n.01', 'name': 'mohair'}, {'id': 9294, 'synset': 'moire.n.01', 'name': 'moire'}, {'id': 9295, 'synset': 'mold.n.02', 'name': 'mold'}, {'id': 9296, 'synset': 'moldboard.n.01', 'name': 'moldboard'}, {'id': 9297, 'synset': 'moldboard_plow.n.01', 'name': 'moldboard_plow'}, {'id': 9298, 'synset': 'moleskin.n.01', 'name': 'moleskin'}, {'id': 9299, 'synset': 'molotov_cocktail.n.01', 'name': 'Molotov_cocktail'}, {'id': 9300, 'synset': 'monastery.n.01', 'name': 'monastery'}, {'id': 9301, 'synset': 'monastic_habit.n.01', 'name': 'monastic_habit'}, {'id': 9302, 'synset': 'moneybag.n.01', 'name': 'moneybag'}, {'id': 9303, 'synset': 'money_belt.n.01', 'name': 'money_belt'}, {'id': 9304, 'synset': 'monitor.n.06', 'name': 'monitor'}, {'id': 9305, 'synset': 'monitor.n.05', 'name': 'monitor'}, {'id': 9306, 'synset': 'monkey-wrench.n.01', 'name': 'monkey-wrench'}, {'id': 9307, 'synset': "monk's_cloth.n.01", 'name': "monk's_cloth"}, {'id': 9308, 'synset': 'monochrome.n.01', 'name': 'monochrome'}, {'id': 9309, 'synset': 'monocle.n.01', 'name': 'monocle'}, {'id': 9310, 'synset': 'monofocal_lens_implant.n.01', 'name': 'monofocal_lens_implant'}, {'id': 9311, 'synset': 'monoplane.n.01', 'name': 'monoplane'}, {'id': 9312, 'synset': 'monotype.n.02', 'name': 'monotype'}, {'id': 9313, 'synset': 'monstrance.n.02', 'name': 'monstrance'}, {'id': 9314, 'synset': 'mooring_tower.n.01', 'name': 'mooring_tower'}, {'id': 9315, 'synset': 'moorish_arch.n.01', 'name': 'Moorish_arch'}, {'id': 9316, 'synset': 'moped.n.01', 'name': 'moped'}, {'id': 9317, 'synset': 'mop_handle.n.01', 'name': 'mop_handle'}, {'id': 9318, 'synset': 'moquette.n.01', 'name': 'moquette'}, {'id': 9319, 'synset': 'morgue.n.01', 'name': 'morgue'}, {'id': 9320, 'synset': 'morion.n.01', 'name': 'morion'}, {'id': 9321, 'synset': 'morning_dress.n.02', 'name': 'morning_dress'}, {'id': 9322, 'synset': 'morning_dress.n.01', 'name': 'morning_dress'}, {'id': 9323, 'synset': 'morning_room.n.01', 'name': 'morning_room'}, {'id': 9324, 'synset': 'morris_chair.n.01', 'name': 'Morris_chair'}, {'id': 9325, 'synset': 'mortar.n.01', 'name': 'mortar'}, {'id': 9326, 'synset': 'mortar.n.03', 'name': 'mortar'}, {'id': 9327, 'synset': 'mortarboard.n.02', 'name': 'mortarboard'}, {'id': 9328, 'synset': 'mortise_joint.n.02', 'name': 'mortise_joint'}, {'id': 9329, 'synset': 'mosaic.n.05', 'name': 'mosaic'}, {'id': 9330, 'synset': 'mosque.n.01', 'name': 'mosque'}, {'id': 9331, 'synset': 'mosquito_net.n.01', 'name': 'mosquito_net'}, {'id': 9332, 'synset': 'motel.n.01', 'name': 'motel'}, {'id': 9333, 'synset': 'motel_room.n.01', 'name': 'motel_room'}, {'id': 9334, 'synset': 'mother_hubbard.n.01', 'name': 'Mother_Hubbard'}, {'id': 9335, 'synset': 'motion-picture_camera.n.01', 'name': 'motion-picture_camera'}, {'id': 9336, 'synset': 'motion-picture_film.n.01', 'name': 'motion-picture_film'}, {'id': 9337, 'synset': 'motley.n.03', 'name': 'motley'}, {'id': 9338, 'synset': 'motley.n.02', 'name': 'motley'}, {'id': 9339, 'synset': 'motorboat.n.01', 'name': 'motorboat'}, {'id': 9340, 'synset': 'motor_hotel.n.01', 'name': 'motor_hotel'}, {'id': 9341, 'synset': 'motorized_wheelchair.n.01', 'name': 'motorized_wheelchair'}, {'id': 9342, 'synset': 'mound.n.04', 'name': 'mound'}, {'id': 9343, 'synset': 'mount.n.04', 'name': 'mount'}, {'id': 9344, 'synset': 'mountain_bike.n.01', 'name': 'mountain_bike'}, {'id': 9345, 'synset': 'mountain_tent.n.01', 'name': 'mountain_tent'}, {'id': 9346, 'synset': 'mouse_button.n.01', 'name': 'mouse_button'}, {'id': 9347, 'synset': 'mousetrap.n.01', 'name': 'mousetrap'}, {'id': 9348, 'synset': 'mousse.n.03', 'name': 'mousse'}, {'id': 9349, 'synset': 'mouthpiece.n.06', 'name': 'mouthpiece'}, {'id': 9350, 'synset': 'mouthpiece.n.02', 'name': 'mouthpiece'}, {'id': 9351, 'synset': 'mouthpiece.n.04', 'name': 'mouthpiece'}, {'id': 9352, 'synset': 'movement.n.10', 'name': 'movement'}, {'id': 9353, 'synset': 'movie_projector.n.01', 'name': 'movie_projector'}, {'id': 9354, 'synset': 'moving-coil_galvanometer.n.01', 'name': 'moving-coil_galvanometer'}, {'id': 9355, 'synset': 'moving_van.n.01', 'name': 'moving_van'}, {'id': 9356, 'synset': 'mud_brick.n.01', 'name': 'mud_brick'}, {'id': 9357, 'synset': 'mudguard.n.01', 'name': 'mudguard'}, {'id': 9358, 'synset': 'mudhif.n.01', 'name': 'mudhif'}, {'id': 9359, 'synset': 'muff.n.01', 'name': 'muff'}, {'id': 9360, 'synset': 'muffle.n.01', 'name': 'muffle'}, {'id': 9361, 'synset': 'muffler.n.02', 'name': 'muffler'}, {'id': 9362, 'synset': 'mufti.n.02', 'name': 'mufti'}, {'id': 9363, 'synset': 'mulch.n.01', 'name': 'mulch'}, {'id': 9364, 'synset': 'mule.n.02', 'name': 'mule'}, {'id': 9365, 'synset': 'multichannel_recorder.n.01', 'name': 'multichannel_recorder'}, {'id': 9366, 'synset': 'multiengine_airplane.n.01', 'name': 'multiengine_airplane'}, {'id': 9367, 'synset': 'multiplex.n.02', 'name': 'multiplex'}, {'id': 9368, 'synset': 'multiplexer.n.01', 'name': 'multiplexer'}, {'id': 9369, 'synset': 'multiprocessor.n.01', 'name': 'multiprocessor'}, {'id': 9370, 'synset': 'multistage_rocket.n.01', 'name': 'multistage_rocket'}, {'id': 9371, 'synset': 'munition.n.02', 'name': 'munition'}, {'id': 9372, 'synset': 'murphy_bed.n.01', 'name': 'Murphy_bed'}, {'id': 9373, 'synset': 'musette.n.01', 'name': 'musette'}, {'id': 9374, 'synset': 'musette_pipe.n.01', 'name': 'musette_pipe'}, {'id': 9375, 'synset': 'museum.n.01', 'name': 'museum'}, {'id': 9376, 'synset': 'mushroom_anchor.n.01', 'name': 'mushroom_anchor'}, {'id': 9377, 'synset': 'music_box.n.01', 'name': 'music_box'}, {'id': 9378, 'synset': 'music_hall.n.01', 'name': 'music_hall'}, {'id': 9379, 'synset': 'music_school.n.02', 'name': 'music_school'}, {'id': 9380, 'synset': 'music_stand.n.01', 'name': 'music_stand'}, {'id': 9381, 'synset': 'musket.n.01', 'name': 'musket'}, {'id': 9382, 'synset': 'musket_ball.n.01', 'name': 'musket_ball'}, {'id': 9383, 'synset': 'muslin.n.01', 'name': 'muslin'}, {'id': 9384, 'synset': 'mustache_cup.n.01', 'name': 'mustache_cup'}, {'id': 9385, 'synset': 'mustard_plaster.n.01', 'name': 'mustard_plaster'}, {'id': 9386, 'synset': 'mute.n.02', 'name': 'mute'}, {'id': 9387, 'synset': 'muzzle_loader.n.01', 'name': 'muzzle_loader'}, {'id': 9388, 'synset': 'muzzle.n.03', 'name': 'muzzle'}, {'id': 9389, 'synset': 'myelogram.n.01', 'name': 'myelogram'}, {'id': 9390, 'synset': 'nacelle.n.01', 'name': 'nacelle'}, {'id': 9391, 'synset': 'nail.n.02', 'name': 'nail'}, {'id': 9392, 'synset': 'nailbrush.n.01', 'name': 'nailbrush'}, {'id': 9393, 'synset': 'nailhead.n.02', 'name': 'nailhead'}, {'id': 9394, 'synset': 'nailhead.n.01', 'name': 'nailhead'}, {'id': 9395, 'synset': 'nail_polish.n.01', 'name': 'nail_polish'}, {'id': 9396, 'synset': 'nainsook.n.01', 'name': 'nainsook'}, {'id': 9397, 'synset': "napier's_bones.n.01", 'name': "Napier's_bones"}, {'id': 9398, 'synset': 'nard.n.01', 'name': 'nard'}, {'id': 9399, 'synset': 'narrowbody_aircraft.n.01', 'name': 'narrowbody_aircraft'}, {'id': 9400, 'synset': 'narrow_wale.n.01', 'name': 'narrow_wale'}, {'id': 9401, 'synset': 'narthex.n.02', 'name': 'narthex'}, {'id': 9402, 'synset': 'narthex.n.01', 'name': 'narthex'}, {'id': 9403, 'synset': 'nasotracheal_tube.n.01', 'name': 'nasotracheal_tube'}, {'id': 9404, 'synset': 'national_monument.n.01', 'name': 'national_monument'}, {'id': 9405, 'synset': 'nautilus.n.01', 'name': 'nautilus'}, {'id': 9406, 'synset': 'navigational_system.n.01', 'name': 'navigational_system'}, {'id': 9407, 'synset': 'naval_equipment.n.01', 'name': 'naval_equipment'}, {'id': 9408, 'synset': 'naval_gun.n.01', 'name': 'naval_gun'}, {'id': 9409, 'synset': 'naval_missile.n.01', 'name': 'naval_missile'}, {'id': 9410, 'synset': 'naval_radar.n.01', 'name': 'naval_radar'}, {'id': 9411, 'synset': 'naval_tactical_data_system.n.01', 'name': 'naval_tactical_data_system'}, {'id': 9412, 'synset': 'naval_weaponry.n.01', 'name': 'naval_weaponry'}, {'id': 9413, 'synset': 'nave.n.01', 'name': 'nave'}, {'id': 9414, 'synset': 'navigational_instrument.n.01', 'name': 'navigational_instrument'}, {'id': 9415, 'synset': 'nebuchadnezzar.n.02', 'name': 'nebuchadnezzar'}, {'id': 9416, 'synset': 'neckband.n.01', 'name': 'neckband'}, {'id': 9417, 'synset': 'neck_brace.n.01', 'name': 'neck_brace'}, {'id': 9418, 'synset': 'neckcloth.n.01', 'name': 'neckcloth'}, {'id': 9419, 'synset': 'necklet.n.01', 'name': 'necklet'}, {'id': 9420, 'synset': 'neckline.n.01', 'name': 'neckline'}, {'id': 9421, 'synset': 'neckpiece.n.01', 'name': 'neckpiece'}, {'id': 9422, 'synset': 'neckwear.n.01', 'name': 'neckwear'}, {'id': 9423, 'synset': 'needle.n.02', 'name': 'needle'}, {'id': 9424, 'synset': 'needlenose_pliers.n.01', 'name': 'needlenose_pliers'}, {'id': 9425, 'synset': 'needlework.n.01', 'name': 'needlework'}, {'id': 9426, 'synset': 'negative.n.02', 'name': 'negative'}, {'id': 9427, 'synset': 'negative_magnetic_pole.n.01', 'name': 'negative_magnetic_pole'}, {'id': 9428, 'synset': 'negative_pole.n.01', 'name': 'negative_pole'}, {'id': 9429, 'synset': 'negligee.n.01', 'name': 'negligee'}, {'id': 9430, 'synset': 'neolith.n.01', 'name': 'neolith'}, {'id': 9431, 'synset': 'neon_lamp.n.01', 'name': 'neon_lamp'}, {'id': 9432, 'synset': 'nephoscope.n.01', 'name': 'nephoscope'}, {'id': 9433, 'synset': 'nest.n.05', 'name': 'nest'}, {'id': 9434, 'synset': 'nest_egg.n.02', 'name': 'nest_egg'}, {'id': 9435, 'synset': 'net.n.06', 'name': 'net'}, {'id': 9436, 'synset': 'net.n.02', 'name': 'net'}, {'id': 9437, 'synset': 'net.n.05', 'name': 'net'}, {'id': 9438, 'synset': 'net.n.04', 'name': 'net'}, {'id': 9439, 'synset': 'network.n.05', 'name': 'network'}, {'id': 9440, 'synset': 'network.n.04', 'name': 'network'}, {'id': 9441, 'synset': 'neutron_bomb.n.01', 'name': 'neutron_bomb'}, {'id': 9442, 'synset': 'newel.n.02', 'name': 'newel'}, {'id': 9443, 'synset': 'newel_post.n.01', 'name': 'newel_post'}, {'id': 9444, 'synset': 'newspaper.n.03', 'name': 'newspaper'}, {'id': 9445, 'synset': 'newsroom.n.03', 'name': 'newsroom'}, {'id': 9446, 'synset': 'newsroom.n.02', 'name': 'newsroom'}, {'id': 9447, 'synset': 'newtonian_telescope.n.01', 'name': 'Newtonian_telescope'}, {'id': 9448, 'synset': 'nib.n.01', 'name': 'nib'}, {'id': 9449, 'synset': 'niblick.n.01', 'name': 'niblick'}, {'id': 9450, 'synset': 'nicad.n.01', 'name': 'nicad'}, {'id': 9451, 'synset': 'nickel-iron_battery.n.01', 'name': 'nickel-iron_battery'}, {'id': 9452, 'synset': 'nicol_prism.n.01', 'name': 'Nicol_prism'}, {'id': 9453, 'synset': 'night_bell.n.01', 'name': 'night_bell'}, {'id': 9454, 'synset': 'nightcap.n.02', 'name': 'nightcap'}, {'id': 9455, 'synset': 'nightgown.n.01', 'name': 'nightgown'}, {'id': 9456, 'synset': 'night_latch.n.01', 'name': 'night_latch'}, {'id': 9457, 'synset': 'night-light.n.01', 'name': 'night-light'}, {'id': 9458, 'synset': 'nightshirt.n.01', 'name': 'nightshirt'}, {'id': 9459, 'synset': 'ninepin.n.01', 'name': 'ninepin'}, {'id': 9460, 'synset': 'ninepin_ball.n.01', 'name': 'ninepin_ball'}, {'id': 9461, 'synset': 'ninon.n.01', 'name': 'ninon'}, {'id': 9462, 'synset': 'nipple.n.02', 'name': 'nipple'}, {'id': 9463, 'synset': 'nipple_shield.n.01', 'name': 'nipple_shield'}, {'id': 9464, 'synset': 'niqab.n.01', 'name': 'niqab'}, {'id': 9465, 'synset': 'nissen_hut.n.01', 'name': 'Nissen_hut'}, {'id': 9466, 'synset': 'nogging.n.01', 'name': 'nogging'}, {'id': 9467, 'synset': 'noisemaker.n.01', 'name': 'noisemaker'}, {'id': 9468, 'synset': 'nonsmoker.n.02', 'name': 'nonsmoker'}, {'id': 9469, 'synset': 'non-volatile_storage.n.01', 'name': 'non-volatile_storage'}, {'id': 9470, 'synset': 'norfolk_jacket.n.01', 'name': 'Norfolk_jacket'}, {'id': 9471, 'synset': 'noria.n.01', 'name': 'noria'}, {'id': 9472, 'synset': 'nose_flute.n.01', 'name': 'nose_flute'}, {'id': 9473, 'synset': 'nosewheel.n.01', 'name': 'nosewheel'}, {'id': 9474, 'synset': 'notebook.n.02', 'name': 'notebook'}, {'id': 9475, 'synset': 'nuclear-powered_ship.n.01', 'name': 'nuclear-powered_ship'}, {'id': 9476, 'synset': 'nuclear_reactor.n.01', 'name': 'nuclear_reactor'}, {'id': 9477, 'synset': 'nuclear_rocket.n.01', 'name': 'nuclear_rocket'}, {'id': 9478, 'synset': 'nuclear_weapon.n.01', 'name': 'nuclear_weapon'}, {'id': 9479, 'synset': 'nude.n.01', 'name': 'nude'}, {'id': 9480, 'synset': 'numdah.n.01', 'name': 'numdah'}, {'id': 9481, 'synset': "nun's_habit.n.01", 'name': "nun's_habit"}, {'id': 9482, 'synset': 'nursery.n.01', 'name': 'nursery'}, {'id': 9483, 'synset': 'nut_and_bolt.n.01', 'name': 'nut_and_bolt'}, {'id': 9484, 'synset': 'nylon.n.02', 'name': 'nylon'}, {'id': 9485, 'synset': 'nylons.n.01', 'name': 'nylons'}, {'id': 9486, 'synset': 'oast.n.01', 'name': 'oast'}, {'id': 9487, 'synset': 'oast_house.n.01', 'name': 'oast_house'}, {'id': 9488, 'synset': 'obelisk.n.01', 'name': 'obelisk'}, {'id': 9489, 'synset': 'object_ball.n.01', 'name': 'object_ball'}, {'id': 9490, 'synset': 'objective.n.02', 'name': 'objective'}, {'id': 9491, 'synset': 'oblique_bandage.n.01', 'name': 'oblique_bandage'}, {'id': 9492, 'synset': 'oboe.n.01', 'name': 'oboe'}, {'id': 9493, 'synset': 'oboe_da_caccia.n.01', 'name': 'oboe_da_caccia'}, {'id': 9494, 'synset': "oboe_d'amore.n.01", 'name': "oboe_d'amore"}, {'id': 9495, 'synset': 'observation_dome.n.01', 'name': 'observation_dome'}, {'id': 9496, 'synset': 'observatory.n.01', 'name': 'observatory'}, {'id': 9497, 'synset': 'obstacle.n.02', 'name': 'obstacle'}, {'id': 9498, 'synset': 'obturator.n.01', 'name': 'obturator'}, {'id': 9499, 'synset': 'ocarina.n.01', 'name': 'ocarina'}, {'id': 9500, 'synset': 'octant.n.01', 'name': 'octant'}, {'id': 9501, 'synset': 'odd-leg_caliper.n.01', 'name': 'odd-leg_caliper'}, {'id': 9502, 'synset': 'odometer.n.01', 'name': 'odometer'}, {'id': 9503, 'synset': 'oeil_de_boeuf.n.01', 'name': 'oeil_de_boeuf'}, {'id': 9504, 'synset': 'office.n.01', 'name': 'office'}, {'id': 9505, 'synset': 'office_building.n.01', 'name': 'office_building'}, {'id': 9506, 'synset': 'office_furniture.n.01', 'name': 'office_furniture'}, {'id': 9507, 'synset': "officer's_mess.n.01", 'name': "officer's_mess"}, {'id': 9508, 'synset': 'off-line_equipment.n.01', 'name': 'off-line_equipment'}, {'id': 9509, 'synset': 'ogee.n.01', 'name': 'ogee'}, {'id': 9510, 'synset': 'ogee_arch.n.01', 'name': 'ogee_arch'}, {'id': 9511, 'synset': 'ohmmeter.n.01', 'name': 'ohmmeter'}, {'id': 9512, 'synset': 'oil.n.02', 'name': 'oil'}, {'id': 9513, 'synset': 'oilcan.n.01', 'name': 'oilcan'}, {'id': 9514, 'synset': 'oilcloth.n.01', 'name': 'oilcloth'}, {'id': 9515, 'synset': 'oil_filter.n.01', 'name': 'oil_filter'}, {'id': 9516, 'synset': 'oil_heater.n.01', 'name': 'oil_heater'}, {'id': 9517, 'synset': 'oil_paint.n.01', 'name': 'oil_paint'}, {'id': 9518, 'synset': 'oil_pump.n.01', 'name': 'oil_pump'}, {'id': 9519, 'synset': 'oil_refinery.n.01', 'name': 'oil_refinery'}, {'id': 9520, 'synset': 'oilskin.n.01', 'name': 'oilskin'}, {'id': 9521, 'synset': 'oil_slick.n.01', 'name': 'oil_slick'}, {'id': 9522, 'synset': 'oilstone.n.01', 'name': 'oilstone'}, {'id': 9523, 'synset': 'oil_tanker.n.01', 'name': 'oil_tanker'}, {'id': 9524, 'synset': 'old_school_tie.n.01', 'name': 'old_school_tie'}, {'id': 9525, 'synset': 'olive_drab.n.03', 'name': 'olive_drab'}, {'id': 9526, 'synset': 'olive_drab.n.02', 'name': 'olive_drab'}, {'id': 9527, 'synset': 'olympian_zeus.n.01', 'name': 'Olympian_Zeus'}, {'id': 9528, 'synset': 'omelet_pan.n.01', 'name': 'omelet_pan'}, {'id': 9529, 'synset': 'omnidirectional_antenna.n.01', 'name': 'omnidirectional_antenna'}, {'id': 9530, 'synset': 'omnirange.n.01', 'name': 'omnirange'}, {'id': 9531, 'synset': 'onion_dome.n.01', 'name': 'onion_dome'}, {'id': 9532, 'synset': 'open-air_market.n.01', 'name': 'open-air_market'}, {'id': 9533, 'synset': 'open_circuit.n.01', 'name': 'open_circuit'}, {'id': 9534, 'synset': 'open-end_wrench.n.01', 'name': 'open-end_wrench'}, {'id': 9535, 'synset': 'opener.n.03', 'name': 'opener'}, {'id': 9536, 'synset': 'open-hearth_furnace.n.01', 'name': 'open-hearth_furnace'}, {'id': 9537, 'synset': 'openside_plane.n.01', 'name': 'openside_plane'}, {'id': 9538, 'synset': 'open_sight.n.01', 'name': 'open_sight'}, {'id': 9539, 'synset': 'openwork.n.01', 'name': 'openwork'}, {'id': 9540, 'synset': 'opera.n.03', 'name': 'opera'}, {'id': 9541, 'synset': 'opera_cloak.n.01', 'name': 'opera_cloak'}, {'id': 9542, 'synset': 'operating_microscope.n.01', 'name': 'operating_microscope'}, {'id': 9543, 'synset': 'operating_room.n.01', 'name': 'operating_room'}, {'id': 9544, 'synset': 'operating_table.n.01', 'name': 'operating_table'}, {'id': 9545, 'synset': 'ophthalmoscope.n.01', 'name': 'ophthalmoscope'}, {'id': 9546, 'synset': 'optical_device.n.01', 'name': 'optical_device'}, {'id': 9547, 'synset': 'optical_disk.n.01', 'name': 'optical_disk'}, {'id': 9548, 'synset': 'optical_instrument.n.01', 'name': 'optical_instrument'}, {'id': 9549, 'synset': 'optical_pyrometer.n.01', 'name': 'optical_pyrometer'}, {'id': 9550, 'synset': 'optical_telescope.n.01', 'name': 'optical_telescope'}, {'id': 9551, 'synset': 'orchestra_pit.n.01', 'name': 'orchestra_pit'}, {'id': 9552, 'synset': 'ordinary.n.04', 'name': 'ordinary'}, {'id': 9553, 'synset': 'organ.n.05', 'name': 'organ'}, {'id': 9554, 'synset': 'organdy.n.01', 'name': 'organdy'}, {'id': 9555, 'synset': 'organic_light-emitting_diode.n.01', 'name': 'organic_light-emitting_diode'}, {'id': 9556, 'synset': 'organ_loft.n.01', 'name': 'organ_loft'}, {'id': 9557, 'synset': 'organ_pipe.n.01', 'name': 'organ_pipe'}, {'id': 9558, 'synset': 'organza.n.01', 'name': 'organza'}, {'id': 9559, 'synset': 'oriel.n.01', 'name': 'oriel'}, {'id': 9560, 'synset': 'oriflamme.n.02', 'name': 'oriflamme'}, {'id': 9561, 'synset': 'o_ring.n.01', 'name': 'O_ring'}, {'id': 9562, 'synset': 'orlon.n.01', 'name': 'Orlon'}, {'id': 9563, 'synset': 'orlop_deck.n.01', 'name': 'orlop_deck'}, {'id': 9564, 'synset': 'orphanage.n.02', 'name': 'orphanage'}, {'id': 9565, 'synset': 'orphrey.n.01', 'name': 'orphrey'}, {'id': 9566, 'synset': 'orrery.n.01', 'name': 'orrery'}, {'id': 9567, 'synset': 'orthicon.n.01', 'name': 'orthicon'}, {'id': 9568, 'synset': 'orthochromatic_film.n.01', 'name': 'orthochromatic_film'}, {'id': 9569, 'synset': 'orthopter.n.01', 'name': 'orthopter'}, {'id': 9570, 'synset': 'orthoscope.n.01', 'name': 'orthoscope'}, {'id': 9571, 'synset': 'oscillograph.n.01', 'name': 'oscillograph'}, {'id': 9572, 'synset': 'oscilloscope.n.01', 'name': 'oscilloscope'}, {'id': 9573, 'synset': 'ossuary.n.01', 'name': 'ossuary'}, {'id': 9574, 'synset': 'otoscope.n.01', 'name': 'otoscope'}, {'id': 9575, 'synset': 'oubliette.n.01', 'name': 'oubliette'}, {'id': 9576, 'synset': 'out-basket.n.01', 'name': 'out-basket'}, {'id': 9577, 'synset': 'outboard_motor.n.01', 'name': 'outboard_motor'}, {'id': 9578, 'synset': 'outboard_motorboat.n.01', 'name': 'outboard_motorboat'}, {'id': 9579, 'synset': 'outbuilding.n.01', 'name': 'outbuilding'}, {'id': 9580, 'synset': 'outerwear.n.01', 'name': 'outerwear'}, {'id': 9581, 'synset': 'outfall.n.01', 'name': 'outfall'}, {'id': 9582, 'synset': 'outfit.n.02', 'name': 'outfit'}, {'id': 9583, 'synset': 'outfitter.n.02', 'name': 'outfitter'}, {'id': 9584, 'synset': 'outhouse.n.01', 'name': 'outhouse'}, {'id': 9585, 'synset': 'output_device.n.01', 'name': 'output_device'}, {'id': 9586, 'synset': 'outrigger.n.01', 'name': 'outrigger'}, {'id': 9587, 'synset': 'outrigger_canoe.n.01', 'name': 'outrigger_canoe'}, {'id': 9588, 'synset': 'outside_caliper.n.01', 'name': 'outside_caliper'}, {'id': 9589, 'synset': 'outside_mirror.n.01', 'name': 'outside_mirror'}, {'id': 9590, 'synset': 'outwork.n.01', 'name': 'outwork'}, {'id': 9591, 'synset': 'oven_thermometer.n.01', 'name': 'oven_thermometer'}, {'id': 9592, 'synset': 'overall.n.02', 'name': 'overall'}, {'id': 9593, 'synset': 'overcoat.n.02', 'name': 'overcoat'}, {'id': 9594, 'synset': 'overdrive.n.02', 'name': 'overdrive'}, {'id': 9595, 'synset': 'overgarment.n.01', 'name': 'overgarment'}, {'id': 9596, 'synset': 'overhand_knot.n.01', 'name': 'overhand_knot'}, {'id': 9597, 'synset': 'overhang.n.01', 'name': 'overhang'}, {'id': 9598, 'synset': 'overhead_projector.n.01', 'name': 'overhead_projector'}, {'id': 9599, 'synset': 'overmantel.n.01', 'name': 'overmantel'}, {'id': 9600, 'synset': 'overnighter.n.02', 'name': 'overnighter'}, {'id': 9601, 'synset': 'overpass.n.01', 'name': 'overpass'}, {'id': 9602, 'synset': 'override.n.01', 'name': 'override'}, {'id': 9603, 'synset': 'overshoe.n.01', 'name': 'overshoe'}, {'id': 9604, 'synset': 'overskirt.n.01', 'name': 'overskirt'}, {'id': 9605, 'synset': 'oxbow.n.03', 'name': 'oxbow'}, {'id': 9606, 'synset': 'oxbridge.n.01', 'name': 'Oxbridge'}, {'id': 9607, 'synset': 'oxcart.n.01', 'name': 'oxcart'}, {'id': 9608, 'synset': 'oxeye.n.03', 'name': 'oxeye'}, {'id': 9609, 'synset': 'oxford.n.04', 'name': 'oxford'}, {'id': 9610, 'synset': 'oximeter.n.01', 'name': 'oximeter'}, {'id': 9611, 'synset': 'oxyacetylene_torch.n.01', 'name': 'oxyacetylene_torch'}, {'id': 9612, 'synset': 'oxygen_mask.n.01', 'name': 'oxygen_mask'}, {'id': 9613, 'synset': 'oyster_bar.n.01', 'name': 'oyster_bar'}, {'id': 9614, 'synset': 'oyster_bed.n.01', 'name': 'oyster_bed'}, {'id': 9615, 'synset': 'pace_car.n.01', 'name': 'pace_car'}, {'id': 9616, 'synset': 'pacemaker.n.03', 'name': 'pacemaker'}, {'id': 9617, 'synset': 'pack.n.03', 'name': 'pack'}, {'id': 9618, 'synset': 'pack.n.09', 'name': 'pack'}, {'id': 9619, 'synset': 'pack.n.07', 'name': 'pack'}, {'id': 9620, 'synset': 'package.n.02', 'name': 'package'}, {'id': 9621, 'synset': 'package_store.n.01', 'name': 'package_store'}, {'id': 9622, 'synset': 'packaging.n.03', 'name': 'packaging'}, {'id': 9623, 'synset': 'packing_box.n.02', 'name': 'packing_box'}, {'id': 9624, 'synset': 'packinghouse.n.02', 'name': 'packinghouse'}, {'id': 9625, 'synset': 'packinghouse.n.01', 'name': 'packinghouse'}, {'id': 9626, 'synset': 'packing_needle.n.01', 'name': 'packing_needle'}, {'id': 9627, 'synset': 'packsaddle.n.01', 'name': 'packsaddle'}, {'id': 9628, 'synset': 'paddle.n.02', 'name': 'paddle'}, {'id': 9629, 'synset': 'paddle.n.01', 'name': 'paddle'}, {'id': 9630, 'synset': 'paddle_box.n.01', 'name': 'paddle_box'}, {'id': 9631, 'synset': 'paddle_steamer.n.01', 'name': 'paddle_steamer'}, {'id': 9632, 'synset': 'paddlewheel.n.01', 'name': 'paddlewheel'}, {'id': 9633, 'synset': 'paddock.n.01', 'name': 'paddock'}, {'id': 9634, 'synset': 'page_printer.n.01', 'name': 'page_printer'}, {'id': 9635, 'synset': 'paint.n.01', 'name': 'paint'}, {'id': 9636, 'synset': 'paintball.n.01', 'name': 'paintball'}, {'id': 9637, 'synset': 'paintball_gun.n.01', 'name': 'paintball_gun'}, {'id': 9638, 'synset': 'paintbox.n.01', 'name': 'paintbox'}, {'id': 9639, 'synset': 'paisley.n.01', 'name': 'paisley'}, {'id': 9640, 'synset': 'pajama.n.01', 'name': 'pajama'}, {'id': 9641, 'synset': 'palace.n.04', 'name': 'palace'}, {'id': 9642, 'synset': 'palace.n.01', 'name': 'palace'}, {'id': 9643, 'synset': 'palace.n.03', 'name': 'palace'}, {'id': 9644, 'synset': 'palanquin.n.01', 'name': 'palanquin'}, {'id': 9645, 'synset': 'paleolith.n.01', 'name': 'paleolith'}, {'id': 9646, 'synset': 'palestra.n.01', 'name': 'palestra'}, {'id': 9647, 'synset': 'palette_knife.n.01', 'name': 'palette_knife'}, {'id': 9648, 'synset': 'palisade.n.01', 'name': 'palisade'}, {'id': 9649, 'synset': 'pallet.n.03', 'name': 'pallet'}, {'id': 9650, 'synset': 'pallette.n.01', 'name': 'pallette'}, {'id': 9651, 'synset': 'pallium.n.04', 'name': 'pallium'}, {'id': 9652, 'synset': 'pallium.n.03', 'name': 'pallium'}, {'id': 9653, 'synset': 'pancake_turner.n.01', 'name': 'pancake_turner'}, {'id': 9654, 'synset': 'panchromatic_film.n.01', 'name': 'panchromatic_film'}, {'id': 9655, 'synset': 'panda_car.n.01', 'name': 'panda_car'}, {'id': 9656, 'synset': 'paneling.n.01', 'name': 'paneling'}, {'id': 9657, 'synset': 'panhandle.n.02', 'name': 'panhandle'}, {'id': 9658, 'synset': 'panic_button.n.01', 'name': 'panic_button'}, {'id': 9659, 'synset': 'pannier.n.02', 'name': 'pannier'}, {'id': 9660, 'synset': 'pannier.n.01', 'name': 'pannier'}, {'id': 9661, 'synset': 'pannikin.n.01', 'name': 'pannikin'}, {'id': 9662, 'synset': 'panopticon.n.02', 'name': 'panopticon'}, {'id': 9663, 'synset': 'panopticon.n.01', 'name': 'panopticon'}, {'id': 9664, 'synset': 'panpipe.n.01', 'name': 'panpipe'}, {'id': 9665, 'synset': 'pantaloon.n.03', 'name': 'pantaloon'}, {'id': 9666, 'synset': 'pantechnicon.n.01', 'name': 'pantechnicon'}, {'id': 9667, 'synset': 'pantheon.n.03', 'name': 'pantheon'}, {'id': 9668, 'synset': 'pantheon.n.02', 'name': 'pantheon'}, {'id': 9669, 'synset': 'pantie.n.01', 'name': 'pantie'}, {'id': 9670, 'synset': 'panting.n.02', 'name': 'panting'}, {'id': 9671, 'synset': 'pant_leg.n.01', 'name': 'pant_leg'}, {'id': 9672, 'synset': 'pantograph.n.01', 'name': 'pantograph'}, {'id': 9673, 'synset': 'pantry.n.01', 'name': 'pantry'}, {'id': 9674, 'synset': 'pants_suit.n.01', 'name': 'pants_suit'}, {'id': 9675, 'synset': 'panty_girdle.n.01', 'name': 'panty_girdle'}, {'id': 9676, 'synset': 'panzer.n.01', 'name': 'panzer'}, {'id': 9677, 'synset': 'paper_chain.n.01', 'name': 'paper_chain'}, {'id': 9678, 'synset': 'paper_clip.n.01', 'name': 'paper_clip'}, {'id': 9679, 'synset': 'paper_cutter.n.01', 'name': 'paper_cutter'}, {'id': 9680, 'synset': 'paper_fastener.n.01', 'name': 'paper_fastener'}, {'id': 9681, 'synset': 'paper_feed.n.01', 'name': 'paper_feed'}, {'id': 9682, 'synset': 'paper_mill.n.01', 'name': 'paper_mill'}, {'id': 9683, 'synset': 'parabolic_mirror.n.01', 'name': 'parabolic_mirror'}, {'id': 9684, 'synset': 'parabolic_reflector.n.01', 'name': 'parabolic_reflector'}, {'id': 9685, 'synset': 'parallel_bars.n.01', 'name': 'parallel_bars'}, {'id': 9686, 'synset': 'parallel_circuit.n.01', 'name': 'parallel_circuit'}, {'id': 9687, 'synset': 'parallel_interface.n.01', 'name': 'parallel_interface'}, {'id': 9688, 'synset': 'parang.n.01', 'name': 'parang'}, {'id': 9689, 'synset': 'parapet.n.02', 'name': 'parapet'}, {'id': 9690, 'synset': 'parapet.n.01', 'name': 'parapet'}, {'id': 9691, 'synset': 'parer.n.02', 'name': 'parer'}, {'id': 9692, 'synset': 'parfait_glass.n.01', 'name': 'parfait_glass'}, {'id': 9693, 'synset': 'pargeting.n.02', 'name': 'pargeting'}, {'id': 9694, 'synset': 'pari-mutuel_machine.n.01', 'name': 'pari-mutuel_machine'}, {'id': 9695, 'synset': 'park_bench.n.01', 'name': 'park_bench'}, {'id': 9696, 'synset': 'parlor.n.01', 'name': 'parlor'}, {'id': 9697, 'synset': 'parquet.n.01', 'name': 'parquet'}, {'id': 9698, 'synset': 'parquetry.n.01', 'name': 'parquetry'}, {'id': 9699, 'synset': 'parsonage.n.01', 'name': 'parsonage'}, {'id': 9700, 'synset': 'parsons_table.n.01', 'name': 'Parsons_table'}, {'id': 9701, 'synset': 'partial_denture.n.01', 'name': 'partial_denture'}, {'id': 9702, 'synset': 'particle_detector.n.01', 'name': 'particle_detector'}, {'id': 9703, 'synset': 'partition.n.01', 'name': 'partition'}, {'id': 9704, 'synset': 'parts_bin.n.01', 'name': 'parts_bin'}, {'id': 9705, 'synset': 'party_line.n.02', 'name': 'party_line'}, {'id': 9706, 'synset': 'party_wall.n.01', 'name': 'party_wall'}, {'id': 9707, 'synset': 'parvis.n.01', 'name': 'parvis'}, {'id': 9708, 'synset': 'passenger_train.n.01', 'name': 'passenger_train'}, {'id': 9709, 'synset': 'passenger_van.n.01', 'name': 'passenger_van'}, {'id': 9710, 'synset': 'passe-partout.n.02', 'name': 'passe-partout'}, {'id': 9711, 'synset': 'passive_matrix_display.n.01', 'name': 'passive_matrix_display'}, {'id': 9712, 'synset': 'passkey.n.01', 'name': 'passkey'}, {'id': 9713, 'synset': 'pass-through.n.01', 'name': 'pass-through'}, {'id': 9714, 'synset': 'pastry_cart.n.01', 'name': 'pastry_cart'}, {'id': 9715, 'synset': 'patch.n.03', 'name': 'patch'}, {'id': 9716, 'synset': 'patchcord.n.01', 'name': 'patchcord'}, {'id': 9717, 'synset': 'patchouli.n.02', 'name': 'patchouli'}, {'id': 9718, 'synset': 'patch_pocket.n.01', 'name': 'patch_pocket'}, {'id': 9719, 'synset': 'patchwork.n.02', 'name': 'patchwork'}, {'id': 9720, 'synset': 'patent_log.n.01', 'name': 'patent_log'}, {'id': 9721, 'synset': 'paternoster.n.02', 'name': 'paternoster'}, {'id': 9722, 'synset': 'patina.n.01', 'name': 'patina'}, {'id': 9723, 'synset': 'patio.n.01', 'name': 'patio'}, {'id': 9724, 'synset': 'patisserie.n.01', 'name': 'patisserie'}, {'id': 9725, 'synset': 'patka.n.01', 'name': 'patka'}, {'id': 9726, 'synset': 'patrol_boat.n.01', 'name': 'patrol_boat'}, {'id': 9727, 'synset': 'patty-pan.n.01', 'name': 'patty-pan'}, {'id': 9728, 'synset': 'pave.n.01', 'name': 'pave'}, {'id': 9729, 'synset': 'pavilion.n.01', 'name': 'pavilion'}, {'id': 9730, 'synset': 'pavior.n.01', 'name': 'pavior'}, {'id': 9731, 'synset': 'pavis.n.01', 'name': 'pavis'}, {'id': 9732, 'synset': 'pawn.n.03', 'name': 'pawn'}, {'id': 9733, 'synset': "pawnbroker's_shop.n.01", 'name': "pawnbroker's_shop"}, {'id': 9734, 'synset': 'pay-phone.n.01', 'name': 'pay-phone'}, {'id': 9735, 'synset': 'pc_board.n.01', 'name': 'PC_board'}, {'id': 9736, 'synset': 'peach_orchard.n.01', 'name': 'peach_orchard'}, {'id': 9737, 'synset': 'pea_jacket.n.01', 'name': 'pea_jacket'}, {'id': 9738, 'synset': 'peavey.n.01', 'name': 'peavey'}, {'id': 9739, 'synset': 'pectoral.n.02', 'name': 'pectoral'}, {'id': 9740, 'synset': 'pedal.n.02', 'name': 'pedal'}, {'id': 9741, 'synset': 'pedal_pusher.n.01', 'name': 'pedal_pusher'}, {'id': 9742, 'synset': 'pedestal.n.03', 'name': 'pedestal'}, {'id': 9743, 'synset': 'pedestal_table.n.01', 'name': 'pedestal_table'}, {'id': 9744, 'synset': 'pedestrian_crossing.n.01', 'name': 'pedestrian_crossing'}, {'id': 9745, 'synset': 'pedicab.n.01', 'name': 'pedicab'}, {'id': 9746, 'synset': 'pediment.n.01', 'name': 'pediment'}, {'id': 9747, 'synset': 'pedometer.n.01', 'name': 'pedometer'}, {'id': 9748, 'synset': 'peep_sight.n.01', 'name': 'peep_sight'}, {'id': 9749, 'synset': 'peg.n.01', 'name': 'peg'}, {'id': 9750, 'synset': 'peg.n.06', 'name': 'peg'}, {'id': 9751, 'synset': 'peg.n.05', 'name': 'peg'}, {'id': 9752, 'synset': 'pelham.n.01', 'name': 'Pelham'}, {'id': 9753, 'synset': 'pelican_crossing.n.01', 'name': 'pelican_crossing'}, {'id': 9754, 'synset': 'pelisse.n.01', 'name': 'pelisse'}, {'id': 9755, 'synset': 'pelvimeter.n.01', 'name': 'pelvimeter'}, {'id': 9756, 'synset': 'penal_colony.n.01', 'name': 'penal_colony'}, {'id': 9757, 'synset': 'penal_institution.n.01', 'name': 'penal_institution'}, {'id': 9758, 'synset': 'penalty_box.n.01', 'name': 'penalty_box'}, {'id': 9759, 'synset': 'pen-and-ink.n.01', 'name': 'pen-and-ink'}, {'id': 9760, 'synset': 'pencil.n.04', 'name': 'pencil'}, {'id': 9761, 'synset': 'pendant_earring.n.01', 'name': 'pendant_earring'}, {'id': 9762, 'synset': 'pendulum_clock.n.01', 'name': 'pendulum_clock'}, {'id': 9763, 'synset': 'pendulum_watch.n.01', 'name': 'pendulum_watch'}, {'id': 9764, 'synset': 'penetration_bomb.n.01', 'name': 'penetration_bomb'}, {'id': 9765, 'synset': 'penile_implant.n.01', 'name': 'penile_implant'}, {'id': 9766, 'synset': 'penitentiary.n.01', 'name': 'penitentiary'}, {'id': 9767, 'synset': 'penknife.n.01', 'name': 'penknife'}, {'id': 9768, 'synset': 'penlight.n.01', 'name': 'penlight'}, {'id': 9769, 'synset': 'pennant.n.03', 'name': 'pennant'}, {'id': 9770, 'synset': 'pennywhistle.n.01', 'name': 'pennywhistle'}, {'id': 9771, 'synset': 'penthouse.n.01', 'name': 'penthouse'}, {'id': 9772, 'synset': 'pentode.n.01', 'name': 'pentode'}, {'id': 9773, 'synset': 'peplos.n.01', 'name': 'peplos'}, {'id': 9774, 'synset': 'peplum.n.01', 'name': 'peplum'}, {'id': 9775, 'synset': 'pepper_shaker.n.01', 'name': 'pepper_shaker'}, {'id': 9776, 'synset': 'pepper_spray.n.01', 'name': 'pepper_spray'}, {'id': 9777, 'synset': 'percale.n.01', 'name': 'percale'}, {'id': 9778, 'synset': 'percolator.n.01', 'name': 'percolator'}, {'id': 9779, 'synset': 'percussion_cap.n.01', 'name': 'percussion_cap'}, {'id': 9780, 'synset': 'percussion_instrument.n.01', 'name': 'percussion_instrument'}, {'id': 9781, 'synset': 'perforation.n.01', 'name': 'perforation'}, {'id': 9782, 'synset': 'perfumery.n.03', 'name': 'perfumery'}, {'id': 9783, 'synset': 'perfumery.n.02', 'name': 'perfumery'}, {'id': 9784, 'synset': 'perfumery.n.01', 'name': 'perfumery'}, {'id': 9785, 'synset': 'peripheral.n.01', 'name': 'peripheral'}, {'id': 9786, 'synset': 'periscope.n.01', 'name': 'periscope'}, {'id': 9787, 'synset': 'peristyle.n.01', 'name': 'peristyle'}, {'id': 9788, 'synset': 'periwig.n.01', 'name': 'periwig'}, {'id': 9789, 'synset': 'permanent_press.n.01', 'name': 'permanent_press'}, {'id': 9790, 'synset': 'perpetual_motion_machine.n.01', 'name': 'perpetual_motion_machine'}, {'id': 9791, 'synset': 'personal_computer.n.01', 'name': 'personal_computer'}, {'id': 9792, 'synset': 'personal_digital_assistant.n.01', 'name': 'personal_digital_assistant'}, {'id': 9793, 'synset': 'personnel_carrier.n.01', 'name': 'personnel_carrier'}, {'id': 9794, 'synset': 'pestle.n.03', 'name': 'pestle'}, {'id': 9795, 'synset': 'pestle.n.02', 'name': 'pestle'}, {'id': 9796, 'synset': 'petcock.n.01', 'name': 'petcock'}, {'id': 9797, 'synset': 'petri_dish.n.01', 'name': 'Petri_dish'}, {'id': 9798, 'synset': 'petrolatum_gauze.n.01', 'name': 'petrolatum_gauze'}, {'id': 9799, 'synset': 'pet_shop.n.01', 'name': 'pet_shop'}, {'id': 9800, 'synset': 'petticoat.n.01', 'name': 'petticoat'}, {'id': 9801, 'synset': 'phial.n.01', 'name': 'phial'}, {'id': 9802, 'synset': 'phillips_screw.n.01', 'name': 'Phillips_screw'}, {'id': 9803, 'synset': 'phillips_screwdriver.n.01', 'name': 'Phillips_screwdriver'}, {'id': 9804, 'synset': 'phonograph_needle.n.01', 'name': 'phonograph_needle'}, {'id': 9805, 'synset': 'photocathode.n.01', 'name': 'photocathode'}, {'id': 9806, 'synset': 'photocoagulator.n.01', 'name': 'photocoagulator'}, {'id': 9807, 'synset': 'photocopier.n.01', 'name': 'photocopier'}, {'id': 9808, 'synset': 'photographic_equipment.n.01', 'name': 'photographic_equipment'}, {'id': 9809, 'synset': 'photographic_paper.n.01', 'name': 'photographic_paper'}, {'id': 9810, 'synset': 'photometer.n.01', 'name': 'photometer'}, {'id': 9811, 'synset': 'photomicrograph.n.01', 'name': 'photomicrograph'}, {'id': 9812, 'synset': 'photostat.n.02', 'name': 'Photostat'}, {'id': 9813, 'synset': 'photostat.n.01', 'name': 'photostat'}, {'id': 9814, 'synset': 'physical_pendulum.n.01', 'name': 'physical_pendulum'}, {'id': 9815, 'synset': 'piano_action.n.01', 'name': 'piano_action'}, {'id': 9816, 'synset': 'piano_keyboard.n.01', 'name': 'piano_keyboard'}, {'id': 9817, 'synset': 'piano_wire.n.01', 'name': 'piano_wire'}, {'id': 9818, 'synset': 'piccolo.n.01', 'name': 'piccolo'}, {'id': 9819, 'synset': 'pick.n.07', 'name': 'pick'}, {'id': 9820, 'synset': 'pick.n.06', 'name': 'pick'}, {'id': 9821, 'synset': 'pick.n.05', 'name': 'pick'}, {'id': 9822, 'synset': 'pickelhaube.n.01', 'name': 'pickelhaube'}, {'id': 9823, 'synset': 'picket_boat.n.01', 'name': 'picket_boat'}, {'id': 9824, 'synset': 'picket_fence.n.01', 'name': 'picket_fence'}, {'id': 9825, 'synset': 'picket_ship.n.01', 'name': 'picket_ship'}, {'id': 9826, 'synset': 'pickle_barrel.n.01', 'name': 'pickle_barrel'}, {'id': 9827, 'synset': 'picture_frame.n.01', 'name': 'picture_frame'}, {'id': 9828, 'synset': 'picture_hat.n.01', 'name': 'picture_hat'}, {'id': 9829, 'synset': 'picture_rail.n.01', 'name': 'picture_rail'}, {'id': 9830, 'synset': 'picture_window.n.01', 'name': 'picture_window'}, {'id': 9831, 'synset': 'piece_of_cloth.n.01', 'name': 'piece_of_cloth'}, {'id': 9832, 'synset': 'pied-a-terre.n.01', 'name': 'pied-a-terre'}, {'id': 9833, 'synset': 'pier.n.03', 'name': 'pier'}, {'id': 9834, 'synset': 'pier.n.02', 'name': 'pier'}, {'id': 9835, 'synset': 'pier_arch.n.01', 'name': 'pier_arch'}, {'id': 9836, 'synset': 'pier_glass.n.01', 'name': 'pier_glass'}, {'id': 9837, 'synset': 'pier_table.n.01', 'name': 'pier_table'}, {'id': 9838, 'synset': 'pieta.n.01', 'name': 'pieta'}, {'id': 9839, 'synset': 'piezometer.n.01', 'name': 'piezometer'}, {'id': 9840, 'synset': 'pig_bed.n.01', 'name': 'pig_bed'}, {'id': 9841, 'synset': 'piggery.n.01', 'name': 'piggery'}, {'id': 9842, 'synset': 'pilaster.n.01', 'name': 'pilaster'}, {'id': 9843, 'synset': 'pile.n.06', 'name': 'pile'}, {'id': 9844, 'synset': 'pile_driver.n.01', 'name': 'pile_driver'}, {'id': 9845, 'synset': 'pill_bottle.n.01', 'name': 'pill_bottle'}, {'id': 9846, 'synset': 'pillbox.n.01', 'name': 'pillbox'}, {'id': 9847, 'synset': 'pillion.n.01', 'name': 'pillion'}, {'id': 9848, 'synset': 'pillory.n.01', 'name': 'pillory'}, {'id': 9849, 'synset': 'pillow_block.n.01', 'name': 'pillow_block'}, {'id': 9850, 'synset': 'pillow_lace.n.01', 'name': 'pillow_lace'}, {'id': 9851, 'synset': 'pillow_sham.n.01', 'name': 'pillow_sham'}, {'id': 9852, 'synset': 'pilot_bit.n.01', 'name': 'pilot_bit'}, {'id': 9853, 'synset': 'pilot_boat.n.01', 'name': 'pilot_boat'}, {'id': 9854, 'synset': 'pilot_burner.n.01', 'name': 'pilot_burner'}, {'id': 9855, 'synset': 'pilot_cloth.n.01', 'name': 'pilot_cloth'}, {'id': 9856, 'synset': 'pilot_engine.n.01', 'name': 'pilot_engine'}, {'id': 9857, 'synset': 'pilothouse.n.01', 'name': 'pilothouse'}, {'id': 9858, 'synset': 'pilot_light.n.02', 'name': 'pilot_light'}, {'id': 9859, 'synset': 'pin.n.08', 'name': 'pin'}, {'id': 9860, 'synset': 'pin.n.07', 'name': 'pin'}, {'id': 9861, 'synset': 'pinata.n.01', 'name': 'pinata'}, {'id': 9862, 'synset': 'pinball_machine.n.01', 'name': 'pinball_machine'}, {'id': 9863, 'synset': 'pince-nez.n.01', 'name': 'pince-nez'}, {'id': 9864, 'synset': 'pincer.n.01', 'name': 'pincer'}, {'id': 9865, 'synset': 'pinch_bar.n.01', 'name': 'pinch_bar'}, {'id': 9866, 'synset': 'pincurl_clip.n.01', 'name': 'pincurl_clip'}, {'id': 9867, 'synset': 'pinfold.n.01', 'name': 'pinfold'}, {'id': 9868, 'synset': 'pinhead.n.02', 'name': 'pinhead'}, {'id': 9869, 'synset': 'pinion.n.01', 'name': 'pinion'}, {'id': 9870, 'synset': 'pinnacle.n.01', 'name': 'pinnacle'}, {'id': 9871, 'synset': 'pinprick.n.02', 'name': 'pinprick'}, {'id': 9872, 'synset': 'pinstripe.n.03', 'name': 'pinstripe'}, {'id': 9873, 'synset': 'pinstripe.n.02', 'name': 'pinstripe'}, {'id': 9874, 'synset': 'pinstripe.n.01', 'name': 'pinstripe'}, {'id': 9875, 'synset': 'pintle.n.01', 'name': 'pintle'}, {'id': 9876, 'synset': 'pinwheel.n.02', 'name': 'pinwheel'}, {'id': 9877, 'synset': 'tabor_pipe.n.01', 'name': 'tabor_pipe'}, {'id': 9878, 'synset': 'pipe.n.04', 'name': 'pipe'}, {'id': 9879, 'synset': 'pipe_bomb.n.01', 'name': 'pipe_bomb'}, {'id': 9880, 'synset': 'pipe_cleaner.n.01', 'name': 'pipe_cleaner'}, {'id': 9881, 'synset': 'pipe_cutter.n.01', 'name': 'pipe_cutter'}, {'id': 9882, 'synset': 'pipefitting.n.01', 'name': 'pipefitting'}, {'id': 9883, 'synset': 'pipet.n.01', 'name': 'pipet'}, {'id': 9884, 'synset': 'pipe_vise.n.01', 'name': 'pipe_vise'}, {'id': 9885, 'synset': 'pipe_wrench.n.01', 'name': 'pipe_wrench'}, {'id': 9886, 'synset': 'pique.n.01', 'name': 'pique'}, {'id': 9887, 'synset': 'pirate.n.03', 'name': 'pirate'}, {'id': 9888, 'synset': 'piste.n.02', 'name': 'piste'}, {'id': 9889, 'synset': 'pistol_grip.n.01', 'name': 'pistol_grip'}, {'id': 9890, 'synset': 'piston.n.02', 'name': 'piston'}, {'id': 9891, 'synset': 'piston_ring.n.01', 'name': 'piston_ring'}, {'id': 9892, 'synset': 'piston_rod.n.01', 'name': 'piston_rod'}, {'id': 9893, 'synset': 'pit.n.07', 'name': 'pit'}, {'id': 9894, 'synset': 'pitching_wedge.n.01', 'name': 'pitching_wedge'}, {'id': 9895, 'synset': 'pitch_pipe.n.01', 'name': 'pitch_pipe'}, {'id': 9896, 'synset': 'pith_hat.n.01', 'name': 'pith_hat'}, {'id': 9897, 'synset': 'piton.n.01', 'name': 'piton'}, {'id': 9898, 'synset': 'pitot-static_tube.n.01', 'name': 'Pitot-static_tube'}, {'id': 9899, 'synset': 'pitot_tube.n.01', 'name': 'Pitot_tube'}, {'id': 9900, 'synset': 'pitsaw.n.01', 'name': 'pitsaw'}, {'id': 9901, 'synset': 'pivot.n.02', 'name': 'pivot'}, {'id': 9902, 'synset': 'pivoting_window.n.01', 'name': 'pivoting_window'}, {'id': 9903, 'synset': 'pizzeria.n.01', 'name': 'pizzeria'}, {'id': 9904, 'synset': 'place_of_business.n.01', 'name': 'place_of_business'}, {'id': 9905, 'synset': 'place_of_worship.n.01', 'name': 'place_of_worship'}, {'id': 9906, 'synset': 'placket.n.01', 'name': 'placket'}, {'id': 9907, 'synset': 'planchet.n.01', 'name': 'planchet'}, {'id': 9908, 'synset': 'plane.n.05', 'name': 'plane'}, {'id': 9909, 'synset': 'plane.n.04', 'name': 'plane'}, {'id': 9910, 'synset': 'plane_seat.n.01', 'name': 'plane_seat'}, {'id': 9911, 'synset': 'planetarium.n.03', 'name': 'planetarium'}, {'id': 9912, 'synset': 'planetarium.n.02', 'name': 'planetarium'}, {'id': 9913, 'synset': 'planetarium.n.01', 'name': 'planetarium'}, {'id': 9914, 'synset': 'planetary_gear.n.01', 'name': 'planetary_gear'}, {'id': 9915, 'synset': 'plank-bed.n.01', 'name': 'plank-bed'}, {'id': 9916, 'synset': 'planking.n.02', 'name': 'planking'}, {'id': 9917, 'synset': 'planner.n.02', 'name': 'planner'}, {'id': 9918, 'synset': 'plant.n.01', 'name': 'plant'}, {'id': 9919, 'synset': 'planter.n.03', 'name': 'planter'}, {'id': 9920, 'synset': 'plaster.n.05', 'name': 'plaster'}, {'id': 9921, 'synset': 'plasterboard.n.01', 'name': 'plasterboard'}, {'id': 9922, 'synset': 'plastering_trowel.n.01', 'name': 'plastering_trowel'}, {'id': 9923, 'synset': 'plastic_bag.n.01', 'name': 'plastic_bag'}, {'id': 9924, 'synset': 'plastic_bomb.n.01', 'name': 'plastic_bomb'}, {'id': 9925, 'synset': 'plastic_laminate.n.01', 'name': 'plastic_laminate'}, {'id': 9926, 'synset': 'plastic_wrap.n.01', 'name': 'plastic_wrap'}, {'id': 9927, 'synset': 'plastron.n.03', 'name': 'plastron'}, {'id': 9928, 'synset': 'plastron.n.02', 'name': 'plastron'}, {'id': 9929, 'synset': 'plastron.n.01', 'name': 'plastron'}, {'id': 9930, 'synset': 'plate.n.14', 'name': 'plate'}, {'id': 9931, 'synset': 'plate.n.13', 'name': 'plate'}, {'id': 9932, 'synset': 'plate.n.12', 'name': 'plate'}, {'id': 9933, 'synset': 'platen.n.03', 'name': 'platen'}, {'id': 9934, 'synset': 'platen.n.01', 'name': 'platen'}, {'id': 9935, 'synset': 'plate_rack.n.01', 'name': 'plate_rack'}, {'id': 9936, 'synset': 'plate_rail.n.01', 'name': 'plate_rail'}, {'id': 9937, 'synset': 'platform.n.01', 'name': 'platform'}, {'id': 9938, 'synset': 'platform.n.04', 'name': 'platform'}, {'id': 9939, 'synset': 'platform.n.03', 'name': 'platform'}, {'id': 9940, 'synset': 'platform_bed.n.01', 'name': 'platform_bed'}, {'id': 9941, 'synset': 'platform_rocker.n.01', 'name': 'platform_rocker'}, {'id': 9942, 'synset': 'plating.n.01', 'name': 'plating'}, {'id': 9943, 'synset': 'playback.n.02', 'name': 'playback'}, {'id': 9944, 'synset': 'playbox.n.01', 'name': 'playbox'}, {'id': 9945, 'synset': 'playground.n.02', 'name': 'playground'}, {'id': 9946, 'synset': 'playsuit.n.01', 'name': 'playsuit'}, {'id': 9947, 'synset': 'plaza.n.02', 'name': 'plaza'}, {'id': 9948, 'synset': 'pleat.n.01', 'name': 'pleat'}, {'id': 9949, 'synset': 'plenum.n.02', 'name': 'plenum'}, {'id': 9950, 'synset': 'plethysmograph.n.01', 'name': 'plethysmograph'}, {'id': 9951, 'synset': 'pleximeter.n.01', 'name': 'pleximeter'}, {'id': 9952, 'synset': 'plexor.n.01', 'name': 'plexor'}, {'id': 9953, 'synset': 'plimsoll.n.02', 'name': 'plimsoll'}, {'id': 9954, 'synset': 'plotter.n.04', 'name': 'plotter'}, {'id': 9955, 'synset': 'plug.n.01', 'name': 'plug'}, {'id': 9956, 'synset': 'plug.n.05', 'name': 'plug'}, {'id': 9957, 'synset': 'plug_fuse.n.01', 'name': 'plug_fuse'}, {'id': 9958, 'synset': 'plughole.n.01', 'name': 'plughole'}, {'id': 9959, 'synset': 'plumb_bob.n.01', 'name': 'plumb_bob'}, {'id': 9960, 'synset': 'plumb_level.n.01', 'name': 'plumb_level'}, {'id': 9961, 'synset': 'plunger.n.03', 'name': 'plunger'}, {'id': 9962, 'synset': 'plus_fours.n.01', 'name': 'plus_fours'}, {'id': 9963, 'synset': 'plush.n.01', 'name': 'plush'}, {'id': 9964, 'synset': 'plywood.n.01', 'name': 'plywood'}, {'id': 9965, 'synset': 'pneumatic_drill.n.01', 'name': 'pneumatic_drill'}, {'id': 9966, 'synset': 'p-n_junction.n.01', 'name': 'p-n_junction'}, {'id': 9967, 'synset': 'p-n-p_transistor.n.01', 'name': 'p-n-p_transistor'}, {'id': 9968, 'synset': 'poacher.n.02', 'name': 'poacher'}, {'id': 9969, 'synset': 'pocket.n.01', 'name': 'pocket'}, {'id': 9970, 'synset': 'pocket_battleship.n.01', 'name': 'pocket_battleship'}, {'id': 9971, 'synset': 'pocketcomb.n.01', 'name': 'pocketcomb'}, {'id': 9972, 'synset': 'pocket_flap.n.01', 'name': 'pocket_flap'}, {'id': 9973, 'synset': 'pocket-handkerchief.n.01', 'name': 'pocket-handkerchief'}, {'id': 9974, 'synset': 'pod.n.04', 'name': 'pod'}, {'id': 9975, 'synset': 'pogo_stick.n.01', 'name': 'pogo_stick'}, {'id': 9976, 'synset': 'point-and-shoot_camera.n.01', 'name': 'point-and-shoot_camera'}, {'id': 9977, 'synset': 'pointed_arch.n.01', 'name': 'pointed_arch'}, {'id': 9978, 'synset': 'pointing_trowel.n.01', 'name': 'pointing_trowel'}, {'id': 9979, 'synset': 'point_lace.n.01', 'name': 'point_lace'}, {'id': 9980, 'synset': 'polarimeter.n.01', 'name': 'polarimeter'}, {'id': 9981, 'synset': 'polaroid.n.01', 'name': 'Polaroid'}, {'id': 9982, 'synset': 'polaroid_camera.n.01', 'name': 'Polaroid_camera'}, {'id': 9983, 'synset': 'pole.n.09', 'name': 'pole'}, {'id': 9984, 'synset': 'poleax.n.02', 'name': 'poleax'}, {'id': 9985, 'synset': 'poleax.n.01', 'name': 'poleax'}, {'id': 9986, 'synset': 'police_boat.n.01', 'name': 'police_boat'}, {'id': 9987, 'synset': 'police_van.n.01', 'name': 'police_van'}, {'id': 9988, 'synset': 'polling_booth.n.01', 'name': 'polling_booth'}, {'id': 9989, 'synset': 'polo_ball.n.01', 'name': 'polo_ball'}, {'id': 9990, 'synset': 'polo_mallet.n.01', 'name': 'polo_mallet'}, {'id': 9991, 'synset': 'polonaise.n.01', 'name': 'polonaise'}, {'id': 9992, 'synset': 'polyester.n.03', 'name': 'polyester'}, {'id': 9993, 'synset': 'polygraph.n.01', 'name': 'polygraph'}, {'id': 9994, 'synset': 'pomade.n.01', 'name': 'pomade'}, {'id': 9995, 'synset': 'pommel_horse.n.01', 'name': 'pommel_horse'}, {'id': 9996, 'synset': 'pongee.n.01', 'name': 'pongee'}, {'id': 9997, 'synset': 'poniard.n.01', 'name': 'poniard'}, {'id': 9998, 'synset': 'pontifical.n.01', 'name': 'pontifical'}, {'id': 9999, 'synset': 'pontoon.n.01', 'name': 'pontoon'}, {'id': 10000, 'synset': 'pontoon_bridge.n.01', 'name': 'pontoon_bridge'}, {'id': 10001, 'synset': 'pony_cart.n.01', 'name': 'pony_cart'}, {'id': 10002, 'synset': 'pool_ball.n.01', 'name': 'pool_ball'}, {'id': 10003, 'synset': 'poolroom.n.01', 'name': 'poolroom'}, {'id': 10004, 'synset': 'poop_deck.n.01', 'name': 'poop_deck'}, {'id': 10005, 'synset': 'poor_box.n.01', 'name': 'poor_box'}, {'id': 10006, 'synset': 'poorhouse.n.01', 'name': 'poorhouse'}, {'id': 10007, 'synset': 'pop_bottle.n.01', 'name': 'pop_bottle'}, {'id': 10008, 'synset': 'popgun.n.01', 'name': 'popgun'}, {'id': 10009, 'synset': 'poplin.n.01', 'name': 'poplin'}, {'id': 10010, 'synset': 'popper.n.03', 'name': 'popper'}, {'id': 10011, 'synset': 'poppet.n.01', 'name': 'poppet'}, {'id': 10012, 'synset': 'pop_tent.n.01', 'name': 'pop_tent'}, {'id': 10013, 'synset': 'porcelain.n.01', 'name': 'porcelain'}, {'id': 10014, 'synset': 'porch.n.01', 'name': 'porch'}, {'id': 10015, 'synset': 'porkpie.n.01', 'name': 'porkpie'}, {'id': 10016, 'synset': 'porringer.n.01', 'name': 'porringer'}, {'id': 10017, 'synset': 'portable.n.01', 'name': 'portable'}, {'id': 10018, 'synset': 'portable_computer.n.01', 'name': 'portable_computer'}, {'id': 10019, 'synset': 'portable_circular_saw.n.01', 'name': 'portable_circular_saw'}, {'id': 10020, 'synset': 'portcullis.n.01', 'name': 'portcullis'}, {'id': 10021, 'synset': 'porte-cochere.n.02', 'name': 'porte-cochere'}, {'id': 10022, 'synset': 'porte-cochere.n.01', 'name': 'porte-cochere'}, {'id': 10023, 'synset': 'portfolio.n.01', 'name': 'portfolio'}, {'id': 10024, 'synset': 'porthole.n.01', 'name': 'porthole'}, {'id': 10025, 'synset': 'portico.n.01', 'name': 'portico'}, {'id': 10026, 'synset': 'portiere.n.01', 'name': 'portiere'}, {'id': 10027, 'synset': 'portmanteau.n.02', 'name': 'portmanteau'}, {'id': 10028, 'synset': 'portrait_camera.n.01', 'name': 'portrait_camera'}, {'id': 10029, 'synset': 'portrait_lens.n.01', 'name': 'portrait_lens'}, {'id': 10030, 'synset': 'positive_pole.n.02', 'name': 'positive_pole'}, {'id': 10031, 'synset': 'positive_pole.n.01', 'name': 'positive_pole'}, {'id': 10032, 'synset': 'positron_emission_tomography_scanner.n.01', 'name': 'positron_emission_tomography_scanner'}, {'id': 10033, 'synset': 'post.n.04', 'name': 'post'}, {'id': 10034, 'synset': 'postage_meter.n.01', 'name': 'postage_meter'}, {'id': 10035, 'synset': 'post_and_lintel.n.01', 'name': 'post_and_lintel'}, {'id': 10036, 'synset': 'post_chaise.n.01', 'name': 'post_chaise'}, {'id': 10037, 'synset': 'postern.n.01', 'name': 'postern'}, {'id': 10038, 'synset': 'post_exchange.n.01', 'name': 'post_exchange'}, {'id': 10039, 'synset': 'posthole_digger.n.01', 'name': 'posthole_digger'}, {'id': 10040, 'synset': 'post_horn.n.01', 'name': 'post_horn'}, {'id': 10041, 'synset': 'posthouse.n.01', 'name': 'posthouse'}, {'id': 10042, 'synset': 'potbelly.n.02', 'name': 'potbelly'}, {'id': 10043, 'synset': 'potemkin_village.n.01', 'name': 'Potemkin_village'}, {'id': 10044, 'synset': 'potential_divider.n.01', 'name': 'potential_divider'}, {'id': 10045, 'synset': 'potentiometer.n.02', 'name': 'potentiometer'}, {'id': 10046, 'synset': 'potentiometer.n.01', 'name': 'potentiometer'}, {'id': 10047, 'synset': 'potpourri.n.03', 'name': 'potpourri'}, {'id': 10048, 'synset': 'potsherd.n.01', 'name': 'potsherd'}, {'id': 10049, 'synset': "potter's_wheel.n.01", 'name': "potter's_wheel"}, {'id': 10050, 'synset': 'pottle.n.01', 'name': 'pottle'}, {'id': 10051, 'synset': 'potty_seat.n.01', 'name': 'potty_seat'}, {'id': 10052, 'synset': 'poultice.n.01', 'name': 'poultice'}, {'id': 10053, 'synset': 'pound.n.13', 'name': 'pound'}, {'id': 10054, 'synset': 'pound_net.n.01', 'name': 'pound_net'}, {'id': 10055, 'synset': 'powder.n.03', 'name': 'powder'}, {'id': 10056, 'synset': 'powder_and_shot.n.01', 'name': 'powder_and_shot'}, {'id': 10057, 'synset': 'powdered_mustard.n.01', 'name': 'powdered_mustard'}, {'id': 10058, 'synset': 'powder_horn.n.01', 'name': 'powder_horn'}, {'id': 10059, 'synset': 'powder_keg.n.02', 'name': 'powder_keg'}, {'id': 10060, 'synset': 'power_brake.n.01', 'name': 'power_brake'}, {'id': 10061, 'synset': 'power_cord.n.01', 'name': 'power_cord'}, {'id': 10062, 'synset': 'power_drill.n.01', 'name': 'power_drill'}, {'id': 10063, 'synset': 'power_line.n.01', 'name': 'power_line'}, {'id': 10064, 'synset': 'power_loom.n.01', 'name': 'power_loom'}, {'id': 10065, 'synset': 'power_mower.n.01', 'name': 'power_mower'}, {'id': 10066, 'synset': 'power_pack.n.01', 'name': 'power_pack'}, {'id': 10067, 'synset': 'power_saw.n.01', 'name': 'power_saw'}, {'id': 10068, 'synset': 'power_steering.n.01', 'name': 'power_steering'}, {'id': 10069, 'synset': 'power_takeoff.n.01', 'name': 'power_takeoff'}, {'id': 10070, 'synset': 'power_tool.n.01', 'name': 'power_tool'}, {'id': 10071, 'synset': 'praetorium.n.01', 'name': 'praetorium'}, {'id': 10072, 'synset': 'prayer_rug.n.01', 'name': 'prayer_rug'}, {'id': 10073, 'synset': 'prayer_shawl.n.01', 'name': 'prayer_shawl'}, {'id': 10074, 'synset': 'precipitator.n.01', 'name': 'precipitator'}, {'id': 10075, 'synset': 'prefab.n.01', 'name': 'prefab'}, {'id': 10076, 'synset': 'presbytery.n.01', 'name': 'presbytery'}, {'id': 10077, 'synset': 'presence_chamber.n.01', 'name': 'presence_chamber'}, {'id': 10078, 'synset': 'press.n.07', 'name': 'press'}, {'id': 10079, 'synset': 'press.n.03', 'name': 'press'}, {'id': 10080, 'synset': 'press.n.06', 'name': 'press'}, {'id': 10081, 'synset': 'press_box.n.01', 'name': 'press_box'}, {'id': 10082, 'synset': 'press_gallery.n.01', 'name': 'press_gallery'}, {'id': 10083, 'synset': 'press_of_sail.n.01', 'name': 'press_of_sail'}, {'id': 10084, 'synset': 'pressure_cabin.n.01', 'name': 'pressure_cabin'}, {'id': 10085, 'synset': 'pressure_cooker.n.01', 'name': 'pressure_cooker'}, {'id': 10086, 'synset': 'pressure_dome.n.01', 'name': 'pressure_dome'}, {'id': 10087, 'synset': 'pressure_gauge.n.01', 'name': 'pressure_gauge'}, {'id': 10088, 'synset': 'pressurized_water_reactor.n.01', 'name': 'pressurized_water_reactor'}, {'id': 10089, 'synset': 'pressure_suit.n.01', 'name': 'pressure_suit'}, {'id': 10090, 'synset': 'pricket.n.01', 'name': 'pricket'}, {'id': 10091, 'synset': 'prie-dieu.n.01', 'name': 'prie-dieu'}, {'id': 10092, 'synset': 'primary_coil.n.01', 'name': 'primary_coil'}, {'id': 10093, 'synset': 'primus_stove.n.01', 'name': 'Primus_stove'}, {'id': 10094, 'synset': 'prince_albert.n.02', 'name': 'Prince_Albert'}, {'id': 10095, 'synset': 'print.n.06', 'name': 'print'}, {'id': 10096, 'synset': 'print_buffer.n.01', 'name': 'print_buffer'}, {'id': 10097, 'synset': 'printed_circuit.n.01', 'name': 'printed_circuit'}, {'id': 10098, 'synset': 'printer.n.02', 'name': 'printer'}, {'id': 10099, 'synset': 'printer_cable.n.01', 'name': 'printer_cable'}, {'id': 10100, 'synset': 'priory.n.01', 'name': 'priory'}, {'id': 10101, 'synset': 'prison.n.01', 'name': 'prison'}, {'id': 10102, 'synset': 'prison_camp.n.01', 'name': 'prison_camp'}, {'id': 10103, 'synset': 'privateer.n.02', 'name': 'privateer'}, {'id': 10104, 'synset': 'private_line.n.01', 'name': 'private_line'}, {'id': 10105, 'synset': 'privet_hedge.n.01', 'name': 'privet_hedge'}, {'id': 10106, 'synset': 'probe.n.02', 'name': 'probe'}, {'id': 10107, 'synset': 'proctoscope.n.01', 'name': 'proctoscope'}, {'id': 10108, 'synset': 'prod.n.02', 'name': 'prod'}, {'id': 10109, 'synset': 'production_line.n.01', 'name': 'production_line'}, {'id': 10110, 'synset': 'projector.n.01', 'name': 'projector'}, {'id': 10111, 'synset': 'prolonge.n.01', 'name': 'prolonge'}, {'id': 10112, 'synset': 'prolonge_knot.n.01', 'name': 'prolonge_knot'}, {'id': 10113, 'synset': 'prompter.n.02', 'name': 'prompter'}, {'id': 10114, 'synset': 'prong.n.01', 'name': 'prong'}, {'id': 10115, 'synset': 'propeller_plane.n.01', 'name': 'propeller_plane'}, {'id': 10116, 'synset': 'propjet.n.01', 'name': 'propjet'}, {'id': 10117, 'synset': 'proportional_counter_tube.n.01', 'name': 'proportional_counter_tube'}, {'id': 10118, 'synset': 'propulsion_system.n.01', 'name': 'propulsion_system'}, {'id': 10119, 'synset': 'proscenium.n.02', 'name': 'proscenium'}, {'id': 10120, 'synset': 'proscenium_arch.n.01', 'name': 'proscenium_arch'}, {'id': 10121, 'synset': 'prosthesis.n.01', 'name': 'prosthesis'}, {'id': 10122, 'synset': 'protective_covering.n.01', 'name': 'protective_covering'}, {'id': 10123, 'synset': 'protective_garment.n.01', 'name': 'protective_garment'}, {'id': 10124, 'synset': 'proton_accelerator.n.01', 'name': 'proton_accelerator'}, {'id': 10125, 'synset': 'protractor.n.01', 'name': 'protractor'}, {'id': 10126, 'synset': 'pruner.n.02', 'name': 'pruner'}, {'id': 10127, 'synset': 'pruning_knife.n.01', 'name': 'pruning_knife'}, {'id': 10128, 'synset': 'pruning_saw.n.01', 'name': 'pruning_saw'}, {'id': 10129, 'synset': 'pruning_shears.n.01', 'name': 'pruning_shears'}, {'id': 10130, 'synset': 'psaltery.n.01', 'name': 'psaltery'}, {'id': 10131, 'synset': 'psychrometer.n.01', 'name': 'psychrometer'}, {'id': 10132, 'synset': 'pt_boat.n.01', 'name': 'PT_boat'}, {'id': 10133, 'synset': 'public_address_system.n.01', 'name': 'public_address_system'}, {'id': 10134, 'synset': 'public_house.n.01', 'name': 'public_house'}, {'id': 10135, 'synset': 'public_toilet.n.01', 'name': 'public_toilet'}, {'id': 10136, 'synset': 'public_transport.n.01', 'name': 'public_transport'}, {'id': 10137, 'synset': 'public_works.n.01', 'name': 'public_works'}, {'id': 10138, 'synset': 'puck.n.02', 'name': 'puck'}, {'id': 10139, 'synset': 'pull.n.04', 'name': 'pull'}, {'id': 10140, 'synset': 'pullback.n.01', 'name': 'pullback'}, {'id': 10141, 'synset': 'pull_chain.n.01', 'name': 'pull_chain'}, {'id': 10142, 'synset': 'pulley.n.01', 'name': 'pulley'}, {'id': 10143, 'synset': 'pull-off.n.01', 'name': 'pull-off'}, {'id': 10144, 'synset': 'pullman.n.01', 'name': 'Pullman'}, {'id': 10145, 'synset': 'pullover.n.01', 'name': 'pullover'}, {'id': 10146, 'synset': 'pull-through.n.01', 'name': 'pull-through'}, {'id': 10147, 'synset': 'pulse_counter.n.01', 'name': 'pulse_counter'}, {'id': 10148, 'synset': 'pulse_generator.n.01', 'name': 'pulse_generator'}, {'id': 10149, 'synset': 'pulse_timing_circuit.n.01', 'name': 'pulse_timing_circuit'}, {'id': 10150, 'synset': 'pump.n.01', 'name': 'pump'}, {'id': 10151, 'synset': 'pump.n.03', 'name': 'pump'}, {'id': 10152, 'synset': 'pump_action.n.01', 'name': 'pump_action'}, {'id': 10153, 'synset': 'pump_house.n.01', 'name': 'pump_house'}, {'id': 10154, 'synset': 'pump_room.n.01', 'name': 'pump_room'}, {'id': 10155, 'synset': 'pump-type_pliers.n.01', 'name': 'pump-type_pliers'}, {'id': 10156, 'synset': 'pump_well.n.01', 'name': 'pump_well'}, {'id': 10157, 'synset': 'punchboard.n.01', 'name': 'punchboard'}, {'id': 10158, 'synset': 'punch_bowl.n.01', 'name': 'punch_bowl'}, {'id': 10159, 'synset': 'punching_bag.n.02', 'name': 'punching_bag'}, {'id': 10160, 'synset': 'punch_pliers.n.01', 'name': 'punch_pliers'}, {'id': 10161, 'synset': 'punch_press.n.01', 'name': 'punch_press'}, {'id': 10162, 'synset': 'punnet.n.01', 'name': 'punnet'}, {'id': 10163, 'synset': 'punt.n.02', 'name': 'punt'}, {'id': 10164, 'synset': 'pup_tent.n.01', 'name': 'pup_tent'}, {'id': 10165, 'synset': 'purdah.n.03', 'name': 'purdah'}, {'id': 10166, 'synset': 'purifier.n.01', 'name': 'purifier'}, {'id': 10167, 'synset': 'purl.n.02', 'name': 'purl'}, {'id': 10168, 'synset': 'purse.n.03', 'name': 'purse'}, {'id': 10169, 'synset': 'push-bike.n.01', 'name': 'push-bike'}, {'id': 10170, 'synset': 'push_broom.n.01', 'name': 'push_broom'}, {'id': 10171, 'synset': 'push_button.n.01', 'name': 'push_button'}, {'id': 10172, 'synset': 'push-button_radio.n.01', 'name': 'push-button_radio'}, {'id': 10173, 'synset': 'pusher.n.04', 'name': 'pusher'}, {'id': 10174, 'synset': 'put-put.n.01', 'name': 'put-put'}, {'id': 10175, 'synset': 'puttee.n.01', 'name': 'puttee'}, {'id': 10176, 'synset': 'putter.n.02', 'name': 'putter'}, {'id': 10177, 'synset': 'putty_knife.n.01', 'name': 'putty_knife'}, {'id': 10178, 'synset': 'puzzle.n.02', 'name': 'puzzle'}, {'id': 10179, 'synset': 'pylon.n.02', 'name': 'pylon'}, {'id': 10180, 'synset': 'pylon.n.01', 'name': 'pylon'}, {'id': 10181, 'synset': 'pyramidal_tent.n.01', 'name': 'pyramidal_tent'}, {'id': 10182, 'synset': 'pyrograph.n.01', 'name': 'pyrograph'}, {'id': 10183, 'synset': 'pyrometer.n.01', 'name': 'pyrometer'}, {'id': 10184, 'synset': 'pyrometric_cone.n.01', 'name': 'pyrometric_cone'}, {'id': 10185, 'synset': 'pyrostat.n.01', 'name': 'pyrostat'}, {'id': 10186, 'synset': 'pyx.n.02', 'name': 'pyx'}, {'id': 10187, 'synset': 'pyx.n.01', 'name': 'pyx'}, {'id': 10188, 'synset': 'pyxis.n.03', 'name': 'pyxis'}, {'id': 10189, 'synset': 'quad.n.04', 'name': 'quad'}, {'id': 10190, 'synset': 'quadrant.n.04', 'name': 'quadrant'}, {'id': 10191, 'synset': 'quadraphony.n.01', 'name': 'quadraphony'}, {'id': 10192, 'synset': 'quartering.n.02', 'name': 'quartering'}, {'id': 10193, 'synset': 'quarterstaff.n.01', 'name': 'quarterstaff'}, {'id': 10194, 'synset': 'quartz_battery.n.01', 'name': 'quartz_battery'}, {'id': 10195, 'synset': 'quartz_lamp.n.01', 'name': 'quartz_lamp'}, {'id': 10196, 'synset': 'queen.n.08', 'name': 'queen'}, {'id': 10197, 'synset': 'queen.n.07', 'name': 'queen'}, {'id': 10198, 'synset': 'queen_post.n.01', 'name': 'queen_post'}, {'id': 10199, 'synset': 'quern.n.01', 'name': 'quern'}, {'id': 10200, 'synset': 'quill.n.01', 'name': 'quill'}, {'id': 10201, 'synset': 'quilted_bedspread.n.01', 'name': 'quilted_bedspread'}, {'id': 10202, 'synset': 'quilting.n.02', 'name': 'quilting'}, {'id': 10203, 'synset': 'quipu.n.01', 'name': 'quipu'}, {'id': 10204, 'synset': 'quirk_molding.n.01', 'name': 'quirk_molding'}, {'id': 10205, 'synset': 'quirt.n.01', 'name': 'quirt'}, {'id': 10206, 'synset': 'quiver.n.03', 'name': 'quiver'}, {'id': 10207, 'synset': 'quoin.n.02', 'name': 'quoin'}, {'id': 10208, 'synset': 'quoit.n.01', 'name': 'quoit'}, {'id': 10209, 'synset': 'qwerty_keyboard.n.01', 'name': 'QWERTY_keyboard'}, {'id': 10210, 'synset': 'rabbet.n.01', 'name': 'rabbet'}, {'id': 10211, 'synset': 'rabbet_joint.n.01', 'name': 'rabbet_joint'}, {'id': 10212, 'synset': 'rabbit_ears.n.01', 'name': 'rabbit_ears'}, {'id': 10213, 'synset': 'rabbit_hutch.n.01', 'name': 'rabbit_hutch'}, {'id': 10214, 'synset': 'raceabout.n.01', 'name': 'raceabout'}, {'id': 10215, 'synset': 'raceway.n.01', 'name': 'raceway'}, {'id': 10216, 'synset': 'racing_boat.n.01', 'name': 'racing_boat'}, {'id': 10217, 'synset': 'racing_gig.n.01', 'name': 'racing_gig'}, {'id': 10218, 'synset': 'racing_skiff.n.01', 'name': 'racing_skiff'}, {'id': 10219, 'synset': 'rack.n.05', 'name': 'rack'}, {'id': 10220, 'synset': 'rack.n.01', 'name': 'rack'}, {'id': 10221, 'synset': 'rack.n.04', 'name': 'rack'}, {'id': 10222, 'synset': 'rack_and_pinion.n.01', 'name': 'rack_and_pinion'}, {'id': 10223, 'synset': 'racquetball.n.01', 'name': 'racquetball'}, {'id': 10224, 'synset': 'radial.n.01', 'name': 'radial'}, {'id': 10225, 'synset': 'radial_engine.n.01', 'name': 'radial_engine'}, {'id': 10226, 'synset': 'radiation_pyrometer.n.01', 'name': 'radiation_pyrometer'}, {'id': 10227, 'synset': 'radiator.n.02', 'name': 'radiator'}, {'id': 10228, 'synset': 'radiator_cap.n.01', 'name': 'radiator_cap'}, {'id': 10229, 'synset': 'radiator_hose.n.01', 'name': 'radiator_hose'}, {'id': 10230, 'synset': 'radio.n.03', 'name': 'radio'}, {'id': 10231, 'synset': 'radio_antenna.n.01', 'name': 'radio_antenna'}, {'id': 10232, 'synset': 'radio_chassis.n.01', 'name': 'radio_chassis'}, {'id': 10233, 'synset': 'radio_compass.n.01', 'name': 'radio_compass'}, {'id': 10234, 'synset': 'radiogram.n.02', 'name': 'radiogram'}, {'id': 10235, 'synset': 'radio_interferometer.n.01', 'name': 'radio_interferometer'}, {'id': 10236, 'synset': 'radio_link.n.01', 'name': 'radio_link'}, {'id': 10237, 'synset': 'radiometer.n.01', 'name': 'radiometer'}, {'id': 10238, 'synset': 'radiomicrometer.n.01', 'name': 'radiomicrometer'}, {'id': 10239, 'synset': 'radio-phonograph.n.01', 'name': 'radio-phonograph'}, {'id': 10240, 'synset': 'radiotelegraph.n.02', 'name': 'radiotelegraph'}, {'id': 10241, 'synset': 'radiotelephone.n.02', 'name': 'radiotelephone'}, {'id': 10242, 'synset': 'radio_telescope.n.01', 'name': 'radio_telescope'}, {'id': 10243, 'synset': 'radiotherapy_equipment.n.01', 'name': 'radiotherapy_equipment'}, {'id': 10244, 'synset': 'radio_transmitter.n.01', 'name': 'radio_transmitter'}, {'id': 10245, 'synset': 'radome.n.01', 'name': 'radome'}, {'id': 10246, 'synset': 'rafter.n.01', 'name': 'rafter'}, {'id': 10247, 'synset': 'raft_foundation.n.01', 'name': 'raft_foundation'}, {'id': 10248, 'synset': 'rag.n.01', 'name': 'rag'}, {'id': 10249, 'synset': 'ragbag.n.02', 'name': 'ragbag'}, {'id': 10250, 'synset': 'raglan.n.01', 'name': 'raglan'}, {'id': 10251, 'synset': 'raglan_sleeve.n.01', 'name': 'raglan_sleeve'}, {'id': 10252, 'synset': 'rail.n.04', 'name': 'rail'}, {'id': 10253, 'synset': 'rail_fence.n.01', 'name': 'rail_fence'}, {'id': 10254, 'synset': 'railhead.n.01', 'name': 'railhead'}, {'id': 10255, 'synset': 'railing.n.01', 'name': 'railing'}, {'id': 10256, 'synset': 'railing.n.02', 'name': 'railing'}, {'id': 10257, 'synset': 'railroad_bed.n.01', 'name': 'railroad_bed'}, {'id': 10258, 'synset': 'railroad_tunnel.n.01', 'name': 'railroad_tunnel'}, {'id': 10259, 'synset': 'rain_barrel.n.01', 'name': 'rain_barrel'}, {'id': 10260, 'synset': 'rain_gauge.n.01', 'name': 'rain_gauge'}, {'id': 10261, 'synset': 'rain_stick.n.01', 'name': 'rain_stick'}, {'id': 10262, 'synset': 'rake.n.03', 'name': 'rake'}, {'id': 10263, 'synset': 'rake_handle.n.01', 'name': 'rake_handle'}, {'id': 10264, 'synset': 'ram_disk.n.01', 'name': 'RAM_disk'}, {'id': 10265, 'synset': 'ramekin.n.02', 'name': 'ramekin'}, {'id': 10266, 'synset': 'ramjet.n.01', 'name': 'ramjet'}, {'id': 10267, 'synset': 'rammer.n.01', 'name': 'rammer'}, {'id': 10268, 'synset': 'ramp.n.01', 'name': 'ramp'}, {'id': 10269, 'synset': 'rampant_arch.n.01', 'name': 'rampant_arch'}, {'id': 10270, 'synset': 'rampart.n.01', 'name': 'rampart'}, {'id': 10271, 'synset': 'ramrod.n.01', 'name': 'ramrod'}, {'id': 10272, 'synset': 'ramrod.n.03', 'name': 'ramrod'}, {'id': 10273, 'synset': 'ranch.n.01', 'name': 'ranch'}, {'id': 10274, 'synset': 'ranch_house.n.01', 'name': 'ranch_house'}, {'id': 10275, 'synset': 'random-access_memory.n.01', 'name': 'random-access_memory'}, {'id': 10276, 'synset': 'rangefinder.n.01', 'name': 'rangefinder'}, {'id': 10277, 'synset': 'range_hood.n.01', 'name': 'range_hood'}, {'id': 10278, 'synset': 'range_pole.n.01', 'name': 'range_pole'}, {'id': 10279, 'synset': 'rapier.n.01', 'name': 'rapier'}, {'id': 10280, 'synset': 'rariora.n.01', 'name': 'rariora'}, {'id': 10281, 'synset': 'rasp.n.02', 'name': 'rasp'}, {'id': 10282, 'synset': 'ratchet.n.01', 'name': 'ratchet'}, {'id': 10283, 'synset': 'ratchet_wheel.n.01', 'name': 'ratchet_wheel'}, {'id': 10284, 'synset': 'rathskeller.n.01', 'name': 'rathskeller'}, {'id': 10285, 'synset': 'ratline.n.01', 'name': 'ratline'}, {'id': 10286, 'synset': 'rat-tail_file.n.01', 'name': 'rat-tail_file'}, {'id': 10287, 'synset': 'rattan.n.03', 'name': 'rattan'}, {'id': 10288, 'synset': 'rattrap.n.03', 'name': 'rattrap'}, {'id': 10289, 'synset': 'rayon.n.01', 'name': 'rayon'}, {'id': 10290, 'synset': 'razor.n.01', 'name': 'razor'}, {'id': 10291, 'synset': 'reaction-propulsion_engine.n.01', 'name': 'reaction-propulsion_engine'}, {'id': 10292, 'synset': 'reaction_turbine.n.01', 'name': 'reaction_turbine'}, {'id': 10293, 'synset': 'reactor.n.01', 'name': 'reactor'}, {'id': 10294, 'synset': 'reading_lamp.n.01', 'name': 'reading_lamp'}, {'id': 10295, 'synset': 'reading_room.n.01', 'name': 'reading_room'}, {'id': 10296, 'synset': 'read-only_memory.n.01', 'name': 'read-only_memory'}, {'id': 10297, 'synset': 'read-only_memory_chip.n.01', 'name': 'read-only_memory_chip'}, {'id': 10298, 'synset': 'readout.n.03', 'name': 'readout'}, {'id': 10299, 'synset': 'read/write_head.n.01', 'name': 'read/write_head'}, {'id': 10300, 'synset': 'ready-to-wear.n.01', 'name': 'ready-to-wear'}, {'id': 10301, 'synset': 'real_storage.n.01', 'name': 'real_storage'}, {'id': 10302, 'synset': 'reamer.n.02', 'name': 'reamer'}, {'id': 10303, 'synset': 'reaumur_thermometer.n.01', 'name': 'Reaumur_thermometer'}, {'id': 10304, 'synset': 'rebozo.n.01', 'name': 'rebozo'}, {'id': 10305, 'synset': 'receiver.n.01', 'name': 'receiver'}, {'id': 10306, 'synset': 'receptacle.n.01', 'name': 'receptacle'}, {'id': 10307, 'synset': 'reception_desk.n.01', 'name': 'reception_desk'}, {'id': 10308, 'synset': 'reception_room.n.01', 'name': 'reception_room'}, {'id': 10309, 'synset': 'recess.n.04', 'name': 'recess'}, {'id': 10310, 'synset': 'reciprocating_engine.n.01', 'name': 'reciprocating_engine'}, {'id': 10311, 'synset': 'reconnaissance_plane.n.01', 'name': 'reconnaissance_plane'}, {'id': 10312, 'synset': 'reconnaissance_vehicle.n.01', 'name': 'reconnaissance_vehicle'}, {'id': 10313, 'synset': 'record_changer.n.01', 'name': 'record_changer'}, {'id': 10314, 'synset': 'recorder.n.01', 'name': 'recorder'}, {'id': 10315, 'synset': 'recording.n.03', 'name': 'recording'}, {'id': 10316, 'synset': 'recording_system.n.01', 'name': 'recording_system'}, {'id': 10317, 'synset': 'record_sleeve.n.01', 'name': 'record_sleeve'}, {'id': 10318, 'synset': 'recovery_room.n.01', 'name': 'recovery_room'}, {'id': 10319, 'synset': 'recreational_vehicle.n.01', 'name': 'recreational_vehicle'}, {'id': 10320, 'synset': 'recreation_room.n.01', 'name': 'recreation_room'}, {'id': 10321, 'synset': 'recycling_bin.n.01', 'name': 'recycling_bin'}, {'id': 10322, 'synset': 'recycling_plant.n.01', 'name': 'recycling_plant'}, {'id': 10323, 'synset': 'redbrick_university.n.01', 'name': 'redbrick_university'}, {'id': 10324, 'synset': 'red_carpet.n.01', 'name': 'red_carpet'}, {'id': 10325, 'synset': 'redoubt.n.02', 'name': 'redoubt'}, {'id': 10326, 'synset': 'redoubt.n.01', 'name': 'redoubt'}, {'id': 10327, 'synset': 'reduction_gear.n.01', 'name': 'reduction_gear'}, {'id': 10328, 'synset': 'reed_pipe.n.01', 'name': 'reed_pipe'}, {'id': 10329, 'synset': 'reed_stop.n.01', 'name': 'reed_stop'}, {'id': 10330, 'synset': 'reef_knot.n.01', 'name': 'reef_knot'}, {'id': 10331, 'synset': 'reel.n.03', 'name': 'reel'}, {'id': 10332, 'synset': 'reel.n.01', 'name': 'reel'}, {'id': 10333, 'synset': 'refectory.n.01', 'name': 'refectory'}, {'id': 10334, 'synset': 'refectory_table.n.01', 'name': 'refectory_table'}, {'id': 10335, 'synset': 'refinery.n.01', 'name': 'refinery'}, {'id': 10336, 'synset': 'reflecting_telescope.n.01', 'name': 'reflecting_telescope'}, {'id': 10337, 'synset': 'reflectometer.n.01', 'name': 'reflectometer'}, {'id': 10338, 'synset': 'reflex_camera.n.01', 'name': 'reflex_camera'}, {'id': 10339, 'synset': 'reflux_condenser.n.01', 'name': 'reflux_condenser'}, {'id': 10340, 'synset': 'reformatory.n.01', 'name': 'reformatory'}, {'id': 10341, 'synset': 'reformer.n.02', 'name': 'reformer'}, {'id': 10342, 'synset': 'refracting_telescope.n.01', 'name': 'refracting_telescope'}, {'id': 10343, 'synset': 'refractometer.n.01', 'name': 'refractometer'}, {'id': 10344, 'synset': 'refrigeration_system.n.01', 'name': 'refrigeration_system'}, {'id': 10345, 'synset': 'refrigerator.n.01', 'name': 'refrigerator'}, {'id': 10346, 'synset': 'refrigerator_car.n.01', 'name': 'refrigerator_car'}, {'id': 10347, 'synset': 'refuge.n.03', 'name': 'refuge'}, {'id': 10348, 'synset': 'regalia.n.01', 'name': 'regalia'}, {'id': 10349, 'synset': 'regimentals.n.01', 'name': 'regimentals'}, {'id': 10350, 'synset': 'regulator.n.01', 'name': 'regulator'}, {'id': 10351, 'synset': 'rein.n.01', 'name': 'rein'}, {'id': 10352, 'synset': 'relay.n.05', 'name': 'relay'}, {'id': 10353, 'synset': 'release.n.08', 'name': 'release'}, {'id': 10354, 'synset': 'religious_residence.n.01', 'name': 'religious_residence'}, {'id': 10355, 'synset': 'reliquary.n.01', 'name': 'reliquary'}, {'id': 10356, 'synset': 'remote_terminal.n.01', 'name': 'remote_terminal'}, {'id': 10357, 'synset': 'removable_disk.n.01', 'name': 'removable_disk'}, {'id': 10358, 'synset': 'rendering.n.05', 'name': 'rendering'}, {'id': 10359, 'synset': 'rep.n.02', 'name': 'rep'}, {'id': 10360, 'synset': 'repair_shop.n.01', 'name': 'repair_shop'}, {'id': 10361, 'synset': 'repeater.n.04', 'name': 'repeater'}, {'id': 10362, 'synset': 'repeating_firearm.n.01', 'name': 'repeating_firearm'}, {'id': 10363, 'synset': 'repository.n.03', 'name': 'repository'}, {'id': 10364, 'synset': 'reproducer.n.01', 'name': 'reproducer'}, {'id': 10365, 'synset': 'rerebrace.n.01', 'name': 'rerebrace'}, {'id': 10366, 'synset': 'rescue_equipment.n.01', 'name': 'rescue_equipment'}, {'id': 10367, 'synset': 'research_center.n.01', 'name': 'research_center'}, {'id': 10368, 'synset': 'reseau.n.02', 'name': 'reseau'}, {'id': 10369, 'synset': 'reservoir.n.03', 'name': 'reservoir'}, {'id': 10370, 'synset': 'reset.n.01', 'name': 'reset'}, {'id': 10371, 'synset': 'reset_button.n.01', 'name': 'reset_button'}, {'id': 10372, 'synset': 'residence.n.02', 'name': 'residence'}, {'id': 10373, 'synset': 'resistance_pyrometer.n.01', 'name': 'resistance_pyrometer'}, {'id': 10374, 'synset': 'resistor.n.01', 'name': 'resistor'}, {'id': 10375, 'synset': 'resonator.n.03', 'name': 'resonator'}, {'id': 10376, 'synset': 'resonator.n.01', 'name': 'resonator'}, {'id': 10377, 'synset': 'resort_hotel.n.02', 'name': 'resort_hotel'}, {'id': 10378, 'synset': 'respirator.n.01', 'name': 'respirator'}, {'id': 10379, 'synset': 'restaurant.n.01', 'name': 'restaurant'}, {'id': 10380, 'synset': 'rest_house.n.01', 'name': 'rest_house'}, {'id': 10381, 'synset': 'restraint.n.06', 'name': 'restraint'}, {'id': 10382, 'synset': 'resuscitator.n.01', 'name': 'resuscitator'}, {'id': 10383, 'synset': 'retainer.n.03', 'name': 'retainer'}, {'id': 10384, 'synset': 'retaining_wall.n.01', 'name': 'retaining_wall'}, {'id': 10385, 'synset': 'reticle.n.01', 'name': 'reticle'}, {'id': 10386, 'synset': 'reticulation.n.02', 'name': 'reticulation'}, {'id': 10387, 'synset': 'reticule.n.01', 'name': 'reticule'}, {'id': 10388, 'synset': 'retort.n.02', 'name': 'retort'}, {'id': 10389, 'synset': 'retractor.n.01', 'name': 'retractor'}, {'id': 10390, 'synset': 'return_key.n.01', 'name': 'return_key'}, {'id': 10391, 'synset': 'reverberatory_furnace.n.01', 'name': 'reverberatory_furnace'}, {'id': 10392, 'synset': 'revers.n.01', 'name': 'revers'}, {'id': 10393, 'synset': 'reverse.n.02', 'name': 'reverse'}, {'id': 10394, 'synset': 'reversible.n.01', 'name': 'reversible'}, {'id': 10395, 'synset': 'revetment.n.02', 'name': 'revetment'}, {'id': 10396, 'synset': 'revetment.n.01', 'name': 'revetment'}, {'id': 10397, 'synset': 'revolver.n.01', 'name': 'revolver'}, {'id': 10398, 'synset': 'revolving_door.n.02', 'name': 'revolving_door'}, {'id': 10399, 'synset': 'rheometer.n.01', 'name': 'rheometer'}, {'id': 10400, 'synset': 'rheostat.n.01', 'name': 'rheostat'}, {'id': 10401, 'synset': 'rhinoscope.n.01', 'name': 'rhinoscope'}, {'id': 10402, 'synset': 'rib.n.01', 'name': 'rib'}, {'id': 10403, 'synset': 'riband.n.01', 'name': 'riband'}, {'id': 10404, 'synset': 'ribbed_vault.n.01', 'name': 'ribbed_vault'}, {'id': 10405, 'synset': 'ribbing.n.01', 'name': 'ribbing'}, {'id': 10406, 'synset': 'ribbon_development.n.01', 'name': 'ribbon_development'}, {'id': 10407, 'synset': 'rib_joint_pliers.n.01', 'name': 'rib_joint_pliers'}, {'id': 10408, 'synset': 'ricer.n.01', 'name': 'ricer'}, {'id': 10409, 'synset': 'riddle.n.02', 'name': 'riddle'}, {'id': 10410, 'synset': 'ride.n.02', 'name': 'ride'}, {'id': 10411, 'synset': 'ridge.n.06', 'name': 'ridge'}, {'id': 10412, 'synset': 'ridge_rope.n.01', 'name': 'ridge_rope'}, {'id': 10413, 'synset': 'riding_boot.n.01', 'name': 'riding_boot'}, {'id': 10414, 'synset': 'riding_crop.n.01', 'name': 'riding_crop'}, {'id': 10415, 'synset': 'riding_mower.n.01', 'name': 'riding_mower'}, {'id': 10416, 'synset': 'rifle_ball.n.01', 'name': 'rifle_ball'}, {'id': 10417, 'synset': 'rifle_grenade.n.01', 'name': 'rifle_grenade'}, {'id': 10418, 'synset': 'rig.n.01', 'name': 'rig'}, {'id': 10419, 'synset': 'rigger.n.02', 'name': 'rigger'}, {'id': 10420, 'synset': 'rigger.n.04', 'name': 'rigger'}, {'id': 10421, 'synset': 'rigging.n.01', 'name': 'rigging'}, {'id': 10422, 'synset': 'rigout.n.01', 'name': 'rigout'}, {'id': 10423, 'synset': 'ringlet.n.03', 'name': 'ringlet'}, {'id': 10424, 'synset': 'rings.n.01', 'name': 'rings'}, {'id': 10425, 'synset': 'rink.n.01', 'name': 'rink'}, {'id': 10426, 'synset': 'riot_gun.n.01', 'name': 'riot_gun'}, {'id': 10427, 'synset': 'ripcord.n.02', 'name': 'ripcord'}, {'id': 10428, 'synset': 'ripcord.n.01', 'name': 'ripcord'}, {'id': 10429, 'synset': 'ripping_bar.n.01', 'name': 'ripping_bar'}, {'id': 10430, 'synset': 'ripping_chisel.n.01', 'name': 'ripping_chisel'}, {'id': 10431, 'synset': 'ripsaw.n.01', 'name': 'ripsaw'}, {'id': 10432, 'synset': 'riser.n.03', 'name': 'riser'}, {'id': 10433, 'synset': 'riser.n.02', 'name': 'riser'}, {'id': 10434, 'synset': 'ritz.n.03', 'name': 'Ritz'}, {'id': 10435, 'synset': 'rivet.n.02', 'name': 'rivet'}, {'id': 10436, 'synset': 'riveting_machine.n.01', 'name': 'riveting_machine'}, {'id': 10437, 'synset': 'roach_clip.n.01', 'name': 'roach_clip'}, {'id': 10438, 'synset': 'road.n.01', 'name': 'road'}, {'id': 10439, 'synset': 'roadbed.n.01', 'name': 'roadbed'}, {'id': 10440, 'synset': 'roadblock.n.02', 'name': 'roadblock'}, {'id': 10441, 'synset': 'roadhouse.n.01', 'name': 'roadhouse'}, {'id': 10442, 'synset': 'roadster.n.01', 'name': 'roadster'}, {'id': 10443, 'synset': 'roadway.n.01', 'name': 'roadway'}, {'id': 10444, 'synset': 'roaster.n.04', 'name': 'roaster'}, {'id': 10445, 'synset': 'robotics_equipment.n.01', 'name': 'robotics_equipment'}, {'id': 10446, 'synset': 'rochon_prism.n.01', 'name': 'Rochon_prism'}, {'id': 10447, 'synset': 'rock_bit.n.01', 'name': 'rock_bit'}, {'id': 10448, 'synset': 'rocker.n.07', 'name': 'rocker'}, {'id': 10449, 'synset': 'rocker.n.05', 'name': 'rocker'}, {'id': 10450, 'synset': 'rocker_arm.n.01', 'name': 'rocker_arm'}, {'id': 10451, 'synset': 'rocket.n.02', 'name': 'rocket'}, {'id': 10452, 'synset': 'rocket.n.01', 'name': 'rocket'}, {'id': 10453, 'synset': 'rod.n.01', 'name': 'rod'}, {'id': 10454, 'synset': 'rodeo.n.02', 'name': 'rodeo'}, {'id': 10455, 'synset': 'roll.n.04', 'name': 'roll'}, {'id': 10456, 'synset': 'roller.n.04', 'name': 'roller'}, {'id': 10457, 'synset': 'roller.n.03', 'name': 'roller'}, {'id': 10458, 'synset': 'roller_bandage.n.01', 'name': 'roller_bandage'}, {'id': 10459, 'synset': 'in-line_skate.n.01', 'name': 'in-line_skate'}, {'id': 10460, 'synset': 'roller_blind.n.01', 'name': 'roller_blind'}, {'id': 10461, 'synset': 'roller_coaster.n.02', 'name': 'roller_coaster'}, {'id': 10462, 'synset': 'roller_towel.n.01', 'name': 'roller_towel'}, {'id': 10463, 'synset': 'roll_film.n.01', 'name': 'roll_film'}, {'id': 10464, 'synset': 'rolling_hitch.n.01', 'name': 'rolling_hitch'}, {'id': 10465, 'synset': 'rolling_mill.n.01', 'name': 'rolling_mill'}, {'id': 10466, 'synset': 'rolling_stock.n.01', 'name': 'rolling_stock'}, {'id': 10467, 'synset': 'roll-on.n.02', 'name': 'roll-on'}, {'id': 10468, 'synset': 'roll-on.n.01', 'name': 'roll-on'}, {'id': 10469, 'synset': 'roll-on_roll-off.n.01', 'name': 'roll-on_roll-off'}, {'id': 10470, 'synset': 'rolodex.n.01', 'name': 'Rolodex'}, {'id': 10471, 'synset': 'roman_arch.n.01', 'name': 'Roman_arch'}, {'id': 10472, 'synset': 'roman_building.n.01', 'name': 'Roman_building'}, {'id': 10473, 'synset': 'romper.n.02', 'name': 'romper'}, {'id': 10474, 'synset': 'rood_screen.n.01', 'name': 'rood_screen'}, {'id': 10475, 'synset': 'roof.n.01', 'name': 'roof'}, {'id': 10476, 'synset': 'roof.n.02', 'name': 'roof'}, {'id': 10477, 'synset': 'roofing.n.01', 'name': 'roofing'}, {'id': 10478, 'synset': 'room.n.01', 'name': 'room'}, {'id': 10479, 'synset': 'roomette.n.01', 'name': 'roomette'}, {'id': 10480, 'synset': 'room_light.n.01', 'name': 'room_light'}, {'id': 10481, 'synset': 'roost.n.01', 'name': 'roost'}, {'id': 10482, 'synset': 'rope.n.01', 'name': 'rope'}, {'id': 10483, 'synset': 'rope_bridge.n.01', 'name': 'rope_bridge'}, {'id': 10484, 'synset': 'rope_tow.n.01', 'name': 'rope_tow'}, {'id': 10485, 'synset': 'rose_water.n.01', 'name': 'rose_water'}, {'id': 10486, 'synset': 'rose_window.n.01', 'name': 'rose_window'}, {'id': 10487, 'synset': 'rosin_bag.n.01', 'name': 'rosin_bag'}, {'id': 10488, 'synset': 'rotary_actuator.n.01', 'name': 'rotary_actuator'}, {'id': 10489, 'synset': 'rotary_engine.n.01', 'name': 'rotary_engine'}, {'id': 10490, 'synset': 'rotary_press.n.01', 'name': 'rotary_press'}, {'id': 10491, 'synset': 'rotating_mechanism.n.01', 'name': 'rotating_mechanism'}, {'id': 10492, 'synset': 'rotating_shaft.n.01', 'name': 'rotating_shaft'}, {'id': 10493, 'synset': 'rotisserie.n.02', 'name': 'rotisserie'}, {'id': 10494, 'synset': 'rotisserie.n.01', 'name': 'rotisserie'}, {'id': 10495, 'synset': 'rotor.n.03', 'name': 'rotor'}, {'id': 10496, 'synset': 'rotor.n.01', 'name': 'rotor'}, {'id': 10497, 'synset': 'rotor.n.02', 'name': 'rotor'}, {'id': 10498, 'synset': 'rotor_blade.n.01', 'name': 'rotor_blade'}, {'id': 10499, 'synset': 'rotor_head.n.01', 'name': 'rotor_head'}, {'id': 10500, 'synset': 'rotunda.n.02', 'name': 'rotunda'}, {'id': 10501, 'synset': 'rotunda.n.01', 'name': 'rotunda'}, {'id': 10502, 'synset': 'rouge.n.01', 'name': 'rouge'}, {'id': 10503, 'synset': 'roughcast.n.02', 'name': 'roughcast'}, {'id': 10504, 'synset': 'rouleau.n.02', 'name': 'rouleau'}, {'id': 10505, 'synset': 'roulette.n.02', 'name': 'roulette'}, {'id': 10506, 'synset': 'roulette_ball.n.01', 'name': 'roulette_ball'}, {'id': 10507, 'synset': 'roulette_wheel.n.01', 'name': 'roulette_wheel'}, {'id': 10508, 'synset': 'round.n.01', 'name': 'round'}, {'id': 10509, 'synset': 'round_arch.n.01', 'name': 'round_arch'}, {'id': 10510, 'synset': 'round-bottom_flask.n.01', 'name': 'round-bottom_flask'}, {'id': 10511, 'synset': 'roundel.n.02', 'name': 'roundel'}, {'id': 10512, 'synset': 'round_file.n.01', 'name': 'round_file'}, {'id': 10513, 'synset': 'roundhouse.n.01', 'name': 'roundhouse'}, {'id': 10514, 'synset': 'router.n.03', 'name': 'router'}, {'id': 10515, 'synset': 'router_plane.n.01', 'name': 'router_plane'}, {'id': 10516, 'synset': 'rowel.n.01', 'name': 'rowel'}, {'id': 10517, 'synset': 'row_house.n.01', 'name': 'row_house'}, {'id': 10518, 'synset': 'rowing_boat.n.01', 'name': 'rowing_boat'}, {'id': 10519, 'synset': 'rowlock_arch.n.01', 'name': 'rowlock_arch'}, {'id': 10520, 'synset': 'royal.n.01', 'name': 'royal'}, {'id': 10521, 'synset': 'royal_mast.n.01', 'name': 'royal_mast'}, {'id': 10522, 'synset': 'rubber_boot.n.01', 'name': 'rubber_boot'}, {'id': 10523, 'synset': 'rubber_bullet.n.01', 'name': 'rubber_bullet'}, {'id': 10524, 'synset': 'rubber_eraser.n.01', 'name': 'rubber_eraser'}, {'id': 10525, 'synset': 'rudder.n.02', 'name': 'rudder'}, {'id': 10526, 'synset': 'rudder.n.01', 'name': 'rudder'}, {'id': 10527, 'synset': 'rudder_blade.n.01', 'name': 'rudder_blade'}, {'id': 10528, 'synset': 'rug.n.01', 'name': 'rug'}, {'id': 10529, 'synset': 'rugby_ball.n.01', 'name': 'rugby_ball'}, {'id': 10530, 'synset': 'ruin.n.02', 'name': 'ruin'}, {'id': 10531, 'synset': 'rule.n.12', 'name': 'rule'}, {'id': 10532, 'synset': 'rumble.n.02', 'name': 'rumble'}, {'id': 10533, 'synset': 'rumble_seat.n.01', 'name': 'rumble_seat'}, {'id': 10534, 'synset': 'rummer.n.01', 'name': 'rummer'}, {'id': 10535, 'synset': 'rumpus_room.n.01', 'name': 'rumpus_room'}, {'id': 10536, 'synset': 'runcible_spoon.n.01', 'name': 'runcible_spoon'}, {'id': 10537, 'synset': 'rundle.n.01', 'name': 'rundle'}, {'id': 10538, 'synset': 'running_shoe.n.01', 'name': 'running_shoe'}, {'id': 10539, 'synset': 'running_suit.n.01', 'name': 'running_suit'}, {'id': 10540, 'synset': 'runway.n.04', 'name': 'runway'}, {'id': 10541, 'synset': 'rushlight.n.01', 'name': 'rushlight'}, {'id': 10542, 'synset': 'russet.n.01', 'name': 'russet'}, {'id': 10543, 'synset': 'rya.n.01', 'name': 'rya'}, {'id': 10544, 'synset': 'saber.n.01', 'name': 'saber'}, {'id': 10545, 'synset': 'saber_saw.n.01', 'name': 'saber_saw'}, {'id': 10546, 'synset': 'sable.n.04', 'name': 'sable'}, {'id': 10547, 'synset': 'sable.n.01', 'name': 'sable'}, {'id': 10548, 'synset': 'sable_coat.n.01', 'name': 'sable_coat'}, {'id': 10549, 'synset': 'sabot.n.01', 'name': 'sabot'}, {'id': 10550, 'synset': 'sachet.n.01', 'name': 'sachet'}, {'id': 10551, 'synset': 'sack.n.05', 'name': 'sack'}, {'id': 10552, 'synset': 'sackbut.n.01', 'name': 'sackbut'}, {'id': 10553, 'synset': 'sackcloth.n.02', 'name': 'sackcloth'}, {'id': 10554, 'synset': 'sackcloth.n.01', 'name': 'sackcloth'}, {'id': 10555, 'synset': 'sack_coat.n.01', 'name': 'sack_coat'}, {'id': 10556, 'synset': 'sacking.n.01', 'name': 'sacking'}, {'id': 10557, 'synset': 'saddle_oxford.n.01', 'name': 'saddle_oxford'}, {'id': 10558, 'synset': 'saddlery.n.02', 'name': 'saddlery'}, {'id': 10559, 'synset': 'saddle_seat.n.01', 'name': 'saddle_seat'}, {'id': 10560, 'synset': 'saddle_stitch.n.01', 'name': 'saddle_stitch'}, {'id': 10561, 'synset': 'safe.n.01', 'name': 'safe'}, {'id': 10562, 'synset': 'safe.n.02', 'name': 'safe'}, {'id': 10563, 'synset': 'safe-deposit.n.01', 'name': 'safe-deposit'}, {'id': 10564, 'synset': 'safe_house.n.01', 'name': 'safe_house'}, {'id': 10565, 'synset': 'safety_arch.n.01', 'name': 'safety_arch'}, {'id': 10566, 'synset': 'safety_belt.n.01', 'name': 'safety_belt'}, {'id': 10567, 'synset': 'safety_bicycle.n.01', 'name': 'safety_bicycle'}, {'id': 10568, 'synset': 'safety_bolt.n.01', 'name': 'safety_bolt'}, {'id': 10569, 'synset': 'safety_curtain.n.01', 'name': 'safety_curtain'}, {'id': 10570, 'synset': 'safety_fuse.n.01', 'name': 'safety_fuse'}, {'id': 10571, 'synset': 'safety_lamp.n.01', 'name': 'safety_lamp'}, {'id': 10572, 'synset': 'safety_match.n.01', 'name': 'safety_match'}, {'id': 10573, 'synset': 'safety_net.n.02', 'name': 'safety_net'}, {'id': 10574, 'synset': 'safety_rail.n.01', 'name': 'safety_rail'}, {'id': 10575, 'synset': 'safety_razor.n.01', 'name': 'safety_razor'}, {'id': 10576, 'synset': 'safety_valve.n.01', 'name': 'safety_valve'}, {'id': 10577, 'synset': 'sail.n.03', 'name': 'sail'}, {'id': 10578, 'synset': 'sailboat.n.01', 'name': 'sailboat'}, {'id': 10579, 'synset': 'sailcloth.n.01', 'name': 'sailcloth'}, {'id': 10580, 'synset': 'sailing_vessel.n.01', 'name': 'sailing_vessel'}, {'id': 10581, 'synset': 'sailing_warship.n.01', 'name': 'sailing_warship'}, {'id': 10582, 'synset': 'sailor_cap.n.01', 'name': 'sailor_cap'}, {'id': 10583, 'synset': 'sailor_suit.n.01', 'name': 'sailor_suit'}, {'id': 10584, 'synset': 'salad_bar.n.01', 'name': 'salad_bar'}, {'id': 10585, 'synset': 'salad_bowl.n.02', 'name': 'salad_bowl'}, {'id': 10586, 'synset': 'salinometer.n.01', 'name': 'salinometer'}, {'id': 10587, 'synset': 'sallet.n.01', 'name': 'sallet'}, {'id': 10588, 'synset': 'salon.n.03', 'name': 'salon'}, {'id': 10589, 'synset': 'salon.n.01', 'name': 'salon'}, {'id': 10590, 'synset': 'salon.n.02', 'name': 'salon'}, {'id': 10591, 'synset': 'saltbox.n.01', 'name': 'saltbox'}, {'id': 10592, 'synset': 'saltcellar.n.01', 'name': 'saltcellar'}, {'id': 10593, 'synset': 'saltworks.n.01', 'name': 'saltworks'}, {'id': 10594, 'synset': 'salver.n.01', 'name': 'salver'}, {'id': 10595, 'synset': 'salwar.n.01', 'name': 'salwar'}, {'id': 10596, 'synset': 'sam_browne_belt.n.01', 'name': 'Sam_Browne_belt'}, {'id': 10597, 'synset': 'samisen.n.01', 'name': 'samisen'}, {'id': 10598, 'synset': 'samite.n.01', 'name': 'samite'}, {'id': 10599, 'synset': 'samovar.n.01', 'name': 'samovar'}, {'id': 10600, 'synset': 'sampan.n.01', 'name': 'sampan'}, {'id': 10601, 'synset': 'sandbag.n.01', 'name': 'sandbag'}, {'id': 10602, 'synset': 'sandblaster.n.01', 'name': 'sandblaster'}, {'id': 10603, 'synset': 'sandbox.n.01', 'name': 'sandbox'}, {'id': 10604, 'synset': 'sandglass.n.01', 'name': 'sandglass'}, {'id': 10605, 'synset': 'sand_wedge.n.01', 'name': 'sand_wedge'}, {'id': 10606, 'synset': 'sandwich_board.n.01', 'name': 'sandwich_board'}, {'id': 10607, 'synset': 'sanitary_napkin.n.01', 'name': 'sanitary_napkin'}, {'id': 10608, 'synset': 'cling_film.n.01', 'name': 'cling_film'}, {'id': 10609, 'synset': 'sarcenet.n.01', 'name': 'sarcenet'}, {'id': 10610, 'synset': 'sarcophagus.n.01', 'name': 'sarcophagus'}, {'id': 10611, 'synset': 'sari.n.01', 'name': 'sari'}, {'id': 10612, 'synset': 'sarong.n.01', 'name': 'sarong'}, {'id': 10613, 'synset': 'sash.n.01', 'name': 'sash'}, {'id': 10614, 'synset': 'sash_fastener.n.01', 'name': 'sash_fastener'}, {'id': 10615, 'synset': 'sash_window.n.01', 'name': 'sash_window'}, {'id': 10616, 'synset': 'sateen.n.01', 'name': 'sateen'}, {'id': 10617, 'synset': 'satellite.n.01', 'name': 'satellite'}, {'id': 10618, 'synset': 'satellite_receiver.n.01', 'name': 'satellite_receiver'}, {'id': 10619, 'synset': 'satellite_television.n.01', 'name': 'satellite_television'}, {'id': 10620, 'synset': 'satellite_transmitter.n.01', 'name': 'satellite_transmitter'}, {'id': 10621, 'synset': 'satin.n.01', 'name': 'satin'}, {'id': 10622, 'synset': 'saturday_night_special.n.01', 'name': 'Saturday_night_special'}, {'id': 10623, 'synset': 'saucepot.n.01', 'name': 'saucepot'}, {'id': 10624, 'synset': 'sauna.n.01', 'name': 'sauna'}, {'id': 10625, 'synset': 'savings_bank.n.02', 'name': 'savings_bank'}, {'id': 10626, 'synset': 'saw.n.02', 'name': 'saw'}, {'id': 10627, 'synset': 'sawed-off_shotgun.n.01', 'name': 'sawed-off_shotgun'}, {'id': 10628, 'synset': 'sawmill.n.01', 'name': 'sawmill'}, {'id': 10629, 'synset': 'saw_set.n.01', 'name': 'saw_set'}, {'id': 10630, 'synset': 'saxhorn.n.01', 'name': 'saxhorn'}, {'id': 10631, 'synset': 'scabbard.n.01', 'name': 'scabbard'}, {'id': 10632, 'synset': 'scaffolding.n.01', 'name': 'scaffolding'}, {'id': 10633, 'synset': 'scale.n.08', 'name': 'scale'}, {'id': 10634, 'synset': 'scaler.n.01', 'name': 'scaler'}, {'id': 10635, 'synset': 'scaling_ladder.n.01', 'name': 'scaling_ladder'}, {'id': 10636, 'synset': 'scalpel.n.01', 'name': 'scalpel'}, {'id': 10637, 'synset': 'scanner.n.04', 'name': 'scanner'}, {'id': 10638, 'synset': 'scanner.n.03', 'name': 'scanner'}, {'id': 10639, 'synset': 'scanner.n.02', 'name': 'scanner'}, {'id': 10640, 'synset': 'scantling.n.01', 'name': 'scantling'}, {'id': 10641, 'synset': 'scarf_joint.n.01', 'name': 'scarf_joint'}, {'id': 10642, 'synset': 'scatter_rug.n.01', 'name': 'scatter_rug'}, {'id': 10643, 'synset': 'scauper.n.01', 'name': 'scauper'}, {'id': 10644, 'synset': 'schmidt_telescope.n.01', 'name': 'Schmidt_telescope'}, {'id': 10645, 'synset': 'school.n.02', 'name': 'school'}, {'id': 10646, 'synset': 'schoolbag.n.01', 'name': 'schoolbag'}, {'id': 10647, 'synset': 'school_bell.n.01', 'name': 'school_bell'}, {'id': 10648, 'synset': 'school_ship.n.01', 'name': 'school_ship'}, {'id': 10649, 'synset': 'school_system.n.01', 'name': 'school_system'}, {'id': 10650, 'synset': 'schooner.n.02', 'name': 'schooner'}, {'id': 10651, 'synset': 'schooner.n.01', 'name': 'schooner'}, {'id': 10652, 'synset': 'scientific_instrument.n.01', 'name': 'scientific_instrument'}, {'id': 10653, 'synset': 'scimitar.n.01', 'name': 'scimitar'}, {'id': 10654, 'synset': 'scintillation_counter.n.01', 'name': 'scintillation_counter'}, {'id': 10655, 'synset': 'sclerometer.n.01', 'name': 'sclerometer'}, {'id': 10656, 'synset': 'scoinson_arch.n.01', 'name': 'scoinson_arch'}, {'id': 10657, 'synset': 'sconce.n.04', 'name': 'sconce'}, {'id': 10658, 'synset': 'sconce.n.03', 'name': 'sconce'}, {'id': 10659, 'synset': 'scoop.n.06', 'name': 'scoop'}, {'id': 10660, 'synset': 'scooter.n.02', 'name': 'scooter'}, {'id': 10661, 'synset': 'scouring_pad.n.01', 'name': 'scouring_pad'}, {'id': 10662, 'synset': 'scow.n.02', 'name': 'scow'}, {'id': 10663, 'synset': 'scow.n.01', 'name': 'scow'}, {'id': 10664, 'synset': 'scratcher.n.03', 'name': 'scratcher'}, {'id': 10665, 'synset': 'screen.n.05', 'name': 'screen'}, {'id': 10666, 'synset': 'screen.n.04', 'name': 'screen'}, {'id': 10667, 'synset': 'screen.n.09', 'name': 'screen'}, {'id': 10668, 'synset': 'screen.n.03', 'name': 'screen'}, {'id': 10669, 'synset': 'screen_door.n.01', 'name': 'screen_door'}, {'id': 10670, 'synset': 'screening.n.02', 'name': 'screening'}, {'id': 10671, 'synset': 'screw.n.04', 'name': 'screw'}, {'id': 10672, 'synset': 'screw.n.03', 'name': 'screw'}, {'id': 10673, 'synset': 'screw.n.02', 'name': 'screw'}, {'id': 10674, 'synset': 'screw_eye.n.01', 'name': 'screw_eye'}, {'id': 10675, 'synset': 'screw_key.n.01', 'name': 'screw_key'}, {'id': 10676, 'synset': 'screw_thread.n.01', 'name': 'screw_thread'}, {'id': 10677, 'synset': 'screwtop.n.01', 'name': 'screwtop'}, {'id': 10678, 'synset': 'screw_wrench.n.01', 'name': 'screw_wrench'}, {'id': 10679, 'synset': 'scriber.n.01', 'name': 'scriber'}, {'id': 10680, 'synset': 'scrim.n.01', 'name': 'scrim'}, {'id': 10681, 'synset': 'scrimshaw.n.01', 'name': 'scrimshaw'}, {'id': 10682, 'synset': 'scriptorium.n.01', 'name': 'scriptorium'}, {'id': 10683, 'synset': 'scrubber.n.03', 'name': 'scrubber'}, {'id': 10684, 'synset': 'scrub_plane.n.01', 'name': 'scrub_plane'}, {'id': 10685, 'synset': 'scuffer.n.01', 'name': 'scuffer'}, {'id': 10686, 'synset': 'scuffle.n.02', 'name': 'scuffle'}, {'id': 10687, 'synset': 'scull.n.02', 'name': 'scull'}, {'id': 10688, 'synset': 'scull.n.01', 'name': 'scull'}, {'id': 10689, 'synset': 'scullery.n.01', 'name': 'scullery'}, {'id': 10690, 'synset': 'scuttle.n.01', 'name': 'scuttle'}, {'id': 10691, 'synset': 'scyphus.n.01', 'name': 'scyphus'}, {'id': 10692, 'synset': 'scythe.n.01', 'name': 'scythe'}, {'id': 10693, 'synset': 'seabag.n.01', 'name': 'seabag'}, {'id': 10694, 'synset': 'sea_boat.n.01', 'name': 'sea_boat'}, {'id': 10695, 'synset': 'sea_chest.n.01', 'name': 'sea_chest'}, {'id': 10696, 'synset': 'sealing_wax.n.01', 'name': 'sealing_wax'}, {'id': 10697, 'synset': 'sealskin.n.02', 'name': 'sealskin'}, {'id': 10698, 'synset': 'seam.n.01', 'name': 'seam'}, {'id': 10699, 'synset': 'searchlight.n.01', 'name': 'searchlight'}, {'id': 10700, 'synset': 'searing_iron.n.01', 'name': 'searing_iron'}, {'id': 10701, 'synset': 'seat.n.04', 'name': 'seat'}, {'id': 10702, 'synset': 'seat.n.03', 'name': 'seat'}, {'id': 10703, 'synset': 'seat.n.09', 'name': 'seat'}, {'id': 10704, 'synset': 'seat_belt.n.01', 'name': 'seat_belt'}, {'id': 10705, 'synset': 'secateurs.n.01', 'name': 'secateurs'}, {'id': 10706, 'synset': 'secondary_coil.n.01', 'name': 'secondary_coil'}, {'id': 10707, 'synset': 'second_balcony.n.01', 'name': 'second_balcony'}, {'id': 10708, 'synset': 'second_base.n.01', 'name': 'second_base'}, {'id': 10709, 'synset': 'second_hand.n.02', 'name': 'second_hand'}, {'id': 10710, 'synset': 'secretary.n.04', 'name': 'secretary'}, {'id': 10711, 'synset': 'sectional.n.01', 'name': 'sectional'}, {'id': 10712, 'synset': 'security_blanket.n.02', 'name': 'security_blanket'}, {'id': 10713, 'synset': 'security_system.n.02', 'name': 'security_system'}, {'id': 10714, 'synset': 'security_system.n.01', 'name': 'security_system'}, {'id': 10715, 'synset': 'sedan.n.01', 'name': 'sedan'}, {'id': 10716, 'synset': 'sedan.n.02', 'name': 'sedan'}, {'id': 10717, 'synset': 'seeder.n.02', 'name': 'seeder'}, {'id': 10718, 'synset': 'seeker.n.02', 'name': 'seeker'}, {'id': 10719, 'synset': 'seersucker.n.01', 'name': 'seersucker'}, {'id': 10720, 'synset': 'segmental_arch.n.01', 'name': 'segmental_arch'}, {'id': 10721, 'synset': 'segway.n.01', 'name': 'Segway'}, {'id': 10722, 'synset': 'seidel.n.01', 'name': 'seidel'}, {'id': 10723, 'synset': 'seine.n.02', 'name': 'seine'}, {'id': 10724, 'synset': 'seismograph.n.01', 'name': 'seismograph'}, {'id': 10725, 'synset': 'selector.n.02', 'name': 'selector'}, {'id': 10726, 'synset': 'selenium_cell.n.01', 'name': 'selenium_cell'}, {'id': 10727, 'synset': 'self-propelled_vehicle.n.01', 'name': 'self-propelled_vehicle'}, {'id': 10728, 'synset': 'self-registering_thermometer.n.01', 'name': 'self-registering_thermometer'}, {'id': 10729, 'synset': 'self-starter.n.02', 'name': 'self-starter'}, {'id': 10730, 'synset': 'selsyn.n.01', 'name': 'selsyn'}, {'id': 10731, 'synset': 'selvage.n.02', 'name': 'selvage'}, {'id': 10732, 'synset': 'semaphore.n.01', 'name': 'semaphore'}, {'id': 10733, 'synset': 'semiautomatic_firearm.n.01', 'name': 'semiautomatic_firearm'}, {'id': 10734, 'synset': 'semiautomatic_pistol.n.01', 'name': 'semiautomatic_pistol'}, {'id': 10735, 'synset': 'semiconductor_device.n.01', 'name': 'semiconductor_device'}, {'id': 10736, 'synset': 'semi-detached_house.n.01', 'name': 'semi-detached_house'}, {'id': 10737, 'synset': 'semigloss.n.01', 'name': 'semigloss'}, {'id': 10738, 'synset': 'semitrailer.n.01', 'name': 'semitrailer'}, {'id': 10739, 'synset': 'sennit.n.01', 'name': 'sennit'}, {'id': 10740, 'synset': 'sensitometer.n.01', 'name': 'sensitometer'}, {'id': 10741, 'synset': 'sentry_box.n.01', 'name': 'sentry_box'}, {'id': 10742, 'synset': 'separate.n.02', 'name': 'separate'}, {'id': 10743, 'synset': 'septic_tank.n.01', 'name': 'septic_tank'}, {'id': 10744, 'synset': 'sequence.n.03', 'name': 'sequence'}, {'id': 10745, 'synset': 'sequencer.n.01', 'name': 'sequencer'}, {'id': 10746, 'synset': 'serape.n.01', 'name': 'serape'}, {'id': 10747, 'synset': 'serge.n.01', 'name': 'serge'}, {'id': 10748, 'synset': 'serger.n.01', 'name': 'serger'}, {'id': 10749, 'synset': 'serial_port.n.01', 'name': 'serial_port'}, {'id': 10750, 'synset': 'serpent.n.03', 'name': 'serpent'}, {'id': 10751, 'synset': 'serration.n.03', 'name': 'serration'}, {'id': 10752, 'synset': 'server.n.04', 'name': 'server'}, {'id': 10753, 'synset': 'server.n.03', 'name': 'server'}, {'id': 10754, 'synset': 'service_club.n.02', 'name': 'service_club'}, {'id': 10755, 'synset': 'serving_cart.n.01', 'name': 'serving_cart'}, {'id': 10756, 'synset': 'serving_dish.n.01', 'name': 'serving_dish'}, {'id': 10757, 'synset': 'servo.n.01', 'name': 'servo'}, {'id': 10758, 'synset': 'set.n.13', 'name': 'set'}, {'id': 10759, 'synset': 'set_gun.n.01', 'name': 'set_gun'}, {'id': 10760, 'synset': 'setscrew.n.02', 'name': 'setscrew'}, {'id': 10761, 'synset': 'setscrew.n.01', 'name': 'setscrew'}, {'id': 10762, 'synset': 'set_square.n.01', 'name': 'set_square'}, {'id': 10763, 'synset': 'settee.n.02', 'name': 'settee'}, {'id': 10764, 'synset': 'settle.n.01', 'name': 'settle'}, {'id': 10765, 'synset': 'settlement_house.n.01', 'name': 'settlement_house'}, {'id': 10766, 'synset': 'seventy-eight.n.02', 'name': 'seventy-eight'}, {'id': 10767, 'synset': 'seven_wonders_of_the_ancient_world.n.01', 'name': 'Seven_Wonders_of_the_Ancient_World'}, {'id': 10768, 'synset': 'sewage_disposal_plant.n.01', 'name': 'sewage_disposal_plant'}, {'id': 10769, 'synset': 'sewer.n.01', 'name': 'sewer'}, {'id': 10770, 'synset': 'sewing_basket.n.01', 'name': 'sewing_basket'}, {'id': 10771, 'synset': 'sewing_kit.n.01', 'name': 'sewing_kit'}, {'id': 10772, 'synset': 'sewing_needle.n.01', 'name': 'sewing_needle'}, {'id': 10773, 'synset': 'sewing_room.n.01', 'name': 'sewing_room'}, {'id': 10774, 'synset': 'sextant.n.02', 'name': 'sextant'}, {'id': 10775, 'synset': 'sgraffito.n.01', 'name': 'sgraffito'}, {'id': 10776, 'synset': 'shackle.n.01', 'name': 'shackle'}, {'id': 10777, 'synset': 'shackle.n.02', 'name': 'shackle'}, {'id': 10778, 'synset': 'shade.n.03', 'name': 'shade'}, {'id': 10779, 'synset': 'shadow_box.n.01', 'name': 'shadow_box'}, {'id': 10780, 'synset': 'shaft.n.03', 'name': 'shaft'}, {'id': 10781, 'synset': 'shag_rug.n.01', 'name': 'shag_rug'}, {'id': 10782, 'synset': 'shank.n.04', 'name': 'shank'}, {'id': 10783, 'synset': 'shank.n.03', 'name': 'shank'}, {'id': 10784, 'synset': 'shantung.n.01', 'name': 'shantung'}, {'id': 10785, 'synset': 'shaper.n.02', 'name': 'shaper'}, {'id': 10786, 'synset': 'shaping_tool.n.01', 'name': 'shaping_tool'}, {'id': 10787, 'synset': 'sharkskin.n.01', 'name': 'sharkskin'}, {'id': 10788, 'synset': 'shaving_brush.n.01', 'name': 'shaving_brush'}, {'id': 10789, 'synset': 'shaving_foam.n.01', 'name': 'shaving_foam'}, {'id': 10790, 'synset': 'shawm.n.01', 'name': 'shawm'}, {'id': 10791, 'synset': 'sheath.n.01', 'name': 'sheath'}, {'id': 10792, 'synset': 'sheathing.n.01', 'name': 'sheathing'}, {'id': 10793, 'synset': 'shed.n.01', 'name': 'shed'}, {'id': 10794, 'synset': 'sheep_bell.n.01', 'name': 'sheep_bell'}, {'id': 10795, 'synset': 'sheepshank.n.01', 'name': 'sheepshank'}, {'id': 10796, 'synset': 'sheepskin_coat.n.01', 'name': 'sheepskin_coat'}, {'id': 10797, 'synset': 'sheepwalk.n.01', 'name': 'sheepwalk'}, {'id': 10798, 'synset': 'sheet.n.03', 'name': 'sheet'}, {'id': 10799, 'synset': 'sheet_bend.n.01', 'name': 'sheet_bend'}, {'id': 10800, 'synset': 'sheeting.n.01', 'name': 'sheeting'}, {'id': 10801, 'synset': 'sheet_pile.n.01', 'name': 'sheet_pile'}, {'id': 10802, 'synset': 'sheetrock.n.01', 'name': 'Sheetrock'}, {'id': 10803, 'synset': 'shelf.n.01', 'name': 'shelf'}, {'id': 10804, 'synset': 'shelf_bracket.n.01', 'name': 'shelf_bracket'}, {'id': 10805, 'synset': 'shell.n.01', 'name': 'shell'}, {'id': 10806, 'synset': 'shell.n.08', 'name': 'shell'}, {'id': 10807, 'synset': 'shell.n.07', 'name': 'shell'}, {'id': 10808, 'synset': 'shellac.n.02', 'name': 'shellac'}, {'id': 10809, 'synset': 'shelter.n.01', 'name': 'shelter'}, {'id': 10810, 'synset': 'shelter.n.02', 'name': 'shelter'}, {'id': 10811, 'synset': 'shelter.n.05', 'name': 'shelter'}, {'id': 10812, 'synset': 'sheltered_workshop.n.01', 'name': 'sheltered_workshop'}, {'id': 10813, 'synset': 'sheraton.n.01', 'name': 'Sheraton'}, {'id': 10814, 'synset': 'shield.n.01', 'name': 'shield'}, {'id': 10815, 'synset': 'shielding.n.03', 'name': 'shielding'}, {'id': 10816, 'synset': 'shift_key.n.01', 'name': 'shift_key'}, {'id': 10817, 'synset': 'shillelagh.n.01', 'name': 'shillelagh'}, {'id': 10818, 'synset': 'shim.n.01', 'name': 'shim'}, {'id': 10819, 'synset': 'shingle.n.03', 'name': 'shingle'}, {'id': 10820, 'synset': 'shin_guard.n.01', 'name': 'shin_guard'}, {'id': 10821, 'synset': 'ship.n.01', 'name': 'ship'}, {'id': 10822, 'synset': 'shipboard_system.n.01', 'name': 'shipboard_system'}, {'id': 10823, 'synset': 'shipping.n.02', 'name': 'shipping'}, {'id': 10824, 'synset': 'shipping_room.n.01', 'name': 'shipping_room'}, {'id': 10825, 'synset': 'ship-towed_long-range_acoustic_detection_system.n.01', 'name': 'ship-towed_long-range_acoustic_detection_system'}, {'id': 10826, 'synset': 'shipwreck.n.01', 'name': 'shipwreck'}, {'id': 10827, 'synset': 'shirt_button.n.01', 'name': 'shirt_button'}, {'id': 10828, 'synset': 'shirtdress.n.01', 'name': 'shirtdress'}, {'id': 10829, 'synset': 'shirtfront.n.01', 'name': 'shirtfront'}, {'id': 10830, 'synset': 'shirting.n.01', 'name': 'shirting'}, {'id': 10831, 'synset': 'shirtsleeve.n.01', 'name': 'shirtsleeve'}, {'id': 10832, 'synset': 'shirttail.n.02', 'name': 'shirttail'}, {'id': 10833, 'synset': 'shirtwaist.n.01', 'name': 'shirtwaist'}, {'id': 10834, 'synset': 'shiv.n.01', 'name': 'shiv'}, {'id': 10835, 'synset': 'shock_absorber.n.01', 'name': 'shock_absorber'}, {'id': 10836, 'synset': 'shoe.n.02', 'name': 'shoe'}, {'id': 10837, 'synset': 'shoebox.n.02', 'name': 'shoebox'}, {'id': 10838, 'synset': 'shoehorn.n.01', 'name': 'shoehorn'}, {'id': 10839, 'synset': 'shoe_shop.n.01', 'name': 'shoe_shop'}, {'id': 10840, 'synset': 'shoetree.n.01', 'name': 'shoetree'}, {'id': 10841, 'synset': 'shofar.n.01', 'name': 'shofar'}, {'id': 10842, 'synset': 'shoji.n.01', 'name': 'shoji'}, {'id': 10843, 'synset': 'shooting_brake.n.01', 'name': 'shooting_brake'}, {'id': 10844, 'synset': 'shooting_lodge.n.01', 'name': 'shooting_lodge'}, {'id': 10845, 'synset': 'shooting_stick.n.01', 'name': 'shooting_stick'}, {'id': 10846, 'synset': 'shop.n.01', 'name': 'shop'}, {'id': 10847, 'synset': 'shop_bell.n.01', 'name': 'shop_bell'}, {'id': 10848, 'synset': 'shopping_basket.n.01', 'name': 'shopping_basket'}, {'id': 10849, 'synset': 'short_circuit.n.01', 'name': 'short_circuit'}, {'id': 10850, 'synset': 'short_iron.n.01', 'name': 'short_iron'}, {'id': 10851, 'synset': 'short_sleeve.n.01', 'name': 'short_sleeve'}, {'id': 10852, 'synset': 'shortwave_diathermy_machine.n.01', 'name': 'shortwave_diathermy_machine'}, {'id': 10853, 'synset': 'shot.n.12', 'name': 'shot'}, {'id': 10854, 'synset': 'shotgun.n.01', 'name': 'shotgun'}, {'id': 10855, 'synset': 'shotgun_shell.n.01', 'name': 'shotgun_shell'}, {'id': 10856, 'synset': 'shot_tower.n.01', 'name': 'shot_tower'}, {'id': 10857, 'synset': 'shoulder.n.04', 'name': 'shoulder'}, {'id': 10858, 'synset': 'shouldered_arch.n.01', 'name': 'shouldered_arch'}, {'id': 10859, 'synset': 'shoulder_holster.n.01', 'name': 'shoulder_holster'}, {'id': 10860, 'synset': 'shoulder_pad.n.01', 'name': 'shoulder_pad'}, {'id': 10861, 'synset': 'shoulder_patch.n.01', 'name': 'shoulder_patch'}, {'id': 10862, 'synset': 'shovel.n.03', 'name': 'shovel'}, {'id': 10863, 'synset': 'shovel_hat.n.01', 'name': 'shovel_hat'}, {'id': 10864, 'synset': 'showboat.n.01', 'name': 'showboat'}, {'id': 10865, 'synset': 'shower_room.n.01', 'name': 'shower_room'}, {'id': 10866, 'synset': 'shower_stall.n.01', 'name': 'shower_stall'}, {'id': 10867, 'synset': 'showroom.n.01', 'name': 'showroom'}, {'id': 10868, 'synset': 'shrapnel.n.01', 'name': 'shrapnel'}, {'id': 10869, 'synset': 'shrimper.n.01', 'name': 'shrimper'}, {'id': 10870, 'synset': 'shrine.n.01', 'name': 'shrine'}, {'id': 10871, 'synset': 'shrink-wrap.n.01', 'name': 'shrink-wrap'}, {'id': 10872, 'synset': 'shunt.n.03', 'name': 'shunt'}, {'id': 10873, 'synset': 'shunt.n.02', 'name': 'shunt'}, {'id': 10874, 'synset': 'shunter.n.01', 'name': 'shunter'}, {'id': 10875, 'synset': 'shutter.n.02', 'name': 'shutter'}, {'id': 10876, 'synset': 'shutter.n.01', 'name': 'shutter'}, {'id': 10877, 'synset': 'shuttle.n.03', 'name': 'shuttle'}, {'id': 10878, 'synset': 'shuttle.n.02', 'name': 'shuttle'}, {'id': 10879, 'synset': 'shuttle_bus.n.01', 'name': 'shuttle_bus'}, {'id': 10880, 'synset': 'shuttlecock.n.01', 'name': 'shuttlecock'}, {'id': 10881, 'synset': 'shuttle_helicopter.n.01', 'name': 'shuttle_helicopter'}, {'id': 10882, 'synset': 'sibley_tent.n.01', 'name': 'Sibley_tent'}, {'id': 10883, 'synset': 'sickbay.n.01', 'name': 'sickbay'}, {'id': 10884, 'synset': 'sickbed.n.01', 'name': 'sickbed'}, {'id': 10885, 'synset': 'sickle.n.01', 'name': 'sickle'}, {'id': 10886, 'synset': 'sickroom.n.01', 'name': 'sickroom'}, {'id': 10887, 'synset': 'sideboard.n.02', 'name': 'sideboard'}, {'id': 10888, 'synset': 'sidecar.n.02', 'name': 'sidecar'}, {'id': 10889, 'synset': 'side_chapel.n.01', 'name': 'side_chapel'}, {'id': 10890, 'synset': 'sidelight.n.01', 'name': 'sidelight'}, {'id': 10891, 'synset': 'sidesaddle.n.01', 'name': 'sidesaddle'}, {'id': 10892, 'synset': 'sidewalk.n.01', 'name': 'sidewalk'}, {'id': 10893, 'synset': 'sidewall.n.02', 'name': 'sidewall'}, {'id': 10894, 'synset': 'side-wheeler.n.01', 'name': 'side-wheeler'}, {'id': 10895, 'synset': 'sidewinder.n.02', 'name': 'sidewinder'}, {'id': 10896, 'synset': 'sieve.n.01', 'name': 'sieve'}, {'id': 10897, 'synset': 'sifter.n.01', 'name': 'sifter'}, {'id': 10898, 'synset': 'sights.n.01', 'name': 'sights'}, {'id': 10899, 'synset': 'sigmoidoscope.n.01', 'name': 'sigmoidoscope'}, {'id': 10900, 'synset': 'signal_box.n.01', 'name': 'signal_box'}, {'id': 10901, 'synset': 'signaling_device.n.01', 'name': 'signaling_device'}, {'id': 10902, 'synset': 'silencer.n.02', 'name': 'silencer'}, {'id': 10903, 'synset': 'silent_butler.n.01', 'name': 'silent_butler'}, {'id': 10904, 'synset': 'silex.n.02', 'name': 'Silex'}, {'id': 10905, 'synset': 'silk.n.01', 'name': 'silk'}, {'id': 10906, 'synset': 'silks.n.01', 'name': 'silks'}, {'id': 10907, 'synset': 'silver_plate.n.02', 'name': 'silver_plate'}, {'id': 10908, 'synset': 'silverpoint.n.01', 'name': 'silverpoint'}, {'id': 10909, 'synset': 'simple_pendulum.n.01', 'name': 'simple_pendulum'}, {'id': 10910, 'synset': 'simulator.n.01', 'name': 'simulator'}, {'id': 10911, 'synset': 'single_bed.n.01', 'name': 'single_bed'}, {'id': 10912, 'synset': 'single-breasted_jacket.n.01', 'name': 'single-breasted_jacket'}, {'id': 10913, 'synset': 'single-breasted_suit.n.01', 'name': 'single-breasted_suit'}, {'id': 10914, 'synset': 'single_prop.n.01', 'name': 'single_prop'}, {'id': 10915, 'synset': 'single-reed_instrument.n.01', 'name': 'single-reed_instrument'}, {'id': 10916, 'synset': 'single-rotor_helicopter.n.01', 'name': 'single-rotor_helicopter'}, {'id': 10917, 'synset': 'singlestick.n.01', 'name': 'singlestick'}, {'id': 10918, 'synset': 'singlet.n.01', 'name': 'singlet'}, {'id': 10919, 'synset': 'siren.n.04', 'name': 'siren'}, {'id': 10920, 'synset': 'sister_ship.n.01', 'name': 'sister_ship'}, {'id': 10921, 'synset': 'sitar.n.01', 'name': 'sitar'}, {'id': 10922, 'synset': 'sitz_bath.n.01', 'name': 'sitz_bath'}, {'id': 10923, 'synset': 'six-pack.n.01', 'name': 'six-pack'}, {'id': 10924, 'synset': 'skate.n.01', 'name': 'skate'}, {'id': 10925, 'synset': 'skeg.n.01', 'name': 'skeg'}, {'id': 10926, 'synset': 'skein.n.01', 'name': 'skein'}, {'id': 10927, 'synset': 'skeleton.n.04', 'name': 'skeleton'}, {'id': 10928, 'synset': 'skeleton_key.n.01', 'name': 'skeleton_key'}, {'id': 10929, 'synset': 'skep.n.02', 'name': 'skep'}, {'id': 10930, 'synset': 'skep.n.01', 'name': 'skep'}, {'id': 10931, 'synset': 'sketch.n.01', 'name': 'sketch'}, {'id': 10932, 'synset': 'sketcher.n.02', 'name': 'sketcher'}, {'id': 10933, 'synset': 'skew_arch.n.01', 'name': 'skew_arch'}, {'id': 10934, 'synset': 'ski_binding.n.01', 'name': 'ski_binding'}, {'id': 10935, 'synset': 'skibob.n.01', 'name': 'skibob'}, {'id': 10936, 'synset': 'ski_cap.n.01', 'name': 'ski_cap'}, {'id': 10937, 'synset': 'skidder.n.03', 'name': 'skidder'}, {'id': 10938, 'synset': 'skid_lid.n.01', 'name': 'skid_lid'}, {'id': 10939, 'synset': 'skiff.n.01', 'name': 'skiff'}, {'id': 10940, 'synset': 'ski_jump.n.01', 'name': 'ski_jump'}, {'id': 10941, 'synset': 'ski_lodge.n.01', 'name': 'ski_lodge'}, {'id': 10942, 'synset': 'ski_mask.n.01', 'name': 'ski_mask'}, {'id': 10943, 'synset': 'skimmer.n.02', 'name': 'skimmer'}, {'id': 10944, 'synset': 'ski-plane.n.01', 'name': 'ski-plane'}, {'id': 10945, 'synset': 'ski_rack.n.01', 'name': 'ski_rack'}, {'id': 10946, 'synset': 'skirt.n.01', 'name': 'skirt'}, {'id': 10947, 'synset': 'ski_tow.n.01', 'name': 'ski_tow'}, {'id': 10948, 'synset': 'skivvies.n.01', 'name': 'Skivvies'}, {'id': 10949, 'synset': 'skybox.n.01', 'name': 'skybox'}, {'id': 10950, 'synset': 'skyhook.n.02', 'name': 'skyhook'}, {'id': 10951, 'synset': 'skylight.n.01', 'name': 'skylight'}, {'id': 10952, 'synset': 'skysail.n.01', 'name': 'skysail'}, {'id': 10953, 'synset': 'skyscraper.n.01', 'name': 'skyscraper'}, {'id': 10954, 'synset': 'skywalk.n.01', 'name': 'skywalk'}, {'id': 10955, 'synset': 'slacks.n.01', 'name': 'slacks'}, {'id': 10956, 'synset': 'slack_suit.n.01', 'name': 'slack_suit'}, {'id': 10957, 'synset': 'slasher.n.02', 'name': 'slasher'}, {'id': 10958, 'synset': 'slash_pocket.n.01', 'name': 'slash_pocket'}, {'id': 10959, 'synset': 'slat.n.01', 'name': 'slat'}, {'id': 10960, 'synset': 'slate.n.01', 'name': 'slate'}, {'id': 10961, 'synset': 'slate_pencil.n.01', 'name': 'slate_pencil'}, {'id': 10962, 'synset': 'slate_roof.n.01', 'name': 'slate_roof'}, {'id': 10963, 'synset': 'sleeper.n.07', 'name': 'sleeper'}, {'id': 10964, 'synset': 'sleeper.n.06', 'name': 'sleeper'}, {'id': 10965, 'synset': 'sleeping_car.n.01', 'name': 'sleeping_car'}, {'id': 10966, 'synset': 'sleeve.n.01', 'name': 'sleeve'}, {'id': 10967, 'synset': 'sleeve.n.02', 'name': 'sleeve'}, {'id': 10968, 'synset': 'sleigh_bed.n.01', 'name': 'sleigh_bed'}, {'id': 10969, 'synset': 'sleigh_bell.n.01', 'name': 'sleigh_bell'}, {'id': 10970, 'synset': 'slice_bar.n.01', 'name': 'slice_bar'}, {'id': 10971, 'synset': 'slicer.n.03', 'name': 'slicer'}, {'id': 10972, 'synset': 'slicer.n.02', 'name': 'slicer'}, {'id': 10973, 'synset': 'slide.n.04', 'name': 'slide'}, {'id': 10974, 'synset': 'slide_fastener.n.01', 'name': 'slide_fastener'}, {'id': 10975, 'synset': 'slide_projector.n.01', 'name': 'slide_projector'}, {'id': 10976, 'synset': 'slide_rule.n.01', 'name': 'slide_rule'}, {'id': 10977, 'synset': 'slide_valve.n.01', 'name': 'slide_valve'}, {'id': 10978, 'synset': 'sliding_door.n.01', 'name': 'sliding_door'}, {'id': 10979, 'synset': 'sliding_seat.n.01', 'name': 'sliding_seat'}, {'id': 10980, 'synset': 'sliding_window.n.01', 'name': 'sliding_window'}, {'id': 10981, 'synset': 'sling.n.04', 'name': 'sling'}, {'id': 10982, 'synset': 'slingback.n.01', 'name': 'slingback'}, {'id': 10983, 'synset': 'slinger_ring.n.01', 'name': 'slinger_ring'}, {'id': 10984, 'synset': 'slip_clutch.n.01', 'name': 'slip_clutch'}, {'id': 10985, 'synset': 'slipcover.n.01', 'name': 'slipcover'}, {'id': 10986, 'synset': 'slip-joint_pliers.n.01', 'name': 'slip-joint_pliers'}, {'id': 10987, 'synset': 'slipknot.n.01', 'name': 'slipknot'}, {'id': 10988, 'synset': 'slip-on.n.01', 'name': 'slip-on'}, {'id': 10989, 'synset': 'slip_ring.n.01', 'name': 'slip_ring'}, {'id': 10990, 'synset': 'slit_lamp.n.01', 'name': 'slit_lamp'}, {'id': 10991, 'synset': 'slit_trench.n.01', 'name': 'slit_trench'}, {'id': 10992, 'synset': 'sloop.n.01', 'name': 'sloop'}, {'id': 10993, 'synset': 'sloop_of_war.n.01', 'name': 'sloop_of_war'}, {'id': 10994, 'synset': 'slop_basin.n.01', 'name': 'slop_basin'}, {'id': 10995, 'synset': 'slop_pail.n.01', 'name': 'slop_pail'}, {'id': 10996, 'synset': 'slops.n.02', 'name': 'slops'}, {'id': 10997, 'synset': 'slopshop.n.01', 'name': 'slopshop'}, {'id': 10998, 'synset': 'slot.n.07', 'name': 'slot'}, {'id': 10999, 'synset': 'slot_machine.n.01', 'name': 'slot_machine'}, {'id': 11000, 'synset': 'sluice.n.01', 'name': 'sluice'}, {'id': 11001, 'synset': 'smack.n.03', 'name': 'smack'}, {'id': 11002, 'synset': 'small_boat.n.01', 'name': 'small_boat'}, {'id': 11003, 'synset': 'small_computer_system_interface.n.01', 'name': 'small_computer_system_interface'}, {'id': 11004, 'synset': 'small_ship.n.01', 'name': 'small_ship'}, {'id': 11005, 'synset': 'small_stores.n.01', 'name': 'small_stores'}, {'id': 11006, 'synset': 'smart_bomb.n.01', 'name': 'smart_bomb'}, {'id': 11007, 'synset': 'smelling_bottle.n.01', 'name': 'smelling_bottle'}, {'id': 11008, 'synset': 'smocking.n.01', 'name': 'smocking'}, {'id': 11009, 'synset': 'smoke_bomb.n.01', 'name': 'smoke_bomb'}, {'id': 11010, 'synset': 'smokehouse.n.01', 'name': 'smokehouse'}, {'id': 11011, 'synset': 'smoker.n.03', 'name': 'smoker'}, {'id': 11012, 'synset': 'smoke_screen.n.01', 'name': 'smoke_screen'}, {'id': 11013, 'synset': 'smoking_room.n.01', 'name': 'smoking_room'}, {'id': 11014, 'synset': 'smoothbore.n.01', 'name': 'smoothbore'}, {'id': 11015, 'synset': 'smooth_plane.n.01', 'name': 'smooth_plane'}, {'id': 11016, 'synset': 'snack_bar.n.01', 'name': 'snack_bar'}, {'id': 11017, 'synset': 'snaffle.n.01', 'name': 'snaffle'}, {'id': 11018, 'synset': 'snap.n.10', 'name': 'snap'}, {'id': 11019, 'synset': 'snap_brim.n.01', 'name': 'snap_brim'}, {'id': 11020, 'synset': 'snap-brim_hat.n.01', 'name': 'snap-brim_hat'}, {'id': 11021, 'synset': 'snare.n.05', 'name': 'snare'}, {'id': 11022, 'synset': 'snare_drum.n.01', 'name': 'snare_drum'}, {'id': 11023, 'synset': 'snatch_block.n.01', 'name': 'snatch_block'}, {'id': 11024, 'synset': 'snifter.n.01', 'name': 'snifter'}, {'id': 11025, 'synset': 'sniper_rifle.n.01', 'name': 'sniper_rifle'}, {'id': 11026, 'synset': 'snips.n.01', 'name': 'snips'}, {'id': 11027, 'synset': 'sno-cat.n.01', 'name': 'Sno-cat'}, {'id': 11028, 'synset': 'snood.n.01', 'name': 'snood'}, {'id': 11029, 'synset': 'snorkel.n.02', 'name': 'snorkel'}, {'id': 11030, 'synset': 'snorkel.n.01', 'name': 'snorkel'}, {'id': 11031, 'synset': 'snowbank.n.01', 'name': 'snowbank'}, {'id': 11032, 'synset': 'snowplow.n.01', 'name': 'snowplow'}, {'id': 11033, 'synset': 'snowshoe.n.01', 'name': 'snowshoe'}, {'id': 11034, 'synset': 'snowsuit.n.01', 'name': 'snowsuit'}, {'id': 11035, 'synset': 'snow_thrower.n.01', 'name': 'snow_thrower'}, {'id': 11036, 'synset': 'snuffbox.n.01', 'name': 'snuffbox'}, {'id': 11037, 'synset': 'snuffer.n.01', 'name': 'snuffer'}, {'id': 11038, 'synset': 'snuffers.n.01', 'name': 'snuffers'}, {'id': 11039, 'synset': 'soapbox.n.01', 'name': 'soapbox'}, {'id': 11040, 'synset': 'soap_dish.n.01', 'name': 'soap_dish'}, {'id': 11041, 'synset': 'soap_dispenser.n.01', 'name': 'soap_dispenser'}, {'id': 11042, 'synset': 'soap_pad.n.01', 'name': 'soap_pad'}, {'id': 11043, 'synset': 'socket.n.02', 'name': 'socket'}, {'id': 11044, 'synset': 'socket_wrench.n.01', 'name': 'socket_wrench'}, {'id': 11045, 'synset': 'socle.n.01', 'name': 'socle'}, {'id': 11046, 'synset': 'soda_can.n.01', 'name': 'soda_can'}, {'id': 11047, 'synset': 'soda_fountain.n.02', 'name': 'soda_fountain'}, {'id': 11048, 'synset': 'soda_fountain.n.01', 'name': 'soda_fountain'}, {'id': 11049, 'synset': 'sod_house.n.01', 'name': 'sod_house'}, {'id': 11050, 'synset': 'sodium-vapor_lamp.n.01', 'name': 'sodium-vapor_lamp'}, {'id': 11051, 'synset': 'soffit.n.01', 'name': 'soffit'}, {'id': 11052, 'synset': 'soft_pedal.n.01', 'name': 'soft_pedal'}, {'id': 11053, 'synset': 'soil_pipe.n.01', 'name': 'soil_pipe'}, {'id': 11054, 'synset': 'solar_cell.n.01', 'name': 'solar_cell'}, {'id': 11055, 'synset': 'solar_dish.n.01', 'name': 'solar_dish'}, {'id': 11056, 'synset': 'solar_heater.n.01', 'name': 'solar_heater'}, {'id': 11057, 'synset': 'solar_house.n.01', 'name': 'solar_house'}, {'id': 11058, 'synset': 'solar_telescope.n.01', 'name': 'solar_telescope'}, {'id': 11059, 'synset': 'solar_thermal_system.n.01', 'name': 'solar_thermal_system'}, {'id': 11060, 'synset': 'soldering_iron.n.01', 'name': 'soldering_iron'}, {'id': 11061, 'synset': 'solenoid.n.01', 'name': 'solenoid'}, {'id': 11062, 'synset': 'solleret.n.01', 'name': 'solleret'}, {'id': 11063, 'synset': 'sonic_depth_finder.n.01', 'name': 'sonic_depth_finder'}, {'id': 11064, 'synset': 'sonogram.n.01', 'name': 'sonogram'}, {'id': 11065, 'synset': 'sonograph.n.01', 'name': 'sonograph'}, {'id': 11066, 'synset': 'sorter.n.02', 'name': 'sorter'}, {'id': 11067, 'synset': 'souk.n.01', 'name': 'souk'}, {'id': 11068, 'synset': 'sound_bow.n.01', 'name': 'sound_bow'}, {'id': 11069, 'synset': 'soundbox.n.01', 'name': 'soundbox'}, {'id': 11070, 'synset': 'sound_camera.n.01', 'name': 'sound_camera'}, {'id': 11071, 'synset': 'sounder.n.01', 'name': 'sounder'}, {'id': 11072, 'synset': 'sound_film.n.01', 'name': 'sound_film'}, {'id': 11073, 'synset': 'sounding_board.n.02', 'name': 'sounding_board'}, {'id': 11074, 'synset': 'sounding_rocket.n.01', 'name': 'sounding_rocket'}, {'id': 11075, 'synset': 'sound_recording.n.01', 'name': 'sound_recording'}, {'id': 11076, 'synset': 'sound_spectrograph.n.01', 'name': 'sound_spectrograph'}, {'id': 11077, 'synset': 'soup_ladle.n.01', 'name': 'soup_ladle'}, {'id': 11078, 'synset': 'source_of_illumination.n.01', 'name': 'source_of_illumination'}, {'id': 11079, 'synset': 'sourdine.n.02', 'name': 'sourdine'}, {'id': 11080, 'synset': 'soutache.n.01', 'name': 'soutache'}, {'id': 11081, 'synset': 'soutane.n.01', 'name': 'soutane'}, {'id': 11082, 'synset': "sou'wester.n.02", 'name': "sou'wester"}, {'id': 11083, 'synset': 'soybean_future.n.01', 'name': 'soybean_future'}, {'id': 11084, 'synset': 'space_bar.n.01', 'name': 'space_bar'}, {'id': 11085, 'synset': 'space_capsule.n.01', 'name': 'space_capsule'}, {'id': 11086, 'synset': 'spacecraft.n.01', 'name': 'spacecraft'}, {'id': 11087, 'synset': 'space_heater.n.01', 'name': 'space_heater'}, {'id': 11088, 'synset': 'space_helmet.n.01', 'name': 'space_helmet'}, {'id': 11089, 'synset': 'space_rocket.n.01', 'name': 'space_rocket'}, {'id': 11090, 'synset': 'space_station.n.01', 'name': 'space_station'}, {'id': 11091, 'synset': 'spacesuit.n.01', 'name': 'spacesuit'}, {'id': 11092, 'synset': 'spade.n.02', 'name': 'spade'}, {'id': 11093, 'synset': 'spade_bit.n.01', 'name': 'spade_bit'}, {'id': 11094, 'synset': 'spaghetti_junction.n.01', 'name': 'spaghetti_junction'}, {'id': 11095, 'synset': 'spandau.n.01', 'name': 'Spandau'}, {'id': 11096, 'synset': 'spandex.n.01', 'name': 'spandex'}, {'id': 11097, 'synset': 'spandrel.n.01', 'name': 'spandrel'}, {'id': 11098, 'synset': 'spanker.n.02', 'name': 'spanker'}, {'id': 11099, 'synset': 'spar.n.02', 'name': 'spar'}, {'id': 11100, 'synset': 'sparge_pipe.n.01', 'name': 'sparge_pipe'}, {'id': 11101, 'synset': 'spark_arrester.n.02', 'name': 'spark_arrester'}, {'id': 11102, 'synset': 'spark_arrester.n.01', 'name': 'spark_arrester'}, {'id': 11103, 'synset': 'spark_chamber.n.01', 'name': 'spark_chamber'}, {'id': 11104, 'synset': 'spark_coil.n.01', 'name': 'spark_coil'}, {'id': 11105, 'synset': 'spark_gap.n.01', 'name': 'spark_gap'}, {'id': 11106, 'synset': 'spark_lever.n.01', 'name': 'spark_lever'}, {'id': 11107, 'synset': 'spark_plug.n.01', 'name': 'spark_plug'}, {'id': 11108, 'synset': 'sparkplug_wrench.n.01', 'name': 'sparkplug_wrench'}, {'id': 11109, 'synset': 'spark_transmitter.n.01', 'name': 'spark_transmitter'}, {'id': 11110, 'synset': 'spat.n.02', 'name': 'spat'}, {'id': 11111, 'synset': 'spatula.n.01', 'name': 'spatula'}, {'id': 11112, 'synset': 'speakerphone.n.01', 'name': 'speakerphone'}, {'id': 11113, 'synset': 'speaking_trumpet.n.01', 'name': 'speaking_trumpet'}, {'id': 11114, 'synset': 'spear.n.02', 'name': 'spear'}, {'id': 11115, 'synset': 'specialty_store.n.01', 'name': 'specialty_store'}, {'id': 11116, 'synset': 'specimen_bottle.n.01', 'name': 'specimen_bottle'}, {'id': 11117, 'synset': 'spectacle.n.02', 'name': 'spectacle'}, {'id': 11118, 'synset': 'spectator_pump.n.01', 'name': 'spectator_pump'}, {'id': 11119, 'synset': 'spectrograph.n.01', 'name': 'spectrograph'}, {'id': 11120, 'synset': 'spectrophotometer.n.01', 'name': 'spectrophotometer'}, {'id': 11121, 'synset': 'spectroscope.n.01', 'name': 'spectroscope'}, {'id': 11122, 'synset': 'speculum.n.02', 'name': 'speculum'}, {'id': 11123, 'synset': 'speedboat.n.01', 'name': 'speedboat'}, {'id': 11124, 'synset': 'speed_bump.n.01', 'name': 'speed_bump'}, {'id': 11125, 'synset': 'speedometer.n.01', 'name': 'speedometer'}, {'id': 11126, 'synset': 'speed_skate.n.01', 'name': 'speed_skate'}, {'id': 11127, 'synset': 'spherometer.n.01', 'name': 'spherometer'}, {'id': 11128, 'synset': 'sphygmomanometer.n.01', 'name': 'sphygmomanometer'}, {'id': 11129, 'synset': 'spicemill.n.01', 'name': 'spicemill'}, {'id': 11130, 'synset': 'spider.n.03', 'name': 'spider'}, {'id': 11131, 'synset': 'spider_web.n.01', 'name': 'spider_web'}, {'id': 11132, 'synset': 'spike.n.02', 'name': 'spike'}, {'id': 11133, 'synset': 'spike.n.11', 'name': 'spike'}, {'id': 11134, 'synset': 'spindle.n.04', 'name': 'spindle'}, {'id': 11135, 'synset': 'spindle.n.03', 'name': 'spindle'}, {'id': 11136, 'synset': 'spindle.n.02', 'name': 'spindle'}, {'id': 11137, 'synset': 'spin_dryer.n.01', 'name': 'spin_dryer'}, {'id': 11138, 'synset': 'spinet.n.02', 'name': 'spinet'}, {'id': 11139, 'synset': 'spinet.n.01', 'name': 'spinet'}, {'id': 11140, 'synset': 'spinnaker.n.01', 'name': 'spinnaker'}, {'id': 11141, 'synset': 'spinner.n.03', 'name': 'spinner'}, {'id': 11142, 'synset': 'spinning_frame.n.01', 'name': 'spinning_frame'}, {'id': 11143, 'synset': 'spinning_jenny.n.01', 'name': 'spinning_jenny'}, {'id': 11144, 'synset': 'spinning_machine.n.01', 'name': 'spinning_machine'}, {'id': 11145, 'synset': 'spinning_rod.n.01', 'name': 'spinning_rod'}, {'id': 11146, 'synset': 'spinning_wheel.n.01', 'name': 'spinning_wheel'}, {'id': 11147, 'synset': 'spiral_bandage.n.01', 'name': 'spiral_bandage'}, {'id': 11148, 'synset': 'spiral_ratchet_screwdriver.n.01', 'name': 'spiral_ratchet_screwdriver'}, {'id': 11149, 'synset': 'spiral_spring.n.01', 'name': 'spiral_spring'}, {'id': 11150, 'synset': 'spirit_lamp.n.01', 'name': 'spirit_lamp'}, {'id': 11151, 'synset': 'spirit_stove.n.01', 'name': 'spirit_stove'}, {'id': 11152, 'synset': 'spirometer.n.01', 'name': 'spirometer'}, {'id': 11153, 'synset': 'spit.n.03', 'name': 'spit'}, {'id': 11154, 'synset': 'spittoon.n.01', 'name': 'spittoon'}, {'id': 11155, 'synset': 'splashboard.n.02', 'name': 'splashboard'}, {'id': 11156, 'synset': 'splasher.n.01', 'name': 'splasher'}, {'id': 11157, 'synset': 'splice.n.01', 'name': 'splice'}, {'id': 11158, 'synset': 'splicer.n.03', 'name': 'splicer'}, {'id': 11159, 'synset': 'splint.n.02', 'name': 'splint'}, {'id': 11160, 'synset': 'split_rail.n.01', 'name': 'split_rail'}, {'id': 11161, 'synset': 'spode.n.02', 'name': 'Spode'}, {'id': 11162, 'synset': 'spoiler.n.05', 'name': 'spoiler'}, {'id': 11163, 'synset': 'spoiler.n.04', 'name': 'spoiler'}, {'id': 11164, 'synset': 'spoke.n.01', 'name': 'spoke'}, {'id': 11165, 'synset': 'spokeshave.n.01', 'name': 'spokeshave'}, {'id': 11166, 'synset': 'sponge_cloth.n.01', 'name': 'sponge_cloth'}, {'id': 11167, 'synset': 'sponge_mop.n.01', 'name': 'sponge_mop'}, {'id': 11168, 'synset': 'spoon.n.03', 'name': 'spoon'}, {'id': 11169, 'synset': 'spork.n.01', 'name': 'Spork'}, {'id': 11170, 'synset': 'sporran.n.01', 'name': 'sporran'}, {'id': 11171, 'synset': 'sport_kite.n.01', 'name': 'sport_kite'}, {'id': 11172, 'synset': 'sports_car.n.01', 'name': 'sports_car'}, {'id': 11173, 'synset': 'sports_equipment.n.01', 'name': 'sports_equipment'}, {'id': 11174, 'synset': 'sports_implement.n.01', 'name': 'sports_implement'}, {'id': 11175, 'synset': 'sport_utility.n.01', 'name': 'sport_utility'}, {'id': 11176, 'synset': 'spot.n.07', 'name': 'spot'}, {'id': 11177, 'synset': 'spot_weld.n.01', 'name': 'spot_weld'}, {'id': 11178, 'synset': 'spouter.n.02', 'name': 'spouter'}, {'id': 11179, 'synset': 'sprag.n.01', 'name': 'sprag'}, {'id': 11180, 'synset': 'spray_gun.n.01', 'name': 'spray_gun'}, {'id': 11181, 'synset': 'spray_paint.n.01', 'name': 'spray_paint'}, {'id': 11182, 'synset': 'spreader.n.01', 'name': 'spreader'}, {'id': 11183, 'synset': 'sprig.n.02', 'name': 'sprig'}, {'id': 11184, 'synset': 'spring.n.02', 'name': 'spring'}, {'id': 11185, 'synset': 'spring_balance.n.01', 'name': 'spring_balance'}, {'id': 11186, 'synset': 'springboard.n.01', 'name': 'springboard'}, {'id': 11187, 'synset': 'sprinkler.n.01', 'name': 'sprinkler'}, {'id': 11188, 'synset': 'sprinkler_system.n.01', 'name': 'sprinkler_system'}, {'id': 11189, 'synset': 'sprit.n.01', 'name': 'sprit'}, {'id': 11190, 'synset': 'spritsail.n.01', 'name': 'spritsail'}, {'id': 11191, 'synset': 'sprocket.n.02', 'name': 'sprocket'}, {'id': 11192, 'synset': 'sprocket.n.01', 'name': 'sprocket'}, {'id': 11193, 'synset': 'spun_yarn.n.01', 'name': 'spun_yarn'}, {'id': 11194, 'synset': 'spur.n.04', 'name': 'spur'}, {'id': 11195, 'synset': 'spur_gear.n.01', 'name': 'spur_gear'}, {'id': 11196, 'synset': 'sputnik.n.01', 'name': 'sputnik'}, {'id': 11197, 'synset': 'spy_satellite.n.01', 'name': 'spy_satellite'}, {'id': 11198, 'synset': 'squad_room.n.01', 'name': 'squad_room'}, {'id': 11199, 'synset': 'square.n.08', 'name': 'square'}, {'id': 11200, 'synset': 'square_knot.n.01', 'name': 'square_knot'}, {'id': 11201, 'synset': 'square-rigger.n.01', 'name': 'square-rigger'}, {'id': 11202, 'synset': 'square_sail.n.01', 'name': 'square_sail'}, {'id': 11203, 'synset': 'squash_ball.n.01', 'name': 'squash_ball'}, {'id': 11204, 'synset': 'squash_racket.n.01', 'name': 'squash_racket'}, {'id': 11205, 'synset': 'squawk_box.n.01', 'name': 'squawk_box'}, {'id': 11206, 'synset': 'squeegee.n.01', 'name': 'squeegee'}, {'id': 11207, 'synset': 'squeezer.n.01', 'name': 'squeezer'}, {'id': 11208, 'synset': 'squelch_circuit.n.01', 'name': 'squelch_circuit'}, {'id': 11209, 'synset': 'squinch.n.01', 'name': 'squinch'}, {'id': 11210, 'synset': 'stabilizer.n.03', 'name': 'stabilizer'}, {'id': 11211, 'synset': 'stabilizer.n.02', 'name': 'stabilizer'}, {'id': 11212, 'synset': 'stabilizer_bar.n.01', 'name': 'stabilizer_bar'}, {'id': 11213, 'synset': 'stable.n.01', 'name': 'stable'}, {'id': 11214, 'synset': 'stable_gear.n.01', 'name': 'stable_gear'}, {'id': 11215, 'synset': 'stabling.n.01', 'name': 'stabling'}, {'id': 11216, 'synset': 'stacks.n.02', 'name': 'stacks'}, {'id': 11217, 'synset': 'staddle.n.01', 'name': 'staddle'}, {'id': 11218, 'synset': 'stadium.n.01', 'name': 'stadium'}, {'id': 11219, 'synset': 'stage.n.03', 'name': 'stage'}, {'id': 11220, 'synset': 'stained-glass_window.n.01', 'name': 'stained-glass_window'}, {'id': 11221, 'synset': 'stair-carpet.n.01', 'name': 'stair-carpet'}, {'id': 11222, 'synset': 'stair-rod.n.01', 'name': 'stair-rod'}, {'id': 11223, 'synset': 'stairwell.n.01', 'name': 'stairwell'}, {'id': 11224, 'synset': 'stake.n.05', 'name': 'stake'}, {'id': 11225, 'synset': 'stall.n.03', 'name': 'stall'}, {'id': 11226, 'synset': 'stall.n.01', 'name': 'stall'}, {'id': 11227, 'synset': 'stamp.n.08', 'name': 'stamp'}, {'id': 11228, 'synset': 'stamp_mill.n.01', 'name': 'stamp_mill'}, {'id': 11229, 'synset': 'stamping_machine.n.01', 'name': 'stamping_machine'}, {'id': 11230, 'synset': 'stanchion.n.01', 'name': 'stanchion'}, {'id': 11231, 'synset': 'stand.n.04', 'name': 'stand'}, {'id': 11232, 'synset': 'standard.n.05', 'name': 'standard'}, {'id': 11233, 'synset': 'standard_cell.n.01', 'name': 'standard_cell'}, {'id': 11234, 'synset': 'standard_transmission.n.01', 'name': 'standard_transmission'}, {'id': 11235, 'synset': 'standing_press.n.01', 'name': 'standing_press'}, {'id': 11236, 'synset': 'stanhope.n.01', 'name': 'stanhope'}, {'id': 11237, 'synset': 'stanley_steamer.n.01', 'name': 'Stanley_Steamer'}, {'id': 11238, 'synset': 'staple.n.05', 'name': 'staple'}, {'id': 11239, 'synset': 'staple.n.04', 'name': 'staple'}, {'id': 11240, 'synset': 'staple_gun.n.01', 'name': 'staple_gun'}, {'id': 11241, 'synset': 'starship.n.01', 'name': 'starship'}, {'id': 11242, 'synset': 'starter.n.01', 'name': 'starter'}, {'id': 11243, 'synset': 'starting_gate.n.01', 'name': 'starting_gate'}, {'id': 11244, 'synset': 'stassano_furnace.n.01', 'name': 'Stassano_furnace'}, {'id': 11245, 'synset': 'statehouse.n.01', 'name': 'Statehouse'}, {'id': 11246, 'synset': 'stately_home.n.01', 'name': 'stately_home'}, {'id': 11247, 'synset': 'state_prison.n.01', 'name': 'state_prison'}, {'id': 11248, 'synset': 'stateroom.n.01', 'name': 'stateroom'}, {'id': 11249, 'synset': 'static_tube.n.01', 'name': 'static_tube'}, {'id': 11250, 'synset': 'station.n.01', 'name': 'station'}, {'id': 11251, 'synset': 'stator.n.01', 'name': 'stator'}, {'id': 11252, 'synset': 'stay.n.05', 'name': 'stay'}, {'id': 11253, 'synset': 'staysail.n.01', 'name': 'staysail'}, {'id': 11254, 'synset': 'steakhouse.n.01', 'name': 'steakhouse'}, {'id': 11255, 'synset': 'stealth_aircraft.n.01', 'name': 'stealth_aircraft'}, {'id': 11256, 'synset': 'stealth_bomber.n.01', 'name': 'stealth_bomber'}, {'id': 11257, 'synset': 'stealth_fighter.n.01', 'name': 'stealth_fighter'}, {'id': 11258, 'synset': 'steam_bath.n.01', 'name': 'steam_bath'}, {'id': 11259, 'synset': 'steamboat.n.01', 'name': 'steamboat'}, {'id': 11260, 'synset': 'steam_chest.n.01', 'name': 'steam_chest'}, {'id': 11261, 'synset': 'steam_engine.n.01', 'name': 'steam_engine'}, {'id': 11262, 'synset': 'steamer.n.03', 'name': 'steamer'}, {'id': 11263, 'synset': 'steamer.n.02', 'name': 'steamer'}, {'id': 11264, 'synset': 'steam_iron.n.01', 'name': 'steam_iron'}, {'id': 11265, 'synset': 'steam_locomotive.n.01', 'name': 'steam_locomotive'}, {'id': 11266, 'synset': 'steamroller.n.02', 'name': 'steamroller'}, {'id': 11267, 'synset': 'steam_shovel.n.01', 'name': 'steam_shovel'}, {'id': 11268, 'synset': 'steam_turbine.n.01', 'name': 'steam_turbine'}, {'id': 11269, 'synset': 'steam_whistle.n.01', 'name': 'steam_whistle'}, {'id': 11270, 'synset': 'steel.n.03', 'name': 'steel'}, {'id': 11271, 'synset': 'steel_arch_bridge.n.01', 'name': 'steel_arch_bridge'}, {'id': 11272, 'synset': 'steel_drum.n.01', 'name': 'steel_drum'}, {'id': 11273, 'synset': 'steel_mill.n.01', 'name': 'steel_mill'}, {'id': 11274, 'synset': 'steel-wool_pad.n.01', 'name': 'steel-wool_pad'}, {'id': 11275, 'synset': 'steelyard.n.01', 'name': 'steelyard'}, {'id': 11276, 'synset': 'steeple.n.01', 'name': 'steeple'}, {'id': 11277, 'synset': 'steerage.n.01', 'name': 'steerage'}, {'id': 11278, 'synset': 'steering_gear.n.01', 'name': 'steering_gear'}, {'id': 11279, 'synset': 'steering_linkage.n.01', 'name': 'steering_linkage'}, {'id': 11280, 'synset': 'steering_system.n.01', 'name': 'steering_system'}, {'id': 11281, 'synset': 'stele.n.02', 'name': 'stele'}, {'id': 11282, 'synset': 'stem-winder.n.01', 'name': 'stem-winder'}, {'id': 11283, 'synset': 'stencil.n.01', 'name': 'stencil'}, {'id': 11284, 'synset': 'sten_gun.n.01', 'name': 'Sten_gun'}, {'id': 11285, 'synset': 'stenograph.n.02', 'name': 'stenograph'}, {'id': 11286, 'synset': 'step.n.04', 'name': 'step'}, {'id': 11287, 'synset': 'step-down_transformer.n.01', 'name': 'step-down_transformer'}, {'id': 11288, 'synset': 'step-up_transformer.n.01', 'name': 'step-up_transformer'}, {'id': 11289, 'synset': 'stereoscope.n.01', 'name': 'stereoscope'}, {'id': 11290, 'synset': 'stern_chaser.n.01', 'name': 'stern_chaser'}, {'id': 11291, 'synset': 'sternpost.n.01', 'name': 'sternpost'}, {'id': 11292, 'synset': 'sternwheeler.n.01', 'name': 'sternwheeler'}, {'id': 11293, 'synset': 'stethoscope.n.01', 'name': 'stethoscope'}, {'id': 11294, 'synset': 'stewing_pan.n.01', 'name': 'stewing_pan'}, {'id': 11295, 'synset': 'stick.n.01', 'name': 'stick'}, {'id': 11296, 'synset': 'stick.n.07', 'name': 'stick'}, {'id': 11297, 'synset': 'stick.n.03', 'name': 'stick'}, {'id': 11298, 'synset': 'stick.n.06', 'name': 'stick'}, {'id': 11299, 'synset': 'stile.n.01', 'name': 'stile'}, {'id': 11300, 'synset': 'stiletto.n.01', 'name': 'stiletto'}, {'id': 11301, 'synset': 'still.n.03', 'name': 'still'}, {'id': 11302, 'synset': 'stillroom.n.01', 'name': 'stillroom'}, {'id': 11303, 'synset': 'stillson_wrench.n.01', 'name': 'Stillson_wrench'}, {'id': 11304, 'synset': 'stilt.n.02', 'name': 'stilt'}, {'id': 11305, 'synset': 'stinger.n.03', 'name': 'Stinger'}, {'id': 11306, 'synset': 'stink_bomb.n.01', 'name': 'stink_bomb'}, {'id': 11307, 'synset': 'stirrup_pump.n.01', 'name': 'stirrup_pump'}, {'id': 11308, 'synset': 'stob.n.01', 'name': 'stob'}, {'id': 11309, 'synset': 'stock.n.03', 'name': 'stock'}, {'id': 11310, 'synset': 'stockade.n.01', 'name': 'stockade'}, {'id': 11311, 'synset': 'stockcar.n.01', 'name': 'stockcar'}, {'id': 11312, 'synset': 'stock_car.n.02', 'name': 'stock_car'}, {'id': 11313, 'synset': 'stockinet.n.01', 'name': 'stockinet'}, {'id': 11314, 'synset': 'stocking.n.01', 'name': 'stocking'}, {'id': 11315, 'synset': 'stock-in-trade.n.01', 'name': 'stock-in-trade'}, {'id': 11316, 'synset': 'stockpot.n.01', 'name': 'stockpot'}, {'id': 11317, 'synset': 'stockroom.n.01', 'name': 'stockroom'}, {'id': 11318, 'synset': 'stocks.n.03', 'name': 'stocks'}, {'id': 11319, 'synset': 'stock_saddle.n.01', 'name': 'stock_saddle'}, {'id': 11320, 'synset': 'stockyard.n.01', 'name': 'stockyard'}, {'id': 11321, 'synset': 'stole.n.01', 'name': 'stole'}, {'id': 11322, 'synset': 'stomacher.n.01', 'name': 'stomacher'}, {'id': 11323, 'synset': 'stomach_pump.n.01', 'name': 'stomach_pump'}, {'id': 11324, 'synset': 'stone_wall.n.01', 'name': 'stone_wall'}, {'id': 11325, 'synset': 'stoneware.n.01', 'name': 'stoneware'}, {'id': 11326, 'synset': 'stonework.n.01', 'name': 'stonework'}, {'id': 11327, 'synset': 'stoop.n.03', 'name': 'stoop'}, {'id': 11328, 'synset': 'stop_bath.n.01', 'name': 'stop_bath'}, {'id': 11329, 'synset': 'stopcock.n.01', 'name': 'stopcock'}, {'id': 11330, 'synset': 'stopper_knot.n.01', 'name': 'stopper_knot'}, {'id': 11331, 'synset': 'stopwatch.n.01', 'name': 'stopwatch'}, {'id': 11332, 'synset': 'storage_battery.n.01', 'name': 'storage_battery'}, {'id': 11333, 'synset': 'storage_cell.n.01', 'name': 'storage_cell'}, {'id': 11334, 'synset': 'storage_ring.n.01', 'name': 'storage_ring'}, {'id': 11335, 'synset': 'storage_space.n.01', 'name': 'storage_space'}, {'id': 11336, 'synset': 'storeroom.n.01', 'name': 'storeroom'}, {'id': 11337, 'synset': 'storm_cellar.n.01', 'name': 'storm_cellar'}, {'id': 11338, 'synset': 'storm_door.n.01', 'name': 'storm_door'}, {'id': 11339, 'synset': 'storm_window.n.01', 'name': 'storm_window'}, {'id': 11340, 'synset': 'stoup.n.02', 'name': 'stoup'}, {'id': 11341, 'synset': 'stoup.n.01', 'name': 'stoup'}, {'id': 11342, 'synset': 'stove.n.02', 'name': 'stove'}, {'id': 11343, 'synset': 'stove_bolt.n.01', 'name': 'stove_bolt'}, {'id': 11344, 'synset': 'stovepipe.n.01', 'name': 'stovepipe'}, {'id': 11345, 'synset': 'stovepipe_iron.n.01', 'name': 'stovepipe_iron'}, {'id': 11346, 'synset': 'stradavarius.n.01', 'name': 'Stradavarius'}, {'id': 11347, 'synset': 'straight_chair.n.01', 'name': 'straight_chair'}, {'id': 11348, 'synset': 'straightedge.n.01', 'name': 'straightedge'}, {'id': 11349, 'synset': 'straightener.n.01', 'name': 'straightener'}, {'id': 11350, 'synset': 'straight_flute.n.01', 'name': 'straight_flute'}, {'id': 11351, 'synset': 'straight_pin.n.01', 'name': 'straight_pin'}, {'id': 11352, 'synset': 'straight_razor.n.01', 'name': 'straight_razor'}, {'id': 11353, 'synset': 'straitjacket.n.02', 'name': 'straitjacket'}, {'id': 11354, 'synset': 'strap.n.04', 'name': 'strap'}, {'id': 11355, 'synset': 'strap_hinge.n.01', 'name': 'strap_hinge'}, {'id': 11356, 'synset': 'strapless.n.01', 'name': 'strapless'}, {'id': 11357, 'synset': 'streamer_fly.n.01', 'name': 'streamer_fly'}, {'id': 11358, 'synset': 'streamliner.n.01', 'name': 'streamliner'}, {'id': 11359, 'synset': 'street.n.01', 'name': 'street'}, {'id': 11360, 'synset': 'street.n.02', 'name': 'street'}, {'id': 11361, 'synset': 'streetcar.n.01', 'name': 'streetcar'}, {'id': 11362, 'synset': 'street_clothes.n.01', 'name': 'street_clothes'}, {'id': 11363, 'synset': 'stretcher.n.03', 'name': 'stretcher'}, {'id': 11364, 'synset': 'stretcher.n.01', 'name': 'stretcher'}, {'id': 11365, 'synset': 'stretch_pants.n.01', 'name': 'stretch_pants'}, {'id': 11366, 'synset': 'strickle.n.02', 'name': 'strickle'}, {'id': 11367, 'synset': 'strickle.n.01', 'name': 'strickle'}, {'id': 11368, 'synset': 'stringed_instrument.n.01', 'name': 'stringed_instrument'}, {'id': 11369, 'synset': 'stringer.n.04', 'name': 'stringer'}, {'id': 11370, 'synset': 'stringer.n.03', 'name': 'stringer'}, {'id': 11371, 'synset': 'string_tie.n.01', 'name': 'string_tie'}, {'id': 11372, 'synset': 'strip.n.05', 'name': 'strip'}, {'id': 11373, 'synset': 'strip_lighting.n.01', 'name': 'strip_lighting'}, {'id': 11374, 'synset': 'strip_mall.n.01', 'name': 'strip_mall'}, {'id': 11375, 'synset': 'stroboscope.n.01', 'name': 'stroboscope'}, {'id': 11376, 'synset': 'strongbox.n.01', 'name': 'strongbox'}, {'id': 11377, 'synset': 'stronghold.n.01', 'name': 'stronghold'}, {'id': 11378, 'synset': 'strongroom.n.01', 'name': 'strongroom'}, {'id': 11379, 'synset': 'strop.n.01', 'name': 'strop'}, {'id': 11380, 'synset': 'structural_member.n.01', 'name': 'structural_member'}, {'id': 11381, 'synset': 'structure.n.01', 'name': 'structure'}, {'id': 11382, 'synset': 'student_center.n.01', 'name': 'student_center'}, {'id': 11383, 'synset': 'student_lamp.n.01', 'name': 'student_lamp'}, {'id': 11384, 'synset': 'student_union.n.01', 'name': 'student_union'}, {'id': 11385, 'synset': 'stud_finder.n.01', 'name': 'stud_finder'}, {'id': 11386, 'synset': 'studio_apartment.n.01', 'name': 'studio_apartment'}, {'id': 11387, 'synset': 'studio_couch.n.01', 'name': 'studio_couch'}, {'id': 11388, 'synset': 'study.n.05', 'name': 'study'}, {'id': 11389, 'synset': 'study_hall.n.02', 'name': 'study_hall'}, {'id': 11390, 'synset': 'stuffing_nut.n.01', 'name': 'stuffing_nut'}, {'id': 11391, 'synset': 'stump.n.03', 'name': 'stump'}, {'id': 11392, 'synset': 'stun_gun.n.01', 'name': 'stun_gun'}, {'id': 11393, 'synset': 'stupa.n.01', 'name': 'stupa'}, {'id': 11394, 'synset': 'sty.n.02', 'name': 'sty'}, {'id': 11395, 'synset': 'stylus.n.01', 'name': 'stylus'}, {'id': 11396, 'synset': 'sub-assembly.n.01', 'name': 'sub-assembly'}, {'id': 11397, 'synset': 'subcompact.n.01', 'name': 'subcompact'}, {'id': 11398, 'synset': 'submachine_gun.n.01', 'name': 'submachine_gun'}, {'id': 11399, 'synset': 'submarine.n.01', 'name': 'submarine'}, {'id': 11400, 'synset': 'submarine_torpedo.n.01', 'name': 'submarine_torpedo'}, {'id': 11401, 'synset': 'submersible.n.02', 'name': 'submersible'}, {'id': 11402, 'synset': 'submersible.n.01', 'name': 'submersible'}, {'id': 11403, 'synset': 'subtracter.n.02', 'name': 'subtracter'}, {'id': 11404, 'synset': 'subway_token.n.01', 'name': 'subway_token'}, {'id': 11405, 'synset': 'subway_train.n.01', 'name': 'subway_train'}, {'id': 11406, 'synset': 'suction_cup.n.01', 'name': 'suction_cup'}, {'id': 11407, 'synset': 'suction_pump.n.01', 'name': 'suction_pump'}, {'id': 11408, 'synset': 'sudatorium.n.01', 'name': 'sudatorium'}, {'id': 11409, 'synset': 'suede_cloth.n.01', 'name': 'suede_cloth'}, {'id': 11410, 'synset': 'sugar_refinery.n.01', 'name': 'sugar_refinery'}, {'id': 11411, 'synset': 'sugar_spoon.n.01', 'name': 'sugar_spoon'}, {'id': 11412, 'synset': 'suite.n.02', 'name': 'suite'}, {'id': 11413, 'synset': 'suiting.n.01', 'name': 'suiting'}, {'id': 11414, 'synset': 'sulky.n.01', 'name': 'sulky'}, {'id': 11415, 'synset': 'summer_house.n.01', 'name': 'summer_house'}, {'id': 11416, 'synset': 'sumo_ring.n.01', 'name': 'sumo_ring'}, {'id': 11417, 'synset': 'sump.n.01', 'name': 'sump'}, {'id': 11418, 'synset': 'sump_pump.n.01', 'name': 'sump_pump'}, {'id': 11419, 'synset': 'sunbonnet.n.01', 'name': 'sunbonnet'}, {'id': 11420, 'synset': 'sunday_best.n.01', 'name': 'Sunday_best'}, {'id': 11421, 'synset': 'sun_deck.n.01', 'name': 'sun_deck'}, {'id': 11422, 'synset': 'sundial.n.01', 'name': 'sundial'}, {'id': 11423, 'synset': 'sundress.n.01', 'name': 'sundress'}, {'id': 11424, 'synset': 'sundries.n.01', 'name': 'sundries'}, {'id': 11425, 'synset': 'sun_gear.n.01', 'name': 'sun_gear'}, {'id': 11426, 'synset': 'sunglass.n.01', 'name': 'sunglass'}, {'id': 11427, 'synset': 'sunlamp.n.01', 'name': 'sunlamp'}, {'id': 11428, 'synset': 'sun_parlor.n.01', 'name': 'sun_parlor'}, {'id': 11429, 'synset': 'sunroof.n.01', 'name': 'sunroof'}, {'id': 11430, 'synset': 'sunscreen.n.01', 'name': 'sunscreen'}, {'id': 11431, 'synset': 'sunsuit.n.01', 'name': 'sunsuit'}, {'id': 11432, 'synset': 'supercharger.n.01', 'name': 'supercharger'}, {'id': 11433, 'synset': 'supercomputer.n.01', 'name': 'supercomputer'}, {'id': 11434, 'synset': 'superconducting_supercollider.n.01', 'name': 'superconducting_supercollider'}, {'id': 11435, 'synset': 'superhighway.n.02', 'name': 'superhighway'}, {'id': 11436, 'synset': 'supermarket.n.01', 'name': 'supermarket'}, {'id': 11437, 'synset': 'superstructure.n.01', 'name': 'superstructure'}, {'id': 11438, 'synset': 'supertanker.n.01', 'name': 'supertanker'}, {'id': 11439, 'synset': 'supper_club.n.01', 'name': 'supper_club'}, {'id': 11440, 'synset': 'supplejack.n.01', 'name': 'supplejack'}, {'id': 11441, 'synset': 'supply_chamber.n.01', 'name': 'supply_chamber'}, {'id': 11442, 'synset': 'supply_closet.n.01', 'name': 'supply_closet'}, {'id': 11443, 'synset': 'support.n.10', 'name': 'support'}, {'id': 11444, 'synset': 'support.n.07', 'name': 'support'}, {'id': 11445, 'synset': 'support_column.n.01', 'name': 'support_column'}, {'id': 11446, 'synset': 'support_hose.n.01', 'name': 'support_hose'}, {'id': 11447, 'synset': 'supporting_structure.n.01', 'name': 'supporting_structure'}, {'id': 11448, 'synset': 'supporting_tower.n.01', 'name': 'supporting_tower'}, {'id': 11449, 'synset': 'surcoat.n.02', 'name': 'surcoat'}, {'id': 11450, 'synset': 'surface_gauge.n.01', 'name': 'surface_gauge'}, {'id': 11451, 'synset': 'surface_lift.n.01', 'name': 'surface_lift'}, {'id': 11452, 'synset': 'surface_search_radar.n.01', 'name': 'surface_search_radar'}, {'id': 11453, 'synset': 'surface_ship.n.01', 'name': 'surface_ship'}, {'id': 11454, 'synset': 'surface-to-air_missile.n.01', 'name': 'surface-to-air_missile'}, {'id': 11455, 'synset': 'surface-to-air_missile_system.n.01', 'name': 'surface-to-air_missile_system'}, {'id': 11456, 'synset': 'surfboat.n.01', 'name': 'surfboat'}, {'id': 11457, 'synset': 'surcoat.n.01', 'name': 'surcoat'}, {'id': 11458, 'synset': "surgeon's_knot.n.01", 'name': "surgeon's_knot"}, {'id': 11459, 'synset': 'surgery.n.02', 'name': 'surgery'}, {'id': 11460, 'synset': 'surge_suppressor.n.01', 'name': 'surge_suppressor'}, {'id': 11461, 'synset': 'surgical_dressing.n.01', 'name': 'surgical_dressing'}, {'id': 11462, 'synset': 'surgical_instrument.n.01', 'name': 'surgical_instrument'}, {'id': 11463, 'synset': 'surgical_knife.n.01', 'name': 'surgical_knife'}, {'id': 11464, 'synset': 'surplice.n.01', 'name': 'surplice'}, {'id': 11465, 'synset': 'surrey.n.02', 'name': 'surrey'}, {'id': 11466, 'synset': 'surtout.n.01', 'name': 'surtout'}, {'id': 11467, 'synset': 'surveillance_system.n.01', 'name': 'surveillance_system'}, {'id': 11468, 'synset': 'surveying_instrument.n.01', 'name': 'surveying_instrument'}, {'id': 11469, 'synset': "surveyor's_level.n.01", 'name': "surveyor's_level"}, {'id': 11470, 'synset': 'sushi_bar.n.01', 'name': 'sushi_bar'}, {'id': 11471, 'synset': 'suspension.n.05', 'name': 'suspension'}, {'id': 11472, 'synset': 'suspension_bridge.n.01', 'name': 'suspension_bridge'}, {'id': 11473, 'synset': 'suspensory.n.01', 'name': 'suspensory'}, {'id': 11474, 'synset': 'sustaining_pedal.n.01', 'name': 'sustaining_pedal'}, {'id': 11475, 'synset': 'suture.n.02', 'name': 'suture'}, {'id': 11476, 'synset': 'swab.n.01', 'name': 'swab'}, {'id': 11477, 'synset': 'swaddling_clothes.n.01', 'name': 'swaddling_clothes'}, {'id': 11478, 'synset': 'swag.n.03', 'name': 'swag'}, {'id': 11479, 'synset': 'swage_block.n.01', 'name': 'swage_block'}, {'id': 11480, 'synset': 'swagger_stick.n.01', 'name': 'swagger_stick'}, {'id': 11481, 'synset': 'swallow-tailed_coat.n.01', 'name': 'swallow-tailed_coat'}, {'id': 11482, 'synset': 'swamp_buggy.n.01', 'name': 'swamp_buggy'}, {'id': 11483, 'synset': "swan's_down.n.01", 'name': "swan's_down"}, {'id': 11484, 'synset': 'swathe.n.01', 'name': 'swathe'}, {'id': 11485, 'synset': 'swatter.n.01', 'name': 'swatter'}, {'id': 11486, 'synset': 'sweat_bag.n.01', 'name': 'sweat_bag'}, {'id': 11487, 'synset': 'sweatband.n.01', 'name': 'sweatband'}, {'id': 11488, 'synset': 'sweatshop.n.01', 'name': 'sweatshop'}, {'id': 11489, 'synset': 'sweat_suit.n.01', 'name': 'sweat_suit'}, {'id': 11490, 'synset': 'sweep.n.04', 'name': 'sweep'}, {'id': 11491, 'synset': 'sweep_hand.n.01', 'name': 'sweep_hand'}, {'id': 11492, 'synset': 'swimming_trunks.n.01', 'name': 'swimming_trunks'}, {'id': 11493, 'synset': 'swing.n.02', 'name': 'swing'}, {'id': 11494, 'synset': 'swing_door.n.01', 'name': 'swing_door'}, {'id': 11495, 'synset': 'switch.n.01', 'name': 'switch'}, {'id': 11496, 'synset': 'switchblade.n.01', 'name': 'switchblade'}, {'id': 11497, 'synset': 'switch_engine.n.01', 'name': 'switch_engine'}, {'id': 11498, 'synset': 'swivel.n.01', 'name': 'swivel'}, {'id': 11499, 'synset': 'swivel_chair.n.01', 'name': 'swivel_chair'}, {'id': 11500, 'synset': 'swizzle_stick.n.01', 'name': 'swizzle_stick'}, {'id': 11501, 'synset': 'sword_cane.n.01', 'name': 'sword_cane'}, {'id': 11502, 'synset': 's_wrench.n.01', 'name': 'S_wrench'}, {'id': 11503, 'synset': 'synagogue.n.01', 'name': 'synagogue'}, {'id': 11504, 'synset': 'synchrocyclotron.n.01', 'name': 'synchrocyclotron'}, {'id': 11505, 'synset': 'synchroflash.n.01', 'name': 'synchroflash'}, {'id': 11506, 'synset': 'synchromesh.n.01', 'name': 'synchromesh'}, {'id': 11507, 'synset': 'synchronous_converter.n.01', 'name': 'synchronous_converter'}, {'id': 11508, 'synset': 'synchronous_motor.n.01', 'name': 'synchronous_motor'}, {'id': 11509, 'synset': 'synchrotron.n.01', 'name': 'synchrotron'}, {'id': 11510, 'synset': 'synchroscope.n.01', 'name': 'synchroscope'}, {'id': 11511, 'synset': 'synthesizer.n.02', 'name': 'synthesizer'}, {'id': 11512, 'synset': 'system.n.01', 'name': 'system'}, {'id': 11513, 'synset': 'tabard.n.01', 'name': 'tabard'}, {'id': 11514, 'synset': 'tabernacle.n.02', 'name': 'Tabernacle'}, {'id': 11515, 'synset': 'tabi.n.01', 'name': 'tabi'}, {'id': 11516, 'synset': 'tab_key.n.01', 'name': 'tab_key'}, {'id': 11517, 'synset': 'table.n.03', 'name': 'table'}, {'id': 11518, 'synset': 'tablefork.n.01', 'name': 'tablefork'}, {'id': 11519, 'synset': 'table_knife.n.01', 'name': 'table_knife'}, {'id': 11520, 'synset': 'table_saw.n.01', 'name': 'table_saw'}, {'id': 11521, 'synset': 'tablespoon.n.02', 'name': 'tablespoon'}, {'id': 11522, 'synset': 'tablet-armed_chair.n.01', 'name': 'tablet-armed_chair'}, {'id': 11523, 'synset': 'table-tennis_racquet.n.01', 'name': 'table-tennis_racquet'}, {'id': 11524, 'synset': 'tabletop.n.01', 'name': 'tabletop'}, {'id': 11525, 'synset': 'tableware.n.01', 'name': 'tableware'}, {'id': 11526, 'synset': 'tabor.n.01', 'name': 'tabor'}, {'id': 11527, 'synset': 'taboret.n.01', 'name': 'taboret'}, {'id': 11528, 'synset': 'tachistoscope.n.01', 'name': 'tachistoscope'}, {'id': 11529, 'synset': 'tachograph.n.01', 'name': 'tachograph'}, {'id': 11530, 'synset': 'tachymeter.n.01', 'name': 'tachymeter'}, {'id': 11531, 'synset': 'tack.n.02', 'name': 'tack'}, {'id': 11532, 'synset': 'tack_hammer.n.01', 'name': 'tack_hammer'}, {'id': 11533, 'synset': 'taffeta.n.01', 'name': 'taffeta'}, {'id': 11534, 'synset': 'taffrail.n.01', 'name': 'taffrail'}, {'id': 11535, 'synset': 'tailgate.n.01', 'name': 'tailgate'}, {'id': 11536, 'synset': 'tailor-made.n.01', 'name': 'tailor-made'}, {'id': 11537, 'synset': "tailor's_chalk.n.01", 'name': "tailor's_chalk"}, {'id': 11538, 'synset': 'tailpipe.n.01', 'name': 'tailpipe'}, {'id': 11539, 'synset': 'tail_rotor.n.01', 'name': 'tail_rotor'}, {'id': 11540, 'synset': 'tailstock.n.01', 'name': 'tailstock'}, {'id': 11541, 'synset': 'take-up.n.01', 'name': 'take-up'}, {'id': 11542, 'synset': 'talaria.n.01', 'name': 'talaria'}, {'id': 11543, 'synset': 'talcum.n.02', 'name': 'talcum'}, {'id': 11544, 'synset': 'tam.n.01', 'name': 'tam'}, {'id': 11545, 'synset': 'tambour.n.02', 'name': 'tambour'}, {'id': 11546, 'synset': 'tambour.n.01', 'name': 'tambour'}, {'id': 11547, 'synset': 'tammy.n.01', 'name': 'tammy'}, {'id': 11548, 'synset': 'tamp.n.01', 'name': 'tamp'}, {'id': 11549, 'synset': 'tampax.n.01', 'name': 'Tampax'}, {'id': 11550, 'synset': 'tampion.n.01', 'name': 'tampion'}, {'id': 11551, 'synset': 'tampon.n.01', 'name': 'tampon'}, {'id': 11552, 'synset': 'tandoor.n.01', 'name': 'tandoor'}, {'id': 11553, 'synset': 'tangram.n.01', 'name': 'tangram'}, {'id': 11554, 'synset': 'tankard.n.01', 'name': 'tankard'}, {'id': 11555, 'synset': 'tank_car.n.01', 'name': 'tank_car'}, {'id': 11556, 'synset': 'tank_destroyer.n.01', 'name': 'tank_destroyer'}, {'id': 11557, 'synset': 'tank_engine.n.01', 'name': 'tank_engine'}, {'id': 11558, 'synset': 'tanker_plane.n.01', 'name': 'tanker_plane'}, {'id': 11559, 'synset': 'tank_shell.n.01', 'name': 'tank_shell'}, {'id': 11560, 'synset': 'tannoy.n.01', 'name': 'tannoy'}, {'id': 11561, 'synset': 'tap.n.06', 'name': 'tap'}, {'id': 11562, 'synset': 'tapa.n.02', 'name': 'tapa'}, {'id': 11563, 'synset': 'tape.n.02', 'name': 'tape'}, {'id': 11564, 'synset': 'tape_deck.n.01', 'name': 'tape_deck'}, {'id': 11565, 'synset': 'tape_drive.n.01', 'name': 'tape_drive'}, {'id': 11566, 'synset': 'tape_player.n.01', 'name': 'tape_player'}, {'id': 11567, 'synset': 'tape_recorder.n.01', 'name': 'tape_recorder'}, {'id': 11568, 'synset': 'taper_file.n.01', 'name': 'taper_file'}, {'id': 11569, 'synset': 'tappet.n.01', 'name': 'tappet'}, {'id': 11570, 'synset': 'tap_wrench.n.01', 'name': 'tap_wrench'}, {'id': 11571, 'synset': 'tare.n.05', 'name': 'tare'}, {'id': 11572, 'synset': 'target.n.04', 'name': 'target'}, {'id': 11573, 'synset': 'target_acquisition_system.n.01', 'name': 'target_acquisition_system'}, {'id': 11574, 'synset': 'tarmacadam.n.02', 'name': 'tarmacadam'}, {'id': 11575, 'synset': 'tasset.n.01', 'name': 'tasset'}, {'id': 11576, 'synset': 'tattoo.n.02', 'name': 'tattoo'}, {'id': 11577, 'synset': 'tavern.n.01', 'name': 'tavern'}, {'id': 11578, 'synset': 'tawse.n.01', 'name': 'tawse'}, {'id': 11579, 'synset': 'taximeter.n.01', 'name': 'taximeter'}, {'id': 11580, 'synset': 't-bar_lift.n.01', 'name': 'T-bar_lift'}, {'id': 11581, 'synset': 'tea_bag.n.02', 'name': 'tea_bag'}, {'id': 11582, 'synset': 'tea_ball.n.01', 'name': 'tea_ball'}, {'id': 11583, 'synset': 'tea_cart.n.01', 'name': 'tea_cart'}, {'id': 11584, 'synset': 'tea_chest.n.01', 'name': 'tea_chest'}, {'id': 11585, 'synset': 'teaching_aid.n.01', 'name': 'teaching_aid'}, {'id': 11586, 'synset': 'tea_gown.n.01', 'name': 'tea_gown'}, {'id': 11587, 'synset': 'tea_maker.n.01', 'name': 'tea_maker'}, {'id': 11588, 'synset': 'teashop.n.01', 'name': 'teashop'}, {'id': 11589, 'synset': 'teaspoon.n.02', 'name': 'teaspoon'}, {'id': 11590, 'synset': 'tea-strainer.n.01', 'name': 'tea-strainer'}, {'id': 11591, 'synset': 'tea_table.n.01', 'name': 'tea_table'}, {'id': 11592, 'synset': 'tea_tray.n.01', 'name': 'tea_tray'}, {'id': 11593, 'synset': 'tea_urn.n.01', 'name': 'tea_urn'}, {'id': 11594, 'synset': 'tee.n.03', 'name': 'tee'}, {'id': 11595, 'synset': 'tee_hinge.n.01', 'name': 'tee_hinge'}, {'id': 11596, 'synset': 'telecom_hotel.n.01', 'name': 'telecom_hotel'}, {'id': 11597, 'synset': 'telecommunication_system.n.01', 'name': 'telecommunication_system'}, {'id': 11598, 'synset': 'telegraph.n.01', 'name': 'telegraph'}, {'id': 11599, 'synset': 'telegraph_key.n.01', 'name': 'telegraph_key'}, {'id': 11600, 'synset': 'telemeter.n.01', 'name': 'telemeter'}, {'id': 11601, 'synset': 'telephone_bell.n.01', 'name': 'telephone_bell'}, {'id': 11602, 'synset': 'telephone_cord.n.01', 'name': 'telephone_cord'}, {'id': 11603, 'synset': 'telephone_jack.n.01', 'name': 'telephone_jack'}, {'id': 11604, 'synset': 'telephone_line.n.02', 'name': 'telephone_line'}, {'id': 11605, 'synset': 'telephone_plug.n.01', 'name': 'telephone_plug'}, {'id': 11606, 'synset': 'telephone_receiver.n.01', 'name': 'telephone_receiver'}, {'id': 11607, 'synset': 'telephone_system.n.01', 'name': 'telephone_system'}, {'id': 11608, 'synset': 'telephone_wire.n.01', 'name': 'telephone_wire'}, {'id': 11609, 'synset': 'teleprompter.n.01', 'name': 'Teleprompter'}, {'id': 11610, 'synset': 'telescope.n.01', 'name': 'telescope'}, {'id': 11611, 'synset': 'telescopic_sight.n.01', 'name': 'telescopic_sight'}, {'id': 11612, 'synset': 'telethermometer.n.01', 'name': 'telethermometer'}, {'id': 11613, 'synset': 'teletypewriter.n.01', 'name': 'teletypewriter'}, {'id': 11614, 'synset': 'television.n.02', 'name': 'television'}, {'id': 11615, 'synset': 'television_antenna.n.01', 'name': 'television_antenna'}, {'id': 11616, 'synset': 'television_equipment.n.01', 'name': 'television_equipment'}, {'id': 11617, 'synset': 'television_monitor.n.01', 'name': 'television_monitor'}, {'id': 11618, 'synset': 'television_room.n.01', 'name': 'television_room'}, {'id': 11619, 'synset': 'television_transmitter.n.01', 'name': 'television_transmitter'}, {'id': 11620, 'synset': 'telpher.n.01', 'name': 'telpher'}, {'id': 11621, 'synset': 'telpherage.n.01', 'name': 'telpherage'}, {'id': 11622, 'synset': 'tempera.n.01', 'name': 'tempera'}, {'id': 11623, 'synset': 'temple.n.01', 'name': 'temple'}, {'id': 11624, 'synset': 'temple.n.03', 'name': 'temple'}, {'id': 11625, 'synset': 'temporary_hookup.n.01', 'name': 'temporary_hookup'}, {'id': 11626, 'synset': 'tender.n.06', 'name': 'tender'}, {'id': 11627, 'synset': 'tender.n.05', 'name': 'tender'}, {'id': 11628, 'synset': 'tender.n.04', 'name': 'tender'}, {'id': 11629, 'synset': 'tenement.n.01', 'name': 'tenement'}, {'id': 11630, 'synset': 'tennis_camp.n.01', 'name': 'tennis_camp'}, {'id': 11631, 'synset': 'tenon.n.01', 'name': 'tenon'}, {'id': 11632, 'synset': 'tenor_drum.n.01', 'name': 'tenor_drum'}, {'id': 11633, 'synset': 'tenoroon.n.01', 'name': 'tenoroon'}, {'id': 11634, 'synset': 'tenpenny_nail.n.01', 'name': 'tenpenny_nail'}, {'id': 11635, 'synset': 'tenpin.n.01', 'name': 'tenpin'}, {'id': 11636, 'synset': 'tensimeter.n.01', 'name': 'tensimeter'}, {'id': 11637, 'synset': 'tensiometer.n.03', 'name': 'tensiometer'}, {'id': 11638, 'synset': 'tensiometer.n.02', 'name': 'tensiometer'}, {'id': 11639, 'synset': 'tensiometer.n.01', 'name': 'tensiometer'}, {'id': 11640, 'synset': 'tent.n.01', 'name': 'tent'}, {'id': 11641, 'synset': 'tenter.n.01', 'name': 'tenter'}, {'id': 11642, 'synset': 'tenterhook.n.01', 'name': 'tenterhook'}, {'id': 11643, 'synset': 'tent-fly.n.01', 'name': 'tent-fly'}, {'id': 11644, 'synset': 'tent_peg.n.01', 'name': 'tent_peg'}, {'id': 11645, 'synset': 'tepee.n.01', 'name': 'tepee'}, {'id': 11646, 'synset': 'terminal.n.02', 'name': 'terminal'}, {'id': 11647, 'synset': 'terminal.n.04', 'name': 'terminal'}, {'id': 11648, 'synset': 'terraced_house.n.01', 'name': 'terraced_house'}, {'id': 11649, 'synset': 'terra_cotta.n.01', 'name': 'terra_cotta'}, {'id': 11650, 'synset': 'terrarium.n.01', 'name': 'terrarium'}, {'id': 11651, 'synset': 'terra_sigillata.n.01', 'name': 'terra_sigillata'}, {'id': 11652, 'synset': 'terry.n.02', 'name': 'terry'}, {'id': 11653, 'synset': 'tesla_coil.n.01', 'name': 'Tesla_coil'}, {'id': 11654, 'synset': 'tessera.n.01', 'name': 'tessera'}, {'id': 11655, 'synset': 'test_equipment.n.01', 'name': 'test_equipment'}, {'id': 11656, 'synset': 'test_rocket.n.01', 'name': 'test_rocket'}, {'id': 11657, 'synset': 'test_room.n.01', 'name': 'test_room'}, {'id': 11658, 'synset': 'testudo.n.01', 'name': 'testudo'}, {'id': 11659, 'synset': 'tetraskelion.n.01', 'name': 'tetraskelion'}, {'id': 11660, 'synset': 'tetrode.n.01', 'name': 'tetrode'}, {'id': 11661, 'synset': 'textile_machine.n.01', 'name': 'textile_machine'}, {'id': 11662, 'synset': 'textile_mill.n.01', 'name': 'textile_mill'}, {'id': 11663, 'synset': 'thatch.n.04', 'name': 'thatch'}, {'id': 11664, 'synset': 'theater.n.01', 'name': 'theater'}, {'id': 11665, 'synset': 'theater_curtain.n.01', 'name': 'theater_curtain'}, {'id': 11666, 'synset': 'theater_light.n.01', 'name': 'theater_light'}, {'id': 11667, 'synset': 'theodolite.n.01', 'name': 'theodolite'}, {'id': 11668, 'synset': 'theremin.n.01', 'name': 'theremin'}, {'id': 11669, 'synset': 'thermal_printer.n.01', 'name': 'thermal_printer'}, {'id': 11670, 'synset': 'thermal_reactor.n.01', 'name': 'thermal_reactor'}, {'id': 11671, 'synset': 'thermocouple.n.01', 'name': 'thermocouple'}, {'id': 11672, 'synset': 'thermoelectric_thermometer.n.01', 'name': 'thermoelectric_thermometer'}, {'id': 11673, 'synset': 'thermograph.n.02', 'name': 'thermograph'}, {'id': 11674, 'synset': 'thermograph.n.01', 'name': 'thermograph'}, {'id': 11675, 'synset': 'thermohydrometer.n.01', 'name': 'thermohydrometer'}, {'id': 11676, 'synset': 'thermojunction.n.01', 'name': 'thermojunction'}, {'id': 11677, 'synset': 'thermonuclear_reactor.n.01', 'name': 'thermonuclear_reactor'}, {'id': 11678, 'synset': 'thermopile.n.01', 'name': 'thermopile'}, {'id': 11679, 'synset': 'thigh_pad.n.01', 'name': 'thigh_pad'}, {'id': 11680, 'synset': 'thill.n.01', 'name': 'thill'}, {'id': 11681, 'synset': 'thinning_shears.n.01', 'name': 'thinning_shears'}, {'id': 11682, 'synset': 'third_base.n.01', 'name': 'third_base'}, {'id': 11683, 'synset': 'third_gear.n.01', 'name': 'third_gear'}, {'id': 11684, 'synset': 'third_rail.n.01', 'name': 'third_rail'}, {'id': 11685, 'synset': 'thong.n.03', 'name': 'thong'}, {'id': 11686, 'synset': 'thong.n.02', 'name': 'thong'}, {'id': 11687, 'synset': 'three-centered_arch.n.01', 'name': 'three-centered_arch'}, {'id': 11688, 'synset': 'three-decker.n.02', 'name': 'three-decker'}, {'id': 11689, 'synset': 'three-dimensional_radar.n.01', 'name': 'three-dimensional_radar'}, {'id': 11690, 'synset': 'three-piece_suit.n.01', 'name': 'three-piece_suit'}, {'id': 11691, 'synset': 'three-quarter_binding.n.01', 'name': 'three-quarter_binding'}, {'id': 11692, 'synset': 'three-way_switch.n.01', 'name': 'three-way_switch'}, {'id': 11693, 'synset': 'thresher.n.01', 'name': 'thresher'}, {'id': 11694, 'synset': 'threshing_floor.n.01', 'name': 'threshing_floor'}, {'id': 11695, 'synset': 'thriftshop.n.01', 'name': 'thriftshop'}, {'id': 11696, 'synset': 'throat_protector.n.01', 'name': 'throat_protector'}, {'id': 11697, 'synset': 'throne.n.01', 'name': 'throne'}, {'id': 11698, 'synset': 'thrust_bearing.n.01', 'name': 'thrust_bearing'}, {'id': 11699, 'synset': 'thruster.n.02', 'name': 'thruster'}, {'id': 11700, 'synset': 'thumb.n.02', 'name': 'thumb'}, {'id': 11701, 'synset': 'thumbhole.n.02', 'name': 'thumbhole'}, {'id': 11702, 'synset': 'thumbscrew.n.02', 'name': 'thumbscrew'}, {'id': 11703, 'synset': 'thumbstall.n.01', 'name': 'thumbstall'}, {'id': 11704, 'synset': 'thunderer.n.02', 'name': 'thunderer'}, {'id': 11705, 'synset': 'thwart.n.01', 'name': 'thwart'}, {'id': 11706, 'synset': 'ticking.n.02', 'name': 'ticking'}, {'id': 11707, 'synset': 'tickler_coil.n.01', 'name': 'tickler_coil'}, {'id': 11708, 'synset': 'tie.n.04', 'name': 'tie'}, {'id': 11709, 'synset': 'tie.n.08', 'name': 'tie'}, {'id': 11710, 'synset': 'tie_rack.n.01', 'name': 'tie_rack'}, {'id': 11711, 'synset': 'tie_rod.n.01', 'name': 'tie_rod'}, {'id': 11712, 'synset': 'tile.n.01', 'name': 'tile'}, {'id': 11713, 'synset': 'tile_cutter.n.01', 'name': 'tile_cutter'}, {'id': 11714, 'synset': 'tile_roof.n.01', 'name': 'tile_roof'}, {'id': 11715, 'synset': 'tiller.n.03', 'name': 'tiller'}, {'id': 11716, 'synset': 'tilter.n.02', 'name': 'tilter'}, {'id': 11717, 'synset': 'tilt-top_table.n.01', 'name': 'tilt-top_table'}, {'id': 11718, 'synset': 'timber.n.02', 'name': 'timber'}, {'id': 11719, 'synset': 'timber.n.03', 'name': 'timber'}, {'id': 11720, 'synset': 'timber_hitch.n.01', 'name': 'timber_hitch'}, {'id': 11721, 'synset': 'timbrel.n.01', 'name': 'timbrel'}, {'id': 11722, 'synset': 'time_bomb.n.02', 'name': 'time_bomb'}, {'id': 11723, 'synset': 'time_capsule.n.01', 'name': 'time_capsule'}, {'id': 11724, 'synset': 'time_clock.n.01', 'name': 'time_clock'}, {'id': 11725, 'synset': 'time-delay_measuring_instrument.n.01', 'name': 'time-delay_measuring_instrument'}, {'id': 11726, 'synset': 'time-fuse.n.01', 'name': 'time-fuse'}, {'id': 11727, 'synset': 'timepiece.n.01', 'name': 'timepiece'}, {'id': 11728, 'synset': 'timer.n.03', 'name': 'timer'}, {'id': 11729, 'synset': 'time-switch.n.01', 'name': 'time-switch'}, {'id': 11730, 'synset': 'tin.n.02', 'name': 'tin'}, {'id': 11731, 'synset': 'tinderbox.n.02', 'name': 'tinderbox'}, {'id': 11732, 'synset': 'tine.n.01', 'name': 'tine'}, {'id': 11733, 'synset': 'tippet.n.01', 'name': 'tippet'}, {'id': 11734, 'synset': 'tire_chain.n.01', 'name': 'tire_chain'}, {'id': 11735, 'synset': 'tire_iron.n.01', 'name': 'tire_iron'}, {'id': 11736, 'synset': 'titfer.n.01', 'name': 'titfer'}, {'id': 11737, 'synset': 'tithe_barn.n.01', 'name': 'tithe_barn'}, {'id': 11738, 'synset': 'titrator.n.01', 'name': 'titrator'}, {'id': 11739, 'synset': 'toasting_fork.n.01', 'name': 'toasting_fork'}, {'id': 11740, 'synset': 'toastrack.n.01', 'name': 'toastrack'}, {'id': 11741, 'synset': 'tobacco_pouch.n.01', 'name': 'tobacco_pouch'}, {'id': 11742, 'synset': 'tobacco_shop.n.01', 'name': 'tobacco_shop'}, {'id': 11743, 'synset': 'toboggan.n.01', 'name': 'toboggan'}, {'id': 11744, 'synset': 'toby.n.01', 'name': 'toby'}, {'id': 11745, 'synset': 'tocsin.n.02', 'name': 'tocsin'}, {'id': 11746, 'synset': 'toe.n.02', 'name': 'toe'}, {'id': 11747, 'synset': 'toecap.n.01', 'name': 'toecap'}, {'id': 11748, 'synset': 'toehold.n.02', 'name': 'toehold'}, {'id': 11749, 'synset': 'toga.n.01', 'name': 'toga'}, {'id': 11750, 'synset': 'toga_virilis.n.01', 'name': 'toga_virilis'}, {'id': 11751, 'synset': 'toggle.n.03', 'name': 'toggle'}, {'id': 11752, 'synset': 'toggle_bolt.n.01', 'name': 'toggle_bolt'}, {'id': 11753, 'synset': 'toggle_joint.n.01', 'name': 'toggle_joint'}, {'id': 11754, 'synset': 'toggle_switch.n.01', 'name': 'toggle_switch'}, {'id': 11755, 'synset': 'togs.n.01', 'name': 'togs'}, {'id': 11756, 'synset': 'toilet.n.01', 'name': 'toilet'}, {'id': 11757, 'synset': 'toilet_bag.n.01', 'name': 'toilet_bag'}, {'id': 11758, 'synset': 'toilet_bowl.n.01', 'name': 'toilet_bowl'}, {'id': 11759, 'synset': 'toilet_kit.n.01', 'name': 'toilet_kit'}, {'id': 11760, 'synset': 'toilet_powder.n.01', 'name': 'toilet_powder'}, {'id': 11761, 'synset': 'toiletry.n.01', 'name': 'toiletry'}, {'id': 11762, 'synset': 'toilet_seat.n.01', 'name': 'toilet_seat'}, {'id': 11763, 'synset': 'toilet_water.n.01', 'name': 'toilet_water'}, {'id': 11764, 'synset': 'tokamak.n.01', 'name': 'tokamak'}, {'id': 11765, 'synset': 'token.n.03', 'name': 'token'}, {'id': 11766, 'synset': 'tollbooth.n.01', 'name': 'tollbooth'}, {'id': 11767, 'synset': 'toll_bridge.n.01', 'name': 'toll_bridge'}, {'id': 11768, 'synset': 'tollgate.n.01', 'name': 'tollgate'}, {'id': 11769, 'synset': 'toll_line.n.01', 'name': 'toll_line'}, {'id': 11770, 'synset': 'tomahawk.n.01', 'name': 'tomahawk'}, {'id': 11771, 'synset': 'tommy_gun.n.01', 'name': 'Tommy_gun'}, {'id': 11772, 'synset': 'tomograph.n.01', 'name': 'tomograph'}, {'id': 11773, 'synset': 'tone_arm.n.01', 'name': 'tone_arm'}, {'id': 11774, 'synset': 'toner.n.03', 'name': 'toner'}, {'id': 11775, 'synset': 'tongue.n.07', 'name': 'tongue'}, {'id': 11776, 'synset': 'tongue_and_groove_joint.n.01', 'name': 'tongue_and_groove_joint'}, {'id': 11777, 'synset': 'tongue_depressor.n.01', 'name': 'tongue_depressor'}, {'id': 11778, 'synset': 'tonometer.n.01', 'name': 'tonometer'}, {'id': 11779, 'synset': 'tool.n.01', 'name': 'tool'}, {'id': 11780, 'synset': 'tool_bag.n.01', 'name': 'tool_bag'}, {'id': 11781, 'synset': 'toolshed.n.01', 'name': 'toolshed'}, {'id': 11782, 'synset': 'tooth.n.02', 'name': 'tooth'}, {'id': 11783, 'synset': 'tooth.n.05', 'name': 'tooth'}, {'id': 11784, 'synset': 'top.n.10', 'name': 'top'}, {'id': 11785, 'synset': 'topgallant.n.02', 'name': 'topgallant'}, {'id': 11786, 'synset': 'topgallant.n.01', 'name': 'topgallant'}, {'id': 11787, 'synset': 'topiary.n.01', 'name': 'topiary'}, {'id': 11788, 'synset': 'topknot.n.01', 'name': 'topknot'}, {'id': 11789, 'synset': 'topmast.n.01', 'name': 'topmast'}, {'id': 11790, 'synset': 'topper.n.05', 'name': 'topper'}, {'id': 11791, 'synset': 'topsail.n.01', 'name': 'topsail'}, {'id': 11792, 'synset': 'toque.n.01', 'name': 'toque'}, {'id': 11793, 'synset': 'torch.n.01', 'name': 'torch'}, {'id': 11794, 'synset': 'torpedo.n.06', 'name': 'torpedo'}, {'id': 11795, 'synset': 'torpedo.n.05', 'name': 'torpedo'}, {'id': 11796, 'synset': 'torpedo.n.03', 'name': 'torpedo'}, {'id': 11797, 'synset': 'torpedo_boat.n.01', 'name': 'torpedo_boat'}, {'id': 11798, 'synset': 'torpedo-boat_destroyer.n.01', 'name': 'torpedo-boat_destroyer'}, {'id': 11799, 'synset': 'torpedo_tube.n.01', 'name': 'torpedo_tube'}, {'id': 11800, 'synset': 'torque_converter.n.01', 'name': 'torque_converter'}, {'id': 11801, 'synset': 'torque_wrench.n.01', 'name': 'torque_wrench'}, {'id': 11802, 'synset': 'torture_chamber.n.01', 'name': 'torture_chamber'}, {'id': 11803, 'synset': 'totem_pole.n.01', 'name': 'totem_pole'}, {'id': 11804, 'synset': 'touch_screen.n.01', 'name': 'touch_screen'}, {'id': 11805, 'synset': 'toupee.n.01', 'name': 'toupee'}, {'id': 11806, 'synset': 'touring_car.n.01', 'name': 'touring_car'}, {'id': 11807, 'synset': 'tourist_class.n.01', 'name': 'tourist_class'}, {'id': 11808, 'synset': 'toweling.n.01', 'name': 'toweling'}, {'id': 11809, 'synset': 'towel_rail.n.01', 'name': 'towel_rail'}, {'id': 11810, 'synset': 'tower.n.01', 'name': 'tower'}, {'id': 11811, 'synset': 'town_hall.n.01', 'name': 'town_hall'}, {'id': 11812, 'synset': 'towpath.n.01', 'name': 'towpath'}, {'id': 11813, 'synset': 'toy_box.n.01', 'name': 'toy_box'}, {'id': 11814, 'synset': 'toyshop.n.01', 'name': 'toyshop'}, {'id': 11815, 'synset': 'trace_detector.n.01', 'name': 'trace_detector'}, {'id': 11816, 'synset': 'track.n.09', 'name': 'track'}, {'id': 11817, 'synset': 'track.n.08', 'name': 'track'}, {'id': 11818, 'synset': 'trackball.n.01', 'name': 'trackball'}, {'id': 11819, 'synset': 'tracked_vehicle.n.01', 'name': 'tracked_vehicle'}, {'id': 11820, 'synset': 'tract_house.n.01', 'name': 'tract_house'}, {'id': 11821, 'synset': 'tract_housing.n.01', 'name': 'tract_housing'}, {'id': 11822, 'synset': 'traction_engine.n.01', 'name': 'traction_engine'}, {'id': 11823, 'synset': 'tractor.n.02', 'name': 'tractor'}, {'id': 11824, 'synset': 'trailer.n.04', 'name': 'trailer'}, {'id': 11825, 'synset': 'trailer.n.03', 'name': 'trailer'}, {'id': 11826, 'synset': 'trailer_camp.n.01', 'name': 'trailer_camp'}, {'id': 11827, 'synset': 'trailing_edge.n.01', 'name': 'trailing_edge'}, {'id': 11828, 'synset': 'tramline.n.01', 'name': 'tramline'}, {'id': 11829, 'synset': 'trammel.n.02', 'name': 'trammel'}, {'id': 11830, 'synset': 'tramp_steamer.n.01', 'name': 'tramp_steamer'}, {'id': 11831, 'synset': 'tramway.n.01', 'name': 'tramway'}, {'id': 11832, 'synset': 'transdermal_patch.n.01', 'name': 'transdermal_patch'}, {'id': 11833, 'synset': 'transept.n.01', 'name': 'transept'}, {'id': 11834, 'synset': 'transformer.n.01', 'name': 'transformer'}, {'id': 11835, 'synset': 'transistor.n.01', 'name': 'transistor'}, {'id': 11836, 'synset': 'transit_instrument.n.01', 'name': 'transit_instrument'}, {'id': 11837, 'synset': 'transmission.n.05', 'name': 'transmission'}, {'id': 11838, 'synset': 'transmission_shaft.n.01', 'name': 'transmission_shaft'}, {'id': 11839, 'synset': 'transmitter.n.03', 'name': 'transmitter'}, {'id': 11840, 'synset': 'transom.n.02', 'name': 'transom'}, {'id': 11841, 'synset': 'transom.n.01', 'name': 'transom'}, {'id': 11842, 'synset': 'transponder.n.01', 'name': 'transponder'}, {'id': 11843, 'synset': 'transporter.n.02', 'name': 'transporter'}, {'id': 11844, 'synset': 'transporter.n.01', 'name': 'transporter'}, {'id': 11845, 'synset': 'transport_ship.n.01', 'name': 'transport_ship'}, {'id': 11846, 'synset': 'trap.n.01', 'name': 'trap'}, {'id': 11847, 'synset': 'trap_door.n.01', 'name': 'trap_door'}, {'id': 11848, 'synset': 'trapeze.n.01', 'name': 'trapeze'}, {'id': 11849, 'synset': 'trave.n.01', 'name': 'trave'}, {'id': 11850, 'synset': 'travel_iron.n.01', 'name': 'travel_iron'}, {'id': 11851, 'synset': 'trawl.n.02', 'name': 'trawl'}, {'id': 11852, 'synset': 'trawl.n.01', 'name': 'trawl'}, {'id': 11853, 'synset': 'trawler.n.02', 'name': 'trawler'}, {'id': 11854, 'synset': 'tray_cloth.n.01', 'name': 'tray_cloth'}, {'id': 11855, 'synset': 'tread.n.04', 'name': 'tread'}, {'id': 11856, 'synset': 'tread.n.03', 'name': 'tread'}, {'id': 11857, 'synset': 'treadmill.n.02', 'name': 'treadmill'}, {'id': 11858, 'synset': 'treadmill.n.01', 'name': 'treadmill'}, {'id': 11859, 'synset': 'treasure_chest.n.01', 'name': 'treasure_chest'}, {'id': 11860, 'synset': 'treasure_ship.n.01', 'name': 'treasure_ship'}, {'id': 11861, 'synset': 'treenail.n.01', 'name': 'treenail'}, {'id': 11862, 'synset': 'trefoil_arch.n.01', 'name': 'trefoil_arch'}, {'id': 11863, 'synset': 'trellis.n.01', 'name': 'trellis'}, {'id': 11864, 'synset': 'trench.n.01', 'name': 'trench'}, {'id': 11865, 'synset': 'trench_knife.n.01', 'name': 'trench_knife'}, {'id': 11866, 'synset': 'trepan.n.02', 'name': 'trepan'}, {'id': 11867, 'synset': 'trepan.n.01', 'name': 'trepan'}, {'id': 11868, 'synset': 'trestle.n.02', 'name': 'trestle'}, {'id': 11869, 'synset': 'trestle.n.01', 'name': 'trestle'}, {'id': 11870, 'synset': 'trestle_bridge.n.01', 'name': 'trestle_bridge'}, {'id': 11871, 'synset': 'trestle_table.n.01', 'name': 'trestle_table'}, {'id': 11872, 'synset': 'trestlework.n.01', 'name': 'trestlework'}, {'id': 11873, 'synset': 'trews.n.01', 'name': 'trews'}, {'id': 11874, 'synset': 'trial_balloon.n.02', 'name': 'trial_balloon'}, {'id': 11875, 'synset': 'triangle.n.04', 'name': 'triangle'}, {'id': 11876, 'synset': 'triclinium.n.02', 'name': 'triclinium'}, {'id': 11877, 'synset': 'triclinium.n.01', 'name': 'triclinium'}, {'id': 11878, 'synset': 'tricorn.n.01', 'name': 'tricorn'}, {'id': 11879, 'synset': 'tricot.n.01', 'name': 'tricot'}, {'id': 11880, 'synset': 'trident.n.01', 'name': 'trident'}, {'id': 11881, 'synset': 'trigger.n.02', 'name': 'trigger'}, {'id': 11882, 'synset': 'trimaran.n.01', 'name': 'trimaran'}, {'id': 11883, 'synset': 'trimmer.n.02', 'name': 'trimmer'}, {'id': 11884, 'synset': 'trimmer_arch.n.01', 'name': 'trimmer_arch'}, {'id': 11885, 'synset': 'triode.n.01', 'name': 'triode'}, {'id': 11886, 'synset': 'triptych.n.01', 'name': 'triptych'}, {'id': 11887, 'synset': 'trip_wire.n.02', 'name': 'trip_wire'}, {'id': 11888, 'synset': 'trireme.n.01', 'name': 'trireme'}, {'id': 11889, 'synset': 'triskelion.n.01', 'name': 'triskelion'}, {'id': 11890, 'synset': 'triumphal_arch.n.01', 'name': 'triumphal_arch'}, {'id': 11891, 'synset': 'trivet.n.02', 'name': 'trivet'}, {'id': 11892, 'synset': 'trivet.n.01', 'name': 'trivet'}, {'id': 11893, 'synset': 'troika.n.01', 'name': 'troika'}, {'id': 11894, 'synset': 'troll.n.03', 'name': 'troll'}, {'id': 11895, 'synset': 'trolleybus.n.01', 'name': 'trolleybus'}, {'id': 11896, 'synset': 'trombone.n.01', 'name': 'trombone'}, {'id': 11897, 'synset': 'troop_carrier.n.01', 'name': 'troop_carrier'}, {'id': 11898, 'synset': 'troopship.n.01', 'name': 'troopship'}, {'id': 11899, 'synset': 'trophy_case.n.01', 'name': 'trophy_case'}, {'id': 11900, 'synset': 'trough.n.05', 'name': 'trough'}, {'id': 11901, 'synset': 'trouser.n.02', 'name': 'trouser'}, {'id': 11902, 'synset': 'trouser_cuff.n.01', 'name': 'trouser_cuff'}, {'id': 11903, 'synset': 'trouser_press.n.01', 'name': 'trouser_press'}, {'id': 11904, 'synset': 'trousseau.n.01', 'name': 'trousseau'}, {'id': 11905, 'synset': 'trowel.n.01', 'name': 'trowel'}, {'id': 11906, 'synset': 'trumpet_arch.n.01', 'name': 'trumpet_arch'}, {'id': 11907, 'synset': 'truncheon.n.01', 'name': 'truncheon'}, {'id': 11908, 'synset': 'trundle_bed.n.01', 'name': 'trundle_bed'}, {'id': 11909, 'synset': 'trunk_hose.n.01', 'name': 'trunk_hose'}, {'id': 11910, 'synset': 'trunk_lid.n.01', 'name': 'trunk_lid'}, {'id': 11911, 'synset': 'trunk_line.n.02', 'name': 'trunk_line'}, {'id': 11912, 'synset': 'truss.n.02', 'name': 'truss'}, {'id': 11913, 'synset': 'truss_bridge.n.01', 'name': 'truss_bridge'}, {'id': 11914, 'synset': 'try_square.n.01', 'name': 'try_square'}, {'id': 11915, 'synset': 't-square.n.01', 'name': 'T-square'}, {'id': 11916, 'synset': 'tube.n.02', 'name': 'tube'}, {'id': 11917, 'synset': 'tuck_box.n.01', 'name': 'tuck_box'}, {'id': 11918, 'synset': 'tucker.n.04', 'name': 'tucker'}, {'id': 11919, 'synset': 'tucker-bag.n.01', 'name': 'tucker-bag'}, {'id': 11920, 'synset': 'tuck_shop.n.01', 'name': 'tuck_shop'}, {'id': 11921, 'synset': 'tudor_arch.n.01', 'name': 'Tudor_arch'}, {'id': 11922, 'synset': 'tudung.n.01', 'name': 'tudung'}, {'id': 11923, 'synset': 'tugboat.n.01', 'name': 'tugboat'}, {'id': 11924, 'synset': 'tulle.n.01', 'name': 'tulle'}, {'id': 11925, 'synset': 'tumble-dryer.n.01', 'name': 'tumble-dryer'}, {'id': 11926, 'synset': 'tumbler.n.02', 'name': 'tumbler'}, {'id': 11927, 'synset': 'tumbrel.n.01', 'name': 'tumbrel'}, {'id': 11928, 'synset': 'tun.n.01', 'name': 'tun'}, {'id': 11929, 'synset': 'tunic.n.02', 'name': 'tunic'}, {'id': 11930, 'synset': 'tuning_fork.n.01', 'name': 'tuning_fork'}, {'id': 11931, 'synset': 'tupik.n.01', 'name': 'tupik'}, {'id': 11932, 'synset': 'turbine.n.01', 'name': 'turbine'}, {'id': 11933, 'synset': 'turbogenerator.n.01', 'name': 'turbogenerator'}, {'id': 11934, 'synset': 'tureen.n.01', 'name': 'tureen'}, {'id': 11935, 'synset': 'turkish_bath.n.01', 'name': 'Turkish_bath'}, {'id': 11936, 'synset': 'turkish_towel.n.01', 'name': 'Turkish_towel'}, {'id': 11937, 'synset': "turk's_head.n.01", 'name': "Turk's_head"}, {'id': 11938, 'synset': 'turnbuckle.n.01', 'name': 'turnbuckle'}, {'id': 11939, 'synset': 'turner.n.08', 'name': 'turner'}, {'id': 11940, 'synset': 'turnery.n.01', 'name': 'turnery'}, {'id': 11941, 'synset': 'turnpike.n.01', 'name': 'turnpike'}, {'id': 11942, 'synset': 'turnspit.n.01', 'name': 'turnspit'}, {'id': 11943, 'synset': 'turnstile.n.01', 'name': 'turnstile'}, {'id': 11944, 'synset': 'turntable.n.01', 'name': 'turntable'}, {'id': 11945, 'synset': 'turntable.n.02', 'name': 'turntable'}, {'id': 11946, 'synset': 'turret.n.01', 'name': 'turret'}, {'id': 11947, 'synset': 'turret_clock.n.01', 'name': 'turret_clock'}, {'id': 11948, 'synset': 'tweed.n.01', 'name': 'tweed'}, {'id': 11949, 'synset': 'tweeter.n.01', 'name': 'tweeter'}, {'id': 11950, 'synset': 'twenty-two.n.02', 'name': 'twenty-two'}, {'id': 11951, 'synset': 'twenty-two_pistol.n.01', 'name': 'twenty-two_pistol'}, {'id': 11952, 'synset': 'twenty-two_rifle.n.01', 'name': 'twenty-two_rifle'}, {'id': 11953, 'synset': 'twill.n.02', 'name': 'twill'}, {'id': 11954, 'synset': 'twill.n.01', 'name': 'twill'}, {'id': 11955, 'synset': 'twin_bed.n.01', 'name': 'twin_bed'}, {'id': 11956, 'synset': 'twinjet.n.01', 'name': 'twinjet'}, {'id': 11957, 'synset': 'twist_bit.n.01', 'name': 'twist_bit'}, {'id': 11958, 'synset': 'two-by-four.n.01', 'name': 'two-by-four'}, {'id': 11959, 'synset': 'two-man_tent.n.01', 'name': 'two-man_tent'}, {'id': 11960, 'synset': 'two-piece.n.01', 'name': 'two-piece'}, {'id': 11961, 'synset': 'typesetting_machine.n.01', 'name': 'typesetting_machine'}, {'id': 11962, 'synset': 'typewriter_carriage.n.01', 'name': 'typewriter_carriage'}, {'id': 11963, 'synset': 'typewriter_keyboard.n.01', 'name': 'typewriter_keyboard'}, {'id': 11964, 'synset': 'tyrolean.n.02', 'name': 'tyrolean'}, {'id': 11965, 'synset': 'uke.n.01', 'name': 'uke'}, {'id': 11966, 'synset': 'ulster.n.02', 'name': 'ulster'}, {'id': 11967, 'synset': 'ultracentrifuge.n.01', 'name': 'ultracentrifuge'}, {'id': 11968, 'synset': 'ultramicroscope.n.01', 'name': 'ultramicroscope'}, {'id': 11969, 'synset': 'ultrasuede.n.01', 'name': 'Ultrasuede'}, {'id': 11970, 'synset': 'ultraviolet_lamp.n.01', 'name': 'ultraviolet_lamp'}, {'id': 11971, 'synset': 'umbrella_tent.n.01', 'name': 'umbrella_tent'}, {'id': 11972, 'synset': 'undercarriage.n.01', 'name': 'undercarriage'}, {'id': 11973, 'synset': 'undercoat.n.01', 'name': 'undercoat'}, {'id': 11974, 'synset': 'undergarment.n.01', 'name': 'undergarment'}, {'id': 11975, 'synset': 'underpants.n.01', 'name': 'underpants'}, {'id': 11976, 'synset': 'undies.n.01', 'name': 'undies'}, {'id': 11977, 'synset': 'uneven_parallel_bars.n.01', 'name': 'uneven_parallel_bars'}, {'id': 11978, 'synset': 'uniform.n.01', 'name': 'uniform'}, {'id': 11979, 'synset': 'universal_joint.n.01', 'name': 'universal_joint'}, {'id': 11980, 'synset': 'university.n.02', 'name': 'university'}, {'id': 11981, 'synset': 'upholstery.n.01', 'name': 'upholstery'}, {'id': 11982, 'synset': 'upholstery_material.n.01', 'name': 'upholstery_material'}, {'id': 11983, 'synset': 'upholstery_needle.n.01', 'name': 'upholstery_needle'}, {'id': 11984, 'synset': 'uplift.n.02', 'name': 'uplift'}, {'id': 11985, 'synset': 'upper_berth.n.01', 'name': 'upper_berth'}, {'id': 11986, 'synset': 'upright.n.02', 'name': 'upright'}, {'id': 11987, 'synset': 'upset.n.04', 'name': 'upset'}, {'id': 11988, 'synset': 'upstairs.n.01', 'name': 'upstairs'}, {'id': 11989, 'synset': 'urceole.n.01', 'name': 'urceole'}, {'id': 11990, 'synset': 'urn.n.02', 'name': 'urn'}, {'id': 11991, 'synset': 'used-car.n.01', 'name': 'used-car'}, {'id': 11992, 'synset': 'utensil.n.01', 'name': 'utensil'}, {'id': 11993, 'synset': 'uzi.n.01', 'name': 'Uzi'}, {'id': 11994, 'synset': 'vacation_home.n.01', 'name': 'vacation_home'}, {'id': 11995, 'synset': 'vacuum_chamber.n.01', 'name': 'vacuum_chamber'}, {'id': 11996, 'synset': 'vacuum_flask.n.01', 'name': 'vacuum_flask'}, {'id': 11997, 'synset': 'vacuum_gauge.n.01', 'name': 'vacuum_gauge'}, {'id': 11998, 'synset': 'valenciennes.n.02', 'name': 'Valenciennes'}, {'id': 11999, 'synset': 'valise.n.01', 'name': 'valise'}, {'id': 12000, 'synset': 'valve.n.03', 'name': 'valve'}, {'id': 12001, 'synset': 'valve.n.02', 'name': 'valve'}, {'id': 12002, 'synset': 'valve-in-head_engine.n.01', 'name': 'valve-in-head_engine'}, {'id': 12003, 'synset': 'vambrace.n.01', 'name': 'vambrace'}, {'id': 12004, 'synset': 'van.n.05', 'name': 'van'}, {'id': 12005, 'synset': 'van.n.04', 'name': 'van'}, {'id': 12006, 'synset': 'vane.n.02', 'name': 'vane'}, {'id': 12007, 'synset': 'vaporizer.n.01', 'name': 'vaporizer'}, {'id': 12008, 'synset': 'variable-pitch_propeller.n.01', 'name': 'variable-pitch_propeller'}, {'id': 12009, 'synset': 'variometer.n.01', 'name': 'variometer'}, {'id': 12010, 'synset': 'varnish.n.01', 'name': 'varnish'}, {'id': 12011, 'synset': 'vault.n.03', 'name': 'vault'}, {'id': 12012, 'synset': 'vault.n.02', 'name': 'vault'}, {'id': 12013, 'synset': 'vaulting_horse.n.01', 'name': 'vaulting_horse'}, {'id': 12014, 'synset': 'vehicle.n.01', 'name': 'vehicle'}, {'id': 12015, 'synset': 'velcro.n.01', 'name': 'Velcro'}, {'id': 12016, 'synset': 'velocipede.n.01', 'name': 'velocipede'}, {'id': 12017, 'synset': 'velour.n.01', 'name': 'velour'}, {'id': 12018, 'synset': 'velvet.n.01', 'name': 'velvet'}, {'id': 12019, 'synset': 'velveteen.n.01', 'name': 'velveteen'}, {'id': 12020, 'synset': 'veneer.n.01', 'name': 'veneer'}, {'id': 12021, 'synset': 'venetian_blind.n.01', 'name': 'Venetian_blind'}, {'id': 12022, 'synset': 'venn_diagram.n.01', 'name': 'Venn_diagram'}, {'id': 12023, 'synset': 'ventilation.n.02', 'name': 'ventilation'}, {'id': 12024, 'synset': 'ventilation_shaft.n.01', 'name': 'ventilation_shaft'}, {'id': 12025, 'synset': 'ventilator.n.01', 'name': 'ventilator'}, {'id': 12026, 'synset': 'veranda.n.01', 'name': 'veranda'}, {'id': 12027, 'synset': 'verdigris.n.02', 'name': 'verdigris'}, {'id': 12028, 'synset': 'vernier_caliper.n.01', 'name': 'vernier_caliper'}, {'id': 12029, 'synset': 'vernier_scale.n.01', 'name': 'vernier_scale'}, {'id': 12030, 'synset': 'vertical_file.n.01', 'name': 'vertical_file'}, {'id': 12031, 'synset': 'vertical_stabilizer.n.01', 'name': 'vertical_stabilizer'}, {'id': 12032, 'synset': 'vertical_tail.n.01', 'name': 'vertical_tail'}, {'id': 12033, 'synset': 'very_pistol.n.01', 'name': 'Very_pistol'}, {'id': 12034, 'synset': 'vessel.n.02', 'name': 'vessel'}, {'id': 12035, 'synset': 'vessel.n.03', 'name': 'vessel'}, {'id': 12036, 'synset': 'vestiture.n.01', 'name': 'vestiture'}, {'id': 12037, 'synset': 'vestment.n.01', 'name': 'vestment'}, {'id': 12038, 'synset': 'vest_pocket.n.01', 'name': 'vest_pocket'}, {'id': 12039, 'synset': 'vestry.n.02', 'name': 'vestry'}, {'id': 12040, 'synset': 'viaduct.n.01', 'name': 'viaduct'}, {'id': 12041, 'synset': 'vibraphone.n.01', 'name': 'vibraphone'}, {'id': 12042, 'synset': 'vibrator.n.02', 'name': 'vibrator'}, {'id': 12043, 'synset': 'vibrator.n.01', 'name': 'vibrator'}, {'id': 12044, 'synset': 'victrola.n.01', 'name': 'Victrola'}, {'id': 12045, 'synset': 'vicuna.n.02', 'name': 'vicuna'}, {'id': 12046, 'synset': 'videocassette.n.01', 'name': 'videocassette'}, {'id': 12047, 'synset': 'videocassette_recorder.n.01', 'name': 'videocassette_recorder'}, {'id': 12048, 'synset': 'videodisk.n.01', 'name': 'videodisk'}, {'id': 12049, 'synset': 'video_recording.n.01', 'name': 'video_recording'}, {'id': 12050, 'synset': 'videotape.n.02', 'name': 'videotape'}, {'id': 12051, 'synset': 'vigil_light.n.01', 'name': 'vigil_light'}, {'id': 12052, 'synset': 'villa.n.04', 'name': 'villa'}, {'id': 12053, 'synset': 'villa.n.03', 'name': 'villa'}, {'id': 12054, 'synset': 'villa.n.02', 'name': 'villa'}, {'id': 12055, 'synset': 'viol.n.01', 'name': 'viol'}, {'id': 12056, 'synset': 'viola.n.03', 'name': 'viola'}, {'id': 12057, 'synset': 'viola_da_braccio.n.01', 'name': 'viola_da_braccio'}, {'id': 12058, 'synset': 'viola_da_gamba.n.01', 'name': 'viola_da_gamba'}, {'id': 12059, 'synset': "viola_d'amore.n.01", 'name': "viola_d'amore"}, {'id': 12060, 'synset': 'virginal.n.01', 'name': 'virginal'}, {'id': 12061, 'synset': 'viscometer.n.01', 'name': 'viscometer'}, {'id': 12062, 'synset': 'viscose_rayon.n.01', 'name': 'viscose_rayon'}, {'id': 12063, 'synset': 'vise.n.01', 'name': 'vise'}, {'id': 12064, 'synset': 'visor.n.01', 'name': 'visor'}, {'id': 12065, 'synset': 'visual_display_unit.n.01', 'name': 'visual_display_unit'}, {'id': 12066, 'synset': 'vivarium.n.01', 'name': 'vivarium'}, {'id': 12067, 'synset': 'viyella.n.01', 'name': 'Viyella'}, {'id': 12068, 'synset': 'voile.n.01', 'name': 'voile'}, {'id': 12069, 'synset': 'volleyball_net.n.01', 'name': 'volleyball_net'}, {'id': 12070, 'synset': 'voltage_regulator.n.01', 'name': 'voltage_regulator'}, {'id': 12071, 'synset': 'voltaic_cell.n.01', 'name': 'voltaic_cell'}, {'id': 12072, 'synset': 'voltaic_pile.n.01', 'name': 'voltaic_pile'}, {'id': 12073, 'synset': 'voltmeter.n.01', 'name': 'voltmeter'}, {'id': 12074, 'synset': 'vomitory.n.01', 'name': 'vomitory'}, {'id': 12075, 'synset': 'von_neumann_machine.n.01', 'name': 'von_Neumann_machine'}, {'id': 12076, 'synset': 'voting_booth.n.01', 'name': 'voting_booth'}, {'id': 12077, 'synset': 'voting_machine.n.01', 'name': 'voting_machine'}, {'id': 12078, 'synset': 'voussoir.n.01', 'name': 'voussoir'}, {'id': 12079, 'synset': 'vox_angelica.n.01', 'name': 'vox_angelica'}, {'id': 12080, 'synset': 'vox_humana.n.01', 'name': 'vox_humana'}, {'id': 12081, 'synset': 'waders.n.01', 'name': 'waders'}, {'id': 12082, 'synset': 'wading_pool.n.01', 'name': 'wading_pool'}, {'id': 12083, 'synset': 'wagon.n.04', 'name': 'wagon'}, {'id': 12084, 'synset': 'wagon_tire.n.01', 'name': 'wagon_tire'}, {'id': 12085, 'synset': 'wain.n.03', 'name': 'wain'}, {'id': 12086, 'synset': 'wainscot.n.02', 'name': 'wainscot'}, {'id': 12087, 'synset': 'wainscoting.n.01', 'name': 'wainscoting'}, {'id': 12088, 'synset': 'waist_pack.n.01', 'name': 'waist_pack'}, {'id': 12089, 'synset': 'walker.n.06', 'name': 'walker'}, {'id': 12090, 'synset': 'walker.n.05', 'name': 'walker'}, {'id': 12091, 'synset': 'walker.n.04', 'name': 'walker'}, {'id': 12092, 'synset': 'walkie-talkie.n.01', 'name': 'walkie-talkie'}, {'id': 12093, 'synset': 'walk-in.n.04', 'name': 'walk-in'}, {'id': 12094, 'synset': 'walking_shoe.n.01', 'name': 'walking_shoe'}, {'id': 12095, 'synset': 'walkman.n.01', 'name': 'Walkman'}, {'id': 12096, 'synset': 'walk-up_apartment.n.01', 'name': 'walk-up_apartment'}, {'id': 12097, 'synset': 'wall.n.01', 'name': 'wall'}, {'id': 12098, 'synset': 'wall.n.07', 'name': 'wall'}, {'id': 12099, 'synset': 'wall_tent.n.01', 'name': 'wall_tent'}, {'id': 12100, 'synset': 'wall_unit.n.01', 'name': 'wall_unit'}, {'id': 12101, 'synset': 'wand.n.01', 'name': 'wand'}, {'id': 12102, 'synset': 'wankel_engine.n.01', 'name': 'Wankel_engine'}, {'id': 12103, 'synset': 'ward.n.03', 'name': 'ward'}, {'id': 12104, 'synset': 'wardroom.n.01', 'name': 'wardroom'}, {'id': 12105, 'synset': 'warehouse.n.01', 'name': 'warehouse'}, {'id': 12106, 'synset': 'warming_pan.n.01', 'name': 'warming_pan'}, {'id': 12107, 'synset': 'war_paint.n.02', 'name': 'war_paint'}, {'id': 12108, 'synset': 'warplane.n.01', 'name': 'warplane'}, {'id': 12109, 'synset': 'war_room.n.01', 'name': 'war_room'}, {'id': 12110, 'synset': 'warship.n.01', 'name': 'warship'}, {'id': 12111, 'synset': 'wash.n.01', 'name': 'wash'}, {'id': 12112, 'synset': 'wash-and-wear.n.01', 'name': 'wash-and-wear'}, {'id': 12113, 'synset': 'washbasin.n.02', 'name': 'washbasin'}, {'id': 12114, 'synset': 'washboard.n.02', 'name': 'washboard'}, {'id': 12115, 'synset': 'washboard.n.01', 'name': 'washboard'}, {'id': 12116, 'synset': 'washer.n.02', 'name': 'washer'}, {'id': 12117, 'synset': 'washhouse.n.01', 'name': 'washhouse'}, {'id': 12118, 'synset': 'washroom.n.01', 'name': 'washroom'}, {'id': 12119, 'synset': 'washstand.n.01', 'name': 'washstand'}, {'id': 12120, 'synset': 'washtub.n.01', 'name': 'washtub'}, {'id': 12121, 'synset': 'wastepaper_basket.n.01', 'name': 'wastepaper_basket'}, {'id': 12122, 'synset': 'watch_cap.n.01', 'name': 'watch_cap'}, {'id': 12123, 'synset': 'watch_case.n.01', 'name': 'watch_case'}, {'id': 12124, 'synset': 'watch_glass.n.01', 'name': 'watch_glass'}, {'id': 12125, 'synset': 'watchtower.n.01', 'name': 'watchtower'}, {'id': 12126, 'synset': 'water-base_paint.n.01', 'name': 'water-base_paint'}, {'id': 12127, 'synset': 'water_bed.n.01', 'name': 'water_bed'}, {'id': 12128, 'synset': 'water_butt.n.01', 'name': 'water_butt'}, {'id': 12129, 'synset': 'water_cart.n.01', 'name': 'water_cart'}, {'id': 12130, 'synset': 'water_chute.n.01', 'name': 'water_chute'}, {'id': 12131, 'synset': 'water_closet.n.01', 'name': 'water_closet'}, {'id': 12132, 'synset': 'watercolor.n.02', 'name': 'watercolor'}, {'id': 12133, 'synset': 'water-cooled_reactor.n.01', 'name': 'water-cooled_reactor'}, {'id': 12134, 'synset': 'water_filter.n.01', 'name': 'water_filter'}, {'id': 12135, 'synset': 'water_gauge.n.01', 'name': 'water_gauge'}, {'id': 12136, 'synset': 'water_glass.n.02', 'name': 'water_glass'}, {'id': 12137, 'synset': 'water_hazard.n.01', 'name': 'water_hazard'}, {'id': 12138, 'synset': 'watering_cart.n.01', 'name': 'watering_cart'}, {'id': 12139, 'synset': 'water_jacket.n.01', 'name': 'water_jacket'}, {'id': 12140, 'synset': 'water_jump.n.01', 'name': 'water_jump'}, {'id': 12141, 'synset': 'water_level.n.04', 'name': 'water_level'}, {'id': 12142, 'synset': 'water_meter.n.01', 'name': 'water_meter'}, {'id': 12143, 'synset': 'water_mill.n.01', 'name': 'water_mill'}, {'id': 12144, 'synset': 'waterproof.n.01', 'name': 'waterproof'}, {'id': 12145, 'synset': 'waterproofing.n.02', 'name': 'waterproofing'}, {'id': 12146, 'synset': 'water_pump.n.01', 'name': 'water_pump'}, {'id': 12147, 'synset': 'waterspout.n.03', 'name': 'waterspout'}, {'id': 12148, 'synset': 'water_wagon.n.01', 'name': 'water_wagon'}, {'id': 12149, 'synset': 'waterwheel.n.02', 'name': 'waterwheel'}, {'id': 12150, 'synset': 'waterwheel.n.01', 'name': 'waterwheel'}, {'id': 12151, 'synset': 'water_wings.n.01', 'name': 'water_wings'}, {'id': 12152, 'synset': 'waterworks.n.02', 'name': 'waterworks'}, {'id': 12153, 'synset': 'wattmeter.n.01', 'name': 'wattmeter'}, {'id': 12154, 'synset': 'waxwork.n.02', 'name': 'waxwork'}, {'id': 12155, 'synset': 'ways.n.01', 'name': 'ways'}, {'id': 12156, 'synset': 'weapon.n.01', 'name': 'weapon'}, {'id': 12157, 'synset': 'weaponry.n.01', 'name': 'weaponry'}, {'id': 12158, 'synset': 'weapons_carrier.n.01', 'name': 'weapons_carrier'}, {'id': 12159, 'synset': 'weathercock.n.01', 'name': 'weathercock'}, {'id': 12160, 'synset': 'weatherglass.n.01', 'name': 'weatherglass'}, {'id': 12161, 'synset': 'weather_satellite.n.01', 'name': 'weather_satellite'}, {'id': 12162, 'synset': 'weather_ship.n.01', 'name': 'weather_ship'}, {'id': 12163, 'synset': 'web.n.02', 'name': 'web'}, {'id': 12164, 'synset': 'web.n.06', 'name': 'web'}, {'id': 12165, 'synset': 'webbing.n.03', 'name': 'webbing'}, {'id': 12166, 'synset': 'wedge.n.06', 'name': 'wedge'}, {'id': 12167, 'synset': 'wedge.n.05', 'name': 'wedge'}, {'id': 12168, 'synset': 'wedgie.n.01', 'name': 'wedgie'}, {'id': 12169, 'synset': 'wedgwood.n.02', 'name': 'Wedgwood'}, {'id': 12170, 'synset': 'weeder.n.02', 'name': 'weeder'}, {'id': 12171, 'synset': 'weeds.n.01', 'name': 'weeds'}, {'id': 12172, 'synset': 'weekender.n.02', 'name': 'weekender'}, {'id': 12173, 'synset': 'weighbridge.n.01', 'name': 'weighbridge'}, {'id': 12174, 'synset': 'weight.n.02', 'name': 'weight'}, {'id': 12175, 'synset': 'weir.n.01', 'name': 'weir'}, {'id': 12176, 'synset': 'weir.n.02', 'name': 'weir'}, {'id': 12177, 'synset': 'welcome_wagon.n.01', 'name': 'welcome_wagon'}, {'id': 12178, 'synset': 'weld.n.03', 'name': 'weld'}, {'id': 12179, 'synset': "welder's_mask.n.01", 'name': "welder's_mask"}, {'id': 12180, 'synset': 'weldment.n.01', 'name': 'weldment'}, {'id': 12181, 'synset': 'well.n.02', 'name': 'well'}, {'id': 12182, 'synset': 'wellhead.n.02', 'name': 'wellhead'}, {'id': 12183, 'synset': 'welt.n.02', 'name': 'welt'}, {'id': 12184, 'synset': 'weston_cell.n.01', 'name': 'Weston_cell'}, {'id': 12185, 'synset': 'wet_bar.n.01', 'name': 'wet_bar'}, {'id': 12186, 'synset': 'wet-bulb_thermometer.n.01', 'name': 'wet-bulb_thermometer'}, {'id': 12187, 'synset': 'wet_cell.n.01', 'name': 'wet_cell'}, {'id': 12188, 'synset': 'wet_fly.n.01', 'name': 'wet_fly'}, {'id': 12189, 'synset': 'whaleboat.n.01', 'name': 'whaleboat'}, {'id': 12190, 'synset': 'whaler.n.02', 'name': 'whaler'}, {'id': 12191, 'synset': 'whaling_gun.n.01', 'name': 'whaling_gun'}, {'id': 12192, 'synset': 'wheel.n.04', 'name': 'wheel'}, {'id': 12193, 'synset': 'wheel_and_axle.n.01', 'name': 'wheel_and_axle'}, {'id': 12194, 'synset': 'wheeled_vehicle.n.01', 'name': 'wheeled_vehicle'}, {'id': 12195, 'synset': 'wheelwork.n.01', 'name': 'wheelwork'}, {'id': 12196, 'synset': 'wherry.n.02', 'name': 'wherry'}, {'id': 12197, 'synset': 'wherry.n.01', 'name': 'wherry'}, {'id': 12198, 'synset': 'whetstone.n.01', 'name': 'whetstone'}, {'id': 12199, 'synset': 'whiffletree.n.01', 'name': 'whiffletree'}, {'id': 12200, 'synset': 'whip.n.01', 'name': 'whip'}, {'id': 12201, 'synset': 'whipcord.n.02', 'name': 'whipcord'}, {'id': 12202, 'synset': 'whipping_post.n.01', 'name': 'whipping_post'}, {'id': 12203, 'synset': 'whipstitch.n.01', 'name': 'whipstitch'}, {'id': 12204, 'synset': 'whirler.n.02', 'name': 'whirler'}, {'id': 12205, 'synset': 'whisk.n.02', 'name': 'whisk'}, {'id': 12206, 'synset': 'whisk.n.01', 'name': 'whisk'}, {'id': 12207, 'synset': 'whiskey_bottle.n.01', 'name': 'whiskey_bottle'}, {'id': 12208, 'synset': 'whiskey_jug.n.01', 'name': 'whiskey_jug'}, {'id': 12209, 'synset': 'whispering_gallery.n.01', 'name': 'whispering_gallery'}, {'id': 12210, 'synset': 'whistle.n.04', 'name': 'whistle'}, {'id': 12211, 'synset': 'white.n.11', 'name': 'white'}, {'id': 12212, 'synset': 'white_goods.n.01', 'name': 'white_goods'}, {'id': 12213, 'synset': 'whitewash.n.02', 'name': 'whitewash'}, {'id': 12214, 'synset': 'whorehouse.n.01', 'name': 'whorehouse'}, {'id': 12215, 'synset': 'wick.n.02', 'name': 'wick'}, {'id': 12216, 'synset': 'wicker.n.02', 'name': 'wicker'}, {'id': 12217, 'synset': 'wicker_basket.n.01', 'name': 'wicker_basket'}, {'id': 12218, 'synset': 'wicket.n.02', 'name': 'wicket'}, {'id': 12219, 'synset': 'wicket.n.01', 'name': 'wicket'}, {'id': 12220, 'synset': 'wickiup.n.01', 'name': 'wickiup'}, {'id': 12221, 'synset': 'wide-angle_lens.n.01', 'name': 'wide-angle_lens'}, {'id': 12222, 'synset': 'widebody_aircraft.n.01', 'name': 'widebody_aircraft'}, {'id': 12223, 'synset': 'wide_wale.n.01', 'name': 'wide_wale'}, {'id': 12224, 'synset': "widow's_walk.n.01", 'name': "widow's_walk"}, {'id': 12225, 'synset': 'wiffle.n.01', 'name': 'Wiffle'}, {'id': 12226, 'synset': 'wigwam.n.01', 'name': 'wigwam'}, {'id': 12227, 'synset': 'wilton.n.01', 'name': 'Wilton'}, {'id': 12228, 'synset': 'wimple.n.01', 'name': 'wimple'}, {'id': 12229, 'synset': 'wincey.n.01', 'name': 'wincey'}, {'id': 12230, 'synset': 'winceyette.n.01', 'name': 'winceyette'}, {'id': 12231, 'synset': 'winch.n.01', 'name': 'winch'}, {'id': 12232, 'synset': 'winchester.n.02', 'name': 'Winchester'}, {'id': 12233, 'synset': 'windbreak.n.01', 'name': 'windbreak'}, {'id': 12234, 'synset': 'winder.n.02', 'name': 'winder'}, {'id': 12235, 'synset': 'wind_instrument.n.01', 'name': 'wind_instrument'}, {'id': 12236, 'synset': 'windjammer.n.01', 'name': 'windjammer'}, {'id': 12237, 'synset': 'windmill.n.02', 'name': 'windmill'}, {'id': 12238, 'synset': 'window.n.01', 'name': 'window'}, {'id': 12239, 'synset': 'window.n.08', 'name': 'window'}, {'id': 12240, 'synset': 'window_blind.n.01', 'name': 'window_blind'}, {'id': 12241, 'synset': 'window_envelope.n.01', 'name': 'window_envelope'}, {'id': 12242, 'synset': 'window_frame.n.01', 'name': 'window_frame'}, {'id': 12243, 'synset': 'window_screen.n.01', 'name': 'window_screen'}, {'id': 12244, 'synset': 'window_seat.n.01', 'name': 'window_seat'}, {'id': 12245, 'synset': 'window_shade.n.01', 'name': 'window_shade'}, {'id': 12246, 'synset': 'windowsill.n.01', 'name': 'windowsill'}, {'id': 12247, 'synset': 'windshield.n.01', 'name': 'windshield'}, {'id': 12248, 'synset': 'windsor_chair.n.01', 'name': 'Windsor_chair'}, {'id': 12249, 'synset': 'windsor_knot.n.01', 'name': 'Windsor_knot'}, {'id': 12250, 'synset': 'windsor_tie.n.01', 'name': 'Windsor_tie'}, {'id': 12251, 'synset': 'wind_tee.n.01', 'name': 'wind_tee'}, {'id': 12252, 'synset': 'wind_tunnel.n.01', 'name': 'wind_tunnel'}, {'id': 12253, 'synset': 'wind_turbine.n.01', 'name': 'wind_turbine'}, {'id': 12254, 'synset': 'wine_bar.n.01', 'name': 'wine_bar'}, {'id': 12255, 'synset': 'wine_cask.n.01', 'name': 'wine_cask'}, {'id': 12256, 'synset': 'winepress.n.01', 'name': 'winepress'}, {'id': 12257, 'synset': 'winery.n.01', 'name': 'winery'}, {'id': 12258, 'synset': 'wineskin.n.01', 'name': 'wineskin'}, {'id': 12259, 'synset': 'wing.n.02', 'name': 'wing'}, {'id': 12260, 'synset': 'wing_chair.n.01', 'name': 'wing_chair'}, {'id': 12261, 'synset': 'wing_nut.n.02', 'name': 'wing_nut'}, {'id': 12262, 'synset': 'wing_tip.n.02', 'name': 'wing_tip'}, {'id': 12263, 'synset': 'wing_tip.n.01', 'name': 'wing_tip'}, {'id': 12264, 'synset': 'wiper.n.02', 'name': 'wiper'}, {'id': 12265, 'synset': 'wiper_motor.n.01', 'name': 'wiper_motor'}, {'id': 12266, 'synset': 'wire.n.01', 'name': 'wire'}, {'id': 12267, 'synset': 'wire.n.02', 'name': 'wire'}, {'id': 12268, 'synset': 'wire_cloth.n.01', 'name': 'wire_cloth'}, {'id': 12269, 'synset': 'wire_cutter.n.01', 'name': 'wire_cutter'}, {'id': 12270, 'synset': 'wire_gauge.n.01', 'name': 'wire_gauge'}, {'id': 12271, 'synset': 'wireless_local_area_network.n.01', 'name': 'wireless_local_area_network'}, {'id': 12272, 'synset': 'wire_matrix_printer.n.01', 'name': 'wire_matrix_printer'}, {'id': 12273, 'synset': 'wire_recorder.n.01', 'name': 'wire_recorder'}, {'id': 12274, 'synset': 'wire_stripper.n.01', 'name': 'wire_stripper'}, {'id': 12275, 'synset': 'wirework.n.01', 'name': 'wirework'}, {'id': 12276, 'synset': 'wiring.n.01', 'name': 'wiring'}, {'id': 12277, 'synset': 'wishing_cap.n.01', 'name': 'wishing_cap'}, {'id': 12278, 'synset': 'witness_box.n.01', 'name': 'witness_box'}, {'id': 12279, 'synset': "woman's_clothing.n.01", 'name': "woman's_clothing"}, {'id': 12280, 'synset': 'wood.n.08', 'name': 'wood'}, {'id': 12281, 'synset': 'woodcarving.n.01', 'name': 'woodcarving'}, {'id': 12282, 'synset': 'wood_chisel.n.01', 'name': 'wood_chisel'}, {'id': 12283, 'synset': 'woodenware.n.01', 'name': 'woodenware'}, {'id': 12284, 'synset': 'woodscrew.n.01', 'name': 'woodscrew'}, {'id': 12285, 'synset': 'woodshed.n.01', 'name': 'woodshed'}, {'id': 12286, 'synset': 'wood_vise.n.01', 'name': 'wood_vise'}, {'id': 12287, 'synset': 'woodwind.n.01', 'name': 'woodwind'}, {'id': 12288, 'synset': 'woof.n.01', 'name': 'woof'}, {'id': 12289, 'synset': 'woofer.n.01', 'name': 'woofer'}, {'id': 12290, 'synset': 'wool.n.01', 'name': 'wool'}, {'id': 12291, 'synset': 'workbasket.n.01', 'name': 'workbasket'}, {'id': 12292, 'synset': 'workbench.n.01', 'name': 'workbench'}, {'id': 12293, 'synset': 'work-clothing.n.01', 'name': 'work-clothing'}, {'id': 12294, 'synset': 'workhouse.n.02', 'name': 'workhouse'}, {'id': 12295, 'synset': 'workhouse.n.01', 'name': 'workhouse'}, {'id': 12296, 'synset': 'workpiece.n.01', 'name': 'workpiece'}, {'id': 12297, 'synset': 'workroom.n.01', 'name': 'workroom'}, {'id': 12298, 'synset': 'works.n.04', 'name': 'works'}, {'id': 12299, 'synset': 'work-shirt.n.01', 'name': 'work-shirt'}, {'id': 12300, 'synset': 'workstation.n.01', 'name': 'workstation'}, {'id': 12301, 'synset': 'worktable.n.01', 'name': 'worktable'}, {'id': 12302, 'synset': 'workwear.n.01', 'name': 'workwear'}, {'id': 12303, 'synset': 'world_wide_web.n.01', 'name': 'World_Wide_Web'}, {'id': 12304, 'synset': 'worm_fence.n.01', 'name': 'worm_fence'}, {'id': 12305, 'synset': 'worm_gear.n.01', 'name': 'worm_gear'}, {'id': 12306, 'synset': 'worm_wheel.n.01', 'name': 'worm_wheel'}, {'id': 12307, 'synset': 'worsted.n.01', 'name': 'worsted'}, {'id': 12308, 'synset': 'worsted.n.02', 'name': 'worsted'}, {'id': 12309, 'synset': 'wrap.n.01', 'name': 'wrap'}, {'id': 12310, 'synset': 'wraparound.n.01', 'name': 'wraparound'}, {'id': 12311, 'synset': 'wrapping.n.01', 'name': 'wrapping'}, {'id': 12312, 'synset': 'wreck.n.04', 'name': 'wreck'}, {'id': 12313, 'synset': 'wrestling_mat.n.01', 'name': 'wrestling_mat'}, {'id': 12314, 'synset': 'wringer.n.01', 'name': 'wringer'}, {'id': 12315, 'synset': 'wrist_pad.n.01', 'name': 'wrist_pad'}, {'id': 12316, 'synset': 'wrist_pin.n.01', 'name': 'wrist_pin'}, {'id': 12317, 'synset': 'wristwatch.n.01', 'name': 'wristwatch'}, {'id': 12318, 'synset': 'writing_arm.n.01', 'name': 'writing_arm'}, {'id': 12319, 'synset': 'writing_desk.n.02', 'name': 'writing_desk'}, {'id': 12320, 'synset': 'writing_desk.n.01', 'name': 'writing_desk'}, {'id': 12321, 'synset': 'writing_implement.n.01', 'name': 'writing_implement'}, {'id': 12322, 'synset': 'xerographic_printer.n.01', 'name': 'xerographic_printer'}, {'id': 12323, 'synset': 'xerox.n.02', 'name': 'Xerox'}, {'id': 12324, 'synset': 'x-ray_film.n.01', 'name': 'X-ray_film'}, {'id': 12325, 'synset': 'x-ray_machine.n.01', 'name': 'X-ray_machine'}, {'id': 12326, 'synset': 'x-ray_tube.n.01', 'name': 'X-ray_tube'}, {'id': 12327, 'synset': 'yacht_chair.n.01', 'name': 'yacht_chair'}, {'id': 12328, 'synset': 'yagi.n.01', 'name': 'yagi'}, {'id': 12329, 'synset': 'yard.n.09', 'name': 'yard'}, {'id': 12330, 'synset': 'yard.n.08', 'name': 'yard'}, {'id': 12331, 'synset': 'yardarm.n.01', 'name': 'yardarm'}, {'id': 12332, 'synset': 'yard_marker.n.01', 'name': 'yard_marker'}, {'id': 12333, 'synset': 'yardstick.n.02', 'name': 'yardstick'}, {'id': 12334, 'synset': 'yarmulke.n.01', 'name': 'yarmulke'}, {'id': 12335, 'synset': 'yashmak.n.01', 'name': 'yashmak'}, {'id': 12336, 'synset': 'yataghan.n.01', 'name': 'yataghan'}, {'id': 12337, 'synset': 'yawl.n.02', 'name': 'yawl'}, {'id': 12338, 'synset': 'yawl.n.01', 'name': 'yawl'}, {'id': 12339, 'synset': 'yoke.n.01', 'name': 'yoke'}, {'id': 12340, 'synset': 'yoke.n.06', 'name': 'yoke'}, {'id': 12341, 'synset': 'yurt.n.01', 'name': 'yurt'}, {'id': 12342, 'synset': 'zamboni.n.01', 'name': 'Zamboni'}, {'id': 12343, 'synset': 'zero.n.04', 'name': 'zero'}, {'id': 12344, 'synset': 'ziggurat.n.01', 'name': 'ziggurat'}, {'id': 12345, 'synset': 'zill.n.01', 'name': 'zill'}, {'id': 12346, 'synset': 'zip_gun.n.01', 'name': 'zip_gun'}, {'id': 12347, 'synset': 'zither.n.01', 'name': 'zither'}, {'id': 12348, 'synset': 'zoot_suit.n.01', 'name': 'zoot_suit'}, {'id': 12349, 'synset': 'shading.n.01', 'name': 'shading'}, {'id': 12350, 'synset': 'grain.n.10', 'name': 'grain'}, {'id': 12351, 'synset': 'wood_grain.n.01', 'name': 'wood_grain'}, {'id': 12352, 'synset': 'graining.n.01', 'name': 'graining'}, {'id': 12353, 'synset': 'marbleization.n.01', 'name': 'marbleization'}, {'id': 12354, 'synset': 'light.n.07', 'name': 'light'}, {'id': 12355, 'synset': 'aura.n.02', 'name': 'aura'}, {'id': 12356, 'synset': 'sunniness.n.01', 'name': 'sunniness'}, {'id': 12357, 'synset': 'glint.n.02', 'name': 'glint'}, {'id': 12358, 'synset': 'opalescence.n.01', 'name': 'opalescence'}, {'id': 12359, 'synset': 'polish.n.01', 'name': 'polish'}, {'id': 12360, 'synset': 'primary_color_for_pigments.n.01', 'name': 'primary_color_for_pigments'}, {'id': 12361, 'synset': 'primary_color_for_light.n.01', 'name': 'primary_color_for_light'}, {'id': 12362, 'synset': 'colorlessness.n.01', 'name': 'colorlessness'}, {'id': 12363, 'synset': 'mottle.n.01', 'name': 'mottle'}, {'id': 12364, 'synset': 'achromia.n.01', 'name': 'achromia'}, {'id': 12365, 'synset': 'shade.n.02', 'name': 'shade'}, {'id': 12366, 'synset': 'chromatic_color.n.01', 'name': 'chromatic_color'}, {'id': 12367, 'synset': 'black.n.01', 'name': 'black'}, {'id': 12368, 'synset': 'coal_black.n.01', 'name': 'coal_black'}, {'id': 12369, 'synset': 'alabaster.n.03', 'name': 'alabaster'}, {'id': 12370, 'synset': 'bone.n.03', 'name': 'bone'}, {'id': 12371, 'synset': 'gray.n.01', 'name': 'gray'}, {'id': 12372, 'synset': 'ash_grey.n.01', 'name': 'ash_grey'}, {'id': 12373, 'synset': 'charcoal.n.03', 'name': 'charcoal'}, {'id': 12374, 'synset': 'sanguine.n.01', 'name': 'sanguine'}, {'id': 12375, 'synset': 'turkey_red.n.01', 'name': 'Turkey_red'}, {'id': 12376, 'synset': 'crimson.n.01', 'name': 'crimson'}, {'id': 12377, 'synset': 'dark_red.n.01', 'name': 'dark_red'}, {'id': 12378, 'synset': 'claret.n.01', 'name': 'claret'}, {'id': 12379, 'synset': 'fuschia.n.01', 'name': 'fuschia'}, {'id': 12380, 'synset': 'maroon.n.02', 'name': 'maroon'}, {'id': 12381, 'synset': 'orange.n.02', 'name': 'orange'}, {'id': 12382, 'synset': 'reddish_orange.n.01', 'name': 'reddish_orange'}, {'id': 12383, 'synset': 'yellow.n.01', 'name': 'yellow'}, {'id': 12384, 'synset': 'gamboge.n.02', 'name': 'gamboge'}, {'id': 12385, 'synset': 'pale_yellow.n.01', 'name': 'pale_yellow'}, {'id': 12386, 'synset': 'green.n.01', 'name': 'green'}, {'id': 12387, 'synset': 'greenishness.n.01', 'name': 'greenishness'}, {'id': 12388, 'synset': 'sea_green.n.01', 'name': 'sea_green'}, {'id': 12389, 'synset': 'sage_green.n.01', 'name': 'sage_green'}, {'id': 12390, 'synset': 'bottle_green.n.01', 'name': 'bottle_green'}, {'id': 12391, 'synset': 'emerald.n.03', 'name': 'emerald'}, {'id': 12392, 'synset': 'olive_green.n.01', 'name': 'olive_green'}, {'id': 12393, 'synset': 'jade_green.n.01', 'name': 'jade_green'}, {'id': 12394, 'synset': 'blue.n.01', 'name': 'blue'}, {'id': 12395, 'synset': 'azure.n.01', 'name': 'azure'}, {'id': 12396, 'synset': 'steel_blue.n.01', 'name': 'steel_blue'}, {'id': 12397, 'synset': 'greenish_blue.n.01', 'name': 'greenish_blue'}, {'id': 12398, 'synset': 'purplish_blue.n.01', 'name': 'purplish_blue'}, {'id': 12399, 'synset': 'purple.n.01', 'name': 'purple'}, {'id': 12400, 'synset': 'tyrian_purple.n.02', 'name': 'Tyrian_purple'}, {'id': 12401, 'synset': 'indigo.n.03', 'name': 'indigo'}, {'id': 12402, 'synset': 'lavender.n.02', 'name': 'lavender'}, {'id': 12403, 'synset': 'reddish_purple.n.01', 'name': 'reddish_purple'}, {'id': 12404, 'synset': 'pink.n.01', 'name': 'pink'}, {'id': 12405, 'synset': 'carnation.n.02', 'name': 'carnation'}, {'id': 12406, 'synset': 'rose.n.03', 'name': 'rose'}, {'id': 12407, 'synset': 'chestnut.n.04', 'name': 'chestnut'}, {'id': 12408, 'synset': 'chocolate.n.03', 'name': 'chocolate'}, {'id': 12409, 'synset': 'light_brown.n.01', 'name': 'light_brown'}, {'id': 12410, 'synset': 'tan.n.02', 'name': 'tan'}, {'id': 12411, 'synset': 'beige.n.01', 'name': 'beige'}, {'id': 12412, 'synset': 'reddish_brown.n.01', 'name': 'reddish_brown'}, {'id': 12413, 'synset': 'brick_red.n.01', 'name': 'brick_red'}, {'id': 12414, 'synset': 'copper.n.04', 'name': 'copper'}, {'id': 12415, 'synset': 'indian_red.n.03', 'name': 'Indian_red'}, {'id': 12416, 'synset': 'puce.n.01', 'name': 'puce'}, {'id': 12417, 'synset': 'olive.n.05', 'name': 'olive'}, {'id': 12418, 'synset': 'ultramarine.n.02', 'name': 'ultramarine'}, {'id': 12419, 'synset': 'complementary_color.n.01', 'name': 'complementary_color'}, {'id': 12420, 'synset': 'pigmentation.n.02', 'name': 'pigmentation'}, {'id': 12421, 'synset': 'complexion.n.01', 'name': 'complexion'}, {'id': 12422, 'synset': 'ruddiness.n.01', 'name': 'ruddiness'}, {'id': 12423, 'synset': 'nonsolid_color.n.01', 'name': 'nonsolid_color'}, {'id': 12424, 'synset': 'aposematic_coloration.n.01', 'name': 'aposematic_coloration'}, {'id': 12425, 'synset': 'cryptic_coloration.n.01', 'name': 'cryptic_coloration'}, {'id': 12426, 'synset': 'ring.n.01', 'name': 'ring'}, {'id': 12427, 'synset': 'center_of_curvature.n.01', 'name': 'center_of_curvature'}, {'id': 12428, 'synset': 'cadaver.n.01', 'name': 'cadaver'}, {'id': 12429, 'synset': 'mandibular_notch.n.01', 'name': 'mandibular_notch'}, {'id': 12430, 'synset': 'rib.n.05', 'name': 'rib'}, {'id': 12431, 'synset': 'skin.n.01', 'name': 'skin'}, {'id': 12432, 'synset': 'skin_graft.n.01', 'name': 'skin_graft'}, {'id': 12433, 'synset': 'epidermal_cell.n.01', 'name': 'epidermal_cell'}, {'id': 12434, 'synset': 'melanocyte.n.01', 'name': 'melanocyte'}, {'id': 12435, 'synset': 'prickle_cell.n.01', 'name': 'prickle_cell'}, {'id': 12436, 'synset': 'columnar_cell.n.01', 'name': 'columnar_cell'}, {'id': 12437, 'synset': 'spongioblast.n.01', 'name': 'spongioblast'}, {'id': 12438, 'synset': 'squamous_cell.n.01', 'name': 'squamous_cell'}, {'id': 12439, 'synset': 'amyloid_plaque.n.01', 'name': 'amyloid_plaque'}, {'id': 12440, 'synset': 'dental_plaque.n.01', 'name': 'dental_plaque'}, {'id': 12441, 'synset': 'macule.n.01', 'name': 'macule'}, {'id': 12442, 'synset': 'freckle.n.01', 'name': 'freckle'}, {'id': 12443, 'synset': 'bouffant.n.01', 'name': 'bouffant'}, {'id': 12444, 'synset': 'sausage_curl.n.01', 'name': 'sausage_curl'}, {'id': 12445, 'synset': 'forelock.n.01', 'name': 'forelock'}, {'id': 12446, 'synset': 'spit_curl.n.01', 'name': 'spit_curl'}, {'id': 12447, 'synset': 'pigtail.n.01', 'name': 'pigtail'}, {'id': 12448, 'synset': 'pageboy.n.02', 'name': 'pageboy'}, {'id': 12449, 'synset': 'pompadour.n.02', 'name': 'pompadour'}, {'id': 12450, 'synset': 'thatch.n.01', 'name': 'thatch'}, {'id': 12451, 'synset': 'soup-strainer.n.01', 'name': 'soup-strainer'}, {'id': 12452, 'synset': 'mustachio.n.01', 'name': 'mustachio'}, {'id': 12453, 'synset': 'walrus_mustache.n.01', 'name': 'walrus_mustache'}, {'id': 12454, 'synset': 'stubble.n.02', 'name': 'stubble'}, {'id': 12455, 'synset': 'vandyke_beard.n.01', 'name': 'vandyke_beard'}, {'id': 12456, 'synset': 'soul_patch.n.01', 'name': 'soul_patch'}, {'id': 12457, 'synset': 'esophageal_smear.n.01', 'name': 'esophageal_smear'}, {'id': 12458, 'synset': 'paraduodenal_smear.n.01', 'name': 'paraduodenal_smear'}, {'id': 12459, 'synset': 'specimen.n.02', 'name': 'specimen'}, {'id': 12460, 'synset': 'punctum.n.01', 'name': 'punctum'}, {'id': 12461, 'synset': 'glenoid_fossa.n.02', 'name': 'glenoid_fossa'}, {'id': 12462, 'synset': 'diastema.n.01', 'name': 'diastema'}, {'id': 12463, 'synset': 'marrow.n.01', 'name': 'marrow'}, {'id': 12464, 'synset': 'mouth.n.01', 'name': 'mouth'}, {'id': 12465, 'synset': 'canthus.n.01', 'name': 'canthus'}, {'id': 12466, 'synset': 'milk.n.02', 'name': 'milk'}, {'id': 12467, 'synset': "mother's_milk.n.01", 'name': "mother's_milk"}, {'id': 12468, 'synset': 'colostrum.n.01', 'name': 'colostrum'}, {'id': 12469, 'synset': 'vein.n.01', 'name': 'vein'}, {'id': 12470, 'synset': 'ganglion_cell.n.01', 'name': 'ganglion_cell'}, {'id': 12471, 'synset': 'x_chromosome.n.01', 'name': 'X_chromosome'}, {'id': 12472, 'synset': 'embryonic_cell.n.01', 'name': 'embryonic_cell'}, {'id': 12473, 'synset': 'myeloblast.n.01', 'name': 'myeloblast'}, {'id': 12474, 'synset': 'sideroblast.n.01', 'name': 'sideroblast'}, {'id': 12475, 'synset': 'osteocyte.n.01', 'name': 'osteocyte'}, {'id': 12476, 'synset': 'megalocyte.n.01', 'name': 'megalocyte'}, {'id': 12477, 'synset': 'leukocyte.n.01', 'name': 'leukocyte'}, {'id': 12478, 'synset': 'histiocyte.n.01', 'name': 'histiocyte'}, {'id': 12479, 'synset': 'fixed_phagocyte.n.01', 'name': 'fixed_phagocyte'}, {'id': 12480, 'synset': 'lymphocyte.n.01', 'name': 'lymphocyte'}, {'id': 12481, 'synset': 'monoblast.n.01', 'name': 'monoblast'}, {'id': 12482, 'synset': 'neutrophil.n.01', 'name': 'neutrophil'}, {'id': 12483, 'synset': 'microphage.n.01', 'name': 'microphage'}, {'id': 12484, 'synset': 'sickle_cell.n.01', 'name': 'sickle_cell'}, {'id': 12485, 'synset': 'siderocyte.n.01', 'name': 'siderocyte'}, {'id': 12486, 'synset': 'spherocyte.n.01', 'name': 'spherocyte'}, {'id': 12487, 'synset': 'ootid.n.01', 'name': 'ootid'}, {'id': 12488, 'synset': 'oocyte.n.01', 'name': 'oocyte'}, {'id': 12489, 'synset': 'spermatid.n.01', 'name': 'spermatid'}, {'id': 12490, 'synset': 'leydig_cell.n.01', 'name': 'Leydig_cell'}, {'id': 12491, 'synset': 'striated_muscle_cell.n.01', 'name': 'striated_muscle_cell'}, {'id': 12492, 'synset': 'smooth_muscle_cell.n.01', 'name': 'smooth_muscle_cell'}, {'id': 12493, 'synset': "ranvier's_nodes.n.01", 'name': "Ranvier's_nodes"}, {'id': 12494, 'synset': 'neuroglia.n.01', 'name': 'neuroglia'}, {'id': 12495, 'synset': 'astrocyte.n.01', 'name': 'astrocyte'}, {'id': 12496, 'synset': 'protoplasmic_astrocyte.n.01', 'name': 'protoplasmic_astrocyte'}, {'id': 12497, 'synset': 'oligodendrocyte.n.01', 'name': 'oligodendrocyte'}, {'id': 12498, 'synset': 'proprioceptor.n.01', 'name': 'proprioceptor'}, {'id': 12499, 'synset': 'dendrite.n.01', 'name': 'dendrite'}, {'id': 12500, 'synset': 'sensory_fiber.n.01', 'name': 'sensory_fiber'}, {'id': 12501, 'synset': 'subarachnoid_space.n.01', 'name': 'subarachnoid_space'}, {'id': 12502, 'synset': 'cerebral_cortex.n.01', 'name': 'cerebral_cortex'}, {'id': 12503, 'synset': 'renal_cortex.n.01', 'name': 'renal_cortex'}, {'id': 12504, 'synset': 'prepuce.n.02', 'name': 'prepuce'}, {'id': 12505, 'synset': 'head.n.01', 'name': 'head'}, {'id': 12506, 'synset': 'scalp.n.01', 'name': 'scalp'}, {'id': 12507, 'synset': 'frontal_eminence.n.01', 'name': 'frontal_eminence'}, {'id': 12508, 'synset': 'suture.n.01', 'name': 'suture'}, {'id': 12509, 'synset': 'foramen_magnum.n.01', 'name': 'foramen_magnum'}, {'id': 12510, 'synset': 'esophagogastric_junction.n.01', 'name': 'esophagogastric_junction'}, {'id': 12511, 'synset': 'heel.n.02', 'name': 'heel'}, {'id': 12512, 'synset': 'cuticle.n.01', 'name': 'cuticle'}, {'id': 12513, 'synset': 'hangnail.n.01', 'name': 'hangnail'}, {'id': 12514, 'synset': 'exoskeleton.n.01', 'name': 'exoskeleton'}, {'id': 12515, 'synset': 'abdominal_wall.n.01', 'name': 'abdominal_wall'}, {'id': 12516, 'synset': 'lemon.n.04', 'name': 'lemon'}, {'id': 12517, 'synset': 'coordinate_axis.n.01', 'name': 'coordinate_axis'}, {'id': 12518, 'synset': 'landscape.n.04', 'name': 'landscape'}, {'id': 12519, 'synset': 'medium.n.01', 'name': 'medium'}, {'id': 12520, 'synset': 'vehicle.n.02', 'name': 'vehicle'}, {'id': 12521, 'synset': 'paper.n.04', 'name': 'paper'}, {'id': 12522, 'synset': 'channel.n.01', 'name': 'channel'}, {'id': 12523, 'synset': 'film.n.02', 'name': 'film'}, {'id': 12524, 'synset': 'silver_screen.n.01', 'name': 'silver_screen'}, {'id': 12525, 'synset': 'free_press.n.01', 'name': 'free_press'}, {'id': 12526, 'synset': 'press.n.02', 'name': 'press'}, {'id': 12527, 'synset': 'print_media.n.01', 'name': 'print_media'}, {'id': 12528, 'synset': 'storage_medium.n.01', 'name': 'storage_medium'}, {'id': 12529, 'synset': 'magnetic_storage_medium.n.01', 'name': 'magnetic_storage_medium'}, {'id': 12530, 'synset': 'journalism.n.01', 'name': 'journalism'}, {'id': 12531, 'synset': 'fleet_street.n.02', 'name': 'Fleet_Street'}, {'id': 12532, 'synset': 'photojournalism.n.01', 'name': 'photojournalism'}, {'id': 12533, 'synset': 'news_photography.n.01', 'name': 'news_photography'}, {'id': 12534, 'synset': 'rotogravure.n.02', 'name': 'rotogravure'}, {'id': 12535, 'synset': 'daily.n.01', 'name': 'daily'}, {'id': 12536, 'synset': 'gazette.n.01', 'name': 'gazette'}, {'id': 12537, 'synset': 'school_newspaper.n.01', 'name': 'school_newspaper'}, {'id': 12538, 'synset': 'tabloid.n.02', 'name': 'tabloid'}, {'id': 12539, 'synset': 'yellow_journalism.n.01', 'name': 'yellow_journalism'}, {'id': 12540, 'synset': 'telecommunication.n.01', 'name': 'telecommunication'}, {'id': 12541, 'synset': 'telephone.n.02', 'name': 'telephone'}, {'id': 12542, 'synset': 'voice_mail.n.01', 'name': 'voice_mail'}, {'id': 12543, 'synset': 'call.n.01', 'name': 'call'}, {'id': 12544, 'synset': 'call-back.n.01', 'name': 'call-back'}, {'id': 12545, 'synset': 'collect_call.n.01', 'name': 'collect_call'}, {'id': 12546, 'synset': 'call_forwarding.n.01', 'name': 'call_forwarding'}, {'id': 12547, 'synset': 'call-in.n.01', 'name': 'call-in'}, {'id': 12548, 'synset': 'call_waiting.n.01', 'name': 'call_waiting'}, {'id': 12549, 'synset': 'crank_call.n.01', 'name': 'crank_call'}, {'id': 12550, 'synset': 'local_call.n.01', 'name': 'local_call'}, {'id': 12551, 'synset': 'long_distance.n.01', 'name': 'long_distance'}, {'id': 12552, 'synset': 'toll_call.n.01', 'name': 'toll_call'}, {'id': 12553, 'synset': 'wake-up_call.n.02', 'name': 'wake-up_call'}, {'id': 12554, 'synset': 'three-way_calling.n.01', 'name': 'three-way_calling'}, {'id': 12555, 'synset': 'telegraphy.n.01', 'name': 'telegraphy'}, {'id': 12556, 'synset': 'cable.n.01', 'name': 'cable'}, {'id': 12557, 'synset': 'wireless.n.02', 'name': 'wireless'}, {'id': 12558, 'synset': 'radiotelegraph.n.01', 'name': 'radiotelegraph'}, {'id': 12559, 'synset': 'radiotelephone.n.01', 'name': 'radiotelephone'}, {'id': 12560, 'synset': 'broadcasting.n.02', 'name': 'broadcasting'}, {'id': 12561, 'synset': 'rediffusion.n.01', 'name': 'Rediffusion'}, {'id': 12562, 'synset': 'multiplex.n.01', 'name': 'multiplex'}, {'id': 12563, 'synset': 'radio.n.01', 'name': 'radio'}, {'id': 12564, 'synset': 'television.n.01', 'name': 'television'}, {'id': 12565, 'synset': 'cable_television.n.01', 'name': 'cable_television'}, {'id': 12566, 'synset': 'high-definition_television.n.01', 'name': 'high-definition_television'}, {'id': 12567, 'synset': 'reception.n.03', 'name': 'reception'}, {'id': 12568, 'synset': 'signal_detection.n.01', 'name': 'signal_detection'}, {'id': 12569, 'synset': 'hakham.n.01', 'name': 'Hakham'}, {'id': 12570, 'synset': 'web_site.n.01', 'name': 'web_site'}, {'id': 12571, 'synset': 'chat_room.n.01', 'name': 'chat_room'}, {'id': 12572, 'synset': 'portal_site.n.01', 'name': 'portal_site'}, {'id': 12573, 'synset': 'jotter.n.01', 'name': 'jotter'}, {'id': 12574, 'synset': 'breviary.n.01', 'name': 'breviary'}, {'id': 12575, 'synset': 'wordbook.n.01', 'name': 'wordbook'}, {'id': 12576, 'synset': 'desk_dictionary.n.01', 'name': 'desk_dictionary'}, {'id': 12577, 'synset': 'reckoner.n.02', 'name': 'reckoner'}, {'id': 12578, 'synset': 'document.n.01', 'name': 'document'}, {'id': 12579, 'synset': 'album.n.01', 'name': 'album'}, {'id': 12580, 'synset': 'concept_album.n.01', 'name': 'concept_album'}, {'id': 12581, 'synset': 'rock_opera.n.01', 'name': 'rock_opera'}, {'id': 12582, 'synset': 'tribute_album.n.01', 'name': 'tribute_album'}, {'id': 12583, 'synset': 'magazine.n.01', 'name': 'magazine'}, {'id': 12584, 'synset': 'colour_supplement.n.01', 'name': 'colour_supplement'}, {'id': 12585, 'synset': 'news_magazine.n.01', 'name': 'news_magazine'}, {'id': 12586, 'synset': 'pulp.n.04', 'name': 'pulp'}, {'id': 12587, 'synset': 'slick.n.02', 'name': 'slick'}, {'id': 12588, 'synset': 'trade_magazine.n.01', 'name': 'trade_magazine'}, {'id': 12589, 'synset': 'movie.n.01', 'name': 'movie'}, {'id': 12590, 'synset': 'outtake.n.01', 'name': 'outtake'}, {'id': 12591, 'synset': "shoot-'em-up.n.01", 'name': "shoot-'em-up"}, {'id': 12592, 'synset': 'spaghetti_western.n.01', 'name': 'spaghetti_Western'}, {'id': 12593, 'synset': 'encyclical.n.01', 'name': 'encyclical'}, {'id': 12594, 'synset': 'crossword_puzzle.n.01', 'name': 'crossword_puzzle'}, {'id': 12595, 'synset': 'sign.n.02', 'name': 'sign'}, {'id': 12596, 'synset': 'swastika.n.01', 'name': 'swastika'}, {'id': 12597, 'synset': 'concert.n.01', 'name': 'concert'}, {'id': 12598, 'synset': 'artwork.n.01', 'name': 'artwork'}, {'id': 12599, 'synset': 'lobe.n.03', 'name': 'lobe'}, {'id': 12600, 'synset': 'book_jacket.n.01', 'name': 'book_jacket'}, {'id': 12601, 'synset': 'cairn.n.01', 'name': 'cairn'}, {'id': 12602, 'synset': 'three-day_event.n.01', 'name': 'three-day_event'}, {'id': 12603, 'synset': 'comfort_food.n.01', 'name': 'comfort_food'}, {'id': 12604, 'synset': 'comestible.n.01', 'name': 'comestible'}, {'id': 12605, 'synset': 'tuck.n.01', 'name': 'tuck'}, {'id': 12606, 'synset': 'course.n.07', 'name': 'course'}, {'id': 12607, 'synset': 'dainty.n.01', 'name': 'dainty'}, {'id': 12608, 'synset': 'dish.n.02', 'name': 'dish'}, {'id': 12609, 'synset': 'fast_food.n.01', 'name': 'fast_food'}, {'id': 12610, 'synset': 'finger_food.n.01', 'name': 'finger_food'}, {'id': 12611, 'synset': 'ingesta.n.01', 'name': 'ingesta'}, {'id': 12612, 'synset': 'kosher.n.01', 'name': 'kosher'}, {'id': 12613, 'synset': 'fare.n.04', 'name': 'fare'}, {'id': 12614, 'synset': 'diet.n.03', 'name': 'diet'}, {'id': 12615, 'synset': 'diet.n.01', 'name': 'diet'}, {'id': 12616, 'synset': 'dietary.n.01', 'name': 'dietary'}, {'id': 12617, 'synset': 'balanced_diet.n.01', 'name': 'balanced_diet'}, {'id': 12618, 'synset': 'bland_diet.n.01', 'name': 'bland_diet'}, {'id': 12619, 'synset': 'clear_liquid_diet.n.01', 'name': 'clear_liquid_diet'}, {'id': 12620, 'synset': 'diabetic_diet.n.01', 'name': 'diabetic_diet'}, {'id': 12621, 'synset': 'dietary_supplement.n.01', 'name': 'dietary_supplement'}, {'id': 12622, 'synset': 'carbohydrate_loading.n.01', 'name': 'carbohydrate_loading'}, {'id': 12623, 'synset': 'fad_diet.n.01', 'name': 'fad_diet'}, {'id': 12624, 'synset': 'gluten-free_diet.n.01', 'name': 'gluten-free_diet'}, {'id': 12625, 'synset': 'high-protein_diet.n.01', 'name': 'high-protein_diet'}, {'id': 12626, 'synset': 'high-vitamin_diet.n.01', 'name': 'high-vitamin_diet'}, {'id': 12627, 'synset': 'light_diet.n.01', 'name': 'light_diet'}, {'id': 12628, 'synset': 'liquid_diet.n.01', 'name': 'liquid_diet'}, {'id': 12629, 'synset': 'low-calorie_diet.n.01', 'name': 'low-calorie_diet'}, {'id': 12630, 'synset': 'low-fat_diet.n.01', 'name': 'low-fat_diet'}, {'id': 12631, 'synset': 'low-sodium_diet.n.01', 'name': 'low-sodium_diet'}, {'id': 12632, 'synset': 'macrobiotic_diet.n.01', 'name': 'macrobiotic_diet'}, {'id': 12633, 'synset': 'reducing_diet.n.01', 'name': 'reducing_diet'}, {'id': 12634, 'synset': 'soft_diet.n.01', 'name': 'soft_diet'}, {'id': 12635, 'synset': 'vegetarianism.n.01', 'name': 'vegetarianism'}, {'id': 12636, 'synset': 'menu.n.02', 'name': 'menu'}, {'id': 12637, 'synset': 'chow.n.02', 'name': 'chow'}, {'id': 12638, 'synset': 'board.n.04', 'name': 'board'}, {'id': 12639, 'synset': 'mess.n.04', 'name': 'mess'}, {'id': 12640, 'synset': 'ration.n.01', 'name': 'ration'}, {'id': 12641, 'synset': 'field_ration.n.01', 'name': 'field_ration'}, {'id': 12642, 'synset': 'k_ration.n.01', 'name': 'K_ration'}, {'id': 12643, 'synset': 'c-ration.n.01', 'name': 'C-ration'}, {'id': 12644, 'synset': 'foodstuff.n.02', 'name': 'foodstuff'}, {'id': 12645, 'synset': 'starches.n.01', 'name': 'starches'}, {'id': 12646, 'synset': 'breadstuff.n.02', 'name': 'breadstuff'}, {'id': 12647, 'synset': 'coloring.n.01', 'name': 'coloring'}, {'id': 12648, 'synset': 'concentrate.n.02', 'name': 'concentrate'}, {'id': 12649, 'synset': 'tomato_concentrate.n.01', 'name': 'tomato_concentrate'}, {'id': 12650, 'synset': 'meal.n.03', 'name': 'meal'}, {'id': 12651, 'synset': 'kibble.n.01', 'name': 'kibble'}, {'id': 12652, 'synset': 'farina.n.01', 'name': 'farina'}, {'id': 12653, 'synset': 'matzo_meal.n.01', 'name': 'matzo_meal'}, {'id': 12654, 'synset': 'oatmeal.n.02', 'name': 'oatmeal'}, {'id': 12655, 'synset': 'pea_flour.n.01', 'name': 'pea_flour'}, {'id': 12656, 'synset': 'roughage.n.01', 'name': 'roughage'}, {'id': 12657, 'synset': 'bran.n.02', 'name': 'bran'}, {'id': 12658, 'synset': 'flour.n.01', 'name': 'flour'}, {'id': 12659, 'synset': 'plain_flour.n.01', 'name': 'plain_flour'}, {'id': 12660, 'synset': 'wheat_flour.n.01', 'name': 'wheat_flour'}, {'id': 12661, 'synset': 'whole_wheat_flour.n.01', 'name': 'whole_wheat_flour'}, {'id': 12662, 'synset': 'soybean_meal.n.01', 'name': 'soybean_meal'}, {'id': 12663, 'synset': 'semolina.n.01', 'name': 'semolina'}, {'id': 12664, 'synset': 'corn_gluten_feed.n.01', 'name': 'corn_gluten_feed'}, {'id': 12665, 'synset': 'nutriment.n.01', 'name': 'nutriment'}, {'id': 12666, 'synset': 'commissariat.n.01', 'name': 'commissariat'}, {'id': 12667, 'synset': 'larder.n.01', 'name': 'larder'}, {'id': 12668, 'synset': 'frozen_food.n.01', 'name': 'frozen_food'}, {'id': 12669, 'synset': 'canned_food.n.01', 'name': 'canned_food'}, {'id': 12670, 'synset': 'canned_meat.n.01', 'name': 'canned_meat'}, {'id': 12671, 'synset': 'spam.n.01', 'name': 'Spam'}, {'id': 12672, 'synset': 'dehydrated_food.n.01', 'name': 'dehydrated_food'}, {'id': 12673, 'synset': 'square_meal.n.01', 'name': 'square_meal'}, {'id': 12674, 'synset': 'meal.n.01', 'name': 'meal'}, {'id': 12675, 'synset': 'potluck.n.01', 'name': 'potluck'}, {'id': 12676, 'synset': 'refection.n.01', 'name': 'refection'}, {'id': 12677, 'synset': 'refreshment.n.01', 'name': 'refreshment'}, {'id': 12678, 'synset': 'breakfast.n.01', 'name': 'breakfast'}, {'id': 12679, 'synset': 'continental_breakfast.n.01', 'name': 'continental_breakfast'}, {'id': 12680, 'synset': 'brunch.n.01', 'name': 'brunch'}, {'id': 12681, 'synset': 'lunch.n.01', 'name': 'lunch'}, {'id': 12682, 'synset': 'business_lunch.n.01', 'name': 'business_lunch'}, {'id': 12683, 'synset': 'high_tea.n.01', 'name': 'high_tea'}, {'id': 12684, 'synset': 'tea.n.02', 'name': 'tea'}, {'id': 12685, 'synset': 'dinner.n.01', 'name': 'dinner'}, {'id': 12686, 'synset': 'supper.n.01', 'name': 'supper'}, {'id': 12687, 'synset': 'buffet.n.02', 'name': 'buffet'}, {'id': 12688, 'synset': 'picnic.n.03', 'name': 'picnic'}, {'id': 12689, 'synset': 'cookout.n.01', 'name': 'cookout'}, {'id': 12690, 'synset': 'barbecue.n.02', 'name': 'barbecue'}, {'id': 12691, 'synset': 'clambake.n.01', 'name': 'clambake'}, {'id': 12692, 'synset': 'fish_fry.n.01', 'name': 'fish_fry'}, {'id': 12693, 'synset': 'bite.n.04', 'name': 'bite'}, {'id': 12694, 'synset': 'nosh.n.01', 'name': 'nosh'}, {'id': 12695, 'synset': 'nosh-up.n.01', 'name': 'nosh-up'}, {'id': 12696, 'synset': "ploughman's_lunch.n.01", 'name': "ploughman's_lunch"}, {'id': 12697, 'synset': 'coffee_break.n.01', 'name': 'coffee_break'}, {'id': 12698, 'synset': 'banquet.n.02', 'name': 'banquet'}, {'id': 12699, 'synset': 'entree.n.01', 'name': 'entree'}, {'id': 12700, 'synset': 'piece_de_resistance.n.02', 'name': 'piece_de_resistance'}, {'id': 12701, 'synset': 'plate.n.08', 'name': 'plate'}, {'id': 12702, 'synset': 'adobo.n.01', 'name': 'adobo'}, {'id': 12703, 'synset': 'side_dish.n.01', 'name': 'side_dish'}, {'id': 12704, 'synset': 'special.n.02', 'name': 'special'}, {'id': 12705, 'synset': 'chicken_casserole.n.01', 'name': 'chicken_casserole'}, {'id': 12706, 'synset': 'chicken_cacciatore.n.01', 'name': 'chicken_cacciatore'}, {'id': 12707, 'synset': 'antipasto.n.01', 'name': 'antipasto'}, {'id': 12708, 'synset': 'appetizer.n.01', 'name': 'appetizer'}, {'id': 12709, 'synset': 'canape.n.01', 'name': 'canape'}, {'id': 12710, 'synset': 'cocktail.n.02', 'name': 'cocktail'}, {'id': 12711, 'synset': 'fruit_cocktail.n.01', 'name': 'fruit_cocktail'}, {'id': 12712, 'synset': 'crab_cocktail.n.01', 'name': 'crab_cocktail'}, {'id': 12713, 'synset': 'shrimp_cocktail.n.01', 'name': 'shrimp_cocktail'}, {'id': 12714, 'synset': "hors_d'oeuvre.n.01", 'name': "hors_d'oeuvre"}, {'id': 12715, 'synset': 'relish.n.02', 'name': 'relish'}, {'id': 12716, 'synset': 'dip.n.04', 'name': 'dip'}, {'id': 12717, 'synset': 'bean_dip.n.01', 'name': 'bean_dip'}, {'id': 12718, 'synset': 'cheese_dip.n.01', 'name': 'cheese_dip'}, {'id': 12719, 'synset': 'clam_dip.n.01', 'name': 'clam_dip'}, {'id': 12720, 'synset': 'guacamole.n.01', 'name': 'guacamole'}, {'id': 12721, 'synset': 'soup_du_jour.n.01', 'name': 'soup_du_jour'}, {'id': 12722, 'synset': 'alphabet_soup.n.02', 'name': 'alphabet_soup'}, {'id': 12723, 'synset': 'consomme.n.01', 'name': 'consomme'}, {'id': 12724, 'synset': 'madrilene.n.01', 'name': 'madrilene'}, {'id': 12725, 'synset': 'bisque.n.01', 'name': 'bisque'}, {'id': 12726, 'synset': 'borsch.n.01', 'name': 'borsch'}, {'id': 12727, 'synset': 'broth.n.02', 'name': 'broth'}, {'id': 12728, 'synset': 'barley_water.n.01', 'name': 'barley_water'}, {'id': 12729, 'synset': 'bouillon.n.01', 'name': 'bouillon'}, {'id': 12730, 'synset': 'beef_broth.n.01', 'name': 'beef_broth'}, {'id': 12731, 'synset': 'chicken_broth.n.01', 'name': 'chicken_broth'}, {'id': 12732, 'synset': 'broth.n.01', 'name': 'broth'}, {'id': 12733, 'synset': 'stock_cube.n.01', 'name': 'stock_cube'}, {'id': 12734, 'synset': 'chicken_soup.n.01', 'name': 'chicken_soup'}, {'id': 12735, 'synset': 'cock-a-leekie.n.01', 'name': 'cock-a-leekie'}, {'id': 12736, 'synset': 'gazpacho.n.01', 'name': 'gazpacho'}, {'id': 12737, 'synset': 'gumbo.n.04', 'name': 'gumbo'}, {'id': 12738, 'synset': 'julienne.n.02', 'name': 'julienne'}, {'id': 12739, 'synset': 'marmite.n.01', 'name': 'marmite'}, {'id': 12740, 'synset': 'mock_turtle_soup.n.01', 'name': 'mock_turtle_soup'}, {'id': 12741, 'synset': 'mulligatawny.n.01', 'name': 'mulligatawny'}, {'id': 12742, 'synset': 'oxtail_soup.n.01', 'name': 'oxtail_soup'}, {'id': 12743, 'synset': 'pea_soup.n.01', 'name': 'pea_soup'}, {'id': 12744, 'synset': 'pepper_pot.n.01', 'name': 'pepper_pot'}, {'id': 12745, 'synset': 'petite_marmite.n.01', 'name': 'petite_marmite'}, {'id': 12746, 'synset': 'potage.n.01', 'name': 'potage'}, {'id': 12747, 'synset': 'pottage.n.01', 'name': 'pottage'}, {'id': 12748, 'synset': 'turtle_soup.n.01', 'name': 'turtle_soup'}, {'id': 12749, 'synset': 'eggdrop_soup.n.01', 'name': 'eggdrop_soup'}, {'id': 12750, 'synset': 'chowder.n.01', 'name': 'chowder'}, {'id': 12751, 'synset': 'corn_chowder.n.01', 'name': 'corn_chowder'}, {'id': 12752, 'synset': 'clam_chowder.n.01', 'name': 'clam_chowder'}, {'id': 12753, 'synset': 'manhattan_clam_chowder.n.01', 'name': 'Manhattan_clam_chowder'}, {'id': 12754, 'synset': 'new_england_clam_chowder.n.01', 'name': 'New_England_clam_chowder'}, {'id': 12755, 'synset': 'fish_chowder.n.01', 'name': 'fish_chowder'}, {'id': 12756, 'synset': 'won_ton.n.02', 'name': 'won_ton'}, {'id': 12757, 'synset': 'split-pea_soup.n.01', 'name': 'split-pea_soup'}, {'id': 12758, 'synset': 'green_pea_soup.n.01', 'name': 'green_pea_soup'}, {'id': 12759, 'synset': 'lentil_soup.n.01', 'name': 'lentil_soup'}, {'id': 12760, 'synset': 'scotch_broth.n.01', 'name': 'Scotch_broth'}, {'id': 12761, 'synset': 'vichyssoise.n.01', 'name': 'vichyssoise'}, {'id': 12762, 'synset': 'bigos.n.01', 'name': 'bigos'}, {'id': 12763, 'synset': 'brunswick_stew.n.01', 'name': 'Brunswick_stew'}, {'id': 12764, 'synset': 'burgoo.n.03', 'name': 'burgoo'}, {'id': 12765, 'synset': 'burgoo.n.02', 'name': 'burgoo'}, {'id': 12766, 'synset': 'olla_podrida.n.01', 'name': 'olla_podrida'}, {'id': 12767, 'synset': 'mulligan_stew.n.01', 'name': 'mulligan_stew'}, {'id': 12768, 'synset': 'purloo.n.01', 'name': 'purloo'}, {'id': 12769, 'synset': 'goulash.n.01', 'name': 'goulash'}, {'id': 12770, 'synset': 'hotchpotch.n.02', 'name': 'hotchpotch'}, {'id': 12771, 'synset': 'hot_pot.n.01', 'name': 'hot_pot'}, {'id': 12772, 'synset': 'beef_goulash.n.01', 'name': 'beef_goulash'}, {'id': 12773, 'synset': 'pork-and-veal_goulash.n.01', 'name': 'pork-and-veal_goulash'}, {'id': 12774, 'synset': 'porkholt.n.01', 'name': 'porkholt'}, {'id': 12775, 'synset': 'irish_stew.n.01', 'name': 'Irish_stew'}, {'id': 12776, 'synset': 'oyster_stew.n.01', 'name': 'oyster_stew'}, {'id': 12777, 'synset': 'lobster_stew.n.01', 'name': 'lobster_stew'}, {'id': 12778, 'synset': 'lobscouse.n.01', 'name': 'lobscouse'}, {'id': 12779, 'synset': 'fish_stew.n.01', 'name': 'fish_stew'}, {'id': 12780, 'synset': 'bouillabaisse.n.01', 'name': 'bouillabaisse'}, {'id': 12781, 'synset': 'matelote.n.01', 'name': 'matelote'}, {'id': 12782, 'synset': 'paella.n.01', 'name': 'paella'}, {'id': 12783, 'synset': 'fricassee.n.01', 'name': 'fricassee'}, {'id': 12784, 'synset': 'chicken_stew.n.01', 'name': 'chicken_stew'}, {'id': 12785, 'synset': 'turkey_stew.n.01', 'name': 'turkey_stew'}, {'id': 12786, 'synset': 'beef_stew.n.01', 'name': 'beef_stew'}, {'id': 12787, 'synset': 'ragout.n.01', 'name': 'ragout'}, {'id': 12788, 'synset': 'ratatouille.n.01', 'name': 'ratatouille'}, {'id': 12789, 'synset': 'salmi.n.01', 'name': 'salmi'}, {'id': 12790, 'synset': 'pot-au-feu.n.01', 'name': 'pot-au-feu'}, {'id': 12791, 'synset': 'slumgullion.n.01', 'name': 'slumgullion'}, {'id': 12792, 'synset': 'smorgasbord.n.02', 'name': 'smorgasbord'}, {'id': 12793, 'synset': 'viand.n.01', 'name': 'viand'}, {'id': 12794, 'synset': 'ready-mix.n.01', 'name': 'ready-mix'}, {'id': 12795, 'synset': 'brownie_mix.n.01', 'name': 'brownie_mix'}, {'id': 12796, 'synset': 'cake_mix.n.01', 'name': 'cake_mix'}, {'id': 12797, 'synset': 'lemonade_mix.n.01', 'name': 'lemonade_mix'}, {'id': 12798, 'synset': 'self-rising_flour.n.01', 'name': 'self-rising_flour'}, {'id': 12799, 'synset': 'choice_morsel.n.01', 'name': 'choice_morsel'}, {'id': 12800, 'synset': 'savory.n.04', 'name': 'savory'}, {'id': 12801, 'synset': "calf's-foot_jelly.n.01", 'name': "calf's-foot_jelly"}, {'id': 12802, 'synset': 'caramel.n.02', 'name': 'caramel'}, {'id': 12803, 'synset': 'lump_sugar.n.01', 'name': 'lump_sugar'}, {'id': 12804, 'synset': 'cane_sugar.n.02', 'name': 'cane_sugar'}, {'id': 12805, 'synset': 'castor_sugar.n.01', 'name': 'castor_sugar'}, {'id': 12806, 'synset': 'powdered_sugar.n.01', 'name': 'powdered_sugar'}, {'id': 12807, 'synset': 'granulated_sugar.n.01', 'name': 'granulated_sugar'}, {'id': 12808, 'synset': 'icing_sugar.n.01', 'name': 'icing_sugar'}, {'id': 12809, 'synset': 'corn_sugar.n.02', 'name': 'corn_sugar'}, {'id': 12810, 'synset': 'brown_sugar.n.01', 'name': 'brown_sugar'}, {'id': 12811, 'synset': 'demerara.n.05', 'name': 'demerara'}, {'id': 12812, 'synset': 'sweet.n.03', 'name': 'sweet'}, {'id': 12813, 'synset': 'confectionery.n.01', 'name': 'confectionery'}, {'id': 12814, 'synset': 'confiture.n.01', 'name': 'confiture'}, {'id': 12815, 'synset': 'sweetmeat.n.01', 'name': 'sweetmeat'}, {'id': 12816, 'synset': 'candy.n.01', 'name': 'candy'}, {'id': 12817, 'synset': 'carob_bar.n.01', 'name': 'carob_bar'}, {'id': 12818, 'synset': 'hardbake.n.01', 'name': 'hardbake'}, {'id': 12819, 'synset': 'hard_candy.n.01', 'name': 'hard_candy'}, {'id': 12820, 'synset': 'barley-sugar.n.01', 'name': 'barley-sugar'}, {'id': 12821, 'synset': 'brandyball.n.01', 'name': 'brandyball'}, {'id': 12822, 'synset': 'jawbreaker.n.01', 'name': 'jawbreaker'}, {'id': 12823, 'synset': 'lemon_drop.n.01', 'name': 'lemon_drop'}, {'id': 12824, 'synset': 'sourball.n.01', 'name': 'sourball'}, {'id': 12825, 'synset': 'patty.n.03', 'name': 'patty'}, {'id': 12826, 'synset': 'peppermint_patty.n.01', 'name': 'peppermint_patty'}, {'id': 12827, 'synset': 'bonbon.n.01', 'name': 'bonbon'}, {'id': 12828, 'synset': 'brittle.n.01', 'name': 'brittle'}, {'id': 12829, 'synset': 'peanut_brittle.n.01', 'name': 'peanut_brittle'}, {'id': 12830, 'synset': 'chewing_gum.n.01', 'name': 'chewing_gum'}, {'id': 12831, 'synset': 'gum_ball.n.01', 'name': 'gum_ball'}, {'id': 12832, 'synset': 'butterscotch.n.01', 'name': 'butterscotch'}, {'id': 12833, 'synset': 'candied_fruit.n.01', 'name': 'candied_fruit'}, {'id': 12834, 'synset': 'candied_apple.n.01', 'name': 'candied_apple'}, {'id': 12835, 'synset': 'crystallized_ginger.n.01', 'name': 'crystallized_ginger'}, {'id': 12836, 'synset': 'grapefruit_peel.n.01', 'name': 'grapefruit_peel'}, {'id': 12837, 'synset': 'lemon_peel.n.02', 'name': 'lemon_peel'}, {'id': 12838, 'synset': 'orange_peel.n.02', 'name': 'orange_peel'}, {'id': 12839, 'synset': 'candied_citrus_peel.n.01', 'name': 'candied_citrus_peel'}, {'id': 12840, 'synset': 'candy_corn.n.01', 'name': 'candy_corn'}, {'id': 12841, 'synset': 'caramel.n.01', 'name': 'caramel'}, {'id': 12842, 'synset': 'center.n.14', 'name': 'center'}, {'id': 12843, 'synset': 'comfit.n.01', 'name': 'comfit'}, {'id': 12844, 'synset': 'cotton_candy.n.01', 'name': 'cotton_candy'}, {'id': 12845, 'synset': 'dragee.n.02', 'name': 'dragee'}, {'id': 12846, 'synset': 'dragee.n.01', 'name': 'dragee'}, {'id': 12847, 'synset': 'fondant.n.01', 'name': 'fondant'}, {'id': 12848, 'synset': 'chocolate_fudge.n.01', 'name': 'chocolate_fudge'}, {'id': 12849, 'synset': 'divinity.n.03', 'name': 'divinity'}, {'id': 12850, 'synset': 'penuche.n.01', 'name': 'penuche'}, {'id': 12851, 'synset': 'gumdrop.n.01', 'name': 'gumdrop'}, {'id': 12852, 'synset': 'jujube.n.03', 'name': 'jujube'}, {'id': 12853, 'synset': 'honey_crisp.n.01', 'name': 'honey_crisp'}, {'id': 12854, 'synset': 'horehound.n.02', 'name': 'horehound'}, {'id': 12855, 'synset': 'peppermint.n.03', 'name': 'peppermint'}, {'id': 12856, 'synset': 'kiss.n.03', 'name': 'kiss'}, {'id': 12857, 'synset': 'molasses_kiss.n.01', 'name': 'molasses_kiss'}, {'id': 12858, 'synset': 'meringue_kiss.n.01', 'name': 'meringue_kiss'}, {'id': 12859, 'synset': 'chocolate_kiss.n.01', 'name': 'chocolate_kiss'}, {'id': 12860, 'synset': 'licorice.n.02', 'name': 'licorice'}, {'id': 12861, 'synset': 'life_saver.n.01', 'name': 'Life_Saver'}, {'id': 12862, 'synset': 'lozenge.n.01', 'name': 'lozenge'}, {'id': 12863, 'synset': 'cachou.n.01', 'name': 'cachou'}, {'id': 12864, 'synset': 'cough_drop.n.01', 'name': 'cough_drop'}, {'id': 12865, 'synset': 'marshmallow.n.01', 'name': 'marshmallow'}, {'id': 12866, 'synset': 'marzipan.n.01', 'name': 'marzipan'}, {'id': 12867, 'synset': 'nougat.n.01', 'name': 'nougat'}, {'id': 12868, 'synset': 'nougat_bar.n.01', 'name': 'nougat_bar'}, {'id': 12869, 'synset': 'nut_bar.n.01', 'name': 'nut_bar'}, {'id': 12870, 'synset': 'peanut_bar.n.01', 'name': 'peanut_bar'}, {'id': 12871, 'synset': 'popcorn_ball.n.01', 'name': 'popcorn_ball'}, {'id': 12872, 'synset': 'praline.n.01', 'name': 'praline'}, {'id': 12873, 'synset': 'rock_candy.n.02', 'name': 'rock_candy'}, {'id': 12874, 'synset': 'rock_candy.n.01', 'name': 'rock_candy'}, {'id': 12875, 'synset': 'sugar_candy.n.01', 'name': 'sugar_candy'}, {'id': 12876, 'synset': 'sugarplum.n.01', 'name': 'sugarplum'}, {'id': 12877, 'synset': 'taffy.n.01', 'name': 'taffy'}, {'id': 12878, 'synset': 'molasses_taffy.n.01', 'name': 'molasses_taffy'}, {'id': 12879, 'synset': 'turkish_delight.n.01', 'name': 'Turkish_Delight'}, {'id': 12880, 'synset': 'dessert.n.01', 'name': 'dessert'}, {'id': 12881, 'synset': 'ambrosia.n.04', 'name': 'ambrosia'}, {'id': 12882, 'synset': 'ambrosia.n.03', 'name': 'ambrosia'}, {'id': 12883, 'synset': 'baked_alaska.n.01', 'name': 'baked_Alaska'}, {'id': 12884, 'synset': 'blancmange.n.01', 'name': 'blancmange'}, {'id': 12885, 'synset': 'charlotte.n.02', 'name': 'charlotte'}, {'id': 12886, 'synset': 'compote.n.01', 'name': 'compote'}, {'id': 12887, 'synset': 'dumpling.n.02', 'name': 'dumpling'}, {'id': 12888, 'synset': 'flan.n.01', 'name': 'flan'}, {'id': 12889, 'synset': 'frozen_dessert.n.01', 'name': 'frozen_dessert'}, {'id': 12890, 'synset': 'junket.n.01', 'name': 'junket'}, {'id': 12891, 'synset': 'mousse.n.02', 'name': 'mousse'}, {'id': 12892, 'synset': 'mousse.n.01', 'name': 'mousse'}, {'id': 12893, 'synset': 'pavlova.n.02', 'name': 'pavlova'}, {'id': 12894, 'synset': 'peach_melba.n.01', 'name': 'peach_melba'}, {'id': 12895, 'synset': 'whip.n.03', 'name': 'whip'}, {'id': 12896, 'synset': 'prune_whip.n.01', 'name': 'prune_whip'}, {'id': 12897, 'synset': 'pudding.n.03', 'name': 'pudding'}, {'id': 12898, 'synset': 'pudding.n.02', 'name': 'pudding'}, {'id': 12899, 'synset': 'syllabub.n.02', 'name': 'syllabub'}, {'id': 12900, 'synset': 'tiramisu.n.01', 'name': 'tiramisu'}, {'id': 12901, 'synset': 'trifle.n.01', 'name': 'trifle'}, {'id': 12902, 'synset': 'tipsy_cake.n.01', 'name': 'tipsy_cake'}, {'id': 12903, 'synset': 'jello.n.01', 'name': 'jello'}, {'id': 12904, 'synset': 'apple_dumpling.n.01', 'name': 'apple_dumpling'}, {'id': 12905, 'synset': 'ice.n.05', 'name': 'ice'}, {'id': 12906, 'synset': 'water_ice.n.02', 'name': 'water_ice'}, {'id': 12907, 'synset': 'ice-cream_cone.n.01', 'name': 'ice-cream_cone'}, {'id': 12908, 'synset': 'chocolate_ice_cream.n.01', 'name': 'chocolate_ice_cream'}, {'id': 12909, 'synset': 'neapolitan_ice_cream.n.01', 'name': 'Neapolitan_ice_cream'}, {'id': 12910, 'synset': 'peach_ice_cream.n.01', 'name': 'peach_ice_cream'}, {'id': 12911, 'synset': 'strawberry_ice_cream.n.01', 'name': 'strawberry_ice_cream'}, {'id': 12912, 'synset': 'tutti-frutti.n.01', 'name': 'tutti-frutti'}, {'id': 12913, 'synset': 'vanilla_ice_cream.n.01', 'name': 'vanilla_ice_cream'}, {'id': 12914, 'synset': 'ice_milk.n.01', 'name': 'ice_milk'}, {'id': 12915, 'synset': 'frozen_yogurt.n.01', 'name': 'frozen_yogurt'}, {'id': 12916, 'synset': 'snowball.n.03', 'name': 'snowball'}, {'id': 12917, 'synset': 'snowball.n.02', 'name': 'snowball'}, {'id': 12918, 'synset': 'parfait.n.01', 'name': 'parfait'}, {'id': 12919, 'synset': 'ice-cream_sundae.n.01', 'name': 'ice-cream_sundae'}, {'id': 12920, 'synset': 'split.n.07', 'name': 'split'}, {'id': 12921, 'synset': 'banana_split.n.01', 'name': 'banana_split'}, {'id': 12922, 'synset': 'frozen_pudding.n.01', 'name': 'frozen_pudding'}, {'id': 12923, 'synset': 'frozen_custard.n.01', 'name': 'frozen_custard'}, {'id': 12924, 'synset': 'flummery.n.01', 'name': 'flummery'}, {'id': 12925, 'synset': 'fish_mousse.n.01', 'name': 'fish_mousse'}, {'id': 12926, 'synset': 'chicken_mousse.n.01', 'name': 'chicken_mousse'}, {'id': 12927, 'synset': 'plum_pudding.n.01', 'name': 'plum_pudding'}, {'id': 12928, 'synset': 'carrot_pudding.n.01', 'name': 'carrot_pudding'}, {'id': 12929, 'synset': 'corn_pudding.n.01', 'name': 'corn_pudding'}, {'id': 12930, 'synset': 'steamed_pudding.n.01', 'name': 'steamed_pudding'}, {'id': 12931, 'synset': 'duff.n.01', 'name': 'duff'}, {'id': 12932, 'synset': 'vanilla_pudding.n.01', 'name': 'vanilla_pudding'}, {'id': 12933, 'synset': 'chocolate_pudding.n.01', 'name': 'chocolate_pudding'}, {'id': 12934, 'synset': 'brown_betty.n.01', 'name': 'brown_Betty'}, {'id': 12935, 'synset': 'nesselrode.n.01', 'name': 'Nesselrode'}, {'id': 12936, 'synset': 'pease_pudding.n.01', 'name': 'pease_pudding'}, {'id': 12937, 'synset': 'custard.n.01', 'name': 'custard'}, {'id': 12938, 'synset': 'creme_caramel.n.01', 'name': 'creme_caramel'}, {'id': 12939, 'synset': 'creme_anglais.n.01', 'name': 'creme_anglais'}, {'id': 12940, 'synset': 'creme_brulee.n.01', 'name': 'creme_brulee'}, {'id': 12941, 'synset': 'fruit_custard.n.01', 'name': 'fruit_custard'}, {'id': 12942, 'synset': 'tapioca.n.01', 'name': 'tapioca'}, {'id': 12943, 'synset': 'tapioca_pudding.n.01', 'name': 'tapioca_pudding'}, {'id': 12944, 'synset': 'roly-poly.n.02', 'name': 'roly-poly'}, {'id': 12945, 'synset': 'suet_pudding.n.01', 'name': 'suet_pudding'}, {'id': 12946, 'synset': 'bavarian_cream.n.01', 'name': 'Bavarian_cream'}, {'id': 12947, 'synset': 'maraschino.n.02', 'name': 'maraschino'}, {'id': 12948, 'synset': 'nonpareil.n.02', 'name': 'nonpareil'}, {'id': 12949, 'synset': 'zabaglione.n.01', 'name': 'zabaglione'}, {'id': 12950, 'synset': 'garnish.n.01', 'name': 'garnish'}, {'id': 12951, 'synset': 'pastry.n.01', 'name': 'pastry'}, {'id': 12952, 'synset': 'turnover.n.02', 'name': 'turnover'}, {'id': 12953, 'synset': 'apple_turnover.n.01', 'name': 'apple_turnover'}, {'id': 12954, 'synset': 'knish.n.01', 'name': 'knish'}, {'id': 12955, 'synset': 'pirogi.n.01', 'name': 'pirogi'}, {'id': 12956, 'synset': 'samosa.n.01', 'name': 'samosa'}, {'id': 12957, 'synset': 'timbale.n.01', 'name': 'timbale'}, {'id': 12958, 'synset': 'puff_paste.n.01', 'name': 'puff_paste'}, {'id': 12959, 'synset': 'phyllo.n.01', 'name': 'phyllo'}, {'id': 12960, 'synset': 'puff_batter.n.01', 'name': 'puff_batter'}, {'id': 12961, 'synset': 'ice-cream_cake.n.01', 'name': 'ice-cream_cake'}, {'id': 12962, 'synset': 'fish_cake.n.01', 'name': 'fish_cake'}, {'id': 12963, 'synset': 'fish_stick.n.01', 'name': 'fish_stick'}, {'id': 12964, 'synset': 'conserve.n.01', 'name': 'conserve'}, {'id': 12965, 'synset': 'apple_butter.n.01', 'name': 'apple_butter'}, {'id': 12966, 'synset': 'chowchow.n.02', 'name': 'chowchow'}, {'id': 12967, 'synset': 'lemon_curd.n.01', 'name': 'lemon_curd'}, {'id': 12968, 'synset': 'strawberry_jam.n.01', 'name': 'strawberry_jam'}, {'id': 12969, 'synset': 'jelly.n.02', 'name': 'jelly'}, {'id': 12970, 'synset': 'apple_jelly.n.01', 'name': 'apple_jelly'}, {'id': 12971, 'synset': 'crabapple_jelly.n.01', 'name': 'crabapple_jelly'}, {'id': 12972, 'synset': 'grape_jelly.n.01', 'name': 'grape_jelly'}, {'id': 12973, 'synset': 'marmalade.n.01', 'name': 'marmalade'}, {'id': 12974, 'synset': 'orange_marmalade.n.01', 'name': 'orange_marmalade'}, {'id': 12975, 'synset': 'gelatin_dessert.n.01', 'name': 'gelatin_dessert'}, {'id': 12976, 'synset': 'buffalo_wing.n.01', 'name': 'buffalo_wing'}, {'id': 12977, 'synset': 'barbecued_wing.n.01', 'name': 'barbecued_wing'}, {'id': 12978, 'synset': 'mess.n.03', 'name': 'mess'}, {'id': 12979, 'synset': 'mince.n.01', 'name': 'mince'}, {'id': 12980, 'synset': 'puree.n.01', 'name': 'puree'}, {'id': 12981, 'synset': 'barbecue.n.01', 'name': 'barbecue'}, {'id': 12982, 'synset': 'biryani.n.01', 'name': 'biryani'}, {'id': 12983, 'synset': 'escalope_de_veau_orloff.n.01', 'name': 'escalope_de_veau_Orloff'}, {'id': 12984, 'synset': 'saute.n.01', 'name': 'saute'}, {'id': 12985, 'synset': 'veal_parmesan.n.01', 'name': 'veal_parmesan'}, {'id': 12986, 'synset': 'veal_cordon_bleu.n.01', 'name': 'veal_cordon_bleu'}, {'id': 12987, 'synset': 'margarine.n.01', 'name': 'margarine'}, {'id': 12988, 'synset': 'mincemeat.n.01', 'name': 'mincemeat'}, {'id': 12989, 'synset': 'stuffing.n.01', 'name': 'stuffing'}, {'id': 12990, 'synset': 'turkey_stuffing.n.01', 'name': 'turkey_stuffing'}, {'id': 12991, 'synset': 'oyster_stuffing.n.01', 'name': 'oyster_stuffing'}, {'id': 12992, 'synset': 'forcemeat.n.01', 'name': 'forcemeat'}, {'id': 12993, 'synset': 'anadama_bread.n.01', 'name': 'anadama_bread'}, {'id': 12994, 'synset': 'bap.n.01', 'name': 'bap'}, {'id': 12995, 'synset': 'barmbrack.n.01', 'name': 'barmbrack'}, {'id': 12996, 'synset': 'breadstick.n.01', 'name': 'breadstick'}, {'id': 12997, 'synset': 'grissino.n.01', 'name': 'grissino'}, {'id': 12998, 'synset': 'brown_bread.n.02', 'name': 'brown_bread'}, {'id': 12999, 'synset': 'tea_bread.n.01', 'name': 'tea_bread'}, {'id': 13000, 'synset': 'caraway_seed_bread.n.01', 'name': 'caraway_seed_bread'}, {'id': 13001, 'synset': 'challah.n.01', 'name': 'challah'}, {'id': 13002, 'synset': 'cinnamon_bread.n.01', 'name': 'cinnamon_bread'}, {'id': 13003, 'synset': 'cracked-wheat_bread.n.01', 'name': 'cracked-wheat_bread'}, {'id': 13004, 'synset': 'dark_bread.n.01', 'name': 'dark_bread'}, {'id': 13005, 'synset': 'english_muffin.n.01', 'name': 'English_muffin'}, {'id': 13006, 'synset': 'flatbread.n.01', 'name': 'flatbread'}, {'id': 13007, 'synset': 'garlic_bread.n.01', 'name': 'garlic_bread'}, {'id': 13008, 'synset': 'gluten_bread.n.01', 'name': 'gluten_bread'}, {'id': 13009, 'synset': 'graham_bread.n.01', 'name': 'graham_bread'}, {'id': 13010, 'synset': 'host.n.09', 'name': 'Host'}, {'id': 13011, 'synset': 'flatbrod.n.01', 'name': 'flatbrod'}, {'id': 13012, 'synset': 'bannock.n.01', 'name': 'bannock'}, {'id': 13013, 'synset': 'chapatti.n.01', 'name': 'chapatti'}, {'id': 13014, 'synset': 'loaf_of_bread.n.01', 'name': 'loaf_of_bread'}, {'id': 13015, 'synset': 'french_loaf.n.01', 'name': 'French_loaf'}, {'id': 13016, 'synset': 'matzo.n.01', 'name': 'matzo'}, {'id': 13017, 'synset': 'nan.n.04', 'name': 'nan'}, {'id': 13018, 'synset': 'onion_bread.n.01', 'name': 'onion_bread'}, {'id': 13019, 'synset': 'raisin_bread.n.01', 'name': 'raisin_bread'}, {'id': 13020, 'synset': 'quick_bread.n.01', 'name': 'quick_bread'}, {'id': 13021, 'synset': 'banana_bread.n.01', 'name': 'banana_bread'}, {'id': 13022, 'synset': 'date_bread.n.01', 'name': 'date_bread'}, {'id': 13023, 'synset': 'date-nut_bread.n.01', 'name': 'date-nut_bread'}, {'id': 13024, 'synset': 'nut_bread.n.01', 'name': 'nut_bread'}, {'id': 13025, 'synset': 'oatcake.n.01', 'name': 'oatcake'}, {'id': 13026, 'synset': 'irish_soda_bread.n.01', 'name': 'Irish_soda_bread'}, {'id': 13027, 'synset': 'skillet_bread.n.01', 'name': 'skillet_bread'}, {'id': 13028, 'synset': 'rye_bread.n.01', 'name': 'rye_bread'}, {'id': 13029, 'synset': 'black_bread.n.01', 'name': 'black_bread'}, {'id': 13030, 'synset': 'jewish_rye_bread.n.01', 'name': 'Jewish_rye_bread'}, {'id': 13031, 'synset': 'limpa.n.01', 'name': 'limpa'}, {'id': 13032, 'synset': 'swedish_rye_bread.n.01', 'name': 'Swedish_rye_bread'}, {'id': 13033, 'synset': 'salt-rising_bread.n.01', 'name': 'salt-rising_bread'}, {'id': 13034, 'synset': 'simnel.n.01', 'name': 'simnel'}, {'id': 13035, 'synset': 'sour_bread.n.01', 'name': 'sour_bread'}, {'id': 13036, 'synset': 'wafer.n.03', 'name': 'wafer'}, {'id': 13037, 'synset': 'white_bread.n.01', 'name': 'white_bread'}, {'id': 13038, 'synset': 'french_bread.n.01', 'name': 'French_bread'}, {'id': 13039, 'synset': 'italian_bread.n.01', 'name': 'Italian_bread'}, {'id': 13040, 'synset': 'corn_cake.n.01', 'name': 'corn_cake'}, {'id': 13041, 'synset': 'skillet_corn_bread.n.01', 'name': 'skillet_corn_bread'}, {'id': 13042, 'synset': 'ashcake.n.01', 'name': 'ashcake'}, {'id': 13043, 'synset': 'hoecake.n.01', 'name': 'hoecake'}, {'id': 13044, 'synset': 'cornpone.n.01', 'name': 'cornpone'}, {'id': 13045, 'synset': 'corn_dab.n.01', 'name': 'corn_dab'}, {'id': 13046, 'synset': 'hush_puppy.n.01', 'name': 'hush_puppy'}, {'id': 13047, 'synset': 'johnnycake.n.01', 'name': 'johnnycake'}, {'id': 13048, 'synset': 'shawnee_cake.n.01', 'name': 'Shawnee_cake'}, {'id': 13049, 'synset': 'spoon_bread.n.01', 'name': 'spoon_bread'}, {'id': 13050, 'synset': 'cinnamon_toast.n.01', 'name': 'cinnamon_toast'}, {'id': 13051, 'synset': 'orange_toast.n.01', 'name': 'orange_toast'}, {'id': 13052, 'synset': 'melba_toast.n.01', 'name': 'Melba_toast'}, {'id': 13053, 'synset': 'zwieback.n.01', 'name': 'zwieback'}, {'id': 13054, 'synset': 'frankfurter_bun.n.01', 'name': 'frankfurter_bun'}, {'id': 13055, 'synset': 'hamburger_bun.n.01', 'name': 'hamburger_bun'}, {'id': 13056, 'synset': 'bran_muffin.n.01', 'name': 'bran_muffin'}, {'id': 13057, 'synset': 'corn_muffin.n.01', 'name': 'corn_muffin'}, {'id': 13058, 'synset': 'yorkshire_pudding.n.01', 'name': 'Yorkshire_pudding'}, {'id': 13059, 'synset': 'popover.n.01', 'name': 'popover'}, {'id': 13060, 'synset': 'scone.n.01', 'name': 'scone'}, {'id': 13061, 'synset': 'drop_scone.n.01', 'name': 'drop_scone'}, {'id': 13062, 'synset': 'cross_bun.n.01', 'name': 'cross_bun'}, {'id': 13063, 'synset': 'brioche.n.01', 'name': 'brioche'}, {'id': 13064, 'synset': 'hard_roll.n.01', 'name': 'hard_roll'}, {'id': 13065, 'synset': 'soft_roll.n.01', 'name': 'soft_roll'}, {'id': 13066, 'synset': 'kaiser_roll.n.01', 'name': 'kaiser_roll'}, {'id': 13067, 'synset': 'parker_house_roll.n.01', 'name': 'Parker_House_roll'}, {'id': 13068, 'synset': 'clover-leaf_roll.n.01', 'name': 'clover-leaf_roll'}, {'id': 13069, 'synset': 'onion_roll.n.01', 'name': 'onion_roll'}, {'id': 13070, 'synset': 'bialy.n.01', 'name': 'bialy'}, {'id': 13071, 'synset': 'sweet_roll.n.01', 'name': 'sweet_roll'}, {'id': 13072, 'synset': 'bear_claw.n.01', 'name': 'bear_claw'}, {'id': 13073, 'synset': 'cinnamon_roll.n.01', 'name': 'cinnamon_roll'}, {'id': 13074, 'synset': 'honey_bun.n.01', 'name': 'honey_bun'}, {'id': 13075, 'synset': 'pinwheel_roll.n.01', 'name': 'pinwheel_roll'}, {'id': 13076, 'synset': 'danish.n.02', 'name': 'danish'}, {'id': 13077, 'synset': 'onion_bagel.n.01', 'name': 'onion_bagel'}, {'id': 13078, 'synset': 'biscuit.n.01', 'name': 'biscuit'}, {'id': 13079, 'synset': 'rolled_biscuit.n.01', 'name': 'rolled_biscuit'}, {'id': 13080, 'synset': 'baking-powder_biscuit.n.01', 'name': 'baking-powder_biscuit'}, {'id': 13081, 'synset': 'buttermilk_biscuit.n.01', 'name': 'buttermilk_biscuit'}, {'id': 13082, 'synset': 'shortcake.n.01', 'name': 'shortcake'}, {'id': 13083, 'synset': 'hardtack.n.01', 'name': 'hardtack'}, {'id': 13084, 'synset': 'saltine.n.01', 'name': 'saltine'}, {'id': 13085, 'synset': 'soda_cracker.n.01', 'name': 'soda_cracker'}, {'id': 13086, 'synset': 'oyster_cracker.n.01', 'name': 'oyster_cracker'}, {'id': 13087, 'synset': 'water_biscuit.n.01', 'name': 'water_biscuit'}, {'id': 13088, 'synset': 'graham_cracker.n.01', 'name': 'graham_cracker'}, {'id': 13089, 'synset': 'soft_pretzel.n.01', 'name': 'soft_pretzel'}, {'id': 13090, 'synset': 'sandwich_plate.n.01', 'name': 'sandwich_plate'}, {'id': 13091, 'synset': 'butty.n.01', 'name': 'butty'}, {'id': 13092, 'synset': 'ham_sandwich.n.01', 'name': 'ham_sandwich'}, {'id': 13093, 'synset': 'chicken_sandwich.n.01', 'name': 'chicken_sandwich'}, {'id': 13094, 'synset': 'club_sandwich.n.01', 'name': 'club_sandwich'}, {'id': 13095, 'synset': 'open-face_sandwich.n.01', 'name': 'open-face_sandwich'}, {'id': 13096, 'synset': 'cheeseburger.n.01', 'name': 'cheeseburger'}, {'id': 13097, 'synset': 'tunaburger.n.01', 'name': 'tunaburger'}, {'id': 13098, 'synset': 'hotdog.n.02', 'name': 'hotdog'}, {'id': 13099, 'synset': 'sloppy_joe.n.01', 'name': 'Sloppy_Joe'}, {'id': 13100, 'synset': 'bomber.n.03', 'name': 'bomber'}, {'id': 13101, 'synset': 'gyro.n.01', 'name': 'gyro'}, {'id': 13102, 'synset': 'bacon-lettuce-tomato_sandwich.n.01', 'name': 'bacon-lettuce-tomato_sandwich'}, {'id': 13103, 'synset': 'reuben.n.02', 'name': 'Reuben'}, {'id': 13104, 'synset': 'western.n.02', 'name': 'western'}, {'id': 13105, 'synset': 'wrap.n.02', 'name': 'wrap'}, {'id': 13106, 'synset': 'spaghetti.n.01', 'name': 'spaghetti'}, {'id': 13107, 'synset': 'hasty_pudding.n.01', 'name': 'hasty_pudding'}, {'id': 13108, 'synset': 'gruel.n.01', 'name': 'gruel'}, {'id': 13109, 'synset': 'congee.n.01', 'name': 'congee'}, {'id': 13110, 'synset': 'skilly.n.01', 'name': 'skilly'}, {'id': 13111, 'synset': 'edible_fruit.n.01', 'name': 'edible_fruit'}, {'id': 13112, 'synset': 'vegetable.n.01', 'name': 'vegetable'}, {'id': 13113, 'synset': 'julienne.n.01', 'name': 'julienne'}, {'id': 13114, 'synset': 'raw_vegetable.n.01', 'name': 'raw_vegetable'}, {'id': 13115, 'synset': 'crudites.n.01', 'name': 'crudites'}, {'id': 13116, 'synset': 'celery_stick.n.01', 'name': 'celery_stick'}, {'id': 13117, 'synset': 'legume.n.03', 'name': 'legume'}, {'id': 13118, 'synset': 'pulse.n.04', 'name': 'pulse'}, {'id': 13119, 'synset': 'potherb.n.01', 'name': 'potherb'}, {'id': 13120, 'synset': 'greens.n.01', 'name': 'greens'}, {'id': 13121, 'synset': 'chop-suey_greens.n.02', 'name': 'chop-suey_greens'}, {'id': 13122, 'synset': 'solanaceous_vegetable.n.01', 'name': 'solanaceous_vegetable'}, {'id': 13123, 'synset': 'root_vegetable.n.01', 'name': 'root_vegetable'}, {'id': 13124, 'synset': 'baked_potato.n.01', 'name': 'baked_potato'}, {'id': 13125, 'synset': 'french_fries.n.01', 'name': 'french_fries'}, {'id': 13126, 'synset': 'home_fries.n.01', 'name': 'home_fries'}, {'id': 13127, 'synset': 'jacket_potato.n.01', 'name': 'jacket_potato'}, {'id': 13128, 'synset': 'potato_skin.n.01', 'name': 'potato_skin'}, {'id': 13129, 'synset': 'uruguay_potato.n.02', 'name': 'Uruguay_potato'}, {'id': 13130, 'synset': 'yam.n.04', 'name': 'yam'}, {'id': 13131, 'synset': 'yam.n.03', 'name': 'yam'}, {'id': 13132, 'synset': 'snack_food.n.01', 'name': 'snack_food'}, {'id': 13133, 'synset': 'corn_chip.n.01', 'name': 'corn_chip'}, {'id': 13134, 'synset': 'tortilla_chip.n.01', 'name': 'tortilla_chip'}, {'id': 13135, 'synset': 'nacho.n.01', 'name': 'nacho'}, {'id': 13136, 'synset': 'pieplant.n.01', 'name': 'pieplant'}, {'id': 13137, 'synset': 'cruciferous_vegetable.n.01', 'name': 'cruciferous_vegetable'}, {'id': 13138, 'synset': 'mustard.n.03', 'name': 'mustard'}, {'id': 13139, 'synset': 'cabbage.n.01', 'name': 'cabbage'}, {'id': 13140, 'synset': 'kale.n.03', 'name': 'kale'}, {'id': 13141, 'synset': 'collards.n.01', 'name': 'collards'}, {'id': 13142, 'synset': 'chinese_cabbage.n.02', 'name': 'Chinese_cabbage'}, {'id': 13143, 'synset': 'bok_choy.n.02', 'name': 'bok_choy'}, {'id': 13144, 'synset': 'head_cabbage.n.02', 'name': 'head_cabbage'}, {'id': 13145, 'synset': 'red_cabbage.n.02', 'name': 'red_cabbage'}, {'id': 13146, 'synset': 'savoy_cabbage.n.02', 'name': 'savoy_cabbage'}, {'id': 13147, 'synset': 'broccoli.n.02', 'name': 'broccoli'}, {'id': 13148, 'synset': 'broccoli_rabe.n.02', 'name': 'broccoli_rabe'}, {'id': 13149, 'synset': 'squash.n.02', 'name': 'squash'}, {'id': 13150, 'synset': 'summer_squash.n.02', 'name': 'summer_squash'}, {'id': 13151, 'synset': 'yellow_squash.n.02', 'name': 'yellow_squash'}, {'id': 13152, 'synset': 'crookneck.n.01', 'name': 'crookneck'}, {'id': 13153, 'synset': 'marrow.n.04', 'name': 'marrow'}, {'id': 13154, 'synset': 'cocozelle.n.02', 'name': 'cocozelle'}, {'id': 13155, 'synset': 'pattypan_squash.n.02', 'name': 'pattypan_squash'}, {'id': 13156, 'synset': 'spaghetti_squash.n.02', 'name': 'spaghetti_squash'}, {'id': 13157, 'synset': 'winter_squash.n.02', 'name': 'winter_squash'}, {'id': 13158, 'synset': 'acorn_squash.n.02', 'name': 'acorn_squash'}, {'id': 13159, 'synset': 'butternut_squash.n.02', 'name': 'butternut_squash'}, {'id': 13160, 'synset': 'hubbard_squash.n.02', 'name': 'hubbard_squash'}, {'id': 13161, 'synset': 'turban_squash.n.02', 'name': 'turban_squash'}, {'id': 13162, 'synset': 'buttercup_squash.n.02', 'name': 'buttercup_squash'}, {'id': 13163, 'synset': 'cushaw.n.02', 'name': 'cushaw'}, {'id': 13164, 'synset': 'winter_crookneck_squash.n.02', 'name': 'winter_crookneck_squash'}, {'id': 13165, 'synset': 'gherkin.n.02', 'name': 'gherkin'}, {'id': 13166, 'synset': 'artichoke_heart.n.01', 'name': 'artichoke_heart'}, {'id': 13167, 'synset': 'jerusalem_artichoke.n.03', 'name': 'Jerusalem_artichoke'}, {'id': 13168, 'synset': 'bamboo_shoot.n.01', 'name': 'bamboo_shoot'}, {'id': 13169, 'synset': 'sprout.n.02', 'name': 'sprout'}, {'id': 13170, 'synset': 'bean_sprout.n.01', 'name': 'bean_sprout'}, {'id': 13171, 'synset': 'alfalfa_sprout.n.01', 'name': 'alfalfa_sprout'}, {'id': 13172, 'synset': 'beet.n.02', 'name': 'beet'}, {'id': 13173, 'synset': 'beet_green.n.01', 'name': 'beet_green'}, {'id': 13174, 'synset': 'sugar_beet.n.02', 'name': 'sugar_beet'}, {'id': 13175, 'synset': 'mangel-wurzel.n.02', 'name': 'mangel-wurzel'}, {'id': 13176, 'synset': 'chard.n.02', 'name': 'chard'}, {'id': 13177, 'synset': 'pepper.n.04', 'name': 'pepper'}, {'id': 13178, 'synset': 'sweet_pepper.n.02', 'name': 'sweet_pepper'}, {'id': 13179, 'synset': 'green_pepper.n.01', 'name': 'green_pepper'}, {'id': 13180, 'synset': 'globe_pepper.n.01', 'name': 'globe_pepper'}, {'id': 13181, 'synset': 'pimento.n.02', 'name': 'pimento'}, {'id': 13182, 'synset': 'hot_pepper.n.02', 'name': 'hot_pepper'}, {'id': 13183, 'synset': 'jalapeno.n.02', 'name': 'jalapeno'}, {'id': 13184, 'synset': 'chipotle.n.01', 'name': 'chipotle'}, {'id': 13185, 'synset': 'cayenne.n.03', 'name': 'cayenne'}, {'id': 13186, 'synset': 'tabasco.n.03', 'name': 'tabasco'}, {'id': 13187, 'synset': 'onion.n.03', 'name': 'onion'}, {'id': 13188, 'synset': 'bermuda_onion.n.01', 'name': 'Bermuda_onion'}, {'id': 13189, 'synset': 'vidalia_onion.n.01', 'name': 'Vidalia_onion'}, {'id': 13190, 'synset': 'spanish_onion.n.01', 'name': 'Spanish_onion'}, {'id': 13191, 'synset': 'purple_onion.n.01', 'name': 'purple_onion'}, {'id': 13192, 'synset': 'leek.n.02', 'name': 'leek'}, {'id': 13193, 'synset': 'shallot.n.03', 'name': 'shallot'}, {'id': 13194, 'synset': 'salad_green.n.01', 'name': 'salad_green'}, {'id': 13195, 'synset': 'lettuce.n.03', 'name': 'lettuce'}, {'id': 13196, 'synset': 'butterhead_lettuce.n.01', 'name': 'butterhead_lettuce'}, {'id': 13197, 'synset': 'buttercrunch.n.01', 'name': 'buttercrunch'}, {'id': 13198, 'synset': 'bibb_lettuce.n.01', 'name': 'Bibb_lettuce'}, {'id': 13199, 'synset': 'boston_lettuce.n.01', 'name': 'Boston_lettuce'}, {'id': 13200, 'synset': 'crisphead_lettuce.n.01', 'name': 'crisphead_lettuce'}, {'id': 13201, 'synset': 'cos.n.02', 'name': 'cos'}, {'id': 13202, 'synset': 'leaf_lettuce.n.02', 'name': 'leaf_lettuce'}, {'id': 13203, 'synset': 'celtuce.n.02', 'name': 'celtuce'}, {'id': 13204, 'synset': 'bean.n.01', 'name': 'bean'}, {'id': 13205, 'synset': 'goa_bean.n.02', 'name': 'goa_bean'}, {'id': 13206, 'synset': 'lentil.n.01', 'name': 'lentil'}, {'id': 13207, 'synset': 'green_pea.n.01', 'name': 'green_pea'}, {'id': 13208, 'synset': 'marrowfat_pea.n.01', 'name': 'marrowfat_pea'}, {'id': 13209, 'synset': 'snow_pea.n.02', 'name': 'snow_pea'}, {'id': 13210, 'synset': 'sugar_snap_pea.n.02', 'name': 'sugar_snap_pea'}, {'id': 13211, 'synset': 'split-pea.n.01', 'name': 'split-pea'}, {'id': 13212, 'synset': 'chickpea.n.03', 'name': 'chickpea'}, {'id': 13213, 'synset': 'cajan_pea.n.02', 'name': 'cajan_pea'}, {'id': 13214, 'synset': 'field_pea.n.03', 'name': 'field_pea'}, {'id': 13215, 'synset': 'mushy_peas.n.01', 'name': 'mushy_peas'}, {'id': 13216, 'synset': 'black-eyed_pea.n.03', 'name': 'black-eyed_pea'}, {'id': 13217, 'synset': 'common_bean.n.02', 'name': 'common_bean'}, {'id': 13218, 'synset': 'kidney_bean.n.02', 'name': 'kidney_bean'}, {'id': 13219, 'synset': 'navy_bean.n.01', 'name': 'navy_bean'}, {'id': 13220, 'synset': 'pinto_bean.n.01', 'name': 'pinto_bean'}, {'id': 13221, 'synset': 'frijole.n.02', 'name': 'frijole'}, {'id': 13222, 'synset': 'black_bean.n.01', 'name': 'black_bean'}, {'id': 13223, 'synset': 'fresh_bean.n.01', 'name': 'fresh_bean'}, {'id': 13224, 'synset': 'flageolet.n.01', 'name': 'flageolet'}, {'id': 13225, 'synset': 'green_bean.n.01', 'name': 'green_bean'}, {'id': 13226, 'synset': 'snap_bean.n.01', 'name': 'snap_bean'}, {'id': 13227, 'synset': 'string_bean.n.01', 'name': 'string_bean'}, {'id': 13228, 'synset': 'kentucky_wonder.n.01', 'name': 'Kentucky_wonder'}, {'id': 13229, 'synset': 'scarlet_runner.n.03', 'name': 'scarlet_runner'}, {'id': 13230, 'synset': 'haricot_vert.n.01', 'name': 'haricot_vert'}, {'id': 13231, 'synset': 'wax_bean.n.02', 'name': 'wax_bean'}, {'id': 13232, 'synset': 'shell_bean.n.02', 'name': 'shell_bean'}, {'id': 13233, 'synset': 'lima_bean.n.03', 'name': 'lima_bean'}, {'id': 13234, 'synset': 'fordhooks.n.01', 'name': 'Fordhooks'}, {'id': 13235, 'synset': 'sieva_bean.n.02', 'name': 'sieva_bean'}, {'id': 13236, 'synset': 'fava_bean.n.02', 'name': 'fava_bean'}, {'id': 13237, 'synset': 'soy.n.04', 'name': 'soy'}, {'id': 13238, 'synset': 'green_soybean.n.01', 'name': 'green_soybean'}, {'id': 13239, 'synset': 'field_soybean.n.01', 'name': 'field_soybean'}, {'id': 13240, 'synset': 'cardoon.n.02', 'name': 'cardoon'}, {'id': 13241, 'synset': 'carrot.n.03', 'name': 'carrot'}, {'id': 13242, 'synset': 'carrot_stick.n.01', 'name': 'carrot_stick'}, {'id': 13243, 'synset': 'celery.n.02', 'name': 'celery'}, {'id': 13244, 'synset': 'pascal_celery.n.01', 'name': 'pascal_celery'}, {'id': 13245, 'synset': 'celeriac.n.02', 'name': 'celeriac'}, {'id': 13246, 'synset': 'chicory.n.04', 'name': 'chicory'}, {'id': 13247, 'synset': 'radicchio.n.01', 'name': 'radicchio'}, {'id': 13248, 'synset': 'coffee_substitute.n.01', 'name': 'coffee_substitute'}, {'id': 13249, 'synset': 'chicory.n.03', 'name': 'chicory'}, {'id': 13250, 'synset': 'postum.n.01', 'name': 'Postum'}, {'id': 13251, 'synset': 'chicory_escarole.n.01', 'name': 'chicory_escarole'}, {'id': 13252, 'synset': 'belgian_endive.n.01', 'name': 'Belgian_endive'}, {'id': 13253, 'synset': 'sweet_corn.n.02', 'name': 'sweet_corn'}, {'id': 13254, 'synset': 'hominy.n.01', 'name': 'hominy'}, {'id': 13255, 'synset': 'lye_hominy.n.01', 'name': 'lye_hominy'}, {'id': 13256, 'synset': 'pearl_hominy.n.01', 'name': 'pearl_hominy'}, {'id': 13257, 'synset': 'popcorn.n.02', 'name': 'popcorn'}, {'id': 13258, 'synset': 'cress.n.02', 'name': 'cress'}, {'id': 13259, 'synset': 'watercress.n.02', 'name': 'watercress'}, {'id': 13260, 'synset': 'garden_cress.n.01', 'name': 'garden_cress'}, {'id': 13261, 'synset': 'winter_cress.n.02', 'name': 'winter_cress'}, {'id': 13262, 'synset': 'dandelion_green.n.02', 'name': 'dandelion_green'}, {'id': 13263, 'synset': 'gumbo.n.03', 'name': 'gumbo'}, {'id': 13264, 'synset': 'kohlrabi.n.02', 'name': 'kohlrabi'}, {'id': 13265, 'synset': "lamb's-quarter.n.01", 'name': "lamb's-quarter"}, {'id': 13266, 'synset': 'wild_spinach.n.03', 'name': 'wild_spinach'}, {'id': 13267, 'synset': 'beefsteak_tomato.n.01', 'name': 'beefsteak_tomato'}, {'id': 13268, 'synset': 'cherry_tomato.n.02', 'name': 'cherry_tomato'}, {'id': 13269, 'synset': 'plum_tomato.n.02', 'name': 'plum_tomato'}, {'id': 13270, 'synset': 'tomatillo.n.03', 'name': 'tomatillo'}, {'id': 13271, 'synset': 'mushroom.n.05', 'name': 'mushroom'}, {'id': 13272, 'synset': 'stuffed_mushroom.n.01', 'name': 'stuffed_mushroom'}, {'id': 13273, 'synset': 'salsify.n.03', 'name': 'salsify'}, {'id': 13274, 'synset': 'oyster_plant.n.03', 'name': 'oyster_plant'}, {'id': 13275, 'synset': 'scorzonera.n.02', 'name': 'scorzonera'}, {'id': 13276, 'synset': 'parsnip.n.03', 'name': 'parsnip'}, {'id': 13277, 'synset': 'radish.n.01', 'name': 'radish'}, {'id': 13278, 'synset': 'turnip.n.02', 'name': 'turnip'}, {'id': 13279, 'synset': 'white_turnip.n.02', 'name': 'white_turnip'}, {'id': 13280, 'synset': 'rutabaga.n.01', 'name': 'rutabaga'}, {'id': 13281, 'synset': 'turnip_greens.n.01', 'name': 'turnip_greens'}, {'id': 13282, 'synset': 'sorrel.n.04', 'name': 'sorrel'}, {'id': 13283, 'synset': 'french_sorrel.n.02', 'name': 'French_sorrel'}, {'id': 13284, 'synset': 'spinach.n.02', 'name': 'spinach'}, {'id': 13285, 'synset': 'taro.n.03', 'name': 'taro'}, {'id': 13286, 'synset': 'truffle.n.02', 'name': 'truffle'}, {'id': 13287, 'synset': 'edible_nut.n.01', 'name': 'edible_nut'}, {'id': 13288, 'synset': 'bunya_bunya.n.02', 'name': 'bunya_bunya'}, {'id': 13289, 'synset': 'peanut.n.04', 'name': 'peanut'}, {'id': 13290, 'synset': 'freestone.n.01', 'name': 'freestone'}, {'id': 13291, 'synset': 'cling.n.01', 'name': 'cling'}, {'id': 13292, 'synset': 'windfall.n.01', 'name': 'windfall'}, {'id': 13293, 'synset': 'crab_apple.n.03', 'name': 'crab_apple'}, {'id': 13294, 'synset': 'eating_apple.n.01', 'name': 'eating_apple'}, {'id': 13295, 'synset': 'baldwin.n.03', 'name': 'Baldwin'}, {'id': 13296, 'synset': 'cortland.n.01', 'name': 'Cortland'}, {'id': 13297, 'synset': "cox's_orange_pippin.n.01", 'name': "Cox's_Orange_Pippin"}, {'id': 13298, 'synset': 'delicious.n.01', 'name': 'Delicious'}, {'id': 13299, 'synset': 'golden_delicious.n.01', 'name': 'Golden_Delicious'}, {'id': 13300, 'synset': 'red_delicious.n.01', 'name': 'Red_Delicious'}, {'id': 13301, 'synset': 'empire.n.05', 'name': 'Empire'}, {'id': 13302, 'synset': "grimes'_golden.n.01", 'name': "Grimes'_golden"}, {'id': 13303, 'synset': 'jonathan.n.01', 'name': 'Jonathan'}, {'id': 13304, 'synset': 'mcintosh.n.01', 'name': 'McIntosh'}, {'id': 13305, 'synset': 'macoun.n.01', 'name': 'Macoun'}, {'id': 13306, 'synset': 'northern_spy.n.01', 'name': 'Northern_Spy'}, {'id': 13307, 'synset': 'pearmain.n.01', 'name': 'Pearmain'}, {'id': 13308, 'synset': 'pippin.n.01', 'name': 'Pippin'}, {'id': 13309, 'synset': 'prima.n.01', 'name': 'Prima'}, {'id': 13310, 'synset': 'stayman.n.01', 'name': 'Stayman'}, {'id': 13311, 'synset': 'winesap.n.01', 'name': 'Winesap'}, {'id': 13312, 'synset': 'stayman_winesap.n.01', 'name': 'Stayman_Winesap'}, {'id': 13313, 'synset': 'cooking_apple.n.01', 'name': 'cooking_apple'}, {'id': 13314, 'synset': "bramley's_seedling.n.01", 'name': "Bramley's_Seedling"}, {'id': 13315, 'synset': 'granny_smith.n.01', 'name': 'Granny_Smith'}, {'id': 13316, 'synset': "lane's_prince_albert.n.01", 'name': "Lane's_Prince_Albert"}, {'id': 13317, 'synset': 'newtown_wonder.n.01', 'name': 'Newtown_Wonder'}, {'id': 13318, 'synset': 'rome_beauty.n.01', 'name': 'Rome_Beauty'}, {'id': 13319, 'synset': 'berry.n.01', 'name': 'berry'}, {'id': 13320, 'synset': 'bilberry.n.03', 'name': 'bilberry'}, {'id': 13321, 'synset': 'huckleberry.n.03', 'name': 'huckleberry'}, {'id': 13322, 'synset': 'wintergreen.n.03', 'name': 'wintergreen'}, {'id': 13323, 'synset': 'cranberry.n.02', 'name': 'cranberry'}, {'id': 13324, 'synset': 'lingonberry.n.02', 'name': 'lingonberry'}, {'id': 13325, 'synset': 'currant.n.01', 'name': 'currant'}, {'id': 13326, 'synset': 'gooseberry.n.02', 'name': 'gooseberry'}, {'id': 13327, 'synset': 'black_currant.n.02', 'name': 'black_currant'}, {'id': 13328, 'synset': 'red_currant.n.02', 'name': 'red_currant'}, {'id': 13329, 'synset': 'boysenberry.n.02', 'name': 'boysenberry'}, {'id': 13330, 'synset': 'dewberry.n.02', 'name': 'dewberry'}, {'id': 13331, 'synset': 'loganberry.n.02', 'name': 'loganberry'}, {'id': 13332, 'synset': 'saskatoon.n.02', 'name': 'saskatoon'}, {'id': 13333, 'synset': 'sugarberry.n.02', 'name': 'sugarberry'}, {'id': 13334, 'synset': 'acerola.n.02', 'name': 'acerola'}, {'id': 13335, 'synset': 'carambola.n.02', 'name': 'carambola'}, {'id': 13336, 'synset': 'ceriman.n.02', 'name': 'ceriman'}, {'id': 13337, 'synset': 'carissa_plum.n.01', 'name': 'carissa_plum'}, {'id': 13338, 'synset': 'citrus.n.01', 'name': 'citrus'}, {'id': 13339, 'synset': 'temple_orange.n.02', 'name': 'temple_orange'}, {'id': 13340, 'synset': 'clementine.n.02', 'name': 'clementine'}, {'id': 13341, 'synset': 'satsuma.n.02', 'name': 'satsuma'}, {'id': 13342, 'synset': 'tangerine.n.02', 'name': 'tangerine'}, {'id': 13343, 'synset': 'tangelo.n.02', 'name': 'tangelo'}, {'id': 13344, 'synset': 'bitter_orange.n.02', 'name': 'bitter_orange'}, {'id': 13345, 'synset': 'sweet_orange.n.01', 'name': 'sweet_orange'}, {'id': 13346, 'synset': 'jaffa_orange.n.01', 'name': 'Jaffa_orange'}, {'id': 13347, 'synset': 'navel_orange.n.01', 'name': 'navel_orange'}, {'id': 13348, 'synset': 'valencia_orange.n.01', 'name': 'Valencia_orange'}, {'id': 13349, 'synset': 'kumquat.n.02', 'name': 'kumquat'}, {'id': 13350, 'synset': 'key_lime.n.01', 'name': 'key_lime'}, {'id': 13351, 'synset': 'grapefruit.n.02', 'name': 'grapefruit'}, {'id': 13352, 'synset': 'pomelo.n.02', 'name': 'pomelo'}, {'id': 13353, 'synset': 'citrange.n.02', 'name': 'citrange'}, {'id': 13354, 'synset': 'citron.n.01', 'name': 'citron'}, {'id': 13355, 'synset': 'jordan_almond.n.02', 'name': 'Jordan_almond'}, {'id': 13356, 'synset': 'nectarine.n.02', 'name': 'nectarine'}, {'id': 13357, 'synset': 'pitahaya.n.02', 'name': 'pitahaya'}, {'id': 13358, 'synset': 'plum.n.02', 'name': 'plum'}, {'id': 13359, 'synset': 'damson.n.01', 'name': 'damson'}, {'id': 13360, 'synset': 'greengage.n.01', 'name': 'greengage'}, {'id': 13361, 'synset': 'beach_plum.n.02', 'name': 'beach_plum'}, {'id': 13362, 'synset': 'sloe.n.03', 'name': 'sloe'}, {'id': 13363, 'synset': 'victoria_plum.n.01', 'name': 'Victoria_plum'}, {'id': 13364, 'synset': 'dried_fruit.n.01', 'name': 'dried_fruit'}, {'id': 13365, 'synset': 'dried_apricot.n.01', 'name': 'dried_apricot'}, {'id': 13366, 'synset': 'raisin.n.01', 'name': 'raisin'}, {'id': 13367, 'synset': 'seedless_raisin.n.01', 'name': 'seedless_raisin'}, {'id': 13368, 'synset': 'seeded_raisin.n.01', 'name': 'seeded_raisin'}, {'id': 13369, 'synset': 'currant.n.03', 'name': 'currant'}, {'id': 13370, 'synset': 'anchovy_pear.n.02', 'name': 'anchovy_pear'}, {'id': 13371, 'synset': 'passion_fruit.n.01', 'name': 'passion_fruit'}, {'id': 13372, 'synset': 'granadilla.n.04', 'name': 'granadilla'}, {'id': 13373, 'synset': 'sweet_calabash.n.02', 'name': 'sweet_calabash'}, {'id': 13374, 'synset': 'bell_apple.n.01', 'name': 'bell_apple'}, {'id': 13375, 'synset': 'breadfruit.n.02', 'name': 'breadfruit'}, {'id': 13376, 'synset': 'jackfruit.n.02', 'name': 'jackfruit'}, {'id': 13377, 'synset': 'cacao_bean.n.01', 'name': 'cacao_bean'}, {'id': 13378, 'synset': 'cocoa.n.02', 'name': 'cocoa'}, {'id': 13379, 'synset': 'canistel.n.02', 'name': 'canistel'}, {'id': 13380, 'synset': 'melon_ball.n.01', 'name': 'melon_ball'}, {'id': 13381, 'synset': 'muskmelon.n.02', 'name': 'muskmelon'}, {'id': 13382, 'synset': 'winter_melon.n.02', 'name': 'winter_melon'}, {'id': 13383, 'synset': 'honeydew.n.01', 'name': 'honeydew'}, {'id': 13384, 'synset': 'persian_melon.n.02', 'name': 'Persian_melon'}, {'id': 13385, 'synset': 'net_melon.n.02', 'name': 'net_melon'}, {'id': 13386, 'synset': 'casaba.n.01', 'name': 'casaba'}, {'id': 13387, 'synset': 'sweet_cherry.n.02', 'name': 'sweet_cherry'}, {'id': 13388, 'synset': 'bing_cherry.n.01', 'name': 'bing_cherry'}, {'id': 13389, 'synset': 'heart_cherry.n.02', 'name': 'heart_cherry'}, {'id': 13390, 'synset': 'blackheart.n.02', 'name': 'blackheart'}, {'id': 13391, 'synset': 'capulin.n.02', 'name': 'capulin'}, {'id': 13392, 'synset': 'sour_cherry.n.03', 'name': 'sour_cherry'}, {'id': 13393, 'synset': 'amarelle.n.02', 'name': 'amarelle'}, {'id': 13394, 'synset': 'morello.n.02', 'name': 'morello'}, {'id': 13395, 'synset': 'cocoa_plum.n.02', 'name': 'cocoa_plum'}, {'id': 13396, 'synset': 'gherkin.n.01', 'name': 'gherkin'}, {'id': 13397, 'synset': 'fox_grape.n.02', 'name': 'fox_grape'}, {'id': 13398, 'synset': 'concord_grape.n.01', 'name': 'Concord_grape'}, {'id': 13399, 'synset': 'catawba.n.02', 'name': 'Catawba'}, {'id': 13400, 'synset': 'muscadine.n.02', 'name': 'muscadine'}, {'id': 13401, 'synset': 'scuppernong.n.01', 'name': 'scuppernong'}, {'id': 13402, 'synset': 'slipskin_grape.n.01', 'name': 'slipskin_grape'}, {'id': 13403, 'synset': 'vinifera_grape.n.02', 'name': 'vinifera_grape'}, {'id': 13404, 'synset': 'emperor.n.02', 'name': 'emperor'}, {'id': 13405, 'synset': 'muscat.n.04', 'name': 'muscat'}, {'id': 13406, 'synset': 'ribier.n.01', 'name': 'ribier'}, {'id': 13407, 'synset': 'sultana.n.01', 'name': 'sultana'}, {'id': 13408, 'synset': 'tokay.n.02', 'name': 'Tokay'}, {'id': 13409, 'synset': 'flame_tokay.n.01', 'name': 'flame_tokay'}, {'id': 13410, 'synset': 'thompson_seedless.n.01', 'name': 'Thompson_Seedless'}, {'id': 13411, 'synset': 'custard_apple.n.02', 'name': 'custard_apple'}, {'id': 13412, 'synset': 'cherimoya.n.02', 'name': 'cherimoya'}, {'id': 13413, 'synset': 'soursop.n.02', 'name': 'soursop'}, {'id': 13414, 'synset': 'sweetsop.n.02', 'name': 'sweetsop'}, {'id': 13415, 'synset': 'ilama.n.02', 'name': 'ilama'}, {'id': 13416, 'synset': 'pond_apple.n.02', 'name': 'pond_apple'}, {'id': 13417, 'synset': 'papaw.n.02', 'name': 'papaw'}, {'id': 13418, 'synset': 'kai_apple.n.01', 'name': 'kai_apple'}, {'id': 13419, 'synset': 'ketembilla.n.02', 'name': 'ketembilla'}, {'id': 13420, 'synset': 'ackee.n.01', 'name': 'ackee'}, {'id': 13421, 'synset': 'durian.n.02', 'name': 'durian'}, {'id': 13422, 'synset': 'feijoa.n.02', 'name': 'feijoa'}, {'id': 13423, 'synset': 'genip.n.02', 'name': 'genip'}, {'id': 13424, 'synset': 'genipap.n.01', 'name': 'genipap'}, {'id': 13425, 'synset': 'loquat.n.02', 'name': 'loquat'}, {'id': 13426, 'synset': 'mangosteen.n.02', 'name': 'mangosteen'}, {'id': 13427, 'synset': 'mango.n.02', 'name': 'mango'}, {'id': 13428, 'synset': 'sapodilla.n.02', 'name': 'sapodilla'}, {'id': 13429, 'synset': 'sapote.n.02', 'name': 'sapote'}, {'id': 13430, 'synset': 'tamarind.n.02', 'name': 'tamarind'}, {'id': 13431, 'synset': 'elderberry.n.02', 'name': 'elderberry'}, {'id': 13432, 'synset': 'guava.n.03', 'name': 'guava'}, {'id': 13433, 'synset': 'mombin.n.02', 'name': 'mombin'}, {'id': 13434, 'synset': 'hog_plum.n.04', 'name': 'hog_plum'}, {'id': 13435, 'synset': 'hog_plum.n.03', 'name': 'hog_plum'}, {'id': 13436, 'synset': 'jaboticaba.n.02', 'name': 'jaboticaba'}, {'id': 13437, 'synset': 'jujube.n.02', 'name': 'jujube'}, {'id': 13438, 'synset': 'litchi.n.02', 'name': 'litchi'}, {'id': 13439, 'synset': 'longanberry.n.02', 'name': 'longanberry'}, {'id': 13440, 'synset': 'mamey.n.02', 'name': 'mamey'}, {'id': 13441, 'synset': 'marang.n.02', 'name': 'marang'}, {'id': 13442, 'synset': 'medlar.n.04', 'name': 'medlar'}, {'id': 13443, 'synset': 'medlar.n.03', 'name': 'medlar'}, {'id': 13444, 'synset': 'mulberry.n.02', 'name': 'mulberry'}, {'id': 13445, 'synset': 'olive.n.04', 'name': 'olive'}, {'id': 13446, 'synset': 'black_olive.n.01', 'name': 'black_olive'}, {'id': 13447, 'synset': 'green_olive.n.01', 'name': 'green_olive'}, {'id': 13448, 'synset': 'bosc.n.01', 'name': 'bosc'}, {'id': 13449, 'synset': 'anjou.n.02', 'name': 'anjou'}, {'id': 13450, 'synset': 'bartlett.n.03', 'name': 'bartlett'}, {'id': 13451, 'synset': 'seckel.n.01', 'name': 'seckel'}, {'id': 13452, 'synset': 'plantain.n.03', 'name': 'plantain'}, {'id': 13453, 'synset': 'plumcot.n.02', 'name': 'plumcot'}, {'id': 13454, 'synset': 'pomegranate.n.02', 'name': 'pomegranate'}, {'id': 13455, 'synset': 'prickly_pear.n.02', 'name': 'prickly_pear'}, {'id': 13456, 'synset': 'barbados_gooseberry.n.02', 'name': 'Barbados_gooseberry'}, {'id': 13457, 'synset': 'quandong.n.04', 'name': 'quandong'}, {'id': 13458, 'synset': 'quandong_nut.n.01', 'name': 'quandong_nut'}, {'id': 13459, 'synset': 'quince.n.02', 'name': 'quince'}, {'id': 13460, 'synset': 'rambutan.n.02', 'name': 'rambutan'}, {'id': 13461, 'synset': 'pulasan.n.02', 'name': 'pulasan'}, {'id': 13462, 'synset': 'rose_apple.n.02', 'name': 'rose_apple'}, {'id': 13463, 'synset': 'sorb.n.01', 'name': 'sorb'}, {'id': 13464, 'synset': 'sour_gourd.n.02', 'name': 'sour_gourd'}, {'id': 13465, 'synset': 'edible_seed.n.01', 'name': 'edible_seed'}, {'id': 13466, 'synset': 'pumpkin_seed.n.01', 'name': 'pumpkin_seed'}, {'id': 13467, 'synset': 'betel_nut.n.01', 'name': 'betel_nut'}, {'id': 13468, 'synset': 'beechnut.n.01', 'name': 'beechnut'}, {'id': 13469, 'synset': 'walnut.n.01', 'name': 'walnut'}, {'id': 13470, 'synset': 'black_walnut.n.02', 'name': 'black_walnut'}, {'id': 13471, 'synset': 'english_walnut.n.02', 'name': 'English_walnut'}, {'id': 13472, 'synset': 'brazil_nut.n.02', 'name': 'brazil_nut'}, {'id': 13473, 'synset': 'butternut.n.02', 'name': 'butternut'}, {'id': 13474, 'synset': 'souari_nut.n.02', 'name': 'souari_nut'}, {'id': 13475, 'synset': 'cashew.n.02', 'name': 'cashew'}, {'id': 13476, 'synset': 'chestnut.n.03', 'name': 'chestnut'}, {'id': 13477, 'synset': 'chincapin.n.01', 'name': 'chincapin'}, {'id': 13478, 'synset': 'hazelnut.n.02', 'name': 'hazelnut'}, {'id': 13479, 'synset': 'coconut_milk.n.02', 'name': 'coconut_milk'}, {'id': 13480, 'synset': 'grugru_nut.n.01', 'name': 'grugru_nut'}, {'id': 13481, 'synset': 'hickory_nut.n.01', 'name': 'hickory_nut'}, {'id': 13482, 'synset': 'cola_extract.n.01', 'name': 'cola_extract'}, {'id': 13483, 'synset': 'macadamia_nut.n.02', 'name': 'macadamia_nut'}, {'id': 13484, 'synset': 'pecan.n.03', 'name': 'pecan'}, {'id': 13485, 'synset': 'pine_nut.n.01', 'name': 'pine_nut'}, {'id': 13486, 'synset': 'pistachio.n.02', 'name': 'pistachio'}, {'id': 13487, 'synset': 'sunflower_seed.n.01', 'name': 'sunflower_seed'}, {'id': 13488, 'synset': 'anchovy_paste.n.01', 'name': 'anchovy_paste'}, {'id': 13489, 'synset': 'rollmops.n.01', 'name': 'rollmops'}, {'id': 13490, 'synset': 'feed.n.01', 'name': 'feed'}, {'id': 13491, 'synset': 'cattle_cake.n.01', 'name': 'cattle_cake'}, {'id': 13492, 'synset': 'creep_feed.n.01', 'name': 'creep_feed'}, {'id': 13493, 'synset': 'fodder.n.02', 'name': 'fodder'}, {'id': 13494, 'synset': 'feed_grain.n.01', 'name': 'feed_grain'}, {'id': 13495, 'synset': 'eatage.n.01', 'name': 'eatage'}, {'id': 13496, 'synset': 'silage.n.01', 'name': 'silage'}, {'id': 13497, 'synset': 'oil_cake.n.01', 'name': 'oil_cake'}, {'id': 13498, 'synset': 'oil_meal.n.01', 'name': 'oil_meal'}, {'id': 13499, 'synset': 'alfalfa.n.02', 'name': 'alfalfa'}, {'id': 13500, 'synset': 'broad_bean.n.03', 'name': 'broad_bean'}, {'id': 13501, 'synset': 'hay.n.01', 'name': 'hay'}, {'id': 13502, 'synset': 'timothy.n.03', 'name': 'timothy'}, {'id': 13503, 'synset': 'stover.n.01', 'name': 'stover'}, {'id': 13504, 'synset': 'grain.n.02', 'name': 'grain'}, {'id': 13505, 'synset': 'grist.n.01', 'name': 'grist'}, {'id': 13506, 'synset': 'groats.n.01', 'name': 'groats'}, {'id': 13507, 'synset': 'millet.n.03', 'name': 'millet'}, {'id': 13508, 'synset': 'barley.n.01', 'name': 'barley'}, {'id': 13509, 'synset': 'pearl_barley.n.01', 'name': 'pearl_barley'}, {'id': 13510, 'synset': 'buckwheat.n.02', 'name': 'buckwheat'}, {'id': 13511, 'synset': 'bulgur.n.01', 'name': 'bulgur'}, {'id': 13512, 'synset': 'wheat.n.02', 'name': 'wheat'}, {'id': 13513, 'synset': 'cracked_wheat.n.01', 'name': 'cracked_wheat'}, {'id': 13514, 'synset': 'stodge.n.01', 'name': 'stodge'}, {'id': 13515, 'synset': 'wheat_germ.n.01', 'name': 'wheat_germ'}, {'id': 13516, 'synset': 'oat.n.02', 'name': 'oat'}, {'id': 13517, 'synset': 'rice.n.01', 'name': 'rice'}, {'id': 13518, 'synset': 'brown_rice.n.01', 'name': 'brown_rice'}, {'id': 13519, 'synset': 'white_rice.n.01', 'name': 'white_rice'}, {'id': 13520, 'synset': 'wild_rice.n.02', 'name': 'wild_rice'}, {'id': 13521, 'synset': 'paddy.n.03', 'name': 'paddy'}, {'id': 13522, 'synset': 'slop.n.01', 'name': 'slop'}, {'id': 13523, 'synset': 'mash.n.02', 'name': 'mash'}, {'id': 13524, 'synset': 'chicken_feed.n.01', 'name': 'chicken_feed'}, {'id': 13525, 'synset': 'cud.n.01', 'name': 'cud'}, {'id': 13526, 'synset': 'bird_feed.n.01', 'name': 'bird_feed'}, {'id': 13527, 'synset': 'petfood.n.01', 'name': 'petfood'}, {'id': 13528, 'synset': 'dog_food.n.01', 'name': 'dog_food'}, {'id': 13529, 'synset': 'cat_food.n.01', 'name': 'cat_food'}, {'id': 13530, 'synset': 'canary_seed.n.01', 'name': 'canary_seed'}, {'id': 13531, 'synset': 'tossed_salad.n.01', 'name': 'tossed_salad'}, {'id': 13532, 'synset': 'green_salad.n.01', 'name': 'green_salad'}, {'id': 13533, 'synset': 'caesar_salad.n.01', 'name': 'Caesar_salad'}, {'id': 13534, 'synset': 'salmagundi.n.02', 'name': 'salmagundi'}, {'id': 13535, 'synset': 'salad_nicoise.n.01', 'name': 'salad_nicoise'}, {'id': 13536, 'synset': 'combination_salad.n.01', 'name': 'combination_salad'}, {'id': 13537, 'synset': "chef's_salad.n.01", 'name': "chef's_salad"}, {'id': 13538, 'synset': 'potato_salad.n.01', 'name': 'potato_salad'}, {'id': 13539, 'synset': 'pasta_salad.n.01', 'name': 'pasta_salad'}, {'id': 13540, 'synset': 'macaroni_salad.n.01', 'name': 'macaroni_salad'}, {'id': 13541, 'synset': 'fruit_salad.n.01', 'name': 'fruit_salad'}, {'id': 13542, 'synset': 'waldorf_salad.n.01', 'name': 'Waldorf_salad'}, {'id': 13543, 'synset': 'crab_louis.n.01', 'name': 'crab_Louis'}, {'id': 13544, 'synset': 'herring_salad.n.01', 'name': 'herring_salad'}, {'id': 13545, 'synset': 'tuna_fish_salad.n.01', 'name': 'tuna_fish_salad'}, {'id': 13546, 'synset': 'chicken_salad.n.01', 'name': 'chicken_salad'}, {'id': 13547, 'synset': 'aspic.n.01', 'name': 'aspic'}, {'id': 13548, 'synset': 'molded_salad.n.01', 'name': 'molded_salad'}, {'id': 13549, 'synset': 'tabbouleh.n.01', 'name': 'tabbouleh'}, {'id': 13550, 'synset': 'ingredient.n.03', 'name': 'ingredient'}, {'id': 13551, 'synset': 'flavorer.n.01', 'name': 'flavorer'}, {'id': 13552, 'synset': 'bouillon_cube.n.01', 'name': 'bouillon_cube'}, {'id': 13553, 'synset': 'herb.n.02', 'name': 'herb'}, {'id': 13554, 'synset': 'fines_herbes.n.01', 'name': 'fines_herbes'}, {'id': 13555, 'synset': 'spice.n.02', 'name': 'spice'}, {'id': 13556, 'synset': 'spearmint_oil.n.01', 'name': 'spearmint_oil'}, {'id': 13557, 'synset': 'lemon_oil.n.01', 'name': 'lemon_oil'}, {'id': 13558, 'synset': 'wintergreen_oil.n.01', 'name': 'wintergreen_oil'}, {'id': 13559, 'synset': 'salt.n.02', 'name': 'salt'}, {'id': 13560, 'synset': 'celery_salt.n.01', 'name': 'celery_salt'}, {'id': 13561, 'synset': 'onion_salt.n.01', 'name': 'onion_salt'}, {'id': 13562, 'synset': 'seasoned_salt.n.01', 'name': 'seasoned_salt'}, {'id': 13563, 'synset': 'sour_salt.n.01', 'name': 'sour_salt'}, {'id': 13564, 'synset': 'five_spice_powder.n.01', 'name': 'five_spice_powder'}, {'id': 13565, 'synset': 'allspice.n.03', 'name': 'allspice'}, {'id': 13566, 'synset': 'cinnamon.n.03', 'name': 'cinnamon'}, {'id': 13567, 'synset': 'stick_cinnamon.n.01', 'name': 'stick_cinnamon'}, {'id': 13568, 'synset': 'clove.n.04', 'name': 'clove'}, {'id': 13569, 'synset': 'cumin.n.02', 'name': 'cumin'}, {'id': 13570, 'synset': 'fennel.n.04', 'name': 'fennel'}, {'id': 13571, 'synset': 'ginger.n.02', 'name': 'ginger'}, {'id': 13572, 'synset': 'mace.n.03', 'name': 'mace'}, {'id': 13573, 'synset': 'nutmeg.n.02', 'name': 'nutmeg'}, {'id': 13574, 'synset': 'black_pepper.n.02', 'name': 'black_pepper'}, {'id': 13575, 'synset': 'white_pepper.n.02', 'name': 'white_pepper'}, {'id': 13576, 'synset': 'sassafras.n.02', 'name': 'sassafras'}, {'id': 13577, 'synset': 'basil.n.03', 'name': 'basil'}, {'id': 13578, 'synset': 'bay_leaf.n.01', 'name': 'bay_leaf'}, {'id': 13579, 'synset': 'borage.n.02', 'name': 'borage'}, {'id': 13580, 'synset': 'hyssop.n.02', 'name': 'hyssop'}, {'id': 13581, 'synset': 'caraway.n.02', 'name': 'caraway'}, {'id': 13582, 'synset': 'chervil.n.02', 'name': 'chervil'}, {'id': 13583, 'synset': 'chives.n.02', 'name': 'chives'}, {'id': 13584, 'synset': 'comfrey.n.02', 'name': 'comfrey'}, {'id': 13585, 'synset': 'coriander.n.03', 'name': 'coriander'}, {'id': 13586, 'synset': 'coriander.n.02', 'name': 'coriander'}, {'id': 13587, 'synset': 'costmary.n.02', 'name': 'costmary'}, {'id': 13588, 'synset': 'fennel.n.03', 'name': 'fennel'}, {'id': 13589, 'synset': 'fennel.n.02', 'name': 'fennel'}, {'id': 13590, 'synset': 'fennel_seed.n.01', 'name': 'fennel_seed'}, {'id': 13591, 'synset': 'fenugreek.n.02', 'name': 'fenugreek'}, {'id': 13592, 'synset': 'clove.n.03', 'name': 'clove'}, {'id': 13593, 'synset': 'garlic_chive.n.02', 'name': 'garlic_chive'}, {'id': 13594, 'synset': 'lemon_balm.n.02', 'name': 'lemon_balm'}, {'id': 13595, 'synset': 'lovage.n.02', 'name': 'lovage'}, {'id': 13596, 'synset': 'marjoram.n.02', 'name': 'marjoram'}, {'id': 13597, 'synset': 'mint.n.04', 'name': 'mint'}, {'id': 13598, 'synset': 'mustard_seed.n.01', 'name': 'mustard_seed'}, {'id': 13599, 'synset': 'mustard.n.02', 'name': 'mustard'}, {'id': 13600, 'synset': 'chinese_mustard.n.02', 'name': 'Chinese_mustard'}, {'id': 13601, 'synset': 'nasturtium.n.03', 'name': 'nasturtium'}, {'id': 13602, 'synset': 'parsley.n.02', 'name': 'parsley'}, {'id': 13603, 'synset': 'salad_burnet.n.02', 'name': 'salad_burnet'}, {'id': 13604, 'synset': 'rosemary.n.02', 'name': 'rosemary'}, {'id': 13605, 'synset': 'rue.n.02', 'name': 'rue'}, {'id': 13606, 'synset': 'sage.n.02', 'name': 'sage'}, {'id': 13607, 'synset': 'clary_sage.n.02', 'name': 'clary_sage'}, {'id': 13608, 'synset': 'savory.n.03', 'name': 'savory'}, {'id': 13609, 'synset': 'summer_savory.n.02', 'name': 'summer_savory'}, {'id': 13610, 'synset': 'winter_savory.n.02', 'name': 'winter_savory'}, {'id': 13611, 'synset': 'sweet_woodruff.n.02', 'name': 'sweet_woodruff'}, {'id': 13612, 'synset': 'sweet_cicely.n.03', 'name': 'sweet_cicely'}, {'id': 13613, 'synset': 'tarragon.n.02', 'name': 'tarragon'}, {'id': 13614, 'synset': 'thyme.n.02', 'name': 'thyme'}, {'id': 13615, 'synset': 'turmeric.n.02', 'name': 'turmeric'}, {'id': 13616, 'synset': 'caper.n.02', 'name': 'caper'}, {'id': 13617, 'synset': 'catsup.n.01', 'name': 'catsup'}, {'id': 13618, 'synset': 'cardamom.n.02', 'name': 'cardamom'}, {'id': 13619, 'synset': 'chili_powder.n.01', 'name': 'chili_powder'}, {'id': 13620, 'synset': 'chili_sauce.n.01', 'name': 'chili_sauce'}, {'id': 13621, 'synset': 'chutney.n.01', 'name': 'chutney'}, {'id': 13622, 'synset': 'steak_sauce.n.01', 'name': 'steak_sauce'}, {'id': 13623, 'synset': 'taco_sauce.n.01', 'name': 'taco_sauce'}, {'id': 13624, 'synset': 'mint_sauce.n.01', 'name': 'mint_sauce'}, {'id': 13625, 'synset': 'cranberry_sauce.n.01', 'name': 'cranberry_sauce'}, {'id': 13626, 'synset': 'curry_powder.n.01', 'name': 'curry_powder'}, {'id': 13627, 'synset': 'curry.n.01', 'name': 'curry'}, {'id': 13628, 'synset': 'lamb_curry.n.01', 'name': 'lamb_curry'}, {'id': 13629, 'synset': 'duck_sauce.n.01', 'name': 'duck_sauce'}, {'id': 13630, 'synset': 'horseradish.n.03', 'name': 'horseradish'}, {'id': 13631, 'synset': 'marinade.n.01', 'name': 'marinade'}, {'id': 13632, 'synset': 'paprika.n.02', 'name': 'paprika'}, {'id': 13633, 'synset': 'spanish_paprika.n.01', 'name': 'Spanish_paprika'}, {'id': 13634, 'synset': 'dill_pickle.n.01', 'name': 'dill_pickle'}, {'id': 13635, 'synset': 'bread_and_butter_pickle.n.01', 'name': 'bread_and_butter_pickle'}, {'id': 13636, 'synset': 'pickle_relish.n.01', 'name': 'pickle_relish'}, {'id': 13637, 'synset': 'piccalilli.n.01', 'name': 'piccalilli'}, {'id': 13638, 'synset': 'sweet_pickle.n.01', 'name': 'sweet_pickle'}, {'id': 13639, 'synset': 'soy_sauce.n.01', 'name': 'soy_sauce'}, {'id': 13640, 'synset': 'tomato_paste.n.01', 'name': 'tomato_paste'}, {'id': 13641, 'synset': 'angelica.n.03', 'name': 'angelica'}, {'id': 13642, 'synset': 'angelica.n.02', 'name': 'angelica'}, {'id': 13643, 'synset': 'almond_extract.n.01', 'name': 'almond_extract'}, {'id': 13644, 'synset': 'anise.n.02', 'name': 'anise'}, {'id': 13645, 'synset': 'chinese_anise.n.02', 'name': 'Chinese_anise'}, {'id': 13646, 'synset': 'juniper_berries.n.01', 'name': 'juniper_berries'}, {'id': 13647, 'synset': 'saffron.n.02', 'name': 'saffron'}, {'id': 13648, 'synset': 'sesame_seed.n.01', 'name': 'sesame_seed'}, {'id': 13649, 'synset': 'caraway_seed.n.01', 'name': 'caraway_seed'}, {'id': 13650, 'synset': 'poppy_seed.n.01', 'name': 'poppy_seed'}, {'id': 13651, 'synset': 'dill.n.02', 'name': 'dill'}, {'id': 13652, 'synset': 'dill_seed.n.01', 'name': 'dill_seed'}, {'id': 13653, 'synset': 'celery_seed.n.01', 'name': 'celery_seed'}, {'id': 13654, 'synset': 'lemon_extract.n.01', 'name': 'lemon_extract'}, {'id': 13655, 'synset': 'monosodium_glutamate.n.01', 'name': 'monosodium_glutamate'}, {'id': 13656, 'synset': 'vanilla_bean.n.01', 'name': 'vanilla_bean'}, {'id': 13657, 'synset': 'cider_vinegar.n.01', 'name': 'cider_vinegar'}, {'id': 13658, 'synset': 'wine_vinegar.n.01', 'name': 'wine_vinegar'}, {'id': 13659, 'synset': 'sauce.n.01', 'name': 'sauce'}, {'id': 13660, 'synset': 'anchovy_sauce.n.01', 'name': 'anchovy_sauce'}, {'id': 13661, 'synset': 'hard_sauce.n.01', 'name': 'hard_sauce'}, {'id': 13662, 'synset': 'horseradish_sauce.n.01', 'name': 'horseradish_sauce'}, {'id': 13663, 'synset': 'bolognese_pasta_sauce.n.01', 'name': 'bolognese_pasta_sauce'}, {'id': 13664, 'synset': 'carbonara.n.01', 'name': 'carbonara'}, {'id': 13665, 'synset': 'tomato_sauce.n.01', 'name': 'tomato_sauce'}, {'id': 13666, 'synset': 'tartare_sauce.n.01', 'name': 'tartare_sauce'}, {'id': 13667, 'synset': 'wine_sauce.n.01', 'name': 'wine_sauce'}, {'id': 13668, 'synset': 'marchand_de_vin.n.01', 'name': 'marchand_de_vin'}, {'id': 13669, 'synset': 'bread_sauce.n.01', 'name': 'bread_sauce'}, {'id': 13670, 'synset': 'plum_sauce.n.01', 'name': 'plum_sauce'}, {'id': 13671, 'synset': 'peach_sauce.n.01', 'name': 'peach_sauce'}, {'id': 13672, 'synset': 'apricot_sauce.n.01', 'name': 'apricot_sauce'}, {'id': 13673, 'synset': 'pesto.n.01', 'name': 'pesto'}, {'id': 13674, 'synset': 'ravigote.n.01', 'name': 'ravigote'}, {'id': 13675, 'synset': 'remoulade_sauce.n.01', 'name': 'remoulade_sauce'}, {'id': 13676, 'synset': 'dressing.n.01', 'name': 'dressing'}, {'id': 13677, 'synset': 'sauce_louis.n.01', 'name': 'sauce_Louis'}, {'id': 13678, 'synset': 'bleu_cheese_dressing.n.01', 'name': 'bleu_cheese_dressing'}, {'id': 13679, 'synset': 'blue_cheese_dressing.n.01', 'name': 'blue_cheese_dressing'}, {'id': 13680, 'synset': 'french_dressing.n.01', 'name': 'French_dressing'}, {'id': 13681, 'synset': 'lorenzo_dressing.n.01', 'name': 'Lorenzo_dressing'}, {'id': 13682, 'synset': 'anchovy_dressing.n.01', 'name': 'anchovy_dressing'}, {'id': 13683, 'synset': 'italian_dressing.n.01', 'name': 'Italian_dressing'}, {'id': 13684, 'synset': 'half-and-half_dressing.n.01', 'name': 'half-and-half_dressing'}, {'id': 13685, 'synset': 'mayonnaise.n.01', 'name': 'mayonnaise'}, {'id': 13686, 'synset': 'green_mayonnaise.n.01', 'name': 'green_mayonnaise'}, {'id': 13687, 'synset': 'aioli.n.01', 'name': 'aioli'}, {'id': 13688, 'synset': 'russian_dressing.n.01', 'name': 'Russian_dressing'}, {'id': 13689, 'synset': 'salad_cream.n.01', 'name': 'salad_cream'}, {'id': 13690, 'synset': 'thousand_island_dressing.n.01', 'name': 'Thousand_Island_dressing'}, {'id': 13691, 'synset': 'barbecue_sauce.n.01', 'name': 'barbecue_sauce'}, {'id': 13692, 'synset': 'hollandaise.n.01', 'name': 'hollandaise'}, {'id': 13693, 'synset': 'bearnaise.n.01', 'name': 'bearnaise'}, {'id': 13694, 'synset': 'bercy.n.01', 'name': 'Bercy'}, {'id': 13695, 'synset': 'bordelaise.n.01', 'name': 'bordelaise'}, {'id': 13696, 'synset': 'bourguignon.n.01', 'name': 'bourguignon'}, {'id': 13697, 'synset': 'brown_sauce.n.02', 'name': 'brown_sauce'}, {'id': 13698, 'synset': 'espagnole.n.01', 'name': 'Espagnole'}, {'id': 13699, 'synset': 'chinese_brown_sauce.n.01', 'name': 'Chinese_brown_sauce'}, {'id': 13700, 'synset': 'blanc.n.01', 'name': 'blanc'}, {'id': 13701, 'synset': 'cheese_sauce.n.01', 'name': 'cheese_sauce'}, {'id': 13702, 'synset': 'chocolate_sauce.n.01', 'name': 'chocolate_sauce'}, {'id': 13703, 'synset': 'hot-fudge_sauce.n.01', 'name': 'hot-fudge_sauce'}, {'id': 13704, 'synset': 'cocktail_sauce.n.01', 'name': 'cocktail_sauce'}, {'id': 13705, 'synset': 'colbert.n.01', 'name': 'Colbert'}, {'id': 13706, 'synset': 'white_sauce.n.01', 'name': 'white_sauce'}, {'id': 13707, 'synset': 'cream_sauce.n.01', 'name': 'cream_sauce'}, {'id': 13708, 'synset': 'mornay_sauce.n.01', 'name': 'Mornay_sauce'}, {'id': 13709, 'synset': 'demiglace.n.01', 'name': 'demiglace'}, {'id': 13710, 'synset': 'gravy.n.02', 'name': 'gravy'}, {'id': 13711, 'synset': 'gravy.n.01', 'name': 'gravy'}, {'id': 13712, 'synset': 'spaghetti_sauce.n.01', 'name': 'spaghetti_sauce'}, {'id': 13713, 'synset': 'marinara.n.01', 'name': 'marinara'}, {'id': 13714, 'synset': 'mole.n.03', 'name': 'mole'}, {'id': 13715, 'synset': "hunter's_sauce.n.01", 'name': "hunter's_sauce"}, {'id': 13716, 'synset': 'mushroom_sauce.n.01', 'name': 'mushroom_sauce'}, {'id': 13717, 'synset': 'mustard_sauce.n.01', 'name': 'mustard_sauce'}, {'id': 13718, 'synset': 'nantua.n.01', 'name': 'Nantua'}, {'id': 13719, 'synset': 'hungarian_sauce.n.01', 'name': 'Hungarian_sauce'}, {'id': 13720, 'synset': 'pepper_sauce.n.01', 'name': 'pepper_sauce'}, {'id': 13721, 'synset': 'roux.n.01', 'name': 'roux'}, {'id': 13722, 'synset': 'smitane.n.01', 'name': 'Smitane'}, {'id': 13723, 'synset': 'soubise.n.01', 'name': 'Soubise'}, {'id': 13724, 'synset': 'lyonnaise_sauce.n.01', 'name': 'Lyonnaise_sauce'}, {'id': 13725, 'synset': 'veloute.n.01', 'name': 'veloute'}, {'id': 13726, 'synset': 'allemande.n.01', 'name': 'allemande'}, {'id': 13727, 'synset': 'caper_sauce.n.01', 'name': 'caper_sauce'}, {'id': 13728, 'synset': 'poulette.n.01', 'name': 'poulette'}, {'id': 13729, 'synset': 'curry_sauce.n.01', 'name': 'curry_sauce'}, {'id': 13730, 'synset': 'worcester_sauce.n.01', 'name': 'Worcester_sauce'}, {'id': 13731, 'synset': 'coconut_milk.n.01', 'name': 'coconut_milk'}, {'id': 13732, 'synset': 'egg_white.n.01', 'name': 'egg_white'}, {'id': 13733, 'synset': 'hard-boiled_egg.n.01', 'name': 'hard-boiled_egg'}, {'id': 13734, 'synset': 'easter_egg.n.02', 'name': 'Easter_egg'}, {'id': 13735, 'synset': 'easter_egg.n.01', 'name': 'Easter_egg'}, {'id': 13736, 'synset': 'chocolate_egg.n.01', 'name': 'chocolate_egg'}, {'id': 13737, 'synset': 'candy_egg.n.01', 'name': 'candy_egg'}, {'id': 13738, 'synset': 'poached_egg.n.01', 'name': 'poached_egg'}, {'id': 13739, 'synset': 'scrambled_eggs.n.01', 'name': 'scrambled_eggs'}, {'id': 13740, 'synset': 'deviled_egg.n.01', 'name': 'deviled_egg'}, {'id': 13741, 'synset': 'shirred_egg.n.01', 'name': 'shirred_egg'}, {'id': 13742, 'synset': 'firm_omelet.n.01', 'name': 'firm_omelet'}, {'id': 13743, 'synset': 'french_omelet.n.01', 'name': 'French_omelet'}, {'id': 13744, 'synset': 'fluffy_omelet.n.01', 'name': 'fluffy_omelet'}, {'id': 13745, 'synset': 'western_omelet.n.01', 'name': 'western_omelet'}, {'id': 13746, 'synset': 'souffle.n.01', 'name': 'souffle'}, {'id': 13747, 'synset': 'fried_egg.n.01', 'name': 'fried_egg'}, {'id': 13748, 'synset': 'dairy_product.n.01', 'name': 'dairy_product'}, {'id': 13749, 'synset': 'milk.n.04', 'name': 'milk'}, {'id': 13750, 'synset': 'sour_milk.n.01', 'name': 'sour_milk'}, {'id': 13751, 'synset': 'formula.n.06', 'name': 'formula'}, {'id': 13752, 'synset': 'pasteurized_milk.n.01', 'name': 'pasteurized_milk'}, {'id': 13753, 'synset': "cows'_milk.n.01", 'name': "cows'_milk"}, {'id': 13754, 'synset': "yak's_milk.n.01", 'name': "yak's_milk"}, {'id': 13755, 'synset': "goats'_milk.n.01", 'name': "goats'_milk"}, {'id': 13756, 'synset': 'acidophilus_milk.n.01', 'name': 'acidophilus_milk'}, {'id': 13757, 'synset': 'raw_milk.n.01', 'name': 'raw_milk'}, {'id': 13758, 'synset': 'scalded_milk.n.01', 'name': 'scalded_milk'}, {'id': 13759, 'synset': 'homogenized_milk.n.01', 'name': 'homogenized_milk'}, {'id': 13760, 'synset': 'certified_milk.n.01', 'name': 'certified_milk'}, {'id': 13761, 'synset': 'powdered_milk.n.01', 'name': 'powdered_milk'}, {'id': 13762, 'synset': 'nonfat_dry_milk.n.01', 'name': 'nonfat_dry_milk'}, {'id': 13763, 'synset': 'evaporated_milk.n.01', 'name': 'evaporated_milk'}, {'id': 13764, 'synset': 'condensed_milk.n.01', 'name': 'condensed_milk'}, {'id': 13765, 'synset': 'skim_milk.n.01', 'name': 'skim_milk'}, {'id': 13766, 'synset': 'semi-skimmed_milk.n.01', 'name': 'semi-skimmed_milk'}, {'id': 13767, 'synset': 'whole_milk.n.01', 'name': 'whole_milk'}, {'id': 13768, 'synset': 'low-fat_milk.n.01', 'name': 'low-fat_milk'}, {'id': 13769, 'synset': 'buttermilk.n.01', 'name': 'buttermilk'}, {'id': 13770, 'synset': 'cream.n.02', 'name': 'cream'}, {'id': 13771, 'synset': 'clotted_cream.n.01', 'name': 'clotted_cream'}, {'id': 13772, 'synset': 'double_creme.n.01', 'name': 'double_creme'}, {'id': 13773, 'synset': 'half-and-half.n.01', 'name': 'half-and-half'}, {'id': 13774, 'synset': 'heavy_cream.n.01', 'name': 'heavy_cream'}, {'id': 13775, 'synset': 'light_cream.n.01', 'name': 'light_cream'}, {'id': 13776, 'synset': 'whipping_cream.n.01', 'name': 'whipping_cream'}, {'id': 13777, 'synset': 'clarified_butter.n.01', 'name': 'clarified_butter'}, {'id': 13778, 'synset': 'ghee.n.01', 'name': 'ghee'}, {'id': 13779, 'synset': 'brown_butter.n.01', 'name': 'brown_butter'}, {'id': 13780, 'synset': 'meuniere_butter.n.01', 'name': 'Meuniere_butter'}, {'id': 13781, 'synset': 'blueberry_yogurt.n.01', 'name': 'blueberry_yogurt'}, {'id': 13782, 'synset': 'raita.n.01', 'name': 'raita'}, {'id': 13783, 'synset': 'whey.n.02', 'name': 'whey'}, {'id': 13784, 'synset': 'curd.n.02', 'name': 'curd'}, {'id': 13785, 'synset': 'curd.n.01', 'name': 'curd'}, {'id': 13786, 'synset': 'clabber.n.01', 'name': 'clabber'}, {'id': 13787, 'synset': 'cheese.n.01', 'name': 'cheese'}, {'id': 13788, 'synset': 'paring.n.02', 'name': 'paring'}, {'id': 13789, 'synset': 'cream_cheese.n.01', 'name': 'cream_cheese'}, {'id': 13790, 'synset': 'double_cream.n.01', 'name': 'double_cream'}, {'id': 13791, 'synset': 'mascarpone.n.01', 'name': 'mascarpone'}, {'id': 13792, 'synset': 'triple_cream.n.01', 'name': 'triple_cream'}, {'id': 13793, 'synset': 'cottage_cheese.n.01', 'name': 'cottage_cheese'}, {'id': 13794, 'synset': 'process_cheese.n.01', 'name': 'process_cheese'}, {'id': 13795, 'synset': 'bleu.n.01', 'name': 'bleu'}, {'id': 13796, 'synset': 'stilton.n.01', 'name': 'Stilton'}, {'id': 13797, 'synset': 'roquefort.n.01', 'name': 'Roquefort'}, {'id': 13798, 'synset': 'gorgonzola.n.01', 'name': 'gorgonzola'}, {'id': 13799, 'synset': 'danish_blue.n.01', 'name': 'Danish_blue'}, {'id': 13800, 'synset': 'bavarian_blue.n.01', 'name': 'Bavarian_blue'}, {'id': 13801, 'synset': 'brie.n.01', 'name': 'Brie'}, {'id': 13802, 'synset': 'brick_cheese.n.01', 'name': 'brick_cheese'}, {'id': 13803, 'synset': 'camembert.n.01', 'name': 'Camembert'}, {'id': 13804, 'synset': 'cheddar.n.02', 'name': 'cheddar'}, {'id': 13805, 'synset': 'rat_cheese.n.01', 'name': 'rat_cheese'}, {'id': 13806, 'synset': 'cheshire_cheese.n.01', 'name': 'Cheshire_cheese'}, {'id': 13807, 'synset': 'double_gloucester.n.01', 'name': 'double_Gloucester'}, {'id': 13808, 'synset': 'edam.n.01', 'name': 'Edam'}, {'id': 13809, 'synset': 'goat_cheese.n.01', 'name': 'goat_cheese'}, {'id': 13810, 'synset': 'gouda.n.01', 'name': 'Gouda'}, {'id': 13811, 'synset': 'grated_cheese.n.01', 'name': 'grated_cheese'}, {'id': 13812, 'synset': 'hand_cheese.n.01', 'name': 'hand_cheese'}, {'id': 13813, 'synset': 'liederkranz.n.01', 'name': 'Liederkranz'}, {'id': 13814, 'synset': 'limburger.n.01', 'name': 'Limburger'}, {'id': 13815, 'synset': 'mozzarella.n.01', 'name': 'mozzarella'}, {'id': 13816, 'synset': 'muenster.n.01', 'name': 'Muenster'}, {'id': 13817, 'synset': 'parmesan.n.01', 'name': 'Parmesan'}, {'id': 13818, 'synset': 'quark_cheese.n.01', 'name': 'quark_cheese'}, {'id': 13819, 'synset': 'ricotta.n.01', 'name': 'ricotta'}, {'id': 13820, 'synset': 'swiss_cheese.n.01', 'name': 'Swiss_cheese'}, {'id': 13821, 'synset': 'emmenthal.n.01', 'name': 'Emmenthal'}, {'id': 13822, 'synset': 'gruyere.n.01', 'name': 'Gruyere'}, {'id': 13823, 'synset': 'sapsago.n.01', 'name': 'sapsago'}, {'id': 13824, 'synset': 'velveeta.n.01', 'name': 'Velveeta'}, {'id': 13825, 'synset': 'nut_butter.n.01', 'name': 'nut_butter'}, {'id': 13826, 'synset': 'marshmallow_fluff.n.01', 'name': 'marshmallow_fluff'}, {'id': 13827, 'synset': 'onion_butter.n.01', 'name': 'onion_butter'}, {'id': 13828, 'synset': 'pimento_butter.n.01', 'name': 'pimento_butter'}, {'id': 13829, 'synset': 'shrimp_butter.n.01', 'name': 'shrimp_butter'}, {'id': 13830, 'synset': 'lobster_butter.n.01', 'name': 'lobster_butter'}, {'id': 13831, 'synset': 'yak_butter.n.01', 'name': 'yak_butter'}, {'id': 13832, 'synset': 'spread.n.05', 'name': 'spread'}, {'id': 13833, 'synset': 'cheese_spread.n.01', 'name': 'cheese_spread'}, {'id': 13834, 'synset': 'anchovy_butter.n.01', 'name': 'anchovy_butter'}, {'id': 13835, 'synset': 'fishpaste.n.01', 'name': 'fishpaste'}, {'id': 13836, 'synset': 'garlic_butter.n.01', 'name': 'garlic_butter'}, {'id': 13837, 'synset': 'miso.n.01', 'name': 'miso'}, {'id': 13838, 'synset': 'wasabi.n.02', 'name': 'wasabi'}, {'id': 13839, 'synset': 'snail_butter.n.01', 'name': 'snail_butter'}, {'id': 13840, 'synset': 'pate.n.01', 'name': 'pate'}, {'id': 13841, 'synset': 'duck_pate.n.01', 'name': 'duck_pate'}, {'id': 13842, 'synset': 'foie_gras.n.01', 'name': 'foie_gras'}, {'id': 13843, 'synset': 'tapenade.n.01', 'name': 'tapenade'}, {'id': 13844, 'synset': 'tahini.n.01', 'name': 'tahini'}, {'id': 13845, 'synset': 'sweetening.n.01', 'name': 'sweetening'}, {'id': 13846, 'synset': 'aspartame.n.01', 'name': 'aspartame'}, {'id': 13847, 'synset': 'saccharin.n.01', 'name': 'saccharin'}, {'id': 13848, 'synset': 'sugar.n.01', 'name': 'sugar'}, {'id': 13849, 'synset': 'syrup.n.01', 'name': 'syrup'}, {'id': 13850, 'synset': 'sugar_syrup.n.01', 'name': 'sugar_syrup'}, {'id': 13851, 'synset': 'molasses.n.01', 'name': 'molasses'}, {'id': 13852, 'synset': 'sorghum.n.03', 'name': 'sorghum'}, {'id': 13853, 'synset': 'treacle.n.01', 'name': 'treacle'}, {'id': 13854, 'synset': 'grenadine.n.01', 'name': 'grenadine'}, {'id': 13855, 'synset': 'maple_syrup.n.01', 'name': 'maple_syrup'}, {'id': 13856, 'synset': 'corn_syrup.n.01', 'name': 'corn_syrup'}, {'id': 13857, 'synset': 'miraculous_food.n.01', 'name': 'miraculous_food'}, {'id': 13858, 'synset': 'dough.n.01', 'name': 'dough'}, {'id': 13859, 'synset': 'bread_dough.n.01', 'name': 'bread_dough'}, {'id': 13860, 'synset': 'pancake_batter.n.01', 'name': 'pancake_batter'}, {'id': 13861, 'synset': 'fritter_batter.n.01', 'name': 'fritter_batter'}, {'id': 13862, 'synset': 'coq_au_vin.n.01', 'name': 'coq_au_vin'}, {'id': 13863, 'synset': 'chicken_provencale.n.01', 'name': 'chicken_provencale'}, {'id': 13864, 'synset': 'chicken_and_rice.n.01', 'name': 'chicken_and_rice'}, {'id': 13865, 'synset': 'moo_goo_gai_pan.n.01', 'name': 'moo_goo_gai_pan'}, {'id': 13866, 'synset': 'arroz_con_pollo.n.01', 'name': 'arroz_con_pollo'}, {'id': 13867, 'synset': 'bacon_and_eggs.n.02', 'name': 'bacon_and_eggs'}, {'id': 13868, 'synset': 'barbecued_spareribs.n.01', 'name': 'barbecued_spareribs'}, {'id': 13869, 'synset': 'beef_bourguignonne.n.01', 'name': 'beef_Bourguignonne'}, {'id': 13870, 'synset': 'beef_wellington.n.01', 'name': 'beef_Wellington'}, {'id': 13871, 'synset': 'bitok.n.01', 'name': 'bitok'}, {'id': 13872, 'synset': 'boiled_dinner.n.01', 'name': 'boiled_dinner'}, {'id': 13873, 'synset': 'boston_baked_beans.n.01', 'name': 'Boston_baked_beans'}, {'id': 13874, 'synset': 'bubble_and_squeak.n.01', 'name': 'bubble_and_squeak'}, {'id': 13875, 'synset': 'pasta.n.01', 'name': 'pasta'}, {'id': 13876, 'synset': 'cannelloni.n.01', 'name': 'cannelloni'}, {'id': 13877, 'synset': 'carbonnade_flamande.n.01', 'name': 'carbonnade_flamande'}, {'id': 13878, 'synset': 'cheese_souffle.n.01', 'name': 'cheese_souffle'}, {'id': 13879, 'synset': 'chicken_marengo.n.01', 'name': 'chicken_Marengo'}, {'id': 13880, 'synset': 'chicken_cordon_bleu.n.01', 'name': 'chicken_cordon_bleu'}, {'id': 13881, 'synset': 'maryland_chicken.n.01', 'name': 'Maryland_chicken'}, {'id': 13882, 'synset': 'chicken_paprika.n.01', 'name': 'chicken_paprika'}, {'id': 13883, 'synset': 'chicken_tetrazzini.n.01', 'name': 'chicken_Tetrazzini'}, {'id': 13884, 'synset': 'tetrazzini.n.01', 'name': 'Tetrazzini'}, {'id': 13885, 'synset': 'chicken_kiev.n.01', 'name': 'chicken_Kiev'}, {'id': 13886, 'synset': 'chili.n.01', 'name': 'chili'}, {'id': 13887, 'synset': 'chili_dog.n.01', 'name': 'chili_dog'}, {'id': 13888, 'synset': 'chop_suey.n.01', 'name': 'chop_suey'}, {'id': 13889, 'synset': 'chow_mein.n.01', 'name': 'chow_mein'}, {'id': 13890, 'synset': 'codfish_ball.n.01', 'name': 'codfish_ball'}, {'id': 13891, 'synset': 'coquille.n.01', 'name': 'coquille'}, {'id': 13892, 'synset': 'coquilles_saint-jacques.n.01', 'name': 'coquilles_Saint-Jacques'}, {'id': 13893, 'synset': 'croquette.n.01', 'name': 'croquette'}, {'id': 13894, 'synset': 'cottage_pie.n.01', 'name': 'cottage_pie'}, {'id': 13895, 'synset': 'rissole.n.01', 'name': 'rissole'}, {'id': 13896, 'synset': 'dolmas.n.01', 'name': 'dolmas'}, {'id': 13897, 'synset': 'egg_foo_yong.n.01', 'name': 'egg_foo_yong'}, {'id': 13898, 'synset': 'eggs_benedict.n.01', 'name': 'eggs_Benedict'}, {'id': 13899, 'synset': 'enchilada.n.01', 'name': 'enchilada'}, {'id': 13900, 'synset': 'falafel.n.01', 'name': 'falafel'}, {'id': 13901, 'synset': 'fish_and_chips.n.01', 'name': 'fish_and_chips'}, {'id': 13902, 'synset': 'fondue.n.02', 'name': 'fondue'}, {'id': 13903, 'synset': 'cheese_fondue.n.01', 'name': 'cheese_fondue'}, {'id': 13904, 'synset': 'chocolate_fondue.n.01', 'name': 'chocolate_fondue'}, {'id': 13905, 'synset': 'fondue.n.01', 'name': 'fondue'}, {'id': 13906, 'synset': 'beef_fondue.n.01', 'name': 'beef_fondue'}, {'id': 13907, 'synset': 'fried_rice.n.01', 'name': 'fried_rice'}, {'id': 13908, 'synset': 'frittata.n.01', 'name': 'frittata'}, {'id': 13909, 'synset': 'frog_legs.n.01', 'name': 'frog_legs'}, {'id': 13910, 'synset': 'galantine.n.01', 'name': 'galantine'}, {'id': 13911, 'synset': 'gefilte_fish.n.01', 'name': 'gefilte_fish'}, {'id': 13912, 'synset': 'haggis.n.01', 'name': 'haggis'}, {'id': 13913, 'synset': 'ham_and_eggs.n.01', 'name': 'ham_and_eggs'}, {'id': 13914, 'synset': 'hash.n.01', 'name': 'hash'}, {'id': 13915, 'synset': 'corned_beef_hash.n.01', 'name': 'corned_beef_hash'}, {'id': 13916, 'synset': 'jambalaya.n.01', 'name': 'jambalaya'}, {'id': 13917, 'synset': 'kabob.n.01', 'name': 'kabob'}, {'id': 13918, 'synset': 'kedgeree.n.01', 'name': 'kedgeree'}, {'id': 13919, 'synset': 'souvlaki.n.01', 'name': 'souvlaki'}, {'id': 13920, 'synset': 'seafood_newburg.n.01', 'name': 'seafood_Newburg'}, {'id': 13921, 'synset': 'lobster_newburg.n.01', 'name': 'lobster_Newburg'}, {'id': 13922, 'synset': 'shrimp_newburg.n.01', 'name': 'shrimp_Newburg'}, {'id': 13923, 'synset': 'newburg_sauce.n.01', 'name': 'Newburg_sauce'}, {'id': 13924, 'synset': 'lobster_thermidor.n.01', 'name': 'lobster_thermidor'}, {'id': 13925, 'synset': 'lutefisk.n.01', 'name': 'lutefisk'}, {'id': 13926, 'synset': 'macaroni_and_cheese.n.01', 'name': 'macaroni_and_cheese'}, {'id': 13927, 'synset': 'macedoine.n.01', 'name': 'macedoine'}, {'id': 13928, 'synset': 'porcupine_ball.n.01', 'name': 'porcupine_ball'}, {'id': 13929, 'synset': 'swedish_meatball.n.01', 'name': 'Swedish_meatball'}, {'id': 13930, 'synset': 'meat_loaf.n.01', 'name': 'meat_loaf'}, {'id': 13931, 'synset': 'moussaka.n.01', 'name': 'moussaka'}, {'id': 13932, 'synset': 'osso_buco.n.01', 'name': 'osso_buco'}, {'id': 13933, 'synset': 'marrow.n.03', 'name': 'marrow'}, {'id': 13934, 'synset': 'pheasant_under_glass.n.01', 'name': 'pheasant_under_glass'}, {'id': 13935, 'synset': 'pigs_in_blankets.n.01', 'name': 'pigs_in_blankets'}, {'id': 13936, 'synset': 'pilaf.n.01', 'name': 'pilaf'}, {'id': 13937, 'synset': 'bulgur_pilaf.n.01', 'name': 'bulgur_pilaf'}, {'id': 13938, 'synset': 'sausage_pizza.n.01', 'name': 'sausage_pizza'}, {'id': 13939, 'synset': 'pepperoni_pizza.n.01', 'name': 'pepperoni_pizza'}, {'id': 13940, 'synset': 'cheese_pizza.n.01', 'name': 'cheese_pizza'}, {'id': 13941, 'synset': 'anchovy_pizza.n.01', 'name': 'anchovy_pizza'}, {'id': 13942, 'synset': 'sicilian_pizza.n.01', 'name': 'Sicilian_pizza'}, {'id': 13943, 'synset': 'poi.n.01', 'name': 'poi'}, {'id': 13944, 'synset': 'pork_and_beans.n.01', 'name': 'pork_and_beans'}, {'id': 13945, 'synset': 'porridge.n.01', 'name': 'porridge'}, {'id': 13946, 'synset': 'oatmeal.n.01', 'name': 'oatmeal'}, {'id': 13947, 'synset': 'loblolly.n.01', 'name': 'loblolly'}, {'id': 13948, 'synset': 'potpie.n.01', 'name': 'potpie'}, {'id': 13949, 'synset': 'rijsttaffel.n.01', 'name': 'rijsttaffel'}, {'id': 13950, 'synset': 'risotto.n.01', 'name': 'risotto'}, {'id': 13951, 'synset': 'roulade.n.01', 'name': 'roulade'}, {'id': 13952, 'synset': 'fish_loaf.n.01', 'name': 'fish_loaf'}, {'id': 13953, 'synset': 'salmon_loaf.n.01', 'name': 'salmon_loaf'}, {'id': 13954, 'synset': 'salisbury_steak.n.01', 'name': 'Salisbury_steak'}, {'id': 13955, 'synset': 'sauerbraten.n.01', 'name': 'sauerbraten'}, {'id': 13956, 'synset': 'sauerkraut.n.01', 'name': 'sauerkraut'}, {'id': 13957, 'synset': 'scallopine.n.01', 'name': 'scallopine'}, {'id': 13958, 'synset': 'veal_scallopini.n.01', 'name': 'veal_scallopini'}, {'id': 13959, 'synset': 'scampi.n.01', 'name': 'scampi'}, {'id': 13960, 'synset': 'scotch_egg.n.01', 'name': 'Scotch_egg'}, {'id': 13961, 'synset': 'scotch_woodcock.n.01', 'name': 'Scotch_woodcock'}, {'id': 13962, 'synset': 'scrapple.n.01', 'name': 'scrapple'}, {'id': 13963, 'synset': 'spaghetti_and_meatballs.n.01', 'name': 'spaghetti_and_meatballs'}, {'id': 13964, 'synset': 'spanish_rice.n.01', 'name': 'Spanish_rice'}, {'id': 13965, 'synset': 'steak_tartare.n.01', 'name': 'steak_tartare'}, {'id': 13966, 'synset': 'pepper_steak.n.02', 'name': 'pepper_steak'}, {'id': 13967, 'synset': 'steak_au_poivre.n.01', 'name': 'steak_au_poivre'}, {'id': 13968, 'synset': 'beef_stroganoff.n.01', 'name': 'beef_Stroganoff'}, {'id': 13969, 'synset': 'stuffed_cabbage.n.01', 'name': 'stuffed_cabbage'}, {'id': 13970, 'synset': 'kishke.n.01', 'name': 'kishke'}, {'id': 13971, 'synset': 'stuffed_peppers.n.01', 'name': 'stuffed_peppers'}, {'id': 13972, 'synset': 'stuffed_tomato.n.02', 'name': 'stuffed_tomato'}, {'id': 13973, 'synset': 'stuffed_tomato.n.01', 'name': 'stuffed_tomato'}, {'id': 13974, 'synset': 'succotash.n.01', 'name': 'succotash'}, {'id': 13975, 'synset': 'sukiyaki.n.01', 'name': 'sukiyaki'}, {'id': 13976, 'synset': 'sashimi.n.01', 'name': 'sashimi'}, {'id': 13977, 'synset': 'swiss_steak.n.01', 'name': 'Swiss_steak'}, {'id': 13978, 'synset': 'tamale.n.02', 'name': 'tamale'}, {'id': 13979, 'synset': 'tamale_pie.n.01', 'name': 'tamale_pie'}, {'id': 13980, 'synset': 'tempura.n.01', 'name': 'tempura'}, {'id': 13981, 'synset': 'teriyaki.n.01', 'name': 'teriyaki'}, {'id': 13982, 'synset': 'terrine.n.01', 'name': 'terrine'}, {'id': 13983, 'synset': 'welsh_rarebit.n.01', 'name': 'Welsh_rarebit'}, {'id': 13984, 'synset': 'schnitzel.n.01', 'name': 'schnitzel'}, {'id': 13985, 'synset': 'chicken_taco.n.01', 'name': 'chicken_taco'}, {'id': 13986, 'synset': 'beef_burrito.n.01', 'name': 'beef_burrito'}, {'id': 13987, 'synset': 'tostada.n.01', 'name': 'tostada'}, {'id': 13988, 'synset': 'bean_tostada.n.01', 'name': 'bean_tostada'}, {'id': 13989, 'synset': 'refried_beans.n.01', 'name': 'refried_beans'}, {'id': 13990, 'synset': 'beverage.n.01', 'name': 'beverage'}, {'id': 13991, 'synset': 'wish-wash.n.01', 'name': 'wish-wash'}, {'id': 13992, 'synset': 'concoction.n.01', 'name': 'concoction'}, {'id': 13993, 'synset': 'mix.n.01', 'name': 'mix'}, {'id': 13994, 'synset': 'filling.n.03', 'name': 'filling'}, {'id': 13995, 'synset': 'lekvar.n.01', 'name': 'lekvar'}, {'id': 13996, 'synset': 'potion.n.01', 'name': 'potion'}, {'id': 13997, 'synset': 'elixir.n.03', 'name': 'elixir'}, {'id': 13998, 'synset': 'elixir_of_life.n.01', 'name': 'elixir_of_life'}, {'id': 13999, 'synset': 'philter.n.01', 'name': 'philter'}, {'id': 14000, 'synset': 'proof_spirit.n.01', 'name': 'proof_spirit'}, {'id': 14001, 'synset': 'home_brew.n.01', 'name': 'home_brew'}, {'id': 14002, 'synset': 'hooch.n.01', 'name': 'hooch'}, {'id': 14003, 'synset': 'kava.n.01', 'name': 'kava'}, {'id': 14004, 'synset': 'aperitif.n.01', 'name': 'aperitif'}, {'id': 14005, 'synset': 'brew.n.01', 'name': 'brew'}, {'id': 14006, 'synset': 'beer.n.01', 'name': 'beer'}, {'id': 14007, 'synset': 'draft_beer.n.01', 'name': 'draft_beer'}, {'id': 14008, 'synset': 'suds.n.02', 'name': 'suds'}, {'id': 14009, 'synset': 'munich_beer.n.01', 'name': 'Munich_beer'}, {'id': 14010, 'synset': 'bock.n.01', 'name': 'bock'}, {'id': 14011, 'synset': 'lager.n.02', 'name': 'lager'}, {'id': 14012, 'synset': 'light_beer.n.01', 'name': 'light_beer'}, {'id': 14013, 'synset': 'oktoberfest.n.01', 'name': 'Oktoberfest'}, {'id': 14014, 'synset': 'pilsner.n.01', 'name': 'Pilsner'}, {'id': 14015, 'synset': 'shebeen.n.01', 'name': 'shebeen'}, {'id': 14016, 'synset': 'weissbier.n.01', 'name': 'Weissbier'}, {'id': 14017, 'synset': 'weizenbock.n.01', 'name': 'Weizenbock'}, {'id': 14018, 'synset': 'malt.n.03', 'name': 'malt'}, {'id': 14019, 'synset': 'wort.n.02', 'name': 'wort'}, {'id': 14020, 'synset': 'malt.n.02', 'name': 'malt'}, {'id': 14021, 'synset': 'ale.n.01', 'name': 'ale'}, {'id': 14022, 'synset': 'bitter.n.01', 'name': 'bitter'}, {'id': 14023, 'synset': 'burton.n.03', 'name': 'Burton'}, {'id': 14024, 'synset': 'pale_ale.n.01', 'name': 'pale_ale'}, {'id': 14025, 'synset': 'porter.n.07', 'name': 'porter'}, {'id': 14026, 'synset': 'stout.n.01', 'name': 'stout'}, {'id': 14027, 'synset': 'guinness.n.02', 'name': 'Guinness'}, {'id': 14028, 'synset': 'kvass.n.01', 'name': 'kvass'}, {'id': 14029, 'synset': 'mead.n.03', 'name': 'mead'}, {'id': 14030, 'synset': 'metheglin.n.01', 'name': 'metheglin'}, {'id': 14031, 'synset': 'hydromel.n.01', 'name': 'hydromel'}, {'id': 14032, 'synset': 'oenomel.n.01', 'name': 'oenomel'}, {'id': 14033, 'synset': 'near_beer.n.01', 'name': 'near_beer'}, {'id': 14034, 'synset': 'ginger_beer.n.01', 'name': 'ginger_beer'}, {'id': 14035, 'synset': 'sake.n.02', 'name': 'sake'}, {'id': 14036, 'synset': 'wine.n.01', 'name': 'wine'}, {'id': 14037, 'synset': 'vintage.n.01', 'name': 'vintage'}, {'id': 14038, 'synset': 'red_wine.n.01', 'name': 'red_wine'}, {'id': 14039, 'synset': 'white_wine.n.01', 'name': 'white_wine'}, {'id': 14040, 'synset': 'blush_wine.n.01', 'name': 'blush_wine'}, {'id': 14041, 'synset': 'altar_wine.n.01', 'name': 'altar_wine'}, {'id': 14042, 'synset': 'sparkling_wine.n.01', 'name': 'sparkling_wine'}, {'id': 14043, 'synset': 'champagne.n.01', 'name': 'champagne'}, {'id': 14044, 'synset': 'cold_duck.n.01', 'name': 'cold_duck'}, {'id': 14045, 'synset': 'burgundy.n.02', 'name': 'Burgundy'}, {'id': 14046, 'synset': 'beaujolais.n.01', 'name': 'Beaujolais'}, {'id': 14047, 'synset': 'medoc.n.01', 'name': 'Medoc'}, {'id': 14048, 'synset': 'canary_wine.n.01', 'name': 'Canary_wine'}, {'id': 14049, 'synset': 'chablis.n.02', 'name': 'Chablis'}, {'id': 14050, 'synset': 'montrachet.n.01', 'name': 'Montrachet'}, {'id': 14051, 'synset': 'chardonnay.n.02', 'name': 'Chardonnay'}, {'id': 14052, 'synset': 'pinot_noir.n.02', 'name': 'Pinot_noir'}, {'id': 14053, 'synset': 'pinot_blanc.n.02', 'name': 'Pinot_blanc'}, {'id': 14054, 'synset': 'bordeaux.n.02', 'name': 'Bordeaux'}, {'id': 14055, 'synset': 'claret.n.02', 'name': 'claret'}, {'id': 14056, 'synset': 'chianti.n.01', 'name': 'Chianti'}, {'id': 14057, 'synset': 'cabernet.n.01', 'name': 'Cabernet'}, {'id': 14058, 'synset': 'merlot.n.02', 'name': 'Merlot'}, {'id': 14059, 'synset': 'sauvignon_blanc.n.02', 'name': 'Sauvignon_blanc'}, {'id': 14060, 'synset': 'california_wine.n.01', 'name': 'California_wine'}, {'id': 14061, 'synset': 'cotes_de_provence.n.01', 'name': 'Cotes_de_Provence'}, {'id': 14062, 'synset': 'dessert_wine.n.01', 'name': 'dessert_wine'}, {'id': 14063, 'synset': 'dubonnet.n.01', 'name': 'Dubonnet'}, {'id': 14064, 'synset': 'jug_wine.n.01', 'name': 'jug_wine'}, {'id': 14065, 'synset': 'macon.n.02', 'name': 'macon'}, {'id': 14066, 'synset': 'moselle.n.01', 'name': 'Moselle'}, {'id': 14067, 'synset': 'muscadet.n.02', 'name': 'Muscadet'}, {'id': 14068, 'synset': 'plonk.n.01', 'name': 'plonk'}, {'id': 14069, 'synset': 'retsina.n.01', 'name': 'retsina'}, {'id': 14070, 'synset': 'rhine_wine.n.01', 'name': 'Rhine_wine'}, {'id': 14071, 'synset': 'riesling.n.02', 'name': 'Riesling'}, {'id': 14072, 'synset': 'liebfraumilch.n.01', 'name': 'liebfraumilch'}, {'id': 14073, 'synset': 'rhone_wine.n.01', 'name': 'Rhone_wine'}, {'id': 14074, 'synset': 'rioja.n.01', 'name': 'Rioja'}, {'id': 14075, 'synset': 'sack.n.04', 'name': 'sack'}, {'id': 14076, 'synset': 'saint_emilion.n.01', 'name': 'Saint_Emilion'}, {'id': 14077, 'synset': 'soave.n.01', 'name': 'Soave'}, {'id': 14078, 'synset': 'zinfandel.n.02', 'name': 'zinfandel'}, {'id': 14079, 'synset': 'sauterne.n.01', 'name': 'Sauterne'}, {'id': 14080, 'synset': 'straw_wine.n.01', 'name': 'straw_wine'}, {'id': 14081, 'synset': 'table_wine.n.01', 'name': 'table_wine'}, {'id': 14082, 'synset': 'tokay.n.01', 'name': 'Tokay'}, {'id': 14083, 'synset': 'vin_ordinaire.n.01', 'name': 'vin_ordinaire'}, {'id': 14084, 'synset': 'vermouth.n.01', 'name': 'vermouth'}, {'id': 14085, 'synset': 'sweet_vermouth.n.01', 'name': 'sweet_vermouth'}, {'id': 14086, 'synset': 'dry_vermouth.n.01', 'name': 'dry_vermouth'}, {'id': 14087, 'synset': 'chenin_blanc.n.02', 'name': 'Chenin_blanc'}, {'id': 14088, 'synset': 'verdicchio.n.02', 'name': 'Verdicchio'}, {'id': 14089, 'synset': 'vouvray.n.01', 'name': 'Vouvray'}, {'id': 14090, 'synset': 'yquem.n.01', 'name': 'Yquem'}, {'id': 14091, 'synset': 'generic.n.01', 'name': 'generic'}, {'id': 14092, 'synset': 'varietal.n.01', 'name': 'varietal'}, {'id': 14093, 'synset': 'fortified_wine.n.01', 'name': 'fortified_wine'}, {'id': 14094, 'synset': 'madeira.n.03', 'name': 'Madeira'}, {'id': 14095, 'synset': 'malmsey.n.01', 'name': 'malmsey'}, {'id': 14096, 'synset': 'port.n.02', 'name': 'port'}, {'id': 14097, 'synset': 'sherry.n.01', 'name': 'sherry'}, {'id': 14098, 'synset': 'marsala.n.01', 'name': 'Marsala'}, {'id': 14099, 'synset': 'muscat.n.03', 'name': 'muscat'}, {'id': 14100, 'synset': 'neutral_spirits.n.01', 'name': 'neutral_spirits'}, {'id': 14101, 'synset': 'aqua_vitae.n.01', 'name': 'aqua_vitae'}, {'id': 14102, 'synset': 'eau_de_vie.n.01', 'name': 'eau_de_vie'}, {'id': 14103, 'synset': 'moonshine.n.02', 'name': 'moonshine'}, {'id': 14104, 'synset': 'bathtub_gin.n.01', 'name': 'bathtub_gin'}, {'id': 14105, 'synset': 'aquavit.n.01', 'name': 'aquavit'}, {'id': 14106, 'synset': 'arrack.n.01', 'name': 'arrack'}, {'id': 14107, 'synset': 'bitters.n.01', 'name': 'bitters'}, {'id': 14108, 'synset': 'brandy.n.01', 'name': 'brandy'}, {'id': 14109, 'synset': 'applejack.n.01', 'name': 'applejack'}, {'id': 14110, 'synset': 'calvados.n.01', 'name': 'Calvados'}, {'id': 14111, 'synset': 'armagnac.n.01', 'name': 'Armagnac'}, {'id': 14112, 'synset': 'cognac.n.01', 'name': 'Cognac'}, {'id': 14113, 'synset': 'grappa.n.01', 'name': 'grappa'}, {'id': 14114, 'synset': 'kirsch.n.01', 'name': 'kirsch'}, {'id': 14115, 'synset': 'slivovitz.n.01', 'name': 'slivovitz'}, {'id': 14116, 'synset': 'gin.n.01', 'name': 'gin'}, {'id': 14117, 'synset': 'sloe_gin.n.01', 'name': 'sloe_gin'}, {'id': 14118, 'synset': 'geneva.n.02', 'name': 'geneva'}, {'id': 14119, 'synset': 'grog.n.01', 'name': 'grog'}, {'id': 14120, 'synset': 'ouzo.n.01', 'name': 'ouzo'}, {'id': 14121, 'synset': 'rum.n.01', 'name': 'rum'}, {'id': 14122, 'synset': 'demerara.n.04', 'name': 'demerara'}, {'id': 14123, 'synset': 'jamaica_rum.n.01', 'name': 'Jamaica_rum'}, {'id': 14124, 'synset': 'schnapps.n.01', 'name': 'schnapps'}, {'id': 14125, 'synset': 'pulque.n.01', 'name': 'pulque'}, {'id': 14126, 'synset': 'mescal.n.02', 'name': 'mescal'}, {'id': 14127, 'synset': 'whiskey.n.01', 'name': 'whiskey'}, {'id': 14128, 'synset': 'blended_whiskey.n.01', 'name': 'blended_whiskey'}, {'id': 14129, 'synset': 'bourbon.n.02', 'name': 'bourbon'}, {'id': 14130, 'synset': 'corn_whiskey.n.01', 'name': 'corn_whiskey'}, {'id': 14131, 'synset': 'firewater.n.01', 'name': 'firewater'}, {'id': 14132, 'synset': 'irish.n.02', 'name': 'Irish'}, {'id': 14133, 'synset': 'poteen.n.01', 'name': 'poteen'}, {'id': 14134, 'synset': 'rye.n.03', 'name': 'rye'}, {'id': 14135, 'synset': 'scotch.n.02', 'name': 'Scotch'}, {'id': 14136, 'synset': 'sour_mash.n.02', 'name': 'sour_mash'}, {'id': 14137, 'synset': 'liqueur.n.01', 'name': 'liqueur'}, {'id': 14138, 'synset': 'absinth.n.01', 'name': 'absinth'}, {'id': 14139, 'synset': 'amaretto.n.01', 'name': 'amaretto'}, {'id': 14140, 'synset': 'anisette.n.01', 'name': 'anisette'}, {'id': 14141, 'synset': 'benedictine.n.02', 'name': 'benedictine'}, {'id': 14142, 'synset': 'chartreuse.n.01', 'name': 'Chartreuse'}, {'id': 14143, 'synset': 'coffee_liqueur.n.01', 'name': 'coffee_liqueur'}, {'id': 14144, 'synset': 'creme_de_cacao.n.01', 'name': 'creme_de_cacao'}, {'id': 14145, 'synset': 'creme_de_menthe.n.01', 'name': 'creme_de_menthe'}, {'id': 14146, 'synset': 'creme_de_fraise.n.01', 'name': 'creme_de_fraise'}, {'id': 14147, 'synset': 'drambuie.n.01', 'name': 'Drambuie'}, {'id': 14148, 'synset': 'galliano.n.01', 'name': 'Galliano'}, {'id': 14149, 'synset': 'orange_liqueur.n.01', 'name': 'orange_liqueur'}, {'id': 14150, 'synset': 'curacao.n.02', 'name': 'curacao'}, {'id': 14151, 'synset': 'triple_sec.n.01', 'name': 'triple_sec'}, {'id': 14152, 'synset': 'grand_marnier.n.01', 'name': 'Grand_Marnier'}, {'id': 14153, 'synset': 'kummel.n.01', 'name': 'kummel'}, {'id': 14154, 'synset': 'maraschino.n.01', 'name': 'maraschino'}, {'id': 14155, 'synset': 'pastis.n.01', 'name': 'pastis'}, {'id': 14156, 'synset': 'pernod.n.01', 'name': 'Pernod'}, {'id': 14157, 'synset': 'pousse-cafe.n.01', 'name': 'pousse-cafe'}, {'id': 14158, 'synset': 'kahlua.n.01', 'name': 'Kahlua'}, {'id': 14159, 'synset': 'ratafia.n.01', 'name': 'ratafia'}, {'id': 14160, 'synset': 'sambuca.n.01', 'name': 'sambuca'}, {'id': 14161, 'synset': 'mixed_drink.n.01', 'name': 'mixed_drink'}, {'id': 14162, 'synset': 'cocktail.n.01', 'name': 'cocktail'}, {'id': 14163, 'synset': 'dom_pedro.n.01', 'name': 'Dom_Pedro'}, {'id': 14164, 'synset': 'highball.n.01', 'name': 'highball'}, {'id': 14165, 'synset': 'mixer.n.02', 'name': 'mixer'}, {'id': 14166, 'synset': 'bishop.n.02', 'name': 'bishop'}, {'id': 14167, 'synset': 'bloody_mary.n.02', 'name': 'Bloody_Mary'}, {'id': 14168, 'synset': 'virgin_mary.n.02', 'name': 'Virgin_Mary'}, {'id': 14169, 'synset': 'bullshot.n.01', 'name': 'bullshot'}, {'id': 14170, 'synset': 'cobbler.n.02', 'name': 'cobbler'}, {'id': 14171, 'synset': 'collins.n.02', 'name': 'collins'}, {'id': 14172, 'synset': 'cooler.n.02', 'name': 'cooler'}, {'id': 14173, 'synset': 'refresher.n.02', 'name': 'refresher'}, {'id': 14174, 'synset': 'daiquiri.n.01', 'name': 'daiquiri'}, {'id': 14175, 'synset': 'strawberry_daiquiri.n.01', 'name': 'strawberry_daiquiri'}, {'id': 14176, 'synset': 'nada_daiquiri.n.01', 'name': 'NADA_daiquiri'}, {'id': 14177, 'synset': 'spritzer.n.01', 'name': 'spritzer'}, {'id': 14178, 'synset': 'flip.n.02', 'name': 'flip'}, {'id': 14179, 'synset': 'gimlet.n.01', 'name': 'gimlet'}, {'id': 14180, 'synset': 'gin_and_tonic.n.01', 'name': 'gin_and_tonic'}, {'id': 14181, 'synset': 'grasshopper.n.02', 'name': 'grasshopper'}, {'id': 14182, 'synset': 'harvey_wallbanger.n.01', 'name': 'Harvey_Wallbanger'}, {'id': 14183, 'synset': 'julep.n.01', 'name': 'julep'}, {'id': 14184, 'synset': 'manhattan.n.02', 'name': 'manhattan'}, {'id': 14185, 'synset': 'rob_roy.n.02', 'name': 'Rob_Roy'}, {'id': 14186, 'synset': 'margarita.n.01', 'name': 'margarita'}, {'id': 14187, 'synset': 'gin_and_it.n.01', 'name': 'gin_and_it'}, {'id': 14188, 'synset': 'vodka_martini.n.01', 'name': 'vodka_martini'}, {'id': 14189, 'synset': 'old_fashioned.n.01', 'name': 'old_fashioned'}, {'id': 14190, 'synset': 'pink_lady.n.01', 'name': 'pink_lady'}, {'id': 14191, 'synset': 'sazerac.n.01', 'name': 'Sazerac'}, {'id': 14192, 'synset': 'screwdriver.n.02', 'name': 'screwdriver'}, {'id': 14193, 'synset': 'sidecar.n.01', 'name': 'sidecar'}, {'id': 14194, 'synset': 'scotch_and_soda.n.01', 'name': 'Scotch_and_soda'}, {'id': 14195, 'synset': 'sling.n.01', 'name': 'sling'}, {'id': 14196, 'synset': 'brandy_sling.n.01', 'name': 'brandy_sling'}, {'id': 14197, 'synset': 'gin_sling.n.01', 'name': 'gin_sling'}, {'id': 14198, 'synset': 'rum_sling.n.01', 'name': 'rum_sling'}, {'id': 14199, 'synset': 'sour.n.01', 'name': 'sour'}, {'id': 14200, 'synset': 'whiskey_sour.n.01', 'name': 'whiskey_sour'}, {'id': 14201, 'synset': 'stinger.n.01', 'name': 'stinger'}, {'id': 14202, 'synset': 'swizzle.n.01', 'name': 'swizzle'}, {'id': 14203, 'synset': 'hot_toddy.n.01', 'name': 'hot_toddy'}, {'id': 14204, 'synset': 'zombie.n.05', 'name': 'zombie'}, {'id': 14205, 'synset': 'fizz.n.01', 'name': 'fizz'}, {'id': 14206, 'synset': 'irish_coffee.n.01', 'name': 'Irish_coffee'}, {'id': 14207, 'synset': 'cafe_au_lait.n.01', 'name': 'cafe_au_lait'}, {'id': 14208, 'synset': 'cafe_noir.n.01', 'name': 'cafe_noir'}, {'id': 14209, 'synset': 'decaffeinated_coffee.n.01', 'name': 'decaffeinated_coffee'}, {'id': 14210, 'synset': 'drip_coffee.n.01', 'name': 'drip_coffee'}, {'id': 14211, 'synset': 'espresso.n.01', 'name': 'espresso'}, {'id': 14212, 'synset': 'caffe_latte.n.01', 'name': 'caffe_latte'}, {'id': 14213, 'synset': 'iced_coffee.n.01', 'name': 'iced_coffee'}, {'id': 14214, 'synset': 'instant_coffee.n.01', 'name': 'instant_coffee'}, {'id': 14215, 'synset': 'mocha.n.03', 'name': 'mocha'}, {'id': 14216, 'synset': 'mocha.n.02', 'name': 'mocha'}, {'id': 14217, 'synset': 'cassareep.n.01', 'name': 'cassareep'}, {'id': 14218, 'synset': 'turkish_coffee.n.01', 'name': 'Turkish_coffee'}, {'id': 14219, 'synset': 'hard_cider.n.01', 'name': 'hard_cider'}, {'id': 14220, 'synset': 'scrumpy.n.01', 'name': 'scrumpy'}, {'id': 14221, 'synset': 'sweet_cider.n.01', 'name': 'sweet_cider'}, {'id': 14222, 'synset': 'mulled_cider.n.01', 'name': 'mulled_cider'}, {'id': 14223, 'synset': 'perry.n.04', 'name': 'perry'}, {'id': 14224, 'synset': 'rotgut.n.01', 'name': 'rotgut'}, {'id': 14225, 'synset': 'slug.n.05', 'name': 'slug'}, {'id': 14226, 'synset': 'criollo.n.02', 'name': 'criollo'}, {'id': 14227, 'synset': 'juice.n.01', 'name': 'juice'}, {'id': 14228, 'synset': 'nectar.n.02', 'name': 'nectar'}, {'id': 14229, 'synset': 'apple_juice.n.01', 'name': 'apple_juice'}, {'id': 14230, 'synset': 'cranberry_juice.n.01', 'name': 'cranberry_juice'}, {'id': 14231, 'synset': 'grape_juice.n.01', 'name': 'grape_juice'}, {'id': 14232, 'synset': 'must.n.02', 'name': 'must'}, {'id': 14233, 'synset': 'grapefruit_juice.n.01', 'name': 'grapefruit_juice'}, {'id': 14234, 'synset': 'frozen_orange_juice.n.01', 'name': 'frozen_orange_juice'}, {'id': 14235, 'synset': 'pineapple_juice.n.01', 'name': 'pineapple_juice'}, {'id': 14236, 'synset': 'lemon_juice.n.01', 'name': 'lemon_juice'}, {'id': 14237, 'synset': 'lime_juice.n.01', 'name': 'lime_juice'}, {'id': 14238, 'synset': 'papaya_juice.n.01', 'name': 'papaya_juice'}, {'id': 14239, 'synset': 'tomato_juice.n.01', 'name': 'tomato_juice'}, {'id': 14240, 'synset': 'carrot_juice.n.01', 'name': 'carrot_juice'}, {'id': 14241, 'synset': 'v-8_juice.n.01', 'name': 'V-8_juice'}, {'id': 14242, 'synset': 'koumiss.n.01', 'name': 'koumiss'}, {'id': 14243, 'synset': 'fruit_drink.n.01', 'name': 'fruit_drink'}, {'id': 14244, 'synset': 'limeade.n.01', 'name': 'limeade'}, {'id': 14245, 'synset': 'orangeade.n.01', 'name': 'orangeade'}, {'id': 14246, 'synset': 'malted_milk.n.02', 'name': 'malted_milk'}, {'id': 14247, 'synset': 'mate.n.09', 'name': 'mate'}, {'id': 14248, 'synset': 'mulled_wine.n.01', 'name': 'mulled_wine'}, {'id': 14249, 'synset': 'negus.n.01', 'name': 'negus'}, {'id': 14250, 'synset': 'soft_drink.n.01', 'name': 'soft_drink'}, {'id': 14251, 'synset': 'birch_beer.n.01', 'name': 'birch_beer'}, {'id': 14252, 'synset': 'bitter_lemon.n.01', 'name': 'bitter_lemon'}, {'id': 14253, 'synset': 'cola.n.02', 'name': 'cola'}, {'id': 14254, 'synset': 'cream_soda.n.01', 'name': 'cream_soda'}, {'id': 14255, 'synset': 'egg_cream.n.01', 'name': 'egg_cream'}, {'id': 14256, 'synset': 'ginger_ale.n.01', 'name': 'ginger_ale'}, {'id': 14257, 'synset': 'orange_soda.n.01', 'name': 'orange_soda'}, {'id': 14258, 'synset': 'phosphate.n.02', 'name': 'phosphate'}, {'id': 14259, 'synset': 'coca_cola.n.01', 'name': 'Coca_Cola'}, {'id': 14260, 'synset': 'pepsi.n.01', 'name': 'Pepsi'}, {'id': 14261, 'synset': 'sarsaparilla.n.02', 'name': 'sarsaparilla'}, {'id': 14262, 'synset': 'tonic.n.01', 'name': 'tonic'}, {'id': 14263, 'synset': 'coffee_bean.n.01', 'name': 'coffee_bean'}, {'id': 14264, 'synset': 'coffee.n.01', 'name': 'coffee'}, {'id': 14265, 'synset': 'cafe_royale.n.01', 'name': 'cafe_royale'}, {'id': 14266, 'synset': 'fruit_punch.n.01', 'name': 'fruit_punch'}, {'id': 14267, 'synset': 'milk_punch.n.01', 'name': 'milk_punch'}, {'id': 14268, 'synset': 'mimosa.n.03', 'name': 'mimosa'}, {'id': 14269, 'synset': 'pina_colada.n.01', 'name': 'pina_colada'}, {'id': 14270, 'synset': 'punch.n.02', 'name': 'punch'}, {'id': 14271, 'synset': 'cup.n.06', 'name': 'cup'}, {'id': 14272, 'synset': 'champagne_cup.n.01', 'name': 'champagne_cup'}, {'id': 14273, 'synset': 'claret_cup.n.01', 'name': 'claret_cup'}, {'id': 14274, 'synset': 'wassail.n.01', 'name': 'wassail'}, {'id': 14275, 'synset': "planter's_punch.n.01", 'name': "planter's_punch"}, {'id': 14276, 'synset': 'white_russian.n.02', 'name': 'White_Russian'}, {'id': 14277, 'synset': 'fish_house_punch.n.01', 'name': 'fish_house_punch'}, {'id': 14278, 'synset': 'may_wine.n.01', 'name': 'May_wine'}, {'id': 14279, 'synset': 'eggnog.n.01', 'name': 'eggnog'}, {'id': 14280, 'synset': 'cassiri.n.01', 'name': 'cassiri'}, {'id': 14281, 'synset': 'spruce_beer.n.01', 'name': 'spruce_beer'}, {'id': 14282, 'synset': 'rickey.n.01', 'name': 'rickey'}, {'id': 14283, 'synset': 'gin_rickey.n.01', 'name': 'gin_rickey'}, {'id': 14284, 'synset': 'tea.n.05', 'name': 'tea'}, {'id': 14285, 'synset': 'tea.n.01', 'name': 'tea'}, {'id': 14286, 'synset': 'tea-like_drink.n.01', 'name': 'tea-like_drink'}, {'id': 14287, 'synset': 'cambric_tea.n.01', 'name': 'cambric_tea'}, {'id': 14288, 'synset': 'cuppa.n.01', 'name': 'cuppa'}, {'id': 14289, 'synset': 'herb_tea.n.01', 'name': 'herb_tea'}, {'id': 14290, 'synset': 'tisane.n.01', 'name': 'tisane'}, {'id': 14291, 'synset': 'camomile_tea.n.01', 'name': 'camomile_tea'}, {'id': 14292, 'synset': 'ice_tea.n.01', 'name': 'ice_tea'}, {'id': 14293, 'synset': 'sun_tea.n.01', 'name': 'sun_tea'}, {'id': 14294, 'synset': 'black_tea.n.01', 'name': 'black_tea'}, {'id': 14295, 'synset': 'congou.n.01', 'name': 'congou'}, {'id': 14296, 'synset': 'darjeeling.n.01', 'name': 'Darjeeling'}, {'id': 14297, 'synset': 'orange_pekoe.n.01', 'name': 'orange_pekoe'}, {'id': 14298, 'synset': 'souchong.n.01', 'name': 'souchong'}, {'id': 14299, 'synset': 'green_tea.n.01', 'name': 'green_tea'}, {'id': 14300, 'synset': 'hyson.n.01', 'name': 'hyson'}, {'id': 14301, 'synset': 'oolong.n.01', 'name': 'oolong'}, {'id': 14302, 'synset': 'water.n.06', 'name': 'water'}, {'id': 14303, 'synset': 'bottled_water.n.01', 'name': 'bottled_water'}, {'id': 14304, 'synset': 'branch_water.n.01', 'name': 'branch_water'}, {'id': 14305, 'synset': 'spring_water.n.02', 'name': 'spring_water'}, {'id': 14306, 'synset': 'sugar_water.n.01', 'name': 'sugar_water'}, {'id': 14307, 'synset': 'drinking_water.n.01', 'name': 'drinking_water'}, {'id': 14308, 'synset': 'ice_water.n.01', 'name': 'ice_water'}, {'id': 14309, 'synset': 'soda_water.n.01', 'name': 'soda_water'}, {'id': 14310, 'synset': 'mineral_water.n.01', 'name': 'mineral_water'}, {'id': 14311, 'synset': 'seltzer.n.01', 'name': 'seltzer'}, {'id': 14312, 'synset': 'vichy_water.n.01', 'name': 'Vichy_water'}, {'id': 14313, 'synset': 'perishable.n.01', 'name': 'perishable'}, {'id': 14314, 'synset': 'couscous.n.01', 'name': 'couscous'}, {'id': 14315, 'synset': 'ramekin.n.01', 'name': 'ramekin'}, {'id': 14316, 'synset': 'multivitamin.n.01', 'name': 'multivitamin'}, {'id': 14317, 'synset': 'vitamin_pill.n.01', 'name': 'vitamin_pill'}, {'id': 14318, 'synset': 'soul_food.n.01', 'name': 'soul_food'}, {'id': 14319, 'synset': 'mold.n.06', 'name': 'mold'}, {'id': 14320, 'synset': 'people.n.01', 'name': 'people'}, {'id': 14321, 'synset': 'collection.n.01', 'name': 'collection'}, {'id': 14322, 'synset': 'book.n.07', 'name': 'book'}, {'id': 14323, 'synset': 'library.n.02', 'name': 'library'}, {'id': 14324, 'synset': 'baseball_club.n.01', 'name': 'baseball_club'}, {'id': 14325, 'synset': 'crowd.n.01', 'name': 'crowd'}, {'id': 14326, 'synset': 'class.n.02', 'name': 'class'}, {'id': 14327, 'synset': 'core.n.01', 'name': 'core'}, {'id': 14328, 'synset': 'concert_band.n.01', 'name': 'concert_band'}, {'id': 14329, 'synset': 'dance.n.02', 'name': 'dance'}, {'id': 14330, 'synset': 'wedding.n.03', 'name': 'wedding'}, {'id': 14331, 'synset': 'chain.n.01', 'name': 'chain'}, {'id': 14332, 'synset': 'power_breakfast.n.01', 'name': 'power_breakfast'}, {'id': 14333, 'synset': 'aerie.n.02', 'name': 'aerie'}, {'id': 14334, 'synset': 'agora.n.02', 'name': 'agora'}, {'id': 14335, 'synset': 'amusement_park.n.01', 'name': 'amusement_park'}, {'id': 14336, 'synset': 'aphelion.n.01', 'name': 'aphelion'}, {'id': 14337, 'synset': 'apron.n.02', 'name': 'apron'}, {'id': 14338, 'synset': 'interplanetary_space.n.01', 'name': 'interplanetary_space'}, {'id': 14339, 'synset': 'interstellar_space.n.01', 'name': 'interstellar_space'}, {'id': 14340, 'synset': 'intergalactic_space.n.01', 'name': 'intergalactic_space'}, {'id': 14341, 'synset': 'bush.n.02', 'name': 'bush'}, {'id': 14342, 'synset': 'semidesert.n.01', 'name': 'semidesert'}, {'id': 14343, 'synset': 'beam-ends.n.01', 'name': 'beam-ends'}, {'id': 14344, 'synset': 'bridgehead.n.02', 'name': 'bridgehead'}, {'id': 14345, 'synset': 'bus_stop.n.01', 'name': 'bus_stop'}, {'id': 14346, 'synset': 'campsite.n.01', 'name': 'campsite'}, {'id': 14347, 'synset': 'detention_basin.n.01', 'name': 'detention_basin'}, {'id': 14348, 'synset': 'cemetery.n.01', 'name': 'cemetery'}, {'id': 14349, 'synset': 'trichion.n.01', 'name': 'trichion'}, {'id': 14350, 'synset': 'city.n.01', 'name': 'city'}, {'id': 14351, 'synset': 'business_district.n.01', 'name': 'business_district'}, {'id': 14352, 'synset': 'outskirts.n.01', 'name': 'outskirts'}, {'id': 14353, 'synset': 'borough.n.01', 'name': 'borough'}, {'id': 14354, 'synset': 'cow_pasture.n.01', 'name': 'cow_pasture'}, {'id': 14355, 'synset': 'crest.n.01', 'name': 'crest'}, {'id': 14356, 'synset': 'eparchy.n.02', 'name': 'eparchy'}, {'id': 14357, 'synset': 'suburb.n.01', 'name': 'suburb'}, {'id': 14358, 'synset': 'stockbroker_belt.n.01', 'name': 'stockbroker_belt'}, {'id': 14359, 'synset': 'crawlspace.n.01', 'name': 'crawlspace'}, {'id': 14360, 'synset': 'sheikdom.n.01', 'name': 'sheikdom'}, {'id': 14361, 'synset': 'residence.n.01', 'name': 'residence'}, {'id': 14362, 'synset': 'domicile.n.01', 'name': 'domicile'}, {'id': 14363, 'synset': 'dude_ranch.n.01', 'name': 'dude_ranch'}, {'id': 14364, 'synset': 'farmland.n.01', 'name': 'farmland'}, {'id': 14365, 'synset': 'midfield.n.01', 'name': 'midfield'}, {'id': 14366, 'synset': 'firebreak.n.01', 'name': 'firebreak'}, {'id': 14367, 'synset': 'flea_market.n.01', 'name': 'flea_market'}, {'id': 14368, 'synset': 'battlefront.n.01', 'name': 'battlefront'}, {'id': 14369, 'synset': 'garbage_heap.n.01', 'name': 'garbage_heap'}, {'id': 14370, 'synset': 'benthos.n.01', 'name': 'benthos'}, {'id': 14371, 'synset': 'goldfield.n.01', 'name': 'goldfield'}, {'id': 14372, 'synset': 'grainfield.n.01', 'name': 'grainfield'}, {'id': 14373, 'synset': 'half-mast.n.01', 'name': 'half-mast'}, {'id': 14374, 'synset': 'hemline.n.01', 'name': 'hemline'}, {'id': 14375, 'synset': 'heronry.n.01', 'name': 'heronry'}, {'id': 14376, 'synset': 'hipline.n.02', 'name': 'hipline'}, {'id': 14377, 'synset': 'hipline.n.01', 'name': 'hipline'}, {'id': 14378, 'synset': 'hole-in-the-wall.n.01', 'name': 'hole-in-the-wall'}, {'id': 14379, 'synset': 'junkyard.n.01', 'name': 'junkyard'}, {'id': 14380, 'synset': 'isoclinic_line.n.01', 'name': 'isoclinic_line'}, {'id': 14381, 'synset': 'littoral.n.01', 'name': 'littoral'}, {'id': 14382, 'synset': 'magnetic_pole.n.01', 'name': 'magnetic_pole'}, {'id': 14383, 'synset': 'grassland.n.01', 'name': 'grassland'}, {'id': 14384, 'synset': 'mecca.n.02', 'name': 'mecca'}, {'id': 14385, 'synset': "observer's_meridian.n.01", 'name': "observer's_meridian"}, {'id': 14386, 'synset': 'prime_meridian.n.01', 'name': 'prime_meridian'}, {'id': 14387, 'synset': 'nombril.n.01', 'name': 'nombril'}, {'id': 14388, 'synset': 'no-parking_zone.n.01', 'name': 'no-parking_zone'}, {'id': 14389, 'synset': 'outdoors.n.01', 'name': 'outdoors'}, {'id': 14390, 'synset': 'fairground.n.01', 'name': 'fairground'}, {'id': 14391, 'synset': 'pasture.n.01', 'name': 'pasture'}, {'id': 14392, 'synset': 'perihelion.n.01', 'name': 'perihelion'}, {'id': 14393, 'synset': 'periselene.n.01', 'name': 'periselene'}, {'id': 14394, 'synset': 'locus_of_infection.n.01', 'name': 'locus_of_infection'}, {'id': 14395, 'synset': 'kasbah.n.01', 'name': 'kasbah'}, {'id': 14396, 'synset': 'waterfront.n.01', 'name': 'waterfront'}, {'id': 14397, 'synset': 'resort.n.01', 'name': 'resort'}, {'id': 14398, 'synset': 'resort_area.n.01', 'name': 'resort_area'}, {'id': 14399, 'synset': 'rough.n.01', 'name': 'rough'}, {'id': 14400, 'synset': 'ashram.n.02', 'name': 'ashram'}, {'id': 14401, 'synset': 'harborage.n.01', 'name': 'harborage'}, {'id': 14402, 'synset': 'scrubland.n.01', 'name': 'scrubland'}, {'id': 14403, 'synset': 'weald.n.01', 'name': 'weald'}, {'id': 14404, 'synset': 'wold.n.01', 'name': 'wold'}, {'id': 14405, 'synset': 'schoolyard.n.01', 'name': 'schoolyard'}, {'id': 14406, 'synset': 'showplace.n.01', 'name': 'showplace'}, {'id': 14407, 'synset': 'bedside.n.01', 'name': 'bedside'}, {'id': 14408, 'synset': 'sideline.n.01', 'name': 'sideline'}, {'id': 14409, 'synset': 'ski_resort.n.01', 'name': 'ski_resort'}, {'id': 14410, 'synset': 'soil_horizon.n.01', 'name': 'soil_horizon'}, {'id': 14411, 'synset': 'geological_horizon.n.01', 'name': 'geological_horizon'}, {'id': 14412, 'synset': 'coal_seam.n.01', 'name': 'coal_seam'}, {'id': 14413, 'synset': 'coalface.n.01', 'name': 'coalface'}, {'id': 14414, 'synset': 'field.n.14', 'name': 'field'}, {'id': 14415, 'synset': 'oilfield.n.01', 'name': 'oilfield'}, {'id': 14416, 'synset': 'temperate_zone.n.01', 'name': 'Temperate_Zone'}, {'id': 14417, 'synset': 'terreplein.n.01', 'name': 'terreplein'}, {'id': 14418, 'synset': 'three-mile_limit.n.01', 'name': 'three-mile_limit'}, {'id': 14419, 'synset': 'desktop.n.01', 'name': 'desktop'}, {'id': 14420, 'synset': 'top.n.01', 'name': 'top'}, {'id': 14421, 'synset': 'kampong.n.01', 'name': 'kampong'}, {'id': 14422, 'synset': 'subtropics.n.01', 'name': 'subtropics'}, {'id': 14423, 'synset': 'barrio.n.02', 'name': 'barrio'}, {'id': 14424, 'synset': 'veld.n.01', 'name': 'veld'}, {'id': 14425, 'synset': 'vertex.n.02', 'name': 'vertex'}, {'id': 14426, 'synset': 'waterline.n.01', 'name': 'waterline'}, {'id': 14427, 'synset': 'high-water_mark.n.01', 'name': 'high-water_mark'}, {'id': 14428, 'synset': 'low-water_mark.n.02', 'name': 'low-water_mark'}, {'id': 14429, 'synset': 'continental_divide.n.01', 'name': 'continental_divide'}, {'id': 14430, 'synset': 'zodiac.n.01', 'name': 'zodiac'}, {'id': 14431, 'synset': 'aegean_island.n.01', 'name': 'Aegean_island'}, {'id': 14432, 'synset': 'sultanate.n.01', 'name': 'sultanate'}, {'id': 14433, 'synset': 'swiss_canton.n.01', 'name': 'Swiss_canton'}, {'id': 14434, 'synset': 'abyssal_zone.n.01', 'name': 'abyssal_zone'}, {'id': 14435, 'synset': 'aerie.n.01', 'name': 'aerie'}, {'id': 14436, 'synset': 'air_bubble.n.01', 'name': 'air_bubble'}, {'id': 14437, 'synset': 'alluvial_flat.n.01', 'name': 'alluvial_flat'}, {'id': 14438, 'synset': 'alp.n.01', 'name': 'alp'}, {'id': 14439, 'synset': 'alpine_glacier.n.01', 'name': 'Alpine_glacier'}, {'id': 14440, 'synset': 'anthill.n.01', 'name': 'anthill'}, {'id': 14441, 'synset': 'aquifer.n.01', 'name': 'aquifer'}, {'id': 14442, 'synset': 'archipelago.n.01', 'name': 'archipelago'}, {'id': 14443, 'synset': 'arete.n.01', 'name': 'arete'}, {'id': 14444, 'synset': 'arroyo.n.01', 'name': 'arroyo'}, {'id': 14445, 'synset': 'ascent.n.01', 'name': 'ascent'}, {'id': 14446, 'synset': 'asterism.n.02', 'name': 'asterism'}, {'id': 14447, 'synset': 'asthenosphere.n.01', 'name': 'asthenosphere'}, {'id': 14448, 'synset': 'atoll.n.01', 'name': 'atoll'}, {'id': 14449, 'synset': 'bank.n.03', 'name': 'bank'}, {'id': 14450, 'synset': 'bank.n.01', 'name': 'bank'}, {'id': 14451, 'synset': 'bar.n.08', 'name': 'bar'}, {'id': 14452, 'synset': 'barbecue_pit.n.01', 'name': 'barbecue_pit'}, {'id': 14453, 'synset': 'barrier_reef.n.01', 'name': 'barrier_reef'}, {'id': 14454, 'synset': 'baryon.n.01', 'name': 'baryon'}, {'id': 14455, 'synset': 'basin.n.03', 'name': 'basin'}, {'id': 14456, 'synset': 'beach.n.01', 'name': 'beach'}, {'id': 14457, 'synset': 'honeycomb.n.01', 'name': 'honeycomb'}, {'id': 14458, 'synset': 'belay.n.01', 'name': 'belay'}, {'id': 14459, 'synset': 'ben.n.01', 'name': 'ben'}, {'id': 14460, 'synset': 'berm.n.01', 'name': 'berm'}, {'id': 14461, 'synset': 'bladder_stone.n.01', 'name': 'bladder_stone'}, {'id': 14462, 'synset': 'bluff.n.01', 'name': 'bluff'}, {'id': 14463, 'synset': 'borrow_pit.n.01', 'name': 'borrow_pit'}, {'id': 14464, 'synset': 'brae.n.01', 'name': 'brae'}, {'id': 14465, 'synset': 'bubble.n.01', 'name': 'bubble'}, {'id': 14466, 'synset': 'burrow.n.01', 'name': 'burrow'}, {'id': 14467, 'synset': 'butte.n.01', 'name': 'butte'}, {'id': 14468, 'synset': 'caldera.n.01', 'name': 'caldera'}, {'id': 14469, 'synset': 'canyon.n.01', 'name': 'canyon'}, {'id': 14470, 'synset': 'canyonside.n.01', 'name': 'canyonside'}, {'id': 14471, 'synset': 'cave.n.01', 'name': 'cave'}, {'id': 14472, 'synset': 'cavern.n.02', 'name': 'cavern'}, {'id': 14473, 'synset': 'chasm.n.01', 'name': 'chasm'}, {'id': 14474, 'synset': 'cirque.n.01', 'name': 'cirque'}, {'id': 14475, 'synset': 'cliff.n.01', 'name': 'cliff'}, {'id': 14476, 'synset': 'cloud.n.02', 'name': 'cloud'}, {'id': 14477, 'synset': 'coast.n.02', 'name': 'coast'}, {'id': 14478, 'synset': 'coastland.n.01', 'name': 'coastland'}, {'id': 14479, 'synset': 'col.n.01', 'name': 'col'}, {'id': 14480, 'synset': 'collector.n.03', 'name': 'collector'}, {'id': 14481, 'synset': 'comet.n.01', 'name': 'comet'}, {'id': 14482, 'synset': 'continental_glacier.n.01', 'name': 'continental_glacier'}, {'id': 14483, 'synset': 'coral_reef.n.01', 'name': 'coral_reef'}, {'id': 14484, 'synset': 'cove.n.02', 'name': 'cove'}, {'id': 14485, 'synset': 'crag.n.01', 'name': 'crag'}, {'id': 14486, 'synset': 'crater.n.03', 'name': 'crater'}, {'id': 14487, 'synset': 'cultivated_land.n.01', 'name': 'cultivated_land'}, {'id': 14488, 'synset': 'dale.n.01', 'name': 'dale'}, {'id': 14489, 'synset': 'defile.n.01', 'name': 'defile'}, {'id': 14490, 'synset': 'delta.n.01', 'name': 'delta'}, {'id': 14491, 'synset': 'descent.n.05', 'name': 'descent'}, {'id': 14492, 'synset': 'diapir.n.01', 'name': 'diapir'}, {'id': 14493, 'synset': 'divot.n.02', 'name': 'divot'}, {'id': 14494, 'synset': 'divot.n.01', 'name': 'divot'}, {'id': 14495, 'synset': 'down.n.04', 'name': 'down'}, {'id': 14496, 'synset': 'downhill.n.01', 'name': 'downhill'}, {'id': 14497, 'synset': 'draw.n.01', 'name': 'draw'}, {'id': 14498, 'synset': 'drey.n.01', 'name': 'drey'}, {'id': 14499, 'synset': 'drumlin.n.01', 'name': 'drumlin'}, {'id': 14500, 'synset': 'dune.n.01', 'name': 'dune'}, {'id': 14501, 'synset': 'escarpment.n.01', 'name': 'escarpment'}, {'id': 14502, 'synset': 'esker.n.01', 'name': 'esker'}, {'id': 14503, 'synset': 'fireball.n.03', 'name': 'fireball'}, {'id': 14504, 'synset': 'flare_star.n.01', 'name': 'flare_star'}, {'id': 14505, 'synset': 'floor.n.04', 'name': 'floor'}, {'id': 14506, 'synset': 'fomite.n.01', 'name': 'fomite'}, {'id': 14507, 'synset': 'foothill.n.01', 'name': 'foothill'}, {'id': 14508, 'synset': 'footwall.n.01', 'name': 'footwall'}, {'id': 14509, 'synset': 'foreland.n.02', 'name': 'foreland'}, {'id': 14510, 'synset': 'foreshore.n.01', 'name': 'foreshore'}, {'id': 14511, 'synset': 'gauge_boson.n.01', 'name': 'gauge_boson'}, {'id': 14512, 'synset': 'geological_formation.n.01', 'name': 'geological_formation'}, {'id': 14513, 'synset': 'geyser.n.01', 'name': 'geyser'}, {'id': 14514, 'synset': 'glacier.n.01', 'name': 'glacier'}, {'id': 14515, 'synset': 'glen.n.01', 'name': 'glen'}, {'id': 14516, 'synset': 'gopher_hole.n.01', 'name': 'gopher_hole'}, {'id': 14517, 'synset': 'gorge.n.01', 'name': 'gorge'}, {'id': 14518, 'synset': 'grotto.n.01', 'name': 'grotto'}, {'id': 14519, 'synset': 'growler.n.02', 'name': 'growler'}, {'id': 14520, 'synset': 'gulch.n.01', 'name': 'gulch'}, {'id': 14521, 'synset': 'gully.n.01', 'name': 'gully'}, {'id': 14522, 'synset': 'hail.n.02', 'name': 'hail'}, {'id': 14523, 'synset': 'highland.n.01', 'name': 'highland'}, {'id': 14524, 'synset': 'hill.n.01', 'name': 'hill'}, {'id': 14525, 'synset': 'hillside.n.01', 'name': 'hillside'}, {'id': 14526, 'synset': 'hole.n.05', 'name': 'hole'}, {'id': 14527, 'synset': 'hollow.n.02', 'name': 'hollow'}, {'id': 14528, 'synset': 'hot_spring.n.01', 'name': 'hot_spring'}, {'id': 14529, 'synset': 'iceberg.n.01', 'name': 'iceberg'}, {'id': 14530, 'synset': 'icecap.n.01', 'name': 'icecap'}, {'id': 14531, 'synset': 'ice_field.n.01', 'name': 'ice_field'}, {'id': 14532, 'synset': 'ice_floe.n.01', 'name': 'ice_floe'}, {'id': 14533, 'synset': 'ice_mass.n.01', 'name': 'ice_mass'}, {'id': 14534, 'synset': 'inclined_fault.n.01', 'name': 'inclined_fault'}, {'id': 14535, 'synset': 'ion.n.01', 'name': 'ion'}, {'id': 14536, 'synset': 'isthmus.n.01', 'name': 'isthmus'}, {'id': 14537, 'synset': 'kidney_stone.n.01', 'name': 'kidney_stone'}, {'id': 14538, 'synset': 'knoll.n.01', 'name': 'knoll'}, {'id': 14539, 'synset': 'kopje.n.01', 'name': 'kopje'}, {'id': 14540, 'synset': 'kuiper_belt.n.01', 'name': 'Kuiper_belt'}, {'id': 14541, 'synset': 'lake_bed.n.01', 'name': 'lake_bed'}, {'id': 14542, 'synset': 'lakefront.n.01', 'name': 'lakefront'}, {'id': 14543, 'synset': 'lakeside.n.01', 'name': 'lakeside'}, {'id': 14544, 'synset': 'landfall.n.01', 'name': 'landfall'}, {'id': 14545, 'synset': 'landfill.n.01', 'name': 'landfill'}, {'id': 14546, 'synset': 'lather.n.04', 'name': 'lather'}, {'id': 14547, 'synset': 'leak.n.01', 'name': 'leak'}, {'id': 14548, 'synset': 'ledge.n.01', 'name': 'ledge'}, {'id': 14549, 'synset': 'lepton.n.02', 'name': 'lepton'}, {'id': 14550, 'synset': 'lithosphere.n.01', 'name': 'lithosphere'}, {'id': 14551, 'synset': 'lowland.n.01', 'name': 'lowland'}, {'id': 14552, 'synset': 'lunar_crater.n.01', 'name': 'lunar_crater'}, {'id': 14553, 'synset': 'maar.n.01', 'name': 'maar'}, {'id': 14554, 'synset': 'massif.n.01', 'name': 'massif'}, {'id': 14555, 'synset': 'meander.n.01', 'name': 'meander'}, {'id': 14556, 'synset': 'mesa.n.01', 'name': 'mesa'}, {'id': 14557, 'synset': 'meteorite.n.01', 'name': 'meteorite'}, {'id': 14558, 'synset': 'microfossil.n.01', 'name': 'microfossil'}, {'id': 14559, 'synset': 'midstream.n.01', 'name': 'midstream'}, {'id': 14560, 'synset': 'molehill.n.01', 'name': 'molehill'}, {'id': 14561, 'synset': 'monocline.n.01', 'name': 'monocline'}, {'id': 14562, 'synset': 'mountain.n.01', 'name': 'mountain'}, {'id': 14563, 'synset': 'mountainside.n.01', 'name': 'mountainside'}, {'id': 14564, 'synset': 'mouth.n.04', 'name': 'mouth'}, {'id': 14565, 'synset': 'mull.n.01', 'name': 'mull'}, {'id': 14566, 'synset': 'natural_depression.n.01', 'name': 'natural_depression'}, {'id': 14567, 'synset': 'natural_elevation.n.01', 'name': 'natural_elevation'}, {'id': 14568, 'synset': 'nullah.n.01', 'name': 'nullah'}, {'id': 14569, 'synset': 'ocean.n.01', 'name': 'ocean'}, {'id': 14570, 'synset': 'ocean_floor.n.01', 'name': 'ocean_floor'}, {'id': 14571, 'synset': 'oceanfront.n.01', 'name': 'oceanfront'}, {'id': 14572, 'synset': 'outcrop.n.01', 'name': 'outcrop'}, {'id': 14573, 'synset': 'oxbow.n.01', 'name': 'oxbow'}, {'id': 14574, 'synset': 'pallasite.n.01', 'name': 'pallasite'}, {'id': 14575, 'synset': 'perforation.n.02', 'name': 'perforation'}, {'id': 14576, 'synset': 'photosphere.n.01', 'name': 'photosphere'}, {'id': 14577, 'synset': 'piedmont.n.02', 'name': 'piedmont'}, {'id': 14578, 'synset': 'piedmont_glacier.n.01', 'name': 'Piedmont_glacier'}, {'id': 14579, 'synset': 'pinetum.n.01', 'name': 'pinetum'}, {'id': 14580, 'synset': 'plage.n.01', 'name': 'plage'}, {'id': 14581, 'synset': 'plain.n.01', 'name': 'plain'}, {'id': 14582, 'synset': 'point.n.11', 'name': 'point'}, {'id': 14583, 'synset': 'polar_glacier.n.01', 'name': 'polar_glacier'}, {'id': 14584, 'synset': 'pothole.n.01', 'name': 'pothole'}, {'id': 14585, 'synset': 'precipice.n.01', 'name': 'precipice'}, {'id': 14586, 'synset': 'promontory.n.01', 'name': 'promontory'}, {'id': 14587, 'synset': 'ptyalith.n.01', 'name': 'ptyalith'}, {'id': 14588, 'synset': 'pulsar.n.01', 'name': 'pulsar'}, {'id': 14589, 'synset': 'quicksand.n.02', 'name': 'quicksand'}, {'id': 14590, 'synset': 'rabbit_burrow.n.01', 'name': 'rabbit_burrow'}, {'id': 14591, 'synset': 'radiator.n.01', 'name': 'radiator'}, {'id': 14592, 'synset': 'rainbow.n.01', 'name': 'rainbow'}, {'id': 14593, 'synset': 'range.n.04', 'name': 'range'}, {'id': 14594, 'synset': 'rangeland.n.01', 'name': 'rangeland'}, {'id': 14595, 'synset': 'ravine.n.01', 'name': 'ravine'}, {'id': 14596, 'synset': 'reef.n.01', 'name': 'reef'}, {'id': 14597, 'synset': 'ridge.n.01', 'name': 'ridge'}, {'id': 14598, 'synset': 'ridge.n.04', 'name': 'ridge'}, {'id': 14599, 'synset': 'rift_valley.n.01', 'name': 'rift_valley'}, {'id': 14600, 'synset': 'riparian_forest.n.01', 'name': 'riparian_forest'}, {'id': 14601, 'synset': 'ripple_mark.n.01', 'name': 'ripple_mark'}, {'id': 14602, 'synset': 'riverbank.n.01', 'name': 'riverbank'}, {'id': 14603, 'synset': 'riverbed.n.01', 'name': 'riverbed'}, {'id': 14604, 'synset': 'rock.n.01', 'name': 'rock'}, {'id': 14605, 'synset': 'roof.n.03', 'name': 'roof'}, {'id': 14606, 'synset': 'saltpan.n.01', 'name': 'saltpan'}, {'id': 14607, 'synset': 'sandbank.n.01', 'name': 'sandbank'}, {'id': 14608, 'synset': 'sandbar.n.01', 'name': 'sandbar'}, {'id': 14609, 'synset': 'sandpit.n.01', 'name': 'sandpit'}, {'id': 14610, 'synset': 'sanitary_landfill.n.01', 'name': 'sanitary_landfill'}, {'id': 14611, 'synset': 'sawpit.n.01', 'name': 'sawpit'}, {'id': 14612, 'synset': 'scablands.n.01', 'name': 'scablands'}, {'id': 14613, 'synset': 'seashore.n.01', 'name': 'seashore'}, {'id': 14614, 'synset': 'seaside.n.01', 'name': 'seaside'}, {'id': 14615, 'synset': 'seif_dune.n.01', 'name': 'seif_dune'}, {'id': 14616, 'synset': 'shell.n.06', 'name': 'shell'}, {'id': 14617, 'synset': 'shiner.n.02', 'name': 'shiner'}, {'id': 14618, 'synset': 'shoal.n.01', 'name': 'shoal'}, {'id': 14619, 'synset': 'shore.n.01', 'name': 'shore'}, {'id': 14620, 'synset': 'shoreline.n.01', 'name': 'shoreline'}, {'id': 14621, 'synset': 'sinkhole.n.01', 'name': 'sinkhole'}, {'id': 14622, 'synset': 'ski_slope.n.01', 'name': 'ski_slope'}, {'id': 14623, 'synset': 'sky.n.01', 'name': 'sky'}, {'id': 14624, 'synset': 'slope.n.01', 'name': 'slope'}, {'id': 14625, 'synset': 'snowcap.n.01', 'name': 'snowcap'}, {'id': 14626, 'synset': 'snowdrift.n.01', 'name': 'snowdrift'}, {'id': 14627, 'synset': 'snowfield.n.01', 'name': 'snowfield'}, {'id': 14628, 'synset': 'soapsuds.n.01', 'name': 'soapsuds'}, {'id': 14629, 'synset': 'spit.n.01', 'name': 'spit'}, {'id': 14630, 'synset': 'spoor.n.01', 'name': 'spoor'}, {'id': 14631, 'synset': 'spume.n.01', 'name': 'spume'}, {'id': 14632, 'synset': 'star.n.03', 'name': 'star'}, {'id': 14633, 'synset': 'steep.n.01', 'name': 'steep'}, {'id': 14634, 'synset': 'steppe.n.01', 'name': 'steppe'}, {'id': 14635, 'synset': 'strand.n.05', 'name': 'strand'}, {'id': 14636, 'synset': 'streambed.n.01', 'name': 'streambed'}, {'id': 14637, 'synset': 'sun.n.01', 'name': 'sun'}, {'id': 14638, 'synset': 'supernova.n.01', 'name': 'supernova'}, {'id': 14639, 'synset': 'swale.n.01', 'name': 'swale'}, {'id': 14640, 'synset': 'swamp.n.01', 'name': 'swamp'}, {'id': 14641, 'synset': 'swell.n.02', 'name': 'swell'}, {'id': 14642, 'synset': 'tableland.n.01', 'name': 'tableland'}, {'id': 14643, 'synset': 'talus.n.01', 'name': 'talus'}, {'id': 14644, 'synset': 'tangle.n.01', 'name': 'tangle'}, {'id': 14645, 'synset': 'tar_pit.n.01', 'name': 'tar_pit'}, {'id': 14646, 'synset': 'terrace.n.02', 'name': 'terrace'}, {'id': 14647, 'synset': 'tidal_basin.n.01', 'name': 'tidal_basin'}, {'id': 14648, 'synset': 'tideland.n.01', 'name': 'tideland'}, {'id': 14649, 'synset': 'tor.n.02', 'name': 'tor'}, {'id': 14650, 'synset': 'tor.n.01', 'name': 'tor'}, {'id': 14651, 'synset': 'trapezium.n.02', 'name': 'Trapezium'}, {'id': 14652, 'synset': 'troposphere.n.01', 'name': 'troposphere'}, {'id': 14653, 'synset': 'tundra.n.01', 'name': 'tundra'}, {'id': 14654, 'synset': 'twinkler.n.01', 'name': 'twinkler'}, {'id': 14655, 'synset': 'uphill.n.01', 'name': 'uphill'}, {'id': 14656, 'synset': 'urolith.n.01', 'name': 'urolith'}, {'id': 14657, 'synset': 'valley.n.01', 'name': 'valley'}, {'id': 14658, 'synset': 'vehicle-borne_transmission.n.01', 'name': 'vehicle-borne_transmission'}, {'id': 14659, 'synset': 'vein.n.04', 'name': 'vein'}, {'id': 14660, 'synset': 'volcanic_crater.n.01', 'name': 'volcanic_crater'}, {'id': 14661, 'synset': 'volcano.n.02', 'name': 'volcano'}, {'id': 14662, 'synset': 'wadi.n.01', 'name': 'wadi'}, {'id': 14663, 'synset': 'wall.n.05', 'name': 'wall'}, {'id': 14664, 'synset': 'warren.n.03', 'name': 'warren'}, {'id': 14665, 'synset': "wasp's_nest.n.01", 'name': "wasp's_nest"}, {'id': 14666, 'synset': 'watercourse.n.01', 'name': 'watercourse'}, {'id': 14667, 'synset': 'waterside.n.01', 'name': 'waterside'}, {'id': 14668, 'synset': 'water_table.n.01', 'name': 'water_table'}, {'id': 14669, 'synset': 'whinstone.n.01', 'name': 'whinstone'}, {'id': 14670, 'synset': 'wormcast.n.02', 'name': 'wormcast'}, {'id': 14671, 'synset': 'xenolith.n.01', 'name': 'xenolith'}, {'id': 14672, 'synset': 'circe.n.01', 'name': 'Circe'}, {'id': 14673, 'synset': 'gryphon.n.01', 'name': 'gryphon'}, {'id': 14674, 'synset': 'spiritual_leader.n.01', 'name': 'spiritual_leader'}, {'id': 14675, 'synset': 'messiah.n.01', 'name': 'messiah'}, {'id': 14676, 'synset': 'rhea_silvia.n.01', 'name': 'Rhea_Silvia'}, {'id': 14677, 'synset': 'number_one.n.01', 'name': 'number_one'}, {'id': 14678, 'synset': 'adventurer.n.01', 'name': 'adventurer'}, {'id': 14679, 'synset': 'anomaly.n.02', 'name': 'anomaly'}, {'id': 14680, 'synset': 'appointee.n.02', 'name': 'appointee'}, {'id': 14681, 'synset': 'argonaut.n.01', 'name': 'argonaut'}, {'id': 14682, 'synset': 'ashkenazi.n.01', 'name': 'Ashkenazi'}, {'id': 14683, 'synset': 'benefactor.n.01', 'name': 'benefactor'}, {'id': 14684, 'synset': 'color-blind_person.n.01', 'name': 'color-blind_person'}, {'id': 14685, 'synset': 'commoner.n.01', 'name': 'commoner'}, {'id': 14686, 'synset': 'conservator.n.02', 'name': 'conservator'}, {'id': 14687, 'synset': 'contrarian.n.01', 'name': 'contrarian'}, {'id': 14688, 'synset': 'contadino.n.01', 'name': 'contadino'}, {'id': 14689, 'synset': 'contestant.n.01', 'name': 'contestant'}, {'id': 14690, 'synset': 'cosigner.n.01', 'name': 'cosigner'}, {'id': 14691, 'synset': 'discussant.n.01', 'name': 'discussant'}, {'id': 14692, 'synset': 'enologist.n.01', 'name': 'enologist'}, {'id': 14693, 'synset': 'entertainer.n.01', 'name': 'entertainer'}, {'id': 14694, 'synset': 'eulogist.n.01', 'name': 'eulogist'}, {'id': 14695, 'synset': 'ex-gambler.n.01', 'name': 'ex-gambler'}, {'id': 14696, 'synset': 'experimenter.n.01', 'name': 'experimenter'}, {'id': 14697, 'synset': 'experimenter.n.02', 'name': 'experimenter'}, {'id': 14698, 'synset': 'exponent.n.02', 'name': 'exponent'}, {'id': 14699, 'synset': 'ex-president.n.01', 'name': 'ex-president'}, {'id': 14700, 'synset': 'face.n.05', 'name': 'face'}, {'id': 14701, 'synset': 'female.n.02', 'name': 'female'}, {'id': 14702, 'synset': 'finisher.n.04', 'name': 'finisher'}, {'id': 14703, 'synset': 'inhabitant.n.01', 'name': 'inhabitant'}, {'id': 14704, 'synset': 'native.n.01', 'name': 'native'}, {'id': 14705, 'synset': 'native.n.02', 'name': 'native'}, {'id': 14706, 'synset': 'juvenile.n.01', 'name': 'juvenile'}, {'id': 14707, 'synset': 'lover.n.01', 'name': 'lover'}, {'id': 14708, 'synset': 'male.n.02', 'name': 'male'}, {'id': 14709, 'synset': 'mediator.n.01', 'name': 'mediator'}, {'id': 14710, 'synset': 'mediatrix.n.01', 'name': 'mediatrix'}, {'id': 14711, 'synset': 'national.n.01', 'name': 'national'}, {'id': 14712, 'synset': 'peer.n.01', 'name': 'peer'}, {'id': 14713, 'synset': 'prize_winner.n.01', 'name': 'prize_winner'}, {'id': 14714, 'synset': 'recipient.n.01', 'name': 'recipient'}, {'id': 14715, 'synset': 'religionist.n.01', 'name': 'religionist'}, {'id': 14716, 'synset': 'sensualist.n.01', 'name': 'sensualist'}, {'id': 14717, 'synset': 'traveler.n.01', 'name': 'traveler'}, {'id': 14718, 'synset': 'unwelcome_person.n.01', 'name': 'unwelcome_person'}, {'id': 14719, 'synset': 'unskilled_person.n.01', 'name': 'unskilled_person'}, {'id': 14720, 'synset': 'worker.n.01', 'name': 'worker'}, {'id': 14721, 'synset': 'wrongdoer.n.01', 'name': 'wrongdoer'}, {'id': 14722, 'synset': 'black_african.n.01', 'name': 'Black_African'}, {'id': 14723, 'synset': 'afrikaner.n.01', 'name': 'Afrikaner'}, {'id': 14724, 'synset': 'aryan.n.01', 'name': 'Aryan'}, {'id': 14725, 'synset': 'black.n.05', 'name': 'Black'}, {'id': 14726, 'synset': 'black_woman.n.01', 'name': 'Black_woman'}, {'id': 14727, 'synset': 'mulatto.n.01', 'name': 'mulatto'}, {'id': 14728, 'synset': 'white.n.01', 'name': 'White'}, {'id': 14729, 'synset': 'circassian.n.01', 'name': 'Circassian'}, {'id': 14730, 'synset': 'semite.n.01', 'name': 'Semite'}, {'id': 14731, 'synset': 'chaldean.n.02', 'name': 'Chaldean'}, {'id': 14732, 'synset': 'elamite.n.01', 'name': 'Elamite'}, {'id': 14733, 'synset': 'white_man.n.01', 'name': 'white_man'}, {'id': 14734, 'synset': 'wasp.n.01', 'name': 'WASP'}, {'id': 14735, 'synset': 'gook.n.02', 'name': 'gook'}, {'id': 14736, 'synset': 'mongol.n.01', 'name': 'Mongol'}, {'id': 14737, 'synset': 'tatar.n.01', 'name': 'Tatar'}, {'id': 14738, 'synset': 'nahuatl.n.01', 'name': 'Nahuatl'}, {'id': 14739, 'synset': 'aztec.n.01', 'name': 'Aztec'}, {'id': 14740, 'synset': 'olmec.n.01', 'name': 'Olmec'}, {'id': 14741, 'synset': 'biloxi.n.01', 'name': 'Biloxi'}, {'id': 14742, 'synset': 'blackfoot.n.01', 'name': 'Blackfoot'}, {'id': 14743, 'synset': 'brule.n.01', 'name': 'Brule'}, {'id': 14744, 'synset': 'caddo.n.01', 'name': 'Caddo'}, {'id': 14745, 'synset': 'cheyenne.n.03', 'name': 'Cheyenne'}, {'id': 14746, 'synset': 'chickasaw.n.01', 'name': 'Chickasaw'}, {'id': 14747, 'synset': 'cocopa.n.01', 'name': 'Cocopa'}, {'id': 14748, 'synset': 'comanche.n.01', 'name': 'Comanche'}, {'id': 14749, 'synset': 'creek.n.02', 'name': 'Creek'}, {'id': 14750, 'synset': 'delaware.n.02', 'name': 'Delaware'}, {'id': 14751, 'synset': 'diegueno.n.01', 'name': 'Diegueno'}, {'id': 14752, 'synset': 'esselen.n.01', 'name': 'Esselen'}, {'id': 14753, 'synset': 'eyeish.n.01', 'name': 'Eyeish'}, {'id': 14754, 'synset': 'havasupai.n.01', 'name': 'Havasupai'}, {'id': 14755, 'synset': 'hunkpapa.n.01', 'name': 'Hunkpapa'}, {'id': 14756, 'synset': 'iowa.n.01', 'name': 'Iowa'}, {'id': 14757, 'synset': 'kalapooia.n.01', 'name': 'Kalapooia'}, {'id': 14758, 'synset': 'kamia.n.01', 'name': 'Kamia'}, {'id': 14759, 'synset': 'kekchi.n.01', 'name': 'Kekchi'}, {'id': 14760, 'synset': 'kichai.n.01', 'name': 'Kichai'}, {'id': 14761, 'synset': 'kickapoo.n.01', 'name': 'Kickapoo'}, {'id': 14762, 'synset': 'kiliwa.n.01', 'name': 'Kiliwa'}, {'id': 14763, 'synset': 'malecite.n.01', 'name': 'Malecite'}, {'id': 14764, 'synset': 'maricopa.n.01', 'name': 'Maricopa'}, {'id': 14765, 'synset': 'mohican.n.01', 'name': 'Mohican'}, {'id': 14766, 'synset': 'muskhogean.n.01', 'name': 'Muskhogean'}, {'id': 14767, 'synset': 'navaho.n.01', 'name': 'Navaho'}, {'id': 14768, 'synset': 'nootka.n.01', 'name': 'Nootka'}, {'id': 14769, 'synset': 'oglala.n.01', 'name': 'Oglala'}, {'id': 14770, 'synset': 'osage.n.01', 'name': 'Osage'}, {'id': 14771, 'synset': 'oneida.n.01', 'name': 'Oneida'}, {'id': 14772, 'synset': 'paiute.n.01', 'name': 'Paiute'}, {'id': 14773, 'synset': 'passamaquody.n.01', 'name': 'Passamaquody'}, {'id': 14774, 'synset': 'penobscot.n.01', 'name': 'Penobscot'}, {'id': 14775, 'synset': 'penutian.n.02', 'name': 'Penutian'}, {'id': 14776, 'synset': 'potawatomi.n.01', 'name': 'Potawatomi'}, {'id': 14777, 'synset': 'powhatan.n.02', 'name': 'Powhatan'}, {'id': 14778, 'synset': 'kachina.n.02', 'name': 'kachina'}, {'id': 14779, 'synset': 'salish.n.02', 'name': 'Salish'}, {'id': 14780, 'synset': 'shahaptian.n.01', 'name': 'Shahaptian'}, {'id': 14781, 'synset': 'shasta.n.01', 'name': 'Shasta'}, {'id': 14782, 'synset': 'shawnee.n.01', 'name': 'Shawnee'}, {'id': 14783, 'synset': 'sihasapa.n.01', 'name': 'Sihasapa'}, {'id': 14784, 'synset': 'teton.n.01', 'name': 'Teton'}, {'id': 14785, 'synset': 'taracahitian.n.01', 'name': 'Taracahitian'}, {'id': 14786, 'synset': 'tarahumara.n.01', 'name': 'Tarahumara'}, {'id': 14787, 'synset': 'tuscarora.n.01', 'name': 'Tuscarora'}, {'id': 14788, 'synset': 'tutelo.n.01', 'name': 'Tutelo'}, {'id': 14789, 'synset': 'yana.n.01', 'name': 'Yana'}, {'id': 14790, 'synset': 'yavapai.n.01', 'name': 'Yavapai'}, {'id': 14791, 'synset': 'yokuts.n.02', 'name': 'Yokuts'}, {'id': 14792, 'synset': 'yuma.n.01', 'name': 'Yuma'}, {'id': 14793, 'synset': 'gadaba.n.01', 'name': 'Gadaba'}, {'id': 14794, 'synset': 'kolam.n.01', 'name': 'Kolam'}, {'id': 14795, 'synset': 'kui.n.01', 'name': 'Kui'}, {'id': 14796, 'synset': 'toda.n.01', 'name': 'Toda'}, {'id': 14797, 'synset': 'tulu.n.01', 'name': 'Tulu'}, {'id': 14798, 'synset': 'gujarati.n.01', 'name': 'Gujarati'}, {'id': 14799, 'synset': 'kashmiri.n.01', 'name': 'Kashmiri'}, {'id': 14800, 'synset': 'punjabi.n.01', 'name': 'Punjabi'}, {'id': 14801, 'synset': 'slav.n.01', 'name': 'Slav'}, {'id': 14802, 'synset': 'anabaptist.n.01', 'name': 'Anabaptist'}, {'id': 14803, 'synset': 'adventist.n.01', 'name': 'Adventist'}, {'id': 14804, 'synset': 'gentile.n.03', 'name': 'gentile'}, {'id': 14805, 'synset': 'gentile.n.02', 'name': 'gentile'}, {'id': 14806, 'synset': 'catholic.n.01', 'name': 'Catholic'}, {'id': 14807, 'synset': 'old_catholic.n.01', 'name': 'Old_Catholic'}, {'id': 14808, 'synset': 'uniat.n.01', 'name': 'Uniat'}, {'id': 14809, 'synset': 'copt.n.02', 'name': 'Copt'}, {'id': 14810, 'synset': 'jewess.n.01', 'name': 'Jewess'}, {'id': 14811, 'synset': 'jihadist.n.01', 'name': 'Jihadist'}, {'id': 14812, 'synset': 'buddhist.n.01', 'name': 'Buddhist'}, {'id': 14813, 'synset': 'zen_buddhist.n.01', 'name': 'Zen_Buddhist'}, {'id': 14814, 'synset': 'mahayanist.n.01', 'name': 'Mahayanist'}, {'id': 14815, 'synset': 'swami.n.01', 'name': 'swami'}, {'id': 14816, 'synset': 'hare_krishna.n.01', 'name': 'Hare_Krishna'}, {'id': 14817, 'synset': 'shintoist.n.01', 'name': 'Shintoist'}, {'id': 14818, 'synset': 'eurafrican.n.01', 'name': 'Eurafrican'}, {'id': 14819, 'synset': 'eurasian.n.01', 'name': 'Eurasian'}, {'id': 14820, 'synset': 'gael.n.01', 'name': 'Gael'}, {'id': 14821, 'synset': 'frank.n.01', 'name': 'Frank'}, {'id': 14822, 'synset': 'afghan.n.02', 'name': 'Afghan'}, {'id': 14823, 'synset': 'albanian.n.01', 'name': 'Albanian'}, {'id': 14824, 'synset': 'algerian.n.01', 'name': 'Algerian'}, {'id': 14825, 'synset': 'altaic.n.01', 'name': 'Altaic'}, {'id': 14826, 'synset': 'andorran.n.01', 'name': 'Andorran'}, {'id': 14827, 'synset': 'angolan.n.01', 'name': 'Angolan'}, {'id': 14828, 'synset': 'anguillan.n.01', 'name': 'Anguillan'}, {'id': 14829, 'synset': 'austrian.n.01', 'name': 'Austrian'}, {'id': 14830, 'synset': 'bahamian.n.01', 'name': 'Bahamian'}, {'id': 14831, 'synset': 'bahraini.n.01', 'name': 'Bahraini'}, {'id': 14832, 'synset': 'basotho.n.01', 'name': 'Basotho'}, {'id': 14833, 'synset': 'herero.n.01', 'name': 'Herero'}, {'id': 14834, 'synset': 'luba.n.01', 'name': 'Luba'}, {'id': 14835, 'synset': 'barbadian.n.01', 'name': 'Barbadian'}, {'id': 14836, 'synset': 'bolivian.n.01', 'name': 'Bolivian'}, {'id': 14837, 'synset': 'bornean.n.01', 'name': 'Bornean'}, {'id': 14838, 'synset': 'carioca.n.01', 'name': 'Carioca'}, {'id': 14839, 'synset': 'tupi.n.01', 'name': 'Tupi'}, {'id': 14840, 'synset': 'bruneian.n.01', 'name': 'Bruneian'}, {'id': 14841, 'synset': 'bulgarian.n.01', 'name': 'Bulgarian'}, {'id': 14842, 'synset': 'byelorussian.n.01', 'name': 'Byelorussian'}, {'id': 14843, 'synset': 'cameroonian.n.01', 'name': 'Cameroonian'}, {'id': 14844, 'synset': 'canadian.n.01', 'name': 'Canadian'}, {'id': 14845, 'synset': 'french_canadian.n.01', 'name': 'French_Canadian'}, {'id': 14846, 'synset': 'central_american.n.01', 'name': 'Central_American'}, {'id': 14847, 'synset': 'chilean.n.01', 'name': 'Chilean'}, {'id': 14848, 'synset': 'congolese.n.01', 'name': 'Congolese'}, {'id': 14849, 'synset': 'cypriot.n.01', 'name': 'Cypriot'}, {'id': 14850, 'synset': 'dane.n.01', 'name': 'Dane'}, {'id': 14851, 'synset': 'djiboutian.n.01', 'name': 'Djiboutian'}, {'id': 14852, 'synset': 'britisher.n.01', 'name': 'Britisher'}, {'id': 14853, 'synset': 'english_person.n.01', 'name': 'English_person'}, {'id': 14854, 'synset': 'englishwoman.n.01', 'name': 'Englishwoman'}, {'id': 14855, 'synset': 'anglo-saxon.n.02', 'name': 'Anglo-Saxon'}, {'id': 14856, 'synset': 'angle.n.03', 'name': 'Angle'}, {'id': 14857, 'synset': 'west_saxon.n.01', 'name': 'West_Saxon'}, {'id': 14858, 'synset': 'lombard.n.01', 'name': 'Lombard'}, {'id': 14859, 'synset': 'limey.n.01', 'name': 'limey'}, {'id': 14860, 'synset': 'cantabrigian.n.01', 'name': 'Cantabrigian'}, {'id': 14861, 'synset': 'cornishman.n.01', 'name': 'Cornishman'}, {'id': 14862, 'synset': 'cornishwoman.n.01', 'name': 'Cornishwoman'}, {'id': 14863, 'synset': 'lancastrian.n.02', 'name': 'Lancastrian'}, {'id': 14864, 'synset': 'lancastrian.n.01', 'name': 'Lancastrian'}, {'id': 14865, 'synset': 'geordie.n.01', 'name': 'Geordie'}, {'id': 14866, 'synset': 'oxonian.n.01', 'name': 'Oxonian'}, {'id': 14867, 'synset': 'ethiopian.n.01', 'name': 'Ethiopian'}, {'id': 14868, 'synset': 'amhara.n.01', 'name': 'Amhara'}, {'id': 14869, 'synset': 'eritrean.n.01', 'name': 'Eritrean'}, {'id': 14870, 'synset': 'finn.n.01', 'name': 'Finn'}, {'id': 14871, 'synset': 'komi.n.01', 'name': 'Komi'}, {'id': 14872, 'synset': 'livonian.n.01', 'name': 'Livonian'}, {'id': 14873, 'synset': 'lithuanian.n.01', 'name': 'Lithuanian'}, {'id': 14874, 'synset': 'selkup.n.01', 'name': 'Selkup'}, {'id': 14875, 'synset': 'parisian.n.01', 'name': 'Parisian'}, {'id': 14876, 'synset': 'parisienne.n.01', 'name': 'Parisienne'}, {'id': 14877, 'synset': 'creole.n.02', 'name': 'Creole'}, {'id': 14878, 'synset': 'creole.n.01', 'name': 'Creole'}, {'id': 14879, 'synset': 'gabonese.n.01', 'name': 'Gabonese'}, {'id': 14880, 'synset': 'greek.n.02', 'name': 'Greek'}, {'id': 14881, 'synset': 'dorian.n.01', 'name': 'Dorian'}, {'id': 14882, 'synset': 'athenian.n.01', 'name': 'Athenian'}, {'id': 14883, 'synset': 'laconian.n.01', 'name': 'Laconian'}, {'id': 14884, 'synset': 'guyanese.n.01', 'name': 'Guyanese'}, {'id': 14885, 'synset': 'haitian.n.01', 'name': 'Haitian'}, {'id': 14886, 'synset': 'malay.n.01', 'name': 'Malay'}, {'id': 14887, 'synset': 'moro.n.01', 'name': 'Moro'}, {'id': 14888, 'synset': 'netherlander.n.01', 'name': 'Netherlander'}, {'id': 14889, 'synset': 'icelander.n.01', 'name': 'Icelander'}, {'id': 14890, 'synset': 'iraqi.n.01', 'name': 'Iraqi'}, {'id': 14891, 'synset': 'irishman.n.01', 'name': 'Irishman'}, {'id': 14892, 'synset': 'irishwoman.n.01', 'name': 'Irishwoman'}, {'id': 14893, 'synset': 'dubliner.n.01', 'name': 'Dubliner'}, {'id': 14894, 'synset': 'italian.n.01', 'name': 'Italian'}, {'id': 14895, 'synset': 'roman.n.01', 'name': 'Roman'}, {'id': 14896, 'synset': 'sabine.n.02', 'name': 'Sabine'}, {'id': 14897, 'synset': 'japanese.n.01', 'name': 'Japanese'}, {'id': 14898, 'synset': 'jordanian.n.01', 'name': 'Jordanian'}, {'id': 14899, 'synset': 'korean.n.01', 'name': 'Korean'}, {'id': 14900, 'synset': 'kenyan.n.01', 'name': 'Kenyan'}, {'id': 14901, 'synset': 'lao.n.01', 'name': 'Lao'}, {'id': 14902, 'synset': 'lapp.n.01', 'name': 'Lapp'}, {'id': 14903, 'synset': 'latin_american.n.01', 'name': 'Latin_American'}, {'id': 14904, 'synset': 'lebanese.n.01', 'name': 'Lebanese'}, {'id': 14905, 'synset': 'levantine.n.01', 'name': 'Levantine'}, {'id': 14906, 'synset': 'liberian.n.01', 'name': 'Liberian'}, {'id': 14907, 'synset': 'luxemburger.n.01', 'name': 'Luxemburger'}, {'id': 14908, 'synset': 'macedonian.n.01', 'name': 'Macedonian'}, {'id': 14909, 'synset': 'sabahan.n.01', 'name': 'Sabahan'}, {'id': 14910, 'synset': 'mexican.n.01', 'name': 'Mexican'}, {'id': 14911, 'synset': 'chicano.n.01', 'name': 'Chicano'}, {'id': 14912, 'synset': 'mexican-american.n.01', 'name': 'Mexican-American'}, {'id': 14913, 'synset': 'namibian.n.01', 'name': 'Namibian'}, {'id': 14914, 'synset': 'nauruan.n.01', 'name': 'Nauruan'}, {'id': 14915, 'synset': 'gurkha.n.02', 'name': 'Gurkha'}, {'id': 14916, 'synset': 'new_zealander.n.01', 'name': 'New_Zealander'}, {'id': 14917, 'synset': 'nicaraguan.n.01', 'name': 'Nicaraguan'}, {'id': 14918, 'synset': 'nigerian.n.01', 'name': 'Nigerian'}, {'id': 14919, 'synset': 'hausa.n.01', 'name': 'Hausa'}, {'id': 14920, 'synset': 'north_american.n.01', 'name': 'North_American'}, {'id': 14921, 'synset': 'nova_scotian.n.01', 'name': 'Nova_Scotian'}, {'id': 14922, 'synset': 'omani.n.01', 'name': 'Omani'}, {'id': 14923, 'synset': 'pakistani.n.01', 'name': 'Pakistani'}, {'id': 14924, 'synset': 'brahui.n.01', 'name': 'Brahui'}, {'id': 14925, 'synset': 'south_american_indian.n.01', 'name': 'South_American_Indian'}, {'id': 14926, 'synset': 'carib.n.01', 'name': 'Carib'}, {'id': 14927, 'synset': 'filipino.n.01', 'name': 'Filipino'}, {'id': 14928, 'synset': 'polynesian.n.01', 'name': 'Polynesian'}, {'id': 14929, 'synset': 'qatari.n.01', 'name': 'Qatari'}, {'id': 14930, 'synset': 'romanian.n.01', 'name': 'Romanian'}, {'id': 14931, 'synset': 'muscovite.n.02', 'name': 'Muscovite'}, {'id': 14932, 'synset': 'georgian.n.02', 'name': 'Georgian'}, {'id': 14933, 'synset': 'sarawakian.n.01', 'name': 'Sarawakian'}, {'id': 14934, 'synset': 'scandinavian.n.01', 'name': 'Scandinavian'}, {'id': 14935, 'synset': 'senegalese.n.01', 'name': 'Senegalese'}, {'id': 14936, 'synset': 'slovene.n.01', 'name': 'Slovene'}, {'id': 14937, 'synset': 'south_african.n.01', 'name': 'South_African'}, {'id': 14938, 'synset': 'south_american.n.01', 'name': 'South_American'}, {'id': 14939, 'synset': 'sudanese.n.01', 'name': 'Sudanese'}, {'id': 14940, 'synset': 'syrian.n.01', 'name': 'Syrian'}, {'id': 14941, 'synset': 'tahitian.n.01', 'name': 'Tahitian'}, {'id': 14942, 'synset': 'tanzanian.n.01', 'name': 'Tanzanian'}, {'id': 14943, 'synset': 'tibetan.n.02', 'name': 'Tibetan'}, {'id': 14944, 'synset': 'togolese.n.01', 'name': 'Togolese'}, {'id': 14945, 'synset': 'tuareg.n.01', 'name': 'Tuareg'}, {'id': 14946, 'synset': 'turki.n.01', 'name': 'Turki'}, {'id': 14947, 'synset': 'chuvash.n.01', 'name': 'Chuvash'}, {'id': 14948, 'synset': 'turkoman.n.01', 'name': 'Turkoman'}, {'id': 14949, 'synset': 'uzbek.n.01', 'name': 'Uzbek'}, {'id': 14950, 'synset': 'ugandan.n.01', 'name': 'Ugandan'}, {'id': 14951, 'synset': 'ukranian.n.01', 'name': 'Ukranian'}, {'id': 14952, 'synset': 'yakut.n.01', 'name': 'Yakut'}, {'id': 14953, 'synset': 'tungus.n.01', 'name': 'Tungus'}, {'id': 14954, 'synset': 'igbo.n.01', 'name': 'Igbo'}, {'id': 14955, 'synset': 'american.n.03', 'name': 'American'}, {'id': 14956, 'synset': 'anglo-american.n.01', 'name': 'Anglo-American'}, {'id': 14957, 'synset': 'alaska_native.n.01', 'name': 'Alaska_Native'}, {'id': 14958, 'synset': 'arkansan.n.01', 'name': 'Arkansan'}, {'id': 14959, 'synset': 'carolinian.n.01', 'name': 'Carolinian'}, {'id': 14960, 'synset': 'coloradan.n.01', 'name': 'Coloradan'}, {'id': 14961, 'synset': 'connecticuter.n.01', 'name': 'Connecticuter'}, {'id': 14962, 'synset': 'delawarean.n.01', 'name': 'Delawarean'}, {'id': 14963, 'synset': 'floridian.n.01', 'name': 'Floridian'}, {'id': 14964, 'synset': 'german_american.n.01', 'name': 'German_American'}, {'id': 14965, 'synset': 'illinoisan.n.01', 'name': 'Illinoisan'}, {'id': 14966, 'synset': 'mainer.n.01', 'name': 'Mainer'}, {'id': 14967, 'synset': 'marylander.n.01', 'name': 'Marylander'}, {'id': 14968, 'synset': 'minnesotan.n.01', 'name': 'Minnesotan'}, {'id': 14969, 'synset': 'nebraskan.n.01', 'name': 'Nebraskan'}, {'id': 14970, 'synset': 'new_hampshirite.n.01', 'name': 'New_Hampshirite'}, {'id': 14971, 'synset': 'new_jerseyan.n.01', 'name': 'New_Jerseyan'}, {'id': 14972, 'synset': 'new_yorker.n.01', 'name': 'New_Yorker'}, {'id': 14973, 'synset': 'north_carolinian.n.01', 'name': 'North_Carolinian'}, {'id': 14974, 'synset': 'oregonian.n.01', 'name': 'Oregonian'}, {'id': 14975, 'synset': 'pennsylvanian.n.02', 'name': 'Pennsylvanian'}, {'id': 14976, 'synset': 'texan.n.01', 'name': 'Texan'}, {'id': 14977, 'synset': 'utahan.n.01', 'name': 'Utahan'}, {'id': 14978, 'synset': 'uruguayan.n.01', 'name': 'Uruguayan'}, {'id': 14979, 'synset': 'vietnamese.n.01', 'name': 'Vietnamese'}, {'id': 14980, 'synset': 'gambian.n.01', 'name': 'Gambian'}, {'id': 14981, 'synset': 'east_german.n.01', 'name': 'East_German'}, {'id': 14982, 'synset': 'berliner.n.01', 'name': 'Berliner'}, {'id': 14983, 'synset': 'prussian.n.01', 'name': 'Prussian'}, {'id': 14984, 'synset': 'ghanian.n.01', 'name': 'Ghanian'}, {'id': 14985, 'synset': 'guinean.n.01', 'name': 'Guinean'}, {'id': 14986, 'synset': 'papuan.n.01', 'name': 'Papuan'}, {'id': 14987, 'synset': 'walloon.n.01', 'name': 'Walloon'}, {'id': 14988, 'synset': 'yemeni.n.01', 'name': 'Yemeni'}, {'id': 14989, 'synset': 'yugoslav.n.01', 'name': 'Yugoslav'}, {'id': 14990, 'synset': 'serbian.n.01', 'name': 'Serbian'}, {'id': 14991, 'synset': 'xhosa.n.01', 'name': 'Xhosa'}, {'id': 14992, 'synset': 'zairese.n.01', 'name': 'Zairese'}, {'id': 14993, 'synset': 'zimbabwean.n.01', 'name': 'Zimbabwean'}, {'id': 14994, 'synset': 'zulu.n.01', 'name': 'Zulu'}, {'id': 14995, 'synset': 'gemini.n.01', 'name': 'Gemini'}, {'id': 14996, 'synset': 'sagittarius.n.01', 'name': 'Sagittarius'}, {'id': 14997, 'synset': 'pisces.n.02', 'name': 'Pisces'}, {'id': 14998, 'synset': 'abbe.n.01', 'name': 'abbe'}, {'id': 14999, 'synset': 'abbess.n.01', 'name': 'abbess'}, {'id': 15000, 'synset': 'abnegator.n.01', 'name': 'abnegator'}, {'id': 15001, 'synset': 'abridger.n.01', 'name': 'abridger'}, {'id': 15002, 'synset': 'abstractor.n.01', 'name': 'abstractor'}, {'id': 15003, 'synset': 'absconder.n.01', 'name': 'absconder'}, {'id': 15004, 'synset': 'absolver.n.01', 'name': 'absolver'}, {'id': 15005, 'synset': 'abecedarian.n.01', 'name': 'abecedarian'}, {'id': 15006, 'synset': 'aberrant.n.01', 'name': 'aberrant'}, {'id': 15007, 'synset': 'abettor.n.01', 'name': 'abettor'}, {'id': 15008, 'synset': 'abhorrer.n.01', 'name': 'abhorrer'}, {'id': 15009, 'synset': 'abomination.n.01', 'name': 'abomination'}, {'id': 15010, 'synset': 'abseiler.n.01', 'name': 'abseiler'}, {'id': 15011, 'synset': 'abstainer.n.01', 'name': 'abstainer'}, {'id': 15012, 'synset': 'academic_administrator.n.01', 'name': 'academic_administrator'}, {'id': 15013, 'synset': 'academician.n.01', 'name': 'academician'}, {'id': 15014, 'synset': 'accessory_before_the_fact.n.01', 'name': 'accessory_before_the_fact'}, {'id': 15015, 'synset': 'companion.n.03', 'name': 'companion'}, {'id': 15016, 'synset': 'accompanist.n.01', 'name': 'accompanist'}, {'id': 15017, 'synset': 'accomplice.n.01', 'name': 'accomplice'}, {'id': 15018, 'synset': 'account_executive.n.01', 'name': 'account_executive'}, {'id': 15019, 'synset': 'accused.n.01', 'name': 'accused'}, {'id': 15020, 'synset': 'accuser.n.01', 'name': 'accuser'}, {'id': 15021, 'synset': 'acid_head.n.01', 'name': 'acid_head'}, {'id': 15022, 'synset': 'acquaintance.n.03', 'name': 'acquaintance'}, {'id': 15023, 'synset': 'acquirer.n.01', 'name': 'acquirer'}, {'id': 15024, 'synset': 'aerialist.n.01', 'name': 'aerialist'}, {'id': 15025, 'synset': 'action_officer.n.01', 'name': 'action_officer'}, {'id': 15026, 'synset': 'active.n.03', 'name': 'active'}, {'id': 15027, 'synset': 'active_citizen.n.01', 'name': 'active_citizen'}, {'id': 15028, 'synset': 'actor.n.01', 'name': 'actor'}, {'id': 15029, 'synset': 'actor.n.02', 'name': 'actor'}, {'id': 15030, 'synset': 'addict.n.01', 'name': 'addict'}, {'id': 15031, 'synset': 'adducer.n.01', 'name': 'adducer'}, {'id': 15032, 'synset': 'adjuster.n.01', 'name': 'adjuster'}, {'id': 15033, 'synset': 'adjutant.n.01', 'name': 'adjutant'}, {'id': 15034, 'synset': 'adjutant_general.n.01', 'name': 'adjutant_general'}, {'id': 15035, 'synset': 'admirer.n.03', 'name': 'admirer'}, {'id': 15036, 'synset': 'adoptee.n.01', 'name': 'adoptee'}, {'id': 15037, 'synset': 'adulterer.n.01', 'name': 'adulterer'}, {'id': 15038, 'synset': 'adulteress.n.01', 'name': 'adulteress'}, {'id': 15039, 'synset': 'advertiser.n.01', 'name': 'advertiser'}, {'id': 15040, 'synset': 'advisee.n.01', 'name': 'advisee'}, {'id': 15041, 'synset': 'advocate.n.01', 'name': 'advocate'}, {'id': 15042, 'synset': 'aeronautical_engineer.n.01', 'name': 'aeronautical_engineer'}, {'id': 15043, 'synset': 'affiliate.n.01', 'name': 'affiliate'}, {'id': 15044, 'synset': 'affluent.n.01', 'name': 'affluent'}, {'id': 15045, 'synset': 'aficionado.n.02', 'name': 'aficionado'}, {'id': 15046, 'synset': 'buck_sergeant.n.01', 'name': 'buck_sergeant'}, {'id': 15047, 'synset': 'agent-in-place.n.01', 'name': 'agent-in-place'}, {'id': 15048, 'synset': 'aggravator.n.01', 'name': 'aggravator'}, {'id': 15049, 'synset': 'agitator.n.01', 'name': 'agitator'}, {'id': 15050, 'synset': 'agnostic.n.02', 'name': 'agnostic'}, {'id': 15051, 'synset': 'agnostic.n.01', 'name': 'agnostic'}, {'id': 15052, 'synset': 'agonist.n.02', 'name': 'agonist'}, {'id': 15053, 'synset': 'agony_aunt.n.01', 'name': 'agony_aunt'}, {'id': 15054, 'synset': 'agriculturist.n.01', 'name': 'agriculturist'}, {'id': 15055, 'synset': 'air_attache.n.01', 'name': 'air_attache'}, {'id': 15056, 'synset': 'air_force_officer.n.01', 'name': 'air_force_officer'}, {'id': 15057, 'synset': 'airhead.n.01', 'name': 'airhead'}, {'id': 15058, 'synset': 'air_traveler.n.01', 'name': 'air_traveler'}, {'id': 15059, 'synset': 'alarmist.n.01', 'name': 'alarmist'}, {'id': 15060, 'synset': 'albino.n.01', 'name': 'albino'}, {'id': 15061, 'synset': 'alcoholic.n.01', 'name': 'alcoholic'}, {'id': 15062, 'synset': 'alderman.n.01', 'name': 'alderman'}, {'id': 15063, 'synset': 'alexic.n.01', 'name': 'alexic'}, {'id': 15064, 'synset': 'alienee.n.01', 'name': 'alienee'}, {'id': 15065, 'synset': 'alienor.n.01', 'name': 'alienor'}, {'id': 15066, 'synset': 'aliterate.n.01', 'name': 'aliterate'}, {'id': 15067, 'synset': 'algebraist.n.01', 'name': 'algebraist'}, {'id': 15068, 'synset': 'allegorizer.n.01', 'name': 'allegorizer'}, {'id': 15069, 'synset': 'alliterator.n.01', 'name': 'alliterator'}, {'id': 15070, 'synset': 'almoner.n.01', 'name': 'almoner'}, {'id': 15071, 'synset': 'alpinist.n.01', 'name': 'alpinist'}, {'id': 15072, 'synset': 'altar_boy.n.01', 'name': 'altar_boy'}, {'id': 15073, 'synset': 'alto.n.01', 'name': 'alto'}, {'id': 15074, 'synset': 'ambassador.n.01', 'name': 'ambassador'}, {'id': 15075, 'synset': 'ambassador.n.02', 'name': 'ambassador'}, {'id': 15076, 'synset': 'ambusher.n.01', 'name': 'ambusher'}, {'id': 15077, 'synset': 'amicus_curiae.n.01', 'name': 'amicus_curiae'}, {'id': 15078, 'synset': 'amoralist.n.01', 'name': 'amoralist'}, {'id': 15079, 'synset': 'amputee.n.01', 'name': 'amputee'}, {'id': 15080, 'synset': 'analogist.n.01', 'name': 'analogist'}, {'id': 15081, 'synset': 'analphabet.n.01', 'name': 'analphabet'}, {'id': 15082, 'synset': 'analyst.n.01', 'name': 'analyst'}, {'id': 15083, 'synset': 'industry_analyst.n.01', 'name': 'industry_analyst'}, {'id': 15084, 'synset': 'market_strategist.n.01', 'name': 'market_strategist'}, {'id': 15085, 'synset': 'anarchist.n.01', 'name': 'anarchist'}, {'id': 15086, 'synset': 'anathema.n.01', 'name': 'anathema'}, {'id': 15087, 'synset': 'ancestor.n.01', 'name': 'ancestor'}, {'id': 15088, 'synset': 'anchor.n.03', 'name': 'anchor'}, {'id': 15089, 'synset': 'ancient.n.02', 'name': 'ancient'}, {'id': 15090, 'synset': 'anecdotist.n.01', 'name': 'anecdotist'}, {'id': 15091, 'synset': 'angler.n.02', 'name': 'angler'}, {'id': 15092, 'synset': 'animator.n.02', 'name': 'animator'}, {'id': 15093, 'synset': 'animist.n.01', 'name': 'animist'}, {'id': 15094, 'synset': 'annotator.n.01', 'name': 'annotator'}, {'id': 15095, 'synset': 'announcer.n.02', 'name': 'announcer'}, {'id': 15096, 'synset': 'announcer.n.01', 'name': 'announcer'}, {'id': 15097, 'synset': 'anti.n.01', 'name': 'anti'}, {'id': 15098, 'synset': 'anti-american.n.01', 'name': 'anti-American'}, {'id': 15099, 'synset': 'anti-semite.n.01', 'name': 'anti-Semite'}, {'id': 15100, 'synset': 'anzac.n.01', 'name': 'Anzac'}, {'id': 15101, 'synset': 'ape-man.n.02', 'name': 'ape-man'}, {'id': 15102, 'synset': 'aphakic.n.01', 'name': 'aphakic'}, {'id': 15103, 'synset': 'appellant.n.01', 'name': 'appellant'}, {'id': 15104, 'synset': 'appointee.n.01', 'name': 'appointee'}, {'id': 15105, 'synset': 'apprehender.n.02', 'name': 'apprehender'}, {'id': 15106, 'synset': 'april_fool.n.01', 'name': 'April_fool'}, {'id': 15107, 'synset': 'aspirant.n.01', 'name': 'aspirant'}, {'id': 15108, 'synset': 'appreciator.n.01', 'name': 'appreciator'}, {'id': 15109, 'synset': 'appropriator.n.01', 'name': 'appropriator'}, {'id': 15110, 'synset': 'arabist.n.01', 'name': 'Arabist'}, {'id': 15111, 'synset': 'archaist.n.01', 'name': 'archaist'}, {'id': 15112, 'synset': 'archbishop.n.01', 'name': 'archbishop'}, {'id': 15113, 'synset': 'archer.n.01', 'name': 'archer'}, {'id': 15114, 'synset': 'architect.n.01', 'name': 'architect'}, {'id': 15115, 'synset': 'archivist.n.01', 'name': 'archivist'}, {'id': 15116, 'synset': 'archpriest.n.01', 'name': 'archpriest'}, {'id': 15117, 'synset': 'aristotelian.n.01', 'name': 'Aristotelian'}, {'id': 15118, 'synset': 'armiger.n.02', 'name': 'armiger'}, {'id': 15119, 'synset': 'army_attache.n.01', 'name': 'army_attache'}, {'id': 15120, 'synset': 'army_engineer.n.01', 'name': 'army_engineer'}, {'id': 15121, 'synset': 'army_officer.n.01', 'name': 'army_officer'}, {'id': 15122, 'synset': 'arranger.n.02', 'name': 'arranger'}, {'id': 15123, 'synset': 'arrival.n.03', 'name': 'arrival'}, {'id': 15124, 'synset': 'arthritic.n.01', 'name': 'arthritic'}, {'id': 15125, 'synset': 'articulator.n.01', 'name': 'articulator'}, {'id': 15126, 'synset': 'artilleryman.n.01', 'name': 'artilleryman'}, {'id': 15127, 'synset': "artist's_model.n.01", 'name': "artist's_model"}, {'id': 15128, 'synset': 'assayer.n.01', 'name': 'assayer'}, {'id': 15129, 'synset': 'assemblyman.n.01', 'name': 'assemblyman'}, {'id': 15130, 'synset': 'assemblywoman.n.01', 'name': 'assemblywoman'}, {'id': 15131, 'synset': 'assenter.n.01', 'name': 'assenter'}, {'id': 15132, 'synset': 'asserter.n.01', 'name': 'asserter'}, {'id': 15133, 'synset': 'assignee.n.01', 'name': 'assignee'}, {'id': 15134, 'synset': 'assistant.n.01', 'name': 'assistant'}, {'id': 15135, 'synset': 'assistant_professor.n.01', 'name': 'assistant_professor'}, {'id': 15136, 'synset': 'associate.n.01', 'name': 'associate'}, {'id': 15137, 'synset': 'associate.n.03', 'name': 'associate'}, {'id': 15138, 'synset': 'associate_professor.n.01', 'name': 'associate_professor'}, {'id': 15139, 'synset': 'astronaut.n.01', 'name': 'astronaut'}, {'id': 15140, 'synset': 'cosmographer.n.01', 'name': 'cosmographer'}, {'id': 15141, 'synset': 'atheist.n.01', 'name': 'atheist'}, {'id': 15142, 'synset': 'athlete.n.01', 'name': 'athlete'}, {'id': 15143, 'synset': 'attendant.n.01', 'name': 'attendant'}, {'id': 15144, 'synset': 'attorney_general.n.01', 'name': 'attorney_general'}, {'id': 15145, 'synset': 'auditor.n.02', 'name': 'auditor'}, {'id': 15146, 'synset': 'augur.n.01', 'name': 'augur'}, {'id': 15147, 'synset': 'aunt.n.01', 'name': 'aunt'}, {'id': 15148, 'synset': 'au_pair_girl.n.01', 'name': 'au_pair_girl'}, {'id': 15149, 'synset': 'authoritarian.n.01', 'name': 'authoritarian'}, {'id': 15150, 'synset': 'authority.n.02', 'name': 'authority'}, {'id': 15151, 'synset': 'authorizer.n.01', 'name': 'authorizer'}, {'id': 15152, 'synset': 'automobile_mechanic.n.01', 'name': 'automobile_mechanic'}, {'id': 15153, 'synset': 'aviator.n.01', 'name': 'aviator'}, {'id': 15154, 'synset': 'aviatrix.n.01', 'name': 'aviatrix'}, {'id': 15155, 'synset': 'ayah.n.01', 'name': 'ayah'}, {'id': 15156, 'synset': 'babu.n.01', 'name': 'babu'}, {'id': 15157, 'synset': 'baby.n.05', 'name': 'baby'}, {'id': 15158, 'synset': 'baby.n.04', 'name': 'baby'}, {'id': 15159, 'synset': 'baby_boomer.n.01', 'name': 'baby_boomer'}, {'id': 15160, 'synset': 'baby_farmer.n.01', 'name': 'baby_farmer'}, {'id': 15161, 'synset': 'back.n.04', 'name': 'back'}, {'id': 15162, 'synset': 'backbencher.n.01', 'name': 'backbencher'}, {'id': 15163, 'synset': 'backpacker.n.01', 'name': 'backpacker'}, {'id': 15164, 'synset': 'backroom_boy.n.01', 'name': 'backroom_boy'}, {'id': 15165, 'synset': 'backscratcher.n.01', 'name': 'backscratcher'}, {'id': 15166, 'synset': 'bad_person.n.01', 'name': 'bad_person'}, {'id': 15167, 'synset': 'baggage.n.02', 'name': 'baggage'}, {'id': 15168, 'synset': 'bag_lady.n.01', 'name': 'bag_lady'}, {'id': 15169, 'synset': 'bailee.n.01', 'name': 'bailee'}, {'id': 15170, 'synset': 'bailiff.n.01', 'name': 'bailiff'}, {'id': 15171, 'synset': 'bailor.n.01', 'name': 'bailor'}, {'id': 15172, 'synset': 'bairn.n.01', 'name': 'bairn'}, {'id': 15173, 'synset': 'baker.n.02', 'name': 'baker'}, {'id': 15174, 'synset': 'balancer.n.01', 'name': 'balancer'}, {'id': 15175, 'synset': 'balker.n.01', 'name': 'balker'}, {'id': 15176, 'synset': 'ball-buster.n.01', 'name': 'ball-buster'}, {'id': 15177, 'synset': 'ball_carrier.n.01', 'name': 'ball_carrier'}, {'id': 15178, 'synset': 'ballet_dancer.n.01', 'name': 'ballet_dancer'}, {'id': 15179, 'synset': 'ballet_master.n.01', 'name': 'ballet_master'}, {'id': 15180, 'synset': 'ballet_mistress.n.01', 'name': 'ballet_mistress'}, {'id': 15181, 'synset': 'balletomane.n.01', 'name': 'balletomane'}, {'id': 15182, 'synset': 'ball_hawk.n.01', 'name': 'ball_hawk'}, {'id': 15183, 'synset': 'balloonist.n.01', 'name': 'balloonist'}, {'id': 15184, 'synset': 'ballplayer.n.01', 'name': 'ballplayer'}, {'id': 15185, 'synset': 'bullfighter.n.01', 'name': 'bullfighter'}, {'id': 15186, 'synset': 'banderillero.n.01', 'name': 'banderillero'}, {'id': 15187, 'synset': 'matador.n.01', 'name': 'matador'}, {'id': 15188, 'synset': 'picador.n.01', 'name': 'picador'}, {'id': 15189, 'synset': 'bandsman.n.01', 'name': 'bandsman'}, {'id': 15190, 'synset': 'banker.n.02', 'name': 'banker'}, {'id': 15191, 'synset': 'bank_robber.n.01', 'name': 'bank_robber'}, {'id': 15192, 'synset': 'bankrupt.n.01', 'name': 'bankrupt'}, {'id': 15193, 'synset': 'bantamweight.n.01', 'name': 'bantamweight'}, {'id': 15194, 'synset': 'barmaid.n.01', 'name': 'barmaid'}, {'id': 15195, 'synset': 'baron.n.03', 'name': 'baron'}, {'id': 15196, 'synset': 'baron.n.02', 'name': 'baron'}, {'id': 15197, 'synset': 'baron.n.01', 'name': 'baron'}, {'id': 15198, 'synset': 'bartender.n.01', 'name': 'bartender'}, {'id': 15199, 'synset': 'baseball_coach.n.01', 'name': 'baseball_coach'}, {'id': 15200, 'synset': 'base_runner.n.01', 'name': 'base_runner'}, {'id': 15201, 'synset': 'basketball_player.n.01', 'name': 'basketball_player'}, {'id': 15202, 'synset': 'basketweaver.n.01', 'name': 'basketweaver'}, {'id': 15203, 'synset': 'basket_maker.n.01', 'name': 'Basket_Maker'}, {'id': 15204, 'synset': 'bass.n.03', 'name': 'bass'}, {'id': 15205, 'synset': 'bastard.n.02', 'name': 'bastard'}, {'id': 15206, 'synset': 'bat_boy.n.01', 'name': 'bat_boy'}, {'id': 15207, 'synset': 'bather.n.02', 'name': 'bather'}, {'id': 15208, 'synset': 'batman.n.01', 'name': 'batman'}, {'id': 15209, 'synset': 'baton_twirler.n.01', 'name': 'baton_twirler'}, {'id': 15210, 'synset': 'bavarian.n.01', 'name': 'Bavarian'}, {'id': 15211, 'synset': 'beadsman.n.01', 'name': 'beadsman'}, {'id': 15212, 'synset': 'beard.n.03', 'name': 'beard'}, {'id': 15213, 'synset': 'beatnik.n.01', 'name': 'beatnik'}, {'id': 15214, 'synset': 'beauty_consultant.n.01', 'name': 'beauty_consultant'}, {'id': 15215, 'synset': 'bedouin.n.01', 'name': 'Bedouin'}, {'id': 15216, 'synset': 'bedwetter.n.01', 'name': 'bedwetter'}, {'id': 15217, 'synset': 'beekeeper.n.01', 'name': 'beekeeper'}, {'id': 15218, 'synset': 'beer_drinker.n.01', 'name': 'beer_drinker'}, {'id': 15219, 'synset': 'beggarman.n.01', 'name': 'beggarman'}, {'id': 15220, 'synset': 'beggarwoman.n.01', 'name': 'beggarwoman'}, {'id': 15221, 'synset': 'beldam.n.02', 'name': 'beldam'}, {'id': 15222, 'synset': 'theist.n.01', 'name': 'theist'}, {'id': 15223, 'synset': 'believer.n.01', 'name': 'believer'}, {'id': 15224, 'synset': 'bell_founder.n.01', 'name': 'bell_founder'}, {'id': 15225, 'synset': 'benedick.n.01', 'name': 'benedick'}, {'id': 15226, 'synset': 'berserker.n.01', 'name': 'berserker'}, {'id': 15227, 'synset': 'besieger.n.01', 'name': 'besieger'}, {'id': 15228, 'synset': 'best.n.02', 'name': 'best'}, {'id': 15229, 'synset': 'betrothed.n.01', 'name': 'betrothed'}, {'id': 15230, 'synset': 'big_brother.n.01', 'name': 'Big_Brother'}, {'id': 15231, 'synset': 'bigot.n.01', 'name': 'bigot'}, {'id': 15232, 'synset': 'big_shot.n.01', 'name': 'big_shot'}, {'id': 15233, 'synset': 'big_sister.n.01', 'name': 'big_sister'}, {'id': 15234, 'synset': 'billiard_player.n.01', 'name': 'billiard_player'}, {'id': 15235, 'synset': 'biochemist.n.01', 'name': 'biochemist'}, {'id': 15236, 'synset': 'biographer.n.01', 'name': 'biographer'}, {'id': 15237, 'synset': 'bird_fancier.n.01', 'name': 'bird_fancier'}, {'id': 15238, 'synset': 'birth.n.05', 'name': 'birth'}, {'id': 15239, 'synset': 'birth-control_campaigner.n.01', 'name': 'birth-control_campaigner'}, {'id': 15240, 'synset': 'bisexual.n.01', 'name': 'bisexual'}, {'id': 15241, 'synset': 'black_belt.n.01', 'name': 'black_belt'}, {'id': 15242, 'synset': 'blackmailer.n.01', 'name': 'blackmailer'}, {'id': 15243, 'synset': 'black_muslim.n.01', 'name': 'Black_Muslim'}, {'id': 15244, 'synset': 'blacksmith.n.01', 'name': 'blacksmith'}, {'id': 15245, 'synset': 'blade.n.02', 'name': 'blade'}, {'id': 15246, 'synset': 'blind_date.n.01', 'name': 'blind_date'}, {'id': 15247, 'synset': 'bluecoat.n.01', 'name': 'bluecoat'}, {'id': 15248, 'synset': 'bluestocking.n.01', 'name': 'bluestocking'}, {'id': 15249, 'synset': 'boatbuilder.n.01', 'name': 'boatbuilder'}, {'id': 15250, 'synset': 'boatman.n.01', 'name': 'boatman'}, {'id': 15251, 'synset': 'boatswain.n.01', 'name': 'boatswain'}, {'id': 15252, 'synset': 'bobby.n.01', 'name': 'bobby'}, {'id': 15253, 'synset': 'bodyguard.n.01', 'name': 'bodyguard'}, {'id': 15254, 'synset': 'boffin.n.01', 'name': 'boffin'}, {'id': 15255, 'synset': 'bolshevik.n.01', 'name': 'Bolshevik'}, {'id': 15256, 'synset': 'bolshevik.n.02', 'name': 'Bolshevik'}, {'id': 15257, 'synset': 'bombshell.n.01', 'name': 'bombshell'}, {'id': 15258, 'synset': 'bondman.n.01', 'name': 'bondman'}, {'id': 15259, 'synset': 'bondwoman.n.02', 'name': 'bondwoman'}, {'id': 15260, 'synset': 'bondwoman.n.01', 'name': 'bondwoman'}, {'id': 15261, 'synset': 'bond_servant.n.01', 'name': 'bond_servant'}, {'id': 15262, 'synset': 'book_agent.n.01', 'name': 'book_agent'}, {'id': 15263, 'synset': 'bookbinder.n.01', 'name': 'bookbinder'}, {'id': 15264, 'synset': 'bookkeeper.n.01', 'name': 'bookkeeper'}, {'id': 15265, 'synset': 'bookmaker.n.01', 'name': 'bookmaker'}, {'id': 15266, 'synset': 'bookworm.n.02', 'name': 'bookworm'}, {'id': 15267, 'synset': 'booster.n.03', 'name': 'booster'}, {'id': 15268, 'synset': 'bootblack.n.01', 'name': 'bootblack'}, {'id': 15269, 'synset': 'bootlegger.n.01', 'name': 'bootlegger'}, {'id': 15270, 'synset': 'bootmaker.n.01', 'name': 'bootmaker'}, {'id': 15271, 'synset': 'borderer.n.01', 'name': 'borderer'}, {'id': 15272, 'synset': 'border_patrolman.n.01', 'name': 'border_patrolman'}, {'id': 15273, 'synset': 'botanist.n.01', 'name': 'botanist'}, {'id': 15274, 'synset': 'bottom_feeder.n.01', 'name': 'bottom_feeder'}, {'id': 15275, 'synset': 'boulevardier.n.01', 'name': 'boulevardier'}, {'id': 15276, 'synset': 'bounty_hunter.n.02', 'name': 'bounty_hunter'}, {'id': 15277, 'synset': 'bounty_hunter.n.01', 'name': 'bounty_hunter'}, {'id': 15278, 'synset': 'bourbon.n.03', 'name': 'Bourbon'}, {'id': 15279, 'synset': 'bowler.n.01', 'name': 'bowler'}, {'id': 15280, 'synset': 'slugger.n.02', 'name': 'slugger'}, {'id': 15281, 'synset': 'cub.n.02', 'name': 'cub'}, {'id': 15282, 'synset': 'boy_scout.n.01', 'name': 'Boy_Scout'}, {'id': 15283, 'synset': 'boy_scout.n.02', 'name': 'boy_scout'}, {'id': 15284, 'synset': 'boy_wonder.n.01', 'name': 'boy_wonder'}, {'id': 15285, 'synset': 'bragger.n.01', 'name': 'bragger'}, {'id': 15286, 'synset': 'brahman.n.02', 'name': 'brahman'}, {'id': 15287, 'synset': 'brawler.n.01', 'name': 'brawler'}, {'id': 15288, 'synset': 'breadwinner.n.01', 'name': 'breadwinner'}, {'id': 15289, 'synset': 'breaststroker.n.01', 'name': 'breaststroker'}, {'id': 15290, 'synset': 'breeder.n.01', 'name': 'breeder'}, {'id': 15291, 'synset': 'brick.n.02', 'name': 'brick'}, {'id': 15292, 'synset': 'bride.n.03', 'name': 'bride'}, {'id': 15293, 'synset': 'bridesmaid.n.01', 'name': 'bridesmaid'}, {'id': 15294, 'synset': 'bridge_agent.n.01', 'name': 'bridge_agent'}, {'id': 15295, 'synset': 'broadcast_journalist.n.01', 'name': 'broadcast_journalist'}, {'id': 15296, 'synset': 'brother.n.05', 'name': 'Brother'}, {'id': 15297, 'synset': 'brother-in-law.n.01', 'name': 'brother-in-law'}, {'id': 15298, 'synset': 'browser.n.01', 'name': 'browser'}, {'id': 15299, 'synset': 'brummie.n.01', 'name': 'Brummie'}, {'id': 15300, 'synset': 'buddy.n.01', 'name': 'buddy'}, {'id': 15301, 'synset': 'bull.n.06', 'name': 'bull'}, {'id': 15302, 'synset': 'bully.n.02', 'name': 'bully'}, {'id': 15303, 'synset': 'bunny.n.01', 'name': 'bunny'}, {'id': 15304, 'synset': 'burglar.n.01', 'name': 'burglar'}, {'id': 15305, 'synset': 'bursar.n.01', 'name': 'bursar'}, {'id': 15306, 'synset': 'busboy.n.01', 'name': 'busboy'}, {'id': 15307, 'synset': 'business_editor.n.01', 'name': 'business_editor'}, {'id': 15308, 'synset': 'business_traveler.n.01', 'name': 'business_traveler'}, {'id': 15309, 'synset': 'buster.n.04', 'name': 'buster'}, {'id': 15310, 'synset': 'busybody.n.01', 'name': 'busybody'}, {'id': 15311, 'synset': 'buttinsky.n.01', 'name': 'buttinsky'}, {'id': 15312, 'synset': 'cabinetmaker.n.01', 'name': 'cabinetmaker'}, {'id': 15313, 'synset': 'caddie.n.01', 'name': 'caddie'}, {'id': 15314, 'synset': 'cadet.n.01', 'name': 'cadet'}, {'id': 15315, 'synset': 'caller.n.04', 'name': 'caller'}, {'id': 15316, 'synset': 'call_girl.n.01', 'name': 'call_girl'}, {'id': 15317, 'synset': 'calligrapher.n.01', 'name': 'calligrapher'}, {'id': 15318, 'synset': 'campaigner.n.01', 'name': 'campaigner'}, {'id': 15319, 'synset': 'camper.n.01', 'name': 'camper'}, {'id': 15320, 'synset': 'camp_follower.n.02', 'name': 'camp_follower'}, {'id': 15321, 'synset': 'candidate.n.02', 'name': 'candidate'}, {'id': 15322, 'synset': 'canonist.n.01', 'name': 'canonist'}, {'id': 15323, 'synset': 'capitalist.n.01', 'name': 'capitalist'}, {'id': 15324, 'synset': 'captain.n.07', 'name': 'captain'}, {'id': 15325, 'synset': 'captain.n.06', 'name': 'captain'}, {'id': 15326, 'synset': 'captain.n.01', 'name': 'captain'}, {'id': 15327, 'synset': 'captain.n.05', 'name': 'captain'}, {'id': 15328, 'synset': 'captive.n.02', 'name': 'captive'}, {'id': 15329, 'synset': 'captive.n.03', 'name': 'captive'}, {'id': 15330, 'synset': 'cardinal.n.01', 'name': 'cardinal'}, {'id': 15331, 'synset': 'cardiologist.n.01', 'name': 'cardiologist'}, {'id': 15332, 'synset': 'card_player.n.01', 'name': 'card_player'}, {'id': 15333, 'synset': 'cardsharp.n.01', 'name': 'cardsharp'}, {'id': 15334, 'synset': 'careerist.n.01', 'name': 'careerist'}, {'id': 15335, 'synset': 'career_man.n.01', 'name': 'career_man'}, {'id': 15336, 'synset': 'caregiver.n.02', 'name': 'caregiver'}, {'id': 15337, 'synset': 'caretaker.n.01', 'name': 'caretaker'}, {'id': 15338, 'synset': 'caretaker.n.02', 'name': 'caretaker'}, {'id': 15339, 'synset': 'caricaturist.n.01', 'name': 'caricaturist'}, {'id': 15340, 'synset': 'carillonneur.n.01', 'name': 'carillonneur'}, {'id': 15341, 'synset': 'caroler.n.01', 'name': 'caroler'}, {'id': 15342, 'synset': 'carpenter.n.01', 'name': 'carpenter'}, {'id': 15343, 'synset': 'carper.n.01', 'name': 'carper'}, {'id': 15344, 'synset': 'cartesian.n.01', 'name': 'Cartesian'}, {'id': 15345, 'synset': 'cashier.n.02', 'name': 'cashier'}, {'id': 15346, 'synset': 'casualty.n.02', 'name': 'casualty'}, {'id': 15347, 'synset': 'casualty.n.01', 'name': 'casualty'}, {'id': 15348, 'synset': 'casuist.n.01', 'name': 'casuist'}, {'id': 15349, 'synset': 'catechist.n.01', 'name': 'catechist'}, {'id': 15350, 'synset': 'catechumen.n.01', 'name': 'catechumen'}, {'id': 15351, 'synset': 'caterer.n.01', 'name': 'caterer'}, {'id': 15352, 'synset': 'catholicos.n.01', 'name': 'Catholicos'}, {'id': 15353, 'synset': 'cat_fancier.n.01', 'name': 'cat_fancier'}, {'id': 15354, 'synset': 'cavalier.n.02', 'name': 'Cavalier'}, {'id': 15355, 'synset': 'cavalryman.n.02', 'name': 'cavalryman'}, {'id': 15356, 'synset': 'caveman.n.01', 'name': 'caveman'}, {'id': 15357, 'synset': 'celebrant.n.02', 'name': 'celebrant'}, {'id': 15358, 'synset': 'celebrant.n.01', 'name': 'celebrant'}, {'id': 15359, 'synset': 'celebrity.n.01', 'name': 'celebrity'}, {'id': 15360, 'synset': 'cellist.n.01', 'name': 'cellist'}, {'id': 15361, 'synset': 'censor.n.02', 'name': 'censor'}, {'id': 15362, 'synset': 'censor.n.01', 'name': 'censor'}, {'id': 15363, 'synset': 'centenarian.n.01', 'name': 'centenarian'}, {'id': 15364, 'synset': 'centrist.n.01', 'name': 'centrist'}, {'id': 15365, 'synset': 'centurion.n.01', 'name': 'centurion'}, {'id': 15366, 'synset': 'certified_public_accountant.n.01', 'name': 'certified_public_accountant'}, {'id': 15367, 'synset': 'chachka.n.01', 'name': 'chachka'}, {'id': 15368, 'synset': 'chambermaid.n.01', 'name': 'chambermaid'}, {'id': 15369, 'synset': 'chameleon.n.01', 'name': 'chameleon'}, {'id': 15370, 'synset': 'champion.n.01', 'name': 'champion'}, {'id': 15371, 'synset': 'chandler.n.02', 'name': 'chandler'}, {'id': 15372, 'synset': 'prison_chaplain.n.01', 'name': 'prison_chaplain'}, {'id': 15373, 'synset': 'charcoal_burner.n.01', 'name': 'charcoal_burner'}, {'id': 15374, 'synset': "charge_d'affaires.n.01", 'name': "charge_d'affaires"}, {'id': 15375, 'synset': 'charioteer.n.01', 'name': 'charioteer'}, {'id': 15376, 'synset': 'charmer.n.02', 'name': 'charmer'}, {'id': 15377, 'synset': 'chartered_accountant.n.01', 'name': 'chartered_accountant'}, {'id': 15378, 'synset': 'chartist.n.02', 'name': 'chartist'}, {'id': 15379, 'synset': 'charwoman.n.01', 'name': 'charwoman'}, {'id': 15380, 'synset': 'male_chauvinist.n.01', 'name': 'male_chauvinist'}, {'id': 15381, 'synset': 'cheapskate.n.01', 'name': 'cheapskate'}, {'id': 15382, 'synset': 'chechen.n.01', 'name': 'Chechen'}, {'id': 15383, 'synset': 'checker.n.02', 'name': 'checker'}, {'id': 15384, 'synset': 'cheerer.n.01', 'name': 'cheerer'}, {'id': 15385, 'synset': 'cheerleader.n.02', 'name': 'cheerleader'}, {'id': 15386, 'synset': 'cheerleader.n.01', 'name': 'cheerleader'}, {'id': 15387, 'synset': 'cheops.n.01', 'name': 'Cheops'}, {'id': 15388, 'synset': 'chess_master.n.01', 'name': 'chess_master'}, {'id': 15389, 'synset': 'chief_executive_officer.n.01', 'name': 'chief_executive_officer'}, {'id': 15390, 'synset': 'chief_of_staff.n.01', 'name': 'chief_of_staff'}, {'id': 15391, 'synset': 'chief_petty_officer.n.01', 'name': 'chief_petty_officer'}, {'id': 15392, 'synset': 'chief_secretary.n.01', 'name': 'Chief_Secretary'}, {'id': 15393, 'synset': 'child.n.01', 'name': 'child'}, {'id': 15394, 'synset': 'child.n.02', 'name': 'child'}, {'id': 15395, 'synset': 'child.n.03', 'name': 'child'}, {'id': 15396, 'synset': 'child_prodigy.n.01', 'name': 'child_prodigy'}, {'id': 15397, 'synset': 'chimneysweeper.n.01', 'name': 'chimneysweeper'}, {'id': 15398, 'synset': 'chiropractor.n.01', 'name': 'chiropractor'}, {'id': 15399, 'synset': 'chit.n.01', 'name': 'chit'}, {'id': 15400, 'synset': 'choker.n.02', 'name': 'choker'}, {'id': 15401, 'synset': 'choragus.n.01', 'name': 'choragus'}, {'id': 15402, 'synset': 'choreographer.n.01', 'name': 'choreographer'}, {'id': 15403, 'synset': 'chorus_girl.n.01', 'name': 'chorus_girl'}, {'id': 15404, 'synset': 'chosen.n.01', 'name': 'chosen'}, {'id': 15405, 'synset': 'cicerone.n.01', 'name': 'cicerone'}, {'id': 15406, 'synset': 'cigar_smoker.n.01', 'name': 'cigar_smoker'}, {'id': 15407, 'synset': 'cipher.n.04', 'name': 'cipher'}, {'id': 15408, 'synset': 'circus_acrobat.n.01', 'name': 'circus_acrobat'}, {'id': 15409, 'synset': 'citizen.n.01', 'name': 'citizen'}, {'id': 15410, 'synset': 'city_editor.n.01', 'name': 'city_editor'}, {'id': 15411, 'synset': 'city_father.n.01', 'name': 'city_father'}, {'id': 15412, 'synset': 'city_man.n.01', 'name': 'city_man'}, {'id': 15413, 'synset': 'city_slicker.n.01', 'name': 'city_slicker'}, {'id': 15414, 'synset': 'civic_leader.n.01', 'name': 'civic_leader'}, {'id': 15415, 'synset': 'civil_rights_leader.n.01', 'name': 'civil_rights_leader'}, {'id': 15416, 'synset': 'cleaner.n.03', 'name': 'cleaner'}, {'id': 15417, 'synset': 'clergyman.n.01', 'name': 'clergyman'}, {'id': 15418, 'synset': 'cleric.n.01', 'name': 'cleric'}, {'id': 15419, 'synset': 'clerk.n.01', 'name': 'clerk'}, {'id': 15420, 'synset': 'clever_dick.n.01', 'name': 'clever_Dick'}, {'id': 15421, 'synset': 'climatologist.n.01', 'name': 'climatologist'}, {'id': 15422, 'synset': 'climber.n.04', 'name': 'climber'}, {'id': 15423, 'synset': 'clinician.n.01', 'name': 'clinician'}, {'id': 15424, 'synset': 'closer.n.02', 'name': 'closer'}, {'id': 15425, 'synset': 'closet_queen.n.01', 'name': 'closet_queen'}, {'id': 15426, 'synset': 'clown.n.02', 'name': 'clown'}, {'id': 15427, 'synset': 'clown.n.01', 'name': 'clown'}, {'id': 15428, 'synset': 'coach.n.02', 'name': 'coach'}, {'id': 15429, 'synset': 'coach.n.01', 'name': 'coach'}, {'id': 15430, 'synset': 'pitching_coach.n.01', 'name': 'pitching_coach'}, {'id': 15431, 'synset': 'coachman.n.01', 'name': 'coachman'}, {'id': 15432, 'synset': 'coal_miner.n.01', 'name': 'coal_miner'}, {'id': 15433, 'synset': 'coastguardsman.n.01', 'name': 'coastguardsman'}, {'id': 15434, 'synset': 'cobber.n.01', 'name': 'cobber'}, {'id': 15435, 'synset': 'cobbler.n.01', 'name': 'cobbler'}, {'id': 15436, 'synset': 'codger.n.01', 'name': 'codger'}, {'id': 15437, 'synset': 'co-beneficiary.n.01', 'name': 'co-beneficiary'}, {'id': 15438, 'synset': 'cog.n.01', 'name': 'cog'}, {'id': 15439, 'synset': 'cognitive_neuroscientist.n.01', 'name': 'cognitive_neuroscientist'}, {'id': 15440, 'synset': 'coiffeur.n.01', 'name': 'coiffeur'}, {'id': 15441, 'synset': 'coiner.n.02', 'name': 'coiner'}, {'id': 15442, 'synset': 'collaborator.n.03', 'name': 'collaborator'}, {'id': 15443, 'synset': 'colleen.n.01', 'name': 'colleen'}, {'id': 15444, 'synset': 'college_student.n.01', 'name': 'college_student'}, {'id': 15445, 'synset': 'collegian.n.01', 'name': 'collegian'}, {'id': 15446, 'synset': 'colonial.n.01', 'name': 'colonial'}, {'id': 15447, 'synset': 'colonialist.n.01', 'name': 'colonialist'}, {'id': 15448, 'synset': 'colonizer.n.01', 'name': 'colonizer'}, {'id': 15449, 'synset': 'coloratura.n.01', 'name': 'coloratura'}, {'id': 15450, 'synset': 'color_guard.n.01', 'name': 'color_guard'}, {'id': 15451, 'synset': 'colossus.n.02', 'name': 'colossus'}, {'id': 15452, 'synset': 'comedian.n.02', 'name': 'comedian'}, {'id': 15453, 'synset': 'comedienne.n.02', 'name': 'comedienne'}, {'id': 15454, 'synset': 'comer.n.01', 'name': 'comer'}, {'id': 15455, 'synset': 'commander.n.03', 'name': 'commander'}, {'id': 15456, 'synset': 'commander_in_chief.n.01', 'name': 'commander_in_chief'}, {'id': 15457, 'synset': 'commanding_officer.n.01', 'name': 'commanding_officer'}, {'id': 15458, 'synset': 'commissar.n.01', 'name': 'commissar'}, {'id': 15459, 'synset': 'commissioned_officer.n.01', 'name': 'commissioned_officer'}, {'id': 15460, 'synset': 'commissioned_military_officer.n.01', 'name': 'commissioned_military_officer'}, {'id': 15461, 'synset': 'commissioner.n.01', 'name': 'commissioner'}, {'id': 15462, 'synset': 'commissioner.n.02', 'name': 'commissioner'}, {'id': 15463, 'synset': 'committee_member.n.01', 'name': 'committee_member'}, {'id': 15464, 'synset': 'committeewoman.n.01', 'name': 'committeewoman'}, {'id': 15465, 'synset': 'commodore.n.01', 'name': 'commodore'}, {'id': 15466, 'synset': 'communicant.n.01', 'name': 'communicant'}, {'id': 15467, 'synset': 'communist.n.02', 'name': 'communist'}, {'id': 15468, 'synset': 'communist.n.01', 'name': 'Communist'}, {'id': 15469, 'synset': 'commuter.n.02', 'name': 'commuter'}, {'id': 15470, 'synset': 'compere.n.01', 'name': 'compere'}, {'id': 15471, 'synset': 'complexifier.n.01', 'name': 'complexifier'}, {'id': 15472, 'synset': 'compulsive.n.01', 'name': 'compulsive'}, {'id': 15473, 'synset': 'computational_linguist.n.01', 'name': 'computational_linguist'}, {'id': 15474, 'synset': 'computer_scientist.n.01', 'name': 'computer_scientist'}, {'id': 15475, 'synset': 'computer_user.n.01', 'name': 'computer_user'}, {'id': 15476, 'synset': 'comrade.n.02', 'name': 'Comrade'}, {'id': 15477, 'synset': 'concert-goer.n.01', 'name': 'concert-goer'}, {'id': 15478, 'synset': 'conciliator.n.01', 'name': 'conciliator'}, {'id': 15479, 'synset': 'conductor.n.03', 'name': 'conductor'}, {'id': 15480, 'synset': 'confectioner.n.01', 'name': 'confectioner'}, {'id': 15481, 'synset': 'confederate.n.01', 'name': 'Confederate'}, {'id': 15482, 'synset': 'confessor.n.01', 'name': 'confessor'}, {'id': 15483, 'synset': 'confidant.n.01', 'name': 'confidant'}, {'id': 15484, 'synset': 'confucian.n.01', 'name': 'Confucian'}, {'id': 15485, 'synset': 'rep.n.01', 'name': 'rep'}, {'id': 15486, 'synset': 'conqueror.n.01', 'name': 'conqueror'}, {'id': 15487, 'synset': 'conservative.n.02', 'name': 'Conservative'}, {'id': 15488, 'synset': 'nonconformist.n.01', 'name': 'Nonconformist'}, {'id': 15489, 'synset': 'anglican.n.01', 'name': 'Anglican'}, {'id': 15490, 'synset': 'consignee.n.01', 'name': 'consignee'}, {'id': 15491, 'synset': 'consigner.n.01', 'name': 'consigner'}, {'id': 15492, 'synset': 'constable.n.01', 'name': 'constable'}, {'id': 15493, 'synset': 'constructivist.n.01', 'name': 'constructivist'}, {'id': 15494, 'synset': 'contractor.n.01', 'name': 'contractor'}, {'id': 15495, 'synset': 'contralto.n.01', 'name': 'contralto'}, {'id': 15496, 'synset': 'contributor.n.02', 'name': 'contributor'}, {'id': 15497, 'synset': 'control_freak.n.01', 'name': 'control_freak'}, {'id': 15498, 'synset': 'convalescent.n.01', 'name': 'convalescent'}, {'id': 15499, 'synset': 'convener.n.01', 'name': 'convener'}, {'id': 15500, 'synset': 'convict.n.01', 'name': 'convict'}, {'id': 15501, 'synset': 'copilot.n.01', 'name': 'copilot'}, {'id': 15502, 'synset': 'copycat.n.01', 'name': 'copycat'}, {'id': 15503, 'synset': 'coreligionist.n.01', 'name': 'coreligionist'}, {'id': 15504, 'synset': 'cornerback.n.01', 'name': 'cornerback'}, {'id': 15505, 'synset': 'corporatist.n.01', 'name': 'corporatist'}, {'id': 15506, 'synset': 'correspondent.n.01', 'name': 'correspondent'}, {'id': 15507, 'synset': 'cosmetician.n.01', 'name': 'cosmetician'}, {'id': 15508, 'synset': 'cosmopolitan.n.01', 'name': 'cosmopolitan'}, {'id': 15509, 'synset': 'cossack.n.01', 'name': 'Cossack'}, {'id': 15510, 'synset': 'cost_accountant.n.01', 'name': 'cost_accountant'}, {'id': 15511, 'synset': 'co-star.n.01', 'name': 'co-star'}, {'id': 15512, 'synset': 'costumier.n.01', 'name': 'costumier'}, {'id': 15513, 'synset': 'cotter.n.02', 'name': 'cotter'}, {'id': 15514, 'synset': 'cotter.n.01', 'name': 'cotter'}, {'id': 15515, 'synset': 'counselor.n.01', 'name': 'counselor'}, {'id': 15516, 'synset': 'counterterrorist.n.01', 'name': 'counterterrorist'}, {'id': 15517, 'synset': 'counterspy.n.01', 'name': 'counterspy'}, {'id': 15518, 'synset': 'countess.n.01', 'name': 'countess'}, {'id': 15519, 'synset': 'compromiser.n.01', 'name': 'compromiser'}, {'id': 15520, 'synset': 'countrywoman.n.01', 'name': 'countrywoman'}, {'id': 15521, 'synset': 'county_agent.n.01', 'name': 'county_agent'}, {'id': 15522, 'synset': 'courtier.n.01', 'name': 'courtier'}, {'id': 15523, 'synset': 'cousin.n.01', 'name': 'cousin'}, {'id': 15524, 'synset': 'cover_girl.n.01', 'name': 'cover_girl'}, {'id': 15525, 'synset': 'cow.n.03', 'name': 'cow'}, {'id': 15526, 'synset': 'craftsman.n.03', 'name': 'craftsman'}, {'id': 15527, 'synset': 'craftsman.n.02', 'name': 'craftsman'}, {'id': 15528, 'synset': 'crapshooter.n.01', 'name': 'crapshooter'}, {'id': 15529, 'synset': 'crazy.n.01', 'name': 'crazy'}, {'id': 15530, 'synset': 'creature.n.02', 'name': 'creature'}, {'id': 15531, 'synset': 'creditor.n.01', 'name': 'creditor'}, {'id': 15532, 'synset': 'creep.n.01', 'name': 'creep'}, {'id': 15533, 'synset': 'criminologist.n.01', 'name': 'criminologist'}, {'id': 15534, 'synset': 'critic.n.02', 'name': 'critic'}, {'id': 15535, 'synset': 'croesus.n.02', 'name': 'Croesus'}, {'id': 15536, 'synset': 'cross-examiner.n.01', 'name': 'cross-examiner'}, {'id': 15537, 'synset': 'crossover_voter.n.01', 'name': 'crossover_voter'}, {'id': 15538, 'synset': 'croupier.n.01', 'name': 'croupier'}, {'id': 15539, 'synset': 'crown_prince.n.01', 'name': 'crown_prince'}, {'id': 15540, 'synset': 'crown_princess.n.01', 'name': 'crown_princess'}, {'id': 15541, 'synset': 'cryptanalyst.n.01', 'name': 'cryptanalyst'}, {'id': 15542, 'synset': 'cub_scout.n.01', 'name': 'Cub_Scout'}, {'id': 15543, 'synset': 'cuckold.n.01', 'name': 'cuckold'}, {'id': 15544, 'synset': 'cultist.n.02', 'name': 'cultist'}, {'id': 15545, 'synset': 'curandera.n.01', 'name': 'curandera'}, {'id': 15546, 'synset': 'curate.n.01', 'name': 'curate'}, {'id': 15547, 'synset': 'curator.n.01', 'name': 'curator'}, {'id': 15548, 'synset': 'customer_agent.n.01', 'name': 'customer_agent'}, {'id': 15549, 'synset': 'cutter.n.02', 'name': 'cutter'}, {'id': 15550, 'synset': 'cyberpunk.n.02', 'name': 'cyberpunk'}, {'id': 15551, 'synset': 'cyborg.n.01', 'name': 'cyborg'}, {'id': 15552, 'synset': 'cymbalist.n.01', 'name': 'cymbalist'}, {'id': 15553, 'synset': 'cynic.n.02', 'name': 'Cynic'}, {'id': 15554, 'synset': 'cytogeneticist.n.01', 'name': 'cytogeneticist'}, {'id': 15555, 'synset': 'cytologist.n.01', 'name': 'cytologist'}, {'id': 15556, 'synset': 'czar.n.02', 'name': 'czar'}, {'id': 15557, 'synset': 'czar.n.01', 'name': 'czar'}, {'id': 15558, 'synset': 'dad.n.01', 'name': 'dad'}, {'id': 15559, 'synset': 'dairyman.n.02', 'name': 'dairyman'}, {'id': 15560, 'synset': 'dalai_lama.n.01', 'name': 'Dalai_Lama'}, {'id': 15561, 'synset': 'dallier.n.01', 'name': 'dallier'}, {'id': 15562, 'synset': 'dancer.n.01', 'name': 'dancer'}, {'id': 15563, 'synset': 'dancer.n.02', 'name': 'dancer'}, {'id': 15564, 'synset': 'clog_dancer.n.01', 'name': 'clog_dancer'}, {'id': 15565, 'synset': 'dancing-master.n.01', 'name': 'dancing-master'}, {'id': 15566, 'synset': 'dark_horse.n.01', 'name': 'dark_horse'}, {'id': 15567, 'synset': 'darling.n.01', 'name': 'darling'}, {'id': 15568, 'synset': 'date.n.02', 'name': 'date'}, {'id': 15569, 'synset': 'daughter.n.01', 'name': 'daughter'}, {'id': 15570, 'synset': 'dawdler.n.01', 'name': 'dawdler'}, {'id': 15571, 'synset': 'day_boarder.n.01', 'name': 'day_boarder'}, {'id': 15572, 'synset': 'day_laborer.n.01', 'name': 'day_laborer'}, {'id': 15573, 'synset': 'deacon.n.01', 'name': 'deacon'}, {'id': 15574, 'synset': 'deaconess.n.01', 'name': 'deaconess'}, {'id': 15575, 'synset': 'deadeye.n.01', 'name': 'deadeye'}, {'id': 15576, 'synset': 'deipnosophist.n.01', 'name': 'deipnosophist'}, {'id': 15577, 'synset': 'dropout.n.02', 'name': 'dropout'}, {'id': 15578, 'synset': 'deadhead.n.01', 'name': 'deadhead'}, {'id': 15579, 'synset': 'deaf_person.n.01', 'name': 'deaf_person'}, {'id': 15580, 'synset': 'debtor.n.01', 'name': 'debtor'}, {'id': 15581, 'synset': 'deckhand.n.01', 'name': 'deckhand'}, {'id': 15582, 'synset': 'defamer.n.01', 'name': 'defamer'}, {'id': 15583, 'synset': 'defense_contractor.n.01', 'name': 'defense_contractor'}, {'id': 15584, 'synset': 'deist.n.01', 'name': 'deist'}, {'id': 15585, 'synset': 'delegate.n.01', 'name': 'delegate'}, {'id': 15586, 'synset': 'deliveryman.n.01', 'name': 'deliveryman'}, {'id': 15587, 'synset': 'demagogue.n.01', 'name': 'demagogue'}, {'id': 15588, 'synset': 'demigod.n.01', 'name': 'demigod'}, {'id': 15589, 'synset': 'demographer.n.01', 'name': 'demographer'}, {'id': 15590, 'synset': 'demonstrator.n.03', 'name': 'demonstrator'}, {'id': 15591, 'synset': 'den_mother.n.02', 'name': 'den_mother'}, {'id': 15592, 'synset': 'department_head.n.01', 'name': 'department_head'}, {'id': 15593, 'synset': 'depositor.n.01', 'name': 'depositor'}, {'id': 15594, 'synset': 'deputy.n.03', 'name': 'deputy'}, {'id': 15595, 'synset': 'dermatologist.n.01', 'name': 'dermatologist'}, {'id': 15596, 'synset': 'descender.n.01', 'name': 'descender'}, {'id': 15597, 'synset': 'designated_hitter.n.01', 'name': 'designated_hitter'}, {'id': 15598, 'synset': 'designer.n.04', 'name': 'designer'}, {'id': 15599, 'synset': 'desk_clerk.n.01', 'name': 'desk_clerk'}, {'id': 15600, 'synset': 'desk_officer.n.01', 'name': 'desk_officer'}, {'id': 15601, 'synset': 'desk_sergeant.n.01', 'name': 'desk_sergeant'}, {'id': 15602, 'synset': 'detainee.n.01', 'name': 'detainee'}, {'id': 15603, 'synset': 'detective.n.01', 'name': 'detective'}, {'id': 15604, 'synset': 'detective.n.02', 'name': 'detective'}, {'id': 15605, 'synset': 'detractor.n.01', 'name': 'detractor'}, {'id': 15606, 'synset': 'developer.n.01', 'name': 'developer'}, {'id': 15607, 'synset': 'deviationist.n.01', 'name': 'deviationist'}, {'id': 15608, 'synset': 'devisee.n.01', 'name': 'devisee'}, {'id': 15609, 'synset': 'devisor.n.01', 'name': 'devisor'}, {'id': 15610, 'synset': 'devourer.n.01', 'name': 'devourer'}, {'id': 15611, 'synset': 'dialectician.n.01', 'name': 'dialectician'}, {'id': 15612, 'synset': 'diarist.n.01', 'name': 'diarist'}, {'id': 15613, 'synset': 'dietician.n.01', 'name': 'dietician'}, {'id': 15614, 'synset': 'diocesan.n.01', 'name': 'diocesan'}, {'id': 15615, 'synset': 'director.n.03', 'name': 'director'}, {'id': 15616, 'synset': 'director.n.02', 'name': 'director'}, {'id': 15617, 'synset': 'dirty_old_man.n.01', 'name': 'dirty_old_man'}, {'id': 15618, 'synset': 'disbeliever.n.01', 'name': 'disbeliever'}, {'id': 15619, 'synset': 'disk_jockey.n.01', 'name': 'disk_jockey'}, {'id': 15620, 'synset': 'dispatcher.n.02', 'name': 'dispatcher'}, {'id': 15621, 'synset': 'distortionist.n.01', 'name': 'distortionist'}, {'id': 15622, 'synset': 'distributor.n.01', 'name': 'distributor'}, {'id': 15623, 'synset': 'district_attorney.n.01', 'name': 'district_attorney'}, {'id': 15624, 'synset': 'district_manager.n.01', 'name': 'district_manager'}, {'id': 15625, 'synset': 'diver.n.02', 'name': 'diver'}, {'id': 15626, 'synset': 'divorcee.n.01', 'name': 'divorcee'}, {'id': 15627, 'synset': 'ex-wife.n.01', 'name': 'ex-wife'}, {'id': 15628, 'synset': 'divorce_lawyer.n.01', 'name': 'divorce_lawyer'}, {'id': 15629, 'synset': 'docent.n.01', 'name': 'docent'}, {'id': 15630, 'synset': 'doctor.n.01', 'name': 'doctor'}, {'id': 15631, 'synset': 'dodo.n.01', 'name': 'dodo'}, {'id': 15632, 'synset': 'doge.n.01', 'name': 'doge'}, {'id': 15633, 'synset': 'dog_in_the_manger.n.01', 'name': 'dog_in_the_manger'}, {'id': 15634, 'synset': 'dogmatist.n.01', 'name': 'dogmatist'}, {'id': 15635, 'synset': 'dolichocephalic.n.01', 'name': 'dolichocephalic'}, {'id': 15636, 'synset': 'domestic_partner.n.01', 'name': 'domestic_partner'}, {'id': 15637, 'synset': 'dominican.n.02', 'name': 'Dominican'}, {'id': 15638, 'synset': 'dominus.n.01', 'name': 'dominus'}, {'id': 15639, 'synset': 'don.n.03', 'name': 'don'}, {'id': 15640, 'synset': 'donatist.n.01', 'name': 'Donatist'}, {'id': 15641, 'synset': 'donna.n.01', 'name': 'donna'}, {'id': 15642, 'synset': 'dosser.n.01', 'name': 'dosser'}, {'id': 15643, 'synset': 'double.n.03', 'name': 'double'}, {'id': 15644, 'synset': 'double-crosser.n.01', 'name': 'double-crosser'}, {'id': 15645, 'synset': 'down-and-out.n.01', 'name': 'down-and-out'}, {'id': 15646, 'synset': 'doyenne.n.01', 'name': 'doyenne'}, {'id': 15647, 'synset': 'draftsman.n.02', 'name': 'draftsman'}, {'id': 15648, 'synset': 'dramatist.n.01', 'name': 'dramatist'}, {'id': 15649, 'synset': 'dreamer.n.01', 'name': 'dreamer'}, {'id': 15650, 'synset': 'dressmaker.n.01', 'name': 'dressmaker'}, {'id': 15651, 'synset': "dressmaker's_model.n.01", 'name': "dressmaker's_model"}, {'id': 15652, 'synset': 'dribbler.n.02', 'name': 'dribbler'}, {'id': 15653, 'synset': 'dribbler.n.01', 'name': 'dribbler'}, {'id': 15654, 'synset': 'drinker.n.02', 'name': 'drinker'}, {'id': 15655, 'synset': 'drinker.n.01', 'name': 'drinker'}, {'id': 15656, 'synset': 'drug_addict.n.01', 'name': 'drug_addict'}, {'id': 15657, 'synset': 'drug_user.n.01', 'name': 'drug_user'}, {'id': 15658, 'synset': 'druid.n.01', 'name': 'Druid'}, {'id': 15659, 'synset': 'drum_majorette.n.02', 'name': 'drum_majorette'}, {'id': 15660, 'synset': 'drummer.n.01', 'name': 'drummer'}, {'id': 15661, 'synset': 'drunk.n.02', 'name': 'drunk'}, {'id': 15662, 'synset': 'drunkard.n.01', 'name': 'drunkard'}, {'id': 15663, 'synset': 'druze.n.01', 'name': 'Druze'}, {'id': 15664, 'synset': 'dry.n.01', 'name': 'dry'}, {'id': 15665, 'synset': 'dry_nurse.n.01', 'name': 'dry_nurse'}, {'id': 15666, 'synset': 'duchess.n.01', 'name': 'duchess'}, {'id': 15667, 'synset': 'duke.n.01', 'name': 'duke'}, {'id': 15668, 'synset': 'duffer.n.01', 'name': 'duffer'}, {'id': 15669, 'synset': 'dunker.n.02', 'name': 'dunker'}, {'id': 15670, 'synset': 'dutch_uncle.n.01', 'name': 'Dutch_uncle'}, {'id': 15671, 'synset': 'dyspeptic.n.01', 'name': 'dyspeptic'}, {'id': 15672, 'synset': 'eager_beaver.n.01', 'name': 'eager_beaver'}, {'id': 15673, 'synset': 'earl.n.01', 'name': 'earl'}, {'id': 15674, 'synset': 'earner.n.01', 'name': 'earner'}, {'id': 15675, 'synset': 'eavesdropper.n.01', 'name': 'eavesdropper'}, {'id': 15676, 'synset': 'eccentric.n.01', 'name': 'eccentric'}, {'id': 15677, 'synset': 'eclectic.n.01', 'name': 'eclectic'}, {'id': 15678, 'synset': 'econometrician.n.01', 'name': 'econometrician'}, {'id': 15679, 'synset': 'economist.n.01', 'name': 'economist'}, {'id': 15680, 'synset': 'ectomorph.n.01', 'name': 'ectomorph'}, {'id': 15681, 'synset': 'editor.n.01', 'name': 'editor'}, {'id': 15682, 'synset': 'egocentric.n.01', 'name': 'egocentric'}, {'id': 15683, 'synset': 'egotist.n.01', 'name': 'egotist'}, {'id': 15684, 'synset': 'ejaculator.n.01', 'name': 'ejaculator'}, {'id': 15685, 'synset': 'elder.n.03', 'name': 'elder'}, {'id': 15686, 'synset': 'elder_statesman.n.01', 'name': 'elder_statesman'}, {'id': 15687, 'synset': 'elected_official.n.01', 'name': 'elected_official'}, {'id': 15688, 'synset': 'electrician.n.01', 'name': 'electrician'}, {'id': 15689, 'synset': 'elegist.n.01', 'name': 'elegist'}, {'id': 15690, 'synset': 'elocutionist.n.01', 'name': 'elocutionist'}, {'id': 15691, 'synset': 'emancipator.n.01', 'name': 'emancipator'}, {'id': 15692, 'synset': 'embryologist.n.01', 'name': 'embryologist'}, {'id': 15693, 'synset': 'emeritus.n.01', 'name': 'emeritus'}, {'id': 15694, 'synset': 'emigrant.n.01', 'name': 'emigrant'}, {'id': 15695, 'synset': 'emissary.n.01', 'name': 'emissary'}, {'id': 15696, 'synset': 'empress.n.01', 'name': 'empress'}, {'id': 15697, 'synset': 'employee.n.01', 'name': 'employee'}, {'id': 15698, 'synset': 'employer.n.01', 'name': 'employer'}, {'id': 15699, 'synset': 'enchantress.n.02', 'name': 'enchantress'}, {'id': 15700, 'synset': 'enchantress.n.01', 'name': 'enchantress'}, {'id': 15701, 'synset': 'encyclopedist.n.01', 'name': 'encyclopedist'}, {'id': 15702, 'synset': 'endomorph.n.01', 'name': 'endomorph'}, {'id': 15703, 'synset': 'enemy.n.02', 'name': 'enemy'}, {'id': 15704, 'synset': 'energizer.n.01', 'name': 'energizer'}, {'id': 15705, 'synset': 'end_man.n.02', 'name': 'end_man'}, {'id': 15706, 'synset': 'end_man.n.01', 'name': 'end_man'}, {'id': 15707, 'synset': 'endorser.n.02', 'name': 'endorser'}, {'id': 15708, 'synset': 'enjoyer.n.01', 'name': 'enjoyer'}, {'id': 15709, 'synset': 'enlisted_woman.n.01', 'name': 'enlisted_woman'}, {'id': 15710, 'synset': 'enophile.n.01', 'name': 'enophile'}, {'id': 15711, 'synset': 'entrant.n.04', 'name': 'entrant'}, {'id': 15712, 'synset': 'entrant.n.03', 'name': 'entrant'}, {'id': 15713, 'synset': 'entrepreneur.n.01', 'name': 'entrepreneur'}, {'id': 15714, 'synset': 'envoy.n.01', 'name': 'envoy'}, {'id': 15715, 'synset': 'enzymologist.n.01', 'name': 'enzymologist'}, {'id': 15716, 'synset': 'eparch.n.01', 'name': 'eparch'}, {'id': 15717, 'synset': 'epidemiologist.n.01', 'name': 'epidemiologist'}, {'id': 15718, 'synset': 'epigone.n.01', 'name': 'epigone'}, {'id': 15719, 'synset': 'epileptic.n.01', 'name': 'epileptic'}, {'id': 15720, 'synset': 'episcopalian.n.01', 'name': 'Episcopalian'}, {'id': 15721, 'synset': 'equerry.n.02', 'name': 'equerry'}, {'id': 15722, 'synset': 'equerry.n.01', 'name': 'equerry'}, {'id': 15723, 'synset': 'erotic.n.01', 'name': 'erotic'}, {'id': 15724, 'synset': 'escapee.n.01', 'name': 'escapee'}, {'id': 15725, 'synset': 'escapist.n.01', 'name': 'escapist'}, {'id': 15726, 'synset': 'eskimo.n.01', 'name': 'Eskimo'}, {'id': 15727, 'synset': 'espionage_agent.n.01', 'name': 'espionage_agent'}, {'id': 15728, 'synset': 'esthetician.n.01', 'name': 'esthetician'}, {'id': 15729, 'synset': 'etcher.n.01', 'name': 'etcher'}, {'id': 15730, 'synset': 'ethnologist.n.01', 'name': 'ethnologist'}, {'id': 15731, 'synset': 'etonian.n.01', 'name': 'Etonian'}, {'id': 15732, 'synset': 'etymologist.n.01', 'name': 'etymologist'}, {'id': 15733, 'synset': 'evangelist.n.01', 'name': 'evangelist'}, {'id': 15734, 'synset': 'evangelist.n.02', 'name': 'Evangelist'}, {'id': 15735, 'synset': 'event_planner.n.01', 'name': 'event_planner'}, {'id': 15736, 'synset': 'examiner.n.02', 'name': 'examiner'}, {'id': 15737, 'synset': 'examiner.n.01', 'name': 'examiner'}, {'id': 15738, 'synset': 'exarch.n.03', 'name': 'exarch'}, {'id': 15739, 'synset': 'executant.n.01', 'name': 'executant'}, {'id': 15740, 'synset': 'executive_secretary.n.01', 'name': 'executive_secretary'}, {'id': 15741, 'synset': 'executive_vice_president.n.01', 'name': 'executive_vice_president'}, {'id': 15742, 'synset': 'executrix.n.01', 'name': 'executrix'}, {'id': 15743, 'synset': 'exegete.n.01', 'name': 'exegete'}, {'id': 15744, 'synset': 'exhibitor.n.01', 'name': 'exhibitor'}, {'id': 15745, 'synset': 'exhibitionist.n.02', 'name': 'exhibitionist'}, {'id': 15746, 'synset': 'exile.n.01', 'name': 'exile'}, {'id': 15747, 'synset': 'existentialist.n.01', 'name': 'existentialist'}, {'id': 15748, 'synset': 'exorcist.n.02', 'name': 'exorcist'}, {'id': 15749, 'synset': 'ex-spouse.n.01', 'name': 'ex-spouse'}, {'id': 15750, 'synset': 'extern.n.01', 'name': 'extern'}, {'id': 15751, 'synset': 'extremist.n.01', 'name': 'extremist'}, {'id': 15752, 'synset': 'extrovert.n.01', 'name': 'extrovert'}, {'id': 15753, 'synset': 'eyewitness.n.01', 'name': 'eyewitness'}, {'id': 15754, 'synset': 'facilitator.n.01', 'name': 'facilitator'}, {'id': 15755, 'synset': 'fairy_godmother.n.01', 'name': 'fairy_godmother'}, {'id': 15756, 'synset': 'falangist.n.01', 'name': 'falangist'}, {'id': 15757, 'synset': 'falconer.n.01', 'name': 'falconer'}, {'id': 15758, 'synset': 'falsifier.n.01', 'name': 'falsifier'}, {'id': 15759, 'synset': 'familiar.n.01', 'name': 'familiar'}, {'id': 15760, 'synset': 'fan.n.03', 'name': 'fan'}, {'id': 15761, 'synset': 'fanatic.n.01', 'name': 'fanatic'}, {'id': 15762, 'synset': 'fancier.n.01', 'name': 'fancier'}, {'id': 15763, 'synset': 'farm_boy.n.01', 'name': 'farm_boy'}, {'id': 15764, 'synset': 'farmer.n.01', 'name': 'farmer'}, {'id': 15765, 'synset': 'farmhand.n.01', 'name': 'farmhand'}, {'id': 15766, 'synset': 'fascist.n.01', 'name': 'fascist'}, {'id': 15767, 'synset': 'fascista.n.01', 'name': 'fascista'}, {'id': 15768, 'synset': 'fatalist.n.01', 'name': 'fatalist'}, {'id': 15769, 'synset': 'father.n.01', 'name': 'father'}, {'id': 15770, 'synset': 'father.n.03', 'name': 'Father'}, {'id': 15771, 'synset': 'father-figure.n.01', 'name': 'father-figure'}, {'id': 15772, 'synset': 'father-in-law.n.01', 'name': 'father-in-law'}, {'id': 15773, 'synset': 'fauntleroy.n.01', 'name': 'Fauntleroy'}, {'id': 15774, 'synset': 'fauve.n.01', 'name': 'Fauve'}, {'id': 15775, 'synset': 'favorite_son.n.01', 'name': 'favorite_son'}, {'id': 15776, 'synset': 'featherweight.n.03', 'name': 'featherweight'}, {'id': 15777, 'synset': 'federalist.n.02', 'name': 'federalist'}, {'id': 15778, 'synset': 'fellow_traveler.n.01', 'name': 'fellow_traveler'}, {'id': 15779, 'synset': 'female_aristocrat.n.01', 'name': 'female_aristocrat'}, {'id': 15780, 'synset': 'female_offspring.n.01', 'name': 'female_offspring'}, {'id': 15781, 'synset': 'female_child.n.01', 'name': 'female_child'}, {'id': 15782, 'synset': 'fence.n.02', 'name': 'fence'}, {'id': 15783, 'synset': 'fiance.n.01', 'name': 'fiance'}, {'id': 15784, 'synset': 'fielder.n.02', 'name': 'fielder'}, {'id': 15785, 'synset': 'field_judge.n.01', 'name': 'field_judge'}, {'id': 15786, 'synset': 'fighter_pilot.n.01', 'name': 'fighter_pilot'}, {'id': 15787, 'synset': 'filer.n.01', 'name': 'filer'}, {'id': 15788, 'synset': 'film_director.n.01', 'name': 'film_director'}, {'id': 15789, 'synset': 'finder.n.01', 'name': 'finder'}, {'id': 15790, 'synset': 'fire_chief.n.01', 'name': 'fire_chief'}, {'id': 15791, 'synset': 'fire-eater.n.03', 'name': 'fire-eater'}, {'id': 15792, 'synset': 'fire-eater.n.02', 'name': 'fire-eater'}, {'id': 15793, 'synset': 'fireman.n.04', 'name': 'fireman'}, {'id': 15794, 'synset': 'fire_marshall.n.01', 'name': 'fire_marshall'}, {'id': 15795, 'synset': 'fire_walker.n.01', 'name': 'fire_walker'}, {'id': 15796, 'synset': 'first_baseman.n.01', 'name': 'first_baseman'}, {'id': 15797, 'synset': 'firstborn.n.01', 'name': 'firstborn'}, {'id': 15798, 'synset': 'first_lady.n.02', 'name': 'first_lady'}, {'id': 15799, 'synset': 'first_lieutenant.n.01', 'name': 'first_lieutenant'}, {'id': 15800, 'synset': 'first_offender.n.01', 'name': 'first_offender'}, {'id': 15801, 'synset': 'first_sergeant.n.01', 'name': 'first_sergeant'}, {'id': 15802, 'synset': 'fishmonger.n.01', 'name': 'fishmonger'}, {'id': 15803, 'synset': 'flagellant.n.02', 'name': 'flagellant'}, {'id': 15804, 'synset': 'flag_officer.n.01', 'name': 'flag_officer'}, {'id': 15805, 'synset': 'flak_catcher.n.01', 'name': 'flak_catcher'}, {'id': 15806, 'synset': 'flanker_back.n.01', 'name': 'flanker_back'}, {'id': 15807, 'synset': 'flapper.n.01', 'name': 'flapper'}, {'id': 15808, 'synset': 'flatmate.n.01', 'name': 'flatmate'}, {'id': 15809, 'synset': 'flatterer.n.01', 'name': 'flatterer'}, {'id': 15810, 'synset': 'flibbertigibbet.n.01', 'name': 'flibbertigibbet'}, {'id': 15811, 'synset': 'flight_surgeon.n.01', 'name': 'flight_surgeon'}, {'id': 15812, 'synset': 'floorwalker.n.01', 'name': 'floorwalker'}, {'id': 15813, 'synset': 'flop.n.02', 'name': 'flop'}, {'id': 15814, 'synset': 'florentine.n.01', 'name': 'Florentine'}, {'id': 15815, 'synset': 'flower_girl.n.02', 'name': 'flower_girl'}, {'id': 15816, 'synset': 'flower_girl.n.01', 'name': 'flower_girl'}, {'id': 15817, 'synset': 'flutist.n.01', 'name': 'flutist'}, {'id': 15818, 'synset': 'fly-by-night.n.01', 'name': 'fly-by-night'}, {'id': 15819, 'synset': 'flyweight.n.02', 'name': 'flyweight'}, {'id': 15820, 'synset': 'flyweight.n.01', 'name': 'flyweight'}, {'id': 15821, 'synset': 'foe.n.02', 'name': 'foe'}, {'id': 15822, 'synset': 'folk_dancer.n.01', 'name': 'folk_dancer'}, {'id': 15823, 'synset': 'folk_poet.n.01', 'name': 'folk_poet'}, {'id': 15824, 'synset': 'follower.n.01', 'name': 'follower'}, {'id': 15825, 'synset': 'football_hero.n.01', 'name': 'football_hero'}, {'id': 15826, 'synset': 'football_player.n.01', 'name': 'football_player'}, {'id': 15827, 'synset': 'footman.n.01', 'name': 'footman'}, {'id': 15828, 'synset': 'forefather.n.01', 'name': 'forefather'}, {'id': 15829, 'synset': 'foremother.n.01', 'name': 'foremother'}, {'id': 15830, 'synset': 'foreign_agent.n.01', 'name': 'foreign_agent'}, {'id': 15831, 'synset': 'foreigner.n.02', 'name': 'foreigner'}, {'id': 15832, 'synset': 'boss.n.03', 'name': 'boss'}, {'id': 15833, 'synset': 'foreman.n.02', 'name': 'foreman'}, {'id': 15834, 'synset': 'forester.n.02', 'name': 'forester'}, {'id': 15835, 'synset': 'forewoman.n.02', 'name': 'forewoman'}, {'id': 15836, 'synset': 'forger.n.02', 'name': 'forger'}, {'id': 15837, 'synset': 'forward.n.01', 'name': 'forward'}, {'id': 15838, 'synset': 'foster-brother.n.01', 'name': 'foster-brother'}, {'id': 15839, 'synset': 'foster-father.n.01', 'name': 'foster-father'}, {'id': 15840, 'synset': 'foster-mother.n.01', 'name': 'foster-mother'}, {'id': 15841, 'synset': 'foster-sister.n.01', 'name': 'foster-sister'}, {'id': 15842, 'synset': 'foster-son.n.01', 'name': 'foster-son'}, {'id': 15843, 'synset': 'founder.n.02', 'name': 'founder'}, {'id': 15844, 'synset': 'foundress.n.01', 'name': 'foundress'}, {'id': 15845, 'synset': 'four-minute_man.n.01', 'name': 'four-minute_man'}, {'id': 15846, 'synset': 'framer.n.02', 'name': 'framer'}, {'id': 15847, 'synset': 'francophobe.n.01', 'name': 'Francophobe'}, {'id': 15848, 'synset': 'freak.n.01', 'name': 'freak'}, {'id': 15849, 'synset': 'free_agent.n.02', 'name': 'free_agent'}, {'id': 15850, 'synset': 'free_agent.n.01', 'name': 'free_agent'}, {'id': 15851, 'synset': 'freedom_rider.n.01', 'name': 'freedom_rider'}, {'id': 15852, 'synset': 'free-liver.n.01', 'name': 'free-liver'}, {'id': 15853, 'synset': 'freeloader.n.01', 'name': 'freeloader'}, {'id': 15854, 'synset': 'free_trader.n.01', 'name': 'free_trader'}, {'id': 15855, 'synset': 'freudian.n.01', 'name': 'Freudian'}, {'id': 15856, 'synset': 'friar.n.01', 'name': 'friar'}, {'id': 15857, 'synset': 'monk.n.01', 'name': 'monk'}, {'id': 15858, 'synset': 'frontierswoman.n.01', 'name': 'frontierswoman'}, {'id': 15859, 'synset': 'front_man.n.01', 'name': 'front_man'}, {'id': 15860, 'synset': 'frotteur.n.01', 'name': 'frotteur'}, {'id': 15861, 'synset': 'fucker.n.02', 'name': 'fucker'}, {'id': 15862, 'synset': 'fucker.n.01', 'name': 'fucker'}, {'id': 15863, 'synset': 'fuddy-duddy.n.01', 'name': 'fuddy-duddy'}, {'id': 15864, 'synset': 'fullback.n.01', 'name': 'fullback'}, {'id': 15865, 'synset': 'funambulist.n.01', 'name': 'funambulist'}, {'id': 15866, 'synset': 'fundamentalist.n.01', 'name': 'fundamentalist'}, {'id': 15867, 'synset': 'fundraiser.n.01', 'name': 'fundraiser'}, {'id': 15868, 'synset': 'futurist.n.01', 'name': 'futurist'}, {'id': 15869, 'synset': 'gadgeteer.n.01', 'name': 'gadgeteer'}, {'id': 15870, 'synset': 'gagman.n.02', 'name': 'gagman'}, {'id': 15871, 'synset': 'gagman.n.01', 'name': 'gagman'}, {'id': 15872, 'synset': 'gainer.n.01', 'name': 'gainer'}, {'id': 15873, 'synset': 'gal.n.03', 'name': 'gal'}, {'id': 15874, 'synset': 'galoot.n.01', 'name': 'galoot'}, {'id': 15875, 'synset': 'gambist.n.01', 'name': 'gambist'}, {'id': 15876, 'synset': 'gambler.n.01', 'name': 'gambler'}, {'id': 15877, 'synset': 'gamine.n.02', 'name': 'gamine'}, {'id': 15878, 'synset': 'garbage_man.n.01', 'name': 'garbage_man'}, {'id': 15879, 'synset': 'gardener.n.02', 'name': 'gardener'}, {'id': 15880, 'synset': 'garment_cutter.n.01', 'name': 'garment_cutter'}, {'id': 15881, 'synset': 'garroter.n.01', 'name': 'garroter'}, {'id': 15882, 'synset': 'gasman.n.01', 'name': 'gasman'}, {'id': 15883, 'synset': 'gastroenterologist.n.01', 'name': 'gastroenterologist'}, {'id': 15884, 'synset': 'gatherer.n.01', 'name': 'gatherer'}, {'id': 15885, 'synset': 'gawker.n.01', 'name': 'gawker'}, {'id': 15886, 'synset': 'gendarme.n.01', 'name': 'gendarme'}, {'id': 15887, 'synset': 'general.n.01', 'name': 'general'}, {'id': 15888, 'synset': 'generator.n.03', 'name': 'generator'}, {'id': 15889, 'synset': 'geneticist.n.01', 'name': 'geneticist'}, {'id': 15890, 'synset': 'genitor.n.01', 'name': 'genitor'}, {'id': 15891, 'synset': 'gent.n.01', 'name': 'gent'}, {'id': 15892, 'synset': 'geologist.n.01', 'name': 'geologist'}, {'id': 15893, 'synset': 'geophysicist.n.01', 'name': 'geophysicist'}, {'id': 15894, 'synset': 'ghostwriter.n.01', 'name': 'ghostwriter'}, {'id': 15895, 'synset': 'gibson_girl.n.01', 'name': 'Gibson_girl'}, {'id': 15896, 'synset': 'girl.n.01', 'name': 'girl'}, {'id': 15897, 'synset': 'girlfriend.n.02', 'name': 'girlfriend'}, {'id': 15898, 'synset': 'girlfriend.n.01', 'name': 'girlfriend'}, {'id': 15899, 'synset': 'girl_wonder.n.01', 'name': 'girl_wonder'}, {'id': 15900, 'synset': 'girondist.n.01', 'name': 'Girondist'}, {'id': 15901, 'synset': 'gitano.n.01', 'name': 'gitano'}, {'id': 15902, 'synset': 'gladiator.n.01', 'name': 'gladiator'}, {'id': 15903, 'synset': 'glassblower.n.01', 'name': 'glassblower'}, {'id': 15904, 'synset': 'gleaner.n.02', 'name': 'gleaner'}, {'id': 15905, 'synset': 'goat_herder.n.01', 'name': 'goat_herder'}, {'id': 15906, 'synset': 'godchild.n.01', 'name': 'godchild'}, {'id': 15907, 'synset': 'godfather.n.01', 'name': 'godfather'}, {'id': 15908, 'synset': 'godparent.n.01', 'name': 'godparent'}, {'id': 15909, 'synset': 'godson.n.01', 'name': 'godson'}, {'id': 15910, 'synset': 'gofer.n.01', 'name': 'gofer'}, {'id': 15911, 'synset': 'goffer.n.01', 'name': 'goffer'}, {'id': 15912, 'synset': 'goldsmith.n.01', 'name': 'goldsmith'}, {'id': 15913, 'synset': 'golfer.n.01', 'name': 'golfer'}, {'id': 15914, 'synset': 'gondolier.n.01', 'name': 'gondolier'}, {'id': 15915, 'synset': 'good_guy.n.01', 'name': 'good_guy'}, {'id': 15916, 'synset': 'good_old_boy.n.01', 'name': 'good_old_boy'}, {'id': 15917, 'synset': 'good_samaritan.n.01', 'name': 'good_Samaritan'}, {'id': 15918, 'synset': 'gossip_columnist.n.01', 'name': 'gossip_columnist'}, {'id': 15919, 'synset': 'gouger.n.01', 'name': 'gouger'}, {'id': 15920, 'synset': 'governor_general.n.01', 'name': 'governor_general'}, {'id': 15921, 'synset': 'grabber.n.01', 'name': 'grabber'}, {'id': 15922, 'synset': 'grader.n.01', 'name': 'grader'}, {'id': 15923, 'synset': 'graduate_nurse.n.01', 'name': 'graduate_nurse'}, {'id': 15924, 'synset': 'grammarian.n.01', 'name': 'grammarian'}, {'id': 15925, 'synset': 'granddaughter.n.01', 'name': 'granddaughter'}, {'id': 15926, 'synset': 'grande_dame.n.01', 'name': 'grande_dame'}, {'id': 15927, 'synset': 'grandfather.n.01', 'name': 'grandfather'}, {'id': 15928, 'synset': 'grand_inquisitor.n.01', 'name': 'Grand_Inquisitor'}, {'id': 15929, 'synset': 'grandma.n.01', 'name': 'grandma'}, {'id': 15930, 'synset': 'grandmaster.n.01', 'name': 'grandmaster'}, {'id': 15931, 'synset': 'grandparent.n.01', 'name': 'grandparent'}, {'id': 15932, 'synset': 'grantee.n.01', 'name': 'grantee'}, {'id': 15933, 'synset': 'granter.n.01', 'name': 'granter'}, {'id': 15934, 'synset': 'grass_widower.n.01', 'name': 'grass_widower'}, {'id': 15935, 'synset': 'great-aunt.n.01', 'name': 'great-aunt'}, {'id': 15936, 'synset': 'great_grandchild.n.01', 'name': 'great_grandchild'}, {'id': 15937, 'synset': 'great_granddaughter.n.01', 'name': 'great_granddaughter'}, {'id': 15938, 'synset': 'great_grandmother.n.01', 'name': 'great_grandmother'}, {'id': 15939, 'synset': 'great_grandparent.n.01', 'name': 'great_grandparent'}, {'id': 15940, 'synset': 'great_grandson.n.01', 'name': 'great_grandson'}, {'id': 15941, 'synset': 'great-nephew.n.01', 'name': 'great-nephew'}, {'id': 15942, 'synset': 'great-niece.n.01', 'name': 'great-niece'}, {'id': 15943, 'synset': 'green_beret.n.01', 'name': 'Green_Beret'}, {'id': 15944, 'synset': 'grenadier.n.01', 'name': 'grenadier'}, {'id': 15945, 'synset': 'greeter.n.01', 'name': 'greeter'}, {'id': 15946, 'synset': 'gringo.n.01', 'name': 'gringo'}, {'id': 15947, 'synset': 'grinner.n.01', 'name': 'grinner'}, {'id': 15948, 'synset': 'grocer.n.01', 'name': 'grocer'}, {'id': 15949, 'synset': 'groom.n.03', 'name': 'groom'}, {'id': 15950, 'synset': 'groom.n.01', 'name': 'groom'}, {'id': 15951, 'synset': 'grouch.n.01', 'name': 'grouch'}, {'id': 15952, 'synset': 'group_captain.n.01', 'name': 'group_captain'}, {'id': 15953, 'synset': 'grunter.n.01', 'name': 'grunter'}, {'id': 15954, 'synset': 'prison_guard.n.01', 'name': 'prison_guard'}, {'id': 15955, 'synset': 'guard.n.01', 'name': 'guard'}, {'id': 15956, 'synset': 'guesser.n.01', 'name': 'guesser'}, {'id': 15957, 'synset': 'guest.n.01', 'name': 'guest'}, {'id': 15958, 'synset': 'guest.n.03', 'name': 'guest'}, {'id': 15959, 'synset': 'guest_of_honor.n.01', 'name': 'guest_of_honor'}, {'id': 15960, 'synset': 'guest_worker.n.01', 'name': 'guest_worker'}, {'id': 15961, 'synset': 'guide.n.02', 'name': 'guide'}, {'id': 15962, 'synset': 'guitarist.n.01', 'name': 'guitarist'}, {'id': 15963, 'synset': 'gunnery_sergeant.n.01', 'name': 'gunnery_sergeant'}, {'id': 15964, 'synset': 'guru.n.01', 'name': 'guru'}, {'id': 15965, 'synset': 'guru.n.03', 'name': 'guru'}, {'id': 15966, 'synset': 'guvnor.n.01', 'name': 'guvnor'}, {'id': 15967, 'synset': 'guy.n.01', 'name': 'guy'}, {'id': 15968, 'synset': 'gymnast.n.01', 'name': 'gymnast'}, {'id': 15969, 'synset': 'gym_rat.n.01', 'name': 'gym_rat'}, {'id': 15970, 'synset': 'gynecologist.n.01', 'name': 'gynecologist'}, {'id': 15971, 'synset': 'gypsy.n.02', 'name': 'Gypsy'}, {'id': 15972, 'synset': 'hack.n.01', 'name': 'hack'}, {'id': 15973, 'synset': 'hacker.n.02', 'name': 'hacker'}, {'id': 15974, 'synset': 'haggler.n.01', 'name': 'haggler'}, {'id': 15975, 'synset': 'hairdresser.n.01', 'name': 'hairdresser'}, {'id': 15976, 'synset': 'hakim.n.02', 'name': 'hakim'}, {'id': 15977, 'synset': 'hakka.n.01', 'name': 'Hakka'}, {'id': 15978, 'synset': 'halberdier.n.01', 'name': 'halberdier'}, {'id': 15979, 'synset': 'halfback.n.01', 'name': 'halfback'}, {'id': 15980, 'synset': 'half_blood.n.01', 'name': 'half_blood'}, {'id': 15981, 'synset': 'hand.n.10', 'name': 'hand'}, {'id': 15982, 'synset': 'animal_trainer.n.01', 'name': 'animal_trainer'}, {'id': 15983, 'synset': 'handyman.n.01', 'name': 'handyman'}, {'id': 15984, 'synset': 'hang_glider.n.01', 'name': 'hang_glider'}, {'id': 15985, 'synset': 'hardliner.n.01', 'name': 'hardliner'}, {'id': 15986, 'synset': 'harlequin.n.01', 'name': 'harlequin'}, {'id': 15987, 'synset': 'harmonizer.n.02', 'name': 'harmonizer'}, {'id': 15988, 'synset': 'hash_head.n.01', 'name': 'hash_head'}, {'id': 15989, 'synset': 'hatchet_man.n.01', 'name': 'hatchet_man'}, {'id': 15990, 'synset': 'hater.n.01', 'name': 'hater'}, {'id': 15991, 'synset': 'hatmaker.n.01', 'name': 'hatmaker'}, {'id': 15992, 'synset': 'headman.n.02', 'name': 'headman'}, {'id': 15993, 'synset': 'headmaster.n.01', 'name': 'headmaster'}, {'id': 15994, 'synset': 'head_nurse.n.01', 'name': 'head_nurse'}, {'id': 15995, 'synset': 'hearer.n.01', 'name': 'hearer'}, {'id': 15996, 'synset': 'heartbreaker.n.01', 'name': 'heartbreaker'}, {'id': 15997, 'synset': 'heathen.n.01', 'name': 'heathen'}, {'id': 15998, 'synset': 'heavyweight.n.02', 'name': 'heavyweight'}, {'id': 15999, 'synset': 'heavy.n.01', 'name': 'heavy'}, {'id': 16000, 'synset': 'heckler.n.01', 'name': 'heckler'}, {'id': 16001, 'synset': 'hedger.n.02', 'name': 'hedger'}, {'id': 16002, 'synset': 'hedger.n.01', 'name': 'hedger'}, {'id': 16003, 'synset': 'hedonist.n.01', 'name': 'hedonist'}, {'id': 16004, 'synset': 'heir.n.01', 'name': 'heir'}, {'id': 16005, 'synset': 'heir_apparent.n.01', 'name': 'heir_apparent'}, {'id': 16006, 'synset': 'heiress.n.01', 'name': 'heiress'}, {'id': 16007, 'synset': 'heir_presumptive.n.01', 'name': 'heir_presumptive'}, {'id': 16008, 'synset': 'hellion.n.01', 'name': 'hellion'}, {'id': 16009, 'synset': 'helmsman.n.01', 'name': 'helmsman'}, {'id': 16010, 'synset': 'hire.n.01', 'name': 'hire'}, {'id': 16011, 'synset': 'hematologist.n.01', 'name': 'hematologist'}, {'id': 16012, 'synset': 'hemiplegic.n.01', 'name': 'hemiplegic'}, {'id': 16013, 'synset': 'herald.n.01', 'name': 'herald'}, {'id': 16014, 'synset': 'herbalist.n.01', 'name': 'herbalist'}, {'id': 16015, 'synset': 'herder.n.02', 'name': 'herder'}, {'id': 16016, 'synset': 'hermaphrodite.n.01', 'name': 'hermaphrodite'}, {'id': 16017, 'synset': 'heroine.n.02', 'name': 'heroine'}, {'id': 16018, 'synset': 'heroin_addict.n.01', 'name': 'heroin_addict'}, {'id': 16019, 'synset': 'hero_worshiper.n.01', 'name': 'hero_worshiper'}, {'id': 16020, 'synset': 'herr.n.01', 'name': 'Herr'}, {'id': 16021, 'synset': 'highbinder.n.01', 'name': 'highbinder'}, {'id': 16022, 'synset': 'highbrow.n.01', 'name': 'highbrow'}, {'id': 16023, 'synset': 'high_commissioner.n.01', 'name': 'high_commissioner'}, {'id': 16024, 'synset': 'highflier.n.01', 'name': 'highflier'}, {'id': 16025, 'synset': 'highlander.n.02', 'name': 'Highlander'}, {'id': 16026, 'synset': 'high-muck-a-muck.n.01', 'name': 'high-muck-a-muck'}, {'id': 16027, 'synset': 'high_priest.n.01', 'name': 'high_priest'}, {'id': 16028, 'synset': 'highjacker.n.01', 'name': 'highjacker'}, {'id': 16029, 'synset': 'hireling.n.01', 'name': 'hireling'}, {'id': 16030, 'synset': 'historian.n.01', 'name': 'historian'}, {'id': 16031, 'synset': 'hitchhiker.n.01', 'name': 'hitchhiker'}, {'id': 16032, 'synset': 'hitter.n.02', 'name': 'hitter'}, {'id': 16033, 'synset': 'hobbyist.n.01', 'name': 'hobbyist'}, {'id': 16034, 'synset': 'holdout.n.01', 'name': 'holdout'}, {'id': 16035, 'synset': 'holdover.n.01', 'name': 'holdover'}, {'id': 16036, 'synset': 'holdup_man.n.01', 'name': 'holdup_man'}, {'id': 16037, 'synset': 'homeboy.n.02', 'name': 'homeboy'}, {'id': 16038, 'synset': 'homeboy.n.01', 'name': 'homeboy'}, {'id': 16039, 'synset': 'home_buyer.n.01', 'name': 'home_buyer'}, {'id': 16040, 'synset': 'homegirl.n.01', 'name': 'homegirl'}, {'id': 16041, 'synset': 'homeless.n.01', 'name': 'homeless'}, {'id': 16042, 'synset': 'homeopath.n.01', 'name': 'homeopath'}, {'id': 16043, 'synset': 'honest_woman.n.01', 'name': 'honest_woman'}, {'id': 16044, 'synset': 'honor_guard.n.01', 'name': 'honor_guard'}, {'id': 16045, 'synset': 'hooker.n.05', 'name': 'hooker'}, {'id': 16046, 'synset': 'hoper.n.01', 'name': 'hoper'}, {'id': 16047, 'synset': 'hornist.n.01', 'name': 'hornist'}, {'id': 16048, 'synset': 'horseman.n.01', 'name': 'horseman'}, {'id': 16049, 'synset': 'horse_trader.n.01', 'name': 'horse_trader'}, {'id': 16050, 'synset': 'horsewoman.n.01', 'name': 'horsewoman'}, {'id': 16051, 'synset': 'horse_wrangler.n.01', 'name': 'horse_wrangler'}, {'id': 16052, 'synset': 'horticulturist.n.01', 'name': 'horticulturist'}, {'id': 16053, 'synset': 'hospital_chaplain.n.01', 'name': 'hospital_chaplain'}, {'id': 16054, 'synset': 'host.n.08', 'name': 'host'}, {'id': 16055, 'synset': 'host.n.01', 'name': 'host'}, {'id': 16056, 'synset': 'hostess.n.01', 'name': 'hostess'}, {'id': 16057, 'synset': 'hotelier.n.01', 'name': 'hotelier'}, {'id': 16058, 'synset': 'housekeeper.n.01', 'name': 'housekeeper'}, {'id': 16059, 'synset': 'housemaster.n.01', 'name': 'housemaster'}, {'id': 16060, 'synset': 'housemate.n.01', 'name': 'housemate'}, {'id': 16061, 'synset': 'house_physician.n.01', 'name': 'house_physician'}, {'id': 16062, 'synset': 'house_sitter.n.01', 'name': 'house_sitter'}, {'id': 16063, 'synset': 'housing_commissioner.n.01', 'name': 'housing_commissioner'}, {'id': 16064, 'synset': 'huckster.n.01', 'name': 'huckster'}, {'id': 16065, 'synset': 'hugger.n.01', 'name': 'hugger'}, {'id': 16066, 'synset': 'humanist.n.02', 'name': 'humanist'}, {'id': 16067, 'synset': 'humanitarian.n.01', 'name': 'humanitarian'}, {'id': 16068, 'synset': 'hunk.n.01', 'name': 'hunk'}, {'id': 16069, 'synset': 'huntress.n.01', 'name': 'huntress'}, {'id': 16070, 'synset': 'ex-husband.n.01', 'name': 'ex-husband'}, {'id': 16071, 'synset': 'hydrologist.n.01', 'name': 'hydrologist'}, {'id': 16072, 'synset': 'hyperope.n.01', 'name': 'hyperope'}, {'id': 16073, 'synset': 'hypertensive.n.01', 'name': 'hypertensive'}, {'id': 16074, 'synset': 'hypnotist.n.01', 'name': 'hypnotist'}, {'id': 16075, 'synset': 'hypocrite.n.01', 'name': 'hypocrite'}, {'id': 16076, 'synset': 'iceman.n.01', 'name': 'iceman'}, {'id': 16077, 'synset': 'iconoclast.n.02', 'name': 'iconoclast'}, {'id': 16078, 'synset': 'ideologist.n.01', 'name': 'ideologist'}, {'id': 16079, 'synset': 'idol.n.02', 'name': 'idol'}, {'id': 16080, 'synset': 'idolizer.n.01', 'name': 'idolizer'}, {'id': 16081, 'synset': 'imam.n.01', 'name': 'imam'}, {'id': 16082, 'synset': 'imperialist.n.01', 'name': 'imperialist'}, {'id': 16083, 'synset': 'important_person.n.01', 'name': 'important_person'}, {'id': 16084, 'synset': 'inamorato.n.01', 'name': 'inamorato'}, {'id': 16085, 'synset': 'incumbent.n.01', 'name': 'incumbent'}, {'id': 16086, 'synset': 'incurable.n.01', 'name': 'incurable'}, {'id': 16087, 'synset': 'inductee.n.01', 'name': 'inductee'}, {'id': 16088, 'synset': 'industrialist.n.01', 'name': 'industrialist'}, {'id': 16089, 'synset': 'infanticide.n.01', 'name': 'infanticide'}, {'id': 16090, 'synset': 'inferior.n.01', 'name': 'inferior'}, {'id': 16091, 'synset': 'infernal.n.01', 'name': 'infernal'}, {'id': 16092, 'synset': 'infielder.n.01', 'name': 'infielder'}, {'id': 16093, 'synset': 'infiltrator.n.02', 'name': 'infiltrator'}, {'id': 16094, 'synset': 'informer.n.01', 'name': 'informer'}, {'id': 16095, 'synset': 'ingenue.n.02', 'name': 'ingenue'}, {'id': 16096, 'synset': 'ingenue.n.01', 'name': 'ingenue'}, {'id': 16097, 'synset': 'polymath.n.01', 'name': 'polymath'}, {'id': 16098, 'synset': 'in-law.n.01', 'name': 'in-law'}, {'id': 16099, 'synset': 'inquiry_agent.n.01', 'name': 'inquiry_agent'}, {'id': 16100, 'synset': 'inspector.n.01', 'name': 'inspector'}, {'id': 16101, 'synset': 'inspector_general.n.01', 'name': 'inspector_general'}, {'id': 16102, 'synset': 'instigator.n.02', 'name': 'instigator'}, {'id': 16103, 'synset': 'insurance_broker.n.01', 'name': 'insurance_broker'}, {'id': 16104, 'synset': 'insurgent.n.01', 'name': 'insurgent'}, {'id': 16105, 'synset': 'intelligence_analyst.n.01', 'name': 'intelligence_analyst'}, {'id': 16106, 'synset': 'interior_designer.n.01', 'name': 'interior_designer'}, {'id': 16107, 'synset': 'interlocutor.n.02', 'name': 'interlocutor'}, {'id': 16108, 'synset': 'interlocutor.n.01', 'name': 'interlocutor'}, {'id': 16109, 'synset': 'international_grandmaster.n.01', 'name': 'International_Grandmaster'}, {'id': 16110, 'synset': 'internationalist.n.02', 'name': 'internationalist'}, {'id': 16111, 'synset': 'internist.n.01', 'name': 'internist'}, {'id': 16112, 'synset': 'interpreter.n.01', 'name': 'interpreter'}, {'id': 16113, 'synset': 'interpreter.n.02', 'name': 'interpreter'}, {'id': 16114, 'synset': 'intervenor.n.01', 'name': 'intervenor'}, {'id': 16115, 'synset': 'introvert.n.01', 'name': 'introvert'}, {'id': 16116, 'synset': 'invader.n.01', 'name': 'invader'}, {'id': 16117, 'synset': 'invalidator.n.01', 'name': 'invalidator'}, {'id': 16118, 'synset': 'investigator.n.02', 'name': 'investigator'}, {'id': 16119, 'synset': 'investor.n.01', 'name': 'investor'}, {'id': 16120, 'synset': 'invigilator.n.01', 'name': 'invigilator'}, {'id': 16121, 'synset': 'irreligionist.n.01', 'name': 'irreligionist'}, {'id': 16122, 'synset': 'ivy_leaguer.n.01', 'name': 'Ivy_Leaguer'}, {'id': 16123, 'synset': 'jack_of_all_trades.n.01', 'name': 'Jack_of_all_trades'}, {'id': 16124, 'synset': 'jacksonian.n.01', 'name': 'Jacksonian'}, {'id': 16125, 'synset': 'jane_doe.n.01', 'name': 'Jane_Doe'}, {'id': 16126, 'synset': 'janissary.n.01', 'name': 'janissary'}, {'id': 16127, 'synset': 'jat.n.01', 'name': 'Jat'}, {'id': 16128, 'synset': 'javanese.n.01', 'name': 'Javanese'}, {'id': 16129, 'synset': 'jekyll_and_hyde.n.01', 'name': 'Jekyll_and_Hyde'}, {'id': 16130, 'synset': 'jester.n.01', 'name': 'jester'}, {'id': 16131, 'synset': 'jesuit.n.01', 'name': 'Jesuit'}, {'id': 16132, 'synset': 'jezebel.n.02', 'name': 'jezebel'}, {'id': 16133, 'synset': 'jilt.n.01', 'name': 'jilt'}, {'id': 16134, 'synset': 'jobber.n.01', 'name': 'jobber'}, {'id': 16135, 'synset': 'job_candidate.n.01', 'name': 'job_candidate'}, {'id': 16136, 'synset': "job's_comforter.n.01", 'name': "Job's_comforter"}, {'id': 16137, 'synset': 'jockey.n.01', 'name': 'jockey'}, {'id': 16138, 'synset': 'john_doe.n.02', 'name': 'John_Doe'}, {'id': 16139, 'synset': 'journalist.n.01', 'name': 'journalist'}, {'id': 16140, 'synset': 'judge.n.01', 'name': 'judge'}, {'id': 16141, 'synset': 'judge_advocate.n.01', 'name': 'judge_advocate'}, {'id': 16142, 'synset': 'juggler.n.01', 'name': 'juggler'}, {'id': 16143, 'synset': 'jungian.n.01', 'name': 'Jungian'}, {'id': 16144, 'synset': 'junior.n.03', 'name': 'junior'}, {'id': 16145, 'synset': 'junior.n.02', 'name': 'junior'}, {'id': 16146, 'synset': 'junior.n.04', 'name': 'Junior'}, {'id': 16147, 'synset': 'junior_lightweight.n.01', 'name': 'junior_lightweight'}, {'id': 16148, 'synset': 'junior_middleweight.n.01', 'name': 'junior_middleweight'}, {'id': 16149, 'synset': 'jurist.n.01', 'name': 'jurist'}, {'id': 16150, 'synset': 'juror.n.01', 'name': 'juror'}, {'id': 16151, 'synset': 'justice_of_the_peace.n.01', 'name': 'justice_of_the_peace'}, {'id': 16152, 'synset': 'justiciar.n.01', 'name': 'justiciar'}, {'id': 16153, 'synset': 'kachina.n.01', 'name': 'kachina'}, {'id': 16154, 'synset': 'keyboardist.n.01', 'name': 'keyboardist'}, {'id': 16155, 'synset': 'khedive.n.01', 'name': 'Khedive'}, {'id': 16156, 'synset': 'kingmaker.n.02', 'name': 'kingmaker'}, {'id': 16157, 'synset': 'king.n.02', 'name': 'king'}, {'id': 16158, 'synset': "king's_counsel.n.01", 'name': "King's_Counsel"}, {'id': 16159, 'synset': 'counsel_to_the_crown.n.01', 'name': 'Counsel_to_the_Crown'}, {'id': 16160, 'synset': 'kin.n.01', 'name': 'kin'}, {'id': 16161, 'synset': 'enate.n.01', 'name': 'enate'}, {'id': 16162, 'synset': 'kink.n.03', 'name': 'kink'}, {'id': 16163, 'synset': 'kinswoman.n.01', 'name': 'kinswoman'}, {'id': 16164, 'synset': 'kisser.n.01', 'name': 'kisser'}, {'id': 16165, 'synset': 'kitchen_help.n.01', 'name': 'kitchen_help'}, {'id': 16166, 'synset': 'kitchen_police.n.01', 'name': 'kitchen_police'}, {'id': 16167, 'synset': 'klansman.n.01', 'name': 'Klansman'}, {'id': 16168, 'synset': 'kleptomaniac.n.01', 'name': 'kleptomaniac'}, {'id': 16169, 'synset': 'kneeler.n.01', 'name': 'kneeler'}, {'id': 16170, 'synset': 'knight.n.01', 'name': 'knight'}, {'id': 16171, 'synset': 'knocker.n.01', 'name': 'knocker'}, {'id': 16172, 'synset': 'knower.n.01', 'name': 'knower'}, {'id': 16173, 'synset': 'know-it-all.n.01', 'name': 'know-it-all'}, {'id': 16174, 'synset': 'kolkhoznik.n.01', 'name': 'kolkhoznik'}, {'id': 16175, 'synset': 'kshatriya.n.01', 'name': 'Kshatriya'}, {'id': 16176, 'synset': 'labor_coach.n.01', 'name': 'labor_coach'}, {'id': 16177, 'synset': 'laborer.n.01', 'name': 'laborer'}, {'id': 16178, 'synset': 'labourite.n.01', 'name': 'Labourite'}, {'id': 16179, 'synset': 'lady.n.01', 'name': 'lady'}, {'id': 16180, 'synset': 'lady-in-waiting.n.01', 'name': 'lady-in-waiting'}, {'id': 16181, 'synset': "lady's_maid.n.01", 'name': "lady's_maid"}, {'id': 16182, 'synset': 'lama.n.01', 'name': 'lama'}, {'id': 16183, 'synset': 'lamb.n.04', 'name': 'lamb'}, {'id': 16184, 'synset': 'lame_duck.n.01', 'name': 'lame_duck'}, {'id': 16185, 'synset': 'lamplighter.n.01', 'name': 'lamplighter'}, {'id': 16186, 'synset': 'land_agent.n.02', 'name': 'land_agent'}, {'id': 16187, 'synset': 'landgrave.n.01', 'name': 'landgrave'}, {'id': 16188, 'synset': 'landlubber.n.02', 'name': 'landlubber'}, {'id': 16189, 'synset': 'landlubber.n.01', 'name': 'landlubber'}, {'id': 16190, 'synset': 'landowner.n.01', 'name': 'landowner'}, {'id': 16191, 'synset': 'landscape_architect.n.01', 'name': 'landscape_architect'}, {'id': 16192, 'synset': 'langlaufer.n.01', 'name': 'langlaufer'}, {'id': 16193, 'synset': 'languisher.n.01', 'name': 'languisher'}, {'id': 16194, 'synset': 'lapidary.n.01', 'name': 'lapidary'}, {'id': 16195, 'synset': 'lass.n.01', 'name': 'lass'}, {'id': 16196, 'synset': 'latin.n.03', 'name': 'Latin'}, {'id': 16197, 'synset': 'latin.n.02', 'name': 'Latin'}, {'id': 16198, 'synset': 'latitudinarian.n.01', 'name': 'latitudinarian'}, {'id': 16199, 'synset': "jehovah's_witness.n.01", 'name': "Jehovah's_Witness"}, {'id': 16200, 'synset': 'law_agent.n.01', 'name': 'law_agent'}, {'id': 16201, 'synset': 'lawgiver.n.01', 'name': 'lawgiver'}, {'id': 16202, 'synset': 'lawman.n.01', 'name': 'lawman'}, {'id': 16203, 'synset': 'law_student.n.01', 'name': 'law_student'}, {'id': 16204, 'synset': 'lawyer.n.01', 'name': 'lawyer'}, {'id': 16205, 'synset': 'lay_reader.n.01', 'name': 'lay_reader'}, {'id': 16206, 'synset': 'lazybones.n.01', 'name': 'lazybones'}, {'id': 16207, 'synset': 'leaker.n.01', 'name': 'leaker'}, {'id': 16208, 'synset': 'leaseholder.n.01', 'name': 'leaseholder'}, {'id': 16209, 'synset': 'lector.n.02', 'name': 'lector'}, {'id': 16210, 'synset': 'lector.n.01', 'name': 'lector'}, {'id': 16211, 'synset': 'lecturer.n.02', 'name': 'lecturer'}, {'id': 16212, 'synset': 'left-hander.n.02', 'name': 'left-hander'}, {'id': 16213, 'synset': 'legal_representative.n.01', 'name': 'legal_representative'}, {'id': 16214, 'synset': 'legate.n.01', 'name': 'legate'}, {'id': 16215, 'synset': 'legatee.n.01', 'name': 'legatee'}, {'id': 16216, 'synset': 'legionnaire.n.02', 'name': 'legionnaire'}, {'id': 16217, 'synset': 'letterman.n.01', 'name': 'letterman'}, {'id': 16218, 'synset': 'liberator.n.01', 'name': 'liberator'}, {'id': 16219, 'synset': 'licenser.n.01', 'name': 'licenser'}, {'id': 16220, 'synset': 'licentiate.n.01', 'name': 'licentiate'}, {'id': 16221, 'synset': 'lieutenant.n.01', 'name': 'lieutenant'}, {'id': 16222, 'synset': 'lieutenant_colonel.n.01', 'name': 'lieutenant_colonel'}, {'id': 16223, 'synset': 'lieutenant_commander.n.01', 'name': 'lieutenant_commander'}, {'id': 16224, 'synset': 'lieutenant_junior_grade.n.01', 'name': 'lieutenant_junior_grade'}, {'id': 16225, 'synset': 'life.n.08', 'name': 'life'}, {'id': 16226, 'synset': 'lifeguard.n.01', 'name': 'lifeguard'}, {'id': 16227, 'synset': 'life_tenant.n.01', 'name': 'life_tenant'}, {'id': 16228, 'synset': 'light_flyweight.n.01', 'name': 'light_flyweight'}, {'id': 16229, 'synset': 'light_heavyweight.n.03', 'name': 'light_heavyweight'}, {'id': 16230, 'synset': 'light_heavyweight.n.01', 'name': 'light_heavyweight'}, {'id': 16231, 'synset': "light-o'-love.n.01", 'name': "light-o'-love"}, {'id': 16232, 'synset': 'lightweight.n.01', 'name': 'lightweight'}, {'id': 16233, 'synset': 'lightweight.n.04', 'name': 'lightweight'}, {'id': 16234, 'synset': 'lightweight.n.03', 'name': 'lightweight'}, {'id': 16235, 'synset': 'lilliputian.n.01', 'name': 'lilliputian'}, {'id': 16236, 'synset': 'limnologist.n.01', 'name': 'limnologist'}, {'id': 16237, 'synset': 'lineman.n.01', 'name': 'lineman'}, {'id': 16238, 'synset': 'line_officer.n.01', 'name': 'line_officer'}, {'id': 16239, 'synset': 'lion-hunter.n.01', 'name': 'lion-hunter'}, {'id': 16240, 'synset': 'lisper.n.01', 'name': 'lisper'}, {'id': 16241, 'synset': 'lister.n.02', 'name': 'lister'}, {'id': 16242, 'synset': 'literary_critic.n.01', 'name': 'literary_critic'}, {'id': 16243, 'synset': 'literate.n.01', 'name': 'literate'}, {'id': 16244, 'synset': 'litigant.n.01', 'name': 'litigant'}, {'id': 16245, 'synset': 'litterer.n.01', 'name': 'litterer'}, {'id': 16246, 'synset': 'little_brother.n.01', 'name': 'little_brother'}, {'id': 16247, 'synset': 'little_sister.n.01', 'name': 'little_sister'}, {'id': 16248, 'synset': 'lobbyist.n.01', 'name': 'lobbyist'}, {'id': 16249, 'synset': 'locksmith.n.01', 'name': 'locksmith'}, {'id': 16250, 'synset': 'locum_tenens.n.01', 'name': 'locum_tenens'}, {'id': 16251, 'synset': 'lord.n.03', 'name': 'Lord'}, {'id': 16252, 'synset': 'loser.n.03', 'name': 'loser'}, {'id': 16253, 'synset': 'loser.n.01', 'name': 'loser'}, {'id': 16254, 'synset': 'failure.n.04', 'name': 'failure'}, {'id': 16255, 'synset': 'lothario.n.01', 'name': 'Lothario'}, {'id': 16256, 'synset': 'loudmouth.n.01', 'name': 'loudmouth'}, {'id': 16257, 'synset': 'lowerclassman.n.01', 'name': 'lowerclassman'}, {'id': 16258, 'synset': 'lowlander.n.01', 'name': 'Lowlander'}, {'id': 16259, 'synset': 'loyalist.n.01', 'name': 'loyalist'}, {'id': 16260, 'synset': 'luddite.n.01', 'name': 'Luddite'}, {'id': 16261, 'synset': 'lumberman.n.01', 'name': 'lumberman'}, {'id': 16262, 'synset': 'lumper.n.02', 'name': 'lumper'}, {'id': 16263, 'synset': 'bedlamite.n.01', 'name': 'bedlamite'}, {'id': 16264, 'synset': 'pyromaniac.n.01', 'name': 'pyromaniac'}, {'id': 16265, 'synset': 'lutist.n.01', 'name': 'lutist'}, {'id': 16266, 'synset': 'lutheran.n.01', 'name': 'Lutheran'}, {'id': 16267, 'synset': 'lyricist.n.01', 'name': 'lyricist'}, {'id': 16268, 'synset': 'macebearer.n.01', 'name': 'macebearer'}, {'id': 16269, 'synset': 'machinist.n.01', 'name': 'machinist'}, {'id': 16270, 'synset': 'madame.n.01', 'name': 'madame'}, {'id': 16271, 'synset': 'maenad.n.01', 'name': 'maenad'}, {'id': 16272, 'synset': 'maestro.n.01', 'name': 'maestro'}, {'id': 16273, 'synset': 'magdalen.n.01', 'name': 'magdalen'}, {'id': 16274, 'synset': 'magician.n.01', 'name': 'magician'}, {'id': 16275, 'synset': 'magus.n.01', 'name': 'magus'}, {'id': 16276, 'synset': 'maharani.n.01', 'name': 'maharani'}, {'id': 16277, 'synset': 'mahatma.n.01', 'name': 'mahatma'}, {'id': 16278, 'synset': 'maid.n.02', 'name': 'maid'}, {'id': 16279, 'synset': 'maid.n.01', 'name': 'maid'}, {'id': 16280, 'synset': 'major.n.01', 'name': 'major'}, {'id': 16281, 'synset': 'major.n.03', 'name': 'major'}, {'id': 16282, 'synset': 'major-domo.n.01', 'name': 'major-domo'}, {'id': 16283, 'synset': 'maker.n.01', 'name': 'maker'}, {'id': 16284, 'synset': 'malahini.n.01', 'name': 'malahini'}, {'id': 16285, 'synset': 'malcontent.n.01', 'name': 'malcontent'}, {'id': 16286, 'synset': 'malik.n.01', 'name': 'malik'}, {'id': 16287, 'synset': 'malingerer.n.01', 'name': 'malingerer'}, {'id': 16288, 'synset': 'malthusian.n.01', 'name': 'Malthusian'}, {'id': 16289, 'synset': 'adonis.n.01', 'name': 'adonis'}, {'id': 16290, 'synset': 'man.n.03', 'name': 'man'}, {'id': 16291, 'synset': 'man.n.05', 'name': 'man'}, {'id': 16292, 'synset': 'manageress.n.01', 'name': 'manageress'}, {'id': 16293, 'synset': 'mandarin.n.03', 'name': 'mandarin'}, {'id': 16294, 'synset': 'maneuverer.n.01', 'name': 'maneuverer'}, {'id': 16295, 'synset': 'maniac.n.02', 'name': 'maniac'}, {'id': 16296, 'synset': 'manichaean.n.01', 'name': 'Manichaean'}, {'id': 16297, 'synset': 'manicurist.n.01', 'name': 'manicurist'}, {'id': 16298, 'synset': 'manipulator.n.02', 'name': 'manipulator'}, {'id': 16299, 'synset': 'man-at-arms.n.01', 'name': 'man-at-arms'}, {'id': 16300, 'synset': 'man_of_action.n.01', 'name': 'man_of_action'}, {'id': 16301, 'synset': 'man_of_letters.n.01', 'name': 'man_of_letters'}, {'id': 16302, 'synset': 'manufacturer.n.02', 'name': 'manufacturer'}, {'id': 16303, 'synset': 'marcher.n.02', 'name': 'marcher'}, {'id': 16304, 'synset': 'marchioness.n.02', 'name': 'marchioness'}, {'id': 16305, 'synset': 'margrave.n.02', 'name': 'margrave'}, {'id': 16306, 'synset': 'margrave.n.01', 'name': 'margrave'}, {'id': 16307, 'synset': 'marine.n.01', 'name': 'Marine'}, {'id': 16308, 'synset': 'marquess.n.02', 'name': 'marquess'}, {'id': 16309, 'synset': 'marquis.n.02', 'name': 'marquis'}, {'id': 16310, 'synset': 'marshal.n.02', 'name': 'marshal'}, {'id': 16311, 'synset': 'martinet.n.01', 'name': 'martinet'}, {'id': 16312, 'synset': 'masochist.n.01', 'name': 'masochist'}, {'id': 16313, 'synset': 'mason.n.04', 'name': 'mason'}, {'id': 16314, 'synset': 'masquerader.n.01', 'name': 'masquerader'}, {'id': 16315, 'synset': 'masseur.n.01', 'name': 'masseur'}, {'id': 16316, 'synset': 'masseuse.n.01', 'name': 'masseuse'}, {'id': 16317, 'synset': 'master.n.04', 'name': 'master'}, {'id': 16318, 'synset': 'master.n.07', 'name': 'master'}, {'id': 16319, 'synset': 'master-at-arms.n.01', 'name': 'master-at-arms'}, {'id': 16320, 'synset': 'master_of_ceremonies.n.01', 'name': 'master_of_ceremonies'}, {'id': 16321, 'synset': 'masturbator.n.01', 'name': 'masturbator'}, {'id': 16322, 'synset': 'matchmaker.n.01', 'name': 'matchmaker'}, {'id': 16323, 'synset': 'mate.n.01', 'name': 'mate'}, {'id': 16324, 'synset': 'mate.n.08', 'name': 'mate'}, {'id': 16325, 'synset': 'mate.n.03', 'name': 'mate'}, {'id': 16326, 'synset': 'mater.n.01', 'name': 'mater'}, {'id': 16327, 'synset': 'material.n.05', 'name': 'material'}, {'id': 16328, 'synset': 'materialist.n.02', 'name': 'materialist'}, {'id': 16329, 'synset': 'matriarch.n.01', 'name': 'matriarch'}, {'id': 16330, 'synset': 'matriarch.n.02', 'name': 'matriarch'}, {'id': 16331, 'synset': 'matriculate.n.01', 'name': 'matriculate'}, {'id': 16332, 'synset': 'matron.n.01', 'name': 'matron'}, {'id': 16333, 'synset': 'mayor.n.01', 'name': 'mayor'}, {'id': 16334, 'synset': 'mayoress.n.01', 'name': 'mayoress'}, {'id': 16335, 'synset': 'mechanical_engineer.n.01', 'name': 'mechanical_engineer'}, {'id': 16336, 'synset': 'medalist.n.02', 'name': 'medalist'}, {'id': 16337, 'synset': 'medical_officer.n.01', 'name': 'medical_officer'}, {'id': 16338, 'synset': 'medical_practitioner.n.01', 'name': 'medical_practitioner'}, {'id': 16339, 'synset': 'medical_scientist.n.01', 'name': 'medical_scientist'}, {'id': 16340, 'synset': 'medium.n.09', 'name': 'medium'}, {'id': 16341, 'synset': 'megalomaniac.n.01', 'name': 'megalomaniac'}, {'id': 16342, 'synset': 'melancholic.n.01', 'name': 'melancholic'}, {'id': 16343, 'synset': 'melkite.n.01', 'name': 'Melkite'}, {'id': 16344, 'synset': 'melter.n.01', 'name': 'melter'}, {'id': 16345, 'synset': 'nonmember.n.01', 'name': 'nonmember'}, {'id': 16346, 'synset': 'board_member.n.01', 'name': 'board_member'}, {'id': 16347, 'synset': 'clansman.n.01', 'name': 'clansman'}, {'id': 16348, 'synset': 'memorizer.n.01', 'name': 'memorizer'}, {'id': 16349, 'synset': 'mendelian.n.01', 'name': 'Mendelian'}, {'id': 16350, 'synset': 'mender.n.01', 'name': 'mender'}, {'id': 16351, 'synset': 'mesoamerican.n.01', 'name': 'Mesoamerican'}, {'id': 16352, 'synset': 'messmate.n.01', 'name': 'messmate'}, {'id': 16353, 'synset': 'mestiza.n.01', 'name': 'mestiza'}, {'id': 16354, 'synset': 'meteorologist.n.01', 'name': 'meteorologist'}, {'id': 16355, 'synset': 'meter_maid.n.01', 'name': 'meter_maid'}, {'id': 16356, 'synset': 'methodist.n.01', 'name': 'Methodist'}, {'id': 16357, 'synset': 'metis.n.01', 'name': 'Metis'}, {'id': 16358, 'synset': 'metropolitan.n.01', 'name': 'metropolitan'}, {'id': 16359, 'synset': 'mezzo-soprano.n.01', 'name': 'mezzo-soprano'}, {'id': 16360, 'synset': 'microeconomist.n.01', 'name': 'microeconomist'}, {'id': 16361, 'synset': 'middle-aged_man.n.01', 'name': 'middle-aged_man'}, {'id': 16362, 'synset': 'middlebrow.n.01', 'name': 'middlebrow'}, {'id': 16363, 'synset': 'middleweight.n.01', 'name': 'middleweight'}, {'id': 16364, 'synset': 'midwife.n.01', 'name': 'midwife'}, {'id': 16365, 'synset': 'mikado.n.01', 'name': 'mikado'}, {'id': 16366, 'synset': 'milanese.n.01', 'name': 'Milanese'}, {'id': 16367, 'synset': 'miler.n.02', 'name': 'miler'}, {'id': 16368, 'synset': 'miles_gloriosus.n.01', 'name': 'miles_gloriosus'}, {'id': 16369, 'synset': 'military_attache.n.01', 'name': 'military_attache'}, {'id': 16370, 'synset': 'military_chaplain.n.01', 'name': 'military_chaplain'}, {'id': 16371, 'synset': 'military_leader.n.01', 'name': 'military_leader'}, {'id': 16372, 'synset': 'military_officer.n.01', 'name': 'military_officer'}, {'id': 16373, 'synset': 'military_policeman.n.01', 'name': 'military_policeman'}, {'id': 16374, 'synset': 'mill_agent.n.01', 'name': 'mill_agent'}, {'id': 16375, 'synset': 'mill-hand.n.01', 'name': 'mill-hand'}, {'id': 16376, 'synset': 'millionairess.n.01', 'name': 'millionairess'}, {'id': 16377, 'synset': 'millwright.n.01', 'name': 'millwright'}, {'id': 16378, 'synset': 'minder.n.01', 'name': 'minder'}, {'id': 16379, 'synset': 'mining_engineer.n.01', 'name': 'mining_engineer'}, {'id': 16380, 'synset': 'minister.n.02', 'name': 'minister'}, {'id': 16381, 'synset': 'ministrant.n.01', 'name': 'ministrant'}, {'id': 16382, 'synset': 'minor_leaguer.n.01', 'name': 'minor_leaguer'}, {'id': 16383, 'synset': 'minuteman.n.01', 'name': 'Minuteman'}, {'id': 16384, 'synset': 'misanthrope.n.01', 'name': 'misanthrope'}, {'id': 16385, 'synset': 'misfit.n.01', 'name': 'misfit'}, {'id': 16386, 'synset': 'mistress.n.03', 'name': 'mistress'}, {'id': 16387, 'synset': 'mistress.n.01', 'name': 'mistress'}, {'id': 16388, 'synset': 'mixed-blood.n.01', 'name': 'mixed-blood'}, {'id': 16389, 'synset': 'model.n.03', 'name': 'model'}, {'id': 16390, 'synset': 'class_act.n.01', 'name': 'class_act'}, {'id': 16391, 'synset': 'modeler.n.01', 'name': 'modeler'}, {'id': 16392, 'synset': 'modifier.n.02', 'name': 'modifier'}, {'id': 16393, 'synset': 'molecular_biologist.n.01', 'name': 'molecular_biologist'}, {'id': 16394, 'synset': 'monegasque.n.01', 'name': 'Monegasque'}, {'id': 16395, 'synset': 'monetarist.n.01', 'name': 'monetarist'}, {'id': 16396, 'synset': 'moneygrubber.n.01', 'name': 'moneygrubber'}, {'id': 16397, 'synset': 'moneymaker.n.01', 'name': 'moneymaker'}, {'id': 16398, 'synset': 'mongoloid.n.01', 'name': 'Mongoloid'}, {'id': 16399, 'synset': 'monolingual.n.01', 'name': 'monolingual'}, {'id': 16400, 'synset': 'monologist.n.01', 'name': 'monologist'}, {'id': 16401, 'synset': 'moonlighter.n.01', 'name': 'moonlighter'}, {'id': 16402, 'synset': 'moralist.n.01', 'name': 'moralist'}, {'id': 16403, 'synset': 'morosoph.n.01', 'name': 'morosoph'}, {'id': 16404, 'synset': 'morris_dancer.n.01', 'name': 'morris_dancer'}, {'id': 16405, 'synset': 'mortal_enemy.n.01', 'name': 'mortal_enemy'}, {'id': 16406, 'synset': 'mortgagee.n.01', 'name': 'mortgagee'}, {'id': 16407, 'synset': 'mortician.n.01', 'name': 'mortician'}, {'id': 16408, 'synset': 'moss-trooper.n.01', 'name': 'moss-trooper'}, {'id': 16409, 'synset': 'mother.n.01', 'name': 'mother'}, {'id': 16410, 'synset': 'mother.n.04', 'name': 'mother'}, {'id': 16411, 'synset': 'mother.n.03', 'name': 'mother'}, {'id': 16412, 'synset': 'mother_figure.n.01', 'name': 'mother_figure'}, {'id': 16413, 'synset': 'mother_hen.n.01', 'name': 'mother_hen'}, {'id': 16414, 'synset': 'mother-in-law.n.01', 'name': 'mother-in-law'}, {'id': 16415, 'synset': "mother's_boy.n.01", 'name': "mother's_boy"}, {'id': 16416, 'synset': "mother's_daughter.n.01", 'name': "mother's_daughter"}, {'id': 16417, 'synset': 'motorcycle_cop.n.01', 'name': 'motorcycle_cop'}, {'id': 16418, 'synset': 'motorcyclist.n.01', 'name': 'motorcyclist'}, {'id': 16419, 'synset': 'mound_builder.n.01', 'name': 'Mound_Builder'}, {'id': 16420, 'synset': 'mountebank.n.01', 'name': 'mountebank'}, {'id': 16421, 'synset': 'mourner.n.01', 'name': 'mourner'}, {'id': 16422, 'synset': 'mouthpiece.n.03', 'name': 'mouthpiece'}, {'id': 16423, 'synset': 'mover.n.03', 'name': 'mover'}, {'id': 16424, 'synset': 'moviegoer.n.01', 'name': 'moviegoer'}, {'id': 16425, 'synset': 'muffin_man.n.01', 'name': 'muffin_man'}, {'id': 16426, 'synset': 'mugwump.n.02', 'name': 'mugwump'}, {'id': 16427, 'synset': 'mullah.n.01', 'name': 'Mullah'}, {'id': 16428, 'synset': 'muncher.n.01', 'name': 'muncher'}, {'id': 16429, 'synset': 'murderess.n.01', 'name': 'murderess'}, {'id': 16430, 'synset': 'murder_suspect.n.01', 'name': 'murder_suspect'}, {'id': 16431, 'synset': 'musher.n.01', 'name': 'musher'}, {'id': 16432, 'synset': 'musician.n.01', 'name': 'musician'}, {'id': 16433, 'synset': 'musicologist.n.01', 'name': 'musicologist'}, {'id': 16434, 'synset': 'music_teacher.n.01', 'name': 'music_teacher'}, {'id': 16435, 'synset': 'musketeer.n.01', 'name': 'musketeer'}, {'id': 16436, 'synset': 'muslimah.n.01', 'name': 'Muslimah'}, {'id': 16437, 'synset': 'mutilator.n.01', 'name': 'mutilator'}, {'id': 16438, 'synset': 'mutineer.n.01', 'name': 'mutineer'}, {'id': 16439, 'synset': 'mute.n.01', 'name': 'mute'}, {'id': 16440, 'synset': 'mutterer.n.01', 'name': 'mutterer'}, {'id': 16441, 'synset': 'muzzler.n.01', 'name': 'muzzler'}, {'id': 16442, 'synset': 'mycenaen.n.01', 'name': 'Mycenaen'}, {'id': 16443, 'synset': 'mycologist.n.01', 'name': 'mycologist'}, {'id': 16444, 'synset': 'myope.n.01', 'name': 'myope'}, {'id': 16445, 'synset': 'myrmidon.n.01', 'name': 'myrmidon'}, {'id': 16446, 'synset': 'mystic.n.01', 'name': 'mystic'}, {'id': 16447, 'synset': 'mythologist.n.01', 'name': 'mythologist'}, {'id': 16448, 'synset': 'naif.n.01', 'name': 'naif'}, {'id': 16449, 'synset': 'nailer.n.01', 'name': 'nailer'}, {'id': 16450, 'synset': 'namby-pamby.n.01', 'name': 'namby-pamby'}, {'id': 16451, 'synset': 'name_dropper.n.01', 'name': 'name_dropper'}, {'id': 16452, 'synset': 'namer.n.01', 'name': 'namer'}, {'id': 16453, 'synset': 'nan.n.01', 'name': 'nan'}, {'id': 16454, 'synset': 'nanny.n.01', 'name': 'nanny'}, {'id': 16455, 'synset': 'narc.n.01', 'name': 'narc'}, {'id': 16456, 'synset': 'narcissist.n.01', 'name': 'narcissist'}, {'id': 16457, 'synset': 'nark.n.01', 'name': 'nark'}, {'id': 16458, 'synset': 'nationalist.n.02', 'name': 'nationalist'}, {'id': 16459, 'synset': 'nautch_girl.n.01', 'name': 'nautch_girl'}, {'id': 16460, 'synset': 'naval_commander.n.01', 'name': 'naval_commander'}, {'id': 16461, 'synset': 'navy_seal.n.01', 'name': 'Navy_SEAL'}, {'id': 16462, 'synset': 'obstructionist.n.01', 'name': 'obstructionist'}, {'id': 16463, 'synset': 'nazarene.n.02', 'name': 'Nazarene'}, {'id': 16464, 'synset': 'nazarene.n.01', 'name': 'Nazarene'}, {'id': 16465, 'synset': 'nazi.n.01', 'name': 'Nazi'}, {'id': 16466, 'synset': 'nebbish.n.01', 'name': 'nebbish'}, {'id': 16467, 'synset': 'necker.n.01', 'name': 'necker'}, {'id': 16468, 'synset': 'neonate.n.01', 'name': 'neonate'}, {'id': 16469, 'synset': 'nephew.n.01', 'name': 'nephew'}, {'id': 16470, 'synset': 'neurobiologist.n.01', 'name': 'neurobiologist'}, {'id': 16471, 'synset': 'neurologist.n.01', 'name': 'neurologist'}, {'id': 16472, 'synset': 'neurosurgeon.n.01', 'name': 'neurosurgeon'}, {'id': 16473, 'synset': 'neutral.n.01', 'name': 'neutral'}, {'id': 16474, 'synset': 'neutralist.n.01', 'name': 'neutralist'}, {'id': 16475, 'synset': 'newcomer.n.01', 'name': 'newcomer'}, {'id': 16476, 'synset': 'newcomer.n.02', 'name': 'newcomer'}, {'id': 16477, 'synset': 'new_dealer.n.01', 'name': 'New_Dealer'}, {'id': 16478, 'synset': 'newspaper_editor.n.01', 'name': 'newspaper_editor'}, {'id': 16479, 'synset': 'newsreader.n.01', 'name': 'newsreader'}, {'id': 16480, 'synset': 'newtonian.n.01', 'name': 'Newtonian'}, {'id': 16481, 'synset': 'niece.n.01', 'name': 'niece'}, {'id': 16482, 'synset': 'niggard.n.01', 'name': 'niggard'}, {'id': 16483, 'synset': 'night_porter.n.01', 'name': 'night_porter'}, {'id': 16484, 'synset': 'night_rider.n.01', 'name': 'night_rider'}, {'id': 16485, 'synset': 'nimby.n.01', 'name': 'NIMBY'}, {'id': 16486, 'synset': 'niqaabi.n.01', 'name': 'niqaabi'}, {'id': 16487, 'synset': 'nitpicker.n.01', 'name': 'nitpicker'}, {'id': 16488, 'synset': 'nobelist.n.01', 'name': 'Nobelist'}, {'id': 16489, 'synset': 'noc.n.01', 'name': 'NOC'}, {'id': 16490, 'synset': 'noncandidate.n.01', 'name': 'noncandidate'}, {'id': 16491, 'synset': 'noncommissioned_officer.n.01', 'name': 'noncommissioned_officer'}, {'id': 16492, 'synset': 'nondescript.n.01', 'name': 'nondescript'}, {'id': 16493, 'synset': 'nondriver.n.01', 'name': 'nondriver'}, {'id': 16494, 'synset': 'nonparticipant.n.01', 'name': 'nonparticipant'}, {'id': 16495, 'synset': 'nonperson.n.01', 'name': 'nonperson'}, {'id': 16496, 'synset': 'nonresident.n.01', 'name': 'nonresident'}, {'id': 16497, 'synset': 'nonsmoker.n.01', 'name': 'nonsmoker'}, {'id': 16498, 'synset': 'northern_baptist.n.01', 'name': 'Northern_Baptist'}, {'id': 16499, 'synset': 'noticer.n.01', 'name': 'noticer'}, {'id': 16500, 'synset': 'novelist.n.01', 'name': 'novelist'}, {'id': 16501, 'synset': 'novitiate.n.02', 'name': 'novitiate'}, {'id': 16502, 'synset': 'nuclear_chemist.n.01', 'name': 'nuclear_chemist'}, {'id': 16503, 'synset': 'nudger.n.01', 'name': 'nudger'}, {'id': 16504, 'synset': 'nullipara.n.01', 'name': 'nullipara'}, {'id': 16505, 'synset': 'number_theorist.n.01', 'name': 'number_theorist'}, {'id': 16506, 'synset': 'nurse.n.01', 'name': 'nurse'}, {'id': 16507, 'synset': 'nursling.n.01', 'name': 'nursling'}, {'id': 16508, 'synset': 'nymph.n.03', 'name': 'nymph'}, {'id': 16509, 'synset': 'nymphet.n.01', 'name': 'nymphet'}, {'id': 16510, 'synset': 'nympholept.n.01', 'name': 'nympholept'}, {'id': 16511, 'synset': 'nymphomaniac.n.01', 'name': 'nymphomaniac'}, {'id': 16512, 'synset': 'oarswoman.n.01', 'name': 'oarswoman'}, {'id': 16513, 'synset': 'oboist.n.01', 'name': 'oboist'}, {'id': 16514, 'synset': 'obscurantist.n.01', 'name': 'obscurantist'}, {'id': 16515, 'synset': 'observer.n.02', 'name': 'observer'}, {'id': 16516, 'synset': 'obstetrician.n.01', 'name': 'obstetrician'}, {'id': 16517, 'synset': 'occupier.n.02', 'name': 'occupier'}, {'id': 16518, 'synset': 'occultist.n.01', 'name': 'occultist'}, {'id': 16519, 'synset': 'wine_lover.n.01', 'name': 'wine_lover'}, {'id': 16520, 'synset': 'offerer.n.01', 'name': 'offerer'}, {'id': 16521, 'synset': 'office-bearer.n.01', 'name': 'office-bearer'}, {'id': 16522, 'synset': 'office_boy.n.01', 'name': 'office_boy'}, {'id': 16523, 'synset': 'officeholder.n.01', 'name': 'officeholder'}, {'id': 16524, 'synset': 'officiant.n.01', 'name': 'officiant'}, {'id': 16525, 'synset': 'federal.n.02', 'name': 'Federal'}, {'id': 16526, 'synset': 'oilman.n.02', 'name': 'oilman'}, {'id': 16527, 'synset': 'oil_tycoon.n.01', 'name': 'oil_tycoon'}, {'id': 16528, 'synset': 'old-age_pensioner.n.01', 'name': 'old-age_pensioner'}, {'id': 16529, 'synset': 'old_boy.n.02', 'name': 'old_boy'}, {'id': 16530, 'synset': 'old_lady.n.01', 'name': 'old_lady'}, {'id': 16531, 'synset': 'old_man.n.03', 'name': 'old_man'}, {'id': 16532, 'synset': 'oldster.n.01', 'name': 'oldster'}, {'id': 16533, 'synset': 'old-timer.n.02', 'name': 'old-timer'}, {'id': 16534, 'synset': 'old_woman.n.01', 'name': 'old_woman'}, {'id': 16535, 'synset': 'oligarch.n.01', 'name': 'oligarch'}, {'id': 16536, 'synset': 'olympian.n.01', 'name': 'Olympian'}, {'id': 16537, 'synset': 'omnivore.n.01', 'name': 'omnivore'}, {'id': 16538, 'synset': 'oncologist.n.01', 'name': 'oncologist'}, {'id': 16539, 'synset': 'onlooker.n.01', 'name': 'onlooker'}, {'id': 16540, 'synset': 'onomancer.n.01', 'name': 'onomancer'}, {'id': 16541, 'synset': 'operator.n.03', 'name': 'operator'}, {'id': 16542, 'synset': 'opportunist.n.01', 'name': 'opportunist'}, {'id': 16543, 'synset': 'optimist.n.01', 'name': 'optimist'}, {'id': 16544, 'synset': 'orangeman.n.01', 'name': 'Orangeman'}, {'id': 16545, 'synset': 'orator.n.01', 'name': 'orator'}, {'id': 16546, 'synset': 'orderly.n.02', 'name': 'orderly'}, {'id': 16547, 'synset': 'orderly.n.01', 'name': 'orderly'}, {'id': 16548, 'synset': 'orderly_sergeant.n.01', 'name': 'orderly_sergeant'}, {'id': 16549, 'synset': 'ordinand.n.01', 'name': 'ordinand'}, {'id': 16550, 'synset': 'ordinary.n.03', 'name': 'ordinary'}, {'id': 16551, 'synset': 'organ-grinder.n.01', 'name': 'organ-grinder'}, {'id': 16552, 'synset': 'organist.n.01', 'name': 'organist'}, {'id': 16553, 'synset': 'organization_man.n.01', 'name': 'organization_man'}, {'id': 16554, 'synset': 'organizer.n.01', 'name': 'organizer'}, {'id': 16555, 'synset': 'organizer.n.02', 'name': 'organizer'}, {'id': 16556, 'synset': 'originator.n.01', 'name': 'originator'}, {'id': 16557, 'synset': 'ornithologist.n.01', 'name': 'ornithologist'}, {'id': 16558, 'synset': 'orphan.n.01', 'name': 'orphan'}, {'id': 16559, 'synset': 'orphan.n.02', 'name': 'orphan'}, {'id': 16560, 'synset': 'osteopath.n.01', 'name': 'osteopath'}, {'id': 16561, 'synset': 'out-and-outer.n.01', 'name': 'out-and-outer'}, {'id': 16562, 'synset': 'outdoorswoman.n.01', 'name': 'outdoorswoman'}, {'id': 16563, 'synset': 'outfielder.n.02', 'name': 'outfielder'}, {'id': 16564, 'synset': 'outfielder.n.01', 'name': 'outfielder'}, {'id': 16565, 'synset': 'right_fielder.n.01', 'name': 'right_fielder'}, {'id': 16566, 'synset': 'right-handed_pitcher.n.01', 'name': 'right-handed_pitcher'}, {'id': 16567, 'synset': 'outlier.n.01', 'name': 'outlier'}, {'id': 16568, 'synset': 'owner-occupier.n.01', 'name': 'owner-occupier'}, {'id': 16569, 'synset': 'oyabun.n.01', 'name': 'oyabun'}, {'id': 16570, 'synset': 'packrat.n.01', 'name': 'packrat'}, {'id': 16571, 'synset': 'padrone.n.02', 'name': 'padrone'}, {'id': 16572, 'synset': 'padrone.n.01', 'name': 'padrone'}, {'id': 16573, 'synset': 'page.n.04', 'name': 'page'}, {'id': 16574, 'synset': 'painter.n.02', 'name': 'painter'}, {'id': 16575, 'synset': 'paleo-american.n.01', 'name': 'Paleo-American'}, {'id': 16576, 'synset': 'paleontologist.n.01', 'name': 'paleontologist'}, {'id': 16577, 'synset': 'pallbearer.n.01', 'name': 'pallbearer'}, {'id': 16578, 'synset': 'palmist.n.01', 'name': 'palmist'}, {'id': 16579, 'synset': 'pamperer.n.01', 'name': 'pamperer'}, {'id': 16580, 'synset': 'panchen_lama.n.01', 'name': 'Panchen_Lama'}, {'id': 16581, 'synset': 'panelist.n.01', 'name': 'panelist'}, {'id': 16582, 'synset': 'panhandler.n.01', 'name': 'panhandler'}, {'id': 16583, 'synset': 'paparazzo.n.01', 'name': 'paparazzo'}, {'id': 16584, 'synset': 'paperboy.n.01', 'name': 'paperboy'}, {'id': 16585, 'synset': 'paperhanger.n.02', 'name': 'paperhanger'}, {'id': 16586, 'synset': 'paperhanger.n.01', 'name': 'paperhanger'}, {'id': 16587, 'synset': 'papoose.n.01', 'name': 'papoose'}, {'id': 16588, 'synset': 'pardoner.n.02', 'name': 'pardoner'}, {'id': 16589, 'synset': 'paretic.n.01', 'name': 'paretic'}, {'id': 16590, 'synset': 'parishioner.n.01', 'name': 'parishioner'}, {'id': 16591, 'synset': 'park_commissioner.n.01', 'name': 'park_commissioner'}, {'id': 16592, 'synset': 'parliamentarian.n.01', 'name': 'Parliamentarian'}, {'id': 16593, 'synset': 'parliamentary_agent.n.01', 'name': 'parliamentary_agent'}, {'id': 16594, 'synset': 'parodist.n.01', 'name': 'parodist'}, {'id': 16595, 'synset': 'parricide.n.01', 'name': 'parricide'}, {'id': 16596, 'synset': 'parrot.n.02', 'name': 'parrot'}, {'id': 16597, 'synset': 'partaker.n.01', 'name': 'partaker'}, {'id': 16598, 'synset': 'part-timer.n.01', 'name': 'part-timer'}, {'id': 16599, 'synset': 'party.n.05', 'name': 'party'}, {'id': 16600, 'synset': 'party_man.n.01', 'name': 'party_man'}, {'id': 16601, 'synset': 'passenger.n.01', 'name': 'passenger'}, {'id': 16602, 'synset': 'passer.n.03', 'name': 'passer'}, {'id': 16603, 'synset': 'paster.n.01', 'name': 'paster'}, {'id': 16604, 'synset': 'pater.n.01', 'name': 'pater'}, {'id': 16605, 'synset': 'patient.n.01', 'name': 'patient'}, {'id': 16606, 'synset': 'patriarch.n.04', 'name': 'patriarch'}, {'id': 16607, 'synset': 'patriarch.n.03', 'name': 'patriarch'}, {'id': 16608, 'synset': 'patriarch.n.02', 'name': 'patriarch'}, {'id': 16609, 'synset': 'patriot.n.01', 'name': 'patriot'}, {'id': 16610, 'synset': 'patron.n.03', 'name': 'patron'}, {'id': 16611, 'synset': 'patternmaker.n.01', 'name': 'patternmaker'}, {'id': 16612, 'synset': 'pawnbroker.n.01', 'name': 'pawnbroker'}, {'id': 16613, 'synset': 'payer.n.01', 'name': 'payer'}, {'id': 16614, 'synset': 'peacekeeper.n.01', 'name': 'peacekeeper'}, {'id': 16615, 'synset': 'peasant.n.02', 'name': 'peasant'}, {'id': 16616, 'synset': 'pedant.n.01', 'name': 'pedant'}, {'id': 16617, 'synset': 'peddler.n.01', 'name': 'peddler'}, {'id': 16618, 'synset': 'pederast.n.01', 'name': 'pederast'}, {'id': 16619, 'synset': 'penologist.n.01', 'name': 'penologist'}, {'id': 16620, 'synset': 'pentathlete.n.01', 'name': 'pentathlete'}, {'id': 16621, 'synset': 'pentecostal.n.01', 'name': 'Pentecostal'}, {'id': 16622, 'synset': 'percussionist.n.01', 'name': 'percussionist'}, {'id': 16623, 'synset': 'periodontist.n.01', 'name': 'periodontist'}, {'id': 16624, 'synset': 'peshmerga.n.01', 'name': 'peshmerga'}, {'id': 16625, 'synset': 'personality.n.02', 'name': 'personality'}, {'id': 16626, 'synset': 'personal_representative.n.01', 'name': 'personal_representative'}, {'id': 16627, 'synset': 'personage.n.01', 'name': 'personage'}, {'id': 16628, 'synset': 'persona_grata.n.01', 'name': 'persona_grata'}, {'id': 16629, 'synset': 'persona_non_grata.n.01', 'name': 'persona_non_grata'}, {'id': 16630, 'synset': 'personification.n.01', 'name': 'personification'}, {'id': 16631, 'synset': 'perspirer.n.01', 'name': 'perspirer'}, {'id': 16632, 'synset': 'pervert.n.01', 'name': 'pervert'}, {'id': 16633, 'synset': 'pessimist.n.01', 'name': 'pessimist'}, {'id': 16634, 'synset': 'pest.n.03', 'name': 'pest'}, {'id': 16635, 'synset': 'peter_pan.n.01', 'name': 'Peter_Pan'}, {'id': 16636, 'synset': 'petitioner.n.01', 'name': 'petitioner'}, {'id': 16637, 'synset': 'petit_juror.n.01', 'name': 'petit_juror'}, {'id': 16638, 'synset': 'pet_sitter.n.01', 'name': 'pet_sitter'}, {'id': 16639, 'synset': 'petter.n.01', 'name': 'petter'}, {'id': 16640, 'synset': 'pharaoh.n.01', 'name': 'Pharaoh'}, {'id': 16641, 'synset': 'pharmacist.n.01', 'name': 'pharmacist'}, {'id': 16642, 'synset': 'philanthropist.n.01', 'name': 'philanthropist'}, {'id': 16643, 'synset': 'philatelist.n.01', 'name': 'philatelist'}, {'id': 16644, 'synset': 'philosopher.n.02', 'name': 'philosopher'}, {'id': 16645, 'synset': 'phonetician.n.01', 'name': 'phonetician'}, {'id': 16646, 'synset': 'phonologist.n.01', 'name': 'phonologist'}, {'id': 16647, 'synset': 'photojournalist.n.01', 'name': 'photojournalist'}, {'id': 16648, 'synset': 'photometrist.n.01', 'name': 'photometrist'}, {'id': 16649, 'synset': 'physical_therapist.n.01', 'name': 'physical_therapist'}, {'id': 16650, 'synset': 'physicist.n.01', 'name': 'physicist'}, {'id': 16651, 'synset': 'piano_maker.n.01', 'name': 'piano_maker'}, {'id': 16652, 'synset': 'picker.n.01', 'name': 'picker'}, {'id': 16653, 'synset': 'picnicker.n.01', 'name': 'picnicker'}, {'id': 16654, 'synset': 'pilgrim.n.01', 'name': 'pilgrim'}, {'id': 16655, 'synset': 'pill.n.03', 'name': 'pill'}, {'id': 16656, 'synset': 'pillar.n.03', 'name': 'pillar'}, {'id': 16657, 'synset': 'pill_head.n.01', 'name': 'pill_head'}, {'id': 16658, 'synset': 'pilot.n.02', 'name': 'pilot'}, {'id': 16659, 'synset': 'piltdown_man.n.01', 'name': 'Piltdown_man'}, {'id': 16660, 'synset': 'pimp.n.01', 'name': 'pimp'}, {'id': 16661, 'synset': 'pipe_smoker.n.01', 'name': 'pipe_smoker'}, {'id': 16662, 'synset': 'pip-squeak.n.01', 'name': 'pip-squeak'}, {'id': 16663, 'synset': 'pisser.n.01', 'name': 'pisser'}, {'id': 16664, 'synset': 'pitcher.n.01', 'name': 'pitcher'}, {'id': 16665, 'synset': 'pitchman.n.01', 'name': 'pitchman'}, {'id': 16666, 'synset': 'placeman.n.01', 'name': 'placeman'}, {'id': 16667, 'synset': 'placer_miner.n.01', 'name': 'placer_miner'}, {'id': 16668, 'synset': 'plagiarist.n.01', 'name': 'plagiarist'}, {'id': 16669, 'synset': 'plainsman.n.01', 'name': 'plainsman'}, {'id': 16670, 'synset': 'planner.n.01', 'name': 'planner'}, {'id': 16671, 'synset': 'planter.n.01', 'name': 'planter'}, {'id': 16672, 'synset': 'plasterer.n.01', 'name': 'plasterer'}, {'id': 16673, 'synset': 'platinum_blond.n.01', 'name': 'platinum_blond'}, {'id': 16674, 'synset': 'platitudinarian.n.01', 'name': 'platitudinarian'}, {'id': 16675, 'synset': 'playboy.n.01', 'name': 'playboy'}, {'id': 16676, 'synset': 'player.n.01', 'name': 'player'}, {'id': 16677, 'synset': 'playmate.n.01', 'name': 'playmate'}, {'id': 16678, 'synset': 'pleaser.n.01', 'name': 'pleaser'}, {'id': 16679, 'synset': 'pledger.n.01', 'name': 'pledger'}, {'id': 16680, 'synset': 'plenipotentiary.n.01', 'name': 'plenipotentiary'}, {'id': 16681, 'synset': 'plier.n.01', 'name': 'plier'}, {'id': 16682, 'synset': 'plodder.n.03', 'name': 'plodder'}, {'id': 16683, 'synset': 'plodder.n.02', 'name': 'plodder'}, {'id': 16684, 'synset': 'plotter.n.02', 'name': 'plotter'}, {'id': 16685, 'synset': 'plumber.n.01', 'name': 'plumber'}, {'id': 16686, 'synset': 'pluralist.n.02', 'name': 'pluralist'}, {'id': 16687, 'synset': 'pluralist.n.01', 'name': 'pluralist'}, {'id': 16688, 'synset': 'poet.n.01', 'name': 'poet'}, {'id': 16689, 'synset': 'pointsman.n.01', 'name': 'pointsman'}, {'id': 16690, 'synset': 'point_woman.n.01', 'name': 'point_woman'}, {'id': 16691, 'synset': 'policyholder.n.01', 'name': 'policyholder'}, {'id': 16692, 'synset': 'political_prisoner.n.01', 'name': 'political_prisoner'}, {'id': 16693, 'synset': 'political_scientist.n.01', 'name': 'political_scientist'}, {'id': 16694, 'synset': 'politician.n.02', 'name': 'politician'}, {'id': 16695, 'synset': 'politician.n.03', 'name': 'politician'}, {'id': 16696, 'synset': 'pollster.n.01', 'name': 'pollster'}, {'id': 16697, 'synset': 'polluter.n.01', 'name': 'polluter'}, {'id': 16698, 'synset': 'pool_player.n.01', 'name': 'pool_player'}, {'id': 16699, 'synset': 'portraitist.n.01', 'name': 'portraitist'}, {'id': 16700, 'synset': 'poseuse.n.01', 'name': 'poseuse'}, {'id': 16701, 'synset': 'positivist.n.01', 'name': 'positivist'}, {'id': 16702, 'synset': 'postdoc.n.02', 'name': 'postdoc'}, {'id': 16703, 'synset': 'poster_girl.n.01', 'name': 'poster_girl'}, {'id': 16704, 'synset': 'postulator.n.02', 'name': 'postulator'}, {'id': 16705, 'synset': 'private_citizen.n.01', 'name': 'private_citizen'}, {'id': 16706, 'synset': 'problem_solver.n.01', 'name': 'problem_solver'}, {'id': 16707, 'synset': 'pro-lifer.n.01', 'name': 'pro-lifer'}, {'id': 16708, 'synset': 'prosthetist.n.01', 'name': 'prosthetist'}, {'id': 16709, 'synset': 'postulant.n.01', 'name': 'postulant'}, {'id': 16710, 'synset': 'potboy.n.01', 'name': 'potboy'}, {'id': 16711, 'synset': 'poultryman.n.01', 'name': 'poultryman'}, {'id': 16712, 'synset': 'power_user.n.01', 'name': 'power_user'}, {'id': 16713, 'synset': 'power_worker.n.01', 'name': 'power_worker'}, {'id': 16714, 'synset': 'practitioner.n.01', 'name': 'practitioner'}, {'id': 16715, 'synset': 'prayer.n.05', 'name': 'prayer'}, {'id': 16716, 'synset': 'preceptor.n.01', 'name': 'preceptor'}, {'id': 16717, 'synset': 'predecessor.n.01', 'name': 'predecessor'}, {'id': 16718, 'synset': 'preemptor.n.02', 'name': 'preemptor'}, {'id': 16719, 'synset': 'preemptor.n.01', 'name': 'preemptor'}, {'id': 16720, 'synset': 'premature_baby.n.01', 'name': 'premature_baby'}, {'id': 16721, 'synset': 'presbyter.n.01', 'name': 'presbyter'}, {'id': 16722, 'synset': 'presenter.n.02', 'name': 'presenter'}, {'id': 16723, 'synset': 'presentist.n.01', 'name': 'presentist'}, {'id': 16724, 'synset': 'preserver.n.03', 'name': 'preserver'}, {'id': 16725, 'synset': 'president.n.03', 'name': 'president'}, {'id': 16726, 'synset': 'president_of_the_united_states.n.01', 'name': 'President_of_the_United_States'}, {'id': 16727, 'synset': 'president.n.05', 'name': 'president'}, {'id': 16728, 'synset': 'press_agent.n.01', 'name': 'press_agent'}, {'id': 16729, 'synset': 'press_photographer.n.01', 'name': 'press_photographer'}, {'id': 16730, 'synset': 'priest.n.01', 'name': 'priest'}, {'id': 16731, 'synset': 'prima_ballerina.n.01', 'name': 'prima_ballerina'}, {'id': 16732, 'synset': 'prima_donna.n.02', 'name': 'prima_donna'}, {'id': 16733, 'synset': 'prima_donna.n.01', 'name': 'prima_donna'}, {'id': 16734, 'synset': 'primigravida.n.01', 'name': 'primigravida'}, {'id': 16735, 'synset': 'primordial_dwarf.n.01', 'name': 'primordial_dwarf'}, {'id': 16736, 'synset': 'prince_charming.n.01', 'name': 'prince_charming'}, {'id': 16737, 'synset': 'prince_consort.n.01', 'name': 'prince_consort'}, {'id': 16738, 'synset': 'princeling.n.01', 'name': 'princeling'}, {'id': 16739, 'synset': 'prince_of_wales.n.01', 'name': 'Prince_of_Wales'}, {'id': 16740, 'synset': 'princess.n.01', 'name': 'princess'}, {'id': 16741, 'synset': 'princess_royal.n.01', 'name': 'princess_royal'}, {'id': 16742, 'synset': 'principal.n.06', 'name': 'principal'}, {'id': 16743, 'synset': 'principal.n.02', 'name': 'principal'}, {'id': 16744, 'synset': 'print_seller.n.01', 'name': 'print_seller'}, {'id': 16745, 'synset': 'prior.n.01', 'name': 'prior'}, {'id': 16746, 'synset': 'private.n.01', 'name': 'private'}, {'id': 16747, 'synset': 'probationer.n.01', 'name': 'probationer'}, {'id': 16748, 'synset': 'processor.n.02', 'name': 'processor'}, {'id': 16749, 'synset': 'process-server.n.01', 'name': 'process-server'}, {'id': 16750, 'synset': 'proconsul.n.02', 'name': 'proconsul'}, {'id': 16751, 'synset': 'proconsul.n.01', 'name': 'proconsul'}, {'id': 16752, 'synset': 'proctologist.n.01', 'name': 'proctologist'}, {'id': 16753, 'synset': 'proctor.n.01', 'name': 'proctor'}, {'id': 16754, 'synset': 'procurator.n.02', 'name': 'procurator'}, {'id': 16755, 'synset': 'procurer.n.02', 'name': 'procurer'}, {'id': 16756, 'synset': 'profit_taker.n.01', 'name': 'profit_taker'}, {'id': 16757, 'synset': 'programmer.n.01', 'name': 'programmer'}, {'id': 16758, 'synset': 'promiser.n.01', 'name': 'promiser'}, {'id': 16759, 'synset': 'promoter.n.01', 'name': 'promoter'}, {'id': 16760, 'synset': 'promulgator.n.01', 'name': 'promulgator'}, {'id': 16761, 'synset': 'propagandist.n.01', 'name': 'propagandist'}, {'id': 16762, 'synset': 'propagator.n.02', 'name': 'propagator'}, {'id': 16763, 'synset': 'property_man.n.01', 'name': 'property_man'}, {'id': 16764, 'synset': 'prophetess.n.01', 'name': 'prophetess'}, {'id': 16765, 'synset': 'prophet.n.02', 'name': 'prophet'}, {'id': 16766, 'synset': 'prosecutor.n.01', 'name': 'prosecutor'}, {'id': 16767, 'synset': 'prospector.n.01', 'name': 'prospector'}, {'id': 16768, 'synset': 'protectionist.n.01', 'name': 'protectionist'}, {'id': 16769, 'synset': 'protegee.n.01', 'name': 'protegee'}, {'id': 16770, 'synset': 'protozoologist.n.01', 'name': 'protozoologist'}, {'id': 16771, 'synset': 'provost_marshal.n.01', 'name': 'provost_marshal'}, {'id': 16772, 'synset': 'pruner.n.01', 'name': 'pruner'}, {'id': 16773, 'synset': 'psalmist.n.01', 'name': 'psalmist'}, {'id': 16774, 'synset': 'psephologist.n.01', 'name': 'psephologist'}, {'id': 16775, 'synset': 'psychiatrist.n.01', 'name': 'psychiatrist'}, {'id': 16776, 'synset': 'psychic.n.01', 'name': 'psychic'}, {'id': 16777, 'synset': 'psycholinguist.n.01', 'name': 'psycholinguist'}, {'id': 16778, 'synset': 'psychophysicist.n.01', 'name': 'psychophysicist'}, {'id': 16779, 'synset': 'publican.n.01', 'name': 'publican'}, {'id': 16780, 'synset': 'pudge.n.01', 'name': 'pudge'}, {'id': 16781, 'synset': 'puerpera.n.01', 'name': 'puerpera'}, {'id': 16782, 'synset': 'punching_bag.n.01', 'name': 'punching_bag'}, {'id': 16783, 'synset': 'punter.n.02', 'name': 'punter'}, {'id': 16784, 'synset': 'punter.n.01', 'name': 'punter'}, {'id': 16785, 'synset': 'puppeteer.n.01', 'name': 'puppeteer'}, {'id': 16786, 'synset': 'puppy.n.02', 'name': 'puppy'}, {'id': 16787, 'synset': 'purchasing_agent.n.01', 'name': 'purchasing_agent'}, {'id': 16788, 'synset': 'puritan.n.02', 'name': 'puritan'}, {'id': 16789, 'synset': 'puritan.n.01', 'name': 'Puritan'}, {'id': 16790, 'synset': 'pursuer.n.02', 'name': 'pursuer'}, {'id': 16791, 'synset': 'pusher.n.03', 'name': 'pusher'}, {'id': 16792, 'synset': 'pusher.n.02', 'name': 'pusher'}, {'id': 16793, 'synset': 'pusher.n.01', 'name': 'pusher'}, {'id': 16794, 'synset': 'putz.n.01', 'name': 'putz'}, {'id': 16795, 'synset': 'pygmy.n.02', 'name': 'Pygmy'}, {'id': 16796, 'synset': 'qadi.n.01', 'name': 'qadi'}, {'id': 16797, 'synset': 'quadriplegic.n.01', 'name': 'quadriplegic'}, {'id': 16798, 'synset': 'quadruplet.n.02', 'name': 'quadruplet'}, {'id': 16799, 'synset': 'quaker.n.02', 'name': 'quaker'}, {'id': 16800, 'synset': 'quarter.n.11', 'name': 'quarter'}, {'id': 16801, 'synset': 'quarterback.n.01', 'name': 'quarterback'}, {'id': 16802, 'synset': 'quartermaster.n.01', 'name': 'quartermaster'}, {'id': 16803, 'synset': 'quartermaster_general.n.01', 'name': 'quartermaster_general'}, {'id': 16804, 'synset': 'quebecois.n.01', 'name': 'Quebecois'}, {'id': 16805, 'synset': 'queen.n.02', 'name': 'queen'}, {'id': 16806, 'synset': 'queen_of_england.n.01', 'name': 'Queen_of_England'}, {'id': 16807, 'synset': 'queen.n.03', 'name': 'queen'}, {'id': 16808, 'synset': 'queen.n.04', 'name': 'queen'}, {'id': 16809, 'synset': 'queen_consort.n.01', 'name': 'queen_consort'}, {'id': 16810, 'synset': 'queen_mother.n.01', 'name': 'queen_mother'}, {'id': 16811, 'synset': "queen's_counsel.n.01", 'name': "Queen's_Counsel"}, {'id': 16812, 'synset': 'question_master.n.01', 'name': 'question_master'}, {'id': 16813, 'synset': 'quick_study.n.01', 'name': 'quick_study'}, {'id': 16814, 'synset': 'quietist.n.01', 'name': 'quietist'}, {'id': 16815, 'synset': 'quitter.n.01', 'name': 'quitter'}, {'id': 16816, 'synset': 'rabbi.n.01', 'name': 'rabbi'}, {'id': 16817, 'synset': 'racist.n.01', 'name': 'racist'}, {'id': 16818, 'synset': 'radiobiologist.n.01', 'name': 'radiobiologist'}, {'id': 16819, 'synset': 'radiologic_technologist.n.01', 'name': 'radiologic_technologist'}, {'id': 16820, 'synset': 'radiologist.n.01', 'name': 'radiologist'}, {'id': 16821, 'synset': 'rainmaker.n.02', 'name': 'rainmaker'}, {'id': 16822, 'synset': 'raiser.n.01', 'name': 'raiser'}, {'id': 16823, 'synset': 'raja.n.01', 'name': 'raja'}, {'id': 16824, 'synset': 'rake.n.01', 'name': 'rake'}, {'id': 16825, 'synset': 'ramrod.n.02', 'name': 'ramrod'}, {'id': 16826, 'synset': 'ranch_hand.n.01', 'name': 'ranch_hand'}, {'id': 16827, 'synset': 'ranker.n.01', 'name': 'ranker'}, {'id': 16828, 'synset': 'ranter.n.01', 'name': 'ranter'}, {'id': 16829, 'synset': 'rape_suspect.n.01', 'name': 'rape_suspect'}, {'id': 16830, 'synset': 'rapper.n.01', 'name': 'rapper'}, {'id': 16831, 'synset': 'rapporteur.n.01', 'name': 'rapporteur'}, {'id': 16832, 'synset': 'rare_bird.n.01', 'name': 'rare_bird'}, {'id': 16833, 'synset': 'ratepayer.n.01', 'name': 'ratepayer'}, {'id': 16834, 'synset': 'raw_recruit.n.01', 'name': 'raw_recruit'}, {'id': 16835, 'synset': 'reader.n.01', 'name': 'reader'}, {'id': 16836, 'synset': 'reading_teacher.n.01', 'name': 'reading_teacher'}, {'id': 16837, 'synset': 'realist.n.01', 'name': 'realist'}, {'id': 16838, 'synset': 'real_estate_broker.n.01', 'name': 'real_estate_broker'}, {'id': 16839, 'synset': 'rear_admiral.n.01', 'name': 'rear_admiral'}, {'id': 16840, 'synset': 'receiver.n.05', 'name': 'receiver'}, {'id': 16841, 'synset': 'reciter.n.01', 'name': 'reciter'}, {'id': 16842, 'synset': 'recruit.n.02', 'name': 'recruit'}, {'id': 16843, 'synset': 'recruit.n.01', 'name': 'recruit'}, {'id': 16844, 'synset': 'recruiter.n.01', 'name': 'recruiter'}, {'id': 16845, 'synset': 'recruiting-sergeant.n.01', 'name': 'recruiting-sergeant'}, {'id': 16846, 'synset': 'redcap.n.01', 'name': 'redcap'}, {'id': 16847, 'synset': 'redhead.n.01', 'name': 'redhead'}, {'id': 16848, 'synset': 'redneck.n.01', 'name': 'redneck'}, {'id': 16849, 'synset': 'reeler.n.02', 'name': 'reeler'}, {'id': 16850, 'synset': 'reenactor.n.01', 'name': 'reenactor'}, {'id': 16851, 'synset': 'referral.n.01', 'name': 'referral'}, {'id': 16852, 'synset': 'referee.n.01', 'name': 'referee'}, {'id': 16853, 'synset': 'refiner.n.01', 'name': 'refiner'}, {'id': 16854, 'synset': 'reform_jew.n.01', 'name': 'Reform_Jew'}, {'id': 16855, 'synset': 'registered_nurse.n.01', 'name': 'registered_nurse'}, {'id': 16856, 'synset': 'registrar.n.01', 'name': 'registrar'}, {'id': 16857, 'synset': 'regius_professor.n.01', 'name': 'Regius_professor'}, {'id': 16858, 'synset': 'reliever.n.02', 'name': 'reliever'}, {'id': 16859, 'synset': 'anchorite.n.01', 'name': 'anchorite'}, {'id': 16860, 'synset': 'religious_leader.n.01', 'name': 'religious_leader'}, {'id': 16861, 'synset': 'remover.n.02', 'name': 'remover'}, {'id': 16862, 'synset': 'renaissance_man.n.01', 'name': 'Renaissance_man'}, {'id': 16863, 'synset': 'renegade.n.01', 'name': 'renegade'}, {'id': 16864, 'synset': 'rentier.n.01', 'name': 'rentier'}, {'id': 16865, 'synset': 'repairman.n.01', 'name': 'repairman'}, {'id': 16866, 'synset': 'reporter.n.01', 'name': 'reporter'}, {'id': 16867, 'synset': 'newswoman.n.01', 'name': 'newswoman'}, {'id': 16868, 'synset': 'representative.n.01', 'name': 'representative'}, {'id': 16869, 'synset': 'reprobate.n.01', 'name': 'reprobate'}, {'id': 16870, 'synset': 'rescuer.n.02', 'name': 'rescuer'}, {'id': 16871, 'synset': 'reservist.n.01', 'name': 'reservist'}, {'id': 16872, 'synset': 'resident_commissioner.n.01', 'name': 'resident_commissioner'}, {'id': 16873, 'synset': 'respecter.n.01', 'name': 'respecter'}, {'id': 16874, 'synset': 'restaurateur.n.01', 'name': 'restaurateur'}, {'id': 16875, 'synset': 'restrainer.n.02', 'name': 'restrainer'}, {'id': 16876, 'synset': 'retailer.n.01', 'name': 'retailer'}, {'id': 16877, 'synset': 'retiree.n.01', 'name': 'retiree'}, {'id': 16878, 'synset': 'returning_officer.n.01', 'name': 'returning_officer'}, {'id': 16879, 'synset': 'revenant.n.01', 'name': 'revenant'}, {'id': 16880, 'synset': 'revisionist.n.01', 'name': 'revisionist'}, {'id': 16881, 'synset': 'revolutionist.n.01', 'name': 'revolutionist'}, {'id': 16882, 'synset': 'rheumatologist.n.01', 'name': 'rheumatologist'}, {'id': 16883, 'synset': 'rhodesian_man.n.01', 'name': 'Rhodesian_man'}, {'id': 16884, 'synset': 'rhymer.n.01', 'name': 'rhymer'}, {'id': 16885, 'synset': 'rich_person.n.01', 'name': 'rich_person'}, {'id': 16886, 'synset': 'rider.n.03', 'name': 'rider'}, {'id': 16887, 'synset': 'riding_master.n.01', 'name': 'riding_master'}, {'id': 16888, 'synset': 'rifleman.n.02', 'name': 'rifleman'}, {'id': 16889, 'synset': 'right-hander.n.02', 'name': 'right-hander'}, {'id': 16890, 'synset': 'right-hand_man.n.01', 'name': 'right-hand_man'}, {'id': 16891, 'synset': 'ringer.n.03', 'name': 'ringer'}, {'id': 16892, 'synset': 'ringleader.n.01', 'name': 'ringleader'}, {'id': 16893, 'synset': 'roadman.n.02', 'name': 'roadman'}, {'id': 16894, 'synset': 'roarer.n.01', 'name': 'roarer'}, {'id': 16895, 'synset': 'rocket_engineer.n.01', 'name': 'rocket_engineer'}, {'id': 16896, 'synset': 'rocket_scientist.n.01', 'name': 'rocket_scientist'}, {'id': 16897, 'synset': 'rock_star.n.01', 'name': 'rock_star'}, {'id': 16898, 'synset': 'romanov.n.01', 'name': 'Romanov'}, {'id': 16899, 'synset': 'romanticist.n.02', 'name': 'romanticist'}, {'id': 16900, 'synset': 'ropemaker.n.01', 'name': 'ropemaker'}, {'id': 16901, 'synset': 'roper.n.02', 'name': 'roper'}, {'id': 16902, 'synset': 'roper.n.01', 'name': 'roper'}, {'id': 16903, 'synset': 'ropewalker.n.01', 'name': 'ropewalker'}, {'id': 16904, 'synset': 'rosebud.n.02', 'name': 'rosebud'}, {'id': 16905, 'synset': 'rosicrucian.n.02', 'name': 'Rosicrucian'}, {'id': 16906, 'synset': 'mountie.n.01', 'name': 'Mountie'}, {'id': 16907, 'synset': 'rough_rider.n.01', 'name': 'Rough_Rider'}, {'id': 16908, 'synset': 'roundhead.n.01', 'name': 'roundhead'}, {'id': 16909, 'synset': 'civil_authority.n.01', 'name': 'civil_authority'}, {'id': 16910, 'synset': 'runner.n.03', 'name': 'runner'}, {'id': 16911, 'synset': 'runner.n.02', 'name': 'runner'}, {'id': 16912, 'synset': 'runner.n.06', 'name': 'runner'}, {'id': 16913, 'synset': 'running_back.n.01', 'name': 'running_back'}, {'id': 16914, 'synset': 'rusher.n.02', 'name': 'rusher'}, {'id': 16915, 'synset': 'rustic.n.01', 'name': 'rustic'}, {'id': 16916, 'synset': 'saboteur.n.01', 'name': 'saboteur'}, {'id': 16917, 'synset': 'sadist.n.01', 'name': 'sadist'}, {'id': 16918, 'synset': 'sailing_master.n.01', 'name': 'sailing_master'}, {'id': 16919, 'synset': 'sailor.n.01', 'name': 'sailor'}, {'id': 16920, 'synset': 'salesgirl.n.01', 'name': 'salesgirl'}, {'id': 16921, 'synset': 'salesman.n.01', 'name': 'salesman'}, {'id': 16922, 'synset': 'salesperson.n.01', 'name': 'salesperson'}, {'id': 16923, 'synset': 'salvager.n.01', 'name': 'salvager'}, {'id': 16924, 'synset': 'sandwichman.n.01', 'name': 'sandwichman'}, {'id': 16925, 'synset': 'sangoma.n.01', 'name': 'sangoma'}, {'id': 16926, 'synset': 'sannup.n.01', 'name': 'sannup'}, {'id': 16927, 'synset': 'sapper.n.02', 'name': 'sapper'}, {'id': 16928, 'synset': 'sassenach.n.01', 'name': 'Sassenach'}, {'id': 16929, 'synset': 'satrap.n.01', 'name': 'satrap'}, {'id': 16930, 'synset': 'saunterer.n.01', 'name': 'saunterer'}, {'id': 16931, 'synset': 'savoyard.n.01', 'name': 'Savoyard'}, {'id': 16932, 'synset': 'sawyer.n.01', 'name': 'sawyer'}, {'id': 16933, 'synset': 'scalper.n.01', 'name': 'scalper'}, {'id': 16934, 'synset': 'scandalmonger.n.01', 'name': 'scandalmonger'}, {'id': 16935, 'synset': 'scapegrace.n.01', 'name': 'scapegrace'}, {'id': 16936, 'synset': 'scene_painter.n.02', 'name': 'scene_painter'}, {'id': 16937, 'synset': 'schemer.n.01', 'name': 'schemer'}, {'id': 16938, 'synset': 'schizophrenic.n.01', 'name': 'schizophrenic'}, {'id': 16939, 'synset': 'schlemiel.n.01', 'name': 'schlemiel'}, {'id': 16940, 'synset': 'schlockmeister.n.01', 'name': 'schlockmeister'}, {'id': 16941, 'synset': 'scholar.n.01', 'name': 'scholar'}, {'id': 16942, 'synset': 'scholiast.n.01', 'name': 'scholiast'}, {'id': 16943, 'synset': 'schoolchild.n.01', 'name': 'schoolchild'}, {'id': 16944, 'synset': 'schoolfriend.n.01', 'name': 'schoolfriend'}, {'id': 16945, 'synset': 'schoolman.n.01', 'name': 'Schoolman'}, {'id': 16946, 'synset': 'schoolmaster.n.02', 'name': 'schoolmaster'}, {'id': 16947, 'synset': 'schoolmate.n.01', 'name': 'schoolmate'}, {'id': 16948, 'synset': 'scientist.n.01', 'name': 'scientist'}, {'id': 16949, 'synset': 'scion.n.01', 'name': 'scion'}, {'id': 16950, 'synset': 'scoffer.n.02', 'name': 'scoffer'}, {'id': 16951, 'synset': 'scofflaw.n.01', 'name': 'scofflaw'}, {'id': 16952, 'synset': 'scorekeeper.n.01', 'name': 'scorekeeper'}, {'id': 16953, 'synset': 'scorer.n.02', 'name': 'scorer'}, {'id': 16954, 'synset': 'scourer.n.02', 'name': 'scourer'}, {'id': 16955, 'synset': 'scout.n.03', 'name': 'scout'}, {'id': 16956, 'synset': 'scoutmaster.n.01', 'name': 'scoutmaster'}, {'id': 16957, 'synset': 'scrambler.n.01', 'name': 'scrambler'}, {'id': 16958, 'synset': 'scratcher.n.02', 'name': 'scratcher'}, {'id': 16959, 'synset': 'screen_actor.n.01', 'name': 'screen_actor'}, {'id': 16960, 'synset': 'scrutineer.n.01', 'name': 'scrutineer'}, {'id': 16961, 'synset': 'scuba_diver.n.01', 'name': 'scuba_diver'}, {'id': 16962, 'synset': 'sculptor.n.01', 'name': 'sculptor'}, {'id': 16963, 'synset': 'sea_scout.n.01', 'name': 'Sea_Scout'}, {'id': 16964, 'synset': 'seasonal_worker.n.01', 'name': 'seasonal_worker'}, {'id': 16965, 'synset': 'seasoner.n.01', 'name': 'seasoner'}, {'id': 16966, 'synset': 'second_baseman.n.01', 'name': 'second_baseman'}, {'id': 16967, 'synset': 'second_cousin.n.01', 'name': 'second_cousin'}, {'id': 16968, 'synset': 'seconder.n.01', 'name': 'seconder'}, {'id': 16969, 'synset': 'second_fiddle.n.01', 'name': 'second_fiddle'}, {'id': 16970, 'synset': 'second-in-command.n.01', 'name': 'second-in-command'}, {'id': 16971, 'synset': 'second_lieutenant.n.01', 'name': 'second_lieutenant'}, {'id': 16972, 'synset': 'second-rater.n.01', 'name': 'second-rater'}, {'id': 16973, 'synset': 'secretary.n.01', 'name': 'secretary'}, {'id': 16974, 'synset': 'secretary_of_agriculture.n.01', 'name': 'Secretary_of_Agriculture'}, {'id': 16975, 'synset': 'secretary_of_health_and_human_services.n.01', 'name': 'Secretary_of_Health_and_Human_Services'}, {'id': 16976, 'synset': 'secretary_of_state.n.01', 'name': 'Secretary_of_State'}, {'id': 16977, 'synset': 'secretary_of_the_interior.n.02', 'name': 'Secretary_of_the_Interior'}, {'id': 16978, 'synset': 'sectarian.n.01', 'name': 'sectarian'}, {'id': 16979, 'synset': 'section_hand.n.01', 'name': 'section_hand'}, {'id': 16980, 'synset': 'secularist.n.01', 'name': 'secularist'}, {'id': 16981, 'synset': 'security_consultant.n.01', 'name': 'security_consultant'}, {'id': 16982, 'synset': 'seeded_player.n.01', 'name': 'seeded_player'}, {'id': 16983, 'synset': 'seeder.n.01', 'name': 'seeder'}, {'id': 16984, 'synset': 'seeker.n.01', 'name': 'seeker'}, {'id': 16985, 'synset': 'segregate.n.01', 'name': 'segregate'}, {'id': 16986, 'synset': 'segregator.n.01', 'name': 'segregator'}, {'id': 16987, 'synset': 'selectman.n.01', 'name': 'selectman'}, {'id': 16988, 'synset': 'selectwoman.n.01', 'name': 'selectwoman'}, {'id': 16989, 'synset': 'selfish_person.n.01', 'name': 'selfish_person'}, {'id': 16990, 'synset': 'self-starter.n.01', 'name': 'self-starter'}, {'id': 16991, 'synset': 'seller.n.01', 'name': 'seller'}, {'id': 16992, 'synset': 'selling_agent.n.01', 'name': 'selling_agent'}, {'id': 16993, 'synset': 'semanticist.n.01', 'name': 'semanticist'}, {'id': 16994, 'synset': 'semifinalist.n.01', 'name': 'semifinalist'}, {'id': 16995, 'synset': 'seminarian.n.01', 'name': 'seminarian'}, {'id': 16996, 'synset': 'senator.n.01', 'name': 'senator'}, {'id': 16997, 'synset': 'sendee.n.01', 'name': 'sendee'}, {'id': 16998, 'synset': 'senior.n.01', 'name': 'senior'}, {'id': 16999, 'synset': 'senior_vice_president.n.01', 'name': 'senior_vice_president'}, {'id': 17000, 'synset': 'separatist.n.01', 'name': 'separatist'}, {'id': 17001, 'synset': 'septuagenarian.n.01', 'name': 'septuagenarian'}, {'id': 17002, 'synset': 'serf.n.01', 'name': 'serf'}, {'id': 17003, 'synset': 'spree_killer.n.01', 'name': 'spree_killer'}, {'id': 17004, 'synset': 'serjeant-at-law.n.01', 'name': 'serjeant-at-law'}, {'id': 17005, 'synset': 'server.n.02', 'name': 'server'}, {'id': 17006, 'synset': 'serviceman.n.01', 'name': 'serviceman'}, {'id': 17007, 'synset': 'settler.n.01', 'name': 'settler'}, {'id': 17008, 'synset': 'settler.n.03', 'name': 'settler'}, {'id': 17009, 'synset': 'sex_symbol.n.01', 'name': 'sex_symbol'}, {'id': 17010, 'synset': 'sexton.n.02', 'name': 'sexton'}, {'id': 17011, 'synset': 'shaheed.n.01', 'name': 'shaheed'}, {'id': 17012, 'synset': 'shakespearian.n.01', 'name': 'Shakespearian'}, {'id': 17013, 'synset': 'shanghaier.n.01', 'name': 'shanghaier'}, {'id': 17014, 'synset': 'sharecropper.n.01', 'name': 'sharecropper'}, {'id': 17015, 'synset': 'shaver.n.01', 'name': 'shaver'}, {'id': 17016, 'synset': 'shavian.n.01', 'name': 'Shavian'}, {'id': 17017, 'synset': 'sheep.n.02', 'name': 'sheep'}, {'id': 17018, 'synset': 'sheik.n.01', 'name': 'sheik'}, {'id': 17019, 'synset': 'shelver.n.01', 'name': 'shelver'}, {'id': 17020, 'synset': 'shepherd.n.01', 'name': 'shepherd'}, {'id': 17021, 'synset': 'ship-breaker.n.01', 'name': 'ship-breaker'}, {'id': 17022, 'synset': 'shipmate.n.01', 'name': 'shipmate'}, {'id': 17023, 'synset': 'shipowner.n.01', 'name': 'shipowner'}, {'id': 17024, 'synset': 'shipping_agent.n.01', 'name': 'shipping_agent'}, {'id': 17025, 'synset': 'shirtmaker.n.01', 'name': 'shirtmaker'}, {'id': 17026, 'synset': 'shogun.n.01', 'name': 'shogun'}, {'id': 17027, 'synset': 'shopaholic.n.01', 'name': 'shopaholic'}, {'id': 17028, 'synset': 'shop_girl.n.01', 'name': 'shop_girl'}, {'id': 17029, 'synset': 'shop_steward.n.01', 'name': 'shop_steward'}, {'id': 17030, 'synset': 'shot_putter.n.01', 'name': 'shot_putter'}, {'id': 17031, 'synset': 'shrew.n.01', 'name': 'shrew'}, {'id': 17032, 'synset': 'shuffler.n.01', 'name': 'shuffler'}, {'id': 17033, 'synset': 'shyster.n.01', 'name': 'shyster'}, {'id': 17034, 'synset': 'sibling.n.01', 'name': 'sibling'}, {'id': 17035, 'synset': 'sick_person.n.01', 'name': 'sick_person'}, {'id': 17036, 'synset': 'sightreader.n.01', 'name': 'sightreader'}, {'id': 17037, 'synset': 'signaler.n.01', 'name': 'signaler'}, {'id': 17038, 'synset': 'signer.n.01', 'name': 'signer'}, {'id': 17039, 'synset': 'signor.n.01', 'name': 'signor'}, {'id': 17040, 'synset': 'signora.n.01', 'name': 'signora'}, {'id': 17041, 'synset': 'signore.n.01', 'name': 'signore'}, {'id': 17042, 'synset': 'signorina.n.01', 'name': 'signorina'}, {'id': 17043, 'synset': 'silent_partner.n.01', 'name': 'silent_partner'}, {'id': 17044, 'synset': 'addle-head.n.01', 'name': 'addle-head'}, {'id': 17045, 'synset': 'simperer.n.01', 'name': 'simperer'}, {'id': 17046, 'synset': 'singer.n.01', 'name': 'singer'}, {'id': 17047, 'synset': 'sinologist.n.01', 'name': 'Sinologist'}, {'id': 17048, 'synset': 'sipper.n.01', 'name': 'sipper'}, {'id': 17049, 'synset': 'sirrah.n.01', 'name': 'sirrah'}, {'id': 17050, 'synset': 'sister.n.02', 'name': 'Sister'}, {'id': 17051, 'synset': 'sister.n.01', 'name': 'sister'}, {'id': 17052, 'synset': 'waverer.n.01', 'name': 'waverer'}, {'id': 17053, 'synset': 'sitar_player.n.01', 'name': 'sitar_player'}, {'id': 17054, 'synset': 'sixth-former.n.01', 'name': 'sixth-former'}, {'id': 17055, 'synset': 'skateboarder.n.01', 'name': 'skateboarder'}, {'id': 17056, 'synset': 'skeptic.n.01', 'name': 'skeptic'}, {'id': 17057, 'synset': 'sketcher.n.01', 'name': 'sketcher'}, {'id': 17058, 'synset': 'skidder.n.02', 'name': 'skidder'}, {'id': 17059, 'synset': 'skier.n.01', 'name': 'skier'}, {'id': 17060, 'synset': 'skinny-dipper.n.01', 'name': 'skinny-dipper'}, {'id': 17061, 'synset': 'skin-diver.n.01', 'name': 'skin-diver'}, {'id': 17062, 'synset': 'skinhead.n.01', 'name': 'skinhead'}, {'id': 17063, 'synset': 'slasher.n.01', 'name': 'slasher'}, {'id': 17064, 'synset': 'slattern.n.02', 'name': 'slattern'}, {'id': 17065, 'synset': 'sleeper.n.01', 'name': 'sleeper'}, {'id': 17066, 'synset': 'sleeper.n.02', 'name': 'sleeper'}, {'id': 17067, 'synset': 'sleeping_beauty.n.02', 'name': 'sleeping_beauty'}, {'id': 17068, 'synset': 'sleuth.n.01', 'name': 'sleuth'}, {'id': 17069, 'synset': 'slob.n.01', 'name': 'slob'}, {'id': 17070, 'synset': 'sloganeer.n.01', 'name': 'sloganeer'}, {'id': 17071, 'synset': 'slopseller.n.01', 'name': 'slopseller'}, {'id': 17072, 'synset': 'smasher.n.02', 'name': 'smasher'}, {'id': 17073, 'synset': 'smirker.n.01', 'name': 'smirker'}, {'id': 17074, 'synset': 'smith.n.10', 'name': 'smith'}, {'id': 17075, 'synset': 'smoothie.n.01', 'name': 'smoothie'}, {'id': 17076, 'synset': 'smuggler.n.01', 'name': 'smuggler'}, {'id': 17077, 'synset': 'sneezer.n.01', 'name': 'sneezer'}, {'id': 17078, 'synset': 'snob.n.01', 'name': 'snob'}, {'id': 17079, 'synset': 'snoop.n.01', 'name': 'snoop'}, {'id': 17080, 'synset': 'snorer.n.01', 'name': 'snorer'}, {'id': 17081, 'synset': 'sob_sister.n.01', 'name': 'sob_sister'}, {'id': 17082, 'synset': 'soccer_player.n.01', 'name': 'soccer_player'}, {'id': 17083, 'synset': 'social_anthropologist.n.01', 'name': 'social_anthropologist'}, {'id': 17084, 'synset': 'social_climber.n.01', 'name': 'social_climber'}, {'id': 17085, 'synset': 'socialist.n.01', 'name': 'socialist'}, {'id': 17086, 'synset': 'socializer.n.01', 'name': 'socializer'}, {'id': 17087, 'synset': 'social_scientist.n.01', 'name': 'social_scientist'}, {'id': 17088, 'synset': 'social_secretary.n.01', 'name': 'social_secretary'}, {'id': 17089, 'synset': 'socinian.n.01', 'name': 'Socinian'}, {'id': 17090, 'synset': 'sociolinguist.n.01', 'name': 'sociolinguist'}, {'id': 17091, 'synset': 'sociologist.n.01', 'name': 'sociologist'}, {'id': 17092, 'synset': 'soda_jerk.n.01', 'name': 'soda_jerk'}, {'id': 17093, 'synset': 'sodalist.n.01', 'name': 'sodalist'}, {'id': 17094, 'synset': 'sodomite.n.01', 'name': 'sodomite'}, {'id': 17095, 'synset': 'soldier.n.01', 'name': 'soldier'}, {'id': 17096, 'synset': 'son.n.01', 'name': 'son'}, {'id': 17097, 'synset': 'songster.n.02', 'name': 'songster'}, {'id': 17098, 'synset': 'songstress.n.01', 'name': 'songstress'}, {'id': 17099, 'synset': 'songwriter.n.01', 'name': 'songwriter'}, {'id': 17100, 'synset': 'sorcerer.n.01', 'name': 'sorcerer'}, {'id': 17101, 'synset': 'sorehead.n.01', 'name': 'sorehead'}, {'id': 17102, 'synset': 'soul_mate.n.01', 'name': 'soul_mate'}, {'id': 17103, 'synset': 'southern_baptist.n.01', 'name': 'Southern_Baptist'}, {'id': 17104, 'synset': 'sovereign.n.01', 'name': 'sovereign'}, {'id': 17105, 'synset': 'spacewalker.n.01', 'name': 'spacewalker'}, {'id': 17106, 'synset': 'spanish_american.n.01', 'name': 'Spanish_American'}, {'id': 17107, 'synset': 'sparring_partner.n.01', 'name': 'sparring_partner'}, {'id': 17108, 'synset': 'spastic.n.01', 'name': 'spastic'}, {'id': 17109, 'synset': 'speaker.n.01', 'name': 'speaker'}, {'id': 17110, 'synset': 'native_speaker.n.01', 'name': 'native_speaker'}, {'id': 17111, 'synset': 'speaker.n.03', 'name': 'Speaker'}, {'id': 17112, 'synset': 'speechwriter.n.01', 'name': 'speechwriter'}, {'id': 17113, 'synset': 'specialist.n.02', 'name': 'specialist'}, {'id': 17114, 'synset': 'specifier.n.01', 'name': 'specifier'}, {'id': 17115, 'synset': 'spectator.n.01', 'name': 'spectator'}, {'id': 17116, 'synset': 'speech_therapist.n.01', 'name': 'speech_therapist'}, {'id': 17117, 'synset': 'speedskater.n.01', 'name': 'speedskater'}, {'id': 17118, 'synset': 'spellbinder.n.01', 'name': 'spellbinder'}, {'id': 17119, 'synset': 'sphinx.n.01', 'name': 'sphinx'}, {'id': 17120, 'synset': 'spinster.n.01', 'name': 'spinster'}, {'id': 17121, 'synset': 'split_end.n.01', 'name': 'split_end'}, {'id': 17122, 'synset': 'sport.n.05', 'name': 'sport'}, {'id': 17123, 'synset': 'sport.n.03', 'name': 'sport'}, {'id': 17124, 'synset': 'sporting_man.n.02', 'name': 'sporting_man'}, {'id': 17125, 'synset': 'sports_announcer.n.01', 'name': 'sports_announcer'}, {'id': 17126, 'synset': 'sports_editor.n.01', 'name': 'sports_editor'}, {'id': 17127, 'synset': 'sprog.n.02', 'name': 'sprog'}, {'id': 17128, 'synset': 'square_dancer.n.01', 'name': 'square_dancer'}, {'id': 17129, 'synset': 'square_shooter.n.01', 'name': 'square_shooter'}, {'id': 17130, 'synset': 'squatter.n.02', 'name': 'squatter'}, {'id': 17131, 'synset': 'squire.n.02', 'name': 'squire'}, {'id': 17132, 'synset': 'squire.n.01', 'name': 'squire'}, {'id': 17133, 'synset': 'staff_member.n.01', 'name': 'staff_member'}, {'id': 17134, 'synset': 'staff_sergeant.n.01', 'name': 'staff_sergeant'}, {'id': 17135, 'synset': 'stage_director.n.01', 'name': 'stage_director'}, {'id': 17136, 'synset': 'stainer.n.01', 'name': 'stainer'}, {'id': 17137, 'synset': 'stakeholder.n.01', 'name': 'stakeholder'}, {'id': 17138, 'synset': 'stalker.n.02', 'name': 'stalker'}, {'id': 17139, 'synset': 'stalking-horse.n.01', 'name': 'stalking-horse'}, {'id': 17140, 'synset': 'stammerer.n.01', 'name': 'stammerer'}, {'id': 17141, 'synset': 'stamper.n.02', 'name': 'stamper'}, {'id': 17142, 'synset': 'standee.n.01', 'name': 'standee'}, {'id': 17143, 'synset': 'stand-in.n.01', 'name': 'stand-in'}, {'id': 17144, 'synset': 'star.n.04', 'name': 'star'}, {'id': 17145, 'synset': 'starlet.n.01', 'name': 'starlet'}, {'id': 17146, 'synset': 'starter.n.03', 'name': 'starter'}, {'id': 17147, 'synset': 'statesman.n.01', 'name': 'statesman'}, {'id': 17148, 'synset': 'state_treasurer.n.01', 'name': 'state_treasurer'}, {'id': 17149, 'synset': 'stationer.n.01', 'name': 'stationer'}, {'id': 17150, 'synset': 'stenographer.n.01', 'name': 'stenographer'}, {'id': 17151, 'synset': 'stentor.n.01', 'name': 'stentor'}, {'id': 17152, 'synset': 'stepbrother.n.01', 'name': 'stepbrother'}, {'id': 17153, 'synset': 'stepmother.n.01', 'name': 'stepmother'}, {'id': 17154, 'synset': 'stepparent.n.01', 'name': 'stepparent'}, {'id': 17155, 'synset': 'stevedore.n.01', 'name': 'stevedore'}, {'id': 17156, 'synset': 'steward.n.01', 'name': 'steward'}, {'id': 17157, 'synset': 'steward.n.03', 'name': 'steward'}, {'id': 17158, 'synset': 'steward.n.02', 'name': 'steward'}, {'id': 17159, 'synset': 'stickler.n.01', 'name': 'stickler'}, {'id': 17160, 'synset': 'stiff.n.01', 'name': 'stiff'}, {'id': 17161, 'synset': 'stifler.n.01', 'name': 'stifler'}, {'id': 17162, 'synset': 'stipendiary.n.01', 'name': 'stipendiary'}, {'id': 17163, 'synset': 'stitcher.n.01', 'name': 'stitcher'}, {'id': 17164, 'synset': 'stockjobber.n.01', 'name': 'stockjobber'}, {'id': 17165, 'synset': 'stock_trader.n.01', 'name': 'stock_trader'}, {'id': 17166, 'synset': 'stockist.n.01', 'name': 'stockist'}, {'id': 17167, 'synset': 'stoker.n.02', 'name': 'stoker'}, {'id': 17168, 'synset': 'stooper.n.02', 'name': 'stooper'}, {'id': 17169, 'synset': 'store_detective.n.01', 'name': 'store_detective'}, {'id': 17170, 'synset': 'strafer.n.01', 'name': 'strafer'}, {'id': 17171, 'synset': 'straight_man.n.01', 'name': 'straight_man'}, {'id': 17172, 'synset': 'stranger.n.01', 'name': 'stranger'}, {'id': 17173, 'synset': 'stranger.n.02', 'name': 'stranger'}, {'id': 17174, 'synset': 'strategist.n.01', 'name': 'strategist'}, {'id': 17175, 'synset': 'straw_boss.n.01', 'name': 'straw_boss'}, {'id': 17176, 'synset': 'streetwalker.n.01', 'name': 'streetwalker'}, {'id': 17177, 'synset': 'stretcher-bearer.n.01', 'name': 'stretcher-bearer'}, {'id': 17178, 'synset': 'struggler.n.01', 'name': 'struggler'}, {'id': 17179, 'synset': 'stud.n.01', 'name': 'stud'}, {'id': 17180, 'synset': 'student.n.01', 'name': 'student'}, {'id': 17181, 'synset': 'stumblebum.n.01', 'name': 'stumblebum'}, {'id': 17182, 'synset': 'stylist.n.01', 'name': 'stylist'}, {'id': 17183, 'synset': 'subaltern.n.01', 'name': 'subaltern'}, {'id': 17184, 'synset': 'subcontractor.n.01', 'name': 'subcontractor'}, {'id': 17185, 'synset': 'subduer.n.01', 'name': 'subduer'}, {'id': 17186, 'synset': 'subject.n.06', 'name': 'subject'}, {'id': 17187, 'synset': 'subordinate.n.01', 'name': 'subordinate'}, {'id': 17188, 'synset': 'substitute.n.02', 'name': 'substitute'}, {'id': 17189, 'synset': 'successor.n.03', 'name': 'successor'}, {'id': 17190, 'synset': 'successor.n.01', 'name': 'successor'}, {'id': 17191, 'synset': 'succorer.n.01', 'name': 'succorer'}, {'id': 17192, 'synset': 'sufi.n.01', 'name': 'Sufi'}, {'id': 17193, 'synset': 'suffragan.n.01', 'name': 'suffragan'}, {'id': 17194, 'synset': 'suffragette.n.01', 'name': 'suffragette'}, {'id': 17195, 'synset': 'sugar_daddy.n.01', 'name': 'sugar_daddy'}, {'id': 17196, 'synset': 'suicide_bomber.n.01', 'name': 'suicide_bomber'}, {'id': 17197, 'synset': 'suitor.n.01', 'name': 'suitor'}, {'id': 17198, 'synset': 'sumo_wrestler.n.01', 'name': 'sumo_wrestler'}, {'id': 17199, 'synset': 'sunbather.n.01', 'name': 'sunbather'}, {'id': 17200, 'synset': 'sundowner.n.01', 'name': 'sundowner'}, {'id': 17201, 'synset': 'super_heavyweight.n.01', 'name': 'super_heavyweight'}, {'id': 17202, 'synset': 'superior.n.01', 'name': 'superior'}, {'id': 17203, 'synset': 'supermom.n.01', 'name': 'supermom'}, {'id': 17204, 'synset': 'supernumerary.n.02', 'name': 'supernumerary'}, {'id': 17205, 'synset': 'supremo.n.01', 'name': 'supremo'}, {'id': 17206, 'synset': 'surgeon.n.01', 'name': 'surgeon'}, {'id': 17207, 'synset': 'surgeon_general.n.02', 'name': 'Surgeon_General'}, {'id': 17208, 'synset': 'surgeon_general.n.01', 'name': 'Surgeon_General'}, {'id': 17209, 'synset': 'surpriser.n.01', 'name': 'surpriser'}, {'id': 17210, 'synset': 'surveyor.n.01', 'name': 'surveyor'}, {'id': 17211, 'synset': 'surveyor.n.02', 'name': 'surveyor'}, {'id': 17212, 'synset': 'survivor.n.01', 'name': 'survivor'}, {'id': 17213, 'synset': 'sutler.n.01', 'name': 'sutler'}, {'id': 17214, 'synset': 'sweeper.n.01', 'name': 'sweeper'}, {'id': 17215, 'synset': 'sweetheart.n.01', 'name': 'sweetheart'}, {'id': 17216, 'synset': 'swinger.n.02', 'name': 'swinger'}, {'id': 17217, 'synset': 'switcher.n.01', 'name': 'switcher'}, {'id': 17218, 'synset': 'swot.n.01', 'name': 'swot'}, {'id': 17219, 'synset': 'sycophant.n.01', 'name': 'sycophant'}, {'id': 17220, 'synset': 'sylph.n.01', 'name': 'sylph'}, {'id': 17221, 'synset': 'sympathizer.n.02', 'name': 'sympathizer'}, {'id': 17222, 'synset': 'symphonist.n.01', 'name': 'symphonist'}, {'id': 17223, 'synset': 'syncopator.n.01', 'name': 'syncopator'}, {'id': 17224, 'synset': 'syndic.n.01', 'name': 'syndic'}, {'id': 17225, 'synset': 'tactician.n.01', 'name': 'tactician'}, {'id': 17226, 'synset': 'tagger.n.02', 'name': 'tagger'}, {'id': 17227, 'synset': 'tailback.n.01', 'name': 'tailback'}, {'id': 17228, 'synset': 'tallyman.n.02', 'name': 'tallyman'}, {'id': 17229, 'synset': 'tallyman.n.01', 'name': 'tallyman'}, {'id': 17230, 'synset': 'tanker.n.02', 'name': 'tanker'}, {'id': 17231, 'synset': 'tapper.n.04', 'name': 'tapper'}, {'id': 17232, 'synset': 'tartuffe.n.01', 'name': 'Tartuffe'}, {'id': 17233, 'synset': 'tarzan.n.01', 'name': 'Tarzan'}, {'id': 17234, 'synset': 'taster.n.01', 'name': 'taster'}, {'id': 17235, 'synset': 'tax_assessor.n.01', 'name': 'tax_assessor'}, {'id': 17236, 'synset': 'taxer.n.01', 'name': 'taxer'}, {'id': 17237, 'synset': 'taxi_dancer.n.01', 'name': 'taxi_dancer'}, {'id': 17238, 'synset': 'taxonomist.n.01', 'name': 'taxonomist'}, {'id': 17239, 'synset': 'teacher.n.01', 'name': 'teacher'}, {'id': 17240, 'synset': 'teaching_fellow.n.01', 'name': 'teaching_fellow'}, {'id': 17241, 'synset': 'tearaway.n.01', 'name': 'tearaway'}, {'id': 17242, 'synset': 'technical_sergeant.n.01', 'name': 'technical_sergeant'}, {'id': 17243, 'synset': 'technician.n.02', 'name': 'technician'}, {'id': 17244, 'synset': 'ted.n.01', 'name': 'Ted'}, {'id': 17245, 'synset': 'teetotaler.n.01', 'name': 'teetotaler'}, {'id': 17246, 'synset': 'television_reporter.n.01', 'name': 'television_reporter'}, {'id': 17247, 'synset': 'temporizer.n.01', 'name': 'temporizer'}, {'id': 17248, 'synset': 'tempter.n.01', 'name': 'tempter'}, {'id': 17249, 'synset': 'term_infant.n.01', 'name': 'term_infant'}, {'id': 17250, 'synset': 'toiler.n.01', 'name': 'toiler'}, {'id': 17251, 'synset': 'tenant.n.01', 'name': 'tenant'}, {'id': 17252, 'synset': 'tenant.n.02', 'name': 'tenant'}, {'id': 17253, 'synset': 'tenderfoot.n.01', 'name': 'tenderfoot'}, {'id': 17254, 'synset': 'tennis_player.n.01', 'name': 'tennis_player'}, {'id': 17255, 'synset': 'tennis_pro.n.01', 'name': 'tennis_pro'}, {'id': 17256, 'synset': 'tenor_saxophonist.n.01', 'name': 'tenor_saxophonist'}, {'id': 17257, 'synset': 'termer.n.01', 'name': 'termer'}, {'id': 17258, 'synset': 'terror.n.02', 'name': 'terror'}, {'id': 17259, 'synset': 'tertigravida.n.01', 'name': 'tertigravida'}, {'id': 17260, 'synset': 'testator.n.01', 'name': 'testator'}, {'id': 17261, 'synset': 'testatrix.n.01', 'name': 'testatrix'}, {'id': 17262, 'synset': 'testee.n.01', 'name': 'testee'}, {'id': 17263, 'synset': 'test-tube_baby.n.01', 'name': 'test-tube_baby'}, {'id': 17264, 'synset': 'texas_ranger.n.01', 'name': 'Texas_Ranger'}, {'id': 17265, 'synset': 'thane.n.02', 'name': 'thane'}, {'id': 17266, 'synset': 'theatrical_producer.n.01', 'name': 'theatrical_producer'}, {'id': 17267, 'synset': 'theologian.n.01', 'name': 'theologian'}, {'id': 17268, 'synset': 'theorist.n.01', 'name': 'theorist'}, {'id': 17269, 'synset': 'theosophist.n.01', 'name': 'theosophist'}, {'id': 17270, 'synset': 'therapist.n.01', 'name': 'therapist'}, {'id': 17271, 'synset': 'thessalonian.n.01', 'name': 'Thessalonian'}, {'id': 17272, 'synset': 'thinker.n.01', 'name': 'thinker'}, {'id': 17273, 'synset': 'thinker.n.02', 'name': 'thinker'}, {'id': 17274, 'synset': 'thrower.n.02', 'name': 'thrower'}, {'id': 17275, 'synset': 'thurifer.n.01', 'name': 'thurifer'}, {'id': 17276, 'synset': 'ticket_collector.n.01', 'name': 'ticket_collector'}, {'id': 17277, 'synset': 'tight_end.n.01', 'name': 'tight_end'}, {'id': 17278, 'synset': 'tiler.n.01', 'name': 'tiler'}, {'id': 17279, 'synset': 'timekeeper.n.01', 'name': 'timekeeper'}, {'id': 17280, 'synset': 'timorese.n.01', 'name': 'Timorese'}, {'id': 17281, 'synset': 'tinkerer.n.01', 'name': 'tinkerer'}, {'id': 17282, 'synset': 'tinsmith.n.01', 'name': 'tinsmith'}, {'id': 17283, 'synset': 'tinter.n.01', 'name': 'tinter'}, {'id': 17284, 'synset': 'tippler.n.01', 'name': 'tippler'}, {'id': 17285, 'synset': 'tipster.n.01', 'name': 'tipster'}, {'id': 17286, 'synset': 't-man.n.01', 'name': 'T-man'}, {'id': 17287, 'synset': 'toastmaster.n.01', 'name': 'toastmaster'}, {'id': 17288, 'synset': 'toast_mistress.n.01', 'name': 'toast_mistress'}, {'id': 17289, 'synset': 'tobogganist.n.01', 'name': 'tobogganist'}, {'id': 17290, 'synset': 'tomboy.n.01', 'name': 'tomboy'}, {'id': 17291, 'synset': 'toolmaker.n.01', 'name': 'toolmaker'}, {'id': 17292, 'synset': 'torchbearer.n.01', 'name': 'torchbearer'}, {'id': 17293, 'synset': 'tory.n.01', 'name': 'Tory'}, {'id': 17294, 'synset': 'tory.n.02', 'name': 'Tory'}, {'id': 17295, 'synset': 'tosser.n.02', 'name': 'tosser'}, {'id': 17296, 'synset': 'tosser.n.01', 'name': 'tosser'}, {'id': 17297, 'synset': 'totalitarian.n.01', 'name': 'totalitarian'}, {'id': 17298, 'synset': 'tourist.n.01', 'name': 'tourist'}, {'id': 17299, 'synset': 'tout.n.02', 'name': 'tout'}, {'id': 17300, 'synset': 'tout.n.01', 'name': 'tout'}, {'id': 17301, 'synset': 'tovarich.n.01', 'name': 'tovarich'}, {'id': 17302, 'synset': 'towhead.n.01', 'name': 'towhead'}, {'id': 17303, 'synset': 'town_clerk.n.01', 'name': 'town_clerk'}, {'id': 17304, 'synset': 'town_crier.n.01', 'name': 'town_crier'}, {'id': 17305, 'synset': 'townsman.n.02', 'name': 'townsman'}, {'id': 17306, 'synset': 'toxicologist.n.01', 'name': 'toxicologist'}, {'id': 17307, 'synset': 'track_star.n.01', 'name': 'track_star'}, {'id': 17308, 'synset': 'trader.n.01', 'name': 'trader'}, {'id': 17309, 'synset': 'trade_unionist.n.01', 'name': 'trade_unionist'}, {'id': 17310, 'synset': 'traditionalist.n.01', 'name': 'traditionalist'}, {'id': 17311, 'synset': 'traffic_cop.n.01', 'name': 'traffic_cop'}, {'id': 17312, 'synset': 'tragedian.n.02', 'name': 'tragedian'}, {'id': 17313, 'synset': 'tragedian.n.01', 'name': 'tragedian'}, {'id': 17314, 'synset': 'tragedienne.n.01', 'name': 'tragedienne'}, {'id': 17315, 'synset': 'trail_boss.n.01', 'name': 'trail_boss'}, {'id': 17316, 'synset': 'trainer.n.01', 'name': 'trainer'}, {'id': 17317, 'synset': 'traitor.n.01', 'name': 'traitor'}, {'id': 17318, 'synset': 'traitress.n.01', 'name': 'traitress'}, {'id': 17319, 'synset': 'transactor.n.01', 'name': 'transactor'}, {'id': 17320, 'synset': 'transcriber.n.03', 'name': 'transcriber'}, {'id': 17321, 'synset': 'transfer.n.02', 'name': 'transfer'}, {'id': 17322, 'synset': 'transferee.n.01', 'name': 'transferee'}, {'id': 17323, 'synset': 'translator.n.01', 'name': 'translator'}, {'id': 17324, 'synset': 'transvestite.n.01', 'name': 'transvestite'}, {'id': 17325, 'synset': 'traveling_salesman.n.01', 'name': 'traveling_salesman'}, {'id': 17326, 'synset': 'traverser.n.01', 'name': 'traverser'}, {'id': 17327, 'synset': 'trawler.n.01', 'name': 'trawler'}, {'id': 17328, 'synset': 'treasury.n.04', 'name': 'Treasury'}, {'id': 17329, 'synset': 'trencher.n.01', 'name': 'trencher'}, {'id': 17330, 'synset': 'trend-setter.n.01', 'name': 'trend-setter'}, {'id': 17331, 'synset': 'tribesman.n.01', 'name': 'tribesman'}, {'id': 17332, 'synset': 'trier.n.02', 'name': 'trier'}, {'id': 17333, 'synset': 'trifler.n.01', 'name': 'trifler'}, {'id': 17334, 'synset': 'trooper.n.02', 'name': 'trooper'}, {'id': 17335, 'synset': 'trooper.n.03', 'name': 'trooper'}, {'id': 17336, 'synset': 'trotskyite.n.01', 'name': 'Trotskyite'}, {'id': 17337, 'synset': 'truant.n.01', 'name': 'truant'}, {'id': 17338, 'synset': 'trumpeter.n.01', 'name': 'trumpeter'}, {'id': 17339, 'synset': 'trusty.n.01', 'name': 'trusty'}, {'id': 17340, 'synset': 'tudor.n.03', 'name': 'Tudor'}, {'id': 17341, 'synset': 'tumbler.n.01', 'name': 'tumbler'}, {'id': 17342, 'synset': 'tutee.n.01', 'name': 'tutee'}, {'id': 17343, 'synset': 'twin.n.01', 'name': 'twin'}, {'id': 17344, 'synset': 'two-timer.n.01', 'name': 'two-timer'}, {'id': 17345, 'synset': 'tyke.n.01', 'name': 'Tyke'}, {'id': 17346, 'synset': 'tympanist.n.01', 'name': 'tympanist'}, {'id': 17347, 'synset': 'typist.n.01', 'name': 'typist'}, {'id': 17348, 'synset': 'tyrant.n.01', 'name': 'tyrant'}, {'id': 17349, 'synset': 'umpire.n.01', 'name': 'umpire'}, {'id': 17350, 'synset': 'understudy.n.01', 'name': 'understudy'}, {'id': 17351, 'synset': 'undesirable.n.01', 'name': 'undesirable'}, {'id': 17352, 'synset': 'unicyclist.n.01', 'name': 'unicyclist'}, {'id': 17353, 'synset': 'unilateralist.n.01', 'name': 'unilateralist'}, {'id': 17354, 'synset': 'unitarian.n.01', 'name': 'Unitarian'}, {'id': 17355, 'synset': 'arminian.n.01', 'name': 'Arminian'}, {'id': 17356, 'synset': 'universal_donor.n.01', 'name': 'universal_donor'}, {'id': 17357, 'synset': 'unix_guru.n.01', 'name': 'UNIX_guru'}, {'id': 17358, 'synset': 'unknown_soldier.n.01', 'name': 'Unknown_Soldier'}, {'id': 17359, 'synset': 'upsetter.n.01', 'name': 'upsetter'}, {'id': 17360, 'synset': 'upstager.n.01', 'name': 'upstager'}, {'id': 17361, 'synset': 'upstart.n.02', 'name': 'upstart'}, {'id': 17362, 'synset': 'upstart.n.01', 'name': 'upstart'}, {'id': 17363, 'synset': 'urchin.n.01', 'name': 'urchin'}, {'id': 17364, 'synset': 'urologist.n.01', 'name': 'urologist'}, {'id': 17365, 'synset': 'usherette.n.01', 'name': 'usherette'}, {'id': 17366, 'synset': 'usher.n.02', 'name': 'usher'}, {'id': 17367, 'synset': 'usurper.n.01', 'name': 'usurper'}, {'id': 17368, 'synset': 'utility_man.n.01', 'name': 'utility_man'}, {'id': 17369, 'synset': 'utilizer.n.01', 'name': 'utilizer'}, {'id': 17370, 'synset': 'utopian.n.01', 'name': 'Utopian'}, {'id': 17371, 'synset': 'uxoricide.n.01', 'name': 'uxoricide'}, {'id': 17372, 'synset': 'vacationer.n.01', 'name': 'vacationer'}, {'id': 17373, 'synset': 'valedictorian.n.01', 'name': 'valedictorian'}, {'id': 17374, 'synset': 'valley_girl.n.01', 'name': 'valley_girl'}, {'id': 17375, 'synset': 'vaulter.n.01', 'name': 'vaulter'}, {'id': 17376, 'synset': 'vegetarian.n.01', 'name': 'vegetarian'}, {'id': 17377, 'synset': 'vegan.n.01', 'name': 'vegan'}, {'id': 17378, 'synset': 'venerator.n.01', 'name': 'venerator'}, {'id': 17379, 'synset': 'venture_capitalist.n.01', 'name': 'venture_capitalist'}, {'id': 17380, 'synset': 'venturer.n.01', 'name': 'venturer'}, {'id': 17381, 'synset': 'vermin.n.01', 'name': 'vermin'}, {'id': 17382, 'synset': 'very_important_person.n.01', 'name': 'very_important_person'}, {'id': 17383, 'synset': 'vibist.n.01', 'name': 'vibist'}, {'id': 17384, 'synset': 'vicar.n.01', 'name': 'vicar'}, {'id': 17385, 'synset': 'vicar.n.03', 'name': 'vicar'}, {'id': 17386, 'synset': 'vicar-general.n.01', 'name': 'vicar-general'}, {'id': 17387, 'synset': 'vice_chancellor.n.01', 'name': 'vice_chancellor'}, {'id': 17388, 'synset': 'vicegerent.n.01', 'name': 'vicegerent'}, {'id': 17389, 'synset': 'vice_president.n.01', 'name': 'vice_president'}, {'id': 17390, 'synset': 'vice-regent.n.01', 'name': 'vice-regent'}, {'id': 17391, 'synset': 'victim.n.02', 'name': 'victim'}, {'id': 17392, 'synset': 'victorian.n.01', 'name': 'Victorian'}, {'id': 17393, 'synset': 'victualer.n.01', 'name': 'victualer'}, {'id': 17394, 'synset': 'vigilante.n.01', 'name': 'vigilante'}, {'id': 17395, 'synset': 'villager.n.01', 'name': 'villager'}, {'id': 17396, 'synset': 'vintager.n.01', 'name': 'vintager'}, {'id': 17397, 'synset': 'vintner.n.01', 'name': 'vintner'}, {'id': 17398, 'synset': 'violator.n.02', 'name': 'violator'}, {'id': 17399, 'synset': 'violator.n.01', 'name': 'violator'}, {'id': 17400, 'synset': 'violist.n.01', 'name': 'violist'}, {'id': 17401, 'synset': 'virago.n.01', 'name': 'virago'}, {'id': 17402, 'synset': 'virologist.n.01', 'name': 'virologist'}, {'id': 17403, 'synset': 'visayan.n.01', 'name': 'Visayan'}, {'id': 17404, 'synset': 'viscountess.n.01', 'name': 'viscountess'}, {'id': 17405, 'synset': 'viscount.n.01', 'name': 'viscount'}, {'id': 17406, 'synset': 'visigoth.n.01', 'name': 'Visigoth'}, {'id': 17407, 'synset': 'visionary.n.01', 'name': 'visionary'}, {'id': 17408, 'synset': 'visiting_fireman.n.01', 'name': 'visiting_fireman'}, {'id': 17409, 'synset': 'visiting_professor.n.01', 'name': 'visiting_professor'}, {'id': 17410, 'synset': 'visualizer.n.01', 'name': 'visualizer'}, {'id': 17411, 'synset': 'vixen.n.01', 'name': 'vixen'}, {'id': 17412, 'synset': 'vizier.n.01', 'name': 'vizier'}, {'id': 17413, 'synset': 'voicer.n.01', 'name': 'voicer'}, {'id': 17414, 'synset': 'volunteer.n.02', 'name': 'volunteer'}, {'id': 17415, 'synset': 'volunteer.n.01', 'name': 'volunteer'}, {'id': 17416, 'synset': 'votary.n.02', 'name': 'votary'}, {'id': 17417, 'synset': 'votary.n.01', 'name': 'votary'}, {'id': 17418, 'synset': 'vouchee.n.01', 'name': 'vouchee'}, {'id': 17419, 'synset': 'vower.n.01', 'name': 'vower'}, {'id': 17420, 'synset': 'voyager.n.01', 'name': 'voyager'}, {'id': 17421, 'synset': 'voyeur.n.01', 'name': 'voyeur'}, {'id': 17422, 'synset': 'vulcanizer.n.01', 'name': 'vulcanizer'}, {'id': 17423, 'synset': 'waffler.n.01', 'name': 'waffler'}, {'id': 17424, 'synset': 'wagnerian.n.01', 'name': 'Wagnerian'}, {'id': 17425, 'synset': 'waif.n.01', 'name': 'waif'}, {'id': 17426, 'synset': 'wailer.n.01', 'name': 'wailer'}, {'id': 17427, 'synset': 'waiter.n.01', 'name': 'waiter'}, {'id': 17428, 'synset': 'waitress.n.01', 'name': 'waitress'}, {'id': 17429, 'synset': 'walking_delegate.n.01', 'name': 'walking_delegate'}, {'id': 17430, 'synset': 'walk-on.n.01', 'name': 'walk-on'}, {'id': 17431, 'synset': 'wallah.n.01', 'name': 'wallah'}, {'id': 17432, 'synset': 'wally.n.01', 'name': 'wally'}, {'id': 17433, 'synset': 'waltzer.n.01', 'name': 'waltzer'}, {'id': 17434, 'synset': 'wanderer.n.01', 'name': 'wanderer'}, {'id': 17435, 'synset': 'wandering_jew.n.01', 'name': 'Wandering_Jew'}, {'id': 17436, 'synset': 'wanton.n.01', 'name': 'wanton'}, {'id': 17437, 'synset': 'warrantee.n.02', 'name': 'warrantee'}, {'id': 17438, 'synset': 'warrantee.n.01', 'name': 'warrantee'}, {'id': 17439, 'synset': 'washer.n.01', 'name': 'washer'}, {'id': 17440, 'synset': 'washerman.n.01', 'name': 'washerman'}, {'id': 17441, 'synset': 'washwoman.n.01', 'name': 'washwoman'}, {'id': 17442, 'synset': 'wassailer.n.01', 'name': 'wassailer'}, {'id': 17443, 'synset': 'wastrel.n.01', 'name': 'wastrel'}, {'id': 17444, 'synset': 'wave.n.09', 'name': 'Wave'}, {'id': 17445, 'synset': 'weatherman.n.01', 'name': 'weatherman'}, {'id': 17446, 'synset': 'weekend_warrior.n.02', 'name': 'weekend_warrior'}, {'id': 17447, 'synset': 'weeder.n.01', 'name': 'weeder'}, {'id': 17448, 'synset': 'welder.n.01', 'name': 'welder'}, {'id': 17449, 'synset': 'welfare_case.n.01', 'name': 'welfare_case'}, {'id': 17450, 'synset': 'westerner.n.01', 'name': 'westerner'}, {'id': 17451, 'synset': 'west-sider.n.01', 'name': 'West-sider'}, {'id': 17452, 'synset': 'wetter.n.02', 'name': 'wetter'}, {'id': 17453, 'synset': 'whaler.n.01', 'name': 'whaler'}, {'id': 17454, 'synset': 'whig.n.02', 'name': 'Whig'}, {'id': 17455, 'synset': 'whiner.n.01', 'name': 'whiner'}, {'id': 17456, 'synset': 'whipper-in.n.01', 'name': 'whipper-in'}, {'id': 17457, 'synset': 'whisperer.n.01', 'name': 'whisperer'}, {'id': 17458, 'synset': 'whiteface.n.02', 'name': 'whiteface'}, {'id': 17459, 'synset': 'carmelite.n.01', 'name': 'Carmelite'}, {'id': 17460, 'synset': 'augustinian.n.01', 'name': 'Augustinian'}, {'id': 17461, 'synset': 'white_hope.n.01', 'name': 'white_hope'}, {'id': 17462, 'synset': 'white_supremacist.n.01', 'name': 'white_supremacist'}, {'id': 17463, 'synset': 'whoremaster.n.02', 'name': 'whoremaster'}, {'id': 17464, 'synset': 'whoremaster.n.01', 'name': 'whoremaster'}, {'id': 17465, 'synset': 'widow.n.01', 'name': 'widow'}, {'id': 17466, 'synset': 'wife.n.01', 'name': 'wife'}, {'id': 17467, 'synset': 'wiggler.n.01', 'name': 'wiggler'}, {'id': 17468, 'synset': 'wimp.n.01', 'name': 'wimp'}, {'id': 17469, 'synset': 'wing_commander.n.01', 'name': 'wing_commander'}, {'id': 17470, 'synset': 'winger.n.01', 'name': 'winger'}, {'id': 17471, 'synset': 'winner.n.02', 'name': 'winner'}, {'id': 17472, 'synset': 'winner.n.01', 'name': 'winner'}, {'id': 17473, 'synset': 'window_dresser.n.01', 'name': 'window_dresser'}, {'id': 17474, 'synset': 'winker.n.01', 'name': 'winker'}, {'id': 17475, 'synset': 'wiper.n.01', 'name': 'wiper'}, {'id': 17476, 'synset': 'wireman.n.01', 'name': 'wireman'}, {'id': 17477, 'synset': 'wise_guy.n.01', 'name': 'wise_guy'}, {'id': 17478, 'synset': 'witch_doctor.n.01', 'name': 'witch_doctor'}, {'id': 17479, 'synset': 'withdrawer.n.05', 'name': 'withdrawer'}, {'id': 17480, 'synset': 'withdrawer.n.01', 'name': 'withdrawer'}, {'id': 17481, 'synset': 'woman.n.01', 'name': 'woman'}, {'id': 17482, 'synset': 'woman.n.02', 'name': 'woman'}, {'id': 17483, 'synset': 'wonder_boy.n.01', 'name': 'wonder_boy'}, {'id': 17484, 'synset': 'wonderer.n.01', 'name': 'wonderer'}, {'id': 17485, 'synset': 'working_girl.n.01', 'name': 'working_girl'}, {'id': 17486, 'synset': 'workman.n.01', 'name': 'workman'}, {'id': 17487, 'synset': 'workmate.n.01', 'name': 'workmate'}, {'id': 17488, 'synset': 'worldling.n.01', 'name': 'worldling'}, {'id': 17489, 'synset': 'worshiper.n.01', 'name': 'worshiper'}, {'id': 17490, 'synset': 'worthy.n.01', 'name': 'worthy'}, {'id': 17491, 'synset': 'wrecker.n.01', 'name': 'wrecker'}, {'id': 17492, 'synset': 'wright.n.07', 'name': 'wright'}, {'id': 17493, 'synset': 'write-in_candidate.n.01', 'name': 'write-in_candidate'}, {'id': 17494, 'synset': 'writer.n.01', 'name': 'writer'}, {'id': 17495, 'synset': 'wykehamist.n.01', 'name': 'Wykehamist'}, {'id': 17496, 'synset': 'yakuza.n.01', 'name': 'yakuza'}, {'id': 17497, 'synset': 'yard_bird.n.01', 'name': 'yard_bird'}, {'id': 17498, 'synset': 'yardie.n.01', 'name': 'yardie'}, {'id': 17499, 'synset': 'yardman.n.01', 'name': 'yardman'}, {'id': 17500, 'synset': 'yardmaster.n.01', 'name': 'yardmaster'}, {'id': 17501, 'synset': 'yenta.n.02', 'name': 'yenta'}, {'id': 17502, 'synset': 'yogi.n.02', 'name': 'yogi'}, {'id': 17503, 'synset': 'young_buck.n.01', 'name': 'young_buck'}, {'id': 17504, 'synset': 'young_turk.n.02', 'name': 'young_Turk'}, {'id': 17505, 'synset': 'young_turk.n.01', 'name': 'Young_Turk'}, {'id': 17506, 'synset': 'zionist.n.01', 'name': 'Zionist'}, {'id': 17507, 'synset': 'zoo_keeper.n.01', 'name': 'zoo_keeper'}, {'id': 17508, 'synset': 'genet.n.01', 'name': 'Genet'}, {'id': 17509, 'synset': 'kennan.n.01', 'name': 'Kennan'}, {'id': 17510, 'synset': 'munro.n.01', 'name': 'Munro'}, {'id': 17511, 'synset': 'popper.n.01', 'name': 'Popper'}, {'id': 17512, 'synset': 'stoker.n.01', 'name': 'Stoker'}, {'id': 17513, 'synset': 'townes.n.01', 'name': 'Townes'}, {'id': 17514, 'synset': 'dust_storm.n.01', 'name': 'dust_storm'}, {'id': 17515, 'synset': 'parhelion.n.01', 'name': 'parhelion'}, {'id': 17516, 'synset': 'snow.n.01', 'name': 'snow'}, {'id': 17517, 'synset': 'facula.n.01', 'name': 'facula'}, {'id': 17518, 'synset': 'wave.n.08', 'name': 'wave'}, {'id': 17519, 'synset': 'microflora.n.01', 'name': 'microflora'}, {'id': 17520, 'synset': 'wilding.n.01', 'name': 'wilding'}, {'id': 17521, 'synset': 'semi-climber.n.01', 'name': 'semi-climber'}, {'id': 17522, 'synset': 'volva.n.01', 'name': 'volva'}, {'id': 17523, 'synset': 'basidiocarp.n.01', 'name': 'basidiocarp'}, {'id': 17524, 'synset': 'domatium.n.01', 'name': 'domatium'}, {'id': 17525, 'synset': 'apomict.n.01', 'name': 'apomict'}, {'id': 17526, 'synset': 'aquatic.n.01', 'name': 'aquatic'}, {'id': 17527, 'synset': 'bryophyte.n.01', 'name': 'bryophyte'}, {'id': 17528, 'synset': 'acrocarp.n.01', 'name': 'acrocarp'}, {'id': 17529, 'synset': 'sphagnum.n.01', 'name': 'sphagnum'}, {'id': 17530, 'synset': 'liverwort.n.01', 'name': 'liverwort'}, {'id': 17531, 'synset': 'hepatica.n.02', 'name': 'hepatica'}, {'id': 17532, 'synset': 'pecopteris.n.01', 'name': 'pecopteris'}, {'id': 17533, 'synset': 'pteridophyte.n.01', 'name': 'pteridophyte'}, {'id': 17534, 'synset': 'fern.n.01', 'name': 'fern'}, {'id': 17535, 'synset': 'fern_ally.n.01', 'name': 'fern_ally'}, {'id': 17536, 'synset': 'spore.n.01', 'name': 'spore'}, {'id': 17537, 'synset': 'carpospore.n.01', 'name': 'carpospore'}, {'id': 17538, 'synset': 'chlamydospore.n.01', 'name': 'chlamydospore'}, {'id': 17539, 'synset': 'conidium.n.01', 'name': 'conidium'}, {'id': 17540, 'synset': 'oospore.n.01', 'name': 'oospore'}, {'id': 17541, 'synset': 'tetraspore.n.01', 'name': 'tetraspore'}, {'id': 17542, 'synset': 'zoospore.n.01', 'name': 'zoospore'}, {'id': 17543, 'synset': 'cryptogam.n.01', 'name': 'cryptogam'}, {'id': 17544, 'synset': 'spermatophyte.n.01', 'name': 'spermatophyte'}, {'id': 17545, 'synset': 'seedling.n.01', 'name': 'seedling'}, {'id': 17546, 'synset': 'annual.n.01', 'name': 'annual'}, {'id': 17547, 'synset': 'biennial.n.01', 'name': 'biennial'}, {'id': 17548, 'synset': 'perennial.n.01', 'name': 'perennial'}, {'id': 17549, 'synset': 'hygrophyte.n.01', 'name': 'hygrophyte'}, {'id': 17550, 'synset': 'gymnosperm.n.01', 'name': 'gymnosperm'}, {'id': 17551, 'synset': 'gnetum.n.01', 'name': 'gnetum'}, {'id': 17552, 'synset': 'catha_edulis.n.01', 'name': 'Catha_edulis'}, {'id': 17553, 'synset': 'ephedra.n.01', 'name': 'ephedra'}, {'id': 17554, 'synset': 'mahuang.n.01', 'name': 'mahuang'}, {'id': 17555, 'synset': 'welwitschia.n.01', 'name': 'welwitschia'}, {'id': 17556, 'synset': 'cycad.n.01', 'name': 'cycad'}, {'id': 17557, 'synset': 'sago_palm.n.02', 'name': 'sago_palm'}, {'id': 17558, 'synset': 'false_sago.n.01', 'name': 'false_sago'}, {'id': 17559, 'synset': 'zamia.n.01', 'name': 'zamia'}, {'id': 17560, 'synset': 'coontie.n.01', 'name': 'coontie'}, {'id': 17561, 'synset': 'ceratozamia.n.01', 'name': 'ceratozamia'}, {'id': 17562, 'synset': 'dioon.n.01', 'name': 'dioon'}, {'id': 17563, 'synset': 'encephalartos.n.01', 'name': 'encephalartos'}, {'id': 17564, 'synset': 'kaffir_bread.n.01', 'name': 'kaffir_bread'}, {'id': 17565, 'synset': 'macrozamia.n.01', 'name': 'macrozamia'}, {'id': 17566, 'synset': 'burrawong.n.01', 'name': 'burrawong'}, {'id': 17567, 'synset': 'pine.n.01', 'name': 'pine'}, {'id': 17568, 'synset': 'pinon.n.01', 'name': 'pinon'}, {'id': 17569, 'synset': 'nut_pine.n.01', 'name': 'nut_pine'}, {'id': 17570, 'synset': 'pinon_pine.n.01', 'name': 'pinon_pine'}, {'id': 17571, 'synset': 'rocky_mountain_pinon.n.01', 'name': 'Rocky_mountain_pinon'}, {'id': 17572, 'synset': 'single-leaf.n.01', 'name': 'single-leaf'}, {'id': 17573, 'synset': 'bishop_pine.n.01', 'name': 'bishop_pine'}, {'id': 17574, 'synset': 'california_single-leaf_pinyon.n.01', 'name': 'California_single-leaf_pinyon'}, {'id': 17575, 'synset': "parry's_pinyon.n.01", 'name': "Parry's_pinyon"}, {'id': 17576, 'synset': 'spruce_pine.n.04', 'name': 'spruce_pine'}, {'id': 17577, 'synset': 'black_pine.n.05', 'name': 'black_pine'}, {'id': 17578, 'synset': 'pitch_pine.n.02', 'name': 'pitch_pine'}, {'id': 17579, 'synset': 'pond_pine.n.01', 'name': 'pond_pine'}, {'id': 17580, 'synset': 'stone_pine.n.01', 'name': 'stone_pine'}, {'id': 17581, 'synset': 'swiss_pine.n.01', 'name': 'Swiss_pine'}, {'id': 17582, 'synset': 'cembra_nut.n.01', 'name': 'cembra_nut'}, {'id': 17583, 'synset': 'swiss_mountain_pine.n.01', 'name': 'Swiss_mountain_pine'}, {'id': 17584, 'synset': 'ancient_pine.n.01', 'name': 'ancient_pine'}, {'id': 17585, 'synset': 'white_pine.n.01', 'name': 'white_pine'}, {'id': 17586, 'synset': 'american_white_pine.n.01', 'name': 'American_white_pine'}, {'id': 17587, 'synset': 'western_white_pine.n.01', 'name': 'western_white_pine'}, {'id': 17588, 'synset': 'southwestern_white_pine.n.01', 'name': 'southwestern_white_pine'}, {'id': 17589, 'synset': 'limber_pine.n.01', 'name': 'limber_pine'}, {'id': 17590, 'synset': 'whitebark_pine.n.01', 'name': 'whitebark_pine'}, {'id': 17591, 'synset': 'yellow_pine.n.01', 'name': 'yellow_pine'}, {'id': 17592, 'synset': 'ponderosa.n.01', 'name': 'ponderosa'}, {'id': 17593, 'synset': 'jeffrey_pine.n.01', 'name': 'Jeffrey_pine'}, {'id': 17594, 'synset': 'shore_pine.n.01', 'name': 'shore_pine'}, {'id': 17595, 'synset': 'sierra_lodgepole_pine.n.01', 'name': 'Sierra_lodgepole_pine'}, {'id': 17596, 'synset': 'loblolly_pine.n.01', 'name': 'loblolly_pine'}, {'id': 17597, 'synset': 'jack_pine.n.01', 'name': 'jack_pine'}, {'id': 17598, 'synset': 'swamp_pine.n.01', 'name': 'swamp_pine'}, {'id': 17599, 'synset': 'longleaf_pine.n.01', 'name': 'longleaf_pine'}, {'id': 17600, 'synset': 'shortleaf_pine.n.01', 'name': 'shortleaf_pine'}, {'id': 17601, 'synset': 'red_pine.n.02', 'name': 'red_pine'}, {'id': 17602, 'synset': 'scotch_pine.n.01', 'name': 'Scotch_pine'}, {'id': 17603, 'synset': 'scrub_pine.n.01', 'name': 'scrub_pine'}, {'id': 17604, 'synset': 'monterey_pine.n.01', 'name': 'Monterey_pine'}, {'id': 17605, 'synset': 'bristlecone_pine.n.01', 'name': 'bristlecone_pine'}, {'id': 17606, 'synset': 'table-mountain_pine.n.01', 'name': 'table-mountain_pine'}, {'id': 17607, 'synset': 'knobcone_pine.n.01', 'name': 'knobcone_pine'}, {'id': 17608, 'synset': 'japanese_red_pine.n.01', 'name': 'Japanese_red_pine'}, {'id': 17609, 'synset': 'japanese_black_pine.n.01', 'name': 'Japanese_black_pine'}, {'id': 17610, 'synset': 'torrey_pine.n.01', 'name': 'Torrey_pine'}, {'id': 17611, 'synset': 'larch.n.02', 'name': 'larch'}, {'id': 17612, 'synset': 'american_larch.n.01', 'name': 'American_larch'}, {'id': 17613, 'synset': 'western_larch.n.01', 'name': 'western_larch'}, {'id': 17614, 'synset': 'subalpine_larch.n.01', 'name': 'subalpine_larch'}, {'id': 17615, 'synset': 'european_larch.n.01', 'name': 'European_larch'}, {'id': 17616, 'synset': 'siberian_larch.n.01', 'name': 'Siberian_larch'}, {'id': 17617, 'synset': 'golden_larch.n.01', 'name': 'golden_larch'}, {'id': 17618, 'synset': 'fir.n.02', 'name': 'fir'}, {'id': 17619, 'synset': 'silver_fir.n.01', 'name': 'silver_fir'}, {'id': 17620, 'synset': 'amabilis_fir.n.01', 'name': 'amabilis_fir'}, {'id': 17621, 'synset': 'european_silver_fir.n.01', 'name': 'European_silver_fir'}, {'id': 17622, 'synset': 'white_fir.n.01', 'name': 'white_fir'}, {'id': 17623, 'synset': 'balsam_fir.n.01', 'name': 'balsam_fir'}, {'id': 17624, 'synset': 'fraser_fir.n.01', 'name': 'Fraser_fir'}, {'id': 17625, 'synset': 'lowland_fir.n.01', 'name': 'lowland_fir'}, {'id': 17626, 'synset': 'alpine_fir.n.01', 'name': 'Alpine_fir'}, {'id': 17627, 'synset': 'santa_lucia_fir.n.01', 'name': 'Santa_Lucia_fir'}, {'id': 17628, 'synset': 'cedar.n.03', 'name': 'cedar'}, {'id': 17629, 'synset': 'cedar_of_lebanon.n.01', 'name': 'cedar_of_Lebanon'}, {'id': 17630, 'synset': 'deodar.n.01', 'name': 'deodar'}, {'id': 17631, 'synset': 'atlas_cedar.n.01', 'name': 'Atlas_cedar'}, {'id': 17632, 'synset': 'spruce.n.02', 'name': 'spruce'}, {'id': 17633, 'synset': 'norway_spruce.n.01', 'name': 'Norway_spruce'}, {'id': 17634, 'synset': 'weeping_spruce.n.01', 'name': 'weeping_spruce'}, {'id': 17635, 'synset': 'engelmann_spruce.n.01', 'name': 'Engelmann_spruce'}, {'id': 17636, 'synset': 'white_spruce.n.01', 'name': 'white_spruce'}, {'id': 17637, 'synset': 'black_spruce.n.01', 'name': 'black_spruce'}, {'id': 17638, 'synset': 'siberian_spruce.n.01', 'name': 'Siberian_spruce'}, {'id': 17639, 'synset': 'sitka_spruce.n.01', 'name': 'Sitka_spruce'}, {'id': 17640, 'synset': 'oriental_spruce.n.01', 'name': 'oriental_spruce'}, {'id': 17641, 'synset': 'colorado_spruce.n.01', 'name': 'Colorado_spruce'}, {'id': 17642, 'synset': 'red_spruce.n.01', 'name': 'red_spruce'}, {'id': 17643, 'synset': 'hemlock.n.04', 'name': 'hemlock'}, {'id': 17644, 'synset': 'eastern_hemlock.n.01', 'name': 'eastern_hemlock'}, {'id': 17645, 'synset': 'carolina_hemlock.n.01', 'name': 'Carolina_hemlock'}, {'id': 17646, 'synset': 'mountain_hemlock.n.01', 'name': 'mountain_hemlock'}, {'id': 17647, 'synset': 'western_hemlock.n.01', 'name': 'western_hemlock'}, {'id': 17648, 'synset': 'douglas_fir.n.02', 'name': 'douglas_fir'}, {'id': 17649, 'synset': 'green_douglas_fir.n.01', 'name': 'green_douglas_fir'}, {'id': 17650, 'synset': 'big-cone_spruce.n.01', 'name': 'big-cone_spruce'}, {'id': 17651, 'synset': 'cathaya.n.01', 'name': 'Cathaya'}, {'id': 17652, 'synset': 'cedar.n.01', 'name': 'cedar'}, {'id': 17653, 'synset': 'cypress.n.02', 'name': 'cypress'}, {'id': 17654, 'synset': 'gowen_cypress.n.01', 'name': 'gowen_cypress'}, {'id': 17655, 'synset': 'pygmy_cypress.n.01', 'name': 'pygmy_cypress'}, {'id': 17656, 'synset': 'santa_cruz_cypress.n.01', 'name': 'Santa_Cruz_cypress'}, {'id': 17657, 'synset': 'arizona_cypress.n.01', 'name': 'Arizona_cypress'}, {'id': 17658, 'synset': 'guadalupe_cypress.n.01', 'name': 'Guadalupe_cypress'}, {'id': 17659, 'synset': 'monterey_cypress.n.01', 'name': 'Monterey_cypress'}, {'id': 17660, 'synset': 'mexican_cypress.n.01', 'name': 'Mexican_cypress'}, {'id': 17661, 'synset': 'italian_cypress.n.01', 'name': 'Italian_cypress'}, {'id': 17662, 'synset': 'king_william_pine.n.01', 'name': 'King_William_pine'}, {'id': 17663, 'synset': 'chilean_cedar.n.01', 'name': 'Chilean_cedar'}, {'id': 17664, 'synset': 'incense_cedar.n.02', 'name': 'incense_cedar'}, {'id': 17665, 'synset': 'southern_white_cedar.n.01', 'name': 'southern_white_cedar'}, {'id': 17666, 'synset': 'oregon_cedar.n.01', 'name': 'Oregon_cedar'}, {'id': 17667, 'synset': 'yellow_cypress.n.01', 'name': 'yellow_cypress'}, {'id': 17668, 'synset': 'japanese_cedar.n.01', 'name': 'Japanese_cedar'}, {'id': 17669, 'synset': 'juniper_berry.n.01', 'name': 'juniper_berry'}, {'id': 17670, 'synset': 'incense_cedar.n.01', 'name': 'incense_cedar'}, {'id': 17671, 'synset': 'kawaka.n.01', 'name': 'kawaka'}, {'id': 17672, 'synset': 'pahautea.n.01', 'name': 'pahautea'}, {'id': 17673, 'synset': 'metasequoia.n.01', 'name': 'metasequoia'}, {'id': 17674, 'synset': 'arborvitae.n.01', 'name': 'arborvitae'}, {'id': 17675, 'synset': 'western_red_cedar.n.01', 'name': 'western_red_cedar'}, {'id': 17676, 'synset': 'american_arborvitae.n.01', 'name': 'American_arborvitae'}, {'id': 17677, 'synset': 'oriental_arborvitae.n.01', 'name': 'Oriental_arborvitae'}, {'id': 17678, 'synset': 'hiba_arborvitae.n.01', 'name': 'hiba_arborvitae'}, {'id': 17679, 'synset': 'keteleeria.n.01', 'name': 'keteleeria'}, {'id': 17680, 'synset': 'wollemi_pine.n.01', 'name': 'Wollemi_pine'}, {'id': 17681, 'synset': 'araucaria.n.01', 'name': 'araucaria'}, {'id': 17682, 'synset': 'monkey_puzzle.n.01', 'name': 'monkey_puzzle'}, {'id': 17683, 'synset': 'norfolk_island_pine.n.01', 'name': 'norfolk_island_pine'}, {'id': 17684, 'synset': 'new_caledonian_pine.n.01', 'name': 'new_caledonian_pine'}, {'id': 17685, 'synset': 'bunya_bunya.n.01', 'name': 'bunya_bunya'}, {'id': 17686, 'synset': 'hoop_pine.n.01', 'name': 'hoop_pine'}, {'id': 17687, 'synset': 'kauri_pine.n.01', 'name': 'kauri_pine'}, {'id': 17688, 'synset': 'kauri.n.02', 'name': 'kauri'}, {'id': 17689, 'synset': 'amboina_pine.n.01', 'name': 'amboina_pine'}, {'id': 17690, 'synset': 'dundathu_pine.n.01', 'name': 'dundathu_pine'}, {'id': 17691, 'synset': 'red_kauri.n.01', 'name': 'red_kauri'}, {'id': 17692, 'synset': 'plum-yew.n.01', 'name': 'plum-yew'}, {'id': 17693, 'synset': 'california_nutmeg.n.01', 'name': 'California_nutmeg'}, {'id': 17694, 'synset': 'stinking_cedar.n.01', 'name': 'stinking_cedar'}, {'id': 17695, 'synset': 'celery_pine.n.01', 'name': 'celery_pine'}, {'id': 17696, 'synset': 'celery_top_pine.n.01', 'name': 'celery_top_pine'}, {'id': 17697, 'synset': 'tanekaha.n.01', 'name': 'tanekaha'}, {'id': 17698, 'synset': 'alpine_celery_pine.n.01', 'name': 'Alpine_celery_pine'}, {'id': 17699, 'synset': 'yellowwood.n.02', 'name': 'yellowwood'}, {'id': 17700, 'synset': 'gymnospermous_yellowwood.n.01', 'name': 'gymnospermous_yellowwood'}, {'id': 17701, 'synset': 'podocarp.n.01', 'name': 'podocarp'}, {'id': 17702, 'synset': 'yacca.n.01', 'name': 'yacca'}, {'id': 17703, 'synset': 'brown_pine.n.01', 'name': 'brown_pine'}, {'id': 17704, 'synset': 'cape_yellowwood.n.01', 'name': 'cape_yellowwood'}, {'id': 17705, 'synset': 'south-african_yellowwood.n.01', 'name': 'South-African_yellowwood'}, {'id': 17706, 'synset': 'alpine_totara.n.01', 'name': 'alpine_totara'}, {'id': 17707, 'synset': 'totara.n.01', 'name': 'totara'}, {'id': 17708, 'synset': 'common_yellowwood.n.01', 'name': 'common_yellowwood'}, {'id': 17709, 'synset': 'kahikatea.n.01', 'name': 'kahikatea'}, {'id': 17710, 'synset': 'rimu.n.01', 'name': 'rimu'}, {'id': 17711, 'synset': 'tarwood.n.02', 'name': 'tarwood'}, {'id': 17712, 'synset': 'common_sickle_pine.n.01', 'name': 'common_sickle_pine'}, {'id': 17713, 'synset': 'yellow-leaf_sickle_pine.n.01', 'name': 'yellow-leaf_sickle_pine'}, {'id': 17714, 'synset': 'tarwood.n.01', 'name': 'tarwood'}, {'id': 17715, 'synset': 'westland_pine.n.01', 'name': 'westland_pine'}, {'id': 17716, 'synset': 'huon_pine.n.01', 'name': 'huon_pine'}, {'id': 17717, 'synset': 'chilean_rimu.n.01', 'name': 'Chilean_rimu'}, {'id': 17718, 'synset': 'mountain_rimu.n.01', 'name': 'mountain_rimu'}, {'id': 17719, 'synset': 'nagi.n.01', 'name': 'nagi'}, {'id': 17720, 'synset': 'miro.n.01', 'name': 'miro'}, {'id': 17721, 'synset': 'matai.n.01', 'name': 'matai'}, {'id': 17722, 'synset': 'plum-fruited_yew.n.01', 'name': 'plum-fruited_yew'}, {'id': 17723, 'synset': 'prince_albert_yew.n.01', 'name': 'Prince_Albert_yew'}, {'id': 17724, 'synset': 'sundacarpus_amara.n.01', 'name': 'Sundacarpus_amara'}, {'id': 17725, 'synset': 'japanese_umbrella_pine.n.01', 'name': 'Japanese_umbrella_pine'}, {'id': 17726, 'synset': 'yew.n.02', 'name': 'yew'}, {'id': 17727, 'synset': 'old_world_yew.n.01', 'name': 'Old_World_yew'}, {'id': 17728, 'synset': 'pacific_yew.n.01', 'name': 'Pacific_yew'}, {'id': 17729, 'synset': 'japanese_yew.n.01', 'name': 'Japanese_yew'}, {'id': 17730, 'synset': 'florida_yew.n.01', 'name': 'Florida_yew'}, {'id': 17731, 'synset': 'new_caledonian_yew.n.01', 'name': 'New_Caledonian_yew'}, {'id': 17732, 'synset': 'white-berry_yew.n.01', 'name': 'white-berry_yew'}, {'id': 17733, 'synset': 'ginkgo.n.01', 'name': 'ginkgo'}, {'id': 17734, 'synset': 'angiosperm.n.01', 'name': 'angiosperm'}, {'id': 17735, 'synset': 'dicot.n.01', 'name': 'dicot'}, {'id': 17736, 'synset': 'monocot.n.01', 'name': 'monocot'}, {'id': 17737, 'synset': 'floret.n.01', 'name': 'floret'}, {'id': 17738, 'synset': 'flower.n.01', 'name': 'flower'}, {'id': 17739, 'synset': 'bloomer.n.01', 'name': 'bloomer'}, {'id': 17740, 'synset': 'wildflower.n.01', 'name': 'wildflower'}, {'id': 17741, 'synset': 'apetalous_flower.n.01', 'name': 'apetalous_flower'}, {'id': 17742, 'synset': 'inflorescence.n.02', 'name': 'inflorescence'}, {'id': 17743, 'synset': 'rosebud.n.01', 'name': 'rosebud'}, {'id': 17744, 'synset': 'gynostegium.n.01', 'name': 'gynostegium'}, {'id': 17745, 'synset': 'pollinium.n.01', 'name': 'pollinium'}, {'id': 17746, 'synset': 'pistil.n.01', 'name': 'pistil'}, {'id': 17747, 'synset': 'gynobase.n.01', 'name': 'gynobase'}, {'id': 17748, 'synset': 'gynophore.n.01', 'name': 'gynophore'}, {'id': 17749, 'synset': 'stylopodium.n.01', 'name': 'stylopodium'}, {'id': 17750, 'synset': 'carpophore.n.01', 'name': 'carpophore'}, {'id': 17751, 'synset': 'cornstalk.n.01', 'name': 'cornstalk'}, {'id': 17752, 'synset': 'petiolule.n.01', 'name': 'petiolule'}, {'id': 17753, 'synset': 'mericarp.n.01', 'name': 'mericarp'}, {'id': 17754, 'synset': 'micropyle.n.01', 'name': 'micropyle'}, {'id': 17755, 'synset': 'germ_tube.n.01', 'name': 'germ_tube'}, {'id': 17756, 'synset': 'pollen_tube.n.01', 'name': 'pollen_tube'}, {'id': 17757, 'synset': 'gemma.n.01', 'name': 'gemma'}, {'id': 17758, 'synset': 'galbulus.n.01', 'name': 'galbulus'}, {'id': 17759, 'synset': 'nectary.n.01', 'name': 'nectary'}, {'id': 17760, 'synset': 'pericarp.n.01', 'name': 'pericarp'}, {'id': 17761, 'synset': 'epicarp.n.01', 'name': 'epicarp'}, {'id': 17762, 'synset': 'mesocarp.n.01', 'name': 'mesocarp'}, {'id': 17763, 'synset': 'pip.n.03', 'name': 'pip'}, {'id': 17764, 'synset': 'silique.n.01', 'name': 'silique'}, {'id': 17765, 'synset': 'cataphyll.n.01', 'name': 'cataphyll'}, {'id': 17766, 'synset': 'perisperm.n.01', 'name': 'perisperm'}, {'id': 17767, 'synset': 'monocarp.n.01', 'name': 'monocarp'}, {'id': 17768, 'synset': 'sporophyte.n.01', 'name': 'sporophyte'}, {'id': 17769, 'synset': 'gametophyte.n.01', 'name': 'gametophyte'}, {'id': 17770, 'synset': 'megasporangium.n.01', 'name': 'megasporangium'}, {'id': 17771, 'synset': 'microspore.n.01', 'name': 'microspore'}, {'id': 17772, 'synset': 'microsporangium.n.01', 'name': 'microsporangium'}, {'id': 17773, 'synset': 'microsporophyll.n.01', 'name': 'microsporophyll'}, {'id': 17774, 'synset': 'archespore.n.01', 'name': 'archespore'}, {'id': 17775, 'synset': 'bonduc_nut.n.01', 'name': 'bonduc_nut'}, {'id': 17776, 'synset': "job's_tears.n.01", 'name': "Job's_tears"}, {'id': 17777, 'synset': 'oilseed.n.01', 'name': 'oilseed'}, {'id': 17778, 'synset': 'castor_bean.n.01', 'name': 'castor_bean'}, {'id': 17779, 'synset': 'cottonseed.n.01', 'name': 'cottonseed'}, {'id': 17780, 'synset': 'candlenut.n.02', 'name': 'candlenut'}, {'id': 17781, 'synset': 'peach_pit.n.01', 'name': 'peach_pit'}, {'id': 17782, 'synset': 'hypanthium.n.01', 'name': 'hypanthium'}, {'id': 17783, 'synset': 'petal.n.01', 'name': 'petal'}, {'id': 17784, 'synset': 'corolla.n.01', 'name': 'corolla'}, {'id': 17785, 'synset': 'lip.n.02', 'name': 'lip'}, {'id': 17786, 'synset': 'perianth.n.01', 'name': 'perianth'}, {'id': 17787, 'synset': 'thistledown.n.01', 'name': 'thistledown'}, {'id': 17788, 'synset': 'custard_apple.n.01', 'name': 'custard_apple'}, {'id': 17789, 'synset': 'cherimoya.n.01', 'name': 'cherimoya'}, {'id': 17790, 'synset': 'ilama.n.01', 'name': 'ilama'}, {'id': 17791, 'synset': 'soursop.n.01', 'name': 'soursop'}, {'id': 17792, 'synset': "bullock's_heart.n.01", 'name': "bullock's_heart"}, {'id': 17793, 'synset': 'sweetsop.n.01', 'name': 'sweetsop'}, {'id': 17794, 'synset': 'pond_apple.n.01', 'name': 'pond_apple'}, {'id': 17795, 'synset': 'pawpaw.n.02', 'name': 'pawpaw'}, {'id': 17796, 'synset': 'ilang-ilang.n.02', 'name': 'ilang-ilang'}, {'id': 17797, 'synset': 'lancewood.n.02', 'name': 'lancewood'}, {'id': 17798, 'synset': 'guinea_pepper.n.02', 'name': 'Guinea_pepper'}, {'id': 17799, 'synset': 'barberry.n.01', 'name': 'barberry'}, {'id': 17800, 'synset': 'american_barberry.n.01', 'name': 'American_barberry'}, {'id': 17801, 'synset': 'common_barberry.n.01', 'name': 'common_barberry'}, {'id': 17802, 'synset': 'japanese_barberry.n.01', 'name': 'Japanese_barberry'}, {'id': 17803, 'synset': 'oregon_grape.n.02', 'name': 'Oregon_grape'}, {'id': 17804, 'synset': 'oregon_grape.n.01', 'name': 'Oregon_grape'}, {'id': 17805, 'synset': 'mayapple.n.01', 'name': 'mayapple'}, {'id': 17806, 'synset': 'may_apple.n.01', 'name': 'May_apple'}, {'id': 17807, 'synset': 'allspice.n.02', 'name': 'allspice'}, {'id': 17808, 'synset': 'carolina_allspice.n.01', 'name': 'Carolina_allspice'}, {'id': 17809, 'synset': 'spicebush.n.02', 'name': 'spicebush'}, {'id': 17810, 'synset': 'katsura_tree.n.01', 'name': 'katsura_tree'}, {'id': 17811, 'synset': 'laurel.n.01', 'name': 'laurel'}, {'id': 17812, 'synset': 'true_laurel.n.01', 'name': 'true_laurel'}, {'id': 17813, 'synset': 'camphor_tree.n.01', 'name': 'camphor_tree'}, {'id': 17814, 'synset': 'cinnamon.n.02', 'name': 'cinnamon'}, {'id': 17815, 'synset': 'cassia.n.03', 'name': 'cassia'}, {'id': 17816, 'synset': 'cassia_bark.n.01', 'name': 'cassia_bark'}, {'id': 17817, 'synset': 'saigon_cinnamon.n.01', 'name': 'Saigon_cinnamon'}, {'id': 17818, 'synset': 'cinnamon_bark.n.01', 'name': 'cinnamon_bark'}, {'id': 17819, 'synset': 'spicebush.n.01', 'name': 'spicebush'}, {'id': 17820, 'synset': 'avocado.n.02', 'name': 'avocado'}, {'id': 17821, 'synset': 'laurel-tree.n.01', 'name': 'laurel-tree'}, {'id': 17822, 'synset': 'sassafras.n.01', 'name': 'sassafras'}, {'id': 17823, 'synset': 'california_laurel.n.01', 'name': 'California_laurel'}, {'id': 17824, 'synset': 'anise_tree.n.01', 'name': 'anise_tree'}, {'id': 17825, 'synset': 'purple_anise.n.01', 'name': 'purple_anise'}, {'id': 17826, 'synset': 'star_anise.n.02', 'name': 'star_anise'}, {'id': 17827, 'synset': 'star_anise.n.01', 'name': 'star_anise'}, {'id': 17828, 'synset': 'magnolia.n.02', 'name': 'magnolia'}, {'id': 17829, 'synset': 'southern_magnolia.n.01', 'name': 'southern_magnolia'}, {'id': 17830, 'synset': 'umbrella_tree.n.02', 'name': 'umbrella_tree'}, {'id': 17831, 'synset': 'earleaved_umbrella_tree.n.01', 'name': 'earleaved_umbrella_tree'}, {'id': 17832, 'synset': 'cucumber_tree.n.01', 'name': 'cucumber_tree'}, {'id': 17833, 'synset': 'large-leaved_magnolia.n.01', 'name': 'large-leaved_magnolia'}, {'id': 17834, 'synset': 'saucer_magnolia.n.01', 'name': 'saucer_magnolia'}, {'id': 17835, 'synset': 'star_magnolia.n.01', 'name': 'star_magnolia'}, {'id': 17836, 'synset': 'sweet_bay.n.01', 'name': 'sweet_bay'}, {'id': 17837, 'synset': 'manglietia.n.01', 'name': 'manglietia'}, {'id': 17838, 'synset': 'tulip_tree.n.01', 'name': 'tulip_tree'}, {'id': 17839, 'synset': 'moonseed.n.01', 'name': 'moonseed'}, {'id': 17840, 'synset': 'common_moonseed.n.01', 'name': 'common_moonseed'}, {'id': 17841, 'synset': 'carolina_moonseed.n.01', 'name': 'Carolina_moonseed'}, {'id': 17842, 'synset': 'nutmeg.n.01', 'name': 'nutmeg'}, {'id': 17843, 'synset': 'water_nymph.n.02', 'name': 'water_nymph'}, {'id': 17844, 'synset': 'european_white_lily.n.01', 'name': 'European_white_lily'}, {'id': 17845, 'synset': 'southern_spatterdock.n.01', 'name': 'southern_spatterdock'}, {'id': 17846, 'synset': 'lotus.n.01', 'name': 'lotus'}, {'id': 17847, 'synset': 'water_chinquapin.n.01', 'name': 'water_chinquapin'}, {'id': 17848, 'synset': 'water-shield.n.02', 'name': 'water-shield'}, {'id': 17849, 'synset': 'water-shield.n.01', 'name': 'water-shield'}, {'id': 17850, 'synset': 'peony.n.01', 'name': 'peony'}, {'id': 17851, 'synset': 'buttercup.n.01', 'name': 'buttercup'}, {'id': 17852, 'synset': 'meadow_buttercup.n.01', 'name': 'meadow_buttercup'}, {'id': 17853, 'synset': 'water_crowfoot.n.01', 'name': 'water_crowfoot'}, {'id': 17854, 'synset': 'lesser_celandine.n.01', 'name': 'lesser_celandine'}, {'id': 17855, 'synset': 'lesser_spearwort.n.01', 'name': 'lesser_spearwort'}, {'id': 17856, 'synset': 'greater_spearwort.n.01', 'name': 'greater_spearwort'}, {'id': 17857, 'synset': 'western_buttercup.n.01', 'name': 'western_buttercup'}, {'id': 17858, 'synset': 'creeping_buttercup.n.01', 'name': 'creeping_buttercup'}, {'id': 17859, 'synset': 'cursed_crowfoot.n.01', 'name': 'cursed_crowfoot'}, {'id': 17860, 'synset': 'aconite.n.01', 'name': 'aconite'}, {'id': 17861, 'synset': 'monkshood.n.01', 'name': 'monkshood'}, {'id': 17862, 'synset': 'wolfsbane.n.01', 'name': 'wolfsbane'}, {'id': 17863, 'synset': 'baneberry.n.02', 'name': 'baneberry'}, {'id': 17864, 'synset': 'baneberry.n.01', 'name': 'baneberry'}, {'id': 17865, 'synset': 'red_baneberry.n.01', 'name': 'red_baneberry'}, {'id': 17866, 'synset': "pheasant's-eye.n.01", 'name': "pheasant's-eye"}, {'id': 17867, 'synset': 'anemone.n.01', 'name': 'anemone'}, {'id': 17868, 'synset': 'alpine_anemone.n.01', 'name': 'Alpine_anemone'}, {'id': 17869, 'synset': 'canada_anemone.n.01', 'name': 'Canada_anemone'}, {'id': 17870, 'synset': 'thimbleweed.n.01', 'name': 'thimbleweed'}, {'id': 17871, 'synset': 'wood_anemone.n.02', 'name': 'wood_anemone'}, {'id': 17872, 'synset': 'wood_anemone.n.01', 'name': 'wood_anemone'}, {'id': 17873, 'synset': 'longheaded_thimbleweed.n.01', 'name': 'longheaded_thimbleweed'}, {'id': 17874, 'synset': 'snowdrop_anemone.n.01', 'name': 'snowdrop_anemone'}, {'id': 17875, 'synset': 'virginia_thimbleweed.n.01', 'name': 'Virginia_thimbleweed'}, {'id': 17876, 'synset': 'rue_anemone.n.01', 'name': 'rue_anemone'}, {'id': 17877, 'synset': 'columbine.n.01', 'name': 'columbine'}, {'id': 17878, 'synset': 'meeting_house.n.01', 'name': 'meeting_house'}, {'id': 17879, 'synset': 'blue_columbine.n.01', 'name': 'blue_columbine'}, {'id': 17880, 'synset': "granny's_bonnets.n.01", 'name': "granny's_bonnets"}, {'id': 17881, 'synset': 'marsh_marigold.n.01', 'name': 'marsh_marigold'}, {'id': 17882, 'synset': 'american_bugbane.n.01', 'name': 'American_bugbane'}, {'id': 17883, 'synset': 'black_cohosh.n.01', 'name': 'black_cohosh'}, {'id': 17884, 'synset': 'fetid_bugbane.n.01', 'name': 'fetid_bugbane'}, {'id': 17885, 'synset': 'clematis.n.01', 'name': 'clematis'}, {'id': 17886, 'synset': 'pine_hyacinth.n.01', 'name': 'pine_hyacinth'}, {'id': 17887, 'synset': 'blue_jasmine.n.01', 'name': 'blue_jasmine'}, {'id': 17888, 'synset': 'golden_clematis.n.01', 'name': 'golden_clematis'}, {'id': 17889, 'synset': 'scarlet_clematis.n.01', 'name': 'scarlet_clematis'}, {'id': 17890, 'synset': 'leather_flower.n.02', 'name': 'leather_flower'}, {'id': 17891, 'synset': 'leather_flower.n.01', 'name': 'leather_flower'}, {'id': 17892, 'synset': "virgin's_bower.n.01", 'name': "virgin's_bower"}, {'id': 17893, 'synset': 'purple_clematis.n.01', 'name': 'purple_clematis'}, {'id': 17894, 'synset': 'goldthread.n.01', 'name': 'goldthread'}, {'id': 17895, 'synset': 'rocket_larkspur.n.01', 'name': 'rocket_larkspur'}, {'id': 17896, 'synset': 'delphinium.n.01', 'name': 'delphinium'}, {'id': 17897, 'synset': 'larkspur.n.01', 'name': 'larkspur'}, {'id': 17898, 'synset': 'winter_aconite.n.01', 'name': 'winter_aconite'}, {'id': 17899, 'synset': 'lenten_rose.n.01', 'name': 'lenten_rose'}, {'id': 17900, 'synset': 'green_hellebore.n.01', 'name': 'green_hellebore'}, {'id': 17901, 'synset': 'hepatica.n.01', 'name': 'hepatica'}, {'id': 17902, 'synset': 'goldenseal.n.01', 'name': 'goldenseal'}, {'id': 17903, 'synset': 'false_rue_anemone.n.01', 'name': 'false_rue_anemone'}, {'id': 17904, 'synset': 'giant_buttercup.n.01', 'name': 'giant_buttercup'}, {'id': 17905, 'synset': 'nigella.n.01', 'name': 'nigella'}, {'id': 17906, 'synset': 'love-in-a-mist.n.03', 'name': 'love-in-a-mist'}, {'id': 17907, 'synset': 'fennel_flower.n.01', 'name': 'fennel_flower'}, {'id': 17908, 'synset': 'black_caraway.n.01', 'name': 'black_caraway'}, {'id': 17909, 'synset': 'pasqueflower.n.01', 'name': 'pasqueflower'}, {'id': 17910, 'synset': 'meadow_rue.n.01', 'name': 'meadow_rue'}, {'id': 17911, 'synset': 'false_bugbane.n.01', 'name': 'false_bugbane'}, {'id': 17912, 'synset': 'globeflower.n.01', 'name': 'globeflower'}, {'id': 17913, 'synset': "winter's_bark.n.02", 'name': "winter's_bark"}, {'id': 17914, 'synset': 'pepper_shrub.n.01', 'name': 'pepper_shrub'}, {'id': 17915, 'synset': 'sweet_gale.n.01', 'name': 'sweet_gale'}, {'id': 17916, 'synset': 'wax_myrtle.n.01', 'name': 'wax_myrtle'}, {'id': 17917, 'synset': 'bay_myrtle.n.01', 'name': 'bay_myrtle'}, {'id': 17918, 'synset': 'bayberry.n.02', 'name': 'bayberry'}, {'id': 17919, 'synset': 'sweet_fern.n.02', 'name': 'sweet_fern'}, {'id': 17920, 'synset': 'corkwood.n.01', 'name': 'corkwood'}, {'id': 17921, 'synset': 'jointed_rush.n.01', 'name': 'jointed_rush'}, {'id': 17922, 'synset': 'toad_rush.n.01', 'name': 'toad_rush'}, {'id': 17923, 'synset': 'slender_rush.n.01', 'name': 'slender_rush'}, {'id': 17924, 'synset': 'zebrawood.n.02', 'name': 'zebrawood'}, {'id': 17925, 'synset': 'connarus_guianensis.n.01', 'name': 'Connarus_guianensis'}, {'id': 17926, 'synset': 'legume.n.01', 'name': 'legume'}, {'id': 17927, 'synset': 'peanut.n.01', 'name': 'peanut'}, {'id': 17928, 'synset': 'granadilla_tree.n.01', 'name': 'granadilla_tree'}, {'id': 17929, 'synset': 'arariba.n.01', 'name': 'arariba'}, {'id': 17930, 'synset': 'tonka_bean.n.01', 'name': 'tonka_bean'}, {'id': 17931, 'synset': 'courbaril.n.01', 'name': 'courbaril'}, {'id': 17932, 'synset': 'melilotus.n.01', 'name': 'melilotus'}, {'id': 17933, 'synset': 'darling_pea.n.01', 'name': 'darling_pea'}, {'id': 17934, 'synset': 'smooth_darling_pea.n.01', 'name': 'smooth_darling_pea'}, {'id': 17935, 'synset': 'clover.n.01', 'name': 'clover'}, {'id': 17936, 'synset': 'alpine_clover.n.01', 'name': 'alpine_clover'}, {'id': 17937, 'synset': 'hop_clover.n.02', 'name': 'hop_clover'}, {'id': 17938, 'synset': 'crimson_clover.n.01', 'name': 'crimson_clover'}, {'id': 17939, 'synset': 'red_clover.n.01', 'name': 'red_clover'}, {'id': 17940, 'synset': 'buffalo_clover.n.02', 'name': 'buffalo_clover'}, {'id': 17941, 'synset': 'white_clover.n.01', 'name': 'white_clover'}, {'id': 17942, 'synset': 'mimosa.n.02', 'name': 'mimosa'}, {'id': 17943, 'synset': 'acacia.n.01', 'name': 'acacia'}, {'id': 17944, 'synset': 'shittah.n.01', 'name': 'shittah'}, {'id': 17945, 'synset': 'wattle.n.03', 'name': 'wattle'}, {'id': 17946, 'synset': 'black_wattle.n.01', 'name': 'black_wattle'}, {'id': 17947, 'synset': 'gidgee.n.01', 'name': 'gidgee'}, {'id': 17948, 'synset': 'catechu.n.02', 'name': 'catechu'}, {'id': 17949, 'synset': 'silver_wattle.n.01', 'name': 'silver_wattle'}, {'id': 17950, 'synset': 'huisache.n.01', 'name': 'huisache'}, {'id': 17951, 'synset': 'lightwood.n.01', 'name': 'lightwood'}, {'id': 17952, 'synset': 'golden_wattle.n.01', 'name': 'golden_wattle'}, {'id': 17953, 'synset': 'fever_tree.n.04', 'name': 'fever_tree'}, {'id': 17954, 'synset': 'coralwood.n.01', 'name': 'coralwood'}, {'id': 17955, 'synset': 'albizzia.n.01', 'name': 'albizzia'}, {'id': 17956, 'synset': 'silk_tree.n.01', 'name': 'silk_tree'}, {'id': 17957, 'synset': 'siris.n.01', 'name': 'siris'}, {'id': 17958, 'synset': 'rain_tree.n.01', 'name': 'rain_tree'}, {'id': 17959, 'synset': 'calliandra.n.01', 'name': 'calliandra'}, {'id': 17960, 'synset': 'conacaste.n.01', 'name': 'conacaste'}, {'id': 17961, 'synset': 'inga.n.01', 'name': 'inga'}, {'id': 17962, 'synset': 'ice-cream_bean.n.01', 'name': 'ice-cream_bean'}, {'id': 17963, 'synset': 'guama.n.01', 'name': 'guama'}, {'id': 17964, 'synset': 'lead_tree.n.01', 'name': 'lead_tree'}, {'id': 17965, 'synset': 'wild_tamarind.n.02', 'name': 'wild_tamarind'}, {'id': 17966, 'synset': 'sabicu.n.02', 'name': 'sabicu'}, {'id': 17967, 'synset': 'nitta_tree.n.01', 'name': 'nitta_tree'}, {'id': 17968, 'synset': 'parkia_javanica.n.01', 'name': 'Parkia_javanica'}, {'id': 17969, 'synset': 'manila_tamarind.n.01', 'name': 'manila_tamarind'}, {'id': 17970, 'synset': "cat's-claw.n.01", 'name': "cat's-claw"}, {'id': 17971, 'synset': 'honey_mesquite.n.01', 'name': 'honey_mesquite'}, {'id': 17972, 'synset': 'algarroba.n.03', 'name': 'algarroba'}, {'id': 17973, 'synset': 'screw_bean.n.02', 'name': 'screw_bean'}, {'id': 17974, 'synset': 'screw_bean.n.01', 'name': 'screw_bean'}, {'id': 17975, 'synset': 'dogbane.n.01', 'name': 'dogbane'}, {'id': 17976, 'synset': 'indian_hemp.n.03', 'name': 'Indian_hemp'}, {'id': 17977, 'synset': "bushman's_poison.n.01", 'name': "bushman's_poison"}, {'id': 17978, 'synset': 'impala_lily.n.01', 'name': 'impala_lily'}, {'id': 17979, 'synset': 'allamanda.n.01', 'name': 'allamanda'}, {'id': 17980, 'synset': 'common_allamanda.n.01', 'name': 'common_allamanda'}, {'id': 17981, 'synset': 'dita.n.01', 'name': 'dita'}, {'id': 17982, 'synset': 'nepal_trumpet_flower.n.01', 'name': 'Nepal_trumpet_flower'}, {'id': 17983, 'synset': 'carissa.n.01', 'name': 'carissa'}, {'id': 17984, 'synset': 'hedge_thorn.n.01', 'name': 'hedge_thorn'}, {'id': 17985, 'synset': 'natal_plum.n.01', 'name': 'natal_plum'}, {'id': 17986, 'synset': 'periwinkle.n.02', 'name': 'periwinkle'}, {'id': 17987, 'synset': 'ivory_tree.n.01', 'name': 'ivory_tree'}, {'id': 17988, 'synset': 'white_dipladenia.n.01', 'name': 'white_dipladenia'}, {'id': 17989, 'synset': 'chilean_jasmine.n.01', 'name': 'Chilean_jasmine'}, {'id': 17990, 'synset': 'oleander.n.01', 'name': 'oleander'}, {'id': 17991, 'synset': 'frangipani.n.01', 'name': 'frangipani'}, {'id': 17992, 'synset': 'west_indian_jasmine.n.01', 'name': 'West_Indian_jasmine'}, {'id': 17993, 'synset': 'rauwolfia.n.02', 'name': 'rauwolfia'}, {'id': 17994, 'synset': 'snakewood.n.01', 'name': 'snakewood'}, {'id': 17995, 'synset': 'strophanthus_kombe.n.01', 'name': 'Strophanthus_kombe'}, {'id': 17996, 'synset': 'yellow_oleander.n.01', 'name': 'yellow_oleander'}, {'id': 17997, 'synset': 'myrtle.n.01', 'name': 'myrtle'}, {'id': 17998, 'synset': 'large_periwinkle.n.01', 'name': 'large_periwinkle'}, {'id': 17999, 'synset': 'arum.n.02', 'name': 'arum'}, {'id': 18000, 'synset': 'cuckoopint.n.01', 'name': 'cuckoopint'}, {'id': 18001, 'synset': 'black_calla.n.01', 'name': 'black_calla'}, {'id': 18002, 'synset': 'calamus.n.02', 'name': 'calamus'}, {'id': 18003, 'synset': 'alocasia.n.01', 'name': 'alocasia'}, {'id': 18004, 'synset': 'giant_taro.n.01', 'name': 'giant_taro'}, {'id': 18005, 'synset': 'amorphophallus.n.01', 'name': 'amorphophallus'}, {'id': 18006, 'synset': 'pungapung.n.01', 'name': 'pungapung'}, {'id': 18007, 'synset': "devil's_tongue.n.01", 'name': "devil's_tongue"}, {'id': 18008, 'synset': 'anthurium.n.01', 'name': 'anthurium'}, {'id': 18009, 'synset': 'flamingo_flower.n.01', 'name': 'flamingo_flower'}, {'id': 18010, 'synset': 'jack-in-the-pulpit.n.01', 'name': 'jack-in-the-pulpit'}, {'id': 18011, 'synset': "friar's-cowl.n.01", 'name': "friar's-cowl"}, {'id': 18012, 'synset': 'caladium.n.01', 'name': 'caladium'}, {'id': 18013, 'synset': 'caladium_bicolor.n.01', 'name': 'Caladium_bicolor'}, {'id': 18014, 'synset': 'wild_calla.n.01', 'name': 'wild_calla'}, {'id': 18015, 'synset': 'taro.n.02', 'name': 'taro'}, {'id': 18016, 'synset': 'taro.n.01', 'name': 'taro'}, {'id': 18017, 'synset': 'cryptocoryne.n.01', 'name': 'cryptocoryne'}, {'id': 18018, 'synset': 'dracontium.n.01', 'name': 'dracontium'}, {'id': 18019, 'synset': 'golden_pothos.n.01', 'name': 'golden_pothos'}, {'id': 18020, 'synset': 'skunk_cabbage.n.02', 'name': 'skunk_cabbage'}, {'id': 18021, 'synset': 'monstera.n.01', 'name': 'monstera'}, {'id': 18022, 'synset': 'ceriman.n.01', 'name': 'ceriman'}, {'id': 18023, 'synset': 'nephthytis.n.01', 'name': 'nephthytis'}, {'id': 18024, 'synset': 'nephthytis_afzelii.n.01', 'name': 'Nephthytis_afzelii'}, {'id': 18025, 'synset': 'arrow_arum.n.01', 'name': 'arrow_arum'}, {'id': 18026, 'synset': 'green_arrow_arum.n.01', 'name': 'green_arrow_arum'}, {'id': 18027, 'synset': 'philodendron.n.01', 'name': 'philodendron'}, {'id': 18028, 'synset': 'pistia.n.01', 'name': 'pistia'}, {'id': 18029, 'synset': 'pothos.n.01', 'name': 'pothos'}, {'id': 18030, 'synset': 'spathiphyllum.n.01', 'name': 'spathiphyllum'}, {'id': 18031, 'synset': 'skunk_cabbage.n.01', 'name': 'skunk_cabbage'}, {'id': 18032, 'synset': 'yautia.n.01', 'name': 'yautia'}, {'id': 18033, 'synset': 'calla_lily.n.01', 'name': 'calla_lily'}, {'id': 18034, 'synset': 'pink_calla.n.01', 'name': 'pink_calla'}, {'id': 18035, 'synset': 'golden_calla.n.01', 'name': 'golden_calla'}, {'id': 18036, 'synset': 'duckweed.n.01', 'name': 'duckweed'}, {'id': 18037, 'synset': 'common_duckweed.n.01', 'name': 'common_duckweed'}, {'id': 18038, 'synset': 'star-duckweed.n.01', 'name': 'star-duckweed'}, {'id': 18039, 'synset': 'great_duckweed.n.01', 'name': 'great_duckweed'}, {'id': 18040, 'synset': 'watermeal.n.01', 'name': 'watermeal'}, {'id': 18041, 'synset': 'common_wolffia.n.01', 'name': 'common_wolffia'}, {'id': 18042, 'synset': 'aralia.n.01', 'name': 'aralia'}, {'id': 18043, 'synset': 'american_angelica_tree.n.01', 'name': 'American_angelica_tree'}, {'id': 18044, 'synset': 'american_spikenard.n.01', 'name': 'American_spikenard'}, {'id': 18045, 'synset': 'bristly_sarsaparilla.n.01', 'name': 'bristly_sarsaparilla'}, {'id': 18046, 'synset': 'japanese_angelica_tree.n.01', 'name': 'Japanese_angelica_tree'}, {'id': 18047, 'synset': 'chinese_angelica.n.01', 'name': 'Chinese_angelica'}, {'id': 18048, 'synset': 'ivy.n.01', 'name': 'ivy'}, {'id': 18049, 'synset': 'puka.n.02', 'name': 'puka'}, {'id': 18050, 'synset': 'ginseng.n.02', 'name': 'ginseng'}, {'id': 18051, 'synset': 'ginseng.n.01', 'name': 'ginseng'}, {'id': 18052, 'synset': 'umbrella_tree.n.01', 'name': 'umbrella_tree'}, {'id': 18053, 'synset': 'birthwort.n.01', 'name': 'birthwort'}, {'id': 18054, 'synset': "dutchman's-pipe.n.01", 'name': "Dutchman's-pipe"}, {'id': 18055, 'synset': 'virginia_snakeroot.n.01', 'name': 'Virginia_snakeroot'}, {'id': 18056, 'synset': 'canada_ginger.n.01', 'name': 'Canada_ginger'}, {'id': 18057, 'synset': 'heartleaf.n.02', 'name': 'heartleaf'}, {'id': 18058, 'synset': 'heartleaf.n.01', 'name': 'heartleaf'}, {'id': 18059, 'synset': 'asarabacca.n.01', 'name': 'asarabacca'}, {'id': 18060, 'synset': 'caryophyllaceous_plant.n.01', 'name': 'caryophyllaceous_plant'}, {'id': 18061, 'synset': 'corn_cockle.n.01', 'name': 'corn_cockle'}, {'id': 18062, 'synset': 'sandwort.n.03', 'name': 'sandwort'}, {'id': 18063, 'synset': 'mountain_sandwort.n.01', 'name': 'mountain_sandwort'}, {'id': 18064, 'synset': 'pine-barren_sandwort.n.01', 'name': 'pine-barren_sandwort'}, {'id': 18065, 'synset': 'seabeach_sandwort.n.01', 'name': 'seabeach_sandwort'}, {'id': 18066, 'synset': 'rock_sandwort.n.01', 'name': 'rock_sandwort'}, {'id': 18067, 'synset': 'thyme-leaved_sandwort.n.01', 'name': 'thyme-leaved_sandwort'}, {'id': 18068, 'synset': 'mouse-ear_chickweed.n.01', 'name': 'mouse-ear_chickweed'}, {'id': 18069, 'synset': 'snow-in-summer.n.02', 'name': 'snow-in-summer'}, {'id': 18070, 'synset': 'alpine_mouse-ear.n.01', 'name': 'Alpine_mouse-ear'}, {'id': 18071, 'synset': 'pink.n.02', 'name': 'pink'}, {'id': 18072, 'synset': 'sweet_william.n.01', 'name': 'sweet_William'}, {'id': 18073, 'synset': 'china_pink.n.01', 'name': 'china_pink'}, {'id': 18074, 'synset': 'japanese_pink.n.01', 'name': 'Japanese_pink'}, {'id': 18075, 'synset': 'maiden_pink.n.01', 'name': 'maiden_pink'}, {'id': 18076, 'synset': 'cheddar_pink.n.01', 'name': 'cheddar_pink'}, {'id': 18077, 'synset': 'button_pink.n.01', 'name': 'button_pink'}, {'id': 18078, 'synset': 'cottage_pink.n.01', 'name': 'cottage_pink'}, {'id': 18079, 'synset': 'fringed_pink.n.02', 'name': 'fringed_pink'}, {'id': 18080, 'synset': 'drypis.n.01', 'name': 'drypis'}, {'id': 18081, 'synset': "baby's_breath.n.01", 'name': "baby's_breath"}, {'id': 18082, 'synset': 'coral_necklace.n.01', 'name': 'coral_necklace'}, {'id': 18083, 'synset': 'lychnis.n.01', 'name': 'lychnis'}, {'id': 18084, 'synset': 'ragged_robin.n.01', 'name': 'ragged_robin'}, {'id': 18085, 'synset': 'scarlet_lychnis.n.01', 'name': 'scarlet_lychnis'}, {'id': 18086, 'synset': 'mullein_pink.n.01', 'name': 'mullein_pink'}, {'id': 18087, 'synset': 'sandwort.n.02', 'name': 'sandwort'}, {'id': 18088, 'synset': 'sandwort.n.01', 'name': 'sandwort'}, {'id': 18089, 'synset': 'soapwort.n.01', 'name': 'soapwort'}, {'id': 18090, 'synset': 'knawel.n.01', 'name': 'knawel'}, {'id': 18091, 'synset': 'silene.n.01', 'name': 'silene'}, {'id': 18092, 'synset': 'moss_campion.n.01', 'name': 'moss_campion'}, {'id': 18093, 'synset': 'wild_pink.n.02', 'name': 'wild_pink'}, {'id': 18094, 'synset': 'red_campion.n.01', 'name': 'red_campion'}, {'id': 18095, 'synset': 'white_campion.n.01', 'name': 'white_campion'}, {'id': 18096, 'synset': 'fire_pink.n.01', 'name': 'fire_pink'}, {'id': 18097, 'synset': 'bladder_campion.n.01', 'name': 'bladder_campion'}, {'id': 18098, 'synset': 'corn_spurry.n.01', 'name': 'corn_spurry'}, {'id': 18099, 'synset': 'sand_spurry.n.01', 'name': 'sand_spurry'}, {'id': 18100, 'synset': 'chickweed.n.01', 'name': 'chickweed'}, {'id': 18101, 'synset': 'common_chickweed.n.01', 'name': 'common_chickweed'}, {'id': 18102, 'synset': 'cowherb.n.01', 'name': 'cowherb'}, {'id': 18103, 'synset': 'hottentot_fig.n.01', 'name': 'Hottentot_fig'}, {'id': 18104, 'synset': 'livingstone_daisy.n.01', 'name': 'livingstone_daisy'}, {'id': 18105, 'synset': 'fig_marigold.n.01', 'name': 'fig_marigold'}, {'id': 18106, 'synset': 'ice_plant.n.01', 'name': 'ice_plant'}, {'id': 18107, 'synset': 'new_zealand_spinach.n.01', 'name': 'New_Zealand_spinach'}, {'id': 18108, 'synset': 'amaranth.n.02', 'name': 'amaranth'}, {'id': 18109, 'synset': 'amaranth.n.01', 'name': 'amaranth'}, {'id': 18110, 'synset': 'tumbleweed.n.04', 'name': 'tumbleweed'}, {'id': 18111, 'synset': "prince's-feather.n.02", 'name': "prince's-feather"}, {'id': 18112, 'synset': 'pigweed.n.02', 'name': 'pigweed'}, {'id': 18113, 'synset': 'thorny_amaranth.n.01', 'name': 'thorny_amaranth'}, {'id': 18114, 'synset': 'alligator_weed.n.01', 'name': 'alligator_weed'}, {'id': 18115, 'synset': 'cockscomb.n.01', 'name': 'cockscomb'}, {'id': 18116, 'synset': 'cottonweed.n.02', 'name': 'cottonweed'}, {'id': 18117, 'synset': 'globe_amaranth.n.01', 'name': 'globe_amaranth'}, {'id': 18118, 'synset': 'bloodleaf.n.01', 'name': 'bloodleaf'}, {'id': 18119, 'synset': 'saltwort.n.02', 'name': 'saltwort'}, {'id': 18120, 'synset': "lamb's-quarters.n.01", 'name': "lamb's-quarters"}, {'id': 18121, 'synset': 'good-king-henry.n.01', 'name': 'good-king-henry'}, {'id': 18122, 'synset': 'jerusalem_oak.n.01', 'name': 'Jerusalem_oak'}, {'id': 18123, 'synset': 'oak-leaved_goosefoot.n.01', 'name': 'oak-leaved_goosefoot'}, {'id': 18124, 'synset': 'sowbane.n.01', 'name': 'sowbane'}, {'id': 18125, 'synset': 'nettle-leaved_goosefoot.n.01', 'name': 'nettle-leaved_goosefoot'}, {'id': 18126, 'synset': 'red_goosefoot.n.01', 'name': 'red_goosefoot'}, {'id': 18127, 'synset': 'stinking_goosefoot.n.01', 'name': 'stinking_goosefoot'}, {'id': 18128, 'synset': 'orach.n.01', 'name': 'orach'}, {'id': 18129, 'synset': 'saltbush.n.01', 'name': 'saltbush'}, {'id': 18130, 'synset': 'garden_orache.n.01', 'name': 'garden_orache'}, {'id': 18131, 'synset': 'desert_holly.n.01', 'name': 'desert_holly'}, {'id': 18132, 'synset': 'quail_bush.n.01', 'name': 'quail_bush'}, {'id': 18133, 'synset': 'beet.n.01', 'name': 'beet'}, {'id': 18134, 'synset': 'beetroot.n.01', 'name': 'beetroot'}, {'id': 18135, 'synset': 'chard.n.01', 'name': 'chard'}, {'id': 18136, 'synset': 'mangel-wurzel.n.01', 'name': 'mangel-wurzel'}, {'id': 18137, 'synset': 'winged_pigweed.n.01', 'name': 'winged_pigweed'}, {'id': 18138, 'synset': 'halogeton.n.01', 'name': 'halogeton'}, {'id': 18139, 'synset': 'glasswort.n.02', 'name': 'glasswort'}, {'id': 18140, 'synset': 'saltwort.n.01', 'name': 'saltwort'}, {'id': 18141, 'synset': 'russian_thistle.n.01', 'name': 'Russian_thistle'}, {'id': 18142, 'synset': 'greasewood.n.01', 'name': 'greasewood'}, {'id': 18143, 'synset': 'scarlet_musk_flower.n.01', 'name': 'scarlet_musk_flower'}, {'id': 18144, 'synset': 'sand_verbena.n.01', 'name': 'sand_verbena'}, {'id': 18145, 'synset': 'sweet_sand_verbena.n.01', 'name': 'sweet_sand_verbena'}, {'id': 18146, 'synset': 'yellow_sand_verbena.n.01', 'name': 'yellow_sand_verbena'}, {'id': 18147, 'synset': 'beach_pancake.n.01', 'name': 'beach_pancake'}, {'id': 18148, 'synset': 'beach_sand_verbena.n.01', 'name': 'beach_sand_verbena'}, {'id': 18149, 'synset': 'desert_sand_verbena.n.01', 'name': 'desert_sand_verbena'}, {'id': 18150, 'synset': "trailing_four_o'clock.n.01", 'name': "trailing_four_o'clock"}, {'id': 18151, 'synset': 'bougainvillea.n.01', 'name': 'bougainvillea'}, {'id': 18152, 'synset': 'umbrellawort.n.01', 'name': 'umbrellawort'}, {'id': 18153, 'synset': "four_o'clock.n.01", 'name': "four_o'clock"}, {'id': 18154, 'synset': "common_four-o'clock.n.01", 'name': "common_four-o'clock"}, {'id': 18155, 'synset': "california_four_o'clock.n.01", 'name': "California_four_o'clock"}, {'id': 18156, 'synset': "sweet_four_o'clock.n.01", 'name': "sweet_four_o'clock"}, {'id': 18157, 'synset': "desert_four_o'clock.n.01", 'name': "desert_four_o'clock"}, {'id': 18158, 'synset': "mountain_four_o'clock.n.01", 'name': "mountain_four_o'clock"}, {'id': 18159, 'synset': 'cockspur.n.02', 'name': 'cockspur'}, {'id': 18160, 'synset': 'rattail_cactus.n.01', 'name': 'rattail_cactus'}, {'id': 18161, 'synset': 'saguaro.n.01', 'name': 'saguaro'}, {'id': 18162, 'synset': 'night-blooming_cereus.n.03', 'name': 'night-blooming_cereus'}, {'id': 18163, 'synset': 'echinocactus.n.01', 'name': 'echinocactus'}, {'id': 18164, 'synset': 'hedgehog_cactus.n.01', 'name': 'hedgehog_cactus'}, {'id': 18165, 'synset': 'golden_barrel_cactus.n.01', 'name': 'golden_barrel_cactus'}, {'id': 18166, 'synset': 'hedgehog_cereus.n.01', 'name': 'hedgehog_cereus'}, {'id': 18167, 'synset': 'rainbow_cactus.n.01', 'name': 'rainbow_cactus'}, {'id': 18168, 'synset': 'epiphyllum.n.01', 'name': 'epiphyllum'}, {'id': 18169, 'synset': 'barrel_cactus.n.01', 'name': 'barrel_cactus'}, {'id': 18170, 'synset': 'night-blooming_cereus.n.02', 'name': 'night-blooming_cereus'}, {'id': 18171, 'synset': 'chichipe.n.01', 'name': 'chichipe'}, {'id': 18172, 'synset': 'mescal.n.01', 'name': 'mescal'}, {'id': 18173, 'synset': 'mescal_button.n.01', 'name': 'mescal_button'}, {'id': 18174, 'synset': 'mammillaria.n.01', 'name': 'mammillaria'}, {'id': 18175, 'synset': 'feather_ball.n.01', 'name': 'feather_ball'}, {'id': 18176, 'synset': 'garambulla.n.01', 'name': 'garambulla'}, {'id': 18177, 'synset': "knowlton's_cactus.n.01", 'name': "Knowlton's_cactus"}, {'id': 18178, 'synset': 'nopal.n.02', 'name': 'nopal'}, {'id': 18179, 'synset': 'prickly_pear.n.01', 'name': 'prickly_pear'}, {'id': 18180, 'synset': 'cholla.n.01', 'name': 'cholla'}, {'id': 18181, 'synset': 'nopal.n.01', 'name': 'nopal'}, {'id': 18182, 'synset': 'tuna.n.01', 'name': 'tuna'}, {'id': 18183, 'synset': 'barbados_gooseberry.n.01', 'name': 'Barbados_gooseberry'}, {'id': 18184, 'synset': 'mistletoe_cactus.n.01', 'name': 'mistletoe_cactus'}, {'id': 18185, 'synset': 'christmas_cactus.n.01', 'name': 'Christmas_cactus'}, {'id': 18186, 'synset': 'night-blooming_cereus.n.01', 'name': 'night-blooming_cereus'}, {'id': 18187, 'synset': 'crab_cactus.n.01', 'name': 'crab_cactus'}, {'id': 18188, 'synset': 'pokeweed.n.01', 'name': 'pokeweed'}, {'id': 18189, 'synset': 'indian_poke.n.02', 'name': 'Indian_poke'}, {'id': 18190, 'synset': 'poke.n.01', 'name': 'poke'}, {'id': 18191, 'synset': 'ombu.n.01', 'name': 'ombu'}, {'id': 18192, 'synset': 'bloodberry.n.01', 'name': 'bloodberry'}, {'id': 18193, 'synset': 'portulaca.n.01', 'name': 'portulaca'}, {'id': 18194, 'synset': 'rose_moss.n.01', 'name': 'rose_moss'}, {'id': 18195, 'synset': 'common_purslane.n.01', 'name': 'common_purslane'}, {'id': 18196, 'synset': 'rock_purslane.n.01', 'name': 'rock_purslane'}, {'id': 18197, 'synset': 'red_maids.n.01', 'name': 'red_maids'}, {'id': 18198, 'synset': 'carolina_spring_beauty.n.01', 'name': 'Carolina_spring_beauty'}, {'id': 18199, 'synset': 'spring_beauty.n.01', 'name': 'spring_beauty'}, {'id': 18200, 'synset': 'virginia_spring_beauty.n.01', 'name': 'Virginia_spring_beauty'}, {'id': 18201, 'synset': 'siskiyou_lewisia.n.01', 'name': 'siskiyou_lewisia'}, {'id': 18202, 'synset': 'bitterroot.n.01', 'name': 'bitterroot'}, {'id': 18203, 'synset': 'broad-leaved_montia.n.01', 'name': 'broad-leaved_montia'}, {'id': 18204, 'synset': 'blinks.n.01', 'name': 'blinks'}, {'id': 18205, 'synset': 'toad_lily.n.01', 'name': 'toad_lily'}, {'id': 18206, 'synset': 'winter_purslane.n.01', 'name': 'winter_purslane'}, {'id': 18207, 'synset': 'flame_flower.n.02', 'name': 'flame_flower'}, {'id': 18208, 'synset': 'pigmy_talinum.n.01', 'name': 'pigmy_talinum'}, {'id': 18209, 'synset': 'jewels-of-opar.n.01', 'name': 'jewels-of-opar'}, {'id': 18210, 'synset': 'caper.n.01', 'name': 'caper'}, {'id': 18211, 'synset': 'native_pomegranate.n.01', 'name': 'native_pomegranate'}, {'id': 18212, 'synset': 'caper_tree.n.02', 'name': 'caper_tree'}, {'id': 18213, 'synset': 'caper_tree.n.01', 'name': 'caper_tree'}, {'id': 18214, 'synset': 'common_caper.n.01', 'name': 'common_caper'}, {'id': 18215, 'synset': 'spiderflower.n.01', 'name': 'spiderflower'}, {'id': 18216, 'synset': 'rocky_mountain_bee_plant.n.01', 'name': 'Rocky_Mountain_bee_plant'}, {'id': 18217, 'synset': 'clammyweed.n.01', 'name': 'clammyweed'}, {'id': 18218, 'synset': 'crucifer.n.01', 'name': 'crucifer'}, {'id': 18219, 'synset': 'cress.n.01', 'name': 'cress'}, {'id': 18220, 'synset': 'watercress.n.01', 'name': 'watercress'}, {'id': 18221, 'synset': 'stonecress.n.01', 'name': 'stonecress'}, {'id': 18222, 'synset': 'garlic_mustard.n.01', 'name': 'garlic_mustard'}, {'id': 18223, 'synset': 'alyssum.n.01', 'name': 'alyssum'}, {'id': 18224, 'synset': 'rose_of_jericho.n.02', 'name': 'rose_of_Jericho'}, {'id': 18225, 'synset': 'arabidopsis_thaliana.n.01', 'name': 'Arabidopsis_thaliana'}, {'id': 18226, 'synset': 'arabidopsis_lyrata.n.01', 'name': 'Arabidopsis_lyrata'}, {'id': 18227, 'synset': 'rock_cress.n.01', 'name': 'rock_cress'}, {'id': 18228, 'synset': 'sicklepod.n.02', 'name': 'sicklepod'}, {'id': 18229, 'synset': 'tower_mustard.n.01', 'name': 'tower_mustard'}, {'id': 18230, 'synset': 'horseradish.n.01', 'name': 'horseradish'}, {'id': 18231, 'synset': 'winter_cress.n.01', 'name': 'winter_cress'}, {'id': 18232, 'synset': 'yellow_rocket.n.01', 'name': 'yellow_rocket'}, {'id': 18233, 'synset': 'hoary_alison.n.01', 'name': 'hoary_alison'}, {'id': 18234, 'synset': 'buckler_mustard.n.01', 'name': 'buckler_mustard'}, {'id': 18235, 'synset': 'wild_cabbage.n.01', 'name': 'wild_cabbage'}, {'id': 18236, 'synset': 'cabbage.n.03', 'name': 'cabbage'}, {'id': 18237, 'synset': 'head_cabbage.n.01', 'name': 'head_cabbage'}, {'id': 18238, 'synset': 'savoy_cabbage.n.01', 'name': 'savoy_cabbage'}, {'id': 18239, 'synset': 'brussels_sprout.n.01', 'name': 'brussels_sprout'}, {'id': 18240, 'synset': 'cauliflower.n.01', 'name': 'cauliflower'}, {'id': 18241, 'synset': 'collard.n.01', 'name': 'collard'}, {'id': 18242, 'synset': 'kohlrabi.n.01', 'name': 'kohlrabi'}, {'id': 18243, 'synset': 'turnip_plant.n.01', 'name': 'turnip_plant'}, {'id': 18244, 'synset': 'rutabaga.n.02', 'name': 'rutabaga'}, {'id': 18245, 'synset': 'broccoli_raab.n.01', 'name': 'broccoli_raab'}, {'id': 18246, 'synset': 'mustard.n.01', 'name': 'mustard'}, {'id': 18247, 'synset': 'chinese_mustard.n.01', 'name': 'chinese_mustard'}, {'id': 18248, 'synset': 'bok_choy.n.01', 'name': 'bok_choy'}, {'id': 18249, 'synset': 'rape.n.01', 'name': 'rape'}, {'id': 18250, 'synset': 'rapeseed.n.01', 'name': 'rapeseed'}, {'id': 18251, 'synset': "shepherd's_purse.n.01", 'name': "shepherd's_purse"}, {'id': 18252, 'synset': "lady's_smock.n.01", 'name': "lady's_smock"}, {'id': 18253, 'synset': 'coral-root_bittercress.n.01', 'name': 'coral-root_bittercress'}, {'id': 18254, 'synset': 'crinkleroot.n.01', 'name': 'crinkleroot'}, {'id': 18255, 'synset': 'american_watercress.n.01', 'name': 'American_watercress'}, {'id': 18256, 'synset': 'spring_cress.n.01', 'name': 'spring_cress'}, {'id': 18257, 'synset': 'purple_cress.n.01', 'name': 'purple_cress'}, {'id': 18258, 'synset': 'wallflower.n.02', 'name': 'wallflower'}, {'id': 18259, 'synset': 'prairie_rocket.n.02', 'name': 'prairie_rocket'}, {'id': 18260, 'synset': 'scurvy_grass.n.01', 'name': 'scurvy_grass'}, {'id': 18261, 'synset': 'sea_kale.n.01', 'name': 'sea_kale'}, {'id': 18262, 'synset': 'tansy_mustard.n.01', 'name': 'tansy_mustard'}, {'id': 18263, 'synset': 'draba.n.01', 'name': 'draba'}, {'id': 18264, 'synset': 'wallflower.n.01', 'name': 'wallflower'}, {'id': 18265, 'synset': 'prairie_rocket.n.01', 'name': 'prairie_rocket'}, {'id': 18266, 'synset': 'siberian_wall_flower.n.01', 'name': 'Siberian_wall_flower'}, {'id': 18267, 'synset': 'western_wall_flower.n.01', 'name': 'western_wall_flower'}, {'id': 18268, 'synset': 'wormseed_mustard.n.01', 'name': 'wormseed_mustard'}, {'id': 18269, 'synset': 'heliophila.n.01', 'name': 'heliophila'}, {'id': 18270, 'synset': 'damask_violet.n.01', 'name': 'damask_violet'}, {'id': 18271, 'synset': 'tansy-leaved_rocket.n.01', 'name': 'tansy-leaved_rocket'}, {'id': 18272, 'synset': 'candytuft.n.01', 'name': 'candytuft'}, {'id': 18273, 'synset': 'woad.n.02', 'name': 'woad'}, {'id': 18274, 'synset': "dyer's_woad.n.01", 'name': "dyer's_woad"}, {'id': 18275, 'synset': 'bladderpod.n.04', 'name': 'bladderpod'}, {'id': 18276, 'synset': 'sweet_alyssum.n.01', 'name': 'sweet_alyssum'}, {'id': 18277, 'synset': 'malcolm_stock.n.01', 'name': 'Malcolm_stock'}, {'id': 18278, 'synset': 'virginian_stock.n.01', 'name': 'Virginian_stock'}, {'id': 18279, 'synset': 'stock.n.12', 'name': 'stock'}, {'id': 18280, 'synset': 'brompton_stock.n.01', 'name': 'brompton_stock'}, {'id': 18281, 'synset': 'bladderpod.n.03', 'name': 'bladderpod'}, {'id': 18282, 'synset': 'chamois_cress.n.01', 'name': 'chamois_cress'}, {'id': 18283, 'synset': 'radish_plant.n.01', 'name': 'radish_plant'}, {'id': 18284, 'synset': 'jointed_charlock.n.01', 'name': 'jointed_charlock'}, {'id': 18285, 'synset': 'radish.n.04', 'name': 'radish'}, {'id': 18286, 'synset': 'radish.n.02', 'name': 'radish'}, {'id': 18287, 'synset': 'marsh_cress.n.01', 'name': 'marsh_cress'}, {'id': 18288, 'synset': 'great_yellowcress.n.01', 'name': 'great_yellowcress'}, {'id': 18289, 'synset': 'schizopetalon.n.01', 'name': 'schizopetalon'}, {'id': 18290, 'synset': 'field_mustard.n.01', 'name': 'field_mustard'}, {'id': 18291, 'synset': 'hedge_mustard.n.01', 'name': 'hedge_mustard'}, {'id': 18292, 'synset': 'desert_plume.n.01', 'name': 'desert_plume'}, {'id': 18293, 'synset': 'pennycress.n.01', 'name': 'pennycress'}, {'id': 18294, 'synset': 'field_pennycress.n.01', 'name': 'field_pennycress'}, {'id': 18295, 'synset': 'fringepod.n.01', 'name': 'fringepod'}, {'id': 18296, 'synset': 'bladderpod.n.02', 'name': 'bladderpod'}, {'id': 18297, 'synset': 'wasabi.n.01', 'name': 'wasabi'}, {'id': 18298, 'synset': 'poppy.n.01', 'name': 'poppy'}, {'id': 18299, 'synset': 'iceland_poppy.n.02', 'name': 'Iceland_poppy'}, {'id': 18300, 'synset': 'western_poppy.n.01', 'name': 'western_poppy'}, {'id': 18301, 'synset': 'prickly_poppy.n.02', 'name': 'prickly_poppy'}, {'id': 18302, 'synset': 'iceland_poppy.n.01', 'name': 'Iceland_poppy'}, {'id': 18303, 'synset': 'oriental_poppy.n.01', 'name': 'oriental_poppy'}, {'id': 18304, 'synset': 'corn_poppy.n.01', 'name': 'corn_poppy'}, {'id': 18305, 'synset': 'opium_poppy.n.01', 'name': 'opium_poppy'}, {'id': 18306, 'synset': 'prickly_poppy.n.01', 'name': 'prickly_poppy'}, {'id': 18307, 'synset': 'mexican_poppy.n.01', 'name': 'Mexican_poppy'}, {'id': 18308, 'synset': 'bocconia.n.02', 'name': 'bocconia'}, {'id': 18309, 'synset': 'celandine.n.02', 'name': 'celandine'}, {'id': 18310, 'synset': 'corydalis.n.01', 'name': 'corydalis'}, {'id': 18311, 'synset': 'climbing_corydalis.n.01', 'name': 'climbing_corydalis'}, {'id': 18312, 'synset': 'california_poppy.n.01', 'name': 'California_poppy'}, {'id': 18313, 'synset': 'horn_poppy.n.01', 'name': 'horn_poppy'}, {'id': 18314, 'synset': 'golden_cup.n.01', 'name': 'golden_cup'}, {'id': 18315, 'synset': 'plume_poppy.n.01', 'name': 'plume_poppy'}, {'id': 18316, 'synset': 'blue_poppy.n.01', 'name': 'blue_poppy'}, {'id': 18317, 'synset': 'welsh_poppy.n.01', 'name': 'Welsh_poppy'}, {'id': 18318, 'synset': 'creamcups.n.01', 'name': 'creamcups'}, {'id': 18319, 'synset': 'matilija_poppy.n.01', 'name': 'matilija_poppy'}, {'id': 18320, 'synset': 'wind_poppy.n.01', 'name': 'wind_poppy'}, {'id': 18321, 'synset': 'celandine_poppy.n.01', 'name': 'celandine_poppy'}, {'id': 18322, 'synset': 'climbing_fumitory.n.01', 'name': 'climbing_fumitory'}, {'id': 18323, 'synset': 'bleeding_heart.n.01', 'name': 'bleeding_heart'}, {'id': 18324, 'synset': "dutchman's_breeches.n.01", 'name': "Dutchman's_breeches"}, {'id': 18325, 'synset': 'squirrel_corn.n.01', 'name': 'squirrel_corn'}, {'id': 18326, 'synset': 'composite.n.02', 'name': 'composite'}, {'id': 18327, 'synset': 'compass_plant.n.02', 'name': 'compass_plant'}, {'id': 18328, 'synset': 'everlasting.n.01', 'name': 'everlasting'}, {'id': 18329, 'synset': 'achillea.n.01', 'name': 'achillea'}, {'id': 18330, 'synset': 'yarrow.n.01', 'name': 'yarrow'}, {'id': 18331, 'synset': 'pink-and-white_everlasting.n.01', 'name': 'pink-and-white_everlasting'}, {'id': 18332, 'synset': 'white_snakeroot.n.01', 'name': 'white_snakeroot'}, {'id': 18333, 'synset': 'ageratum.n.02', 'name': 'ageratum'}, {'id': 18334, 'synset': 'common_ageratum.n.01', 'name': 'common_ageratum'}, {'id': 18335, 'synset': 'sweet_sultan.n.03', 'name': 'sweet_sultan'}, {'id': 18336, 'synset': 'ragweed.n.02', 'name': 'ragweed'}, {'id': 18337, 'synset': 'common_ragweed.n.01', 'name': 'common_ragweed'}, {'id': 18338, 'synset': 'great_ragweed.n.01', 'name': 'great_ragweed'}, {'id': 18339, 'synset': 'western_ragweed.n.01', 'name': 'western_ragweed'}, {'id': 18340, 'synset': 'ammobium.n.01', 'name': 'ammobium'}, {'id': 18341, 'synset': 'winged_everlasting.n.01', 'name': 'winged_everlasting'}, {'id': 18342, 'synset': 'pellitory.n.02', 'name': 'pellitory'}, {'id': 18343, 'synset': 'pearly_everlasting.n.01', 'name': 'pearly_everlasting'}, {'id': 18344, 'synset': 'andryala.n.01', 'name': 'andryala'}, {'id': 18345, 'synset': 'plantain-leaved_pussytoes.n.01', 'name': 'plantain-leaved_pussytoes'}, {'id': 18346, 'synset': 'field_pussytoes.n.01', 'name': 'field_pussytoes'}, {'id': 18347, 'synset': 'solitary_pussytoes.n.01', 'name': 'solitary_pussytoes'}, {'id': 18348, 'synset': 'mountain_everlasting.n.01', 'name': 'mountain_everlasting'}, {'id': 18349, 'synset': 'mayweed.n.01', 'name': 'mayweed'}, {'id': 18350, 'synset': 'yellow_chamomile.n.01', 'name': 'yellow_chamomile'}, {'id': 18351, 'synset': 'corn_chamomile.n.01', 'name': 'corn_chamomile'}, {'id': 18352, 'synset': 'woolly_daisy.n.01', 'name': 'woolly_daisy'}, {'id': 18353, 'synset': 'burdock.n.01', 'name': 'burdock'}, {'id': 18354, 'synset': 'great_burdock.n.01', 'name': 'great_burdock'}, {'id': 18355, 'synset': 'african_daisy.n.03', 'name': 'African_daisy'}, {'id': 18356, 'synset': 'blue-eyed_african_daisy.n.01', 'name': 'blue-eyed_African_daisy'}, {'id': 18357, 'synset': 'marguerite.n.02', 'name': 'marguerite'}, {'id': 18358, 'synset': 'silversword.n.01', 'name': 'silversword'}, {'id': 18359, 'synset': 'arnica.n.02', 'name': 'arnica'}, {'id': 18360, 'synset': 'heartleaf_arnica.n.01', 'name': 'heartleaf_arnica'}, {'id': 18361, 'synset': 'arnica_montana.n.01', 'name': 'Arnica_montana'}, {'id': 18362, 'synset': 'lamb_succory.n.01', 'name': 'lamb_succory'}, {'id': 18363, 'synset': 'artemisia.n.01', 'name': 'artemisia'}, {'id': 18364, 'synset': 'mugwort.n.01', 'name': 'mugwort'}, {'id': 18365, 'synset': 'sweet_wormwood.n.01', 'name': 'sweet_wormwood'}, {'id': 18366, 'synset': 'field_wormwood.n.01', 'name': 'field_wormwood'}, {'id': 18367, 'synset': 'tarragon.n.01', 'name': 'tarragon'}, {'id': 18368, 'synset': 'sand_sage.n.01', 'name': 'sand_sage'}, {'id': 18369, 'synset': 'wormwood_sage.n.01', 'name': 'wormwood_sage'}, {'id': 18370, 'synset': 'western_mugwort.n.01', 'name': 'western_mugwort'}, {'id': 18371, 'synset': 'roman_wormwood.n.01', 'name': 'Roman_wormwood'}, {'id': 18372, 'synset': 'bud_brush.n.01', 'name': 'bud_brush'}, {'id': 18373, 'synset': 'common_mugwort.n.01', 'name': 'common_mugwort'}, {'id': 18374, 'synset': 'aster.n.01', 'name': 'aster'}, {'id': 18375, 'synset': 'wood_aster.n.01', 'name': 'wood_aster'}, {'id': 18376, 'synset': 'whorled_aster.n.01', 'name': 'whorled_aster'}, {'id': 18377, 'synset': 'heath_aster.n.02', 'name': 'heath_aster'}, {'id': 18378, 'synset': 'heart-leaved_aster.n.01', 'name': 'heart-leaved_aster'}, {'id': 18379, 'synset': 'white_wood_aster.n.01', 'name': 'white_wood_aster'}, {'id': 18380, 'synset': 'bushy_aster.n.01', 'name': 'bushy_aster'}, {'id': 18381, 'synset': 'heath_aster.n.01', 'name': 'heath_aster'}, {'id': 18382, 'synset': 'white_prairie_aster.n.01', 'name': 'white_prairie_aster'}, {'id': 18383, 'synset': 'stiff_aster.n.01', 'name': 'stiff_aster'}, {'id': 18384, 'synset': 'goldilocks.n.01', 'name': 'goldilocks'}, {'id': 18385, 'synset': 'large-leaved_aster.n.01', 'name': 'large-leaved_aster'}, {'id': 18386, 'synset': 'new_england_aster.n.01', 'name': 'New_England_aster'}, {'id': 18387, 'synset': 'michaelmas_daisy.n.01', 'name': 'Michaelmas_daisy'}, {'id': 18388, 'synset': 'upland_white_aster.n.01', 'name': 'upland_white_aster'}, {'id': 18389, 'synset': "short's_aster.n.01", 'name': "Short's_aster"}, {'id': 18390, 'synset': 'sea_aster.n.01', 'name': 'sea_aster'}, {'id': 18391, 'synset': 'prairie_aster.n.01', 'name': 'prairie_aster'}, {'id': 18392, 'synset': 'annual_salt-marsh_aster.n.01', 'name': 'annual_salt-marsh_aster'}, {'id': 18393, 'synset': 'aromatic_aster.n.01', 'name': 'aromatic_aster'}, {'id': 18394, 'synset': 'arrow_leaved_aster.n.01', 'name': 'arrow_leaved_aster'}, {'id': 18395, 'synset': 'azure_aster.n.01', 'name': 'azure_aster'}, {'id': 18396, 'synset': 'bog_aster.n.01', 'name': 'bog_aster'}, {'id': 18397, 'synset': 'crooked-stemmed_aster.n.01', 'name': 'crooked-stemmed_aster'}, {'id': 18398, 'synset': 'eastern_silvery_aster.n.01', 'name': 'Eastern_silvery_aster'}, {'id': 18399, 'synset': 'flat-topped_white_aster.n.01', 'name': 'flat-topped_white_aster'}, {'id': 18400, 'synset': 'late_purple_aster.n.01', 'name': 'late_purple_aster'}, {'id': 18401, 'synset': 'panicled_aster.n.01', 'name': 'panicled_aster'}, {'id': 18402, 'synset': 'perennial_salt_marsh_aster.n.01', 'name': 'perennial_salt_marsh_aster'}, {'id': 18403, 'synset': 'purple-stemmed_aster.n.01', 'name': 'purple-stemmed_aster'}, {'id': 18404, 'synset': 'rough-leaved_aster.n.01', 'name': 'rough-leaved_aster'}, {'id': 18405, 'synset': 'rush_aster.n.01', 'name': 'rush_aster'}, {'id': 18406, 'synset': "schreiber's_aster.n.01", 'name': "Schreiber's_aster"}, {'id': 18407, 'synset': 'small_white_aster.n.01', 'name': 'small_white_aster'}, {'id': 18408, 'synset': 'smooth_aster.n.01', 'name': 'smooth_aster'}, {'id': 18409, 'synset': 'southern_aster.n.01', 'name': 'southern_aster'}, {'id': 18410, 'synset': 'starved_aster.n.01', 'name': 'starved_aster'}, {'id': 18411, 'synset': "tradescant's_aster.n.01", 'name': "tradescant's_aster"}, {'id': 18412, 'synset': 'wavy-leaved_aster.n.01', 'name': 'wavy-leaved_aster'}, {'id': 18413, 'synset': 'western_silvery_aster.n.01', 'name': 'Western_silvery_aster'}, {'id': 18414, 'synset': 'willow_aster.n.01', 'name': 'willow_aster'}, {'id': 18415, 'synset': 'ayapana.n.01', 'name': 'ayapana'}, {'id': 18416, 'synset': 'mule_fat.n.01', 'name': 'mule_fat'}, {'id': 18417, 'synset': 'balsamroot.n.01', 'name': 'balsamroot'}, {'id': 18418, 'synset': 'daisy.n.01', 'name': 'daisy'}, {'id': 18419, 'synset': 'common_daisy.n.01', 'name': 'common_daisy'}, {'id': 18420, 'synset': 'bur_marigold.n.01', 'name': 'bur_marigold'}, {'id': 18421, 'synset': 'spanish_needles.n.02', 'name': 'Spanish_needles'}, {'id': 18422, 'synset': 'tickseed_sunflower.n.01', 'name': 'tickseed_sunflower'}, {'id': 18423, 'synset': 'european_beggar-ticks.n.01', 'name': 'European_beggar-ticks'}, {'id': 18424, 'synset': 'slender_knapweed.n.01', 'name': 'slender_knapweed'}, {'id': 18425, 'synset': 'false_chamomile.n.01', 'name': 'false_chamomile'}, {'id': 18426, 'synset': 'swan_river_daisy.n.01', 'name': 'Swan_River_daisy'}, {'id': 18427, 'synset': 'woodland_oxeye.n.01', 'name': 'woodland_oxeye'}, {'id': 18428, 'synset': 'indian_plantain.n.01', 'name': 'Indian_plantain'}, {'id': 18429, 'synset': 'calendula.n.01', 'name': 'calendula'}, {'id': 18430, 'synset': 'common_marigold.n.01', 'name': 'common_marigold'}, {'id': 18431, 'synset': 'china_aster.n.01', 'name': 'China_aster'}, {'id': 18432, 'synset': 'thistle.n.01', 'name': 'thistle'}, {'id': 18433, 'synset': 'welted_thistle.n.01', 'name': 'welted_thistle'}, {'id': 18434, 'synset': 'musk_thistle.n.01', 'name': 'musk_thistle'}, {'id': 18435, 'synset': 'carline_thistle.n.01', 'name': 'carline_thistle'}, {'id': 18436, 'synset': 'stemless_carline_thistle.n.01', 'name': 'stemless_carline_thistle'}, {'id': 18437, 'synset': 'common_carline_thistle.n.01', 'name': 'common_carline_thistle'}, {'id': 18438, 'synset': 'safflower.n.01', 'name': 'safflower'}, {'id': 18439, 'synset': 'safflower_seed.n.01', 'name': 'safflower_seed'}, {'id': 18440, 'synset': 'catananche.n.01', 'name': 'catananche'}, {'id': 18441, 'synset': 'blue_succory.n.01', 'name': 'blue_succory'}, {'id': 18442, 'synset': 'centaury.n.02', 'name': 'centaury'}, {'id': 18443, 'synset': 'dusty_miller.n.03', 'name': 'dusty_miller'}, {'id': 18444, 'synset': 'cornflower.n.02', 'name': 'cornflower'}, {'id': 18445, 'synset': 'star-thistle.n.01', 'name': 'star-thistle'}, {'id': 18446, 'synset': 'knapweed.n.01', 'name': 'knapweed'}, {'id': 18447, 'synset': 'sweet_sultan.n.02', 'name': 'sweet_sultan'}, {'id': 18448, 'synset': 'great_knapweed.n.01', 'name': 'great_knapweed'}, {'id': 18449, 'synset': "barnaby's_thistle.n.01", 'name': "Barnaby's_thistle"}, {'id': 18450, 'synset': 'chamomile.n.01', 'name': 'chamomile'}, {'id': 18451, 'synset': 'chaenactis.n.01', 'name': 'chaenactis'}, {'id': 18452, 'synset': 'chrysanthemum.n.02', 'name': 'chrysanthemum'}, {'id': 18453, 'synset': 'corn_marigold.n.01', 'name': 'corn_marigold'}, {'id': 18454, 'synset': 'crown_daisy.n.01', 'name': 'crown_daisy'}, {'id': 18455, 'synset': 'chop-suey_greens.n.01', 'name': 'chop-suey_greens'}, {'id': 18456, 'synset': 'golden_aster.n.01', 'name': 'golden_aster'}, {'id': 18457, 'synset': 'maryland_golden_aster.n.01', 'name': 'Maryland_golden_aster'}, {'id': 18458, 'synset': 'goldenbush.n.02', 'name': 'goldenbush'}, {'id': 18459, 'synset': 'rabbit_brush.n.01', 'name': 'rabbit_brush'}, {'id': 18460, 'synset': 'chicory.n.02', 'name': 'chicory'}, {'id': 18461, 'synset': 'endive.n.01', 'name': 'endive'}, {'id': 18462, 'synset': 'chicory.n.01', 'name': 'chicory'}, {'id': 18463, 'synset': 'plume_thistle.n.01', 'name': 'plume_thistle'}, {'id': 18464, 'synset': 'canada_thistle.n.01', 'name': 'Canada_thistle'}, {'id': 18465, 'synset': 'field_thistle.n.01', 'name': 'field_thistle'}, {'id': 18466, 'synset': 'woolly_thistle.n.02', 'name': 'woolly_thistle'}, {'id': 18467, 'synset': 'european_woolly_thistle.n.01', 'name': 'European_woolly_thistle'}, {'id': 18468, 'synset': 'melancholy_thistle.n.01', 'name': 'melancholy_thistle'}, {'id': 18469, 'synset': 'brook_thistle.n.01', 'name': 'brook_thistle'}, {'id': 18470, 'synset': 'bull_thistle.n.01', 'name': 'bull_thistle'}, {'id': 18471, 'synset': 'blessed_thistle.n.02', 'name': 'blessed_thistle'}, {'id': 18472, 'synset': 'mistflower.n.01', 'name': 'mistflower'}, {'id': 18473, 'synset': 'horseweed.n.02', 'name': 'horseweed'}, {'id': 18474, 'synset': 'coreopsis.n.01', 'name': 'coreopsis'}, {'id': 18475, 'synset': 'giant_coreopsis.n.01', 'name': 'giant_coreopsis'}, {'id': 18476, 'synset': 'sea_dahlia.n.01', 'name': 'sea_dahlia'}, {'id': 18477, 'synset': 'calliopsis.n.01', 'name': 'calliopsis'}, {'id': 18478, 'synset': 'cosmos.n.02', 'name': 'cosmos'}, {'id': 18479, 'synset': 'brass_buttons.n.01', 'name': 'brass_buttons'}, {'id': 18480, 'synset': 'billy_buttons.n.01', 'name': 'billy_buttons'}, {'id': 18481, 'synset': "hawk's-beard.n.01", 'name': "hawk's-beard"}, {'id': 18482, 'synset': 'artichoke.n.01', 'name': 'artichoke'}, {'id': 18483, 'synset': 'cardoon.n.01', 'name': 'cardoon'}, {'id': 18484, 'synset': 'dahlia.n.01', 'name': 'dahlia'}, {'id': 18485, 'synset': 'german_ivy.n.01', 'name': 'German_ivy'}, {'id': 18486, 'synset': "florist's_chrysanthemum.n.01", 'name': "florist's_chrysanthemum"}, {'id': 18487, 'synset': 'cape_marigold.n.01', 'name': 'cape_marigold'}, {'id': 18488, 'synset': "leopard's-bane.n.01", 'name': "leopard's-bane"}, {'id': 18489, 'synset': 'coneflower.n.03', 'name': 'coneflower'}, {'id': 18490, 'synset': 'globe_thistle.n.01', 'name': 'globe_thistle'}, {'id': 18491, 'synset': "elephant's-foot.n.02", 'name': "elephant's-foot"}, {'id': 18492, 'synset': 'tassel_flower.n.01', 'name': 'tassel_flower'}, {'id': 18493, 'synset': 'brittlebush.n.01', 'name': 'brittlebush'}, {'id': 18494, 'synset': 'sunray.n.02', 'name': 'sunray'}, {'id': 18495, 'synset': 'engelmannia.n.01', 'name': 'engelmannia'}, {'id': 18496, 'synset': 'fireweed.n.02', 'name': 'fireweed'}, {'id': 18497, 'synset': 'fleabane.n.02', 'name': 'fleabane'}, {'id': 18498, 'synset': 'blue_fleabane.n.01', 'name': 'blue_fleabane'}, {'id': 18499, 'synset': 'daisy_fleabane.n.01', 'name': 'daisy_fleabane'}, {'id': 18500, 'synset': 'orange_daisy.n.01', 'name': 'orange_daisy'}, {'id': 18501, 'synset': 'spreading_fleabane.n.01', 'name': 'spreading_fleabane'}, {'id': 18502, 'synset': 'seaside_daisy.n.01', 'name': 'seaside_daisy'}, {'id': 18503, 'synset': 'philadelphia_fleabane.n.01', 'name': 'Philadelphia_fleabane'}, {'id': 18504, 'synset': "robin's_plantain.n.01", 'name': "robin's_plantain"}, {'id': 18505, 'synset': 'showy_daisy.n.01', 'name': 'showy_daisy'}, {'id': 18506, 'synset': 'woolly_sunflower.n.01', 'name': 'woolly_sunflower'}, {'id': 18507, 'synset': 'golden_yarrow.n.01', 'name': 'golden_yarrow'}, {'id': 18508, 'synset': 'dog_fennel.n.01', 'name': 'dog_fennel'}, {'id': 18509, 'synset': 'joe-pye_weed.n.02', 'name': 'Joe-Pye_weed'}, {'id': 18510, 'synset': 'boneset.n.02', 'name': 'boneset'}, {'id': 18511, 'synset': 'joe-pye_weed.n.01', 'name': 'Joe-Pye_weed'}, {'id': 18512, 'synset': 'blue_daisy.n.01', 'name': 'blue_daisy'}, {'id': 18513, 'synset': 'kingfisher_daisy.n.01', 'name': 'kingfisher_daisy'}, {'id': 18514, 'synset': 'cotton_rose.n.02', 'name': 'cotton_rose'}, {'id': 18515, 'synset': 'herba_impia.n.01', 'name': 'herba_impia'}, {'id': 18516, 'synset': 'gaillardia.n.01', 'name': 'gaillardia'}, {'id': 18517, 'synset': 'gazania.n.01', 'name': 'gazania'}, {'id': 18518, 'synset': 'treasure_flower.n.01', 'name': 'treasure_flower'}, {'id': 18519, 'synset': 'african_daisy.n.02', 'name': 'African_daisy'}, {'id': 18520, 'synset': 'barberton_daisy.n.01', 'name': 'Barberton_daisy'}, {'id': 18521, 'synset': 'desert_sunflower.n.01', 'name': 'desert_sunflower'}, {'id': 18522, 'synset': 'cudweed.n.01', 'name': 'cudweed'}, {'id': 18523, 'synset': 'chafeweed.n.01', 'name': 'chafeweed'}, {'id': 18524, 'synset': 'gumweed.n.01', 'name': 'gumweed'}, {'id': 18525, 'synset': 'grindelia_robusta.n.01', 'name': 'Grindelia_robusta'}, {'id': 18526, 'synset': 'curlycup_gumweed.n.01', 'name': 'curlycup_gumweed'}, {'id': 18527, 'synset': 'little-head_snakeweed.n.01', 'name': 'little-head_snakeweed'}, {'id': 18528, 'synset': 'rabbitweed.n.01', 'name': 'rabbitweed'}, {'id': 18529, 'synset': 'broomweed.n.01', 'name': 'broomweed'}, {'id': 18530, 'synset': 'velvet_plant.n.02', 'name': 'velvet_plant'}, {'id': 18531, 'synset': 'goldenbush.n.01', 'name': 'goldenbush'}, {'id': 18532, 'synset': 'camphor_daisy.n.01', 'name': 'camphor_daisy'}, {'id': 18533, 'synset': 'yellow_spiny_daisy.n.01', 'name': 'yellow_spiny_daisy'}, {'id': 18534, 'synset': 'hoary_golden_bush.n.01', 'name': 'hoary_golden_bush'}, {'id': 18535, 'synset': 'sneezeweed.n.01', 'name': 'sneezeweed'}, {'id': 18536, 'synset': 'orange_sneezeweed.n.01', 'name': 'orange_sneezeweed'}, {'id': 18537, 'synset': 'rosilla.n.01', 'name': 'rosilla'}, {'id': 18538, 'synset': 'swamp_sunflower.n.01', 'name': 'swamp_sunflower'}, {'id': 18539, 'synset': 'common_sunflower.n.01', 'name': 'common_sunflower'}, {'id': 18540, 'synset': 'giant_sunflower.n.01', 'name': 'giant_sunflower'}, {'id': 18541, 'synset': 'showy_sunflower.n.01', 'name': 'showy_sunflower'}, {'id': 18542, 'synset': "maximilian's_sunflower.n.01", 'name': "Maximilian's_sunflower"}, {'id': 18543, 'synset': 'prairie_sunflower.n.01', 'name': 'prairie_sunflower'}, {'id': 18544, 'synset': 'jerusalem_artichoke.n.02', 'name': 'Jerusalem_artichoke'}, {'id': 18545, 'synset': 'jerusalem_artichoke.n.01', 'name': 'Jerusalem_artichoke'}, {'id': 18546, 'synset': 'strawflower.n.03', 'name': 'strawflower'}, {'id': 18547, 'synset': 'heliopsis.n.01', 'name': 'heliopsis'}, {'id': 18548, 'synset': 'strawflower.n.02', 'name': 'strawflower'}, {'id': 18549, 'synset': 'hairy_golden_aster.n.01', 'name': 'hairy_golden_aster'}, {'id': 18550, 'synset': 'hawkweed.n.02', 'name': 'hawkweed'}, {'id': 18551, 'synset': 'rattlesnake_weed.n.01', 'name': 'rattlesnake_weed'}, {'id': 18552, 'synset': 'alpine_coltsfoot.n.01', 'name': 'alpine_coltsfoot'}, {'id': 18553, 'synset': 'alpine_gold.n.01', 'name': 'alpine_gold'}, {'id': 18554, 'synset': 'dwarf_hulsea.n.01', 'name': 'dwarf_hulsea'}, {'id': 18555, 'synset': "cat's-ear.n.02", 'name': "cat's-ear"}, {'id': 18556, 'synset': 'inula.n.01', 'name': 'inula'}, {'id': 18557, 'synset': 'marsh_elder.n.01', 'name': 'marsh_elder'}, {'id': 18558, 'synset': 'burweed_marsh_elder.n.01', 'name': 'burweed_marsh_elder'}, {'id': 18559, 'synset': 'krigia.n.01', 'name': 'krigia'}, {'id': 18560, 'synset': 'dwarf_dandelion.n.01', 'name': 'dwarf_dandelion'}, {'id': 18561, 'synset': 'garden_lettuce.n.01', 'name': 'garden_lettuce'}, {'id': 18562, 'synset': 'cos_lettuce.n.01', 'name': 'cos_lettuce'}, {'id': 18563, 'synset': 'leaf_lettuce.n.01', 'name': 'leaf_lettuce'}, {'id': 18564, 'synset': 'celtuce.n.01', 'name': 'celtuce'}, {'id': 18565, 'synset': 'prickly_lettuce.n.01', 'name': 'prickly_lettuce'}, {'id': 18566, 'synset': 'goldfields.n.01', 'name': 'goldfields'}, {'id': 18567, 'synset': 'tidytips.n.01', 'name': 'tidytips'}, {'id': 18568, 'synset': 'hawkbit.n.01', 'name': 'hawkbit'}, {'id': 18569, 'synset': 'fall_dandelion.n.01', 'name': 'fall_dandelion'}, {'id': 18570, 'synset': 'edelweiss.n.01', 'name': 'edelweiss'}, {'id': 18571, 'synset': 'oxeye_daisy.n.02', 'name': 'oxeye_daisy'}, {'id': 18572, 'synset': 'oxeye_daisy.n.01', 'name': 'oxeye_daisy'}, {'id': 18573, 'synset': 'shasta_daisy.n.01', 'name': 'shasta_daisy'}, {'id': 18574, 'synset': 'pyrenees_daisy.n.01', 'name': 'Pyrenees_daisy'}, {'id': 18575, 'synset': 'north_island_edelweiss.n.01', 'name': 'north_island_edelweiss'}, {'id': 18576, 'synset': 'blazing_star.n.02', 'name': 'blazing_star'}, {'id': 18577, 'synset': 'dotted_gayfeather.n.01', 'name': 'dotted_gayfeather'}, {'id': 18578, 'synset': 'dense_blazing_star.n.01', 'name': 'dense_blazing_star'}, {'id': 18579, 'synset': 'texas_star.n.02', 'name': 'Texas_star'}, {'id': 18580, 'synset': 'african_daisy.n.01', 'name': 'African_daisy'}, {'id': 18581, 'synset': 'tahoka_daisy.n.01', 'name': 'tahoka_daisy'}, {'id': 18582, 'synset': 'sticky_aster.n.01', 'name': 'sticky_aster'}, {'id': 18583, 'synset': 'mojave_aster.n.01', 'name': 'Mojave_aster'}, {'id': 18584, 'synset': 'tarweed.n.01', 'name': 'tarweed'}, {'id': 18585, 'synset': 'sweet_false_chamomile.n.01', 'name': 'sweet_false_chamomile'}, {'id': 18586, 'synset': 'pineapple_weed.n.01', 'name': 'pineapple_weed'}, {'id': 18587, 'synset': 'climbing_hempweed.n.01', 'name': 'climbing_hempweed'}, {'id': 18588, 'synset': 'mutisia.n.01', 'name': 'mutisia'}, {'id': 18589, 'synset': 'rattlesnake_root.n.02', 'name': 'rattlesnake_root'}, {'id': 18590, 'synset': 'white_lettuce.n.01', 'name': 'white_lettuce'}, {'id': 18591, 'synset': 'daisybush.n.01', 'name': 'daisybush'}, {'id': 18592, 'synset': 'new_zealand_daisybush.n.01', 'name': 'New_Zealand_daisybush'}, {'id': 18593, 'synset': 'cotton_thistle.n.01', 'name': 'cotton_thistle'}, {'id': 18594, 'synset': 'othonna.n.01', 'name': 'othonna'}, {'id': 18595, 'synset': 'cascade_everlasting.n.01', 'name': 'cascade_everlasting'}, {'id': 18596, 'synset': 'butterweed.n.02', 'name': 'butterweed'}, {'id': 18597, 'synset': 'american_feverfew.n.01', 'name': 'American_feverfew'}, {'id': 18598, 'synset': 'cineraria.n.01', 'name': 'cineraria'}, {'id': 18599, 'synset': "florest's_cineraria.n.01", 'name': "florest's_cineraria"}, {'id': 18600, 'synset': 'butterbur.n.01', 'name': 'butterbur'}, {'id': 18601, 'synset': 'winter_heliotrope.n.01', 'name': 'winter_heliotrope'}, {'id': 18602, 'synset': 'sweet_coltsfoot.n.01', 'name': 'sweet_coltsfoot'}, {'id': 18603, 'synset': 'oxtongue.n.01', 'name': 'oxtongue'}, {'id': 18604, 'synset': 'hawkweed.n.01', 'name': 'hawkweed'}, {'id': 18605, 'synset': 'mouse-ear_hawkweed.n.01', 'name': 'mouse-ear_hawkweed'}, {'id': 18606, 'synset': 'stevia.n.02', 'name': 'stevia'}, {'id': 18607, 'synset': 'rattlesnake_root.n.01', 'name': 'rattlesnake_root'}, {'id': 18608, 'synset': 'fleabane.n.01', 'name': 'fleabane'}, {'id': 18609, 'synset': 'sheep_plant.n.01', 'name': 'sheep_plant'}, {'id': 18610, 'synset': 'coneflower.n.02', 'name': 'coneflower'}, {'id': 18611, 'synset': 'mexican_hat.n.01', 'name': 'Mexican_hat'}, {'id': 18612, 'synset': 'long-head_coneflower.n.01', 'name': 'long-head_coneflower'}, {'id': 18613, 'synset': 'prairie_coneflower.n.01', 'name': 'prairie_coneflower'}, {'id': 18614, 'synset': 'swan_river_everlasting.n.01', 'name': 'Swan_River_everlasting'}, {'id': 18615, 'synset': 'coneflower.n.01', 'name': 'coneflower'}, {'id': 18616, 'synset': 'black-eyed_susan.n.03', 'name': 'black-eyed_Susan'}, {'id': 18617, 'synset': 'cutleaved_coneflower.n.01', 'name': 'cutleaved_coneflower'}, {'id': 18618, 'synset': 'golden_glow.n.01', 'name': 'golden_glow'}, {'id': 18619, 'synset': 'lavender_cotton.n.01', 'name': 'lavender_cotton'}, {'id': 18620, 'synset': 'creeping_zinnia.n.01', 'name': 'creeping_zinnia'}, {'id': 18621, 'synset': 'golden_thistle.n.01', 'name': 'golden_thistle'}, {'id': 18622, 'synset': 'spanish_oyster_plant.n.01', 'name': 'Spanish_oyster_plant'}, {'id': 18623, 'synset': 'nodding_groundsel.n.01', 'name': 'nodding_groundsel'}, {'id': 18624, 'synset': 'dusty_miller.n.02', 'name': 'dusty_miller'}, {'id': 18625, 'synset': 'butterweed.n.01', 'name': 'butterweed'}, {'id': 18626, 'synset': 'ragwort.n.01', 'name': 'ragwort'}, {'id': 18627, 'synset': 'arrowleaf_groundsel.n.01', 'name': 'arrowleaf_groundsel'}, {'id': 18628, 'synset': 'black_salsify.n.01', 'name': 'black_salsify'}, {'id': 18629, 'synset': 'white-topped_aster.n.01', 'name': 'white-topped_aster'}, {'id': 18630, 'synset': 'narrow-leaved_white-topped_aster.n.01', 'name': 'narrow-leaved_white-topped_aster'}, {'id': 18631, 'synset': 'silver_sage.n.01', 'name': 'silver_sage'}, {'id': 18632, 'synset': 'sea_wormwood.n.01', 'name': 'sea_wormwood'}, {'id': 18633, 'synset': 'sawwort.n.01', 'name': 'sawwort'}, {'id': 18634, 'synset': 'rosinweed.n.01', 'name': 'rosinweed'}, {'id': 18635, 'synset': 'milk_thistle.n.02', 'name': 'milk_thistle'}, {'id': 18636, 'synset': 'goldenrod.n.01', 'name': 'goldenrod'}, {'id': 18637, 'synset': 'silverrod.n.01', 'name': 'silverrod'}, {'id': 18638, 'synset': 'meadow_goldenrod.n.01', 'name': 'meadow_goldenrod'}, {'id': 18639, 'synset': 'missouri_goldenrod.n.01', 'name': 'Missouri_goldenrod'}, {'id': 18640, 'synset': 'alpine_goldenrod.n.01', 'name': 'alpine_goldenrod'}, {'id': 18641, 'synset': 'grey_goldenrod.n.01', 'name': 'grey_goldenrod'}, {'id': 18642, 'synset': 'blue_mountain_tea.n.01', 'name': 'Blue_Mountain_tea'}, {'id': 18643, 'synset': "dyer's_weed.n.01", 'name': "dyer's_weed"}, {'id': 18644, 'synset': 'seaside_goldenrod.n.01', 'name': 'seaside_goldenrod'}, {'id': 18645, 'synset': 'narrow_goldenrod.n.01', 'name': 'narrow_goldenrod'}, {'id': 18646, 'synset': "boott's_goldenrod.n.01", 'name': "Boott's_goldenrod"}, {'id': 18647, 'synset': "elliott's_goldenrod.n.01", 'name': "Elliott's_goldenrod"}, {'id': 18648, 'synset': 'ohio_goldenrod.n.01', 'name': 'Ohio_goldenrod'}, {'id': 18649, 'synset': 'rough-stemmed_goldenrod.n.01', 'name': 'rough-stemmed_goldenrod'}, {'id': 18650, 'synset': 'showy_goldenrod.n.01', 'name': 'showy_goldenrod'}, {'id': 18651, 'synset': 'tall_goldenrod.n.01', 'name': 'tall_goldenrod'}, {'id': 18652, 'synset': 'zigzag_goldenrod.n.01', 'name': 'zigzag_goldenrod'}, {'id': 18653, 'synset': 'sow_thistle.n.01', 'name': 'sow_thistle'}, {'id': 18654, 'synset': 'milkweed.n.02', 'name': 'milkweed'}, {'id': 18655, 'synset': 'stevia.n.01', 'name': 'stevia'}, {'id': 18656, 'synset': "stokes'_aster.n.01", 'name': "stokes'_aster"}, {'id': 18657, 'synset': 'marigold.n.01', 'name': 'marigold'}, {'id': 18658, 'synset': 'african_marigold.n.01', 'name': 'African_marigold'}, {'id': 18659, 'synset': 'french_marigold.n.01', 'name': 'French_marigold'}, {'id': 18660, 'synset': 'painted_daisy.n.01', 'name': 'painted_daisy'}, {'id': 18661, 'synset': 'pyrethrum.n.02', 'name': 'pyrethrum'}, {'id': 18662, 'synset': 'northern_dune_tansy.n.01', 'name': 'northern_dune_tansy'}, {'id': 18663, 'synset': 'feverfew.n.01', 'name': 'feverfew'}, {'id': 18664, 'synset': 'dusty_miller.n.01', 'name': 'dusty_miller'}, {'id': 18665, 'synset': 'tansy.n.01', 'name': 'tansy'}, {'id': 18666, 'synset': 'dandelion.n.01', 'name': 'dandelion'}, {'id': 18667, 'synset': 'common_dandelion.n.01', 'name': 'common_dandelion'}, {'id': 18668, 'synset': 'dandelion_green.n.01', 'name': 'dandelion_green'}, {'id': 18669, 'synset': 'russian_dandelion.n.01', 'name': 'Russian_dandelion'}, {'id': 18670, 'synset': 'stemless_hymenoxys.n.01', 'name': 'stemless_hymenoxys'}, {'id': 18671, 'synset': 'mexican_sunflower.n.01', 'name': 'Mexican_sunflower'}, {'id': 18672, 'synset': 'easter_daisy.n.01', 'name': 'Easter_daisy'}, {'id': 18673, 'synset': 'yellow_salsify.n.01', 'name': 'yellow_salsify'}, {'id': 18674, 'synset': 'salsify.n.02', 'name': 'salsify'}, {'id': 18675, 'synset': 'meadow_salsify.n.01', 'name': 'meadow_salsify'}, {'id': 18676, 'synset': 'scentless_camomile.n.01', 'name': 'scentless_camomile'}, {'id': 18677, 'synset': 'turfing_daisy.n.01', 'name': 'turfing_daisy'}, {'id': 18678, 'synset': 'coltsfoot.n.02', 'name': 'coltsfoot'}, {'id': 18679, 'synset': 'ursinia.n.01', 'name': 'ursinia'}, {'id': 18680, 'synset': 'crownbeard.n.01', 'name': 'crownbeard'}, {'id': 18681, 'synset': 'wingstem.n.01', 'name': 'wingstem'}, {'id': 18682, 'synset': 'cowpen_daisy.n.01', 'name': 'cowpen_daisy'}, {'id': 18683, 'synset': 'gravelweed.n.01', 'name': 'gravelweed'}, {'id': 18684, 'synset': 'virginia_crownbeard.n.01', 'name': 'Virginia_crownbeard'}, {'id': 18685, 'synset': 'ironweed.n.01', 'name': 'ironweed'}, {'id': 18686, 'synset': "mule's_ears.n.01", 'name': "mule's_ears"}, {'id': 18687, 'synset': "white-rayed_mule's_ears.n.01", 'name': "white-rayed_mule's_ears"}, {'id': 18688, 'synset': 'cocklebur.n.01', 'name': 'cocklebur'}, {'id': 18689, 'synset': 'xeranthemum.n.01', 'name': 'xeranthemum'}, {'id': 18690, 'synset': 'immortelle.n.01', 'name': 'immortelle'}, {'id': 18691, 'synset': 'zinnia.n.01', 'name': 'zinnia'}, {'id': 18692, 'synset': 'white_zinnia.n.01', 'name': 'white_zinnia'}, {'id': 18693, 'synset': 'little_golden_zinnia.n.01', 'name': 'little_golden_zinnia'}, {'id': 18694, 'synset': 'blazing_star.n.01', 'name': 'blazing_star'}, {'id': 18695, 'synset': 'bartonia.n.01', 'name': 'bartonia'}, {'id': 18696, 'synset': 'achene.n.01', 'name': 'achene'}, {'id': 18697, 'synset': 'samara.n.01', 'name': 'samara'}, {'id': 18698, 'synset': 'campanula.n.01', 'name': 'campanula'}, {'id': 18699, 'synset': 'creeping_bellflower.n.01', 'name': 'creeping_bellflower'}, {'id': 18700, 'synset': 'canterbury_bell.n.02', 'name': 'Canterbury_bell'}, {'id': 18701, 'synset': 'tall_bellflower.n.01', 'name': 'tall_bellflower'}, {'id': 18702, 'synset': 'marsh_bellflower.n.01', 'name': 'marsh_bellflower'}, {'id': 18703, 'synset': 'clustered_bellflower.n.01', 'name': 'clustered_bellflower'}, {'id': 18704, 'synset': 'peach_bells.n.01', 'name': 'peach_bells'}, {'id': 18705, 'synset': 'chimney_plant.n.01', 'name': 'chimney_plant'}, {'id': 18706, 'synset': 'rampion.n.01', 'name': 'rampion'}, {'id': 18707, 'synset': 'tussock_bellflower.n.01', 'name': 'tussock_bellflower'}, {'id': 18708, 'synset': 'orchid.n.01', 'name': 'orchid'}, {'id': 18709, 'synset': 'orchis.n.01', 'name': 'orchis'}, {'id': 18710, 'synset': 'male_orchis.n.01', 'name': 'male_orchis'}, {'id': 18711, 'synset': 'butterfly_orchid.n.05', 'name': 'butterfly_orchid'}, {'id': 18712, 'synset': 'showy_orchis.n.01', 'name': 'showy_orchis'}, {'id': 18713, 'synset': 'aerides.n.01', 'name': 'aerides'}, {'id': 18714, 'synset': 'angrecum.n.01', 'name': 'angrecum'}, {'id': 18715, 'synset': 'jewel_orchid.n.01', 'name': 'jewel_orchid'}, {'id': 18716, 'synset': 'puttyroot.n.01', 'name': 'puttyroot'}, {'id': 18717, 'synset': 'arethusa.n.01', 'name': 'arethusa'}, {'id': 18718, 'synset': 'bog_rose.n.01', 'name': 'bog_rose'}, {'id': 18719, 'synset': 'bletia.n.01', 'name': 'bletia'}, {'id': 18720, 'synset': 'bletilla_striata.n.01', 'name': 'Bletilla_striata'}, {'id': 18721, 'synset': 'brassavola.n.01', 'name': 'brassavola'}, {'id': 18722, 'synset': 'spider_orchid.n.03', 'name': 'spider_orchid'}, {'id': 18723, 'synset': 'spider_orchid.n.02', 'name': 'spider_orchid'}, {'id': 18724, 'synset': 'caladenia.n.01', 'name': 'caladenia'}, {'id': 18725, 'synset': 'calanthe.n.01', 'name': 'calanthe'}, {'id': 18726, 'synset': 'grass_pink.n.01', 'name': 'grass_pink'}, {'id': 18727, 'synset': 'calypso.n.01', 'name': 'calypso'}, {'id': 18728, 'synset': 'cattleya.n.01', 'name': 'cattleya'}, {'id': 18729, 'synset': 'helleborine.n.03', 'name': 'helleborine'}, {'id': 18730, 'synset': 'red_helleborine.n.01', 'name': 'red_helleborine'}, {'id': 18731, 'synset': 'spreading_pogonia.n.01', 'name': 'spreading_pogonia'}, {'id': 18732, 'synset': 'rosebud_orchid.n.01', 'name': 'rosebud_orchid'}, {'id': 18733, 'synset': 'satyr_orchid.n.01', 'name': 'satyr_orchid'}, {'id': 18734, 'synset': 'frog_orchid.n.02', 'name': 'frog_orchid'}, {'id': 18735, 'synset': 'coelogyne.n.01', 'name': 'coelogyne'}, {'id': 18736, 'synset': 'coral_root.n.01', 'name': 'coral_root'}, {'id': 18737, 'synset': 'spotted_coral_root.n.01', 'name': 'spotted_coral_root'}, {'id': 18738, 'synset': 'striped_coral_root.n.01', 'name': 'striped_coral_root'}, {'id': 18739, 'synset': 'early_coral_root.n.01', 'name': 'early_coral_root'}, {'id': 18740, 'synset': 'swan_orchid.n.01', 'name': 'swan_orchid'}, {'id': 18741, 'synset': 'cymbid.n.01', 'name': 'cymbid'}, {'id': 18742, 'synset': 'cypripedia.n.01', 'name': 'cypripedia'}, {'id': 18743, 'synset': "lady's_slipper.n.01", 'name': "lady's_slipper"}, {'id': 18744, 'synset': 'moccasin_flower.n.01', 'name': 'moccasin_flower'}, {'id': 18745, 'synset': "common_lady's-slipper.n.01", 'name': "common_lady's-slipper"}, {'id': 18746, 'synset': "ram's-head.n.01", 'name': "ram's-head"}, {'id': 18747, 'synset': "yellow_lady's_slipper.n.01", 'name': "yellow_lady's_slipper"}, {'id': 18748, 'synset': "large_yellow_lady's_slipper.n.01", 'name': "large_yellow_lady's_slipper"}, {'id': 18749, 'synset': "california_lady's_slipper.n.01", 'name': "California_lady's_slipper"}, {'id': 18750, 'synset': "clustered_lady's_slipper.n.01", 'name': "clustered_lady's_slipper"}, {'id': 18751, 'synset': "mountain_lady's_slipper.n.01", 'name': "mountain_lady's_slipper"}, {'id': 18752, 'synset': 'marsh_orchid.n.01', 'name': 'marsh_orchid'}, {'id': 18753, 'synset': 'common_spotted_orchid.n.01', 'name': 'common_spotted_orchid'}, {'id': 18754, 'synset': 'dendrobium.n.01', 'name': 'dendrobium'}, {'id': 18755, 'synset': 'disa.n.01', 'name': 'disa'}, {'id': 18756, 'synset': 'phantom_orchid.n.01', 'name': 'phantom_orchid'}, {'id': 18757, 'synset': 'tulip_orchid.n.01', 'name': 'tulip_orchid'}, {'id': 18758, 'synset': 'butterfly_orchid.n.04', 'name': 'butterfly_orchid'}, {'id': 18759, 'synset': 'butterfly_orchid.n.03', 'name': 'butterfly_orchid'}, {'id': 18760, 'synset': 'epidendron.n.01', 'name': 'epidendron'}, {'id': 18761, 'synset': 'helleborine.n.02', 'name': 'helleborine'}, {'id': 18762, 'synset': 'epipactis_helleborine.n.01', 'name': 'Epipactis_helleborine'}, {'id': 18763, 'synset': 'stream_orchid.n.01', 'name': 'stream_orchid'}, {'id': 18764, 'synset': 'tongueflower.n.01', 'name': 'tongueflower'}, {'id': 18765, 'synset': 'rattlesnake_plantain.n.01', 'name': 'rattlesnake_plantain'}, {'id': 18766, 'synset': 'fragrant_orchid.n.01', 'name': 'fragrant_orchid'}, {'id': 18767, 'synset': 'short-spurred_fragrant_orchid.n.01', 'name': 'short-spurred_fragrant_orchid'}, {'id': 18768, 'synset': 'fringed_orchis.n.01', 'name': 'fringed_orchis'}, {'id': 18769, 'synset': 'frog_orchid.n.01', 'name': 'frog_orchid'}, {'id': 18770, 'synset': 'rein_orchid.n.01', 'name': 'rein_orchid'}, {'id': 18771, 'synset': 'bog_rein_orchid.n.01', 'name': 'bog_rein_orchid'}, {'id': 18772, 'synset': 'white_fringed_orchis.n.01', 'name': 'white_fringed_orchis'}, {'id': 18773, 'synset': 'elegant_habenaria.n.01', 'name': 'elegant_Habenaria'}, {'id': 18774, 'synset': 'purple-fringed_orchid.n.02', 'name': 'purple-fringed_orchid'}, {'id': 18775, 'synset': 'coastal_rein_orchid.n.01', 'name': 'coastal_rein_orchid'}, {'id': 18776, 'synset': "hooker's_orchid.n.01", 'name': "Hooker's_orchid"}, {'id': 18777, 'synset': 'ragged_orchid.n.01', 'name': 'ragged_orchid'}, {'id': 18778, 'synset': 'prairie_orchid.n.01', 'name': 'prairie_orchid'}, {'id': 18779, 'synset': 'snowy_orchid.n.01', 'name': 'snowy_orchid'}, {'id': 18780, 'synset': 'round-leaved_rein_orchid.n.01', 'name': 'round-leaved_rein_orchid'}, {'id': 18781, 'synset': 'purple_fringeless_orchid.n.01', 'name': 'purple_fringeless_orchid'}, {'id': 18782, 'synset': 'purple-fringed_orchid.n.01', 'name': 'purple-fringed_orchid'}, {'id': 18783, 'synset': 'alaska_rein_orchid.n.01', 'name': 'Alaska_rein_orchid'}, {'id': 18784, 'synset': 'crested_coral_root.n.01', 'name': 'crested_coral_root'}, {'id': 18785, 'synset': 'texas_purple_spike.n.01', 'name': 'Texas_purple_spike'}, {'id': 18786, 'synset': 'lizard_orchid.n.01', 'name': 'lizard_orchid'}, {'id': 18787, 'synset': 'laelia.n.01', 'name': 'laelia'}, {'id': 18788, 'synset': 'liparis.n.01', 'name': 'liparis'}, {'id': 18789, 'synset': 'twayblade.n.02', 'name': 'twayblade'}, {'id': 18790, 'synset': 'fen_orchid.n.01', 'name': 'fen_orchid'}, {'id': 18791, 'synset': 'broad-leaved_twayblade.n.01', 'name': 'broad-leaved_twayblade'}, {'id': 18792, 'synset': 'lesser_twayblade.n.01', 'name': 'lesser_twayblade'}, {'id': 18793, 'synset': 'twayblade.n.01', 'name': 'twayblade'}, {'id': 18794, 'synset': "green_adder's_mouth.n.01", 'name': "green_adder's_mouth"}, {'id': 18795, 'synset': 'masdevallia.n.01', 'name': 'masdevallia'}, {'id': 18796, 'synset': 'maxillaria.n.01', 'name': 'maxillaria'}, {'id': 18797, 'synset': 'pansy_orchid.n.01', 'name': 'pansy_orchid'}, {'id': 18798, 'synset': 'odontoglossum.n.01', 'name': 'odontoglossum'}, {'id': 18799, 'synset': 'oncidium.n.01', 'name': 'oncidium'}, {'id': 18800, 'synset': 'bee_orchid.n.01', 'name': 'bee_orchid'}, {'id': 18801, 'synset': 'fly_orchid.n.02', 'name': 'fly_orchid'}, {'id': 18802, 'synset': 'spider_orchid.n.01', 'name': 'spider_orchid'}, {'id': 18803, 'synset': 'early_spider_orchid.n.01', 'name': 'early_spider_orchid'}, {'id': 18804, 'synset': "venus'_slipper.n.01", 'name': "Venus'_slipper"}, {'id': 18805, 'synset': 'phaius.n.01', 'name': 'phaius'}, {'id': 18806, 'synset': 'moth_orchid.n.01', 'name': 'moth_orchid'}, {'id': 18807, 'synset': 'butterfly_plant.n.01', 'name': 'butterfly_plant'}, {'id': 18808, 'synset': 'rattlesnake_orchid.n.01', 'name': 'rattlesnake_orchid'}, {'id': 18809, 'synset': 'lesser_butterfly_orchid.n.01', 'name': 'lesser_butterfly_orchid'}, {'id': 18810, 'synset': 'greater_butterfly_orchid.n.01', 'name': 'greater_butterfly_orchid'}, {'id': 18811, 'synset': 'prairie_white-fringed_orchid.n.01', 'name': 'prairie_white-fringed_orchid'}, {'id': 18812, 'synset': 'tangle_orchid.n.01', 'name': 'tangle_orchid'}, {'id': 18813, 'synset': 'indian_crocus.n.01', 'name': 'Indian_crocus'}, {'id': 18814, 'synset': 'pleurothallis.n.01', 'name': 'pleurothallis'}, {'id': 18815, 'synset': 'pogonia.n.01', 'name': 'pogonia'}, {'id': 18816, 'synset': 'butterfly_orchid.n.01', 'name': 'butterfly_orchid'}, {'id': 18817, 'synset': 'psychopsis_krameriana.n.01', 'name': 'Psychopsis_krameriana'}, {'id': 18818, 'synset': 'psychopsis_papilio.n.01', 'name': 'Psychopsis_papilio'}, {'id': 18819, 'synset': 'helmet_orchid.n.01', 'name': 'helmet_orchid'}, {'id': 18820, 'synset': 'foxtail_orchid.n.01', 'name': 'foxtail_orchid'}, {'id': 18821, 'synset': 'orange-blossom_orchid.n.01', 'name': 'orange-blossom_orchid'}, {'id': 18822, 'synset': 'sobralia.n.01', 'name': 'sobralia'}, {'id': 18823, 'synset': "ladies'_tresses.n.01", 'name': "ladies'_tresses"}, {'id': 18824, 'synset': 'screw_augur.n.01', 'name': 'screw_augur'}, {'id': 18825, 'synset': "hooded_ladies'_tresses.n.01", 'name': "hooded_ladies'_tresses"}, {'id': 18826, 'synset': "western_ladies'_tresses.n.01", 'name': "western_ladies'_tresses"}, {'id': 18827, 'synset': "european_ladies'_tresses.n.01", 'name': "European_ladies'_tresses"}, {'id': 18828, 'synset': 'stanhopea.n.01', 'name': 'stanhopea'}, {'id': 18829, 'synset': 'stelis.n.01', 'name': 'stelis'}, {'id': 18830, 'synset': 'fly_orchid.n.01', 'name': 'fly_orchid'}, {'id': 18831, 'synset': 'vanda.n.01', 'name': 'vanda'}, {'id': 18832, 'synset': 'blue_orchid.n.01', 'name': 'blue_orchid'}, {'id': 18833, 'synset': 'vanilla.n.01', 'name': 'vanilla'}, {'id': 18834, 'synset': 'vanilla_orchid.n.01', 'name': 'vanilla_orchid'}, {'id': 18835, 'synset': 'yam.n.02', 'name': 'yam'}, {'id': 18836, 'synset': 'yam.n.01', 'name': 'yam'}, {'id': 18837, 'synset': 'white_yam.n.01', 'name': 'white_yam'}, {'id': 18838, 'synset': 'cinnamon_vine.n.01', 'name': 'cinnamon_vine'}, {'id': 18839, 'synset': "elephant's-foot.n.01", 'name': "elephant's-foot"}, {'id': 18840, 'synset': 'wild_yam.n.01', 'name': 'wild_yam'}, {'id': 18841, 'synset': 'cush-cush.n.01', 'name': 'cush-cush'}, {'id': 18842, 'synset': 'black_bryony.n.01', 'name': 'black_bryony'}, {'id': 18843, 'synset': 'primrose.n.01', 'name': 'primrose'}, {'id': 18844, 'synset': 'english_primrose.n.01', 'name': 'English_primrose'}, {'id': 18845, 'synset': 'cowslip.n.01', 'name': 'cowslip'}, {'id': 18846, 'synset': 'oxlip.n.01', 'name': 'oxlip'}, {'id': 18847, 'synset': 'chinese_primrose.n.01', 'name': 'Chinese_primrose'}, {'id': 18848, 'synset': 'polyanthus.n.01', 'name': 'polyanthus'}, {'id': 18849, 'synset': 'pimpernel.n.02', 'name': 'pimpernel'}, {'id': 18850, 'synset': 'scarlet_pimpernel.n.01', 'name': 'scarlet_pimpernel'}, {'id': 18851, 'synset': 'bog_pimpernel.n.01', 'name': 'bog_pimpernel'}, {'id': 18852, 'synset': 'chaffweed.n.01', 'name': 'chaffweed'}, {'id': 18853, 'synset': 'cyclamen.n.01', 'name': 'cyclamen'}, {'id': 18854, 'synset': 'sowbread.n.01', 'name': 'sowbread'}, {'id': 18855, 'synset': 'sea_milkwort.n.01', 'name': 'sea_milkwort'}, {'id': 18856, 'synset': 'featherfoil.n.01', 'name': 'featherfoil'}, {'id': 18857, 'synset': 'water_gillyflower.n.01', 'name': 'water_gillyflower'}, {'id': 18858, 'synset': 'water_violet.n.01', 'name': 'water_violet'}, {'id': 18859, 'synset': 'loosestrife.n.02', 'name': 'loosestrife'}, {'id': 18860, 'synset': 'gooseneck_loosestrife.n.01', 'name': 'gooseneck_loosestrife'}, {'id': 18861, 'synset': 'yellow_pimpernel.n.01', 'name': 'yellow_pimpernel'}, {'id': 18862, 'synset': 'fringed_loosestrife.n.01', 'name': 'fringed_loosestrife'}, {'id': 18863, 'synset': 'moneywort.n.01', 'name': 'moneywort'}, {'id': 18864, 'synset': 'swamp_candles.n.01', 'name': 'swamp_candles'}, {'id': 18865, 'synset': 'whorled_loosestrife.n.01', 'name': 'whorled_loosestrife'}, {'id': 18866, 'synset': 'water_pimpernel.n.01', 'name': 'water_pimpernel'}, {'id': 18867, 'synset': 'brookweed.n.02', 'name': 'brookweed'}, {'id': 18868, 'synset': 'brookweed.n.01', 'name': 'brookweed'}, {'id': 18869, 'synset': 'coralberry.n.02', 'name': 'coralberry'}, {'id': 18870, 'synset': 'marlberry.n.01', 'name': 'marlberry'}, {'id': 18871, 'synset': 'plumbago.n.02', 'name': 'plumbago'}, {'id': 18872, 'synset': 'leadwort.n.01', 'name': 'leadwort'}, {'id': 18873, 'synset': 'thrift.n.01', 'name': 'thrift'}, {'id': 18874, 'synset': 'sea_lavender.n.01', 'name': 'sea_lavender'}, {'id': 18875, 'synset': 'barbasco.n.01', 'name': 'barbasco'}, {'id': 18876, 'synset': 'gramineous_plant.n.01', 'name': 'gramineous_plant'}, {'id': 18877, 'synset': 'grass.n.01', 'name': 'grass'}, {'id': 18878, 'synset': 'midgrass.n.01', 'name': 'midgrass'}, {'id': 18879, 'synset': 'shortgrass.n.01', 'name': 'shortgrass'}, {'id': 18880, 'synset': 'sword_grass.n.01', 'name': 'sword_grass'}, {'id': 18881, 'synset': 'tallgrass.n.01', 'name': 'tallgrass'}, {'id': 18882, 'synset': 'herbage.n.01', 'name': 'herbage'}, {'id': 18883, 'synset': 'goat_grass.n.01', 'name': 'goat_grass'}, {'id': 18884, 'synset': 'wheatgrass.n.01', 'name': 'wheatgrass'}, {'id': 18885, 'synset': 'crested_wheatgrass.n.01', 'name': 'crested_wheatgrass'}, {'id': 18886, 'synset': 'bearded_wheatgrass.n.01', 'name': 'bearded_wheatgrass'}, {'id': 18887, 'synset': 'western_wheatgrass.n.01', 'name': 'western_wheatgrass'}, {'id': 18888, 'synset': 'intermediate_wheatgrass.n.01', 'name': 'intermediate_wheatgrass'}, {'id': 18889, 'synset': 'slender_wheatgrass.n.01', 'name': 'slender_wheatgrass'}, {'id': 18890, 'synset': 'velvet_bent.n.01', 'name': 'velvet_bent'}, {'id': 18891, 'synset': 'cloud_grass.n.01', 'name': 'cloud_grass'}, {'id': 18892, 'synset': 'meadow_foxtail.n.01', 'name': 'meadow_foxtail'}, {'id': 18893, 'synset': 'foxtail.n.01', 'name': 'foxtail'}, {'id': 18894, 'synset': 'broom_grass.n.01', 'name': 'broom_grass'}, {'id': 18895, 'synset': 'broom_sedge.n.01', 'name': 'broom_sedge'}, {'id': 18896, 'synset': 'tall_oat_grass.n.01', 'name': 'tall_oat_grass'}, {'id': 18897, 'synset': 'toetoe.n.02', 'name': 'toetoe'}, {'id': 18898, 'synset': 'oat.n.01', 'name': 'oat'}, {'id': 18899, 'synset': 'cereal_oat.n.01', 'name': 'cereal_oat'}, {'id': 18900, 'synset': 'wild_oat.n.01', 'name': 'wild_oat'}, {'id': 18901, 'synset': 'slender_wild_oat.n.01', 'name': 'slender_wild_oat'}, {'id': 18902, 'synset': 'wild_red_oat.n.01', 'name': 'wild_red_oat'}, {'id': 18903, 'synset': 'brome.n.01', 'name': 'brome'}, {'id': 18904, 'synset': 'chess.n.01', 'name': 'chess'}, {'id': 18905, 'synset': 'field_brome.n.01', 'name': 'field_brome'}, {'id': 18906, 'synset': 'grama.n.01', 'name': 'grama'}, {'id': 18907, 'synset': 'black_grama.n.01', 'name': 'black_grama'}, {'id': 18908, 'synset': 'buffalo_grass.n.02', 'name': 'buffalo_grass'}, {'id': 18909, 'synset': 'reed_grass.n.01', 'name': 'reed_grass'}, {'id': 18910, 'synset': 'feather_reed_grass.n.01', 'name': 'feather_reed_grass'}, {'id': 18911, 'synset': 'australian_reed_grass.n.01', 'name': 'Australian_reed_grass'}, {'id': 18912, 'synset': 'burgrass.n.01', 'name': 'burgrass'}, {'id': 18913, 'synset': 'buffel_grass.n.01', 'name': 'buffel_grass'}, {'id': 18914, 'synset': 'rhodes_grass.n.01', 'name': 'Rhodes_grass'}, {'id': 18915, 'synset': 'pampas_grass.n.01', 'name': 'pampas_grass'}, {'id': 18916, 'synset': 'giant_star_grass.n.01', 'name': 'giant_star_grass'}, {'id': 18917, 'synset': 'orchard_grass.n.01', 'name': 'orchard_grass'}, {'id': 18918, 'synset': 'egyptian_grass.n.01', 'name': 'Egyptian_grass'}, {'id': 18919, 'synset': 'crabgrass.n.01', 'name': 'crabgrass'}, {'id': 18920, 'synset': 'smooth_crabgrass.n.01', 'name': 'smooth_crabgrass'}, {'id': 18921, 'synset': 'large_crabgrass.n.01', 'name': 'large_crabgrass'}, {'id': 18922, 'synset': 'barnyard_grass.n.01', 'name': 'barnyard_grass'}, {'id': 18923, 'synset': 'japanese_millet.n.01', 'name': 'Japanese_millet'}, {'id': 18924, 'synset': 'yardgrass.n.01', 'name': 'yardgrass'}, {'id': 18925, 'synset': 'finger_millet.n.01', 'name': 'finger_millet'}, {'id': 18926, 'synset': 'lyme_grass.n.01', 'name': 'lyme_grass'}, {'id': 18927, 'synset': 'wild_rye.n.01', 'name': 'wild_rye'}, {'id': 18928, 'synset': 'giant_ryegrass.n.01', 'name': 'giant_ryegrass'}, {'id': 18929, 'synset': 'sea_lyme_grass.n.01', 'name': 'sea_lyme_grass'}, {'id': 18930, 'synset': 'canada_wild_rye.n.01', 'name': 'Canada_wild_rye'}, {'id': 18931, 'synset': 'teff.n.01', 'name': 'teff'}, {'id': 18932, 'synset': 'weeping_love_grass.n.01', 'name': 'weeping_love_grass'}, {'id': 18933, 'synset': 'plume_grass.n.01', 'name': 'plume_grass'}, {'id': 18934, 'synset': 'ravenna_grass.n.01', 'name': 'Ravenna_grass'}, {'id': 18935, 'synset': 'fescue.n.01', 'name': 'fescue'}, {'id': 18936, 'synset': 'reed_meadow_grass.n.01', 'name': 'reed_meadow_grass'}, {'id': 18937, 'synset': 'velvet_grass.n.01', 'name': 'velvet_grass'}, {'id': 18938, 'synset': 'creeping_soft_grass.n.01', 'name': 'creeping_soft_grass'}, {'id': 18939, 'synset': 'barleycorn.n.01', 'name': 'barleycorn'}, {'id': 18940, 'synset': 'barley_grass.n.01', 'name': 'barley_grass'}, {'id': 18941, 'synset': 'little_barley.n.01', 'name': 'little_barley'}, {'id': 18942, 'synset': 'rye_grass.n.01', 'name': 'rye_grass'}, {'id': 18943, 'synset': 'perennial_ryegrass.n.01', 'name': 'perennial_ryegrass'}, {'id': 18944, 'synset': 'italian_ryegrass.n.01', 'name': 'Italian_ryegrass'}, {'id': 18945, 'synset': 'darnel.n.01', 'name': 'darnel'}, {'id': 18946, 'synset': 'nimblewill.n.01', 'name': 'nimblewill'}, {'id': 18947, 'synset': 'cultivated_rice.n.01', 'name': 'cultivated_rice'}, {'id': 18948, 'synset': 'ricegrass.n.01', 'name': 'ricegrass'}, {'id': 18949, 'synset': 'smilo.n.01', 'name': 'smilo'}, {'id': 18950, 'synset': 'switch_grass.n.01', 'name': 'switch_grass'}, {'id': 18951, 'synset': 'broomcorn_millet.n.01', 'name': 'broomcorn_millet'}, {'id': 18952, 'synset': 'goose_grass.n.03', 'name': 'goose_grass'}, {'id': 18953, 'synset': 'dallisgrass.n.01', 'name': 'dallisgrass'}, {'id': 18954, 'synset': 'bahia_grass.n.01', 'name': 'Bahia_grass'}, {'id': 18955, 'synset': 'knotgrass.n.01', 'name': 'knotgrass'}, {'id': 18956, 'synset': 'fountain_grass.n.01', 'name': 'fountain_grass'}, {'id': 18957, 'synset': 'reed_canary_grass.n.01', 'name': 'reed_canary_grass'}, {'id': 18958, 'synset': 'canary_grass.n.01', 'name': 'canary_grass'}, {'id': 18959, 'synset': 'timothy.n.01', 'name': 'timothy'}, {'id': 18960, 'synset': 'bluegrass.n.01', 'name': 'bluegrass'}, {'id': 18961, 'synset': 'meadowgrass.n.01', 'name': 'meadowgrass'}, {'id': 18962, 'synset': 'wood_meadowgrass.n.01', 'name': 'wood_meadowgrass'}, {'id': 18963, 'synset': 'noble_cane.n.01', 'name': 'noble_cane'}, {'id': 18964, 'synset': 'munj.n.01', 'name': 'munj'}, {'id': 18965, 'synset': 'broom_beard_grass.n.01', 'name': 'broom_beard_grass'}, {'id': 18966, 'synset': 'bluestem.n.01', 'name': 'bluestem'}, {'id': 18967, 'synset': 'rye.n.02', 'name': 'rye'}, {'id': 18968, 'synset': 'bristlegrass.n.01', 'name': 'bristlegrass'}, {'id': 18969, 'synset': 'giant_foxtail.n.01', 'name': 'giant_foxtail'}, {'id': 18970, 'synset': 'yellow_bristlegrass.n.01', 'name': 'yellow_bristlegrass'}, {'id': 18971, 'synset': 'green_bristlegrass.n.01', 'name': 'green_bristlegrass'}, {'id': 18972, 'synset': 'siberian_millet.n.01', 'name': 'Siberian_millet'}, {'id': 18973, 'synset': 'german_millet.n.01', 'name': 'German_millet'}, {'id': 18974, 'synset': 'millet.n.01', 'name': 'millet'}, {'id': 18975, 'synset': 'rattan.n.02', 'name': 'rattan'}, {'id': 18976, 'synset': 'malacca.n.01', 'name': 'malacca'}, {'id': 18977, 'synset': 'reed.n.01', 'name': 'reed'}, {'id': 18978, 'synset': 'sorghum.n.01', 'name': 'sorghum'}, {'id': 18979, 'synset': 'grain_sorghum.n.01', 'name': 'grain_sorghum'}, {'id': 18980, 'synset': 'durra.n.01', 'name': 'durra'}, {'id': 18981, 'synset': 'feterita.n.01', 'name': 'feterita'}, {'id': 18982, 'synset': 'hegari.n.01', 'name': 'hegari'}, {'id': 18983, 'synset': 'kaoliang.n.01', 'name': 'kaoliang'}, {'id': 18984, 'synset': 'milo.n.01', 'name': 'milo'}, {'id': 18985, 'synset': 'shallu.n.01', 'name': 'shallu'}, {'id': 18986, 'synset': 'broomcorn.n.01', 'name': 'broomcorn'}, {'id': 18987, 'synset': 'cordgrass.n.01', 'name': 'cordgrass'}, {'id': 18988, 'synset': 'salt_reed_grass.n.01', 'name': 'salt_reed_grass'}, {'id': 18989, 'synset': 'prairie_cordgrass.n.01', 'name': 'prairie_cordgrass'}, {'id': 18990, 'synset': 'smut_grass.n.01', 'name': 'smut_grass'}, {'id': 18991, 'synset': 'sand_dropseed.n.01', 'name': 'sand_dropseed'}, {'id': 18992, 'synset': 'rush_grass.n.01', 'name': 'rush_grass'}, {'id': 18993, 'synset': 'st._augustine_grass.n.01', 'name': 'St._Augustine_grass'}, {'id': 18994, 'synset': 'grain.n.08', 'name': 'grain'}, {'id': 18995, 'synset': 'cereal.n.01', 'name': 'cereal'}, {'id': 18996, 'synset': 'wheat.n.01', 'name': 'wheat'}, {'id': 18997, 'synset': 'wheat_berry.n.01', 'name': 'wheat_berry'}, {'id': 18998, 'synset': 'durum.n.01', 'name': 'durum'}, {'id': 18999, 'synset': 'spelt.n.01', 'name': 'spelt'}, {'id': 19000, 'synset': 'emmer.n.01', 'name': 'emmer'}, {'id': 19001, 'synset': 'wild_wheat.n.01', 'name': 'wild_wheat'}, {'id': 19002, 'synset': 'corn.n.01', 'name': 'corn'}, {'id': 19003, 'synset': 'mealie.n.01', 'name': 'mealie'}, {'id': 19004, 'synset': 'corn.n.02', 'name': 'corn'}, {'id': 19005, 'synset': 'dent_corn.n.01', 'name': 'dent_corn'}, {'id': 19006, 'synset': 'flint_corn.n.01', 'name': 'flint_corn'}, {'id': 19007, 'synset': 'popcorn.n.01', 'name': 'popcorn'}, {'id': 19008, 'synset': 'zoysia.n.01', 'name': 'zoysia'}, {'id': 19009, 'synset': 'manila_grass.n.01', 'name': 'Manila_grass'}, {'id': 19010, 'synset': 'korean_lawn_grass.n.01', 'name': 'Korean_lawn_grass'}, {'id': 19011, 'synset': 'common_bamboo.n.01', 'name': 'common_bamboo'}, {'id': 19012, 'synset': 'giant_bamboo.n.01', 'name': 'giant_bamboo'}, {'id': 19013, 'synset': 'umbrella_plant.n.03', 'name': 'umbrella_plant'}, {'id': 19014, 'synset': 'chufa.n.01', 'name': 'chufa'}, {'id': 19015, 'synset': 'galingale.n.01', 'name': 'galingale'}, {'id': 19016, 'synset': 'nutgrass.n.01', 'name': 'nutgrass'}, {'id': 19017, 'synset': 'sand_sedge.n.01', 'name': 'sand_sedge'}, {'id': 19018, 'synset': 'cypress_sedge.n.01', 'name': 'cypress_sedge'}, {'id': 19019, 'synset': 'cotton_grass.n.01', 'name': 'cotton_grass'}, {'id': 19020, 'synset': 'common_cotton_grass.n.01', 'name': 'common_cotton_grass'}, {'id': 19021, 'synset': 'hardstem_bulrush.n.01', 'name': 'hardstem_bulrush'}, {'id': 19022, 'synset': 'wool_grass.n.01', 'name': 'wool_grass'}, {'id': 19023, 'synset': 'spike_rush.n.01', 'name': 'spike_rush'}, {'id': 19024, 'synset': 'water_chestnut.n.02', 'name': 'water_chestnut'}, {'id': 19025, 'synset': 'needle_spike_rush.n.01', 'name': 'needle_spike_rush'}, {'id': 19026, 'synset': 'creeping_spike_rush.n.01', 'name': 'creeping_spike_rush'}, {'id': 19027, 'synset': 'pandanus.n.02', 'name': 'pandanus'}, {'id': 19028, 'synset': 'textile_screw_pine.n.01', 'name': 'textile_screw_pine'}, {'id': 19029, 'synset': 'cattail.n.01', 'name': 'cattail'}, {'id': 19030, 'synset': "cat's-tail.n.01", 'name': "cat's-tail"}, {'id': 19031, 'synset': 'bur_reed.n.01', 'name': 'bur_reed'}, {'id': 19032, 'synset': 'grain.n.07', 'name': 'grain'}, {'id': 19033, 'synset': 'kernel.n.02', 'name': 'kernel'}, {'id': 19034, 'synset': 'rye.n.01', 'name': 'rye'}, {'id': 19035, 'synset': 'gourd.n.03', 'name': 'gourd'}, {'id': 19036, 'synset': 'pumpkin.n.01', 'name': 'pumpkin'}, {'id': 19037, 'synset': 'squash.n.01', 'name': 'squash'}, {'id': 19038, 'synset': 'summer_squash.n.01', 'name': 'summer_squash'}, {'id': 19039, 'synset': 'yellow_squash.n.01', 'name': 'yellow_squash'}, {'id': 19040, 'synset': 'marrow.n.02', 'name': 'marrow'}, {'id': 19041, 'synset': 'zucchini.n.01', 'name': 'zucchini'}, {'id': 19042, 'synset': 'cocozelle.n.01', 'name': 'cocozelle'}, {'id': 19043, 'synset': 'cymling.n.01', 'name': 'cymling'}, {'id': 19044, 'synset': 'spaghetti_squash.n.01', 'name': 'spaghetti_squash'}, {'id': 19045, 'synset': 'winter_squash.n.01', 'name': 'winter_squash'}, {'id': 19046, 'synset': 'acorn_squash.n.01', 'name': 'acorn_squash'}, {'id': 19047, 'synset': 'hubbard_squash.n.01', 'name': 'hubbard_squash'}, {'id': 19048, 'synset': 'turban_squash.n.01', 'name': 'turban_squash'}, {'id': 19049, 'synset': 'buttercup_squash.n.01', 'name': 'buttercup_squash'}, {'id': 19050, 'synset': 'butternut_squash.n.01', 'name': 'butternut_squash'}, {'id': 19051, 'synset': 'winter_crookneck.n.01', 'name': 'winter_crookneck'}, {'id': 19052, 'synset': 'cushaw.n.01', 'name': 'cushaw'}, {'id': 19053, 'synset': 'prairie_gourd.n.02', 'name': 'prairie_gourd'}, {'id': 19054, 'synset': 'prairie_gourd.n.01', 'name': 'prairie_gourd'}, {'id': 19055, 'synset': 'bryony.n.01', 'name': 'bryony'}, {'id': 19056, 'synset': 'white_bryony.n.01', 'name': 'white_bryony'}, {'id': 19057, 'synset': 'sweet_melon.n.01', 'name': 'sweet_melon'}, {'id': 19058, 'synset': 'cantaloupe.n.01', 'name': 'cantaloupe'}, {'id': 19059, 'synset': 'winter_melon.n.01', 'name': 'winter_melon'}, {'id': 19060, 'synset': 'net_melon.n.01', 'name': 'net_melon'}, {'id': 19061, 'synset': 'cucumber.n.01', 'name': 'cucumber'}, {'id': 19062, 'synset': 'squirting_cucumber.n.01', 'name': 'squirting_cucumber'}, {'id': 19063, 'synset': 'bottle_gourd.n.01', 'name': 'bottle_gourd'}, {'id': 19064, 'synset': 'luffa.n.02', 'name': 'luffa'}, {'id': 19065, 'synset': 'loofah.n.02', 'name': 'loofah'}, {'id': 19066, 'synset': 'angled_loofah.n.01', 'name': 'angled_loofah'}, {'id': 19067, 'synset': 'loofa.n.01', 'name': 'loofa'}, {'id': 19068, 'synset': 'balsam_apple.n.01', 'name': 'balsam_apple'}, {'id': 19069, 'synset': 'balsam_pear.n.01', 'name': 'balsam_pear'}, {'id': 19070, 'synset': 'lobelia.n.01', 'name': 'lobelia'}, {'id': 19071, 'synset': 'water_lobelia.n.01', 'name': 'water_lobelia'}, {'id': 19072, 'synset': 'mallow.n.01', 'name': 'mallow'}, {'id': 19073, 'synset': 'musk_mallow.n.02', 'name': 'musk_mallow'}, {'id': 19074, 'synset': 'common_mallow.n.01', 'name': 'common_mallow'}, {'id': 19075, 'synset': 'okra.n.02', 'name': 'okra'}, {'id': 19076, 'synset': 'okra.n.01', 'name': 'okra'}, {'id': 19077, 'synset': 'abelmosk.n.01', 'name': 'abelmosk'}, {'id': 19078, 'synset': 'flowering_maple.n.01', 'name': 'flowering_maple'}, {'id': 19079, 'synset': 'velvetleaf.n.02', 'name': 'velvetleaf'}, {'id': 19080, 'synset': 'hollyhock.n.02', 'name': 'hollyhock'}, {'id': 19081, 'synset': 'rose_mallow.n.02', 'name': 'rose_mallow'}, {'id': 19082, 'synset': 'althea.n.01', 'name': 'althea'}, {'id': 19083, 'synset': 'marsh_mallow.n.01', 'name': 'marsh_mallow'}, {'id': 19084, 'synset': 'poppy_mallow.n.01', 'name': 'poppy_mallow'}, {'id': 19085, 'synset': 'fringed_poppy_mallow.n.01', 'name': 'fringed_poppy_mallow'}, {'id': 19086, 'synset': 'purple_poppy_mallow.n.01', 'name': 'purple_poppy_mallow'}, {'id': 19087, 'synset': 'clustered_poppy_mallow.n.01', 'name': 'clustered_poppy_mallow'}, {'id': 19088, 'synset': 'sea_island_cotton.n.01', 'name': 'sea_island_cotton'}, {'id': 19089, 'synset': 'levant_cotton.n.01', 'name': 'Levant_cotton'}, {'id': 19090, 'synset': 'upland_cotton.n.01', 'name': 'upland_cotton'}, {'id': 19091, 'synset': 'peruvian_cotton.n.01', 'name': 'Peruvian_cotton'}, {'id': 19092, 'synset': 'wild_cotton.n.01', 'name': 'wild_cotton'}, {'id': 19093, 'synset': 'kenaf.n.02', 'name': 'kenaf'}, {'id': 19094, 'synset': 'sorrel_tree.n.02', 'name': 'sorrel_tree'}, {'id': 19095, 'synset': 'rose_mallow.n.01', 'name': 'rose_mallow'}, {'id': 19096, 'synset': 'cotton_rose.n.01', 'name': 'cotton_rose'}, {'id': 19097, 'synset': 'roselle.n.01', 'name': 'roselle'}, {'id': 19098, 'synset': 'mahoe.n.01', 'name': 'mahoe'}, {'id': 19099, 'synset': 'flower-of-an-hour.n.01', 'name': 'flower-of-an-hour'}, {'id': 19100, 'synset': 'lacebark.n.01', 'name': 'lacebark'}, {'id': 19101, 'synset': 'wild_hollyhock.n.02', 'name': 'wild_hollyhock'}, {'id': 19102, 'synset': 'mountain_hollyhock.n.01', 'name': 'mountain_hollyhock'}, {'id': 19103, 'synset': 'seashore_mallow.n.01', 'name': 'seashore_mallow'}, {'id': 19104, 'synset': 'salt_marsh_mallow.n.01', 'name': 'salt_marsh_mallow'}, {'id': 19105, 'synset': 'chaparral_mallow.n.01', 'name': 'chaparral_mallow'}, {'id': 19106, 'synset': 'malope.n.01', 'name': 'malope'}, {'id': 19107, 'synset': 'false_mallow.n.02', 'name': 'false_mallow'}, {'id': 19108, 'synset': 'waxmallow.n.01', 'name': 'waxmallow'}, {'id': 19109, 'synset': 'glade_mallow.n.01', 'name': 'glade_mallow'}, {'id': 19110, 'synset': 'pavonia.n.01', 'name': 'pavonia'}, {'id': 19111, 'synset': 'ribbon_tree.n.01', 'name': 'ribbon_tree'}, {'id': 19112, 'synset': 'bush_hibiscus.n.01', 'name': 'bush_hibiscus'}, {'id': 19113, 'synset': 'virginia_mallow.n.01', 'name': 'Virginia_mallow'}, {'id': 19114, 'synset': 'queensland_hemp.n.01', 'name': 'Queensland_hemp'}, {'id': 19115, 'synset': 'indian_mallow.n.01', 'name': 'Indian_mallow'}, {'id': 19116, 'synset': 'checkerbloom.n.01', 'name': 'checkerbloom'}, {'id': 19117, 'synset': 'globe_mallow.n.01', 'name': 'globe_mallow'}, {'id': 19118, 'synset': 'prairie_mallow.n.01', 'name': 'prairie_mallow'}, {'id': 19119, 'synset': 'tulipwood_tree.n.01', 'name': 'tulipwood_tree'}, {'id': 19120, 'synset': 'portia_tree.n.01', 'name': 'portia_tree'}, {'id': 19121, 'synset': 'red_silk-cotton_tree.n.01', 'name': 'red_silk-cotton_tree'}, {'id': 19122, 'synset': 'cream-of-tartar_tree.n.01', 'name': 'cream-of-tartar_tree'}, {'id': 19123, 'synset': 'baobab.n.01', 'name': 'baobab'}, {'id': 19124, 'synset': 'kapok.n.02', 'name': 'kapok'}, {'id': 19125, 'synset': 'durian.n.01', 'name': 'durian'}, {'id': 19126, 'synset': 'montezuma.n.01', 'name': 'Montezuma'}, {'id': 19127, 'synset': 'shaving-brush_tree.n.01', 'name': 'shaving-brush_tree'}, {'id': 19128, 'synset': 'quandong.n.03', 'name': 'quandong'}, {'id': 19129, 'synset': 'quandong.n.02', 'name': 'quandong'}, {'id': 19130, 'synset': 'makomako.n.01', 'name': 'makomako'}, {'id': 19131, 'synset': 'jamaican_cherry.n.01', 'name': 'Jamaican_cherry'}, {'id': 19132, 'synset': 'breakax.n.01', 'name': 'breakax'}, {'id': 19133, 'synset': 'sterculia.n.01', 'name': 'sterculia'}, {'id': 19134, 'synset': 'panama_tree.n.01', 'name': 'Panama_tree'}, {'id': 19135, 'synset': 'kalumpang.n.01', 'name': 'kalumpang'}, {'id': 19136, 'synset': 'bottle-tree.n.01', 'name': 'bottle-tree'}, {'id': 19137, 'synset': 'flame_tree.n.04', 'name': 'flame_tree'}, {'id': 19138, 'synset': 'flame_tree.n.03', 'name': 'flame_tree'}, {'id': 19139, 'synset': 'kurrajong.n.01', 'name': 'kurrajong'}, {'id': 19140, 'synset': 'queensland_bottletree.n.01', 'name': 'Queensland_bottletree'}, {'id': 19141, 'synset': 'kola.n.01', 'name': 'kola'}, {'id': 19142, 'synset': 'kola_nut.n.01', 'name': 'kola_nut'}, {'id': 19143, 'synset': 'chinese_parasol_tree.n.01', 'name': 'Chinese_parasol_tree'}, {'id': 19144, 'synset': 'flannelbush.n.01', 'name': 'flannelbush'}, {'id': 19145, 'synset': 'screw_tree.n.01', 'name': 'screw_tree'}, {'id': 19146, 'synset': 'nut-leaved_screw_tree.n.01', 'name': 'nut-leaved_screw_tree'}, {'id': 19147, 'synset': 'red_beech.n.02', 'name': 'red_beech'}, {'id': 19148, 'synset': 'looking_glass_tree.n.01', 'name': 'looking_glass_tree'}, {'id': 19149, 'synset': 'looking-glass_plant.n.01', 'name': 'looking-glass_plant'}, {'id': 19150, 'synset': 'honey_bell.n.01', 'name': 'honey_bell'}, {'id': 19151, 'synset': 'mayeng.n.01', 'name': 'mayeng'}, {'id': 19152, 'synset': 'silver_tree.n.02', 'name': 'silver_tree'}, {'id': 19153, 'synset': 'cacao.n.01', 'name': 'cacao'}, {'id': 19154, 'synset': 'obeche.n.02', 'name': 'obeche'}, {'id': 19155, 'synset': 'linden.n.02', 'name': 'linden'}, {'id': 19156, 'synset': 'american_basswood.n.01', 'name': 'American_basswood'}, {'id': 19157, 'synset': 'small-leaved_linden.n.01', 'name': 'small-leaved_linden'}, {'id': 19158, 'synset': 'white_basswood.n.01', 'name': 'white_basswood'}, {'id': 19159, 'synset': 'japanese_linden.n.01', 'name': 'Japanese_linden'}, {'id': 19160, 'synset': 'silver_lime.n.01', 'name': 'silver_lime'}, {'id': 19161, 'synset': 'corchorus.n.01', 'name': 'corchorus'}, {'id': 19162, 'synset': 'african_hemp.n.02', 'name': 'African_hemp'}, {'id': 19163, 'synset': 'herb.n.01', 'name': 'herb'}, {'id': 19164, 'synset': 'protea.n.01', 'name': 'protea'}, {'id': 19165, 'synset': 'honeypot.n.01', 'name': 'honeypot'}, {'id': 19166, 'synset': 'honeyflower.n.02', 'name': 'honeyflower'}, {'id': 19167, 'synset': 'banksia.n.01', 'name': 'banksia'}, {'id': 19168, 'synset': 'honeysuckle.n.02', 'name': 'honeysuckle'}, {'id': 19169, 'synset': 'smoke_bush.n.02', 'name': 'smoke_bush'}, {'id': 19170, 'synset': 'chilean_firebush.n.01', 'name': 'Chilean_firebush'}, {'id': 19171, 'synset': 'chilean_nut.n.01', 'name': 'Chilean_nut'}, {'id': 19172, 'synset': 'grevillea.n.01', 'name': 'grevillea'}, {'id': 19173, 'synset': 'red-flowered_silky_oak.n.01', 'name': 'red-flowered_silky_oak'}, {'id': 19174, 'synset': 'silky_oak.n.01', 'name': 'silky_oak'}, {'id': 19175, 'synset': 'beefwood.n.05', 'name': 'beefwood'}, {'id': 19176, 'synset': 'cushion_flower.n.01', 'name': 'cushion_flower'}, {'id': 19177, 'synset': 'rewa-rewa.n.01', 'name': 'rewa-rewa'}, {'id': 19178, 'synset': 'honeyflower.n.01', 'name': 'honeyflower'}, {'id': 19179, 'synset': 'silver_tree.n.01', 'name': 'silver_tree'}, {'id': 19180, 'synset': 'lomatia.n.01', 'name': 'lomatia'}, {'id': 19181, 'synset': 'macadamia.n.01', 'name': 'macadamia'}, {'id': 19182, 'synset': 'macadamia_integrifolia.n.01', 'name': 'Macadamia_integrifolia'}, {'id': 19183, 'synset': 'macadamia_nut.n.01', 'name': 'macadamia_nut'}, {'id': 19184, 'synset': 'queensland_nut.n.01', 'name': 'Queensland_nut'}, {'id': 19185, 'synset': 'prickly_ash.n.02', 'name': 'prickly_ash'}, {'id': 19186, 'synset': 'geebung.n.01', 'name': 'geebung'}, {'id': 19187, 'synset': 'wheel_tree.n.01', 'name': 'wheel_tree'}, {'id': 19188, 'synset': 'scrub_beefwood.n.01', 'name': 'scrub_beefwood'}, {'id': 19189, 'synset': 'waratah.n.02', 'name': 'waratah'}, {'id': 19190, 'synset': 'waratah.n.01', 'name': 'waratah'}, {'id': 19191, 'synset': 'casuarina.n.01', 'name': 'casuarina'}, {'id': 19192, 'synset': 'she-oak.n.01', 'name': 'she-oak'}, {'id': 19193, 'synset': 'beefwood.n.03', 'name': 'beefwood'}, {'id': 19194, 'synset': 'australian_pine.n.01', 'name': 'Australian_pine'}, {'id': 19195, 'synset': 'heath.n.01', 'name': 'heath'}, {'id': 19196, 'synset': 'tree_heath.n.02', 'name': 'tree_heath'}, {'id': 19197, 'synset': 'briarroot.n.01', 'name': 'briarroot'}, {'id': 19198, 'synset': 'winter_heath.n.01', 'name': 'winter_heath'}, {'id': 19199, 'synset': 'bell_heather.n.02', 'name': 'bell_heather'}, {'id': 19200, 'synset': 'cornish_heath.n.01', 'name': 'Cornish_heath'}, {'id': 19201, 'synset': 'spanish_heath.n.01', 'name': 'Spanish_heath'}, {'id': 19202, 'synset': "prince-of-wales'-heath.n.01", 'name': "Prince-of-Wales'-heath"}, {'id': 19203, 'synset': 'bog_rosemary.n.01', 'name': 'bog_rosemary'}, {'id': 19204, 'synset': 'marsh_andromeda.n.01', 'name': 'marsh_andromeda'}, {'id': 19205, 'synset': 'madrona.n.01', 'name': 'madrona'}, {'id': 19206, 'synset': 'strawberry_tree.n.01', 'name': 'strawberry_tree'}, {'id': 19207, 'synset': 'bearberry.n.03', 'name': 'bearberry'}, {'id': 19208, 'synset': 'alpine_bearberry.n.01', 'name': 'alpine_bearberry'}, {'id': 19209, 'synset': 'heartleaf_manzanita.n.01', 'name': 'heartleaf_manzanita'}, {'id': 19210, 'synset': 'parry_manzanita.n.01', 'name': 'Parry_manzanita'}, {'id': 19211, 'synset': 'spike_heath.n.01', 'name': 'spike_heath'}, {'id': 19212, 'synset': 'bryanthus.n.01', 'name': 'bryanthus'}, {'id': 19213, 'synset': 'leatherleaf.n.02', 'name': 'leatherleaf'}, {'id': 19214, 'synset': 'connemara_heath.n.01', 'name': 'Connemara_heath'}, {'id': 19215, 'synset': 'trailing_arbutus.n.01', 'name': 'trailing_arbutus'}, {'id': 19216, 'synset': 'creeping_snowberry.n.01', 'name': 'creeping_snowberry'}, {'id': 19217, 'synset': 'salal.n.01', 'name': 'salal'}, {'id': 19218, 'synset': 'huckleberry.n.02', 'name': 'huckleberry'}, {'id': 19219, 'synset': 'black_huckleberry.n.01', 'name': 'black_huckleberry'}, {'id': 19220, 'synset': 'dangleberry.n.01', 'name': 'dangleberry'}, {'id': 19221, 'synset': 'box_huckleberry.n.01', 'name': 'box_huckleberry'}, {'id': 19222, 'synset': 'kalmia.n.01', 'name': 'kalmia'}, {'id': 19223, 'synset': 'mountain_laurel.n.01', 'name': 'mountain_laurel'}, {'id': 19224, 'synset': 'swamp_laurel.n.01', 'name': 'swamp_laurel'}, {'id': 19225, 'synset': "trapper's_tea.n.01", 'name': "trapper's_tea"}, {'id': 19226, 'synset': 'wild_rosemary.n.01', 'name': 'wild_rosemary'}, {'id': 19227, 'synset': 'sand_myrtle.n.01', 'name': 'sand_myrtle'}, {'id': 19228, 'synset': 'leucothoe.n.01', 'name': 'leucothoe'}, {'id': 19229, 'synset': 'dog_laurel.n.01', 'name': 'dog_laurel'}, {'id': 19230, 'synset': 'sweet_bells.n.01', 'name': 'sweet_bells'}, {'id': 19231, 'synset': 'alpine_azalea.n.01', 'name': 'alpine_azalea'}, {'id': 19232, 'synset': 'staggerbush.n.01', 'name': 'staggerbush'}, {'id': 19233, 'synset': 'maleberry.n.01', 'name': 'maleberry'}, {'id': 19234, 'synset': 'fetterbush.n.02', 'name': 'fetterbush'}, {'id': 19235, 'synset': 'false_azalea.n.01', 'name': 'false_azalea'}, {'id': 19236, 'synset': 'minniebush.n.01', 'name': 'minniebush'}, {'id': 19237, 'synset': 'sorrel_tree.n.01', 'name': 'sorrel_tree'}, {'id': 19238, 'synset': 'mountain_heath.n.01', 'name': 'mountain_heath'}, {'id': 19239, 'synset': 'purple_heather.n.01', 'name': 'purple_heather'}, {'id': 19240, 'synset': 'fetterbush.n.01', 'name': 'fetterbush'}, {'id': 19241, 'synset': 'rhododendron.n.01', 'name': 'rhododendron'}, {'id': 19242, 'synset': 'coast_rhododendron.n.01', 'name': 'coast_rhododendron'}, {'id': 19243, 'synset': 'rosebay.n.01', 'name': 'rosebay'}, {'id': 19244, 'synset': 'swamp_azalea.n.01', 'name': 'swamp_azalea'}, {'id': 19245, 'synset': 'azalea.n.01', 'name': 'azalea'}, {'id': 19246, 'synset': 'cranberry.n.01', 'name': 'cranberry'}, {'id': 19247, 'synset': 'american_cranberry.n.01', 'name': 'American_cranberry'}, {'id': 19248, 'synset': 'european_cranberry.n.01', 'name': 'European_cranberry'}, {'id': 19249, 'synset': 'blueberry.n.01', 'name': 'blueberry'}, {'id': 19250, 'synset': 'farkleberry.n.01', 'name': 'farkleberry'}, {'id': 19251, 'synset': 'low-bush_blueberry.n.01', 'name': 'low-bush_blueberry'}, {'id': 19252, 'synset': 'rabbiteye_blueberry.n.01', 'name': 'rabbiteye_blueberry'}, {'id': 19253, 'synset': 'dwarf_bilberry.n.01', 'name': 'dwarf_bilberry'}, {'id': 19254, 'synset': 'evergreen_blueberry.n.01', 'name': 'evergreen_blueberry'}, {'id': 19255, 'synset': 'evergreen_huckleberry.n.01', 'name': 'evergreen_huckleberry'}, {'id': 19256, 'synset': 'bilberry.n.02', 'name': 'bilberry'}, {'id': 19257, 'synset': 'bilberry.n.01', 'name': 'bilberry'}, {'id': 19258, 'synset': 'bog_bilberry.n.01', 'name': 'bog_bilberry'}, {'id': 19259, 'synset': 'dryland_blueberry.n.01', 'name': 'dryland_blueberry'}, {'id': 19260, 'synset': 'grouseberry.n.01', 'name': 'grouseberry'}, {'id': 19261, 'synset': 'deerberry.n.01', 'name': 'deerberry'}, {'id': 19262, 'synset': 'cowberry.n.01', 'name': 'cowberry'}, {'id': 19263, 'synset': 'diapensia.n.01', 'name': 'diapensia'}, {'id': 19264, 'synset': 'galax.n.01', 'name': 'galax'}, {'id': 19265, 'synset': 'pyxie.n.01', 'name': 'pyxie'}, {'id': 19266, 'synset': 'shortia.n.01', 'name': 'shortia'}, {'id': 19267, 'synset': 'oconee_bells.n.01', 'name': 'oconee_bells'}, {'id': 19268, 'synset': 'australian_heath.n.01', 'name': 'Australian_heath'}, {'id': 19269, 'synset': 'epacris.n.01', 'name': 'epacris'}, {'id': 19270, 'synset': 'common_heath.n.02', 'name': 'common_heath'}, {'id': 19271, 'synset': 'common_heath.n.01', 'name': 'common_heath'}, {'id': 19272, 'synset': 'port_jackson_heath.n.01', 'name': 'Port_Jackson_heath'}, {'id': 19273, 'synset': 'native_cranberry.n.01', 'name': 'native_cranberry'}, {'id': 19274, 'synset': 'pink_fivecorner.n.01', 'name': 'pink_fivecorner'}, {'id': 19275, 'synset': 'wintergreen.n.01', 'name': 'wintergreen'}, {'id': 19276, 'synset': 'false_wintergreen.n.01', 'name': 'false_wintergreen'}, {'id': 19277, 'synset': 'lesser_wintergreen.n.01', 'name': 'lesser_wintergreen'}, {'id': 19278, 'synset': 'wild_lily_of_the_valley.n.02', 'name': 'wild_lily_of_the_valley'}, {'id': 19279, 'synset': 'wild_lily_of_the_valley.n.01', 'name': 'wild_lily_of_the_valley'}, {'id': 19280, 'synset': 'pipsissewa.n.01', 'name': 'pipsissewa'}, {'id': 19281, 'synset': 'love-in-winter.n.01', 'name': 'love-in-winter'}, {'id': 19282, 'synset': 'one-flowered_wintergreen.n.01', 'name': 'one-flowered_wintergreen'}, {'id': 19283, 'synset': 'indian_pipe.n.01', 'name': 'Indian_pipe'}, {'id': 19284, 'synset': 'pinesap.n.01', 'name': 'pinesap'}, {'id': 19285, 'synset': 'beech.n.01', 'name': 'beech'}, {'id': 19286, 'synset': 'common_beech.n.01', 'name': 'common_beech'}, {'id': 19287, 'synset': 'copper_beech.n.01', 'name': 'copper_beech'}, {'id': 19288, 'synset': 'american_beech.n.01', 'name': 'American_beech'}, {'id': 19289, 'synset': 'weeping_beech.n.01', 'name': 'weeping_beech'}, {'id': 19290, 'synset': 'japanese_beech.n.01', 'name': 'Japanese_beech'}, {'id': 19291, 'synset': 'chestnut.n.02', 'name': 'chestnut'}, {'id': 19292, 'synset': 'american_chestnut.n.01', 'name': 'American_chestnut'}, {'id': 19293, 'synset': 'european_chestnut.n.01', 'name': 'European_chestnut'}, {'id': 19294, 'synset': 'chinese_chestnut.n.01', 'name': 'Chinese_chestnut'}, {'id': 19295, 'synset': 'japanese_chestnut.n.01', 'name': 'Japanese_chestnut'}, {'id': 19296, 'synset': 'allegheny_chinkapin.n.01', 'name': 'Allegheny_chinkapin'}, {'id': 19297, 'synset': 'ozark_chinkapin.n.01', 'name': 'Ozark_chinkapin'}, {'id': 19298, 'synset': 'oak_chestnut.n.01', 'name': 'oak_chestnut'}, {'id': 19299, 'synset': 'giant_chinkapin.n.01', 'name': 'giant_chinkapin'}, {'id': 19300, 'synset': 'dwarf_golden_chinkapin.n.01', 'name': 'dwarf_golden_chinkapin'}, {'id': 19301, 'synset': 'tanbark_oak.n.01', 'name': 'tanbark_oak'}, {'id': 19302, 'synset': 'japanese_oak.n.02', 'name': 'Japanese_oak'}, {'id': 19303, 'synset': 'southern_beech.n.01', 'name': 'southern_beech'}, {'id': 19304, 'synset': 'myrtle_beech.n.01', 'name': 'myrtle_beech'}, {'id': 19305, 'synset': 'coigue.n.01', 'name': 'Coigue'}, {'id': 19306, 'synset': 'new_zealand_beech.n.01', 'name': 'New_Zealand_beech'}, {'id': 19307, 'synset': 'silver_beech.n.01', 'name': 'silver_beech'}, {'id': 19308, 'synset': 'roble_beech.n.01', 'name': 'roble_beech'}, {'id': 19309, 'synset': 'rauli_beech.n.01', 'name': 'rauli_beech'}, {'id': 19310, 'synset': 'black_beech.n.01', 'name': 'black_beech'}, {'id': 19311, 'synset': 'hard_beech.n.01', 'name': 'hard_beech'}, {'id': 19312, 'synset': 'acorn.n.01', 'name': 'acorn'}, {'id': 19313, 'synset': 'cupule.n.01', 'name': 'cupule'}, {'id': 19314, 'synset': 'oak.n.02', 'name': 'oak'}, {'id': 19315, 'synset': 'live_oak.n.01', 'name': 'live_oak'}, {'id': 19316, 'synset': 'coast_live_oak.n.01', 'name': 'coast_live_oak'}, {'id': 19317, 'synset': 'white_oak.n.01', 'name': 'white_oak'}, {'id': 19318, 'synset': 'american_white_oak.n.01', 'name': 'American_white_oak'}, {'id': 19319, 'synset': 'arizona_white_oak.n.01', 'name': 'Arizona_white_oak'}, {'id': 19320, 'synset': 'swamp_white_oak.n.01', 'name': 'swamp_white_oak'}, {'id': 19321, 'synset': 'european_turkey_oak.n.01', 'name': 'European_turkey_oak'}, {'id': 19322, 'synset': 'canyon_oak.n.01', 'name': 'canyon_oak'}, {'id': 19323, 'synset': 'scarlet_oak.n.01', 'name': 'scarlet_oak'}, {'id': 19324, 'synset': 'jack_oak.n.02', 'name': 'jack_oak'}, {'id': 19325, 'synset': 'red_oak.n.01', 'name': 'red_oak'}, {'id': 19326, 'synset': 'southern_red_oak.n.01', 'name': 'southern_red_oak'}, {'id': 19327, 'synset': 'oregon_white_oak.n.01', 'name': 'Oregon_white_oak'}, {'id': 19328, 'synset': 'holm_oak.n.02', 'name': 'holm_oak'}, {'id': 19329, 'synset': 'bear_oak.n.01', 'name': 'bear_oak'}, {'id': 19330, 'synset': 'shingle_oak.n.01', 'name': 'shingle_oak'}, {'id': 19331, 'synset': 'bluejack_oak.n.01', 'name': 'bluejack_oak'}, {'id': 19332, 'synset': 'california_black_oak.n.01', 'name': 'California_black_oak'}, {'id': 19333, 'synset': 'american_turkey_oak.n.01', 'name': 'American_turkey_oak'}, {'id': 19334, 'synset': 'laurel_oak.n.01', 'name': 'laurel_oak'}, {'id': 19335, 'synset': 'california_white_oak.n.01', 'name': 'California_white_oak'}, {'id': 19336, 'synset': 'overcup_oak.n.01', 'name': 'overcup_oak'}, {'id': 19337, 'synset': 'bur_oak.n.01', 'name': 'bur_oak'}, {'id': 19338, 'synset': 'scrub_oak.n.01', 'name': 'scrub_oak'}, {'id': 19339, 'synset': 'blackjack_oak.n.01', 'name': 'blackjack_oak'}, {'id': 19340, 'synset': 'swamp_chestnut_oak.n.01', 'name': 'swamp_chestnut_oak'}, {'id': 19341, 'synset': 'japanese_oak.n.01', 'name': 'Japanese_oak'}, {'id': 19342, 'synset': 'chestnut_oak.n.01', 'name': 'chestnut_oak'}, {'id': 19343, 'synset': 'chinquapin_oak.n.01', 'name': 'chinquapin_oak'}, {'id': 19344, 'synset': 'myrtle_oak.n.01', 'name': 'myrtle_oak'}, {'id': 19345, 'synset': 'water_oak.n.01', 'name': 'water_oak'}, {'id': 19346, 'synset': 'nuttall_oak.n.01', 'name': 'Nuttall_oak'}, {'id': 19347, 'synset': 'durmast.n.01', 'name': 'durmast'}, {'id': 19348, 'synset': 'basket_oak.n.01', 'name': 'basket_oak'}, {'id': 19349, 'synset': 'pin_oak.n.01', 'name': 'pin_oak'}, {'id': 19350, 'synset': 'willow_oak.n.01', 'name': 'willow_oak'}, {'id': 19351, 'synset': 'dwarf_chinkapin_oak.n.01', 'name': 'dwarf_chinkapin_oak'}, {'id': 19352, 'synset': 'common_oak.n.01', 'name': 'common_oak'}, {'id': 19353, 'synset': 'northern_red_oak.n.01', 'name': 'northern_red_oak'}, {'id': 19354, 'synset': 'shumard_oak.n.01', 'name': 'Shumard_oak'}, {'id': 19355, 'synset': 'post_oak.n.01', 'name': 'post_oak'}, {'id': 19356, 'synset': 'cork_oak.n.01', 'name': 'cork_oak'}, {'id': 19357, 'synset': 'spanish_oak.n.01', 'name': 'Spanish_oak'}, {'id': 19358, 'synset': 'huckleberry_oak.n.01', 'name': 'huckleberry_oak'}, {'id': 19359, 'synset': 'chinese_cork_oak.n.01', 'name': 'Chinese_cork_oak'}, {'id': 19360, 'synset': 'black_oak.n.01', 'name': 'black_oak'}, {'id': 19361, 'synset': 'southern_live_oak.n.01', 'name': 'southern_live_oak'}, {'id': 19362, 'synset': 'interior_live_oak.n.01', 'name': 'interior_live_oak'}, {'id': 19363, 'synset': 'mast.n.02', 'name': 'mast'}, {'id': 19364, 'synset': 'birch.n.02', 'name': 'birch'}, {'id': 19365, 'synset': 'yellow_birch.n.01', 'name': 'yellow_birch'}, {'id': 19366, 'synset': 'american_white_birch.n.01', 'name': 'American_white_birch'}, {'id': 19367, 'synset': 'grey_birch.n.01', 'name': 'grey_birch'}, {'id': 19368, 'synset': 'silver_birch.n.01', 'name': 'silver_birch'}, {'id': 19369, 'synset': 'downy_birch.n.01', 'name': 'downy_birch'}, {'id': 19370, 'synset': 'black_birch.n.02', 'name': 'black_birch'}, {'id': 19371, 'synset': 'sweet_birch.n.01', 'name': 'sweet_birch'}, {'id': 19372, 'synset': 'yukon_white_birch.n.01', 'name': 'Yukon_white_birch'}, {'id': 19373, 'synset': 'swamp_birch.n.01', 'name': 'swamp_birch'}, {'id': 19374, 'synset': 'newfoundland_dwarf_birch.n.01', 'name': 'Newfoundland_dwarf_birch'}, {'id': 19375, 'synset': 'alder.n.02', 'name': 'alder'}, {'id': 19376, 'synset': 'common_alder.n.01', 'name': 'common_alder'}, {'id': 19377, 'synset': 'grey_alder.n.01', 'name': 'grey_alder'}, {'id': 19378, 'synset': 'seaside_alder.n.01', 'name': 'seaside_alder'}, {'id': 19379, 'synset': 'white_alder.n.01', 'name': 'white_alder'}, {'id': 19380, 'synset': 'red_alder.n.01', 'name': 'red_alder'}, {'id': 19381, 'synset': 'speckled_alder.n.01', 'name': 'speckled_alder'}, {'id': 19382, 'synset': 'smooth_alder.n.01', 'name': 'smooth_alder'}, {'id': 19383, 'synset': 'green_alder.n.02', 'name': 'green_alder'}, {'id': 19384, 'synset': 'green_alder.n.01', 'name': 'green_alder'}, {'id': 19385, 'synset': 'hornbeam.n.01', 'name': 'hornbeam'}, {'id': 19386, 'synset': 'european_hornbeam.n.01', 'name': 'European_hornbeam'}, {'id': 19387, 'synset': 'american_hornbeam.n.01', 'name': 'American_hornbeam'}, {'id': 19388, 'synset': 'hop_hornbeam.n.01', 'name': 'hop_hornbeam'}, {'id': 19389, 'synset': 'old_world_hop_hornbeam.n.01', 'name': 'Old_World_hop_hornbeam'}, {'id': 19390, 'synset': 'eastern_hop_hornbeam.n.01', 'name': 'Eastern_hop_hornbeam'}, {'id': 19391, 'synset': 'hazelnut.n.01', 'name': 'hazelnut'}, {'id': 19392, 'synset': 'american_hazel.n.01', 'name': 'American_hazel'}, {'id': 19393, 'synset': 'cobnut.n.01', 'name': 'cobnut'}, {'id': 19394, 'synset': 'beaked_hazelnut.n.01', 'name': 'beaked_hazelnut'}, {'id': 19395, 'synset': 'centaury.n.01', 'name': 'centaury'}, {'id': 19396, 'synset': 'rosita.n.01', 'name': 'rosita'}, {'id': 19397, 'synset': 'lesser_centaury.n.01', 'name': 'lesser_centaury'}, {'id': 19398, 'synset': 'seaside_centaury.n.01', 'name': 'seaside_centaury'}, {'id': 19399, 'synset': 'slender_centaury.n.01', 'name': 'slender_centaury'}, {'id': 19400, 'synset': 'prairie_gentian.n.01', 'name': 'prairie_gentian'}, {'id': 19401, 'synset': 'persian_violet.n.01', 'name': 'Persian_violet'}, {'id': 19402, 'synset': 'columbo.n.01', 'name': 'columbo'}, {'id': 19403, 'synset': 'gentian.n.01', 'name': 'gentian'}, {'id': 19404, 'synset': 'gentianella.n.02', 'name': 'gentianella'}, {'id': 19405, 'synset': 'closed_gentian.n.02', 'name': 'closed_gentian'}, {'id': 19406, 'synset': "explorer's_gentian.n.01", 'name': "explorer's_gentian"}, {'id': 19407, 'synset': 'closed_gentian.n.01', 'name': 'closed_gentian'}, {'id': 19408, 'synset': 'great_yellow_gentian.n.01', 'name': 'great_yellow_gentian'}, {'id': 19409, 'synset': 'marsh_gentian.n.01', 'name': 'marsh_gentian'}, {'id': 19410, 'synset': 'soapwort_gentian.n.01', 'name': 'soapwort_gentian'}, {'id': 19411, 'synset': 'striped_gentian.n.01', 'name': 'striped_gentian'}, {'id': 19412, 'synset': 'agueweed.n.01', 'name': 'agueweed'}, {'id': 19413, 'synset': 'felwort.n.01', 'name': 'felwort'}, {'id': 19414, 'synset': 'fringed_gentian.n.01', 'name': 'fringed_gentian'}, {'id': 19415, 'synset': 'gentianopsis_crinita.n.01', 'name': 'Gentianopsis_crinita'}, {'id': 19416, 'synset': 'gentianopsis_detonsa.n.01', 'name': 'Gentianopsis_detonsa'}, {'id': 19417, 'synset': 'gentianopsid_procera.n.01', 'name': 'Gentianopsid_procera'}, {'id': 19418, 'synset': 'gentianopsis_thermalis.n.01', 'name': 'Gentianopsis_thermalis'}, {'id': 19419, 'synset': 'tufted_gentian.n.01', 'name': 'tufted_gentian'}, {'id': 19420, 'synset': 'spurred_gentian.n.01', 'name': 'spurred_gentian'}, {'id': 19421, 'synset': 'sabbatia.n.01', 'name': 'sabbatia'}, {'id': 19422, 'synset': 'toothbrush_tree.n.01', 'name': 'toothbrush_tree'}, {'id': 19423, 'synset': 'olive_tree.n.01', 'name': 'olive_tree'}, {'id': 19424, 'synset': 'olive.n.02', 'name': 'olive'}, {'id': 19425, 'synset': 'olive.n.01', 'name': 'olive'}, {'id': 19426, 'synset': 'black_maire.n.01', 'name': 'black_maire'}, {'id': 19427, 'synset': 'white_maire.n.01', 'name': 'white_maire'}, {'id': 19428, 'synset': 'fringe_tree.n.01', 'name': 'fringe_tree'}, {'id': 19429, 'synset': 'fringe_bush.n.01', 'name': 'fringe_bush'}, {'id': 19430, 'synset': 'forestiera.n.01', 'name': 'forestiera'}, {'id': 19431, 'synset': 'forsythia.n.01', 'name': 'forsythia'}, {'id': 19432, 'synset': 'ash.n.02', 'name': 'ash'}, {'id': 19433, 'synset': 'white_ash.n.02', 'name': 'white_ash'}, {'id': 19434, 'synset': 'swamp_ash.n.01', 'name': 'swamp_ash'}, {'id': 19435, 'synset': 'flowering_ash.n.03', 'name': 'flowering_ash'}, {'id': 19436, 'synset': 'european_ash.n.01', 'name': 'European_ash'}, {'id': 19437, 'synset': 'oregon_ash.n.01', 'name': 'Oregon_ash'}, {'id': 19438, 'synset': 'black_ash.n.01', 'name': 'black_ash'}, {'id': 19439, 'synset': 'manna_ash.n.01', 'name': 'manna_ash'}, {'id': 19440, 'synset': 'red_ash.n.01', 'name': 'red_ash'}, {'id': 19441, 'synset': 'green_ash.n.01', 'name': 'green_ash'}, {'id': 19442, 'synset': 'blue_ash.n.01', 'name': 'blue_ash'}, {'id': 19443, 'synset': 'mountain_ash.n.03', 'name': 'mountain_ash'}, {'id': 19444, 'synset': 'pumpkin_ash.n.01', 'name': 'pumpkin_ash'}, {'id': 19445, 'synset': 'arizona_ash.n.01', 'name': 'Arizona_ash'}, {'id': 19446, 'synset': 'jasmine.n.01', 'name': 'jasmine'}, {'id': 19447, 'synset': 'primrose_jasmine.n.01', 'name': 'primrose_jasmine'}, {'id': 19448, 'synset': 'winter_jasmine.n.01', 'name': 'winter_jasmine'}, {'id': 19449, 'synset': 'common_jasmine.n.01', 'name': 'common_jasmine'}, {'id': 19450, 'synset': 'privet.n.01', 'name': 'privet'}, {'id': 19451, 'synset': 'amur_privet.n.01', 'name': 'Amur_privet'}, {'id': 19452, 'synset': 'japanese_privet.n.01', 'name': 'Japanese_privet'}, {'id': 19453, 'synset': 'ligustrum_obtusifolium.n.01', 'name': 'Ligustrum_obtusifolium'}, {'id': 19454, 'synset': 'common_privet.n.01', 'name': 'common_privet'}, {'id': 19455, 'synset': 'devilwood.n.01', 'name': 'devilwood'}, {'id': 19456, 'synset': 'mock_privet.n.01', 'name': 'mock_privet'}, {'id': 19457, 'synset': 'lilac.n.01', 'name': 'lilac'}, {'id': 19458, 'synset': 'himalayan_lilac.n.01', 'name': 'Himalayan_lilac'}, {'id': 19459, 'synset': 'persian_lilac.n.02', 'name': 'Persian_lilac'}, {'id': 19460, 'synset': 'japanese_tree_lilac.n.01', 'name': 'Japanese_tree_lilac'}, {'id': 19461, 'synset': 'japanese_lilac.n.01', 'name': 'Japanese_lilac'}, {'id': 19462, 'synset': 'common_lilac.n.01', 'name': 'common_lilac'}, {'id': 19463, 'synset': 'bloodwort.n.01', 'name': 'bloodwort'}, {'id': 19464, 'synset': 'kangaroo_paw.n.01', 'name': 'kangaroo_paw'}, {'id': 19465, 'synset': 'virginian_witch_hazel.n.01', 'name': 'Virginian_witch_hazel'}, {'id': 19466, 'synset': 'vernal_witch_hazel.n.01', 'name': 'vernal_witch_hazel'}, {'id': 19467, 'synset': 'winter_hazel.n.01', 'name': 'winter_hazel'}, {'id': 19468, 'synset': 'fothergilla.n.01', 'name': 'fothergilla'}, {'id': 19469, 'synset': 'liquidambar.n.02', 'name': 'liquidambar'}, {'id': 19470, 'synset': 'sweet_gum.n.03', 'name': 'sweet_gum'}, {'id': 19471, 'synset': 'iron_tree.n.01', 'name': 'iron_tree'}, {'id': 19472, 'synset': 'walnut.n.03', 'name': 'walnut'}, {'id': 19473, 'synset': 'california_black_walnut.n.01', 'name': 'California_black_walnut'}, {'id': 19474, 'synset': 'butternut.n.01', 'name': 'butternut'}, {'id': 19475, 'synset': 'black_walnut.n.01', 'name': 'black_walnut'}, {'id': 19476, 'synset': 'english_walnut.n.01', 'name': 'English_walnut'}, {'id': 19477, 'synset': 'hickory.n.02', 'name': 'hickory'}, {'id': 19478, 'synset': 'water_hickory.n.01', 'name': 'water_hickory'}, {'id': 19479, 'synset': 'pignut.n.01', 'name': 'pignut'}, {'id': 19480, 'synset': 'bitternut.n.01', 'name': 'bitternut'}, {'id': 19481, 'synset': 'pecan.n.02', 'name': 'pecan'}, {'id': 19482, 'synset': 'big_shellbark.n.01', 'name': 'big_shellbark'}, {'id': 19483, 'synset': 'nutmeg_hickory.n.01', 'name': 'nutmeg_hickory'}, {'id': 19484, 'synset': 'shagbark.n.01', 'name': 'shagbark'}, {'id': 19485, 'synset': 'mockernut.n.01', 'name': 'mockernut'}, {'id': 19486, 'synset': 'wing_nut.n.01', 'name': 'wing_nut'}, {'id': 19487, 'synset': 'caucasian_walnut.n.01', 'name': 'Caucasian_walnut'}, {'id': 19488, 'synset': 'dhawa.n.01', 'name': 'dhawa'}, {'id': 19489, 'synset': 'combretum.n.01', 'name': 'combretum'}, {'id': 19490, 'synset': 'hiccup_nut.n.01', 'name': 'hiccup_nut'}, {'id': 19491, 'synset': 'bush_willow.n.02', 'name': 'bush_willow'}, {'id': 19492, 'synset': 'bush_willow.n.01', 'name': 'bush_willow'}, {'id': 19493, 'synset': 'button_tree.n.01', 'name': 'button_tree'}, {'id': 19494, 'synset': 'white_mangrove.n.02', 'name': 'white_mangrove'}, {'id': 19495, 'synset': 'oleaster.n.01', 'name': 'oleaster'}, {'id': 19496, 'synset': 'water_milfoil.n.01', 'name': 'water_milfoil'}, {'id': 19497, 'synset': 'anchovy_pear.n.01', 'name': 'anchovy_pear'}, {'id': 19498, 'synset': 'brazil_nut.n.01', 'name': 'brazil_nut'}, {'id': 19499, 'synset': 'loosestrife.n.01', 'name': 'loosestrife'}, {'id': 19500, 'synset': 'purple_loosestrife.n.01', 'name': 'purple_loosestrife'}, {'id': 19501, 'synset': 'grass_poly.n.01', 'name': 'grass_poly'}, {'id': 19502, 'synset': 'crape_myrtle.n.01', 'name': 'crape_myrtle'}, {'id': 19503, 'synset': "queen's_crape_myrtle.n.01", 'name': "Queen's_crape_myrtle"}, {'id': 19504, 'synset': 'myrtaceous_tree.n.01', 'name': 'myrtaceous_tree'}, {'id': 19505, 'synset': 'myrtle.n.02', 'name': 'myrtle'}, {'id': 19506, 'synset': 'common_myrtle.n.01', 'name': 'common_myrtle'}, {'id': 19507, 'synset': 'bayberry.n.01', 'name': 'bayberry'}, {'id': 19508, 'synset': 'allspice.n.01', 'name': 'allspice'}, {'id': 19509, 'synset': 'allspice_tree.n.01', 'name': 'allspice_tree'}, {'id': 19510, 'synset': 'sour_cherry.n.02', 'name': 'sour_cherry'}, {'id': 19511, 'synset': 'nakedwood.n.02', 'name': 'nakedwood'}, {'id': 19512, 'synset': 'surinam_cherry.n.02', 'name': 'Surinam_cherry'}, {'id': 19513, 'synset': 'rose_apple.n.01', 'name': 'rose_apple'}, {'id': 19514, 'synset': 'feijoa.n.01', 'name': 'feijoa'}, {'id': 19515, 'synset': 'jaboticaba.n.01', 'name': 'jaboticaba'}, {'id': 19516, 'synset': 'guava.n.02', 'name': 'guava'}, {'id': 19517, 'synset': 'guava.n.01', 'name': 'guava'}, {'id': 19518, 'synset': 'cattley_guava.n.01', 'name': 'cattley_guava'}, {'id': 19519, 'synset': 'brazilian_guava.n.01', 'name': 'Brazilian_guava'}, {'id': 19520, 'synset': 'gum_tree.n.01', 'name': 'gum_tree'}, {'id': 19521, 'synset': 'eucalyptus.n.02', 'name': 'eucalyptus'}, {'id': 19522, 'synset': 'flooded_gum.n.01', 'name': 'flooded_gum'}, {'id': 19523, 'synset': 'mallee.n.01', 'name': 'mallee'}, {'id': 19524, 'synset': 'stringybark.n.01', 'name': 'stringybark'}, {'id': 19525, 'synset': 'smoothbark.n.01', 'name': 'smoothbark'}, {'id': 19526, 'synset': 'red_gum.n.03', 'name': 'red_gum'}, {'id': 19527, 'synset': 'red_gum.n.02', 'name': 'red_gum'}, {'id': 19528, 'synset': 'river_red_gum.n.01', 'name': 'river_red_gum'}, {'id': 19529, 'synset': 'mountain_swamp_gum.n.01', 'name': 'mountain_swamp_gum'}, {'id': 19530, 'synset': 'snow_gum.n.01', 'name': 'snow_gum'}, {'id': 19531, 'synset': 'alpine_ash.n.01', 'name': 'alpine_ash'}, {'id': 19532, 'synset': 'white_mallee.n.01', 'name': 'white_mallee'}, {'id': 19533, 'synset': 'white_stringybark.n.01', 'name': 'white_stringybark'}, {'id': 19534, 'synset': 'white_mountain_ash.n.01', 'name': 'white_mountain_ash'}, {'id': 19535, 'synset': 'blue_gum.n.01', 'name': 'blue_gum'}, {'id': 19536, 'synset': 'rose_gum.n.01', 'name': 'rose_gum'}, {'id': 19537, 'synset': 'cider_gum.n.01', 'name': 'cider_gum'}, {'id': 19538, 'synset': 'swamp_gum.n.01', 'name': 'swamp_gum'}, {'id': 19539, 'synset': 'spotted_gum.n.01', 'name': 'spotted_gum'}, {'id': 19540, 'synset': 'lemon-scented_gum.n.01', 'name': 'lemon-scented_gum'}, {'id': 19541, 'synset': 'black_mallee.n.01', 'name': 'black_mallee'}, {'id': 19542, 'synset': 'forest_red_gum.n.01', 'name': 'forest_red_gum'}, {'id': 19543, 'synset': 'mountain_ash.n.02', 'name': 'mountain_ash'}, {'id': 19544, 'synset': 'manna_gum.n.01', 'name': 'manna_gum'}, {'id': 19545, 'synset': 'clove.n.02', 'name': 'clove'}, {'id': 19546, 'synset': 'clove.n.01', 'name': 'clove'}, {'id': 19547, 'synset': 'tupelo.n.02', 'name': 'tupelo'}, {'id': 19548, 'synset': 'water_gum.n.01', 'name': 'water_gum'}, {'id': 19549, 'synset': 'sour_gum.n.01', 'name': 'sour_gum'}, {'id': 19550, 'synset': "enchanter's_nightshade.n.01", 'name': "enchanter's_nightshade"}, {'id': 19551, 'synset': 'circaea_lutetiana.n.01', 'name': 'Circaea_lutetiana'}, {'id': 19552, 'synset': 'willowherb.n.01', 'name': 'willowherb'}, {'id': 19553, 'synset': 'fireweed.n.01', 'name': 'fireweed'}, {'id': 19554, 'synset': 'california_fuchsia.n.01', 'name': 'California_fuchsia'}, {'id': 19555, 'synset': 'fuchsia.n.01', 'name': 'fuchsia'}, {'id': 19556, 'synset': "lady's-eardrop.n.01", 'name': "lady's-eardrop"}, {'id': 19557, 'synset': 'evening_primrose.n.01', 'name': 'evening_primrose'}, {'id': 19558, 'synset': 'common_evening_primrose.n.01', 'name': 'common_evening_primrose'}, {'id': 19559, 'synset': 'sundrops.n.01', 'name': 'sundrops'}, {'id': 19560, 'synset': 'missouri_primrose.n.01', 'name': 'Missouri_primrose'}, {'id': 19561, 'synset': 'pomegranate.n.01', 'name': 'pomegranate'}, {'id': 19562, 'synset': 'mangrove.n.01', 'name': 'mangrove'}, {'id': 19563, 'synset': 'daphne.n.01', 'name': 'daphne'}, {'id': 19564, 'synset': 'garland_flower.n.01', 'name': 'garland_flower'}, {'id': 19565, 'synset': 'spurge_laurel.n.01', 'name': 'spurge_laurel'}, {'id': 19566, 'synset': 'mezereon.n.01', 'name': 'mezereon'}, {'id': 19567, 'synset': 'indian_rhododendron.n.01', 'name': 'Indian_rhododendron'}, {'id': 19568, 'synset': 'medinilla_magnifica.n.01', 'name': 'Medinilla_magnifica'}, {'id': 19569, 'synset': 'deer_grass.n.01', 'name': 'deer_grass'}, {'id': 19570, 'synset': 'canna.n.01', 'name': 'canna'}, {'id': 19571, 'synset': 'achira.n.01', 'name': 'achira'}, {'id': 19572, 'synset': 'arrowroot.n.02', 'name': 'arrowroot'}, {'id': 19573, 'synset': 'banana.n.01', 'name': 'banana'}, {'id': 19574, 'synset': 'dwarf_banana.n.01', 'name': 'dwarf_banana'}, {'id': 19575, 'synset': 'japanese_banana.n.01', 'name': 'Japanese_banana'}, {'id': 19576, 'synset': 'plantain.n.02', 'name': 'plantain'}, {'id': 19577, 'synset': 'edible_banana.n.01', 'name': 'edible_banana'}, {'id': 19578, 'synset': 'abaca.n.02', 'name': 'abaca'}, {'id': 19579, 'synset': 'abyssinian_banana.n.01', 'name': 'Abyssinian_banana'}, {'id': 19580, 'synset': 'ginger.n.01', 'name': 'ginger'}, {'id': 19581, 'synset': 'common_ginger.n.01', 'name': 'common_ginger'}, {'id': 19582, 'synset': 'turmeric.n.01', 'name': 'turmeric'}, {'id': 19583, 'synset': 'galangal.n.01', 'name': 'galangal'}, {'id': 19584, 'synset': 'shellflower.n.02', 'name': 'shellflower'}, {'id': 19585, 'synset': 'grains_of_paradise.n.01', 'name': 'grains_of_paradise'}, {'id': 19586, 'synset': 'cardamom.n.01', 'name': 'cardamom'}, {'id': 19587, 'synset': 'begonia.n.01', 'name': 'begonia'}, {'id': 19588, 'synset': 'fibrous-rooted_begonia.n.01', 'name': 'fibrous-rooted_begonia'}, {'id': 19589, 'synset': 'tuberous_begonia.n.01', 'name': 'tuberous_begonia'}, {'id': 19590, 'synset': 'rhizomatous_begonia.n.01', 'name': 'rhizomatous_begonia'}, {'id': 19591, 'synset': 'christmas_begonia.n.01', 'name': 'Christmas_begonia'}, {'id': 19592, 'synset': 'angel-wing_begonia.n.01', 'name': 'angel-wing_begonia'}, {'id': 19593, 'synset': 'beefsteak_begonia.n.01', 'name': 'beefsteak_begonia'}, {'id': 19594, 'synset': 'star_begonia.n.01', 'name': 'star_begonia'}, {'id': 19595, 'synset': 'rex_begonia.n.01', 'name': 'rex_begonia'}, {'id': 19596, 'synset': 'wax_begonia.n.01', 'name': 'wax_begonia'}, {'id': 19597, 'synset': 'socotra_begonia.n.01', 'name': 'Socotra_begonia'}, {'id': 19598, 'synset': 'hybrid_tuberous_begonia.n.01', 'name': 'hybrid_tuberous_begonia'}, {'id': 19599, 'synset': 'dillenia.n.01', 'name': 'dillenia'}, {'id': 19600, 'synset': 'guinea_gold_vine.n.01', 'name': 'guinea_gold_vine'}, {'id': 19601, 'synset': 'poon.n.02', 'name': 'poon'}, {'id': 19602, 'synset': 'calaba.n.01', 'name': 'calaba'}, {'id': 19603, 'synset': 'maria.n.02', 'name': 'Maria'}, {'id': 19604, 'synset': 'laurelwood.n.01', 'name': 'laurelwood'}, {'id': 19605, 'synset': 'alexandrian_laurel.n.01', 'name': 'Alexandrian_laurel'}, {'id': 19606, 'synset': 'clusia.n.01', 'name': 'clusia'}, {'id': 19607, 'synset': 'wild_fig.n.02', 'name': 'wild_fig'}, {'id': 19608, 'synset': 'waxflower.n.02', 'name': 'waxflower'}, {'id': 19609, 'synset': 'pitch_apple.n.01', 'name': 'pitch_apple'}, {'id': 19610, 'synset': 'mangosteen.n.01', 'name': 'mangosteen'}, {'id': 19611, 'synset': 'gamboge_tree.n.01', 'name': 'gamboge_tree'}, {'id': 19612, 'synset': "st_john's_wort.n.01", 'name': "St_John's_wort"}, {'id': 19613, 'synset': "common_st_john's_wort.n.01", 'name': "common_St_John's_wort"}, {'id': 19614, 'synset': "great_st_john's_wort.n.01", 'name': "great_St_John's_wort"}, {'id': 19615, 'synset': "creeping_st_john's_wort.n.01", 'name': "creeping_St_John's_wort"}, {'id': 19616, 'synset': "low_st_andrew's_cross.n.01", 'name': "low_St_Andrew's_cross"}, {'id': 19617, 'synset': 'klammath_weed.n.01', 'name': 'klammath_weed'}, {'id': 19618, 'synset': "shrubby_st_john's_wort.n.01", 'name': "shrubby_St_John's_wort"}, {'id': 19619, 'synset': "st_peter's_wort.n.01", 'name': "St_Peter's_wort"}, {'id': 19620, 'synset': "marsh_st-john's_wort.n.01", 'name': "marsh_St-John's_wort"}, {'id': 19621, 'synset': 'mammee_apple.n.01', 'name': 'mammee_apple'}, {'id': 19622, 'synset': 'rose_chestnut.n.01', 'name': 'rose_chestnut'}, {'id': 19623, 'synset': 'bower_actinidia.n.01', 'name': 'bower_actinidia'}, {'id': 19624, 'synset': 'chinese_gooseberry.n.01', 'name': 'Chinese_gooseberry'}, {'id': 19625, 'synset': 'silvervine.n.01', 'name': 'silvervine'}, {'id': 19626, 'synset': 'wild_cinnamon.n.01', 'name': 'wild_cinnamon'}, {'id': 19627, 'synset': 'papaya.n.01', 'name': 'papaya'}, {'id': 19628, 'synset': 'souari.n.01', 'name': 'souari'}, {'id': 19629, 'synset': 'rockrose.n.02', 'name': 'rockrose'}, {'id': 19630, 'synset': 'white-leaved_rockrose.n.01', 'name': 'white-leaved_rockrose'}, {'id': 19631, 'synset': 'common_gum_cistus.n.01', 'name': 'common_gum_cistus'}, {'id': 19632, 'synset': 'frostweed.n.01', 'name': 'frostweed'}, {'id': 19633, 'synset': 'dipterocarp.n.01', 'name': 'dipterocarp'}, {'id': 19634, 'synset': 'red_lauan.n.02', 'name': 'red_lauan'}, {'id': 19635, 'synset': "governor's_plum.n.01", 'name': "governor's_plum"}, {'id': 19636, 'synset': 'kei_apple.n.01', 'name': 'kei_apple'}, {'id': 19637, 'synset': 'ketembilla.n.01', 'name': 'ketembilla'}, {'id': 19638, 'synset': 'chaulmoogra.n.01', 'name': 'chaulmoogra'}, {'id': 19639, 'synset': 'wild_peach.n.01', 'name': 'wild_peach'}, {'id': 19640, 'synset': 'candlewood.n.01', 'name': 'candlewood'}, {'id': 19641, 'synset': 'boojum_tree.n.01', 'name': 'boojum_tree'}, {'id': 19642, 'synset': "bird's-eye_bush.n.01", 'name': "bird's-eye_bush"}, {'id': 19643, 'synset': 'granadilla.n.03', 'name': 'granadilla'}, {'id': 19644, 'synset': 'granadilla.n.02', 'name': 'granadilla'}, {'id': 19645, 'synset': 'granadilla.n.01', 'name': 'granadilla'}, {'id': 19646, 'synset': 'maypop.n.01', 'name': 'maypop'}, {'id': 19647, 'synset': 'jamaica_honeysuckle.n.01', 'name': 'Jamaica_honeysuckle'}, {'id': 19648, 'synset': 'banana_passion_fruit.n.01', 'name': 'banana_passion_fruit'}, {'id': 19649, 'synset': 'sweet_calabash.n.01', 'name': 'sweet_calabash'}, {'id': 19650, 'synset': 'love-in-a-mist.n.01', 'name': 'love-in-a-mist'}, {'id': 19651, 'synset': 'reseda.n.01', 'name': 'reseda'}, {'id': 19652, 'synset': 'mignonette.n.01', 'name': 'mignonette'}, {'id': 19653, 'synset': "dyer's_rocket.n.01", 'name': "dyer's_rocket"}, {'id': 19654, 'synset': 'false_tamarisk.n.01', 'name': 'false_tamarisk'}, {'id': 19655, 'synset': 'halophyte.n.01', 'name': 'halophyte'}, {'id': 19656, 'synset': 'viola.n.01', 'name': 'viola'}, {'id': 19657, 'synset': 'violet.n.01', 'name': 'violet'}, {'id': 19658, 'synset': 'field_pansy.n.01', 'name': 'field_pansy'}, {'id': 19659, 'synset': 'american_dog_violet.n.01', 'name': 'American_dog_violet'}, {'id': 19660, 'synset': 'dog_violet.n.01', 'name': 'dog_violet'}, {'id': 19661, 'synset': 'horned_violet.n.01', 'name': 'horned_violet'}, {'id': 19662, 'synset': 'two-eyed_violet.n.01', 'name': 'two-eyed_violet'}, {'id': 19663, 'synset': "bird's-foot_violet.n.01", 'name': "bird's-foot_violet"}, {'id': 19664, 'synset': 'downy_yellow_violet.n.01', 'name': 'downy_yellow_violet'}, {'id': 19665, 'synset': 'long-spurred_violet.n.01', 'name': 'long-spurred_violet'}, {'id': 19666, 'synset': 'pale_violet.n.01', 'name': 'pale_violet'}, {'id': 19667, 'synset': 'hedge_violet.n.01', 'name': 'hedge_violet'}, {'id': 19668, 'synset': 'nettle.n.01', 'name': 'nettle'}, {'id': 19669, 'synset': 'stinging_nettle.n.01', 'name': 'stinging_nettle'}, {'id': 19670, 'synset': 'roman_nettle.n.01', 'name': 'Roman_nettle'}, {'id': 19671, 'synset': 'ramie.n.01', 'name': 'ramie'}, {'id': 19672, 'synset': 'wood_nettle.n.01', 'name': 'wood_nettle'}, {'id': 19673, 'synset': 'australian_nettle.n.01', 'name': 'Australian_nettle'}, {'id': 19674, 'synset': 'pellitory-of-the-wall.n.01', 'name': 'pellitory-of-the-wall'}, {'id': 19675, 'synset': 'richweed.n.02', 'name': 'richweed'}, {'id': 19676, 'synset': 'artillery_plant.n.01', 'name': 'artillery_plant'}, {'id': 19677, 'synset': 'friendship_plant.n.01', 'name': 'friendship_plant'}, {'id': 19678, 'synset': 'queensland_grass-cloth_plant.n.01', 'name': 'Queensland_grass-cloth_plant'}, {'id': 19679, 'synset': 'pipturus_albidus.n.01', 'name': 'Pipturus_albidus'}, {'id': 19680, 'synset': 'cannabis.n.01', 'name': 'cannabis'}, {'id': 19681, 'synset': 'indian_hemp.n.01', 'name': 'Indian_hemp'}, {'id': 19682, 'synset': 'mulberry.n.01', 'name': 'mulberry'}, {'id': 19683, 'synset': 'white_mulberry.n.01', 'name': 'white_mulberry'}, {'id': 19684, 'synset': 'black_mulberry.n.01', 'name': 'black_mulberry'}, {'id': 19685, 'synset': 'red_mulberry.n.01', 'name': 'red_mulberry'}, {'id': 19686, 'synset': 'osage_orange.n.01', 'name': 'osage_orange'}, {'id': 19687, 'synset': 'breadfruit.n.01', 'name': 'breadfruit'}, {'id': 19688, 'synset': 'jackfruit.n.01', 'name': 'jackfruit'}, {'id': 19689, 'synset': 'marang.n.01', 'name': 'marang'}, {'id': 19690, 'synset': 'fig_tree.n.01', 'name': 'fig_tree'}, {'id': 19691, 'synset': 'fig.n.02', 'name': 'fig'}, {'id': 19692, 'synset': 'caprifig.n.01', 'name': 'caprifig'}, {'id': 19693, 'synset': 'golden_fig.n.01', 'name': 'golden_fig'}, {'id': 19694, 'synset': 'banyan.n.01', 'name': 'banyan'}, {'id': 19695, 'synset': 'pipal.n.01', 'name': 'pipal'}, {'id': 19696, 'synset': 'india-rubber_tree.n.01', 'name': 'India-rubber_tree'}, {'id': 19697, 'synset': 'mistletoe_fig.n.01', 'name': 'mistletoe_fig'}, {'id': 19698, 'synset': 'port_jackson_fig.n.01', 'name': 'Port_Jackson_fig'}, {'id': 19699, 'synset': 'sycamore.n.04', 'name': 'sycamore'}, {'id': 19700, 'synset': 'paper_mulberry.n.01', 'name': 'paper_mulberry'}, {'id': 19701, 'synset': 'trumpetwood.n.01', 'name': 'trumpetwood'}, {'id': 19702, 'synset': 'elm.n.01', 'name': 'elm'}, {'id': 19703, 'synset': 'winged_elm.n.01', 'name': 'winged_elm'}, {'id': 19704, 'synset': 'american_elm.n.01', 'name': 'American_elm'}, {'id': 19705, 'synset': 'smooth-leaved_elm.n.01', 'name': 'smooth-leaved_elm'}, {'id': 19706, 'synset': 'cedar_elm.n.01', 'name': 'cedar_elm'}, {'id': 19707, 'synset': 'witch_elm.n.01', 'name': 'witch_elm'}, {'id': 19708, 'synset': 'dutch_elm.n.01', 'name': 'Dutch_elm'}, {'id': 19709, 'synset': 'huntingdon_elm.n.01', 'name': 'Huntingdon_elm'}, {'id': 19710, 'synset': 'water_elm.n.01', 'name': 'water_elm'}, {'id': 19711, 'synset': 'chinese_elm.n.02', 'name': 'Chinese_elm'}, {'id': 19712, 'synset': 'english_elm.n.01', 'name': 'English_elm'}, {'id': 19713, 'synset': 'siberian_elm.n.01', 'name': 'Siberian_elm'}, {'id': 19714, 'synset': 'slippery_elm.n.01', 'name': 'slippery_elm'}, {'id': 19715, 'synset': 'jersey_elm.n.01', 'name': 'Jersey_elm'}, {'id': 19716, 'synset': 'september_elm.n.01', 'name': 'September_elm'}, {'id': 19717, 'synset': 'rock_elm.n.01', 'name': 'rock_elm'}, {'id': 19718, 'synset': 'hackberry.n.01', 'name': 'hackberry'}, {'id': 19719, 'synset': 'european_hackberry.n.01', 'name': 'European_hackberry'}, {'id': 19720, 'synset': 'american_hackberry.n.01', 'name': 'American_hackberry'}, {'id': 19721, 'synset': 'sugarberry.n.01', 'name': 'sugarberry'}, {'id': 19722, 'synset': 'iridaceous_plant.n.01', 'name': 'iridaceous_plant'}, {'id': 19723, 'synset': 'bearded_iris.n.01', 'name': 'bearded_iris'}, {'id': 19724, 'synset': 'beardless_iris.n.01', 'name': 'beardless_iris'}, {'id': 19725, 'synset': 'orrisroot.n.01', 'name': 'orrisroot'}, {'id': 19726, 'synset': 'dwarf_iris.n.02', 'name': 'dwarf_iris'}, {'id': 19727, 'synset': 'dutch_iris.n.02', 'name': 'Dutch_iris'}, {'id': 19728, 'synset': 'florentine_iris.n.01', 'name': 'Florentine_iris'}, {'id': 19729, 'synset': 'stinking_iris.n.01', 'name': 'stinking_iris'}, {'id': 19730, 'synset': 'german_iris.n.02', 'name': 'German_iris'}, {'id': 19731, 'synset': 'japanese_iris.n.01', 'name': 'Japanese_iris'}, {'id': 19732, 'synset': 'german_iris.n.01', 'name': 'German_iris'}, {'id': 19733, 'synset': 'dalmatian_iris.n.01', 'name': 'Dalmatian_iris'}, {'id': 19734, 'synset': 'persian_iris.n.01', 'name': 'Persian_iris'}, {'id': 19735, 'synset': 'dutch_iris.n.01', 'name': 'Dutch_iris'}, {'id': 19736, 'synset': 'dwarf_iris.n.01', 'name': 'dwarf_iris'}, {'id': 19737, 'synset': 'spanish_iris.n.01', 'name': 'Spanish_iris'}, {'id': 19738, 'synset': 'blackberry-lily.n.01', 'name': 'blackberry-lily'}, {'id': 19739, 'synset': 'crocus.n.01', 'name': 'crocus'}, {'id': 19740, 'synset': 'saffron.n.01', 'name': 'saffron'}, {'id': 19741, 'synset': 'corn_lily.n.01', 'name': 'corn_lily'}, {'id': 19742, 'synset': 'blue-eyed_grass.n.01', 'name': 'blue-eyed_grass'}, {'id': 19743, 'synset': 'wandflower.n.01', 'name': 'wandflower'}, {'id': 19744, 'synset': 'amaryllis.n.01', 'name': 'amaryllis'}, {'id': 19745, 'synset': 'salsilla.n.02', 'name': 'salsilla'}, {'id': 19746, 'synset': 'salsilla.n.01', 'name': 'salsilla'}, {'id': 19747, 'synset': 'blood_lily.n.01', 'name': 'blood_lily'}, {'id': 19748, 'synset': 'cape_tulip.n.01', 'name': 'Cape_tulip'}, {'id': 19749, 'synset': 'hippeastrum.n.01', 'name': 'hippeastrum'}, {'id': 19750, 'synset': 'narcissus.n.01', 'name': 'narcissus'}, {'id': 19751, 'synset': 'daffodil.n.01', 'name': 'daffodil'}, {'id': 19752, 'synset': 'jonquil.n.01', 'name': 'jonquil'}, {'id': 19753, 'synset': 'jonquil.n.02', 'name': 'jonquil'}, {'id': 19754, 'synset': 'jacobean_lily.n.01', 'name': 'Jacobean_lily'}, {'id': 19755, 'synset': 'liliaceous_plant.n.01', 'name': 'liliaceous_plant'}, {'id': 19756, 'synset': 'mountain_lily.n.01', 'name': 'mountain_lily'}, {'id': 19757, 'synset': 'canada_lily.n.01', 'name': 'Canada_lily'}, {'id': 19758, 'synset': 'tiger_lily.n.02', 'name': 'tiger_lily'}, {'id': 19759, 'synset': 'columbia_tiger_lily.n.01', 'name': 'Columbia_tiger_lily'}, {'id': 19760, 'synset': 'tiger_lily.n.01', 'name': 'tiger_lily'}, {'id': 19761, 'synset': 'easter_lily.n.01', 'name': 'Easter_lily'}, {'id': 19762, 'synset': 'coast_lily.n.01', 'name': 'coast_lily'}, {'id': 19763, 'synset': "turk's-cap.n.02", 'name': "Turk's-cap"}, {'id': 19764, 'synset': 'michigan_lily.n.01', 'name': 'Michigan_lily'}, {'id': 19765, 'synset': 'leopard_lily.n.01', 'name': 'leopard_lily'}, {'id': 19766, 'synset': "turk's-cap.n.01", 'name': "Turk's-cap"}, {'id': 19767, 'synset': 'african_lily.n.01', 'name': 'African_lily'}, {'id': 19768, 'synset': 'colicroot.n.01', 'name': 'colicroot'}, {'id': 19769, 'synset': 'ague_root.n.01', 'name': 'ague_root'}, {'id': 19770, 'synset': 'yellow_colicroot.n.01', 'name': 'yellow_colicroot'}, {'id': 19771, 'synset': 'alliaceous_plant.n.01', 'name': 'alliaceous_plant'}, {'id': 19772, 'synset': "hooker's_onion.n.01", 'name': "Hooker's_onion"}, {'id': 19773, 'synset': 'wild_leek.n.02', 'name': 'wild_leek'}, {'id': 19774, 'synset': 'canada_garlic.n.01', 'name': 'Canada_garlic'}, {'id': 19775, 'synset': 'keeled_garlic.n.01', 'name': 'keeled_garlic'}, {'id': 19776, 'synset': 'shallot.n.02', 'name': 'shallot'}, {'id': 19777, 'synset': 'nodding_onion.n.01', 'name': 'nodding_onion'}, {'id': 19778, 'synset': 'welsh_onion.n.01', 'name': 'Welsh_onion'}, {'id': 19779, 'synset': 'red-skinned_onion.n.01', 'name': 'red-skinned_onion'}, {'id': 19780, 'synset': 'daffodil_garlic.n.01', 'name': 'daffodil_garlic'}, {'id': 19781, 'synset': 'few-flowered_leek.n.01', 'name': 'few-flowered_leek'}, {'id': 19782, 'synset': 'garlic.n.01', 'name': 'garlic'}, {'id': 19783, 'synset': 'sand_leek.n.01', 'name': 'sand_leek'}, {'id': 19784, 'synset': 'chives.n.01', 'name': 'chives'}, {'id': 19785, 'synset': 'crow_garlic.n.01', 'name': 'crow_garlic'}, {'id': 19786, 'synset': 'wild_garlic.n.01', 'name': 'wild_garlic'}, {'id': 19787, 'synset': 'garlic_chive.n.01', 'name': 'garlic_chive'}, {'id': 19788, 'synset': 'round-headed_leek.n.01', 'name': 'round-headed_leek'}, {'id': 19789, 'synset': 'three-cornered_leek.n.01', 'name': 'three-cornered_leek'}, {'id': 19790, 'synset': 'cape_aloe.n.01', 'name': 'cape_aloe'}, {'id': 19791, 'synset': 'kniphofia.n.01', 'name': 'kniphofia'}, {'id': 19792, 'synset': 'poker_plant.n.01', 'name': 'poker_plant'}, {'id': 19793, 'synset': 'red-hot_poker.n.01', 'name': 'red-hot_poker'}, {'id': 19794, 'synset': 'fly_poison.n.01', 'name': 'fly_poison'}, {'id': 19795, 'synset': 'amber_lily.n.01', 'name': 'amber_lily'}, {'id': 19796, 'synset': 'asparagus.n.01', 'name': 'asparagus'}, {'id': 19797, 'synset': 'asparagus_fern.n.01', 'name': 'asparagus_fern'}, {'id': 19798, 'synset': 'smilax.n.02', 'name': 'smilax'}, {'id': 19799, 'synset': 'asphodel.n.01', 'name': 'asphodel'}, {'id': 19800, 'synset': "jacob's_rod.n.01", 'name': "Jacob's_rod"}, {'id': 19801, 'synset': 'aspidistra.n.01', 'name': 'aspidistra'}, {'id': 19802, 'synset': 'coral_drops.n.01', 'name': 'coral_drops'}, {'id': 19803, 'synset': 'christmas_bells.n.01', 'name': 'Christmas_bells'}, {'id': 19804, 'synset': 'climbing_onion.n.01', 'name': 'climbing_onion'}, {'id': 19805, 'synset': 'mariposa.n.01', 'name': 'mariposa'}, {'id': 19806, 'synset': 'globe_lily.n.01', 'name': 'globe_lily'}, {'id': 19807, 'synset': "cat's-ear.n.01", 'name': "cat's-ear"}, {'id': 19808, 'synset': 'white_globe_lily.n.01', 'name': 'white_globe_lily'}, {'id': 19809, 'synset': 'yellow_globe_lily.n.01', 'name': 'yellow_globe_lily'}, {'id': 19810, 'synset': 'rose_globe_lily.n.01', 'name': 'rose_globe_lily'}, {'id': 19811, 'synset': 'star_tulip.n.01', 'name': 'star_tulip'}, {'id': 19812, 'synset': 'desert_mariposa_tulip.n.01', 'name': 'desert_mariposa_tulip'}, {'id': 19813, 'synset': 'yellow_mariposa_tulip.n.01', 'name': 'yellow_mariposa_tulip'}, {'id': 19814, 'synset': 'sagebrush_mariposa_tulip.n.01', 'name': 'sagebrush_mariposa_tulip'}, {'id': 19815, 'synset': 'sego_lily.n.01', 'name': 'sego_lily'}, {'id': 19816, 'synset': 'camas.n.01', 'name': 'camas'}, {'id': 19817, 'synset': 'common_camas.n.01', 'name': 'common_camas'}, {'id': 19818, 'synset': "leichtlin's_camas.n.01", 'name': "Leichtlin's_camas"}, {'id': 19819, 'synset': 'wild_hyacinth.n.02', 'name': 'wild_hyacinth'}, {'id': 19820, 'synset': 'dogtooth_violet.n.01', 'name': 'dogtooth_violet'}, {'id': 19821, 'synset': 'white_dogtooth_violet.n.01', 'name': 'white_dogtooth_violet'}, {'id': 19822, 'synset': "yellow_adder's_tongue.n.01", 'name': "yellow_adder's_tongue"}, {'id': 19823, 'synset': 'european_dogtooth.n.01', 'name': 'European_dogtooth'}, {'id': 19824, 'synset': 'fawn_lily.n.01', 'name': 'fawn_lily'}, {'id': 19825, 'synset': 'glacier_lily.n.01', 'name': 'glacier_lily'}, {'id': 19826, 'synset': 'avalanche_lily.n.01', 'name': 'avalanche_lily'}, {'id': 19827, 'synset': 'fritillary.n.01', 'name': 'fritillary'}, {'id': 19828, 'synset': 'mission_bells.n.02', 'name': 'mission_bells'}, {'id': 19829, 'synset': 'mission_bells.n.01', 'name': 'mission_bells'}, {'id': 19830, 'synset': 'stink_bell.n.01', 'name': 'stink_bell'}, {'id': 19831, 'synset': 'crown_imperial.n.01', 'name': 'crown_imperial'}, {'id': 19832, 'synset': 'white_fritillary.n.01', 'name': 'white_fritillary'}, {'id': 19833, 'synset': "snake's_head_fritillary.n.01", 'name': "snake's_head_fritillary"}, {'id': 19834, 'synset': 'adobe_lily.n.01', 'name': 'adobe_lily'}, {'id': 19835, 'synset': 'scarlet_fritillary.n.01', 'name': 'scarlet_fritillary'}, {'id': 19836, 'synset': 'tulip.n.01', 'name': 'tulip'}, {'id': 19837, 'synset': 'dwarf_tulip.n.01', 'name': 'dwarf_tulip'}, {'id': 19838, 'synset': 'lady_tulip.n.01', 'name': 'lady_tulip'}, {'id': 19839, 'synset': 'tulipa_gesneriana.n.01', 'name': 'Tulipa_gesneriana'}, {'id': 19840, 'synset': 'cottage_tulip.n.01', 'name': 'cottage_tulip'}, {'id': 19841, 'synset': 'darwin_tulip.n.01', 'name': 'Darwin_tulip'}, {'id': 19842, 'synset': 'gloriosa.n.01', 'name': 'gloriosa'}, {'id': 19843, 'synset': 'lemon_lily.n.01', 'name': 'lemon_lily'}, {'id': 19844, 'synset': 'common_hyacinth.n.01', 'name': 'common_hyacinth'}, {'id': 19845, 'synset': 'roman_hyacinth.n.01', 'name': 'Roman_hyacinth'}, {'id': 19846, 'synset': 'summer_hyacinth.n.01', 'name': 'summer_hyacinth'}, {'id': 19847, 'synset': 'star-of-bethlehem.n.01', 'name': 'star-of-Bethlehem'}, {'id': 19848, 'synset': 'bath_asparagus.n.01', 'name': 'bath_asparagus'}, {'id': 19849, 'synset': 'grape_hyacinth.n.01', 'name': 'grape_hyacinth'}, {'id': 19850, 'synset': 'common_grape_hyacinth.n.01', 'name': 'common_grape_hyacinth'}, {'id': 19851, 'synset': 'tassel_hyacinth.n.01', 'name': 'tassel_hyacinth'}, {'id': 19852, 'synset': 'scilla.n.01', 'name': 'scilla'}, {'id': 19853, 'synset': 'spring_squill.n.01', 'name': 'spring_squill'}, {'id': 19854, 'synset': 'false_asphodel.n.01', 'name': 'false_asphodel'}, {'id': 19855, 'synset': 'scotch_asphodel.n.01', 'name': 'Scotch_asphodel'}, {'id': 19856, 'synset': 'sea_squill.n.01', 'name': 'sea_squill'}, {'id': 19857, 'synset': 'squill.n.01', 'name': 'squill'}, {'id': 19858, 'synset': "butcher's_broom.n.01", 'name': "butcher's_broom"}, {'id': 19859, 'synset': 'bog_asphodel.n.01', 'name': 'bog_asphodel'}, {'id': 19860, 'synset': 'european_bog_asphodel.n.01', 'name': 'European_bog_asphodel'}, {'id': 19861, 'synset': 'american_bog_asphodel.n.01', 'name': 'American_bog_asphodel'}, {'id': 19862, 'synset': 'hellebore.n.01', 'name': 'hellebore'}, {'id': 19863, 'synset': 'white_hellebore.n.01', 'name': 'white_hellebore'}, {'id': 19864, 'synset': 'squaw_grass.n.01', 'name': 'squaw_grass'}, {'id': 19865, 'synset': 'death_camas.n.01', 'name': 'death_camas'}, {'id': 19866, 'synset': 'alkali_grass.n.01', 'name': 'alkali_grass'}, {'id': 19867, 'synset': 'white_camas.n.01', 'name': 'white_camas'}, {'id': 19868, 'synset': 'poison_camas.n.01', 'name': 'poison_camas'}, {'id': 19869, 'synset': 'grassy_death_camas.n.01', 'name': 'grassy_death_camas'}, {'id': 19870, 'synset': 'prairie_wake-robin.n.01', 'name': 'prairie_wake-robin'}, {'id': 19871, 'synset': 'dwarf-white_trillium.n.01', 'name': 'dwarf-white_trillium'}, {'id': 19872, 'synset': 'herb_paris.n.01', 'name': 'herb_Paris'}, {'id': 19873, 'synset': 'sarsaparilla.n.01', 'name': 'sarsaparilla'}, {'id': 19874, 'synset': 'bullbrier.n.01', 'name': 'bullbrier'}, {'id': 19875, 'synset': 'rough_bindweed.n.01', 'name': 'rough_bindweed'}, {'id': 19876, 'synset': 'clintonia.n.01', 'name': 'clintonia'}, {'id': 19877, 'synset': 'false_lily_of_the_valley.n.02', 'name': 'false_lily_of_the_valley'}, {'id': 19878, 'synset': 'false_lily_of_the_valley.n.01', 'name': 'false_lily_of_the_valley'}, {'id': 19879, 'synset': "solomon's-seal.n.01", 'name': "Solomon's-seal"}, {'id': 19880, 'synset': "great_solomon's-seal.n.01", 'name': "great_Solomon's-seal"}, {'id': 19881, 'synset': 'bellwort.n.01', 'name': 'bellwort'}, {'id': 19882, 'synset': 'strawflower.n.01', 'name': 'strawflower'}, {'id': 19883, 'synset': 'pia.n.01', 'name': 'pia'}, {'id': 19884, 'synset': 'agave.n.01', 'name': 'agave'}, {'id': 19885, 'synset': 'american_agave.n.01', 'name': 'American_agave'}, {'id': 19886, 'synset': 'sisal.n.02', 'name': 'sisal'}, {'id': 19887, 'synset': 'maguey.n.02', 'name': 'maguey'}, {'id': 19888, 'synset': 'maguey.n.01', 'name': 'maguey'}, {'id': 19889, 'synset': 'agave_tequilana.n.01', 'name': 'Agave_tequilana'}, {'id': 19890, 'synset': 'cabbage_tree.n.03', 'name': 'cabbage_tree'}, {'id': 19891, 'synset': 'dracaena.n.01', 'name': 'dracaena'}, {'id': 19892, 'synset': 'tuberose.n.01', 'name': 'tuberose'}, {'id': 19893, 'synset': 'sansevieria.n.01', 'name': 'sansevieria'}, {'id': 19894, 'synset': 'african_bowstring_hemp.n.01', 'name': 'African_bowstring_hemp'}, {'id': 19895, 'synset': 'ceylon_bowstring_hemp.n.01', 'name': 'Ceylon_bowstring_hemp'}, {'id': 19896, 'synset': "mother-in-law's_tongue.n.01", 'name': "mother-in-law's_tongue"}, {'id': 19897, 'synset': 'spanish_bayonet.n.02', 'name': 'Spanish_bayonet'}, {'id': 19898, 'synset': 'spanish_bayonet.n.01', 'name': 'Spanish_bayonet'}, {'id': 19899, 'synset': 'joshua_tree.n.01', 'name': 'Joshua_tree'}, {'id': 19900, 'synset': 'soapweed.n.01', 'name': 'soapweed'}, {'id': 19901, 'synset': "adam's_needle.n.01", 'name': "Adam's_needle"}, {'id': 19902, 'synset': 'bear_grass.n.02', 'name': 'bear_grass'}, {'id': 19903, 'synset': 'spanish_dagger.n.01', 'name': 'Spanish_dagger'}, {'id': 19904, 'synset': "our_lord's_candle.n.01", 'name': "Our_Lord's_candle"}, {'id': 19905, 'synset': 'water_shamrock.n.01', 'name': 'water_shamrock'}, {'id': 19906, 'synset': 'butterfly_bush.n.01', 'name': 'butterfly_bush'}, {'id': 19907, 'synset': 'yellow_jasmine.n.01', 'name': 'yellow_jasmine'}, {'id': 19908, 'synset': 'flax.n.02', 'name': 'flax'}, {'id': 19909, 'synset': 'calabar_bean.n.01', 'name': 'calabar_bean'}, {'id': 19910, 'synset': 'bonduc.n.02', 'name': 'bonduc'}, {'id': 19911, 'synset': 'divi-divi.n.02', 'name': 'divi-divi'}, {'id': 19912, 'synset': 'mysore_thorn.n.01', 'name': 'Mysore_thorn'}, {'id': 19913, 'synset': 'brazilian_ironwood.n.01', 'name': 'brazilian_ironwood'}, {'id': 19914, 'synset': 'bird_of_paradise.n.01', 'name': 'bird_of_paradise'}, {'id': 19915, 'synset': 'shingle_tree.n.01', 'name': 'shingle_tree'}, {'id': 19916, 'synset': 'mountain_ebony.n.01', 'name': 'mountain_ebony'}, {'id': 19917, 'synset': 'msasa.n.01', 'name': 'msasa'}, {'id': 19918, 'synset': 'cassia.n.01', 'name': 'cassia'}, {'id': 19919, 'synset': 'golden_shower_tree.n.01', 'name': 'golden_shower_tree'}, {'id': 19920, 'synset': 'pink_shower.n.01', 'name': 'pink_shower'}, {'id': 19921, 'synset': 'rainbow_shower.n.01', 'name': 'rainbow_shower'}, {'id': 19922, 'synset': 'horse_cassia.n.01', 'name': 'horse_cassia'}, {'id': 19923, 'synset': 'carob.n.02', 'name': 'carob'}, {'id': 19924, 'synset': 'carob.n.01', 'name': 'carob'}, {'id': 19925, 'synset': 'paloverde.n.01', 'name': 'paloverde'}, {'id': 19926, 'synset': 'royal_poinciana.n.01', 'name': 'royal_poinciana'}, {'id': 19927, 'synset': 'locust_tree.n.01', 'name': 'locust_tree'}, {'id': 19928, 'synset': 'water_locust.n.01', 'name': 'water_locust'}, {'id': 19929, 'synset': 'honey_locust.n.01', 'name': 'honey_locust'}, {'id': 19930, 'synset': 'kentucky_coffee_tree.n.01', 'name': 'Kentucky_coffee_tree'}, {'id': 19931, 'synset': 'logwood.n.02', 'name': 'logwood'}, {'id': 19932, 'synset': 'jerusalem_thorn.n.03', 'name': 'Jerusalem_thorn'}, {'id': 19933, 'synset': 'palo_verde.n.01', 'name': 'palo_verde'}, {'id': 19934, 'synset': 'dalmatian_laburnum.n.01', 'name': 'Dalmatian_laburnum'}, {'id': 19935, 'synset': 'senna.n.01', 'name': 'senna'}, {'id': 19936, 'synset': 'avaram.n.01', 'name': 'avaram'}, {'id': 19937, 'synset': 'alexandria_senna.n.01', 'name': 'Alexandria_senna'}, {'id': 19938, 'synset': 'wild_senna.n.01', 'name': 'wild_senna'}, {'id': 19939, 'synset': 'sicklepod.n.01', 'name': 'sicklepod'}, {'id': 19940, 'synset': 'coffee_senna.n.01', 'name': 'coffee_senna'}, {'id': 19941, 'synset': 'tamarind.n.01', 'name': 'tamarind'}, {'id': 19942, 'synset': 'false_indigo.n.03', 'name': 'false_indigo'}, {'id': 19943, 'synset': 'false_indigo.n.02', 'name': 'false_indigo'}, {'id': 19944, 'synset': 'hog_peanut.n.01', 'name': 'hog_peanut'}, {'id': 19945, 'synset': 'angelim.n.01', 'name': 'angelim'}, {'id': 19946, 'synset': 'cabbage_bark.n.01', 'name': 'cabbage_bark'}, {'id': 19947, 'synset': 'kidney_vetch.n.01', 'name': 'kidney_vetch'}, {'id': 19948, 'synset': 'groundnut.n.01', 'name': 'groundnut'}, {'id': 19949, 'synset': 'rooibos.n.01', 'name': 'rooibos'}, {'id': 19950, 'synset': 'milk_vetch.n.01', 'name': 'milk_vetch'}, {'id': 19951, 'synset': 'alpine_milk_vetch.n.01', 'name': 'alpine_milk_vetch'}, {'id': 19952, 'synset': 'purple_milk_vetch.n.01', 'name': 'purple_milk_vetch'}, {'id': 19953, 'synset': 'camwood.n.01', 'name': 'camwood'}, {'id': 19954, 'synset': 'wild_indigo.n.01', 'name': 'wild_indigo'}, {'id': 19955, 'synset': 'blue_false_indigo.n.01', 'name': 'blue_false_indigo'}, {'id': 19956, 'synset': 'white_false_indigo.n.01', 'name': 'white_false_indigo'}, {'id': 19957, 'synset': 'indigo_broom.n.01', 'name': 'indigo_broom'}, {'id': 19958, 'synset': 'dhak.n.01', 'name': 'dhak'}, {'id': 19959, 'synset': 'pigeon_pea.n.01', 'name': 'pigeon_pea'}, {'id': 19960, 'synset': 'sword_bean.n.01', 'name': 'sword_bean'}, {'id': 19961, 'synset': 'pea_tree.n.01', 'name': 'pea_tree'}, {'id': 19962, 'synset': 'siberian_pea_tree.n.01', 'name': 'Siberian_pea_tree'}, {'id': 19963, 'synset': 'chinese_pea_tree.n.01', 'name': 'Chinese_pea_tree'}, {'id': 19964, 'synset': 'moreton_bay_chestnut.n.01', 'name': 'Moreton_Bay_chestnut'}, {'id': 19965, 'synset': 'butterfly_pea.n.03', 'name': 'butterfly_pea'}, {'id': 19966, 'synset': 'judas_tree.n.01', 'name': 'Judas_tree'}, {'id': 19967, 'synset': 'redbud.n.01', 'name': 'redbud'}, {'id': 19968, 'synset': 'western_redbud.n.01', 'name': 'western_redbud'}, {'id': 19969, 'synset': 'tagasaste.n.01', 'name': 'tagasaste'}, {'id': 19970, 'synset': 'weeping_tree_broom.n.01', 'name': 'weeping_tree_broom'}, {'id': 19971, 'synset': 'flame_pea.n.01', 'name': 'flame_pea'}, {'id': 19972, 'synset': 'chickpea.n.02', 'name': 'chickpea'}, {'id': 19973, 'synset': 'kentucky_yellowwood.n.01', 'name': 'Kentucky_yellowwood'}, {'id': 19974, 'synset': 'glory_pea.n.01', 'name': 'glory_pea'}, {'id': 19975, 'synset': 'desert_pea.n.01', 'name': 'desert_pea'}, {'id': 19976, 'synset': "parrot's_beak.n.01", 'name': "parrot's_beak"}, {'id': 19977, 'synset': 'butterfly_pea.n.02', 'name': 'butterfly_pea'}, {'id': 19978, 'synset': 'blue_pea.n.01', 'name': 'blue_pea'}, {'id': 19979, 'synset': 'telegraph_plant.n.01', 'name': 'telegraph_plant'}, {'id': 19980, 'synset': 'bladder_senna.n.01', 'name': 'bladder_senna'}, {'id': 19981, 'synset': 'axseed.n.01', 'name': 'axseed'}, {'id': 19982, 'synset': 'crotalaria.n.01', 'name': 'crotalaria'}, {'id': 19983, 'synset': 'guar.n.01', 'name': 'guar'}, {'id': 19984, 'synset': 'white_broom.n.01', 'name': 'white_broom'}, {'id': 19985, 'synset': 'common_broom.n.01', 'name': 'common_broom'}, {'id': 19986, 'synset': 'rosewood.n.02', 'name': 'rosewood'}, {'id': 19987, 'synset': 'indian_blackwood.n.01', 'name': 'Indian_blackwood'}, {'id': 19988, 'synset': 'sissoo.n.01', 'name': 'sissoo'}, {'id': 19989, 'synset': 'kingwood.n.02', 'name': 'kingwood'}, {'id': 19990, 'synset': 'brazilian_rosewood.n.01', 'name': 'Brazilian_rosewood'}, {'id': 19991, 'synset': 'cocobolo.n.01', 'name': 'cocobolo'}, {'id': 19992, 'synset': 'blackwood.n.02', 'name': 'blackwood'}, {'id': 19993, 'synset': 'bitter_pea.n.01', 'name': 'bitter_pea'}, {'id': 19994, 'synset': 'derris.n.01', 'name': 'derris'}, {'id': 19995, 'synset': 'derris_root.n.01', 'name': 'derris_root'}, {'id': 19996, 'synset': 'prairie_mimosa.n.01', 'name': 'prairie_mimosa'}, {'id': 19997, 'synset': 'tick_trefoil.n.01', 'name': 'tick_trefoil'}, {'id': 19998, 'synset': 'beggarweed.n.01', 'name': 'beggarweed'}, {'id': 19999, 'synset': 'australian_pea.n.01', 'name': 'Australian_pea'}, {'id': 20000, 'synset': 'coral_tree.n.01', 'name': 'coral_tree'}, {'id': 20001, 'synset': 'kaffir_boom.n.02', 'name': 'kaffir_boom'}, {'id': 20002, 'synset': 'coral_bean_tree.n.01', 'name': 'coral_bean_tree'}, {'id': 20003, 'synset': 'ceibo.n.01', 'name': 'ceibo'}, {'id': 20004, 'synset': 'kaffir_boom.n.01', 'name': 'kaffir_boom'}, {'id': 20005, 'synset': 'indian_coral_tree.n.01', 'name': 'Indian_coral_tree'}, {'id': 20006, 'synset': 'cork_tree.n.02', 'name': 'cork_tree'}, {'id': 20007, 'synset': "goat's_rue.n.02", 'name': "goat's_rue"}, {'id': 20008, 'synset': 'poison_bush.n.01', 'name': 'poison_bush'}, {'id': 20009, 'synset': 'spanish_broom.n.02', 'name': 'Spanish_broom'}, {'id': 20010, 'synset': 'woodwaxen.n.01', 'name': 'woodwaxen'}, {'id': 20011, 'synset': 'chanar.n.01', 'name': 'chanar'}, {'id': 20012, 'synset': 'gliricidia.n.01', 'name': 'gliricidia'}, {'id': 20013, 'synset': 'soy.n.01', 'name': 'soy'}, {'id': 20014, 'synset': 'licorice.n.01', 'name': 'licorice'}, {'id': 20015, 'synset': 'wild_licorice.n.02', 'name': 'wild_licorice'}, {'id': 20016, 'synset': 'licorice_root.n.01', 'name': 'licorice_root'}, {'id': 20017, 'synset': 'western_australia_coral_pea.n.01', 'name': 'Western_Australia_coral_pea'}, {'id': 20018, 'synset': 'sweet_vetch.n.01', 'name': 'sweet_vetch'}, {'id': 20019, 'synset': 'french_honeysuckle.n.02', 'name': 'French_honeysuckle'}, {'id': 20020, 'synset': 'anil.n.02', 'name': 'anil'}, {'id': 20021, 'synset': 'scarlet_runner.n.02', 'name': 'scarlet_runner'}, {'id': 20022, 'synset': 'hyacinth_bean.n.01', 'name': 'hyacinth_bean'}, {'id': 20023, 'synset': 'scotch_laburnum.n.01', 'name': 'Scotch_laburnum'}, {'id': 20024, 'synset': 'vetchling.n.01', 'name': 'vetchling'}, {'id': 20025, 'synset': 'wild_pea.n.01', 'name': 'wild_pea'}, {'id': 20026, 'synset': 'everlasting_pea.n.01', 'name': 'everlasting_pea'}, {'id': 20027, 'synset': 'beach_pea.n.01', 'name': 'beach_pea'}, {'id': 20028, 'synset': 'grass_vetch.n.01', 'name': 'grass_vetch'}, {'id': 20029, 'synset': 'marsh_pea.n.01', 'name': 'marsh_pea'}, {'id': 20030, 'synset': 'common_vetchling.n.01', 'name': 'common_vetchling'}, {'id': 20031, 'synset': 'grass_pea.n.01', 'name': 'grass_pea'}, {'id': 20032, 'synset': 'tangier_pea.n.01', 'name': 'Tangier_pea'}, {'id': 20033, 'synset': 'heath_pea.n.01', 'name': 'heath_pea'}, {'id': 20034, 'synset': 'bicolor_lespediza.n.01', 'name': 'bicolor_lespediza'}, {'id': 20035, 'synset': 'japanese_clover.n.01', 'name': 'japanese_clover'}, {'id': 20036, 'synset': 'korean_lespedeza.n.01', 'name': 'Korean_lespedeza'}, {'id': 20037, 'synset': 'sericea_lespedeza.n.01', 'name': 'sericea_lespedeza'}, {'id': 20038, 'synset': 'lentil.n.03', 'name': 'lentil'}, {'id': 20039, 'synset': 'lentil.n.02', 'name': 'lentil'}, {'id': 20040, 'synset': "prairie_bird's-foot_trefoil.n.01", 'name': "prairie_bird's-foot_trefoil"}, {'id': 20041, 'synset': "bird's_foot_trefoil.n.02", 'name': "bird's_foot_trefoil"}, {'id': 20042, 'synset': 'winged_pea.n.02', 'name': 'winged_pea'}, {'id': 20043, 'synset': 'lupine.n.01', 'name': 'lupine'}, {'id': 20044, 'synset': 'white_lupine.n.01', 'name': 'white_lupine'}, {'id': 20045, 'synset': 'tree_lupine.n.01', 'name': 'tree_lupine'}, {'id': 20046, 'synset': 'wild_lupine.n.01', 'name': 'wild_lupine'}, {'id': 20047, 'synset': 'bluebonnet.n.01', 'name': 'bluebonnet'}, {'id': 20048, 'synset': 'texas_bluebonnet.n.01', 'name': 'Texas_bluebonnet'}, {'id': 20049, 'synset': 'medic.n.01', 'name': 'medic'}, {'id': 20050, 'synset': 'moon_trefoil.n.01', 'name': 'moon_trefoil'}, {'id': 20051, 'synset': 'sickle_alfalfa.n.01', 'name': 'sickle_alfalfa'}, {'id': 20052, 'synset': 'calvary_clover.n.01', 'name': 'Calvary_clover'}, {'id': 20053, 'synset': 'black_medick.n.01', 'name': 'black_medick'}, {'id': 20054, 'synset': 'alfalfa.n.01', 'name': 'alfalfa'}, {'id': 20055, 'synset': 'millettia.n.01', 'name': 'millettia'}, {'id': 20056, 'synset': 'mucuna.n.01', 'name': 'mucuna'}, {'id': 20057, 'synset': 'cowage.n.02', 'name': 'cowage'}, {'id': 20058, 'synset': 'tolu_tree.n.01', 'name': 'tolu_tree'}, {'id': 20059, 'synset': 'peruvian_balsam.n.01', 'name': 'Peruvian_balsam'}, {'id': 20060, 'synset': 'sainfoin.n.01', 'name': 'sainfoin'}, {'id': 20061, 'synset': 'restharrow.n.02', 'name': 'restharrow'}, {'id': 20062, 'synset': 'bead_tree.n.01', 'name': 'bead_tree'}, {'id': 20063, 'synset': 'jumby_bead.n.01', 'name': 'jumby_bead'}, {'id': 20064, 'synset': 'locoweed.n.01', 'name': 'locoweed'}, {'id': 20065, 'synset': 'purple_locoweed.n.01', 'name': 'purple_locoweed'}, {'id': 20066, 'synset': 'tumbleweed.n.01', 'name': 'tumbleweed'}, {'id': 20067, 'synset': 'yam_bean.n.02', 'name': 'yam_bean'}, {'id': 20068, 'synset': 'shamrock_pea.n.01', 'name': 'shamrock_pea'}, {'id': 20069, 'synset': 'pole_bean.n.01', 'name': 'pole_bean'}, {'id': 20070, 'synset': 'kidney_bean.n.01', 'name': 'kidney_bean'}, {'id': 20071, 'synset': 'haricot.n.01', 'name': 'haricot'}, {'id': 20072, 'synset': 'wax_bean.n.01', 'name': 'wax_bean'}, {'id': 20073, 'synset': 'scarlet_runner.n.01', 'name': 'scarlet_runner'}, {'id': 20074, 'synset': 'lima_bean.n.02', 'name': 'lima_bean'}, {'id': 20075, 'synset': 'sieva_bean.n.01', 'name': 'sieva_bean'}, {'id': 20076, 'synset': 'tepary_bean.n.01', 'name': 'tepary_bean'}, {'id': 20077, 'synset': 'chaparral_pea.n.01', 'name': 'chaparral_pea'}, {'id': 20078, 'synset': 'jamaica_dogwood.n.01', 'name': 'Jamaica_dogwood'}, {'id': 20079, 'synset': 'pea.n.02', 'name': 'pea'}, {'id': 20080, 'synset': 'garden_pea.n.01', 'name': 'garden_pea'}, {'id': 20081, 'synset': 'edible-pod_pea.n.01', 'name': 'edible-pod_pea'}, {'id': 20082, 'synset': 'sugar_snap_pea.n.01', 'name': 'sugar_snap_pea'}, {'id': 20083, 'synset': 'field_pea.n.02', 'name': 'field_pea'}, {'id': 20084, 'synset': 'field_pea.n.01', 'name': 'field_pea'}, {'id': 20085, 'synset': 'common_flat_pea.n.01', 'name': 'common_flat_pea'}, {'id': 20086, 'synset': 'quira.n.02', 'name': 'quira'}, {'id': 20087, 'synset': 'roble.n.01', 'name': 'roble'}, {'id': 20088, 'synset': 'panama_redwood_tree.n.01', 'name': 'Panama_redwood_tree'}, {'id': 20089, 'synset': 'indian_beech.n.01', 'name': 'Indian_beech'}, {'id': 20090, 'synset': 'winged_bean.n.01', 'name': 'winged_bean'}, {'id': 20091, 'synset': 'breadroot.n.01', 'name': 'breadroot'}, {'id': 20092, 'synset': 'bloodwood_tree.n.01', 'name': 'bloodwood_tree'}, {'id': 20093, 'synset': 'kino.n.02', 'name': 'kino'}, {'id': 20094, 'synset': 'red_sandalwood.n.02', 'name': 'red_sandalwood'}, {'id': 20095, 'synset': 'kudzu.n.01', 'name': 'kudzu'}, {'id': 20096, 'synset': 'bristly_locust.n.01', 'name': 'bristly_locust'}, {'id': 20097, 'synset': 'black_locust.n.02', 'name': 'black_locust'}, {'id': 20098, 'synset': 'clammy_locust.n.01', 'name': 'clammy_locust'}, {'id': 20099, 'synset': 'carib_wood.n.01', 'name': 'carib_wood'}, {'id': 20100, 'synset': 'colorado_river_hemp.n.01', 'name': 'Colorado_River_hemp'}, {'id': 20101, 'synset': 'scarlet_wisteria_tree.n.01', 'name': 'scarlet_wisteria_tree'}, {'id': 20102, 'synset': 'japanese_pagoda_tree.n.01', 'name': 'Japanese_pagoda_tree'}, {'id': 20103, 'synset': 'mescal_bean.n.01', 'name': 'mescal_bean'}, {'id': 20104, 'synset': 'kowhai.n.01', 'name': 'kowhai'}, {'id': 20105, 'synset': 'jade_vine.n.01', 'name': 'jade_vine'}, {'id': 20106, 'synset': 'hoary_pea.n.01', 'name': 'hoary_pea'}, {'id': 20107, 'synset': 'bastard_indigo.n.01', 'name': 'bastard_indigo'}, {'id': 20108, 'synset': 'catgut.n.01', 'name': 'catgut'}, {'id': 20109, 'synset': 'bush_pea.n.01', 'name': 'bush_pea'}, {'id': 20110, 'synset': 'false_lupine.n.01', 'name': 'false_lupine'}, {'id': 20111, 'synset': 'carolina_lupine.n.01', 'name': 'Carolina_lupine'}, {'id': 20112, 'synset': 'tipu.n.01', 'name': 'tipu'}, {'id': 20113, 'synset': "bird's_foot_trefoil.n.01", 'name': "bird's_foot_trefoil"}, {'id': 20114, 'synset': 'fenugreek.n.01', 'name': 'fenugreek'}, {'id': 20115, 'synset': 'gorse.n.01', 'name': 'gorse'}, {'id': 20116, 'synset': 'vetch.n.01', 'name': 'vetch'}, {'id': 20117, 'synset': 'tufted_vetch.n.01', 'name': 'tufted_vetch'}, {'id': 20118, 'synset': 'broad_bean.n.01', 'name': 'broad_bean'}, {'id': 20119, 'synset': 'bitter_betch.n.01', 'name': 'bitter_betch'}, {'id': 20120, 'synset': 'bush_vetch.n.01', 'name': 'bush_vetch'}, {'id': 20121, 'synset': 'moth_bean.n.01', 'name': 'moth_bean'}, {'id': 20122, 'synset': 'snailflower.n.01', 'name': 'snailflower'}, {'id': 20123, 'synset': 'mung.n.01', 'name': 'mung'}, {'id': 20124, 'synset': 'cowpea.n.02', 'name': 'cowpea'}, {'id': 20125, 'synset': 'cowpea.n.01', 'name': 'cowpea'}, {'id': 20126, 'synset': 'asparagus_bean.n.01', 'name': 'asparagus_bean'}, {'id': 20127, 'synset': 'swamp_oak.n.01', 'name': 'swamp_oak'}, {'id': 20128, 'synset': 'keurboom.n.02', 'name': 'keurboom'}, {'id': 20129, 'synset': 'keurboom.n.01', 'name': 'keurboom'}, {'id': 20130, 'synset': 'japanese_wistaria.n.01', 'name': 'Japanese_wistaria'}, {'id': 20131, 'synset': 'chinese_wistaria.n.01', 'name': 'Chinese_wistaria'}, {'id': 20132, 'synset': 'american_wistaria.n.01', 'name': 'American_wistaria'}, {'id': 20133, 'synset': 'silky_wisteria.n.01', 'name': 'silky_wisteria'}, {'id': 20134, 'synset': 'palm.n.03', 'name': 'palm'}, {'id': 20135, 'synset': 'sago_palm.n.01', 'name': 'sago_palm'}, {'id': 20136, 'synset': 'feather_palm.n.01', 'name': 'feather_palm'}, {'id': 20137, 'synset': 'fan_palm.n.01', 'name': 'fan_palm'}, {'id': 20138, 'synset': 'palmetto.n.01', 'name': 'palmetto'}, {'id': 20139, 'synset': 'coyol.n.01', 'name': 'coyol'}, {'id': 20140, 'synset': 'grugru.n.01', 'name': 'grugru'}, {'id': 20141, 'synset': 'areca.n.01', 'name': 'areca'}, {'id': 20142, 'synset': 'betel_palm.n.01', 'name': 'betel_palm'}, {'id': 20143, 'synset': 'sugar_palm.n.01', 'name': 'sugar_palm'}, {'id': 20144, 'synset': 'piassava_palm.n.01', 'name': 'piassava_palm'}, {'id': 20145, 'synset': 'coquilla_nut.n.01', 'name': 'coquilla_nut'}, {'id': 20146, 'synset': 'palmyra.n.01', 'name': 'palmyra'}, {'id': 20147, 'synset': 'calamus.n.01', 'name': 'calamus'}, {'id': 20148, 'synset': 'rattan.n.01', 'name': 'rattan'}, {'id': 20149, 'synset': 'lawyer_cane.n.01', 'name': 'lawyer_cane'}, {'id': 20150, 'synset': 'fishtail_palm.n.01', 'name': 'fishtail_palm'}, {'id': 20151, 'synset': 'wine_palm.n.01', 'name': 'wine_palm'}, {'id': 20152, 'synset': 'wax_palm.n.03', 'name': 'wax_palm'}, {'id': 20153, 'synset': 'coconut.n.03', 'name': 'coconut'}, {'id': 20154, 'synset': 'carnauba.n.02', 'name': 'carnauba'}, {'id': 20155, 'synset': 'caranday.n.01', 'name': 'caranday'}, {'id': 20156, 'synset': 'corozo.n.01', 'name': 'corozo'}, {'id': 20157, 'synset': 'gebang_palm.n.01', 'name': 'gebang_palm'}, {'id': 20158, 'synset': 'latanier.n.01', 'name': 'latanier'}, {'id': 20159, 'synset': 'talipot.n.01', 'name': 'talipot'}, {'id': 20160, 'synset': 'oil_palm.n.01', 'name': 'oil_palm'}, {'id': 20161, 'synset': 'african_oil_palm.n.01', 'name': 'African_oil_palm'}, {'id': 20162, 'synset': 'american_oil_palm.n.01', 'name': 'American_oil_palm'}, {'id': 20163, 'synset': 'palm_nut.n.01', 'name': 'palm_nut'}, {'id': 20164, 'synset': 'cabbage_palm.n.04', 'name': 'cabbage_palm'}, {'id': 20165, 'synset': 'cabbage_palm.n.03', 'name': 'cabbage_palm'}, {'id': 20166, 'synset': 'true_sago_palm.n.01', 'name': 'true_sago_palm'}, {'id': 20167, 'synset': 'nipa_palm.n.01', 'name': 'nipa_palm'}, {'id': 20168, 'synset': 'babassu.n.01', 'name': 'babassu'}, {'id': 20169, 'synset': 'babassu_nut.n.01', 'name': 'babassu_nut'}, {'id': 20170, 'synset': 'cohune_palm.n.01', 'name': 'cohune_palm'}, {'id': 20171, 'synset': 'cohune_nut.n.01', 'name': 'cohune_nut'}, {'id': 20172, 'synset': 'date_palm.n.01', 'name': 'date_palm'}, {'id': 20173, 'synset': 'ivory_palm.n.01', 'name': 'ivory_palm'}, {'id': 20174, 'synset': 'raffia_palm.n.01', 'name': 'raffia_palm'}, {'id': 20175, 'synset': 'bamboo_palm.n.02', 'name': 'bamboo_palm'}, {'id': 20176, 'synset': 'lady_palm.n.01', 'name': 'lady_palm'}, {'id': 20177, 'synset': 'miniature_fan_palm.n.01', 'name': 'miniature_fan_palm'}, {'id': 20178, 'synset': 'reed_rhapis.n.01', 'name': 'reed_rhapis'}, {'id': 20179, 'synset': 'royal_palm.n.01', 'name': 'royal_palm'}, {'id': 20180, 'synset': 'cabbage_palm.n.02', 'name': 'cabbage_palm'}, {'id': 20181, 'synset': 'cabbage_palmetto.n.01', 'name': 'cabbage_palmetto'}, {'id': 20182, 'synset': 'saw_palmetto.n.01', 'name': 'saw_palmetto'}, {'id': 20183, 'synset': 'thatch_palm.n.01', 'name': 'thatch_palm'}, {'id': 20184, 'synset': 'key_palm.n.01', 'name': 'key_palm'}, {'id': 20185, 'synset': 'english_plantain.n.01', 'name': 'English_plantain'}, {'id': 20186, 'synset': 'broad-leaved_plantain.n.02', 'name': 'broad-leaved_plantain'}, {'id': 20187, 'synset': 'hoary_plantain.n.02', 'name': 'hoary_plantain'}, {'id': 20188, 'synset': 'fleawort.n.01', 'name': 'fleawort'}, {'id': 20189, 'synset': "rugel's_plantain.n.01", 'name': "rugel's_plantain"}, {'id': 20190, 'synset': 'hoary_plantain.n.01', 'name': 'hoary_plantain'}, {'id': 20191, 'synset': 'buckwheat.n.01', 'name': 'buckwheat'}, {'id': 20192, 'synset': "prince's-feather.n.01", 'name': "prince's-feather"}, {'id': 20193, 'synset': 'eriogonum.n.01', 'name': 'eriogonum'}, {'id': 20194, 'synset': 'umbrella_plant.n.02', 'name': 'umbrella_plant'}, {'id': 20195, 'synset': 'wild_buckwheat.n.01', 'name': 'wild_buckwheat'}, {'id': 20196, 'synset': 'rhubarb.n.02', 'name': 'rhubarb'}, {'id': 20197, 'synset': 'himalayan_rhubarb.n.01', 'name': 'Himalayan_rhubarb'}, {'id': 20198, 'synset': 'pie_plant.n.01', 'name': 'pie_plant'}, {'id': 20199, 'synset': 'chinese_rhubarb.n.01', 'name': 'Chinese_rhubarb'}, {'id': 20200, 'synset': 'sour_dock.n.01', 'name': 'sour_dock'}, {'id': 20201, 'synset': 'sheep_sorrel.n.01', 'name': 'sheep_sorrel'}, {'id': 20202, 'synset': 'bitter_dock.n.01', 'name': 'bitter_dock'}, {'id': 20203, 'synset': 'french_sorrel.n.01', 'name': 'French_sorrel'}, {'id': 20204, 'synset': 'yellow-eyed_grass.n.01', 'name': 'yellow-eyed_grass'}, {'id': 20205, 'synset': 'commelina.n.01', 'name': 'commelina'}, {'id': 20206, 'synset': 'spiderwort.n.01', 'name': 'spiderwort'}, {'id': 20207, 'synset': 'pineapple.n.01', 'name': 'pineapple'}, {'id': 20208, 'synset': 'pipewort.n.01', 'name': 'pipewort'}, {'id': 20209, 'synset': 'water_hyacinth.n.01', 'name': 'water_hyacinth'}, {'id': 20210, 'synset': 'water_star_grass.n.01', 'name': 'water_star_grass'}, {'id': 20211, 'synset': 'naiad.n.01', 'name': 'naiad'}, {'id': 20212, 'synset': 'water_plantain.n.01', 'name': 'water_plantain'}, {'id': 20213, 'synset': 'narrow-leaved_water_plantain.n.01', 'name': 'narrow-leaved_water_plantain'}, {'id': 20214, 'synset': 'hydrilla.n.01', 'name': 'hydrilla'}, {'id': 20215, 'synset': 'american_frogbit.n.01', 'name': 'American_frogbit'}, {'id': 20216, 'synset': 'waterweed.n.01', 'name': 'waterweed'}, {'id': 20217, 'synset': 'canadian_pondweed.n.01', 'name': 'Canadian_pondweed'}, {'id': 20218, 'synset': 'tape_grass.n.01', 'name': 'tape_grass'}, {'id': 20219, 'synset': 'pondweed.n.01', 'name': 'pondweed'}, {'id': 20220, 'synset': 'curled_leaf_pondweed.n.01', 'name': 'curled_leaf_pondweed'}, {'id': 20221, 'synset': 'loddon_pondweed.n.01', 'name': 'loddon_pondweed'}, {'id': 20222, 'synset': "frog's_lettuce.n.01", 'name': "frog's_lettuce"}, {'id': 20223, 'synset': 'arrow_grass.n.01', 'name': 'arrow_grass'}, {'id': 20224, 'synset': 'horned_pondweed.n.01', 'name': 'horned_pondweed'}, {'id': 20225, 'synset': 'eelgrass.n.01', 'name': 'eelgrass'}, {'id': 20226, 'synset': 'rose.n.01', 'name': 'rose'}, {'id': 20227, 'synset': 'hip.n.05', 'name': 'hip'}, {'id': 20228, 'synset': 'banksia_rose.n.01', 'name': 'banksia_rose'}, {'id': 20229, 'synset': 'damask_rose.n.01', 'name': 'damask_rose'}, {'id': 20230, 'synset': 'sweetbrier.n.01', 'name': 'sweetbrier'}, {'id': 20231, 'synset': 'cherokee_rose.n.01', 'name': 'Cherokee_rose'}, {'id': 20232, 'synset': 'musk_rose.n.01', 'name': 'musk_rose'}, {'id': 20233, 'synset': 'agrimonia.n.01', 'name': 'agrimonia'}, {'id': 20234, 'synset': 'harvest-lice.n.01', 'name': 'harvest-lice'}, {'id': 20235, 'synset': 'fragrant_agrimony.n.01', 'name': 'fragrant_agrimony'}, {'id': 20236, 'synset': 'alderleaf_juneberry.n.01', 'name': 'alderleaf_Juneberry'}, {'id': 20237, 'synset': 'flowering_quince.n.01', 'name': 'flowering_quince'}, {'id': 20238, 'synset': 'japonica.n.02', 'name': 'japonica'}, {'id': 20239, 'synset': 'coco_plum.n.01', 'name': 'coco_plum'}, {'id': 20240, 'synset': 'cotoneaster.n.01', 'name': 'cotoneaster'}, {'id': 20241, 'synset': 'cotoneaster_dammeri.n.01', 'name': 'Cotoneaster_dammeri'}, {'id': 20242, 'synset': 'cotoneaster_horizontalis.n.01', 'name': 'Cotoneaster_horizontalis'}, {'id': 20243, 'synset': 'parsley_haw.n.01', 'name': 'parsley_haw'}, {'id': 20244, 'synset': 'scarlet_haw.n.01', 'name': 'scarlet_haw'}, {'id': 20245, 'synset': 'blackthorn.n.02', 'name': 'blackthorn'}, {'id': 20246, 'synset': 'cockspur_thorn.n.01', 'name': 'cockspur_thorn'}, {'id': 20247, 'synset': 'mayhaw.n.01', 'name': 'mayhaw'}, {'id': 20248, 'synset': 'red_haw.n.02', 'name': 'red_haw'}, {'id': 20249, 'synset': 'red_haw.n.01', 'name': 'red_haw'}, {'id': 20250, 'synset': 'quince.n.01', 'name': 'quince'}, {'id': 20251, 'synset': 'mountain_avens.n.01', 'name': 'mountain_avens'}, {'id': 20252, 'synset': 'loquat.n.01', 'name': 'loquat'}, {'id': 20253, 'synset': 'beach_strawberry.n.01', 'name': 'beach_strawberry'}, {'id': 20254, 'synset': 'virginia_strawberry.n.01', 'name': 'Virginia_strawberry'}, {'id': 20255, 'synset': 'avens.n.01', 'name': 'avens'}, {'id': 20256, 'synset': 'yellow_avens.n.02', 'name': 'yellow_avens'}, {'id': 20257, 'synset': 'yellow_avens.n.01', 'name': 'yellow_avens'}, {'id': 20258, 'synset': 'prairie_smoke.n.01', 'name': 'prairie_smoke'}, {'id': 20259, 'synset': 'bennet.n.01', 'name': 'bennet'}, {'id': 20260, 'synset': 'toyon.n.01', 'name': 'toyon'}, {'id': 20261, 'synset': 'apple_tree.n.01', 'name': 'apple_tree'}, {'id': 20262, 'synset': 'apple.n.02', 'name': 'apple'}, {'id': 20263, 'synset': 'wild_apple.n.01', 'name': 'wild_apple'}, {'id': 20264, 'synset': 'crab_apple.n.01', 'name': 'crab_apple'}, {'id': 20265, 'synset': 'siberian_crab.n.01', 'name': 'Siberian_crab'}, {'id': 20266, 'synset': 'wild_crab.n.01', 'name': 'wild_crab'}, {'id': 20267, 'synset': 'american_crab_apple.n.01', 'name': 'American_crab_apple'}, {'id': 20268, 'synset': 'oregon_crab_apple.n.01', 'name': 'Oregon_crab_apple'}, {'id': 20269, 'synset': 'southern_crab_apple.n.01', 'name': 'Southern_crab_apple'}, {'id': 20270, 'synset': 'iowa_crab.n.01', 'name': 'Iowa_crab'}, {'id': 20271, 'synset': 'bechtel_crab.n.01', 'name': 'Bechtel_crab'}, {'id': 20272, 'synset': 'medlar.n.02', 'name': 'medlar'}, {'id': 20273, 'synset': 'cinquefoil.n.01', 'name': 'cinquefoil'}, {'id': 20274, 'synset': 'silverweed.n.02', 'name': 'silverweed'}, {'id': 20275, 'synset': 'salad_burnet.n.01', 'name': 'salad_burnet'}, {'id': 20276, 'synset': 'plum.n.01', 'name': 'plum'}, {'id': 20277, 'synset': 'wild_plum.n.01', 'name': 'wild_plum'}, {'id': 20278, 'synset': 'allegheny_plum.n.01', 'name': 'Allegheny_plum'}, {'id': 20279, 'synset': 'american_red_plum.n.01', 'name': 'American_red_plum'}, {'id': 20280, 'synset': 'chickasaw_plum.n.01', 'name': 'chickasaw_plum'}, {'id': 20281, 'synset': 'beach_plum.n.01', 'name': 'beach_plum'}, {'id': 20282, 'synset': 'common_plum.n.01', 'name': 'common_plum'}, {'id': 20283, 'synset': 'bullace.n.01', 'name': 'bullace'}, {'id': 20284, 'synset': 'damson_plum.n.02', 'name': 'damson_plum'}, {'id': 20285, 'synset': 'big-tree_plum.n.01', 'name': 'big-tree_plum'}, {'id': 20286, 'synset': 'canada_plum.n.01', 'name': 'Canada_plum'}, {'id': 20287, 'synset': 'plumcot.n.01', 'name': 'plumcot'}, {'id': 20288, 'synset': 'apricot.n.01', 'name': 'apricot'}, {'id': 20289, 'synset': 'japanese_apricot.n.01', 'name': 'Japanese_apricot'}, {'id': 20290, 'synset': 'common_apricot.n.01', 'name': 'common_apricot'}, {'id': 20291, 'synset': 'purple_apricot.n.01', 'name': 'purple_apricot'}, {'id': 20292, 'synset': 'cherry.n.02', 'name': 'cherry'}, {'id': 20293, 'synset': 'wild_cherry.n.02', 'name': 'wild_cherry'}, {'id': 20294, 'synset': 'wild_cherry.n.01', 'name': 'wild_cherry'}, {'id': 20295, 'synset': 'sweet_cherry.n.01', 'name': 'sweet_cherry'}, {'id': 20296, 'synset': 'heart_cherry.n.01', 'name': 'heart_cherry'}, {'id': 20297, 'synset': 'gean.n.01', 'name': 'gean'}, {'id': 20298, 'synset': 'capulin.n.01', 'name': 'capulin'}, {'id': 20299, 'synset': 'cherry_laurel.n.02', 'name': 'cherry_laurel'}, {'id': 20300, 'synset': 'cherry_plum.n.01', 'name': 'cherry_plum'}, {'id': 20301, 'synset': 'sour_cherry.n.01', 'name': 'sour_cherry'}, {'id': 20302, 'synset': 'amarelle.n.01', 'name': 'amarelle'}, {'id': 20303, 'synset': 'morello.n.01', 'name': 'morello'}, {'id': 20304, 'synset': 'marasca.n.01', 'name': 'marasca'}, {'id': 20305, 'synset': 'almond_tree.n.01', 'name': 'almond_tree'}, {'id': 20306, 'synset': 'almond.n.01', 'name': 'almond'}, {'id': 20307, 'synset': 'bitter_almond.n.01', 'name': 'bitter_almond'}, {'id': 20308, 'synset': 'jordan_almond.n.01', 'name': 'jordan_almond'}, {'id': 20309, 'synset': 'dwarf_flowering_almond.n.01', 'name': 'dwarf_flowering_almond'}, {'id': 20310, 'synset': 'holly-leaved_cherry.n.01', 'name': 'holly-leaved_cherry'}, {'id': 20311, 'synset': 'fuji.n.01', 'name': 'fuji'}, {'id': 20312, 'synset': 'flowering_almond.n.02', 'name': 'flowering_almond'}, {'id': 20313, 'synset': 'cherry_laurel.n.01', 'name': 'cherry_laurel'}, {'id': 20314, 'synset': 'catalina_cherry.n.01', 'name': 'Catalina_cherry'}, {'id': 20315, 'synset': 'bird_cherry.n.01', 'name': 'bird_cherry'}, {'id': 20316, 'synset': 'hagberry_tree.n.01', 'name': 'hagberry_tree'}, {'id': 20317, 'synset': 'hagberry.n.01', 'name': 'hagberry'}, {'id': 20318, 'synset': 'pin_cherry.n.01', 'name': 'pin_cherry'}, {'id': 20319, 'synset': 'peach.n.01', 'name': 'peach'}, {'id': 20320, 'synset': 'nectarine.n.01', 'name': 'nectarine'}, {'id': 20321, 'synset': 'sand_cherry.n.01', 'name': 'sand_cherry'}, {'id': 20322, 'synset': 'japanese_plum.n.01', 'name': 'Japanese_plum'}, {'id': 20323, 'synset': 'black_cherry.n.01', 'name': 'black_cherry'}, {'id': 20324, 'synset': 'flowering_cherry.n.01', 'name': 'flowering_cherry'}, {'id': 20325, 'synset': 'oriental_cherry.n.01', 'name': 'oriental_cherry'}, {'id': 20326, 'synset': 'japanese_flowering_cherry.n.01', 'name': 'Japanese_flowering_cherry'}, {'id': 20327, 'synset': 'sierra_plum.n.01', 'name': 'Sierra_plum'}, {'id': 20328, 'synset': 'rosebud_cherry.n.01', 'name': 'rosebud_cherry'}, {'id': 20329, 'synset': 'russian_almond.n.01', 'name': 'Russian_almond'}, {'id': 20330, 'synset': 'flowering_almond.n.01', 'name': 'flowering_almond'}, {'id': 20331, 'synset': 'chokecherry.n.02', 'name': 'chokecherry'}, {'id': 20332, 'synset': 'chokecherry.n.01', 'name': 'chokecherry'}, {'id': 20333, 'synset': 'western_chokecherry.n.01', 'name': 'western_chokecherry'}, {'id': 20334, 'synset': 'pyracantha.n.01', 'name': 'Pyracantha'}, {'id': 20335, 'synset': 'pear.n.02', 'name': 'pear'}, {'id': 20336, 'synset': 'fruit_tree.n.01', 'name': 'fruit_tree'}, {'id': 20337, 'synset': 'bramble_bush.n.01', 'name': 'bramble_bush'}, {'id': 20338, 'synset': 'lawyerbush.n.01', 'name': 'lawyerbush'}, {'id': 20339, 'synset': 'stone_bramble.n.01', 'name': 'stone_bramble'}, {'id': 20340, 'synset': 'sand_blackberry.n.01', 'name': 'sand_blackberry'}, {'id': 20341, 'synset': 'boysenberry.n.01', 'name': 'boysenberry'}, {'id': 20342, 'synset': 'loganberry.n.01', 'name': 'loganberry'}, {'id': 20343, 'synset': 'american_dewberry.n.02', 'name': 'American_dewberry'}, {'id': 20344, 'synset': 'northern_dewberry.n.01', 'name': 'Northern_dewberry'}, {'id': 20345, 'synset': 'southern_dewberry.n.01', 'name': 'Southern_dewberry'}, {'id': 20346, 'synset': 'swamp_dewberry.n.01', 'name': 'swamp_dewberry'}, {'id': 20347, 'synset': 'european_dewberry.n.01', 'name': 'European_dewberry'}, {'id': 20348, 'synset': 'raspberry.n.01', 'name': 'raspberry'}, {'id': 20349, 'synset': 'wild_raspberry.n.01', 'name': 'wild_raspberry'}, {'id': 20350, 'synset': 'american_raspberry.n.01', 'name': 'American_raspberry'}, {'id': 20351, 'synset': 'black_raspberry.n.01', 'name': 'black_raspberry'}, {'id': 20352, 'synset': 'salmonberry.n.03', 'name': 'salmonberry'}, {'id': 20353, 'synset': 'salmonberry.n.02', 'name': 'salmonberry'}, {'id': 20354, 'synset': 'wineberry.n.01', 'name': 'wineberry'}, {'id': 20355, 'synset': 'mountain_ash.n.01', 'name': 'mountain_ash'}, {'id': 20356, 'synset': 'rowan.n.01', 'name': 'rowan'}, {'id': 20357, 'synset': 'rowanberry.n.01', 'name': 'rowanberry'}, {'id': 20358, 'synset': 'american_mountain_ash.n.01', 'name': 'American_mountain_ash'}, {'id': 20359, 'synset': 'western_mountain_ash.n.01', 'name': 'Western_mountain_ash'}, {'id': 20360, 'synset': 'service_tree.n.01', 'name': 'service_tree'}, {'id': 20361, 'synset': 'wild_service_tree.n.01', 'name': 'wild_service_tree'}, {'id': 20362, 'synset': 'spirea.n.02', 'name': 'spirea'}, {'id': 20363, 'synset': 'bridal_wreath.n.02', 'name': 'bridal_wreath'}, {'id': 20364, 'synset': 'madderwort.n.01', 'name': 'madderwort'}, {'id': 20365, 'synset': 'indian_madder.n.01', 'name': 'Indian_madder'}, {'id': 20366, 'synset': 'madder.n.01', 'name': 'madder'}, {'id': 20367, 'synset': 'woodruff.n.02', 'name': 'woodruff'}, {'id': 20368, 'synset': 'dagame.n.01', 'name': 'dagame'}, {'id': 20369, 'synset': 'blolly.n.01', 'name': 'blolly'}, {'id': 20370, 'synset': 'coffee.n.02', 'name': 'coffee'}, {'id': 20371, 'synset': 'arabian_coffee.n.01', 'name': 'Arabian_coffee'}, {'id': 20372, 'synset': 'liberian_coffee.n.01', 'name': 'Liberian_coffee'}, {'id': 20373, 'synset': 'robusta_coffee.n.01', 'name': 'robusta_coffee'}, {'id': 20374, 'synset': 'cinchona.n.02', 'name': 'cinchona'}, {'id': 20375, 'synset': 'cartagena_bark.n.01', 'name': 'Cartagena_bark'}, {'id': 20376, 'synset': 'calisaya.n.01', 'name': 'calisaya'}, {'id': 20377, 'synset': 'cinchona_tree.n.01', 'name': 'cinchona_tree'}, {'id': 20378, 'synset': 'cinchona.n.01', 'name': 'cinchona'}, {'id': 20379, 'synset': 'bedstraw.n.01', 'name': 'bedstraw'}, {'id': 20380, 'synset': 'sweet_woodruff.n.01', 'name': 'sweet_woodruff'}, {'id': 20381, 'synset': 'northern_bedstraw.n.01', 'name': 'Northern_bedstraw'}, {'id': 20382, 'synset': 'yellow_bedstraw.n.01', 'name': 'yellow_bedstraw'}, {'id': 20383, 'synset': 'wild_licorice.n.01', 'name': 'wild_licorice'}, {'id': 20384, 'synset': 'cleavers.n.01', 'name': 'cleavers'}, {'id': 20385, 'synset': 'wild_madder.n.01', 'name': 'wild_madder'}, {'id': 20386, 'synset': 'cape_jasmine.n.01', 'name': 'cape_jasmine'}, {'id': 20387, 'synset': 'genipa.n.01', 'name': 'genipa'}, {'id': 20388, 'synset': 'genipap_fruit.n.01', 'name': 'genipap_fruit'}, {'id': 20389, 'synset': 'hamelia.n.01', 'name': 'hamelia'}, {'id': 20390, 'synset': 'scarlet_bush.n.01', 'name': 'scarlet_bush'}, {'id': 20391, 'synset': 'lemonwood.n.02', 'name': 'lemonwood'}, {'id': 20392, 'synset': 'negro_peach.n.01', 'name': 'negro_peach'}, {'id': 20393, 'synset': 'wild_medlar.n.01', 'name': 'wild_medlar'}, {'id': 20394, 'synset': 'spanish_tamarind.n.01', 'name': 'Spanish_tamarind'}, {'id': 20395, 'synset': 'abelia.n.01', 'name': 'abelia'}, {'id': 20396, 'synset': 'bush_honeysuckle.n.02', 'name': 'bush_honeysuckle'}, {'id': 20397, 'synset': 'american_twinflower.n.01', 'name': 'American_twinflower'}, {'id': 20398, 'synset': 'honeysuckle.n.01', 'name': 'honeysuckle'}, {'id': 20399, 'synset': 'american_fly_honeysuckle.n.01', 'name': 'American_fly_honeysuckle'}, {'id': 20400, 'synset': 'italian_honeysuckle.n.01', 'name': 'Italian_honeysuckle'}, {'id': 20401, 'synset': 'yellow_honeysuckle.n.01', 'name': 'yellow_honeysuckle'}, {'id': 20402, 'synset': 'hairy_honeysuckle.n.01', 'name': 'hairy_honeysuckle'}, {'id': 20403, 'synset': 'japanese_honeysuckle.n.01', 'name': 'Japanese_honeysuckle'}, {'id': 20404, 'synset': "hall's_honeysuckle.n.01", 'name': "Hall's_honeysuckle"}, {'id': 20405, 'synset': "morrow's_honeysuckle.n.01", 'name': "Morrow's_honeysuckle"}, {'id': 20406, 'synset': 'woodbine.n.02', 'name': 'woodbine'}, {'id': 20407, 'synset': 'trumpet_honeysuckle.n.01', 'name': 'trumpet_honeysuckle'}, {'id': 20408, 'synset': 'european_fly_honeysuckle.n.01', 'name': 'European_fly_honeysuckle'}, {'id': 20409, 'synset': 'swamp_fly_honeysuckle.n.01', 'name': 'swamp_fly_honeysuckle'}, {'id': 20410, 'synset': 'snowberry.n.01', 'name': 'snowberry'}, {'id': 20411, 'synset': 'coralberry.n.01', 'name': 'coralberry'}, {'id': 20412, 'synset': 'blue_elder.n.01', 'name': 'blue_elder'}, {'id': 20413, 'synset': 'dwarf_elder.n.01', 'name': 'dwarf_elder'}, {'id': 20414, 'synset': 'american_red_elder.n.01', 'name': 'American_red_elder'}, {'id': 20415, 'synset': 'european_red_elder.n.01', 'name': 'European_red_elder'}, {'id': 20416, 'synset': 'feverroot.n.01', 'name': 'feverroot'}, {'id': 20417, 'synset': 'cranberry_bush.n.01', 'name': 'cranberry_bush'}, {'id': 20418, 'synset': 'wayfaring_tree.n.01', 'name': 'wayfaring_tree'}, {'id': 20419, 'synset': 'guelder_rose.n.01', 'name': 'guelder_rose'}, {'id': 20420, 'synset': 'arrow_wood.n.01', 'name': 'arrow_wood'}, {'id': 20421, 'synset': 'black_haw.n.02', 'name': 'black_haw'}, {'id': 20422, 'synset': 'weigela.n.01', 'name': 'weigela'}, {'id': 20423, 'synset': 'teasel.n.01', 'name': 'teasel'}, {'id': 20424, 'synset': 'common_teasel.n.01', 'name': 'common_teasel'}, {'id': 20425, 'synset': "fuller's_teasel.n.01", 'name': "fuller's_teasel"}, {'id': 20426, 'synset': 'wild_teasel.n.01', 'name': 'wild_teasel'}, {'id': 20427, 'synset': 'scabious.n.01', 'name': 'scabious'}, {'id': 20428, 'synset': 'sweet_scabious.n.01', 'name': 'sweet_scabious'}, {'id': 20429, 'synset': 'field_scabious.n.01', 'name': 'field_scabious'}, {'id': 20430, 'synset': 'jewelweed.n.01', 'name': 'jewelweed'}, {'id': 20431, 'synset': 'geranium.n.01', 'name': 'geranium'}, {'id': 20432, 'synset': 'cranesbill.n.01', 'name': 'cranesbill'}, {'id': 20433, 'synset': 'wild_geranium.n.01', 'name': 'wild_geranium'}, {'id': 20434, 'synset': 'meadow_cranesbill.n.01', 'name': 'meadow_cranesbill'}, {'id': 20435, 'synset': "richardson's_geranium.n.01", 'name': "Richardson's_geranium"}, {'id': 20436, 'synset': 'herb_robert.n.01', 'name': 'herb_robert'}, {'id': 20437, 'synset': 'sticky_geranium.n.01', 'name': 'sticky_geranium'}, {'id': 20438, 'synset': "dove's_foot_geranium.n.01", 'name': "dove's_foot_geranium"}, {'id': 20439, 'synset': 'rose_geranium.n.01', 'name': 'rose_geranium'}, {'id': 20440, 'synset': 'fish_geranium.n.01', 'name': 'fish_geranium'}, {'id': 20441, 'synset': 'ivy_geranium.n.01', 'name': 'ivy_geranium'}, {'id': 20442, 'synset': 'apple_geranium.n.01', 'name': 'apple_geranium'}, {'id': 20443, 'synset': 'lemon_geranium.n.01', 'name': 'lemon_geranium'}, {'id': 20444, 'synset': 'storksbill.n.01', 'name': 'storksbill'}, {'id': 20445, 'synset': 'musk_clover.n.01', 'name': 'musk_clover'}, {'id': 20446, 'synset': 'incense_tree.n.01', 'name': 'incense_tree'}, {'id': 20447, 'synset': 'elephant_tree.n.01', 'name': 'elephant_tree'}, {'id': 20448, 'synset': 'gumbo-limbo.n.01', 'name': 'gumbo-limbo'}, {'id': 20449, 'synset': 'boswellia_carteri.n.01', 'name': 'Boswellia_carteri'}, {'id': 20450, 'synset': 'salai.n.01', 'name': 'salai'}, {'id': 20451, 'synset': 'balm_of_gilead.n.03', 'name': 'balm_of_gilead'}, {'id': 20452, 'synset': 'myrrh_tree.n.01', 'name': 'myrrh_tree'}, {'id': 20453, 'synset': 'protium_heptaphyllum.n.01', 'name': 'Protium_heptaphyllum'}, {'id': 20454, 'synset': 'protium_guianense.n.01', 'name': 'Protium_guianense'}, {'id': 20455, 'synset': 'water_starwort.n.01', 'name': 'water_starwort'}, {'id': 20456, 'synset': 'barbados_cherry.n.01', 'name': 'barbados_cherry'}, {'id': 20457, 'synset': 'mahogany.n.02', 'name': 'mahogany'}, {'id': 20458, 'synset': 'chinaberry.n.02', 'name': 'chinaberry'}, {'id': 20459, 'synset': 'neem.n.01', 'name': 'neem'}, {'id': 20460, 'synset': 'neem_seed.n.01', 'name': 'neem_seed'}, {'id': 20461, 'synset': 'spanish_cedar.n.01', 'name': 'Spanish_cedar'}, {'id': 20462, 'synset': 'satinwood.n.03', 'name': 'satinwood'}, {'id': 20463, 'synset': 'african_scented_mahogany.n.01', 'name': 'African_scented_mahogany'}, {'id': 20464, 'synset': 'silver_ash.n.01', 'name': 'silver_ash'}, {'id': 20465, 'synset': 'native_beech.n.01', 'name': 'native_beech'}, {'id': 20466, 'synset': 'bunji-bunji.n.01', 'name': 'bunji-bunji'}, {'id': 20467, 'synset': 'african_mahogany.n.01', 'name': 'African_mahogany'}, {'id': 20468, 'synset': 'lanseh_tree.n.01', 'name': 'lanseh_tree'}, {'id': 20469, 'synset': 'true_mahogany.n.01', 'name': 'true_mahogany'}, {'id': 20470, 'synset': 'honduras_mahogany.n.01', 'name': 'Honduras_mahogany'}, {'id': 20471, 'synset': 'philippine_mahogany.n.02', 'name': 'Philippine_mahogany'}, {'id': 20472, 'synset': 'caracolito.n.01', 'name': 'caracolito'}, {'id': 20473, 'synset': 'common_wood_sorrel.n.01', 'name': 'common_wood_sorrel'}, {'id': 20474, 'synset': 'bermuda_buttercup.n.01', 'name': 'Bermuda_buttercup'}, {'id': 20475, 'synset': 'creeping_oxalis.n.01', 'name': 'creeping_oxalis'}, {'id': 20476, 'synset': 'goatsfoot.n.01', 'name': 'goatsfoot'}, {'id': 20477, 'synset': 'violet_wood_sorrel.n.01', 'name': 'violet_wood_sorrel'}, {'id': 20478, 'synset': 'oca.n.01', 'name': 'oca'}, {'id': 20479, 'synset': 'carambola.n.01', 'name': 'carambola'}, {'id': 20480, 'synset': 'bilimbi.n.01', 'name': 'bilimbi'}, {'id': 20481, 'synset': 'milkwort.n.01', 'name': 'milkwort'}, {'id': 20482, 'synset': 'senega.n.02', 'name': 'senega'}, {'id': 20483, 'synset': 'orange_milkwort.n.01', 'name': 'orange_milkwort'}, {'id': 20484, 'synset': 'flowering_wintergreen.n.01', 'name': 'flowering_wintergreen'}, {'id': 20485, 'synset': 'seneca_snakeroot.n.01', 'name': 'Seneca_snakeroot'}, {'id': 20486, 'synset': 'common_milkwort.n.01', 'name': 'common_milkwort'}, {'id': 20487, 'synset': 'rue.n.01', 'name': 'rue'}, {'id': 20488, 'synset': 'citrus.n.02', 'name': 'citrus'}, {'id': 20489, 'synset': 'orange.n.03', 'name': 'orange'}, {'id': 20490, 'synset': 'sour_orange.n.01', 'name': 'sour_orange'}, {'id': 20491, 'synset': 'bergamot.n.01', 'name': 'bergamot'}, {'id': 20492, 'synset': 'pomelo.n.01', 'name': 'pomelo'}, {'id': 20493, 'synset': 'citron.n.02', 'name': 'citron'}, {'id': 20494, 'synset': 'grapefruit.n.01', 'name': 'grapefruit'}, {'id': 20495, 'synset': 'mandarin.n.01', 'name': 'mandarin'}, {'id': 20496, 'synset': 'tangerine.n.01', 'name': 'tangerine'}, {'id': 20497, 'synset': 'satsuma.n.01', 'name': 'satsuma'}, {'id': 20498, 'synset': 'sweet_orange.n.02', 'name': 'sweet_orange'}, {'id': 20499, 'synset': 'temple_orange.n.01', 'name': 'temple_orange'}, {'id': 20500, 'synset': 'tangelo.n.01', 'name': 'tangelo'}, {'id': 20501, 'synset': 'rangpur.n.01', 'name': 'rangpur'}, {'id': 20502, 'synset': 'lemon.n.03', 'name': 'lemon'}, {'id': 20503, 'synset': 'sweet_lemon.n.01', 'name': 'sweet_lemon'}, {'id': 20504, 'synset': 'lime.n.04', 'name': 'lime'}, {'id': 20505, 'synset': 'citrange.n.01', 'name': 'citrange'}, {'id': 20506, 'synset': 'fraxinella.n.01', 'name': 'fraxinella'}, {'id': 20507, 'synset': 'kumquat.n.01', 'name': 'kumquat'}, {'id': 20508, 'synset': 'marumi.n.01', 'name': 'marumi'}, {'id': 20509, 'synset': 'nagami.n.01', 'name': 'nagami'}, {'id': 20510, 'synset': 'cork_tree.n.01', 'name': 'cork_tree'}, {'id': 20511, 'synset': 'trifoliate_orange.n.01', 'name': 'trifoliate_orange'}, {'id': 20512, 'synset': 'prickly_ash.n.01', 'name': 'prickly_ash'}, {'id': 20513, 'synset': 'toothache_tree.n.01', 'name': 'toothache_tree'}, {'id': 20514, 'synset': "hercules'-club.n.01", 'name': "Hercules'-club"}, {'id': 20515, 'synset': 'bitterwood_tree.n.01', 'name': 'bitterwood_tree'}, {'id': 20516, 'synset': 'marupa.n.01', 'name': 'marupa'}, {'id': 20517, 'synset': 'paradise_tree.n.01', 'name': 'paradise_tree'}, {'id': 20518, 'synset': 'ailanthus.n.01', 'name': 'ailanthus'}, {'id': 20519, 'synset': 'tree_of_heaven.n.01', 'name': 'tree_of_heaven'}, {'id': 20520, 'synset': 'wild_mango.n.01', 'name': 'wild_mango'}, {'id': 20521, 'synset': 'pepper_tree.n.02', 'name': 'pepper_tree'}, {'id': 20522, 'synset': 'jamaica_quassia.n.02', 'name': 'Jamaica_quassia'}, {'id': 20523, 'synset': 'quassia.n.02', 'name': 'quassia'}, {'id': 20524, 'synset': 'nasturtium.n.01', 'name': 'nasturtium'}, {'id': 20525, 'synset': 'garden_nasturtium.n.01', 'name': 'garden_nasturtium'}, {'id': 20526, 'synset': 'bush_nasturtium.n.01', 'name': 'bush_nasturtium'}, {'id': 20527, 'synset': 'canarybird_flower.n.01', 'name': 'canarybird_flower'}, {'id': 20528, 'synset': 'bean_caper.n.01', 'name': 'bean_caper'}, {'id': 20529, 'synset': 'palo_santo.n.01', 'name': 'palo_santo'}, {'id': 20530, 'synset': 'lignum_vitae.n.02', 'name': 'lignum_vitae'}, {'id': 20531, 'synset': 'creosote_bush.n.01', 'name': 'creosote_bush'}, {'id': 20532, 'synset': 'caltrop.n.01', 'name': 'caltrop'}, {'id': 20533, 'synset': 'willow.n.01', 'name': 'willow'}, {'id': 20534, 'synset': 'osier.n.02', 'name': 'osier'}, {'id': 20535, 'synset': 'white_willow.n.01', 'name': 'white_willow'}, {'id': 20536, 'synset': 'silver_willow.n.01', 'name': 'silver_willow'}, {'id': 20537, 'synset': 'golden_willow.n.01', 'name': 'golden_willow'}, {'id': 20538, 'synset': 'cricket-bat_willow.n.01', 'name': 'cricket-bat_willow'}, {'id': 20539, 'synset': 'arctic_willow.n.01', 'name': 'arctic_willow'}, {'id': 20540, 'synset': 'weeping_willow.n.01', 'name': 'weeping_willow'}, {'id': 20541, 'synset': 'wisconsin_weeping_willow.n.01', 'name': 'Wisconsin_weeping_willow'}, {'id': 20542, 'synset': 'pussy_willow.n.01', 'name': 'pussy_willow'}, {'id': 20543, 'synset': 'sallow.n.01', 'name': 'sallow'}, {'id': 20544, 'synset': 'goat_willow.n.01', 'name': 'goat_willow'}, {'id': 20545, 'synset': 'peachleaf_willow.n.01', 'name': 'peachleaf_willow'}, {'id': 20546, 'synset': 'almond_willow.n.01', 'name': 'almond_willow'}, {'id': 20547, 'synset': 'hoary_willow.n.01', 'name': 'hoary_willow'}, {'id': 20548, 'synset': 'crack_willow.n.01', 'name': 'crack_willow'}, {'id': 20549, 'synset': 'prairie_willow.n.01', 'name': 'prairie_willow'}, {'id': 20550, 'synset': 'dwarf_willow.n.01', 'name': 'dwarf_willow'}, {'id': 20551, 'synset': 'grey_willow.n.01', 'name': 'grey_willow'}, {'id': 20552, 'synset': 'arroyo_willow.n.01', 'name': 'arroyo_willow'}, {'id': 20553, 'synset': 'shining_willow.n.01', 'name': 'shining_willow'}, {'id': 20554, 'synset': 'swamp_willow.n.01', 'name': 'swamp_willow'}, {'id': 20555, 'synset': 'bay_willow.n.01', 'name': 'bay_willow'}, {'id': 20556, 'synset': 'purple_willow.n.01', 'name': 'purple_willow'}, {'id': 20557, 'synset': 'balsam_willow.n.01', 'name': 'balsam_willow'}, {'id': 20558, 'synset': 'creeping_willow.n.01', 'name': 'creeping_willow'}, {'id': 20559, 'synset': 'sitka_willow.n.01', 'name': 'Sitka_willow'}, {'id': 20560, 'synset': 'dwarf_grey_willow.n.01', 'name': 'dwarf_grey_willow'}, {'id': 20561, 'synset': 'bearberry_willow.n.01', 'name': 'bearberry_willow'}, {'id': 20562, 'synset': 'common_osier.n.01', 'name': 'common_osier'}, {'id': 20563, 'synset': 'poplar.n.02', 'name': 'poplar'}, {'id': 20564, 'synset': 'balsam_poplar.n.01', 'name': 'balsam_poplar'}, {'id': 20565, 'synset': 'white_poplar.n.01', 'name': 'white_poplar'}, {'id': 20566, 'synset': 'grey_poplar.n.01', 'name': 'grey_poplar'}, {'id': 20567, 'synset': 'black_poplar.n.01', 'name': 'black_poplar'}, {'id': 20568, 'synset': 'lombardy_poplar.n.01', 'name': 'Lombardy_poplar'}, {'id': 20569, 'synset': 'cottonwood.n.01', 'name': 'cottonwood'}, {'id': 20570, 'synset': 'eastern_cottonwood.n.01', 'name': 'Eastern_cottonwood'}, {'id': 20571, 'synset': 'black_cottonwood.n.02', 'name': 'black_cottonwood'}, {'id': 20572, 'synset': 'swamp_cottonwood.n.01', 'name': 'swamp_cottonwood'}, {'id': 20573, 'synset': 'aspen.n.01', 'name': 'aspen'}, {'id': 20574, 'synset': 'quaking_aspen.n.01', 'name': 'quaking_aspen'}, {'id': 20575, 'synset': 'american_quaking_aspen.n.01', 'name': 'American_quaking_aspen'}, {'id': 20576, 'synset': 'canadian_aspen.n.01', 'name': 'Canadian_aspen'}, {'id': 20577, 'synset': 'sandalwood_tree.n.01', 'name': 'sandalwood_tree'}, {'id': 20578, 'synset': 'quandong.n.01', 'name': 'quandong'}, {'id': 20579, 'synset': 'rabbitwood.n.01', 'name': 'rabbitwood'}, {'id': 20580, 'synset': 'loranthaceae.n.01', 'name': 'Loranthaceae'}, {'id': 20581, 'synset': 'mistletoe.n.03', 'name': 'mistletoe'}, {'id': 20582, 'synset': 'american_mistletoe.n.02', 'name': 'American_mistletoe'}, {'id': 20583, 'synset': 'mistletoe.n.02', 'name': 'mistletoe'}, {'id': 20584, 'synset': 'american_mistletoe.n.01', 'name': 'American_mistletoe'}, {'id': 20585, 'synset': 'aalii.n.01', 'name': 'aalii'}, {'id': 20586, 'synset': 'soapberry.n.01', 'name': 'soapberry'}, {'id': 20587, 'synset': 'wild_china_tree.n.01', 'name': 'wild_China_tree'}, {'id': 20588, 'synset': 'china_tree.n.01', 'name': 'China_tree'}, {'id': 20589, 'synset': 'akee.n.01', 'name': 'akee'}, {'id': 20590, 'synset': 'soapberry_vine.n.01', 'name': 'soapberry_vine'}, {'id': 20591, 'synset': 'heartseed.n.01', 'name': 'heartseed'}, {'id': 20592, 'synset': 'balloon_vine.n.01', 'name': 'balloon_vine'}, {'id': 20593, 'synset': 'longan.n.01', 'name': 'longan'}, {'id': 20594, 'synset': 'harpullia.n.01', 'name': 'harpullia'}, {'id': 20595, 'synset': 'harpulla.n.01', 'name': 'harpulla'}, {'id': 20596, 'synset': 'moreton_bay_tulipwood.n.01', 'name': 'Moreton_Bay_tulipwood'}, {'id': 20597, 'synset': 'litchi.n.01', 'name': 'litchi'}, {'id': 20598, 'synset': 'spanish_lime.n.01', 'name': 'Spanish_lime'}, {'id': 20599, 'synset': 'rambutan.n.01', 'name': 'rambutan'}, {'id': 20600, 'synset': 'pulasan.n.01', 'name': 'pulasan'}, {'id': 20601, 'synset': 'pachysandra.n.01', 'name': 'pachysandra'}, {'id': 20602, 'synset': 'allegheny_spurge.n.01', 'name': 'Allegheny_spurge'}, {'id': 20603, 'synset': 'bittersweet.n.02', 'name': 'bittersweet'}, {'id': 20604, 'synset': 'spindle_tree.n.01', 'name': 'spindle_tree'}, {'id': 20605, 'synset': 'winged_spindle_tree.n.01', 'name': 'winged_spindle_tree'}, {'id': 20606, 'synset': 'wahoo.n.02', 'name': 'wahoo'}, {'id': 20607, 'synset': 'strawberry_bush.n.01', 'name': 'strawberry_bush'}, {'id': 20608, 'synset': 'evergreen_bittersweet.n.01', 'name': 'evergreen_bittersweet'}, {'id': 20609, 'synset': 'cyrilla.n.01', 'name': 'cyrilla'}, {'id': 20610, 'synset': 'titi.n.01', 'name': 'titi'}, {'id': 20611, 'synset': 'crowberry.n.01', 'name': 'crowberry'}, {'id': 20612, 'synset': 'maple.n.02', 'name': 'maple'}, {'id': 20613, 'synset': 'silver_maple.n.01', 'name': 'silver_maple'}, {'id': 20614, 'synset': 'sugar_maple.n.01', 'name': 'sugar_maple'}, {'id': 20615, 'synset': 'red_maple.n.01', 'name': 'red_maple'}, {'id': 20616, 'synset': 'moosewood.n.01', 'name': 'moosewood'}, {'id': 20617, 'synset': 'oregon_maple.n.01', 'name': 'Oregon_maple'}, {'id': 20618, 'synset': 'dwarf_maple.n.01', 'name': 'dwarf_maple'}, {'id': 20619, 'synset': 'mountain_maple.n.01', 'name': 'mountain_maple'}, {'id': 20620, 'synset': 'vine_maple.n.01', 'name': 'vine_maple'}, {'id': 20621, 'synset': 'hedge_maple.n.01', 'name': 'hedge_maple'}, {'id': 20622, 'synset': 'norway_maple.n.01', 'name': 'Norway_maple'}, {'id': 20623, 'synset': 'sycamore.n.03', 'name': 'sycamore'}, {'id': 20624, 'synset': 'box_elder.n.01', 'name': 'box_elder'}, {'id': 20625, 'synset': 'california_box_elder.n.01', 'name': 'California_box_elder'}, {'id': 20626, 'synset': 'pointed-leaf_maple.n.01', 'name': 'pointed-leaf_maple'}, {'id': 20627, 'synset': 'japanese_maple.n.02', 'name': 'Japanese_maple'}, {'id': 20628, 'synset': 'japanese_maple.n.01', 'name': 'Japanese_maple'}, {'id': 20629, 'synset': 'holly.n.01', 'name': 'holly'}, {'id': 20630, 'synset': 'chinese_holly.n.01', 'name': 'Chinese_holly'}, {'id': 20631, 'synset': 'bearberry.n.02', 'name': 'bearberry'}, {'id': 20632, 'synset': 'inkberry.n.01', 'name': 'inkberry'}, {'id': 20633, 'synset': 'mate.n.07', 'name': 'mate'}, {'id': 20634, 'synset': 'american_holly.n.01', 'name': 'American_holly'}, {'id': 20635, 'synset': 'low_gallberry_holly.n.01', 'name': 'low_gallberry_holly'}, {'id': 20636, 'synset': 'tall_gallberry_holly.n.01', 'name': 'tall_gallberry_holly'}, {'id': 20637, 'synset': 'yaupon_holly.n.01', 'name': 'yaupon_holly'}, {'id': 20638, 'synset': 'deciduous_holly.n.01', 'name': 'deciduous_holly'}, {'id': 20639, 'synset': 'juneberry_holly.n.01', 'name': 'juneberry_holly'}, {'id': 20640, 'synset': 'largeleaf_holly.n.01', 'name': 'largeleaf_holly'}, {'id': 20641, 'synset': 'geogia_holly.n.01', 'name': 'Geogia_holly'}, {'id': 20642, 'synset': 'common_winterberry_holly.n.01', 'name': 'common_winterberry_holly'}, {'id': 20643, 'synset': 'smooth_winterberry_holly.n.01', 'name': 'smooth_winterberry_holly'}, {'id': 20644, 'synset': 'cashew.n.01', 'name': 'cashew'}, {'id': 20645, 'synset': 'goncalo_alves.n.01', 'name': 'goncalo_alves'}, {'id': 20646, 'synset': 'venetian_sumac.n.01', 'name': 'Venetian_sumac'}, {'id': 20647, 'synset': 'laurel_sumac.n.01', 'name': 'laurel_sumac'}, {'id': 20648, 'synset': 'mango.n.01', 'name': 'mango'}, {'id': 20649, 'synset': 'pistachio.n.01', 'name': 'pistachio'}, {'id': 20650, 'synset': 'terebinth.n.01', 'name': 'terebinth'}, {'id': 20651, 'synset': 'mastic.n.03', 'name': 'mastic'}, {'id': 20652, 'synset': 'australian_sumac.n.01', 'name': 'Australian_sumac'}, {'id': 20653, 'synset': 'sumac.n.02', 'name': 'sumac'}, {'id': 20654, 'synset': 'smooth_sumac.n.01', 'name': 'smooth_sumac'}, {'id': 20655, 'synset': 'sugar-bush.n.01', 'name': 'sugar-bush'}, {'id': 20656, 'synset': 'staghorn_sumac.n.01', 'name': 'staghorn_sumac'}, {'id': 20657, 'synset': 'squawbush.n.01', 'name': 'squawbush'}, {'id': 20658, 'synset': 'aroeira_blanca.n.01', 'name': 'aroeira_blanca'}, {'id': 20659, 'synset': 'pepper_tree.n.01', 'name': 'pepper_tree'}, {'id': 20660, 'synset': 'brazilian_pepper_tree.n.01', 'name': 'Brazilian_pepper_tree'}, {'id': 20661, 'synset': 'hog_plum.n.01', 'name': 'hog_plum'}, {'id': 20662, 'synset': 'mombin.n.01', 'name': 'mombin'}, {'id': 20663, 'synset': 'poison_ash.n.01', 'name': 'poison_ash'}, {'id': 20664, 'synset': 'poison_ivy.n.02', 'name': 'poison_ivy'}, {'id': 20665, 'synset': 'western_poison_oak.n.01', 'name': 'western_poison_oak'}, {'id': 20666, 'synset': 'eastern_poison_oak.n.01', 'name': 'eastern_poison_oak'}, {'id': 20667, 'synset': 'varnish_tree.n.02', 'name': 'varnish_tree'}, {'id': 20668, 'synset': 'horse_chestnut.n.01', 'name': 'horse_chestnut'}, {'id': 20669, 'synset': 'buckeye.n.01', 'name': 'buckeye'}, {'id': 20670, 'synset': 'sweet_buckeye.n.01', 'name': 'sweet_buckeye'}, {'id': 20671, 'synset': 'ohio_buckeye.n.01', 'name': 'Ohio_buckeye'}, {'id': 20672, 'synset': 'dwarf_buckeye.n.01', 'name': 'dwarf_buckeye'}, {'id': 20673, 'synset': 'red_buckeye.n.01', 'name': 'red_buckeye'}, {'id': 20674, 'synset': 'particolored_buckeye.n.01', 'name': 'particolored_buckeye'}, {'id': 20675, 'synset': 'ebony.n.03', 'name': 'ebony'}, {'id': 20676, 'synset': 'marblewood.n.02', 'name': 'marblewood'}, {'id': 20677, 'synset': 'marblewood.n.01', 'name': 'marblewood'}, {'id': 20678, 'synset': 'persimmon.n.01', 'name': 'persimmon'}, {'id': 20679, 'synset': 'japanese_persimmon.n.01', 'name': 'Japanese_persimmon'}, {'id': 20680, 'synset': 'american_persimmon.n.01', 'name': 'American_persimmon'}, {'id': 20681, 'synset': 'date_plum.n.01', 'name': 'date_plum'}, {'id': 20682, 'synset': 'buckthorn.n.02', 'name': 'buckthorn'}, {'id': 20683, 'synset': 'southern_buckthorn.n.01', 'name': 'southern_buckthorn'}, {'id': 20684, 'synset': 'false_buckthorn.n.01', 'name': 'false_buckthorn'}, {'id': 20685, 'synset': 'star_apple.n.01', 'name': 'star_apple'}, {'id': 20686, 'synset': 'satinleaf.n.01', 'name': 'satinleaf'}, {'id': 20687, 'synset': 'balata.n.02', 'name': 'balata'}, {'id': 20688, 'synset': 'sapodilla.n.01', 'name': 'sapodilla'}, {'id': 20689, 'synset': 'gutta-percha_tree.n.02', 'name': 'gutta-percha_tree'}, {'id': 20690, 'synset': 'gutta-percha_tree.n.01', 'name': 'gutta-percha_tree'}, {'id': 20691, 'synset': 'canistel.n.01', 'name': 'canistel'}, {'id': 20692, 'synset': 'marmalade_tree.n.01', 'name': 'marmalade_tree'}, {'id': 20693, 'synset': 'sweetleaf.n.01', 'name': 'sweetleaf'}, {'id': 20694, 'synset': 'asiatic_sweetleaf.n.01', 'name': 'Asiatic_sweetleaf'}, {'id': 20695, 'synset': 'styrax.n.01', 'name': 'styrax'}, {'id': 20696, 'synset': 'snowbell.n.01', 'name': 'snowbell'}, {'id': 20697, 'synset': 'japanese_snowbell.n.01', 'name': 'Japanese_snowbell'}, {'id': 20698, 'synset': 'texas_snowbell.n.01', 'name': 'Texas_snowbell'}, {'id': 20699, 'synset': 'silver-bell_tree.n.01', 'name': 'silver-bell_tree'}, {'id': 20700, 'synset': 'carnivorous_plant.n.01', 'name': 'carnivorous_plant'}, {'id': 20701, 'synset': 'pitcher_plant.n.01', 'name': 'pitcher_plant'}, {'id': 20702, 'synset': 'common_pitcher_plant.n.01', 'name': 'common_pitcher_plant'}, {'id': 20703, 'synset': 'hooded_pitcher_plant.n.01', 'name': 'hooded_pitcher_plant'}, {'id': 20704, 'synset': "huntsman's_horn.n.01", 'name': "huntsman's_horn"}, {'id': 20705, 'synset': 'tropical_pitcher_plant.n.01', 'name': 'tropical_pitcher_plant'}, {'id': 20706, 'synset': 'sundew.n.01', 'name': 'sundew'}, {'id': 20707, 'synset': "venus's_flytrap.n.01", 'name': "Venus's_flytrap"}, {'id': 20708, 'synset': 'waterwheel_plant.n.01', 'name': 'waterwheel_plant'}, {'id': 20709, 'synset': 'drosophyllum_lusitanicum.n.01', 'name': 'Drosophyllum_lusitanicum'}, {'id': 20710, 'synset': 'roridula.n.01', 'name': 'roridula'}, {'id': 20711, 'synset': 'australian_pitcher_plant.n.01', 'name': 'Australian_pitcher_plant'}, {'id': 20712, 'synset': 'sedum.n.01', 'name': 'sedum'}, {'id': 20713, 'synset': 'stonecrop.n.01', 'name': 'stonecrop'}, {'id': 20714, 'synset': 'rose-root.n.01', 'name': 'rose-root'}, {'id': 20715, 'synset': 'orpine.n.01', 'name': 'orpine'}, {'id': 20716, 'synset': 'pinwheel.n.01', 'name': 'pinwheel'}, {'id': 20717, 'synset': 'christmas_bush.n.01', 'name': 'Christmas_bush'}, {'id': 20718, 'synset': 'hortensia.n.01', 'name': 'hortensia'}, {'id': 20719, 'synset': 'fall-blooming_hydrangea.n.01', 'name': 'fall-blooming_hydrangea'}, {'id': 20720, 'synset': 'carpenteria.n.01', 'name': 'carpenteria'}, {'id': 20721, 'synset': 'decumary.n.01', 'name': 'decumary'}, {'id': 20722, 'synset': 'deutzia.n.01', 'name': 'deutzia'}, {'id': 20723, 'synset': 'philadelphus.n.01', 'name': 'philadelphus'}, {'id': 20724, 'synset': 'mock_orange.n.01', 'name': 'mock_orange'}, {'id': 20725, 'synset': 'saxifrage.n.01', 'name': 'saxifrage'}, {'id': 20726, 'synset': 'yellow_mountain_saxifrage.n.01', 'name': 'yellow_mountain_saxifrage'}, {'id': 20727, 'synset': 'meadow_saxifrage.n.01', 'name': 'meadow_saxifrage'}, {'id': 20728, 'synset': 'mossy_saxifrage.n.01', 'name': 'mossy_saxifrage'}, {'id': 20729, 'synset': 'western_saxifrage.n.01', 'name': 'western_saxifrage'}, {'id': 20730, 'synset': 'purple_saxifrage.n.01', 'name': 'purple_saxifrage'}, {'id': 20731, 'synset': 'star_saxifrage.n.01', 'name': 'star_saxifrage'}, {'id': 20732, 'synset': 'strawberry_geranium.n.01', 'name': 'strawberry_geranium'}, {'id': 20733, 'synset': 'astilbe.n.01', 'name': 'astilbe'}, {'id': 20734, 'synset': 'false_goatsbeard.n.01', 'name': 'false_goatsbeard'}, {'id': 20735, 'synset': 'dwarf_astilbe.n.01', 'name': 'dwarf_astilbe'}, {'id': 20736, 'synset': 'spirea.n.01', 'name': 'spirea'}, {'id': 20737, 'synset': 'bergenia.n.01', 'name': 'bergenia'}, {'id': 20738, 'synset': 'coast_boykinia.n.01', 'name': 'coast_boykinia'}, {'id': 20739, 'synset': 'golden_saxifrage.n.01', 'name': 'golden_saxifrage'}, {'id': 20740, 'synset': 'umbrella_plant.n.01', 'name': 'umbrella_plant'}, {'id': 20741, 'synset': 'bridal_wreath.n.01', 'name': 'bridal_wreath'}, {'id': 20742, 'synset': 'alumroot.n.01', 'name': 'alumroot'}, {'id': 20743, 'synset': 'coralbells.n.01', 'name': 'coralbells'}, {'id': 20744, 'synset': 'leatherleaf_saxifrage.n.01', 'name': 'leatherleaf_saxifrage'}, {'id': 20745, 'synset': 'woodland_star.n.01', 'name': 'woodland_star'}, {'id': 20746, 'synset': 'prairie_star.n.01', 'name': 'prairie_star'}, {'id': 20747, 'synset': 'miterwort.n.01', 'name': 'miterwort'}, {'id': 20748, 'synset': "five-point_bishop's_cap.n.01", 'name': "five-point_bishop's_cap"}, {'id': 20749, 'synset': 'parnassia.n.01', 'name': 'parnassia'}, {'id': 20750, 'synset': 'bog_star.n.01', 'name': 'bog_star'}, {'id': 20751, 'synset': 'fringed_grass_of_parnassus.n.01', 'name': 'fringed_grass_of_Parnassus'}, {'id': 20752, 'synset': 'false_alumroot.n.01', 'name': 'false_alumroot'}, {'id': 20753, 'synset': 'foamflower.n.01', 'name': 'foamflower'}, {'id': 20754, 'synset': 'false_miterwort.n.01', 'name': 'false_miterwort'}, {'id': 20755, 'synset': 'pickaback_plant.n.01', 'name': 'pickaback_plant'}, {'id': 20756, 'synset': 'currant.n.02', 'name': 'currant'}, {'id': 20757, 'synset': 'black_currant.n.01', 'name': 'black_currant'}, {'id': 20758, 'synset': 'white_currant.n.01', 'name': 'white_currant'}, {'id': 20759, 'synset': 'gooseberry.n.01', 'name': 'gooseberry'}, {'id': 20760, 'synset': 'plane_tree.n.01', 'name': 'plane_tree'}, {'id': 20761, 'synset': 'london_plane.n.01', 'name': 'London_plane'}, {'id': 20762, 'synset': 'american_sycamore.n.01', 'name': 'American_sycamore'}, {'id': 20763, 'synset': 'oriental_plane.n.01', 'name': 'oriental_plane'}, {'id': 20764, 'synset': 'california_sycamore.n.01', 'name': 'California_sycamore'}, {'id': 20765, 'synset': 'arizona_sycamore.n.01', 'name': 'Arizona_sycamore'}, {'id': 20766, 'synset': 'greek_valerian.n.01', 'name': 'Greek_valerian'}, {'id': 20767, 'synset': "northern_jacob's_ladder.n.01", 'name': "northern_Jacob's_ladder"}, {'id': 20768, 'synset': 'skunkweed.n.01', 'name': 'skunkweed'}, {'id': 20769, 'synset': 'phlox.n.01', 'name': 'phlox'}, {'id': 20770, 'synset': 'moss_pink.n.02', 'name': 'moss_pink'}, {'id': 20771, 'synset': 'evening-snow.n.01', 'name': 'evening-snow'}, {'id': 20772, 'synset': 'acanthus.n.01', 'name': 'acanthus'}, {'id': 20773, 'synset': "bear's_breech.n.01", 'name': "bear's_breech"}, {'id': 20774, 'synset': 'caricature_plant.n.01', 'name': 'caricature_plant'}, {'id': 20775, 'synset': 'black-eyed_susan.n.01', 'name': 'black-eyed_Susan'}, {'id': 20776, 'synset': 'catalpa.n.01', 'name': 'catalpa'}, {'id': 20777, 'synset': 'catalpa_bignioides.n.01', 'name': 'Catalpa_bignioides'}, {'id': 20778, 'synset': 'catalpa_speciosa.n.01', 'name': 'Catalpa_speciosa'}, {'id': 20779, 'synset': 'desert_willow.n.01', 'name': 'desert_willow'}, {'id': 20780, 'synset': 'calabash.n.02', 'name': 'calabash'}, {'id': 20781, 'synset': 'calabash.n.01', 'name': 'calabash'}, {'id': 20782, 'synset': 'borage.n.01', 'name': 'borage'}, {'id': 20783, 'synset': 'common_amsinckia.n.01', 'name': 'common_amsinckia'}, {'id': 20784, 'synset': 'anchusa.n.01', 'name': 'anchusa'}, {'id': 20785, 'synset': 'bugloss.n.01', 'name': 'bugloss'}, {'id': 20786, 'synset': 'cape_forget-me-not.n.02', 'name': 'cape_forget-me-not'}, {'id': 20787, 'synset': 'cape_forget-me-not.n.01', 'name': 'cape_forget-me-not'}, {'id': 20788, 'synset': 'spanish_elm.n.02', 'name': 'Spanish_elm'}, {'id': 20789, 'synset': 'princewood.n.01', 'name': 'princewood'}, {'id': 20790, 'synset': 'chinese_forget-me-not.n.01', 'name': 'Chinese_forget-me-not'}, {'id': 20791, 'synset': "hound's-tongue.n.02", 'name': "hound's-tongue"}, {'id': 20792, 'synset': "hound's-tongue.n.01", 'name': "hound's-tongue"}, {'id': 20793, 'synset': 'blueweed.n.01', 'name': 'blueweed'}, {'id': 20794, 'synset': "beggar's_lice.n.01", 'name': "beggar's_lice"}, {'id': 20795, 'synset': 'gromwell.n.01', 'name': 'gromwell'}, {'id': 20796, 'synset': 'puccoon.n.01', 'name': 'puccoon'}, {'id': 20797, 'synset': 'virginia_bluebell.n.01', 'name': 'Virginia_bluebell'}, {'id': 20798, 'synset': 'garden_forget-me-not.n.01', 'name': 'garden_forget-me-not'}, {'id': 20799, 'synset': 'forget-me-not.n.01', 'name': 'forget-me-not'}, {'id': 20800, 'synset': 'false_gromwell.n.01', 'name': 'false_gromwell'}, {'id': 20801, 'synset': 'comfrey.n.01', 'name': 'comfrey'}, {'id': 20802, 'synset': 'common_comfrey.n.01', 'name': 'common_comfrey'}, {'id': 20803, 'synset': 'convolvulus.n.01', 'name': 'convolvulus'}, {'id': 20804, 'synset': 'bindweed.n.01', 'name': 'bindweed'}, {'id': 20805, 'synset': 'field_bindweed.n.01', 'name': 'field_bindweed'}, {'id': 20806, 'synset': 'scammony.n.03', 'name': 'scammony'}, {'id': 20807, 'synset': 'silverweed.n.01', 'name': 'silverweed'}, {'id': 20808, 'synset': 'dodder.n.01', 'name': 'dodder'}, {'id': 20809, 'synset': 'dichondra.n.01', 'name': 'dichondra'}, {'id': 20810, 'synset': 'cypress_vine.n.01', 'name': 'cypress_vine'}, {'id': 20811, 'synset': 'moonflower.n.01', 'name': 'moonflower'}, {'id': 20812, 'synset': 'wild_potato_vine.n.01', 'name': 'wild_potato_vine'}, {'id': 20813, 'synset': 'red_morning-glory.n.01', 'name': 'red_morning-glory'}, {'id': 20814, 'synset': 'man-of-the-earth.n.01', 'name': 'man-of-the-earth'}, {'id': 20815, 'synset': 'scammony.n.01', 'name': 'scammony'}, {'id': 20816, 'synset': 'japanese_morning_glory.n.01', 'name': 'Japanese_morning_glory'}, {'id': 20817, 'synset': 'imperial_japanese_morning_glory.n.01', 'name': 'imperial_Japanese_morning_glory'}, {'id': 20818, 'synset': 'gesneriad.n.01', 'name': 'gesneriad'}, {'id': 20819, 'synset': 'gesneria.n.01', 'name': 'gesneria'}, {'id': 20820, 'synset': 'achimenes.n.01', 'name': 'achimenes'}, {'id': 20821, 'synset': 'aeschynanthus.n.01', 'name': 'aeschynanthus'}, {'id': 20822, 'synset': 'lace-flower_vine.n.01', 'name': 'lace-flower_vine'}, {'id': 20823, 'synset': 'columnea.n.01', 'name': 'columnea'}, {'id': 20824, 'synset': 'episcia.n.01', 'name': 'episcia'}, {'id': 20825, 'synset': 'gloxinia.n.01', 'name': 'gloxinia'}, {'id': 20826, 'synset': 'canterbury_bell.n.01', 'name': 'Canterbury_bell'}, {'id': 20827, 'synset': 'kohleria.n.01', 'name': 'kohleria'}, {'id': 20828, 'synset': 'african_violet.n.01', 'name': 'African_violet'}, {'id': 20829, 'synset': 'streptocarpus.n.01', 'name': 'streptocarpus'}, {'id': 20830, 'synset': 'cape_primrose.n.01', 'name': 'Cape_primrose'}, {'id': 20831, 'synset': 'waterleaf.n.01', 'name': 'waterleaf'}, {'id': 20832, 'synset': 'virginia_waterleaf.n.01', 'name': 'Virginia_waterleaf'}, {'id': 20833, 'synset': 'yellow_bells.n.01', 'name': 'yellow_bells'}, {'id': 20834, 'synset': 'yerba_santa.n.01', 'name': 'yerba_santa'}, {'id': 20835, 'synset': 'nemophila.n.01', 'name': 'nemophila'}, {'id': 20836, 'synset': 'baby_blue-eyes.n.01', 'name': 'baby_blue-eyes'}, {'id': 20837, 'synset': 'five-spot.n.02', 'name': 'five-spot'}, {'id': 20838, 'synset': 'scorpionweed.n.01', 'name': 'scorpionweed'}, {'id': 20839, 'synset': 'california_bluebell.n.02', 'name': 'California_bluebell'}, {'id': 20840, 'synset': 'california_bluebell.n.01', 'name': 'California_bluebell'}, {'id': 20841, 'synset': 'fiddleneck.n.01', 'name': 'fiddleneck'}, {'id': 20842, 'synset': 'fiesta_flower.n.01', 'name': 'fiesta_flower'}, {'id': 20843, 'synset': 'basil_thyme.n.01', 'name': 'basil_thyme'}, {'id': 20844, 'synset': 'giant_hyssop.n.01', 'name': 'giant_hyssop'}, {'id': 20845, 'synset': 'yellow_giant_hyssop.n.01', 'name': 'yellow_giant_hyssop'}, {'id': 20846, 'synset': 'anise_hyssop.n.01', 'name': 'anise_hyssop'}, {'id': 20847, 'synset': 'mexican_hyssop.n.01', 'name': 'Mexican_hyssop'}, {'id': 20848, 'synset': 'bugle.n.02', 'name': 'bugle'}, {'id': 20849, 'synset': 'creeping_bugle.n.01', 'name': 'creeping_bugle'}, {'id': 20850, 'synset': 'erect_bugle.n.01', 'name': 'erect_bugle'}, {'id': 20851, 'synset': 'pyramid_bugle.n.01', 'name': 'pyramid_bugle'}, {'id': 20852, 'synset': 'wood_mint.n.01', 'name': 'wood_mint'}, {'id': 20853, 'synset': 'hairy_wood_mint.n.01', 'name': 'hairy_wood_mint'}, {'id': 20854, 'synset': 'downy_wood_mint.n.01', 'name': 'downy_wood_mint'}, {'id': 20855, 'synset': 'calamint.n.01', 'name': 'calamint'}, {'id': 20856, 'synset': 'common_calamint.n.01', 'name': 'common_calamint'}, {'id': 20857, 'synset': 'large-flowered_calamint.n.01', 'name': 'large-flowered_calamint'}, {'id': 20858, 'synset': 'lesser_calamint.n.01', 'name': 'lesser_calamint'}, {'id': 20859, 'synset': 'wild_basil.n.01', 'name': 'wild_basil'}, {'id': 20860, 'synset': 'horse_balm.n.01', 'name': 'horse_balm'}, {'id': 20861, 'synset': 'coleus.n.01', 'name': 'coleus'}, {'id': 20862, 'synset': 'country_borage.n.01', 'name': 'country_borage'}, {'id': 20863, 'synset': 'painted_nettle.n.01', 'name': 'painted_nettle'}, {'id': 20864, 'synset': 'apalachicola_rosemary.n.01', 'name': 'Apalachicola_rosemary'}, {'id': 20865, 'synset': 'dragonhead.n.01', 'name': 'dragonhead'}, {'id': 20866, 'synset': 'elsholtzia.n.01', 'name': 'elsholtzia'}, {'id': 20867, 'synset': 'hemp_nettle.n.01', 'name': 'hemp_nettle'}, {'id': 20868, 'synset': 'ground_ivy.n.01', 'name': 'ground_ivy'}, {'id': 20869, 'synset': 'pennyroyal.n.02', 'name': 'pennyroyal'}, {'id': 20870, 'synset': 'hyssop.n.01', 'name': 'hyssop'}, {'id': 20871, 'synset': 'dead_nettle.n.02', 'name': 'dead_nettle'}, {'id': 20872, 'synset': 'white_dead_nettle.n.01', 'name': 'white_dead_nettle'}, {'id': 20873, 'synset': 'henbit.n.01', 'name': 'henbit'}, {'id': 20874, 'synset': 'english_lavender.n.01', 'name': 'English_lavender'}, {'id': 20875, 'synset': 'french_lavender.n.02', 'name': 'French_lavender'}, {'id': 20876, 'synset': 'spike_lavender.n.01', 'name': 'spike_lavender'}, {'id': 20877, 'synset': 'dagga.n.01', 'name': 'dagga'}, {'id': 20878, 'synset': "lion's-ear.n.01", 'name': "lion's-ear"}, {'id': 20879, 'synset': 'motherwort.n.01', 'name': 'motherwort'}, {'id': 20880, 'synset': 'pitcher_sage.n.02', 'name': 'pitcher_sage'}, {'id': 20881, 'synset': 'bugleweed.n.01', 'name': 'bugleweed'}, {'id': 20882, 'synset': 'water_horehound.n.01', 'name': 'water_horehound'}, {'id': 20883, 'synset': 'gipsywort.n.01', 'name': 'gipsywort'}, {'id': 20884, 'synset': 'origanum.n.01', 'name': 'origanum'}, {'id': 20885, 'synset': 'oregano.n.01', 'name': 'oregano'}, {'id': 20886, 'synset': 'sweet_marjoram.n.01', 'name': 'sweet_marjoram'}, {'id': 20887, 'synset': 'horehound.n.01', 'name': 'horehound'}, {'id': 20888, 'synset': 'common_horehound.n.01', 'name': 'common_horehound'}, {'id': 20889, 'synset': 'lemon_balm.n.01', 'name': 'lemon_balm'}, {'id': 20890, 'synset': 'corn_mint.n.01', 'name': 'corn_mint'}, {'id': 20891, 'synset': 'water-mint.n.01', 'name': 'water-mint'}, {'id': 20892, 'synset': 'bergamot_mint.n.02', 'name': 'bergamot_mint'}, {'id': 20893, 'synset': 'horsemint.n.03', 'name': 'horsemint'}, {'id': 20894, 'synset': 'peppermint.n.01', 'name': 'peppermint'}, {'id': 20895, 'synset': 'spearmint.n.01', 'name': 'spearmint'}, {'id': 20896, 'synset': 'apple_mint.n.01', 'name': 'apple_mint'}, {'id': 20897, 'synset': 'pennyroyal.n.01', 'name': 'pennyroyal'}, {'id': 20898, 'synset': 'yerba_buena.n.01', 'name': 'yerba_buena'}, {'id': 20899, 'synset': 'molucca_balm.n.01', 'name': 'molucca_balm'}, {'id': 20900, 'synset': 'monarda.n.01', 'name': 'monarda'}, {'id': 20901, 'synset': 'bee_balm.n.02', 'name': 'bee_balm'}, {'id': 20902, 'synset': 'horsemint.n.02', 'name': 'horsemint'}, {'id': 20903, 'synset': 'bee_balm.n.01', 'name': 'bee_balm'}, {'id': 20904, 'synset': 'lemon_mint.n.01', 'name': 'lemon_mint'}, {'id': 20905, 'synset': 'plains_lemon_monarda.n.01', 'name': 'plains_lemon_monarda'}, {'id': 20906, 'synset': 'basil_balm.n.01', 'name': 'basil_balm'}, {'id': 20907, 'synset': 'mustang_mint.n.01', 'name': 'mustang_mint'}, {'id': 20908, 'synset': 'catmint.n.01', 'name': 'catmint'}, {'id': 20909, 'synset': 'basil.n.01', 'name': 'basil'}, {'id': 20910, 'synset': 'beefsteak_plant.n.01', 'name': 'beefsteak_plant'}, {'id': 20911, 'synset': 'phlomis.n.01', 'name': 'phlomis'}, {'id': 20912, 'synset': 'jerusalem_sage.n.01', 'name': 'Jerusalem_sage'}, {'id': 20913, 'synset': 'physostegia.n.01', 'name': 'physostegia'}, {'id': 20914, 'synset': 'plectranthus.n.01', 'name': 'plectranthus'}, {'id': 20915, 'synset': 'patchouli.n.01', 'name': 'patchouli'}, {'id': 20916, 'synset': 'self-heal.n.01', 'name': 'self-heal'}, {'id': 20917, 'synset': 'mountain_mint.n.01', 'name': 'mountain_mint'}, {'id': 20918, 'synset': 'rosemary.n.01', 'name': 'rosemary'}, {'id': 20919, 'synset': 'clary_sage.n.01', 'name': 'clary_sage'}, {'id': 20920, 'synset': 'purple_sage.n.01', 'name': 'purple_sage'}, {'id': 20921, 'synset': 'cancerweed.n.01', 'name': 'cancerweed'}, {'id': 20922, 'synset': 'common_sage.n.01', 'name': 'common_sage'}, {'id': 20923, 'synset': 'meadow_clary.n.01', 'name': 'meadow_clary'}, {'id': 20924, 'synset': 'clary.n.01', 'name': 'clary'}, {'id': 20925, 'synset': 'pitcher_sage.n.01', 'name': 'pitcher_sage'}, {'id': 20926, 'synset': 'mexican_mint.n.01', 'name': 'Mexican_mint'}, {'id': 20927, 'synset': 'wild_sage.n.01', 'name': 'wild_sage'}, {'id': 20928, 'synset': 'savory.n.01', 'name': 'savory'}, {'id': 20929, 'synset': 'summer_savory.n.01', 'name': 'summer_savory'}, {'id': 20930, 'synset': 'winter_savory.n.01', 'name': 'winter_savory'}, {'id': 20931, 'synset': 'skullcap.n.02', 'name': 'skullcap'}, {'id': 20932, 'synset': 'blue_pimpernel.n.01', 'name': 'blue_pimpernel'}, {'id': 20933, 'synset': 'hedge_nettle.n.02', 'name': 'hedge_nettle'}, {'id': 20934, 'synset': 'hedge_nettle.n.01', 'name': 'hedge_nettle'}, {'id': 20935, 'synset': 'germander.n.01', 'name': 'germander'}, {'id': 20936, 'synset': 'american_germander.n.01', 'name': 'American_germander'}, {'id': 20937, 'synset': 'cat_thyme.n.01', 'name': 'cat_thyme'}, {'id': 20938, 'synset': 'wood_sage.n.01', 'name': 'wood_sage'}, {'id': 20939, 'synset': 'thyme.n.01', 'name': 'thyme'}, {'id': 20940, 'synset': 'common_thyme.n.01', 'name': 'common_thyme'}, {'id': 20941, 'synset': 'wild_thyme.n.01', 'name': 'wild_thyme'}, {'id': 20942, 'synset': 'blue_curls.n.01', 'name': 'blue_curls'}, {'id': 20943, 'synset': 'turpentine_camphor_weed.n.01', 'name': 'turpentine_camphor_weed'}, {'id': 20944, 'synset': 'bastard_pennyroyal.n.01', 'name': 'bastard_pennyroyal'}, {'id': 20945, 'synset': 'bladderwort.n.01', 'name': 'bladderwort'}, {'id': 20946, 'synset': 'butterwort.n.01', 'name': 'butterwort'}, {'id': 20947, 'synset': 'genlisea.n.01', 'name': 'genlisea'}, {'id': 20948, 'synset': 'martynia.n.01', 'name': 'martynia'}, {'id': 20949, 'synset': 'common_unicorn_plant.n.01', 'name': 'common_unicorn_plant'}, {'id': 20950, 'synset': "sand_devil's_claw.n.01", 'name': "sand_devil's_claw"}, {'id': 20951, 'synset': 'sweet_unicorn_plant.n.01', 'name': 'sweet_unicorn_plant'}, {'id': 20952, 'synset': 'figwort.n.01', 'name': 'figwort'}, {'id': 20953, 'synset': 'snapdragon.n.01', 'name': 'snapdragon'}, {'id': 20954, 'synset': 'white_snapdragon.n.01', 'name': 'white_snapdragon'}, {'id': 20955, 'synset': 'yellow_twining_snapdragon.n.01', 'name': 'yellow_twining_snapdragon'}, {'id': 20956, 'synset': 'mediterranean_snapdragon.n.01', 'name': 'Mediterranean_snapdragon'}, {'id': 20957, 'synset': 'kitten-tails.n.01', 'name': 'kitten-tails'}, {'id': 20958, 'synset': 'alpine_besseya.n.01', 'name': 'Alpine_besseya'}, {'id': 20959, 'synset': 'false_foxglove.n.02', 'name': 'false_foxglove'}, {'id': 20960, 'synset': 'false_foxglove.n.01', 'name': 'false_foxglove'}, {'id': 20961, 'synset': 'calceolaria.n.01', 'name': 'calceolaria'}, {'id': 20962, 'synset': 'indian_paintbrush.n.02', 'name': 'Indian_paintbrush'}, {'id': 20963, 'synset': 'desert_paintbrush.n.01', 'name': 'desert_paintbrush'}, {'id': 20964, 'synset': 'giant_red_paintbrush.n.01', 'name': 'giant_red_paintbrush'}, {'id': 20965, 'synset': 'great_plains_paintbrush.n.01', 'name': 'great_plains_paintbrush'}, {'id': 20966, 'synset': 'sulfur_paintbrush.n.01', 'name': 'sulfur_paintbrush'}, {'id': 20967, 'synset': 'shellflower.n.01', 'name': 'shellflower'}, {'id': 20968, 'synset': 'maiden_blue-eyed_mary.n.01', 'name': 'maiden_blue-eyed_Mary'}, {'id': 20969, 'synset': 'blue-eyed_mary.n.01', 'name': 'blue-eyed_Mary'}, {'id': 20970, 'synset': 'foxglove.n.01', 'name': 'foxglove'}, {'id': 20971, 'synset': 'common_foxglove.n.01', 'name': 'common_foxglove'}, {'id': 20972, 'synset': 'yellow_foxglove.n.01', 'name': 'yellow_foxglove'}, {'id': 20973, 'synset': 'gerardia.n.01', 'name': 'gerardia'}, {'id': 20974, 'synset': 'blue_toadflax.n.01', 'name': 'blue_toadflax'}, {'id': 20975, 'synset': 'toadflax.n.01', 'name': 'toadflax'}, {'id': 20976, 'synset': 'golden-beard_penstemon.n.01', 'name': 'golden-beard_penstemon'}, {'id': 20977, 'synset': 'scarlet_bugler.n.01', 'name': 'scarlet_bugler'}, {'id': 20978, 'synset': 'red_shrubby_penstemon.n.01', 'name': 'red_shrubby_penstemon'}, {'id': 20979, 'synset': 'platte_river_penstemon.n.01', 'name': 'Platte_River_penstemon'}, {'id': 20980, 'synset': 'hot-rock_penstemon.n.01', 'name': 'hot-rock_penstemon'}, {'id': 20981, 'synset': "jones'_penstemon.n.01", 'name': "Jones'_penstemon"}, {'id': 20982, 'synset': 'shrubby_penstemon.n.01', 'name': 'shrubby_penstemon'}, {'id': 20983, 'synset': 'narrow-leaf_penstemon.n.01', 'name': 'narrow-leaf_penstemon'}, {'id': 20984, 'synset': 'balloon_flower.n.01', 'name': 'balloon_flower'}, {'id': 20985, 'synset': "parry's_penstemon.n.01", 'name': "Parry's_penstemon"}, {'id': 20986, 'synset': 'rock_penstemon.n.01', 'name': 'rock_penstemon'}, {'id': 20987, 'synset': "rydberg's_penstemon.n.01", 'name': "Rydberg's_penstemon"}, {'id': 20988, 'synset': 'cascade_penstemon.n.01', 'name': 'cascade_penstemon'}, {'id': 20989, 'synset': "whipple's_penstemon.n.01", 'name': "Whipple's_penstemon"}, {'id': 20990, 'synset': 'moth_mullein.n.01', 'name': 'moth_mullein'}, {'id': 20991, 'synset': 'white_mullein.n.01', 'name': 'white_mullein'}, {'id': 20992, 'synset': 'purple_mullein.n.01', 'name': 'purple_mullein'}, {'id': 20993, 'synset': 'common_mullein.n.01', 'name': 'common_mullein'}, {'id': 20994, 'synset': 'veronica.n.01', 'name': 'veronica'}, {'id': 20995, 'synset': 'field_speedwell.n.01', 'name': 'field_speedwell'}, {'id': 20996, 'synset': 'brooklime.n.02', 'name': 'brooklime'}, {'id': 20997, 'synset': 'corn_speedwell.n.01', 'name': 'corn_speedwell'}, {'id': 20998, 'synset': 'brooklime.n.01', 'name': 'brooklime'}, {'id': 20999, 'synset': 'germander_speedwell.n.01', 'name': 'germander_speedwell'}, {'id': 21000, 'synset': 'water_speedwell.n.01', 'name': 'water_speedwell'}, {'id': 21001, 'synset': 'common_speedwell.n.01', 'name': 'common_speedwell'}, {'id': 21002, 'synset': 'purslane_speedwell.n.01', 'name': 'purslane_speedwell'}, {'id': 21003, 'synset': 'thyme-leaved_speedwell.n.01', 'name': 'thyme-leaved_speedwell'}, {'id': 21004, 'synset': 'nightshade.n.01', 'name': 'nightshade'}, {'id': 21005, 'synset': 'horse_nettle.n.01', 'name': 'horse_nettle'}, {'id': 21006, 'synset': 'african_holly.n.01', 'name': 'African_holly'}, {'id': 21007, 'synset': 'potato_vine.n.02', 'name': 'potato_vine'}, {'id': 21008, 'synset': 'garden_huckleberry.n.01', 'name': 'garden_huckleberry'}, {'id': 21009, 'synset': 'naranjilla.n.01', 'name': 'naranjilla'}, {'id': 21010, 'synset': 'potato_vine.n.01', 'name': 'potato_vine'}, {'id': 21011, 'synset': 'potato_tree.n.01', 'name': 'potato_tree'}, {'id': 21012, 'synset': 'belladonna.n.01', 'name': 'belladonna'}, {'id': 21013, 'synset': 'bush_violet.n.01', 'name': 'bush_violet'}, {'id': 21014, 'synset': 'lady-of-the-night.n.01', 'name': 'lady-of-the-night'}, {'id': 21015, 'synset': "angel's_trumpet.n.02", 'name': "angel's_trumpet"}, {'id': 21016, 'synset': "angel's_trumpet.n.01", 'name': "angel's_trumpet"}, {'id': 21017, 'synset': "red_angel's_trumpet.n.01", 'name': "red_angel's_trumpet"}, {'id': 21018, 'synset': 'cone_pepper.n.01', 'name': 'cone_pepper'}, {'id': 21019, 'synset': 'bird_pepper.n.01', 'name': 'bird_pepper'}, {'id': 21020, 'synset': 'day_jessamine.n.01', 'name': 'day_jessamine'}, {'id': 21021, 'synset': 'night_jasmine.n.01', 'name': 'night_jasmine'}, {'id': 21022, 'synset': 'tree_tomato.n.01', 'name': 'tree_tomato'}, {'id': 21023, 'synset': 'thorn_apple.n.01', 'name': 'thorn_apple'}, {'id': 21024, 'synset': 'jimsonweed.n.01', 'name': 'jimsonweed'}, {'id': 21025, 'synset': 'pichi.n.01', 'name': 'pichi'}, {'id': 21026, 'synset': 'henbane.n.01', 'name': 'henbane'}, {'id': 21027, 'synset': 'egyptian_henbane.n.01', 'name': 'Egyptian_henbane'}, {'id': 21028, 'synset': 'matrimony_vine.n.01', 'name': 'matrimony_vine'}, {'id': 21029, 'synset': 'common_matrimony_vine.n.01', 'name': 'common_matrimony_vine'}, {'id': 21030, 'synset': 'christmasberry.n.01', 'name': 'Christmasberry'}, {'id': 21031, 'synset': 'plum_tomato.n.01', 'name': 'plum_tomato'}, {'id': 21032, 'synset': 'mandrake.n.02', 'name': 'mandrake'}, {'id': 21033, 'synset': 'mandrake_root.n.01', 'name': 'mandrake_root'}, {'id': 21034, 'synset': 'apple_of_peru.n.01', 'name': 'apple_of_Peru'}, {'id': 21035, 'synset': 'flowering_tobacco.n.01', 'name': 'flowering_tobacco'}, {'id': 21036, 'synset': 'common_tobacco.n.01', 'name': 'common_tobacco'}, {'id': 21037, 'synset': 'wild_tobacco.n.01', 'name': 'wild_tobacco'}, {'id': 21038, 'synset': 'cupflower.n.02', 'name': 'cupflower'}, {'id': 21039, 'synset': 'whitecup.n.01', 'name': 'whitecup'}, {'id': 21040, 'synset': 'petunia.n.01', 'name': 'petunia'}, {'id': 21041, 'synset': 'large_white_petunia.n.01', 'name': 'large_white_petunia'}, {'id': 21042, 'synset': 'violet-flowered_petunia.n.01', 'name': 'violet-flowered_petunia'}, {'id': 21043, 'synset': 'hybrid_petunia.n.01', 'name': 'hybrid_petunia'}, {'id': 21044, 'synset': 'cape_gooseberry.n.01', 'name': 'cape_gooseberry'}, {'id': 21045, 'synset': 'strawberry_tomato.n.01', 'name': 'strawberry_tomato'}, {'id': 21046, 'synset': 'tomatillo.n.02', 'name': 'tomatillo'}, {'id': 21047, 'synset': 'tomatillo.n.01', 'name': 'tomatillo'}, {'id': 21048, 'synset': 'yellow_henbane.n.01', 'name': 'yellow_henbane'}, {'id': 21049, 'synset': "cock's_eggs.n.01", 'name': "cock's_eggs"}, {'id': 21050, 'synset': 'salpiglossis.n.01', 'name': 'salpiglossis'}, {'id': 21051, 'synset': 'painted_tongue.n.01', 'name': 'painted_tongue'}, {'id': 21052, 'synset': 'butterfly_flower.n.01', 'name': 'butterfly_flower'}, {'id': 21053, 'synset': 'scopolia_carniolica.n.01', 'name': 'Scopolia_carniolica'}, {'id': 21054, 'synset': 'chalice_vine.n.01', 'name': 'chalice_vine'}, {'id': 21055, 'synset': 'verbena.n.01', 'name': 'verbena'}, {'id': 21056, 'synset': 'lantana.n.01', 'name': 'lantana'}, {'id': 21057, 'synset': 'black_mangrove.n.02', 'name': 'black_mangrove'}, {'id': 21058, 'synset': 'white_mangrove.n.01', 'name': 'white_mangrove'}, {'id': 21059, 'synset': 'black_mangrove.n.01', 'name': 'black_mangrove'}, {'id': 21060, 'synset': 'teak.n.02', 'name': 'teak'}, {'id': 21061, 'synset': 'spurge.n.01', 'name': 'spurge'}, {'id': 21062, 'synset': 'sun_spurge.n.01', 'name': 'sun_spurge'}, {'id': 21063, 'synset': 'petty_spurge.n.01', 'name': 'petty_spurge'}, {'id': 21064, 'synset': "medusa's_head.n.01", 'name': "medusa's_head"}, {'id': 21065, 'synset': 'wild_spurge.n.01', 'name': 'wild_spurge'}, {'id': 21066, 'synset': 'snow-on-the-mountain.n.01', 'name': 'snow-on-the-mountain'}, {'id': 21067, 'synset': 'cypress_spurge.n.01', 'name': 'cypress_spurge'}, {'id': 21068, 'synset': 'leafy_spurge.n.01', 'name': 'leafy_spurge'}, {'id': 21069, 'synset': 'hairy_spurge.n.01', 'name': 'hairy_spurge'}, {'id': 21070, 'synset': 'poinsettia.n.01', 'name': 'poinsettia'}, {'id': 21071, 'synset': 'japanese_poinsettia.n.01', 'name': 'Japanese_poinsettia'}, {'id': 21072, 'synset': 'fire-on-the-mountain.n.01', 'name': 'fire-on-the-mountain'}, {'id': 21073, 'synset': 'wood_spurge.n.01', 'name': 'wood_spurge'}, {'id': 21074, 'synset': 'dwarf_spurge.n.01', 'name': 'dwarf_spurge'}, {'id': 21075, 'synset': 'scarlet_plume.n.01', 'name': 'scarlet_plume'}, {'id': 21076, 'synset': 'naboom.n.01', 'name': 'naboom'}, {'id': 21077, 'synset': 'crown_of_thorns.n.02', 'name': 'crown_of_thorns'}, {'id': 21078, 'synset': 'toothed_spurge.n.01', 'name': 'toothed_spurge'}, {'id': 21079, 'synset': 'three-seeded_mercury.n.01', 'name': 'three-seeded_mercury'}, {'id': 21080, 'synset': 'croton.n.02', 'name': 'croton'}, {'id': 21081, 'synset': 'cascarilla.n.01', 'name': 'cascarilla'}, {'id': 21082, 'synset': 'cascarilla_bark.n.01', 'name': 'cascarilla_bark'}, {'id': 21083, 'synset': 'castor-oil_plant.n.01', 'name': 'castor-oil_plant'}, {'id': 21084, 'synset': 'spurge_nettle.n.01', 'name': 'spurge_nettle'}, {'id': 21085, 'synset': 'physic_nut.n.01', 'name': 'physic_nut'}, {'id': 21086, 'synset': 'para_rubber_tree.n.01', 'name': 'Para_rubber_tree'}, {'id': 21087, 'synset': 'cassava.n.03', 'name': 'cassava'}, {'id': 21088, 'synset': 'bitter_cassava.n.01', 'name': 'bitter_cassava'}, {'id': 21089, 'synset': 'cassava.n.02', 'name': 'cassava'}, {'id': 21090, 'synset': 'sweet_cassava.n.01', 'name': 'sweet_cassava'}, {'id': 21091, 'synset': 'candlenut.n.01', 'name': 'candlenut'}, {'id': 21092, 'synset': 'tung_tree.n.01', 'name': 'tung_tree'}, {'id': 21093, 'synset': 'slipper_spurge.n.01', 'name': 'slipper_spurge'}, {'id': 21094, 'synset': 'candelilla.n.01', 'name': 'candelilla'}, {'id': 21095, 'synset': 'jewbush.n.01', 'name': 'Jewbush'}, {'id': 21096, 'synset': 'jumping_bean.n.01', 'name': 'jumping_bean'}, {'id': 21097, 'synset': 'camellia.n.01', 'name': 'camellia'}, {'id': 21098, 'synset': 'japonica.n.01', 'name': 'japonica'}, {'id': 21099, 'synset': 'umbellifer.n.01', 'name': 'umbellifer'}, {'id': 21100, 'synset': 'wild_parsley.n.01', 'name': 'wild_parsley'}, {'id': 21101, 'synset': "fool's_parsley.n.01", 'name': "fool's_parsley"}, {'id': 21102, 'synset': 'dill.n.01', 'name': 'dill'}, {'id': 21103, 'synset': 'angelica.n.01', 'name': 'angelica'}, {'id': 21104, 'synset': 'garden_angelica.n.01', 'name': 'garden_angelica'}, {'id': 21105, 'synset': 'wild_angelica.n.01', 'name': 'wild_angelica'}, {'id': 21106, 'synset': 'chervil.n.01', 'name': 'chervil'}, {'id': 21107, 'synset': 'cow_parsley.n.01', 'name': 'cow_parsley'}, {'id': 21108, 'synset': 'wild_celery.n.01', 'name': 'wild_celery'}, {'id': 21109, 'synset': 'astrantia.n.01', 'name': 'astrantia'}, {'id': 21110, 'synset': 'greater_masterwort.n.01', 'name': 'greater_masterwort'}, {'id': 21111, 'synset': 'caraway.n.01', 'name': 'caraway'}, {'id': 21112, 'synset': 'whorled_caraway.n.01', 'name': 'whorled_caraway'}, {'id': 21113, 'synset': 'water_hemlock.n.01', 'name': 'water_hemlock'}, {'id': 21114, 'synset': 'spotted_cowbane.n.01', 'name': 'spotted_cowbane'}, {'id': 21115, 'synset': 'hemlock.n.02', 'name': 'hemlock'}, {'id': 21116, 'synset': 'earthnut.n.02', 'name': 'earthnut'}, {'id': 21117, 'synset': 'cumin.n.01', 'name': 'cumin'}, {'id': 21118, 'synset': 'wild_carrot.n.01', 'name': 'wild_carrot'}, {'id': 21119, 'synset': 'eryngo.n.01', 'name': 'eryngo'}, {'id': 21120, 'synset': 'sea_holly.n.01', 'name': 'sea_holly'}, {'id': 21121, 'synset': 'button_snakeroot.n.02', 'name': 'button_snakeroot'}, {'id': 21122, 'synset': 'rattlesnake_master.n.01', 'name': 'rattlesnake_master'}, {'id': 21123, 'synset': 'fennel.n.01', 'name': 'fennel'}, {'id': 21124, 'synset': 'common_fennel.n.01', 'name': 'common_fennel'}, {'id': 21125, 'synset': 'florence_fennel.n.01', 'name': 'Florence_fennel'}, {'id': 21126, 'synset': 'cow_parsnip.n.01', 'name': 'cow_parsnip'}, {'id': 21127, 'synset': 'lovage.n.01', 'name': 'lovage'}, {'id': 21128, 'synset': 'sweet_cicely.n.01', 'name': 'sweet_cicely'}, {'id': 21129, 'synset': 'water_fennel.n.01', 'name': 'water_fennel'}, {'id': 21130, 'synset': 'parsnip.n.02', 'name': 'parsnip'}, {'id': 21131, 'synset': 'cultivated_parsnip.n.01', 'name': 'cultivated_parsnip'}, {'id': 21132, 'synset': 'wild_parsnip.n.01', 'name': 'wild_parsnip'}, {'id': 21133, 'synset': 'parsley.n.01', 'name': 'parsley'}, {'id': 21134, 'synset': 'italian_parsley.n.01', 'name': 'Italian_parsley'}, {'id': 21135, 'synset': 'hamburg_parsley.n.01', 'name': 'Hamburg_parsley'}, {'id': 21136, 'synset': 'anise.n.01', 'name': 'anise'}, {'id': 21137, 'synset': 'sanicle.n.01', 'name': 'sanicle'}, {'id': 21138, 'synset': 'purple_sanicle.n.01', 'name': 'purple_sanicle'}, {'id': 21139, 'synset': 'european_sanicle.n.01', 'name': 'European_sanicle'}, {'id': 21140, 'synset': 'water_parsnip.n.01', 'name': 'water_parsnip'}, {'id': 21141, 'synset': 'greater_water_parsnip.n.01', 'name': 'greater_water_parsnip'}, {'id': 21142, 'synset': 'skirret.n.01', 'name': 'skirret'}, {'id': 21143, 'synset': 'dogwood.n.01', 'name': 'dogwood'}, {'id': 21144, 'synset': 'common_white_dogwood.n.01', 'name': 'common_white_dogwood'}, {'id': 21145, 'synset': 'red_osier.n.01', 'name': 'red_osier'}, {'id': 21146, 'synset': 'silky_dogwood.n.02', 'name': 'silky_dogwood'}, {'id': 21147, 'synset': 'silky_cornel.n.01', 'name': 'silky_cornel'}, {'id': 21148, 'synset': 'common_european_dogwood.n.01', 'name': 'common_European_dogwood'}, {'id': 21149, 'synset': 'bunchberry.n.01', 'name': 'bunchberry'}, {'id': 21150, 'synset': 'cornelian_cherry.n.01', 'name': 'cornelian_cherry'}, {'id': 21151, 'synset': 'puka.n.01', 'name': 'puka'}, {'id': 21152, 'synset': 'kapuka.n.01', 'name': 'kapuka'}, {'id': 21153, 'synset': 'valerian.n.01', 'name': 'valerian'}, {'id': 21154, 'synset': 'common_valerian.n.01', 'name': 'common_valerian'}, {'id': 21155, 'synset': 'common_corn_salad.n.01', 'name': 'common_corn_salad'}, {'id': 21156, 'synset': 'red_valerian.n.01', 'name': 'red_valerian'}, {'id': 21157, 'synset': 'filmy_fern.n.02', 'name': 'filmy_fern'}, {'id': 21158, 'synset': 'bristle_fern.n.01', 'name': 'bristle_fern'}, {'id': 21159, 'synset': "hare's-foot_bristle_fern.n.01", 'name': "hare's-foot_bristle_fern"}, {'id': 21160, 'synset': 'killarney_fern.n.01', 'name': 'Killarney_fern'}, {'id': 21161, 'synset': 'kidney_fern.n.01', 'name': 'kidney_fern'}, {'id': 21162, 'synset': 'flowering_fern.n.02', 'name': 'flowering_fern'}, {'id': 21163, 'synset': 'royal_fern.n.01', 'name': 'royal_fern'}, {'id': 21164, 'synset': 'interrupted_fern.n.01', 'name': 'interrupted_fern'}, {'id': 21165, 'synset': 'crape_fern.n.01', 'name': 'crape_fern'}, {'id': 21166, 'synset': 'crepe_fern.n.01', 'name': 'crepe_fern'}, {'id': 21167, 'synset': 'curly_grass.n.01', 'name': 'curly_grass'}, {'id': 21168, 'synset': 'pine_fern.n.01', 'name': 'pine_fern'}, {'id': 21169, 'synset': 'climbing_fern.n.01', 'name': 'climbing_fern'}, {'id': 21170, 'synset': 'creeping_fern.n.01', 'name': 'creeping_fern'}, {'id': 21171, 'synset': 'climbing_maidenhair.n.01', 'name': 'climbing_maidenhair'}, {'id': 21172, 'synset': 'scented_fern.n.02', 'name': 'scented_fern'}, {'id': 21173, 'synset': 'clover_fern.n.01', 'name': 'clover_fern'}, {'id': 21174, 'synset': 'nardoo.n.01', 'name': 'nardoo'}, {'id': 21175, 'synset': 'water_clover.n.01', 'name': 'water_clover'}, {'id': 21176, 'synset': 'pillwort.n.01', 'name': 'pillwort'}, {'id': 21177, 'synset': 'regnellidium.n.01', 'name': 'regnellidium'}, {'id': 21178, 'synset': 'floating-moss.n.01', 'name': 'floating-moss'}, {'id': 21179, 'synset': 'mosquito_fern.n.01', 'name': 'mosquito_fern'}, {'id': 21180, 'synset': "adder's_tongue.n.01", 'name': "adder's_tongue"}, {'id': 21181, 'synset': 'ribbon_fern.n.03', 'name': 'ribbon_fern'}, {'id': 21182, 'synset': 'grape_fern.n.01', 'name': 'grape_fern'}, {'id': 21183, 'synset': 'daisyleaf_grape_fern.n.01', 'name': 'daisyleaf_grape_fern'}, {'id': 21184, 'synset': 'leathery_grape_fern.n.01', 'name': 'leathery_grape_fern'}, {'id': 21185, 'synset': 'rattlesnake_fern.n.01', 'name': 'rattlesnake_fern'}, {'id': 21186, 'synset': 'flowering_fern.n.01', 'name': 'flowering_fern'}, {'id': 21187, 'synset': 'powdery_mildew.n.01', 'name': 'powdery_mildew'}, {'id': 21188, 'synset': 'dutch_elm_fungus.n.01', 'name': 'Dutch_elm_fungus'}, {'id': 21189, 'synset': 'ergot.n.02', 'name': 'ergot'}, {'id': 21190, 'synset': 'rye_ergot.n.01', 'name': 'rye_ergot'}, {'id': 21191, 'synset': 'black_root_rot_fungus.n.01', 'name': 'black_root_rot_fungus'}, {'id': 21192, 'synset': "dead-man's-fingers.n.01", 'name': "dead-man's-fingers"}, {'id': 21193, 'synset': 'sclerotinia.n.01', 'name': 'sclerotinia'}, {'id': 21194, 'synset': 'brown_cup.n.01', 'name': 'brown_cup'}, {'id': 21195, 'synset': 'earthball.n.01', 'name': 'earthball'}, {'id': 21196, 'synset': 'scleroderma_citrinum.n.01', 'name': 'Scleroderma_citrinum'}, {'id': 21197, 'synset': 'scleroderma_flavidium.n.01', 'name': 'Scleroderma_flavidium'}, {'id': 21198, 'synset': 'scleroderma_bovista.n.01', 'name': 'Scleroderma_bovista'}, {'id': 21199, 'synset': 'podaxaceae.n.01', 'name': 'Podaxaceae'}, {'id': 21200, 'synset': 'stalked_puffball.n.02', 'name': 'stalked_puffball'}, {'id': 21201, 'synset': 'stalked_puffball.n.01', 'name': 'stalked_puffball'}, {'id': 21202, 'synset': 'false_truffle.n.01', 'name': 'false_truffle'}, {'id': 21203, 'synset': 'rhizopogon_idahoensis.n.01', 'name': 'Rhizopogon_idahoensis'}, {'id': 21204, 'synset': 'truncocolumella_citrina.n.01', 'name': 'Truncocolumella_citrina'}, {'id': 21205, 'synset': 'mucor.n.01', 'name': 'mucor'}, {'id': 21206, 'synset': 'rhizopus.n.01', 'name': 'rhizopus'}, {'id': 21207, 'synset': 'bread_mold.n.01', 'name': 'bread_mold'}, {'id': 21208, 'synset': 'slime_mold.n.01', 'name': 'slime_mold'}, {'id': 21209, 'synset': 'true_slime_mold.n.01', 'name': 'true_slime_mold'}, {'id': 21210, 'synset': 'cellular_slime_mold.n.01', 'name': 'cellular_slime_mold'}, {'id': 21211, 'synset': 'dictostylium.n.01', 'name': 'dictostylium'}, {'id': 21212, 'synset': 'pond-scum_parasite.n.01', 'name': 'pond-scum_parasite'}, {'id': 21213, 'synset': 'potato_wart_fungus.n.01', 'name': 'potato_wart_fungus'}, {'id': 21214, 'synset': 'white_fungus.n.01', 'name': 'white_fungus'}, {'id': 21215, 'synset': 'water_mold.n.01', 'name': 'water_mold'}, {'id': 21216, 'synset': 'downy_mildew.n.01', 'name': 'downy_mildew'}, {'id': 21217, 'synset': 'blue_mold_fungus.n.01', 'name': 'blue_mold_fungus'}, {'id': 21218, 'synset': 'onion_mildew.n.01', 'name': 'onion_mildew'}, {'id': 21219, 'synset': 'tobacco_mildew.n.01', 'name': 'tobacco_mildew'}, {'id': 21220, 'synset': 'white_rust.n.01', 'name': 'white_rust'}, {'id': 21221, 'synset': 'pythium.n.01', 'name': 'pythium'}, {'id': 21222, 'synset': 'damping_off_fungus.n.01', 'name': 'damping_off_fungus'}, {'id': 21223, 'synset': 'phytophthora_citrophthora.n.01', 'name': 'Phytophthora_citrophthora'}, {'id': 21224, 'synset': 'phytophthora_infestans.n.01', 'name': 'Phytophthora_infestans'}, {'id': 21225, 'synset': 'clubroot_fungus.n.01', 'name': 'clubroot_fungus'}, {'id': 21226, 'synset': 'geglossaceae.n.01', 'name': 'Geglossaceae'}, {'id': 21227, 'synset': 'sarcosomataceae.n.01', 'name': 'Sarcosomataceae'}, {'id': 21228, 'synset': 'rufous_rubber_cup.n.01', 'name': 'Rufous_rubber_cup'}, {'id': 21229, 'synset': "devil's_cigar.n.01", 'name': "devil's_cigar"}, {'id': 21230, 'synset': "devil's_urn.n.01", 'name': "devil's_urn"}, {'id': 21231, 'synset': 'truffle.n.01', 'name': 'truffle'}, {'id': 21232, 'synset': 'club_fungus.n.01', 'name': 'club_fungus'}, {'id': 21233, 'synset': 'coral_fungus.n.01', 'name': 'coral_fungus'}, {'id': 21234, 'synset': 'tooth_fungus.n.01', 'name': 'tooth_fungus'}, {'id': 21235, 'synset': 'lichen.n.02', 'name': 'lichen'}, {'id': 21236, 'synset': 'ascolichen.n.01', 'name': 'ascolichen'}, {'id': 21237, 'synset': 'basidiolichen.n.01', 'name': 'basidiolichen'}, {'id': 21238, 'synset': 'lecanora.n.01', 'name': 'lecanora'}, {'id': 21239, 'synset': 'manna_lichen.n.01', 'name': 'manna_lichen'}, {'id': 21240, 'synset': 'archil.n.02', 'name': 'archil'}, {'id': 21241, 'synset': 'roccella.n.01', 'name': 'roccella'}, {'id': 21242, 'synset': 'beard_lichen.n.01', 'name': 'beard_lichen'}, {'id': 21243, 'synset': 'horsehair_lichen.n.01', 'name': 'horsehair_lichen'}, {'id': 21244, 'synset': 'reindeer_moss.n.01', 'name': 'reindeer_moss'}, {'id': 21245, 'synset': 'crottle.n.01', 'name': 'crottle'}, {'id': 21246, 'synset': 'iceland_moss.n.01', 'name': 'Iceland_moss'}, {'id': 21247, 'synset': 'fungus.n.01', 'name': 'fungus'}, {'id': 21248, 'synset': 'promycelium.n.01', 'name': 'promycelium'}, {'id': 21249, 'synset': 'true_fungus.n.01', 'name': 'true_fungus'}, {'id': 21250, 'synset': 'basidiomycete.n.01', 'name': 'basidiomycete'}, {'id': 21251, 'synset': 'mushroom.n.03', 'name': 'mushroom'}, {'id': 21252, 'synset': 'agaric.n.02', 'name': 'agaric'}, {'id': 21253, 'synset': 'mushroom.n.01', 'name': 'mushroom'}, {'id': 21254, 'synset': 'toadstool.n.01', 'name': 'toadstool'}, {'id': 21255, 'synset': 'horse_mushroom.n.01', 'name': 'horse_mushroom'}, {'id': 21256, 'synset': 'meadow_mushroom.n.01', 'name': 'meadow_mushroom'}, {'id': 21257, 'synset': 'shiitake.n.01', 'name': 'shiitake'}, {'id': 21258, 'synset': 'scaly_lentinus.n.01', 'name': 'scaly_lentinus'}, {'id': 21259, 'synset': 'royal_agaric.n.01', 'name': 'royal_agaric'}, {'id': 21260, 'synset': 'false_deathcap.n.01', 'name': 'false_deathcap'}, {'id': 21261, 'synset': 'fly_agaric.n.01', 'name': 'fly_agaric'}, {'id': 21262, 'synset': 'death_cap.n.01', 'name': 'death_cap'}, {'id': 21263, 'synset': 'blushing_mushroom.n.01', 'name': 'blushing_mushroom'}, {'id': 21264, 'synset': 'destroying_angel.n.01', 'name': 'destroying_angel'}, {'id': 21265, 'synset': 'chanterelle.n.01', 'name': 'chanterelle'}, {'id': 21266, 'synset': 'floccose_chanterelle.n.01', 'name': 'floccose_chanterelle'}, {'id': 21267, 'synset': "pig's_ears.n.01", 'name': "pig's_ears"}, {'id': 21268, 'synset': 'cinnabar_chanterelle.n.01', 'name': 'cinnabar_chanterelle'}, {'id': 21269, 'synset': 'jack-o-lantern_fungus.n.01', 'name': 'jack-o-lantern_fungus'}, {'id': 21270, 'synset': 'inky_cap.n.01', 'name': 'inky_cap'}, {'id': 21271, 'synset': 'shaggymane.n.01', 'name': 'shaggymane'}, {'id': 21272, 'synset': 'milkcap.n.01', 'name': 'milkcap'}, {'id': 21273, 'synset': 'fairy-ring_mushroom.n.01', 'name': 'fairy-ring_mushroom'}, {'id': 21274, 'synset': 'fairy_ring.n.01', 'name': 'fairy_ring'}, {'id': 21275, 'synset': 'oyster_mushroom.n.01', 'name': 'oyster_mushroom'}, {'id': 21276, 'synset': 'olive-tree_agaric.n.01', 'name': 'olive-tree_agaric'}, {'id': 21277, 'synset': 'pholiota_astragalina.n.01', 'name': 'Pholiota_astragalina'}, {'id': 21278, 'synset': 'pholiota_aurea.n.01', 'name': 'Pholiota_aurea'}, {'id': 21279, 'synset': 'pholiota_destruens.n.01', 'name': 'Pholiota_destruens'}, {'id': 21280, 'synset': 'pholiota_flammans.n.01', 'name': 'Pholiota_flammans'}, {'id': 21281, 'synset': 'pholiota_flavida.n.01', 'name': 'Pholiota_flavida'}, {'id': 21282, 'synset': 'nameko.n.01', 'name': 'nameko'}, {'id': 21283, 'synset': 'pholiota_squarrosa-adiposa.n.01', 'name': 'Pholiota_squarrosa-adiposa'}, {'id': 21284, 'synset': 'pholiota_squarrosa.n.01', 'name': 'Pholiota_squarrosa'}, {'id': 21285, 'synset': 'pholiota_squarrosoides.n.01', 'name': 'Pholiota_squarrosoides'}, {'id': 21286, 'synset': 'stropharia_ambigua.n.01', 'name': 'Stropharia_ambigua'}, {'id': 21287, 'synset': 'stropharia_hornemannii.n.01', 'name': 'Stropharia_hornemannii'}, {'id': 21288, 'synset': 'stropharia_rugoso-annulata.n.01', 'name': 'Stropharia_rugoso-annulata'}, {'id': 21289, 'synset': 'gill_fungus.n.01', 'name': 'gill_fungus'}, {'id': 21290, 'synset': 'entoloma_lividum.n.01', 'name': 'Entoloma_lividum'}, {'id': 21291, 'synset': 'entoloma_aprile.n.01', 'name': 'Entoloma_aprile'}, {'id': 21292, 'synset': 'chlorophyllum_molybdites.n.01', 'name': 'Chlorophyllum_molybdites'}, {'id': 21293, 'synset': 'lepiota.n.01', 'name': 'lepiota'}, {'id': 21294, 'synset': 'parasol_mushroom.n.01', 'name': 'parasol_mushroom'}, {'id': 21295, 'synset': 'poisonous_parasol.n.01', 'name': 'poisonous_parasol'}, {'id': 21296, 'synset': 'lepiota_naucina.n.01', 'name': 'Lepiota_naucina'}, {'id': 21297, 'synset': 'lepiota_rhacodes.n.01', 'name': 'Lepiota_rhacodes'}, {'id': 21298, 'synset': 'american_parasol.n.01', 'name': 'American_parasol'}, {'id': 21299, 'synset': 'lepiota_rubrotincta.n.01', 'name': 'Lepiota_rubrotincta'}, {'id': 21300, 'synset': 'lepiota_clypeolaria.n.01', 'name': 'Lepiota_clypeolaria'}, {'id': 21301, 'synset': 'onion_stem.n.01', 'name': 'onion_stem'}, {'id': 21302, 'synset': 'pink_disease_fungus.n.01', 'name': 'pink_disease_fungus'}, {'id': 21303, 'synset': 'bottom_rot_fungus.n.01', 'name': 'bottom_rot_fungus'}, {'id': 21304, 'synset': 'potato_fungus.n.01', 'name': 'potato_fungus'}, {'id': 21305, 'synset': 'coffee_fungus.n.01', 'name': 'coffee_fungus'}, {'id': 21306, 'synset': 'blewits.n.01', 'name': 'blewits'}, {'id': 21307, 'synset': 'sandy_mushroom.n.01', 'name': 'sandy_mushroom'}, {'id': 21308, 'synset': 'tricholoma_pessundatum.n.01', 'name': 'Tricholoma_pessundatum'}, {'id': 21309, 'synset': 'tricholoma_sejunctum.n.01', 'name': 'Tricholoma_sejunctum'}, {'id': 21310, 'synset': 'man-on-a-horse.n.01', 'name': 'man-on-a-horse'}, {'id': 21311, 'synset': 'tricholoma_venenata.n.01', 'name': 'Tricholoma_venenata'}, {'id': 21312, 'synset': 'tricholoma_pardinum.n.01', 'name': 'Tricholoma_pardinum'}, {'id': 21313, 'synset': 'tricholoma_vaccinum.n.01', 'name': 'Tricholoma_vaccinum'}, {'id': 21314, 'synset': 'tricholoma_aurantium.n.01', 'name': 'Tricholoma_aurantium'}, {'id': 21315, 'synset': 'volvaria_bombycina.n.01', 'name': 'Volvaria_bombycina'}, {'id': 21316, 'synset': 'pluteus_aurantiorugosus.n.01', 'name': 'Pluteus_aurantiorugosus'}, {'id': 21317, 'synset': 'pluteus_magnus.n.01', 'name': 'Pluteus_magnus'}, {'id': 21318, 'synset': 'deer_mushroom.n.01', 'name': 'deer_mushroom'}, {'id': 21319, 'synset': 'straw_mushroom.n.01', 'name': 'straw_mushroom'}, {'id': 21320, 'synset': 'volvariella_bombycina.n.01', 'name': 'Volvariella_bombycina'}, {'id': 21321, 'synset': 'clitocybe_clavipes.n.01', 'name': 'Clitocybe_clavipes'}, {'id': 21322, 'synset': 'clitocybe_dealbata.n.01', 'name': 'Clitocybe_dealbata'}, {'id': 21323, 'synset': 'clitocybe_inornata.n.01', 'name': 'Clitocybe_inornata'}, {'id': 21324, 'synset': 'clitocybe_robusta.n.01', 'name': 'Clitocybe_robusta'}, {'id': 21325, 'synset': 'clitocybe_irina.n.01', 'name': 'Clitocybe_irina'}, {'id': 21326, 'synset': 'clitocybe_subconnexa.n.01', 'name': 'Clitocybe_subconnexa'}, {'id': 21327, 'synset': 'winter_mushroom.n.01', 'name': 'winter_mushroom'}, {'id': 21328, 'synset': 'mycelium.n.01', 'name': 'mycelium'}, {'id': 21329, 'synset': 'sclerotium.n.02', 'name': 'sclerotium'}, {'id': 21330, 'synset': 'sac_fungus.n.01', 'name': 'sac_fungus'}, {'id': 21331, 'synset': 'ascomycete.n.01', 'name': 'ascomycete'}, {'id': 21332, 'synset': 'clavicipitaceae.n.01', 'name': 'Clavicipitaceae'}, {'id': 21333, 'synset': 'grainy_club.n.01', 'name': 'grainy_club'}, {'id': 21334, 'synset': 'yeast.n.02', 'name': 'yeast'}, {'id': 21335, 'synset': "baker's_yeast.n.01", 'name': "baker's_yeast"}, {'id': 21336, 'synset': "wine-maker's_yeast.n.01", 'name': "wine-maker's_yeast"}, {'id': 21337, 'synset': 'aspergillus_fumigatus.n.01', 'name': 'Aspergillus_fumigatus'}, {'id': 21338, 'synset': 'brown_root_rot_fungus.n.01', 'name': 'brown_root_rot_fungus'}, {'id': 21339, 'synset': 'discomycete.n.01', 'name': 'discomycete'}, {'id': 21340, 'synset': 'leotia_lubrica.n.01', 'name': 'Leotia_lubrica'}, {'id': 21341, 'synset': 'mitrula_elegans.n.01', 'name': 'Mitrula_elegans'}, {'id': 21342, 'synset': 'sarcoscypha_coccinea.n.01', 'name': 'Sarcoscypha_coccinea'}, {'id': 21343, 'synset': 'caloscypha_fulgens.n.01', 'name': 'Caloscypha_fulgens'}, {'id': 21344, 'synset': 'aleuria_aurantia.n.01', 'name': 'Aleuria_aurantia'}, {'id': 21345, 'synset': 'elf_cup.n.01', 'name': 'elf_cup'}, {'id': 21346, 'synset': 'peziza_domicilina.n.01', 'name': 'Peziza_domicilina'}, {'id': 21347, 'synset': 'blood_cup.n.01', 'name': 'blood_cup'}, {'id': 21348, 'synset': 'urnula_craterium.n.01', 'name': 'Urnula_craterium'}, {'id': 21349, 'synset': 'galiella_rufa.n.01', 'name': 'Galiella_rufa'}, {'id': 21350, 'synset': 'jafnea_semitosta.n.01', 'name': 'Jafnea_semitosta'}, {'id': 21351, 'synset': 'morel.n.01', 'name': 'morel'}, {'id': 21352, 'synset': 'common_morel.n.01', 'name': 'common_morel'}, {'id': 21353, 'synset': 'disciotis_venosa.n.01', 'name': 'Disciotis_venosa'}, {'id': 21354, 'synset': 'verpa.n.01', 'name': 'Verpa'}, {'id': 21355, 'synset': 'verpa_bohemica.n.01', 'name': 'Verpa_bohemica'}, {'id': 21356, 'synset': 'verpa_conica.n.01', 'name': 'Verpa_conica'}, {'id': 21357, 'synset': 'black_morel.n.01', 'name': 'black_morel'}, {'id': 21358, 'synset': 'morchella_crassipes.n.01', 'name': 'Morchella_crassipes'}, {'id': 21359, 'synset': 'morchella_semilibera.n.01', 'name': 'Morchella_semilibera'}, {'id': 21360, 'synset': 'wynnea_americana.n.01', 'name': 'Wynnea_americana'}, {'id': 21361, 'synset': 'wynnea_sparassoides.n.01', 'name': 'Wynnea_sparassoides'}, {'id': 21362, 'synset': 'false_morel.n.01', 'name': 'false_morel'}, {'id': 21363, 'synset': 'lorchel.n.01', 'name': 'lorchel'}, {'id': 21364, 'synset': 'helvella.n.01', 'name': 'helvella'}, {'id': 21365, 'synset': 'helvella_crispa.n.01', 'name': 'Helvella_crispa'}, {'id': 21366, 'synset': 'helvella_acetabulum.n.01', 'name': 'Helvella_acetabulum'}, {'id': 21367, 'synset': 'helvella_sulcata.n.01', 'name': 'Helvella_sulcata'}, {'id': 21368, 'synset': 'discina.n.01', 'name': 'discina'}, {'id': 21369, 'synset': 'gyromitra.n.01', 'name': 'gyromitra'}, {'id': 21370, 'synset': 'gyromitra_californica.n.01', 'name': 'Gyromitra_californica'}, {'id': 21371, 'synset': 'gyromitra_sphaerospora.n.01', 'name': 'Gyromitra_sphaerospora'}, {'id': 21372, 'synset': 'gyromitra_esculenta.n.01', 'name': 'Gyromitra_esculenta'}, {'id': 21373, 'synset': 'gyromitra_infula.n.01', 'name': 'Gyromitra_infula'}, {'id': 21374, 'synset': 'gyromitra_fastigiata.n.01', 'name': 'Gyromitra_fastigiata'}, {'id': 21375, 'synset': 'gyromitra_gigas.n.01', 'name': 'Gyromitra_gigas'}, {'id': 21376, 'synset': 'gasteromycete.n.01', 'name': 'gasteromycete'}, {'id': 21377, 'synset': 'stinkhorn.n.01', 'name': 'stinkhorn'}, {'id': 21378, 'synset': 'common_stinkhorn.n.01', 'name': 'common_stinkhorn'}, {'id': 21379, 'synset': 'phallus_ravenelii.n.01', 'name': 'Phallus_ravenelii'}, {'id': 21380, 'synset': 'dog_stinkhorn.n.01', 'name': 'dog_stinkhorn'}, {'id': 21381, 'synset': 'calostoma_lutescens.n.01', 'name': 'Calostoma_lutescens'}, {'id': 21382, 'synset': 'calostoma_cinnabarina.n.01', 'name': 'Calostoma_cinnabarina'}, {'id': 21383, 'synset': 'calostoma_ravenelii.n.01', 'name': 'Calostoma_ravenelii'}, {'id': 21384, 'synset': 'stinky_squid.n.01', 'name': 'stinky_squid'}, {'id': 21385, 'synset': 'puffball.n.01', 'name': 'puffball'}, {'id': 21386, 'synset': 'giant_puffball.n.01', 'name': 'giant_puffball'}, {'id': 21387, 'synset': 'earthstar.n.01', 'name': 'earthstar'}, {'id': 21388, 'synset': 'geastrum_coronatum.n.01', 'name': 'Geastrum_coronatum'}, {'id': 21389, 'synset': 'radiigera_fuscogleba.n.01', 'name': 'Radiigera_fuscogleba'}, {'id': 21390, 'synset': 'astreus_pteridis.n.01', 'name': 'Astreus_pteridis'}, {'id': 21391, 'synset': 'astreus_hygrometricus.n.01', 'name': 'Astreus_hygrometricus'}, {'id': 21392, 'synset': "bird's-nest_fungus.n.01", 'name': "bird's-nest_fungus"}, {'id': 21393, 'synset': 'gastrocybe_lateritia.n.01', 'name': 'Gastrocybe_lateritia'}, {'id': 21394, 'synset': 'macowanites_americanus.n.01', 'name': 'Macowanites_americanus'}, {'id': 21395, 'synset': 'polypore.n.01', 'name': 'polypore'}, {'id': 21396, 'synset': 'bracket_fungus.n.01', 'name': 'bracket_fungus'}, {'id': 21397, 'synset': 'albatrellus_dispansus.n.01', 'name': 'Albatrellus_dispansus'}, {'id': 21398, 'synset': 'albatrellus_ovinus.n.01', 'name': 'Albatrellus_ovinus'}, {'id': 21399, 'synset': 'neolentinus_ponderosus.n.01', 'name': 'Neolentinus_ponderosus'}, {'id': 21400, 'synset': 'oligoporus_leucospongia.n.01', 'name': 'Oligoporus_leucospongia'}, {'id': 21401, 'synset': 'polyporus_tenuiculus.n.01', 'name': 'Polyporus_tenuiculus'}, {'id': 21402, 'synset': 'hen-of-the-woods.n.01', 'name': 'hen-of-the-woods'}, {'id': 21403, 'synset': 'polyporus_squamosus.n.01', 'name': 'Polyporus_squamosus'}, {'id': 21404, 'synset': 'beefsteak_fungus.n.01', 'name': 'beefsteak_fungus'}, {'id': 21405, 'synset': 'agaric.n.01', 'name': 'agaric'}, {'id': 21406, 'synset': 'bolete.n.01', 'name': 'bolete'}, {'id': 21407, 'synset': 'boletus_chrysenteron.n.01', 'name': 'Boletus_chrysenteron'}, {'id': 21408, 'synset': 'boletus_edulis.n.01', 'name': 'Boletus_edulis'}, {'id': 21409, 'synset': "frost's_bolete.n.01", 'name': "Frost's_bolete"}, {'id': 21410, 'synset': 'boletus_luridus.n.01', 'name': 'Boletus_luridus'}, {'id': 21411, 'synset': 'boletus_mirabilis.n.01', 'name': 'Boletus_mirabilis'}, {'id': 21412, 'synset': 'boletus_pallidus.n.01', 'name': 'Boletus_pallidus'}, {'id': 21413, 'synset': 'boletus_pulcherrimus.n.01', 'name': 'Boletus_pulcherrimus'}, {'id': 21414, 'synset': 'boletus_pulverulentus.n.01', 'name': 'Boletus_pulverulentus'}, {'id': 21415, 'synset': 'boletus_roxanae.n.01', 'name': 'Boletus_roxanae'}, {'id': 21416, 'synset': 'boletus_subvelutipes.n.01', 'name': 'Boletus_subvelutipes'}, {'id': 21417, 'synset': 'boletus_variipes.n.01', 'name': 'Boletus_variipes'}, {'id': 21418, 'synset': 'boletus_zelleri.n.01', 'name': 'Boletus_zelleri'}, {'id': 21419, 'synset': 'fuscoboletinus_paluster.n.01', 'name': 'Fuscoboletinus_paluster'}, {'id': 21420, 'synset': 'fuscoboletinus_serotinus.n.01', 'name': 'Fuscoboletinus_serotinus'}, {'id': 21421, 'synset': 'leccinum_fibrillosum.n.01', 'name': 'Leccinum_fibrillosum'}, {'id': 21422, 'synset': 'suillus_albivelatus.n.01', 'name': 'Suillus_albivelatus'}, {'id': 21423, 'synset': 'old-man-of-the-woods.n.01', 'name': 'old-man-of-the-woods'}, {'id': 21424, 'synset': 'boletellus_russellii.n.01', 'name': 'Boletellus_russellii'}, {'id': 21425, 'synset': 'jelly_fungus.n.01', 'name': 'jelly_fungus'}, {'id': 21426, 'synset': 'snow_mushroom.n.01', 'name': 'snow_mushroom'}, {'id': 21427, 'synset': "witches'_butter.n.01", 'name': "witches'_butter"}, {'id': 21428, 'synset': 'tremella_foliacea.n.01', 'name': 'Tremella_foliacea'}, {'id': 21429, 'synset': 'tremella_reticulata.n.01', 'name': 'Tremella_reticulata'}, {'id': 21430, 'synset': "jew's-ear.n.01", 'name': "Jew's-ear"}, {'id': 21431, 'synset': 'rust.n.04', 'name': 'rust'}, {'id': 21432, 'synset': 'aecium.n.01', 'name': 'aecium'}, {'id': 21433, 'synset': 'flax_rust.n.01', 'name': 'flax_rust'}, {'id': 21434, 'synset': 'blister_rust.n.02', 'name': 'blister_rust'}, {'id': 21435, 'synset': 'wheat_rust.n.01', 'name': 'wheat_rust'}, {'id': 21436, 'synset': 'apple_rust.n.01', 'name': 'apple_rust'}, {'id': 21437, 'synset': 'smut.n.03', 'name': 'smut'}, {'id': 21438, 'synset': 'covered_smut.n.01', 'name': 'covered_smut'}, {'id': 21439, 'synset': 'loose_smut.n.02', 'name': 'loose_smut'}, {'id': 21440, 'synset': 'cornsmut.n.01', 'name': 'cornsmut'}, {'id': 21441, 'synset': 'boil_smut.n.01', 'name': 'boil_smut'}, {'id': 21442, 'synset': 'sphacelotheca.n.01', 'name': 'Sphacelotheca'}, {'id': 21443, 'synset': 'head_smut.n.01', 'name': 'head_smut'}, {'id': 21444, 'synset': 'bunt.n.04', 'name': 'bunt'}, {'id': 21445, 'synset': 'bunt.n.03', 'name': 'bunt'}, {'id': 21446, 'synset': 'onion_smut.n.01', 'name': 'onion_smut'}, {'id': 21447, 'synset': 'flag_smut_fungus.n.01', 'name': 'flag_smut_fungus'}, {'id': 21448, 'synset': 'wheat_flag_smut.n.01', 'name': 'wheat_flag_smut'}, {'id': 21449, 'synset': 'felt_fungus.n.01', 'name': 'felt_fungus'}, {'id': 21450, 'synset': 'waxycap.n.01', 'name': 'waxycap'}, {'id': 21451, 'synset': 'hygrocybe_acutoconica.n.01', 'name': 'Hygrocybe_acutoconica'}, {'id': 21452, 'synset': 'hygrophorus_borealis.n.01', 'name': 'Hygrophorus_borealis'}, {'id': 21453, 'synset': 'hygrophorus_caeruleus.n.01', 'name': 'Hygrophorus_caeruleus'}, {'id': 21454, 'synset': 'hygrophorus_inocybiformis.n.01', 'name': 'Hygrophorus_inocybiformis'}, {'id': 21455, 'synset': 'hygrophorus_kauffmanii.n.01', 'name': 'Hygrophorus_kauffmanii'}, {'id': 21456, 'synset': 'hygrophorus_marzuolus.n.01', 'name': 'Hygrophorus_marzuolus'}, {'id': 21457, 'synset': 'hygrophorus_purpurascens.n.01', 'name': 'Hygrophorus_purpurascens'}, {'id': 21458, 'synset': 'hygrophorus_russula.n.01', 'name': 'Hygrophorus_russula'}, {'id': 21459, 'synset': 'hygrophorus_sordidus.n.01', 'name': 'Hygrophorus_sordidus'}, {'id': 21460, 'synset': 'hygrophorus_tennesseensis.n.01', 'name': 'Hygrophorus_tennesseensis'}, {'id': 21461, 'synset': 'hygrophorus_turundus.n.01', 'name': 'Hygrophorus_turundus'}, {'id': 21462, 'synset': 'neohygrophorus_angelesianus.n.01', 'name': 'Neohygrophorus_angelesianus'}, {'id': 21463, 'synset': 'cortinarius_armillatus.n.01', 'name': 'Cortinarius_armillatus'}, {'id': 21464, 'synset': 'cortinarius_atkinsonianus.n.01', 'name': 'Cortinarius_atkinsonianus'}, {'id': 21465, 'synset': 'cortinarius_corrugatus.n.01', 'name': 'Cortinarius_corrugatus'}, {'id': 21466, 'synset': 'cortinarius_gentilis.n.01', 'name': 'Cortinarius_gentilis'}, {'id': 21467, 'synset': 'cortinarius_mutabilis.n.01', 'name': 'Cortinarius_mutabilis'}, {'id': 21468, 'synset': 'cortinarius_semisanguineus.n.01', 'name': 'Cortinarius_semisanguineus'}, {'id': 21469, 'synset': 'cortinarius_subfoetidus.n.01', 'name': 'Cortinarius_subfoetidus'}, {'id': 21470, 'synset': 'cortinarius_violaceus.n.01', 'name': 'Cortinarius_violaceus'}, {'id': 21471, 'synset': 'gymnopilus_spectabilis.n.01', 'name': 'Gymnopilus_spectabilis'}, {'id': 21472, 'synset': 'gymnopilus_validipes.n.01', 'name': 'Gymnopilus_validipes'}, {'id': 21473, 'synset': 'gymnopilus_ventricosus.n.01', 'name': 'Gymnopilus_ventricosus'}, {'id': 21474, 'synset': 'mold.n.05', 'name': 'mold'}, {'id': 21475, 'synset': 'mildew.n.02', 'name': 'mildew'}, {'id': 21476, 'synset': 'verticillium.n.01', 'name': 'verticillium'}, {'id': 21477, 'synset': 'monilia.n.01', 'name': 'monilia'}, {'id': 21478, 'synset': 'candida.n.01', 'name': 'candida'}, {'id': 21479, 'synset': 'candida_albicans.n.01', 'name': 'Candida_albicans'}, {'id': 21480, 'synset': 'blastomycete.n.01', 'name': 'blastomycete'}, {'id': 21481, 'synset': 'yellow_spot_fungus.n.01', 'name': 'yellow_spot_fungus'}, {'id': 21482, 'synset': 'green_smut_fungus.n.01', 'name': 'green_smut_fungus'}, {'id': 21483, 'synset': 'dry_rot.n.02', 'name': 'dry_rot'}, {'id': 21484, 'synset': 'rhizoctinia.n.01', 'name': 'rhizoctinia'}, {'id': 21485, 'synset': 'houseplant.n.01', 'name': 'houseplant'}, {'id': 21486, 'synset': 'bedder.n.01', 'name': 'bedder'}, {'id': 21487, 'synset': 'succulent.n.01', 'name': 'succulent'}, {'id': 21488, 'synset': 'cultivar.n.01', 'name': 'cultivar'}, {'id': 21489, 'synset': 'weed.n.01', 'name': 'weed'}, {'id': 21490, 'synset': 'wort.n.01', 'name': 'wort'}, {'id': 21491, 'synset': 'brier.n.02', 'name': 'brier'}, {'id': 21492, 'synset': 'aril.n.01', 'name': 'aril'}, {'id': 21493, 'synset': 'sporophyll.n.01', 'name': 'sporophyll'}, {'id': 21494, 'synset': 'sporangium.n.01', 'name': 'sporangium'}, {'id': 21495, 'synset': 'sporangiophore.n.01', 'name': 'sporangiophore'}, {'id': 21496, 'synset': 'ascus.n.01', 'name': 'ascus'}, {'id': 21497, 'synset': 'ascospore.n.01', 'name': 'ascospore'}, {'id': 21498, 'synset': 'arthrospore.n.02', 'name': 'arthrospore'}, {'id': 21499, 'synset': 'eusporangium.n.01', 'name': 'eusporangium'}, {'id': 21500, 'synset': 'tetrasporangium.n.01', 'name': 'tetrasporangium'}, {'id': 21501, 'synset': 'gametangium.n.01', 'name': 'gametangium'}, {'id': 21502, 'synset': 'sorus.n.02', 'name': 'sorus'}, {'id': 21503, 'synset': 'sorus.n.01', 'name': 'sorus'}, {'id': 21504, 'synset': 'partial_veil.n.01', 'name': 'partial_veil'}, {'id': 21505, 'synset': 'lignum.n.01', 'name': 'lignum'}, {'id': 21506, 'synset': 'vascular_ray.n.01', 'name': 'vascular_ray'}, {'id': 21507, 'synset': 'phloem.n.01', 'name': 'phloem'}, {'id': 21508, 'synset': 'evergreen.n.01', 'name': 'evergreen'}, {'id': 21509, 'synset': 'deciduous_plant.n.01', 'name': 'deciduous_plant'}, {'id': 21510, 'synset': 'poisonous_plant.n.01', 'name': 'poisonous_plant'}, {'id': 21511, 'synset': 'vine.n.01', 'name': 'vine'}, {'id': 21512, 'synset': 'creeper.n.01', 'name': 'creeper'}, {'id': 21513, 'synset': 'tendril.n.01', 'name': 'tendril'}, {'id': 21514, 'synset': 'root_climber.n.01', 'name': 'root_climber'}, {'id': 21515, 'synset': 'lignosae.n.01', 'name': 'lignosae'}, {'id': 21516, 'synset': 'arborescent_plant.n.01', 'name': 'arborescent_plant'}, {'id': 21517, 'synset': 'snag.n.02', 'name': 'snag'}, {'id': 21518, 'synset': 'tree.n.01', 'name': 'tree'}, {'id': 21519, 'synset': 'timber_tree.n.01', 'name': 'timber_tree'}, {'id': 21520, 'synset': 'treelet.n.01', 'name': 'treelet'}, {'id': 21521, 'synset': 'arbor.n.01', 'name': 'arbor'}, {'id': 21522, 'synset': 'bean_tree.n.01', 'name': 'bean_tree'}, {'id': 21523, 'synset': 'pollard.n.01', 'name': 'pollard'}, {'id': 21524, 'synset': 'sapling.n.01', 'name': 'sapling'}, {'id': 21525, 'synset': 'shade_tree.n.01', 'name': 'shade_tree'}, {'id': 21526, 'synset': 'gymnospermous_tree.n.01', 'name': 'gymnospermous_tree'}, {'id': 21527, 'synset': 'conifer.n.01', 'name': 'conifer'}, {'id': 21528, 'synset': 'angiospermous_tree.n.01', 'name': 'angiospermous_tree'}, {'id': 21529, 'synset': 'nut_tree.n.01', 'name': 'nut_tree'}, {'id': 21530, 'synset': 'spice_tree.n.01', 'name': 'spice_tree'}, {'id': 21531, 'synset': 'fever_tree.n.01', 'name': 'fever_tree'}, {'id': 21532, 'synset': 'stump.n.01', 'name': 'stump'}, {'id': 21533, 'synset': 'bonsai.n.01', 'name': 'bonsai'}, {'id': 21534, 'synset': 'ming_tree.n.02', 'name': 'ming_tree'}, {'id': 21535, 'synset': 'ming_tree.n.01', 'name': 'ming_tree'}, {'id': 21536, 'synset': 'undershrub.n.01', 'name': 'undershrub'}, {'id': 21537, 'synset': 'subshrub.n.01', 'name': 'subshrub'}, {'id': 21538, 'synset': 'bramble.n.01', 'name': 'bramble'}, {'id': 21539, 'synset': 'liana.n.01', 'name': 'liana'}, {'id': 21540, 'synset': 'geophyte.n.01', 'name': 'geophyte'}, {'id': 21541, 'synset': 'desert_plant.n.01', 'name': 'desert_plant'}, {'id': 21542, 'synset': 'mesophyte.n.01', 'name': 'mesophyte'}, {'id': 21543, 'synset': 'marsh_plant.n.01', 'name': 'marsh_plant'}, {'id': 21544, 'synset': 'hemiepiphyte.n.01', 'name': 'hemiepiphyte'}, {'id': 21545, 'synset': 'strangler.n.01', 'name': 'strangler'}, {'id': 21546, 'synset': 'lithophyte.n.01', 'name': 'lithophyte'}, {'id': 21547, 'synset': 'saprobe.n.01', 'name': 'saprobe'}, {'id': 21548, 'synset': 'autophyte.n.01', 'name': 'autophyte'}, {'id': 21549, 'synset': 'root.n.01', 'name': 'root'}, {'id': 21550, 'synset': 'taproot.n.01', 'name': 'taproot'}, {'id': 21551, 'synset': 'prop_root.n.01', 'name': 'prop_root'}, {'id': 21552, 'synset': 'prophyll.n.01', 'name': 'prophyll'}, {'id': 21553, 'synset': 'rootstock.n.02', 'name': 'rootstock'}, {'id': 21554, 'synset': 'quickset.n.01', 'name': 'quickset'}, {'id': 21555, 'synset': 'stolon.n.01', 'name': 'stolon'}, {'id': 21556, 'synset': 'tuberous_plant.n.01', 'name': 'tuberous_plant'}, {'id': 21557, 'synset': 'rhizome.n.01', 'name': 'rhizome'}, {'id': 21558, 'synset': 'rachis.n.01', 'name': 'rachis'}, {'id': 21559, 'synset': 'caudex.n.02', 'name': 'caudex'}, {'id': 21560, 'synset': 'cladode.n.01', 'name': 'cladode'}, {'id': 21561, 'synset': 'receptacle.n.02', 'name': 'receptacle'}, {'id': 21562, 'synset': 'scape.n.01', 'name': 'scape'}, {'id': 21563, 'synset': 'umbel.n.01', 'name': 'umbel'}, {'id': 21564, 'synset': 'petiole.n.01', 'name': 'petiole'}, {'id': 21565, 'synset': 'peduncle.n.02', 'name': 'peduncle'}, {'id': 21566, 'synset': 'pedicel.n.01', 'name': 'pedicel'}, {'id': 21567, 'synset': 'flower_cluster.n.01', 'name': 'flower_cluster'}, {'id': 21568, 'synset': 'raceme.n.01', 'name': 'raceme'}, {'id': 21569, 'synset': 'panicle.n.01', 'name': 'panicle'}, {'id': 21570, 'synset': 'thyrse.n.01', 'name': 'thyrse'}, {'id': 21571, 'synset': 'cyme.n.01', 'name': 'cyme'}, {'id': 21572, 'synset': 'cymule.n.01', 'name': 'cymule'}, {'id': 21573, 'synset': 'glomerule.n.01', 'name': 'glomerule'}, {'id': 21574, 'synset': 'scorpioid_cyme.n.01', 'name': 'scorpioid_cyme'}, {'id': 21575, 'synset': 'ear.n.05', 'name': 'ear'}, {'id': 21576, 'synset': 'spadix.n.01', 'name': 'spadix'}, {'id': 21577, 'synset': 'bulbous_plant.n.01', 'name': 'bulbous_plant'}, {'id': 21578, 'synset': 'bulbil.n.01', 'name': 'bulbil'}, {'id': 21579, 'synset': 'cormous_plant.n.01', 'name': 'cormous_plant'}, {'id': 21580, 'synset': 'fruit.n.01', 'name': 'fruit'}, {'id': 21581, 'synset': 'fruitlet.n.01', 'name': 'fruitlet'}, {'id': 21582, 'synset': 'seed.n.01', 'name': 'seed'}, {'id': 21583, 'synset': 'bean.n.02', 'name': 'bean'}, {'id': 21584, 'synset': 'nut.n.01', 'name': 'nut'}, {'id': 21585, 'synset': 'nutlet.n.01', 'name': 'nutlet'}, {'id': 21586, 'synset': 'kernel.n.01', 'name': 'kernel'}, {'id': 21587, 'synset': 'syconium.n.01', 'name': 'syconium'}, {'id': 21588, 'synset': 'berry.n.02', 'name': 'berry'}, {'id': 21589, 'synset': 'aggregate_fruit.n.01', 'name': 'aggregate_fruit'}, {'id': 21590, 'synset': 'simple_fruit.n.01', 'name': 'simple_fruit'}, {'id': 21591, 'synset': 'acinus.n.01', 'name': 'acinus'}, {'id': 21592, 'synset': 'drupe.n.01', 'name': 'drupe'}, {'id': 21593, 'synset': 'drupelet.n.01', 'name': 'drupelet'}, {'id': 21594, 'synset': 'pome.n.01', 'name': 'pome'}, {'id': 21595, 'synset': 'pod.n.02', 'name': 'pod'}, {'id': 21596, 'synset': 'loment.n.01', 'name': 'loment'}, {'id': 21597, 'synset': 'pyxidium.n.01', 'name': 'pyxidium'}, {'id': 21598, 'synset': 'husk.n.02', 'name': 'husk'}, {'id': 21599, 'synset': 'cornhusk.n.01', 'name': 'cornhusk'}, {'id': 21600, 'synset': 'pod.n.01', 'name': 'pod'}, {'id': 21601, 'synset': 'accessory_fruit.n.01', 'name': 'accessory_fruit'}, {'id': 21602, 'synset': 'buckthorn.n.01', 'name': 'buckthorn'}, {'id': 21603, 'synset': 'buckthorn_berry.n.01', 'name': 'buckthorn_berry'}, {'id': 21604, 'synset': 'cascara_buckthorn.n.01', 'name': 'cascara_buckthorn'}, {'id': 21605, 'synset': 'cascara.n.01', 'name': 'cascara'}, {'id': 21606, 'synset': 'carolina_buckthorn.n.01', 'name': 'Carolina_buckthorn'}, {'id': 21607, 'synset': 'coffeeberry.n.01', 'name': 'coffeeberry'}, {'id': 21608, 'synset': 'redberry.n.01', 'name': 'redberry'}, {'id': 21609, 'synset': 'nakedwood.n.01', 'name': 'nakedwood'}, {'id': 21610, 'synset': 'jujube.n.01', 'name': 'jujube'}, {'id': 21611, 'synset': "christ's-thorn.n.01", 'name': "Christ's-thorn"}, {'id': 21612, 'synset': 'hazel.n.01', 'name': 'hazel'}, {'id': 21613, 'synset': 'fox_grape.n.01', 'name': 'fox_grape'}, {'id': 21614, 'synset': 'muscadine.n.01', 'name': 'muscadine'}, {'id': 21615, 'synset': 'vinifera.n.01', 'name': 'vinifera'}, {'id': 21616, 'synset': 'pinot_blanc.n.01', 'name': 'Pinot_blanc'}, {'id': 21617, 'synset': 'sauvignon_grape.n.01', 'name': 'Sauvignon_grape'}, {'id': 21618, 'synset': 'sauvignon_blanc.n.01', 'name': 'Sauvignon_blanc'}, {'id': 21619, 'synset': 'muscadet.n.01', 'name': 'Muscadet'}, {'id': 21620, 'synset': 'riesling.n.01', 'name': 'Riesling'}, {'id': 21621, 'synset': 'zinfandel.n.01', 'name': 'Zinfandel'}, {'id': 21622, 'synset': 'chenin_blanc.n.01', 'name': 'Chenin_blanc'}, {'id': 21623, 'synset': 'malvasia.n.01', 'name': 'malvasia'}, {'id': 21624, 'synset': 'verdicchio.n.01', 'name': 'Verdicchio'}, {'id': 21625, 'synset': 'boston_ivy.n.01', 'name': 'Boston_ivy'}, {'id': 21626, 'synset': 'virginia_creeper.n.01', 'name': 'Virginia_creeper'}, {'id': 21627, 'synset': 'true_pepper.n.01', 'name': 'true_pepper'}, {'id': 21628, 'synset': 'betel.n.01', 'name': 'betel'}, {'id': 21629, 'synset': 'cubeb.n.01', 'name': 'cubeb'}, {'id': 21630, 'synset': 'schizocarp.n.01', 'name': 'schizocarp'}, {'id': 21631, 'synset': 'peperomia.n.01', 'name': 'peperomia'}, {'id': 21632, 'synset': 'watermelon_begonia.n.01', 'name': 'watermelon_begonia'}, {'id': 21633, 'synset': 'yerba_mansa.n.01', 'name': 'yerba_mansa'}, {'id': 21634, 'synset': 'pinna.n.01', 'name': 'pinna'}, {'id': 21635, 'synset': 'frond.n.01', 'name': 'frond'}, {'id': 21636, 'synset': 'bract.n.01', 'name': 'bract'}, {'id': 21637, 'synset': 'bracteole.n.01', 'name': 'bracteole'}, {'id': 21638, 'synset': 'involucre.n.01', 'name': 'involucre'}, {'id': 21639, 'synset': 'glume.n.01', 'name': 'glume'}, {'id': 21640, 'synset': 'palmate_leaf.n.01', 'name': 'palmate_leaf'}, {'id': 21641, 'synset': 'pinnate_leaf.n.01', 'name': 'pinnate_leaf'}, {'id': 21642, 'synset': 'bijugate_leaf.n.01', 'name': 'bijugate_leaf'}, {'id': 21643, 'synset': 'decompound_leaf.n.01', 'name': 'decompound_leaf'}, {'id': 21644, 'synset': 'acuminate_leaf.n.01', 'name': 'acuminate_leaf'}, {'id': 21645, 'synset': 'deltoid_leaf.n.01', 'name': 'deltoid_leaf'}, {'id': 21646, 'synset': 'ensiform_leaf.n.01', 'name': 'ensiform_leaf'}, {'id': 21647, 'synset': 'linear_leaf.n.01', 'name': 'linear_leaf'}, {'id': 21648, 'synset': 'lyrate_leaf.n.01', 'name': 'lyrate_leaf'}, {'id': 21649, 'synset': 'obtuse_leaf.n.01', 'name': 'obtuse_leaf'}, {'id': 21650, 'synset': 'oblanceolate_leaf.n.01', 'name': 'oblanceolate_leaf'}, {'id': 21651, 'synset': 'pandurate_leaf.n.01', 'name': 'pandurate_leaf'}, {'id': 21652, 'synset': 'reniform_leaf.n.01', 'name': 'reniform_leaf'}, {'id': 21653, 'synset': 'spatulate_leaf.n.01', 'name': 'spatulate_leaf'}, {'id': 21654, 'synset': 'even-pinnate_leaf.n.01', 'name': 'even-pinnate_leaf'}, {'id': 21655, 'synset': 'odd-pinnate_leaf.n.01', 'name': 'odd-pinnate_leaf'}, {'id': 21656, 'synset': 'pedate_leaf.n.01', 'name': 'pedate_leaf'}, {'id': 21657, 'synset': 'crenate_leaf.n.01', 'name': 'crenate_leaf'}, {'id': 21658, 'synset': 'dentate_leaf.n.01', 'name': 'dentate_leaf'}, {'id': 21659, 'synset': 'denticulate_leaf.n.01', 'name': 'denticulate_leaf'}, {'id': 21660, 'synset': 'erose_leaf.n.01', 'name': 'erose_leaf'}, {'id': 21661, 'synset': 'runcinate_leaf.n.01', 'name': 'runcinate_leaf'}, {'id': 21662, 'synset': 'prickly-edged_leaf.n.01', 'name': 'prickly-edged_leaf'}, {'id': 21663, 'synset': 'deadwood.n.01', 'name': 'deadwood'}, {'id': 21664, 'synset': 'haulm.n.01', 'name': 'haulm'}, {'id': 21665, 'synset': 'branchlet.n.01', 'name': 'branchlet'}, {'id': 21666, 'synset': 'osier.n.01', 'name': 'osier'}, {'id': 21667, 'synset': 'giant_scrambling_fern.n.01', 'name': 'giant_scrambling_fern'}, {'id': 21668, 'synset': 'umbrella_fern.n.01', 'name': 'umbrella_fern'}, {'id': 21669, 'synset': 'floating_fern.n.02', 'name': 'floating_fern'}, {'id': 21670, 'synset': 'polypody.n.01', 'name': 'polypody'}, {'id': 21671, 'synset': 'licorice_fern.n.01', 'name': 'licorice_fern'}, {'id': 21672, 'synset': 'grey_polypody.n.01', 'name': 'grey_polypody'}, {'id': 21673, 'synset': 'leatherleaf.n.01', 'name': 'leatherleaf'}, {'id': 21674, 'synset': 'rock_polypody.n.01', 'name': 'rock_polypody'}, {'id': 21675, 'synset': 'common_polypody.n.01', 'name': 'common_polypody'}, {'id': 21676, 'synset': "bear's-paw_fern.n.01", 'name': "bear's-paw_fern"}, {'id': 21677, 'synset': 'strap_fern.n.01', 'name': 'strap_fern'}, {'id': 21678, 'synset': 'florida_strap_fern.n.01', 'name': 'Florida_strap_fern'}, {'id': 21679, 'synset': 'basket_fern.n.02', 'name': 'basket_fern'}, {'id': 21680, 'synset': 'snake_polypody.n.01', 'name': 'snake_polypody'}, {'id': 21681, 'synset': "climbing_bird's_nest_fern.n.01", 'name': "climbing_bird's_nest_fern"}, {'id': 21682, 'synset': 'golden_polypody.n.01', 'name': 'golden_polypody'}, {'id': 21683, 'synset': 'staghorn_fern.n.01', 'name': 'staghorn_fern'}, {'id': 21684, 'synset': 'south_american_staghorn.n.01', 'name': 'South_American_staghorn'}, {'id': 21685, 'synset': 'common_staghorn_fern.n.01', 'name': 'common_staghorn_fern'}, {'id': 21686, 'synset': 'felt_fern.n.01', 'name': 'felt_fern'}, {'id': 21687, 'synset': 'potato_fern.n.02', 'name': 'potato_fern'}, {'id': 21688, 'synset': 'myrmecophyte.n.01', 'name': 'myrmecophyte'}, {'id': 21689, 'synset': 'grass_fern.n.01', 'name': 'grass_fern'}, {'id': 21690, 'synset': 'spleenwort.n.01', 'name': 'spleenwort'}, {'id': 21691, 'synset': 'black_spleenwort.n.01', 'name': 'black_spleenwort'}, {'id': 21692, 'synset': "bird's_nest_fern.n.01", 'name': "bird's_nest_fern"}, {'id': 21693, 'synset': 'ebony_spleenwort.n.01', 'name': 'ebony_spleenwort'}, {'id': 21694, 'synset': 'black-stem_spleenwort.n.01', 'name': 'black-stem_spleenwort'}, {'id': 21695, 'synset': 'walking_fern.n.01', 'name': 'walking_fern'}, {'id': 21696, 'synset': 'green_spleenwort.n.01', 'name': 'green_spleenwort'}, {'id': 21697, 'synset': 'mountain_spleenwort.n.01', 'name': 'mountain_spleenwort'}, {'id': 21698, 'synset': 'lobed_spleenwort.n.01', 'name': 'lobed_spleenwort'}, {'id': 21699, 'synset': 'lanceolate_spleenwort.n.01', 'name': 'lanceolate_spleenwort'}, {'id': 21700, 'synset': "hart's-tongue.n.02", 'name': "hart's-tongue"}, {'id': 21701, 'synset': 'scale_fern.n.01', 'name': 'scale_fern'}, {'id': 21702, 'synset': 'scolopendrium.n.01', 'name': 'scolopendrium'}, {'id': 21703, 'synset': 'deer_fern.n.01', 'name': 'deer_fern'}, {'id': 21704, 'synset': 'doodia.n.01', 'name': 'doodia'}, {'id': 21705, 'synset': 'chain_fern.n.01', 'name': 'chain_fern'}, {'id': 21706, 'synset': 'virginia_chain_fern.n.01', 'name': 'Virginia_chain_fern'}, {'id': 21707, 'synset': 'silver_tree_fern.n.01', 'name': 'silver_tree_fern'}, {'id': 21708, 'synset': 'davallia.n.01', 'name': 'davallia'}, {'id': 21709, 'synset': "hare's-foot_fern.n.01", 'name': "hare's-foot_fern"}, {'id': 21710, 'synset': "canary_island_hare's_foot_fern.n.01", 'name': "Canary_Island_hare's_foot_fern"}, {'id': 21711, 'synset': "squirrel's-foot_fern.n.01", 'name': "squirrel's-foot_fern"}, {'id': 21712, 'synset': 'bracken.n.01', 'name': 'bracken'}, {'id': 21713, 'synset': 'soft_tree_fern.n.01', 'name': 'soft_tree_fern'}, {'id': 21714, 'synset': 'scythian_lamb.n.01', 'name': 'Scythian_lamb'}, {'id': 21715, 'synset': 'false_bracken.n.01', 'name': 'false_bracken'}, {'id': 21716, 'synset': 'thyrsopteris.n.01', 'name': 'thyrsopteris'}, {'id': 21717, 'synset': 'shield_fern.n.01', 'name': 'shield_fern'}, {'id': 21718, 'synset': 'broad_buckler-fern.n.01', 'name': 'broad_buckler-fern'}, {'id': 21719, 'synset': 'fragrant_cliff_fern.n.01', 'name': 'fragrant_cliff_fern'}, {'id': 21720, 'synset': "goldie's_fern.n.01", 'name': "Goldie's_fern"}, {'id': 21721, 'synset': 'wood_fern.n.01', 'name': 'wood_fern'}, {'id': 21722, 'synset': 'male_fern.n.01', 'name': 'male_fern'}, {'id': 21723, 'synset': 'marginal_wood_fern.n.01', 'name': 'marginal_wood_fern'}, {'id': 21724, 'synset': 'mountain_male_fern.n.01', 'name': 'mountain_male_fern'}, {'id': 21725, 'synset': 'lady_fern.n.01', 'name': 'lady_fern'}, {'id': 21726, 'synset': 'alpine_lady_fern.n.01', 'name': 'Alpine_lady_fern'}, {'id': 21727, 'synset': 'silvery_spleenwort.n.02', 'name': 'silvery_spleenwort'}, {'id': 21728, 'synset': 'holly_fern.n.02', 'name': 'holly_fern'}, {'id': 21729, 'synset': 'bladder_fern.n.01', 'name': 'bladder_fern'}, {'id': 21730, 'synset': 'brittle_bladder_fern.n.01', 'name': 'brittle_bladder_fern'}, {'id': 21731, 'synset': 'mountain_bladder_fern.n.01', 'name': 'mountain_bladder_fern'}, {'id': 21732, 'synset': 'bulblet_fern.n.01', 'name': 'bulblet_fern'}, {'id': 21733, 'synset': 'silvery_spleenwort.n.01', 'name': 'silvery_spleenwort'}, {'id': 21734, 'synset': 'oak_fern.n.01', 'name': 'oak_fern'}, {'id': 21735, 'synset': 'limestone_fern.n.01', 'name': 'limestone_fern'}, {'id': 21736, 'synset': 'ostrich_fern.n.01', 'name': 'ostrich_fern'}, {'id': 21737, 'synset': "hart's-tongue.n.01", 'name': "hart's-tongue"}, {'id': 21738, 'synset': 'sensitive_fern.n.01', 'name': 'sensitive_fern'}, {'id': 21739, 'synset': 'christmas_fern.n.01', 'name': 'Christmas_fern'}, {'id': 21740, 'synset': 'holly_fern.n.01', 'name': 'holly_fern'}, {'id': 21741, 'synset': "braun's_holly_fern.n.01", 'name': "Braun's_holly_fern"}, {'id': 21742, 'synset': 'western_holly_fern.n.01', 'name': 'western_holly_fern'}, {'id': 21743, 'synset': 'soft_shield_fern.n.01', 'name': 'soft_shield_fern'}, {'id': 21744, 'synset': 'leather_fern.n.02', 'name': 'leather_fern'}, {'id': 21745, 'synset': 'button_fern.n.02', 'name': 'button_fern'}, {'id': 21746, 'synset': 'indian_button_fern.n.01', 'name': 'Indian_button_fern'}, {'id': 21747, 'synset': 'woodsia.n.01', 'name': 'woodsia'}, {'id': 21748, 'synset': 'rusty_woodsia.n.01', 'name': 'rusty_woodsia'}, {'id': 21749, 'synset': 'alpine_woodsia.n.01', 'name': 'Alpine_woodsia'}, {'id': 21750, 'synset': 'smooth_woodsia.n.01', 'name': 'smooth_woodsia'}, {'id': 21751, 'synset': 'boston_fern.n.01', 'name': 'Boston_fern'}, {'id': 21752, 'synset': 'basket_fern.n.01', 'name': 'basket_fern'}, {'id': 21753, 'synset': 'golden_fern.n.02', 'name': 'golden_fern'}, {'id': 21754, 'synset': 'maidenhair.n.01', 'name': 'maidenhair'}, {'id': 21755, 'synset': 'common_maidenhair.n.01', 'name': 'common_maidenhair'}, {'id': 21756, 'synset': 'american_maidenhair_fern.n.01', 'name': 'American_maidenhair_fern'}, {'id': 21757, 'synset': 'bermuda_maidenhair.n.01', 'name': 'Bermuda_maidenhair'}, {'id': 21758, 'synset': 'brittle_maidenhair.n.01', 'name': 'brittle_maidenhair'}, {'id': 21759, 'synset': 'farley_maidenhair.n.01', 'name': 'Farley_maidenhair'}, {'id': 21760, 'synset': 'annual_fern.n.01', 'name': 'annual_fern'}, {'id': 21761, 'synset': 'lip_fern.n.01', 'name': 'lip_fern'}, {'id': 21762, 'synset': 'smooth_lip_fern.n.01', 'name': 'smooth_lip_fern'}, {'id': 21763, 'synset': 'lace_fern.n.01', 'name': 'lace_fern'}, {'id': 21764, 'synset': 'wooly_lip_fern.n.01', 'name': 'wooly_lip_fern'}, {'id': 21765, 'synset': 'southwestern_lip_fern.n.01', 'name': 'southwestern_lip_fern'}, {'id': 21766, 'synset': 'bamboo_fern.n.01', 'name': 'bamboo_fern'}, {'id': 21767, 'synset': 'american_rock_brake.n.01', 'name': 'American_rock_brake'}, {'id': 21768, 'synset': 'european_parsley_fern.n.01', 'name': 'European_parsley_fern'}, {'id': 21769, 'synset': 'hand_fern.n.01', 'name': 'hand_fern'}, {'id': 21770, 'synset': 'cliff_brake.n.01', 'name': 'cliff_brake'}, {'id': 21771, 'synset': 'coffee_fern.n.01', 'name': 'coffee_fern'}, {'id': 21772, 'synset': 'purple_rock_brake.n.01', 'name': 'purple_rock_brake'}, {'id': 21773, 'synset': "bird's-foot_fern.n.01", 'name': "bird's-foot_fern"}, {'id': 21774, 'synset': 'button_fern.n.01', 'name': 'button_fern'}, {'id': 21775, 'synset': 'silver_fern.n.02', 'name': 'silver_fern'}, {'id': 21776, 'synset': 'golden_fern.n.01', 'name': 'golden_fern'}, {'id': 21777, 'synset': 'gold_fern.n.01', 'name': 'gold_fern'}, {'id': 21778, 'synset': 'pteris_cretica.n.01', 'name': 'Pteris_cretica'}, {'id': 21779, 'synset': 'spider_brake.n.01', 'name': 'spider_brake'}, {'id': 21780, 'synset': 'ribbon_fern.n.01', 'name': 'ribbon_fern'}, {'id': 21781, 'synset': 'potato_fern.n.01', 'name': 'potato_fern'}, {'id': 21782, 'synset': 'angiopteris.n.01', 'name': 'angiopteris'}, {'id': 21783, 'synset': 'skeleton_fork_fern.n.01', 'name': 'skeleton_fork_fern'}, {'id': 21784, 'synset': 'horsetail.n.01', 'name': 'horsetail'}, {'id': 21785, 'synset': 'common_horsetail.n.01', 'name': 'common_horsetail'}, {'id': 21786, 'synset': 'swamp_horsetail.n.01', 'name': 'swamp_horsetail'}, {'id': 21787, 'synset': 'scouring_rush.n.01', 'name': 'scouring_rush'}, {'id': 21788, 'synset': 'marsh_horsetail.n.01', 'name': 'marsh_horsetail'}, {'id': 21789, 'synset': 'wood_horsetail.n.01', 'name': 'wood_horsetail'}, {'id': 21790, 'synset': 'variegated_horsetail.n.01', 'name': 'variegated_horsetail'}, {'id': 21791, 'synset': 'club_moss.n.01', 'name': 'club_moss'}, {'id': 21792, 'synset': 'shining_clubmoss.n.01', 'name': 'shining_clubmoss'}, {'id': 21793, 'synset': 'alpine_clubmoss.n.01', 'name': 'alpine_clubmoss'}, {'id': 21794, 'synset': 'fir_clubmoss.n.01', 'name': 'fir_clubmoss'}, {'id': 21795, 'synset': 'ground_cedar.n.01', 'name': 'ground_cedar'}, {'id': 21796, 'synset': 'ground_fir.n.01', 'name': 'ground_fir'}, {'id': 21797, 'synset': 'foxtail_grass.n.01', 'name': 'foxtail_grass'}, {'id': 21798, 'synset': 'spikemoss.n.01', 'name': 'spikemoss'}, {'id': 21799, 'synset': 'meadow_spikemoss.n.01', 'name': 'meadow_spikemoss'}, {'id': 21800, 'synset': 'desert_selaginella.n.01', 'name': 'desert_selaginella'}, {'id': 21801, 'synset': 'resurrection_plant.n.01', 'name': 'resurrection_plant'}, {'id': 21802, 'synset': 'florida_selaginella.n.01', 'name': 'florida_selaginella'}, {'id': 21803, 'synset': 'quillwort.n.01', 'name': 'quillwort'}, {'id': 21804, 'synset': 'earthtongue.n.01', 'name': 'earthtongue'}, {'id': 21805, 'synset': 'snuffbox_fern.n.01', 'name': 'snuffbox_fern'}, {'id': 21806, 'synset': 'christella.n.01', 'name': 'christella'}, {'id': 21807, 'synset': 'mountain_fern.n.01', 'name': 'mountain_fern'}, {'id': 21808, 'synset': 'new_york_fern.n.01', 'name': 'New_York_fern'}, {'id': 21809, 'synset': 'massachusetts_fern.n.01', 'name': 'Massachusetts_fern'}, {'id': 21810, 'synset': 'beech_fern.n.01', 'name': 'beech_fern'}, {'id': 21811, 'synset': 'broad_beech_fern.n.01', 'name': 'broad_beech_fern'}, {'id': 21812, 'synset': 'long_beech_fern.n.01', 'name': 'long_beech_fern'}, {'id': 21813, 'synset': 'shoestring_fungus.n.01', 'name': 'shoestring_fungus'}, {'id': 21814, 'synset': 'armillaria_caligata.n.01', 'name': 'Armillaria_caligata'}, {'id': 21815, 'synset': 'armillaria_ponderosa.n.01', 'name': 'Armillaria_ponderosa'}, {'id': 21816, 'synset': 'armillaria_zelleri.n.01', 'name': 'Armillaria_zelleri'}, {'id': 21817, 'synset': 'honey_mushroom.n.01', 'name': 'honey_mushroom'}, {'id': 21818, 'synset': 'milkweed.n.01', 'name': 'milkweed'}, {'id': 21819, 'synset': 'white_milkweed.n.01', 'name': 'white_milkweed'}, {'id': 21820, 'synset': 'poke_milkweed.n.01', 'name': 'poke_milkweed'}, {'id': 21821, 'synset': 'swamp_milkweed.n.01', 'name': 'swamp_milkweed'}, {'id': 21822, 'synset': "mead's_milkweed.n.01", 'name': "Mead's_milkweed"}, {'id': 21823, 'synset': 'purple_silkweed.n.01', 'name': 'purple_silkweed'}, {'id': 21824, 'synset': 'showy_milkweed.n.01', 'name': 'showy_milkweed'}, {'id': 21825, 'synset': 'poison_milkweed.n.01', 'name': 'poison_milkweed'}, {'id': 21826, 'synset': 'butterfly_weed.n.01', 'name': 'butterfly_weed'}, {'id': 21827, 'synset': 'whorled_milkweed.n.01', 'name': 'whorled_milkweed'}, {'id': 21828, 'synset': 'cruel_plant.n.01', 'name': 'cruel_plant'}, {'id': 21829, 'synset': 'wax_plant.n.01', 'name': 'wax_plant'}, {'id': 21830, 'synset': 'silk_vine.n.01', 'name': 'silk_vine'}, {'id': 21831, 'synset': 'stapelia.n.01', 'name': 'stapelia'}, {'id': 21832, 'synset': 'stapelias_asterias.n.01', 'name': 'Stapelias_asterias'}, {'id': 21833, 'synset': 'stephanotis.n.01', 'name': 'stephanotis'}, {'id': 21834, 'synset': 'madagascar_jasmine.n.01', 'name': 'Madagascar_jasmine'}, {'id': 21835, 'synset': 'negro_vine.n.01', 'name': 'negro_vine'}, {'id': 21836, 'synset': 'zygospore.n.01', 'name': 'zygospore'}, {'id': 21837, 'synset': 'tree_of_knowledge.n.01', 'name': 'tree_of_knowledge'}, {'id': 21838, 'synset': 'orangery.n.01', 'name': 'orangery'}, {'id': 21839, 'synset': 'pocketbook.n.01', 'name': 'pocketbook'}, {'id': 21840, 'synset': 'shit.n.04', 'name': 'shit'}, {'id': 21841, 'synset': 'cordage.n.01', 'name': 'cordage'}, {'id': 21842, 'synset': 'yard.n.01', 'name': 'yard'}, {'id': 21843, 'synset': 'extremum.n.02', 'name': 'extremum'}, {'id': 21844, 'synset': 'leaf_shape.n.01', 'name': 'leaf_shape'}, {'id': 21845, 'synset': 'equilateral.n.01', 'name': 'equilateral'}, {'id': 21846, 'synset': 'figure.n.06', 'name': 'figure'}, {'id': 21847, 'synset': 'pencil.n.03', 'name': 'pencil'}, {'id': 21848, 'synset': 'plane_figure.n.01', 'name': 'plane_figure'}, {'id': 21849, 'synset': 'solid_figure.n.01', 'name': 'solid_figure'}, {'id': 21850, 'synset': 'line.n.04', 'name': 'line'}, {'id': 21851, 'synset': 'bulb.n.04', 'name': 'bulb'}, {'id': 21852, 'synset': 'convex_shape.n.01', 'name': 'convex_shape'}, {'id': 21853, 'synset': 'concave_shape.n.01', 'name': 'concave_shape'}, {'id': 21854, 'synset': 'cylinder.n.01', 'name': 'cylinder'}, {'id': 21855, 'synset': 'round_shape.n.01', 'name': 'round_shape'}, {'id': 21856, 'synset': 'heart.n.07', 'name': 'heart'}, {'id': 21857, 'synset': 'polygon.n.01', 'name': 'polygon'}, {'id': 21858, 'synset': 'convex_polygon.n.01', 'name': 'convex_polygon'}, {'id': 21859, 'synset': 'concave_polygon.n.01', 'name': 'concave_polygon'}, {'id': 21860, 'synset': 'reentrant_polygon.n.01', 'name': 'reentrant_polygon'}, {'id': 21861, 'synset': 'amorphous_shape.n.01', 'name': 'amorphous_shape'}, {'id': 21862, 'synset': 'closed_curve.n.01', 'name': 'closed_curve'}, {'id': 21863, 'synset': 'simple_closed_curve.n.01', 'name': 'simple_closed_curve'}, {'id': 21864, 'synset': 's-shape.n.01', 'name': 'S-shape'}, {'id': 21865, 'synset': 'wave.n.07', 'name': 'wave'}, {'id': 21866, 'synset': 'extrados.n.01', 'name': 'extrados'}, {'id': 21867, 'synset': 'hook.n.02', 'name': 'hook'}, {'id': 21868, 'synset': 'envelope.n.03', 'name': 'envelope'}, {'id': 21869, 'synset': 'bight.n.02', 'name': 'bight'}, {'id': 21870, 'synset': 'diameter.n.02', 'name': 'diameter'}, {'id': 21871, 'synset': 'cone.n.02', 'name': 'cone'}, {'id': 21872, 'synset': 'funnel.n.01', 'name': 'funnel'}, {'id': 21873, 'synset': 'oblong.n.01', 'name': 'oblong'}, {'id': 21874, 'synset': 'circle.n.01', 'name': 'circle'}, {'id': 21875, 'synset': 'circle.n.03', 'name': 'circle'}, {'id': 21876, 'synset': 'equator.n.02', 'name': 'equator'}, {'id': 21877, 'synset': 'scallop.n.01', 'name': 'scallop'}, {'id': 21878, 'synset': 'ring.n.02', 'name': 'ring'}, {'id': 21879, 'synset': 'loop.n.02', 'name': 'loop'}, {'id': 21880, 'synset': 'bight.n.01', 'name': 'bight'}, {'id': 21881, 'synset': 'helix.n.01', 'name': 'helix'}, {'id': 21882, 'synset': 'element_of_a_cone.n.01', 'name': 'element_of_a_cone'}, {'id': 21883, 'synset': 'element_of_a_cylinder.n.01', 'name': 'element_of_a_cylinder'}, {'id': 21884, 'synset': 'ellipse.n.01', 'name': 'ellipse'}, {'id': 21885, 'synset': 'quadrate.n.02', 'name': 'quadrate'}, {'id': 21886, 'synset': 'triangle.n.01', 'name': 'triangle'}, {'id': 21887, 'synset': 'acute_triangle.n.01', 'name': 'acute_triangle'}, {'id': 21888, 'synset': 'isosceles_triangle.n.01', 'name': 'isosceles_triangle'}, {'id': 21889, 'synset': 'obtuse_triangle.n.01', 'name': 'obtuse_triangle'}, {'id': 21890, 'synset': 'right_triangle.n.01', 'name': 'right_triangle'}, {'id': 21891, 'synset': 'scalene_triangle.n.01', 'name': 'scalene_triangle'}, {'id': 21892, 'synset': 'parallel.n.03', 'name': 'parallel'}, {'id': 21893, 'synset': 'trapezoid.n.01', 'name': 'trapezoid'}, {'id': 21894, 'synset': 'star.n.05', 'name': 'star'}, {'id': 21895, 'synset': 'pentagon.n.03', 'name': 'pentagon'}, {'id': 21896, 'synset': 'hexagon.n.01', 'name': 'hexagon'}, {'id': 21897, 'synset': 'heptagon.n.01', 'name': 'heptagon'}, {'id': 21898, 'synset': 'octagon.n.01', 'name': 'octagon'}, {'id': 21899, 'synset': 'nonagon.n.01', 'name': 'nonagon'}, {'id': 21900, 'synset': 'decagon.n.01', 'name': 'decagon'}, {'id': 21901, 'synset': 'rhombus.n.01', 'name': 'rhombus'}, {'id': 21902, 'synset': 'spherical_polygon.n.01', 'name': 'spherical_polygon'}, {'id': 21903, 'synset': 'spherical_triangle.n.01', 'name': 'spherical_triangle'}, {'id': 21904, 'synset': 'convex_polyhedron.n.01', 'name': 'convex_polyhedron'}, {'id': 21905, 'synset': 'concave_polyhedron.n.01', 'name': 'concave_polyhedron'}, {'id': 21906, 'synset': 'cuboid.n.01', 'name': 'cuboid'}, {'id': 21907, 'synset': 'quadrangular_prism.n.01', 'name': 'quadrangular_prism'}, {'id': 21908, 'synset': 'bell.n.05', 'name': 'bell'}, {'id': 21909, 'synset': 'angular_distance.n.01', 'name': 'angular_distance'}, {'id': 21910, 'synset': 'true_anomaly.n.01', 'name': 'true_anomaly'}, {'id': 21911, 'synset': 'spherical_angle.n.01', 'name': 'spherical_angle'}, {'id': 21912, 'synset': 'angle_of_refraction.n.01', 'name': 'angle_of_refraction'}, {'id': 21913, 'synset': 'acute_angle.n.01', 'name': 'acute_angle'}, {'id': 21914, 'synset': 'groove.n.01', 'name': 'groove'}, {'id': 21915, 'synset': 'rut.n.01', 'name': 'rut'}, {'id': 21916, 'synset': 'bulge.n.01', 'name': 'bulge'}, {'id': 21917, 'synset': 'belly.n.03', 'name': 'belly'}, {'id': 21918, 'synset': 'bow.n.05', 'name': 'bow'}, {'id': 21919, 'synset': 'crescent.n.01', 'name': 'crescent'}, {'id': 21920, 'synset': 'ellipsoid.n.01', 'name': 'ellipsoid'}, {'id': 21921, 'synset': 'hypotenuse.n.01', 'name': 'hypotenuse'}, {'id': 21922, 'synset': 'balance.n.04', 'name': 'balance'}, {'id': 21923, 'synset': 'conformation.n.01', 'name': 'conformation'}, {'id': 21924, 'synset': 'symmetry.n.02', 'name': 'symmetry'}, {'id': 21925, 'synset': 'spheroid.n.01', 'name': 'spheroid'}, {'id': 21926, 'synset': 'spherule.n.01', 'name': 'spherule'}, {'id': 21927, 'synset': 'toroid.n.01', 'name': 'toroid'}, {'id': 21928, 'synset': 'column.n.04', 'name': 'column'}, {'id': 21929, 'synset': 'barrel.n.03', 'name': 'barrel'}, {'id': 21930, 'synset': 'pipe.n.03', 'name': 'pipe'}, {'id': 21931, 'synset': 'pellet.n.01', 'name': 'pellet'}, {'id': 21932, 'synset': 'bolus.n.01', 'name': 'bolus'}, {'id': 21933, 'synset': 'dewdrop.n.01', 'name': 'dewdrop'}, {'id': 21934, 'synset': 'ridge.n.02', 'name': 'ridge'}, {'id': 21935, 'synset': 'rim.n.01', 'name': 'rim'}, {'id': 21936, 'synset': 'taper.n.01', 'name': 'taper'}, {'id': 21937, 'synset': 'boundary.n.02', 'name': 'boundary'}, {'id': 21938, 'synset': 'incisure.n.01', 'name': 'incisure'}, {'id': 21939, 'synset': 'notch.n.01', 'name': 'notch'}, {'id': 21940, 'synset': 'wrinkle.n.01', 'name': 'wrinkle'}, {'id': 21941, 'synset': 'dermatoglyphic.n.01', 'name': 'dermatoglyphic'}, {'id': 21942, 'synset': 'frown_line.n.01', 'name': 'frown_line'}, {'id': 21943, 'synset': 'line_of_life.n.01', 'name': 'line_of_life'}, {'id': 21944, 'synset': 'line_of_heart.n.01', 'name': 'line_of_heart'}, {'id': 21945, 'synset': 'crevice.n.01', 'name': 'crevice'}, {'id': 21946, 'synset': 'cleft.n.01', 'name': 'cleft'}, {'id': 21947, 'synset': 'roulette.n.01', 'name': 'roulette'}, {'id': 21948, 'synset': 'node.n.01', 'name': 'node'}, {'id': 21949, 'synset': 'tree.n.02', 'name': 'tree'}, {'id': 21950, 'synset': 'stemma.n.01', 'name': 'stemma'}, {'id': 21951, 'synset': 'brachium.n.01', 'name': 'brachium'}, {'id': 21952, 'synset': 'fork.n.03', 'name': 'fork'}, {'id': 21953, 'synset': 'block.n.03', 'name': 'block'}, {'id': 21954, 'synset': 'ovoid.n.01', 'name': 'ovoid'}, {'id': 21955, 'synset': 'tetrahedron.n.01', 'name': 'tetrahedron'}, {'id': 21956, 'synset': 'pentahedron.n.01', 'name': 'pentahedron'}, {'id': 21957, 'synset': 'hexahedron.n.01', 'name': 'hexahedron'}, {'id': 21958, 'synset': 'regular_polyhedron.n.01', 'name': 'regular_polyhedron'}, {'id': 21959, 'synset': 'polyhedral_angle.n.01', 'name': 'polyhedral_angle'}, {'id': 21960, 'synset': 'cube.n.01', 'name': 'cube'}, {'id': 21961, 'synset': 'truncated_pyramid.n.01', 'name': 'truncated_pyramid'}, {'id': 21962, 'synset': 'truncated_cone.n.01', 'name': 'truncated_cone'}, {'id': 21963, 'synset': 'tail.n.03', 'name': 'tail'}, {'id': 21964, 'synset': 'tongue.n.03', 'name': 'tongue'}, {'id': 21965, 'synset': 'trapezohedron.n.01', 'name': 'trapezohedron'}, {'id': 21966, 'synset': 'wedge.n.01', 'name': 'wedge'}, {'id': 21967, 'synset': 'keel.n.01', 'name': 'keel'}, {'id': 21968, 'synset': 'place.n.06', 'name': 'place'}, {'id': 21969, 'synset': 'herpes.n.01', 'name': 'herpes'}, {'id': 21970, 'synset': 'chlamydia.n.01', 'name': 'chlamydia'}, {'id': 21971, 'synset': 'wall.n.04', 'name': 'wall'}, {'id': 21972, 'synset': 'micronutrient.n.01', 'name': 'micronutrient'}, {'id': 21973, 'synset': 'chyme.n.01', 'name': 'chyme'}, {'id': 21974, 'synset': 'ragweed_pollen.n.01', 'name': 'ragweed_pollen'}, {'id': 21975, 'synset': 'pina_cloth.n.01', 'name': 'pina_cloth'}, {'id': 21976, 'synset': 'chlorobenzylidenemalononitrile.n.01', 'name': 'chlorobenzylidenemalononitrile'}, {'id': 21977, 'synset': 'carbon.n.01', 'name': 'carbon'}, {'id': 21978, 'synset': 'charcoal.n.01', 'name': 'charcoal'}, {'id': 21979, 'synset': 'rock.n.02', 'name': 'rock'}, {'id': 21980, 'synset': 'gravel.n.01', 'name': 'gravel'}, {'id': 21981, 'synset': 'aflatoxin.n.01', 'name': 'aflatoxin'}, {'id': 21982, 'synset': 'alpha-tocopheral.n.01', 'name': 'alpha-tocopheral'}, {'id': 21983, 'synset': 'leopard.n.01', 'name': 'leopard'}, {'id': 21984, 'synset': 'bricks_and_mortar.n.01', 'name': 'bricks_and_mortar'}, {'id': 21985, 'synset': 'lagging.n.01', 'name': 'lagging'}, {'id': 21986, 'synset': 'hydraulic_cement.n.01', 'name': 'hydraulic_cement'}, {'id': 21987, 'synset': 'choline.n.01', 'name': 'choline'}, {'id': 21988, 'synset': 'concrete.n.01', 'name': 'concrete'}, {'id': 21989, 'synset': 'glass_wool.n.01', 'name': 'glass_wool'}, {'id': 21990, 'synset': 'soil.n.02', 'name': 'soil'}, {'id': 21991, 'synset': 'high_explosive.n.01', 'name': 'high_explosive'}, {'id': 21992, 'synset': 'litter.n.02', 'name': 'litter'}, {'id': 21993, 'synset': 'fish_meal.n.01', 'name': 'fish_meal'}, {'id': 21994, 'synset': 'greek_fire.n.01', 'name': 'Greek_fire'}, {'id': 21995, 'synset': 'culture_medium.n.01', 'name': 'culture_medium'}, {'id': 21996, 'synset': 'agar.n.01', 'name': 'agar'}, {'id': 21997, 'synset': 'blood_agar.n.01', 'name': 'blood_agar'}, {'id': 21998, 'synset': 'hip_tile.n.01', 'name': 'hip_tile'}, {'id': 21999, 'synset': 'hyacinth.n.01', 'name': 'hyacinth'}, {'id': 22000, 'synset': 'hydroxide_ion.n.01', 'name': 'hydroxide_ion'}, {'id': 22001, 'synset': 'ice.n.01', 'name': 'ice'}, {'id': 22002, 'synset': 'inositol.n.01', 'name': 'inositol'}, {'id': 22003, 'synset': 'linoleum.n.01', 'name': 'linoleum'}, {'id': 22004, 'synset': 'lithia_water.n.01', 'name': 'lithia_water'}, {'id': 22005, 'synset': 'lodestone.n.01', 'name': 'lodestone'}, {'id': 22006, 'synset': 'pantothenic_acid.n.01', 'name': 'pantothenic_acid'}, {'id': 22007, 'synset': 'paper.n.01', 'name': 'paper'}, {'id': 22008, 'synset': 'papyrus.n.01', 'name': 'papyrus'}, {'id': 22009, 'synset': 'pantile.n.01', 'name': 'pantile'}, {'id': 22010, 'synset': 'blacktop.n.01', 'name': 'blacktop'}, {'id': 22011, 'synset': 'tarmacadam.n.01', 'name': 'tarmacadam'}, {'id': 22012, 'synset': 'paving.n.01', 'name': 'paving'}, {'id': 22013, 'synset': 'plaster.n.01', 'name': 'plaster'}, {'id': 22014, 'synset': 'poison_gas.n.01', 'name': 'poison_gas'}, {'id': 22015, 'synset': 'ridge_tile.n.01', 'name': 'ridge_tile'}, {'id': 22016, 'synset': 'roughcast.n.01', 'name': 'roughcast'}, {'id': 22017, 'synset': 'sand.n.01', 'name': 'sand'}, {'id': 22018, 'synset': 'spackle.n.01', 'name': 'spackle'}, {'id': 22019, 'synset': 'render.n.01', 'name': 'render'}, {'id': 22020, 'synset': 'wattle_and_daub.n.01', 'name': 'wattle_and_daub'}, {'id': 22021, 'synset': 'stucco.n.01', 'name': 'stucco'}, {'id': 22022, 'synset': 'tear_gas.n.01', 'name': 'tear_gas'}, {'id': 22023, 'synset': 'linseed.n.01', 'name': 'linseed'}, {'id': 22024, 'synset': 'vitamin.n.01', 'name': 'vitamin'}, {'id': 22025, 'synset': 'fat-soluble_vitamin.n.01', 'name': 'fat-soluble_vitamin'}, {'id': 22026, 'synset': 'water-soluble_vitamin.n.01', 'name': 'water-soluble_vitamin'}, {'id': 22027, 'synset': 'vitamin_a.n.01', 'name': 'vitamin_A'}, {'id': 22028, 'synset': 'vitamin_a1.n.01', 'name': 'vitamin_A1'}, {'id': 22029, 'synset': 'vitamin_a2.n.01', 'name': 'vitamin_A2'}, {'id': 22030, 'synset': 'b-complex_vitamin.n.01', 'name': 'B-complex_vitamin'}, {'id': 22031, 'synset': 'vitamin_b1.n.01', 'name': 'vitamin_B1'}, {'id': 22032, 'synset': 'vitamin_b12.n.01', 'name': 'vitamin_B12'}, {'id': 22033, 'synset': 'vitamin_b2.n.01', 'name': 'vitamin_B2'}, {'id': 22034, 'synset': 'vitamin_b6.n.01', 'name': 'vitamin_B6'}, {'id': 22035, 'synset': 'vitamin_bc.n.01', 'name': 'vitamin_Bc'}, {'id': 22036, 'synset': 'niacin.n.01', 'name': 'niacin'}, {'id': 22037, 'synset': 'vitamin_d.n.01', 'name': 'vitamin_D'}, {'id': 22038, 'synset': 'vitamin_e.n.01', 'name': 'vitamin_E'}, {'id': 22039, 'synset': 'biotin.n.01', 'name': 'biotin'}, {'id': 22040, 'synset': 'vitamin_k.n.01', 'name': 'vitamin_K'}, {'id': 22041, 'synset': 'vitamin_k1.n.01', 'name': 'vitamin_K1'}, {'id': 22042, 'synset': 'vitamin_k3.n.01', 'name': 'vitamin_K3'}, {'id': 22043, 'synset': 'vitamin_p.n.01', 'name': 'vitamin_P'}, {'id': 22044, 'synset': 'vitamin_c.n.01', 'name': 'vitamin_C'}, {'id': 22045, 'synset': 'planking.n.01', 'name': 'planking'}, {'id': 22046, 'synset': 'chipboard.n.01', 'name': 'chipboard'}, {'id': 22047, 'synset': 'knothole.n.01', 'name': 'knothole'}] # noqa \ No newline at end of file diff --git a/spaces/ashercn97/AsherTesting/extensions/openai/images.py b/spaces/ashercn97/AsherTesting/extensions/openai/images.py deleted file mode 100644 index d2be3192d68994c40ace6e55bffc82f6315f439c..0000000000000000000000000000000000000000 --- a/spaces/ashercn97/AsherTesting/extensions/openai/images.py +++ /dev/null @@ -1,49 +0,0 @@ -import os -import time -import requests -from extensions.openai.errors import * - - -def generations(prompt: str, size: str, response_format: str, n: int): - # Stable Diffusion callout wrapper for txt2img - # Low effort implementation for compatibility. With only "prompt" being passed and assuming DALL-E - # the results will be limited and likely poor. SD has hundreds of models and dozens of settings. - # If you want high quality tailored results you should just use the Stable Diffusion API directly. - # it's too general an API to try and shape the result with specific tags like "masterpiece", etc, - # Will probably work best with the stock SD models. - # SD configuration is beyond the scope of this API. - # At this point I will not add the edits and variations endpoints (ie. img2img) because they - # require changing the form data handling to accept multipart form data, also to properly support - # url return types will require file management and a web serving files... Perhaps later! - - width, height = [int(x) for x in size.split('x')] # ignore the restrictions on size - - # to hack on better generation, edit default payload. - payload = { - 'prompt': prompt, # ignore prompt limit of 1000 characters - 'width': width, - 'height': height, - 'batch_size': n, - 'restore_faces': True, # slightly less horrible - } - - resp = { - 'created': int(time.time()), - 'data': [] - } - - # TODO: support SD_WEBUI_AUTH username:password pair. - sd_url = f"{os.environ['SD_WEBUI_URL']}/sdapi/v1/txt2img" - - response = requests.post(url=sd_url, json=payload) - r = response.json() - if response.status_code != 200 or 'images' not in r: - raise ServiceUnavailableError(r.get('detail', [{'msg': 'Unknown error calling Stable Diffusion'}])[0]['msg'], code=response.status_code) - # r['parameters']... - for b64_json in r['images']: - if response_format == 'b64_json': - resp['data'].extend([{'b64_json': b64_json}]) - else: - resp['data'].extend([{'url': f'data:image/png;base64,{b64_json}'}]) # yeah it's lazy. requests.get() will not work with this - - return resp diff --git a/spaces/ashercn97/AsherTesting/extensions/sd_api_pictures/style.css b/spaces/ashercn97/AsherTesting/extensions/sd_api_pictures/style.css deleted file mode 100644 index 6f4994616a1d4ca52f3a8245f963ce0b7ebbb0d7..0000000000000000000000000000000000000000 --- a/spaces/ashercn97/AsherTesting/extensions/sd_api_pictures/style.css +++ /dev/null @@ -1,52 +0,0 @@ -/* Align the elements for SD_api_picture extension */ -.SDAP #sampler_box { - padding-top: var(--spacing-sm); - padding-bottom: var(--spacing-sm); - border: 0; -} - -.SDAP #steps_box { - border-radius: 0 0 var(--block-radius) var(--block-radius); -} - -.SDAP #sampler_col { - gap: 0; - padding: 0; - background-color: transparent; -} - -.SDAP #sampler_row { - border-bottom: 0; - box-shadow: var(--block-shadow); - border-width: var(--block-border-width); - border-color: var(--block-border-color); - border-radius: var(--block-radius) var(--block-radius) 0 0; - background: var(--block-background-fill); - gap: 0; -} - -.SDAP #sampler_row .refresh-button { - margin-bottom: var(--spacing-sm); - margin-right: var(--spacing-lg); -} - -.SDAP #seed_box, -.SDAP #cfg_box { - padding-top: var(--spacing-md); -} - -.SDAP #sampler_box span, -.SDAP #seed_box span, -.SDAP #cfg_box span, -.SDAP #steps_box span { - margin-bottom: var(--spacing-sm); -} - -.SDAP svg.dropdown-arrow { - flex-shrink: 0 !important; - margin: 0px !important; -} - -.SDAP .hires_opts input[type="number"] { - width: 6em !important; -} diff --git a/spaces/aukaru/claude-wangy/README.md b/spaces/aukaru/claude-wangy/README.md deleted file mode 100644 index 73250683211585e06fc7819116f27ca81a8fcac8..0000000000000000000000000000000000000000 --- a/spaces/aukaru/claude-wangy/README.md +++ /dev/null @@ -1,10 +0,0 @@ ---- -title: Claude Wangy -emoji: 🐨 -colorFrom: green -colorTo: pink -sdk: docker -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/awaawawawa/iurf7irfuyytruyyugb/README.md b/spaces/awaawawawa/iurf7irfuyytruyyugb/README.md deleted file mode 100644 index bd4a44e6a2b592a05f2d9b6ca1da4bbb2bdf3c8f..0000000000000000000000000000000000000000 --- a/spaces/awaawawawa/iurf7irfuyytruyyugb/README.md +++ /dev/null @@ -1,15 +0,0 @@ ---- -app_file: start.py -colorFrom: green -colorTo: green -datasets: - - emotion -emoji: ⚡ -license: mit -sdk: gradio -sdk_version: "3.1.7" -title: "Stable Diffusion 3" - ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/awacke1/Biomed-NLP-AI-Clinical-Terminology/app.backup.py b/spaces/awacke1/Biomed-NLP-AI-Clinical-Terminology/app.backup.py deleted file mode 100644 index fd97bf2a8592b219ba1c2d4c94187d984e63d114..0000000000000000000000000000000000000000 --- a/spaces/awacke1/Biomed-NLP-AI-Clinical-Terminology/app.backup.py +++ /dev/null @@ -1,268 +0,0 @@ -import gradio as gr -import pandas as pd -import json -from collections import defaultdict - -# Create tokenizer for biomed model -from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification -tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all") # https://huggingface.co/d4data/biomedical-ner-all?text=asthma -model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all") -pipe = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple") - -# Matplotlib for entity graph -import matplotlib.pyplot as plt -plt.switch_backend("Agg") - -# Load examples from JSON -import os - -# Load terminology datasets: -basedir = os.path.dirname(__file__) -#dataLOINC = pd.read_csv(basedir + "\\" + f'LoincTableCore.csv') -#dataPanels = pd.read_csv(basedir + "\\" + f'PanelsAndForms-ACW1208Labeled.csv') -#dataSNOMED = pd.read_csv(basedir + "\\" + f'sct2_TextDefinition_Full-en_US1000124_20220901.txt',sep='\t') -#dataOMS = pd.read_csv(basedir + "\\" + f'SnomedOMS.csv') -#dataICD10 = pd.read_csv(basedir + "\\" + f'ICD10Diagnosis.csv') - -dataLOINC = pd.read_csv(f'LoincTableCore.csv') -dataPanels = pd.read_csv(f'PanelsAndForms-ACW1208Labeled.csv') -dataSNOMED = pd.read_csv(f'sct2_TextDefinition_Full-en_US1000124_20220901.txt',sep='\t') -dataOMS = pd.read_csv(f'SnomedOMS.csv') -dataICD10 = pd.read_csv(f'ICD10Diagnosis.csv') - -dir_path = os.path.dirname(os.path.realpath(__file__)) -EXAMPLES = {} -#with open(dir_path + "\\" + "examples.json", "r") as f: -with open("examples.json", "r") as f: - example_json = json.load(f) - EXAMPLES = {x["text"]: x["label"] for x in example_json} - -def MatchLOINC(name): - #basedir = os.path.dirname(__file__) - pd.set_option("display.max_rows", None) - #data = pd.read_csv(basedir + "\\" + f'LoincTableCore.csv') - data = dataLOINC - swith=data.loc[data['COMPONENT'].str.contains(name, case=False, na=False)] - return swith - -def MatchLOINCPanelsandForms(name): - #basedir = os.path.dirname(__file__) - #data = pd.read_csv(basedir + "\\" + f'PanelsAndForms-ACW1208Labeled.csv') - data = dataPanels - # Assessment Name: - #swith=data.loc[data['ParentName'].str.contains(name, case=False, na=False)] - # Assessment Question: - swith=data.loc[data['LoincName'].str.contains(name, case=False, na=False)] - return swith - -def MatchSNOMED(name): - #basedir = os.path.dirname(__file__) - #data = pd.read_csv(basedir + "\\" + f'sct2_TextDefinition_Full-en_US1000124_20220901.txt',sep='\t') - data = dataSNOMED - swith=data.loc[data['term'].str.contains(name, case=False, na=False)] - return swith - -def MatchOMS(name): - #basedir = os.path.dirname(__file__) - #data = pd.read_csv(basedir + "\\" + f'SnomedOMS.csv') - data = dataOMS - swith=data.loc[data['SNOMED CT'].str.contains(name, case=False, na=False)] - return swith - -def MatchICD10(name): - #basedir = os.path.dirname(__file__) - #data = pd.read_csv(basedir + "\\" + f'ICD10Diagnosis.csv') - data = dataICD10 - swith=data.loc[data['Description'].str.contains(name, case=False, na=False)] - return swith - -def SaveResult(text, outputfileName): - #try: - basedir = os.path.dirname(__file__) - savePath = outputfileName - print("Saving: " + text + " to " + savePath) - from os.path import exists - file_exists = exists(savePath) - if file_exists: - with open(outputfileName, "a") as f: #append - #for line in text: - f.write(str(text.replace("\n"," "))) - f.write('\n') - else: - with open(outputfileName, "w") as f: #write - #for line in text: - f.write(str(text.replace("\n"," "))) - f.write('\n') - #except ValueError as err: - # raise ValueError("File Save Error in SaveResult \n" + format_tb(err.__traceback__)[0] + err.args[0] + "\nEnd of error message.") from None - - return - -def loadFile(filename): - try: - basedir = os.path.dirname(__file__) - loadPath = basedir + "\\" + filename - - print("Loading: " + loadPath) - - from os.path import exists - file_exists = exists(loadPath) - - if file_exists: - with open(loadPath, "r") as f: #read - contents = f.read() - print(contents) - return contents - - except ValueError as err: - raise ValueError("File Save Error in SaveResult \n" + format_tb(err.__traceback__)[0] + err.args[0] + "\nEnd of error message.") from None - - return "" - -def get_today_filename(): - from datetime import datetime - date = datetime.now().strftime("%Y_%m_%d-%I.%M.%S.%p") - #print(f"filename_{date}") 'filename_2023_01_12-03-29-22_AM' - return f"MedNER_{date}.csv" - -def get_base(filename): - basedir = os.path.dirname(__file__) - loadPath = basedir + "\\" + filename - #print("Loading: " + loadPath) - return loadPath - -def group_by_entity(raw): - outputFile = get_base(get_today_filename()) - out = defaultdict(int) - - for ent in raw: - out[ent["entity_group"]] += 1 - myEntityGroup = ent["entity_group"] - print("Found entity group type: " + myEntityGroup) - - if (myEntityGroup in ['Sign_symptom', 'Detailed_description', 'History', 'Activity', 'Medication' ]): - eterm = ent["word"].replace('#','') - minlength = 3 - if len(eterm) > minlength: - print("Found eterm: " + eterm) - eterm.replace("#","") - g1=MatchLOINC(eterm) - g2=MatchLOINCPanelsandForms(eterm) - g3=MatchSNOMED(eterm) - g4=MatchOMS(eterm) - g5=MatchICD10(eterm) - sAll = "" - - print("Saving to output file " + outputFile) - # Create harmonisation output format of input to output code, name, Text - - try: # 18 fields, output to labeled CSV dataset for results teaching on scored regret changes to action plan with data inputs - col = " 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19" - - #LOINC - g11 = g1['LOINC_NUM'].to_string().replace(","," ").replace("\n"," ") - g12 = g1['COMPONENT'].to_string().replace(","," ").replace("\n"," ") - s1 = ("LOINC," + myEntityGroup + "," + eterm + ",questions of ," + g12 + "," + g11 + ", Label,Value, Label,Value, Label,Value ") - if g11 != 'Series([] )': SaveResult(s1, outputFile) - - #LOINC Panels - g21 = g2['Loinc'].to_string().replace(","," ").replace("\n"," ") - g22 = g2['LoincName'].to_string().replace(","," ").replace("\n"," ") - g23 = g2['ParentLoinc'].to_string().replace(","," ").replace("\n"," ") - g24 = g2['ParentName'].to_string().replace(","," ").replace("\n"," ") - # s2 = ("LOINC Panel," + myEntityGroup + "," + eterm + ",name of ," + g22 + "," + g21 + ", and Parent codes of ," + g23 + ", with Parent names of ," + g24 + ", Label,Value ") - s2 = ("LOINC Panel," + myEntityGroup + "," + eterm + ",name of ," + g22 + "," + g21 + "," + g24 + ", and Parent codes of ," + g23 + "," + ", Label,Value ") - if g21 != 'Series([] )': SaveResult(s2, outputFile) - - #SNOMED - g31 = g3['conceptId'].to_string().replace(","," ").replace("\n"," ").replace("\l"," ").replace("\r"," ") - g32 = g3['term'].to_string().replace(","," ").replace("\n"," ").replace("\l"," ").replace("\r"," ") - s3 = ("SNOMED Concept," + myEntityGroup + "," + eterm + ",terms of ," + g32 + "," + g31 + ", Label,Value, Label,Value, Label,Value ") - if g31 != 'Series([] )': SaveResult(s3, outputFile) - - #OMS - g41 = g4['Omaha Code'].to_string().replace(","," ").replace("\n"," ") - g42 = g4['SNOMED CT concept ID'].to_string().replace(","," ").replace("\n"," ") - g43 = g4['SNOMED CT'].to_string().replace(","," ").replace("\n"," ") - g44 = g4['PR'].to_string().replace(","," ").replace("\n"," ") - g45 = g4['S&S'].to_string().replace(","," ").replace("\n"," ") - s4 = ("OMS," + myEntityGroup + "," + eterm + ",concepts of ," + g44 + "," + g45 + ", and SNOMED codes of ," + g43 + ", and OMS problem of ," + g42 + ", and OMS Sign Symptom of ," + g41) - if g41 != 'Series([] )': SaveResult(s4, outputFile) - - #ICD10 - g51 = g5['Code'].to_string().replace(","," ").replace("\n"," ") - g52 = g5['Description'].to_string().replace(","," ").replace("\n"," ") - s5 = ("ICD10," + myEntityGroup + "," + eterm + ",descriptions of ," + g52 + "," + g51 + ", Label,Value, Label,Value, Label,Value ") - if g51 != 'Series([] )': SaveResult(s5, outputFile) - - except ValueError as err: - raise ValueError("Error in group by entity \n" + format_tb(err.__traceback__)[0] + err.args[0] + "\nEnd of error message.") from None - - return outputFile - - -def plot_to_figure(grouped): - fig = plt.figure() - plt.bar(x=list(grouped.keys()), height=list(grouped.values())) - plt.margins(0.2) - plt.subplots_adjust(bottom=0.4) - plt.xticks(rotation=90) - return fig - - -def ner(text): - raw = pipe(text) - ner_content = { - "text": text, - "entities": [ - { - "entity": x["entity_group"], - "word": x["word"], - "score": x["score"], - "start": x["start"], - "end": x["end"], - } - for x in raw - ], - } - - outputFile = group_by_entity(raw) - label = EXAMPLES.get(text, "Unknown") - outputDataframe = pd.read_csv(outputFile) - return (ner_content, outputDataframe, outputFile) - -demo = gr.Blocks() -with demo: - gr.Markdown( - """ - # 🩺⚕️NLP Clinical Ontology Biomedical NER - """ - ) - input = gr.Textbox(label="Note text", value="") - - with gr.Tab("Biomedical Entity Recognition"): - output=[ - gr.HighlightedText(label="NER", combine_adjacent=True), - #gr.JSON(label="Entity Counts"), - #gr.Label(label="Rating"), - #gr.Plot(label="Bar"), - gr.Dataframe(label="Dataframe"), - gr.File(label="File"), - ] - examples=list(EXAMPLES.keys()) - gr.Examples(examples, inputs=input) - input.change(fn=ner, inputs=input, outputs=output) - - with gr.Tab("Clinical Terminology Resolution"): - with gr.Row(variant="compact"): - btnLOINC = gr.Button("LOINC") - btnPanels = gr.Button("Panels") - btnSNOMED = gr.Button("SNOMED") - btnOMS = gr.Button("OMS") - btnICD10 = gr.Button("ICD10") - - examples=list(EXAMPLES.keys()) - gr.Examples(examples, inputs=input) - input.change(fn=ner, inputs=input, outputs=output) -#layout="vertical" -demo.launch(debug=True) diff --git a/spaces/awacke1/Easy-Button-Zero-Shot-Text-Classifier-facebook-bart-large-mnli/README.md b/spaces/awacke1/Easy-Button-Zero-Shot-Text-Classifier-facebook-bart-large-mnli/README.md deleted file mode 100644 index b06e014bbef8415f4bd44a4dc0380211ececd4b9..0000000000000000000000000000000000000000 --- a/spaces/awacke1/Easy-Button-Zero-Shot-Text-Classifier-facebook-bart-large-mnli/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: Easy Button Zero Shot Text Classifier Facebook Bart Large Mnli -emoji: 👀 -colorFrom: indigo -colorTo: green -sdk: gradio -sdk_version: 3.21.0 -app_file: app.py -pinned: false -license: mit ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/awacke1/Git-GPG-Git-Actions-01-GraphViz/README.md b/spaces/awacke1/Git-GPG-Git-Actions-01-GraphViz/README.md deleted file mode 100644 index d4955700781a662662cf8137cb09d523d285b11f..0000000000000000000000000000000000000000 --- a/spaces/awacke1/Git-GPG-Git-Actions-01-GraphViz/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: 📈🩺Graph-Survey-Assess-Plan-Streamlit -emoji: 📈🩺 -colorFrom: pink -colorTo: red -sdk: streamlit -sdk_version: 1.10.0 -app_file: app.py -pinned: false -license: mit ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference \ No newline at end of file diff --git a/spaces/awacke1/HTML5-Aframe-3dMap-Flight/README.md b/spaces/awacke1/HTML5-Aframe-3dMap-Flight/README.md deleted file mode 100644 index 63d8323d8f0890522fa94a10eeeb0c317f9b93f0..0000000000000000000000000000000000000000 --- a/spaces/awacke1/HTML5-Aframe-3dMap-Flight/README.md +++ /dev/null @@ -1,52 +0,0 @@ ---- -title: HTML5-3D-VR-Aframe-Map-Land -emoji: 🗺️VR🏞️ -colorFrom: blue -colorTo: green -sdk: static -pinned: false -license: mit ---- - -🏷️ **Title:** HTML5-3D-VR-Aframe-Map 📚3D-VR - -📋 **Description:** This is a fun 📚3D-VR simulator that shows a map 🗺️ with motion controls ⌨️ of the WASD keyboard. You can explore a 3D landscape 🏞️ using Aframe. - -🧐 **Details:** - -- **HTML5:** Refers to the version of the HTML (Hypertext Markup Language) used to create the web page on which the 3D-VR-Aframe-Map is hosted. - -- **3D:** Refers to the three-dimensional nature of the map in the 3D-VR-Aframe-Map simulator. - -- **VR:** Refers to the virtual reality aspect of the 3D-VR-Aframe-Map simulator. Users can immerse themselves in the virtual environment and interact with it using VR headsets. - -- **Aframe:** Refers to the web framework used to create the 3D-VR-Aframe-Map simulator. Aframe is a popular framework for creating virtual reality experiences on the web. - -- **Map:** Refers to the representation of geographic or spatial data in a visual form. In the 3D-VR-Aframe-Map simulator, users can explore a 3D landscape using motion controls and a map interface. - -💻 **Code Snippet:** - -```html - - - HTML5-3D-VR-Aframe-Map 📚3D-VR - - - - - - - - - - - - -``` - -🔑 Acronyms: - -HTML: Hypertext Markup Language, a coding language used to create web pages. -VR: Virtual Reality, an immersive experience that simulates a real environment. -Aframe: A web framework used to create virtual reality experiences on the web. -WASD: A set of four keyboard keys that are commonly used in video games for motion controls. \ No newline at end of file diff --git a/spaces/awacke1/PromptSuperHeroImageGenerator/README.md b/spaces/awacke1/PromptSuperHeroImageGenerator/README.md deleted file mode 100644 index 6b9ab4319eab1c82ffc265646804fa9cd70202c7..0000000000000000000000000000000000000000 --- a/spaces/awacke1/PromptSuperHeroImageGenerator/README.md +++ /dev/null @@ -1,56 +0,0 @@ ---- -title: SuperHero Image Gen w Diffusion Models -emoji: 🎨🖥️ -colorFrom: grey -colorTo: blue -sdk: gradio -sdk_version: 3.15.0 -app_file: app.py -pinned: true ---- -# Break down of the code based on CHARMSEW framework: - -# Coder: Explanation of the Gradio Python App 🖥️ - The code aims to: - -1. Load a list of available models from a text file named models.txt. -2. Render an interface to accept text input that serves as a prompt for image generation. -3. Provide a dropdown for selecting a model. -4. Generate an image based on the entered text and selected model. -5. Save the generated image and text prompt to disk. -6. Display the saved images and prompts in the interface. - -# Analysis: Keeping Track of Chat History 📊 -In this code, we've done the following steps: - -Imported datetime to generate a timestamp. -Added a function called current_timestamp() that will generate a current timestamp. -Modified send_it1() to append the chat prompt and model name to a file named using the current timestamp. -Read this file in the Gradio interface, and display its contents in a textbox. - -# Reasoning: File Handling Approach 📜 -Append new data: Using 'a' mode in open to append data. -Current timestamp: Using datetime to generate a unique timestamp for each operation. -Exception Handling: A try-except block is used to display a message if the history file is not found. - -# Math: File Operations in Algorithm 🧮 -Open file in append mode: O(1) -Write data to file: O(n) (n = length of string to be written) -Close file: O(1) -Reading the history file: O(m) (m = size of the history file) - -# STEM: Python File I/O and Gradio Interface 🎓 -Python File I/O: Reading and writing files are crucial tasks in many data manipulation and storage applications. -Gradio: A Python library for creating customizable UI around your ML models. -Keywords: File I/O, Gradio, Timestamp, Exception Handling, Data appending - -# Extraction: Content Extracted 🗃 -Functionality to generate and use a timestamp is added. -Functionality to append prompts and model names to a text file is added. -Steps to read this file and display its content in a Gradio textbox are outlined. - -# Writing: Culmination 📝 -The modified code not only unfurls your AI model's talents -but also inscribes its own journey in a timeless tome, -uniquely marked by the strokes of time through the mechanism of timestamps. -A newfound capability that turns ephemeral experiences into a lasting chronicle. 🌟 - diff --git a/spaces/awacke1/WikipediaProfilerTestforDatasets/style.css b/spaces/awacke1/WikipediaProfilerTestforDatasets/style.css deleted file mode 100644 index 114adf441e9032febb46bc056b2a8bb651075f0d..0000000000000000000000000000000000000000 --- a/spaces/awacke1/WikipediaProfilerTestforDatasets/style.css +++ /dev/null @@ -1,28 +0,0 @@ -body { - padding: 2rem; - font-family: -apple-system, BlinkMacSystemFont, "Arial", sans-serif; -} - -h1 { - font-size: 16px; - margin-top: 0; -} - -p { - color: rgb(107, 114, 128); - font-size: 15px; - margin-bottom: 10px; - margin-top: 5px; -} - -.card { - max-width: 620px; - margin: 0 auto; - padding: 16px; - border: 1px solid lightgray; - border-radius: 16px; -} - -.card p:last-child { - margin-bottom: 0; -} diff --git a/spaces/awinml/2-qa-earnings-sentencewise/utils/entity_extraction.py b/spaces/awinml/2-qa-earnings-sentencewise/utils/entity_extraction.py deleted file mode 100644 index cb1ffe6f0cfbea543e0ed90ebe577fed92dccf05..0000000000000000000000000000000000000000 --- a/spaces/awinml/2-qa-earnings-sentencewise/utils/entity_extraction.py +++ /dev/null @@ -1,243 +0,0 @@ -import re - -from nltk.stem import PorterStemmer, WordNetLemmatizer - -# Keyword Extraction - - -def expand_list_of_lists(list_of_lists): - """ - Expands a list of lists of strings to a list of strings. - Args: - list_of_lists: A list of lists of strings. - Returns: - A list of strings. - """ - - expanded_list = [] - for inner_list in list_of_lists: - for string in inner_list: - expanded_list.append(string) - return expanded_list - - -def keywords_no_companies(texts): - # Company list (to remove companies from extracted entities) - - company_list = [ - "apple", - "amd", - "amazon", - "cisco", - "google", - "microsoft", - "nvidia", - "asml", - "intel", - "micron", - "aapl", - "csco", - "msft", - "asml", - "nvda", - "googl", - "mu", - "intc", - "amzn", - "amd", - ] - - texts = [text.split(" ") for text in texts] - texts = expand_list_of_lists(texts) - - # Convert all strings to lowercase. - lower_texts = [text.lower() for text in texts] - keywords = [text for text in lower_texts if text not in company_list] - return keywords - - -def all_keywords_combs(texts): - - texts = [text.split(" ") for text in texts] - texts = expand_list_of_lists(texts) - - # Convert all strings to lowercase. - lower_texts = [text.lower() for text in texts] - - # Stem the words in each string. - stemmer = PorterStemmer() - stem_texts = [stemmer.stem(text) for text in texts] - - # Lemmatize the words in each string. - lemmatizer = WordNetLemmatizer() - lemm_texts = [lemmatizer.lemmatize(text) for text in texts] - - texts.extend(lower_texts) - texts.extend(stem_texts) - texts.extend(lemm_texts) - return texts - - -def extract_keywords(query_text, model): - prompt = "###Instruction: Identify the key entities that accurately describe the context.\n\nInput:{query_text}\n\n###Response:" - #prompt = f"###Instruction:Extract the important keywords which describe the context accurately.\n\nInput:{query_text}\n\n###Response:" - response = model.predict(prompt) - keywords = response.split(", ") - keywords = keywords_no_companies(keywords) - return keywords - - -# Entity Extraction - - -def generate_alpaca_ner_prompt(query): - prompt = f"""Below is an instruction that describes a task, paired with an input that provides further context. Use the following guidelines to extract the entities representing the Company, Quarter, and Year in the sentence. - -### Instruction: -- The output should be in the form "Company - Value, Quarter - Value, Year - Value". -- The output should be in the form "Company - None, Quarter - None, Year - None", if no entities are found. -- Only use entities that exist in the final sentence. -- If Company cannot be found in the sentence, return "none" for that entity. -- If Quarter cannot be found in the sentence, return "none" for that entity. -- If Year cannot be found in the sentence, return "none" for that entity. -- If there is ambiguity finding the entity, return "none" for that entity. - -### Input: - -What was discussed regarding Services revenue performance in Apple's Q3 2020 earnings call? -Company - Apple, Quarter - Q3, Year - 2020 - -How has the growth in Q1 been for the consumer market as seen by AMD? -Company - AMD, Quarter - Q1, Year - none - -What was the long term view on GOOGL's cloud business growth as discussed in their earnings call? -Company - Google, Quarter - none, Year - none - -What is Nvidia's outlook in the data center business in Q3 2020? -Company - Nvidia, Quarter - Q3, Year - 2020 - -What are the expansion plans of Amazon in the Asia Pacific region as discussed in their earnings call? -Company - Amazon, Quarter - none, Year - none - -What did the Analysts ask about CSCO's cybersecurity business in the earnings call in 2016? -Company - Cisco, Quarter - none, Year - 2016 - - -{query} -### Response:""" - return prompt - - -def format_entities_flan_alpaca(values): - """ - Extracts the text for each entity from the output generated by the - Flan-Alpaca model. - """ - try: - company_string, quarter_string, year_string = values.split(", ") - except: - company = None - quarter = None - year = None - try: - company = company_string.split(" - ")[1].lower() - company = None if company.lower() == "none" else company - except: - company = None - try: - quarter = quarter_string.split(" - ")[1] - quarter = None if quarter.lower() == "none" else quarter - - except: - quarter = None - try: - year = year_string.split(" - ")[1] - year = None if year.lower() == "none" else year - - except: - year = None - - print((company, quarter, year)) - return company, quarter, year - - -def extract_quarter_year(string): - # Extract year from string - year_match = re.search(r"\d{4}", string) - if year_match: - year = year_match.group() - else: - year = None - - # Extract quarter from string - quarter_match = re.search(r"Q\d", string) - if quarter_match: - quarter = "Q" + quarter_match.group()[1] - else: - quarter = None - - return quarter, year - - -def extract_ticker_spacy(query, model): - doc = model(query) - entities = {ent.label_: ent.text for ent in doc.ents} - print(entities.keys()) - if "ORG" in entities.keys(): - company = entities["ORG"].lower() - else: - company = None - return company - - -def clean_entities(company, quarter, year): - company_ticker_map = { - "apple": "AAPL", - "amd": "AMD", - "amazon": "AMZN", - "cisco": "CSCO", - "google": "GOOGL", - "microsoft": "MSFT", - "nvidia": "NVDA", - "asml": "ASML", - "intel": "INTC", - "micron": "MU", - } - - ticker_choice = [ - "AAPL", - "CSCO", - "MSFT", - "ASML", - "NVDA", - "GOOGL", - "MU", - "INTC", - "AMZN", - "AMD", - ] - year_choice = ["2020", "2019", "2018", "2017", "2016", "All"] - quarter_choice = ["Q1", "Q2", "Q3", "Q4", "All"] - if company is not None: - if company in company_ticker_map.keys(): - ticker = company_ticker_map[company] - ticker_index = ticker_choice.index(ticker) - else: - ticker_index = 0 - else: - ticker_index = 0 - if quarter is not None: - if quarter in quarter_choice: - quarter_index = quarter_choice.index(quarter) - else: - quarter_index = len(quarter_choice) - 1 - else: - quarter_index = len(quarter_choice) - 1 - if year is not None: - if year in year_choice: - year_index = year_choice.index(year) - else: - year_index = len(year_choice) - 1 - else: - year_index = len(year_choice) - 1 - return ticker_index, quarter_index, year_index diff --git a/spaces/awsaf49/gcvit-tf/gcvit/utils/__init__.py b/spaces/awsaf49/gcvit-tf/gcvit/utils/__init__.py deleted file mode 100644 index 3d06d536216fb17ca67b459e652d955261608d25..0000000000000000000000000000000000000000 --- a/spaces/awsaf49/gcvit-tf/gcvit/utils/__init__.py +++ /dev/null @@ -1 +0,0 @@ -from .gradcam import process_image, get_gradcam_model, get_gradcam_prediction \ No newline at end of file diff --git a/spaces/banana-projects/web3d/node_modules/three/examples/js/libs/ammo.js b/spaces/banana-projects/web3d/node_modules/three/examples/js/libs/ammo.js deleted file mode 100644 index 24cd1aa99bcbccb68c3c53fc63e49316f62515cb..0000000000000000000000000000000000000000 --- a/spaces/banana-projects/web3d/node_modules/three/examples/js/libs/ammo.js +++ /dev/null @@ -1,31 +0,0 @@ - -// This is ammo.js, a port of Bullet Physics to JavaScript. zlib licensed. -var AmmoLib = function(Module) { - Module = Module || {}; - -var Module;if(!Module)Module=(typeof AmmoLib!=="undefined"?AmmoLib:null)||{};var moduleOverrides={};for(var key in Module){if(Module.hasOwnProperty(key)){moduleOverrides[key]=Module[key]}}var ENVIRONMENT_IS_WEB=false;var ENVIRONMENT_IS_WORKER=false;var ENVIRONMENT_IS_NODE=false;var ENVIRONMENT_IS_SHELL=false;if(Module["ENVIRONMENT"]){if(Module["ENVIRONMENT"]==="WEB"){ENVIRONMENT_IS_WEB=true}else if(Module["ENVIRONMENT"]==="WORKER"){ENVIRONMENT_IS_WORKER=true}else if(Module["ENVIRONMENT"]==="NODE"){ENVIRONMENT_IS_NODE=true}else if(Module["ENVIRONMENT"]==="SHELL"){ENVIRONMENT_IS_SHELL=true}else{throw new Error("The provided Module['ENVIRONMENT'] value is not valid. It must be one of: WEB|WORKER|NODE|SHELL.")}}else{ENVIRONMENT_IS_WEB=typeof window==="object";ENVIRONMENT_IS_WORKER=typeof importScripts==="function";ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof require==="function"&&!ENVIRONMENT_IS_WEB&&!ENVIRONMENT_IS_WORKER;ENVIRONMENT_IS_SHELL=!ENVIRONMENT_IS_WEB&&!ENVIRONMENT_IS_NODE&&!ENVIRONMENT_IS_WORKER}if(ENVIRONMENT_IS_NODE){if(!Module["print"])Module["print"]=console.log;if(!Module["printErr"])Module["printErr"]=console.warn;var nodeFS;var nodePath;Module["read"]=function read(filename,binary){if(!nodeFS)nodeFS=require("fs");if(!nodePath)nodePath=require("path");filename=nodePath["normalize"](filename);var ret=nodeFS["readFileSync"](filename);if(!ret&&filename!=nodePath["resolve"](filename)){filename=path.join(__dirname,"..","src",filename);ret=nodeFS["readFileSync"](filename)}if(ret&&!binary)ret=ret.toString();return ret};Module["readBinary"]=function readBinary(filename){var ret=Module["read"](filename,true);if(!ret.buffer){ret=new Uint8Array(ret)}assert(ret.buffer);return ret};Module["load"]=function load(f){globalEval(read(f))};if(!Module["thisProgram"]){if(process["argv"].length>1){Module["thisProgram"]=process["argv"][1].replace(/\\/g,"/")}else{Module["thisProgram"]="unknown-program"}}Module["arguments"]=process["argv"].slice(2);if(typeof module!=="undefined"){module["exports"]=Module}process["on"]("uncaughtException",(function(ex){if(!(ex instanceof ExitStatus)){throw ex}}));Module["inspect"]=(function(){return"[Emscripten Module object]"})}else if(ENVIRONMENT_IS_SHELL){if(!Module["print"])Module["print"]=print;if(typeof printErr!="undefined")Module["printErr"]=printErr;if(typeof read!="undefined"){Module["read"]=read}else{Module["read"]=function read(){throw"no read() available (jsc?)"}}Module["readBinary"]=function readBinary(f){if(typeof readbuffer==="function"){return new Uint8Array(readbuffer(f))}var data=read(f,"binary");assert(typeof data==="object");return data};if(typeof scriptArgs!="undefined"){Module["arguments"]=scriptArgs}else if(typeof arguments!="undefined"){Module["arguments"]=arguments}}else if(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER){Module["read"]=function read(url){var xhr=new XMLHttpRequest;xhr.open("GET",url,false);xhr.send(null);return xhr.responseText};Module["readAsync"]=function readAsync(url,onload,onerror){var xhr=new XMLHttpRequest;xhr.open("GET",url,true);xhr.responseType="arraybuffer";xhr.onload=function xhr_onload(){if(xhr.status==200||xhr.status==0&&xhr.response){onload(xhr.response)}else{onerror()}};xhr.onerror=onerror;xhr.send(null)};if(typeof arguments!="undefined"){Module["arguments"]=arguments}if(typeof console!=="undefined"){if(!Module["print"])Module["print"]=function print(x){console.log(x)};if(!Module["printErr"])Module["printErr"]=function printErr(x){console.warn(x)}}else{var TRY_USE_DUMP=false;if(!Module["print"])Module["print"]=TRY_USE_DUMP&&typeof dump!=="undefined"?(function(x){dump(x)}):(function(x){})}if(ENVIRONMENT_IS_WORKER){Module["load"]=importScripts}if(typeof Module["setWindowTitle"]==="undefined"){Module["setWindowTitle"]=(function(title){document.title=title})}}else{throw"Unknown runtime environment. Where are we?"}function globalEval(x){abort("NO_DYNAMIC_EXECUTION=1 was set, cannot eval")}if(!Module["load"]&&Module["read"]){Module["load"]=function load(f){globalEval(Module["read"](f))}}if(!Module["print"]){Module["print"]=(function(){})}if(!Module["printErr"]){Module["printErr"]=Module["print"]}if(!Module["arguments"]){Module["arguments"]=[]}if(!Module["thisProgram"]){Module["thisProgram"]="./this.program"}Module.print=Module["print"];Module.printErr=Module["printErr"];Module["preRun"]=[];Module["postRun"]=[];for(var key in moduleOverrides){if(moduleOverrides.hasOwnProperty(key)){Module[key]=moduleOverrides[key]}}moduleOverrides=undefined;var Runtime={setTempRet0:(function(value){tempRet0=value}),getTempRet0:(function(){return tempRet0}),stackSave:(function(){return STACKTOP}),stackRestore:(function(stackTop){STACKTOP=stackTop}),getNativeTypeSize:(function(type){switch(type){case"i1":case"i8":return 1;case"i16":return 2;case"i32":return 4;case"i64":return 8;case"float":return 4;case"double":return 8;default:{if(type[type.length-1]==="*"){return Runtime.QUANTUM_SIZE}else if(type[0]==="i"){var bits=parseInt(type.substr(1));assert(bits%8===0);return bits/8}else{return 0}}}}),getNativeFieldSize:(function(type){return Math.max(Runtime.getNativeTypeSize(type),Runtime.QUANTUM_SIZE)}),STACK_ALIGN:16,prepVararg:(function(ptr,type){if(type==="double"||type==="i64"){if(ptr&7){assert((ptr&7)===4);ptr+=4}}else{assert((ptr&3)===0)}return ptr}),getAlignSize:(function(type,size,vararg){if(!vararg&&(type=="i64"||type=="double"))return 8;if(!type)return Math.min(size,8);return Math.min(size||(type?Runtime.getNativeFieldSize(type):0),Runtime.QUANTUM_SIZE)}),dynCall:(function(sig,ptr,args){if(args&&args.length){if(!args.splice)args=Array.prototype.slice.call(args);args.splice(0,0,ptr);return Module["dynCall_"+sig].apply(null,args)}else{return Module["dynCall_"+sig].call(null,ptr)}}),functionPointers:[],addFunction:(function(func){for(var i=0;i=TOTAL_MEMORY){var success=enlargeMemory();if(!success){DYNAMICTOP=ret;return 0}}return ret}),alignMemory:(function(size,quantum){var ret=size=Math.ceil(size/(quantum?quantum:16))*(quantum?quantum:16);return ret}),makeBigInt:(function(low,high,unsigned){var ret=unsigned?+(low>>>0)+ +(high>>>0)*+4294967296:+(low>>>0)+ +(high|0)*+4294967296;return ret}),GLOBAL_BASE:8,QUANTUM_SIZE:4,__dummy__:0};var ABORT=false;var EXITSTATUS=0;function assert(condition,text){if(!condition){abort("Assertion failed: "+text)}}function getCFunc(ident){var func=Module["_"+ident];if(!func){abort("NO_DYNAMIC_EXECUTION=1 was set, cannot eval")}assert(func,"Cannot call unknown function "+ident+" (perhaps LLVM optimizations or closure removed it?)");return func}var ccall;((function(){var JSfuncs={"stackSave":(function(){Runtime.stackSave()}),"stackRestore":(function(){Runtime.stackRestore()}),"arrayToC":(function(arr){var ret=Runtime.stackAlloc(arr.length);writeArrayToMemory(arr,ret);return ret}),"stringToC":(function(str){var ret=0;if(str!==null&&str!==undefined&&str!==0){ret=Runtime.stackAlloc((str.length<<2)+1);writeStringToMemory(str,ret)}return ret})};var toC={"string":JSfuncs["stringToC"],"array":JSfuncs["arrayToC"]};ccall=function ccallFunc(ident,returnType,argTypes,args,opts){var func=getCFunc(ident);var cArgs=[];var stack=0;if(args){for(var i=0;i>0]=value;break;case"i8":HEAP8[ptr>>0]=value;break;case"i16":HEAP16[ptr>>1]=value;break;case"i32":HEAP32[ptr>>2]=value;break;case"i64":tempI64=[value>>>0,(tempDouble=value,+Math_abs(tempDouble)>=+1?tempDouble>+0?(Math_min(+Math_floor(tempDouble/+4294967296),+4294967295)|0)>>>0:~~+Math_ceil((tempDouble- +(~~tempDouble>>>0))/+4294967296)>>>0:0)],HEAP32[ptr>>2]=tempI64[0],HEAP32[ptr+4>>2]=tempI64[1];break;case"float":HEAPF32[ptr>>2]=value;break;case"double":HEAPF64[ptr>>3]=value;break;default:abort("invalid type for setValue: "+type)}}function getValue(ptr,type,noSafe){type=type||"i8";if(type.charAt(type.length-1)==="*")type="i32";switch(type){case"i1":return HEAP8[ptr>>0];case"i8":return HEAP8[ptr>>0];case"i16":return HEAP16[ptr>>1];case"i32":return HEAP32[ptr>>2];case"i64":return HEAP32[ptr>>2];case"float":return HEAPF32[ptr>>2];case"double":return HEAPF64[ptr>>3];default:abort("invalid type for setValue: "+type)}return null}var ALLOC_NORMAL=0;var ALLOC_STATIC=2;var ALLOC_DYNAMIC=3;var ALLOC_NONE=4;function allocate(slab,types,allocator,ptr){var zeroinit,size;if(typeof slab==="number"){zeroinit=true;size=slab}else{zeroinit=false;size=slab.length}var singleType=typeof types==="string"?types:null;var ret;if(allocator==ALLOC_NONE){ret=ptr}else{ret=[typeof _malloc==="function"?_malloc:Runtime.staticAlloc,Runtime.stackAlloc,Runtime.staticAlloc,Runtime.dynamicAlloc][allocator===undefined?ALLOC_STATIC:allocator](Math.max(size,singleType?1:types.length))}if(zeroinit){var ptr=ret,stop;assert((ret&3)==0);stop=ret+(size&~3);for(;ptr>2]=0}stop=ret+size;while(ptr>0]=0}return ret}if(singleType==="i8"){if(slab.subarray||slab.slice){HEAPU8.set(slab,ret)}else{HEAPU8.set(new Uint8Array(slab),ret)}return ret}var i=0,type,typeSize,previousType;while(i>0];hasUtf|=t;if(t==0&&!length)break;i++;if(length&&i==length)break}if(!length)length=i;var ret="";if(hasUtf<128){var MAX_CHUNK=1024;var curr;while(length>0){curr=String.fromCharCode.apply(String,HEAPU8.subarray(ptr,ptr+Math.min(length,MAX_CHUNK)));ret=ret?ret+curr:curr;ptr+=MAX_CHUNK;length-=MAX_CHUNK}return ret}return Module["UTF8ToString"](ptr)}function UTF8ArrayToString(u8Array,idx){var u0,u1,u2,u3,u4,u5;var str="";while(1){u0=u8Array[idx++];if(!u0)return str;if(!(u0&128)){str+=String.fromCharCode(u0);continue}u1=u8Array[idx++]&63;if((u0&224)==192){str+=String.fromCharCode((u0&31)<<6|u1);continue}u2=u8Array[idx++]&63;if((u0&240)==224){u0=(u0&15)<<12|u1<<6|u2}else{u3=u8Array[idx++]&63;if((u0&248)==240){u0=(u0&7)<<18|u1<<12|u2<<6|u3}else{u4=u8Array[idx++]&63;if((u0&252)==248){u0=(u0&3)<<24|u1<<18|u2<<12|u3<<6|u4}else{u5=u8Array[idx++]&63;u0=(u0&1)<<30|u1<<24|u2<<18|u3<<12|u4<<6|u5}}}if(u0<65536){str+=String.fromCharCode(u0)}else{var ch=u0-65536;str+=String.fromCharCode(55296|ch>>10,56320|ch&1023)}}}function stringToUTF8Array(str,outU8Array,outIdx,maxBytesToWrite){if(!(maxBytesToWrite>0))return 0;var startIdx=outIdx;var endIdx=outIdx+maxBytesToWrite-1;for(var i=0;i=55296&&u<=57343)u=65536+((u&1023)<<10)|str.charCodeAt(++i)&1023;if(u<=127){if(outIdx>=endIdx)break;outU8Array[outIdx++]=u}else if(u<=2047){if(outIdx+1>=endIdx)break;outU8Array[outIdx++]=192|u>>6;outU8Array[outIdx++]=128|u&63}else if(u<=65535){if(outIdx+2>=endIdx)break;outU8Array[outIdx++]=224|u>>12;outU8Array[outIdx++]=128|u>>6&63;outU8Array[outIdx++]=128|u&63}else if(u<=2097151){if(outIdx+3>=endIdx)break;outU8Array[outIdx++]=240|u>>18;outU8Array[outIdx++]=128|u>>12&63;outU8Array[outIdx++]=128|u>>6&63;outU8Array[outIdx++]=128|u&63}else if(u<=67108863){if(outIdx+4>=endIdx)break;outU8Array[outIdx++]=248|u>>24;outU8Array[outIdx++]=128|u>>18&63;outU8Array[outIdx++]=128|u>>12&63;outU8Array[outIdx++]=128|u>>6&63;outU8Array[outIdx++]=128|u&63}else{if(outIdx+5>=endIdx)break;outU8Array[outIdx++]=252|u>>30;outU8Array[outIdx++]=128|u>>24&63;outU8Array[outIdx++]=128|u>>18&63;outU8Array[outIdx++]=128|u>>12&63;outU8Array[outIdx++]=128|u>>6&63;outU8Array[outIdx++]=128|u&63}}outU8Array[outIdx]=0;return outIdx-startIdx}function lengthBytesUTF8(str){var len=0;for(var i=0;i=55296&&u<=57343)u=65536+((u&1023)<<10)|str.charCodeAt(++i)&1023;if(u<=127){++len}else if(u<=2047){len+=2}else if(u<=65535){len+=3}else if(u<=2097151){len+=4}else if(u<=67108863){len+=5}else{len+=6}}return len}function demangle(func){var hasLibcxxabi=!!Module["___cxa_demangle"];if(hasLibcxxabi){try{var buf=_malloc(func.length);writeStringToMemory(func.substr(1),buf);var status=_malloc(4);var ret=Module["___cxa_demangle"](buf,0,0,status);if(getValue(status,"i32")===0&&ret){return Pointer_stringify(ret)}}catch(e){return func}finally{if(buf)_free(buf);if(status)_free(status);if(ret)_free(ret)}}Runtime.warnOnce("warning: build with -s DEMANGLE_SUPPORT=1 to link in libcxxabi demangling");return func}function demangleAll(text){return text.replace(/__Z[\w\d_]+/g,(function(x){var y=demangle(x);return x===y?x:x+" ["+y+"]"}))}function jsStackTrace(){var err=new Error;if(!err.stack){try{throw new Error(0)}catch(e){err=e}if(!err.stack){return"(no stack trace available)"}}return err.stack.toString()}function stackTrace(){return demangleAll(jsStackTrace())}var PAGE_SIZE=4096;function alignMemoryPage(x){if(x%4096>0){x+=4096-x%4096}return x}var HEAP;var buffer;var HEAP8,HEAPU8,HEAP16,HEAPU16,HEAP32,HEAPU32,HEAPF32,HEAPF64;function updateGlobalBufferViews(){Module["HEAP8"]=HEAP8=new Int8Array(buffer);Module["HEAP16"]=HEAP16=new Int16Array(buffer);Module["HEAP32"]=HEAP32=new Int32Array(buffer);Module["HEAPU8"]=HEAPU8=new Uint8Array(buffer);Module["HEAPU16"]=HEAPU16=new Uint16Array(buffer);Module["HEAPU32"]=HEAPU32=new Uint32Array(buffer);Module["HEAPF32"]=HEAPF32=new Float32Array(buffer);Module["HEAPF64"]=HEAPF64=new Float64Array(buffer)}var STATIC_BASE=0,STATICTOP=0,staticSealed=false;var STACK_BASE=0,STACKTOP=0,STACK_MAX=0;var DYNAMIC_BASE=0,DYNAMICTOP=0;function abortOnCannotGrowMemory(){abort("Cannot enlarge memory arrays. Either (1) compile with -s TOTAL_MEMORY=X with X higher than the current value "+TOTAL_MEMORY+", (2) compile with -s ALLOW_MEMORY_GROWTH=1 which adjusts the size at runtime but prevents some optimizations, (3) set Module.TOTAL_MEMORY to a higher value before the program runs, or if you want malloc to return NULL (0) instead of this abort, compile with -s ABORTING_MALLOC=0 ")}function enlargeMemory(){abortOnCannotGrowMemory()}var TOTAL_STACK=Module["TOTAL_STACK"]||5242880;var TOTAL_MEMORY=Module["TOTAL_MEMORY"]||67108864;var totalMemory=64*1024;while(totalMemory0){var callback=callbacks.shift();if(typeof callback=="function"){callback();continue}var func=callback.func;if(typeof func==="number"){if(callback.arg===undefined){Runtime.dynCall("v",func)}else{Runtime.dynCall("vi",func,[callback.arg])}}else{func(callback.arg===undefined?null:callback.arg)}}}var __ATPRERUN__=[];var __ATINIT__=[];var __ATMAIN__=[];var __ATEXIT__=[];var __ATPOSTRUN__=[];var runtimeInitialized=false;var runtimeExited=false;function preRun(){if(Module["preRun"]){if(typeof Module["preRun"]=="function")Module["preRun"]=[Module["preRun"]];while(Module["preRun"].length){addOnPreRun(Module["preRun"].shift())}}callRuntimeCallbacks(__ATPRERUN__)}function ensureInitRuntime(){if(runtimeInitialized)return;runtimeInitialized=true;callRuntimeCallbacks(__ATINIT__)}function preMain(){callRuntimeCallbacks(__ATMAIN__)}function exitRuntime(){callRuntimeCallbacks(__ATEXIT__);runtimeExited=true}function postRun(){if(Module["postRun"]){if(typeof Module["postRun"]=="function")Module["postRun"]=[Module["postRun"]];while(Module["postRun"].length){addOnPostRun(Module["postRun"].shift())}}callRuntimeCallbacks(__ATPOSTRUN__)}function addOnPreRun(cb){__ATPRERUN__.unshift(cb)}function addOnPreMain(cb){__ATMAIN__.unshift(cb)}function addOnPostRun(cb){__ATPOSTRUN__.unshift(cb)}function intArrayFromString(stringy,dontAddNull,length){var len=length>0?length:lengthBytesUTF8(stringy)+1;var u8array=new Array(len);var numBytesWritten=stringToUTF8Array(stringy,u8array,0,u8array.length);if(dontAddNull)u8array.length=numBytesWritten;return u8array}function writeStringToMemory(string,buffer,dontAddNull){var array=intArrayFromString(string,dontAddNull);var i=0;while(i>0]=chr;i=i+1}}function writeArrayToMemory(array,buffer){for(var i=0;i>0]=array[i]}}function writeAsciiToMemory(str,buffer,dontAddNull){for(var i=0;i>0]=str.charCodeAt(i)}if(!dontAddNull)HEAP8[buffer>>0]=0}if(!Math["imul"]||Math["imul"](4294967295,5)!==-5)Math["imul"]=function imul(a,b){var ah=a>>>16;var al=a&65535;var bh=b>>>16;var bl=b&65535;return al*bl+(ah*bl+al*bh<<16)|0};Math.imul=Math["imul"];if(!Math["clz32"])Math["clz32"]=(function(x){x=x>>>0;for(var i=0;i<32;i++){if(x&1<<31-i)return i}return 32});Math.clz32=Math["clz32"];var Math_abs=Math.abs;var Math_cos=Math.cos;var Math_sin=Math.sin;var Math_tan=Math.tan;var Math_acos=Math.acos;var Math_asin=Math.asin;var Math_atan=Math.atan;var Math_atan2=Math.atan2;var Math_exp=Math.exp;var Math_log=Math.log;var Math_sqrt=Math.sqrt;var Math_ceil=Math.ceil;var Math_floor=Math.floor;var Math_pow=Math.pow;var Math_imul=Math.imul;var Math_fround=Math.fround;var Math_min=Math.min;var Math_clz32=Math.clz32;var runDependencies=0;var runDependencyWatcher=null;var dependenciesFulfilled=null;Module["preloadedImages"]={};Module["preloadedAudios"]={};var ASM_CONSTS=[(function($0,$1,$2,$3,$4,$5,$6,$7){{var self=Module["getCache"](Module["ConcreteContactResultCallback"])[$0];if(!self.hasOwnProperty("addSingleResult"))throw"a JSImplementation must implement all functions, you forgot ConcreteContactResultCallback::addSingleResult.";return self["addSingleResult"]($1,$2,$3,$4,$5,$6,$7)}})];function _emscripten_asm_const_diiiiiiii(code,a0,a1,a2,a3,a4,a5,a6,a7){return ASM_CONSTS[code](a0,a1,a2,a3,a4,a5,a6,a7)}STATIC_BASE=8;STATICTOP=STATIC_BASE+26272;__ATINIT__.push({func:(function(){__GLOBAL__sub_I_btQuickprof_cpp()})});allocate([88,37,0,0,220,37,0,0,128,37,0,0,7,38,0,0,8,0,0,0,0,0,0,0,88,37,0,0,57,38,0,0,88,37,0,0,78,38,0,0,128,37,0,0,94,38,0,0,40,0,0,0,0,0,0,0,88,37,0,0,117,38,0,0,128,37,0,0,145,38,0,0,64,0,0,0,0,0,0,0,88,37,0,0,167,38,0,0,128,37,0,0,207,38,0,0,88,0,0,0,0,0,0,0,88,37,0,0,254,38,0,0,128,37,0,0,42,39,0,0,112,0,0,0,0,0,0,0,128,37,0,0,114,40,0,0,152,0,0,0,0,0,0,0,88,37,0,0,140,40,0,0,128,37,0,0,159,40,0,0,0,4,0,0,0,0,0,0,128,37,0,0,203,40,0,0,192,0,0,0,0,0,0,0,88,37,0,0,248,40,0,0,128,37,0,0,25,41,0,0,192,0,0,0,0,0,0,0,128,37,0,0,71,41,0,0,192,0,0,0,0,0,0,0,128,37,0,0,123,41,0,0,192,0,0,0,0,0,0,0,128,37,0,0,182,41,0,0,176,3,0,0,0,0,0,0,128,37,0,0,136,42,0,0,24,1,0,0,0,0,0,0,88,37,0,0,168,42,0,0,88,37,0,0,187,42,0,0,128,37,0,0,208,42,0,0,32,1,0,0,0,0,0,0,128,37,0,0,230,42,0,0,48,8,0,0,0,0,0,0,128,37,0,0,60,43,0,0,24,1,0,0,0,0,0,0,128,37,0,0,95,43,0,0,104,1,0,0,0,0,0,0,128,37,0,0,129,43,0,0,24,1,0,0,0,0,0,0,128,37,0,0,162,43,0,0,176,7,0,0,0,0,0,0,128,37,0,0,230,43,0,0,104,1,0,0,0,0,0,0,128,37,0,0,8,44,0,0,24,1,0,0,0,0,0,0,128,37,0,0,42,44,0,0,184,1,0,0,0,0,0,0,88,37,0,0,74,44,0,0,128,37,0,0,97,44,0,0,184,1,0,0,0,0,0,0,128,37,0,0,135,44,0,0,208,7,0,0,0,0,0,0,128,37,0,0,164,44,0,0,208,7,0,0,0,0,0,0,88,37,0,0,68,45,0,0,128,37,0,0,97,45,0,0,120,7,0,0,0,0,0,0,128,37,0,0,124,45,0,0,96,2,0,0,0,0,0,0,128,37,0,0,159,45,0,0,40,2,0,0,0,0,0,0,128,37,0,0,185,45,0,0,56,2,0,0,0,0,0,0,88,37,0,0,211,45,0,0,128,37,0,0,37,46,0,0,184,1,0,0,0,0,0,0,128,37,0,0,68,46,0,0,176,3,0,0,0,0,0,0,128,37,0,0,103,46,0,0,112,2,0,0,0,0,0,0,128,37,0,0,129,46,0,0,40,5,0,0,0,0,0,0,128,37,0,0,36,47,0,0,16,0,0,0,0,0,0,0,128,37,0,0,53,48,0,0,160,2,0,0,0,0,0,0,88,37,0,0,83,48,0,0,128,37,0,0,129,48,0,0,184,2,0,0,0,0,0,0,188,37,0,0,155,48,0,0,0,0,0,0,1,0,0,0,208,2,0,0,2,4,0,0,88,37,0,0,175,48,0,0,128,37,0,0,219,48,0,0,168,2,0,0,0,0,0,0,128,37,0,0,29,49,0,0,184,2,0,0,0,0,0,0,128,37,0,0,115,49,0,0,184,2,0,0,0,0,0,0,128,37,0,0,159,49,0,0,184,2,0,0,0,0,0,0,128,37,0,0,209,49,0,0,184,2,0,0,0,0,0,0,128,37,0,0,0,50,0,0,56,3,0,0,0,0,0,0,88,37,0,0,38,50,0,0,128,37,0,0,133,50,0,0,80,3,0,0,0,0,0,0,88,37,0,0,152,50,0,0,128,37,0,0,172,50,0,0,32,0,0,0,0,0,0,0,128,37,0,0,200,50,0,0,120,3,0,0,0,0,0,0,128,37,0,0,233,50,0,0,80,3,0,0,0,0,0,0,128,37,0,0,10,51,0,0,16,0,0,0,0,0,0,0,128,37,0,0,56,51,0,0,168,3,0,0,0,0,0,0,88,37,0,0,81,51,0,0,88,37,0,0,96,51,0,0,128,37,0,0,143,51,0,0,176,3,0,0,0,0,0,0,128,37,0,0,159,51,0,0,184,3,0,0,0,0,0,0,128,37,0,0,186,51,0,0,136,9,0,0,0,0,0,0,128,37,0,0,210,51,0,0,248,3,0,0,0,0,0,0,88,37,0,0,236,51,0,0,128,37,0,0,0,52,0,0,16,4,0,0,0,0,0,0,88,37,0,0,34,52,0,0,128,37,0,0,61,52,0,0,192,0,0,0,0,0,0,0,128,37,0,0,111,52,0,0,192,0,0,0,0,0,0,0,128,37,0,0,168,52,0,0,192,0,0,0,0,0,0,0,128,37,0,0,213,52,0,0,192,0,0,0,0,0,0,0,128,37,0,0,10,53,0,0,192,0,0,0,0,0,0,0,128,37,0,0,62,53,0,0,192,0,0,0,0,0,0,0,128,37,0,0,95,53,0,0,192,0,0,0,0,0,0,0,128,37,0,0,144,53,0,0,192,0,0,0,0,0,0,0,128,37,0,0,195,53,0,0,192,0,0,0,0,0,0,0,128,37,0,0,238,53,0,0,192,0,0,0,0,0,0,0,88,37,0,0,30,54,0,0,128,37,0,0,101,54,0,0,184,1,0,0,0,0,0,0,128,37,0,0,135,54,0,0,56,10,0,0,0,0,0,0,128,37,0,0,171,54,0,0,208,7,0,0,0,0,0,0,128,37,0,0,198,54,0,0,208,7,0,0,0,0,0,0,128,37,0,0,100,55,0,0,56,10,0,0,0,0,0,0,128,37,0,0,129,55,0,0,32,5,0,0,0,0,0,0,88,37,0,0,148,55,0,0,88,37,0,0,196,55,0,0,188,37,0,0,189,56,0,0,0,0,0,0,2,0,0,0,208,7,0,0,2,0,0,0,216,7,0,0,2,4,0,0,128,37,0,0,209,56,0,0,40,2,0,0,0,0,0,0,128,37,0,0,231,56,0,0,152,9,0,0,0,0,0,0,128,37,0,0,122,57,0,0,152,9,0,0,0,0,0,0,128,37,0,0,15,58,0,0,24,1,0,0,0,0,0,0,128,37,0,0,141,58,0,0,88,0,0,0,0,0,0,0,128,37,0,0,78,59,0,0,168,9,0,0,0,0,0,0,128,37,0,0,253,59,0,0,168,9,0,0,0,0,0,0,128,37,0,0,194,60,0,0,8,0,0,0,0,0,0,0,128,37,0,0,111,61,0,0,40,2,0,0,0,0,0,0,128,37,0,0,135,61,0,0,56,2,0,0,0,0,0,0,128,37,0,0,161,61,0,0,16,5,0,0,0,0,0,0,128,37,0,0,187,61,0,0,56,10,0,0,0,0,0,0,128,37,0,0,224,61,0,0,192,0,0,0,0,0,0,0,128,37,0,0,8,62,0,0,56,10,0,0,0,0,0,0,128,37,0,0,34,62,0,0,32,5,0,0,0,0,0,0,128,37,0,0,167,62,0,0,32,5,0,0,0,0,0,0,128,37,0,0,52,63,0,0,16,5,0,0,0,0,0,0,128,37,0,0,79,63,0,0,56,10,0,0,0,0,0,0,128,37,0,0,110,63,0,0,24,1,0,0,0,0,0,0,128,37,0,0,135,63,0,0,56,10,0,0,0,0,0,0,128,37,0,0,174,63,0,0,24,1,0,0,0,0,0,0,128,37,0,0,207,63,0,0,152,7,0,0,0,0,0,0,128,37,0,0,23,64,0,0,176,7,0,0,0,0,0,0,128,37,0,0,58,64,0,0,176,6,0,0,0,0,0,0,128,37,0,0,79,64,0,0,176,6,0,0,0,0,0,0,128,37,0,0,100,64,0,0,176,7,0,0,0,0,0,0,128,37,0,0,123,64,0,0,56,7,0,0,0,0,0,0,128,37,0,0,188,64,0,0,16,7,0,0,0,0,0,0,88,37,0,0,42,65,0,0,128,37,0,0,66,65,0,0,16,7,0,0,0,0,0,0,128,37,0,0,170,65,0,0,16,7,0,0,0,0,0,0,128,37,0,0,27,66,0,0,48,8,0,0,0,0,0,0,128,37,0,0,62,66,0,0,216,7,0,0,0,0,0,0,128,37,0,0,164,66,0,0,208,7,0,0,0,0,0,0,128,37,0,0,188,66,0,0,48,8,0,0,0,0,0,0,128,37,0,0,244,66,0,0,176,7,0,0,0,0,0,0,128,37,0,0,14,67,0,0,120,7,0,0,0,0,0,0,88,37,0,0,51,67,0,0,128,37,0,0,91,67,0,0,152,7,0,0,0,0,0,0,128,37,0,0,107,67,0,0,160,7,0,0,0,0,0,0,128,37,0,0,131,67,0,0,136,7,0,0,0,0,0,0,88,37,0,0,180,67,0,0,88,37,0,0,201,67,0,0,128,37,0,0,235,67,0,0,176,7,0,0,0,0,0,0,128,37,0,0,28,68,0,0,224,7,0,0,0,0,0,0,128,37,0,0,55,68,0,0,224,7,0,0,0,0,0,0,128,37,0,0,82,68,0,0,136,7,0,0,0,0,0,0,128,37,0,0,124,68,0,0,216,7,0,0,0,0,0,0,128,37,0,0,153,68,0,0,152,7,0,0,0,0,0,0,128,37,0,0,170,68,0,0,120,7,0,0,0,0,0,0,128,37,0,0,187,68,0,0,144,9,0,0,0,0,0,0,128,37,0,0,204,68,0,0,216,7,0,0,0,0,0,0,128,37,0,0,48,69,0,0,216,7,0,0,0,0,0,0,128,37,0,0,139,69,0,0,48,8,0,0,0,0,0,0,128,37,0,0,179,69,0,0,176,7,0,0,0,0,0,0,128,37,0,0,227,69,0,0,144,8,0,0,0,0,0,0,128,37,0,0,0,70,0,0,144,8,0,0,0,0,0,0,128,37,0,0,29,70,0,0,152,10,0,0,0,0,0,0,128,37,0,0,46,70,0,0,224,8,0,0,0,0,0,0,88,37,0,0,72,70,0,0,128,37,0,0,96,70,0,0,248,8,0,0,0,0,0,0,128,37,0,0,114,70,0,0,64,0,0,0,0,0,0,0,128,37,0,0,139,70,0,0,208,8,0,0,0,0,0,0,128,37,0,0,154,70,0,0,248,8,0,0,0,0,0,0,128,37,0,0,185,70,0,0,248,3,0,0,0,0,0,0,128,37,0,0,58,71,0,0,248,3,0,0,0,0,0,0,128,37,0,0,168,71,0,0,224,8,0,0,0,0,0,0,128,37,0,0,187,71,0,0,24,1,0,0,0,0,0,0,128,37,0,0,208,71,0,0,24,1,0,0,0,0,0,0,128,37,0,0,230,71,0,0,24,1,0,0,0,0,0,0,88,37,0,0,253,71,0,0,88,37,0,0,12,72,0,0,128,37,0,0,120,72,0,0,208,7,0,0,0,0,0,0,128,37,0,0,148,72,0,0,208,7,0,0,0,0,0,0,128,37,0,0,179,72,0,0,200,9,0,0,0,0,0,0,88,37,0,0,215,72,0,0,128,37,0,0,248,72,0,0,32,5,0,0,0,0,0,0,128,37,0,0,163,73,0,0,200,9,0,0,0,0,0,0,128,37,0,0,196,73,0,0,168,3,0,0,0,0,0,0,128,37,0,0,214,73,0,0,32,5,0,0,0,0,0,0,128,37,0,0,233,73,0,0,168,3,0,0,0,0,0,0,128,37,0,0,7,74,0,0,48,10,0,0,0,0,0,0,88,37,0,0,27,74,0,0,128,37,0,0,66,74,0,0,184,1,0,0,0,0,0,0,128,37,0,0,99,74,0,0,184,1,0,0,0,0,0,0,128,37,0,0,118,74,0,0,56,10,0,0,0,0,0,0,128,37,0,0,153,74,0,0,48,10,0,0,0,0,0,0,128,37,0,0,172,74,0,0,48,10,0,0,0,0,0,0,88,37,0,0,197,74,0,0,88,37,0,0,223,74,0,0,128,37,0,0,244,74,0,0,168,10,0,0,0,0,0,0,88,37,0,0,17,75,0,0,88,37,0,0,74,86,0,0,128,37,0,0,40,86,0,0,216,10,0,0,0,0,0,0,128,37,0,0,213,85,0,0,184,10,0,0,0,0,0,0,128,37,0,0,250,85,0,0,232,10,0,0,0,0,0,0,88,37,0,0,27,86,0,0,128,37,0,0,16,87,0,0,176,10,0,0,0,0,0,0,128,37,0,0,80,87,0,0,216,10,0,0,0,0,0,0,128,37,0,0,44,87,0,0,0,11,0,0,0,0,0,0,128,37,0,0,114,87,0,0,184,10,0,0,0,0,0,0,0,0,0,0,16,0,0,0,1,0,0,0,2,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,48,0,0,0,3,0,0,0,4,0,0,0,1,0,0,0,2,0,0,0,0,0,0,0,72,0,0,0,5,0,0,0,6,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,96,0,0,0,7,0,0,0,8,0,0,0,2,0,0,0,2,0,0,0,0,0,0,0,120,0,0,0,9,0,0,0,10,0,0,0,3,0,0,0,1,0,0,0,0,0,0,0,136,0,0,0,11,0,0,0,12,0,0,0,1,0,0,0,2,0,0,0,2,0,0,0,3,0,0,0,1,0,0,0,2,0,0,0,13,0,0,0,3,0,0,0,4,0,0,0,4,0,0,0,3,0,0,0,5,0,0,0,4,0,0,0,5,0,0,0,0,0,0,0,160,0,0,0,14,0,0,0,15,0,0,0,5,0,0,0,6,0,0,0,2,0,0,0,7,0,0,0,0,0,0,0,176,0,0,0,16,0,0,0,17,0,0,0,2,0,0,0,0,0,0,0,200,0,0,0,16,0,0,0,18,0,0,0,3,0,0,0,0,0,0,0,216,0,0,0,16,0,0,0,19,0,0,0,4,0,0,0,0,0,0,0,232,0,0,0,16,0,0,0,20,0,0,0,5,0,0,0,0,0,0,0,248,0,0,0,4,0,0,0,21,0,0,0,22,0,0,0,6,0,0,0,8,0,0,0,3,0,0,0,7,0,0,0,6,0,0,0,0,0,0,0,8,1,0,0,23,0,0,0,24,0,0,0,7,0,0,0,8,0,0,0,1,0,0,0,5,0,0,0,6,0,0,0,0,0,0,0,40,1,0,0,25,0,0,0,26,0,0,0,1,0,0,0,1,0,0,0,3,0,0,0,9,0,0,0,0,0,0,0,56,1,0,0,27,0,0,0,28,0,0,0,1,0,0,0,8,0,0,0,1,0,0,0,1,0,0,0,9,0,0,0,10,0,0,0,2,0,0,0,11,0,0,0,10,0,0,0,4,0,0,0,2,0,0,0,12,0,0,0,4,0,0,0,11,0,0,0,2,0,0,0,0,0,0,0,72,1,0,0,23,0,0,0,29,0,0,0,7,0,0,0,12,0,0,0,1,0,0,0,5,0,0,0,6,0,0,0,0,0,0,0,88,1,0,0,23,0,0,0,30,0,0,0,7,0,0,0,13,0,0,0,1,0,0,0,5,0,0,0,6,0,0,0,0,0,0,0,120,1,0,0,31,0,0,0,32,0,0,0,3,0,0,0,8,0,0,0,1,0,0,0,1,0,0,0,14,0,0,0,13,0,0,0,3,0,0,0,14,0,0,0,10,0,0,0,5,0,0,0,3,0,0,0,15,0,0,0,5,0,0,0,11,0,0,0,9,0,0,0,10,0,0,0,1,0,0,0,4,0,0,0,5,0,0,0,16,0,0,0,11,0,0,0,17,0,0,0,0,0,0,0,136,1,0,0,23,0,0,0,33,0,0,0,12,0,0,0,15,0,0,0,1,0,0,0,5,0,0,0,6,0,0,0,0,0,0,0,152,1,0,0,23,0,0,0,34,0,0,0,13,0,0,0,15,0,0,0,1,0,0,0,5,0,0,0,6,0,0,0,0,0,0,0,168,1,0,0,35,0,0,0,36,0,0,0,2,0,0,0,1,0,0,0,16,0,0,0,0,0,0,0,192,1,0,0,37,0,0,0,38,0,0,0,3,0,0,0,2,0,0,0,17,0,0,0,0,0,0,0,208,1,0,0,39,0,0,0,40,0,0,0,6,0,0,0,0,0,0,0,224,1,0,0,41,0,0,0,42,0,0,0,7,0,0,0,0,0,0,0,240,1,0,0,6,0,0,0,18,0,0,0,14,0,0,0,43,0,0,0,44,0,0,0,0,0,0,0,248,1,0,0,45,0,0,0,46,0,0,0,8,0,0,0,8,0,0,0,1,0,0,0,1,0,0,0,14,0,0,0,13,0,0,0,4,0,0,0,18,0,0,0,10,0,0,0,7,0,0,0,4,0,0,0,15,0,0,0,5,0,0,0,11,0,0,0,15,0,0,0,16,0,0,0,1,0,0,0,9,0,0,0,5,0,0,0,19,0,0,0,17,0,0,0,7,0,0,0,20,0,0,0,21,0,0,0,10,0,0,0,18,0,0,0,22,0,0,0,11,0,0,0,1,0,0,0,12,0,0,0,0,0,0,0,8,2,0,0,47,0,0,0,48,0,0,0,49,0,0,0,50,0,0,0,19,0,0,0,23,0,0,0,51,0,0,0,13,0,0,0,14,0,0,0,15,0,0,0,20,0,0,0,52,0,0,0,21,0,0,0,1,0,0,0,19,0,0,0,22,0,0,0,23,0,0,0,24,0,0,0,25,0,0,0,26,0,0,0,53,0,0,0,27,0,0,0,16,0,0,0,28,0,0,0,29,0,0,0,24,0,0,0,25,0,0,0,8,0,0,0,9,0,0,0,26,0,0,0,54,0,0,0,30,0,0,0,31,0,0,0,32,0,0,0,33,0,0,0,8,0,0,0,9,0,0,0,55,0,0,0,34,0,0,0,10,0,0,0,11,0,0,0,12,0,0,0,56,0,0,0,35,0,0,0,13,0,0,0,0,0,0,0,24,2,0,0,57,0,0,0,58,0,0,0,10,0,0,0,0,0,0,0,64,2,0,0,59,0,0,0,60,0,0,0,4,0,0,0,3,0,0,0,36,0,0,0,0,0,0,0,80,2,0,0,11,0,0,0,61,0,0,0,62,0,0,0,37,0,0,0,27,0,0,0,6,0,0,0,38,0,0,0,0,0,0,0,96,2,0,0,63,0,0,0,64,0,0,0,49,0,0,0,50,0,0,0,19,0,0,0,23,0,0,0,65,0,0,0,13,0,0,0,17,0,0,0,15,0,0,0,39,0,0,0,52,0,0,0,40,0,0,0,1,0,0,0,19,0,0,0,22,0,0,0,23,0,0,0,24,0,0,0,25,0,0,0,26,0,0,0,53,0,0,0,27,0,0,0,16,0,0,0,28,0,0,0,29,0,0,0,24,0,0,0,25,0,0,0,8,0,0,0,9,0,0,0,28,0,0,0,54,0,0,0,30,0,0,0,31,0,0,0,32,0,0,0,33,0,0,0,14,0,0,0,9,0,0,0,55,0,0,0,34,0,0,0,10,0,0,0,15,0,0,0,12,0,0,0,56,0,0,0,35,0,0,0,13,0,0,0,0,0,0,0,128,2,0,0,66,0,0,0,67,0,0,0,12,0,0,0,3,0,0,0,0,0,0,0,144,2,0,0,68,0,0,0,69,0,0,0,1,0,0,0,0,0,0,0,168,2,0,0,70,0,0,0,71,0,0,0,72,0,0,0,1,0,0,0,41,0,0,0,42,0,0,0,1,0,0,0,1,0,0,0,4,0,0,0,29,0,0,0,7,0,0,0,73,0,0,0,0,0,0,0,184,2,0,0,70,0,0,0,74,0,0,0,75,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,30,0,0,0,8,0,0,0,0,0,0,0,216,2,0,0,70,0,0,0,76,0,0,0,72,0,0,0,1,0,0,0,41,0,0,0,43,0,0,0,1,0,0,0,1,0,0,0,4,0,0,0,31,0,0,0,9,0,0,0,73,0,0,0,20,0,0,0,0,0,0,0,232,2,0,0,70,0,0,0,77,0,0,0,78,0,0,0,1,0,0,0,44,0,0,0,45,0,0,0,1,0,0,0,2,0,0,0,5,0,0,0,32,0,0,0,10,0,0,0,0,0,0,0,248,2,0,0,70,0,0,0,79,0,0,0,75,0,0,0,1,0,0,0,46,0,0,0,47,0,0,0,1,0,0,0,3,0,0,0,6,0,0,0,33,0,0,0,11,0,0,0,0,0,0,0,8,3,0,0,70,0,0,0,80,0,0,0,81,0,0,0,1,0,0,0,48,0,0,0,49,0,0,0,2,0,0,0,4,0,0,0,7,0,0,0,34,0,0,0,12,0,0,0,21,0,0,0,0,0,0,0,24,3,0,0,70,0,0,0,82,0,0,0,83,0,0,0,1,0,0,0,50,0,0,0,51,0,0,0,1,0,0,0,5,0,0,0,8,0,0,0,35,0,0,0,13,0,0,0,0,0,0,0,40,3,0,0,84,0,0,0,85,0,0,0,22,0,0,0,1,0,0,0,23,0,0,0,86,0,0,0,36,0,0,0,18,0,0,0,1,0,0,0,1,0,0,0,2,0,0,0,1,0,0,0,2,0,0,0,0,0,0,0,64,3,0,0,87,0,0,0,88,0,0,0,2,0,0,0,52,0,0,0,16,0,0,0,17,0,0,0,19,0,0,0,0,0,0,0,88,3,0,0,89,0,0,0,90,0,0,0,6,0,0,0,0,0,0,0,104,3,0,0,91,0,0,0,92,0,0,0,3,0,0,0,53,0,0,0,54,0,0,0,4,0,0,0,55,0,0,0,56,0,0,0,57,0,0,0,5,0,0,0,37,0,0,0,93,0,0,0,38,0,0,0,58,0,0,0,0,0,0,0,136,3,0,0,66,0,0,0,94,0,0,0,1,0,0,0,9,0,0,0,0,0,0,0,152,3,0,0,95,0,0,0,96,0,0,0,1,0,0,0,10,215,163,60,1,0,0,0,2,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,176,3,0,0,4,0,0,0,97,0,0,0,98,0,0,0,37,0,0,0,39,0,0,0,14,0,0,0,7,0,0,0,0,0,0,0,184,3,0,0,4,0,0,0,99,0,0,0,100,0,0,0,37,0,0,0,39,0,0,0,14,0,0,0,7,0,0,0,24,0,0,0,20,0,0,0,0,0,0,0,200,3,0,0,4,0,0,0,101,0,0,0,102,0,0,0,37,0,0,0,39,0,0,0,14,0,0,0,7,0,0,0,25,0,0,0,21,0,0,0,0,0,0,0,216,3,0,0,103,0,0,0,104,0,0,0,7,0,0,0,15,0,0,0,59,0,0,0,60,0,0,0,16,0,0,0,17,0,0,0,22,0,0,0,40,0,0,0,13,0,0,0,41,0,0,0,42,0,0,0,43,0,0,0,14,0,0,0,61,0,0,0,0,0,0,0,232,3,0,0,105,0,0,0,106,0,0,0,15,0,0,0,0,0,0,0,0,4,0,0,107,0,0,0,108,0,0,0,5,0,0,0,6,0,0,0,18,0,0,0,7,0,0,0,0,0,0,0,24,4,0,0,16,0,0,0,109,0,0,0,8,0,0,0,0,0,0,0,40,4,0,0,16,0,0,0,110,0,0,0,9,0,0,0,0,0,0,0,56,4,0,0,16,0,0,0,111,0,0,0,10,0,0,0,0,0,0,0,72,4,0,0,16,0,0,0,112,0,0,0,11,0,0,0,0,0,0,0,88,4,0,0,16,0,0,0,113,0,0,0,12,0,0,0,0,0,0,0,104,4,0,0,16,0,0,0,114,0,0,0,13,0,0,0,0,0,0,0,120,4,0,0,16,0,0,0,115,0,0,0,14,0,0,0,0,0,0,0,136,4,0,0,16,0,0,0,116,0,0,0,15,0,0,0,0,0,0,0,152,4,0,0,16,0,0,0,117,0,0,0,16,0,0,0,0,0,0,0,168,4,0,0,16,0,0,0,118,0,0,0,17,0,0,0,0,0,0,0,184,4,0,0,119,0,0,0,120,0,0,0,26,0,0,0,62,0,0,0,0,0,0,0,192,4,0,0,121,0,0,0,122,0,0,0,5,0,0,0,4,0,0,0,63,0,0,0,0,0,0,0,208,4,0,0,123,0,0,0,124,0,0,0,6,0,0,0,5,0,0,0,64,0,0,0,0,0,0,0,224,4,0,0,125,0,0,0,126,0,0,0,23,0,0,0,0,0,0,0,240,4,0,0,41,0,0,0,127,0,0,0,24,0,0,0,0,0,0,0,0,5,0,0,128,0,0,0,129,0,0,0,7,0,0,0,6,0,0,0,65,0,0,0,0,0,0,0,16,5,0,0,130,0,0,0,131,0,0,0,27,0,0,0,28,0,0,0,3,0,0,0,0,0,0,0,40,5,0,0,132,0,0,0,133,0,0,0,49,0,0,0,50,0,0,0,19,0,0,0,23,0,0,0,134,0,0,0,13,0,0,0,17,0,0,0,25,0,0,0,66,0,0,0,52,0,0,0,67,0,0,0,0,0,0,0,48,5,0,0,135,0,0,0,136,0,0,0,26,0,0,0,27,0,0,0,252,255,255,255,48,5,0,0,137,0,0,0,138,0,0,0,28,0,0,0,0,0,0,0,80,5,0,0,57,0,0,0,139,0,0,0,16,0,0,0,0,0,0,0,96,5,0,0,41,0,0,0,140,0,0,0,29,0,0,0,1,0,0,0,0,0,0,0,112,5,0,0,41,0,0,0,141,0,0,0,29,0,0,0,2,0,0,0,0,0,0,0,128,5,0,0,23,0,0,0,142,0,0,0,7,0,0,0,68,0,0,0,1,0,0,0,5,0,0,0,6,0,0,0,0,0,0,0,144,5,0,0,143,0,0,0,144,0,0,0,17,0,0,0,10,0,0,0,0,0,0,0,160,5,0,0,41,0,0,0,145,0,0,0,30,0,0,0,1,0,0,0,0,0,0,0,176,5,0,0,41,0,0,0,146,0,0,0,30,0,0,0,2,0,0,0,0,0,0,0,192,5,0,0,66,0,0,0,147,0,0,0,18,0,0,0,11,0,0,0,0,0,0,0,208,5,0,0,57,0,0,0,148,0,0,0,19,0,0,0,0,0,0,0,224,5,0,0,57,0,0,0,149,0,0,0,20,0,0,0,0,0,0,0,240,5,0,0,130,0,0,0,150,0,0,0,27,0,0,0,28,0,0,0,4,0,0,0,0,0,0,0,0,6,0,0,151,0,0,0,152,0,0,0,8,0,0,0,7,0,0,0,69,0,0,0,0,0,0,0,16,6,0,0,153,0,0,0,154,0,0,0,18,0,0,0,0,0,0,0,32,6,0,0,155,0,0,0,156,0,0,0,9,0,0,0,8,0,0,0,70,0,0,0,0,0,0,0,48,6,0,0,130,0,0,0,157,0,0,0,29,0,0,0,30,0,0,0,5,0,0,0,0,0,0,0,64,6,0,0,130,0,0,0,158,0,0,0,31,0,0,0,32,0,0,0,6,0,0,0,0,0,0,0,80,6,0,0,130,0,0,0,159,0,0,0,27,0,0,0,28,0,0,0,7,0,0,0,0,0,0,0,96,6,0,0,160,0,0,0,161,0,0,0,10,0,0,0,9,0,0,0,71,0,0,0,0,0,0,0,112,6,0,0,23,0,0,0,162,0,0,0,7,0,0,0,72,0,0,0,1,0,0,0,5,0,0,0,6,0,0,0,0,0,0,0,128,6,0,0,163,0,0,0,164,0,0,0,11,0,0,0,10,0,0,0,73,0,0,0,0,0,0,0,144,6,0,0,23,0,0,0,165,0,0,0,33,0,0,0,15,0,0,0,1,0,0,0,5,0,0,0,6,0,0,0,0,0,0,0,160,6,0,0,166,0,0,0,167,0,0,0,31,0,0,0,8,0,0,0,1,0,0,0,1,0,0,0,74,0,0,0,44,0,0,0,5,0,0,0,45,0,0,0,10,0,0,0,18,0,0,0,5,0,0,0,46,0,0,0,19,0,0,0,11,0,0,0,75,0,0,0,168,0,0,0,0,0,0,0,176,6,0,0,31,0,0,0,169,0,0,0,32,0,0,0,8,0,0,0,1,0,0,0,1,0,0,0,76,0,0,0,13,0,0,0,6,0,0,0,47,0,0,0,77,0,0,0,7,0,0,0,4,0,0,0,48,0,0,0,20,0,0,0,11,0,0,0,34,0,0,0,35,0,0,0,1,0,0,0,33,0,0,0,5,0,0,0,16,0,0,0,11,0,0,0,0,0,0,0,192,6,0,0,31,0,0,0,170,0,0,0,32,0,0,0,8,0,0,0,1,0,0,0,1,0,0,0,76,0,0,0,13,0,0,0,6,0,0,0,49,0,0,0,78,0,0,0,7,0,0,0,4,0,0,0,48,0,0,0,20,0,0,0,11,0,0,0,34,0,0,0,35,0,0,0,1,0,0,0,33,0,0,0,5,0,0,0,16,0,0,0,11,0,0,0,0,0,0,0,208,6,0,0,31,0,0,0,171,0,0,0,32,0,0,0,8,0,0,0,1,0,0,0,1,0,0,0,76,0,0,0,13,0,0,0,6,0,0,0,50,0,0,0,79,0,0,0,7,0,0,0,4,0,0,0,48,0,0,0,20,0,0,0,11,0,0,0,34,0,0,0,35,0,0,0,1,0,0,0,33,0,0,0,5,0,0,0,16,0,0,0,11,0,0,0,0,0,0,0,224,6,0,0,31,0,0,0,172,0,0,0,34,0,0,0,8,0,0,0,1,0,0,0,1,0,0,0,14,0,0,0,13,0,0,0,7,0,0,0,51,0,0,0,10,0,0,0,19,0,0,0,6,0,0,0,15,0,0,0,5,0,0,0,11,0,0,0,36,0,0,0,37,0,0,0,1,0,0,0,35,0,0,0,5,0,0,0,16,0,0,0,11,0,0,0,0,0,0,0,240,6,0,0,173,0,0,0,174,0,0,0,36,0,0,0,8,0,0,0,1,0,0,0,1,0,0,0,80,0,0,0,52,0,0,0,8,0,0,0,53,0,0,0,10,0,0,0,4,0,0,0,2,0,0,0,54,0,0,0,21,0,0,0,11,0,0,0,37,0,0,0,38,0,0,0,39,0,0,0,81,0,0,0,82,0,0,0,0,0,0,0,0,7,0,0,175,0,0,0,176,0,0,0,40,0,0,0,0,0,0,0,24,7,0,0,175,0,0,0,177,0,0,0,41,0,0,0,0,0,0,0,40,7,0,0,175,0,0,0,178,0,0,0,42,0,0,0,0,0,0,0,56,7,0,0,179,0,0,0,180,0,0,0,36,0,0,0,8,0,0,0,1,0,0,0,1,0,0,0,83,0,0,0,52,0,0,0,8,0,0,0,55,0,0,0,10,0,0,0,4,0,0,0,2,0,0,0,12,0,0,0,4,0,0,0,11,0,0,0,38,0,0,0,38,0,0,0,39,0,0,0,0,0,0,0,72,7,0,0,181,0,0,0,182,0,0,0,39,0,0,0,0,0,0,0,88,7,0,0,41,0,0,0,183,0,0,0,40,0,0,0,0,0,0,0,104,7,0,0,184,0,0,0,185,0,0,0,41,0,0,0,8,0,0,0,1,0,0,0,1,0,0,0,84,0,0,0,56,0,0,0,9,0,0,0,57,0,0,0,10,0,0,0,4,0,0,0,2,0,0,0,58,0,0,0,22,0,0,0,11,0,0,0,42,0,0,0,0,0,0,0,120,7,0,0,45,0,0,0,186,0,0,0,32,0,0,0,8,0,0,0,1,0,0,0,1,0,0,0,14,0,0,0,13,0,0,0,10,0,0,0,1,0,0,0,10,0,0,0,7,0,0,0,4,0,0,0,15,0,0,0,5,0,0,0,11,0,0,0,15,0,0,0,43,0,0,0,1,0,0,0,43,0,0,0,5,0,0,0,16,0,0,0,11,0,0,0,7,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,192,7,0,0,187,0,0,0,188,0,0,0,44,0,0,0,8,0,0,0,1,0,0,0,1,0,0,0,85,0,0,0,13,0,0,0,10,0,0,0,59,0,0,0,10,0,0,0,7,0,0,0,4,0,0,0,60,0,0,0,23,0,0,0,11,0,0,0,44,0,0,0,45,0,0,0,1,0,0,0,45,0,0,0,5,0,0,0,16,0,0,0,11,0,0,0,7,0,0,0,61,0,0,0,62,0,0,0,46,0,0,0,46,0,0,0,63,0,0,0,47,0,0,0,2,0,0,0,1,0,0,0,0,0,0,0,224,7,0,0,31,0,0,0,189,0,0,0,48,0,0,0,8,0,0,0,1,0,0,0,1,0,0,0,86,0,0,0,13,0,0,0,11,0,0,0,64,0,0,0,87,0,0,0,20,0,0,0,4,0,0,0,65,0,0,0,24,0,0,0,11,0,0,0,15,0,0,0,47,0,0,0,1,0,0,0,49,0,0,0,5,0,0,0,16,0,0,0,11,0,0,0,0,0,0,0,240,7,0,0,31,0,0,0,190,0,0,0,48,0,0,0,8,0,0,0,1,0,0,0,1,0,0,0,86,0,0,0,13,0,0,0,11,0,0,0,66,0,0,0,87,0,0,0,20,0,0,0,4,0,0,0,65,0,0,0,24,0,0,0,11,0,0,0,15,0,0,0,47,0,0,0,1,0,0,0,49,0,0,0,5,0,0,0,16,0,0,0,11,0,0,0,0,0,0,0,0,8,0,0,31,0,0,0,191,0,0,0,48,0,0,0,8,0,0,0,1,0,0,0,1,0,0,0,86,0,0,0,13,0,0,0,11,0,0,0,67,0,0,0,87,0,0,0,20,0,0,0,4,0,0,0,65,0,0,0,24,0,0,0,11,0,0,0,15,0,0,0,47,0,0,0,1,0,0,0,49,0,0,0,5,0,0,0,16,0,0,0,11,0,0,0,0,0,0,0,16,8,0,0,45,0,0,0,192,0,0,0,44,0,0,0,8,0,0,0,1,0,0,0,1,0,0,0,88,0,0,0,68,0,0,0,10,0,0,0,69,0,0,0,10,0,0,0,7,0,0,0,4,0,0,0,15,0,0,0,5,0,0,0,11,0,0,0,48,0,0,0,49,0,0,0,1,0,0,0,50,0,0,0,5,0,0,0,16,0,0,0,11,0,0,0,7,0,0,0,70,0,0,0,71,0,0,0,51,0,0,0,50,0,0,0,72,0,0,0,52,0,0,0,3,0,0,0,0,0,0,0,32,8,0,0,181,0,0,0,193,0,0,0,53,0,0,0,0,0,0,0,64,8,0,0,45,0,0,0,194,0,0,0,54,0,0,0,8,0,0,0,1,0,0,0,1,0,0,0,89,0,0,0,13,0,0,0,12,0,0,0,73,0,0,0,10,0,0,0,21,0,0,0,4,0,0,0,15,0,0,0,5,0,0,0,11,0,0,0,51,0,0,0,52,0,0,0,1,0,0,0,55,0,0,0,5,0,0,0,74,0,0,0,53,0,0,0,7,0,0,0,75,0,0,0,76,0,0,0,56,0,0,0,54,0,0,0,77,0,0,0,57,0,0,0,4,0,0,0,55,0,0,0,0,0,0,0,80,8,0,0,195,0,0,0,196,0,0,0,19,0,0,0,78,0,0,0,25,0,0,0,90,0,0,0,91,0,0,0,20,0,0,0,0,0,0,0,96,8,0,0,181,0,0,0,197,0,0,0,58,0,0,0,0,0,0,0,112,8,0,0,181,0,0,0,198,0,0,0,59,0,0,0,0,0,0,0,128,8,0,0,199,0,0,0,200,0,0,0,60,0,0,0,8,0,0,0,1,0,0,0,1,0,0,0,92,0,0,0,79,0,0,0,13,0,0,0,80,0,0,0,10,0,0,0,4,0,0,0,2,0,0,0,12,0,0,0,4,0,0,0,11,0,0,0,61,0,0,0,12,0,0,0,0,0,0,0,144,8,0,0,31,0,0,0,201,0,0,0,62,0,0,0,8,0,0,0,1,0,0,0,1,0,0,0,93,0,0,0,13,0,0,0,14,0,0,0,81,0,0,0,94,0,0,0,22,0,0,0,4,0,0,0,82,0,0,0,26,0,0,0,11,0,0,0,56,0,0,0,57,0,0,0,1,0,0,0,63,0,0,0,5,0,0,0,16,0,0,0,11,0,0,0,7,0,0,0,0,0,0,0,160,8,0,0,31,0,0,0,202,0,0,0,62,0,0,0,8,0,0,0,1,0,0,0,1,0,0,0,93,0,0,0,13,0,0,0,14,0,0,0,83,0,0,0,94,0,0,0,22,0,0,0,4,0,0,0,82,0,0,0,26,0,0,0,11,0,0,0,56,0,0,0,58,0,0,0,1,0,0,0,64,0,0,0,5,0,0,0,16,0,0,0,11,0,0,0,8,0,0,0,0,0,0,0,176,8,0,0,31,0,0,0,203,0,0,0,62,0,0,0,8,0,0,0,1,0,0,0,1,0,0,0,93,0,0,0,13,0,0,0,14,0,0,0,84,0,0,0,94,0,0,0,22,0,0,0,4,0,0,0,82,0,0,0,26,0,0,0,11,0,0,0,56,0,0,0,59,0,0,0,1,0,0,0,65,0,0,0,5,0,0,0,16,0,0,0,11,0,0,0,9,0,0,0,0,0,0,0,192,8,0,0,204,0,0,0,205,0,0,0,66,0,0,0,1,0,0,0,2,0,0,0,95,0,0,0,96,0,0,0,85,0,0,0,97,0,0,0,98,0,0,0,86,0,0,0,60,0,0,0,61,0,0,0,87,0,0,0,27,0,0,0,0,0,0,0,208,8,0,0,206,0,0,0,207,0,0,0,1,0,0,0,62,0,0,0,12,0,0,0,67,0,0,0,2,0,0,0,68,0,0,0,99,0,0,0,88,0,0,0,89,0,0,0,63,0,0,0,100,0,0,0,208,0,0,0,0,0,0,0,232,8,0,0,209,0,0,0,210,0,0,0,28,0,0,0,21,0,0,0,64,0,0,0,90,0,0,0,91,0,0,0,92,0,0,0,65,0,0,0,93,0,0,0,66,0,0,0,101,0,0,0,67,0,0,0,29,0,0,0,94,0,0,0,102,0,0,0,103,0,0,0,0,0,0,0,8,9,0,0,206,0,0,0,211,0,0,0,1,0,0,0,62,0,0,0,12,0,0,0,67,0,0,0,2,0,0,0,68,0,0,0,99,0,0,0,88,0,0,0,89,0,0,0,63,0,0,0,100,0,0,0,208,0,0,0,0,0,0,0,24,9,0,0,212,0,0,0,213,0,0,0,30,0,0,0,22,0,0,0,68,0,0,0,95,0,0,0,96,0,0,0,97,0,0,0,69,0,0,0,98,0,0,0,70,0,0,0,104,0,0,0,71,0,0,0,31,0,0,0,99,0,0,0,105,0,0,0,106,0,0,0,0,0,0,0,40,9,0,0,105,0,0,0,214,0,0,0,21,0,0,0,0,0,0,0,56,9,0,0,105,0,0,0,215,0,0,0,22,0,0,0,0,0,0,0,72,9,0,0,216,0,0,0,217,0,0,0,2,0,0,0,72,0,0,0,13,0,0,0,69,0,0,0,3,0,0,0,70,0,0,0,107,0,0,0,100,0,0,0,101,0,0,0,73,0,0,0,108,0,0,0,218,0,0,0,0,0,0,0,88,9,0,0,23,0,0,0,219,0,0,0,74,0,0,0,109,0,0,0,1,0,0,0,5,0,0,0,6,0,0,0,0,0,0,0,104,9,0,0,23,0,0,0,220,0,0,0,7,0,0,0,110,0,0,0,1,0,0,0,5,0,0,0,6,0,0,0,0,0,0,0,120,9,0,0,23,0,0,0,221,0,0,0,7,0,0,0,111,0,0,0,1,0,0,0,5,0,0,0,6,0,0,0,0,0,0,0,144,9,0,0,222,0,0,0,223,0,0,0,19,0,0,0,78,0,0,0,25,0,0,0,90,0,0,0,91,0,0,0,0,0,0,0,168,9,0,0,41,0,0,0,224,0,0,0,30,0,0,0,1,0,0,0,0,0,0,0,184,9,0,0,225,0,0,0,226,0,0,0,1,0,0,0,0,0,0,0,208,9,0,0,130,0,0,0,227,0,0,0,75,0,0,0,76,0,0,0,8,0,0,0,0,0,0,0,224,9,0,0,225,0,0,0,228,0,0,0,2,0,0,0,0,0,0,0,240,9,0,0,95,0,0,0,229,0,0,0,2,0,0,0,0,0,0,0,0,10,0,0,130,0,0,0,230,0,0,0,77,0,0,0,78,0,0,0,9,0,0,0,0,0,0,0,16,10,0,0,95,0,0,0,231,0,0,0,3,0,0,0,0,0,0,0,32,10,0,0,232,0,0,0,233,0,0,0,14,0,0,0,0,0,0,0,72,10,0,0,234,0,0,0,235,0,0,0,15,0,0,0,11,0,0,0,112,0,0,0,0,0,0,0,88,10,0,0,236,0,0,0,237,0,0,0,16,0,0,0,12,0,0,0,113,0,0,0,0,0,0,0,104,10,0,0,232,0,0,0,238,0,0,0,17,0,0,0,0,0,0,0,120,10,0,0,232,0,0,0,239,0,0,0,18,0,0,0,0,0,0,0,136,10,0,0,240,0,0,0,241,0,0,0,32,0,0,0,33,0,0,0,102,0,0,0,0,0,0,0,144,10,0,0,242,0,0,0,243,0,0,0,0,0,0,0,152,10,0,0,244,0,0,0,245,0,0,0,66,0,0,0,1,0,0,0,2,0,0,0,95,0,0,0,96,0,0,0,85,0,0,0,114,0,0,0,115,0,0,0,86,0,0,0,60,0,0,0,61,0,0,0,87,0,0,0,27,0,0,0,96,100,0,0,255,255,255,255,5,0,0,0,0,0,0,0,0,0,0,0,103,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,34,0,0,0,35,0,0,0,157,102,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,184,10,0,0,246,0,0,0,247,0,0,0,248,0,0,0,249,0,0,0,36,0,0,0,4,0,0,0,19,0,0,0,71,0,0,0,0,0,0,0,200,10,0,0,246,0,0,0,250,0,0,0,248,0,0,0,249,0,0,0,36,0,0,0,5,0,0,0,20,0,0,0,72,0,0,0,0,0,0,0,240,10,0,0,251,0,0,0,252,0,0,0,104,0,0,0,0,0,0,0,32,11,0,0,246,0,0,0,253,0,0,0,248,0,0,0,249,0,0,0,36,0,0,0,6,0,0,0,21,0,0,0,73,0,0,0,78,49,54,98,116,67,111,108,108,105,115,105,111,110,87,111,114,108,100,50,48,67,111,110,118,101,120,82,101,115,117,108,116,67,97,108,108,98,97,99,107,69,0,78,49,54,98,116,67,111,108,108,105,115,105,111,110,87,111,114,108,100,50,55,67,108,111,115,101,115,116,67,111,110,118,101,120,82,101,115,117,108,116,67,97,108,108,98,97,99,107,69,0,49,56,98,116,86,101,104,105,99,108,101,82,97,121,99,97,115,116,101,114,0,49,51,98,116,77,111,116,105,111,110,83,116,97,116,101,0,50,48,98,116,68,101,102,97,117,108,116,77,111,116,105,111,110,83,116,97,116,101,0,50,53,98,116,79,118,101,114,108,97,112,112,105,110,103,80,97,105,114,67,97,108,108,98,97,99,107,0,49,57,98,116,71,104,111,115,116,80,97,105,114,67,97,108,108,98,97,99,107,0,78,49,54,98,116,67,111,108,108,105,115,105,111,110,87,111,114,108,100,49,55,82,97,121,82,101,115,117,108,116,67,97,108,108,98,97,99,107,69,0,78,49,54,98,116,67,111,108,108,105,115,105,111,110,87,111,114,108,100,50,52,67,108,111,115,101,115,116,82,97,121,82,101,115,117,108,116,67,97,108,108,98,97,99,107,69,0,78,49,54,98,116,67,111,108,108,105,115,105,111,110,87,111,114,108,100,50,49,67,111,110,116,97,99,116,82,101,115,117,108,116,67,97,108,108,98,97,99,107,69,0,50,57,67,111,110,99,114,101,116,101,67,111,110,116,97,99,116,82,101,115,117,108,116,67,97,108,108,98,97,99,107,0,123,32,118,97,114,32,115,101,108,102,32,61,32,77,111,100,117,108,101,91,39,103,101,116,67,97,99,104,101,39,93,40,77,111,100,117,108,101,91,39,67,111,110,99,114,101,116,101,67,111,110,116,97,99,116,82,101,115,117,108,116,67,97,108,108,98,97,99,107,39,93,41,91,36,48,93,59,32,105,102,32,40,33,115,101,108,102,46,104,97,115,79,119,110,80,114,111,112,101,114,116,121,40,39,97,100,100,83,105,110,103,108,101,82,101,115,117,108,116,39,41,41,32,116,104,114,111,119,32,39,97,32,74,83,73,109,112,108,101,109,101,110,116,97,116,105,111,110,32,109,117,115,116,32,105,109,112,108,101,109,101,110,116,32,97,108,108,32,102,117,110,99,116,105,111,110,115,44,32,121,111,117,32,102,111,114,103,111,116,32],"i8",ALLOC_NONE,Runtime.GLOBAL_BASE);allocate([67,111,110,99,114,101,116,101,67,111,110,116,97,99,116,82,101,115,117,108,116,67,97,108,108,98,97,99,107,58,58,97,100,100,83,105,110,103,108,101,82,101,115,117,108,116,46,39,59,32,114,101,116,117,114,110,32,115,101,108,102,91,39,97,100,100,83,105,110,103,108,101,82,101,115,117,108,116,39,93,40,36,49,44,36,50,44,36,51,44,36,52,44,36,53,44,36,54,44,36,55,41,59,32,125,0,50,51,98,116,68,101,102,97,117,108,116,83,111,102,116,66,111,100,121,83,111,108,118,101,114,0,49,54,98,116,83,111,102,116,66,111,100,121,83,111,108,118,101,114,0,52,49,98,116,83,111,102,116,66,111,100,121,82,105,103,105,100,66,111,100,121,67,111,108,108,105,115,105,111,110,67,111,110,102,105,103,117,114,97,116,105,111,110,0,78,50,56,98,116,83,111,102,116,83,111,102,116,67,111,108,108,105,115,105,111,110,65,108,103,111,114,105,116,104,109,49,48,67,114,101,97,116,101,70,117,110,99,69,0,51,48,98,116,67,111,108,108,105,115,105,111,110,65,108,103,111,114,105,116,104,109,67,114,101,97,116,101,70,117,110,99,0,78,50,57,98,116,83,111,102,116,82,105,103,105,100,67,111,108,108,105,115,105,111,110,65,108,103,111,114,105,116,104,109,49,48,67,114,101,97,116,101,70,117,110,99,69,0,78,51,53,98,116,83,111,102,116,66,111,100,121,67,111,110,99,97,118,101,67,111,108,108,105,115,105,111,110,65,108,103,111,114,105,116,104,109,49,48,67,114,101,97,116,101,70,117,110,99,69,0,78,51,53,98,116,83,111,102,116,66,111,100,121,67,111,110,99,97,118,101,67,111,108,108,105,115,105,111,110,65,108,103,111,114,105,116,104,109,49,55,83,119,97,112,112,101,100,67,114,101,97,116,101,70,117,110,99,69,0,49,48,98,116,83,111,102,116,66,111,100,121,0,83,111,102,116,66,111,100,121,77,97,116,101,114,105,97,108,68,97,116,97,0,83,111,102,116,66,111,100,121,78,111,100,101,68,97,116,97,0,83,111,102,116,66,111,100,121,76,105,110,107,68,97,116,97,0,83,111,102,116,66,111,100,121,70,97,99,101,68,97,116,97,0,83,111,102,116,66,111,100,121,84,101,116,114,97,68,97,116,97,0,83,111,102,116,82,105,103,105,100,65,110,99,104,111,114,68,97,116,97,0,102,108,111,97,116,0,83,111,102,116,66,111,100,121,80,111,115,101,68,97,116,97,0,83,111,102,116,66,111,100,121,67,108,117,115,116,101,114,68,97,116,97,0,105,110,116,0,98,116,83,111,102,116,66,111,100,121,74,111,105,110,116,68,97,116,97,0,98,116,83,111,102,116,66,111,100,121,70,108,111,97,116,68,97,116,97,0,78,49,48,98,116,83,111,102,116,66,111,100,121,49,53,82,97,121,70,114,111,109,84,111,67,97,115,116,101,114,69,0,78,54,98,116,68,98,118,116,56,73,67,111,108,108,105,100,101,69,0,78,49,48,98,116,83,111,102,116,66,111,100,121,53,74,111,105,110,116,69,0,78,49,48,98,116,83,111,102,116,66,111,100,121,54,67,74,111,105,110,116,69,0,50,52,98,116,83,111,102,116,66,111,100,121,67,111,108,108,105,115,105,111,110,83,104,97,112,101,0,83,111,102,116,66,111,100,121,0,85,112,100,97,116,101,67,108,117,115,116,101,114,115,0,83,111,102,116,66,111,100,121,32,97,112,112,108,121,70,111,114,99,101,115,0,65,112,112,108,121,67,108,117,115,116,101,114,115,0,78,49,53,98,116,83,111,102,116,67,111,108,108,105,100,101,114,115,49,51,67,111,108,108,105,100,101,83,68,70,95,82,83,69,0,78,49,53,98,116,83,111,102,116,67,111,108,108,105,100,101,114,115,49,50,67,111,108,108,105,100,101,67,76,95,82,83,69,0,78,49,53,98,116,83,111,102,116,67,111,108,108,105,100,101,114,115,49,49,67,108,117,115,116,101,114,66,97,115,101,69,0,50,55,98,116,83,111,102,116,67,108,117,115,116,101,114,67,111,108,108,105,115,105,111,110,83,104,97,112,101,0,83,79,70,84,67,76,85,83,84,69,82,0,98,116,67,111,110,118,101,120,73,110,116,101,114,110,97,108,83,104,97,112,101,68,97,116,97,0,78,49,53,98,116,83,111,102,116,67,111,108,108,105,100,101,114,115,49,50,67,111,108,108,105,100,101,67,76,95,83,83,69,0,78,49,53,98,116,83,111,102,116,67,111,108,108,105,100,101,114,115,49,50,67,111,108,108,105,100,101,86,70,95,83,83,69,0,50,57,98,116,83,111,102,116,82,105,103,105,100,67,111,108,108,105,115,105,111,110,65,108,103,111,114,105,116,104,109,0,50,48,98,116,67,111,108,108,105,115,105,111,110,65,108,103,111,114,105,116,104,109,0,51,53,98,116,83,111,102,116,66,111,100,121,67,111,110,99,97,118,101,67,111,108,108,105,115,105,111,110,65,108,103,111,114,105,116,104,109,0,50,54,98,116,83,111,102,116,66,111,100,121,84,114,105,97,110,103,108,101,67,97,108,108,98,97,99,107,0,90,78,51,53,98,116,83,111,102,116,66,111,100,121,67,111,110,99,97,118,101,67,111,108,108,105,115,105,111,110,65,108,103,111,114,105,116,104,109,50,49,99,97,108,99,117,108,97,116,101,84,105,109,101,79,102,73,109,112,97,99,116,69,80,49,55,98,116,67,111,108,108,105,115,105,111,110,79,98,106,101,99,116,83,49,95,82,75,49,54,98,116,68,105,115,112,97,116,99,104,101,114,73,110,102,111,80,49,54,98,116,77,97,110,105,102,111,108,100,82,101,115,117,108,116,69,51,49,76,111,99,97,108,84,114,105,97,110,103,108,101,83,112,104,101,114,101,67,97,115,116,67,97,108,108,98,97,99,107,0,78,49,50,98,116,67,111,110,118,101,120,67,97,115,116,49,48,67,97,115,116,82,101,115,117,108,116,69,0,49,53,98,116,84,114,105,97,110,103,108,101,83,104,97,112,101,0,84,114,105,97,110,103,108,101,0,50,52,98,116,83,111,102,116,82,105,103,105,100,68,121,110,97,109,105,99,115,87,111,114,108,100,0,114,97,121,84,101,115,116,0,50,51,98,116,83,111,102,116,83,105,110,103,108,101,82,97,121,67,97,108,108,98,97,99,107,0,50,51,98,116,66,114,111,97,100,112,104,97,115,101,82,97,121,67,97,108,108,98,97,99,107,0,50,52,98,116,66,114,111,97,100,112,104,97,115,101,65,97,98,98,67,97,108,108,98,97,99,107,0,112,114,101,100,105,99,116,85,110,99,111,110,115,116,114,97,105,110,116,77,111,116,105,111,110,83,111,102,116,66,111,100,121,0,115,111,108,118,101,83,111,102,116,67,111,110,115,116,114,97,105,110,116,115,0,50,56,98,116,83,111,102,116,83,111,102,116,67,111,108,108,105,115,105,111,110,65,108,103,111,114,105,116,104,109,0,49,49,98,116,82,105,103,105,100,66,111,100,121,0,98,116,82,105,103,105,100,66,111,100,121,70,108,111,97,116,68,97,116,97,0,50,51,98,116,68,105,115,99,114,101,116,101,68,121,110,97,109,105,99,115,87,111,114,108,100,0,49,53,98,116,68,121,110,97,109,105,99,115,87,111,114,108,100,0,100,101,98,117,103,68,114,97,119,87,111,114,108,100,0,98,116,68,121,110,97,109,105,99,115,87,111,114,108,100,70,108,111,97,116,68,97,116,97,0,115,116,101,112,83,105,109,117,108,97,116,105,111,110,0,115,121,110,99,104,114,111,110,105,122,101,77,111,116,105,111,110,83,116,97,116,101,115,0,112,114,101,100,105,99,116,85,110,99,111,110,115,116,114,97,105,110,116,77,111,116,105,111,110,0,105,110,116,101,103,114,97,116,101,84,114,97,110,115,102,111,114,109,115,0,67,67,68,32,109,111,116,105,111,110,32,99,108,97,109,112,105,110,103,0,51,52,98,116,67,108,111,115,101,115,116,78,111,116,77,101,67,111,110,118,101,120,82,101,115,117,108,116,67,97,108,108,98,97,99,107,0,97,112,112,108,121,32,115,112,101,99,117,108,97,116,105,118,101,32,99,111,110,116,97,99,116,32,114,101,115,116,105,116,117,116,105,111,110,0,99,97,108,99,117,108,97,116,101,83,105,109,117,108,97,116,105,111,110,73,115,108,97,110,100,115,0,115,111,108,118,101,67,111,110,115,116,114,97,105,110,116,115,0,117,112,100,97,116,101,65,99,116,105,118,97,116,105,111,110,83,116,97,116,101,0,105,110,116,101,114,110,97,108,83,105,110,103,108,101,83,116,101,112,83,105,109,117,108,97,116,105,111,110,0,99,114,101,97,116,101,80,114,101,100,105,99,116,105,118,101,67,111,110,116,97,99,116,115,0,114,101,108,101,97,115,101,32,112,114,101,100,105,99,116,105,118,101,32,99,111,110,116,97,99,116,32,109,97,110,105,102,111,108,100,115,0,112,114,101,100,105,99,116,105,118,101,32,99,111,110,118,101,120,83,119,101,101,112,84,101,115,116,0,117,112,100,97,116,101,65,99,116,105,111,110,115,0,50,55,73,110,112,108,97,99,101,83,111,108,118,101,114,73,115,108,97,110,100,67,97,108,108,98,97,99,107,0,78,50,53,98,116,83,105,109,117,108,97,116,105,111,110,73,115,108,97,110,100,77,97,110,97,103,101,114,49,52,73,115,108,97,110,100,67,97,108,108,98,97,99,107,69,0,50,51,98,116,71,101,110,101,114,105,99,54,68,111,102,67,111,110,115,116,114,97,105,110,116,0,49,55,98,116,84,121,112,101,100,67,111,110,115,116,114,97,105,110,116,0,49,51,98,116,84,121,112,101,100,79,98,106,101,99,116,0,98,116,71,101,110,101,114,105,99,54,68,111,102,67,111,110,115,116,114,97,105,110,116,68,97,116,97,0,50,57,98,116,71,101,110,101,114,105,99,54,68,111,102,83,112,114,105,110,103,67,111,110,115,116,114,97,105,110,116,0,98,116,71,101,110,101,114,105,99,54,68,111,102,83,112,114,105,110,103,67,111,110,115,116,114,97,105,110,116,68,97,116,97,0,50,51,98,116,80,111,105,110,116,50,80,111,105,110,116,67,111,110,115,116,114,97,105,110,116,0,98,116,80,111,105,110,116,50,80,111,105,110,116,67,111,110,115,116,114,97,105,110,116,70,108,111,97,116,68,97,116,97,0,98,116,84,121,112,101,100,67,111,110,115,116,114,97,105,110,116,70,108,111,97,116,68,97,116,97,0,49,56,98,116,83,108,105,100,101,114,67,111,110,115,116,114,97,105,110,116,0,98,116,83,108,105,100,101,114,67,111,110,115,116,114,97,105,110,116,68,97,116,97,0,50,49,98,116,67,111,110,101,84,119,105,115,116,67,111,110,115,116,114,97,105,110,116,0,98,116,67,111,110,101,84,119,105,115,116,67,111,110,115,116,114,97,105,110,116,68,97,116,97,0,49,55,98,116,72,105,110,103,101,67,111,110,115,116,114,97,105,110,116,0,98,116,72,105,110,103,101,67,111,110,115,116,114,97,105,110,116,70,108,111,97,116,68,97,116,97,0,51,53,98,116,83,101,113,117,101,110,116,105,97,108,73,109,112,117,108,115,101,67,111,110,115,116,114,97,105,110,116,83,111,108,118,101,114,0,49,56,98,116,67,111,110,115,116,114,97,105,110,116,83,111,108,118,101,114,0,115,111,108,118,101,71,114,111,117,112,0,115,111,108,118,101,71,114,111,117,112,67,97,99,104,101,70,114,105,101,110,100,108,121,83,101,116,117,112,0,115,111,108,118,101,71,114,111,117,112,67,97,99,104,101,70,114,105,101,110,100,108,121,73,116,101,114,97,116,105,111,110,115,0,49,54,98,116,82,97,121,99,97,115,116,86,101,104,105,99,108,101,0,49,55,98,116,65,99,116,105,111,110,73,110,116,101,114,102,97,99,101,0,50,53,98,116,68,101,102,97,117,108,116,86,101,104,105,99,108,101,82,97,121,99,97,115,116,101,114,0,51,48,98,116,75,105,110,101,109,97,116,105,99,67,104,97,114,97,99,116,101,114,67,111,110,116,114,111,108,108,101,114,0,51,48,98,116,67,104,97,114,97,99,116,101,114,67,111,110,116,114,111,108,108,101,114,73,110,116,101,114,102,97,99,101,0,52,51,98,116,75,105,110,101,109,97,116,105,99,67,108,111,115,101,115,116,78,111,116,77,101,67,111,110,118,101,120,82,101,115,117,108,116,67,97,108,108,98,97,99,107,0,50,50,98,116,83,117,98,115,105,109,112,108,101,120,67,111,110,118,101,120,67,97,115,116,0,49,50,98,116,67,111,110,118,101,120,67,97,115,116,0,49,55,98,116,67,111,108,108,105,115,105,111,110,79,98,106,101,99,116,0,98,116,67,111,108,108,105,115,105,111,110,79,98,106,101,99,116,70,108,111,97,116,68,97,116,97,0,49,51,98,116,71,104,111,115,116,79,98,106,101,99,116,0,50,52,98,116,80,97,105,114,67,97,99,104,105,110,103,71,104,111,115,116,79,98,106,101,99,116,0,50,49,98,116,67,111,108,108,105,115,105,111,110,68,105,115,112,97,116,99,104,101,114,0,50,51,98,116,67,111,108,108,105,115,105,111,110,80,97,105,114,67,97,108,108,98,97,99,107,0,49,55,98,116,79,118,101,114,108,97,112,67,97,108,108,98,97,99,107,0,51,49,98,116,68,101,102,97,117,108,116,67,111,108,108,105,115,105,111,110,67,111,110,102,105,103,117,114,97,116,105,111,110,0,50,52,98,116,67,111,108,108,105,115,105,111,110,67,111,110,102,105,103,117,114,97,116,105,111,110,0,78,51,51,98,116,67,111,110,118,101,120,67,111,110,99,97,118,101,67,111,108,108,105,115,105,111,110,65,108,103,111,114,105,116,104,109,49,48,67,114,101,97,116,101,70,117,110,99,69,0,78,51,51,98,116,67,111,110,118,101,120,67,111,110,99,97,118,101,67,111,108,108,105,115,105,111,110,65,108,103,111,114,105,116,104,109,49,55,83,119,97,112,112,101,100,67,114,101,97,116,101,70,117,110,99,69,0,78,50,56,98,116,67,111,109,112,111,117,110,100,67,111,108,108,105,115,105,111,110,65,108,103,111,114,105,116,104,109,49,48,67,114,101,97,116,101,70,117,110,99,69,0,78,51,54,98,116,67,111,109,112,111,117,110,100,67,111,109,112,111,117,110,100,67,111,108,108,105,115,105,111,110,65,108,103,111,114,105,116,104,109,49,48,67,114,101,97,116,101,70,117,110,99,69,0,78,50,56,98,116,67,111,109,112,111,117,110,100,67,111,108,108,105,115,105,111,110,65,108,103,111,114,105,116,104,109,49,55,83,119,97,112,112,101,100,67,114,101,97,116,101,70,117,110,99,69,0,78,49,54,98,116,69,109,112,116,121,65,108,103,111,114,105,116,104,109,49,48,67,114,101,97,116,101,70,117,110,99,69,0,78,51,50,98,116,83,112,104,101,114,101,83,112,104,101,114,101,67,111,108,108,105,115,105,111,110,65,108,103,111,114,105,116,104,109,49,48,67,114,101,97,116,101,70,117,110,99,69,0,78,51,52,98,116,83,112,104,101,114,101,84,114,105,97,110,103,108,101,67,111,108,108,105,115,105,111,110,65,108,103,111,114,105,116,104,109,49,48,67,114,101,97,116,101,70,117,110,99,69,0,78,50,54,98,116,66,111,120,66,111,120,67,111,108,108,105,115,105,111,110,65,108,103,111,114,105,116,104,109,49,48,67,114,101,97,116,101,70,117,110,99,69,0,78,51,49,98,116,67,111,110,118,101,120,80,108,97,110,101,67,111,108,108,105,115,105,111,110,65,108,103,111,114,105,116,104,109,49,48,67,114,101,97,116,101,70,117,110,99,69,0,50,53,98,116,83,105,109,117,108,97,116,105,111,110,73,115,108,97,110,100,77,97,110,97,103,101,114,0,105,115,108,97,110,100,85,110,105,111,110,70,105,110,100,65,110,100,81,117,105,99,107,83,111,114,116,0,112,114,111,99,101,115,115,73,115,108,97,110,100,115,0,51,49,98,116,67,111,110,118,101,120,80,108,97,110,101,67,111,108,108,105,115,105,111,110,65,108,103,111,114,105,116,104,109,0,51,51,98,116,67,111,110,118,101,120,67,111,110,99,97,118,101,67,111,108,108,105,115,105,111,110,65,108,103,111,114,105,116,104,109,0,50,52,98,116,67,111,110,118,101,120,84,114,105,97,110,103,108,101,67,97,108,108,98,97,99,107,0,90,78,51,51,98,116,67,111,110,118,101,120,67,111,110,99,97,118,101,67,111,108,108,105,115,105,111,110,65,108,103,111,114,105,116,104,109,50,49,99,97,108,99,117,108,97,116,101,84,105,109,101,79,102,73,109,112,97,99,116,69,80,49,55,98,116,67,111,108,108,105,115,105,111,110,79,98,106,101,99,116,83,49,95,82,75,49,54,98,116,68,105,115,112,97,116,99,104,101,114,73,110,102,111,80,49,54,98,116,77,97,110,105,102,111,108,100,82,101,115,117,108,116,69,51,49,76,111,99,97,108,84,114,105,97,110,103,108,101,83,112,104,101,114,101,67,97,115,116,67,97,108,108,98,97,99,107,0,50,54,98,116,66,111,120,66,111,120,67,111,108,108,105,115,105,111,110,65,108,103,111,114,105,116,104,109,0,49,54,98,116,77,97,110,105,102,111,108,100,82,101,115,117,108,116,0,78,51,54,98,116,68,105,115,99,114,101,116,101,67,111,108,108,105,115,105,111,110,68,101,116,101,99,116,111,114,73,110,116,101,114,102,97,99,101,54,82,101,115,117,108,116,69,0,49,54,98,116,67,111,108,108,105,115,105,111,110,87,111,114,108,100,0,117,112,100,97,116,101,65,97,98,98,115,0,1,79,118,101,114,102,108,111,119,32,105,110,32,65,65,66,66,44,32,111,98,106,101,99,116,32,114,101,109,111,118,101,100,32,102,114,111,109,32,115,105,109,117,108,97,116,105,111,110,0,73,102,32,121,111,117,32,99,97,110,32,114,101,112,114,111,100,117,99,101,32,116,104,105,115,44,32,112,108,101,97,115,101,32,101,109,97,105,108,32,98,117,103,115,64,99,111,110,116,105,110,117,111,117,115,112,104,121,115,105,99,115,46,99,111,109,10,0,80,108,101,97,115,101,32,105,110,99,108,117,100,101,32,97,98,111,118,101,32,105,110,102,111,114,109,97,116,105,111,110,44,32,121,111,117,114,32,80,108,97,116,102,111,114,109,44,32,118,101,114,115,105,111,110,32,111,102,32,79,83,46,10,0,84,104,97,110,107,115,46,10,0,99,97,108,99,117,108,97,116,101,79,118,101,114,108,97,112,112,105,110,103,80,97,105,114,115,0,49,55,68,101,98,117,103,68,114,97,119,99,97,108,108,98,97,99,107,0,49,57,98,116,83,105,110,103,108,101,82,97,121,67,97,108,108,98,97,99,107,0,90,78,49,54,98,116,67,111,108,108,105,115,105,111,110,87,111,114,108,100,50,49,114,97,121,84,101,115,116,83,105,110,103,108,101,73,110,116,101,114,110,97,108,69,82,75,49,49,98,116,84,114,97,110,115,102,111,114,109,83,50,95,80,75,50,52,98,116,67,111,108,108,105,115,105,111,110,79,98,106,101,99,116,87,114,97,112,112,101,114,82,78,83,95,49,55,82,97,121,82,101,115,117,108,116,67,97,108,108,98,97,99,107,69,69,50,57,66,114,105,100,103,101,84,114,105,97,110,103,108,101,82,97,121,99,97,115,116,67,97,108,108,98,97,99,107,0,90,78,49,54,98,116,67,111,108,108,105,115,105,111,110,87,111,114,108,100,50,49,114,97,121,84,101,115,116,83,105,110,103,108,101,73,110,116,101,114,110,97,108,69,82,75,49,49,98,116,84,114,97,110,115,102,111,114,109,83,50,95,80,75,50,52,98,116,67,111,108,108,105,115,105,111,110,79,98,106,101,99,116,87,114,97,112,112,101,114,82,78,83,95,49,55,82,97,121,82,101,115,117,108,116,67,97,108,108,98,97,99,107,69,69,50,57,66,114,105,100,103,101,84,114,105,97,110,103,108,101,82,97,121,99,97,115,116,67,97,108,108,98,97,99,107,95,48,0,90,78,49,54,98,116,67,111,108,108,105,115,105,111,110,87,111,114,108,100,50,49,114,97,121,84,101,115,116,83,105,110,103,108,101,73,110,116,101,114,110,97,108,69,82,75,49,49,98,116,84,114,97,110,115,102,111,114,109,83,50,95,80,75,50,52,98,116,67,111,108,108,105,115,105,111,110,79,98,106,101,99,116,87,114,97,112,112,101,114,82,78,83,95,49,55,82,97,121,82,101,115,117,108,116,67,97,108,108,98,97,99,107,69,69,57,82,97,121,84,101,115,116,101,114,0,90,78,49,54,98,116,67,111,108,108,105,115,105,111,110,87,111,114,108,100,50,49,114,97,121,84,101,115,116,83,105,110,103,108,101,73,110,116,101,114,110,97,108,69,82,75,49,49,98,116,84,114,97,110,115,102,111,114,109,83,50,95,80,75,50,52,98,116,67,111,108,108,105,115,105,111,110,79,98,106,101,99,116,87,114,97,112,112,101,114,82,78,83,95,49,55,82,97,121,82,101,115,117,108,116,67,97,108,108,98,97,99,107,69,69,49,53,76,111,99,97,108,73,110,102,111,65,100,100,101,114,50,0,112,101,114,102,111,114,109,68,105,115,99,114,101,116,101,67,111,108,108,105,115,105,111,110,68,101,116,101,99,116,105,111,110,0,100,105,115,112,97,116,99,104,65,108,108,67,111,108,108,105,115,105,111,110,80,97,105,114,115,0,90,78,49,54,98,116,67,111,108,108,105,115,105,111,110,87,111,114,108,100,50,53,111,98,106,101,99,116,81,117,101,114,121,83,105,110,103,108,101,73,110,116,101,114,110,97,108,69,80,75,49,51,98,116,67,111,110,118,101,120,83,104,97,112,101,82,75,49,49,98,116,84,114,97,110,115,102,111,114,109,83,53,95,80,75,50,52,98,116,67,111,108,108,105,115,105,111,110,79,98,106,101,99,116,87,114,97,112,112,101,114,82,78,83,95,50,48,67,111,110,118,101,120,82,101,115,117,108,116,67,97,108,108,98,97,99,107,69,102,69,51,50,66,114,105,100,103,101,84,114,105,97,110,103,108,101,67,111,110,118,101,120,99,97,115,116,67,97,108,108,98,97,99,107,0,90,78,49,54,98,116,67,111,108,108,105,115,105,111,110,87,111,114,108,100,50,53,111,98,106,101,99,116,81,117,101,114,121,83,105,110,103,108,101,73,110,116,101,114,110,97,108,69,80,75,49,51,98,116,67,111,110,118,101,120,83,104,97,112,101,82,75,49,49,98,116,84,114,97,110,115,102,111,114,109,83,53,95,80,75,50,52,98,116,67,111,108,108,105,115,105,111,110,79,98,106,101,99,116,87,114,97,112,112,101,114,82,78,83,95,50,48,67,111,110,118,101,120,82,101,115,117,108,116,67,97,108,108,98,97,99,107,69,102,69,51,50,66,114,105,100,103,101,84,114,105,97,110,103,108,101,67,111,110,118,101,120,99,97,115,116,67,97,108,108,98,97,99,107,95,48,0,99,111,110,118,101,120,83,119,101,101,112,67,111,109,112,111,117,110,100,0,90,78,49,54,98,116,67,111,108,108,105,115,105,111,110,87,111,114,108,100,50,53,111,98,106,101,99,116,81,117,101,114,121,83,105,110,103,108,101,73,110,116,101,114,110,97,108,69,80,75,49,51,98,116,67,111,110,118,101,120,83,104,97,112,101,82,75,49,49,98,116,84,114,97,110,115,102,111,114,109,83,53,95,80,75,50,52,98,116,67,111,108,108,105,115,105,111,110,79,98,106,101,99,116,87,114,97,112,112,101,114,82,78,83,95,50,48,67,111,110,118,101,120,82,101,115,117,108,116,67,97,108,108,98,97,99,107,69,102,69,49,52,76,111,99,97,108,73,110,102,111,65,100,100,101,114,0,99,111,110,118,101,120,83,119,101,101,112,84,101,115,116,0,50,49,98,116,83,105,110,103,108,101,83,119,101,101,112,67,97,108,108,98,97,99,107,0,50,51,98,116,83,105,110,103,108,101,67,111,110,116,97,99,116,67,97,108,108,98,97,99,107,0,50,51,98,116,66,114,105,100,103,101,100,77,97,110,105,102,111,108,100,82,101,115,117,108,116,0,51,52,98,116,83,112,104,101,114,101,84,114,105,97,110,103,108,101,67,111,108,108,105,115,105,111,110,65,108,103,111,114,105,116,104,109,0,78,50,51,98,116,67,111,110,118,101,120,67,111,110,118,101,120,65,108,103,111,114,105,116,104,109,49,48,67,114,101,97,116,101,70,117,110,99,69,0,50,51,98,116,67,111,110,118,101,120,67,111,110,118,101,120,65,108,103,111,114,105,116,104,109,0,90,78,50,51,98,116,67,111,110,118,101,120,67,111,110,118,101,120,65,108,103,111,114,105,116,104,109,49,54,112,114,111,99,101,115,115,67,111,108,108,105,115,105,111,110,69,80,75,50,52,98,116,67,111,108,108,105,115,105,111,110,79,98,106,101,99,116,87,114,97,112,112,101,114,83,50,95,82,75,49,54,98,116,68,105,115,112,97,116,99,104,101,114,73,110,102,111,80,49,54,98,116,77,97,110,105,102,111,108,100,82,101,115,117,108,116,69,49,51,98,116,68,117,109,109,121,82,101,115,117,108,116,0,90,78,50,51,98,116,67,111,110,118,101,120,67,111,110,118,101,120,65,108,103,111,114,105,116,104,109,49,54,112,114,111,99,101,115,115,67,111,108,108,105,115,105,111,110,69,80,75,50,52,98,116,67,111,108,108,105,115,105,111,110,79,98,106,101,99,116,87,114,97,112,112,101,114,83,50,95,82,75,49,54,98,116,68,105,115,112,97,116,99,104,101,114,73,110,102,111,80,49,54,98,116,77,97,110,105,102,111,108,100,82,101,115,117,108,116,69,50,49,98,116,87,105,116,104,111,117,116,77,97,114,103,105,110,82,101,115,117,108,116,0,50,52,98,116,80,101,114,116,117,114,98,101,100,67,111,110,116,97,99,116,82,101,115,117,108,116,0,50,56,98,116,67,111,109,112,111,117,110,100,67,111,108,108,105,115,105,111,110,65,108,103,111,114,105,116,104,109,0,50,50,98,116,67,111,109,112,111,117,110,100,76,101,97,102,67,97,108,108,98,97,99,107,0,51,54,98,116,67,111,109,112,111,117,110,100,67,111,109,112,111,117,110,100,67,111,108,108,105,115,105,111,110,65,108,103,111,114,105,116,104,109,0,51,48,98,116,67,111,109,112,111,117,110,100,67,111,109,112,111,117,110,100,76,101,97,102,67,97,108,108,98,97,99,107,0,49,53,98,116,67,111,109,112,111,117,110,100,83,104,97,112,101,0,67,111,109,112,111,117,110,100,0,98,116,67,111,109,112,111,117,110,100,83,104,97,112,101,67,104,105,108,100,68,97,116,97,0,98,116,67,111,109,112,111,117,110,100,83,104,97,112,101,68,97,116,97,0,49,49,98,116,67,111,110,101,83,104,97,112,101,0,67,111,110,101,0,98,116,67,111,110,101,83,104,97,112,101,68,97,116,97,0,49,50,98,116,67,111,110,101,83,104,97,112,101,90,0,67,111,110,101,90,0,49,50,98,116,67,111,110,101,83,104,97,112,101,88,0,67,111,110,101,88,0,49,51,98,116,83,112,104,101,114,101,83,104,97,112,101,0,83,80,72,69,82,69,0,50,50,98,116,66,118,104,84,114,105,97,110,103,108,101,77,101,115,104,83,104,97,112,101,0,66,86,72,84,82,73,65,78,71,76,69,77,69,83,72,0,98,116,84,114,105,97,110,103,108,101,77,101,115,104,83,104,97,112,101,68,97,116,97,0,90,78,75,50,50,98,116,66,118,104,84,114,105,97,110,103,108,101,77,101,115,104,83,104,97,112,101,49,57,112,114,111,99,101,115,115,65,108,108,84,114,105,97,110,103,108,101,115,69,80,49,56,98,116,84,114,105,97,110,103,108,101,67,97,108,108,98,97,99,107,82,75,57,98,116,86,101,99,116,111,114,51,83,52,95,69,50,49,77,121,78,111,100,101,79,118,101,114,108,97,112,67,97,108,108,98,97,99,107,0,50,49,98,116,78,111,100,101,79,118,101,114,108,97,112,67,97,108,108,98,97,99,107,0,90,78,50,50,98,116,66,118,104,84,114,105,97,110,103,108,101,77,101,115,104,83,104,97,112,101,49,52,112,101,114,102,111,114,109,82,97,121,99,97,115,116,69,80,49,56,98,116,84,114,105,97,110,103,108,101,67,97,108,108,98,97,99,107,82,75,57,98,116,86,101,99,116,111,114,51,83,52,95,69,50,49,77,121,78,111,100,101,79,118,101,114,108,97,112,67,97,108,108,98,97,99,107,0,90,78,50,50,98,116,66,118,104,84,114,105,97,110,103,108,101,77,101,115,104,83,104,97,112,101,49,55,112,101,114,102,111,114,109,67,111,110,118,101,120,99,97,115,116,69,80,49,56,98,116,84,114,105,97,110,103,108,101,67,97,108,108,98,97,99,107,82,75,57,98,116,86,101,99,116,111,114,51,83,52,95,83,52,95,83,52,95,69,50,49,77,121,78,111,100,101,79,118,101,114,108,97,112,67,97,108,108,98,97,99,107,0,49,57,98,116,84,114,105,97,110,103,108,101,77,101,115,104,83,104,97,112,101,0,84,82,73,65,78,71,76,69,77,69,83,72,0,90,78,75,49,57,98,116,84,114,105,97,110,103,108,101,77,101,115,104,83,104,97,112,101,49,57,112,114,111,99,101,115,115,65,108,108,84,114,105,97,110,103,108,101,115,69,80,49,56,98,116,84,114,105,97,110,103,108,101,67,97,108,108,98,97,99,107,82,75,57,98,116,86,101,99,116,111,114,51,83,52,95,69,49,54,70,105,108,116,101,114,101,100,67,97,108,108,98,97,99,107,0,50,49,83,117,112,112,111,114,116,86,101,114,116,101,120,67,97,108,108,98,97,99,107,0,49,56,98,116,83,116,97,116,105,99,80,108,97,110,101,83,104,97,112,101,0,83,84,65,84,73,67,80,76,65,78,69,0,98,116,83,116,97,116,105,99,80,108,97,110,101,83,104,97,112,101,68,97,116,97,0,50,51,98,116,80,111,108,121,104,101,100,114,97,108,67,111,110,118,101,120,83,104,97,112,101,0,51,52,98,116,80,111,108,121,104,101,100,114,97,108,67,111,110,118,101,120,65,97,98,98,67,97,99,104,105,110,103,83,104,97,112,101,0,49,54,98,116,67,111,108,108,105,115,105,111,110,83,104,97,112,101,0,98,116,67,111,108,108,105,115,105,111,110,83,104,97,112,101,68,97,116,97,0,49,51,98,116,67,111,110,118,101,120,83,104,97,112,101,0,50,49,98,116,67,111,110,118,101,120,73,110,116,101,114,110,97,108,83,104,97,112,101,0,49,55,98,116,67,111,110,118,101,120,72,117,108,108,83,104,97,112,101,0,67,111,110,118,101,120,0,98,116,67,111,110,118,101,120,72,117,108,108,83,104,97,112,101,68,97,116,97,0,49,56,98,116,84,114,105,97,110,103,108,101,67,97,108,108,98,97,99,107,0,51,49,98,116,73,110,116,101,114,110,97,108,84,114,105,97,110,103,108,101,73,110,100,101,120,67,97,108,108,98,97,99,107,0,49,52,98,116,67,97,112,115,117,108,101,83,104,97,112,101,0,67,97,112,115,117,108,101,83,104,97,112,101,0,98,116,67,97,112,115,117,108,101,83,104,97,112,101,68,97,116,97,0,49,53,98,116,67,97,112,115,117,108,101,83,104,97,112,101,88,0,67,97,112,115,117,108,101,88,0,49,53,98,116,67,97,112,115,117,108,101,83,104,97,112,101,90,0,67,97,112,115,117,108,101,90,0,50,53,98,116,67,111,110,118,101,120,84,114,105,97,110,103,108,101,77,101,115,104,83,104,97,112,101,0,67,111,110,118,101,120,84,114,105,109,101,115,104,0,50,54,76,111,99,97,108,83,117,112,112,111,114,116,86,101,114,116,101,120,67,97,108,108,98,97,99,107,0,49,52,98,116,67,111,110,99,97,118,101,83,104,97,112,101,0,49,48,98,116,66,111,120,83,104,97,112,101,0,66,111,120,0,49,52,98,116,79,112,116,105,109,105,122,101,100,66,118,104,0,90,78,49,52,98,116,79,112,116,105,109,105,122,101,100,66,118,104,53,98,117,105,108,100,69,80,50,51,98,116,83,116,114,105,100,105,110,103,77,101,115,104,73,110,116,101,114,102,97,99,101,98,82,75,57,98,116,86,101,99,116,111,114,51,83,52,95,69,50,57,81,117,97,110,116,105,122,101,100,78,111,100,101,84,114,105,97,110,103,108,101,67,97,108,108,98,97,99,107,0,90,78,49,52,98,116,79,112,116,105,109,105,122,101,100,66,118,104,53,98,117,105,108,100,69,80,50,51,98,116,83,116,114,105,100,105,110,103,77,101,115,104,73,110,116,101,114,102,97,99,101,98,82,75,57,98,116,86,101,99,116,111,114,51,83,52,95,69,50,48,78,111,100,101,84,114,105,97,110,103,108,101,67,97,108,108,98,97,99,107,0,50,53,98,116,72,101,105,103,104,116,102,105,101,108,100,84,101,114,114,97,105,110,83,104,97,112,101,0,72,69,73,71,72,84,70,73,69,76,68,0,49,53,98,116,67,121,108,105,110,100,101,114,83,104,97,112,101,0,67,121,108,105,110,100,101,114,89,0,98,116,67,121,108,105,110,100,101,114,83,104,97,112,101,68,97,116,97,0,49,54,98,116,67,121,108,105,110,100,101,114,83,104,97,112,101,88,0,67,121,108,105,110,100,101,114,88,0,49,54,98,116,67,121,108,105,110,100,101,114,83,104,97,112,101,90,0,67,121,108,105,110,100,101,114,90,0,49,52,98,116,84,114,105,97,110,103,108,101,77,101,115,104,0,50,48,98,116,65,120,105,115,83,119,101,101,112,51,73,110,116,101,114,110,97,108,73,116,69,0,50,49,98,116,66,114,111,97,100,112,104,97,115,101,73,110,116,101,114,102,97,99,101,0,49,53,98,116,78,117,108,108,80,97,105,114,67,97,99,104,101,0,50,50,98,116,79,118,101,114,108,97,112,112,105,110,103,80,97,105,114,67,97,99,104,101,0,49,50,98,116,65,120,105,115,83,119,101,101,112,51,0,50,56,98,116,72,97,115,104,101,100,79,118,101,114,108,97,112,112,105,110,103,80,97,105,114,67,97,99,104,101,0,90,78,50,56,98,116,72,97,115,104,101,100,79,118,101,114,108,97,112,112,105,110,103,80,97,105,114,67,97,99,104,101,51,55,114,101,109,111,118,101,79,118,101,114,108,97,112,112,105,110,103,80,97,105,114,115,67,111,110,116,97,105,110,105,110,103,80,114,111,120,121,69,80,49,55,98,116,66,114,111,97,100,112,104,97,115,101,80,114,111,120,121,80,49,50,98,116,68,105,115,112,97,116,99,104,101,114,69,49,56,82,101,109,111,118,101,80,97,105,114,67,97,108,108,98,97,99,107,0,90,78,50,56,98,116,72,97,115,104,101,100,79,118,101,114,108,97,112,112,105,110,103,80,97,105,114,67,97,99,104,101,49,57,99,108,101,97,110,80,114,111,120,121,70,114,111,109,80,97,105,114,115,69,80,49,55,98,116,66,114,111,97,100,112,104,97,115,101,80,114,111,120,121,80,49,50,98,116,68,105,115,112,97,116,99,104,101,114,69,49,55,67,108,101,97,110,80,97,105,114,67,97,108,108,98,97,99,107,0,49,54,98,116,68,98,118,116,66,114,111,97,100,112,104,97,115,101,0,49,56,98,116,68,98,118,116,84,114,101,101,67,111,108,108,105,100,101,114,0,49,57,66,114,111,97,100,112,104,97,115,101,82,97,121,84,101,115,116,101,114,0,50,48,66,114,111,97,100,112,104,97,115,101,65,97,98,98,84,101,115,116,101,114,0,49,50,98,116,68,105,115,112,97,116,99,104,101,114,0,49,52,98,116,81,117,97,110,116,105,122,101,100,66,118,104,0,98,116,79,112,116,105,109,105,122,101,100,66,118,104,78,111,100,101,68,97,116,97,0,98,116,81,117,97,110,116,105,122,101,100,66,118,104,78,111,100,101,68,97,116,97,0,98,116,66,118,104,83,117,98,116,114,101,101,73,110,102,111,68,97,116,97,0,98,116,81,117,97,110,116,105,122,101,100,66,118,104,70,108,111,97,116,68,97,116,97,0,50,53,98,116,84,114,105,97,110,103,108,101,82,97,121,99,97,115,116,67,97,108,108,98,97,99,107,0,50,56,98,116,84,114,105,97,110,103,108,101,67,111,110,118,101,120,99,97,115,116,67,97,108,108,98,97,99,107,0,51,51,98,116,77,105,110,107,111,119,115,107,105,80,101,110,101,116,114,97,116,105,111,110,68,101,112,116,104,83,111,108,118,101,114,0,51,48,98,116,67,111,110,118,101,120,80,101,110,101,116,114,97,116,105,111,110,68,101,112,116,104,83,111,108,118,101,114,0,90,78,51,51,98,116,77,105,110,107,111,119,115,107,105,80,101,110,101,116,114,97,116,105,111,110,68,101,112,116,104,83,111,108,118,101,114,49,50,99,97,108,99,80,101,110,68,101,112,116,104,69,82,50,50,98,116,86,111,114,111,110,111,105,83,105,109,112,108,101,120,83,111,108,118,101,114,80,75,49,51,98,116,67,111,110,118,101,120,83,104,97,112,101,83,52,95,82,75,49,49,98,116,84,114,97,110,115,102,111,114,109,83,55,95,82,57,98,116,86,101,99,116,111,114,51,83,57,95,83,57,95,80,49,50,98,116,73,68,101,98,117,103,68,114,97,119,69,50,48,98,116,73,110,116,101,114,109,101,100,105,97,116,101,82,101,115,117,108,116,0,51,48,98,116,71,106,107,69,112,97,80,101,110,101,116,114,97,116,105,111,110,68,101,112,116,104,83,111,108,118,101,114,0,49,53,98,116,71,106,107,67,111,110,118,101,120,67,97,115,116,0,49,54,98,116,80,111,105,110,116,67,111,108,108,101,99,116,111,114,0,50,55,98,116,67,111,110,116,105,110,117,111,117,115,67,111,110,118,101,120,67,111,108,108,105,115,105,111,110,0,49,55,98,116,71,106,107,80,97,105,114,68,101,116,101,99,116,111,114,0,51,54,98,116,68,105,115,99,114,101,116,101,67,111,108,108,105,115,105,111,110,68,101,116,101,99,116,111,114,73,110,116,101,114,102,97,99,101,0,51,48,98,116,65,99,116,105,118,97,116,105,110,103,67,111,108,108,105,115,105,111,110,65,108,103,111,114,105,116,104,109,0,49,54,98,116,69,109,112,116,121,65,108,103,111,114,105,116,104,109,0,51,50,98,116,83,112,104,101,114,101,83,112,104,101,114,101,67,111,108,108,105,115,105,111,110,65,108,103,111,114,105,116,104,109,0,49,54,98,116,66,111,120,66,111,120,68,101,116,101,99,116,111,114,0,50,50,83,112,104,101,114,101,84,114,105,97,110,103,108,101,68,101,116,101,99,116,111,114,0,50,51,98,116,72,97,115,104,101,100,83,105,109,112,108,101,80,97,105,114,67,97,99,104,101,0,49,56,98,116,67,111,110,118,101,120,80,111,108,121,104,101,100,114,111,110,0,50,54,98,116,84,114,105,97,110,103,108,101,73,110,100,101,120,86,101,114,116,101,120,65,114,114,97,121,0,50,51,98,116,83,116,114,105,100,105,110,103,77,101,115,104,73,110,116,101,114,102,97,99,101,0,98,116,73,110,116,73,110,100,101,120,68,97,116,97,0,98,116,83,104,111,114,116,73,110,116,73,110,100,101,120,84,114,105,112,108,101,116,68,97,116,97,0,98,116,67,104,97,114,73,110,100,101,120,84,114,105,112,108,101,116,68,97,116,97,0,98,116,86,101,99,116,111,114,51,70,108,111,97,116,68,97,116,97,0,98,116,86,101,99,116,111,114,51,68,111,117,98,108,101,68,97,116,97,0,98,116,77,101,115,104,80,97,114,116,68,97,116,97,0,98,116,83,116,114,105,100,105,110,103,77,101,115,104,73,110,116,101,114,102,97,99,101,68,97,116,97,0,82,111,111,116,0,17,0,10,0,17,17,17,0,0,0,0,5,0,0,0,0,0,0,9,0,0,0,0,11,0,0,0,0,0,0,0,0,17,0,15,10,17,17,17,3,10,7,0,1,19,9,11,11,0,0,9,6,11,0,0,11,0,6,17,0,0,0,17,17,17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,17,0,10,10,17,17,17,0,10,0,0,2,0,9,11,0,0,0,9,0,11,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,9,12,0,0,0,0,0,12,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,4,13,0,0,0,0,9,14,0,0,0,0,0,14,0,0,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,0,0,15,0,0,0,0,15,0,0,0,0,9,16,0,0,0,0,0,16,0,0,16,0,0,18,0,0,0,18,18,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,18,0,0,0,18,18,18,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,10,0,0,0,0,9,11,0,0,0,0,0,11,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,9,12,0,0,0,0,0,12,0,0,12,0,0,48,49,50,51,52,53,54,55,56,57,65,66,67,68,69,70,45,43,32,32,32,48,88,48,120,0,84,33,34,25,13,1,2,3,17,75,28,12,16,4,11,29,18,30,39,104,110,111,112,113,98,32,5,6,15,19,20,21,26,8,22,7,40,36,23,24,9,10,14,27,31,37,35,131,130,125,38,42,43,60,61,62,63,67,71,74,77,88,89,90,91,92,93,94,95,96,97,99,100,101,102,103,105,106,107,108,114,115,116,121,122,123,124,0,73,108,108,101,103,97,108,32,98,121,116,101,32,115,101,113,117,101,110,99,101,0,68,111,109,97,105,110,32,101,114,114,111,114,0,82,101,115,117,108,116,32,110,111,116,32,114,101,112,114,101,115,101,110,116,97,98,108,101,0,78,111,116,32,97,32,116,116,121,0,80,101,114,109,105,115,115,105,111,110,32,100,101,110,105,101,100,0,79,112,101,114,97,116,105,111,110,32,110,111,116,32,112,101,114,109,105,116,116,101,100,0,78,111,32,115,117,99,104,32,102,105,108,101,32,111,114,32,100,105,114,101,99,116,111,114,121,0,78,111,32,115,117,99,104,32,112,114,111,99,101,115,115,0,70,105,108,101,32,101,120,105,115,116,115,0,86,97,108,117,101,32,116,111,111,32,108,97,114,103,101,32,102,111,114,32,100,97,116,97,32,116,121,112,101,0,78,111,32,115,112,97,99,101,32,108,101,102,116,32,111,110,32,100,101,118,105,99,101,0,79,117,116,32,111,102,32,109,101,109,111,114,121,0,82,101,115,111,117,114,99,101,32,98,117,115,121,0,73,110,116,101,114,114,117,112,116,101,100,32,115,121,115,116,101,109,32,99,97,108,108,0,82,101,115,111,117,114,99,101,32,116,101,109,112,111,114,97,114,105,108,121,32,117,110,97,118,97,105,108,97,98,108,101,0,73,110,118,97,108,105,100,32,115,101,101,107,0,67,114,111,115,115,45,100,101,118,105,99,101,32,108,105,110,107,0,82,101,97,100,45,111,110,108,121,32,102,105,108,101,32,115,121,115,116,101,109,0,68,105,114,101,99,116,111,114,121,32,110,111,116,32,101,109,112,116,121,0,67,111,110,110,101,99,116,105,111,110,32,114,101,115,101,116,32,98,121,32,112,101,101,114,0,79,112,101,114,97,116,105,111,110,32,116,105,109,101,100,32,111,117,116,0,67,111,110,110,101,99,116,105,111,110,32,114,101,102,117,115,101,100,0,72,111,115,116,32,105,115,32,100,111,119,110,0,72,111,115,116,32,105,115,32,117,110,114,101,97,99,104,97,98,108,101,0,65,100,100,114,101,115,115,32,105,110,32,117,115,101,0,66,114,111,107,101,110,32,112,105,112,101,0,73,47,79,32,101,114,114,111,114,0,78,111,32],"i8",ALLOC_NONE,Runtime.GLOBAL_BASE+10240);allocate([115,117,99,104,32,100,101,118,105,99,101,32,111,114,32,97,100,100,114,101,115,115,0,66,108,111,99,107,32,100,101,118,105,99,101,32,114,101,113,117,105,114,101,100,0,78,111,32,115,117,99,104,32,100,101,118,105,99,101,0,78,111,116,32,97,32,100,105,114,101,99,116,111,114,121,0,73,115,32,97,32,100,105,114,101,99,116,111,114,121,0,84,101,120,116,32,102,105,108,101,32,98,117,115,121,0,69,120,101,99,32,102,111,114,109,97,116,32,101,114,114,111,114,0,73,110,118,97,108,105,100,32,97,114,103,117,109,101,110,116,0,65,114,103,117,109,101,110,116,32,108,105,115,116,32,116,111,111,32,108,111,110,103,0,83,121,109,98,111,108,105,99,32,108,105,110,107,32,108,111,111,112,0,70,105,108,101,110,97,109,101,32,116,111,111,32,108,111,110,103,0,84,111,111,32,109,97,110,121,32,111,112,101,110,32,102,105,108,101,115,32,105,110,32,115,121,115,116,101,109,0,78,111,32,102,105,108,101,32,100,101,115,99,114,105,112,116,111,114,115,32,97,118,97,105,108,97,98,108,101,0,66,97,100,32,102,105,108,101,32,100,101,115,99,114,105,112,116,111,114,0,78,111,32,99,104,105,108,100,32,112,114,111,99,101,115,115,0,66,97,100,32,97,100,100,114,101,115,115,0,70,105,108,101,32,116,111,111,32,108,97,114,103,101,0,84,111,111,32,109,97,110,121,32,108,105,110,107,115,0,78,111,32,108,111,99,107,115,32,97,118,97,105,108,97,98,108,101,0,82,101,115,111,117,114,99,101,32,100,101,97,100,108,111,99,107,32,119,111,117,108,100,32,111,99,99,117,114,0,83,116,97,116,101,32,110,111,116,32,114,101,99,111,118,101,114,97,98,108,101,0,80,114,101,118,105,111,117,115,32,111,119,110,101,114,32,100,105,101,100,0,79,112,101,114,97,116,105,111,110,32,99,97,110,99,101,108,101,100,0,70,117,110,99,116,105,111,110,32,110,111,116,32,105,109,112,108,101,109,101,110,116,101,100,0,78,111,32,109,101,115,115,97,103,101,32,111,102,32,100,101,115,105,114,101,100,32,116,121,112,101,0,73,100,101,110,116,105,102,105,101,114,32,114,101,109,111,118,101,100,0,68,101,118,105,99,101,32,110,111,116,32,97,32,115,116,114,101,97,109,0,78,111,32,100,97,116,97,32,97,118,97,105,108,97,98,108,101,0,68,101,118,105,99,101,32,116,105,109,101,111,117,116,0,79,117,116,32,111,102,32,115,116,114,101,97,109,115,32,114,101,115,111,117,114,99,101,115,0,76,105,110,107,32,104,97,115,32,98,101,101,110,32,115,101,118,101,114,101,100,0,80,114,111,116,111,99,111,108,32,101,114,114,111,114,0,66,97,100,32,109,101,115,115,97,103,101,0,70,105,108,101,32,100,101,115,99,114,105,112,116,111,114,32,105,110,32,98,97,100,32,115,116,97,116,101,0,78,111,116,32,97,32,115,111,99,107,101,116,0,68,101,115,116,105,110,97,116,105,111,110,32,97,100,100,114,101,115,115,32,114,101,113,117,105,114,101,100,0,77,101,115,115,97,103,101,32,116,111,111,32,108,97,114,103,101,0,80,114,111,116,111,99,111,108,32,119,114,111,110,103,32,116,121,112,101,32,102,111,114,32,115,111,99,107,101,116,0,80,114,111,116,111,99,111,108,32,110,111,116,32,97,118,97,105,108,97,98,108,101,0,80,114,111,116,111,99,111,108,32,110,111,116,32,115,117,112,112,111,114,116,101,100,0,83,111,99,107,101,116,32,116,121,112,101,32,110,111,116,32,115,117,112,112,111,114,116,101,100,0,78,111,116,32,115,117,112,112,111,114,116,101,100,0,80,114,111,116,111,99,111,108,32,102,97,109,105,108,121,32,110,111,116,32,115,117,112,112,111,114,116,101,100,0,65,100,100,114,101,115,115,32,102,97,109,105,108,121,32,110,111,116,32,115,117,112,112,111,114,116,101,100,32,98,121,32,112,114,111,116,111,99,111,108,0,65,100,100,114,101,115,115,32,110,111,116,32,97,118,97,105,108,97,98,108,101,0,78,101,116,119,111,114,107,32,105,115,32,100,111,119,110,0,78,101,116,119,111,114,107,32,117,110,114,101,97,99,104,97,98,108,101,0,67,111,110,110,101,99,116,105,111,110,32,114,101,115,101,116,32,98,121,32,110,101,116,119,111,114,107,0,67,111,110,110,101,99,116,105,111,110,32,97,98,111,114,116,101,100,0,78,111,32,98,117,102,102,101,114,32,115,112,97,99,101,32,97,118,97,105,108,97,98,108,101,0,83,111,99,107,101,116,32,105,115,32,99,111,110,110,101,99,116,101,100,0,83,111,99,107,101,116,32,110,111,116,32,99,111,110,110,101,99,116,101,100,0,67,97,110,110,111,116,32,115,101,110,100,32,97,102,116,101,114,32,115,111,99,107,101,116,32,115,104,117,116,100,111,119,110,0,79,112,101,114,97,116,105,111,110,32,97,108,114,101,97,100,121,32,105,110,32,112,114,111,103,114,101,115,115,0,79,112,101,114,97,116,105,111,110,32,105,110,32,112,114,111,103,114,101,115,115,0,83,116,97,108,101,32,102,105,108,101,32,104,97,110,100,108,101,0,82,101,109,111,116,101,32,73,47,79,32,101,114,114,111,114,0,81,117,111,116,97,32,101,120,99,101,101,100,101,100,0,78,111,32,109,101,100,105,117,109,32,102,111,117,110,100,0,87,114,111,110,103,32,109,101,100,105,117,109,32,116,121,112,101,0,78,111,32,101,114,114,111,114,32,105,110,102,111,114,109,97,116,105,111,110,0,0,40,110,117,108,108,41,0,45,48,88,43,48,88,32,48,88,45,48,120,43,48,120,32,48,120,0,105,110,102,0,73,78,70,0,110,97,110,0,78,65,78,0,46,0,99,97,110,110,111,116,32,122,101,114,111,32,111,117,116,32,116,104,114,101,97,100,32,118,97,108,117,101,32,102,111,114,32,95,95,99,120,97,95,103,101,116,95,103,108,111,98,97,108,115,40,41,0,99,97,110,110,111,116,32,99,114,101,97,116,101,32,112,116,104,114,101,97,100,32,107,101,121,32,102,111,114,32,95,95,99,120,97,95,103,101,116,95,103,108,111,98,97,108,115,40,41,0,112,116,104,114,101,97,100,95,111,110,99,101,32,102,97,105,108,117,114,101,32,105,110,32,95,95,99,120,97,95,103,101,116,95,103,108,111,98,97,108,115,95,102,97,115,116,40,41,0,78,49,48,95,95,99,120,120,97,98,105,118,49,50,48,95,95,115,105,95,99,108,97,115,115,95,116,121,112,101,95,105,110,102,111,69,0,78,49,48,95,95,99,120,120,97,98,105,118,49,49,54,95,95,115,104,105,109,95,116,121,112,101,95,105,110,102,111,69,0,83,116,57,116,121,112,101,95,105,110,102,111,0,78,49,48,95,95,99,120,120,97,98,105,118,49,49,55,95,95,99,108,97,115,115,95,116,121,112,101,95,105,110,102,111,69,0,83,116,57,101,120,99,101,112,116,105,111,110,0,117,110,99,97,117,103,104,116,0,116,101,114,109,105,110,97,116,105,110,103,32,119,105,116,104,32,37,115,32,101,120,99,101,112,116,105,111,110,32,111,102,32,116,121,112,101,32,37,115,58,32,37,115,0,116,101,114,109,105,110,97,116,105,110,103,32,119,105,116,104,32,37,115,32,101,120,99,101,112,116,105,111,110,32,111,102,32,116,121,112,101,32,37,115,0,116,101,114,109,105,110,97,116,105,110,103,32,119,105,116,104,32,37,115,32,102,111,114,101,105,103,110,32,101,120,99,101,112,116,105,111,110,0,116,101,114,109,105,110,97,116,105,110,103,0,116,101,114,109,105,110,97,116,101,95,104,97,110,100,108,101,114,32,117,110,101,120,112,101,99,116,101,100,108,121,32,114,101,116,117,114,110,101,100,0,83,116,57,98,97,100,95,97,108,108,111,99,0,115,116,100,58,58,98,97,100,95,97,108,108,111,99,0,78,49,48,95,95,99,120,120,97,98,105,118,49,49,57,95,95,112,111,105,110,116,101,114,95,116,121,112,101,95,105,110,102,111,69,0,78,49,48,95,95,99,120,120,97,98,105,118,49,49,55,95,95,112,98,97,115,101,95,116,121,112,101,95,105,110,102,111,69,0,78,49,48,95,95,99,120,120,97,98,105,118,49,50,49,95,95,118,109,105,95,99,108,97,115,115,95,116,121,112,101,95,105,110,102,111,69,0],"i8",ALLOC_NONE,Runtime.GLOBAL_BASE+20480);var tempDoublePtr=STATICTOP;STATICTOP+=16;Module["_i64Subtract"]=_i64Subtract;function ___setErrNo(value){if(Module["___errno_location"])HEAP32[Module["___errno_location"]()>>2]=value;return value}var ERRNO_CODES={EPERM:1,ENOENT:2,ESRCH:3,EINTR:4,EIO:5,ENXIO:6,E2BIG:7,ENOEXEC:8,EBADF:9,ECHILD:10,EAGAIN:11,EWOULDBLOCK:11,ENOMEM:12,EACCES:13,EFAULT:14,ENOTBLK:15,EBUSY:16,EEXIST:17,EXDEV:18,ENODEV:19,ENOTDIR:20,EISDIR:21,EINVAL:22,ENFILE:23,EMFILE:24,ENOTTY:25,ETXTBSY:26,EFBIG:27,ENOSPC:28,ESPIPE:29,EROFS:30,EMLINK:31,EPIPE:32,EDOM:33,ERANGE:34,ENOMSG:42,EIDRM:43,ECHRNG:44,EL2NSYNC:45,EL3HLT:46,EL3RST:47,ELNRNG:48,EUNATCH:49,ENOCSI:50,EL2HLT:51,EDEADLK:35,ENOLCK:37,EBADE:52,EBADR:53,EXFULL:54,ENOANO:55,EBADRQC:56,EBADSLT:57,EDEADLOCK:35,EBFONT:59,ENOSTR:60,ENODATA:61,ETIME:62,ENOSR:63,ENONET:64,ENOPKG:65,EREMOTE:66,ENOLINK:67,EADV:68,ESRMNT:69,ECOMM:70,EPROTO:71,EMULTIHOP:72,EDOTDOT:73,EBADMSG:74,ENOTUNIQ:76,EBADFD:77,EREMCHG:78,ELIBACC:79,ELIBBAD:80,ELIBSCN:81,ELIBMAX:82,ELIBEXEC:83,ENOSYS:38,ENOTEMPTY:39,ENAMETOOLONG:36,ELOOP:40,EOPNOTSUPP:95,EPFNOSUPPORT:96,ECONNRESET:104,ENOBUFS:105,EAFNOSUPPORT:97,EPROTOTYPE:91,ENOTSOCK:88,ENOPROTOOPT:92,ESHUTDOWN:108,ECONNREFUSED:111,EADDRINUSE:98,ECONNABORTED:103,ENETUNREACH:101,ENETDOWN:100,ETIMEDOUT:110,EHOSTDOWN:112,EHOSTUNREACH:113,EINPROGRESS:115,EALREADY:114,EDESTADDRREQ:89,EMSGSIZE:90,EPROTONOSUPPORT:93,ESOCKTNOSUPPORT:94,EADDRNOTAVAIL:99,ENETRESET:102,EISCONN:106,ENOTCONN:107,ETOOMANYREFS:109,EUSERS:87,EDQUOT:122,ESTALE:116,ENOTSUP:95,ENOMEDIUM:123,EILSEQ:84,EOVERFLOW:75,ECANCELED:125,ENOTRECOVERABLE:131,EOWNERDEAD:130,ESTRPIPE:86};function _sysconf(name){switch(name){case 30:return PAGE_SIZE;case 85:return totalMemory/PAGE_SIZE;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 80:case 81:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 79:return 0;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:{if(typeof navigator==="object")return navigator["hardwareConcurrency"]||1;return 1}}___setErrNo(ERRNO_CODES.EINVAL);return-1}function __ZSt18uncaught_exceptionv(){return!!__ZSt18uncaught_exceptionv.uncaught_exception}var EXCEPTIONS={last:0,caught:[],infos:{},deAdjust:(function(adjusted){if(!adjusted||EXCEPTIONS.infos[adjusted])return adjusted;for(var ptr in EXCEPTIONS.infos){var info=EXCEPTIONS.infos[ptr];if(info.adjusted===adjusted){return ptr}}return adjusted}),addRef:(function(ptr){if(!ptr)return;var info=EXCEPTIONS.infos[ptr];info.refcount++}),decRef:(function(ptr){if(!ptr)return;var info=EXCEPTIONS.infos[ptr];assert(info.refcount>0);info.refcount--;if(info.refcount===0){if(info.destructor){Runtime.dynCall("vi",info.destructor,[ptr])}delete EXCEPTIONS.infos[ptr];___cxa_free_exception(ptr)}}),clearRef:(function(ptr){if(!ptr)return;var info=EXCEPTIONS.infos[ptr];info.refcount=0})};function ___resumeException(ptr){if(!EXCEPTIONS.last){EXCEPTIONS.last=ptr}EXCEPTIONS.clearRef(EXCEPTIONS.deAdjust(ptr));throw ptr+" - Exception catching is disabled, this exception cannot be caught. Compile with -s DISABLE_EXCEPTION_CATCHING=0 or DISABLE_EXCEPTION_CATCHING=2 to catch."}function ___cxa_find_matching_catch(){var thrown=EXCEPTIONS.last;if(!thrown){return(asm["setTempRet0"](0),0)|0}var info=EXCEPTIONS.infos[thrown];var throwntype=info.type;if(!throwntype){return(asm["setTempRet0"](0),thrown)|0}var typeArray=Array.prototype.slice.call(arguments);var pointer=Module["___cxa_is_pointer_type"](throwntype);if(!___cxa_find_matching_catch.buffer)___cxa_find_matching_catch.buffer=_malloc(4);HEAP32[___cxa_find_matching_catch.buffer>>2]=thrown;thrown=___cxa_find_matching_catch.buffer;for(var i=0;i>2];info.adjusted=thrown;return(asm["setTempRet0"](typeArray[i]),thrown)|0}}thrown=HEAP32[thrown>>2];return(asm["setTempRet0"](throwntype),thrown)|0}function ___cxa_throw(ptr,type,destructor){EXCEPTIONS.infos[ptr]={ptr:ptr,adjusted:ptr,type:type,destructor:destructor,refcount:0};EXCEPTIONS.last=ptr;if(!("uncaught_exception"in __ZSt18uncaught_exceptionv)){__ZSt18uncaught_exceptionv.uncaught_exception=1}else{__ZSt18uncaught_exceptionv.uncaught_exception++}throw ptr+" - Exception catching is disabled, this exception cannot be caught. Compile with -s DISABLE_EXCEPTION_CATCHING=0 or DISABLE_EXCEPTION_CATCHING=2 to catch."}Module["_memset"]=_memset;function ___gxx_personality_v0(){}Module["_bitshift64Shl"]=_bitshift64Shl;function _abort(){Module["abort"]()}function _pthread_once(ptr,func){if(!_pthread_once.seen)_pthread_once.seen={};if(ptr in _pthread_once.seen)return;Runtime.dynCall("v",func);_pthread_once.seen[ptr]=1}var PTHREAD_SPECIFIC={};function _pthread_getspecific(key){return PTHREAD_SPECIFIC[key]||0}Module["_i64Add"]=_i64Add;var PTHREAD_SPECIFIC_NEXT_KEY=1;function _pthread_key_create(key,destructor){if(key==0){return ERRNO_CODES.EINVAL}HEAP32[key>>2]=PTHREAD_SPECIFIC_NEXT_KEY;PTHREAD_SPECIFIC[PTHREAD_SPECIFIC_NEXT_KEY]=0;PTHREAD_SPECIFIC_NEXT_KEY++;return 0}var _llvm_pow_f32=Math_pow;function _pthread_setspecific(key,value){if(!(key in PTHREAD_SPECIFIC)){return ERRNO_CODES.EINVAL}PTHREAD_SPECIFIC[key]=value;return 0}function _malloc(bytes){var ptr=Runtime.dynamicAlloc(bytes+8);return ptr+8&4294967288}Module["_malloc"]=_malloc;function ___cxa_allocate_exception(size){return _malloc(size)}Module["_bitshift64Ashr"]=_bitshift64Ashr;Module["_bitshift64Lshr"]=_bitshift64Lshr;function ___cxa_pure_virtual(){ABORT=true;throw"Pure virtual function called!"}function _time(ptr){var ret=Date.now()/1e3|0;if(ptr){HEAP32[ptr>>2]=ret}return ret}function _pthread_cleanup_push(routine,arg){__ATEXIT__.push((function(){Runtime.dynCall("vi",routine,[arg])}));_pthread_cleanup_push.level=__ATEXIT__.length}function ___cxa_guard_acquire(variable){if(!HEAP8[variable>>0]){HEAP8[variable>>0]=1;return 1}return 0}function _pthread_cleanup_pop(){assert(_pthread_cleanup_push.level==__ATEXIT__.length,"cannot pop if something else added meanwhile!");__ATEXIT__.pop();_pthread_cleanup_push.level=__ATEXIT__.length}function ___cxa_begin_catch(ptr){__ZSt18uncaught_exceptionv.uncaught_exception--;EXCEPTIONS.caught.push(ptr);EXCEPTIONS.addRef(EXCEPTIONS.deAdjust(ptr));return ptr}function _emscripten_memcpy_big(dest,src,num){HEAPU8.set(HEAPU8.subarray(src,src+num),dest);return dest}Module["_memcpy"]=_memcpy;var SYSCALLS={varargs:0,get:(function(varargs){SYSCALLS.varargs+=4;var ret=HEAP32[SYSCALLS.varargs-4>>2];return ret}),getStr:(function(){var ret=Pointer_stringify(SYSCALLS.get());return ret}),get64:(function(){var low=SYSCALLS.get(),high=SYSCALLS.get();if(low>=0)assert(high===0);else assert(high===-1);return low}),getZero:(function(){assert(SYSCALLS.get()===0)})};function ___syscall6(which,varargs){SYSCALLS.varargs=varargs;try{var stream=SYSCALLS.getStreamFromFD();FS.close(stream);return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}function _sbrk(bytes){var self=_sbrk;if(!self.called){DYNAMICTOP=alignMemoryPage(DYNAMICTOP);self.called=true;assert(Runtime.dynamicAlloc);self.alloc=Runtime.dynamicAlloc;Runtime.dynamicAlloc=(function(){abort("cannot dynamically allocate, sbrk now has control")})}var ret=DYNAMICTOP;if(bytes!=0){var success=self.alloc(bytes);if(!success)return-1>>>0}return ret}Module["_memmove"]=_memmove;function _gettimeofday(ptr){var now=Date.now();HEAP32[ptr>>2]=now/1e3|0;HEAP32[ptr+4>>2]=now%1e3*1e3|0;return 0}var _llvm_fabs_f32=Math_abs;Module["_llvm_bswap_i32"]=_llvm_bswap_i32;function _llvm_trap(){abort("trap!")}function ___cxa_guard_release(){}function _pthread_self(){return 0}function ___syscall140(which,varargs){SYSCALLS.varargs=varargs;try{var stream=SYSCALLS.getStreamFromFD(),offset_high=SYSCALLS.get(),offset_low=SYSCALLS.get(),result=SYSCALLS.get(),whence=SYSCALLS.get();var offset=offset_low;assert(offset_high===0);FS.llseek(stream,offset,whence);HEAP32[result>>2]=stream.position;if(stream.getdents&&offset===0&&whence===0)stream.getdents=null;return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}function ___syscall146(which,varargs){SYSCALLS.varargs=varargs;try{var stream=SYSCALLS.get(),iov=SYSCALLS.get(),iovcnt=SYSCALLS.get();var ret=0;if(!___syscall146.buffer){___syscall146.buffers=[null,[],[]];___syscall146.printChar=(function(stream,curr){var buffer=___syscall146.buffers[stream];assert(buffer);if(curr===0||curr===10){(stream===1?Module["print"]:Module["printErr"])(UTF8ArrayToString(buffer,0));buffer.length=0}else{buffer.push(curr)}})}for(var i=0;i>2];var len=HEAP32[iov+(i*8+4)>>2];for(var j=0;j>2]|0;c[d+128>>2]=q;o=c[a+84>>2]|0;c[d+128+4>>2]=o;m=c[a+100>>2]|0;c[d+128+8>>2]=m;g[d+128+12>>2]=0.0;l=d+128+16|0;t=c[a+72>>2]|0;c[l>>2]=t;s=c[a+88>>2]|0;c[d+128+20>>2]=s;r=c[a+104>>2]|0;c[d+128+24>>2]=r;g[d+128+28>>2]=0.0;j=d+128+32|0;w=c[a+76>>2]|0;c[j>>2]=w;v=c[a+92>>2]|0;c[d+128+36>>2]=v;u=c[a+108>>2]|0;c[d+128+40>>2]=u;g[d+128+44>>2]=0.0;p=-+g[a+116>>2];n=-+g[a+120>>2];h=-+g[a+124>>2];e=(c[k>>2]=w,+g[k>>2])*p;e=e+(c[k>>2]=v,+g[k>>2])*n;e=e+(c[k>>2]=u,+g[k>>2])*h;f=(c[k>>2]=t,+g[k>>2])*p;f=f+(c[k>>2]=s,+g[k>>2])*n;f=f+(c[k>>2]=r,+g[k>>2])*h;p=(c[k>>2]=q,+g[k>>2])*p;n=p+(c[k>>2]=o,+g[k>>2])*n;h=n+(c[k>>2]=m,+g[k>>2])*h;c[d>>2]=c[d+128>>2];c[d+4>>2]=c[d+128+4>>2];c[d+8>>2]=c[d+128+8>>2];c[d+12>>2]=c[d+128+12>>2];c[d+16>>2]=c[l>>2];c[d+16+4>>2]=c[l+4>>2];c[d+16+8>>2]=c[l+8>>2];c[d+16+12>>2]=c[l+12>>2];c[d+32>>2]=c[j>>2];c[d+32+4>>2]=c[j+4>>2];c[d+32+8>>2]=c[j+8>>2];c[d+32+12>>2]=c[j+12>>2];g[d+48>>2]=h;g[d+52>>2]=f;g[d+56>>2]=e;g[d+60>>2]=0.0;dh(d+64|0,d,a+4|0);c[b>>2]=c[d+64>>2];c[b+4>>2]=c[d+64+4>>2];c[b+8>>2]=c[d+64+8>>2];c[b+12>>2]=c[d+64+12>>2];c[b+16>>2]=c[d+64+16>>2];c[b+16+4>>2]=c[d+64+16+4>>2];c[b+16+8>>2]=c[d+64+16+8>>2];c[b+16+12>>2]=c[d+64+16+12>>2];c[b+32>>2]=c[d+64+32>>2];c[b+32+4>>2]=c[d+64+32+4>>2];c[b+32+8>>2]=c[d+64+32+8>>2];c[b+32+12>>2]=c[d+64+32+12>>2];c[b+48>>2]=c[d+64+48>>2];c[b+48+4>>2]=c[d+64+48+4>>2];c[b+48+8>>2]=c[d+64+48+8>>2];c[b+48+12>>2]=c[d+64+48+12>>2];i=d;return}function Ef(a,e,f){a=a|0;e=e|0;f=f|0;var h=0.0,i=0.0,j=0.0,k=0;si(a,e,f)|0;c[e+52>>2]=c[a+552>>2];c[e+56>>2]=c[a+556>>2];c[e+60>>2]=c[a+560>>2];c[e+64>>2]=c[a+564>>2];c[e+68>>2]=c[a+568>>2];c[e+72>>2]=c[a+572>>2];c[e+76>>2]=c[a+576>>2];c[e+80>>2]=c[a+580>>2];c[e+84>>2]=c[a+584>>2];c[e+88>>2]=c[a+588>>2];c[e+92>>2]=c[a+592>>2];c[e+96>>2]=c[a+596>>2];c[e+100>>2]=c[a+600>>2];c[e+104>>2]=c[a+604>>2];c[e+108>>2]=c[a+608>>2];c[e+112>>2]=c[a+612>>2];c[e+116>>2]=c[a+616>>2];c[e+120>>2]=c[a+620>>2];c[e+124>>2]=c[a+624>>2];c[e+128>>2]=c[a+628>>2];c[e+132>>2]=c[a+632>>2];c[e+136>>2]=c[a+636>>2];c[e+140>>2]=c[a+640>>2];c[e+144>>2]=c[a+644>>2];c[e+148>>2]=c[a+648>>2];c[e+152>>2]=c[a+652>>2];c[e+156>>2]=c[a+656>>2];c[e+160>>2]=c[a+660>>2];c[e+164>>2]=c[a+664>>2];c[e+168>>2]=c[a+668>>2];c[e+172>>2]=c[a+672>>2];c[e+176>>2]=c[a+676>>2];f=b[a+736>>1]|0;c[e+184>>2]=f&255;c[e+188>>2]=(f&65535)>>>8&65535;c[e+196>>2]=c[a+684>>2];c[e+192>>2]=c[a+680>>2];c[e+180>>2]=d[a+740>>0];i=+g[a+688>>2];j=+g[a+692>>2];h=+eh(i-j,6.2831854820251465);if(!(h<-3.1415927410125732)){if(h>3.1415927410125732)h=h+-6.2831854820251465}else h=h+6.2831854820251465;g[e+200>>2]=h;h=+eh(i+j,6.2831854820251465);if(h<-3.1415927410125732){j=h+6.2831854820251465;f=e+204|0;g[f>>2]=j;f=a+696|0;f=c[f>>2]|0;k=e+208|0;c[k>>2]=f;k=a+700|0;k=c[k>>2]|0;f=e+212|0;c[f>>2]=k;f=a+704|0;f=c[f>>2]|0;a=e+216|0;c[a>>2]=f;return 12773}if(!(h>3.1415927410125732)){j=h;k=e+204|0;g[k>>2]=j;k=a+696|0;k=c[k>>2]|0;f=e+208|0;c[f>>2]=k;f=a+700|0;f=c[f>>2]|0;k=e+212|0;c[k>>2]=f;a=a+704|0;a=c[a>>2]|0;k=e+216|0;c[k>>2]=a;return 12773}j=h+-6.2831854820251465;k=e+204|0;g[k>>2]=j;k=a+696|0;k=c[k>>2]|0;f=e+208|0;c[f>>2]=k;f=a+700|0;f=c[f>>2]|0;k=e+212|0;c[k>>2]=f;a=a+704|0;a=c[a>>2]|0;k=e+216|0;c[k>>2]=a;return 12773}function Ff(b,d){b=b|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0;i=c[b+4>>2]|0;if((i|0)==(c[b+8>>2]|0)?(h=i|0?i<<1:1,(i|0)<(h|0)):0){if(!h){e=0;f=i}else{c[6435]=(c[6435]|0)+1;e=yc((h*244|3)+16|0)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}f=c[b+4>>2]|0}if((f|0)>0){g=0;do{k=e+(g*244|0)|0;j=c[b+12>>2]|0;l=j+(g*244|0)|0;c[k>>2]=c[l>>2];c[k+4>>2]=c[l+4>>2];c[k+8>>2]=c[l+8>>2];c[k+12>>2]=c[l+12>>2];k=e+(g*244|0)+16|0;l=j+(g*244|0)+16|0;c[k>>2]=c[l>>2];c[k+4>>2]=c[l+4>>2];c[k+8>>2]=c[l+8>>2];c[k+12>>2]=c[l+12>>2];k=e+(g*244|0)+32|0;l=j+(g*244|0)+32|0;c[k>>2]=c[l>>2];c[k+4>>2]=c[l+4>>2];c[k+8>>2]=c[l+8>>2];c[k+12>>2]=c[l+12>>2];k=e+(g*244|0)+48|0;l=j+(g*244|0)+48|0;c[k>>2]=c[l>>2];c[k+4>>2]=c[l+4>>2];c[k+8>>2]=c[l+8>>2];c[k+12>>2]=c[l+12>>2];_m(e+(g*244|0)+64|0,j+(g*244|0)+64|0,180)|0;g=g+1|0}while((g|0)!=(f|0))}f=c[b+12>>2]|0;if(f|0){if(a[b+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}c[b+12>>2]=0}a[b+16>>0]=1;c[b+12>>2]=e;c[b+8>>2]=h;e=c[b+4>>2]|0}else e=i;c[b+4>>2]=e+1;l=c[b+12>>2]|0;c[l+(i*244|0)>>2]=c[d>>2];c[l+(i*244|0)+4>>2]=c[d+4>>2];c[l+(i*244|0)+8>>2]=c[d+8>>2];c[l+(i*244|0)+12>>2]=c[d+12>>2];c[l+(i*244|0)+16>>2]=c[d+16>>2];c[l+(i*244|0)+16+4>>2]=c[d+16+4>>2];c[l+(i*244|0)+16+8>>2]=c[d+16+8>>2];c[l+(i*244|0)+16+12>>2]=c[d+16+12>>2];c[l+(i*244|0)+32>>2]=c[d+32>>2];c[l+(i*244|0)+32+4>>2]=c[d+32+4>>2];c[l+(i*244|0)+32+8>>2]=c[d+32+8>>2];c[l+(i*244|0)+32+12>>2]=c[d+32+12>>2];c[l+(i*244|0)+48>>2]=c[d+48>>2];c[l+(i*244|0)+48+4>>2]=c[d+48+4>>2];c[l+(i*244|0)+48+8>>2]=c[d+48+8>>2];c[l+(i*244|0)+48+12>>2]=c[d+48+12>>2];_m(l+(i*244|0)+64|0,d+64|0,180)|0;return (c[b+12>>2]|0)+(i*244|0)|0}function Gf(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0.0,h=0.0,j=0.0,k=0.0,l=0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0;l=i;i=i+64|0;n=+g[a+20>>2];u=+g[a+40>>2];p=+g[a+24>>2];s=+g[a+36>>2];t=+g[a+32>>2];m=+g[a+16>>2];k=+g[a>>2];j=+g[a+4>>2];q=+g[a+8>>2];h=1.0/((n*u-p*s)*k+j*(p*t-u*m)+(s*m-n*t)*q);z=+g[b>>2];y=+g[b+4>>2];A=+g[b+8>>2];x=+g[b+16>>2];w=+g[b+20>>2];v=+g[b+24>>2];r=+g[b+32>>2];o=+g[b+36>>2];f=+g[b+40>>2];g[l+16>>2]=A*(s*m-n*t)*h+(z*(n*u-p*s)*h+y*(p*t-u*m)*h);g[l+16+4>>2]=A*(t*j-s*k)*h+(z*(s*q-u*j)*h+y*(u*k-t*q)*h);g[l+16+8>>2]=A*(n*k-m*j)*h+(z*(p*j-n*q)*h+y*(m*q-p*k)*h);g[l+16+12>>2]=0.0;g[l+16+16>>2]=(n*u-p*s)*h*x+(p*t-u*m)*h*w+(s*m-n*t)*h*v;g[l+16+20>>2]=(s*q-u*j)*h*x+(u*k-t*q)*h*w+(t*j-s*k)*h*v;g[l+16+24>>2]=(p*j-n*q)*h*x+(m*q-p*k)*h*w+(n*k-m*j)*h*v;g[l+16+28>>2]=0.0;g[l+16+32>>2]=(n*u-p*s)*h*r+(p*t-u*m)*h*o+(s*m-n*t)*h*f;g[l+16+36>>2]=(s*q-u*j)*h*r+(u*k-t*q)*h*o+(t*j-s*k)*h*f;g[l+16+40>>2]=(p*j-n*q)*h*r+(m*q-p*k)*h*o+(n*k-m*j)*h*f;g[l+16+44>>2]=0.0;Wg(l+16|0,l);f=+g[l>>2];h=+g[l+4>>2];j=+g[l+8>>2];m=+g[l+12>>2];k=1.0/+O(+(f*f+h*h+j*j+m*m));g[l>>2]=f*k;g[l+4>>2]=h*k;g[l+8>>2]=j*k;g[l+12>>2]=m*k;m=m*k<-1.0?-1.0:m*k;g[e>>2]=+T(+(m>1.0?1.0:m))*2.0;g[d>>2]=f*k;g[d+4>>2]=h*k;g[d+8>>2]=j*k;g[d+12>>2]=0.0;if(f*k*f*k+h*k*h*k+j*k*j*k<1.4210854715202004e-14){c[d>>2]=1065353216;c[d+4>>2]=0;c[d+8>>2]=0;g[d+12>>2]=0.0;i=l;return}else{A=1.0/+O(+(f*k*f*k+h*k*h*k+j*k*j*k));g[d>>2]=f*k*A;g[d+4>>2]=A*h*k;g[d+8>>2]=A*j*k;i=l;return}}function Hf(b){b=b|0;var d=0,e=0,f=0,g=0,h=0,i=0,j=0;i=c[b+12>>2]|0;j=c[b+36>>2]|0;if((i|0)<=(j|0))return;if((i|0)>=(j|0)){do if((c[b+40>>2]|0)<(i|0)){if(!i){d=0;e=j}else{c[6435]=(c[6435]|0)+1;d=yc((i<<2|3)+16|0)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}e=c[b+36>>2]|0}f=c[b+44>>2]|0;if((e|0)<=0){if(!f){a[b+48>>0]=1;c[b+44>>2]=d;c[b+40>>2]=i;break}}else{g=0;do{c[d+(g<<2)>>2]=c[f+(g<<2)>>2];g=g+1|0}while((g|0)!=(e|0))}if(a[b+48>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}a[b+48>>0]=1;c[b+44>>2]=d;c[b+40>>2]=i}else d=c[b+44>>2]|0;while(0);Qn(d+(j<<2)|0,0,i-j<<2|0)|0}c[b+36>>2]=i;h=c[b+56>>2]|0;if((i|0)>(h|0)){do if((c[b+60>>2]|0)<(i|0)){if(!i){d=0;e=h}else{c[6435]=(c[6435]|0)+1;d=yc((i<<2|3)+16|0)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}e=c[b+56>>2]|0}f=c[b+64>>2]|0;if((e|0)<=0){if(!f){a[b+68>>0]=1;c[b+64>>2]=d;c[b+60>>2]=i;break}}else{g=0;do{c[d+(g<<2)>>2]=c[f+(g<<2)>>2];g=g+1|0}while((g|0)!=(e|0))}if(a[b+68>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}a[b+68>>0]=1;c[b+64>>2]=d;c[b+60>>2]=i}else d=c[b+64>>2]|0;while(0);Qn(d+(h<<2)|0,0,i-h<<2|0)|0}c[b+56>>2]=i;if((i|0)>0){Qn(c[b+44>>2]|0,-1,i<<2|0)|0;Qn(c[b+64>>2]|0,-1,i<<2|0)|0}if((j|0)<=0)return;d=c[b+16>>2]|0;e=c[b+44>>2]|0;f=c[b+64>>2]|0;g=0;do{i=c[(c[d+(g<<4)+4>>2]|0)+12>>2]<<16|c[(c[d+(g<<4)>>2]|0)+12>>2];i=(i+~(i<<15)>>10^i+~(i<<15))*9|0;i=e+((((i>>6^i)+~((i>>6^i)<<11)>>16^(i>>6^i)+~((i>>6^i)<<11))&(c[b+12>>2]|0)+-1)<<2)|0;c[f+(g<<2)>>2]=c[i>>2];c[i>>2]=g;g=g+1|0}while((g|0)!=(j|0));return}function If(b,d){b=b|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;if((c[b+8>>2]|0)>=(d|0))return;if((d|0)!=0?(c[6435]=(c[6435]|0)+1,e=yc((d*36|3)+16|0)|0,(e|0)!=0):0){c[(e+4+15&-16)+-4>>2]=e;o=e+4+15&-16}else o=0;i=c[b+4>>2]|0;if((i|0)>0){m=0;do{j=o+(m*36|0)|0;k=c[b+12>>2]|0;a[j+16>>0]=1;c[j+12>>2]=0;c[j+4>>2]=0;c[j+8>>2]=0;l=c[k+(m*36|0)+4>>2]|0;if((l|0)>0){c[6435]=(c[6435]|0)+1;e=yc((l<<2|3)+16|0)|0;if(!e)h=0;else{c[(e+4+15&-16)+-4>>2]=e;h=e+4+15&-16}g=c[j+4>>2]|0;f=c[j+12>>2]|0;if((g|0)<=0)if(!f){a[j+16>>0]=1;c[j+12>>2]=h;c[j+8>>2]=l;Qn(h|0,0,l<<2|0)|0}else n=14;else{e=0;do{c[h+(e<<2)>>2]=c[f+(e<<2)>>2];e=e+1|0}while((e|0)!=(g|0));n=14}if((n|0)==14){n=0;if(a[j+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}a[j+16>>0]=1;c[j+12>>2]=h;c[j+8>>2]=l;Qn(h|0,0,l<<2|0)|0}e=c[j+12>>2]|0;c[j+4>>2]=l;f=c[k+(m*36|0)+12>>2]|0;g=0;do{c[e+(g<<2)>>2]=c[f+(g<<2)>>2];g=g+1|0}while((g|0)!=(l|0))}else c[j+4>>2]=l;l=k+(m*36|0)+20|0;c[j+20>>2]=c[l>>2];c[j+20+4>>2]=c[l+4>>2];c[j+20+8>>2]=c[l+8>>2];c[j+20+12>>2]=c[l+12>>2];m=m+1|0}while((m|0)!=(i|0));e=c[b+4>>2]|0;if((e|0)>0){k=0;do{g=c[b+12>>2]|0;h=g+(k*36|0)+4|0;i=g+(k*36|0)+12|0;j=c[i>>2]|0;f=g+(k*36|0)+16|0;if(j|0){if(a[f>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}c[i>>2]=0}a[f>>0]=1;c[i>>2]=0;c[h>>2]=0;c[g+(k*36|0)+8>>2]=0;k=k+1|0}while((k|0)!=(e|0))}}e=c[b+12>>2]|0;if(e|0){if(a[b+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0)}c[b+12>>2]=0}a[b+16>>0]=1;c[b+12>>2]=o;c[b+8>>2]=d;return}function Jf(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;var h=0.0,i=0.0,j=0.0,k=0.0,l=0.0;c[b+4>>2]=4;c[b>>2]=4432;c[b+8>>2]=-1;c[b+12>>2]=-1;g[b+16>>2]=3402823466385288598117041.0e14;a[b+20>>0]=1;a[b+21>>0]=0;c[b+24>>2]=-1;c[b+28>>2]=d;Il();c[b+32>>2]=23268;g[b+36>>2]=0.0;g[b+40>>2]=.30000001192092896;c[b+44>>2]=0;c[b>>2]=4704;c[b+552>>2]=c[e>>2];c[b+552+4>>2]=c[e+4>>2];c[b+552+8>>2]=c[e+8>>2];c[b+552+12>>2]=c[e+12>>2];c[b+568>>2]=c[e+16>>2];c[b+568+4>>2]=c[e+16+4>>2];c[b+568+8>>2]=c[e+16+8>>2];c[b+568+12>>2]=c[e+16+12>>2];c[b+584>>2]=c[e+32>>2];c[b+584+4>>2]=c[e+32+4>>2];c[b+584+8>>2]=c[e+32+8>>2];c[b+584+12>>2]=c[e+32+12>>2];c[b+600>>2]=c[e+48>>2];c[b+600+4>>2]=c[e+48+4>>2];c[b+600+8>>2]=c[e+48+8>>2];c[b+600+12>>2]=c[e+48+12>>2];c[b+616>>2]=c[e>>2];c[b+616+4>>2]=c[e+4>>2];c[b+616+8>>2]=c[e+8>>2];c[b+616+12>>2]=c[e+12>>2];c[b+632>>2]=c[e+16>>2];c[b+632+4>>2]=c[e+16+4>>2];c[b+632+8>>2]=c[e+16+8>>2];c[b+632+12>>2]=c[e+16+12>>2];c[b+648>>2]=c[e+32>>2];c[b+648+4>>2]=c[e+32+4>>2];c[b+648+8>>2]=c[e+32+8>>2];c[b+648+12>>2]=c[e+32+12>>2];c[b+664>>2]=c[e+48>>2];c[b+664+4>>2]=c[e+48+4>>2];c[b+664+8>>2]=c[e+48+8>>2];c[b+664+12>>2]=c[e+48+12>>2];g[b+688>>2]=0.0;g[b+692>>2]=-1.0;g[b+696>>2]=.8999999761581421;g[b+700>>2]=.30000001192092896;g[b+704>>2]=1.0;g[b+708>>2]=0.0;g[b+712>>2]=0.0;a[b+716>>0]=0;a[b+736>>0]=0;a[b+737>>0]=0;a[b+738>>0]=0;a[b+739>>0]=1;a[b+740>>0]=f&1;c[b+748>>2]=0;e=c[b+28>>2]|0;l=+g[b+600>>2];k=+g[b+604>>2];j=+g[b+608>>2];i=l*+g[e+20>>2]+k*+g[e+24>>2]+j*+g[e+28>>2]+ +g[e+56>>2];h=l*+g[e+36>>2]+k*+g[e+40>>2]+j*+g[e+44>>2]+ +g[e+60>>2];g[b+664>>2]=l*+g[e+4>>2]+k*+g[e+8>>2]+j*+g[e+12>>2]+ +g[e+52>>2];g[b+668>>2]=i;g[b+672>>2]=h;g[b+676>>2]=0.0;g[b+732>>2]=f?-1.0:1.0;return}function Kf(b){b=b|0;var d=0,e=0,f=0,g=0,h=0,i=0,j=0;i=c[b+12>>2]|0;j=c[b+32>>2]|0;if((i|0)<=(j|0))return;if((i|0)>=(j|0)){do if((c[b+36>>2]|0)<(i|0)){if(!i){d=0;e=j}else{c[6435]=(c[6435]|0)+1;d=yc((i<<2|3)+16|0)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}e=c[b+32>>2]|0}f=c[b+40>>2]|0;if((e|0)<=0){if(!f){a[b+44>>0]=1;c[b+40>>2]=d;c[b+36>>2]=i;break}}else{g=0;do{c[d+(g<<2)>>2]=c[f+(g<<2)>>2];g=g+1|0}while((g|0)!=(e|0))}if(a[b+44>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}a[b+44>>0]=1;c[b+40>>2]=d;c[b+36>>2]=i}else d=c[b+40>>2]|0;while(0);Qn(d+(j<<2)|0,0,i-j<<2|0)|0}c[b+32>>2]=i;h=c[b+52>>2]|0;if((i|0)>(h|0)){do if((c[b+56>>2]|0)<(i|0)){if(!i){d=0;e=h}else{c[6435]=(c[6435]|0)+1;d=yc((i<<2|3)+16|0)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}e=c[b+52>>2]|0}f=c[b+60>>2]|0;if((e|0)<=0){if(!f){a[b+64>>0]=1;c[b+60>>2]=d;c[b+56>>2]=i;break}}else{g=0;do{c[d+(g<<2)>>2]=c[f+(g<<2)>>2];g=g+1|0}while((g|0)!=(e|0))}if(a[b+64>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}a[b+64>>0]=1;c[b+60>>2]=d;c[b+56>>2]=i}else d=c[b+60>>2]|0;while(0);Qn(d+(h<<2)|0,0,i-h<<2|0)|0}c[b+52>>2]=i;if((i|0)>0){Qn(c[b+40>>2]|0,-1,i<<2|0)|0;Qn(c[b+60>>2]|0,-1,i<<2|0)|0}if((j|0)<=0)return;d=c[b+16>>2]|0;e=c[b+40>>2]|0;f=c[b+60>>2]|0;g=0;do{i=c[d+(g*12|0)+4>>2]<<16|c[d+(g*12|0)>>2];i=(i+~(i<<15)>>10^i+~(i<<15))*9|0;i=e+((((i>>6^i)+~((i>>6^i)<<11)>>16^(i>>6^i)+~((i>>6^i)<<11))&(c[b+12>>2]|0)+-1)<<2)|0;c[f+(g<<2)>>2]=c[i>>2];c[i>>2]=g;g=g+1|0}while((g|0)!=(j|0));return}function Lf(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0,g=0,h=0,i=0;e=Zb[c[(c[d>>2]|0)+40>>2]&31](d,a)|0;g=Zb[c[(c[d>>2]|0)+28>>2]&31](d,e)|0;c[b>>2]=g;if(g|0)Cb[c[(c[d>>2]|0)+48>>2]&127](d,e);c[b+4>>2]=c[a+4>>2];c[b+20>>2]=c[a+72>>2];e=c[a+16>>2]|0;c[b+16>>2]=e;c[b+12>>2]=0;if(!e)return 16387;g=Ob[c[(c[d>>2]|0)+16>>2]&63](d,76,e)|0;e=c[g+8>>2]|0;c[b+12>>2]=Zb[c[(c[d>>2]|0)+28>>2]&31](d,e)|0;if((c[b+16>>2]|0)>0){f=0;while(1){h=c[a+24>>2]|0;c[e+72>>2]=c[h+(f*80|0)+72>>2];c[e+64>>2]=Zb[c[(c[d>>2]|0)+28>>2]&31](d,c[h+(f*80|0)+64>>2]|0)|0;if(!(Zb[c[(c[d>>2]|0)+24>>2]&31](d,c[(c[a+24>>2]|0)+(f*80|0)+64>>2]|0)|0)){h=c[(c[d>>2]|0)+16>>2]|0;i=c[(c[a+24>>2]|0)+(f*80|0)+64>>2]|0;i=Eb[c[(c[i>>2]|0)+52>>2]&127](i)|0;i=Ob[h&63](d,i,1)|0;h=c[(c[a+24>>2]|0)+(f*80|0)+64>>2]|0;h=Ob[c[(c[h>>2]|0)+56>>2]&63](h,c[i+8>>2]|0,d)|0;yb[c[(c[d>>2]|0)+20>>2]&31](d,i,h,1346455635,c[(c[a+24>>2]|0)+(f*80|0)+64>>2]|0)}i=c[a+24>>2]|0;c[e+68>>2]=c[i+(f*80|0)+68>>2];c[e>>2]=c[i+(f*80|0)>>2];c[e+4>>2]=c[i+(f*80|0)+4>>2];c[e+8>>2]=c[i+(f*80|0)+8>>2];c[e+12>>2]=c[i+(f*80|0)+12>>2];c[e+16>>2]=c[i+(f*80|0)+16>>2];c[e+20>>2]=c[i+(f*80|0)+20>>2];c[e+24>>2]=c[i+(f*80|0)+24>>2];c[e+28>>2]=c[i+(f*80|0)+28>>2];c[e+32>>2]=c[i+(f*80|0)+32>>2];c[e+36>>2]=c[i+(f*80|0)+36>>2];c[e+40>>2]=c[i+(f*80|0)+40>>2];c[e+44>>2]=c[i+(f*80|0)+44>>2];c[e+48>>2]=c[i+(f*80|0)+48>>2];c[e+52>>2]=c[i+(f*80|0)+52>>2];c[e+56>>2]=c[i+(f*80|0)+56>>2];c[e+60>>2]=c[i+(f*80|0)+60>>2];f=f+1|0;if((f|0)>=(c[b+16>>2]|0)){e=d;break}else e=e+76|0}}else e=d;yb[c[(c[e>>2]|0)+20>>2]&31](d,g,16362,1497453121,c[g+8>>2]|0);return 16387}function Mf(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0,h=0.0,j=0.0,k=0.0,l=0,m=0,n=0.0,o=0.0,p=0.0,q=0.0;f=i;i=i+256|0;c[f+32>>2]=5736;l=f+32+36|0;c[l>>2]=c[b>>2];c[l+4>>2]=c[b+4>>2];c[l+8>>2]=c[b+8>>2];c[l+12>>2]=c[b+12>>2];m=f+32+52|0;c[m>>2]=c[d>>2];c[m+4>>2]=c[d+4>>2];c[m+8>>2]=c[d+8>>2];c[m+12>>2]=c[d+12>>2];c[f+32+212>>2]=a;c[f+32+216>>2]=e;c[f+32+68>>2]=1065353216;c[f+32+72>>2]=0;c[f+32+72+4>>2]=0;c[f+32+72+8>>2]=0;c[f+32+72+12>>2]=0;c[f+32+88>>2]=1065353216;c[f+32+92>>2]=0;c[f+32+92+4>>2]=0;c[f+32+92+8>>2]=0;c[f+32+92+12>>2]=0;c[f+32+108>>2]=1065353216;c[f+32+112>>2]=0;c[f+32+116>>2]=c[l>>2];c[f+32+116+4>>2]=c[l+4>>2];c[f+32+116+8>>2]=c[l+8>>2];c[f+32+116+12>>2]=c[l+12>>2];c[f+32+132>>2]=1065353216;c[f+32+136>>2]=0;c[f+32+136+4>>2]=0;c[f+32+136+8>>2]=0;c[f+32+136+12>>2]=0;c[f+32+152>>2]=1065353216;c[f+32+156>>2]=0;c[f+32+156+4>>2]=0;c[f+32+156+8>>2]=0;c[f+32+156+12>>2]=0;c[f+32+172>>2]=1065353216;c[f+32+176>>2]=0;c[f+32+180>>2]=c[d>>2];c[f+32+180+4>>2]=c[d+4>>2];c[f+32+180+8>>2]=c[d+8>>2];c[f+32+180+12>>2]=c[d+12>>2];n=+g[d>>2]-+g[b>>2];k=+g[d+4>>2]-+g[b+4>>2];j=+g[d+8>>2]-+g[b+8>>2];h=1.0/+O(+(n*n+k*k+j*j));q=n*h==0.0?999999984306749440.0:1.0/(n*h);g[f+32+4>>2]=q;p=k*h==0.0?999999984306749440.0:1.0/(k*h);g[f+32+8>>2]=p;o=j*h==0.0?999999984306749440.0:1.0/(j*h);g[f+32+12>>2]=o;c[f+32+20>>2]=q<0.0&1;c[f+32+24>>2]=p<0.0&1;c[f+32+28>>2]=o<0.0&1;g[f+32+32>>2]=n*h*(+g[m>>2]-+g[l>>2])+k*h*(+g[f+32+56>>2]-+g[f+32+40>>2])+j*h*(+g[f+32+60>>2]-+g[f+32+44>>2]);a=c[a+68>>2]|0;e=c[(c[a>>2]|0)+24>>2]|0;c[f+16>>2]=0;c[f+16+4>>2]=0;c[f+16+8>>2]=0;c[f+16+12>>2]=0;c[f>>2]=0;c[f+4>>2]=0;c[f+8>>2]=0;c[f+12>>2]=0;Qb[e&7](a,b,d,f+32|0,f+16|0,f);i=f;return}function Nf(b,d,e,f,h,j,k,l,m){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;j=j|0;k=k|0;l=l|0;m=m|0;var n=0,o=0,p=0,q=0;q=i;i=i+80|0;g[q+16+60>>2]=0.0;g[q+16+8>>2]=0.0;g[q+16+12>>2]=.10000000149011612;g[q+16+16>>2]=300.0;g[q+16>>2]=1.0;g[q+16+4>>2]=-1.0;g[q+16+28>>2]=0.0;g[q+16+32>>2]=.20000000298023224;g[q+16+36>>2]=0.0;g[q+16+40>>2]=0.0;g[q+16+20>>2]=1.0;g[q+16+24>>2]=.5;c[q+16+56>>2]=0;g[q+16+48>>2]=0.0;a[q+16+44>>0]=0;p=0;do{n=c[b+856+(p<<2)>>2]|0;o=a[b+788+p>>0]|0;if(!((n|0)==0&o<<24>>24==0)){g[q+16+40>>2]=0.0;c[q+16+56>>2]=n;c[q+16+52>>2]=c[b+840+(p<<2)>>2];c[q+16+48>>2]=c[b+824+(p<<2)>>2];c[q+16+20>>2]=c[b+732>>2];a[q+16+44>>0]=o;c[q+16+4>>2]=c[b+696+(p<<2)>>2];c[q+16+24>>2]=c[b+728>>2];c[q+16>>2]=c[b+680+(p<<2)>>2];g[q+16+16>>2]=0.0;c[q+16+12>>2]=c[b+808+(p<<2)>>2];c[q+16+8>>2]=c[b+792+(p<<2)>>2];c[q>>2]=c[b+1064+(p<<2)>>2];c[q+4>>2]=c[b+1080+(p<<2)>>2];c[q+8>>2]=c[b+1096+(p<<2)>>2];g[q+12>>2]=0.0;o=c[b+1304>>2]>>p*3;if(!(o&1))n=c[d+32>>2]|0;else n=b+740+(p<<2)|0;c[q+16+28>>2]=c[n>>2];if(!(o&2))n=c[d+32>>2]|0;else n=b+772+(p<<2)|0;c[q+16+36>>2]=c[n>>2];c[q+16+32>>2]=c[((o&4|0)==0?d+4|0:b+756+(p<<2)|0)>>2];if(!(a[b+1301>>0]|0))n=Dd(b,q+16|0,f,h,j,k,l,m,d,e,q,0,0)|0;else{o=p+1|0;if(!(c[b+868+(((o|0)==3?0:o)<<6)+56>>2]|0))n=1;else n=(c[b+868+(((p+2|0)%3|0)<<6)+56>>2]|0)==0&1;n=Dd(b,q+16|0,f,h,j,k,l,m,d,e,q,0,n)|0}e=n+e|0}p=p+1|0}while((p|0)!=3);i=q;return e|0}function Of(a,b,d,e,f){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;var h=0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0;h=i;i=i+128|0;if(!b){i=h;return}if(c[b+40>>2]|0){Of(a,c[b+36>>2]|0,d+1|0,e,f);Of(a,c[b+40>>2]|0,d+1|0,e,f)}if((d|0)<0){i=h;return}m=+g[b>>2];r=+g[b+16>>2];k=+g[b+4>>2];q=+g[b+20>>2];j=+g[b+8>>2];p=+g[b+24>>2];l=(m+r)*.5-(r-m)*.5;n=(k+q)*.5-(q-k)*.5;o=(j+p)*.5-(p-j)*.5;m=(m+r)*.5+(r-m)*.5;k=(k+q)*.5+(q-k)*.5;j=(j+p)*.5+(p-j)*.5;b=(c[b+40>>2]|0)==0?f:e;g[h>>2]=l;g[h+4>>2]=n;g[h+8>>2]=o;g[h+12>>2]=0.0;g[h+16>>2]=m;g[h+20>>2]=n;g[h+24>>2]=o;g[h+28>>2]=0.0;g[h+32>>2]=m;g[h+36>>2]=k;g[h+40>>2]=o;g[h+44>>2]=0.0;g[h+48>>2]=l;g[h+52>>2]=k;g[h+56>>2]=o;g[h+60>>2]=0.0;g[h+64>>2]=l;g[h+68>>2]=n;g[h+72>>2]=j;g[h+76>>2]=0.0;g[h+80>>2]=m;g[h+84>>2]=n;g[h+88>>2]=j;g[h+92>>2]=0.0;g[h+96>>2]=m;g[h+100>>2]=k;g[h+104>>2]=j;g[h+108>>2]=0.0;g[h+112>>2]=l;g[h+116>>2]=k;g[h+120>>2]=j;g[h+124>>2]=0.0;mc[c[(c[a>>2]|0)+8>>2]&127](a,h,h+16|0,b);mc[c[(c[a>>2]|0)+8>>2]&127](a,h+16|0,h+32|0,b);mc[c[(c[a>>2]|0)+8>>2]&127](a,h+32|0,h+48|0,b);mc[c[(c[a>>2]|0)+8>>2]&127](a,h+48|0,h,b);mc[c[(c[a>>2]|0)+8>>2]&127](a,h+64|0,h+80|0,b);mc[c[(c[a>>2]|0)+8>>2]&127](a,h+80|0,h+96|0,b);mc[c[(c[a>>2]|0)+8>>2]&127](a,h+96|0,h+112|0,b);mc[c[(c[a>>2]|0)+8>>2]&127](a,h+112|0,h+64|0,b);mc[c[(c[a>>2]|0)+8>>2]&127](a,h,h+64|0,b);mc[c[(c[a>>2]|0)+8>>2]&127](a,h+16|0,h+80|0,b);mc[c[(c[a>>2]|0)+8>>2]&127](a,h+32|0,h+96|0,b);mc[c[(c[a>>2]|0)+8>>2]&127](a,h+48|0,h+112|0,b);i=h;return}function Pf(a,b,c,d,e,f,h,i){a=a|0;b=+b;c=+c;d=+d;e=e|0;f=+f;h=+h;i=+i;var j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0;z=+g[e>>2];y=+g[e+16>>2];x=+g[e+32>>2];w=+g[e+4>>2];v=+g[e+20>>2];u=+g[e+36>>2];t=+g[e+8>>2];s=+g[e+24>>2];r=+g[e+40>>2];j=d-((z*0.0+y*-i+x*h)*0.0+(w*0.0+v*-i+u*h)*i+(t*0.0+s*-i+r*h)*-h)+c;o=0.0-((z*0.0+y*-i+x*h)*-i+(w*0.0+v*-i+u*h)*0.0+(t*0.0+s*-i+r*h)*f)+0.0;l=0.0-((z*0.0+y*-i+x*h)*h+(w*0.0+v*-i+u*h)*-f+(t*0.0+s*-i+r*h)*0.0)+0.0;m=0.0-((z*i+y*0.0+x*-f)*0.0+(w*i+v*0.0+u*-f)*i+(t*i+s*0.0+r*-f)*-h)+0.0;n=d-((z*i+y*0.0+x*-f)*-i+(w*i+v*0.0+u*-f)*0.0+(t*i+s*0.0+r*-f)*f)+c;k=0.0-((z*i+y*0.0+x*-f)*h+(w*i+v*0.0+u*-f)*-f+(t*i+s*0.0+r*-f)*0.0)+0.0;p=0.0-((z*-h+y*f+x*0.0)*0.0+(w*-h+v*f+u*0.0)*i+(t*-h+s*f+r*0.0)*-h)+0.0;q=0.0-((z*-h+y*f+x*0.0)*-i+(w*-h+v*f+u*0.0)*0.0+(t*-h+s*f+r*0.0)*f)+0.0;h=d-((z*-h+y*f+x*0.0)*h+(w*-h+v*f+u*0.0)*-f+(t*-h+s*f+r*0.0)*0.0)+c;i=1.0/(l*(q*m-n*p)+(j*(n*h-k*q)+o*(k*p-h*m)));g[a>>2]=(q*m-n*p)*i*0.0+(1.0/b*(n*h-k*q)*i+(k*p-h*m)*i*0.0);g[a+4>>2]=(p*o-q*j)*i*0.0+(1.0/b*(q*l-h*o)*i+(h*j-p*l)*i*0.0);g[a+8>>2]=(n*j-m*o)*i*0.0+(1.0/b*(k*o-n*l)*i+(m*l-k*j)*i*0.0);g[a+12>>2]=0.0;g[a+16>>2]=(q*m-n*p)*i*0.0+((n*h-k*q)*i*0.0+1.0/b*(k*p-h*m)*i);g[a+20>>2]=(p*o-q*j)*i*0.0+((q*l-h*o)*i*0.0+1.0/b*(h*j-p*l)*i);g[a+24>>2]=(n*j-m*o)*i*0.0+((k*o-n*l)*i*0.0+1.0/b*(m*l-k*j)*i);g[a+28>>2]=0.0;g[a+32>>2]=1.0/b*(q*m-n*p)*i+((n*h-k*q)*i*0.0+(k*p-h*m)*i*0.0);g[a+36>>2]=1.0/b*(p*o-q*j)*i+((q*l-h*o)*i*0.0+(h*j-p*l)*i*0.0);g[a+40>>2]=1.0/b*(n*j-m*o)*i+((k*o-n*l)*i*0.0+(m*l-k*j)*i*0.0);g[a+44>>2]=0.0;return}function Qf(b,d,e,f,h,j){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;j=j|0;var k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0;r=i;i=i+96|0;m=r;n=m+96|0;do{c[m>>2]=0;m=m+4|0}while((m|0)<(n|0));if(!j)q=c[c[b+880>>2]>>2]|0;else q=j;j=c[b+772>>2]|0;if((j|0)==(c[b+776>>2]|0)?(p=j|0?j<<1:1,(j|0)<(p|0)):0){if(!p)o=0;else{c[6435]=(c[6435]|0)+1;j=yc((p*104|3)+16|0)|0;if(!j)j=0;else{c[(j+4+15&-16)+-4>>2]=j;j=j+4+15&-16}o=j;j=c[b+772>>2]|0}if((j|0)>0){k=0;do{m=o+(k*104|0)|0;l=(c[b+780>>2]|0)+(k*104|0)|0;n=m+104|0;do{c[m>>2]=c[l>>2];m=m+4|0;l=l+4|0}while((m|0)<(n|0));k=k+1|0}while((k|0)!=(j|0))}j=c[b+780>>2]|0;if(j|0){if(a[b+784>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}c[b+780>>2]=0}a[b+784>>0]=1;c[b+780>>2]=o;c[b+776>>2]=p;j=c[b+772>>2]|0}m=c[b+780>>2]|0;c[m+(j*104|0)>>2]=0;c[m+(j*104|0)+4>>2]=q;m=m+(j*104|0)+8|0;l=r;n=m+96|0;do{c[m>>2]=c[l>>2];m=m+4|0;l=l+4|0}while((m|0)<(n|0));q=c[b+772>>2]|0;c[b+772>>2]=q+1;p=c[b+780>>2]|0;l=c[b+720>>2]|0;c[p+(q*104|0)+8>>2]=l+(d*104|0);o=c[b+720>>2]|0;c[p+(q*104|0)+12>>2]=o+(e*104|0);m=c[b+720>>2]|0;c[p+(q*104|0)+16>>2]=m+(f*104|0);n=c[b+720>>2]|0;c[p+(q*104|0)+20>>2]=n+(h*104|0);z=+g[l+(d*104|0)+8>>2];w=+g[l+(d*104|0)+12>>2];A=+g[l+(d*104|0)+16>>2];t=+g[m+(f*104|0)+8>>2]-z;y=+g[m+(f*104|0)+12>>2]-w;v=+g[m+(f*104|0)+16>>2]-A;u=+g[n+(h*104|0)+8>>2]-z;x=+g[n+(h*104|0)+12>>2]-w;s=+g[n+(h*104|0)+16>>2]-A;g[p+(q*104|0)+24>>2]=(+g[o+(e*104|0)+16>>2]-A)*(t*x-y*u)+((+g[o+(e*104|0)+8>>2]-z)*(y*s-v*x)+(+g[o+(e*104|0)+12>>2]-w)*(v*u-t*s));a[b+924>>0]=1;i=r;return}function Rf(b,d,e,f,h){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;var j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0.0,s=0.0,t=0.0;q=i;i=i+48|0;p=c[b+720>>2]|0;a:do if(h?(l=c[b+732>>2]|0,(l|0)>0):0){j=c[b+740>>2]|0;k=0;while(1){h=c[j+(k*52|0)+8>>2]|0;if((h|0)==(p+(d*104|0)|0)?(c[j+(k*52|0)+12>>2]|0)==(p+(e*104|0)|0):0){h=25;break}if((h|0)==(p+(e*104|0)|0)?(c[j+(k*52|0)+12>>2]|0)==(p+(d*104|0)|0):0){h=25;break}k=k+1|0;if((k|0)>=(l|0))break a}if((h|0)==25){i=q;return}}while(0);l=q;m=l+44|0;do{c[l>>2]=0;l=l+4|0}while((l|0)<(m|0));if(!f)n=c[c[b+880>>2]>>2]|0;else n=f;h=c[b+732>>2]|0;if((h|0)==(c[b+736>>2]|0)?(o=h|0?h<<1:1,(h|0)<(o|0)):0){if(!o)f=0;else{c[6435]=(c[6435]|0)+1;h=yc((o*52|3)+16|0)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}f=h;h=c[b+732>>2]|0}if((h|0)>0){j=0;do{l=f+(j*52|0)|0;k=(c[b+740>>2]|0)+(j*52|0)|0;m=l+52|0;do{c[l>>2]=c[k>>2];l=l+4|0;k=k+4|0}while((l|0)<(m|0));j=j+1|0}while((j|0)!=(h|0))}h=c[b+740>>2]|0;if(h|0){if(a[b+744>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0)}c[b+740>>2]=0}a[b+744>>0]=1;c[b+740>>2]=f;c[b+736>>2]=o;h=c[b+732>>2]|0}l=c[b+740>>2]|0;c[l+(h*52|0)>>2]=0;c[l+(h*52|0)+4>>2]=n;l=l+(h*52|0)+8|0;k=q;m=l+44|0;do{c[l>>2]=c[k>>2];l=l+4|0;k=k+4|0}while((l|0)<(m|0));o=c[b+732>>2]|0;c[b+732>>2]=o+1;n=c[b+740>>2]|0;c[n+(o*52|0)+8>>2]=p+(d*104|0);c[n+(o*52|0)+12>>2]=p+(e*104|0);t=+g[p+(d*104|0)+8>>2]-+g[p+(e*104|0)+8>>2];s=+g[p+(d*104|0)+12>>2]-+g[p+(e*104|0)+12>>2];r=+g[p+(d*104|0)+16>>2]-+g[p+(e*104|0)+16>>2];g[n+(o*52|0)+16>>2]=+O(+(t*t+s*s+r*r));a[b+924>>0]=1;i=q;return}function Sf(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;var h=0.0;f=i;i=i+784|0;c[f+712>>2]=1065353216;c[f+712+4>>2]=0;c[f+712+4+4>>2]=0;c[f+712+4+8>>2]=0;c[f+712+4+12>>2]=0;c[f+712+20>>2]=1065353216;c[f+712+24>>2]=0;c[f+712+24+4>>2]=0;c[f+712+24+8>>2]=0;c[f+712+24+12>>2]=0;c[f+712+40>>2]=1065353216;e=f+712+44|0;c[e>>2]=0;c[e+4>>2]=0;c[e+8>>2]=0;c[e+12>>2]=0;c[e+16>>2]=0;c[f+536>>2]=3708;c[f+536+168>>2]=0;g[f+536+172>>2]=0.0;c[f+536+164>>2]=c[b+200>>2];e=c[b+196>>2]|0;c[f+480+8>>2]=0;c[f+480+12>>2]=1065353216;c[f+480+16>>2]=1065353216;c[f+480+20>>2]=1065353216;g[f+480+24>>2]=0.0;c[f+480>>2]=6672;c[f+480+4>>2]=8;c[f+480+28>>2]=e;c[f+480+44>>2]=e;c[f+376+8>>2]=0;c[f+376+12>>2]=1065353216;c[f+376+16>>2]=1065353216;c[f+376+20>>2]=1065353216;g[f+376+24>>2]=0.0;g[f+376+44>>2]=.03999999910593033;c[f+376+52>>2]=0;c[f+376>>2]=3736;c[f+376+4>>2]=1;c[f+376+56>>2]=c[d>>2];c[f+376+56+4>>2]=c[d+4>>2];c[f+376+56+8>>2]=c[d+8>>2];c[f+376+56+12>>2]=c[d+12>>2];c[f+376+72>>2]=c[d+16>>2];c[f+376+72+4>>2]=c[d+16+4>>2];c[f+376+72+8>>2]=c[d+16+8>>2];c[f+376+72+12>>2]=c[d+16+12>>2];c[f+376+88>>2]=c[d+32>>2];c[f+376+88+4>>2]=c[d+32+4>>2];c[f+376+88+8>>2]=c[d+32+8>>2];c[f+376+88+12>>2]=c[d+32+12>>2];g[f+16+308>>2]=9.999999747378752e-05;a[f+16+332>>0]=0;c[f>>2]=4960;c[f+4>>2]=f+16;c[f+8>>2]=f+480;c[f+12>>2]=f+376;if(od(f,b+4|0,b+68|0,f+712|0,f+712|0,f+536|0)|0?(h=+g[f+536+164>>2],+g[b+200>>2]>h):0)g[b+200>>2]=h;c[f+376>>2]=7124;e=c[f+376+52>>2]|0;if(!e){i=f;return}Ab[c[c[e>>2]>>2]&255](e);e=c[f+376+52>>2]|0;if(!e){i=f;return}c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0);i=f;return}function Tf(d,e,f,g,h,j,k,l,m){d=d|0;e=e|0;f=f|0;g=g|0;h=h|0;j=j|0;k=k|0;l=l|0;m=m|0;var n=0,o=0;o=i;i=i+48|0;c[6435]=(c[6435]|0)+1;g=yc(83)|0;if(!g)n=0;else{c[(g+4+15&-16)+-4>>2]=g;n=g+4+15&-16}c[n>>2]=h;b[n+4>>1]=j;b[n+6>>1]=k;j=n+16|0;c[j>>2]=c[e>>2];c[j+4>>2]=c[e+4>>2];c[j+8>>2]=c[e+8>>2];c[j+12>>2]=c[e+12>>2];j=n+32|0;c[j>>2]=c[f>>2];c[j+4>>2]=c[f+4>>2];c[j+8>>2]=c[f+8>>2];c[j+12>>2]=c[f+12>>2];c[n+8>>2]=0;j=n+56|0;c[j>>2]=0;k=n+52|0;c[k>>2]=0;c[o+16>>2]=c[e>>2];c[o+16+4>>2]=c[e+4>>2];c[o+16+8>>2]=c[e+8>>2];c[o+16+12>>2]=c[e+12>>2];c[o+16+16>>2]=c[f>>2];c[o+16+16+4>>2]=c[f+4>>2];c[o+16+16+8>>2]=c[f+8>>2];c[o+16+16+12>>2]=c[f+12>>2];c[n+60>>2]=c[d+144>>2];g=(c[d+188>>2]|0)+1|0;c[d+188>>2]=g;c[n+12>>2]=g;g=c[d+8>>2]|0;if(!g){c[6435]=(c[6435]|0)+1;g=yc(63)|0;if(!g)g=0;else{c[(g+4+15&-16)+-4>>2]=g;g=g+4+15&-16}l=g;m=l+44|0;do{c[l>>2]=0;l=l+4|0}while((l|0)<(m|0))}else c[d+8>>2]=0;c[g+32>>2]=0;c[g+36>>2]=n;c[g+40>>2]=0;c[g>>2]=c[o+16>>2];c[g+4>>2]=c[o+16+4>>2];c[g+8>>2]=c[o+16+8>>2];c[g+12>>2]=c[o+16+12>>2];c[g+16>>2]=c[o+16+16>>2];c[g+20>>2]=c[o+16+20>>2];c[g+24>>2]=c[o+16+24>>2];c[g+28>>2]=c[o+16+28>>2];lf(d+4|0,c[d+4>>2]|0,g);c[d+16>>2]=(c[d+16>>2]|0)+1;c[n+48>>2]=g;l=d+124+(c[d+144>>2]<<2)|0;c[k>>2]=0;c[j>>2]=c[l>>2];g=c[l>>2]|0;if(g|0)c[g+52>>2]=n;c[l>>2]=n;if(a[d+193>>0]|0){i=o;return n|0}c[o>>2]=8904;c[o+4>>2]=d;c[o+8>>2]=n;bg(c[d+4>>2]|0,o+16|0,o);bg(c[d+64>>2]|0,o+16|0,o);i=o;return n|0}function Uf(b,d,e,f,h){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;var j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0;f=i;i=i+608|0;p=+g[d+116>>2]-+g[d+52>>2];o=+g[d+120>>2]-+g[d+56>>2];n=+g[d+124>>2]-+g[d+60>>2];j=+g[e+116>>2]-+g[e+52>>2];k=+g[e+120>>2]-+g[e+56>>2];l=+g[e+124>>2]-+g[e+60>>2];m=+g[d+252>>2];if(p*p+o*o+n*n>2],j*j+k*k+l*l>2]|0;h=c[e+248>>2]|0;c[f+552+8>>2]=0;c[f+552+12>>2]=1065353216;c[f+552+16>>2]=1065353216;c[f+552+20>>2]=1065353216;g[f+552+24>>2]=0.0;c[f+552>>2]=6672;c[f+552+4>>2]=8;c[f+552+28>>2]=h;c[f+552+44>>2]=h;c[f+376>>2]=3708;g[f+376+164>>2]=999999984306749440.0;c[f+376+168>>2]=0;g[f+376+172>>2]=0.0;g[f+16+308>>2]=9.999999747378752e-05;a[f+16+332>>0]=0;c[f>>2]=9140;c[f+4>>2]=f+16;c[f+8>>2]=b;c[f+12>>2]=f+552;if(Ed(f,d+4|0,d+68|0,e+4|0,e+68|0,f+376|0)|0){j=+g[f+376+164>>2];if(+g[d+244>>2]>j)g[d+244>>2]=j;if(+g[e+244>>2]>j)g[e+244>>2]=j;if(j<1.0)k=j;else k=1.0}else k=1.0;b=c[e+192>>2]|0;h=c[d+248>>2]|0;c[f+552+8>>2]=0;c[f+552+12>>2]=1065353216;c[f+552+16>>2]=1065353216;c[f+552+20>>2]=1065353216;g[f+552+24>>2]=0.0;c[f+552>>2]=6672;c[f+552+4>>2]=8;c[f+552+28>>2]=h;c[f+552+44>>2]=h;c[f+376>>2]=3708;g[f+376+164>>2]=999999984306749440.0;c[f+376+168>>2]=0;g[f+376+172>>2]=0.0;g[f+16+308>>2]=9.999999747378752e-05;a[f+16+332>>0]=0;c[f>>2]=9140;c[f+4>>2]=f+16;c[f+8>>2]=f+552;c[f+12>>2]=b;if(Ed(f,d+4|0,d+68|0,e+4|0,e+68|0,f+376|0)|0){j=+g[f+376+164>>2];if(+g[d+244>>2]>j)g[d+244>>2]=j;if(+g[e+244>>2]>j)g[e+244>>2]=j;if(!(k>j))j=k}else j=k;p=j;i=f;return +p}function Vf(a,d){a=a|0;d=d|0;var e=0,f=0,h=0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0;e=i;i=i+128|0;G=c[(c[a+8>>2]|0)+24>>2]|0;h=c[G+(d*80|0)+64>>2]|0;f=c[a+12>>2]|0;x=+g[G+(d*80|0)>>2];D=+g[f>>2];w=+g[G+(d*80|0)+16>>2];C=+g[f+4>>2];v=+g[G+(d*80|0)+32>>2];B=+g[f+8>>2];u=+g[G+(d*80|0)+4>>2];t=+g[G+(d*80|0)+20>>2];s=+g[G+(d*80|0)+36>>2];r=+g[G+(d*80|0)+8>>2];p=+g[G+(d*80|0)+24>>2];n=+g[G+(d*80|0)+40>>2];A=+g[f+16>>2];z=+g[f+20>>2];y=+g[f+24>>2];q=+g[f+32>>2];o=+g[f+36>>2];m=+g[f+40>>2];F=+g[G+(d*80|0)+48>>2];E=+g[G+(d*80|0)+52>>2];j=+g[G+(d*80|0)+56>>2];l=+g[f+48>>2]+(D*F+C*E+B*j);k=A*F+z*E+y*j+ +g[f+52>>2];j=q*F+o*E+m*j+ +g[f+56>>2];g[e+56>>2]=x*D+w*C+v*B;g[e+56+4>>2]=D*u+C*t+B*s;g[e+56+8>>2]=D*r+C*p+B*n;g[e+56+12>>2]=0.0;g[e+56+16>>2]=x*A+w*z+v*y;g[e+56+20>>2]=u*A+t*z+s*y;g[e+56+24>>2]=r*A+p*z+n*y;g[e+56+28>>2]=0.0;g[e+56+32>>2]=x*q+w*o+v*m;g[e+56+36>>2]=u*q+t*o+s*m;g[e+56+40>>2]=r*q+p*o+n*m;g[e+56+44>>2]=0.0;g[e+56+48>>2]=l;g[e+56+52>>2]=k;g[e+56+56>>2]=j;g[e+56+60>>2]=0.0;f=c[a+4>>2]|0;c[e+32>>2]=0;c[e+32+4>>2]=h;c[e+32+8>>2]=f;c[e+32+12>>2]=e+56;c[e+32+16>>2]=-1;c[e+32+20>>2]=d;f=c[a+24>>2]|0;g[e+4>>2]=1.0;c[e+8>>2]=0;b[e+12>>1]=1;b[e+14>>1]=-1;c[e+16>>2]=0;c[e>>2]=5840;c[e+20>>2]=f;c[e+24>>2]=d;c[e+4>>2]=c[f+4>>2];c[e+16>>2]=c[f+16>>2];bd(c[a+16>>2]|0,c[a+20>>2]|0,e+32|0,e);i=e;return}function Wf(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0.0,h=0,j=0,k=0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0;j=i;i=i+96|0;f=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);h=0;do{q=j+80+(h<<2)|0;c[j+80>>2]=0;c[j+80+4>>2]=0;c[j+80+8>>2]=0;c[j+80+12>>2]=0;g[q>>2]=1.0;k=c[(c[a>>2]|0)+64>>2]|0;l=+g[j+80>>2];m=+g[j+80+4>>2];n=+g[j+80+8>>2];o=l*+g[b+4>>2]+m*+g[b+20>>2]+n*+g[b+36>>2];p=l*+g[b+8>>2]+m*+g[b+24>>2]+n*+g[b+40>>2];g[j+32>>2]=+g[b>>2]*l+ +g[b+16>>2]*m+ +g[b+32>>2]*n;g[j+32+4>>2]=o;g[j+32+8>>2]=p;g[j+32+12>>2]=0.0;ic[k&127](j+64|0,a,j+32|0);p=+g[j+64>>2];o=+g[j+64+4>>2];n=+g[j+64+8>>2];m=p*+g[b+16>>2]+o*+g[b+20>>2]+n*+g[b+24>>2]+ +g[b+52>>2];l=p*+g[b+32>>2]+o*+g[b+36>>2]+n*+g[b+40>>2]+ +g[b+56>>2];g[j+48>>2]=p*+g[b>>2]+o*+g[b+4>>2]+n*+g[b+8>>2]+ +g[b+48>>2];g[j+48+4>>2]=m;g[j+48+8>>2]=l;g[j+48+12>>2]=0.0;k=j+48+(h<<2)|0;g[e+(h<<2)>>2]=f+ +g[k>>2];g[q>>2]=-1.0;q=c[(c[a>>2]|0)+64>>2]|0;l=+g[j+80>>2];m=+g[j+80+4>>2];n=+g[j+80+8>>2];o=l*+g[b+4>>2]+m*+g[b+20>>2]+n*+g[b+36>>2];p=l*+g[b+8>>2]+m*+g[b+24>>2]+n*+g[b+40>>2];g[j>>2]=+g[b>>2]*l+ +g[b+16>>2]*m+ +g[b+32>>2]*n;g[j+4>>2]=o;g[j+8>>2]=p;g[j+12>>2]=0.0;ic[q&127](j+16|0,a,j);p=+g[j+16>>2];o=+g[j+16+4>>2];n=+g[j+16+8>>2];m=p*+g[b+16>>2]+o*+g[b+20>>2]+n*+g[b+24>>2]+ +g[b+52>>2];l=p*+g[b+32>>2]+o*+g[b+36>>2]+n*+g[b+40>>2]+ +g[b+56>>2];g[j+48>>2]=p*+g[b>>2]+o*+g[b+4>>2]+n*+g[b+8>>2]+ +g[b+48>>2];g[j+48+4>>2]=m;g[j+48+8>>2]=l;g[j+48+12>>2]=0.0;g[d+(h<<2)>>2]=+g[k>>2]-f;h=h+1|0}while((h|0)!=3);i=j;return}function Xf(b,d,e,f,h){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;var j=0,k=0,l=0,m=0,n=0,o=0,p=0;l=i;i=i+160|0;j=c[b+12>>2]|0;if(!j){i=l;return}m=(a[b+16>>0]|0)!=0;n=m?e:d;e=m?d:e;p=c[n+4>>2]|0;o=c[e+4>>2]|0;c[h+4>>2]=j;d=c[j+752>>2]|0;c[l+136>>2]=9304;c[l+136+4>>2]=p;c[l+136+8>>2]=o;c[l+136+12>>2]=d;g[l+128>>2]=999999984306749440.0;d=c[n+12>>2]|0;c[l>>2]=c[d>>2];c[l+4>>2]=c[d+4>>2];c[l+8>>2]=c[d+8>>2];c[l+12>>2]=c[d+12>>2];c[l+16>>2]=c[d+16>>2];c[l+16+4>>2]=c[d+16+4>>2];c[l+16+8>>2]=c[d+16+8>>2];c[l+16+12>>2]=c[d+16+12>>2];c[l+32>>2]=c[d+32>>2];c[l+32+4>>2]=c[d+32+4>>2];c[l+32+8>>2]=c[d+32+8>>2];c[l+32+12>>2]=c[d+32+12>>2];c[l+48>>2]=c[d+48>>2];c[l+48+4>>2]=c[d+48+4>>2];c[l+48+8>>2]=c[d+48+8>>2];c[l+48+12>>2]=c[d+48+12>>2];e=c[e+12>>2]|0;c[l+64>>2]=c[e>>2];c[l+64+4>>2]=c[e+4>>2];c[l+64+8>>2]=c[e+8>>2];c[l+64+12>>2]=c[e+12>>2];c[l+80>>2]=c[e+16>>2];c[l+80+4>>2]=c[e+16+4>>2];c[l+80+8>>2]=c[e+16+8>>2];c[l+80+12>>2]=c[e+16+12>>2];c[l+96>>2]=c[e+32>>2];c[l+96+4>>2]=c[e+32+4>>2];c[l+96+8>>2]=c[e+32+8>>2];c[l+96+12>>2]=c[e+32+12>>2];c[l+112>>2]=c[e+48>>2];c[l+112+4>>2]=c[e+48+4>>2];c[l+112+8>>2]=c[e+48+8>>2];c[l+112+12>>2]=c[e+48+12>>2];$d(l+136|0,l,h,c[f+20>>2]|0,m);do if(a[b+8>>0]|0?(k=c[h+4>>2]|0,c[k+748>>2]|0):0){d=c[k+740>>2]|0;e=c[(c[h+8>>2]|0)+8>>2]|0;j=c[(c[h+12>>2]|0)+8>>2]|0;if((d|0)==(e|0)){ef(k,d+4|0,j+4|0);break}else{ef(k,j+4|0,e+4|0);break}}while(0);i=l;return}function Yf(d,e,f){d=d|0;e=e|0;f=f|0;var h=0,i=0,j=0;c[d+4>>2]=1065353216;c[d+8>>2]=1065353216;c[d+12>>2]=1065353216;g[d+16>>2]=0.0;a[d+36>>0]=1;c[d+32>>2]=0;c[d+24>>2]=0;c[d+28>>2]=0;c[d+48>>2]=0;c[d>>2]=8452;a[d+100>>0]=1;c[d+96>>2]=0;c[d+88>>2]=0;c[d+92>>2]=0;a[d+120>>0]=1;c[d+116>>2]=0;c[d+108>>2]=0;c[d+112>>2]=0;a[d+140>>0]=1;c[d+136>>2]=0;c[d+128>>2]=0;c[d+132>>2]=0;a[d+160>>0]=1;c[d+156>>2]=0;c[d+148>>2]=0;c[d+152>>2]=0;a[d+164>>0]=e&1;a[d+165>>0]=f&1;g[d+168>>2]=0.0;c[6435]=(c[6435]|0)+1;e=yc(51)|0;if(!e)h=0;else{c[(e+4+15&-16)+-4>>2]=e;h=e+4+15&-16}e=c[d+24>>2]|0;if((e|0)>0){f=0;do{i=h+(f<<5)|0;j=(c[d+32>>2]|0)+(f<<5)|0;c[i>>2]=c[j>>2];c[i+4>>2]=c[j+4>>2];c[i+8>>2]=c[j+8>>2];c[i+12>>2]=c[j+12>>2];c[i+16>>2]=c[j+16>>2];c[i+20>>2]=c[j+20>>2];c[i+24>>2]=c[j+24>>2];c[i+28>>2]=c[j+28>>2];f=f+1|0}while((f|0)!=(e|0))}e=c[d+32>>2]|0;if(e|0){if(a[d+36>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0)}c[d+32>>2]=0}a[d+36>>0]=1;c[d+32>>2]=h;c[d+28>>2]=1;e=c[d+24>>2]|0;c[h+(e<<5)>>2]=0;c[h+(e<<5)+4>>2]=0;c[h+(e<<5)+8>>2]=12;c[h+(e<<5)+12>>2]=0;c[h+(e<<5)+16>>2]=0;c[h+(e<<5)+20>>2]=16;c[h+(e<<5)+24>>2]=2;c[h+(e<<5)+28>>2]=0;c[d+24>>2]=(c[d+24>>2]|0)+1;e=b[d+164>>1]|0;if(!((e&255)<<24>>24)){f=c[d+32>>2]|0;c[f>>2]=(c[d+148>>2]|0)/3|0;c[f+4>>2]=0;c[f+24>>2]=3;c[f+8>>2]=6}else{f=c[d+32>>2]|0;c[f>>2]=(c[d+128>>2]|0)/3|0;c[f+4>>2]=0;c[f+24>>2]=2;c[f+8>>2]=12}if((e&65535)<256){i=12;d=(c[d+108>>2]|0)/3|0;j=f+12|0;c[j>>2]=d;j=f+16|0;c[j>>2]=0;j=f+20|0;c[j>>2]=i;return}else{i=16;d=c[d+88>>2]|0;j=f+12|0;c[j>>2]=d;j=f+16|0;c[j>>2]=0;j=f+20|0;c[j>>2]=i;return}}function Zf(b,d,e,f,h){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;var j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0;q=i;i=i+48|0;if((f|0)==(d|0)|((d|0)==(e|0)|(e|0)==(f|0))){i=q;return}l=q;m=l+36|0;do{c[l>>2]=0;l=l+4|0}while((l|0)<(m|0));if(!h)p=c[c[b+880>>2]>>2]|0;else p=h;h=c[b+752>>2]|0;if((h|0)==(c[b+756>>2]|0)?(o=h|0?h<<1:1,(h|0)<(o|0)):0){if(!o)n=0;else{c[6435]=(c[6435]|0)+1;h=yc((o*44|3)+16|0)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}n=h;h=c[b+752>>2]|0}if((h|0)>0){j=0;do{l=n+(j*44|0)|0;k=(c[b+760>>2]|0)+(j*44|0)|0;m=l+44|0;do{c[l>>2]=c[k>>2];l=l+4|0;k=k+4|0}while((l|0)<(m|0));j=j+1|0}while((j|0)!=(h|0))}h=c[b+760>>2]|0;if(h|0){if(a[b+764>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0)}c[b+760>>2]=0}a[b+764>>0]=1;c[b+760>>2]=n;c[b+756>>2]=o;h=c[b+752>>2]|0}l=c[b+760>>2]|0;c[l+(h*44|0)>>2]=0;c[l+(h*44|0)+4>>2]=p;l=l+(h*44|0)+8|0;k=q;m=l+36|0;do{c[l>>2]=c[k>>2];l=l+4|0;k=k+4|0}while((l|0)<(m|0));p=c[b+752>>2]|0;c[b+752>>2]=p+1;o=c[b+760>>2]|0;l=c[b+720>>2]|0;c[o+(p*44|0)+8>>2]=l+(d*104|0);m=c[b+720>>2]|0;c[o+(p*44|0)+12>>2]=m+(e*104|0);n=c[b+720>>2]|0;c[o+(p*44|0)+16>>2]=n+(f*104|0);t=+g[l+(d*104|0)+8>>2];v=+g[l+(d*104|0)+12>>2];r=+g[l+(d*104|0)+16>>2];s=+g[m+(e*104|0)+8>>2]-t;w=+g[m+(e*104|0)+12>>2]-v;u=+g[m+(e*104|0)+16>>2]-r;t=+g[n+(f*104|0)+8>>2]-t;v=+g[n+(f*104|0)+12>>2]-v;r=+g[n+(f*104|0)+16>>2]-r;g[o+(p*44|0)+36>>2]=+O(+((s*v-w*t)*(s*v-w*t)+((w*r-u*v)*(w*r-u*v)+(u*t-s*r)*(u*t-s*r))));a[b+924>>0]=1;i=q;return}function _f(b,d){b=b|0;d=+d;var e=0,f=0,h=0,j=0,k=0,l=0,m=0,n=0.0,o=0.0,p=0.0,q=0.0;m=i;i=i+16|0;li(12187);e=c[b+232>>2]|0;if((e|0)>0){l=(a[26260]|0)==0;k=0;do{j=c[(c[b+240>>2]|0)+(k<<2)>>2]|0;a:do if(j){f=c[j+216>>2]|0;b:do switch(f|0){case 4:case 2:{if((f|0)==4)break a;break}default:{q=+g[j+312>>2];p=+g[j+316>>2];o=+g[j+320>>2];n=+g[j+472>>2];if(q*q+p*p+o*o>2],o=+g[j+332>>2],p=+g[j+336>>2],q=+g[j+476>>2],n*n+o*o+p*p>2]=+g[j+220>>2]+d;break b}g[j+220>>2]=0.0;if((f&-2|0)!=4){c[j+216>>2]=0;f=0}}}while(0);h=f&-2;do if(l){if((h|0)!=2?!(+g[j+220>>2]>2.0):0)break;if(c[j+204>>2]&3|0){if((h|0)==4)break a;c[j+216>>2]=2;break a}if((f|0)==1){if((h|0)==4)break a;c[j+216>>2]=3;break a}else{if((f|0)!=2)break a;e=(c[j+260>>2]|0)+2|0;c[j+328>>2]=0;c[j+328+4>>2]=0;c[j+328+8>>2]=0;c[j+328+12>>2]=0;c[j+260>>2]=e;c[j+312>>2]=0;c[j+312+4>>2]=0;c[j+312+8>>2]=0;c[j+312+12>>2]=0;e=c[b+232>>2]|0;break a}}while(0);if((h|0)!=4)c[j+216>>2]=1}while(0);k=k+1|0}while((k|0)<(e|0))}e=c[2357]|0;b=(c[e+16>>2]|0)+-1|0;c[e+16>>2]=b;if(b|0){i=m;return}do if(c[e+4>>2]|0){tb(m|0,0)|0;b=c[6434]|0;g[e+8>>2]=+g[e+8>>2]+ +(((c[m+4>>2]|0)-(c[b+4>>2]|0)+(((c[m>>2]|0)-(c[b>>2]|0)|0)*1e6|0)-(c[e+12>>2]|0)|0)>>>0)/1.0e3;if(!(c[e+16>>2]|0)){e=c[2357]|0;break}else{i=m;return}}while(0);c[2357]=c[e+20>>2];i=m;return}function $f(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0.0,h=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0,G=0.0,H=0;H=i;i=i+32|0;k=+g[b+16>>2];f=+g[b>>2];l=+g[b+20>>2];h=+g[b+4>>2];n=+g[b+24>>2];j=+g[b+8>>2];r=+g[b+32>>2];v=+g[b+36>>2];w=+g[b+40>>2];B=(l-h)*(w-j)-(n-j)*(v-h);C=(n-j)*(r-f)-(k-f)*(w-j);D=(k-f)*(v-h)-(l-h)*(r-f);g[H+16>>2]=B;g[H+16+4>>2]=C;g[H+16+8>>2]=D;g[H+16+12>>2]=0.0;o=+g[a+4>>2];s=+g[a+8>>2];x=+g[a+12>>2];E=B*o+C*s+D*x-(f*B+h*C+j*D);p=+g[a+20>>2];t=+g[a+24>>2];y=+g[a+28>>2];if(E*(B*p+C*t+D*y-(f*B+h*C+j*D))>=0.0){i=H;return}F=c[a+36>>2]|0;if(E<=0.0&(F&1|0)!=0){i=H;return}G=E/(E-(B*p+C*t+D*y-(f*B+h*C+j*D)));if(!(G<+g[a+40>>2])){i=H;return}A=(B*B+C*C+D*D)*-9.999999747378752e-05;z=f-(p*G+o*(1.0-G));u=h-(t*G+s*(1.0-G));q=j-(y*G+x*(1.0-G));m=k-(p*G+o*(1.0-G));l=l-(t*G+s*(1.0-G));k=n-(y*G+x*(1.0-G));if(!(D*(z*l-u*m)+(B*(u*k-q*l)+C*(q*m-z*k))>=A)){i=H;return}j=r-(p*G+o*(1.0-G));h=v-(t*G+s*(1.0-G));f=w-(y*G+x*(1.0-G));if(!(D*(m*h-l*j)+(B*(l*f-k*h)+C*(k*j-m*f))>=A)){i=H;return}if(!(D*(u*j-z*h)+(B*(q*h-u*f)+C*(z*f-q*j))>=A)){i=H;return}f=1.0/+O(+(B*B+C*C+D*D));g[H+16>>2]=B*f;g[H+16+4>>2]=C*f;g[H+16+8>>2]=D*f;b=c[(c[a>>2]|0)+12>>2]|0;if(E<=0.0&(F&2|0)==0){g[H>>2]=-(B*f);g[H+4>>2]=-(C*f);g[H+8>>2]=-(D*f);g[H+12>>2]=0.0;g[a+40>>2]=+ec[b&3](a,H,G,d,e);i=H;return}else{g[a+40>>2]=+ec[b&3](a,H+16|0,G,d,e);i=H;return}}function ag(b,d,e,f,h){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;var j=0,k=0,l=0,m=0,n=0;l=i;i=i+144|0;j=c[b+12>>2]|0;if(!j){i=l;return}n=c[d+4>>2]|0;m=c[e+4>>2]|0;c[h+4>>2]=j;g[l+12+128>>2]=999999984306749440.0;d=c[d+12>>2]|0;c[l+12>>2]=c[d>>2];c[l+12+4>>2]=c[d+4>>2];c[l+12+8>>2]=c[d+8>>2];c[l+12+12>>2]=c[d+12>>2];c[l+12+16>>2]=c[d+16>>2];c[l+12+16+4>>2]=c[d+16+4>>2];c[l+12+16+8>>2]=c[d+16+8>>2];c[l+12+16+12>>2]=c[d+16+12>>2];c[l+12+32>>2]=c[d+32>>2];c[l+12+32+4>>2]=c[d+32+4>>2];c[l+12+32+8>>2]=c[d+32+8>>2];c[l+12+32+12>>2]=c[d+32+12>>2];c[l+12+48>>2]=c[d+48>>2];c[l+12+48+4>>2]=c[d+48+4>>2];c[l+12+48+8>>2]=c[d+48+8>>2];c[l+12+48+12>>2]=c[d+48+12>>2];e=c[e+12>>2]|0;c[l+12+64>>2]=c[e>>2];c[l+12+64+4>>2]=c[e+4>>2];c[l+12+64+8>>2]=c[e+8>>2];c[l+12+64+12>>2]=c[e+12>>2];c[l+12+80>>2]=c[e+16>>2];c[l+12+80+4>>2]=c[e+16+4>>2];c[l+12+80+8>>2]=c[e+16+8>>2];c[l+12+80+12>>2]=c[e+16+12>>2];c[l+12+96>>2]=c[e+32>>2];c[l+12+96+4>>2]=c[e+32+4>>2];c[l+12+96+8>>2]=c[e+32+8>>2];c[l+12+96+12>>2]=c[e+32+12>>2];c[l+12+112>>2]=c[e+48>>2];c[l+12+112+4>>2]=c[e+48+4>>2];c[l+12+112+8>>2]=c[e+48+8>>2];c[l+12+112+12>>2]=c[e+48+12>>2];c[l>>2]=9284;c[l+4>>2]=n;c[l+8>>2]=m;xc(l,l+12|0,h,c[f+20>>2]|0,0);do if(a[b+8>>0]|0?(k=c[h+4>>2]|0,c[k+748>>2]|0):0){d=c[k+740>>2]|0;e=c[(c[h+8>>2]|0)+8>>2]|0;j=c[(c[h+12>>2]|0)+8>>2]|0;if((d|0)==(e|0)){ef(k,d+4|0,j+4|0);break}else{ef(k,j+4|0,e+4|0);break}}while(0);i=l;return}function bg(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0,h=0,i=0,j=0,k=0,l=0.0,m=0.0,n=0.0,o=0.0,p=0,q=0.0,r=0,s=0.0,t=0;if(!a)return;n=+g[b>>2];o=+g[b+4>>2];q=+g[b+8>>2];s=+g[b+16>>2];m=+g[b+20>>2];l=+g[b+24>>2];c[6435]=(c[6435]|0)+1;b=yc(275)|0;c[(b+4+15&-16)+-4>>2]=b;c[(b+4+15&-16)>>2]=a;k=1;a=64;b=b+4+15&-16;while(1){e=k+-1|0;i=c[b+(e<<2)>>2]|0;do if(((((+g[i>>2]<=s?+g[i+16>>2]>=n:0)?+g[i+4>>2]<=m:0)?+g[i+20>>2]>=o:0)?+g[i+8>>2]<=l:0)?+g[i+24>>2]>=q:0){if(!(c[i+40>>2]|0)){Cb[c[(c[d>>2]|0)+12>>2]&127](d,i);break}j=c[i+36>>2]|0;do if((e|0)==(a|0)?(p=a|0?a<<1:1,(k|0)<=(p|0)):0){if((p|0)!=0?(c[6435]=(c[6435]|0)+1,r=yc((p<<2|3)+16|0)|0,(r|0)!=0):0){c[(r+4+15&-16)+-4>>2]=r;h=r+4+15&-16}else h=0;if((k|0)<=1){if(!b){a=p;b=h;break}}else{f=0;do{c[h+(f<<2)>>2]=c[b+(f<<2)>>2];f=f+1|0}while((f|0)!=(a|0))}c[6436]=(c[6436]|0)+1;hd(c[b+-4>>2]|0);a=p;b=h}while(0);c[b+(e<<2)>>2]=j;h=c[i+40>>2]|0;do if((k|0)==(a|0)){a=k|0?k<<1:1;if((k|0)<(a|0)){if((a|0)!=0?(c[6435]=(c[6435]|0)+1,t=yc((a<<2|3)+16|0)|0,(t|0)!=0):0){c[(t+4+15&-16)+-4>>2]=t;f=t+4+15&-16}else f=0;if((k|0)<=0){if(!b){b=f;break}}else{e=0;do{c[f+(e<<2)>>2]=c[b+(e<<2)>>2];e=e+1|0}while((e|0)!=(k|0))}c[6436]=(c[6436]|0)+1;hd(c[b+-4>>2]|0);b=f}else a=k}while(0);c[b+(k<<2)>>2]=h;e=k+1|0}while(0);if((e|0)>0)k=e;else break}if(!b)return;c[6436]=(c[6436]|0)+1;hd(c[b+-4>>2]|0);return}function cg(b){b=b|0;var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0;if((c[b+104>>2]|0)>0){l=0;do{h=c[(c[b+4>>2]|0)+684>>2]|0;i=(c[b+112>>2]|0)+(l<<3)+4|0;d=c[i>>2]|0;if((c[h+60>>2]|0)>0){k=0;do{j=(c[h+68>>2]|0)+(k<<2)|0;e=c[j>>2]|0;a:do if(e|0){f=0;do{g=f+280|0;b:do if(!f)while(1){f=e;e=c[e+280>>2]|0;if((c[f+276>>2]|0)!=(d|0))break b;c[j>>2]=e;hd(f);if(!e)break a}else while(1){f=e;e=c[e+280>>2]|0;if((c[f+276>>2]|0)!=(d|0))break b;c[g>>2]=e;hd(f);if(!e)break a}while(0)}while((e|0)!=0)}while(0);k=k+1|0}while((k|0)<(c[h+60>>2]|0));d=c[i>>2]|0}if(d|0)Ab[c[(c[d>>2]|0)+4>>2]&255](d);l=l+1|0}while((l|0)<(c[b+104>>2]|0))}d=c[b+72>>2]|0;if(d|0){if(a[b+76>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+72>>2]=0}a[b+76>>0]=1;c[b+72>>2]=0;c[b+64>>2]=0;c[b+68>>2]=0;d=c[b+92>>2]|0;if(d|0){if(a[b+96>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+92>>2]=0}a[b+96>>0]=1;c[b+92>>2]=0;c[b+84>>2]=0;c[b+88>>2]=0;d=c[b+112>>2]|0;if(d|0){if(a[b+116>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+112>>2]=0}a[b+116>>0]=1;c[b+112>>2]=0;c[b+104>>2]=0;c[b+108>>2]=0;d=c[b+132>>2]|0;if(!d){a[b+136>>0]=1;c[b+132>>2]=0;c[b+124>>2]=0;b=b+128|0;c[b>>2]=0;return}if(a[b+136>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+132>>2]=0;a[b+136>>0]=1;c[b+132>>2]=0;c[b+124>>2]=0;b=b+128|0;c[b>>2]=0;return}function dg(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0;e=c[a+56>>2]|0;if(!e){e=c[a+52>>2]|0;if(!e){c[6435]=(c[6435]|0)+1;e=yc(31)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}f=c[a+60>>2]|0;c[e+4>>2]=f;g=e+8|0;c[g>>2]=0;c[6435]=(c[6435]|0)+1;f=yc((f*24|3)+16|0)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}c[e>>2]=f;c[g>>2]=c[a+48>>2];c[a+48>>2]=e}else c[a+52>>2]=c[e+8>>2];h=c[e+4>>2]|0;e=c[e>>2]|0;if((h|0)>0){f=0;g=e;do{f=f+1|0;i=g;g=g+24|0;c[i>>2]=(f|0)<(h|0)?g:0}while((f|0)!=(h|0));i=e}else i=e}else i=e;c[a+56>>2]=c[i>>2];c[i>>2]=0;c[i+4>>2]=0;c[i+8>>2]=0;c[i+12>>2]=0;c[i+16>>2]=0;c[i+20>>2]=0;e=c[a+56>>2]|0;if(!e){e=c[a+52>>2]|0;if(!e){c[6435]=(c[6435]|0)+1;e=yc(31)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}f=c[a+60>>2]|0;c[e+4>>2]=f;g=e+8|0;c[g>>2]=0;c[6435]=(c[6435]|0)+1;f=yc((f*24|3)+16|0)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}c[e>>2]=f;c[g>>2]=c[a+48>>2];c[a+48>>2]=e}else c[a+52>>2]=c[e+8>>2];h=c[e+4>>2]|0;e=c[e>>2]|0;if((h|0)>0){f=0;g=e;do{f=f+1|0;j=g;g=g+24|0;c[j>>2]=(f|0)<(h|0)?g:0}while((f|0)!=(h|0))}}c[a+56>>2]=c[e>>2];c[e>>2]=0;c[e+4>>2]=0;c[e+8>>2]=0;c[i+8>>2]=e;c[e+8>>2]=i;j=c[a+100>>2]|0;c[i+20>>2]=j;c[e+20>>2]=j;c[i+12>>2]=d;c[e+12>>2]=b;c[i+16>>2]=0;c[e+16>>2]=0;e=c[a+116>>2]|0;c[a+116>>2]=e+1;if((e|0)<(c[a+120>>2]|0))return i|0;c[a+120>>2]=e+1;return i|0}function eg(a){a=a|0;var b=0,d=0,e=0,f=0,h=0,i=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0,p=0;b=c[a+752>>2]|0;if((b|0)>0){d=c[a+760>>2]|0;e=0;do{o=c[d+(e*44|0)+8>>2]|0;f=c[d+(e*44|0)+12>>2]|0;h=c[d+(e*44|0)+16>>2]|0;k=+g[o+8>>2];m=+g[o+12>>2];i=+g[o+16>>2];j=+g[f+8>>2]-k;n=+g[f+12>>2]-m;l=+g[f+16>>2]-i;k=+g[h+8>>2]-k;m=+g[h+12>>2]-m;i=+g[h+16>>2]-i;g[d+(e*44|0)+36>>2]=+O(+((j*m-n*k)*(j*m-n*k)+((n*i-l*m)*(n*i-l*m)+(l*k-j*i)*(l*k-j*i))));e=e+1|0}while((e|0)!=(b|0))}d=c[a+712>>2]|0;if((d|0)>0){c[6435]=(c[6435]|0)+1;b=yc((d<<2|3)+16|0)|0;if(!b)f=0;else{c[(b+4+15&-16)+-4>>2]=b;f=b+4+15&-16}Qn(f|0,0,d<<2|0)|0;d=c[a+712>>2]|0;if((d|0)>0){b=c[a+720>>2]|0;e=0;do{g[b+(e*104|0)+92>>2]=0.0;e=e+1|0}while((e|0)!=(d|0));h=f}else h=f}else h=0;f=c[a+752>>2]|0;if((f|0)>0){b=c[a+760>>2]|0;d=c[a+720>>2]|0;e=0;do{n=+N(+(+g[b+(e*44|0)+36>>2]));o=c[b+(e*44|0)+8>>2]|0;p=h+(((o-d|0)/104|0)<<2)|0;c[p>>2]=(c[p>>2]|0)+1;g[o+92>>2]=n+ +g[o+92>>2];o=c[b+(e*44|0)+12>>2]|0;p=h+(((o-d|0)/104|0)<<2)|0;c[p>>2]=(c[p>>2]|0)+1;g[o+92>>2]=n+ +g[o+92>>2];o=c[b+(e*44|0)+16>>2]|0;p=h+(((o-d|0)/104|0)<<2)|0;c[p>>2]=(c[p>>2]|0)+1;g[o+92>>2]=n+ +g[o+92>>2];e=e+1|0}while((e|0)!=(f|0));d=c[a+712>>2]|0}if((d|0)<=0){if(!h)return}else{e=0;do{b=c[h+(e<<2)>>2]|0;if((b|0)>0){p=(c[a+720>>2]|0)+(e*104|0)+92|0;g[p>>2]=+g[p>>2]/+(b|0)}else g[(c[a+720>>2]|0)+(e*104|0)+92>>2]=0.0;e=e+1|0}while((e|0)!=(d|0))}c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0);return}function fg(b,d){b=b|0;d=d|0;var e=0,f=0,g=0,h=0,j=0,k=0,l=0;l=i;i=i+16|0;j=c[b+28>>2]|0;k=c[b+32>>2]|0;if(!(a[b+1301>>0]|0)){h=0;e=Nf(b,d,0,j+4|0,k+4|0,j+312|0,k+312|0,j+328|0,k+328|0)|0;do{f=b+868+(h<<6)|0;if(!((c[b+868+(h<<6)+56>>2]|0)==0?(a[b+868+(h<<6)+44>>0]|0)==0:0)){g=b+1208+(h<<4)|0;c[l>>2]=c[g>>2];c[l+4>>2]=c[g+4>>2];c[l+8>>2]=c[g+8>>2];c[l+12>>2]=c[g+12>>2];g=c[b+1304>>2]>>(h*3|0)+9;if(!(g&1))c[b+868+(h<<6)+28>>2]=c[c[d+32>>2]>>2];if(!(g&2))c[b+868+(h<<6)+36>>2]=c[c[d+32>>2]>>2];if(!(g&4))c[b+868+(h<<6)+32>>2]=c[d+4>>2];e=(Dd(b,f,j+4|0,k+4|0,j+312|0,k+312|0,j+328|0,k+328|0,d,e,l,1,0)|0)+e|0}h=h+1|0}while((h|0)!=3);i=l;return}h=0;e=0;do{f=b+868+(h<<6)|0;if(!((c[b+868+(h<<6)+56>>2]|0)==0?(a[b+868+(h<<6)+44>>0]|0)==0:0)){g=b+1208+(h<<4)|0;c[l>>2]=c[g>>2];c[l+4>>2]=c[g+4>>2];c[l+8>>2]=c[g+8>>2];c[l+12>>2]=c[g+12>>2];g=c[b+1304>>2]>>(h*3|0)+9;if(!(g&1))c[b+868+(h<<6)+28>>2]=c[c[d+32>>2]>>2];if(!(g&2))c[b+868+(h<<6)+36>>2]=c[c[d+32>>2]>>2];if(!(g&4))c[b+868+(h<<6)+32>>2]=c[d+4>>2];e=(Dd(b,f,j+4|0,k+4|0,j+312|0,k+312|0,j+328|0,k+328|0,d,e,l,1,0)|0)+e|0}h=h+1|0}while((h|0)!=3);Nf(b,d,e,j+4|0,k+4|0,j+312|0,k+312|0,j+328|0,k+328|0)|0;i=l;return}function gg(b){b=b|0;var d=0,e=0,f=0,h=0.0,i=0.0,j=0,k=0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0,s=0.0,t=0.0,u=0.0,v=0.0;d=c[b+988>>2]|0;if(d|0)xn(b+988|0,d);d=c[b+992>>2]|0;if(d|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+992>>2]=0;c[b+996>>2]=-1;d=c[b+1020>>2]|0;if(d|0){if(a[b+1024>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+1020>>2]=0}a[b+1024>>0]=1;c[b+1020>>2]=0;c[b+1012>>2]=0;c[b+1016>>2]=0;c[b+1004>>2]=0;if((c[b+752>>2]|0)<=0)return;r=0;do{j=c[b+760>>2]|0;k=j+(r*44|0)|0;e=c[j+(r*44|0)+8>>2]|0;f=c[j+(r*44|0)+12>>2]|0;d=c[j+(r*44|0)+16>>2]|0;o=+g[e+8>>2];p=+g[e+12>>2];q=+g[e+16>>2];i=+g[e+20>>2];v=+g[f+8>>2];l=v>2];m=s>2];n=t>2];h=u>2];l=u>2];m=t>2];n=s>2];h=v>2]|0;if(!d){c[6435]=(c[6435]|0)+1;d=yc(63)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}e=d;f=e+44|0;do{c[e>>2]=0;e=e+4|0}while((e|0)<(f|0))}else c[b+992>>2]=0;c[d+32>>2]=0;c[d+36>>2]=k;c[d+40>>2]=0;g[d>>2]=l;g[d+4>>2]=m;g[d+8>>2]=n;g[d+12>>2]=h;g[d+16>>2]=o;g[d+20>>2]=p;g[d+24>>2]=q;g[d+28>>2]=i;lf(b+988|0,c[b+988>>2]|0,d);c[b+1e3>>2]=(c[b+1e3>>2]|0)+1;c[j+(r*44|0)+40>>2]=d;r=r+1|0}while((r|0)<(c[b+752>>2]|0));return}function hg(b){b=b|0;var d=0,e=0.0,f=0,h=0,j=0.0,k=0.0,l=0;l=i;i=i+64|0;li(11978);a:do if(!(a[b+274>>0]|0)){d=c[b+232>>2]|0;if((d|0)>0){h=0;while(1){f=c[(c[b+240>>2]|0)+(h<<2)>>2]|0;switch(c[f+216>>2]|0){case 2:case 5:break;default:if((c[f+480>>2]|0)!=0?(c[f+204>>2]&3|0)==0:0){if((a[b+300>>0]|0)!=0?(k=+g[b+268>>2],k!=0.0):0)e=+g[b+264>>2]-k;else e=+g[b+264>>2]*+g[f+244>>2];Zg(f+68|0,+g[f+132>>2],+g[f+136>>2],+g[f+140>>2],f+148|0,e,l);d=c[f+480>>2]|0;Cb[c[(c[d>>2]|0)+12>>2]&127](d,l);d=c[b+232>>2]|0}}h=h+1|0;if((h|0)>=(d|0))break a}}}else{d=c[b+8>>2]|0;if((d|0)>0){h=0;do{f=c[(c[b+16>>2]|0)+(h<<2)>>2]|0;if((!((f|0)==0?1:(c[f+236>>2]&2|0)==0)?(c[f+480>>2]|0)!=0:0)?(c[f+204>>2]&3|0)==0:0){if((a[b+300>>0]|0)!=0?(j=+g[b+268>>2],j!=0.0):0)e=+g[b+264>>2]-j;else e=+g[b+264>>2]*+g[f+244>>2];Zg(f+68|0,+g[f+132>>2],+g[f+136>>2],+g[f+140>>2],f+148|0,e,l);d=c[f+480>>2]|0;Cb[c[(c[d>>2]|0)+12>>2]&127](d,l);d=c[b+8>>2]|0}h=h+1|0}while((h|0)<(d|0))}}while(0);d=c[2357]|0;b=(c[d+16>>2]|0)+-1|0;c[d+16>>2]=b;if(b|0){i=l;return}do if(c[d+4>>2]|0){tb(l|0,0)|0;b=c[6434]|0;g[d+8>>2]=+g[d+8>>2]+ +(((c[l+4>>2]|0)-(c[b+4>>2]|0)+(((c[l>>2]|0)-(c[b>>2]|0)|0)*1e6|0)-(c[d+12>>2]|0)|0)>>>0)/1.0e3;if(!(c[d+16>>2]|0)){d=c[2357]|0;break}else{i=l;return}}while(0);c[2357]=c[d+20>>2];i=l;return}function ig(a,b){a=a|0;b=b|0;var d=0,e=0,f=0,g=0,h=0,j=0,k=0,l=0,m=0,n=0;n=i;i=i+32|0;if((b|0)<0)b=c[a+12>>2]|0;d=c[a>>2]|0;if(!((b|0)>0&(d|0)!=0)){i=n;return}while(1){e=d+40|0;if(c[e>>2]|0){m=0;while(1){l=(c[a+16>>2]|0)>>>m&1;f=d+32|0;g=c[f>>2]|0;if(g>>>0>d>>>0){h=(c[g+40>>2]|0)==(d|0)&1;j=c[g+36+((h^1)<<2)>>2]|0;k=c[g+32>>2]|0;if(!k)c[a>>2]=d;else c[k+36+(((c[k+40>>2]|0)==(g|0)&1)<<2)>>2]=d;c[j+32>>2]=d;c[g+32>>2]=d;c[f>>2]=k;k=d+36|0;c[g+36>>2]=c[k>>2];c[g+40>>2]=c[e>>2];c[(c[k>>2]|0)+32>>2]=g;c[(c[e>>2]|0)+32>>2]=g;c[d+36+(h<<2)>>2]=g;c[d+36+((h^1)<<2)>>2]=j;c[n>>2]=c[g>>2];c[n+4>>2]=c[g+4>>2];c[n+8>>2]=c[g+8>>2];c[n+12>>2]=c[g+12>>2];c[n+16>>2]=c[g+16>>2];c[n+20>>2]=c[g+20>>2];c[n+24>>2]=c[g+24>>2];c[n+28>>2]=c[g+28>>2];c[g>>2]=c[d>>2];c[g+4>>2]=c[d+4>>2];c[g+8>>2]=c[d+8>>2];c[g+12>>2]=c[d+12>>2];c[g+16>>2]=c[d+16>>2];c[g+20>>2]=c[d+20>>2];c[g+24>>2]=c[d+24>>2];c[g+28>>2]=c[d+28>>2];c[d>>2]=c[n>>2];c[d+4>>2]=c[n+4>>2];c[d+8>>2]=c[n+8>>2];c[d+12>>2]=c[n+12>>2];c[d+16>>2]=c[n+16>>2];c[d+20>>2]=c[n+20>>2];c[d+24>>2]=c[n+24>>2];c[d+28>>2]=c[n+28>>2];d=g}d=c[d+36+(l<<2)>>2]|0;e=d+40|0;if(!(c[e>>2]|0))break;else m=m+1&31}}if(!(hh(a,d)|0))e=0;else e=c[a>>2]|0;lf(a,e,d);c[a+16>>2]=(c[a+16>>2]|0)+1;b=b+-1|0;if(!b)break;d=c[a>>2]|0}i=n;return}function jg(b,d,e,f,h){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;var j=0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0;j=i;i=i+32|0;d=a[b+8>>0]|0?d:e;if(((c[(c[d+4>>2]|0)+4>>2]|0)+-21|0)>>>0>=9){i=j;return}e=c[(c[d+8>>2]|0)+192>>2]|0;y=+Sb[c[(c[e>>2]|0)+48>>2]&15](e);c[b+64>>2]=f;g[b+68>>2]=y+.05999999865889549;c[b+56>>2]=h;h=c[b+16>>2]|0;ic[c[(c[h>>2]|0)+28>>2]&127](h,j+16|0,j);y=+g[j>>2];x=+g[j+16>>2];w=+g[j+4>>2];v=+g[j+16+4>>2];u=+g[j+8>>2];t=+g[j+16+8>>2];h=c[d+12>>2]|0;B=+g[h>>2];o=+g[h+16>>2];C=+g[h+32>>2];z=+g[h+4>>2];m=+g[h+20>>2];A=+g[h+36>>2];q=+g[h+8>>2];k=+g[h+24>>2];r=+g[h+40>>2];D=-+g[h+48>>2];s=-+g[h+52>>2];l=-+g[h+56>>2];p=(y+x)*.5*B+(w+v)*.5*o+(u+t)*.5*C+(B*D+o*s+C*l);n=(y+x)*.5*z+(w+v)*.5*m+(u+t)*.5*A+(z*D+m*s+A*l);l=(y+x)*.5*q+(w+v)*.5*k+(u+t)*.5*r+(q*D+k*s+r*l);s=+g[b+68>>2];o=((y-x)*.5+s)*+N(+(B+o*0.0+C*0.0))+((w-v)*.5+s)*+N(+(B*0.0+o+C*0.0))+((u-t)*.5+s)*+N(+(C+(B*0.0+o*0.0)));m=((y-x)*.5+s)*+N(+(z+m*0.0+A*0.0))+((w-v)*.5+s)*+N(+(z*0.0+m+A*0.0))+((u-t)*.5+s)*+N(+(A+(z*0.0+m*0.0)));k=((y-x)*.5+s)*+N(+(q+k*0.0+r*0.0))+((w-v)*.5+s)*+N(+(q*0.0+k+r*0.0))+((u-t)*.5+s)*+N(+(r+(q*0.0+k*0.0)));g[b+24>>2]=p-o;g[b+28>>2]=n-m;g[b+32>>2]=l-k;g[b+36>>2]=0.0;g[b+40>>2]=p+o;g[b+44>>2]=n+m;g[b+48>>2]=l+k;g[b+52>>2]=0.0;mc[c[(c[e>>2]|0)+64>>2]&127](e,b+12|0,b+24|0,b+40|0);i=j;return}function kg(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;var h=0,j=0,k=0,l=0,m=0,n=0;l=i;i=i+16|0;c[b+8>>2]=0;c[b+12>>2]=1065353216;c[b+16>>2]=1065353216;c[b+20>>2]=1065353216;g[b+24>>2]=0.0;g[b+44>>2]=.03999999910593033;c[b+52>>2]=0;c[b+56>>2]=1065353216;c[b+60>>2]=1065353216;c[b+64>>2]=1065353216;g[b+68>>2]=0.0;c[b+72>>2]=-1082130432;c[b+76>>2]=-1082130432;c[b+80>>2]=-1082130432;g[b+84>>2]=0.0;a[b+88>>0]=0;c[b>>2]=7256;a[b+108>>0]=1;c[b+104>>2]=0;c[b+96>>2]=0;c[b+100>>2]=0;c[b+4>>2]=4;if((e|0)<=0){c[b+96>>2]=e;vj(b);i=l;return}c[6435]=(c[6435]|0)+1;h=yc((e<<4|3)+16|0)|0;if(!h)k=0;else{c[(h+4+15&-16)+-4>>2]=h;k=h+4+15&-16}h=c[b+96>>2]|0;if((h|0)>0){j=0;do{m=k+(j<<4)|0;n=(c[b+104>>2]|0)+(j<<4)|0;c[m>>2]=c[n>>2];c[m+4>>2]=c[n+4>>2];c[m+8>>2]=c[n+8>>2];c[m+12>>2]=c[n+12>>2];j=j+1|0}while((j|0)!=(h|0))}h=c[b+104>>2]|0;if(h|0){if(a[b+108>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0)}c[b+104>>2]=0}a[b+108>>0]=1;c[b+104>>2]=k;c[b+100>>2]=e;c[k>>2]=c[l>>2];c[k+4>>2]=c[l+4>>2];c[k+8>>2]=c[l+8>>2];c[k+12>>2]=c[l+12>>2];if((e|0)!=1){h=1;do{n=(c[b+104>>2]|0)+(h<<4)|0;c[n>>2]=c[l>>2];c[n+4>>2]=c[l+4>>2];c[n+8>>2]=c[l+8>>2];c[n+12>>2]=c[l+12>>2];h=h+1|0}while((h|0)!=(e|0))}c[b+96>>2]=e;j=0;h=d;while(1){n=c[b+104>>2]|0;d=c[h+4>>2]|0;m=c[h+8>>2]|0;c[n+(j<<4)>>2]=c[h>>2];c[n+(j<<4)+4>>2]=d;c[n+(j<<4)+8>>2]=m;g[n+(j<<4)+12>>2]=0.0;j=j+1|0;if((j|0)==(e|0))break;else h=h+f|0}vj(b);i=l;return}function lg(b){b=b|0;var d=0;c[b>>2]=4756;d=c[b+176>>2]|0;if(d|0){if(a[b+180>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+176>>2]=0}a[b+180>>0]=1;c[b+176>>2]=0;c[b+168>>2]=0;c[b+172>>2]=0;d=c[b+156>>2]|0;if(d|0){if(a[b+160>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+156>>2]=0}a[b+160>>0]=1;c[b+156>>2]=0;c[b+148>>2]=0;c[b+152>>2]=0;d=c[b+136>>2]|0;if(d|0){if(a[b+140>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+136>>2]=0}a[b+140>>0]=1;c[b+136>>2]=0;c[b+128>>2]=0;c[b+132>>2]=0;d=c[b+116>>2]|0;if(d|0){if(a[b+120>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+116>>2]=0}a[b+120>>0]=1;c[b+116>>2]=0;c[b+108>>2]=0;c[b+112>>2]=0;d=c[b+96>>2]|0;if(d|0){if(a[b+100>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+96>>2]=0}a[b+100>>0]=1;c[b+96>>2]=0;c[b+88>>2]=0;c[b+92>>2]=0;d=c[b+76>>2]|0;if(d|0){if(a[b+80>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+76>>2]=0}a[b+80>>0]=1;c[b+76>>2]=0;c[b+68>>2]=0;c[b+72>>2]=0;d=c[b+56>>2]|0;if(d|0){if(a[b+60>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+56>>2]=0}a[b+60>>0]=1;c[b+56>>2]=0;c[b+48>>2]=0;c[b+52>>2]=0;d=c[b+36>>2]|0;if(d|0){if(a[b+40>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+36>>2]=0}a[b+40>>0]=1;c[b+36>>2]=0;c[b+28>>2]=0;c[b+32>>2]=0;d=c[b+16>>2]|0;if(!d){a[b+20>>0]=1;c[b+16>>2]=0;c[b+8>>2]=0;b=b+12|0;c[b>>2]=0;return}if(a[b+20>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+16>>2]=0;a[b+20>>0]=1;c[b+16>>2]=0;c[b+8>>2]=0;b=b+12|0;c[b>>2]=0;return}function mg(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0.0,h=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0,y=0.0;x=i;i=i+48|0;t=+g[e>>2];u=+g[d>>2];v=+g[e+4>>2];w=+g[d+4>>2];s=+g[e+8>>2];h=+g[d+8>>2];j=+O(+((t-u)*.5*(t-u)*.5+(v-w)*.5*(v-w)*.5+(s-h)*.5*(s-h)*.5));k=+g[a+56>>2];d=+N(+k)>.7071067690849304;l=+g[a+52>>2];if(d){r=1.0/+O(+(k*k+l*l));y=+g[a+48>>2];f=y*-(k*r);m=y;n=0.0;o=-(k*r);p=l*r;q=(k*k+l*l)*r;r=-(y*l*r)}else{q=+g[a+48>>2];r=1.0/+O(+(q*q+l*l));f=(q*q+l*l)*r;m=q;n=-(l*r);o=q*r;p=0.0;q=-(k*q*r);r=k*-(l*r)}y=(t+u)*.5*m+(v+w)*.5*l+(s+h)*.5*k-+g[a+64>>2];m=(t+u)*.5-m*y;n=j*n;o=j*o;u=j*p;q=j*q;r=j*r;t=j*f;g[x>>2]=q+(n+m);g[x+4>>2]=r+(o+((v+w)*.5-l*y));g[x+8>>2]=t+(u+((s+h)*.5-k*y));g[x+12>>2]=0.0;g[x+16>>2]=n+m-q;g[x+20>>2]=o+((v+w)*.5-l*y)-r;g[x+24>>2]=u+((s+h)*.5-k*y)-t;g[x+28>>2]=0.0;g[x+32>>2]=m-n-q;g[x+36>>2]=(v+w)*.5-l*y-o-r;g[x+40>>2]=(s+h)*.5-k*y-u-t;g[x+44>>2]=0.0;mc[c[(c[b>>2]|0)+8>>2]&127](b,x,0,0);g[x>>2]=m-n-q;g[x+4>>2]=(v+w)*.5-l*y-o-r;g[x+8>>2]=(s+h)*.5-k*y-u-t;g[x+12>>2]=0.0;g[x+16>>2]=q+(m-n);g[x+20>>2]=r+((v+w)*.5-l*y-o);g[x+24>>2]=t+((s+h)*.5-k*y-u);g[x+28>>2]=0.0;g[x+32>>2]=q+(n+m);g[x+36>>2]=r+(o+((v+w)*.5-l*y));g[x+40>>2]=t+(u+((s+h)*.5-k*y));g[x+44>>2]=0.0;mc[c[(c[b>>2]|0)+8>>2]&127](b,x,0,1);i=x;return}function ng(a,b,e){a=a|0;b=b|0;e=e|0;mf(a,b,e)|0;c[b+256>>2]=c[a+264>>2];c[b+260>>2]=c[a+268>>2];c[b+264>>2]=c[a+272>>2];c[b+268>>2]=c[a+276>>2];c[b+272>>2]=c[a+280>>2];c[b+276>>2]=c[a+284>>2];c[b+280>>2]=c[a+288>>2];c[b+284>>2]=c[a+292>>2];c[b+288>>2]=c[a+296>>2];c[b+292>>2]=c[a+300>>2];c[b+296>>2]=c[a+304>>2];c[b+300>>2]=c[a+308>>2];c[b+304>>2]=c[a+312>>2];c[b+308>>2]=c[a+316>>2];c[b+312>>2]=c[a+320>>2];c[b+316>>2]=c[a+324>>2];c[b+320>>2]=c[a+328>>2];c[b+324>>2]=c[a+332>>2];c[b+328>>2]=c[a+336>>2];c[b+332>>2]=c[a+340>>2];c[b+448>>2]=c[a+344>>2];c[b+336>>2]=c[a+544>>2];c[b+340>>2]=c[a+548>>2];c[b+344>>2]=c[a+552>>2];c[b+348>>2]=c[a+556>>2];c[b+352>>2]=c[a+348>>2];c[b+356>>2]=c[a+352>>2];c[b+360>>2]=c[a+356>>2];c[b+364>>2]=c[a+360>>2];c[b+368>>2]=c[a+364>>2];c[b+372>>2]=c[a+368>>2];c[b+376>>2]=c[a+372>>2];c[b+380>>2]=c[a+376>>2];c[b+384>>2]=c[a+380>>2];c[b+388>>2]=c[a+384>>2];c[b+392>>2]=c[a+388>>2];c[b+396>>2]=c[a+392>>2];c[b+400>>2]=c[a+396>>2];c[b+404>>2]=c[a+400>>2];c[b+408>>2]=c[a+404>>2];c[b+412>>2]=c[a+408>>2];c[b+416>>2]=c[a+412>>2];c[b+420>>2]=c[a+416>>2];c[b+424>>2]=c[a+420>>2];c[b+428>>2]=c[a+424>>2];c[b+432>>2]=c[a+428>>2];c[b+436>>2]=c[a+432>>2];c[b+440>>2]=c[a+436>>2];c[b+444>>2]=c[a+440>>2];c[b+452>>2]=c[a+444>>2];c[b+456>>2]=c[a+448>>2];c[b+484>>2]=d[a+452>>0];c[b+460>>2]=c[a+456>>2];c[b+464>>2]=c[a+460>>2];c[b+468>>2]=c[a+464>>2];c[b+472>>2]=c[a+468>>2];c[b+476>>2]=c[a+472>>2];c[b+480>>2]=c[a+476>>2];return 11858}function og(b,d,e,f,h){b=b|0;d=+d;e=e|0;f=f|0;h=h|0;var j=0;j=i;i=i+144|0;c[b+164>>2]=1065353216;c[b+168>>2]=1065353216;c[b+172>>2]=1065353216;g[b+176>>2]=0.0;c[b+180>>2]=0;g[b+184>>2]=999999984306749440.0;c[b+188>>2]=0;c[b+188+4>>2]=0;c[b+188+8>>2]=0;c[b+188+12>>2]=0;c[b+204>>2]=1;c[b+208>>2]=-1;c[b+212>>2]=-1;c[b+216>>2]=1;g[b+220>>2]=0.0;g[b+224>>2]=.5;g[b+228>>2]=0.0;g[b+232>>2]=0.0;c[b+236>>2]=1;c[b+240>>2]=0;g[b+244>>2]=1.0;c[b+248>>2]=0;c[b+248+4>>2]=0;c[b+248+8>>2]=0;c[b+248+12>>2]=0;c[b+4>>2]=1065353216;c[b+8>>2]=0;c[b+8+4>>2]=0;c[b+8+8>>2]=0;c[b+8+12>>2]=0;c[b+24>>2]=1065353216;c[b+28>>2]=0;c[b+28+4>>2]=0;c[b+28+8>>2]=0;c[b+28+12>>2]=0;c[b+44>>2]=1065353216;c[b+48>>2]=0;c[b+48+4>>2]=0;c[b+48+8>>2]=0;c[b+48+12>>2]=0;c[b+48+16>>2]=0;c[b>>2]=4108;a[b+500>>0]=1;c[b+496>>2]=0;c[b+488>>2]=0;c[b+492>>2]=0;g[j>>2]=d;c[j+4>>2]=e;c[j+72>>2]=f;c[j+76>>2]=c[h>>2];c[j+76+4>>2]=c[h+4>>2];c[j+76+8>>2]=c[h+8>>2];c[j+76+12>>2]=c[h+12>>2];g[j+92>>2]=0.0;g[j+96>>2]=0.0;g[j+100>>2]=.5;g[j+104>>2]=0.0;g[j+108>>2]=0.0;g[j+112>>2]=.800000011920929;g[j+116>>2]=1.0;a[j+120>>0]=0;g[j+124>>2]=.004999999888241291;g[j+128>>2]=.009999999776482582;g[j+132>>2]=.009999999776482582;g[j+136>>2]=.009999999776482582;c[j+8>>2]=1065353216;c[j+12>>2]=0;c[j+12+4>>2]=0;c[j+12+8>>2]=0;c[j+12+12>>2]=0;c[j+28>>2]=1065353216;c[j+32>>2]=0;c[j+32+4>>2]=0;c[j+32+8>>2]=0;c[j+32+12>>2]=0;c[j+48>>2]=1065353216;c[j+52>>2]=0;c[j+52+4>>2]=0;c[j+52+8>>2]=0;c[j+52+12>>2]=0;c[j+52+16>>2]=0;Od(b,j);i=j;return}function pg(b,d){b=b|0;d=d|0;var e=0,f=0,h=0,i=0;c[6435]=(c[6435]|0)+1;e=yc(627)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}c[e+4>>2]=5;c[e>>2]=4432;c[e+8>>2]=-1;c[e+12>>2]=-1;g[e+16>>2]=3402823466385288598117041.0e14;a[e+20>>0]=1;a[e+21>>0]=0;c[e+24>>2]=-1;c[e+28>>2]=b;Il();c[e+32>>2]=23268;g[e+36>>2]=0.0;g[e+40>>2]=.30000001192092896;c[e+44>>2]=0;c[e>>2]=4648;h=e+300|0;c[h>>2]=c[d>>2];c[h+4>>2]=c[d+4>>2];c[h+8>>2]=c[d+8>>2];c[h+12>>2]=c[d+12>>2];f=e+316|0;c[f>>2]=c[d+16>>2];c[f+4>>2]=c[d+16+4>>2];c[f+8>>2]=c[d+16+8>>2];c[f+12>>2]=c[d+16+12>>2];b=e+332|0;c[b>>2]=c[d+32>>2];c[b+4>>2]=c[d+32+4>>2];c[b+8>>2]=c[d+32+8>>2];c[b+12>>2]=c[d+32+12>>2];i=e+348|0;c[i>>2]=c[d+48>>2];c[i+4>>2]=c[d+48+4>>2];c[i+8>>2]=c[d+48+8>>2];c[i+12>>2]=c[d+48+12>>2];d=e+364|0;a[e+527>>0]=0;c[d>>2]=c[h>>2];c[d+4>>2]=c[h+4>>2];c[d+8>>2]=c[h+8>>2];c[d+12>>2]=c[h+12>>2];d=e+380|0;c[d>>2]=c[f>>2];c[d+4>>2]=c[f+4>>2];c[d+8>>2]=c[f+8>>2];c[d+12>>2]=c[f+12>>2];d=e+396|0;c[d>>2]=c[b>>2];c[d+4>>2]=c[b+4>>2];c[d+8>>2]=c[b+8>>2];c[d+12>>2]=c[b+12>>2];d=e+412|0;a[e+524>>0]=0;a[e+525>>0]=0;a[e+526>>0]=0;a[e+552>>0]=0;c[d>>2]=0;c[d+4>>2]=0;c[d+8>>2]=0;c[d+12>>2]=0;g[e+572>>2]=-1.0;g[e+444>>2]=999999984306749440.0;g[e+448>>2]=999999984306749440.0;g[e+452>>2]=999999984306749440.0;g[e+428>>2]=1.0;g[e+432>>2]=.30000001192092896;g[e+436>>2]=1.0;g[e+440>>2]=.009999999776482582;g[e+456>>2]=.05000000074505806;c[e+592>>2]=0;g[e+596>>2]=0.0;g[e+600>>2]=.699999988079071;g[e+604>>2]=0.0;return e|0}function qg(b,d){b=b|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0;Zd(b,d);c[b>>2]=3068;c[6435]=(c[6435]|0)+1;e=yc(27)|0;i=e+4+15&-16;c[i+-4>>2]=e;a[i+4>>0]=0;c[(e+4+15&-16)>>2]=3100;c[b+92>>2]=i;c[6435]=(c[6435]|0)+1;i=yc(27)|0;e=i+4+15&-16;c[e+-4>>2]=i;a[e+4>>0]=0;c[(i+4+15&-16)>>2]=3120;c[b+96>>2]=e;c[6435]=(c[6435]|0)+1;e=yc(27)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}c[e>>2]=3120;c[b+100>>2]=e;a[e+4>>0]=1;c[6435]=(c[6435]|0)+1;i=yc(27)|0;e=i+4+15&-16;c[e+-4>>2]=i;a[e+4>>0]=0;c[(i+4+15&-16)>>2]=3140;c[b+104>>2]=e;c[6435]=(c[6435]|0)+1;e=yc(27)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}c[e>>2]=3160;c[b+108>>2]=e;a[e+4>>0]=1;if(!(a[b+20>>0]|0))return;e=c[b+16>>2]|0;if(!e)return;if((c[e>>2]|0)>=156)return;f=c[e+16>>2]|0;if(f){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0);e=c[b+16>>2]|0;if(!e)i=b+16|0;else{f=b+16|0;g=11}}else{f=b+16|0;g=11}if((g|0)==11){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0);i=f}c[6435]=(c[6435]|0)+1;e=yc(39)|0;if(!e)h=0;else{c[(e+4+15&-16)+-4>>2]=e;h=e+4+15&-16}e=c[d+12>>2]|0;c[h>>2]=156;f=h+4|0;c[f>>2]=e;c[6435]=(c[6435]|0)+1;e=yc((e*156|3)+16|0)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}c[h+16>>2]=e;c[h+12>>2]=e;f=c[f>>2]|0;c[h+8>>2]=f;if(f+-1|0){b=c[h>>2]|0;g=f+-1|0;d=e;do{j=d;d=d+b|0;c[j>>2]=d;g=g+-1|0}while((g|0)!=0);e=e+(_(b,f+-1|0)|0)|0}c[e>>2]=0;c[i>>2]=h;return}function rg(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;var h=0;c[6435]=(c[6435]|0)+1;h=yc(627)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}c[h+4>>2]=5;c[h+8>>2]=-1;c[h+12>>2]=-1;g[h+16>>2]=3402823466385288598117041.0e14;a[h+20>>0]=1;a[h+21>>0]=0;c[h+24>>2]=-1;c[h+28>>2]=b;c[h+32>>2]=d;g[h+36>>2]=0.0;g[h+40>>2]=.30000001192092896;c[h+44>>2]=0;c[h>>2]=4648;d=h+300|0;c[d>>2]=c[e>>2];c[d+4>>2]=c[e+4>>2];c[d+8>>2]=c[e+8>>2];c[d+12>>2]=c[e+12>>2];d=h+316|0;c[d>>2]=c[e+16>>2];c[d+4>>2]=c[e+16+4>>2];c[d+8>>2]=c[e+16+8>>2];c[d+12>>2]=c[e+16+12>>2];d=h+332|0;c[d>>2]=c[e+32>>2];c[d+4>>2]=c[e+32+4>>2];c[d+8>>2]=c[e+32+8>>2];c[d+12>>2]=c[e+32+12>>2];d=h+348|0;c[d>>2]=c[e+48>>2];c[d+4>>2]=c[e+48+4>>2];c[d+8>>2]=c[e+48+8>>2];c[d+12>>2]=c[e+48+12>>2];e=h+364|0;c[e>>2]=c[f>>2];c[e+4>>2]=c[f+4>>2];c[e+8>>2]=c[f+8>>2];c[e+12>>2]=c[f+12>>2];e=h+380|0;c[e>>2]=c[f+16>>2];c[e+4>>2]=c[f+16+4>>2];c[e+8>>2]=c[f+16+8>>2];c[e+12>>2]=c[f+16+12>>2];e=h+396|0;c[e>>2]=c[f+32>>2];c[e+4>>2]=c[f+32+4>>2];c[e+8>>2]=c[f+32+8>>2];c[e+12>>2]=c[f+32+12>>2];e=h+412|0;c[e>>2]=c[f+48>>2];c[e+4>>2]=c[f+48+4>>2];c[e+8>>2]=c[f+48+8>>2];c[e+12>>2]=c[f+48+12>>2];a[h+552>>0]=0;c[h+524>>2]=0;g[h+572>>2]=-1.0;g[h+444>>2]=999999984306749440.0;g[h+448>>2]=999999984306749440.0;g[h+452>>2]=999999984306749440.0;g[h+428>>2]=1.0;g[h+432>>2]=.30000001192092896;g[h+436>>2]=1.0;g[h+440>>2]=.009999999776482582;g[h+456>>2]=.05000000074505806;c[h+592>>2]=0;g[h+596>>2]=0.0;g[h+600>>2]=.699999988079071;g[h+604>>2]=0.0;return h|0}function sg(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;l=c[d>>2]|0;l=Zb[c[(c[l>>2]|0)+56>>2]&31](l,48)|0;c[l+4>>2]=c[d>>2];c[l>>2]=6228;a[l+28>>0]=1;c[l+24>>2]=0;c[l+16>>2]=0;c[l+20>>2]=0;c[l+32>>2]=c[d+4>>2];a[l+36>>0]=0;c[6435]=(c[6435]|0)+1;b=yc(87)|0;if(!b)k=0;else{c[(b+4+15&-16)+-4>>2]=b;k=b+4+15&-16}c[k>>2]=9324;h=k+20|0;a[h>>0]=1;i=k+16|0;c[i>>2]=0;d=k+8|0;c[d>>2]=0;j=k+12|0;c[j>>2]=0;a[k+24>>0]=0;a[k+44>>0]=1;c[k+40>>2]=0;c[k+32>>2]=0;c[k+36>>2]=0;a[k+64>>0]=1;c[k+60>>2]=0;c[k+52>>2]=0;c[k+56>>2]=0;c[6435]=(c[6435]|0)+1;b=yc(43)|0;if(!b)g=0;else{c[(b+4+15&-16)+-4>>2]=b;g=b+4+15&-16}b=c[d>>2]|0;if((b|0)>0){d=0;do{m=g+(d*12|0)|0;n=(c[i>>2]|0)+(d*12|0)|0;c[m>>2]=c[n>>2];c[m+4>>2]=c[n+4>>2];c[m+8>>2]=c[n+8>>2];d=d+1|0}while((d|0)!=(b|0))}b=c[i>>2]|0;if(!b){a[h>>0]=1;c[i>>2]=g;c[j>>2]=2;Kf(k);n=l+8|0;c[n>>2]=k;n=e+4|0;n=c[n>>2]|0;n=n+68|0;n=c[n>>2]|0;m=l+40|0;c[m>>2]=n;m=f+4|0;m=c[m>>2]|0;m=m+68|0;m=c[m>>2]|0;n=l+44|0;c[n>>2]=m;return l|0}if(a[h>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[b+-4>>2]|0)}c[i>>2]=0;a[h>>0]=1;c[i>>2]=g;c[j>>2]=2;Kf(k);n=l+8|0;c[n>>2]=k;n=e+4|0;n=c[n>>2]|0;n=n+68|0;n=c[n>>2]|0;m=l+40|0;c[m>>2]=n;m=f+4|0;m=c[m>>2]|0;m=m+68|0;m=c[m>>2]|0;n=l+44|0;c[n>>2]=m;return l|0}function tg(a,b){a=a|0;b=b|0;var d=0,e=0,f=0,g=0;Ab[c[(c[b>>2]|0)+32>>2]&255](b);d=Ob[c[(c[b>>2]|0)+16>>2]&63](b,104,1)|0;e=c[d+8>>2]|0;f=e;g=f+104|0;do{c[f>>2]=0;f=f+4|0}while((f|0)<(g|0));c[e+88>>2]=c[a+248>>2];c[e+92>>2]=c[a+252>>2];c[e+96>>2]=c[a+256>>2];c[e+100>>2]=c[a+260>>2];c[e>>2]=c[a+92>>2];c[e+4>>2]=c[a+96>>2];c[e+8>>2]=c[a+100>>2];c[e+12>>2]=c[a+104>>2];c[e+16>>2]=c[a+108>>2];c[e+20>>2]=c[a+116>>2];c[e+24>>2]=c[a+120>>2];c[e+28>>2]=c[a+124>>2];c[e+32>>2]=c[a+128>>2];c[e+36>>2]=c[a+132>>2];c[e+40>>2]=c[a+140>>2];c[e+44>>2]=c[a+144>>2];c[e+48>>2]=c[a+148>>2];c[e+52>>2]=c[a+152>>2];c[e+56>>2]=c[a+168>>2];c[e+60>>2]=c[a+172>>2];c[e+64>>2]=c[a+112>>2];c[e+68>>2]=c[a+156>>2];c[e+72>>2]=c[a+160>>2];c[e+76>>2]=c[a+164>>2];c[e+80>>2]=c[a+136>>2];yb[c[(c[b>>2]|0)+20>>2]&31](b,d,11938,1145853764,e);d=c[a+8>>2]|0;if((d|0)<=0){mj(a,b);td(a,b);a=c[b>>2]|0;a=a+36|0;a=c[a>>2]|0;Ab[a&255](b);return}f=0;do{e=c[(c[a+16>>2]|0)+(f<<2)>>2]|0;if(c[e+236>>2]&8){g=Eb[c[(c[e>>2]|0)+16>>2]&127](e)|0;g=Ob[c[(c[b>>2]|0)+16>>2]&63](b,g,1)|0;d=Ob[c[(c[e>>2]|0)+20>>2]&63](e,c[g+8>>2]|0,b)|0;yb[c[(c[b>>2]|0)+20>>2]&31](b,g,d,1497645651,e);d=c[a+8>>2]|0}f=f+1|0}while((f|0)<(d|0));mj(a,b);td(a,b);a=c[b>>2]|0;a=a+36|0;a=c[a>>2]|0;Ab[a&255](b);return}function ug(a,b){a=a|0;b=+b;var d=0,e=0,f=0,h=0,j=0.0,k=0.0,l=0.0;h=i;i=i+32|0;d=c[a+8>>2]|0;if((d|0)<=0){i=h;return}f=0;do{e=c[(c[a+16>>2]|0)+(f<<2)>>2]|0;if((!((e|0)==0?1:(c[e+236>>2]&2|0)==0)?(c[e+216>>2]|0)!=2:0)?!(b==0.0?1:(c[e+204>>2]&2|0)==0):0){d=c[e+480>>2]|0;if(!d)d=e+4|0;else{Cb[c[(c[d>>2]|0)+8>>2]&127](d,e+4|0);d=e+4|0}k=1.0/b*(+g[e+56>>2]-+g[e+120>>2]);l=1.0/b*(+g[e+60>>2]-+g[e+124>>2]);g[e+312>>2]=1.0/b*(+g[e+52>>2]-+g[e+116>>2]);g[e+316>>2]=k;g[e+320>>2]=l;g[e+324>>2]=0.0;Gf(e+68|0,d,h+8|0,h);l=+g[h>>2];k=1.0/b*l*+g[h+8+4>>2];j=1.0/b*l*+g[h+8+8>>2];g[e+328>>2]=1.0/b*+g[h+8>>2]*l;g[e+332>>2]=k;g[e+336>>2]=j;g[e+340>>2]=0.0;c[e+132>>2]=c[e+312>>2];c[e+132+4>>2]=c[e+312+4>>2];c[e+132+8>>2]=c[e+312+8>>2];c[e+132+12>>2]=c[e+312+12>>2];c[e+148>>2]=c[e+328>>2];c[e+148+4>>2]=c[e+328+4>>2];c[e+148+8>>2]=c[e+328+8>>2];c[e+148+12>>2]=c[e+328+12>>2];c[e+68>>2]=c[d>>2];c[e+68+4>>2]=c[d+4>>2];c[e+68+8>>2]=c[d+8>>2];c[e+68+12>>2]=c[d+12>>2];c[e+84>>2]=c[e+20>>2];c[e+84+4>>2]=c[e+20+4>>2];c[e+84+8>>2]=c[e+20+8>>2];c[e+84+12>>2]=c[e+20+12>>2];c[e+100>>2]=c[e+36>>2];c[e+100+4>>2]=c[e+36+4>>2];c[e+100+8>>2]=c[e+36+8>>2];c[e+100+12>>2]=c[e+36+12>>2];c[e+116>>2]=c[e+52>>2];c[e+116+4>>2]=c[e+52+4>>2];c[e+116+8>>2]=c[e+52+8>>2];c[e+116+12>>2]=c[e+52+12>>2];d=c[a+8>>2]|0}f=f+1|0}while((f|0)<(d|0));i=h;return}function vg(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;c[6421]=(c[6421]|0)+1;g=((d<<16|b)+~((d<<16|b)<<15)>>10^(d<<16|b)+~((d<<16|b)<<15))*9|0;l=c[a+40>>2]|0;g=l+(((c[a+12>>2]|0)+-1&((g>>6^g)+~((g>>6^g)<<11)>>16^(g>>6^g)+~((g>>6^g)<<11)))<<2)|0;f=c[g>>2]|0;if((f|0)==-1){n=0;return n|0}m=c[a+16>>2]|0;e=f;while(1){k=m+(e*12|0)|0;if((c[k>>2]|0)==(b|0)?(c[m+(e*12|0)+4>>2]|0)==(d|0):0)break;e=c[(c[a+60>>2]|0)+(e<<2)>>2]|0;if((e|0)==-1){e=0;n=21;break}}if((n|0)==21)return e|0;if(!k){n=0;return n|0}j=c[m+(e*12|0)+8>>2]|0;i=(e*12|0)/12|0;b=c[a+60>>2]|0;if((f|0)!=(i|0)){while(1){d=b+(f<<2)|0;e=c[d>>2]|0;if((e|0)==(i|0))break;else f=e}e=c[b+(i<<2)>>2]|0;if((f|0)==-1)n=11;else c[d>>2]=e}else{e=c[b+(f<<2)>>2]|0;n=11}if((n|0)==11)c[g>>2]=e;g=(c[a+8>>2]|0)+-1|0;if((g|0)==(i|0)){c[a+8>>2]=i;n=j;return n|0}h=c[m+(g*12|0)+4>>2]<<16|c[m+(g*12|0)>>2];h=(h+~(h<<15)>>10^h+~(h<<15))*9|0;h=((h>>6^h)+~((h>>6^h)<<11)>>16^(h>>6^h)+~((h>>6^h)<<11))&(c[a+12>>2]|0)+-1;e=c[l+(h<<2)>>2]|0;b=c[a+60>>2]|0;if((e|0)!=(g|0)){f=e;while(1){d=b+(f<<2)|0;e=c[d>>2]|0;if((e|0)==(g|0))break;else f=e}e=c[b+(g<<2)>>2]|0;if((f|0)==-1)n=19;else c[d>>2]=e}else{e=c[b+(g<<2)>>2]|0;n=19}if((n|0)==19)c[l+(h<<2)>>2]=e;c[k>>2]=c[m+(g*12|0)>>2];c[k+4>>2]=c[m+(g*12|0)+4>>2];c[k+8>>2]=c[m+(g*12|0)+8>>2];n=(c[a+40>>2]|0)+(h<<2)|0;c[(c[a+60>>2]|0)+(i<<2)>>2]=c[n>>2];c[n>>2]=i;c[a+8>>2]=(c[a+8>>2]|0)+-1;n=j;return n|0}function wg(a,b){a=a|0;b=b|0;var d=0,e=0,f=0,g=0,h=0,i=0;d=c[b+236>>2]|0;if((b|0)==0|(d|0)!=8){if(!((b|0)==0|(d&2|0)==0)){Cb[c[(c[a>>2]|0)+92>>2]&127](a,b);return}d=c[b+188>>2]|0;if(d|0){h=c[a+68>>2]|0;h=Eb[c[(c[h>>2]|0)+36>>2]&127](h)|0;ic[c[(c[h>>2]|0)+40>>2]&127](h,d,c[a+24>>2]|0);h=c[a+68>>2]|0;ic[c[(c[h>>2]|0)+12>>2]&127](h,d,c[a+24>>2]|0);c[b+188>>2]=0}d=c[a+8>>2]|0;if((d|0)<=0)return;e=c[a+16>>2]|0;h=0;while(1){f=e+(h<<2)|0;if((c[f>>2]|0)==(b|0))break;g=h+1|0;if((g|0)<(d|0))h=g;else{i=26;break}}if((i|0)==26)return;if((h|0)>=(d|0))return;c[f>>2]=c[e+(d+-1<<2)>>2];c[(c[a+16>>2]|0)+(d+-1<<2)>>2]=b;c[a+8>>2]=d+-1;return}f=c[a+328>>2]|0;a:do if((f|0)>0){g=c[a+336>>2]|0;d=0;while(1){e=g+(d<<2)|0;if((c[e>>2]|0)==(b|0))break;d=d+1|0;if((d|0)>=(f|0))break a}if((d|0)<(f|0)){c[e>>2]=c[g+(f+-1<<2)>>2];c[(c[a+336>>2]|0)+(f+-1<<2)>>2]=b;c[a+328>>2]=f+-1}}while(0);d=c[b+188>>2]|0;if(d|0){h=c[a+68>>2]|0;h=Eb[c[(c[h>>2]|0)+36>>2]&127](h)|0;ic[c[(c[h>>2]|0)+40>>2]&127](h,d,c[a+24>>2]|0);h=c[a+68>>2]|0;ic[c[(c[h>>2]|0)+12>>2]&127](h,d,c[a+24>>2]|0);c[b+188>>2]=0}d=c[a+8>>2]|0;if((d|0)<=0)return;e=c[a+16>>2]|0;h=0;while(1){f=e+(h<<2)|0;if((c[f>>2]|0)==(b|0))break;g=h+1|0;if((g|0)<(d|0))h=g;else{i=26;break}}if((i|0)==26)return;if((h|0)>=(d|0))return;c[f>>2]=c[e+(d+-1<<2)>>2];c[(c[a+16>>2]|0)+(d+-1<<2)>>2]=b;c[a+8>>2]=d+-1;return}function xg(b,d,e,f,h){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;var i=0;c[6435]=(c[6435]|0)+1;i=yc(783)|0;if(!i)i=0;else{c[(i+4+15&-16)+-4>>2]=i;i=i+4+15&-16}c[i+4>>2]=4;c[i+8>>2]=-1;c[i+12>>2]=-1;g[i+16>>2]=3402823466385288598117041.0e14;a[i+20>>0]=1;a[i+21>>0]=0;c[i+24>>2]=-1;c[i+28>>2]=b;c[i+32>>2]=d;g[i+36>>2]=0.0;g[i+40>>2]=.30000001192092896;c[i+44>>2]=0;c[i>>2]=4704;d=i+552|0;c[d>>2]=c[e>>2];c[d+4>>2]=c[e+4>>2];c[d+8>>2]=c[e+8>>2];c[d+12>>2]=c[e+12>>2];d=i+568|0;c[d>>2]=c[e+16>>2];c[d+4>>2]=c[e+16+4>>2];c[d+8>>2]=c[e+16+8>>2];c[d+12>>2]=c[e+16+12>>2];d=i+584|0;c[d>>2]=c[e+32>>2];c[d+4>>2]=c[e+32+4>>2];c[d+8>>2]=c[e+32+8>>2];c[d+12>>2]=c[e+32+12>>2];d=i+600|0;c[d>>2]=c[e+48>>2];c[d+4>>2]=c[e+48+4>>2];c[d+8>>2]=c[e+48+8>>2];c[d+12>>2]=c[e+48+12>>2];e=i+616|0;c[e>>2]=c[f>>2];c[e+4>>2]=c[f+4>>2];c[e+8>>2]=c[f+8>>2];c[e+12>>2]=c[f+12>>2];e=i+632|0;c[e>>2]=c[f+16>>2];c[e+4>>2]=c[f+16+4>>2];c[e+8>>2]=c[f+16+8>>2];c[e+12>>2]=c[f+16+12>>2];e=i+648|0;c[e>>2]=c[f+32>>2];c[e+4>>2]=c[f+32+4>>2];c[e+8>>2]=c[f+32+8>>2];c[e+12>>2]=c[f+32+12>>2];e=i+664|0;c[e>>2]=c[f+48>>2];c[e+4>>2]=c[f+48+4>>2];c[e+8>>2]=c[f+48+8>>2];c[e+12>>2]=c[f+48+12>>2];g[i+688>>2]=0.0;g[i+692>>2]=-1.0;g[i+696>>2]=.8999999761581421;g[i+700>>2]=.30000001192092896;g[i+704>>2]=1.0;g[i+708>>2]=0.0;g[i+712>>2]=0.0;a[i+716>>0]=0;a[i+736>>0]=0;a[i+737>>0]=0;a[i+738>>0]=0;a[i+739>>0]=1;a[i+740>>0]=h&1;c[i+748>>2]=0;g[i+732>>2]=h?-1.0:1.0;return i|0}function yg(a,b,d){a=a|0;b=+b;d=+d;var e=0,f=0,h=0,j=0,k=0,l=0.0,m=0.0,n=0.0,o=0,p=0.0,q=0.0,r=0.0,s=0.0,t=0,u=0.0,v=0.0,w=0,x=0.0,y=0.0,z=0.0,A=0.0;h=i;i=i+16|0;d=+g[a+336>>2]*b;b=+g[a+452>>2];e=c[a+792>>2]|0;if((e|0)<=0){i=h;return}f=0;do{t=c[a+800>>2]|0;k=t+(f*96|0)+20|0;w=c[k>>2]|0;o=c[t+(f*96|0)>>2]|0;z=+g[t+(f*96|0)+4>>2];y=+g[t+(f*96|0)+8>>2];x=+g[t+(f*96|0)+12>>2];j=t+(f*96|0)+76|0;v=+g[w+332>>2];q=+g[t+(f*96|0)+84>>2];A=+g[w+336>>2];m=+g[t+(f*96|0)+80>>2];l=+g[j>>2];n=+g[w+328>>2];s=+g[o+8>>2];r=+g[o+12>>2];p=+g[o+16>>2];u=d*(z*+g[w+4>>2]+y*+g[w+8>>2]+x*+g[w+12>>2]+ +g[w+52>>2]-s)+(b*(v*q-A*m+ +g[w+312>>2])-(s-+g[o+24>>2]));q=d*(z*+g[w+20>>2]+y*+g[w+24>>2]+x*+g[w+28>>2]+ +g[w+56>>2]-r)+(b*(+g[w+316>>2]+(A*l-q*n))-(r-+g[o+28>>2]));l=d*(z*+g[w+36>>2]+y*+g[w+40>>2]+x*+g[w+44>>2]+ +g[w+60>>2]-p)+(b*(m*n-v*l+ +g[w+320>>2])-(p-+g[o+32>>2]));v=+g[t+(f*96|0)+24>>2];n=(u*+g[t+(f*96|0)+28>>2]+q*+g[t+(f*96|0)+32>>2]+ +g[t+(f*96|0)+36>>2]*l)*v;m=(u*+g[t+(f*96|0)+44>>2]+q*+g[t+(f*96|0)+48>>2]+l*+g[t+(f*96|0)+52>>2])*v;l=v*(u*+g[t+(f*96|0)+60>>2]+q*+g[t+(f*96|0)+64>>2]+l*+g[t+(f*96|0)+68>>2]);q=+g[t+(f*96|0)+92>>2];g[o+8>>2]=s+n*q;g[o+12>>2]=q*m+r;g[o+16>>2]=q*l+p;k=c[k>>2]|0;g[h>>2]=-n;g[h+4>>2]=-m;g[h+8>>2]=-l;g[h+12>>2]=0.0;gj(k,h,j);f=f+1|0}while((f|0)!=(e|0));i=h;return}function zg(a,b,d){a=a|0;b=b|0;d=d|0;var e=0.0,f=0.0,h=0.0,i=0.0,j=0.0,k=0.0;h=+g[d+100>>2];k=+g[d+16>>2];i=+g[d+20>>2];j=+g[d+24>>2];e=+g[d+108>>2];e=+g[d+112>>2]-h*+g[d+116>>2]-(k*+g[a+64>>2]+i*+g[a+68>>2]+j*+g[a+72>>2]+(+g[d>>2]*+g[a+80>>2]+ +g[d+4>>2]*+g[a+84>>2]+ +g[d+8>>2]*+g[a+88>>2]))*e-e*(+g[d+48>>2]*+g[b+64>>2]+ +g[d+52>>2]*+g[b+68>>2]+ +g[d+56>>2]*+g[b+72>>2]+(+g[d+32>>2]*+g[b+80>>2]+ +g[d+36>>2]*+g[b+84>>2]+ +g[d+40>>2]*+g[b+88>>2]));f=+g[d+120>>2];do if(!(h+e>2];if(h+e>f){g[d+100>>2]=f;e=f-h;break}else{g[d+100>>2]=h+e;break}}else{g[d+100>>2]=f;e=f-h}while(0);if(c[a+240>>2]|0){i=e*i*+g[a+132>>2]*+g[a+116>>2];j=e*j*+g[a+136>>2]*+g[a+120>>2];g[a+64>>2]=+g[a+112>>2]*e*k*+g[a+128>>2]+ +g[a+64>>2];g[a+68>>2]=i+ +g[a+68>>2];g[a+72>>2]=j+ +g[a+72>>2];j=e*+g[a+100>>2]*+g[d+68>>2];k=e*+g[a+104>>2]*+g[d+72>>2];g[a+80>>2]=e*+g[a+96>>2]*+g[d+64>>2]+ +g[a+80>>2];g[a+84>>2]=j+ +g[a+84>>2];g[a+88>>2]=k+ +g[a+88>>2]}if(!(c[b+240>>2]|0))return;k=e*+g[d+52>>2]*+g[b+132>>2]*+g[b+116>>2];j=e*+g[d+56>>2]*+g[b+136>>2]*+g[b+120>>2];g[b+64>>2]=+g[b+112>>2]*e*+g[d+48>>2]*+g[b+128>>2]+ +g[b+64>>2];g[b+68>>2]=k+ +g[b+68>>2];g[b+72>>2]=j+ +g[b+72>>2];j=e*+g[b+100>>2]*+g[d+84>>2];k=e*+g[b+104>>2]*+g[d+88>>2];g[b+80>>2]=e*+g[b+96>>2]*+g[d+80>>2]+ +g[b+80>>2];g[b+84>>2]=j+ +g[b+84>>2];g[b+88>>2]=k+ +g[b+88>>2];return}function Ag(a,b){a=a|0;b=b|0;var d=0,f=0,g=0,h=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;p=i;i=i+32|0;o=c[a+92>>2]|0;if(!(Eb[c[(c[o>>2]|0)+56>>2]&127](o)|0)){i=p;return}o=c[a+92>>2]|0;o=Eb[c[(c[o>>2]|0)+28>>2]&127](o)|0;d=c[o+4>>2]|0;if((d|0)>1){Vd(o,0,d+-1|0);d=c[o+4>>2]|0}d=d-(c[a+104>>2]|0)|0;c[p+16>>2]=0;c[p+16+4>>2]=0;c[p+16+8>>2]=0;c[p+16+12>>2]=0;yi(o,d,p+16|0);c[a+104>>2]=0;d=c[o+4>>2]|0;if((d|0)>0){f=0;l=0;m=0;h=0;while(1){k=c[o+12>>2]|0;j=k+(l<<4)|0;q=m;m=c[j>>2]|0;k=k+(l<<4)+4|0;g=c[k>>2]|0;if(!((m|0)==(q|0)&(g|0)==(h|0))){q=m+54|0;h=m+48|0;if(!((((((e[q>>1]|0)>=(e[g+48>>1]|0)?(e[g+54>>1]|0)>=(e[h>>1]|0):0)?(e[q+2>>1]|0)>=(e[g+48+2>>1]|0):0)?(e[g+54+2>>1]|0)>=(e[h+2>>1]|0):0)?(e[q+4>>1]|0)>=(e[g+52>>1]|0):0)?(e[g+54+4>>1]|0)>=(e[m+52>>1]|0):0))n=13}else{g=h;n=13}if((n|0)==13){n=0;f=c[a+92>>2]|0;ic[c[(c[f>>2]|0)+32>>2]&127](f,j,b);c[j>>2]=0;c[k>>2]=0;f=(c[a+104>>2]|0)+1|0;c[a+104>>2]=f;c[6163]=(c[6163]|0)+-1;d=c[o+4>>2]|0}l=l+1|0;if((l|0)>=(d|0))break;else h=g}if((d|0)>1){Vd(o,0,d+-1|0);f=c[a+104>>2]|0;d=c[o+4>>2]|0}}else f=0;c[p>>2]=0;c[p+4>>2]=0;c[p+8>>2]=0;c[p+12>>2]=0;yi(o,d-f|0,p);c[a+104>>2]=0;i=p;return}function Bg(a){a=a|0;var b=0,d=0,e=0.0,f=0.0,h=0.0,i=0,j=0.0,k=0,l=0,m=0.0,n=0.0,o=0,p=0.0;b=c[a+712>>2]|0;if((b|0)>0){d=0;do{l=(c[a+720>>2]|0)+(d*104|0)+72|0;d=d+1|0;c[l>>2]=0;c[l+4>>2]=0;c[l+8>>2]=0;c[l+12>>2]=0}while((d|0)!=(b|0))}b=c[a+752>>2]|0;if((b|0)>0){d=0;do{o=c[a+760>>2]|0;k=c[o+(d*44|0)+12>>2]|0;i=c[o+(d*44|0)+8>>2]|0;j=+g[i+8>>2];e=+g[k+8>>2]-j;f=+g[i+12>>2];h=+g[k+12>>2]-f;m=+g[i+16>>2];n=+g[k+16>>2]-m;l=c[o+(d*44|0)+16>>2]|0;j=+g[l+8>>2]-j;f=+g[l+12>>2]-f;m=+g[l+16>>2]-m;p=1.0/+O(+((e*f-h*j)*(e*f-h*j)+((h*m-n*f)*(h*m-n*f)+(n*j-e*m)*(n*j-e*m))));g[o+(d*44|0)+20>>2]=p*(h*m-n*f);g[o+(d*44|0)+24>>2]=p*(n*j-e*m);g[o+(d*44|0)+28>>2]=(e*f-h*j)*p;c[o+(d*44|0)+32>>2]=0;g[i+72>>2]=h*m-n*f+ +g[i+72>>2];g[i+76>>2]=n*j-e*m+ +g[i+76>>2];g[i+80>>2]=e*f-h*j+ +g[i+80>>2];g[k+72>>2]=h*m-n*f+ +g[k+72>>2];g[k+76>>2]=n*j-e*m+ +g[k+76>>2];g[k+80>>2]=e*f-h*j+ +g[k+80>>2];g[l+72>>2]=h*m-n*f+ +g[l+72>>2];g[l+76>>2]=n*j-e*m+ +g[l+76>>2];g[l+80>>2]=e*f-h*j+ +g[l+80>>2];d=d+1|0}while((d|0)!=(b|0))}l=c[a+712>>2]|0;if((l|0)<=0)return;a=c[a+720>>2]|0;k=0;do{i=a+(k*104|0)+72|0;j=+g[i>>2];b=a+(k*104|0)+76|0;e=+g[b>>2];d=a+(k*104|0)+80|0;f=+g[d>>2];h=+O(+(j*j+e*e+f*f));if(h>1.1920928955078125e-07){g[i>>2]=j*(1.0/h);g[b>>2]=1.0/h*e;g[d>>2]=1.0/h*f}k=k+1|0}while((k|0)!=(l|0));return}function Cg(b,d,e,f){b=b|0;d=+d;e=e|0;f=+f;var h=0,j=0.0,k=0,l=0;l=i;i=i+16|0;tb(c[6434]|0,0)|0;Vq(25696);c[6425]=(c[6425]|0)+1;k=c[6428]|0;c[6428]=k+1;if(!k){tb(l|0,0)|0;k=c[6434]|0;c[6427]=(c[l+4>>2]|0)-(c[k+4>>2]|0)+(((c[l>>2]|0)-(c[k>>2]|0)|0)*1e6|0)}c[6433]=0;tb(l|0,0)|0;li(11963);if(e){g[b+268>>2]=f;j=+g[b+264>>2]+d;g[b+264>>2]=j;if(!(j>=f)){d=f;k=0}else{g[b+264>>2]=j-+(~~(j/f)|0)*f;d=f;k=~~(j/f)}}else{g[b+264>>2]=a[b+300>>0]|0?0.0:d;g[b+268>>2]=0.0;k=!(+N(+d)<1.1920928955078125e-07)&1;e=k}if(Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0){h=Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0;a[26260]=(Eb[c[(c[h>>2]|0)+48>>2]&127](h)|0)>>>4&1}if(k){e=(k|0)>(e|0)?e:k;zb[c[(c[b>>2]|0)+164>>2]&31](b,d*+(e|0));Ab[c[(c[b>>2]|0)+168>>2]&255](b);if((e|0)>0){h=0;do{zb[c[(c[b>>2]|0)+160>>2]&31](b,d);Ab[c[(c[b>>2]|0)+80>>2]&255](b);h=h+1|0}while((h|0)<(e|0));e=b}else e=b}else{Ab[c[(c[b>>2]|0)+80>>2]&255](b);e=b}Ab[c[(c[e>>2]|0)+120>>2]&255](b);c[6433]=(c[6433]|0)+1;e=c[2357]|0;b=(c[e+16>>2]|0)+-1|0;c[e+16>>2]=b;if(b|0){i=l;return k|0}do if(c[e+4>>2]|0){tb(l|0,0)|0;b=c[6434]|0;g[e+8>>2]=+g[e+8>>2]+ +(((c[l+4>>2]|0)-(c[b+4>>2]|0)+(((c[l>>2]|0)-(c[b>>2]|0)|0)*1e6|0)-(c[e+12>>2]|0)|0)>>>0)/1.0e3;if(!(c[e+16>>2]|0)){e=c[2357]|0;break}else{i=l;return k|0}}while(0);c[2357]=c[e+20>>2];i=l;return k|0}function Dg(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;var h=0;c[6435]=(c[6435]|0)+1;h=yc(783)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}c[h+4>>2]=4;c[h+8>>2]=-1;c[h+12>>2]=-1;g[h+16>>2]=3402823466385288598117041.0e14;a[h+20>>0]=1;a[h+21>>0]=0;c[h+24>>2]=-1;c[h+28>>2]=b;c[h+32>>2]=d;g[h+36>>2]=0.0;g[h+40>>2]=.30000001192092896;c[h+44>>2]=0;c[h>>2]=4704;d=h+552|0;c[d>>2]=c[e>>2];c[d+4>>2]=c[e+4>>2];c[d+8>>2]=c[e+8>>2];c[d+12>>2]=c[e+12>>2];d=h+568|0;c[d>>2]=c[e+16>>2];c[d+4>>2]=c[e+16+4>>2];c[d+8>>2]=c[e+16+8>>2];c[d+12>>2]=c[e+16+12>>2];d=h+584|0;c[d>>2]=c[e+32>>2];c[d+4>>2]=c[e+32+4>>2];c[d+8>>2]=c[e+32+8>>2];c[d+12>>2]=c[e+32+12>>2];d=h+600|0;c[d>>2]=c[e+48>>2];c[d+4>>2]=c[e+48+4>>2];c[d+8>>2]=c[e+48+8>>2];c[d+12>>2]=c[e+48+12>>2];e=h+616|0;c[e>>2]=c[f>>2];c[e+4>>2]=c[f+4>>2];c[e+8>>2]=c[f+8>>2];c[e+12>>2]=c[f+12>>2];e=h+632|0;c[e>>2]=c[f+16>>2];c[e+4>>2]=c[f+16+4>>2];c[e+8>>2]=c[f+16+8>>2];c[e+12>>2]=c[f+16+12>>2];e=h+648|0;c[e>>2]=c[f+32>>2];c[e+4>>2]=c[f+32+4>>2];c[e+8>>2]=c[f+32+8>>2];c[e+12>>2]=c[f+32+12>>2];e=h+664|0;c[e>>2]=c[f+48>>2];c[e+4>>2]=c[f+48+4>>2];c[e+8>>2]=c[f+48+8>>2];c[e+12>>2]=c[f+48+12>>2];g[h+688>>2]=0.0;g[h+692>>2]=-1.0;g[h+696>>2]=.8999999761581421;g[h+700>>2]=.30000001192092896;g[h+704>>2]=1.0;g[h+708>>2]=0.0;g[h+712>>2]=0.0;a[h+716>>0]=0;a[h+736>>0]=0;a[h+737>>0]=0;a[h+738>>0]=0;a[h+739>>0]=1;a[h+740>>0]=0;c[h+748>>2]=0;g[h+732>>2]=1.0;return h|0}function Eg(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;var h=0.0,j=0.0,k=0.0,l=0.0,m=0,n=0.0;m=i;i=i+672|0;c[m+568+8>>2]=0;c[m+568+12>>2]=1065353216;c[m+568+16>>2]=1065353216;c[m+568+20>>2]=1065353216;g[m+568+24>>2]=0.0;c[m+568+52>>2]=0;c[m+568>>2]=3736;c[m+568+4>>2]=1;c[m+568+56>>2]=c[d>>2];c[m+568+56+4>>2]=c[d+4>>2];c[m+568+56+8>>2]=c[d+8>>2];c[m+568+56+12>>2]=c[d+12>>2];c[m+568+72>>2]=c[d+16>>2];c[m+568+72+4>>2]=c[d+16+4>>2];c[m+568+72+8>>2]=c[d+16+8>>2];c[m+568+72+12>>2]=c[d+16+12>>2];c[m+568+88>>2]=c[d+32>>2];c[m+568+88+4>>2]=c[d+32+4>>2];c[m+568+88+8>>2]=c[d+32+8>>2];c[m+568+88+12>>2]=c[d+32+12>>2];c[m+568+44>>2]=c[b+204>>2];g[m+208+308>>2]=9.999999747378752e-05;a[m+208+332>>0]=0;c[m+200>>2]=9120;d=c[b+4>>2]|0;c[m+176>>2]=9188;c[m+176+4>>2]=m+208;c[m+176+8>>2]=m+200;c[m+176+12>>2]=d;c[m+176+16>>2]=m+568;c[m+176+20>>2]=0;c[m>>2]=3708;c[m+168>>2]=0;g[m+164>>2]=1.0;c[m+172>>2]=c[b+208>>2];if((Xd(m+176|0,b+8|0,b+72|0,b+136|0,b+136|0,m)|0?(h=+g[m+132>>2],j=+g[m+136>>2],k=+g[m+140>>2],h*h+j*j+k*k>9.999999747378752e-05):0)?(l=+g[m+164>>2],l<+g[b+200>>2]):0){n=1.0/+O(+(h*h+j*j+k*k));g[m+132>>2]=h*n;g[m+136>>2]=j*n;g[m+140>>2]=k*n;+Ub[c[(c[b>>2]|0)+12>>2]&3](b,m+132|0,m+148|0,l,e,f)}c[m+568>>2]=7124;e=c[m+568+52>>2]|0;if(!e){i=m;return}Ab[c[c[e>>2]>>2]&255](e);e=c[m+568+52>>2]|0;if(!e){i=m;return}c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0);i=m;return}function Fg(a,b,d,e,f){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;var h=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0,q=0,r=0;q=i;i=i+32|0;p=c[a+12>>2]|0;if(!p){i=q;return}c[f+4>>2]=p;a=c[b+4>>2]|0;r=c[d+4>>2]|0;b=c[b+12>>2]|0;e=c[d+12>>2]|0;h=+g[b+48>>2]-+g[e+48>>2];j=+g[b+52>>2]-+g[e+52>>2];l=+g[b+56>>2]-+g[e+56>>2];m=+O(+(h*h+j*j+l*l));n=+g[r+28>>2]*+g[r+12>>2];o=+g[a+28>>2]*+g[a+12>>2]+n;if(m>o){if(!(c[p+748>>2]|0)){i=q;return}a=c[p+740>>2]|0;b=c[(c[f+8>>2]|0)+8>>2]|0;e=c[(c[f+12>>2]|0)+8>>2]|0;if((a|0)==(b|0)){ef(p,a+4|0,e+4|0);i=q;return}else{ef(p,e+4|0,b+4|0);i=q;return}}c[q+16>>2]=1065353216;c[q+16+4>>2]=0;c[q+16+8>>2]=0;g[q+16+12>>2]=0.0;if(m>1.1920928955078125e-07){g[q+16>>2]=h*(1.0/m);g[q+16+4>>2]=j*(1.0/m);g[q+16+8>>2]=l*(1.0/m);g[q+16+12>>2]=0.0;k=h*(1.0/m);j=j*(1.0/m);h=l*(1.0/m)}else{k=1.0;j=0.0;h=0.0}j=n*j+ +g[e+52>>2];l=n*h+ +g[e+56>>2];g[q>>2]=n*k+ +g[e+48>>2];g[q+4>>2]=j;g[q+8>>2]=l;g[q+12>>2]=0.0;hc[c[(c[f>>2]|0)+16>>2]&15](f,q+16|0,q,m-o);a=c[f+4>>2]|0;do if(c[a+748>>2]|0){b=c[a+740>>2]|0;d=c[(c[f+8>>2]|0)+8>>2]|0;e=c[(c[f+12>>2]|0)+8>>2]|0;if((b|0)==(d|0)){ef(a,b+4|0,e+4|0);break}else{ef(a,e+4|0,d+4|0);break}}while(0);i=q;return}function Gg(a,b){a=a|0;b=b|0;var d=0,e=0;c[6435]=(c[6435]|0)+1;d=yc(219)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}c[d>>2]=2896;e=d+4|0;c[e>>2]=c[a>>2];c[e+4>>2]=c[a+4>>2];c[e+8>>2]=c[a+8>>2];c[e+12>>2]=c[a+12>>2];e=d+20|0;c[e>>2]=c[a+16>>2];c[e+4>>2]=c[a+16+4>>2];c[e+8>>2]=c[a+16+8>>2];c[e+12>>2]=c[a+16+12>>2];e=d+36|0;c[e>>2]=c[a+32>>2];c[e+4>>2]=c[a+32+4>>2];c[e+8>>2]=c[a+32+8>>2];c[e+12>>2]=c[a+32+12>>2];e=d+52|0;c[e>>2]=c[a+48>>2];c[e+4>>2]=c[a+48+4>>2];c[e+8>>2]=c[a+48+8>>2];c[e+12>>2]=c[a+48+12>>2];e=d+68|0;c[e>>2]=c[b>>2];c[e+4>>2]=c[b+4>>2];c[e+8>>2]=c[b+8>>2];c[e+12>>2]=c[b+12>>2];e=d+84|0;c[e>>2]=c[b+16>>2];c[e+4>>2]=c[b+16+4>>2];c[e+8>>2]=c[b+16+8>>2];c[e+12>>2]=c[b+16+12>>2];e=d+100|0;c[e>>2]=c[b+32>>2];c[e+4>>2]=c[b+32+4>>2];c[e+8>>2]=c[b+32+8>>2];c[e+12>>2]=c[b+32+12>>2];e=d+116|0;c[e>>2]=c[b+48>>2];c[e+4>>2]=c[b+48+4>>2];c[e+8>>2]=c[b+48+8>>2];c[e+12>>2]=c[b+48+12>>2];b=d+132|0;c[b>>2]=c[a>>2];c[b+4>>2]=c[a+4>>2];c[b+8>>2]=c[a+8>>2];c[b+12>>2]=c[a+12>>2];b=d+148|0;c[b>>2]=c[a+16>>2];c[b+4>>2]=c[a+16+4>>2];c[b+8>>2]=c[a+16+8>>2];c[b+12>>2]=c[a+16+12>>2];b=d+164|0;c[b>>2]=c[a+32>>2];c[b+4>>2]=c[a+32+4>>2];c[b+8>>2]=c[a+32+8>>2];c[b+12>>2]=c[a+32+12>>2];b=d+180|0;c[b>>2]=c[a+48>>2];c[b+4>>2]=c[a+48+4>>2];c[b+8>>2]=c[a+48+8>>2];c[b+12>>2]=c[a+48+12>>2];c[d+196>>2]=0;return d|0}function Hg(d,e){d=d|0;e=e|0;var f=0,g=0,h=0,i=0,j=0,k=0;if(!(a[d+164>>0]|0)){f=c[d+148>>2]|0;if((f|0)==(c[d+152>>2]|0)?(k=f|0?f<<1:1,(f|0)<(k|0)):0){if(!k)i=0;else{c[6435]=(c[6435]|0)+1;f=yc((k<<1)+19|0)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}i=f;f=c[d+148>>2]|0}h=c[d+156>>2]|0;if((f|0)<=0)if(!h)f=d+160|0;else g=27;else{g=0;do{b[i+(g<<1)>>1]=b[h+(g<<1)>>1]|0;g=g+1|0}while((g|0)!=(f|0));g=27}if((g|0)==27){if(a[d+160>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0)}c[d+156>>2]=0;f=d+160|0}a[f>>0]=1;c[d+156>>2]=i;c[d+152>>2]=k;f=c[d+148>>2]|0}k=c[d+156>>2]|0;b[k+(f<<1)>>1]=e;c[d+148>>2]=f+1;c[(c[d+32>>2]|0)+4>>2]=k;return}else{f=c[d+128>>2]|0;if((f|0)==(c[d+132>>2]|0)?(j=f|0?f<<1:1,(f|0)<(j|0)):0){if(!j)i=0;else{c[6435]=(c[6435]|0)+1;f=yc((j<<2|3)+16|0)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}i=f;f=c[d+128>>2]|0}h=c[d+136>>2]|0;if((f|0)<=0)if(!h)f=d+140|0;else g=12;else{g=0;do{c[i+(g<<2)>>2]=c[h+(g<<2)>>2];g=g+1|0}while((g|0)!=(f|0));g=12}if((g|0)==12){if(a[d+140>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0)}c[d+136>>2]=0;f=d+140|0}a[f>>0]=1;c[d+136>>2]=i;c[d+132>>2]=j;f=c[d+128>>2]|0}k=c[d+136>>2]|0;c[k+(f<<2)>>2]=e;c[d+128>>2]=(c[d+128>>2]|0)+1;c[(c[d+32>>2]|0)+4>>2]=k;return}}function Ig(a,b,d){a=a|0;b=b|0;d=d|0;var e=0.0,f=0.0,h=0.0,i=0.0,j=0.0,k=0.0,l=0.0;e=+g[d+128>>2];if(!(e!=0.0))return;c[5971]=(c[5971]|0)+1;k=+g[d+96>>2];f=+g[d+16>>2];h=+g[d+20>>2];i=+g[d+24>>2];j=+g[d+108>>2];j=e-k*+g[d+116>>2]-(f*+g[a+144>>2]+h*+g[a+148>>2]+i*+g[a+152>>2]+(+g[d>>2]*+g[a+160>>2]+ +g[d+4>>2]*+g[a+164>>2]+ +g[d+8>>2]*+g[a+168>>2]))*j-j*(+g[d+48>>2]*+g[b+144>>2]+ +g[d+52>>2]*+g[b+148>>2]+ +g[d+56>>2]*+g[b+152>>2]+(+g[d+32>>2]*+g[b+160>>2]+ +g[d+36>>2]*+g[b+164>>2]+ +g[d+40>>2]*+g[b+168>>2]));l=+g[d+120>>2];e=k+j>2]=k+j>2]|0){l=e*h*+g[a+132>>2]*+g[a+116>>2];k=e*i*+g[a+136>>2]*+g[a+120>>2];g[a+144>>2]=+g[a+112>>2]*e*f*+g[a+128>>2]+ +g[a+144>>2];g[a+148>>2]=l+ +g[a+148>>2];g[a+152>>2]=k+ +g[a+152>>2];k=e*+g[a+100>>2]*+g[d+68>>2];l=e*+g[a+104>>2]*+g[d+72>>2];g[a+160>>2]=e*+g[a+96>>2]*+g[d+64>>2]+ +g[a+160>>2];g[a+164>>2]=k+ +g[a+164>>2];g[a+168>>2]=l+ +g[a+168>>2]}if(!(c[b+240>>2]|0))return;l=e*+g[d+52>>2]*+g[b+132>>2]*+g[b+116>>2];k=e*+g[d+56>>2]*+g[b+136>>2]*+g[b+120>>2];g[b+144>>2]=+g[b+112>>2]*e*+g[d+48>>2]*+g[b+128>>2]+ +g[b+144>>2];g[b+148>>2]=l+ +g[b+148>>2];g[b+152>>2]=k+ +g[b+152>>2];k=e*+g[b+100>>2]*+g[d+84>>2];l=e*+g[b+104>>2]*+g[d+88>>2];g[b+160>>2]=e*+g[b+96>>2]*+g[d+80>>2]+ +g[b+160>>2];g[b+164>>2]=k+ +g[b+164>>2];g[b+168>>2]=l+ +g[b+168>>2];return}function Jg(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0,g=0;e=Zb[c[(c[d>>2]|0)+40>>2]&31](d,a)|0;g=Zb[c[(c[d>>2]|0)+28>>2]&31](d,e)|0;c[b>>2]=g;if(g|0)Cb[c[(c[d>>2]|0)+48>>2]&127](d,e);c[b+4>>2]=c[a+4>>2];g=c[a+48>>2]|0;Ob[c[(c[g>>2]|0)+56>>2]&63](g,b+12|0,d)|0;c[b+52>>2]=c[a+12>>2];do if((c[a+52>>2]|0)!=0?((Eb[c[(c[d>>2]|0)+52>>2]&127](d)|0)&1|0)==0:0){e=Zb[c[(c[d>>2]|0)+24>>2]&31](d,c[a+52>>2]|0)|0;if(!e){c[b+40>>2]=Zb[c[(c[d>>2]|0)+28>>2]&31](d,c[a+52>>2]|0)|0;c[b+44>>2]=0;e=c[a+52>>2]|0;e=Eb[c[(c[e>>2]|0)+12>>2]&127](e)|0;e=Ob[c[(c[d>>2]|0)+16>>2]&63](d,e,1)|0;g=c[a+52>>2]|0;g=Ob[c[(c[g>>2]|0)+16>>2]&63](g,c[e+8>>2]|0,d)|0;yb[c[(c[d>>2]|0)+20>>2]&31](d,e,g,1213612625,c[a+52>>2]|0);break}else{c[b+40>>2]=e;c[b+44>>2]=0;break}}else f=8;while(0);if((f|0)==8){c[b+40>>2]=0;c[b+44>>2]=0}if(c[a+56>>2]|0?((Eb[c[(c[d>>2]|0)+52>>2]&127](d)|0)&2|0)==0:0){e=Zb[c[(c[d>>2]|0)+24>>2]&31](d,c[a+56>>2]|0)|0;if(!e){c[b+48>>2]=Zb[c[(c[d>>2]|0)+28>>2]&31](d,c[a+56>>2]|0)|0;b=c[a+56>>2]|0;b=Eb[c[(c[b>>2]|0)+8>>2]&127](b)|0;b=Ob[c[(c[d>>2]|0)+16>>2]&63](d,b,1)|0;g=c[a+56>>2]|0;g=Ob[c[(c[g>>2]|0)+12>>2]&63](g,c[b+8>>2]|0,d)|0;yb[c[(c[d>>2]|0)+20>>2]&31](d,b,g,1346456916,c[a+56>>2]|0);return 16548}else{c[b+48>>2]=e;return 16548}}c[b+48>>2]=0;return 16548}function Kg(b,d,e){b=b|0;d=d|0;e=e|0;var f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;c[6422]=(c[6422]|0)+1;k=((e<<16|d)+~((e<<16|d)<<15)>>10^(e<<16|d)+~((e<<16|d)<<15))*9|0;k=(k>>6^k)+~((k>>6^k)<<11)>>16^(k>>6^k)+~((k>>6^k)<<11);l=c[b+12>>2]|0;f=c[(c[b+40>>2]|0)+((l+-1&k)<<2)>>2]|0;a:do if((f|0)!=-1){h=c[b+16>>2]|0;while(1){g=h+(f*12|0)|0;if((c[g>>2]|0)==(d|0)?(c[h+(f*12|0)+4>>2]|0)==(e|0):0)break;f=c[(c[b+60>>2]|0)+(f<<2)>>2]|0;if((f|0)==-1)break a}if(g|0){b=g;return b|0}}while(0);j=c[b+8>>2]|0;if((j|0)==(l|0)){h=l|0?l<<1:1;if((l|0)<(h|0)){if(!h){f=0;g=l}else{c[6435]=(c[6435]|0)+1;f=yc((h*12|3)+16|0)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}g=c[b+8>>2]|0}if((g|0)>0){i=0;do{m=f+(i*12|0)|0;n=(c[b+16>>2]|0)+(i*12|0)|0;c[m>>2]=c[n>>2];c[m+4>>2]=c[n+4>>2];c[m+8>>2]=c[n+8>>2];i=i+1|0}while((i|0)!=(g|0))}g=c[b+16>>2]|0;if(g|0){if(a[b+20>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[g+-4>>2]|0)}c[b+16>>2]=0}a[b+20>>0]=1;c[b+16>>2]=f;c[b+12>>2]=h;f=c[b+8>>2]|0}else{f=l;h=l}}else{f=j;h=l}c[b+8>>2]=f+1;g=c[b+16>>2]|0;if((l|0)<(h|0)){Kf(b);f=(c[b+12>>2]|0)+-1&k}else f=l+-1&k;c[g+(j*12|0)>>2]=d;c[g+(j*12|0)+4>>2]=e;c[g+(j*12|0)+8>>2]=0;n=(c[b+40>>2]|0)+(f<<2)|0;c[(c[b+60>>2]|0)+(j<<2)>>2]=c[n>>2];c[n>>2]=j;n=g+(j*12|0)|0;return n|0}function Lg(a){a=a|0;var b=0,d=0,e=0;c[6435]=(c[6435]|0)+1;b=yc(219)|0;if(!b)b=0;else{c[(b+4+15&-16)+-4>>2]=b;b=b+4+15&-16}ml();c[b>>2]=2896;d=b+52|0;e=b+4|0;c[e>>2]=c[a>>2];c[e+4>>2]=c[a+4>>2];c[e+8>>2]=c[a+8>>2];c[e+12>>2]=c[a+12>>2];e=b+20|0;c[e>>2]=c[a+16>>2];c[e+4>>2]=c[a+16+4>>2];c[e+8>>2]=c[a+16+8>>2];c[e+12>>2]=c[a+16+12>>2];e=b+36|0;c[e>>2]=c[a+32>>2];c[e+4>>2]=c[a+32+4>>2];c[e+8>>2]=c[a+32+8>>2];c[e+12>>2]=c[a+32+12>>2];c[d>>2]=c[a+48>>2];c[d+4>>2]=c[a+48+4>>2];c[d+8>>2]=c[a+48+8>>2];c[d+12>>2]=c[a+48+12>>2];d=b+116|0;e=b+68|0;c[e>>2]=c[5710];c[e+4>>2]=c[5711];c[e+8>>2]=c[5712];c[e+12>>2]=c[5713];e=b+84|0;c[e>>2]=c[5714];c[e+4>>2]=c[5715];c[e+8>>2]=c[5716];c[e+12>>2]=c[5717];e=b+100|0;c[e>>2]=c[5718];c[e+4>>2]=c[5719];c[e+8>>2]=c[5720];c[e+12>>2]=c[5721];c[d>>2]=c[5722];c[d+4>>2]=c[5723];c[d+8>>2]=c[5724];c[d+12>>2]=c[5725];d=b+180|0;e=b+132|0;c[e>>2]=c[a>>2];c[e+4>>2]=c[a+4>>2];c[e+8>>2]=c[a+8>>2];c[e+12>>2]=c[a+12>>2];e=b+148|0;c[e>>2]=c[a+16>>2];c[e+4>>2]=c[a+16+4>>2];c[e+8>>2]=c[a+16+8>>2];c[e+12>>2]=c[a+16+12>>2];e=b+164|0;c[e>>2]=c[a+32>>2];c[e+4>>2]=c[a+32+4>>2];c[e+8>>2]=c[a+32+8>>2];c[e+12>>2]=c[a+32+12>>2];c[d>>2]=c[a+48>>2];c[d+4>>2]=c[a+48+4>>2];c[d+8>>2]=c[a+48+8>>2];c[d+12>>2]=c[a+48+12>>2];c[b+196>>2]=0;return b|0}function Mg(a,b,d){a=a|0;b=b|0;d=d|0;var e=0.0,f=0.0,h=0.0,i=0.0,j=0.0,k=0.0,l=0.0;k=+g[d+100>>2];h=+g[d+16>>2];e=+g[d+20>>2];f=+g[d+24>>2];j=+g[d+108>>2];j=+g[d+112>>2]-k*+g[d+116>>2]-(h*+g[a+64>>2]+e*+g[a+68>>2]+f*+g[a+72>>2]+(+g[d>>2]*+g[a+80>>2]+ +g[d+4>>2]*+g[a+84>>2]+ +g[d+8>>2]*+g[a+88>>2]))*j-j*(+g[d+48>>2]*+g[b+64>>2]+ +g[d+52>>2]*+g[b+68>>2]+ +g[d+56>>2]*+g[b+72>>2]+(+g[d+32>>2]*+g[b+80>>2]+ +g[d+36>>2]*+g[b+84>>2]+ +g[d+40>>2]*+g[b+88>>2]));l=+g[d+120>>2];i=k+j>2]=k+j>2]|0){l=i*e*+g[a+132>>2]*+g[a+116>>2];k=i*f*+g[a+136>>2]*+g[a+120>>2];g[a+64>>2]=+g[a+112>>2]*i*h*+g[a+128>>2]+ +g[a+64>>2];g[a+68>>2]=l+ +g[a+68>>2];g[a+72>>2]=k+ +g[a+72>>2];k=i*+g[a+100>>2]*+g[d+68>>2];l=i*+g[a+104>>2]*+g[d+72>>2];g[a+80>>2]=i*+g[a+96>>2]*+g[d+64>>2]+ +g[a+80>>2];g[a+84>>2]=k+ +g[a+84>>2];g[a+88>>2]=l+ +g[a+88>>2]}if(!(c[b+240>>2]|0))return;l=i*+g[d+52>>2]*+g[b+132>>2]*+g[b+116>>2];k=i*+g[d+56>>2]*+g[b+136>>2]*+g[b+120>>2];g[b+64>>2]=+g[b+112>>2]*i*+g[d+48>>2]*+g[b+128>>2]+ +g[b+64>>2];g[b+68>>2]=l+ +g[b+68>>2];g[b+72>>2]=k+ +g[b+72>>2];k=i*+g[b+100>>2]*+g[d+84>>2];l=i*+g[b+104>>2]*+g[d+88>>2];g[b+80>>2]=i*+g[b+96>>2]*+g[d+80>>2]+ +g[b+80>>2];g[b+84>>2]=k+ +g[b+84>>2];g[b+88>>2]=l+ +g[b+88>>2];return}function Ng(b,d,e,f,h,i,j,k,l){b=b|0;d=d|0;e=e|0;f=+f;h=+h;i=+i;j=j|0;k=k|0;l=l|0;var m=0,n=0.0,o=0.0,p=0.0;c[6435]=(c[6435]|0)+1;m=yc(143)|0;if(!m)m=0;else{c[(m+4+15&-16)+-4>>2]=m;m=m+4+15&-16}c[m+8>>2]=0;g[m+12>>2]=0.0;c[m>>2]=8060;c[m+4>>2]=24;c[m+64>>2]=b;c[m+68>>2]=d;g[m+72>>2]=h;g[m+76>>2]=i;g[m+80>>2]=+(b+-1|0);g[m+84>>2]=+(d+-1|0);g[m+88>>2]=f;c[m+92>>2]=e;c[m+96>>2]=k;a[m+100>>0]=l&1;a[m+101>>0]=0;a[m+102>>0]=0;c[m+104>>2]=j;c[m+108>>2]=1065353216;c[m+112>>2]=1065353216;c[m+116>>2]=1065353216;g[m+120>>2]=0.0;switch(j|0){case 0:{g[m+16>>2]=h;c[m+20>>2]=0;c[m+24>>2]=0;g[m+28>>2]=0.0;g[m+32>>2]=i;g[m+36>>2]=+(b+-1|0);g[m+40>>2]=+(d+-1|0);g[m+44>>2]=0.0;o=i;p=h;f=+(b+-1|0);n=0.0;i=+(d+-1|0);h=0.0;break}case 1:{c[m+16>>2]=0;g[m+20>>2]=h;c[m+24>>2]=0;g[m+28>>2]=0.0;g[m+32>>2]=+(b+-1|0);g[m+36>>2]=i;g[m+40>>2]=+(d+-1|0);g[m+44>>2]=0.0;o=+(b+-1|0);p=0.0;f=i;n=h;i=+(d+-1|0);h=0.0;break}case 2:{c[m+16>>2]=0;c[m+20>>2]=0;g[m+24>>2]=h;g[m+28>>2]=0.0;g[m+32>>2]=+(b+-1|0);g[m+36>>2]=+(d+-1|0);g[m+40>>2]=i;g[m+44>>2]=0.0;o=+(b+-1|0);p=0.0;f=+(d+-1|0);n=0.0;break}default:{o=+g[m+32>>2];p=+g[m+16>>2];f=+g[m+36>>2];n=+g[m+20>>2];i=+g[m+40>>2];h=+g[m+24>>2]}}g[m+48>>2]=(p+o)*.5;g[m+52>>2]=(n+f)*.5;g[m+56>>2]=(h+i)*.5;g[m+60>>2]=0.0;return m|0}function Og(b,d){b=b|0;d=d|0;var e=0,f=0,h=0,i=0.0,j=0.0,k=0.0,l=0;if(a[b+1308>>0]|0){c[d>>2]=0;c[d+4>>2]=0;return}sd(b,(c[b+28>>2]|0)+4|0,(c[b+32>>2]|0)+4|0);c[d>>2]=0;c[d+4>>2]=6;if((c[b+856>>2]|0)==0?(a[b+788>>0]|0)==0:0){e=0;f=6}else{c[d>>2]=1;c[d+4>>2]=5;e=1;f=5}if(!((c[b+860>>2]|0)==0?(a[b+789>>0]|0)==0:0)){e=e+1|0;c[d>>2]=e;f=f+-1|0;c[d+4>>2]=f}if((c[b+864>>2]|0)==0?(a[b+790>>0]|0)==0:0)l=0;else{e=e+1|0;c[d>>2]=e;f=f+-1|0;c[d+4>>2]=f;l=0}do{i=+g[b+868+(l<<6)>>2];j=+g[b+868+(l<<6)+4>>2];k=+ik(+g[b+1192+(l<<2)>>2],i,j);g[b+868+(l<<6)+52>>2]=k;do if(!(i>j)){if(i>k){c[b+868+(l<<6)+56>>2]=1;h=b+868+(l<<6)+48|0;g[h>>2]=k-i;if(k-i>3.1415927410125732){g[h>>2]=k-i+-6.2831854820251465;h=21;break}if(!(k-i<-3.1415927410125732)){h=21;break}g[h>>2]=k-i+6.2831854820251465;h=21;break}h=b+868+(l<<6)+56|0;if(!(j>2]=0;h=20;break}c[h>>2]=2;h=b+868+(l<<6)+48|0;g[h>>2]=k-j;if(k-j>3.1415927410125732){g[h>>2]=k-j+-6.2831854820251465;h=21;break}if(k-j<-3.1415927410125732){g[h>>2]=k-j+6.2831854820251465;h=21}else h=21}else{c[b+868+(l<<6)+56>>2]=0;h=20}while(0);if((h|0)==20){h=0;if(a[b+868+(l<<6)+44>>0]|0)h=21}if((h|0)==21){e=e+1|0;c[d>>2]=e;f=f+-1|0;c[d+4>>2]=f}l=l+1|0}while((l|0)!=3);return}function Pg(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,j=0,k=0,l=0;l=i;i=i+96|0;g=c[b+8>>2]|0;if((g|0)==(c[b+12>>2]|0)?(k=g|0?g<<1:1,(g|0)<(k|0)):0){if(!k)j=0;else{c[6435]=(c[6435]|0)+1;g=yc((k<<2|3)+16|0)|0;if(!g)g=0;else{c[(g+4+15&-16)+-4>>2]=g;g=g+4+15&-16}j=g;g=c[b+8>>2]|0}if((g|0)>0){h=0;do{c[j+(h<<2)>>2]=c[(c[b+16>>2]|0)+(h<<2)>>2];h=h+1|0}while((h|0)!=(g|0))}h=c[b+16>>2]|0;if(h){if(a[b+20>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0);g=c[b+8>>2]|0}c[b+16>>2]=0}a[b+20>>0]=1;c[b+16>>2]=j;c[b+12>>2]=k}c[(c[b+16>>2]|0)+(g<<2)>>2]=d;c[b+8>>2]=g+1;c[l+32>>2]=c[d+4>>2];c[l+32+4>>2]=c[d+4+4>>2];c[l+32+8>>2]=c[d+4+8>>2];c[l+32+12>>2]=c[d+4+12>>2];c[l+32+16>>2]=c[d+20>>2];c[l+32+16+4>>2]=c[d+20+4>>2];c[l+32+16+8>>2]=c[d+20+8>>2];c[l+32+16+12>>2]=c[d+20+12>>2];c[l+32+32>>2]=c[d+36>>2];c[l+32+32+4>>2]=c[d+36+4>>2];c[l+32+32+8>>2]=c[d+36+8>>2];c[l+32+32+12>>2]=c[d+36+12>>2];c[l+32+48>>2]=c[d+52>>2];c[l+32+48+4>>2]=c[d+52+4>>2];c[l+32+48+8>>2]=c[d+52+8>>2];c[l+32+48+12>>2]=c[d+52+12>>2];k=c[d+192>>2]|0;mc[c[(c[k>>2]|0)+8>>2]&127](k,l+32|0,l+16|0,l);k=c[b+68>>2]|0;c[d+188>>2]=gc[c[(c[k>>2]|0)+8>>2]&3](k,l+16|0,l,c[(c[d+192>>2]|0)+4>>2]|0,d,e,f,c[b+24>>2]|0,0)|0;i=l;return}function Qg(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0,h=0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0,v=0,w=0.0,x=0,y=0;x=i;i=i+16|0;f=c[a+52>>2]|0;w=+g[a+28+(((f+2|0)%3|0)<<2)>>2];if((e|0)<=0){i=x;return}h=0;while(1){c[x>>2]=0;c[x+4>>2]=0;c[x+8>>2]=0;c[x+12>>2]=0;c[x+(f<<2)>>2]=c[a+28+(f<<2)>>2];f=b+(h<<4)|0;u=b+(h<<4)+4|0;v=b+(h<<4)+8|0;j=w*+g[f>>2]+ +g[x>>2];k=w*+g[u>>2]+ +g[x+4>>2];l=w*+g[v>>2]+ +g[x+8>>2];m=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);n=+g[f>>2];o=+g[u>>2];p=+g[v>>2];if(n*(j-m*n)+o*(k-m*o)+p*(l-m*p)>-999999984306749440.0){g[d+(h<<4)>>2]=j-m*n;g[d+(h<<4)+4>>2]=k-m*o;g[d+(h<<4)+8>>2]=l-m*p;g[d+(h<<4)+12>>2]=0.0;q=+g[f>>2];s=+g[u>>2];t=+g[v>>2];r=n*(j-m*n)+o*(k-m*o)+p*(l-m*p)}else{q=n;s=o;t=p;r=-999999984306749440.0}c[x>>2]=0;c[x+4>>2]=0;c[x+8>>2]=0;c[x+12>>2]=0;y=c[a+52>>2]|0;g[x+(y<<2)>>2]=-+g[a+28+(y<<2)>>2];p=w*q+ +g[x>>2];o=w*s+ +g[x+4>>2];m=w*t+ +g[x+8>>2];n=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);l=+g[f>>2];k=+g[u>>2];j=+g[v>>2];if(l*(p-n*l)+k*(o-n*k)+j*(m-n*j)>r){g[d+(h<<4)>>2]=p-n*l;g[d+(h<<4)+4>>2]=o-n*k;g[d+(h<<4)+8>>2]=m-n*j;g[d+(h<<4)+12>>2]=0.0}h=h+1|0;if((h|0)==(e|0))break;f=c[a+52>>2]|0}i=x;return}function Rg(a,b,d,e,f,h,i,j,k,l){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;i=i|0;j=+j;k=k|0;l=+l;var m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0;c[a>>2]=c[h>>2];c[a+4>>2]=c[h+4>>2];c[a+8>>2]=c[h+8>>2];c[a+12>>2]=c[h+12>>2];s=+g[e+4>>2];v=+g[a+8>>2];w=+g[e+8>>2];p=+g[a+4>>2];m=+g[a>>2];r=+g[e>>2];u=(s*v-w*p)*+g[b>>2]+ +g[b+4>>2]*(w*m-v*r)+(p*r-s*m)*+g[b+8>>2];t=(s*v-w*p)*+g[b+16>>2]+(w*m-v*r)*+g[b+20>>2]+(p*r-s*m)*+g[b+24>>2];s=(s*v-w*p)*+g[b+32>>2]+(w*m-v*r)*+g[b+36>>2]+(p*r-s*m)*+g[b+40>>2];g[a+16>>2]=u;g[a+20>>2]=t;g[a+24>>2]=s;g[a+28>>2]=0.0;r=+g[f+4>>2];w=+g[f+8>>2];n=+g[f>>2];q=+g[d>>2]*(r*-v-w*-p)+ +g[d+4>>2]*(w*-m-n*-v)+(n*-p-r*-m)*+g[d+8>>2];o=(r*-v-w*-p)*+g[d+16>>2]+(w*-m-n*-v)*+g[d+20>>2]+(n*-p-r*-m)*+g[d+24>>2];m=(r*-v-w*-p)*+g[d+32>>2]+(w*-m-n*-v)*+g[d+36>>2]+(n*-p-r*-m)*+g[d+40>>2];g[a+32>>2]=q;g[a+36>>2]=o;g[a+40>>2]=m;g[a+44>>2]=0.0;u=+g[i>>2]*u;t=+g[i+4>>2]*t;s=+g[i+8>>2]*s;g[a+48>>2]=u;g[a+52>>2]=t;g[a+56>>2]=s;g[a+60>>2]=0.0;r=+g[k>>2]*q;p=+g[k+4>>2]*o;n=+g[k+8>>2]*m;g[a+64>>2]=r;g[a+68>>2]=p;g[a+72>>2]=n;g[a+76>>2]=0.0;g[a+80>>2]=u*+g[a+16>>2]+t*+g[a+20>>2]+s*+g[a+24>>2]+j+l+(r*q+p*o+n*m);return}function Sg(b){b=b|0;var d=0,e=0,f=0;c[b>>2]=4144;if(a[b+272>>0]|0?(d=c[b+204>>2]|0,Ab[c[c[d>>2]>>2]&255](d),d=c[b+204>>2]|0,d|0):0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}d=c[b+196>>2]|0;if(d|0?(Ab[c[c[d>>2]>>2]&255](d),e=c[b+196>>2]|0,e|0):0){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0)}if(a[b+273>>0]|0?(f=c[b+200>>2]|0,Ab[c[c[f>>2]>>2]&255](f),f=c[b+200>>2]|0,f|0):0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}d=c[b+316>>2]|0;if(d|0){if(a[b+320>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+316>>2]=0}a[b+320>>0]=1;c[b+316>>2]=0;c[b+308>>2]=0;c[b+312>>2]=0;d=c[b+288>>2]|0;if(d|0){if(a[b+292>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+288>>2]=0}a[b+292>>0]=1;c[b+288>>2]=0;c[b+280>>2]=0;c[b+284>>2]=0;d=c[b+240>>2]|0;if(d|0){if(a[b+244>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+240>>2]=0}a[b+244>>0]=1;c[b+240>>2]=0;c[b+232>>2]=0;c[b+236>>2]=0;d=c[b+220>>2]|0;if(d|0){if(a[b+224>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+220>>2]=0}a[b+224>>0]=1;c[b+220>>2]=0;c[b+212>>2]=0;c[b+216>>2]=0;d=c[b+188>>2]|0;if(!d){a[b+192>>0]=1;c[b+188>>2]=0;c[b+180>>2]=0;f=b+184|0;c[f>>2]=0;_j(b);return}if(a[b+192>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+188>>2]=0;a[b+192>>0]=1;c[b+188>>2]=0;c[b+180>>2]=0;f=b+184|0;c[f>>2]=0;_j(b);return}function Tg(b,d,e){b=b|0;d=d|0;e=e|0;var f=0,h=0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0;h=i;i=i+64|0;a[d+84>>0]=0;c[h>>2]=c[b+4>>2];c[h+4>>2]=c[b+4+4>>2];c[h+8>>2]=c[b+4+8>>2];c[h+12>>2]=c[b+4+12>>2];c[h+16>>2]=c[b+20>>2];c[h+16+4>>2]=c[b+20+4>>2];c[h+16+8>>2]=c[b+20+8>>2];c[h+16+12>>2]=c[b+20+12>>2];c[h+32>>2]=c[b+36>>2];c[h+32+4>>2]=c[b+36+4>>2];c[h+32+8>>2]=c[b+36+8>>2];c[h+32+12>>2]=c[b+36+12>>2];c[h+48>>2]=c[b+52>>2];c[h+48+4>>2]=c[b+52+4>>2];c[h+48+8>>2]=c[b+52+8>>2];c[h+48+12>>2]=c[b+52+12>>2];if(e?(f=c[b+480>>2]|0,f|0):0)Cb[c[(c[f>>2]|0)+8>>2]&127](f,h);w=+g[d+156>>2];u=+g[h>>2];v=+g[d+160>>2];t=+g[h+4>>2];o=+g[d+164>>2];s=+g[h+8>>2];r=+g[h+16>>2];q=+g[h+20>>2];p=+g[h+24>>2];n=+g[h+32>>2];l=+g[h+36>>2];j=+g[h+40>>2];m=w*r+v*q+o*p+ +g[h+52>>2];k=w*n+v*l+o*j+ +g[h+56>>2];g[d+36>>2]=w*u+v*t+o*s+ +g[h+48>>2];g[d+40>>2]=m;g[d+44>>2]=k;g[d+48>>2]=0.0;k=+g[d+172>>2];m=+g[d+176>>2];o=+g[d+180>>2];g[d+52>>2]=u*k+t*m+s*o;g[d+56>>2]=k*r+m*q+o*p;g[d+60>>2]=k*n+m*l+o*j;g[d+64>>2]=0.0;o=+g[d+188>>2];m=+g[d+192>>2];k=+g[d+196>>2];g[d+68>>2]=u*o+t*m+s*k;g[d+72>>2]=o*r+m*q+k*p;g[d+76>>2]=o*n+m*l+k*j;g[d+80>>2]=0.0;i=h;return}function Ug(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0,g=0.0;a:do if(b>>>0<=20)do switch(b|0){case 9:{e=(c[d>>2]|0)+(4-1)&~(4-1);b=c[e>>2]|0;c[d>>2]=e+4;c[a>>2]=b;break a}case 10:{b=(c[d>>2]|0)+(4-1)&~(4-1);e=c[b>>2]|0;c[d>>2]=b+4;c[a>>2]=e;c[a+4>>2]=((e|0)<0)<<31>>31;break a}case 11:{b=(c[d>>2]|0)+(4-1)&~(4-1);e=c[b>>2]|0;c[d>>2]=b+4;c[a>>2]=e;c[a+4>>2]=0;break a}case 12:{f=(c[d>>2]|0)+(8-1)&~(8-1);b=c[f>>2]|0;e=c[f+4>>2]|0;c[d>>2]=f+8;c[a>>2]=b;c[a+4>>2]=e;break a}case 13:{e=(c[d>>2]|0)+(4-1)&~(4-1);f=c[e>>2]|0;c[d>>2]=e+4;c[a>>2]=(f&65535)<<16>>16;c[a+4>>2]=(((f&65535)<<16>>16|0)<0)<<31>>31;break a}case 14:{e=(c[d>>2]|0)+(4-1)&~(4-1);f=c[e>>2]|0;c[d>>2]=e+4;c[a>>2]=f&65535;c[a+4>>2]=0;break a}case 15:{e=(c[d>>2]|0)+(4-1)&~(4-1);f=c[e>>2]|0;c[d>>2]=e+4;c[a>>2]=(f&255)<<24>>24;c[a+4>>2]=(((f&255)<<24>>24|0)<0)<<31>>31;break a}case 16:{e=(c[d>>2]|0)+(4-1)&~(4-1);f=c[e>>2]|0;c[d>>2]=e+4;c[a>>2]=f&255;c[a+4>>2]=0;break a}case 17:{f=(c[d>>2]|0)+(8-1)&~(8-1);g=+h[f>>3];c[d>>2]=f+8;h[a>>3]=g;break a}case 18:{f=(c[d>>2]|0)+(8-1)&~(8-1);g=+h[f>>3];c[d>>2]=f+8;h[a>>3]=g;break a}default:break a}while(0);while(0);return}function Vg(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0,h=0,j=0.0,k=0.0,l=0.0,m=0.0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0.0,y=0;w=i;i=i+2048|0;if((e|0)>0)f=0;else{i=w;return}do{g[d+(f<<4)+12>>2]=-999999984306749440.0;f=f+1|0}while((f|0)!=(e|0));t=0;do{if((Eb[c[(c[a>>2]|0)+96>>2]&127](a)|0)>0){r=b+(t<<4)|0;s=b+(t<<4)+4|0;o=b+(t<<4)+8|0;p=d+(t<<4)+12|0;q=d+(t<<4)|0;u=0;do{if(((Eb[c[(c[a>>2]|0)+96>>2]&127](a)|0)-u|0)<128){f=(Eb[c[(c[a>>2]|0)+96>>2]&127](a)|0)-u|0;if((f|0)>0)v=10;else{j=-3402823466385288598117041.0e14;f=-1}}else{f=128;v=10}if((v|0)==10){v=0;h=0;do{ic[c[(c[a>>2]|0)+108>>2]&127](a,h,w+(h<<4)|0);h=h+1|0}while((h|0)!=(f|0));k=+g[r>>2];l=+g[s>>2];m=+g[o>>2];n=0;j=-3402823466385288598117041.0e14;h=-1;do{x=k*+g[w+(n<<4)>>2]+l*+g[w+(n<<4)+4>>2]+m*+g[w+(n<<4)+8>>2];y=x>j;h=y?n:h;j=y?x:j;n=n+1|0}while((n|0)!=(f|0));f=h}if(j>+g[p>>2]){y=w+(f<<4)|0;c[q>>2]=c[y>>2];c[q+4>>2]=c[y+4>>2];c[q+8>>2]=c[y+8>>2];c[q+12>>2]=c[y+12>>2];g[p>>2]=j}u=u+128|0}while((u|0)<(Eb[c[(c[a>>2]|0)+96>>2]&127](a)|0))}t=t+1|0}while((t|0)!=(e|0));i=w;return}function Wg(a,b){a=a|0;b=b|0;var d=0.0,e=0.0,f=0.0,h=0,j=0,l=0,m=0,n=0.0;h=i;i=i+16|0;d=+g[a>>2];e=+g[a+20>>2];f=+g[a+40>>2];if(d+e+f>0.0){f=+O(+(d+e+f+1.0));g[h+12>>2]=f*.5;n=(+g[a+36>>2]-+g[a+24>>2])*(.5/f);g[h>>2]=n;d=(+g[a+8>>2]-+g[a+32>>2])*(.5/f);g[h+4>>2]=d;e=(+g[a+16>>2]-+g[a+4>>2])*(.5/f);g[h+8>>2]=e;a=(g[k>>2]=n,c[k>>2]|0);m=(g[k>>2]=d,c[k>>2]|0);l=(g[k>>2]=e,c[k>>2]|0);j=(g[k>>2]=f*.5,c[k>>2]|0);c[b>>2]=a;a=b+4|0;c[a>>2]=m;a=b+8|0;c[a>>2]=l;a=b+12|0;c[a>>2]=j;i=h;return}else{m=d>2]-+g[a+((((m+1|0)>>>0)%3|0)<<4)+((((m+1|0)>>>0)%3|0)<<2)>>2]-+g[a+((((m+2|0)>>>0)%3|0)<<4)+((((m+2|0)>>>0)%3|0)<<2)>>2]+1.0));g[h+(m<<2)>>2]=n*.5;g[h+12>>2]=(+g[a+((((m+2|0)>>>0)%3|0)<<4)+((((m+1|0)>>>0)%3|0)<<2)>>2]-+g[a+((((m+1|0)>>>0)%3|0)<<4)+((((m+2|0)>>>0)%3|0)<<2)>>2])*(.5/n);g[h+((((m+1|0)>>>0)%3|0)<<2)>>2]=(+g[a+((((m+1|0)>>>0)%3|0)<<4)+(m<<2)>>2]+ +g[a+(m<<4)+((((m+1|0)>>>0)%3|0)<<2)>>2])*(.5/n);g[h+((((m+2|0)>>>0)%3|0)<<2)>>2]=(+g[a+((((m+2|0)>>>0)%3|0)<<4)+(m<<2)>>2]+ +g[a+(m<<4)+((((m+2|0)>>>0)%3|0)<<2)>>2])*(.5/n);m=c[h>>2]|0;a=c[h+4>>2]|0;j=c[h+8>>2]|0;l=c[h+12>>2]|0;c[b>>2]=m;m=b+4|0;c[m>>2]=a;m=b+8|0;c[m>>2]=j;m=b+12|0;c[m>>2]=l;i=h;return}}function Xg(a,b){a=a|0;b=b|0;var d=0,e=0;d=i;i=i+48|0;e=(c[a+48>>2]|0)+4|0;c[e>>2]=c[b>>2];c[e+4>>2]=c[b+4>>2];c[e+8>>2]=c[b+8>>2];c[e+12>>2]=c[b+12>>2];c[d+32>>2]=0;c[d+32+4>>2]=0;c[d+32+8>>2]=0;c[d+32+12>>2]=0;g[d+32>>2]=1.0;ic[c[(c[a>>2]|0)+68>>2]&127](d+16|0,a,d+32|0);g[a+32>>2]=+g[d+16>>2]+ +g[a+12>>2];g[d+32>>2]=-1.0;ic[c[(c[a>>2]|0)+68>>2]&127](d,a,d+32|0);c[d+16>>2]=c[d>>2];c[d+16+4>>2]=c[d+4>>2];c[d+16+8>>2]=c[d+8>>2];c[d+16+12>>2]=c[d+12>>2];g[a+16>>2]=+g[d+16>>2]-+g[a+12>>2];c[d+32>>2]=0;c[d+32+4>>2]=0;c[d+32+8>>2]=0;c[d+32+12>>2]=0;g[d+32+4>>2]=1.0;ic[c[(c[a>>2]|0)+68>>2]&127](d+16|0,a,d+32|0);g[a+36>>2]=+g[d+16+4>>2]+ +g[a+12>>2];g[d+32+4>>2]=-1.0;ic[c[(c[a>>2]|0)+68>>2]&127](d,a,d+32|0);c[d+16>>2]=c[d>>2];c[d+16+4>>2]=c[d+4>>2];c[d+16+8>>2]=c[d+8>>2];c[d+16+12>>2]=c[d+12>>2];g[a+20>>2]=+g[d+16+4>>2]-+g[a+12>>2];c[d+32>>2]=0;c[d+32+4>>2]=0;c[d+32+8>>2]=0;c[d+32+12>>2]=0;g[d+32+8>>2]=1.0;ic[c[(c[a>>2]|0)+68>>2]&127](d+16|0,a,d+32|0);g[a+40>>2]=+g[d+16+8>>2]+ +g[a+12>>2];g[d+32+8>>2]=-1.0;ic[c[(c[a>>2]|0)+68>>2]&127](d,a,d+32|0);c[d+16>>2]=c[d>>2];c[d+16+4>>2]=c[d+4>>2];c[d+16+8>>2]=c[d+8>>2];c[d+16+12>>2]=c[d+12>>2];g[a+24>>2]=+g[d+16+8>>2]-+g[a+12>>2];i=d;return}function Yg(a,b,d,e,f,h,j){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;j=j|0;var l=0.0,m=0.0,n=0,o=0.0,p=0.0,q=0,r=0,s=0.0,t=0;r=i;i=i+16|0;g[e>>2]=3402823466385288598117041.0e14;g[f>>2]=-3402823466385288598117041.0e14;n=c[a+96>>2]|0;if((n|0)>0){q=0;do{t=c[a+104>>2]|0;s=+g[t+(q<<4)>>2]*+g[a+12>>2];p=+g[t+(q<<4)+4>>2]*+g[a+16>>2];o=+g[t+(q<<4)+8>>2]*+g[a+20>>2];l=s*+g[b>>2]+p*+g[b+4>>2]+o*+g[b+8>>2]+ +g[b+48>>2];m=s*+g[b+16>>2]+p*+g[b+20>>2]+o*+g[b+24>>2]+ +g[b+52>>2];o=s*+g[b+32>>2]+p*+g[b+36>>2]+o*+g[b+40>>2]+ +g[b+56>>2];p=l*+g[d>>2]+m*+g[d+4>>2]+o*+g[d+8>>2];if(p<+g[e>>2]){g[e>>2]=p;g[h>>2]=l;g[h+4>>2]=m;g[h+8>>2]=o;g[h+12>>2]=0.0}if(p>+g[f>>2]){g[f>>2]=p;g[j>>2]=l;g[j+4>>2]=m;g[j+8>>2]=o;g[j+12>>2]=0.0}q=q+1|0}while((q|0)!=(n|0));s=+g[f>>2];m=s;n=(g[k>>2]=s,c[k>>2]|0)}else{m=-3402823466385288598117041.0e14;n=-8388609}l=+g[e>>2];if(!(l>m)){i=r;return}c[e>>2]=n;g[f>>2]=l;c[r>>2]=c[h>>2];c[r+4>>2]=c[h+4>>2];c[r+8>>2]=c[h+8>>2];c[r+12>>2]=c[h+12>>2];c[h>>2]=c[j>>2];c[h+4>>2]=c[j+4>>2];c[h+8>>2]=c[j+8>>2];c[h+12>>2]=c[j+12>>2];c[j>>2]=c[r>>2];c[j+4>>2]=c[r+4>>2];c[j+8>>2]=c[r+8>>2];c[j+12>>2]=c[r+12>>2];i=r;return}function Zg(a,b,c,d,e,f,h){a=a|0;b=+b;c=+c;d=+d;e=e|0;f=+f;h=h|0;var j=0.0,k=0.0,l=0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0;l=i;i=i+16|0;k=c*f+ +g[a+52>>2];j=d*f+ +g[a+56>>2];g[h+48>>2]=b*f+ +g[a+48>>2];g[h+52>>2]=k;g[h+56>>2]=j;g[h+60>>2]=0.0;j=+g[e>>2];k=+g[e+4>>2];c=+g[e+8>>2];d=+O(+(j*j+k*k+c*c));d=d*f>.7853981852531433?.7853981852531433/f:d;if(d<1.0000000474974513e-03)b=f*.5-d*f*f*f*.02083333395421505*d;else b=+R(+(d*.5*f))/d;o=j*b;n=k*b;j=c*b;q=+Q(+(d*f*.5));Wg(a,l);b=+g[l>>2];p=+g[l+12>>2];c=+g[l+8>>2];f=+g[l+4>>2];r=1.0/+O(+((q*p-o*b-n*f-j*c)*(q*p-o*b-n*f-j*c)+((j*p+q*c+o*f-n*b)*(j*p+q*c+o*f-n*b)+((q*b+o*p+n*c-j*f)*(q*b+o*p+n*c-j*f)+(j*b+(n*p+q*f)-o*c)*(j*b+(n*p+q*f)-o*c)))));d=(q*b+o*p+n*c-j*f)*r;k=r*(j*b+(n*p+q*f)-o*c);m=r*(j*p+q*c+o*f-n*b);c=r*(q*p-o*b-n*f-j*c);j=d*(2.0/(c*c+(m*m+(d*d+k*k))));f=k*(2.0/(c*c+(m*m+(d*d+k*k))));b=m*(2.0/(c*c+(m*m+(d*d+k*k))));g[h>>2]=1.0-(k*f+m*b);g[h+4>>2]=d*f-c*b;g[h+8>>2]=d*b+c*f;g[h+12>>2]=0.0;g[h+16>>2]=d*f+c*b;g[h+20>>2]=1.0-(d*j+m*b);g[h+24>>2]=k*b-c*j;g[h+28>>2]=0.0;g[h+32>>2]=d*b-c*f;g[h+36>>2]=k*b+c*j;g[h+40>>2]=1.0-(d*j+k*f);g[h+44>>2]=0.0;i=l;return}function _g(b,d,e){b=b|0;d=+d;e=e|0;var f=0,h=0.0,i=0.0,j=0.0,k=0.0,l=0.0;f=c[b+8>>2]|0;if(f|0?(c[f+204>>2]&3|0)==0:0){if((c[f+216>>2]&-2|0)!=4)c[f+216>>2]=1;g[f+220>>2]=0.0}f=c[b+12>>2]|0;if(f|0?(c[f+204>>2]&3|0)==0:0){if((c[f+216>>2]&-2|0)!=4)c[f+216>>2]=1;g[f+220>>2]=0.0}f=c[b+20>>2]|0;if(f|0?(c[f+204>>2]&3|0)==0:0){if((c[f+216>>2]&-2|0)!=4)c[f+216>>2]=1;g[f+220>>2]=0.0}f=c[b+24>>2]|0;if(f|0?(c[f+204>>2]&3|0)==0:0){if((c[f+216>>2]&-2|0)!=4)c[f+216>>2]=1;g[f+220>>2]=0.0}f=c[b+156>>2]|0;c[b+156>>2]=f+1;a[b+152>>0]=(f|0)>=(c[b+160>>2]|0)&1;if(f|0){c[b+72>>2]=0;c[b+72+4>>2]=0;c[b+72+8>>2]=0;c[b+72+12>>2]=0;c[b+72+16>>2]=0;c[b+72+20>>2]=0;c[b+72+24>>2]=0;c[b+72+28>>2]=0;return}j=+g[b+64>>2];i=1.0/d*+g[b+72>>2]*j;h=1.0/d*j*+g[b+76>>2];d=1.0/d*j*+g[b+80>>2];g[b+72>>2]=i;g[b+76>>2]=h;g[b+80>>2]=d;g[b+84>>2]=0.0;j=+g[b+68>>2];if(j>0.0){l=j*i*+g[b+120>>2]+j*h*+g[b+124>>2]+j*d*+g[b+128>>2];k=j*i*+g[b+136>>2]+j*h*+g[b+140>>2]+j*d*+g[b+144>>2];g[b+88>>2]=j*i*+g[b+104>>2]+j*h*+g[b+108>>2]+j*d*+g[b+112>>2];g[b+92>>2]=l;g[b+96>>2]=k;g[b+100>>2]=0.0;g[b+72>>2]=(1.0-j)*i;g[b+76>>2]=(1.0-j)*h;g[b+80>>2]=(1.0-j)*d;i=(1.0-j)*i;h=(1.0-j)*h;d=(1.0-j)*d}g[b+72>>2]=1.0/+(e|0)*i;g[b+76>>2]=1.0/+(e|0)*h;g[b+80>>2]=1.0/+(e|0)*d;return}function $g(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0;while(1){k=c[a+12>>2]|0;l=c[k+(((b+d|0)/2|0)<<2)>>2]|0;e=b;f=d;while(1){j=c[(c[l+740>>2]|0)+208>>2]|0;if((j|0)>-1)while(1){h=c[k+(e<<2)>>2]|0;g=c[(c[h+740>>2]|0)+208>>2]|0;if((g|0)<=-1)g=c[(c[h+744>>2]|0)+208>>2]|0;if((g|0)<(j|0))e=e+1|0;else break}else{i=c[(c[l+744>>2]|0)+208>>2]|0;while(1){h=c[k+(e<<2)>>2]|0;g=c[(c[h+740>>2]|0)+208>>2]|0;if((g|0)<=-1)g=c[(c[h+744>>2]|0)+208>>2]|0;if((g|0)<(i|0))e=e+1|0;else break}}if((j|0)>-1)while(1){h=c[k+(f<<2)>>2]|0;g=c[(c[h+740>>2]|0)+208>>2]|0;if((g|0)<=-1)g=c[(c[h+744>>2]|0)+208>>2]|0;if((j|0)<(g|0))f=f+-1|0;else break}else{i=c[(c[l+744>>2]|0)+208>>2]|0;while(1){h=c[k+(f<<2)>>2]|0;g=c[(c[h+740>>2]|0)+208>>2]|0;if((g|0)<=-1)g=c[(c[h+744>>2]|0)+208>>2]|0;if((i|0)<(g|0))f=f+-1|0;else break}}if((e|0)<=(f|0)){i=k+(e<<2)|0;j=c[i>>2]|0;c[i>>2]=c[k+(f<<2)>>2];c[(c[a+12>>2]|0)+(f<<2)>>2]=j;e=e+1|0;f=f+-1|0}if((e|0)>(f|0))break;k=c[a+12>>2]|0}if((f|0)>(b|0))$g(a,b,f);if((e|0)<(d|0))b=e;else break}return}function ah(a,b,d,e,f){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;var h=0.0,j=0.0,k=0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0;k=i;i=i+64|0;n=+g[d>>2];o=+g[d+4>>2];m=+g[d+8>>2];p=n*+g[b+4>>2]+o*+g[b+20>>2]+m*+g[b+36>>2];q=n*+g[b+8>>2]+o*+g[b+24>>2]+m*+g[b+40>>2];g[k+48>>2]=+g[b>>2]*n+ +g[b+16>>2]*o+ +g[b+32>>2]*m;g[k+48+4>>2]=p;g[k+48+8>>2]=q;g[k+48+12>>2]=0.0;ic[c[(c[a>>2]|0)+64>>2]&127](k+32|0,a,k+48|0);q=+g[k+32>>2];p=+g[k+32+4>>2];m=+g[k+32+8>>2];o=q*+g[b>>2]+p*+g[b+4>>2]+m*+g[b+8>>2]+ +g[b+48>>2];n=q*+g[b+16>>2]+p*+g[b+20>>2]+m*+g[b+24>>2]+ +g[b+52>>2];m=q*+g[b+32>>2]+p*+g[b+36>>2]+m*+g[b+40>>2]+ +g[b+56>>2];r=c[(c[a>>2]|0)+64>>2]|0;p=-+g[k+48+4>>2];q=-+g[k+48+8>>2];g[k>>2]=-+g[k+48>>2];g[k+4>>2]=p;g[k+8>>2]=q;g[k+12>>2]=0.0;ic[r&127](k+16|0,a,k);q=+g[k+16>>2];p=+g[k+16+4>>2];h=+g[k+16+8>>2];l=q*+g[b>>2]+p*+g[b+4>>2]+h*+g[b+8>>2]+ +g[b+48>>2];j=q*+g[b+16>>2]+p*+g[b+20>>2]+h*+g[b+24>>2]+ +g[b+52>>2];h=q*+g[b+32>>2]+p*+g[b+36>>2]+h*+g[b+40>>2]+ +g[b+56>>2];g[e>>2]=o*+g[d>>2]+n*+g[d+4>>2]+m*+g[d+8>>2];h=l*+g[d>>2]+j*+g[d+4>>2]+h*+g[d+8>>2];g[f>>2]=h;j=+g[e>>2];if(!(j>h)){i=k;return}g[e>>2]=h;g[f>>2]=j;i=k;return}function bh(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0;while(1){k=c[a+12>>2]|0;l=c[k+(((b+d|0)/2|0)<<2)>>2]|0;e=b;f=d;while(1){j=c[(c[l+28>>2]|0)+208>>2]|0;if((j|0)>-1)while(1){h=c[k+(e<<2)>>2]|0;g=c[(c[h+28>>2]|0)+208>>2]|0;if((g|0)<=-1)g=c[(c[h+32>>2]|0)+208>>2]|0;if((g|0)<(j|0))e=e+1|0;else break}else{i=c[(c[l+32>>2]|0)+208>>2]|0;while(1){h=c[k+(e<<2)>>2]|0;g=c[(c[h+28>>2]|0)+208>>2]|0;if((g|0)<=-1)g=c[(c[h+32>>2]|0)+208>>2]|0;if((g|0)<(i|0))e=e+1|0;else break}}if((j|0)>-1)while(1){h=c[k+(f<<2)>>2]|0;g=c[(c[h+28>>2]|0)+208>>2]|0;if((g|0)<=-1)g=c[(c[h+32>>2]|0)+208>>2]|0;if((j|0)<(g|0))f=f+-1|0;else break}else{i=c[(c[l+32>>2]|0)+208>>2]|0;while(1){h=c[k+(f<<2)>>2]|0;g=c[(c[h+28>>2]|0)+208>>2]|0;if((g|0)<=-1)g=c[(c[h+32>>2]|0)+208>>2]|0;if((i|0)<(g|0))f=f+-1|0;else break}}if((e|0)<=(f|0)){i=k+(e<<2)|0;j=c[i>>2]|0;c[i>>2]=c[k+(f<<2)>>2];c[(c[a+12>>2]|0)+(f<<2)>>2]=j;e=e+1|0;f=f+-1|0}if((e|0)>(f|0))break;k=c[a+12>>2]|0}if((f|0)>(b|0))bh(a,b,f);if((e|0)<(d|0))b=e;else break}return}function ch(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0,g=0,h=0,j=0,k=0,l=0,m=0;m=i;i=i+16|0;h=c[a+12>>2]|0;j=c[h+(((d+b|0)/2|0)<<4)>>2]|0;k=c[h+(((d+b|0)/2|0)<<4)+4>>2]|0;l=c[h+(((d+b|0)/2|0)<<4)+8>>2]|0;e=b;f=d;while(1){g=e;while(1){e=c[h+(g<<4)+4>>2]|0;if((e|0)>=(k|0)){if((e|0)!=(k|0))break;e=c[h+(g<<4)>>2]|0;if((e|0)>=(j|0)){if((e|0)!=(j|0))break;if((c[h+(g<<4)+8>>2]|0)>=(l|0))break}}g=g+1|0}while(1){e=c[h+(f<<4)+4>>2]|0;if((k|0)>=(e|0)){if((k|0)!=(e|0))break;e=c[h+(f<<4)>>2]|0;if((j|0)>=(e|0)){if((j|0)!=(e|0))break;if((l|0)>=(c[h+(f<<4)+8>>2]|0))break}}f=f+-1|0}if((g|0)>(f|0))e=g;else{e=h+(g<<4)|0;c[m>>2]=c[e>>2];c[m+4>>2]=c[e+4>>2];c[m+8>>2]=c[e+8>>2];c[m+12>>2]=c[e+12>>2];h=h+(f<<4)|0;c[e>>2]=c[h>>2];c[e+4>>2]=c[h+4>>2];c[e+8>>2]=c[h+8>>2];c[e+12>>2]=c[h+12>>2];e=(c[a+12>>2]|0)+(f<<4)|0;c[e>>2]=c[m>>2];c[e+4>>2]=c[m+4>>2];c[e+8>>2]=c[m+8>>2];c[e+12>>2]=c[m+12>>2];e=g+1|0;f=f+-1|0}if((e|0)>(f|0))break;h=c[a+12>>2]|0}if((f|0)>(b|0))ch(a,b,f);if((e|0)>=(d|0)){i=m;return}ch(a,e,d);i=m;return}function dh(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0.0,h=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0;e=i;i=i+48|0;y=+g[d>>2];n=+g[b>>2];x=+g[d+16>>2];l=+g[b+4>>2];w=+g[d+32>>2];j=+g[b+8>>2];v=+g[d+4>>2];u=+g[d+20>>2];t=+g[d+36>>2];k=+g[d+8>>2];m=+g[d+24>>2];o=+g[d+40>>2];q=+g[b+16>>2];p=+g[b+20>>2];h=+g[b+24>>2];s=+g[b+32>>2];r=+g[b+36>>2];f=+g[b+40>>2];g[e>>2]=y*n+x*l+w*j;g[e+4>>2]=v*n+u*l+t*j;g[e+8>>2]=k*n+m*l+o*j;g[e+12>>2]=0.0;g[e+16>>2]=y*q+x*p+w*h;g[e+20>>2]=v*q+u*p+t*h;g[e+24>>2]=k*q+m*p+o*h;g[e+28>>2]=0.0;g[e+32>>2]=y*s+x*r+w*f;g[e+36>>2]=v*s+u*r+t*f;g[e+40>>2]=k*s+m*r+o*f;g[e+44>>2]=0.0;o=+g[d+48>>2];m=+g[d+52>>2];k=+g[d+56>>2];f=o*s+m*r+k*f+ +g[b+56>>2];h=o*q+m*p+k*h+ +g[b+52>>2];j=o*n+m*l+k*j+ +g[b+48>>2];c[a>>2]=c[e>>2];c[a+4>>2]=c[e+4>>2];c[a+8>>2]=c[e+8>>2];c[a+12>>2]=c[e+12>>2];c[a+16>>2]=c[e+16>>2];c[a+16+4>>2]=c[e+16+4>>2];c[a+16+8>>2]=c[e+16+8>>2];c[a+16+12>>2]=c[e+16+12>>2];c[a+32>>2]=c[e+32>>2];c[a+32+4>>2]=c[e+32+4>>2];c[a+32+8>>2]=c[e+32+8>>2];c[a+32+12>>2]=c[e+32+12>>2];g[a+48>>2]=j;g[a+52>>2]=h;g[a+56>>2]=f;g[a+60>>2]=0.0;i=e;return}function eh(a,b){a=+a;b=+b;var d=0,e=0,f=0,h=0,i=0,j=0,l=0,m=0,n=0,o=0.0;m=(g[k>>2]=a,c[k>>2]|0);i=(g[k>>2]=b,c[k>>2]|0);a:do if((i<<1|0)!=0?(o=+N(+b),!((g[k>>2]=o,c[k>>2]|0)>>>0>2139095040|(m>>>23&255|0)==255)):0){if(m<<1>>>0<=i<<1>>>0)return +((m<<1|0)==(i<<1|0)?a*0.0:a);if(!(m>>>23&255)){if((m<<9|0)>-1){d=0;e=m<<9;do{d=d+-1|0;e=e<<1}while((e|0)>-1);e=d}else e=0;d=e;f=m<<1-e}else{d=m>>>23&255;f=m&8388607|8388608}if(!(i>>>23&255)){if((i<<9|0)>-1){e=0;h=i<<9;do{e=e+-1|0;h=h<<1}while((h|0)>-1)}else e=0;j=e;l=i<<1-e}else{j=i>>>23&255;l=i&8388607|8388608}h=f-l|0;b:do if((d|0)>(j|0)){i=(h|0)>-1;e=h;while(1){if(i){if((f|0)==(l|0))break}else e=f;f=e<<1;d=d+-1|0;h=f-l|0;if((d|0)>(j|0)){i=(h|0)>-1;e=h}else{e=h;h=(h|0)>-1;break b}}b=a*0.0;break a}else{e=h;h=(h|0)>-1}while(0);if(h){if((f|0)==(l|0)){b=a*0.0;break}}else e=f;if(e>>>0<8388608)do{e=e<<1;d=d+-1|0}while(e>>>0<8388608);if((d|0)>0)d=e+-8388608|d<<23;else d=e>>>(1-d|0);b=(c[k>>2]=d|m&-2147483648,+g[k>>2])}else n=3;while(0);if((n|0)==3)b=a*b/(a*b);return +b}function fh(a,b,d,e,f){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;var h=0,j=0.0,k=0.0,l=0,m=0,n=0,o=0.0,p=0.0,q=0;n=i;i=i+16|0;if((f|0)>-3&(f+3|0)>-1){if((f+3|0)!=0?(c[6435]=(c[6435]|0)+1,h=yc((f+3<<4|3)+16|0)|0,(h|0)!=0):0){c[(h+4+15&-16)+-4>>2]=h;a=h+4+15&-16}else a=0;h=0;do{m=a+(h<<4)|0;c[m>>2]=c[n>>2];c[m+4>>2]=c[n+4>>2];c[m+8>>2]=c[n+8>>2];c[m+12>>2]=c[n+12>>2];h=h+1|0}while((h|0)!=(f+3|0));m=a}else m=0;if((f|0)>-3){h=m;l=0;while(1){if(!l)j=0.0;else{a=l;k=.5;j=0.0;while(1){j=(a&1|0)==0?j:j+k;a=a>>1;if(!a)break;else k=k*.5}}k=j*2.0+-1.0;o=(+(l<<1|0)*3.1415927410125732+3.1415927410125732)/+(f+3|0);p=+O(+(1.0-k*k));j=p*+R(+o);g[h>>2]=p*+Q(+o);g[h+4>>2]=j;g[h+8>>2]=k;g[h+12>>2]=0.0;l=l+1|0;if((l|0)==(f+3|0))break;else h=h+16|0}a=0;do{q=m+(a<<4)|0;h=m+(a<<4)+4|0;l=m+(a<<4)+8|0;o=+g[h>>2]*+g[e+4>>2]+ +g[d+4>>2];p=+g[l>>2]*+g[e+8>>2]+ +g[d+8>>2];g[q>>2]=+g[q>>2]*+g[e>>2]+ +g[d>>2];g[h>>2]=o;g[l>>2]=p;g[m+(a<<4)+12>>2]=0.0;a=a+1|0}while((a|0)<(f+3|0))}a=rc(b,m,f+3|0,1)|0;if(!m){i=n;return a|0}c[6436]=(c[6436]|0)+1;hd(c[m+-4>>2]|0);i=n;return a|0}function gh(a,b,d,e,f,h,j){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;j=j|0;var l=0.0,m=0.0,n=0,o=0.0,p=0.0,q=0,r=0,s=0.0,t=0;r=i;i=i+16|0;g[e>>2]=3402823466385288598117041.0e14;g[f>>2]=-3402823466385288598117041.0e14;n=c[a+8>>2]|0;if((n|0)>0){q=0;do{t=c[a+16>>2]|0;s=+g[t+(q<<4)>>2];p=+g[t+(q<<4)+4>>2];o=+g[t+(q<<4)+8>>2];l=s*+g[b>>2]+p*+g[b+4>>2]+o*+g[b+8>>2]+ +g[b+48>>2];m=s*+g[b+16>>2]+p*+g[b+20>>2]+o*+g[b+24>>2]+ +g[b+52>>2];o=s*+g[b+32>>2]+p*+g[b+36>>2]+o*+g[b+40>>2]+ +g[b+56>>2];p=l*+g[d>>2]+m*+g[d+4>>2]+o*+g[d+8>>2];if(p<+g[e>>2]){g[e>>2]=p;g[h>>2]=l;g[h+4>>2]=m;g[h+8>>2]=o;g[h+12>>2]=0.0}if(p>+g[f>>2]){g[f>>2]=p;g[j>>2]=l;g[j+4>>2]=m;g[j+8>>2]=o;g[j+12>>2]=0.0}q=q+1|0}while((q|0)!=(n|0));s=+g[f>>2];m=s;n=(g[k>>2]=s,c[k>>2]|0)}else{m=-3402823466385288598117041.0e14;n=-8388609}l=+g[e>>2];if(!(l>m)){i=r;return}c[e>>2]=n;g[f>>2]=l;c[r>>2]=c[h>>2];c[r+4>>2]=c[h+4>>2];c[r+8>>2]=c[h+8>>2];c[r+12>>2]=c[h+12>>2];c[h>>2]=c[j>>2];c[h+4>>2]=c[j+4>>2];c[h+8>>2]=c[j+8>>2];c[h+12>>2]=c[j+12>>2];c[j>>2]=c[r>>2];c[j+4>>2]=c[r+4>>2];c[j+8>>2]=c[r+8>>2];c[j+12>>2]=c[r+12>>2];i=r;return}function hh(a,b){a=a|0;b=b|0;var d=0,e=0,f=0,h=0.0,i=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0,v=0,w=0,x=0,y=0;if((c[a>>2]|0)==(b|0)){c[a>>2]=0;a=0;return a|0}e=c[b+32>>2]|0;d=c[e+32>>2]|0;b=c[e+36+(((c[e+40>>2]|0)!=(b|0)&1)<<2)>>2]|0;if(!d){c[a>>2]=b;c[b+32>>2]=0;d=c[a+4>>2]|0;if(!d)d=b;else{c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0);d=c[a>>2]|0}c[a+4>>2]=e;a=d;return a|0}c[d+36+(((c[d+40>>2]|0)==(e|0)&1)<<2)>>2]=b;c[b+32>>2]=d;b=c[a+4>>2]|0;if(b|0){c[6436]=(c[6436]|0)+1;hd(c[b+-4>>2]|0)}c[a+4>>2]=e;do{s=+g[d>>2];x=d+4|0;q=+g[x>>2];v=d+8|0;o=+g[v>>2];y=d+16|0;m=+g[y>>2];w=d+20|0;i=+g[w>>2];e=d+24|0;k=+g[e>>2];u=c[d+36>>2]|0;b=c[d+40>>2]|0;t=+g[u>>2];r=+g[b>>2];r=t>2]=r;t=+g[u+16>>2];l=+g[b+16>>2];l=t>l?t:l;g[y>>2]=l;t=+g[u+4>>2];p=+g[b+4>>2];p=t>2]=p;t=+g[u+20>>2];h=+g[b+20>>2];h=t>h?t:h;g[w>>2]=h;t=+g[u+8>>2];n=+g[b+8>>2];n=t>2]=n;t=+g[u+24>>2];j=+g[b+24>>2];j=t>j?t:j;g[e>>2]=j;if(!(s!=r|q!=p|o!=n|m!=l)?!(k!=j|i!=h):0){f=14;break}d=c[d+32>>2]|0}while((d|0)!=0);if((f|0)==14)return d|0;y=c[a>>2]|0;return y|0}function ih(a){a=a|0;var b=0,d=0,e=0.0,f=0.0,h=0.0,i=0,j=0;i=c[a+28>>2]|0;e=0.0;f=0.0;h=0.0;j=0;a:while(1){switch(j|0){case 0:{e=+g[a+80>>2]+ +g[a+64>>2];f=+g[a+84>>2]+ +g[a+68>>2];h=+g[a+88>>2]+ +g[a+72>>2];break}case 1:{e=+g[a+80>>2]+ +g[a+64>>2];f=+g[a+84>>2]+ +g[a+68>>2];h=+g[a+72>>2]-+g[a+88>>2];break}case 2:{e=+g[a+80>>2]+ +g[a+64>>2];f=+g[a+68>>2]-+g[a+84>>2];h=+g[a+88>>2]+ +g[a+72>>2];break}case 3:{e=+g[a+80>>2]+ +g[a+64>>2];f=+g[a+68>>2]-+g[a+84>>2];h=+g[a+72>>2]-+g[a+88>>2];break}case 4:{e=+g[a+64>>2]-+g[a+80>>2];f=+g[a+84>>2]+ +g[a+68>>2];h=+g[a+88>>2]+ +g[a+72>>2];break}case 5:{e=+g[a+64>>2]-+g[a+80>>2];f=+g[a+84>>2]+ +g[a+68>>2];h=+g[a+72>>2]-+g[a+88>>2];break}case 6:{e=+g[a+64>>2]-+g[a+80>>2];f=+g[a+68>>2]-+g[a+84>>2];h=+g[a+88>>2]+ +g[a+72>>2];break}case 7:{e=+g[a+64>>2]-+g[a+80>>2];f=+g[a+68>>2]-+g[a+84>>2];h=+g[a+72>>2]-+g[a+88>>2];break}default:{}}if((i|0)>0){b=c[a+36>>2]|0;d=0;do{if(+g[b+(d*36|0)+32>>2]+(e*+g[b+(d*36|0)+20>>2]+f*+g[b+(d*36|0)+24>>2]+h*+g[b+(d*36|0)+28>>2])>0.0){b=0;d=16;break a}d=d+1|0}while((d|0)<(i|0))}j=j+1|0;if((j|0)>=8){b=1;d=16;break}}if((d|0)==16)return b|0;return 0}function jh(a,b,d,e,f){a=a|0;b=b|0;d=d|0;e=e|0;f=+f;var h=0,i=0.0,j=0,k=0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0;o=+g[d>>2];if(+g[b>>2]<=o){i=+g[d+4>>2];if((((+g[b+4>>2]<=i?+g[b+8>>2]<=+g[d+8>>2]:0)?+g[b+16>>2]>=+g[d+16>>2]:0)?+g[b+20>>2]>=+g[d+20>>2]:0)?+g[b+24>>2]>=+g[d+24>>2]:0){d=0;return d|0}else h=d+4|0}else{h=d+4|0;i=+g[d+4>>2]}g[d>>2]=o-f;m=i-f;g[h>>2]=m;p=+g[d+8>>2]-f;g[d+8>>2]=p;i=+g[d+16>>2]+f;g[d+16>>2]=i;n=+g[d+20>>2]+f;g[d+20>>2]=n;q=+g[d+24>>2]+f;g[d+24>>2]=q;l=+g[e>>2];if(l>0.0)g[d+16>>2]=l+i;else g[d>>2]=l+(o-f);i=+g[e+4>>2];if(i>0.0)g[d+20>>2]=i+n;else g[h>>2]=i+m;i=+g[e+8>>2];if(i>0.0)g[d+24>>2]=i+q;else g[d+8>>2]=i+p;h=hh(a,b)|0;a:do if(h){j=c[a+8>>2]|0;if((j|0)<=-1){h=c[a>>2]|0;break}if((j|0)>0){k=0;while(1){e=c[h+32>>2]|0;k=k+1|0;if(!e)break a;if((k|0)>=(j|0)){h=e;break}else h=e}}}else h=0;while(0);c[b>>2]=c[d>>2];c[b+4>>2]=c[d+4>>2];c[b+8>>2]=c[d+8>>2];c[b+12>>2]=c[d+12>>2];c[b+16>>2]=c[d+16>>2];c[b+20>>2]=c[d+20>>2];c[b+24>>2]=c[d+24>>2];c[b+28>>2]=c[d+28>>2];lf(a,h,b);d=1;return d|0}function kh(a,d,e){a=a|0;d=d|0;e=e|0;si(a,d,e)|0;c[d+52>>2]=c[a+48>>2];c[d+56>>2]=c[a+52>>2];c[d+60>>2]=c[a+56>>2];c[d+64>>2]=c[a+60>>2];c[d+68>>2]=c[a+64>>2];c[d+72>>2]=c[a+68>>2];c[d+76>>2]=c[a+72>>2];c[d+80>>2]=c[a+76>>2];c[d+84>>2]=c[a+80>>2];c[d+88>>2]=c[a+84>>2];c[d+92>>2]=c[a+88>>2];c[d+96>>2]=c[a+92>>2];c[d+100>>2]=c[a+96>>2];c[d+104>>2]=c[a+100>>2];c[d+108>>2]=c[a+104>>2];c[d+112>>2]=c[a+108>>2];c[d+116>>2]=c[a+112>>2];c[d+120>>2]=c[a+116>>2];c[d+124>>2]=c[a+120>>2];c[d+128>>2]=c[a+124>>2];c[d+132>>2]=c[a+128>>2];c[d+136>>2]=c[a+132>>2];c[d+140>>2]=c[a+136>>2];c[d+144>>2]=c[a+140>>2];c[d+148>>2]=c[a+144>>2];c[d+152>>2]=c[a+148>>2];c[d+156>>2]=c[a+152>>2];c[d+160>>2]=c[a+156>>2];c[d+164>>2]=c[a+160>>2];c[d+168>>2]=c[a+164>>2];c[d+172>>2]=c[a+168>>2];c[d+176>>2]=c[a+172>>2];c[d+228>>2]=c[a+868>>2];c[d+212>>2]=c[a+872>>2];c[d+196>>2]=c[a+680>>2];c[d+180>>2]=c[a+696>>2];c[d+232>>2]=c[a+932>>2];c[d+216>>2]=c[a+936>>2];c[d+200>>2]=c[a+684>>2];c[d+184>>2]=c[a+700>>2];c[d+236>>2]=c[a+996>>2];c[d+220>>2]=c[a+1e3>>2];c[d+204>>2]=c[a+688>>2];c[d+188>>2]=c[a+704>>2];a=b[a+1300>>1]|0;c[d+244>>2]=a&255;c[d+248>>2]=(a&65535)>>>8&65535;return 12479}function lh(b,d,e){b=b|0;d=d|0;e=e|0;var f=0,g=0,h=0,j=0,k=0,l=0,m=0;m=i;i=i+32|0;h=(a[b+28>>0]|0)!=0;l=h?e:d;h=h?d:e;j=c[l+4>>2]|0;k=c[j+16>>2]|0;g=c[b+12>>2]|0;if((g|0)<(k|0)){if((c[b+16>>2]|0)<(k|0)){if(!k){d=0;e=g}else{c[6435]=(c[6435]|0)+1;d=yc((k<<2|3)+16|0)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}e=c[b+12>>2]|0}if((e|0)>0){f=0;do{c[d+(f<<2)>>2]=c[(c[b+20>>2]|0)+(f<<2)>>2];f=f+1|0}while((f|0)!=(e|0))}e=c[b+20>>2]|0;if(e|0){if(a[b+24>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0)}c[b+20>>2]=0}a[b+24>>0]=1;c[b+20>>2]=d;c[b+16>>2]=k;e=b+20|0}else e=b+20|0;d=g;do{c[(c[e>>2]|0)+(d<<2)>>2]=0;d=d+1|0}while((d|0)!=(k|0))}c[b+12>>2]=k;if((k|0)<=0){i=m;return}d=0;do{if(!(c[j+64>>2]|0)){e=c[(c[j+24>>2]|0)+(d*80|0)+64>>2]|0;f=c[l+8>>2]|0;g=c[l+12>>2]|0;c[m>>2]=l;c[m+4>>2]=e;c[m+8>>2]=f;c[m+12>>2]=g;c[m+16>>2]=-1;c[m+20>>2]=d;g=c[b+4>>2]|0;g=Ib[c[(c[g>>2]|0)+8>>2]&31](g,m,h,c[b+32>>2]|0)|0;c[(c[b+20>>2]|0)+(d<<2)>>2]=g}else c[(c[b+20>>2]|0)+(d<<2)>>2]=0;d=d+1|0}while((d|0)!=(k|0));i=m;return}function mh(){var a=0,b=0,d=0;c[6435]=(c[6435]|0)+1;a=yc(219)|0;if(!a)a=0;else{c[(a+4+15&-16)+-4>>2]=a;a=a+4+15&-16}ml();ml();c[a>>2]=2896;b=a+52|0;d=a+4|0;c[d>>2]=c[5710];c[d+4>>2]=c[5711];c[d+8>>2]=c[5712];c[d+12>>2]=c[5713];d=a+20|0;c[d>>2]=c[5714];c[d+4>>2]=c[5715];c[d+8>>2]=c[5716];c[d+12>>2]=c[5717];d=a+36|0;c[d>>2]=c[5718];c[d+4>>2]=c[5719];c[d+8>>2]=c[5720];c[d+12>>2]=c[5721];c[b>>2]=c[5722];c[b+4>>2]=c[5723];c[b+8>>2]=c[5724];c[b+12>>2]=c[5725];b=a+116|0;d=a+68|0;c[d>>2]=c[5710];c[d+4>>2]=c[5711];c[d+8>>2]=c[5712];c[d+12>>2]=c[5713];d=a+84|0;c[d>>2]=c[5714];c[d+4>>2]=c[5715];c[d+8>>2]=c[5716];c[d+12>>2]=c[5717];d=a+100|0;c[d>>2]=c[5718];c[d+4>>2]=c[5719];c[d+8>>2]=c[5720];c[d+12>>2]=c[5721];c[b>>2]=c[5722];c[b+4>>2]=c[5723];c[b+8>>2]=c[5724];c[b+12>>2]=c[5725];b=a+180|0;d=a+132|0;c[d>>2]=c[5710];c[d+4>>2]=c[5711];c[d+8>>2]=c[5712];c[d+12>>2]=c[5713];d=a+148|0;c[d>>2]=c[5714];c[d+4>>2]=c[5715];c[d+8>>2]=c[5716];c[d+12>>2]=c[5717];d=a+164|0;c[d>>2]=c[5718];c[d+4>>2]=c[5719];c[d+8>>2]=c[5720];c[d+12>>2]=c[5721];c[b>>2]=c[5722];c[b+4>>2]=c[5723];c[b+8>>2]=c[5724];c[b+12>>2]=c[5725];c[a+196>>2]=0;return a|0}function nh(b){b=b|0;var d=0,e=0,f=0,g=0,h=0,i=0,j=0;d=c[b+32>>2]|0;if(!d)f=0;else f=c[b+40>>2]|0;i=c[b+52>>2]|0;if(!i)g=0;else g=c[b+60>>2]|0;e=c[b+72>>2]|0;if(!e)h=0;else h=c[b+80>>2]|0;j=c[b+8>>2]|0;+$b[c[(c[j>>2]|0)+12>>2]&3](j,f,d,g,i,h,e,c[b+4>>2]|0,c[b+20>>2]|0,c[b+24>>2]|0);d=c[b+32>>2]|0;if((d|0)<0){if((c[b+36>>2]|0)<0){e=c[b+40>>2]|0;if(e|0){if(a[b+44>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0)}c[b+40>>2]=0}a[b+44>>0]=1;c[b+40>>2]=0;c[b+36>>2]=0}do{c[(c[b+40>>2]|0)+(d<<2)>>2]=0;d=d+1|0}while((d|0)!=0)}c[b+32>>2]=0;d=c[b+52>>2]|0;if((d|0)<0){if((c[b+56>>2]|0)<0){e=c[b+60>>2]|0;if(e|0){if(a[b+64>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0)}c[b+60>>2]=0}a[b+64>>0]=1;c[b+60>>2]=0;c[b+56>>2]=0}do{c[(c[b+60>>2]|0)+(d<<2)>>2]=0;d=d+1|0}while((d|0)!=0)}c[b+52>>2]=0;d=c[b+72>>2]|0;if((d|0)>=0){c[b+72>>2]=0;return}if((c[b+76>>2]|0)<0){e=c[b+80>>2]|0;if(e|0){if(a[b+84>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0)}c[b+80>>2]=0}a[b+84>>0]=1;c[b+80>>2]=0;c[b+76>>2]=0}do{c[(c[b+80>>2]|0)+(d<<2)>>2]=0;d=d+1|0}while((d|0)!=0);c[b+72>>2]=0;return}function oh(b,d,e){b=b|0;d=+d;e=e|0;var f=0.0,h=0,i=0,j=0,k=0,l=0,m=0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0;j=c[b+712>>2]|0;if(e){if((j|0)>0){e=c[b+720>>2]|0;h=0;do{g[e+(h*104|0)+88>>2]=0.0;h=h+1|0}while((h|0)!=(j|0))}e=c[b+752>>2]|0;if((e|0)>0){h=c[b+760>>2]|0;i=0;do{m=c[h+(i*44|0)+8>>2]|0;l=c[h+(i*44|0)+12>>2]|0;k=c[h+(i*44|0)+16>>2]|0;o=+g[m+8>>2];q=+g[m+12>>2];f=+g[m+16>>2];n=+g[l+8>>2]-o;r=+g[l+12>>2]-q;p=+g[l+16>>2]-f;o=+g[k+8>>2]-o;q=+g[k+12>>2]-q;f=+g[k+16>>2]-f;f=+O(+((n*q-r*o)*(n*q-r*o)+((r*f-p*q)*(r*f-p*q)+(p*o-n*f)*(p*o-n*f))));g[m+88>>2]=f+ +g[m+88>>2];g[l+88>>2]=f+ +g[l+88>>2];g[k+88>>2]=f+ +g[k+88>>2];i=i+1|0}while((i|0)!=(e|0))}if((j|0)<=0){m=b+924|0;a[m>>0]=1;return}e=c[b+720>>2]|0;h=0;do{m=e+(h*104|0)+88|0;g[m>>2]=1.0/+g[m>>2];h=h+1|0}while((h|0)!=(j|0))}if((j|0)<=0){m=b+924|0;a[m>>0]=1;return}i=c[b+720>>2]|0;e=0;f=0.0;do{r=+g[i+(e*104|0)+88>>2];f=f+(r>0.0?1.0/r:0.0);e=e+1|0}while((e|0)!=(j|0));f=1.0/f*d;e=c[b+712>>2]|0;h=0;do{m=i+(h*104|0)+88|0;g[m>>2]=+g[m>>2]/f;h=h+1|0}while((h|0)<(e|0));m=b+924|0;a[m>>0]=1;return}function ph(b){b=b|0;var d=0,e=0,f=0,g=0,h=0,i=0;c[6435]=(c[6435]|0)+1;d=yc(39)|0;if(!d)i=0;else{c[(d+4+15&-16)+-4>>2]=d;i=d+4+15&-16}g=i;c[i>>2]=0;c[i+4>>2]=0;c[i+8>>2]=0;c[i+12>>2]=0;c[i+16>>2]=0;if((c[b+872>>2]|0)>0){h=c[c[b+880>>2]>>2]|0;c[i>>2]=c[h>>2];c[i+4>>2]=c[h+4>>2];c[i+8>>2]=c[h+8>>2];c[i+12>>2]=c[h+12>>2];c[i+16>>2]=c[h+16>>2]}else{c[i>>2]=0;c[i+4>>2]=0;c[i+8>>2]=0;c[i+12>>2]=0;c[i+16>>2]=0}e=c[b+872>>2]|0;if((e|0)!=(c[b+876>>2]|0)){h=e;f=b+880|0;f=c[f>>2]|0;f=f+(h<<2)|0;c[f>>2]=g;h=h+1|0;c[b+872>>2]=h;return i|0}h=e|0?e<<1:1;if((e|0)>=(h|0)){h=e;f=b+880|0;f=c[f>>2]|0;f=f+(h<<2)|0;c[f>>2]=g;h=h+1|0;c[b+872>>2]=h;return i|0}if(!h)d=0;else{c[6435]=(c[6435]|0)+1;d=yc((h<<2|3)+16|0)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}e=c[b+872>>2]|0}if((e|0)>0){f=0;do{c[d+(f<<2)>>2]=c[(c[b+880>>2]|0)+(f<<2)>>2];f=f+1|0}while((f|0)!=(e|0))}f=c[b+880>>2]|0;if(f){if(a[b+884>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0);e=c[b+872>>2]|0}c[b+880>>2]=0}a[b+884>>0]=1;c[b+880>>2]=d;c[b+876>>2]=h;h=e;f=b+880|0;f=c[f>>2]|0;f=f+(h<<2)|0;c[f>>2]=g;h=h+1|0;c[b+872>>2]=h;return i|0}function qh(b,d,e,f,h,i){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;i=i|0;var j=0,k=0,l=0,m=0,n=0.0,o=0.0,p=0.0,q=0.0;c[6435]=(c[6435]|0)+1;b=yc((h+2|0)>>>0>268435455?18:(h+2<<4|3)+16|0)|0;if(!b)m=0;else{c[(b+4+15&-16)+-4>>2]=b;m=b+4+15&-16}j=(h+2|0)>>>0>1073741823?-1:h+2<<2;j=(j|0)==0?1:j;while(1){k=yc(j)|0;if(k|0)break;b=c[6564]|0;c[6564]=b+0;if(!b){l=7;break}jc[b&3]()}if((l|0)==7){h=Ya(4)|0;c[h>>2]=9640;pb(h|0,2800,251)}if((h|0)>-2){b=0;do{q=+(b|0)/+(h+1|0);p=+g[e>>2];o=+g[e+4>>2];o=o+q*(+g[f+4>>2]-o);n=+g[e+8>>2];n=n+q*(+g[f+8>>2]-n);g[m+(b<<4)>>2]=p+q*(+g[f>>2]-p);g[m+(b<<4)+4>>2]=o;g[m+(b<<4)+8>>2]=n;g[m+(b<<4)+12>>2]=0.0;g[k+(b<<2)>>2]=1.0;b=b+1|0}while((b|0)<(h+2|0))}c[6435]=(c[6435]|0)+1;b=yc(1271)|0;if(!b)j=0;else{c[(b+4+15&-16)+-4>>2]=b;j=b+4+15&-16}Kc(j,d,h+2|0,m,k);if(i&1|0){g[(c[j+720>>2]|0)+88>>2]=0.0;a[j+924>>0]=1}if(i&2|0){g[(c[j+720>>2]|0)+((h+1|0)*104|0)+88>>2]=0.0;a[j+924>>0]=1}if(m|0){c[6436]=(c[6436]|0)+1;hd(c[m+-4>>2]|0)}hd(k);if((h+2|0)>1)b=1;else return j|0;do{Rf(j,b+-1|0,b,0,0);b=b+1|0}while((b|0)!=(h+2|0));return j|0}function rh(a,b,d,e,f,h){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;var i=0,j=0,l=0,m=0.0,n=0,o=0,p=0.0,q=0.0;mc[c[(c[a>>2]|0)+8>>2]&127](a,b,f,h);l=c[h>>2]|0;o=c[h+4>>2]|0;i=c[h+8>>2]|0;n=c[f>>2]|0;j=c[f+4>>2]|0;b=c[f+8>>2]|0;m=+g[d>>2];p=+g[d+4>>2];q=+g[d+8>>2];if(m>0.0)l=(g[k>>2]=(c[k>>2]=l,+g[k>>2])+m,c[k>>2]|0);else n=(g[k>>2]=(c[k>>2]=n,+g[k>>2])+m,c[k>>2]|0);if(p>0.0)d=(g[k>>2]=(c[k>>2]=o,+g[k>>2])+p,c[k>>2]|0);else{d=o;j=(g[k>>2]=(c[k>>2]=j,+g[k>>2])+p,c[k>>2]|0)}if(q>0.0)i=(g[k>>2]=(c[k>>2]=i,+g[k>>2])+q,c[k>>2]|0);else b=(g[k>>2]=(c[k>>2]=b,+g[k>>2])+q,c[k>>2]|0);m=+g[e>>2];p=+g[e+4>>2];q=+g[e+8>>2];q=+O(+(m*m+p*p+q*q));q=q*+Sb[c[(c[a>>2]|0)+16>>2]&15](a);c[f>>2]=n;c[f+4>>2]=j;c[f+8>>2]=b;g[f+12>>2]=0.0;c[h>>2]=l;c[h+4>>2]=d;c[h+8>>2]=i;g[h+12>>2]=0.0;g[f>>2]=+g[f>>2]-q;g[f+4>>2]=+g[f+4>>2]-q;g[f+8>>2]=+g[f+8>>2]-q;g[h>>2]=q+ +g[h>>2];g[h+4>>2]=q+ +g[h+4>>2];g[h+8>>2]=q+ +g[h+8>>2];return}function sh(b,d){b=b|0;d=d|0;var e=0,f=0,g=0,h=0,j=0,k=0,l=0,m=0,n=0;n=i;i=i+112|0;m=c[d+4>>2]|0;k=n;l=k+100|0;do{c[k>>2]=0;k=k+4|0}while((k|0)<(l|0));h=c[b+712>>2]|0;a:do if((h|0)>(m|0))e=b+720|0;else{if((h|0)<(m|0)?(c[b+716>>2]|0)<(m|0):0){if((m|0)!=0?(c[6435]=(c[6435]|0)+1,e=yc((m*104|3)+16|0)|0,(e|0)!=0):0){c[(e+4+15&-16)+-4>>2]=e;g=e+4+15&-16}else g=0;e=c[b+712>>2]|0;f=0;while(1){if((f|0)>=(e|0))break;k=g+(f*104|0)|0;j=(c[b+720>>2]|0)+(f*104|0)|0;l=k+104|0;do{c[k>>2]=c[j>>2];k=k+4|0;j=j+4|0}while((k|0)<(l|0));f=f+1|0}e=c[b+720>>2]|0;if(e|0){if(!((a[b+724>>0]&1)==0|(e|0)==0)){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0)}c[b+720>>2]=0}a[b+724>>0]=1;c[b+720>>2]=g;c[b+716>>2]=m}e=h;while(1){if((e|0)>=(m|0)){e=b+720|0;break a}k=c[b+720>>2]|0;c[k+(e*104|0)>>2]=0;k=k+(e*104|0)+4|0;j=n;l=k+100|0;do{c[k>>2]=c[j>>2];k=k+4|0;j=j+4|0}while((k|0)<(l|0));e=e+1|0}}while(0);c[b+712>>2]=m;e=c[e>>2]|0;f=0;while(1){if((f|0)>=(m|0))break;k=e+(f*104|0)|0;j=(c[d+12>>2]|0)+(f*104|0)|0;l=k+104|0;do{c[k>>2]=c[j>>2];k=k+4|0;j=j+4|0}while((k|0)<(l|0));f=f+1|0}i=n;return}function th(b,d){b=b|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0,k=0;e=c[b+4>>2]|0;if((e|0)==(c[b+8>>2]|0)){If(b,e|0?e<<1:1);e=c[b+4>>2]|0}j=(c[b+12>>2]|0)+(e*36|0)|0;a[j+16>>0]=1;c[j+12>>2]=0;c[j+4>>2]=0;c[j+8>>2]=0;k=c[d+4>>2]|0;if((k|0)<=0){c[j+4>>2]=k;k=j+20|0;d=d+20|0;c[k>>2]=c[d>>2];c[k+4>>2]=c[d+4>>2];c[k+8>>2]=c[d+8>>2];c[k+12>>2]=c[d+12>>2];d=c[b+4>>2]|0;d=d+1|0;c[b+4>>2]=d;return}c[6435]=(c[6435]|0)+1;e=yc((k<<2|3)+16|0)|0;if(!e)h=0;else{c[(e+4+15&-16)+-4>>2]=e;h=e+4+15&-16}g=c[j+4>>2]|0;f=c[j+12>>2]|0;if((g|0)<=0)if(!f){a[j+16>>0]=1;c[j+12>>2]=h;c[j+8>>2]=k;Qn(h|0,0,k<<2|0)|0}else i=11;else{e=0;do{c[h+(e<<2)>>2]=c[f+(e<<2)>>2];e=e+1|0}while((e|0)!=(g|0));i=11}if((i|0)==11){if(a[j+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}a[j+16>>0]=1;c[j+12>>2]=h;c[j+8>>2]=k;Qn(h|0,0,k<<2|0)|0}e=c[j+12>>2]|0;c[j+4>>2]=k;f=c[d+12>>2]|0;g=0;do{c[e+(g<<2)>>2]=c[f+(g<<2)>>2];g=g+1|0}while((g|0)!=(k|0));k=j+20|0;d=d+20|0;c[k>>2]=c[d>>2];c[k+4>>2]=c[d+4>>2];c[k+8>>2]=c[d+8>>2];c[k+12>>2]=c[d+12>>2];d=c[b+4>>2]|0;d=d+1|0;c[b+4>>2]=d;return}function uh(a,d,f,g){a=a|0;d=d|0;f=f|0;g=g|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;i=c[a+68+(d<<2)>>2]|0;h=b[i+((f&65535)<<2)+-4>>1]|0;if((e[i+((f&65535)<<2)>>1]|0)>=(h&65535))return;k=c[a+60>>2]|0;l=k+((e[i+((f&65535)<<2)+2>>1]|0)<<6)+54+(d<<1)|0;j=i+((f&65535)<<2)|0;f=i+((f&65535)<<2)+-4|0;while(1){i=e[j+-2>>1]|0;if(!(h&1)){h=e[j+2>>1]|0;if(((((e[k+(h<<6)+54+((1<>1]|0)>=(e[k+(i<<6)+48+((1<>1]|0)?(e[k+(i<<6)+54+((1<>1]|0)>=(e[k+(h<<6)+48+((1<>1]|0):0)?(e[k+(h<<6)+54+((1<<(1<>1]|0)>=(e[k+(i<<6)+48+((1<<(1<>1]|0):0)?(e[k+(i<<6)+54+((1<<(1<>1]|0)>=(e[k+(h<<6)+48+((1<<(1<>1]|0):0)?(o=c[a+92>>2]|0,m=k+(h<<6)|0,n=k+(i<<6)|0,Ib[c[(c[o>>2]|0)+12>>2]&31](o,m,n,g)|0,o=c[a+96>>2]|0,o|0):0)Ib[c[(c[o>>2]|0)+12>>2]&31](o,m,n,g)|0;k=k+(i<<6)+48+(d<<1)|0;b[k>>1]=(b[k>>1]|0)+1<<16>>16}else{k=k+(i<<6)+54+(d<<1)|0;b[k>>1]=(b[k>>1]|0)+1<<16>>16}b[l>>1]=(b[l>>1]|0)+-1<<16>>16;i=e[j>>1]|e[j+2>>1]<<16;h=e[f>>1]|e[f+2>>1]<<16;b[j>>1]=h;b[j+2>>1]=h>>>16;b[f>>1]=i;b[f+2>>1]=i>>>16;i=j+-4|0;f=f+-4|0;h=b[f>>1]|0;if((e[i>>1]|0)>=(h&65535))break;k=c[a+60>>2]|0;j=i}return}function vh(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0,g=0,h=0,j=0,k=0;k=i;i=i+48|0;g=c[a+28>>2]|0;c[k+32>>2]=g;g=(c[a+20>>2]|0)-g|0;c[k+32+4>>2]=g;c[k+32+8>>2]=b;c[k+32+12>>2]=d;j=k+32|0;f=2;g=g+d|0;while(1){if(!0){c[k+16>>2]=c[a+60>>2];c[k+16+4>>2]=j;c[k+16+8>>2]=f;b=wb(146,k+16|0)|0;if(b>>>0>4294963200){if(!0)e=25748;else e=c[(ib()|0)+64>>2]|0;c[e>>2]=0-b;b=-1}}else{rb(254,a|0);c[k>>2]=c[a+60>>2];c[k+4>>2]=j;c[k+8>>2]=f;b=wb(146,k|0)|0;if(b>>>0>4294963200){if(!0)e=25748;else e=c[(ib()|0)+64>>2]|0;c[e>>2]=0-b;b=-1}Ua(0)}if((g|0)==(b|0)){b=13;break}if((b|0)<0){b=15;break}g=g-b|0;e=c[j+4>>2]|0;if(b>>>0<=e>>>0)if((f|0)==2){c[a+28>>2]=(c[a+28>>2]|0)+b;h=e;e=j;f=2}else{h=e;e=j}else{h=c[a+44>>2]|0;c[a+28>>2]=h;c[a+20>>2]=h;h=c[j+12>>2]|0;b=b-e|0;e=j+8|0;f=f+-1|0}c[e>>2]=(c[e>>2]|0)+b;c[e+4>>2]=h-b;j=e}if((b|0)==13){j=c[a+44>>2]|0;c[a+16>>2]=j+(c[a+48>>2]|0);c[a+28>>2]=j;c[a+20>>2]=j}else if((b|0)==15){c[a+16>>2]=0;c[a+28>>2]=0;c[a+20>>2]=0;c[a>>2]=c[a>>2]|32;if((f|0)==2)d=0;else d=d-(c[j+4>>2]|0)|0}i=k;return d|0}function wh(a,d,f){a=a|0;d=d|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;h=c[a+68+(d<<2)>>2]|0;m=c[a+60>>2]|0;n=e[h+((f&65535)<<2)+2>>1]|0;g=b[h+((f&65535)<<2)+-4>>1]|0;if((e[h+((f&65535)<<2)>>1]|0)>=(g&65535))return;j=m;i=h+((f&65535)<<2)|0;f=h+((f&65535)<<2)+-4|0;while(1){h=e[i+-2>>1]|0;if(!(g&1)){j=j+(h<<6)+48+(d<<1)|0;b[j>>1]=(b[j>>1]|0)+1<<16>>16}else{if(((((e[m+(n<<6)+54+((1<>1]|0)>=(e[j+(h<<6)+48+((1<>1]|0)?(e[j+(h<<6)+54+((1<>1]|0)>=(e[m+(n<<6)+48+((1<>1]|0):0)?(e[m+(n<<6)+54+((1<<(1<>1]|0)>=(e[j+(h<<6)+48+((1<<(1<>1]|0):0)?(e[j+(h<<6)+54+((1<<(1<>1]|0)>=(e[m+(n<<6)+48+((1<<(1<>1]|0):0)?(l=c[a+92>>2]|0,k=j+(h<<6)|0,Ob[c[(c[l>>2]|0)+8>>2]&63](l,m+(n<<6)|0,k)|0,l=c[a+96>>2]|0,l|0):0)Ob[c[(c[l>>2]|0)+8>>2]&63](l,m+(n<<6)|0,k)|0;j=j+(h<<6)+54+(d<<1)|0;b[j>>1]=(b[j>>1]|0)+1<<16>>16}b[m+(n<<6)+48+(d<<1)>>1]=(b[m+(n<<6)+48+(d<<1)>>1]|0)+-1<<16>>16;h=e[i>>1]|e[i+2>>1]<<16;g=e[f>>1]|e[f+2>>1]<<16;b[i>>1]=g;b[i+2>>1]=g>>>16;b[f>>1]=h;b[f+2>>1]=h>>>16;h=i+-4|0;f=f+-4|0;g=b[f>>1]|0;if((e[h>>1]|0)>=(g&65535))break;j=c[a+60>>2]|0;i=h}return}function xh(a,b,d,e,f,h,j,k,l,m){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;j=j|0;k=k|0;l=l|0;m=m|0;var n=0.0,o=0.0;m=i;i=i+80|0;o=+g[h+52>>2]-+g[f+52>>2];n=+g[h+56>>2]-+g[f+56>>2];g[m+56>>2]=+g[h+48>>2]-+g[f+48>>2];g[m+56+4>>2]=o;g[m+56+8>>2]=n;g[m+56+12>>2]=0.0;if(Pc(d,f,e,h,m+56|0,m,1)|0){c[k>>2]=c[m+4>>2];c[k+4>>2]=c[m+4+4>>2];c[k+8>>2]=c[m+4+8>>2];c[k+12>>2]=c[m+4+12>>2];c[l>>2]=c[m+20>>2];c[l+4>>2]=c[m+20+4>>2];c[l+8>>2]=c[m+20+8>>2];c[l+12>>2]=c[m+20+12>>2];c[j>>2]=c[m+36>>2];c[j+4>>2]=c[m+36+4>>2];c[j+8>>2]=c[m+36+8>>2];c[j+12>>2]=c[m+36+12>>2];l=1;i=m;return l|0}if(!(Jd(d,f,e,h,m+56|0,m)|0)){l=0;i=m;return l|0}c[k>>2]=c[m+4>>2];c[k+4>>2]=c[m+4+4>>2];c[k+8>>2]=c[m+4+8>>2];c[k+12>>2]=c[m+4+12>>2];c[l>>2]=c[m+20>>2];c[l+4>>2]=c[m+20+4>>2];c[l+8>>2]=c[m+20+8>>2];c[l+12>>2]=c[m+20+12>>2];c[j>>2]=c[m+36>>2];c[j+4>>2]=c[m+36+4>>2];c[j+8>>2]=c[m+36+8>>2];c[j+12>>2]=c[m+36+12>>2];l=0;i=m;return l|0}function yh(a,b,d){a=a|0;b=b|0;d=d|0;var e=0.0,f=0.0,h=0.0,j=0,k=0,l=0,m=0.0,n=0.0,o=0,p=0,q=0.0,r=0;p=i;i=i+2048|0;c[a>>2]=0;c[a+4>>2]=0;c[a+8>>2]=0;c[a+12>>2]=0;e=+g[d>>2];h=+g[d+4>>2];f=+g[d+8>>2];if(e*e+h*h+f*f<9.999999747378752e-05){n=1.0;m=0.0;h=0.0}else{q=1.0/+O(+(e*e+h*h+f*f));n=e*q;m=f*q;h=h*q}if((Eb[c[(c[b>>2]|0)+96>>2]&127](b)|0)<=0){i=p;return}l=0;f=-999999984306749440.0;while(1){if(((Eb[c[(c[b>>2]|0)+96>>2]&127](b)|0)-l|0)<128){d=(Eb[c[(c[b>>2]|0)+96>>2]&127](b)|0)-l|0;if((d|0)>0)o=8;else{e=-3402823466385288598117041.0e14;d=-1}}else{d=128;o=8}if((o|0)==8){o=0;j=0;do{ic[c[(c[b>>2]|0)+108>>2]&127](b,j,p+(j<<4)|0);j=j+1|0}while((j|0)!=(d|0));k=0;e=-3402823466385288598117041.0e14;j=-1;do{q=n*+g[p+(k<<4)>>2]+h*+g[p+(k<<4)+4>>2]+m*+g[p+(k<<4)+8>>2];r=q>e;j=r?k:j;e=r?q:e;k=k+1|0}while((k|0)!=(d|0));d=j}if(e>f){r=p+(d<<4)|0;c[a>>2]=c[r>>2];c[a+4>>2]=c[r+4>>2];c[a+8>>2]=c[r+8>>2];c[a+12>>2]=c[r+12>>2]}else e=f;l=l+128|0;if((l|0)>=(Eb[c[(c[b>>2]|0)+96>>2]&127](b)|0))break;else f=e}i=p;return}function zh(b,e,f,h,i,j){b=b|0;e=e|0;f=f|0;h=h|0;i=i|0;j=j|0;var k=0;if((d[h+55>>0]|0|0)==(e|0)){h=0;return h|0}k=c[4976+(i<<2)>>2]|0;if(+g[h>>2]*+g[f+16>>2]+ +g[h+4>>2]*+g[f+20>>2]+ +g[h+8>>2]*+g[f+24>>2]-+g[h+16>>2]<-9.999999747378752e-06){k=nf(b,c[h+20+(k<<2)>>2]|0,c[h+20+(i<<2)>>2]|0,f,0)|0;if(!k){h=0;return h|0}a[k+52>>0]=i;c[k+32>>2]=h;a[h+52+i>>0]=0;c[h+32+(i<<2)>>2]=k;i=c[j>>2]|0;if(!i)c[j+4>>2]=k;else{a[i+53>>0]=2;c[i+36>>2]=k;a[k+54>>0]=1;c[k+40>>2]=i}c[j>>2]=k;c[j+8>>2]=(c[j+8>>2]|0)+1;h=1;return h|0}i=c[4988+(i<<2)>>2]|0;a[h+55>>0]=e;if(!(zh(b,e,f,c[h+32+(k<<2)>>2]|0,d[h+52+k>>0]|0,j)|0)){h=0;return h|0}if(!(zh(b,e,f,c[h+32+(i<<2)>>2]|0,d[h+52+i>>0]|0,j)|0)){h=0;return h|0}i=c[h+48>>2]|0;if(i|0)c[i+44>>2]=c[h+44>>2];i=c[h+44>>2]|0;if(i|0)c[i+48>>2]=c[h+48>>2];if((c[b+9280>>2]|0)==(h|0))c[b+9280>>2]=c[h+48>>2];c[b+9284>>2]=(c[b+9284>>2]|0)+-1;c[h+44>>2]=0;c[h+48>>2]=c[b+9288>>2];i=c[b+9288>>2]|0;if(i|0)c[i+44>>2]=h;c[b+9288>>2]=h;c[b+9292>>2]=(c[b+9292>>2]|0)+1;h=1;return h|0}function Ah(b,d){b=b|0;d=d|0;var e=0,f=0,h=0.0,i=0,j=0,k=0.0,l=0.0;e=c[d+204>>2]|0;if((e&3|0)==0?(c[d+504>>2]&1|0)==0:0){h=+g[d+344>>2];if(h!=0.0){l=1.0/h*+g[b+252>>2];k=1.0/h*+g[b+256>>2];g[d+364>>2]=1.0/h*+g[b+248>>2];g[d+368>>2]=l;g[d+372>>2]=k;g[d+376>>2]=0.0}c[d+380>>2]=c[b+248>>2];c[d+380+4>>2]=c[b+248+4>>2];c[d+380+8>>2]=c[b+248+8>>2];c[d+380+12>>2]=c[b+248+12>>2]}if(!(c[d+192>>2]|0))return;if(e&1){if((c[d+216>>2]&-2|0)!=4)c[d+216>>2]=2}else{f=c[b+232>>2]|0;if((f|0)==(c[b+236>>2]|0)?(j=f|0?f<<1:1,(f|0)<(j|0)):0){if(!j)e=0;else{c[6435]=(c[6435]|0)+1;e=yc((j<<2|3)+16|0)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}f=c[b+232>>2]|0}if((f|0)>0){i=0;do{c[e+(i<<2)>>2]=c[(c[b+240>>2]|0)+(i<<2)>>2];i=i+1|0}while((i|0)!=(f|0))}i=c[b+240>>2]|0;if(i){if(a[b+244>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[i+-4>>2]|0);f=c[b+232>>2]|0}c[b+240>>2]=0}a[b+244>>0]=1;c[b+240>>2]=e;c[b+236>>2]=j;e=c[d+204>>2]|0}c[(c[b+240>>2]|0)+(f<<2)>>2]=d;c[b+232>>2]=f+1}j=(e&3|0)==0;mc[c[(c[b>>2]|0)+36>>2]&127](b,d,j?1:2,j?-1:-3);return}function Bh(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;var h=0,i=0.0,j=0,k=0,l=0,m=0.0,n=0.0;h=c[d+204>>2]|0;if((h&3|0)==0?(c[d+504>>2]&1|0)==0:0){i=+g[d+344>>2];if(i!=0.0){n=1.0/i*+g[b+252>>2];m=1.0/i*+g[b+256>>2];g[d+364>>2]=1.0/i*+g[b+248>>2];g[d+368>>2]=n;g[d+372>>2]=m;g[d+376>>2]=0.0}c[d+380>>2]=c[b+248>>2];c[d+380+4>>2]=c[b+248+4>>2];c[d+380+8>>2]=c[b+248+8>>2];c[d+380+12>>2]=c[b+248+12>>2]}if(!(c[d+192>>2]|0))return;if(h&1){if((c[d+216>>2]&-2|0)!=4)c[d+216>>2]=2}else{h=c[b+232>>2]|0;if((h|0)==(c[b+236>>2]|0)?(l=h|0?h<<1:1,(h|0)<(l|0)):0){if(!l)k=0;else{c[6435]=(c[6435]|0)+1;h=yc((l<<2|3)+16|0)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}k=h;h=c[b+232>>2]|0}if((h|0)>0){j=0;do{c[k+(j<<2)>>2]=c[(c[b+240>>2]|0)+(j<<2)>>2];j=j+1|0}while((j|0)!=(h|0))}j=c[b+240>>2]|0;if(j){if(a[b+244>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0);h=c[b+232>>2]|0}c[b+240>>2]=0}a[b+244>>0]=1;c[b+240>>2]=k;c[b+236>>2]=l}c[(c[b+240>>2]|0)+(h<<2)>>2]=d;c[b+232>>2]=h+1}mc[c[(c[b>>2]|0)+36>>2]&127](b,d,e,f);return}function Ch(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0.0,h=0.0,i=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0;o=(+g[a+32>>2]-+g[a+16>>2])*.5;l=(+g[a+36>>2]-+g[a+20>>2])*.5;i=(+g[a+40>>2]-+g[a+24>>2])*.5;n=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);k=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);i=i+ +Sb[c[(c[a>>2]|0)+48>>2]&15](a);B=(+g[a+32>>2]+ +g[a+16>>2])*.5;z=(+g[a+36>>2]+ +g[a+20>>2])*.5;x=(+g[a+40>>2]+ +g[a+24>>2])*.5;F=+g[b>>2];w=+N(+F);E=+g[b+4>>2];v=+N(+E);t=+g[b+8>>2];u=+N(+t);D=+g[b+16>>2];s=+N(+D);C=+g[b+20>>2];r=+N(+C);p=+g[b+24>>2];q=+N(+p);A=+g[b+32>>2];m=+N(+A);y=+g[b+36>>2];j=+N(+y);f=+g[b+40>>2];h=+N(+f);t=B*F+z*E+x*t+ +g[b+48>>2];p=B*D+z*C+x*p+ +g[b+52>>2];f=B*A+z*y+x*f+ +g[b+56>>2];g[d>>2]=t-((o+n)*w+(l+k)*v+i*u);g[d+4>>2]=p-((o+n)*s+(l+k)*r+i*q);g[d+8>>2]=f-((o+n)*m+(l+k)*j+i*h);g[d+12>>2]=0.0;g[e>>2]=(o+n)*w+(l+k)*v+i*u+t;g[e+4>>2]=(o+n)*s+(l+k)*r+i*q+p;g[e+8>>2]=(o+n)*m+(l+k)*j+i*h+f;g[e+12>>2]=0.0;return}function Dh(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0.0,h=0.0,i=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0,G=0.0,H=0.0;H=+g[a+48>>2];z=+g[a+32>>2];G=+g[a+52>>2];x=+g[a+36>>2];E=+g[a+56>>2];v=+g[a+40>>2];F=(c[a+16>>2]|0)==0;m=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);k=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);i=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);m=(F?0.0:(H-z)*.5)+m;k=(F?0.0:(G-x)*.5)+k;i=(F?0.0:(E-v)*.5)+i;D=+g[b>>2];u=+N(+D);C=+g[b+4>>2];t=+N(+C);r=+g[b+8>>2];s=+N(+r);B=+g[b+16>>2];q=+N(+B);A=+g[b+20>>2];p=+N(+A);n=+g[b+24>>2];o=+N(+n);y=+g[b+32>>2];l=+N(+y);w=+g[b+36>>2];j=+N(+w);f=+g[b+40>>2];h=+N(+f);z=F?0.0:(H+z)*.5;x=F?0.0:(G+x)*.5;v=F?0.0:(E+v)*.5;r=z*D+x*C+v*r+ +g[b+48>>2];n=z*B+x*A+v*n+ +g[b+52>>2];f=z*y+x*w+v*f+ +g[b+56>>2];g[d>>2]=r-(m*u+k*t+i*s);g[d+4>>2]=n-(m*q+k*p+i*o);g[d+8>>2]=f-(m*l+k*j+i*h);g[d+12>>2]=0.0;g[e>>2]=m*u+k*t+i*s+r;g[e+4>>2]=m*q+k*p+i*o+n;g[e+8>>2]=m*l+k*j+i*h+f;g[e+12>>2]=0.0;return}function Eh(b,d){b=b|0;d=d|0;var e=0,f=0.0,h=0.0,i=0.0,j=0,l=0.0,m=0.0;if(a[b+48>>0]|0){c[d>>2]=0;c[d+4>>2]=0;return}c[d>>2]=4;c[d+4>>2]=2;kd(b,(c[b+28>>2]|0)+4|0,(c[b+32>>2]|0)+4|0);g[b+1088>>2]=0.0;a[b+297>>0]=0;f=+g[b+192>>2];h=+g[b+196>>2];do if(f<=h){m=+g[b+892>>2];l=+g[b+908>>2];i=+g[b+924>>2];i=+ik(+W(+(+g[b+832>>2]*m+ +g[b+848>>2]*l+ +g[b+864>>2]*i),+(+g[b+828>>2]*m+ +g[b+844>>2]*l+ +g[b+860>>2]*i)),f,h);g[b+1084>>2]=i;if(i>2]=i-f;a[b+297>>0]=1;j=1;break}if(i>h){g[b+1088>>2]=i-h;a[b+297>>0]=1;j=1}else j=0}else j=0;while(0);a[b+296>>0]=0;e=c[b+1032>>2]|0;c[b+1080>>2]=e;f=+g[b+184>>2];h=+g[b+188>>2];i=(c[k>>2]=e,+g[k>>2]);do if(f<=h){if(i>h){g[b+1032>>2]=i-h;a[b+296>>0]=1;e=14;break}if(i>2]=i-f;a[b+296>>0]=1;e=14}else e=13}else e=13;while(0);if((e|0)==13?(g[b+1032>>2]=0.0,a[b+1096>>0]|0):0)e=14;if((e|0)==14){c[d>>2]=(c[d>>2]|0)+1;c[d+4>>2]=(c[d+4>>2]|0)+-1}if(j<<24>>24==0?(a[b+1112>>0]|0)==0:0)return;c[d>>2]=(c[d>>2]|0)+1;c[d+4>>2]=(c[d+4>>2]|0)+-1;return}function Fh(a){a=a|0;var b=0,d=0.0,e=0,f=0,h=0,i=0,j=0.0,k=0.0,l=0,m=0,n=0.0,o=0,p=0.0;c[6435]=(c[6435]|0)+1;b=yc(75)|0;if(!b)i=0;else{c[(b+4+15&-16)+-4>>2]=b;i=b+4+15&-16}c[i+8>>2]=0;e=i+12|0;c[e>>2]=1065353216;f=i+16|0;c[f>>2]=1065353216;h=i+20|0;c[h>>2]=1065353216;g[i+24>>2]=0.0;b=i+44|0;g[b>>2]=.03999999910593033;c[i+52>>2]=0;c[i>>2]=7844;c[i+4>>2]=0;k=+g[a>>2];j=+g[a+4>>2];d=+g[a+8>>2];d=+g[a+((k>2]*.10000000149011612;if(d<.03999999910593033){p=+xz(i);n=+Sb[c[(c[i>>2]|0)+48>>2]&15](i);k=+Sb[c[(c[i>>2]|0)+48>>2]&15](i);o=i+28|0;p=p+ +g[o>>2];m=i+32|0;n=n+ +g[m>>2];l=i+36|0;k=k+ +g[l>>2];g[b>>2]=d;d=+Sb[c[(c[i>>2]|0)+48>>2]&15](i);j=+Sb[c[(c[i>>2]|0)+48>>2]&15](i);k=k-+Sb[c[(c[i>>2]|0)+48>>2]&15](i);g[o>>2]=p-d;g[m>>2]=n-j;g[l>>2]=k;g[i+40>>2]=0.0;b=c[i>>2]|0}else b=7844;k=+Sb[c[b+48>>2]&15](i);n=+Sb[c[(c[i>>2]|0)+48>>2]&15](i);p=+Sb[c[(c[i>>2]|0)+48>>2]&15](i);n=+g[a+4>>2]*+g[f>>2]-n;p=+g[a+8>>2]*+g[h>>2]-p;g[i+28>>2]=+g[a>>2]*+g[e>>2]-k;g[i+32>>2]=n;g[i+36>>2]=p;g[i+40>>2]=0.0;return i|0}function Gh(a,b){a=a|0;b=b|0;var d=0,e=0,f=0,g=0,h=0;f=c[a+212>>2]|0;a:do if((f|0)>0){g=c[a+220>>2]|0;d=0;while(1){e=g+(d<<2)|0;if((c[e>>2]|0)==(b|0))break;d=d+1|0;if((d|0)>=(f|0))break a}if((d|0)<(f|0)){c[e>>2]=c[g+(f+-1<<2)>>2];c[(c[a+220>>2]|0)+(f+-1<<2)>>2]=b;c[a+212>>2]=f+-1}}while(0);a=c[b+28>>2]|0;d=c[a+488>>2]|0;b:do if((d|0)>0){g=c[a+496>>2]|0;e=0;while(1){f=g+(e<<2)|0;if((c[f>>2]|0)==(b|0))break;e=e+1|0;if((e|0)>=(d|0))break b}if((e|0)<(d|0)){c[f>>2]=c[g+(d+-1<<2)>>2];c[(c[a+496>>2]|0)+(d+-1<<2)>>2]=b;c[a+488>>2]=d+-1;d=d+-1|0}}while(0);c[a+256>>2]=(d|0)>0&1;a=c[b+32>>2]|0;d=c[a+488>>2]|0;if((d|0)<=0){b=d;b=(b|0)>0;b=b&1;h=a+256|0;c[h>>2]=b;return}g=c[a+496>>2]|0;e=0;while(1){f=g+(e<<2)|0;if((c[f>>2]|0)==(b|0))break;e=e+1|0;if((e|0)>=(d|0)){h=19;break}}if((h|0)==19){b=(d|0)>0;b=b&1;h=a+256|0;c[h>>2]=b;return}if((e|0)>=(d|0)){b=d;b=(b|0)>0;b=b&1;h=a+256|0;c[h>>2]=b;return}c[f>>2]=c[g+(d+-1<<2)>>2];c[(c[a+496>>2]|0)+(d+-1<<2)>>2]=b;c[a+488>>2]=d+-1;b=d+-1|0;b=(b|0)>0;b=b&1;h=a+256|0;c[h>>2]=b;return}function Hh(b,d){b=b|0;d=d|0;var e=0,f=0.0,h=0.0,i=0.0,j=0;j=Eb[c[(c[b>>2]|0)+28>>2]&127](b)|0;i=+g[j>>2]-+g[d>>2];h=+g[j+4>>2]-+g[d+4>>2];f=+g[j+8>>2]-+g[d+8>>2];if(!(i*i+h*h+f*f>1.1920928955078125e-07))return;Xg(b,d);if((a[b+61>>0]|0)!=0?(e=c[b+52>>2]|0,Ab[c[c[e>>2]>>2]&255](e),e=c[b+52>>2]|0,(e|0)!=0):0){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0);d=b+52|0}else d=b+52|0;c[6435]=(c[6435]|0)+1;e=yc(191)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}c[e+52>>2]=282;a[e+60>>0]=0;a[e+80>>0]=1;c[e+76>>2]=0;c[e+68>>2]=0;c[e+72>>2]=0;a[e+100>>0]=1;c[e+96>>2]=0;c[e+88>>2]=0;c[e+92>>2]=0;a[e+120>>0]=1;c[e+116>>2]=0;c[e+108>>2]=0;c[e+112>>2]=0;a[e+140>>0]=1;c[e+136>>2]=0;c[e+128>>2]=0;c[e+132>>2]=0;c[e+144>>2]=0;a[e+164>>0]=1;c[e+160>>2]=0;c[e+152>>2]=0;c[e+156>>2]=0;c[e+168>>2]=0;c[e+4>>2]=-8388609;c[e+8>>2]=-8388609;c[e+12>>2]=-8388609;g[e+16>>2]=0.0;c[e+20>>2]=2139095039;c[e+24>>2]=2139095039;c[e+28>>2]=2139095039;g[e+32>>2]=0.0;c[e>>2]=7980;c[d>>2]=e;pd(e,c[b+48>>2]|0,(a[b+60>>0]|0)!=0,b+16|0,b+32|0);a[b+61>>0]=1;return}function Ih(b,d){b=b|0;d=d|0;var e=0.0,f=0.0;if(a[b+1309>>0]|0){e=(+g[b+1256>>2]-+g[b+1316>>2])*+g[b+1340>>2];g[b+792>>2]=e*(+g[d>>2]*+g[b+1364>>2]/+(c[d+48>>2]|0));e=+N(+e);g[b+808>>2]=e/+g[d>>2]}if(a[b+1310>>0]|0){e=(+g[b+1260>>2]-+g[b+1320>>2])*+g[b+1344>>2];g[b+796>>2]=e*(+g[d>>2]*+g[b+1368>>2]/+(c[d+48>>2]|0));e=+N(+e);g[b+812>>2]=e/+g[d>>2]}if(a[b+1311>>0]|0){e=(+g[b+1264>>2]-+g[b+1324>>2])*+g[b+1348>>2];g[b+800>>2]=e*(+g[d>>2]*+g[b+1372>>2]/+(c[d+48>>2]|0));e=+N(+e);g[b+816>>2]=e/+g[d>>2]}if(a[b+1312>>0]|0){f=-((+g[b+1192>>2]-+g[b+1328>>2])*+g[b+1352>>2]);e=+g[d>>2];g[b+876>>2]=e*+g[b+1376>>2]/+(c[d+48>>2]|0)*f;g[b+880>>2]=+N(+f)/e}if(a[b+1313>>0]|0){e=-((+g[b+1196>>2]-+g[b+1332>>2])*+g[b+1356>>2]);f=+g[d>>2];g[b+940>>2]=f*+g[b+1380>>2]/+(c[d+48>>2]|0)*e;g[b+944>>2]=+N(+e)/f}if(!(a[b+1314>>0]|0)){fg(b,d);return}e=-((+g[b+1200>>2]-+g[b+1336>>2])*+g[b+1360>>2]);f=+g[d>>2];g[b+1004>>2]=f*+g[b+1384>>2]/+(c[d+48>>2]|0)*e;g[b+1008>>2]=+N(+e)/f;fg(b,d);return}function Jh(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0,h=0.0,j=0.0,k=0.0;e=i;i=i+160|0;c[e+136>>2]=0;c[e+136+4>>2]=0;c[e+136+8>>2]=0;c[e+136+12>>2]=0;c[e+136+16>>2]=0;c[e+32>>2]=7028;f=e+32+4|0;c[f>>2]=0;c[f+4>>2]=0;c[f+8>>2]=0;c[f+12>>2]=0;c[e+32+20>>2]=1065353216;c[e+32+24>>2]=0;c[e+32+24+4>>2]=0;c[e+32+24+8>>2]=0;c[e+32+24+12>>2]=0;c[e+32+40>>2]=1065353216;c[e+32+44>>2]=0;c[e+32+44+4>>2]=0;c[e+32+44+8>>2]=0;c[e+32+44+12>>2]=0;c[e+32+60>>2]=1065353216;c[e+32+64>>2]=0;c[e+32+68>>2]=c[e+136+4>>2];c[e+32+68+4>>2]=c[e+136+4+4>>2];c[e+32+68+8>>2]=c[e+136+4+8>>2];c[e+32+68+12>>2]=c[e+136+4+12>>2];g[e+32+84>>2]=-999999984306749440.0;k=+g[d>>2];j=+g[d+4>>2];h=+g[d+8>>2];g[e+32+88>>2]=k+j*0.0+h*0.0;g[e+32+92>>2]=k*0.0+j+h*0.0;g[e+32+96>>2]=k*0.0+j*0.0+h;g[e+32+100>>2]=0.0;c[e+16>>2]=1566444395;c[e+16+4>>2]=1566444395;c[e+16+8>>2]=1566444395;g[e+16+12>>2]=0.0;d=c[(c[b>>2]|0)+64>>2]|0;g[e>>2]=-999999984306749440.0;g[e+4>>2]=-999999984306749440.0;g[e+8>>2]=-999999984306749440.0;g[e+12>>2]=0.0;mc[d&127](b,e+32|0,e,e+16|0);c[a>>2]=c[f>>2];c[a+4>>2]=c[f+4>>2];c[a+8>>2]=c[f+8>>2];c[a+12>>2]=c[f+12>>2];i=e;return}function Kh(a,b,d){a=a|0;b=b|0;d=d|0;var e=0.0,f=0.0,h=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0;q=i;i=i+16|0;c[a>>2]=0;c[a+4>>2]=0;c[a+8>>2]=0;c[a+12>>2]=0;e=+g[d>>2];f=+g[d+4>>2];h=+g[d+8>>2];if(e*e+f*f+h*h<9.999999747378752e-05){p=1.0;o=0.0;n=0.0}else{n=1.0/+O(+(e*e+f*f+h*h));p=e*n;o=f*n;n=h*n}d=c[b+52>>2]|0;m=+g[b+28+(((d+2|0)%3|0)<<2)>>2];c[q>>2]=0;c[q+4>>2]=0;c[q+8>>2]=0;c[q+12>>2]=0;c[q+(d<<2)>>2]=c[b+28+(d<<2)>>2];k=p*m;l=o*m;m=n*m;e=k+ +g[q>>2];f=l+ +g[q+4>>2];j=m+ +g[q+8>>2];h=+Sb[c[(c[b>>2]|0)+48>>2]&15](b);e=e-p*h;f=f-o*h;h=j-n*h;j=n*h+(p*e+o*f);if(j>-999999984306749440.0){g[a>>2]=e;g[a+4>>2]=f;g[a+8>>2]=h;g[a+12>>2]=0.0}else j=-999999984306749440.0;c[q>>2]=0;c[q+4>>2]=0;c[q+8>>2]=0;c[q+12>>2]=0;d=c[b+52>>2]|0;g[q+(d<<2)>>2]=-+g[b+28+(d<<2)>>2];e=k+ +g[q>>2];f=l+ +g[q+4>>2];m=m+ +g[q+8>>2];h=+Sb[c[(c[b>>2]|0)+48>>2]&15](b);e=e-p*h;f=f-o*h;h=m-n*h;if(!(n*h+(p*e+o*f)>j)){i=q;return}g[a>>2]=e;g[a+4>>2]=f;g[a+8>>2]=h;g[a+12>>2]=0.0;i=q;return}function Lh(a,b,d,e,f,h,j,k,l,m){a=a|0;b=b|0;d=d|0;e=e|0;f=+f;h=+h;j=+j;k=+k;l=+l;m=+m;var n=0;n=i;i=i+128|0;c[n+80>>2]=c[a+4>>2];c[n+80+4>>2]=c[a+20>>2];c[n+80+8>>2]=c[a+36>>2];g[n+80+12>>2]=0.0;c[n+80+16>>2]=c[a+8>>2];c[n+80+20>>2]=c[a+24>>2];c[n+80+24>>2]=c[a+40>>2];g[n+80+28>>2]=0.0;c[n+80+32>>2]=c[a+12>>2];c[n+80+36>>2]=c[a+28>>2];c[n+80+40>>2]=c[a+44>>2];g[n+80+44>>2]=0.0;c[n+32>>2]=c[b+4>>2];c[n+32+4>>2]=c[b+20>>2];c[n+32+8>>2]=c[b+36>>2];g[n+32+12>>2]=0.0;c[n+32+16>>2]=c[b+8>>2];c[n+32+20>>2]=c[b+24>>2];c[n+32+24>>2]=c[b+40>>2];g[n+32+28>>2]=0.0;c[n+32+32>>2]=c[b+12>>2];c[n+32+36>>2]=c[b+28>>2];c[n+32+40>>2]=c[b+44>>2];g[n+32+44>>2]=0.0;h=h-+g[a+56>>2];j=j-+g[a+60>>2];g[n+16>>2]=f-+g[a+52>>2];g[n+16+4>>2]=h;g[n+16+8>>2]=j;g[n+16+12>>2]=0.0;l=l-+g[b+56>>2];m=m-+g[b+60>>2];g[n>>2]=k-+g[b+52>>2];g[n+4>>2]=l;g[n+8>>2]=m;g[n+12>>2]=0.0;Rg(d,n+80|0,n+32|0,n+16|0,n,e,a+396|0,+g[a+344>>2],b+396|0,+g[b+344>>2]);i=n;return}function Mh(a,b,c,d,e,f,h,i,j,k,l,m,n,o){a=a|0;b=+b;c=+c;d=+d;e=+e;f=+f;h=+h;i=+i;j=+j;k=+k;l=+l;m=+m;n=+n;o=+o;var p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0;s=(j-f)*(n-h)-(k-h)*(m-f);q=(k-h)*(l-e)-(i-e)*(n-h);r=(i-e)*(m-f)-(j-f)*(l-e);if(+N(+(r*d+(s*b+q*c)))<1.1920928955078125e-07){d=-1.0;return +d}t=+g[a>>2];v=+g[a+4>>2];u=+g[a+8>>2];p=-(s*t+q*v+r*u-(r*h+(s*e+q*f)))/(r*d+(s*b+q*c));if(((p>1.1920928955078125e-06&p-1.1920928955078125e-06:0)?r*((m-(v+p*c))*(i-(t+p*b))-(j-(v+p*c))*(l-(t+p*b)))+(s*((j-(v+p*c))*(n-(u+p*d))-(k-(u+p*d))*(m-(v+p*c)))+q*((k-(u+p*d))*(l-(t+p*b))-(n-(u+p*d))*(i-(t+p*b))))>-1.1920928955078125e-06:0)?r*((f-(v+p*c))*(l-(t+p*b))-(m-(v+p*c))*(e-(t+p*b)))+(s*((m-(v+p*c))*(h-(u+p*d))-(n-(u+p*d))*(f-(v+p*c)))+q*((n-(u+p*d))*(e-(t+p*b))-(h-(u+p*d))*(l-(t+p*b))))>-1.1920928955078125e-06:0){v=p;return +v}v=-1.0;return +v}function Nh(a,b,d,e,f){a=a|0;b=+b;d=+d;e=+e;f=f|0;var h=0,j=0,k=0,l=0,m=0.0,n=0.0;k=i;i=i+48|0;m=1.0/+O(+(b*b+d*d+e*e));g[f>>2]=m*b;g[f+4>>2]=m*d;g[f+8>>2]=m*e;g[f+12>>2]=0.0;h=c[a+120>>2]|0;l=c[a+124>>2]|0;j=(c[a>>2]|0)+(l>>1)|0;if(l&1)h=c[(c[j>>2]|0)+h>>2]|0;ic[h&127](k,j,f);b=-+g[f>>2];d=-+g[f+4>>2];e=-+g[f+8>>2];h=c[a+120>>2]|0;l=c[a+124>>2]|0;j=(c[a+4>>2]|0)+(l>>1)|0;if(l&1)h=c[(c[j>>2]|0)+h>>2]|0;m=+g[a+24>>2]*b+ +g[a+28>>2]*d+ +g[a+32>>2]*e;n=+g[a+40>>2]*b+ +g[a+44>>2]*d+ +g[a+48>>2]*e;g[k+16>>2]=+g[a+8>>2]*b+ +g[a+12>>2]*d+ +g[a+16>>2]*e;g[k+16+4>>2]=m;g[k+16+8>>2]=n;g[k+16+12>>2]=0.0;ic[h&127](k+32|0,j,k+16|0);n=+g[k+32>>2];b=+g[k+32+4>>2];d=+g[k+32+8>>2];e=+g[k+4>>2]-(n*+g[a+72>>2]+b*+g[a+76>>2]+d*+g[a+80>>2]+ +g[a+108>>2]);m=+g[k+8>>2]-(n*+g[a+88>>2]+b*+g[a+92>>2]+d*+g[a+96>>2]+ +g[a+112>>2]);g[f+16>>2]=+g[k>>2]-(n*+g[a+56>>2]+b*+g[a+60>>2]+d*+g[a+64>>2]+ +g[a+104>>2]);g[f+20>>2]=e;g[f+24>>2]=m;g[f+28>>2]=0.0;i=k;return}function Oh(b,d){b=b|0;d=d|0;var e=0,f=0,g=0,h=0,i=0;if(a[b+165>>0]|0){if((c[b+92>>2]|0)>=(d|0))return;if((d|0)!=0?(c[6435]=(c[6435]|0)+1,e=yc((d<<4|3)+16|0)|0,(e|0)!=0):0){c[(e+4+15&-16)+-4>>2]=e;g=e+4+15&-16}else g=0;e=c[b+88>>2]|0;if((e|0)>0){f=0;do{i=g+(f<<4)|0;h=(c[b+96>>2]|0)+(f<<4)|0;c[i>>2]=c[h>>2];c[i+4>>2]=c[h+4>>2];c[i+8>>2]=c[h+8>>2];c[i+12>>2]=c[h+12>>2];f=f+1|0}while((f|0)!=(e|0))}e=c[b+96>>2]|0;if(e|0){if(a[b+100>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0)}c[b+96>>2]=0}a[b+100>>0]=1;c[b+96>>2]=g;c[b+92>>2]=d;return}if((c[b+112>>2]|0)>=(d|0))return;if((d|0)!=0?(c[6435]=(c[6435]|0)+1,f=yc((d<<2|3)+16|0)|0,(f|0)!=0):0){c[(f+4+15&-16)+-4>>2]=f;h=f+4+15&-16}else h=0;f=c[b+108>>2]|0;g=c[b+116>>2]|0;if((f|0)<=0)if(!g)e=b+120|0;else i=21;else{e=0;do{c[h+(e<<2)>>2]=c[g+(e<<2)>>2];e=e+1|0}while((e|0)!=(f|0));i=21}if((i|0)==21){if(a[b+120>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[g+-4>>2]|0)}c[b+116>>2]=0;e=b+120|0}a[e>>0]=1;c[b+116>>2]=h;c[b+112>>2]=d;return}function Ph(){var b=0,d=0,e=0;c[6435]=(c[6435]|0)+1;b=yc(307)|0;if(!b)d=0;else{c[(b+4+15&-16)+-4>>2]=b;d=b+4+15&-16}c[d+164>>2]=1065353216;c[d+168>>2]=1065353216;c[d+172>>2]=1065353216;g[d+176>>2]=0.0;c[d+180>>2]=0;g[d+184>>2]=999999984306749440.0;b=d+188|0;c[b>>2]=0;c[b+4>>2]=0;c[b+8>>2]=0;c[b+12>>2]=0;c[d+204>>2]=1;c[d+208>>2]=-1;c[d+212>>2]=-1;c[d+216>>2]=1;g[d+220>>2]=0.0;g[d+224>>2]=.5;g[d+228>>2]=0.0;g[d+232>>2]=0.0;c[d+240>>2]=0;g[d+244>>2]=1.0;b=d+248|0;c[b>>2]=0;c[b+4>>2]=0;c[b+8>>2]=0;c[b+12>>2]=0;c[d+4>>2]=1065353216;b=d+8|0;c[b>>2]=0;c[b+4>>2]=0;c[b+8>>2]=0;c[b+12>>2]=0;c[d+24>>2]=1065353216;b=d+28|0;c[b>>2]=0;c[b+4>>2]=0;c[b+8>>2]=0;c[b+12>>2]=0;c[d+44>>2]=1065353216;b=d+48|0;c[b>>2]=0;c[b+4>>2]=0;c[b+8>>2]=0;c[b+12>>2]=0;c[b+16>>2]=0;a[d+280>>0]=1;c[d+276>>2]=0;c[d+268>>2]=0;c[d+272>>2]=0;c[d+236>>2]=4;c[d>>2]=5088;c[6435]=(c[6435]|0)+1;b=yc(95)|0;if(!b){e=0;Ri(e);b=d+284|0;c[b>>2]=e;return d|0}c[(b+4+15&-16)+-4>>2]=b;b=b+4+15&-16;Ri(b);e=d+284|0;c[e>>2]=b;return d|0}function Qh(a,b,d,e,f,g,h,i,j){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;g=g|0;h=h|0;i=i|0;j=j|0;if(!(c[i+44>>2]|0))return;b=c[i+20>>2]|0;if(!(c[i+64>>2]&256)){if((b|0)<=0)return;j=0;do{g=c[a+28>>2]|0;if((g|0)>0){b=0;do{f=c[(c[a+116>>2]|0)+(b<<2)>>2]|0;h=c[a+36>>2]|0;d=c[a+16>>2]|0;Ig(d+((c[h+(f*152|0)+144>>2]|0)*244|0)|0,d+((c[h+(f*152|0)+148>>2]|0)*244|0)|0,h+(f*152|0)|0);b=b+1|0}while((b|0)!=(g|0));b=c[i+20>>2]|0}j=j+1|0}while((j|0)<(b|0));return}else{if((b|0)<=0)return;j=0;do{g=c[a+28>>2]|0;if((g|0)>0){b=0;do{f=c[(c[a+116>>2]|0)+(b<<2)>>2]|0;h=c[a+36>>2]|0;d=c[a+16>>2]|0;Ig(d+((c[h+(f*152|0)+144>>2]|0)*244|0)|0,d+((c[h+(f*152|0)+148>>2]|0)*244|0)|0,h+(f*152|0)|0);b=b+1|0}while((b|0)!=(g|0));b=c[i+20>>2]|0}j=j+1|0}while((j|0)<(b|0));return}}function Rh(d,e){d=d|0;e=e|0;var f=0,g=0,h=0,i=0,j=0;if(!(a[d+164>>0]|0)){if((c[d+152>>2]|0)>=(e|0))return;if((e|0)!=0?(c[6435]=(c[6435]|0)+1,g=yc((e<<1)+19|0)|0,(g|0)!=0):0){c[(g+4+15&-16)+-4>>2]=g;i=g+4+15&-16}else i=0;g=c[d+148>>2]|0;h=c[d+156>>2]|0;if((g|0)<=0)if(!h)f=d+160|0;else j=22;else{f=0;do{b[i+(f<<1)>>1]=b[h+(f<<1)>>1]|0;f=f+1|0}while((f|0)!=(g|0));j=22}if((j|0)==22){if(a[d+160>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0)}c[d+156>>2]=0;f=d+160|0}a[f>>0]=1;c[d+156>>2]=i;c[d+152>>2]=e;return}else{if((c[d+132>>2]|0)>=(e|0))return;if((e|0)!=0?(c[6435]=(c[6435]|0)+1,f=yc((e<<2|3)+16|0)|0,(f|0)!=0):0){c[(f+4+15&-16)+-4>>2]=f;i=f+4+15&-16}else i=0;g=c[d+128>>2]|0;h=c[d+136>>2]|0;if((g|0)<=0)if(!h)f=d+140|0;else j=10;else{f=0;do{c[i+(f<<2)>>2]=c[h+(f<<2)>>2];f=f+1|0}while((f|0)!=(g|0));j=10}if((j|0)==10){if(a[d+140>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0)}c[d+136>>2]=0;f=d+140|0}a[f>>0]=1;c[d+136>>2]=i;c[d+132>>2]=e;return}}function Sh(a,b,d){a=a|0;b=b|0;d=d|0;si(a,b,d)|0;c[b+52>>2]=c[a+300>>2];c[b+56>>2]=c[a+304>>2];c[b+60>>2]=c[a+308>>2];c[b+64>>2]=c[a+312>>2];c[b+68>>2]=c[a+316>>2];c[b+72>>2]=c[a+320>>2];c[b+76>>2]=c[a+324>>2];c[b+80>>2]=c[a+328>>2];c[b+84>>2]=c[a+332>>2];c[b+88>>2]=c[a+336>>2];c[b+92>>2]=c[a+340>>2];c[b+96>>2]=c[a+344>>2];c[b+100>>2]=c[a+348>>2];c[b+104>>2]=c[a+352>>2];c[b+108>>2]=c[a+356>>2];c[b+112>>2]=c[a+360>>2];c[b+116>>2]=c[a+364>>2];c[b+120>>2]=c[a+368>>2];c[b+124>>2]=c[a+372>>2];c[b+128>>2]=c[a+376>>2];c[b+132>>2]=c[a+380>>2];c[b+136>>2]=c[a+384>>2];c[b+140>>2]=c[a+388>>2];c[b+144>>2]=c[a+392>>2];c[b+148>>2]=c[a+396>>2];c[b+152>>2]=c[a+400>>2];c[b+156>>2]=c[a+404>>2];c[b+160>>2]=c[a+408>>2];c[b+164>>2]=c[a+412>>2];c[b+168>>2]=c[a+416>>2];c[b+172>>2]=c[a+420>>2];c[b+176>>2]=c[a+424>>2];c[b+180>>2]=c[a+444>>2];c[b+184>>2]=c[a+448>>2];c[b+188>>2]=c[a+452>>2];c[b+192>>2]=c[a+428>>2];c[b+196>>2]=c[a+432>>2];c[b+200>>2]=c[a+436>>2];c[b+204>>2]=c[a+440>>2];return 12727}function Th(a,b,d){a=a|0;b=b|0;d=+d;var e=0,f=0.0,h=0.0,j=0.0,k=0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0;k=i;i=i+32|0;n=+g[a+56>>2];r=+g[a+72>>2]-n;m=+g[a+60>>2];p=+g[a+76>>2]-m;l=+g[a+64>>2];s=+g[a+80>>2]-l;o=+g[a+88>>2]-n;q=+g[a+92>>2]-m;h=+g[a+96>>2]-l;j=1.0/+O(+((r*q-p*o)*(r*q-p*o)+((p*h-s*q)*(p*h-s*q)+(s*o-r*h)*(s*o-r*h))));f=j*(p*h-s*q);h=j*(s*o-r*h);j=(r*q-p*o)*j;l=j*+g[b+8>>2]+(+g[b>>2]*f+ +g[b+4>>2]*h)-(f*n+h*m+j*l);if(!(l>=-d)|!(l<=d)){a=0;i=k;return a|0}e=0;while(1){mc[c[(c[a>>2]|0)+104>>2]&127](a,e,k+16|0,k);n=+g[k+16>>2];s=+g[k>>2]-n;p=+g[k+16+4>>2];o=+g[k+4>>2]-p;m=+g[k+16+8>>2];r=+g[k+8>>2]-m;q=1.0/+O(+((h*s-f*o)*(h*s-f*o)+((j*o-h*r)*(j*o-h*r)+(f*r-j*s)*(f*r-j*s))));e=e+1|0;if((h*s-f*o)*q*+g[b+8>>2]+(+g[b>>2]*q*(j*o-h*r)+ +g[b+4>>2]*q*(f*r-j*s))-(m*(h*s-f*o)*q+(n*q*(j*o-h*r)+p*q*(f*r-j*s)))<-d){e=0;b=5;break}if((e|0)>=3){e=1;b=5;break}}if((b|0)==5){i=k;return e|0}return 0}function Uh(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;var h=0,i=0,j=0;c[6435]=(c[6435]|0)+1;h=yc(55)|0;if(!h)j=0;else{c[(h+4+15&-16)+-4>>2]=h;j=h+4+15&-16}c[j>>2]=d;c[j+4>>2]=e;c[j+8>>2]=f;c[j+12>>2]=-1;c[j+16>>2]=-1;c[j+20>>2]=-1;c[j+28>>2]=-1;g[j+32>>2]=0.0;f=j;d=c[b+4>>2]|0;c[j+24>>2]=d;if((d|0)!=(c[b+8>>2]|0)){i=d;e=b+12|0;e=c[e>>2]|0;e=e+(i<<2)|0;c[e>>2]=f;i=i+1|0;c[b+4>>2]=i;return j|0}i=d|0?d<<1:1;if((d|0)>=(i|0)){i=d;e=b+12|0;e=c[e>>2]|0;e=e+(i<<2)|0;c[e>>2]=f;i=i+1|0;c[b+4>>2]=i;return j|0}if(!i)h=0;else{c[6435]=(c[6435]|0)+1;h=yc((i<<2|3)+16|0)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}d=c[b+4>>2]|0}if((d|0)>0){e=0;do{c[h+(e<<2)>>2]=c[(c[b+12>>2]|0)+(e<<2)>>2];e=e+1|0}while((e|0)!=(d|0))}e=c[b+12>>2]|0;if(e){if(a[b+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0);d=c[b+4>>2]|0}c[b+12>>2]=0}a[b+16>>0]=1;c[b+12>>2]=h;c[b+8>>2]=i;i=d;e=b+12|0;e=c[e>>2]|0;e=e+(i<<2)|0;c[e>>2]=f;i=i+1|0;c[b+4>>2]=i;return j|0}function Vh(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0.0,h=0.0,i=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0;o=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);u=+g[a+72>>2];t=+g[a+56>>2];r=+g[a+76>>2];q=+g[a+60>>2];n=+g[a+80>>2];m=+g[a+64>>2];E=+g[b>>2];y=+N(+E);D=+g[b+4>>2];x=+N(+D);k=+g[b+8>>2];l=+N(+k);C=+g[b+16>>2];w=+N(+C);B=+g[b+20>>2];v=+N(+B);i=+g[b+24>>2];j=+N(+i);A=+g[b+32>>2];s=+N(+A);z=+g[b+36>>2];p=+N(+z);f=+g[b+40>>2];h=+N(+f);k=(u+t)*.5*E+(r+q)*.5*D+(n+m)*.5*k+ +g[b+48>>2];i=(u+t)*.5*C+(r+q)*.5*B+(n+m)*.5*i+ +g[b+52>>2];f=(u+t)*.5*A+(r+q)*.5*z+(n+m)*.5*f+ +g[b+56>>2];l=(o+(u-t)*.5)*y+(o+(r-q)*.5)*x+(o+(n-m)*.5)*l;j=(o+(u-t)*.5)*w+(o+(r-q)*.5)*v+(o+(n-m)*.5)*j;h=(o+(u-t)*.5)*s+(o+(r-q)*.5)*p+(o+(n-m)*.5)*h;g[d>>2]=k-l;g[d+4>>2]=i-j;g[d+8>>2]=f-h;g[d+12>>2]=0.0;g[e>>2]=l+k;g[e+4>>2]=j+i;g[e+8>>2]=h+f;g[e+12>>2]=0.0;return}function Wh(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0,h=0.0,j=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0,z=0;f=i;i=i+16|0;y=c[a+52>>2]|0;z=c[a+28+(((y+2|0)%3|0)<<2)>>2]|0;c[f>>2]=z;c[f+4>>2]=z;c[f+8>>2]=z;g[f+12>>2]=0.0;g[f+(y<<2)>>2]=(c[k>>2]=z,+g[k>>2])+ +g[a+28+(y<<2)>>2];l=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);h=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);o=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);l=l+ +g[f>>2];g[f>>2]=l;h=h+ +g[f+4>>2];g[f+4>>2]=h;o=o+ +g[f+8>>2];v=+N(+(+g[b>>2]));u=+N(+(+g[b+4>>2]));w=+N(+(+g[b+8>>2]));r=+N(+(+g[b+16>>2]));q=+N(+(+g[b+20>>2]));s=+N(+(+g[b+24>>2]));m=+N(+(+g[b+32>>2]));j=+N(+(+g[b+36>>2]));n=+N(+(+g[b+40>>2]));x=+g[b+48>>2];t=+g[b+52>>2];p=+g[b+56>>2];g[d>>2]=x-(o*w+(v*l+u*h));g[d+4>>2]=t-(o*s+(r*l+q*h));g[d+8>>2]=p-(o*n+(m*l+j*h));g[d+12>>2]=0.0;g[e>>2]=x+(o*w+(v*l+u*h));g[e+4>>2]=t+(o*s+(r*l+q*h));g[e+8>>2]=p+(o*n+(m*l+j*h));g[e+12>>2]=0.0;i=f;return}function Xh(b,d,e){b=b|0;d=d|0;e=e|0;var f=0,h=0.0,i=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0;if(a[d+32>>0]&1){f=c[b+4>>2]|0;if(f|0)gj(f,d,e);f=c[b>>2]|0;if(f|0){n=+g[d>>2];l=+g[f+128>>2];m=+g[d+4>>2];k=+g[d+8>>2];h=+g[e+4>>2];p=+g[e+8>>2];o=+g[e>>2];j=+g[f+180>>2]*(k*h-m*p)+ +g[f+184>>2]*(n*p-k*o)+(m*o-n*h)*+g[f+188>>2];i=(k*h-m*p)*+g[f+196>>2]+(n*p-k*o)*+g[f+200>>2]+(m*o-n*h)*+g[f+204>>2];h=(k*h-m*p)*+g[f+212>>2]+(n*p-k*o)*+g[f+216>>2]+(m*o-n*h)*+g[f+220>>2];g[f+244>>2]=n*l+ +g[f+244>>2];g[f+248>>2]=l*m+ +g[f+248>>2];g[f+252>>2]=l*k+ +g[f+252>>2];g[f+316>>2]=n*l+ +g[f+316>>2];g[f+320>>2]=l*m+ +g[f+320>>2];g[f+324>>2]=l*k+ +g[f+324>>2];g[f+260>>2]=j+ +g[f+260>>2];g[f+264>>2]=i+ +g[f+264>>2];g[f+268>>2]=h+ +g[f+268>>2];g[f+332>>2]=j+ +g[f+332>>2];g[f+336>>2]=i+ +g[f+336>>2];g[f+340>>2]=h+ +g[f+340>>2];c[f+308>>2]=(c[f+308>>2]|0)+1}}if(!(a[d+32>>0]&2))return;jj(b,d+16|0,e);return}function Yh(a){a=a|0;var b=0,d=0,e=0,f=0;d=i;i=i+16|0;li(15122);Ab[c[(c[a>>2]|0)+8>>2]&255](a);Ab[c[(c[a>>2]|0)+12>>2]&255](a);b=c[a+24>>2]|0;li(15156);if(b|0){f=c[(c[b>>2]|0)+32>>2]|0;e=c[a+68>>2]|0;e=Eb[c[(c[e>>2]|0)+36>>2]&127](e)|0;mc[f&127](b,e,a+28|0,c[a+24>>2]|0)}a=c[2357]|0;f=(c[a+16>>2]|0)+-1|0;c[a+16>>2]=f;do if(!f){if(c[a+4>>2]|0){tb(d|0,0)|0;b=c[6434]|0;g[a+8>>2]=+g[a+8>>2]+ +(((c[d+4>>2]|0)-(c[b+4>>2]|0)+(((c[d>>2]|0)-(c[b>>2]|0)|0)*1e6|0)-(c[a+12>>2]|0)|0)>>>0)/1.0e3;b=c[2357]|0;if(c[a+16>>2]|0)break}else b=a;b=c[b+20>>2]|0;c[2357]=b}else b=a;while(0);a=b+16|0;f=(c[a>>2]|0)+-1|0;c[a>>2]=f;if(f|0){i=d;return}do if(c[b+4>>2]|0){tb(d|0,0)|0;e=c[6434]|0;f=b+8|0;g[f>>2]=+g[f>>2]+ +(((c[d+4>>2]|0)-(c[e+4>>2]|0)+(((c[d>>2]|0)-(c[e>>2]|0)|0)*1e6|0)-(c[b+12>>2]|0)|0)>>>0)/1.0e3;if(!(c[a>>2]|0)){b=c[2357]|0;break}else{i=d;return}}while(0);c[2357]=c[b+20>>2];i=d;return}function Zh(b,d){b=b|0;d=d|0;var e=0;c[b>>2]=8840;a[b+40>>0]=1;c[b+36>>2]=0;c[b+28>>2]=0;c[b+32>>2]=0;a[b+60>>0]=1;c[b+56>>2]=0;c[b+48>>2]=0;c[b+52>>2]=0;c[b+4>>2]=0;c[b+8>>2]=0;c[b+12>>2]=-1;c[b+16>>2]=0;c[b+20>>2]=0;a[b+100>>0]=1;c[b+96>>2]=0;c[b+88>>2]=0;c[b+92>>2]=0;a[b+120>>0]=1;c[b+116>>2]=0;c[b+108>>2]=0;c[b+112>>2]=0;c[b+64>>2]=0;c[b+68>>2]=0;c[b+72>>2]=-1;c[b+76>>2]=0;c[b+80>>2]=0;a[b+193>>0]=0;a[b+194>>0]=1;a[b+192>>0]=(d|0)!=0^1;g[b+140>>2]=0.0;c[b+144>>2]=0;c[b+164>>2]=0;c[b+148>>2]=1;c[b+152>>2]=0;c[b+156>>2]=10;c[b+160>>2]=1;c[b+168>>2]=0;c[b+172>>2]=0;g[b+176>>2]=0.0;if(d|0){e=d;d=b+136|0;c[d>>2]=e;d=b+188|0;c[d>>2]=0;d=b+180|0;c[d>>2]=0;d=b+184|0;c[d>>2]=0;b=b+124|0;c[b>>2]=0;c[b+4>>2]=0;c[b+8>>2]=0;return}c[6435]=(c[6435]|0)+1;d=yc(95)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}Ri(d);e=b+136|0;c[e>>2]=d;e=b+188|0;c[e>>2]=0;e=b+180|0;c[e>>2]=0;e=b+184|0;c[e>>2]=0;e=b+124|0;c[e>>2]=0;c[e+4>>2]=0;c[e+8>>2]=0;return}function _h(a,b,d){a=a|0;b=b|0;d=d|0;var e=0.0,f=0.0,h=0.0,i=0,j=0.0,k=0.0;i=c[b>>2]|0;if((i|0)==(c[a+80>>2]|0)){k=1.0;return +k}if(c[i+204>>2]&4|0){k=1.0;return +k}h=+g[b+8>>2];f=+g[b+12>>2];e=+g[b+16>>2];if(d){j=h;k=f}else{j=+g[i+4>>2]*h+ +g[i+8>>2]*f+ +g[i+12>>2]*e;k=h*+g[i+20>>2]+f*+g[i+24>>2]+e*+g[i+28>>2];e=h*+g[i+36>>2]+f*+g[i+40>>2]+e*+g[i+44>>2]}if(j*+g[a+84>>2]+k*+g[a+88>>2]+e*+g[a+92>>2]<+g[a+100>>2]){k=1.0;return +k}c[a+4>>2]=c[b+40>>2];c[a+76>>2]=i;if(d){c[a+44>>2]=c[b+8>>2];c[a+44+4>>2]=c[b+8+4>>2];c[a+44+8>>2]=c[b+8+8>>2];c[a+44+12>>2]=c[b+8+12>>2]}else{e=+g[b+8>>2];f=+g[b+12>>2];h=+g[b+16>>2];j=e*+g[i+20>>2]+f*+g[i+24>>2]+h*+g[i+28>>2];k=e*+g[i+36>>2]+f*+g[i+40>>2]+h*+g[i+44>>2];g[a+44>>2]=+g[i+4>>2]*e+ +g[i+8>>2]*f+ +g[i+12>>2]*h;g[a+48>>2]=j;g[a+52>>2]=k;g[a+56>>2]=0.0}c[a+60>>2]=c[b+24>>2];c[a+60+4>>2]=c[b+24+4>>2];c[a+60+8>>2]=c[b+24+8>>2];c[a+60+12>>2]=c[b+24+12>>2];k=+g[b+40>>2];return +k}function $h(b){b=b|0;var d=0,e=0,f=0,g=0,h=0;d=c[b+16>>2]|0;if(d|0){if(a[b+20>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+16>>2]=0}a[b+20>>0]=1;c[b+16>>2]=0;c[b+8>>2]=0;c[b+12>>2]=0;d=c[b+40>>2]|0;if(d|0){if(a[b+44>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+40>>2]=0}a[b+44>>0]=1;c[b+40>>2]=0;c[b+32>>2]=0;c[b+36>>2]=0;d=c[b+60>>2]|0;if(d|0){if(a[b+64>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+60>>2]=0}a[b+64>>0]=1;c[b+60>>2]=0;c[b+52>>2]=0;c[b+56>>2]=0;if((c[b+12>>2]|0)>=2){Kf(b);return}c[6435]=(c[6435]|0)+1;d=yc(43)|0;if(!d)f=0;else{c[(d+4+15&-16)+-4>>2]=d;f=d+4+15&-16}d=c[b+8>>2]|0;if((d|0)>0){e=0;do{g=f+(e*12|0)|0;h=(c[b+16>>2]|0)+(e*12|0)|0;c[g>>2]=c[h>>2];c[g+4>>2]=c[h+4>>2];c[g+8>>2]=c[h+8>>2];e=e+1|0}while((e|0)!=(d|0))}d=c[b+16>>2]|0;if(d|0){if(a[b+20>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+16>>2]=0}a[b+20>>0]=1;c[b+16>>2]=f;c[b+12>>2]=2;Kf(b);return}function ai(a,b,e){a=a|0;b=b|0;e=e|0;si(a,b,e)|0;c[b+52>>2]=c[a+52>>2];c[b+56>>2]=c[a+56>>2];c[b+60>>2]=c[a+60>>2];c[b+64>>2]=c[a+64>>2];c[b+68>>2]=c[a+68>>2];c[b+72>>2]=c[a+72>>2];c[b+76>>2]=c[a+76>>2];c[b+80>>2]=c[a+80>>2];c[b+84>>2]=c[a+84>>2];c[b+88>>2]=c[a+88>>2];c[b+92>>2]=c[a+92>>2];c[b+96>>2]=c[a+96>>2];c[b+100>>2]=c[a+100>>2];c[b+104>>2]=c[a+104>>2];c[b+108>>2]=c[a+108>>2];c[b+112>>2]=c[a+112>>2];c[b+116>>2]=c[a+116>>2];c[b+120>>2]=c[a+120>>2];c[b+124>>2]=c[a+124>>2];c[b+128>>2]=c[a+128>>2];c[b+132>>2]=c[a+132>>2];c[b+136>>2]=c[a+136>>2];c[b+140>>2]=c[a+140>>2];c[b+144>>2]=c[a+144>>2];c[b+148>>2]=c[a+148>>2];c[b+152>>2]=c[a+152>>2];c[b+156>>2]=c[a+156>>2];c[b+160>>2]=c[a+160>>2];c[b+164>>2]=c[a+164>>2];c[b+168>>2]=c[a+168>>2];c[b+172>>2]=c[a+172>>2];c[b+176>>2]=c[a+176>>2];c[b+180>>2]=c[a+188>>2];c[b+184>>2]=c[a+184>>2];c[b+188>>2]=c[a+196>>2];c[b+192>>2]=c[a+192>>2];c[b+196>>2]=d[a+180>>0];c[b+200>>2]=d[a+49>>0];return 12680}function bi(a,b){a=a|0;b=b|0;var d=0,e=0,f=0.0;e=i;i=i+32|0;d=c[b+388>>2]|0;switch(c[a+388>>2]&48&d|0){case 32:{if((a|0)==(b|0)&(d&64|0)==0){i=e;return}g[e+4>>2]=1.0;c[e+8>>2]=0;c[e+8+4>>2]=0;c[e+8+8>>2]=0;c[e+8+12>>2]=0;c[e>>2]=3540;c[e+8>>2]=c[a+456>>2];d=c[a+192>>2]|0;f=+Sb[c[(c[d>>2]|0)+48>>2]&15](d);d=c[b+192>>2]|0;g[e+12>>2]=f+ +Sb[c[(c[d>>2]|0)+48>>2]&15](d);c[e+16>>2]=c[(+g[a+316>>2]<+g[b+316>>2]?a+316|0:b+316|0)>>2];c[e+24>>2]=a;c[e+28>>2]=b;We(c[a+1048>>2]|0,c[b+1048>>2]|0,e);i=e;return}case 16:{if((a|0)==(b|0)){i=e;return}c[e>>2]=3576;d=c[a+192>>2]|0;f=+Sb[c[(c[d>>2]|0)+48>>2]&15](d);d=c[b+192>>2]|0;g[e+12>>2]=f+ +Sb[c[(c[d>>2]|0)+48>>2]&15](d);c[e+4>>2]=a;c[e+8>>2]=b;We(c[a+928>>2]|0,c[b+988>>2]|0,e);c[e+4>>2]=b;c[e+8>>2]=a;We(c[b+928>>2]|0,c[a+988>>2]|0,e);i=e;return}default:{i=e;return}}}function ci(a,d,e,f){a=a|0;d=d|0;e=e|0;f=f|0;var h=0,j=0.0,k=0.0,l=0.0,m=0.0;h=i;i=i+96|0;g[h+4>>2]=1.0;c[h+8>>2]=0;b[h+12>>1]=1;b[h+14>>1]=-1;c[h+16>>2]=0;c[h>>2]=2948;c[h+20>>2]=c[d>>2];c[h+20+4>>2]=c[d+4>>2];c[h+20+8>>2]=c[d+8>>2];c[h+20+12>>2]=c[d+12>>2];c[h+36>>2]=c[e>>2];c[h+36+4>>2]=c[e+4>>2];c[h+36+8>>2]=c[e+8>>2];c[h+36+12>>2]=c[e+12>>2];a=c[a+4>>2]|0;mc[c[(c[a>>2]|0)+32>>2]&127](a,d,e,h);d=c[h+8>>2]|0;if(!d){f=0;i=h;return f|0}if(!(c[d+236>>2]&2)){f=0;i=h;return f|0}if(c[d+204>>2]&4|0){f=0;i=h;return f|0}c[f>>2]=c[h+68>>2];c[f+4>>2]=c[h+68+4>>2];c[f+8>>2]=c[h+68+8>>2];c[f+12>>2]=c[h+68+12>>2];c[f+16>>2]=c[h+52>>2];c[f+16+4>>2]=c[h+52+4>>2];c[f+16+8>>2]=c[h+52+8>>2];c[f+16+12>>2]=c[h+52+12>>2];m=+g[f+16>>2];l=+g[f+20>>2];k=+g[f+24>>2];j=1.0/+O(+(m*m+l*l+k*k));g[f+16>>2]=m*j;g[f+20>>2]=l*j;g[f+24>>2]=k*j;c[f+32>>2]=c[h+4>>2];f=d;i=h;return f|0}function di(b,d){b=b|0;d=d|0;var e=0,f=0,g=0,h=0,i=0;e=b+288|0;f=d;g=e+104|0;do{c[e>>2]=c[f>>2];e=e+4|0;f=f+4|0}while((e|0)<(g|0));i=c[d+108>>2]|0;e=c[b+396>>2]|0;a:do if((e|0)>(i|0))e=b+404|0;else{if((e|0)<(i|0)?(c[b+400>>2]|0)<(i|0):0){if((i|0)!=0?(c[6435]=(c[6435]|0)+1,h=yc((i<<2|3)+16|0)|0,(h|0)!=0):0){c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}else h=0;f=c[b+396>>2]|0;g=0;while(1){if((g|0)>=(f|0))break;c[h+(g<<2)>>2]=c[(c[b+404>>2]|0)+(g<<2)>>2];g=g+1|0}f=c[b+404>>2]|0;if(f|0){if(!((a[b+408>>0]&1)==0|(f|0)==0)){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}c[b+404>>2]=0}a[b+408>>0]=1;c[b+404>>2]=h;c[b+400>>2]=i}while(1){if((e|0)>=(i|0)){e=b+404|0;break a}c[(c[b+404>>2]|0)+(e<<2)>>2]=0;e=e+1|0}}while(0);c[b+396>>2]=i;e=c[e>>2]|0;f=0;while(1){if((f|0)>=(i|0))break;c[e+(f<<2)>>2]=c[(c[d+116>>2]|0)+(f<<2)>>2];f=f+1|0}Yi(b+412|0,d+124|0);Yi(b+432|0,d+144|0);return}function ei(a,b){a=a|0;b=b|0;var d=0,e=0,f=0,g=0;Ab[c[(c[b>>2]|0)+32>>2]&255](b);d=Ob[c[(c[b>>2]|0)+16>>2]&63](b,104,1)|0;e=c[d+8>>2]|0;f=e;g=f+104|0;do{c[f>>2]=0;f=f+4|0}while((f|0)<(g|0));c[e+88>>2]=c[a+248>>2];c[e+92>>2]=c[a+252>>2];c[e+96>>2]=c[a+256>>2];c[e+100>>2]=c[a+260>>2];c[e>>2]=c[a+92>>2];c[e+4>>2]=c[a+96>>2];c[e+8>>2]=c[a+100>>2];c[e+12>>2]=c[a+104>>2];c[e+16>>2]=c[a+108>>2];c[e+20>>2]=c[a+116>>2];c[e+24>>2]=c[a+120>>2];c[e+28>>2]=c[a+124>>2];c[e+32>>2]=c[a+128>>2];c[e+36>>2]=c[a+132>>2];c[e+40>>2]=c[a+140>>2];c[e+44>>2]=c[a+144>>2];c[e+48>>2]=c[a+148>>2];c[e+52>>2]=c[a+152>>2];c[e+56>>2]=c[a+168>>2];c[e+60>>2]=c[a+172>>2];c[e+64>>2]=c[a+112>>2];c[e+68>>2]=c[a+156>>2];c[e+72>>2]=c[a+160>>2];c[e+76>>2]=c[a+164>>2];c[e+80>>2]=c[a+136>>2];yb[c[(c[b>>2]|0)+20>>2]&31](b,d,11938,1145853764,e);mj(a,b);td(a,b);Ab[c[(c[b>>2]|0)+36>>2]&255](b);return}function fi(b,d){b=b|0;d=d|0;if((c[b+16>>2]|0)!=(0-(c[b+76>>2]|0)|0))return;d=c[b+4>>2]|0;if(d|0)xn(b+4|0,d);d=c[b+8>>2]|0;if(d|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+8>>2]=0;c[b+12>>2]=-1;d=c[b+36>>2]|0;if(d|0){if(a[b+40>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+36>>2]=0}a[b+40>>0]=1;c[b+36>>2]=0;c[b+28>>2]=0;c[b+32>>2]=0;c[b+20>>2]=0;d=c[b+64>>2]|0;if(d|0)xn(b+64|0,d);d=c[b+68>>2]|0;if(d|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+68>>2]=0;c[b+72>>2]=-1;d=c[b+96>>2]|0;if(d|0){if(a[b+100>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+96>>2]=0}a[b+100>>0]=1;c[b+96>>2]=0;c[b+88>>2]=0;c[b+92>>2]=0;c[b+80>>2]=0;a[b+193>>0]=0;a[b+194>>0]=1;c[b+144>>2]=0;c[b+164>>2]=0;c[b+148>>2]=1;c[b+152>>2]=0;c[b+156>>2]=10;c[b+160>>2]=1;c[b+124>>2]=0;c[b+124+4>>2]=0;c[b+124+8>>2]=0;c[b+168>>2]=0;c[b+168+4>>2]=0;c[b+168+8>>2]=0;c[b+168+12>>2]=0;c[b+168+16>>2]=0;c[b+168+20>>2]=0;return}function gi(a,b,d){a=a|0;b=b|0;d=d|0;var e=0.0,f=0.0,h=0.0,j=0,k=0.0;j=i;i=i+32|0;c[j+16>>2]=c[d>>2];c[j+16+4>>2]=c[d+4>>2];c[j+16+8>>2]=c[d+8>>2];c[j+16+12>>2]=c[d+12>>2];e=+g[j+16>>2];h=+g[j+16+4>>2];f=+g[j+16+8>>2];if(e*e+h*h+f*f<1.4210854715202004e-14){c[j+16>>2]=-1082130432;c[j+16+4>>2]=-1082130432;c[j+16+8>>2]=-1082130432;g[j+16+12>>2]=0.0;e=-1.0;h=-1.0;f=-1.0}k=1.0/+O(+(e*e+h*h+f*f));g[j+16>>2]=e*k;g[j+16+4>>2]=h*k;g[j+16+8>>2]=f*k;Gd(j,b,j+16|0);switch(c[b+4>>2]|0){case 8:{e=+g[b+28>>2]*+g[b+12>>2];break}case 0:{e=+g[b+44>>2];break}case 1:{e=+g[b+44>>2];break}case 13:{e=+g[b+44>>2];break}case 11:{e=+g[b+44>>2];break}case 10:{e=+g[b+44>>2];break}case 4:case 5:{e=+g[b+44>>2];break}default:e=+Sb[c[(c[b>>2]|0)+48>>2]&15](b)}h=e*+g[j+16+4>>2]+ +g[j+4>>2];k=e*+g[j+16+8>>2]+ +g[j+8>>2];g[a>>2]=e*+g[j+16>>2]+ +g[j>>2];g[a+4>>2]=h;g[a+8>>2]=k;g[a+12>>2]=0.0;i=j;return}function hi(a,b){a=a|0;b=b|0;var d=0.0,e=0,f=0.0,h=0.0,i=0.0,j=0.0;c[a+4>>2]=35;c[a+8>>2]=0;c[a+12>>2]=1065353216;c[a+16>>2]=1065353216;c[a+20>>2]=1065353216;g[a+24>>2]=0.0;g[a+44>>2]=.03999999910593033;c[a>>2]=8140;c[a+52>>2]=1;h=+g[b>>2];f=+g[b+4>>2];d=+g[b+8>>2];d=+g[b+((h>2]*.10000000149011612;if(d<.03999999910593033){j=+xz(a);i=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);h=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);j=j+ +g[a+28>>2];i=i+ +g[a+32>>2];h=h+ +g[a+36>>2];g[a+44>>2]=d;d=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);f=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);h=h-+Sb[c[(c[a>>2]|0)+48>>2]&15](a);g[a+28>>2]=j-d;g[a+32>>2]=i-f;g[a+36>>2]=h;g[a+40>>2]=0.0;e=c[a>>2]|0}else e=8140;h=+Sb[c[e+48>>2]&15](a);i=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);j=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);i=+g[b+4>>2]*+g[a+16>>2]-i;j=+g[b+8>>2]*+g[a+20>>2]-j;g[a+28>>2]=+g[b>>2]*+g[a+12>>2]-h;g[a+32>>2]=i;g[a+36>>2]=j;g[a+40>>2]=0.0;c[a+4>>2]=13;return}function ii(a,b,d){a=a|0;b=b|0;d=d|0;var e=0.0,f=0.0,h=0.0,j=0,l=0,m=0,n=0,o=0.0;m=i;i=i+80|0;c[a>>2]=0;c[a+4>>2]=0;c[a+8>>2]=0;c[a+12>>2]=0;e=+g[d>>2];f=+g[d+4>>2];h=+g[d+8>>2];if(e*e+f*f+h*h<9.999999747378752e-05){l=1065353216;j=0;e=0.0;d=0}else{o=1.0/+O(+(e*e+f*f+h*h));l=(g[k>>2]=e*o,c[k>>2]|0);n=(g[k>>2]=f*o,c[k>>2]|0);j=(g[k>>2]=h*o,c[k>>2]|0);e=+g[d+12>>2];d=n}c[m+32>>2]=7824;n=m+32+4|0;c[n>>2]=0;c[n+4>>2]=0;c[n+8>>2]=0;c[n+12>>2]=0;g[m+32+20>>2]=-999999984306749440.0;c[m+32+24>>2]=l;c[m+32+28>>2]=d;c[m+32+32>>2]=j;g[m+32+36>>2]=e;c[m+16>>2]=1566444395;c[m+16+4>>2]=1566444395;c[m+16+8>>2]=1566444395;g[m+16+12>>2]=0.0;b=c[b+92>>2]|0;l=c[(c[b>>2]|0)+8>>2]|0;g[m>>2]=-999999984306749440.0;g[m+4>>2]=-999999984306749440.0;g[m+8>>2]=-999999984306749440.0;g[m+12>>2]=0.0;mc[l&127](b,m+32|0,m,m+16|0);c[a>>2]=c[n>>2];c[a+4>>2]=c[n+4>>2];c[a+8>>2]=c[n+8>>2];c[a+12>>2]=c[n+12>>2];i=m;return}function ji(a,b,d){a=a|0;b=b|0;d=d|0;var e=0.0,f=0,h=0.0,i=0,j=0.0,k=0.0,l=0,m=0.0;e=+g[b+60>>2]*.5;l=c[b+68>>2]|0;h=+g[d>>2];j=+g[d+4>>2];k=+g[d+8>>2];k=+O(+(h*h+j*j+k*k));f=c[b+64>>2]|0;do if(!(+g[d+(l<<2)>>2]>k*+g[b+52>>2])){h=+g[d+(f<<2)>>2];i=c[b+72>>2]|0;j=+g[d+(i<<2)>>2];k=+O(+(h*h+j*j));if(k>1.1920928955078125e-07){k=+g[b+56>>2]/k;g[a+(f<<2)>>2]=h*k;g[a+(l<<2)>>2]=-e;g[a+(i<<2)>>2]=j*k;break}else{g[a+(f<<2)>>2]=0.0;g[a+(l<<2)>>2]=-e;g[a+(i<<2)>>2]=0.0;break}}else{g[a+(f<<2)>>2]=0.0;g[a+(l<<2)>>2]=e;g[a+(c[b+72>>2]<<2)>>2]=0.0}while(0);if(!(+Sb[c[(c[b>>2]|0)+48>>2]&15](b)!=0.0))return;h=+g[d>>2];j=+g[d+4>>2];k=+g[d+8>>2];m=h*h+j*j+k*k<1.4210854715202004e-14?-1.0:h;e=h*h+j*j+k*k<1.4210854715202004e-14?-1.0:j;k=h*h+j*j+k*k<1.4210854715202004e-14?-1.0:k;j=1.0/+O(+(k*k+(m*m+e*e)));h=+Sb[c[(c[b>>2]|0)+48>>2]&15](b);g[a>>2]=+g[a>>2]+h*j*m;g[a+4>>2]=h*j*e+ +g[a+4>>2];g[a+8>>2]=h*j*k+ +g[a+8>>2];return}function ki(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0,g=0;e=Zb[c[(c[d>>2]|0)+40>>2]&31](d,a)|0;g=Zb[c[(c[d>>2]|0)+28>>2]&31](d,e)|0;c[b>>2]=g;if(g|0)Cb[c[(c[d>>2]|0)+48>>2]&127](d,e);c[b+4>>2]=c[a+4>>2];c[b+28>>2]=c[a+28>>2];c[b+32>>2]=c[a+32>>2];c[b+36>>2]=c[a+36>>2];c[b+40>>2]=c[a+40>>2];c[b+12>>2]=c[a+12>>2];c[b+16>>2]=c[a+16>>2];c[b+20>>2]=c[a+20>>2];c[b+24>>2]=c[a+24>>2];c[b+44>>2]=c[a+44>>2];f=c[a+96>>2]|0;c[b+60>>2]=f;if(!f){c[b+52>>2]=0;c[b+56>>2]=0;return 17310}c[b+52>>2]=Zb[c[(c[d>>2]|0)+28>>2]&31](d,c[a+104>>2]|0)|0;c[b+56>>2]=0;g=Ob[c[(c[d>>2]|0)+16>>2]&63](d,16,f)|0;if((f|0)>0){e=c[a+104>>2]|0;b=0;a=c[g+8>>2]|0;while(1){c[a>>2]=c[e+(b<<4)>>2];c[a+4>>2]=c[e+(b<<4)+4>>2];c[a+8>>2]=c[e+(b<<4)+8>>2];c[a+12>>2]=c[e+(b<<4)+12>>2];b=b+1|0;if((b|0)==(f|0))break;else a=a+16|0}}else e=c[a+104>>2]|0;yb[c[(c[d>>2]|0)+20>>2]&31](d,g,19308,1497453121,e);return 17310}function li(a){a=a|0;var b=0,d=0,e=0,f=0;f=i;i=i+16|0;d=c[2357]|0;if((c[d>>2]|0)==(a|0))b=d;else{b=c[d+24>>2]|0;a:do if(!b)e=5;else while(1){if((c[b>>2]|0)==(a|0))break a;b=c[b+28>>2]|0;if(!b){e=5;break}}while(0);do if((e|0)==5){while(1){b=yc(36)|0;if(b|0){e=9;break}b=c[6564]|0;c[6564]=b+0;if(!b){e=8;break}jc[b&3]();e=5}if((e|0)==8){f=Ya(4)|0;c[f>>2]=9640;pb(f|0,2800,251)}else if((e|0)==9){c[b>>2]=a;c[b+4>>2]=0;c[b+4+4>>2]=0;c[b+4+8>>2]=0;c[b+4+12>>2]=0;c[b+20>>2]=d;c[b+24>>2]=0;c[b+28>>2]=0;c[b+32>>2]=0;Vq(b);c[b+28>>2]=c[d+24>>2];c[d+24>>2]=b;break}}while(0);c[2357]=b}a=b+4|0;c[a>>2]=(c[a>>2]|0)+1;a=b+16|0;e=c[a>>2]|0;c[a>>2]=e+1;if(e|0){i=f;return}tb(f|0,0)|0;e=c[6434]|0;c[b+12>>2]=(c[f+4>>2]|0)-(c[e+4>>2]|0)+(((c[f>>2]|0)-(c[e>>2]|0)|0)*1e6|0);i=f;return}function mi(a,b,d){a=a|0;b=b|0;d=d|0;c[a+300>>2]=c[b>>2];c[a+300+4>>2]=c[b+4>>2];c[a+300+8>>2]=c[b+8>>2];c[a+300+12>>2]=c[b+12>>2];c[a+316>>2]=c[b+16>>2];c[a+316+4>>2]=c[b+16+4>>2];c[a+316+8>>2]=c[b+16+8>>2];c[a+316+12>>2]=c[b+16+12>>2];c[a+332>>2]=c[b+32>>2];c[a+332+4>>2]=c[b+32+4>>2];c[a+332+8>>2]=c[b+32+8>>2];c[a+332+12>>2]=c[b+32+12>>2];c[a+348>>2]=c[b+48>>2];c[a+348+4>>2]=c[b+48+4>>2];c[a+348+8>>2]=c[b+48+8>>2];c[a+348+12>>2]=c[b+48+12>>2];c[a+364>>2]=c[d>>2];c[a+364+4>>2]=c[d+4>>2];c[a+364+8>>2]=c[d+8>>2];c[a+364+12>>2]=c[d+12>>2];c[a+380>>2]=c[d+16>>2];c[a+380+4>>2]=c[d+16+4>>2];c[a+380+8>>2]=c[d+16+8>>2];c[a+380+12>>2]=c[d+16+12>>2];c[a+396>>2]=c[d+32>>2];c[a+396+4>>2]=c[d+32+4>>2];c[a+396+8>>2]=c[d+32+8>>2];c[a+396+12>>2]=c[d+32+12>>2];c[a+412>>2]=c[d+48>>2];c[a+412+4>>2]=c[d+48+4>>2];c[a+412+8>>2]=c[d+48+8>>2];c[a+412+12>>2]=c[d+48+12>>2];Ab[c[(c[a>>2]|0)+8>>2]&255](a);return}function ni(a,b,d){a=a|0;b=b|0;d=d|0;var e=0.0,f=0.0,h=0.0,i=0.0,j=0.0,k=0.0,l=0.0,m=0,n=0.0;m=c[a+4>>2]|0;a=c[a+64>>2]|0;do if(!m)if(!a){e=0.0;n=0.0;j=0.0;l=0.0;h=0.0;k=0.0;i=0.0;f=0.0}else{e=+g[a>>2];n=+g[a+12>>2];j=+g[a+16>>2];l=+g[a+20>>2];h=+g[a+24>>2];k=+g[a+28>>2];i=+g[a+4>>2];f=+g[a+8>>2]}else{e=+g[m>>2];if(!a){n=+g[m+12>>2];j=+g[m+16>>2];l=+g[m+20>>2];h=+g[m+24>>2];k=+g[m+28>>2];i=+g[m+4>>2];f=+g[m+8>>2];break}k=+g[a>>2];e=e>2];j=+g[a+16>>2];j=k>j?k:j;k=+g[m+4>>2];i=+g[a+4>>2];i=k>2];l=+g[a+20>>2];l=k>l?k:l;k=+g[m+8>>2];f=+g[a+8>>2];f=k>2];h=+g[a+24>>2];if(k>h){n=0.0;h=k;k=0.0}else{n=0.0;k=0.0}}while(0);g[b>>2]=e;g[b+4>>2]=i;g[b+8>>2]=f;g[b+12>>2]=n;g[d>>2]=j;g[d+4>>2]=l;g[d+8>>2]=h;g[d+12>>2]=k;return}function oi(a,b){a=a|0;b=b|0;var c=0,d=0.0,e=0.0,f=0.0,h=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0;c=i;i=i+48|0;Wg(a+364|0,c+16|0);h=-+g[c+16>>2];e=-+g[c+16+4>>2];m=-+g[c+16+8>>2];l=+g[c+16+12>>2];f=+g[b>>2];n=+g[b+12>>2];k=+g[b+8>>2];j=+g[b+4>>2];Wg(a+300|0,c);p=+g[c>>2];q=+g[c+12>>2];d=+g[c+8>>2];o=+g[c+4>>2];g[c+32>>2]=p*(l*n-f*h-j*e-k*m)+(l*f+n*h+k*e-j*m)*q+(f*m+(n*e+l*j)-k*h)*d-(n*m+l*k+j*h-f*e)*o;g[c+32+4>>2]=p*(n*m+l*k+j*h-f*e)+(q*(f*m+(n*e+l*j)-k*h)+(l*n-f*h-j*e-k*m)*o)-(l*f+n*h+k*e-j*m)*d;g[c+32+8>>2]=q*(n*m+l*k+j*h-f*e)+(l*n-f*h-j*e-k*m)*d+(l*f+n*h+k*e-j*m)*o-p*(f*m+(n*e+l*j)-k*h);g[c+32+12>>2]=(l*n-f*h-j*e-k*m)*q-p*(l*f+n*h+k*e-j*m)-(f*m+(n*e+l*j)-k*h)*o-(n*m+l*k+j*h-f*e)*d;Yd(a,c+32|0);i=c;return}function pi(b){b=b|0;var d=0;d=c[b>>2]|0;if(d|0)xn(b,d);d=c[b+4>>2]|0;if(d|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+4>>2]=0;c[b+8>>2]=-1;d=c[b+32>>2]|0;if(d|0){if(a[b+36>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+32>>2]=0}a[b+36>>0]=1;c[b+32>>2]=0;c[b+24>>2]=0;c[b+28>>2]=0;c[b+16>>2]=0;d=c[b+52>>2]|0;if(!d){a[b+56>>0]=1;c[b+52>>2]=0;c[b+44>>2]=0;c[b+48>>2]=0;a[b+36>>0]=1;c[b+32>>2]=0;c[b+24>>2]=0;c[b+28>>2]=0;return}if(!(a[b+56>>0]|0)){a[b+56>>0]=1;c[b+52>>2]=0;c[b+44>>2]=0;c[b+48>>2]=0;a[b+36>>0]=1;c[b+32>>2]=0;c[b+24>>2]=0;c[b+28>>2]=0;return}c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0);d=c[b+32>>2]|0;a[b+56>>0]=1;c[b+52>>2]=0;c[b+44>>2]=0;c[b+48>>2]=0;if(!d){a[b+36>>0]=1;c[b+32>>2]=0;c[b+24>>2]=0;c[b+28>>2]=0;return}if(a[b+36>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+32>>2]=0;a[b+36>>0]=1;c[b+32>>2]=0;c[b+24>>2]=0;c[b+28>>2]=0;return}function qi(b,d,e){b=b|0;d=d|0;e=e|0;var f=0,g=0,h=0,i=0,j=0;if(!e)e=c[b+188>>2]|0;j=c[d>>2]|0;f=c[b+268>>2]|0;a:do if((f|0)>0){h=c[b+276>>2]|0;g=0;while(1){if((c[h+(g<<2)>>2]|0)==(j|0))break;g=g+1|0;if((g|0)>=(f|0))break a}if((g|0)!=(f|0))return}while(0);if((f|0)==(c[b+272>>2]|0)?(i=f|0?f<<1:1,(f|0)<(i|0)):0){if(!i)h=0;else{c[6435]=(c[6435]|0)+1;f=yc((i<<2|3)+16|0)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}h=f;f=c[b+268>>2]|0}if((f|0)>0){g=0;do{c[h+(g<<2)>>2]=c[(c[b+276>>2]|0)+(g<<2)>>2];g=g+1|0}while((g|0)!=(f|0))}g=c[b+276>>2]|0;if(g){if(a[b+280>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[g+-4>>2]|0);f=c[b+268>>2]|0}c[b+276>>2]=0}a[b+280>>0]=1;c[b+276>>2]=h;c[b+272>>2]=i}c[(c[b+276>>2]|0)+(f<<2)>>2]=j;c[b+268>>2]=f+1;b=c[b+284>>2]|0;Ob[c[(c[b>>2]|0)+8>>2]&63](b,e,d)|0;return}function ri(b){b=b|0;var d=0;if((a[22496]|0)==0?Wa(22496)|0:0){if((a[22456]|0)==0?Wa(22456)|0:0){if((a[22464]|0)==0?Wa(22464)|0:0){c[5698]=1065353216;c[5699]=0;c[5700]=0;c[5701]=0;c[5702]=0;c[5703]=1065353216;c[5704]=0;c[5705]=0;c[5706]=0;c[5707]=0;c[5708]=1065353216;g[5709]=0.0;_a(22464)}c[5710]=c[5698];c[5711]=c[5699];c[5712]=c[5700];c[5713]=c[5701];c[5714]=c[5702];c[5715]=c[5703];c[5716]=c[5704];c[5717]=c[5705];c[5718]=c[5706];c[5719]=c[5707];c[5720]=c[5708];c[5721]=c[5709];c[5722]=0;c[5723]=0;c[5724]=0;c[5725]=0;_a(22456)}c[5755]=c[5710];c[5756]=c[5711];c[5757]=c[5712];c[5758]=c[5713];c[5759]=c[5714];c[5760]=c[5715];c[5761]=c[5716];c[5762]=c[5717];c[5763]=c[5718];c[5764]=c[5719];c[5765]=c[5720];c[5766]=c[5721];c[5767]=c[5722];c[5768]=c[5723];c[5769]=c[5724];c[5770]=c[5725];_a(22496)}d=c[b+8>>2]|0;if(!d){b=c[b>>2]|0;return ((b|0)==0?23020:b+60|0)|0}else return d+4|0;return 0}function si(a,b,e){a=a|0;b=b|0;e=e|0;var f=0,g=0;c[b>>2]=Zb[c[(c[e>>2]|0)+28>>2]&31](e,c[a+28>>2]|0)|0;c[b+4>>2]=Zb[c[(c[e>>2]|0)+28>>2]&31](e,c[a+32>>2]|0)|0;f=Zb[c[(c[e>>2]|0)+40>>2]&31](e,a)|0;g=Zb[c[(c[e>>2]|0)+28>>2]&31](e,f)|0;c[b+8>>2]=g;if(g|0)Cb[c[(c[e>>2]|0)+48>>2]&127](e,f);c[b+12>>2]=c[a+4>>2];c[b+24>>2]=d[a+21>>0];c[b+40>>2]=c[a+24>>2];c[b+44>>2]=c[a+16>>2];c[b+48>>2]=d[a+20>>0];c[b+20>>2]=c[a+12>>2];c[b+16>>2]=c[a+8>>2];c[b+28>>2]=c[a+36>>2];c[b+32>>2]=c[a+40>>2];c[b+36>>2]=0;f=c[a+28>>2]|0;if((c[f+488>>2]|0)>0){e=0;do{if((c[(c[f+496>>2]|0)+(e<<2)>>2]|0)==(a|0)){c[b+36>>2]=1;f=c[a+28>>2]|0}e=e+1|0}while((e|0)<(c[f+488>>2]|0))}f=c[a+32>>2]|0;if((c[f+488>>2]|0)>0)e=0;else return 12632;do{if((c[(c[f+496>>2]|0)+(e<<2)>>2]|0)==(a|0)){c[b+36>>2]=1;f=c[a+32>>2]|0}e=e+1|0}while((e|0)<(c[f+488>>2]|0));return 12632}function ti(b,d,e,f){b=+b;d=d|0;e=e|0;f=f|0;var h=0,i=0;while(1){h=yc(140)|0;if(h|0){i=6;break}h=c[6564]|0;c[6564]=h+0;if(!h){i=5;break}jc[h&3]()}if((i|0)==5){f=Ya(4)|0;c[f>>2]=9640;pb(f|0,2800,251)}else if((i|0)==6){g[h>>2]=b;c[h+4>>2]=d;c[h+72>>2]=e;c[h+76>>2]=c[f>>2];c[h+76+4>>2]=c[f+4>>2];c[h+76+8>>2]=c[f+8>>2];c[h+76+12>>2]=c[f+12>>2];g[h+92>>2]=0.0;g[h+96>>2]=0.0;g[h+100>>2]=.5;g[h+104>>2]=0.0;g[h+108>>2]=0.0;g[h+112>>2]=.800000011920929;g[h+116>>2]=1.0;a[h+120>>0]=0;g[h+124>>2]=.004999999888241291;g[h+128>>2]=.009999999776482582;g[h+132>>2]=.009999999776482582;g[h+136>>2]=.009999999776482582;c[h+8>>2]=1065353216;c[h+12>>2]=0;c[h+12+4>>2]=0;c[h+12+8>>2]=0;c[h+12+12>>2]=0;c[h+28>>2]=1065353216;c[h+32>>2]=0;c[h+32+4>>2]=0;c[h+32+8>>2]=0;c[h+32+12>>2]=0;c[h+48>>2]=1065353216;c[h+52>>2]=0;c[h+52+4>>2]=0;c[h+52+8>>2]=0;c[h+52+12>>2]=0;c[h+52+16>>2]=0;return h|0}return 0}function ui(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0,k=0;if(Eb[c[(c[d>>2]|0)+16>>2]&127](d)|0)return;j=c[b+712>>2]|0;i=Eb[c[(c[d>>2]|0)+36>>2]&127](d)|0;if(Eb[c[(c[d>>2]|0)+8>>2]&127](d)|0?(f=Eb[c[(c[d>>2]|0)+20>>2]&127](d)|0,h=Eb[c[(c[d>>2]|0)+24>>2]&127](d)|0,(j|0)>0):0){e=c[b+720>>2]|0;g=0;a=i+(f<<2)|0;while(1){k=c[e+(g*104|0)+12>>2]|0;f=c[e+(g*104|0)+16>>2]|0;c[a>>2]=c[e+(g*104|0)+8>>2];c[a+4>>2]=k;c[a+8>>2]=f;g=g+1|0;if((g|0)==(j|0))break;else a=a+(h<<2)|0}}if(!(Eb[c[(c[d>>2]|0)+12>>2]&127](d)|0))return;a=Eb[c[(c[d>>2]|0)+28>>2]&127](d)|0;g=Eb[c[(c[d>>2]|0)+32>>2]&127](d)|0;if((j|0)<=0)return;f=c[b+720>>2]|0;a=i+(a<<2)|0;e=0;while(1){b=c[f+(e*104|0)+76>>2]|0;k=c[f+(e*104|0)+80>>2]|0;c[a>>2]=c[f+(e*104|0)+72>>2];c[a+4>>2]=b;c[a+8>>2]=k;e=e+1|0;if((e|0)==(j|0))break;else a=a+(g<<2)|0}return}function vi(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0.0,h=0,j=0,k=0.0,l=0,m=0.0,n=0.0,o=0,p=0,q=0;q=i;i=i+16|0;if((e|0)<=0){i=q;return}p=0;do{o=d+(p<<4)|0;f=+g[a+60>>2]*.5;h=c[a+68>>2]|0;k=+g[b+(p<<4)>>2];m=+g[b+(p<<4)+4>>2];n=+g[b+(p<<4)+8>>2];n=+O(+(k*k+m*m+n*n));j=c[a+64>>2]|0;do if(!(+g[b+(p<<4)+(h<<2)>>2]>n*+g[a+52>>2])){k=+g[b+(p<<4)+(j<<2)>>2];l=c[a+72>>2]|0;m=+g[b+(p<<4)+(l<<2)>>2];n=+O(+(k*k+m*m));if(n>1.1920928955078125e-07){n=+g[a+56>>2]/n;g[q+(j<<2)>>2]=k*n;g[q+(h<<2)>>2]=-f;g[q+(l<<2)>>2]=m*n;break}else{g[q+(j<<2)>>2]=0.0;g[q+(h<<2)>>2]=-f;g[q+(l<<2)>>2]=0.0;break}}else{g[q+(j<<2)>>2]=0.0;g[q+(h<<2)>>2]=f;g[q+(c[a+72>>2]<<2)>>2]=0.0}while(0);c[o>>2]=c[q>>2];c[o+4>>2]=c[q+4>>2];c[o+8>>2]=c[q+8>>2];c[o+12>>2]=c[q+12>>2];p=p+1|0}while((p|0)!=(e|0));i=q;return}function wi(b){b=b|0;var d=0,e=0,f=0,g=0,h=0,i=0,j=0;c[b>>2]=9352;d=c[b+56>>2]|0;if(d|0){if(a[b+60>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+56>>2]=0}a[b+60>>0]=1;c[b+56>>2]=0;c[b+48>>2]=0;c[b+52>>2]=0;e=c[b+28>>2]|0;if((e|0)>0){j=0;do{f=c[b+36>>2]|0;g=f+(j*36|0)+4|0;h=f+(j*36|0)+12|0;i=c[h>>2]|0;d=f+(j*36|0)+16|0;if(i|0){if(a[d>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[i+-4>>2]|0)}c[h>>2]=0}a[d>>0]=1;c[h>>2]=0;c[g>>2]=0;c[f+(j*36|0)+8>>2]=0;j=j+1|0}while((j|0)!=(e|0))}d=c[b+36>>2]|0;if(d|0){if(a[b+40>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+36>>2]=0}a[b+40>>0]=1;c[b+36>>2]=0;c[b+28>>2]=0;c[b+32>>2]=0;d=c[b+16>>2]|0;if(!d){a[b+20>>0]=1;c[b+16>>2]=0;c[b+8>>2]=0;b=b+12|0;c[b>>2]=0;return}if(a[b+20>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+16>>2]=0;a[b+20>>0]=1;c[b+16>>2]=0;c[b+8>>2]=0;b=b+12|0;c[b>>2]=0;return}function xi(b){b=b|0;var d=0;c[b>>2]=8452;d=c[b+156>>2]|0;if(d|0){if(a[b+160>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+156>>2]=0}a[b+160>>0]=1;c[b+156>>2]=0;c[b+148>>2]=0;c[b+152>>2]=0;d=c[b+136>>2]|0;if(d|0){if(a[b+140>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+136>>2]=0}a[b+140>>0]=1;c[b+136>>2]=0;c[b+128>>2]=0;c[b+132>>2]=0;d=c[b+116>>2]|0;if(d|0){if(a[b+120>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+116>>2]=0}a[b+120>>0]=1;c[b+116>>2]=0;c[b+108>>2]=0;c[b+112>>2]=0;d=c[b+96>>2]|0;if(d|0){if(a[b+100>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+96>>2]=0}a[b+100>>0]=1;c[b+96>>2]=0;c[b+88>>2]=0;c[b+92>>2]=0;c[b>>2]=9368;d=c[b+32>>2]|0;if(!d){a[b+36>>0]=1;c[b+32>>2]=0;c[b+24>>2]=0;b=b+28|0;c[b>>2]=0;return}if(a[b+36>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+32>>2]=0;a[b+36>>0]=1;c[b+32>>2]=0;c[b+24>>2]=0;b=b+28|0;c[b>>2]=0;return}function yi(b,d,e){b=b|0;d=d|0;e=e|0;var f=0,g=0,h=0,i=0,j=0;i=c[b+4>>2]|0;if((i|0)>=(d|0)){c[b+4>>2]=d;return}if((c[b+8>>2]|0)<(d|0)){if(!d){f=0;g=i}else{c[6435]=(c[6435]|0)+1;f=yc((d<<4|3)+16|0)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}g=c[b+4>>2]|0}if((g|0)>0){h=0;do{j=c[b+12>>2]|0;c[f+(h<<4)>>2]=c[j+(h<<4)>>2];c[f+(h<<4)+4>>2]=c[j+(h<<4)+4>>2];c[f+(h<<4)+8>>2]=c[j+(h<<4)+8>>2];c[f+(h<<4)+12>>2]=c[j+(h<<4)+12>>2];h=h+1|0}while((h|0)!=(g|0))}g=c[b+12>>2]|0;if(g|0){if(a[b+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[g+-4>>2]|0)}c[b+12>>2]=0}a[b+16>>0]=1;c[b+12>>2]=f;c[b+8>>2]=d;g=b+12|0}else g=b+12|0;f=i;do{j=c[g>>2]|0;c[j+(f<<4)>>2]=c[e>>2];c[j+(f<<4)+4>>2]=c[e+4>>2];c[j+(f<<4)+8>>2]=c[e+8>>2];c[j+(f<<4)+12>>2]=c[e+12>>2];f=f+1|0}while((f|0)!=(d|0));c[b+4>>2]=d;return}function zi(b){b=b|0;var d=0,e=0;c[6435]=(c[6435]|0)+1;d=yc(635)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}c[d+164>>2]=1065353216;c[d+168>>2]=1065353216;c[d+172>>2]=1065353216;g[d+176>>2]=0.0;c[d+180>>2]=0;g[d+184>>2]=999999984306749440.0;e=d+188|0;c[e>>2]=0;c[e+4>>2]=0;c[e+8>>2]=0;c[e+12>>2]=0;c[d+204>>2]=1;c[d+208>>2]=-1;c[d+212>>2]=-1;c[d+216>>2]=1;g[d+220>>2]=0.0;g[d+224>>2]=.5;g[d+228>>2]=0.0;g[d+232>>2]=0.0;c[d+236>>2]=1;c[d+240>>2]=0;g[d+244>>2]=1.0;e=d+248|0;c[e>>2]=0;c[e+4>>2]=0;c[e+8>>2]=0;c[e+12>>2]=0;c[d+4>>2]=1065353216;e=d+8|0;c[e>>2]=0;c[e+4>>2]=0;c[e+8>>2]=0;c[e+12>>2]=0;c[d+24>>2]=1065353216;e=d+28|0;c[e>>2]=0;c[e+4>>2]=0;c[e+8>>2]=0;c[e+12>>2]=0;c[d+44>>2]=1065353216;e=d+48|0;c[e>>2]=0;c[e+4>>2]=0;c[e+8>>2]=0;c[e+12>>2]=0;c[e+16>>2]=0;c[d>>2]=4108;a[d+500>>0]=1;c[d+496>>2]=0;c[d+488>>2]=0;c[d+492>>2]=0;Od(d,b);return d|0}function Ai(b){b=b|0;var d=0;c[b>>2]=9012;d=c[b+160>>2]|0;if(d|0){if(a[b+164>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+160>>2]=0}a[b+164>>0]=1;c[b+160>>2]=0;c[b+152>>2]=0;c[b+156>>2]=0;d=c[b+136>>2]|0;if(d|0){if(a[b+140>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+136>>2]=0}a[b+140>>0]=1;c[b+136>>2]=0;c[b+128>>2]=0;c[b+132>>2]=0;d=c[b+116>>2]|0;if(d|0){if(a[b+120>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+116>>2]=0}a[b+120>>0]=1;c[b+116>>2]=0;c[b+108>>2]=0;c[b+112>>2]=0;d=c[b+96>>2]|0;if(d|0){if(a[b+100>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+96>>2]=0}a[b+100>>0]=1;c[b+96>>2]=0;c[b+88>>2]=0;c[b+92>>2]=0;d=c[b+76>>2]|0;if(!d){a[b+80>>0]=1;c[b+76>>2]=0;c[b+68>>2]=0;b=b+72|0;c[b>>2]=0;return}if(a[b+80>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+76>>2]=0;a[b+80>>0]=1;c[b+76>>2]=0;c[b+68>>2]=0;b=b+72|0;c[b>>2]=0;return}function Bi(b,d,e,f,g){b=b|0;d=d|0;e=e|0;f=f|0;g=g|0;do if((b|0)==(c[d+8>>2]|0)){if((c[d+4>>2]|0)==(e|0)?(c[d+28>>2]|0)!=1:0)c[d+28>>2]=f}else{if((b|0)!=(c[d>>2]|0)){b=c[b+8>>2]|0;yb[c[(c[b>>2]|0)+24>>2]&31](b,d,e,f,g);break}if((c[d+16>>2]|0)!=(e|0)?(c[d+20>>2]|0)!=(e|0):0){c[d+32>>2]=f;if((c[d+44>>2]|0)==4)break;a[d+52>>0]=0;a[d+53>>0]=0;b=c[b+8>>2]|0;Qb[c[(c[b>>2]|0)+20>>2]&7](b,d,e,e,1,g);if(a[d+53>>0]|0)if(!(a[d+52>>0]|0)){f=1;b=13}else b=17;else{f=0;b=13}do if((b|0)==13){c[d+20>>2]=e;c[d+40>>2]=(c[d+40>>2]|0)+1;if((c[d+36>>2]|0)==1?(c[d+24>>2]|0)==2:0){a[d+54>>0]=1;if(f){b=17;break}else{f=4;break}}if(f)b=17;else f=4}while(0);if((b|0)==17)f=3;c[d+44>>2]=f;break}if((f|0)==1)c[d+32>>2]=1}while(0);return}function Ci(b){b=b|0;var d=0;c[b>>2]=4816;d=c[b+144>>2]|0;if(d|0){if(a[b+148>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+144>>2]=0}a[b+148>>0]=1;c[b+144>>2]=0;c[b+136>>2]=0;c[b+140>>2]=0;d=c[b+76>>2]|0;if(d|0){if(a[b+80>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+76>>2]=0}a[b+80>>0]=1;c[b+76>>2]=0;c[b+68>>2]=0;c[b+72>>2]=0;d=c[b+56>>2]|0;if(d|0){if(a[b+60>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+56>>2]=0}a[b+60>>0]=1;c[b+56>>2]=0;c[b+48>>2]=0;c[b+52>>2]=0;d=c[b+36>>2]|0;if(d|0){if(a[b+40>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+36>>2]=0}a[b+40>>0]=1;c[b+36>>2]=0;c[b+28>>2]=0;c[b+32>>2]=0;d=c[b+16>>2]|0;if(!d){a[b+20>>0]=1;c[b+16>>2]=0;c[b+8>>2]=0;b=b+12|0;c[b>>2]=0;return}if(a[b+20>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+16>>2]=0;a[b+20>>0]=1;c[b+16>>2]=0;c[b+8>>2]=0;b=b+12|0;c[b>>2]=0;return}function Di(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0.0,h=0.0,i=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0;o=(+g[a+32>>2]-+g[a+16>>2])*+g[a+108>>2]*.5;m=(+g[a+36>>2]-+g[a+20>>2])*+g[a+112>>2]*.5;k=(+g[a+40>>2]-+g[a+24>>2])*+g[a+116>>2]*.5;t=+N(+(+g[b>>2]));s=+N(+(+g[b+4>>2]));r=+N(+(+g[b+8>>2]));n=+N(+(+g[b+16>>2]));l=+N(+(+g[b+20>>2]));j=+N(+(+g[b+24>>2]));w=+N(+(+g[b+32>>2]));v=+N(+(+g[b+36>>2]));f=+N(+(+g[b+40>>2]));u=+g[b+48>>2];p=+g[b+52>>2];h=+g[b+56>>2];q=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);i=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);f=o*w+m*v+k*f+ +Sb[c[(c[a>>2]|0)+48>>2]&15](a);g[d>>2]=u-(o*t+m*s+k*r+q);g[d+4>>2]=p-(o*n+m*l+k*j+i);g[d+8>>2]=h-f;g[d+12>>2]=0.0;g[e>>2]=u+(o*t+m*s+k*r+q);g[e+4>>2]=p+(o*n+m*l+k*j+i);g[e+8>>2]=h+f;g[e+12>>2]=0.0;return}function Ei(b,d){b=b|0;d=d|0;var e=0,f=0.0,h=0.0,i=0.0,j=0.0,k=0.0,l=0;c[6435]=(c[6435]|0)+1;e=yc(379)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}c[e+4>>2]=3;c[e>>2]=4432;c[e+8>>2]=-1;c[e+12>>2]=-1;g[e+16>>2]=3402823466385288598117041.0e14;a[e+20>>0]=1;a[e+21>>0]=0;c[e+24>>2]=-1;c[e+28>>2]=b;Il();c[e+32>>2]=23268;g[e+36>>2]=0.0;g[e+40>>2]=.30000001192092896;c[e+44>>2]=0;c[e>>2]=4544;l=e+300|0;c[l>>2]=c[d>>2];c[l+4>>2]=c[d+4>>2];c[l+8>>2]=c[d+8>>2];c[l+12>>2]=c[d+12>>2];k=+g[d>>2];j=+g[d+4>>2];i=+g[d+8>>2];h=k*+g[b+20>>2]+j*+g[b+24>>2]+i*+g[b+28>>2]+ +g[b+56>>2];f=k*+g[b+36>>2]+j*+g[b+40>>2]+i*+g[b+44>>2]+ +g[b+60>>2];g[e+316>>2]=k*+g[b+4>>2]+j*+g[b+8>>2]+i*+g[b+12>>2]+ +g[b+52>>2];g[e+320>>2]=h;g[e+324>>2]=f;g[e+328>>2]=0.0;c[e+332>>2]=0;a[e+344>>0]=0;g[e+348>>2]=.30000001192092896;g[e+352>>2]=1.0;g[e+356>>2]=0.0;return e|0}function Fi(b,d,e){b=+b;d=d|0;e=e|0;var f=0,h=0;while(1){f=yc(140)|0;if(f|0){h=6;break}f=c[6564]|0;c[6564]=f+0;if(!f){h=5;break}jc[f&3]()}if((h|0)==5){e=Ya(4)|0;c[e>>2]=9640;pb(e|0,2800,251)}else if((h|0)==6){g[f>>2]=b;c[f+4>>2]=d;c[f+72>>2]=e;c[f+76>>2]=0;c[f+76+4>>2]=0;c[f+76+8>>2]=0;c[f+76+12>>2]=0;c[f+76+16>>2]=0;c[f+76+20>>2]=0;g[f+100>>2]=.5;g[f+104>>2]=0.0;g[f+108>>2]=0.0;g[f+112>>2]=.800000011920929;g[f+116>>2]=1.0;a[f+120>>0]=0;g[f+124>>2]=.004999999888241291;g[f+128>>2]=.009999999776482582;g[f+132>>2]=.009999999776482582;g[f+136>>2]=.009999999776482582;c[f+8>>2]=1065353216;c[f+12>>2]=0;c[f+12+4>>2]=0;c[f+12+8>>2]=0;c[f+12+12>>2]=0;c[f+28>>2]=1065353216;c[f+32>>2]=0;c[f+32+4>>2]=0;c[f+32+8>>2]=0;c[f+32+12>>2]=0;c[f+48>>2]=1065353216;c[f+52>>2]=0;c[f+52+4>>2]=0;c[f+52+8>>2]=0;c[f+52+12>>2]=0;c[f+52+16>>2]=0;return f|0}return 0}function Gi(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0.0,h=0.0,i=0.0,j=0.0,k=0.0;e=c[b>>2]|0;if((e|0)==(c[a+80>>2]|0)){f=1.0;return +f}if(c[e+204>>2]&4|0){f=1.0;return +f}if((+g[a+28>>2]-+g[a+12>>2])*+g[b+8>>2]+(+g[a+32>>2]-+g[a+16>>2])*+g[b+12>>2]+(+g[a+36>>2]-+g[a+20>>2])*+g[b+16>>2]>=-+g[a+84>>2]){f=1.0;return +f}c[a+4>>2]=c[b+40>>2];c[a+76>>2]=e;if(d){c[a+44>>2]=c[b+8>>2];c[a+44+4>>2]=c[b+8+4>>2];c[a+44+8>>2]=c[b+8+8>>2];c[a+44+12>>2]=c[b+8+12>>2]}else{k=+g[b+8>>2];j=+g[b+12>>2];i=+g[b+16>>2];h=k*+g[e+20>>2]+j*+g[e+24>>2]+i*+g[e+28>>2];f=k*+g[e+36>>2]+j*+g[e+40>>2]+i*+g[e+44>>2];g[a+44>>2]=+g[e+4>>2]*k+ +g[e+8>>2]*j+ +g[e+12>>2]*i;g[a+48>>2]=h;g[a+52>>2]=f;g[a+56>>2]=0.0}c[a+60>>2]=c[b+24>>2];c[a+60+4>>2]=c[b+24+4>>2];c[a+60+8>>2]=c[b+24+8>>2];c[a+60+12>>2]=c[b+24+12>>2];k=+g[b+40>>2];return +k}function Hi(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0,h=0,j=0,k=0,l=0;j=i;i=i+80|0;if((e|0)>0)f=0;else{i=j;return}do{g[d+(f<<4)+12>>2]=-999999984306749440.0;f=f+1|0}while((f|0)!=(e|0));f=j+32+4|0;h=0;do{k=b+(h<<4)|0;c[j+32>>2]=7824;c[f>>2]=0;c[f+4>>2]=0;c[f+8>>2]=0;c[f+12>>2]=0;g[j+32+20>>2]=-999999984306749440.0;c[j+32+24>>2]=c[k>>2];c[j+32+24+4>>2]=c[k+4>>2];c[j+32+24+8>>2]=c[k+8>>2];c[j+32+24+12>>2]=c[k+12>>2];c[j+16>>2]=1566444395;c[j+16+4>>2]=1566444395;c[j+16+8>>2]=1566444395;g[j+16+12>>2]=0.0;k=c[a+92>>2]|0;l=c[(c[k>>2]|0)+8>>2]|0;g[j>>2]=-999999984306749440.0;g[j+4>>2]=-999999984306749440.0;g[j+8>>2]=-999999984306749440.0;g[j+12>>2]=0.0;mc[l&127](k,j+32|0,j,j+16|0);k=d+(h<<4)|0;c[k>>2]=c[f>>2];c[k+4>>2]=c[f+4>>2];c[k+8>>2]=c[f+8>>2];c[k+12>>2]=c[f+12>>2];h=h+1|0}while((h|0)<(e|0));i=j;return}function Ii(b,d,e){b=b|0;d=d|0;e=e|0;var f=0,g=0,h=0,i=0,j=0,k=0;f=c[b+96>>2]|0;if((f|0)==(c[b+100>>2]|0)?(i=f|0?f<<1:1,(f|0)<(i|0)):0){if(!i)h=0;else{c[6435]=(c[6435]|0)+1;f=yc((i<<4|3)+16|0)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}h=f;f=c[b+96>>2]|0}if((f|0)>0){g=0;do{j=h+(g<<4)|0;k=(c[b+104>>2]|0)+(g<<4)|0;c[j>>2]=c[k>>2];c[j+4>>2]=c[k+4>>2];c[j+8>>2]=c[k+8>>2];c[j+12>>2]=c[k+12>>2];g=g+1|0}while((g|0)!=(f|0))}f=c[b+104>>2]|0;if(f|0){if(a[b+108>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}c[b+104>>2]=0}a[b+108>>0]=1;c[b+104>>2]=h;c[b+100>>2]=i;f=c[b+96>>2]|0}k=(c[b+104>>2]|0)+(f<<4)|0;c[k>>2]=c[d>>2];c[k+4>>2]=c[d+4>>2];c[k+8>>2]=c[d+8>>2];c[k+12>>2]=c[d+12>>2];c[b+96>>2]=(c[b+96>>2]|0)+1;if(!e)return;vj(b);return}function Ji(b){b=b|0;var d=0,e=0,f=0,h=0;c[b+32>>2]=262144;h=c[b+4>>2]|0;if((h|0)<2383){if((c[b+8>>2]|0)<2383){c[6435]=(c[6435]|0)+1;d=yc(9551)|0;if(!d)f=0;else{c[(d+4+15&-16)+-4>>2]=d;f=d+4+15&-16}d=c[b+4>>2]|0;if((d|0)>0){e=0;do{c[f+(e<<2)>>2]=c[(c[b+12>>2]|0)+(e<<2)>>2];e=e+1|0}while((e|0)!=(d|0))}d=c[b+12>>2]|0;if(d|0){if(a[b+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+12>>2]=0}a[b+16>>0]=1;c[b+12>>2]=f;c[b+8>>2]=2383;e=b+12|0}else e=b+12|0;d=h;do{c[(c[e>>2]|0)+(d<<2)>>2]=0;d=d+1|0}while((d|0)!=2383)}c[b+4>>2]=2383;e=0;do{h=(c[b+12>>2]|0)+(e<<2)|0;d=c[h>>2]|0;c[h>>2]=0;if(d|0)do{h=d;d=c[d+280>>2]|0;hd(h)}while((d|0)!=0);e=e+1|0}while((e|0)!=2383);g[b+20>>2]=.25;c[b+24>>2]=0;c[b+28>>2]=0;c[b+36>>2]=1;c[b+40>>2]=1;return}function Ki(){var b=0,d=0;c[6435]=(c[6435]|0)+1;b=yc(303)|0;if(!b)b=0;else{c[(b+4+15&-16)+-4>>2]=b;b=b+4+15&-16}c[b+164>>2]=1065353216;c[b+168>>2]=1065353216;c[b+172>>2]=1065353216;g[b+176>>2]=0.0;c[b+180>>2]=0;g[b+184>>2]=999999984306749440.0;d=b+188|0;c[d>>2]=0;c[d+4>>2]=0;c[d+8>>2]=0;c[d+12>>2]=0;c[b+204>>2]=1;c[b+208>>2]=-1;c[b+212>>2]=-1;c[b+216>>2]=1;g[b+220>>2]=0.0;g[b+224>>2]=.5;g[b+228>>2]=0.0;g[b+232>>2]=0.0;c[b+240>>2]=0;g[b+244>>2]=1.0;d=b+248|0;c[d>>2]=0;c[d+4>>2]=0;c[d+8>>2]=0;c[d+12>>2]=0;c[b+4>>2]=1065353216;d=b+8|0;c[d>>2]=0;c[d+4>>2]=0;c[d+8>>2]=0;c[d+12>>2]=0;c[b+24>>2]=1065353216;d=b+28|0;c[d>>2]=0;c[d+4>>2]=0;c[d+8>>2]=0;c[d+12>>2]=0;c[b+44>>2]=1065353216;d=b+48|0;c[d>>2]=0;c[d+4>>2]=0;c[d+8>>2]=0;c[d+12>>2]=0;c[d+16>>2]=0;c[b>>2]=5044;a[b+280>>0]=1;c[b+276>>2]=0;c[b+268>>2]=0;c[b+272>>2]=0;c[b+236>>2]=4;return b|0}function Li(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0,h=0.0,i=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0,o=0,p=0,q=0.0,r=0,s=0.0,t=0;if((e|0)>0)f=0;else return;do{g[d+(f<<4)+12>>2]=-999999984306749440.0;f=f+1|0}while((f|0)!=(e|0));p=0;do{h=+g[a+12>>2];i=+g[b+(p<<4)>>2]*h;j=+g[a+16>>2];k=+g[b+(p<<4)+4>>2]*j;l=+g[a+20>>2];m=+g[b+(p<<4)+8>>2]*l;f=c[a+96>>2]|0;if((f|0)>0){n=c[a+104>>2]|0;o=0;q=-3402823466385288598117041.0e14;r=-1;do{s=i*+g[n+(o<<4)>>2]+k*+g[n+(o<<4)+4>>2]+m*+g[n+(o<<4)+8>>2];t=s>q;r=t?o:r;q=t?s:q;o=o+1|0}while((o|0)!=(f|0));m=+g[n+(r<<4)+4>>2]*j;s=+g[n+(r<<4)+8>>2]*l;g[d+(p<<4)>>2]=+g[n+(r<<4)>>2]*h;g[d+(p<<4)+4>>2]=m;g[d+(p<<4)+8>>2]=s;g[d+(p<<4)+12>>2]=q}else g[d+(p<<4)+12>>2]=-999999984306749440.0;p=p+1|0}while((p|0)!=(e|0));return}function Mi(a,b){a=a|0;b=b|0;var d=0,e=0,f=0;d=i;i=i+96|0;b=c[b>>2]|0;if((b|0)==(c[a+4>>2]|0)){i=d;return 1}e=c[a+12>>2]|0;if(!(Zb[c[(c[e>>2]|0)+8>>2]&31](e,c[b+188>>2]|0)|0)){i=d;return 1}e=c[a+4>>2]|0;f=c[e+192>>2]|0;c[d+64>>2]=0;c[d+64+4>>2]=f;c[d+64+8>>2]=e;c[d+64+12>>2]=e+4;c[d+64+16>>2]=-1;c[d+64+20>>2]=-1;e=c[b+192>>2]|0;c[d+40>>2]=0;c[d+40+4>>2]=e;c[d+40+8>>2]=b;c[d+40+12>>2]=b+4;c[d+40+16>>2]=-1;c[d+40+20>>2]=-1;b=c[(c[a+8>>2]|0)+24>>2]|0;b=Ib[c[(c[b>>2]|0)+8>>2]&31](b,d+64|0,d+40|0,0)|0;if(b|0){f=c[a+12>>2]|0;c[d+4>>2]=0;c[d+8>>2]=d+64;c[d+12>>2]=d+40;c[d>>2]=5976;c[d+32>>2]=f;yb[c[(c[b>>2]|0)+8>>2]&31](b,d+64|0,d+40|0,(c[a+8>>2]|0)+28|0,d);Ab[c[c[b>>2]>>2]&255](b);f=c[(c[a+8>>2]|0)+24>>2]|0;Cb[c[(c[f>>2]|0)+60>>2]&127](f,b)}i=d;return 1}function Ni(a,b,d){a=a|0;b=b|0;d=d|0;var e=0.0,f=0,h=0,j=0,k=0,l=0;l=i;i=i+80|0;h=c[c[a>>2]>>2]|0;j=c[c[a+4>>2]>>2]|0;if(!(Ob[c[(c[b>>2]|0)+24>>2]&63](b,h,j)|0)){i=l;return}f=c[h+192>>2]|0;c[l+56>>2]=0;c[l+56+4>>2]=f;c[l+56+8>>2]=h;c[l+56+12>>2]=h+4;c[l+56+16>>2]=-1;c[l+56+20>>2]=-1;f=c[j+192>>2]|0;c[l+32>>2]=0;c[l+32+4>>2]=f;c[l+32+8>>2]=j;c[l+32+12>>2]=j+4;c[l+32+16>>2]=-1;c[l+32+20>>2]=-1;f=c[a+8>>2]|0;if(!f){f=Ib[c[(c[b>>2]|0)+8>>2]&31](b,l+56|0,l+32|0,0)|0;c[a+8>>2]=f;if(f|0)k=4}else k=4;if((k|0)==4){c[l>>2]=5604;c[l+4>>2]=0;c[l+8>>2]=l+56;c[l+12>>2]=l+32;if((c[d+8>>2]|0)!=1){e=+Mb[c[(c[f>>2]|0)+12>>2]&15](f,h,j,d,l);if(+g[d+12>>2]>e)g[d+12>>2]=e}else yb[c[(c[f>>2]|0)+8>>2]&31](f,l+56|0,l+32|0,d,l)}i=l;return}function Oi(b,d,e){b=b|0;d=d|0;e=e|0;var f=0,g=0,h=0,i=0;i=c[d+4>>2]|0;f=c[b+24>>2]|0;if((f|0)<(i|0)){if((c[b+28>>2]|0)<(i|0)){if(!i){e=0;g=f}else{c[6435]=(c[6435]|0)+1;e=yc((i<<2|3)+16|0)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}g=c[b+24>>2]|0}if((g|0)>0){h=0;do{c[e+(h<<2)>>2]=c[(c[b+32>>2]|0)+(h<<2)>>2];h=h+1|0}while((h|0)!=(g|0))}g=c[b+32>>2]|0;if(g|0){if(a[b+36>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[g+-4>>2]|0)}c[b+32>>2]=0}a[b+36>>0]=1;c[b+32>>2]=e;c[b+28>>2]=i;e=b+32|0}else e=b+32|0;do{c[(c[e>>2]|0)+(f<<2)>>2]=0;f=f+1|0}while((f|0)!=(i|0))}else e=b+32|0;c[b+24>>2]=i;e=c[e>>2]|0;if((i|0)<=0)return;f=0;do{c[e+(f<<2)>>2]=c[(c[d+12>>2]|0)+(f<<2)>>2];f=f+1|0}while((f|0)!=(i|0));return}function Pi(b,d){b=b|0;d=d|0;var e=0,f=0,g=0,h=0;e=c[b+488>>2]|0;a:do if((e|0)>0){g=c[b+496>>2]|0;f=0;while(1){if((c[g+(f<<2)>>2]|0)==(d|0))break;f=f+1|0;if((f|0)>=(e|0))break a}if((f|0)!=(e|0)){b=b+256|0;c[b>>2]=1;return}}while(0);if((e|0)==(c[b+492>>2]|0)?(h=e|0?e<<1:1,(e|0)<(h|0)):0){if(!h)g=0;else{c[6435]=(c[6435]|0)+1;e=yc((h<<2|3)+16|0)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}g=e;e=c[b+488>>2]|0}if((e|0)>0){f=0;do{c[g+(f<<2)>>2]=c[(c[b+496>>2]|0)+(f<<2)>>2];f=f+1|0}while((f|0)!=(e|0))}f=c[b+496>>2]|0;if(f){if(a[b+500>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0);e=c[b+488>>2]|0}c[b+496>>2]=0}a[b+500>>0]=1;c[b+496>>2]=g;c[b+492>>2]=h}c[(c[b+496>>2]|0)+(e<<2)>>2]=d;c[b+488>>2]=e+1;b=b+256|0;c[b>>2]=1;return}function Qi(a,b,c,d,e,f,h,i,j,k,l){a=a|0;b=b|0;c=+c;d=+d;e=+e;f=+f;h=+h;i=+i;j=j|0;k=k|0;l=+l;var m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0;x=+g[a>>2]*f+ +g[a+16>>2]*h+ +g[a+32>>2]*i;v=+g[a+4>>2]*f+ +g[a+20>>2]*h+ +g[a+36>>2]*i;t=+g[a+8>>2]*f+ +g[a+24>>2]*h+ +g[a+40>>2]*i;s=+g[b>>2]*f+ +g[b+16>>2]*h+ +g[b+32>>2]*i;q=+g[b+4>>2]*f+ +g[b+20>>2]*h+ +g[b+36>>2]*i;o=+g[b+8>>2]*f+ +g[b+24>>2]*h+ +g[b+40>>2]*i;w=+g[j+80>>2];u=+g[j+84>>2];p=+g[j+88>>2];r=+g[k+80>>2];m=+g[k+84>>2];n=+g[k+88>>2];p=x*(x<0.0?-w:w)+v*(v<0.0?-u:u)+t*(t<0.0?-p:p);n=s*(s<0.0?-r:r)+q*(q<0.0?-m:m)+o*(o<0.0?-n:n);o=+g[j+96>>2];m=+g[k+96>>2];m=(p>o?p:o)+(n>m?n:m);return !((c*f+d*h+e*i+ml)|0}function Ri(b){b=b|0;var d=0,e=0,f=0,g=0;c[b>>2]=8724;a[b+20>>0]=1;c[b+16>>2]=0;c[b+8>>2]=0;c[b+12>>2]=0;c[b+24>>2]=0;a[b+28>>0]=0;a[b+48>>0]=1;c[b+44>>2]=0;c[b+36>>2]=0;c[b+40>>2]=0;a[b+68>>0]=1;c[b+64>>2]=0;c[b+56>>2]=0;c[b+60>>2]=0;c[b+72>>2]=0;c[6435]=(c[6435]|0)+1;d=yc(51)|0;if(!d)f=0;else{c[(d+4+15&-16)+-4>>2]=d;f=d+4+15&-16}d=c[b+8>>2]|0;if((d|0)>0){e=0;do{g=c[b+16>>2]|0;c[f+(e<<4)>>2]=c[g+(e<<4)>>2];c[f+(e<<4)+4>>2]=c[g+(e<<4)+4>>2];c[f+(e<<4)+8>>2]=c[g+(e<<4)+8>>2];c[f+(e<<4)+12>>2]=c[g+(e<<4)+12>>2];e=e+1|0}while((e|0)!=(d|0))}d=c[b+16>>2]|0;if(!d){a[b+20>>0]=1;c[b+16>>2]=f;c[b+12>>2]=2;Hf(b);return}if(a[b+20>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+16>>2]=0;a[b+20>>0]=1;c[b+16>>2]=f;c[b+12>>2]=2;Hf(b);return}function Si(a,b,d){a=a|0;b=b|0;d=d|0;do if(!((b|0)==32&(d|0)==32)){if((b|0)==32){if((d|0)<20){b=a+96|0;break}if((d+-21|0)>>>0<9){b=a+104|0;break}}else{if((b|0)<20&(d|0)==32){b=a+100|0;break}if((b+-21|0)>>>0<9&(d|0)==32){b=a+108|0;break}if((b|0)==8&(d|0)==8){b=a+60|0;break}if((b|0)==8&(d|0)==1){b=a+76|0;break}if((b|0)==1&(d|0)==8){b=a+80|0;break}}if(!(d|b)){b=a+72|0;break}if((b|0)<20&(d|0)==28){b=a+88|0;break}if((b|0)==28&(d|0)<20){b=a+84|0;break}if((b|0)<20){if((d|0)<20){b=a+32|0;break}if((d+-21|0)>>>0<9){b=a+36|0;break}}else{if((d|0)<20&(b+-21|0)>>>0<9){b=a+40|0;break}if((b|0)==31)if((d|0)==31){b=a+48|0;break}else{b=a+44|0;break}}if((d|0)==31){b=a+52|0;break}else{b=a+56|0;break}}else b=a+92|0;while(0);return c[b>>2]|0}function Ti(a,b,d,e,f,h,j,k,l){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;j=j|0;k=k|0;l=l|0;var m=0,n=0,o=0;o=i;i=i+16|0;li(12899);Xb[c[(c[a>>2]|0)+32>>2]&1](a,b,d,e,f,h,j,k,l);n=c[a+184>>2]|0;m=c[k+20>>2]|0;m=(n|0)>(m|0)?n:m;if((m|0)>0){n=0;do{+$b[c[(c[a>>2]|0)+40>>2]&3](a,n,b,d,e,f,h,j,k,l);n=n+1|0}while((n|0)<(m|0))}m=c[2357]|0;a=(c[m+16>>2]|0)+-1|0;c[m+16>>2]=a;if(a|0){i=o;return 0.0}do if(c[m+4>>2]|0){tb(o|0,0)|0;a=c[6434]|0;g[m+8>>2]=+g[m+8>>2]+ +(((c[o+4>>2]|0)-(c[a+4>>2]|0)+(((c[o>>2]|0)-(c[a>>2]|0)|0)*1e6|0)-(c[m+12>>2]|0)|0)>>>0)/1.0e3;if(!(c[m+16>>2]|0)){m=c[2357]|0;break}else{i=o;return 0.0}}while(0);c[2357]=c[m+20>>2];i=o;return 0.0}function Ui(b,d,e){b=b|0;d=d|0;e=e|0;var f=0,g=0,h=0;g=c[d>>2]|0;d=c[b+268>>2]|0;a:do if((d|0)>0){f=c[b+276>>2]|0;e=0;while(1){if((c[f+(e<<2)>>2]|0)==(g|0))break;e=e+1|0;if((e|0)>=(d|0))break a}if((e|0)!=(d|0))return}while(0);if((d|0)==(c[b+272>>2]|0)?(h=d|0?d<<1:1,(d|0)<(h|0)):0){if(!h)f=0;else{c[6435]=(c[6435]|0)+1;d=yc((h<<2|3)+16|0)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}f=d;d=c[b+268>>2]|0}if((d|0)>0){e=0;do{c[f+(e<<2)>>2]=c[(c[b+276>>2]|0)+(e<<2)>>2];e=e+1|0}while((e|0)!=(d|0))}e=c[b+276>>2]|0;if(e){if(a[b+280>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0);d=c[b+268>>2]|0}c[b+276>>2]=0}a[b+280>>0]=1;c[b+276>>2]=f;c[b+272>>2]=h}c[(c[b+276>>2]|0)+(d<<2)>>2]=g;c[b+268>>2]=d+1;return}function Vi(a,b){a=a|0;b=b|0;var d=0,e=0,f=0,g=0,h=0;f=c[a+232>>2]|0;a:do if((f|0)>0){g=c[a+240>>2]|0;d=0;while(1){e=g+(d<<2)|0;if((c[e>>2]|0)==(b|0))break;d=d+1|0;if((d|0)>=(f|0))break a}if((d|0)<(f|0)){c[e>>2]=c[g+(f+-1<<2)>>2];c[(c[a+240>>2]|0)+(f+-1<<2)>>2]=b;c[a+232>>2]=f+-1}}while(0);d=c[b+188>>2]|0;if(d|0){g=c[a+68>>2]|0;g=Eb[c[(c[g>>2]|0)+36>>2]&127](g)|0;ic[c[(c[g>>2]|0)+40>>2]&127](g,d,c[a+24>>2]|0);g=c[a+68>>2]|0;ic[c[(c[g>>2]|0)+12>>2]&127](g,d,c[a+24>>2]|0);c[b+188>>2]=0}f=c[a+8>>2]|0;if((f|0)<=0)return;g=c[a+16>>2]|0;d=0;while(1){e=g+(d<<2)|0;if((c[e>>2]|0)==(b|0))break;d=d+1|0;if((d|0)>=(f|0)){h=15;break}}if((h|0)==15)return;if((d|0)>=(f|0))return;c[e>>2]=c[g+(f+-1<<2)>>2];c[(c[a+16>>2]|0)+(f+-1<<2)>>2]=b;c[a+8>>2]=f+-1;return}function Wi(a,b){a=a|0;b=b|0;var d=0,e=0,f=0,g=0,h=0;f=c[a+328>>2]|0;a:do if((f|0)>0){g=c[a+336>>2]|0;d=0;while(1){e=g+(d<<2)|0;if((c[e>>2]|0)==(b|0))break;d=d+1|0;if((d|0)>=(f|0))break a}if((d|0)<(f|0)){c[e>>2]=c[g+(f+-1<<2)>>2];c[(c[a+336>>2]|0)+(f+-1<<2)>>2]=b;c[a+328>>2]=f+-1}}while(0);d=c[b+188>>2]|0;if(d|0){g=c[a+68>>2]|0;g=Eb[c[(c[g>>2]|0)+36>>2]&127](g)|0;ic[c[(c[g>>2]|0)+40>>2]&127](g,d,c[a+24>>2]|0);g=c[a+68>>2]|0;ic[c[(c[g>>2]|0)+12>>2]&127](g,d,c[a+24>>2]|0);c[b+188>>2]=0}f=c[a+8>>2]|0;if((f|0)<=0)return;g=c[a+16>>2]|0;d=0;while(1){e=g+(d<<2)|0;if((c[e>>2]|0)==(b|0))break;d=d+1|0;if((d|0)>=(f|0)){h=15;break}}if((h|0)==15)return;if((d|0)>=(f|0))return;c[e>>2]=c[g+(f+-1<<2)>>2];c[(c[a+16>>2]|0)+(f+-1<<2)>>2]=b;c[a+8>>2]=f+-1;return}function Xi(b,d){b=b|0;d=d|0;var e=0,f=0,g=0,h=0,i=0;i=c[d+4>>2]|0;e=c[b+872>>2]|0;a:do if((e|0)>(i|0))e=b+880|0;else{if((e|0)<(i|0)?(c[b+876>>2]|0)<(i|0):0){if((i|0)!=0?(c[6435]=(c[6435]|0)+1,f=yc((i<<2|3)+16|0)|0,(f|0)!=0):0){c[(f+4+15&-16)+-4>>2]=f;h=f+4+15&-16}else h=0;f=c[b+872>>2]|0;g=0;while(1){if((g|0)>=(f|0))break;c[h+(g<<2)>>2]=c[(c[b+880>>2]|0)+(g<<2)>>2];g=g+1|0}f=c[b+880>>2]|0;if(f|0){if(!((a[b+884>>0]&1)==0|(f|0)==0)){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}c[b+880>>2]=0}a[b+884>>0]=1;c[b+880>>2]=h;c[b+876>>2]=i}while(1){if((e|0)>=(i|0)){e=b+880|0;break a}c[(c[b+880>>2]|0)+(e<<2)>>2]=0;e=e+1|0}}while(0);c[b+872>>2]=i;e=c[e>>2]|0;f=0;while(1){if((f|0)>=(i|0))break;c[e+(f<<2)>>2]=c[(c[d+12>>2]|0)+(f<<2)>>2];f=f+1|0}return}function Yi(b,d){b=b|0;d=d|0;var e=0,f=0,g=0,h=0,i=0;i=c[d+4>>2]|0;e=c[b+4>>2]|0;a:do if((e|0)>(i|0))e=b+12|0;else{if((e|0)<(i|0)?(c[b+8>>2]|0)<(i|0):0){if((i|0)!=0?(c[6435]=(c[6435]|0)+1,f=yc((i<<2|3)+16|0)|0,(f|0)!=0):0){c[(f+4+15&-16)+-4>>2]=f;h=f+4+15&-16}else h=0;f=c[b+4>>2]|0;g=0;while(1){if((g|0)>=(f|0))break;c[h+(g<<2)>>2]=c[(c[b+12>>2]|0)+(g<<2)>>2];g=g+1|0}f=c[b+12>>2]|0;if(f|0){if(!((a[b+16>>0]&1)==0|(f|0)==0)){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}c[b+12>>2]=0}a[b+16>>0]=1;c[b+12>>2]=h;c[b+8>>2]=i}while(1){if((e|0)>=(i|0)){e=b+12|0;break a}c[(c[b+12>>2]|0)+(e<<2)>>2]=0;e=e+1|0}}while(0);c[b+4>>2]=i;e=c[e>>2]|0;f=0;while(1){if((f|0)>=(i|0))break;c[e+(f<<2)>>2]=c[(c[d+12>>2]|0)+(f<<2)>>2];f=f+1|0}return}function Zi(b){b=b|0;var d=0,e=0;d=c[b+92>>2]|0;if(d|0){if(a[b+96>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+92>>2]=0}a[b+96>>0]=1;c[b+92>>2]=0;c[b+84>>2]=0;c[b+88>>2]=0;d=c[b+64>>2]|0;if(d|0)do{c[b+64>>2]=c[d+8>>2];e=c[d>>2]|0;if(e|0){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0)}c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0);d=c[b+64>>2]|0}while((d|0)!=0);d=c[b+48>>2]|0;if(d|0)do{c[b+48>>2]=c[d+8>>2];e=c[d>>2]|0;if(e|0){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0)}c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0);d=c[b+48>>2]|0}while((d|0)!=0);d=c[b+32>>2]|0;if(!d)return;do{c[b+32>>2]=c[d+8>>2];e=c[d>>2]|0;if(e|0){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0)}c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0);d=c[b+32>>2]|0}while((d|0)!=0);return}function _i(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0;h=c[d>>2]|0;h=Zb[c[(c[h>>2]|0)+56>>2]&31](h,28)|0;j=(a[b+4>>0]|0)==0;i=c[b+8>>2]|0;g=c[b+12>>2]|0;b=c[d>>2]|0;c[h+4>>2]=b;c[h>>2]=5480;a[h+8>>0]=0;c[h+12>>2]=0;if(j){a[h+16>>0]=0;c[h+20>>2]=i;c[h+24>>2]=g;if(!(Ob[c[(c[b>>2]|0)+24>>2]&63](b,c[e+8>>2]|0,c[f+8>>2]|0)|0))return h|0;j=c[h+4>>2]|0;c[h+12>>2]=Ob[c[(c[j>>2]|0)+12>>2]&63](j,c[e+8>>2]|0,c[f+8>>2]|0)|0;a[h+8>>0]=1;return h|0}else{a[h+16>>0]=1;c[h+20>>2]=i;c[h+24>>2]=g;if(!(Ob[c[(c[b>>2]|0)+24>>2]&63](b,c[f+8>>2]|0,c[e+8>>2]|0)|0))return h|0;j=c[h+4>>2]|0;c[h+12>>2]=Ob[c[(c[j>>2]|0)+12>>2]&63](j,c[f+8>>2]|0,c[e+8>>2]|0)|0;a[h+8>>0]=1;return h|0}return 0}function $i(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0.0,h=0.0,i=0.0,j=0.0,k=0.0;c[a+4>>2]=c[b+40>>2];e=c[b>>2]|0;c[a+76>>2]=e;if(d){c[a+44>>2]=c[b+8>>2];c[a+44+4>>2]=c[b+8+4>>2];c[a+44+8>>2]=c[b+8+8>>2];c[a+44+12>>2]=c[b+8+12>>2];a=a+60|0;d=b+24|0;c[a>>2]=c[d>>2];c[a+4>>2]=c[d+4>>2];c[a+8>>2]=c[d+8>>2];c[a+12>>2]=c[d+12>>2];f=+g[b+40>>2];return +f}else{k=+g[b+8>>2];j=+g[b+12>>2];i=+g[b+16>>2];h=+g[e+20>>2]*k+ +g[e+24>>2]*j+ +g[e+28>>2]*i;f=+g[e+36>>2]*k+ +g[e+40>>2]*j+ +g[e+44>>2]*i;g[a+44>>2]=+g[e+4>>2]*k+ +g[e+8>>2]*j+ +g[e+12>>2]*i;g[a+48>>2]=h;g[a+52>>2]=f;g[a+56>>2]=0.0;a=a+60|0;d=b+24|0;c[a>>2]=c[d>>2];c[a+4>>2]=c[d+4>>2];c[a+8>>2]=c[d+8>>2];c[a+12>>2]=c[d+12>>2];f=+g[b+40>>2];return +f}return 0.0}function aj(){var b=0,d=0;c[6435]=(c[6435]|0)+1;b=yc(791)|0;if(!b)b=0;else{c[(b+4+15&-16)+-4>>2]=b;b=b+4+15&-16}c[b>>2]=1025;c[b+116>>2]=0;a[b+120>>0]=0;d=b+124|0;c[d>>2]=0;c[d+4>>2]=0;c[d+8>>2]=0;c[d+12>>2]=0;c[d+16>>2]=0;c[d+20>>2]=0;c[d+24>>2]=0;c[d+28>>2]=0;c[b+300>>2]=0;a[b+304>>0]=0;d=b+308|0;c[d>>2]=0;c[d+4>>2]=0;c[d+8>>2]=0;c[d+12>>2]=0;c[d+16>>2]=0;c[d+20>>2]=0;c[d+24>>2]=0;c[d+28>>2]=0;c[b+484>>2]=0;a[b+488>>0]=0;d=b+492|0;c[d>>2]=0;c[d+4>>2]=0;c[d+8>>2]=0;c[d+12>>2]=0;c[d+16>>2]=0;c[d+20>>2]=0;c[d+24>>2]=0;c[d+28>>2]=0;c[b+668>>2]=0;a[b+672>>0]=0;d=b+676|0;c[d>>2]=0;c[d+4>>2]=0;c[d+8>>2]=0;c[d+12>>2]=0;c[d+16>>2]=0;c[d+20>>2]=0;c[d+24>>2]=0;c[d+28>>2]=0;c[b+740>>2]=0;c[b+744>>2]=0;c[b+748>>2]=0;c[b+768>>2]=0;return b|0}function bj(b,d){b=b|0;d=d|0;var e=0,f=0,h=0,j=0.0,k=0.0,l=0,m=0;f=i;i=i+48|0;if((c[b+136>>2]|0)<=0){i=f;return}e=0;do{m=c[b+144>>2]|0;c[f+32>>2]=(a[m+(e*284|0)+84>>0]|0)==0?1065353216:0;c[f+32+4>>2]=0;c[f+32+8>>2]=1065353216;g[f+32+12>>2]=0.0;l=m+(e*284|0)+140|0;c[f+16>>2]=c[l>>2];c[f+16+4>>2]=c[l+4>>2];c[f+16+8>>2]=c[l+8>>2];c[f+16+12>>2]=c[l+12>>2];l=c[b+120>>2]|0;h=c[(c[d>>2]|0)+8>>2]|0;k=+g[m+(e*284|0)+108+(l<<2)>>2]+ +g[f+16+4>>2];j=+g[m+(e*284|0)+124+(l<<2)>>2]+ +g[f+16+8>>2];g[f>>2]=+g[m+(e*284|0)+92+(l<<2)>>2]+ +g[f+16>>2];g[f+4>>2]=k;g[f+8>>2]=j;g[f+12>>2]=0.0;mc[h&127](d,f+16|0,f,f+32|0);mc[c[(c[d>>2]|0)+8>>2]&127](d,f+16|0,(c[b+144>>2]|0)+(e*284|0)+16|0,f+32|0);e=e+1|0}while((e|0)<(c[b+136>>2]|0));i=f;return}function cj(d,e,f,g,h,i){d=d|0;e=e|0;f=f|0;g=g|0;h=h|0;i=i|0;var j=0,k=0,l=0,m=0;if((d|0)==(c[e+8>>2]|0))zl(e,f,g,h);else{l=b[e+52>>1]|0;j=c[d+12>>2]|0;a[e+52>>0]=0;a[e+53>>0]=0;On(d+16|0,e,f,g,h,i);a:do if((j|0)>1){m=d+24|0;do{if(a[e+54>>0]|0)break a;k=b[e+52>>1]|0;if(!((k&255)<<24>>24)){if((k&65535)>=256?(c[d+8>>2]&1|0)==0:0)break a}else{if((c[e+24>>2]|0)==1)break a;if(!(c[d+8>>2]&2))break a}a[e+52>>0]=0;a[e+53>>0]=0;On(m,e,f,g,h,i);m=m+8|0}while(m>>>0<(d+16+(j<<3)|0)>>>0)}while(0);a[e+52>>0]=l;a[e+53>>0]=(l&65535)>>>8}return}function dj(a,b,d,e){a=a|0;b=b|0;d=+d;e=e|0;switch(b|0){case 2:{if((e|0)<1){g[a+232>>2]=d;c[a+300>>2]=c[a+300>>2]|512;return}if((e|0)<3){g[a+264>>2]=d;c[a+300>>2]=c[a+300>>2]|32;return}if((e|0)==3){g[a+248>>2]=d;c[a+300>>2]=c[a+300>>2]|2048;return}if((e|0)>=6)return;g[a+280>>2]=d;c[a+300>>2]=c[a+300>>2]|128;return}case 3:{if((e|0)<1){g[a+212>>2]=d;c[a+300>>2]=c[a+300>>2]|1;return}if((e|0)!=3)return;g[a+228>>2]=d;c[a+300>>2]=c[a+300>>2]|4;return}case 4:{if((e|0)<1){g[a+244>>2]=d;c[a+300>>2]=c[a+300>>2]|256;return}if((e|0)<3){g[a+276>>2]=d;c[a+300>>2]=c[a+300>>2]|16;return}if((e|0)==3){g[a+260>>2]=d;c[a+300>>2]=c[a+300>>2]|1024;return}if((e|0)>=6)return;g[a+292>>2]=d;c[a+300>>2]=c[a+300>>2]|64;return}default:return}}function ej(b,d){b=b|0;d=d|0;var e=0,f=0,g=0,h=0;f=i;i=i+240|0;c[f+80>>2]=d;d=f+96|0;e=d+40|0;do{c[d>>2]=0;d=d+4|0}while((d|0)<(e|0));c[f+136>>2]=c[f+80>>2];if((Bc(0,b,f+136|0,f,f+96|0)|0)>=0){d=c[2359]|0;if((a[9510]|0)<1)c[2359]=d&-33;if(!(c[2371]|0)){e=c[2370]|0;c[2370]=f+152;c[2366]=f+152;c[2364]=f+152;c[2371]=80;c[2363]=f+152+80;Bc(9436,b,f+136|0,f,f+96|0)|0;if(e|0){Ob[c[9472>>2]&63](9436,0,0)|0;c[2370]=e;c[2371]=0;c[2363]=0;c[2366]=0;c[2364]=0}}else Bc(9436,b,f+136|0,f,f+96|0)|0;c[2359]=c[2359]|d&32}d=(a[9511]|0)==10;do if((c[2378]|0)<0){if(!d?(g=c[2364]|0,g>>>0<(c[2363]|0)>>>0):0){c[2364]=g+1;a[g>>0]=10;break}om(9436,10)|0}else{if(!d?(h=c[2364]|0,h>>>0<(c[2363]|0)>>>0):0){c[2364]=h+1;a[h>>0]=10;break}om(9436,10)|0}while(0);Va()}function fj(a,b,d){a=a|0;b=+b;d=d|0;var e=0,f=0.0,h=0.0,j=0.0,k=0.0,l=0;e=i;i=i+96|0;c[e+32>>2]=1065353216;c[e+32+4>>2]=0;c[e+32+4+4>>2]=0;c[e+32+4+8>>2]=0;c[e+32+4+12>>2]=0;c[e+32+20>>2]=1065353216;c[e+32+24>>2]=0;c[e+32+24+4>>2]=0;c[e+32+24+8>>2]=0;c[e+32+24+12>>2]=0;c[e+32+40>>2]=1065353216;l=e+32+44|0;c[l>>2]=0;c[l+4>>2]=0;c[l+8>>2]=0;c[l+12>>2]=0;c[l+16>>2]=0;mc[c[(c[a>>2]|0)+8>>2]&127](a,e+32|0,e+16|0,e);j=(+g[e>>2]-+g[e+16>>2])*.5;h=(+g[e+4>>2]-+g[e+16+4>>2])*.5;k=(+g[e+8>>2]-+g[e+16+8>>2])*.5;f=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);g[d>>2]=b*.0833333283662796*((h+f)*2.0*(h+f)*2.0+(k+f)*2.0*(k+f)*2.0);g[d+4>>2]=b*.0833333283662796*((j+f)*2.0*(j+f)*2.0+(k+f)*2.0*(k+f)*2.0);g[d+8>>2]=b*.0833333283662796*((j+f)*2.0*(j+f)*2.0+(h+f)*2.0*(h+f)*2.0);g[d+12>>2]=0.0;i=e;return}function gj(a,b,c){a=a|0;b=b|0;c=c|0;var d=0.0,e=0.0,f=0.0,h=0.0,i=0.0,j=0.0,k=0.0,l=0.0;d=+g[a+344>>2];if(!(d!=0.0))return;f=+g[a+348>>2];i=+g[a+352>>2];k=+g[a+356>>2];l=+g[b+4>>2]*i*d;h=+g[b+8>>2]*k*d;g[a+312>>2]=+g[a+312>>2]+ +g[b>>2]*f*d;g[a+316>>2]=+g[a+316>>2]+l;g[a+320>>2]=+g[a+320>>2]+h;f=+g[b>>2]*f;i=+g[b+4>>2]*i;k=+g[b+8>>2]*k;h=+g[c+4>>2];l=+g[c+8>>2];j=+g[c>>2];e=(+g[a+280>>2]*(h*k-l*i)+ +g[a+284>>2]*(l*f-j*k)+ +g[a+288>>2]*(j*i-h*f))*+g[a+548>>2];d=(+g[a+296>>2]*(h*k-l*i)+ +g[a+300>>2]*(l*f-j*k)+ +g[a+304>>2]*(j*i-h*f))*+g[a+552>>2];g[a+328>>2]=+g[a+328>>2]+(+g[a+264>>2]*(h*k-l*i)+ +g[a+268>>2]*(l*f-j*k)+ +g[a+272>>2]*(j*i-h*f))*+g[a+544>>2];g[a+332>>2]=+g[a+332>>2]+e;g[a+336>>2]=+g[a+336>>2]+d;return}function hj(a,b,d,e,f,h,j,k,l,m){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;j=j|0;k=k|0;l=l|0;m=m|0;var n=0;n=i;i=i+16|0;li(12859);+bc[c[(c[a>>2]|0)+44>>2]&3](a,b,d,e,f,h,j,k,l);+bc[c[(c[a>>2]|0)+48>>2]&3](a,b,d,e,f,h,j,k,l);+fc[c[(c[a>>2]|0)+36>>2]&1](a,b,d,k);m=c[2357]|0;a=(c[m+16>>2]|0)+-1|0;c[m+16>>2]=a;if(a|0){i=n;return 0.0}do if(c[m+4>>2]|0){tb(n|0,0)|0;a=c[6434]|0;g[m+8>>2]=+g[m+8>>2]+ +(((c[n+4>>2]|0)-(c[a+4>>2]|0)+(((c[n>>2]|0)-(c[a>>2]|0)|0)*1e6|0)-(c[m+12>>2]|0)|0)>>>0)/1.0e3;if(!(c[m+16>>2]|0)){m=c[2357]|0;break}else{i=n;return 0.0}}while(0);c[2357]=c[m+20>>2];i=n;return 0.0}function ij(b,d,e){b=b|0;d=d|0;e=e|0;var f=0,g=0,h=0,i=0;f=c[b+212>>2]|0;if((f|0)==(c[b+216>>2]|0)?(i=f|0?f<<1:1,(f|0)<(i|0)):0){if(!i)h=0;else{c[6435]=(c[6435]|0)+1;f=yc((i<<2|3)+16|0)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}h=f;f=c[b+212>>2]|0}if((f|0)>0){g=0;do{c[h+(g<<2)>>2]=c[(c[b+220>>2]|0)+(g<<2)>>2];g=g+1|0}while((g|0)!=(f|0))}g=c[b+220>>2]|0;if(g){if(a[b+224>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[g+-4>>2]|0);f=c[b+212>>2]|0}c[b+220>>2]=0}a[b+224>>0]=1;c[b+220>>2]=h;c[b+216>>2]=i}c[(c[b+220>>2]|0)+(f<<2)>>2]=d;c[b+212>>2]=f+1;if(!e)return;Pi(c[d+28>>2]|0,d);Pi(c[d+32>>2]|0,d);return}function jj(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0.0,h=0.0,i=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0;e=c[a+4>>2]|0;if(e|0)gj(e,b,d);e=c[a>>2]|0;if(!e)return;m=+g[b>>2];k=+g[e+128>>2];l=+g[b+4>>2];j=+g[b+8>>2];f=+g[d+4>>2];o=+g[d+8>>2];n=+g[d>>2];i=+g[e+180>>2]*(j*f-l*o)+ +g[e+184>>2]*(m*o-j*n)+(l*n-m*f)*+g[e+188>>2];h=(j*f-l*o)*+g[e+196>>2]+(m*o-j*n)*+g[e+200>>2]+(l*n-m*f)*+g[e+204>>2];f=(j*f-l*o)*+g[e+212>>2]+(m*o-j*n)*+g[e+216>>2]+(l*n-m*f)*+g[e+220>>2];g[e+276>>2]=m*k+ +g[e+276>>2];g[e+280>>2]=k*l+ +g[e+280>>2];g[e+284>>2]=k*j+ +g[e+284>>2];g[e+292>>2]=i+ +g[e+292>>2];g[e+296>>2]=h+ +g[e+296>>2];g[e+300>>2]=f+ +g[e+300>>2];c[e+312>>2]=(c[e+312>>2]|0)+1;return}function kj(a,b,c){a=a|0;b=b|0;c=c|0;var d=0.0,e=0.0,f=0.0,h=0.0,i=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0;v=+g[a+552>>2];u=+g[a+568>>2];t=+g[a+584>>2];s=+g[b>>2];r=+g[b+4>>2];q=+g[b+8>>2];o=+g[b+16>>2];n=+g[b+20>>2];m=+g[b+24>>2];k=+g[b+32>>2];i=+g[b+36>>2];f=+g[b+40>>2];j=+g[a+556>>2];h=+g[a+572>>2];e=+g[a+588>>2];x=+g[a+620>>2];w=+g[a+636>>2];d=+g[a+652>>2];p=x*+g[c>>2]+w*+g[c+4>>2]+d*+g[c+8>>2];l=x*+g[c+16>>2]+w*+g[c+20>>2]+d*+g[c+24>>2];d=x*+g[c+32>>2]+w*+g[c+36>>2]+d*+g[c+40>>2];d=+W(+((v*s+u*r+t*q)*p+(v*o+u*n+t*m)*l+(v*k+u*i+t*f)*d),+((s*j+r*h+q*e)*p+(o*j+n*h+m*e)*l+(k*j+i*h+f*e)*d));return +(d*+g[a+732>>2])}function lj(b,d,e){b=b|0;d=d|0;e=e|0;var f=0,g=0,h=0;a:do if((e|0)!=0&(b&3|0)!=0){f=e;while(1){if((a[b>>0]|0)==(d&255)<<24>>24)break a;b=b+1|0;e=f+-1|0;if((e|0)!=0&(b&3|0)!=0)f=e;else{f=e;e=(e|0)!=0;g=5;break}}}else{f=e;e=(e|0)!=0;g=5}while(0);b:do if((g|0)==5)if(e){if((a[b>>0]|0)!=(d&255)<<24>>24){e=_(d&255,16843009)|0;c:do if(f>>>0>3)while(1){h=c[b>>2]^e;if((h&-2139062144^-2139062144)&h+-16843009|0)break;b=b+4|0;f=f+-4|0;if(f>>>0<=3){g=11;break c}}else g=11;while(0);if((g|0)==11)if(!f){f=0;break}while(1){if((a[b>>0]|0)==(d&255)<<24>>24)break b;b=b+1|0;f=f+-1|0;if(!f){f=0;break}}}}else f=0;while(0);return (f|0?b:0)|0}function mj(a,b){a=a|0;b=b|0;var d=0,e=0,f=0,g=0;d=c[a+8>>2]|0;if((d|0)>0){f=0;do{e=c[(c[a+16>>2]|0)+(f<<2)>>2]|0;if(c[e+236>>2]&2){g=Eb[c[(c[e>>2]|0)+16>>2]&127](e)|0;g=Ob[c[(c[b>>2]|0)+16>>2]&63](b,g,1)|0;d=Ob[c[(c[e>>2]|0)+20>>2]&63](e,c[g+8>>2]|0,b)|0;yb[c[(c[b>>2]|0)+20>>2]&31](b,g,d,1497645650,e);d=c[a+8>>2]|0}f=f+1|0}while((f|0)<(d|0))}if((c[a+212>>2]|0)<=0)return;d=0;do{g=c[(c[a+220>>2]|0)+(d<<2)>>2]|0;e=Eb[c[(c[g>>2]|0)+36>>2]&127](g)|0;e=Ob[c[(c[b>>2]|0)+16>>2]&63](b,e,1)|0;f=Ob[c[(c[g>>2]|0)+40>>2]&63](g,c[e+8>>2]|0,b)|0;yb[c[(c[b>>2]|0)+20>>2]&31](b,e,f,1397641027,g);d=d+1|0}while((d|0)<(c[a+212>>2]|0));return}function nj(a){a=a|0;var b=0.0,d=0,e=0,f=0,h=0;e=i;i=i+32|0;c[a+32>>2]=1566444395;c[a+36>>2]=1566444395;c[a+40>>2]=1566444395;g[a+44>>2]=0.0;c[a+48>>2]=-581039253;c[a+52>>2]=-581039253;c[a+56>>2]=-581039253;g[a+60>>2]=0.0;if((c[a+16>>2]|0)<=0){i=e;return}d=0;do{f=c[a+24>>2]|0;h=c[f+(d*80|0)+64>>2]|0;mc[c[(c[h>>2]|0)+8>>2]&127](h,f+(d*80|0)|0,e+16|0,e);b=+g[e+16>>2];if(+g[a+32>>2]>b)g[a+32>>2]=b;b=+g[e>>2];if(+g[a+48>>2]>2]=b;b=+g[e+16+4>>2];if(+g[a+36>>2]>b)g[a+36>>2]=b;b=+g[e+4>>2];if(+g[a+52>>2]>2]=b;b=+g[e+16+8>>2];if(+g[a+40>>2]>b)g[a+40>>2]=b;b=+g[e+8>>2];if(+g[a+56>>2]>2]=b;d=d+1|0}while((d|0)<(c[a+16>>2]|0));i=e;return}function oj(a,b,d){a=a|0;b=+b;d=d|0;var e=0,f=0.0,h=0.0,j=0.0,k=0;e=i;i=i+96|0;j=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);c[e+32>>2]=1065353216;c[e+32+4>>2]=0;c[e+32+4+4>>2]=0;c[e+32+4+8>>2]=0;c[e+32+4+12>>2]=0;c[e+32+20>>2]=1065353216;c[e+32+24>>2]=0;c[e+32+24+4>>2]=0;c[e+32+24+8>>2]=0;c[e+32+24+12>>2]=0;c[e+32+40>>2]=1065353216;k=e+32+44|0;c[k>>2]=0;c[k+4>>2]=0;c[k+8>>2]=0;c[k+12>>2]=0;c[k+16>>2]=0;mc[c[(c[a>>2]|0)+8>>2]&127](a,e+32|0,e+16|0,e);h=(j+(+g[e>>2]-+g[e+16>>2])*.5)*2.0;f=(j+(+g[e+4>>2]-+g[e+16+4>>2])*.5)*2.0;j=(j+(+g[e+8>>2]-+g[e+16+8>>2])*.5)*2.0;g[d>>2]=b*.0833333283662796*(f*f+j*j);g[d+4>>2]=b*.0833333283662796*(h*h+j*j);g[d+8>>2]=b*.0833333283662796*(h*h+f*f);g[d+12>>2]=0.0;i=e;return}function pj(b){b=b|0;var d=0;d=c[b+72>>2]|0;if(d|0){if(a[b+76>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+72>>2]=0}a[b+76>>0]=1;c[b+72>>2]=0;c[b+64>>2]=0;c[b+68>>2]=0;d=c[b+52>>2]|0;if(d|0){if(a[b+56>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+52>>2]=0}a[b+56>>0]=1;c[b+52>>2]=0;c[b+44>>2]=0;c[b+48>>2]=0;d=c[b+32>>2]|0;if(d|0){if(a[b+36>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+32>>2]=0}a[b+36>>0]=1;c[b+32>>2]=0;c[b+24>>2]=0;c[b+28>>2]=0;d=c[b+12>>2]|0;if(!d){a[b+16>>0]=1;c[b+12>>2]=0;c[b+4>>2]=0;b=b+8|0;c[b>>2]=0;return}if(a[b+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+12>>2]=0;a[b+16>>0]=1;c[b+12>>2]=0;c[b+4>>2]=0;b=b+8|0;c[b>>2]=0;return}function qj(a,b){a=a|0;b=+b;var d=0,e=0,f=0,h=0.0,i=0.0,j=0.0,k=0,l=0,m=0,n=0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0;e=c[a+732>>2]|0;if((e|0)<=0)return;a=c[a+740>>2]|0;d=0;do{n=c[a+(d*52|0)+8>>2]|0;f=c[a+(d*52|0)+12>>2]|0;s=+g[n+40>>2];q=+g[n+44>>2];i=+g[n+48>>2];k=a+(d*52|0)+36|0;r=+g[k>>2];m=a+(d*52|0)+40|0;p=+g[m>>2];l=a+(d*52|0)+44|0;o=+g[l>>2];j=-(+g[a+(d*52|0)+32>>2]*((s-+g[f+40>>2])*r+(q-+g[f+44>>2])*p+(i-+g[f+48>>2])*o)*b);h=+g[n+88>>2]*j;g[n+40>>2]=s+r*h;g[n+44>>2]=q+p*h;g[n+48>>2]=o*h+i;j=+g[f+88>>2]*j;i=j*+g[m>>2];h=j*+g[l>>2];g[f+40>>2]=+g[f+40>>2]-+g[k>>2]*j;g[f+44>>2]=+g[f+44>>2]-i;g[f+48>>2]=+g[f+48>>2]-h;d=d+1|0}while((d|0)!=(e|0));return}function rj(b,d){b=b|0;d=d|0;var e=0,f=0,g=0,h=0;e=c[b+12>>2]|0;if(!e)return;if(!(a[b+8>>0]|0))return;f=c[d+4>>2]|0;if((f|0)==(c[d+8>>2]|0)?(h=f|0?f<<1:1,(f|0)<(h|0)):0){if(!h)e=0;else{c[6435]=(c[6435]|0)+1;e=yc((h<<2|3)+16|0)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}f=c[d+4>>2]|0}if((f|0)>0){g=0;do{c[e+(g<<2)>>2]=c[(c[d+12>>2]|0)+(g<<2)>>2];g=g+1|0}while((g|0)!=(f|0))}g=c[d+12>>2]|0;if(g){if(a[d+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[g+-4>>2]|0);f=c[d+4>>2]|0}c[d+12>>2]=0}a[d+16>>0]=1;c[d+12>>2]=e;c[d+8>>2]=h;e=c[b+12>>2]|0}c[(c[d+12>>2]|0)+(f<<2)>>2]=e;c[d+4>>2]=f+1;return}function sj(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0;g=c[b+328>>2]|0;if((g|0)==(c[b+332>>2]|0)?(j=g|0?g<<1:1,(g|0)<(j|0)):0){if(!j)i=0;else{c[6435]=(c[6435]|0)+1;g=yc((j<<2|3)+16|0)|0;if(!g)g=0;else{c[(g+4+15&-16)+-4>>2]=g;g=g+4+15&-16}i=g;g=c[b+328>>2]|0}if((g|0)>0){h=0;do{c[i+(h<<2)>>2]=c[(c[b+336>>2]|0)+(h<<2)>>2];h=h+1|0}while((h|0)!=(g|0))}h=c[b+336>>2]|0;if(h){if(a[b+340>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0);g=c[b+328>>2]|0}c[b+336>>2]=0}a[b+340>>0]=1;c[b+336>>2]=i;c[b+332>>2]=j}c[(c[b+336>>2]|0)+(g<<2)>>2]=d;c[b+328>>2]=g+1;c[d+284>>2]=c[b+452>>2];Pg(b,d,e,f);return}function tj(b,d){b=b|0;d=d|0;var e=0,f=0,g=0,h=0;e=c[b+20>>2]|0;if(!e)return;if(!(a[b+16>>0]|0))return;f=c[d+4>>2]|0;if((f|0)==(c[d+8>>2]|0)?(h=f|0?f<<1:1,(f|0)<(h|0)):0){if(!h)e=0;else{c[6435]=(c[6435]|0)+1;e=yc((h<<2|3)+16|0)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}f=c[d+4>>2]|0}if((f|0)>0){g=0;do{c[e+(g<<2)>>2]=c[(c[d+12>>2]|0)+(g<<2)>>2];g=g+1|0}while((g|0)!=(f|0))}g=c[d+12>>2]|0;if(g){if(a[d+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[g+-4>>2]|0);f=c[d+4>>2]|0}c[d+12>>2]=0}a[d+16>>0]=1;c[d+12>>2]=e;c[d+8>>2]=h;e=c[b+20>>2]|0}c[(c[d+12>>2]|0)+(f<<2)>>2]=e;c[d+4>>2]=f+1;return}function uj(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0.0,h=0.0,i=0.0,j=0.0,k=0.0;j=+g[a+24>>2];k=+g[a+28>>2];i=+g[a+32>>2];f=j*+g[b>>2]+k*+g[b+4>>2]+i*+g[b+8>>2];h=+g[a+20>>2];if(f>h){g[a+20>>2]=f;c[a+4>>2]=c[b>>2];c[a+4+4>>2]=c[b+4>>2];c[a+4+8>>2]=c[b+8>>2];c[a+4+12>>2]=c[b+12>>2]}else f=h;h=j*+g[b+16>>2]+k*+g[b+20>>2]+i*+g[b+24>>2];if(h>f){g[a+20>>2]=h;c[a+4>>2]=c[b+16>>2];c[a+4+4>>2]=c[b+16+4>>2];c[a+4+8>>2]=c[b+16+8>>2];c[a+4+12>>2]=c[b+16+12>>2]}else h=f;f=j*+g[b+32>>2]+k*+g[b+36>>2]+i*+g[b+40>>2];if(!(f>h))return;g[a+20>>2]=f;c[a+4>>2]=c[b+32>>2];c[a+4+4>>2]=c[b+32+4>>2];c[a+4+8>>2]=c[b+32+8>>2];c[a+4+12>>2]=c[b+32+12>>2];return}function vj(b){b=b|0;var d=0,e=0,f=0,h=0.0;e=i;i=i+96|0;a[b+88>>0]=1;if((a[22568]|0)==0?Wa(22568)|0:0){c[6139]=1065353216;c[6140]=0;c[6141]=0;c[6142]=0;c[6143]=0;c[6144]=1065353216;c[6145]=0;c[6146]=0;c[6147]=0;c[6148]=0;c[6149]=1065353216;g[6150]=0.0;c[6151]=-1082130432;c[6152]=0;c[6153]=0;c[6154]=0;c[6155]=0;c[6156]=-1082130432;c[6157]=0;c[6158]=0;c[6159]=0;c[6160]=0;c[6161]=-1082130432;g[6162]=0.0;_a(22568)}d=e;f=d+96|0;do{c[d>>2]=0;d=d+4|0}while((d|0)<(f|0));mc[c[(c[b>>2]|0)+76>>2]&127](b,24556,e,6);h=+g[b+44>>2];g[b+72>>2]=+g[e>>2]+h;g[b+56>>2]=+g[e+48>>2]-h;g[b+76>>2]=+g[e+20>>2]+h;g[b+60>>2]=+g[e+68>>2]-h;g[b+80>>2]=+g[e+40>>2]+h;g[b+64>>2]=+g[e+88>>2]-h;i=e;return}function wj(d,e){d=d|0;e=e|0;var f=0,g=0,h=0,j=0;j=i;i=i+64|0;h=c[d>>2]|0;g=d+(c[h+-8>>2]|0)|0;h=c[h+-4>>2]|0;c[j>>2]=e;c[j+4>>2]=d;c[j+8>>2]=2776;d=j+12|0;f=d+40|0;do{c[d>>2]=0;d=d+4|0}while((d|0)<(f|0));b[j+12+40>>1]=0;a[j+12+42>>0]=0;a:do if((h|0)==(e|0)){c[j+48>>2]=1;Qb[c[(c[e>>2]|0)+20>>2]&7](e,j,g,g,1,0);d=(c[j+24>>2]|0)==1?g:0}else{yb[c[(c[h>>2]|0)+24>>2]&31](h,j,g,1,0);switch(c[j+36>>2]|0){case 0:{d=((c[j+40>>2]|0)==1?(c[j+28>>2]|0)==1:0)&(c[j+32>>2]|0)==1?c[j+20>>2]|0:0;break a}case 1:break;default:{d=0;break a}}if((c[j+24>>2]|0)!=1?!(((c[j+40>>2]|0)==0?(c[j+28>>2]|0)==1:0)&(c[j+32>>2]|0)==1):0){d=0;break}d=c[j+16>>2]|0}while(0);i=j;return d|0}function xj(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0.0,h=0.0,i=0.0,j=0.0,k=0.0;j=+g[a+88>>2];k=+g[a+92>>2];i=+g[a+96>>2];f=j*+g[b>>2]+k*+g[b+4>>2]+i*+g[b+8>>2];h=+g[a+84>>2];if(f>h){g[a+84>>2]=f;c[a+4>>2]=c[b>>2];c[a+4+4>>2]=c[b+4>>2];c[a+4+8>>2]=c[b+8>>2];c[a+4+12>>2]=c[b+12>>2]}else f=h;h=j*+g[b+16>>2]+k*+g[b+20>>2]+i*+g[b+24>>2];if(h>f){g[a+84>>2]=h;c[a+4>>2]=c[b+16>>2];c[a+4+4>>2]=c[b+16+4>>2];c[a+4+8>>2]=c[b+16+8>>2];c[a+4+12>>2]=c[b+16+12>>2]}else h=f;f=j*+g[b+32>>2]+k*+g[b+36>>2]+i*+g[b+40>>2];if(!(f>h))return;g[a+84>>2]=f;c[a+4>>2]=c[b+32>>2];c[a+4+4>>2]=c[b+32+4>>2];c[a+4+8>>2]=c[b+32+8>>2];c[a+4+12>>2]=c[b+32+12>>2];return}function yj(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0;while(1){j=c[a+12>>2]|0;k=c[j+(((b+d|0)/2|0)<<3)>>2]|0;e=b;f=d;while(1){while(1){h=e+1|0;if((c[j+(e<<3)>>2]|0)<(k|0))e=h;else{i=f;break}}while(1){g=j+(i<<3)|0;f=i+-1|0;if((k|0)<(c[g>>2]|0))i=f;else break}if((e|0)>(i|0))f=i;else{e=j+(e<<3)|0;l=c[e>>2]|0;j=c[e+4>>2]|0;m=c[g+4>>2]|0;c[e>>2]=c[g>>2];c[e+4>>2]=m;e=(c[a+12>>2]|0)+(i<<3)|0;c[e>>2]=l;c[e+4>>2]=j;e=h}if((e|0)>(f|0))break;j=c[a+12>>2]|0}if((f|0)>(b|0))yj(a,b,f);if((e|0)<(d|0))b=e;else break}return}function zj(a,b,e){a=a|0;b=b|0;e=e|0;kh(a,b,e)|0;c[b+276>>2]=c[a+1316>>2];c[b+324>>2]=c[a+1364>>2];c[b+252>>2]=d[a+1309>>0];c[b+300>>2]=c[a+1340>>2];c[b+280>>2]=c[a+1320>>2];c[b+328>>2]=c[a+1368>>2];c[b+256>>2]=d[a+1310>>0];c[b+304>>2]=c[a+1344>>2];c[b+284>>2]=c[a+1324>>2];c[b+332>>2]=c[a+1372>>2];c[b+260>>2]=d[a+1311>>0];c[b+308>>2]=c[a+1348>>2];c[b+288>>2]=c[a+1328>>2];c[b+336>>2]=c[a+1376>>2];c[b+264>>2]=d[a+1312>>0];c[b+312>>2]=c[a+1352>>2];c[b+292>>2]=c[a+1332>>2];c[b+340>>2]=c[a+1380>>2];c[b+268>>2]=d[a+1313>>0];c[b+316>>2]=c[a+1356>>2];c[b+296>>2]=c[a+1336>>2];c[b+344>>2]=c[a+1384>>2];c[b+272>>2]=d[a+1314>>0];c[b+320>>2]=c[a+1360>>2];return 12539}function Aj(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0.0,h=0.0,i=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0;i=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);m=i+ +g[a+28>>2];k=i+ +g[a+32>>2];i=i+ +g[a+36>>2];u=+N(+(+g[b>>2]));t=+N(+(+g[b+4>>2]));s=+N(+(+g[b+8>>2]));q=+N(+(+g[b+16>>2]));p=+N(+(+g[b+20>>2]));o=+N(+(+g[b+24>>2]));l=+N(+(+g[b+32>>2]));j=+N(+(+g[b+36>>2]));h=+N(+(+g[b+40>>2]));r=+g[b+48>>2];n=+g[b+52>>2];f=+g[b+56>>2];g[d>>2]=r-(m*u+k*t+i*s);g[d+4>>2]=n-(m*q+k*p+i*o);g[d+8>>2]=f-(m*l+k*j+i*h);g[d+12>>2]=0.0;g[e>>2]=m*u+k*t+i*s+r;g[e+4>>2]=m*q+k*p+i*o+n;g[e+8>>2]=m*l+k*j+i*h+f;g[e+12>>2]=0.0;return}function Bj(a,c,d,e,f,h){a=a|0;c=c|0;d=+d;e=+e;f=+f;h=h|0;var i=0,j=0;d=(d-+g[a+8>>2])*+g[a+40>>2];e=(e-+g[a+12>>2])*+g[a+44>>2];f=(f-+g[a+16>>2])*+g[a+48>>2];do if(!(d<=0.0)){i=b[a+6>>1]|0;j=b[a+4>>1]|0;if(!(d>=+(i&65535))){i=j&(~~d&65535)&65535|h;break}else{i=j&i&65535|h;break}}else i=h;while(0);b[c>>1]=i;do if(!(e<=0.0)){i=b[a+6>>1]|0;j=b[a+4>>1]|0;if(!(e>=+(i&65535))){i=j&(~~e&65535)&65535|h;break}else{i=j&i&65535|h;break}}else i=h;while(0);b[c+2>>1]=i;if(f<=0.0){h=h&65535;c=c+4|0;b[c>>1]=h;return}j=b[a+6>>1]|0;i=b[a+4>>1]|0;if(!(f>=+(j&65535))){h=i&(~~f&65535)&65535|h;h=h&65535;c=c+4|0;b[c>>1]=h;return}else{h=i&j&65535|h;h=h&65535;c=c+4|0;b[c>>1]=h;return}}function Cj(b){b=b|0;var d=0;c[b>>2]=8520;if(c[b+108>>2]|0){d=c[b+112>>2]|0;Ab[c[c[d>>2]>>2]&255](d);d=c[b+112>>2]|0;if(d|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}d=c[b+108>>2]|0;Ab[c[c[d>>2]>>2]&255](d);d=c[b+108>>2]|0;if(d|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}}d=c[b+88>>2]|0;if(d|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}d=c[b+84>>2]|0;if(d|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}d=c[b+80>>2]|0;if(d|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}d=c[b+60>>2]|0;if(d|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}if(!(a[b+100>>0]|0))return;d=c[b+92>>2]|0;Ab[c[c[d>>2]>>2]&255](d);d=c[b+92>>2]|0;if(!d)return;c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0);return}function Dj(b,d){b=b|0;d=d|0;var e=0,f=0,g=0,h=0;e=c[b+76>>2]|0;if(!e)return;f=c[d+4>>2]|0;if((f|0)==(c[d+8>>2]|0)?(h=f|0?f<<1:1,(f|0)<(h|0)):0){if(!h)e=0;else{c[6435]=(c[6435]|0)+1;e=yc((h<<2|3)+16|0)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}f=c[d+4>>2]|0}if((f|0)>0){g=0;do{c[e+(g<<2)>>2]=c[(c[d+12>>2]|0)+(g<<2)>>2];g=g+1|0}while((g|0)!=(f|0))}g=c[d+12>>2]|0;if(g){if(a[d+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[g+-4>>2]|0);f=c[d+4>>2]|0}c[d+12>>2]=0}a[d+16>>0]=1;c[d+12>>2]=e;c[d+8>>2]=h;e=c[b+76>>2]|0}c[(c[d+12>>2]|0)+(f<<2)>>2]=e;c[d+4>>2]=f+1;return}function Ej(a,b,d,e){a=a|0;b=b|0;d=+d;e=+e;var f=0,h=0.0,i=0.0,j=0.0,l=0,m=0.0,n=0.0,o=0.0;j=+Q(+d);i=+R(+d);f=c[b+444>>2]|0;l=+N(+j)>1.1920928955078125e-07;d=(c[k>>2]=f,+g[k>>2]);if(l){m=+g[b+448>>2];m=+O(+((i*i/(j*j)+1.0)/(1.0/(m*m)+i*i/(j*j)/(d*d))));d=i*i;h=j*j;f=(g[k>>2]=m,c[k>>2]|0)}else{d=i*i;h=j*j}m=+O(+(h+0.0+d));n=(c[k>>2]=f,+g[k>>2])*.5;m=+R(+n)/m;n=+Q(+n);o=n*e+j*m*0.0-i*m*-0.0;h=n*0.0-i*m*e-m*0.0*0.0;d=n*0.0+m*0.0*0.0-j*m*e;e=-(m*0.0*e)-j*m*0.0-i*m*-0.0;g[a>>2]=i*m*h+(n*o+e*-(m*0.0))-d*-(j*m);g[a+4>>2]=d*-(m*0.0)+(n*h+e*-(j*m))-i*m*o;g[a+8>>2]=o*-(j*m)+(i*m*e+n*d)-h*-(m*0.0);g[a+12>>2]=0.0;return}function Fj(a,d,f,h){a=a|0;d=d|0;f=f|0;h=h|0;var i=0,j=0,k=0,l=0,m=0;i=c[a+108>>2]|0;if(i|0){mc[c[(c[i>>2]|0)+28>>2]&127](i,d,f,h);return}i=b[a+56>>1]|0;if((i&65535)<<1>>>0<=1)return;k=1;m=1;do{j=c[a+68>>2]|0;if(b[j+(k<<2)>>1]&1){l=c[a+60>>2]|0;k=e[j+(k<<2)+2>>1]|0;if(!(+g[d>>2]>+g[l+(k<<6)+32>>2])?!(+g[f>>2]<+g[l+(k<<6)+16>>2]):0)j=1;else j=0;if(!(!(+g[d+8>>2]>+g[l+(k<<6)+40>>2])?!(+g[f+8>>2]<+g[l+(k<<6)+24>>2]):0))j=0;if(!(+g[d+4>>2]>+g[l+(k<<6)+36>>2])?!(+g[f+4>>2]<+g[l+(k<<6)+20>>2]|j^1):0){Zb[c[(c[h>>2]|0)+8>>2]&31](h,l+(k<<6)|0)|0;i=b[a+56>>1]|0}}m=m+1<<16>>16;k=m&65535}while(k>>>0<((i&65535)<<1|1)>>>0);return}function Gj(a,b,d){a=a|0;b=+b;d=+d;var e=0,f=0,h=0,i=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0,q=0.0;f=c[a+732>>2]|0;if((f|0)<=0)return;a=c[a+740>>2]|0;e=0;do{d=+g[a+(e*52|0)+24>>2];if(d>0.0?(p=c[a+(e*52|0)+8>>2]|0,h=c[a+(e*52|0)+12>>2]|0,i=+g[p+8>>2],j=+g[h+8>>2]-i,k=+g[p+12>>2],l=+g[h+12>>2]-k,m=+g[p+16>>2],n=+g[h+16>>2]-m,o=+g[a+(e*52|0)+28>>2],o+(j*j+l*l+n*n)>1.1920928955078125e-07):0){d=(o-(j*j+l*l+n*n))/(d*(o+(j*j+l*l+n*n)))*b;q=d*+g[p+88>>2];g[p+8>>2]=i-j*q;g[p+12>>2]=k-l*q;g[p+16>>2]=m-n*q;d=d*+g[h+88>>2];g[h+8>>2]=+g[h+8>>2]+j*d;g[h+12>>2]=l*d+ +g[h+12>>2];g[h+16>>2]=n*d+ +g[h+16>>2]}e=e+1|0}while((e|0)!=(f|0));return}function Hj(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0.0,h=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0;e=i;i=i+96|0;c[e+32>>2]=1065353216;c[e+32+4>>2]=0;c[e+32+4+4>>2]=0;c[e+32+4+8>>2]=0;c[e+32+4+12>>2]=0;c[e+32+20>>2]=1065353216;c[e+32+24>>2]=0;c[e+32+24+4>>2]=0;c[e+32+24+8>>2]=0;c[e+32+24+12>>2]=0;c[e+32+40>>2]=1065353216;n=e+32+44|0;c[n>>2]=0;c[n+4>>2]=0;c[n+8>>2]=0;c[n+12>>2]=0;c[n+16>>2]=0;mc[c[(c[a>>2]|0)+8>>2]&127](a,e+32|0,e+16|0,e);l=+g[e>>2];m=+g[e+16>>2];j=+g[e+4>>2];k=+g[e+16+4>>2];f=+g[e+8>>2];h=+g[e+16+8>>2];g[d>>2]=+O(+((l-m)*(l-m)+(j-k)*(j-k)+(f-h)*(f-h)))*.5;g[b>>2]=(m+l)*.5;g[b+4>>2]=(k+j)*.5;g[b+8>>2]=(h+f)*.5;g[b+12>>2]=0.0;i=e;return}function Ij(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0.0,h=0.0,i=0.0,j=0.0,k=0.0;c[a+4>>2]=c[b+24>>2];e=c[b>>2]|0;c[a+8>>2]=e;if(d){c[a+52>>2]=c[b+8>>2];c[a+52+4>>2]=c[b+8+4>>2];c[a+52+8>>2]=c[b+8+8>>2];c[a+52+12>>2]=c[b+8+12>>2]}else{k=+g[b+8>>2];j=+g[b+12>>2];i=+g[b+16>>2];h=+g[e+20>>2]*k+ +g[e+24>>2]*j+ +g[e+28>>2]*i;f=+g[e+36>>2]*k+ +g[e+40>>2]*j+ +g[e+44>>2]*i;g[a+52>>2]=+g[e+4>>2]*k+ +g[e+8>>2]*j+ +g[e+12>>2]*i;g[a+56>>2]=h;g[a+60>>2]=f;g[a+64>>2]=0.0}k=+g[b+24>>2];g[a+68>>2]=(1.0-k)*+g[a+20>>2]+ +g[a+36>>2]*k;g[a+72>>2]=(1.0-k)*+g[a+24>>2]+ +g[a+40>>2]*k;g[a+76>>2]=(1.0-k)*+g[a+28>>2]+ +g[a+44>>2]*k;return +(+g[b+24>>2])}function Jj(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0.0,h=0.0,i=0.0,j=0.0,k=0;f=+g[b>>2];h=+g[b+16>>2];j=f>2];if((j+g[a+24>>2])return;k=f>h?b:b+16|0;if(+g[(+g[k>>2]>i?k:b+32|0)>>2]<+g[a+8>>2])return;f=+g[b+8>>2];h=+g[b+24>>2];j=f>2];if((j+g[a+32>>2])return;k=f>h?b+8|0:b+24|0;if(+g[(+g[k>>2]>i?k:b+40|0)>>2]<+g[a+16>>2])return;f=+g[b+4>>2];h=+g[b+20>>2];j=f>2];if((j+g[a+28>>2])return;k=f>h?b+4|0:b+20|0;if(+g[(+g[k>>2]>i?k:b+36|0)>>2]<+g[a+12>>2])return;k=c[a+4>>2]|0;mc[c[(c[k>>2]|0)+8>>2]&127](k,b,d,e);return}function Kj(b,d,e,f){b=b|0;d=d|0;e=e|0;f=+f;var h=0,j=0.0,k=0.0,l=0.0;h=i;i=i+16|0;g[b+32>>2]=f;c[b+8>>2]=c[d>>2];c[b+8+4>>2]=c[d+4>>2];c[b+8+8>>2]=c[d+8>>2];c[b+8+12>>2]=c[d+12>>2];j=+g[b+28>>2];l=+g[e+4>>2]-j*+g[d+4>>2];k=+g[e+8>>2]-j*+g[d+8>>2];g[h>>2]=+g[e>>2]-+g[d>>2]*j;g[h+4>>2]=l;g[h+8>>2]=k;g[h+12>>2]=0.0;f=+g[b+24>>2]+j+f;g[b+32>>2]=f;if(!(f<0.0)){b=b+4|0;b=c[b>>2]|0;e=c[b>>2]|0;e=e+16|0;e=c[e>>2]|0;hc[e&15](b,d,h,f);i=h;return}a[b+36>>0]=1;b=b+4|0;b=c[b>>2]|0;e=c[b>>2]|0;e=e+16|0;e=c[e>>2]|0;hc[e&15](b,d,h,f);i=h;return}function Lj(b){b=b|0;var d=0,e=0,f=0,g=0,h=0;c[b>>2]=6228;d=c[b+8>>2]|0;e=c[d+8>>2]|0;if((e|0)>0){g=0;do{f=c[(c[d+16>>2]|0)+(g*12|0)+8>>2]|0;if(f|0){Ab[c[c[f>>2]>>2]&255](f);h=c[b+4>>2]|0;Cb[c[(c[h>>2]|0)+60>>2]&127](h,f)}g=g+1|0}while((g|0)!=(e|0));d=c[b+8>>2]|0}$h(d);d=c[b+8>>2]|0;Ab[c[c[d>>2]>>2]&255](d);d=c[b+8>>2]|0;if(d|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}d=c[b+24>>2]|0;if(!d){a[b+28>>0]=1;c[b+24>>2]=0;c[b+16>>2]=0;h=b+20|0;c[h>>2]=0;return}if(a[b+28>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+24>>2]=0;a[b+28>>0]=1;c[b+24>>2]=0;c[b+16>>2]=0;h=b+20|0;c[h>>2]=0;return}function Mj(a,b){a=a|0;b=b|0;var d=0,e=0.0,f=0.0,h=0.0,j=0.0,k=0.0,l=0.0,m=0.0;d=i;i=i+64|0;c[d+4>>2]=0;c[d+4+4>>2]=0;c[d+24>>2]=0;c[d+24+4>>2]=0;c[d+44>>2]=0;c[d+44+4>>2]=0;c[d+44+8>>2]=0;c[d+44+12>>2]=0;c[d+44+16>>2]=0;j=+g[b>>2];f=+g[b+4>>2];m=+g[b+8>>2];k=+g[b+12>>2];h=j*(2.0/(j*j+f*f+m*m+k*k));e=f*(2.0/(j*j+f*f+m*m+k*k));l=m*(2.0/(j*j+f*f+m*m+k*k));g[d>>2]=1.0-(f*e+m*l);g[d+4>>2]=j*e-k*l;g[d+8>>2]=j*l+k*e;g[d+12>>2]=0.0;g[d+16>>2]=j*e+k*l;g[d+20>>2]=1.0-(j*h+m*l);g[d+24>>2]=f*l-k*h;g[d+28>>2]=0.0;g[d+32>>2]=j*l-k*e;g[d+36>>2]=f*l+k*h;g[d+40>>2]=1.0-(j*h+f*e);g[d+44>>2]=0.0;Pd(a,d);i=d;return}function Nj(b,d,e){b=b|0;d=d|0;e=e|0;var f=0;while(1){b=yc(152)|0;if(b|0){f=6;break}b=c[6564]|0;c[6564]=b+0;if(!b){f=5;break}jc[b&3]()}if((f|0)==5){e=Ya(4)|0;c[e>>2]=9640;pb(e|0,2800,251)}else if((f|0)==6){c[b>>2]=4816;a[b+20>>0]=1;c[b+16>>2]=0;c[b+8>>2]=0;c[b+12>>2]=0;a[b+40>>0]=1;c[b+36>>2]=0;c[b+28>>2]=0;c[b+32>>2]=0;a[b+60>>0]=1;c[b+56>>2]=0;c[b+48>>2]=0;c[b+52>>2]=0;a[b+80>>0]=1;c[b+76>>2]=0;c[b+68>>2]=0;c[b+72>>2]=0;c[b+100>>2]=e;g[b+104>>2]=0.0;a[b+148>>0]=1;c[b+144>>2]=0;c[b+136>>2]=0;c[b+140>>2]=0;c[b+116>>2]=d;c[b+120>>2]=0;c[b+124>>2]=2;c[b+128>>2]=1;g[b+112>>2]=0.0;g[b+108>>2]=0.0;return b|0}return 0}function Oj(){var b=0;c[6435]=(c[6435]|0)+1;b=yc(215)|0;if(!b)b=0;else{c[(b+4+15&-16)+-4>>2]=b;b=b+4+15&-16}c[b>>2]=4756;a[b+20>>0]=1;c[b+16>>2]=0;c[b+8>>2]=0;c[b+12>>2]=0;a[b+40>>0]=1;c[b+36>>2]=0;c[b+28>>2]=0;c[b+32>>2]=0;a[b+60>>0]=1;c[b+56>>2]=0;c[b+48>>2]=0;c[b+52>>2]=0;a[b+80>>0]=1;c[b+76>>2]=0;c[b+68>>2]=0;c[b+72>>2]=0;a[b+100>>0]=1;c[b+96>>2]=0;c[b+88>>2]=0;c[b+92>>2]=0;a[b+120>>0]=1;c[b+116>>2]=0;c[b+108>>2]=0;c[b+112>>2]=0;a[b+140>>0]=1;c[b+136>>2]=0;c[b+128>>2]=0;c[b+132>>2]=0;a[b+160>>0]=1;c[b+156>>2]=0;c[b+148>>2]=0;c[b+152>>2]=0;a[b+180>>0]=1;c[b+176>>2]=0;c[b+168>>2]=0;c[b+172>>2]=0;c[b+192>>2]=0;return b|0}function Pj(b,d,e){b=b|0;d=d|0;e=e|0;var f=0,g=0;if((c[d+60>>2]|0)==2){f=c[d+48>>2]|0;hh(b+64|0,f)|0;g=c[b+68>>2]|0;if(g|0){c[6436]=(c[6436]|0)+1;hd(c[g+-4>>2]|0)}c[b+68>>2]=f;c[b+76>>2]=(c[b+76>>2]|0)+-1}else{f=c[d+48>>2]|0;hh(b+4|0,f)|0;g=c[b+8>>2]|0;if(g|0){c[6436]=(c[6436]|0)+1;hd(c[g+-4>>2]|0)}c[b+8>>2]=f;c[b+16>>2]=(c[b+16>>2]|0)+-1}f=c[d+52>>2]|0;g=c[d+56>>2]|0;if(!f)c[b+124+(c[d+60>>2]<<2)>>2]=g;else c[f+56>>2]=g;f=c[d+56>>2]|0;if(f|0)c[f+52>>2]=c[d+52>>2];g=c[b+136>>2]|0;ic[c[(c[g>>2]|0)+16>>2]&127](g,d,e);c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0);a[b+194>>0]=1;return}function Qj(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0,g=0;f=i;i=i+96|0;g=c[b+192>>2]|0;c[f+64>>2]=0;c[f+64+4>>2]=g;c[f+64+8>>2]=b;c[f+64+12>>2]=b+4;c[f+64+16>>2]=-1;c[f+64+20>>2]=-1;b=c[d+192>>2]|0;c[f+40>>2]=0;c[f+40+4>>2]=b;c[f+40+8>>2]=d;c[f+40+12>>2]=d+4;c[f+40+16>>2]=-1;c[f+40+20>>2]=-1;b=c[a+24>>2]|0;b=Ib[c[(c[b>>2]|0)+8>>2]&31](b,f+64|0,f+40|0,0)|0;if(!b){i=f;return}c[f+4>>2]=0;c[f+8>>2]=f+64;c[f+12>>2]=f+40;c[f>>2]=5976;c[f+32>>2]=e;yb[c[(c[b>>2]|0)+8>>2]&31](b,f+64|0,f+40|0,a+28|0,f);Ab[c[c[b>>2]>>2]&255](b);g=c[a+24>>2]|0;Cb[c[(c[g>>2]|0)+60>>2]&127](g,b);i=f;return}function Rj(a,b,d){a=a|0;b=+b;d=d|0;var e=0.0,f=0.0,h=0.0,i=0.0,j=0.0;e=+g[a+28>>2];i=+g[a+32>>2];h=+g[a+36>>2];j=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);f=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);h=+Sb[c[(c[a>>2]|0)+48>>2]&15](a)+h;switch(c[a+52>>2]|0){case 0:{j=b*.25*(f+i)*(f+i)+b/12.0*(j+e)*(j+e)*4.0;g[d>>2]=b*.5*(f+i)*(f+i);g[d+4>>2]=j;g[d+8>>2]=j;g[d+12>>2]=0.0;return}case 2:{g[d>>2]=b*.25*(j+e)*(j+e)+b/12.0*h*h*4.0;g[d+4>>2]=b*.25*(j+e)*(j+e)+b/12.0*h*h*4.0;g[d+8>>2]=b*.5*(j+e)*(j+e);g[d+12>>2]=0.0;return}default:{i=b*.25*(j+e)*(j+e)+b/12.0*(f+i)*(f+i)*4.0;g[d>>2]=i;g[d+4>>2]=b*.5*(j+e)*(j+e);g[d+8>>2]=i;g[d+12>>2]=0.0;return}}}function Sj(b,d){b=b|0;d=d|0;c[b+8>>2]=0;c[b>>2]=6292;a[b+28>>0]=1;c[b+24>>2]=0;c[b+16>>2]=0;c[b+20>>2]=0;c[b+32>>2]=1566444395;c[b+36>>2]=1566444395;c[b+40>>2]=1566444395;g[b+44>>2]=0.0;c[b+48>>2]=-581039253;c[b+52>>2]=-581039253;c[b+56>>2]=-581039253;g[b+60>>2]=0.0;c[b+64>>2]=0;c[b+68>>2]=1;g[b+72>>2]=0.0;c[b+76>>2]=1065353216;c[b+80>>2]=1065353216;c[b+84>>2]=1065353216;g[b+88>>2]=0.0;c[b+4>>2]=31;if(!d)return;c[6435]=(c[6435]|0)+1;d=yc(79)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}a[d+36>>0]=1;c[d+32>>2]=0;c[d+24>>2]=0;c[d+28>>2]=0;a[d+56>>0]=1;c[d+52>>2]=0;c[d+44>>2]=0;c[d+48>>2]=0;c[d>>2]=0;c[d+4>>2]=0;c[d+8>>2]=-1;c[d+12>>2]=0;c[d+16>>2]=0;c[b+64>>2]=d;return}function Tj(a){a=a|0;var b=0;c[a>>2]=3068;b=c[a+92>>2]|0;Ab[c[c[b>>2]>>2]&255](b);b=c[a+92>>2]|0;if(b|0){c[6436]=(c[6436]|0)+1;hd(c[b+-4>>2]|0)}b=c[a+96>>2]|0;Ab[c[c[b>>2]>>2]&255](b);b=c[a+96>>2]|0;if(b|0){c[6436]=(c[6436]|0)+1;hd(c[b+-4>>2]|0)}b=c[a+100>>2]|0;Ab[c[c[b>>2]>>2]&255](b);b=c[a+100>>2]|0;if(b|0){c[6436]=(c[6436]|0)+1;hd(c[b+-4>>2]|0)}b=c[a+104>>2]|0;Ab[c[c[b>>2]>>2]&255](b);b=c[a+104>>2]|0;if(b|0){c[6436]=(c[6436]|0)+1;hd(c[b+-4>>2]|0)}b=c[a+108>>2]|0;Ab[c[c[b>>2]>>2]&255](b);b=c[a+108>>2]|0;if(!b){kf(a);return}c[6436]=(c[6436]|0)+1;hd(c[b+-4>>2]|0);kf(a);return}function Uj(b,d,e,f){b=b|0;d=d|0;e=+e;f=f|0;var h=0,i=0;c[6435]=(c[6435]|0)+1;h=yc(203)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}c[h>>2]=4872;i=h+60|0;a[h+144>>0]=1;c[h+140>>2]=0;c[h+132>>2]=0;c[h+136>>2]=0;c[h+176>>2]=f;g[h+56>>2]=.019999999552965164;c[i>>2]=0;c[i+4>>2]=0;c[i+8>>2]=0;c[i+12>>2]=0;a[h+170>>0]=1;c[h+8>>2]=b;g[h+52>>2]=e;g[h+48>>2]=0.0;c[h+12>>2]=d;a[h+171>>0]=1;g[h+172>>2]=0.0;g[h+16>>2]=0.0;g[h+20>>2]=0.0;g[h+44>>2]=29.399999618530273;g[h+24>>2]=55.0;g[h+28>>2]=10.0;a[h+168>>0]=0;a[h+169>>0]=0;a[h+180>>0]=1;g[h+36>>2]=.7853981852531433;g[h+40>>2]=.7071067690849304;g[h+108>>2]=0.0;a[h+181>>0]=0;a[h+182>>0]=0;return h|0}function Vj(a,b,d){a=a|0;b=b|0;d=d|0;var e=0.0,f=0.0,h=0,i=0.0,j=0.0,k=0.0,l=0,m=0;m=c[b+52>>2]|0;l=c[m+32>>2]|0;b=c[l>>2]|0;m=c[m+24>>2]|0;if((m|0)<=1){m=b;m=m+8|0;c[a>>2]=c[m>>2];c[a+4>>2]=c[m+4>>2];c[a+8>>2]=c[m+8>>2];c[a+12>>2]=c[m+12>>2];return}j=+g[d>>2];k=+g[d+4>>2];i=+g[d+8>>2];f=j*+g[b+8>>2]+k*+g[b+12>>2]+i*+g[b+16>>2];d=1;h=0;while(1){b=c[l+(d<<2)>>2]|0;e=j*+g[b+8>>2]+k*+g[b+12>>2]+i*+g[b+16>>2];b=e>f;h=b?d:h;d=d+1|0;if((d|0)==(m|0))break;else f=b?e:f}m=c[l+(h<<2)>>2]|0;m=m+8|0;c[a>>2]=c[m>>2];c[a+4>>2]=c[m+4>>2];c[a+8>>2]=c[m+8>>2];c[a+12>>2]=c[m+12>>2];return} -function Ld(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;var h=0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0.0,H=0.0,I=0.0,J=0.0,K=0,L=0,M=0,N=0,O=0;h=i;i=i+256|0;if(!(c[b+16>>2]|0)){K=c[b+12>>2]|0;b=c[b+20>>2]|0;n=+g[d>>2];q=+g[d+4>>2];u=+g[d+8>>2];k=+g[d+16>>2];r=+g[d+20>>2];j=+g[d+24>>2];m=+g[d+32>>2];s=+g[d+36>>2];l=+g[d+40>>2];F=+g[d+48>>2];E=+g[d+52>>2];D=+g[d+56>>2];J=+g[e>>2];I=+g[e+16>>2];y=+g[e+32>>2];H=+g[e+4>>2];G=+g[e+20>>2];w=+g[e+36>>2];v=+g[e+8>>2];z=+g[e+24>>2];x=+g[e+40>>2];C=-+g[e+48>>2];B=-+g[e+52>>2];p=-+g[e+56>>2];d=c[(c[K>>2]|0)+64>>2]|0;A=-+g[b+48>>2];t=-+g[b+52>>2];o=-+g[b+56>>2];g[h+16>>2]=(n*J+k*I+m*y)*A+(n*H+k*G+m*w)*t+(n*v+k*z+m*x)*o;g[h+16+4>>2]=(q*J+r*I+s*y)*A+(q*H+r*G+s*w)*t+(q*v+r*z+s*x)*o;g[h+16+8>>2]=(u*J+j*I+l*y)*A+(u*H+j*G+l*w)*t+(u*v+j*z+l*x)*o;g[h+16+12>>2]=0.0;ic[d&127](h+168|0,K,h+16|0);o=+g[h+168>>2];t=+g[h+168+4>>2];A=+g[h+168+8>>2];y=F*J+E*I+D*y+(J*C+I*B+y*p)+((n*J+k*I+m*y)*o+(q*J+r*I+s*y)*t+(u*J+j*I+l*y)*A);w=F*H+E*G+D*w+(H*C+G*B+w*p)+((n*H+k*G+m*w)*o+(q*H+r*G+s*w)*t+(u*H+j*G+l*w)*A);A=F*v+E*z+D*x+(v*C+z*B+x*p)+((n*v+k*z+m*x)*o+(q*v+r*z+s*x)*t+(u*v+j*z+l*x)*A);x=+g[b+48>>2];l=+g[b+52>>2];z=+g[b+56>>2];j=z*A+(x*y+l*w)-+g[b+64>>2];v=+g[e>>2];u=+g[e+4>>2];t=+g[e+8>>2];s=+g[e+16>>2];r=+g[e+20>>2];q=+g[e+24>>2];o=+g[e+32>>2];m=+g[e+36>>2];k=+g[e+40>>2];n=(y-x*j)*s+(w-l*j)*r+(A-z*j)*q+ +g[e+52>>2];p=(y-x*j)*o+(w-l*j)*m+(A-z*j)*k+ +g[e+56>>2];g[h+32>>2]=t*(A-z*j)+(v*(y-x*j)+u*(w-l*j))+ +g[e+48>>2];g[h+32+4>>2]=n;g[h+32+8>>2]=p;g[h+32+12>>2]=0.0;p=+g[b+48>>2];n=+g[b+52>>2];l=+g[b+56>>2];g[h>>2]=v*p+u*n+t*l;g[h+4>>2]=p*s+n*r+l*q;g[h+8>>2]=p*o+n*m+l*k;g[h+12>>2]=0.0;hc[c[(c[f>>2]|0)+16>>2]&15](f,h,h+32|0,j);i=h;return}else{N=c[b+4>>2]|0;a[N+312>>0]=0;c[N>>2]=0;a[N+356>>0]=1;c[N+292>>2]=1566444395;c[N+296>>2]=1566444395;c[N+300>>2]=1566444395;g[N+304>>2]=0.0;c[N+336>>2]=0;c[N+336+4>>2]=0;c[N+336+8>>2]=0;c[N+336+12>>2]=0;a[N+336+16>>0]=0;a[N+332>>0]=a[N+332>>0]&-16;N=c[b+12>>2]|0;M=c[b+16>>2]|0;L=c[N+4>>2]|0;K=c[M+4>>2]|0;I=+Sb[c[(c[N>>2]|0)+48>>2]&15](N);O=c[b+16>>2]|0;J=+Sb[c[(c[O>>2]|0)+48>>2]&15](O);O=c[b+4>>2]|0;b=c[b+8>>2]|0;c[h+168>>2]=9208;c[h+168+4>>2]=0;c[h+168+8>>2]=1065353216;c[h+168+12>>2]=0;g[h+168+16>>2]=0.0;c[h+168+20>>2]=b;c[h+168+24>>2]=O;c[h+168+28>>2]=N;c[h+168+32>>2]=M;c[h+168+36>>2]=L;c[h+168+40>>2]=K;g[h+168+44>>2]=I;g[h+168+48>>2]=J;a[h+168+52>>0]=0;c[h+168+60>>2]=-1;c[h+168+72>>2]=1;c[h+168+76>>2]=1;g[h+32+128>>2]=999999984306749440.0;c[h+32>>2]=c[d>>2];c[h+32+4>>2]=c[d+4>>2];c[h+32+8>>2]=c[d+8>>2];c[h+32+12>>2]=c[d+12>>2];c[h+32+16>>2]=c[d+16>>2];c[h+32+16+4>>2]=c[d+16+4>>2];c[h+32+16+8>>2]=c[d+16+8>>2];c[h+32+16+12>>2]=c[d+16+12>>2];c[h+32+32>>2]=c[d+32>>2];c[h+32+32+4>>2]=c[d+32+4>>2];c[h+32+32+8>>2]=c[d+32+8>>2];c[h+32+32+12>>2]=c[d+32+12>>2];c[h+32+48>>2]=c[d+48>>2];c[h+32+48+4>>2]=c[d+48+4>>2];c[h+32+48+8>>2]=c[d+48+8>>2];c[h+32+48+12>>2]=c[d+48+12>>2];c[h+32+64>>2]=c[e>>2];c[h+32+64+4>>2]=c[e+4>>2];c[h+32+64+8>>2]=c[e+8>>2];c[h+32+64+12>>2]=c[e+12>>2];c[h+32+80>>2]=c[e+16>>2];c[h+32+80+4>>2]=c[e+16+4>>2];c[h+32+80+8>>2]=c[e+16+8>>2];c[h+32+80+12>>2]=c[e+16+12>>2];c[h+32+96>>2]=c[e+32>>2];c[h+32+96+4>>2]=c[e+32+4>>2];c[h+32+96+8>>2]=c[e+32+8>>2];c[h+32+96+12>>2]=c[e+32+12>>2];c[h+32+112>>2]=c[e+48>>2];c[h+32+112+4>>2]=c[e+48+4>>2];c[h+32+112+8>>2]=c[e+48+8>>2];c[h+32+112+12>>2]=c[e+48+12>>2];Vc(h+168|0,h+32|0,f,0,0);i=h;return}}function Md(d,e,f){d=d|0;e=e|0;f=f|0;var g=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0;t=i;i=i+32|0;g=Eb[c[(c[d>>2]|0)+28>>2]&127](d)|0;c[e+20>>2]=g;c[e>>2]=0;if(!g){s=d+4|0;f=e+4|0;s=c[s>>2]|0;c[f>>2]=s;f=d+8|0;f=c[f>>2]|0;s=e+8|0;c[s>>2]=f;s=d+12|0;s=c[s>>2]|0;f=e+12|0;c[f>>2]=s;f=d+16|0;f=c[f>>2]|0;d=e+16|0;c[d>>2]=f;i=t;return 19362}s=Ob[c[(c[f>>2]|0)+16>>2]&63](f,32,g)|0;g=c[s+8>>2]|0;c[e>>2]=Zb[c[(c[f>>2]|0)+28>>2]&31](f,g)|0;r=Eb[c[(c[d>>2]|0)+28>>2]&127](d)|0;a:do if((r|0)>0){q=0;while(1){Yb[c[(c[d>>2]|0)+16>>2]&3](d,t+28|0,t+4|0,t+16|0,t+8|0,t+24|0,t+20|0,t,t+12|0,q);c[g+24>>2]=c[t>>2];c[g+28>>2]=c[t+4>>2];k=g+12|0;m=g+16|0;p=g+4|0;c[g>>2]=0;c[g+4>>2]=0;c[g+8>>2]=0;c[g+12>>2]=0;c[g+16>>2]=0;c[g+20>>2]=0;switch(c[t+12>>2]|0){case 2:{j=c[t>>2]|0;if(j|0){j=Ob[c[(c[f>>2]|0)+16>>2]&63](f,4,j*3|0)|0;k=c[j+8>>2]|0;c[g+8>>2]=Zb[c[(c[f>>2]|0)+28>>2]&31](f,k)|0;if((c[t>>2]|0)>0){l=c[t+24>>2]|0;m=0;do{n=l+(_(c[t+20>>2]|0,m)|0)|0;o=m*3|0;c[k+(o<<2)>>2]=c[n>>2];c[k+(o+1<<2)>>2]=c[n+4>>2];c[k+(o+2<<2)>>2]=c[n+8>>2];m=m+1|0}while((m|0)<(c[t>>2]|0))}yb[c[(c[f>>2]|0)+20>>2]&31](f,j,19243,1497453121,c[j+8>>2]|0)}break}case 3:{j=c[t>>2]|0;if(j|0){n=Ob[c[(c[f>>2]|0)+16>>2]&63](f,8,j)|0;o=c[n+8>>2]|0;c[k>>2]=Zb[c[(c[f>>2]|0)+28>>2]&31](f,o)|0;j=c[t>>2]|0;if((j|0)>0){k=c[t+24>>2]|0;l=c[t+20>>2]|0;m=0;do{u=k+(_(l,m)|0)|0;b[o+(m<<3)>>1]=b[u>>1]|0;b[o+(m<<3)+2>>1]=b[u+2>>1]|0;b[o+(m<<3)+4>>1]=b[u+4>>1]|0;m=m+1|0}while((m|0)!=(j|0))}yb[c[(c[f>>2]|0)+20>>2]&31](f,n,19258,1497453121,c[n+8>>2]|0)}break}case 5:{j=c[t>>2]|0;if(j|0){k=Ob[c[(c[f>>2]|0)+16>>2]&63](f,4,j)|0;l=c[k+8>>2]|0;c[m>>2]=Zb[c[(c[f>>2]|0)+28>>2]&31](f,l)|0;if((c[t>>2]|0)>0){j=0;do{u=(c[t+24>>2]|0)+(_(c[t+20>>2]|0,j)|0)|0;a[l+(j<<2)>>0]=a[u>>0]|0;a[l+(j<<2)+1>>0]=a[u+1>>0]|0;a[l+(j<<2)+2>>0]=a[u+2>>0]|0;j=j+1|0}while((j|0)<(c[t>>2]|0))}yb[c[(c[f>>2]|0)+20>>2]&31](f,k,19285,1497453121,c[k+8>>2]|0)}break}default:{}}switch(c[t+16>>2]|0){case 0:{j=c[t+4>>2]|0;if(j|0){j=Ob[c[(c[f>>2]|0)+16>>2]&63](f,16,j)|0;k=c[j+8>>2]|0;c[g>>2]=Zb[c[(c[f>>2]|0)+28>>2]&31](f,k)|0;l=c[t+4>>2]|0;if((l|0)>0){m=c[t+28>>2]|0;n=c[t+8>>2]|0;o=0;do{u=m+(_(n,o)|0)|0;c[k+(o<<4)>>2]=c[u>>2];c[k+(o<<4)+4>>2]=c[u+4>>2];c[k+(o<<4)+8>>2]=c[u+8>>2];o=o+1|0}while((o|0)!=(l|0))}yb[c[(c[f>>2]|0)+20>>2]&31](f,j,19308,1497453121,c[j+8>>2]|0)}break}case 1:{j=c[t+4>>2]|0;if(j|0){n=Ob[c[(c[f>>2]|0)+16>>2]&63](f,32,j)|0;o=c[n+8>>2]|0;c[p>>2]=Zb[c[(c[f>>2]|0)+28>>2]&31](f,o)|0;j=c[t+4>>2]|0;if((j|0)>0){k=c[t+28>>2]|0;l=c[t+8>>2]|0;m=0;do{u=k+(_(l,m)|0)|0;h[o+(m<<5)>>3]=+h[u>>3];h[o+(m<<5)+8>>3]=+h[u+8>>3];h[o+(m<<5)+16>>3]=+h[u+16>>3];m=m+1|0}while((m|0)!=(j|0))}yb[c[(c[f>>2]|0)+20>>2]&31](f,n,19327,1497453121,c[n+8>>2]|0)}break}default:{}}Cb[c[(c[d>>2]|0)+24>>2]&127](d,q);q=q+1|0;if((q|0)==(r|0)){g=f;break a}else g=g+32|0}}else g=f;while(0);yb[c[(c[g>>2]|0)+20>>2]&31](f,s,19347,1497453121,c[s+8>>2]|0);f=d+4|0;u=e+4|0;f=c[f>>2]|0;c[u>>2]=f;u=d+8|0;u=c[u>>2]|0;f=e+8|0;c[f>>2]=u;f=d+12|0;f=c[f>>2]|0;u=e+12|0;c[u>>2]=f;d=d+16|0;d=c[d>>2]|0;u=e+16|0;c[u>>2]=d;i=t;return 19362}function Nd(b,d,e,f,h,i){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;i=i|0;var j=0,l=0,m=0,n=0.0,o=0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0,C=0,D=0;D=c[b+88>>2]|0;if((D|0)==(c[b+92>>2]|0)?(o=D|0?D<<1:1,(D|0)<(o|0)):0){if(!o){j=0;l=D}else{c[6435]=(c[6435]|0)+1;j=yc((o*152|3)+16|0)|0;if(!j)j=0;else{c[(j+4+15&-16)+-4>>2]=j;j=j+4+15&-16}l=c[b+88>>2]|0}if((l|0)>0){m=0;do{_m(j+(m*152|0)|0,(c[b+96>>2]|0)+(m*152|0)|0,152)|0;m=m+1|0}while((m|0)!=(l|0))}l=c[b+96>>2]|0;if(l|0){if(a[b+100>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[l+-4>>2]|0)}c[b+96>>2]=0}a[b+100>>0]=1;c[b+96>>2]=j;c[b+92>>2]=o;j=c[b+88>>2]|0}else j=D;c[b+88>>2]=j+1;C=c[b+96>>2]|0;c[C+(D*152|0)+140>>2]=h;c[C+(D*152|0)+16>>2]=0;c[C+(D*152|0)+16+4>>2]=0;c[C+(D*152|0)+16+8>>2]=0;c[C+(D*152|0)+16+12>>2]=0;g[C+(D*152|0)+48>>2]=-0.0;g[C+(D*152|0)+52>>2]=-0.0;g[C+(D*152|0)+56>>2]=-0.0;g[C+(D*152|0)+60>>2]=0.0;b=c[b+16>>2]|0;o=c[b+(e*244|0)+240>>2]|0;B=c[b+(f*244|0)+240>>2]|0;c[C+(D*152|0)+144>>2]=e;c[C+(D*152|0)+148>>2]=f;h=c[i+88>>2]|0;c[C+(D*152|0)+104>>2]=h;c[C+(D*152|0)+132>>2]=0;g[C+(D*152|0)+100>>2]=0.0;g[C+(D*152|0)+96>>2]=0.0;x=-+g[d>>2];y=-+g[d+4>>2];z=-+g[d+8>>2];g[C+(D*152|0)>>2]=x;g[C+(D*152|0)+4>>2]=y;g[C+(D*152|0)+8>>2]=z;g[C+(D*152|0)+12>>2]=0.0;A=(c[k>>2]=h,+g[k>>2]);if(o|0){j=(g[k>>2]=(+g[o+264>>2]*x+ +g[o+268>>2]*y+ +g[o+272>>2]*z)*+g[o+544>>2],c[k>>2]|0);l=(g[k>>2]=(+g[o+280>>2]*x+ +g[o+284>>2]*y+ +g[o+288>>2]*z)*+g[o+548>>2],c[k>>2]|0);m=(g[k>>2]=(+g[o+296>>2]*x+ +g[o+300>>2]*y+ +g[o+304>>2]*z)*+g[o+552>>2],c[k>>2]|0)}else{j=0;l=0;m=0}c[C+(D*152|0)+64>>2]=j;c[C+(D*152|0)+68>>2]=l;c[C+(D*152|0)+72>>2]=m;g[C+(D*152|0)+76>>2]=0.0;u=+g[d>>2];v=+g[d+4>>2];w=+g[d+8>>2];d=c[d+12>>2]|0;g[C+(D*152|0)+32>>2]=u;g[C+(D*152|0)+36>>2]=v;g[C+(D*152|0)+40>>2]=w;c[C+(D*152|0)+44>>2]=d;if(B|0){j=(g[k>>2]=(u*+g[B+264>>2]+v*+g[B+268>>2]+w*+g[B+272>>2])*+g[B+544>>2],c[k>>2]|0);l=(g[k>>2]=(u*+g[B+280>>2]+v*+g[B+284>>2]+w*+g[B+288>>2])*+g[B+548>>2],c[k>>2]|0);m=(g[k>>2]=(u*+g[B+296>>2]+v*+g[B+300>>2]+w*+g[B+304>>2])*+g[B+552>>2],c[k>>2]|0)}else{j=0;l=0;m=0}c[C+(D*152|0)+80>>2]=j;c[C+(D*152|0)+84>>2]=l;c[C+(D*152|0)+88>>2]=m;g[C+(D*152|0)+92>>2]=0.0;if(o|0){n=+g[o+264>>2]*x+ +g[o+268>>2]*y+ +g[o+272>>2]*z;p=+g[o+280>>2]*x+ +g[o+284>>2]*y+ +g[o+288>>2]*z;q=+g[o+296>>2]*x+ +g[o+300>>2]*y+ +g[o+304>>2]*z}else{n=0.0;p=0.0;q=0.0}if(B|0){r=+g[B+264>>2]*u+ +g[B+268>>2]*v+ +g[B+272>>2]*w;s=u*+g[B+280>>2]+v*+g[B+284>>2]+w*+g[B+288>>2];t=u*+g[B+296>>2]+v*+g[B+300>>2]+w*+g[B+304>>2]}else{r=0.0;s=0.0;t=0.0}s=1.0/(n*x+p*y+q*z+0.0+(r*u+s*v+t*w));g[C+(D*152|0)+108>>2]=s;if(o|0){p=+g[b+(e*244|0)+192>>2];q=+g[b+(e*244|0)+196>>2];r=+g[b+(e*244|0)+200>>2];n=(+g[b+(e*244|0)+176>>2]+ +g[b+(e*244|0)+208>>2])*0.0+(+g[b+(e*244|0)+180>>2]+ +g[b+(e*244|0)+212>>2])*0.0+(+g[b+(e*244|0)+184>>2]+ +g[b+(e*244|0)+216>>2])*0.0}else{p=0.0;q=0.0;r=0.0;n=0.0}n=n+(p*x+q*y+r*z);if(!B){t=0.0;x=0.0;z=0.0;y=-0.0;u=t*u;x=x*v;x=u+x;z=z*w;z=x+z;z=y+z;z=n+z;z=0.0-z;z=s*z;f=C+(D*152|0)+112|0;g[f>>2]=z;f=C+(D*152|0)+116|0;g[f>>2]=0.0;A=-A;f=C+(D*152|0)+120|0;g[f>>2]=A;f=C+(D*152|0)+124|0;c[f>>2]=h;return}t=+g[b+(f*244|0)+192>>2];x=+g[b+(f*244|0)+196>>2];z=+g[b+(f*244|0)+200>>2];y=(+g[b+(f*244|0)+176>>2]+ +g[b+(f*244|0)+208>>2])*-0.0+(+g[b+(f*244|0)+180>>2]+ +g[b+(f*244|0)+212>>2])*-0.0+(+g[b+(f*244|0)+184>>2]+ +g[b+(f*244|0)+216>>2])*-0.0;u=t*u;x=x*v;x=u+x;z=z*w;z=x+z;z=y+z;z=n+z;z=0.0-z;z=s*z;f=C+(D*152|0)+112|0;g[f>>2]=z;f=C+(D*152|0)+116|0;g[f>>2]=0.0;A=-A;f=C+(D*152|0)+120|0;g[f>>2]=A;f=C+(D*152|0)+124|0;c[f>>2]=h;return}function Od(b,d){b=b|0;d=d|0;var e=0,f=0.0,h=0,j=0,l=0,m=0.0,n=0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0;n=i;i=i+32|0;c[b+236>>2]=2;c[b+312>>2]=0;c[b+312+4>>2]=0;c[b+312+8>>2]=0;c[b+312+12>>2]=0;c[b+312+16>>2]=0;c[b+312+20>>2]=0;c[b+312+24>>2]=0;c[b+312+28>>2]=0;c[b+544>>2]=1065353216;c[b+548>>2]=1065353216;c[b+552>>2]=1065353216;g[b+556>>2]=0.0;c[b+348>>2]=1065353216;c[b+352>>2]=1065353216;c[b+356>>2]=1065353216;e=b+360|0;h=e+36|0;do{c[e>>2]=0;e=e+4|0}while((e|0)<(h|0));c[b+412>>2]=0;c[b+412+4>>2]=0;c[b+412+8>>2]=0;c[b+412+12>>2]=0;c[b+412+16>>2]=0;c[b+412+20>>2]=0;c[b+412+24>>2]=0;c[b+412+28>>2]=0;f=+g[d+92>>2];m=+g[d+96>>2];g[n+20>>2]=f;g[n+16>>2]=m;g[n+12>>2]=0.0;g[n+8>>2]=1.0;c[b+444>>2]=c[(f<0.0?n+12|0:f>1.0?n+8|0:n+20|0)>>2];g[n+4>>2]=0.0;g[n>>2]=1.0;c[b+448>>2]=c[(m<0.0?n+4|0:m>1.0?n:n+16|0)>>2];c[b+472>>2]=c[d+112>>2];c[b+476>>2]=c[d+116>>2];e=c[d+4>>2]|0;c[b+480>>2]=e;c[b+608>>2]=0;c[b+612>>2]=0;a[b+452>>0]=a[d+120>>0]|0;c[b+456>>2]=c[d+124>>2];c[b+460>>2]=c[d+128>>2];c[b+464>>2]=c[d+132>>2];c[b+468>>2]=c[d+136>>2];if(!e){c[b+4>>2]=c[d+8>>2];c[b+4+4>>2]=c[d+8+4>>2];c[b+4+8>>2]=c[d+8+8>>2];c[b+4+12>>2]=c[d+8+12>>2];c[b+20>>2]=c[d+24>>2];c[b+20+4>>2]=c[d+24+4>>2];c[b+20+8>>2]=c[d+24+8>>2];c[b+20+12>>2]=c[d+24+12>>2];c[b+36>>2]=c[d+40>>2];c[b+36+4>>2]=c[d+40+4>>2];c[b+36+8>>2]=c[d+40+8>>2];c[b+36+12>>2]=c[d+40+12>>2];c[b+52>>2]=c[d+56>>2];c[b+52+4>>2]=c[d+56+4>>2];c[b+52+8>>2]=c[d+56+8>>2];c[b+52+12>>2]=c[d+56+12>>2];e=b+4|0;h=b+20|0;j=b+36|0;l=b+52|0}else{Cb[c[(c[e>>2]|0)+8>>2]&127](e,b+4|0);e=b+4|0;h=b+20|0;j=b+36|0;l=b+52|0}c[b+68>>2]=c[e>>2];c[b+68+4>>2]=c[e+4>>2];c[b+68+8>>2]=c[e+8>>2];c[b+68+12>>2]=c[e+12>>2];c[b+84>>2]=c[h>>2];c[b+84+4>>2]=c[h+4>>2];c[b+84+8>>2]=c[h+8>>2];c[b+84+12>>2]=c[h+12>>2];c[b+100>>2]=c[j>>2];c[b+100+4>>2]=c[j+4>>2];c[b+100+8>>2]=c[j+8>>2];c[b+100+12>>2]=c[j+12>>2];c[b+116>>2]=c[l>>2];c[b+116+4>>2]=c[l+4>>2];c[b+116+8>>2]=c[l+8>>2];c[b+116+12>>2]=c[l+12>>2];c[b+132>>2]=0;c[b+132+4>>2]=0;c[b+132+8>>2]=0;c[b+132+12>>2]=0;c[b+132+16>>2]=0;c[b+132+20>>2]=0;c[b+132+24>>2]=0;c[b+132+28>>2]=0;c[b+224>>2]=c[d+100>>2];c[b+232>>2]=c[d+104>>2];c[b+228>>2]=c[d+108>>2];Cb[c[(c[b>>2]|0)+12>>2]&127](b,c[d+72>>2]|0);e=c[5815]|0;c[5815]=e+1;c[b+508>>2]=e;f=+g[d>>2];e=c[b+204>>2]|0;if(f==0.0){c[b+204>>2]=e|1;m=0.0}else{c[b+204>>2]=e&-2;m=1.0/f}g[b+344>>2]=m;p=f*+g[b+384>>2];o=f*+g[b+388>>2];g[b+364>>2]=f*+g[b+380>>2];g[b+368>>2]=p;g[b+372>>2]=o;g[b+376>>2]=0.0;f=+g[d+76>>2];h=f!=0.0?(g[k>>2]=1.0/f,c[k>>2]|0):0;f=+g[d+80>>2];e=f!=0.0?(g[k>>2]=1.0/f,c[k>>2]|0):0;f=+g[d+84>>2];d=f!=0.0?(g[k>>2]=1.0/f,c[k>>2]|0):0;c[b+396>>2]=h;c[b+400>>2]=e;c[b+404>>2]=d;g[b+408>>2]=0.0;r=m*+g[b+352>>2];x=m*+g[b+356>>2];g[b+560>>2]=m*+g[b+348>>2];g[b+564>>2]=r;g[b+568>>2]=x;g[b+572>>2]=0.0;x=+g[b+4>>2];r=(c[k>>2]=h,+g[k>>2]);w=+g[b+8>>2];f=(c[k>>2]=e,+g[k>>2]);v=+g[b+12>>2];o=(c[k>>2]=d,+g[k>>2]);u=+g[b+20>>2];t=+g[b+24>>2];s=+g[b+28>>2];q=+g[b+36>>2];p=+g[b+40>>2];m=+g[b+44>>2];g[b+264>>2]=x*x*r+w*w*f+v*v*o;g[b+268>>2]=x*r*u+w*f*t+v*o*s;g[b+272>>2]=x*r*q+w*f*p+v*o*m;g[b+276>>2]=0.0;g[b+280>>2]=x*r*u+w*f*t+v*o*s;g[b+284>>2]=u*r*u+t*f*t+s*o*s;g[b+288>>2]=r*u*q+f*t*p+o*s*m;g[b+292>>2]=0.0;g[b+296>>2]=x*r*q+w*f*p+v*o*m;g[b+300>>2]=u*r*q+t*f*p+s*o*m;g[b+304>>2]=q*r*q+p*f*p+m*o*m;g[b+308>>2]=0.0;c[b+504>>2]=0;c[b+512>>2]=0;c[b+512+4>>2]=0;c[b+512+8>>2]=0;c[b+512+12>>2]=0;c[b+512+16>>2]=0;c[b+512+20>>2]=0;c[b+512+24>>2]=0;c[b+512+28>>2]=0;m=+g[b+344>>2];o=m*+g[b+352>>2];p=m*+g[b+356>>2];g[b+560>>2]=+g[b+348>>2]*m;g[b+564>>2]=o;g[b+568>>2]=p;e=b+572|0;h=e+36|0;do{c[e>>2]=0;e=e+4|0}while((e|0)<(h|0));i=n;return}function Pd(a,b){a=a|0;b=b|0;var d=0,e=0,f=0,h=0,i=0.0,j=0.0,k=0.0,l=0,m=0.0,n=0,o=0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0;n=c[a+192>>2]|0;m=+Sb[c[(c[n>>2]|0)+48>>2]&15](n);n=c[a+712>>2]|0;if((n|0)>0){o=0;do{l=c[a+720>>2]|0;f=l+(o*104|0)+8|0;q=+g[f>>2];h=l+(o*104|0)+12|0;p=+g[h>>2];d=l+(o*104|0)+16|0;k=+g[d>>2];i=q*+g[b>>2]+p*+g[b+4>>2]+k*+g[b+8>>2]+ +g[b+48>>2];j=q*+g[b+16>>2]+p*+g[b+20>>2]+k*+g[b+24>>2]+ +g[b+52>>2];k=q*+g[b+32>>2]+p*+g[b+36>>2]+k*+g[b+40>>2]+ +g[b+56>>2];g[f>>2]=i;g[h>>2]=j;g[d>>2]=k;g[l+(o*104|0)+20>>2]=0.0;d=l+(o*104|0)+24|0;p=+g[d>>2];h=l+(o*104|0)+28|0;q=+g[h>>2];f=l+(o*104|0)+32|0;r=+g[f>>2];s=p*+g[b+16>>2]+q*+g[b+20>>2]+r*+g[b+24>>2]+ +g[b+52>>2];t=p*+g[b+32>>2]+q*+g[b+36>>2]+r*+g[b+40>>2]+ +g[b+56>>2];g[d>>2]=p*+g[b>>2]+q*+g[b+4>>2]+r*+g[b+8>>2]+ +g[b+48>>2];g[h>>2]=s;g[f>>2]=t;g[l+(o*104|0)+36>>2]=0.0;f=l+(o*104|0)+72|0;t=+g[f>>2];h=l+(o*104|0)+76|0;s=+g[h>>2];d=l+(o*104|0)+80|0;r=+g[d>>2];q=t*+g[b+16>>2]+s*+g[b+20>>2]+r*+g[b+24>>2];p=t*+g[b+32>>2]+s*+g[b+36>>2]+r*+g[b+40>>2];g[f>>2]=+g[b>>2]*t+ +g[b+4>>2]*s+ +g[b+8>>2]*r;g[h>>2]=q;g[d>>2]=p;g[l+(o*104|0)+84>>2]=0.0;l=c[l+(o*104|0)+96>>2]|0;d=hh(a+928|0,l)|0;a:do if(d){f=c[a+936>>2]|0;if((f|0)<=-1){d=c[a+928>>2]|0;break}if((f|0)>0){h=0;while(1){e=c[d+32>>2]|0;h=h+1|0;if(!e)break a;if((h|0)>=(f|0)){d=e;break}else d=e}}}else d=0;while(0);g[l>>2]=i-m;g[l+4>>2]=j-m;g[l+8>>2]=k-m;g[l+12>>2]=0.0;g[l+16>>2]=m+i;g[l+20>>2]=m+j;g[l+24>>2]=m+k;g[l+28>>2]=0.0;lf(a+928|0,d,l);o=o+1|0}while((o|0)!=(n|0))}Bg(a);d=c[a+928>>2]|0;if(d){o=c[a+192>>2]|0;r=+Sb[c[(c[o>>2]|0)+48>>2]&15](o);t=+g[d+4>>2]-r;s=+g[d+8>>2]-r;g[a+892>>2]=+g[d>>2]-r;g[a+896>>2]=t;g[a+900>>2]=s;g[a+904>>2]=0.0;s=r+ +g[d+20>>2];t=r+ +g[d+24>>2];g[a+908>>2]=r+ +g[d+16>>2];g[a+912>>2]=s;g[a+916>>2]=t;g[a+920>>2]=0.0;d=c[a+188>>2]|0;if(d|0){o=c[a+684>>2]|0;n=c[o+32>>2]|0;yb[c[(c[n>>2]|0)+16>>2]&31](n,d,a+892|0,a+908|0,c[o+36>>2]|0)}}else{c[a+892>>2]=0;c[a+892+4>>2]=0;c[a+892+8>>2]=0;c[a+892+12>>2]=0;c[a+892+16>>2]=0;c[a+892+20>>2]=0;c[a+892+24>>2]=0;c[a+892+28>>2]=0}f=c[a+732>>2]|0;if((f|0)<=0){eg(a);o=a+1148|0;c[o>>2]=c[b>>2];c[o+4>>2]=c[b+4>>2];c[o+8>>2]=c[b+8>>2];c[o+12>>2]=c[b+12>>2];o=a+1164|0;n=b+16|0;c[o>>2]=c[n>>2];c[o+4>>2]=c[n+4>>2];c[o+8>>2]=c[n+8>>2];c[o+12>>2]=c[n+12>>2];o=a+1180|0;n=b+32|0;c[o>>2]=c[n>>2];c[o+4>>2]=c[n+4>>2];c[o+8>>2]=c[n+8>>2];c[o+12>>2]=c[n+12>>2];a=a+1196|0;b=b+48|0;c[a>>2]=c[b>>2];c[a+4>>2]=c[b+4>>2];c[a+8>>2]=c[b+8>>2];c[a+12>>2]=c[b+12>>2];return}d=c[a+740>>2]|0;e=0;do{n=c[d+(e*52|0)+8>>2]|0;o=c[d+(e*52|0)+12>>2]|0;r=+g[n+8>>2]-+g[o+8>>2];s=+g[n+12>>2]-+g[o+12>>2];t=+g[n+16>>2]-+g[o+16>>2];t=+O(+(r*r+s*s+t*t));g[d+(e*52|0)+16>>2]=t;g[d+(e*52|0)+28>>2]=t*t;e=e+1|0}while((e|0)!=(f|0));d=c[a+740>>2]|0;e=0;do{g[d+(e*52|0)+24>>2]=(+g[(c[d+(e*52|0)+8>>2]|0)+88>>2]+ +g[(c[d+(e*52|0)+12>>2]|0)+88>>2])/+g[(c[d+(e*52|0)+4>>2]|0)+4>>2];e=e+1|0}while((e|0)!=(f|0));eg(a);o=a+1148|0;c[o>>2]=c[b>>2];c[o+4>>2]=c[b+4>>2];c[o+8>>2]=c[b+8>>2];c[o+12>>2]=c[b+12>>2];o=a+1164|0;n=b+16|0;c[o>>2]=c[n>>2];c[o+4>>2]=c[n+4>>2];c[o+8>>2]=c[n+8>>2];c[o+12>>2]=c[n+12>>2];o=a+1180|0;n=b+32|0;c[o>>2]=c[n>>2];c[o+4>>2]=c[n+4>>2];c[o+8>>2]=c[n+8>>2];c[o+12>>2]=c[n+12>>2];a=a+1196|0;b=b+48|0;c[a>>2]=c[b>>2];c[a+4>>2]=c[b+4>>2];c[a+8>>2]=c[b+8>>2];c[a+12>>2]=c[b+12>>2];return}function Qd(a,b){a=a|0;b=b|0;var d=0,e=0.0,f=0.0,h=0,j=0.0,l=0,m=0.0,n=0.0,o=0.0,p=0,q=0,r=0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0,E=0,F=0,G=0,H=0,I=0;F=i;i=i+96|0;d=c[a+216>>2]|0;if(+g[d+4>>2]==0.0){E=0;i=F;return E|0}E=c[b>>2]|0;if(!(Zb[c[(c[d>>2]|0)+8>>2]&31](d,c[E+188>>2]|0)|0)){E=1;i=F;return E|0}b=c[E+192>>2]|0;D=c[a+216>>2]|0;if((c[b+4>>2]|0)!=32){c[F+32>>2]=0;c[F+32+4>>2]=b;c[F+32+8>>2]=E;c[F+32+12>>2]=E+4;c[F+32+16>>2]=-1;c[F+32+20>>2]=-1;bd(a+68|0,a+132|0,F+32|0,D);E=1;i=F;return E|0}if((E|0)==0?1:(c[E+236>>2]|0)!=8){E=1;i=F;return E|0}if(c[E+752>>2]|0?(c[E+988>>2]|0)==0:0)gg(E);A=+g[a+180>>2]-+g[a+116>>2];B=+g[a+184>>2]-+g[a+120>>2];C=+g[a+188>>2]-+g[a+124>>2];b=c[E+988>>2]|0;if(!b){q=c[E+752>>2]|0;if((q|0)>0){p=c[E+760>>2]|0;f=1.0;d=0;r=0;b=-1;l=1065353216;h=0;do{I=c[p+(r*44|0)+8>>2]|0;H=c[p+(r*44|0)+12>>2]|0;G=c[p+(r*44|0)+16>>2]|0;e=+Mh(a+116|0,A,B,C,+g[I+8>>2],+g[I+12>>2],+g[I+16>>2],+g[H+8>>2],+g[H+12>>2],+g[H+16>>2],+g[G+8>>2],+g[G+12>>2],+g[G+16>>2],f);if(e>0.0){f=e;d=d+1|0;b=r;l=(g[k>>2]=e,c[k>>2]|0);h=3}r=r+1|0}while((r|0)!=(q|0))}else{d=0;b=-1;l=1065353216;h=0}}else{c[F+32>>2]=3220;c[F+32+4>>2]=c[a+116>>2];c[F+32+4+4>>2]=c[a+116+4>>2];c[F+32+4+8>>2]=c[a+116+8>>2];c[F+32+4+12>>2]=c[a+116+12>>2];g[F+32+36>>2]=A;g[F+32+40>>2]=B;g[F+32+44>>2]=C;g[F+32+48>>2]=0.0;c[F+32+20>>2]=c[a+180>>2];c[F+32+20+4>>2]=c[a+180+4>>2];c[F+32+20+8>>2]=c[a+180+8>>2];c[F+32+20+12>>2]=c[a+180+12>>2];c[F+32+52>>2]=1065353216;c[F+32+56>>2]=0;c[F+32+60>>2]=0;ff(b,a+116|0,a+180|0,F+32|0);b=c[F+32+56>>2]|0;if(!b){d=0;b=-1;l=1065353216;h=0}else{d=1;b=(b-(c[E+760>>2]|0)|0)/44|0;l=c[F+32+52>>2]|0;h=3}}r=c[E+772>>2]|0;if((r|0)>0){q=c[E+780>>2]|0;f=(c[k>>2]=l,+g[k>>2]);p=0;do{I=c[q+(p*104|0)+8>>2]|0;x=+g[I+8>>2];y=+g[I+12>>2];z=+g[I+16>>2];I=c[q+(p*104|0)+12>>2]|0;o=+g[I+8>>2];s=+g[I+12>>2];t=+g[I+16>>2];I=c[q+(p*104|0)+16>>2]|0;u=+g[I+8>>2];v=+g[I+12>>2];w=+g[I+16>>2];e=+Mh(a+116|0,A,B,C,x,y,z,o,s,t,u,v,w,f);if(e>0.0){f=e;d=d+1|0;b=p;l=(g[k>>2]=e,c[k>>2]|0);h=4}I=c[q+(p*104|0)+20>>2]|0;j=+g[I+8>>2];m=+g[I+12>>2];n=+g[I+16>>2];e=+Mh(a+116|0,A,B,C,x,y,z,o,s,t,j,m,n,f);if(e>0.0){f=e;d=d+1|0;b=p;l=(g[k>>2]=e,c[k>>2]|0);h=4}e=+Mh(a+116|0,A,B,C,o,s,t,u,v,w,j,m,n,f);if(e>0.0){f=e;d=d+1|0;b=p;l=(g[k>>2]=e,c[k>>2]|0);h=4}e=+Mh(a+116|0,A,B,C,x,y,z,u,v,w,j,m,n,f);if(e>0.0){f=e;d=d+1|0;b=p;l=(g[k>>2]=e,c[k>>2]|0);h=4}p=p+1|0}while((p|0)!=(r|0))}if(!d){I=1;i=F;return I|0}if(!((c[k>>2]=l,+g[k>>2])<=+g[D+4>>2])){I=1;i=F;return I|0}c[F+32>>2]=0;c[F+32+4>>2]=b;m=+g[a+180>>2]-+g[a+116>>2];n=+g[a+184>>2]-+g[a+120>>2];o=+g[a+188>>2]-+g[a+124>>2];e=1.0/+O(+(m*m+n*n+o*o));if((h|0)==3){d=c[E+748+12>>2]|0;e=+g[d+(b*44|0)+20>>2];j=+g[d+(b*44|0)+24>>2];f=+g[d+(b*44|0)+28>>2];if(m*e+n*j+o*f>0.0){m=-e;j=-j;f=-f;e=0.0}else{m=e;e=+g[d+(b*44|0)+32>>2]}}else{m=-(m*e);j=-(n*e);f=-(o*e);e=0.0}c[F>>2]=E;c[F+4>>2]=F+32;g[F+8>>2]=m;g[F+12>>2]=j;g[F+16>>2]=f;g[F+20>>2]=e;c[F+24>>2]=l;+_b[c[(c[D>>2]|0)+12>>2]&15](D,F,1);I=1;i=F;return I|0}function Rd(b,d,e){b=b|0;d=d|0;e=e|0;var f=0,h=0,j=0,k=0,l=0,m=0,n=0.0,o=0.0;m=i;i=i+400|0;f=c[d+36>>2]|0;d=c[e+36>>2]|0;e=c[b+24>>2]|0;if(((e|0)==(c[b+28>>2]|0)?c[e+1132>>2]|0:0)?(k=(_(c[d+380>>2]|0,c[e+1112>>2]|0)|0)+(c[f+380>>2]|0)|0,a[(c[e+1140>>2]|0)+k>>0]|0):0){c[5802]=(c[5802]|0)+1;i=m;return}c[m+344+4>>2]=35;c[m+344+8>>2]=0;c[m+344+12>>2]=1065353216;c[m+344+16>>2]=1065353216;c[m+344+20>>2]=1065353216;g[m+344+24>>2]=0.0;c[m+344>>2]=3436;c[m+344+52>>2]=f;g[m+344+44>>2]=0.0;c[m+288+4>>2]=35;c[m+288+8>>2]=0;c[m+288+12>>2]=1065353216;c[m+288+16>>2]=1065353216;c[m+288+20>>2]=1065353216;g[m+288+24>>2]=0.0;c[m+288>>2]=3436;c[m+288+52>>2]=d;g[m+288+44>>2]=0.0;if((a[22456]|0)==0?Wa(22456)|0:0){if((a[22464]|0)==0?Wa(22464)|0:0){c[5698]=1065353216;c[5699]=0;c[5700]=0;c[5701]=0;c[5702]=0;c[5703]=1065353216;c[5704]=0;c[5705]=0;c[5706]=0;c[5707]=0;c[5708]=1065353216;g[5709]=0.0;_a(22464)}c[5710]=c[5698];c[5711]=c[5699];c[5712]=c[5700];c[5713]=c[5701];c[5714]=c[5702];c[5715]=c[5703];c[5716]=c[5704];c[5717]=c[5705];c[5718]=c[5706];c[5719]=c[5707];c[5720]=c[5708];c[5721]=c[5709];c[5722]=0;c[5723]=0;c[5724]=0;c[5725]=0;_a(22456)}if((a[22456]|0)==0?Wa(22456)|0:0){if((a[22464]|0)==0?Wa(22464)|0:0){c[5698]=1065353216;c[5699]=0;c[5700]=0;c[5701]=0;c[5702]=0;c[5703]=1065353216;c[5704]=0;c[5705]=0;c[5706]=0;c[5707]=0;c[5708]=1065353216;g[5709]=0.0;_a(22464)}c[5710]=c[5698];c[5711]=c[5699];c[5712]=c[5700];c[5713]=c[5701];c[5714]=c[5702];c[5715]=c[5703];c[5716]=c[5704];c[5717]=c[5705];c[5718]=c[5706];c[5719]=c[5707];c[5720]=c[5708];c[5721]=c[5709];c[5722]=0;c[5723]=0;c[5724]=0;c[5725]=0;_a(22456)}o=+g[f+232>>2]-+g[d+232>>2];n=+g[f+236>>2]-+g[d+236>>2];g[m>>2]=+g[f+228>>2]-+g[d+228>>2];g[m+4>>2]=o;g[m+8>>2]=n;g[m+12>>2]=0.0;if(!(!(Jd(m+344|0,22840,m+288|0,22840,m,m+232|0)|0)?!(Pc(m+344|0,22840,m+288|0,22840,m,m+232|0,0)|0):0))h=18;if((h|0)==18?(k=m+16+4|0,a[m+16+152>>0]=0,c[k>>2]=0,c[k+4>>2]=0,c[k+8>>2]=0,c[k+12>>2]=0,c[k+16>>2]=0,c[k+20>>2]=0,c[m+16>>2]=3256,jd(b,m+232|0,f,0,0,d,0,0,m+16|0)|0):0){c[6435]=(c[6435]|0)+1;d=yc(235)|0;if(!d)k=0;else{c[(d+4+15&-16)+-4>>2]=d;k=d+4+15&-16}d=k+152|0;Qn(k|0,0,156)|0;c[k>>2]=3256;e=k+4|0;f=m+16+4|0;h=e+100|0;do{c[e>>2]=c[f>>2];e=e+4|0;f=f+4|0}while((e|0)<(h|0));e=k+104|0;c[e>>2]=c[m+16+104>>2];c[e+4>>2]=c[m+16+104+4>>2];c[e+8>>2]=c[m+16+104+8>>2];c[e+12>>2]=c[m+16+104+12>>2];e=k+120|0;c[e>>2]=c[m+16+120>>2];c[e+4>>2]=c[m+16+120+4>>2];c[e+8>>2]=c[m+16+120+8>>2];c[e+12>>2]=c[m+16+120+12>>2];e=k+136|0;c[e>>2]=c[m+16+136>>2];c[e+4>>2]=c[m+16+136+4>>2];c[e+8>>2]=c[m+16+136+8>>2];c[e+12>>2]=c[m+16+136+12>>2];a[d>>0]=a[m+16+152>>0]|0;e=k+156|0;f=m+16+156|0;h=e+60|0;do{c[e>>2]=c[f>>2];e=e+4|0;f=f+4|0}while((e|0)<(h|0));h=c[b+24>>2]|0;j=k;d=c[h+852>>2]|0;if((d|0)==(c[h+856>>2]|0)?(l=d|0?d<<1:1,(d|0)<(l|0)):0){if(!l)f=0;else{c[6435]=(c[6435]|0)+1;d=yc((l<<2|3)+16|0)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}f=d;d=c[h+852>>2]|0}if((d|0)>0){e=0;do{c[f+(e<<2)>>2]=c[(c[h+860>>2]|0)+(e<<2)>>2];e=e+1|0}while((e|0)!=(d|0))}e=c[h+860>>2]|0;if(e){if(a[h+864>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0);d=c[h+852>>2]|0}c[h+860>>2]=0}a[h+864>>0]=1;c[h+860>>2]=f;c[h+856>>2]=l}c[(c[h+860>>2]|0)+(d<<2)>>2]=j;c[h+852>>2]=d+1;j=c[b+24>>2]|0;l=c[b+28>>2]|0;n=+g[j+348>>2];o=+g[l+348>>2];b=k+64|0;g[b>>2]=+g[b>>2]*(n>o?n:o);b=k+68|0;g[b>>2]=+g[b>>2]*(+g[j+360>>2]+ +g[l+360>>2])*.5}i=m;return}function Sd(b,d,e){b=b|0;d=d|0;e=e|0;var f=0,h=0,i=0,j=0.0,k=0.0,l=0.0,m=0.0,n=0,o=0,p=0.0,q=0.0,r=0.0;if(a[b+165>>0]|0){f=c[b+88>>2]|0;a:do if((f|0)>0&e){h=c[b+96>>2]|0;m=+g[d>>2];j=+g[d+4>>2];k=+g[d+8>>2];l=+g[b+168>>2];e=0;while(1){r=+g[h+(e<<4)>>2]-m;q=+g[h+(e<<4)+4>>2]-j;p=+g[h+(e<<4)+8>>2]-k;if(r*r+q*q+p*p<=l)break;e=e+1|0;if((e|0)>=(f|0))break a}return e|0}while(0);o=(c[b+32>>2]|0)+12|0;c[o>>2]=(c[o>>2]|0)+1;if((f|0)==(c[b+92>>2]|0)?(i=f|0?f<<1:1,(f|0)<(i|0)):0){if(!i)e=0;else{c[6435]=(c[6435]|0)+1;e=yc((i<<4|3)+16|0)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}f=c[b+88>>2]|0}if((f|0)>0){h=0;do{o=e+(h<<4)|0;n=(c[b+96>>2]|0)+(h<<4)|0;c[o>>2]=c[n>>2];c[o+4>>2]=c[n+4>>2];c[o+8>>2]=c[n+8>>2];c[o+12>>2]=c[n+12>>2];h=h+1|0}while((h|0)!=(f|0))}f=c[b+96>>2]|0;if(f|0){if(a[b+100>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}c[b+96>>2]=0}a[b+100>>0]=1;c[b+96>>2]=e;c[b+92>>2]=i;e=c[b+88>>2]|0}else e=f;o=(c[b+96>>2]|0)+(e<<4)|0;c[o>>2]=c[d>>2];c[o+4>>2]=c[d+4>>2];c[o+8>>2]=c[d+8>>2];c[o+12>>2]=c[d+12>>2];d=c[b+88>>2]|0;c[b+88>>2]=d+1;c[(c[b+32>>2]|0)+16>>2]=c[b+96>>2];return d|0}h=c[b+108>>2]|0;b:do if((h|0)>0&e){e=c[b+116>>2]|0;j=+g[d>>2];k=+g[d+4>>2];l=+g[d+8>>2];m=+g[b+168>>2];i=0;while(1){p=+g[e+(i<<2)>>2]-j;q=+g[e+(i+1<<2)>>2]-k;r=+g[e+(i+2<<2)>>2]-l;f=i+3|0;if(p*p+q*q+r*r<=m)break;if((f|0)<(h|0))i=f;else break b}d=(i|0)/3|0;return d|0}while(0);e=c[b+112>>2]|0;if((h|0)==(e|0)){n=h|0?h<<1:1;if((h|0)<(n|0)){if(!n)e=0;else{c[6435]=(c[6435]|0)+1;e=yc((n<<2|3)+16|0)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}h=c[b+108>>2]|0}i=c[b+116>>2]|0;if((h|0)<=0)if(!i)f=b+120|0;else o=34;else{f=0;do{c[e+(f<<2)>>2]=c[i+(f<<2)>>2];f=f+1|0}while((f|0)!=(h|0));o=34}if((o|0)==34){if(a[b+120>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[i+-4>>2]|0)}c[b+116>>2]=0;f=b+120|0}a[f>>0]=1;c[b+116>>2]=e;c[b+112>>2]=n;f=c[b+108>>2]|0;h=n}else f=h}else{f=h;h=e}c[(c[b+116>>2]|0)+(f<<2)>>2]=c[d>>2];e=f+1|0;c[b+108>>2]=e;if((e|0)==(h|0)){n=h|0?h<<1:1;if((h|0)<(n|0)){if(!n)e=0;else{c[6435]=(c[6435]|0)+1;e=yc((n<<2|3)+16|0)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}h=c[b+108>>2]|0}i=c[b+116>>2]|0;if((h|0)<=0)if(!i)f=b+120|0;else o=48;else{f=0;do{c[e+(f<<2)>>2]=c[i+(f<<2)>>2];f=f+1|0}while((f|0)!=(h|0));o=48}if((o|0)==48){if(a[b+120>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[i+-4>>2]|0)}c[b+116>>2]=0;f=b+120|0}a[f>>0]=1;c[b+116>>2]=e;c[b+112>>2]=n;e=c[b+108>>2]|0;h=n}else e=h}c[(c[b+116>>2]|0)+(e<<2)>>2]=c[d+4>>2];e=e+1|0;c[b+108>>2]=e;if((e|0)==(h|0)){n=h|0?h<<1:1;if((h|0)<(n|0)){if(!n)e=0;else{c[6435]=(c[6435]|0)+1;e=yc((n<<2|3)+16|0)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}h=c[b+108>>2]|0}i=c[b+116>>2]|0;if((h|0)<=0)if(!i)f=b+120|0;else o=62;else{f=0;do{c[e+(f<<2)>>2]=c[i+(f<<2)>>2];f=f+1|0}while((f|0)!=(h|0));o=62}if((o|0)==62){if(a[b+120>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[i+-4>>2]|0)}c[b+116>>2]=0;f=b+120|0}a[f>>0]=1;c[b+116>>2]=e;c[b+112>>2]=n;e=c[b+108>>2]|0}else e=h}o=c[b+116>>2]|0;c[o+(e<<2)>>2]=c[d+8>>2];d=e+1|0;c[b+108>>2]=d;b=c[b+32>>2]|0;c[b+12>>2]=(c[b+12>>2]|0)+1;c[b+16>>2]=o;d=((d|0)/3|0)+-1|0;return d|0}function Td(b){b=b|0;var d=0,e=0.0,f=0.0,h=0.0,j=0,k=0,l=0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0.0,H=0.0,I=0.0,J=0.0,K=0;k=i;i=i+16|0;if(!(a[b+1308>>0]|0)){i=k;return}g[b+928>>2]=0.0;g[b+992>>2]=0.0;g[b+1056>>2]=0.0;c[b+712>>2]=0;c[b+712+4>>2]=0;c[b+712+8>>2]=0;c[b+712+12>>2]=0;sd(b,(c[b+28>>2]|0)+4|0,(c[b+32>>2]|0)+4|0);Ab[c[(c[b>>2]|0)+44>>2]&255](b);e=+g[b+1284>>2];f=+g[b+1288>>2];h=+g[b+1292>>2];if(+g[b+696>>2]>=+g[b+680>>2]){l=(a[b+1300>>0]|0)==0;j=c[(l?b+1160|0:b+1096|0)>>2]|0;d=c[(l?b+1144|0:b+1080|0)>>2]|0;c[k>>2]=c[(l?b+1128|0:b+1064|0)>>2];c[k+4>>2]=d;c[k+8>>2]=j;g[k+12>>2]=0.0;Lh(c[b+28>>2]|0,c[b+32>>2]|0,b+176|0,k,e,f,h,e,f,h)}if(+g[b+700>>2]>=+g[b+684>>2]){d=(a[b+1300>>0]|0)==0;l=c[(d?b+1164|0:b+1100|0)>>2]|0;j=c[(d?b+1148|0:b+1084|0)>>2]|0;c[k>>2]=c[(d?b+1132|0:b+1068|0)>>2];c[k+4>>2]=j;c[k+8>>2]=l;g[k+12>>2]=0.0;Lh(c[b+28>>2]|0,c[b+32>>2]|0,b+260|0,k,e,f,h,e,f,h)}if(+g[b+704>>2]>=+g[b+688>>2]){d=(a[b+1300>>0]|0)==0;l=c[(d?b+1168|0:b+1104|0)>>2]|0;j=c[(d?b+1152|0:b+1088|0)>>2]|0;c[k>>2]=c[(d?b+1136|0:b+1072|0)>>2];c[k+4>>2]=j;c[k+8>>2]=l;g[k+12>>2]=0.0;Lh(c[b+28>>2]|0,c[b+32>>2]|0,b+344|0,k,e,f,h,e,f,h)}j=0;do{e=+g[b+868+(j<<6)>>2];f=+g[b+868+(j<<6)+4>>2];h=+ik(+g[b+1192+(j<<2)>>2],e,f);g[b+868+(j<<6)+52>>2]=h;do if(!(e>f)){if(e>h){c[b+868+(j<<6)+56>>2]=1;d=b+868+(j<<6)+48|0;g[d>>2]=h-e;if(h-e>3.1415927410125732){g[d>>2]=h-e+-6.2831854820251465;d=19;break}if(!(h-e<-3.1415927410125732)){d=19;break}g[d>>2]=h-e+6.2831854820251465;d=19;break}d=b+868+(j<<6)+56|0;if(!(f>2]=0;d=18;break}c[d>>2]=2;d=b+868+(j<<6)+48|0;g[d>>2]=h-f;if(h-f>3.1415927410125732){g[d>>2]=h-f+-6.2831854820251465;d=19;break}if(h-f<-3.1415927410125732){g[d>>2]=h-f+6.2831854820251465;d=19}else d=19}else{c[b+868+(j<<6)+56>>2]=0;d=18}while(0);if((d|0)==18?(d=0,a[b+868+(j<<6)+44>>0]|0):0)d=19;if((d|0)==19){K=b+1208+(j<<4)|0;c[k>>2]=c[K>>2];c[k+4>>2]=c[K+4>>2];c[k+8>>2]=c[K+8>>2];c[k+12>>2]=c[K+12>>2];K=b+428+(j*84|0)|0;d=c[b+28>>2]|0;J=+g[d+4>>2];I=+g[d+20>>2];H=+g[d+36>>2];F=+g[d+8>>2];E=+g[d+24>>2];D=+g[d+40>>2];B=+g[d+12>>2];A=+g[d+28>>2];z=+g[d+44>>2];l=c[b+32>>2]|0;x=+g[l+4>>2];w=+g[l+20>>2];v=+g[l+36>>2];t=+g[l+8>>2];s=+g[l+24>>2];r=+g[l+40>>2];p=+g[l+12>>2];n=+g[l+28>>2];e=+g[l+44>>2];c[K>>2]=0;c[K+4>>2]=0;c[K+8>>2]=0;c[K+12>>2]=0;o=+g[k>>2];m=+g[k+4>>2];f=+g[k+8>>2];g[b+428+(j*84|0)+16>>2]=J*o+I*m+H*f;g[b+428+(j*84|0)+20>>2]=F*o+E*m+D*f;g[b+428+(j*84|0)+24>>2]=B*o+A*m+z*f;g[b+428+(j*84|0)+28>>2]=0.0;g[b+428+(j*84|0)+32>>2]=x*-o+w*-m+v*-f;g[b+428+(j*84|0)+36>>2]=t*-o+s*-m+r*-f;g[b+428+(j*84|0)+40>>2]=p*-o+n*-m+e*-f;g[b+428+(j*84|0)+44>>2]=0.0;G=(J*o+I*m+H*f)*+g[d+396>>2];C=(F*o+E*m+D*f)*+g[d+400>>2];y=(B*o+A*m+z*f)*+g[d+404>>2];g[b+428+(j*84|0)+48>>2]=G;g[b+428+(j*84|0)+52>>2]=C;g[b+428+(j*84|0)+56>>2]=y;g[b+428+(j*84|0)+60>>2]=0.0;u=(x*-o+w*-m+v*-f)*+g[l+396>>2];q=(t*-o+s*-m+r*-f)*+g[l+400>>2];h=(p*-o+n*-m+e*-f)*+g[l+404>>2];g[b+428+(j*84|0)+64>>2]=u;g[b+428+(j*84|0)+68>>2]=q;g[b+428+(j*84|0)+72>>2]=h;g[b+428+(j*84|0)+76>>2]=0.0;g[b+428+(j*84|0)+80>>2]=(J*o+I*m+H*f)*G+(F*o+E*m+D*f)*C+(B*o+A*m+z*f)*y+((x*-o+w*-m+v*-f)*u+(t*-o+s*-m+r*-f)*q+(p*-o+n*-m+e*-f)*h)}j=j+1|0}while((j|0)!=3);i=k;return}function Ud(b,d,e){b=b|0;d=d|0;e=e|0;var f=0.0,h=0,j=0,k=0,l=0,m=0,n=0,o=0.0,p=0,q=0,r=0,s=0;p=i;i=i+128|0;c[b+68>>2]=(c[b+68>>2]|0)+1;c[p>>2]=c[d>>2];c[p+4>>2]=c[d+4>>2];c[p+8>>2]=c[d+8>>2];c[p+12>>2]=c[d+12>>2];c[p+16>>2]=c[d+16>>2];c[p+16+4>>2]=c[d+16+4>>2];c[p+16+8>>2]=c[d+16+8>>2];c[p+16+12>>2]=c[d+16+12>>2];c[p+32>>2]=c[d+32>>2];c[p+32+4>>2]=c[d+32+4>>2];c[p+32+8>>2]=c[d+32+8>>2];c[p+32+12>>2]=c[d+32+12>>2];c[p+48>>2]=c[d+48>>2];c[p+48+4>>2]=c[d+48+4>>2];c[p+48+8>>2]=c[d+48+8>>2];c[p+48+12>>2]=c[d+48+12>>2];n=c[e+4>>2]|0;o=+Sb[c[(c[e>>2]|0)+48>>2]&15](e);mc[c[(c[e>>2]|0)+8>>2]&127](e,d,p+112|0,p+96|0);f=+g[p+112>>2];if(+g[b+32>>2]>f)g[b+32>>2]=f;f=+g[p+96>>2];if(+g[b+48>>2]>2]=f;f=+g[p+112+4>>2];if(+g[b+36>>2]>f)g[b+36>>2]=f;f=+g[p+96+4>>2];if(+g[b+52>>2]>2]=f;f=+g[p+112+8>>2];if(+g[b+40>>2]>f)g[b+40>>2]=f;f=+g[p+96+8>>2];if(+g[b+56>>2]>2]=f;l=c[b+64>>2]|0;if(!l){l=b+16|0;k=0}else{c[p+64>>2]=c[p+112>>2];c[p+64+4>>2]=c[p+112+4>>2];c[p+64+8>>2]=c[p+112+8>>2];c[p+64+12>>2]=c[p+112+12>>2];c[p+64+16>>2]=c[p+96>>2];c[p+64+16+4>>2]=c[p+96+4>>2];c[p+64+16+8>>2]=c[p+96+8>>2];c[p+64+16+12>>2]=c[p+96+12>>2];k=c[b+16>>2]|0;d=c[l+4>>2]|0;if(!d){c[6435]=(c[6435]|0)+1;d=yc(63)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}h=d;j=h+44|0;do{c[h>>2]=0;h=h+4|0}while((h|0)<(j|0))}else c[l+4>>2]=0;c[d+32>>2]=0;c[d+36>>2]=k;c[d+40>>2]=0;c[d>>2]=c[p+64>>2];c[d+4>>2]=c[p+64+4>>2];c[d+8>>2]=c[p+64+8>>2];c[d+12>>2]=c[p+64+12>>2];c[d+16>>2]=c[p+64+16>>2];c[d+20>>2]=c[p+64+20>>2];c[d+24>>2]=c[p+64+24>>2];c[d+28>>2]=c[p+64+28>>2];lf(l,c[l>>2]|0,d);c[l+12>>2]=(c[l+12>>2]|0)+1;l=b+16|0;k=d}d=c[l>>2]|0;if((d|0)==(c[b+20>>2]|0)?(m=d|0?d<<1:1,(d|0)<(m|0)):0){if(!m)j=0;else{c[6435]=(c[6435]|0)+1;d=yc((m*80|3)+16|0)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}j=d;d=c[l>>2]|0}if((d|0)>0){h=0;do{q=j+(h*80|0)|0;r=c[b+24>>2]|0;s=r+(h*80|0)|0;c[q>>2]=c[s>>2];c[q+4>>2]=c[s+4>>2];c[q+8>>2]=c[s+8>>2];c[q+12>>2]=c[s+12>>2];q=j+(h*80|0)+16|0;s=r+(h*80|0)+16|0;c[q>>2]=c[s>>2];c[q+4>>2]=c[s+4>>2];c[q+8>>2]=c[s+8>>2];c[q+12>>2]=c[s+12>>2];q=j+(h*80|0)+32|0;s=r+(h*80|0)+32|0;c[q>>2]=c[s>>2];c[q+4>>2]=c[s+4>>2];c[q+8>>2]=c[s+8>>2];c[q+12>>2]=c[s+12>>2];q=j+(h*80|0)+48|0;s=r+(h*80|0)+48|0;c[q>>2]=c[s>>2];c[q+4>>2]=c[s+4>>2];c[q+8>>2]=c[s+8>>2];c[q+12>>2]=c[s+12>>2];q=j+(h*80|0)+64|0;r=r+(h*80|0)+64|0;c[q>>2]=c[r>>2];c[q+4>>2]=c[r+4>>2];c[q+8>>2]=c[r+8>>2];c[q+12>>2]=c[r+12>>2];h=h+1|0}while((h|0)!=(d|0))}d=c[b+24>>2]|0;if(d|0){if(a[b+28>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+24>>2]=0}a[b+28>>0]=1;c[b+24>>2]=j;c[b+20>>2]=m;d=c[l>>2]|0}s=c[b+24>>2]|0;r=s+(d*80|0)|0;c[r>>2]=c[p>>2];c[r+4>>2]=c[p+4>>2];c[r+8>>2]=c[p+8>>2];c[r+12>>2]=c[p+12>>2];r=s+(d*80|0)+16|0;c[r>>2]=c[p+16>>2];c[r+4>>2]=c[p+16+4>>2];c[r+8>>2]=c[p+16+8>>2];c[r+12>>2]=c[p+16+12>>2];r=s+(d*80|0)+32|0;c[r>>2]=c[p+32>>2];c[r+4>>2]=c[p+32+4>>2];c[r+8>>2]=c[p+32+8>>2];c[r+12>>2]=c[p+32+12>>2];r=s+(d*80|0)+48|0;c[r>>2]=c[p+48>>2];c[r+4>>2]=c[p+48+4>>2];c[r+8>>2]=c[p+48+8>>2];c[r+12>>2]=c[p+48+12>>2];s=s+(d*80|0)+64|0;c[s>>2]=e;c[s+4>>2]=n;g[s+8>>2]=o;c[s+12>>2]=k;c[l>>2]=(c[l>>2]|0)+1;i=p;return}function Vd(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;while(1){p=(b+d|0)/2|0;m=c[a+12>>2]|0;n=c[m+(p<<4)>>2]|0;o=c[m+(p<<4)+4>>2]|0;p=c[m+(p<<4)+8>>2]|0;e=b;f=d;while(1){a:do if(!n)while(1){j=c[m+(e<<4)>>2]|0;if(!j)g=-1;else g=c[j+12>>2]|0;k=c[m+(e<<4)+4>>2]|0;if(!k)h=-1;else h=c[k+12>>2]|0;if(!o)i=-1;else i=c[o+12>>2]|0;do if((g|0)<=-1){g=(h|0)>(i|0);if(g|(j|0)==0^1)if((j|0)==0&g)break;else break a;if((k|0)!=(o|0))break a;if((c[m+(e<<4)+8>>2]|0)>>>0<=p>>>0)break a}while(0);e=e+1|0}else{l=c[n+12>>2]|0;if(!o)while(1){i=c[m+(e<<4)>>2]|0;if(!i)g=-1;else g=c[i+12>>2]|0;j=c[m+(e<<4)+4>>2]|0;if(!j)h=-1;else h=c[j+12>>2]|0;do if((g|0)<=(l|0)){g=(h|0)>-1;if(g|(i|0)==(n|0)^1)if((i|0)==(n|0)&g)break;else break a;if(j|0)break a;if((c[m+(e<<4)+8>>2]|0)>>>0<=p>>>0)break a}while(0);e=e+1|0}k=c[o+12>>2]|0;while(1){i=c[m+(e<<4)>>2]|0;if(!i)g=-1;else g=c[i+12>>2]|0;j=c[m+(e<<4)+4>>2]|0;if(!j)h=-1;else h=c[j+12>>2]|0;do if((g|0)<=(l|0)){g=(h|0)>(k|0);if(g|(i|0)==(n|0)^1)if((i|0)==(n|0)&g)break;else break a;if((j|0)!=(o|0))break a;if((c[m+(e<<4)+8>>2]|0)>>>0<=p>>>0)break a}while(0);e=e+1|0}}while(0);b:do if(!n)while(1){j=c[m+(f<<4)>>2]|0;if(!j)g=-1;else g=c[j+12>>2]|0;if(!o)h=-1;else h=c[o+12>>2]|0;k=c[m+(f<<4)+4>>2]|0;if(!k)i=-1;else i=c[k+12>>2]|0;do if((g|0)>=-1){g=(h|0)>(i|0);if(g|(j|0)==0^1)if((j|0)==0&g)break;else break b;if((o|0)!=(k|0))break b;if(p>>>0<=(c[m+(f<<4)+8>>2]|0)>>>0)break b}while(0);f=f+-1|0}else{l=c[n+12>>2]|0;if(!o)while(1){i=c[m+(f<<4)>>2]|0;if(!i)g=-1;else g=c[i+12>>2]|0;j=c[m+(f<<4)+4>>2]|0;if(!j)h=-1;else h=c[j+12>>2]|0;do if((l|0)<=(g|0)){g=(h|0)<-1;if(g|(n|0)==(i|0)^1)if((n|0)==(i|0)&g)break;else break b;if(j|0)break b;if(p>>>0<=(c[m+(f<<4)+8>>2]|0)>>>0)break b}while(0);f=f+-1|0}k=c[o+12>>2]|0;while(1){i=c[m+(f<<4)>>2]|0;if(!i)g=-1;else g=c[i+12>>2]|0;j=c[m+(f<<4)+4>>2]|0;if(!j)h=-1;else h=c[j+12>>2]|0;do if((l|0)<=(g|0)){g=(k|0)>(h|0);if(g|(n|0)==(i|0)^1)if((n|0)==(i|0)&g)break;else break b;if((o|0)!=(j|0))break b;if(p>>>0<=(c[m+(f<<4)+8>>2]|0)>>>0)break b}while(0);f=f+-1|0}}while(0);if((e|0)<=(f|0)){h=m+(e<<4)|0;i=c[h>>2]|0;j=c[m+(e<<4)+4>>2]|0;k=c[m+(e<<4)+8>>2]|0;l=c[m+(e<<4)+12>>2]|0;m=m+(f<<4)|0;c[h>>2]=c[m>>2];c[h+4>>2]=c[m+4>>2];c[h+8>>2]=c[m+8>>2];c[h+12>>2]=c[m+12>>2];m=c[a+12>>2]|0;c[m+(f<<4)>>2]=i;c[m+(f<<4)+4>>2]=j;c[m+(f<<4)+8>>2]=k;c[m+(f<<4)+12>>2]=l;e=e+1|0;f=f+-1|0}if((e|0)>(f|0))break;m=c[a+12>>2]|0}if((f|0)>(b|0))Vd(a,b,f);if((e|0)<(d|0))b=e;else break}return}function Wd(a,b){a=a|0;b=b|0;var d=0,e=0.0,f=0,h=0,j=0,k=0,l=0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0,s=0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0,A=0,B=0,C=0,D=0,E=0;D=i;i=i+16|0;li(11054);C=c[a+712>>2]|0;if((C|0)>0){c[6435]=(c[6435]|0)+1;d=yc((C<<4|3)+16|0)|0;if(!d)h=0;else{c[(d+4+15&-16)+-4>>2]=d;h=d+4+15&-16}d=0;do{B=h+(d<<4)|0;d=d+1|0;c[B>>2]=0;c[B+4>>2]=0;c[B+8>>2]=0;c[B+12>>2]=0}while((d|0)!=(C|0));f=c[a+712>>2]|0;if((f|0)>0){c[6435]=(c[6435]|0)+1;d=yc((f<<2|3)+16|0)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}Qn(d|0,0,f<<2|0)|0;B=h;A=d}else{B=h;A=0}}else{B=0;A=0}s=c[a+1112>>2]|0;if(b){if((s|0)>0){h=c[a+1120>>2]|0;j=0;do{d=c[h+(j<<2)>>2]|0;f=c[d+312>>2]|0;if(f|0){g[d+276>>2]=1.0/+(f|0)*+g[d+276>>2];g[d+280>>2]=1.0/+(f|0)*+g[d+280>>2];g[d+284>>2]=1.0/+(f|0)*+g[d+284>>2];g[d+292>>2]=+g[d+292>>2]*(1.0/+(f|0));g[d+296>>2]=1.0/+(f|0)*+g[d+296>>2];g[d+300>>2]=1.0/+(f|0)*+g[d+300>>2]}j=j+1|0}while((j|0)!=(s|0));j=13}}else j=13;if((j|0)==13?(s|0)>0:0){l=c[a+1120>>2]|0;if(b){b=0;do{d=c[l+(b<<2)>>2]|0;if((c[d+312>>2]|0)>0?(y=+g[a+452>>2],t=+g[d+276>>2]*y,u=y*+g[d+280>>2],v=y*+g[d+284>>2],w=y*+g[d+292>>2],x=y*+g[d+296>>2],y=y*+g[d+300>>2],z=c[d+24>>2]|0,(z|0)>0):0){f=c[d+32>>2]|0;h=c[a+720>>2]|0;j=c[d+12>>2]|0;k=0;do{r=c[f+(k<<2)>>2]|0;q=+g[j+(k<<2)>>2];p=+g[r+8>>2]-+g[d+228>>2];o=+g[r+12>>2]-+g[d+232>>2];n=+g[r+16>>2]-+g[d+236>>2];E=B+(((r-h|0)/104|0)<<4)|0;g[E>>2]=+g[E>>2]+q*(t+(x*n-y*o));E=B+(((r-h|0)/104|0)<<4)+4|0;g[E>>2]=+g[E>>2]+q*(u+(y*p-w*n));E=B+(((r-h|0)/104|0)<<4)+8|0;g[E>>2]=q*(v+(w*o-x*p))+ +g[E>>2];r=A+(((r-h|0)/104|0)<<2)|0;g[r>>2]=q+ +g[r>>2];k=k+1|0}while((k|0)!=(z|0))}b=b+1|0}while((b|0)!=(s|0))}else{b=0;do{d=c[l+(b<<2)>>2]|0;if((c[d+308>>2]|0)>0?(q=+g[a+452>>2],e=+g[d+244>>2]*q,m=q*+g[d+248>>2],n=q*+g[d+252>>2],o=q*+g[d+260>>2],p=q*+g[d+264>>2],q=q*+g[d+268>>2],r=c[d+24>>2]|0,(r|0)>0):0){f=c[d+32>>2]|0;h=c[a+720>>2]|0;j=c[d+12>>2]|0;k=0;do{E=c[f+(k<<2)>>2]|0;y=+g[j+(k<<2)>>2];x=+g[E+8>>2]-+g[d+228>>2];w=+g[E+12>>2]-+g[d+232>>2];v=+g[E+16>>2]-+g[d+236>>2];z=B+(((E-h|0)/104|0)<<4)|0;g[z>>2]=+g[z>>2]+y*(e+(p*v-q*w));z=B+(((E-h|0)/104|0)<<4)+4|0;g[z>>2]=+g[z>>2]+y*(m+(q*x-o*v));z=B+(((E-h|0)/104|0)<<4)+8|0;g[z>>2]=y*(n+(o*w-p*x))+ +g[z>>2];E=A+(((E-h|0)/104|0)<<2)|0;g[E>>2]=y+ +g[E>>2];k=k+1|0}while((k|0)!=(r|0))}b=b+1|0}while((b|0)!=(s|0))}}if((C|0)>0){d=0;do{e=+g[A+(d<<2)>>2];if(e>0.0){E=c[a+720>>2]|0;x=1.0/e*+g[B+(d<<4)+4>>2];y=1.0/e*+g[B+(d<<4)+8>>2];z=E+(d*104|0)+8|0;g[z>>2]=1.0/e*+g[B+(d<<4)>>2]+ +g[z>>2];z=E+(d*104|0)+12|0;g[z>>2]=x+ +g[z>>2];E=E+(d*104|0)+16|0;g[E>>2]=y+ +g[E>>2]}d=d+1|0}while((d|0)!=(C|0))}if(A|0){c[6436]=(c[6436]|0)+1;hd(c[A+-4>>2]|0)}if(B|0){c[6436]=(c[6436]|0)+1;hd(c[B+-4>>2]|0)}d=c[2357]|0;E=(c[d+16>>2]|0)+-1|0;c[d+16>>2]=E;if(E|0){i=D;return}do if(c[d+4>>2]|0){tb(D|0,0)|0;E=c[6434]|0;g[d+8>>2]=+g[d+8>>2]+ +(((c[D+4>>2]|0)-(c[E+4>>2]|0)+(((c[D>>2]|0)-(c[E>>2]|0)|0)*1e6|0)-(c[d+12>>2]|0)|0)>>>0)/1.0e3;if(!(c[d+16>>2]|0)){d=c[2357]|0;break}else{i=D;return}}while(0);c[2357]=c[d+20>>2];i=D;return}function Xd(b,d,e,f,h,j){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;j=j|0;var l=0,m=0.0,n=0,o=0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0,D=0;C=i;i=i+304|0;B=+g[e+48>>2]-+g[d+48>>2];z=+g[e+52>>2]-+g[d+52>>2];A=+g[e+56>>2]-+g[d+56>>2];Gf(d,e,C+288|0,C+240|0);v=+g[C+240>>2];t=+g[C+288>>2]*v;u=v*+g[C+288+4>>2];v=v*+g[C+288+8>>2];g[C+208>>2]=t;g[C+208+4>>2]=u;g[C+208+8>>2]=v;g[C+208+12>>2]=0.0;w=+g[h+48>>2]-+g[f+48>>2];x=+g[h+52>>2]-+g[f+52>>2];y=+g[h+56>>2]-+g[f+56>>2];Gf(f,h,C+288|0,C+240|0);r=+g[C+240>>2];p=+g[C+288>>2]*r;q=r*+g[C+288+4>>2];r=r*+g[C+288+8>>2];g[C+192>>2]=p;g[C+192+4>>2]=q;g[C+192+8>>2]=r;g[C+192+12>>2]=0.0;e=c[b+12>>2]|0;s=+Sb[c[(c[e>>2]|0)+16>>2]&15](e);e=c[b+16>>2]|0;if(!e)m=0.0;else m=+Sb[c[(c[e>>2]|0)+16>>2]&15](e);s=s*+O(+(t*t+u*u+v*v))+m*+O(+(p*p+q*q+r*r));if(s+ +O(+((w-B)*(w-B)+(x-z)*(x-z)+(y-A)*(y-A)))==0.0){j=0;i=C;return j|0}c[C+240>>2]=9160;g[C+240+36>>2]=999999984306749440.0;a[C+240+40>>0]=0;Ld(b,d,f,C+240|0);h=(a[C+240+40>>0]|0)==0;c[C+288>>2]=c[C+240+20>>2];c[C+288+4>>2]=c[C+240+20+4>>2];c[C+288+8>>2]=c[C+240+20+8>>2];c[C+288+12>>2]=c[C+240+20+12>>2];a:do if(!h?(o=c[C+240+4>>2]|0,l=c[C+240+8>>2]|0,n=c[C+240+12>>2]|0,v=(w-B)*(c[k>>2]=o,+g[k>>2]),v=v+(x-z)*(c[k>>2]=l,+g[k>>2]),!(s+(v+(y-A)*(c[k>>2]=n,+g[k>>2]))<=1.1920928955078125e-07)):0){m=+g[C+240+16>>2];p=+g[C+240+36>>2]+ +g[j+172>>2];b:do if(p>1.0000000474974513e-03){q=p;r=0.0;h=0;while(1){e=c[j+168>>2]|0;if(e|0){D=c[(c[e>>2]|0)+20>>2]|0;c[C+224>>2]=1065353216;c[C+224+4>>2]=1065353216;c[C+224+8>>2]=1065353216;g[C+224+12>>2]=0.0;Fb[D&7](e,C+288|0,.20000000298023224,C+224|0)}m=(w-B)*(c[k>>2]=o,+g[k>>2]);m=m+(x-z)*(c[k>>2]=l,+g[k>>2]);m=s+(m+(y-A)*(c[k>>2]=n,+g[k>>2]));if(m<=1.1920928955078125e-07){l=0;break a}p=r+q/m;if(!(!(p<=r)&(!(p<0.0)&!(p>1.0)))){l=0;break a}Zg(d,B,z,A,C+208|0,p,C+112|0);Zg(f,w,x,y,C+192|0,p,C+48|0);l=c[j+168>>2]|0;if(l|0){D=c[(c[l>>2]|0)+20>>2]|0;c[C+176>>2]=1065353216;c[C+176+4>>2]=0;c[C+176+8>>2]=0;g[C+176+12>>2]=0.0;Fb[D&7](l,C+112+48|0,.20000000298023224,C+176|0)}zb[c[c[j>>2]>>2]&31](j,p);c[C>>2]=9160;g[C+36>>2]=999999984306749440.0;a[C+40>>0]=0;Ld(b,C+112|0,C+48|0,C);if(!(a[C+40>>0]|0)){l=15;break}m=+g[C+36>>2];q=+g[j+172>>2];c[C+288>>2]=c[C+20>>2];c[C+288+4>>2]=c[C+20+4>>2];c[C+288+8>>2]=c[C+20+8>>2];c[C+288+12>>2]=c[C+20+12>>2];e=h+1|0;if((h|0)>63){l=16;break}n=c[C+12>>2]|0;l=c[C+8>>2]|0;o=c[C+4>>2]|0;q=m+q;if(!(q>1.0000000474974513e-03)){m=+g[C+16>>2];break b}else{r=p;h=e}}if((l|0)==15)ic[c[(c[j>>2]|0)+8>>2]&127](j,-1,h);else if((l|0)==16)ic[c[(c[j>>2]|0)+8>>2]&127](j,-2,e);l=0;break a}else p=0.0;while(0);g[j+164>>2]=p;c[j+132>>2]=o;c[j+136>>2]=l;c[j+140>>2]=n;g[j+144>>2]=m;c[j+148>>2]=c[C+288>>2];c[j+148+4>>2]=c[C+288+4>>2];c[j+148+8>>2]=c[C+288+8>>2];c[j+148+12>>2]=c[C+288+12>>2];l=1}else l=0;while(0);D=l;i=C;return D|0}function Yd(a,b){a=a|0;b=b|0;var d=0.0,e=0.0,f=0.0,h=0,i=0,j=0.0,l=0.0,m=0,n=0,o=0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0,v=0,w=0.0,x=0.0,y=0,z=0.0,A=0.0,B=0.0;c[a+556>>2]=c[b>>2];c[a+556+4>>2]=c[b+4>>2];c[a+556+8>>2]=c[b+8>>2];c[a+556+12>>2]=c[b+12>>2];q=+g[a+568>>2];r=+g[a+560>>2];s=+g[a+564>>2];p=+g[a+556>>2];d=-p-r*0.0-s*0.0;e=(s+q*0.0-p*0.0)*-s+(q*(q+r*0.0-s*0.0)+d*-p)-(q*0.0+p*0.0-r)*-r;f=(q*0.0+p*0.0-r)*-p+(q*(s+q*0.0-p*0.0)+d*-r)-(q+r*0.0-s*0.0)*-s;d=(q+r*0.0-s*0.0)*-r+(d*-s+q*(q*0.0+p*0.0-r))-(s+q*0.0-p*0.0)*-p;if(d*0.0+(f*0.0+e)<-.9999998807907104){j=-0.0;l=1.0;d=0.0;e=0.0}else{B=+O(+((d*0.0+(f*0.0+e)+1.0)*2.0));j=(d*0.0-f*0.0)*(1.0/B);l=(e*0.0-d)*(1.0/B);d=(f-e*0.0)*(1.0/B);e=B*.5}z=1.0/+O(+(e*e+(j*j+l*l+d*d)));j=j*z;n=(g[k>>2]=j,c[k>>2]|0);w=l*z;t=d*z;v=(g[k>>2]=t,c[k>>2]|0);d=e*z;u=(g[k>>2]=d,c[k>>2]|0);e=1.0/+O(+((d*q-p*-j-r*-w-s*-t)*(d*q-p*-j-r*-w-s*-t)+((q*-t+d*s+r*-j-p*-w)*(q*-t+d*s+r*-j-p*-w)+((p*d+q*-j+s*-w-r*-t)*(p*d+q*-j+s*-w-r*-t)+(p*-t+(q*-w+d*r)-s*-j)*(p*-t+(q*-w+d*r)-s*-j)))));z=(p*d+q*-j+s*-w-r*-t)*e;i=(g[k>>2]=z,c[k>>2]|0);A=e*(p*-t+(q*-w+d*r)-s*-j);b=(g[k>>2]=A,c[k>>2]|0);B=e*(q*-t+d*s+r*-j-p*-w);h=(g[k>>2]=B,c[k>>2]|0);p=e*(d*q-p*-j-r*-w-s*-t);e=+g[a+444>>2];m=(g[k>>2]=e,c[k>>2]|0);if(e>=.05000000074505806?(x=+g[a+448>>2],x>=.05000000074505806):0){d=d<-1.0?-1.0:d;d=+T(+(d>1.0?1.0:d))*2.0;if(d>1.1920928955078125e-07){f=1.0/+O(+(t*t+(j*j+w*w)));if(+N(+(w*f))>1.1920928955078125e-07){x=+O(+((t*f*t*f/(w*f*w*f)+1.0)/(1.0/(x*x)+t*f*t*f/(w*f*w*f)/(e*e))));j=j*f;l=w*f;f=t*f;m=(g[k>>2]=x,c[k>>2]|0)}else{j=j*f;l=w*f;f=t*f}}else{j=0.0;l=0.0;f=0.0;m=0}if(+N(+d)>1.1920928955078125e-07){e=(c[k>>2]=m,+g[k>>2]);if(!(d>e)){if(d<-e)d=-e}else d=e;x=d*.5;w=+R(+x)/+O(+(j*j+l*l+f*f));x=+Q(+x);y=(g[k>>2]=j*w,c[k>>2]|0);v=(g[k>>2]=f*w,c[k>>2]|0);w=l*w;u=(g[k>>2]=x,c[k>>2]|0)}else y=n}else y=n;d=+g[a+452>>2];if(d>=.05000000074505806){e=p<-1.0?-1.0:p;e=+T(+(e>1.0?1.0:e))*2.0;if(e>3.1415927410125732){o=(g[k>>2]=-z,c[k>>2]|0);n=(g[k>>2]=-A,c[k>>2]|0);e=-p<-1.0?-1.0:-p;m=(g[k>>2]=-B,c[k>>2]|0);e=+T(+(e>1.0?1.0:e))*2.0}else{o=i;n=b;m=h}f=(c[k>>2]=o,+g[k>>2]);j=(c[k>>2]=n,+g[k>>2]);l=(c[k>>2]=m,+g[k>>2]);if(e>1.1920928955078125e-07){B=1.0/+O(+(f*f+j*j+l*l));o=(g[k>>2]=f*B,c[k>>2]|0);n=(g[k>>2]=j*B,c[k>>2]|0);m=(g[k>>2]=l*B,c[k>>2]|0)}if(+N(+e)>1.1920928955078125e-07){if(!(e>d))if(e<-d)d=-d;else d=e;x=(c[k>>2]=o,+g[k>>2]);z=(c[k>>2]=n,+g[k>>2]);A=(c[k>>2]=m,+g[k>>2]);d=d*.5;B=+R(+d)/+O(+(A*A+(z*z+x*x)));d=+Q(+d);i=(g[k>>2]=x*B,c[k>>2]|0);b=(g[k>>2]=z*B,c[k>>2]|0);h=(g[k>>2]=A*B,c[k>>2]|0)}else d=p}else d=p;s=(c[k>>2]=u,+g[k>>2]);x=(c[k>>2]=i,+g[k>>2]);t=(c[k>>2]=y,+g[k>>2]);B=(c[k>>2]=h,+g[k>>2]);A=(c[k>>2]=v,+g[k>>2]);z=(c[k>>2]=b,+g[k>>2]);g[a+556>>2]=w*B+(s*x+t*d)-A*z;g[a+560>>2]=A*x+(s*z+w*d)-t*B;g[a+564>>2]=t*z+(s*B+A*d)-w*x;g[a+568>>2]=s*d-t*x-w*z-A*B;return}function Zd(b,d){b=b|0;d=d|0;var e=0,f=0,h=0,i=0,j=0,k=0,l=0,m=0;c[b>>2]=5224;c[6435]=(c[6435]|0)+1;e=yc(379)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}g[e+308>>2]=9.999999747378752e-05;f=e+332|0;a[f>>0]=a[f>>0]&-16;c[b+24>>2]=e;f=(c[d+20>>2]|0)==0;c[6435]=(c[6435]|0)+1;e=yc(23)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}if(f){c[e>>2]=9072;c[b+28>>2]=e;f=b+28|0}else{c[e>>2]=9120;c[b+28>>2]=e;f=b+28|0}c[6435]=(c[6435]|0)+1;e=yc(43)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}k=c[b+24>>2]|0;l=c[f>>2]|0;a[e+4>>0]=0;c[e>>2]=6032;c[e+16>>2]=0;c[e+20>>2]=3;c[e+12>>2]=k;c[e+8>>2]=l;c[b+32>>2]=e;c[6435]=(c[6435]|0)+1;e=yc(27)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}a[e+4>>0]=0;c[e>>2]=5256;c[b+36>>2]=e;c[6435]=(c[6435]|0)+1;e=yc(27)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}a[e+4>>0]=0;c[e>>2]=5276;c[b+40>>2]=e;c[6435]=(c[6435]|0)+1;e=yc(27)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}a[e+4>>0]=0;c[e>>2]=5296;c[b+44>>2]=e;c[6435]=(c[6435]|0)+1;e=yc(27)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}a[e+4>>0]=0;c[e>>2]=5316;c[b+48>>2]=e;c[6435]=(c[6435]|0)+1;e=yc(27)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}a[e+4>>0]=0;c[e>>2]=5336;c[b+52>>2]=e;c[6435]=(c[6435]|0)+1;e=yc(27)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}a[e+4>>0]=0;c[e>>2]=5356;c[b+56>>2]=e;c[6435]=(c[6435]|0)+1;e=yc(27)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}a[e+4>>0]=0;c[e>>2]=5376;c[b+60>>2]=e;c[6435]=(c[6435]|0)+1;e=yc(27)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}a[e+4>>0]=0;c[e>>2]=5396;c[b+76>>2]=e;c[6435]=(c[6435]|0)+1;e=yc(27)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}c[e>>2]=5396;c[b+80>>2]=e;a[e+4>>0]=1;c[6435]=(c[6435]|0)+1;e=yc(27)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}a[e+4>>0]=0;c[e>>2]=5416;c[b+72>>2]=e;c[6435]=(c[6435]|0)+1;e=yc(35)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}a[e+4>>0]=0;c[e>>2]=5436;c[e+8>>2]=1;c[e+12>>2]=0;c[b+88>>2]=e;c[6435]=(c[6435]|0)+1;e=yc(35)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}c[e>>2]=5436;c[e+8>>2]=1;c[e+12>>2]=0;c[b+84>>2]=e;a[e+4>>0]=1;l=c[d+16>>2]|0;l=(l|0)>80?l:80;e=c[d>>2]|0;if(!e){a[b+12>>0]=1;c[6435]=(c[6435]|0)+1;e=yc(39)|0;if(!e)k=0;else{c[(e+4+15&-16)+-4>>2]=e;k=e+4+15&-16}e=c[d+8>>2]|0;c[k>>2]=772;f=k+4|0;c[f>>2]=e;c[6435]=(c[6435]|0)+1;e=yc((e*772|3)+16|0)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}c[k+16>>2]=e;c[k+12>>2]=e;f=c[f>>2]|0;c[k+8>>2]=f;if(f+-1|0){h=c[k>>2]|0;i=f+-1|0;j=e;do{m=j;j=j+h|0;c[m>>2]=j;i=i+-1|0}while((i|0)!=0);e=e+(_(h,f+-1|0)|0)|0}c[e>>2]=0;c[b+8>>2]=k}else{a[b+12>>0]=0;c[b+8>>2]=e}e=c[d+4>>2]|0;if(e|0){a[b+20>>0]=0;c[b+16>>2]=e;return}a[b+20>>0]=1;c[6435]=(c[6435]|0)+1;e=yc(39)|0;if(!e)k=0;else{c[(e+4+15&-16)+-4>>2]=e;k=e+4+15&-16}e=c[d+12>>2]|0;c[k>>2]=l;f=k+4|0;c[f>>2]=e;e=_(e,l)|0;c[6435]=(c[6435]|0)+1;e=yc(e+19|0)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}c[k+16>>2]=e;c[k+12>>2]=e;f=c[f>>2]|0;c[k+8>>2]=f;if(f+-1|0){h=c[k>>2]|0;i=f+-1|0;j=e;do{m=j;j=j+h|0;c[m>>2]=j;i=i+-1|0}while((i|0)!=0);e=e+(_(h,f+-1|0)|0)|0}c[e>>2]=0;c[b+16>>2]=k;return}function _d(b,d,e,f,h){b=b|0;d=d|0;e=e|0;f=f|0;h=+h;var j=0,k=0,l=0,m=0,n=0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0,E=0;D=i;i=i+80|0;B=+g[e+4>>2];C=+g[e+20>>2];o=+g[e+36>>2];p=+g[e+8>>2];q=+g[e+24>>2];r=+g[e+40>>2];s=+g[e+12>>2];t=+g[e+28>>2];u=+g[e+44>>2];v=-+g[e+52>>2];w=-+g[e+56>>2];x=-+g[e+60>>2];l=c[b+720>>2]|0;y=+g[l+(d*104|0)+8>>2];z=+g[l+(d*104|0)+12>>2];A=+g[l+(d*104|0)+16>>2];a:do if(f){f=c[b+268>>2]|0;b:do if((f|0)>0){k=c[b+276>>2]|0;j=0;while(1){if((c[k+(j<<2)>>2]|0)==(e|0))break;j=j+1|0;if((j|0)>=(f|0))break b}if((j|0)!=(f|0)){f=l;break a}}while(0);if((f|0)==(c[b+272>>2]|0)?(m=f|0?f<<1:1,(f|0)<(m|0)):0){if(!m)k=0;else{c[6435]=(c[6435]|0)+1;f=yc((m<<2|3)+16|0)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}k=f;f=c[b+268>>2]|0}if((f|0)>0){j=0;do{c[k+(j<<2)>>2]=c[(c[b+276>>2]|0)+(j<<2)>>2];j=j+1|0}while((j|0)!=(f|0))}j=c[b+276>>2]|0;if(j){if(a[b+280>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0);f=c[b+268>>2]|0}c[b+276>>2]=0}a[b+280>>0]=1;c[b+276>>2]=k;c[b+272>>2]=m}c[(c[b+276>>2]|0)+(f<<2)>>2]=e;c[b+268>>2]=f+1;f=c[b+720>>2]|0}else f=l;while(0);l=f+(d*104|0)|0;f=f+(d*104|0)+100|0;a[f>>0]=a[f>>0]|1;f=c[b+792>>2]|0;if((f|0)==(c[b+796>>2]|0)?(n=f|0?f<<1:1,(f|0)<(n|0)):0){if(!n)k=0;else{c[6435]=(c[6435]|0)+1;f=yc(n*96|19)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}k=f;f=c[b+792>>2]|0}if((f|0)>0){j=0;do{d=k+(j*96|0)|0;m=c[b+800>>2]|0;E=m+(j*96|0)|0;c[d>>2]=c[E>>2];c[d+4>>2]=c[E+4>>2];c[d+8>>2]=c[E+8>>2];c[d+12>>2]=c[E+12>>2];c[d+16>>2]=c[E+16>>2];c[d+20>>2]=c[E+20>>2];c[d+24>>2]=c[E+24>>2];d=k+(j*96|0)+28|0;E=m+(j*96|0)+28|0;c[d>>2]=c[E>>2];c[d+4>>2]=c[E+4>>2];c[d+8>>2]=c[E+8>>2];c[d+12>>2]=c[E+12>>2];d=k+(j*96|0)+44|0;E=m+(j*96|0)+44|0;c[d>>2]=c[E>>2];c[d+4>>2]=c[E+4>>2];c[d+8>>2]=c[E+8>>2];c[d+12>>2]=c[E+12>>2];d=k+(j*96|0)+60|0;E=m+(j*96|0)+60|0;c[d>>2]=c[E>>2];c[d+4>>2]=c[E+4>>2];c[d+8>>2]=c[E+8>>2];c[d+12>>2]=c[E+12>>2];d=k+(j*96|0)+76|0;m=m+(j*96|0)+76|0;c[d>>2]=c[m>>2];c[d+4>>2]=c[m+4>>2];c[d+8>>2]=c[m+8>>2];c[d+12>>2]=c[m+12>>2];c[d+16>>2]=c[m+16>>2];j=j+1|0}while((j|0)!=(f|0))}f=c[b+800>>2]|0;if(f|0){if(a[b+804>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}c[b+800>>2]=0}a[b+804>>0]=1;c[b+800>>2]=k;c[b+796>>2]=n;f=c[b+792>>2]|0}E=c[b+800>>2]|0;c[E+(f*96|0)>>2]=l;g[E+(f*96|0)+4>>2]=B*v+C*w+o*x+(B*y+C*z+o*A);g[E+(f*96|0)+8>>2]=p*v+q*w+r*x+(p*y+q*z+r*A);g[E+(f*96|0)+12>>2]=s*v+t*w+u*x+(s*y+t*z+u*A);g[E+(f*96|0)+16>>2]=0.0;c[E+(f*96|0)+20>>2]=e;g[E+(f*96|0)+24>>2]=h;e=E+(f*96|0)+28|0;c[e>>2]=c[D+56>>2];c[e+4>>2]=c[D+56+4>>2];c[e+8>>2]=c[D+56+8>>2];c[e+12>>2]=c[D+56+12>>2];e=E+(f*96|0)+44|0;c[e>>2]=c[D+40>>2];c[e+4>>2]=c[D+40+4>>2];c[e+8>>2]=c[D+40+8>>2];c[e+12>>2]=c[D+40+12>>2];e=E+(f*96|0)+60|0;c[e>>2]=c[D+24>>2];c[e+4>>2]=c[D+24+4>>2];c[e+8>>2]=c[D+24+8>>2];c[e+12>>2]=c[D+24+12>>2];E=E+(f*96|0)+76|0;c[E>>2]=c[D>>2];c[E+4>>2]=c[D+4>>2];c[E+8>>2]=c[D+8>>2];c[E+12>>2]=c[D+12>>2];c[E+16>>2]=c[D+16>>2];c[b+792>>2]=(c[b+792>>2]|0)+1;i=D;return}function $d(a,b,d,e,f){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;var h=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0,A=0.0,B=0.0,C=0.0,D=0.0,E=0,F=0;E=i;i=i+64|0;A=+g[b+48>>2]-+g[b+112>>2];h=+g[b+52>>2]-+g[b+116>>2];D=+g[b+56>>2]-+g[b+120>>2];B=A*+g[b+64>>2]+h*+g[b+80>>2]+D*+g[b+96>>2];C=A*+g[b+68>>2]+h*+g[b+84>>2]+D*+g[b+100>>2];D=A*+g[b+72>>2]+h*+g[b+88>>2]+D*+g[b+104>>2];e=c[a+8>>2]|0;z=c[a+4>>2]|0;h=+g[z+28>>2]*+g[z+12>>2];A=h+ +g[a+12>>2];p=+g[e+72>>2];q=+g[e+56>>2];r=+g[e+76>>2];s=+g[e+60>>2];t=+g[e+80>>2];u=+g[e+64>>2];v=+g[e+88>>2];w=+g[e+92>>2];x=+g[e+96>>2];k=(r-s)*(x-u)-(t-u)*(w-s);m=(t-u)*(v-q)-(p-q)*(x-u);o=(p-q)*(w-s)-(r-s)*(v-q);n=1.0/+O(+(o*o+(k*k+m*m)));j=(B-q)*n*k+(C-s)*n*m+n*o*(D-u);if(j<0.0){y=-j;l=-(n*k);j=-(n*m);k=-(n*o)}else{y=j;l=n*k;j=n*m;k=n*o}if(!(y0.0&(o>0.0&t>0.0))?!(x<=0.0&(o<=0.0&t<=0.0)):0){if((Eb[c[(c[e>>2]|0)+100>>2]&127](e)|0)<=0){i=E;return}s=0.0;r=0.0;q=0.0;e=0;z=0;do{F=c[a+8>>2]|0;mc[c[(c[F>>2]|0)+104>>2]&127](F,z,E+48|0,E+32|0);m=+g[E+48>>2];w=+g[E+48+4>>2];u=+g[E+48+8>>2];n=+g[E+32>>2]-m;x=+g[E+32+4>>2]-w;v=+g[E+32+8>>2]-u;do if((B-m)*n+(C-w)*x+(D-u)*v>0.0)if((B-m)*n+(C-w)*x+(D-u)*v>2]|0}while((z|0)<(Eb[c[(c[F>>2]|0)+100>>2]&127](F)|0));if(!(e&1)){i=E;return}else p=A*A}else{p=A*A;s=B-y*l;r=D-y*k;q=C-y*j}n=B-s;o=C-q;m=D-r;if(!(n*n+o*o+m*m1.1920928955078125e-07){j=+O(+(n*n+o*o+m*m));h=h-j;l=n*(1.0/j);k=m*(1.0/j);j=o*(1.0/j)}h=-h;if(f){x=+g[b+64>>2];y=+g[b+68>>2];A=+g[b+72>>2];B=x*l+y*j+A*k;o=+g[b+80>>2];p=+g[b+84>>2];t=+g[b+88>>2];C=l*o+j*p+k*t;u=+g[b+96>>2];v=+g[b+100>>2];w=+g[b+104>>2];D=l*u+j*v+k*w;g[E+48>>2]=-B;g[E+48+4>>2]=-C;g[E+48+8>>2]=-D;g[E+48+12>>2]=0.0;C=s*o+q*p+r*t+ +g[b+116>>2]+C*h;D=s*u+q*v+r*w+ +g[b+120>>2]+D*h;g[E+32>>2]=s*x+q*y+r*A+ +g[b+112>>2]+B*h;g[E+32+4>>2]=C;g[E+32+8>>2]=D;g[E+32+12>>2]=0.0;hc[c[(c[d>>2]|0)+16>>2]&15](d,E+48|0,E+32|0,h);i=E;return}else{F=c[(c[d>>2]|0)+16>>2]|0;y=+g[b+64>>2];A=+g[b+68>>2];B=+g[b+72>>2];u=+g[b+80>>2];v=+g[b+84>>2];C=+g[b+88>>2];w=+g[b+96>>2];x=+g[b+100>>2];D=+g[b+104>>2];g[E+16>>2]=y*l+A*j+B*k;g[E+16+4>>2]=l*u+j*v+k*C;g[E+16+8>>2]=l*w+j*x+k*D;g[E+16+12>>2]=0.0;C=s*u+q*v+r*C+ +g[b+116>>2];D=s*w+q*x+r*D+ +g[b+120>>2];g[E>>2]=s*y+q*A+r*B+ +g[b+112>>2];g[E+4>>2]=C;g[E+8>>2]=D;g[E+12>>2]=0.0;hc[F&15](d,E+16|0,E,h);i=E;return}}function ae(b){b=b|0;var d=0.0,e=0,f=0,h=0,j=0,k=0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0,r=0;r=i;i=i+80|0;if((Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0?(q=Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0,(Eb[c[(c[q>>2]|0)+48>>2]&127](q)|0)&8|0):0)?(e=c[b+24>>2]|0,e=Eb[c[(c[e>>2]|0)+36>>2]&127](e)|0,c[r+64>>2]=1065353216,c[r+64+4>>2]=1065353216,c[r+64+8>>2]=0,g[r+64+12>>2]=0.0,(e|0)>0):0){j=0;do{f=c[b+24>>2]|0;f=Zb[c[(c[f>>2]|0)+40>>2]&31](f,j)|0;h=c[f+748>>2]|0;if((h|0)>0){k=0;do{q=Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0;Bb[c[(c[q>>2]|0)+32>>2]&0](q,f+4+(k*184|0)+32|0,f+4+(k*184|0)+64|0,+g[f+4+(k*184|0)+80>>2],c[f+4+(k*184|0)+148>>2]|0,r+64|0);k=k+1|0}while((k|0)!=(h|0))}j=j+1|0}while((j|0)!=(e|0))}if(!(Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0)){i=r;return}q=Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0;if(!((Eb[c[(c[q>>2]|0)+48>>2]&127](q)|0)&3)){i=r;return}if((c[b+8>>2]|0)<=0){i=r;return}h=r+64+4|0;j=r+64+8|0;k=r+64+12|0;q=0;do{f=c[(c[b+16>>2]|0)+(q<<2)>>2]|0;if(!(c[f+204>>2]&32)){if(Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0?(e=Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0,(Eb[c[(c[e>>2]|0)+48>>2]&127](e)|0)&1|0):0){c[r+64>>2]=1065353216;c[h>>2]=1065353216;c[j>>2]=1065353216;g[k>>2]=0.0;switch(c[f+216>>2]|0){case 1:{c[r+64>>2]=1065353216;c[h>>2]=1065353216;c[j>>2]=1065353216;g[k>>2]=0.0;break}case 2:{c[r+64>>2]=0;c[h>>2]=1065353216;c[j>>2]=0;g[k>>2]=0.0;break}case 3:{c[r+64>>2]=0;c[h>>2]=1065353216;c[j>>2]=1065353216;g[k>>2]=0.0;break}case 4:{c[r+64>>2]=1065353216;c[h>>2]=0;c[j>>2]=0;g[k>>2]=0.0;break}case 5:{c[r+64>>2]=1065353216;c[h>>2]=1065353216;c[j>>2]=0;g[k>>2]=0.0;break}default:{c[r+64>>2]=1065353216;c[h>>2]=0;c[j>>2]=0;g[k>>2]=0.0}}mc[c[(c[b>>2]|0)+28>>2]&127](b,f+4|0,c[f+192>>2]|0,r+64|0)}e=c[b+72>>2]|0;if(e|0?(Eb[c[(c[e>>2]|0)+48>>2]&127](e)|0)&2|0:0){c[r+32>>2]=1065353216;c[r+32+4>>2]=0;c[r+32+8>>2]=0;g[r+32+12>>2]=0.0;e=c[f+192>>2]|0;mc[c[(c[e>>2]|0)+8>>2]&127](e,f+4|0,r+64|0,r+48|0);g[r+64>>2]=+g[r+64>>2]+-.019999999552965164;g[r+64+4>>2]=+g[r+64+4>>2]+-.019999999552965164;g[r+64+8>>2]=+g[r+64+8>>2]+-.019999999552965164;g[r+48>>2]=+g[r+48>>2]+.019999999552965164;g[r+48+4>>2]=+g[r+48+4>>2]+.019999999552965164;g[r+48+8>>2]=+g[r+48+8>>2]+.019999999552965164;do if((a[b+44>>0]|0?(c[f+236>>2]|0)==2:0)?(c[f+204>>2]&3|0)==0:0){e=c[f+192>>2]|0;mc[c[(c[e>>2]|0)+8>>2]&127](e,f+68|0,r+16|0,r);d=+g[r+16>>2]+-.019999999552965164;g[r+16>>2]=d;l=+g[r+16+4>>2]+-.019999999552965164;g[r+16+4>>2]=l;m=+g[r+16+8>>2]+-.019999999552965164;g[r+16+8>>2]=m;n=+g[r>>2]+.019999999552965164;g[r>>2]=n;o=+g[r+4>>2]+.019999999552965164;g[r+4>>2]=o;p=+g[r+8>>2]+.019999999552965164;g[r+8>>2]=p;if(d<+g[r+64>>2])g[r+64>>2]=d;if(l<+g[r+64+4>>2])g[r+64+4>>2]=l;if(m<+g[r+64+8>>2])g[r+64+8>>2]=m;d=+g[r+16+12>>2];if(d<+g[r+64+12>>2])g[r+64+12>>2]=d;if(+g[r+48>>2]>2]=n;if(+g[r+48+4>>2]>2]=o;if(+g[r+48+8>>2]>2]=p;d=+g[r+12>>2];if(!(+g[r+48+12>>2]>2]=d}while(0);f=c[b+72>>2]|0;mc[c[(c[f>>2]|0)+52>>2]&127](f,r+64|0,r+48|0,r+32|0)}}q=q+1|0}while((q|0)<(c[b+8>>2]|0));i=r;return}function be(b,d,e,f,h,i,j,k,l,m,n){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;i=i|0;j=j|0;k=k|0;l=l|0;m=m|0;n=n|0;var o=0,p=0,q=0,r=0.0,s=0.0,t=0,u=0.0,v=0.0,w=0.0,x=0.0,y=0,z=0.0,A=0;if((j|0)<2|(k|0)<2){n=0;return n|0}y=_(k,j)|0;c[6435]=(c[6435]|0)+1;b=yc(y>>>0>268435455?18:(y<<4|3)+16|0)|0;if(!b)t=0;else{c[(b+4+15&-16)+-4>>2]=b;t=b+4+15&-16}o=y>>>0>1073741823?-1:y<<2;o=(o|0)==0?1:o;while(1){q=yc(o)|0;if(q|0)break;b=c[6564]|0;c[6564]=b+0;if(!b){p=8;break}jc[b&3]()}if((p|0)==8){n=Ya(4)|0;c[n>>2]=9640;pb(n|0,2800,251)}if((k|0)>0?(j|0)>0:0){p=0;do{z=+(p|0)/+(k+-1|0);r=+g[e>>2];r=r+z*(+g[h>>2]-r);s=+g[e+4>>2];s=s+z*(+g[h+4>>2]-s);u=+g[e+8>>2];u=u+z*(+g[h+8>>2]-u);v=+g[f>>2];w=+g[f+4>>2];x=+g[f+8>>2];b=_(p,j)|0;v=v+z*(+g[i>>2]-v)-r;w=w+z*(+g[i+4>>2]-w)-s;x=x+z*(+g[i+8>>2]-x)-u;o=0;do{z=+(o|0)/+(j+-1|0);A=o+b|0;g[t+(A<<4)>>2]=r+v*z;g[t+(A<<4)+4>>2]=s+w*z;g[t+(A<<4)+8>>2]=u+x*z;g[t+(A<<4)+12>>2]=0.0;g[q+(A<<2)>>2]=1.0;o=o+1|0}while((o|0)!=(j|0));p=p+1|0}while((p|0)!=(k|0))}c[6435]=(c[6435]|0)+1;b=yc(1271)|0;if(!b)b=0;else{c[(b+4+15&-16)+-4>>2]=b;b=b+4+15&-16}Kc(b,d,y,t,q);if(l&1|0){g[(c[b+720>>2]|0)+88>>2]=0.0;a[b+924>>0]=1}if(l&2|0){g[(c[b+720>>2]|0)+((j+-1|0)*104|0)+88>>2]=0.0;a[b+924>>0]=1}if(l&4|0){A=_(k+-1|0,j)|0;g[(c[b+720>>2]|0)+(A*104|0)+88>>2]=0.0;a[b+924>>0]=1}if(l&8|0){A=j+-1+(_(k+-1|0,j)|0)|0;g[(c[b+720>>2]|0)+(A*104|0)+88>>2]=0.0;a[b+924>>0]=1}if(l&16|0){g[(c[b+720>>2]|0)+(((j+-1|0)/2|0)*104|0)+88>>2]=0.0;a[b+924>>0]=1}if(l&32|0){A=_((k+-1|0)/2|0,j)|0;g[(c[b+720>>2]|0)+(A*104|0)+88>>2]=0.0;a[b+924>>0]=1}if(l&64|0){A=j+-1+(_((k+-1|0)/2|0,j)|0)|0;g[(c[b+720>>2]|0)+(A*104|0)+88>>2]=0.0;a[b+924>>0]=1}if(l&128|0){A=(_(k+-1|0,j)|0)+((j+-1|0)/2|0)|0;g[(c[b+720>>2]|0)+(A*104|0)+88>>2]=0.0;a[b+924>>0]=1}if(l&256|0){A=(_((k+-1|0)/2|0,j)|0)+((j+-1|0)/2|0)|0;g[(c[b+720>>2]|0)+(A*104|0)+88>>2]=0.0;a[b+924>>0]=1}if(t|0){c[6436]=(c[6436]|0)+1;hd(c[t+-4>>2]|0)}hd(q);if((k|0)<=0){A=b;return A|0}y=j+-1|0;d=0;o=0;while(1){p=d;d=d+1|0;a:do if((j|0)>0){t=_(p,j)|0;i=_(d,j)|0;s=1.0/+(k+-1|0)*+(k+-1-p|0);r=1.0/+(k+-1|0)*+(k+-2-p|0);if((d|0)<(k|0)){f=0;h=o}else{if((j|0)>1){q=1;p=0}else break;while(1){Rf(b,p+t|0,q+t|0,0,0);p=q+1|0;if((p|0)==(j|0))break a;else{A=q;q=p;p=A}}}while(1){p=f+1|0;q=f+t|0;e=f+i|0;if((f|0)==(j+-1|0))break;Rf(b,q,p+t|0,0,0);Rf(b,q,e,0,0);Zf(b,q,e,p+i|0,0);if(!n)Zf(b,p+i|0,p+t|0,q,0);else{z=1.0/+(j+-1|0)*+(f|0);g[n+(h<<2)>>2]=z;g[n+(h+1<<2)>>2]=s;g[n+(h+2<<2)>>2]=z;g[n+(h+3<<2)>>2]=r;x=1.0/+(j+-1|0)*+(p|0);g[n+(h+4<<2)>>2]=x;g[n+(h+5<<2)>>2]=r;Zf(b,p+i|0,p+t|0,q,0);g[n+(h+6<<2)>>2]=x;g[n+(h+7<<2)>>2]=r;g[n+(h+8<<2)>>2]=x;g[n+(h+9<<2)>>2]=s;g[n+(h+10<<2)>>2]=z;g[n+(h+11<<2)>>2]=s}if(m)Rf(b,q,p+i|0,0,0);f=p;h=h+12|0}Rf(b,y,e,0,0);o=(j*12|0)+-12+o|0}while(0);if((d|0)==(k|0))break;else y=y+j|0}return b|0}function ce(b,d,e,f,h,j,k,l){b=b|0;d=d|0;e=e|0;f=f|0;h=+h;j=+j;k=k|0;l=l|0;var m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0;w=i;i=i+288|0;c[w+208>>2]=c[d>>2];c[w+208+4>>2]=c[d+4>>2];c[w+208+8>>2]=c[d+8>>2];c[w+208+12>>2]=c[d+12>>2];o=w+208+16|0;c[o>>2]=c[e>>2];c[o+4>>2]=c[e+4>>2];c[o+8>>2]=c[e+8>>2];c[o+12>>2]=c[e+12>>2];e=w+208+32|0;c[e>>2]=c[f>>2];c[e+4>>2]=c[f+4>>2];c[e+8>>2]=c[f+8>>2];c[e+12>>2]=c[f+12>>2];r=c[k>>2]|0;t=c[k+4>>2]|0;u=c[k+8>>2]|0;v=c[k+16>>2]|0;q=c[k+12>>2]|0;p=c[k+20>>2]|0;c[w>>2]=c[w+208>>2];c[w+4>>2]=c[w+208+4>>2];c[w+8>>2]=c[w+208+8>>2];c[w+12>>2]=c[w+208+12>>2];c[w+16>>2]=c[o>>2];c[w+16+4>>2]=c[o+4>>2];c[w+16+8>>2]=c[o+8>>2];c[w+16+12>>2]=c[o+12>>2];c[w+32>>2]=c[e>>2];c[w+32+4>>2]=c[e+4>>2];c[w+32+8>>2]=c[e+8>>2];c[w+32+12>>2]=c[e+12>>2];e=c[b+136>>2]|0;if((e|0)==(c[b+140>>2]|0)?(s=e|0?e<<1:1,(e|0)<(s|0)):0){if(!s)d=0;else{c[6435]=(c[6435]|0)+1;d=yc((s*284|3)+16|0)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}e=c[b+136>>2]|0}if((e|0)>0){k=0;do{f=c[b+144>>2]|0;m=d+(k*284|0)|0;n=f+(k*284|0)|0;o=m+92|0;do{c[m>>2]=c[n>>2];m=m+4|0;n=n+4|0}while((m|0)<(o|0));m=d+(k*284|0)+92|0;n=f+(k*284|0)+92|0;c[m>>2]=c[n>>2];c[m+4>>2]=c[n+4>>2];c[m+8>>2]=c[n+8>>2];c[m+12>>2]=c[n+12>>2];m=d+(k*284|0)+108|0;n=f+(k*284|0)+108|0;c[m>>2]=c[n>>2];c[m+4>>2]=c[n+4>>2];c[m+8>>2]=c[n+8>>2];c[m+12>>2]=c[n+12>>2];m=d+(k*284|0)+124|0;n=f+(k*284|0)+124|0;c[m>>2]=c[n>>2];c[m+4>>2]=c[n+4>>2];c[m+8>>2]=c[n+8>>2];c[m+12>>2]=c[n+12>>2];m=d+(k*284|0)+140|0;n=f+(k*284|0)+140|0;c[m>>2]=c[n>>2];c[m+4>>2]=c[n+4>>2];c[m+8>>2]=c[n+8>>2];c[m+12>>2]=c[n+12>>2];m=d+(k*284|0)+156|0;n=f+(k*284|0)+156|0;o=m+128|0;do{c[m>>2]=c[n>>2];m=m+4|0;n=n+4|0}while((m|0)<(o|0));k=k+1|0}while((k|0)!=(e|0))}e=c[b+144>>2]|0;if(e|0){if(a[b+148>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0)}c[b+144>>2]=0}a[b+148>>0]=1;c[b+144>>2]=d;c[b+140>>2]=s;e=c[b+136>>2]|0}d=c[b+144>>2]|0;m=d+(e*284|0)|0;n=w+48|0;o=m+92|0;do{c[m>>2]=c[n>>2];m=m+4|0;n=n+4|0}while((m|0)<(o|0));m=d+(e*284|0)+92|0;c[m>>2]=c[w+192>>2];c[m+4>>2]=c[w+192+4>>2];c[m+8>>2]=c[w+192+8>>2];c[m+12>>2]=c[w+192+12>>2];m=d+(e*284|0)+108|0;c[m>>2]=c[w+176>>2];c[m+4>>2]=c[w+176+4>>2];c[m+8>>2]=c[w+176+8>>2];c[m+12>>2]=c[w+176+12>>2];m=d+(e*284|0)+124|0;c[m>>2]=c[w+160>>2];c[m+4>>2]=c[w+160+4>>2];c[m+8>>2]=c[w+160+8>>2];c[m+12>>2]=c[w+160+12>>2];m=d+(e*284|0)+140|0;c[m>>2]=c[w+144>>2];c[m+4>>2]=c[w+144+4>>2];c[m+8>>2]=c[w+144+8>>2];c[m+12>>2]=c[w+144+12>>2];d=d+(e*284|0)+156|0;m=d;n=w;o=m+48|0;do{c[m>>2]=c[n>>2];m=m+4|0;n=n+4|0}while((m|0)<(o|0));g[d+48>>2]=h;c[d+52>>2]=q;g[d+56>>2]=j;c[d+60>>2]=r;c[d+64>>2]=t;c[d+68>>2]=u;c[d+72>>2]=v;g[d+76>>2]=0.0;g[d+80>>2]=0.0;g[d+84>>2]=0.0;g[d+88>>2]=.10000000149011612;c[d+92>>2]=p;g[d+96>>2]=0.0;g[d+100>>2]=0.0;a[d+104>>0]=l&1;m=d+105|0;n=w+256|0;o=m+23|0;do{a[m>>0]=a[n>>0]|0;m=m+1|0;n=n+1|0}while((m|0)<(o|0));l=c[b+136>>2]|0;c[b+136>>2]=l+1;l=(c[b+144>>2]|0)+(l*284|0)|0;Tg(c[b+116>>2]|0,l,0);Ae(c[b+116>>2]|0,c[b+144>>2]|0,(c[b+136>>2]|0)+-1|0,0);i=w;return l|0}function de(a,d,f,h,j){a=a|0;d=d|0;f=f|0;h=h|0;j=j|0;var k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0;I=i;i=i+16|0;c[d+16>>2]=c[f>>2];c[d+16+4>>2]=c[f+4>>2];c[d+16+8>>2]=c[f+8>>2];c[d+16+12>>2]=c[f+12>>2];c[d+32>>2]=c[h>>2];c[d+32+4>>2]=c[h+4>>2];c[d+32+8>>2]=c[h+8>>2];c[d+32+12>>2]=c[h+12>>2];D=c[a+60>>2]|0;E=c[d+12>>2]&65535;Bj(a,I+6|0,+g[f>>2],+g[f+4>>2],+g[f+8>>2],0);Bj(a,I,+g[h>>2],+g[h+4>>2],+g[h+8>>2],1);H=0;do{t=b[D+(E<<6)+48+(H<<1)>>1]|0;w=b[D+(E<<6)+54+(H<<1)>>1]|0;q=b[I+6+(H<<1)>>1]|0;l=a+68+(H<<2)|0;s=c[l>>2]|0;m=(q&65535)-(e[s+((t&65535)<<2)>>1]|0)|0;r=b[I+(H<<1)>>1]|0;y=(r&65535)-(e[s+((w&65535)<<2)>>1]|0)|0;b[s+((t&65535)<<2)>>1]=q;b[s+((w&65535)<<2)>>1]=r;if((m|0)<0)wh(a,H,t);a:do if((y|0)>0?(z=c[l>>2]|0,A=c[a+60>>2]|0,B=e[z+((w&65535)<<2)+2>>1]|0,C=b[z+((w&65535)<<2)+6>>1]|0,C<<16>>16):0){n=1<>1]|0;if((e[s>>1]|0)<(p&65535))break a;q=c[a+60>>2]|0;k=k&65535;if(!(p&1)){if(((((e[A+(B<<6)+54+(n<<1)>>1]|0)>=(e[q+(k<<6)+48+(n<<1)>>1]|0)?(e[q+(k<<6)+54+(n<<1)>>1]|0)>=(e[A+(B<<6)+48+(n<<1)>>1]|0):0)?(e[A+(B<<6)+54+((1<>1]|0)>=(e[q+(k<<6)+48+((1<>1]|0):0)?(e[q+(k<<6)+54+((1<>1]|0)>=(e[A+(B<<6)+48+((1<>1]|0):0)?(G=c[a+92>>2]|0,F=q+((e[s+2>>1]|0)<<6)|0,Ob[c[(c[G>>2]|0)+8>>2]&63](G,F,q+(k<<6)|0)|0,G=c[a+96>>2]|0,G|0):0)Ob[c[(c[G>>2]|0)+8>>2]&63](G,F,q+(k<<6)|0)|0;q=q+(k<<6)+48+(H<<1)|0;b[q>>1]=(b[q>>1]|0)+-1<<16>>16}else{q=q+(k<<6)+54+(H<<1)|0;b[q>>1]=(b[q>>1]|0)+-1<<16>>16}b[o>>1]=(b[o>>1]|0)+1<<16>>16;k=e[s>>1]|e[s+2>>1]<<16;q=e[r>>1]|e[r+2>>1]<<16;b[s>>1]=q;b[s+2>>1]=q>>>16;b[r>>1]=k;b[r+2>>1]=k>>>16;k=b[s+10>>1]|0}while(k<<16>>16!=0)}while(0);b:do if((m|0)>0?(u=c[l>>2]|0,v=b[u+((t&65535)<<2)+6>>1]|0,v<<16>>16):0){p=(c[a+60>>2]|0)+((e[u+((t&65535)<<2)+2>>1]|0)<<6)+48+(H<<1)|0;q=1<>1]|0;if((e[o>>1]|0)<(k&65535))break b;m=c[a+60>>2]|0;l=l&65535;if(!(k&1)){t=m+(l<<6)+48+(H<<1)|0;b[t>>1]=(b[t>>1]|0)+-1<<16>>16}else{k=e[o+2>>1]|0;if(((((e[m+(k<<6)+54+(q<<1)>>1]|0)>=(e[m+(l<<6)+48+(q<<1)>>1]|0)?(e[m+(l<<6)+54+(q<<1)>>1]|0)>=(e[m+(k<<6)+48+(q<<1)>>1]|0):0)?(e[m+(k<<6)+54+((1<>1]|0)>=(e[m+(l<<6)+48+((1<>1]|0):0)?(e[m+(l<<6)+54+((1<>1]|0)>=(e[m+(k<<6)+48+((1<>1]|0):0)?(x=c[a+92>>2]|0,Ib[c[(c[x>>2]|0)+12>>2]&31](x,m+(k<<6)|0,m+(l<<6)|0,j)|0,x=c[a+96>>2]|0,x|0):0)Ib[c[(c[x>>2]|0)+12>>2]&31](x,m+(k<<6)|0,m+(l<<6)|0,j)|0;t=m+(l<<6)+54+(H<<1)|0;b[t>>1]=(b[t>>1]|0)+-1<<16>>16}b[p>>1]=(b[p>>1]|0)+1<<16>>16;l=e[o>>1]|e[o+2>>1]<<16;t=e[n>>1]|e[n+2>>1]<<16;b[o>>1]=t;b[o+2>>1]=t>>>16;b[n>>1]=l;b[n+2>>1]=l>>>16;l=b[o+10>>1]|0}while(l<<16>>16!=0)}while(0);if((y|0)<0)uh(a,H,w,j);H=H+1|0}while((H|0)!=3);k=c[a+108>>2]|0;if(!k){i=I;return}yb[c[(c[k>>2]|0)+16>>2]&31](k,c[d+60>>2]|0,f,h,j);i=I;return}function ee(b,d,e){b=b|0;d=+d;e=+e;var f=0,h=0,j=0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0,t=0.0,u=0.0,v=0.0;s=i;i=i+144|0;f=c[b+8>>2]|0;if(!f){f=c[b+4>>2]|0;if(!f){d=0.0;k=0.0;n=0.0;o=0.0;l=0.0;m=0.0}else{r=+g[f+336>>2];n=+g[b+172>>2];o=+g[f+340>>2];p=+g[b+168>>2];m=+g[b+164>>2];q=+g[f+332>>2];d=r*n-o*p;k=+g[f+316>>2];n=o*m-n*q;o=+g[f+320>>2];l=+g[f+324>>2];m=p*q-r*m}}else{r=+g[f+332>>2];n=+g[b+172>>2];o=+g[f+336>>2];p=+g[b+168>>2];m=+g[b+164>>2];q=+g[f+328>>2];d=r*n-o*p;k=+g[f+312>>2];n=o*m-n*q;o=+g[f+316>>2];l=+g[f+320>>2];m=p*q-r*m}p=k+d;r=o+n;q=l+m;f=c[b+20>>2]|0;if(!f){f=c[b+16>>2]|0;if(!f){d=0.0;k=0.0;n=0.0;o=0.0;l=0.0;m=0.0}else{t=+g[f+336>>2];n=+g[b+188>>2];o=+g[f+340>>2];v=+g[b+184>>2];m=+g[b+180>>2];u=+g[f+332>>2];d=t*n-o*v;k=+g[f+316>>2];n=o*m-n*u;o=+g[f+320>>2];l=+g[f+324>>2];m=v*u-t*m}}else{v=+g[f+332>>2];n=+g[b+188>>2];o=+g[f+336>>2];t=+g[b+184>>2];m=+g[b+180>>2];u=+g[f+328>>2];d=v*n-o*t;k=+g[f+312>>2];n=o*m-n*u;o=+g[f+316>>2];l=+g[f+320>>2];m=t*u-v*m}p=p-(k+d);n=r-(o+n);d=q-(l+m);k=+g[b+196>>2];l=+g[b+200>>2];m=+g[b+204>>2];a[s+108+32>>0]=1;c[s+108+16>>2]=0;c[s+108+16+4>>2]=0;c[s+108+16+8>>2]=0;c[s+108+16+12>>2]=0;c[s+108>>2]=c[b+72>>2];c[s+108+4>>2]=c[b+72+4>>2];c[s+108+8>>2]=c[b+72+8>>2];c[s+108+12>>2]=c[b+72+12>>2];if(k*p+n*l+d*m<0.0){t=+g[b+212>>2];u=+g[s+108>>2]+((k*p+n*l+d*m)*k+(p-(k*p+n*l+d*m)*k)*t);g[s+108>>2]=u;v=(k*p+n*l+d*m)*l+t*(n-(k*p+n*l+d*m)*l)+ +g[s+108+4>>2];g[s+108+4>>2]=v;l=(k*p+n*l+d*m)*m+t*(d-(k*p+n*l+d*m)*m)+ +g[s+108+8>>2];g[s+108+8>>2]=l;f=s+108+4|0;h=s+108+8|0;j=s+108|0;d=u;k=v}else{f=s+108+4|0;h=s+108+8|0;j=s+108|0;d=+g[s+108>>2];k=+g[s+108+4>>2];l=+g[s+108+8>>2]}m=(+g[b+104>>2]*d+ +g[b+108>>2]*k+ +g[b+112>>2]*l)*e;n=(d*+g[b+120>>2]+k*+g[b+124>>2]+l*+g[b+128>>2])*e;d=(d*+g[b+136>>2]+k*+g[b+140>>2]+l*+g[b+144>>2])*e;g[j>>2]=m;g[f>>2]=n;g[h>>2]=d;g[s+108+12>>2]=0.0;f=c[b+4>>2]|0;if((f|0)!=(c[b+16>>2]|0)){f=s;h=s+108|0;j=f+36|0;do{c[f>>2]=c[h>>2];f=f+4|0;h=h+4|0}while((f|0)<(j|0));v=-+g[s+4>>2];u=-+g[s+8>>2];g[s>>2]=-+g[s>>2];g[s+4>>2]=v;g[s+8>>2]=u;g[s+12>>2]=0.0;u=-+g[s+20>>2];v=-+g[s+24>>2];g[s+16>>2]=-+g[s+16>>2];g[s+20>>2]=u;g[s+24>>2]=v;g[s+28>>2]=0.0;Xh(b+4|0,s,b+164|0);Xh(b+16|0,s+108|0,b+180|0);i=s;return}if(!(m==m&n==n&(d==d&0.0==0.0))){i=s;return}v=+O(+(m*m+n*n+d*d));if(v<+g[f+368>>2]){i=s;return}h=c[s+108+32>>2]|0;v=+g[f+372>>2];g[s+72+12>>2]=0.0;g[s+72+28>>2]=0.0;c[s+72+32>>2]=h;g[s+72>>2]=-(m*v);g[s+72+4>>2]=-(n*v);g[s+72+8>>2]=-(d*v);g[s+72+16>>2]=v*-0.0;g[s+72+20>>2]=v*-0.0;g[s+72+24>>2]=v*-0.0;Xh(b+4|0,s+72|0,b+164|0);d=+g[(c[b+4>>2]|0)+372>>2];f=s+36|0;h=s+108|0;j=f+36|0;do{c[f>>2]=c[h>>2];f=f+4|0;h=h+4|0}while((f|0)<(j|0));g[s+36>>2]=d*+g[s+36>>2];g[s+36+4>>2]=d*+g[s+36+4>>2];g[s+36+8>>2]=d*+g[s+36+8>>2];g[s+36+16>>2]=d*+g[s+36+16>>2];g[s+36+20>>2]=d*+g[s+36+20>>2];g[s+36+24>>2]=d*+g[s+36+24>>2];Xh(b+16|0,s+36|0,b+180|0);i=s;return}function fe(b,d,e,f){b=b|0;d=d|0;e=e|0;f=+f;var h=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0,q=0,r=0.0,s=0.0,t=0.0,u=0.0,v=0,w=0,x=0,y=0,z=0,A=0,B=0.0,C=0.0,D=0,E=0;A=i;i=i+192|0;x=c[b+4>>2]|0;if(+g[x+752>>2]>2]|0;w=(c[b+8>>2]|0)+8|0;y=c[w>>2]|0;l=+g[e>>2];n=+g[d>>2]*f+l;h=+g[e+4>>2];o=+g[d+4>>2]*f+h;j=+g[e+8>>2];r=+g[d+8>>2]*f+j;v=(c[b+12>>2]|0)+8|0;p=c[v>>2]|0;m=+g[p+52>>2];if((z|0)!=(y|0)){k=o-+g[p+56>>2];u=r-+g[p+60>>2];B=l-+g[y+52>>2];l=h-+g[y+56>>2];h=j-+g[y+60>>2];s=(n-m)*+g[p+4>>2]+k*+g[p+20>>2]+u*+g[p+36>>2];t=(n-m)*+g[p+8>>2]+k*+g[p+24>>2]+u*+g[p+40>>2];u=(n-m)*+g[p+12>>2]+k*+g[p+28>>2]+u*+g[p+44>>2];j=B*+g[y+4>>2]+l*+g[y+20>>2]+h*+g[y+36>>2];k=B*+g[y+8>>2]+l*+g[y+24>>2]+h*+g[y+40>>2];h=B*+g[y+12>>2]+l*+g[y+28>>2]+h*+g[y+44>>2]}else{C=n-+g[z+52>>2];k=o-+g[z+56>>2];u=r-+g[z+60>>2];B=h-+g[p+56>>2];h=j-+g[p+60>>2];s=C*+g[z+4>>2]+k*+g[z+20>>2]+u*+g[z+36>>2];t=C*+g[z+8>>2]+k*+g[z+24>>2]+u*+g[z+40>>2];u=C*+g[z+12>>2]+k*+g[z+28>>2]+u*+g[z+44>>2];j=(l-m)*+g[p+4>>2]+B*+g[p+20>>2]+h*+g[p+36>>2];k=(l-m)*+g[p+8>>2]+B*+g[p+24>>2]+h*+g[p+40>>2];h=(l-m)*+g[p+12>>2]+B*+g[p+28>>2]+h*+g[p+44>>2]}g[A>>2]=s;g[A+4>>2]=t;g[A+8>>2]=u;g[A+12>>2]=0.0;g[A+16>>2]=j;g[A+20>>2]=k;g[A+24>>2]=h;g[A+28>>2]=0.0;c[A+64>>2]=c[d>>2];c[A+64+4>>2]=c[d+4>>2];c[A+64+8>>2]=c[d+8>>2];c[A+64+12>>2]=c[d+12>>2];g[A+80>>2]=f;g[A+84>>2]=0.0;g[A+88>>2]=0.0;g[A+92>>2]=0.0;c[A+112>>2]=0;a[A+116>>0]=0;c[A+120>>2]=0;c[A+120+4>>2]=0;c[A+120+8>>2]=0;c[A+120+12>>2]=0;c[A+120+16>>2]=0;c[A+120+20>>2]=0;c[A+120+24>>2]=0;c[A+120+28>>2]=0;g[A+48>>2]=n;g[A+52>>2]=o;g[A+56>>2]=r;g[A+60>>2]=0.0;c[A+32>>2]=c[e>>2];c[A+32+4>>2]=c[e+4>>2];c[A+32+8>>2]=c[e+8>>2];c[A+32+12>>2]=c[e+12>>2];h=+g[x+752>>2];e=c[x+748>>2]|0;if((e|0)>0){q=0;p=-1;l=h*h;while(1){h=+g[x+4+(q*184|0)>>2]-s;j=+g[x+4+(q*184|0)+4>>2]-t;k=+g[x+4+(q*184|0)+8>>2]-u;d=h*h+j*j+k*k>2]|0;w=c[v>>2]|0;h=+g[q+224>>2]*+g[w+224>>2];h=h<-10.0?-10.0:h;g[A+84>>2]=h>10.0?10.0:h;g[A+92>>2]=+g[q+228>>2]*+g[w+228>>2];h=+g[q+232>>2]*+g[w+232>>2];h=h<-10.0?-10.0:h;g[A+88>>2]=h>10.0?10.0:h;h=+g[A+72>>2];w=+N(+h)>.7071067690849304;l=+g[A+68>>2];if(w){C=1.0/+O(+(h*h+l*l));n=+g[A+64>>2];m=-(C*l*n);n=n*-(C*h);o=-(C*h);j=(h*h+l*l)*C;k=0.0;h=C*l}else{j=+g[A+64>>2];k=1.0/+O(+(j*j+l*l));m=h*-(l*k);n=(j*j+l*l)*k;o=k*j;j=-(k*j*h);k=-(l*k);h=0.0}g[A+152>>2]=k;g[A+156>>2]=o;g[A+160>>2]=h;g[A+168>>2]=j;g[A+172>>2]=m;g[A+176>>2]=n;v=c[b+20>>2]|0;q=c[b+16>>2]|0;w=c[b+28>>2]|0;b=c[b+24>>2]|0;c[A+96>>2]=(z|0)!=(y|0)?v:q;c[A+100>>2]=(z|0)!=(y|0)?q:v;c[A+104>>2]=(z|0)!=(y|0)?w:b;c[A+108>>2]=(z|0)!=(y|0)?b:w;if((p|0)>-1){b=x+4+(p*184|0)+148|0;z=c[b>>2]|0;e=x+4+(p*184|0)+120|0;d=c[e>>2]|0;v=x+4+(p*184|0)+124|0;q=c[v>>2]|0;y=x+4+(p*184|0)+128|0;w=c[y>>2]|0;D=x+4+(p*184|0)+112|0;E=c[D>>2]|0;_m(x+4+(p*184|0)|0,A|0,184)|0;c[D>>2]=E;c[e>>2]=d;c[v>>2]=q;c[y>>2]=w;c[b>>2]=z}else _e(x,A)|0;i=A;return}function ge(b,d,e,f,g,h){b=b|0;d=d|0;e=e|0;f=f|0;g=g|0;h=h|0;var i=0,j=0,k=0,l=0,m=0,n=0,o=0;if((h|0)<0){o=c[b+8>>2]|0;+$b[c[(c[o>>2]|0)+12>>2]&3](o,d,e,f,g,c[b+12>>2]|0,c[b+16>>2]|0,c[b+4>>2]|0,c[b+20>>2]|0,c[b+24>>2]|0);return}n=c[b+16>>2]|0;a:do if((n|0)>0){m=c[b+12>>2]|0;i=0;while(1){l=m+(i<<2)|0;k=c[l>>2]|0;j=c[(c[k+28>>2]|0)+208>>2]|0;if((j|0)<=-1)j=c[(c[k+32>>2]|0)+208>>2]|0;if((j|0)==(h|0)){o=l;break a}i=i+1|0;if((i|0)>=(n|0)){o=0;break}}}else{i=0;o=0}while(0);if((i|0)<(n|0)){m=c[b+12>>2]|0;j=0;do{l=c[m+(i<<2)>>2]|0;k=c[(c[l+28>>2]|0)+208>>2]|0;if((k|0)<=-1)k=c[(c[l+32>>2]|0)+208>>2]|0;j=((k|0)==(h|0)&1)+j|0;i=i+1|0}while((i|0)!=(n|0));h=j}else h=0;i=c[b+4>>2]|0;if((c[i+72>>2]|0)<2){n=c[b+8>>2]|0;+$b[c[(c[n>>2]|0)+12>>2]&3](n,d,e,f,g,o,h,i,c[b+20>>2]|0,c[b+24>>2]|0);return}if((e|0)>0){i=c[b+32>>2]|0;j=c[b+36>>2]|0;n=0;do{m=d+(n<<2)|0;if((i|0)==(j|0)){l=j|0?j<<1:1;if((j|0)<(l|0)){if(!l)i=0;else{c[6435]=(c[6435]|0)+1;i=yc((l<<2|3)+16|0)|0;if(!i)i=0;else{c[(i+4+15&-16)+-4>>2]=i;i=i+4+15&-16}j=c[b+32>>2]|0}if((j|0)>0){k=0;do{c[i+(k<<2)>>2]=c[(c[b+40>>2]|0)+(k<<2)>>2];k=k+1|0}while((k|0)!=(j|0))}k=c[b+40>>2]|0;if(k){if(a[b+44>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[k+-4>>2]|0);j=c[b+32>>2]|0}c[b+40>>2]=0}a[b+44>>0]=1;c[b+40>>2]=i;c[b+36>>2]=l;i=j;j=l}else i=j}c[(c[b+40>>2]|0)+(i<<2)>>2]=c[m>>2];i=i+1|0;c[b+32>>2]=i;n=n+1|0}while((n|0)!=(e|0))}if((g|0)>0){i=c[b+52>>2]|0;j=c[b+56>>2]|0;n=0;do{m=f+(n<<2)|0;if((i|0)==(j|0)){l=j|0?j<<1:1;if((j|0)<(l|0)){if(!l)i=0;else{c[6435]=(c[6435]|0)+1;i=yc((l<<2|3)+16|0)|0;if(!i)i=0;else{c[(i+4+15&-16)+-4>>2]=i;i=i+4+15&-16}j=c[b+52>>2]|0}if((j|0)>0){k=0;do{c[i+(k<<2)>>2]=c[(c[b+60>>2]|0)+(k<<2)>>2];k=k+1|0}while((k|0)!=(j|0))}k=c[b+60>>2]|0;if(k){if(a[b+64>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[k+-4>>2]|0);j=c[b+52>>2]|0}c[b+60>>2]=0}a[b+64>>0]=1;c[b+60>>2]=i;c[b+56>>2]=l;i=j;j=l}else i=j}c[(c[b+60>>2]|0)+(i<<2)>>2]=c[m>>2];i=i+1|0;c[b+52>>2]=i;n=n+1|0}while((n|0)!=(g|0))}if((h|0)>0){i=c[b+72>>2]|0;j=c[b+76>>2]|0;n=0;do{m=o+(n<<2)|0;if((i|0)==(j|0)){l=j|0?j<<1:1;if((j|0)<(l|0)){if(!l){k=0;i=j}else{c[6435]=(c[6435]|0)+1;i=yc((l<<2|3)+16|0)|0;if(!i)i=0;else{c[(i+4+15&-16)+-4>>2]=i;i=i+4+15&-16}k=i;i=c[b+72>>2]|0}if((i|0)>0){j=0;do{c[k+(j<<2)>>2]=c[(c[b+80>>2]|0)+(j<<2)>>2];j=j+1|0}while((j|0)!=(i|0))}j=c[b+80>>2]|0;if(j){if(a[b+84>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0);i=c[b+72>>2]|0}c[b+80>>2]=0}a[b+84>>0]=1;c[b+80>>2]=k;c[b+76>>2]=l;j=l}else i=j}c[(c[b+80>>2]|0)+(i<<2)>>2]=c[m>>2];i=i+1|0;c[b+72>>2]=i;n=n+1|0}while((n|0)!=(h|0))}else i=c[b+72>>2]|0;if(((c[b+52>>2]|0)+i|0)<=(c[(c[b+4>>2]|0)+72>>2]|0))return;nh(b);return}function he(d,e,f,h,j){d=d|0;e=e|0;f=+f;h=+h;j=+j;var k=0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0,r=0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0;q=i;i=i+240|0;o=+g[d+96>>2]+h;p=+g[d+100>>2]+j;g[d+112>>2]=+g[d+92>>2]+f;g[d+116>>2]=o;g[d+120>>2]=p;g[d+124>>2]=0.0;c[q+168>>2]=1065353216;c[q+168+4>>2]=0;c[q+168+4+4>>2]=0;c[q+168+4+8>>2]=0;c[q+168+4+12>>2]=0;c[q+168+20>>2]=1065353216;c[q+168+24>>2]=0;c[q+168+24+4>>2]=0;c[q+168+24+8>>2]=0;c[q+168+24+12>>2]=0;c[q+168+40>>2]=1065353216;k=q+168+44|0;c[k>>2]=0;c[k+4>>2]=0;c[k+8>>2]=0;c[k+12>>2]=0;c[k+16>>2]=0;c[q+104>>2]=1065353216;c[q+104+4>>2]=0;c[q+104+4+4>>2]=0;c[q+104+4+8>>2]=0;c[q+104+4+12>>2]=0;c[q+104+20>>2]=1065353216;c[q+104+24>>2]=0;c[q+104+24+4>>2]=0;c[q+104+24+8>>2]=0;c[q+104+24+12>>2]=0;c[q+104+40>>2]=1065353216;k=q+104+44|0;c[k>>2]=0;c[k+4>>2]=0;c[k+8>>2]=0;c[k+12>>2]=0;c[k+16>>2]=0;p=1.0;k=10;while(1){if((k|0)<=0){k=14;break}k=k+-1|0;c[q+168+48>>2]=c[d+92>>2];c[q+168+48+4>>2]=c[d+92+4>>2];c[q+168+48+8>>2]=c[d+92+8>>2];c[q+168+48+12>>2]=c[d+92+12>>2];c[q+104+48>>2]=c[d+112>>2];c[q+104+48+4>>2]=c[d+112+4>>2];c[q+104+48+8>>2]=c[d+112+8>>2];c[q+104+48+12>>2]=c[d+112+12>>2];n=+g[d+92>>2]-+g[d+112>>2];o=+g[d+96>>2]-+g[d+116>>2];f=+g[d+100>>2]-+g[d+120>>2];r=c[d+8>>2]|0;g[q+4>>2]=1.0;b[q+8>>1]=1;b[q+10>>1]=-1;c[q+76>>2]=0;c[q+12>>2]=0;c[q+12+4>>2]=0;c[q+12+8>>2]=0;c[q+12+12>>2]=0;c[q+12+16>>2]=0;c[q+12+20>>2]=0;c[q+12+24>>2]=0;c[q+12+28>>2]=0;c[q>>2]=4936;c[q+80>>2]=r;g[q+84>>2]=n;g[q+88>>2]=o;g[q+92>>2]=f;g[q+96>>2]=0.0;g[q+100>>2]=0.0;r=c[(c[r+188>>2]|0)+4>>2]|0;b[q+8>>1]=r;b[q+10>>1]=r>>>16;r=c[d+12>>2]|0;f=+Sb[c[(c[r>>2]|0)+48>>2]&15](r);r=c[d+12>>2]|0;zb[c[(c[r>>2]|0)+44>>2]&31](r,f+ +g[d+56>>2]);if(!(a[d+170>>0]|0))Kd(e,c[d+12>>2]|0,q+168|0,q+104|0,q,+g[e+56>>2]);else wd(c[d+8>>2]|0,c[d+12>>2]|0,q+168|0,q+104|0,q,+g[e+56>>2]);r=c[d+12>>2]|0;zb[c[(c[r>>2]|0)+44>>2]&31](r,f);o=+g[q+4>>2];p=p-o;if(o<1.0){h=+g[d+112>>2];m=+g[d+92>>2];j=+g[d+116>>2];n=+g[d+96>>2];l=+g[d+120>>2];o=+g[d+100>>2];f=+O(+((h-m)*(h-m)+(j-n)*(j-n)+(l-o)*(l-o)));if(f>1.1920928955078125e-07){v=+g[q+44>>2];t=+g[q+48>>2];x=+g[q+52>>2];w=((h-m)*(1.0/f)*v+(j-n)*(1.0/f)*t+(l-o)*(1.0/f)*x)*2.0;u=(h-m)*(1.0/f)-v*w;s=(j-n)*(1.0/f)-t*w;w=(l-o)*(1.0/f)-x*w;l=1.0/+O(+(w*w+(u*u+s*s)));c[d+112>>2]=c[d+92>>2];c[d+112+4>>2]=c[d+92+4>>2];c[d+112+8>>2]=c[d+92+8>>2];c[d+112+12>>2]=c[d+92+12>>2];h=f*(l*u-v*(x*l*w+(v*l*u+t*l*s)))+ +g[d+112>>2];g[d+112>>2]=h;j=f*(l*s-t*(x*l*w+(v*l*u+t*l*s)))+ +g[d+116>>2];g[d+116>>2]=j;l=f*(l*w-x*(x*l*w+(v*l*u+t*l*s)))+ +g[d+120>>2];g[d+120>>2]=l;f=j}else f=j;j=h-m;h=f-n;f=l-o;if(!(j*j+h*h+f*f>1.1920928955078125e-07)){k=11;break}x=1.0/+O(+(j*j+h*h+f*f));if(+g[d+76>>2]*j*x+h*x*+g[d+80>>2]+f*x*+g[d+84>>2]<=0.0){k=11;break}}else{c[d+92>>2]=c[d+112>>2];c[d+92+4>>2]=c[d+112+4>>2];c[d+92+8>>2]=c[d+112+8>>2];c[d+92+12>>2]=c[d+112+12>>2]}if(!(p>.009999999776482582)){k=14;break}}if((k|0)==11){i=q;return}else if((k|0)==14){i=q;return}}function ie(d,f,h,j){d=d|0;f=f|0;h=h|0;j=j|0;var k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0.0,H=0.0,I=0.0;w=i;i=i+80|0;v=c[d+48>>2]|0;c[w>>2]=6864;c[w+4>>2]=v;c[w+8>>2]=f;v=c[d+52>>2]|0;if(!(a[v+60>>0]|0)){f=c[v+56>>2]|0;if((f|0)>0){d=f;m=0;p=c[v+96>>2]|0;f=0;while(1){f=f+1|0;if(!(+g[h>>2]>+g[p+16>>2])?!(+g[j>>2]<+g[p>>2]):0)k=1;else k=0;if(!(!(+g[h+8>>2]>+g[p+24>>2])?!(+g[j+8>>2]<+g[p+8>>2]):0))k=0;if(!(+g[h+4>>2]>+g[p+20>>2])?!(+g[j+4>>2]<+g[p+4>>2]):0){l=c[p+32>>2]|0;if(k&(l|0)==-1){ic[c[(c[w>>2]|0)+8>>2]&127](w,c[p+36>>2]|0,c[p+40>>2]|0);d=c[v+56>>2]|0;o=43}else{n=(l|0)==-1;o=42}}else{l=c[p+32>>2]|0;k=0;n=(l|0)==-1;o=42}if((o|0)==42){o=0;if(n|k)o=43;else{m=l+m|0;k=p+(l<<6)|0}}if((o|0)==43){m=m+1|0;k=p+64|0}if((m|0)<(d|0))p=k;else break}}else f=0;if((c[6167]|0)>=(f|0)){i=w;return}c[6167]=f;i=w;return}D=+g[h>>2];H=+g[h+4>>2];z=+g[h+8>>2];G=+g[v+4>>2];D=D>2];H=H>2];z=z>2];A=+g[v+24>>2];E=+g[v+28>>2];F=+g[v+36>>2];x=+g[v+40>>2];B=+g[v+44>>2];u=~~(((I>1]=u;s=~~(((E>1]=t;b[w+66+4>>1]=s;H=+g[j>>2];z=+g[j+4>>2];D=+g[j+8>>2];H=H>1]=r;j=(~~(((E>1]=q;b[w+60+4>>1]=j;switch(c[v+144>>2]|0){case 0:{o=c[v+56>>2]|0;if((o|0)>0){d=0;k=c[v+136>>2]|0;f=0;do{f=f+1|0;l=((r&65535)>=(e[k>>1]|0)?(u&65535)<=(e[k+6>>1]|0):0)&(s&65535)<=(e[k+10>>1]|0)&(j&65535)>=(e[k+4>>1]|0)&(t&65535)<=(e[k+8>>1]|0)&(q&65535)>=(e[k+2>>1]|0);m=k+12|0;n=c[m>>2]|0;if((n|0)>-1&l)ic[c[(c[w>>2]|0)+8>>2]&127](w,n>>21,n&2097151);if(l|(n|0)>-1){d=d+1|0;k=k+16|0}else{v=c[m>>2]|0;d=d-v|0;k=k+(0-v<<4)|0}}while((d|0)<(o|0))}else f=0;if((c[6167]|0)<(f|0))c[6167]=f;break}case 1:{if((c[v+152>>2]|0)>0){h=0;do{f=c[v+160>>2]|0;if(((r&65535)>=(e[f+(h<<5)>>1]|0)?(u&65535)<=(e[f+(h<<5)+6>>1]|0):0)&(s&65535)<=(e[f+(h<<5)+10>>1]|0)&(j&65535)>=(e[f+(h<<5)+4>>1]|0)&(t&65535)<=(e[f+(h<<5)+8>>1]|0)&(q&65535)>=(e[f+(h<<5)+2>>1]|0)){p=c[f+(h<<5)+12>>2]|0;o=c[f+(h<<5)+16>>2]|0;if((o|0)>0){d=p;k=(c[v+136>>2]|0)+(p<<4)|0;f=0;do{f=f+1|0;l=((r&65535)>=(e[k>>1]|0)?(u&65535)<=(e[k+6>>1]|0):0)&(s&65535)<=(e[k+10>>1]|0)&(j&65535)>=(e[k+4>>1]|0)&(t&65535)<=(e[k+8>>1]|0)&(q&65535)>=(e[k+2>>1]|0);m=k+12|0;n=c[m>>2]|0;if((n|0)>-1&l)ic[c[(c[w>>2]|0)+8>>2]&127](w,n>>21,n&2097151);if(l|(n|0)>-1){d=d+1|0;k=k+16|0}else{n=c[m>>2]|0;d=d-n|0;k=k+(0-n<<4)|0}}while((d|0)<(o+p|0))}else f=0;if((c[6167]|0)<(f|0))c[6167]=f}h=h+1|0}while((h|0)<(c[v+152>>2]|0))}break}case 2:{Lk(c[v+136>>2]|0,w,w+66|0,w+60|0);break}default:{}}i=w;return}function je(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;var h=0;a[b+20>>0]=1;c[b+16>>2]=0;c[b+8>>2]=0;c[b+12>>2]=0;c[b+24>>2]=d;g[b+28>>2]=0.0;c[b+32>>2]=0;c[b+36>>2]=1;g[b+40>>2]=1.0;a[b+44>>0]=1;c[b+48>>2]=0;a[b+52>>0]=0;a[b+53>>0]=1;a[b+54>>0]=1;g[b+56>>2]=.03999999910593033;a[b+60>>0]=0;g[b+64>>2]=0.0;c[b+68>>2]=e;c[b+72>>2]=0;a[b+76>>0]=1;c[b+80>>2]=0;c[b+84>>2]=0;c[b+88>>2]=0;g[b+92>>2]=.6000000238418579;g[b+96>>2]=1.0;g[b+100>>2]=.30000001192092896;g[b+104>>2]=.01666666753590107;g[b+108>>2]=0.0;g[b+116>>2]=20.0;c[b+112>>2]=10;g[b+124>>2]=.20000000298023224;g[b+128>>2]=.800000011920929;g[b+132>>2]=0.0;g[b+120>>2]=1.0;c[b+136>>2]=1;g[b+140>>2]=-.03999999910593033;g[b+144>>2]=.10000000149011612;g[b+148>>2]=0.0;g[b+152>>2]=.8500000238418579;c[b+156>>2]=260;c[b+160>>2]=2;c[b+164>>2]=128;g[b+168>>2]=100.0;g[b+172>>2]=1000000015047466219876688.0e6;c[b>>2]=4144;a[b+192>>0]=1;c[b+188>>2]=0;c[b+180>>2]=0;c[b+184>>2]=0;c[b+196>>2]=0;c[b+200>>2]=f;a[b+224>>0]=1;c[b+220>>2]=0;c[b+212>>2]=0;c[b+216>>2]=0;a[b+244>>0]=1;c[b+240>>2]=0;c[b+232>>2]=0;c[b+236>>2]=0;c[b+248>>2]=0;c[b+252>>2]=-1054867456;a[b+274>>0]=0;a[b+275>>0]=0;c[b+256>>2]=0;c[b+256+4>>2]=0;c[b+256+8>>2]=0;c[b+256+12>>2]=0;a[b+292>>0]=1;c[b+288>>2]=0;c[b+280>>2]=0;c[b+284>>2]=0;c[b+296>>2]=0;a[b+300>>0]=1;a[b+320>>0]=1;c[b+316>>2]=0;c[b+308>>2]=0;c[b+312>>2]=0;if(!f){c[6435]=(c[6435]|0)+1;f=yc(215)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}c[f>>2]=4756;a[f+20>>0]=1;c[f+16>>2]=0;c[f+8>>2]=0;c[f+12>>2]=0;a[f+40>>0]=1;c[f+36>>2]=0;c[f+28>>2]=0;c[f+32>>2]=0;a[f+60>>0]=1;c[f+56>>2]=0;c[f+48>>2]=0;c[f+52>>2]=0;a[f+80>>0]=1;c[f+76>>2]=0;c[f+68>>2]=0;c[f+72>>2]=0;a[f+100>>0]=1;c[f+96>>2]=0;c[f+88>>2]=0;c[f+92>>2]=0;a[f+120>>0]=1;c[f+116>>2]=0;c[f+108>>2]=0;c[f+112>>2]=0;a[f+140>>0]=1;c[f+136>>2]=0;c[f+128>>2]=0;c[f+132>>2]=0;a[f+160>>0]=1;c[f+156>>2]=0;c[f+148>>2]=0;c[f+152>>2]=0;a[f+180>>0]=1;c[f+176>>2]=0;c[f+168>>2]=0;c[f+172>>2]=0;c[f+192>>2]=0;c[b+200>>2]=f;a[b+273>>0]=1}else a[b+273>>0]=0;c[6435]=(c[6435]|0)+1;f=yc(87)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}c[f>>2]=5456;a[f+20>>0]=1;c[f+16>>2]=0;c[f+8>>2]=0;c[f+12>>2]=0;a[f+40>>0]=1;c[f+36>>2]=0;c[f+28>>2]=0;c[f+32>>2]=0;a[f+60>>0]=1;c[f+56>>2]=0;c[f+48>>2]=0;c[f+52>>2]=0;a[f+64>>0]=1;c[b+204>>2]=f;a[b+272>>0]=1;c[6435]=(c[6435]|0)+1;f=yc(107)|0;if(!f){e=0;h=c[b+200>>2]|0;c[e>>2]=4356;f=e+4|0;c[f>>2]=0;f=e+8|0;c[f>>2]=h;f=e+12|0;c[f>>2]=0;f=e+16|0;c[f>>2]=0;f=e+20|0;c[f>>2]=0;f=e+24|0;c[f>>2]=d;d=e+44|0;a[d>>0]=1;d=e+40|0;c[d>>2]=0;d=e+32|0;c[d>>2]=0;d=e+36|0;c[d>>2]=0;d=e+64|0;a[d>>0]=1;d=e+60|0;c[d>>2]=0;d=e+52|0;c[d>>2]=0;d=e+56|0;c[d>>2]=0;d=e+84|0;a[d>>0]=1;d=e+80|0;c[d>>2]=0;d=e+72|0;c[d>>2]=0;d=e+76|0;c[d>>2]=0;c[b+196>>2]=e;return}c[(f+4+15&-16)+-4>>2]=f;h=f+4+15&-16;f=c[b+200>>2]|0;c[h>>2]=4356;e=h+4|0;c[e>>2]=0;e=h+8|0;c[e>>2]=f;e=h+12|0;c[e>>2]=0;e=h+16|0;c[e>>2]=0;e=h+20|0;c[e>>2]=0;e=h+24|0;c[e>>2]=d;d=h+44|0;a[d>>0]=1;d=h+40|0;c[d>>2]=0;d=h+32|0;c[d>>2]=0;d=h+36|0;c[d>>2]=0;d=h+64|0;a[d>>0]=1;d=h+60|0;c[d>>2]=0;d=h+52|0;c[d>>2]=0;d=h+56|0;c[d>>2]=0;d=h+84|0;a[d>>0]=1;d=h+80|0;c[d>>2]=0;d=h+72|0;c[d>>2]=0;d=h+76|0;c[d>>2]=0;c[b+196>>2]=h;return}function ke(b,d){b=b|0;d=d|0;var e=0,f=0,h=0.0,j=0,k=0.0,l=0,m=0,n=0.0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0.0,w=0.0;u=i;i=i+96|0;s=c[b+12>>2]|0;mc[c[(c[s>>2]|0)+8>>2]&127](s,(c[b+8>>2]|0)+4|0,u+80|0,u+64|0);s=c[d+68>>2]|0;yb[c[(c[s>>2]|0)+16>>2]&31](s,c[(c[b+8>>2]|0)+188>>2]|0,u+80|0,u+64|0,c[d+24>>2]|0);s=c[d+24>>2]|0;mc[c[(c[s>>2]|0)+32>>2]&127](s,c[(c[b+8>>2]|0)+284>>2]|0,d+28|0,s);s=c[b+8>>2]|0;c[b+92>>2]=c[s+52>>2];c[b+92+4>>2]=c[s+52+4>>2];c[b+92+8>>2]=c[s+52+8>>2];c[b+92+12>>2]=c[s+52+12>>2];s=c[s+284>>2]|0;if((Eb[c[(c[s>>2]|0)+36>>2]&127](s)|0)>0){s=0;h=0.0;d=0;do{e=c[b+132>>2]|0;if((e|0)<0){if((c[b+136>>2]|0)<0){f=c[b+140>>2]|0;if(f|0){if(a[b+144>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}c[b+140>>2]=0}a[b+144>>0]=1;c[b+140>>2]=0;c[b+136>>2]=0}do{c[(c[b+140>>2]|0)+(e<<2)>>2]=0;e=e+1|0}while((e|0)!=0)}c[b+132>>2]=0;e=c[(c[b+8>>2]|0)+284>>2]|0;e=c[(Eb[c[(c[e>>2]|0)+28>>2]&127](e)|0)+12>>2]|0;r=c[c[e+(s<<4)>>2]>>2]|0;f=c[c[e+(s<<4)+4>>2]>>2]|0;if(!((r|0)!=0?(c[r+204>>2]&4|0)!=0:0))t=14;do if((t|0)==14){t=0;if(f|0?c[f+204>>2]&4|0:0)break;e=c[e+(s<<4)+8>>2]|0;if(e|0)Cb[c[(c[e>>2]|0)+16>>2]&127](e,b+128|0);q=c[b+132>>2]|0;if((q|0)>0){o=c[b+140>>2]|0;p=c[b+8>>2]|0;r=0;do{m=c[o+(r<<2)>>2]|0;n=(c[m+740>>2]|0)==(p|0)?-1.0:1.0;e=c[m+748>>2]|0;if((e|0)>0){l=0;do{k=+g[m+4+(l*184|0)+80>>2];if(k<0.0){j=m+4+(l*184|0)+64|0;if(k>2];f=m+4+(l*184|0)+72|0;h=n*+g[f>>2];g[b+152>>2]=n*+g[j>>2];g[b+156>>2]=v;g[b+160>>2]=h;g[b+164>>2]=0.0;e=c[m+748>>2]|0;h=k}else{d=m+4+(l*184|0)+68|0;f=m+4+(l*184|0)+72|0}w=k*n*+g[d>>2]*.20000000298023224;v=k*n*+g[f>>2]*.20000000298023224;g[b+92>>2]=k*n*+g[j>>2]*.20000000298023224+ +g[b+92>>2];g[b+96>>2]=w+ +g[b+96>>2];g[b+100>>2]=v+ +g[b+100>>2];d=1}l=l+1|0}while((l|0)<(e|0))}r=r+1|0}while((r|0)!=(q|0))}}while(0);s=s+1|0;r=c[(c[b+8>>2]|0)+284>>2]|0}while((s|0)<(Eb[c[(c[r>>2]|0)+36>>2]&127](r)|0))}else d=0;t=c[b+8>>2]|0;c[u>>2]=c[t+4>>2];c[u+4>>2]=c[t+4+4>>2];c[u+8>>2]=c[t+4+8>>2];c[u+12>>2]=c[t+4+12>>2];c[u+16>>2]=c[t+20>>2];c[u+16+4>>2]=c[t+20+4>>2];c[u+16+8>>2]=c[t+20+8>>2];c[u+16+12>>2]=c[t+20+12>>2];c[u+32>>2]=c[t+36>>2];c[u+32+4>>2]=c[t+36+4>>2];c[u+32+8>>2]=c[t+36+8>>2];c[u+32+12>>2]=c[t+36+12>>2];c[u+48>>2]=c[b+92>>2];c[u+48+4>>2]=c[b+92+4>>2];c[u+48+8>>2]=c[b+92+8>>2];c[u+48+12>>2]=c[b+92+12>>2];c[t+260>>2]=(c[t+260>>2]|0)+1;c[t+4>>2]=c[u>>2];c[t+4+4>>2]=c[u+4>>2];c[t+4+8>>2]=c[u+8>>2];c[t+4+12>>2]=c[u+12>>2];c[t+20>>2]=c[u+16>>2];c[t+20+4>>2]=c[u+16+4>>2];c[t+20+8>>2]=c[u+16+8>>2];c[t+20+12>>2]=c[u+16+12>>2];c[t+36>>2]=c[u+32>>2];c[t+36+4>>2]=c[u+32+4>>2];c[t+36+8>>2]=c[u+32+8>>2];c[t+36+12>>2]=c[u+32+12>>2];c[t+52>>2]=c[u+48>>2];c[t+52+4>>2]=c[u+48+4>>2];c[t+52+8>>2]=c[u+48+8>>2];c[t+52+12>>2]=c[u+48+12>>2];i=u;return d|0}function le(b,d,e,f,h){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;var j=0,k=0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0,r=0,s=0,t=0.0,u=0.0;s=i;i=i+48|0;c[s+16>>2]=c[e>>2];c[s+16+4>>2]=c[e+4>>2];c[s+16+8>>2]=c[e+8>>2];c[s+16+12>>2]=c[e+12>>2];c[s+16+16>>2]=c[f>>2];c[s+16+16+4>>2]=c[f+4>>2];c[s+16+16+8>>2]=c[f+8>>2];c[s+16+16+12>>2]=c[f+12>>2];do if((c[d+60>>2]|0)==2){h=c[d+48>>2]|0;hh(b+64|0,h)|0;j=c[b+68>>2]|0;if(j|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}c[b+68>>2]=h;c[b+76>>2]=(c[b+76>>2]|0)+-1;h=c[b+8>>2]|0;if(!h){c[6435]=(c[6435]|0)+1;h=yc(63)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}j=h;k=j+44|0;do{c[j>>2]=0;j=j+4|0}while((j|0)<(k|0))}else c[b+8>>2]=0;c[h+32>>2]=0;c[h+36>>2]=d;c[h+40>>2]=0;c[h>>2]=c[s+16>>2];c[h+4>>2]=c[s+16+4>>2];c[h+8>>2]=c[s+16+8>>2];c[h+12>>2]=c[s+16+12>>2];c[h+16>>2]=c[s+16+16>>2];c[h+20>>2]=c[s+16+20>>2];c[h+24>>2]=c[s+16+24>>2];c[h+28>>2]=c[s+16+28>>2];lf(b+4|0,c[b+4>>2]|0,h);c[b+16>>2]=(c[b+16>>2]|0)+1;c[d+48>>2]=h;k=1}else{c[b+168>>2]=(c[b+168>>2]|0)+1;r=c[d+48>>2]|0;if(((((+g[r>>2]<=+g[s+16+16>>2]?+g[r+16>>2]>=+g[s+16>>2]:0)?+g[r+4>>2]<=+g[s+16+20>>2]:0)?+g[r+20>>2]>=+g[s+16+4>>2]:0)?+g[r+8>>2]<=+g[s+16+24>>2]:0)?+g[r+24>>2]>=+g[s+16+8>>2]:0){l=+g[d+16>>2];t=+g[e>>2]-l;m=+g[d+20>>2];o=+g[e+4>>2]-m;n=+g[d+24>>2];p=+g[e+8>>2]-n;u=+g[b+140>>2];l=(+g[d+32>>2]-l)*.5*u;m=(+g[d+36>>2]-m)*.5*u;n=u*(+g[d+40>>2]-n)*.5;g[s>>2]=l;g[s+4>>2]=m;g[s+8>>2]=n;g[s+12>>2]=0.0;if(t<0.0)g[s>>2]=-l;if(o<0.0)g[s+4>>2]=-m;if(p<0.0)g[s+8>>2]=-n;if(jh(b+4|0,r,s+16|0,s,.05000000074505806)|0){c[b+172>>2]=(c[b+172>>2]|0)+1;h=1}else h=0;k=h;break}h=hh(b+4|0,r)|0;a:do if(h){k=c[b+12>>2]|0;if((k|0)<=-1){h=c[b+4>>2]|0;break}if((k|0)>0){q=0;while(1){j=c[h+32>>2]|0;q=q+1|0;if(!j)break a;if((q|0)>=(k|0)){h=j;break}else h=j}}}else h=0;while(0);c[r>>2]=c[s+16>>2];c[r+4>>2]=c[s+16+4>>2];c[r+8>>2]=c[s+16+8>>2];c[r+12>>2]=c[s+16+12>>2];c[r+16>>2]=c[s+16+16>>2];c[r+20>>2]=c[s+16+20>>2];c[r+24>>2]=c[s+16+24>>2];c[r+28>>2]=c[s+16+28>>2];lf(b+4|0,h,r);c[b+172>>2]=(c[b+172>>2]|0)+1;k=1}while(0);h=c[d+52>>2]|0;j=c[d+56>>2]|0;if(!h)c[b+124+(c[d+60>>2]<<2)>>2]=j;else c[h+56>>2]=j;h=c[d+56>>2]|0;if(h|0)c[h+52>>2]=c[d+52>>2];c[d+16>>2]=c[e>>2];c[d+16+4>>2]=c[e+4>>2];c[d+16+8>>2]=c[e+8>>2];c[d+16+12>>2]=c[e+12>>2];c[d+32>>2]=c[f>>2];c[d+32+4>>2]=c[f+4>>2];c[d+32+8>>2]=c[f+8>>2];c[d+32+12>>2]=c[f+12>>2];h=c[b+144>>2]|0;c[d+60>>2]=h;c[d+52>>2]=0;c[d+56>>2]=c[b+124+(h<<2)>>2];j=c[b+124+(h<<2)>>2]|0;if(j|0)c[j+52>>2]=d;c[b+124+(h<<2)>>2]=d;if(!k){i=s;return}a[b+194>>0]=1;if(a[b+193>>0]|0){i=s;return}c[s>>2]=8904;c[s+4>>2]=b;we(b+64|0,c[b+64>>2]|0,c[d+48>>2]|0,s);we(b+4|0,c[b+4>>2]|0,c[d+48>>2]|0,s);i=s;return}function me(b,d){b=b|0;d=d|0;var e=0,f=0,h=0,j=0,k=0,l=0,m=0;m=i;i=i+352|0;e=c[d+36>>2]|0;c[m+288+4>>2]=35;c[m+288+8>>2]=0;c[m+288+12>>2]=1065353216;c[m+288+16>>2]=1065353216;c[m+288+20>>2]=1065353216;g[m+288+24>>2]=0.0;c[m+288>>2]=3436;c[m+288+52>>2]=e;g[m+288+44>>2]=0.0;k=c[b+28>>2]|0;d=c[k+4>>2]|0;if(c[(c[k+8>>2]|0)+204>>2]&3|0?a[e+376>>0]|0:0){i=m;return}if((a[22456]|0)==0?Wa(22456)|0:0){if((a[22464]|0)==0?Wa(22464)|0:0){c[5698]=1065353216;c[5699]=0;c[5700]=0;c[5701]=0;c[5702]=0;c[5703]=1065353216;c[5704]=0;c[5705]=0;c[5706]=0;c[5707]=0;c[5708]=1065353216;g[5709]=0.0;_a(22464)}c[5710]=c[5698];c[5711]=c[5699];c[5712]=c[5700];c[5713]=c[5701];c[5714]=c[5702];c[5715]=c[5703];c[5716]=c[5704];c[5717]=c[5705];c[5718]=c[5706];c[5719]=c[5707];c[5720]=c[5708];c[5721]=c[5709];c[5722]=0;c[5723]=0;c[5724]=0;c[5725]=0;_a(22456)}f=c[(c[b+28>>2]|0)+12>>2]|0;c[m>>2]=1065353216;c[m+4>>2]=0;c[m+8>>2]=0;g[m+12>>2]=0.0;if(!(!(Jd(m+288|0,22840,d,f,m,m+232|0)|0)?!(Pc(m+288|0,22840,d,f,m,m+232|0,0)|0):0)){k=m+16+4|0;a[m+16+152>>0]=0;c[k>>2]=0;c[k+4>>2]=0;c[k+8>>2]=0;c[k+12>>2]=0;c[k+16>>2]=0;c[k+20>>2]=0;c[m+16>>2]=3256;k=c[(c[b+28>>2]|0)+8>>2]|0;do if(jd(b,m+232|0,e,0,0,0,(c[k+236>>2]&2|0)==0?0:k,k,m+16|0)|0){c[6435]=(c[6435]|0)+1;d=yc(235)|0;if(!d)k=0;else{c[(d+4+15&-16)+-4>>2]=d;k=d+4+15&-16}d=k+152|0;Qn(k|0,0,156)|0;c[k>>2]=3256;e=k+4|0;f=m+16+4|0;h=e+100|0;do{c[e>>2]=c[f>>2];e=e+4|0;f=f+4|0}while((e|0)<(h|0));e=k+104|0;c[e>>2]=c[m+16+104>>2];c[e+4>>2]=c[m+16+104+4>>2];c[e+8>>2]=c[m+16+104+8>>2];c[e+12>>2]=c[m+16+104+12>>2];e=k+120|0;c[e>>2]=c[m+16+120>>2];c[e+4>>2]=c[m+16+120+4>>2];c[e+8>>2]=c[m+16+120+8>>2];c[e+12>>2]=c[m+16+120+12>>2];e=k+136|0;c[e>>2]=c[m+16+136>>2];c[e+4>>2]=c[m+16+136+4>>2];c[e+8>>2]=c[m+16+136+8>>2];c[e+12>>2]=c[m+16+136+12>>2];a[d>>0]=a[m+16+152>>0]|0;e=k+156|0;f=m+16+156|0;h=e+60|0;do{c[e>>2]=c[f>>2];e=e+4|0;f=f+4|0}while((e|0)<(h|0));h=c[b+24>>2]|0;j=k;d=c[h+852>>2]|0;if((d|0)==(c[h+856>>2]|0)?(l=d|0?d<<1:1,(d|0)<(l|0)):0){if(!l)f=0;else{c[6435]=(c[6435]|0)+1;d=yc((l<<2|3)+16|0)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}f=d;d=c[h+852>>2]|0}if((d|0)>0){e=0;do{c[f+(e<<2)>>2]=c[(c[h+860>>2]|0)+(e<<2)>>2];e=e+1|0}while((e|0)!=(d|0))}e=c[h+860>>2]|0;if(e){if(a[h+864>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0);d=c[h+852>>2]|0}c[h+860>>2]=0}a[h+864>>0]=1;c[h+860>>2]=f;c[h+856>>2]=l}c[(c[h+860>>2]|0)+(d<<2)>>2]=j;c[h+852>>2]=d+1;d=c[b+24>>2]|0;if(!(c[(c[(c[b+28>>2]|0)+8>>2]|0)+204>>2]&3)){b=k+64|0;g[b>>2]=+g[d+340>>2]*+g[b>>2];b=k+68|0;g[b>>2]=+g[d+352>>2]*+g[b>>2];break}else{b=k+64|0;g[b>>2]=+g[d+344>>2]*+g[b>>2];b=k+68|0;g[b>>2]=+g[d+356>>2]*+g[b>>2];break}}while(0)}i=m;return}function ne(b,d,e,f,h,i,j,l){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;i=i|0;j=j|0;l=l|0;var m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0,u=0,v=0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0;c[b+4>>2]=4;c[b+8>>2]=-1;c[b+12>>2]=-1;g[b+16>>2]=3402823466385288598117041.0e14;a[b+20>>0]=1;a[b+21>>0]=0;c[b+24>>2]=-1;c[b+28>>2]=d;c[b+32>>2]=e;g[b+36>>2]=0.0;g[b+40>>2]=.30000001192092896;c[b+44>>2]=0;c[b>>2]=4704;g[b+688>>2]=0.0;g[b+692>>2]=-1.0;g[b+696>>2]=.8999999761581421;g[b+700>>2]=.30000001192092896;g[b+704>>2]=1.0;g[b+708>>2]=0.0;g[b+712>>2]=0.0;a[b+716>>0]=0;a[b+736>>0]=0;a[b+737>>0]=0;a[b+738>>0]=0;a[b+739>>0]=1;a[b+740>>0]=l&1;c[b+748>>2]=0;c[b+600>>2]=c[f>>2];c[b+600+4>>2]=c[f+4>>2];c[b+600+8>>2]=c[f+8>>2];c[b+600+12>>2]=c[f+12>>2];m=+g[d+4>>2];n=+g[d+20>>2];o=+g[d+36>>2];p=+g[i>>2];q=+g[i+4>>2];r=+g[i+8>>2];do if(!(m*p+n*q+o*r>=.9999998807907104))if(!(m*p+n*q+o*r<=-.9999998807907104)){e=(g[k>>2]=o*q-n*r,c[k>>2]|0);f=(g[k>>2]=m*r-o*p,c[k>>2]|0);l=(g[k>>2]=n*p-m*q,c[k>>2]|0);u=(g[k>>2]=r*(m*r-o*p)-q*(n*p-m*q),c[k>>2]|0);v=(g[k>>2]=p*(n*p-m*q)-r*(o*q-n*r),c[k>>2]|0);t=(g[k>>2]=q*(o*q-n*r)-p*(m*r-o*p),c[k>>2]|0);break}else{u=c[d+12>>2]|0;v=c[d+28>>2]|0;t=c[d+44>>2]|0;e=c[d+8>>2]|0;l=c[d+40>>2]|0;f=c[d+24>>2]|0;break}else{u=(g[k>>2]=-+g[d+12>>2],c[k>>2]|0);v=(g[k>>2]=-+g[d+28>>2],c[k>>2]|0);t=(g[k>>2]=-+g[d+44>>2],c[k>>2]|0);e=c[d+8>>2]|0;l=c[d+40>>2]|0;f=c[d+24>>2]|0}while(0);c[b+552>>2]=u;c[b+556>>2]=e;c[b+560>>2]=c[i>>2];g[b+564>>2]=0.0;c[b+568>>2]=v;c[b+572>>2]=f;c[b+576>>2]=c[i+4>>2];g[b+580>>2]=0.0;c[b+584>>2]=t;c[b+588>>2]=l;c[b+592>>2]=c[i+8>>2];g[b+596>>2]=0.0;o=+g[i+4>>2];q=+g[j+8>>2];m=+g[i+8>>2];r=+g[j+4>>2];s=+g[j>>2];n=+g[i>>2];do if(q*m+(o*r+s*n)<-.9999998807907104)if(+N(+m)>.7071067690849304){n=1.0/+O(+(o*o+m*m));e=0;p=0.0;m=-(m*n);f=(g[k>>2]=o*n,c[k>>2]|0);break}else{m=1.0/+O(+(o*o+n*n));e=(g[k>>2]=-(o*m),c[k>>2]|0);p=0.0;m=n*m;f=0;break}else{w=+O(+((q*m+(o*r+s*n)+1.0)*2.0));e=(g[k>>2]=(o*q-m*r)*(1.0/w),c[k>>2]|0);p=w*.5;m=(m*s-q*n)*(1.0/w);f=(g[k>>2]=(r*n-o*s)*(1.0/w),c[k>>2]|0)}while(0);o=(c[k>>2]=u,+g[k>>2]);A=(c[k>>2]=t,+g[k>>2]);z=(c[k>>2]=f,+g[k>>2]);w=(c[k>>2]=v,+g[k>>2]);B=o*p+A*m-w*z;n=(c[k>>2]=e,+g[k>>2]);x=w*p+o*z-A*n;y=A*p+w*n-o*m;A=-(o*n)-w*m-A*z;m=-m;w=x*-z+(p*B+A*-n)-y*m;o=y*-n+(p*x+A*m)-B*-z;p=B*m+(A*-z+p*y)-x*-n;c[b+664>>2]=c[h>>2];c[b+664+4>>2]=c[h+4>>2];c[b+664+8>>2]=c[h+8>>2];c[b+664+12>>2]=c[h+12>>2];g[b+616>>2]=w;g[b+620>>2]=r*p-q*o;c[b+624>>2]=c[j>>2];g[b+628>>2]=0.0;g[b+632>>2]=o;g[b+636>>2]=q*w-s*p;c[b+640>>2]=c[j+4>>2];g[b+644>>2]=0.0;g[b+648>>2]=p;g[b+652>>2]=s*o-r*w;c[b+656>>2]=c[j+8>>2];g[b+660>>2]=0.0;g[b+732>>2]=a[b+740>>0]|0?-1.0:1.0;return}function oe(a,b){a=a|0;b=b|0;var d=0,e=0,f=0,h=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0.0,r=0.0;p=i;i=i+144|0;if((c[a+16>>2]|0)<=0){o=a+76|0;c[o>>2]=c[b>>2];c[o+4>>2]=c[b+4>>2];c[o+8>>2]=c[b+8>>2];c[o+12>>2]=c[b+12>>2];b=c[a>>2]|0;b=b+68|0;b=c[b>>2]|0;Ab[b&255](a);i=p;return}j=p+16+16|0;k=p+16+32|0;l=p+16+48|0;o=0;do{n=c[a+24>>2]|0;m=n+(o*80|0)|0;c[p+16>>2]=c[m>>2];c[p+16+4>>2]=c[m+4>>2];c[p+16+8>>2]=c[m+8>>2];c[p+16+12>>2]=c[m+12>>2];m=n+(o*80|0)+16|0;c[j>>2]=c[m>>2];c[j+4>>2]=c[m+4>>2];c[j+8>>2]=c[m+8>>2];c[j+12>>2]=c[m+12>>2];m=n+(o*80|0)+32|0;c[k>>2]=c[m>>2];c[k+4>>2]=c[m+4>>2];c[k+8>>2]=c[m+8>>2];c[k+12>>2]=c[m+12>>2];m=n+(o*80|0)+48|0;c[l>>2]=c[m>>2];c[l+4>>2]=c[m+4>>2];c[l+8>>2]=c[m+8>>2];c[l+12>>2]=c[m+12>>2];n=c[n+(o*80|0)+64>>2]|0;n=Eb[c[(c[n>>2]|0)+28>>2]&127](n)|0;c[p>>2]=c[n>>2];c[p+4>>2]=c[n+4>>2];c[p+8>>2]=c[n+8>>2];q=+g[p+4>>2]*+g[b+4>>2]/+g[a+80>>2];r=+g[p+8>>2]*+g[b+8>>2]/+g[a+84>>2];g[p>>2]=+g[p>>2]*+g[b>>2]/+g[a+76>>2];g[p+4>>2]=q;g[p+8>>2]=r;g[p+12>>2]=0.0;n=c[(c[a+24>>2]|0)+(o*80|0)+64>>2]|0;Cb[c[(c[n>>2]|0)+24>>2]&127](n,p);r=+g[p+16+52>>2]*+g[b+4>>2]/+g[a+80>>2];q=+g[p+16+56>>2]*+g[b+8>>2]/+g[a+84>>2];g[p+16+48>>2]=+g[l>>2]*+g[b>>2]/+g[a+76>>2];g[p+16+52>>2]=r;g[p+16+56>>2]=q;g[p+16+60>>2]=0.0;n=c[a+24>>2]|0;m=n+(o*80|0)|0;c[m>>2]=c[p+16>>2];c[m+4>>2]=c[p+16+4>>2];c[m+8>>2]=c[p+16+8>>2];c[m+12>>2]=c[p+16+12>>2];m=n+(o*80|0)+16|0;c[m>>2]=c[j>>2];c[m+4>>2]=c[j+4>>2];c[m+8>>2]=c[j+8>>2];c[m+12>>2]=c[j+12>>2];m=n+(o*80|0)+32|0;c[m>>2]=c[k>>2];c[m+4>>2]=c[k+4>>2];c[m+8>>2]=c[k+8>>2];c[m+12>>2]=c[k+12>>2];n=n+(o*80|0)+48|0;c[n>>2]=c[l>>2];c[n+4>>2]=c[l+4>>2];c[n+8>>2]=c[l+8>>2];c[n+12>>2]=c[l+12>>2];if(c[a+64>>2]|0){m=c[(c[a+24>>2]|0)+(o*80|0)+64>>2]|0;mc[c[(c[m>>2]|0)+8>>2]&127](m,p+16|0,p+128|0,p+112|0);c[p+80>>2]=c[p+128>>2];c[p+80+4>>2]=c[p+128+4>>2];c[p+80+8>>2]=c[p+128+8>>2];c[p+80+12>>2]=c[p+128+12>>2];c[p+80+16>>2]=c[p+112>>2];c[p+80+16+4>>2]=c[p+112+4>>2];c[p+80+16+8>>2]=c[p+112+8>>2];c[p+80+16+12>>2]=c[p+112+12>>2];m=c[a+64>>2]|0;n=c[(c[a+24>>2]|0)+(o*80|0)+76>>2]|0;d=hh(m,n)|0;a:do if(d){f=c[m+8>>2]|0;if((f|0)<=-1){d=c[m>>2]|0;break}if((f|0)>0){h=0;while(1){e=c[d+32>>2]|0;h=h+1|0;if(!e)break a;if((h|0)>=(f|0)){d=e;break}else d=e}}}else d=0;while(0);c[n>>2]=c[p+80>>2];c[n+4>>2]=c[p+80+4>>2];c[n+8>>2]=c[p+80+8>>2];c[n+12>>2]=c[p+80+12>>2];c[n+16>>2]=c[p+80+16>>2];c[n+20>>2]=c[p+80+20>>2];c[n+24>>2]=c[p+80+24>>2];c[n+28>>2]=c[p+80+28>>2];lf(m,d,n)}o=o+1|0}while((o|0)<(c[a+16>>2]|0));o=a+76|0;c[o>>2]=c[b>>2];c[o+4>>2]=c[b+4>>2];c[o+8>>2]=c[b+8>>2];c[o+12>>2]=c[b+12>>2];b=c[a>>2]|0;b=b+68|0;b=c[b>>2]|0;Ab[b&255](a);i=p;return}function pe(d,f,h,i,j,k){d=d|0;f=f|0;h=h|0;i=i|0;j=j|0;k=k|0;var l=0.0,m=0.0,n=0.0;c[d>>2]=8520;b[d+4>>1]=-2;b[d+6>>1]=-1;c[d+92>>2]=j;c[d+96>>2]=0;a[d+100>>0]=0;c[d+104>>2]=0;c[d+108>>2]=0;if(!j){c[6435]=(c[6435]|0)+1;j=yc(95)|0;if(!j)j=0;else{c[(j+4+15&-16)+-4>>2]=j;j=j+4+15&-16}Ri(j);c[d+92>>2]=j;a[d+100>>0]=1}if(!k){c[6435]=(c[6435]|0)+1;j=yc(43)|0;if(!j)j=0;else{c[(j+4+15&-16)+-4>>2]=j;j=j+4+15&-16}c[j>>2]=0;c[j+4>>2]=0;c[j+8>>2]=0;c[j+12>>2]=0;c[j+16>>2]=0;c[j+20>>2]=0;c[j>>2]=8584;a[j+20>>0]=1;c[j+16>>2]=0;c[j+8>>2]=0;c[j+12>>2]=0;c[d+112>>2]=j;c[6435]=(c[6435]|0)+1;j=yc(215)|0;if(!j)j=0;else{c[(j+4+15&-16)+-4>>2]=j;j=j+4+15&-16}Zh(j,c[d+112>>2]|0);c[d+108>>2]=j;a[j+193>>0]=1}c[d+8>>2]=c[f>>2];c[d+8+4>>2]=c[f+4>>2];c[d+8+8>>2]=c[f+8>>2];c[d+8+12>>2]=c[f+12>>2];c[d+24>>2]=c[h>>2];c[d+24+4>>2]=c[h+4>>2];c[d+24+8>>2]=c[h+8>>2];c[d+24+12>>2]=c[h+12>>2];n=+(e[d+6>>1]|0);m=n/(+g[d+28>>2]-+g[d+12>>2]);l=n/(+g[d+32>>2]-+g[d+16>>2]);g[d+40>>2]=n/(+g[d+24>>2]-+g[d+8>>2]);g[d+44>>2]=m;g[d+48>>2]=l;g[d+52>>2]=0.0;f=(i&65535)+1&65535;c[6435]=(c[6435]|0)+1;j=yc(f<<6|19)|0;if(!j)h=0;else{c[(j+4+15&-16)+-4>>2]=j;h=j+4+15&-16}if(f|0){j=h+(f<<6)|0;k=h;do{c[k>>2]=0;c[k+8>>2]=0;k=k+64|0}while((k|0)!=(j|0))}c[d+60>>2]=h;b[d+58>>1]=(i&65535)+1;b[d+56>>1]=0;b[d+64>>1]=1;if(f>>>0>1){j=1;k=1;do{b[h+(j<<6)+48>>1]=j+1;k=k+1<<16>>16;j=k&65535}while(j>>>0>>0)}b[h+(f+-1<<6)+48>>1]=0;c[6435]=(c[6435]|0)+1;j=yc((f<<3|3)+16|0)|0;if(!j)j=0;else{c[(j+4+15&-16)+-4>>2]=j;j=j+4+15&-16}c[d+80>>2]=j;c[d+68>>2]=j;c[6435]=(c[6435]|0)+1;j=yc((f<<3|3)+16|0)|0;if(!j)j=0;else{c[(j+4+15&-16)+-4>>2]=j;j=j+4+15&-16}c[d+84>>2]=j;c[d+72>>2]=j;c[6435]=(c[6435]|0)+1;j=yc((f<<3|3)+16|0)|0;if(!j){h=0;i=d+88|0;c[i>>2]=h;i=d+76|0;c[i>>2]=h;h=c[d+60>>2]|0;c[h>>2]=0;f=h+48|0;b[f>>1]=0;f=h+54|0;b[f>>1]=1;f=c[d+68>>2]|0;b[f>>1]=0;k=f+2|0;b[k>>1]=0;k=b[d+6>>1]|0;j=f+4|0;b[j>>1]=k;f=f+6|0;b[f>>1]=0;f=h+50|0;b[f>>1]=0;f=h+56|0;b[f>>1]=1;f=c[d+72>>2]|0;b[f>>1]=0;j=f+2|0;b[j>>1]=0;j=b[d+6>>1]|0;k=f+4|0;b[k>>1]=j;f=f+6|0;b[f>>1]=0;f=h+52|0;b[f>>1]=0;h=h+58|0;b[h>>1]=1;i=c[i>>2]|0;b[i>>1]=0;h=i+2|0;b[h>>1]=0;h=b[d+6>>1]|0;f=i+4|0;b[f>>1]=h;i=i+6|0;b[i>>1]=0;c[d>>2]=8660;return}c[(j+4+15&-16)+-4>>2]=j;h=j+4+15&-16;i=d+88|0;c[i>>2]=h;i=d+76|0;c[i>>2]=h;h=c[d+60>>2]|0;c[h>>2]=0;f=h+48|0;b[f>>1]=0;f=h+54|0;b[f>>1]=1;f=c[d+68>>2]|0;b[f>>1]=0;k=f+2|0;b[k>>1]=0;k=b[d+6>>1]|0;j=f+4|0;b[j>>1]=k;f=f+6|0;b[f>>1]=0;f=h+50|0;b[f>>1]=0;f=h+56|0;b[f>>1]=1;f=c[d+72>>2]|0;b[f>>1]=0;j=f+2|0;b[j>>1]=0;j=b[d+6>>1]|0;k=f+4|0;b[k>>1]=j;f=f+6|0;b[f>>1]=0;f=h+52|0;b[f>>1]=0;h=h+58|0;b[h>>1]=1;i=c[i>>2]|0;b[i>>1]=0;h=i+2|0;b[h>>1]=0;h=b[d+6>>1]|0;f=i+4|0;b[f>>1]=h;i=i+6|0;b[i>>1]=0;c[d>>2]=8660;return}function qe(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;var h=0,i=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0;Il();c[b+4>>2]=6;c[b+8>>2]=-1;c[b+12>>2]=-1;g[b+16>>2]=3402823466385288598117041.0e14;a[b+20>>0]=1;a[b+21>>0]=0;c[b+24>>2]=-1;c[b+28>>2]=23268;c[b+32>>2]=d;g[b+36>>2]=0.0;g[b+40>>2]=.30000001192092896;c[b+44>>2]=0;c[b>>2]=4376;c[b+112>>2]=c[e>>2];c[b+112+4>>2]=c[e+4>>2];c[b+112+8>>2]=c[e+8>>2];c[b+112+12>>2]=c[e+12>>2];c[b+128>>2]=c[e+16>>2];c[b+128+4>>2]=c[e+16+4>>2];c[b+128+8>>2]=c[e+16+8>>2];c[b+128+12>>2]=c[e+16+12>>2];c[b+144>>2]=c[e+32>>2];c[b+144+4>>2]=c[e+32+4>>2];c[b+144+8>>2]=c[e+32+8>>2];c[b+144+12>>2]=c[e+32+12>>2];c[b+160>>2]=c[e+48>>2];c[b+160+4>>2]=c[e+48+4>>2];c[b+160+8>>2]=c[e+48+8>>2];c[b+160+12>>2]=c[e+48+12>>2];e=b+680|0;h=e+48|0;do{c[e>>2]=0;e=e+4|0}while((e|0)<(h|0));c[b+740>>2]=0;c[b+740+4>>2]=0;c[b+740+8>>2]=0;c[b+740+12>>2]=0;c[b+756>>2]=1045220557;c[b+760>>2]=1045220557;c[b+764>>2]=1045220557;c[b+768>>2]=0;c[b+768+4>>2]=0;c[b+768+8>>2]=0;c[b+768+12>>2]=0;c[b+768+16>>2]=0;g[b+728>>2]=.699999988079071;g[b+732>>2]=1.0;g[b+736>>2]=.5;a[b+788>>0]=0;g[b+792>>2]=0.0;g[b+808>>2]=0.0;a[b+789>>0]=0;g[b+796>>2]=0.0;g[b+812>>2]=0.0;a[b+790>>0]=0;g[b+800>>2]=0.0;g[b+816>>2]=0.0;g[b+928>>2]=0.0;g[b+876>>2]=0.0;g[b+880>>2]=.10000000149011612;g[b+884>>2]=300.0;g[b+868>>2]=1.0;g[b+872>>2]=-1.0;g[b+896>>2]=0.0;g[b+900>>2]=.20000000298023224;g[b+904>>2]=0.0;g[b+908>>2]=0.0;g[b+888>>2]=1.0;g[b+892>>2]=.5;c[b+924>>2]=0;g[b+916>>2]=0.0;a[b+912>>0]=0;g[b+992>>2]=0.0;g[b+940>>2]=0.0;g[b+944>>2]=.10000000149011612;g[b+948>>2]=300.0;g[b+932>>2]=1.0;g[b+936>>2]=-1.0;g[b+960>>2]=0.0;g[b+964>>2]=.20000000298023224;g[b+968>>2]=0.0;g[b+972>>2]=0.0;g[b+952>>2]=1.0;g[b+956>>2]=.5;c[b+988>>2]=0;g[b+980>>2]=0.0;a[b+976>>0]=0;g[b+1056>>2]=0.0;g[b+1004>>2]=0.0;g[b+1008>>2]=.10000000149011612;g[b+1012>>2]=300.0;g[b+996>>2]=1.0;g[b+1e3>>2]=-1.0;g[b+1024>>2]=0.0;g[b+1028>>2]=.20000000298023224;g[b+1032>>2]=0.0;g[b+1036>>2]=0.0;g[b+1016>>2]=1.0;g[b+1020>>2]=.5;c[b+1052>>2]=0;g[b+1044>>2]=0.0;a[b+1040>>0]=0;a[b+1300>>0]=f&1;a[b+1301>>0]=1;c[b+1304>>2]=0;a[b+1308>>0]=0;w=+g[b+112>>2];C=+g[d+4>>2];v=+g[b+128>>2];B=+g[d+8>>2];u=+g[b+144>>2];A=+g[d+12>>2];t=+g[b+116>>2];s=+g[b+132>>2];r=+g[b+148>>2];q=+g[b+120>>2];o=+g[b+136>>2];m=+g[b+152>>2];z=+g[d+20>>2];y=+g[d+24>>2];x=+g[d+28>>2];p=+g[d+36>>2];n=+g[d+40>>2];l=+g[d+44>>2];E=+g[b+160>>2];D=+g[b+164>>2];i=+g[b+168>>2];k=+g[d+52>>2]+(C*E+B*D+A*i);j=z*E+y*D+x*i+ +g[d+56>>2];i=p*E+n*D+l*i+ +g[d+60>>2];g[b+48>>2]=w*C+v*B+u*A;g[b+52>>2]=C*t+B*s+A*r;g[b+56>>2]=C*q+B*o+A*m;g[b+60>>2]=0.0;g[b+64>>2]=w*z+v*y+u*x;g[b+68>>2]=t*z+s*y+r*x;g[b+72>>2]=q*z+o*y+m*x;g[b+76>>2]=0.0;g[b+80>>2]=w*p+v*n+u*l;g[b+84>>2]=t*p+s*n+r*l;g[b+88>>2]=q*p+o*n+m*l;g[b+92>>2]=0.0;g[b+96>>2]=k;g[b+100>>2]=j;g[b+104>>2]=i;g[b+108>>2]=0.0;sd(b,(c[b+28>>2]|0)+4|0,(c[b+32>>2]|0)+4|0);return}function re(b,d,e,f,h){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;var j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0.0,H=0.0,I=0.0,J=0.0,K=0.0,L=0.0,M=0.0,N=0.0,O=0.0,P=0.0,Q=0.0,R=0.0,S=0.0,T=0.0,U=0.0,V=0.0,W=0,X=0.0,Y=0.0;W=i;i=i+240|0;f=(a[b+8>>0]|0)!=0;h=f?e:d;f=f?d:e;S=+g[h+116>>2]-+g[h+52>>2];T=+g[h+120>>2]-+g[h+56>>2];U=+g[h+124>>2]-+g[h+60>>2];V=+g[h+252>>2];if(S*S+T*T+U*U>2];G=+g[f+20>>2];H=+g[f+36>>2];I=+g[f+8>>2];J=+g[f+24>>2];K=+g[f+40>>2];L=+g[f+12>>2];M=+g[f+28>>2];N=+g[f+44>>2];k=-+g[f+52>>2];l=-+g[f+56>>2];m=-+g[f+60>>2];O=+g[h+4>>2];P=+g[h+20>>2];Q=+g[h+36>>2];R=+g[h+8>>2];S=+g[h+24>>2];T=+g[h+40>>2];U=+g[h+12>>2];V=+g[h+28>>2];p=+g[h+44>>2];u=+g[h+52>>2];t=+g[h+56>>2];s=+g[h+60>>2];q=F*k+G*l+H*m+(F*u+G*t+H*s);r=I*k+J*l+K*m+(I*u+J*t+K*s);s=L*k+M*l+N*m+(L*u+M*t+N*s);t=+g[h+68>>2];u=+g[h+84>>2];v=+g[h+100>>2];w=+g[h+72>>2];x=+g[h+88>>2];y=+g[h+104>>2];z=+g[h+76>>2];A=+g[h+92>>2];B=+g[h+108>>2];n=+g[h+116>>2];o=+g[h+120>>2];E=+g[h+124>>2];C=F*k+G*l+H*m+(F*n+G*o+H*E);D=I*k+J*l+K*m+(I*n+J*o+K*E);E=L*k+M*l+N*m+(L*n+M*o+N*E);f=c[f+192>>2]|0;if(((c[f+4>>2]|0)+-21|0)>>>0>=9){X=1.0;i=W;return +X}g[W+224>>2]=q;g[W+224+4>>2]=r;g[W+224+8>>2]=s;g[W+224+12>>2]=0.0;if(C>2]=C;j=C}else j=q;if(D>2]=D;k=D}else k=r;if(E>2]=E;l=E}else l=s;g[W+208>>2]=q;g[W+208+4>>2]=r;g[W+208+8>>2]=s;g[W+208+12>>2]=0.0;if(q>2]=C;m=C}else m=q;if(r>2]=D;n=D}else n=r;if(s>2]=E;o=E}else o=s;Y=+g[h+248>>2];g[W+224>>2]=j-Y;g[W+224+4>>2]=k-Y;g[W+224+8>>2]=l-Y;g[W+208>>2]=Y+m;g[W+208+4>>2]=Y+n;g[W+208+8>>2]=Y+o;c[W>>2]=3688;g[W+4>>2]=F*O+G*P+H*Q;g[W+8>>2]=F*R+G*S+H*T;g[W+12>>2]=F*U+G*V+H*p;g[W+16>>2]=0.0;g[W+20>>2]=I*O+J*P+K*Q;g[W+24>>2]=I*R+J*S+K*T;g[W+28>>2]=I*U+J*V+K*p;g[W+32>>2]=0.0;g[W+36>>2]=L*O+M*P+N*Q;g[W+40>>2]=L*R+M*S+N*T;g[W+44>>2]=L*U+M*V+N*p;g[W+48>>2]=0.0;g[W+52>>2]=q;g[W+56>>2]=r;g[W+60>>2]=s;g[W+64>>2]=0.0;g[W+68>>2]=F*t+G*u+H*v;g[W+72>>2]=F*w+G*x+H*y;g[W+76>>2]=F*z+G*A+H*B;g[W+80>>2]=0.0;g[W+84>>2]=I*t+J*u+K*v;g[W+88>>2]=I*w+J*x+K*y;g[W+92>>2]=I*z+J*A+K*B;g[W+96>>2]=0.0;g[W+100>>2]=L*t+M*u+N*v;g[W+104>>2]=L*w+M*x+N*y;g[W+108>>2]=L*z+M*A+N*B;g[W+112>>2]=0.0;g[W+116>>2]=C;g[W+120>>2]=D;g[W+124>>2]=E;g[W+128>>2]=0.0;g[W+196>>2]=Y;c[W+200>>2]=c[h+244>>2];if(f|0?(mc[c[(c[f>>2]|0)+64>>2]&127](f,W,W+224|0,W+208|0),X=+g[W+200>>2],X<+g[h+244>>2]):0){g[h+244>>2]=X;Y=X;i=W;return +Y}Y=1.0;i=W;return +Y}function se(b,d,e,f,h){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;var j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0.0,H=0.0,I=0.0,J=0.0,K=0.0,L=0.0,M=0.0,N=0.0,O=0.0,P=0.0,Q=0.0,R=0.0,S=0.0,T=0.0,U=0.0,V=0.0,W=0,X=0.0,Y=0.0;W=i;i=i+240|0;f=(a[b+8>>0]|0)!=0;h=f?e:d;f=f?d:e;S=+g[h+116>>2]-+g[h+52>>2];T=+g[h+120>>2]-+g[h+56>>2];U=+g[h+124>>2]-+g[h+60>>2];V=+g[h+252>>2];if(S*S+T*T+U*U>2];G=+g[f+20>>2];H=+g[f+36>>2];I=+g[f+8>>2];J=+g[f+24>>2];K=+g[f+40>>2];L=+g[f+12>>2];M=+g[f+28>>2];N=+g[f+44>>2];k=-+g[f+52>>2];l=-+g[f+56>>2];m=-+g[f+60>>2];O=+g[h+4>>2];P=+g[h+20>>2];Q=+g[h+36>>2];R=+g[h+8>>2];S=+g[h+24>>2];T=+g[h+40>>2];U=+g[h+12>>2];V=+g[h+28>>2];p=+g[h+44>>2];u=+g[h+52>>2];t=+g[h+56>>2];s=+g[h+60>>2];q=F*k+G*l+H*m+(F*u+G*t+H*s);r=I*k+J*l+K*m+(I*u+J*t+K*s);s=L*k+M*l+N*m+(L*u+M*t+N*s);t=+g[h+68>>2];u=+g[h+84>>2];v=+g[h+100>>2];w=+g[h+72>>2];x=+g[h+88>>2];y=+g[h+104>>2];z=+g[h+76>>2];A=+g[h+92>>2];B=+g[h+108>>2];n=+g[h+116>>2];o=+g[h+120>>2];E=+g[h+124>>2];C=F*k+G*l+H*m+(F*n+G*o+H*E);D=I*k+J*l+K*m+(I*n+J*o+K*E);E=L*k+M*l+N*m+(L*n+M*o+N*E);f=c[f+192>>2]|0;if(((c[f+4>>2]|0)+-21|0)>>>0>=9){X=1.0;i=W;return +X}g[W+224>>2]=q;g[W+224+4>>2]=r;g[W+224+8>>2]=s;g[W+224+12>>2]=0.0;if(C>2]=C;j=C}else j=q;if(D>2]=D;k=D}else k=r;if(E>2]=E;l=E}else l=s;g[W+208>>2]=q;g[W+208+4>>2]=r;g[W+208+8>>2]=s;g[W+208+12>>2]=0.0;if(q>2]=C;m=C}else m=q;if(r>2]=D;n=D}else n=r;if(s>2]=E;o=E}else o=s;Y=+g[h+248>>2];g[W+224>>2]=j-Y;g[W+224+4>>2]=k-Y;g[W+224+8>>2]=l-Y;g[W+208>>2]=Y+m;g[W+208+4>>2]=Y+n;g[W+208+8>>2]=Y+o;c[W>>2]=5556;g[W+4>>2]=F*O+G*P+H*Q;g[W+8>>2]=F*R+G*S+H*T;g[W+12>>2]=F*U+G*V+H*p;g[W+16>>2]=0.0;g[W+20>>2]=I*O+J*P+K*Q;g[W+24>>2]=I*R+J*S+K*T;g[W+28>>2]=I*U+J*V+K*p;g[W+32>>2]=0.0;g[W+36>>2]=L*O+M*P+N*Q;g[W+40>>2]=L*R+M*S+N*T;g[W+44>>2]=L*U+M*V+N*p;g[W+48>>2]=0.0;g[W+52>>2]=q;g[W+56>>2]=r;g[W+60>>2]=s;g[W+64>>2]=0.0;g[W+68>>2]=F*t+G*u+H*v;g[W+72>>2]=F*w+G*x+H*y;g[W+76>>2]=F*z+G*A+H*B;g[W+80>>2]=0.0;g[W+84>>2]=I*t+J*u+K*v;g[W+88>>2]=I*w+J*x+K*y;g[W+92>>2]=I*z+J*A+K*B;g[W+96>>2]=0.0;g[W+100>>2]=L*t+M*u+N*v;g[W+104>>2]=L*w+M*x+N*y;g[W+108>>2]=L*z+M*A+N*B;g[W+112>>2]=0.0;g[W+116>>2]=C;g[W+120>>2]=D;g[W+124>>2]=E;g[W+128>>2]=0.0;g[W+196>>2]=Y;c[W+200>>2]=c[h+244>>2];if(f|0?(mc[c[(c[f>>2]|0)+64>>2]&127](f,W,W+224|0,W+208|0),X=+g[W+200>>2],X<+g[h+244>>2]):0){g[h+244>>2]=X;Y=X;i=W;return +Y}Y=1.0;i=W;return +Y}function te(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;m=0;do{k=m;m=m+1|0;l=(m|0)==3;j=c[b+((l?0:m)<<2)>>2]|0;k=c[b+(((k+2|0)%3|0)<<2)>>2]|0;e=c[d>>2]|0;f=c[d+4>>2]|0;do if((e|0)==(k|0)&(f|0)==(j|0)){e=2;n=3}else{if(!((e|0)==(j|0)&(f|0)==(k|0))){g=c[d+8>>2]|0;if((f|0)==(k|0)&(g|0)==(j|0)){e=0;n=3;break}if(!((f|0)==(j|0)&(g|0)==(k|0))){if(!((g|0)!=(k|0)|(e|0)==(j|0)^1)){e=1;n=3;break}if((g|0)!=(j|0)|(e|0)==(k|0)^1){e=9432;break}else e=1}else e=0}else e=2;e=d+12+(e<<2)|0}while(0);if((n|0)==3){n=0;e=d+12+(e<<2)|0}i=c[e>>2]|0;e=c[b>>2]|0;f=c[b+4>>2]|0;do if((e|0)==(j|0)&(f|0)==(k|0)){e=2;n=11}else{if(!((e|0)==(k|0)&(f|0)==(j|0))){g=c[b+8>>2]|0;if((f|0)==(j|0)&(g|0)==(k|0)){e=0;n=11;break}if(!((f|0)==(k|0)&(g|0)==(j|0))){if(!((g|0)!=(j|0)|(e|0)==(k|0)^1)){e=1;n=11;break}if((g|0)!=(k|0)|(e|0)==(j|0)^1){e=9432;break}else e=1}else e=0}else e=2;e=b+12+(e<<2)|0}while(0);if((n|0)==11){n=0;e=b+12+(e<<2)|0}h=c[a+(c[e>>2]<<2)>>2]|0;e=c[h>>2]|0;f=c[h+4>>2]|0;do if((e|0)==(k|0)&(f|0)==(j|0)){e=2;n=19}else{if(!((e|0)==(j|0)&(f|0)==(k|0))){g=c[h+8>>2]|0;if((f|0)==(k|0)&(g|0)==(j|0)){e=0;n=19;break}if(!((f|0)==(j|0)&(g|0)==(k|0))){if(!((g|0)!=(k|0)|(e|0)==(j|0)^1)){e=1;n=19;break}if((g|0)!=(j|0)|(e|0)==(k|0)^1){e=9432;break}else e=1}else e=0}else e=2;e=h+12+(e<<2)|0}while(0);if((n|0)==19){n=0;e=h+12+(e<<2)|0}c[e>>2]=i;e=c[b>>2]|0;f=c[b+4>>2]|0;do if((e|0)==(j|0)&(f|0)==(k|0)){e=2;n=27}else{if(!((e|0)==(k|0)&(f|0)==(j|0))){g=c[b+8>>2]|0;if((f|0)==(j|0)&(g|0)==(k|0)){e=0;n=27;break}if(!((f|0)==(k|0)&(g|0)==(j|0))){if(!((g|0)!=(j|0)|(e|0)==(k|0)^1)){e=1;n=27;break}if((g|0)!=(k|0)|(e|0)==(j|0)^1){e=9432;break}else e=1}else e=0}else e=2;e=b+12+(e<<2)|0}while(0);if((n|0)==27){n=0;e=b+12+(e<<2)|0}i=c[e>>2]|0;e=c[d>>2]|0;f=c[d+4>>2]|0;do if((e|0)==(k|0)&(f|0)==(j|0)){e=2;n=35}else{if(!((e|0)==(j|0)&(f|0)==(k|0))){g=c[d+8>>2]|0;if((f|0)==(k|0)&(g|0)==(j|0)){e=0;n=35;break}if(!((f|0)==(j|0)&(g|0)==(k|0))){if(!((g|0)!=(k|0)|(e|0)==(j|0)^1)){e=1;n=35;break}if((g|0)!=(j|0)|(e|0)==(k|0)^1){e=9432;break}else e=1}else e=0}else e=2;e=d+12+(e<<2)|0}while(0);if((n|0)==35){n=0;e=d+12+(e<<2)|0}h=c[a+(c[e>>2]<<2)>>2]|0;e=c[h>>2]|0;f=c[h+4>>2]|0;do if((e|0)==(j|0)&(f|0)==(k|0)){e=2;n=43}else{if(!((e|0)==(k|0)&(f|0)==(j|0))){g=c[h+8>>2]|0;if((f|0)==(j|0)&(g|0)==(k|0)){e=0;n=43;break}if(!((f|0)==(k|0)&(g|0)==(j|0))){if(!((g|0)!=(j|0)|(e|0)==(k|0)^1)){e=1;n=43;break}if((g|0)!=(k|0)|(e|0)==(j|0)^1){e=9432;break}else e=1}else e=0}else e=2;e=h+12+(e<<2)|0}while(0);if((n|0)==43){n=0;e=h+12+(e<<2)|0}c[e>>2]=i}while(!l);return}function ue(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;l=c[b>>2]|0;m=c[b+4>>2]|0;i=c[b+8>>2]|0;n=c[a+4>>2]|0;p=Uh(a,d,m,i)|0;c[p+12>>2]=c[b+12>>2];c[p+16>>2]=n+1;c[p+20>>2]=n+2;h=c[(c[a+12>>2]|0)+(c[b+12>>2]<<2)>>2]|0;e=c[h>>2]|0;f=c[h+4>>2]|0;do if((e|0)==(m|0)&(f|0)==(i|0)){e=2;o=2}else{if(!((e|0)==(i|0)&(f|0)==(m|0))){g=c[h+8>>2]|0;if((f|0)==(m|0)&(g|0)==(i|0)){e=0;o=2;break}if(!((f|0)==(i|0)&(g|0)==(m|0))){if(!((g|0)!=(m|0)|(e|0)==(i|0)^1)){e=1;o=2;break}if((g|0)!=(i|0)|(e|0)==(m|0)^1){e=9432;break}else e=1}else e=0}else e=2;e=h+12+(e<<2)|0}while(0);if((o|0)==2)e=h+12+(e<<2)|0;c[e>>2]=n;k=Uh(a,d,i,l)|0;c[k+12>>2]=c[b+12+4>>2];c[k+16>>2]=n+2;c[k+20>>2]=n;h=c[(c[a+12>>2]|0)+(c[b+12+4>>2]<<2)>>2]|0;e=c[h>>2]|0;f=c[h+4>>2]|0;do if((e|0)==(i|0)&(f|0)==(l|0)){e=2;o=10}else{if(!((e|0)==(l|0)&(f|0)==(i|0))){g=c[h+8>>2]|0;if((f|0)==(i|0)&(g|0)==(l|0)){e=0;o=10;break}if(!((f|0)==(l|0)&(g|0)==(i|0))){if(!((g|0)!=(i|0)|(e|0)==(l|0)^1)){e=1;o=10;break}if((g|0)!=(l|0)|(e|0)==(i|0)^1){e=9432;break}else e=1}else e=0}else e=2;e=h+12+(e<<2)|0}while(0);if((o|0)==10)e=h+12+(e<<2)|0;c[e>>2]=n+1;j=Uh(a,d,l,m)|0;c[j+12>>2]=c[b+12+8>>2];c[j+16>>2]=n;c[j+20>>2]=n+1;e=c[a+12>>2]|0;i=c[e+(c[b+12+8>>2]<<2)>>2]|0;f=c[i>>2]|0;g=c[i+4>>2]|0;do if((f|0)==(l|0)&(g|0)==(m|0)){f=2;o=18}else{if(!((f|0)==(m|0)&(g|0)==(l|0))){h=c[i+8>>2]|0;if((g|0)==(l|0)&(h|0)==(m|0)){f=0;o=18;break}if(!((g|0)==(m|0)&(h|0)==(l|0))){if(!((h|0)!=(l|0)|(f|0)==(m|0)^1)){f=1;o=18;break}if((h|0)!=(m|0)|(f|0)==(l|0)^1){f=9432;break}else f=1}else f=0}else f=2;f=i+12+(f<<2)|0}while(0);if((o|0)==18)f=i+12+(f<<2)|0;c[f>>2]=n+2;f=c[e+(c[p+12>>2]<<2)>>2]|0;if(!(((c[f>>2]|0)!=(d|0)?(c[f+4>>2]|0)!=(d|0):0)?(c[f+8>>2]|0)!=(d|0):0)){te(c[a+12>>2]|0,p,f);c[(c[a+12>>2]|0)+(c[p+24>>2]<<2)>>2]=0;c[6436]=(c[6436]|0)+1;hd(c[p+-4>>2]|0);c[(c[a+12>>2]|0)+(c[f+24>>2]<<2)>>2]=0;if(f|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}e=c[a+12>>2]|0}f=c[e+(c[k+12>>2]<<2)>>2]|0;if(!(((c[f>>2]|0)!=(d|0)?(c[f+4>>2]|0)!=(d|0):0)?(c[f+8>>2]|0)!=(d|0):0)){te(c[a+12>>2]|0,k,f);c[(c[a+12>>2]|0)+(c[k+24>>2]<<2)>>2]=0;c[6436]=(c[6436]|0)+1;hd(c[k+-4>>2]|0);c[(c[a+12>>2]|0)+(c[f+24>>2]<<2)>>2]=0;if(f|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}e=c[a+12>>2]|0}f=c[e+(c[j+12>>2]<<2)>>2]|0;if(!(((c[f>>2]|0)!=(d|0)?(c[f+4>>2]|0)!=(d|0):0)?(c[f+8>>2]|0)!=(d|0):0)){te(c[a+12>>2]|0,j,f);c[(c[a+12>>2]|0)+(c[j+24>>2]<<2)>>2]=0;c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0);c[(c[a+12>>2]|0)+(c[f+24>>2]<<2)>>2]=0;if(f|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}e=c[a+12>>2]|0}c[e+(c[b+24>>2]<<2)>>2]=0;if(!b)return;c[6436]=(c[6436]|0)+1;hd(c[b+-4>>2]|0);return}function ve(b){b=b|0;var d=0,e=0.0,f=0.0,h=0.0,j=0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0,w=0.0,x=0.0,y=0;v=i;i=i+176|0;if(!(a[b+527>>0]|0)){i=v;return}g[b+36>>2]=0.0;g[b+520>>2]=0.0;g[b+516>>2]=0.0;c[b+576>>2]=0;c[b+576+4>>2]=0;c[b+576+8>>2]=0;c[b+576+12>>2]=0;if(!(a[b+524>>0]|0)){d=c[b+28>>2]|0;k=+g[b+348>>2];l=+g[b+352>>2];r=+g[b+356>>2];t=k*+g[d+20>>2]+l*+g[d+24>>2]+r*+g[d+28>>2]+ +g[d+56>>2];j=c[b+32>>2]|0;m=+g[b+412>>2];n=+g[b+416>>2];s=+g[b+420>>2];o=+g[j+52>>2];e=+g[j+56>>2];u=m*+g[j+20>>2]+n*+g[j+24>>2]+s*+g[j+28>>2]+e;p=m*+g[j+36>>2]+n*+g[j+40>>2]+s*+g[j+44>>2]+ +g[j+60>>2];q=k*+g[d+4>>2]+l*+g[d+8>>2]+r*+g[d+12>>2]+ +g[d+52>>2];r=k*+g[d+36>>2]+l*+g[d+40>>2]+r*+g[d+44>>2]+ +g[d+60>>2];s=m*+g[j+4>>2]+n*+g[j+8>>2]+s*+g[j+12>>2]+o;if((s-q)*(s-q)+(u-t)*(u-t)+(p-r)*(p-r)>1.1920928955078125e-07){h=1.0/+O(+((s-q)*(s-q)+(u-t)*(u-t)+(p-r)*(p-r)));g[v+128>>2]=(s-q)*h;g[v+128+4>>2]=(u-t)*h;g[v+128+8>>2]=(p-r)*h;c[v+128+12>>2]=0;k=(p-r)*h;f=(u-t)*h;h=(s-q)*h}else{c[v+128>>2]=1065353216;c[v+128+4>>2]=0;c[v+128+8>>2]=0;g[v+128+12>>2]=0.0;k=0.0;f=0.0;h=1.0}if(+N(+k)>.7071067690849304){x=k*k+f*f;w=1.0/+O(+x);m=-(w*k);k=w*f;n=-(k*h);l=h*m;f=x*w;h=k;k=0.0}else{m=h*h+f*f;l=1.0/+O(+m);x=-(f*l);f=l*h;n=k*x;l=m*l;m=f;f=-(f*k);h=0.0;k=x}g[v+128+16>>2]=k;g[v+128+20>>2]=m;g[v+128+24>>2]=h;g[v+128+32>>2]=f;g[v+128+36>>2]=n;g[v+128+40>>2]=l;f=o;d=0;while(1){y=c[b+28>>2]|0;c[v+80>>2]=c[y+4>>2];c[v+80+4>>2]=c[y+20>>2];c[v+80+8>>2]=c[y+36>>2];g[v+80+12>>2]=0.0;c[v+80+16>>2]=c[y+8>>2];c[v+80+20>>2]=c[y+24>>2];c[v+80+24>>2]=c[y+40>>2];g[v+80+28>>2]=0.0;c[v+80+32>>2]=c[y+12>>2];c[v+80+36>>2]=c[y+28>>2];c[v+80+40>>2]=c[y+44>>2];g[v+80+44>>2]=0.0;c[v+32>>2]=c[j+4>>2];c[v+32+4>>2]=c[j+20>>2];c[v+32+8>>2]=c[j+36>>2];g[v+32+12>>2]=0.0;c[v+32+16>>2]=c[j+8>>2];c[v+32+20>>2]=c[j+24>>2];c[v+32+24>>2]=c[j+40>>2];g[v+32+28>>2]=0.0;c[v+32+32>>2]=c[j+12>>2];c[v+32+36>>2]=c[j+28>>2];c[v+32+40>>2]=c[j+44>>2];g[v+32+44>>2]=0.0;w=t-+g[y+56>>2];x=r-+g[y+60>>2];g[v+16>>2]=q-+g[y+52>>2];g[v+16+4>>2]=w;g[v+16+8>>2]=x;g[v+16+12>>2]=0.0;x=p-+g[j+60>>2];g[v>>2]=s-f;g[v+4>>2]=u-e;g[v+8>>2]=x;g[v+12>>2]=0.0;y=c[b+28>>2]|0;j=c[b+32>>2]|0;Rg(b+48+(d*84|0)|0,v+80|0,v+32|0,v+16|0,v,v+128+(d<<4)|0,y+396|0,+g[y+344>>2],j+396|0,+g[j+344>>2]);d=d+1|0;if((d|0)==3)break;y=c[b+32>>2]|0;j=y;f=+g[y+52>>2];e=+g[y+56>>2]}d=b+32|0}else d=b+32|0;j=c[b+28>>2]|0;y=c[d>>2]|0;Fc(b,j+4|0,y+4|0,j+264|0,y+264|0);i=v;return}function we(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;var h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;if(!((d|0)!=0&(e|0)!=0))return;if((c[b+24>>2]|0)<128?(c[b+28>>2]|0)<128:0){c[6435]=(c[6435]|0)+1;h=yc(1043)|0;if(!h)j=0;else{c[(h+4+15&-16)+-4>>2]=h;j=h+4+15&-16}h=c[b+24>>2]|0;if((h|0)>0){i=0;do{l=(c[b+32>>2]|0)+(i<<3)|0;m=c[l+4>>2]|0;n=j+(i<<3)|0;c[n>>2]=c[l>>2];c[n+4>>2]=m;i=i+1|0}while((i|0)!=(h|0))}h=c[b+32>>2]|0;if(h|0){if(a[b+36>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0)}c[b+32>>2]=0}a[b+36>>0]=1;c[b+32>>2]=j;c[b+28>>2]=128}c[b+24>>2]=128;n=c[b+32>>2]|0;c[n>>2]=d;c[n+4>>2]=e;n=1;j=124;while(1){h=n+-1|0;i=c[b+32>>2]|0;l=c[i+(h<<3)>>2]|0;m=c[i+(h<<3)+4>>2]|0;if((h|0)>(j|0)){e=c[b+24>>2]|0;if((e|0)<(e<<1|0)?(c[b+28>>2]|0)<(e<<1|0):0){if(e){c[6435]=(c[6435]|0)+1;i=yc((e<<4|3)+16|0)|0;if(!i)i=0;else{c[(i+4+15&-16)+-4>>2]=i;i=i+4+15&-16}j=c[b+24>>2]|0;if((j|0)>0){d=0;do{p=(c[b+32>>2]|0)+(d<<3)|0;o=c[p+4>>2]|0;k=i+(d<<3)|0;c[k>>2]=c[p>>2];c[k+4>>2]=o;d=d+1|0}while((d|0)!=(j|0))}}else i=0;j=c[b+32>>2]|0;if(j|0){if(a[b+36>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}c[b+32>>2]=0}a[b+36>>0]=1;c[b+32>>2]=i;c[b+28>>2]=e<<1}c[b+24>>2]=e<<1;j=(e<<1)+-4|0}do if((l|0)==(m|0)){if(c[l+40>>2]|0){p=c[l+36>>2]|0;c[i+(h<<3)>>2]=p;c[i+(h<<3)+4>>2]=p;h=n+1|0;p=c[b+32>>2]|0;o=c[l+40>>2]|0;c[p+(n<<3)>>2]=o;c[p+(n<<3)+4>>2]=o;p=c[b+32>>2]|0;o=c[l+40>>2]|0;c[p+(h<<3)>>2]=c[l+36>>2];c[p+(h<<3)+4>>2]=o;h=n+2|0}}else if(((((+g[l>>2]<=+g[m+16>>2]?+g[l+16>>2]>=+g[m>>2]:0)?+g[l+4>>2]<=+g[m+20>>2]:0)?+g[l+20>>2]>=+g[m+4>>2]:0)?+g[l+8>>2]<=+g[m+24>>2]:0)?+g[l+24>>2]>=+g[m+8>>2]:0){d=(c[m+40>>2]|0)!=0;if(!(c[l+40>>2]|0))if(d){p=c[m+36>>2]|0;c[i+(h<<3)>>2]=l;c[i+(h<<3)+4>>2]=p;h=c[b+32>>2]|0;p=c[m+40>>2]|0;c[h+(n<<3)>>2]=l;c[h+(n<<3)+4>>2]=p;h=n+1|0;break}else{ic[c[(c[f>>2]|0)+8>>2]&127](f,l,m);break}else{e=i+(h<<3)|0;k=c[l+36>>2]|0;if(d){p=c[m+36>>2]|0;c[e>>2]=k;c[i+(h<<3)+4>>2]=p;p=n+1|0;h=c[b+32>>2]|0;o=c[m+36>>2]|0;c[h+(n<<3)>>2]=c[l+40>>2];c[h+(n<<3)+4>>2]=o;h=n+2|0;o=c[b+32>>2]|0;k=c[m+40>>2]|0;c[o+(p<<3)>>2]=c[l+36>>2];c[o+(p<<3)+4>>2]=k;p=c[b+32>>2]|0;o=c[m+40>>2]|0;c[p+(h<<3)>>2]=c[l+40>>2];c[p+(h<<3)+4>>2]=o;h=n+3|0;break}else{c[e>>2]=k;c[i+(h<<3)+4>>2]=m;h=c[b+32>>2]|0;c[h+(n<<3)>>2]=c[l+40>>2];c[h+(n<<3)+4>>2]=m;h=n+1|0;break}}}while(0);if(!h)break;else n=h}return}function xe(a,b){a=a|0;b=b|0;var d=0,e=0,f=0,g=0;g=i;i=i+80|0;c[a+68>>2]=(c[a+68>>2]|0)+1;e=c[a+64>>2]|0;if(e|0){f=c[(c[a+24>>2]|0)+(b*80|0)+76>>2]|0;hh(e,f)|0;d=c[e+4>>2]|0;if(d|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[e+4>>2]=f;c[e+12>>2]=(c[e+12>>2]|0)+-1}f=(c[a+16>>2]|0)+-1|0;e=c[a+24>>2]|0;c[g>>2]=c[e+(b*80|0)>>2];c[g+4>>2]=c[e+(b*80|0)+4>>2];c[g+8>>2]=c[e+(b*80|0)+8>>2];c[g+12>>2]=c[e+(b*80|0)+12>>2];c[g+16>>2]=c[e+(b*80|0)+16>>2];c[g+16+4>>2]=c[e+(b*80|0)+16+4>>2];c[g+16+8>>2]=c[e+(b*80|0)+16+8>>2];c[g+16+12>>2]=c[e+(b*80|0)+16+12>>2];c[g+32>>2]=c[e+(b*80|0)+32>>2];c[g+32+4>>2]=c[e+(b*80|0)+32+4>>2];c[g+32+8>>2]=c[e+(b*80|0)+32+8>>2];c[g+32+12>>2]=c[e+(b*80|0)+32+12>>2];c[g+48>>2]=c[e+(b*80|0)+48>>2];c[g+48+4>>2]=c[e+(b*80|0)+48+4>>2];c[g+48+8>>2]=c[e+(b*80|0)+48+8>>2];c[g+48+12>>2]=c[e+(b*80|0)+48+12>>2];c[g+64>>2]=c[e+(b*80|0)+64>>2];c[g+64+4>>2]=c[e+(b*80|0)+64+4>>2];c[g+64+8>>2]=c[e+(b*80|0)+64+8>>2];c[g+64+12>>2]=c[e+(b*80|0)+64+12>>2];c[e+(b*80|0)>>2]=c[e+(f*80|0)>>2];c[e+(b*80|0)+4>>2]=c[e+(f*80|0)+4>>2];c[e+(b*80|0)+8>>2]=c[e+(f*80|0)+8>>2];c[e+(b*80|0)+12>>2]=c[e+(f*80|0)+12>>2];c[e+(b*80|0)+16>>2]=c[e+(f*80|0)+16>>2];c[e+(b*80|0)+16+4>>2]=c[e+(f*80|0)+16+4>>2];c[e+(b*80|0)+16+8>>2]=c[e+(f*80|0)+16+8>>2];c[e+(b*80|0)+16+12>>2]=c[e+(f*80|0)+16+12>>2];c[e+(b*80|0)+32>>2]=c[e+(f*80|0)+32>>2];c[e+(b*80|0)+32+4>>2]=c[e+(f*80|0)+32+4>>2];c[e+(b*80|0)+32+8>>2]=c[e+(f*80|0)+32+8>>2];c[e+(b*80|0)+32+12>>2]=c[e+(f*80|0)+32+12>>2];c[e+(b*80|0)+48>>2]=c[e+(f*80|0)+48>>2];c[e+(b*80|0)+48+4>>2]=c[e+(f*80|0)+48+4>>2];c[e+(b*80|0)+48+8>>2]=c[e+(f*80|0)+48+8>>2];c[e+(b*80|0)+48+12>>2]=c[e+(f*80|0)+48+12>>2];c[e+(b*80|0)+64>>2]=c[e+(f*80|0)+64>>2];c[e+(b*80|0)+64+4>>2]=c[e+(f*80|0)+64+4>>2];c[e+(b*80|0)+64+8>>2]=c[e+(f*80|0)+64+8>>2];c[e+(b*80|0)+64+12>>2]=c[e+(f*80|0)+64+12>>2];e=c[a+24>>2]|0;c[e+(f*80|0)>>2]=c[g>>2];c[e+(f*80|0)+4>>2]=c[g+4>>2];c[e+(f*80|0)+8>>2]=c[g+8>>2];c[e+(f*80|0)+12>>2]=c[g+12>>2];c[e+(f*80|0)+16>>2]=c[g+16>>2];c[e+(f*80|0)+16+4>>2]=c[g+16+4>>2];c[e+(f*80|0)+16+8>>2]=c[g+16+8>>2];c[e+(f*80|0)+16+12>>2]=c[g+16+12>>2];c[e+(f*80|0)+32>>2]=c[g+32>>2];c[e+(f*80|0)+32+4>>2]=c[g+32+4>>2];c[e+(f*80|0)+32+8>>2]=c[g+32+8>>2];c[e+(f*80|0)+32+12>>2]=c[g+32+12>>2];c[e+(f*80|0)+48>>2]=c[g+48>>2];c[e+(f*80|0)+48+4>>2]=c[g+48+4>>2];c[e+(f*80|0)+48+8>>2]=c[g+48+8>>2];c[e+(f*80|0)+48+12>>2]=c[g+48+12>>2];c[e+(f*80|0)+64>>2]=c[g+64>>2];c[e+(f*80|0)+64+4>>2]=c[g+64+4>>2];c[e+(f*80|0)+64+8>>2]=c[g+64+8>>2];c[e+(f*80|0)+64+12>>2]=c[g+64+12>>2];if(!(c[a+64>>2]|0)){b=c[a+16>>2]|0;b=b+-1|0;c[a+16>>2]=b;i=g;return}c[(c[(c[a+24>>2]|0)+(b*80|0)+76>>2]|0)+36>>2]=b;b=c[a+16>>2]|0;b=b+-1|0;c[a+16>>2]=b;i=g;return}function ye(b,d,e,f,h,j){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;j=j|0;var k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0;s=i;i=i+80|0;if((h|0)>0){k=0;b=0;do{r=c[f+(k<<2)>>2]|0;b=(r|0)>(b|0)?r:b;k=k+1|0}while((k|0)<(h*3|0))}else b=0;p=b+1|0;l=_(p,p)|0;if(!l)r=0;else{c[6435]=(c[6435]|0)+1;k=yc(l+19|0)|0;if(!k)k=0;else{c[(k+4+15&-16)+-4>>2]=k;k=k+4+15&-16}Qn(k|0,0,l|0)|0;r=k}if((b|0)>-1){if((p|0)!=0?(c[6435]=(c[6435]|0)+1,m=yc((p<<4|3)+16|0)|0,(m|0)!=0):0){c[(m+4+15&-16)+-4>>2]=m;l=m+4+15&-16}else l=0;b=0;do{q=l+(b<<4)|0;c[q>>2]=c[s>>2];c[q+4>>2]=c[s+4>>2];c[q+8>>2]=c[s+8>>2];c[q+12>>2]=c[s+12>>2];b=b+1|0}while((b|0)!=(p|0));b=0;k=0;while(1){o=c[e+(b+1<<2)>>2]|0;q=c[e+(b+2<<2)>>2]|0;c[l+(k<<4)>>2]=c[e+(b<<2)>>2];c[l+(k<<4)+4>>2]=o;c[l+(k<<4)+8>>2]=q;g[l+(k<<4)+12>>2]=0.0;b=b+3|0;if((b|0)>=(p*3|0))break;else k=k+1|0}}else l=0;c[6435]=(c[6435]|0)+1;b=yc(1271)|0;if(!b)q=0;else{c[(b+4+15&-16)+-4>>2]=b;q=b+4+15&-16}Kc(q,d,p,l,0);if((h|0)>0){o=0;do{e=c[f+(o<<2)>>2]|0;d=c[f+(o+1<<2)>>2]|0;n=c[f+(o+2<<2)>>2]|0;k=_(e,p)|0;b=r+(k+n)|0;if(!(a[b>>0]|0)){a[b>>0]=1;a[r+(e+(_(n,p)|0))>>0]=1;Rf(q,n,e,0,0)}m=_(d,p)|0;b=r+(m+e)|0;if(!(a[b>>0]|0)){a[b>>0]=1;a[r+(d+k)>>0]=1;Rf(q,e,d,0,0)}b=r+((_(n,p)|0)+d)|0;if(!(a[b>>0]|0)){a[b>>0]=1;a[r+(n+m)>>0]=1;Rf(q,d,n,0,0)}Zf(q,e,d,n,0);o=o+3|0}while((o|0)<(h*3|0))}if(j){k=c[q+732>>2]|0;if((k|0)>0){m=q+740|0;n=0;b=243703;do{e=c[m>>2]|0;d=e+(n*52|0)|0;b=(_(b,1664525)|0)+1013904223|0;o=s+16|0;p=d;f=o+52|0;do{c[o>>2]=c[p>>2];o=o+4|0;p=p+4|0}while((o|0)<(f|0));o=d;p=e+(((b>>>0)%(k>>>0)|0)*52|0)|0;f=o+52|0;do{c[o>>2]=c[p>>2];o=o+4|0;p=p+4|0}while((o|0)<(f|0));o=e+(((b>>>0)%(k>>>0)|0)*52|0)|0;p=s+16|0;f=o+52|0;do{c[o>>2]=c[p>>2];o=o+4|0;p=p+4|0}while((o|0)<(f|0));n=n+1|0}while((n|0)!=(k|0))}else b=243703;d=c[q+752>>2]|0;if((d|0)>0){e=q+760|0;n=0;do{m=c[e>>2]|0;k=m+(n*44|0)|0;b=(_(b,1664525)|0)+1013904223|0;m=m+(((b>>>0)%(d>>>0)|0)*44|0)|0;o=s+16|0;p=k;f=o+44|0;do{c[o>>2]=c[p>>2];o=o+4|0;p=p+4|0}while((o|0)<(f|0));o=k;p=m;f=o+44|0;do{c[o>>2]=c[p>>2];o=o+4|0;p=p+4|0}while((o|0)<(f|0));o=m;p=s+16|0;f=o+44|0;do{c[o>>2]=c[p>>2];o=o+4|0;p=p+4|0}while((o|0)<(f|0));n=n+1|0}while((n|0)!=(d|0))}}if(l|0){c[6436]=(c[6436]|0)+1;hd(c[l+-4>>2]|0)}if(!r){i=s;return q|0}c[6436]=(c[6436]|0)+1;hd(c[r+-4>>2]|0);i=s;return q|0}function ze(a,d,f,h,j,k,l,m,n){a=a|0;d=d|0;f=f|0;h=+h;j=+j;k=+k;l=l|0;m=m|0;n=n|0;var o=0,p=0,q=0,r=0,s=0.0,t=0.0,u=0.0,v=0.0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0.0,I=0,J=0.0,K=0.0,L=0.0,M=0.0,N=0.0,P=0.0,Q=0.0,R=0.0,S=0.0,T=0,U=0.0,V=0,W=0.0,X=0.0,Y=0.0,Z=0.0,_=0.0,$=0.0,aa=0.0,ba=0.0,ca=0.0,da=0.0,ea=0.0;V=i;i=i+32|0;H=+g[f>>2];Q=+g[f+4>>2];S=+g[f+8>>2];J=1.0/+O(+((h-H)*(h-H)+(j-Q)*(j-Q)+(k-S)*(k-S)));N=(h-H)*J==0.0?999999984306749440.0:1.0/((h-H)*J);P=(j-Q)*J==0.0?999999984306749440.0:1.0/((j-Q)*J);R=(k-S)*J==0.0?999999984306749440.0:1.0/((k-S)*J);ea=(H>h?h:H)+ +g[l>>2];ca=(Q>j?j:Q)+ +g[l+4>>2];da=(S>k?k:S)+ +g[l+8>>2];aa=(H>2];t=(Q>2];Y=(S>2];$=+g[a+4>>2];ea=ea<$?$:ea;u=+g[a+8>>2];ca=ca>2];da=da>2];s=+g[a+24>>2];Z=+g[a+28>>2];_=+g[a+36>>2];v=+g[a+40>>2];W=+g[a+44>>2];T=~~(((ba0){p=0;q=c[a+136>>2]|0;o=0;do{o=o+1|0;r=q+6|0;w=b[q>>1]|0;x=q+10|0;y=b[q+4>>1]|0;z=q+8|0;A=b[q+2>>1]|0;B=q+12|0;C=(c[B>>2]|0)>-1;do if(((I&65535)>=(w&65535)?(T&65535)<=(e[r>>1]|0):0)&(E&65535)<=(e[x>>1]|0)&(D&65535)>=(y&65535)&(G&65535)<=(e[z>>1]|0)&(F&65535)>=(A&65535)){aa=+g[a+36>>2];ca=+g[a+40>>2];ea=+g[a+44>>2];ba=+g[a+4>>2];da=+g[a+8>>2];u=+g[a+12>>2];g[V+12>>2]=0.0;v=+(e[r>>1]|0)/aa+ba;s=+(e[z>>1]|0)/ca+da;t=+(e[x>>1]|0)/ea+u;g[V+28>>2]=0.0;g[V>>2]=+(w&65535)/aa+ba-+g[m>>2];g[V+4>>2]=+(A&65535)/ca+da-+g[m+4>>2];g[V+8>>2]=+(y&65535)/ea+u-+g[m+8>>2];g[V+16>>2]=v-+g[l>>2];g[V+20>>2]=s-+g[l+4>>2];g[V+24>>2]=t-+g[l+8>>2];t=+g[f>>2];s=N*(+g[V+((N<0.0&1)<<4)>>2]-t);t=N*(+g[V+((N<0.0^1)<<4)>>2]-t);v=+g[f+4>>2];u=P*(+g[V+((P<0.0&1)<<4)+4>>2]-v);v=P*(+g[V+((P<0.0^1)<<4)+4>>2]-v);if(!(u>t|s>v)?(K=u>s?u:s,U=v>2],L=R*(+g[V+((R<0.0&1)<<4)+8>>2]-M),M=R*(+g[V+((R<0.0^1)<<4)+8>>2]-M),!(L>U|K>M)):0){r=(M0.0?(L>K?L:K)<(k-S)*(k-S)*J+((h-H)*(h-H)*J+(j-Q)*(j-Q)*J):0;if(!(C&r)){w=9;break}w=c[B>>2]|0;ic[c[(c[d>>2]|0)+8>>2]&127](d,w>>21,w&2097151);w=10;break}r=0;w=9}else{r=0;w=9}while(0);if((w|0)==9){w=0;if(C|r)w=10;else{C=c[B>>2]|0;p=p-C|0;q=q+(0-C<<4)|0}}if((w|0)==10){p=p+1|0;q=q+16|0}}while((p|0)<(n|0))}else o=0;if((c[6167]|0)>=(o|0)){i=V;return}c[6167]=o;i=V;return}function Ae(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0.0,f=0.0,h=0.0,i=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0.0;Tg(a,b+(c*284|0)|0,d);m=+g[b+(c*284|0)+52>>2];h=+g[b+(c*284|0)+56>>2];q=+g[b+(c*284|0)+60>>2];G=+g[b+(c*284|0)+76>>2];x=+g[b+(c*284|0)+72>>2];z=+g[b+(c*284|0)+68>>2];w=1.0/+O(+((x*-m-z*-h)*(x*-m-z*-h)+((G*-h-x*-q)*(G*-h-x*-q)+(z*-q-G*-m)*(z*-q-G*-m))));v=(G*-h-x*-q)*w;u=w*(z*-q-G*-m);w=w*(x*-m-z*-h);e=+g[b+(c*284|0)+232>>2]*.5;k=+R(+e)/+O(+(m*m+h*h+q*q));e=+Q(+e);l=2.0/(e*e+(k*-q*k*-q+(k*-m*k*-m+k*-h*k*-h)));E=1.0-(k*-h*k*-h*l+k*-q*k*-q*l);D=k*-m*k*-h*l-e*k*-q*l;F=k*-m*k*-q*l+e*k*-h*l;B=k*-m*k*-h*l+e*k*-q*l;A=1.0-(k*-m*k*-m*l+k*-q*k*-q*l);C=k*-h*k*-q*l-e*k*-m*l;j=k*-m*k*-q*l-e*k*-h*l;e=k*-h*k*-q*l+e*k*-m*l;l=1.0-(k*-m*k*-m*l+k*-h*k*-h*l);k=+g[b+(c*284|0)+236>>2]*-.5;y=+R(+k)/+O(+(G*G+(x*x+z*z)));k=+Q(+k);r=2.0/(k*k+(G*y*G*y+(z*y*z*y+x*y*x*y)));n=1.0-(x*y*x*y*r+G*y*G*y*r);i=z*y*x*y*r-k*G*y*r;t=z*y*G*y*r+k*x*y*r;o=z*y*x*y*r+k*G*y*r;f=1.0-(z*y*z*y*r+G*y*G*y*r);s=x*y*G*y*r-k*z*y*r;p=z*y*G*y*r-k*x*y*r;k=x*y*G*y*r+k*z*y*r;r=1.0-(z*y*z*y*r+x*y*x*y*r);y=+g[b+(c*284|0)+68>>2];x=+g[b+(c*284|0)+72>>2];z=+g[b+(c*284|0)+76>>2];g[b+(c*284|0)+92>>2]=z*(E*t+D*s+F*r)+(y*(F*p+(D*o+E*n))+x*(F*k+(E*i+D*f)));g[b+(c*284|0)+96>>2]=w*(E*t+D*s+F*r)+(v*(F*p+(D*o+E*n))+u*(F*k+(E*i+D*f)));g[b+(c*284|0)+100>>2]=(E*t+D*s+F*r)*-q+((F*p+(D*o+E*n))*-m+(F*k+(E*i+D*f))*-h);g[b+(c*284|0)+104>>2]=0.0;g[b+(c*284|0)+108>>2]=z*(B*t+A*s+C*r)+(y*(C*p+(A*o+B*n))+x*(C*k+(B*i+A*f)));g[b+(c*284|0)+112>>2]=w*(B*t+A*s+C*r)+(v*(C*p+(A*o+B*n))+u*(C*k+(B*i+A*f)));g[b+(c*284|0)+116>>2]=(B*t+A*s+C*r)*-q+((C*p+(A*o+B*n))*-m+(C*k+(B*i+A*f))*-h);g[b+(c*284|0)+120>>2]=0.0;g[b+(c*284|0)+124>>2]=z*(j*t+e*s+l*r)+(y*(l*p+(e*o+j*n))+x*(l*k+(j*i+e*f)));g[b+(c*284|0)+128>>2]=w*(j*t+e*s+l*r)+(v*(l*p+(e*o+j*n))+u*(l*k+(j*i+e*f)));g[b+(c*284|0)+132>>2]=(j*t+e*s+l*r)*-q+((l*p+(e*o+j*n))*-m+(l*k+(j*i+e*f))*-h);g[b+(c*284|0)+136>>2]=0.0;h=+g[b+(c*284|0)+32>>2];f=h*+g[b+(c*284|0)+56>>2]+ +g[b+(c*284|0)+40>>2];e=h*+g[b+(c*284|0)+60>>2]+ +g[b+(c*284|0)+44>>2];g[b+(c*284|0)+140>>2]=+g[b+(c*284|0)+52>>2]*h+ +g[b+(c*284|0)+36>>2];g[b+(c*284|0)+144>>2]=f;g[b+(c*284|0)+148>>2]=e;g[b+(c*284|0)+152>>2]=0.0;return}function Be(b,d,e,f,h,j,k,l,m){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;j=+j;k=k|0;l=l|0;m=m|0;var n=0,o=0,p=0,q=0,r=0.0,s=0.0,t=0.0,u=0.0,v=0,w=0,x=0,y=0,z=0.0,A=0.0,B=0.0,C=0.0,D=0,E=0.0;D=i;i=i+32|0;if(!d){i=D;return}q=c[b+44>>2]|0;if((q|0)<128){if((c[b+48>>2]|0)<128){c[6435]=(c[6435]|0)+1;n=yc(531)|0;if(!n)p=0;else{c[(n+4+15&-16)+-4>>2]=n;p=n+4+15&-16}n=c[b+44>>2]|0;if((n|0)>0){o=0;do{c[p+(o<<2)>>2]=c[(c[b+52>>2]|0)+(o<<2)>>2];o=o+1|0}while((o|0)!=(n|0))}n=c[b+52>>2]|0;if(n|0){if(a[b+56>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[n+-4>>2]|0)}c[b+52>>2]=0}a[b+56>>0]=1;c[b+52>>2]=p;c[b+48>>2]=128;o=b+52|0}else o=b+52|0;n=q;do{c[(c[o>>2]|0)+(n<<2)>>2]=0;n=n+1|0}while((n|0)!=128);y=b+48|0}else{o=b+52|0;y=b+48|0}c[b+44>>2]=128;c[c[o>>2]>>2]=d;x=1;n=126;while(1){p=x+-1|0;q=c[o>>2]|0;w=c[q+(p<<2)>>2]|0;t=+g[w+4>>2]-+g[l+4>>2];r=+g[w+8>>2]-+g[l+8>>2];g[D>>2]=+g[w>>2]-+g[l>>2];g[D+4>>2]=t;g[D+8>>2]=r;g[D+12>>2]=0.0;r=+g[w+20>>2]-+g[k+4>>2];t=+g[w+24>>2]-+g[k+8>>2];g[D+16>>2]=+g[w+16>>2]-+g[k>>2];g[D+20>>2]=r;g[D+24>>2]=t;g[D+28>>2]=0.0;v=c[h>>2]|0;t=+g[e>>2];r=+g[f>>2];s=(+g[D+(v<<4)>>2]-t)*r;t=r*(+g[D+(1-v<<4)>>2]-t);v=c[h+4>>2]|0;r=+g[e+4>>2];E=+g[f+4>>2];u=(+g[D+(v<<4)+4>>2]-r)*E;r=E*(+g[D+(1-v<<4)+4>>2]-r);do if((!(u>t|s>r)?(z=u>s?u:s,C=r>2]|0,B=+g[e+8>>2],E=+g[f+8>>2],A=(+g[D+(v<<4)+8>>2]-B)*E,B=E*(+g[D+(1-v<<4)+8>>2]-B),!(A>C|z>B)):0)?((B0.0?(A>z?A:z)>2]|0)){Cb[c[(c[m>>2]|0)+12>>2]&127](m,w);break}if((p|0)>(n|0)){v=c[b+44>>2]|0;if((v|0)<(v<<1|0)){if((c[y>>2]|0)<(v<<1|0)){if(v){c[6435]=(c[6435]|0)+1;n=yc((v<<3|3)+16|0)|0;if(!n)n=0;else{c[(n+4+15&-16)+-4>>2]=n;n=n+4+15&-16}q=c[b+44>>2]|0;if((q|0)>0){d=0;do{c[n+(d<<2)>>2]=c[(c[o>>2]|0)+(d<<2)>>2];d=d+1|0}while((d|0)!=(q|0))}}else n=0;q=c[o>>2]|0;if(q|0){if(a[b+56>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[q+-4>>2]|0)}c[o>>2]=0}a[b+56>>0]=1;c[o>>2]=n;c[y>>2]=v<<1;q=v}else{n=q;q=v}do{c[n+(q<<2)>>2]=0;q=q+1|0;n=c[o>>2]|0}while((q|0)!=(v<<1|0))}else n=q;c[b+44>>2]=v<<1;q=n;n=(v<<1)+-2|0}c[q+(p<<2)>>2]=c[w+36>>2];c[(c[o>>2]|0)+(x<<2)>>2]=c[w+40>>2];p=x+1|0}while(0);if(!p)break;else x=p}i=D;return}function Ce(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;var h=0,j=0,l=0,m=0,n=0,o=0,p=0.0,q=0.0,r=0.0,s=0.0,t=0,u=0,v=0,w=0,x=0,y=0.0,z=0,A=0,B=0,C=0,D=0,E=0.0;D=i;i=i+32|0;q=+g[d>>2];j=(g[k>>2]=q,c[k>>2]|0);t=q<999999984306749440.0?j:1566444395;p=+g[d+4>>2];m=(g[k>>2]=p,c[k>>2]|0);u=p<999999984306749440.0?m:1566444395;E=+g[d+8>>2];o=(g[k>>2]=E,c[k>>2]|0);w=E<999999984306749440.0?o:1566444395;s=+g[d+12>>2];y=s<0.0?s:0.0;j=q>-999999984306749440.0?j:-581039253;m=p>-999999984306749440.0?m:-581039253;o=E>-999999984306749440.0?o:-581039253;s=s>0.0?s:0.0;E=+g[d+16>>2];B=E<(c[k>>2]=t,+g[k>>2]);h=(g[k>>2]=E,c[k>>2]|0);t=B?h:t;p=+g[d+20>>2];B=p<(c[k>>2]=u,+g[k>>2]);l=(g[k>>2]=p,c[k>>2]|0);u=B?l:u;q=+g[d+24>>2];B=q<(c[k>>2]=w,+g[k>>2]);n=(g[k>>2]=q,c[k>>2]|0);w=B?n:w;r=+g[d+28>>2];y=r>2]=j,+g[k>>2])>2]=m,+g[k>>2])>2]=o,+g[k>>2])>2];B=E<(c[k>>2]=t,+g[k>>2]);h=(g[k>>2]=E,c[k>>2]|0);B=B?h:t;q=+g[d+36>>2];A=q<(c[k>>2]=u,+g[k>>2]);j=(g[k>>2]=q,c[k>>2]|0);A=A?j:u;r=+g[d+40>>2];z=r<(c[k>>2]=w,+g[k>>2]);l=(g[k>>2]=r,c[k>>2]|0);z=z?l:w;p=+g[d+44>>2];y=p>2]=x,+g[k>>2])>2]=v,+g[k>>2])>2]=m,+g[k>>2])>2]|0;h=c[t+4>>2]|0;if((h|0)==(c[t+8>>2]|0)?(C=h|0?h<<1:1,(h|0)<(C|0)):0){if(!C)o=0;else{c[6435]=(c[6435]|0)+1;h=yc(C<<6|19)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}o=h;h=c[t+4>>2]|0}if((h|0)>0){j=0;do{l=o+(j<<6)|0;m=(c[t+12>>2]|0)+(j<<6)|0;n=l+64|0;do{c[l>>2]=c[m>>2];l=l+4|0;m=m+4|0}while((l|0)<(n|0));j=j+1|0}while((j|0)!=(h|0))}h=c[t+12>>2]|0;if(h|0){if(a[t+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0)}c[t+12>>2]=0}a[t+16>>0]=1;c[t+12>>2]=o;c[t+8>>2]=C;h=c[t+4>>2]|0}C=c[t+12>>2]|0;c[C+(h<<6)>>2]=B;c[C+(h<<6)+4>>2]=A;c[C+(h<<6)+8>>2]=z;g[C+(h<<6)+12>>2]=y;c[C+(h<<6)+16>>2]=w;c[C+(h<<6)+20>>2]=v;c[C+(h<<6)+24>>2]=u;g[C+(h<<6)+28>>2]=p;c[C+(h<<6)+32>>2]=-1;c[C+(h<<6)+36>>2]=e;c[C+(h<<6)+40>>2]=f;f=C+(h<<6)+44|0;c[f>>2]=c[D>>2];c[f+4>>2]=c[D+4>>2];c[f+8>>2]=c[D+8>>2];c[f+12>>2]=c[D+12>>2];c[f+16>>2]=c[D+16>>2];c[t+4>>2]=(c[t+4>>2]|0)+1;i=D;return}function De(b,d,e,f){b=b|0;d=d|0;e=e|0;f=+f;var h=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0.0,H=0.0,I=0.0,J=0.0;o=i;i=i+16|0;l=+g[d>>2];m=+g[d+4>>2];n=+g[d+8>>2];j=+g[e>>2];k=+g[e+4>>2];h=+g[e+8>>2];if(!(a[b+228>>0]|0)){z=+g[b+100>>2];w=+g[b+116>>2];C=+g[b+132>>2];y=+g[b+104>>2];u=+g[b+120>>2];B=+g[b+136>>2];x=+g[b+108>>2];s=+g[b+124>>2];A=+g[b+140>>2];F=-+g[b+148>>2];E=-+g[b+152>>2];D=-+g[b+156>>2];J=+g[b+164>>2];I=+g[b+168>>2];r=+g[b+172>>2];H=+g[b+180>>2];G=+g[b+184>>2];q=+g[b+188>>2];v=+g[b+196>>2];t=+g[b+200>>2];p=+g[b+204>>2];r=h*(C*J+B*I+A*r)+(j*(z*J+y*I+x*r)+k*(w*J+u*I+s*r))+(J*(z*F+w*E+C*D)+(y*F+u*E+B*D)*I+(x*F+s*E+A*D)*r+ +g[b+212>>2]);q=h*(C*H+B*G+A*q)+(j*(z*H+y*G+x*q)+k*(w*H+u*G+s*q))+((z*F+w*E+C*D)*H+(y*F+u*E+B*D)*G+(x*F+s*E+A*D)*q+ +g[b+216>>2]);p=(z*F+w*E+C*D)*v+(y*F+u*E+B*D)*t+(x*F+s*E+A*D)*p+ +g[b+220>>2]+(h*(C*v+B*t+A*p)+(j*(z*v+y*t+x*p)+k*(w*v+u*t+s*p)));g[o>>2]=r;g[o+4>>2]=q;g[o+8>>2]=p;f=(l*f+j-r)*+g[d>>2]+(m*f+k-q)*+g[d+4>>2]+(n*f+h-p)*+g[d+8>>2];e=o+12|0;g[e>>2]=0.0;b=b+32|0;b=c[b>>2]|0;e=c[b>>2]|0;e=e+16|0;e=c[e>>2]|0;hc[e&15](b,d,o,f);i=o;return}else{z=+g[b+36>>2];C=+g[b+52>>2];w=+g[b+68>>2];A=+g[b+40>>2];E=+g[b+56>>2];x=+g[b+72>>2];B=+g[b+44>>2];G=+g[b+60>>2];y=+g[b+76>>2];t=-+g[b+84>>2];u=-+g[b+88>>2];v=-+g[b+92>>2];p=+g[b+164>>2];q=+g[b+168>>2];H=+g[b+172>>2];r=+g[b+180>>2];s=+g[b+184>>2];I=+g[b+188>>2];D=+g[b+196>>2];F=+g[b+200>>2];J=+g[b+204>>2];H=(n*f+h)*(w*p+x*q+y*H)+((l*f+j)*(z*p+A*q+B*H)+(m*f+k)*(C*p+E*q+G*H))+(p*(z*t+C*u+w*v)+(A*t+E*u+x*v)*q+(B*t+G*u+y*v)*H+ +g[b+212>>2]);I=(n*f+h)*(w*r+x*s+y*I)+((l*f+j)*(z*r+A*s+B*I)+(m*f+k)*(C*r+E*s+G*I))+((z*t+C*u+w*v)*r+(A*t+E*u+x*v)*s+(B*t+G*u+y*v)*I+ +g[b+216>>2]);J=(z*t+C*u+w*v)*D+(A*t+E*u+x*v)*F+(B*t+G*u+y*v)*J+ +g[b+220>>2]+((n*f+h)*(w*D+x*F+y*J)+((l*f+j)*(z*D+A*F+B*J)+(m*f+k)*(C*D+E*F+G*J)));g[o>>2]=H+l*(l*(H-j)+m*(I-k)+n*(J-h));g[o+4>>2]=I+m*(l*(H-j)+m*(I-k)+n*(J-h));g[o+8>>2]=J+n*(l*(H-j)+m*(I-k)+n*(J-h));J=l*(H-j)+m*(I-k)+n*(J-h);e=o+12|0;g[e>>2]=0.0;b=b+32|0;b=c[b>>2]|0;e=c[b>>2]|0;e=e+16|0;e=c[e>>2]|0;hc[e&15](b,d,o,J);i=o;return}}function Ee(b,d,e,f,h,i,j,k,l,m){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;i=i|0;j=j|0;k=k|0;l=l|0;m=m|0;var n=0,o=0,p=0,q=0,r=0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0;if((j|0)<2|(k|0)<2){m=0;return m|0}r=_(k,j)|0;c[6435]=(c[6435]|0)+1;b=yc(r>>>0>268435455?18:(r<<4|3)+16|0)|0;if(!b)q=0;else{c[(b+4+15&-16)+-4>>2]=b;q=b+4+15&-16}n=r>>>0>1073741823?-1:r<<2;n=(n|0)==0?1:n;while(1){p=yc(n)|0;if(p|0)break;b=c[6564]|0;c[6564]=b+0;if(!b){o=8;break}jc[b&3]()}if((o|0)==8){m=Ya(4)|0;c[m>>2]=9640;pb(m|0,2800,251)}if((k|0)>0?(j|0)>0:0){o=0;do{y=+(o|0)/+(k+-1|0);s=+g[e>>2];s=s+y*(+g[h>>2]-s);t=+g[e+4>>2];t=t+y*(+g[h+4>>2]-t);u=+g[e+8>>2];u=u+y*(+g[h+8>>2]-u);v=+g[f>>2];w=+g[f+4>>2];x=+g[f+8>>2];b=_(o,j)|0;v=v+y*(+g[i>>2]-v)-s;w=w+y*(+g[i+4>>2]-w)-t;x=x+y*(+g[i+8>>2]-x)-u;n=0;do{y=+(n|0)/+(j+-1|0);z=n+b|0;g[q+(z<<4)>>2]=s+v*y;g[q+(z<<4)+4>>2]=t+w*y;g[q+(z<<4)+8>>2]=u+x*y;g[q+(z<<4)+12>>2]=0.0;g[p+(z<<2)>>2]=1.0;n=n+1|0}while((n|0)!=(j|0));o=o+1|0}while((o|0)!=(k|0))}c[6435]=(c[6435]|0)+1;b=yc(1271)|0;if(!b)b=0;else{c[(b+4+15&-16)+-4>>2]=b;b=b+4+15&-16}Kc(b,d,r,q,p);if(l&1|0){g[(c[b+720>>2]|0)+88>>2]=0.0;a[b+924>>0]=1}if(l&2|0){g[(c[b+720>>2]|0)+((j+-1|0)*104|0)+88>>2]=0.0;a[b+924>>0]=1}if(l&4|0){z=_(k+-1|0,j)|0;g[(c[b+720>>2]|0)+(z*104|0)+88>>2]=0.0;a[b+924>>0]=1}if(l&8|0){z=j+-1+(_(k+-1|0,j)|0)|0;g[(c[b+720>>2]|0)+(z*104|0)+88>>2]=0.0;a[b+924>>0]=1}if(q|0){c[6436]=(c[6436]|0)+1;hd(c[q+-4>>2]|0)}hd(p);if((k|0)<=0){z=b;return z|0}q=0;while(1){a:do if((j|0)>0){r=_(q,j)|0;n=q+1|0;o=_(n,j)|0;if((n|0)<(k|0))h=0;else{o=0;while(1){p=o;o=o+1|0;if((o|0)<(j|0))Rf(b,p+r|0,o+r|0,0,0);if((o|0)==(j|0))break a}}do{p=h+r|0;i=h;h=h+1|0;do if((h|0)<(j|0)){e=h+r|0;Rf(b,p,e,0,0);Rf(b,p,i+o|0,0,0);if(!(i+q&1)){Zf(b,i+o|0,p,e,0);Zf(b,i+o|0,e,h+o|0,0);if(!m)break;Rf(b,e,i+o|0,0,0);break}else{f=h+o|0;Zf(b,p,e,f,0);Zf(b,p,f,i+o|0,0);if(!m)break;Rf(b,p,f,0,0);break}}else Rf(b,p,i+o|0,0,0);while(0)}while((h|0)!=(j|0))}else n=q+1|0;while(0);if((n|0)==(k|0))break;else q=n}return b|0}function Fe(b,d){b=b|0;d=+d;var e=0,f=0,h=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;p=i;i=i+16|0;o=c[b+452>>2]|0;ic[c[(c[o>>2]|0)+16>>2]&127](o,b+324|0,0);o=c[b+452>>2]|0;Eb[c[(c[o>>2]|0)+12>>2]&127](o)|0;ad(b,d);li(11792);o=c[b+328>>2]|0;if((o|0)>0){e=c[b+336>>2]|0;f=0;l=0;do{n=c[(c[e+(f<<2)>>2]|0)+384>>2]|0;l=(l|0)>(n|0)?l:n;f=f+1|0}while((f|0)!=(o|0));f=0;while(1){e=c[e+(f<<2)>>2]|0;if((c[e+852>>2]|0)>0){h=0;do{n=c[(c[e+860>>2]|0)+(h<<2)>>2]|0;Jb[c[(c[n>>2]|0)+8>>2]&15](n,+g[e+452>>2],l);h=h+1|0}while((h|0)<(c[e+852>>2]|0))}f=f+1|0;if((f|0)==(o|0))break;e=c[b+336>>2]|0}if((l|0)>0){j=0;do{k=0;do{e=c[(c[b+336>>2]|0)+(k<<2)>>2]|0;f=c[e+852>>2]|0;if((f|0)>0){h=0;do{n=c[(c[e+860>>2]|0)+(h<<2)>>2]|0;Nb[c[(c[n>>2]|0)+12>>2]&7](n,+g[e+452>>2],1.0);h=h+1|0}while((h|0)!=(f|0))}k=k+1|0}while((k|0)!=(o|0));j=j+1|0}while((j|0)!=(l|0));n=0}else n=0;do{m=c[(c[b+336>>2]|0)+(n<<2)>>2]|0;if((c[m+852>>2]|0)>0){h=0;do{e=c[(c[m+860>>2]|0)+(h<<2)>>2]|0;zb[c[(c[e>>2]|0)+16>>2]&31](e,+g[m+452>>2]);e=c[m+860>>2]|0;f=c[e+(h<<2)>>2]|0;a:do if(a[f+152>>0]|0){if(!f)l=e;else{c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0);l=c[m+860>>2]|0}e=h+-1|0;f=c[m+852>>2]|0;if((f|0)>0){k=c[l+(h<<2)>>2]|0;h=0;while(1){j=l+(h<<2)|0;if((c[j>>2]|0)==(k|0))break;h=h+1|0;if((h|0)>=(f|0))break a}if((h|0)<(f|0)){c[j>>2]=c[l+(f+-1<<2)>>2];c[(c[m+860>>2]|0)+(f+-1<<2)>>2]=k;c[m+852>>2]=f+-1;f=f+-1|0}}}else{f=c[m+852>>2]|0;e=h}while(0);h=e+1|0}while((h|0)<(f|0))}n=n+1|0}while((n|0)!=(o|0))}e=c[b+452>>2]|0;zb[c[(c[e>>2]|0)+28>>2]&31](e,+g[e+12>>2]*d);e=c[2357]|0;o=(c[e+16>>2]|0)+-1|0;c[e+16>>2]=o;do if(!o){if(c[e+4>>2]|0){tb(p|0,0)|0;o=c[6434]|0;g[e+8>>2]=+g[e+8>>2]+ +(((c[p+4>>2]|0)-(c[o+4>>2]|0)+(((c[p>>2]|0)-(c[o>>2]|0)|0)*1e6|0)-(c[e+12>>2]|0)|0)>>>0)/1.0e3;if(c[e+16>>2]|0)break;e=c[2357]|0}c[2357]=c[e+20>>2]}while(0);if((c[b+328>>2]|0)<=0){b=c[b+452>>2]|0;o=c[b>>2]|0;o=o+32|0;o=c[o>>2]|0;Ab[o&255](b);i=p;return}e=0;do{o=c[(c[b+336>>2]|0)+(e<<2)>>2]|0;bi(o,o);e=e+1|0}while((e|0)<(c[b+328>>2]|0));b=c[b+452>>2]|0;o=c[b>>2]|0;o=o+32|0;o=c[o>>2]|0;Ab[o&255](b);i=p;return}function Ge(b){b=b|0;var d=0,e=0.0,f=0.0,h=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0,o=0,p=0,q=0,r=0;r=i;i=i+64|0;li(14295);d=c[b+8>>2]|0;if((d|0)>0){o=0;do{n=c[(c[b+16>>2]|0)+(o<<2)>>2]|0;if(!(a[b+76>>0]|0))switch(c[n+216>>2]|0){case 2:case 5:break;default:q=11}else q=11;if((q|0)==11){q=0;d=c[n+192>>2]|0;mc[c[(c[d>>2]|0)+8>>2]&127](d,n+4|0,r+48|0,r+32|0);e=+g[r+48>>2]+-.019999999552965164;g[r+48>>2]=e;f=+g[r+48+4>>2]+-.019999999552965164;g[r+48+4>>2]=f;h=+g[r+48+8>>2]+-.019999999552965164;g[r+48+8>>2]=h;j=+g[r+32>>2]+.019999999552965164;g[r+32>>2]=j;k=+g[r+32+4>>2]+.019999999552965164;g[r+32+4>>2]=k;l=+g[r+32+8>>2]+.019999999552965164;g[r+32+8>>2]=l;if(((a[b+44>>0]|0)!=0?(c[n+236>>2]|0)==2:0)?(c[n+204>>2]&3|0)==0:0){d=c[n+192>>2]|0;mc[c[(c[d>>2]|0)+8>>2]&127](d,n+68|0,r+16|0,r);f=+g[r+16>>2]+-.019999999552965164;g[r+16>>2]=f;h=+g[r+16+4>>2]+-.019999999552965164;g[r+16+4>>2]=h;j=+g[r+16+8>>2]+-.019999999552965164;g[r+16+8>>2]=j;k=+g[r>>2]+.019999999552965164;g[r>>2]=k;l=+g[r+4>>2]+.019999999552965164;g[r+4>>2]=l;m=+g[r+8>>2]+.019999999552965164;g[r+8>>2]=m;e=+g[r+48>>2];if(f>2]=f;e=f}f=+g[r+48+4>>2];if(h>2]=h;f=h}h=+g[r+48+8>>2];if(j>2]=j;h=j}j=+g[r+16+12>>2];if(j<+g[r+48+12>>2])g[r+48+12>>2]=j;j=+g[r+32>>2];if(j>2]=k;j=k}k=+g[r+32+4>>2];if(k>2]=l;k=l}l=+g[r+32+8>>2];if(l>2]=m;l=m}m=+g[r+12>>2];if(+g[r+32+12>>2]>2]=m}d=c[b+68>>2]|0;if((c[n+204>>2]&1|0)==0?(j=j-e,k=k-f,m=l-h,!(j*j+k*k+m*m<999999995904.0)):0){if((c[n+216>>2]&-2|0)!=4)c[n+216>>2]=5;if(a[14307]|0?(p=c[b+72>>2]|0,p|0):0){a[14307]=0;Cb[c[(c[p>>2]|0)+36>>2]&127](p,14308);n=c[b+72>>2]|0;Cb[c[(c[n>>2]|0)+36>>2]&127](n,14357);n=c[b+72>>2]|0;Cb[c[(c[n>>2]|0)+36>>2]&127](n,14425);n=c[b+72>>2]|0;Cb[c[(c[n>>2]|0)+36>>2]&127](n,14490)}}else yb[c[(c[d>>2]|0)+16>>2]&31](d,c[n+188>>2]|0,r+48|0,r+32|0,c[b+24>>2]|0);d=c[b+8>>2]|0}o=o+1|0}while((o|0)<(d|0))}d=c[2357]|0;q=(c[d+16>>2]|0)+-1|0;c[d+16>>2]=q;if(q|0){i=r;return}do if(c[d+4>>2]|0){tb(r+48|0,0)|0;q=c[6434]|0;g[d+8>>2]=+g[d+8>>2]+ +(((c[r+48+4>>2]|0)-(c[q+4>>2]|0)+(((c[r+48>>2]|0)-(c[q>>2]|0)|0)*1e6|0)-(c[d+12>>2]|0)|0)>>>0)/1.0e3;if(!(c[d+16>>2]|0)){d=c[2357]|0;break}else{i=r;return}}while(0);c[2357]=c[d+20>>2];i=r;return}function He(a,b,d){a=a|0;b=b|0;d=d|0;var e=0.0,f=0.0,h=0,j=0,k=0.0;a=i;i=i+192|0;switch(c[b+388>>2]&15|0){case 1:{c[a+160>>2]=3364;h=c[d+8>>2]|0;h=(c[h+236>>2]&2|0)==0?0:h;j=c[d+12>>2]|0;k=+g[j+48>>2];e=+g[j+52>>2];f=+g[j+56>>2];f=+O(+((k-k)*(k-k)+(e-e)*(e-e)+(f-f)*(f-f)));j=c[b+192>>2]|0;e=+Sb[c[(c[j>>2]|0)+48>>2]&15](j);j=c[d+4>>2]|0;mc[c[(c[j>>2]|0)+8>>2]&127](j,c[d+12>>2]|0,a+144|0,a+128|0);c[a+32>>2]=c[a+144>>2];c[a+32+4>>2]=c[a+144+4>>2];c[a+32+8>>2]=c[a+144+8>>2];c[a+32+12>>2]=c[a+144+12>>2];c[a+32+16>>2]=c[a+128>>2];c[a+32+16+4>>2]=c[a+128+4>>2];c[a+32+16+8>>2]=c[a+128+8>>2];c[a+32+16+12>>2]=c[a+128+12>>2];c[a+96>>2]=c[a+32>>2];c[a+96+4>>2]=c[a+32+4>>2];c[a+96+8>>2]=c[a+32+8>>2];c[a+96+12>>2]=c[a+32+12>>2];c[a+96+16>>2]=c[a+32+16>>2];c[a+96+20>>2]=c[a+32+20>>2];c[a+96+24>>2]=c[a+32+24>>2];c[a+96+28>>2]=c[a+32+28>>2];g[a+96>>2]=+g[a+96>>2]-e;g[a+96+4>>2]=+g[a+96+4>>2]-e;g[a+96+8>>2]=+g[a+96+8>>2]-e;g[a+96+16>>2]=e+ +g[a+96+16>>2];g[a+96+20>>2]=e+ +g[a+96+20>>2];g[a+96+24>>2]=e+ +g[a+96+24>>2];c[a+160+4>>2]=b;c[a+160+8>>2]=d;c[a+160+12>>2]=h;g[a+160+16>>2]=f+e;g[a+160+20>>2]=e;bg(c[b+928>>2]|0,a+96|0,a+160|0);i=a;return}case 2:{g[a+4>>2]=1.0;c[a+8>>2]=0;c[a+8+4>>2]=0;c[a+8+8>>2]=0;c[a+8+12>>2]=0;c[a>>2]=3400;c[a+24>>2]=b;c[a+28>>2]=d;c[a+8>>2]=c[b+456>>2];j=c[d+4>>2]|0;k=+Sb[c[(c[j>>2]|0)+48>>2]&15](j);j=c[b+192>>2]|0;k=k+ +Sb[c[(c[j>>2]|0)+48>>2]&15](j);g[a+12>>2]=k;f=+g[(c[d+8>>2]|0)+224>>2];g[a+160>>2]=f;c[a+16>>2]=c[(+g[b+316>>2]>2];j=c[d+4>>2]|0;mc[c[(c[j>>2]|0)+8>>2]&127](j,c[d+12>>2]|0,a+144|0,a+128|0);c[a+64>>2]=c[a+144>>2];c[a+64+4>>2]=c[a+144+4>>2];c[a+64+8>>2]=c[a+144+8>>2];c[a+64+12>>2]=c[a+144+12>>2];c[a+64+16>>2]=c[a+128>>2];c[a+64+16+4>>2]=c[a+128+4>>2];c[a+64+16+8>>2]=c[a+128+8>>2];c[a+64+16+12>>2]=c[a+128+12>>2];c[a+96>>2]=c[a+64>>2];c[a+96+4>>2]=c[a+64+4>>2];c[a+96+8>>2]=c[a+64+8>>2];c[a+96+12>>2]=c[a+64+12>>2];c[a+96+16>>2]=c[a+64+16>>2];c[a+96+20>>2]=c[a+64+20>>2];c[a+96+24>>2]=c[a+64+24>>2];c[a+96+28>>2]=c[a+64+28>>2];g[a+96>>2]=+g[a+96>>2]-k;g[a+96+4>>2]=+g[a+96+4>>2]-k;g[a+96+8>>2]=+g[a+96+8>>2]-k;g[a+96+16>>2]=k+ +g[a+96+16>>2];g[a+96+20>>2]=k+ +g[a+96+20>>2];g[a+96+24>>2]=k+ +g[a+96+24>>2];bg(c[b+1048>>2]|0,a+96|0,a);i=a;return}default:{i=a;return}}}function Ie(a,b,d){a=a|0;b=b|0;d=d|0;var f=0.0,j=0.0,k=0.0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;r=i;i=i+80|0;o=c[a+4>>2]|0;Yb[c[(c[o>>2]|0)+16>>2]&3](o,r+28|0,r+24|0,r+20|0,r+16|0,r+12|0,r+8|0,r+4|0,r,b);o=(c[r+12>>2]|0)+(_(c[r+8>>2]|0,d)|0)|0;q=c[a+4>>2]|0;p=(c[r+20>>2]|0)==0;n=c[r+28>>2]|0;if((c[r>>2]|0)==3){m=c[r+16>>2]|0;l=n+(_(m,e[o+4>>1]|0)|0)|0;if(p){j=+g[l+8>>2]*+g[q+12>>2];k=+g[l+4>>2]*+g[q+8>>2];f=+g[l>>2]*+g[q+4>>2]}else{j=+h[l+16>>3]*+g[q+12>>2];k=+h[l+8>>3]*+g[q+8>>2];f=+h[l>>3]*+g[q+4>>2]}g[r+32+32>>2]=f;g[r+32+36>>2]=k;g[r+32+40>>2]=j;g[r+32+44>>2]=0.0;l=n+(_(m,e[o+2>>1]|0)|0)|0;if(p){j=+g[l+8>>2]*+g[q+12>>2];k=+g[l+4>>2]*+g[q+8>>2];f=+g[l>>2]*+g[q+4>>2]}else{j=+h[l+16>>3]*+g[q+12>>2];k=+h[l+8>>3]*+g[q+8>>2];f=+h[l>>3]*+g[q+4>>2]}g[r+32+16>>2]=f;g[r+32+20>>2]=k;g[r+32+24>>2]=j;g[r+32+28>>2]=0.0;l=n+(_(m,e[o>>1]|0)|0)|0;if(p){j=+g[l+8>>2]*+g[q+12>>2];k=+g[l+4>>2]*+g[q+8>>2];f=+g[l>>2]*+g[q+4>>2]}else{j=+h[l+16>>3]*+g[q+12>>2];k=+h[l+8>>3]*+g[q+8>>2];f=+h[l>>3]*+g[q+4>>2]}g[r+32>>2]=f;g[r+32+4>>2]=k;g[r+32+8>>2]=j;g[r+32+12>>2]=0.0;q=a+8|0;q=c[q>>2]|0;p=c[q>>2]|0;p=p+8|0;p=c[p>>2]|0;mc[p&127](q,r+32|0,b,d);a=c[a+4>>2]|0;d=c[a>>2]|0;d=d+24|0;d=c[d>>2]|0;Cb[d&127](a,b);i=r;return}else{m=c[r+16>>2]|0;l=n+(_(m,c[o+8>>2]|0)|0)|0;if(p){j=+g[l+8>>2]*+g[q+12>>2];k=+g[l+4>>2]*+g[q+8>>2];f=+g[l>>2]*+g[q+4>>2]}else{j=+h[l+16>>3]*+g[q+12>>2];k=+h[l+8>>3]*+g[q+8>>2];f=+h[l>>3]*+g[q+4>>2]}g[r+32+32>>2]=f;g[r+32+36>>2]=k;g[r+32+40>>2]=j;g[r+32+44>>2]=0.0;l=n+(_(m,c[o+4>>2]|0)|0)|0;if(p){j=+g[l+8>>2]*+g[q+12>>2];k=+g[l+4>>2]*+g[q+8>>2];f=+g[l>>2]*+g[q+4>>2]}else{j=+h[l+16>>3]*+g[q+12>>2];k=+h[l+8>>3]*+g[q+8>>2];f=+h[l>>3]*+g[q+4>>2]}g[r+32+16>>2]=f;g[r+32+20>>2]=k;g[r+32+24>>2]=j;g[r+32+28>>2]=0.0;l=n+(_(m,c[o>>2]|0)|0)|0;if(p){j=+g[l+8>>2]*+g[q+12>>2];k=+g[l+4>>2]*+g[q+8>>2];f=+g[l>>2]*+g[q+4>>2]}else{j=+h[l+16>>3]*+g[q+12>>2];k=+h[l+8>>3]*+g[q+8>>2];f=+h[l>>3]*+g[q+4>>2]}g[r+32>>2]=f;g[r+32+4>>2]=k;g[r+32+8>>2]=j;g[r+32+12>>2]=0.0;q=a+8|0;q=c[q>>2]|0;p=c[q>>2]|0;p=p+8|0;p=c[p>>2]|0;mc[p&127](q,r+32|0,b,d);a=c[a+4>>2]|0;d=c[a>>2]|0;d=d+24|0;d=c[d>>2]|0;Cb[d&127](a,b);i=r;return}}function Je(b,d,e){b=b|0;d=d|0;e=e|0;var f=0,h=0,i=0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0,H=0,I=0,J=0;c[6435]=(c[6435]|0)+1;f=yc(1147)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}Il();c[f+4>>2]=7;c[f+8>>2]=-1;c[f+12>>2]=-1;g[f+16>>2]=3402823466385288598117041.0e14;a[f+20>>0]=1;a[f+21>>0]=0;c[f+24>>2]=-1;i=f+28|0;c[i>>2]=23268;h=f+32|0;c[h>>2]=b;g[f+36>>2]=0.0;g[f+40>>2]=.30000001192092896;c[f+44>>2]=0;c[f>>2]=4596;a[f+48>>0]=0;J=f+116|0;c[J>>2]=c[d>>2];c[J+4>>2]=c[d+4>>2];c[J+8>>2]=c[d+8>>2];c[J+12>>2]=c[d+12>>2];I=f+132|0;c[I>>2]=c[d+16>>2];c[I+4>>2]=c[d+16+4>>2];c[I+8>>2]=c[d+16+8>>2];c[I+12>>2]=c[d+16+12>>2];H=f+148|0;c[H>>2]=c[d+32>>2];c[H+4>>2]=c[d+32+4>>2];c[H+8>>2]=c[d+32+8>>2];c[H+12>>2]=c[d+32+12>>2];G=f+164|0;c[G>>2]=c[d+48>>2];c[G+4>>2]=c[d+48+4>>2];c[G+8>>2]=c[d+48+8>>2];c[G+12>>2]=c[d+48+12>>2];a[f+180>>0]=e&1;x=+g[J>>2];D=+g[b+4>>2];w=+g[I>>2];C=+g[b+8>>2];v=+g[H>>2];B=+g[b+12>>2];u=+g[f+120>>2];t=+g[f+136>>2];s=+g[f+152>>2];r=+g[f+124>>2];p=+g[f+140>>2];n=+g[f+156>>2];A=+g[b+20>>2];z=+g[b+24>>2];y=+g[b+28>>2];q=+g[b+36>>2];o=+g[b+40>>2];m=+g[b+44>>2];F=+g[G>>2];E=+g[f+168>>2];j=+g[f+172>>2];l=+g[b+52>>2]+(D*F+C*E+B*j);k=A*F+z*E+y*j+ +g[b+56>>2];j=q*F+o*E+m*j+ +g[b+60>>2];g[f+52>>2]=x*D+w*C+v*B;g[f+56>>2]=D*u+C*t+B*s;g[f+60>>2]=D*r+C*p+B*n;g[f+64>>2]=0.0;g[f+68>>2]=x*A+w*z+v*y;g[f+72>>2]=u*A+t*z+s*y;g[f+76>>2]=r*A+p*z+n*y;g[f+80>>2]=0.0;g[f+84>>2]=x*q+w*o+v*m;g[f+88>>2]=u*q+t*o+s*m;g[f+92>>2]=r*q+p*o+n*m;g[f+96>>2]=0.0;g[f+100>>2]=l;g[f+104>>2]=k;g[f+108>>2]=j;g[f+112>>2]=0.0;g[f+184>>2]=1.0;g[f+188>>2]=-1.0;g[f+192>>2]=0.0;g[f+196>>2]=0.0;g[f+200>>2]=1.0;g[f+204>>2]=.699999988079071;g[f+208>>2]=0.0;g[f+212>>2]=0.0;g[f+216>>2]=1.0;g[f+220>>2]=.699999988079071;g[f+224>>2]=0.0;g[f+228>>2]=0.0;g[f+264>>2]=1.0;g[f+268>>2]=.699999988079071;g[f+272>>2]=1.0;g[f+276>>2]=0.0;g[f+280>>2]=1.0;g[f+284>>2]=.699999988079071;g[f+288>>2]=1.0;g[f+292>>2]=0.0;g[f+232>>2]=1.0;g[f+236>>2]=.699999988079071;g[f+240>>2]=1.0;g[f+244>>2]=0.0;g[f+248>>2]=1.0;g[f+252>>2]=.699999988079071;g[f+256>>2]=1.0;g[f+260>>2]=0.0;a[f+1096>>0]=0;e=f+1100|0;g[f+1116>>2]=0.0;g[f+1120>>2]=0.0;g[f+1124>>2]=0.0;c[f+300>>2]=0;c[e>>2]=0;c[e+4>>2]=0;c[e+8>>2]=0;a[e+12>>0]=0;a[f+49>>0]=1;kd(f,(c[i>>2]|0)+4|0,(c[h>>2]|0)+4|0);return f|0}function Ke(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0.0,h=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0,G=0.0,H=0.0,I=0.0;d=i;i=i+96|0;l=+g[b>>2];s=+g[a+28>>2];B=+g[b+4>>2];D=+g[a+32>>2];m=+g[b+8>>2];n=+g[a+36>>2];o=+g[a+44>>2];p=+g[a+48>>2];q=+g[a+52>>2];r=+g[a+60>>2];t=+g[a+64>>2];u=+g[a+68>>2];v=+g[a+76>>2];w=+g[a+80>>2];x=+g[a+84>>2];g[d+80>>2]=l*s+B*D+m*n+v;g[d+80+4>>2]=l*o+B*p+m*q+w;g[d+80+8>>2]=l*r+B*t+m*u+x;g[d+80+12>>2]=0.0;y=+g[b+16>>2];z=+g[b+20>>2];A=+g[b+24>>2];g[d+64>>2]=y*s+z*D+A*n+v;g[d+64+4>>2]=y*o+z*p+A*q+w;g[d+64+8>>2]=y*r+z*t+A*u+x;g[d+64+12>>2]=0.0;C=+g[b+32>>2];E=+g[b+36>>2];k=+g[b+40>>2];g[d+48>>2]=C*s+E*D+k*n+v;g[d+48+4>>2]=C*o+E*p+k*q+w;g[d+48+8>>2]=C*r+E*t+k*u+x;g[d+48+12>>2]=0.0;f=(l*s+B*D+m*n+v+(y*s+z*D+A*n+v)+(C*s+E*D+k*n+v))*.3333333432674408;h=(l*o+B*p+m*q+w+(y*o+z*p+A*q+w)+(C*o+E*p+k*q+w))*.3333333432674408;j=(l*r+B*t+m*u+x+(y*r+z*t+A*u+x)+(C*r+E*t+k*u+x))*.3333333432674408;g[d+32>>2]=f;g[d+32+4>>2]=h;g[d+32+8>>2]=j;g[d+32+12>>2]=0.0;b=c[a+8>>2]|0;if(!((Eb[c[(c[b>>2]|0)+48>>2]&127](b)|0)&16384)){e=c[a+8>>2]|0;F=c[e>>2]|0;F=F+8|0;F=c[F>>2]|0;b=a+12|0;mc[F&127](e,d+80|0,d+64|0,b);e=c[a+8>>2]|0;F=c[e>>2]|0;F=F+8|0;F=c[F>>2]|0;mc[F&127](e,d+64|0,d+48|0,b);a=c[a+8>>2]|0;e=c[a>>2]|0;e=e+8|0;e=c[e>>2]|0;mc[e&127](a,d+48|0,d+80|0,b);i=d;return}I=+g[d+80>>2];H=y*o+z*p+A*q+w-(l*o+B*p+m*q+w);G=y*r+z*t+A*u+x-(l*r+B*t+m*u+x);w=C*o+E*p+k*q+w-(l*o+B*p+m*q+w);x=C*r+E*t+k*u+x-(l*r+B*t+m*u+x);B=G*(C*s+E*D+k*n+v-I)-(y*s+z*D+A*n+v-I)*x;E=(y*s+z*D+A*n+v-I)*w-H*(C*s+E*D+k*n+v-I);D=1.0/+O(+(E*E+((H*x-G*w)*(H*x-G*w)+B*B)));c[d+16>>2]=1065353216;c[d+16+4>>2]=1065353216;c[d+16+8>>2]=0;g[d+16+12>>2]=0.0;b=c[a+8>>2]|0;e=c[(c[b>>2]|0)+8>>2]|0;g[d>>2]=D*(H*x-G*w)+f;g[d+4>>2]=D*B+h;g[d+8>>2]=D*E+j;g[d+12>>2]=0.0;mc[e&127](b,d+32|0,d,d+16|0);b=c[a+8>>2]|0;e=c[b>>2]|0;e=e+8|0;e=c[e>>2]|0;F=a+12|0;mc[e&127](b,d+80|0,d+64|0,F);b=c[a+8>>2]|0;e=c[b>>2]|0;e=e+8|0;e=c[e>>2]|0;mc[e&127](b,d+64|0,d+48|0,F);a=c[a+8>>2]|0;b=c[a>>2]|0;b=b+8|0;b=c[b>>2]|0;mc[b&127](a,d+48|0,d+80|0,F);i=d;return}function Le(b,d,e,f,h,i){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;i=i|0;c[b+4>>2]=6;c[b+8>>2]=-1;c[b+12>>2]=-1;g[b+16>>2]=3402823466385288598117041.0e14;a[b+20>>0]=1;a[b+21>>0]=0;c[b+24>>2]=-1;c[b+28>>2]=d;c[b+32>>2]=e;g[b+36>>2]=0.0;g[b+40>>2]=.30000001192092896;c[b+44>>2]=0;c[b>>2]=4376;c[b+48>>2]=c[f>>2];c[b+48+4>>2]=c[f+4>>2];c[b+48+8>>2]=c[f+8>>2];c[b+48+12>>2]=c[f+12>>2];c[b+64>>2]=c[f+16>>2];c[b+64+4>>2]=c[f+16+4>>2];c[b+64+8>>2]=c[f+16+8>>2];c[b+64+12>>2]=c[f+16+12>>2];c[b+80>>2]=c[f+32>>2];c[b+80+4>>2]=c[f+32+4>>2];c[b+80+8>>2]=c[f+32+8>>2];c[b+80+12>>2]=c[f+32+12>>2];c[b+96>>2]=c[f+48>>2];c[b+96+4>>2]=c[f+48+4>>2];c[b+96+8>>2]=c[f+48+8>>2];c[b+96+12>>2]=c[f+48+12>>2];c[b+112>>2]=c[h>>2];c[b+112+4>>2]=c[h+4>>2];c[b+112+8>>2]=c[h+8>>2];c[b+112+12>>2]=c[h+12>>2];c[b+128>>2]=c[h+16>>2];c[b+128+4>>2]=c[h+16+4>>2];c[b+128+8>>2]=c[h+16+8>>2];c[b+128+12>>2]=c[h+16+12>>2];c[b+144>>2]=c[h+32>>2];c[b+144+4>>2]=c[h+32+4>>2];c[b+144+8>>2]=c[h+32+8>>2];c[b+144+12>>2]=c[h+32+12>>2];c[b+160>>2]=c[h+48>>2];c[b+160+4>>2]=c[h+48+4>>2];c[b+160+8>>2]=c[h+48+8>>2];c[b+160+12>>2]=c[h+48+12>>2];f=b+680|0;h=f+48|0;do{c[f>>2]=0;f=f+4|0}while((f|0)<(h|0));c[b+740>>2]=0;c[b+740+4>>2]=0;c[b+740+8>>2]=0;c[b+740+12>>2]=0;c[b+756>>2]=1045220557;c[b+760>>2]=1045220557;c[b+764>>2]=1045220557;c[b+768>>2]=0;c[b+768+4>>2]=0;c[b+768+8>>2]=0;c[b+768+12>>2]=0;c[b+768+16>>2]=0;g[b+728>>2]=.699999988079071;g[b+732>>2]=1.0;g[b+736>>2]=.5;a[b+788>>0]=0;g[b+792>>2]=0.0;g[b+808>>2]=0.0;a[b+789>>0]=0;g[b+796>>2]=0.0;g[b+812>>2]=0.0;a[b+790>>0]=0;g[b+800>>2]=0.0;g[b+816>>2]=0.0;g[b+928>>2]=0.0;g[b+876>>2]=0.0;g[b+880>>2]=.10000000149011612;g[b+884>>2]=300.0;g[b+868>>2]=1.0;g[b+872>>2]=-1.0;g[b+896>>2]=0.0;g[b+900>>2]=.20000000298023224;g[b+904>>2]=0.0;g[b+908>>2]=0.0;g[b+888>>2]=1.0;g[b+892>>2]=.5;c[b+924>>2]=0;g[b+916>>2]=0.0;a[b+912>>0]=0;g[b+992>>2]=0.0;g[b+940>>2]=0.0;g[b+944>>2]=.10000000149011612;g[b+948>>2]=300.0;g[b+932>>2]=1.0;g[b+936>>2]=-1.0;g[b+960>>2]=0.0;g[b+964>>2]=.20000000298023224;g[b+968>>2]=0.0;g[b+972>>2]=0.0;g[b+952>>2]=1.0;g[b+956>>2]=.5;c[b+988>>2]=0;g[b+980>>2]=0.0;a[b+976>>0]=0;g[b+1056>>2]=0.0;g[b+1004>>2]=0.0;g[b+1008>>2]=.10000000149011612;g[b+1012>>2]=300.0;g[b+996>>2]=1.0;g[b+1e3>>2]=-1.0;g[b+1024>>2]=0.0;g[b+1028>>2]=.20000000298023224;g[b+1032>>2]=0.0;g[b+1036>>2]=0.0;g[b+1016>>2]=1.0;g[b+1020>>2]=.5;c[b+1052>>2]=0;g[b+1044>>2]=0.0;a[b+1040>>0]=0;a[b+1300>>0]=i&1;a[b+1301>>0]=1;c[b+1304>>2]=0;a[b+1308>>0]=0;sd(b,(c[b+28>>2]|0)+4|0,(c[b+32>>2]|0)+4|0);return}function Me(a,b,d){a=a|0;b=b|0;d=+d;var e=0,f=0.0,h=0.0,i=0.0,j=0.0,k=0.0,l=0,m=0;if(!b)b=0;else b=(c[b+236>>2]&2|0)==0?0:b;c[a+64>>2]=0;c[a+64+4>>2]=0;c[a+64+8>>2]=0;c[a+64+12>>2]=0;c[a+64+16>>2]=0;c[a+64+20>>2]=0;c[a+64+24>>2]=0;c[a+64+28>>2]=0;c[a+144>>2]=0;c[a+144+4>>2]=0;c[a+144+8>>2]=0;c[a+144+12>>2]=0;c[a+144+16>>2]=0;c[a+144+20>>2]=0;c[a+144+24>>2]=0;c[a+144+28>>2]=0;if(!b){c[a>>2]=1065353216;c[a+4>>2]=0;c[a+4+4>>2]=0;c[a+4+8>>2]=0;c[a+4+12>>2]=0;c[a+20>>2]=1065353216;c[a+24>>2]=0;c[a+24+4>>2]=0;c[a+24+8>>2]=0;c[a+24+12>>2]=0;c[a+40>>2]=1065353216;c[a+44>>2]=0;c[a+44+4>>2]=0;c[a+44+8>>2]=0;c[a+44+12>>2]=0;c[a+44+16>>2]=0;c[a+240>>2]=0;c[a+128>>2]=0;c[a+128+4>>2]=0;c[a+128+8>>2]=0;c[a+128+12>>2]=0;c[a+96>>2]=1065353216;c[a+100>>2]=1065353216;c[a+104>>2]=1065353216;g[a+108>>2]=0.0;c[a+112>>2]=1065353216;c[a+116>>2]=1065353216;c[a+120>>2]=1065353216;g[a+124>>2]=0.0;b=a+176|0;e=b+60|0;do{c[b>>2]=0;b=b+4|0}while((b|0)<(e|0));a=a+236|0;g[a>>2]=0.0;return}else{e=b+4|0;c[a>>2]=c[e>>2];c[a+4>>2]=c[e+4>>2];c[a+8>>2]=c[e+8>>2];c[a+12>>2]=c[e+12>>2];e=b+20|0;c[a+16>>2]=c[e>>2];c[a+16+4>>2]=c[e+4>>2];c[a+16+8>>2]=c[e+8>>2];c[a+16+12>>2]=c[e+12>>2];e=b+36|0;c[a+32>>2]=c[e>>2];c[a+32+4>>2]=c[e+4>>2];c[a+32+8>>2]=c[e+8>>2];c[a+32+12>>2]=c[e+12>>2];e=b+52|0;c[a+48>>2]=c[e>>2];c[a+48+4>>2]=c[e+4>>2];c[a+48+8>>2]=c[e+8>>2];c[a+48+12>>2]=c[e+12>>2];e=b+344|0;k=+g[e>>2];l=b+348|0;j=k*+g[b+352>>2];i=k*+g[b+356>>2];g[a+128>>2]=k*+g[l>>2];g[a+132>>2]=j;g[a+136>>2]=i;g[a+140>>2]=0.0;c[a+240>>2]=b;m=b+544|0;c[a+96>>2]=c[m>>2];c[a+96+4>>2]=c[m+4>>2];c[a+96+8>>2]=c[m+8>>2];c[a+96+12>>2]=c[m+12>>2];c[a+112>>2]=c[l>>2];c[a+112+4>>2]=c[l+4>>2];c[a+112+8>>2]=c[l+8>>2];c[a+112+12>>2]=c[l+12>>2];l=b+312|0;c[a+176>>2]=c[l>>2];c[a+176+4>>2]=c[l+4>>2];c[a+176+8>>2]=c[l+8>>2];c[a+176+12>>2]=c[l+12>>2];l=b+328|0;c[a+192>>2]=c[l>>2];c[a+192+4>>2]=c[l+4>>2];c[a+192+8>>2]=c[l+8>>2];c[a+192+12>>2]=c[l+12>>2];i=+g[e>>2];j=i*+g[b+416>>2]*d;k=i*+g[b+420>>2]*d;g[a+208>>2]=i*+g[b+412>>2]*d;g[a+212>>2]=j;g[a+216>>2]=k;g[a+220>>2]=0.0;k=+g[b+428>>2];j=+g[b+432>>2];i=+g[b+436>>2];h=(k*+g[b+268>>2]+j*+g[b+284>>2]+i*+g[b+300>>2])*d;f=(k*+g[b+272>>2]+j*+g[b+288>>2]+i*+g[b+304>>2])*d;g[a+224>>2]=(+g[b+264>>2]*k+ +g[b+280>>2]*j+ +g[b+296>>2]*i)*d;g[a+228>>2]=h;g[a+232>>2]=f;a=a+236|0;g[a>>2]=0.0;return}}function Ne(a,e,f){a=a|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0;c[e+16>>2]=c[a+20>>2];c[e+20>>2]=c[a+24>>2];c[e+24>>2]=c[a+28>>2];c[e+28>>2]=c[a+32>>2];c[e>>2]=c[a+4>>2];c[e+4>>2]=c[a+8>>2];c[e+8>>2]=c[a+12>>2];c[e+12>>2]=c[a+16>>2];c[e+32>>2]=c[a+36>>2];c[e+36>>2]=c[a+40>>2];c[e+40>>2]=c[a+44>>2];c[e+44>>2]=c[a+48>>2];c[e+48>>2]=c[a+56>>2];c[e+52>>2]=d[a+60>>0];k=c[a+88>>2]|0;c[e+56>>2]=k;if(k){k=Zb[c[(c[f>>2]|0)+28>>2]&31](f,c[a+96>>2]|0)|0;c[e+64>>2]=k;if(k|0){h=c[a+88>>2]|0;k=Ob[c[(c[f>>2]|0)+16>>2]&63](f,48,h)|0;if((h|0)>0){g=c[a+96>>2]|0;i=0;j=c[k+8>>2]|0;while(1){c[j+16>>2]=c[g+(i<<6)+16>>2];c[j+20>>2]=c[g+(i<<6)+20>>2];c[j+24>>2]=c[g+(i<<6)+24>>2];c[j+28>>2]=c[g+(i<<6)+28>>2];c[j>>2]=c[g+(i<<6)>>2];c[j+4>>2]=c[g+(i<<6)+4>>2];c[j+8>>2]=c[g+(i<<6)+8>>2];c[j+12>>2]=c[g+(i<<6)+12>>2];c[j+32>>2]=c[g+(i<<6)+32>>2];c[j+36>>2]=c[g+(i<<6)+36>>2];c[j+40>>2]=c[g+(i<<6)+40>>2];i=i+1|0;if((i|0)==(h|0))break;else j=j+48|0}}else g=c[a+96>>2]|0;yb[c[(c[f>>2]|0)+20>>2]&31](f,k,18461,1497453121,g)}}else c[e+64>>2]=0;k=c[a+128>>2]|0;c[e+60>>2]=k;if(k){k=Zb[c[(c[f>>2]|0)+28>>2]&31](f,c[a+136>>2]|0)|0;c[e+68>>2]=k;if(k|0){h=c[a+128>>2]|0;k=Ob[c[(c[f>>2]|0)+16>>2]&63](f,16,h)|0;if((h|0)>0){g=c[a+136>>2]|0;i=0;j=c[k+8>>2]|0;while(1){c[j+12>>2]=c[g+(i<<4)+12>>2];b[j+6>>1]=b[g+(i<<4)+6>>1]|0;b[j+8>>1]=b[g+(i<<4)+8>>1]|0;b[j+10>>1]=b[g+(i<<4)+10>>1]|0;b[j>>1]=b[g+(i<<4)>>1]|0;b[j+2>>1]=b[g+(i<<4)+2>>1]|0;b[j+4>>1]=b[g+(i<<4)+4>>1]|0;i=i+1|0;if((i|0)==(h|0))break;else j=j+16|0}}else g=c[a+136>>2]|0;yb[c[(c[f>>2]|0)+20>>2]&31](f,k,18484,1497453121,g)}}else c[e+68>>2]=0;c[e+76>>2]=c[a+144>>2];k=c[a+152>>2]|0;c[e+80>>2]=k;if(!k){c[e+72>>2]=0;return 18528}k=Zb[c[(c[f>>2]|0)+28>>2]&31](f,c[a+160>>2]|0)|0;c[e+72>>2]=k;if(!k)return 18528;j=c[a+152>>2]|0;k=Ob[c[(c[f>>2]|0)+16>>2]&63](f,20,j)|0;if((j|0)>0){g=c[a+160>>2]|0;h=0;i=c[k+8>>2]|0;while(1){b[i+14>>1]=b[g+(h<<5)+6>>1]|0;b[i+16>>1]=b[g+(h<<5)+8>>1]|0;b[i+18>>1]=b[g+(h<<5)+10>>1]|0;b[i+8>>1]=b[g+(h<<5)>>1]|0;b[i+10>>1]=b[g+(h<<5)+2>>1]|0;b[i+12>>1]=b[g+(h<<5)+4>>1]|0;c[i>>2]=c[g+(h<<5)+12>>2];c[i+4>>2]=c[g+(h<<5)+16>>2];h=h+1|0;if((h|0)==(j|0))break;else i=i+20|0}}else g=c[a+160>>2]|0;yb[c[(c[f>>2]|0)+20>>2]&31](f,k,18507,1497453121,g);return 18528}function Oe(a,b,d,e,f){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;var h=0,j=0,l=0.0,m=0,n=0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0.0,H=0.0,I=0.0,J=0.0,K=0.0,L=0,M=0;L=i;i=i+64|0;c[L+48>>2]=a;c[L+48+4>>2]=b;c[L+48+8>>2]=d;C=+g[a>>2];F=+g[b>>2];J=+g[a+4>>2];K=+g[b+4>>2];z=+g[a+8>>2];A=+g[b+8>>2];g[L>>2]=C-F;g[L+4>>2]=J-K;g[L+8>>2]=z-A;g[L+12>>2]=0.0;B=+g[d>>2];D=+g[d+4>>2];E=+g[d+8>>2];g[L+16>>2]=F-B;g[L+20>>2]=K-D;g[L+24>>2]=A-E;g[L+28>>2]=0.0;g[L+32>>2]=B-C;g[L+36>>2]=D-J;g[L+40>>2]=E-z;g[L+44>>2]=0.0;G=(J-K)*(A-E)-(z-A)*(K-D);H=(z-A)*(F-B)-(A-E)*(C-F);I=(K-D)*(C-F)-(J-K)*(F-B);if(I*I+(G*G+H*H)>0.0){o=J-K;p=z-A;q=C-F;v=C;w=J;x=z;m=0;y=-1.0;n=0;h=0;j=0}else{K=-1.0;i=L;return +K}while(1){if(v*(I*o-H*p)+w*(G*p-I*q)+(H*q-G*o)*x>0.0){u=c[4976+(m<<2)>>2]|0;M=c[L+48+(u<<2)>>2]|0;l=+g[M>>2];p=l-v;q=+g[M+4>>2];r=q-w;s=+g[M+8>>2];t=s-x;do if(p*p+r*r+t*t>0.0){o=-(v*p+w*r+x*t)/(p*p+r*r+t*t);if(o>=1.0){l=l*l+q*q+s*s;n=2;h=0;j=1065353216;break}if(!(o<=0.0)){j=(g[k>>2]=o,c[k>>2]|0);v=v+p*o;l=w+r*o;x=x+t*o;l=x*x+(v*v+l*l);n=3;h=(g[k>>2]=1.0-o,c[k>>2]|0);break}else{l=v*v+w*w+x*x;n=1;h=1065353216;j=0;break}}else l=-1.0;while(0);if(y<0.0|l>2]=(n&1|0?1<>2]=h;c[e+(u<<2)>>2]=j;g[e+(c[4976+(u<<2)>>2]<<2)>>2]=0.0}else l=y}else l=y;m=m+1|0;if((m|0)==3)break;M=c[L+48+(m<<2)>>2]|0;o=+g[L+(m<<4)+4>>2];p=+g[L+(m<<4)+8>>2];q=+g[L+(m<<4)>>2];v=+g[M>>2];w=+g[M+4>>2];x=+g[M+8>>2];y=l}if(!(l<0.0)){K=l;i=L;return +K}x=+O(+(I*I+(G*G+H*H)));y=(G*+g[a>>2]+H*+g[a+4>>2]+I*+g[a+8>>2])/(I*I+(G*G+H*H));c[f>>2]=7;v=+g[b>>2]-G*y;t=+g[b+4>>2]-H*y;w=+g[b+8>>2]-I*y;K=+O(+((t*(F-B)-v*(K-D))*(t*(F-B)-v*(K-D))+(((K-D)*w-t*(A-E))*((K-D)*w-t*(A-E))+(v*(A-E)-w*(F-B))*(v*(A-E)-w*(F-B)))))/x;g[e>>2]=K;A=+g[d>>2]-G*y;w=+g[d+4>>2]-H*y;F=+g[d+8>>2]-I*y;J=+O(+((w*(B-C)-A*(D-J))*(w*(B-C)-A*(D-J))+(((D-J)*F-w*(E-z))*((D-J)*F-w*(E-z))+(A*(E-z)-F*(B-C))*(A*(E-z)-F*(B-C)))))/x;g[e+4>>2]=J;g[e+8>>2]=1.0-(J+K);K=I*y*I*y+(G*y*G*y+H*y*H*y);i=L;return +K}function Pe(a){a=a|0;var b=0,d=0,e=0,f=0,h=0,j=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0;d=i;i=i+144|0;g[a+36>>2]=0.0;c[d+128>>2]=0;c[d+128+4>>2]=0;c[d+128+8>>2]=0;c[d+128+12>>2]=0;b=0;do{e=d+128+(b<<2)|0;g[e>>2]=1.0;A=c[a+28>>2]|0;I=c[A+4>>2]|0;c[d+80>>2]=I;F=c[A+20>>2]|0;c[d+80+4>>2]=F;C=c[A+36>>2]|0;c[d+80+8>>2]=C;g[d+80+12>>2]=0.0;H=c[A+8>>2]|0;c[d+80+16>>2]=H;E=c[A+24>>2]|0;c[d+80+20>>2]=E;B=c[A+40>>2]|0;c[d+80+24>>2]=B;g[d+80+28>>2]=0.0;G=c[A+12>>2]|0;c[d+80+32>>2]=G;D=c[A+28>>2]|0;c[d+80+36>>2]=D;z=c[A+44>>2]|0;c[d+80+40>>2]=z;g[d+80+44>>2]=0.0;f=c[a+32>>2]|0;y=c[f+4>>2]|0;c[d+32>>2]=y;v=c[f+20>>2]|0;c[d+32+4>>2]=v;s=c[f+36>>2]|0;c[d+32+8>>2]=s;g[d+32+12>>2]=0.0;x=c[f+8>>2]|0;c[d+32+16>>2]=x;u=c[f+24>>2]|0;c[d+32+20>>2]=u;r=c[f+40>>2]|0;c[d+32+24>>2]=r;g[d+32+28>>2]=0.0;w=c[f+12>>2]|0;c[d+32+32>>2]=w;t=c[f+28>>2]|0;c[d+32+36>>2]=t;h=c[f+44>>2]|0;c[d+32+40>>2]=h;g[d+32+44>>2]=0.0;p=+g[a+300>>2];m=p*(c[k>>2]=I,+g[k>>2]);j=+g[a+304>>2];m=m+j*(c[k>>2]=H,+g[k>>2]);l=+g[a+308>>2];m=m+l*(c[k>>2]=G,+g[k>>2]);q=p*(c[k>>2]=F,+g[k>>2]);q=q+j*(c[k>>2]=E,+g[k>>2]);q=q+l*(c[k>>2]=D,+g[k>>2]);p=p*(c[k>>2]=C,+g[k>>2]);j=p+j*(c[k>>2]=B,+g[k>>2]);p=+g[A+52>>2];o=+g[A+56>>2];n=+g[A+60>>2];n=j+l*(c[k>>2]=z,+g[k>>2])+n-n;g[d+16>>2]=m+p-p;g[d+16+4>>2]=q+o-o;g[d+16+8>>2]=n;g[d+16+12>>2]=0.0;n=+g[a+316>>2];o=n*(c[k>>2]=y,+g[k>>2]);q=+g[a+320>>2];o=o+q*(c[k>>2]=x,+g[k>>2]);p=+g[a+324>>2];o=o+p*(c[k>>2]=w,+g[k>>2]);m=n*(c[k>>2]=v,+g[k>>2]);m=m+q*(c[k>>2]=u,+g[k>>2]);m=m+p*(c[k>>2]=t,+g[k>>2]);n=n*(c[k>>2]=s,+g[k>>2]);q=n+q*(c[k>>2]=r,+g[k>>2]);n=+g[f+52>>2];l=+g[f+56>>2];j=+g[f+60>>2];j=q+p*(c[k>>2]=h,+g[k>>2])+j-j;g[d>>2]=o+n-n;g[d+4>>2]=m+l-l;g[d+8>>2]=j;g[d+12>>2]=0.0;h=c[a+28>>2]|0;f=c[a+32>>2]|0;Rg(a+48+(b*84|0)|0,d+80|0,d+32|0,d+16|0,d,d+128|0,h+396|0,+g[h+344>>2],f+396|0,+g[f+344>>2]);g[e>>2]=0.0;b=b+1|0}while((b|0)!=3);i=d;return}function Qe(a,b,d,e,f,h){a=a|0;b=b|0;d=+d;e=+e;f=+f;h=h|0;var i=0,j=0,k=0.0,l=0.0,m=0,n=0.0,o=0,p=0,q=0.0,r=0.0,s=0.0,t=0.0,u=0,v=0.0,w=0.0,x=0,y=0.0,z=0.0,A=0,B=0,C=0.0;a:while(1){B=c[h+12>>2]|0;if((b|0)>0){j=0;i=-1;do{do if(c[B+(j<<2)>>2]|0){if((i|0)!=-1?!(+g[a+(j<<4)>>2]*d+ +g[a+(j<<4)+4>>2]*e+ +g[a+(j<<4)+8>>2]*f>+g[a+(i<<4)>>2]*d+ +g[a+(i<<4)+4>>2]*e+ +g[a+(i<<4)+8>>2]*f):0)break;i=j}while(0);j=j+1|0}while((j|0)!=(b|0))}else i=-1;A=B+(i<<2)|0;if((c[A>>2]|0)==3){j=37;break}k=+O(+((e-f*0.0)*(e-f*0.0)+(f*0.0-d)*(f*0.0-d)+(d*0.0-e*0.0)*(d*0.0-e*0.0)));l=+O(+((d-e*0.0)*(d-e*0.0)+((e*0.0-f)*(e*0.0-f)+(f*0.0-d*0.0)*(f*0.0-d*0.0))));if(k>l){y=(e-f*0.0)*(1.0/k);z=(d*0.0-e*0.0)*(1.0/k);w=(f*0.0-d)*(1.0/k)}else{y=(e*0.0-f)*(1.0/l);z=(d-e*0.0)*(1.0/l);w=(f*0.0-d*0.0)*(1.0/l)}r=w*f-z*e;s=z*d-y*f;t=y*e-w*d;u=(i|0)==-1;j=-1;x=0;while(1){v=+(x|0);q=+R(+(v*.01745329238474369));n=+Q(+(v*.01745329238474369));k=(y*q+r*n)*.02500000037252903+d;l=(w*q+s*n)*.02500000037252903+e;n=(z*q+t*n)*.02500000037252903+f;if((b|0)>0){o=0;m=-1;do{do if(c[B+(o<<2)>>2]|0){if((m|0)!=-1?!(k*+g[a+(o<<4)>>2]+l*+g[a+(o<<4)+4>>2]+n*+g[a+(o<<4)+8>>2]>k*+g[a+(m<<4)>>2]+l*+g[a+(m<<4)+4>>2]+n*+g[a+(m<<4)+8>>2]):0)break;m=o}while(0);o=o+1|0}while((o|0)!=(b|0))}else m=-1;if((j|0)==(i|0)&(m|0)==(i|0)){j=20;break a}b:do if(!((j|0)==-1|(j|0)==(m|0))?v+-40.0<=v:0){if((b|0)>0)q=v+-40.0;else{k=v+-40.0;while(1){if((j|0)==(i|0)&u){i=-1;j=33;break a}k=k+5.0;if(!(k<=v))break b;else j=-1}}while(1){n=q*.01745329238474369;C=+R(+n);n=+Q(+n);k=(y*C+r*n)*.02500000037252903+d;l=(w*C+s*n)*.02500000037252903+e;n=(z*C+t*n)*.02500000037252903+f;p=0;o=-1;do{do if(c[B+(p<<2)>>2]|0){if((o|0)!=-1?!(k*+g[a+(p<<4)>>2]+l*+g[a+(p<<4)+4>>2]+n*+g[a+(p<<4)+8>>2]>k*+g[a+(o<<4)>>2]+l*+g[a+(o<<4)+4>>2]+n*+g[a+(o<<4)+8>>2]):0)break;o=p}while(0);p=p+1|0}while((p|0)!=(b|0));if((j|0)==(i|0)&(o|0)==(i|0)){j=33;break a}q=q+5.0;if(!(q<=v))break;else j=o}}while(0);x=x+45|0;if((x|0)>360)break;else j=m}c[A>>2]=0}if((j|0)==20){c[A>>2]=3;B=i;return B|0}else if((j|0)==33){c[B+(i<<2)>>2]=3;B=i;return B|0}else if((j|0)==37)return i|0;return 0}function Re(a,b,d,e,f,h,j,k){a=a|0;b=b|0;d=d|0;e=+e;f=+f;h=+h;j=j|0;k=k|0;var l=0,m=0,n=0,o=0,p=0.0,q=0,r=0.0,s=0.0,t=0.0,u=0.0,v=0,w=0.0,x=0,y=0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0.0,H=0.0,I=0.0,J=0.0,K=0.0,L=0.0,M=0.0,N=0.0,P=0.0,Q=0.0,R=0.0,S=0.0,T=0.0,U=0.0,V=0;V=i;i=i+32|0;G=+g[d>>2];I=+g[d+4>>2];T=+g[d+8>>2];t=+g[j>>2];u=+g[j+4>>2];w=+g[j+8>>2];p=+g[k>>2];r=+g[k+4>>2];s=+g[k+8>>2];H=1.0/+O(+((e-G)*(e-G)+(f-I)*(f-I)+(h-T)*(h-T)));J=(e-G)*H==0.0?999999984306749440.0:1.0/((e-G)*H);K=(f-I)*H==0.0?999999984306749440.0:1.0/((f-I)*H);L=(h-T)*H==0.0?999999984306749440.0:1.0/((h-T)*H);M=(G>e?e:G)+t;N=(I>f?f:I)+u;P=(T>h?h:T)+w;Q=(G>2]|0;a:do if((m|0)>0){x=0;y=c[a+96>>2]|0;l=0;while(1){l=l+1|0;c[V>>2]=c[y>>2];c[V+4>>2]=c[y+4>>2];c[V+8>>2]=c[y+8>>2];c[V+12>>2]=c[y+12>>2];v=y+16|0;c[V+16>>2]=c[v>>2];c[V+16+4>>2]=c[v+4>>2];c[V+16+8>>2]=c[v+8>>2];c[V+16+12>>2]=c[v+12>>2];g[V>>2]=+g[V>>2]-p;g[V+4>>2]=+g[V+4>>2]-r;g[V+8>>2]=+g[V+8>>2]-s;g[V+16>>2]=+g[V+16>>2]-t;g[V+20>>2]=+g[V+20>>2]-u;g[V+24>>2]=+g[V+24>>2]-w;if(!(M>+g[v>>2])?!(Q<+g[y>>2]):0)n=1;else n=0;if(!(!(P>+g[y+24>>2])?!(S<+g[y+8>>2]):0))n=0;if(((!(N>+g[y+20>>2])?!(R<+g[y+4>>2]|n^1):0)?(A=+g[d>>2],z=J*(+g[V+((J<0.0&1)<<4)>>2]-A),A=J*(+g[V+((J<0.0^1)<<4)>>2]-A),C=+g[d+4>>2],B=K*(+g[V+((K<0.0&1)<<4)+4>>2]-C),C=K*(+g[V+((K<0.0^1)<<4)+4>>2]-C),!(B>A|z>C)):0)?(D=B>z?B:z,U=C>2],E=L*(+g[V+((L<0.0&1)<<4)+8>>2]-F),F=L*(+g[V+((L<0.0^1)<<4)+8>>2]-F),!(E>U|D>F)):0){n=(F0.0?(E>D?E:D)<(h-T)*(h-T)*H+((e-G)*(e-G)*H+(f-I)*(f-I)*H):0;o=c[y+32>>2]|0;if(n&(o|0)==-1){ic[c[(c[b>>2]|0)+8>>2]&127](b,c[y+36>>2]|0,c[y+40>>2]|0);m=c[a+56>>2]|0;v=17}else{q=(o|0)==-1;v=16}}else{o=c[y+32>>2]|0;n=0;q=(o|0)==-1;v=16}if((v|0)==16){v=0;if(q|n)v=17;else{q=o+x|0;n=y+(o<<6)|0}}if((v|0)==17){q=x+1|0;n=y+64|0}if((q|0)>=(m|0))break a;p=+g[k>>2];r=+g[k+4>>2];s=+g[k+8>>2];t=+g[j>>2];u=+g[j+4>>2];w=+g[j+8>>2];x=q;y=n}}else l=0;while(0);if((c[6167]|0)>=(l|0)){i=V;return}c[6167]=l;i=V;return}function Se(a,b){a=a|0;b=b|0;var d=0,e=0,f=0,h=0,i=0,j=0,k=0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0;if(!(c[a+204>>2]&2)){c[a+68>>2]=c[b>>2];c[a+68+4>>2]=c[b+4>>2];c[a+68+8>>2]=c[b+8>>2];c[a+68+12>>2]=c[b+12>>2];c[a+84>>2]=c[b+16>>2];c[a+84+4>>2]=c[b+16+4>>2];c[a+84+8>>2]=c[b+16+8>>2];c[a+84+12>>2]=c[b+16+12>>2];c[a+100>>2]=c[b+32>>2];c[a+100+4>>2]=c[b+32+4>>2];c[a+100+8>>2]=c[b+32+8>>2];c[a+100+12>>2]=c[b+32+12>>2];c[a+116>>2]=c[b+48>>2];c[a+116+4>>2]=c[b+48+4>>2];c[a+116+8>>2]=c[b+48+8>>2];c[a+116+12>>2]=c[b+48+12>>2];d=a+20|0;e=b+16|0;f=a+36|0;h=b+32|0;i=a+52|0;j=b+48|0;k=a+4|0}else{c[a+68>>2]=c[a+4>>2];c[a+68+4>>2]=c[a+4+4>>2];c[a+68+8>>2]=c[a+4+8>>2];c[a+68+12>>2]=c[a+4+12>>2];c[a+84>>2]=c[a+20>>2];c[a+84+4>>2]=c[a+20+4>>2];c[a+84+8>>2]=c[a+20+8>>2];c[a+84+12>>2]=c[a+20+12>>2];c[a+100>>2]=c[a+36>>2];c[a+100+4>>2]=c[a+36+4>>2];c[a+100+8>>2]=c[a+36+8>>2];c[a+100+12>>2]=c[a+36+12>>2];c[a+116>>2]=c[a+52>>2];c[a+116+4>>2]=c[a+52+4>>2];c[a+116+8>>2]=c[a+52+8>>2];c[a+116+12>>2]=c[a+52+12>>2];d=a+20|0;e=b+16|0;f=a+36|0;h=b+32|0;i=a+52|0;j=b+48|0;k=a+4|0}c[a+132>>2]=c[a+312>>2];c[a+132+4>>2]=c[a+312+4>>2];c[a+132+8>>2]=c[a+312+8>>2];c[a+132+12>>2]=c[a+312+12>>2];c[a+148>>2]=c[a+328>>2];c[a+148+4>>2]=c[a+328+4>>2];c[a+148+8>>2]=c[a+328+8>>2];c[a+148+12>>2]=c[a+328+12>>2];c[k>>2]=c[b>>2];c[k+4>>2]=c[b+4>>2];c[k+8>>2]=c[b+8>>2];c[k+12>>2]=c[b+12>>2];c[d>>2]=c[e>>2];c[d+4>>2]=c[e+4>>2];c[d+8>>2]=c[e+8>>2];c[d+12>>2]=c[e+12>>2];c[f>>2]=c[h>>2];c[f+4>>2]=c[h+4>>2];c[f+8>>2]=c[h+8>>2];c[f+12>>2]=c[h+12>>2];c[i>>2]=c[j>>2];c[i+4>>2]=c[j+4>>2];c[i+8>>2]=c[j+8>>2];c[i+12>>2]=c[j+12>>2];w=+g[a+4>>2];q=+g[a+396>>2];v=+g[a+8>>2];o=+g[a+400>>2];u=+g[a+12>>2];m=+g[a+404>>2];t=+g[a+20>>2];s=+g[a+24>>2];r=+g[a+28>>2];p=+g[a+36>>2];n=+g[a+40>>2];l=+g[a+44>>2];g[a+264>>2]=w*w*q+v*v*o+u*u*m;g[a+268>>2]=w*q*t+v*o*s+u*m*r;g[a+272>>2]=w*q*p+v*o*n+u*m*l;g[a+276>>2]=0.0;g[a+280>>2]=w*q*t+v*o*s+u*m*r;g[a+284>>2]=t*q*t+s*o*s+r*m*r;g[a+288>>2]=q*t*p+o*s*n+m*r*l;g[a+292>>2]=0.0;g[a+296>>2]=w*q*p+v*o*n+u*m*l;g[a+300>>2]=t*q*p+s*o*n+r*m*l;g[a+304>>2]=p*q*p+n*o*n+l*m*l;g[a+308>>2]=0.0;return}function Te(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0,h=0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0;h=i;i=i+160|0;e=c[a+4>>2]|0;f=c[e+12>>2]|0;D=+g[f>>2];C=+g[f+4>>2];B=+g[f+8>>2];A=+g[f+16>>2];z=+g[f+20>>2];y=+g[f+24>>2];r=+g[f+32>>2];p=+g[f+36>>2];n=+g[f+40>>2];e=c[(c[e+4>>2]|0)+24>>2]|0;x=+g[e+(d*80|0)>>2];w=+g[e+(d*80|0)+16>>2];v=+g[e+(d*80|0)+32>>2];u=+g[e+(d*80|0)+4>>2];t=+g[e+(d*80|0)+20>>2];s=+g[e+(d*80|0)+36>>2];q=+g[e+(d*80|0)+8>>2];o=+g[e+(d*80|0)+24>>2];m=+g[e+(d*80|0)+40>>2];F=+g[e+(d*80|0)+48>>2];E=+g[e+(d*80|0)+52>>2];j=+g[e+(d*80|0)+56>>2];l=+g[f+48>>2]+(D*F+C*E+B*j);k=+g[f+52>>2]+(A*F+z*E+y*j);j=+g[f+56>>2]+(r*F+p*E+n*j);g[h+88>>2]=D*x+C*w+B*v;g[h+88+4>>2]=D*u+C*t+B*s;g[h+88+8>>2]=D*q+C*o+B*m;g[h+88+12>>2]=0.0;g[h+88+16>>2]=A*x+z*w+y*v;g[h+88+20>>2]=A*u+z*t+y*s;g[h+88+24>>2]=A*q+z*o+y*m;g[h+88+28>>2]=0.0;g[h+88+32>>2]=r*x+p*w+n*v;g[h+88+36>>2]=r*u+p*t+n*s;g[h+88+40>>2]=r*q+p*o+n*m;g[h+88+44>>2]=0.0;g[h+88+48>>2]=l;g[h+88+52>>2]=k;g[h+88+56>>2]=j;g[h+88+60>>2]=0.0;mc[c[(c[b>>2]|0)+8>>2]&127](b,h+88|0,h+72|0,h+56|0);f=c[a+8>>2]|0;e=c[f+4>>2]|0;mc[c[(c[e>>2]|0)+8>>2]&127](e,c[f+12>>2]|0,h+40|0,h+24|0);if(!(+g[h+72>>2]>+g[h+24>>2])?!(+g[h+56>>2]<+g[h+40>>2]):0)e=1;else e=0;if(!(!(+g[h+72+8>>2]>+g[h+24+8>>2])?!(+g[h+56+8>>2]<+g[h+40+8>>2]):0))e=0;if(+g[h+72+4>>2]>+g[h+24+4>>2]){i=h;return}if(+g[h+56+4>>2]<+g[h+40+4>>2]|e^1){i=h;return}e=c[a+4>>2]|0;f=c[e+8>>2]|0;c[h>>2]=e;c[h+4>>2]=b;c[h+8>>2]=f;c[h+12>>2]=h+88;c[h+16>>2]=-1;c[h+20>>2]=d;if(!(c[(c[a+24>>2]|0)+(d<<2)>>2]|0)){e=c[a+12>>2]|0;e=Ib[c[(c[e>>2]|0)+8>>2]&31](e,h,c[a+8>>2]|0,c[a+28>>2]|0)|0;c[(c[a+24>>2]|0)+(d<<2)>>2]=e;e=c[a+4>>2]|0}f=c[a+20>>2]|0;b=c[f+8>>2]|0;if((c[b+8>>2]|0)==(c[e+8>>2]|0)){c[f+8>>2]=h;ic[c[(c[f>>2]|0)+8>>2]&127](f,-1,d)}else{b=c[f+12>>2]|0;c[f+12>>2]=h;ic[c[(c[f>>2]|0)+12>>2]&127](f,-1,d)}e=c[(c[a+24>>2]|0)+(d<<2)>>2]|0;yb[c[(c[e>>2]|0)+8>>2]&31](e,h,c[a+8>>2]|0,c[a+16>>2]|0,c[a+20>>2]|0);e=c[a+20>>2]|0;if((c[(c[e+8>>2]|0)+8>>2]|0)==(c[(c[a+4>>2]|0)+8>>2]|0))c[e+8>>2]=b;else c[e+12>>2]=b;i=h;return}function Ue(){if(a[22576]|0)return;if(!(Wa(22576)|0))return;c[6168]=0;c[6169]=-2147483648;c[6170]=-1082130432;g[6171]=0.0;c[6172]=1060716128;c[6173]=-1090087446;c[6174]=-1092290076;g[6175]=0.0;c[6176]=-1098022214;c[6177]=-1084636126;c[6178]=-1092290076;g[6179]=0.0;c[6180]=-1083901670;c[6181]=-2147483648;c[6182]=-1092290177;g[6183]=0.0;c[6184]=-1098022214;c[6185]=1062847522;c[6186]=-1092290043;g[6187]=0.0;c[6188]=1060716128;c[6189]=1057396202;c[6190]=-1092290076;g[6191]=0.0;c[6192]=1049461434;c[6193]=-1084636126;c[6194]=1055193605;g[6195]=0.0;c[6196]=-1086767520;c[6197]=-1090087446;c[6198]=1055193572;g[6199]=0.0;c[6200]=-1086767520;c[6201]=1057396202;c[6202]=1055193572;g[6203]=0.0;c[6204]=1049461434;c[6205]=1062847522;c[6206]=1055193572;g[6207]=0.0;c[6208]=1063581978;c[6209]=0;c[6210]=1055193471;g[6211]=0.0;c[6212]=-2147483648;c[6213]=0;c[6214]=1065353216;g[6215]=0.0;c[6216]=1054458864;c[6217]=-1096927567;c[6218]=-1084636042;g[6219]=0.0;c[6220]=-1104782626;c[6221]=-1090519208;c[6222]=-1084636042;g[6223]=0.0;c[6224]=1049007812;c[6225]=-1085334679;c[6226]=-1090087228;g[6227]=0.0;c[6228]=1054458864;c[6229]=1050556081;c[6230]=-1084636042;g[6231]=0.0;c[6232]=1062847505;c[6233]=-2147483648;c[6234]=-1090087262;g[6235]=0.0;c[6236]=-1090087362;c[6237]=-2147483648;c[6238]=-1084636076;g[6239]=0.0;c[6240]=-1087361736;c[6241]=-1090519141;c[6242]=-1090087262;g[6243]=0.0;c[6244]=-1104782626;c[6245]=1056964440;c[6246]=-1084636042;g[6247]=0.0;c[6248]=-1087361736;c[6249]=1056964507;c[6250]=-1090087262;g[6251]=0.0;c[6252]=1049007812;c[6253]=1062148969;c[6254]=-1090087228;g[6255]=0.0;c[6256]=1064532105;c[6257]=1050556148;c[6258]=0;g[6259]=0.0;c[6260]=1064532105;c[6261]=-1096927500;c[6262]=0;g[6263]=0.0;c[6264]=1058437413;c[6265]=-1085334595;c[6266]=0;g[6267]=0.0;c[6268]=0;c[6269]=-1082130432;c[6270]=0;g[6271]=0.0;c[6272]=-1089046235;c[6273]=-1085334595;c[6274]=0;g[6275]=0.0;c[6276]=-1082951543;c[6277]=-1096927500;c[6278]=-2147483648;g[6279]=0.0;c[6280]=-1082951543;c[6281]=1050556148;c[6282]=-2147483648;g[6283]=0.0;c[6284]=-1089046235;c[6285]=1062149053;c[6286]=-2147483648;g[6287]=0.0;c[6288]=-2147483648;c[6289]=1065353216;c[6290]=-2147483648;g[6291]=0.0;c[6292]=1058437413;c[6293]=1062149053;c[6294]=-2147483648;g[6295]=0.0;c[6296]=1060121912;c[6297]=-1090519141;c[6298]=1057396386;g[6299]=0.0;c[6300]=-1098475836;c[6301]=-1085334679;c[6302]=1057396420;g[6303]=0.0;c[6304]=-1084636143;c[6305]=0;c[6306]=1057396386;g[6307]=0.0;c[6308]=-1098475836;c[6309]=1062148969;c[6310]=1057396420;g[6311]=0.0;c[6312]=1060121912;c[6313]=1056964507;c[6314]=1057396386;g[6315]=0.0;c[6316]=1057396286;c[6317]=0;c[6318]=1062847572;g[6319]=0.0;c[6320]=1042701022;c[6321]=-1090519208;c[6322]=1062847606;g[6323]=0.0;c[6324]=-1093024784;c[6325]=-1096927567;c[6326]=1062847606;g[6327]=0.0;c[6328]=-1093024784;c[6329]=1050556081;c[6330]=1062847606;g[6331]=0.0;c[6332]=1042701022;c[6333]=1056964440;c[6334]=1062847606;g[6335]=0.0;_a(22576);return}function Ve(b,d,e,f,h){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;var i=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0;u=a[h+16>>0]&-16;a[h+16>>0]=u;w=+g[e>>2];x=+g[d>>2];y=+g[e+4>>2];z=+g[d+4>>2];q=+g[e+8>>2];r=+g[d+8>>2];s=+g[f>>2];t=+g[f+4>>2];v=+g[f+8>>2];m=+g[b>>2];n=+g[b+4>>2];i=+g[b+8>>2];o=(w-x)*(m-x)+(y-z)*(n-z)+(q-r)*(i-r);p=(s-x)*(m-x)+(t-z)*(n-z)+(v-r)*(i-r);if(o<=0.0&p<=0.0){c[h>>2]=c[d>>2];c[h+4>>2]=c[d+4>>2];c[h+8>>2]=c[d+8>>2];c[h+12>>2]=c[d+12>>2];a[h+16>>0]=u|1;g[h+20>>2]=1.0;g[h+24>>2]=0.0;g[h+28>>2]=0.0;g[h+32>>2]=0.0;return}k=(w-x)*(m-w)+(y-z)*(n-y)+(q-r)*(i-q);l=(s-x)*(m-w)+(t-z)*(n-y)+(v-r)*(i-q);if(!(!(k>=0.0)|!(l<=k))){c[h>>2]=c[e>>2];c[h+4>>2]=c[e+4>>2];c[h+8>>2]=c[e+8>>2];c[h+12>>2]=c[e+12>>2];a[h+16>>0]=u|2;g[h+20>>2]=0.0;g[h+24>>2]=1.0;g[h+28>>2]=0.0;g[h+32>>2]=0.0;return}if(k<=0.0&(o>=0.0?o*l-k*p<=0.0:0)){g[h>>2]=x+(w-x)*(o/(o-k));g[h+4>>2]=z+(y-z)*(o/(o-k));g[h+8>>2]=r+(q-r)*(o/(o-k));g[h+12>>2]=0.0;a[h+16>>0]=u|3;g[h+20>>2]=1.0-o/(o-k);g[h+24>>2]=o/(o-k);g[h+28>>2]=0.0;g[h+32>>2]=0.0;return}j=(w-x)*(m-s)+(y-z)*(n-t)+(q-r)*(i-v);i=(s-x)*(m-s)+(t-z)*(n-t)+(v-r)*(i-v);if(!(!(i>=0.0)|!(j<=i))){c[h>>2]=c[f>>2];c[h+4>>2]=c[f+4>>2];c[h+8>>2]=c[f+8>>2];c[h+12>>2]=c[f+12>>2];a[h+16>>0]=u|4;g[h+20>>2]=0.0;g[h+24>>2]=0.0;g[h+28>>2]=1.0;g[h+32>>2]=0.0;return}if(i<=0.0&(p>=0.0?j*p-o*i<=0.0:0)){g[h>>2]=x+(s-x)*(p/(p-i));g[h+4>>2]=z+(t-z)*(p/(p-i));g[h+8>>2]=r+(v-r)*(p/(p-i));g[h+12>>2]=0.0;a[h+16>>0]=u|5;g[h+20>>2]=1.0-p/(p-i);g[h+24>>2]=0.0;g[h+28>>2]=p/(p-i);g[h+32>>2]=0.0;return}if((k*i-j*l<=0.0?l-k>=0.0:0)?j-i>=0.0:0){z=(l-k)/(l-k+(j-i));g[h>>2]=w+(s-w)*z;g[h+4>>2]=y+(t-y)*z;g[h+8>>2]=q+(v-q)*z;g[h+12>>2]=0.0;a[h+16>>0]=u|6;g[h+20>>2]=0.0;g[h+24>>2]=1.0-z;g[h+28>>2]=z;g[h+32>>2]=0.0;return}m=1.0/(o*l-k*p+(k*i-j*l+(j*p-o*i)));n=(j*p-o*i)*m;p=(o*l-k*p)*m;g[h>>2]=(s-x)*p+((w-x)*n+x);g[h+4>>2]=(t-z)*p+((y-z)*n+z);g[h+8>>2]=(v-r)*p+((q-r)*n+r);g[h+12>>2]=0.0;a[h+16>>0]=u|7;g[h+20>>2]=1.0-n-p;g[h+24>>2]=n;g[h+28>>2]=p;g[h+32>>2]=0.0;return}function We(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;if(!((a|0)!=0&(b|0)!=0))return;c[6435]=(c[6435]|0)+1;e=yc(1043)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}c[e>>2]=a;c[e+4>>2]=b;n=1;b=128;h=128;i=e;f=124;while(1){e=n+-1|0;l=c[i+(e<<3)>>2]|0;m=c[i+(e<<3)+4>>2]|0;if((e|0)>(f|0)){f=h<<1;do if((h|0)<(f|0)&(b|0)<(f|0)){if(h){c[6435]=(c[6435]|0)+1;a=yc((h<<4|3)+16|0)|0;if(!a)a=0;else{c[(a+4+15&-16)+-4>>2]=a;a=a+4+15&-16}if((h|0)>0){b=0;do{p=i+(b<<3)|0;j=c[p+4>>2]|0;k=a+(b<<3)|0;c[k>>2]=c[p>>2];c[k+4>>2]=j;b=b+1|0}while((b|0)!=(h|0))}else o=12}else{a=0;o=12}if((o|0)==12){o=0;if(!i){b=f;break}}c[6436]=(c[6436]|0)+1;hd(c[i+-4>>2]|0);b=f}else a=i;while(0);k=f;j=f+-4|0}else{k=h;a=i;j=f}do if((l|0)==(m|0)){if(c[l+40>>2]|0){p=c[l+36>>2]|0;c[a+(e<<3)>>2]=p;c[a+(e<<3)+4>>2]=p;e=n+1|0;p=c[l+40>>2]|0;c[a+(n<<3)>>2]=p;c[a+(n<<3)+4>>2]=p;p=c[l+40>>2]|0;c[a+(e<<3)>>2]=c[l+36>>2];c[a+(e<<3)+4>>2]=p;e=n+2|0}}else if(((((+g[l>>2]<=+g[m+16>>2]?+g[l+16>>2]>=+g[m>>2]:0)?+g[l+4>>2]<=+g[m+20>>2]:0)?+g[l+20>>2]>=+g[m+4>>2]:0)?+g[l+8>>2]<=+g[m+24>>2]:0)?+g[l+24>>2]>=+g[m+8>>2]:0){f=(c[m+40>>2]|0)!=0;if(!(c[l+40>>2]|0))if(f){p=c[m+36>>2]|0;c[a+(e<<3)>>2]=l;c[a+(e<<3)+4>>2]=p;e=c[m+40>>2]|0;c[a+(n<<3)>>2]=l;c[a+(n<<3)+4>>2]=e;e=n+1|0;break}else{ic[c[(c[d>>2]|0)+8>>2]&127](d,l,m);break}else{h=a+(e<<3)|0;i=c[l+36>>2]|0;if(f){p=c[m+36>>2]|0;c[h>>2]=i;c[a+(e<<3)+4>>2]=p;p=n+1|0;e=c[m+36>>2]|0;c[a+(n<<3)>>2]=c[l+40>>2];c[a+(n<<3)+4>>2]=e;e=n+2|0;i=c[m+40>>2]|0;c[a+(p<<3)>>2]=c[l+36>>2];c[a+(p<<3)+4>>2]=i;p=c[m+40>>2]|0;c[a+(e<<3)>>2]=c[l+40>>2];c[a+(e<<3)+4>>2]=p;e=n+3|0;break}else{c[h>>2]=i;c[a+(e<<3)+4>>2]=m;c[a+(n<<3)>>2]=c[l+40>>2];c[a+(n<<3)+4>>2]=m;e=n+1|0;break}}}while(0);if(!e)break;else{n=e;h=k;i=a;f=j}}if(!a)return;c[6436]=(c[6436]|0)+1;hd(c[a+-4>>2]|0);return}function Xe(a,b){a=a|0;b=b|0;var d=0,e=0,f=0,h=0,i=0.0,j=0.0,k=0.0,l=0,m=0.0,n=0,o=0;n=c[a+192>>2]|0;m=+Sb[c[(c[n>>2]|0)+48>>2]&15](n);n=c[a+712>>2]|0;if((n|0)>0){o=0;do{l=c[a+720>>2]|0;d=l+(o*104|0)+8|0;i=+g[b>>2]*+g[d>>2];g[d>>2]=i;d=l+(o*104|0)+12|0;j=+g[b+4>>2]*+g[d>>2];g[d>>2]=j;d=l+(o*104|0)+16|0;k=+g[b+8>>2]*+g[d>>2];g[d>>2]=k;d=l+(o*104|0)+24|0;g[d>>2]=+g[b>>2]*+g[d>>2];d=l+(o*104|0)+28|0;g[d>>2]=+g[b+4>>2]*+g[d>>2];d=l+(o*104|0)+32|0;g[d>>2]=+g[b+8>>2]*+g[d>>2];l=c[l+(o*104|0)+96>>2]|0;d=hh(a+928|0,l)|0;a:do if(d){f=c[a+936>>2]|0;if((f|0)<=-1){d=c[a+928>>2]|0;break}if((f|0)>0){h=0;while(1){e=c[d+32>>2]|0;h=h+1|0;if(!e)break a;if((h|0)>=(f|0)){d=e;break}else d=e}}}else d=0;while(0);g[l>>2]=i-m;g[l+4>>2]=j-m;g[l+8>>2]=k-m;g[l+12>>2]=0.0;g[l+16>>2]=m+i;g[l+20>>2]=m+j;g[l+24>>2]=m+k;g[l+28>>2]=0.0;lf(a+928|0,d,l);o=o+1|0}while((o|0)!=(n|0))}Bg(a);d=c[a+928>>2]|0;if(d){o=c[a+192>>2]|0;j=+Sb[c[(c[o>>2]|0)+48>>2]&15](o);m=+g[d+4>>2]-j;k=+g[d+8>>2]-j;g[a+892>>2]=+g[d>>2]-j;g[a+896>>2]=m;g[a+900>>2]=k;g[a+904>>2]=0.0;k=j+ +g[d+20>>2];m=j+ +g[d+24>>2];g[a+908>>2]=j+ +g[d+16>>2];g[a+912>>2]=k;g[a+916>>2]=m;g[a+920>>2]=0.0;d=c[a+188>>2]|0;if(d|0){o=c[a+684>>2]|0;b=c[o+32>>2]|0;yb[c[(c[b>>2]|0)+16>>2]&31](b,d,a+892|0,a+908|0,c[o+36>>2]|0)}}else{c[a+892>>2]=0;c[a+892+4>>2]=0;c[a+892+8>>2]=0;c[a+892+12>>2]=0;c[a+892+16>>2]=0;c[a+892+20>>2]=0;c[a+892+24>>2]=0;c[a+892+28>>2]=0}f=c[a+732>>2]|0;if((f|0)<=0){eg(a);return}d=c[a+740>>2]|0;e=0;do{b=c[d+(e*52|0)+8>>2]|0;o=c[d+(e*52|0)+12>>2]|0;j=+g[b+8>>2]-+g[o+8>>2];k=+g[b+12>>2]-+g[o+12>>2];m=+g[b+16>>2]-+g[o+16>>2];m=+O(+(j*j+k*k+m*m));g[d+(e*52|0)+16>>2]=m;g[d+(e*52|0)+28>>2]=m*m;e=e+1|0}while((e|0)!=(f|0));d=c[a+740>>2]|0;e=0;do{g[d+(e*52|0)+24>>2]=(+g[(c[d+(e*52|0)+8>>2]|0)+88>>2]+ +g[(c[d+(e*52|0)+12>>2]|0)+88>>2])/+g[(c[d+(e*52|0)+4>>2]|0)+4>>2];e=e+1|0}while((e|0)!=(f|0));eg(a);return}function Ye(b,d,e,f){b=b|0;d=d|0;e=e|0;f=+f;var h=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0,q=0.0,r=0.0,s=0.0,t=0.0,u=0,v=0,w=0,x=0.0,y=0,z=0;w=i;i=i+192|0;u=c[(c[b+4>>2]|0)+740>>2]|0;v=c[(c[b+8>>2]|0)+8>>2]|0;o=+g[e>>2];r=+g[d>>2]*f+o;h=+g[e+4>>2];s=+g[d+4>>2]*f+h;j=+g[e+8>>2];t=+g[d+8>>2]*f+j;p=c[(c[b+12>>2]|0)+8>>2]|0;q=+g[p+52>>2];if((u|0)!=(v|0)){m=s-+g[p+56>>2];l=t-+g[p+60>>2];x=o-+g[v+52>>2];o=h-+g[v+56>>2];h=j-+g[v+60>>2];j=(r-q)*+g[p+4>>2]+m*+g[p+20>>2]+l*+g[p+36>>2];k=(r-q)*+g[p+8>>2]+m*+g[p+24>>2]+l*+g[p+40>>2];l=(r-q)*+g[p+12>>2]+m*+g[p+28>>2]+l*+g[p+44>>2];m=x*+g[v+4>>2]+o*+g[v+20>>2]+h*+g[v+36>>2];n=x*+g[v+8>>2]+o*+g[v+24>>2]+h*+g[v+40>>2];h=x*+g[v+12>>2]+o*+g[v+28>>2]+h*+g[v+44>>2]}else{n=r-+g[u+52>>2];m=s-+g[u+56>>2];l=t-+g[u+60>>2];x=h-+g[p+56>>2];h=j-+g[p+60>>2];j=n*+g[u+4>>2]+m*+g[u+20>>2]+l*+g[u+36>>2];k=n*+g[u+8>>2]+m*+g[u+24>>2]+l*+g[u+40>>2];l=n*+g[u+12>>2]+m*+g[u+28>>2]+l*+g[u+44>>2];m=(o-q)*+g[p+4>>2]+x*+g[p+20>>2]+h*+g[p+36>>2];n=(o-q)*+g[p+8>>2]+x*+g[p+24>>2]+h*+g[p+40>>2];h=(o-q)*+g[p+12>>2]+x*+g[p+28>>2]+h*+g[p+44>>2]}g[w>>2]=j;g[w+4>>2]=k;g[w+8>>2]=l;g[w+12>>2]=0.0;g[w+16>>2]=m;g[w+20>>2]=n;g[w+24>>2]=h;g[w+28>>2]=0.0;c[w+64>>2]=c[d>>2];c[w+64+4>>2]=c[d+4>>2];c[w+64+8>>2]=c[d+8>>2];c[w+64+12>>2]=c[d+12>>2];g[w+80>>2]=f;g[w+84>>2]=0.0;g[w+88>>2]=0.0;g[w+92>>2]=0.0;c[w+112>>2]=0;a[w+116>>0]=0;c[w+120>>2]=0;c[w+120+4>>2]=0;c[w+120+8>>2]=0;c[w+120+12>>2]=0;c[w+120+16>>2]=0;c[w+120+20>>2]=0;c[w+120+24>>2]=0;c[w+120+28>>2]=0;g[w+48>>2]=r;g[w+52>>2]=s;g[w+56>>2]=t;g[w+60>>2]=0.0;c[w+32>>2]=c[e>>2];c[w+32+4>>2]=c[e+4>>2];c[w+32+8>>2]=c[e+8>>2];c[w+32+12>>2]=c[e+12>>2];d=c[b+20>>2]|0;p=c[b+16>>2]|0;e=c[b+28>>2]|0;z=c[b+24>>2]|0;y=(u|0)!=(v|0)?d:p;d=(u|0)!=(v|0)?p:d;p=(u|0)!=(v|0)?e:z;e=(u|0)!=(v|0)?z:e;c[w+96>>2]=y;c[w+100>>2]=d;c[w+104>>2]=p;c[w+108>>2]=e;z=c[b+32>>2]|0;+Kb[c[(c[z>>2]|0)+12>>2]&1](z,w,c[((u|0)!=(v|0)?b+12|0:b+8|0)>>2]|0,y,p,c[((u|0)!=(v|0)?b+8|0:b+12|0)>>2]|0,d,e);i=w;return}function Ze(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;var h=0;h=i;i=i+48|0;c[b+8>>2]=0;g[b+12>>2]=0.0;c[b>>2]=6924;c[b+48>>2]=d;c[b+4>>2]=21;if(Eb[c[(c[d>>2]|0)+40>>2]&127](d)|0)ic[c[(c[d>>2]|0)+48>>2]&127](d,b+16|0,b+32|0);else{c[h+32>>2]=0;c[h+32+4>>2]=0;c[h+32+8>>2]=0;c[h+32+12>>2]=0;g[h+32>>2]=1.0;ic[c[(c[b>>2]|0)+68>>2]&127](h+16|0,b,h+32|0);g[b+32>>2]=+g[h+16>>2]+ +g[b+12>>2];g[h+32>>2]=-1.0;ic[c[(c[b>>2]|0)+68>>2]&127](h,b,h+32|0);c[h+16>>2]=c[h>>2];c[h+16+4>>2]=c[h+4>>2];c[h+16+8>>2]=c[h+8>>2];c[h+16+12>>2]=c[h+12>>2];g[b+16>>2]=+g[h+16>>2]-+g[b+12>>2];c[h+32>>2]=0;c[h+32+4>>2]=0;c[h+32+8>>2]=0;c[h+32+12>>2]=0;g[h+32+4>>2]=1.0;ic[c[(c[b>>2]|0)+68>>2]&127](h+16|0,b,h+32|0);g[b+36>>2]=+g[h+16+4>>2]+ +g[b+12>>2];g[h+32+4>>2]=-1.0;ic[c[(c[b>>2]|0)+68>>2]&127](h,b,h+32|0);c[h+16>>2]=c[h>>2];c[h+16+4>>2]=c[h+4>>2];c[h+16+8>>2]=c[h+8>>2];c[h+16+12>>2]=c[h+12>>2];g[b+20>>2]=+g[h+16+4>>2]-+g[b+12>>2];c[h+32>>2]=0;c[h+32+4>>2]=0;c[h+32+8>>2]=0;c[h+32+12>>2]=0;g[h+32+8>>2]=1.0;ic[c[(c[b>>2]|0)+68>>2]&127](h+16|0,b,h+32|0);g[b+40>>2]=+g[h+16+8>>2]+ +g[b+12>>2];g[h+32+8>>2]=-1.0;ic[c[(c[b>>2]|0)+68>>2]&127](h,b,h+32|0);c[h+16>>2]=c[h>>2];c[h+16+4>>2]=c[h+4>>2];c[h+16+8>>2]=c[h+8>>2];c[h+16+12>>2]=c[h+12>>2];g[b+24>>2]=+g[h+16+8>>2]-+g[b+12>>2]}c[b>>2]=6772;c[b+52>>2]=0;c[b+56>>2]=0;a[b+60>>0]=e&1;a[b+61>>0]=0;c[b+4>>2]=21;if(!f){i=h;return}c[6435]=(c[6435]|0)+1;f=yc(191)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}c[f+52>>2]=282;a[f+60>>0]=0;a[f+80>>0]=1;c[f+76>>2]=0;c[f+68>>2]=0;c[f+72>>2]=0;a[f+100>>0]=1;c[f+96>>2]=0;c[f+88>>2]=0;c[f+92>>2]=0;a[f+120>>0]=1;c[f+116>>2]=0;c[f+108>>2]=0;c[f+112>>2]=0;a[f+140>>0]=1;c[f+136>>2]=0;c[f+128>>2]=0;c[f+132>>2]=0;c[f+144>>2]=0;a[f+164>>0]=1;c[f+160>>2]=0;c[f+152>>2]=0;c[f+156>>2]=0;c[f+168>>2]=0;c[f+4>>2]=-8388609;c[f+8>>2]=-8388609;c[f+12>>2]=-8388609;g[f+16>>2]=0.0;c[f+20>>2]=2139095039;c[f+24>>2]=2139095039;c[f+28>>2]=2139095039;g[f+32>>2]=0.0;c[f>>2]=7980;c[b+52>>2]=f;pd(f,c[b+48>>2]|0,(a[b+60>>0]|0)!=0,b+16|0,b+32|0);a[b+61>>0]=1;i=h;return}function _e(a,b){a=a|0;b=b|0;var d=0,e=0.0,f=0,h=0,i=0.0,j=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0,x=0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0;d=c[a+748>>2]|0;if((d|0)!=4){c[a+748>>2]=d+1;x=d;w=(x|0)<0;x=w?0:x;a=a+4+(x*184|0)|0;_m(a|0,b|0,184)|0;return x|0}y=+g[b+80>>2];v=+g[a+84>>2];u=v>2];s=t>2];w=+g[a+636>>2]<(r>31;y=+g[b>>2];if(d){e=+g[a+188>>2];i=+g[b+4>>2];l=+g[a+192>>2];m=+g[b+8>>2];n=+g[a+196>>2];p=+g[a+556>>2];s=+g[a+372>>2];q=+g[a+560>>2];r=+g[a+376>>2];v=+g[a+564>>2];j=+g[a+380>>2];h=(g[k>>2]=((y-e)*(q-r)-(i-l)*(p-s))*((y-e)*(q-r)-(i-l)*(p-s))+(((i-l)*(v-j)-(m-n)*(q-r))*((i-l)*(v-j)-(m-n)*(q-r))+((m-n)*(p-s)-(y-e)*(v-j))*((m-n)*(p-s)-(y-e)*(v-j))),c[k>>2]|0);if((d|0)==1){o=+g[a+12>>2];t=p;u=q;p=+g[a+4>>2];q=+g[a+8>>2];f=0;x=7}else{t=p;u=q;x=6}}else{e=+g[a+188>>2];l=+g[a+192>>2];n=+g[a+196>>2];i=+g[b+4>>2];m=+g[b+8>>2];s=+g[a+372>>2];t=+g[a+556>>2];r=+g[a+376>>2];u=+g[a+560>>2];j=+g[a+380>>2];v=+g[a+564>>2];h=0;x=6}if((x|0)==6){p=+g[a+4>>2];q=+g[a+8>>2];D=i-q;o=+g[a+12>>2];B=m-o;A=t-s;C=u-r;z=v-j;f=(g[k>>2]=((y-p)*C-D*A)*((y-p)*C-D*A)+((D*z-B*C)*(D*z-B*C)+(B*A-(y-p)*z)*(B*A-(y-p)*z)),c[k>>2]|0);if((d|0)==2){d=0;x=8}else x=7}if((x|0)==7){C=y-p;E=i-q;A=m-o;B=t-e;z=u-l;D=v-n;d=(g[k>>2]=(C*z-E*B)*(C*z-E*B)+((E*D-A*z)*(E*D-A*z)+(A*B-C*D)*(A*B-C*D)),c[k>>2]|0);if(w)e=0.0;else x=8}if((x|0)==8){E=y-p;A=i-q;C=m-o;D=s-e;B=r-l;e=j-n;e=(E*B-A*D)*(E*B-A*D)+((A*e-C*B)*(A*e-C*B)+(C*D-E*e)*(C*D-E*e))}E=+N(+(c[k>>2]=h,+g[k>>2]));C=+N(+(c[k>>2]=f,+g[k>>2]));A=+N(+(c[k>>2]=d,+g[k>>2]));z=+N(+e);D=E>-999999984306749440.0?E:-999999984306749440.0;B=C>D?C:D;x=z>(A>B?A:B)?3:A>B?2:C>D?1:(E>-999999984306749440.0^1)<<31>>31;w=(x|0)<0;x=w?0:x;a=a+4+(x*184|0)|0;_m(a|0,b|0,184)|0;return x|0}function $e(a,b,d,e,f){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;if(!b)if(!e){if(f|0){c[f>>2]=(a>>>0)%(d>>>0);c[f+4>>2]=0}e=0;f=(a>>>0)/(d>>>0)>>>0;return (C=e,f)|0}else{if(!f){e=0;f=0;return (C=e,f)|0}c[f>>2]=a|0;c[f+4>>2]=b&0;e=0;f=0;return (C=e,f)|0}do if(d){if(e|0){h=(aa(e|0)|0)-(aa(b|0)|0)|0;if(h>>>0<=31){n=h+1|0;i=a>>>((h+1|0)>>>0)&h-31>>31|b<<31-h;m=b>>>((h+1|0)>>>0)&h-31>>31;g=0;h=a<<31-h;break}if(!f){e=0;f=0;return (C=e,f)|0}c[f>>2]=a|0;c[f+4>>2]=b|b&0;e=0;f=0;return (C=e,f)|0}if(d-1&d|0){h=(aa(d|0)|0)+33-(aa(b|0)|0)|0;n=h;i=32-h-1>>31&b>>>((h-32|0)>>>0)|(b<<32-h|a>>>(h>>>0))&h-32>>31;m=h-32>>31&b>>>(h>>>0);g=a<<64-h&32-h>>31;h=(b<<64-h|a>>>((h-32|0)>>>0))&32-h>>31|a<<32-h&h-33>>31;break}if(f|0){c[f>>2]=d-1&a;c[f+4>>2]=0}if((d|0)==1){e=b|b&0;f=a|0|0;return (C=e,f)|0}else{f=Sp(d|0)|0;e=b>>>(f>>>0)|0;f=b<<32-f|a>>>(f>>>0)|0;return (C=e,f)|0}}else{if(!e){if(f|0){c[f>>2]=(b>>>0)%(d>>>0);c[f+4>>2]=0}e=0;f=(b>>>0)/(d>>>0)>>>0;return (C=e,f)|0}if(!a){if(f|0){c[f>>2]=0;c[f+4>>2]=(b>>>0)%(e>>>0)}d=0;f=(b>>>0)/(e>>>0)>>>0;return (C=d,f)|0}if(!(e-1&e)){if(f|0){c[f>>2]=a|0;c[f+4>>2]=e-1&b|b&0}d=0;f=b>>>((Sp(e|0)|0)>>>0);return (C=d,f)|0}h=(aa(e|0)|0)-(aa(b|0)|0)|0;if(h>>>0<=30){n=h+1|0;i=b<<31-h|a>>>((h+1|0)>>>0);m=b>>>((h+1|0)>>>0);g=0;h=a<<31-h;break}if(!f){e=0;f=0;return (C=e,f)|0}c[f>>2]=a|0;c[f+4>>2]=b|b&0;e=0;f=0;return (C=e,f)|0}while(0);if(!n){j=h;b=m;a=0;h=0}else{k=Kt(d|0|0,e|e&0|0,-1,-1)|0;l=C;j=h;b=m;a=n;h=0;do{p=j;j=g>>>31|j<<1;g=h|g<<1;p=i<<1|p>>>31|0;o=i>>>31|b<<1|0;Is(k|0,l|0,p|0,o|0)|0;n=C;m=n>>31|((n|0)<0?-1:0)<<1;h=m&1;i=Is(p|0,o|0,m&(d|0)|0,(((n|0)<0?-1:0)>>31|((n|0)<0?-1:0)<<1)&(e|e&0)|0)|0;b=C;a=a-1|0}while((a|0)!=0);a=0}if(f|0){c[f>>2]=i;c[f+4>>2]=b}o=(g|0)>>>31|j<<1|(0<<1|g>>>31)&0|a;p=(g<<1|0>>>31)&-2|h;return (C=o,p)|0}function af(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0.0,h=0.0,j=0.0,k=0.0,l=0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0;l=i;i=i+128|0;a=c[a+16>>2]|0;n=+g[a+892>>2];x=+g[a+896>>2];v=+g[a+900>>2];w=+g[a+908>>2];f=+g[a+912>>2];j=+g[a+916>>2];z=+g[b>>2];m=+g[b+4>>2];p=v*+g[b+8>>2];q=+g[b+16>>2];r=+g[b+20>>2];t=v*+g[b+24>>2];u=+g[b+32>>2];o=+g[b+36>>2];s=+g[b+40>>2];y=+g[b+48>>2];k=+g[b+52>>2];h=+g[b+56>>2];g[l>>2]=n*z+x*m+p+y;g[l+4>>2]=n*q+x*r+t+k;g[l+8>>2]=n*u+x*o+v*s+h;g[l+12>>2]=0.0;g[l+16>>2]=w*z+x*m+p+y;g[l+20>>2]=w*q+x*r+t+k;g[l+24>>2]=w*u+x*o+v*s+h;g[l+28>>2]=0.0;g[l+32>>2]=w*z+f*m+p+y;g[l+36>>2]=w*q+f*r+t+k;g[l+40>>2]=w*u+f*o+v*s+h;g[l+44>>2]=0.0;g[l+48>>2]=n*z+f*m+p+y;g[l+52>>2]=n*q+f*r+t+k;g[l+56>>2]=n*u+f*o+v*s+h;g[l+60>>2]=0.0;v=+g[b>>2];u=+g[b+4>>2];t=j*+g[b+8>>2];r=+g[b+16>>2];q=+g[b+20>>2];p=j*+g[b+24>>2];m=+g[b+32>>2];g[l+64>>2]=n*v+x*u+t+y;g[l+68>>2]=n*r+x*q+p+k;g[l+72>>2]=n*m+x*o+j*s+h;g[l+76>>2]=0.0;h=+g[b+36>>2];j=j*+g[b+40>>2];s=+g[b+48>>2];o=+g[b+52>>2];k=+g[b+56>>2];g[l+80>>2]=w*v+x*u+t+s;g[l+84>>2]=w*r+x*q+p+o;g[l+88>>2]=w*m+x*h+j+k;g[l+92>>2]=0.0;g[l+96>>2]=w*v+f*u+t+s;g[l+100>>2]=w*r+f*q+p+o;g[l+104>>2]=w*m+f*h+j+k;g[l+108>>2]=0.0;g[l+112>>2]=n*v+f*u+t+s;g[l+116>>2]=n*r+f*q+p+o;g[l+120>>2]=n*m+f*h+j+k;g[l+124>>2]=0.0;c[e>>2]=c[l>>2];c[e+4>>2]=c[l+4>>2];c[e+8>>2]=c[l+8>>2];c[e+12>>2]=c[l+12>>2];c[d>>2]=c[l>>2];c[d+4>>2]=c[l+4>>2];c[d+8>>2]=c[l+8>>2];c[d+12>>2]=c[l+12>>2];b=1;do{f=+g[l+(b<<4)>>2];if(f<+g[d>>2])g[d>>2]=f;h=+g[l+(b<<4)+4>>2];if(h<+g[d+4>>2])g[d+4>>2]=h;j=+g[l+(b<<4)+8>>2];if(j<+g[d+8>>2])g[d+8>>2]=j;k=+g[l+(b<<4)+12>>2];if(k<+g[d+12>>2])g[d+12>>2]=k;if(+g[e>>2]>2]=f;if(+g[e+4>>2]>2]=h;if(+g[e+8>>2]>2]=j;if(+g[e+12>>2]>2]=k;b=b+1|0}while((b|0)!=8);i=l;return}function bf(b){b=b|0;var d=0,e=0,f=0,h=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;p=i;i=i+16|0;li(12143);l=c[b+204>>2]|0;ic[c[(c[l>>2]|0)+8>>2]&127](l,b,c[b+24>>2]|0);l=c[b+308>>2]|0;if((l|0)>0){k=c[b+316>>2]|0;m=0;do{e=c[k+(m<<2)>>2]|0;d=c[e+740>>2]|0;e=c[e+744>>2]|0;if((d|0?(e|0?(c[d+204>>2]&3|0)==0:0):0)?(c[e+204>>2]&3|0)==0:0){h=c[d+208>>2]|0;d=c[e+208>>2]|0;j=c[(c[b+204>>2]|0)+16>>2]|0;e=c[j+(h<<3)>>2]|0;if((e|0)!=(h|0)){f=j+(h<<3)|0;do{h=j+(e<<3)|0;c[f>>2]=c[h>>2];h=c[h>>2]|0;f=j+(h<<3)|0;e=c[f>>2]|0}while((h|0)!=(e|0))}e=c[j+(d<<3)>>2]|0;if((e|0)!=(d|0)){f=j+(d<<3)|0;do{d=j+(e<<3)|0;c[f>>2]=c[d>>2];d=c[d>>2]|0;f=j+(d<<3)|0;e=c[f>>2]|0}while((d|0)!=(e|0))}if((h|0)!=(d|0)){c[j+(h<<3)>>2]=d;f=j+(d<<3)+4|0;c[f>>2]=(c[f>>2]|0)+(c[j+(h<<3)+4>>2]|0)}}m=m+1|0}while((m|0)!=(l|0))}l=c[b+212>>2]|0;if((l|0)>0){k=c[b+220>>2]|0;m=0;do{d=c[k+(m<<2)>>2]|0;if((a[d+20>>0]|0?(n=c[d+28>>2]|0,(c[n+204>>2]&3|0)==0):0)?(o=c[d+32>>2]|0,(c[o+204>>2]&3|0)==0):0){f=c[n+208>>2]|0;d=c[o+208>>2]|0;j=c[(c[b+204>>2]|0)+16>>2]|0;e=c[j+(f<<3)>>2]|0;if((e|0)==(f|0))h=f;else{f=j+(f<<3)|0;do{h=j+(e<<3)|0;c[f>>2]=c[h>>2];h=c[h>>2]|0;f=j+(h<<3)|0;e=c[f>>2]|0}while((h|0)!=(e|0))}e=c[j+(d<<3)>>2]|0;if((e|0)!=(d|0)){f=j+(d<<3)|0;do{d=j+(e<<3)|0;c[f>>2]=c[d>>2];d=c[d>>2]|0;f=j+(d<<3)|0;e=c[f>>2]|0}while((d|0)!=(e|0))}if((h|0)!=(d|0)){c[j+(h<<3)>>2]=d;f=j+(d<<3)+4|0;c[f>>2]=(c[f>>2]|0)+(c[j+(h<<3)+4>>2]|0)}}m=m+1|0}while((m|0)!=(l|0))}d=c[b+204>>2]|0;Cb[c[(c[d>>2]|0)+12>>2]&127](d,b);d=c[2357]|0;b=(c[d+16>>2]|0)+-1|0;c[d+16>>2]=b;if(b|0){i=p;return}do if(c[d+4>>2]|0){tb(p|0,0)|0;b=c[6434]|0;g[d+8>>2]=+g[d+8>>2]+ +(((c[p+4>>2]|0)-(c[b+4>>2]|0)+(((c[p>>2]|0)-(c[b>>2]|0)|0)*1e6|0)-(c[d+12>>2]|0)|0)>>>0)/1.0e3;if(!(c[d+16>>2]|0)){d=c[2357]|0;break}else{i=p;return}}while(0);c[2357]=c[d+20>>2];i=p;return}function cf(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0,h=0.0,j=0.0,k=0.0,l=0,m=0,n=0,o=0,p=0.0,q=0;o=i;i=i+128|0;h=+g[b>>2];j=+g[b+16>>2];p=h>2];if((p+g[a+28>>2]){i=o;return}m=h>j?b:b+16|0;if(+g[(+g[m>>2]>k?m:b+32|0)>>2]<+g[a+12>>2]){i=o;return}h=+g[b+8>>2];j=+g[b+24>>2];p=h>2];if((p+g[a+36>>2]){i=o;return}m=h>j?b+8|0:b+24|0;if(+g[(+g[m>>2]>k?m:b+40|0)>>2]<+g[a+20>>2]){i=o;return}h=+g[b+4>>2];j=+g[b+20>>2];p=h>2];if((p+g[a+32>>2]){i=o;return}m=h>j?b+4|0:b+20|0;if(+g[(+g[m>>2]>k?m:b+36|0)>>2]<+g[a+16>>2]){i=o;return}m=c[a+48>>2]|0;f=c[a+4>>2]|0;if((c[(c[f+4>>2]|0)+4>>2]|0)>=20){i=o;return}c[o+24+8>>2]=0;c[o+24+12>>2]=1065353216;c[o+24+16>>2]=1065353216;c[o+24+20>>2]=1065353216;g[o+24+24>>2]=0.0;c[o+24+52>>2]=0;c[o+24>>2]=3736;c[o+24+4>>2]=1;c[o+24+56>>2]=c[b>>2];c[o+24+56+4>>2]=c[b+4>>2];c[o+24+56+8>>2]=c[b+8>>2];c[o+24+56+12>>2]=c[b+12>>2];c[o+24+72>>2]=c[b+16>>2];c[o+24+72+4>>2]=c[b+16+4>>2];c[o+24+72+8>>2]=c[b+16+8>>2];c[o+24+72+12>>2]=c[b+16+12>>2];c[o+24+88>>2]=c[b+32>>2];c[o+24+88+4>>2]=c[b+32+4>>2];c[o+24+88+8>>2]=c[b+32+8>>2];c[o+24+88+12>>2]=c[b+32+12>>2];c[o+24+44>>2]=c[a+56>>2];q=c[a+8>>2]|0;b=c[q+8>>2]|0;l=c[q+12>>2]|0;c[o>>2]=q;c[o+4>>2]=o+24;c[o+8>>2]=b;c[o+12>>2]=l;c[o+16>>2]=d;c[o+20>>2]=e;l=Ib[c[(c[m>>2]|0)+8>>2]&31](m,f,o,c[a+64>>2]|0)|0;f=c[a+44>>2]|0;b=c[f+8>>2]|0;if((c[b+8>>2]|0)==(c[(c[a+8>>2]|0)+8>>2]|0)){c[f+8>>2]=o;ic[c[(c[f>>2]|0)+8>>2]&127](f,d,e)}else{b=c[f+12>>2]|0;c[f+12>>2]=o;ic[c[(c[f>>2]|0)+12>>2]&127](f,d,e)}yb[c[(c[l>>2]|0)+8>>2]&31](l,c[a+4>>2]|0,o,c[a+52>>2]|0,c[a+44>>2]|0);f=c[a+44>>2]|0;if((c[(c[f+8>>2]|0)+8>>2]|0)==(c[(c[a+8>>2]|0)+8>>2]|0))c[f+8>>2]=b;else c[f+12>>2]=b;Ab[c[c[l>>2]>>2]&255](l);Cb[c[(c[m>>2]|0)+60>>2]&127](m,l);c[o+24>>2]=7124;f=c[o+24+52>>2]|0;if(f|0?(Ab[c[c[f>>2]>>2]&255](f),n=c[o+24+52>>2]|0,n|0):0){c[6436]=(c[6436]|0)+1;hd(c[n+-4>>2]|0)}i=o;return}function df(b,d,e,f,h){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;var j=0,k=0,l=0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0.0,H=0.0,I=0.0,J=0.0,K=0.0;k=i;i=i+64|0;l=(a[b+8>>0]|0)!=0;j=l?e:d;d=l?d:e;e=c[d+4>>2]|0;if(((c[e+4>>2]|0)+-21|0)>>>0>=9){i=k;return}if((c[(c[j+4>>2]|0)+4>>2]|0)>=20){i=k;return}m=+Sb[c[(c[e>>2]|0)+48>>2]&15](e);c[h+4>>2]=c[b+76>>2];c[b+16>>2]=j;c[b+20>>2]=d;c[b+64>>2]=f;g[b+68>>2]=m;c[b+56>>2]=h;l=c[d+12>>2]|0;B=+g[l>>2];A=+g[l+16>>2];z=+g[l+32>>2];y=+g[l+4>>2];x=+g[l+20>>2];w=+g[l+36>>2];s=+g[l+8>>2];q=+g[l+24>>2];o=+g[l+40>>2];v=-+g[l+48>>2];u=-+g[l+52>>2];t=-+g[l+56>>2];l=c[j+12>>2]|0;K=+g[l>>2];J=+g[l+16>>2];I=+g[l+32>>2];H=+g[l+4>>2];G=+g[l+20>>2];F=+g[l+36>>2];E=+g[l+8>>2];D=+g[l+24>>2];C=+g[l+40>>2];r=+g[l+48>>2];p=+g[l+52>>2];n=+g[l+56>>2];g[k>>2]=B*K+A*J+z*I;g[k+4>>2]=B*H+A*G+z*F;g[k+8>>2]=B*E+A*D+z*C;g[k+12>>2]=0.0;g[k+16>>2]=y*K+x*J+w*I;g[k+20>>2]=y*H+x*G+w*F;g[k+24>>2]=y*E+x*D+w*C;g[k+28>>2]=0.0;g[k+32>>2]=s*K+q*J+o*I;g[k+36>>2]=s*H+q*G+o*F;g[k+40>>2]=s*E+q*D+o*C;g[k+44>>2]=0.0;g[k+48>>2]=B*v+A*u+z*t+(B*r+A*p+z*n);g[k+52>>2]=y*v+x*u+w*t+(y*r+x*p+w*n);g[k+56>>2]=s*v+q*u+o*t+(s*r+q*p+o*n);g[k+60>>2]=0.0;l=c[(c[b+16>>2]|0)+4>>2]|0;mc[c[(c[l>>2]|0)+8>>2]&127](l,k,b+24|0,b+40|0);g[b+40>>2]=+g[b+40>>2]+m;g[b+44>>2]=+g[b+44>>2]+m;g[b+48>>2]=+g[b+48>>2]+m;g[b+24>>2]=+g[b+24>>2]-m;g[b+28>>2]=+g[b+28>>2]-m;g[b+32>>2]=+g[b+32>>2]-m;l=c[b+76>>2]|0;f=c[d+8>>2]|0;c[l+740>>2]=c[j+8>>2];c[l+744>>2]=f;mc[c[(c[e>>2]|0)+64>>2]&127](e,b+12|0,b+24|0,b+40|0);e=c[h+4>>2]|0;do if(c[e+748>>2]|0){j=c[e+740>>2]|0;f=c[(c[h+8>>2]|0)+8>>2]|0;d=c[(c[h+12>>2]|0)+8>>2]|0;if((j|0)==(f|0)){ef(e,j+4|0,d+4|0);break}else{ef(e,d+4|0,f+4|0);break}}while(0);c[b+16>>2]=0;c[b+20>>2]=0;i=k;return}function ef(b,d,e){b=b|0;d=d|0;e=e|0;var f=0,h=0.0,i=0.0,j=0,k=0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0;f=c[b+748>>2]|0;if((f|0)<=0)return;do{k=f;f=f+-1|0;p=+g[b+4+(f*184|0)>>2];q=+g[b+4+(f*184|0)+4>>2];h=+g[b+4+(f*184|0)+8>>2];o=p*+g[d>>2]+q*+g[d+4>>2]+h*+g[d+8>>2]+ +g[d+48>>2];m=p*+g[d+16>>2]+q*+g[d+20>>2]+h*+g[d+24>>2]+ +g[d+52>>2];h=p*+g[d+32>>2]+q*+g[d+36>>2]+h*+g[d+40>>2]+ +g[d+56>>2];g[b+4+(f*184|0)+48>>2]=o;g[b+4+(f*184|0)+52>>2]=m;g[b+4+(f*184|0)+56>>2]=h;g[b+4+(f*184|0)+60>>2]=0.0;q=+g[b+4+(f*184|0)+16>>2];p=+g[b+4+(f*184|0)+20>>2];i=+g[b+4+(f*184|0)+24>>2];n=q*+g[e>>2]+p*+g[e+4>>2]+i*+g[e+8>>2]+ +g[e+48>>2];l=q*+g[e+16>>2]+p*+g[e+20>>2]+i*+g[e+24>>2]+ +g[e+52>>2];i=q*+g[e+32>>2]+p*+g[e+36>>2]+i*+g[e+40>>2]+ +g[e+56>>2];g[b+4+(f*184|0)+32>>2]=n;g[b+4+(f*184|0)+36>>2]=l;g[b+4+(f*184|0)+40>>2]=i;g[b+4+(f*184|0)+44>>2]=0.0;g[b+4+(f*184|0)+80>>2]=(o-n)*+g[b+4+(f*184|0)+64>>2]+(m-l)*+g[b+4+(f*184|0)+68>>2]+(h-i)*+g[b+4+(f*184|0)+72>>2];j=b+4+(f*184|0)+148|0;c[j>>2]=(c[j>>2]|0)+1}while((k|0)>1);f=c[b+748>>2]|0;if((f|0)<=0)return;e=f;j=f;while(1){k=j;j=j+-1|0;d=b+4+(j*184|0)|0;h=+g[b+4+(j*184|0)+80>>2];i=+g[b+752>>2];if(h<=i){o=+g[b+4+(j*184|0)+32>>2]-(+g[b+4+(j*184|0)+48>>2]-+g[b+4+(j*184|0)+64>>2]*h);p=+g[b+4+(j*184|0)+36>>2]-(+g[b+4+(j*184|0)+52>>2]-h*+g[b+4+(j*184|0)+68>>2]);q=+g[b+4+(j*184|0)+40>>2]-(+g[b+4+(j*184|0)+56>>2]-h*+g[b+4+(j*184|0)+72>>2]);if(o*o+p*p+q*q>i*i){f=e+-1|0;if((f|0)==(j|0))f=e;else{_m(d|0,b+4+(f*184|0)|0,184)|0;c[b+4+(f*184|0)+112>>2]=0;g[b+4+(f*184|0)+120>>2]=0.0;a[b+4+(f*184|0)+116>>0]=0;g[b+4+(f*184|0)+124>>2]=0.0;g[b+4+(f*184|0)+128>>2]=0.0;c[b+4+(f*184|0)+148>>2]=0;f=c[b+748>>2]|0}f=f+-1|0;c[b+748>>2]=f}else f=e}else{f=e+-1|0;if((f|0)==(j|0))f=e;else{_m(d|0,b+4+(f*184|0)|0,184)|0;c[b+4+(f*184|0)+112>>2]=0;g[b+4+(f*184|0)+120>>2]=0.0;a[b+4+(f*184|0)+116>>0]=0;g[b+4+(f*184|0)+124>>2]=0.0;g[b+4+(f*184|0)+128>>2]=0.0;c[b+4+(f*184|0)+148>>2]=0;f=c[b+748>>2]|0}f=f+-1|0;c[b+748>>2]=f}if((k|0)<=1)break;else e=f}return}function ff(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0,h=0.0,j=0.0,k=0.0,l=0.0,m=0,n=0,o=0,p=0,q=0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0,D=0;D=i;i=i+32|0;if(!a){i=D;return}w=+g[d>>2]-+g[b>>2];x=+g[d+4>>2]-+g[b+4>>2];r=+g[d+8>>2]-+g[b+8>>2];s=1.0/+O(+(w*w+x*x+r*r));t=w*s==0.0?999999984306749440.0:1.0/(w*s);u=x*s==0.0?999999984306749440.0:1.0/(x*s);v=r*s==0.0?999999984306749440.0:1.0/(r*s);c[6435]=(c[6435]|0)+1;d=yc(531)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}Qn(d|0,0,512)|0;c[d>>2]=a;q=1;a=128;m=128;f=126;while(1){n=q+-1|0;p=c[d+(n<<2)>>2]|0;c[D>>2]=c[p>>2];c[D+4>>2]=c[p+4>>2];c[D+8>>2]=c[p+8>>2];c[D+12>>2]=c[p+12>>2];c[D+16>>2]=c[p+16>>2];c[D+16+4>>2]=c[p+16+4>>2];c[D+16+8>>2]=c[p+16+8>>2];c[D+16+12>>2]=c[p+16+12>>2];j=+g[b>>2];h=t*(+g[D+((t<0.0&1)<<4)>>2]-j);j=t*(+g[D+((t<0.0^1)<<4)>>2]-j);l=+g[b+4>>2];k=u*(+g[D+((u<0.0&1)<<4)+4>>2]-l);l=u*(+g[D+((u<0.0^1)<<4)+4>>2]-l);do if((!(k>j|h>l)?(y=k>h?k:h,B=l>2],z=v*(+g[D+((v<0.0&1)<<4)+8>>2]-A),A=v*(+g[D+((v<0.0^1)<<4)+8>>2]-A),!(z>B|y>A)):0)?((A0.0?(z>y?z:y)>2]|0)){Cb[c[(c[e>>2]|0)+12>>2]&127](e,p);break}if((n|0)>(f|0)){o=m<<1;if((m|0)<(o|0)){do if((a|0)<(o|0)){if(m){c[6435]=(c[6435]|0)+1;a=yc((m<<3|3)+16|0)|0;if(!a)a=0;else{c[(a+4+15&-16)+-4>>2]=a;a=a+4+15&-16}if((m|0)>0){f=0;do{c[a+(f<<2)>>2]=c[d+(f<<2)>>2];f=f+1|0}while((f|0)!=(m|0))}else C=17}else{a=0;C=17}if((C|0)==17){C=0;if(!d){f=o;d=a;break}}c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0);f=o;d=a}else f=a;while(0);Qn(d+(m<<2)|0,0,m<<2|0)|0;a=f}m=o;f=o+-2|0}c[d+(n<<2)>>2]=c[p+36>>2];c[d+(q<<2)>>2]=c[p+40>>2];n=q+1|0}while(0);if(!n)break;else q=n}if(!d){i=D;return}c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0);i=D;return}function gf(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0,h=0.0,j=0.0,k=0.0,l=0,m=0,n=0.0,o=0.0,p=0.0,q=0.0;f=i;i=i+256|0;li(11671);c[f+32>>2]=4060;l=f+32+36|0;c[l>>2]=c[b>>2];c[l+4>>2]=c[b+4>>2];c[l+8>>2]=c[b+8>>2];c[l+12>>2]=c[b+12>>2];m=f+32+52|0;c[m>>2]=c[d>>2];c[m+4>>2]=c[d+4>>2];c[m+8>>2]=c[d+8>>2];c[m+12>>2]=c[d+12>>2];c[f+32+212>>2]=a;c[f+32+216>>2]=e;c[f+32+68>>2]=1065353216;c[f+32+72>>2]=0;c[f+32+72+4>>2]=0;c[f+32+72+8>>2]=0;c[f+32+72+12>>2]=0;c[f+32+88>>2]=1065353216;c[f+32+92>>2]=0;c[f+32+92+4>>2]=0;c[f+32+92+8>>2]=0;c[f+32+92+12>>2]=0;c[f+32+108>>2]=1065353216;c[f+32+112>>2]=0;c[f+32+116>>2]=c[l>>2];c[f+32+116+4>>2]=c[l+4>>2];c[f+32+116+8>>2]=c[l+8>>2];c[f+32+116+12>>2]=c[l+12>>2];c[f+32+132>>2]=1065353216;c[f+32+136>>2]=0;c[f+32+136+4>>2]=0;c[f+32+136+8>>2]=0;c[f+32+136+12>>2]=0;c[f+32+152>>2]=1065353216;c[f+32+156>>2]=0;c[f+32+156+4>>2]=0;c[f+32+156+8>>2]=0;c[f+32+156+12>>2]=0;c[f+32+172>>2]=1065353216;c[f+32+176>>2]=0;c[f+32+180>>2]=c[d>>2];c[f+32+180+4>>2]=c[d+4>>2];c[f+32+180+8>>2]=c[d+8>>2];c[f+32+180+12>>2]=c[d+12>>2];n=+g[d>>2]-+g[b>>2];k=+g[d+4>>2]-+g[b+4>>2];j=+g[d+8>>2]-+g[b+8>>2];h=1.0/+O(+(n*n+k*k+j*j));q=n*h==0.0?1000000015047466219876688.0e6:1.0/(n*h);g[f+32+4>>2]=q;p=k*h==0.0?1000000015047466219876688.0e6:1.0/(k*h);g[f+32+8>>2]=p;o=j*h==0.0?1000000015047466219876688.0e6:1.0/(j*h);g[f+32+12>>2]=o;c[f+32+20>>2]=q<0.0&1;c[f+32+24>>2]=p<0.0&1;c[f+32+28>>2]=o<0.0&1;g[f+32+32>>2]=n*h*(+g[m>>2]-+g[l>>2])+k*h*(+g[f+32+56>>2]-+g[f+32+40>>2])+j*h*(+g[f+32+60>>2]-+g[f+32+44>>2]);a=c[a+68>>2]|0;e=c[(c[a>>2]|0)+24>>2]|0;c[f+16>>2]=0;c[f+16+4>>2]=0;c[f+16+8>>2]=0;c[f+16+12>>2]=0;c[f>>2]=0;c[f+4>>2]=0;c[f+8>>2]=0;c[f+12>>2]=0;Qb[e&7](a,b,d,f+32|0,f+16|0,f);b=c[2357]|0;a=(c[b+16>>2]|0)+-1|0;c[b+16>>2]=a;if(a|0){i=f;return}do if(c[b+4>>2]|0){tb(f+32|0,0)|0;m=c[6434]|0;g[b+8>>2]=+g[b+8>>2]+ +(((c[f+32+4>>2]|0)-(c[m+4>>2]|0)+(((c[f+32>>2]|0)-(c[m>>2]|0)|0)*1e6|0)-(c[b+12>>2]|0)|0)>>>0)/1.0e3;if(!(c[b+16>>2]|0)){b=c[2357]|0;break}else{i=f;return}}while(0);c[2357]=c[b+20>>2];i=f;return}function hf(b,d){b=b|0;d=+d;var e=0,f=0.0,h=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0,r=0,s=0,t=0.0;s=i;i=i+16|0;li(12002);e=c[b+232>>2]|0;if((e|0)>0){r=0;do{q=c[(c[b+240>>2]|0)+(r<<2)>>2]|0;if(!(c[q+204>>2]&3)){n=+g[q+444>>2];f=+P(+(1.0-n),+d);j=f*+g[q+312>>2];g[q+312>>2]=j;h=f*+g[q+316>>2];g[q+316>>2]=h;f=f*+g[q+320>>2];g[q+320>>2]=f;p=+g[q+448>>2];m=+P(+(1.0-p),+d);k=m*+g[q+328>>2];g[q+328>>2]=k;l=m*+g[q+332>>2];g[q+332>>2]=l;m=m*+g[q+336>>2];g[q+336>>2]=m;do if(a[q+452>>0]|0){if(m*m+(k*k+l*l)<+g[q+464>>2]?j*j+h*h+f*f<+g[q+460>>2]:0){t=+g[q+456>>2];g[q+328>>2]=k*t;g[q+332>>2]=t*l;g[q+336>>2]=t*m;g[q+312>>2]=t*j;g[q+316>>2]=t*h;g[q+320>>2]=t*f;f=t*f;o=k*t;l=t*l;m=t*m;j=t*j;h=t*h}else o=k;k=+O(+(j*j+h*h+f*f));do if(k.004999999888241291){j=j-j*(1.0/k)*.004999999888241291;g[q+312>>2]=j;h=h-h*(1.0/k)*.004999999888241291;g[q+316>>2]=h;f=f-f*(1.0/k)*.004999999888241291;g[q+320>>2]=f;break}else{c[q+312>>2]=0;c[q+312+4>>2]=0;c[q+312+8>>2]=0;c[q+312+12>>2]=0;j=0.0;h=0.0;f=0.0;break}while(0);k=+O(+(o*o+l*l+m*m));if(k.004999999888241291){g[q+328>>2]=o-o*(1.0/k)*.004999999888241291;g[q+332>>2]=l-l*(1.0/k)*.004999999888241291;g[q+336>>2]=m-m*(1.0/k)*.004999999888241291;break}else{c[q+328>>2]=0;c[q+328+4>>2]=0;c[q+328+8>>2]=0;c[q+328+12>>2]=0;break}}while(0);Zg(q+4|0,j,h,f,q+328|0,d,q+68|0);e=c[b+232>>2]|0}r=r+1|0}while((r|0)<(e|0))}e=c[2357]|0;b=(c[e+16>>2]|0)+-1|0;c[e+16>>2]=b;if(b|0){i=s;return}do if(c[e+4>>2]|0){tb(s|0,0)|0;b=c[6434]|0;g[e+8>>2]=+g[e+8>>2]+ +(((c[s+4>>2]|0)-(c[b+4>>2]|0)+(((c[s>>2]|0)-(c[b>>2]|0)|0)*1e6|0)-(c[e+12>>2]|0)|0)>>>0)/1.0e3;if(!(c[e+16>>2]|0)){e=c[2357]|0;break}else{i=s;return}}while(0);c[2357]=c[e+20>>2];i=s;return}function jf(a,d,f){a=a|0;d=d|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;g=c[a+108>>2]|0;if(g|0)ic[c[(c[g>>2]|0)+12>>2]&127](g,c[d+60>>2]|0,f);q=c[d+12>>2]|0;p=c[a+60>>2]|0;o=c[a+92>>2]|0;if(!(Eb[c[(c[o>>2]|0)+56>>2]&127](o)|0)){o=c[a+92>>2]|0;ic[c[(c[o>>2]|0)+16>>2]&127](o,p+((q&65535)<<6)|0,f)}m=e[a+56>>1]|0;g=c[a+60>>2]|0;b[g+54>>1]=(e[g+54>>1]|0)+65534;b[g+56>>1]=(e[g+56>>1]|0)+65534;b[g+58>>1]=(e[g+58>>1]|0)+65534;g=b[a+6>>1]|0;o=0;do{l=a+68+(o<<2)|0;n=c[l>>2]|0;f=e[p+((q&65535)<<6)+54+(o<<1)>>1]|0;b[n+(f<<2)>>1]=g;d=b[n+(f<<2)+6>>1]|0;if(!(d<<16>>16))f=n;else{k=(c[a+60>>2]|0)+((e[n+(f<<2)+2>>1]|0)<<6)+54+(o<<1)|0;i=n+(f<<2)|0;while(1){j=i;i=i+4|0;h=b[i>>1]|0;if((g&65535)<(h&65535))break;f=c[a+60>>2]|0;g=d&65535;if(!(h&1)){h=f+(g<<6)+48+(o<<1)|0;b[h>>1]=(b[h>>1]|0)+-1<<16>>16}else{h=f+(g<<6)+54+(o<<1)|0;b[h>>1]=(b[h>>1]|0)+-1<<16>>16}b[k>>1]=(b[k>>1]|0)+1<<16>>16;g=e[j>>1]|e[j+2>>1]<<16;d=e[i>>1]|e[i+2>>1]<<16;b[j>>1]=d;b[j+2>>1]=d>>>16;b[i>>1]=g;b[i+2>>1]=g>>>16;d=b[j+10>>1]|0;if(!(d<<16>>16))break;else g=g&65535}g=b[a+6>>1]|0;f=c[l>>2]|0}d=e[p+((q&65535)<<6)+48+(o<<1)>>1]|0;b[n+(d<<2)>>1]=g;i=f+(d<<2)|0;h=b[i+6>>1]|0;if(h<<16>>16){k=(c[a+60>>2]|0)+((e[f+(d<<2)+2>>1]|0)<<6)+48+(o<<1)|0;g=b[i>>1]|0;while(1){j=i;i=i+4|0;f=b[i>>1]|0;if((g&65535)<(f&65535))break;d=c[a+60>>2]|0;g=h&65535;if(!(f&1)){l=d+(g<<6)+48+(o<<1)|0;b[l>>1]=(b[l>>1]|0)+-1<<16>>16}else{l=d+(g<<6)+54+(o<<1)|0;b[l>>1]=(b[l>>1]|0)+-1<<16>>16}b[k>>1]=(b[k>>1]|0)+1<<16>>16;g=e[j>>1]|e[j+2>>1]<<16;h=e[i>>1]|e[i+2>>1]<<16;b[j>>1]=h;b[j+2>>1]=h>>>16;b[i>>1]=g;b[i+2>>1]=g>>>16;h=b[j+10>>1]|0;if(!(h<<16>>16))break;else g=g&65535}g=b[a+6>>1]|0}b[n+((m<<1)+-1<<2)+2>>1]=0;b[n+((m<<1)+-1<<2)>>1]=g;o=o+1|0}while((o|0)!=3);b[(c[a+60>>2]|0)+((q&65535)<<6)+48>>1]=b[a+64>>1]|0;b[a+64>>1]=q;b[a+56>>1]=(b[a+56>>1]|0)+-1<<16>>16;return}function kf(b){b=b|0;var d=0,e=0;c[b>>2]=5224;if(a[b+20>>0]|0){d=c[b+16>>2]|0;e=c[d+16>>2]|0;if(e){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0);d=c[b+16>>2]|0}if(d|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}}if(a[b+12>>0]|0){d=c[b+8>>2]|0;e=c[d+16>>2]|0;if(e){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0);d=c[b+8>>2]|0}if(d|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}}d=c[b+32>>2]|0;Ab[c[c[d>>2]>>2]&255](d);d=c[b+32>>2]|0;if(d|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}d=c[b+36>>2]|0;Ab[c[c[d>>2]>>2]&255](d);d=c[b+36>>2]|0;if(d|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}d=c[b+40>>2]|0;Ab[c[c[d>>2]>>2]&255](d);d=c[b+40>>2]|0;if(d|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}d=c[b+44>>2]|0;Ab[c[c[d>>2]>>2]&255](d);d=c[b+44>>2]|0;if(d|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}d=c[b+48>>2]|0;Ab[c[c[d>>2]>>2]&255](d);d=c[b+48>>2]|0;if(d|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}d=c[b+52>>2]|0;Ab[c[c[d>>2]>>2]&255](d);d=c[b+52>>2]|0;if(d|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}d=c[b+56>>2]|0;Ab[c[c[d>>2]>>2]&255](d);d=c[b+56>>2]|0;if(d|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}d=c[b+60>>2]|0;Ab[c[c[d>>2]>>2]&255](d);d=c[b+60>>2]|0;if(d|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}d=c[b+76>>2]|0;Ab[c[c[d>>2]>>2]&255](d);d=c[b+76>>2]|0;if(d|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}d=c[b+80>>2]|0;Ab[c[c[d>>2]>>2]&255](d);d=c[b+80>>2]|0;if(d|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}d=c[b+72>>2]|0;Ab[c[c[d>>2]>>2]&255](d);d=c[b+72>>2]|0;if(d|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}d=c[b+88>>2]|0;Ab[c[c[d>>2]>>2]&255](d);d=c[b+88>>2]|0;if(d|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}d=c[b+84>>2]|0;Ab[c[c[d>>2]>>2]&255](d);d=c[b+84>>2]|0;if(d|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}d=c[b+24>>2]|0;if(d|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}d=c[b+28>>2]|0;Ab[c[c[d>>2]>>2]&255](d);d=c[b+28>>2]|0;if(!d)return;c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0);return}function lf(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0,h=0,i=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0,p=0,q=0.0;if(!(c[a>>2]|0)){c[a>>2]=d;c[d+32>>2]=0;return}e=c[b+40>>2]|0;if(!e)o=b;else{k=+g[d>>2]+ +g[d+16>>2];i=+g[d+4>>2]+ +g[d+20>>2];j=+g[d+8>>2]+ +g[d+24>>2];do{p=c[b+36>>2]|0;n=+N(+(k-(+g[p>>2]+ +g[p+16>>2])))+ +N(+(i-(+g[p+4>>2]+ +g[p+20>>2])))+ +N(+(j-(+g[p+8>>2]+ +g[p+24>>2])));b=c[b+36+((!(n<+N(+(k-(+g[e>>2]+ +g[e+16>>2])))+ +N(+(i-(+g[e+4>>2]+ +g[e+20>>2])))+ +N(+(j-(+g[e+8>>2]+ +g[e+24>>2]))))&1)<<2)>>2]|0;e=c[b+40>>2]|0}while((e|0)!=0);o=b}p=o+32|0;e=c[p>>2]|0;b=c[a+4>>2]|0;if(!b){c[6435]=(c[6435]|0)+1;b=yc(63)|0;if(!b)b=0;else{c[(b+4+15&-16)+-4>>2]=b;b=b+4+15&-16}f=b;h=f+44|0;do{c[f>>2]=0;f=f+4|0}while((f|0)<(h|0))}else c[a+4>>2]=0;c[b+32>>2]=e;c[b+36>>2]=0;f=b+40|0;c[f>>2]=0;q=+g[d>>2];n=+g[o>>2];n=q>2]=n;q=+g[d+16>>2];k=+g[o+16>>2];k=q>k?q:k;g[b+16>>2]=k;q=+g[d+4>>2];m=+g[o+4>>2];m=q>2]=m;q=+g[d+20>>2];j=+g[o+20>>2];j=q>j?q:j;g[b+20>>2]=j;q=+g[d+8>>2];l=+g[o+8>>2];l=q>2]=l;q=+g[d+24>>2];i=+g[o+24>>2];i=q>i?q:i;g[b+24>>2]=i;if(!e){c[b+36>>2]=o;c[p>>2]=b;c[f>>2]=d;c[d+32>>2]=b;c[a>>2]=b;return}c[e+36+(((c[(c[p>>2]|0)+40>>2]|0)==(o|0)&1)<<2)>>2]=b;c[b+36>>2]=o;c[p>>2]=b;c[f>>2]=d;c[d+32>>2]=b;while(1){b=e+4|0;if(((((+g[e>>2]<=n?+g[b>>2]<=m:0)?+g[e+8>>2]<=l:0)?+g[e+16>>2]>=k:0)?+g[e+20>>2]>=j:0)?+g[e+24>>2]>=i:0){b=21;break}d=c[e+36>>2]|0;a=c[e+40>>2]|0;q=+g[d>>2];n=+g[a>>2];n=q>2]=n;q=+g[d+16>>2];k=+g[a+16>>2];k=q>k?q:k;g[e+16>>2]=k;q=+g[d+4>>2];m=+g[a+4>>2];m=q>2]=m;q=+g[d+20>>2];j=+g[a+20>>2];j=q>j?q:j;g[e+20>>2]=j;q=+g[d+8>>2];l=+g[a+8>>2];l=q>2]=l;q=+g[d+24>>2];i=+g[a+24>>2];i=q>i?q:i;g[e+24>>2]=i;e=c[e+32>>2]|0;if(!e){b=21;break}}if((b|0)==21)return}function mf(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0;c[b+16>>2]=c[a+4>>2];c[b+20>>2]=c[a+8>>2];c[b+24>>2]=c[a+12>>2];c[b+28>>2]=c[a+16>>2];c[b+32>>2]=c[a+20>>2];c[b+36>>2]=c[a+24>>2];c[b+40>>2]=c[a+28>>2];c[b+44>>2]=c[a+32>>2];c[b+48>>2]=c[a+36>>2];c[b+52>>2]=c[a+40>>2];c[b+56>>2]=c[a+44>>2];c[b+60>>2]=c[a+48>>2];c[b+64>>2]=c[a+52>>2];c[b+68>>2]=c[a+56>>2];c[b+72>>2]=c[a+60>>2];c[b+76>>2]=c[a+64>>2];c[b+80>>2]=c[a+68>>2];c[b+84>>2]=c[a+72>>2];c[b+88>>2]=c[a+76>>2];c[b+92>>2]=c[a+80>>2];c[b+96>>2]=c[a+84>>2];c[b+100>>2]=c[a+88>>2];c[b+104>>2]=c[a+92>>2];c[b+108>>2]=c[a+96>>2];c[b+112>>2]=c[a+100>>2];c[b+116>>2]=c[a+104>>2];c[b+120>>2]=c[a+108>>2];c[b+124>>2]=c[a+112>>2];c[b+128>>2]=c[a+116>>2];c[b+132>>2]=c[a+120>>2];c[b+136>>2]=c[a+124>>2];c[b+140>>2]=c[a+128>>2];c[b+144>>2]=c[a+132>>2];c[b+148>>2]=c[a+136>>2];c[b+152>>2]=c[a+140>>2];c[b+156>>2]=c[a+144>>2];c[b+160>>2]=c[a+148>>2];c[b+164>>2]=c[a+152>>2];c[b+168>>2]=c[a+156>>2];c[b+172>>2]=c[a+160>>2];c[b+176>>2]=c[a+164>>2];c[b+180>>2]=c[a+168>>2];c[b+184>>2]=c[a+172>>2];c[b+188>>2]=c[a+176>>2];c[b+224>>2]=c[a+180>>2];c[b+192>>2]=c[a+184>>2];c[b>>2]=0;c[b+4>>2]=Zb[c[(c[d>>2]|0)+28>>2]&31](d,c[a+192>>2]|0)|0;c[b+8>>2]=0;c[b+228>>2]=c[a+204>>2];c[b+232>>2]=c[a+208>>2];c[b+236>>2]=c[a+212>>2];c[b+240>>2]=c[a+216>>2];c[b+196>>2]=c[a+220>>2];c[b+200>>2]=c[a+224>>2];c[b+204>>2]=c[a+232>>2];c[b+208>>2]=c[a+228>>2];c[b+244>>2]=c[a+236>>2];e=Zb[c[(c[d>>2]|0)+40>>2]&31](d,a)|0;f=Zb[c[(c[d>>2]|0)+28>>2]&31](d,e)|0;c[b+12>>2]=f;if(!f){d=a+244|0;d=c[d>>2]|0;f=b+212|0;c[f>>2]=d;f=a+248|0;f=c[f>>2]|0;d=b+216|0;c[d>>2]=f;d=a+252|0;d=c[d>>2]|0;f=b+220|0;c[f>>2]=d;a=a+256|0;a=c[a>>2]|0;f=b+248|0;c[f>>2]=a;return 13172}Cb[c[(c[d>>2]|0)+48>>2]&127](d,e);d=a+244|0;d=c[d>>2]|0;f=b+212|0;c[f>>2]=d;f=a+248|0;f=c[f>>2]|0;d=b+216|0;c[d>>2]=f;d=a+252|0;d=c[d>>2]|0;f=b+220|0;c[f>>2]=d;a=a+256|0;a=c[a>>2]|0;f=b+248|0;c[f>>2]=a;return 13172}function nf(b,d,e,f,h){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;var i=0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0;q=c[b+9288>>2]|0;if(!q){c[b>>2]=5;b=0;return b|0}i=c[q+48>>2]|0;if(i|0)c[i+44>>2]=c[q+44>>2];i=c[q+44>>2]|0;if(i|0)c[i+48>>2]=c[q+48>>2];if((c[b+9288>>2]|0)==(q|0))c[b+9288>>2]=c[q+48>>2];c[b+9292>>2]=(c[b+9292>>2]|0)+-1;c[q+44>>2]=0;c[q+48>>2]=c[b+9280>>2];i=c[b+9280>>2]|0;if(i|0)c[i+44>>2]=q;c[b+9280>>2]=q;c[b+9284>>2]=(c[b+9284>>2]|0)+1;a[q+55>>0]=0;c[q+20>>2]=d;c[q+24>>2]=e;c[q+28>>2]=f;m=+g[d+16>>2];j=+g[e+16>>2]-m;n=+g[d+20>>2];k=+g[e+20>>2]-n;o=+g[d+24>>2];l=+g[e+24>>2]-o;m=+g[f+16>>2]-m;n=+g[f+20>>2]-n;o=+g[f+24>>2]-o;g[q>>2]=k*o-l*n;g[q+4>>2]=l*m-j*o;g[q+8>>2]=j*n-k*m;g[q+12>>2]=0.0;p=+O(+((k*o-l*n)*(k*o-l*n)+(l*m-j*o)*(l*m-j*o)+(j*n-k*m)*(j*n-k*m)));do if(p>9.999999747378752e-05){if((!($k(k*o-l*n,l*m-j*o,j*n-k*m,+g[d+16>>2],+g[d+20>>2],+g[d+24>>2],+g[e+16>>2],+g[e+20>>2],+g[e+24>>2],q+16|0)|0)?!($k(+g[q>>2],+g[q+4>>2],+g[q+8>>2],+g[e+16>>2],+g[e+20>>2],+g[e+24>>2],+g[f+16>>2],+g[f+20>>2],+g[f+24>>2],q+16|0)|0):0)?!($k(+g[q>>2],+g[q+4>>2],+g[q+8>>2],+g[f+16>>2],+g[f+20>>2],+g[f+24>>2],+g[d+16>>2],+g[d+20>>2],+g[d+24>>2],q+16|0)|0):0)g[q+16>>2]=(+g[d+16>>2]*+g[q>>2]+ +g[d+20>>2]*+g[q+4>>2]+ +g[d+24>>2]*+g[q+8>>2])/p;g[q>>2]=1.0/p*+g[q>>2];g[q+4>>2]=1.0/p*+g[q+4>>2];g[q+8>>2]=1.0/p*+g[q+8>>2];if(h){b=q;return b|0}if(!(+g[q+16>>2]>=-9.999999747378752e-06)){c[b>>2]=3;break}else{b=q;return b|0}}else c[b>>2]=2;while(0);i=c[q+48>>2]|0;if(i|0)c[i+44>>2]=c[q+44>>2];i=c[q+44>>2]|0;if(i|0)c[i+48>>2]=c[q+48>>2];if((c[b+9280>>2]|0)==(q|0))c[b+9280>>2]=c[q+48>>2];c[b+9284>>2]=(c[b+9284>>2]|0)+-1;c[q+44>>2]=0;c[q+48>>2]=c[b+9288>>2];i=c[b+9288>>2]|0;if(i|0)c[i+44>>2]=q;c[b+9288>>2]=q;c[b+9292>>2]=(c[b+9292>>2]|0)+1;b=0;return b|0}function of(a,b,f){a=a|0;b=b|0;f=f|0;var j=0,k=0.0,l=0.0,m=0.0,n=0,o=0,p=0,q=0,r=0,s=0,t=0;t=i;i=i+32|0;o=c[a+4>>2]|0;Yb[c[(c[o>>2]|0)+16>>2]&3](o,t+28|0,t+24|0,t+20|0,t+16|0,t+12|0,t+8|0,t+4|0,t,b);o=(c[t+12>>2]|0)+(_(c[t+8>>2]|0,f)|0)|0;s=c[a+4>>2]|0;n=c[t>>2]|0;switch(n|0){case 3:{j=e[o+4>>1]|0;break}case 2:{j=c[o+8>>2]|0;break}default:j=d[o+2>>0]|0}r=(c[t+20>>2]|0)==0;p=c[t+28>>2]|0;q=c[t+16>>2]|0;j=p+(_(q,j)|0)|0;if(r){l=+g[j+8>>2]*+g[s+12>>2];m=+g[j+4>>2]*+g[s+8>>2];k=+g[j>>2]*+g[s+4>>2]}else{l=+h[j+16>>3]*+g[s+12>>2];m=+h[j+8>>3]*+g[s+8>>2];k=+h[j>>3]*+g[s+4>>2]}g[a+44>>2]=k;g[a+48>>2]=m;g[a+52>>2]=l;g[a+56>>2]=0.0;switch(n|0){case 3:{j=e[o+2>>1]|0;break}case 2:{j=c[o+4>>2]|0;break}default:j=d[o+1>>0]|0}j=p+(_(q,j)|0)|0;if(r){l=+g[j+8>>2]*+g[s+12>>2];m=+g[j+4>>2]*+g[s+8>>2];k=+g[j>>2]*+g[s+4>>2]}else{l=+h[j+16>>3]*+g[s+12>>2];m=+h[j+8>>3]*+g[s+8>>2];k=+h[j>>3]*+g[s+4>>2]}g[a+28>>2]=k;g[a+32>>2]=m;g[a+36>>2]=l;g[a+40>>2]=0.0;switch(n|0){case 3:{j=e[o>>1]|0;break}case 2:{j=c[o>>2]|0;break}default:j=d[o>>0]|0}j=p+(_(q,j)|0)|0;if(r){m=+g[j+8>>2]*+g[s+12>>2];l=+g[j+4>>2]*+g[s+8>>2];k=+g[j>>2]*+g[s+4>>2];r=a+12|0;g[r>>2]=k;r=a+16|0;g[r>>2]=l;r=a+20|0;g[r>>2]=m;r=a+24|0;g[r>>2]=0.0;r=a+8|0;r=c[r>>2]|0;q=c[r>>2]|0;q=q+8|0;q=c[q>>2]|0;s=a+12|0;mc[q&127](r,s,b,f);a=c[a+4>>2]|0;f=c[a>>2]|0;f=f+24|0;f=c[f>>2]|0;Cb[f&127](a,b);i=t;return}else{m=+h[j+16>>3]*+g[s+12>>2];l=+h[j+8>>3]*+g[s+8>>2];k=+h[j>>3]*+g[s+4>>2];r=a+12|0;g[r>>2]=k;r=a+16|0;g[r>>2]=l;r=a+20|0;g[r>>2]=m;r=a+24|0;g[r>>2]=0.0;r=a+8|0;r=c[r>>2]|0;q=c[r>>2]|0;q=q+8|0;q=c[q>>2]|0;s=a+12|0;mc[q&127](r,s,b,f);a=c[a+4>>2]|0;f=c[a>>2]|0;f=f+24|0;f=c[f>>2]|0;Cb[f&127](a,b);i=t;return}}function pf(b,d,e,f,h){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;var i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0;c[6435]=(c[6435]|0)+1;f=yc(479)|0;if(!f)s=0;else{c[(f+4+15&-16)+-4>>2]=f;s=f+4+15&-16}je(s,b,d,e);c[s>>2]=3872;a[s+340>>0]=1;c[s+336>>2]=0;c[s+328>>2]=0;c[s+332>>2]=0;k=s+352|0;g[k>>2]=1.2000000476837158;l=s+356|0;g[l>>2]=0.0;m=s+360|0;g[m>>2]=0.0;g[s+364>>2]=1.0e3;n=s+368|0;o=s+396|0;c[n>>2]=0;c[n+4>>2]=0;c[n+8>>2]=0;c[n+12>>2]=0;c[n+16>>2]=0;c[n+20>>2]=0;c[n+24>>2]=0;c[o>>2]=-1054867456;p=s+400|0;c[p>>2]=0;q=s+404|0;g[q>>2]=0.0;a[s+424>>0]=1;r=s+420|0;c[r>>2]=0;j=s+412|0;c[j>>2]=0;c[s+416>>2]=0;e=s+452|0;c[e>>2]=h;i=s+456|0;a[i>>0]=0;if(!h){c[6435]=(c[6435]|0)+1;f=yc(59)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}g[f+12>>2]=1.0;c[f+8>>2]=0;c[f+4>>2]=5;c[f>>2]=2996;a[f+36>>0]=1;c[f+32>>2]=0;c[f+24>>2]=0;c[f+28>>2]=0;a[f+16>>0]=1;c[e>>2]=f;a[i>>0]=1}c[s+344>>2]=4302;a[s+348>>0]=1;a[s+349>>0]=0;a[s+350>>0]=0;c[s+384>>2]=d;c[s+388>>2]=b;h=s+408|0;Ji(h);e=c[j>>2]|0;if((e|0)>0)i=0;else{r=s+428|0;g[r>>2]=.25;r=s+432|0;c[r>>2]=0;r=s+436|0;c[r>>2]=0;r=s+444|0;c[r>>2]=1;r=s+448|0;c[r>>2]=1;g[k>>2]=1.2000000476837158;g[l>>2]=0.0;g[m>>2]=0.0;r=s+392|0;c[r>>2]=0;c[n>>2]=0;c[n+4>>2]=0;c[n+8>>2]=0;c[n+12>>2]=0;c[o>>2]=-1054867456;c[p>>2]=0;g[q>>2]=0.0;Ji(h);return s|0}do{d=(c[r>>2]|0)+(i<<2)|0;f=c[d>>2]|0;c[d>>2]=0;if(f|0)do{d=f;f=c[f+280>>2]|0;hd(d)}while((f|0)!=0);i=i+1|0}while((i|0)!=(e|0));r=s+428|0;g[r>>2]=.25;r=s+432|0;c[r>>2]=0;r=s+436|0;c[r>>2]=0;r=s+444|0;c[r>>2]=1;r=s+448|0;c[r>>2]=1;g[k>>2]=1.2000000476837158;g[l>>2]=0.0;g[m>>2]=0.0;r=s+392|0;c[r>>2]=0;c[n>>2]=0;c[n+4>>2]=0;c[n+8>>2]=0;c[n+12>>2]=0;c[o>>2]=-1054867456;c[p>>2]=0;g[q>>2]=0.0;Ji(h);return s|0}function qf(a,b){a=a|0;b=b|0;var d=0.0,e=0.0,f=0,h=0,i=0,j=0,k=0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0;j=c[a+28>>2]|0;k=c[a+32>>2]|0;f=c[b+8>>2]|0;g[f>>2]=1.0;h=c[b+24>>2]|0;g[f+(h+1<<2)>>2]=1.0;g[f+((h<<1)+2<<2)>>2]=1.0;l=+g[a+300>>2];q=+g[a+304>>2];e=+g[a+308>>2];o=+g[j+4>>2]*l+ +g[j+8>>2]*q+ +g[j+12>>2]*e;m=l*+g[j+20>>2]+q*+g[j+24>>2]+e*+g[j+28>>2];e=l*+g[j+36>>2]+q*+g[j+40>>2]+e*+g[j+44>>2];f=c[b+12>>2]|0;c[f>>2]=0;g[f+4>>2]=e;g[f+8>>2]=-m;g[f+12>>2]=0.0;g[f+(h<<2)>>2]=-e;c[f+(h<<2)+4>>2]=0;g[f+(h<<2)+8>>2]=o;g[f+(h<<2)+12>>2]=0.0;g[f+(h<<1<<2)>>2]=m;g[f+(h<<1<<2)+4>>2]=-o;c[f+(h<<1<<2)+8>>2]=0;g[f+(h<<1<<2)+12>>2]=0.0;f=c[b+16>>2]|0;g[f>>2]=-1.0;g[f+(h+1<<2)>>2]=-1.0;g[f+((h<<1)+2<<2)>>2]=-1.0;q=+g[a+316>>2];l=+g[a+320>>2];d=+g[a+324>>2];p=+g[k+4>>2]*q+ +g[k+8>>2]*l+ +g[k+12>>2]*d;n=q*+g[k+20>>2]+l*+g[k+24>>2]+d*+g[k+28>>2];d=q*+g[k+36>>2]+l*+g[k+40>>2]+d*+g[k+44>>2];h=c[b+20>>2]|0;f=c[b+24>>2]|0;c[h>>2]=0;g[h+4>>2]=-d;g[h+8>>2]=n;g[h+12>>2]=0.0;g[h+(f<<2)>>2]=d;c[h+(f<<2)+4>>2]=0;g[h+(f<<2)+8>>2]=-p;g[h+(f<<2)+12>>2]=0.0;g[h+(f<<1<<2)>>2]=-n;g[h+(f<<1<<2)+4>>2]=p;c[h+(f<<1<<2)+8>>2]=0;g[h+(f<<1<<2)+12>>2]=0.0;f=c[a+332>>2]|0;l=+g[((f&1|0)==0?b+4|0:a+336|0)>>2]*+g[b>>2];h=c[b+24>>2]|0;i=c[b+28>>2]|0;g[i>>2]=l*(p+ +g[k+52>>2]-o-+g[j+52>>2]);g[i+(h<<2)>>2]=l*(n+ +g[k+56>>2]-m-+g[j+56>>2]);g[i+(h<<1<<2)>>2]=l*(d+ +g[k+60>>2]-e-+g[j+60>>2]);if(f&2|0){k=c[b+24>>2]|0;j=c[b+32>>2]|0;c[j>>2]=c[a+340>>2];c[j+(k<<2)>>2]=c[a+340>>2];c[j+(k<<1<<2)>>2]=c[a+340>>2]}e=+g[a+356>>2];if(e>0.0){g[c[b+36>>2]>>2]=-e;g[c[b+40>>2]>>2]=e;d=+g[a+356>>2]}else d=e;if(d>0.0){k=c[b+24>>2]|0;g[(c[b+36>>2]|0)+(k<<2)>>2]=-e;g[(c[b+40>>2]|0)+(k<<2)>>2]=e;d=+g[a+356>>2]}if(!(d>0.0)){j=a+352|0;j=c[j>>2]|0;k=b+52|0;c[k>>2]=j;return}j=c[b+24>>2]<<1;g[(c[b+36>>2]|0)+(j<<2)>>2]=-e;g[(c[b+40>>2]|0)+(j<<2)>>2]=e;j=a+352|0;j=c[j>>2]|0;k=b+52|0;c[k>>2]=j;return}function rf(b,d,e){b=b|0;d=d|0;e=e|0;var f=0,h=0,i=0,j=0,k=0,l=0,m=0;f=c[d+8>>2]|0;if((f|0)>0){h=c[d+16>>2]|0;j=0;e=0;do{i=c[h+(j<<2)>>2]|0;if(!(c[i+204>>2]&3)){c[i+208>>2]=e;e=e+1|0}c[i+212>>2]=-1;g[i+244>>2]=1.0;j=j+1|0}while((j|0)!=(f|0));j=e}else j=0;i=c[b+8>>2]|0;if((i|0)<(j|0)){if((c[b+12>>2]|0)<(j|0)){if(!j){e=0;f=i}else{c[6435]=(c[6435]|0)+1;e=yc((j<<3|3)+16|0)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}f=c[b+8>>2]|0}if((f|0)>0){h=0;do{m=(c[b+16>>2]|0)+(h<<3)|0;k=c[m+4>>2]|0;l=e+(h<<3)|0;c[l>>2]=c[m>>2];c[l+4>>2]=k;h=h+1|0}while((h|0)!=(f|0))}f=c[b+16>>2]|0;if(f|0){if(a[b+20>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}c[b+16>>2]=0}a[b+20>>0]=1;c[b+16>>2]=e;c[b+12>>2]=j;f=b+16|0}else f=b+16|0;e=i;do{m=(c[f>>2]|0)+(e<<3)|0;c[m>>2]=0;c[m+4>>2]=0;e=e+1|0}while((e|0)!=(j|0))}c[b+8>>2]=j;if((j|0)>0){e=c[b+16>>2]|0;f=0;do{c[e+(f<<3)>>2]=f;c[e+(f<<3)+4>>2]=1;f=f+1|0}while((f|0)!=(j|0))}e=c[d+68>>2]|0;e=Eb[c[(c[e>>2]|0)+36>>2]&127](e)|0;l=Eb[c[(c[e>>2]|0)+36>>2]&127](e)|0;if(!l)return;d=Eb[c[(c[e>>2]|0)+20>>2]&127](e)|0;if((l|0)<=0)return;k=0;do{e=c[c[d+(k<<4)>>2]>>2]|0;f=c[c[d+(k<<4)+4>>2]>>2]|0;if((e|0?(f|0?(c[e+204>>2]&7|0)==0:0):0)?(c[f+204>>2]&7|0)==0:0){i=c[e+208>>2]|0;e=c[f+208>>2]|0;j=c[b+16>>2]|0;f=c[j+(i<<3)>>2]|0;if((f|0)!=(i|0)){h=j+(i<<3)|0;do{i=j+(f<<3)|0;c[h>>2]=c[i>>2];i=c[i>>2]|0;h=j+(i<<3)|0;f=c[h>>2]|0}while((i|0)!=(f|0))}f=c[j+(e<<3)>>2]|0;if((f|0)!=(e|0)){h=j+(e<<3)|0;do{e=j+(f<<3)|0;c[h>>2]=c[e>>2];e=c[e>>2]|0;h=j+(e<<3)|0;f=c[h>>2]|0}while((e|0)!=(f|0))}if((i|0)!=(e|0)){c[j+(i<<3)>>2]=e;m=j+(e<<3)+4|0;c[m>>2]=(c[m>>2]|0)+(c[j+(i<<3)+4>>2]|0)}}k=k+1|0}while((k|0)!=(l|0));return}function sf(b,d,e,f,g){b=b|0;d=d|0;e=e|0;f=f|0;g=g|0;var h=0,i=0,j=0,k=0;a:do if((b|0)==(c[d+8>>2]|0)){if((c[d+4>>2]|0)==(e|0)?(c[d+28>>2]|0)!=1:0)c[d+28>>2]=f}else{if((b|0)!=(c[d>>2]|0)){i=c[b+12>>2]|0;$n(b+16|0,d,e,f,g);if((i|0)<=1)break;h=c[b+8>>2]|0;if((h&2|0)==0?(c[d+36>>2]|0)!=1:0){if(!(h&1)){h=b+24|0;while(1){if(a[d+54>>0]|0)break a;if((c[d+36>>2]|0)==1)break a;$n(h,d,e,f,g);h=h+8|0;if(h>>>0>=(b+16+(i<<3)|0)>>>0)break a}}h=b+24|0;while(1){if(a[d+54>>0]|0)break a;if((c[d+36>>2]|0)==1?(c[d+24>>2]|0)==1:0)break a;$n(h,d,e,f,g);h=h+8|0;if(h>>>0>=(b+16+(i<<3)|0)>>>0)break a}}h=b+24|0;while(1){if(a[d+54>>0]|0)break a;$n(h,d,e,f,g);h=h+8|0;if(h>>>0>=(b+16+(i<<3)|0)>>>0)break a}}if((c[d+16>>2]|0)!=(e|0)?(c[d+20>>2]|0)!=(e|0):0){c[d+32>>2]=f;if((c[d+44>>2]|0)==4)break;f=b+16+(c[b+12>>2]<<3)|0;k=0;h=0;j=b+16|0;b:while(1){if(j>>>0>=f>>>0){i=20;break}a[d+52>>0]=0;a[d+53>>0]=0;On(j,d,e,e,1,g);if(a[d+54>>0]|0){i=20;break}do if(a[d+53>>0]|0){if(!(a[d+52>>0]|0))if(!(c[b+8>>2]&1)){h=1;i=20;break b}else{i=k;h=1;break}if((c[d+24>>2]|0)==1){i=25;break b}if(!(c[b+8>>2]&2)){i=25;break b}else{i=1;h=1}}else i=k;while(0);k=i;j=j+8|0}do if((i|0)==20){if((!k?(c[d+20>>2]=e,c[d+40>>2]=(c[d+40>>2]|0)+1,(c[d+36>>2]|0)==1):0)?(c[d+24>>2]|0)==2:0){a[d+54>>0]=1;if(h){i=25;break}else{h=4;break}}if(h)i=25;else h=4}while(0);if((i|0)==25)h=3;c[d+44>>2]=h;break}if((f|0)==1)c[d+32>>2]=1}while(0);return}function tf(b,d,e,f,h){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;var i=0,j=0;c[6435]=(c[6435]|0)+1;i=yc(1147)|0;if(!i)i=0;else{c[(i+4+15&-16)+-4>>2]=i;i=i+4+15&-16}c[i+4>>2]=7;c[i+8>>2]=-1;c[i+12>>2]=-1;g[i+16>>2]=3402823466385288598117041.0e14;a[i+20>>0]=1;a[i+21>>0]=0;c[i+24>>2]=-1;j=i+28|0;c[j>>2]=b;b=i+32|0;c[b>>2]=d;g[i+36>>2]=0.0;g[i+40>>2]=.30000001192092896;c[i+44>>2]=0;c[i>>2]=4596;a[i+48>>0]=0;d=i+52|0;c[d>>2]=c[e>>2];c[d+4>>2]=c[e+4>>2];c[d+8>>2]=c[e+8>>2];c[d+12>>2]=c[e+12>>2];d=i+68|0;c[d>>2]=c[e+16>>2];c[d+4>>2]=c[e+16+4>>2];c[d+8>>2]=c[e+16+8>>2];c[d+12>>2]=c[e+16+12>>2];d=i+84|0;c[d>>2]=c[e+32>>2];c[d+4>>2]=c[e+32+4>>2];c[d+8>>2]=c[e+32+8>>2];c[d+12>>2]=c[e+32+12>>2];d=i+100|0;c[d>>2]=c[e+48>>2];c[d+4>>2]=c[e+48+4>>2];c[d+8>>2]=c[e+48+8>>2];c[d+12>>2]=c[e+48+12>>2];e=i+116|0;c[e>>2]=c[f>>2];c[e+4>>2]=c[f+4>>2];c[e+8>>2]=c[f+8>>2];c[e+12>>2]=c[f+12>>2];e=i+132|0;c[e>>2]=c[f+16>>2];c[e+4>>2]=c[f+16+4>>2];c[e+8>>2]=c[f+16+8>>2];c[e+12>>2]=c[f+16+12>>2];e=i+148|0;c[e>>2]=c[f+32>>2];c[e+4>>2]=c[f+32+4>>2];c[e+8>>2]=c[f+32+8>>2];c[e+12>>2]=c[f+32+12>>2];e=i+164|0;c[e>>2]=c[f+48>>2];c[e+4>>2]=c[f+48+4>>2];c[e+8>>2]=c[f+48+8>>2];c[e+12>>2]=c[f+48+12>>2];a[i+180>>0]=h&1;g[i+184>>2]=1.0;g[i+188>>2]=-1.0;g[i+192>>2]=0.0;g[i+196>>2]=0.0;g[i+200>>2]=1.0;g[i+204>>2]=.699999988079071;g[i+208>>2]=0.0;g[i+212>>2]=0.0;g[i+216>>2]=1.0;g[i+220>>2]=.699999988079071;g[i+224>>2]=0.0;g[i+228>>2]=0.0;g[i+264>>2]=1.0;g[i+268>>2]=.699999988079071;g[i+272>>2]=1.0;g[i+276>>2]=0.0;g[i+280>>2]=1.0;g[i+284>>2]=.699999988079071;g[i+288>>2]=1.0;g[i+292>>2]=0.0;g[i+232>>2]=1.0;g[i+236>>2]=.699999988079071;g[i+240>>2]=1.0;g[i+244>>2]=0.0;g[i+248>>2]=1.0;g[i+252>>2]=.699999988079071;g[i+256>>2]=1.0;g[i+260>>2]=0.0;a[i+1096>>0]=0;h=i+1100|0;g[i+1116>>2]=0.0;g[i+1120>>2]=0.0;g[i+1124>>2]=0.0;c[i+300>>2]=0;c[h>>2]=0;c[h+4>>2]=0;c[h+8>>2]=0;a[h+12>>0]=0;a[i+49>>0]=1;kd(i,(c[j>>2]|0)+4|0,(c[b>>2]|0)+4|0);return i|0}function uf(d,e,f){d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0;c[6165]=(c[6165]|0)+1;g=c[d+24>>2]|0;if(!g){g=c[e+4>>2]|0;if(!((b[f+6>>1]&(g&65535))<<16>>16)){d=0;return d|0}if(!((b[f+4>>1]&(g>>>16&65535))<<16>>16)){d=0;return d|0}}else if(!(Ob[c[(c[g>>2]|0)+8>>2]&63](g,e,f)|0)){d=0;return d|0}l=(c[e+12>>2]|0)>(c[f+12>>2]|0);m=l?f:e;h=c[m+12>>2]|0;l=l?e:f;e=c[l+12>>2]|0;j=((e<<16|h)+~((e<<16|h)<<15)>>10^(e<<16|h)+~((e<<16|h)<<15))*9|0;j=(j>>6^j)+~((j>>6^j)<<11)>>16^(j>>6^j)+~((j>>6^j)<<11);k=c[d+12>>2]|0;g=c[(c[d+44>>2]|0)+((j&k+-1)<<2)>>2]|0;a:do if((g|0)!=-1){f=c[d+16>>2]|0;while(1){if((c[(c[f+(g<<4)>>2]|0)+12>>2]|0)==(h|0)?(c[(c[f+(g<<4)+4>>2]|0)+12>>2]|0)==(e|0):0)break;g=c[(c[d+64>>2]|0)+(g<<2)>>2]|0;if((g|0)==-1)break a}g=f+(g<<4)|0;if(g|0){d=g;return d|0}}while(0);i=c[d+8>>2]|0;if((i|0)==(k|0)){g=k|0?k<<1:1;if((k|0)<(g|0)){if(!g){e=0;f=k}else{c[6435]=(c[6435]|0)+1;e=yc((g<<4|3)+16|0)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}f=c[d+8>>2]|0}if((f|0)>0){h=0;do{n=c[d+16>>2]|0;c[e+(h<<4)>>2]=c[n+(h<<4)>>2];c[e+(h<<4)+4>>2]=c[n+(h<<4)+4>>2];c[e+(h<<4)+8>>2]=c[n+(h<<4)+8>>2];c[e+(h<<4)+12>>2]=c[n+(h<<4)+12>>2];h=h+1|0}while((h|0)!=(f|0))}h=c[d+16>>2]|0;if(h){if(a[d+20>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0);f=c[d+8>>2]|0}c[d+16>>2]=0}a[d+20>>0]=1;c[d+16>>2]=e;c[d+12>>2]=g}else{f=k;g=k}}else{f=i;g=k}c[d+8>>2]=f+1;f=c[d+16>>2]|0;e=c[d+72>>2]|0;if(e){Ob[c[(c[e>>2]|0)+8>>2]&63](e,m,l)|0;g=c[d+12>>2]|0}if((k|0)<(g|0)){Hf(d);g=(c[d+12>>2]|0)+-1&j}else g=j&k+-1;n=(c[m+12>>2]|0)<(c[l+12>>2]|0);c[f+(i<<4)>>2]=n?m:l;c[f+(i<<4)+4>>2]=n?l:m;c[f+(i<<4)+8>>2]=0;c[f+(i<<4)+8+4>>2]=0;n=(c[d+44>>2]|0)+(g<<2)|0;c[(c[d+64>>2]|0)+(i<<2)>>2]=c[n>>2];c[n>>2]=i;n=f+(i<<4)|0;return n|0}function vf(a,b,d){a=a|0;b=b|0;d=d|0;var e=0.0,f=0.0,h=0.0,i=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0;u=+g[b>>2];t=+g[b+4>>2];s=+g[b+8>>2];r=1.0/+O(+(u*u+t*t+s*s));y=+g[d>>2];x=+g[d+4>>2];w=+g[d+8>>2];v=1.0/+O(+(y*y+x*x+w*w));B=s*r*x*v-t*r*w*v;A=u*r*w*v-s*r*y*v;z=t*r*y*v-u*r*x*v;d=c[a+28>>2]|0;e=+g[d+4>>2];h=+g[d+20>>2];j=+g[d+36>>2];f=+g[d+8>>2];i=+g[d+24>>2];k=+g[d+40>>2];l=+g[d+12>>2];n=+g[d+28>>2];p=+g[d+44>>2];m=-+g[d+52>>2];o=-+g[d+56>>2];q=-+g[d+60>>2];g[a+48>>2]=z*j+(e*B+h*A);g[a+52>>2]=e*y*v+x*v*h+w*v*j;g[a+56>>2]=u*r*e+t*r*h+s*r*j;g[a+60>>2]=0.0;g[a+64>>2]=B*f+A*i+z*k;g[a+68>>2]=y*v*f+x*v*i+w*v*k;g[a+72>>2]=u*r*f+t*r*i+s*r*k;g[a+76>>2]=0.0;g[a+80>>2]=B*l+A*n+z*p;g[a+84>>2]=y*v*l+x*v*n+w*v*p;g[a+88>>2]=u*r*l+t*r*n+s*r*p;g[a+92>>2]=0.0;g[a+96>>2]=e*0.0+h*0.0+j*0.0+(e*m+h*o+j*q);g[a+100>>2]=f*0.0+i*0.0+k*0.0+(f*m+i*o+k*q);g[a+104>>2]=l*0.0+n*0.0+p*0.0+(l*m+n*o+p*q);g[a+108>>2]=0.0;d=c[a+32>>2]|0;q=+g[d+4>>2];p=+g[d+20>>2];o=+g[d+36>>2];n=+g[d+8>>2];m=+g[d+24>>2];l=+g[d+40>>2];k=+g[d+12>>2];i=+g[d+28>>2];f=+g[d+44>>2];j=-+g[d+52>>2];h=-+g[d+56>>2];e=-+g[d+60>>2];g[a+112>>2]=B*q+A*p+z*o;g[a+116>>2]=y*v*q+x*v*p+w*v*o;g[a+120>>2]=u*r*q+t*r*p+s*r*o;g[a+124>>2]=0.0;g[a+128>>2]=B*n+A*m+z*l;g[a+132>>2]=y*v*n+x*v*m+w*v*l;g[a+136>>2]=u*r*n+t*r*m+s*r*l;g[a+140>>2]=0.0;g[a+144>>2]=B*k+A*i+z*f;g[a+148>>2]=y*v*k+x*v*i+w*v*f;g[a+152>>2]=u*r*k+t*r*i+s*r*f;g[a+156>>2]=0.0;g[a+160>>2]=q*0.0+p*0.0+o*0.0+(q*j+p*h+o*e);g[a+164>>2]=n*0.0+m*0.0+l*0.0+(n*j+m*h+l*e);g[a+168>>2]=k*0.0+i*0.0+f*0.0+(k*j+i*h+f*e);g[a+172>>2]=0.0;sd(a,(c[a+28>>2]|0)+4|0,(c[a+32>>2]|0)+4|0);return}function wf(b,d,e){b=b|0;d=d|0;e=e|0;var f=0,h=0,j=0,k=0.0,l=0,m=0,n=0,o=0.0;n=i;i=i+16|0;c[6138]=(c[6138]|0)+1;if(!(c[b+4>>2]&2))f=4972;else{f=c[d+192>>2]|0;o=+cc[c[(c[f>>2]|0)+20>>2]&1](f,.019999999552965164);g[n+4>>2]=o;f=c[e+192>>2]|0;k=+cc[c[(c[f>>2]|0)+20>>2]&1](f,.019999999552965164);g[n>>2]=k;f=o>2]|0;o=+g[d+184>>2];k=+g[e+184>>2];k=o>2]|0;h=c[f+8>>2]|0;if(!h){if(c[b+4>>2]&4|0){b=0;i=n;return b|0}c[6435]=(c[6435]|0)+1;f=yc(791)|0;if(!f)l=0;else{c[(f+4+15&-16)+-4>>2]=f;l=f+4+15&-16}}else{l=c[f+12>>2]|0;c[f+12>>2]=c[l>>2];c[f+8>>2]=h+-1}c[l>>2]=1025;c[l+116>>2]=0;a[l+120>>0]=0;f=l+124|0;c[f>>2]=0;c[f+4>>2]=0;c[f+8>>2]=0;c[f+12>>2]=0;c[f+16>>2]=0;c[f+20>>2]=0;c[f+24>>2]=0;c[f+28>>2]=0;c[l+300>>2]=0;a[l+304>>0]=0;f=l+308|0;c[f>>2]=0;c[f+4>>2]=0;c[f+8>>2]=0;c[f+12>>2]=0;c[f+16>>2]=0;c[f+20>>2]=0;c[f+24>>2]=0;c[f+28>>2]=0;c[l+484>>2]=0;a[l+488>>0]=0;f=l+492|0;c[f>>2]=0;c[f+4>>2]=0;c[f+8>>2]=0;c[f+12>>2]=0;c[f+16>>2]=0;c[f+20>>2]=0;c[f+24>>2]=0;c[f+28>>2]=0;c[l+668>>2]=0;a[l+672>>0]=0;f=l+676|0;c[f>>2]=0;c[f+4>>2]=0;c[f+8>>2]=0;c[f+12>>2]=0;c[f+16>>2]=0;c[f+20>>2]=0;c[f+24>>2]=0;c[f+28>>2]=0;c[l+740>>2]=d;c[l+744>>2]=e;c[l+748>>2]=0;c[l+752>>2]=j;g[l+756>>2]=k;d=l;f=c[b+12>>2]|0;c[l+768>>2]=f;if((f|0)==(c[b+16>>2]|0)?(m=f|0?f<<1:1,(f|0)<(m|0)):0){if(!m)j=0;else{c[6435]=(c[6435]|0)+1;f=yc((m<<2|3)+16|0)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}j=f;f=c[b+12>>2]|0}if((f|0)>0){h=0;do{c[j+(h<<2)>>2]=c[(c[b+20>>2]|0)+(h<<2)>>2];h=h+1|0}while((h|0)!=(f|0))}h=c[b+20>>2]|0;if(h){if(a[b+24>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0);f=c[b+12>>2]|0}c[b+20>>2]=0}a[b+24>>0]=1;c[b+20>>2]=j;c[b+16>>2]=m}c[(c[b+20>>2]|0)+(f<<2)>>2]=d;c[b+12>>2]=f+1;b=l;i=n;return b|0}function xf(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0,h=0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0,s=0,t=0.0,u=0.0,v=0.0,w=0,x=0;w=i;i=i+32|0;s=c[a+12>>2]|0;t=+g[s+(((e+d|0)/2|0)*24|0)>>2];u=+g[s+(((e+d|0)/2|0)*24|0)+4>>2];v=+g[s+(((e+d|0)/2|0)*24|0)+8>>2];q=+g[s+(((e+d|0)/2|0)*24|0)+16>>2];r=c[s+(((e+d|0)/2|0)*24|0)+20>>2]|0;f=d;h=e;while(1){m=+g[b>>2];n=+g[b+4>>2];o=+g[b+8>>2];p=(t-m)*(t-m)+(u-n)*(u-n)+(v-o)*(v-o);a:while(1){j=+g[s+(f*24|0)+16>>2];do if(j!=q){if(!(j>2]-m;k=+g[s+(f*24|0)+4>>2]-n;l=+g[s+(f*24|0)+8>>2]-o;if(j*j+k*k+l*l!=p)if(j*j+k*k+l*l>2]|0)<(r|0))break;else break a}while(0);f=f+1|0}b:while(1){j=+g[s+(h*24|0)+16>>2];do if(q!=j){if(!(q>2]-m;k=+g[s+(h*24|0)+4>>2]-n;l=+g[s+(h*24|0)+8>>2]-o;if(p!=j*j+k*k+l*l)if(p>2]|0))break;else break b}while(0);h=h+-1|0}if((f|0)<=(h|0)){x=s+(f*24|0)|0;c[w>>2]=c[x>>2];c[w+4>>2]=c[x+4>>2];c[w+8>>2]=c[x+8>>2];c[w+12>>2]=c[x+12>>2];c[w+16>>2]=c[x+16>>2];c[w+20>>2]=c[x+20>>2];s=s+(h*24|0)|0;c[x>>2]=c[s>>2];c[x+4>>2]=c[s+4>>2];c[x+8>>2]=c[s+8>>2];c[x+12>>2]=c[s+12>>2];c[x+16>>2]=c[s+16>>2];c[x+20>>2]=c[s+20>>2];s=(c[a+12>>2]|0)+(h*24|0)|0;c[s>>2]=c[w>>2];c[s+4>>2]=c[w+4>>2];c[s+8>>2]=c[w+8>>2];c[s+12>>2]=c[w+12>>2];c[s+16>>2]=c[w+16>>2];c[s+20>>2]=c[w+20>>2];f=f+1|0;h=h+-1|0}if((f|0)>(h|0))break;s=c[a+12>>2]|0}if((h|0)>(d|0))xf(a,b,d,h);if((f|0)>=(e|0)){i=w;return}xf(a,b,f,e);i=w;return}function yf(a,b,d){a=a|0;b=+b;d=+d;var e=0.0,f=0,h=0,i=0,j=0,l=0,m=0.0,n=0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0,v=0.0,w=0.0,x=0,y=0,z=0;z=c[a+832>>2]|0;if((z|0)<=0)return;n=c[a+840>>2]|0;y=0;do{u=c[n+(y*56|0)>>2]|0;x=c[n+(y*56|0)+4>>2]|0;a=c[x+8>>2]|0;f=c[x+12>>2]|0;h=c[x+16>>2]|0;i=n+(y*56|0)+8|0;v=+g[i>>2];j=n+(y*56|0)+12|0;t=+g[j>>2];l=n+(y*56|0)+16|0;s=+g[l>>2];b=+g[a+8>>2]*v+ +g[f+8>>2]*t+ +g[h+8>>2]*s;d=+g[a+12>>2]*v+ +g[f+12>>2]*t+ +g[h+12>>2]*s;e=+g[a+16>>2]*v+ +g[f+16>>2]*t+ +g[h+16>>2]*s;m=+g[u+8>>2];o=+g[u+12>>2];p=+g[u+16>>2];q=m-+g[u+24>>2]-(b-(v*+g[a+24>>2]+t*+g[f+24>>2]+s*+g[h+24>>2]));r=o-+g[u+28>>2]-(d-(v*+g[a+28>>2]+t*+g[f+28>>2]+s*+g[h+28>>2]));s=p-+g[u+32>>2]-(e-(v*+g[a+32>>2]+t*+g[f+32>>2]+s*+g[h+32>>2]));t=+g[n+(y*56|0)+24>>2];v=+g[n+(y*56|0)+28>>2];w=+g[n+(y*56|0)+32>>2];if(q*t+r*v+s*w<0.0){e=+g[n+(y*56|0)+40>>2]-(m*t+o*v+p*w-(b*t+d*v+e*w));a=(g[k>>2]=t*e+0.0,c[k>>2]|0);f=(g[k>>2]=v*e+0.0,c[k>>2]|0);h=(g[k>>2]=w*e+0.0,c[k>>2]|0)}else{a=0;f=0;h=0}b=+g[n+(y*56|0)+44>>2];d=(c[k>>2]=a,+g[k>>2])-b*(q-t*(q*t+r*v+s*w));e=(c[k>>2]=f,+g[k>>2])-b*(r-v*(q*t+r*v+s*w));v=(c[k>>2]=h,+g[k>>2])-b*(s-w*(q*t+r*v+s*w));w=+g[n+(y*56|0)+48>>2];g[u+8>>2]=m+w*d;g[u+12>>2]=o+w*e;g[u+16>>2]=w*v+p;h=c[x+8>>2]|0;u=n+(y*56|0)+52|0;w=+g[u>>2]*+g[i>>2];g[h+8>>2]=+g[h+8>>2]-d*w;g[h+12>>2]=+g[h+12>>2]-e*w;g[h+16>>2]=+g[h+16>>2]-v*w;i=c[x+12>>2]|0;w=+g[u>>2]*+g[j>>2];g[i+8>>2]=+g[i+8>>2]-d*w;g[i+12>>2]=+g[i+12>>2]-e*w;g[i+16>>2]=+g[i+16>>2]-v*w;x=c[x+16>>2]|0;w=+g[u>>2]*+g[l>>2];g[x+8>>2]=+g[x+8>>2]-d*w;g[x+12>>2]=+g[x+12>>2]-e*w;g[x+16>>2]=+g[x+16>>2]-v*w;y=y+1|0}while((y|0)!=(z|0));return}function zf(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0;c[6164]=(c[6164]|0)+1;j=(c[b+12>>2]|0)>(c[d+12>>2]|0);l=j?d:b;h=c[l+12>>2]|0;j=j?b:d;f=c[j+12>>2]|0;i=((f<<16|h)+~((f<<16|h)<<15)>>10^(f<<16|h)+~((f<<16|h)<<15))*9|0;i=((i>>6^i)+~((i>>6^i)<<11)>>16^(i>>6^i)+~((i>>6^i)<<11))&(c[a+12>>2]|0)+-1;b=c[(c[a+44>>2]|0)+(i<<2)>>2]|0;if((b|0)==-1){o=0;return o|0}g=c[a+16>>2]|0;d=b;while(1){if((c[(c[g+(d<<4)>>2]|0)+12>>2]|0)==(h|0)?(c[(c[g+(d<<4)+4>>2]|0)+12>>2]|0)==(f|0):0)break;b=c[(c[a+64>>2]|0)+(d<<2)>>2]|0;if((b|0)==-1){b=0;o=24;break}else d=b}if((o|0)==24)return b|0;b=g+(d<<4)|0;if(!b){o=0;return o|0}ic[c[(c[a>>2]|0)+32>>2]&127](a,b,e);n=c[g+(d<<4)+12>>2]|0;m=b-(c[a+16>>2]|0)>>4;h=(c[a+44>>2]|0)+(i<<2)|0;b=c[h>>2]|0;d=c[a+64>>2]|0;if((b|0)!=(m|0)){g=b;while(1){f=d+(g<<2)|0;b=c[f>>2]|0;if((b|0)==(m|0))break;else g=b}b=c[d+(m<<2)>>2]|0;if((g|0)==-1)o=12;else c[f>>2]=b}else{b=c[d+(m<<2)>>2]|0;o=12}if((o|0)==12)c[h>>2]=b;k=(c[a+8>>2]|0)+-1|0;b=c[a+72>>2]|0;if(b|0)Ib[c[(c[b>>2]|0)+12>>2]&31](b,l,j,e)|0;if((k|0)==(m|0)){c[a+8>>2]=(c[a+8>>2]|0)+-1;o=n;return o|0}j=c[a+16>>2]|0;h=c[(c[j+(k<<4)+4>>2]|0)+12>>2]<<16|c[(c[j+(k<<4)>>2]|0)+12>>2];h=(h+~(h<<15)>>10^h+~(h<<15))*9|0;h=((h>>6^h)+~((h>>6^h)<<11)>>16^(h>>6^h)+~((h>>6^h)<<11))&(c[a+12>>2]|0)+-1;i=(c[a+44>>2]|0)+(h<<2)|0;b=c[i>>2]|0;d=c[a+64>>2]|0;if((b|0)!=(k|0)){g=b;while(1){f=d+(g<<2)|0;b=c[f>>2]|0;if((b|0)==(k|0))break;else g=b}b=c[d+(k<<2)>>2]|0;if((g|0)==-1)o=22;else c[f>>2]=b}else{b=c[d+(k<<2)>>2]|0;o=22}if((o|0)==22)c[i>>2]=b;c[j+(m<<4)>>2]=c[j+(k<<4)>>2];c[j+(m<<4)+4>>2]=c[j+(k<<4)+4>>2];c[j+(m<<4)+8>>2]=c[j+(k<<4)+8>>2];c[j+(m<<4)+12>>2]=c[j+(k<<4)+12>>2];o=(c[a+44>>2]|0)+(h<<2)|0;c[(c[a+64>>2]|0)+(m<<2)>>2]=c[o>>2];c[o>>2]=m;c[a+8>>2]=(c[a+8>>2]|0)+-1;o=n;return o|0}function Af(b,d,e,f,h){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;var i=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0,t=0.0,u=0.0,v=0,w=0.0,x=0,y=0,z=0,A=0,B=0,C=0,D=0.0,E=0,F=0.0,G=0.0,H=0.0,I=0.0,J=0.0,K=0.0,L=0.0,M=0.0,N=0.0,O=0.0,P=0.0;z=(a[b+28>>0]|0)!=0;C=z?e:d;z=z?d:e;A=c[b+12>>2]|0;if((A|0)<=0){w=1.0;return +w}y=(c[C+192>>2]|0)+24|0;j=+g[C+4>>2];t=+g[C+8>>2];u=+g[C+12>>2];v=c[C+16>>2]|0;w=+g[C+20>>2];k=+g[C+24>>2];l=+g[C+28>>2];d=c[C+32>>2]|0;m=+g[C+36>>2];n=+g[C+40>>2];o=+g[C+44>>2];e=c[C+48>>2]|0;p=+g[C+52>>2];q=+g[C+56>>2];r=+g[C+60>>2];s=c[C+64>>2]|0;x=c[C+260>>2]|0;i=1.0;B=0;do{E=c[y>>2]|0;P=+g[E+(B*80|0)>>2];O=+g[E+(B*80|0)+16>>2];N=+g[E+(B*80|0)+32>>2];M=+g[E+(B*80|0)+4>>2];L=+g[E+(B*80|0)+20>>2];K=+g[E+(B*80|0)+36>>2];J=+g[E+(B*80|0)+8>>2];I=+g[E+(B*80|0)+24>>2];H=+g[E+(B*80|0)+40>>2];G=+g[E+(B*80|0)+48>>2];F=+g[E+(B*80|0)+52>>2];D=+g[E+(B*80|0)+56>>2];c[C+260>>2]=x+1;g[C+4>>2]=j*P+t*O+u*N;g[C+8>>2]=j*M+t*L+u*K;g[C+12>>2]=j*J+t*I+u*H;g[C+16>>2]=0.0;g[C+20>>2]=w*P+k*O+l*N;g[C+24>>2]=w*M+k*L+l*K;g[C+28>>2]=w*J+k*I+l*H;g[C+32>>2]=0.0;g[C+36>>2]=m*P+n*O+o*N;g[C+40>>2]=m*M+n*L+o*K;g[C+44>>2]=m*J+n*I+o*H;g[C+48>>2]=0.0;g[C+52>>2]=p+(j*G+t*F+u*D);g[C+56>>2]=q+(w*G+k*F+l*D);g[C+60>>2]=r+(m*G+n*F+o*D);g[C+64>>2]=0.0;E=c[(c[b+20>>2]|0)+(B<<2)>>2]|0;D=+Mb[c[(c[E>>2]|0)+12>>2]&15](E,C,z,f,h);i=D>2]|0)+1|0;c[C+260>>2]=x;g[C+4>>2]=j;g[C+8>>2]=t;g[C+12>>2]=u;c[C+16>>2]=v;g[C+20>>2]=w;g[C+24>>2]=k;g[C+28>>2]=l;c[C+32>>2]=d;g[C+36>>2]=m;g[C+40>>2]=n;g[C+44>>2]=o;c[C+48>>2]=e;g[C+52>>2]=p;g[C+56>>2]=q;g[C+60>>2]=r;c[C+64>>2]=s;B=B+1|0}while((B|0)!=(A|0));return +i}function Bf(b,d){b=b|0;d=d|0;var e=0,f=0,g=0,h=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0;p=i;i=i+32|0;a[p+16>>0]=1;c[p+12>>2]=0;c[p+4>>2]=0;c[p+8>>2]=0;e=c[b+8>>2]|0;if((e|0)>0){g=0;h=0;f=0;n=0;while(1){l=c[b+16>>2]|0;m=l+(n<<4)|0;if((g|0)==(f|0)){k=f|0?f<<1:1;if((f|0)<(k|0)){if(k){c[6435]=(c[6435]|0)+1;e=yc((k<<4|3)+16|0)|0;if(!e){j=0;f=g}else{c[(e+4+15&-16)+-4>>2]=e;j=e+4+15&-16;f=g}}else j=0;if((f|0)>0){e=0;do{h=c[p+12>>2]|0;c[j+(e<<4)>>2]=c[h+(e<<4)>>2];c[j+(e<<4)+4>>2]=c[h+(e<<4)+4>>2];c[j+(e<<4)+8>>2]=c[h+(e<<4)+8>>2];c[j+(e<<4)+12>>2]=c[h+(e<<4)+12>>2];e=e+1|0}while((e|0)!=(f|0))}e=c[p+12>>2]|0;if(!e)g=f;else{c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0);c[p+12>>2]=0}a[p+16>>0]=1;c[p+12>>2]=j;c[p+8>>2]=k;e=c[b+8>>2]|0;h=g}else{k=f;j=h;h=f}}else{k=f;j=h;h=g}c[j+(h<<4)>>2]=c[m>>2];c[j+(h<<4)+4>>2]=c[l+(n<<4)+4>>2];c[j+(h<<4)+8>>2]=c[l+(n<<4)+8>>2];c[j+(h<<4)+12>>2]=c[l+(n<<4)+12>>2];g=h+1|0;n=n+1|0;if((n|0)>=(e|0))break;else{h=j;f=k}}c[p+4>>2]=g;if((h|0)>-1){e=c[p+12>>2]|0;f=0;while(1){Ib[c[(c[b>>2]|0)+12>>2]&31](b,c[e+(f<<4)>>2]|0,c[e+(f<<4)+4>>2]|0,d)|0;if((f|0)<(h|0))f=f+1|0;else break}}}else g=0;if((c[b+56>>2]|0)>0){e=c[b+64>>2]|0;f=0;do{c[e+(f<<2)>>2]=-1;f=f+1|0}while((f|0)<(c[b+56>>2]|0))}if((g|0)<=1)if((g|0)>0)o=24;else e=c[p+12>>2]|0;else{Vd(p,0,g+-1|0);o=24}if((o|0)==24){e=c[p+12>>2]|0;f=0;do{Ob[c[(c[b>>2]|0)+8>>2]&63](b,c[e+(f<<4)>>2]|0,c[e+(f<<4)+4>>2]|0)|0;f=f+1|0}while((f|0)<(g|0))}if(!e){i=p;return}c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0);c[p+12>>2]=0;i=p;return}function Cf(a,b,d){a=a|0;b=+b;d=+d;var e=0,f=0,h=0,j=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0,q=0.0,r=0,s=0,t=0.0,u=0.0,v=0.0,w=0.0,x=0,y=0,z=0,A=0.0,B=0.0,C=0.0,D=0.0;z=i;i=i+16|0;q=+g[a+452>>2];x=c[a+192>>2]|0;v=+Sb[c[(c[x>>2]|0)+48>>2]&15](x);x=c[a+812>>2]|0;if((x|0)<=0){i=z;return}y=0;do{r=c[a+820>>2]|0;p=c[r+(y*104|0)>>2]|0;p=(c[p+236>>2]&2|0)==0?0:p;if(p|0){u=+g[p+332>>2];n=+g[r+(y*104|0)+84>>2];m=+g[p+336>>2];o=+g[r+(y*104|0)+80>>2];w=+g[r+(y*104|0)+76>>2];t=+g[p+328>>2];e=(g[k>>2]=q*(u*n-m*o+ +g[p+312>>2]),c[k>>2]|0);f=(g[k>>2]=q*(+g[p+316>>2]+(m*w-n*t)),c[k>>2]|0);h=(g[k>>2]=q*(o*t-u*w+ +g[p+320>>2]),c[k>>2]|0)}else{e=0;f=0;h=0}s=c[r+(y*104|0)+24>>2]|0;t=+g[s+8>>2];u=+g[s+12>>2];w=+g[s+16>>2];o=t-+g[s+24>>2]-(c[k>>2]=e,+g[k>>2]);n=u-+g[s+28>>2]-(c[k>>2]=f,+g[k>>2]);d=w-+g[s+32>>2]-(c[k>>2]=h,+g[k>>2]);j=+g[r+(y*104|0)+4>>2];l=+g[r+(y*104|0)+8>>2];m=+g[r+(y*104|0)+12>>2];if(o*j+n*l+d*m<=1.1920928955078125e-07?(C=t*j+u*l+w*m+ +g[r+(y*104|0)+20>>2],D=+g[r+(y*104|0)+96>>2],C=(C>2],B=(o-(o-j*(o*j+n*l+d*m))*D+j*C)*b,A=(n-(n-l*(o*j+n*l+d*m))*D+C*l)*b,o=(d-(d-m*(o*j+n*l+d*m))*D+C*m)*b,l=+g[r+(y*104|0)+28>>2]*B+ +g[r+(y*104|0)+32>>2]*A+ +g[r+(y*104|0)+36>>2]*o,m=B*+g[r+(y*104|0)+44>>2]+A*+g[r+(y*104|0)+48>>2]+o*+g[r+(y*104|0)+52>>2],o=B*+g[r+(y*104|0)+60>>2]+A*+g[r+(y*104|0)+64>>2]+o*+g[r+(y*104|0)+68>>2],g[z>>2]=l,g[z+4>>2]=m,g[z+8>>2]=o,g[z+12>>2]=0.0,n=+g[r+(y*104|0)+92>>2],g[s+8>>2]=t-l*n,g[s+12>>2]=u-n*m,g[s+16>>2]=w-n*o,p|0):0)gj(p,z,r+(y*104|0)+76|0);y=y+1|0}while((y|0)!=(x|0));i=z;return} -function Sc(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;var h=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0,H=0;s=i;i=i+240|0;n=c[b+48>>2]|0;k=c[b+52>>2]|0;if((k|0?(h=c[k+20>>2]|0,h|0):0)?(Eb[c[(c[h>>2]|0)+48>>2]&127](h)|0)&1|0:0){c[s+144>>2]=1065353216;c[s+144+4>>2]=1065353216;c[s+144+8>>2]=0;g[s+144+12>>2]=0.0;l=c[b+8>>2]|0;r=c[(c[b+52>>2]|0)+20>>2]|0;q=c[(c[r>>2]|0)+8>>2]|0;t=+g[d>>2];u=+g[d+4>>2];v=+g[d+8>>2];w=t*+g[l+20>>2]+u*+g[l+24>>2]+v*+g[l+28>>2]+ +g[l+56>>2];x=t*+g[l+36>>2]+u*+g[l+40>>2]+v*+g[l+44>>2]+ +g[l+60>>2];g[s+128>>2]=t*+g[l+4>>2]+u*+g[l+8>>2]+v*+g[l+12>>2]+ +g[l+52>>2];g[s+128+4>>2]=w;g[s+128+8>>2]=x;g[s+128+12>>2]=0.0;x=+g[d+16>>2];w=+g[d+20>>2];v=+g[d+24>>2];u=x*+g[l+20>>2]+w*+g[l+24>>2]+v*+g[l+28>>2]+ +g[l+56>>2];t=x*+g[l+36>>2]+w*+g[l+40>>2]+v*+g[l+44>>2]+ +g[l+60>>2];g[s+88>>2]=x*+g[l+4>>2]+w*+g[l+8>>2]+v*+g[l+12>>2]+ +g[l+52>>2];g[s+88+4>>2]=u;g[s+88+8>>2]=t;g[s+88+12>>2]=0.0;mc[q&127](r,s+128|0,s+88|0,s+144|0);r=c[(c[b+52>>2]|0)+20>>2]|0;q=c[(c[r>>2]|0)+8>>2]|0;t=+g[d+16>>2];u=+g[d+20>>2];v=+g[d+24>>2];w=t*+g[l+20>>2]+u*+g[l+24>>2]+v*+g[l+28>>2]+ +g[l+56>>2];x=t*+g[l+36>>2]+u*+g[l+40>>2]+v*+g[l+44>>2]+ +g[l+60>>2];g[s+72>>2]=t*+g[l+4>>2]+u*+g[l+8>>2]+v*+g[l+12>>2]+ +g[l+52>>2];g[s+72+4>>2]=w;g[s+72+8>>2]=x;g[s+72+12>>2]=0.0;x=+g[d+32>>2];w=+g[d+36>>2];v=+g[d+40>>2];u=x*+g[l+20>>2]+w*+g[l+24>>2]+v*+g[l+28>>2]+ +g[l+56>>2];t=x*+g[l+36>>2]+w*+g[l+40>>2]+v*+g[l+44>>2]+ +g[l+60>>2];g[s+56>>2]=x*+g[l+4>>2]+w*+g[l+8>>2]+v*+g[l+12>>2]+ +g[l+52>>2];g[s+56+4>>2]=u;g[s+56+8>>2]=t;g[s+56+12>>2]=0.0;mc[q&127](r,s+72|0,s+56|0,s+144|0);r=c[(c[b+52>>2]|0)+20>>2]|0;q=c[(c[r>>2]|0)+8>>2]|0;t=+g[d+32>>2];u=+g[d+36>>2];v=+g[d+40>>2];w=t*+g[l+20>>2]+u*+g[l+24>>2]+v*+g[l+28>>2]+ +g[l+56>>2];x=t*+g[l+36>>2]+u*+g[l+40>>2]+v*+g[l+44>>2]+ +g[l+60>>2];g[s+16>>2]=t*+g[l+4>>2]+u*+g[l+8>>2]+v*+g[l+12>>2]+ +g[l+52>>2];g[s+16+4>>2]=w;g[s+16+8>>2]=x;g[s+16+12>>2]=0.0;x=+g[d>>2];w=+g[d+4>>2];v=+g[d+8>>2];u=x*+g[l+20>>2]+w*+g[l+24>>2]+v*+g[l+28>>2]+ +g[l+56>>2];t=x*+g[l+36>>2]+w*+g[l+40>>2]+v*+g[l+44>>2]+ +g[l+60>>2];g[s>>2]=x*+g[l+4>>2]+w*+g[l+8>>2]+v*+g[l+12>>2]+ +g[l+52>>2];g[s+4>>2]=u;g[s+8>>2]=t;g[s+12>>2]=0.0;mc[q&127](r,s+16|0,s,s+144|0)}h=((e<<21|f)+~(f<<15)>>10^(e<<21|f)+~(f<<15))*9|0;h=(c[b+108>>2]|0)+-1&((h>>6^h)+~((h>>6^h)<<11)>>16^(h>>6^h)+~((h>>6^h)<<11));a:do if(h>>>0<(c[b+64>>2]|0)>>>0?(m=c[(c[b+72>>2]|0)+(h<<2)>>2]|0,(m|0)!=-1):0){l=c[b+132>>2]|0;k=m;while(1){if((e<<21|f|0)==(c[l+(k<<2)>>2]|0))break;h=c[(c[b+92>>2]|0)+(k<<2)>>2]|0;if((h|0)==-1)break a;else k=h}h=c[b+112>>2]|0;if(h+(k<<3)|0){q=c[h+(k<<3)+4>>2]|0;r=c[b+8>>2]|0;c[q+8>>2]=c[(c[r+192>>2]|0)+8>>2];p=c[b+4>>2]|0;o=c[p+192>>2]|0;c[s+144>>2]=0;c[s+144+4>>2]=o;c[s+144+8>>2]=p;c[s+144+12>>2]=p+4;c[s+144+16>>2]=-1;c[s+144+20>>2]=-1;c[s+104>>2]=0;c[s+104+4>>2]=q;c[s+104+8>>2]=r;c[s+104+12>>2]=r+4;c[s+104+16>>2]=e;c[s+104+20>>2]=f;r=Ib[c[(c[n>>2]|0)+8>>2]&31](n,s+144|0,s+104|0,0)|0;yb[c[(c[r>>2]|0)+8>>2]&31](r,s+144|0,s+104|0,c[b+52>>2]|0,c[b+44>>2]|0);Ab[c[c[r>>2]>>2]&255](r);Cb[c[(c[n>>2]|0)+60>>2]&127](n,r);i=s;return}}while(0);C=+g[d+16>>2];F=+g[d>>2];B=+g[d+20>>2];E=+g[d+4>>2];A=+g[d+24>>2];D=+g[d+8>>2];z=+g[d+32>>2];t=+g[d+36>>2];v=+g[d+40>>2];y=(B-E)*(v-D)-(A-D)*(t-E);u=(A-D)*(z-F)-(C-F)*(v-D);x=(C-F)*(t-E)-(B-E)*(z-F);w=1.0/+O(+(x*x+(y*y+u*u)));g[s+144>>2]=F+w*y*.05999999865889549;g[s+144+4>>2]=E+w*u*.05999999865889549;g[s+144+8>>2]=w*x*.05999999865889549+D;g[s+144+12>>2]=0.0;g[s+144+16>>2]=w*y*.05999999865889549+C;g[s+144+20>>2]=w*u*.05999999865889549+B;g[s+144+24>>2]=w*x*.05999999865889549+A;g[s+144+28>>2]=0.0;g[s+144+32>>2]=w*y*.05999999865889549+z;g[s+144+36>>2]=w*u*.05999999865889549+t;g[s+144+40>>2]=w*x*.05999999865889549+v;g[s+144+44>>2]=0.0;g[s+144+48>>2]=F-w*y*.05999999865889549;g[s+144+52>>2]=E-w*u*.05999999865889549;g[s+144+56>>2]=D-w*x*.05999999865889549;g[s+144+60>>2]=0.0;g[s+144+64>>2]=C-w*y*.05999999865889549;g[s+144+68>>2]=B-w*u*.05999999865889549;g[s+144+72>>2]=A-w*x*.05999999865889549;g[s+144+76>>2]=0.0;g[s+144+80>>2]=z-w*y*.05999999865889549;g[s+144+84>>2]=t-w*u*.05999999865889549;g[s+144+88>>2]=v-w*x*.05999999865889549;g[s+144+92>>2]=0.0;c[6435]=(c[6435]|0)+1;h=yc(131)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}kg(h,s+144|0,6,16);r=c[b+8>>2]|0;c[h+8>>2]=c[(c[r+192>>2]|0)+8>>2];q=c[b+4>>2]|0;d=c[q+192>>2]|0;c[s+104>>2]=0;c[s+104+4>>2]=d;c[s+104+8>>2]=q;c[s+104+12>>2]=q+4;c[s+104+16>>2]=-1;c[s+104+20>>2]=-1;c[s+32>>2]=0;c[s+32+4>>2]=h;c[s+32+8>>2]=r;c[s+32+12>>2]=r+4;c[s+32+16>>2]=e;c[s+32+20>>2]=f;r=Ib[c[(c[n>>2]|0)+8>>2]&31](n,s+104|0,s+32|0,0)|0;yb[c[(c[r>>2]|0)+8>>2]&31](r,s+104|0,s+32|0,c[b+52>>2]|0,c[b+44>>2]|0);Ab[c[c[r>>2]>>2]&255](r);Cb[c[(c[n>>2]|0)+60>>2]&127](n,r);r=((e<<21|f)+~(f<<15)>>10^(e<<21|f)+~(f<<15))*9|0;r=(r>>6^r)+~((r>>6^r)<<11)>>16^(r>>6^r)+~((r>>6^r)<<11);n=c[b+108>>2]|0;b:do if((r&n+-1)>>>0<(c[b+64>>2]|0)>>>0?(j=c[(c[b+72>>2]|0)+((r&n+-1)<<2)>>2]|0,(j|0)!=-1):0){k=c[b+132>>2]|0;while(1){if((e<<21|f|0)==(c[k+(j<<2)>>2]|0))break;j=c[(c[b+92>>2]|0)+(j<<2)>>2]|0;if((j|0)==-1){o=20;break b}}b=c[b+112>>2]|0;c[b+(j<<3)>>2]=e<<21|f;c[b+(j<<3)+4>>2]=h}else o=20;while(0);if((o|0)==20){q=c[b+104>>2]|0;if((q|0)==(n|0)){m=n|0?n<<1:1;if((n|0)<(m|0)){if(!m){j=0;k=n}else{c[6435]=(c[6435]|0)+1;j=yc((m<<3|3)+16|0)|0;if(!j)j=0;else{c[(j+4+15&-16)+-4>>2]=j;j=j+4+15&-16}k=c[b+104>>2]|0}if((k|0)>0){l=0;do{H=(c[b+112>>2]|0)+(l<<3)|0;G=c[H+4>>2]|0;d=j+(l<<3)|0;c[d>>2]=c[H>>2];c[d+4>>2]=G;l=l+1|0}while((l|0)!=(k|0))}k=c[b+112>>2]|0;if(k|0){if(a[b+116>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[k+-4>>2]|0)}c[b+112>>2]=0}a[b+116>>0]=1;c[b+112>>2]=j;c[b+108>>2]=m;j=c[b+104>>2]|0}else j=n}else j=q;H=c[b+112>>2]|0;c[H+(j<<3)>>2]=e<<21|f;c[H+(j<<3)+4>>2]=h;c[b+104>>2]=(c[b+104>>2]|0)+1;h=c[b+124>>2]|0;if((h|0)==(c[b+128>>2]|0)?(p=h|0?h<<1:1,(h|0)<(p|0)):0){if(!p)l=0;else{c[6435]=(c[6435]|0)+1;h=yc((p<<2|3)+16|0)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}l=h;h=c[b+124>>2]|0}k=c[b+132>>2]|0;if((h|0)<=0)if(!k)h=b+136|0;else o=43;else{j=0;do{c[l+(j<<2)>>2]=c[k+(j<<2)>>2];j=j+1|0}while((j|0)!=(h|0));o=43}if((o|0)==43){if(a[b+136>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[k+-4>>2]|0)}c[b+132>>2]=0;h=b+136|0}a[h>>0]=1;c[b+132>>2]=l;c[b+128>>2]=p;h=c[b+124>>2]|0}c[(c[b+132>>2]|0)+(h<<2)>>2]=e<<21|f;c[b+124>>2]=(c[b+124>>2]|0)+1;d=c[b+108>>2]|0;if((n|0)<(d|0)){n=c[b+64>>2]|0;if((d|0)>(n|0)){if((d|0)>=(n|0)){do if((c[b+68>>2]|0)<(d|0)){if(!d){h=0;j=n}else{c[6435]=(c[6435]|0)+1;h=yc((d<<2|3)+16|0)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}j=c[b+64>>2]|0}k=c[b+72>>2]|0;if((j|0)<=0){if(!k){a[b+76>>0]=1;c[b+72>>2]=h;c[b+68>>2]=d;break}}else{l=0;do{c[h+(l<<2)>>2]=c[k+(l<<2)>>2];l=l+1|0}while((l|0)!=(j|0))}if(a[b+76>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[k+-4>>2]|0)}a[b+76>>0]=1;c[b+72>>2]=h;c[b+68>>2]=d}else h=c[b+72>>2]|0;while(0);Qn(h+(n<<2)|0,0,d-n<<2|0)|0}c[b+64>>2]=d;m=c[b+84>>2]|0;if((d|0)>(m|0)){do if((c[b+88>>2]|0)<(d|0)){if(!d){h=0;j=m}else{c[6435]=(c[6435]|0)+1;h=yc((d<<2|3)+16|0)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}j=c[b+84>>2]|0}k=c[b+92>>2]|0;if((j|0)<=0){if(!k){a[b+96>>0]=1;c[b+92>>2]=h;c[b+88>>2]=d;break}}else{l=0;do{c[h+(l<<2)>>2]=c[k+(l<<2)>>2];l=l+1|0}while((l|0)!=(j|0))}if(a[b+96>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[k+-4>>2]|0)}a[b+96>>0]=1;c[b+92>>2]=h;c[b+88>>2]=d}else h=c[b+92>>2]|0;while(0);Qn(h+(m<<2)|0,0,d-m<<2|0)|0}c[b+84>>2]=d;if((d|0)>0){Qn(c[b+72>>2]|0,-1,d<<2|0)|0;Qn(c[b+92>>2]|0,-1,d<<2|0)|0}if((n|0)>0){h=c[b+132>>2]|0;j=c[b+72>>2]|0;k=c[b+92>>2]|0;l=0;do{H=c[h+(l<<2)>>2]|0;H=(H+~(H<<15)>>10^H+~(H<<15))*9|0;H=j+((((H>>6^H)+~((H>>6^H)<<11)>>16^(H>>6^H)+~((H>>6^H)<<11))&(c[b+108>>2]|0)+-1)<<2)|0;c[k+(l<<2)>>2]=c[H>>2];c[H>>2]=l;l=l+1|0}while((l|0)!=(n|0))}}h=r&(c[b+108>>2]|0)+-1}else h=r&n+-1;H=(c[b+72>>2]|0)+(h<<2)|0;c[(c[b+92>>2]|0)+(q<<2)>>2]=c[H>>2];c[H>>2]=q}i=s;return}function Tc(b,d){b=b|0;d=d|0;var e=0,f=0,h=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0;v=i;i=i+16|0;li(12170);k=c[b+212>>2]|0;j=c[b+180>>2]|0;if((j|0)<(k|0)){if((c[b+184>>2]|0)<(k|0)){if(!k){e=0;f=j}else{c[6435]=(c[6435]|0)+1;e=yc((k<<2|3)+16|0)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}f=c[b+180>>2]|0}if((f|0)>0){h=0;do{c[e+(h<<2)>>2]=c[(c[b+188>>2]|0)+(h<<2)>>2];h=h+1|0}while((h|0)!=(f|0))}f=c[b+188>>2]|0;if(f|0){if(a[b+192>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}c[b+188>>2]=0}a[b+192>>0]=1;c[b+188>>2]=e;c[b+184>>2]=k;f=b+188|0}else f=b+188|0;e=j;do{c[(c[f>>2]|0)+(e<<2)>>2]=0;e=e+1|0}while((e|0)!=(k|0))}else f=b+188|0;c[b+180>>2]=k;e=0;while(1){if((e|0)>=(Eb[c[(c[b>>2]|0)+104>>2]&127](b)|0))break;c[(c[f>>2]|0)+(e<<2)>>2]=c[(c[b+220>>2]|0)+(e<<2)>>2];e=e+1|0}e=c[b+180>>2]|0;if((e|0)>1)bh(b+176|0,0,e+-1|0);if(!(Eb[c[(c[b>>2]|0)+104>>2]&127](b)|0))e=0;else e=c[f>>2]|0;h=c[b+196>>2]|0;t=c[b+180>>2]|0;u=Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0;c[h+4>>2]=d;c[h+12>>2]=e;c[h+16>>2]=t;c[h+20>>2]=u;e=c[h+32>>2]|0;if((e|0)<0){if((c[h+36>>2]|0)<0){f=c[h+40>>2]|0;if(f|0){if(a[h+44>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}c[h+40>>2]=0}a[h+44>>0]=1;c[h+40>>2]=0;c[h+36>>2]=0}do{c[(c[h+40>>2]|0)+(e<<2)>>2]=0;e=e+1|0}while((e|0)!=0)}c[h+32>>2]=0;e=c[h+52>>2]|0;if((e|0)<0){if((c[h+56>>2]|0)<0){f=c[h+60>>2]|0;if(f|0){if(a[h+64>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}c[h+60>>2]=0}a[h+64>>0]=1;c[h+60>>2]=0;c[h+56>>2]=0}do{c[(c[h+60>>2]|0)+(e<<2)>>2]=0;e=e+1|0}while((e|0)!=0)}c[h+52>>2]=0;e=c[h+72>>2]|0;if((e|0)<0){if((c[h+76>>2]|0)<0){f=c[h+80>>2]|0;if(f|0){if(a[h+84>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}c[h+80>>2]=0}a[h+84>>0]=1;c[h+80>>2]=0;c[h+76>>2]=0}do{c[(c[h+80>>2]|0)+(e<<2)>>2]=0;e=e+1|0}while((e|0)!=0)}c[h+72>>2]=0;u=c[b+200>>2]|0;e=c[(c[u>>2]|0)+8>>2]|0;s=c[b+8>>2]|0;t=c[b+24>>2]|0;t=Eb[c[(c[t>>2]|0)+36>>2]&127](t)|0;ic[e&127](u,s,t);t=c[b+204>>2]|0;s=c[b+24>>2]|0;u=c[b+196>>2]|0;li(13882);e=c[t+28>>2]|0;if((e|0)<0){if((c[t+32>>2]|0)<0){f=c[t+36>>2]|0;if(f|0){if(a[t+40>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}c[t+36>>2]=0}a[t+40>>0]=1;c[t+36>>2]=0;c[t+32>>2]=0}do{c[(c[t+36>>2]|0)+(e<<2)>>2]=0;e=e+1|0}while((e|0)!=0)}c[t+28>>2]=0;j=c[t+8>>2]|0;if((j|0)>0){k=c[t+16>>2]|0;m=0;do{l=k+(m<<3)|0;e=c[l>>2]|0;if((e|0)==(m|0))e=m;else{f=e;h=l;do{e=k+(f<<3)|0;c[h>>2]=c[e>>2];e=c[e>>2]|0;h=k+(e<<3)|0;f=c[h>>2]|0}while((e|0)!=(f|0))}c[l>>2]=e;m=m+1|0}while((m|0)!=(j|0));if((j|0)>1){yj(t+4|0,0,j+-1|0);j=c[t+8>>2]|0}if((j|0)>0){m=c[t+16>>2]|0;f=0;while(1){n=c[m+(f<<3)>>2]|0;q=f;while(1){p=q+1|0;if((p|0)>=(j|0)){l=0;break}if((c[m+(p<<3)>>2]|0)==(n|0))q=p;else{l=1;break}}a:do if((f|0)<=(q|0)){o=c[b+16>>2]|0;e=1;k=f;while(1){h=c[o+(c[m+(k<<3)+4>>2]<<2)>>2]|0;if((c[h+208>>2]|0)==(n|0)){h=c[h+216>>2]|0;e=(h|0)!=4&(e&(h|0)!=1)}if((k|0)<(q|0))k=k+1|0;else break}if(e){e=m;while(1){e=c[o+(c[e+(f<<3)+4>>2]<<2)>>2]|0;if((c[e+208>>2]|0)==(n|0)?(c[e+216>>2]&-2|0)!=4:0)c[e+216>>2]=2;if((f|0)>=(q|0))break a;e=c[t+16>>2]|0;f=f+1|0}}else{e=m;while(1){e=c[o+(c[e+(f<<3)+4>>2]<<2)>>2]|0;if((c[e+208>>2]|0)==(n|0)?(c[e+216>>2]|0)==2:0){c[e+216>>2]=3;g[e+220>>2]=0.0}if((f|0)>=(q|0))break a;e=c[t+16>>2]|0;f=f+1|0}}}while(0);if(l)f=p;else break}}}j=Eb[c[(c[s>>2]|0)+36>>2]&127](s)|0;if((j|0)>0){l=0;do{k=Zb[c[(c[s>>2]|0)+40>>2]&31](s,l)|0;f=c[k+740>>2]|0;h=c[k+744>>2]|0;if((f|0)!=0?(c[f+216>>2]|0)!=2:0)e=92;else e=90;if(((e|0)==90?(e=0,h|0):0)?(c[h+216>>2]|0)!=2:0)e=92;if((e|0)==92){e=c[f+204>>2]|0;if((e&2|0?((e&4|0)==0?(c[f+216>>2]|0)!=2:0):0)?(c[h+204>>2]&3|0)==0:0){if((c[h+216>>2]&-2|0)!=4)c[h+216>>2]=1;g[h+220>>2]=0.0}q=c[h+204>>2]|0;if(q&2|0?((q&4|e&3|0)==0?(c[h+216>>2]|0)!=2:0):0){if((c[f+216>>2]&-2|0)!=4)c[f+216>>2]=1;g[f+220>>2]=0.0}if(a[t+64>>0]|0?Ob[c[(c[s>>2]|0)+28>>2]&63](s,f,h)|0:0){e=c[t+28>>2]|0;if((e|0)==(c[t+32>>2]|0)?(r=e|0?e<<1:1,(e|0)<(r|0)):0){if(!r)h=0;else{c[6435]=(c[6435]|0)+1;e=yc((r<<2|3)+16|0)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}h=e;e=c[t+28>>2]|0}if((e|0)>0){f=0;do{c[h+(f<<2)>>2]=c[(c[t+36>>2]|0)+(f<<2)>>2];f=f+1|0}while((f|0)!=(e|0))}f=c[t+36>>2]|0;if(f){if(a[t+40>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0);e=c[t+28>>2]|0}c[t+36>>2]=0}a[t+40>>0]=1;c[t+36>>2]=h;c[t+32>>2]=r}c[(c[t+36>>2]|0)+(e<<2)>>2]=k;c[t+28>>2]=e+1}}l=l+1|0}while((l|0)<(j|0))}e=c[2357]|0;r=(c[e+16>>2]|0)+-1|0;c[e+16>>2]=r;do if(!r){if(c[e+4>>2]|0){tb(v|0,0)|0;r=c[6434]|0;g[e+8>>2]=+g[e+8>>2]+ +(((c[v+4>>2]|0)-(c[r+4>>2]|0)+(((c[v>>2]|0)-(c[r>>2]|0)|0)*1e6|0)-(c[e+12>>2]|0)|0)>>>0)/1.0e3;if(c[e+16>>2]|0)break;e=c[2357]|0}c[2357]=c[e+20>>2]}while(0);r=c[t+8>>2]|0;li(13910);if(a[t+64>>0]|0){p=c[t+28>>2]|0;if((p|0)>1)$g(t+24|0,0,p+-1|0);if((r|0)>0){n=1;f=0;q=0;while(1){e=c[t+16>>2]|0;o=c[e+(f<<3)>>2]|0;b:do if((f|0)<(r|0)){k=c[t+48>>2]|0;h=c[t+52>>2]|0;m=1;while(1){l=c[(c[b+16>>2]|0)+(c[e+(f<<3)+4>>2]<<2)>>2]|0;do if((k|0)==(h|0)){k=h|0?h<<1:1;if((h|0)>=(k|0)){e=h;break}if(!k)e=0;else{c[6435]=(c[6435]|0)+1;e=yc((k<<2|3)+16|0)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}h=c[t+48>>2]|0}if((h|0)>0){j=0;do{c[e+(j<<2)>>2]=c[(c[t+56>>2]|0)+(j<<2)>>2];j=j+1|0}while((j|0)!=(h|0))}j=c[t+56>>2]|0;if(j){if(a[t+60>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0);h=c[t+48>>2]|0}c[t+56>>2]=0}a[t+60>>0]=1;c[t+56>>2]=e;c[t+52>>2]=k;e=h;h=k}else e=k;while(0);c[(c[t+56>>2]|0)+(e<<2)>>2]=l;k=e+1|0;c[t+48>>2]=k;j=c[l+216>>2]|0;j=m&((j|0)==2|(j|0)==5);f=f+1|0;if((f|0)>=(r|0)){m=f;break b}e=c[t+16>>2]|0;if((c[e+(f<<3)>>2]|0)!=(o|0)){m=f;break}else m=j}}else{m=f;j=1}while(0);if((q|0)<(p|0)){l=c[t+36>>2]|0;e=l+(q<<2)|0;h=c[e>>2]|0;f=c[(c[h+740>>2]|0)+208>>2]|0;if((f|0)<=-1)f=c[(c[h+744>>2]|0)+208>>2]|0;if((f|0)==(o|0)){k=q;do{k=k+1|0;if((k|0)>=(p|0))break;h=c[l+(k<<2)>>2]|0;f=c[(c[h+740>>2]|0)+208>>2]|0;if((f|0)<=-1)f=c[(c[h+744>>2]|0)+208>>2]|0}while((o|0)==(f|0));h=k;f=k-q|0}else{h=n;f=0;e=0}}else{h=n;f=0;e=0}if(!j)Qb[c[(c[u>>2]|0)+8>>2]&7](u,c[t+56>>2]|0,c[t+48>>2]|0,e,f,o);q=(f|0)==0?q:h;e=c[t+48>>2]|0;if((e|0)<0){if((c[t+52>>2]|0)<0){f=c[t+56>>2]|0;if(f|0){if(a[t+60>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}c[t+56>>2]=0}a[t+60>>0]=1;c[t+56>>2]=0;c[t+52>>2]=0}do{c[(c[t+56>>2]|0)+(e<<2)>>2]=0;e=e+1|0}while((e|0)!=0)}c[t+48>>2]=0;if((m|0)>=(r|0))break;else{n=h;f=m}}}}else{r=Eb[c[(c[s>>2]|0)+44>>2]&127](s)|0;t=Eb[c[(c[s>>2]|0)+36>>2]&127](s)|0;Qb[c[(c[u>>2]|0)+8>>2]&7](u,c[b+16>>2]|0,c[b+8>>2]|0,r,t,-1)}e=c[2357]|0;u=(c[e+16>>2]|0)+-1|0;c[e+16>>2]=u;do if(!u){if(c[e+4>>2]|0){tb(v|0,0)|0;u=c[6434]|0;g[e+8>>2]=+g[e+8>>2]+ +(((c[v+4>>2]|0)-(c[u+4>>2]|0)+(((c[v>>2]|0)-(c[u>>2]|0)|0)*1e6|0)-(c[e+12>>2]|0)|0)>>>0)/1.0e3;if(c[e+16>>2]|0)break;e=c[2357]|0}c[2357]=c[e+20>>2]}while(0);nh(c[b+196>>2]|0);e=c[b+200>>2]|0;ic[c[(c[e>>2]|0)+16>>2]&127](e,d,c[b+72>>2]|0);e=c[2357]|0;b=(c[e+16>>2]|0)+-1|0;c[e+16>>2]=b;if(b|0){i=v;return}do if(c[e+4>>2]|0){tb(v|0,0)|0;b=c[6434]|0;g[e+8>>2]=+g[e+8>>2]+ +(((c[v+4>>2]|0)-(c[b+4>>2]|0)+(((c[v>>2]|0)-(c[b>>2]|0)|0)*1e6|0)-(c[e+12>>2]|0)|0)>>>0)/1.0e3;if(!(c[e+16>>2]|0)){e=c[2357]|0;break}else{i=v;return}}while(0);c[2357]=c[e+20>>2];i=v;return}function Uc(a,b,d){a=a|0;b=b|0;d=d|0;var e=0.0,f=0,h=0.0,j=0.0,l=0.0,m=0,n=0,o=0.0,p=0.0,q=0.0,r=0.0,s=0,t=0.0,u=0,v=0.0,w=0,x=0,y=0.0,z=0,A=0,B=0.0,C=0.0,D=0.0,E=0.0,F=0;A=i;i=i+176|0;c[a+348>>2]=a+220;c[a+352>>2]=a+252;c[a+356>>2]=a+284;c[a+360>>2]=a+316;c[a+364>>2]=4;c[a+368>>2]=0;c[a+376>>2]=0;x=c[b+4>>2]|0;c[a>>2]=c[b>>2];c[a+4>>2]=x;c[a+8>>2]=c[b+8>>2];c[a+8+4>>2]=c[b+8+4>>2];c[a+8+8>>2]=c[b+8+8>>2];c[a+8+12>>2]=c[b+8+12>>2];c[a+24>>2]=c[b+24>>2];c[a+24+4>>2]=c[b+24+4>>2];c[a+24+8>>2]=c[b+24+8>>2];c[a+24+12>>2]=c[b+24+12>>2];c[a+40>>2]=c[b+40>>2];c[a+40+4>>2]=c[b+40+4>>2];c[a+40+8>>2]=c[b+40+8>>2];c[a+40+12>>2]=c[b+40+12>>2];c[a+56>>2]=c[b+56>>2];c[a+56+4>>2]=c[b+56+4>>2];c[a+56+8>>2]=c[b+56+8>>2];c[a+56+12>>2]=c[b+56+12>>2];c[a+72>>2]=c[b+72>>2];c[a+72+4>>2]=c[b+72+4>>2];c[a+72+8>>2]=c[b+72+8>>2];c[a+72+12>>2]=c[b+72+12>>2];c[a+88>>2]=c[b+88>>2];c[a+88+4>>2]=c[b+88+4>>2];c[a+88+8>>2]=c[b+88+8>>2];c[a+88+12>>2]=c[b+88+12>>2];c[a+104>>2]=c[b+104>>2];c[a+104+4>>2]=c[b+104+4>>2];c[a+104+8>>2]=c[b+104+8>>2];c[a+104+12>>2]=c[b+104+12>>2];x=c[b+124>>2]|0;c[a+120>>2]=c[b+120>>2];c[a+124>>2]=x;g[a+144>>2]=0.0;c[a+180>>2]=0;c[a+128>>2]=c[d>>2];c[a+128+4>>2]=c[d+4>>2];c[a+128+8>>2]=c[d+8>>2];c[a+128+12>>2]=c[d+12>>2];e=+g[a+128>>2];h=+g[a+132>>2];j=+g[a+136>>2];if(e*e+h*h+j*j>0.0){d=(g[k>>2]=-e,c[k>>2]|0);b=(g[k>>2]=-h,c[k>>2]|0);f=(g[k>>2]=-j,c[k>>2]|0)}else{d=1065353216;b=0;f=0}g[a+164>>2]=0.0;c[a+364>>2]=3;c[a+148>>2]=a+316;c[a+180>>2]=1;t=(c[k>>2]=d,+g[k>>2]);v=(c[k>>2]=b,+g[k>>2]);Nh(a,t,v,(c[k>>2]=f,+g[k>>2]),a+316|0);g[a+164>>2]=1.0;w=(c[a+148>>2]|0)+16|0;c[a+128>>2]=c[w>>2];c[a+128+4>>2]=c[w+4>>2];c[a+128+8>>2]=c[w+8>>2];c[a+128+12>>2]=c[w+12>>2];c[A+24+48>>2]=c[w>>2];c[A+24+48+4>>2]=c[w+4>>2];c[A+24+48+8>>2]=c[w+8>>2];c[A+24+48+12>>2]=c[w+12>>2];c[A+24+32>>2]=c[w>>2];c[A+24+32+4>>2]=c[w+4>>2];c[A+24+32+8>>2]=c[w+8>>2];c[A+24+32+12>>2]=c[w+12>>2];c[A+24+16>>2]=c[w>>2];c[A+24+16+4>>2]=c[w+4>>2];c[A+24+16+8>>2]=c[w+8>>2];c[A+24+16+12>>2]=c[w+12>>2];c[A+24>>2]=c[w>>2];c[A+24+4>>2]=c[w+4>>2];c[A+24+8>>2]=c[w+8>>2];c[A+24+12>>2]=c[w+12>>2];v=0.0;w=0;x=0;e=e*e+h*h+j*j;a:do{u=c[a+368>>2]|0;l=+g[a+128>>2];h=+g[a+132>>2];j=+g[a+136>>2];o=+O(+(l*l+h*h+j*j));if(o<9.999999747378752e-05){z=5;break}g[a+148+(u*36|0)+16+(c[a+148+(u*36|0)+32>>2]<<2)>>2]=0.0;d=(c[a+364>>2]|0)+-1|0;c[a+364>>2]=d;c[a+148+(u*36|0)+(c[a+148+(u*36|0)+32>>2]<<2)>>2]=c[a+348+(d<<2)>>2];d=c[a+148+(u*36|0)+32>>2]|0;c[a+148+(u*36|0)+32>>2]=d+1;Nh(a,-l,-h,-j,c[a+148+(u*36|0)+(d<<2)>>2]|0);d=c[a+148+(u*36|0)+32>>2]|0;b=c[a+148+(u*36|0)+(d+-1<<2)>>2]|0;h=+g[b+16>>2];j=+g[b+20>>2];l=+g[b+24>>2];q=h-+g[A+24>>2];r=j-+g[A+24+4>>2];t=l-+g[A+24+8>>2];if(q*q+r*r+t*t<9.999999747378752e-05){z=8;break}q=h-+g[A+24+16>>2];r=j-+g[A+24+20>>2];t=l-+g[A+24+24>>2];if(q*q+r*r+t*t<9.999999747378752e-05){z=8;break}q=h-+g[A+24+32>>2];r=j-+g[A+24+36>>2];t=l-+g[A+24+40>>2];if(q*q+r*r+t*t<9.999999747378752e-05){z=8;break}q=h-+g[A+24+48>>2];r=j-+g[A+24+52>>2];t=l-+g[A+24+56>>2];if(q*q+r*r+t*t<9.999999747378752e-05){z=8;break}w=w+1&3;s=A+24+(w<<4)|0;c[s>>2]=c[b+16>>2];c[s+4>>2]=c[b+16+4>>2];c[s+8>>2]=c[b+16+8>>2];c[s+12>>2]=c[b+16+12>>2];t=(+g[a+128>>2]*h+ +g[a+132>>2]*j+ +g[a+136>>2]*l)/o;v=t>v?t:v;if(o-v-o*9.999999747378752e-05<=0.0){z=9;break}c[A>>2]=0;b:do switch(d|0){case 2:{s=c[a+148+(u*36|0)>>2]|0;n=c[a+148+(u*36|0)+4>>2]|0;e=+g[n+16>>2];h=+g[s+16>>2];j=+g[n+20>>2];l=+g[s+20>>2];o=+g[n+24>>2];p=+g[s+24>>2];if(!((e-h)*(e-h)+(j-l)*(j-l)+(o-p)*(o-p)>0.0)){z=39;break a}q=-(h*(e-h)+l*(j-l)+p*(o-p))/((e-h)*(e-h)+(j-l)*(j-l)+(o-p)*(o-p));if(q>=1.0){g[A+8>>2]=0.0;g[A+8+4>>2]=1.0;c[A>>2]=2;e=e*e+j*j+o*o;break b}if(!(q<=0.0)){g[A+8+4>>2]=q;g[A+8>>2]=1.0-q;c[A>>2]=3;e=((e-h)*q+h)*((e-h)*q+h)+((j-l)*q+l)*((j-l)*q+l)+((o-p)*q+p)*((o-p)*q+p);break b}else{g[A+8>>2]=1.0;g[A+8+4>>2]=0.0;c[A>>2]=1;e=h*h+l*l+p*p;break b}}case 3:{e=+Oe((c[a+148+(u*36|0)>>2]|0)+16|0,(c[a+148+(u*36|0)+4>>2]|0)+16|0,(c[a+148+(u*36|0)+8>>2]|0)+16|0,A+8|0,A);break}case 4:{f=c[a+148+(u*36|0)>>2]|0;m=c[a+148+(u*36|0)+4>>2]|0;n=c[a+148+(u*36|0)+8>>2]|0;s=c[a+148+(u*36|0)+12>>2]|0;c[A+152>>2]=f+16;c[A+152+4>>2]=m+16;c[A+152+8>>2]=n+16;c[A+152+12>>2]=s+16;j=+g[f+16>>2];l=+g[s+16>>2];e=+g[f+20>>2];o=+g[s+20>>2];h=+g[f+24>>2];p=+g[s+24>>2];g[A+104>>2]=j-l;g[A+104+4>>2]=e-o;g[A+104+8>>2]=h-p;g[A+104+12>>2]=0.0;B=+g[m+16>>2];D=+g[m+20>>2];r=+g[m+24>>2];g[A+104+16>>2]=B-l;g[A+104+20>>2]=D-o;g[A+104+24>>2]=r-p;g[A+104+28>>2]=0.0;q=+g[n+16>>2];E=+g[n+20>>2];C=+g[n+24>>2];g[A+104+32>>2]=q-l;g[A+104+36>>2]=E-o;g[A+104+40>>2]=C-p;g[A+104+44>>2]=0.0;t=(e-o)*(r-p)*(q-l)+(h-p)*(B-l)*(E-o)-(E-o)*(r-p)*(j-l)-(e-o)*(B-l)*(C-p)+(C-p)*(j-l)*(D-o)-(q-l)*(h-p)*(D-o);if(t!=t|0.0!=0.0|t==0.0|!(t*(h*((B-q)*(e-D)-(D-E)*(j-B))+(j*((D-E)*(h-r)-(r-C)*(e-D))+e*((r-C)*(j-B)-(B-q)*(h-r))))<=0.0))e=-1.0;else{c[A+92>>2]=0;c[A+92+4>>2]=0;c[A+92+8>>2]=0;c[A+88>>2]=0;r=e-o;q=h-p;h=j-l;d=0;e=-1.0;while(1){b=c[4976+(d<<2)>>2]|0;C=+g[A+104+(b<<4)+8>>2];D=+g[A+104+(b<<4)+4>>2];E=+g[A+104+(b<<4)>>2];if(t*((r*C-q*D)*l+o*(q*E-C*h)+(D*h-r*E)*p)>0.0?(y=+Oe(c[A+152+(d<<2)>>2]|0,c[A+152+(b<<2)>>2]|0,s+16|0,A+92|0,A+88|0),e<0.0|y>2]|0;c[A>>2]=(F&2|0?1<>2]=c[A+92>>2];c[A+8+(b<<2)>>2]=c[A+92+4>>2];g[A+8+(c[4976+(b<<2)>>2]<<2)>>2]=0.0;c[A+8+12>>2]=c[A+92+8>>2];e=y}d=d+1|0;if((d|0)==3)break;r=+g[A+104+(d<<4)+4>>2];q=+g[A+104+(d<<4)+8>>2];h=+g[A+104+(d<<4)>>2];l=+g[s+16>>2];o=+g[s+20>>2];p=+g[s+24>>2]}if(e<0.0){c[A>>2]=15;l=+g[n+20>>2];E=+g[m+24>>2];D=+g[s+16>>2];h=+g[n+24>>2];C=+g[m+16>>2];o=+g[s+20>>2];j=+g[n+16>>2];B=+g[s+24>>2];q=+g[m+20>>2];g[A+8>>2]=(l*E*D+h*C*o-o*E*j-l*C*B+B*j*q-D*h*q)/t;e=+g[f+20>>2];p=+g[f+24>>2];r=+g[f+16>>2];g[A+8+4>>2]=(e*h*D+p*j*o-o*h*r-e*j*B+B*r*l-D*p*l)/t;g[A+8+8>>2]=(q*p*D+E*r*o-o*p*C-q*r*B+B*C*e-D*E*e)/t;g[A+8+12>>2]=1.0-((l*E*D+h*C*o-o*E*j-l*C*B+B*j*q-D*h*q)/t+(e*h*D+p*j*o-o*h*r-e*j*B+B*r*l-D*p*l)/t+(q*p*D+E*r*o-o*p*C-q*r*B+B*C*e-D*E*e)/t);e=0.0}}break}default:{}}while(0);if(!(e>=0.0)){z=39;break}c[a+148+((1-u|0)*36|0)+32>>2]=0;c[a+128>>2]=0;c[a+128+4>>2]=0;c[a+128+8>>2]=0;c[a+128+12>>2]=0;c[a+368>>2]=1-u;d=c[a+148+(u*36|0)+32>>2]|0;b=c[A>>2]|0;if(d|0){n=0;do{f=a+148+(u*36|0)+(n<<2)|0;m=c[f>>2]|0;if(!(b&1<>2]|0;c[a+364>>2]=F+1;c[a+348+(F<<2)>>2]=m}else{c[a+148+((1-u|0)*36|0)+(c[a+148+((1-u|0)*36|0)+32>>2]<<2)>>2]=m;s=c[A+8+(n<<2)>>2]|0;F=c[a+148+((1-u|0)*36|0)+32>>2]|0;c[a+148+((1-u|0)*36|0)+32>>2]=F+1;c[a+148+((1-u|0)*36|0)+16+(F<<2)>>2]=s;F=c[f>>2]|0;C=(c[k>>2]=s,+g[k>>2]);D=C*+g[F+20>>2];E=C*+g[F+24>>2];g[a+128>>2]=+g[F+16>>2]*C+ +g[a+128>>2];g[a+132>>2]=D+ +g[a+132>>2];g[a+136>>2]=E+ +g[a+136>>2]}n=n+1|0}while((n|0)!=(d|0))}if((b|0)==15)c[a+376>>2]=1;x=x+1|0;if(x>>>0>=128){z=38;break}}while(!(c[a+376>>2]|0));if((z|0)==5)c[a+376>>2]=1;else if((z|0)==8){F=c[a+368>>2]|0;z=(c[a+148+(F*36|0)+32>>2]|0)+-1|0;c[a+148+(F*36|0)+32>>2]=z;z=c[a+148+(F*36|0)+(z<<2)>>2]|0;F=c[a+364>>2]|0;c[a+364>>2]=F+1;c[a+348+(F<<2)>>2]=z}else if((z|0)==9){F=c[a+368>>2]|0;z=(c[a+148+(F*36|0)+32>>2]|0)+-1|0;c[a+148+(F*36|0)+32>>2]=z;z=c[a+148+(F*36|0)+(z<<2)>>2]|0;F=c[a+364>>2]|0;c[a+364>>2]=F+1;c[a+348+(F<<2)>>2]=z}else if((z|0)==38)c[a+376>>2]=2;else if((z|0)==39){F=c[a+368>>2]|0;z=(c[a+148+(F*36|0)+32>>2]|0)+-1|0;c[a+148+(F*36|0)+32>>2]=z;z=c[a+148+(F*36|0)+(z<<2)>>2]|0;F=c[a+364>>2]|0;c[a+364>>2]=F+1;c[a+348+(F<<2)>>2]=z}c[a+372>>2]=a+148+((c[a+368>>2]|0)*36|0);d=c[a+376>>2]|0;switch(d|0){case 0:{C=+g[a+128>>2];D=+g[a+132>>2];E=+g[a+136>>2];g[a+144>>2]=+O(+(C*C+D*D+E*E));i=A;return d|0}case 1:{g[a+144>>2]=0.0;i=A;return d|0}default:{i=A;return d|0}}return 0}function Vc(b,d,e,f,h){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;var j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0,y=0,z=0,A=0,B=0,C=0.0,D=0.0,E=0.0,F=0,G=0.0,H=0.0,I=0,J=0.0,K=0.0,L=0.0,M=0.0,N=0,P=0,Q=0.0,R=0.0,S=0.0,T=0;P=i;i=i+224|0;g[b+56>>2]=0.0;I=P+208+4|0;N=P+208+8|0;c[P+208>>2]=0;c[P+208+4>>2]=0;c[P+208+8>>2]=0;c[P+208+12>>2]=0;c[P+144>>2]=c[d>>2];c[P+144+4>>2]=c[d+4>>2];c[P+144+8>>2]=c[d+8>>2];c[P+144+12>>2]=c[d+12>>2];c[P+144+16>>2]=c[d+16>>2];c[P+144+16+4>>2]=c[d+16+4>>2];c[P+144+16+8>>2]=c[d+16+8>>2];c[P+144+16+12>>2]=c[d+16+12>>2];c[P+144+32>>2]=c[d+32>>2];c[P+144+32+4>>2]=c[d+32+4>>2];c[P+144+32+8>>2]=c[d+32+8>>2];c[P+144+32+12>>2]=c[d+32+12>>2];A=P+144+48|0;c[A>>2]=c[d+48>>2];c[A+4>>2]=c[d+48+4>>2];c[A+8>>2]=c[d+48+8>>2];c[A+12>>2]=c[d+48+12>>2];c[P+80>>2]=c[d+64>>2];c[P+80+4>>2]=c[d+64+4>>2];c[P+80+8>>2]=c[d+64+8>>2];c[P+80+12>>2]=c[d+64+12>>2];c[P+80+16>>2]=c[d+80>>2];c[P+80+16+4>>2]=c[d+80+4>>2];c[P+80+16+8>>2]=c[d+80+8>>2];c[P+80+16+12>>2]=c[d+80+12>>2];c[P+80+32>>2]=c[d+96>>2];c[P+80+32+4>>2]=c[d+96+4>>2];c[P+80+32+8>>2]=c[d+96+8>>2];c[P+80+32+12>>2]=c[d+96+12>>2];B=P+80+48|0;c[B>>2]=c[d+112>>2];c[B+4>>2]=c[d+112+4>>2];c[B+8>>2]=c[d+112+8>>2];c[B+12>>2]=c[d+112+12>>2];G=+g[A>>2];H=+g[B>>2];J=+g[P+144+52>>2];K=+g[P+80+52>>2];L=+g[P+144+56>>2];M=+g[P+80+56>>2];g[A>>2]=G-(G+H)*.5;g[P+144+52>>2]=J-(J+K)*.5;g[P+144+56>>2]=L-(L+M)*.5;g[B>>2]=H-(G+H)*.5;g[P+80+52>>2]=K-(J+K)*.5;g[P+80+56>>2]=M-(L+M)*.5;if(((c[(c[b+28>>2]|0)+4>>2]|0)+-17|0)>>>0<2)A=((c[(c[b+32>>2]|0)+4>>2]|0)+-17|0)>>>0<2;else A=0;v=+g[b+44>>2];u=+g[b+48>>2];c[6420]=(c[6420]|0)+1;B=a[b+52>>0]|0;c[b+64>>2]=0;c[b+4>>2]=0;c[b+8>>2]=1065353216;c[b+12>>2]=0;g[b+16>>2]=0.0;c[b+68>>2]=0;c[b+60>>2]=-1;p=c[b+24>>2]|0;a[p+312>>0]=0;c[p>>2]=0;a[p+356>>0]=1;c[p+292>>2]=1566444395;c[p+296>>2]=1566444395;c[p+300>>2]=1566444395;g[p+304>>2]=0.0;c[p+336>>2]=0;c[p+336+4>>2]=0;c[p+336+8>>2]=0;c[p+336+12>>2]=0;a[p+336+16>>0]=0;a[p+332>>0]=a[p+332>>0]&-16;p=0;q=999999984306749440.0;do{o=+g[b+4>>2];n=+g[b+8>>2];k=+g[b+12>>2];l=+g[d+4>>2]*-o+ +g[d+20>>2]*-n+ +g[d+36>>2]*-k;m=+g[d+8>>2]*-o+ +g[d+24>>2]*-n+ +g[d+40>>2]*-k;g[P+64>>2]=+g[d>>2]*-o+ +g[d+16>>2]*-n+ +g[d+32>>2]*-k;g[P+64+4>>2]=l;g[P+64+8>>2]=m;g[P+64+12>>2]=0.0;m=o*+g[d+68>>2]+n*+g[d+84>>2]+k*+g[d+100>>2];l=o*+g[d+72>>2]+n*+g[d+88>>2]+k*+g[d+104>>2];g[P+48>>2]=+g[d+64>>2]*o+ +g[d+80>>2]*n+ +g[d+96>>2]*k;g[P+48+4>>2]=m;g[P+48+8>>2]=l;g[P+48+12>>2]=0.0;Gd(P+32|0,c[b+28>>2]|0,P+64|0);Gd(P+16|0,c[b+32>>2]|0,P+48|0);l=+g[P+32>>2];m=+g[P+32+4>>2];k=+g[P+32+8>>2];n=l*+g[P+144>>2]+m*+g[P+144+4>>2]+k*+g[P+144+8>>2]+ +g[P+144+48>>2];o=l*+g[P+144+16>>2]+m*+g[P+144+20>>2]+k*+g[P+144+24>>2]+ +g[P+144+52>>2];k=l*+g[P+144+32>>2]+m*+g[P+144+36>>2]+k*+g[P+144+40>>2]+ +g[P+144+56>>2];m=+g[P+16>>2];l=+g[P+16+4>>2];t=+g[P+16+8>>2];r=m*+g[P+80>>2]+l*+g[P+80+4>>2]+t*+g[P+80+8>>2]+ +g[P+80+48>>2];s=m*+g[P+80+16>>2]+l*+g[P+80+20>>2]+t*+g[P+80+24>>2]+ +g[P+80+52>>2];t=m*+g[P+80+32>>2]+l*+g[P+80+36>>2]+t*+g[P+80+40>>2]+ +g[P+80+56>>2];l=A?0.0:t;m=A?0.0:k;t=(A?0.0:k)-(A?0.0:t);k=+g[b+4>>2]*(n-r)+ +g[b+8>>2]*(o-s)+ +g[b+12>>2]*t;if(k>0.0?k*k>q*+g[d+128>>2]:0){c[b+68>>2]=10;h=0;p=1}else T=7;do if((T|0)==7){T=0;y=c[b+24>>2]|0;z=c[y>>2]|0;if((z|0)>0){j=+g[y+308>>2];x=0;h=0;do{C=n-r-+g[y+4+(h<<4)>>2];D=o-s-+g[y+4+(h<<4)+4>>2];E=t-+g[y+4+(h<<4)+8>>2];x=x|C*C+D*D+E*E<=j;h=h+1|0}while((h|0)!=(z|0))}else x=0;if((+g[y+304>>2]==0.0?t==+g[y+300>>2]:0)?o-s==+g[y+296>>2]:0)h=n-r==+g[y+292>>2];else h=0;if(x|h){c[b+68>>2]=1;h=0;p=1;break}j=q-k;if(j<=q*9.999999974752427e-07){c[b+68>>2]=!(j<=0.0)?11:2;h=0;p=1;break}g[y+292>>2]=n-r;g[y+296>>2]=o-s;g[y+300>>2]=t;g[y+304>>2]=0.0;a[y+356>>0]=1;g[y+4+(z<<4)>>2]=n-r;g[y+4+(z<<4)+4>>2]=o-s;g[y+4+(z<<4)+8>>2]=t;g[y+4+(z<<4)+12>>2]=0.0;h=c[y>>2]|0;g[y+84+(h<<4)>>2]=n;g[y+84+(h<<4)+4>>2]=o;g[y+84+(h<<4)+8>>2]=m;g[y+84+(h<<4)+12>>2]=0.0;h=c[y>>2]|0;g[y+164+(h<<4)>>2]=r;g[y+164+(h<<4)+4>>2]=s;g[y+164+(h<<4)+8>>2]=l;g[y+164+(h<<4)+12>>2]=0.0;c[y>>2]=(c[y>>2]|0)+1;h=c[b+24>>2]|0;z=Ec(h)|0;j=+g[h+276>>2];k=+g[h+280>>2];l=+g[h+284>>2];h=c[h+288>>2]|0;if(!z){c[b+68>>2]=3;h=0;p=1;break}if(j*j+k*k+l*l<9.999999974752427e-07){g[b+4>>2]=j;g[b+8>>2]=k;g[b+12>>2]=l;c[b+16>>2]=h;c[b+68>>2]=6;h=0;p=1;break}if(q-(j*j+k*k+l*l)<=q*1.1920928955078125e-07){c[b+68>>2]=12;h=0;p=1;q=j*j+k*k+l*l;break}g[b+4>>2]=j;g[b+8>>2]=k;g[b+12>>2]=l;c[b+16>>2]=h;z=c[b+64>>2]|0;c[b+64>>2]=z+1;if((z|0)<=1e3)if((c[c[b+24>>2]>>2]|0)==4){c[b+68>>2]=13;h=0;q=j*j+k*k+l*l}else{h=1;q=j*j+k*k+l*l}else{h=0;q=j*j+k*k+l*l}}while(0)}while(h);u=B<<24>>24==0?u:0.0;t=(B<<24>>24==0?v:0.0)+u;do if(p){B=c[b+24>>2]|0;Ec(B)|0;j=+g[B+260>>2];l=+g[B+264>>2];n=+g[B+268>>2];c[P+208>>2]=c[b+4>>2];c[P+208+4>>2]=c[b+4+4>>2];c[P+208+8>>2]=c[b+4+8>>2];c[P+208+12>>2]=c[b+4+12>>2];k=+g[b+4>>2];m=+g[b+8>>2];o=+g[b+12>>2];if(k*k+m*m+o*o<.0001)c[b+68>>2]=5;if(k*k+m*m+o*o>1.4210854715202004e-14){E=1.0/+O(+(k*k+m*m+o*o));g[P+208>>2]=E*+g[P+208>>2];g[I>>2]=E*+g[I>>2];g[N>>2]=E*+g[N>>2];w=u/+O(+q);c[b+60>>2]=1;E=1.0/E-t;x=1;D=w*k+j;C=w*m+l;n=w*o+n;break}else{c[b+60>>2]=2;E=0.0;x=0;D=j;C=l;break}}else{E=0.0;x=0;D=0.0;C=0.0;n=0.0}while(0);if(((c[b+72>>2]|0)!=0?(c[b+20>>2]|0)!=0:0)?(c[b+68>>2]|0)!=0:0)h=t+E<.01;else h=0;p=x^1;do if(h|p?(F=c[b+20>>2]|0,(F|0)!=0):0){c[6419]=(c[6419]|0)+1;c[b+4>>2]=0;c[b+4+4>>2]=0;c[b+4+8>>2]=0;c[b+4+12>>2]=0;if(Db[c[(c[F>>2]|0)+8>>2]&3](F,c[b+24>>2]|0,c[b+28>>2]|0,c[b+32>>2]|0,P+144|0,P+80|0,b+4|0,P+64|0,P+48|0,f)|0){l=+g[P+48>>2];o=+g[P+64>>2];k=+g[P+48+4>>2];q=+g[P+64+4>>2];j=+g[P+48+8>>2];r=+g[P+64+8>>2];if(!((l-o)*(l-o)+(k-q)*(k-q)+(j-r)*(j-r)<=1.4210854715202004e-14)){m=(l-o)*(l-o)+(k-q)*(k-q)+(j-r)*(j-r);t=l-o;u=j-r;v=0.0;w=k-q}else{t=+g[b+4>>2];w=+g[b+8>>2];u=+g[b+12>>2];m=t*t+w*w+u*u;v=+g[b+16>>2]}if(m>1.4210854715202004e-14){s=1.0/+O(+m);m=-+O(+((o-l)*(o-l)+(q-k)*(q-k)+(r-j)*(r-j)));if(E>m|p){g[P+208>>2]=t*s;g[I>>2]=w*s;g[N>>2]=u*s;g[P+208+12>>2]=v;c[b+60>>2]=3;break}else h=8}else h=9;c[b+60>>2]=h;if(x){m=E;l=D;k=C;j=n;break}i=P;return}else{k=+g[b+4>>2];o=+g[b+8>>2];r=+g[b+12>>2];if(!(k*k+o*o+r*r>0.0)){if(x){m=E;l=D;k=C;j=n;break}i=P;return}l=+g[P+48>>2];v=+g[P+64>>2]-l;q=+g[P+48+4>>2];w=+g[P+64+4>>2]-q;s=+g[P+48+8>>2];j=+g[P+64+8>>2]-s;j=+O(+(v*v+w*w+j*j))-t;if(j>2]=c[b+4>>2];c[P+208+4>>2]=c[b+4+4>>2];c[P+208+8>>2]=c[b+4+8>>2];c[P+208+12>>2]=c[b+4+12>>2];C=+g[P+208>>2];D=+g[I>>2];E=+g[N>>2];m=1.0/+O(+(C*C+D*D+E*E));g[P+208>>2]=C*m;g[I>>2]=D*m;g[N>>2]=E*m;c[b+60>>2]=6;m=j;l=u*k+l;k=u*o+q;j=u*r+s;break}c[b+60>>2]=5;if(x){m=E;l=D;k=C;j=n;break}i=P;return}}else T=52;while(0);if((T|0)==52)if(x){m=E;l=D;k=C;j=n}else{i=P;return}if(!(m<0.0)?!(m*m<+g[d+128>>2]):0){i=P;return}if(c[b+76>>2]|0?(T=c[b+28>>2]|0,mc[c[(c[T>>2]|0)+8>>2]&127](T,P+144|0,P+64|0,P+48|0),C=(+g[P+48>>2]+ +g[P+64>>2])*.5,D=(+g[P+48+4>>2]+ +g[P+64+4>>2])*.5,E=(+g[P+48+8>>2]+ +g[P+64+8>>2])*.5,T=c[b+32>>2]|0,mc[c[(c[T>>2]|0)+8>>2]&127](T,P+80|0,P+64|0,P+48|0),Q=+g[P+208>>2],R=+g[I>>2],S=+g[N>>2],(C-(+g[P+64>>2]+ +g[P+48>>2])*.5)*Q+(D-(+g[P+64+4>>2]+ +g[P+48+4>>2])*.5)*R+(E-(+g[P+64+8>>2]+ +g[P+48+8>>2])*.5)*S<0.0):0){g[P+208>>2]=-Q;g[I>>2]=-R;g[N>>2]=-S}c[b+4>>2]=c[P+208>>2];c[b+4+4>>2]=c[P+208+4>>2];c[b+4+8>>2]=c[P+208+8>>2];c[b+4+12>>2]=c[P+208+12>>2];g[b+56>>2]=m;T=c[(c[e>>2]|0)+16>>2]|0;g[P>>2]=(G+H)*.5+l;g[P+4>>2]=(J+K)*.5+k;g[P+8>>2]=(L+M)*.5+j;g[P+12>>2]=0.0;hc[T&15](e,P+208|0,P,m);i=P;return}function Wc(b,d,e,f,h,j,k){b=b|0;d=d|0;e=e|0;f=f|0;h=+h;j=+j;k=k|0;var l=0,m=0,n=0.0,o=0,p=0.0,q=0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0,D=0,E=0.0,F=0.0,G=0.0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0.0,Z=0.0,_=0.0,$=0.0,aa=0,ba=0;X=i;i=i+64|0;a[X+32+16>>0]=1;W=X+32+12|0;c[W>>2]=0;c[X+32+4>>2]=0;c[X+32+8>>2]=0;q=c[f+4>>2]|0;if((q|0)>0){c[6435]=(c[6435]|0)+1;l=yc((q<<4|3)+16|0)|0;if(!l)o=0;else{c[(l+4+15&-16)+-4>>2]=l;o=l+4+15&-16}l=c[X+32+4>>2]|0;if((l|0)>0){m=0;do{V=o+(m<<4)|0;U=(c[W>>2]|0)+(m<<4)|0;c[V>>2]=c[U>>2];c[V+4>>2]=c[U+4>>2];c[V+8>>2]=c[U+8>>2];c[V+12>>2]=c[U+12>>2];m=m+1|0}while((m|0)!=(l|0))}l=c[W>>2]|0;if(l|0){if(a[X+32+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[l+-4>>2]|0)}c[W>>2]=0}a[X+32+16>>0]=1;c[W>>2]=o;c[X+32+8>>2]=q}l=c[d+28>>2]|0;if((l|0)>0){U=c[d+36>>2]|0;A=+g[e>>2];B=+g[e+4>>2];E=+g[e+8>>2];F=+g[e+16>>2];G=+g[e+20>>2];s=+g[e+24>>2];r=+g[e+32>>2];p=+g[e+36>>2];n=+g[e+40>>2];t=+g[b>>2];u=+g[b+4>>2];v=+g[b+8>>2];V=-1;z=3402823466385288598117041.0e14;o=0;while(1){w=+g[U+(o*36|0)+20>>2];x=+g[U+(o*36|0)+24>>2];y=+g[U+(o*36|0)+28>>2];m=(w*A+x*B+y*E)*t+(w*F+x*G+y*s)*u+(w*r+x*p+y*n)*v=0){L=c[U+(V*36|0)+4>>2]|0;if((L|0)>0){M=U+(V*36|0)+12|0;N=U+(V*36|0)+20|0;O=U+(V*36|0)+24|0;P=U+(V*36|0)+28|0;t=A;x=B;w=E;v=F;u=G;K=0;J=f;f=X+32|0;while(1){I=c[M>>2]|0;l=c[I+(K<<2)>>2]|0;H=c[d+16>>2]|0;K=K+1|0;I=c[I+(((K|0)==(L|0)?0:K)<<2)>>2]|0;Z=+g[H+(l<<4)>>2];_=Z-+g[H+(I<<4)>>2];Y=+g[H+(l<<4)+4>>2];$=Y-+g[H+(I<<4)+4>>2];y=+g[H+(l<<4)+8>>2];B=y-+g[H+(I<<4)+8>>2];z=_*t+$*x+B*w;A=_*v+$*u+B*s;B=_*r+$*p+B*n;$=+g[N>>2];_=+g[O>>2];G=+g[P>>2];E=t*$+x*_+w*G;F=v*$+u*_+s*G;G=r*$+p*_+n*G;u=(Z*t+Y*x+y*w+ +g[e+48>>2])*-(A*G-B*F)+(Z*v+Y*u+y*s+ +g[e+52>>2])*-(B*E-z*G)+(Z*r+Y*p+y*n+ +g[e+56>>2])*-(z*F-A*E);I=J;H=f;l=c[I+4>>2]|0;if((l|0)>=2){o=c[I+12>>2]|0;p=+g[o+(l+-1<<4)>>2];r=+g[o+(l+-1<<4)+4>>2];s=+g[o+(l+-1<<4)+8>>2];n=p*-(A*G-B*F)+r*-(B*E-z*G)+s*-(z*F-A*E)-u;D=0;while(1){v=+g[o+(D<<4)>>2];w=+g[o+(D<<4)+4>>2];x=+g[o+(D<<4)+8>>2];C=c[o+(D<<4)+12>>2]|0;y=v*-(A*G-B*F)+w*-(B*E-z*G)+x*-(z*F-A*E)-u;do if(n<0.0)if(y<0.0){m=c[H+4>>2]|0;if((m|0)==(c[H+8>>2]|0)?(Q=m|0?m<<1:1,(m|0)<(Q|0)):0){if(!Q)q=0;else{c[6435]=(c[6435]|0)+1;m=yc((Q<<4|3)+16|0)|0;if(!m)m=0;else{c[(m+4+15&-16)+-4>>2]=m;m=m+4+15&-16}q=m;m=c[H+4>>2]|0}if((m|0)>0){o=0;do{aa=q+(o<<4)|0;ba=(c[H+12>>2]|0)+(o<<4)|0;c[aa>>2]=c[ba>>2];c[aa+4>>2]=c[ba+4>>2];c[aa+8>>2]=c[ba+8>>2];c[aa+12>>2]=c[ba+12>>2];o=o+1|0}while((o|0)!=(m|0))}m=c[H+12>>2]|0;if(m|0){if(a[H+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[m+-4>>2]|0)}c[H+12>>2]=0}a[H+16>>0]=1;c[H+12>>2]=q;c[H+8>>2]=Q;m=c[H+4>>2]|0}ba=c[H+12>>2]|0;g[ba+(m<<4)>>2]=v;g[ba+(m<<4)+4>>2]=w;g[ba+(m<<4)+8>>2]=x;c[ba+(m<<4)+12>>2]=C;c[H+4>>2]=(c[H+4>>2]|0)+1;break}else{n=n/(n-y);t=p+(v-p)*n;p=r+(w-r)*n;n=s+(x-s)*n;m=c[H+4>>2]|0;if((m|0)==(c[H+8>>2]|0)?(R=m|0?m<<1:1,(m|0)<(R|0)):0){if(!R)q=0;else{c[6435]=(c[6435]|0)+1;m=yc((R<<4|3)+16|0)|0;if(!m)m=0;else{c[(m+4+15&-16)+-4>>2]=m;m=m+4+15&-16}q=m;m=c[H+4>>2]|0}if((m|0)>0){o=0;do{ba=q+(o<<4)|0;aa=(c[H+12>>2]|0)+(o<<4)|0;c[ba>>2]=c[aa>>2];c[ba+4>>2]=c[aa+4>>2];c[ba+8>>2]=c[aa+8>>2];c[ba+12>>2]=c[aa+12>>2];o=o+1|0}while((o|0)!=(m|0))}m=c[H+12>>2]|0;if(m|0){if(a[H+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[m+-4>>2]|0)}c[H+12>>2]=0}a[H+16>>0]=1;c[H+12>>2]=q;c[H+8>>2]=R;m=c[H+4>>2]|0}ba=c[H+12>>2]|0;g[ba+(m<<4)>>2]=t;g[ba+(m<<4)+4>>2]=p;g[ba+(m<<4)+8>>2]=n;g[ba+(m<<4)+12>>2]=0.0;c[H+4>>2]=(c[H+4>>2]|0)+1;break}else if(y<0.0){n=n/(n-y);t=p+(v-p)*n;p=r+(w-r)*n;n=s+(x-s)*n;m=c[H+4>>2]|0;if((m|0)==(c[H+8>>2]|0)?(S=m|0?m<<1:1,(m|0)<(S|0)):0){if(!S)q=0;else{c[6435]=(c[6435]|0)+1;m=yc((S<<4|3)+16|0)|0;if(!m)m=0;else{c[(m+4+15&-16)+-4>>2]=m;m=m+4+15&-16}q=m;m=c[H+4>>2]|0}if((m|0)>0){o=0;do{ba=q+(o<<4)|0;aa=(c[H+12>>2]|0)+(o<<4)|0;c[ba>>2]=c[aa>>2];c[ba+4>>2]=c[aa+4>>2];c[ba+8>>2]=c[aa+8>>2];c[ba+12>>2]=c[aa+12>>2];o=o+1|0}while((o|0)!=(m|0))}m=c[H+12>>2]|0;if(m|0){if(a[H+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[m+-4>>2]|0)}c[H+12>>2]=0}a[H+16>>0]=1;c[H+12>>2]=q;c[H+8>>2]=S;m=c[H+4>>2]|0}ba=c[H+12>>2]|0;g[ba+(m<<4)>>2]=t;g[ba+(m<<4)+4>>2]=p;g[ba+(m<<4)+8>>2]=n;g[ba+(m<<4)+12>>2]=0.0;m=(c[H+4>>2]|0)+1|0;c[H+4>>2]=m;if((m|0)==(c[H+8>>2]|0)?(T=m|0?m<<1:1,(m|0)<(T|0)):0){if(!T)q=0;else{c[6435]=(c[6435]|0)+1;m=yc((T<<4|3)+16|0)|0;if(!m)m=0;else{c[(m+4+15&-16)+-4>>2]=m;m=m+4+15&-16}q=m;m=c[H+4>>2]|0}if((m|0)>0){o=0;do{ba=q+(o<<4)|0;aa=(c[H+12>>2]|0)+(o<<4)|0;c[ba>>2]=c[aa>>2];c[ba+4>>2]=c[aa+4>>2];c[ba+8>>2]=c[aa+8>>2];c[ba+12>>2]=c[aa+12>>2];o=o+1|0}while((o|0)!=(m|0))}m=c[H+12>>2]|0;if(m|0){if(a[H+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[m+-4>>2]|0)}c[H+12>>2]=0}a[H+16>>0]=1;c[H+12>>2]=q;c[H+8>>2]=T;m=c[H+4>>2]|0}ba=c[H+12>>2]|0;g[ba+(m<<4)>>2]=v;g[ba+(m<<4)+4>>2]=w;g[ba+(m<<4)+8>>2]=x;c[ba+(m<<4)+12>>2]=C;c[H+4>>2]=(c[H+4>>2]|0)+1}while(0);m=D+1|0;if((m|0)==(l|0))break;o=c[I+12>>2]|0;n=y;p=v;s=x;r=w;D=m}l=c[I+4>>2]|0}if((l|0)<0){if((c[I+8>>2]|0)<0){m=c[I+12>>2]|0;if(m|0){if(a[I+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[m+-4>>2]|0)}c[I+12>>2]=0}a[I+16>>0]=1;c[I+12>>2]=0;c[I+8>>2]=0}do{ba=(c[I+12>>2]|0)+(l<<4)|0;c[ba>>2]=c[X>>2];c[ba+4>>2]=c[X+4>>2];c[ba+8>>2]=c[X+8>>2];c[ba+12>>2]=c[X+12>>2];l=l+1|0}while((l|0)!=0)}c[I+4>>2]=0;t=+g[e>>2];x=+g[e+4>>2];w=+g[e+8>>2];v=+g[e+16>>2];u=+g[e+20>>2];s=+g[e+24>>2];r=+g[e+32>>2];p=+g[e+36>>2];n=+g[e+40>>2];if((K|0)>=(L|0)){o=N;m=O;l=P;C=e+48|0;D=e+52|0;q=e+56|0;break}else{ba=f;f=J;J=ba}}}else{o=U+(V*36|0)+20|0;m=U+(V*36|0)+24|0;l=U+(V*36|0)+28|0;C=e+48|0;D=e+52|0;q=e+56|0;t=A;x=B;w=E;v=F;u=G}Z=+g[o>>2];_=+g[m>>2];$=+g[l>>2];t=Z*t+_*x+$*w;s=Z*v+_*u+$*s;r=Z*r+_*p+$*n;p=+g[U+(V*36|0)+32>>2]-(t*+g[C>>2]+s*+g[D>>2]+r*+g[q>>2]);l=c[f+4>>2]|0;if((l|0)>0){o=0;do{m=c[f+12>>2]|0;n=p+(t*+g[m+(o<<4)>>2]+s*+g[m+(o<<4)+4>>2]+r*+g[m+(o<<4)+8>>2]);n=n<=h?h:n;if(n<=j){l=m+(o<<4)|0;c[X+16>>2]=c[l>>2];c[X+16+4>>2]=c[l+4>>2];c[X+16+8>>2]=c[l+8>>2];c[X+16+12>>2]=c[l+12>>2];hc[c[(c[k>>2]|0)+16>>2]&15](k,b,X+16|0,n);l=c[f+4>>2]|0}o=o+1|0}while((o|0)<(l|0))}}}l=c[W>>2]|0;if(!l){i=X;return}if(a[X+32+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[l+-4>>2]|0)}c[W>>2]=0;i=X;return}function Xc(b){b=b|0;var d=0.0,e=0,f=0,h=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0,x=0.0,y=0.0,z=0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0.0,H=0.0,I=0.0,J=0.0,K=0.0,L=0.0,M=0.0,P=0.0,Q=0.0,R=0.0,S=0.0,T=0.0,U=0.0,V=0.0,W=0.0,X=0.0;w=i;i=i+176|0;if(!(a[b+738>>0]|0)){i=w;return}g[b+36>>2]=0.0;g[b+744>>2]=0.0;if(!(a[b+736>>0]|0)){e=c[b+28>>2]|0;l=+g[b+600>>2];m=+g[b+604>>2];r=+g[b+608>>2];t=l*+g[e+20>>2]+m*+g[e+24>>2]+r*+g[e+28>>2]+ +g[e+56>>2];f=c[b+32>>2]|0;n=+g[b+664>>2];o=+g[b+668>>2];s=+g[b+672>>2];p=+g[f+52>>2];d=+g[f+56>>2];u=n*+g[f+20>>2]+o*+g[f+24>>2]+s*+g[f+28>>2]+d;v=n*+g[f+36>>2]+o*+g[f+40>>2]+s*+g[f+44>>2]+ +g[f+60>>2];q=l*+g[e+4>>2]+m*+g[e+8>>2]+r*+g[e+12>>2]+ +g[e+52>>2];r=l*+g[e+36>>2]+m*+g[e+40>>2]+r*+g[e+44>>2]+ +g[e+60>>2];s=n*+g[f+4>>2]+o*+g[f+8>>2]+s*+g[f+12>>2]+p;if((s-q)*(s-q)+(u-t)*(u-t)+(v-r)*(v-r)>1.1920928955078125e-07){j=1.0/+O(+((s-q)*(s-q)+(u-t)*(u-t)+(v-r)*(v-r)));g[w+128>>2]=(s-q)*j;g[w+128+4>>2]=(u-t)*j;g[w+128+8>>2]=(v-r)*j;c[w+128+12>>2]=0;n=(v-r)*j;h=(u-t)*j;j=(s-q)*j}else{c[w+128>>2]=1065353216;c[w+128+4>>2]=0;c[w+128+8>>2]=0;g[w+128+12>>2]=0.0;n=0.0;h=0.0;j=1.0}if(+N(+n)>.7071067690849304){y=n*n+h*h;x=1.0/+O(+y);l=-(x*n);n=x*h;o=-(n*j);k=j*l;m=0.0;h=y*x;j=n}else{l=j*j+h*h;k=1.0/+O(+l);m=-(h*k);h=k*j;o=n*m;k=l*k;l=h;h=-(h*n);j=0.0}g[w+128+16>>2]=m;g[w+128+20>>2]=l;g[w+128+24>>2]=j;g[w+128+32>>2]=h;g[w+128+36>>2]=o;g[w+128+40>>2]=k;h=p;e=0;while(1){z=c[b+28>>2]|0;c[w+80>>2]=c[z+4>>2];c[w+80+4>>2]=c[z+20>>2];c[w+80+8>>2]=c[z+36>>2];g[w+80+12>>2]=0.0;c[w+80+16>>2]=c[z+8>>2];c[w+80+20>>2]=c[z+24>>2];c[w+80+24>>2]=c[z+40>>2];g[w+80+28>>2]=0.0;c[w+80+32>>2]=c[z+12>>2];c[w+80+36>>2]=c[z+28>>2];c[w+80+40>>2]=c[z+44>>2];g[w+80+44>>2]=0.0;c[w+32>>2]=c[f+4>>2];c[w+32+4>>2]=c[f+20>>2];c[w+32+8>>2]=c[f+36>>2];g[w+32+12>>2]=0.0;c[w+32+16>>2]=c[f+8>>2];c[w+32+20>>2]=c[f+24>>2];c[w+32+24>>2]=c[f+40>>2];g[w+32+28>>2]=0.0;c[w+32+32>>2]=c[f+12>>2];c[w+32+36>>2]=c[f+28>>2];c[w+32+40>>2]=c[f+44>>2];g[w+32+44>>2]=0.0;x=t-+g[z+56>>2];y=r-+g[z+60>>2];g[w+16>>2]=q-+g[z+52>>2];g[w+16+4>>2]=x;g[w+16+8>>2]=y;g[w+16+12>>2]=0.0;y=v-+g[f+60>>2];g[w>>2]=s-h;g[w+4>>2]=u-d;g[w+8>>2]=y;g[w+12>>2]=0.0;z=c[b+28>>2]|0;f=c[b+32>>2]|0;Rg(b+48+(e*84|0)|0,w+80|0,w+32|0,w+16|0,w,w+128+(e<<4)|0,z+396|0,+g[z+344>>2],f+396|0,+g[f+344>>2]);e=e+1|0;if((e|0)==3)break;z=c[b+32>>2]|0;f=z;h=+g[z+52>>2];d=+g[z+56>>2]}}h=+g[b+560>>2];j=+g[b+576>>2];k=+g[b+592>>2];if(+N(+k)>.7071067690849304){p=1.0/+O(+(k*k+j*j));d=h*-(k*p);l=0.0;m=j*p;n=-(k*p);o=(k*k+j*j)*p;p=-(h*j*p)}else{p=1.0/+O(+(h*h+j*j));d=(h*h+j*j)*p;l=-(j*p);m=0.0;n=h*p;o=-(k*h*p);p=k*-(j*p)}f=c[b+28>>2]|0;I=+g[f+4>>2];H=+g[f+8>>2];u=+g[f+12>>2];R=l*I+n*H+m*u;G=+g[f+20>>2];F=+g[f+24>>2];x=+g[f+28>>2];T=l*G+n*F+m*x;E=+g[f+36>>2];s=+g[f+40>>2];C=+g[f+44>>2];W=l*E+n*s+m*C;B=o*I+p*H+d*u;K=o*G+p*F+d*x;L=o*E+p*s+d*C;e=c[b+32>>2]|0;A=+g[e+4>>2];l=+g[e+20>>2];m=+g[e+36>>2];q=+g[e+8>>2];r=+g[e+24>>2];v=+g[e+40>>2];P=+g[e+12>>2];S=+g[e+28>>2];V=+g[e+44>>2];c[b+300>>2]=0;c[b+300+4>>2]=0;c[b+300+8>>2]=0;c[b+300+12>>2]=0;g[b+316>>2]=R*I+T*G+W*E;g[b+320>>2]=R*H+T*F+W*s;g[b+324>>2]=R*u+T*x+W*C;g[b+328>>2]=0.0;g[b+332>>2]=A*-R+l*-T+m*-W;g[b+336>>2]=q*-R+r*-T+v*-W;g[b+340>>2]=P*-R+S*-T+V*-W;g[b+344>>2]=0.0;D=(R*I+T*G+W*E)*+g[f+396>>2];J=(R*H+T*F+W*s)*+g[f+400>>2];d=(R*u+T*x+W*C)*+g[f+404>>2];g[b+348>>2]=D;g[b+352>>2]=J;g[b+356>>2]=d;g[b+360>>2]=0.0;p=(A*-R+l*-T+m*-W)*+g[e+396>>2];y=(q*-R+r*-T+v*-W)*+g[e+400>>2];X=(P*-R+S*-T+V*-W)*+g[e+404>>2];g[b+364>>2]=p;g[b+368>>2]=y;g[b+372>>2]=X;g[b+376>>2]=0.0;g[b+380>>2]=(R*I+T*G+W*E)*D+(R*H+T*F+W*s)*J+(R*u+T*x+W*C)*d+((A*-R+l*-T+m*-W)*p+(q*-R+r*-T+v*-W)*y+(P*-R+S*-T+V*-W)*X);e=c[b+28>>2]|0;X=+g[e+4>>2];W=+g[e+20>>2];V=+g[e+36>>2];T=+g[e+8>>2];S=+g[e+24>>2];R=+g[e+40>>2];P=+g[e+12>>2];y=+g[e+28>>2];v=+g[e+44>>2];f=c[b+32>>2]|0;r=+g[f+4>>2];q=+g[f+20>>2];p=+g[f+36>>2];m=+g[f+8>>2];l=+g[f+24>>2];A=+g[f+40>>2];d=+g[f+12>>2];J=+g[f+28>>2];D=+g[f+44>>2];c[b+384>>2]=0;c[b+384+4>>2]=0;c[b+384+8>>2]=0;c[b+384+12>>2]=0;g[b+400>>2]=B*X+K*W+L*V;g[b+404>>2]=B*T+K*S+L*R;g[b+408>>2]=B*P+K*y+L*v;g[b+412>>2]=0.0;g[b+416>>2]=r*-B+q*-K+p*-L;g[b+420>>2]=m*-B+l*-K+A*-L;g[b+424>>2]=d*-B+J*-K+D*-L;g[b+428>>2]=0.0;U=(B*X+K*W+L*V)*+g[e+396>>2];Q=(B*T+K*S+L*R)*+g[e+400>>2];t=(B*P+K*y+L*v)*+g[e+404>>2];g[b+432>>2]=U;g[b+436>>2]=Q;g[b+440>>2]=t;g[b+444>>2]=0.0;n=(r*-B+q*-K+p*-L)*+g[f+396>>2];o=(m*-B+l*-K+A*-L)*+g[f+400>>2];M=(d*-B+J*-K+D*-L)*+g[f+404>>2];g[b+448>>2]=n;g[b+452>>2]=o;g[b+456>>2]=M;g[b+460>>2]=0.0;g[b+464>>2]=(B*X+K*W+L*V)*U+(B*T+K*S+L*R)*Q+(B*P+K*y+L*v)*t+((r*-B+q*-K+p*-L)*n+(m*-B+l*-K+A*-L)*o+(d*-B+J*-K+D*-L)*M);f=c[b+28>>2]|0;M=+g[f+4>>2];L=+g[f+20>>2];D=+g[f+36>>2];K=+g[f+8>>2];J=+g[f+24>>2];B=+g[f+40>>2];d=+g[f+12>>2];o=+g[f+28>>2];A=+g[f+44>>2];e=c[b+32>>2]|0;l=+g[e+4>>2];m=+g[e+20>>2];n=+g[e+36>>2];p=+g[e+8>>2];q=+g[e+24>>2];r=+g[e+40>>2];t=+g[e+12>>2];v=+g[e+28>>2];y=+g[e+44>>2];c[b+468>>2]=0;c[b+468+4>>2]=0;c[b+468+8>>2]=0;c[b+468+12>>2]=0;D=(I*h+H*j+u*k)*M+(G*h+F*j+x*k)*L+(E*h+s*j+C*k)*D;B=(I*h+H*j+u*k)*K+(G*h+F*j+x*k)*J+(E*h+s*j+C*k)*B;A=(I*h+H*j+u*k)*d+(G*h+F*j+x*k)*o+(E*h+s*j+C*k)*A;g[b+484>>2]=D;g[b+488>>2]=B;g[b+492>>2]=A;g[b+496>>2]=0.0;u=-(I*h+H*j+u*k);x=-(G*h+F*j+x*k);h=-(E*h+s*j+C*k);g[b+500>>2]=l*u+m*x+n*h;g[b+504>>2]=p*u+q*x+r*h;g[b+508>>2]=t*u+v*x+y*h;g[b+512>>2]=0.0;C=D*+g[f+396>>2];j=B*+g[f+400>>2];k=A*+g[f+404>>2];g[b+516>>2]=C;g[b+520>>2]=j;g[b+524>>2]=k;g[b+528>>2]=0.0;o=(l*u+m*x+n*h)*+g[e+396>>2];s=(p*u+q*x+r*h)*+g[e+400>>2];d=(t*u+v*x+y*h)*+g[e+404>>2];g[b+532>>2]=o;g[b+536>>2]=s;g[b+540>>2]=d;g[b+544>>2]=0.0;g[b+548>>2]=D*C+B*j+A*k+((l*u+m*x+n*h)*o+(p*u+q*x+r*h)*s+(t*u+v*x+y*h)*d);g[b+724>>2]=0.0;e=c[b+28>>2]|0;f=c[b+32>>2]|0;d=+kj(b,e+4|0,f+4|0);g[b+728>>2]=d;g[b+708>>2]=0.0;g[b+712>>2]=0.0;a[b+716>>0]=0;h=+g[b+692>>2];do if(h>=0.0){d=+eh(d-+g[b+688>>2],6.2831854820251465);if(!(d<-3.1415927410125732)){if(d>3.1415927410125732)d=d+-6.2831854820251465}else d=d+6.2831854820251465;if(d<-h){a[b+716>>0]=1;g[b+708>>2]=-(d+h);g[b+712>>2]=1.0;break}if(d>h){a[b+716>>0]=1;g[b+708>>2]=h-d;g[b+712>>2]=-1.0}}while(0);T=+g[b+560>>2];U=+g[b+576>>2];X=+g[b+592>>2];V=T*+g[e+4>>2]+U*+g[e+8>>2]+X*+g[e+12>>2];W=T*+g[e+20>>2]+U*+g[e+24>>2]+X*+g[e+28>>2];X=T*+g[e+36>>2]+U*+g[e+40>>2]+X*+g[e+44>>2];g[b+720>>2]=1.0/(V*(V*+g[e+264>>2]+W*+g[e+280>>2]+X*+g[e+296>>2])+W*(V*+g[e+268>>2]+W*+g[e+284>>2]+X*+g[e+300>>2])+X*(V*+g[e+272>>2]+W*+g[e+288>>2]+X*+g[e+304>>2])+(V*(V*+g[f+264>>2]+W*+g[f+280>>2]+X*+g[f+296>>2])+W*(V*+g[f+268>>2]+W*+g[f+284>>2]+X*+g[f+300>>2])+X*(V*+g[f+272>>2]+W*+g[f+288>>2]+X*+g[f+304>>2])));i=w;return}function Yc(b,d,e,f,h,j,l,m,n,o){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;j=j|0;l=l|0;m=m|0;n=n|0;o=o|0;var p=0.0,q=0,r=0,s=0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0,A=0,B=0,C=0.0,D=0.0,E=0.0,F=0.0,G=0.0;B=i;i=i+4224|0;if(((c[e+4>>2]|0)+-17|0)>>>0<2)A=((c[f+4>>2]|0)+-17|0)>>>0<2;else A=0;b=0;do{Ue();t=+g[24672+(b<<4)>>2];u=+g[24672+(b<<4)+4>>2];v=+g[24672+(b<<4)+8>>2];y=+g[h+4>>2]*-t+ +g[h+20>>2]*-u+ +g[h+36>>2]*-v;w=+g[h+8>>2]*-t+ +g[h+24>>2]*-u+ +g[h+40>>2]*-v;g[B+1248+(b<<4)>>2]=+g[h>>2]*-t+ +g[h+16>>2]*-u+ +g[h+32>>2]*-v;g[B+1248+(b<<4)+4>>2]=y;g[B+1248+(b<<4)+8>>2]=w;g[B+1248+(b<<4)+12>>2]=0.0;w=t*+g[j+4>>2]+u*+g[j+20>>2]+v*+g[j+36>>2];y=t*+g[j+8>>2]+u*+g[j+24>>2]+v*+g[j+40>>2];g[B+256+(b<<4)>>2]=t*+g[j>>2]+u*+g[j+16>>2]+v*+g[j+32>>2];g[B+256+(b<<4)+4>>2]=w;g[B+256+(b<<4)+8>>2]=y;g[B+256+(b<<4)+12>>2]=0.0;b=b+1|0}while((b|0)!=42);b=Eb[c[(c[e>>2]|0)+84>>2]&127](e)|0;if((b|0)>0){q=0;r=42;while(1){ic[c[(c[e>>2]|0)+88>>2]&127](e,q,B+176|0);w=+g[B+176>>2];y=+g[B+176+4>>2];v=+g[B+176+8>>2];u=w*+g[h+16>>2]+y*+g[h+20>>2]+v*+g[h+24>>2];t=w*+g[h+32>>2]+y*+g[h+36>>2]+v*+g[h+40>>2];g[B+176>>2]=+g[h>>2]*w+ +g[h+4>>2]*y+ +g[h+8>>2]*v;g[B+176+4>>2]=u;g[B+176+8>>2]=t;g[B+176+12>>2]=0.0;Ue();z=24672+(r<<4)|0;c[z>>2]=c[B+176>>2];c[z+4>>2]=c[B+176+4>>2];c[z+8>>2]=c[B+176+8>>2];c[z+12>>2]=c[B+176+12>>2];t=+g[B+176>>2];u=+g[B+176+4>>2];v=+g[B+176+8>>2];y=+g[h+4>>2]*-t+ +g[h+20>>2]*-u+ +g[h+36>>2]*-v;w=+g[h+8>>2]*-t+ +g[h+24>>2]*-u+ +g[h+40>>2]*-v;g[B+1248+(r<<4)>>2]=+g[h>>2]*-t+ +g[h+16>>2]*-u+ +g[h+32>>2]*-v;g[B+1248+(r<<4)+4>>2]=y;g[B+1248+(r<<4)+8>>2]=w;g[B+1248+(r<<4)+12>>2]=0.0;w=t*+g[j+4>>2]+u*+g[j+20>>2]+v*+g[j+36>>2];y=t*+g[j+8>>2]+u*+g[j+24>>2]+v*+g[j+40>>2];g[B+256+(r<<4)>>2]=+g[j>>2]*t+ +g[j+16>>2]*u+ +g[j+32>>2]*v;g[B+256+(r<<4)+4>>2]=w;g[B+256+(r<<4)+8>>2]=y;g[B+256+(r<<4)+12>>2]=0.0;q=q+1|0;if((q|0)==(b|0))break;else r=r+1|0}r=b+42|0}else r=42;b=Eb[c[(c[f>>2]|0)+84>>2]&127](f)|0;if((b|0)>0){q=0;s=r;while(1){ic[c[(c[f>>2]|0)+88>>2]&127](f,q,B+176|0);w=+g[B+176>>2];y=+g[B+176+4>>2];v=+g[B+176+8>>2];u=w*+g[j+16>>2]+y*+g[j+20>>2]+v*+g[j+24>>2];t=w*+g[j+32>>2]+y*+g[j+36>>2]+v*+g[j+40>>2];g[B+176>>2]=+g[j>>2]*w+ +g[j+4>>2]*y+ +g[j+8>>2]*v;g[B+176+4>>2]=u;g[B+176+8>>2]=t;g[B+176+12>>2]=0.0;Ue();z=24672+(s<<4)|0;c[z>>2]=c[B+176>>2];c[z+4>>2]=c[B+176+4>>2];c[z+8>>2]=c[B+176+8>>2];c[z+12>>2]=c[B+176+12>>2];t=+g[B+176>>2];u=+g[B+176+4>>2];v=+g[B+176+8>>2];y=+g[h+4>>2]*-t+ +g[h+20>>2]*-u+ +g[h+36>>2]*-v;w=+g[h+8>>2]*-t+ +g[h+24>>2]*-u+ +g[h+40>>2]*-v;g[B+1248+(s<<4)>>2]=+g[h>>2]*-t+ +g[h+16>>2]*-u+ +g[h+32>>2]*-v;g[B+1248+(s<<4)+4>>2]=y;g[B+1248+(s<<4)+8>>2]=w;g[B+1248+(s<<4)+12>>2]=0.0;w=t*+g[j+4>>2]+u*+g[j+20>>2]+v*+g[j+36>>2];y=t*+g[j+8>>2]+u*+g[j+24>>2]+v*+g[j+40>>2];g[B+256+(s<<4)>>2]=+g[j>>2]*t+ +g[j+16>>2]*u+ +g[j+32>>2]*v;g[B+256+(s<<4)+4>>2]=w;g[B+256+(s<<4)+8>>2]=y;g[B+256+(s<<4)+12>>2]=0.0;q=q+1|0;if((q|0)==(b|0))break;else s=s+1|0}r=b+r|0}mc[c[(c[e>>2]|0)+76>>2]&127](e,B+1248|0,B+3232|0,r);mc[c[(c[f>>2]|0)+76>>2]&127](f,B+256|0,B+2240|0,r);if((r|0)>0){z=0;b=0;q=0;s=0;w=0.0;u=999999984306749440.0;while(1){Ue();p=+g[24672+(z<<4)>>2];t=+g[24672+(z<<4)+4>>2];y=+g[24672+(z<<4)+12>>2];v=A?0.0:+g[24672+(z<<4)+8>>2];if(p*p+t*t+v*v>.01?(D=+g[B+3232+(z<<4)>>2],C=+g[B+3232+(z<<4)+4>>2],x=+g[B+3232+(z<<4)+8>>2],G=+g[B+2240+(z<<4)>>2],F=+g[B+2240+(z<<4)+4>>2],E=+g[B+2240+(z<<4)+8>>2],x=p*(G*+g[j>>2]+F*+g[j+4>>2]+E*+g[j+8>>2]+ +g[j+48>>2]-(D*+g[h>>2]+C*+g[h+4>>2]+x*+g[h+8>>2]+ +g[h+48>>2]))+t*(G*+g[j+16>>2]+F*+g[j+20>>2]+E*+g[j+24>>2]+ +g[j+52>>2]-(D*+g[h+16>>2]+C*+g[h+20>>2]+x*+g[h+24>>2]+ +g[h+52>>2]))+v*((A?0.0:G*+g[j+32>>2]+F*+g[j+36>>2]+E*+g[j+40>>2]+ +g[j+56>>2])-(A?0.0:D*+g[h+32>>2]+C*+g[h+36>>2]+x*+g[h+40>>2]+ +g[h+56>>2])),x>2]=p,c[k>>2]|0);q=(g[k>>2]=t,c[k>>2]|0);s=(g[k>>2]=v,c[k>>2]|0);u=x}else y=w;z=z+1|0;if((z|0)==(r|0)){z=b;r=s;break}else w=y}}else{z=0;q=0;r=0;y=0.0;u=999999984306749440.0}switch(c[e+4>>2]|0){case 4:case 5:case 10:case 11:case 13:case 1:case 0:case 8:break;default:+Sb[c[(c[e>>2]|0)+48>>2]&15](e)}v=(c[k>>2]=z,+g[k>>2]);w=(c[k>>2]=q,+g[k>>2]);x=(c[k>>2]=r,+g[k>>2]);switch(c[f+4>>2]|0){case 4:case 5:case 10:case 11:case 13:case 1:case 0:case 8:break;default:+Sb[c[(c[f>>2]|0)+48>>2]&15](f)}if(u<0.0){l=0;i=B;return l|0}switch(c[e+4>>2]|0){case 8:{p=+g[e+28>>2]*+g[e+12>>2];break}case 0:{p=+g[e+44>>2];break}case 1:{p=+g[e+44>>2];break}case 13:{p=+g[e+44>>2];break}case 11:{p=+g[e+44>>2];break}case 10:{p=+g[e+44>>2];break}case 4:case 5:{p=+g[e+44>>2];break}default:p=+Sb[c[(c[e>>2]|0)+48>>2]&15](e)}b=c[f+4>>2]|0;switch(b|0){case 8:{t=+g[f+28>>2]*+g[f+12>>2];b=8;break}case 0:{t=+g[f+44>>2];b=0;break}case 1:{t=+g[f+44>>2];b=1;break}case 13:{t=+g[f+44>>2];b=13;break}case 11:{t=+g[f+44>>2];b=11;break}case 10:{t=+g[f+44>>2];b=10;break}case 4:case 5:{t=+g[f+44>>2];break}default:{t=+Sb[c[(c[f>>2]|0)+48>>2]&15](f);b=c[f+4>>2]|0}}p=u+(p+t+.5);c[B+176>>2]=9208;c[B+176+4>>2]=0;c[B+176+8>>2]=1065353216;c[B+176+12>>2]=0;g[B+176+16>>2]=0.0;c[B+176+20>>2]=0;c[B+176+24>>2]=d;c[B+176+28>>2]=e;c[B+176+32>>2]=f;c[B+176+36>>2]=c[e+4>>2];c[B+176+40>>2]=b;g[B+176+44>>2]=+Sb[c[(c[e>>2]|0)+48>>2]&15](e);g[B+176+48>>2]=+Sb[c[(c[f>>2]|0)+48>>2]&15](f);a[B+176+52>>0]=0;c[B+176+60>>2]=-1;c[B+176+72>>2]=1;c[B+176+76>>2]=1;E=v*p+ +g[h+48>>2];F=w*p+ +g[h+52>>2];G=x*p+ +g[h+56>>2];c[B+44>>2]=c[h>>2];c[B+44+4>>2]=c[h+4>>2];c[B+44+8>>2]=c[h+8>>2];c[B+44+12>>2]=c[h+12>>2];c[B+44+16>>2]=c[h+16>>2];c[B+44+16+4>>2]=c[h+16+4>>2];c[B+44+16+8>>2]=c[h+16+8>>2];c[B+44+16+12>>2]=c[h+16+12>>2];c[B+44+32>>2]=c[h+32>>2];c[B+44+32+4>>2]=c[h+32+4>>2];c[B+44+32+8>>2]=c[h+32+8>>2];c[B+44+32+12>>2]=c[h+32+12>>2];g[B+44+48>>2]=E;g[B+44+52>>2]=F;g[B+44+56>>2]=G;g[B+44+60>>2]=0.0;c[B+44+64>>2]=c[j>>2];c[B+44+64+4>>2]=c[j+4>>2];c[B+44+64+8>>2]=c[j+8>>2];c[B+44+64+12>>2]=c[j+12>>2];c[B+44+80>>2]=c[j+16>>2];c[B+44+80+4>>2]=c[j+16+4>>2];c[B+44+80+8>>2]=c[j+16+8>>2];c[B+44+80+12>>2]=c[j+16+12>>2];c[B+44+96>>2]=c[j+32>>2];c[B+44+96+4>>2]=c[j+32+4>>2];c[B+44+96+8>>2]=c[j+32+8>>2];c[B+44+96+12>>2]=c[j+32+12>>2];c[B+44+112>>2]=c[j+48>>2];c[B+44+112+4>>2]=c[j+48+4>>2];c[B+44+112+8>>2]=c[j+48+8>>2];c[B+44+112+12>>2]=c[j+48+12>>2];g[B+44+128>>2]=999999984306749440.0;c[B>>2]=9092;a[B+40>>0]=0;g[B+176+4>>2]=-v;g[B+176+8>>2]=-w;g[B+176+12>>2]=-x;g[B+176+16>>2]=0.0;Vc(B+176|0,B+44|0,B,o,0);p=p-+g[B+36>>2];b=a[B+40>>0]|0;if(b<<24>>24){F=+g[B+24>>2]-w*p;G=+g[B+28>>2]-x*p;g[m>>2]=+g[B+20>>2]-v*p;g[m+4>>2]=F;g[m+8>>2]=G;g[m+12>>2]=0.0;c[n>>2]=c[B+20>>2];c[n+4>>2]=c[B+20+4>>2];c[n+8>>2]=c[B+20+8>>2];c[n+12>>2]=c[B+20+12>>2];c[l>>2]=z;c[l+4>>2]=q;c[l+8>>2]=r;g[l+12>>2]=y}l=b<<24>>24!=0;i=B;return l|0}function Zc(d,f,h,i){d=d|0;f=f|0;h=h|0;i=i|0;var j=0,k=0,l=0,m=0,n=0,o=0;c[d+168>>2]=c[d+152>>2];c[f>>2]=9012;c[f+52>>2]=282;a[f+60>>0]=0;a[f+80>>0]=1;c[f+76>>2]=0;c[f+68>>2]=0;c[f+72>>2]=0;a[f+100>>0]=1;c[f+96>>2]=0;c[f+88>>2]=0;c[f+92>>2]=0;a[f+120>>0]=1;c[f+116>>2]=0;c[f+108>>2]=0;c[f+112>>2]=0;a[f+140>>0]=1;c[f+136>>2]=0;c[f+128>>2]=0;c[f+132>>2]=0;c[f+144>>2]=0;a[f+164>>0]=1;c[f+160>>2]=0;c[f+152>>2]=0;c[f+156>>2]=0;c[f+168>>2]=0;c[f+4>>2]=-8388609;c[f+8>>2]=-8388609;c[f+12>>2]=-8388609;g[f+16>>2]=0.0;c[f+20>>2]=2139095039;c[f+24>>2]=2139095039;c[f+28>>2]=2139095039;g[f+32>>2]=0.0;h=c[d+56>>2]|0;if(i){c[f+56>>2]=ow(h|0)|0;a[f+4>>0]=a[d+4+3>>0]|0;a[f+5>>0]=a[d+4+2>>0]|0;a[f+6>>0]=a[d+4+1>>0]|0;a[f+7>>0]=a[d+4>>0]|0;a[f+8>>0]=a[d+8+3>>0]|0;a[f+9>>0]=a[d+8+2>>0]|0;a[f+10>>0]=a[d+8+1>>0]|0;a[f+11>>0]=a[d+8>>0]|0;a[f+12>>0]=a[d+12+3>>0]|0;a[f+13>>0]=a[d+12+2>>0]|0;a[f+14>>0]=a[d+12+1>>0]|0;a[f+15>>0]=a[d+12>>0]|0;a[f+16>>0]=a[d+16+3>>0]|0;a[f+17>>0]=a[d+16+2>>0]|0;a[f+18>>0]=a[d+16+1>>0]|0;a[f+19>>0]=a[d+16>>0]|0;a[f+20>>0]=a[d+20+3>>0]|0;a[f+21>>0]=a[d+20+2>>0]|0;a[f+22>>0]=a[d+20+1>>0]|0;a[f+23>>0]=a[d+20>>0]|0;a[f+24>>0]=a[d+24+3>>0]|0;a[f+25>>0]=a[d+24+2>>0]|0;a[f+26>>0]=a[d+24+1>>0]|0;a[f+27>>0]=a[d+24>>0]|0;a[f+28>>0]=a[d+28+3>>0]|0;a[f+29>>0]=a[d+28+2>>0]|0;a[f+30>>0]=a[d+28+1>>0]|0;a[f+31>>0]=a[d+28>>0]|0;a[f+32>>0]=a[d+32+3>>0]|0;a[f+33>>0]=a[d+32+2>>0]|0;a[f+34>>0]=a[d+32+1>>0]|0;a[f+35>>0]=a[d+32>>0]|0;a[f+36>>0]=a[d+36+3>>0]|0;a[f+37>>0]=a[d+36+2>>0]|0;a[f+38>>0]=a[d+36+1>>0]|0;a[f+39>>0]=a[d+36>>0]|0;a[f+40>>0]=a[d+40+3>>0]|0;a[f+41>>0]=a[d+40+2>>0]|0;a[f+42>>0]=a[d+40+1>>0]|0;a[f+43>>0]=a[d+40>>0]|0;a[f+44>>0]=a[d+44+3>>0]|0;a[f+45>>0]=a[d+44+2>>0]|0;a[f+46>>0]=a[d+44+1>>0]|0;a[f+47>>0]=a[d+44>>0]|0;a[f+48>>0]=a[d+48+3>>0]|0;a[f+49>>0]=a[d+48+2>>0]|0;a[f+50>>0]=a[d+48+1>>0]|0;a[f+51>>0]=a[d+48>>0]|0;c[f+144>>2]=ow(c[d+144>>2]|0)|0;h=ow(c[d+168>>2]|0)|0}else{c[f+56>>2]=h;c[f+4>>2]=c[d+4>>2];c[f+4+4>>2]=c[d+4+4>>2];c[f+4+8>>2]=c[d+4+8>>2];c[f+4+12>>2]=c[d+4+12>>2];c[f+20>>2]=c[d+20>>2];c[f+20+4>>2]=c[d+20+4>>2];c[f+20+8>>2]=c[d+20+8>>2];c[f+20+12>>2]=c[d+20+12>>2];c[f+36>>2]=c[d+36>>2];c[f+36+4>>2]=c[d+36+4>>2];c[f+36+8>>2]=c[d+36+8>>2];c[f+36+12>>2]=c[d+36+12>>2];c[f+144>>2]=c[d+144>>2];h=c[d+168>>2]|0}c[f+168>>2]=h;a[f+60>>0]=a[d+60>>0]|0;l=c[d+56>>2]|0;if(!(a[d+60>>0]|0)){h=c[f+96>>2]|0;if(h|0){if(a[f+100>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0)}c[f+96>>2]=0}c[f+88>>2]=0;c[f+88+4>>2]=0;c[f+88+8>>2]=0;a[f+88+12>>0]=0;c[f+96>>2]=f+172;c[f+88>>2]=l;c[f+92>>2]=l;if(i)if((l|0)>0){j=c[d+96>>2]|0;h=f+172|0;k=0;do{m=j+(k<<6)|0;o=h+(k<<6)|0;a[o>>0]=a[m+3>>0]|0;a[o+1>>0]=a[m+2>>0]|0;a[o+2>>0]=a[m+1>>0]|0;a[o+3>>0]=a[m>>0]|0;o=j+(k<<6)+4|0;m=h+(k<<6)+4|0;a[m>>0]=a[o+3>>0]|0;a[m+1>>0]=a[o+2>>0]|0;a[m+2>>0]=a[o+1>>0]|0;a[m+3>>0]=a[o>>0]|0;m=j+(k<<6)+8|0;o=h+(k<<6)+8|0;a[o>>0]=a[m+3>>0]|0;a[o+1>>0]=a[m+2>>0]|0;a[o+2>>0]=a[m+1>>0]|0;a[o+3>>0]=a[m>>0]|0;o=j+(k<<6)+12|0;h=h+(k<<6)+12|0;a[h>>0]=a[o+3>>0]|0;a[h+1>>0]=a[o+2>>0]|0;a[h+2>>0]=a[o+1>>0]|0;a[h+3>>0]=a[o>>0]|0;h=c[d+96>>2]|0;o=h+(k<<6)+16|0;m=c[f+96>>2]|0;n=m+(k<<6)+16|0;a[n>>0]=a[o+3>>0]|0;a[n+1>>0]=a[o+2>>0]|0;a[n+2>>0]=a[o+1>>0]|0;a[n+3>>0]=a[o>>0]|0;n=h+(k<<6)+20|0;o=m+(k<<6)+20|0;a[o>>0]=a[n+3>>0]|0;a[o+1>>0]=a[n+2>>0]|0;a[o+2>>0]=a[n+1>>0]|0;a[o+3>>0]=a[n>>0]|0;o=h+(k<<6)+24|0;n=m+(k<<6)+24|0;a[n>>0]=a[o+3>>0]|0;a[n+1>>0]=a[o+2>>0]|0;a[n+2>>0]=a[o+1>>0]|0;a[n+3>>0]=a[o>>0]|0;h=h+(k<<6)+28|0;m=m+(k<<6)+28|0;a[m>>0]=a[h+3>>0]|0;a[m+1>>0]=a[h+2>>0]|0;a[m+2>>0]=a[h+1>>0]|0;a[m+3>>0]=a[h>>0]|0;j=c[d+96>>2]|0;m=ow(c[j+(k<<6)+32>>2]|0)|0;h=c[f+96>>2]|0;c[h+(k<<6)+32>>2]=m;c[h+(k<<6)+36>>2]=ow(c[j+(k<<6)+36>>2]|0)|0;c[h+(k<<6)+40>>2]=ow(c[j+(k<<6)+40>>2]|0)|0;k=k+1|0}while((k|0)!=(l|0))}else h=f+172|0;else if((l|0)>0){h=f+172|0;j=c[d+96>>2]|0;k=0;do{h=h+(k<<6)|0;o=j+(k<<6)|0;c[h>>2]=c[o>>2];c[h+4>>2]=c[o+4>>2];c[h+8>>2]=c[o+8>>2];c[h+12>>2]=c[o+12>>2];h=(c[f+96>>2]|0)+(k<<6)+16|0;o=(c[d+96>>2]|0)+(k<<6)+16|0;c[h>>2]=c[o>>2];c[h+4>>2]=c[o+4>>2];c[h+8>>2]=c[o+8>>2];c[h+12>>2]=c[o+12>>2];j=c[d+96>>2]|0;h=c[f+96>>2]|0;c[h+(k<<6)+32>>2]=c[j+(k<<6)+32>>2];c[h+(k<<6)+36>>2]=c[j+(k<<6)+36>>2];c[h+(k<<6)+40>>2]=c[j+(k<<6)+40>>2];k=k+1|0}while((k|0)!=(l|0))}else h=f+172|0;if(h|0){if(a[f+100>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0)}c[f+96>>2]=0}c[f+88>>2]=0;c[f+88+4>>2]=0;c[f+88+8>>2]=0;a[f+88+12>>0]=0;h=l<<6}else{h=c[f+136>>2]|0;if(h|0){if(a[f+140>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0)}c[f+136>>2]=0}c[f+128>>2]=0;c[f+128+4>>2]=0;c[f+128+8>>2]=0;a[f+128+12>>0]=0;c[f+136>>2]=f+172;c[f+128>>2]=l;c[f+132>>2]=l;if(i){if((l|0)>0){h=c[d+136>>2]|0;j=0;do{o=e[h+(j<<4)>>1]|0;b[f+172+(j<<4)>>1]=o>>>8|o<<8;o=e[h+(j<<4)+2>>1]|0;b[f+172+(j<<4)+2>>1]=o>>>8|o<<8;o=e[h+(j<<4)+4>>1]|0;b[f+172+(j<<4)+4>>1]=o>>>8|o<<8;o=e[h+(j<<4)+6>>1]|0;b[f+172+(j<<4)+6>>1]=o>>>8|o<<8;o=e[h+(j<<4)+8>>1]|0;b[f+172+(j<<4)+8>>1]=o>>>8|o<<8;o=e[h+(j<<4)+10>>1]|0;b[f+172+(j<<4)+10>>1]=o>>>8|o<<8;c[f+172+(j<<4)+12>>2]=ow(c[h+(j<<4)+12>>2]|0)|0;j=j+1|0}while((j|0)!=(l|0))}}else if((l|0)>0){h=c[d+136>>2]|0;j=0;do{b[f+172+(j<<4)>>1]=b[h+(j<<4)>>1]|0;b[f+172+(j<<4)+2>>1]=b[h+(j<<4)+2>>1]|0;b[f+172+(j<<4)+4>>1]=b[h+(j<<4)+4>>1]|0;b[f+172+(j<<4)+6>>1]=b[h+(j<<4)+6>>1]|0;b[f+172+(j<<4)+8>>1]=b[h+(j<<4)+8>>1]|0;b[f+172+(j<<4)+10>>1]=b[h+(j<<4)+10>>1]|0;c[f+172+(j<<4)+12>>2]=c[h+(j<<4)+12>>2];j=j+1|0}while((j|0)!=(l|0))}if(c[f+136>>2]|0)c[f+136>>2]=0;c[f+128>>2]=0;c[f+128+4>>2]=0;c[f+128+8>>2]=0;a[f+128+12>>0]=0;h=l<<4}l=f+172+h|0;h=c[d+168>>2]|0;j=c[f+160>>2]|0;if(j|0){if(a[f+164>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}c[f+160>>2]=0}c[f+152>>2]=0;c[f+152+4>>2]=0;c[f+152+8>>2]=0;a[f+152+12>>0]=0;c[f+160>>2]=l;c[f+152>>2]=h;c[f+156>>2]=h;k=c[d+168>>2]|0;if(i){if((k|0)>0){h=c[d+160>>2]|0;j=0;do{o=e[h+(j<<5)>>1]|0;b[l+(j<<5)>>1]=o>>>8|o<<8;o=e[h+(j<<5)+2>>1]|0;b[l+(j<<5)+2>>1]=o>>>8|o<<8;o=e[h+(j<<5)+4>>1]|0;b[l+(j<<5)+4>>1]=o>>>8|o<<8;o=e[h+(j<<5)+6>>1]|0;b[l+(j<<5)+6>>1]=o>>>8|o<<8;o=e[h+(j<<5)+8>>1]|0;b[l+(j<<5)+8>>1]=o>>>8|o<<8;o=e[h+(j<<5)+10>>1]|0;b[l+(j<<5)+10>>1]=o>>>8|o<<8;c[l+(j<<5)+12>>2]=ow(c[h+(j<<5)+12>>2]|0)|0;c[l+(j<<5)+16>>2]=ow(c[h+(j<<5)+16>>2]|0)|0;j=j+1|0}while((j|0)!=(k|0))}}else if((k|0)>0){h=c[d+160>>2]|0;j=0;do{b[l+(j<<5)>>1]=b[h+(j<<5)>>1]|0;b[l+(j<<5)+2>>1]=b[h+(j<<5)+2>>1]|0;b[l+(j<<5)+4>>1]=b[h+(j<<5)+4>>1]|0;b[l+(j<<5)+6>>1]=b[h+(j<<5)+6>>1]|0;b[l+(j<<5)+8>>1]=b[h+(j<<5)+8>>1]|0;b[l+(j<<5)+10>>1]=b[h+(j<<5)+10>>1]|0;c[l+(j<<5)+12>>2]=c[h+(j<<5)+12>>2];c[l+(j<<5)+16>>2]=c[h+(j<<5)+16>>2];c[l+(j<<5)+20>>2]=0;c[l+(j<<5)+24>>2]=0;c[l+(j<<5)+28>>2]=0;j=j+1|0}while((j|0)<(c[d+168>>2]|0))}if(!(c[f+160>>2]|0)){c[f>>2]=0;c[f+152>>2]=0;c[f+152+4>>2]=0;c[f+152+8>>2]=0;a[f+152+12>>0]=0;return 1}c[f+160>>2]=0;c[f>>2]=0;c[f+152>>2]=0;c[f+152+4>>2]=0;c[f+152+8>>2]=0;a[f+152+12>>0]=0;return 1}function _c(b,d,e,f,h){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;var j=0,k=0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0.0,H=0.0,I=0,J=0,K=0,L=0,M=0.0,P=0.0,S=0.0,T=0.0,U=0.0,V=0.0,W=0.0,X=0.0,Y=0.0,Z=0.0,_=0.0,$=0.0,aa=0.0,ba=0,ca=0.0,da=0.0,ea=0.0,fa=0.0,ga=0.0,ha=0.0,ia=0.0,ja=0.0,ka=0.0,la=0.0,ma=0.0,na=0.0,oa=0.0;I=i;i=i+96|0;if(!(c[b+12>>2]|0)){i=I;return}f=(a[b+16>>0]|0)!=0;L=f?e:d;f=f?d:e;j=c[L+4>>2]|0;k=c[f+4>>2]|0;L=c[L+12>>2]|0;aa=+g[L>>2];$=+g[L+16>>2];_=+g[L+32>>2];Z=+g[L+4>>2];Y=+g[L+20>>2];o=+g[L+36>>2];l=+g[L+8>>2];r=+g[L+24>>2];y=+g[L+40>>2];T=+g[L+48>>2];S=+g[L+52>>2];P=+g[L+56>>2];K=c[f+12>>2]|0;X=+g[K>>2];W=+g[K+16>>2];p=+g[K+32>>2];V=+g[K+4>>2];U=+g[K+20>>2];q=+g[K+36>>2];x=+g[K+8>>2];v=+g[K+24>>2];t=+g[K+40>>2];M=-+g[K+48>>2];E=-+g[K+52>>2];F=-+g[K+56>>2];G=+g[L>>2];H=+g[L+16>>2];D=+g[L+32>>2];B=+g[L+4>>2];A=+g[L+20>>2];z=+g[L+36>>2];w=+g[L+8>>2];u=+g[L+24>>2];s=+g[L+40>>2];L=c[(c[j>>2]|0)+64>>2]|0;n=-+g[k+48>>2];m=-+g[k+52>>2];C=-+g[k+56>>2];g[I>>2]=(aa*X+$*W+_*p)*n+(aa*V+$*U+_*q)*m+(aa*x+$*v+_*t)*C;g[I+4>>2]=(Z*X+Y*W+o*p)*n+(Z*V+Y*U+o*q)*m+(Z*x+Y*v+o*t)*C;g[I+8>>2]=(l*X+r*W+y*p)*n+(l*V+r*U+y*q)*m+(l*x+r*v+y*t)*C;g[I+12>>2]=0.0;ic[L&127](I+16|0,j,I);C=+g[I+16>>2];y=+g[I+16+4>>2];r=+g[I+16+8>>2];l=+g[k+48>>2];m=+g[k+52>>2];n=+g[k+56>>2];o=n*(T*x+S*v+P*t+(x*M+v*E+t*F)+((x*G+v*H+t*D)*C+(x*B+v*A+t*z)*y+(x*w+v*u+t*s)*r))+(l*(T*X+S*W+P*p+(X*M+W*E+p*F)+((X*G+W*H+p*D)*C+(X*B+W*A+p*z)*y+(X*w+W*u+p*s)*r))+m*(T*V+S*U+P*q+(V*M+U*E+q*F)+((V*G+U*H+q*D)*C+(V*B+U*A+q*z)*y+(V*w+U*u+q*s)*r)))-+g[k+64>>2];p=T*X+S*W+P*p+(X*M+W*E+p*F)+((X*G+W*H+p*D)*C+(X*B+W*A+p*z)*y+(X*w+W*u+p*s)*r)-l*o;q=T*V+S*U+P*q+(V*M+U*E+q*F)+((V*G+U*H+q*D)*C+(V*B+U*A+q*z)*y+(V*w+U*u+q*s)*r)-m*o;r=T*x+S*v+P*t+(x*M+v*E+t*F)+((x*G+v*H+t*D)*C+(x*B+v*A+t*z)*y+(x*w+v*u+t*s)*r)-n*o;L=c[f+12>>2]|0;s=+g[L>>2];t=+g[L+4>>2];u=+g[L+8>>2];v=+g[L+16>>2];w=+g[L+20>>2];x=+g[L+24>>2];y=+g[L+32>>2];z=+g[L+36>>2];A=+g[L+40>>2];B=+g[L+48>>2];C=+g[L+52>>2];D=+g[L+56>>2];L=c[b+12>>2]|0;K=o<+g[L+752>>2];c[h+4>>2]=L;if(K){L=c[f+12>>2]|0;$=l*+g[L+16>>2]+m*+g[L+20>>2]+n*+g[L+24>>2];aa=l*+g[L+32>>2]+m*+g[L+36>>2]+n*+g[L+40>>2];g[I+80>>2]=+g[L>>2]*l+ +g[L+4>>2]*m+ +g[L+8>>2]*n;g[I+80+4>>2]=$;g[I+80+8>>2]=aa;g[I+80+12>>2]=0.0;g[I+64>>2]=u*r+(s*p+t*q)+B;g[I+64+4>>2]=p*v+q*w+r*x+C;g[I+64+8>>2]=p*y+q*z+r*A+D;g[I+64+12>>2]=0.0;hc[c[(c[h>>2]|0)+16>>2]&15](h,I+80|0,I+64|0,o)}if((c[j+4>>2]|0)<7?(c[(c[h+4>>2]|0)+748>>2]|0)<(c[b+24>>2]|0):0){l=+g[k+56>>2];if(+N(+l)>.7071067690849304){n=+g[k+52>>2];aa=1.0/+O(+(l*l+n*n));m=0.0;n=n*aa;l=-(l*aa)}else{aa=+g[k+48>>2];m=+g[k+52>>2];l=1.0/+O(+(aa*aa+m*m));m=-(m*l);n=0.0;l=aa*l}F=.019999999552965164/+Sb[c[(c[j>>2]|0)+16>>2]&15](j);F=(F>.39269909262657166?.39269909262657166:F)*.5;E=+R(+F)/+O(+(m*m+l*l+n*n));H=m*E;G=l*E;E=n*E;F=+Q(+F);f=c[b+20>>2]|0;if((f|0)>0){j=0;do{v=+g[k+48>>2];aa=+g[k+52>>2];B=+g[k+56>>2];z=+(j|0)*(6.2831854820251465/+(f|0))*.5;$=+R(+z)/+O(+(v*v+aa*aa+B*B));z=+Q(+z);A=E*-(aa*$)+(H*z+F*-(v*$))-G*-(B*$);x=H*-(B*$)+(G*z+F*-(aa*$))-E*-(v*$);da=G*-(v*$)+(E*z+F*-(B*$))-H*-(aa*$);D=F*z-H*-(v*$)-G*-(aa*$)-E*-(B*$);ia=B*$*x+(v*$*D+z*A)-aa*$*da;ha=v*$*da+(z*x+aa*$*D)-B*$*A;la=aa*$*A+(B*$*D+z*da)-v*$*x;da=z*D-v*$*A-aa*$*x-B*$*da;f=(a[b+16>>0]|0)!=0;ba=f?e:d;f=f?d:e;L=c[ba+4>>2]|0;K=c[f+4>>2]|0;ba=c[ba+12>>2]|0;$=+g[ba>>2];B=+g[ba+4>>2];x=+g[ba+8>>2];aa=+g[ba+16>>2];A=+g[ba+20>>2];v=+g[ba+24>>2];D=+g[ba+32>>2];z=+g[ba+36>>2];t=+g[ba+40>>2];V=+g[ba+48>>2];W=+g[ba+52>>2];X=+g[ba+56>>2];ba=c[f+12>>2]|0;P=+g[ba>>2];S=+g[ba+16>>2];p=+g[ba+32>>2];T=+g[ba+4>>2];U=+g[ba+20>>2];q=+g[ba+36>>2];w=+g[ba+8>>2];u=+g[ba+24>>2];s=+g[ba+40>>2];Y=-+g[ba+48>>2];Z=-+g[ba+52>>2];_=-+g[ba+56>>2];ga=ia*(2.0/(ia*ia+ha*ha+la*la+da*da));n=ha*(2.0/(ia*ia+ha*ha+la*la+da*da));ca=la*(2.0/(ia*ia+ha*ha+la*la+da*da));na=x*(ia*ca-da*n)+(B*(ia*n+da*ca)+$*(1.0-(ha*n+la*ca)));ka=x*(ha*ca+da*ga)+($*(ia*n-da*ca)+B*(1.0-(ia*ga+la*ca)));l=$*(ia*ca+da*n)+B*(ha*ca-da*ga)+x*(1.0-(ia*ga+ha*n));ma=v*(ia*ca-da*n)+(A*(ia*n+da*ca)+aa*(1.0-(ha*n+la*ca)));ja=v*(ha*ca+da*ga)+(aa*(ia*n-da*ca)+A*(1.0-(ia*ga+la*ca)));y=aa*(ia*ca+da*n)+A*(ha*ca-da*ga)+v*(1.0-(ia*ga+ha*n));oa=t*(ia*ca-da*n)+(z*(ia*n+da*ca)+D*(1.0-(ha*n+la*ca)));la=t*(ha*ca+da*ga)+(D*(ia*n-da*ca)+z*(1.0-(ia*ga+la*ca)));n=D*(ia*ca+da*n)+z*(ha*ca-da*ga)+t*(1.0-(ia*ga+ha*n));ha=+g[ba>>2];ga=+g[ba+16>>2];ia=+g[ba+32>>2];da=+g[ba+4>>2];ca=+g[ba+20>>2];ea=+g[ba+36>>2];m=+g[ba+8>>2];r=+g[ba+24>>2];o=+g[ba+40>>2];ba=c[(c[L>>2]|0)+64>>2]|0;fa=-+g[K+48>>2];M=-+g[K+52>>2];C=-+g[K+56>>2];g[I+64>>2]=(ia*oa+(ha*na+ga*ma))*fa+(ea*oa+(da*na+ca*ma))*M+(o*oa+(m*na+r*ma))*C;g[I+64+4>>2]=(ia*la+(ha*ka+ga*ja))*fa+(ea*la+(da*ka+ca*ja))*M+(o*la+(m*ka+r*ja))*C;g[I+64+8>>2]=(ia*n+(ha*l+ga*y))*fa+(ea*n+(da*l+ca*y))*M+(o*n+(m*l+r*y))*C;g[I+64+12>>2]=0.0;ic[ba&127](I+80|0,L,I+64|0);C=+g[I+80>>2];y=+g[I+80+4>>2];r=+g[I+80+8>>2];l=+g[K+48>>2];m=+g[K+52>>2];n=+g[K+56>>2];o=n*(V*w+W*u+X*s+(w*Y+u*Z+s*_)+(($*w+aa*u+D*s)*C+(B*w+A*u+z*s)*y+(x*w+v*u+t*s)*r))+(l*(V*P+W*S+X*p+(P*Y+S*Z+p*_)+(($*P+aa*S+D*p)*C+(B*P+A*S+z*p)*y+(x*P+v*S+t*p)*r))+m*(V*T+W*U+X*q+(T*Y+U*Z+q*_)+(($*T+aa*U+D*q)*C+(B*T+A*U+z*q)*y+(x*T+v*U+t*q)*r)))-+g[K+64>>2];p=V*P+W*S+X*p+(P*Y+S*Z+p*_)+(($*P+aa*S+D*p)*C+(B*P+A*S+z*p)*y+(x*P+v*S+t*p)*r)-l*o;q=V*T+W*U+X*q+(T*Y+U*Z+q*_)+(($*T+aa*U+D*q)*C+(B*T+A*U+z*q)*y+(x*T+v*U+t*q)*r)-m*o;r=V*w+W*u+X*s+(w*Y+u*Z+s*_)+(($*w+aa*u+D*s)*C+(B*w+A*u+z*s)*y+(x*w+v*u+t*s)*r)-n*o;K=c[f+12>>2]|0;s=+g[K>>2];t=+g[K+4>>2];u=+g[K+8>>2];v=+g[K+16>>2];w=+g[K+20>>2];x=+g[K+24>>2];y=+g[K+32>>2];z=+g[K+36>>2];A=+g[K+40>>2];B=+g[K+48>>2];C=+g[K+52>>2];D=+g[K+56>>2];K=c[b+12>>2]|0;L=o<+g[K+752>>2];c[h+4>>2]=K;if(L){ba=c[f+12>>2]|0;na=l*+g[ba+16>>2]+m*+g[ba+20>>2]+n*+g[ba+24>>2];oa=l*+g[ba+32>>2]+m*+g[ba+36>>2]+n*+g[ba+40>>2];g[I+48>>2]=+g[ba>>2]*l+ +g[ba+4>>2]*m+ +g[ba+8>>2]*n;g[I+48+4>>2]=na;g[I+48+8>>2]=oa;g[I+48+12>>2]=0.0;g[I+32>>2]=u*r+(s*p+t*q)+B;g[I+32+4>>2]=p*v+q*w+r*x+C;g[I+32+8>>2]=p*y+q*z+r*A+D;g[I+32+12>>2]=0.0;hc[c[(c[h>>2]|0)+16>>2]&15](h,I+48|0,I+32|0,o)}j=j+1|0;f=c[b+20>>2]|0}while((j|0)<(f|0))}}do if((a[b+8>>0]|0?c[(c[b+12>>2]|0)+748>>2]|0:0)?(J=c[h+4>>2]|0,c[J+748>>2]|0):0){j=c[J+740>>2]|0;k=c[(c[h+8>>2]|0)+8>>2]|0;f=c[(c[h+12>>2]|0)+8>>2]|0;if((j|0)==(k|0)){ef(J,j+4|0,f+4|0);break}else{ef(J,f+4|0,k+4|0);break}}while(0);i=I;return}function $c(b){b=b|0;var d=0,e=0.0,f=0.0,h=0.0,j=0,k=0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0,E=0,F=0,G=0,H=0,I=0.0,J=0.0,K=0.0,L=0.0,M=0.0,N=0.0;H=i;i=i+192|0;li(11018);d=c[b+1112>>2]|0;if((d|0)>0){G=0;do{F=c[(c[b+1120>>2]|0)+(G<<2)>>2]|0;E=c[F+24>>2]|0;if(E){j=H+144|0;k=j+48|0;do{c[j>>2]=0;j=j+4|0}while((j|0)<(k|0));g[H+144>>2]=9.999999747378752e-05;g[H+144+20>>2]=1.9999999494757503e-04;g[H+144+40>>2]=2.9999998514540493e-04;if((E|0)>0){d=c[F+32>>2]|0;j=c[F+12>>2]|0;f=0.0;h=0.0;e=0.0;k=0;do{D=c[d+(k<<2)>>2]|0;C=+g[j+(k<<2)>>2];f=f+ +g[D+8>>2]*C;e=e+C*+g[D+12>>2];h=h+C*+g[D+16>>2];k=k+1|0}while((k|0)!=(E|0))}else{f=0.0;h=0.0;e=0.0}r=+g[F+128>>2];t=f*r;s=e*r;r=h*r;g[F+228>>2]=t;g[F+232>>2]=s;g[F+236>>2]=r;g[F+240>>2]=0.0;if((E|0)>0){d=c[F+32>>2]|0;j=c[F+52>>2]|0;e=9.999999747378752e-05;f=+g[H+144+4>>2];h=+g[H+144+8>>2];l=+g[H+144+16>>2];m=1.9999999494757503e-04;n=+g[H+144+24>>2];o=0.0;p=0.0;q=2.9999998514540493e-04;k=0;while(1){D=c[d+(k<<2)>>2]|0;x=+g[D+8>>2]-t;y=+g[D+12>>2]-s;B=+g[D+16>>2]-r;z=+g[j+(k<<4)>>2];A=+g[j+(k<<4)+4>>2];C=+g[j+(k<<4)+8>>2];e=x*z+e;f=x*A+f;h=x*C+h;l=y*z+l;m=y*A+m;n=y*C+n;o=B*z+o;p=B*A+p;q=B*C+q;if((k|0)==(E+-1|0))break;k=k+1|0}g[H+144>>2]=e;g[H+144+4>>2]=f;g[H+144+8>>2]=h;g[H+144+16>>2]=l;g[H+144+20>>2]=m;g[H+144+24>>2]=n;g[H+144+32>>2]=o;g[H+144+36>>2]=p;g[H+144+40>>2]=q}if((a[22520]|0)==0?Wa(22520)|0:0){g[5787]=9.999999747378752e-05;c[5788]=16;_a(22520)}md(H+144|0,H+96|0,H+48|0);c[F+108>>2]=c[F+228>>2];c[F+108+4>>2]=c[F+228+4>>2];c[F+108+8>>2]=c[F+228+8>>2];c[F+108+12>>2]=c[F+228+12>>2];c[F+60>>2]=c[H+96>>2];c[F+60+4>>2]=c[H+96+4>>2];c[F+60+8>>2]=c[H+96+8>>2];c[F+60+12>>2]=c[H+96+12>>2];c[F+76>>2]=c[H+96+16>>2];c[F+76+4>>2]=c[H+96+16+4>>2];c[F+76+8>>2]=c[H+96+16+8>>2];c[F+76+12>>2]=c[H+96+16+12>>2];c[F+92>>2]=c[H+96+32>>2];c[F+92+4>>2]=c[H+96+32+4>>2];c[F+92+8>>2]=c[H+96+32+8>>2];c[F+92+12>>2]=c[H+96+32+12>>2];m=+g[F+132>>2];K=+g[F+60>>2];n=+g[F+148>>2];J=+g[F+64>>2];o=+g[F+164>>2];A=+g[F+68>>2];p=+g[F+136>>2];q=+g[F+152>>2];r=+g[F+168>>2];s=+g[F+140>>2];t=+g[F+156>>2];C=+g[F+172>>2];I=+g[F+76>>2];e=+g[F+80>>2];B=+g[F+84>>2];l=+g[F+92>>2];h=+g[F+96>>2];f=+g[F+100>>2];u=(m*K+n*J+o*A)*K+(K*p+J*q+A*r)*J+(K*s+J*t+A*C)*A;v=(m*K+n*J+o*A)*I+(K*p+J*q+A*r)*e+(K*s+J*t+A*C)*B;w=(m*K+n*J+o*A)*l+(K*p+J*q+A*r)*h+(K*s+J*t+A*C)*f;x=(m*I+n*e+o*B)*K+(p*I+q*e+r*B)*J+(s*I+t*e+C*B)*A;y=(m*I+n*e+o*B)*I+(p*I+q*e+r*B)*e+(s*I+t*e+C*B)*B;z=(m*I+n*e+o*B)*l+(p*I+q*e+r*B)*h+(s*I+t*e+C*B)*f;A=K*(m*l+n*h+o*f)+(p*l+q*h+r*f)*J+(s*l+t*h+C*f)*A;B=I*(m*l+n*h+o*f)+(p*l+q*h+r*f)*e+(s*l+t*h+C*f)*B;C=(m*l+n*h+o*f)*l+(p*l+q*h+r*f)*h+(s*l+t*h+C*f)*f;g[F+180>>2]=u;g[F+184>>2]=v;g[F+188>>2]=w;g[F+192>>2]=0.0;g[F+196>>2]=x;g[F+200>>2]=y;g[F+204>>2]=z;g[F+208>>2]=0.0;g[F+212>>2]=A;g[F+216>>2]=B;g[F+220>>2]=C;g[F+224>>2]=0.0;c[F+316>>2]=0;c[F+316+4>>2]=0;c[F+316+8>>2]=0;c[F+316+12>>2]=0;c[F+316+16>>2]=0;c[F+316+20>>2]=0;c[F+316+24>>2]=0;c[F+316+28>>2]=0;if((E|0)>0){d=c[F+32>>2]|0;j=c[F+12>>2]|0;r=+g[F+228>>2];s=+g[F+232>>2];t=+g[F+236>>2];q=0.0;p=0.0;o=0.0;n=0.0;m=0.0;e=0.0;k=0;do{D=c[d+(k<<2)>>2]|0;M=+g[j+(k<<2)>>2];J=+g[D+40>>2]*M;L=M*+g[D+44>>2];M=M*+g[D+48>>2];q=J+q;g[F+316>>2]=q;p=L+p;g[F+320>>2]=p;o=M+o;g[F+324>>2]=o;I=+g[D+8>>2]-r;K=+g[D+12>>2]-s;N=+g[D+16>>2]-t;n=n+(M*K-L*N);g[F+332>>2]=n;m=J*N-M*I+m;g[F+336>>2]=m;e=L*I-J*K+e;g[F+340>>2]=e;k=k+1|0}while((k|0)!=(E|0));d=F+332|0;D=F+316|0}else{d=F+332|0;D=F+316|0;q=0.0;p=0.0;o=0.0;n=0.0;m=0.0;e=0.0}M=+g[F+128>>2];N=1.0-+g[F+356>>2];g[F+316>>2]=q*M*N;g[F+320>>2]=M*p*N;g[F+324>>2]=M*o*N;g[F+328>>2]=0.0;N=1.0-+g[F+360>>2];g[d>>2]=(u*n+v*m+w*e)*N;g[F+336>>2]=(n*x+m*y+e*z)*N;g[F+340>>2]=N*(n*A+m*B+e*C);g[F+344>>2]=0.0;j=F+244|0;k=j+72|0;do{c[j>>2]=0;j=j+4|0}while((j|0)<(k|0));e=+g[F+364>>2];a:do if(e>0.0?(c[F+24>>2]|0)>0:0){d=0;while(1){k=c[(c[F+32>>2]|0)+(d<<2)>>2]|0;j=c[F+52>>2]|0;I=+g[j+(d<<4)>>2];J=+g[j+(d<<4)+4>>2];K=+g[j+(d<<4)+8>>2];L=+g[k+8>>2];M=+g[k+12>>2];N=+g[k+16>>2];M=M+e*(I*+g[F+76>>2]+J*+g[F+80>>2]+K*+g[F+84>>2]+ +g[F+112>>2]-M);N=N+e*(I*l+J*h+K*f+ +g[F+116>>2]-N);g[k+8>>2]=L+e*(I*+g[F+60>>2]+J*+g[F+64>>2]+K*+g[F+68>>2]+ +g[F+108>>2]-L);g[k+12>>2]=M;g[k+16>>2]=N;g[k+20>>2]=0.0;d=d+1|0;if((d|0)>=(c[F+24>>2]|0))break a;l=+g[F+92>>2];h=+g[F+96>>2];f=+g[F+100>>2];e=+g[F+364>>2]}}while(0);if(a[F+377>>0]|0){d=c[F+32>>2]|0;k=c[d>>2]|0;e=+g[k+8>>2];q=+g[k+12>>2];r=+g[k+16>>2];f=+g[k+20>>2];if((E|0)>1){j=1;o=e;p=r;n=f;m=q;l=e;h=f;f=q;e=r;do{k=c[d+(j<<2)>>2]|0;K=+g[k+8>>2];o=K>2];m=L>2];p=M>2];n=N>2]=o;g[H+4>>2]=m;g[H+8>>2]=p;g[H+12>>2]=n;g[H+16>>2]=l;g[H+20>>2]=f;g[H+24>>2]=e;g[H+28>>2]=h;d=c[F+348>>2]|0;if(!d){d=c[b+1052>>2]|0;if(!d){c[6435]=(c[6435]|0)+1;d=yc(63)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}j=d;k=j+44|0;do{c[j>>2]=0;j=j+4|0}while((j|0)<(k|0))}else c[b+1052>>2]=0;c[d+32>>2]=0;c[d+36>>2]=F;c[d+40>>2]=0;c[d>>2]=c[H>>2];c[d+4>>2]=c[H+4>>2];c[d+8>>2]=c[H+8>>2];c[d+12>>2]=c[H+12>>2];c[d+16>>2]=c[H+16>>2];c[d+20>>2]=c[H+20>>2];c[d+24>>2]=c[H+24>>2];c[d+28>>2]=c[H+28>>2];lf(b+1048|0,c[b+1048>>2]|0,d);c[b+1060>>2]=(c[b+1060>>2]|0)+1;c[F+348>>2]=d}else{L=+g[b+452>>2];M=L*+g[F+320>>2]*3.0;N=L*+g[F+324>>2]*3.0;g[H+32>>2]=+g[D>>2]*L*3.0;g[H+32+4>>2]=M;g[H+32+8>>2]=N;g[H+32+12>>2]=0.0;jh(b+1048|0,d,H,H+32|0,+g[b+464>>2])|0}}d=c[b+1112>>2]|0}G=G+1|0}while((G|0)<(d|0))}d=c[2357]|0;b=(c[d+16>>2]|0)+-1|0;c[d+16>>2]=b;if(b|0){i=H;return}do if(c[d+4>>2]|0){tb(H+144|0,0)|0;b=c[6434]|0;g[d+8>>2]=+g[d+8>>2]+ +(((c[H+144+4>>2]|0)-(c[b+4>>2]|0)+(((c[H+144>>2]|0)-(c[b>>2]|0)|0)*1e6|0)-(c[d+12>>2]|0)|0)>>>0)/1.0e3;if(!(c[d+16>>2]|0)){d=c[2357]|0;break}else{i=H;return}}while(0);c[2357]=c[d+20>>2];i=H;return}function ad(d,e){d=d|0;e=+e;var f=0,h=0,j=0,k=0,l=0.0,m=0.0,n=0.0,o=0.0,p=0,q=0,r=0,s=0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0,B=0,C=0.0,D=0.0,E=0.0,F=0.0,G=0.0,H=0.0,I=0.0,J=0.0,K=0.0,L=0.0,M=0.0,N=0.0;B=i;i=i+464|0;li(12209);f=c[d+84>>2]|0;if(f|0)zb[f&31](d,e);zb[c[(c[d>>2]|0)+140>>2]&31](d,e);g[d+28>>2]=e;c[d+32>>2]=0;c[d+48>>2]=Eb[c[(c[d>>2]|0)+20>>2]&127](d)|0;li(12238);li(12263);f=c[d+316>>2]|0;if((c[d+308>>2]|0)>0){h=0;do{s=c[d+24>>2]|0;Cb[c[(c[s>>2]|0)+16>>2]&127](s,c[f+(h<<2)>>2]|0);h=h+1|0;f=c[d+316>>2]|0}while((h|0)<(c[d+308>>2]|0))}if(f|0){if(a[d+320>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}c[d+316>>2]=0}a[d+320>>0]=1;c[d+316>>2]=0;c[d+308>>2]=0;c[d+312>>2]=0;f=c[2357]|0;s=(c[f+16>>2]|0)+-1|0;c[f+16>>2]=s;do if(!s){if(c[f+4>>2]|0){tb(B+368|0,0)|0;s=c[6434]|0;g[f+8>>2]=+g[f+8>>2]+ +(((c[B+368+4>>2]|0)-(c[s+4>>2]|0)+(((c[B+368>>2]|0)-(c[s>>2]|0)|0)*1e6|0)-(c[f+12>>2]|0)|0)>>>0)/1.0e3;if(c[f+16>>2]|0)break;f=c[2357]|0}c[2357]=c[f+20>>2]}while(0);a:do if((c[d+232>>2]|0)>0){q=B+304+48|0;r=B+368+44|0;s=0;while(1){k=c[(c[d+240>>2]|0)+(s<<2)>>2]|0;g[k+244>>2]=1.0;b:do switch(c[k+216>>2]|0){case 2:case 5:break;default:if(((c[k+204>>2]&3|0)==0?(Zg(k+4|0,+g[k+312>>2],+g[k+316>>2],+g[k+320>>2],k+328|0,e,B+304|0),t=+g[q>>2],u=t-+g[k+52>>2],v=+g[B+304+52>>2],w=v-+g[k+56>>2],x=+g[B+304+56>>2],y=x-+g[k+60>>2],a[d+44>>0]|0):0)?(o=+g[k+252>>2],o*o!=0.0?o*o>2]|0)+4>>2]|0)<20?(c[5816]=(c[5816]|0)+1,j=c[d+68>>2]|0,j=Eb[c[(c[j>>2]|0)+36>>2]&127](j)|0,p=c[d+24>>2]|0,g[B+368+4>>2]=1.0,b[B+368+8>>1]=1,b[B+368+10>>1]=-1,c[B+368>>2]=2872,c[B+368+12>>2]=c[k+52>>2],c[B+368+12+4>>2]=c[k+52+4>>2],c[B+368+12+8>>2]=c[k+52+8>>2],c[B+368+12+12>>2]=c[k+52+12>>2],c[B+368+28>>2]=c[q>>2],c[B+368+28+4>>2]=c[q+4>>2],c[B+368+28+8>>2]=c[q+8>>2],c[B+368+28+12>>2]=c[q+12>>2],c[B+368+76>>2]=0,c[B+368>>2]=4332,c[B+368+80>>2]=k,c[B+368+88>>2]=j,c[B+368+92>>2]=p,p=c[k+248>>2]|0,c[B+248+8>>2]=0,c[B+248+12>>2]=1065353216,c[B+248+16>>2]=1065353216,c[B+248+20>>2]=1065353216,g[B+248+24>>2]=0.0,c[B+248>>2]=6672,c[B+248+4>>2]=8,c[B+248+28>>2]=p,c[B+248+44>>2]=p,c[B+368+84>>2]=c[d+56>>2],p=c[(c[k+188>>2]|0)+4>>2]|0,b[B+368+8>>1]=p,b[B+368+10>>1]=p>>>16,c[B+184+48>>2]=c[q>>2],c[B+184+48+4>>2]=c[q+4>>2],c[B+184+48+8>>2]=c[q+8>>2],c[B+184+48+12>>2]=c[q+12>>2],c[B+184>>2]=c[k+4>>2],c[B+184+4>>2]=c[k+4+4>>2],c[B+184+8>>2]=c[k+4+8>>2],c[B+184+12>>2]=c[k+4+12>>2],c[B+184+16>>2]=c[k+20>>2],c[B+184+16+4>>2]=c[k+20+4>>2],c[B+184+16+8>>2]=c[k+20+8>>2],c[B+184+16+12>>2]=c[k+20+12>>2],c[B+184+32>>2]=c[k+36>>2],c[B+184+32+4>>2]=c[k+36+4>>2],c[B+184+32+8>>2]=c[k+36+8>>2],c[B+184+32+12>>2]=c[k+36+12>>2],Kd(d,B+248|0,k+4|0,B+184|0,B+368|0,0.0),z=+g[B+368+4>>2],z<1.0):0){l=z*(t-+g[k+52>>2]);m=z*(v-+g[k+56>>2]);n=z*(x-+g[k+60>>2]);o=-(m*+g[B+368+48>>2])-l*+g[r>>2]-n*+g[B+368+52>>2];p=c[d+24>>2]|0;p=Ob[c[(c[p>>2]|0)+12>>2]&63](p,k,c[B+368+76>>2]|0)|0;f=c[d+308>>2]|0;if((f|0)==(c[d+312>>2]|0)?(A=f|0?f<<1:1,(f|0)<(A|0)):0){if(!A)j=0;else{c[6435]=(c[6435]|0)+1;f=yc((A<<2|3)+16|0)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}j=f;f=c[d+308>>2]|0}if((f|0)>0){h=0;do{c[j+(h<<2)>>2]=c[(c[d+316>>2]|0)+(h<<2)>>2];h=h+1|0}while((h|0)!=(f|0))}h=c[d+316>>2]|0;if(h){if(a[d+320>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0);f=c[d+308>>2]|0}c[d+316>>2]=0}a[d+320>>0]=1;c[d+316>>2]=j;c[d+312>>2]=A}c[(c[d+316>>2]|0)+(f<<2)>>2]=p;c[d+308>>2]=f+1;l=l+ +g[k+52>>2];m=m+ +g[k+56>>2];n=n+ +g[k+60>>2];j=c[B+368+76>>2]|0;N=+g[j+4>>2];M=+g[j+20>>2];L=+g[j+36>>2];K=+g[j+8>>2];J=+g[j+24>>2];I=+g[j+40>>2];H=+g[j+12>>2];F=+g[j+28>>2];D=+g[j+44>>2];G=-+g[j+52>>2];E=-+g[j+56>>2];C=-+g[j+60>>2];c[B>>2]=0;c[B+4>>2]=0;c[B+8>>2]=0;c[B+12>>2]=0;g[B+16>>2]=l*N+m*M+n*L+(N*G+M*E+L*C);g[B+20>>2]=l*K+m*J+n*I+(K*G+J*E+I*C);g[B+24>>2]=l*H+m*F+n*D+(H*G+F*E+D*C);g[B+28>>2]=0.0;c[B+64>>2]=c[r>>2];c[B+64+4>>2]=c[r+4>>2];c[B+64+8>>2]=c[r+8>>2];c[B+64+12>>2]=c[r+12>>2];g[B+80>>2]=o;g[B+84>>2]=0.0;g[B+88>>2]=0.0;g[B+92>>2]=0.0;c[B+112>>2]=0;a[B+116>>0]=0;c[B+120>>2]=0;c[B+120+4>>2]=0;c[B+120+8>>2]=0;c[B+120+12>>2]=0;c[B+120+16>>2]=0;c[B+120+20>>2]=0;c[B+120+24>>2]=0;c[B+120+28>>2]=0;j=_e(p,B)|0;g[p+4+(j*184|0)+92>>2]=0.0;o=+g[k+224>>2]*+g[(c[B+368+76>>2]|0)+224>>2];o=o<-10.0?-10.0:o;g[p+4+(j*184|0)+84>>2]=o>10.0?10.0:o;c[p+4+(j*184|0)+48>>2]=c[k+52>>2];c[p+4+(j*184|0)+48+4>>2]=c[k+52+4>>2];c[p+4+(j*184|0)+48+8>>2]=c[k+52+8>>2];c[p+4+(j*184|0)+48+12>>2]=c[k+52+12>>2];g[p+4+(j*184|0)+32>>2]=l;g[p+4+(j*184|0)+36>>2]=m;g[p+4+(j*184|0)+40>>2]=n;g[p+4+(j*184|0)+44>>2]=0.0}f=c[2357]|0;p=(c[f+16>>2]|0)+-1|0;c[f+16>>2]=p;if(!p){if(c[f+4>>2]|0){tb(B+368|0,0)|0;p=c[6434]|0;g[f+8>>2]=+g[f+8>>2]+ +(((c[B+368+4>>2]|0)-(c[p+4>>2]|0)+(((c[B+368>>2]|0)-(c[p>>2]|0)|0)*1e6|0)-(c[f+12>>2]|0)|0)>>>0)/1.0e3;if(c[f+16>>2]|0)break b;f=c[2357]|0}c[2357]=c[f+20>>2]}}}while(0);s=s+1|0;if((s|0)>=(c[d+232>>2]|0))break a}}while(0);f=c[2357]|0;A=(c[f+16>>2]|0)+-1|0;c[f+16>>2]=A;do if(!A){if(c[f+4>>2]|0){tb(B+368|0,0)|0;A=c[6434]|0;g[f+8>>2]=+g[f+8>>2]+ +(((c[B+368+4>>2]|0)-(c[A+4>>2]|0)+(((c[B+368>>2]|0)-(c[A>>2]|0)|0)*1e6|0)-(c[f+12>>2]|0)|0)>>>0)/1.0e3;if(c[f+16>>2]|0)break;f=c[2357]|0}c[2357]=c[f+20>>2]}while(0);Ab[c[(c[d>>2]|0)+44>>2]&255](d);Ab[c[(c[d>>2]|0)+148>>2]&255](d);g[d+104>>2]=e;Cb[c[(c[d>>2]|0)+152>>2]&127](d,d+92|0);zb[c[(c[d>>2]|0)+144>>2]&31](d,e);li(12327);if((c[d+280>>2]|0)>0){f=0;do{A=c[(c[d+288>>2]|0)+(f<<2)>>2]|0;kc[c[(c[A>>2]|0)+8>>2]&7](A,d,e);f=f+1|0}while((f|0)<(c[d+280>>2]|0))}f=c[2357]|0;A=(c[f+16>>2]|0)+-1|0;c[f+16>>2]=A;do if(!A){if(c[f+4>>2]|0){tb(B+368|0,0)|0;A=c[6434]|0;g[f+8>>2]=+g[f+8>>2]+ +(((c[B+368+4>>2]|0)-(c[A+4>>2]|0)+(((c[B+368>>2]|0)-(c[A>>2]|0)|0)*1e6|0)-(c[f+12>>2]|0)|0)>>>0)/1.0e3;if(c[f+16>>2]|0)break;f=c[2357]|0}c[2357]=c[f+20>>2]}while(0);zb[c[(c[d>>2]|0)+156>>2]&31](d,e);f=c[d+80>>2]|0;if(f|0)zb[f&31](d,e);f=c[2357]|0;d=(c[f+16>>2]|0)+-1|0;c[f+16>>2]=d;if(d|0){i=B;return}do if(c[f+4>>2]|0){tb(B+368|0,0)|0;d=c[6434]|0;g[f+8>>2]=+g[f+8>>2]+ +(((c[B+368+4>>2]|0)-(c[d+4>>2]|0)+(((c[B+368>>2]|0)-(c[d>>2]|0)|0)*1e6|0)-(c[f+12>>2]|0)|0)>>>0)/1.0e3;if(!(c[f+16>>2]|0)){f=c[2357]|0;break}else{i=B;return}}while(0);c[2357]=c[f+20>>2];i=B;return}function bd(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;var h=0,j=0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0,w=0,x=0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0.0,H=0.0;x=i;i=i+784|0;c[x+168+8>>2]=0;c[x+168+12>>2]=1065353216;c[x+168+16>>2]=1065353216;c[x+168+20>>2]=1065353216;g[x+168+24>>2]=0.0;c[x+168>>2]=6672;c[x+168+4>>2]=8;g[x+168+28>>2]=0.0;g[x+168+44>>2]=0.0;v=c[e+4>>2]|0;w=c[e+12>>2]|0;h=c[v+4>>2]|0;if((h|0)<20){c[x+600>>2]=3708;c[x+600+168>>2]=0;g[x+600+172>>2]=0.0;c[x+600+164>>2]=c[f+4>>2];g[x+240+308>>2]=9.999999747378752e-05;a[x+240+332>>0]=0;c[x+224>>2]=4960;c[x+224+4>>2]=x+240;c[x+224+8>>2]=x+168;c[x+224+12>>2]=v;c[x+152>>2]=9140;c[x+152+4>>2]=x+240;c[x+152+8>>2]=x+168;c[x+152+12>>2]=v;v=(c[f+16>>2]&4|0)==0?x+152|0:x+224|0;if((Tb[c[(c[v>>2]|0)+8>>2]&3](v,b,d,w,w,x+600|0)|0?(j=x+600+132|0,k=+g[j>>2],l=+g[x+600+136>>2],m=+g[x+600+140>>2],k*k+l*l+m*m>9.999999747378752e-05):0)?(n=+g[x+600+164>>2],n<+g[f+4>>2]):0){u=1.0/+O(+(k*k+l*l+m*m));g[j>>2]=k*u;g[x+600+136>>2]=l*u;g[x+600+140>>2]=m*u;c[x+120>>2]=c[e+8>>2];c[x+120+4>>2]=0;c[x+120+8>>2]=c[j>>2];c[x+120+8+4>>2]=c[j+4>>2];c[x+120+8+8>>2]=c[j+8>>2];c[x+120+8+12>>2]=c[j+12>>2];g[x+120+24>>2]=n;+_b[c[(c[f>>2]|0)+12>>2]&15](f,x+120|0,1)}i=x;return}if((h+-21|0)>>>0>=9){if((h|0)!=31){i=x;return}h=c[v+64>>2]|0;e=c[e+8>>2]|0;c[x+600>>2]=5804;c[x+600+4>>2]=e;c[x+600+8>>2]=v;c[x+600+12>>2]=w;c[x+600+16>>2]=b;c[x+600+20>>2]=d;c[x+600+24>>2]=f;if(!h){h=c[v+16>>2]|0;if((h|0)>0){j=0;do{Vf(x+600|0,j);j=j+1|0}while((j|0)<(h|0))}}else{p=+g[w+48>>2];B=+g[b+48>>2]-p;r=+g[w+52>>2];A=+g[b+52>>2]-r;t=+g[w+56>>2];z=+g[b+56>>2]-t;y=+g[w>>2];k=+g[w+16>>2];l=+g[w+32>>2];m=+g[w+4>>2];n=+g[w+20>>2];o=+g[w+36>>2];q=+g[w+8>>2];s=+g[w+24>>2];u=+g[w+40>>2];g[x+240>>2]=B*y+A*k+z*l;g[x+240+4>>2]=B*m+A*n+z*o;g[x+240+8>>2]=B*q+A*s+z*u;g[x+240+12>>2]=0.0;p=+g[d+48>>2]-p;r=+g[d+52>>2]-r;t=+g[d+56>>2]-t;g[x+224>>2]=p*y+r*k+t*l;g[x+224+4>>2]=p*m+r*n+t*o;g[x+224+8>>2]=p*q+r*s+t*u;g[x+224+12>>2]=0.0;ff(c[h>>2]|0,x+240|0,x+224|0,x+600|0)}i=x;return}E=+g[w>>2];D=+g[w+16>>2];k=+g[w+32>>2];C=+g[w+4>>2];o=+g[w+20>>2];l=+g[w+36>>2];A=+g[w+8>>2];B=+g[w+24>>2];m=+g[w+40>>2];p=-+g[w+48>>2];y=-+g[w+52>>2];z=-+g[w+56>>2];q=+g[b+48>>2];r=+g[b+52>>2];n=+g[b+56>>2];g[x+152>>2]=E*p+D*y+k*z+(E*q+D*r+k*n);g[x+152+4>>2]=C*p+o*y+l*z+(C*q+o*r+l*n);g[x+152+8>>2]=A*p+B*y+m*z+(A*q+B*r+m*n);g[x+152+12>>2]=0.0;t=+g[d+48>>2];u=+g[d+52>>2];s=+g[d+56>>2];k=E*p+D*y+k*z+(E*t+D*u+k*s);l=C*p+o*y+l*z+(C*t+o*u+l*s);m=A*p+B*y+m*z+(A*t+B*u+m*s);g[x+120>>2]=k;g[x+120+4>>2]=l;g[x+120+8>>2]=m;g[x+120+12>>2]=0.0;switch(c[v+4>>2]|0){case 21:{h=c[e+8>>2]|0;e=c[f+16>>2]|0;c[x+4>>2]=c[x+152>>2];c[x+4+4>>2]=c[x+152+4>>2];c[x+4+8>>2]=c[x+152+8>>2];c[x+4+12>>2]=c[x+152+12>>2];c[x+20>>2]=c[x+120>>2];c[x+20+4>>2]=c[x+120+4>>2];c[x+20+8>>2]=c[x+120+8>>2];c[x+20+12>>2]=c[x+120+12>>2];c[x+36>>2]=e;g[x+40>>2]=1.0;c[x>>2]=5756;c[x+44>>2]=f;c[x+48>>2]=h;c[x+52>>2]=v;c[x+56>>2]=c[w>>2];c[x+56+4>>2]=c[w+4>>2];c[x+56+8>>2]=c[w+8>>2];c[x+56+12>>2]=c[w+12>>2];c[x+72>>2]=c[w+16>>2];c[x+72+4>>2]=c[w+16+4>>2];c[x+72+8>>2]=c[w+16+8>>2];c[x+72+12>>2]=c[w+16+12>>2];c[x+88>>2]=c[w+32>>2];c[x+88+4>>2]=c[w+32+4>>2];c[x+88+8>>2]=c[w+32+8>>2];c[x+88+12>>2]=c[w+32+12>>2];c[x+104>>2]=c[w+48>>2];c[x+104+4>>2]=c[w+48+4>>2];c[x+104+8>>2]=c[w+48+8>>2];c[x+104+12>>2]=c[w+48+12>>2];c[x+40>>2]=c[f+4>>2];h=c[v+48>>2]|0;c[x+224>>2]=6884;c[x+224+4>>2]=h;c[x+224+8>>2]=x;h=c[v+52>>2]|0;c[x+600>>2]=0;c[x+600+4>>2]=0;c[x+600+8>>2]=0;c[x+600+12>>2]=0;c[x+240>>2]=0;c[x+240+4>>2]=0;c[x+240+8>>2]=0;c[x+240+12>>2]=0;if(!(a[h+60>>0]|0))Re(h,x+224|0,x+152|0,k,l,m,x+600|0,x+240|0);else ze(h,x+224|0,x+152|0,k,l,m,x+600|0,x+240|0,c[h+56>>2]|0);break}case 25:{e=c[e+8>>2]|0;d=c[f+16>>2]|0;c[x+600+4>>2]=c[x+152>>2];c[x+600+4+4>>2]=c[x+152+4>>2];c[x+600+4+8>>2]=c[x+152+8>>2];c[x+600+4+12>>2]=c[x+152+12>>2];c[x+600+20>>2]=c[x+120>>2];c[x+600+20+4>>2]=c[x+120+4>>2];c[x+600+20+8>>2]=c[x+120+8>>2];c[x+600+20+12>>2]=c[x+120+12>>2];c[x+600+36>>2]=d;g[x+600+40>>2]=1.0;c[x+600>>2]=5756;c[x+600+44>>2]=f;c[x+600+48>>2]=e;c[x+600+52>>2]=v;c[x+600+56>>2]=c[w>>2];c[x+600+56+4>>2]=c[w+4>>2];c[x+600+56+8>>2]=c[w+8>>2];c[x+600+56+12>>2]=c[w+12>>2];c[x+600+72>>2]=c[w+16>>2];c[x+600+72+4>>2]=c[w+16+4>>2];c[x+600+72+8>>2]=c[w+16+8>>2];c[x+600+72+12>>2]=c[w+16+12>>2];c[x+600+88>>2]=c[w+32>>2];c[x+600+88+4>>2]=c[w+32+4>>2];c[x+600+88+8>>2]=c[w+32+8>>2];c[x+600+88+12>>2]=c[w+32+12>>2];c[x+600+104>>2]=c[w+48>>2];c[x+600+104+4>>2]=c[w+48+4>>2];c[x+600+104+8>>2]=c[w+48+8>>2];c[x+600+104+12>>2]=c[w+48+12>>2];c[x+600+40>>2]=c[f+4>>2];mc[c[(c[v>>2]|0)+144>>2]&127](v,x+600|0,x+152|0,x+120|0);break}default:{H=+g[w>>2];G=+g[w+16>>2];m=+g[w+32>>2];F=+g[w+4>>2];y=+g[w+20>>2];z=+g[w+36>>2];D=+g[w+8>>2];E=+g[w+24>>2];k=+g[w+40>>2];A=-+g[w+48>>2];B=-+g[w+52>>2];C=-+g[w+56>>2];o=H*A+G*B+m*C+(H*q+G*r+m*n);p=F*A+y*B+z*C+(F*q+y*r+z*n);l=D*A+E*B+k*C+(D*q+E*r+k*n);m=H*A+G*B+m*C+(H*t+G*u+m*s);n=F*A+y*B+z*C+(F*t+y*u+z*s);k=D*A+E*B+k*C+(D*t+E*u+k*s);e=c[e+8>>2]|0;d=c[f+16>>2]|0;g[x+600+4>>2]=o;g[x+600+8>>2]=p;g[x+600+12>>2]=l;g[x+600+16>>2]=0.0;g[x+600+20>>2]=m;g[x+600+24>>2]=n;g[x+600+28>>2]=k;g[x+600+32>>2]=0.0;c[x+600+36>>2]=d;g[x+600+40>>2]=1.0;c[x+600>>2]=5780;c[x+600+44>>2]=f;c[x+600+48>>2]=e;c[x+600+52>>2]=v;c[x+600+56>>2]=c[w>>2];c[x+600+56+4>>2]=c[w+4>>2];c[x+600+56+8>>2]=c[w+8>>2];c[x+600+56+12>>2]=c[w+12>>2];c[x+600+72>>2]=c[w+16>>2];c[x+600+72+4>>2]=c[w+16+4>>2];c[x+600+72+8>>2]=c[w+16+8>>2];c[x+600+72+12>>2]=c[w+16+12>>2];c[x+600+88>>2]=c[w+32>>2];c[x+600+88+4>>2]=c[w+32+4>>2];c[x+600+88+8>>2]=c[w+32+8>>2];c[x+600+88+12>>2]=c[w+32+12>>2];c[x+600+104>>2]=c[w+48>>2];c[x+600+104+4>>2]=c[w+48+4>>2];c[x+600+104+8>>2]=c[w+48+8>>2];c[x+600+104+12>>2]=c[w+48+12>>2];c[x+600+40>>2]=c[f+4>>2];g[x+240>>2]=o;g[x+240+4>>2]=p;g[x+240+8>>2]=l;g[x+240+12>>2]=0.0;if(m>2]=m;if(n>2]=n;if(k>2]=k;g[x+224>>2]=o;g[x+224+4>>2]=p;g[x+224+8>>2]=l;g[x+224+12>>2]=0.0;if(o>2]=m;if(p>2]=n;if(l>2]=k;mc[c[(c[v>>2]|0)+64>>2]&127](v,x+600|0,x+240|0,x+224|0)}}i=x;return}function cd(b,d,e,f,h,i,j,k,l,m){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;i=i|0;j=j|0;k=k|0;l=l|0;m=m|0;var n=0.0,o=0,p=0,q=0,r=0,s=0,t=0,u=0.0;o=c[b+48>>2]|0;q=c[b+28>>2]|0;r=c[b+68>>2]|0;if(c[l+64>>2]&1|0){if((o|0)>0){f=c[b+136>>2]|0;m=c[b+192>>2]|0;p=0;do{h=f+(p<<2)|0;i=c[h>>2]|0;p=p+1|0;m=(_(m,1664525)|0)+1013904223|0;if(p>>>0<65537){e=m>>>16^m;if(p>>>0<257)if(p>>>0<17){e=(e>>>8^e)>>>4^(e>>>8^e);if(p>>>0<5)if(p>>>0<3)e=(e>>>2^e)>>>1^(e>>>2^e);else e=e>>>2^e}else e=e>>>8^e}else e=m;e=f+(((e>>>0)%(p>>>0)|0)<<2)|0;c[h>>2]=c[e>>2];c[e>>2]=i}while((p|0)!=(o|0));c[b+192>>2]=m}if((c[l+20>>2]|0)>(d|0)){if((q|0)>0){f=c[b+116>>2]|0;m=c[b+192>>2]|0;o=0;do{h=f+(o<<2)|0;i=c[h>>2]|0;o=o+1|0;m=(_(m,1664525)|0)+1013904223|0;if(o>>>0<65537){e=m>>>16^m;if(o>>>0<257)if(o>>>0<17){e=(e>>>8^e)>>>4^(e>>>8^e);if(o>>>0<5)if(o>>>0<3)e=(e>>>2^e)>>>1^(e>>>2^e);else e=e>>>2^e}else e=e>>>8^e}else e=m;p=f+(((e>>>0)%(o>>>0)|0)<<2)|0;c[h>>2]=c[p>>2];c[p>>2]=i}while((o|0)!=(q|0));c[b+192>>2]=m}if((r|0)>0){f=c[b+156>>2]|0;m=c[b+192>>2]|0;o=0;do{h=f+(o<<2)|0;i=c[h>>2]|0;o=o+1|0;m=(_(m,1664525)|0)+1013904223|0;if(o>>>0<65537){e=m>>>16^m;if(o>>>0<257)if(o>>>0<17){e=(e>>>8^e)>>>4^(e>>>8^e);if(o>>>0<5)if(o>>>0<3)e=(e>>>2^e)>>>1^(e>>>2^e);else e=e>>>2^e}else e=e>>>8^e}else e=m;q=f+(((e>>>0)%(o>>>0)|0)<<2)|0;c[h>>2]=c[q>>2];c[q>>2]=i}while((o|0)!=(r|0));c[b+192>>2]=m}}}e=c[b+48>>2]|0;if(!(c[l+64>>2]&256)){if((e|0)>0){i=0;do{f=c[(c[b+136>>2]|0)+(i<<2)>>2]|0;h=c[b+56>>2]|0;if((c[h+(f*152|0)+136>>2]|0)>(d|0)){e=c[b+16>>2]|0;zg(e+((c[h+(f*152|0)+144>>2]|0)*244|0)|0,e+((c[h+(f*152|0)+148>>2]|0)*244|0)|0,h+(f*152|0)|0);e=c[b+48>>2]|0}i=i+1|0}while((i|0)<(e|0))}if((c[l+20>>2]|0)<=(d|0))return 0.0;if((k|0)>0){h=0;do{e=j+(h<<2)|0;f=c[e>>2]|0;if(a[f+20>>0]|0){d=bk(b,c[f+28>>2]|0,+g[l+12>>2])|0;t=bk(b,c[(c[e>>2]|0)+32>>2]|0,+g[l+12>>2])|0;s=c[b+16>>2]|0;r=c[e>>2]|0;hc[c[(c[r>>2]|0)+24>>2]&15](r,s+(d*244|0)|0,s+(t*244|0)|0,+g[l+12>>2])}h=h+1|0}while((h|0)!=(k|0))}e=c[b+28>>2]|0;if((e|0)>0){f=0;do{l=c[(c[b+116>>2]|0)+(f<<2)>>2]|0;k=c[b+36>>2]|0;j=c[b+16>>2]|0;Mg(j+((c[k+(l*152|0)+144>>2]|0)*244|0)|0,j+((c[k+(l*152|0)+148>>2]|0)*244|0)|0,k+(l*152|0)|0);f=f+1|0}while((f|0)!=(e|0))}e=c[b+68>>2]|0;if((e|0)>0){i=0;do{f=c[(c[b+156>>2]|0)+(i<<2)>>2]|0;h=c[b+76>>2]|0;n=+g[(c[b+36>>2]|0)+((c[h+(f*152|0)+140>>2]|0)*152|0)+100>>2];if(n>0.0){n=n*+g[h+(f*152|0)+104>>2];g[h+(f*152|0)+120>>2]=-n;g[h+(f*152|0)+124>>2]=n;l=c[b+16>>2]|0;zg(l+((c[h+(f*152|0)+144>>2]|0)*244|0)|0,l+((c[h+(f*152|0)+148>>2]|0)*244|0)|0,h+(f*152|0)|0)}i=i+1|0}while((i|0)!=(e|0))}e=c[b+88>>2]|0;if((e|0)<=0)return 0.0;h=0;do{f=c[b+96>>2]|0;n=+g[(c[b+36>>2]|0)+((c[f+(h*152|0)+140>>2]|0)*152|0)+100>>2];if(n>0.0){u=+g[f+(h*152|0)+104>>2];n=n*u>u?u:n*u;g[f+(h*152|0)+120>>2]=-n;g[f+(h*152|0)+124>>2]=n;l=c[b+16>>2]|0;zg(l+((c[f+(h*152|0)+144>>2]|0)*244|0)|0,l+((c[f+(h*152|0)+148>>2]|0)*244|0)|0,f+(h*152|0)|0)}h=h+1|0}while((h|0)!=(e|0));return 0.0}if((e|0)>0){i=0;do{f=c[(c[b+136>>2]|0)+(i<<2)>>2]|0;h=c[b+56>>2]|0;if((c[h+(f*152|0)+136>>2]|0)>(d|0)){e=c[b+16>>2]|0;zg(e+((c[h+(f*152|0)+144>>2]|0)*244|0)|0,e+((c[h+(f*152|0)+148>>2]|0)*244|0)|0,h+(f*152|0)|0);e=c[b+48>>2]|0}i=i+1|0}while((i|0)<(e|0))}if((c[l+20>>2]|0)<=(d|0))return 0.0;if((k|0)>0){h=0;do{e=j+(h<<2)|0;f=c[e>>2]|0;if(a[f+20>>0]|0){q=bk(b,c[f+28>>2]|0,+g[l+12>>2])|0;d=bk(b,c[(c[e>>2]|0)+32>>2]|0,+g[l+12>>2])|0;r=c[b+16>>2]|0;p=c[e>>2]|0;hc[c[(c[p>>2]|0)+24>>2]&15](p,r+(q*244|0)|0,r+(d*244|0)|0,+g[l+12>>2])}h=h+1|0}while((h|0)!=(k|0))}e=c[l+64>>2]|0;o=c[b+28>>2]|0;if(e&512|0){if((o|0)<=0)return 0.0;m=0;do{f=c[(c[b+116>>2]|0)+(m<<2)>>2]|0;h=c[b+36>>2]|0;i=c[b+16>>2]|0;Mg(i+((c[h+(f*152|0)+144>>2]|0)*244|0)|0,i+((c[h+(f*152|0)+148>>2]|0)*244|0)|0,h+(f*152|0)|0);n=+g[h+(f*152|0)+100>>2];f=_(m,(e>>>4&1)+1|0)|0;h=c[(c[b+156>>2]|0)+(f<<2)>>2]|0;i=c[b+76>>2]|0;if(n>0.0){u=n*+g[i+(h*152|0)+104>>2];g[i+(h*152|0)+120>>2]=-u;g[i+(h*152|0)+124>>2]=u;k=c[b+16>>2]|0;zg(k+((c[i+(h*152|0)+144>>2]|0)*244|0)|0,k+((c[i+(h*152|0)+148>>2]|0)*244|0)|0,i+(h*152|0)|0)}if(c[l+64>>2]&16|0?(s=c[(c[b+156>>2]|0)+(f+1<<2)>>2]|0,t=c[b+76>>2]|0,n>0.0):0){u=n*+g[t+(s*152|0)+104>>2];g[t+(s*152|0)+120>>2]=-u;g[t+(s*152|0)+124>>2]=u;k=c[b+16>>2]|0;zg(k+((c[t+(s*152|0)+144>>2]|0)*244|0)|0,k+((c[t+(s*152|0)+148>>2]|0)*244|0)|0,t+(s*152|0)|0)}m=m+1|0}while((m|0)!=(o|0));return 0.0}if((o|0)>0){e=0;do{l=c[(c[b+116>>2]|0)+(e<<2)>>2]|0;k=c[b+36>>2]|0;j=c[b+16>>2]|0;Mg(j+((c[k+(l*152|0)+144>>2]|0)*244|0)|0,j+((c[k+(l*152|0)+148>>2]|0)*244|0)|0,k+(l*152|0)|0);e=e+1|0}while((e|0)!=(o|0))}e=c[b+68>>2]|0;if((e|0)>0){i=0;do{f=c[(c[b+156>>2]|0)+(i<<2)>>2]|0;h=c[b+76>>2]|0;n=+g[(c[b+36>>2]|0)+((c[h+(f*152|0)+140>>2]|0)*152|0)+100>>2];if(n>0.0){u=n*+g[h+(f*152|0)+104>>2];g[h+(f*152|0)+120>>2]=-u;g[h+(f*152|0)+124>>2]=u;l=c[b+16>>2]|0;zg(l+((c[h+(f*152|0)+144>>2]|0)*244|0)|0,l+((c[h+(f*152|0)+148>>2]|0)*244|0)|0,h+(f*152|0)|0)}i=i+1|0}while((i|0)!=(e|0))}e=c[b+88>>2]|0;if((e|0)<=0)return 0.0;h=0;do{f=c[b+96>>2]|0;n=+g[(c[b+36>>2]|0)+((c[f+(h*152|0)+140>>2]|0)*152|0)+100>>2];if(n>0.0){u=+g[f+(h*152|0)+104>>2];u=n*u>u?u:n*u;g[f+(h*152|0)+120>>2]=-u;g[f+(h*152|0)+124>>2]=u;l=c[b+16>>2]|0;zg(l+((c[f+(h*152|0)+144>>2]|0)*244|0)|0,l+((c[f+(h*152|0)+148>>2]|0)*244|0)|0,f+(h*152|0)|0)}h=h+1|0}while((h|0)!=(e|0));return 0.0}function dd(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;var h=0,j=0,l=0,m=0,n=0.0,o=0.0,p=0.0,q=0.0,r=0,s=0,t=0.0,u=0.0;r=i;i=i+80|0;j=c[b+28>>2]|0;d=c[f+64>>2]|0;a:do if((d&4|0)!=0&(j|0)>0){l=c[b+36>>2]|0;h=c[b+76>>2]|0;if(!(d&16)){d=0;while(1){m=c[l+(d*152|0)+132>>2]|0;c[m+120>>2]=c[l+(d*152|0)+100>>2];c[m+124>>2]=c[h+((c[l+(d*152|0)+140>>2]|0)*152|0)+100>>2];d=d+1|0;if((d|0)==(j|0))break a}}else{e=h;d=0}while(1){m=c[l+(d*152|0)+132>>2]|0;c[m+120>>2]=c[l+(d*152|0)+100>>2];s=c[l+(d*152|0)+140>>2]|0;c[m+124>>2]=c[h+(s*152|0)+100>>2];c[m+128>>2]=c[e+((s+1|0)*152|0)+100>>2];d=d+1|0;if((d|0)==(j|0))break a;e=c[b+76>>2]|0}}while(0);e=c[b+48>>2]|0;if((e|0)>0){m=0;do{h=c[b+56>>2]|0;j=c[h+(m*152|0)+132>>2]|0;l=c[j+44>>2]|0;d=h+(m*152|0)+100|0;if(l|0){q=+g[d>>2];s=c[j+28>>2]|0;p=1.0/+g[f+12>>2];o=q*+g[h+(m*152|0)+20>>2]*+g[s+352>>2]*p;n=q*+g[h+(m*152|0)+24>>2]*+g[s+356>>2]*p;g[l>>2]=+g[l>>2]+ +g[h+(m*152|0)+16>>2]*q*+g[s+348>>2]*p;g[l+4>>2]=o+ +g[l+4>>2];g[l+8>>2]=n+ +g[l+8>>2];n=+g[d>>2];s=c[j+32>>2]|0;o=1.0/+g[f+12>>2];p=n*+g[h+(m*152|0)+52>>2]*+g[s+352>>2]*o;q=n*+g[h+(m*152|0)+56>>2]*+g[s+356>>2]*o;g[l+32>>2]=+g[l+32>>2]+ +g[h+(m*152|0)+48>>2]*n*+g[s+348>>2]*o;g[l+36>>2]=p+ +g[l+36>>2];g[l+40>>2]=q+ +g[l+40>>2];s=c[j+28>>2]|0;q=+g[d>>2];p=1.0/+g[f+12>>2];o=+g[h+(m*152|0)+4>>2]*+g[s+548>>2]*q*p;n=q*+g[h+(m*152|0)+8>>2]*+g[s+552>>2]*p;g[l+16>>2]=+g[l+16>>2]+ +g[h+(m*152|0)>>2]*+g[s+544>>2]*q*p;g[l+20>>2]=o+ +g[l+20>>2];g[l+24>>2]=n+ +g[l+24>>2];s=c[j+32>>2]|0;n=+g[d>>2];o=1.0/+g[f+12>>2];p=+g[h+(m*152|0)+36>>2]*+g[s+548>>2]*n*o;q=n*+g[h+(m*152|0)+40>>2]*+g[s+552>>2]*o;g[l+48>>2]=+g[l+48>>2]+ +g[h+(m*152|0)+32>>2]*+g[s+544>>2]*n*o;g[l+52>>2]=p+ +g[l+52>>2];g[l+56>>2]=q+ +g[l+56>>2]}s=c[d>>2]|0;c[j+36>>2]=s;q=+N(+(c[k>>2]=s,+g[k>>2]));if(q>=+g[j+16>>2])a[j+20>>0]=0;m=m+1|0}while((m|0)!=(e|0))}d=c[b+8>>2]|0;if((d|0)>0){l=0;do{e=c[b+16>>2]|0;h=e+(l*244|0)|0;j=c[e+(l*244|0)+240>>2]|0;if(j){if(!(c[f+44>>2]|0)){h=e+(l*244|0)+176|0;o=+g[e+(l*244|0)+64>>2]+ +g[h>>2];g[h>>2]=o;h=e+(l*244|0)+180|0;p=+g[e+(l*244|0)+68>>2]+ +g[h>>2];g[h>>2]=p;h=e+(l*244|0)+184|0;n=+g[e+(l*244|0)+72>>2]+ +g[h>>2];g[h>>2]=n;h=e+(l*244|0)+192|0;g[h>>2]=+g[e+(l*244|0)+80>>2]+ +g[h>>2];h=e+(l*244|0)+196|0;g[h>>2]=+g[e+(l*244|0)+84>>2]+ +g[h>>2];h=e+(l*244|0)+200|0;g[h>>2]=+g[e+(l*244|0)+88>>2]+ +g[h>>2];h=e;d=j}else{o=+g[f+12>>2];p=+g[f+52>>2];s=e+(l*244|0)+176|0;g[s>>2]=+g[e+(l*244|0)+64>>2]+ +g[s>>2];s=e+(l*244|0)+180|0;g[s>>2]=+g[e+(l*244|0)+68>>2]+ +g[s>>2];s=e+(l*244|0)+184|0;g[s>>2]=+g[e+(l*244|0)+72>>2]+ +g[s>>2];s=e+(l*244|0)+192|0;g[s>>2]=+g[e+(l*244|0)+80>>2]+ +g[s>>2];s=e+(l*244|0)+196|0;g[s>>2]=+g[e+(l*244|0)+84>>2]+ +g[s>>2];s=e+(l*244|0)+200|0;g[s>>2]=+g[e+(l*244|0)+88>>2]+ +g[s>>2];q=+g[e+(l*244|0)+144>>2];n=+g[e+(l*244|0)+148>>2];if((((!(q!=0.0|n!=0.0)?!(+g[e+(l*244|0)+152>>2]!=0.0):0)?!(+g[e+(l*244|0)+160>>2]!=0.0):0)?!(+g[e+(l*244|0)+164>>2]!=0.0):0)?!(+g[e+(l*244|0)+168>>2]!=0.0):0)d=j;else{u=+g[e+(l*244|0)+164>>2]*p;t=+g[e+(l*244|0)+168>>2]*p;g[r>>2]=+g[e+(l*244|0)+160>>2]*p;g[r+4>>2]=u;g[r+8>>2]=t;g[r+12>>2]=0.0;Zg(h,q,n,+g[e+(l*244|0)+152>>2],r,o,r+16|0);c[h>>2]=c[r+16>>2];c[h+4>>2]=c[r+16+4>>2];c[h+8>>2]=c[r+16+8>>2];c[h+12>>2]=c[r+16+12>>2];d=e+(l*244|0)+16|0;c[d>>2]=c[r+16+16>>2];c[d+4>>2]=c[r+16+16+4>>2];c[d+8>>2]=c[r+16+16+8>>2];c[d+12>>2]=c[r+16+16+12>>2];d=e+(l*244|0)+32|0;c[d>>2]=c[r+16+32>>2];c[d+4>>2]=c[r+16+32+4>>2];c[d+8>>2]=c[r+16+32+8>>2];c[d+12>>2]=c[r+16+32+12>>2];d=e+(l*244|0)+48|0;c[d>>2]=c[r+16+48>>2];c[d+4>>2]=c[r+16+48+4>>2];c[d+8>>2]=c[r+16+48+8>>2];c[d+12>>2]=c[r+16+48+12>>2];d=c[b+16>>2]|0;e=d;d=c[d+(l*244|0)+240>>2]|0}h=e;o=+g[e+(l*244|0)+176>>2];p=+g[e+(l*244|0)+180>>2];n=+g[e+(l*244|0)+184>>2]}u=o+ +g[h+(l*244|0)+208>>2];t=p+ +g[h+(l*244|0)+212>>2];q=n+ +g[h+(l*244|0)+216>>2];m=d+260|0;c[m>>2]=(c[m>>2]|0)+1;g[d+312>>2]=u;g[d+316>>2]=t;g[d+320>>2]=q;g[d+324>>2]=0.0;m=c[b+16>>2]|0;s=c[m+(l*244|0)+240>>2]|0;q=+g[m+(l*244|0)+192>>2]+ +g[m+(l*244|0)+224>>2];t=+g[m+(l*244|0)+196>>2]+ +g[m+(l*244|0)+228>>2];u=+g[m+(l*244|0)+200>>2]+ +g[m+(l*244|0)+232>>2];c[s+260>>2]=(c[s+260>>2]|0)+1;g[s+328>>2]=q;g[s+332>>2]=t;g[s+336>>2]=u;g[s+340>>2]=0.0;if(c[f+44>>2]|0){m=c[b+16>>2]|0;s=c[m+(l*244|0)+240>>2]|0;j=m+(l*244|0)|0;c[s+260>>2]=(c[s+260>>2]|0)+1;c[s+4>>2]=c[j>>2];c[s+4+4>>2]=c[j+4>>2];c[s+4+8>>2]=c[j+8>>2];c[s+4+12>>2]=c[j+12>>2];j=m+(l*244|0)+16|0;c[s+20>>2]=c[j>>2];c[s+20+4>>2]=c[j+4>>2];c[s+20+8>>2]=c[j+8>>2];c[s+20+12>>2]=c[j+12>>2];j=m+(l*244|0)+32|0;c[s+36>>2]=c[j>>2];c[s+36+4>>2]=c[j+4>>2];c[s+36+8>>2]=c[j+8>>2];c[s+36+12>>2]=c[j+12>>2];m=m+(l*244|0)+48|0;c[s+52>>2]=c[m>>2];c[s+52+4>>2]=c[m+4>>2];c[s+52+8>>2]=c[m+8>>2];c[s+52+12>>2]=c[m+12>>2]}c[(c[(c[b+16>>2]|0)+(l*244|0)+240>>2]|0)+212>>2]=-1;d=c[b+8>>2]|0}l=l+1|0}while((l|0)<(d|0))}if((c[b+28>>2]|0)<0?(c[b+32>>2]|0)<0:0){d=c[b+36>>2]|0;if(d|0){if(a[b+40>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+36>>2]=0}a[b+40>>0]=1;c[b+36>>2]=0;c[b+32>>2]=0}c[b+28>>2]=0;if((c[b+48>>2]|0)<0?(c[b+52>>2]|0)<0:0){d=c[b+56>>2]|0;if(d|0){if(a[b+60>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+56>>2]=0}a[b+60>>0]=1;c[b+56>>2]=0;c[b+52>>2]=0}c[b+48>>2]=0;if((c[b+68>>2]|0)<0?(c[b+72>>2]|0)<0:0){d=c[b+76>>2]|0;if(d|0){if(a[b+80>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+76>>2]=0}a[b+80>>0]=1;c[b+76>>2]=0;c[b+72>>2]=0}c[b+68>>2]=0;if((c[b+88>>2]|0)<0?(c[b+92>>2]|0)<0:0){d=c[b+96>>2]|0;if(d|0){if(a[b+100>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+96>>2]=0}a[b+100>>0]=1;c[b+96>>2]=0;c[b+92>>2]=0}c[b+88>>2]=0;if((c[b+8>>2]|0)>=0){c[b+8>>2]=0;i=r;return 0.0}if((c[b+12>>2]|0)>=0){c[b+8>>2]=0;i=r;return 0.0}d=c[b+16>>2]|0;if(d|0){if(a[b+20>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+16>>2]=0}a[b+20>>0]=1;c[b+16>>2]=0;c[b+12>>2]=0;c[b+8>>2]=0;i=r;return 0.0}function ed(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0.0,h=0.0,j=0.0,k=0.0,l=0,m=0,n=0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0.0,H=0.0,I=0;u=i;i=i+704|0;c[u+480+8>>2]=0;c[u+480+12>>2]=1065353216;c[u+480+16>>2]=1065353216;c[u+480+20>>2]=1065353216;g[u+480+24>>2]=0.0;c[u+480>>2]=6672;c[u+480+4>>2]=8;g[u+480+28>>2]=0.0;g[u+480+44>>2]=0.0;g[u+416>>2]=1.0;m=u+416+4|0;c[m>>2]=0;c[m+4>>2]=0;c[m+8>>2]=0;c[m+12>>2]=0;g[u+416+20>>2]=1.0;n=u+416+24|0;c[n>>2]=0;c[n+4>>2]=0;c[n+8>>2]=0;c[n+12>>2]=0;g[u+416+40>>2]=1.0;g[u+416+44>>2]=0.0;c[u+416+48>>2]=c[a>>2];c[u+416+48+4>>2]=c[a+4>>2];c[u+416+48+8>>2]=c[a+8>>2];c[u+416+48+12>>2]=c[a+12>>2];a=e;l=a+36|0;do{c[a>>2]=0;a=a+4|0}while((a|0)<(l|0));c[u+536>>2]=b;c[u+536+4>>2]=u+480;H=+g[d>>2];G=+g[d+16>>2];F=+g[d+32>>2];E=+g[d+4>>2];D=+g[d+20>>2];C=+g[d+36>>2];s=+g[d+8>>2];q=+g[d+24>>2];o=+g[d+40>>2];g[u+536+8>>2]=H+G*0.0+F*0.0;g[u+536+12>>2]=E+D*0.0+C*0.0;g[u+536+16>>2]=s+q*0.0+o*0.0;g[u+536+20>>2]=0.0;g[u+536+24>>2]=H*0.0+G+F*0.0;g[u+536+28>>2]=E*0.0+D+C*0.0;g[u+536+32>>2]=s*0.0+q+o*0.0;g[u+536+36>>2]=0.0;g[u+536+40>>2]=H*0.0+G*0.0+F;g[u+536+44>>2]=E*0.0+D*0.0+C;g[u+536+48>>2]=s*0.0+q*0.0+o;g[u+536+52>>2]=0.0;o=+g[u+416+48>>2]-+g[d+48>>2];q=+g[u+416+52>>2]-+g[d+52>>2];s=+g[u+416+56>>2]-+g[d+56>>2];B=+g[u+416>>2];A=+g[u+416+16>>2];z=+g[u+416+32>>2];y=+g[m>>2];x=+g[u+416+20>>2];w=+g[u+416+36>>2];v=+g[u+416+8>>2];f=+g[n>>2];h=+g[u+416+40>>2];p=+g[d+8>>2];r=+g[d+24>>2];t=+g[d+40>>2];j=o*+g[d>>2]+q*+g[d+16>>2]+s*+g[d+32>>2];k=o*+g[d+4>>2]+q*+g[d+20>>2]+s*+g[d+36>>2];g[u+536+56>>2]=H*B+G*A+F*z;g[u+536+60>>2]=H*y+G*x+F*w;g[u+536+64>>2]=H*v+G*f+F*h;g[u+536+68>>2]=0.0;g[u+536+72>>2]=B*E+A*D+z*C;g[u+536+76>>2]=y*E+x*D+w*C;g[u+536+80>>2]=v*E+f*D+h*C;g[u+536+84>>2]=0.0;g[u+536+88>>2]=B*p+A*r+z*t;g[u+536+92>>2]=y*p+x*r+w*t;g[u+536+96>>2]=v*p+f*r+h*t;g[u+536+100>>2]=0.0;g[u+536+104>>2]=j;g[u+536+108>>2]=k;g[u+536+112>>2]=o*p+q*r+s*t;g[u+536+116>>2]=0.0;c[u+536+120>>2]=80;c[u+536+124>>2]=0;a=u+32+128|0;c[u+32+364>>2]=0;c[a>>2]=0;c[a+4>>2]=0;c[a+8>>2]=0;c[a+12>>2]=0;c[u+32+376>>2]=2;c[u+32+368>>2]=0;g[u+32+144>>2]=0.0;c[u+16>>2]=1065353216;c[u+16+4>>2]=1065353216;c[u+16+8>>2]=1065353216;g[u+16+12>>2]=0.0;switch(Uc(u+32|0,u+536|0,u+16|0)|0){case 0:{a=c[u+32+372>>2]|0;if(!(c[a+32>>2]|0)){k=0.0;j=0.0;f=0.0;r=0.0;q=0.0;h=0.0}else{n=0;k=0.0;j=0.0;f=0.0;r=0.0;q=0.0;h=0.0;do{t=+g[a+16+(n<<2)>>2];l=c[u+536+120>>2]|0;I=c[u+536+124>>2]|0;m=(c[u+536>>2]|0)+(I>>1)|0;if(I&1)l=c[(c[m>>2]|0)+l>>2]|0;ic[l&127](u,m,c[a+(n<<2)>>2]|0);k=k+t*+g[u>>2];f=f+t*+g[u+4>>2];j=j+t*+g[u+8>>2];a=c[(c[u+32+372>>2]|0)+(n<<2)>>2]|0;o=-+g[a>>2];p=-+g[a+4>>2];s=-+g[a+8>>2];a=c[u+536+120>>2]|0;I=c[u+536+124>>2]|0;l=(c[u+536+4>>2]|0)+(I>>1)|0;if(I&1)a=c[(c[l>>2]|0)+a>>2]|0;G=+g[u+536+24>>2]*o+ +g[u+536+28>>2]*p+ +g[u+536+32>>2]*s;F=+g[u+536+40>>2]*o+ +g[u+536+44>>2]*p+ +g[u+536+48>>2]*s;g[u+664>>2]=+g[u+536+8>>2]*o+ +g[u+536+12>>2]*p+ +g[u+536+16>>2]*s;g[u+664+4>>2]=G;g[u+664+8>>2]=F;g[u+664+12>>2]=0.0;ic[a&127](u+680|0,l,u+664|0);F=+g[u+680>>2];G=+g[u+680+4>>2];H=+g[u+680+8>>2];r=r+t*(F*+g[u+536+56>>2]+G*+g[u+536+60>>2]+H*+g[u+536+64>>2]+ +g[u+536+104>>2]);h=h+t*(F*+g[u+536+72>>2]+G*+g[u+536+76>>2]+H*+g[u+536+80>>2]+ +g[u+536+108>>2]);q=q+t*(F*+g[u+536+88>>2]+G*+g[u+536+92>>2]+H*+g[u+536+96>>2]+ +g[u+536+112>>2]);n=n+1|0;a=c[u+32+372>>2]|0}while(n>>>0<(c[a+32>>2]|0)>>>0)}s=k*+g[d>>2]+f*+g[d+4>>2]+j*+g[d+8>>2]+ +g[d+48>>2];t=k*+g[d+16>>2]+f*+g[d+20>>2]+j*+g[d+24>>2]+ +g[d+52>>2];k=k*+g[d+32>>2]+f*+g[d+36>>2]+j*+g[d+40>>2]+ +g[d+56>>2];g[e+4>>2]=s;g[e+8>>2]=t;g[e+12>>2]=k;g[e+16>>2]=0.0;o=r*+g[d>>2]+h*+g[d+4>>2]+q*+g[d+8>>2]+ +g[d+48>>2];p=r*+g[d+16>>2]+h*+g[d+20>>2]+q*+g[d+24>>2]+ +g[d+52>>2];j=r*+g[d+32>>2]+h*+g[d+36>>2]+q*+g[d+40>>2]+ +g[d+56>>2];g[e+20>>2]=o;g[e+24>>2]=p;g[e+28>>2]=j;g[e+32>>2]=0.0;switch(c[b+4>>2]|0){case 8:{f=+g[b+28>>2]*+g[b+12>>2];break}case 0:{f=+g[b+44>>2];break}case 1:{f=+g[b+44>>2];break}case 13:{f=+g[b+44>>2];break}case 11:{f=+g[b+44>>2];break}case 10:{f=+g[b+44>>2];break}case 4:case 5:{f=+g[b+44>>2];break}default:f=+Sb[c[(c[b>>2]|0)+48>>2]&15](b)}switch(c[u+480+4>>2]|0){case 8:{h=+g[u+480+28>>2]*+g[u+480+12>>2];break}case 0:{h=+g[u+480+44>>2];break}case 1:{h=+g[u+480+44>>2];break}case 13:{h=+g[u+480+44>>2];break}case 11:{h=+g[u+480+44>>2];break}case 10:{h=+g[u+480+44>>2];break}case 4:case 5:{h=+g[u+480+44>>2];break}default:h=+Sb[c[(c[u+480>>2]|0)+48>>2]&15](u+480|0)}H=f+h;G=+O(+((o-s)*(o-s)+(p-t)*(p-t)+(j-k)*(j-k)));g[e+36>>2]=(o-s)*(1.0/G);g[e+40>>2]=(p-t)*(1.0/G);g[e+44>>2]=(j-k)*(1.0/G);g[e+48>>2]=0.0;g[e+4>>2]=H*(o-s)*(1.0/G)+ +g[e+4>>2];g[e+8>>2]=H*(p-t)*(1.0/G)+ +g[e+8>>2];g[e+12>>2]=H*(j-k)*(1.0/G)+ +g[e+12>>2];H=G-H;i=u;return +H}case 1:{if(!(Pc(b,d,u+480|0,u+416|0,a,e,1)|0)){H=3402823466385288598117041.0e14;i=u;return +H}f=+g[e+4>>2]-+g[e+20>>2];h=+g[e+8>>2]-+g[e+24>>2];j=+g[e+12>>2]-+g[e+28>>2];k=+O(+(f*f+h*h+j*j));if(k>=1.1920928955078125e-07){g[e+36>>2]=f*(1.0/k);g[e+40>>2]=h*(1.0/k);g[e+44>>2]=j*(1.0/k);g[e+48>>2]=0.0}H=-k;i=u;return +H}default:{H=3402823466385288598117041.0e14;i=u;return +H}}return 0.0}function fd(a,b){a=a|0;b=+b;var d=0,e=0,f=0,h=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0;o=i;i=i+48|0;d=c[a+24>>2]|0;if((d|0)<=0){i=o;return}n=0;do{m=c[(c[a+32>>2]|0)+(n<<2)>>2]|0;switch(c[m+216>>2]|0){case 2:case 5:break;default:{Wd(m,0);d=c[m+732>>2]|0;if((d|0)>0){e=0;do{l=c[m+740>>2]|0;j=c[l+(e*52|0)+12>>2]|0;k=c[l+(e*52|0)+8>>2]|0;y=+g[j+24>>2]-+g[k+24>>2];x=+g[j+28>>2]-+g[k+28>>2];b=+g[j+32>>2]-+g[k+32>>2];g[l+(e*52|0)+36>>2]=y;g[l+(e*52|0)+40>>2]=x;g[l+(e*52|0)+44>>2]=b;g[l+(e*52|0)+48>>2]=0.0;g[l+(e*52|0)+32>>2]=1.0/(+g[l+(e*52|0)+24>>2]*(y*y+x*x+b*b));e=e+1|0}while((e|0)!=(d|0))}e=c[m+792>>2]|0;if((e|0)>0){b=+g[m+452>>2];f=0;do{l=c[m+800>>2]|0;d=l+(f*96|0)+20|0;h=c[d>>2]|0;B=+g[l+(f*96|0)+4>>2];A=+g[l+(f*96|0)+8>>2];y=+g[l+(f*96|0)+12>>2];z=+g[h+4>>2]*B+ +g[h+8>>2]*A+ +g[h+12>>2]*y;x=B*+g[h+20>>2]+A*+g[h+24>>2]+y*+g[h+28>>2];y=B*+g[h+36>>2]+A*+g[h+40>>2]+y*+g[h+44>>2];j=l+(f*96|0)+28|0;k=l+(f*96|0)|0;Pf(o,b,+g[(c[k>>2]|0)+88>>2],+g[h+344>>2],h+264|0,z,x,y);c[j>>2]=c[o>>2];c[j+4>>2]=c[o+4>>2];c[j+8>>2]=c[o+8>>2];c[j+12>>2]=c[o+12>>2];j=l+(f*96|0)+44|0;c[j>>2]=c[o+16>>2];c[j+4>>2]=c[o+16+4>>2];c[j+8>>2]=c[o+16+8>>2];c[j+12>>2]=c[o+16+12>>2];j=l+(f*96|0)+60|0;c[j>>2]=c[o+32>>2];c[j+4>>2]=c[o+32+4>>2];c[j+8>>2]=c[o+32+8>>2];c[j+12>>2]=c[o+32+12>>2];g[l+(f*96|0)+76>>2]=z;g[l+(f*96|0)+80>>2]=x;g[l+(f*96|0)+84>>2]=y;g[l+(f*96|0)+88>>2]=0.0;b=+g[m+452>>2];g[l+(f*96|0)+92>>2]=b*+g[(c[k>>2]|0)+88>>2];d=c[d>>2]|0;if(!(c[d+204>>2]&3)){if((c[d+216>>2]&-2|0)!=4)c[d+216>>2]=1;g[d+220>>2]=0.0}f=f+1|0}while((f|0)!=(e|0))}d=c[m+372>>2]|0;if((d|0)>0){e=c[m+396>>2]|0;f=0;do{if((e|0)>0){d=0;do{zb[((c[(c[m+404>>2]|0)+(d<<2)>>2]|0)==0?23:0)&31](m,1.0);d=d+1|0;e=c[m+396>>2]|0}while((d|0)<(e|0));d=c[m+372>>2]|0}f=f+1|0}while((f|0)<(d|0));d=c[m+712>>2]|0;if((d|0)>0){e=0;do{l=c[m+720>>2]|0;z=+g[m+452>>2];A=z*+g[l+(e*104|0)+44>>2]+ +g[l+(e*104|0)+28>>2];B=z*+g[l+(e*104|0)+48>>2]+ +g[l+(e*104|0)+32>>2];g[l+(e*104|0)+8>>2]=+g[l+(e*104|0)+40>>2]*z+ +g[l+(e*104|0)+24>>2];g[l+(e*104|0)+12>>2]=A;g[l+(e*104|0)+16>>2]=B;g[l+(e*104|0)+20>>2]=0.0;e=e+1|0}while((e|0)!=(d|0))}}d=c[m+376>>2]|0;if((d|0)>0){e=c[m+416>>2]|0;h=0;do{b=+(h|0)/+(d|0);if((e|0)>0){f=0;do{switch(c[(c[m+424>>2]|0)+(f<<2)>>2]|0){case 1:{d=2;break}case 0:{d=3;break}case 2:{d=4;break}case 3:{d=5;break}default:d=0}Nb[d&7](m,1.0,b);f=f+1|0;e=c[m+416>>2]|0}while((f|0)<(e|0));d=c[m+376>>2]|0}h=h+1|0}while((h|0)<(d|0));b=+g[m+456>>2]*(1.0-+g[m+296>>2]);d=c[m+712>>2]|0;if((d|0)>0){e=0;do{l=c[m+720>>2]|0;A=b*(+g[l+(e*104|0)+12>>2]-+g[l+(e*104|0)+28>>2]);B=b*(+g[l+(e*104|0)+16>>2]-+g[l+(e*104|0)+32>>2]);g[l+(e*104|0)+40>>2]=b*(+g[l+(e*104|0)+8>>2]-+g[l+(e*104|0)+24>>2]);g[l+(e*104|0)+44>>2]=A;g[l+(e*104|0)+48>>2]=B;l=l+(e*104|0)+52|0;e=e+1|0;c[l>>2]=0;c[l+4>>2]=0;c[l+8>>2]=0;c[l+12>>2]=0;c[l+16>>2]=0}while((e|0)!=(d|0))}}d=c[m+380>>2]|0;if((d|0)>0){b=+g[m+292>>2]*+g[m+456>>2];e=c[m+712>>2]|0;if((e|0)>0){d=0;do{k=c[m+720>>2]|0;l=k+(d*104|0)+24|0;k=k+(d*104|0)+8|0;c[l>>2]=c[k>>2];c[l+4>>2]=c[k+4>>2];c[l+8>>2]=c[k+8>>2];c[l+12>>2]=c[k+12>>2];d=d+1|0}while((d|0)!=(e|0));d=c[m+380>>2]|0;if((d|0)>0)w=42}else w=42;if((w|0)==42){w=0;e=c[m+436>>2]|0;h=0;do{if((e|0)>0){f=0;do{switch(c[(c[m+444>>2]|0)+(f<<2)>>2]|0){case 1:{d=2;break}case 0:{d=3;break}case 2:{d=4;break}case 3:{d=5;break}default:d=0}Nb[d&7](m,1.0,0.0);f=f+1|0;e=c[m+436>>2]|0}while((f|0)<(e|0));d=c[m+380>>2]|0}h=h+1|0}while((h|0)<(d|0))}d=c[m+712>>2]|0;if((d|0)>0){e=c[m+720>>2]|0;f=0;do{A=b*(+g[e+(f*104|0)+12>>2]-+g[e+(f*104|0)+28>>2]);B=b*(+g[e+(f*104|0)+16>>2]-+g[e+(f*104|0)+32>>2]);l=e+(f*104|0)+40|0;g[l>>2]=b*(+g[e+(f*104|0)+8>>2]-+g[e+(f*104|0)+24>>2])+ +g[l>>2];l=e+(f*104|0)+44|0;g[l>>2]=A+ +g[l>>2];l=e+(f*104|0)+48|0;g[l>>2]=B+ +g[l>>2];f=f+1|0}while((f|0)!=(d|0))}}d=c[m+1112>>2]|0;if((d|0)>0){e=c[m+1120>>2]|0;k=0;do{f=c[e+(k<<2)>>2]|0;if(+g[f+352>>2]>0.0?(p=c[f+24>>2]|0,(p|0)>0):0){h=c[f+32>>2]|0;l=0;do{j=c[h+(l<<2)>>2]|0;if(+g[j+88>>2]>0.0?(t=+g[j+24>>2]-+g[f+228>>2],v=+g[j+28>>2]-+g[f+232>>2],r=+g[j+32>>2]-+g[f+236>>2],s=+g[f+336>>2],B=+g[f+340>>2],u=+g[f+332>>2],q=+g[f+316>>2]+(s*r-v*B),r=+g[f+320>>2]+(t*B-r*u),s=v*u-t*s+ +g[f+324>>2],t=+g[j+40>>2],u=+g[j+44>>2],v=+g[j+48>>2],q*q+r*r+s*s<=t*t+u*u+v*v):0){B=+g[f+352>>2];g[j+40>>2]=t+(q-t)*B;g[j+44>>2]=(r-u)*B+u;g[j+48>>2]=(s-v)*B+v}l=l+1|0}while((l|0)!=(p|0))}k=k+1|0}while((k|0)!=(d|0))}Wd(m,1);d=c[a+24>>2]|0}}n=n+1|0}while((n|0)<(d|0));i=o;return}function gd(d,e){d=d|0;e=+e;var f=0,h=0.0,j=0,k=0.0,l=0.0,m=0,n=0,o=0,p=0,q=0.0,r=0.0,s=0,t=0.0,u=0;s=i;i=i+304|0;li(12028);a:do if((c[d+232>>2]|0)>0){n=s+136+48|0;o=0;while(1){m=c[(c[d+240>>2]|0)+(o<<2)>>2]|0;g[m+244>>2]=1.0;b:do switch(c[m+216>>2]|0){case 2:case 5:break;default:if(!(c[m+204>>2]&3)){Zg(m+4|0,+g[m+312>>2],+g[m+316>>2],+g[m+320>>2],m+328|0,e,s+136|0);h=+g[n>>2]-+g[m+52>>2];k=+g[s+136+52>>2]-+g[m+56>>2];l=+g[s+136+56>>2]-+g[m+60>>2];if(a[d+44>>0]|0?(t=+g[m+252>>2],t*t!=0.0?t*t>2]|0)+4>>2]|0)<20){c[5816]=(c[5816]|0)+1;f=c[d+68>>2]|0;f=Eb[c[(c[f>>2]|0)+36>>2]&127](f)|0;j=c[d+24>>2]|0;g[s+200+4>>2]=1.0;b[s+200+8>>1]=1;b[s+200+10>>1]=-1;c[s+200>>2]=2872;c[s+200+12>>2]=c[m+52>>2];c[s+200+12+4>>2]=c[m+52+4>>2];c[s+200+12+8>>2]=c[m+52+8>>2];c[s+200+12+12>>2]=c[m+52+12>>2];c[s+200+28>>2]=c[n>>2];c[s+200+28+4>>2]=c[n+4>>2];c[s+200+28+8>>2]=c[n+8>>2];c[s+200+28+12>>2]=c[n+12>>2];c[s+200+76>>2]=0;c[s+200>>2]=4332;c[s+200+80>>2]=m;c[s+200+88>>2]=f;c[s+200+92>>2]=j;j=c[m+248>>2]|0;c[s+64+8>>2]=0;c[s+64+12>>2]=1065353216;c[s+64+16>>2]=1065353216;c[s+64+20>>2]=1065353216;g[s+64+24>>2]=0.0;c[s+64>>2]=6672;c[s+64+4>>2]=8;c[s+64+28>>2]=j;c[s+64+44>>2]=j;c[s+200+84>>2]=c[d+56>>2];j=c[(c[m+188>>2]|0)+4>>2]|0;b[s+200+8>>1]=j;b[s+200+10>>1]=j>>>16;c[s+48>>2]=c[n>>2];c[s+48+4>>2]=c[n+4>>2];c[s+48+8>>2]=c[n+8>>2];c[s+48+12>>2]=c[n+12>>2];c[s>>2]=c[m+4>>2];c[s+4>>2]=c[m+4+4>>2];c[s+8>>2]=c[m+4+8>>2];c[s+12>>2]=c[m+4+12>>2];c[s+16>>2]=c[m+20>>2];c[s+16+4>>2]=c[m+20+4>>2];c[s+16+8>>2]=c[m+20+8>>2];c[s+16+12>>2]=c[m+20+12>>2];c[s+32>>2]=c[m+36>>2];c[s+32+4>>2]=c[m+36+4>>2];c[s+32+8>>2]=c[m+36+8>>2];c[s+32+12>>2]=c[m+36+12>>2];Kd(d,s+64|0,m+4|0,s,s+200|0,0.0);h=+g[s+200+4>>2];if(h<1.0){g[m+244>>2]=h;Zg(m+4|0,+g[m+312>>2],+g[m+316>>2],+g[m+320>>2],m+328|0,h*e,s+136|0);g[m+244>>2]=0.0;Se(m,s+136|0);f=4}else f=0;if(!f)p=12}else p=12;if((p|0)==12){p=0;f=0}j=c[2357]|0;u=(c[j+16>>2]|0)+-1|0;c[j+16>>2]=u;do if(!u){if(c[j+4>>2]|0){tb(s+200|0,0)|0;u=c[6434]|0;g[j+8>>2]=+g[j+8>>2]+ +(((c[s+200+4>>2]|0)-(c[u+4>>2]|0)+(((c[s+200>>2]|0)-(c[u>>2]|0)|0)*1e6|0)-(c[j+12>>2]|0)|0)>>>0)/1.0e3;if(c[j+16>>2]|0)break;j=c[2357]|0}c[2357]=c[j+20>>2]}while(0);if(f|0)break b}Se(m,s+136|0)}}while(0);o=o+1|0;if((o|0)>=(c[d+232>>2]|0))break a}}while(0);do if(a[d+275>>0]|0){li(12105);if((c[d+308>>2]|0)>0){p=0;do{o=c[(c[d+316>>2]|0)+(p<<2)>>2]|0;m=c[o+740>>2]|0;m=(c[m+236>>2]&2|0)==0?0:m;n=c[o+744>>2]|0;n=(c[n+236>>2]&2|0)==0?0:n;f=c[o+748>>2]|0;if((f|0)>0)if(!m){j=0;do{h=+g[57]*+g[n+228>>2];if(h>0.0?(q=+g[o+4+(j*184|0)+120>>2],q!=0.0):0){l=h*+g[o+4+(j*184|0)+64>>2]*q;e=h*+g[o+4+(j*184|0)+68>>2]*q;t=h*+g[o+4+(j*184|0)+72>>2]*q;h=+g[o+4+(j*184|0)+36>>2]-+g[n+56>>2];k=+g[o+4+(j*184|0)+40>>2]-+g[n+60>>2];g[s>>2]=+g[o+4+(j*184|0)+32>>2]-+g[n+52>>2];g[s+4>>2]=h;g[s+8>>2]=k;g[s+12>>2]=0.0;g[s+120>>2]=l;g[s+120+4>>2]=e;g[s+120+8>>2]=t;g[s+120+12>>2]=0.0;gj(n,s+120|0,s);f=c[o+748>>2]|0}j=j+1|0}while((j|0)<(f|0))}else{j=0;do{h=+g[m+228>>2]*+g[n+228>>2];if(h>0.0?(r=+g[o+4+(j*184|0)+120>>2],r!=0.0):0){l=h*+g[o+4+(j*184|0)+64>>2]*r;e=h*+g[o+4+(j*184|0)+68>>2]*r;t=h*+g[o+4+(j*184|0)+72>>2]*r;g[s+200>>2]=-l;g[s+200+4>>2]=-e;g[s+200+8>>2]=-t;g[s+200+12>>2]=0.0;k=+g[o+4+(j*184|0)+52>>2]-+g[m+56>>2];h=+g[o+4+(j*184|0)+56>>2]-+g[m+60>>2];g[s+64>>2]=+g[o+4+(j*184|0)+48>>2]-+g[m+52>>2];g[s+64+4>>2]=k;g[s+64+8>>2]=h;g[s+64+12>>2]=0.0;h=+g[o+4+(j*184|0)+36>>2]-+g[n+56>>2];k=+g[o+4+(j*184|0)+40>>2]-+g[n+60>>2];g[s>>2]=+g[o+4+(j*184|0)+32>>2]-+g[n+52>>2];g[s+4>>2]=h;g[s+8>>2]=k;g[s+12>>2]=0.0;gj(m,s+200|0,s+64|0);g[s+120>>2]=l;g[s+120+4>>2]=e;g[s+120+8>>2]=t;g[s+120+12>>2]=0.0;gj(n,s+120|0,s);f=c[o+748>>2]|0}j=j+1|0}while((j|0)<(f|0))}p=p+1|0}while((p|0)<(c[d+308>>2]|0))}f=c[2357]|0;u=(c[f+16>>2]|0)+-1|0;c[f+16>>2]=u;if(!u){if(c[f+4>>2]|0){tb(s+200|0,0)|0;u=c[6434]|0;g[f+8>>2]=+g[f+8>>2]+ +(((c[s+200+4>>2]|0)-(c[u+4>>2]|0)+(((c[s+200>>2]|0)-(c[u>>2]|0)|0)*1e6|0)-(c[f+12>>2]|0)|0)>>>0)/1.0e3;if(c[f+16>>2]|0)break;f=c[2357]|0}c[2357]=c[f+20>>2]}}while(0);f=c[2357]|0;u=(c[f+16>>2]|0)+-1|0;c[f+16>>2]=u;if(u|0){i=s;return}do if(c[f+4>>2]|0){tb(s+200|0,0)|0;u=c[6434]|0;g[f+8>>2]=+g[f+8>>2]+ +(((c[s+200+4>>2]|0)-(c[u+4>>2]|0)+(((c[s+200>>2]|0)-(c[u>>2]|0)|0)*1e6|0)-(c[f+12>>2]|0)|0)>>>0)/1.0e3;if(!(c[f+16>>2]|0)){f=c[2357]|0;break}else{i=s;return}}while(0);c[2357]=c[f+20>>2];i=s;return}function hd(a){a=a|0;var b=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;if(!a)return;h=c[6442]|0;if((a+-8|0)>>>0>>0)Va();b=c[a+-4>>2]|0;if((b&3|0)==1)Va();n=a+-8+(b&-8)|0;do if(!(b&1)){e=c[a+-8>>2]|0;if(!(b&3))return;k=a+-8+(0-e)|0;j=e+(b&-8)|0;if(k>>>0>>0)Va();if((k|0)==(c[6443]|0)){a=c[n+4>>2]|0;if((a&3|0)!=3){q=k;f=j;break}c[6440]=j;c[n+4>>2]=a&-2;c[k+4>>2]=j|1;c[k+j>>2]=j;return}if(e>>>0<256){a=c[k+8>>2]|0;b=c[k+12>>2]|0;if((a|0)!=(25792+(e>>>3<<1<<2)|0)){if(a>>>0>>0)Va();if((c[a+12>>2]|0)!=(k|0))Va()}if((b|0)==(a|0)){c[6438]=c[6438]&~(1<<(e>>>3));q=k;f=j;break}if((b|0)!=(25792+(e>>>3<<1<<2)|0)){if(b>>>0>>0)Va();if((c[b+8>>2]|0)!=(k|0))Va();else d=b+8|0}else d=b+8|0;c[a+12>>2]=b;c[d>>2]=a;q=k;f=j;break}g=c[k+24>>2]|0;a=c[k+12>>2]|0;do if((a|0)==(k|0)){a=c[k+16+4>>2]|0;if(!a){a=c[k+16>>2]|0;if(!a){i=0;break}else e=k+16|0}else e=k+16+4|0;while(1){b=a+20|0;d=c[b>>2]|0;if(d|0){a=d;e=b;continue}b=a+16|0;d=c[b>>2]|0;if(!d)break;else{a=d;e=b}}if(e>>>0>>0)Va();else{c[e>>2]=0;i=a;break}}else{b=c[k+8>>2]|0;if(b>>>0>>0)Va();if((c[b+12>>2]|0)!=(k|0))Va();if((c[a+8>>2]|0)==(k|0)){c[b+12>>2]=a;c[a+8>>2]=b;i=a;break}else Va()}while(0);if(g){a=c[k+28>>2]|0;if((k|0)==(c[26056+(a<<2)>>2]|0)){c[26056+(a<<2)>>2]=i;if(!i){c[6439]=c[6439]&~(1<>>0<(c[6442]|0)>>>0)Va();if((c[g+16>>2]|0)==(k|0))c[g+16>>2]=i;else c[g+20>>2]=i;if(!i){q=k;f=j;break}}b=c[6442]|0;if(i>>>0>>0)Va();c[i+24>>2]=g;a=c[k+16>>2]|0;do if(a|0)if(a>>>0>>0)Va();else{c[i+16>>2]=a;c[a+24>>2]=i;break}while(0);a=c[k+16+4>>2]|0;if(a)if(a>>>0<(c[6442]|0)>>>0)Va();else{c[i+20>>2]=a;c[a+24>>2]=i;q=k;f=j;break}else{q=k;f=j}}else{q=k;f=j}}else{q=a+-8|0;f=b&-8}while(0);if(q>>>0>=n>>>0)Va();d=c[n+4>>2]|0;if(!(d&1))Va();if(!(d&2)){if((n|0)==(c[6444]|0)){p=(c[6441]|0)+f|0;c[6441]=p;c[6444]=q;c[q+4>>2]=p|1;if((q|0)!=(c[6443]|0))return;c[6443]=0;c[6440]=0;return}if((n|0)==(c[6443]|0)){p=(c[6440]|0)+f|0;c[6440]=p;c[6443]=q;c[q+4>>2]=p|1;c[q+p>>2]=p;return}f=(d&-8)+f|0;do if(d>>>0>=256){g=c[n+24>>2]|0;a=c[n+12>>2]|0;do if((a|0)==(n|0)){a=c[n+16+4>>2]|0;if(!a){a=c[n+16>>2]|0;if(!a){m=0;break}else e=n+16|0}else e=n+16+4|0;while(1){b=a+20|0;d=c[b>>2]|0;if(d|0){a=d;e=b;continue}b=a+16|0;d=c[b>>2]|0;if(!d)break;else{a=d;e=b}}if(e>>>0<(c[6442]|0)>>>0)Va();else{c[e>>2]=0;m=a;break}}else{b=c[n+8>>2]|0;if(b>>>0<(c[6442]|0)>>>0)Va();if((c[b+12>>2]|0)!=(n|0))Va();if((c[a+8>>2]|0)==(n|0)){c[b+12>>2]=a;c[a+8>>2]=b;m=a;break}else Va()}while(0);if(g|0){a=c[n+28>>2]|0;if((n|0)==(c[26056+(a<<2)>>2]|0)){c[26056+(a<<2)>>2]=m;if(!m){c[6439]=c[6439]&~(1<>>0<(c[6442]|0)>>>0)Va();if((c[g+16>>2]|0)==(n|0))c[g+16>>2]=m;else c[g+20>>2]=m;if(!m)break}b=c[6442]|0;if(m>>>0>>0)Va();c[m+24>>2]=g;a=c[n+16>>2]|0;do if(a|0)if(a>>>0>>0)Va();else{c[m+16>>2]=a;c[a+24>>2]=m;break}while(0);a=c[n+16+4>>2]|0;if(a|0)if(a>>>0<(c[6442]|0)>>>0)Va();else{c[m+20>>2]=a;c[a+24>>2]=m;break}}}else{a=c[n+8>>2]|0;b=c[n+12>>2]|0;if((a|0)!=(25792+(d>>>3<<1<<2)|0)){if(a>>>0<(c[6442]|0)>>>0)Va();if((c[a+12>>2]|0)!=(n|0))Va()}if((b|0)==(a|0)){c[6438]=c[6438]&~(1<<(d>>>3));break}if((b|0)!=(25792+(d>>>3<<1<<2)|0)){if(b>>>0<(c[6442]|0)>>>0)Va();if((c[b+8>>2]|0)!=(n|0))Va();else l=b+8|0}else l=b+8|0;c[a+12>>2]=b;c[l>>2]=a}while(0);c[q+4>>2]=f|1;c[q+f>>2]=f;if((q|0)==(c[6443]|0)){c[6440]=f;return}}else{c[n+4>>2]=d&-2;c[q+4>>2]=f|1;c[q+f>>2]=f}b=f>>>3;if(f>>>0<256){a=c[6438]|0;if(a&1<>2]|0;if(a>>>0<(c[6442]|0)>>>0)Va();else{o=25792+(b<<1<<2)+8|0;p=a}}else{c[6438]=a|1<>2]=q;c[p+12>>2]=q;c[q+8>>2]=p;c[q+12>>2]=25792+(b<<1<<2);return}a=f>>>8;if(a)if(f>>>0>16777215)d=31;else{d=a<<((a+1048320|0)>>>16&8)<<(((a<<((a+1048320|0)>>>16&8))+520192|0)>>>16&4);d=14-(((a<<((a+1048320|0)>>>16&8))+520192|0)>>>16&4|(a+1048320|0)>>>16&8|(d+245760|0)>>>16&2)+(d<<((d+245760|0)>>>16&2)>>>15)|0;d=f>>>(d+7|0)&1|d<<1}else d=0;e=26056+(d<<2)|0;c[q+28>>2]=d;c[q+20>>2]=0;c[q+16>>2]=0;a=c[6439]|0;b=1<>>1)|0);e=c[e>>2]|0;while(1){if((c[e+4>>2]&-8|0)==(f|0)){a=130;break}b=e+16+(d>>>31<<2)|0;a=c[b>>2]|0;if(!a){a=127;break}else{d=d<<1;e=a}}if((a|0)==127)if(b>>>0<(c[6442]|0)>>>0)Va();else{c[b>>2]=q;c[q+24>>2]=e;c[q+12>>2]=q;c[q+8>>2]=q;break}else if((a|0)==130){a=e+8|0;b=c[a>>2]|0;p=c[6442]|0;if(b>>>0>=p>>>0&e>>>0>=p>>>0){c[b+12>>2]=q;c[a>>2]=q;c[q+8>>2]=b;c[q+12>>2]=e;c[q+24>>2]=0;break}else Va()}}else{c[6439]=a|b;c[e>>2]=q;c[q+24>>2]=e;c[q+12>>2]=q;c[q+8>>2]=q}while(0);q=(c[6446]|0)+-1|0;c[6446]=q;if(!q)a=26208;else return;while(1){a=c[a>>2]|0;if(!a)break;else a=a+8|0}c[6446]=-1;return}function id(b,d,e){b=b|0;d=d|0;e=+e;var f=0,h=0,j=0,k=0,l=0,m=0.0,n=0.0,o=0,p=0.0,q=0,r=0,s=0;s=i;i=i+112|0;q=c[b+716>>2]|0;if((q|0)==(c[b+712>>2]|0)){a:do if(q){k=c[b+720>>2]|0;if((q|0)>0){h=k;j=0;while(1){f=c[h+(j*104|0)+96>>2]|0;if(f|0)c[f+36>>2]=j;f=j+1|0;if((f|0)==(q|0))break a;h=c[b+720>>2]|0;j=f}}}else k=0;while(0);f=c[b+732>>2]|0;if((f|0)>0){h=0;do{o=(c[b+740>>2]|0)+(h*52|0)+8|0;c[o>>2]=((c[o>>2]|0)-k|0)/104|0;o=(c[b+740>>2]|0)+(h*52|0)+12|0;c[o>>2]=((c[o>>2]|0)-k|0)/104|0;h=h+1|0}while((h|0)!=(f|0))}f=c[b+752>>2]|0;if((f|0)>0){j=0;do{h=(c[b+760>>2]|0)+(j*44|0)+8|0;c[h>>2]=((c[h>>2]|0)-k|0)/104|0;h=(c[b+760>>2]|0)+(j*44|0)+12|0;c[h>>2]=((c[h>>2]|0)-k|0)/104|0;h=(c[b+760>>2]|0)+(j*44|0)+16|0;c[h>>2]=((c[h>>2]|0)-k|0)/104|0;h=c[(c[b+760>>2]|0)+(j*44|0)+40>>2]|0;if(h|0)c[h+36>>2]=j;j=j+1|0}while((j|0)!=(f|0))}f=c[b+792>>2]|0;if((f|0)>0){h=c[b+800>>2]|0;j=0;do{o=h+(j*96|0)|0;c[o>>2]=((c[o>>2]|0)-k|0)/104|0;j=j+1|0}while((j|0)!=(f|0))}j=c[b+692>>2]|0;if((j|0)>0){f=c[b+700>>2]|0;l=0;do{if((c[f+(l*60|0)+24>>2]|0)>0){h=0;do{f=f+(l*60|0)+28+(h<<2)|0;c[f>>2]=((c[f>>2]|0)-k|0)/104|0;h=h+1|0;f=c[b+700>>2]|0}while((h|0)<(c[f+(l*60|0)+24>>2]|0))}l=l+1|0}while((l|0)!=(j|0))}if((q|0)<(q<<1|1|0)){c[6435]=(c[6435]|0)+1;f=yc(((q<<1|1)*104|3)+16|0)|0;if(!f)j=0;else{c[(f+4+15&-16)+-4>>2]=f;j=f+4+15&-16}f=c[b+712>>2]|0;if((f|0)>0){h=0;do{l=j+(h*104|0)|0;k=(c[b+720>>2]|0)+(h*104|0)|0;o=l+104|0;do{c[l>>2]=c[k>>2];l=l+4|0;k=k+4|0}while((l|0)<(o|0));h=h+1|0}while((h|0)!=(f|0))}f=c[b+720>>2]|0;if(f|0){if(a[b+724>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}c[b+720>>2]=0}a[b+724>>0]=1;c[b+720>>2]=j;c[b+716>>2]=q<<1|1;j=c[b+712>>2]|0}else j=q;b:do if(j){k=c[b+720>>2]|0;if((j|0)>0){l=k;f=0;while(1){h=c[l+(f*104|0)+96>>2]|0;if(h|0)c[h+36>>2]=l+(f*104|0);f=f+1|0;if((f|0)==(j|0)){l=k;break b}l=c[b+720>>2]|0}}else l=k}else l=0;while(0);f=c[b+732>>2]|0;if((f|0)>0){h=0;do{q=(c[b+740>>2]|0)+(h*52|0)+8|0;c[q>>2]=l+((c[q>>2]|0)*104|0);q=(c[b+740>>2]|0)+(h*52|0)+12|0;c[q>>2]=l+((c[q>>2]|0)*104|0);h=h+1|0}while((h|0)!=(f|0))}f=c[b+752>>2]|0;if((f|0)>0){k=0;do{h=(c[b+760>>2]|0)+(k*44|0)+8|0;c[h>>2]=l+((c[h>>2]|0)*104|0);h=(c[b+760>>2]|0)+(k*44|0)+12|0;c[h>>2]=l+((c[h>>2]|0)*104|0);h=(c[b+760>>2]|0)+(k*44|0)+16|0;c[h>>2]=l+((c[h>>2]|0)*104|0);h=c[b+760>>2]|0;j=c[h+(k*44|0)+40>>2]|0;if(j|0)c[j+36>>2]=h+(k*44|0);k=k+1|0}while((k|0)!=(f|0))}f=c[b+792>>2]|0;if((f|0)>0){h=c[b+800>>2]|0;j=0;do{c[h+(j*96|0)>>2]=l+((c[h+(j*96|0)>>2]|0)*104|0);j=j+1|0}while((j|0)!=(f|0))}j=c[b+692>>2]|0;if((j|0)>0){f=c[b+700>>2]|0;k=0;do{if((c[f+(k*60|0)+24>>2]|0)>0){h=0;do{f=f+(k*60|0)+28+(h<<2)|0;c[f>>2]=l+((c[f>>2]|0)*104|0);h=h+1|0;f=c[b+700>>2]|0}while((h|0)<(c[f+(k*60|0)+24>>2]|0))}k=k+1|0}while((k|0)!=(j|0))}}l=c[b+192>>2]|0;p=+Sb[c[(c[l>>2]|0)+48>>2]&15](l);l=s;o=l+100|0;do{c[l>>2]=0;l=l+4|0}while((l|0)<(o|0));f=c[b+712>>2]|0;if((f|0)==(c[b+716>>2]|0)?(r=f|0?f<<1:1,(f|0)<(r|0)):0){if(!r)j=0;else{c[6435]=(c[6435]|0)+1;f=yc((r*104|3)+16|0)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}j=f;f=c[b+712>>2]|0}if((f|0)>0){h=0;do{l=j+(h*104|0)|0;k=(c[b+720>>2]|0)+(h*104|0)|0;o=l+104|0;do{c[l>>2]=c[k>>2];l=l+4|0;k=k+4|0}while((l|0)<(o|0));h=h+1|0}while((h|0)!=(f|0))}f=c[b+720>>2]|0;if(f|0){if(a[b+724>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}c[b+720>>2]=0}a[b+724>>0]=1;c[b+720>>2]=j;c[b+716>>2]=r;f=c[b+712>>2]|0}l=c[b+720>>2]|0;c[l+(f*104|0)>>2]=0;l=l+(f*104|0)+4|0;k=s;o=l+100|0;do{c[l>>2]=c[k>>2];l=l+4|0;k=k+4|0}while((l|0)<(o|0));h=c[b+712>>2]|0;c[b+712>>2]=h+1;j=c[b+720>>2]|0;l=j+(h*104|0)|0;o=l+104|0;do{c[l>>2]=0;l=l+4|0}while((l|0)<(o|0));c[j+(h*104|0)+8>>2]=c[d>>2];c[j+(h*104|0)+8+4>>2]=c[d+4>>2];c[j+(h*104|0)+8+8>>2]=c[d+8>>2];c[j+(h*104|0)+8+12>>2]=c[d+12>>2];Bp(j+(h*104|0)+24|0,d|0,16)|0;g[j+(h*104|0)+88>>2]=e>0.0?1.0/e:0.0;c[j+(h*104|0)+4>>2]=c[c[b+880>>2]>>2];e=+g[j+(h*104|0)+8>>2];m=+g[j+(h*104|0)+12>>2];n=+g[j+(h*104|0)+16>>2];f=c[b+932>>2]|0;if(f|0){c[b+932>>2]=0;d=f;r=d+32|0;c[r>>2]=0;r=d+36|0;c[r>>2]=j+(h*104|0);r=d+40|0;c[r>>2]=0;g[d>>2]=e-p;r=d+4|0;g[r>>2]=m-p;r=d+8|0;g[r>>2]=n-p;r=d+12|0;g[r>>2]=0.0;r=d+16|0;g[r>>2]=p+e;r=d+20|0;g[r>>2]=p+m;r=d+24|0;g[r>>2]=p+n;r=d+28|0;g[r>>2]=0.0;r=c[b+928>>2]|0;lf(b+928|0,r,d);b=b+940|0;r=c[b>>2]|0;r=r+1|0;c[b>>2]=r;b=j+(h*104|0)+96|0;c[b>>2]=d;i=s;return}c[6435]=(c[6435]|0)+1;f=yc(63)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}l=f;o=l+44|0;do{c[l>>2]=0;l=l+4|0}while((l|0)<(o|0));d=f;r=d+32|0;c[r>>2]=0;r=d+36|0;c[r>>2]=j+(h*104|0);r=d+40|0;c[r>>2]=0;g[d>>2]=e-p;r=d+4|0;g[r>>2]=m-p;r=d+8|0;g[r>>2]=n-p;r=d+12|0;g[r>>2]=0.0;r=d+16|0;g[r>>2]=p+e;r=d+20|0;g[r>>2]=p+m;r=d+24|0;g[r>>2]=p+n;r=d+28|0;g[r>>2]=0.0;r=c[b+928>>2]|0;lf(b+928|0,r,d);b=b+940|0;r=c[b>>2]|0;r=r+1|0;c[b>>2]=r;b=j+(h*104|0)+96|0;c[b>>2]=d;i=s;return}function jd(b,d,e,f,h,j,k,l,m){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;j=j|0;k=k|0;l=l|0;m=m|0;var n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0,H=0.0,I=0.0,J=0.0,K=0.0,L=0.0,M=0.0,N=0.0,P=0.0,Q=0.0,R=0.0,S=0.0,T=0.0,U=0.0,V=0.0;G=i;i=i+32|0;c[G+16>>2]=j;c[G+16+4>>2]=k;c[G+16+8>>2]=l;c[G>>2]=e;c[G+4>>2]=f;c[G+8>>2]=h;if(!(+g[d+52>>2]<+g[b+12>>2])){m=0;i=G;return m|0}E=+g[d+36>>2];F=+g[d+40>>2];w=+g[d+44>>2];h=c[d+48>>2]|0;x=1.0/+O(+(E*E+F*F+w*w));l=ri(G)|0;y=+g[d+4>>2]-+g[l+48>>2];z=+g[d+8>>2]-+g[l+52>>2];A=+g[d+12>>2]-+g[l+56>>2];l=ri(G+16|0)|0;B=+g[d+20>>2]-+g[l+48>>2];C=+g[d+24>>2]-+g[l+52>>2];D=+g[d+28>>2]-+g[l+56>>2];if(!f)if(!e){n=0.0;o=0.0;r=0.0;s=0.0;p=0.0;q=0.0}else{q=+g[e+336>>2];r=+g[e+340>>2];v=+g[e+332>>2];n=A*q-z*r;o=+g[e+316>>2];r=y*r-A*v;s=+g[e+320>>2];p=+g[e+324>>2];q=z*v-y*q}else{q=+g[f+332>>2];r=+g[f+336>>2];v=+g[f+328>>2];n=A*q-z*r;o=+g[f+312>>2];r=y*r-A*v;s=+g[f+316>>2];p=+g[f+320>>2];q=z*v-y*q}v=o+n;u=s+r;t=p+q;if(!k)if(!j){p=0.0;q=0.0;r=0.0;s=0.0;n=0.0;o=0.0}else{o=+g[j+336>>2];r=+g[j+340>>2];H=+g[j+332>>2];p=D*o-C*r;q=+g[j+316>>2];r=B*r-D*H;s=+g[j+320>>2];n=+g[j+324>>2];o=C*H-B*o}else{o=+g[k+332>>2];r=+g[k+336>>2];H=+g[k+328>>2];p=D*o-C*r;q=+g[k+312>>2];r=B*r-D*H;s=+g[k+316>>2];n=+g[k+320>>2];o=C*H-B*o}q=v-(q+p);u=u-(s+r);t=t-(n+o);v=w*x*t+(F*x*u+E*x*q);H=+g[d+52>>2]-+g[b+12>>2];c[m+4>>2]=c[G>>2];c[m+4+4>>2]=c[G+4>>2];c[m+4+8>>2]=c[G+8>>2];c[m+16>>2]=c[G+16>>2];c[m+16+4>>2]=c[G+16+4>>2];c[m+16+8>>2]=c[G+16+8>>2];d=ri(G)|0;s=y*+g[d+4>>2]+z*+g[d+20>>2]+A*+g[d+36>>2];r=y*+g[d+8>>2]+z*+g[d+24>>2]+A*+g[d+40>>2];g[m+28>>2]=y*+g[d>>2]+z*+g[d+16>>2]+A*+g[d+32>>2];g[m+32>>2]=s;g[m+36>>2]=r;g[m+40>>2]=0.0;d=ri(G+16|0)|0;r=B*+g[d+4>>2]+C*+g[d+20>>2]+D*+g[d+36>>2];s=B*+g[d+8>>2]+C*+g[d+24>>2]+D*+g[d+40>>2];g[m+44>>2]=B*+g[d>>2]+C*+g[d+16>>2]+D*+g[d+32>>2];g[m+48>>2]=r;g[m+52>>2]=s;g[m+56>>2]=0.0;g[m+164>>2]=y;g[m+168>>2]=z;g[m+172>>2]=A;g[m+176>>2]=0.0;g[m+180>>2]=B;g[m+184>>2]=C;g[m+188>>2]=D;g[m+192>>2]=0.0;g[m+60>>2]=1.0;g[m+64>>2]=1.0;c[m+156>>2]=0;c[m+160>>2]=0;g[m+68>>2]=1.0;g[m+72>>2]=E*x*H;g[m+76>>2]=F*x*H;g[m+80>>2]=w*x*H;g[m+84>>2]=0.0;g[m+196>>2]=E*x;g[m+200>>2]=F*x;g[m+204>>2]=w*x;c[m+208>>2]=h;a[m+152>>0]=0;H=+g[b+16>>2];g[m+212>>2]=(t-w*x*v)*(t-w*x*v)+((q-E*x*v)*(q-E*x*v)+(u-F*x*v)*(u-F*x*v))>2]|0;if(!h){h=c[G>>2]|0;if(!h)o=0.0;else o=+g[h+128>>2]}else o=+g[h+344>>2];if((a[22504]|0)==0?Wa(22504)|0:0){h=23084;l=h+48|0;do{c[h>>2]=0;h=h+4|0}while((h|0)<(l|0));_a(22504)}h=c[G+4>>2]|0;if(!h){e=c[G>>2]|0;e=(e|0)==0?23084:e+180|0}else e=h+264|0;h=c[G+16+4>>2]|0;if(!h){h=c[G+16>>2]|0;if(!h)n=0.0;else n=+g[h+128>>2]}else n=+g[h+344>>2];if((a[22504]|0)==0?Wa(22504)|0:0){h=23084;l=h+48|0;do{c[h>>2]=0;h=h+4|0}while((h|0)<(l|0));_a(22504)}h=c[G+16+4>>2]|0;if(!h){h=c[G+16>>2]|0;h=(h|0)==0?23084:h+180|0}else h=h+264|0;V=+g[m+172>>2];M=+g[m+168>>2];L=+g[m+164>>2];U=+g[e>>2];T=+g[e+16>>2];S=+g[e+32>>2];R=+g[e+4>>2];Q=+g[e+20>>2];P=+g[e+36>>2];N=+g[e+8>>2];K=+g[e+24>>2];J=+g[e+40>>2];B=+g[m+188>>2];v=+g[m+184>>2];w=+g[m+180>>2];I=+g[h>>2];p=+g[h+16>>2];q=+g[h+32>>2];r=+g[h+4>>2];s=+g[h+20>>2];t=+g[h+36>>2];u=+g[h+8>>2];H=+g[h+24>>2];x=+g[h+40>>2];D=o-((U*0.0+T*-V+M*S)*0.0+V*(R*0.0+Q*-V+M*P)+(N*0.0+K*-V+M*J)*-M)+(n-((I*0.0+p*-B+v*q)*0.0+B*(r*0.0+s*-B+v*t)+(u*0.0+H*-B+v*x)*-v));F=0.0-((U*0.0+T*-V+M*S)*-V+(R*0.0+Q*-V+M*P)*0.0+L*(N*0.0+K*-V+M*J))+(0.0-((I*0.0+p*-B+v*q)*-B+(r*0.0+s*-B+v*t)*0.0+w*(u*0.0+H*-B+v*x)));y=0.0-(M*(U*0.0+T*-V+M*S)+(R*0.0+Q*-V+M*P)*-L+(N*0.0+K*-V+M*J)*0.0)+(0.0-(v*(I*0.0+p*-B+v*q)+(r*0.0+s*-B+v*t)*-w+(u*0.0+H*-B+v*x)*0.0));E=0.0-((V*U+T*0.0+S*-L)*0.0+V*(V*R+Q*0.0+P*-L)+(V*N+K*0.0+J*-L)*-M)+(0.0-((B*I+p*0.0+q*-w)*0.0+B*(B*r+s*0.0+t*-w)+(B*u+H*0.0+x*-w)*-v));C=o-((V*U+T*0.0+S*-L)*-V+(V*R+Q*0.0+P*-L)*0.0+L*(V*N+K*0.0+J*-L))+(n-((B*I+p*0.0+q*-w)*-B+(B*r+s*0.0+t*-w)*0.0+w*(B*u+H*0.0+x*-w)));z=0.0-(M*(V*U+T*0.0+S*-L)+(V*R+Q*0.0+P*-L)*-L+(V*N+K*0.0+J*-L)*0.0)+(0.0-(v*(B*I+p*0.0+q*-w)+(B*r+s*0.0+t*-w)*-w+(B*u+H*0.0+x*-w)*0.0));A=0.0-((U*-M+L*T+S*0.0)*0.0+V*(R*-M+L*Q+P*0.0)+(N*-M+L*K+J*0.0)*-M)+(0.0-((I*-v+w*p+q*0.0)*0.0+B*(r*-v+w*s+t*0.0)+(u*-v+w*H+x*0.0)*-v));B=0.0-((U*-M+L*T+S*0.0)*-V+(R*-M+L*Q+P*0.0)*0.0+L*(N*-M+L*K+J*0.0))+(0.0-((I*-v+w*p+q*0.0)*-B+(r*-v+w*s+t*0.0)*0.0+w*(u*-v+w*H+x*0.0)));x=o-(M*(U*-M+L*T+S*0.0)+(R*-M+L*Q+P*0.0)*-L+(N*-M+L*K+J*0.0)*0.0)+(n-(v*(I*-v+w*p+q*0.0)+(r*-v+w*s+t*0.0)*-w+(u*-v+w*H+x*0.0)*0.0));H=1.0/(y*(B*E-C*A)+(D*(C*x-z*B)+F*(z*A-x*E)));g[m+104>>2]=(C*x-z*B)*H;g[m+108>>2]=(B*y-x*F)*H;g[m+112>>2]=(z*F-C*y)*H;g[m+116>>2]=0.0;g[m+120>>2]=(z*A-x*E)*H;g[m+124>>2]=(x*D-A*y)*H;g[m+128>>2]=(E*y-z*D)*H;g[m+132>>2]=0.0;g[m+136>>2]=(B*E-C*A)*H;g[m+140>>2]=(A*F-B*D)*H;g[m+144>>2]=(C*D-E*F)*H;g[m+148>>2]=0.0;m=1;i=G;return m|0}function kd(b,d,e){b=b|0;d=d|0;e=e|0;var f=0.0,h=0.0,i=0.0,j=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0,F=0;if((a[b+180>>0]|0)==0?(a[b+48>>0]|0)!=0:0){w=+g[b+116>>2];i=+g[e>>2];x=+g[b+132>>2];C=+g[e+4>>2];y=+g[b+148>>2];D=+g[e+8>>2];l=+g[b+120>>2];n=+g[b+136>>2];p=+g[b+152>>2];q=+g[b+124>>2];s=+g[b+140>>2];t=+g[b+156>>2];j=+g[e+16>>2];m=+g[e+20>>2];o=+g[e+24>>2];r=+g[e+32>>2];z=+g[e+36>>2];A=+g[e+40>>2];h=+g[b+164>>2];f=+g[b+168>>2];v=+g[b+172>>2];u=+g[e+48>>2]+(i*h+C*f+D*v);B=j*h+m*f+o*v+ +g[e+52>>2];v=r*h+z*f+A*v+ +g[e+56>>2];g[b+824>>2]=w*i+x*C+y*D;g[b+828>>2]=i*l+C*n+D*p;g[b+832>>2]=i*q+C*s+D*t;g[b+836>>2]=0.0;g[b+840>>2]=w*j+x*m+y*o;g[b+844>>2]=l*j+n*m+p*o;g[b+848>>2]=q*j+s*m+t*o;g[b+852>>2]=0.0;g[b+856>>2]=w*r+x*z+y*A;g[b+860>>2]=l*r+n*z+p*A;g[b+864>>2]=q*r+s*z+t*A;g[b+868>>2]=0.0;g[b+872>>2]=u;g[b+876>>2]=B;g[b+880>>2]=v;g[b+884>>2]=0.0;v=+g[b+52>>2];B=+g[d>>2];u=+g[b+68>>2];A=+g[d+4>>2];t=+g[b+84>>2];z=+g[d+8>>2];s=+g[b+56>>2];r=+g[b+72>>2];q=+g[b+88>>2];p=+g[b+60>>2];n=+g[b+76>>2];l=+g[b+92>>2];y=+g[d+16>>2];x=+g[d+20>>2];w=+g[d+24>>2];o=+g[d+32>>2];m=+g[d+36>>2];j=+g[d+40>>2];D=+g[b+100>>2];C=+g[b+104>>2];i=+g[b+108>>2];f=+g[d+48>>2]+(B*D+A*C+z*i);h=y*D+x*C+w*i+ +g[d+52>>2];i=o*D+m*C+j*i+ +g[d+56>>2];g[b+888>>2]=v*B+u*A+t*z;g[b+892>>2]=B*s+A*r+z*q;g[b+896>>2]=B*p+A*n+z*l;g[b+900>>2]=0.0;g[b+904>>2]=v*y+u*x+t*w;g[b+908>>2]=s*y+r*x+q*w;g[b+912>>2]=p*y+n*x+l*w;g[b+916>>2]=0.0;g[b+920>>2]=v*o+u*m+t*j;g[b+924>>2]=s*o+r*m+q*j;g[b+928>>2]=p*o+n*m+l*j;g[b+932>>2]=0.0;g[b+936>>2]=f;g[b+940>>2]=h;g[b+944>>2]=i;g[b+948>>2]=0.0;d=b+856|0;e=b+840|0}else{o=+g[b+52>>2];D=+g[d>>2];n=+g[b+68>>2];h=+g[d+4>>2];m=+g[b+84>>2];f=+g[d+8>>2];z=+g[b+56>>2];x=+g[b+72>>2];v=+g[b+88>>2];u=+g[b+60>>2];s=+g[b+76>>2];r=+g[b+92>>2];A=+g[d+16>>2];y=+g[d+20>>2];w=+g[d+24>>2];t=+g[d+32>>2];l=+g[d+36>>2];j=+g[d+40>>2];C=+g[b+100>>2];B=+g[b+104>>2];p=+g[b+108>>2];q=+g[d+48>>2]+(D*C+h*B+f*p);i=A*C+y*B+w*p+ +g[d+52>>2];p=t*C+l*B+j*p+ +g[d+56>>2];g[b+824>>2]=o*D+n*h+m*f;g[b+828>>2]=D*z+h*x+f*v;g[b+832>>2]=D*u+h*s+f*r;g[b+836>>2]=0.0;g[b+840>>2]=o*A+n*y+m*w;g[b+844>>2]=z*A+x*y+v*w;g[b+848>>2]=u*A+s*y+r*w;g[b+852>>2]=0.0;g[b+856>>2]=o*t+n*l+m*j;g[b+860>>2]=z*t+x*l+v*j;g[b+864>>2]=u*t+s*l+r*j;g[b+868>>2]=0.0;g[b+872>>2]=q;g[b+876>>2]=i;g[b+880>>2]=p;g[b+884>>2]=0.0;p=+g[b+116>>2];i=+g[e>>2];q=+g[b+132>>2];j=+g[e+4>>2];r=+g[b+148>>2];l=+g[e+8>>2];s=+g[b+120>>2];t=+g[b+136>>2];u=+g[b+152>>2];v=+g[b+124>>2];x=+g[b+140>>2];z=+g[b+156>>2];m=+g[e+16>>2];n=+g[e+20>>2];o=+g[e+24>>2];w=+g[e+32>>2];y=+g[e+36>>2];A=+g[e+40>>2];f=+g[b+164>>2];h=+g[b+168>>2];D=+g[b+172>>2];B=+g[e+48>>2]+(i*f+j*h+l*D);C=m*f+n*h+o*D+ +g[e+52>>2];D=w*f+y*h+A*D+ +g[e+56>>2];g[b+888>>2]=p*i+q*j+r*l;g[b+892>>2]=i*s+j*t+l*u;g[b+896>>2]=i*v+j*x+l*z;g[b+900>>2]=0.0;g[b+904>>2]=p*m+q*n+r*o;g[b+908>>2]=s*m+t*n+u*o;g[b+912>>2]=v*m+x*n+z*o;g[b+916>>2]=0.0;g[b+920>>2]=p*w+q*y+r*A;g[b+924>>2]=s*w+t*y+u*A;g[b+928>>2]=v*w+x*y+z*A;g[b+932>>2]=0.0;g[b+936>>2]=B;g[b+940>>2]=C;g[b+944>>2]=D;g[b+948>>2]=0.0;d=b+856|0;e=b+840|0}c[b+968>>2]=c[b+872>>2];c[b+968+4>>2]=c[b+872+4>>2];c[b+968+8>>2]=c[b+872+8>>2];c[b+968+12>>2]=c[b+872+12>>2];c[b+984>>2]=c[b+936>>2];c[b+984+4>>2]=c[b+936+4>>2];c[b+984+8>>2]=c[b+936+8>>2];c[b+984+12>>2]=c[b+936+12>>2];F=c[b+824>>2]|0;E=c[e>>2]|0;e=c[d>>2]|0;c[b+952>>2]=F;c[b+956>>2]=E;c[b+960>>2]=e;g[b+964>>2]=0.0;f=(c[k>>2]=F,+g[k>>2]);h=(c[k>>2]=E,+g[k>>2]);i=(c[k>>2]=e,+g[k>>2]);if((a[b+180>>0]|0)==0?(a[b+48>>0]|0)==0:0){u=+g[b+968>>2];A=u-+g[b+984>>2];v=+g[b+972>>2];C=v-+g[b+988>>2];w=+g[b+976>>2];D=w-+g[b+992>>2];g[b+1016>>2]=A;g[b+1020>>2]=C;g[b+1024>>2]=D;g[b+1028>>2]=0.0;B=f*A;x=h*C;x=B+x;B=i*D;B=x+B;x=f*B;y=h*B;z=i*B;x=u+x;y=v+y;z=w+z;F=b+1e3|0;g[F>>2]=x;F=b+1004|0;g[F>>2]=y;F=b+1008|0;g[F>>2]=z;F=b+1012|0;g[F>>2]=0.0;F=b+1032|0;g[F>>2]=B;F=b+828|0;E=b+844|0;e=b+860|0;B=+g[F>>2];z=+g[E>>2];y=+g[e>>2];B=B*A;z=z*C;z=B+z;y=y*D;y=z+y;e=b+1036|0;g[e>>2]=y;e=b+832|0;E=b+848|0;F=b+864|0;y=+g[e>>2];z=+g[E>>2];B=+g[F>>2];A=y*A;C=z*C;C=A+C;D=B*D;D=C+D;F=b+1040|0;g[F>>2]=D;return}u=+g[b+968>>2];A=+g[b+984>>2]-u;v=+g[b+972>>2];C=+g[b+988>>2]-v;w=+g[b+976>>2];D=+g[b+992>>2]-w;g[b+1016>>2]=A;g[b+1020>>2]=C;g[b+1024>>2]=D;g[b+1028>>2]=0.0;B=f*A;x=h*C;x=B+x;B=i*D;B=x+B;x=f*B;y=h*B;z=i*B;x=u+x;y=v+y;z=w+z;F=b+1e3|0;g[F>>2]=x;F=b+1004|0;g[F>>2]=y;F=b+1008|0;g[F>>2]=z;F=b+1012|0;g[F>>2]=0.0;F=b+1032|0;g[F>>2]=B;F=b+828|0;E=b+844|0;e=b+860|0;B=+g[F>>2];z=+g[E>>2];y=+g[e>>2];B=B*A;z=z*C;z=B+z;y=y*D;y=z+y;e=b+1036|0;g[e>>2]=y;e=b+832|0;E=b+848|0;F=b+864|0;y=+g[e>>2];z=+g[E>>2];B=+g[F>>2];A=y*A;C=z*C;C=A+C;D=B*D;D=C+D;F=b+1040|0;g[F>>2]=D;return}function ld(b,d,e,f,h){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;var j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0.0,H=0.0,I=0.0,J=0.0,K=0.0,L=0.0,M=0.0,N=0.0,O=0.0,P=0.0,Q=0.0;s=i;i=i+224|0;q=(a[b+28>>0]|0)!=0;p=q?e:d;q=q?d:e;r=c[p+4>>2]|0;if((c[r+68>>2]|0)!=(c[b+40>>2]|0)){j=c[b+12>>2]|0;if((j|0)>0){l=0;do{k=c[(c[b+20>>2]|0)+(l<<2)>>2]|0;if(k|0){Ab[c[c[k>>2]>>2]&255](k);n=c[b+4>>2]|0;Cb[c[(c[n>>2]|0)+60>>2]&127](n,c[(c[b+20>>2]|0)+(l<<2)>>2]|0)}l=l+1|0}while((l|0)!=(j|0))}lh(b,d,e)}n=c[r+64>>2]|0;j=c[b+4>>2]|0;k=c[b+20>>2]|0;m=c[b+32>>2]|0;c[s+192>>2]=6192;c[s+192+4>>2]=p;c[s+192+8>>2]=q;c[s+192+12>>2]=j;c[s+192+16>>2]=f;c[s+192+20>>2]=h;c[s+192+24>>2]=k;c[s+192+28>>2]=m;a[s+128+16>>0]=1;m=s+128+12|0;c[m>>2]=0;c[s+128+4>>2]=0;c[s+128+8>>2]=0;j=c[b+12>>2]|0;if((j|0)>0){d=k;f=0;while(1){k=c[d+(f<<2)>>2]|0;if(k){Cb[c[(c[k>>2]|0)+16>>2]&127](k,s+128|0);j=c[s+128+4>>2]|0;if((j|0)>0){l=0;do{e=c[(c[m>>2]|0)+(l<<2)>>2]|0;if(c[e+748>>2]|0){c[h+4>>2]=e;j=c[e+740>>2]|0;k=c[(c[h+8>>2]|0)+8>>2]|0;d=c[(c[h+12>>2]|0)+8>>2]|0;if((j|0)==(k|0))ef(e,j+4|0,d+4|0);else ef(e,d+4|0,k+4|0);c[h+4>>2]=0;j=c[s+128+4>>2]|0}l=l+1|0}while((l|0)<(j|0))}if((j|0)<0){if((c[s+128+8>>2]|0)<0){k=c[m>>2]|0;if(k|0){if(a[s+128+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[k+-4>>2]|0)}c[m>>2]=0}a[s+128+16>>0]=1;c[m>>2]=0;c[s+128+8>>2]=0}do{c[(c[m>>2]|0)+(j<<2)>>2]=0;j=j+1|0}while((j|0)!=0)}c[s+128+4>>2]=0;j=c[b+12>>2]|0}k=f+1|0;if((k|0)>=(j|0))break;d=c[b+20>>2]|0;f=k}j=c[m>>2]|0;if(j|0){if(a[s+128+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}c[m>>2]=0}}if(!n){k=c[b+12>>2]|0;if((k|0)>0){j=0;do{Te(s+192|0,c[(c[r+24>>2]|0)+(j*80|0)+64>>2]|0,j);j=j+1|0}while((j|0)<(k|0));o=38}}else{o=c[p+12>>2]|0;H=+g[o>>2];G=+g[o+16>>2];F=+g[o+32>>2];E=+g[o+4>>2];D=+g[o+20>>2];C=+g[o+36>>2];y=+g[o+8>>2];w=+g[o+24>>2];u=+g[o+40>>2];B=-+g[o+48>>2];A=-+g[o+52>>2];z=-+g[o+56>>2];o=c[q+12>>2]|0;Q=+g[o>>2];P=+g[o+16>>2];O=+g[o+32>>2];N=+g[o+4>>2];M=+g[o+20>>2];L=+g[o+36>>2];K=+g[o+8>>2];J=+g[o+24>>2];I=+g[o+40>>2];x=+g[o+48>>2];v=+g[o+52>>2];t=+g[o+56>>2];g[s+48>>2]=H*Q+G*P+F*O;g[s+48+4>>2]=H*N+G*M+F*L;g[s+48+8>>2]=H*K+G*J+F*I;g[s+48+12>>2]=0.0;g[s+48+16>>2]=E*Q+D*P+C*O;g[s+48+20>>2]=E*N+D*M+C*L;g[s+48+24>>2]=E*K+D*J+C*I;g[s+48+28>>2]=0.0;g[s+48+32>>2]=y*Q+w*P+u*O;g[s+48+36>>2]=y*N+w*M+u*L;g[s+48+40>>2]=y*K+w*J+u*I;g[s+48+44>>2]=0.0;g[s+48+48>>2]=H*B+G*A+F*z+(H*x+G*v+F*t);g[s+48+52>>2]=E*B+D*A+C*z+(E*x+D*v+C*t);g[s+48+56>>2]=y*B+w*A+u*z+(y*x+w*v+u*t);g[s+48+60>>2]=0.0;o=c[q+4>>2]|0;mc[c[(c[o>>2]|0)+8>>2]&127](o,s+48|0,s+128|0,s+112|0);c[s+16>>2]=c[s+128>>2];c[s+16+4>>2]=c[s+128+4>>2];c[s+16+8>>2]=c[s+128+8>>2];c[s+16+12>>2]=c[s+128+12>>2];c[s+16+16>>2]=c[s+112>>2];c[s+16+16+4>>2]=c[s+112+4>>2];c[s+16+16+8>>2]=c[s+112+8>>2];c[s+16+16+12>>2]=c[s+112+12>>2];bg(c[n>>2]|0,s+16|0,s+192|0);o=38}if((o|0)==38)k=c[b+12>>2]|0;if((k|0)<=0){i=s;return}d=0;do{do if(c[(c[b+20>>2]|0)+(d<<2)>>2]|0){n=c[r+24>>2]|0;o=c[n+(d*80|0)+64>>2]|0;h=c[p+12>>2]|0;w=+g[h>>2];x=+g[h+4>>2];y=+g[h+8>>2];z=+g[h+16>>2];A=+g[h+20>>2];B=+g[h+24>>2];I=+g[h+32>>2];K=+g[h+36>>2];M=+g[h+40>>2];C=+g[n+(d*80|0)>>2];D=+g[n+(d*80|0)+16>>2];E=+g[n+(d*80|0)+32>>2];F=+g[n+(d*80|0)+4>>2];G=+g[n+(d*80|0)+20>>2];H=+g[n+(d*80|0)+36>>2];J=+g[n+(d*80|0)+8>>2];L=+g[n+(d*80|0)+24>>2];N=+g[n+(d*80|0)+40>>2];u=+g[n+(d*80|0)+48>>2];v=+g[n+(d*80|0)+52>>2];Q=+g[n+(d*80|0)+56>>2];O=+g[h+48>>2]+(w*u+x*v+y*Q);P=+g[h+52>>2]+(z*u+A*v+B*Q);Q=+g[h+56>>2]+(I*u+K*v+M*Q);g[s+128>>2]=w*C+x*D+y*E;g[s+128+4>>2]=w*F+x*G+y*H;g[s+128+8>>2]=w*J+x*L+y*N;g[s+128+12>>2]=0.0;g[s+128+16>>2]=z*C+A*D+B*E;g[s+128+20>>2]=z*F+A*G+B*H;g[s+128+24>>2]=z*J+A*L+B*N;g[s+128+28>>2]=0.0;g[s+128+32>>2]=I*C+K*D+M*E;g[s+128+36>>2]=I*F+K*G+M*H;g[s+128+40>>2]=I*J+K*L+M*N;g[s+128+44>>2]=0.0;g[s+128+48>>2]=O;g[s+128+52>>2]=P;g[s+128+56>>2]=Q;g[s+128+60>>2]=0.0;mc[c[(c[o>>2]|0)+8>>2]&127](o,s+128|0,s+112|0,s+48|0);o=c[q+4>>2]|0;mc[c[(c[o>>2]|0)+8>>2]&127](o,c[q+12>>2]|0,s+16|0,s);if(!(+g[s+112>>2]>+g[s>>2])?!(+g[s+48>>2]<+g[s+16>>2]):0)j=1;else j=0;if(!(!(+g[s+112+8>>2]>+g[s+8>>2])?!(+g[s+48+8>>2]<+g[s+16+8>>2]):0))j=0;if(!(+g[s+112+4>>2]>+g[s+4>>2])?!(+g[s+48+4>>2]<+g[s+16+4>>2]|j^1):0)break;o=c[(c[b+20>>2]|0)+(d<<2)>>2]|0;Ab[c[c[o>>2]>>2]&255](o);o=c[b+4>>2]|0;Cb[c[(c[o>>2]|0)+60>>2]&127](o,c[(c[b+20>>2]|0)+(d<<2)>>2]|0);c[(c[b+20>>2]|0)+(d<<2)>>2]=0}while(0);d=d+1|0}while((d|0)<(k|0));i=s;return}function md(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0,h=0,i=0,j=0,k=0,l=0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0.0,H=0.0,I=0.0,J=0.0,K=0.0,L=0.0,M=0.0,O=0.0,Q=0.0,R=0.0,S=0.0,T=0.0,U=0.0,V=0.0,W=0.0;c[b>>2]=c[a>>2];c[b+4>>2]=c[a+4>>2];c[b+8>>2]=c[a+8>>2];c[b+12>>2]=c[a+12>>2];c[b+16>>2]=c[a+16>>2];c[b+16+4>>2]=c[a+16+4>>2];c[b+16+8>>2]=c[a+16+8>>2];c[b+16+12>>2]=c[a+16+12>>2];c[b+32>>2]=c[a+32>>2];c[b+32+4>>2]=c[a+32+4>>2];c[b+32+8>>2]=c[a+32+8>>2];c[b+32+12>>2]=c[a+32+12>>2];o=+g[a+20>>2];v=+g[a+40>>2];m=+g[a+24>>2];p=+g[a+36>>2];r=+g[a+32>>2];n=+g[a+16>>2];s=+g[a>>2];q=+g[a+4>>2];t=+g[a+8>>2];u=1.0/((o*v-m*p)*s+q*(m*r-v*n)+(p*n-o*r)*t);g[d>>2]=(o*v-m*p)*u;g[d+4>>2]=(p*t-v*q)*u;g[d+8>>2]=(m*q-o*t)*u;g[d+12>>2]=0.0;g[d+16>>2]=(m*r-v*n)*u;g[d+20>>2]=(v*s-r*t)*u;g[d+24>>2]=(n*t-m*s)*u;g[d+28>>2]=0.0;g[d+32>>2]=(p*n-o*r)*u;g[d+36>>2]=(r*q-p*s)*u;g[d+40>>2]=(o*s-n*q)*u;g[d+44>>2]=0.0;a:do if(!(c[5788]|0)){e=b+20|0;f=b+36|0;h=b+8|0;i=b+24|0;j=b+40|0;k=b;l=b+4|0}else{C=(r*q-p*s)*u;D=(m*q-o*t)*u;E=(n*t-m*s)*u;F=(o*s-n*q)*u;G=(o*v-m*p)*u;B=(m*r-v*n)*u;A=(p*n-o*r)*u;z=(p*t-v*q)*u;y=(v*s-r*t)*u;e=0;while(1){n=+N(+G);m=+N(+B);L=+N(+A);W=+N(+z);M=+N(+y);K=+N(+C);Q=+N(+D);O=+N(+E);w=+N(+F);R=n+m+L>W+M+K?n+m+L:W+M+K;M=n+W+Q>m+M+O?n+W+Q:m+M+O;m=+g[b>>2];W=+N(+m);n=+g[b+16>>2];T=+N(+n);o=+g[b+32>>2];I=+N(+o);p=+g[b+4>>2];V=+N(+p);q=+g[b+20>>2];S=+N(+q);r=+g[b+36>>2];H=+N(+r);s=+g[b+8>>2];U=+N(+s);t=+g[b+24>>2];J=+N(+t);u=+g[b+40>>2];x=+N(+u);v=W+T+I>V+S+H?W+T+I:V+S+H;v=v>U+J+x?v:U+J+x;J=W+V+U>T+S+J?W+V+U:T+S+J;w=(R>Q+O+w?R:Q+O+w)*(M>L+K+w?M:L+K+w);x=v*(J>I+H+x?J:I+H+x);if(+N(+w)<1.1920928955078125e-07){e=b+20|0;f=b+36|0;h=b+8|0;i=b+24|0;j=b+40|0;k=b;l=b+4|0;break a}if(+N(+x)<1.1920928955078125e-07){e=b+20|0;f=b+36|0;h=b+8|0;i=b+24|0;j=b+40|0;k=b;l=b+4|0;break a}W=+P(+(w/x),.25);M=(m*(W+-2.0)+G*(1.0/W))*.5;Q=(p*(W+-2.0)+1.0/W*B)*.5;S=(s*(W+-2.0)+1.0/W*A)*.5;O=(n*(W+-2.0)+1.0/W*z)*.5;R=(q*(W+-2.0)+1.0/W*y)*.5;T=(t*(W+-2.0)+1.0/W*C)*.5;U=(o*(W+-2.0)+1.0/W*D)*.5;V=(r*(W+-2.0)+1.0/W*E)*.5;W=(u*(W+-2.0)+1.0/W*F)*.5;g[b>>2]=m+M;g[b+4>>2]=p+Q;g[b+8>>2]=s+S;g[b+12>>2]=0.0;g[b+16>>2]=n+O;g[b+20>>2]=q+R;g[b+24>>2]=t+T;g[b+28>>2]=0.0;g[b+32>>2]=o+U;g[b+36>>2]=r+V;g[b+40>>2]=u+W;g[b+44>>2]=0.0;L=1.0/(((u+W)*(q+R)-(t+T)*(r+V))*(m+M)+(p+Q)*((t+T)*(o+U)-(u+W)*(n+O))+((r+V)*(n+O)-(q+R)*(o+U))*(s+S));G=((u+W)*(q+R)-(t+T)*(r+V))*L;z=((r+V)*(s+S)-(u+W)*(p+Q))*L;D=((t+T)*(p+Q)-(q+R)*(s+S))*L;B=((t+T)*(o+U)-(u+W)*(n+O))*L;y=((u+W)*(m+M)-(o+U)*(s+S))*L;E=((n+O)*(s+S)-(t+T)*(m+M))*L;A=((r+V)*(n+O)-(q+R)*(o+U))*L;C=((o+U)*(p+Q)-(r+V)*(m+M))*L;F=((q+R)*(m+M)-(n+O)*(p+Q))*L;g[d>>2]=G;g[d+4>>2]=z;g[d+8>>2]=D;g[d+12>>2]=0.0;g[d+16>>2]=B;g[d+20>>2]=y;g[d+24>>2]=E;g[d+28>>2]=0.0;g[d+32>>2]=A;g[d+36>>2]=C;g[d+40>>2]=F;g[d+44>>2]=0.0;U=+N(+M)+ +N(+O)+ +N(+U);V=+N(+Q)+ +N(+R)+ +N(+V);W=+N(+S)+ +N(+T)+ +N(+W);V=U>V?U:V;if((V>W?V:W)<=v*+g[5787])break;e=e+1|0;if(e>>>0>=(c[5788]|0)>>>0){e=b+20|0;f=b+36|0;h=b+8|0;i=b+24|0;j=b+40|0;k=b;l=b+4|0;break a}}K=+g[b>>2];M=+g[b+16>>2];Q=+g[b+32>>2];F=+g[b+4>>2];H=+g[b+20>>2];J=+g[b+36>>2];A=+g[b+8>>2];C=+g[b+24>>2];E=+g[b+40>>2];L=+g[a>>2];O=+g[a+16>>2];R=+g[a+32>>2];G=+g[a+4>>2];I=+g[a+20>>2];T=+g[a+36>>2];B=+g[a+8>>2];D=+g[a+24>>2];W=+g[a+40>>2];V=A*G+C*I+E*T+(F*B+H*D+J*W);S=F*L+H*O+J*R+(K*G+M*I+Q*T);U=A*L+C*O+E*R+(K*B+M*D+Q*W);W=A*B+C*D+E*W+(A*B+C*D+E*W);T=F*G+H*I+J*T+(F*G+H*I+J*T);R=K*L+M*O+Q*R+(K*L+M*O+Q*R);S=S*.5;U=U*.5;V=V*.5;R=R*.5;g[d>>2]=R;g[d+4>>2]=S;g[d+8>>2]=U;g[d+12>>2]=0.0;g[d+16>>2]=S;T=T*.5;g[d+20>>2]=T;g[d+24>>2]=V;g[d+28>>2]=0.0;g[d+32>>2]=U;g[d+36>>2]=V;W=W*.5;g[d+40>>2]=W;g[d+44>>2]=0.0;return}while(0);K=+g[k>>2];M=+g[b+16>>2];Q=+g[b+32>>2];F=+g[l>>2];H=+g[e>>2];J=+g[f>>2];A=+g[h>>2];C=+g[i>>2];E=+g[j>>2];L=+g[a>>2];O=+g[a+16>>2];R=+g[a+32>>2];G=+g[a+4>>2];I=+g[a+20>>2];T=+g[a+36>>2];B=+g[a+8>>2];D=+g[a+24>>2];W=+g[a+40>>2];V=A*G+C*I+E*T+(F*B+H*D+J*W);S=F*L+H*O+J*R+(K*G+M*I+Q*T);U=A*L+C*O+E*R+(K*B+M*D+Q*W);W=A*B+C*D+E*W+(A*B+C*D+E*W);T=F*G+H*I+J*T+(F*G+H*I+J*T);R=K*L+M*O+Q*R+(K*L+M*O+Q*R);S=S*.5;U=U*.5;V=V*.5;R=R*.5;g[d>>2]=R;g[d+4>>2]=S;g[d+8>>2]=U;g[d+12>>2]=0.0;g[d+16>>2]=S;T=T*.5;g[d+20>>2]=T;g[d+24>>2]=V;g[d+28>>2]=0.0;g[d+32>>2]=U;g[d+36>>2]=V;W=W*.5;g[d+40>>2]=W;g[d+44>>2]=0.0;return}function nd(a,b,f,j){a=a|0;b=b|0;f=f|0;j=j|0;var k=0.0,l=0.0,m=0.0,n=0,o=0,p=0.0,q=0.0,r=0,s=0,t=0,u=0;o=i;i=i+80|0;f=Eb[c[(c[a>>2]|0)+28>>2]&127](a)|0;k=+g[a+4>>2];l=+g[a+8>>2];m=+g[a+12>>2];if((f|0)<=0){i=o;return}n=0;do{Yb[c[(c[a>>2]|0)+16>>2]&3](a,o+76|0,o+52|0,o+64|0,o+56|0,o+72|0,o+68|0,o+48|0,o+60|0,n);a:do switch(c[o+64>>2]|0){case 0:{switch(c[o+60>>2]|0){case 2:{if((c[o+48>>2]|0)>0)j=0;else break a;do{r=(c[o+72>>2]|0)+(_(c[o+68>>2]|0,j)|0)|0;t=c[o+76>>2]|0;s=c[o+56>>2]|0;u=t+(_(s,c[r>>2]|0)|0)|0;q=l*+g[u+4>>2];p=m*+g[u+8>>2];g[o>>2]=k*+g[u>>2];g[o+4>>2]=q;g[o+8>>2]=p;g[o+12>>2]=0.0;u=t+(_(s,c[r+4>>2]|0)|0)|0;p=l*+g[u+4>>2];q=m*+g[u+8>>2];g[o+16>>2]=k*+g[u>>2];g[o+20>>2]=p;g[o+24>>2]=q;g[o+28>>2]=0.0;r=t+(_(s,c[r+8>>2]|0)|0)|0;q=l*+g[r+4>>2];p=m*+g[r+8>>2];g[o+32>>2]=k*+g[r>>2];g[o+36>>2]=q;g[o+40>>2]=p;g[o+44>>2]=0.0;mc[c[(c[b>>2]|0)+8>>2]&127](b,o,n,j);j=j+1|0}while((j|0)<(c[o+48>>2]|0));break}case 3:{if((c[o+48>>2]|0)>0)j=0;else break a;do{t=(c[o+72>>2]|0)+(_(c[o+68>>2]|0,j)|0)|0;s=c[o+76>>2]|0;u=c[o+56>>2]|0;r=s+(_(e[t>>1]|0,u)|0)|0;p=l*+g[r+4>>2];q=m*+g[r+8>>2];g[o>>2]=k*+g[r>>2];g[o+4>>2]=p;g[o+8>>2]=q;g[o+12>>2]=0.0;r=s+(_(e[t+2>>1]|0,u)|0)|0;q=l*+g[r+4>>2];p=m*+g[r+8>>2];g[o+16>>2]=k*+g[r>>2];g[o+20>>2]=q;g[o+24>>2]=p;g[o+28>>2]=0.0;u=s+(_(e[t+4>>1]|0,u)|0)|0;p=l*+g[u+4>>2];q=m*+g[u+8>>2];g[o+32>>2]=k*+g[u>>2];g[o+36>>2]=p;g[o+40>>2]=q;g[o+44>>2]=0.0;mc[c[(c[b>>2]|0)+8>>2]&127](b,o,n,j);j=j+1|0}while((j|0)<(c[o+48>>2]|0));break}case 5:{if((c[o+48>>2]|0)>0)j=0;else break a;do{t=(c[o+72>>2]|0)+(_(c[o+68>>2]|0,j)|0)|0;s=c[o+76>>2]|0;u=c[o+56>>2]|0;r=s+(_(d[t>>0]|0,u)|0)|0;p=l*+g[r+4>>2];q=m*+g[r+8>>2];g[o>>2]=k*+g[r>>2];g[o+4>>2]=p;g[o+8>>2]=q;g[o+12>>2]=0.0;r=s+(_(d[t+1>>0]|0,u)|0)|0;q=l*+g[r+4>>2];p=m*+g[r+8>>2];g[o+16>>2]=k*+g[r>>2];g[o+20>>2]=q;g[o+24>>2]=p;g[o+28>>2]=0.0;u=s+(_(d[t+2>>0]|0,u)|0)|0;p=l*+g[u+4>>2];q=m*+g[u+8>>2];g[o+32>>2]=k*+g[u>>2];g[o+36>>2]=p;g[o+40>>2]=q;g[o+44>>2]=0.0;mc[c[(c[b>>2]|0)+8>>2]&127](b,o,n,j);j=j+1|0}while((j|0)<(c[o+48>>2]|0));break}default:break a}break}case 1:{switch(c[o+60>>2]|0){case 2:{if((c[o+48>>2]|0)>0)j=0;else break a;do{u=(c[o+72>>2]|0)+(_(c[o+68>>2]|0,j)|0)|0;s=c[o+76>>2]|0;t=c[o+56>>2]|0;r=s+(_(t,c[u>>2]|0)|0)|0;p=l*+h[r+8>>3];q=m*+h[r+16>>3];g[o>>2]=k*+h[r>>3];g[o+4>>2]=p;g[o+8>>2]=q;g[o+12>>2]=0.0;r=s+(_(t,c[u+4>>2]|0)|0)|0;q=l*+h[r+8>>3];p=m*+h[r+16>>3];g[o+16>>2]=k*+h[r>>3];g[o+20>>2]=q;g[o+24>>2]=p;g[o+28>>2]=0.0;u=s+(_(t,c[u+8>>2]|0)|0)|0;p=l*+h[u+8>>3];q=m*+h[u+16>>3];g[o+32>>2]=k*+h[u>>3];g[o+36>>2]=p;g[o+40>>2]=q;g[o+44>>2]=0.0;mc[c[(c[b>>2]|0)+8>>2]&127](b,o,n,j);j=j+1|0}while((j|0)<(c[o+48>>2]|0));break}case 3:{if((c[o+48>>2]|0)>0)j=0;else break a;do{t=(c[o+72>>2]|0)+(_(c[o+68>>2]|0,j)|0)|0;s=c[o+76>>2]|0;u=c[o+56>>2]|0;r=s+(_(e[t>>1]|0,u)|0)|0;p=l*+h[r+8>>3];q=m*+h[r+16>>3];g[o>>2]=k*+h[r>>3];g[o+4>>2]=p;g[o+8>>2]=q;g[o+12>>2]=0.0;r=s+(_(e[t+2>>1]|0,u)|0)|0;q=l*+h[r+8>>3];p=m*+h[r+16>>3];g[o+16>>2]=k*+h[r>>3];g[o+20>>2]=q;g[o+24>>2]=p;g[o+28>>2]=0.0;u=s+(_(e[t+4>>1]|0,u)|0)|0;p=l*+h[u+8>>3];q=m*+h[u+16>>3];g[o+32>>2]=k*+h[u>>3];g[o+36>>2]=p;g[o+40>>2]=q;g[o+44>>2]=0.0;mc[c[(c[b>>2]|0)+8>>2]&127](b,o,n,j);j=j+1|0}while((j|0)<(c[o+48>>2]|0));break}case 5:{if((c[o+48>>2]|0)>0)j=0;else break a;do{t=(c[o+72>>2]|0)+(_(c[o+68>>2]|0,j)|0)|0;s=c[o+76>>2]|0;u=c[o+56>>2]|0;r=s+(_(d[t>>0]|0,u)|0)|0;p=l*+h[r+8>>3];q=m*+h[r+16>>3];g[o>>2]=k*+h[r>>3];g[o+4>>2]=p;g[o+8>>2]=q;g[o+12>>2]=0.0;r=s+(_(d[t+1>>0]|0,u)|0)|0;q=l*+h[r+8>>3];p=m*+h[r+16>>3];g[o+16>>2]=k*+h[r>>3];g[o+20>>2]=q;g[o+24>>2]=p;g[o+28>>2]=0.0;u=s+(_(d[t+2>>0]|0,u)|0)|0;p=l*+h[u+8>>3];q=m*+h[u+16>>3];g[o+32>>2]=k*+h[u>>3];g[o+36>>2]=p;g[o+40>>2]=q;g[o+44>>2]=0.0;mc[c[(c[b>>2]|0)+8>>2]&127](b,o,n,j);j=j+1|0}while((j|0)<(c[o+48>>2]|0));break}default:break a}break}default:{}}while(0);Cb[c[(c[a>>2]|0)+24>>2]&127](a,n);n=n+1|0}while((n|0)!=(f|0));i=o;return}function od(b,d,e,f,h,j){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;j=j|0;var l=0,m=0.0,n=0.0,o=0.0,p=0.0,q=0,r=0,s=0,t=0,u=0.0,v=0.0,w=0.0,x=0.0,y=0,z=0.0,A=0,B=0,C=0.0,D=0.0,E=0.0,F=0.0,G=0.0,H=0.0,I=0.0,J=0.0,K=0,L=0.0,M=0.0,N=0.0,P=0.0,Q=0.0,R=0.0,S=0.0,T=0.0,U=0.0,V=0.0,W=0.0,X=0.0,Y=0.0,Z=0.0,_=0.0,$=0.0,aa=0.0,ba=0.0,ca=0.0,da=0.0,ea=0.0,fa=0,ga=0.0;fa=i;i=i+128|0;K=c[b+4>>2]|0;a[K+312>>0]=0;c[K>>2]=0;a[K+356>>0]=1;c[K+292>>2]=1566444395;c[K+296>>2]=1566444395;c[K+300>>2]=1566444395;g[K+304>>2]=0.0;c[K+336>>2]=0;c[K+336+4>>2]=0;c[K+336+8>>2]=0;c[K+336+12>>2]=0;a[K+336+16>>0]=0;a[K+332>>0]=a[K+332>>0]&-16;m=+g[d+48>>2];n=+g[d+52>>2];o=+g[d+56>>2];p=+g[f+48>>2];u=+g[f+52>>2];v=+g[f+56>>2];L=+g[d>>2];M=+g[d+4>>2];N=+g[d+8>>2];P=+g[d+16>>2];Q=+g[d+20>>2];R=+g[d+24>>2];S=+g[d+32>>2];T=+g[d+36>>2];U=+g[d+40>>2];V=+g[f>>2];W=+g[f+4>>2];X=+g[f+8>>2];Y=+g[f+16>>2];Z=+g[f+20>>2];_=+g[f+24>>2];$=+g[f+32>>2];aa=+g[f+36>>2];ba=+g[f+40>>2];ca=+g[e+48>>2]-m-(+g[h+48>>2]-p);da=+g[e+52>>2]-n-(+g[h+52>>2]-u);ea=+g[e+56>>2]-o-(+g[h+56>>2]-v);K=c[b+8>>2]|0;B=c[(c[K>>2]|0)+64>>2]|0;g[fa+96>>2]=L*-ca+P*-da+S*-ea;g[fa+96+4>>2]=M*-ca+Q*-da+T*-ea;g[fa+96+8>>2]=N*-ca+R*-da+U*-ea;g[fa+96+12>>2]=0.0;ic[B&127](fa+112|0,K,fa+96|0);I=+g[fa+112>>2];J=+g[fa+112+4>>2];H=+g[fa+112+8>>2];w=I*+g[d>>2]+J*+g[d+4>>2]+H*+g[d+8>>2]+ +g[d+48>>2];z=I*+g[d+16>>2]+J*+g[d+20>>2]+H*+g[d+24>>2]+ +g[d+52>>2];H=I*+g[d+32>>2]+J*+g[d+36>>2]+H*+g[d+40>>2]+ +g[d+56>>2];K=c[b+12>>2]|0;B=c[(c[K>>2]|0)+64>>2]|0;J=ca*+g[f+4>>2]+da*+g[f+20>>2]+ea*+g[f+36>>2];I=ca*+g[f+8>>2]+da*+g[f+24>>2]+ea*+g[f+40>>2];g[fa+64>>2]=ca*+g[f>>2]+da*+g[f+16>>2]+ea*+g[f+32>>2];g[fa+64+4>>2]=J;g[fa+64+8>>2]=I;g[fa+64+12>>2]=0.0;ic[B&127](fa+80|0,K,fa+64|0);I=+g[fa+80>>2];J=+g[fa+80+4>>2];x=+g[fa+80+8>>2];w=w-(I*+g[f>>2]+J*+g[f+4>>2]+x*+g[f+8>>2]+ +g[f+48>>2]);z=z-(I*+g[f+16>>2]+J*+g[f+20>>2]+x*+g[f+24>>2]+ +g[f+52>>2]);x=H-(I*+g[f+32>>2]+J*+g[f+36>>2]+x*+g[f+40>>2]+ +g[f+56>>2]);a:do if(w*w+z*z+x*x>9.999999747378752e-05){D=m;m=0.0;K=32;s=0;t=0;r=0;l=0;A=0;while(1){if(!K)break a;K=K+-1|0;q=c[b+8>>2]|0;y=c[(c[q>>2]|0)+64>>2]|0;G=-w;ga=-z;C=-x;g[fa+32>>2]=L*G+P*ga+S*C;g[fa+32+4>>2]=M*G+Q*ga+T*C;g[fa+32+8>>2]=N*G+R*ga+U*C;g[fa+32+12>>2]=0.0;ic[y&127](fa+48|0,q,fa+32|0);C=+g[fa+48>>2];ga=+g[fa+48+4>>2];G=+g[fa+48+8>>2];E=D+(L*C+M*ga+N*G);F=n+(P*C+Q*ga+R*G);G=o+(S*C+T*ga+U*G);q=c[b+12>>2]|0;y=c[(c[q>>2]|0)+64>>2]|0;g[fa>>2]=V*w+Y*z+$*x;g[fa+4>>2]=W*w+Z*z+aa*x;g[fa+8>>2]=X*w+_*z+ba*x;g[fa+12>>2]=0.0;ic[y&127](fa+16|0,q,fa);ga=+g[fa+16>>2];C=+g[fa+16+4>>2];J=+g[fa+16+8>>2];H=p+(V*ga+W*C+X*J);I=u+(Y*ga+Z*C+_*J);J=v+($*ga+aa*C+ba*J);C=w*(E-H)+z*(F-I)+x*(G-J);q=(g[k>>2]=w,c[k>>2]|0);y=(g[k>>2]=z,c[k>>2]|0);B=(g[k>>2]=x,c[k>>2]|0);if(m>1.0){l=0;q=24;break}if(C>0.0){n=ca*w+da*z+ea*x;if(n>=-1.4210854715202004e-14){l=0;q=24;break}m=m-C/n;C=(1.0-m)*+g[d+48>>2]+m*+g[e+48>>2];n=(1.0-m)*+g[d+52>>2]+m*+g[e+52>>2];o=(1.0-m)*+g[d+56>>2]+m*+g[e+56>>2];p=(1.0-m)*+g[f+48>>2]+m*+g[h+48>>2];u=(1.0-m)*+g[f+52>>2]+m*+g[h+52>>2];v=(1.0-m)*+g[f+56>>2]+m*+g[h+56>>2];s=q;t=A;r=y;l=B}else C=D;A=c[b+4>>2]|0;B=c[A>>2]|0;if((B|0)>0){w=+g[A+308>>2];y=0;q=0;do{z=E-H-+g[A+4+(q<<4)>>2];D=F-I-+g[A+4+(q<<4)+4>>2];ga=G-J-+g[A+4+(q<<4)+8>>2];y=y|z*z+D*D+ga*ga<=w;q=q+1|0}while((q|0)!=(B|0))}else y=0;if((+g[A+304>>2]==0.0?G-J==+g[A+300>>2]:0)?F-I==+g[A+296>>2]:0)q=E-H==+g[A+292>>2];else q=0;if(!(y|q)){g[A+292>>2]=E-H;g[A+296>>2]=F-I;g[A+300>>2]=G-J;g[A+304>>2]=0.0;a[A+356>>0]=1;g[A+4+(B<<4)>>2]=E-H;g[A+4+(B<<4)+4>>2]=F-I;g[A+4+(B<<4)+8>>2]=G-J;g[A+4+(B<<4)+12>>2]=0.0;B=c[A>>2]|0;g[A+84+(B<<4)>>2]=E;g[A+84+(B<<4)+4>>2]=F;g[A+84+(B<<4)+8>>2]=G;g[A+84+(B<<4)+12>>2]=0.0;B=c[A>>2]|0;g[A+164+(B<<4)>>2]=H;g[A+164+(B<<4)+4>>2]=I;g[A+164+(B<<4)+8>>2]=J;g[A+164+(B<<4)+12>>2]=0.0;c[A>>2]=(c[A>>2]|0)+1;A=c[b+4>>2]|0}B=Ec(A)|0;w=+g[A+276>>2];z=+g[A+280>>2];x=+g[A+284>>2];if(!B)break a;if(!(w*w+z*z+x*x>9.999999747378752e-05))break a;else{D=C;A=c[A+288>>2]|0}}if((q|0)==24){i=fa;return l|0}}else{m=0.0;s=0;t=0;r=0;l=0}while(0);g[j+164>>2]=m;m=(c[k>>2]=s,+g[k>>2]);n=(c[k>>2]=r,+g[k>>2]);p=(c[k>>2]=l,+g[k>>2]);if(!(m*m+n*n+p*p>=1.4210854715202004e-14)){c[j+132>>2]=0;c[j+132+4>>2]=0;c[j+132+8>>2]=0;c[j+132+12>>2]=0;o=0.0;n=0.0;m=0.0}else{ga=1.0/+O(+(m*m+n*n+p*p));g[j+132>>2]=m*ga;g[j+136>>2]=n*ga;g[j+140>>2]=p*ga;c[j+144>>2]=t;o=m*ga;n=n*ga;m=p*ga}if(ca*o+da*n+ea*m>=-+g[j+172>>2]){b=0;i=fa;return b|0}b=c[b+4>>2]|0;Ec(b)|0;Bp(j+148|0,b+260|0,16)|0;b=1;i=fa;return b|0}function pd(d,e,f,h,j){d=d|0;e=e|0;f=f|0;h=h|0;j=j|0;var k=0.0,l=0.0,m=0,n=0,o=0,p=0.0,q=0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0;A=i;i=i+160|0;a[d+60>>0]=f&1;if(f){r=+g[h>>2]+-1.0;u=+g[h+4>>2]+-1.0;s=+g[h+8>>2]+-1.0;g[d+4>>2]=r;g[d+8>>2]=u;g[d+12>>2]=s;g[d+16>>2]=0.0;v=+g[j>>2]+1.0;x=+g[j+4>>2]+1.0;y=+g[j+8>>2]+1.0;g[d+20>>2]=v;g[d+24>>2]=x;g[d+28>>2]=y;g[d+32>>2]=0.0;g[d+36>>2]=65533.0/(v-r);g[d+40>>2]=65533.0/(x-u);g[d+44>>2]=65533.0/(y-s);g[d+48>>2]=0.0;a[d+60>>0]=1;k=r+ +(~~((r-r)*(65533.0/(v-r)))&65534)/(65533.0/(v-r))+-1.0;l=u+ +(~~((u-u)*(65533.0/(x-u)))&65534)/(65533.0/(x-u))+-1.0;p=s+ +(~~((s-s)*(65533.0/(y-s)))&65534)/(65533.0/(y-s))+-1.0;if(k>2]=k;z=k}else z=r;if(l>2]=l;w=l}else w=u;if(p>2]=p;t=p}else t=s;p=z+ +((~~((v-z)*(65533.0/(v-r))+1.0)&65535|1)&65535)/(65533.0/(v-r))+1.0;l=w+ +((~~((x-w)*(65533.0/(x-u))+1.0)&65535|1)&65535)/(65533.0/(x-u))+1.0;k=t+ +((~~((y-t)*(65533.0/(y-s))+1.0)&65535|1)&65535)/(65533.0/(y-s))+1.0;if(v>2]=p;else p=v;if(x>2]=l;else l=x;if(y>2]=k;else k=y;g[d+36>>2]=65533.0/(p-z);g[d+40>>2]=65533.0/(l-w);g[d+44>>2]=65533.0/(k-t);g[d+48>>2]=0.0;c[A+144>>2]=8020;c[A+144+4>>2]=d+104;c[A+144+8>>2]=d;mc[c[(c[e>>2]|0)+8>>2]&127](e,A+144|0,d+4|0,d+20|0);f=c[d+108>>2]|0;c[A+128>>2]=0;c[A+128+4>>2]=0;c[A+128+8>>2]=0;c[A+128+12>>2]=0;m=c[d+128>>2]|0;if((m|0)<(f<<1|0)){if((c[d+132>>2]|0)<(f<<1|0)){if(!f){h=0;j=m}else{c[6435]=(c[6435]|0)+1;h=yc(f<<5|19)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}j=c[d+128>>2]|0}if((j|0)>0){e=0;do{q=h+(e<<4)|0;o=(c[d+136>>2]|0)+(e<<4)|0;c[q>>2]=c[o>>2];c[q+4>>2]=c[o+4>>2];c[q+8>>2]=c[o+8>>2];c[q+12>>2]=c[o+12>>2];e=e+1|0}while((e|0)!=(j|0))}j=c[d+136>>2]|0;if(j|0){if(a[d+140>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}c[d+136>>2]=0}a[d+140>>0]=1;c[d+136>>2]=h;c[d+132>>2]=f<<1;j=d+136|0}else j=d+136|0;h=m;do{q=(c[j>>2]|0)+(h<<4)|0;c[q>>2]=c[A+128>>2];c[q+4>>2]=c[A+128+4>>2];c[q+8>>2]=c[A+128+8>>2];c[q+12>>2]=c[A+128+12>>2];h=h+1|0}while((h|0)!=(f<<1|0))}c[d+128>>2]=f<<1}else{c[A+144>>2]=8040;c[A+144+4>>2]=d+64;c[A+112>>2]=-581039253;c[A+112+4>>2]=-581039253;c[A+112+8>>2]=-581039253;g[A+112+12>>2]=0.0;c[A+96>>2]=1566444395;c[A+96+4>>2]=1566444395;c[A+96+8>>2]=1566444395;g[A+96+12>>2]=0.0;mc[c[(c[e>>2]|0)+8>>2]&127](e,A+144|0,A+112|0,A+96|0);f=c[d+68>>2]|0;m=A+32|0;o=m+64|0;do{c[m>>2]=0;m=m+4|0}while((m|0)<(o|0));q=c[d+88>>2]|0;if((q|0)<(f<<1|0)){if((c[d+92>>2]|0)<(f<<1|0)){if(!f){h=0;j=q}else{c[6435]=(c[6435]|0)+1;h=yc(f<<7|19)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}j=c[d+88>>2]|0}if((j|0)>0){e=0;do{m=h+(e<<6)|0;n=(c[d+96>>2]|0)+(e<<6)|0;o=m+64|0;do{c[m>>2]=c[n>>2];m=m+4|0;n=n+4|0}while((m|0)<(o|0));e=e+1|0}while((e|0)!=(j|0))}j=c[d+96>>2]|0;if(j|0){if(a[d+100>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}c[d+96>>2]=0}a[d+100>>0]=1;c[d+96>>2]=h;c[d+92>>2]=f<<1;j=d+96|0}else j=d+96|0;h=q;do{m=(c[j>>2]|0)+(h<<6)|0;n=A+32|0;o=m+64|0;do{c[m>>2]=c[n>>2];m=m+4|0;n=n+4|0}while((m|0)<(o|0));h=h+1|0}while((h|0)!=(f<<1|0))}c[d+88>>2]=f<<1}c[d+56>>2]=0;Lc(d,0,f);if(a[d+60>>0]|0?(c[d+152>>2]|0)==0:0){if(!(c[d+156>>2]|0)){c[6435]=(c[6435]|0)+1;f=yc(51)|0;if(!f)e=0;else{c[(f+4+15&-16)+-4>>2]=f;e=f+4+15&-16}f=c[d+152>>2]|0;if((f|0)>0){h=0;do{q=e+(h<<5)|0;o=(c[d+160>>2]|0)+(h<<5)|0;c[q>>2]=c[o>>2];c[q+4>>2]=c[o+4>>2];c[q+8>>2]=c[o+8>>2];c[q+12>>2]=c[o+12>>2];c[q+16>>2]=c[o+16>>2];c[q+20>>2]=c[o+20>>2];c[q+24>>2]=c[o+24>>2];c[q+28>>2]=c[o+28>>2];h=h+1|0}while((h|0)!=(f|0))}f=c[d+160>>2]|0;if(f|0){if(a[d+164>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}c[d+160>>2]=0}a[d+164>>0]=1;c[d+160>>2]=e;c[d+156>>2]=1;h=d+160|0;j=(c[d+152>>2]|0)+1|0;f=e}else{h=d+160|0;j=1;f=c[d+160>>2]|0}c[d+152>>2]=j;c[f>>2]=c[A>>2];c[f+4>>2]=c[A+4>>2];c[f+8>>2]=c[A+8>>2];c[f+12>>2]=c[A+12>>2];c[f+16>>2]=c[A+16>>2];c[f+20>>2]=c[A+20>>2];c[f+24>>2]=c[A+24>>2];c[f+28>>2]=c[A+28>>2];q=c[h>>2]|0;o=c[d+136>>2]|0;b[q>>1]=b[o>>1]|0;b[q+2>>1]=b[o+2>>1]|0;b[q+4>>1]=b[o+4>>1]|0;b[q+6>>1]=b[o+6>>1]|0;b[q+8>>1]=b[o+8>>1]|0;b[q+10>>1]=b[o+10>>1]|0;c[q+12>>2]=0;o=c[o+12>>2]|0;c[q+16>>2]=(o|0)>-1?1:0-o|0}c[d+168>>2]=c[d+152>>2];f=c[d+116>>2]|0;if(f|0){if(a[d+120>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}c[d+116>>2]=0}a[d+120>>0]=1;c[d+116>>2]=0;c[d+108>>2]=0;c[d+112>>2]=0;f=c[d+76>>2]|0;if(!f){a[d+80>>0]=1;c[d+76>>2]=0;c[d+68>>2]=0;d=d+72|0;c[d>>2]=0;i=A;return}if(a[d+80>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}c[d+76>>2]=0;a[d+80>>0]=1;c[d+76>>2]=0;c[d+68>>2]=0;d=d+72|0;c[d>>2]=0;i=A;return}function qd(b,d,e,f,h,i,j,l,m,n,o){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;i=i|0;j=j|0;l=l|0;m=+m;n=+n;o=+o;var p=0,q=0,r=0,s=0.0,t=0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0.0,H=0.0,I=0.0,J=0.0,K=0.0,L=0.0,M=0,N=0,O=0.0,P=0.0,Q=0.0,R=0.0;N=c[b+68>>2]|0;if((N|0)==(c[b+72>>2]|0)?(t=N|0?N<<1:1,(N|0)<(t|0)):0){if(!t){p=0;q=N}else{c[6435]=(c[6435]|0)+1;p=yc((t*152|3)+16|0)|0;if(!p)p=0;else{c[(p+4+15&-16)+-4>>2]=p;p=p+4+15&-16}q=c[b+68>>2]|0}if((q|0)>0){r=0;do{_m(p+(r*152|0)|0,(c[b+76>>2]|0)+(r*152|0)|0,152)|0;r=r+1|0}while((r|0)!=(q|0))}q=c[b+76>>2]|0;if(q|0){if(a[b+80>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[q+-4>>2]|0)}c[b+76>>2]=0}a[b+80>>0]=1;c[b+76>>2]=p;c[b+72>>2]=t;p=c[b+68>>2]|0}else p=N;c[b+68>>2]=p+1;M=c[b+76>>2]|0;c[M+(N*152|0)+140>>2]=h;r=c[b+16>>2]|0;p=c[r+(e*244|0)+240>>2]|0;t=c[r+(f*244|0)+240>>2]|0;c[M+(N*152|0)+144>>2]=e;c[M+(N*152|0)+148>>2]=f;q=c[i+84>>2]|0;c[M+(N*152|0)+104>>2]=q;c[M+(N*152|0)+132>>2]=0;g[M+(N*152|0)+100>>2]=0.0;g[M+(N*152|0)+96>>2]=0.0;L=(c[k>>2]=q,+g[k>>2]);if(p|0){c[M+(N*152|0)+16>>2]=c[d>>2];c[M+(N*152|0)+16+4>>2]=c[d+4>>2];c[M+(N*152|0)+16+8>>2]=c[d+8>>2];c[M+(N*152|0)+16+12>>2]=c[d+12>>2];K=+g[j+4>>2];D=+g[M+(N*152|0)+24>>2];H=+g[j+8>>2];I=+g[M+(N*152|0)+20>>2];E=+g[M+(N*152|0)+16>>2];J=+g[j>>2];g[M+(N*152|0)>>2]=K*D-H*I;g[M+(N*152|0)+4>>2]=H*E-D*J;g[M+(N*152|0)+8>>2]=I*J-K*E;g[M+(N*152|0)+12>>2]=0.0;v=((K*D-H*I)*+g[p+264>>2]+(H*E-D*J)*+g[p+268>>2]+(I*J-K*E)*+g[p+272>>2])*+g[p+544>>2];s=((K*D-H*I)*+g[p+280>>2]+(H*E-D*J)*+g[p+284>>2]+(I*J-K*E)*+g[p+288>>2])*+g[p+548>>2];u=((K*D-H*I)*+g[p+296>>2]+(H*E-D*J)*+g[p+300>>2]+(I*J-K*E)*+g[p+304>>2])*+g[p+552>>2];g[M+(N*152|0)+64>>2]=v;g[M+(N*152|0)+68>>2]=s;g[M+(N*152|0)+72>>2]=u;g[M+(N*152|0)+76>>2]=0.0;z=E;A=I;B=D;C=K*D-H*I;D=H*E-D*J;E=I*J-K*E}else{c[M+(N*152|0)+64>>2]=0;c[M+(N*152|0)+64+4>>2]=0;c[M+(N*152|0)+64+8>>2]=0;c[M+(N*152|0)+64+12>>2]=0;c[M+(N*152|0)>>2]=0;c[M+(N*152|0)+4>>2]=0;c[M+(N*152|0)+8>>2]=0;c[M+(N*152|0)+12>>2]=0;c[M+(N*152|0)+16>>2]=0;c[M+(N*152|0)+20>>2]=0;c[M+(N*152|0)+24>>2]=0;c[M+(N*152|0)+28>>2]=0;s=0.0;u=0.0;v=0.0;z=0.0;A=0.0;B=0.0;C=0.0;D=0.0;E=0.0}if(t|0){K=-+g[d>>2];P=-+g[d+4>>2];J=-+g[d+8>>2];g[M+(N*152|0)+48>>2]=K;g[M+(N*152|0)+52>>2]=P;g[M+(N*152|0)+56>>2]=J;g[M+(N*152|0)+60>>2]=0.0;O=+g[l+4>>2];R=+g[l+8>>2];Q=+g[l>>2];g[M+(N*152|0)+32>>2]=O*J-R*P;g[M+(N*152|0)+36>>2]=R*K-Q*J;g[M+(N*152|0)+40>>2]=Q*P-O*K;g[M+(N*152|0)+44>>2]=0.0;w=((O*J-R*P)*+g[t+264>>2]+(R*K-Q*J)*+g[t+268>>2]+(Q*P-O*K)*+g[t+272>>2])*+g[t+544>>2];x=((O*J-R*P)*+g[t+280>>2]+(R*K-Q*J)*+g[t+284>>2]+(Q*P-O*K)*+g[t+288>>2])*+g[t+548>>2];y=((O*J-R*P)*+g[t+296>>2]+(R*K-Q*J)*+g[t+300>>2]+(Q*P-O*K)*+g[t+304>>2])*+g[t+552>>2];g[M+(N*152|0)+80>>2]=w;g[M+(N*152|0)+84>>2]=x;g[M+(N*152|0)+88>>2]=y;g[M+(N*152|0)+92>>2]=0.0;F=K;G=P;H=J;I=O*J-R*P;J=R*K-Q*J;K=Q*P-O*K}else{c[M+(N*152|0)+80>>2]=0;c[M+(N*152|0)+80+4>>2]=0;c[M+(N*152|0)+80+8>>2]=0;c[M+(N*152|0)+80+12>>2]=0;c[M+(N*152|0)+32>>2]=0;c[M+(N*152|0)+32+4>>2]=0;c[M+(N*152|0)+32+8>>2]=0;c[M+(N*152|0)+32+12>>2]=0;c[M+(N*152|0)+32+16>>2]=0;c[M+(N*152|0)+32+20>>2]=0;c[M+(N*152|0)+32+24>>2]=0;c[M+(N*152|0)+32+28>>2]=0;w=0.0;x=0.0;y=0.0;F=0.0;G=0.0;H=0.0;I=0.0;J=0.0;K=0.0}if(p|0){P=+g[j+8>>2];Q=+g[j+4>>2];R=+g[j>>2];u=+g[p+344>>2]+((s*P-u*Q)*+g[d>>2]+(u*R-P*v)*+g[d+4>>2]+(Q*v-s*R)*+g[d+8>>2])}else u=0.0;if(t|0){Q=-w;s=-x;y=-y;O=+g[l+8>>2];P=+g[l+4>>2];R=+g[l>>2];s=+g[t+344>>2]+((O*s-P*y)*+g[d>>2]+(R*y-O*Q)*+g[d+4>>2]+(P*Q-R*s)*+g[d+8>>2])}else s=0.0;x=m/(u+s);g[M+(N*152|0)+108>>2]=x;if(p|0){u=+g[r+(e*244|0)+192>>2];v=+g[r+(e*244|0)+196>>2];w=+g[r+(e*244|0)+200>>2];s=(+g[r+(e*244|0)+176>>2]+ +g[r+(e*244|0)+208>>2])*z+(+g[r+(e*244|0)+180>>2]+ +g[r+(e*244|0)+212>>2])*A+(+g[r+(e*244|0)+184>>2]+ +g[r+(e*244|0)+216>>2])*B}else{u=0.0;v=0.0;w=0.0;s=z*0.0+A*0.0+B*0.0}s=s+(u*C+v*D+w*E);if(t|0){O=+g[r+(f*244|0)+192>>2];P=+g[r+(f*244|0)+196>>2];R=+g[r+(f*244|0)+200>>2];Q=(+g[r+(f*244|0)+176>>2]+ +g[r+(f*244|0)+208>>2])*F+(+g[r+(f*244|0)+180>>2]+ +g[r+(f*244|0)+212>>2])*G+(+g[r+(f*244|0)+184>>2]+ +g[r+(f*244|0)+216>>2])*H;O=O*I;P=P*J;P=O+P;R=R*K;R=P+R;R=Q+R;R=s+R;R=n-R;R=x*R;f=M+(N*152|0)+112|0;g[f>>2]=R;f=M+(N*152|0)+116|0;g[f>>2]=o;R=-L;f=M+(N*152|0)+120|0;g[f>>2]=R;f=M+(N*152|0)+124|0;c[f>>2]=q;return}else{O=0.0;P=0.0;R=0.0;Q=F*0.0+G*0.0+H*0.0;O=O*I;P=P*J;P=O+P;R=R*K;R=P+R;R=Q+R;R=s+R;R=n-R;R=x*R;f=M+(N*152|0)+112|0;g[f>>2]=R;f=M+(N*152|0)+116|0;g[f>>2]=o;R=-L;f=M+(N*152|0)+120|0;g[f>>2]=R;f=M+(N*152|0)+124|0;c[f>>2]=q;return}}function rd(b,d){b=b|0;d=+d;var e=0,f=0,h=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0,p=0,q=0,r=0.0,s=0.0,t=0.0,u=0.0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0;C=i;i=i+64|0;e=c[b+136>>2]|0;if((e|0)>0){f=0;do{Ae(c[b+116>>2]|0,c[b+144>>2]|0,f,0);f=f+1|0;e=c[b+136>>2]|0}while((f|0)<(e|0))}f=c[b+116>>2]|0;t=+g[f+312>>2];u=+g[f+316>>2];h=+g[f+320>>2];h=+O(+(t*t+u*u+h*h))*3.5999999046325684;g[b+112>>2]=h;B=c[b+128>>2]|0;if(+g[f+4+(B<<2)>>2]*+g[f+312>>2]+ +g[f+20+(B<<2)>>2]*+g[f+316>>2]+ +g[f+36+(B<<2)>>2]*+g[f+320>>2]<0.0)g[b+112>>2]=-h;if((e|0)>0){B=0;do{A=c[b+144>>2]|0;p=A+(B*284|0)|0;Tg(f,p,0);o=A+(B*284|0)+204|0;e=A+(B*284|0)+212|0;h=+g[o>>2]+ +g[e>>2];q=A+(B*284|0)+52|0;v=A+(B*284|0)+56|0;w=A+(B*284|0)+60|0;D=A+(B*284|0)+36|0;x=A+(B*284|0)+16|0;t=h*+g[v>>2]+ +g[A+(B*284|0)+40>>2];u=h*+g[w>>2]+ +g[A+(B*284|0)+44>>2];g[A+(B*284|0)+16>>2]=+g[q>>2]*h+ +g[D>>2];y=A+(B*284|0)+20|0;g[y>>2]=t;z=A+(B*284|0)+24|0;g[z>>2]=u;g[A+(B*284|0)+28>>2]=0.0;g[C+32>>2]=-1.0;f=c[b+100>>2]|0;D=Ib[c[(c[f>>2]|0)+8>>2]&31](f,D,x,C)|0;f=A+(B*284|0)+88|0;c[f>>2]=0;do if(D){h=h*+g[C+32>>2];c[p>>2]=c[C+16>>2];c[p+4>>2]=c[C+16+4>>2];c[p+8>>2]=c[C+16+8>>2];c[p+12>>2]=c[C+16+12>>2];a[A+(B*284|0)+84>>0]=1;if((a[22552]|0)==0?Wa(22552)|0:0){c[C+40>>2]=0;c[C+40+4>>2]=0;c[C+40+8>>2]=0;c[C+40+12>>2]=0;og(23888,0.0,0,0,C+40|0);_a(22552)}c[6023]=c[6023]|1;g[6058]=0.0;j=+g[6068]*0.0;k=+g[6069]*0.0;g[6063]=+g[6067]*0.0;g[6064]=j;g[6065]=k;g[6066]=0.0;c[6071]=0;c[6072]=0;c[6073]=0;c[6074]=0;k=+g[6060]*0.0;j=+g[6061]*0.0;g[6112]=+g[6059]*0.0;g[6113]=k;g[6114]=j;g[6115]=0.0;c[f>>2]=23888;h=h-+g[e>>2];e=A+(B*284|0)+32|0;g[e>>2]=h;j=+g[o>>2];k=+g[A+(B*284|0)+208>>2]*.009999999776482582;if(h>2]=j-k;h=j-k}if(h>j+k)g[e>>2]=j+k;c[x>>2]=c[C>>2];c[x+4>>2]=c[C+4>>2];c[x+8>>2]=c[C+8>>2];c[x+12>>2]=c[C+12>>2];s=+g[p>>2];t=+g[A+(B*284|0)+4>>2];u=+g[A+(B*284|0)+8>>2];r=s*+g[q>>2]+t*+g[v>>2]+u*+g[w>>2];e=c[b+116>>2]|0;n=+g[x>>2]-+g[e+52>>2];m=+g[y>>2]-+g[e+56>>2];h=+g[z>>2]-+g[e+60>>2];j=+g[e+332>>2];k=+g[e+336>>2];l=+g[e+328>>2];if(!(r>=-.10000000149011612)){g[A+(B*284|0)+272>>2]=-1.0/r*(s*(j*h-m*k+ +g[e+312>>2])+t*(n*k-h*l+ +g[e+316>>2])+u*(m*l-n*j+ +g[e+320>>2]));g[A+(B*284|0)+268>>2]=-1.0/r;break}else{g[A+(B*284|0)+272>>2]=0.0;g[A+(B*284|0)+268>>2]=10.0;break}}else{c[A+(B*284|0)+32>>2]=c[o>>2];g[A+(B*284|0)+272>>2]=0.0;t=-+g[v>>2];u=-+g[w>>2];g[p>>2]=-+g[q>>2];g[A+(B*284|0)+4>>2]=t;g[A+(B*284|0)+8>>2]=u;g[A+(B*284|0)+12>>2]=0.0;g[A+(B*284|0)+268>>2]=1.0}while(0);B=B+1|0;e=c[b+136>>2]|0;f=c[b+116>>2]|0}while((B|0)<(e|0));j=1.0/+g[f+344>>2];if((e|0)>0){f=0;do{e=c[b+144>>2]|0;if(!(a[e+(f*284|0)+84>>0]|0))h=0.0;else{h=+g[e+(f*284|0)+272>>2];h=j*(+g[e+(f*284|0)+216>>2]*(+g[e+(f*284|0)+204>>2]-+g[e+(f*284|0)+32>>2])*+g[e+(f*284|0)+268>>2]-h*+g[(h<0.0?e+(f*284|0)+220|0:e+(f*284|0)+224|0)>>2]);h=h<0.0?0.0:h}g[e+(f*284|0)+276>>2]=h;f=f+1|0;e=c[b+136>>2]|0}while((f|0)<(e|0));if((e|0)>0){e=0;do{B=c[b+144>>2]|0;s=+g[B+(e*284|0)+276>>2];u=+g[B+(e*284|0)+248>>2];s=s>u?u:s;u=s*+g[B+(e*284|0)+4>>2]*d;t=s*+g[B+(e*284|0)+8>>2]*d;g[C+40>>2]=+g[B+(e*284|0)>>2]*s*d;g[C+40+4>>2]=u;g[C+40+8>>2]=t;g[C+40+12>>2]=0.0;D=c[b+116>>2]|0;t=+g[B+(e*284|0)+20>>2]-+g[D+56>>2];u=+g[B+(e*284|0)+24>>2]-+g[D+60>>2];g[C>>2]=+g[B+(e*284|0)+16>>2]-+g[D+52>>2];g[C+4>>2]=t;g[C+8>>2]=u;g[C+12>>2]=0.0;gj(D,C+40|0,C);e=e+1|0}while((e|0)<(c[b+136>>2]|0))}}}zb[c[(c[b>>2]|0)+20>>2]&31](b,d);f=c[b+136>>2]|0;if((f|0)<=0){i=C;return}o=c[b+144>>2]|0;p=c[b+116>>2]|0;q=0;do{h=+g[o+(q*284|0)+36>>2]-+g[p+52>>2];j=+g[o+(q*284|0)+40>>2]-+g[p+56>>2];k=+g[o+(q*284|0)+44>>2]-+g[p+60>>2];l=+g[p+332>>2];m=+g[p+336>>2];n=+g[p+328>>2];if(!(a[o+(q*284|0)+84>>0]|0)){e=o+(q*284|0)+240|0;h=+g[e>>2];D=o+(q*284|0)+236|0;g[D>>2]=h+ +g[D>>2]}else{e=c[b+128>>2]|0;F=+g[p+4+(e<<2)>>2];r=+g[p+20+(e<<2)>>2];t=+g[p+36+(e<<2)>>2];E=+g[o+(q*284|0)>>2];s=+g[o+(q*284|0)+4>>2];u=+g[o+(q*284|0)+8>>2];h=((j*n-h*l+ +g[p+320>>2])*(t-u*(F*E+r*s+t*u))+((l*k-j*m+ +g[p+312>>2])*(F-E*(F*E+r*s+t*u))+(h*m-k*n+ +g[p+316>>2])*(r-s*(F*E+r*s+t*u))))*d/+g[o+(q*284|0)+212>>2];e=o+(q*284|0)+240|0;g[e>>2]=h;D=o+(q*284|0)+236|0;g[D>>2]=+g[D>>2]+h}g[e>>2]=h*.9900000095367432;q=q+1|0}while((q|0)!=(f|0));i=C;return}function sd(b,d,e){b=b|0;d=d|0;e=e|0;var f=0.0,h=0.0,i=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0.0;C=+g[b+48>>2];i=+g[d>>2];D=+g[b+64>>2];j=+g[d+4>>2];E=+g[b+80>>2];p=+g[d+8>>2];s=+g[b+52>>2];r=+g[b+68>>2];q=+g[b+84>>2];w=+g[b+56>>2];y=+g[b+72>>2];z=+g[b+88>>2];v=+g[d+16>>2];u=+g[d+20>>2];t=+g[d+24>>2];x=+g[d+32>>2];F=+g[d+36>>2];G=+g[d+40>>2];k=+g[b+96>>2];h=+g[b+100>>2];B=+g[b+104>>2];A=+g[d+48>>2]+(i*k+j*h+p*B);f=v*k+u*h+t*B+ +g[d+52>>2];B=x*k+F*h+G*B+ +g[d+56>>2];g[b+1064>>2]=C*i+D*j+E*p;g[b+1068>>2]=i*s+j*r+p*q;g[b+1072>>2]=i*w+j*y+p*z;g[b+1076>>2]=0.0;g[b+1080>>2]=C*v+D*u+E*t;g[b+1084>>2]=s*v+r*u+q*t;g[b+1088>>2]=w*v+y*u+z*t;g[b+1092>>2]=0.0;g[b+1096>>2]=C*x+D*F+E*G;g[b+1100>>2]=s*x+r*F+q*G;g[b+1104>>2]=w*x+y*F+z*G;g[b+1108>>2]=0.0;g[b+1112>>2]=A;g[b+1116>>2]=f;g[b+1120>>2]=B;g[b+1124>>2]=0.0;B=+g[b+112>>2];f=+g[e>>2];A=+g[b+128>>2];G=+g[e+4>>2];z=+g[b+144>>2];F=+g[e+8>>2];y=+g[b+116>>2];x=+g[b+132>>2];w=+g[b+148>>2];q=+g[b+120>>2];r=+g[b+136>>2];s=+g[b+152>>2];E=+g[e+16>>2];D=+g[e+20>>2];C=+g[e+24>>2];t=+g[e+32>>2];u=+g[e+36>>2];v=+g[e+40>>2];p=+g[b+160>>2];j=+g[b+164>>2];i=+g[b+168>>2];h=+g[e+48>>2]+(f*p+G*j+F*i);k=E*p+D*j+C*i+ +g[e+52>>2];i=t*p+u*j+v*i+ +g[e+56>>2];g[b+1128>>2]=B*f+A*G+z*F;g[b+1132>>2]=f*y+G*x+F*w;g[b+1136>>2]=f*q+G*r+F*s;g[b+1140>>2]=0.0;g[b+1144>>2]=B*E+A*D+z*C;g[b+1148>>2]=y*E+x*D+w*C;g[b+1152>>2]=q*E+r*D+s*C;g[b+1156>>2]=0.0;g[b+1160>>2]=B*t+A*u+z*v;g[b+1164>>2]=y*t+x*u+w*v;g[b+1168>>2]=q*t+r*u+s*v;g[b+1172>>2]=0.0;g[b+1176>>2]=h;g[b+1180>>2]=k;g[b+1184>>2]=i;g[b+1188>>2]=0.0;h=h-+g[b+1112>>2];k=k-+g[b+1116>>2];i=i-+g[b+1120>>2];w=+g[b+1084>>2];x=+g[b+1104>>2];y=+g[b+1088>>2];z=+g[b+1100>>2];A=+g[b+1096>>2];B=+g[b+1080>>2];C=+g[b+1064>>2];D=+g[b+1068>>2];E=+g[b+1072>>2];F=1.0/((w*x-y*z)*C+D*(y*A-x*B)+(z*B-w*A)*E);G=(z*B-w*A)*F;f=i*(y*D-w*E)*F+(h*(w*x-y*z)*F+k*(z*E-x*D)*F);j=i*(B*E-y*C)*F+(h*(y*A-x*B)*F+k*(x*C-A*E)*F);k=i*(w*C-B*D)*F+(h*G+k*(A*D-z*C)*F);g[b+1256>>2]=f;g[b+1260>>2]=j;g[b+1264>>2]=k;g[b+1268>>2]=0.0;g[b+840>>2]=f;h=+g[b+680>>2];i=+g[b+696>>2];do if(!(h>i)){if(h>f){c[b+856>>2]=2;g[b+824>>2]=f-h;break}if(i>2]=1;g[b+824>>2]=f-i;break}else{c[b+856>>2]=0;g[b+824>>2]=0.0;break}}else{c[b+856>>2]=0;g[b+824>>2]=0.0}while(0);g[b+844>>2]=j;f=+g[b+684>>2];h=+g[b+700>>2];do if(!(f>h)){if(f>j){c[b+860>>2]=2;g[b+828>>2]=j-f;break}if(h>2]=1;g[b+828>>2]=j-h;break}else{c[b+860>>2]=0;g[b+828>>2]=0.0;break}}else{c[b+860>>2]=0;g[b+828>>2]=0.0}while(0);g[b+848>>2]=k;f=+g[b+688>>2];h=+g[b+704>>2];do if(!(f>h)){if(f>k){c[b+864>>2]=2;g[b+832>>2]=k-f;break}if(h>2]=1;g[b+832>>2]=k-h;break}else{c[b+864>>2]=0;g[b+832>>2]=0.0;break}}else{c[b+864>>2]=0;g[b+832>>2]=0.0}while(0);h=+g[b+1128>>2];i=+g[b+1144>>2];j=+g[b+1160>>2];k=+g[b+1132>>2];l=+g[b+1148>>2];m=+g[b+1164>>2];n=(w*x-y*z)*F*k+(z*E-x*D)*F*l+(y*D-w*E)*F*m;o=k*(y*A-x*B)*F+(x*C-A*E)*F*l+(B*E-y*C)*F*m;p=j*(w*C-B*D)*F+(h*G+i*(A*D-z*C)*F);f=G*+g[b+1136>>2]+(A*D-z*C)*F*+g[b+1152>>2]+(w*C-B*D)*F*(q*t+r*u+s*v);do if(p<1.0)if(p>-1.0){g[b+1192>>2]=+W(+-(k*G+(A*D-z*C)*F*l+(w*C-B*D)*F*m),+f);G=p<-1.0?-1.0:p;g[b+1196>>2]=+U(+(G>1.0?1.0:G));g[b+1200>>2]=+W(+-(j*(B*E-y*C)*F+(h*(y*A-x*B)*F+i*(x*C-A*E)*F)),+(j*(y*D-w*E)*F+(h*(w*x-y*z)*F+i*(z*E-x*D)*F)));break}else{g[b+1192>>2]=-+W(+n,+o);g[b+1196>>2]=-1.5707963705062866;g[b+1200>>2]=0.0;break}else{g[b+1192>>2]=+W(+n,+o);g[b+1196>>2]=1.5707963705062866;g[b+1200>>2]=0.0}while(0);g[b+1236>>2]=0.0;z=x*(h*x-j*E)-y*(i*E-h*y);A=E*(i*E-h*y)-x*(j*y-i*x);B=y*(j*y-i*x)-E*(h*x-j*E);g[b+1220>>2]=0.0;C=i*(i*E-h*y)-j*(h*x-j*E);D=j*(j*y-i*x)-h*(i*E-h*y);F=h*(h*x-j*E)-i*(j*y-i*x);g[b+1252>>2]=0.0;G=1.0/+O(+(z*z+A*A+B*B));g[b+1208>>2]=z*G;g[b+1212>>2]=A*G;g[b+1216>>2]=B*G;G=1.0/+O(+((j*y-i*x)*(j*y-i*x)+(h*x-j*E)*(h*x-j*E)+(i*E-h*y)*(i*E-h*y)));g[b+1224>>2]=(j*y-i*x)*G;g[b+1228>>2]=(h*x-j*E)*G;g[b+1232>>2]=(i*E-h*y)*G;G=1.0/+O(+(C*C+D*D+F*F));g[b+1240>>2]=C*G;g[b+1244>>2]=D*G;g[b+1248>>2]=F*G;if(!(a[b+1301>>0]|0))return;F=+g[(c[b+28>>2]|0)+344>>2];G=+g[(c[b+32>>2]|0)+344>>2];a[b+1280>>0]=(F<1.1920928955078125e-07|G<1.1920928955078125e-07)&1;G=F+G>0.0?G/(F+G):.5;g[b+1272>>2]=G;g[b+1276>>2]=1.0-G;return}function td(b,d){b=b|0;d=d|0;var e=0,f=0,g=0,h=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0;x=i;i=i+80|0;e=c[b+8>>2]|0;if((e|0)>0){g=0;do{f=c[(c[b+16>>2]|0)+(g<<2)>>2]|0;if((c[f+236>>2]|0)==1){Cb[c[(c[f>>2]|0)+24>>2]&127](f,d);e=c[b+8>>2]|0}g=g+1|0}while((g|0)<(e|0))}a[x+16>>0]=1;c[x+12>>2]=0;c[x+4>>2]=0;c[x+8>>2]=0;a[x+36>>0]=1;c[x+32>>2]=0;c[x+24>>2]=0;c[x+28>>2]=0;a[x+56>>0]=1;c[x+52>>2]=0;c[x+44>>2]=0;c[x+48>>2]=0;a[x+76>>0]=1;c[x+72>>2]=0;c[x+64>>2]=0;c[x+68>>2]=0;if((e|0)<=0){pj(x);i=x;return}j=0;k=0;g=0;f=0;r=0;while(1){q=c[(c[(c[b+16>>2]|0)+(r<<2)>>2]|0)+192>>2]|0;p=(q+~(q<<15)>>10^q+~(q<<15))*9|0;p=(p>>6^p)+~((p>>6^p)<<11)>>16^(p>>6^p)+~((p>>6^p)<<11);o=p&j+-1;l=o>>>0>>0;a:do if(l){h=c[g+(o<<2)>>2]|0;if((h|0)!=-1){m=c[x+72>>2]|0;while(1){if((q|0)==(c[m+(h<<3)>>2]|0)){n=13;break}k=c[f+(h<<2)>>2]|0;if((k|0)==-1)break;else h=k}if((n|0)==13?(n=0,(c[x+52>>2]|0)+(h<<2)|0):0)break;if(!l){n=20;break}}e=c[g+(o<<2)>>2]|0;if((e|0)!=-1){h=c[x+72>>2]|0;while(1){if((q|0)==(c[h+(e<<3)>>2]|0))break;e=c[f+(e<<2)>>2]|0;if((e|0)==-1){n=20;break a}}c[(c[x+52>>2]|0)+(e<<2)>>2]=q;e=j;n=82}else n=20}else n=20;while(0);if((n|0)==20){l=c[x+44>>2]|0;if((l|0)==(j|0)){e=j|0?j<<1:1;if((j|0)<(e|0)){if((e|0)!=0?(c[6435]=(c[6435]|0)+1,w=yc((e<<2|3)+16|0)|0,(w|0)!=0):0){c[(w+4+15&-16)+-4>>2]=w;g=w+4+15&-16}else g=0;if((j|0)>0){f=0;do{c[g+(f<<2)>>2]=c[(c[x+52>>2]|0)+(f<<2)>>2];f=f+1|0}while((f|0)!=(j|0))}f=c[x+52>>2]|0;if(f|0){if(a[x+56>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}c[x+52>>2]=0}a[x+56>>0]=1;c[x+52>>2]=g;c[x+48>>2]=e;f=j}else{f=j;e=j}}else{f=l;e=j}c[(c[x+52>>2]|0)+(f<<2)>>2]=q;c[x+44>>2]=f+1;f=c[x+64>>2]|0;if((f|0)==(c[x+68>>2]|0)?(s=f|0?f<<1:1,(f|0)<(s|0)):0){if((s|0)!=0?(c[6435]=(c[6435]|0)+1,t=yc((s<<3|3)+16|0)|0,(t|0)!=0):0){c[(t+4+15&-16)+-4>>2]=t;g=t+4+15&-16}else g=0;if((f|0)>0){e=0;do{k=(c[x+72>>2]|0)+(e<<3)|0;m=c[k+4>>2]|0;n=g+(e<<3)|0;c[n>>2]=c[k>>2];c[n+4>>2]=m;e=e+1|0}while((e|0)!=(f|0))}e=c[x+72>>2]|0;if(e|0){if(a[x+76>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0)}c[x+72>>2]=0}a[x+76>>0]=1;c[x+72>>2]=g;c[x+68>>2]=s;f=c[x+64>>2]|0;e=c[x+48>>2]|0}n=(c[x+72>>2]|0)+(f<<3)|0;c[n>>2]=q;c[n+4>>2]=0;c[x+64>>2]=f+1;if((j|0)<(e|0)){k=c[x+4>>2]|0;do if((e|0)>(k|0)){if((e|0)>=(k|0)){do if((c[x+8>>2]|0)<(e|0)){if((e|0)!=0?(c[6435]=(c[6435]|0)+1,u=yc((e<<2|3)+16|0)|0,(u|0)!=0):0){c[(u+4+15&-16)+-4>>2]=u;f=u+4+15&-16}else f=0;g=c[x+12>>2]|0;if((k|0)<=0){if(!g){a[x+16>>0]=1;c[x+12>>2]=f;c[x+8>>2]=e;break}}else{h=0;do{c[f+(h<<2)>>2]=c[g+(h<<2)>>2];h=h+1|0}while((h|0)!=(k|0))}if(a[x+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[g+-4>>2]|0)}a[x+16>>0]=1;c[x+12>>2]=f;c[x+8>>2]=e}else f=c[x+12>>2]|0;while(0);Qn(f+(k<<2)|0,0,e-k<<2|0)|0}c[x+4>>2]=e;j=c[x+24>>2]|0;if((e|0)>(j|0)){do if((c[x+28>>2]|0)<(e|0)){if((e|0)!=0?(c[6435]=(c[6435]|0)+1,v=yc((e<<2|3)+16|0)|0,(v|0)!=0):0){c[(v+4+15&-16)+-4>>2]=v;f=v+4+15&-16}else f=0;g=c[x+32>>2]|0;if((j|0)<=0){if(!g){a[x+36>>0]=1;c[x+32>>2]=f;c[x+28>>2]=e;break}}else{h=0;do{c[f+(h<<2)>>2]=c[g+(h<<2)>>2];h=h+1|0}while((h|0)!=(j|0))}if(a[x+36>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[g+-4>>2]|0)}a[x+36>>0]=1;c[x+32>>2]=f;c[x+28>>2]=e}else f=c[x+32>>2]|0;while(0);Qn(f+(j<<2)|0,0,e-j<<2|0)|0}c[x+24>>2]=e;if((e|0)>0){o=e<<2;Qn(c[x+12>>2]|0,-1,o|0)|0;Qn(c[x+32>>2]|0,-1,o|0)|0}if((k|0)<=0){e=c[x+48>>2]|0;break}f=c[x+72>>2]|0;g=c[x+12>>2]|0;h=c[x+32>>2]|0;e=c[x+48>>2]|0;j=0;do{o=c[f+(j<<3)>>2]|0;o=(o+~(o<<15)>>10^o+~(o<<15))*9|0;o=g+((((o>>6^o)+~((o>>6^o)<<11)>>16^(o>>6^o)+~((o>>6^o)<<11))&e+-1)<<2)|0;c[h+(j<<2)>>2]=c[o>>2];c[o>>2]=j;j=j+1|0}while((j|0)!=(k|0))}while(0);f=e;e=p&e+-1}else{f=e;e=o}g=c[x+12>>2]|0;e=g+(e<<2)|0;n=c[x+32>>2]|0;c[n+(l<<2)>>2]=c[e>>2];c[e>>2]=l;e=f;f=n;n=82}if((n|0)==82){n=0;Cb[c[(c[q>>2]|0)+60>>2]&127](q,d);j=e;e=c[b+8>>2]|0}h=r+1|0;if((h|0)>=(e|0))break;k=c[x+4>>2]|0;r=h}pj(x);i=x;return}function ud(b,d){b=b|0;d=d|0;var e=0,f=0,h=0.0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0;r=i;i=i+32|0;ig(b+4|0,((_(c[b+152>>2]|0,c[b+16>>2]|0)|0)/100|0)+1|0);if(c[b+164>>2]|0){p=((_(c[b+148>>2]|0,c[b+76>>2]|0)|0)/100|0)+1|0;ig(b+64|0,p);p=(c[b+164>>2]|0)-p|0;c[b+164>>2]=(p|0)<0?0:p}e=((c[b+144>>2]|0)+1|0)%2|0;c[b+144>>2]=e;e=c[b+124+(e<<2)>>2]|0;if(e|0){do{l=e+56|0;m=e;e=c[l>>2]|0;k=c[m+52>>2]|0;j=e;if(!k)c[b+124+(c[m+60>>2]<<2)>>2]=j;else c[k+56>>2]=j;j=c[l>>2]|0;if(j|0)c[j+52>>2]=c[m+52>>2];c[m+52>>2]=0;c[l>>2]=c[b+132>>2];j=c[b+132>>2]|0;if(j|0)c[j+52>>2]=m;c[b+132>>2]=m;j=c[m+48>>2]|0;hh(b+4|0,j)|0;k=c[b+8>>2]|0;if(k|0){c[6436]=(c[6436]|0)+1;hd(c[k+-4>>2]|0)}c[b+8>>2]=j;c[b+16>>2]=(c[b+16>>2]|0)+-1;c[r>>2]=c[m+16>>2];c[r+4>>2]=c[m+16+4>>2];c[r+8>>2]=c[m+16+8>>2];c[r+12>>2]=c[m+16+12>>2];c[r+16>>2]=c[m+32>>2];c[r+16+4>>2]=c[m+32+4>>2];c[r+16+8>>2]=c[m+32+8>>2];c[r+16+12>>2]=c[m+32+12>>2];j=c[b+68>>2]|0;if(!j){c[6435]=(c[6435]|0)+1;j=yc(63)|0;if(!j)j=0;else{c[(j+4+15&-16)+-4>>2]=j;j=j+4+15&-16}k=j;l=k+44|0;do{c[k>>2]=0;k=k+4|0}while((k|0)<(l|0))}else c[b+68>>2]=0;c[j+32>>2]=0;c[j+36>>2]=m;c[j+40>>2]=0;c[j>>2]=c[r>>2];c[j+4>>2]=c[r+4>>2];c[j+8>>2]=c[r+8>>2];c[j+12>>2]=c[r+12>>2];c[j+16>>2]=c[r+16>>2];c[j+20>>2]=c[r+20>>2];c[j+24>>2]=c[r+24>>2];c[j+28>>2]=c[r+28>>2];lf(b+64|0,c[b+64>>2]|0,j);k=(c[b+76>>2]|0)+1|0;c[b+76>>2]=k;c[m+48>>2]=j;c[m+60>>2]=2}while((e|0)!=0);c[b+164>>2]=k;a[b+194>>0]=1}c[r>>2]=8904;c[r+4>>2]=b;if(a[b+193>>0]|0?(we(b+4|0,c[b+4>>2]|0,c[b+64>>2]|0,r),a[b+193>>0]|0):0){p=c[b+4>>2]|0;we(b+4|0,p,p,r)}if(a[b+194>>0]|0?(n=c[b+136>>2]|0,n=Eb[c[(c[n>>2]|0)+28>>2]&127](n)|0,f=c[n+4>>2]|0,(f|0)>0):0){e=(_(c[b+156>>2]|0,f)|0)/100|0;p=c[b+160>>2]|0;e=(p|0)>(e|0)?p:e;e=(f|0)<(e|0)?f:e;if((e|0)>0){j=0;do{l=((c[b+184>>2]|0)+j|0)%(f|0)|0;o=c[n+12>>2]|0;k=c[o+(l<<4)>>2]|0;l=c[o+(l<<4)+4>>2]|0;o=c[k+48>>2]|0;p=c[l+48>>2]|0;if(!(((((+g[o>>2]<=+g[p+16>>2]?+g[o+16>>2]>=+g[p>>2]:0)?+g[o+4>>2]<=+g[p+20>>2]:0)?+g[o+20>>2]>=+g[p+4>>2]:0)?+g[o+8>>2]<=+g[p+24>>2]:0)?+g[o+24>>2]>=+g[p+8>>2]:0)){f=c[b+136>>2]|0;Ib[c[(c[f>>2]|0)+12>>2]&31](f,k,l,d)|0;f=c[n+4>>2]|0;j=j+-1|0;e=e+-1|0}j=j+1|0}while((j|0)<(e|0));if((f|0)>0)q=37;else e=0}else q=37;if((q|0)==37)e=((c[b+184>>2]|0)+e|0)%(f|0)|0;c[b+184>>2]=e}c[b+180>>2]=(c[b+180>>2]|0)+1;c[b+160>>2]=1;a[b+194>>0]=0;f=c[b+168>>2]|0;e=c[b+172>>2]|0;if(!f)h=0.0;else h=+(e>>>0)/+(f>>>0);g[b+176>>2]=h;c[b+172>>2]=e>>>1;c[b+168>>2]=f>>>1;p=c[b+136>>2]|0;if(!(Eb[c[(c[p>>2]|0)+56>>2]&127](p)|0)){i=r;return}p=c[b+136>>2]|0;p=Eb[c[(c[p>>2]|0)+28>>2]&127](p)|0;e=c[p+4>>2]|0;if((e|0)>1){Vd(p,0,e+-1|0);j=0;k=0;l=0;f=0;q=44}else{j=0;o=0;n=0;f=0}while(1){if((q|0)==44){q=0;e=c[p+4>>2]|0;o=k;n=l}if((j|0)>=(e|0))break;m=c[p+12>>2]|0;k=m+(j<<4)|0;l=c[k>>2]|0;m=m+(j<<4)+4|0;e=c[m>>2]|0;if(!((l|0)==(n|0)&(e|0)==(f|0))){f=c[l+48>>2]|0;n=c[e+48>>2]|0;if(((((+g[f>>2]<=+g[n+16>>2]?+g[f+16>>2]>=+g[n>>2]:0)?+g[f+4>>2]<=+g[n+20>>2]:0)?+g[f+20>>2]>=+g[n+4>>2]:0)?+g[f+8>>2]<=+g[n+24>>2]:0)?+g[f+24>>2]>=+g[n+8>>2]:0){f=e;e=o}else q=53}else{e=f;q=53}if((q|0)==53){f=c[b+136>>2]|0;ic[c[(c[f>>2]|0)+32>>2]&127](f,k,d);c[k>>2]=0;c[m>>2]=0;f=e;e=o+1|0}j=j+1|0;k=e;q=44}if((e|0)>1){Vd(p,0,e+-1|0);k=c[p+4>>2]|0}else k=e;l=k-o|0;if((o|0)<0){if((c[p+8>>2]|0)<(l|0)){if((k|0)!=(o|0)){c[6435]=(c[6435]|0)+1;e=yc((l<<4|3)+16|0)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}f=c[p+4>>2]|0;if((f|0)>0){j=0;do{q=c[p+12>>2]|0;c[e+(j<<4)>>2]=c[q+(j<<4)>>2];c[e+(j<<4)+4>>2]=c[q+(j<<4)+4>>2];c[e+(j<<4)+8>>2]=c[q+(j<<4)+8>>2];c[e+(j<<4)+12>>2]=c[q+(j<<4)+12>>2];j=j+1|0}while((j|0)!=(f|0));f=p+12|0}else f=p+12|0}else{e=0;f=p+12|0}j=c[f>>2]|0;if(j|0){if(a[p+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}c[f>>2]=0}a[p+16>>0]=1;c[f>>2]=e;c[p+8>>2]=l}else f=p+12|0;e=k;do{q=(c[f>>2]|0)+(e<<4)|0;e=e+1|0;c[q>>2]=0;c[q+4>>2]=0;c[q+8>>2]=0;c[q+12>>2]=0}while((e|0)!=(l|0))}c[p+4>>2]=l;i=r;return}function vd(b,d){b=b|0;d=d|0;var e=0,f=0,h=0,i=0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0,p=0,q=0,r=0,s=0.0,t=0.0,u=0.0,v=0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0;o=c[b+28>>2]|0;h=c[b+32>>2]|0;Fc(b,o+4|0,h+4|0,o+264|0,h+264|0);q=c[d+8>>2]|0;g[q>>2]=1.0;p=c[d+24>>2]|0;g[q+(p+1<<2)>>2]=1.0;g[q+((p<<1)+2<<2)>>2]=1.0;l=+g[b+348>>2];u=+g[b+352>>2];n=+g[b+356>>2];s=+g[o+4>>2]*l+ +g[o+8>>2]*u+ +g[o+12>>2]*n;m=l*+g[o+20>>2]+u*+g[o+24>>2]+n*+g[o+28>>2];n=l*+g[o+36>>2]+u*+g[o+40>>2]+n*+g[o+44>>2];q=c[d+12>>2]|0;c[q>>2]=0;g[q+4>>2]=n;g[q+8>>2]=-m;g[q+12>>2]=0.0;g[q+(p<<2)>>2]=-n;c[q+(p<<2)+4>>2]=0;g[q+(p<<2)+8>>2]=s;g[q+(p<<2)+12>>2]=0.0;g[q+(p<<1<<2)>>2]=m;g[q+(p<<1<<2)+4>>2]=-s;c[q+(p<<1<<2)+8>>2]=0;g[q+(p<<1<<2)+12>>2]=0.0;q=c[d+16>>2]|0;g[q>>2]=-1.0;g[q+(p+1<<2)>>2]=-1.0;g[q+((p<<1)+2<<2)>>2]=-1.0;u=+g[b+412>>2];l=+g[b+416>>2];k=+g[b+420>>2];t=+g[h+4>>2]*u+ +g[h+8>>2]*l+ +g[h+12>>2]*k;j=u*+g[h+20>>2]+l*+g[h+24>>2]+k*+g[h+28>>2];k=u*+g[h+36>>2]+l*+g[h+40>>2]+k*+g[h+44>>2];p=c[d+20>>2]|0;q=c[d+24>>2]|0;c[p>>2]=0;g[p+4>>2]=-k;g[p+8>>2]=j;g[p+12>>2]=0.0;g[p+(q<<2)>>2]=k;c[p+(q<<2)+4>>2]=0;g[p+(q<<2)+8>>2]=-t;g[p+(q<<2)+12>>2]=0.0;g[p+(q<<1<<2)>>2]=-j;g[p+(q<<1<<2)+4>>2]=t;c[p+(q<<1<<2)+8>>2]=0;g[p+(q<<1<<2)+12>>2]=0.0;q=c[b+592>>2]|0;l=+g[((q&2|0)==0?d+4|0:b+600|0)>>2]*+g[d>>2];r=c[d+24>>2]|0;i=c[d+28>>2]|0;f=c[d+36>>2]|0;e=c[d+40>>2]|0;g[i>>2]=l*(t+ +g[h+52>>2]-s-+g[o+52>>2]);g[f>>2]=-3402823466385288598117041.0e14;g[e>>2]=3402823466385288598117041.0e14;if(!(q&1)){g[i+(r<<2)>>2]=l*(j+ +g[h+56>>2]-m-+g[o+56>>2]);g[f+(r<<2)>>2]=-3402823466385288598117041.0e14;g[e+(r<<2)>>2]=3402823466385288598117041.0e14;g[i+(r<<1<<2)>>2]=l*(k+ +g[h+60>>2]-n-+g[o+60>>2]);g[f+(r<<1<<2)>>2]=-3402823466385288598117041.0e14;g[e+(r<<1<<2)>>2]=3402823466385288598117041.0e14}else{v=c[d+32>>2]|0;c[v>>2]=c[b+596>>2];g[i+(r<<2)>>2]=l*(j+ +g[h+56>>2]-m-+g[o+56>>2]);g[f+(r<<2)>>2]=-3402823466385288598117041.0e14;g[e+(r<<2)>>2]=3402823466385288598117041.0e14;c[v+(r<<2)>>2]=c[b+596>>2];g[i+(r<<1<<2)>>2]=l*(k+ +g[h+60>>2]-n-+g[o+60>>2]);g[f+(r<<1<<2)>>2]=-3402823466385288598117041.0e14;g[e+(r<<1<<2)>>2]=3402823466385288598117041.0e14;c[v+(r<<1<<2)>>2]=c[b+596>>2]}do if(!(a[b+526>>0]|0))h=r*3|0;else{h=c[d+12>>2]|0;u=+g[b+456>>2];if(+g[b+444>>2]>2]>2];y=+g[o+8>>2];x=+g[o+12>>2];D=+g[b+304>>2];C=+g[b+320>>2];B=+g[b+336>>2];l=+g[b+308>>2];n=+g[b+324>>2];t=+g[b+340>>2];w=+g[o+20>>2];j=+g[o+24>>2];k=+g[o+28>>2];m=+g[o+36>>2];s=+g[o+40>>2];u=+g[o+44>>2];g[h+(r*3<<2)>>2]=z*D+y*C+x*B;g[h+((r*3|0)+1<<2)>>2]=D*w+C*j+B*k;g[h+((r*3|0)+2<<2)>>2]=D*m+C*s+B*u;g[h+(r<<2<<2)>>2]=z*l+y*n+x*t;g[h+((r<<2|1)<<2)>>2]=l*w+n*j+t*k;g[h+((r<<2|2)<<2)>>2]=l*m+n*s+t*u;g[p+(r*3<<2)>>2]=-(z*D+y*C+x*B);g[p+((r*3|0)+1<<2)>>2]=-(D*w+C*j+B*k);g[p+((r*3|0)+2<<2)>>2]=-(D*m+C*s+B*u);g[p+(r<<2<<2)>>2]=-(z*l+y*n+x*t);g[p+((r<<2|1)<<2)>>2]=-(l*w+n*j+t*k);g[p+((r<<2|2)<<2)>>2]=-(l*m+n*s+t*u);A=+g[d>>2]*+g[b+436>>2];i=c[d+28>>2]|0;g[i+(r*3<<2)>>2]=A*((z*D+y*C+x*B)*+g[b+460>>2]+(D*w+C*j+B*k)*+g[b+464>>2]+(D*m+C*s+B*u)*+g[b+468>>2]);g[i+(r<<2<<2)>>2]=A*((z*l+y*n+x*t)*+g[b+460>>2]+(l*w+n*j+t*k)*+g[b+464>>2]+(l*m+n*s+t*u)*+g[b+468>>2]);f=c[d+36>>2]|0;g[f+(r*3<<2)>>2]=-3402823466385288598117041.0e14;e=c[d+40>>2]|0;g[e+(r*3<<2)>>2]=3402823466385288598117041.0e14;g[f+(r<<2<<2)>>2]=-3402823466385288598117041.0e14;g[e+(r<<2<<2)>>2]=3402823466385288598117041.0e14;h=(c[d+24>>2]|0)+(r<<2)|0;break}D=+g[b+436>>2];B=D*+g[b+460>>2]*D;C=D*D*+g[b+464>>2];D=D*D*+g[b+468>>2];g[h+(r*3<<2)>>2]=B;g[h+((r*3|0)+1<<2)>>2]=C;g[h+((r*3|0)+2<<2)>>2]=D;g[p+(r*3<<2)>>2]=-B;g[p+((r*3|0)+1<<2)>>2]=-C;g[p+((r*3|0)+2<<2)>>2]=-D;g[i+(r*3<<2)>>2]=+g[d>>2]*+g[b+432>>2]*+g[b+504>>2];if(q&4|0)c[(c[d+32>>2]|0)+(r*3<<2)>>2]=c[b+604>>2];g[f+(r*3<<2)>>2]=0.0;g[e+(r*3<<2)>>2]=3402823466385288598117041.0e14;h=r<<2}while(0);if(!(a[b+525>>0]|0))return;D=+g[b+436>>2];B=D*+g[b+476>>2]*D;C=D*D*+g[b+480>>2];D=D*D*+g[b+484>>2];p=c[d+12>>2]|0;r=c[d+20>>2]|0;g[p+(h<<2)>>2]=B;q=h+1|0;g[p+(q<<2)>>2]=C;v=h+2|0;g[p+(v<<2)>>2]=D;g[r+(h<<2)>>2]=-B;g[r+(q<<2)>>2]=-C;g[r+(v<<2)>>2]=-D;g[i+(h<<2)>>2]=+g[d>>2]*+g[b+432>>2]*+g[b+508>>2];if(c[b+592>>2]&4|0)c[(c[d+32>>2]|0)+(h<<2)>>2]=c[b+604>>2];if(!(+g[b+452>>2]>0.0)){g[f+(h<<2)>>2]=-3402823466385288598117041.0e14;g[e+(h<<2)>>2]=3402823466385288598117041.0e14;return}f=f+(h<<2)|0;e=c[d+40>>2]|0;if(+g[b+508>>2]>0.0){g[f>>2]=0.0;g[e+(h<<2)>>2]=3402823466385288598117041.0e14;return}else{g[f>>2]=-3402823466385288598117041.0e14;g[e+(h<<2)>>2]=0.0;return}}function wd(a,b,d,e,f,h){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;h=+h;var j=0.0,l=0,m=0.0,n=0,o=0.0,p=0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0,D=0,E=0.0,F=0.0,G=0.0,H=0,I=0,J=0,K=0,L=0.0,M=0.0,N=0.0,O=0.0;K=i;i=i+288|0;c[K+144>>2]=c[d>>2];c[K+144+4>>2]=c[d+4>>2];c[K+144+8>>2]=c[d+8>>2];c[K+144+12>>2]=c[d+12>>2];c[K+144+16>>2]=c[d+16>>2];c[K+144+16+4>>2]=c[d+16+4>>2];c[K+144+16+8>>2]=c[d+16+8>>2];c[K+144+16+12>>2]=c[d+16+12>>2];c[K+144+32>>2]=c[d+32>>2];c[K+144+32+4>>2]=c[d+32+4>>2];c[K+144+32+8>>2]=c[d+32+8>>2];c[K+144+32+12>>2]=c[d+32+12>>2];c[K+144+48>>2]=c[d+48>>2];c[K+144+48+4>>2]=c[d+48+4>>2];c[K+144+48+8>>2]=c[d+48+8>>2];c[K+144+48+12>>2]=c[d+48+12>>2];c[K+80>>2]=c[e>>2];c[K+80+4>>2]=c[e+4>>2];c[K+80+8>>2]=c[e+8>>2];c[K+80+12>>2]=c[e+12>>2];c[K+80+16>>2]=c[e+16>>2];c[K+80+16+4>>2]=c[e+16+4>>2];c[K+80+16+8>>2]=c[e+16+8>>2];c[K+80+16+12>>2]=c[e+16+12>>2];c[K+80+32>>2]=c[e+32>>2];c[K+80+32+4>>2]=c[e+32+4>>2];c[K+80+32+8>>2]=c[e+32+8>>2];c[K+80+32+12>>2]=c[e+32+12>>2];c[K+80+48>>2]=c[e+48>>2];c[K+80+48+4>>2]=c[e+48+4>>2];c[K+80+48+8>>2]=c[e+48+8>>2];c[K+80+48+12>>2]=c[e+48+12>>2];m=+g[K+80+52>>2]-+g[K+144+52>>2];O=+g[K+80+56>>2]-+g[K+144+56>>2];g[K+32>>2]=+g[K+80+48>>2]-+g[K+144+48>>2];g[K+32+4>>2]=m;g[K+32+8>>2]=O;g[K+32+12>>2]=0.0;Gf(K+144|0,K+80|0,K+224|0,K+208|0);O=+g[K+208>>2];m=O*+g[K+224+4>>2];L=O*+g[K+224+8>>2];g[K>>2]=+g[K+224>>2]*O;g[K+4>>2]=m;g[K+8>>2]=L;g[K+12>>2]=0.0;c[K+224+4>>2]=0;c[K+224+4+4>>2]=0;c[K+224+24>>2]=0;c[K+224+24+4>>2]=0;J=K+224+44|0;c[J>>2]=0;c[J+4>>2]=0;c[J+8>>2]=0;c[J+12>>2]=0;c[J+16>>2]=0;Wg(K+144|0,K+16|0);L=+g[K+16>>2];m=+g[K+16+4>>2];O=+g[K+16+8>>2];M=+g[K+16+12>>2];j=L*(2.0/(L*L+m*m+O*O+M*M));o=m*(2.0/(L*L+m*m+O*O+M*M));N=O*(2.0/(L*L+m*m+O*O+M*M));g[K+224>>2]=1.0-(m*o+O*N);g[K+224+4>>2]=L*o-M*N;g[K+224+8>>2]=L*N+M*o;g[K+224+12>>2]=0.0;g[K+224+16>>2]=L*o+M*N;g[K+224+20>>2]=1.0-(L*j+O*N);g[K+224+24>>2]=m*N-M*j;g[K+224+28>>2]=0.0;g[K+224+32>>2]=L*N-M*o;g[K+224+36>>2]=m*N+M*j;g[K+224+40>>2]=1.0-(L*j+m*o);g[J>>2]=0.0;rh(b,K+224|0,K+32|0,K,K+64|0,K+48|0);if((c[a+268>>2]|0)<=0){i=K;return}I=0;do{p=c[(c[a+276>>2]|0)+(I<<2)>>2]|0;if(Zb[c[(c[f>>2]|0)+8>>2]&31](f,c[p+188>>2]|0)|0?(C=c[p+192>>2]|0,mc[c[(c[C>>2]|0)+8>>2]&127](C,p+4|0,K+208|0,K+32|0),q=+g[K+208>>2]+ +g[K+64>>2],r=+g[K+208+4>>2]+ +g[K+64+4>>2],s=+g[K+208+8>>2]+ +g[K+64+8>>2],g[K+208>>2]=q,g[K+208+4>>2]=r,g[K+208+8>>2]=s,g[K+208+12>>2]=0.0,t=+g[K+32>>2]+ +g[K+48>>2],u=+g[K+32+4>>2]+ +g[K+48+4>>2],v=+g[K+32+8>>2]+ +g[K+48+8>>2],g[K+32>>2]=t,g[K+32+4>>2]=u,g[K+32+8>>2]=v,g[K+32+12>>2]=0.0,w=+g[d+48>>2]-(t+q)*.5,x=+g[d+52>>2]-(u+r)*.5,y=+g[d+56>>2]-(v+s)*.5,z=+g[e+48>>2]-(t+q)*.5,A=+g[e+52>>2]-(u+r)*.5,B=+g[e+56>>2]-(v+s)*.5,C=w<-((t-q)*.5)|(w>(t-q)*.5?8:0)|(x<-((u-r)*.5)?2:0)|(x>(u-r)*.5?16:0)|(y<-((v-s)*.5)?4:0)|(y>(v-s)*.5?32:0),D=z<-((t-q)*.5)|(z>(t-q)*.5?8:0)|(A<-((u-r)*.5)?2:0)|(A>(u-r)*.5?16:0)|(B<-((v-s)*.5)?4:0)|(B>(v-s)*.5?32:0),(C&D|0)==0):0){H=1;J=0;j=0.0;l=1065353216;o=1.0;while(1){if(!(H&C)){if((H&D|0)!=0?(E=(-w-o*(t-q)*.5)/(z-w),E<(c[k>>2]=l,+g[k>>2])):0)l=(g[k>>2]=E,c[k>>2]|0)}else{m=(-w-o*(t-q)*.5)/(z-w);if(j<=m)j=m}n=H<<1;if(!(n&C))if((n&D|0)!=0?(F=(-x-o*(u-r)*.5)/(A-x),F<(c[k>>2]=l,+g[k>>2])):0){m=j;l=(g[k>>2]=F,c[k>>2]|0)}else m=j;else{m=(-x-o*(u-r)*.5)/(A-x);if(!(j<=m))m=j}n=H<<2;if(!(n&C))if((n&D|0)!=0?(G=(-y-o*(v-s)*.5)/(B-y),G<(c[k>>2]=l,+g[k>>2])):0){j=m;l=(g[k>>2]=G,c[k>>2]|0)}else j=m;else{j=(-y-o*(v-s)*.5)/(B-y);if(!(m<=j))j=m}J=J+1|0;if((J|0)==2)break;else{H=H<<3;o=-1.0}}if(j<=(c[k>>2]=l,+g[k>>2])){J=c[p+192>>2]|0;c[K+224>>2]=0;c[K+224+4>>2]=J;c[K+224+8>>2]=p;c[K+224+12>>2]=p+4;c[K+224+16>>2]=-1;c[K+224+20>>2]=-1;Ic(b,K+144|0,K+80|0,K+224|0,f,h)}}I=I+1|0}while((I|0)<(c[a+268>>2]|0));i=K;return}function xd(d,e){d=d|0;e=e|0;var f=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0;q=i;i=i+112|0;g[d+20>>2]=+h[e+32>>3];g[d+24>>2]=+h[e+40>>3];g[d+28>>2]=+h[e+48>>3];g[d+32>>2]=+h[e+56>>3];g[d+4>>2]=+h[e>>3];g[d+8>>2]=+h[e+8>>3];g[d+12>>2]=+h[e+16>>3];g[d+16>>2]=+h[e+24>>3];g[d+36>>2]=+h[e+64>>3];g[d+40>>2]=+h[e+72>>3];g[d+44>>2]=+h[e+80>>3];g[d+48>>2]=+h[e+88>>3];c[d+56>>2]=c[e+96>>2];a[d+60>>0]=(c[e+100>>2]|0)!=0&1;p=c[e+104>>2]|0;l=q+48|0;n=l+64|0;do{c[l>>2]=0;l=l+4|0}while((l|0)<(n|0));o=c[d+88>>2]|0;if((o|0)<(p|0)){if((c[d+92>>2]|0)<(p|0)){if(!p){f=0;j=o}else{c[6435]=(c[6435]|0)+1;f=yc(p<<6|19)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}j=c[d+88>>2]|0}if((j|0)>0){k=0;do{l=f+(k<<6)|0;m=(c[d+96>>2]|0)+(k<<6)|0;n=l+64|0;do{c[l>>2]=c[m>>2];l=l+4|0;m=m+4|0}while((l|0)<(n|0));k=k+1|0}while((k|0)!=(j|0))}j=c[d+96>>2]|0;if(j|0){if(a[d+100>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}c[d+96>>2]=0}a[d+100>>0]=1;c[d+96>>2]=f;c[d+92>>2]=p;j=d+96|0}else j=d+96|0;f=o;do{l=(c[j>>2]|0)+(f<<6)|0;m=q+48|0;n=l+64|0;do{c[l>>2]=c[m>>2];l=l+4|0;m=m+4|0}while((l|0)<(n|0));f=f+1|0}while((f|0)!=(p|0))}c[d+88>>2]=p;if((p|0)>0){f=c[d+96>>2]|0;j=0;k=c[e+112>>2]|0;while(1){g[f+(j<<6)+16>>2]=+h[k+32>>3];g[f+(j<<6)+20>>2]=+h[k+40>>3];g[f+(j<<6)+24>>2]=+h[k+48>>3];g[f+(j<<6)+28>>2]=+h[k+56>>3];g[f+(j<<6)>>2]=+h[k>>3];g[f+(j<<6)+4>>2]=+h[k+8>>3];g[f+(j<<6)+8>>2]=+h[k+16>>3];g[f+(j<<6)+12>>2]=+h[k+24>>3];c[f+(j<<6)+32>>2]=c[k+64>>2];c[f+(j<<6)+36>>2]=c[k+68>>2];c[f+(j<<6)+40>>2]=c[k+72>>2];j=j+1|0;if((j|0)==(p|0))break;else k=k+80|0}}m=c[e+108>>2]|0;c[q+32>>2]=0;c[q+32+4>>2]=0;c[q+32+8>>2]=0;c[q+32+12>>2]=0;l=c[d+128>>2]|0;if((l|0)<(m|0)){if((c[d+132>>2]|0)<(m|0)){if(!m){f=0;j=l}else{c[6435]=(c[6435]|0)+1;f=yc((m<<4|3)+16|0)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}j=c[d+128>>2]|0}if((j|0)>0){k=0;do{p=f+(k<<4)|0;o=(c[d+136>>2]|0)+(k<<4)|0;c[p>>2]=c[o>>2];c[p+4>>2]=c[o+4>>2];c[p+8>>2]=c[o+8>>2];c[p+12>>2]=c[o+12>>2];k=k+1|0}while((k|0)!=(j|0))}j=c[d+136>>2]|0;if(j|0){if(a[d+140>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}c[d+136>>2]=0}a[d+140>>0]=1;c[d+136>>2]=f;c[d+132>>2]=m;j=d+136|0}else j=d+136|0;f=l;do{p=(c[j>>2]|0)+(f<<4)|0;c[p>>2]=c[q+32>>2];c[p+4>>2]=c[q+32+4>>2];c[p+8>>2]=c[q+32+8>>2];c[p+12>>2]=c[q+32+12>>2];f=f+1|0}while((f|0)!=(m|0))}c[d+128>>2]=m;if((m|0)>0){f=c[d+136>>2]|0;j=0;k=c[e+116>>2]|0;while(1){c[f+(j<<4)+12>>2]=c[k+12>>2];b[f+(j<<4)+6>>1]=b[k+6>>1]|0;b[f+(j<<4)+8>>1]=b[k+8>>1]|0;b[f+(j<<4)+10>>1]=b[k+10>>1]|0;b[f+(j<<4)>>1]=b[k>>1]|0;b[f+(j<<4)+2>>1]=b[k+2>>1]|0;b[f+(j<<4)+4>>1]=b[k+4>>1]|0;j=j+1|0;if((j|0)==(m|0))break;else k=k+16|0}}c[d+144>>2]=c[e+120>>2];m=c[e+124>>2]|0;l=c[d+152>>2]|0;if((l|0)<(m|0)){if((c[d+156>>2]|0)<(m|0)){if(!m){f=0;j=l}else{c[6435]=(c[6435]|0)+1;f=yc(m<<5|19)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}j=c[d+152>>2]|0}if((j|0)>0){k=0;do{p=f+(k<<5)|0;o=(c[d+160>>2]|0)+(k<<5)|0;c[p>>2]=c[o>>2];c[p+4>>2]=c[o+4>>2];c[p+8>>2]=c[o+8>>2];c[p+12>>2]=c[o+12>>2];c[p+16>>2]=c[o+16>>2];c[p+20>>2]=c[o+20>>2];c[p+24>>2]=c[o+24>>2];c[p+28>>2]=c[o+28>>2];k=k+1|0}while((k|0)!=(j|0))}j=c[d+160>>2]|0;if(j|0){if(a[d+164>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}c[d+160>>2]=0}a[d+164>>0]=1;c[d+160>>2]=f;c[d+156>>2]=m;j=d+160|0}else j=d+160|0;f=l;do{p=(c[j>>2]|0)+(f<<5)|0;c[p>>2]=c[q>>2];c[p+4>>2]=c[q+4>>2];c[p+8>>2]=c[q+8>>2];c[p+12>>2]=c[q+12>>2];c[p+16>>2]=c[q+16>>2];c[p+20>>2]=c[q+20>>2];c[p+24>>2]=c[q+24>>2];c[p+28>>2]=c[q+28>>2];f=f+1|0}while((f|0)!=(m|0))}c[d+152>>2]=m;if((m|0)<=0){i=q;return}j=c[d+160>>2]|0;k=0;f=c[e+128>>2]|0;while(1){b[j+(k<<5)+6>>1]=b[f+14>>1]|0;b[j+(k<<5)+8>>1]=b[f+16>>1]|0;b[j+(k<<5)+10>>1]=b[f+18>>1]|0;b[j+(k<<5)>>1]=b[f+8>>1]|0;b[j+(k<<5)+2>>1]=b[f+10>>1]|0;b[j+(k<<5)+4>>1]=b[f+12>>1]|0;c[j+(k<<5)+12>>2]=c[f>>2];c[j+(k<<5)+16>>2]=c[f+4>>2];k=k+1|0;if((k|0)==(m|0))break;else f=f+20|0}i=q;return}function yd(a){a=a|0;var b=0,d=0,e=0.0,f=0.0,h=0.0,j=0.0,k=0.0,l=0.0,m=0,n=0,o=0,p=0.0,q=0.0,r=0.0;n=i;i=i+16|0;m=c[a+372>>2]|0;a:do switch(c[m+32>>2]|0){case 1:{d=1;b=0;while(1){c[n>>2]=0;c[n+4>>2]=0;c[n+8>>2]=0;c[n+12>>2]=0;g[n+(b<<2)>>2]=1.0;o=m+32|0;g[m+16+(d<<2)>>2]=0.0;d=(c[a+364>>2]|0)+-1|0;c[a+364>>2]=d;c[m+(c[o>>2]<<2)>>2]=c[a+348+(d<<2)>>2];d=c[o>>2]|0;c[o>>2]=d+1;e=+g[n>>2];f=+g[n+4>>2];h=+g[n+8>>2];Nh(a,e,f,h,c[m+(d<<2)>>2]|0);if(yd(a)|0)break;m=c[a+372>>2]|0;o=(c[m+32>>2]|0)+-1|0;c[m+32>>2]=o;o=c[m+(o<<2)>>2]|0;m=c[a+364>>2]|0;c[a+364>>2]=m+1;c[a+348+(m<<2)>>2]=o;m=c[a+372>>2]|0;g[m+16+(c[m+32>>2]<<2)>>2]=0.0;o=(c[a+364>>2]|0)+-1|0;c[a+364>>2]=o;c[m+(c[m+32>>2]<<2)>>2]=c[a+348+(o<<2)>>2];o=c[m+32>>2]|0;c[m+32>>2]=o+1;Nh(a,-e,-f,-h,c[m+(o<<2)>>2]|0);if(yd(a)|0)break;o=c[a+372>>2]|0;m=(c[o+32>>2]|0)+-1|0;c[o+32>>2]=m;m=c[o+(m<<2)>>2]|0;o=c[a+364>>2]|0;c[a+364>>2]=o+1;c[a+348+(o<<2)>>2]=m;b=b+1|0;if(b>>>0>=3)break a;m=c[a+372>>2]|0;d=c[m+32>>2]|0}o=1;i=n;return o|0}case 2:{o=c[m+4>>2]|0;b=c[m>>2]|0;e=+g[o+16>>2]-+g[b+16>>2];f=+g[o+20>>2]-+g[b+20>>2];h=+g[o+24>>2]-+g[b+24>>2];b=0;while(1){c[n>>2]=0;c[n+4>>2]=0;c[n+8>>2]=0;c[n+12>>2]=0;g[n+(b<<2)>>2]=1.0;j=+g[n+8>>2];k=+g[n+4>>2];l=+g[n>>2];if((f*j-h*k)*(f*j-h*k)+(h*l-e*j)*(h*l-e*j)+(e*k-f*l)*(e*k-f*l)>0.0){m=c[a+372>>2]|0;g[m+16+(c[m+32>>2]<<2)>>2]=0.0;o=(c[a+364>>2]|0)+-1|0;c[a+364>>2]=o;c[m+(c[m+32>>2]<<2)>>2]=c[a+348+(o<<2)>>2];o=c[m+32>>2]|0;c[m+32>>2]=o+1;Nh(a,f*j-h*k,h*l-e*j,e*k-f*l,c[m+(o<<2)>>2]|0);if(yd(a)|0)break;m=c[a+372>>2]|0;o=(c[m+32>>2]|0)+-1|0;c[m+32>>2]=o;o=c[m+(o<<2)>>2]|0;m=c[a+364>>2]|0;c[a+364>>2]=m+1;c[a+348+(m<<2)>>2]=o;m=c[a+372>>2]|0;g[m+16+(c[m+32>>2]<<2)>>2]=0.0;o=(c[a+364>>2]|0)+-1|0;c[a+364>>2]=o;c[m+(c[m+32>>2]<<2)>>2]=c[a+348+(o<<2)>>2];o=c[m+32>>2]|0;c[m+32>>2]=o+1;Nh(a,-(f*j-h*k),-(h*l-e*j),-(e*k-f*l),c[m+(o<<2)>>2]|0);if(yd(a)|0)break;o=c[a+372>>2]|0;m=(c[o+32>>2]|0)+-1|0;c[o+32>>2]=m;m=c[o+(m<<2)>>2]|0;o=c[a+364>>2]|0;c[a+364>>2]=o+1;c[a+348+(o<<2)>>2]=m}b=b+1|0;if(b>>>0>=3)break a}o=1;i=n;return o|0}case 3:{o=c[m+4>>2]|0;d=c[m>>2]|0;j=+g[d+16>>2];e=+g[o+16>>2]-j;k=+g[d+20>>2];f=+g[o+20>>2]-k;l=+g[d+24>>2];h=+g[o+24>>2]-l;o=c[m+8>>2]|0;j=+g[o+16>>2]-j;k=+g[o+20>>2]-k;l=+g[o+24>>2]-l;if((f*l-h*k)*(f*l-h*k)+(h*j-e*l)*(h*j-e*l)+(e*k-f*j)*(e*k-f*j)>0.0){g[m+28>>2]=0.0;o=(c[a+364>>2]|0)+-1|0;c[a+364>>2]=o;c[m+12>>2]=c[a+348+(o<<2)>>2];o=c[m+32>>2]|0;c[m+32>>2]=o+1;Nh(a,f*l-h*k,h*j-e*l,e*k-f*j,c[m+(o<<2)>>2]|0);if(yd(a)|0){o=1;i=n;return o|0}m=c[a+372>>2]|0;o=(c[m+32>>2]|0)+-1|0;c[m+32>>2]=o;o=c[m+(o<<2)>>2]|0;m=c[a+364>>2]|0;c[a+364>>2]=m+1;c[a+348+(m<<2)>>2]=o;m=c[a+372>>2]|0;g[m+16+(c[m+32>>2]<<2)>>2]=0.0;o=(c[a+364>>2]|0)+-1|0;c[a+364>>2]=o;c[m+(c[m+32>>2]<<2)>>2]=c[a+348+(o<<2)>>2];o=c[m+32>>2]|0;c[m+32>>2]=o+1;Nh(a,-(f*l-h*k),-(h*j-e*l),-(e*k-f*j),c[m+(o<<2)>>2]|0);if(yd(a)|0){o=1;i=n;return o|0}else{o=c[a+372>>2]|0;m=(c[o+32>>2]|0)+-1|0;c[o+32>>2]=m;m=c[o+(m<<2)>>2]|0;o=c[a+364>>2]|0;c[a+364>>2]=o+1;c[a+348+(o<<2)>>2]=m;break a}}break}case 4:{o=c[m>>2]|0;a=c[m+12>>2]|0;l=+g[a+16>>2];r=+g[o+16>>2]-l;p=+g[a+20>>2];e=+g[o+20>>2]-p;h=+g[a+24>>2];j=+g[o+24>>2]-h;o=c[m+4>>2]|0;f=+g[o+16>>2]-l;k=+g[o+20>>2]-p;q=+g[o+24>>2]-h;o=c[m+8>>2]|0;l=+g[o+16>>2]-l;p=+g[o+20>>2]-p;h=+g[o+24>>2]-h;if(!((0.0!=0.0?1:r*k*h+(e*q*l+j*f*p-r*q*p-e*f*h)-j*k*l!=r*k*h+(e*q*l+j*f*p-r*q*p-e*f*h)-j*k*l)|r*k*h+(e*q*l+j*f*p-r*q*p-e*f*h)-j*k*l==0.0)){o=1;i=n;return o|0}break}default:{}}while(0);o=0;i=n;return o|0}function zd(b,d,e){b=b|0;d=d|0;e=e|0;var f=0.0,h=0,i=0,j=0,k=0.0,l=0,m=0.0,n=0.0,o=0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0.0,H=0.0,I=0.0,J=0.0,K=0.0,L=0.0,M=0.0,N=0.0,P=0.0,Q=0.0,R=0.0,S=0.0,T=0.0,U=0.0,V=0.0,W=0.0,X=0,Y=0,Z=0;Y=c[d+36>>2]|0;X=c[e+36>>2]|0;K=+g[Y+8>>2];L=+g[Y+12>>2];M=+g[Y+16>>2];d=c[X+8>>2]|0;R=+g[d+8>>2];S=+g[d+12>>2];T=+g[d+16>>2];e=c[X+12>>2]|0;N=+g[e+8>>2];P=+g[e+12>>2];Q=+g[e+16>>2];h=c[X+16>>2]|0;U=+g[h+8>>2];V=+g[h+12>>2];W=+g[h+16>>2];w=N-K-(R-K);D=P-L-(S-L);B=Q-M-(T-M);x=D*(W-M-(T-M))-B*(V-L-(S-L));E=B*(U-K-(R-K))-w*(W-M-(T-M));C=w*(V-L-(S-L))-D*(U-K-(R-K));do if(C*C+(x*x+E*E)>1.1920928955078125e-07?(G=1.0/+O(+(C*C+(x*x+E*E))),H=(T-M)*C*G+((R-K)*x*G+(S-L)*E*G),H*H<3402823466385288598117041.0e14):0){f=R-K-x*G*H;r=S-L-E*G*H;s=T-M-C*G*H;t=N-K-x*G*H;u=P-L-E*G*H;v=Q-M-C*G*H;if((C*(u*f-r*t)+(x*(r*v-s*u)+E*(s*t-v*f))>0.0?(y=U-K-x*G*H,z=V-L-E*G*H,A=W-M-C*G*H,C*(z*t-u*y)+(x*(u*A-v*z)+E*(v*y-A*t))>0.0):0)?C*(r*y-z*f)+(x*(z*s-A*r)+E*(A*f-s*y))>0.0:0){q=H*H;p=x*G*H;n=C*G*H;m=E*G*H;break}if(w*w+D*D+B*B>1.1920928955078125e-07?(F=-((R-K)*w+(S-L)*D+(T-M)*B)/(w*w+D*D+B*B),F=F<0.0?0.0:F>1.0?1.0:F,q=(T-M+B*F)*(T-M+B*F)+((R-K+w*F)*(R-K+w*F)+(S-L+D*F)*(S-L+D*F)),q<3402823466385288598117041.0e14):0){s=R-K+w*F;t=T-M+B*F;r=S-L+D*F}else{q=3402823466385288598117041.0e14;s=0.0;t=0.0;r=0.0}f=(U-K-(N-K))*(U-K-(N-K))+(V-L-(P-L))*(V-L-(P-L))+(W-M-(Q-M))*(W-M-(Q-M));if(f>1.1920928955078125e-07?(n=-((N-K)*(U-K-(N-K))+(P-L)*(V-L-(P-L))+(Q-M)*(W-M-(Q-M)))/f,n=n<0.0?0.0:n>1.0?1.0:n,p=N-K+(U-K-(N-K))*n,k=P-L+(V-L-(P-L))*n,n=Q-M+(W-M-(Q-M))*n,n*n+(p*p+k*k)1.1920928955078125e-07?(J=-((U-K)*(R-K-(U-K))+(V-L)*(S-L-(V-L))+(W-M)*(T-M-(W-M)))/f,J=J<0.0?0.0:J>1.0?1.0:J,I=U-K+(R-K-(U-K))*J,m=V-L+(S-L-(V-L))*J,J=W-M+(T-M-(W-M))*J,J*J+(I*I+m*m)>2];J=L-+g[Y+28>>2];u=M-+g[Y+32>>2];u=+g[b+12>>2]+ +O(+(I*I+J*J+u*u))*2.0;if(!(q>2];V=+g[d+88>>2];W=+g[e+88>>2];f=+g[h+88>>2];f=!(V<=0.0)&!(W<=0.0)&!(f<=0.0)?V*s*(1.0/(t+s+r))+W*r*(1.0/(t+s+r))+t*(1.0/(t+s+r))*f:0.0;if(!(k+f>0.0))return;W=1.0/-+O(+q);q=p*W;p=m*W;n=n*W;o=c[b+4>>2]|0;d=c[b+8>>2]|0;l=c[(+g[o+316>>2]>+g[d+316>>2]?o+316|0:d+316|0)>>2]|0;m=k/(k+f)*+g[o+332>>2];f=f/(k+f)*+g[d+332>>2];d=c[o+832>>2]|0;if((d|0)==(c[o+836>>2]|0)?(Z=d|0?d<<1:1,(d|0)<(Z|0)):0){if(!Z)j=0;else{c[6435]=(c[6435]|0)+1;d=yc((Z*56|3)+16|0)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}j=d;d=c[o+832>>2]|0}if((d|0)>0){e=0;do{h=j+(e*56|0)|0;b=(c[o+840>>2]|0)+(e*56|0)|0;i=h+56|0;do{c[h>>2]=c[b>>2];h=h+4|0;b=b+4|0}while((h|0)<(i|0));e=e+1|0}while((e|0)!=(d|0))}d=c[o+840>>2]|0;if(d|0){if(a[o+844>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[o+840>>2]=0}a[o+844>>0]=1;c[o+840>>2]=j;c[o+836>>2]=Z;d=c[o+832>>2]|0}Z=c[o+840>>2]|0;c[Z+(d*56|0)>>2]=Y;c[Z+(d*56|0)+4>>2]=X;g[Z+(d*56|0)+8>>2]=s*(1.0/(t+s+r));g[Z+(d*56|0)+12>>2]=r*(1.0/(t+s+r));g[Z+(d*56|0)+16>>2]=t*(1.0/(t+s+r));g[Z+(d*56|0)+20>>2]=0.0;g[Z+(d*56|0)+24>>2]=q;g[Z+(d*56|0)+28>>2]=p;g[Z+(d*56|0)+32>>2]=n;g[Z+(d*56|0)+36>>2]=0.0;g[Z+(d*56|0)+40>>2]=u;c[Z+(d*56|0)+44>>2]=l;g[Z+(d*56|0)+48>>2]=m;g[Z+(d*56|0)+52>>2]=f;c[o+832>>2]=(c[o+832>>2]|0)+1;return}function Ad(d,e){d=d|0;e=e|0;var f=0,g=0,h=0,j=0,k=0,l=0,m=0,n=0,o=0;o=i;i=i+112|0;c[d+20>>2]=c[e+16>>2];c[d+24>>2]=c[e+20>>2];c[d+28>>2]=c[e+24>>2];c[d+32>>2]=c[e+28>>2];c[d+4>>2]=c[e>>2];c[d+8>>2]=c[e+4>>2];c[d+12>>2]=c[e+8>>2];c[d+16>>2]=c[e+12>>2];c[d+36>>2]=c[e+32>>2];c[d+40>>2]=c[e+36>>2];c[d+44>>2]=c[e+40>>2];c[d+48>>2]=c[e+44>>2];c[d+56>>2]=c[e+48>>2];a[d+60>>0]=(c[e+52>>2]|0)!=0&1;n=c[e+56>>2]|0;j=o+48|0;l=j+64|0;do{c[j>>2]=0;j=j+4|0}while((j|0)<(l|0));m=c[d+88>>2]|0;if((m|0)<(n|0)){if((c[d+92>>2]|0)<(n|0)){if(!n){f=0;g=m}else{c[6435]=(c[6435]|0)+1;f=yc(n<<6|19)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}g=c[d+88>>2]|0}if((g|0)>0){h=0;do{j=f+(h<<6)|0;k=(c[d+96>>2]|0)+(h<<6)|0;l=j+64|0;do{c[j>>2]=c[k>>2];j=j+4|0;k=k+4|0}while((j|0)<(l|0));h=h+1|0}while((h|0)!=(g|0))}g=c[d+96>>2]|0;if(g|0){if(a[d+100>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[g+-4>>2]|0)}c[d+96>>2]=0}a[d+100>>0]=1;c[d+96>>2]=f;c[d+92>>2]=n;g=d+96|0}else g=d+96|0;f=m;do{j=(c[g>>2]|0)+(f<<6)|0;k=o+48|0;l=j+64|0;do{c[j>>2]=c[k>>2];j=j+4|0;k=k+4|0}while((j|0)<(l|0));f=f+1|0}while((f|0)!=(n|0))}c[d+88>>2]=n;if((n|0)>0){f=c[d+96>>2]|0;g=0;h=c[e+64>>2]|0;while(1){c[f+(g<<6)+16>>2]=c[h+16>>2];c[f+(g<<6)+20>>2]=c[h+20>>2];c[f+(g<<6)+24>>2]=c[h+24>>2];c[f+(g<<6)+28>>2]=c[h+28>>2];c[f+(g<<6)>>2]=c[h>>2];c[f+(g<<6)+4>>2]=c[h+4>>2];c[f+(g<<6)+8>>2]=c[h+8>>2];c[f+(g<<6)+12>>2]=c[h+12>>2];c[f+(g<<6)+32>>2]=c[h+32>>2];c[f+(g<<6)+36>>2]=c[h+36>>2];c[f+(g<<6)+40>>2]=c[h+40>>2];g=g+1|0;if((g|0)==(n|0))break;else h=h+48|0}}k=c[e+60>>2]|0;c[o+32>>2]=0;c[o+32+4>>2]=0;c[o+32+8>>2]=0;c[o+32+12>>2]=0;j=c[d+128>>2]|0;if((j|0)<(k|0)){if((c[d+132>>2]|0)<(k|0)){if(!k){f=0;g=j}else{c[6435]=(c[6435]|0)+1;f=yc((k<<4|3)+16|0)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}g=c[d+128>>2]|0}if((g|0)>0){h=0;do{n=f+(h<<4)|0;m=(c[d+136>>2]|0)+(h<<4)|0;c[n>>2]=c[m>>2];c[n+4>>2]=c[m+4>>2];c[n+8>>2]=c[m+8>>2];c[n+12>>2]=c[m+12>>2];h=h+1|0}while((h|0)!=(g|0))}g=c[d+136>>2]|0;if(g|0){if(a[d+140>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[g+-4>>2]|0)}c[d+136>>2]=0}a[d+140>>0]=1;c[d+136>>2]=f;c[d+132>>2]=k;g=d+136|0}else g=d+136|0;f=j;do{n=(c[g>>2]|0)+(f<<4)|0;c[n>>2]=c[o+32>>2];c[n+4>>2]=c[o+32+4>>2];c[n+8>>2]=c[o+32+8>>2];c[n+12>>2]=c[o+32+12>>2];f=f+1|0}while((f|0)!=(k|0))}c[d+128>>2]=k;if((k|0)>0){f=c[d+136>>2]|0;g=0;h=c[e+68>>2]|0;while(1){c[f+(g<<4)+12>>2]=c[h+12>>2];b[f+(g<<4)+6>>1]=b[h+6>>1]|0;b[f+(g<<4)+8>>1]=b[h+8>>1]|0;b[f+(g<<4)+10>>1]=b[h+10>>1]|0;b[f+(g<<4)>>1]=b[h>>1]|0;b[f+(g<<4)+2>>1]=b[h+2>>1]|0;b[f+(g<<4)+4>>1]=b[h+4>>1]|0;g=g+1|0;if((g|0)==(k|0))break;else h=h+16|0}}c[d+144>>2]=c[e+76>>2];k=c[e+80>>2]|0;j=c[d+152>>2]|0;if((j|0)<(k|0)){if((c[d+156>>2]|0)<(k|0)){if(!k){f=0;g=j}else{c[6435]=(c[6435]|0)+1;f=yc(k<<5|19)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}g=c[d+152>>2]|0}if((g|0)>0){h=0;do{n=f+(h<<5)|0;m=(c[d+160>>2]|0)+(h<<5)|0;c[n>>2]=c[m>>2];c[n+4>>2]=c[m+4>>2];c[n+8>>2]=c[m+8>>2];c[n+12>>2]=c[m+12>>2];c[n+16>>2]=c[m+16>>2];c[n+20>>2]=c[m+20>>2];c[n+24>>2]=c[m+24>>2];c[n+28>>2]=c[m+28>>2];h=h+1|0}while((h|0)!=(g|0))}g=c[d+160>>2]|0;if(g|0){if(a[d+164>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[g+-4>>2]|0)}c[d+160>>2]=0}a[d+164>>0]=1;c[d+160>>2]=f;c[d+156>>2]=k;g=d+160|0}else g=d+160|0;f=j;do{n=(c[g>>2]|0)+(f<<5)|0;c[n>>2]=c[o>>2];c[n+4>>2]=c[o+4>>2];c[n+8>>2]=c[o+8>>2];c[n+12>>2]=c[o+12>>2];c[n+16>>2]=c[o+16>>2];c[n+20>>2]=c[o+20>>2];c[n+24>>2]=c[o+24>>2];c[n+28>>2]=c[o+28>>2];f=f+1|0}while((f|0)!=(k|0))}c[d+152>>2]=k;if((k|0)<=0){i=o;return}g=c[d+160>>2]|0;h=0;f=c[e+72>>2]|0;while(1){b[g+(h<<5)+6>>1]=b[f+14>>1]|0;b[g+(h<<5)+8>>1]=b[f+16>>1]|0;b[g+(h<<5)+10>>1]=b[f+18>>1]|0;b[g+(h<<5)>>1]=b[f+8>>1]|0;b[g+(h<<5)+2>>1]=b[f+10>>1]|0;b[g+(h<<5)+4>>1]=b[f+12>>1]|0;c[g+(h<<5)+12>>2]=c[f>>2];c[g+(h<<5)+16>>2]=c[f+4>>2];h=h+1|0;if((h|0)==(k|0))break;else f=f+20|0}i=o;return}function Bd(b){b=b|0;var d=0,e=0,f=0,g=0,h=0,i=0;c[b>>2]=3180;d=c[b+192>>2]|0;if(d|0)Ab[c[(c[d>>2]|0)+4>>2]&255](d);a:do if((c[b+1112>>2]|0)>0)do{h=c[c[b+1120>>2]>>2]|0;d=c[h+348>>2]|0;if(d|0){hh(b+1048|0,d)|0;e=c[b+1052>>2]|0;if(e|0){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0)}c[b+1052>>2]=d;c[b+1060>>2]=(c[b+1060>>2]|0)+-1}Fk(h);if(h|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0)}d=c[b+1112>>2]|0;if((d|0)<=0)break a;g=c[b+1120>>2]|0;e=0;do{f=g+(e<<2)|0;if((c[f>>2]|0)==(h|0)){i=18;break}e=e+1|0}while((e|0)<(d|0));if((i|0)==18){i=0;if((e|0)<(d|0)){c[f>>2]=c[g+(d+-1<<2)>>2];c[(c[b+1120>>2]|0)+(d+-1<<2)>>2]=h;c[b+1112>>2]=d+-1;d=d+-1|0}}}while((d|0)>0);while(0);d=c[b+872>>2]|0;if((d|0)>0){f=0;do{e=c[(c[b+880>>2]|0)+(f<<2)>>2]|0;if(e){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0);d=c[b+872>>2]|0}f=f+1|0}while((f|0)<(d|0))}d=c[b+852>>2]|0;if((d|0)>0){f=0;do{e=c[(c[b+860>>2]|0)+(f<<2)>>2]|0;if(e){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0);d=c[b+852>>2]|0}f=f+1|0}while((f|0)<(d|0))}d=c[b+1244>>2]|0;if(d|0){if(a[b+1248>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+1244>>2]=0}a[b+1248>>0]=1;c[b+1244>>2]=0;c[b+1236>>2]=0;c[b+1240>>2]=0;d=c[b+1140>>2]|0;if(d|0){if(a[b+1144>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+1140>>2]=0}a[b+1144>>0]=1;c[b+1140>>2]=0;c[b+1132>>2]=0;c[b+1136>>2]=0;d=c[b+1120>>2]|0;if(d|0){if(a[b+1124>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+1120>>2]=0}a[b+1124>>0]=1;c[b+1120>>2]=0;c[b+1112>>2]=0;c[b+1116>>2]=0;pi(b+1048|0);pi(b+988|0);pi(b+928|0);d=c[b+880>>2]|0;if(d|0){if(a[b+884>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+880>>2]=0}a[b+884>>0]=1;c[b+880>>2]=0;c[b+872>>2]=0;c[b+876>>2]=0;d=c[b+860>>2]|0;if(d|0){if(a[b+864>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+860>>2]=0}a[b+864>>0]=1;c[b+860>>2]=0;c[b+852>>2]=0;c[b+856>>2]=0;d=c[b+840>>2]|0;if(d|0){if(a[b+844>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+840>>2]=0}a[b+844>>0]=1;c[b+840>>2]=0;c[b+832>>2]=0;c[b+836>>2]=0;d=c[b+820>>2]|0;if(d|0){if(a[b+824>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+820>>2]=0}a[b+824>>0]=1;c[b+820>>2]=0;c[b+812>>2]=0;c[b+816>>2]=0;d=c[b+800>>2]|0;if(d|0){if(a[b+804>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+800>>2]=0}a[b+804>>0]=1;c[b+800>>2]=0;c[b+792>>2]=0;c[b+796>>2]=0;d=c[b+780>>2]|0;if(d|0){if(a[b+784>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+780>>2]=0}a[b+784>>0]=1;c[b+780>>2]=0;c[b+772>>2]=0;c[b+776>>2]=0;d=c[b+760>>2]|0;if(d|0){if(a[b+764>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+760>>2]=0}a[b+764>>0]=1;c[b+760>>2]=0;c[b+752>>2]=0;c[b+756>>2]=0;d=c[b+740>>2]|0;if(d|0){if(a[b+744>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+740>>2]=0}a[b+744>>0]=1;c[b+740>>2]=0;c[b+732>>2]=0;c[b+736>>2]=0;d=c[b+720>>2]|0;if(d|0){if(a[b+724>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+720>>2]=0}a[b+724>>0]=1;c[b+720>>2]=0;c[b+712>>2]=0;c[b+716>>2]=0;d=c[b+700>>2]|0;if(d|0){if(a[b+704>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+700>>2]=0}a[b+704>>0]=1;c[b+700>>2]=0;c[b+692>>2]=0;c[b+696>>2]=0;d=c[b+512>>2]|0;if(d|0){if(a[b+516>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+512>>2]=0}a[b+516>>0]=1;c[b+512>>2]=0;c[b+504>>2]=0;c[b+508>>2]=0;d=c[b+492>>2]|0;if(d|0){if(a[b+496>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+492>>2]=0}a[b+496>>0]=1;c[b+492>>2]=0;c[b+484>>2]=0;c[b+488>>2]=0;d=c[b+444>>2]|0;if(d|0){if(!((a[b+448>>0]&1)==0|(d|0)==0)){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+444>>2]=0}a[b+448>>0]=1;c[b+444>>2]=0;c[b+436>>2]=0;c[b+440>>2]=0;d=c[b+424>>2]|0;if(d|0){if(!((a[b+428>>0]&1)==0|(d|0)==0)){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+424>>2]=0}a[b+428>>0]=1;c[b+424>>2]=0;c[b+416>>2]=0;c[b+420>>2]=0;d=c[b+404>>2]|0;if(d|0){if(!((a[b+408>>0]&1)==0|(d|0)==0)){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+404>>2]=0}a[b+408>>0]=1;c[b+404>>2]=0;c[b+396>>2]=0;c[b+400>>2]=0;d=c[b+276>>2]|0;if(!d){a[b+280>>0]=1;c[b+276>>2]=0;c[b+268>>2]=0;i=b+272|0;c[i>>2]=0;c[b>>2]=5008;return}if(a[b+280>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+276>>2]=0;a[b+280>>0]=1;c[b+276>>2]=0;c[b+268>>2]=0;i=b+272|0;c[i>>2]=0;c[b>>2]=5008;return}function Cd(a,d,f,h,j,k,l,m,n){a=a|0;d=d|0;f=f|0;h=h|0;j=j|0;k=k|0;l=l|0;m=m|0;n=n|0;var o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0;w=i;i=i+16|0;Bj(a,w+6|0,+g[d>>2],+g[d+4>>2],+g[d+8>>2],0);Bj(a,w,+g[f>>2],+g[f+4>>2],+g[f+8>>2],1);v=b[a+64>>1]|0;u=c[a+60>>2]|0;b[a+64>>1]=b[u+((v&65535)<<6)+48>>1]|0;o=(b[a+56>>1]|0)+1<<16>>16;b[a+56>>1]=o;c[u+((v&65535)<<6)+12>>2]=v&65535;c[u+((v&65535)<<6)>>2]=j;b[u+((v&65535)<<6)+4>>1]=k;b[u+((v&65535)<<6)+6>>1]=l;c[u+((v&65535)<<6)+8>>2]=n;q=(o&65535)<<1&65534;b[u+54>>1]=(e[u+54>>1]|0)+2;p=c[a+68>>2]|0;n=e[p+(q+-1<<2)>>1]|e[p+(q+-1<<2)+2>>1]<<16;b[p+((q|1)<<2)>>1]=n;b[p+((q|1)<<2)+2>>1]=n>>>16;p=c[a+68>>2]|0;b[p+(q+-1<<2)>>1]=b[w+6>>1]|0;b[p+(q+-1<<2)+2>>1]=v;b[p+(q<<2)>>1]=b[w>>1]|0;b[p+(q<<2)+2>>1]=v;b[u+((v&65535)<<6)+48>>1]=q+-1;b[u+((v&65535)<<6)+54>>1]=(o&65535)<<1;p=(c[a+60>>2]|0)+56|0;b[p>>1]=(e[p>>1]|0)+2;p=c[a+72>>2]|0;n=e[p+(q+-1<<2)>>1]|e[p+(q+-1<<2)+2>>1]<<16;b[p+((q|1)<<2)>>1]=n;b[p+((q|1)<<2)+2>>1]=n>>>16;p=c[a+72>>2]|0;b[p+(q+-1<<2)>>1]=b[w+6+2>>1]|0;b[p+(q+-1<<2)+2>>1]=v;b[p+(q<<2)>>1]=b[w+2>>1]|0;b[p+(q<<2)+2>>1]=v;b[u+((v&65535)<<6)+50>>1]=q+-1;b[u+((v&65535)<<6)+56>>1]=(o&65535)<<1;p=(c[a+60>>2]|0)+58|0;b[p>>1]=(e[p>>1]|0)+2;p=c[a+76>>2]|0;n=e[p+(q+-1<<2)>>1]|e[p+(q+-1<<2)+2>>1]<<16;b[p+((q|1)<<2)>>1]=n;b[p+((q|1)<<2)+2>>1]=n>>>16;p=c[a+76>>2]|0;b[p+(q+-1<<2)>>1]=b[w+6+4>>1]|0;b[p+(q+-1<<2)+2>>1]=v;b[p+(q<<2)>>1]=b[w+4>>1]|0;b[p+(q<<2)+2>>1]=v;b[u+((v&65535)<<6)+52>>1]=q+-1;b[u+((v&65535)<<6)+58>>1]=(o&65535)<<1;o=c[a+68>>2]|0;q=e[u+((v&65535)<<6)+48>>1]|0;p=c[a+60>>2]|0;n=b[o+(q<<2)+-4>>1]|0;if((e[o+(q<<2)>>1]|0)<(n&65535)){s=p+((e[o+(q<<2)+2>>1]|0)<<6)+48|0;r=o+(q<<2)|0;q=o+(q<<2)+-4|0;while(1){o=e[r+-2>>1]|0;if(!(n&1)){t=p+(o<<6)+48|0;b[t>>1]=(b[t>>1]|0)+1<<16>>16}else{t=p+(o<<6)+54|0;b[t>>1]=(b[t>>1]|0)+1<<16>>16}b[s>>1]=(b[s>>1]|0)+-1<<16>>16;o=e[r>>1]|e[r+2>>1]<<16;n=e[q>>1]|e[q+2>>1]<<16;b[r>>1]=n;b[r+2>>1]=n>>>16;b[q>>1]=o;b[q+2>>1]=o>>>16;o=r+-4|0;q=q+-4|0;n=b[q>>1]|0;if((e[o>>1]|0)>=(n&65535))break;p=c[a+60>>2]|0;r=o}o=c[a+68>>2]|0}n=e[u+((v&65535)<<6)+54>>1]|0;q=o+(n<<2)|0;p=b[q+-4>>1]|0;a:do if((e[q>>1]|0)<(p&65535)){s=c[a+60>>2]|0;t=s+((e[o+(n<<2)+2>>1]|0)<<6)+54|0;n=p;r=q;p=q+-4|0;while(1){o=e[r+-2>>1]|0;if(!(n&1)){s=s+(o<<6)+48|0;b[s>>1]=(b[s>>1]|0)+1<<16>>16}else{s=s+(o<<6)+54|0;b[s>>1]=(b[s>>1]|0)+1<<16>>16}b[t>>1]=(b[t>>1]|0)+-1<<16>>16;o=e[r>>1]|e[r+2>>1]<<16;n=e[p>>1]|e[p+2>>1]<<16;b[r>>1]=n;b[r+2>>1]=n>>>16;b[p>>1]=o;b[p+2>>1]=o>>>16;o=r+-4|0;p=p+-4|0;n=b[p>>1]|0;if((e[o>>1]|0)>=(n&65535))break a;s=c[a+60>>2]|0;r=o}}while(0);o=c[a+72>>2]|0;q=e[u+((v&65535)<<6)+50>>1]|0;p=c[a+60>>2]|0;n=b[o+(q<<2)+-4>>1]|0;if((e[o+(q<<2)>>1]|0)<(n&65535)){s=p+((e[o+(q<<2)+2>>1]|0)<<6)+50|0;r=o+(q<<2)|0;q=o+(q<<2)+-4|0;while(1){o=e[r+-2>>1]|0;if(!(n&1)){t=p+(o<<6)+50|0;b[t>>1]=(b[t>>1]|0)+1<<16>>16}else{t=p+(o<<6)+56|0;b[t>>1]=(b[t>>1]|0)+1<<16>>16}b[s>>1]=(b[s>>1]|0)+-1<<16>>16;o=e[r>>1]|e[r+2>>1]<<16;n=e[q>>1]|e[q+2>>1]<<16;b[r>>1]=n;b[r+2>>1]=n>>>16;b[q>>1]=o;b[q+2>>1]=o>>>16;o=r+-4|0;q=q+-4|0;n=b[q>>1]|0;if((e[o>>1]|0)>=(n&65535))break;p=c[a+60>>2]|0;r=o}o=c[a+72>>2]|0}n=e[u+((v&65535)<<6)+56>>1]|0;q=o+(n<<2)|0;p=b[q+-4>>1]|0;b:do if((e[q>>1]|0)<(p&65535)){s=c[a+60>>2]|0;t=s+((e[o+(n<<2)+2>>1]|0)<<6)+56|0;n=p;r=q;p=q+-4|0;while(1){o=e[r+-2>>1]|0;if(!(n&1)){s=s+(o<<6)+50|0;b[s>>1]=(b[s>>1]|0)+1<<16>>16}else{s=s+(o<<6)+56|0;b[s>>1]=(b[s>>1]|0)+1<<16>>16}b[t>>1]=(b[t>>1]|0)+-1<<16>>16;o=e[r>>1]|e[r+2>>1]<<16;n=e[p>>1]|e[p+2>>1]<<16;b[r>>1]=n;b[r+2>>1]=n>>>16;b[p>>1]=o;b[p+2>>1]=o>>>16;o=r+-4|0;p=p+-4|0;n=b[p>>1]|0;if((e[o>>1]|0)>=(n&65535))break b;s=c[a+60>>2]|0;r=o}}while(0);wh(a,2,b[u+((v&65535)<<6)+52>>1]|0);uh(a,2,b[u+((v&65535)<<6)+58>>1]|0,m);o=c[a+60>>2]|0;n=c[a+108>>2]|0;if(!n){j=o+((v&65535)<<6)|0;i=w;return j|0}c[o+((v&65535)<<6)+60>>2]=gc[c[(c[n>>2]|0)+8>>2]&3](n,d,f,h,j,k,l,m,0)|0;j=o+((v&65535)<<6)|0;i=w;return j|0}function Dd(b,d,e,f,h,i,j,k,l,m,n,o,p){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;i=i|0;j=j|0;k=k|0;l=l|0;m=m|0;n=n|0;o=o|0;p=p|0;var q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0,z=0,A=0,B=0,C=0,D=0.0,E=0.0,F=0.0,G=0.0,H=0.0,I=0.0,J=0.0,K=0.0;A=_(c[l+24>>2]|0,m)|0;m=a[d+44>>0]|0;z=c[d+56>>2]|0;if(!(m<<24>>24!=0|(z|0)!=0)){A=0;return A|0}C=c[(o|0?l+12|0:l+8|0)>>2]|0;B=c[(o|0?l+20|0:l+16|0)>>2]|0;c[C+(A<<2)>>2]=c[n>>2];c[C+(A+1<<2)>>2]=c[n+4>>2];c[C+(A+2<<2)>>2]=c[n+8>>2];g[B+(A<<2)>>2]=-+g[n>>2];g[B+(A+1<<2)>>2]=-+g[n+4>>2];g[B+(A+2<<2)>>2]=-+g[n+8>>2];do if(!o){q=+g[b+1176>>2];if(!(a[b+1301>>0]|0)){t=q-+g[e+48>>2];w=+g[b+1180>>2]-+g[e+52>>2];x=+g[b+1184>>2]-+g[e+56>>2];v=+g[n+8>>2];s=+g[n+4>>2];u=+g[n>>2];C=c[l+12>>2]|0;g[C+(A<<2)>>2]=w*v-x*s;g[C+(A+1<<2)>>2]=x*u-t*v;g[C+(A+2<<2)>>2]=t*s-w*u;u=+g[b+1176>>2]-+g[f+48>>2];w=+g[b+1180>>2]-+g[f+52>>2];s=+g[b+1184>>2]-+g[f+56>>2];t=+g[n+8>>2];v=+g[n+4>>2];x=+g[n>>2];C=c[l+20>>2]|0;g[C+(A<<2)>>2]=-(w*t-s*v);g[C+(A+1<<2)>>2]=-(s*x-u*t);g[C+(A+2<<2)>>2]=-(u*v-w*x);break}I=q-+g[f+48>>2];H=+g[b+1180>>2]-+g[f+52>>2];F=+g[b+1184>>2]-+g[f+56>>2];u=+g[n>>2];G=+g[n+4>>2];E=+g[n+8>>2];K=+g[b+1112>>2]-+g[e+48>>2];t=+g[b+1116>>2]-+g[e+52>>2];q=+g[b+1120>>2]-+g[e+56>>2];v=+g[d+52>>2]-+g[d+48>>2];J=u*(u*K+G*t+E*q)+u*v-u*(I*u+H*G+F*E);D=G*(u*K+G*t+E*q)+G*v-G*(I*u+H*G+F*E);v=E*(u*K+G*t+E*q)+E*v-E*(I*u+H*G+F*E);x=+g[b+1272>>2];w=+g[b+1276>>2];s=E*(t-G*(u*K+G*t+E*q)+x*D)-G*(q-E*(u*K+G*t+E*q)+x*v);r=u*(q-E*(u*K+G*t+E*q)+x*v)-E*(K-u*(u*K+G*t+E*q)+x*J);q=G*(K-u*(u*K+G*t+E*q)+x*J)-u*(t-G*(u*K+G*t+E*q)+x*D);t=(H-G*(I*u+H*G+F*E)-w*D)*E-(F-E*(I*u+H*G+F*E)-w*v)*G;v=(F-E*(I*u+H*G+F*E)-w*v)*u-(I-u*(I*u+H*G+F*E)-w*J)*E;u=(I-u*(I*u+H*G+F*E)-w*J)*G-(H-G*(I*u+H*G+F*E)-w*D)*u;if(!((p|0)!=0|(a[b+1280>>0]|0)==0)){t=w*t;v=w*v;u=w*u;s=x*s;r=x*r;q=x*q}C=(c[l+12>>2]|0)+(A<<2)|0;g[C>>2]=s;g[C+4>>2]=r;g[C+8>>2]=q;C=c[l+20>>2]|0;g[C+(A<<2)>>2]=-t;g[C+(A+1<<2)>>2]=-v;g[C+(A+2<<2)>>2]=-u}while(0);if(z|0?+g[d>>2]==+g[d+4>>2]:0){m=c[l+28>>2]|0;g[m+(A<<2)>>2]=0.0;q=0.0;e=l+28|0}else y=11;do if((y|0)==11){e=c[l+28>>2]|0;g[e+(A<<2)>>2]=0.0;if(!(m<<24>>24)){if(z|0){m=e;q=0.0;e=l+28|0;break}else m=1;return m|0}c[(c[l+32>>2]|0)+(A<<2)>>2]=c[d+28>>2];if(z|0){m=e;q=+g[e+(A<<2)>>2];e=l+28|0;break}v=+g[d+8>>2];q=o|0?v:-v;r=+g[d+52>>2];s=+g[d>>2];t=+g[d+4>>2];u=+g[l>>2]*+g[d+32>>2];do if(!(s>t))if(!(s==t)){if(q/u<0.0)if(r>=s?s-q/u>r:0){q=(s-r)/(q/u);break}else{q=r0.0)if(r<=t?t-q/ut?0.0:1.0;break}else q=0.0}else q=0.0;else q=1.0;while(0);g[e+(A<<2)>>2]=q*v+ +g[e+(A<<2)>>2];g[(c[l+36>>2]|0)+(A<<2)>>2]=-+g[d+12>>2];c[(c[l+40>>2]|0)+(A<<2)>>2]=c[d+12>>2];C=1;return C|0}while(0);K=+g[l>>2]*+g[d+32>>2]*+g[d+48>>2];g[m+(A<<2)>>2]=q+(o|0?-K:K);c[(c[l+32>>2]|0)+(A<<2)>>2]=c[d+36>>2];if(+g[d>>2]==+g[d+4>>2]){g[(c[l+36>>2]|0)+(A<<2)>>2]=-3402823466385288598117041.0e14;g[(c[l+40>>2]|0)+(A<<2)>>2]=3402823466385288598117041.0e14;C=1;return C|0}C=c[l+40>>2]|0;g[(c[l+36>>2]|0)+(A<<2)>>2]=(z|0)==1?0.0:-3402823466385288598117041.0e14;g[C+(A<<2)>>2]=(z|0)==1?3402823466385288598117041.0e14:0.0;r=+g[d+40>>2];if(!(r>0.0)){C=1;return C|0}if(o|0){J=+g[n>>2];K=+g[n+4>>2];q=+g[n+8>>2];q=+g[j>>2]*J+ +g[j+4>>2]*K+ +g[j+8>>2]*q-(J*+g[k>>2]+K*+g[k+4>>2]+q*+g[k+8>>2])}else{J=+g[n>>2];K=+g[n+4>>2];q=+g[n+8>>2];q=+g[h>>2]*J+ +g[h+4>>2]*K+ +g[h+8>>2]*q-(J*+g[i>>2]+K*+g[i+4>>2]+q*+g[i+8>>2])}if((z|0)==1){if(!(q<0.0)){C=1;return C|0}q=-(q*r);m=(c[e>>2]|0)+(A<<2)|0;if(!(+g[m>>2]>2]=q;C=1;return C|0}else{if(!(q>0.0)){C=1;return C|0}q=-(q*r);m=(c[e>>2]|0)+(A<<2)|0;if(!(+g[m>>2]>q)){C=1;return C|0}g[m>>2]=q;C=1;return C|0}return 0}function Ed(b,d,e,f,h,j){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;j=j|0;var l=0.0,m=0,n=0.0,o=0,p=0,q=0,r=0.0,s=0.0,t=0.0,u=0,v=0.0,w=0.0;u=i;i=i+288|0;q=c[b+4>>2]|0;a[q+312>>0]=0;c[q>>2]=0;a[q+356>>0]=1;c[q+292>>2]=1566444395;c[q+296>>2]=1566444395;c[q+300>>2]=1566444395;g[q+304>>2]=0.0;c[q+336>>2]=0;c[q+336+4>>2]=0;c[q+336+8>>2]=0;c[q+336+12>>2]=0;a[q+336+16>>0]=0;a[q+332>>0]=a[q+332>>0]&-16;r=+g[e+48>>2]-+g[d+48>>2]-(+g[h+48>>2]-+g[f+48>>2]);s=+g[e+52>>2]-+g[d+52>>2]-(+g[h+52>>2]-+g[f+52>>2]);t=+g[e+56>>2]-+g[d+56>>2]-(+g[h+56>>2]-+g[f+56>>2]);c[u+216>>2]=9160;g[u+216+36>>2]=999999984306749440.0;a[u+216+40>>0]=0;q=c[b+8>>2]|0;p=c[b+12>>2]|0;o=c[b+4>>2]|0;c[u+136>>2]=9208;c[u+136+4>>2]=0;c[u+136+8>>2]=1065353216;c[u+136+12>>2]=0;g[u+136+16>>2]=0.0;c[u+136+20>>2]=0;c[u+136+24>>2]=o;c[u+136+28>>2]=q;c[u+136+32>>2]=p;c[u+136+36>>2]=c[q+4>>2];c[u+136+40>>2]=c[p+4>>2];g[u+136+44>>2]=+Sb[c[(c[q>>2]|0)+48>>2]&15](q);g[u+136+48>>2]=+Sb[c[(c[p>>2]|0)+48>>2]&15](p);a[u+136+52>>0]=0;c[u+136+60>>2]=-1;c[u+136+72>>2]=1;c[u+136+76>>2]=1;g[u+128>>2]=999999984306749440.0;c[u>>2]=c[d>>2];c[u+4>>2]=c[d+4>>2];c[u+8>>2]=c[d+8>>2];c[u+12>>2]=c[d+12>>2];c[u+16>>2]=c[d+16>>2];c[u+16+4>>2]=c[d+16+4>>2];c[u+16+8>>2]=c[d+16+8>>2];c[u+16+12>>2]=c[d+16+12>>2];c[u+32>>2]=c[d+32>>2];c[u+32+4>>2]=c[d+32+4>>2];c[u+32+8>>2]=c[d+32+8>>2];c[u+32+12>>2]=c[d+32+12>>2];c[u+48>>2]=c[d+48>>2];c[u+48+4>>2]=c[d+48+4>>2];c[u+48+8>>2]=c[d+48+8>>2];c[u+48+12>>2]=c[d+48+12>>2];c[u+64>>2]=c[f>>2];c[u+64+4>>2]=c[f+4>>2];c[u+64+8>>2]=c[f+8>>2];c[u+64+12>>2]=c[f+12>>2];c[u+80>>2]=c[f+16>>2];c[u+80+4>>2]=c[f+16+4>>2];c[u+80+8>>2]=c[f+16+8>>2];c[u+80+12>>2]=c[f+16+12>>2];c[u+96>>2]=c[f+32>>2];c[u+96+4>>2]=c[f+32+4>>2];c[u+96+8>>2]=c[f+32+8>>2];c[u+96+12>>2]=c[f+32+12>>2];c[u+112>>2]=c[f+48>>2];c[u+112+4>>2]=c[f+48+4>>2];c[u+112+8>>2]=c[f+48+8>>2];c[u+112+12>>2]=c[f+48+12>>2];Vc(u+136|0,u,u+216|0,0,0);p=(a[u+216+40>>0]|0)==0;q=u+216+20|0;c[u+264>>2]=c[q>>2];c[u+264+4>>2]=c[q+4>>2];c[u+264+8>>2]=c[q+8>>2];c[u+264+12>>2]=c[q+12>>2];if(p){j=0;i=u;return j|0}n=+g[u+216+36>>2];l=+g[u+216+16>>2];b=c[u+216+12>>2]|0;m=c[u+216+8>>2]|0;o=c[u+216+4>>2]|0;do if(n>1.0000000474974513e-03){l=0.0;p=0;while(1){if((p|0)>31){b=0;p=13;break}w=r*(c[k>>2]=o,+g[k>>2]);w=s*(c[k>>2]=m,+g[k>>2])+w;v=l;l=l-n/(t*(c[k>>2]=b,+g[k>>2])+w);if(!(!(l<=v)&(!(l<0.0)&!(l>1.0)))){b=0;p=13;break}zb[c[c[j>>2]>>2]&31](j,l);w=1.0-l;g[u+48>>2]=w*+g[d+48>>2]+l*+g[e+48>>2];g[u+52>>2]=w*+g[d+52>>2]+l*+g[e+52>>2];g[u+56>>2]=w*+g[d+56>>2]+l*+g[e+56>>2];g[u+112>>2]=w*+g[f+48>>2]+l*+g[h+48>>2];g[u+116>>2]=w*+g[f+52>>2]+l*+g[h+52>>2];g[u+120>>2]=w*+g[f+56>>2]+l*+g[h+56>>2];Vc(u+136|0,u,u+216|0,0,0);if(!(a[u+216+40>>0]|0)){b=0;p=13;break}n=+g[u+216+36>>2];if(n<0.0){p=8;break}c[u+264>>2]=c[q>>2];c[u+264+4>>2]=c[q+4>>2];c[u+264+8>>2]=c[q+8>>2];c[u+264+12>>2]=c[q+12>>2];b=c[u+216+12>>2]|0;m=c[u+216+8>>2]|0;o=c[u+216+4>>2]|0;if(!(n>1.0000000474974513e-03)){p=10;break}else p=p+1|0}if((p|0)==8){g[j+164>>2]=l;f=c[u+216+8>>2]|0;e=c[u+216+12>>2]|0;h=c[u+216+16>>2]|0;c[j+132>>2]=c[u+216+4>>2];c[j+136>>2]=f;c[j+140>>2]=e;c[j+144>>2]=h;c[j+148>>2]=c[q>>2];c[j+148+4>>2]=c[q+4>>2];c[j+148+8>>2]=c[q+8>>2];c[j+148+12>>2]=c[q+12>>2];j=1;i=u;return j|0}else if((p|0)==10){n=l;l=+g[u+216+16>>2];break}else if((p|0)==13){i=u;return b|0}}else n=0.0;while(0);w=r*(c[k>>2]=o,+g[k>>2]);w=s*(c[k>>2]=m,+g[k>>2])+w;if(t*(c[k>>2]=b,+g[k>>2])+w>=-+g[j+172>>2]){j=0;i=u;return j|0}g[j+164>>2]=n;c[j+132>>2]=o;c[j+136>>2]=m;c[j+140>>2]=b;g[j+144>>2]=l;c[j+148>>2]=c[u+264>>2];c[j+148+4>>2]=c[u+264+4>>2];c[j+148+8>>2]=c[u+264+8>>2];c[j+148+12>>2]=c[u+264+12>>2];j=1;i=u;return j|0}function Fd(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0,h=0,j=0,k=0,l=0,m=0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0.0,H=0.0,I=0.0,J=0.0,K=0;m=i;i=i+240|0;c[a+4>>2]=(c[a+4>>2]|0)+1;k=c[b+36>>2]|0;j=c[d+36>>2]|0;f=c[a+8>>2]|0;K=c[(c[f+4>>2]|0)+24>>2]|0;d=c[K+(k*80|0)+64>>2]|0;b=(c[(c[a+12>>2]|0)+4>>2]|0)+24|0;e=c[(c[b>>2]|0)+(j*80|0)+64>>2]|0;f=c[f+12>>2]|0;n=+g[f>>2];I=+g[f+4>>2];J=+g[f+8>>2];q=+g[f+16>>2];s=+g[f+20>>2];u=+g[f+24>>2];r=+g[f+32>>2];v=+g[f+36>>2];D=+g[f+40>>2];w=+g[K+(k*80|0)>>2];x=+g[K+(k*80|0)+16>>2];y=+g[K+(k*80|0)+32>>2];z=+g[K+(k*80|0)+4>>2];A=+g[K+(k*80|0)+20>>2];B=+g[K+(k*80|0)+36>>2];t=+g[K+(k*80|0)+8>>2];C=+g[K+(k*80|0)+24>>2];E=+g[K+(k*80|0)+40>>2];o=+g[K+(k*80|0)+48>>2];p=+g[K+(k*80|0)+52>>2];H=+g[K+(k*80|0)+56>>2];F=+g[f+48>>2]+(n*o+I*p+J*H);G=+g[f+52>>2]+(q*o+s*p+u*H);H=+g[f+56>>2]+(r*o+v*p+D*H);g[m+176>>2]=n*w+I*x+J*y;g[m+176+4>>2]=n*z+I*A+J*B;g[m+176+8>>2]=n*t+I*C+J*E;g[m+176+12>>2]=0.0;g[m+176+16>>2]=q*w+s*x+u*y;g[m+176+20>>2]=q*z+s*A+u*B;g[m+176+24>>2]=q*t+s*C+u*E;g[m+176+28>>2]=0.0;g[m+176+32>>2]=r*w+v*x+D*y;g[m+176+36>>2]=r*z+v*A+D*B;g[m+176+40>>2]=r*t+v*C+D*E;g[m+176+44>>2]=0.0;g[m+176+48>>2]=F;g[m+176+52>>2]=G;g[m+176+56>>2]=H;g[m+176+60>>2]=0.0;f=c[(c[a+12>>2]|0)+12>>2]|0;H=+g[f>>2];G=+g[f+4>>2];F=+g[f+8>>2];E=+g[f+16>>2];D=+g[f+20>>2];C=+g[f+24>>2];v=+g[f+32>>2];t=+g[f+36>>2];r=+g[f+40>>2];b=c[b>>2]|0;B=+g[b+(j*80|0)>>2];A=+g[b+(j*80|0)+16>>2];z=+g[b+(j*80|0)+32>>2];y=+g[b+(j*80|0)+4>>2];x=+g[b+(j*80|0)+20>>2];w=+g[b+(j*80|0)+36>>2];u=+g[b+(j*80|0)+8>>2];s=+g[b+(j*80|0)+24>>2];q=+g[b+(j*80|0)+40>>2];J=+g[b+(j*80|0)+48>>2];I=+g[b+(j*80|0)+52>>2];n=+g[b+(j*80|0)+56>>2];p=+g[f+48>>2]+(H*J+G*I+F*n);o=+g[f+52>>2]+(E*J+D*I+C*n);n=+g[f+56>>2]+(v*J+t*I+r*n);g[m+112>>2]=H*B+G*A+F*z;g[m+112+4>>2]=H*y+G*x+F*w;g[m+112+8>>2]=H*u+G*s+F*q;g[m+112+12>>2]=0.0;g[m+112+16>>2]=E*B+D*A+C*z;g[m+112+20>>2]=E*y+D*x+C*w;g[m+112+24>>2]=E*u+D*s+C*q;g[m+112+28>>2]=0.0;g[m+112+32>>2]=v*B+t*A+r*z;g[m+112+36>>2]=v*y+t*x+r*w;g[m+112+40>>2]=v*u+t*s+r*q;g[m+112+44>>2]=0.0;g[m+112+48>>2]=p;g[m+112+52>>2]=o;g[m+112+56>>2]=n;g[m+112+60>>2]=0.0;mc[c[(c[d>>2]|0)+8>>2]&127](d,m+176|0,m+96|0,m+80|0);mc[c[(c[e>>2]|0)+8>>2]&127](e,m+112|0,m+64|0,m+48|0);if(!(+g[m+96>>2]>+g[m+48>>2])?!(+g[m+80>>2]<+g[m+64>>2]):0)b=1;else b=0;if(!(!(+g[m+96+8>>2]>+g[m+48+8>>2])?!(+g[m+80+8>>2]<+g[m+64+8>>2]):0))b=0;if(+g[m+96+4>>2]>+g[m+48+4>>2]){i=m;return}if(+g[m+80+4>>2]<+g[m+64+4>>2]|b^1){i=m;return}f=c[a+8>>2]|0;b=c[f+8>>2]|0;c[m+24>>2]=f;c[m+24+4>>2]=d;c[m+24+8>>2]=b;c[m+24+12>>2]=m+176;c[m+24+16>>2]=-1;c[m+24+20>>2]=k;b=c[a+12>>2]|0;f=c[b+8>>2]|0;c[m>>2]=b;c[m+4>>2]=e;c[m+8>>2]=f;c[m+12>>2]=m+112;c[m+16>>2]=-1;c[m+20>>2]=j;f=c[a+28>>2]|0;c[6423]=(c[6423]|0)+1;b=((j<<16|k)+~((j<<16|k)<<15)>>10^(j<<16|k)+~((j<<16|k)<<15))*9|0;b=(c[f+12>>2]|0)+-1&((b>>6^b)+~((b>>6^b)<<11)>>16^(b>>6^b)+~((b>>6^b)<<11));a:do if((b|0)<(c[f+32>>2]|0)?(h=c[(c[f+40>>2]|0)+(b<<2)>>2]|0,(h|0)!=-1):0){e=c[f+16>>2]|0;b=h;while(1){d=e+(b*12|0)|0;if((c[d>>2]|0)==(k|0)?(c[e+(b*12|0)+4>>2]|0)==(j|0):0)break;b=c[(c[f+60>>2]|0)+(b<<2)>>2]|0;if((b|0)==-1){l=16;break a}}if(d)b=c[e+(b*12|0)+8>>2]|0;else l=16}else l=16;while(0);if((l|0)==16){b=c[a+16>>2]|0;b=Ib[c[(c[b>>2]|0)+8>>2]&31](b,m+24|0,m,c[a+32>>2]|0)|0;K=c[a+28>>2]|0;c[(Ob[c[(c[K>>2]|0)+12>>2]&63](K,k,j)|0)+8>>2]=b}K=c[a+24>>2]|0;h=c[K+8>>2]|0;l=c[K+12>>2]|0;c[K+8>>2]=m+24;c[K+12>>2]=m;ic[c[(c[K>>2]|0)+8>>2]&127](K,-1,k);K=c[a+24>>2]|0;ic[c[(c[K>>2]|0)+12>>2]&127](K,-1,j);yb[c[(c[b>>2]|0)+8>>2]&31](b,m+24|0,m,c[a+20>>2]|0,c[a+24>>2]|0);K=c[a+24>>2]|0;c[K+8>>2]=h;c[K+12>>2]=l;i=m;return}function Gd(a,b,d){a=a|0;b=b|0;d=d|0;var e=0.0,f=0,h=0.0,j=0.0,l=0.0,m=0.0,n=0.0,o=0,p=0.0,q=0.0,r=0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0;z=i;i=i+48|0;switch(c[b+4>>2]|0){case 8:{c[a>>2]=0;c[a+4>>2]=0;c[a+8>>2]=0;c[a+12>>2]=0;i=z;return}case 0:{w=+g[b+28>>2];x=+g[b+28+4>>2];x=+g[d+4>>2]>=0.0?x:-x;y=+g[b+28+8>>2];y=+g[d+8>>2]>=0.0?y:-y;g[a>>2]=+g[d>>2]>=0.0?w:-w;g[a+4>>2]=x;g[a+8>>2]=y;g[a+12>>2]=0.0;i=z;return}case 1:{u=+g[d>>2];v=+g[d+4>>2];y=+g[d+8>>2];x=u*+g[b+56>>2]+v*+g[b+56+4>>2]+y*+g[b+56+8>>2];w=u*+g[b+56+16>>2]+v*+g[b+56+20>>2]+y*+g[b+56+24>>2];y=u*+g[b+56+32>>2]+v*+g[b+56+36>>2]+y*+g[b+56+40>>2];d=x>2]|0;r=c[b+56+(d<<4)+8>>2]|0;c[a>>2]=c[b+56+(d<<4)>>2];c[a+4>>2]=o;c[a+8>>2]=r;g[a+12>>2]=0.0;i=z;return}case 13:{c[z+32>>2]=c[b+28>>2];c[z+32+4>>2]=c[b+28+4>>2];c[z+32+8>>2]=c[b+28+8>>2];c[z+32+12>>2]=c[b+28+12>>2];c[z+16>>2]=c[d>>2];f=c[d+4>>2]|0;c[z+16+4>>2]=f;r=c[d+8>>2]|0;c[z+16+8>>2]=r;g[z+16+12>>2]=0.0;d=c[b+52>>2]|0;e=(c[k>>2]=r,+g[k>>2]);switch(d|0){case 2:{e=(c[k>>2]=f,+g[k>>2]);f=0;b=2;o=1;break}case 1:{f=0;b=1;o=2;break}default:{f=1;b=0;o=2}}n=+g[z+32+(f<<2)>>2];l=+g[z+32+(d<<2)>>2];m=+g[z+16+(f<<2)>>2];h=+O(+(m*m+e*e));j=+g[z+16+(b<<2)>>2];if(h!=0.0){g[z+(f<<2)>>2]=m*(n/h);g[z+(b<<2)>>2]=j<0.0?-l:l;g[z+(o<<2)>>2]=n/h*e;c[a>>2]=c[z>>2];c[a+4>>2]=c[z+4>>2];c[a+8>>2]=c[z+8>>2]}else{g[z+(f<<2)>>2]=n;g[z+(b<<2)>>2]=j<0.0?-l:l;g[z+(o<<2)>>2]=0.0;c[a>>2]=c[z>>2];c[a+4>>2]=c[z+4>>2];c[a+8>>2]=c[z+8>>2]}g[a+12>>2]=0.0;i=z;return}case 10:{e=+g[d>>2];h=+g[d+4>>2];j=+g[d+8>>2];o=c[b+52>>2]|0;v=+g[b+28+(o<<2)>>2];l=+g[b+28+(((o+2|0)%3|0)<<2)>>2];if(e*e+h*h+j*j<9.999999747378752e-05){y=1.0;x=0.0;w=0.0}else{w=1.0/+O(+(e*e+h*h+j*j));y=e*w;x=h*w;w=j*w}c[z+32>>2]=0;c[z+32+4>>2]=0;c[z+32+8>>2]=0;c[z+32+12>>2]=0;g[z+32+(o<<2)>>2]=v;q=l*y;t=l*x;u=l*w;s=+g[b+44>>2];m=y*s;p=x*s;s=w*s;e=q+ +g[z+32>>2]-m;h=t+ +g[z+32+4>>2]-p;l=u+ +g[z+32+8>>2]-s;j=w*l+(y*e+x*h);if(j>-999999984306749440.0){b=(g[k>>2]=e,c[k>>2]|0);f=(g[k>>2]=h,c[k>>2]|0);n=j;d=(g[k>>2]=l,c[k>>2]|0)}else{n=-999999984306749440.0;b=0;d=0;f=0}c[z+32>>2]=0;c[z+32+4>>2]=0;c[z+32+8>>2]=0;c[z+32+12>>2]=0;g[z+32+(o<<2)>>2]=-v;j=q+ +g[z+32>>2]-m;h=t+ +g[z+32+4>>2]-p;e=u+ +g[z+32+8>>2]-s;if(w*e+(y*j+x*h)>n){b=(g[k>>2]=j,c[k>>2]|0);f=(g[k>>2]=h,c[k>>2]|0);d=(g[k>>2]=e,c[k>>2]|0)}c[a>>2]=b;c[a+4>>2]=f;c[a+8>>2]=d;g[a+12>>2]=0.0;i=z;return}case 5:{r=c[b+92>>2]|0;o=c[b+96>>2]|0;p=+g[b+12>>2];q=+g[b+16>>2];n=+g[b+20>>2];l=+g[d>>2]*p;m=+g[d+4>>2]*q;e=+g[d+8>>2]*n;if((o|0)>0){b=0;j=-3402823466385288598117041.0e14;f=-1;while(1){h=l*+g[r+(b<<4)>>2]+m*+g[r+(b<<4)+4>>2]+e*+g[r+(b<<4)+8>>2];d=h>j;f=d?b:f;b=b+1|0;if((b|0)==(o|0))break;else j=d?h:j}}else f=-1;x=q*+g[r+(f<<4)+4>>2];y=n*+g[r+(f<<4)+8>>2];g[a>>2]=p*+g[r+(f<<4)>>2];g[a+4>>2]=x;g[a+8>>2]=y;g[a+12>>2]=0.0;i=z;return}case 4:{r=c[b+104>>2]|0;o=c[b+96>>2]|0;p=+g[b+12>>2];q=+g[b+16>>2];n=+g[b+20>>2];l=+g[d>>2]*p;m=+g[d+4>>2]*q;e=+g[d+8>>2]*n;if((o|0)>0){b=0;j=-3402823466385288598117041.0e14;f=-1;while(1){h=l*+g[r+(b<<4)>>2]+m*+g[r+(b<<4)+4>>2]+e*+g[r+(b<<4)+8>>2];d=h>j;f=d?b:f;b=b+1|0;if((b|0)==(o|0))break;else j=d?h:j}}else f=-1;x=q*+g[r+(f<<4)+4>>2];y=n*+g[r+(f<<4)+8>>2];g[a>>2]=p*+g[r+(f<<4)>>2];g[a+4>>2]=x;g[a+8>>2]=y;g[a+12>>2]=0.0;i=z;return}default:{ic[c[(c[b>>2]|0)+68>>2]&127](a,b,d);i=z;return}}}function Hd(d,e,f,h){d=d|0;e=e|0;f=f|0;h=h|0;var i=0.0,j=0.0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0.0,v=0.0,w=0.0,x=0,y=0.0,z=0,A=0.0,B=0.0;j=+g[e>>2];m=(g[k>>2]=j,c[k>>2]|0);r=j<999999984306749440.0?m:1566444395;i=+g[e+4>>2];o=(g[k>>2]=i,c[k>>2]|0);t=i<999999984306749440.0?o:1566444395;y=+g[e+8>>2];q=(g[k>>2]=y,c[k>>2]|0);z=y<999999984306749440.0?q:1566444395;m=j>-999999984306749440.0?m:-581039253;o=i>-999999984306749440.0?o:-581039253;q=y>-999999984306749440.0?q:-581039253;y=+g[e+16>>2];x=y<(c[k>>2]=r,+g[k>>2]);l=(g[k>>2]=y,c[k>>2]|0);r=x?l:r;i=+g[e+20>>2];x=i<(c[k>>2]=t,+g[k>>2]);n=(g[k>>2]=i,c[k>>2]|0);t=x?n:t;j=+g[e+24>>2];x=j<(c[k>>2]=z,+g[k>>2]);p=(g[k>>2]=j,c[k>>2]|0);z=x?p:z;x=(c[k>>2]=m,+g[k>>2])>2]=o,+g[k>>2])>2]=q,+g[k>>2])>2];m=y<(c[k>>2]=r,+g[k>>2]);o=(g[k>>2]=y,c[k>>2]|0);r=m?o:r;j=+g[e+36>>2];m=j<(c[k>>2]=t,+g[k>>2]);p=(g[k>>2]=j,c[k>>2]|0);m=m?p:t;i=+g[e+40>>2];l=i<(c[k>>2]=z,+g[k>>2]);n=(g[k>>2]=i,c[k>>2]|0);l=l?n:z;o=(c[k>>2]=x,+g[k>>2])>2]=s,+g[k>>2])>2]=q,+g[k>>2])>2]=o,+g[k>>2]);j=(c[k>>2]=r,+g[k>>2]);if(i-j<2.0000000949949026e-03){o=(g[k>>2]=i+1.0000000474974513e-03,c[k>>2]|0);n=(g[k>>2]=j+-1.0000000474974513e-03,c[k>>2]|0)}else n=r;i=(c[k>>2]=p,+g[k>>2]);j=(c[k>>2]=m,+g[k>>2]);if(i-j<2.0000000949949026e-03){p=(g[k>>2]=i+1.0000000474974513e-03,c[k>>2]|0);m=(g[k>>2]=j+-1.0000000474974513e-03,c[k>>2]|0)}i=(c[k>>2]=q,+g[k>>2]);j=(c[k>>2]=l,+g[k>>2]);if(i-j<2.0000000949949026e-03){q=(g[k>>2]=i+1.0000000474974513e-03,c[k>>2]|0);l=(g[k>>2]=j+-1.0000000474974513e-03,c[k>>2]|0)}r=c[d+8>>2]|0;j=+g[r+4>>2];y=(c[k>>2]=n,+g[k>>2])-j;i=+g[r+8>>2];u=(c[k>>2]=m,+g[k>>2])-i;B=+g[r+12>>2];v=+g[r+36>>2];w=+g[r+40>>2];A=+g[r+44>>2];r=~~(((c[k>>2]=l,+g[k>>2])-B)*A)&65534;j=(c[k>>2]=o,+g[k>>2])-j;i=(c[k>>2]=p,+g[k>>2])-i;q=(~~(((c[k>>2]=q,+g[k>>2])-B)*A+1.0)&65535|1)&65535;o=c[d+4>>2]|0;m=c[o+4>>2]|0;if((m|0)!=(c[o+8>>2]|0)){d=m;z=o+12|0;z=c[z>>2]|0;x=z+(d<<4)|0;b[x>>1]=~~(y*v)&65534;x=z+(d<<4)+2|0;b[x>>1]=~~(u*w)&65534;x=z+(d<<4)+4|0;b[x>>1]=r;x=z+(d<<4)+6|0;b[x>>1]=~~(j*v+1.0)&65535|1;x=z+(d<<4)+8|0;b[x>>1]=~~(i*w+1.0)&65535|1;x=z+(d<<4)+10|0;b[x>>1]=q;d=z+(d<<4)+12|0;c[d>>2]=f<<21|h;h=c[o+4>>2]|0;h=h+1|0;c[o+4>>2]=h;return}p=m|0?m<<1:1;if((m|0)>=(p|0)){d=m;z=o+12|0;z=c[z>>2]|0;x=z+(d<<4)|0;b[x>>1]=~~(y*v)&65534;x=z+(d<<4)+2|0;b[x>>1]=~~(u*w)&65534;x=z+(d<<4)+4|0;b[x>>1]=r;x=z+(d<<4)+6|0;b[x>>1]=~~(j*v+1.0)&65535|1;x=z+(d<<4)+8|0;b[x>>1]=~~(i*w+1.0)&65535|1;x=z+(d<<4)+10|0;b[x>>1]=q;d=z+(d<<4)+12|0;c[d>>2]=f<<21|h;h=c[o+4>>2]|0;h=h+1|0;c[o+4>>2]=h;return}if(!p)l=0;else{c[6435]=(c[6435]|0)+1;l=yc((p<<4|3)+16|0)|0;if(!l)l=0;else{c[(l+4+15&-16)+-4>>2]=l;l=l+4+15&-16}m=c[o+4>>2]|0}if((m|0)>0){n=0;do{d=l+(n<<4)|0;z=(c[o+12>>2]|0)+(n<<4)|0;c[d>>2]=c[z>>2];c[d+4>>2]=c[z+4>>2];c[d+8>>2]=c[z+8>>2];c[d+12>>2]=c[z+12>>2];n=n+1|0}while((n|0)!=(m|0))}m=c[o+12>>2]|0;if(m|0){if(a[o+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[m+-4>>2]|0)}c[o+12>>2]=0}a[o+16>>0]=1;c[o+12>>2]=l;c[o+8>>2]=p;d=c[o+4>>2]|0;z=o+12|0;z=c[z>>2]|0;x=z+(d<<4)|0;b[x>>1]=~~(y*v)&65534;x=z+(d<<4)+2|0;b[x>>1]=~~(u*w)&65534;x=z+(d<<4)+4|0;b[x>>1]=r;x=z+(d<<4)+6|0;b[x>>1]=~~(j*v+1.0)&65535|1;x=z+(d<<4)+8|0;b[x>>1]=~~(i*w+1.0)&65535|1;x=z+(d<<4)+10|0;b[x>>1]=q;d=z+(d<<4)+12|0;c[d>>2]=f<<21|h;h=c[o+4>>2]|0;h=h+1|0;c[o+4>>2]=h;return}function Id(a,b,d,e,f,g,h){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;g=g|0;h=h|0;var i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,D=0,E=0,F=0,G=0,H=0;i=c[d+8>>2]|0;if(!i){a=0;return a|0}j=i;D=i;i=0;do{if((c[D+20>>2]|0)>(c[a+100>>2]|0)){A=c[D+12>>2]|0;w=c[A+88>>2]|0;x=w-(c[d+88>>2]|0)|0;y=c[A+92>>2]|0;z=y-(c[d+92>>2]|0)|0;A=c[A+96>>2]|0;B=A-(c[d+96>>2]|0)|0;k=vr(c[g>>2]|0,c[g+4>>2]|0,x|0,((x|0)<0)<<31>>31|0)|0;l=C;j=vr(c[g+8>>2]|0,c[g+8+4>>2]|0,z|0,((z|0)<0)<<31>>31|0)|0;l=Kt(j|0,C|0,k|0,l|0)|0;k=C;j=vr(c[g+16>>2]|0,c[g+16+4>>2]|0,B|0,((B|0)<0)<<31>>31|0)|0;j=Kt(l|0,k|0,j|0,C|0)|0;k=C;l=vr(c[f>>2]|0,c[f+4>>2]|0,x|0,((x|0)<0)<<31>>31|0)|0;v=C;m=vr(c[f+8>>2]|0,c[f+8+4>>2]|0,z|0,((z|0)<0)<<31>>31|0)|0;v=Kt(m|0,C|0,l|0,v|0)|0;l=C;m=vr(c[f+16>>2]|0,c[f+16+4>>2]|0,B|0,((B|0)<0)<<31>>31|0)|0;m=Kt(v|0,l|0,m|0,C|0)|0;l=C;if((k|0)>0|(k|0)==0&j>>>0>0){v=k;k=1}else{t=Is(0,0,j|0,k|0)|0;v=C;u=Mr(j|0,k|0,63)|0;j=(k|0)<0?t:0;v=(k|0)<0?v:0;k=u}if(!((l|0)>0|(l|0)==0&m>>>0>0)){u=Is(0,0,m|0,l|0)|0;n=(l|0)<0?0-k|0:k;k=(l|0)<0?u:0;l=(l|0)<0?C:0;if(!((n|0)==0&((k|0)==0&(l|0)==0))){m=k;o=8}}else{n=k;o=8}a:do if((o|0)==8){o=0;if(!i){c[h>>2]=j;c[h+4>>2]=v;c[h+8>>2]=m;c[h+8+4>>2]=l;c[h+16>>2]=n;i=D;break}k=c[h+16>>2]|0;if((n|0)==(k|0)){if(n|0){p=c[h+8>>2]|0;s=c[h+8+4>>2]|0;o=vr(p|0,0,j|0,0)|0;k=C;t=vr(s|0,0,j|0,0)|0;r=C;p=vr(p|0,0,v|0,0)|0;q=C;s=vr(s|0,0,v|0,0)|0;G=C;p=Kt(t|0,0,p|0,0)|0;t=C;G=Kt(r|0,0,s|0,G|0)|0;q=Kt(G|0,C|0,q|0,0)|0;t=Kt(q|0,C|0,t|0,0)|0;q=C;k=Kt(0,p|0,o|0,k|0)|0;o=C;p=Kt(t|0,q|0,(o>>>0

    >>0|(o|0)==(p|0)&k>>>0<0)&1|0,0)|0;q=C;t=c[h>>2]|0;G=c[h+4>>2]|0;s=vr(t|0,0,m|0,0)|0;r=C;E=vr(G|0,0,m|0,0)|0;H=C;t=vr(t|0,0,l|0,0)|0;u=C;G=vr(G|0,0,l|0,0)|0;F=C;t=Kt(E|0,0,t|0,0)|0;E=C;F=Kt(H|0,0,G|0,F|0)|0;u=Kt(F|0,C|0,u|0,0)|0;E=Kt(u|0,C|0,E|0,0)|0;u=C;r=Kt(0,t|0,s|0,r|0)|0;s=C;t=Kt(E|0,u|0,(s>>>0>>0|(s|0)==(t|0)&r>>>0<0)&1|0,0)|0;u=C;if(!(q>>>0>>0|(q|0)==(u|0)&p>>>0>>0))if(!(q>>>0>u>>>0|(q|0)==(u|0)&p>>>0>t>>>0))if(o>>>0>>0|(o|0)==(s|0)&k>>>0>>0)k=-1;else k=(o>>>0>s>>>0|(o|0)==(s|0)&k>>>0>r>>>0)&1;else k=1;else k=-1;k=_(k,n)|0;o=18}}else{k=n-k|0;o=18}do if((o|0)==18){o=0;if((k|0)>=0)if(!k)break;else break a;else{c[h>>2]=j;c[h+4>>2]=v;c[h+8>>2]=m;c[h+8+4>>2]=l;c[h+16>>2]=n;i=D;break a}}while(0);j=(c[i+4>>2]|0)==(D|0);if((c[i>>2]|0)==(D|0))if(j){H=c[e+8>>2]|0;E=_(H,z)|0;u=c[e+4>>2]|0;E=E-(_(u,B)|0)|0;G=c[e>>2]|0;H=(_(G,B)|0)-(_(H,x)|0)|0;G=(_(u,x)|0)-(_(G,z)|0)|0;u=c[i+12>>2]|0;j=c[(c[D+8>>2]|0)+12>>2]|0;z=c[j+88>>2]|0;x=(c[u+88>>2]|0)-z|0;v=c[j+92>>2]|0;B=(c[u+92>>2]|0)-v|0;j=c[j+96>>2]|0;u=(c[u+96>>2]|0)-j|0;F=(_(A-j|0,B)|0)-(_(y-v|0,u)|0)|0;j=(_(w-z|0,u)|0)-(_(A-j|0,x)|0)|0;B=(_(y-v|0,x)|0)-(_(w-z|0,B)|0)|0;E=vr(F|0,((F|0)<0)<<31>>31|0,E|0,((E|0)<0)<<31>>31|0)|0;F=C;H=vr(j|0,((j|0)<0)<<31>>31|0,H|0,((H|0)<0)<<31>>31|0)|0;j=C;G=vr(B|0,((B|0)<0)<<31>>31|0,G|0,((G|0)<0)<<31>>31|0)|0;G=Kt(E|0,F|0,G|0,C|0)|0;j=Kt(G|0,C|0,H|0,j|0)|0;H=C;j=(H|0)>0|(H|0)==0&j>>>0>0?2:1}else j=2;else j=j&1;i=(j|0)==2^b?i:D}while(0);j=c[d+8>>2]|0}D=c[D>>2]|0}while((D|0)!=(j|0));return i|0}function Jd(a,b,d,e,f,h){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;var j=0.0,k=0,l=0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0.0;v=i;i=i+560|0;k=h;l=k+36|0;do{c[k>>2]=0;k=k+4|0}while((k|0)<(l|0));c[v+400>>2]=a;c[v+400+4>>2]=d;o=+g[e>>2];E=+g[b>>2];n=+g[e+16>>2];j=+g[b+16>>2];m=+g[e+32>>2];F=+g[b+32>>2];w=+g[b+4>>2];G=+g[b+20>>2];x=+g[b+36>>2];t=+g[b+8>>2];r=+g[b+24>>2];p=+g[b+40>>2];D=+g[e+4>>2];C=+g[e+20>>2];B=+g[e+36>>2];A=+g[e+8>>2];z=+g[e+24>>2];y=+g[e+40>>2];g[v+400+8>>2]=o*E+n*j+m*F;g[v+400+12>>2]=o*w+n*G+m*x;g[v+400+16>>2]=o*t+n*r+m*p;g[v+400+20>>2]=0.0;g[v+400+24>>2]=E*D+j*C+F*B;g[v+400+28>>2]=w*D+G*C+x*B;g[v+400+32>>2]=t*D+r*C+p*B;g[v+400+36>>2]=0.0;g[v+400+40>>2]=E*A+j*z+F*y;g[v+400+44>>2]=w*A+G*z+x*y;g[v+400+48>>2]=t*A+r*z+p*y;g[v+400+52>>2]=0.0;p=+g[e+48>>2]-+g[b+48>>2];r=+g[e+52>>2]-+g[b+52>>2];t=+g[e+56>>2]-+g[b+56>>2];x=+g[b>>2];G=+g[e>>2];w=+g[b+16>>2];F=+g[e+16>>2];j=+g[b+32>>2];E=+g[e+32>>2];m=+g[b+4>>2];n=+g[b+20>>2];o=+g[b+36>>2];q=+g[b+8>>2];s=+g[b+24>>2];u=+g[b+40>>2];g[v+400+56>>2]=x*G+w*F+j*E;g[v+400+60>>2]=x*D+w*C+j*B;g[v+400+64>>2]=x*A+w*z+j*y;g[v+400+68>>2]=0.0;g[v+400+72>>2]=G*m+F*n+E*o;g[v+400+76>>2]=D*m+C*n+B*o;g[v+400+80>>2]=A*m+z*n+y*o;g[v+400+84>>2]=0.0;g[v+400+88>>2]=G*q+F*s+E*u;g[v+400+92>>2]=D*q+C*s+B*u;g[v+400+96>>2]=A*q+z*s+y*u;g[v+400+100>>2]=0.0;g[v+400+104>>2]=p*x+r*w+t*j;g[v+400+108>>2]=p*m+r*n+t*o;g[v+400+112>>2]=p*q+r*s+t*u;g[v+400+116>>2]=0.0;c[v+400+120>>2]=80;c[v+400+124>>2]=0;c[v+16+364>>2]=0;c[v+16+128>>2]=0;c[v+16+128+4>>2]=0;c[v+16+128+8>>2]=0;c[v+16+128+12>>2]=0;c[v+16+376>>2]=2;c[v+16+368>>2]=0;g[v+16+144>>2]=0.0;f=Uc(v+16|0,v+400|0,f)|0;if(f|0){c[h>>2]=(f|0)==1?1:2;b=0;i=v;return b|0}f=c[v+16+372>>2]|0;if(!(c[f+32>>2]|0)){q=0.0;p=0.0;o=0.0;n=0.0;m=0.0;j=0.0}else{e=0;q=0.0;p=0.0;o=0.0;n=0.0;m=0.0;j=0.0;do{u=+g[f+16+(e<<2)>>2];a=c[v+400+120>>2]|0;l=c[v+400+124>>2]|0;d=(c[v+400>>2]|0)+(l>>1)|0;if(l&1)a=c[(c[d>>2]|0)+a>>2]|0;ic[a&127](v,d,c[f+(e<<2)>>2]|0);q=q+u*+g[v>>2];o=o+u*+g[v+4>>2];p=p+u*+g[v+8>>2];f=c[(c[v+16+372>>2]|0)+(e<<2)>>2]|0;r=-+g[f>>2];s=-+g[f+4>>2];t=-+g[f+8>>2];f=c[v+400+120>>2]|0;l=c[v+400+124>>2]|0;a=(c[v+400+4>>2]|0)+(l>>1)|0;if(l&1)f=c[(c[a>>2]|0)+f>>2]|0;F=+g[v+400+24>>2]*r+ +g[v+400+28>>2]*s+ +g[v+400+32>>2]*t;E=+g[v+400+40>>2]*r+ +g[v+400+44>>2]*s+ +g[v+400+48>>2]*t;g[v+528>>2]=+g[v+400+8>>2]*r+ +g[v+400+12>>2]*s+ +g[v+400+16>>2]*t;g[v+528+4>>2]=F;g[v+528+8>>2]=E;g[v+528+12>>2]=0.0;ic[f&127](v+544|0,a,v+528|0);E=+g[v+544>>2];F=+g[v+544+4>>2];G=+g[v+544+8>>2];n=n+u*(E*+g[v+400+56>>2]+F*+g[v+400+60>>2]+G*+g[v+400+64>>2]+ +g[v+400+104>>2]);j=j+u*(E*+g[v+400+72>>2]+F*+g[v+400+76>>2]+G*+g[v+400+80>>2]+ +g[v+400+108>>2]);m=m+u*(E*+g[v+400+88>>2]+F*+g[v+400+92>>2]+G*+g[v+400+96>>2]+ +g[v+400+112>>2]);e=e+1|0;f=c[v+16+372>>2]|0}while(e>>>0<(c[f+32>>2]|0)>>>0)}D=q*+g[b+16>>2]+o*+g[b+20>>2]+p*+g[b+24>>2]+ +g[b+52>>2];E=q*+g[b+32>>2]+o*+g[b+36>>2]+p*+g[b+40>>2]+ +g[b+56>>2];g[h+4>>2]=q*+g[b>>2]+o*+g[b+4>>2]+p*+g[b+8>>2]+ +g[b+48>>2];g[h+8>>2]=D;g[h+12>>2]=E;g[h+16>>2]=0.0;E=n*+g[b+16>>2]+j*+g[b+20>>2]+m*+g[b+24>>2]+ +g[b+52>>2];D=n*+g[b+32>>2]+j*+g[b+36>>2]+m*+g[b+40>>2]+ +g[b+56>>2];g[h+20>>2]=n*+g[b>>2]+j*+g[b+4>>2]+m*+g[b+8>>2]+ +g[b+48>>2];g[h+24>>2]=E;g[h+28>>2]=D;g[h+32>>2]=0.0;D=q-n;E=o-j;G=p-m;g[h+48>>2]=0.0;F=+O(+(D*D+E*E+G*G));g[h+52>>2]=F;F=F>9.999999747378752e-05?1.0/F:1.0;g[h+36>>2]=F*D;g[h+40>>2]=F*E;g[h+44>>2]=F*G;b=1;i=v;return b|0}function Kd(a,b,d,e,f,h){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;h=+h;var j=0,k=0,l=0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0,t=0.0;j=i;i=i+464|0;li(15711);c[j+128>>2]=c[d>>2];c[j+128+4>>2]=c[d+4>>2];c[j+128+8>>2]=c[d+8>>2];c[j+128+12>>2]=c[d+12>>2];c[j+128+16>>2]=c[d+16>>2];c[j+128+16+4>>2]=c[d+16+4>>2];c[j+128+16+8>>2]=c[d+16+8>>2];c[j+128+16+12>>2]=c[d+16+12>>2];c[j+128+32>>2]=c[d+32>>2];c[j+128+32+4>>2]=c[d+32+4>>2];c[j+128+32+8>>2]=c[d+32+8>>2];c[j+128+32+12>>2]=c[d+32+12>>2];l=j+128+48|0;c[l>>2]=c[d+48>>2];c[l+4>>2]=c[d+48+4>>2];c[l+8>>2]=c[d+48+8>>2];c[l+12>>2]=c[d+48+12>>2];c[j+64>>2]=c[e>>2];c[j+64+4>>2]=c[e+4>>2];c[j+64+8>>2]=c[e+8>>2];c[j+64+12>>2]=c[e+12>>2];c[j+64+16>>2]=c[e+16>>2];c[j+64+16+4>>2]=c[e+16+4>>2];c[j+64+16+8>>2]=c[e+16+8>>2];c[j+64+16+12>>2]=c[e+16+12>>2];c[j+64+32>>2]=c[e+32>>2];c[j+64+32+4>>2]=c[e+32+4>>2];c[j+64+32+8>>2]=c[e+32+8>>2];c[j+64+32+12>>2]=c[e+32+12>>2];k=j+64+48|0;c[k>>2]=c[e+48>>2];c[k+4>>2]=c[e+48+4>>2];c[k+8>>2]=c[e+48+8>>2];c[k+12>>2]=c[e+48+12>>2];Gf(j+128|0,j+64|0,j+256|0,j+192|0);t=+g[j+192>>2];m=t*+g[j+256+4>>2];r=t*+g[j+256+8>>2];g[j>>2]=+g[j+256>>2]*t;g[j+4>>2]=m;g[j+8>>2]=r;g[j+12>>2]=0.0;c[j+256>>2]=0;c[j+256+4>>2]=0;c[j+256+8>>2]=0;c[j+256+12>>2]=0;c[j+192+4>>2]=0;c[j+192+4+4>>2]=0;c[j+192+24>>2]=0;c[j+192+24+4>>2]=0;s=j+192+44|0;c[s>>2]=0;c[s+4>>2]=0;c[s+8>>2]=0;c[s+12>>2]=0;c[s+16>>2]=0;Wg(j+128|0,j+16|0);r=+g[j+16>>2];m=+g[j+16+4>>2];t=+g[j+16+8>>2];q=+g[j+16+12>>2];o=r*(2.0/(r*r+m*m+t*t+q*q));n=m*(2.0/(r*r+m*m+t*t+q*q));p=t*(2.0/(r*r+m*m+t*t+q*q));g[j+192>>2]=1.0-(m*n+t*p);g[j+192+4>>2]=r*n-q*p;g[j+192+8>>2]=r*p+q*n;g[j+192+12>>2]=0.0;g[j+192+16>>2]=r*n+q*p;g[j+192+20>>2]=1.0-(r*o+t*p);g[j+192+24>>2]=m*p-q*o;g[j+192+28>>2]=0.0;g[j+192+32>>2]=r*p-q*n;g[j+192+36>>2]=m*p+q*o;g[j+192+40>>2]=1.0-(r*o+m*n);g[s>>2]=0.0;rh(b,j+192|0,j+256|0,j,j+48|0,j+32|0);c[j+256>>2]=5936;c[j+256+36>>2]=c[d>>2];c[j+256+36+4>>2]=c[d+4>>2];c[j+256+36+8>>2]=c[d+8>>2];c[j+256+36+12>>2]=c[d+12>>2];c[j+256+52>>2]=c[d+16>>2];c[j+256+52+4>>2]=c[d+16+4>>2];c[j+256+52+8>>2]=c[d+16+8>>2];c[j+256+52+12>>2]=c[d+16+12>>2];c[j+256+68>>2]=c[d+32>>2];c[j+256+68+4>>2]=c[d+32+4>>2];c[j+256+68+8>>2]=c[d+32+8>>2];c[j+256+68+12>>2]=c[d+32+12>>2];s=j+256+84|0;c[s>>2]=c[d+48>>2];c[s+4>>2]=c[d+48+4>>2];c[s+8>>2]=c[d+48+8>>2];c[s+12>>2]=c[d+48+12>>2];c[j+256+100>>2]=c[e>>2];c[j+256+100+4>>2]=c[e+4>>2];c[j+256+100+8>>2]=c[e+8>>2];c[j+256+100+12>>2]=c[e+12>>2];c[j+256+116>>2]=c[e+16>>2];c[j+256+116+4>>2]=c[e+16+4>>2];c[j+256+116+8>>2]=c[e+16+8>>2];c[j+256+116+12>>2]=c[e+16+12>>2];c[j+256+132>>2]=c[e+32>>2];c[j+256+132+4>>2]=c[e+32+4>>2];c[j+256+132+8>>2]=c[e+32+8>>2];c[j+256+132+12>>2]=c[e+32+12>>2];d=j+256+148|0;c[d>>2]=c[e+48>>2];c[d+4>>2]=c[e+48+4>>2];c[d+8>>2]=c[e+48+8>>2];c[d+12>>2]=c[e+48+12>>2];c[j+256+180>>2]=a;c[j+256+184>>2]=f;g[j+256+188>>2]=h;c[j+256+192>>2]=b;n=+g[d>>2]-+g[s>>2];m=+g[j+256+152>>2]-+g[j+256+88>>2];o=+g[j+256+156>>2]-+g[j+256+92>>2];h=1.0/+O(+(n*n+m*m+o*o));r=n*h==0.0?999999984306749440.0:1.0/(n*h);g[j+256+4>>2]=r;q=m*h==0.0?999999984306749440.0:1.0/(m*h);g[j+256+8>>2]=q;p=o*h==0.0?999999984306749440.0:1.0/(o*h);g[j+256+12>>2]=p;c[j+256+20>>2]=r<0.0&1;c[j+256+24>>2]=q<0.0&1;c[j+256+28>>2]=p<0.0&1;g[j+256+32>>2]=o*o*h+(n*n*h+m*m*h);b=c[a+68>>2]|0;Qb[c[(c[b>>2]|0)+24>>2]&7](b,l,k,j+256|0,j+48|0,j+32|0);b=c[2357]|0;a=(c[b+16>>2]|0)+-1|0;c[b+16>>2]=a;if(a|0){i=j;return}do if(c[b+4>>2]|0){tb(j+256|0,0)|0;s=c[6434]|0;g[b+8>>2]=+g[b+8>>2]+ +(((c[j+256+4>>2]|0)-(c[s+4>>2]|0)+(((c[j+256>>2]|0)-(c[s>>2]|0)|0)*1e6|0)-(c[b+12>>2]|0)|0)>>>0)/1.0e3;if(!(c[b+16>>2]|0)){b=c[2357]|0;break}else{i=j;return}}while(0);c[2357]=c[b+20>>2];i=j;return} -function xc(a,b,d,e,f){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;var h=0.0,j=0.0,l=0,m=0.0,n=0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0.0,P=0.0,Q=0,R=0.0,S=0.0,T=0.0,U=0.0,V=0,X=0.0,Y=0,Z=0.0,_=0,$=0.0,aa=0.0,ba=0.0,ca=0.0,da=0,ea=0,fa=0.0,ga=0,ha=0.0,ia=0.0,ja=0.0,ka=0.0,la=0.0,ma=0.0,na=0.0,oa=0.0,pa=0.0,qa=0.0,ra=0.0,sa=0.0,ta=0.0,ua=0.0,va=0.0,wa=0.0,xa=0.0,ya=0.0,za=0.0,Aa=0,Ba=0,Ca=0,Da=0.0,Ea=0.0,Fa=0;Fa=i;i=i+592|0;c[Fa+48>>2]=c[b>>2];c[Fa>>2]=c[b+64>>2];E=Fa+48+4|0;c[E>>2]=c[b+4>>2];c[Fa+4>>2]=c[b+68>>2];c[Fa+48+8>>2]=c[b+8>>2];c[Fa+8>>2]=c[b+72>>2];c[Fa+48+16>>2]=c[b+16>>2];c[Fa+16>>2]=c[b+80>>2];c[Fa+48+20>>2]=c[b+20>>2];c[Fa+20>>2]=c[b+84>>2];c[Fa+48+24>>2]=c[b+24>>2];c[Fa+24>>2]=c[b+88>>2];c[Fa+48+32>>2]=c[b+32>>2];c[Fa+32>>2]=c[b+96>>2];c[Fa+48+36>>2]=c[b+36>>2];c[Fa+36>>2]=c[b+100>>2];c[Fa+48+40>>2]=c[b+40>>2];c[Fa+40>>2]=c[b+104>>2];Ca=c[a+4>>2]|0;ia=+g[Ca+28>>2];ja=+g[Ca+32>>2];ma=+g[Ca+36>>2];ka=+Sb[c[(c[Ca>>2]|0)+48>>2]&15](Ca);la=+Sb[c[(c[Ca>>2]|0)+48>>2]&15](Ca);ma=(ma+ +Sb[c[(c[Ca>>2]|0)+48>>2]&15](Ca))*2.0;Ca=c[a+8>>2]|0;qa=+g[Ca+28>>2];ra=+g[Ca+32>>2];wa=+g[Ca+36>>2];sa=+Sb[c[(c[Ca>>2]|0)+48>>2]&15](Ca);pa=+Sb[c[(c[Ca>>2]|0)+48>>2]&15](Ca);wa=(wa+ +Sb[c[(c[Ca>>2]|0)+48>>2]&15](Ca))*2.0;D=+g[b+112>>2]-+g[b+48>>2];M=+g[b+116>>2]-+g[b+52>>2];P=+g[b+120>>2]-+g[b+56>>2];ca=+g[Fa+48>>2];aa=+g[Fa+48+16>>2];ba=+g[Fa+48+32>>2];$=+g[E>>2];X=+g[Fa+48+20>>2];Z=+g[Fa+48+36>>2];fa=+g[Fa+48+8>>2];ha=+g[Fa+48+24>>2];na=+g[Fa+48+40>>2];g[Fa+484>>2]=(ia+ka)*2.0*.5;g[Fa+484+4>>2]=(ja+la)*2.0*.5;g[Fa+484+8>>2]=ma*.5;g[Fa+472>>2]=(qa+sa)*2.0*.5;g[Fa+472+4>>2]=(ra+pa)*2.0*.5;g[Fa+472+8>>2]=wa*.5;za=+g[Fa>>2];ta=+g[Fa+16>>2];va=+g[Fa+32>>2];ya=+g[Fa+4>>2];oa=+g[Fa+20>>2];ua=+g[Fa+36>>2];xa=+g[Fa+8>>2];Da=+g[Fa+24>>2];Ea=+g[Fa+40>>2];y=+N(+(ca*za+aa*ta+ba*va));A=+N(+(ca*ya+aa*oa+ba*ua));R=+N(+(ca*xa+aa*Da+ba*Ea));z=+N(+(za*$+ta*X+va*Z));B=+N(+(ya*$+oa*X+ua*Z));S=+N(+(xa*$+Da*X+Ea*Z));T=+N(+(za*fa+ta*ha+va*na));U=+N(+(ya*fa+oa*ha+ua*na));C=+N(+(xa*fa+Da*ha+Ea*na));h=+N(+(D*ca+M*aa+P*ba))-(wa*.5*R+((ia+ka)*2.0*.5+y*(qa+sa)*2.0*.5+A*(ra+pa)*2.0*.5));if(h>0.0){i=Fa;return}if(h>-3402823466385288598117041.0e14){n=1;l=D*ca+M*aa+P*ba<0.0&1;e=Fa+48|0}else{n=0;l=0;e=0;h=-3402823466385288598117041.0e14}j=+N(+(D*$+M*X+P*Z))-((ja+la)*2.0*.5+z*(qa+sa)*2.0*.5+B*(ra+pa)*2.0*.5+S*wa*.5);if(j>0.0){i=Fa;return}if(j>h){n=2;l=D*$+M*X+P*Z<0.0&1;e=E;h=j}j=+N(+(D*fa+M*ha+P*na))-(ma*.5+T*(qa+sa)*2.0*.5+U*(ra+pa)*2.0*.5+C*wa*.5);if(j>0.0){i=Fa;return}if(j>h){n=3;l=D*fa+M*ha+P*na<0.0&1;e=Fa+48+8|0;h=j}j=+N(+(D*za+M*ta+P*va))-((qa+sa)*2.0*.5+(y*(ia+ka)*2.0*.5+z*(ja+la)*2.0*.5+T*ma*.5));if(j>0.0){i=Fa;return}if(j>h){n=4;l=D*za+M*ta+P*va<0.0&1;e=Fa;h=j}j=+N(+(D*ya+M*oa+P*ua))-((ra+pa)*2.0*.5+(A*(ia+ka)*2.0*.5+B*(ja+la)*2.0*.5+U*ma*.5));if(j>0.0){i=Fa;return}if(j>h){n=5;l=D*ya+M*oa+P*ua<0.0&1;e=Fa+4|0}else j=h;h=+N(+(D*xa+M*Da+P*Ea))-(wa*.5+(R*(ia+ka)*2.0*.5+S*(ja+la)*2.0*.5+C*ma*.5));if(h>0.0){i=Fa;return}if(h>j){n=6;l=D*xa+M*Da+P*Ea<0.0&1;u=Fa+8|0}else{u=e;h=j}j=(D*fa+M*ha+P*na)*(za*$+ta*X+va*Z)-(D*$+M*X+P*Z)*(za*fa+ta*ha+va*na);m=+N(+j)-((T+9.999999747378752e-06)*(ja+la)*2.0*.5+(z+9.999999747378752e-06)*ma*.5+(R+9.999999747378752e-06)*(ra+pa)*2.0*.5+(A+9.999999747378752e-06)*wa*.5);if(m>1.1920928955078125e-07){i=Fa;return}p=(za*fa+ta*ha+va*na)*(za*fa+ta*ha+va*na)+0.0;v=(za*$+ta*X+va*Z)*(za*$+ta*X+va*Z);o=+O(+(v+p));if(o>1.1920928955078125e-07?m/o*1.0499999523162842>h:0){a=(g[k>>2]=0.0/o,c[k>>2]|0);f=(g[k>>2]=-(za*fa+ta*ha+va*na)/o,c[k>>2]|0);n=7;l=j<0.0&1;e=(g[k>>2]=(za*$+ta*X+va*Z)/o,c[k>>2]|0);u=0;h=m/o}else{a=0;f=0;e=0}j=(D*fa+M*ha+P*na)*(ya*$+oa*X+ua*Z)-(D*$+M*X+P*Z)*(ya*fa+oa*ha+ua*na);m=+N(+j)-((U+9.999999747378752e-06)*(ja+la)*2.0*.5+(B+9.999999747378752e-06)*ma*.5+(R+9.999999747378752e-06)*(qa+sa)*2.0*.5+(y+9.999999747378752e-06)*wa*.5);if(m>1.1920928955078125e-07){i=Fa;return}q=(ya*fa+oa*ha+ua*na)*(ya*fa+oa*ha+ua*na)+0.0;w=(ya*$+oa*X+ua*Z)*(ya*$+oa*X+ua*Z);o=+O(+(w+q));if(o>1.1920928955078125e-07?m/o*1.0499999523162842>h:0){a=(g[k>>2]=0.0/o,c[k>>2]|0);f=(g[k>>2]=-(ya*fa+oa*ha+ua*na)/o,c[k>>2]|0);n=8;l=j<0.0&1;e=(g[k>>2]=(ya*$+oa*X+ua*Z)/o,c[k>>2]|0);u=0;h=m/o}j=(D*fa+M*ha+P*na)*(xa*$+Da*X+Ea*Z)-(D*$+M*X+P*Z)*(xa*fa+Da*ha+Ea*na);m=+N(+j)-((C+9.999999747378752e-06)*(ja+la)*2.0*.5+(S+9.999999747378752e-06)*ma*.5+(A+9.999999747378752e-06)*(qa+sa)*2.0*.5+(y+9.999999747378752e-06)*(ra+pa)*2.0*.5);if(m>1.1920928955078125e-07){i=Fa;return}s=(xa*fa+Da*ha+Ea*na)*(xa*fa+Da*ha+Ea*na)+0.0;x=(xa*$+Da*X+Ea*Z)*(xa*$+Da*X+Ea*Z);o=+O(+(x+s));if(o>1.1920928955078125e-07?m/o*1.0499999523162842>h:0){a=(g[k>>2]=0.0/o,c[k>>2]|0);f=(g[k>>2]=-(xa*fa+Da*ha+Ea*na)/o,c[k>>2]|0);n=9;l=j<0.0&1;e=(g[k>>2]=(xa*$+Da*X+Ea*Z)/o,c[k>>2]|0);u=0;h=m/o}j=(D*ca+M*aa+P*ba)*(za*fa+ta*ha+va*na)-(D*fa+M*ha+P*na)*(ca*za+aa*ta+ba*va);o=+N(+j)-((T+9.999999747378752e-06)*(ia+ka)*2.0*.5+(y+9.999999747378752e-06)*ma*.5+(S+9.999999747378752e-06)*(ra+pa)*2.0*.5+(B+9.999999747378752e-06)*wa*.5);if(o>1.1920928955078125e-07){i=Fa;return}t=(ca*za+aa*ta+ba*va)*(ca*za+aa*ta+ba*va);m=+O(+(t+p));do if(m>1.1920928955078125e-07){if(!(o/m*1.0499999523162842>h))break;a=(g[k>>2]=(za*fa+ta*ha+va*na)/m,c[k>>2]|0);f=(g[k>>2]=0.0/m,c[k>>2]|0);n=10;l=j<0.0&1;e=(g[k>>2]=-(ca*za+aa*ta+ba*va)/m,c[k>>2]|0);u=0;h=o/m}while(0);j=(D*ca+M*aa+P*ba)*(ya*fa+oa*ha+ua*na)-(D*fa+M*ha+P*na)*(ca*ya+aa*oa+ba*ua);o=+N(+j)-((U+9.999999747378752e-06)*(ia+ka)*2.0*.5+(A+9.999999747378752e-06)*ma*.5+(S+9.999999747378752e-06)*(qa+sa)*2.0*.5+(z+9.999999747378752e-06)*wa*.5);if(o>1.1920928955078125e-07){i=Fa;return}r=(ca*ya+aa*oa+ba*ua)*(ca*ya+aa*oa+ba*ua);m=+O(+(r+q));do if(m>1.1920928955078125e-07){if(!(o/m*1.0499999523162842>h))break;a=(g[k>>2]=(ya*fa+oa*ha+ua*na)/m,c[k>>2]|0);f=(g[k>>2]=0.0/m,c[k>>2]|0);n=11;l=j<0.0&1;e=(g[k>>2]=-(ca*ya+aa*oa+ba*ua)/m,c[k>>2]|0);u=0;h=o/m}while(0);j=(D*ca+M*aa+P*ba)*(xa*fa+Da*ha+Ea*na)-(D*fa+M*ha+P*na)*(ca*xa+aa*Da+ba*Ea);o=+N(+j)-((C+9.999999747378752e-06)*(ia+ka)*2.0*.5+(R+9.999999747378752e-06)*ma*.5+(B+9.999999747378752e-06)*(qa+sa)*2.0*.5+(z+9.999999747378752e-06)*(ra+pa)*2.0*.5);if(o>1.1920928955078125e-07){i=Fa;return}p=(ca*xa+aa*Da+ba*Ea)*(ca*xa+aa*Da+ba*Ea);m=+O(+(p+s));do if(m>1.1920928955078125e-07){if(!(o/m*1.0499999523162842>h))break;a=(g[k>>2]=(xa*fa+Da*ha+Ea*na)/m,c[k>>2]|0);f=(g[k>>2]=0.0/m,c[k>>2]|0);n=12;l=j<0.0&1;e=(g[k>>2]=-(ca*xa+aa*Da+ba*Ea)/m,c[k>>2]|0);u=0;h=o/m}while(0);j=(D*$+M*X+P*Z)*(ca*za+aa*ta+ba*va)-(D*ca+M*aa+P*ba)*(za*$+ta*X+va*Z);o=+N(+j)-((z+9.999999747378752e-06)*(ia+ka)*2.0*.5+(y+9.999999747378752e-06)*(ja+la)*2.0*.5+(C+9.999999747378752e-06)*(ra+pa)*2.0*.5+(U+9.999999747378752e-06)*wa*.5);if(o>1.1920928955078125e-07){i=Fa;return}m=+O(+(t+v+0.0));do if(m>1.1920928955078125e-07){if(!(o/m*1.0499999523162842>h))break;a=(g[k>>2]=-(za*$+ta*X+va*Z)/m,c[k>>2]|0);f=(g[k>>2]=(ca*za+aa*ta+ba*va)/m,c[k>>2]|0);n=13;l=j<0.0&1;e=(g[k>>2]=0.0/m,c[k>>2]|0);u=0;h=o/m}while(0);j=(D*$+M*X+P*Z)*(ca*ya+aa*oa+ba*ua)-(D*ca+M*aa+P*ba)*(ya*$+oa*X+ua*Z);o=+N(+j)-((B+9.999999747378752e-06)*(ia+ka)*2.0*.5+(A+9.999999747378752e-06)*(ja+la)*2.0*.5+(C+9.999999747378752e-06)*(qa+sa)*2.0*.5+(T+9.999999747378752e-06)*wa*.5);if(o>1.1920928955078125e-07){i=Fa;return}m=+O(+(r+w+0.0));do if(m>1.1920928955078125e-07){if(!(o/m*1.0499999523162842>h))break;a=(g[k>>2]=-(ya*$+oa*X+ua*Z)/m,c[k>>2]|0);f=(g[k>>2]=(ca*ya+aa*oa+ba*ua)/m,c[k>>2]|0);n=14;l=j<0.0&1;e=(g[k>>2]=0.0/m,c[k>>2]|0);u=0;h=o/m}while(0);m=(D*$+M*X+P*Z)*(ca*xa+aa*Da+ba*Ea)-(D*ca+M*aa+P*ba)*(xa*$+Da*X+Ea*Z);o=+N(+m)-((S+9.999999747378752e-06)*(ia+ka)*2.0*.5+(R+9.999999747378752e-06)*(ja+la)*2.0*.5+(U+9.999999747378752e-06)*(qa+sa)*2.0*.5+(T+9.999999747378752e-06)*(ra+pa)*2.0*.5);if(o>1.1920928955078125e-07){i=Fa;return}j=+O(+(p+x+0.0));do if(j>1.1920928955078125e-07){if(!(o/j*1.0499999523162842>h)){Aa=55;break}a=(g[k>>2]=-(xa*$+Da*X+Ea*Z)/j,c[k>>2]|0);f=(g[k>>2]=(ca*xa+aa*Da+ba*Ea)/j,c[k>>2]|0);n=15;l=m<0.0&1;e=(g[k>>2]=0.0/j,c[k>>2]|0);h=o/j;Aa=58}else Aa=55;while(0);do if((Aa|0)==55){if(!n){i=Fa;return}if(!u){Aa=58;break}e=c[u>>2]|0;a=c[u+16>>2]|0;Ca=c[u+32>>2]|0;j=(c[k>>2]=e,+g[k>>2]);m=(c[k>>2]=a,+g[k>>2]);o=(c[k>>2]=Ca,+g[k>>2]);f=l;l=Ca;D=h}while(0);if((Aa|0)==58){ca=(c[k>>2]=a,+g[k>>2]);o=(c[k>>2]=f,+g[k>>2]);D=(c[k>>2]=e,+g[k>>2]);j=ca*+g[Fa+48>>2]+o*+g[E>>2]+D*fa;e=(g[k>>2]=j,c[k>>2]|0);m=ca*+g[Fa+48+16>>2]+o*+g[Fa+48+20>>2]+D*ha;a=(g[k>>2]=m,c[k>>2]|0);D=ca*+g[Fa+48+32>>2]+o*+g[Fa+48+36>>2]+D*na;o=D;f=l;l=(g[k>>2]=D,c[k>>2]|0);D=h}if(!f){Ba=a;Ca=l}else{e=(g[k>>2]=-j,c[k>>2]|0);Ba=(g[k>>2]=-m,c[k>>2]|0);Ca=(g[k>>2]=-o,c[k>>2]|0)}if((n|0)>6){C=(c[k>>2]=e,+g[k>>2]);B=(c[k>>2]=Ba,+g[k>>2]);A=(c[k>>2]=Ca,+g[k>>2]);j=+g[Fa+48>>2];t=+g[Fa+48+16>>2];w=+g[Fa+48+32>>2];v=(C*j+B*t+A*w>0.0?1.0:-1.0)*(ia+ka)*2.0*.5;z=+g[E>>2];y=+g[Fa+48+20>>2];h=+g[Fa+48+36>>2];s=(C*z+B*y+A*h>0.0?1.0:-1.0)*(ja+la)*2.0*.5;x=(C*fa+B*ha+A*na>0.0?1.0:-1.0)*ma*.5;z=+g[b+48>>2]+v*j+s*z+x*fa;y=+g[b+52>>2]+v*t+s*y+x*ha;x=+g[b+56>>2]+v*w+s*h+x*na;c[Fa+528>>2]=c[b+112>>2];c[Fa+528+4>>2]=c[b+112+4>>2];c[Fa+528+8>>2]=c[b+112+8>>2];h=(C*za+B*ta+A*va>0.0?-1.0:1.0)*(qa+sa)*2.0*.5;s=(C*ya+B*oa+A*ua>0.0?-1.0:1.0)*(ra+pa)*2.0*.5;w=+g[Fa+528+4>>2]+h*ta+s*oa;v=+g[Fa+528+8>>2]+h*va+s*ua;t=(C*xa+B*Da+A*Ea>0.0?-1.0:1.0)*wa*.5;s=+g[Fa+528>>2]+h*za+s*ya+t*xa;g[Fa+528>>2]=s;g[Fa+528+4>>2]=w+t*Da;g[Fa+528+8>>2]=v+t*Ea;Ca=n+-7|0;h=+g[Fa+48+(((Ca|0)/3|0)<<2)>>2];j=+g[Fa+48+(((Ca|0)/3|0)+4<<2)>>2];m=+g[Fa+48+(((Ca|0)/3|0)+8<<2)>>2];p=+g[Fa+(((Ca|0)%3|0)<<2)>>2];q=+g[Fa+(((Ca|0)%3|0)+4<<2)>>2];r=+g[Fa+(((Ca|0)%3|0)+8<<2)>>2];o=1.0-(h*p+j*q+m*r)*(h*p+j*q+m*r);if(!(o<=9.999999747378752e-05))h=(((s-z)*h+(w+t*Da-y)*j+(v+t*Ea-x)*m)*(h*p+j*q+m*r)-((s-z)*p+(w+t*Da-y)*q+(v+t*Ea-x)*r))*(1.0/o);else h=0.0;g[Fa+528>>2]=s+h*p;g[Fa+528+4>>2]=w+t*Da+h*q;g[Fa+528+8>>2]=v+t*Ea+h*r;Ca=c[(c[d>>2]|0)+16>>2]|0;g[Fa+456>>2]=-C;g[Fa+456+4>>2]=-B;g[Fa+456+8>>2]=-A;g[Fa+456+12>>2]=0.0;hc[Ca&15](d,Fa+456|0,Fa+528|0,D);i=Fa;return}da=(n|0)<4;fa=(c[k>>2]=e,+g[k>>2]);if(da){l=Fa+48|0;_=Fa;Q=Fa+484|0;u=Fa+472|0;ca=fa;f=Ca;e=Ba;ga=b+48|0;a=b+112|0}else{e=(g[k>>2]=-(c[k>>2]=Ba,+g[k>>2]),c[k>>2]|0);l=Fa;_=Fa+48|0;Q=Fa+472|0;u=Fa+484|0;ca=-fa;f=(g[k>>2]=-(c[k>>2]=Ca,+g[k>>2]),c[k>>2]|0);ga=b+112|0;a=b+48|0}ba=(c[k>>2]=e,+g[k>>2]);aa=(c[k>>2]=f,+g[k>>2]);h=ca*+g[_>>2]+ba*+g[_+16>>2]+aa*+g[_+32>>2];g[Fa+440>>2]=h;j=ca*+g[_+4>>2]+ba*+g[_+20>>2]+aa*+g[_+36>>2];g[Fa+440+4>>2]=j;p=ca*+g[_+8>>2]+ba*+g[_+24>>2]+aa*+g[_+40>>2];g[Fa+440+8>>2]=p;h=+N(+h);j=+N(+j);p=+N(+p);e=j>h?(j>p?1:2):h>p?0:2;V=j>h?0:h>p&1;Y=(j>h?j>p:h>p)?2:1;p=+g[u+(e<<2)>>2];h=+g[a>>2]-+g[ga>>2];j=p*+g[_+(e<<2)>>2];m=+g[a+4>>2];ea=ga+4|0;o=+g[ea>>2];if(+g[Fa+440+(e<<2)>>2]<0.0){$=h+j;Z=m-o+p*+g[_+((e|4)<<2)>>2];X=+g[a+8>>2]-+g[ga+8>>2]+p*+g[_+((e|8)<<2)>>2]}else{$=h-j;Z=m-o-p*+g[_+((e|4)<<2)>>2];X=+g[a+8>>2]-+g[ga+8>>2]-p*+g[_+((e|8)<<2)>>2]}K=(da?-1:-4)+n|0;switch(K|0){case 0:{e=1;f=2;break}case 1:{e=0;f=2;break}default:{e=0;f=1}}J=l+(e<<2)|0;T=+g[J>>2];R=+g[J+16>>2];S=+g[J+32>>2];U=$*T+Z*R+X*S;J=l+(f<<2)|0;M=+g[J>>2];A=+g[J+16>>2];B=+g[J+32>>2];P=$*M+Z*A+X*B;J=_+(V<<2)|0;D=+g[J>>2];y=+g[J+16>>2];z=+g[J+32>>2];L=_+(Y<<2)|0;C=+g[L>>2];w=+g[L+16>>2];x=+g[L+32>>2];Da=+g[u+(V<<2)>>2];Ea=+g[u+(Y<<2)>>2];za=(T*C+R*w+S*x)*Ea;Ea=(M*C+A*w+B*x)*Ea;g[Fa+408>>2]=U-(T*D+R*y+S*z)*Da-za;g[Fa+408+4>>2]=P-(M*D+A*y+B*z)*Da-Ea;g[Fa+408+8>>2]=U-(T*D+R*y+S*z)*Da+za;g[Fa+408+12>>2]=P-(M*D+A*y+B*z)*Da+Ea;g[Fa+408+16>>2]=U+(T*D+R*y+S*z)*Da+za;g[Fa+408+20>>2]=P+(M*D+A*y+B*z)*Da+Ea;g[Fa+408+24>>2]=U+(T*D+R*y+S*z)*Da-za;g[Fa+408+28>>2]=P+(M*D+A*y+B*z)*Da-Ea;c[Fa+400>>2]=c[Q+(e<<2)>>2];c[Fa+400+4>>2]=c[Q+(f<<2)>>2];I=0;f=4;b=Fa+408|0;H=Fa+336|0;a:while(1){F=Fa+400+(I<<2)|0;G=1-I|0;do if((f|0)>0){a=0;E=b;e=H;while(1){l=E+(I<<2)|0;h=+g[l>>2];j=+g[F>>2];if(j>-h){c[e>>2]=c[E>>2];c[e+4>>2]=c[E+4>>2];a=a+1|0;if(a&8|0){f=a;e=H;break a}h=+g[l>>2];j=+g[F>>2];n=e+8|0}else n=e;u=(f|0)>1;l=E;E=E+8|0;e=u?E:b;m=+g[e+(I<<2)>>2];if(j>-h^j>-m){Ea=+g[l+(G<<2)>>2];g[n+(G<<2)>>2]=Ea+(-j-h)*((+g[e+(G<<2)>>2]-Ea)/(m-h));g[n+(I<<2)>>2]=-+g[F>>2];e=a+1|0;if(!(e&8)){a=e;e=n+8|0}else{f=e;e=H;break a}}else e=n;if(!u)break;else f=f+-1|0}e=(H|0)==(Fa+336|0)?Fa+528|0:Fa+336|0;if((a|0)<=0){f=0;break}E=a;f=0;b=H;a=e;while(1){l=b+(I<<2)|0;j=+g[l>>2];h=+g[F>>2];if(j>2]=c[b>>2];c[a+4>>2]=c[b+4>>2];f=f+1|0;if(f&8|0)break a;h=+g[F>>2];j=+g[l>>2];a=a+8|0}u=(E|0)>1;n=b;b=b+8|0;l=u?b:H;m=+g[l+(I<<2)>>2];if(j>2];g[a+(G<<2)>>2]=Ea+(h-j)*((+g[l+(G<<2)>>2]-Ea)/(m-j));c[a+(I<<2)>>2]=c[F>>2];f=f+1|0;if(!(f&8))a=a+8|0;else break a}if(!u)break;else E=E+-1|0}}else{e=(H|0)==(Fa+336|0)?Fa+528|0:Fa+336|0;f=0}while(0);I=I+1|0;if((I|0)>=2)break;else{b=e;H=(e|0)==(Fa+336|0)?Fa+528|0:Fa+336|0}}if((e|0)!=(Fa+336|0))_m(Fa+336|0,e|0,f<<3|0)|0;if((f|0)>=1){v=1.0/((T*D+R*y+S*z)*(M*C+A*w+B*x)-(M*D+A*y+B*z)*(T*C+R*w+S*x));t=+g[Q+(K<<2)>>2];s=+g[J>>2];p=+g[L>>2];q=+g[_+((V|4)<<2)>>2];r=+g[_+((Y|4)<<2)>>2];o=+g[_+((V|8)<<2)>>2];m=+g[_+((Y|8)<<2)>>2];a=0;e=0;do{_=e<<1;h=+g[Fa+336+(_<<2)>>2];j=+g[Fa+336+((_|1)<<2)>>2];ya=(M*C+A*w+B*x)*v*(h-U)-(T*C+R*w+S*x)*v*(j-P);Ea=(T*D+R*y+S*z)*v*(j-P)-(M*D+A*y+B*z)*v*(h-U);_=a*3|0;za=$+ya*s+Ea*p;g[Fa+240+(_<<2)>>2]=za;Da=Z+ya*q+Ea*r;g[Fa+240+(_+1<<2)>>2]=Da;Ea=X+ya*o+Ea*m;g[Fa+240+(_+2<<2)>>2]=Ea;Ea=t-(ca*za+ba*Da+aa*Ea);g[Fa+208+(a<<2)>>2]=Ea;if(Ea>=0.0){_=a<<1;g[Fa+336+(_<<2)>>2]=h;g[Fa+336+((_|1)<<2)>>2]=j;a=a+1|0}e=e+1|0}while((e|0)!=(f|0));b:do if((a|0)>=1){E=(a|0)<4?a:4;E=(E|0)<1?1:E;if((a|0)<=(E|0))if(da){f=ga+8|0;j=-(c[k>>2]=Ba,+g[k>>2]);h=-(c[k>>2]=Ca,+g[k>>2]);e=0;while(1){Ca=e*3|0;g[Fa+528>>2]=+g[Fa+240+(Ca<<2)>>2]+ +g[ga>>2];g[Fa+528+4>>2]=+g[Fa+240+(Ca+1<<2)>>2]+ +g[ea>>2];g[Fa+528+8>>2]=+g[Fa+240+(Ca+2<<2)>>2]+ +g[f>>2];Ca=c[(c[d>>2]|0)+16>>2]|0;g[Fa+192>>2]=-fa;g[Fa+192+4>>2]=j;g[Fa+192+8>>2]=h;g[Fa+192+12>>2]=0.0;hc[Ca&15](d,Fa+192|0,Fa+528|0,-+g[Fa+208+(e<<2)>>2]);e=e+1|0;if((e|0)==(a|0))break b}}else{f=ga+8|0;j=(c[k>>2]=Ba,+g[k>>2]);h=(c[k>>2]=Ca,+g[k>>2]);e=0;while(1){Ca=e*3|0;Ea=+g[Fa+208+(e<<2)>>2];g[Fa+528>>2]=+g[Fa+240+(Ca<<2)>>2]+ +g[ga>>2]-fa*Ea;g[Fa+528+4>>2]=+g[Fa+240+(Ca+1<<2)>>2]+ +g[ea>>2]-j*Ea;g[Fa+528+8>>2]=+g[Fa+240+(Ca+2<<2)>>2]+ +g[f>>2]-h*Ea;Ca=c[(c[d>>2]|0)+16>>2]|0;g[Fa+176>>2]=-fa;g[Fa+176+4>>2]=-j;g[Fa+176+8>>2]=-h;g[Fa+176+12>>2]=0.0;hc[Ca&15](d,Fa+176|0,Fa+528|0,-Ea);e=e+1|0;if((e|0)==(a|0))break b}}c:do if((a|0)>1){f=1;l=0;j=+g[Fa+208>>2];while(1){h=+g[Fa+208+(f<<2)>>2];e=h>j;l=e?f:l;f=f+1|0;if((f|0)==(a|0))break;else j=e?h:j}switch(a|0){case 1:{e=Fa+144|0;f=Fa+144|0;a=1;Aa=111;break c}case 2:{e=Fa+144|0;f=Fa+144|0;a=2;j=(+g[Fa+336>>2]+ +g[Fa+336+8>>2])*.5;h=(+g[Fa+336+4>>2]+ +g[Fa+336+12>>2])*.5;Aa=116;break c}default:{}}e=a+-1|0;h=0.0;j=0.0;r=0.0;f=0;do{_=f<<1;ya=+g[Fa+336+(_<<2)>>2];za=+g[Fa+336+(_+3<<2)>>2];Da=+g[Fa+336+(_+2<<2)>>2];Ea=+g[Fa+336+((_|1)<<2)>>2];h=h+(ya*za-Da*Ea);j=j+(ya+Da)*(ya*za-Da*Ea);r=r+(za+Ea)*(ya*za-Da*Ea);f=f+1|0}while((f|0)!=(e|0));_=a<<1;m=+g[Fa+336+(_+-2<<2)>>2];o=+g[Fa+336+4>>2];p=+g[Fa+336>>2];q=+g[Fa+336+(_+-1<<2)>>2];h=h+(m*o-p*q);if(+N(+h)>1.1920928955078125e-07)h=1.0/(h*3.0);else h=999999984306749440.0;if((a|0)>0){u=Fa+144|0;f=Fa+144|0;n=Fa+528|0;j=h*(j+(m*o-p*q)*(m+p));h=h*(r+(m*o-p*q)*(q+o));Aa=119;break}e=Fa+144|0;f=0;u=a}else{e=Fa+144|0;f=Fa+144|0;l=0;Aa=111}while(0);if((Aa|0)==111){j=+g[Fa+336>>2];h=+g[Fa+336+4>>2];Aa=116}if((Aa|0)==116){u=e;n=Fa+528|0;Aa=119}if((Aa|0)==119){e=0;do{Aa=e<<1;g[Fa+528+(e<<2)>>2]=+W(+(+g[Fa+336+((Aa|1)<<2)>>2]-h),+(+g[Fa+336+(Aa<<2)>>2]-j));e=e+1|0}while((e|0)!=(a|0));e=0;do{c[Fa+496+(e<<2)>>2]=1;e=e+1|0}while((e|0)!=(a|0));e=u;f=1;u=a}a=Fa+496+(l<<2)|0;c[a>>2]=0;c[e>>2]=l;d:do if((E|0)>1){o=+g[Fa+528+(l<<2)>>2];if(f){f=Fa+144+4|0;n=1}else{e=Fa+144+4|0;f=1;while(1){c[e>>2]=l;c[a>>2]=0;f=f+1|0;if((f|0)==(E|0))break d;else e=e+4|0}}while(1){m=6.2831854820251465/+(E|0)*+(n|0)+o;m=m>3.1415927410125732?m+-6.2831854820251465:m;c[f>>2]=l;e=l;a=0;j=1.0e9;while(1){do if(!(c[Fa+496+(a<<2)>>2]|0))h=j;else{h=+N(+(+g[Fa+528+(a<<2)>>2]-m));h=h>3.1415927410125732?6.2831854820251465-h:h;if(!(h>2]=a;e=a}while(0);a=a+1|0;if((a|0)==(u|0))break;else j=h}c[Fa+496+(e<<2)>>2]=0;n=n+1|0;if((n|0)==(E|0))break;else f=f+4|0}}while(0);if((E|0)>0){f=ga+8|0;j=(c[k>>2]=Ba,+g[k>>2]);h=(c[k>>2]=Ca,+g[k>>2]);if(da){e=0;do{Ca=c[Fa+144+(e<<2)>>2]|0;g[Fa+528>>2]=+g[Fa+240+(Ca*3<<2)>>2]+ +g[ga>>2];g[Fa+528+4>>2]=+g[Fa+240+((Ca*3|0)+1<<2)>>2]+ +g[ea>>2];g[Fa+528+8>>2]=+g[Fa+240+((Ca*3|0)+2<<2)>>2]+ +g[f>>2];Ba=c[(c[d>>2]|0)+16>>2]|0;g[Fa+128>>2]=-fa;g[Fa+128+4>>2]=-j;g[Fa+128+8>>2]=-h;g[Fa+128+12>>2]=0.0;hc[Ba&15](d,Fa+128|0,Fa+528|0,-+g[Fa+208+(Ca<<2)>>2]);e=e+1|0}while((e|0)<(E|0))}else{e=0;do{Ba=c[Fa+144+(e<<2)>>2]|0;ya=+g[Fa+240+(Ba*3<<2)>>2]+ +g[ga>>2];g[Fa+528>>2]=ya;za=+g[Fa+240+((Ba*3|0)+1<<2)>>2]+ +g[ea>>2];g[Fa+528+4>>2]=za;Da=+g[Fa+240+((Ba*3|0)+2<<2)>>2]+ +g[f>>2];g[Fa+528+8>>2]=Da;Ca=c[(c[d>>2]|0)+16>>2]|0;g[Fa+112>>2]=-fa;g[Fa+112+4>>2]=-j;g[Fa+112+8>>2]=-h;g[Fa+112+12>>2]=0.0;Ea=+g[Fa+208+(Ba<<2)>>2];g[Fa+96>>2]=ya-fa*Ea;g[Fa+96+4>>2]=za-Ea*j;g[Fa+96+8>>2]=Da-Ea*h;g[Fa+96+12>>2]=0.0;hc[Ca&15](d,Fa+112|0,Fa+96|0,-Ea);e=e+1|0}while((e|0)<(E|0))}}}while(0)}i=Fa;return}function yc(a){a=a|0;var b=0,d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0,D=0;do if(a>>>0<245){n=a>>>0<11?16:a+11&-8;g=c[6438]|0;if(g>>>(n>>>3)&3|0){a=25792+((g>>>(n>>>3)&1^1)+(n>>>3)<<1<<2)|0;b=c[a+8>>2]|0;d=c[b+8>>2]|0;do if((a|0)!=(d|0)){if(d>>>0<(c[6442]|0)>>>0)Va();if((c[d+12>>2]|0)==(b|0)){c[d+12>>2]=a;c[a+8>>2]=d;break}else Va()}else c[6438]=g&~(1<<(g>>>(n>>>3)&1^1)+(n>>>3));while(0);D=(g>>>(n>>>3)&1^1)+(n>>>3)<<3;c[b+4>>2]=D|3;c[b+D+4>>2]=c[b+D+4>>2]|1;D=b+8|0;return D|0}b=c[6440]|0;if(n>>>0>b>>>0){if(g>>>(n>>>3)|0){a=g>>>(n>>>3)<<(n>>>3)&(2<<(n>>>3)|0-(2<<(n>>>3)));f=((a&0-a)+-1|0)>>>(((a&0-a)+-1|0)>>>12&16);e=f>>>(f>>>5&8)>>>(f>>>(f>>>5&8)>>>2&4);e=(f>>>5&8|((a&0-a)+-1|0)>>>12&16|f>>>(f>>>5&8)>>>2&4|e>>>1&2|e>>>(e>>>1&2)>>>1&1)+(e>>>(e>>>1&2)>>>(e>>>(e>>>1&2)>>>1&1))|0;f=c[25792+(e<<1<<2)+8>>2]|0;a=c[f+8>>2]|0;do if((25792+(e<<1<<2)|0)!=(a|0)){if(a>>>0<(c[6442]|0)>>>0)Va();if((c[a+12>>2]|0)==(f|0)){c[a+12>>2]=25792+(e<<1<<2);c[25792+(e<<1<<2)+8>>2]=a;h=c[6440]|0;break}else Va()}else{c[6438]=g&~(1<>2]=n|3;c[f+n+4>>2]=(e<<3)-n|1;c[f+n+((e<<3)-n)>>2]=(e<<3)-n;if(h|0){d=c[6443]|0;b=h>>>3;a=c[6438]|0;if(a&1<>2]|0;if(a>>>0<(c[6442]|0)>>>0)Va();else{i=25792+(b<<1<<2)+8|0;j=a}}else{c[6438]=a|1<>2]=d;c[j+12>>2]=d;c[d+8>>2]=j;c[d+12>>2]=25792+(b<<1<<2)}c[6440]=(e<<3)-n;c[6443]=f+n;D=f+8|0;return D|0}a=c[6439]|0;if(a){i=((a&0-a)+-1|0)>>>(((a&0-a)+-1|0)>>>12&16);j=i>>>(i>>>5&8)>>>(i>>>(i>>>5&8)>>>2&4);j=c[26056+((i>>>5&8|((a&0-a)+-1|0)>>>12&16|i>>>(i>>>5&8)>>>2&4|j>>>1&2|j>>>(j>>>1&2)>>>1&1)+(j>>>(j>>>1&2)>>>(j>>>(j>>>1&2)>>>1&1))<<2)>>2]|0;i=(c[j+4>>2]&-8)-n|0;b=j;while(1){a=c[b+16>>2]|0;if(!a){a=c[b+20>>2]|0;if(!a)break}b=(c[a+4>>2]&-8)-n|0;D=b>>>0>>0;i=D?b:i;b=a;j=D?a:j}f=c[6442]|0;if(j>>>0>>0)Va();h=j+n|0;if(j>>>0>=h>>>0)Va();g=c[j+24>>2]|0;a=c[j+12>>2]|0;do if((a|0)==(j|0)){b=j+20|0;a=c[b>>2]|0;if(!a){b=j+16|0;a=c[b>>2]|0;if(!a){k=0;break}}while(1){d=a+20|0;e=c[d>>2]|0;if(e|0){a=e;b=d;continue}d=a+16|0;e=c[d>>2]|0;if(!e)break;else{a=e;b=d}}if(b>>>0>>0)Va();else{c[b>>2]=0;k=a;break}}else{b=c[j+8>>2]|0;if(b>>>0>>0)Va();if((c[b+12>>2]|0)!=(j|0))Va();if((c[a+8>>2]|0)==(j|0)){c[b+12>>2]=a;c[a+8>>2]=b;k=a;break}else Va()}while(0);do if(g|0){a=c[j+28>>2]|0;if((j|0)==(c[26056+(a<<2)>>2]|0)){c[26056+(a<<2)>>2]=k;if(!k){c[6439]=c[6439]&~(1<>>0<(c[6442]|0)>>>0)Va();if((c[g+16>>2]|0)==(j|0))c[g+16>>2]=k;else c[g+20>>2]=k;if(!k)break}b=c[6442]|0;if(k>>>0>>0)Va();c[k+24>>2]=g;a=c[j+16>>2]|0;do if(a|0)if(a>>>0>>0)Va();else{c[k+16>>2]=a;c[a+24>>2]=k;break}while(0);a=c[j+20>>2]|0;if(a|0)if(a>>>0<(c[6442]|0)>>>0)Va();else{c[k+20>>2]=a;c[a+24>>2]=k;break}}while(0);if(i>>>0<16){D=i+n|0;c[j+4>>2]=D|3;D=j+D+4|0;c[D>>2]=c[D>>2]|1}else{c[j+4>>2]=n|3;c[h+4>>2]=i|1;c[h+i>>2]=i;b=c[6440]|0;if(b|0){d=c[6443]|0;a=c[6438]|0;if(a&1<<(b>>>3)){a=c[25792+(b>>>3<<1<<2)+8>>2]|0;if(a>>>0<(c[6442]|0)>>>0)Va();else{l=25792+(b>>>3<<1<<2)+8|0;m=a}}else{c[6438]=a|1<<(b>>>3);l=25792+(b>>>3<<1<<2)+8|0;m=25792+(b>>>3<<1<<2)|0}c[l>>2]=d;c[m+12>>2]=d;c[d+8>>2]=m;c[d+12>>2]=25792+(b>>>3<<1<<2)}c[6440]=i;c[6443]=h}D=j+8|0;return D|0}}}else if(a>>>0<=4294967231){n=a+11&-8;i=c[6439]|0;if(i){if((a+11|0)>>>8)if(n>>>0>16777215)h=31;else{h=(a+11|0)>>>8<<((((a+11|0)>>>8)+1048320|0)>>>16&8);h=14-((h+520192|0)>>>16&4|(((a+11|0)>>>8)+1048320|0)>>>16&8|((h<<((h+520192|0)>>>16&4))+245760|0)>>>16&2)+(h<<((h+520192|0)>>>16&4)<<(((h<<((h+520192|0)>>>16&4))+245760|0)>>>16&2)>>>15)|0;h=n>>>(h+7|0)&1|h<<1}else h=0;b=c[26056+(h<<2)>>2]|0;a:do if(!b){d=0-n|0;a=0;b=0;w=86}else{d=0-n|0;a=0;f=n<<((h|0)==31?0:25-(h>>>1)|0);g=b;b=0;while(1){e=c[g+4>>2]&-8;if((e-n|0)>>>0>>0)if((e|0)==(n|0)){d=e-n|0;a=g;b=g;w=90;break a}else{d=e-n|0;b=g}e=c[g+20>>2]|0;g=c[g+16+(f>>>31<<2)>>2]|0;a=(e|0)==0|(e|0)==(g|0)?a:e;e=(g|0)==0;if(e){w=86;break}else f=f<<(e&1^1)}}while(0);if((w|0)==86){if((a|0)==0&(b|0)==0){a=2<>>(l>>>12&16)>>>(l>>>(l>>>12&16)>>>5&8);a=m>>>(m>>>2&4)>>>(m>>>(m>>>2&4)>>>1&2);a=c[26056+((l>>>(l>>>12&16)>>>5&8|l>>>12&16|m>>>2&4|m>>>(m>>>2&4)>>>1&2|a>>>1&1)+(a>>>(a>>>1&1))<<2)>>2]|0}if(!a){i=d;j=b}else w=90}if((w|0)==90)while(1){w=0;m=(c[a+4>>2]&-8)-n|0;e=m>>>0>>0;d=e?m:d;b=e?a:b;e=c[a+16>>2]|0;if(e|0){a=e;w=90;continue}a=c[a+20>>2]|0;if(!a){i=d;j=b;break}else w=90}if((j|0)!=0?i>>>0<((c[6440]|0)-n|0)>>>0:0){f=c[6442]|0;if(j>>>0>>0)Va();h=j+n|0;if(j>>>0>=h>>>0)Va();g=c[j+24>>2]|0;a=c[j+12>>2]|0;do if((a|0)==(j|0)){b=j+20|0;a=c[b>>2]|0;if(!a){b=j+16|0;a=c[b>>2]|0;if(!a){p=0;break}}while(1){d=a+20|0;e=c[d>>2]|0;if(e|0){a=e;b=d;continue}d=a+16|0;e=c[d>>2]|0;if(!e)break;else{a=e;b=d}}if(b>>>0>>0)Va();else{c[b>>2]=0;p=a;break}}else{b=c[j+8>>2]|0;if(b>>>0>>0)Va();if((c[b+12>>2]|0)!=(j|0))Va();if((c[a+8>>2]|0)==(j|0)){c[b+12>>2]=a;c[a+8>>2]=b;p=a;break}else Va()}while(0);do if(g|0){a=c[j+28>>2]|0;if((j|0)==(c[26056+(a<<2)>>2]|0)){c[26056+(a<<2)>>2]=p;if(!p){c[6439]=c[6439]&~(1<>>0<(c[6442]|0)>>>0)Va();if((c[g+16>>2]|0)==(j|0))c[g+16>>2]=p;else c[g+20>>2]=p;if(!p)break}b=c[6442]|0;if(p>>>0>>0)Va();c[p+24>>2]=g;a=c[j+16>>2]|0;do if(a|0)if(a>>>0>>0)Va();else{c[p+16>>2]=a;c[a+24>>2]=p;break}while(0);a=c[j+20>>2]|0;if(a|0)if(a>>>0<(c[6442]|0)>>>0)Va();else{c[p+20>>2]=a;c[a+24>>2]=p;break}}while(0);do if(i>>>0>=16){c[j+4>>2]=n|3;c[h+4>>2]=i|1;c[h+i>>2]=i;b=i>>>3;if(i>>>0<256){a=c[6438]|0;if(a&1<>2]|0;if(a>>>0<(c[6442]|0)>>>0)Va();else{q=25792+(b<<1<<2)+8|0;r=a}}else{c[6438]=a|1<>2]=h;c[r+12>>2]=h;c[h+8>>2]=r;c[h+12>>2]=25792+(b<<1<<2);break}a=i>>>8;if(a)if(i>>>0>16777215)d=31;else{d=a<<((a+1048320|0)>>>16&8)<<(((a<<((a+1048320|0)>>>16&8))+520192|0)>>>16&4);d=14-(((a<<((a+1048320|0)>>>16&8))+520192|0)>>>16&4|(a+1048320|0)>>>16&8|(d+245760|0)>>>16&2)+(d<<((d+245760|0)>>>16&2)>>>15)|0;d=i>>>(d+7|0)&1|d<<1}else d=0;e=26056+(d<<2)|0;c[h+28>>2]=d;c[h+16+4>>2]=0;c[h+16>>2]=0;a=c[6439]|0;b=1<>2]=h;c[h+24>>2]=e;c[h+12>>2]=h;c[h+8>>2]=h;break}d=i<<((d|0)==31?0:25-(d>>>1)|0);e=c[e>>2]|0;while(1){if((c[e+4>>2]&-8|0)==(i|0)){w=148;break}b=e+16+(d>>>31<<2)|0;a=c[b>>2]|0;if(!a){w=145;break}else{d=d<<1;e=a}}if((w|0)==145)if(b>>>0<(c[6442]|0)>>>0)Va();else{c[b>>2]=h;c[h+24>>2]=e;c[h+12>>2]=h;c[h+8>>2]=h;break}else if((w|0)==148){a=e+8|0;b=c[a>>2]|0;D=c[6442]|0;if(b>>>0>=D>>>0&e>>>0>=D>>>0){c[b+12>>2]=h;c[a>>2]=h;c[h+8>>2]=b;c[h+12>>2]=e;c[h+24>>2]=0;break}else Va()}}else{D=i+n|0;c[j+4>>2]=D|3;D=j+D+4|0;c[D>>2]=c[D>>2]|1}while(0);D=j+8|0;return D|0}}}else n=-1;while(0);d=c[6440]|0;if(d>>>0>=n>>>0){a=d-n|0;b=c[6443]|0;if(a>>>0>15){D=b+n|0;c[6443]=D;c[6440]=a;c[D+4>>2]=a|1;c[D+a>>2]=a;c[b+4>>2]=n|3}else{c[6440]=0;c[6443]=0;c[b+4>>2]=d|3;c[b+d+4>>2]=c[b+d+4>>2]|1}D=b+8|0;return D|0}a=c[6441]|0;if(a>>>0>n>>>0){B=a-n|0;c[6441]=B;D=c[6444]|0;C=D+n|0;c[6444]=C;c[C+4>>2]=B|1;c[D+4>>2]=n|3;D=D+8|0;return D|0}do if(!(c[6556]|0)){a=gb(30)|0;if(!(a+-1&a)){c[6558]=a;c[6557]=a;c[6559]=-1;c[6560]=-1;c[6561]=0;c[6549]=0;c[6556]=(sb(0)|0)&-16^1431655768;break}else Va()}while(0);f=n+48|0;d=c[6558]|0;g=n+47|0;h=d+g&0-d;if(h>>>0<=n>>>0){D=0;return D|0}a=c[6548]|0;if(a|0?(r=c[6546]|0,(r+h|0)>>>0<=r>>>0|(r+h|0)>>>0>a>>>0):0){D=0;return D|0}b:do if(!(c[6549]&4)){b=c[6444]|0;c:do if(b){e=26200;while(1){a=c[e>>2]|0;if(a>>>0<=b>>>0?(o=e+4|0,(a+(c[o>>2]|0)|0)>>>0>b>>>0):0)break;a=c[e+8>>2]|0;if(!a){w=173;break c}else e=a}a=d+g-(c[6441]|0)&0-d;if(a>>>0<2147483647){b=ab(a|0)|0;if((b|0)==((c[e>>2]|0)+(c[o>>2]|0)|0)){if((b|0)!=(-1|0)){h=b;g=a;w=193;break b}}else w=183}}else w=173;while(0);do if((w|0)==173?(s=ab(0)|0,(s|0)!=(-1|0)):0){a=c[6557]|0;if(!(a+-1&s))a=h;else a=h-s+(a+-1+s&0-a)|0;b=c[6546]|0;d=b+a|0;if(a>>>0>n>>>0&a>>>0<2147483647){r=c[6548]|0;if(r|0?d>>>0<=b>>>0|d>>>0>r>>>0:0)break;b=ab(a|0)|0;if((b|0)==(s|0)){h=s;g=a;w=193;break b}else w=183}}while(0);d:do if((w|0)==183){d=0-a|0;do if(f>>>0>a>>>0&(a>>>0<2147483647&(b|0)!=(-1|0))?(t=c[6558]|0,t=g-a+t&0-t,t>>>0<2147483647):0)if((ab(t|0)|0)==(-1|0)){ab(d|0)|0;break d}else{a=t+a|0;break}while(0);if((b|0)!=(-1|0)){h=b;g=a;w=193;break b}}while(0);c[6549]=c[6549]|4;w=190}else w=190;while(0);if((((w|0)==190?h>>>0<2147483647:0)?(u=ab(h|0)|0,v=ab(0)|0,u>>>0>>0&((u|0)!=(-1|0)&(v|0)!=(-1|0))):0)?(v-u|0)>>>0>(n+40|0)>>>0:0){h=u;g=v-u|0;w=193}if((w|0)==193){a=(c[6546]|0)+g|0;c[6546]=a;if(a>>>0>(c[6547]|0)>>>0)c[6547]=a;k=c[6444]|0;do if(k){f=26200;while(1){a=c[f>>2]|0;b=f+4|0;d=c[b>>2]|0;if((h|0)==(a+d|0)){w=203;break}e=c[f+8>>2]|0;if(!e)break;else f=e}if(((w|0)==203?(c[f+12>>2]&8|0)==0:0)?k>>>0>>0&k>>>0>=a>>>0:0){c[b>>2]=d+g;C=(k+8&7|0)==0?0:0-(k+8)&7;D=g-C+(c[6441]|0)|0;c[6444]=k+C;c[6441]=D;c[k+C+4>>2]=D|1;c[k+C+D+4>>2]=40;c[6445]=c[6560];break}a=c[6442]|0;if(h>>>0>>0){c[6442]=h;j=h}else j=a;b=h+g|0;a=26200;while(1){if((c[a>>2]|0)==(b|0)){w=211;break}a=c[a+8>>2]|0;if(!a){b=26200;break}}if((w|0)==211)if(!(c[a+12>>2]&8)){c[a>>2]=h;m=a+4|0;c[m>>2]=(c[m>>2]|0)+g;m=h+8|0;m=h+((m&7|0)==0?0:0-m&7)|0;a=b+((b+8&7|0)==0?0:0-(b+8)&7)|0;l=m+n|0;i=a-m-n|0;c[m+4>>2]=n|3;do if((a|0)!=(k|0)){if((a|0)==(c[6443]|0)){D=(c[6440]|0)+i|0;c[6440]=D;c[6443]=l;c[l+4>>2]=D|1;c[l+D>>2]=D;break}h=c[a+4>>2]|0;if((h&3|0)==1){e:do if(h>>>0>=256){g=c[a+24>>2]|0;b=c[a+12>>2]|0;do if((b|0)==(a|0)){b=c[a+16+4>>2]|0;if(!b){b=c[a+16>>2]|0;if(!b){B=0;break}else f=a+16|0}else f=a+16+4|0;while(1){d=b+20|0;e=c[d>>2]|0;if(e|0){b=e;f=d;continue}d=b+16|0;e=c[d>>2]|0;if(!e)break;else{b=e;f=d}}if(f>>>0>>0)Va();else{c[f>>2]=0;B=b;break}}else{d=c[a+8>>2]|0;if(d>>>0>>0)Va();if((c[d+12>>2]|0)!=(a|0))Va();if((c[b+8>>2]|0)==(a|0)){c[d+12>>2]=b;c[b+8>>2]=d;B=b;break}else Va()}while(0);if(!g)break;b=c[a+28>>2]|0;do if((a|0)!=(c[26056+(b<<2)>>2]|0)){if(g>>>0<(c[6442]|0)>>>0)Va();if((c[g+16>>2]|0)==(a|0))c[g+16>>2]=B;else c[g+20>>2]=B;if(!B)break e}else{c[26056+(b<<2)>>2]=B;if(B|0)break;c[6439]=c[6439]&~(1<>>0>>0)Va();c[B+24>>2]=g;b=c[a+16>>2]|0;do if(b|0)if(b>>>0>>0)Va();else{c[B+16>>2]=b;c[b+24>>2]=B;break}while(0);b=c[a+16+4>>2]|0;if(!b)break;if(b>>>0<(c[6442]|0)>>>0)Va();else{c[B+20>>2]=b;c[b+24>>2]=B;break}}else{b=c[a+8>>2]|0;d=c[a+12>>2]|0;do if((b|0)!=(25792+(h>>>3<<1<<2)|0)){if(b>>>0>>0)Va();if((c[b+12>>2]|0)==(a|0))break;Va()}while(0);if((d|0)==(b|0)){c[6438]=c[6438]&~(1<<(h>>>3));break}do if((d|0)==(25792+(h>>>3<<1<<2)|0))z=d+8|0;else{if(d>>>0>>0)Va();if((c[d+8>>2]|0)==(a|0)){z=d+8|0;break}Va()}while(0);c[b+12>>2]=d;c[z>>2]=b}while(0);a=a+(h&-8)|0;f=(h&-8)+i|0}else f=i;b=a+4|0;c[b>>2]=c[b>>2]&-2;c[l+4>>2]=f|1;c[l+f>>2]=f;b=f>>>3;if(f>>>0<256){a=c[6438]|0;do if(!(a&1<>2]|0;if(a>>>0>=(c[6442]|0)>>>0){C=25792+(b<<1<<2)+8|0;D=a;break}Va()}while(0);c[C>>2]=l;c[D+12>>2]=l;c[l+8>>2]=D;c[l+12>>2]=25792+(b<<1<<2);break}a=f>>>8;do if(!a)d=0;else{if(f>>>0>16777215){d=31;break}d=a<<((a+1048320|0)>>>16&8)<<(((a<<((a+1048320|0)>>>16&8))+520192|0)>>>16&4);d=14-(((a<<((a+1048320|0)>>>16&8))+520192|0)>>>16&4|(a+1048320|0)>>>16&8|(d+245760|0)>>>16&2)+(d<<((d+245760|0)>>>16&2)>>>15)|0;d=f>>>(d+7|0)&1|d<<1}while(0);e=26056+(d<<2)|0;c[l+28>>2]=d;c[l+16+4>>2]=0;c[l+16>>2]=0;a=c[6439]|0;b=1<>2]=l;c[l+24>>2]=e;c[l+12>>2]=l;c[l+8>>2]=l;break}d=f<<((d|0)==31?0:25-(d>>>1)|0);e=c[e>>2]|0;while(1){if((c[e+4>>2]&-8|0)==(f|0)){w=281;break}b=e+16+(d>>>31<<2)|0;a=c[b>>2]|0;if(!a){w=278;break}else{d=d<<1;e=a}}if((w|0)==278)if(b>>>0<(c[6442]|0)>>>0)Va();else{c[b>>2]=l;c[l+24>>2]=e;c[l+12>>2]=l;c[l+8>>2]=l;break}else if((w|0)==281){a=e+8|0;b=c[a>>2]|0;D=c[6442]|0;if(b>>>0>=D>>>0&e>>>0>=D>>>0){c[b+12>>2]=l;c[a>>2]=l;c[l+8>>2]=b;c[l+12>>2]=e;c[l+24>>2]=0;break}else Va()}}else{D=(c[6441]|0)+i|0;c[6441]=D;c[6444]=l;c[l+4>>2]=D|1}while(0);D=m+8|0;return D|0}else b=26200;while(1){a=c[b>>2]|0;if(a>>>0<=k>>>0?(x=a+(c[b+4>>2]|0)|0,x>>>0>k>>>0):0)break;b=c[b+8>>2]|0}f=x+-47+((x+-47+8&7|0)==0?0:0-(x+-47+8)&7)|0;f=f>>>0<(k+16|0)>>>0?k:f;a=h+8|0;a=(a&7|0)==0?0:0-a&7;D=h+a|0;a=g+-40-a|0;c[6444]=D;c[6441]=a;c[D+4>>2]=a|1;c[D+a+4>>2]=40;c[6445]=c[6560];c[f+4>>2]=27;c[f+8>>2]=c[6550];c[f+8+4>>2]=c[6551];c[f+8+8>>2]=c[6552];c[f+8+12>>2]=c[6553];c[6550]=h;c[6551]=g;c[6553]=0;c[6552]=f+8;a=f+24|0;do{a=a+4|0;c[a>>2]=7}while((a+4|0)>>>0>>0);if((f|0)!=(k|0)){c[f+4>>2]=c[f+4>>2]&-2;c[k+4>>2]=f-k|1;c[f>>2]=f-k;if((f-k|0)>>>0<256){b=25792+((f-k|0)>>>3<<1<<2)|0;a=c[6438]|0;if(a&1<<((f-k|0)>>>3)){a=c[b+8>>2]|0;if(a>>>0<(c[6442]|0)>>>0)Va();else{y=b+8|0;A=a}}else{c[6438]=a|1<<((f-k|0)>>>3);y=b+8|0;A=b}c[y>>2]=k;c[A+12>>2]=k;c[k+8>>2]=A;c[k+12>>2]=b;break}if((f-k|0)>>>8)if((f-k|0)>>>0>16777215)d=31;else{d=(f-k|0)>>>8<<((((f-k|0)>>>8)+1048320|0)>>>16&8);d=14-((d+520192|0)>>>16&4|(((f-k|0)>>>8)+1048320|0)>>>16&8|((d<<((d+520192|0)>>>16&4))+245760|0)>>>16&2)+(d<<((d+520192|0)>>>16&4)<<(((d<<((d+520192|0)>>>16&4))+245760|0)>>>16&2)>>>15)|0;d=(f-k|0)>>>(d+7|0)&1|d<<1}else d=0;e=26056+(d<<2)|0;c[k+28>>2]=d;c[k+20>>2]=0;c[k+16>>2]=0;a=c[6439]|0;b=1<>2]=k;c[k+24>>2]=e;c[k+12>>2]=k;c[k+8>>2]=k;break}d=f-k<<((d|0)==31?0:25-(d>>>1)|0);e=c[e>>2]|0;while(1){if((c[e+4>>2]&-8|0)==(f-k|0)){w=307;break}b=e+16+(d>>>31<<2)|0;a=c[b>>2]|0;if(!a){w=304;break}else{d=d<<1;e=a}}if((w|0)==304)if(b>>>0<(c[6442]|0)>>>0)Va();else{c[b>>2]=k;c[k+24>>2]=e;c[k+12>>2]=k;c[k+8>>2]=k;break}else if((w|0)==307){a=e+8|0;b=c[a>>2]|0;D=c[6442]|0;if(b>>>0>=D>>>0&e>>>0>=D>>>0){c[b+12>>2]=k;c[a>>2]=k;c[k+8>>2]=b;c[k+12>>2]=e;c[k+24>>2]=0;break}else Va()}}}else{D=c[6442]|0;if((D|0)==0|h>>>0>>0)c[6442]=h;c[6550]=h;c[6551]=g;c[6553]=0;c[6447]=c[6556];c[6446]=-1;a=0;do{D=25792+(a<<1<<2)|0;c[D+12>>2]=D;c[D+8>>2]=D;a=a+1|0}while((a|0)!=32);D=h+8|0;D=(D&7|0)==0?0:0-D&7;C=h+D|0;D=g+-40-D|0;c[6444]=C;c[6441]=D;c[C+4>>2]=D|1;c[C+D+4>>2]=40;c[6445]=c[6560]}while(0);a=c[6441]|0;if(a>>>0>n>>>0){B=a-n|0;c[6441]=B;D=c[6444]|0;C=D+n|0;c[6444]=C;c[C+4>>2]=B|1;c[D+4>>2]=n|3;D=D+8|0;return D|0}}if(!0)a=25748;else a=c[(ib()|0)+64>>2]|0;c[a>>2]=12;D=0;return D|0}function zc(b,d,e,f){b=b|0;d=d|0;e=e|0;f=+f;var h=0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0,p=0.0,q=0.0,r=0,s=0,t=0,u=0.0,v=0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0.0,H=0.0,I=0,J=0,K=0,L=0,M=0,N=0,P=0,Q=0.0,R=0.0,S=0.0,T=0.0,U=0.0,V=0.0,W=0.0,X=0.0,Y=0.0,Z=0.0,_=0.0,$=0.0,aa=0.0;P=i;i=i+448|0;if(!(a[b+527>>0]|0)){i=P;return}N=c[b+28>>2]|0;x=+g[b+348>>2];w=+g[b+352>>2];D=+g[b+356>>2];y=+g[N+52>>2];z=x*+g[N+4>>2]+w*+g[N+8>>2]+D*+g[N+12>>2]+y;A=+g[N+56>>2];B=x*+g[N+20>>2]+w*+g[N+24>>2]+D*+g[N+28>>2]+A;C=+g[N+60>>2];D=x*+g[N+36>>2]+w*+g[N+40>>2]+D*+g[N+44>>2]+C;N=c[b+32>>2]|0;w=+g[b+412>>2];x=+g[b+416>>2];l=+g[b+420>>2];E=+g[N+52>>2];F=w*+g[N+4>>2]+x*+g[N+8>>2]+l*+g[N+12>>2]+E;G=+g[N+56>>2];H=w*+g[N+20>>2]+x*+g[N+24>>2]+l*+g[N+28>>2]+G;k=+g[N+60>>2];l=w*+g[N+36>>2]+x*+g[N+40>>2]+l*+g[N+44>>2]+k;if(!(a[b+524>>0]|0)){u=+g[d+192>>2]+ +g[d+80>>2];w=+g[d+196>>2]+ +g[d+84>>2];q=+g[d+200>>2]+ +g[d+88>>2];x=+g[e+192>>2]+ +g[e+80>>2];p=+g[e+196>>2]+ +g[e+84>>2];n=+g[e+200>>2]+ +g[e+88>>2];m=+g[d+176>>2]+ +g[d+64>>2]+((D-C)*w-(B-A)*q)-(+g[e+176>>2]+ +g[e+64>>2]+((l-k)*p-(H-G)*n));n=+g[d+180>>2]+ +g[d+68>>2]+((z-y)*q-(D-C)*u)-(+g[e+180>>2]+ +g[e+68>>2]+((F-E)*n-(l-k)*x));p=+g[d+184>>2]+ +g[d+72>>2]+((B-A)*u-(z-y)*w)-(+g[e+184>>2]+ +g[e+72>>2]+((H-G)*x-(F-E)*p));o=(c[d+240>>2]|0)==0;v=0;do{x=1.0/+g[b+48+(v*84|0)+80>>2];r=b+48+(v*84|0)|0;w=+g[r>>2];s=b+48+(v*84|0)+4|0;u=+g[s>>2];t=b+48+(v*84|0)+8|0;q=+g[t>>2];q=x*(((z-F)*w+(B-H)*u+(D-l)*q)*-.30000001192092896/f)-x*(m*w+n*u+p*q);g[b+36>>2]=+g[b+36>>2]+q;u=+g[t>>2];w=+g[s>>2];x=+g[r>>2];h=c[b+28>>2]|0;j=+g[h+344>>2];if(!o){S=((B-A)*u-(D-C)*w)*+g[h+296>>2]+((D-C)*x-(z-y)*u)*+g[h+300>>2]+((z-y)*w-(B-A)*x)*+g[h+304>>2];Q=((B-A)*u-(D-C)*w)*+g[h+280>>2]+((D-C)*x-(z-y)*u)*+g[h+284>>2]+((z-y)*w-(B-A)*x)*+g[h+288>>2];R=((B-A)*u-(D-C)*w)*+g[h+264>>2]+((D-C)*x-(z-y)*u)*+g[h+268>>2]+((z-y)*w-(B-A)*x)*+g[h+272>>2];U=q*w*j*+g[d+116>>2];T=q*u*j*+g[d+120>>2];g[d+64>>2]=q*x*j*+g[d+112>>2]+ +g[d+64>>2];g[d+68>>2]=U+ +g[d+68>>2];g[d+72>>2]=T+ +g[d+72>>2];Q=Q*q*+g[d+100>>2];j=S*q*+g[d+104>>2];g[d+80>>2]=R*q*+g[d+96>>2]+ +g[d+80>>2];g[d+84>>2]=Q+ +g[d+84>>2];g[d+88>>2]=j+ +g[d+88>>2]}h=c[b+32>>2]|0;j=+g[h+344>>2];if(c[e+240>>2]|0){U=((H-G)*u-(l-k)*w)*+g[h+296>>2]+((l-k)*x-(F-E)*u)*+g[h+300>>2]+((F-E)*w-(H-G)*x)*+g[h+304>>2];T=((H-G)*u-(l-k)*w)*+g[h+280>>2]+((l-k)*x-(F-E)*u)*+g[h+284>>2]+((F-E)*w-(H-G)*x)*+g[h+288>>2];S=((H-G)*u-(l-k)*w)*+g[h+264>>2]+((l-k)*x-(F-E)*u)*+g[h+268>>2]+((F-E)*w-(H-G)*x)*+g[h+272>>2];Q=j*+g[s>>2]*-q*+g[e+116>>2];R=j*+g[t>>2]*-q*+g[e+120>>2];g[e+64>>2]=+g[e+112>>2]*j*+g[r>>2]*-q+ +g[e+64>>2];g[e+68>>2]=Q+ +g[e+68>>2];g[e+72>>2]=R+ +g[e+72>>2];T=T*+g[e+100>>2]*-q;U=U*+g[e+104>>2]*-q;g[e+80>>2]=S*+g[e+96>>2]*-q+ +g[e+80>>2];g[e+84>>2]=T+ +g[e+84>>2];g[e+88>>2]=U+ +g[e+88>>2]}v=v+1|0}while((v|0)!=3)}do if(!(a[b+552>>0]|0)){j=+g[b+440>>2];if(!(j>1.1920928955078125e-07)){I=d+80|0;o=d+196|0;J=d+84|0;r=d+200|0;K=d+88|0;s=e+192|0;L=e+80|0;t=e+196|0;M=e+84|0;v=e+200|0;N=e+88|0;h=d+192|0;break}k=+g[e+192>>2]+ +g[e+80>>2]-(+g[d+192>>2]+ +g[d+80>>2]);l=+g[e+196>>2]+ +g[e+84>>2]-(+g[d+196>>2]+ +g[d+84>>2]);m=+g[e+200>>2]+ +g[e+88>>2]-(+g[d+200>>2]+ +g[d+88>>2]);if(k*k+l*l+m*m>1.1920928955078125e-07){C=1.0/+O(+(k*k+l*l+m*m));h=c[b+28>>2]|0;p=+g[h+264>>2];q=+g[h+280>>2];u=+g[h+296>>2];w=+g[h+268>>2];x=+g[h+284>>2];y=+g[h+300>>2];z=+g[h+272>>2];A=+g[h+288>>2];B=+g[h+304>>2];h=c[b+32>>2]|0;j=j*(1.0/(k*C*(p*k*C+l*C*q+m*C*u)+l*C*(k*C*w+l*C*x+m*C*y)+m*C*(k*C*z+l*C*A+m*C*B)+(k*C*(k*C*+g[h+264>>2]+l*C*+g[h+280>>2]+m*C*+g[h+296>>2])+l*C*(k*C*+g[h+268>>2]+l*C*+g[h+284>>2]+m*C*+g[h+300>>2])+m*C*(k*C*+g[h+272>>2]+l*C*+g[h+288>>2]+m*C*+g[h+304>>2]))));C=+O(+(m*j*m*j+(k*j*k*j+l*j*l*j)));n=1.0/C*k*j;k=1.0/C*l*j;j=1.0/C*m*j;if(c[d+240>>2]|0){U=C*0.0*+g[d+116>>2];T=C*0.0*+g[d+120>>2];g[d+64>>2]=C*0.0*+g[d+112>>2]+ +g[d+64>>2];g[d+68>>2]=U+ +g[d+68>>2];g[d+72>>2]=T+ +g[d+72>>2];T=(n*q+k*x+j*A)*C*+g[d+100>>2];U=(n*u+k*y+j*B)*C*+g[d+104>>2];g[d+80>>2]=(n*p+k*w+j*z)*C*+g[d+96>>2]+ +g[d+80>>2];g[d+84>>2]=T+ +g[d+84>>2];g[d+88>>2]=U+ +g[d+88>>2];h=c[b+32>>2]|0}if(c[e+240>>2]|0){U=n*+g[h+296>>2]+k*+g[h+300>>2]+j*+g[h+304>>2];T=n*+g[h+280>>2]+k*+g[h+284>>2]+j*+g[h+288>>2];S=n*+g[h+264>>2]+k*+g[h+268>>2]+j*+g[h+272>>2];Q=C*-0.0*+g[e+116>>2];R=C*-0.0*+g[e+120>>2];g[e+64>>2]=C*-0.0*+g[e+112>>2]+ +g[e+64>>2];g[e+68>>2]=Q+ +g[e+68>>2];g[e+72>>2]=R+ +g[e+72>>2];T=T*+g[e+100>>2]*-C;U=U*+g[e+104>>2]*-C;g[e+80>>2]=S*+g[e+96>>2]*-C+ +g[e+80>>2];g[e+84>>2]=T+ +g[e+84>>2];g[e+88>>2]=U+ +g[e+88>>2];I=d+80|0;o=d+196|0;J=d+84|0;r=d+200|0;K=d+88|0;s=e+192|0;L=e+80|0;t=e+196|0;M=e+84|0;v=e+200|0;N=e+88|0;h=d+192|0}else{I=d+80|0;o=d+196|0;J=d+84|0;r=d+200|0;K=d+88|0;s=e+192|0;L=e+80|0;t=e+196|0;M=e+84|0;v=e+200|0;N=e+88|0;h=d+192|0}}else{I=d+80|0;o=d+196|0;J=d+84|0;r=d+200|0;K=d+88|0;s=e+192|0;L=e+80|0;t=e+196|0;M=e+84|0;v=e+200|0;N=e+88|0;h=d+192|0}}else{M=c[b+28>>2]|0;c[P+352>>2]=c[M+4>>2];c[P+352+4>>2]=c[M+4+4>>2];c[P+352+8>>2]=c[M+4+8>>2];c[P+352+12>>2]=c[M+4+12>>2];c[P+352+16>>2]=c[M+20>>2];c[P+352+16+4>>2]=c[M+20+4>>2];c[P+352+16+8>>2]=c[M+20+8>>2];c[P+352+16+12>>2]=c[M+20+12>>2];c[P+352+32>>2]=c[M+36>>2];c[P+352+32+4>>2]=c[M+36+4>>2];c[P+352+32+8>>2]=c[M+36+8>>2];c[P+352+32+12>>2]=c[M+36+12>>2];c[P+352+48>>2]=c[M+52>>2];c[P+352+48+4>>2]=c[M+52+4>>2];c[P+352+48+8>>2]=c[M+52+8>>2];c[P+352+48+12>>2]=c[M+52+12>>2];M=c[b+32>>2]|0;c[P+288>>2]=c[M+4>>2];c[P+288+4>>2]=c[M+4+4>>2];c[P+288+8>>2]=c[M+4+8>>2];c[P+288+12>>2]=c[M+4+12>>2];c[P+288+16>>2]=c[M+20>>2];c[P+288+16+4>>2]=c[M+20+4>>2];c[P+288+16+8>>2]=c[M+20+8>>2];c[P+288+16+12>>2]=c[M+20+12>>2];c[P+288+32>>2]=c[M+36>>2];c[P+288+32+4>>2]=c[M+36+4>>2];c[P+288+32+8>>2]=c[M+36+8>>2];c[P+288+32+12>>2]=c[M+36+12>>2];c[P+288+48>>2]=c[M+52>>2];c[P+288+48+4>>2]=c[M+52+4>>2];c[P+288+48+8>>2]=c[M+52+8>>2];c[P+288+48+12>>2]=c[M+52+12>>2];S=+g[d+196>>2]+ +g[d+84>>2];u=+g[d+200>>2]+ +g[d+88>>2];g[P+272>>2]=+g[d+192>>2]+ +g[d+80>>2];g[P+272+4>>2]=S;g[P+272+8>>2]=u;g[P+272+12>>2]=0.0;u=+g[e+196>>2]+ +g[e+84>>2];S=+g[e+200>>2]+ +g[e+88>>2];g[P+256>>2]=+g[e+192>>2]+ +g[e+80>>2];g[P+256+4>>2]=u;g[P+256+8>>2]=S;g[P+256+12>>2]=0.0;c[P+192>>2]=1065353216;M=P+192+4|0;c[M>>2]=0;c[M+4>>2]=0;c[M+8>>2]=0;c[M+12>>2]=0;c[P+192+20>>2]=1065353216;N=P+192+24|0;c[N>>2]=0;c[N+4>>2]=0;c[N+8>>2]=0;c[N+12>>2]=0;c[P+192+40>>2]=1065353216;K=P+192+44|0;c[K>>2]=0;c[K+4>>2]=0;c[K+8>>2]=0;c[K+12>>2]=0;c[K+16>>2]=0;Zg(P+352|0,0.0,0.0,0.0,P+272|0,f,P+192|0);c[P+128>>2]=1065353216;K=P+128+4|0;c[K>>2]=0;c[K+4>>2]=0;c[K+8>>2]=0;c[K+12>>2]=0;c[P+128+20>>2]=1065353216;L=P+128+24|0;c[L>>2]=0;c[L+4>>2]=0;c[L+8>>2]=0;c[L+12>>2]=0;c[P+128+40>>2]=1065353216;J=P+128+44|0;c[J>>2]=0;c[J+4>>2]=0;c[J+8>>2]=0;c[J+12>>2]=0;c[J+16>>2]=0;Zg(P+288|0,0.0,0.0,0.0,P+256|0,f,P+128|0);S=+g[b+556>>2];u=+g[b+560>>2];T=+g[b+564>>2];w=+g[b+568>>2];F=S*(2.0/(S*S+u*u+T*T+w*w));A=u*(2.0/(S*S+u*u+T*T+w*w));G=T*(2.0/(S*S+u*u+T*T+w*w));W=+g[b+364>>2];V=+g[b+368>>2];Z=+g[b+372>>2];k=Z*(S*G-w*A)+(V*(S*A+w*G)+W*(1.0-(u*A+T*G)));l=Z*(u*G+w*F)+(W*(S*A-w*G)+V*(1.0-(S*F+T*G)));m=W*(S*G+w*A)+V*(u*G-w*F)+Z*(1.0-(S*F+u*A));j=+g[b+380>>2];E=+g[b+384>>2];B=+g[b+388>>2];n=(S*G-w*A)*B+(E*(S*A+w*G)+j*(1.0-(u*A+T*G)));p=(u*G+w*F)*B+(j*(S*A-w*G)+E*(1.0-(S*F+T*G)));q=j*(S*G+w*A)+E*(u*G-w*F)+B*(1.0-(S*F+u*A));Q=+g[b+396>>2];C=+g[b+400>>2];z=+g[b+404>>2];R=(1.0-(u*A+T*G))*Q+(S*A+w*G)*C+(S*G-w*A)*z;T=(S*A-w*G)*Q+(1.0-(S*F+T*G))*C+(u*G+w*F)*z;A=(S*G+w*A)*Q+(u*G-w*F)*C+(1.0-(S*F+u*A))*z;u=+g[b+300>>2];F=+g[b+316>>2];S=+g[b+332>>2];w=+g[b+304>>2];G=+g[b+320>>2];U=+g[b+336>>2];D=+g[b+308>>2];H=+g[b+324>>2];y=+g[b+340>>2];x=-+g[b+348>>2];aa=-+g[b+352>>2];Y=-+g[b+356>>2];Z=W*0.0+V*0.0+Z*0.0+ +g[b+412>>2]+(m*(D*x+H*aa+y*Y)+(k*(u*x+F*aa+S*Y)+l*(w*x+G*aa+U*Y)));B=j*0.0+E*0.0+B*0.0+ +g[b+416>>2]+(q*(D*x+H*aa+y*Y)+(n*(u*x+F*aa+S*Y)+p*(w*x+G*aa+U*Y)));Y=Q*0.0+C*0.0+z*0.0+ +g[b+420>>2]+(A*(D*x+H*aa+y*Y)+(R*(u*x+F*aa+S*Y)+T*(w*x+G*aa+U*Y)));aa=+g[P+128>>2];x=+g[K>>2];z=+g[P+128+8>>2];C=+g[P+128+16>>2];Q=+g[P+128+20>>2];E=+g[L>>2];j=+g[P+128+32>>2];V=+g[P+128+36>>2];W=+g[P+128+40>>2];X=z*Y+(aa*Z+x*B)+ +g[P+128+48>>2];_=C*Z+B*Q+Y*E+ +g[P+128+52>>2];$=Z*j+B*V+Y*W+ +g[P+128+56>>2];g[P+64>>2]=(k*u+l*w+m*D)*aa+(n*u+p*w+q*D)*x+(R*u+T*w+A*D)*z;g[P+64+4>>2]=(k*F+l*G+m*H)*aa+(n*F+p*G+q*H)*x+(R*F+T*G+A*H)*z;g[P+64+8>>2]=(k*S+l*U+m*y)*aa+(n*S+p*U+q*y)*x+(R*S+T*U+A*y)*z;g[P+64+12>>2]=0.0;g[P+64+16>>2]=(k*u+l*w+m*D)*C+(n*u+p*w+q*D)*Q+(R*u+T*w+A*D)*E;g[P+64+20>>2]=(k*F+l*G+m*H)*C+(n*F+p*G+q*H)*Q+(R*F+T*G+A*H)*E;g[P+64+24>>2]=(k*S+l*U+m*y)*C+(n*S+p*U+q*y)*Q+(R*S+T*U+A*y)*E;g[P+64+28>>2]=0.0;g[P+64+32>>2]=(k*u+l*w+m*D)*j+(n*u+p*w+q*D)*V+(R*u+T*w+A*D)*W;g[P+64+36>>2]=(k*F+l*G+m*H)*j+(n*F+p*G+q*H)*V+(R*F+T*G+A*H)*W;g[P+64+40>>2]=(k*S+l*U+m*y)*j+(n*S+p*U+q*y)*V+(R*S+T*U+A*y)*W;g[P+64+44>>2]=0.0;g[P+64+48>>2]=X;g[P+64+52>>2]=_;g[P+64+56>>2]=$;g[P+64+60>>2]=0.0;$=(R*u+T*w+A*D)*-Y+((k*u+l*w+m*D)*-Z+(n*u+p*w+q*D)*-B);_=(R*F+T*G+A*H)*-Y+((k*F+l*G+m*H)*-Z+(n*F+p*G+q*H)*-B);B=(R*S+T*U+A*y)*-Y+((k*S+l*U+m*y)*-Z+(n*S+p*U+q*y)*-B);Z=+g[P+192>>2];Y=+g[M>>2];X=+g[P+192+8>>2];W=+g[P+192+16>>2];V=+g[P+192+20>>2];j=+g[N>>2];E=+g[P+192+32>>2];Q=+g[P+192+36>>2];C=+g[P+192+40>>2];z=$*Z+_*Y+B*X+ +g[P+192+48>>2];x=$*W+_*V+B*j+ +g[P+192+52>>2];B=$*E+_*Q+B*C+ +g[P+192+56>>2];g[P>>2]=(k*u+l*w+m*D)*Z+(k*F+l*G+m*H)*Y+(k*S+l*U+m*y)*X;g[P+4>>2]=(n*u+p*w+q*D)*Z+(n*F+p*G+q*H)*Y+(n*S+p*U+q*y)*X;g[P+8>>2]=(R*u+T*w+A*D)*Z+(R*F+T*G+A*H)*Y+(R*S+T*U+A*y)*X;g[P+12>>2]=0.0;g[P+16>>2]=(k*u+l*w+m*D)*W+(k*F+l*G+m*H)*V+(k*S+l*U+m*y)*j;g[P+20>>2]=(n*u+p*w+q*D)*W+(n*F+p*G+q*H)*V+(n*S+p*U+q*y)*j;g[P+24>>2]=(R*u+T*w+A*D)*W+(R*F+T*G+A*H)*V+(R*S+T*U+A*y)*j;g[P+28>>2]=0.0;g[P+32>>2]=(k*u+l*w+m*D)*E+(k*F+l*G+m*H)*Q+(k*S+l*U+m*y)*C;g[P+36>>2]=(n*u+p*w+q*D)*E+(n*F+p*G+q*H)*Q+(n*S+p*U+q*y)*C;g[P+40>>2]=(R*u+T*w+A*D)*E+(R*F+T*G+A*H)*Q+(R*S+T*U+A*y)*C;g[P+44>>2]=0.0;g[P+48>>2]=z;g[P+52>>2]=x;g[P+56>>2]=B;g[P+60>>2]=0.0;Gf(P+352|0,P+64|0,P+424|0,P+416|0);B=+g[P+416>>2];x=1.0/f*+g[P+424>>2]*B;z=1.0/f*B*+g[P+424+4>>2];B=1.0/f*B*+g[P+424+8>>2];Gf(P+288|0,P,P+424|0,P+416|0);C=+g[P+416>>2];x=x-+g[P+272>>2];z=z-+g[P+272+4>>2];B=B-+g[P+272+8>>2];y=1.0/f*+g[P+424>>2]*C-+g[P+256>>2];A=1.0/f*C*+g[P+424+4>>2]-+g[P+256+4>>2];C=1.0/f*C*+g[P+424+8>>2]-+g[P+256+8>>2];if(x*x+z*z+B*B>1.1920928955078125e-07){q=1.0/+O(+(x*x+z*z+B*B));N=c[b+28>>2]|0;j=x*q;l=z*q;n=B*q;q=x*q*(+g[N+264>>2]*x*q+z*q*+g[N+280>>2]+B*q*+g[N+296>>2])+z*q*(x*q*+g[N+268>>2]+z*q*+g[N+284>>2]+B*q*+g[N+300>>2])+B*q*(x*q*+g[N+272>>2]+z*q*+g[N+288>>2]+B*q*+g[N+304>>2])}else{j=0.0;l=0.0;n=0.0;q=0.0}if(y*y+A*A+C*C>1.1920928955078125e-07){u=1.0/+O(+(y*y+A*A+C*C));N=c[b+32>>2]|0;k=y*u;m=A*u;p=C*u;u=y*u*(+g[N+264>>2]*y*u+A*u*+g[N+280>>2]+C*u*+g[N+296>>2])+A*u*(y*u*+g[N+268>>2]+A*u*+g[N+284>>2]+C*u*+g[N+300>>2])+C*u*(y*u*+g[N+272>>2]+A*u*+g[N+288>>2]+C*u*+g[N+304>>2])}else{k=0.0;m=0.0;p=0.0;u=0.0}w=q*j+u*k;k=q*l+u*m;j=q*n+u*p;if(w*w+k*k+j*j>1.1920928955078125e-07){n=1.0/+O(+(w*w+k*k+j*j));o=c[b+28>>2]|0;l=w*n*(+g[o+264>>2]*w*n+k*n*+g[o+280>>2]+j*n*+g[o+296>>2])+k*n*(w*n*+g[o+268>>2]+k*n*+g[o+284>>2]+j*n*+g[o+300>>2])+j*n*(w*n*+g[o+272>>2]+k*n*+g[o+288>>2]+j*n*+g[o+304>>2]);h=c[b+32>>2]|0;n=w*n*(w*n*+g[h+264>>2]+k*n*+g[h+280>>2]+j*n*+g[h+296>>2])+k*n*(w*n*+g[h+268>>2]+k*n*+g[h+284>>2]+j*n*+g[h+300>>2])+j*n*(w*n*+g[h+272>>2]+k*n*+g[h+288>>2]+j*n*+g[h+304>>2]);k=(x*l-y*n)*(1.0/((l+n)*(l+n)));u=(z*l-A*n)*(1.0/((l+n)*(l+n)));n=(B*l-C*n)*(1.0/((l+n)*(l+n)));j=+g[b+572>>2];if(!(j>=0.0))j=u;else{l=(a[b+553>>0]|0)==0?j:j/l;m=+g[b+576>>2];p=+g[b+580>>2];q=+g[b+584>>2];j=+O(+((k+m)*(k+m)+(u+p)*(u+p)+(n+q)*(n+q)));if(j>l){k=l*(k+m)*(1.0/j)-m;n=l*(n+q)*(1.0/j)-q;j=l*(u+p)*(1.0/j)-p}else j=u;g[b+576>>2]=k+m;g[b+580>>2]=j+p;g[b+584>>2]=n+q}m=+O(+(k*k+j*j+n*n));l=k*(1.0/m);k=j*(1.0/m);j=n*(1.0/m);if(c[d+240>>2]|0){aa=l*+g[o+296>>2]+k*+g[o+300>>2]+j*+g[o+304>>2];$=l*+g[o+280>>2]+k*+g[o+284>>2]+j*+g[o+288>>2];_=l*+g[o+264>>2]+k*+g[o+268>>2]+j*+g[o+272>>2];Y=m*0.0*+g[d+116>>2];Z=m*0.0*+g[d+120>>2];g[d+64>>2]=m*0.0*+g[d+112>>2]+ +g[d+64>>2];g[d+68>>2]=Y+ +g[d+68>>2];g[d+72>>2]=Z+ +g[d+72>>2];$=$*m*+g[d+100>>2];aa=aa*m*+g[d+104>>2];g[d+80>>2]=_*m*+g[d+96>>2]+ +g[d+80>>2];g[d+84>>2]=$+ +g[d+84>>2];g[d+88>>2]=aa+ +g[d+88>>2];h=c[b+32>>2]|0}if(c[e+240>>2]|0){aa=l*+g[h+296>>2]+k*+g[h+300>>2]+j*+g[h+304>>2];$=l*+g[h+280>>2]+k*+g[h+284>>2]+j*+g[h+288>>2];_=l*+g[h+264>>2]+k*+g[h+268>>2]+j*+g[h+272>>2];Y=m*-0.0*+g[e+116>>2];Z=m*-0.0*+g[e+120>>2];g[e+64>>2]=m*-0.0*+g[e+112>>2]+ +g[e+64>>2];g[e+68>>2]=Y+ +g[e+68>>2];g[e+72>>2]=Z+ +g[e+72>>2];$=$*+g[e+100>>2]*-m;aa=aa*+g[e+104>>2]*-m;g[e+80>>2]=_*+g[e+96>>2]*-m+ +g[e+80>>2];g[e+84>>2]=$+ +g[e+84>>2];g[e+88>>2]=aa+ +g[e+88>>2]}}I=d+80|0;o=d+196|0;J=d+84|0;r=d+200|0;K=d+88|0;s=e+192|0;L=e+80|0;t=e+196|0;M=e+84|0;v=e+200|0;N=e+88|0;h=d+192|0}while(0);z=+g[h>>2]+ +g[I>>2];y=+g[o>>2]+ +g[J>>2];x=+g[r>>2]+ +g[K>>2];w=+g[s>>2]+ +g[L>>2];u=+g[t>>2]+ +g[M>>2];q=+g[v>>2]+ +g[N>>2];if(a[b+526>>0]|0){k=+g[b+528>>2];j=k*+g[b+504>>2]*+g[b+432>>2]/f;l=+g[b+460>>2];m=+g[b+464>>2];n=+g[b+468>>2];if((w-z)*l+(u-y)*m+(q-x)*n>0.0)j=j+k*((w-z)*l+(u-y)*m+(q-x)*n)*+g[b+436>>2];$=+g[b+516>>2];_=$+j*+g[b+492>>2];_=_>0.0?_:0.0;g[b+516>>2]=_;Z=+g[b+536>>2];k=+g[b+540>>2];aa=+g[b+544>>2];j=l*(_-$)*Z+m*(_-$)*k+(_-$)*n*aa;p=+O(+(((_-$)*n-aa*j)*((_-$)*n-aa*j)+((l*(_-$)-Z*j)*(l*(_-$)-Z*j)+(m*(_-$)-k*j)*(m*(_-$)-k*j))));l=1.0/p*(l*(_-$)-Z*j);k=1.0/p*(m*(_-$)-k*j);j=1.0/p*((_-$)*n-aa*j);h=c[b+28>>2]|0;if(c[d+240>>2]|0){aa=l*+g[h+296>>2]+k*+g[h+300>>2]+j*+g[h+304>>2];$=l*+g[h+280>>2]+k*+g[h+284>>2]+j*+g[h+288>>2];_=l*+g[h+264>>2]+k*+g[h+268>>2]+j*+g[h+272>>2];Y=p*0.0*+g[d+116>>2];Z=p*0.0*+g[d+120>>2];g[d+64>>2]=p*0.0*+g[d+112>>2]+ +g[d+64>>2];g[d+68>>2]=Y+ +g[d+68>>2];g[d+72>>2]=Z+ +g[d+72>>2];$=$*p*+g[d+100>>2];aa=aa*p*+g[d+104>>2];g[I>>2]=_*p*+g[d+96>>2]+ +g[I>>2];g[J>>2]=$+ +g[J>>2];g[K>>2]=aa+ +g[K>>2]}h=c[b+32>>2]|0;if(c[e+240>>2]|0){aa=l*+g[h+296>>2]+k*+g[h+300>>2]+j*+g[h+304>>2];$=l*+g[h+280>>2]+k*+g[h+284>>2]+j*+g[h+288>>2];_=l*+g[h+264>>2]+k*+g[h+268>>2]+j*+g[h+272>>2];Y=p*-0.0*+g[e+116>>2];Z=p*-0.0*+g[e+120>>2];g[e+64>>2]=p*-0.0*+g[e+112>>2]+ +g[e+64>>2];g[e+68>>2]=Y+ +g[e+68>>2];g[e+72>>2]=Z+ +g[e+72>>2];$=$*+g[e+100>>2]*-p;aa=aa*+g[e+104>>2]*-p;g[L>>2]=_*+g[e+96>>2]*-p+ +g[L>>2];g[M>>2]=$+ +g[M>>2];g[N>>2]=aa+ +g[N>>2]}}if(!(a[b+525>>0]|0)){i=P;return}n=+g[b+532>>2];m=n*+g[b+508>>2]*+g[b+432>>2]/f;l=+g[b+476>>2];k=+g[b+480>>2];j=+g[b+484>>2];if((w-z)*l+(u-y)*k+(q-x)*j>0.0)m=m+n*((w-z)*l+(u-y)*k+(q-x)*j)*+g[b+436>>2];n=+g[b+520>>2];m=n+m*+g[b+496>>2];m=m>0.0?m:0.0;g[b+520>>2]=m;h=c[b+28>>2]|0;if(c[d+240>>2]|0){aa=l*+g[h+296>>2]+k*+g[h+300>>2]+j*+g[h+304>>2];$=l*+g[h+280>>2]+k*+g[h+284>>2]+j*+g[h+288>>2];j=l*+g[h+264>>2]+k*+g[h+268>>2]+j*+g[h+272>>2];l=(m-n)*0.0*+g[d+116>>2];k=(m-n)*0.0*+g[d+120>>2];g[d+64>>2]=(m-n)*0.0*+g[d+112>>2]+ +g[d+64>>2];g[d+68>>2]=l+ +g[d+68>>2];g[d+72>>2]=k+ +g[d+72>>2];k=$*(m-n)*+g[d+100>>2];l=aa*(m-n)*+g[d+104>>2];g[I>>2]=j*(m-n)*+g[d+96>>2]+ +g[I>>2];g[J>>2]=k+ +g[J>>2];g[K>>2]=l+ +g[K>>2];l=+g[b+476>>2];k=+g[b+480>>2];j=+g[b+484>>2]}h=c[b+32>>2]|0;if(!(c[e+240>>2]|0)){i=P;return}aa=l*+g[h+296>>2]+k*+g[h+300>>2]+j*+g[h+304>>2];$=l*+g[h+280>>2]+k*+g[h+284>>2]+j*+g[h+288>>2];_=l*+g[h+264>>2]+k*+g[h+268>>2]+j*+g[h+272>>2];Y=(m-n)*-0.0*+g[e+116>>2];Z=(m-n)*-0.0*+g[e+120>>2];g[e+64>>2]=(m-n)*-0.0*+g[e+112>>2]+ +g[e+64>>2];g[e+68>>2]=Y+ +g[e+68>>2];g[e+72>>2]=Z+ +g[e+72>>2];$=$*+g[e+100>>2]*-(m-n);aa=aa*+g[e+104>>2]*-(m-n);g[L>>2]=_*+g[e+96>>2]*-(m-n)+ +g[L>>2];g[M>>2]=$+ +g[M>>2];g[N>>2]=aa+ +g[N>>2];i=P;return}function Ac(a,b,d,e,f){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0,ha=0,ia=0,ja=0;U=c[e>>2]|0;fa=c[f>>2]|0;if(U|0)g=c[U+12>>2]|0;else g=b;i=c[g+88>>2]|0;j=c[g+92>>2]|0;h=c[g+96>>2]|0;if(!fa)g=d;else g=c[fa+12>>2]|0;s=c[g+88>>2]|0;n=c[g+92>>2]|0;p=c[g+96>>2]|0;$=c[b+88>>2]|0;da=(c[d+88>>2]|0)-$|0;u=c[b+92>>2]|0;ea=(c[d+92>>2]|0)-u|0;b=c[b+96>>2]|0;X=(c[d+96>>2]|0)-b|0;Z=c[(U|0?U:fa)+12>>2]|0;aa=(c[Z+88>>2]|0)-$|0;T=(c[Z+92>>2]|0)-u|0;Z=(c[Z+96>>2]|0)-b|0;Y=(_(T,X)|0)-(_(Z,ea)|0)|0;Z=(_(Z,da)|0)-(_(aa,X)|0)|0;T=(_(aa,ea)|0)-(_(T,da)|0)|0;$=vr(Y|0,((Y|0)<0)<<31>>31|0,$|0,(($|0)<0)<<31>>31|0)|0;aa=C;u=vr(Z|0,((Z|0)<0)<<31>>31|0,u|0,((u|0)<0)<<31>>31|0)|0;t=C;b=vr(T|0,((T|0)<0)<<31>>31|0,b|0,((b|0)<0)<<31>>31|0)|0;b=Kt($|0,aa|0,b|0,C|0)|0;t=Kt(b|0,C|0,u|0,t|0)|0;u=C;b=vr(T|0,((T|0)<0)<<31>>31|0,ea|0,((ea|0)<0)<<31>>31|0)|0;aa=C;$=vr(Z|0,((Z|0)<0)<<31>>31|0,X|0,((X|0)<0)<<31>>31|0)|0;$=Is(b|0,aa|0,$|0,C|0)|0;aa=C;b=vr(Y|0,((Y|0)<0)<<31>>31|0,X|0,((X|0)<0)<<31>>31|0)|0;ca=C;ba=vr(T|0,((T|0)<0)<<31>>31|0,da|0,((da|0)<0)<<31>>31|0)|0;ba=Is(b|0,ca|0,ba|0,C|0)|0;ca=C;b=vr(Z|0,((Z|0)<0)<<31>>31|0,da|0,((da|0)<0)<<31>>31|0)|0;W=C;V=vr(Y|0,((Y|0)<0)<<31>>31|0,ea|0,((ea|0)<0)<<31>>31|0)|0;V=Is(b|0,W|0,V|0,C|0)|0;W=C;b=vr($|0,aa|0,i|0,((i|0)<0)<<31>>31|0)|0;S=C;g=vr(ba|0,ca|0,j|0,((j|0)<0)<<31>>31|0)|0;S=Kt(g|0,C|0,b|0,S|0)|0;b=C;g=vr(V|0,W|0,h|0,((h|0)<0)<<31>>31|0)|0;g=Kt(S|0,b|0,g|0,C|0)|0;b=C;if((U|0)!=0?(c[U+12>>2]|0)!=0:0){r=U;q=i;o=j;m=h;while(1){r=c[(c[r+8>>2]|0)+4>>2]|0;j=r+12|0;i=c[j>>2]|0;d=c[i+88>>2]|0;R=vr(d|0,((d|0)<0)<<31>>31|0,Y|0,((Y|0)<0)<<31>>31|0)|0;Q=C;h=c[i+92>>2]|0;S=vr(h|0,((h|0)<0)<<31>>31|0,Z|0,((Z|0)<0)<<31>>31|0)|0;Q=Kt(S|0,C|0,R|0,Q|0)|0;R=C;i=c[i+96>>2]|0;S=vr(i|0,((i|0)<0)<<31>>31|0,T|0,((T|0)<0)<<31>>31|0)|0;S=Kt(Q|0,R|0,S|0,C|0)|0;R=C;if((R|0)<(u|0)|(R|0)==(u|0)&S>>>0>>0){d=q;i=o;h=m;break}if((c[r+20>>2]|0)==(c[a+100>>2]|0)){d=q;i=o;h=m;break}l=vr(d|0,((d|0)<0)<<31>>31|0,$|0,aa|0)|0;S=C;k=vr(h|0,((h|0)<0)<<31>>31|0,ba|0,ca|0)|0;S=Kt(k|0,C|0,l|0,S|0)|0;l=C;k=vr(i|0,((i|0)<0)<<31>>31|0,V|0,W|0)|0;k=Kt(S|0,l|0,k|0,C|0)|0;l=C;if(!((l|0)>(b|0)|(l|0)==(b|0)&k>>>0>g>>>0)){d=q;i=o;h=m;break}c[e>>2]=r;S=c[j>>2]|0;d=c[S+88>>2]|0;i=c[S+92>>2]|0;h=c[S+96>>2]|0;if(!S){g=k;b=l;break}else{b=l;g=k;q=d;o=i;m=h}}o=c[f>>2]|0;S=i}else{o=fa;d=i;S=j}j=vr($|0,aa|0,s|0,((s|0)<0)<<31>>31|0)|0;R=C;i=vr(ba|0,ca|0,n|0,((n|0)<0)<<31>>31|0)|0;R=Kt(i|0,C|0,j|0,R|0)|0;j=C;i=vr(V|0,W|0,p|0,((p|0)<0)<<31>>31|0)|0;i=Kt(R|0,j|0,i|0,C|0)|0;j=C;a:do if(o)if(!(c[o+12>>2]|0))k=s;else{r=o;q=s;while(1){o=c[c[r+8>>2]>>2]|0;m=c[o+12>>2]|0;k=c[m+88>>2]|0;Q=vr(k|0,((k|0)<0)<<31>>31|0,Y|0,((Y|0)<0)<<31>>31|0)|0;P=C;l=c[m+92>>2]|0;R=vr(l|0,((l|0)<0)<<31>>31|0,Z|0,((Z|0)<0)<<31>>31|0)|0;P=Kt(R|0,C|0,Q|0,P|0)|0;Q=C;m=c[m+96>>2]|0;R=vr(m|0,((m|0)<0)<<31>>31|0,T|0,((T|0)<0)<<31>>31|0)|0;R=Kt(P|0,Q|0,R|0,C|0)|0;Q=C;if((Q|0)<(u|0)|(Q|0)==(u|0)&R>>>0>>0){o=r;k=q;break a}if((c[o+20>>2]|0)==(c[a+100>>2]|0)){o=r;k=q;break a}R=vr(k|0,((k|0)<0)<<31>>31|0,$|0,aa|0)|0;Q=C;l=vr(l|0,((l|0)<0)<<31>>31|0,ba|0,ca|0)|0;Q=Kt(l|0,C|0,R|0,Q|0)|0;R=C;l=vr(m|0,((m|0)<0)<<31>>31|0,V|0,W|0)|0;l=Kt(Q|0,R|0,l|0,C|0)|0;m=C;if(!((m|0)>(j|0)|(m|0)==(j|0)&l>>>0>i>>>0)){o=r;k=q;break a}c[f>>2]=o;R=c[o+12>>2]|0;k=c[R+88>>2]|0;n=c[R+92>>2]|0;p=c[R+96>>2]|0;if(!R){i=l;j=m;break}else{r=o;j=m;i=l;q=k}}}else{o=0;k=s}while(0);i=Is(i|0,j|0,g|0,b|0)|0;b=C;if((b|0)>0|(b|0)==0&i>>>0>0){Q=Is(0,0,T|0,((T|0)<0)<<31>>31|0)|0;R=C;j=o;q=i;m=b;r=d;s=S;t=h;N=k;O=n;P=p;while(1){l=(_(O-s|0,ea)|0)+(_(N-r|0,da)|0)+(_(P-t|0,X)|0)|0;g=c[e>>2]|0;if(!g){E=l;D=l;B=((l|0)<0)<<31>>31;l=q;I=r;H=s;G=t}else{K=l;u=l;L=((l|0)<0)<<31>>31;l=q;H=r;I=s;J=t;b:while(1){if(!(c[g+12>>2]|0)){s=K;t=L;r=H;q=I;g=J;break}G=c[(c[g>>2]|0)+8>>2]|0;if((c[G+20>>2]|0)<=(c[a+100>>2]|0)){s=K;t=L;r=H;q=I;g=J;break}M=c[G+12>>2]|0;r=c[M+88>>2]|0;F=r-H|0;q=c[M+92>>2]|0;E=q-I|0;M=c[M+96>>2]|0;j=M-J|0;t=vr(F|0,((F|0)<0)<<31>>31|0,$|0,aa|0)|0;D=C;s=vr(E|0,((E|0)<0)<<31>>31|0,ba|0,ca|0)|0;D=Kt(s|0,C|0,t|0,D|0)|0;t=C;s=vr(j|0,((j|0)<0)<<31>>31|0,V|0,W|0)|0;s=Kt(D|0,t|0,s|0,C|0)|0;t=C;j=(_(E,ea)|0)+(_(F,da)|0)+(_(j,X)|0)|0;do if((s|0)==0&(t|0)==0){if((j|0)>=0){s=K;t=L;r=H;q=I;g=J;break b}}else{if((t|0)>=0){s=K;t=L;r=H;q=I;g=J;break b}if((j|0)>0){w=1;x=j;v=((j|0)<0)<<31>>31}else{x=Is(0,0,j|0,((j|0)<0)<<31>>31|0)|0;w=j>>31;x=(j|0)<0?x:0;v=(j|0)<0?C:0}F=0-w|0;A=Is(0,0,s|0,t|0)|0;B=C;if((K|0)>0){j=1;D=u;E=L}else{E=(K|0)<0;D=Is(0,0,u|0,L|0)|0;j=K>>31;D=E?D:0;E=E?C:0}if(!((m|0)>0|(m|0)==0&l>>>0>0))if((m|0)<0){s=Is(0,0,l|0,m|0)|0;j=0-j|0;t=C}else{s=0;t=0}else{s=l;t=m}if((j|0)==(F|0)){if(!w)break;j=vr(s|0,0,x|0,0)|0;w=C;ja=vr(t|0,0,x|0,0)|0;ia=C;y=vr(s|0,0,v|0,0)|0;z=C;ha=vr(t|0,0,v|0,0)|0;x=C;y=Kt(ja|0,0,y|0,0)|0;s=C;x=Kt(ia|0,0,ha|0,x|0)|0;z=Kt(x|0,C|0,z|0,0)|0;s=Kt(z|0,C|0,s|0,0)|0;z=C;w=Kt(0,y|0,j|0,w|0)|0;x=C;y=Kt(s|0,z|0,(x>>>0>>0|(x|0)==(y|0)&w>>>0<0)&1|0,0)|0;z=C;s=vr(D|0,0,A|0,0)|0;j=C;ha=vr(E|0,0,A|0,0)|0;A=C;t=vr(D|0,0,B|0,0)|0;v=C;B=vr(E|0,0,B|0,0)|0;D=C;t=Kt(ha|0,0,t|0,0)|0;E=C;D=Kt(A|0,0,B|0,D|0)|0;v=Kt(D|0,C|0,v|0,0)|0;E=Kt(v|0,C|0,E|0,0)|0;v=C;j=Kt(0,t|0,s|0,j|0)|0;s=C;t=Kt(E|0,v|0,(s>>>0>>0|(s|0)==(t|0)&j>>>0<0)&1|0,0)|0;v=C;do if(z>>>0>>0|(z|0)==(v|0)&y>>>0>>0)j=-1;else{if(z>>>0>v>>>0|(z|0)==(v|0)&y>>>0>t>>>0){j=1;break}if(x>>>0>>0|(x|0)==(s|0)&w>>>0>>0){j=-1;break}j=(x>>>0>s>>>0|(x|0)==(s|0)&w>>>0>j>>>0)&1}while(0);j=_(j,F)|0}else j=F-j|0;if((j|0)<=-1){s=K;t=L;r=H;q=I;g=J;break b}}while(0);ja=N-r|0;ia=O-q|0;j=P-M|0;m=vr(ja|0,((ja|0)<0)<<31>>31|0,$|0,aa|0)|0;ha=C;l=vr(ia|0,((ia|0)<0)<<31>>31|0,ba|0,ca|0)|0;ha=Kt(l|0,C|0,m|0,ha|0)|0;m=C;l=vr(j|0,((j|0)<0)<<31>>31|0,V|0,W|0)|0;l=Kt(ha|0,m|0,l|0,C|0)|0;m=C;g=(g|0)==(U|0)?0:G;c[e>>2]=g;j=(_(ia,ea)|0)+(_(ja,da)|0)+(_(j,X)|0)|0;if(!g){s=j;u=j;t=((j|0)<0)<<31>>31;g=M;break}else{K=j;u=j;L=((j|0)<0)<<31>>31;H=r;I=q;J=M}}E=s;j=c[f>>2]|0;D=u;B=t;I=r;H=q;G=g}if(!j){g=122;break}if(!(c[j+12>>2]|0)){g=122;break}F=c[c[j+8>>2]>>2]|0;if((c[F+20>>2]|0)<=(c[a+100>>2]|0)){g=122;break}r=c[F+12>>2]|0;t=c[r+88>>2]|0;q=t-N|0;s=c[r+92>>2]|0;j=s-O|0;r=c[r+96>>2]|0;g=r-P|0;ja=vr(q|0,((q|0)<0)<<31>>31|0,Y|0,((Y|0)<0)<<31>>31|0)|0;ha=C;ia=vr(j|0,((j|0)<0)<<31>>31|0,Z|0,((Z|0)<0)<<31>>31|0)|0;ha=Kt(ia|0,C|0,ja|0,ha|0)|0;ja=C;ia=vr(g|0,((g|0)<0)<<31>>31|0,Q|0,R|0)|0;if(!((ha|0)==(ia|0)&(ja|0)==(C|0))){g=122;break}v=vr(q|0,((q|0)<0)<<31>>31|0,$|0,aa|0)|0;A=C;u=vr(j|0,((j|0)<0)<<31>>31|0,ba|0,ca|0)|0;A=Kt(u|0,C|0,v|0,A|0)|0;v=C;u=vr(g|0,((g|0)<0)<<31>>31|0,V|0,W|0)|0;u=Kt(A|0,v|0,u|0,C|0)|0;v=C;g=(_(j,ea)|0)+(_(q,da)|0)+(_(g,X)|0)|0;A=t-I|0;ia=s-H|0;z=r-G|0;A=vr(A|0,((A|0)<0)<<31>>31|0,$|0,aa|0)|0;ja=C;ia=vr(ia|0,((ia|0)<0)<<31>>31|0,ba|0,ca|0)|0;ja=Kt(ia|0,C|0,A|0,ja|0)|0;A=C;z=vr(z|0,((z|0)<0)<<31>>31|0,V|0,W|0)|0;z=Kt(ja|0,A|0,z|0,C|0)|0;A=C;if(!((A|0)>0|(A|0)==0&z>>>0>0)){g=122;break}if((u|0)==0&(v|0)==0){if((g|0)>=0){g=122;break}}else{if((v|0)>=0){g=122;break}if((g|0)>0){r=1;s=g;q=((g|0)<0)<<31>>31}else{s=Is(0,0,g|0,((g|0)<0)<<31>>31|0)|0;r=g>>31;s=(g|0)<0?s:0;q=(g|0)<0?C:0}y=0-r|0;w=Is(0,0,u|0,v|0)|0;x=C;if((E|0)>0){g=1;v=D;u=B}else{u=(E|0)<0;v=Is(0,0,D|0,B|0)|0;g=E>>31;v=u?v:0;u=u?C:0}do if((m|0)>0|(m|0)==0&l>>>0>0){j=g;g=m}else{if((m|0)>=0){j=g;l=0;g=0;break}l=Is(0,0,l|0,m|0)|0;j=0-g|0;g=C}while(0);if((j|0)==(y|0)){if(!r){g=122;break}ja=vr(l|0,0,s|0,0)|0;r=C;j=vr(g|0,0,s|0,0)|0;P=C;s=vr(l|0,0,q|0,0)|0;t=C;g=vr(g|0,0,q|0,0)|0;q=C;s=Kt(j|0,0,s|0,0)|0;j=C;q=Kt(P|0,0,g|0,q|0)|0;t=Kt(q|0,C|0,t|0,0)|0;j=Kt(t|0,C|0,j|0,0)|0;t=C;q=Kt(0,s|0,ja|0,r|0)|0;r=C;s=Kt(j|0,t|0,(r>>>0>>0|(r|0)==(s|0)&q>>>0<0)&1|0,0)|0;t=C;j=vr(v|0,0,w|0,0)|0;g=C;ja=vr(u|0,0,w|0,0)|0;P=C;l=vr(v|0,0,x|0,0)|0;m=C;ha=vr(u|0,0,x|0,0)|0;ia=C;l=Kt(ja|0,0,l|0,0)|0;ja=C;ia=Kt(P|0,0,ha|0,ia|0)|0;m=Kt(ia|0,C|0,m|0,0)|0;ja=Kt(m|0,C|0,ja|0,0)|0;m=C;g=Kt(0,l|0,j|0,g|0)|0;j=C;l=Kt(ja|0,m|0,(j>>>0>>0|(j|0)==(l|0)&g>>>0<0)&1|0,0)|0;m=C;do if(t>>>0>>0|(t|0)==(m|0)&s>>>0>>0)g=-1;else{if(t>>>0>m>>>0|(t|0)==(m|0)&s>>>0>l>>>0){g=1;break}if(r>>>0>>0|(r|0)==(j|0)&q>>>0>>0){g=-1;break}g=(r>>>0>j>>>0|(r|0)==(j|0)&q>>>0>g>>>0)&1}while(0);g=_(g,y)|0}else g=y-j|0;if((g|0)<=0){g=122;break}}c[f>>2]=F;P=c[F+12>>2]|0;j=F;q=z;m=A;r=I;s=H;t=G;N=c[P+88>>2]|0;O=c[P+92>>2]|0;P=c[P+96>>2]|0}if((g|0)==122)return}if((b|0)>=0)return;F=Is(0,0,T|0,((T|0)<0)<<31>>31|0)|0;G=C;g=S;E=k;c:while(1){D=b;B=i;z=g;d:while(1){A=(_(n-z|0,ea)|0)+(_(E-d|0,da)|0)+(_(p-h|0,X)|0)|0;do if((o|0?c[o+12>>2]|0:0)?(ga=c[(c[o+4>>2]|0)+8>>2]|0,(c[ga+20>>2]|0)>(c[a+100>>2]|0)):0){y=c[ga+12>>2]|0;w=c[y+88>>2]|0;ja=w-E|0;x=c[y+92>>2]|0;ia=x-n|0;y=c[y+96>>2]|0;g=y-p|0;i=vr(ja|0,((ja|0)<0)<<31>>31|0,$|0,aa|0)|0;ha=C;b=vr(ia|0,((ia|0)<0)<<31>>31|0,ba|0,ca|0)|0;ha=Kt(b|0,C|0,i|0,ha|0)|0;i=C;b=vr(g|0,((g|0)<0)<<31>>31|0,V|0,W|0)|0;b=Kt(ha|0,i|0,b|0,C|0)|0;i=C;g=(_(ia,ea)|0)+(_(ja,da)|0)+(_(g,X)|0)|0;if((b|0)==0&(i|0)==0)if((g|0)>0)break d;else break;if((i|0)<0){if((g|0)>0){k=1;l=g;j=((g|0)<0)<<31>>31}else{l=Is(0,0,g|0,((g|0)<0)<<31>>31|0)|0;k=g>>31;l=(g|0)<0?l:0;j=(g|0)<0?C:0}v=0-k|0;r=Is(0,0,b|0,i|0)|0;s=C;if((A|0)>0){g=1;t=A;u=((A|0)<0)<<31>>31}else{t=Is(0,0,A|0,((A|0)<0)<<31>>31|0)|0;g=A>>31;t=(A|0)<0?t:0;u=(A|0)<0?C:0}if(!((D|0)>0|(D|0)==0&B>>>0>0))if((D|0)<0){b=Is(0,0,B|0,D|0)|0;g=0-g|0;i=C}else{b=0;i=0}else{b=B;i=D}if((g|0)==(v|0)){if(!k)break d;g=vr(b|0,0,l|0,0)|0;k=C;ha=vr(i|0,0,l|0,0)|0;U=C;m=vr(b|0,0,j|0,0)|0;q=C;ja=vr(i|0,0,j|0,0)|0;l=C;m=Kt(ha|0,0,m|0,0)|0;b=C;l=Kt(U|0,0,ja|0,l|0)|0;q=Kt(l|0,C|0,q|0,0)|0;b=Kt(q|0,C|0,b|0,0)|0;q=C;k=Kt(0,m|0,g|0,k|0)|0;l=C;m=Kt(b|0,q|0,(l>>>0>>0|(l|0)==(m|0)&k>>>0<0)&1|0,0)|0;q=C;b=vr(t|0,0,r|0,0)|0;g=C;ja=vr(u|0,0,r|0,0)|0;U=C;i=vr(t|0,0,s|0,0)|0;j=C;ha=vr(u|0,0,s|0,0)|0;ia=C;i=Kt(ja|0,0,i|0,0)|0;ja=C;ia=Kt(U|0,0,ha|0,ia|0)|0;j=Kt(ia|0,C|0,j|0,0)|0;ja=Kt(j|0,C|0,ja|0,0)|0;j=C;g=Kt(0,i|0,b|0,g|0)|0;b=C;i=Kt(ja|0,j|0,(b>>>0>>0|(b|0)==(i|0)&g>>>0<0)&1|0,0)|0;j=C;do if(q>>>0>>0|(q|0)==(j|0)&m>>>0>>0)g=-1;else{if(q>>>0>j>>>0|(q|0)==(j|0)&m>>>0>i>>>0){g=1;break}if(l>>>0>>0|(l|0)==(b|0)&k>>>0>>0){g=-1;break}g=(l>>>0>b>>>0|(l|0)==(b|0)&k>>>0>g>>>0)&1}while(0);g=_(g,v)|0}else g=v-g|0;if((g|0)<1)break d}}while(0);g=c[e>>2]|0;if(!g){g=122;break c}if(!(c[g+12>>2]|0)){g=122;break c}u=c[(c[g+8>>2]|0)+4>>2]|0;if((c[u+20>>2]|0)<=(c[a+100>>2]|0)){g=122;break c}i=c[u+12>>2]|0;k=c[i+88>>2]|0;d=k-d|0;j=c[i+92>>2]|0;b=j-z|0;i=c[i+96>>2]|0;g=i-h|0;ja=vr(d|0,((d|0)<0)<<31>>31|0,Y|0,((Y|0)<0)<<31>>31|0)|0;ha=C;ia=vr(b|0,((b|0)<0)<<31>>31|0,Z|0,((Z|0)<0)<<31>>31|0)|0;ha=Kt(ia|0,C|0,ja|0,ha|0)|0;ja=C;ia=vr(g|0,((g|0)<0)<<31>>31|0,F|0,G|0)|0;if(!((ha|0)==(ia|0)&(ja|0)==(C|0))){g=122;break c}l=vr(d|0,((d|0)<0)<<31>>31|0,$|0,aa|0)|0;t=C;h=vr(b|0,((b|0)<0)<<31>>31|0,ba|0,ca|0)|0;t=Kt(h|0,C|0,l|0,t|0)|0;l=C;h=vr(g|0,((g|0)<0)<<31>>31|0,V|0,W|0)|0;h=Kt(t|0,l|0,h|0,C|0)|0;l=C;g=(_(b,ea)|0)+(_(d,da)|0)+(_(g,X)|0)|0;t=E-k|0;ia=n-j|0;s=p-i|0;t=vr(t|0,((t|0)<0)<<31>>31|0,$|0,aa|0)|0;ja=C;ia=vr(ia|0,((ia|0)<0)<<31>>31|0,ba|0,ca|0)|0;ja=Kt(ia|0,C|0,t|0,ja|0)|0;t=C;s=vr(s|0,((s|0)<0)<<31>>31|0,V|0,W|0)|0;s=Kt(ja|0,t|0,s|0,C|0)|0;t=C;if((t|0)>=0){g=122;break c}if((h|0)==0&(l|0)==0){if((g|0)<=0){g=122;break c}}else{if((l|0)>=0){g=122;break c}if((g|0)>0){j=g;k=((g|0)<0)<<31>>31;i=1}else{j=Is(0,0,g|0,((g|0)<0)<<31>>31|0)|0;j=(g|0)<0?j:0;k=(g|0)<0?C:0;i=g>>31}r=0-i|0;o=Is(0,0,h|0,l|0)|0;q=C;if((A|0)>0){g=1;m=A;h=((A|0)<0)<<31>>31}else{m=Is(0,0,A|0,((A|0)<0)<<31>>31|0)|0;g=A>>31;m=(A|0)<0?m:0;h=(A|0)<0?C:0}do if((D|0)>0|(D|0)==0&B>>>0>0){d=g;b=B;g=D}else{if((D|0)>=0){d=g;b=0;g=0;break}b=Is(0,0,B|0,D|0)|0;d=0-g|0;g=C}while(0);if((d|0)==(r|0)){if(!i){g=122;break c}ja=vr(b|0,0,j|0,0)|0;i=C;d=vr(g|0,0,j|0,0)|0;U=C;b=vr(b|0,0,k|0,0)|0;l=C;g=vr(g|0,0,k|0,0)|0;j=C;k=Kt(d|0,0,b|0,0)|0;b=C;j=Kt(U|0,0,g|0,j|0)|0;l=Kt(j|0,C|0,l|0,0)|0;b=Kt(l|0,C|0,b|0,0)|0;l=C;i=Kt(0,k|0,ja|0,i|0)|0;j=C;k=Kt(b|0,l|0,(j>>>0>>0|(j|0)==(k|0)&i>>>0<0)&1|0,0)|0;l=C;b=vr(m|0,0,o|0,0)|0;g=C;ja=vr(h|0,0,o|0,0)|0;U=C;d=vr(m|0,0,q|0,0)|0;ia=C;ha=vr(h|0,0,q|0,0)|0;h=C;d=Kt(ja|0,0,d|0,0)|0;ja=C;h=Kt(U|0,0,ha|0,h|0)|0;h=Kt(h|0,C|0,ia|0,0)|0;ja=Kt(h|0,C|0,ja|0,0)|0;h=C;g=Kt(0,d|0,b|0,g|0)|0;b=C;d=Kt(ja|0,h|0,(b>>>0>>0|(b|0)==(d|0)&g>>>0<0)&1|0,0)|0;h=C;do if(l>>>0>>0|(l|0)==(h|0)&k>>>0>>0)g=-1;else{if(l>>>0>h>>>0|(l|0)==(h|0)&k>>>0>d>>>0){g=1;break}if(j>>>0>>0|(j|0)==(b|0)&i>>>0>>0){g=-1;break}g=(j>>>0>b>>>0|(j|0)==(b|0)&i>>>0>g>>>0)&1}while(0);g=_(g,r)|0}else g=r-d|0;if((g|0)>=0){g=122;break c}}c[e>>2]=u;h=c[u+12>>2]|0;o=c[f>>2]|0;D=t;B=s;d=c[h+88>>2]|0;z=c[h+92>>2]|0;h=c[h+96>>2]|0}b=w-d|0;E=x-z|0;i=y-h|0;b=vr(b|0,((b|0)<0)<<31>>31|0,$|0,aa|0)|0;g=C;E=vr(E|0,((E|0)<0)<<31>>31|0,ba|0,ca|0)|0;g=Kt(E|0,C|0,b|0,g|0)|0;b=C;i=vr(i|0,((i|0)<0)<<31>>31|0,V|0,W|0)|0;i=Kt(g|0,b|0,i|0,C|0)|0;o=(o|0)==(fa|0)?0:ga;c[f>>2]=o;b=C;g=z;E=w;n=x;p=y}if((g|0)==122)return}function Bc(e,f,g,j,l){e=e|0;f=f|0;g=g|0;j=j|0;l=l|0;var m=0,n=0,o=0,p=0.0,q=0,r=0,s=0.0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0;O=i;i=i+624|0;K=O+536+40|0;M=O+588|0;N=O+576+12|0;L=O+588+9|0;m=0;n=0;r=0;w=f;a:while(1){do if((m|0)>-1){if((n|0)<=(2147483647-m|0)){m=n+m|0;break}if(!0)m=25748;else m=c[(ib()|0)+64>>2]|0;c[m>>2]=75;m=-1}while(0);f=a[w>>0]|0;if(!(f<<24>>24)){J=254;break}else n=w;b:while(1){switch(f<<24>>24){case 37:{f=n;J=11;break b}case 0:{f=n;break b}default:{}}I=n+1|0;f=a[I>>0]|0;n=I}c:do if((J|0)==11)while(1){J=0;if((a[f+1>>0]|0)!=37)break c;n=n+1|0;f=f+2|0;if((a[f>>0]|0)==37)J=11;else break}while(0);v=n-w|0;if(e|0?(c[e>>2]&32|0)==0:0)Ek(w,v,e);if((n|0)!=(w|0)){n=v;w=f;continue}o=f+1|0;n=a[o>>0]|0;if(((n<<24>>24)+-48|0)>>>0<10){I=(a[f+2>>0]|0)==36;o=I?f+3|0:o;q=a[o>>0]|0;u=I?(n<<24>>24)+-48|0:-1;r=I?1:r}else{q=n;u=-1}f=q<<24>>24;d:do if((f&-32|0)==32){n=q;q=0;do{if(!(1<>24)+-32|q;o=o+1|0;n=a[o>>0]|0;f=n<<24>>24}while((f&-32|0)==32)}else{n=q;q=0}while(0);do if(n<<24>>24==42){n=o+1|0;f=(a[n>>0]|0)+-48|0;if(f>>>0<10?(a[o+2>>0]|0)==36:0){c[l+(f<<2)>>2]=10;f=1;o=o+3|0;n=c[j+((a[n>>0]|0)+-48<<3)>>2]|0}else{if(r|0){m=-1;break a}if(!e){t=q;I=0;o=n;H=0;break}f=(c[g>>2]|0)+(4-1)&~(4-1);I=c[f>>2]|0;c[g>>2]=f+4;f=0;o=n;n=I}if((n|0)<0){t=q|8192;I=f;H=0-n|0}else{t=q;I=f;H=n}}else{f=(n<<24>>24)+-48|0;if(f>>>0<10){n=0;do{n=(n*10|0)+f|0;o=o+1|0;f=(a[o>>0]|0)+-48|0}while(f>>>0<10);if((n|0)<0){m=-1;break a}else{t=q;I=r;H=n}}else{t=q;I=r;H=0}}while(0);e:do if((a[o>>0]|0)==46){f=o+1|0;q=a[f>>0]|0;if(q<<24>>24!=42){if(((q<<24>>24)+-48|0)>>>0<10){n=0;o=(q<<24>>24)+-48|0}else{r=0;break}while(1){n=(n*10|0)+o|0;f=f+1|0;o=(a[f>>0]|0)+-48|0;if(o>>>0>=10){r=n;break e}}}f=o+2|0;n=(a[f>>0]|0)+-48|0;if(n>>>0<10?(a[o+3>>0]|0)==36:0){c[l+(n<<2)>>2]=10;r=c[j+((a[f>>0]|0)+-48<<3)>>2]|0;f=o+4|0;break}if(I|0){m=-1;break a}if(e|0){G=(c[g>>2]|0)+(4-1)&~(4-1);r=c[G>>2]|0;c[g>>2]=G+4}else r=0}else{r=-1;f=o}while(0);q=0;while(1){n=(a[f>>0]|0)+-65|0;if(n>>>0>57){m=-1;break a}G=f+1|0;n=a[19395+(q*58|0)+n>>0]|0;if(((n&255)+-1|0)>>>0<8){f=G;q=n&255}else break}if(!(n<<24>>24)){m=-1;break}o=(u|0)>-1;do if(n<<24>>24==19)if(o){m=-1;break a}else J=54;else{if(o){c[l+(u<<2)>>2]=n&255;F=j+(u<<3)|0;J=c[F+4>>2]|0;c[O>>2]=c[F>>2];c[O+4>>2]=J;J=54;break}if(!e){m=0;break a}Ug(O,n&255,g)}while(0);if((J|0)==54?(J=0,(e|0)==0):0){n=v;r=I;w=G;continue}E=a[f>>0]|0;E=(q|0)!=0&(E&15|0)==3?E&-33:E;o=t&-65537;F=(t&8192|0)==0?t:o;f:do switch(E|0){case 110:switch(q|0){case 0:{c[c[O>>2]>>2]=m;n=v;r=I;w=G;continue a}case 1:{c[c[O>>2]>>2]=m;n=v;r=I;w=G;continue a}case 2:{n=c[O>>2]|0;c[n>>2]=m;c[n+4>>2]=((m|0)<0)<<31>>31;n=v;r=I;w=G;continue a}case 3:{b[c[O>>2]>>1]=m;n=v;r=I;w=G;continue a}case 4:{a[c[O>>2]>>0]=m;n=v;r=I;w=G;continue a}case 6:{c[c[O>>2]>>2]=m;n=v;r=I;w=G;continue a}case 7:{n=c[O>>2]|0;c[n>>2]=m;c[n+4>>2]=((m|0)<0)<<31>>31;n=v;r=I;w=G;continue a}default:{n=v;r=I;w=G;continue a}}case 112:{t=F|8;r=r>>>0>8?r:8;u=120;J=66;break}case 88:case 120:{t=F;u=E;J=66;break}case 111:{n=c[O>>2]|0;o=c[O+4>>2]|0;if((n|0)==0&(o|0)==0)f=K;else{f=K;do{f=f+-1|0;a[f>>0]=n&7|48;n=us(n|0,o|0,3)|0;o=C}while(!((n|0)==0&(o|0)==0))}if(!(F&8)){n=F;t=0;q=19875;J=79}else{t=K-f|0;n=F;r=(r|0)>(t|0)?r:t+1|0;t=0;q=19875;J=79}break}case 105:case 100:{f=c[O>>2]|0;n=c[O+4>>2]|0;if((n|0)<0){f=Is(0,0,f|0,n|0)|0;n=C;c[O>>2]=f;c[O+4>>2]=n;o=1;q=19875;J=78;break f}if(!(F&2048)){o=F&1;q=(F&1|0)==0?19875:19877;J=78}else{o=1;q=19876;J=78}break}case 117:{f=c[O>>2]|0;n=c[O+4>>2]|0;o=0;q=19875;J=78;break}case 99:{a[O+536+39>>0]=c[O>>2];f=O+536+39|0;u=1;w=0;v=19875;n=K;break}case 109:{if(!0)f=25748;else f=c[(ib()|0)+64>>2]|0;n=c[f>>2]|0;f=0;while(1){if((d[19885+f>>0]|0)==(n|0)){J=85;break}f=f+1|0;if((f|0)==87){n=87;f=19973;break}}if((J|0)==85)if(!f){n=19973;J=92;break f}else{n=f;f=19973}do{do{J=f;f=f+1|0}while((a[J>>0]|0)!=0);n=n+-1|0}while((n|0)!=0);n=f;J=92;break}case 115:{n=c[O>>2]|0;n=n|0?n:21777;J=92;break}case 67:{c[O+8>>2]=c[O>>2];c[O+8+4>>2]=0;c[O>>2]=O+8;f=O+8|0;r=-1;J=96;break}case 83:{f=c[O>>2]|0;if(!r){Gl(e,32,H,0,F);f=0;J=107}else J=96;break}case 65:case 71:case 70:case 69:case 97:case 103:case 102:case 101:{p=+h[O>>3];c[O+16>>2]=0;h[k>>3]=p;if((c[k+4>>2]|0)>=0)if(!(F&2048)){B=F&1;D=(F&1|0)==0?21785:21790}else{B=1;D=21787}else{p=-p;B=1;D=21784}h[k>>3]=p;A=c[k+4>>2]&2146435072;do if(A>>>0<2146435072|(A|0)==2146435072&0<0){p=+Gm(p,O+16|0)*2.0;if(p!=0.0)c[O+16>>2]=(c[O+16>>2]|0)+-1;if((E|32|0)==97){u=(E&32|0)==0?D:D+9|0;t=B|2;f=12-r|0;do if(!(r>>>0>11|(f|0)==0)){s=8.0;do{f=f+-1|0;s=s*16.0}while((f|0)!=0);if((a[u>>0]|0)==45){p=-(s+(-p-s));break}else{p=p+s-s;break}}while(0);n=c[O+16>>2]|0;f=(n|0)<0?0-n|0:n;f=Vm(f,((f|0)<0)<<31>>31,O+576+12|0)|0;if((f|0)==(O+576+12|0)){a[O+576+11>>0]=48;f=O+576+11|0}a[f+-1>>0]=(n>>31&2)+43;q=f+-2|0;a[q>>0]=E+15;o=(r|0)<1;f=O+588|0;while(1){D=~~p;n=f+1|0;a[f>>0]=d[19859+D>>0]|E&32;p=(p-+(D|0))*16.0;do if((n-M|0)==1){if((F&8|0)==0&(o&p==0.0))break;a[n>>0]=46;n=f+2|0}while(0);if(!(p!=0.0))break;else f=n}f=(r|0)!=0&(-2-M+n|0)<(r|0)?N+2+r-q|0:N-M-q+n|0;Gl(e,32,H,f+t|0,F);if(!(c[e>>2]&32))Ek(u,t,e);Gl(e,48,H,f+t|0,F^65536);if(!(c[e>>2]&32))Ek(O+588|0,n-M|0,e);Gl(e,48,f-(n-M+(N-q))|0,0,0);if(!(c[e>>2]&32))Ek(q,N-q|0,e);Gl(e,32,H,f+t|0,F^8192);f=(f+t|0)<(H|0)?H:f+t|0;break}f=(r|0)<0?6:r;if(p!=0.0){n=(c[O+16>>2]|0)+-28|0;c[O+16>>2]=n;p=p*268435456.0}else n=c[O+16>>2]|0;A=(n|0)<0?O+24|0:O+24+288|0;q=A;do{z=~~p>>>0;c[q>>2]=z;q=q+4|0;p=(p-+(z>>>0))*1.0e9}while(p!=0.0);n=c[O+16>>2]|0;if((n|0)>0){o=A;do{t=(n|0)>29?29:n;n=q+-4|0;do if(n>>>0>=o>>>0){r=0;do{y=is(c[n>>2]|0,0,t|0)|0;y=Kt(y|0,C|0,r|0,0)|0;z=C;x=lr(y|0,z|0,1e9,0)|0;c[n>>2]=x;r=Xv(y|0,z|0,1e9,0)|0;n=n+-4|0}while(n>>>0>=o>>>0);if(!r)break;o=o+-4|0;c[o>>2]=r}while(0);while(1){if(q>>>0<=o>>>0)break;n=q+-4|0;if(!(c[n>>2]|0))q=n;else break}n=(c[O+16>>2]|0)-t|0;c[O+16>>2]=n}while((n|0)>0)}else o=A;if((n|0)<0){do{t=0-n|0;t=(t|0)>9?9:t;do if(o>>>0>>0){r=0;n=o;do{z=c[n>>2]|0;c[n>>2]=(z>>>t)+r;r=_(z&(1<>>t)|0;n=n+4|0}while(n>>>0>>0);n=(c[o>>2]|0)==0?o+4|0:o;if(!r){o=n;n=q;break}c[q>>2]=r;o=n;n=q+4|0}else{o=(c[o>>2]|0)==0?o+4|0:o;n=q}while(0);q=(E|32|0)==102?A:o;q=(n-q>>2|0)>(((f+25|0)/9|0)+1|0)?q+(((f+25|0)/9|0)+1<<2)|0:n;n=(c[O+16>>2]|0)+t|0;c[O+16>>2]=n}while((n|0)<0);n=o}else n=o;do if(n>>>0>>0){o=(A-n>>2)*9|0;t=c[n>>2]|0;if(t>>>0<10)break;else r=10;do{r=r*10|0;o=o+1|0}while(t>>>0>=r>>>0)}else o=0;while(0);r=f-((E|32|0)!=102?o:0)+(((f|0)!=0&(E|32|0)==103)<<31>>31)|0;if((r|0)<(((q-A>>2)*9|0)+-9|0)){x=A+4+(((r+9216|0)/9|0)+-1024<<2)|0;if((((r+9216|0)%9|0)+1|0)<9){t=10;u=((r+9216|0)%9|0)+1|0;while(1){r=t*10|0;u=u+1|0;if((u|0)==9)break;else t=r}}else r=10;v=c[x>>2]|0;w=(v>>>0)%(r>>>0)|0;t=(x+4|0)==(q|0);do if(t&(w|0)==0)r=x;else{s=(((v>>>0)/(r>>>0)|0)&1|0)==0?9007199254740992.0:9007199254740994.0;u=(r|0)/2|0;if(w>>>0>>0)p=.5;else p=t&(w|0)==(u|0)?1.0:1.5;do if(B){if((a[D>>0]|0)!=45)break;s=-s;p=-p}while(0);c[x>>2]=v-w;if(!(s+p!=s)){r=x;break}z=v-w+r|0;c[x>>2]=z;if(z>>>0>999999999){o=x;while(1){r=o+-4|0;c[o>>2]=0;if(r>>>0>>0){n=n+-4|0;c[n>>2]=0}z=(c[r>>2]|0)+1|0;c[r>>2]=z;if(z>>>0>999999999)o=r;else break}}else r=x;o=(A-n>>2)*9|0;u=c[n>>2]|0;if(u>>>0<10)break;else t=10;do{t=t*10|0;o=o+1|0}while(u>>>0>=t>>>0)}while(0);y=r+4|0;z=n;n=q>>>0>y>>>0?y:q}else{z=n;n=q}u=0-o|0;y=n;while(1){if(y>>>0<=z>>>0){w=0;break}n=y+-4|0;if(!(c[n>>2]|0))y=n;else{w=1;break}}do if((E|32|0)==103){if((((f|0)!=0^1)+f|0)>(o|0)&(o|0)>-5){t=E+-1|0;f=((f|0)!=0^1)+f+-1-o|0}else{t=E+-2|0;f=((f|0)!=0^1)+f+-1|0}if(F&8|0){r=F&8;break}do if(w){n=c[y+-4>>2]|0;if(!n){q=9;break}if(!((n>>>0)%10|0)){r=10;q=0}else{q=0;break}do{r=r*10|0;q=q+1|0}while(!((n>>>0)%(r>>>0)|0|0))}else q=9;while(0);n=((y-A>>2)*9|0)+-9|0;if((t|32|0)==102){r=n-q|0;r=(r|0)<0?0:r;f=(f|0)<(r|0)?f:r;r=0;break}else{r=n+o-q|0;r=(r|0)<0?0:r;f=(f|0)<(r|0)?f:r;r=0;break}}else{t=E;r=F&8}while(0);v=f|r;q=(t|32|0)==102;if(q){n=(o|0)>0?o:0;u=0}else{n=(o|0)<0?u:o;n=Vm(n,((n|0)<0)<<31>>31,O+576+12|0)|0;if((N-n|0)<2)do{n=n+-1|0;a[n>>0]=48}while((N-n|0)<2);a[n+-1>>0]=(o>>31&2)+43;u=n+-2|0;a[u>>0]=t;n=N-u|0}x=B+1+f+((v|0)!=0&1)+n|0;Gl(e,32,H,x,F);if(!(c[e>>2]&32))Ek(D,B,e);Gl(e,48,H,x,F^65536);do if(q){q=z>>>0>A>>>0?A:z;o=q;do{n=Vm(c[o>>2]|0,0,L)|0;do if((o|0)==(q|0)){if((n|0)!=(L|0))break;a[O+588+8>>0]=48;n=O+588+8|0}else{if(n>>>0<=(O+588|0)>>>0)break;Qn(O+588|0,48,n-M|0)|0;do n=n+-1|0;while(n>>>0>(O+588|0)>>>0)}while(0);if(!(c[e>>2]&32))Ek(n,L-n|0,e);o=o+4|0}while(o>>>0<=A>>>0);do if(v|0){if(c[e>>2]&32|0)break;Ek(21819,1,e)}while(0);if((f|0)>0&o>>>0>>0)while(1){n=Vm(c[o>>2]|0,0,L)|0;if(n>>>0>(O+588|0)>>>0){Qn(O+588|0,48,n-M|0)|0;do n=n+-1|0;while(n>>>0>(O+588|0)>>>0)}if(!(c[e>>2]&32))Ek(n,(f|0)>9?9:f,e);o=o+4|0;n=f+-9|0;if(!((f|0)>9&o>>>0>>0)){f=n;break}else f=n}Gl(e,48,f+9|0,9,0)}else{t=w?y:z+4|0;if((f|0)>-1){r=(r|0)==0;q=z;do{n=Vm(c[q>>2]|0,0,L)|0;if((n|0)==(L|0)){a[O+588+8>>0]=48;n=O+588+8|0}do if((q|0)==(z|0)){o=n+1|0;if(!(c[e>>2]&32))Ek(n,1,e);if(r&(f|0)<1){n=o;break}if(c[e>>2]&32|0){n=o;break}Ek(21819,1,e);n=o}else{if(n>>>0<=(O+588|0)>>>0)break;Qn(O+588|0,48,n+(0-M)|0)|0;do n=n+-1|0;while(n>>>0>(O+588|0)>>>0)}while(0);o=L-n|0;if(!(c[e>>2]&32))Ek(n,(f|0)>(o|0)?o:f,e);f=f-o|0;q=q+4|0}while(q>>>0>>0&(f|0)>-1)}Gl(e,48,f+18|0,18,0);if(c[e>>2]&32|0)break;Ek(u,N-u|0,e)}while(0);Gl(e,32,H,x,F^8192);f=(x|0)<(H|0)?H:x}else{q=p!=p|0.0!=0.0;n=q?0:B;Gl(e,32,H,n+3|0,o);f=c[e>>2]|0;if(!(f&32)){Ek(D,n,e);f=c[e>>2]|0}if(!(f&32))Ek(q?(E&32|0?21811:21815):E&32|0?21803:21807,3,e);Gl(e,32,H,n+3|0,F^8192);f=(n+3|0)<(H|0)?H:n+3|0}while(0);n=f;r=I;w=G;continue a}default:{f=w;o=F;u=r;w=0;v=19875;n=K}}while(0);g:do if((J|0)==66){n=c[O>>2]|0;o=c[O+4>>2]|0;q=u&32;if(!((n|0)==0&(o|0)==0)){f=K;do{f=f+-1|0;a[f>>0]=d[19859+(n&15)>>0]|q;n=us(n|0,o|0,4)|0;o=C}while(!((n|0)==0&(o|0)==0));if((t&8|0)==0|(c[O>>2]|0)==0&(c[O+4>>2]|0)==0){n=t;t=0;q=19875;J=79}else{n=t;t=2;q=19875+(u>>4)|0;J=79}}else{f=K;n=t;t=0;q=19875;J=79}}else if((J|0)==78){f=Vm(f,n,K)|0;n=F;t=o;J=79}else if((J|0)==92){J=0;F=lj(n,0,r)|0;f=n;u=(F|0)==0?r:F-n|0;w=0;v=19875;n=(F|0)==0?n+r|0:F}else if((J|0)==96){J=0;o=0;n=0;t=f;while(1){q=c[t>>2]|0;if(!q)break;n=wl(O+528|0,q)|0;if((n|0)<0|n>>>0>(r-o|0)>>>0)break;o=n+o|0;if(r>>>0>o>>>0)t=t+4|0;else break}if((n|0)<0){m=-1;break a}Gl(e,32,H,o,F);if(!o){f=0;J=107}else{q=0;while(1){n=c[f>>2]|0;if(!n){f=o;J=107;break g}n=wl(O+528|0,n)|0;q=n+q|0;if((q|0)>(o|0)){f=o;J=107;break g}if(!(c[e>>2]&32))Ek(O+528|0,n,e);if(q>>>0>=o>>>0){f=o;J=107;break}else f=f+4|0}}}while(0);if((J|0)==107){J=0;Gl(e,32,H,f,F^8192);n=(H|0)>(f|0)?H:f;r=I;w=G;continue}if((J|0)==79){J=0;o=(r|0)>-1?n&-65537:n;n=(c[O>>2]|0)!=0|(c[O+4>>2]|0)!=0;if((r|0)!=0|n){u=(n&1^1)+(K-f)|0;u=(r|0)>(u|0)?r:u;w=t;v=q;n=K}else{f=K;u=0;w=t;v=q;n=K}}t=n-f|0;q=(u|0)<(t|0)?t:u;r=w+q|0;n=(H|0)<(r|0)?r:H;Gl(e,32,n,r,o);if(!(c[e>>2]&32))Ek(v,w,e);Gl(e,48,n,r,o^65536);Gl(e,48,q,t,0);if(!(c[e>>2]&32))Ek(f,t,e);Gl(e,32,n,r,o^8192);r=I;w=G}h:do if((J|0)==254)if(!e)if(!r)m=0;else{m=1;while(1){f=c[l+(m<<2)>>2]|0;if(!f){f=0;break}Ug(j+(m<<3)|0,f,g);m=m+1|0;if((m|0)>=10){m=1;break h}}while(1){m=m+1|0;if(f|0){m=-1;break h}if((m|0)>=10){m=1;break h}f=c[l+(m<<2)>>2]|0}}while(0);i=O;return m|0}function Cc(b,d,e,f,h,j,l,m,n){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;j=j|0;l=l|0;m=m|0;n=n|0;var o=0,p=0,q=0,r=0.0,s=0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0.0,_=0.0,$=0.0,aa=0.0,ba=0.0,ca=0.0,da=0.0,ea=0.0;Y=i;i=i+304|0;c[b+188>>2]=-1;li(12870);c[b+184>>2]=0;if((e|0)>0){n=0;do{c[(c[d+(n<<2)>>2]|0)+212>>2]=-1;n=n+1|0}while((n|0)!=(e|0))}o=c[b+12>>2]|0;if((o|0)>(e|0))p=b+8|0;else{if((e+1|0)!=0?(c[6435]=(c[6435]|0)+1,p=yc(((e+1|0)*244|3)+16|0)|0,(p|0)!=0):0){c[(p+4+15&-16)+-4>>2]=p;p=p+4+15&-16}else p=0;n=c[b+8>>2]|0;if((n|0)>0){o=0;do{V=p+(o*244|0)|0;W=c[b+16>>2]|0;U=W+(o*244|0)|0;c[V>>2]=c[U>>2];c[V+4>>2]=c[U+4>>2];c[V+8>>2]=c[U+8>>2];c[V+12>>2]=c[U+12>>2];V=p+(o*244|0)+16|0;U=W+(o*244|0)+16|0;c[V>>2]=c[U>>2];c[V+4>>2]=c[U+4>>2];c[V+8>>2]=c[U+8>>2];c[V+12>>2]=c[U+12>>2];V=p+(o*244|0)+32|0;U=W+(o*244|0)+32|0;c[V>>2]=c[U>>2];c[V+4>>2]=c[U+4>>2];c[V+8>>2]=c[U+8>>2];c[V+12>>2]=c[U+12>>2];V=p+(o*244|0)+48|0;U=W+(o*244|0)+48|0;c[V>>2]=c[U>>2];c[V+4>>2]=c[U+4>>2];c[V+8>>2]=c[U+8>>2];c[V+12>>2]=c[U+12>>2];_m(p+(o*244|0)+64|0,W+(o*244|0)+64|0,180)|0;o=o+1|0}while((o|0)!=(n|0))}n=c[b+16>>2]|0;if(n|0){if(a[b+20>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[n+-4>>2]|0)}c[b+16>>2]=0}a[b+20>>0]=1;c[b+16>>2]=p;c[b+12>>2]=e+1;p=b+8|0;o=e+1|0}Qn(Y|0,0,244)|0;n=c[p>>2]|0;if((n|0)<0){if((o|0)<0){o=c[b+16>>2]|0;if(o|0){if(a[b+20>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[o+-4>>2]|0)}c[b+16>>2]=0}a[b+20>>0]=1;c[b+16>>2]=0;c[b+12>>2]=0}do{W=c[b+16>>2]|0;V=W+(n*244|0)|0;c[V>>2]=c[Y>>2];c[V+4>>2]=c[Y+4>>2];c[V+8>>2]=c[Y+8>>2];c[V+12>>2]=c[Y+12>>2];V=W+(n*244|0)+16|0;c[V>>2]=c[Y+16>>2];c[V+4>>2]=c[Y+16+4>>2];c[V+8>>2]=c[Y+16+8>>2];c[V+12>>2]=c[Y+16+12>>2];V=W+(n*244|0)+32|0;c[V>>2]=c[Y+32>>2];c[V+4>>2]=c[Y+32+4>>2];c[V+8>>2]=c[Y+32+8>>2];c[V+12>>2]=c[Y+32+12>>2];V=W+(n*244|0)+48|0;c[V>>2]=c[Y+48>>2];c[V+4>>2]=c[Y+48+4>>2];c[V+8>>2]=c[Y+48+8>>2];c[V+12>>2]=c[Y+48+12>>2];_m(W+(n*244|0)+64|0,Y+64|0,180)|0;n=n+1|0}while((n|0)!=0)}c[p>>2]=0;if((e|0)>0){p=0;do{o=d+(p<<2)|0;n=bk(b,c[o>>2]|0,+g[m+12>>2])|0;o=c[o>>2]|0;if((!((o|0)==0?1:(c[o+236>>2]&2|0)==0)?+g[o+344>>2]!=0.0:0)?(q=c[b+16>>2]|0,c[o+504>>2]&2|0):0){t=+g[m+76>>2];_=1.0/+g[o+396>>2];u=1.0/+g[o+400>>2];r=1.0/+g[o+404>>2];ea=+g[o+4>>2];da=+g[o+8>>2];ca=+g[o+12>>2];ba=+g[o+20>>2];aa=+g[o+24>>2];$=+g[o+28>>2];Z=+g[o+36>>2];B=+g[o+40>>2];w=+g[o+44>>2];x=+g[o+328>>2];y=+g[o+332>>2];v=+g[o+336>>2];z=(_*ea*ea+u*da*da+r*ca*ca)*x+(_*ea*ba+u*da*aa+r*ca*$)*y+(_*ea*Z+u*da*B+r*ca*w)*v;A=(_*ba*ea+u*aa*da+r*$*ca)*x+(_*ba*ba+u*aa*aa+r*$*$)*y+(_*ba*Z+u*aa*B+r*$*w)*v;w=(_*Z*ea+u*B*da+r*w*ca)*x+(_*Z*ba+u*B*aa+r*w*$)*y+(_*Z*Z+u*B*B+r*w*w)*v;r=(y*w-v*A)*(y*w-v*A)+(v*z-x*w)*(v*z-x*w)+(x*A-y*z)*(x*A-y*z);if(r>t*t){r=1.0/+O(+r)*t;u=(y*w-v*A)*r;t=r*(v*z-x*w);r=r*(x*A-y*z)}else{u=y*w-v*A;t=v*z-x*w;r=x*A-y*z}ca=+g[m+12>>2];da=(u*+g[o+268>>2]+t*+g[o+284>>2]+r*+g[o+300>>2])*ca;ea=ca*(u*+g[o+272>>2]+t*+g[o+288>>2]+r*+g[o+304>>2]);g[q+(n*244|0)+224>>2]=+g[q+(n*244|0)+224>>2]-(u*+g[o+264>>2]+t*+g[o+280>>2]+r*+g[o+296>>2])*ca;g[q+(n*244|0)+228>>2]=+g[q+(n*244|0)+228>>2]-da;g[q+(n*244|0)+232>>2]=+g[q+(n*244|0)+232>>2]-ea}p=p+1|0}while((p|0)!=(e|0))}if((l|0)>0){n=0;do{W=c[j+(n<<2)>>2]|0;Ab[c[(c[W>>2]|0)+8>>2]&255](W);g[W+36>>2]=0.0;n=n+1|0}while((n|0)<(l|0))}o=c[b+168>>2]|0;if((o|0)<(l|0)?(c[b+172>>2]|0)<(l|0):0){if(!l)n=0;else{c[6435]=(c[6435]|0)+1;n=yc((l<<3|3)+16|0)|0;if(!n)n=0;else{c[(n+4+15&-16)+-4>>2]=n;n=n+4+15&-16}o=c[b+168>>2]|0}if((o|0)>0){p=0;do{U=(c[b+176>>2]|0)+(p<<3)|0;V=c[U+4>>2]|0;W=n+(p<<3)|0;c[W>>2]=c[U>>2];c[W+4>>2]=V;p=p+1|0}while((p|0)!=(o|0))}o=c[b+176>>2]|0;if(o|0){if(a[b+180>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[o+-4>>2]|0)}c[b+176>>2]=0}a[b+180>>0]=1;c[b+176>>2]=n;c[b+172>>2]=l}c[b+168>>2]=l;if((l|0)>0){s=0;n=0;do{d=c[b+176>>2]|0;e=d+(s<<3)|0;q=j+(s<<2)|0;o=c[q>>2]|0;p=c[o+44>>2]|0;if(p){o=p+64|0;do{c[p>>2]=0;p=p+4|0}while((p|0)<(o|0));o=c[q>>2]|0}if(!(a[o+20>>0]|0)){c[e>>2]=0;c[d+(s<<3)+4>>2]=0;o=0}else{Cb[c[(c[o>>2]|0)+16>>2]&127](o,e);o=c[e>>2]|0}n=o+n|0;s=s+1|0}while((s|0)<(l|0))}else n=0;p=c[b+48>>2]|0;if((p|0)<(n|0)?(c[b+52>>2]|0)<(n|0):0){if(!n)o=0;else{c[6435]=(c[6435]|0)+1;o=yc((n*152|3)+16|0)|0;if(!o)o=0;else{c[(o+4+15&-16)+-4>>2]=o;o=o+4+15&-16}p=c[b+48>>2]|0}if((p|0)>0){q=0;do{_m(o+(q*152|0)|0,(c[b+56>>2]|0)+(q*152|0)|0,152)|0;q=q+1|0}while((q|0)!=(p|0))}p=c[b+56>>2]|0;if(p|0){if(a[b+60>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[p+-4>>2]|0)}c[b+56>>2]=0}a[b+60>>0]=1;c[b+56>>2]=o;c[b+52>>2]=n}c[b+48>>2]=n;if((l|0)>0){n=c[b+176>>2]|0;V=0;W=0;while(1){U=n+(W<<3)|0;if(!(c[U>>2]|0))o=0;else{n=c[b+56>>2]|0;K=n+(V*152|0)|0;L=j+(W<<2)|0;M=c[L>>2]|0;P=c[M+28>>2]|0;Q=c[M+32>>2]|0;R=bk(b,P,+g[m+12>>2])|0;S=bk(b,Q,+g[m+12>>2])|0;T=c[b+16>>2]|0;o=c[M+24>>2]|0;o=(o|0)>0?o:c[m+20>>2]|0;if((o|0)>(c[b+184>>2]|0))c[b+184>>2]=o;if((c[U>>2]|0)>0){p=0;do{Qn(K+(p*152|0)|0,0,152)|0;g[K+(p*152|0)+120>>2]=-3402823466385288598117041.0e14;g[K+(p*152|0)+124>>2]=3402823466385288598117041.0e14;g[K+(p*152|0)+100>>2]=0.0;g[K+(p*152|0)+96>>2]=0.0;c[K+(p*152|0)+144>>2]=R;c[K+(p*152|0)+148>>2]=S;c[K+(p*152|0)+136>>2]=o;p=p+1|0}while((p|0)<(c[U>>2]|0))}c[T+(R*244|0)+64>>2]=0;c[T+(R*244|0)+64+4>>2]=0;c[T+(R*244|0)+64+8>>2]=0;c[T+(R*244|0)+64+12>>2]=0;c[T+(R*244|0)+64+16>>2]=0;c[T+(R*244|0)+64+20>>2]=0;c[T+(R*244|0)+64+24>>2]=0;c[T+(R*244|0)+64+28>>2]=0;c[T+(R*244|0)+144>>2]=0;c[T+(R*244|0)+144+4>>2]=0;c[T+(R*244|0)+144+8>>2]=0;c[T+(R*244|0)+144+12>>2]=0;c[T+(R*244|0)+144+16>>2]=0;c[T+(R*244|0)+144+20>>2]=0;c[T+(R*244|0)+144+24>>2]=0;c[T+(R*244|0)+144+28>>2]=0;c[T+(S*244|0)+64>>2]=0;c[T+(S*244|0)+64+4>>2]=0;c[T+(S*244|0)+64+8>>2]=0;c[T+(S*244|0)+64+12>>2]=0;c[T+(S*244|0)+64+16>>2]=0;c[T+(S*244|0)+64+20>>2]=0;c[T+(S*244|0)+64+24>>2]=0;c[T+(S*244|0)+64+28>>2]=0;c[T+(S*244|0)+144>>2]=0;c[T+(S*244|0)+144+4>>2]=0;c[T+(S*244|0)+144+8>>2]=0;c[T+(S*244|0)+144+12>>2]=0;c[T+(S*244|0)+144+16>>2]=0;c[T+(S*244|0)+144+20>>2]=0;c[T+(S*244|0)+144+24>>2]=0;c[T+(S*244|0)+144+28>>2]=0;g[Y+248>>2]=1.0/+g[m+12>>2];c[Y+248+4>>2]=c[m+32>>2];c[Y+248+8>>2]=n+(V*152|0)+16;c[Y+248+12>>2]=K;c[Y+248+16>>2]=n+(V*152|0)+48;c[Y+248+20>>2]=n+(V*152|0)+32;c[Y+248+24>>2]=38;c[Y+248+28>>2]=n+(V*152|0)+112;J=n+(V*152|0)+116|0;c[J>>2]=c[m+40>>2];c[Y+248+52>>2]=c[m+4>>2];c[Y+248+32>>2]=J;c[Y+248+36>>2]=n+(V*152|0)+120;c[Y+248+40>>2]=n+(V*152|0)+124;c[Y+248+48>>2]=c[m+20>>2];J=c[L>>2]|0;Cb[c[(c[J>>2]|0)+20>>2]&127](J,Y+248|0);if((c[U>>2]|0)>0){J=0;do{n=K+(J*152|0)+124|0;r=+g[(c[L>>2]|0)+16>>2];if(+g[n>>2]>=r)g[n>>2]=r;n=K+(J*152|0)+120|0;if(+g[n>>2]<=-r)g[n>>2]=-r;c[K+(J*152|0)+132>>2]=M;I=K+(J*152|0)|0;n=K+(J*152|0)+64|0;o=c[M+28>>2]|0;da=+g[I>>2];ba=+g[I+4>>2];B=+g[I+8>>2];ca=(da*+g[o+280>>2]+ba*+g[o+284>>2]+B*+g[o+288>>2])*+g[o+548>>2];r=(da*+g[o+296>>2]+ba*+g[o+300>>2]+B*+g[o+304>>2])*+g[o+552>>2];g[n>>2]=(+g[o+264>>2]*da+ +g[o+268>>2]*ba+ +g[o+272>>2]*B)*+g[o+544>>2];g[n+4>>2]=ca;g[n+8>>2]=r;g[n+12>>2]=0.0;n=K+(J*152|0)+32|0;o=K+(J*152|0)+80|0;H=c[M+32>>2]|0;r=+g[n>>2];ca=+g[n+4>>2];B=+g[n+8>>2];ba=(r*+g[H+280>>2]+ca*+g[H+284>>2]+B*+g[H+288>>2])*+g[H+548>>2];da=(r*+g[H+296>>2]+ca*+g[H+300>>2]+B*+g[H+304>>2])*+g[H+552>>2];g[o>>2]=(+g[H+264>>2]*r+ +g[H+268>>2]*ca+ +g[H+272>>2]*B)*+g[H+544>>2];g[o+4>>2]=ba;g[o+8>>2]=da;g[o+12>>2]=0.0;o=K+(J*152|0)+16|0;da=+g[P+344>>2];ba=+g[o>>2];ca=+g[o+4>>2];r=+g[o+8>>2];t=+g[I>>2];u=+g[I+4>>2];v=+g[I+8>>2];I=K+(J*152|0)+48|0;ea=+g[Q+344>>2];w=+g[I>>2];x=+g[I+4>>2];y=+g[I+8>>2];z=+g[n>>2];A=+g[n+4>>2];B=ba*da*ba+ca*da*ca+r*da*r+(t*(+g[P+264>>2]*t+ +g[P+268>>2]*u+ +g[P+272>>2]*v)+u*(t*+g[P+280>>2]+u*+g[P+284>>2]+v*+g[P+288>>2])+v*(t*+g[P+296>>2]+u*+g[P+300>>2]+v*+g[P+304>>2]))+(w*ea*w+x*ea*x+y*ea*y)+(z*(+g[Q+264>>2]*z+ +g[Q+268>>2]*A+ +g[Q+272>>2]*B)+A*(z*+g[Q+280>>2]+A*+g[Q+284>>2]+B*+g[Q+288>>2])+B*(z*+g[Q+296>>2]+A*+g[Q+300>>2]+B*+g[Q+304>>2]));I=+N(+B)>1.1920928955078125e-07;B=I?1.0/B:0.0;g[K+(J*152|0)+108>>2]=B;if(!(c[T+(R*244|0)+240>>2]|0)){p=0;q=0;d=0;D=0;E=0;F=0}else{p=c[T+(R*244|0)+208>>2]|0;q=c[T+(R*244|0)+212>>2]|0;d=c[T+(R*244|0)+216>>2]|0;D=c[T+(R*244|0)+224>>2]|0;E=c[T+(R*244|0)+228>>2]|0;F=c[T+(R*244|0)+232>>2]|0}if(!(c[T+(S*244|0)+240>>2]|0)){e=0;s=0;C=0;G=0;H=0;I=0}else{e=c[T+(S*244|0)+208>>2]|0;s=c[T+(S*244|0)+212>>2]|0;C=c[T+(S*244|0)+216>>2]|0;G=c[T+(S*244|0)+224>>2]|0;H=c[T+(S*244|0)+228>>2]|0;I=c[T+(S*244|0)+232>>2]|0}da=(c[k>>2]=p,+g[k>>2])+ +g[P+312>>2];ca=(c[k>>2]=q,+g[k>>2])+ +g[P+316>>2];ca=da*+g[o>>2]+ca*+g[o+4>>2]+((c[k>>2]=d,+g[k>>2])+ +g[P+320>>2])*r;da=(c[k>>2]=D,+g[k>>2])+ +g[P+328>>2];ba=(c[k>>2]=E,+g[k>>2])+ +g[P+332>>2];ba=ca+(da*t+ba*u+((c[k>>2]=F,+g[k>>2])+ +g[P+336>>2])*v);da=(c[k>>2]=e,+g[k>>2])+ +g[Q+312>>2];ca=(c[k>>2]=s,+g[k>>2])+ +g[Q+316>>2];ca=da*w+ca*x+((c[k>>2]=C,+g[k>>2])+ +g[Q+320>>2])*y;da=(c[k>>2]=G,+g[k>>2])+ +g[Q+328>>2];ea=(c[k>>2]=H,+g[k>>2])+ +g[Q+332>>2];H=K+(J*152|0)+112|0;g[H>>2]=+g[H>>2]*B+B*(0.0-+g[Y+248+52>>2]*(ba+(ca+(da*z+ea*A+((c[k>>2]=I,+g[k>>2])+ +g[Q+336>>2])*+g[n+8>>2]))));g[K+(J*152|0)+100>>2]=0.0;J=J+1|0}while((J|0)<(c[U>>2]|0))}o=c[b+176>>2]|0;n=o;o=c[o+(W<<3)>>2]|0}W=W+1|0;if((W|0)>=(l|0))break;else V=o+V|0}}mc[c[(c[b>>2]|0)+28>>2]&127](b,f,h,m);d=c[b+48>>2]|0;e=c[b+28>>2]|0;s=c[b+68>>2]|0;o=c[b+128>>2]|0;if((o|0)<(d|0)?(c[b+132>>2]|0)<(d|0):0){if(!d)n=0;else{c[6435]=(c[6435]|0)+1;n=yc((d<<2|3)+16|0)|0;if(!n)n=0;else{c[(n+4+15&-16)+-4>>2]=n;n=n+4+15&-16}o=c[b+128>>2]|0}q=c[b+136>>2]|0;if((o|0)<=0)if(!q)o=b+140|0;else X=99;else{p=0;do{c[n+(p<<2)>>2]=c[q+(p<<2)>>2];p=p+1|0}while((p|0)!=(o|0));X=99}if((X|0)==99){if(a[b+140>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[q+-4>>2]|0)}c[b+136>>2]=0;o=b+140|0}a[o>>0]=1;c[b+136>>2]=n;c[b+132>>2]=d}c[b+128>>2]=d;if(!(c[m+64>>2]&16)){o=c[b+108>>2]|0;if((o|0)<(e|0)?(c[b+112>>2]|0)<(e|0):0){if(!e)n=0;else{c[6435]=(c[6435]|0)+1;n=yc((e<<2|3)+16|0)|0;if(!n)n=0;else{c[(n+4+15&-16)+-4>>2]=n;n=n+4+15&-16}o=c[b+108>>2]|0}q=c[b+116>>2]|0;if((o|0)<=0)if(!q)o=b+120|0;else X=129;else{p=0;do{c[n+(p<<2)>>2]=c[q+(p<<2)>>2];p=p+1|0}while((p|0)!=(o|0));X=129}if((X|0)==129){if(a[b+120>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[q+-4>>2]|0)}c[b+116>>2]=0;o=b+120|0}a[o>>0]=1;c[b+116>>2]=n;c[b+112>>2]=e}c[b+108>>2]=e}else{o=c[b+108>>2]|0;if((o|0)<(e<<1|0)?(c[b+112>>2]|0)<(e<<1|0):0){if(!e)n=0;else{c[6435]=(c[6435]|0)+1;n=yc((e<<3|3)+16|0)|0;if(!n)n=0;else{c[(n+4+15&-16)+-4>>2]=n;n=n+4+15&-16}o=c[b+108>>2]|0}q=c[b+116>>2]|0;if((o|0)<=0)if(!q)o=b+120|0;else X=114;else{p=0;do{c[n+(p<<2)>>2]=c[q+(p<<2)>>2];p=p+1|0}while((p|0)!=(o|0));X=114}if((X|0)==114){if(a[b+120>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[q+-4>>2]|0)}c[b+116>>2]=0;o=b+120|0}a[o>>0]=1;c[b+116>>2]=n;c[b+112>>2]=e<<1}c[b+108>>2]=e<<1}o=c[b+148>>2]|0;if((o|0)<(s|0)?(c[b+152>>2]|0)<(s|0):0){if(!s)n=0;else{c[6435]=(c[6435]|0)+1;n=yc((s<<2|3)+16|0)|0;if(!n)n=0;else{c[(n+4+15&-16)+-4>>2]=n;n=n+4+15&-16}o=c[b+148>>2]|0}q=c[b+156>>2]|0;if((o|0)<=0)if(!q)o=b+160|0;else X=144;else{p=0;do{c[n+(p<<2)>>2]=c[q+(p<<2)>>2];p=p+1|0}while((p|0)!=(o|0));X=144}if((X|0)==144){if(a[b+160>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[q+-4>>2]|0)}c[b+156>>2]=0;o=b+160|0}a[o>>0]=1;c[b+156>>2]=n;c[b+152>>2]=s}c[b+148>>2]=s;if((d|0)>0){n=c[b+136>>2]|0;o=0;do{c[n+(o<<2)>>2]=o;o=o+1|0}while((o|0)!=(d|0))}if((e|0)>0){n=c[b+116>>2]|0;o=0;do{c[n+(o<<2)>>2]=o;o=o+1|0}while((o|0)!=(e|0))}if((s|0)>0){n=c[b+156>>2]|0;o=0;do{c[n+(o<<2)>>2]=o;o=o+1|0}while((o|0)!=(s|0))}n=c[2357]|0;b=(c[n+16>>2]|0)+-1|0;c[n+16>>2]=b;if(b|0){i=Y;return 0.0}do if(c[n+4>>2]|0){tb(Y+248|0,0)|0;b=c[6434]|0;g[n+8>>2]=+g[n+8>>2]+ +(((c[Y+248+4>>2]|0)-(c[b+4>>2]|0)+(((c[Y+248>>2]|0)-(c[b>>2]|0)|0)*1e6|0)-(c[n+12>>2]|0)|0)>>>0)/1.0e3;if(!(c[n+16>>2]|0)){n=c[2357]|0;break}else{i=Y;return 0.0}}while(0);c[2357]=c[n+20>>2];i=Y;return 0.0}function Dc(b,d,e){b=b|0;d=d|0;e=e|0;var f=0,h=0,j=0.0,l=0,m=0,n=0,o=0,p=0.0,q=0.0,r=0,s=0,t=0.0,u=0,v=0,w=0.0,x=0.0,y=0.0,z=0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0,G=0,H=0,I=0,J=0,K=0;J=i;i=i+240|0;if((e|0)<1){f=c[b+12>>2]|0;if(f|0){if(a[b+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}c[b+12>>2]=0}a[b+16>>0]=1;c[b+12>>2]=0;c[b+4>>2]=0;c[b+8>>2]=0;f=c[b+32>>2]|0;if(f|0){if(a[b+36>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}c[b+32>>2]=0}a[b+36>>0]=1;c[b+32>>2]=0;c[b+24>>2]=0;c[b+28>>2]=0;f=c[b+52>>2]|0;if(f|0){if(a[b+56>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}c[b+52>>2]=0}a[b+56>>0]=1;c[b+52>>2]=0;c[b+44>>2]=0;c[b+48>>2]=0;i=J;return}c[J+24+32>>2]=0;c[J+24+36>>2]=0;c[J+24+40>>2]=0;c[J+24+44>>2]=256;c[J+24+48>>2]=0;c[J+24+52>>2]=0;c[J+24+56>>2]=0;c[J+24+60>>2]=256;c[J+24+64>>2]=0;c[J+24+68>>2]=0;c[J+24+72>>2]=0;c[J+24+76>>2]=256;a[J+24+96>>0]=1;F=J+24+92|0;c[F>>2]=0;c[J+24+84>>2]=0;c[J+24+88>>2]=0;m=0;n=-246811958;v=-246811958;s=-246811958;r=1900671690;z=1900671690;u=1900671690;o=d;while(1){E=+g[o>>2];j=+g[o+4>>2];p=+g[o+8>>2];G=E<(c[k>>2]=r,+g[k>>2]);f=(g[k>>2]=E,c[k>>2]|0);r=G?f:r;G=j<(c[k>>2]=u,+g[k>>2]);h=(g[k>>2]=j,c[k>>2]|0);u=G?h:u;G=p<(c[k>>2]=z,+g[k>>2]);l=(g[k>>2]=p,c[k>>2]|0);z=G?l:z;n=(c[k>>2]=n,+g[k>>2])>2]=s,+g[k>>2])>2]=v,+g[k>>2])>2]=n,+g[k>>2]);A=(c[k>>2]=r,+g[k>>2]);y=(c[k>>2]=s,+g[k>>2]);x=(c[k>>2]=u,+g[k>>2]);w=(c[k>>2]=v,+g[k>>2]);t=(c[k>>2]=z,+g[k>>2]);h=B-A>2]=h;f=B-A>>0)%3|0;c[J+24+104>>2]=f;G=(h^3)-f|0;c[J+24+108>>2]=G;if(((G+1|0)%3|0|0)==(h|0)){j=(B-A)*9.788566967472434e-05;p=(y-x)*9.788566967472434e-05;q=(w-t)*9.788566967472434e-05}else{j=-((B-A)*9.788566967472434e-05);p=-((y-x)*9.788566967472434e-05);q=-((w-t)*9.788566967472434e-05)}g[J+24>>2]=j;g[J+24+4>>2]=p;g[J+24+8>>2]=q;g[J+24+12>>2]=0.0;E=j!=0.0?1.0/j:j;D=p!=0.0?1.0/p:p;C=q!=0.0?1.0/q:q;g[J+24+16>>2]=(B+A)*.5;g[J+24+20>>2]=(y+x)*.5;g[J+24+24>>2]=(w+t)*.5;g[J+24+28>>2]=0.0;r=J+216+16|0;a[r>>0]=1;s=J+216+12|0;c[s>>2]=0;c[J+216+4>>2]=0;c[J+216+8>>2]=0;c[6435]=(c[6435]|0)+1;f=yc((e<<4|3)+16|0)|0;if(!f)m=0;else{c[(f+4+15&-16)+-4>>2]=f;m=f+4+15&-16}h=c[J+216+4>>2]|0;l=c[s>>2]|0;if((h|0)<=0){if(l|0)I=26}else{f=0;do{I=m+(f<<4)|0;G=l+(f<<4)|0;c[I>>2]=c[G>>2];c[I+4>>2]=c[G+4>>2];c[I+8>>2]=c[G+8>>2];c[I+12>>2]=c[G+12>>2];f=f+1|0}while((f|0)!=(h|0));I=26}if((I|0)==26){if(a[r>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[l+-4>>2]|0)}c[s>>2]=0}a[r>>0]=1;c[s>>2]=m;c[J+216+8>>2]=e;c[m>>2]=c[J+200>>2];c[m+4>>2]=c[J+200+4>>2];c[m+8>>2]=c[J+200+8>>2];c[m+12>>2]=c[J+200+12>>2];if((e|0)!=1){f=1;do{G=(c[s>>2]|0)+(f<<4)|0;c[G>>2]=c[J+200>>2];c[G+4>>2]=c[J+200+4>>2];c[G+8>>2]=c[J+200+8>>2];c[G+12>>2]=c[J+200+12>>2];f=f+1|0}while((f|0)!=(e|0))}c[J+216+4>>2]=e;h=J+184+(c[J+24+108>>2]<<2)|0;l=c[s>>2]|0;m=J+184+(c[J+24+112>>2]<<2)|0;n=J+184+(c[J+24+104>>2]<<2)|0;j=+g[J+24+16>>2];p=+g[J+24+20>>2];q=+g[J+24+24>>2];o=0;f=d;while(1){d=c[f>>2]|0;c[J+184>>2]=d;G=c[f+4>>2]|0;c[J+184+4>>2]=G;y=(c[k>>2]=d,+g[k>>2])-j;A=D*((c[k>>2]=G,+g[k>>2])-p);B=C*(+g[f+8>>2]-q);g[J+184>>2]=E*y;g[J+184+4>>2]=A;g[J+184+8>>2]=B;g[J+184+12>>2]=0.0;c[l+(o<<4)>>2]=~~+g[h>>2];c[l+(o<<4)+4>>2]=~~+g[m>>2];c[l+(o<<4)+8>>2]=~~+g[n>>2];c[l+(o<<4)+12>>2]=o;o=o+1|0;if((o|0)==(e|0))break;else f=f+16|0}if((e|0)>1)ch(J+216|0,0,e+-1|0);c[J+24+36>>2]=c[J+24+32>>2];c[J+24+40>>2]=0;c[J+24+44>>2]=e;f=c[J+24+84>>2]|0;if((f|0)<(e|0)){if((c[J+24+88>>2]|0)<(e|0)){if(!e){h=0;l=f}else{c[6435]=(c[6435]|0)+1;h=yc((e<<2|3)+16|0)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}l=c[J+24+84>>2]|0}if((l|0)>0){m=0;do{c[h+(m<<2)>>2]=c[(c[F>>2]|0)+(m<<2)>>2];m=m+1|0}while((m|0)!=(l|0))}l=c[F>>2]|0;if(l|0){if(a[J+24+96>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[l+-4>>2]|0)}c[F>>2]=0}a[J+24+96>>0]=1;c[F>>2]=h;c[J+24+88>>2]=e}do{c[(c[F>>2]|0)+(f<<2)>>2]=0;f=f+1|0}while((f|0)!=(e|0))}c[J+24+84>>2]=e;n=0;do{f=c[J+24+40>>2]|0;if(!f){f=c[J+24+36>>2]|0;if(!f){c[6435]=(c[6435]|0)+1;f=yc(31)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}h=c[J+24+44>>2]|0;c[f+4>>2]=h;l=f+8|0;c[l>>2]=0;c[6435]=(c[6435]|0)+1;h=yc((h*112|3)+16|0)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}c[f>>2]=h;c[l>>2]=c[J+24+32>>2];c[J+24+32>>2]=f}else c[J+24+36>>2]=c[f+8>>2];m=c[f+4>>2]|0;f=c[f>>2]|0;if((m|0)>0){h=0;l=f;do{h=h+1|0;G=l;l=l+112|0;c[G>>2]=(h|0)<(m|0)?l:0}while((h|0)!=(m|0))}}c[J+24+40>>2]=c[f>>2];G=f+104|0;c[f>>2]=0;c[f+4>>2]=0;c[f+8>>2]=0;c[f+12>>2]=0;c[f+16>>2]=0;c[G>>2]=-1;c[f+8>>2]=0;d=f+88|0;z=(c[s>>2]|0)+(n<<4)|0;c[d>>2]=c[z>>2];c[d+4>>2]=c[z+4>>2];c[d+8>>2]=c[z+8>>2];c[d+12>>2]=c[z+12>>2];c[G>>2]=-1;c[(c[F>>2]|0)+(n<<2)>>2]=f;n=n+1|0}while((n|0)<(e|0));f=c[s>>2]|0;if(f|0){if(a[r>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}c[s>>2]=0}a[r>>0]=1;c[s>>2]=0;c[J+216+4>>2]=0;c[J+216+8>>2]=0;c[J+24+52>>2]=c[J+24+48>>2];c[J+24+56>>2]=0;c[J+24+60>>2]=e*6;c[J+24+116>>2]=0;c[J+24+120>>2]=0;c[J+24+100>>2]=-3;c[J+184>>2]=0;c[J+184+4>>2]=0;c[J+184+8>>2]=0;c[J+184+12>>2]=0;vc(J+24|0,0,e,J+184|0);c[J+24+124>>2]=c[J+184>>2];f=c[s>>2]|0;if(f|0){if(a[r>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}c[s>>2]=0}f=c[b+4>>2]|0;if((f|0)<0){if((c[b+8>>2]|0)<0){h=c[b+12>>2]|0;if(h|0){if(a[b+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0)}c[b+12>>2]=0}a[b+16>>0]=1;c[b+12>>2]=0;c[b+8>>2]=0}do{G=(c[b+12>>2]|0)+(f<<4)|0;c[G>>2]=c[J+168>>2];c[G+4>>2]=c[J+168+4>>2];c[G+8>>2]=c[J+168+8>>2];c[G+12>>2]=c[J+168+12>>2];f=f+1|0}while((f|0)!=0)}c[b+4>>2]=0;c[J+152>>2]=0;c[J+152+4>>2]=0;c[J+152+8>>2]=0;f=c[b+24>>2]|0;if((f|0)<0){if((c[b+28>>2]|0)<0){h=c[b+32>>2]|0;if(h|0){if(a[b+36>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0)}c[b+32>>2]=0}a[b+36>>0]=1;c[b+32>>2]=0;c[b+28>>2]=0}do{G=(c[b+32>>2]|0)+(f*12|0)|0;c[G>>2]=c[J+152>>2];c[G+4>>2]=c[J+152+4>>2];c[G+8>>2]=c[J+152+8>>2];f=f+1|0}while((f|0)!=0)}c[b+24>>2]=0;h=c[b+44>>2]|0;if((h|0)<0){f=c[b+52>>2]|0;do if((c[b+48>>2]|0)<0){if(!f){a[b+56>>0]=1;c[b+52>>2]=0;c[b+48>>2]=0;f=0;break}if(a[b+56>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}a[b+56>>0]=1;c[b+52>>2]=0;c[b+48>>2]=0;f=0}while(0);Qn(f+(h<<2)|0,0,_(h,-4)|0)|0}c[b+44>>2]=0;f=c[J+24+124>>2]|0;if((c[f+104>>2]|0)<0){c[f+104>>2]=0;c[6435]=(c[6435]|0)+1;r=yc(23)|0;c[(r+4+15&-16)+-4>>2]=r;c[(r+4+15&-16)>>2]=f;G=0;m=1;l=1;r=r+4+15&-16;while(1){if((c[f+100>>2]|0)>-1){g[J+216+(c[J+24+108>>2]<<2)>>2]=+(c[f+88>>2]|0);g[J+216+(c[J+24+112>>2]<<2)>>2]=+(c[f+92>>2]|0);j=+(c[f+96>>2]|0)}else{e=f+24|0;d=f+32|0;j=+ln(c[e>>2]|0,c[e+4>>2]|0,c[d>>2]|0,c[d+4>>2]|0);d=f+72|0;e=f+80|0;F=c[e>>2]|0;e=c[e+4>>2]|0;j=j/+ln(c[d>>2]|0,c[d+4>>2]|0,F,e);g[J+216+(c[J+24+108>>2]<<2)>>2]=j;z=f+40|0;v=f+48|0;j=+ln(c[z>>2]|0,c[z+4>>2]|0,c[v>>2]|0,c[v+4>>2]|0);j=j/+ln(c[d>>2]|0,c[d+4>>2]|0,F,e);g[J+216+(c[J+24+112>>2]<<2)>>2]=j;v=f+56|0;z=f+64|0;j=+ln(c[v>>2]|0,c[v+4>>2]|0,c[z>>2]|0,c[z+4>>2]|0);j=j/+ln(c[d>>2]|0,c[d+4>>2]|0,F,e)}g[J+216+(c[J+24+104>>2]<<2)>>2]=j;j=+g[J+216>>2]*+g[J+24>>2]+ +g[J+24+16>>2];p=+g[J+216+4>>2]*+g[J+24+4>>2]+ +g[J+24+20>>2];q=+g[J+216+8>>2]*+g[J+24+8>>2]+ +g[J+24+24>>2];h=c[b+4>>2]|0;if((h|0)==(c[b+8>>2]|0)?(H=h|0?h<<1:1,(h|0)<(H|0)):0){if(!H)o=0;else{c[6435]=(c[6435]|0)+1;h=yc((H<<4|3)+16|0)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}o=h;h=c[b+4>>2]|0}if((h|0)>0){n=0;do{e=o+(n<<4)|0;F=(c[b+12>>2]|0)+(n<<4)|0;c[e>>2]=c[F>>2];c[e+4>>2]=c[F+4>>2];c[e+8>>2]=c[F+8>>2];c[e+12>>2]=c[F+12>>2];n=n+1|0}while((n|0)!=(h|0))}h=c[b+12>>2]|0;if(h|0){if(a[b+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0)}c[b+12>>2]=0}a[b+16>>0]=1;c[b+12>>2]=o;c[b+8>>2]=H;h=c[b+4>>2]|0}F=c[b+12>>2]|0;g[F+(h<<4)>>2]=j;g[F+(h<<4)+4>>2]=p;g[F+(h<<4)+8>>2]=q;g[F+(h<<4)+12>>2]=0.0;c[b+4>>2]=(c[b+4>>2]|0)+1;F=c[f+8>>2]|0;if(!F)n=r;else{e=F;f=-1;z=r;d=-1;while(1){v=e+20|0;h=c[v>>2]|0;if((h|0)<0){u=c[b+24>>2]|0;c[J+12>>2]=0;c[J+12+4>>2]=0;c[J+12+8>>2]=0;do if((u|0)==(c[b+28>>2]|0)){r=u|0?u<<1:1;if((u|0)>=(r|0)){h=u;break}if(!r){h=0;n=u}else{c[6435]=(c[6435]|0)+1;h=yc((r*12|3)+16|0)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}n=c[b+24>>2]|0}if((n|0)>0){o=0;do{s=h+(o*12|0)|0;K=(c[b+32>>2]|0)+(o*12|0)|0;c[s>>2]=c[K>>2];c[s+4>>2]=c[K+4>>2];c[s+8>>2]=c[K+8>>2];o=o+1|0}while((o|0)!=(n|0))}n=c[b+32>>2]|0;if(n|0){if(a[b+36>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[n+-4>>2]|0)}c[b+32>>2]=0}a[b+36>>0]=1;c[b+32>>2]=h;c[b+28>>2]=r;h=c[b+24>>2]|0}else h=u;while(0);h=(c[b+32>>2]|0)+(h*12|0)|0;c[h>>2]=c[J+12>>2];c[h+4>>2]=c[J+12+4>>2];c[h+8>>2]=c[J+12+8>>2];h=(c[b+24>>2]|0)+1|0;c[b+24>>2]=h;c[J>>2]=0;c[J+4>>2]=0;c[J+8>>2]=0;do if((h|0)==(c[b+28>>2]|0)){r=h|0?h<<1:1;if((h|0)>=(r|0))break;if(!r)o=0;else{c[6435]=(c[6435]|0)+1;h=yc((r*12|3)+16|0)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}o=h;h=c[b+24>>2]|0}if((h|0)>0){n=0;do{K=o+(n*12|0)|0;s=(c[b+32>>2]|0)+(n*12|0)|0;c[K>>2]=c[s>>2];c[K+4>>2]=c[s+4>>2];c[K+8>>2]=c[s+8>>2];n=n+1|0}while((n|0)!=(h|0))}h=c[b+32>>2]|0;if(h|0){if(a[b+36>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0)}c[b+32>>2]=0}a[b+36>>0]=1;c[b+32>>2]=o;c[b+28>>2]=r;h=c[b+24>>2]|0}while(0);s=(c[b+32>>2]|0)+(h*12|0)|0;c[s>>2]=c[J>>2];c[s+4>>2]=c[J+4>>2];c[s+8>>2]=c[J+8>>2];c[b+24>>2]=(c[b+24>>2]|0)+1;s=c[b+32>>2]|0;c[v>>2]=u;c[(c[e+8>>2]|0)+20>>2]=u+1;c[s+(u*12|0)+4>>2]=1;c[s+((u+1|0)*12|0)+4>>2]=-1;r=c[e+12>>2]|0;h=c[r+104>>2]|0;if((h|0)<0){c[r+104>>2]=l;do if((l|0)==(m|0)){o=m|0?m<<1:1;if((m|0)>=(o|0)){n=z;break}do if(!o)n=0;else{c[6435]=(c[6435]|0)+1;h=yc((o<<2|3)+16|0)|0;if(!h){n=0;break}c[(h+4+15&-16)+-4>>2]=h;n=h+4+15&-16}while(0);if((m|0)<=0){if(!z){m=o;break}}else{h=0;do{c[n+(h<<2)>>2]=c[z+(h<<2)>>2];h=h+1|0}while((h|0)!=(m|0))}c[6436]=(c[6436]|0)+1;hd(c[z+-4>>2]|0);m=o}else n=z;while(0);c[n+(l<<2)>>2]=r;h=l;l=l+1|0}else n=z;c[s+(u*12|0)+8>>2]=h;c[s+((u+1|0)*12|0)+8>>2]=G;h=c[v>>2]|0}else n=z;if((d|0)>-1)c[(c[b+32>>2]|0)+(h*12|0)>>2]=d-h;else f=h;e=c[e>>2]|0;if((e|0)==(F|0))break;else{z=n;d=h}}c[(c[b+32>>2]|0)+(f*12|0)>>2]=h-f}h=G+1|0;if((h|0)>=(l|0))break;f=c[n+(h<<2)>>2]|0;G=h;r=n}if((G|0)>-1){v=0;while(1){s=c[(c[n+(v<<2)>>2]|0)+8>>2]|0;if(s|0){u=s;do{r=u+20|0;f=c[r>>2]|0;if((f|0)>-1){h=c[b+44>>2]|0;do if((h|0)==(c[b+48>>2]|0)){o=h|0?h<<1:1;if((h|0)>=(o|0))break;if(!o)f=0;else{c[6435]=(c[6435]|0)+1;f=yc((o<<2|3)+16|0)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}h=c[b+44>>2]|0}m=c[b+52>>2]|0;if((h|0)<=0){if(m)I=173}else{l=0;do{c[f+(l<<2)>>2]=c[m+(l<<2)>>2];l=l+1|0}while((l|0)!=(h|0));I=173}if((I|0)==173){I=0;if(a[b+56>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[m+-4>>2]|0)}c[b+52>>2]=0;h=c[b+44>>2]|0}a[b+56>>0]=1;c[b+52>>2]=f;c[b+48>>2]=o;f=c[r>>2]|0}while(0);c[(c[b+52>>2]|0)+(h<<2)>>2]=f;c[b+44>>2]=(c[b+44>>2]|0)+1;f=u;do{c[f+20>>2]=-1;f=c[(c[f+8>>2]|0)+4>>2]|0}while((f|0)!=(u|0))}u=c[u>>2]|0}while((u|0)!=(s|0))}if((v|0)==(G|0))break;else v=v+1|0}}if(n|0){c[6436]=(c[6436]|0)+1;hd(c[n+-4>>2]|0)}}Zi(J+24|0);i=J;return}function Ec(b){b=b|0;var d=0,e=0.0,f=0.0,h=0,j=0.0,k=0.0,l=0.0,m=0.0,n=0,o=0,p=0,q=0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0,H=0,I=0,J=0.0,K=0.0,L=0.0,M=0.0,N=0.0,O=0.0,P=0.0,Q=0.0,R=0.0,S=0.0,T=0.0,U=0.0,V=0.0,W=0;I=i;i=i+64|0;if(!(a[b+356>>0]|0)){b=a[b+312>>0]|0;b=b<<24>>24!=0;i=I;return b|0}c[b+336>>2]=0;c[b+336+4>>2]=0;c[b+336+8>>2]=0;c[b+336+12>>2]=0;a[b+336+16>>0]=0;h=a[b+332>>0]|0;a[b+332>>0]=h&-16;a[b+356>>0]=0;switch(c[b>>2]|0){case 0:{a[b+312>>0]=0;b=0;b=b<<24>>24!=0;i=I;return b|0}case 1:{c[b+244>>2]=c[b+84>>2];c[b+244+4>>2]=c[b+84+4>>2];c[b+244+8>>2]=c[b+84+8>>2];c[b+244+12>>2]=c[b+84+12>>2];c[b+260>>2]=c[b+164>>2];c[b+260+4>>2]=c[b+164+4>>2];c[b+260+8>>2]=c[b+164+8>>2];c[b+260+12>>2]=c[b+164+12>>2];E=+g[b+248>>2]-+g[b+264>>2];F=+g[b+252>>2]-+g[b+268>>2];g[b+276>>2]=+g[b+244>>2]-+g[b+260>>2];g[b+280>>2]=E;g[b+284>>2]=F;g[b+288>>2]=0.0;c[b+336>>2]=0;c[b+336+4>>2]=0;c[b+336+8>>2]=0;c[b+336+12>>2]=0;a[b+336+16>>0]=0;a[b+332>>0]=h&-16;g[b+336>>2]=1.0;g[b+340>>2]=0.0;g[b+344>>2]=0.0;g[b+348>>2]=0.0;a[b+312>>0]=1;b=1;b=b<<24>>24!=0;i=I;return b|0}case 2:{e=+g[b+4>>2];f=+g[b+8>>2];j=+g[b+12>>2];k=+g[b+20>>2]-e;l=+g[b+24>>2]-f;m=+g[b+28>>2]-j;do if((0.0-e)*k+(0.0-f)*l+(0.0-j)*m>0.0)if((0.0-e)*k+(0.0-f)*l+(0.0-j)*m>0]=h&-16|3;h=h&-16|3;f=((0.0-e)*k+(0.0-f)*l+(0.0-j)*m)/(k*k+l*l+m*m);break}else{a[b+332>>0]=h&-16|2;h=h&-16|2;f=1.0;break}else{a[b+332>>0]=h&-16|1;h=h&-16|1;f=0.0}while(0);e=1.0-f;g[b+336>>2]=e;g[b+340>>2]=f;g[b+344>>2]=0.0;g[b+348>>2]=0.0;A=+g[b+84>>2];C=+g[b+88>>2];E=+g[b+92>>2];A=A+f*(+g[b+100>>2]-A);C=C+f*(+g[b+104>>2]-C);E=E+f*(+g[b+108>>2]-E);g[b+244>>2]=A;g[b+248>>2]=C;g[b+252>>2]=E;g[b+256>>2]=0.0;B=+g[b+164>>2];D=+g[b+168>>2];F=+g[b+172>>2];B=B+f*(+g[b+180>>2]-B);D=D+f*(+g[b+184>>2]-D);F=F+f*(+g[b+188>>2]-F);g[b+260>>2]=B;g[b+264>>2]=D;g[b+268>>2]=F;g[b+272>>2]=0.0;g[b+276>>2]=A-B;g[b+280>>2]=C-D;g[b+284>>2]=E-F;g[b+288>>2]=0.0;if(!(h&2)){c[b>>2]=1;d=0}else d=1;if(!(h&1)){c[b>>2]=d;H=b+4+(d<<4)|0;c[b+4>>2]=c[H>>2];c[b+4+4>>2]=c[H+4>>2];c[b+4+8>>2]=c[H+8>>2];c[b+4+12>>2]=c[H+12>>2];H=b+84+(d<<4)|0;c[b+84>>2]=c[H>>2];c[b+84+4>>2]=c[H+4>>2];c[b+84+8>>2]=c[H+8>>2];c[b+84+12>>2]=c[H+12>>2];H=b+164+(d<<4)|0;c[b+164>>2]=c[H>>2];c[b+164+4>>2]=c[H+4>>2];c[b+164+8>>2]=c[H+8>>2];c[b+164+12>>2]=c[H+12>>2]}H=(!(e>=0.0)|!(f>=0.0))&1^1;a[b+312>>0]=H;b=H;b=b<<24>>24!=0;i=I;return b|0}case 3:{c[I+16>>2]=0;c[I+16+4>>2]=0;c[I+16+8>>2]=0;c[I+16+12>>2]=0;Ve(I+16|0,b+4|0,b+20|0,b+36|0,b+316|0);F=+g[b+336>>2];e=+g[b+340>>2];f=+g[b+344>>2];A=+g[b+84>>2]*F+ +g[b+100>>2]*e+ +g[b+116>>2]*f;C=F*+g[b+88>>2]+e*+g[b+104>>2]+f*+g[b+120>>2];E=F*+g[b+92>>2]+e*+g[b+108>>2]+f*+g[b+124>>2];g[b+244>>2]=A;g[b+248>>2]=C;g[b+252>>2]=E;g[b+256>>2]=0.0;B=+g[b+164>>2]*F+ +g[b+180>>2]*e+ +g[b+196>>2]*f;D=F*+g[b+168>>2]+e*+g[b+184>>2]+f*+g[b+200>>2];F=F*+g[b+172>>2]+e*+g[b+188>>2]+f*+g[b+204>>2];g[b+260>>2]=B;g[b+264>>2]=D;g[b+268>>2]=F;g[b+272>>2]=0.0;g[b+276>>2]=A-B;g[b+280>>2]=C-D;g[b+284>>2]=E-F;g[b+288>>2]=0.0;h=c[b>>2]|0;do if((h|0)>3){d=a[b+332>>0]|0;if(!(d&8)){c[b>>2]=h+-1;H=b+4+(h+-1<<4)|0;c[b+52>>2]=c[H>>2];c[b+52+4>>2]=c[H+4>>2];c[b+52+8>>2]=c[H+8>>2];c[b+52+12>>2]=c[H+12>>2];H=b+84+(h+-1<<4)|0;c[b+132>>2]=c[H>>2];c[b+132+4>>2]=c[H+4>>2];c[b+132+8>>2]=c[H+8>>2];c[b+132+12>>2]=c[H+12>>2];H=b+164+(h+-1<<4)|0;c[b+212>>2]=c[H>>2];c[b+212+4>>2]=c[H+4>>2];c[b+212+8>>2]=c[H+8>>2];c[b+212+12>>2]=c[H+12>>2];h=h+-1|0;H=21}else H=21}else{if((h|0)>2){d=a[b+332>>0]|0;h=3;H=21;break}if((h|0)>1){d=a[b+332>>0]|0;h=2;H=25;break}if((h|0)>0){o=a[b+332>>0]|0;n=1;H=29}}while(0);if((H|0)==21)if(!(d&4)){h=h+-1|0;c[b>>2]=h;c[b+36>>2]=c[b+4+(h<<4)>>2];c[b+36+4>>2]=c[b+4+(h<<4)+4>>2];c[b+36+8>>2]=c[b+4+(h<<4)+8>>2];c[b+36+12>>2]=c[b+4+(h<<4)+12>>2];c[b+116>>2]=c[b+84+(h<<4)>>2];c[b+116+4>>2]=c[b+84+(h<<4)+4>>2];c[b+116+8>>2]=c[b+84+(h<<4)+8>>2];c[b+116+12>>2]=c[b+84+(h<<4)+12>>2];c[b+196>>2]=c[b+164+(h<<4)>>2];c[b+196+4>>2]=c[b+164+(h<<4)+4>>2];c[b+196+8>>2]=c[b+164+(h<<4)+8>>2];c[b+196+12>>2]=c[b+164+(h<<4)+12>>2];H=25}else H=25;if((H|0)==25)if(!(d&2)){n=h+-1|0;c[b>>2]=n;c[b+20>>2]=c[b+4+(n<<4)>>2];c[b+20+4>>2]=c[b+4+(n<<4)+4>>2];c[b+20+8>>2]=c[b+4+(n<<4)+8>>2];c[b+20+12>>2]=c[b+4+(n<<4)+12>>2];c[b+100>>2]=c[b+84+(n<<4)>>2];c[b+100+4>>2]=c[b+84+(n<<4)+4>>2];c[b+100+8>>2]=c[b+84+(n<<4)+8>>2];c[b+100+12>>2]=c[b+84+(n<<4)+12>>2];c[b+180>>2]=c[b+164+(n<<4)>>2];c[b+180+4>>2]=c[b+164+(n<<4)+4>>2];c[b+180+8>>2]=c[b+164+(n<<4)+8>>2];c[b+180+12>>2]=c[b+164+(n<<4)+12>>2];o=d;H=29}else{o=d;n=h;H=29}if((H|0)==29?(o&1)==0:0){H=n+-1|0;c[b>>2]=H;c[b+4>>2]=c[b+4+(H<<4)>>2];c[b+4+4>>2]=c[b+4+(H<<4)+4>>2];c[b+4+8>>2]=c[b+4+(H<<4)+8>>2];c[b+4+12>>2]=c[b+4+(H<<4)+12>>2];c[b+84>>2]=c[b+84+(H<<4)>>2];c[b+84+4>>2]=c[b+84+(H<<4)+4>>2];c[b+84+8>>2]=c[b+84+(H<<4)+8>>2];c[b+84+12>>2]=c[b+84+(H<<4)+12>>2];c[b+164>>2]=c[b+164+(H<<4)>>2];c[b+164+4>>2]=c[b+164+(H<<4)+4>>2];c[b+164+8>>2]=c[b+164+(H<<4)+8>>2];c[b+164+12>>2]=c[b+164+(H<<4)+12>>2]}if((e>=0.0?!(+g[b+336>>2]>=0.0):1)|!(f>=0.0))d=0;else d=+g[b+348>>2]>=0.0&1;a[b+312>>0]=d;b=d;b=b<<24>>24!=0;i=I;return b|0}case 4:{c[I>>2]=0;c[I+4>>2]=0;c[I+8>>2]=0;c[I+12>>2]=0;q=I+16+16|0;a[q>>0]=0;c[b+316>>2]=0;c[b+316+4>>2]=0;c[b+316+8>>2]=0;c[b+316+12>>2]=0;a[b+332>>0]=h|15;K=+g[b+20>>2];T=+g[b+4>>2];Q=+g[b+24>>2];J=+g[b+8>>2];M=+g[b+28>>2];U=+g[b+12>>2];P=+g[b+36>>2];R=+g[b+40>>2];N=+g[b+44>>2];L=+g[b+52>>2];S=+g[b+56>>2];O=+g[b+60>>2];V=((Q-J)*(N-U)-(M-U)*(R-J))*(L-T)+((M-U)*(P-T)-(K-T)*(N-U))*(S-J)+((K-T)*(R-J)-(Q-J)*(P-T))*(O-U);h=V*V<9.99999905104687e-09?-1:((0.0-T)*((Q-J)*(N-U)-(M-U)*(R-J))+(0.0-J)*((M-U)*(P-T)-(K-T)*(N-U))+((K-T)*(R-J)-(Q-J)*(P-T))*(0.0-U))*V<0.0&1;V=(M-U)*((P-T)*(S-J)-(R-J)*(L-T))+((K-T)*((R-J)*(O-U)-(N-U)*(S-J))+(Q-J)*((N-U)*(L-T)-(P-T)*(O-U)));n=V*V<9.99999905104687e-09?-1:((0.0-U)*((P-T)*(S-J)-(R-J)*(L-T))+((0.0-T)*((R-J)*(O-U)-(N-U)*(S-J))+(0.0-J)*((N-U)*(L-T)-(P-T)*(O-U))))*V<0.0&1;V=(N-U)*((Q-J)*(L-T)-(K-T)*(S-J))+((P-T)*((M-U)*(S-J)-(Q-J)*(O-U))+(R-J)*((K-T)*(O-U)-(M-U)*(L-T)));o=V*V<9.99999905104687e-09?-1:((0.0-U)*((Q-J)*(L-T)-(K-T)*(S-J))+((0.0-T)*((M-U)*(S-J)-(Q-J)*(O-U))+(0.0-J)*((K-T)*(O-U)-(M-U)*(L-T))))*V<0.0&1;J=(U-M)*((R-Q)*(L-K)-(P-K)*(S-Q))+((T-K)*((N-M)*(S-Q)-(R-Q)*(O-M))+(J-Q)*((P-K)*(O-M)-(N-M)*(L-K)));p=J*J<9.99999905104687e-09?-1:((0.0-M)*((R-Q)*(L-K)-(P-K)*(S-Q))+((0.0-K)*((N-M)*(S-Q)-(R-Q)*(O-M))+(0.0-Q)*((P-K)*(O-M)-(N-M)*(L-K))))*J<0.0&1;do if((n|h|o|p|0)<0){a[b+352>>0]=1;d=b+312|0;H=70}else{if(!(n|h|o|p)){if(a[b+352>>0]|0){d=b+312|0;H=70;break}a[b+312>>0]=1;c[b+276>>2]=0;c[b+276+4>>2]=0;c[b+276+8>>2]=0;c[b+276+12>>2]=0;d=1;break}if((h|0)!=0?(Ve(I,b+4|0,b+20|0,b+36|0,I+16|0),e=+g[I+16>>2],f=+g[I+16+4>>2],j=+g[I+16+8>>2],k=e-+g[I>>2],l=f-+g[I+4>>2],m=j-+g[I+8>>2],k*k+l*l+m*m<3402823466385288598117041.0e14):0){W=c[I+16+12>>2]|0;g[b+316>>2]=e;g[b+320>>2]=f;g[b+324>>2]=j;c[b+328>>2]=W;W=a[q>>0]|0;a[b+332>>0]=W&1|a[b+332>>0]&-16|W&2|W&4;W=c[I+16+24>>2]|0;h=c[I+16+28>>2]|0;c[b+336>>2]=c[I+16+20>>2];c[b+340>>2]=W;c[b+344>>2]=h;g[b+348>>2]=0.0;e=k*k+l*l+m*m}else e=3402823466385288598117041.0e14;if((n|0)!=0?(Ve(I,b+4|0,b+36|0,b+52|0,I+16|0),r=+g[I+16>>2],s=+g[I+16+4>>2],t=+g[I+16+8>>2],u=r-+g[I>>2],v=s-+g[I+4>>2],w=t-+g[I+8>>2],u*u+v*v+w*w>2]|0;g[b+316>>2]=r;g[b+320>>2]=s;g[b+324>>2]=t;c[b+328>>2]=n;n=a[q>>0]|0;a[b+332>>0]=n<<1&8|(n&1|a[b+332>>0]&-16|n<<1&4);n=c[I+16+24>>2]|0;W=c[I+16+28>>2]|0;c[b+336>>2]=c[I+16+20>>2];g[b+340>>2]=0.0;c[b+344>>2]=n;c[b+348>>2]=W;e=u*u+v*v+w*w}if((o|0)!=0?(Ve(I,b+4|0,b+52|0,b+20|0,I+16|0),x=+g[I+16>>2],y=+g[I+16+4>>2],z=+g[I+16+8>>2],A=x-+g[I>>2],B=y-+g[I+4>>2],C=z-+g[I+8>>2],A*A+B*B+C*C>2]|0;g[b+316>>2]=x;g[b+320>>2]=y;g[b+324>>2]=z;c[b+328>>2]=o;o=a[q>>0]|0;a[b+332>>0]=o<<2&8|(o&1|a[b+332>>0]&-16|(o&255)>>>1&2);o=c[I+16+28>>2]|0;W=c[I+16+24>>2]|0;c[b+336>>2]=c[I+16+20>>2];c[b+340>>2]=o;g[b+344>>2]=0.0;c[b+348>>2]=W;e=A*A+B*B+C*C}if(p|0?(Ve(I,b+20|0,b+52|0,b+36|0,I+16|0),D=+g[I+16>>2],E=+g[I+16+4>>2],F=+g[I+16+8>>2],T=D-+g[I>>2],U=E-+g[I+4>>2],V=F-+g[I+8>>2],T*T+U*U+V*V>2]|0;g[b+316>>2]=D;g[b+320>>2]=E;g[b+324>>2]=F;c[b+328>>2]=p;p=a[q>>0]|0;a[b+332>>0]=p&4|a[b+332>>0]&-16|p<<1&2|p<<2&8;p=c[I+16+20>>2]|0;q=c[I+16+28>>2]|0;W=c[I+16+24>>2]|0;g[b+336>>2]=0.0;c[b+340>>2]=p;c[b+344>>2]=q;c[b+348>>2]=W}O=+g[b+336>>2];P=+g[b+340>>2];V=+g[b+344>>2];e=+g[b+348>>2];Q=+g[b+84>>2]*O+ +g[b+100>>2]*P+ +g[b+116>>2]*V+ +g[b+132>>2]*e;S=O*+g[b+88>>2]+P*+g[b+104>>2]+V*+g[b+120>>2]+e*+g[b+136>>2];U=O*+g[b+92>>2]+P*+g[b+108>>2]+V*+g[b+124>>2]+e*+g[b+140>>2];g[b+244>>2]=Q;g[b+248>>2]=S;g[b+252>>2]=U;g[b+256>>2]=0.0;R=+g[b+164>>2]*O+ +g[b+180>>2]*P+ +g[b+196>>2]*V+ +g[b+212>>2]*e;T=O*+g[b+168>>2]+P*+g[b+184>>2]+V*+g[b+200>>2]+e*+g[b+216>>2];V=O*+g[b+172>>2]+P*+g[b+188>>2]+V*+g[b+204>>2]+e*+g[b+220>>2];g[b+260>>2]=R;g[b+264>>2]=T;g[b+268>>2]=V;g[b+272>>2]=0.0;g[b+276>>2]=Q-R;g[b+280>>2]=S-T;g[b+284>>2]=U-V;g[b+288>>2]=0.0;h=c[b>>2]|0;do if((h|0)>3){d=a[b+332>>0]|0;if(!(d&8)){c[b>>2]=h+-1;H=b+4+(h+-1<<4)|0;c[b+52>>2]=c[H>>2];c[b+52+4>>2]=c[H+4>>2];c[b+52+8>>2]=c[H+8>>2];c[b+52+12>>2]=c[H+12>>2];H=b+84+(h+-1<<4)|0;c[b+132>>2]=c[H>>2];c[b+132+4>>2]=c[H+4>>2];c[b+132+8>>2]=c[H+8>>2];c[b+132+12>>2]=c[H+12>>2];H=b+164+(h+-1<<4)|0;c[b+212>>2]=c[H>>2];c[b+212+4>>2]=c[H+4>>2];c[b+212+8>>2]=c[H+8>>2];c[b+212+12>>2]=c[H+12>>2];h=h+-1|0;H=54}else H=54}else{if((h|0)>2){d=a[b+332>>0]|0;h=3;H=54;break}if((h|0)>1){d=a[b+332>>0]|0;h=2;H=58;break}if((h|0)>0){d=a[b+332>>0]|0;G=1;H=62}}while(0);if((H|0)==54)if(!(d&4)){h=h+-1|0;c[b>>2]=h;c[b+36>>2]=c[b+4+(h<<4)>>2];c[b+36+4>>2]=c[b+4+(h<<4)+4>>2];c[b+36+8>>2]=c[b+4+(h<<4)+8>>2];c[b+36+12>>2]=c[b+4+(h<<4)+12>>2];c[b+116>>2]=c[b+84+(h<<4)>>2];c[b+116+4>>2]=c[b+84+(h<<4)+4>>2];c[b+116+8>>2]=c[b+84+(h<<4)+8>>2];c[b+116+12>>2]=c[b+84+(h<<4)+12>>2];c[b+196>>2]=c[b+164+(h<<4)>>2];c[b+196+4>>2]=c[b+164+(h<<4)+4>>2];c[b+196+8>>2]=c[b+164+(h<<4)+8>>2];c[b+196+12>>2]=c[b+164+(h<<4)+12>>2];H=58}else H=58;if((H|0)==58)if(!(d&2)){G=h+-1|0;c[b>>2]=G;c[b+20>>2]=c[b+4+(G<<4)>>2];c[b+20+4>>2]=c[b+4+(G<<4)+4>>2];c[b+20+8>>2]=c[b+4+(G<<4)+8>>2];c[b+20+12>>2]=c[b+4+(G<<4)+12>>2];c[b+100>>2]=c[b+84+(G<<4)>>2];c[b+100+4>>2]=c[b+84+(G<<4)+4>>2];c[b+100+8>>2]=c[b+84+(G<<4)+8>>2];c[b+100+12>>2]=c[b+84+(G<<4)+12>>2];c[b+180>>2]=c[b+164+(G<<4)>>2];c[b+180+4>>2]=c[b+164+(G<<4)+4>>2];c[b+180+8>>2]=c[b+164+(G<<4)+8>>2];c[b+180+12>>2]=c[b+164+(G<<4)+12>>2];H=62}else{G=h;H=62}if((H|0)==62?(d&1)==0:0){W=G+-1|0;c[b>>2]=W;c[b+4>>2]=c[b+4+(W<<4)>>2];c[b+4+4>>2]=c[b+4+(W<<4)+4>>2];c[b+4+8>>2]=c[b+4+(W<<4)+8>>2];c[b+4+12>>2]=c[b+4+(W<<4)+12>>2];c[b+84>>2]=c[b+84+(W<<4)>>2];c[b+84+4>>2]=c[b+84+(W<<4)+4>>2];c[b+84+8>>2]=c[b+84+(W<<4)+8>>2];c[b+84+12>>2]=c[b+84+(W<<4)+12>>2];c[b+164>>2]=c[b+164+(W<<4)>>2];c[b+164+4>>2]=c[b+164+(W<<4)+4>>2];c[b+164+8>>2]=c[b+164+(W<<4)+8>>2];c[b+164+12>>2]=c[b+164+(W<<4)+12>>2]}if((+g[b+336>>2]>=0.0?+g[b+340>>2]>=0.0:0)?+g[b+344>>2]>=0.0:0)d=e>=0.0&1;else d=0;a[b+312>>0]=d}while(0);if((H|0)==70){a[d>>0]=0;d=0}W=d;W=W<<24>>24!=0;i=I;return W|0}default:{a[b+312>>0]=0;W=0;W=W<<24>>24!=0;i=I;return W|0}}return 0}function Fc(b,d,e,f,h){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;var j=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0,q=0.0,r=0.0,s=0,t=0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0.0,H=0.0,I=0.0,J=0.0,K=0.0,L=0.0,M=0.0,P=0,S=0.0,U=0.0,V=0.0,X=0.0,Y=0.0,Z=0.0,_=0.0,$=0.0,aa=0.0,ba=0.0,ca=0.0,da=0.0,ea=0.0,fa=0.0,ga=0.0,ha=0.0,ia=0.0,ja=0.0,ka=0.0,la=0.0,ma=0.0,na=0.0,oa=0.0,pa=0.0,qa=0,ra=0.0,sa=0.0,ta=0.0,ua=0.0,va=0.0,wa=0.0;qa=i;i=i+144|0;g[b+504>>2]=0.0;g[b+500>>2]=0.0;a[b+525>>0]=0;a[b+526>>0]=0;if(a[b+552>>0]|0?(a[b+527>>0]|0)==0:0){wa=+g[b+556>>2];ua=+g[b+560>>2];pa=+g[b+564>>2];ta=+g[b+568>>2];ea=wa*(2.0/(wa*wa+ua*ua+pa*pa+ta*ta));va=ua*(2.0/(wa*wa+ua*ua+pa*pa+ta*ta));sa=pa*(2.0/(wa*wa+ua*ua+pa*pa+ta*ta));fa=+g[b+300>>2];X=+g[d>>2];ga=+g[b+316>>2];Y=+g[d+4>>2];ha=+g[b+332>>2];Z=+g[d+8>>2];ja=+g[b+304>>2];la=+g[b+320>>2];na=+g[b+336>>2];ba=+g[b+308>>2];ca=+g[b+324>>2];da=+g[b+340>>2];_=+g[d+16>>2];$=+g[d+20>>2];aa=+g[d+24>>2];ka=+g[d+32>>2];ma=+g[d+36>>2];oa=+g[d+40>>2];v=+g[b+348>>2];u=+g[b+352>>2];r=+g[b+356>>2];z=+g[b+364>>2];ra=+g[e>>2];A=+g[b+380>>2];n=+g[e+4>>2];B=+g[b+396>>2];m=+g[e+8>>2];C=+g[b+368>>2];D=+g[b+384>>2];E=+g[b+400>>2];w=+g[b+372>>2];x=+g[b+388>>2];y=+g[b+404>>2];o=+g[e+16>>2];q=+g[e+20>>2];l=+g[e+24>>2];F=+g[e+32>>2];H=+g[e+36>>2];J=+g[e+40>>2];G=+g[b+412>>2];I=+g[b+416>>2];j=+g[b+420>>2];L=(1.0-(ua*va+pa*sa))*(z*ra+A*n+B*m)+(wa*va+ta*sa)*(ra*C+n*D+m*E)+(wa*sa-ta*va)*(ra*w+n*x+m*y);M=(wa*va-ta*sa)*(z*ra+A*n+B*m)+(1.0-(wa*ea+pa*sa))*(ra*C+n*D+m*E)+(ua*sa+ta*ea)*(ra*w+n*x+m*y);K=(wa*sa+ta*va)*(z*ra+A*n+B*m)+(ua*sa-ta*ea)*(ra*C+n*D+m*E)+(1.0-(wa*ea+ua*va))*(ra*w+n*x+m*y);U=(wa*sa-ta*va)*(w*o+x*q+y*l)+((1.0-(ua*va+pa*sa))*(z*o+A*q+B*l)+(wa*va+ta*sa)*(C*o+D*q+E*l));V=(ua*sa+ta*ea)*(w*o+x*q+y*l)+((wa*va-ta*sa)*(z*o+A*q+B*l)+(1.0-(wa*ea+pa*sa))*(C*o+D*q+E*l));S=(1.0-(wa*ea+ua*va))*(w*o+x*q+y*l)+((wa*sa+ta*va)*(z*o+A*q+B*l)+(ua*sa-ta*ea)*(C*o+D*q+E*l));ia=(wa*sa-ta*va)*(w*F+x*H+y*J)+((1.0-(ua*va+pa*sa))*(z*F+A*H+B*J)+(wa*va+ta*sa)*(C*F+D*H+E*J));pa=(ua*sa+ta*ea)*(w*F+x*H+y*J)+((wa*va-ta*sa)*(z*F+A*H+B*J)+(1.0-(wa*ea+pa*sa))*(C*F+D*H+E*J));ea=(1.0-(wa*ea+ua*va))*(w*F+x*H+y*J)+((wa*sa+ta*va)*(z*F+A*H+B*J)+(ua*sa-ta*ea)*(C*F+D*H+E*J));ta=-(+g[d+48>>2]+(X*v+Y*u+Z*r));sa=-(_*v+$*u+aa*r+ +g[d+52>>2]);r=-(ka*v+ma*u+oa*r+ +g[d+56>>2]);u=(fa*X+ga*Y+ha*Z)*ta+(fa*_+ga*$+ha*aa)*sa+(fa*ka+ga*ma+ha*oa)*r;v=(X*ja+Y*la+Z*na)*ta+(ja*_+la*$+na*aa)*sa+(ja*ka+la*ma+na*oa)*r;r=(X*ba+Y*ca+Z*da)*ta+(ba*_+ca*$+da*aa)*sa+(ba*ka+ca*ma+da*oa)*r;m=r*K+(u*L+v*M)+((z*ra+A*n+B*m)*0.0+(ra*C+n*D+m*E)*0.0+(ra*w+n*x+m*y)*0.0+(+g[e+48>>2]+(ra*G+n*I+m*j)));l=r*S+(u*U+v*V)+((w*o+x*q+y*l)*0.0+((z*o+A*q+B*l)*0.0+(C*o+D*q+E*l)*0.0)+(o*G+q*I+l*j+ +g[e+52>>2]));j=r*ea+(u*ia+v*pa)+((w*F+x*H+y*J)*0.0+((z*F+A*H+B*J)*0.0+(C*F+D*H+E*J)*0.0)+(F*G+H*I+J*j+ +g[e+56>>2]));g[qa+80>>2]=(X*ba+Y*ca+Z*da)*K+((fa*X+ga*Y+ha*Z)*L+(X*ja+Y*la+Z*na)*M);g[qa+80+4>>2]=(ba*_+ca*$+da*aa)*K+((fa*_+ga*$+ha*aa)*L+(ja*_+la*$+na*aa)*M);g[qa+80+8>>2]=(ba*ka+ca*ma+da*oa)*K+((fa*ka+ga*ma+ha*oa)*L+(ja*ka+la*ma+na*oa)*M);g[qa+80+12>>2]=0.0;g[qa+80+16>>2]=(X*ba+Y*ca+Z*da)*S+((fa*X+ga*Y+ha*Z)*U+(X*ja+Y*la+Z*na)*V);g[qa+80+20>>2]=(ba*_+ca*$+da*aa)*S+((fa*_+ga*$+ha*aa)*U+(ja*_+la*$+na*aa)*V);g[qa+80+24>>2]=(ba*ka+ca*ma+da*oa)*S+((fa*ka+ga*ma+ha*oa)*U+(ja*ka+la*ma+na*oa)*V);g[qa+80+28>>2]=0.0;g[qa+80+32>>2]=(X*ba+Y*ca+Z*da)*ea+((fa*X+ga*Y+ha*Z)*ia+(X*ja+Y*la+Z*na)*pa);g[qa+80+36>>2]=(ba*_+ca*$+da*aa)*ea+((fa*_+ga*$+ha*aa)*ia+(ja*_+la*$+na*aa)*pa);g[qa+80+40>>2]=(ba*ka+ca*ma+da*oa)*ea+((fa*ka+ga*ma+ha*oa)*ia+(ja*ka+la*ma+na*oa)*pa);g[qa+80+44>>2]=0.0;g[qa+80+48>>2]=m;g[qa+80+52>>2]=l;g[qa+80+56>>2]=j;g[qa+80+60>>2]=0.0;Wg(qa+80|0,qa+64|0);j=+g[qa+64>>2];l=+g[qa+64+4>>2];m=+g[qa+64+8>>2];if(!(+N(+(j*j+l*l+m*m))<1.1920928955078125e-07)?(g[b+472>>2]=0.0,wa=1.0/+O(+(j*j+l*l+m*m)),g[b+460>>2]=j*wa,g[b+464>>2]=l*wa,g[b+468>>2]=m*wa,wa=+g[qa+64+12>>2],wa=wa<-1.0?-1.0:wa,wa=+T(+(wa>1.0?1.0:wa))*2.0,g[b+504>>2]=wa,!(+N(+wa)<1.1920928955078125e-07)):0)a[b+526>>0]=1;i=qa;return}Wg(d,qa+48|0);Wg(b+300|0,qa+32|0);Z=+g[qa+48+12>>2];_=+g[qa+32>>2];$=+g[qa+48>>2];aa=+g[qa+32+12>>2];ba=+g[qa+48+4>>2];ca=+g[qa+32+8>>2];da=+g[qa+48+8>>2];ea=+g[qa+32+4>>2];Wg(e,qa+16|0);Wg(b+364|0,qa);fa=+g[qa+16+12>>2];ga=+g[qa>>2];ha=+g[qa+16>>2];ia=+g[qa+12>>2];ja=+g[qa+16+4>>2];ka=+g[qa+8>>2];la=+g[qa+16+8>>2];ma=+g[qa+4>>2];na=-(fa*ga+ha*ia+ja*ka-la*ma);oa=-(ga*la+(ia*ja+fa*ma)-ha*ka);pa=-(fa*ka+ia*la+ha*ma-ga*ja);o=(Z*aa-_*$-ba*ea-ca*da)*na+(Z*_+$*aa+ba*ca-da*ea)*(fa*ia-ga*ha-ja*ma-ka*la)+(Z*ca+aa*da+$*ea-_*ba)*oa-(_*da+(aa*ba+Z*ea)-$*ca)*pa;q=(Z*_+$*aa+ba*ca-da*ea)*pa+((_*da+(aa*ba+Z*ea)-$*ca)*(fa*ia-ga*ha-ja*ma-ka*la)+(Z*aa-_*$-ba*ea-ca*da)*oa)-(Z*ca+aa*da+$*ea-_*ba)*na;r=(_*da+(aa*ba+Z*ea)-$*ca)*na+((Z*ca+aa*da+$*ea-_*ba)*(fa*ia-ga*ha-ja*ma-ka*la)+(Z*aa-_*$-ba*ea-ca*da)*pa)-(Z*_+$*aa+ba*ca-da*ea)*oa;u=(Z*aa-_*$-ba*ea-ca*da)*(fa*ia-ga*ha-ja*ma-ka*la)-(Z*_+$*aa+ba*ca-da*ea)*na-(_*da+(aa*ba+Z*ea)-$*ca)*oa-(Z*ca+aa*da+$*ea-_*ba)*pa;m=-o-q*0.0-r*0.0;l=(r+u*0.0-o*0.0)*-r+(u*(u+q*0.0-r*0.0)+m*-o)-(u*0.0+o*0.0-q)*-q;j=(u*0.0+o*0.0-q)*-o+(u*(r+u*0.0-o*0.0)+m*-q)-(u+q*0.0-r*0.0)*-r;m=(u+q*0.0-r*0.0)*-q+(u*(u*0.0+o*0.0-q)+m*-r)-(r+u*0.0-o*0.0)*-o;n=1.0/+O(+(m*m+(l*l+j*j)));if(n*m*0.0+(n*j*0.0+n*l)<-.9999998807907104){p=-2147483648;s=0;t=0;j=1.0}else{wa=+O(+((n*m*0.0+(n*j*0.0+n*l)+1.0)*2.0));p=(g[k>>2]=(n*m*0.0-n*j*0.0)*(1.0/wa),c[k>>2]|0);s=(g[k>>2]=(n*j-n*l*0.0)*(1.0/wa),c[k>>2]|0);t=(g[k>>2]=wa*.5,c[k>>2]|0);j=(n*l*0.0-n*m)*(1.0/wa)}m=(c[k>>2]=p,+g[k>>2]);w=(c[k>>2]=s,+g[k>>2]);l=(c[k>>2]=t,+g[k>>2]);n=1.0/+O(+(m*m+j*j+w*w+l*l));v=j*n;V=r*-v+(o*l*n+u*-(m*n))-q*-(w*n);X=o*-(w*n)+(u*-v+q*l*n)-r*-(m*n);Y=q*-(m*n)+(r*l*n+u*-(w*n))-o*-v;S=u*l*n-o*-(m*n)-q*-v-r*-(w*n);U=1.0/+O(+(S*S+(Y*Y+(V*V+X*X))));u=+g[b+444>>2];j=+g[b+456>>2];p=(g[k>>2]=u,c[k>>2]|0);if(u>=j?(x=+g[b+448>>2],x>=j):0){r=l*n<-1.0?-1.0:l*n;r=+T(+(r>1.0?1.0:r))*2.0;if(r>1.1920928955078125e-07){j=1.0/+O(+(w*n*w*n+(m*n*m*n+v*v)));if(+N(+(v*j))>1.1920928955078125e-07){wa=+O(+((w*n*j*w*n*j/(v*j*v*j)+1.0)/(1.0/(x*x)+w*n*j*w*n*j/(v*j*v*j)/(u*u))));m=m*n*j;l=w*n*j;j=v*j;p=(g[k>>2]=wa,c[k>>2]|0)}else{m=m*n*j;l=w*n*j;j=v*j}}else{m=0.0;l=0.0;j=0.0;p=0}n=(c[k>>2]=p,+g[k>>2]);o=+g[b+428>>2];if(r>n*o){a[b+526>>0]=1;if(r>2]=q;g[b+504>>2]=r-n*o;if(+N(+j)>1.1920928955078125e-07){wa=+N(+(j*-l/j*(x/u)));l=l<-0.0?wa:-wa;wa=1.0/+O(+(m*m+j*j+l*l));m=m*wa;l=-(l*wa);j=j*wa}va=-m;ua=-j;sa=-l;ra=(fa*ia-ga*ha-ja*ma-ka*la)*va+(ga*la+(ia*ja+fa*ma)-ha*ka)*sa-(fa*ka+ia*la+ha*ma-ga*ja)*ua;wa=(fa*ka+ia*la+ha*ma-ga*ja)*va+(fa*ia-ga*ha-ja*ma-ka*la)*ua-(fa*ga+ha*ia+ja*ka-la*ma)*sa;ta=(fa*ga+ha*ia+ja*ka-la*ma)*ua+(fa*ia-ga*ha-ja*ma-ka*la)*sa-(ga*la+(ia*ja+fa*ma)-ha*ka)*va;sa=-((fa*ga+ha*ia+ja*ka-la*ma)*va)-(ga*la+(ia*ja+fa*ma)-ha*ka)*ua-(fa*ka+ia*la+ha*ma-ga*ja)*sa;ua=wa*pa+(sa*na+(fa*ia-ga*ha-ja*ma-ka*la)*ra)-ta*oa;va=ta*na+((fa*ia-ga*ha-ja*ma-ka*la)*wa+sa*oa)-ra*pa;wa=ra*oa+(sa*pa+(fa*ia-ga*ha-ja*ma-ka*la)*ta)-wa*na;g[b+460>>2]=ua;g[b+464>>2]=va;g[b+468>>2]=wa;g[b+472>>2]=0.0;c[b+536>>2]=0;c[b+536+4>>2]=0;c[b+536+8>>2]=0;c[b+536+12>>2]=0;g[b+492>>2]=1.0/(ua*(+g[f>>2]*ua+ +g[f+16>>2]*va+ +g[f+32>>2]*wa)+va*(ua*+g[f+4>>2]+va*+g[f+20>>2]+wa*+g[f+36>>2])+wa*(ua*+g[f+8>>2]+va*+g[f+24>>2]+wa*+g[f+40>>2])+(ua*(ua*+g[h>>2]+va*+g[h+16>>2]+wa*+g[h+32>>2])+va*(ua*+g[h+4>>2]+va*+g[h+20>>2]+wa*+g[h+36>>2])+wa*(ua*+g[h+8>>2]+va*+g[h+24>>2]+wa*+g[h+40>>2])))}}else P=20;a:do if((P|0)==20){C=+g[b+300>>2];D=+g[b+316>>2];E=+g[b+332>>2];F=+g[d>>2];G=+g[d+4>>2];H=+g[d+8>>2];I=+g[d+16>>2];J=+g[d+20>>2];K=+g[d+24>>2];L=+g[d+32>>2];M=+g[d+36>>2];u=+g[d+40>>2];v=+g[b+304>>2];w=+g[b+320>>2];x=+g[b+336>>2];y=+g[b+308>>2];z=+g[b+324>>2];A=+g[b+340>>2];l=+g[b+364>>2];o=+g[b+380>>2];q=+g[b+396>>2];B=l*+g[e>>2]+o*+g[e+4>>2]+q*+g[e+8>>2];r=l*+g[e+16>>2]+o*+g[e+20>>2]+q*+g[e+24>>2];q=l*+g[e+32>>2]+o*+g[e+36>>2]+q*+g[e+40>>2];o=(C*F+D*G+E*H)*B+(C*I+D*J+E*K)*r+(C*L+D*M+E*u)*q;l=(F*v+G*w+H*x)*B+(I*v+J*w+K*x)*r+(L*v+M*w+u*x)*q;j=(F*y+G*z+H*A)*B+(I*y+J*z+K*A)*r+(L*y+M*z+u*A)*q;n=+g[b+444>>2];m=+g[b+456>>2];do if(n>2];if(n>0]=1;g[b+460>>2]=-((C*L+D*M+E*u)*r-(C*I+D*J+E*K)*q);g[b+464>>2]=-((C*F+D*G+E*H)*q-(C*L+D*M+E*u)*B);g[b+468>>2]=-((C*I+D*J+E*K)*B-(C*F+D*G+E*H)*r);g[b+472>>2]=0.0;break a}if(+N(+o)<1.1920928955078125e-07?+N(+j)<1.1920928955078125e-07:0){m=o;break}a[b+526>>0]=1;if(n>=m){l=+W(+j,+o);if(l>n){m=+Q(+n);l=0.0;j=+R(+n);break}if(l<-n){m=+Q(+n);l=0.0;j=-+R(+n)}else{m=o;l=0.0}}else m=o}else{if(+N(+o)<1.1920928955078125e-07?+N(+l)<1.1920928955078125e-07:0){m=o;break}a[b+526>>0]=1;if(n>=m){j=+W(+l,+o);if(j>n){m=+Q(+n);l=+R(+n);j=0.0;break}if(j<-n){m=+Q(+n);l=-+R(+n);j=0.0}else{m=o;j=0.0}}else m=o}while(0);va=(F*y+G*z+H*A)*j+((F*v+G*w+H*x)*l+(C*F+D*G+E*H)*m);ta=(I*y+J*z+K*A)*j+((I*v+J*w+K*x)*l+(C*I+D*J+E*K)*m);sa=(L*y+M*z+u*A)*j+((L*v+M*w+u*x)*l+(C*L+D*M+E*u)*m);ua=1.0/+O(+(sa*sa+(va*va+ta*ta)));g[b+472>>2]=0.0;wa=+O(+((r*ua*sa-q*ua*ta)*(r*ua*sa-q*ua*ta)+(q*ua*va-B*ua*sa)*(q*ua*va-B*ua*sa)+(B*ua*ta-r*ua*va)*(B*ua*ta-r*ua*va)));g[b+504>>2]=wa;g[b+460>>2]=-((r*ua*sa-q*ua*ta)*(1.0/wa));g[b+464>>2]=-((q*ua*va-B*ua*sa)*(1.0/wa));g[b+468>>2]=-((B*ua*ta-r*ua*va)*(1.0/wa))}while(0);r=+g[b+452>>2];if(!(r>=0.0)){g[b+512>>2]=0.0;i=qa;return}j=U*S<-1.0?-1.0:U*S;j=+T(+(j>1.0?1.0:j))*2.0;if(j>3.1415927410125732){q=-(U*S)<-1.0?-1.0:-(U*S);q=+T(+(q>1.0?1.0:q))*2.0;l=-(U*V);m=-(U*X);j=-(U*Y)}else{q=j;l=U*V;m=U*X;j=U*Y}g[b+512>>2]=q;if(q>1.1920928955078125e-07){wa=1.0/+O(+(l*l+m*m+j*j));o=l*wa;n=j*wa;m=m*wa}else{o=l;n=j}j=+g[b+428>>2];if(q>r*j){a[b+525>>0]=1;l=q-r*j;if(q>2]=j;g[b+508>>2]=l;va=-o;ua=-m;sa=-n;ra=(fa*ia-ga*ha-ja*ma-ka*la)*va+(ga*la+(ia*ja+fa*ma)-ha*ka)*sa-(fa*ka+ia*la+ha*ma-ga*ja)*ua;wa=(fa*ka+ia*la+ha*ma-ga*ja)*va+(fa*ia-ga*ha-ja*ma-ka*la)*ua-(fa*ga+ha*ia+ja*ka-la*ma)*sa;ta=(fa*ga+ha*ia+ja*ka-la*ma)*ua+(fa*ia-ga*ha-ja*ma-ka*la)*sa-(ga*la+(ia*ja+fa*ma)-ha*ka)*va;sa=-((fa*ga+ha*ia+ja*ka-la*ma)*va)-(ga*la+(ia*ja+fa*ma)-ha*ka)*ua-(fa*ka+ia*la+ha*ma-ga*ja)*sa;ua=wa*pa+(sa*na+(fa*ia-ga*ha-ja*ma-ka*la)*ra)-ta*oa;va=ta*na+((fa*ia-ga*ha-ja*ma-ka*la)*wa+sa*oa)-ra*pa;wa=ra*oa+(sa*pa+(fa*ia-ga*ha-ja*ma-ka*la)*ta)-wa*na;g[b+476>>2]=ua;g[b+480>>2]=va;g[b+484>>2]=wa;g[b+488>>2]=0.0;g[b+496>>2]=1.0/(ua*(+g[f>>2]*ua+ +g[f+16>>2]*va+ +g[f+32>>2]*wa)+va*(ua*+g[f+4>>2]+va*+g[f+20>>2]+wa*+g[f+36>>2])+wa*(ua*+g[f+8>>2]+va*+g[f+24>>2]+wa*+g[f+40>>2])+(ua*(ua*+g[h>>2]+va*+g[h+16>>2]+wa*+g[h+32>>2])+va*(ua*+g[h+4>>2]+va*+g[h+20>>2]+wa*+g[h+36>>2])+wa*(ua*+g[h+8>>2]+va*+g[h+24>>2]+wa*+g[h+40>>2])))}if(!(a[b+526>>0]|0)){i=qa;return}ra=-o;wa=-m;sa=-n;pa=(Z*aa-_*$-ba*ea-ca*da)*ra+(_*da+(aa*ba+Z*ea)-$*ca)*sa-(Z*ca+aa*da+$*ea-_*ba)*wa;va=(Z*ca+aa*da+$*ea-_*ba)*ra+(Z*aa-_*$-ba*ea-ca*da)*wa-(Z*_+$*aa+ba*ca-da*ea)*sa;ua=(Z*_+$*aa+ba*ca-da*ea)*wa+(Z*aa-_*$-ba*ea-ca*da)*sa-(_*da+(aa*ba+Z*ea)-$*ca)*ra;sa=-((Z*_+$*aa+ba*ca-da*ea)*ra)-(_*da+(aa*ba+Z*ea)-$*ca)*wa-(Z*ca+aa*da+$*ea-_*ba)*sa;wa=-(Z*_+$*aa+ba*ca-da*ea);ra=-(_*da+(aa*ba+Z*ea)-$*ca);ta=-(Z*ca+aa*da+$*ea-_*ba);g[b+536>>2]=va*ta+(sa*wa+(Z*aa-_*$-ba*ea-ca*da)*pa)-ua*ra;g[b+540>>2]=ua*wa+((Z*aa-_*$-ba*ea-ca*da)*va+sa*ra)-pa*ta;g[b+544>>2]=pa*ra+(sa*ta+(Z*aa-_*$-ba*ea-ca*da)*ua)-va*wa;g[b+548>>2]=0.0;i=qa;return}function Gc(d,e){d=d|0;e=e|0;var f=0.0,h=0,j=0.0,l=0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0,u=0.0,v=0.0,w=0.0,x=0,y=0,z=0,A=0,B=0.0,C=0.0,D=0,E=0,F=0.0,G=0.0,H=0,I=0.0,J=0,K=0,L=0,M=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0.0,X=0.0,Y=0.0,Z=0,$=0.0,aa=0.0,ba=0.0,ca=0,da=0,ea=0.0,fa=0,ga=0,ha=0.0,ia=0.0;ga=i;i=i+16|0;da=c[d+28>>2]|0;fa=c[d+32>>2]|0;$=+g[da+344>>2];aa=+g[fa+344>>2];Z=c[e+24>>2]|0;ea=a[d+180>>0]|0?1.0:-1.0;W=+g[d+936>>2]-+g[d+872>>2];X=+g[d+940>>2]-+g[d+876>>2];Y=+g[d+944>>2]-+g[d+880>>2];ba=$+aa>0.0?aa/($+aa):.5;H=c[d+824>>2]|0;J=c[d+840>>2]|0;K=c[d+856>>2]|0;L=c[d+888>>2]|0;M=c[d+904>>2]|0;P=c[d+920>>2]|0;Q=(a[d+49>>0]|0)==0;if(Q){y=c[d+828>>2]|0;l=c[d+844>>2]|0;t=c[d+860>>2]|0;c[ga+4>>2]=l;x=c[d+832>>2]|0;D=c[d+848>>2]|0;ca=c[d+864>>2]|0;c[ga>>2]=x;w=(c[k>>2]=t,+g[k>>2]);v=(c[k>>2]=x,+g[k>>2]);q=(c[k>>2]=D,+g[k>>2]);E=ca;u=(c[k>>2]=ca,+g[k>>2]);ca=H;z=J;A=K}else{f=ba*(c[k>>2]=H,+g[k>>2]);n=ba*(c[k>>2]=J,+g[k>>2]);m=ba*(c[k>>2]=K,+g[k>>2]);j=(1.0-ba)*(c[k>>2]=L,+g[k>>2]);o=(1.0-ba)*(c[k>>2]=M,+g[k>>2]);m=m+(1.0-ba)*(c[k>>2]=P,+g[k>>2]);p=1.0/+O(+((f+j)*(f+j)+(n+o)*(n+o)+m*m));y=(g[k>>2]=(f+j)*p,c[k>>2]|0);z=(g[k>>2]=(n+o)*p,c[k>>2]|0);A=(g[k>>2]=m*p,c[k>>2]|0);if(+N(+(m*p))>.7071067690849304){I=1.0/+O(+(m*p*m*p+(n+o)*p*(n+o)*p));g[ga+4>>2]=-(m*p*I);q=-((f+j)*p*(n+o)*p*I);r=(f+j)*p*-(m*p*I);j=(m*p*m*p+(n+o)*p*(n+o)*p)*I;f=(n+o)*p*I;h=0}else{r=(f+j)*p*(f+j)*p+(n+o)*p*(n+o)*p;I=1.0/+O(+r);h=(g[k>>2]=-((n+o)*p*I),c[k>>2]|0);g[ga+4>>2]=(f+j)*p*I;q=m*p*-((n+o)*p*I);r=r*I;j=-(m*p*(f+j)*p*I);f=0.0}t=(g[k>>2]=f,c[k>>2]|0);x=(g[k>>2]=j,c[k>>2]|0);g[ga>>2]=j;D=(g[k>>2]=q,c[k>>2]|0);l=c[ga+4>>2]|0;E=(g[k>>2]=r,c[k>>2]|0);w=f;v=j;u=r;ca=y;y=h}h=c[e+12>>2]|0;c[h>>2]=y;c[h+4>>2]=l;c[h+8>>2]=t;c[h+(Z<<2)>>2]=x;c[h+(Z+1<<2)>>2]=D;c[h+(Z+2<<2)>>2]=E;r=(c[k>>2]=y,+g[k>>2]);h=c[e+20>>2]|0;g[h>>2]=-r;s=+g[ga+4>>2];g[h+4>>2]=-s;g[h+8>>2]=-w;g[h+(Z<<2)>>2]=-v;g[h+(Z+1<<2)>>2]=-q;g[h+(Z+2<<2)>>2]=-u;h=c[d+300>>2]|0;f=+g[d+280>>2];if(!(h&128))f=f*+g[e+4>>2];o=f*+g[e>>2];G=(c[k>>2]=J,+g[k>>2]);B=(c[k>>2]=P,+g[k>>2]);p=(c[k>>2]=K,+g[k>>2]);F=(c[k>>2]=M,+g[k>>2]);I=(c[k>>2]=L,+g[k>>2]);C=(c[k>>2]=H,+g[k>>2]);V=c[e+28>>2]|0;g[V>>2]=o*((G*B-p*F)*r+(p*I-C*B)*s+(C*F-G*I)*w);g[V+(Z<<2)>>2]=o*((G*B-p*F)*v+(p*I-C*B)*q+(C*F-G*I)*u);if(h&64|0){V=c[e+32>>2]|0;c[V>>2]=c[d+292>>2];c[V+(Z<<2)>>2]=c[d+292>>2]}n=+g[da+52>>2];o=+g[da+56>>2];p=+g[da+60>>2];f=+g[fa+52>>2];j=+g[fa+56>>2];m=+g[fa+60>>2];if(Q){S=(g[k>>2]=j-o,c[k>>2]|0);G=(j-o)*w-(m-p)*s;I=(m-p)*r-(f-n)*w;Q=c[e+12>>2]|0;g[Q+(Z<<1<<2)>>2]=ba*G;g[Q+((Z<<1|1)<<2)>>2]=ba*I;g[Q+((Z<<1)+2<<2)>>2]=ba*((f-n)*s-(j-o)*r);Q=(g[k>>2]=f-n,c[k>>2]|0);R=(g[k>>2]=m-p,c[k>>2]|0);T=c[e+20>>2]|0;g[T+(Z<<1<<2)>>2]=(1.0-ba)*G;g[T+((Z<<1|1)<<2)>>2]=(1.0-ba)*I;g[T+((Z<<1)+2<<2)>>2]=(1.0-ba)*((f-n)*s-(j-o)*r);I=(j-o)*u-(m-p)*q;m=(m-p)*v-(f-n)*u;p=(f-n)*q-(j-o)*v;T=c[e+12>>2]|0;g[T+(Z*3<<2)>>2]=ba*I;g[T+((Z*3|0)+1<<2)>>2]=ba*m;g[T+((Z*3|0)+2<<2)>>2]=ba*p;T=c[e+20>>2]|0;g[T+(Z*3<<2)>>2]=(1.0-ba)*I;g[T+((Z*3|0)+1<<2)>>2]=(1.0-ba)*m;g[T+((Z*3|0)+2<<2)>>2]=(1.0-ba)*p;J=c[e+8>>2]|0;c[J+(Z<<1<<2)>>2]=y;g[J+((Z<<1|1)<<2)>>2]=s;g[J+((Z<<1)+2<<2)>>2]=w;J=c[e+8>>2]|0;M=c[ga>>2]|0;c[J+(Z*3<<2)>>2]=M;c[J+((Z*3|0)+1<<2)>>2]=D;c[J+((Z*3|0)+2<<2)>>2]=E;P=c[e+16>>2]|0;g[P+(Z<<1<<2)>>2]=-r;p=+g[ga+4>>2];g[P+((Z<<1|1)<<2)>>2]=-p;g[P+((Z<<1)+2<<2)>>2]=-w;P=c[e+16>>2]|0;n=(c[k>>2]=M,+g[k>>2]);g[P+(Z*3<<2)>>2]=-n;m=(c[k>>2]=D,+g[k>>2]);g[P+((Z*3|0)+1<<2)>>2]=-m;j=(c[k>>2]=E,+g[k>>2]);g[P+((Z*3|0)+2<<2)>>2]=-j;o=w;M=0;L=0;K=0;t=0;l=0;h=0}else{ia=+g[d+936>>2]-f;ha=+g[d+940>>2]-j;F=+g[d+944>>2]-m;r=(c[k>>2]=ca,+g[k>>2]);s=(c[k>>2]=z,+g[k>>2]);q=(c[k>>2]=A,+g[k>>2]);G=+g[d+872>>2]-n;I=+g[d+876>>2]-o;m=+g[d+880>>2]-p;o=+g[d+1080>>2]-+g[d+1032>>2];u=r*(r*G+s*I+q*m)+r*o-r*(r*ia+s*ha+q*F);v=s*(r*G+s*I+q*m)+s*o-s*(r*ia+s*ha+q*F);o=q*(r*G+s*I+q*m)+q*o-q*(r*ia+s*ha+q*F);B=G-r*(r*G+s*I+q*m)+ba*u;w=I-s*(r*G+s*I+q*m)+ba*v;C=m-q*(r*G+s*I+q*m)+ba*o;M=(g[k>>2]=B,c[k>>2]|0);L=(g[k>>2]=w,c[k>>2]|0);K=(g[k>>2]=C,c[k>>2]|0);u=ia-r*(r*ia+s*ha+q*F)-(1.0-ba)*u;v=ha-s*(r*ia+s*ha+q*F)-(1.0-ba)*v;o=F-q*(r*ia+s*ha+q*F)-(1.0-ba)*o;t=(g[k>>2]=u,c[k>>2]|0);x=(g[k>>2]=v,c[k>>2]|0);y=(g[k>>2]=o,c[k>>2]|0);j=ba*(ia-r*(r*ia+s*ha+q*F))+(1.0-ba)*(G-r*(r*G+s*I+q*m));f=ba*(ha-s*(r*ia+s*ha+q*F))+(1.0-ba)*(I-s*(r*G+s*I+q*m));m=ba*(F-q*(r*ia+s*ha+q*F))+(1.0-ba)*(m-q*(r*G+s*I+q*m));g[ga+4>>2]=f;if(m*m+(j*j+f*f)>1.1920928955078125e-07){ia=1.0/+O(+(m*m+(j*j+f*f)));l=(g[k>>2]=j*ia,c[k>>2]|0);g[ga+4>>2]=ia*f;I=ia*m;n=ia*f;f=j*ia;h=(g[k>>2]=ia*m,c[k>>2]|0)}else{l=c[d+828>>2]|0;V=c[d+844>>2]|0;h=c[d+860>>2]|0;c[ga+4>>2]=V;I=(c[k>>2]=h,+g[k>>2]);n=(c[k>>2]=V,+g[k>>2]);f=(c[k>>2]=l,+g[k>>2])}F=s*I-q*n;G=q*f-r*I;q=r*n-s*f;g[ga>>2]=F;V=(c[e+12>>2]|0)+(Z<<1<<2)|0;g[V>>2]=w*I-C*n;g[V+4>>2]=C*f-B*I;g[V+8>>2]=B*n-w*f;V=c[e+20>>2]|0;g[V+(Z<<1<<2)>>2]=-(v*I-o*n);g[V+((Z<<1|1)<<2)>>2]=-(o*f-u*I);g[V+((Z<<1)+2<<2)>>2]=-(u*n-v*f);if($<1.1920928955078125e-07|aa<1.1920928955078125e-07?(a[d+297>>0]|0)!=0:0){p=(1.0-ba)*(v*q-o*G);o=(1.0-ba)*(o*F-u*q);m=(1.0-ba)*(u*G-v*F);n=ba*(w*q-C*G);j=ba*(B*G-w*F);f=ba*(C*F-B*q)}else{p=v*q-o*G;o=o*F-u*q;m=u*G-v*F;n=w*q-C*G;j=B*G-w*F;f=C*F-B*q}T=(c[e+12>>2]|0)+(Z*3<<2)|0;g[T>>2]=n;g[T+4>>2]=f;g[T+8>>2]=j;T=c[e+20>>2]|0;g[T+(Z*3<<2)>>2]=-p;g[T+((Z*3|0)+1<<2)>>2]=-o;g[T+((Z*3|0)+2<<2)>>2]=-m;J=c[e+8>>2]|0;c[J+(Z<<1<<2)>>2]=l;c[J+((Z<<1|1)<<2)>>2]=c[ga+4>>2];c[J+((Z<<1)+2<<2)>>2]=h;J=c[e+8>>2]|0;g[J+(Z*3<<2)>>2]=F;g[J+((Z*3|0)+1<<2)>>2]=G;g[J+((Z*3|0)+2<<2)>>2]=q;P=c[e+16>>2]|0;r=(c[k>>2]=l,+g[k>>2]);g[P+(Z<<1<<2)>>2]=-r;p=+g[ga+4>>2];g[P+((Z<<1|1)<<2)>>2]=-p;g[P+((Z<<1)+2<<2)>>2]=-I;P=c[e+16>>2]|0;g[P+(Z*3<<2)>>2]=-F;g[P+((Z*3|0)+1<<2)>>2]=-G;g[P+((Z*3|0)+2<<2)>>2]=-q;o=I;n=F;m=G;j=q;Q=0;R=0;S=0;l=x;h=y}U=c[d+300>>2]|0;f=+g[d+264>>2];if(!(U&32))f=f*+g[e+4>>2];ia=f*+g[e>>2];V=c[e+28>>2]|0;g[V+(Z<<1<<2)>>2]=ia*(W*r+X*p+Y*o);g[V+(Z*3<<2)>>2]=ia*(W*n+X*m+Y*j);if(U&16|0){H=c[e+32>>2]|0;c[H+(Z<<1<<2)>>2]=c[d+276>>2];c[H+(Z*3<<2)>>2]=c[d+276>>2]}H=b[d+296>>1]|0;if(!((H&255)<<24>>24)){E=0;u=0.0}else{u=ea*+g[d+1032>>2];E=u>0.0?2:1}x=a[d+1096>>0]|0;y=(E|0)!=0;if(x&255|E){D=c[e+24>>2]<<2;c[J+(D<<2)>>2]=ca;c[J+((D|1)<<2)>>2]=z;c[J+((D|2)<<2)>>2]=A;q=(c[k>>2]=ca,+g[k>>2]);g[P+(D<<2)>>2]=-q;r=(c[k>>2]=z,+g[k>>2]);g[P+((D|1)<<2)>>2]=-r;s=(c[k>>2]=A,+g[k>>2]);g[P+((D|2)<<2)>>2]=-s;if(a[d+49>>0]|0){if(!($<1.1920928955078125e-07|aa<1.1920928955078125e-07)){aa=(c[k>>2]=L,+g[k>>2]);Y=(c[k>>2]=K,+g[k>>2]);$=(c[k>>2]=M,+g[k>>2]);ia=(c[k>>2]=l,+g[k>>2]);ba=(c[k>>2]=h,+g[k>>2]);ha=(c[k>>2]=t,+g[k>>2]);Z=c[e+12>>2]|0;g[Z+(D<<2)>>2]=s*aa-r*Y;g[Z+((D|1)<<2)>>2]=q*Y-s*$;g[Z+((D|2)<<2)>>2]=r*$-q*aa;g[T+(D<<2)>>2]=-(s*ia-r*ba);g[T+((D|1)<<2)>>2]=-(q*ba-s*ha);g[T+((D|2)<<2)>>2]=-(r*ha-q*ia)}}else{ia=(c[k>>2]=S,+g[k>>2]);aa=(c[k>>2]=R,+g[k>>2]);ha=(c[k>>2]=Q,+g[k>>2]);Z=c[e+12>>2]|0;g[Z+(D<<2)>>2]=ba*(s*ia-r*aa);g[Z+((D|1)<<2)>>2]=ba*(q*aa-s*ha);g[Z+((D|2)<<2)>>2]=ba*(r*ha-q*ia);g[T+(D<<2)>>2]=(1.0-ba)*(s*ia-r*aa);g[T+((D|1)<<2)>>2]=(1.0-ba)*(q*aa-s*ha);g[T+((D|2)<<2)>>2]=(1.0-ba)*(r*ha-q*ia)}h=+g[d+184>>2]==+g[d+188>>2];g[V+(D<<2)>>2]=0.0;l=(c[e+36>>2]|0)+(D<<2)|0;g[l>>2]=0.0;t=(c[e+40>>2]|0)+(D<<2)|0;g[t>>2]=0.0;p=+g[((U&512|0)==0?e+4|0:d+232|0)>>2];if(!(x<<24>>24==0|y&h)){if(U&1|0)c[(c[e+32>>2]|0)+(D<<2)>>2]=c[d+212>>2];o=+g[d+1100>>2];f=+g[d+1080>>2];j=+g[d+184>>2];m=+g[d+188>>2];n=p*+g[e>>2];do if(!(j>m))if(!(j==m)){if(o/n<0.0)if(f>=j?j-o/n>f:0){f=(j-f)/(o/n);break}else{f=f0.0)if(f<=m?m-o/nm?0.0:1.0;break}else f=0.0}else f=0.0;else f=1.0;while(0);g[V+(D<<2)>>2]=+g[V+(D<<2)>>2]-ea*f*o;g[l>>2]=+g[l>>2]-+g[d+1104>>2]*+g[e>>2];g[t>>2]=+g[d+1104>>2]*+g[e>>2]+ +g[t>>2]}if(y){g[V+(D<<2)>>2]=+g[V+(D<<2)>>2]+u*p*+g[e>>2];if(U&256|0)c[(c[e+32>>2]|0)+(D<<2)>>2]=c[d+244>>2];do if(!h)if((E|0)==1){g[l>>2]=-3402823466385288598117041.0e14;g[t>>2]=0.0;break}else{g[l>>2]=0.0;g[t>>2]=3402823466385288598117041.0e14;break}else{g[l>>2]=-3402823466385288598117041.0e14;g[t>>2]=3402823466385288598117041.0e14}while(0);ia=1.0-+g[d+240>>2];j=+N(+ia);do if(!(ia!=ia|0.0!=0.0|ia==0.0)){f=ea*(q*+g[da+312>>2]+r*+g[da+316>>2]+s*+g[da+320>>2]-(q*+g[fa+312>>2]+r*+g[fa+316>>2]+s*+g[fa+320>>2]));if((E|0)==1){if(!(f<0.0))break;if(!(+g[V+(D<<2)>>2]<-(j*f)))break;g[V+(D<<2)>>2]=-(j*f);break}else{if(!(f>0.0))break;if(!(+g[V+(D<<2)>>2]>-(j*f)))break;g[V+(D<<2)>>2]=-(j*f);break}}while(0);g[V+(D<<2)>>2]=+g[d+232>>2]*+g[V+(D<<2)>>2];h=5}else h=5}else h=4;if((H&65535)<256){y=0;v=0.0}else{v=+g[d+1088>>2];y=v>0.0?1:2}l=a[d+1112>>0]|0;t=(y|0)!=0;if(!(l&255|y)){i=ga;return}x=_(c[e+24>>2]|0,h)|0;fa=c[e+12>>2]|0;c[fa+(x<<2)>>2]=ca;c[fa+(x+1<<2)>>2]=z;c[fa+(x+2<<2)>>2]=A;w=(c[k>>2]=ca,+g[k>>2]);g[T+(x<<2)>>2]=-w;u=(c[k>>2]=z,+g[k>>2]);g[T+(x+1<<2)>>2]=-u;s=(c[k>>2]=A,+g[k>>2]);g[T+(x+2<<2)>>2]=-s;p=+g[d+192>>2];q=+g[d+196>>2];r=+g[((U&2048|0)==0?e+4|0:d+248|0)>>2];if(!(l<<24>>24==0|t&p==q)){if(!(U&4)){m=q;n=p}else{c[(c[e+32>>2]|0)+(x<<2)>>2]=c[d+228>>2];m=+g[d+196>>2];n=+g[d+192>>2]}f=+g[d+1084>>2];o=+g[d+1116>>2];j=r*+g[e>>2];do if(!(n>m))if(!(n==m)){if(o/j<0.0)if(f>=n?n-o/j>f:0){f=(n-f)/(o/j);break}else{f=f0.0)if(f<=m?m-o/jm?0.0:1.0;break}else f=0.0}else f=0.0;else f=1.0;while(0);g[V+(x<<2)>>2]=f*o;g[(c[e+36>>2]|0)+(x<<2)>>2]=-(+g[d+1120>>2]*+g[e>>2]);g[(c[e+40>>2]|0)+(x<<2)>>2]=+g[d+1120>>2]*+g[e>>2]}if(!t){i=ga;return}g[V+(x<<2)>>2]=+g[V+(x<<2)>>2]+v*r*+g[e>>2];if(U&1024|0)c[(c[e+32>>2]|0)+(x<<2)>>2]=c[d+260>>2];do if(!(p==q)){l=(c[e+36>>2]|0)+(x<<2)|0;h=c[e+40>>2]|0;if((y|0)==1){g[l>>2]=0.0;g[h+(x<<2)>>2]=3402823466385288598117041.0e14;break}else{g[l>>2]=-3402823466385288598117041.0e14;g[h+(x<<2)>>2]=0.0;break}}else{g[(c[e+36>>2]|0)+(x<<2)>>2]=-3402823466385288598117041.0e14;g[(c[e+40>>2]|0)+(x<<2)>>2]=3402823466385288598117041.0e14}while(0);ia=1.0-+g[d+256>>2];j=+N(+ia);do if(!(ia!=ia|0.0!=0.0|ia==0.0)){fa=c[d+28>>2]|0;e=c[d+32>>2]|0;f=w*+g[fa+328>>2]+u*+g[fa+332>>2]+s*+g[fa+336>>2]-(w*+g[e+328>>2]+u*+g[e+332>>2]+s*+g[e+336>>2]);if((y|0)==1){if(!(f<0.0))break;if(!(+g[V+(x<<2)>>2]<-(j*f)))break;g[V+(x<<2)>>2]=-(j*f);break}else{if(!(f>0.0))break;if(!(+g[V+(x<<2)>>2]>-(j*f)))break;g[V+(x<<2)>>2]=-(j*f);break}}while(0);g[V+(x<<2)>>2]=+g[d+248>>2]*+g[V+(x<<2)>>2];i=ga;return}function Hc(d,e){d=d|0;e=e|0;var f=0.0,h=0.0,i=0,j=0,k=0.0,l=0.0,m=0.0,n=0,o=0.0,p=0,q=0,r=0.0,s=0,t=0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0.0,H=0.0,I=0.0,J=0.0,K=0.0,L=0.0,M=0.0,N=0.0,P=0.0,Q=0.0,R=0.0,S=0.0,T=0.0,U=0.0,V=0.0,W=0.0,X=0.0,Y=0.0,Z=0.0,_=0.0,$=0.0,aa=0.0,ba=0.0,ca=0.0,da=0.0,ea=0.0,fa=0.0,ga=0.0,ha=0.0,ia=0.0,ja=0.0,ka=0.0,la=0.0,ma=0.0,na=0.0,oa=0.0,pa=0,qa=0;pa=c[d+28>>2]|0;qa=c[d+32>>2]|0;q=c[e+24>>2]|0;if(!(a[d+739>>0]|0)){z=+g[d+552>>2];S=+g[pa+4>>2];A=+g[d+568>>2];T=+g[pa+8>>2];B=+g[d+584>>2];U=+g[pa+12>>2];C=+g[d+556>>2];D=+g[d+572>>2];E=+g[d+588>>2];V=+g[d+560>>2];W=+g[d+576>>2];X=+g[d+592>>2];Y=+g[pa+20>>2];Z=+g[pa+24>>2];_=+g[pa+28>>2];$=+g[pa+36>>2];aa=+g[pa+40>>2];ba=+g[pa+44>>2];l=+g[d+600>>2];m=+g[d+604>>2];o=+g[d+608>>2];r=+g[pa+52>>2];u=+g[pa+56>>2];v=+g[pa+60>>2];F=+g[qa+4>>2];G=+g[qa+8>>2];H=+g[qa+12>>2];I=+g[d+624>>2];J=+g[d+640>>2];K=+g[d+656>>2];L=+g[qa+20>>2];M=+g[qa+24>>2];N=+g[qa+28>>2];P=+g[qa+36>>2];Q=+g[qa+40>>2];R=+g[qa+44>>2];na=+g[d+664>>2];oa=+g[d+668>>2];y=+g[d+672>>2];w=+g[qa+52>>2]+(F*na+G*oa+H*y);x=L*na+M*oa+N*y+ +g[qa+56>>2];y=P*na+Q*oa+R*y+ +g[qa+60>>2];t=b[d+736>>1]|0;if(!((t&255)<<24>>24)){i=c[e+8>>2]|0;g[i>>2]=1.0;g[i+(q+1<<2)>>2]=1.0;g[i+((q<<1)+2<<2)>>2]=1.0;i=c[e+16>>2]|0;g[i>>2]=-1.0;g[i+(q+1<<2)>>2]=-1.0;g[i+((q<<1)+2<<2)>>2]=-1.0;i=q<<1;f=+g[pa+52>>2];h=+g[pa+56>>2];k=+g[pa+60>>2]}else{i=q<<1;f=r;h=u;k=v}f=r+(S*l+T*m+U*o)-f;oa=Y*l+Z*m+_*o+u-h;na=$*l+aa*m+ba*o+v-k;j=c[e+12>>2]|0;n=j+(i<<2)|0;c[j>>2]=0;g[j+4>>2]=na;g[j+8>>2]=-oa;g[j+12>>2]=0.0;g[j+(q<<2)>>2]=-na;c[j+(q<<2)+4>>2]=0;g[j+(q<<2)+8>>2]=f;g[j+(q<<2)+12>>2]=0.0;g[n>>2]=oa;g[n+4>>2]=-f;c[n+8>>2]=0;g[n+12>>2]=0.0;f=w-+g[qa+52>>2];oa=x-+g[qa+56>>2];na=y-+g[qa+60>>2];n=c[e+20>>2]|0;i=n+(i<<2)|0;c[n>>2]=0;g[n+4>>2]=-na;g[n+8>>2]=oa;g[n+12>>2]=0.0;g[n+(q<<2)>>2]=na;c[n+(q<<2)+4>>2]=0;g[n+(q<<2)+8>>2]=-f;g[n+(q<<2)+12>>2]=0.0;g[i>>2]=-oa;g[i+4>>2]=f;c[i+8>>2]=0;g[i+12>>2]=0.0;f=+g[e>>2]*+g[e+4>>2];i=c[e+28>>2]|0;if(!((t&255)<<24>>24)){g[i>>2]=f*(w-(r+(S*l+T*m+U*o)));g[i+(q<<2)>>2]=f*(x-(Y*l+Z*m+_*o+u));g[i+(q<<1<<2)>>2]=f*(y-($*l+aa*m+ba*o+v))}s=c[e+24>>2]|0;g[j+(s*3<<2)>>2]=z*S+A*T+B*U;g[j+((s*3|0)+1<<2)>>2]=z*Y+A*Z+B*_;g[j+((s*3|0)+2<<2)>>2]=z*$+A*aa+B*ba;g[j+(s<<2<<2)>>2]=S*C+T*D+U*E;g[j+((s<<2|1)<<2)>>2]=C*Y+D*Z+E*_;g[j+((s<<2|2)<<2)>>2]=C*$+D*aa+E*ba;g[n+(s*3<<2)>>2]=-(z*S+A*T+B*U);g[n+((s*3|0)+1<<2)>>2]=-(z*Y+A*Z+B*_);g[n+((s*3|0)+2<<2)>>2]=-(z*$+A*aa+B*ba);g[n+(s<<2<<2)>>2]=-(S*C+T*D+U*E);g[n+((s<<2|1)<<2)>>2]=-(C*Y+D*Z+E*_);g[n+((s<<2|2)<<2)>>2]=-(C*$+D*aa+E*ba);na=(V*Y+W*Z+X*_)*(I*P+J*Q+K*R)-(V*$+W*aa+X*ba)*(I*L+J*M+K*N);oa=(V*$+W*aa+X*ba)*(F*I+G*J+H*K)-(S*V+T*W+U*X)*(I*P+J*Q+K*R);ma=(S*V+T*W+U*X)*(I*L+J*M+K*N)-(V*Y+W*Z+X*_)*(F*I+G*J+H*K);g[i+(s*3<<2)>>2]=((z*$+A*aa+B*ba)*ma+((z*S+A*T+B*U)*na+(z*Y+A*Z+B*_)*oa))*f;g[i+(s<<2<<2)>>2]=((C*$+D*aa+E*ba)*ma+((S*C+T*D+U*E)*na+(C*Y+D*Z+E*_)*oa))*f;if(!(a[d+716>>0]|0)){q=0;r=0.0}else{r=+g[d+708>>2]*+g[d+732>>2];q=r>0.0?1:2}p=(q|0)!=0;if(!((t&65535)>>>8&65535|q))return;g[j+(s*5<<2)>>2]=S*V+T*W+U*X;g[j+((s*5|0)+1<<2)>>2]=V*Y+W*Z+X*_;g[j+((s*5|0)+2<<2)>>2]=V*$+W*aa+X*ba;g[n+(s*5<<2)>>2]=-(S*V+T*W+U*X);g[n+((s*5|0)+1<<2)>>2]=-(V*Y+W*Z+X*_);g[n+((s*5|0)+2<<2)>>2]=-(V*$+W*aa+X*ba);h=+g[d+688>>2];k=+g[d+692>>2];f=+eh(h-k,6.2831854820251465);if(!(f<-3.1415927410125732))if(f>3.1415927410125732)o=f+-6.2831854820251465;else o=f;else o=f+6.2831854820251465;f=+eh(h+k,6.2831854820251465);if(!(f<-3.1415927410125732)){if(f>3.1415927410125732)f=f+-6.2831854820251465}else f=f+6.2831854820251465;j=o==f;n=i+(s*5<<2)|0;g[n>>2]=0.0;i=c[d+748>>2]|0;m=+g[((i&2|0)==0?e+4|0:d+760|0)>>2];if(!((t&65535)>>>8<<16>>16==0|p&j)){if(i&4|0)c[(c[e+32>>2]|0)+(s*5<<2)>>2]=c[d+752>>2];k=+g[d+728>>2];l=+g[d+680>>2];h=o>f?1.0:0.0;do if(!(o>=f)){h=l/(m*+g[e>>2]);if(h<0.0)if(k>=o&o-h>k){f=(o-k)/h;break}else{f=k0.0)if(k<=f&f-hf?0.0:1.0;break}else f=0.0}else f=h;while(0);g[n>>2]=f*l*+g[d+732>>2]+ +g[n>>2];g[(c[e+36>>2]|0)+(s*5<<2)>>2]=-+g[d+684>>2];c[(c[e+40>>2]|0)+(s*5<<2)>>2]=c[d+684>>2]}if(!p)return;g[n>>2]=+g[n>>2]+r*m*+g[e>>2];if(i&1|0)c[(c[e+32>>2]|0)+(s*5<<2)>>2]=c[d+756>>2];do if(!j){j=(c[e+36>>2]|0)+(s*5<<2)|0;i=c[e+40>>2]|0;if((q|0)==1){g[j>>2]=0.0;g[i+(s*5<<2)>>2]=3402823466385288598117041.0e14;break}else{g[j>>2]=-3402823466385288598117041.0e14;g[i+(s*5<<2)>>2]=0.0;break}}else{g[(c[e+36>>2]|0)+(s*5<<2)>>2]=-3402823466385288598117041.0e14;g[(c[e+40>>2]|0)+(s*5<<2)>>2]=3402823466385288598117041.0e14}while(0);h=+g[d+704>>2];do if(h>0.0){f=(S*V+T*W+U*X)*+g[pa+328>>2]+(V*Y+W*Z+X*_)*+g[pa+332>>2]+(V*$+W*aa+X*ba)*+g[pa+336>>2]-((S*V+T*W+U*X)*+g[qa+328>>2]+(V*Y+W*Z+X*_)*+g[qa+332>>2]+(V*$+W*aa+X*ba)*+g[qa+336>>2]);if((q|0)==1){if(!(f<0.0))break;if(!(+g[n>>2]<-(h*f)))break;g[n>>2]=-(h*f);break}else{if(!(f>0.0))break;if(!(+g[n>>2]>-(h*f)))break;g[n>>2]=-(h*f);break}}while(0);g[n>>2]=+g[d+700>>2]*+g[n>>2];return}W=+g[pa+4>>2];X=+g[pa+8>>2];Y=+g[pa+12>>2];u=+g[d+556>>2];x=+g[d+572>>2];z=+g[d+588>>2];Z=+g[d+560>>2];_=+g[d+576>>2];$=+g[d+592>>2];aa=+g[pa+20>>2];ba=+g[pa+24>>2];ca=+g[pa+28>>2];da=+g[pa+36>>2];ea=+g[pa+40>>2];fa=+g[pa+44>>2];ha=+g[d+600>>2];ga=+g[d+604>>2];o=+g[d+608>>2];h=+g[pa+52>>2]+(W*ha+X*ga+Y*o);w=aa*ha+ba*ga+ca*o+ +g[pa+56>>2];o=da*ha+ea*ga+fa*o+ +g[pa+60>>2];ga=+g[qa+4>>2];ha=+g[qa+8>>2];ia=+g[qa+12>>2];ja=+g[d+624>>2];ka=+g[d+640>>2];P=+g[d+656>>2];Q=+g[qa+20>>2];R=+g[qa+24>>2];S=+g[qa+28>>2];T=+g[qa+36>>2];U=+g[qa+40>>2];V=+g[qa+44>>2];r=+g[d+664>>2];y=+g[d+668>>2];k=+g[d+672>>2];f=+g[qa+52>>2];v=+g[qa+56>>2];m=+g[qa+60>>2];J=f+(ga*r+ha*y+ia*k)-h;K=Q*r+R*y+S*k+v-w;L=T*r+U*y+V*k+m-o;A=+g[(c[d+28>>2]|0)+344>>2];B=+g[(c[d+32>>2]|0)+344>>2];I=A+B>0.0?B/(A+B):.5;la=(W*Z+X*_+Y*$)*I+(ga*ja+ha*ka+ia*P)*(1.0-I);ma=(Z*aa+_*ba+$*ca)*I+(ja*Q+ka*R+P*S)*(1.0-I);na=(Z*da+_*ea+$*fa)*I+(ja*T+ka*U+P*V)*(1.0-I);oa=1.0/+O(+(la*la+ma*ma+na*na));C=(f+(ga*r+ha*y+ia*k)-f)*la*oa+(Q*r+R*y+S*k+v-v)*ma*oa+(T*r+U*y+V*k+m-m)*na*oa;f=f+(ga*r+ha*y+ia*k)-f-la*oa*C;v=Q*r+R*y+S*k+v-v-ma*oa*C;m=T*r+U*y+V*k+m-m-na*oa*C;h=h-+g[pa+52>>2];w=w-+g[pa+56>>2];o=o-+g[pa+60>>2];k=la*oa*(h*la*oa+w*ma*oa+o*na*oa);y=ma*oa*(h*la*oa+w*ma*oa+o*na*oa);r=na*oa*(h*la*oa+w*ma*oa+o*na*oa);G=h-k+I*(k-la*oa*C);H=w-y+I*(y-ma*oa*C);F=o-r+I*(r-na*oa*C);D=f-(1.0-I)*(k-la*oa*C);E=v-(1.0-I)*(y-ma*oa*C);C=m-(1.0-I)*(r-na*oa*C);l=(I*f+(1.0-I)*(h-k))*(I*f+(1.0-I)*(h-k))+(I*v+(1.0-I)*(w-y))*(I*v+(1.0-I)*(w-y))+(I*m+(1.0-I)*(o-r))*(I*m+(1.0-I)*(o-r));if(l>1.1920928955078125e-07){z=1.0/+O(+l);N=(I*f+(1.0-I)*(h-k))*z;M=z*(I*m+(1.0-I)*(o-r));w=z*(I*v+(1.0-I)*(w-y))}else{N=W*u+X*x+Y*z;M=u*da+x*ea+z*fa;w=u*aa+x*ba+z*ca}r=ma*oa*M-na*oa*w;u=na*oa*N-M*la*oa;v=w*la*oa-ma*oa*N;t=c[e+12>>2]|0;g[t>>2]=H*M-F*w;g[t+4>>2]=F*N-G*M;g[t+8>>2]=G*w-H*N;t=c[e+20>>2]|0;g[t>>2]=-(E*M-C*w);g[t+4>>2]=-(C*N-D*M);g[t+8>>2]=-(D*w-E*N);if(A<1.1920928955078125e-07|B<1.1920928955078125e-07?(a[d+716>>0]|0)!=0:0){f=(1.0-I)*(E*v-C*u);h=(1.0-I)*(C*r-D*v);k=(1.0-I)*(D*u-E*r);l=I*(H*v-F*u);m=I*(F*r-G*v);o=I*(G*u-H*r)}else{f=E*v-C*u;h=C*r-D*v;k=D*u-E*r;l=H*v-F*u;m=F*r-G*v;o=G*u-H*r}t=(c[e+12>>2]|0)+(q<<2)|0;g[t>>2]=l;g[t+4>>2]=m;g[t+8>>2]=o;t=c[e+20>>2]|0;g[t+(q<<2)>>2]=-f;g[t+(q+1<<2)>>2]=-h;g[t+(q+2<<2)>>2]=-k;if(A<1.1920928955078125e-07|B<1.1920928955078125e-07){o=(1.0-I)*(E*na*oa-C*ma*oa);m=(1.0-I)*(C*la*oa-D*na*oa);l=(1.0-I)*(D*ma*oa-E*la*oa);k=I*(H*na*oa-F*ma*oa);h=I*(F*la*oa-G*na*oa);f=I*(G*ma*oa-H*la*oa)}else{o=E*na*oa-C*ma*oa;m=C*la*oa-D*na*oa;l=D*ma*oa-E*la*oa;k=H*na*oa-F*ma*oa;h=F*la*oa-G*na*oa;f=G*ma*oa-H*la*oa}i=(c[e+12>>2]|0)+(q<<1<<2)|0;g[i>>2]=k;g[i+4>>2]=h;g[i+8>>2]=f;i=c[e+20>>2]|0;g[i+(q<<1<<2)>>2]=-o;g[i+((q<<1|1)<<2)>>2]=-m;g[i+((q<<1)+2<<2)>>2]=-l;f=+g[e>>2]*+g[e+4>>2];if(!(a[d+736>>0]|0)){p=c[e+8>>2]|0;g[p>>2]=N;g[p+4>>2]=w;g[p+8>>2]=M;p=(c[e+8>>2]|0)+(q<<2)|0;g[p>>2]=r;g[p+4>>2]=u;g[p+8>>2]=v;p=(c[e+8>>2]|0)+(q<<1<<2)|0;g[p>>2]=la*oa;g[p+4>>2]=ma*oa;g[p+8>>2]=na*oa;p=c[e+16>>2]|0;h=-N;g[p>>2]=h;g[p+4>>2]=-w;g[p+8>>2]=-M;p=c[e+16>>2]|0;g[p+(q<<2)>>2]=-r;g[p+(q+1<<2)>>2]=-u;g[p+(q+2<<2)>>2]=-v;p=c[e+16>>2]|0;g[p+(q<<1<<2)>>2]=-(la*oa);g[p+((q<<1|1)<<2)>>2]=-(ma*oa);g[p+((q<<1)+2<<2)>>2]=-(na*oa);p=c[e+28>>2]|0;g[p>>2]=f*(J*N+K*w+L*M);g[p+(q<<2)>>2]=f*(J*r+K*u+L*v);g[p+(q<<1<<2)>>2]=f*(J*la*oa+K*ma*oa+L*na*oa);f=h;h=-r;k=-u;l=-v;i=c[e+20>>2]|0}else{f=-N;h=-r;k=-u;l=-v;p=c[e+28>>2]|0}j=c[e+12>>2]|0;g[j+(q*3<<2)>>2]=N;g[j+((q*3|0)+1<<2)>>2]=w;g[j+((q*3|0)+2<<2)>>2]=M;g[j+(q<<2<<2)>>2]=r;g[j+((q<<2|1)<<2)>>2]=u;g[j+((q<<2|2)<<2)>>2]=v;g[i+(q*3<<2)>>2]=f;g[i+((q*3|0)+1<<2)>>2]=-w;g[i+((q*3|0)+2<<2)>>2]=-M;g[i+(q<<2<<2)>>2]=h;g[i+((q<<2|1)<<2)>>2]=k;g[i+((q<<2|2)<<2)>>2]=l;K=+g[e>>2]*+g[e+4>>2];L=(Z*aa+_*ba+$*ca)*(ja*T+ka*U+P*V)-(Z*da+_*ea+$*fa)*(ja*Q+ka*R+P*S);fa=(Z*da+_*ea+$*fa)*(ga*ja+ha*ka+ia*P)-(W*Z+X*_+Y*$)*(ja*T+ka*U+P*V);ka=(W*Z+X*_+Y*$)*(ja*Q+ka*R+P*S)-(Z*aa+_*ba+$*ca)*(ga*ja+ha*ka+ia*P);g[p+(q*3<<2)>>2]=K*(L*N+fa*w+ka*M);g[p+(q<<2<<2)>>2]=K*(L*r+fa*u+ka*v);if(!(a[d+716>>0]|0)){t=0;r=0.0}else{r=+g[d+708>>2]*+g[d+732>>2];t=r>0.0?1:2}n=a[d+737>>0]|0;q=(t|0)!=0;if(!(n&255|t))return;s=(c[e+24>>2]|0)*5|0;g[j+(s<<2)>>2]=la*oa;g[j+(s+1<<2)>>2]=ma*oa;g[j+(s+2<<2)>>2]=na*oa;g[i+(s<<2)>>2]=-(la*oa);g[i+(s+1<<2)>>2]=-(ma*oa);g[i+(s+2<<2)>>2]=-(na*oa);h=+g[d+688>>2];k=+g[d+692>>2];f=+eh(h-k,6.2831854820251465);if(!(f<-3.1415927410125732))if(f>3.1415927410125732)o=f+-6.2831854820251465;else o=f;else o=f+6.2831854820251465;f=+eh(h+k,6.2831854820251465);if(!(f<-3.1415927410125732)){if(f>3.1415927410125732)f=f+-6.2831854820251465}else f=f+6.2831854820251465;j=o==f;p=p+(s<<2)|0;g[p>>2]=0.0;i=c[d+748>>2]|0;m=+g[((i&2|0)==0?e+4|0:d+760|0)>>2];if(!(n<<24>>24==0|q&j)){if(i&4|0)c[(c[e+32>>2]|0)+(s<<2)>>2]=c[d+752>>2];k=+g[d+728>>2];l=+g[d+680>>2];h=o>f?1.0:0.0;do if(!(o>=f)){h=l/(m*+g[e>>2]);if(h<0.0)if(k>=o&o-h>k){f=(o-k)/h;break}else{f=k0.0)if(k<=f&f-hf?0.0:1.0;break}else f=0.0}else f=h;while(0);g[p>>2]=f*l*+g[d+732>>2]+ +g[p>>2];g[(c[e+36>>2]|0)+(s<<2)>>2]=-+g[d+684>>2];c[(c[e+40>>2]|0)+(s<<2)>>2]=c[d+684>>2]}if(!q)return;g[p>>2]=+g[p>>2]+r*m*+g[e>>2];if(i&1|0)c[(c[e+32>>2]|0)+(s<<2)>>2]=c[d+756>>2];do if(!j){j=(c[e+36>>2]|0)+(s<<2)|0;i=c[e+40>>2]|0;if((t|0)==1){g[j>>2]=0.0;g[i+(s<<2)>>2]=3402823466385288598117041.0e14;break}else{g[j>>2]=-3402823466385288598117041.0e14;g[i+(s<<2)>>2]=0.0;break}}else{g[(c[e+36>>2]|0)+(s<<2)>>2]=-3402823466385288598117041.0e14;g[(c[e+40>>2]|0)+(s<<2)>>2]=3402823466385288598117041.0e14}while(0);h=+g[d+704>>2];do if(h>0.0){f=+g[pa+328>>2]*la*oa+ +g[pa+332>>2]*ma*oa+ +g[pa+336>>2]*na*oa-(la*oa*+g[qa+328>>2]+ma*oa*+g[qa+332>>2]+na*oa*+g[qa+336>>2]);if((t|0)==1){if(!(f<0.0))break;if(!(+g[p>>2]<-(h*f)))break;g[p>>2]=-(h*f);break}else{if(!(f>0.0))break;if(!(+g[p>>2]>-(h*f)))break;g[p>>2]=-(h*f);break}}while(0);g[p>>2]=+g[d+700>>2]*+g[p>>2];return}function Ic(d,e,f,h,j,k){d=d|0;e=e|0;f=f|0;h=h|0;j=j|0;k=+k;var l=0,m=0.0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0,v=0.0,w=0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0,E=0,F=0,G=0.0,H=0.0,I=0.0,J=0.0,K=0.0,L=0.0,M=0.0,N=0.0,P=0.0;F=i;i=i+896|0;E=c[h+4>>2]|0;D=c[h+12>>2]|0;w=c[E+4>>2]|0;if((w|0)<20){c[F+712>>2]=3708;c[F+712+168>>2]=0;g[F+712+172>>2]=k;c[F+712+164>>2]=c[j+4>>2];g[F+352+308>>2]=9.999999747378752e-05;a[F+352+332>>0]=0;c[F+288>>2]=9120;c[F+64>>2]=9188;c[F+64+4>>2]=F+352;c[F+64+8>>2]=F+288;c[F+64+12>>2]=d;c[F+64+16>>2]=E;c[F+64+20>>2]=0;if((Xd(F+64|0,e,f,D,D,F+712|0)|0?(l=F+712+132|0,m=+g[l>>2],n=+g[F+712+136>>2],p=+g[F+712+140>>2],m*m+n*n+p*p>9.999999747378752e-05):0)?(t=+g[F+712+164>>2],t<+g[j+4>>2]):0){k=1.0/+O(+(m*m+n*n+p*p));g[l>>2]=m*k;g[F+712+136>>2]=n*k;g[F+712+140>>2]=p*k;c[F+16>>2]=c[h+8>>2];c[F+16+4>>2]=0;c[F+16+8>>2]=c[l>>2];c[F+16+8+4>>2]=c[l+4>>2];c[F+16+8+8>>2]=c[l+8>>2];c[F+16+8+12>>2]=c[l+12>>2];c[F+16+24>>2]=c[F+712+148>>2];c[F+16+24+4>>2]=c[F+712+148+4>>2];c[F+16+24+8>>2]=c[F+712+148+8>>2];c[F+16+24+12>>2]=c[F+712+148+12>>2];g[F+16+40>>2]=t;+_b[c[(c[j>>2]|0)+12>>2]&15](j,F+16|0,1)}i=F;return}if((w+-21|0)>>>0>=9){if((w|0)!=31){i=F;return}li(15534);if((c[E+16>>2]|0)>0){l=0;do{u=c[E+24>>2]|0;m=+g[u+(l*80|0)>>2];p=+g[u+(l*80|0)+4>>2];s=+g[u+(l*80|0)+8>>2];n=+g[u+(l*80|0)+16>>2];q=+g[u+(l*80|0)+20>>2];v=+g[u+(l*80|0)+24>>2];o=+g[u+(l*80|0)+32>>2];r=+g[u+(l*80|0)+36>>2];y=+g[u+(l*80|0)+40>>2];N=+g[u+(l*80|0)+48>>2];M=+g[u+(l*80|0)+52>>2];C=+g[u+(l*80|0)+56>>2];u=c[u+(l*80|0)+64>>2]|0;L=+g[D>>2];K=+g[D+4>>2];J=+g[D+8>>2];I=+g[D+16>>2];H=+g[D+20>>2];G=+g[D+24>>2];t=+g[D+32>>2];x=+g[D+36>>2];z=+g[D+40>>2];A=N*L+M*K+C*J+ +g[D+48>>2];B=N*I+M*H+C*G+ +g[D+52>>2];C=N*t+M*x+C*z+ +g[D+56>>2];g[F+712>>2]=m*L+n*K+o*J;g[F+712+4>>2]=p*L+q*K+r*J;g[F+712+8>>2]=s*L+v*K+y*J;g[F+712+12>>2]=0.0;g[F+712+16>>2]=m*I+n*H+o*G;g[F+712+20>>2]=p*I+q*H+r*G;g[F+712+24>>2]=s*I+v*H+y*G;g[F+712+28>>2]=0.0;g[F+712+32>>2]=m*t+n*x+o*z;g[F+712+36>>2]=p*t+q*x+r*z;g[F+712+40>>2]=s*t+v*x+y*z;g[F+712+44>>2]=0.0;g[F+712+48>>2]=A;g[F+712+52>>2]=B;g[F+712+56>>2]=C;g[F+712+60>>2]=0.0;b[F+352+8>>1]=1;b[F+352+10>>1]=-1;c[F+352>>2]=5912;c[F+352+12>>2]=j;c[F+352+16>>2]=l;c[F+352+4>>2]=c[j+4>>2];w=c[h+8>>2]|0;c[F+288>>2]=h;c[F+288+4>>2]=u;c[F+288+8>>2]=w;c[F+288+12>>2]=F+712;c[F+288+16>>2]=-1;c[F+288+20>>2]=l;Ic(d,e,f,F+288|0,F+352|0,k);l=l+1|0}while((l|0)<(c[E+16>>2]|0))}l=c[2357]|0;E=(c[l+16>>2]|0)+-1|0;c[l+16>>2]=E;if(E|0){i=F;return}do if(c[l+4>>2]|0){tb(F+712|0,0)|0;E=c[6434]|0;g[l+8>>2]=+g[l+8>>2]+ +(((c[F+712+4>>2]|0)-(c[E+4>>2]|0)+(((c[F+712>>2]|0)-(c[E>>2]|0)|0)*1e6|0)-(c[l+12>>2]|0)|0)>>>0)/1.0e3;if(!(c[l+16>>2]|0)){l=c[2357]|0;break}else{i=F;return}}while(0);c[2357]=c[l+20>>2];i=F;return}switch(w|0){case 21:{p=+g[D>>2];q=+g[D+16>>2];r=+g[D+32>>2];s=+g[D+4>>2];t=+g[D+20>>2];v=+g[D+36>>2];x=+g[D+8>>2];y=+g[D+24>>2];z=+g[D+40>>2];A=-+g[D+48>>2];B=-+g[D+52>>2];C=-+g[D+56>>2];o=+g[e+48>>2];n=+g[e+52>>2];m=+g[e+56>>2];g[F+352>>2]=p*A+q*B+r*C+(p*o+q*n+r*m);g[F+352+4>>2]=s*A+t*B+v*C+(s*o+t*n+v*m);g[F+352+8>>2]=x*A+y*B+z*C+(x*o+y*n+z*m);g[F+352+12>>2]=0.0;m=+g[f+48>>2];n=+g[f+52>>2];o=+g[f+56>>2];P=+g[f>>2];G=+g[f+16>>2];H=+g[f+32>>2];I=+g[f+4>>2];J=+g[f+20>>2];K=+g[f+36>>2];L=+g[f+8>>2];M=+g[f+24>>2];N=+g[f+40>>2];g[F+288>>2]=p*P+q*G+r*H;g[F+288+4>>2]=p*I+q*J+r*K;g[F+288+8>>2]=p*L+q*M+r*N;g[F+288+12>>2]=0.0;g[F+288+16>>2]=s*P+t*G+v*H;g[F+288+20>>2]=s*I+t*J+v*K;g[F+288+24>>2]=s*L+t*M+v*N;g[F+288+28>>2]=0.0;g[F+288+32>>2]=x*P+y*G+z*H;g[F+288+36>>2]=x*I+y*J+z*K;g[F+288+40>>2]=x*L+y*M+z*N;l=F+288+44|0;c[l>>2]=0;c[l+4>>2]=0;c[l+8>>2]=0;c[l+12>>2]=0;c[l+16>>2]=0;l=c[h+8>>2]|0;N=+Sb[c[(c[E>>2]|0)+48>>2]&15](E);c[F+64>>2]=9048;c[F+64+4>>2]=d;c[F+64+8>>2]=c[e>>2];c[F+64+8+4>>2]=c[e+4>>2];c[F+64+8+8>>2]=c[e+8>>2];c[F+64+8+12>>2]=c[e+12>>2];c[F+64+24>>2]=c[e+16>>2];c[F+64+24+4>>2]=c[e+16+4>>2];c[F+64+24+8>>2]=c[e+16+8>>2];c[F+64+24+12>>2]=c[e+16+12>>2];c[F+64+40>>2]=c[e+32>>2];c[F+64+40+4>>2]=c[e+32+4>>2];c[F+64+40+8>>2]=c[e+32+8>>2];c[F+64+40+12>>2]=c[e+32+12>>2];c[F+64+56>>2]=c[e+48>>2];c[F+64+56+4>>2]=c[e+48+4>>2];c[F+64+56+8>>2]=c[e+48+8>>2];c[F+64+56+12>>2]=c[e+48+12>>2];c[F+64+72>>2]=c[f>>2];c[F+64+72+4>>2]=c[f+4>>2];c[F+64+72+8>>2]=c[f+8>>2];c[F+64+72+12>>2]=c[f+12>>2];c[F+64+88>>2]=c[f+16>>2];c[F+64+88+4>>2]=c[f+16+4>>2];c[F+64+88+8>>2]=c[f+16+8>>2];c[F+64+88+12>>2]=c[f+16+12>>2];c[F+64+104>>2]=c[f+32>>2];c[F+64+104+4>>2]=c[f+32+4>>2];c[F+64+104+8>>2]=c[f+32+8>>2];c[F+64+104+12>>2]=c[f+32+12>>2];c[F+64+120>>2]=c[f+48>>2];c[F+64+120+4>>2]=c[f+48+4>>2];c[F+64+120+8>>2]=c[f+48+8>>2];c[F+64+120+12>>2]=c[f+48+12>>2];c[F+64+136>>2]=c[D>>2];c[F+64+136+4>>2]=c[D+4>>2];c[F+64+136+8>>2]=c[D+8>>2];c[F+64+136+12>>2]=c[D+12>>2];c[F+64+152>>2]=c[D+16>>2];c[F+64+152+4>>2]=c[D+16+4>>2];c[F+64+152+8>>2]=c[D+16+8>>2];c[F+64+152+12>>2]=c[D+16+12>>2];c[F+64+168>>2]=c[D+32>>2];c[F+64+168+4>>2]=c[D+32+4>>2];c[F+64+168+8>>2]=c[D+32+8>>2];c[F+64+168+12>>2]=c[D+32+12>>2];c[F+64+184>>2]=c[D+48>>2];c[F+64+184+4>>2]=c[D+48+4>>2];c[F+64+184+8>>2]=c[D+48+8>>2];c[F+64+184+12>>2]=c[D+48+12>>2];g[F+64+204>>2]=N;c[F+64>>2]=5864;c[F+64+212>>2]=j;c[F+64+216>>2]=l;c[F+64+220>>2]=E;c[F+64+200>>2]=c[j+4>>2];g[F+64+208>>2]=k;mc[c[(c[d>>2]|0)+8>>2]&127](d,F+288|0,F+16|0,F);l=c[E+48>>2]|0;c[F+712>>2]=6904;c[F+712+4>>2]=l;c[F+712+8>>2]=F+64;l=c[E+52>>2]|0;if(!(a[l+60>>0]|0))Re(l,F+712|0,F+352|0,p*A+q*B+r*C+(p*m+q*n+r*o),s*A+t*B+v*C+(s*m+t*n+v*o),x*A+y*B+z*C+(x*m+y*n+z*o),F+16|0,F);else ze(l,F+712|0,F+352|0,p*A+q*B+r*C+(p*m+q*n+r*o),s*A+t*B+v*C+(s*m+t*n+v*o),x*A+y*B+z*C+(x*m+y*n+z*o),F+16|0,F,c[l+56>>2]|0);i=F;return}case 28:{c[F+712>>2]=3708;c[F+712+168>>2]=0;g[F+712+172>>2]=k;c[F+712+164>>2]=c[j+4>>2];c[F+352>>2]=9188;c[F+352+4>>2]=0;c[F+352+8>>2]=0;c[F+352+12>>2]=d;c[F+352+16>>2]=0;c[F+352+20>>2]=E;if((Xd(F+352|0,e,f,D,D,F+712|0)|0?(u=F+712+132|0,o=+g[u>>2],q=+g[F+712+136>>2],r=+g[F+712+140>>2],o*o+q*q+r*r>9.999999747378752e-05):0)?(s=+g[F+712+164>>2],s<+g[j+4>>2]):0){P=1.0/+O(+(o*o+q*q+r*r));g[u>>2]=o*P;g[F+712+136>>2]=q*P;g[F+712+140>>2]=r*P;c[F+288>>2]=c[h+8>>2];c[F+288+4>>2]=0;c[F+288+8>>2]=c[u>>2];c[F+288+8+4>>2]=c[u+4>>2];c[F+288+8+8>>2]=c[u+8>>2];c[F+288+8+12>>2]=c[u+12>>2];c[F+288+24>>2]=c[F+712+148>>2];c[F+288+24+4>>2]=c[F+712+148+4>>2];c[F+288+24+8>>2]=c[F+712+148+8>>2];c[F+288+24+12>>2]=c[F+712+148+12>>2];g[F+288+40>>2]=s;+_b[c[(c[j>>2]|0)+12>>2]&15](j,F+288|0,1)}i=F;return}default:{p=+g[D>>2];q=+g[D+16>>2];r=+g[D+32>>2];x=+g[D+4>>2];y=+g[D+20>>2];z=+g[D+36>>2];J=+g[D+8>>2];L=+g[D+24>>2];N=+g[D+40>>2];H=-+g[D+48>>2];G=-+g[D+52>>2];C=-+g[D+56>>2];A=+g[e+48>>2];B=+g[e+52>>2];m=+g[e+56>>2];o=p*H+q*G+r*C+(p*A+q*B+r*m);n=x*H+y*G+z*C+(x*A+y*B+z*m);m=J*H+L*G+N*C+(J*A+L*B+N*m);B=+g[f+48>>2];A=+g[f+52>>2];v=+g[f+56>>2];s=p*H+q*G+r*C+(p*B+q*A+r*v);t=x*H+y*G+z*C+(x*B+y*A+z*v);v=J*H+L*G+N*C+(J*B+L*A+N*v);A=+g[f>>2];B=+g[f+16>>2];C=+g[f+32>>2];G=+g[f+4>>2];H=+g[f+20>>2];I=+g[f+36>>2];K=+g[f+8>>2];M=+g[f+24>>2];P=+g[f+40>>2];g[F+712>>2]=p*A+q*B+r*C;g[F+712+4>>2]=p*G+q*H+r*I;g[F+712+8>>2]=p*K+q*M+r*P;g[F+712+12>>2]=0.0;g[F+712+16>>2]=x*A+y*B+z*C;g[F+712+20>>2]=x*G+y*H+z*I;g[F+712+24>>2]=x*K+y*M+z*P;g[F+712+28>>2]=0.0;g[F+712+32>>2]=J*A+L*B+N*C;g[F+712+36>>2]=J*G+L*H+N*I;g[F+712+40>>2]=J*K+L*M+N*P;w=F+712+44|0;c[w>>2]=0;c[w+4>>2]=0;c[w+8>>2]=0;c[w+12>>2]=0;c[w+16>>2]=0;h=c[h+8>>2]|0;P=+Sb[c[(c[E>>2]|0)+48>>2]&15](E);c[F+352>>2]=9048;c[F+352+4>>2]=d;c[F+352+8>>2]=c[e>>2];c[F+352+8+4>>2]=c[e+4>>2];c[F+352+8+8>>2]=c[e+8>>2];c[F+352+8+12>>2]=c[e+12>>2];c[F+352+24>>2]=c[e+16>>2];c[F+352+24+4>>2]=c[e+16+4>>2];c[F+352+24+8>>2]=c[e+16+8>>2];c[F+352+24+12>>2]=c[e+16+12>>2];c[F+352+40>>2]=c[e+32>>2];c[F+352+40+4>>2]=c[e+32+4>>2];c[F+352+40+8>>2]=c[e+32+8>>2];c[F+352+40+12>>2]=c[e+32+12>>2];c[F+352+56>>2]=c[e+48>>2];c[F+352+56+4>>2]=c[e+48+4>>2];c[F+352+56+8>>2]=c[e+48+8>>2];c[F+352+56+12>>2]=c[e+48+12>>2];c[F+352+72>>2]=c[f>>2];c[F+352+72+4>>2]=c[f+4>>2];c[F+352+72+8>>2]=c[f+8>>2];c[F+352+72+12>>2]=c[f+12>>2];c[F+352+88>>2]=c[f+16>>2];c[F+352+88+4>>2]=c[f+16+4>>2];c[F+352+88+8>>2]=c[f+16+8>>2];c[F+352+88+12>>2]=c[f+16+12>>2];c[F+352+104>>2]=c[f+32>>2];c[F+352+104+4>>2]=c[f+32+4>>2];c[F+352+104+8>>2]=c[f+32+8>>2];c[F+352+104+12>>2]=c[f+32+12>>2];c[F+352+120>>2]=c[f+48>>2];c[F+352+120+4>>2]=c[f+48+4>>2];c[F+352+120+8>>2]=c[f+48+8>>2];c[F+352+120+12>>2]=c[f+48+12>>2];c[F+352+136>>2]=c[D>>2];c[F+352+136+4>>2]=c[D+4>>2];c[F+352+136+8>>2]=c[D+8>>2];c[F+352+136+12>>2]=c[D+12>>2];c[F+352+152>>2]=c[D+16>>2];c[F+352+152+4>>2]=c[D+16+4>>2];c[F+352+152+8>>2]=c[D+16+8>>2];c[F+352+152+12>>2]=c[D+16+12>>2];c[F+352+168>>2]=c[D+32>>2];c[F+352+168+4>>2]=c[D+32+4>>2];c[F+352+168+8>>2]=c[D+32+8>>2];c[F+352+168+12>>2]=c[D+32+12>>2];c[F+352+184>>2]=c[D+48>>2];c[F+352+184+4>>2]=c[D+48+4>>2];c[F+352+184+8>>2]=c[D+48+8>>2];c[F+352+184+12>>2]=c[D+48+12>>2];g[F+352+204>>2]=P;c[F+352>>2]=5888;c[F+352+212>>2]=j;c[F+352+216>>2]=h;c[F+352+220>>2]=E;c[F+352+200>>2]=c[j+4>>2];g[F+352+208>>2]=k;mc[c[(c[d>>2]|0)+8>>2]&127](d,F+712|0,F+288|0,F+64|0);g[F+16>>2]=o;g[F+16+4>>2]=n;g[F+16+8>>2]=m;g[F+16+12>>2]=0.0;if(s>2]=s;p=s}else p=o;if(t>2]=t;q=t}else q=n;if(v>2]=v;r=v}else r=m;g[F>>2]=o;g[F+4>>2]=n;g[F+8>>2]=m;g[F+12>>2]=0.0;if(o>2]=s;o=s}if(n>2]=t;n=t}if(m>2]=v;m=v}g[F+16>>2]=+g[F+288>>2]+p;g[F+16+4>>2]=+g[F+288+4>>2]+q;g[F+16+8>>2]=+g[F+288+8>>2]+r;g[F>>2]=+g[F+64>>2]+o;g[F+4>>2]=+g[F+64+4>>2]+n;g[F+8>>2]=+g[F+64+8>>2]+m;mc[c[(c[E>>2]|0)+64>>2]&127](E,F+352|0,F+16|0,F);i=F;return}}}function Jc(d,e,f){d=d|0;e=e|0;f=+f;var h=0,j=0.0,k=0.0,l=0,m=0.0,n=0,o=0.0,p=0,q=0.0,r=0.0,s=0.0,t=0,u=0;t=i;i=i+528|0;if((a[d+171>>0]|0)==0?+g[d+172>>2]<=0.0:0){i=t;return}a[d+168>>0]=(Eb[c[(c[d>>2]|0)+48>>2]&127](d)|0)&1;j=+g[d+16>>2]-+g[d+44>>2]*f;g[d+16>>2]=j;if(j>0.0?(k=+g[d+28>>2],j>k):0){g[d+16>>2]=k;j=k}if(j<0.0?(r=+N(+j),m=+N(+(+g[d+24>>2])),r>m):0){g[d+16>>2]=-m;j=-m}g[d+20>>2]=j*f;h=c[d+8>>2]|0;c[t>>2]=c[h+4>>2];c[t+4>>2]=c[h+4+4>>2];c[t+8>>2]=c[h+4+8>>2];c[t+12>>2]=c[h+4+12>>2];c[t+16>>2]=c[h+20>>2];c[t+16+4>>2]=c[h+20+4>>2];c[t+16+8>>2]=c[h+20+8>>2];c[t+16+12>>2]=c[h+20+12>>2];c[t+32>>2]=c[h+36>>2];c[t+32+4>>2]=c[h+36+4>>2];c[t+32+8>>2]=c[h+36+8>>2];c[t+32+12>>2]=c[h+36+12>>2];c[t+48>>2]=c[h+52>>2];c[t+48+4>>2]=c[h+52+4>>2];c[t+48+8>>2]=c[h+52+8>>2];c[t+48+12>>2]=c[h+52+12>>2];h=c[d+176>>2]|0;if((a[22560]|0)==0?Wa(22560)|0:0){c[6126]=1065353216;c[6127]=0;c[6128]=0;c[6129]=0;c[6130]=0;c[6131]=1065353216;c[6132]=0;c[6133]=0;c[6134]=0;c[6135]=0;c[6136]=1065353216;g[6137]=0.0;_a(22560)}m=+g[d+20>>2];m=+g[d+52>>2]+(m>0.0?m:0.0);q=+g[24504+(h<<4)+4>>2]*m+ +g[d+96>>2];r=m*+g[24504+(h<<4)+8>>2]+ +g[d+100>>2];g[d+112>>2]=+g[d+92>>2]+ +g[24504+(h<<4)>>2]*m;g[d+116>>2]=q;g[d+120>>2]=r;g[d+124>>2]=0.0;c[t+456>>2]=1065353216;c[t+456+4>>2]=0;c[t+456+4+4>>2]=0;c[t+456+4+8>>2]=0;c[t+456+4+12>>2]=0;c[t+456+20>>2]=1065353216;c[t+456+24>>2]=0;c[t+456+24+4>>2]=0;c[t+456+24+8>>2]=0;c[t+456+24+12>>2]=0;c[t+456+40>>2]=1065353216;h=t+456+44|0;c[h>>2]=0;c[h+4>>2]=0;c[h+8>>2]=0;c[h+12>>2]=0;c[h+16>>2]=0;c[t+392>>2]=1065353216;c[t+392+4>>2]=0;c[t+392+4+4>>2]=0;c[t+392+4+8>>2]=0;c[t+392+4+12>>2]=0;c[t+392+20>>2]=1065353216;c[t+392+24>>2]=0;c[t+392+24+4>>2]=0;c[t+392+24+8>>2]=0;c[t+392+24+12>>2]=0;c[t+392+40>>2]=1065353216;h=t+392+44|0;c[h>>2]=0;c[h+4>>2]=0;c[h+8>>2]=0;c[h+12>>2]=0;c[h+16>>2]=0;h=c[d+176>>2]|0;if((a[22560]|0)==0?Wa(22560)|0:0){c[6126]=1065353216;c[6127]=0;c[6128]=0;c[6129]=0;c[6130]=0;c[6131]=1065353216;c[6132]=0;c[6133]=0;c[6134]=0;c[6135]=0;c[6136]=1065353216;g[6137]=0.0;_a(22560)}l=c[d+12>>2]|0;m=+Sb[c[(c[l>>2]|0)+48>>2]&15](l);m=m+ +g[d+56>>2];q=m*+g[24504+(h<<4)+4>>2]+ +g[d+96>>2];r=m*+g[24504+(h<<4)+8>>2]+ +g[d+100>>2];g[t+456+48>>2]=+g[24504+(h<<4)>>2]*m+ +g[d+92>>2];g[t+456+52>>2]=q;g[t+456+56>>2]=r;g[t+456+60>>2]=0.0;c[t+392+48>>2]=c[d+112>>2];c[t+392+48+4>>2]=c[d+112+4>>2];c[t+392+48+8>>2]=c[d+112+8>>2];c[t+392+48+12>>2]=c[d+112+12>>2];h=c[d+8>>2]|0;l=c[d+176>>2]|0;if((a[22560]|0)==0?Wa(22560)|0:0){c[6126]=1065353216;c[6127]=0;c[6128]=0;c[6129]=0;c[6130]=0;c[6131]=1065353216;c[6132]=0;c[6133]=0;c[6134]=0;c[6135]=0;c[6136]=1065353216;g[6137]=0.0;_a(22560)}m=-+g[24504+(l<<4)>>2];q=-+g[24504+(l<<4)+4>>2];r=-+g[24504+(l<<4)+8>>2];g[t+288+4>>2]=1.0;b[t+288+8>>1]=1;b[t+288+10>>1]=-1;p=t+288+12|0;c[t+288+76>>2]=0;c[p>>2]=0;c[p+4>>2]=0;c[p+8>>2]=0;c[p+12>>2]=0;c[p+16>>2]=0;c[p+20>>2]=0;c[p+24>>2]=0;c[p+28>>2]=0;c[t+288>>2]=4936;c[t+288+80>>2]=h;g[t+288+84>>2]=m;g[t+288+88>>2]=q;g[t+288+92>>2]=r;g[t+288+96>>2]=0.0;g[t+288+100>>2]=.707099974155426;h=c[d+8>>2]|0;p=c[(c[h+188>>2]|0)+4>>2]|0;b[t+288+8>>1]=p;b[t+288+10>>1]=p>>>16;if(!(a[d+170>>0]|0))Kd(e,c[d+12>>2]|0,t+456|0,t+392|0,t+288|0,0.0);else wd(h,c[d+12>>2]|0,t+456|0,t+392|0,t+288|0,+g[e+56>>2]);if(+g[t+288+4>>2]<1.0){h=c[d+176>>2]|0;if((a[22560]|0)==0?Wa(22560)|0:0){c[6126]=1065353216;c[6127]=0;c[6128]=0;c[6129]=0;c[6130]=0;c[6131]=1065353216;c[6132]=0;c[6133]=0;c[6134]=0;c[6135]=0;c[6136]=1065353216;g[6137]=0.0;_a(22560)}do if(+g[t+288+44>>2]*+g[24504+(h<<4)>>2]+ +g[t+288+48>>2]*+g[24504+(h<<4)+4>>2]+ +g[t+288+52>>2]*+g[24504+(h<<4)+8>>2]>0.0){j=+g[t+288+4>>2];g[d+108>>2]=+g[d+52>>2]*j;if(!(a[d+180>>0]|0)){c[d+92>>2]=c[d+112>>2];c[d+92+4>>2]=c[d+112+4>>2];c[d+92+8>>2]=c[d+112+8>>2];c[d+92+12>>2]=c[d+112+12>>2];break}else{g[d+92>>2]=(1.0-j)*+g[d+92>>2]+j*+g[d+112>>2];g[d+96>>2]=(1.0-j)*+g[d+96>>2]+j*+g[d+116>>2];g[d+100>>2]=(1.0-j)*+g[d+100>>2]+j*+g[d+120>>2];break}}while(0);g[d+16>>2]=0.0;g[d+20>>2]=0.0}else{c[d+108>>2]=c[d+52>>2];c[d+92>>2]=c[d+112>>2];c[d+92+4>>2]=c[d+112+4>>2];c[d+92+8>>2]=c[d+112+8>>2];c[d+92+12>>2]=c[d+112+12>>2]}if(!(a[d+171>>0]|0)){q=+g[d+172>>2];r=q>f?f:q;g[d+172>>2]=q-f;he(d,e,r*+g[d+60>>2],r*+g[d+64>>2],r*+g[d+68>>2])}else he(d,e,+g[d+60>>2],+g[d+64>>2],+g[d+68>>2]);c[t+272>>2]=c[d+112>>2];c[t+272+4>>2]=c[d+112+4>>2];c[t+272+8>>2]=c[d+112+8>>2];c[t+272+12>>2]=c[d+112+12>>2];j=+g[d+16>>2];j=(j<0.0?-j:0.0)*f;if(j>0.0?(o=+g[d+24>>2],j>o):0){p=b[d+168>>1]|0;j=(p&255)<<24>>24!=0|(p&65535)<256?o:j}h=c[d+176>>2]|0;if((a[22560]|0)==0?Wa(22560)|0:0){c[6126]=1065353216;c[6127]=0;c[6128]=0;c[6129]=0;c[6130]=0;c[6131]=1065353216;c[6132]=0;c[6133]=0;c[6134]=0;c[6135]=0;c[6136]=1065353216;g[6137]=0.0;_a(22560)}o=j+ +g[d+108>>2];q=+g[24504+(h<<4)>>2]*o;r=o*+g[24504+(h<<4)+4>>2];o=o*+g[24504+(h<<4)+8>>2];g[d+112>>2]=+g[d+112>>2]-q;g[d+116>>2]=+g[d+116>>2]-r;g[d+120>>2]=+g[d+120>>2]-o;h=c[d+8>>2]|0;l=c[d+176>>2]|0;if((a[22560]|0)==0?Wa(22560)|0:0){c[6126]=1065353216;c[6127]=0;c[6128]=0;c[6129]=0;c[6130]=0;c[6131]=1065353216;c[6132]=0;c[6133]=0;c[6134]=0;c[6135]=0;c[6136]=1065353216;g[6137]=0.0;_a(22560)}n=c[d+40>>2]|0;p=t+168+4|0;g[p>>2]=1.0;b[t+168+8>>1]=1;b[t+168+10>>1]=-1;u=t+168+12|0;c[t+168+76>>2]=0;c[u>>2]=0;c[u+4>>2]=0;c[u+8>>2]=0;c[u+12>>2]=0;c[u+16>>2]=0;c[u+20>>2]=0;c[u+24>>2]=0;c[u+28>>2]=0;c[t+168>>2]=4936;c[t+168+80>>2]=h;c[t+168+84>>2]=c[24504+(l<<4)>>2];c[t+168+84+4>>2]=c[24504+(l<<4)+4>>2];c[t+168+84+8>>2]=c[24504+(l<<4)+8>>2];c[t+168+84+12>>2]=c[24504+(l<<4)+12>>2];c[t+168+100>>2]=n;h=c[d+8>>2]|0;l=c[(c[h+188>>2]|0)+4>>2]|0;b[t+168+8>>1]=l;b[t+168+10>>1]=l>>>16;l=c[d+176>>2]|0;if((a[22560]|0)==0?Wa(22560)|0:0){c[6126]=1065353216;c[6127]=0;c[6128]=0;c[6129]=0;c[6130]=0;c[6131]=1065353216;c[6132]=0;c[6133]=0;c[6134]=0;c[6135]=0;c[6136]=1065353216;g[6137]=0.0;_a(22560)}u=c[d+40>>2]|0;g[t+64+4>>2]=1.0;b[t+64+8>>1]=1;b[t+64+10>>1]=-1;n=t+64+12|0;c[t+64+76>>2]=0;c[n>>2]=0;c[n+4>>2]=0;c[n+8>>2]=0;c[n+12>>2]=0;c[n+16>>2]=0;c[n+20>>2]=0;c[n+24>>2]=0;c[n+28>>2]=0;c[t+64>>2]=4936;c[t+64+80>>2]=h;c[t+64+84>>2]=c[24504+(l<<4)>>2];c[t+64+84+4>>2]=c[24504+(l<<4)+4>>2];c[t+64+84+8>>2]=c[24504+(l<<4)+8>>2];c[t+64+84+12>>2]=c[24504+(l<<4)+12>>2];c[t+64+100>>2]=u;h=c[(c[(c[d+8>>2]|0)+188>>2]|0)+4>>2]|0;b[t+64+8>>1]=h;b[t+64+10>>1]=h>>>16;j=+g[d+112>>2];k=+g[d+116>>2];m=+g[d+120>>2];h=0;while(1){c[t+456>>2]=1065353216;c[t+456+4>>2]=0;c[t+456+4+4>>2]=0;c[t+456+4+8>>2]=0;c[t+456+4+12>>2]=0;c[t+456+20>>2]=1065353216;c[t+456+24>>2]=0;c[t+456+24+4>>2]=0;c[t+456+24+8>>2]=0;c[t+456+24+12>>2]=0;c[t+456+40>>2]=1065353216;c[t+456+44>>2]=0;c[t+392>>2]=1065353216;c[t+392+4>>2]=0;c[t+392+4+4>>2]=0;c[t+392+4+8>>2]=0;c[t+392+4+12>>2]=0;c[t+392+20>>2]=1065353216;c[t+392+24>>2]=0;c[t+392+24+4>>2]=0;c[t+392+24+8>>2]=0;c[t+392+24+12>>2]=0;c[t+392+40>>2]=1065353216;c[t+392+44>>2]=0;c[t+288>>2]=1065353216;c[t+288+4>>2]=0;c[t+288+4+4>>2]=0;c[t+288+4+8>>2]=0;c[t+288+4+12>>2]=0;c[t+288+20>>2]=1065353216;c[t+288+24>>2]=0;c[t+288+24+4>>2]=0;c[t+288+24+8>>2]=0;c[t+288+24+12>>2]=0;c[t+288+40>>2]=1065353216;c[t+288+44>>2]=0;c[t+288+44+4>>2]=0;c[t+288+44+8>>2]=0;c[t+456+48>>2]=c[d+92>>2];c[t+456+48+4>>2]=c[d+92+4>>2];c[t+456+48+8>>2]=c[d+92+8>>2];c[t+456+48+12>>2]=c[d+92+12>>2];c[t+392+48>>2]=c[d+112>>2];c[t+392+48+4>>2]=c[d+112+4>>2];c[t+392+48+8>>2]=c[d+112+8>>2];c[t+392+48+12>>2]=c[d+112+12>>2];g[t+288+48>>2]=j-q;g[t+288+52>>2]=k-r;g[t+288+56>>2]=m-o;g[t+288+60>>2]=0.0;if(!(a[d+170>>0]|0)){Kd(e,c[d+12>>2]|0,t+456|0,t+392|0,t+168|0,+g[e+56>>2]);if(!(+g[p>>2]<1.0))Kd(e,c[d+12>>2]|0,t+456|0,t+288|0,t+64|0,+g[e+56>>2])}else{wd(c[d+8>>2]|0,c[d+12>>2]|0,t+456|0,t+392|0,t+168|0,+g[e+56>>2]);if(!(+g[p>>2]<1.0))wd(c[d+8>>2]|0,c[d+12>>2]|0,t+456|0,t+288|0,t+64|0,+g[e+56>>2])}k=+g[d+16>>2];k=(k<0.0?-k:0.0)*f;n=(a[d+182>>0]|0)==0;if(!n?+g[p>>2]<1.0:0)l=1;else l=+g[t+64+4>>2]<1.0;if(!(k>0.0))break;j=+g[d+52>>2];if(h|(!(k>1]|0;if(!((u&255)<<24>>24!=0|(u&65535)<256)){h=0;break}c[d+112>>2]=c[t+272>>2];c[d+112+4>>2]=c[t+272+4>>2];c[d+112+8>>2]=c[t+272+8>>2];c[d+112+12>>2]=c[t+272+12>>2];h=c[d+176>>2]|0;do if(!(a[22560]|0)){if(!(Wa(22560)|0))break;c[6126]=1065353216;c[6127]=0;c[6128]=0;c[6129]=0;c[6130]=0;c[6131]=1065353216;c[6132]=0;c[6133]=0;c[6134]=0;c[6135]=0;c[6136]=1065353216;g[6137]=0.0;_a(22560)}while(0);j=j+ +g[d+108>>2];k=j*+g[24504+(h<<4)+4>>2];m=j*+g[24504+(h<<4)+8>>2];j=+g[d+112>>2]-+g[24504+(h<<4)>>2]*j;g[d+112>>2]=j;k=+g[d+116>>2]-k;g[d+116>>2]=k;m=+g[d+120>>2]-m;g[d+120>>2]=m;h=1}m=+g[p>>2];if(h|m<1.0){j=+g[d+96>>2];k=(j-+g[t+168+64>>2])*.5;do if(!n)if(!(a[d+181>>0]|0)){g[d+92>>2]=(1.0-k)*+g[d+92>>2]+k*+g[d+112>>2];g[d+96>>2]=(1.0-k)*j+k*+g[d+116>>2];g[d+100>>2]=(1.0-k)*+g[d+100>>2]+k*+g[d+120>>2];h=d+181|0;break}else{g[d+92>>2]=(1.0-m)*+g[d+92>>2]+m*+g[d+112>>2];g[d+96>>2]=(1.0-m)*j+m*+g[d+116>>2];g[d+100>>2]=(1.0-m)*+g[d+100>>2]+m*+g[d+120>>2];h=d+181|0;break}else{g[d+92>>2]=(1.0-m)*+g[d+92>>2]+m*+g[d+112>>2];g[d+96>>2]=(1.0-m)*j+m*+g[d+116>>2];g[d+100>>2]=(1.0-m)*+g[d+100>>2]+m*+g[d+120>>2];h=d+181|0}while(0);a[h>>0]=0;g[d+16>>2]=0.0;g[d+20>>2]=0.0;a[d+169>>0]=0}else{a[d+181>>0]=1;if((!n?(s=+g[d+24>>2],k>s):0)?(u=b[d+168>>1]|0,(u&255)<<24>>24!=0|(u&65535)<256):0){g[d+112>>2]=q+ +g[d+112>>2];g[d+116>>2]=r+ +g[d+116>>2];g[d+120>>2]=o+ +g[d+120>>2];h=c[d+176>>2]|0;do if(!(a[22560]|0)){if(!(Wa(22560)|0))break;c[6126]=1065353216;c[6127]=0;c[6128]=0;c[6129]=0;c[6130]=0;c[6131]=1065353216;c[6132]=0;c[6133]=0;c[6134]=0;c[6135]=0;c[6136]=1065353216;g[6137]=0.0;_a(22560)}while(0);r=s+ +g[d+108>>2];f=r*+g[24504+(h<<4)+4>>2];s=r*+g[24504+(h<<4)+8>>2];g[d+112>>2]=+g[d+112>>2]-+g[24504+(h<<4)>>2]*r;g[d+116>>2]=+g[d+116>>2]-f;g[d+120>>2]=+g[d+120>>2]-s}c[d+92>>2]=c[d+112>>2];c[d+92+4>>2]=c[d+112+4>>2];c[d+92+8>>2]=c[d+112+8>>2];c[d+92+12>>2]=c[d+112+12>>2]}c[t+48>>2]=c[d+92>>2];c[t+48+4>>2]=c[d+92+4>>2];c[t+48+8>>2]=c[d+92+8>>2];c[t+48+12>>2]=c[d+92+12>>2];u=c[d+8>>2]|0;c[u+260>>2]=(c[u+260>>2]|0)+1;c[u+4>>2]=c[t>>2];c[u+4+4>>2]=c[t+4>>2];c[u+4+8>>2]=c[t+8>>2];c[u+4+12>>2]=c[t+12>>2];c[u+20>>2]=c[t+16>>2];c[u+20+4>>2]=c[t+16+4>>2];c[u+20+8>>2]=c[t+16+8>>2];c[u+20+12>>2]=c[t+16+12>>2];c[u+36>>2]=c[t+32>>2];c[u+36+4>>2]=c[t+32+4>>2];c[u+36+8>>2]=c[t+32+8>>2];c[u+36+12>>2]=c[t+32+12>>2];c[u+52>>2]=c[t+48>>2];c[u+52+4>>2]=c[t+48+4>>2];c[u+52+8>>2]=c[t+48+8>>2];c[u+52+12>>2]=c[t+48+12>>2];i=t;return}function Kc(b,d,e,f,h){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;var j=0,l=0,m=0,n=0.0,o=0,p=0.0,q=0.0,r=0.0,s=0,t=0,u=0,v=0,w=0,x=0,y=0.0,z=0;z=i;i=i+112|0;c[b+164>>2]=1065353216;c[b+168>>2]=1065353216;c[b+172>>2]=1065353216;g[b+176>>2]=0.0;c[b+180>>2]=0;g[b+184>>2]=999999984306749440.0;c[b+188>>2]=0;c[b+188+4>>2]=0;c[b+188+8>>2]=0;c[b+188+12>>2]=0;c[b+204>>2]=1;c[b+208>>2]=-1;c[b+212>>2]=-1;c[b+216>>2]=1;g[b+220>>2]=0.0;g[b+224>>2]=.5;g[b+228>>2]=0.0;g[b+232>>2]=0.0;c[b+236>>2]=1;c[b+240>>2]=0;g[b+244>>2]=1.0;c[b+248>>2]=0;c[b+248+4>>2]=0;c[b+248+8>>2]=0;c[b+248+12>>2]=0;c[b+4>>2]=1065353216;c[b+8>>2]=0;c[b+8+4>>2]=0;c[b+8+8>>2]=0;c[b+8+12>>2]=0;c[b+24>>2]=1065353216;c[b+28>>2]=0;c[b+28+4>>2]=0;c[b+28+8>>2]=0;c[b+28+12>>2]=0;c[b+44>>2]=1065353216;c[b+48>>2]=0;c[b+48+4>>2]=0;c[b+48+8>>2]=0;c[b+48+12>>2]=0;c[b+48+16>>2]=0;c[b>>2]=3180;a[b+280>>0]=1;c[b+276>>2]=0;c[b+268>>2]=0;c[b+272>>2]=0;c[b+284>>2]=0;a[b+408>>0]=1;c[b+404>>2]=0;c[b+396>>2]=0;c[b+400>>2]=0;a[b+428>>0]=1;c[b+424>>2]=0;c[b+416>>2]=0;c[b+420>>2]=0;a[b+448>>0]=1;c[b+444>>2]=0;c[b+436>>2]=0;c[b+440>>2]=0;a[b+496>>0]=1;c[b+492>>2]=0;c[b+484>>2]=0;c[b+488>>2]=0;a[b+516>>0]=1;c[b+512>>2]=0;c[b+504>>2]=0;c[b+508>>2]=0;c[b+684>>2]=d;a[b+704>>0]=1;c[b+700>>2]=0;c[b+692>>2]=0;c[b+696>>2]=0;a[b+724>>0]=1;c[b+720>>2]=0;c[b+712>>2]=0;c[b+716>>2]=0;a[b+744>>0]=1;c[b+740>>2]=0;c[b+732>>2]=0;c[b+736>>2]=0;a[b+764>>0]=1;c[b+760>>2]=0;c[b+752>>2]=0;c[b+756>>2]=0;a[b+784>>0]=1;c[b+780>>2]=0;c[b+772>>2]=0;c[b+776>>2]=0;a[b+804>>0]=1;c[b+800>>2]=0;c[b+792>>2]=0;c[b+796>>2]=0;a[b+824>>0]=1;c[b+820>>2]=0;c[b+812>>2]=0;c[b+816>>2]=0;a[b+844>>0]=1;c[b+840>>2]=0;c[b+832>>2]=0;c[b+836>>2]=0;a[b+864>>0]=1;c[b+860>>2]=0;c[b+852>>2]=0;c[b+856>>2]=0;a[b+884>>0]=1;c[b+880>>2]=0;c[b+872>>2]=0;c[b+876>>2]=0;a[b+964>>0]=1;c[b+960>>2]=0;c[b+952>>2]=0;c[b+956>>2]=0;a[b+984>>0]=1;c[b+980>>2]=0;c[b+972>>2]=0;c[b+976>>2]=0;c[b+928>>2]=0;c[b+932>>2]=0;c[b+936>>2]=-1;c[b+940>>2]=0;c[b+944>>2]=0;a[b+1024>>0]=1;c[b+1020>>2]=0;c[b+1012>>2]=0;c[b+1016>>2]=0;a[b+1044>>0]=1;c[b+1040>>2]=0;c[b+1032>>2]=0;c[b+1036>>2]=0;c[b+988>>2]=0;c[b+992>>2]=0;c[b+996>>2]=-1;c[b+1e3>>2]=0;c[b+1004>>2]=0;a[b+1084>>0]=1;c[b+1080>>2]=0;c[b+1072>>2]=0;c[b+1076>>2]=0;a[b+1104>>0]=1;c[b+1100>>2]=0;c[b+1092>>2]=0;c[b+1096>>2]=0;c[b+1048>>2]=0;c[b+1052>>2]=0;c[b+1056>>2]=-1;c[b+1060>>2]=0;c[b+1064>>2]=0;a[b+1124>>0]=1;c[b+1120>>2]=0;c[b+1112>>2]=0;c[b+1116>>2]=0;a[b+1144>>0]=1;c[b+1140>>2]=0;c[b+1132>>2]=0;c[b+1136>>2]=0;a[b+1248>>0]=1;c[b+1244>>2]=0;c[b+1236>>2]=0;c[b+1240>>2]=0;c[b+236>>2]=8;c[b+288>>2]=0;g[b+292>>2]=1.0;c[b+296>>2]=0;c[b+296+4>>2]=0;c[b+296+8>>2]=0;c[b+296+12>>2]=0;c[b+296+16>>2]=0;g[b+316>>2]=.20000000298023224;g[b+320>>2]=0.0;g[b+324>>2]=1.0;g[b+328>>2]=.10000000149011612;g[b+332>>2]=1.0;g[b+336>>2]=.699999988079071;g[b+340>>2]=.10000000149011612;g[b+344>>2]=1.0;g[b+348>>2]=.5;g[b+352>>2]=.5;g[b+356>>2]=.5;g[b+360>>2]=.5;g[b+364>>2]=1.0;g[b+368>>2]=1.0;c[b+372>>2]=0;c[b+376>>2]=1;c[b+380>>2]=0;c[b+384>>2]=4;c[b+388>>2]=1;a[b+472>>0]=0;a[b+473>>0]=0;g[b+476>>2]=0.0;c[b+520>>2]=0;c[b+520+4>>2]=0;c[b+520+8>>2]=0;c[b+520+12>>2]=0;c[b+536>>2]=1065353216;c[b+540>>2]=0;c[b+540+4>>2]=0;c[b+540+8>>2]=0;c[b+540+12>>2]=0;c[b+556>>2]=1065353216;c[b+560>>2]=0;c[b+560+4>>2]=0;c[b+560+8>>2]=0;c[b+560+12>>2]=0;c[b+576>>2]=1065353216;g[b+580>>2]=0.0;c[b+584>>2]=1065353216;c[b+588>>2]=0;c[b+588+4>>2]=0;c[b+588+8>>2]=0;c[b+588+12>>2]=0;c[b+604>>2]=1065353216;c[b+608>>2]=0;c[b+608+4>>2]=0;c[b+608+8>>2]=0;c[b+608+12>>2]=0;c[b+624>>2]=1065353216;g[b+628>>2]=0.0;c[b+680>>2]=0;g[b+888>>2]=0.0;a[b+924>>0]=1;c[b+892>>2]=0;c[b+892+4>>2]=0;c[b+892+8>>2]=0;c[b+892+12>>2]=0;c[b+892+16>>2]=0;c[b+892+20>>2]=0;c[b+892+24>>2]=0;c[b+892+28>>2]=0;c[b+4>>2]=1065353216;c[b+8>>2]=0;c[b+8+4>>2]=0;c[b+8+8>>2]=0;c[b+8+12>>2]=0;c[b+24>>2]=1065353216;c[b+28>>2]=0;c[b+28+4>>2]=0;c[b+28+8>>2]=0;c[b+28+12>>2]=0;c[b+44>>2]=1065353216;c[b+48>>2]=0;c[b+48+4>>2]=0;c[b+48+8>>2]=0;c[b+48+12>>2]=0;c[b+48+16>>2]=0;d=c[b+404>>2]|0;if(d|0){if(a[b+408>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+404>>2]=0}a[b+408>>0]=1;c[b+404>>2]=0;c[b+396>>2]=0;c[b+400>>2]=0;d=c[b+424>>2]|0;if(d|0){if(a[b+428>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+424>>2]=0}a[b+428>>0]=1;c[b+424>>2]=0;c[b+416>>2]=0;c[b+420>>2]=0;d=c[b+444>>2]|0;do if(d)if(a[b+448>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0);j=c[b+416>>2]|0;d=c[b+420>>2]|0;c[b+444>>2]=0;a[b+448>>0]=1;c[b+444>>2]=0;c[b+436>>2]=0;c[b+440>>2]=0;if((j|0)==(d|0)){s=14;break}else break}else{c[b+444>>2]=0;a[b+448>>0]=1;c[b+444>>2]=0;c[b+436>>2]=0;c[b+440>>2]=0;d=0;s=14;break}else{a[b+448>>0]=1;c[b+444>>2]=0;c[b+436>>2]=0;c[b+440>>2]=0;d=0;s=14}while(0);if((s|0)==14){o=d|0?d<<1:1;if((d|0)<(o|0)){if(!o)m=0;else{c[6435]=(c[6435]|0)+1;d=yc((o<<2|3)+16|0)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}m=d;d=c[b+416>>2]|0}l=c[b+424>>2]|0;if((d|0)<=0){if(l)s=22}else{j=0;do{c[m+(j<<2)>>2]=c[l+(j<<2)>>2];j=j+1|0}while((j|0)!=(d|0));s=22}if((s|0)==22){if(a[b+428>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[l+-4>>2]|0);d=c[b+416>>2]|0}c[b+424>>2]=0}a[b+428>>0]=1;c[b+424>>2]=m;c[b+420>>2]=o;j=d;d=o}else j=d}c[(c[b+424>>2]|0)+(j<<2)>>2]=1;j=j+1|0;c[b+416>>2]=j;if((j|0)==(d|0)){o=d|0?d<<1:1;if((d|0)<(o|0)){if(!o)m=0;else{c[6435]=(c[6435]|0)+1;d=yc((o<<2|3)+16|0)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}m=d;d=c[b+416>>2]|0}l=c[b+424>>2]|0;if((d|0)<=0){if(l)s=35}else{j=0;do{c[m+(j<<2)>>2]=c[l+(j<<2)>>2];j=j+1|0}while((j|0)!=(d|0));s=35}if((s|0)==35){if(a[b+428>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[l+-4>>2]|0);d=c[b+416>>2]|0}c[b+424>>2]=0}a[b+428>>0]=1;c[b+424>>2]=m;c[b+420>>2]=o;j=d;d=o}else j=d}c[(c[b+424>>2]|0)+(j<<2)>>2]=2;j=j+1|0;c[b+416>>2]=j;if((j|0)==(d|0)){o=d|0?d<<1:1;if((d|0)<(o|0)){if(!o)m=0;else{c[6435]=(c[6435]|0)+1;d=yc((o<<2|3)+16|0)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}m=d;d=c[b+416>>2]|0}l=c[b+424>>2]|0;if((d|0)<=0){if(l)s=48}else{j=0;do{c[m+(j<<2)>>2]=c[l+(j<<2)>>2];j=j+1|0}while((j|0)!=(d|0));s=48}if((s|0)==48){if(a[b+428>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[l+-4>>2]|0);d=c[b+416>>2]|0}c[b+424>>2]=0}a[b+428>>0]=1;c[b+424>>2]=m;c[b+420>>2]=o;j=d;d=o}else j=d}c[(c[b+424>>2]|0)+(j<<2)>>2]=3;j=j+1|0;c[b+416>>2]=j;if((j|0)==(d|0)){o=d|0?d<<1:1;if((d|0)<(o|0)){if(!o)m=0;else{c[6435]=(c[6435]|0)+1;d=yc((o<<2|3)+16|0)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}m=d;d=c[b+416>>2]|0}l=c[b+424>>2]|0;if((d|0)<=0){if(l)s=61}else{j=0;do{c[m+(j<<2)>>2]=c[l+(j<<2)>>2];j=j+1|0}while((j|0)!=(d|0));s=61}if((s|0)==61){if(a[b+428>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[l+-4>>2]|0);d=c[b+416>>2]|0}c[b+424>>2]=0}a[b+428>>0]=1;c[b+424>>2]=m;c[b+420>>2]=o}}else d=j;c[(c[b+424>>2]|0)+(d<<2)>>2]=0;c[b+416>>2]=d+1;c[6435]=(c[6435]|0)+1;d=yc(39)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}c[d+8>>2]=0;c[d>>2]=3288;c[d+4>>2]=32;c[d+16>>2]=b;c[b+192>>2]=d;g[d+12>>2]=.25;c[b+1148>>2]=1065353216;c[b+1152>>2]=0;c[b+1152+4>>2]=0;c[b+1152+8>>2]=0;c[b+1152+12>>2]=0;c[b+1168>>2]=1065353216;c[b+1172>>2]=0;c[b+1172+4>>2]=0;c[b+1172+8>>2]=0;c[b+1172+12>>2]=0;c[b+1188>>2]=1065353216;s=b+1192|0;t=s+36|0;do{c[s>>2]=0;s=s+4|0}while((s|0)<(t|0));g[b+1228>>2]=1.0;x=ph(b)|0;g[x+4>>2]=1.0;g[x+8>>2]=1.0;g[x+12>>2]=1.0;c[x+16>>2]=1;s=c[b+192>>2]|0;y=+Sb[c[(c[s>>2]|0)+48>>2]&15](s);s=z;t=s+100|0;do{c[s>>2]=0;s=s+4|0}while((s|0)<(t|0));o=c[b+712>>2]|0;if((o|0)<(e|0)){if((c[b+716>>2]|0)<(e|0)){if(!e){d=0;j=o}else{c[6435]=(c[6435]|0)+1;d=yc((e*104|3)+16|0)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}j=c[b+712>>2]|0}if((j|0)>0){l=0;do{s=d+(l*104|0)|0;m=(c[b+720>>2]|0)+(l*104|0)|0;t=s+104|0;do{c[s>>2]=c[m>>2];s=s+4|0;m=m+4|0}while((s|0)<(t|0));l=l+1|0}while((l|0)!=(j|0))}j=c[b+720>>2]|0;if(j|0){if(a[b+724>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}c[b+720>>2]=0}a[b+724>>0]=1;c[b+720>>2]=d;c[b+716>>2]=e;d=o}else d=o;do{s=c[b+720>>2]|0;c[s+(d*104|0)>>2]=0;s=s+(d*104|0)+4|0;m=z;t=s+100|0;do{c[s>>2]=c[m>>2];s=s+4|0;m=m+4|0}while((s|0)<(t|0));d=d+1|0}while((d|0)!=(e|0))}c[b+712>>2]=e;if((e|0)>0){l=f;w=0;while(1){u=c[b+720>>2]|0;v=u+(w*104|0)|0;s=v;t=s+104|0;do{c[s>>2]=0;s=s+4|0}while((s|0)<(t|0));j=u+(w*104|0)+8|0;if(!l){f=0;d=0;m=0;o=0;n=0.0}else{f=l+16|0;d=c[l>>2]|0;m=c[l+4>>2]|0;o=c[l+8>>2]|0;n=+g[l+12>>2]}c[j>>2]=d;c[u+(w*104|0)+12>>2]=m;c[u+(w*104|0)+16>>2]=o;g[u+(w*104|0)+20>>2]=n;t=u+(w*104|0)+24|0;c[t>>2]=c[j>>2];c[t+4>>2]=c[j+4>>2];c[t+8>>2]=c[j+8>>2];c[t+12>>2]=c[j+12>>2];r=(c[k>>2]=d,+g[k>>2]);q=(c[k>>2]=m,+g[k>>2]);p=(c[k>>2]=o,+g[k>>2]);if(!h){j=0;n=1.0}else{j=h+4|0;n=+g[h>>2]}g[u+(w*104|0)+88>>2]=n>0.0?1.0/n:0.0;d=c[b+932>>2]|0;if(!d){c[6435]=(c[6435]|0)+1;d=yc(63)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}s=d;t=s+44|0;do{c[s>>2]=0;s=s+4|0}while((s|0)<(t|0))}else c[b+932>>2]=0;c[d+32>>2]=0;c[d+36>>2]=v;c[d+40>>2]=0;g[d>>2]=r-y;g[d+4>>2]=q-y;g[d+8>>2]=p-y;g[d+12>>2]=0.0;g[d+16>>2]=y+r;g[d+20>>2]=y+q;g[d+24>>2]=y+p;g[d+28>>2]=0.0;lf(b+928|0,c[b+928>>2]|0,d);c[b+940>>2]=(c[b+940>>2]|0)+1;c[u+(w*104|0)+96>>2]=d;c[u+(w*104|0)+4>>2]=x;w=w+1|0;if((w|0)==(e|0))break;else{h=j;l=f}}}d=c[b+928>>2]|0;if(!d){c[b+892>>2]=0;c[b+892+4>>2]=0;c[b+892+8>>2]=0;c[b+892+12>>2]=0;c[b+892+16>>2]=0;c[b+892+20>>2]=0;c[b+892+24>>2]=0;c[b+892+28>>2]=0;i=z;return}e=c[b+192>>2]|0;q=+Sb[c[(c[e>>2]|0)+48>>2]&15](e);y=+g[d+4>>2]-q;r=+g[d+8>>2]-q;g[b+892>>2]=+g[d>>2]-q;g[b+896>>2]=y;g[b+900>>2]=r;g[b+904>>2]=0.0;r=q+ +g[d+20>>2];y=q+ +g[d+24>>2];g[b+908>>2]=q+ +g[d+16>>2];g[b+912>>2]=r;g[b+916>>2]=y;g[b+920>>2]=0.0;d=c[b+188>>2]|0;if(!d){i=z;return}e=c[b+684>>2]|0;x=c[e+32>>2]|0;yb[c[(c[x>>2]|0)+16>>2]&31](x,d,b+892|0,b+908|0,c[e+36>>2]|0);i=z;return}function Lc(d,f,h){d=d|0;f=f|0;h=h|0;var j=0,k=0,l=0.0,m=0,n=0.0,o=0.0,p=0,q=0,r=0,s=0.0,t=0.0,u=0.0,v=0,w=0,x=0.0,y=0.0,z=0.0,A=0,B=0,C=0.0,D=0.0,E=0.0,F=0,G=0,H=0,I=0,J=0,K=0,L=0.0,M=0.0,N=0.0;K=i;i=i+112|0;H=c[d+56>>2]|0;if((h-f|0)==1){if(!(a[d+60>>0]|0)){p=(c[d+96>>2]|0)+(H<<6)|0;q=(c[d+76>>2]|0)+(f<<6)|0;r=p+64|0;do{c[p>>2]=c[q>>2];p=p+4|0;q=q+4|0}while((p|0)<(r|0))}else{J=(c[d+136>>2]|0)+(H<<4)|0;I=(c[d+116>>2]|0)+(f<<4)|0;c[J>>2]=c[I>>2];c[J+4>>2]=c[I+4>>2];c[J+8>>2]=c[I+8>>2];c[J+12>>2]=c[I+12>>2]}c[d+56>>2]=(c[d+56>>2]|0)+1;i=K;return}if((h|0)>(f|0)){m=(a[d+60>>0]|0)==0;if(m){j=c[d+76>>2]|0;k=f;n=0.0;o=0.0;l=0.0;do{n=n+(+g[j+(k<<6)+16>>2]+ +g[j+(k<<6)>>2])*.5;l=l+(+g[j+(k<<6)+20>>2]+ +g[j+(k<<6)+4>>2])*.5;o=o+(+g[j+(k<<6)+24>>2]+ +g[j+(k<<6)+8>>2])*.5;k=k+1|0}while((k|0)!=(h|0))}else{j=c[d+116>>2]|0;s=+g[d+36>>2];t=+g[d+40>>2];u=+g[d+44>>2];x=+g[d+4>>2];y=+g[d+8>>2];z=+g[d+12>>2];k=f;n=0.0;o=0.0;l=0.0;do{n=n+(+(e[j+(k<<4)+6>>1]|0)/s+x+(+(e[j+(k<<4)>>1]|0)/s+x))*.5;l=l+(+(e[j+(k<<4)+8>>1]|0)/t+y+(+(e[j+(k<<4)+2>>1]|0)/t+y))*.5;o=o+(+(e[j+(k<<4)+10>>1]|0)/u+z+(+(e[j+(k<<4)+4>>1]|0)/u+z))*.5;k=k+1|0}while((k|0)!=(h|0))}C=1.0/+(h-f|0);E=C*n;D=C*l;C=C*o;if(m){j=c[d+76>>2]|0;k=f;o=0.0;n=0.0;l=0.0;do{x=(+g[j+(k<<6)+16>>2]+ +g[j+(k<<6)>>2])*.5-E;y=(+g[j+(k<<6)+20>>2]+ +g[j+(k<<6)+4>>2])*.5-D;z=(+g[j+(k<<6)+24>>2]+ +g[j+(k<<6)+8>>2])*.5-C;o=o+x*x;l=l+y*y;n=n+z*z;k=k+1|0}while((k|0)!=(h|0));s=+(h-f|0)}else{j=c[d+116>>2]|0;s=+g[d+36>>2];t=+g[d+40>>2];u=+g[d+44>>2];x=+g[d+4>>2];y=+g[d+8>>2];z=+g[d+12>>2];k=f;o=0.0;n=0.0;l=0.0;do{N=(+(e[j+(k<<4)+6>>1]|0)/s+x+(+(e[j+(k<<4)>>1]|0)/s+x))*.5-E;M=(+(e[j+(k<<4)+8>>1]|0)/t+y+(+(e[j+(k<<4)+2>>1]|0)/t+y))*.5-D;L=(+(e[j+(k<<4)+10>>1]|0)/u+z+(+(e[j+(k<<4)+4>>1]|0)/u+z))*.5-C;o=o+N*N;l=l+M*M;n=n+L*L;k=k+1|0}while((k|0)!=(h|0));s=+(h-f|0)}}else{s=+(h-f|0);o=0.0;n=0.0;l=0.0}N=1.0/(s+-1.0);M=N*o;L=N*l;N=N*n;w=M>2]=0;c[K+16+4>>2]=0;c[K+16+8>>2]=0;c[K+16+12>>2]=0;if((h|0)>(f|0)){if(!(a[d+60>>0]|0)){j=c[d+76>>2]|0;o=0.0;n=0.0;l=0.0;k=f;do{o=(+g[j+(k<<6)+16>>2]+ +g[j+(k<<6)>>2])*.5+o;n=(+g[j+(k<<6)+20>>2]+ +g[j+(k<<6)+4>>2])*.5+n;l=(+g[j+(k<<6)+24>>2]+ +g[j+(k<<6)+8>>2])*.5+l;k=k+1|0}while((k|0)!=(h|0))}else{j=c[d+116>>2]|0;s=+g[d+36>>2];t=+g[d+40>>2];u=+g[d+44>>2];x=+g[d+4>>2];y=+g[d+8>>2];z=+g[d+12>>2];o=0.0;n=0.0;l=0.0;k=f;do{o=(+(e[j+(k<<4)+6>>1]|0)/s+x+(+(e[j+(k<<4)>>1]|0)/s+x))*.5+o;n=(+(e[j+(k<<4)+8>>1]|0)/t+y+(+(e[j+(k<<4)+2>>1]|0)/t+y))*.5+n;l=(+(e[j+(k<<4)+10>>1]|0)/u+z+(+(e[j+(k<<4)+4>>1]|0)/u+z))*.5+l;k=k+1|0}while((k|0)!=(h|0))}g[K+16>>2]=o;g[K+16+4>>2]=n;g[K+16+8>>2]=l;j=K+16|0}else{j=K+16|0;o=0.0;n=0.0;l=0.0}g[j>>2]=1.0/+(h-f|0)*o;g[K+16+4>>2]=1.0/+(h-f|0)*n;g[K+16+8>>2]=1.0/+(h-f|0)*l;x=+g[K+16+(w<<2)>>2];if((h|0)>(f|0)){v=f;j=f;do{k=(a[d+60>>0]|0)==0;if(k){G=c[d+76>>2]|0;l=+g[G+(v<<6)>>2];n=+g[G+(v<<6)+16>>2];o=+g[G+(v<<6)+4>>2];s=+g[G+(v<<6)+20>>2];t=+g[G+(v<<6)+8>>2];u=+g[G+(v<<6)+24>>2]}else{G=c[d+116>>2]|0;o=+g[d+36>>2];t=+g[d+40>>2];N=+g[d+44>>2];n=+g[d+4>>2];s=+g[d+8>>2];u=+g[d+12>>2];l=+(e[G+(v<<4)>>1]|0)/o+n;n=+(e[G+(v<<4)+6>>1]|0)/o+n;o=+(e[G+(v<<4)+2>>1]|0)/t+s;s=+(e[G+(v<<4)+8>>1]|0)/t+s;t=+(e[G+(v<<4)+4>>1]|0)/N+u;u=+(e[G+(v<<4)+10>>1]|0)/N+u}g[K>>2]=(n+l)*.5;g[K+4>>2]=(s+o)*.5;g[K+8>>2]=(u+t)*.5;g[K+12>>2]=0.0;if(+g[K+(w<<2)>>2]>x){if(k){k=c[d+76>>2]|0;m=k+(v<<6)|0;p=K+48|0;q=m;r=p+64|0;do{c[p>>2]=c[q>>2];p=p+4|0;q=q+4|0}while((p|0)<(r|0));p=m;q=k+(j<<6)|0;r=p+64|0;do{c[p>>2]=c[q>>2];p=p+4|0;q=q+4|0}while((p|0)<(r|0));p=(c[d+76>>2]|0)+(j<<6)|0;q=K+48|0;r=p+64|0;do{c[p>>2]=c[q>>2];p=p+4|0;q=q+4|0}while((p|0)<(r|0))}else{F=c[d+116>>2]|0;G=F+(v<<4)|0;c[K+48>>2]=c[G>>2];c[K+48+4>>2]=c[G+4>>2];c[K+48+8>>2]=c[G+8>>2];c[K+48+12>>2]=c[G+12>>2];F=F+(j<<4)|0;c[G>>2]=c[F>>2];c[G+4>>2]=c[F+4>>2];c[G+8>>2]=c[F+8>>2];c[G+12>>2]=c[F+12>>2];G=(c[d+116>>2]|0)+(j<<4)|0;c[G>>2]=c[K+48>>2];c[G+4>>2]=c[K+48+4>>2];c[G+8>>2]=c[K+48+8>>2];c[G+12>>2]=c[K+48+12>>2]}j=j+1|0}v=v+1|0}while((v|0)!=(h|0))}else j=f;if(!((j|0)>(((h-f|0)/3|0)+f|0)?(j|0)<(h+-1-((h-f|0)/3|0)|0):0))j=(h-f>>1)+f|0;G=c[d+56>>2]|0;if(!(a[d+60>>0]|0)){F=(c[d+96>>2]|0)+(G<<6)|0;c[F>>2]=c[d+20>>2];c[F+4>>2]=c[d+20+4>>2];c[F+8>>2]=c[d+20+8>>2];c[F+12>>2]=c[d+20+12>>2]}else{F=c[d+136>>2]|0;M=(+g[d+24>>2]-+g[d+8>>2])*+g[d+40>>2];N=(+g[d+28>>2]-+g[d+12>>2])*+g[d+44>>2];b[F+(G<<4)>>1]=~~((+g[d+20>>2]-+g[d+4>>2])*+g[d+36>>2])&65534;b[F+(G<<4)+2>>1]=~~M&65534;b[F+(G<<4)+4>>1]=~~N&65534}k=c[d+56>>2]|0;if(!(a[d+60>>0]|0)){F=(c[d+96>>2]|0)+(k<<6)+16|0;c[F>>2]=c[d+4>>2];c[F+4>>2]=c[d+4+4>>2];c[F+8>>2]=c[d+4+8>>2];c[F+12>>2]=c[d+4+12>>2]}else{F=c[d+136>>2]|0;L=+g[d+4>>2];M=+g[d+8>>2];N=+g[d+12>>2];M=(M-M)*+g[d+40>>2];N=(N-N)*+g[d+44>>2];b[F+(k<<4)+6>>1]=~~((L-L)*+g[d+36>>2]+1.0)&65535|1;b[F+(k<<4)+8>>1]=~~(M+1.0)&65535|1;b[F+(k<<4)+10>>1]=~~(N+1.0)&65535|1}F=c[d+56>>2]|0;if((h|0)>(f|0)){A=a[d+60>>0]|0;B=f;do{if(!(A<<24>>24)){k=c[d+76>>2]|0;l=+g[k+(B<<6)>>2];n=+g[k+(B<<6)+4>>2];o=+g[k+(B<<6)+8>>2];s=+g[k+(B<<6)+12>>2];t=+g[k+(B<<6)+16>>2];u=+g[k+(B<<6)+20>>2];x=+g[k+(B<<6)+24>>2];y=+g[k+(B<<6)+28>>2];k=c[d+96>>2]|0;if(l<+g[k+(F<<6)>>2])g[k+(F<<6)>>2]=l;if(n<+g[k+(F<<6)+4>>2])g[k+(F<<6)+4>>2]=n;if(o<+g[k+(F<<6)+8>>2])g[k+(F<<6)+8>>2]=o;if(s<+g[k+(F<<6)+12>>2])g[k+(F<<6)+12>>2]=s;if(+g[k+(F<<6)+16>>2]>2]=t;if(+g[k+(F<<6)+20>>2]>2]=u;if(+g[k+(F<<6)+24>>2]>2]=x;if(+g[k+(F<<6)+28>>2]>2]=y}else{q=c[d+116>>2]|0;s=+g[d+36>>2];E=+g[d+40>>2];y=+g[d+44>>2];t=+g[d+4>>2];L=+g[d+8>>2];z=+g[d+12>>2];u=+g[d+4>>2];M=+g[d+8>>2];C=+g[d+12>>2];x=+g[d+36>>2];N=+g[d+40>>2];D=+g[d+44>>2];r=~~((+(e[q+(B<<4)>>1]|0)/s+t-u)*x)&65534;k=~~((+(e[q+(B<<4)+4>>1]|0)/y+z-C)*D)&65534;p=~~((+(e[q+(B<<4)+2>>1]|0)/E+L-M)*N)&65534;v=(~~((+(e[q+(B<<4)+6>>1]|0)/s+t-u)*x+1.0)&65535|1)&65535;m=(~~((+(e[q+(B<<4)+10>>1]|0)/y+z-C)*D+1.0)&65535|1)&65535;q=(~~((+(e[q+(B<<4)+8>>1]|0)/E+L-M)*N+1.0)&65535|1)&65535;w=c[d+136>>2]|0;if((e[w+(F<<4)>>1]|0)>(r&65535))b[w+(F<<4)>>1]=r;if((e[w+(F<<4)+6>>1]|0)<(v&65535))b[w+(F<<4)+6>>1]=v;if((e[w+(F<<4)+2>>1]|0)>(p&65535))b[w+(F<<4)+2>>1]=p;if((e[w+(F<<4)+8>>1]|0)<(q&65535))b[w+(F<<4)+8>>1]=q;if((e[w+(F<<4)+4>>1]|0)>(k&65535))b[w+(F<<4)+4>>1]=k;if((e[w+(F<<4)+10>>1]|0)<(m&65535))b[w+(F<<4)+10>>1]=m}B=B+1|0}while((B|0)!=(h|0))}c[d+56>>2]=F+1;Lc(d,f,j);A=c[d+56>>2]|0;Lc(d,j,h);w=(c[d+56>>2]|0)-H|0;j=a[d+60>>0]|0;if(j<<24>>24!=0&(w<<4|0)>2048){r=c[d+136>>2]|0;p=c[r+(F+1<<4)+12>>2]|0;p=(p|0)>-1?1:0-p|0;v=c[r+(A<<4)+12>>2]|0;v=(v|0)>-1?1:0-v|0;if((p<<4|0)<2049){q=c[d+152>>2]|0;if((q|0)==(c[d+156>>2]|0)?(I=q|0?q<<1:1,(q|0)<(I|0)):0){if(!I){j=0;k=q}else{c[6435]=(c[6435]|0)+1;j=yc(I<<5|19)|0;if(!j)j=0;else{c[(j+4+15&-16)+-4>>2]=j;j=j+4+15&-16}k=c[d+152>>2]|0}if((k|0)>0){m=0;do{h=j+(m<<5)|0;H=(c[d+160>>2]|0)+(m<<5)|0;c[h>>2]=c[H>>2];c[h+4>>2]=c[H+4>>2];c[h+8>>2]=c[H+8>>2];c[h+12>>2]=c[H+12>>2];c[h+16>>2]=c[H+16>>2];c[h+20>>2]=c[H+20>>2];c[h+24>>2]=c[H+24>>2];c[h+28>>2]=c[H+28>>2];m=m+1|0}while((m|0)!=(k|0))}k=c[d+160>>2]|0;if(k|0){if(a[d+164>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[k+-4>>2]|0)}c[d+160>>2]=0}a[d+164>>0]=1;c[d+160>>2]=j;c[d+156>>2]=I;j=c[d+152>>2]|0}else j=q;c[d+152>>2]=j+1;I=(c[d+160>>2]|0)+(q<<5)|0;c[I>>2]=c[K+48>>2];c[I+4>>2]=c[K+48+4>>2];c[I+8>>2]=c[K+48+8>>2];c[I+12>>2]=c[K+48+12>>2];c[I+16>>2]=c[K+48+16>>2];c[I+20>>2]=c[K+48+20>>2];c[I+24>>2]=c[K+48+24>>2];c[I+28>>2]=c[K+48+28>>2];I=c[d+160>>2]|0;b[I+(q<<5)>>1]=b[r+(F+1<<4)>>1]|0;b[I+(q<<5)+2>>1]=b[r+(F+1<<4)+2>>1]|0;b[I+(q<<5)+4>>1]=b[r+(F+1<<4)+4>>1]|0;b[I+(q<<5)+6>>1]=b[r+(F+1<<4)+6>>1]|0;b[I+(q<<5)+8>>1]=b[r+(F+1<<4)+8>>1]|0;b[I+(q<<5)+10>>1]=b[r+(F+1<<4)+10>>1]|0;c[I+(q<<5)+12>>2]=F+1;c[I+(q<<5)+16>>2]=p}if((v<<4|0)<2049){p=c[d+152>>2]|0;if((p|0)==(c[d+156>>2]|0)?(J=p|0?p<<1:1,(p|0)<(J|0)):0){if(!J){j=0;k=p}else{c[6435]=(c[6435]|0)+1;j=yc(J<<5|19)|0;if(!j)j=0;else{c[(j+4+15&-16)+-4>>2]=j;j=j+4+15&-16}k=c[d+152>>2]|0}if((k|0)>0){m=0;do{I=j+(m<<5)|0;h=(c[d+160>>2]|0)+(m<<5)|0;c[I>>2]=c[h>>2];c[I+4>>2]=c[h+4>>2];c[I+8>>2]=c[h+8>>2];c[I+12>>2]=c[h+12>>2];c[I+16>>2]=c[h+16>>2];c[I+20>>2]=c[h+20>>2];c[I+24>>2]=c[h+24>>2];c[I+28>>2]=c[h+28>>2];m=m+1|0}while((m|0)!=(k|0))}k=c[d+160>>2]|0;if(k|0){if(a[d+164>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[k+-4>>2]|0)}c[d+160>>2]=0}a[d+164>>0]=1;c[d+160>>2]=j;c[d+156>>2]=J;j=c[d+152>>2]|0}else j=p;c[d+152>>2]=j+1;J=(c[d+160>>2]|0)+(p<<5)|0;c[J>>2]=c[K+16>>2];c[J+4>>2]=c[K+16+4>>2];c[J+8>>2]=c[K+16+8>>2];c[J+12>>2]=c[K+16+12>>2];c[J+16>>2]=c[K+16+16>>2];c[J+20>>2]=c[K+16+20>>2];c[J+24>>2]=c[K+16+24>>2];c[J+28>>2]=c[K+16+28>>2];J=c[d+160>>2]|0;b[J+(p<<5)>>1]=b[r+(A<<4)>>1]|0;b[J+(p<<5)+2>>1]=b[r+(A<<4)+2>>1]|0;b[J+(p<<5)+4>>1]=b[r+(A<<4)+4>>1]|0;b[J+(p<<5)+6>>1]=b[r+(A<<4)+6>>1]|0;b[J+(p<<5)+8>>1]=b[r+(A<<4)+8>>1]|0;b[J+(p<<5)+10>>1]=b[r+(A<<4)+10>>1]|0;c[J+(p<<5)+12>>2]=A;c[J+(p<<5)+16>>2]=v}c[d+168>>2]=c[d+152>>2];j=a[d+60>>0]|0}if(!(j<<24>>24)){c[(c[d+96>>2]|0)+(G<<6)+32>>2]=w;i=K;return}else{c[(c[d+136>>2]|0)+(G<<4)+12>>2]=0-w;i=K;return}}function Mc(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0,h=0,j=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0.0,H=0.0,I=0.0,J=0.0,K=0.0,L=0.0,M=0.0,N=0.0,O=0.0,P=0.0,Q=0.0,R=0.0,S=0;u=i;i=i+368|0;f=Eb[c[(c[a>>2]|0)+20>>2]&127](a)|0;kc[c[(c[f>>2]|0)+56>>2]&7](f,b,1.0);f=c[d+4>>2]|0;switch(f|0){case 31:{f=c[d+16>>2]|0;if((f|0)<=0){i=u;return}do{t=f;f=f+-1|0;s=c[d+24>>2]|0;J=+g[s+(f*80|0)>>2];G=+g[s+(f*80|0)+4>>2];D=+g[s+(f*80|0)+8>>2];I=+g[s+(f*80|0)+16>>2];F=+g[s+(f*80|0)+20>>2];B=+g[s+(f*80|0)+24>>2];H=+g[s+(f*80|0)+32>>2];E=+g[s+(f*80|0)+36>>2];z=+g[s+(f*80|0)+40>>2];R=+g[s+(f*80|0)+48>>2];Q=+g[s+(f*80|0)+52>>2];v=+g[s+(f*80|0)+56>>2];s=c[s+(f*80|0)+64>>2]|0;r=c[(c[a>>2]|0)+28>>2]|0;P=+g[b>>2];O=+g[b+4>>2];N=+g[b+8>>2];M=+g[b+16>>2];L=+g[b+20>>2];K=+g[b+24>>2];C=+g[b+32>>2];A=+g[b+36>>2];y=+g[b+40>>2];x=R*P+Q*O+v*N+ +g[b+48>>2];w=R*M+Q*L+v*K+ +g[b+52>>2];v=R*C+Q*A+v*y+ +g[b+56>>2];g[u+288>>2]=J*P+I*O+H*N;g[u+288+4>>2]=G*P+F*O+E*N;g[u+288+8>>2]=D*P+B*O+z*N;g[u+288+12>>2]=0.0;g[u+288+16>>2]=J*M+I*L+H*K;g[u+288+20>>2]=G*M+F*L+E*K;g[u+288+24>>2]=D*M+B*L+z*K;g[u+288+28>>2]=0.0;g[u+288+32>>2]=J*C+I*A+H*y;g[u+288+36>>2]=G*C+F*A+E*y;g[u+288+40>>2]=D*C+B*A+z*y;g[u+288+44>>2]=0.0;g[u+288+48>>2]=x;g[u+288+52>>2]=w;g[u+288+56>>2]=v;g[u+288+60>>2]=0.0;mc[r&127](a,u+288|0,s,e)}while((t|0)>1);i=u;return}case 0:{c[u+352>>2]=c[d+28>>2];c[u+352+4>>2]=c[d+28+4>>2];c[u+352+8>>2]=c[d+28+8>>2];c[u+352+12>>2]=c[d+28+12>>2];P=+Sb[c[(c[d>>2]|0)+48>>2]&15](d);Q=+Sb[c[(c[d>>2]|0)+48>>2]&15](d);R=+Sb[c[(c[d>>2]|0)+48>>2]&15](d);P=P+ +g[u+352>>2];g[u+352>>2]=P;Q=Q+ +g[u+352+4>>2];g[u+352+4>>2]=Q;R=R+ +g[u+352+8>>2];g[u+352+8>>2]=R;a=Eb[c[(c[a>>2]|0)+20>>2]&127](a)|0;d=c[(c[a>>2]|0)+72>>2]|0;g[u+272>>2]=-P;g[u+272+4>>2]=-Q;g[u+272+8>>2]=-R;g[u+272+12>>2]=0.0;yb[d&31](a,u+272|0,u+352|0,b,e);i=u;return}case 8:{R=+Sb[c[(c[d>>2]|0)+48>>2]&15](d);a=Eb[c[(c[a>>2]|0)+20>>2]&127](a)|0;Hb[c[(c[a>>2]|0)+16>>2]&0](a,R,b,e);i=u;return}case 9:{f=c[d+92>>2]|0;if((f|0)<=0){i=u;return}do{t=f;f=f+-1|0;s=c[d+100>>2]|0;D=+g[s+(f<<4)>>2];E=+g[s+(f<<4)+4>>2];Q=+g[s+(f<<4)+8>>2];s=Eb[c[(c[a>>2]|0)+20>>2]&127](a)|0;r=c[(c[s>>2]|0)+16>>2]|0;R=+g[(c[d+120>>2]|0)+(f<<2)>>2];G=+g[b>>2];H=+g[b+4>>2];F=+g[b+8>>2];J=+g[b+16>>2];K=+g[b+20>>2];I=+g[b+24>>2];M=+g[b+32>>2];N=+g[b+36>>2];L=+g[b+40>>2];O=D*G+E*H+Q*F+ +g[b+48>>2];P=D*J+E*K+Q*I+ +g[b+52>>2];Q=D*M+E*N+Q*L+ +g[b+56>>2];g[u+192>>2]=G+H*0.0+F*0.0;g[u+192+4>>2]=G*0.0+H+F*0.0;g[u+192+8>>2]=F+(G*0.0+H*0.0);g[u+192+12>>2]=0.0;g[u+192+16>>2]=J+K*0.0+I*0.0;g[u+192+20>>2]=J*0.0+K+I*0.0;g[u+192+24>>2]=I+(J*0.0+K*0.0);g[u+192+28>>2]=0.0;g[u+192+32>>2]=M+N*0.0+L*0.0;g[u+192+36>>2]=M*0.0+N+L*0.0;g[u+192+40>>2]=L+(M*0.0+N*0.0);g[u+192+44>>2]=0.0;g[u+192+48>>2]=O;g[u+192+52>>2]=P;g[u+192+56>>2]=Q;g[u+192+60>>2]=0.0;Hb[r&0](s,R,u+192|0,e)}while((t|0)>1);i=u;return}case 10:{t=c[d+52>>2]|0;Q=+g[d+28+(((t+2|0)%3|0)<<2)>>2];R=+g[d+28+(t<<2)>>2];a=Eb[c[(c[a>>2]|0)+20>>2]&127](a)|0;Gb[c[(c[a>>2]|0)+76>>2]&0](a,Q,R,t,b,e);i=u;return}case 11:{Q=+g[d+56>>2];R=+g[d+60>>2];d=c[d+68>>2]|0;a=Eb[c[(c[a>>2]|0)+20>>2]&127](a)|0;Gb[c[(c[a>>2]|0)+84>>2]&0](a,Q,R,d,b,e);i=u;return}case 13:{t=c[d+52>>2]|0;Q=+Sb[c[(c[d>>2]|0)+92>>2]&15](d);c[u+80>>2]=c[d+28>>2];c[u+80+4>>2]=c[d+28+4>>2];c[u+80+8>>2]=c[d+28+8>>2];c[u+80+12>>2]=c[d+28+12>>2];O=+Sb[c[(c[d>>2]|0)+48>>2]&15](d);P=+Sb[c[(c[d>>2]|0)+48>>2]&15](d);R=+Sb[c[(c[d>>2]|0)+48>>2]&15](d);g[u+80>>2]=O+ +g[u+80>>2];g[u+80+4>>2]=P+ +g[u+80+4>>2];g[u+80+8>>2]=R+ +g[u+80+8>>2];R=+g[u+80+(t<<2)>>2];a=Eb[c[(c[a>>2]|0)+20>>2]&127](a)|0;Gb[c[(c[a>>2]|0)+80>>2]&0](a,Q,R,t,b,e);i=u;return}case 28:{R=+g[d+64>>2];a=Eb[c[(c[a>>2]|0)+20>>2]&127](a)|0;Vb[c[(c[a>>2]|0)+88>>2]&0](a,d+48|0,R,b,e);i=u;return}default:{a:do if((f|0)<7){q=c[d+52>>2]|0;if(!q){if((Eb[c[(c[d>>2]|0)+100>>2]&127](d)|0)<=0)break;f=0;while(1){mc[c[(c[d>>2]|0)+104>>2]&127](d,f,u+352|0,u+256|0);P=+g[u+352>>2];D=+g[b>>2];N=+g[u+352+4>>2];E=+g[b+4>>2];L=+g[u+352+8>>2];F=+g[b+8>>2];H=+g[b+16>>2];I=+g[b+20>>2];J=+g[b+24>>2];M=+g[b+32>>2];O=+g[b+36>>2];Q=+g[b+40>>2];G=+g[b+48>>2];K=+g[b+52>>2];R=+g[b+56>>2];g[u+96>>2]=P*D+N*E+L*F+G;g[u+96+4>>2]=P*H+N*I+L*J+K;g[u+96+8>>2]=P*M+N*O+L*Q+R;g[u+96+12>>2]=0.0;L=+g[u+256>>2];N=+g[u+256+4>>2];P=+g[u+256+8>>2];g[u+64>>2]=L*D+N*E+P*F+G;g[u+64+4>>2]=L*H+N*I+P*J+K;g[u+64+8>>2]=L*M+N*O+P*Q+R;g[u+64+12>>2]=0.0;t=Eb[c[(c[a>>2]|0)+20>>2]&127](a)|0;mc[c[(c[t>>2]|0)+8>>2]&127](t,u+96|0,u+64|0,e);f=f+1|0;if((f|0)>=(Eb[c[(c[d>>2]|0)+100>>2]&127](d)|0))break a}}if((c[q+28>>2]|0)>0){s=0;do{f=c[q+36>>2]|0;r=c[f+(s*36|0)+4>>2]|0;b:do if((r|0)!=0?(t=c[f+(s*36|0)+12>>2]|0,(r|0)>0):0){m=t;j=0;h=0;f=0;o=c[t+(r+-1<<2)>>2]|0;l=0;while(1){p=c[m+(l<<2)>>2]|0;n=c[q+16>>2]|0;j=(g[k>>2]=(c[k>>2]=j,+g[k>>2])+ +g[n+(p<<4)>>2],c[k>>2]|0);f=(g[k>>2]=(c[k>>2]=f,+g[k>>2])+ +g[n+(p<<4)+4>>2],c[k>>2]|0);h=(g[k>>2]=(c[k>>2]=h,+g[k>>2])+ +g[n+(p<<4)+8>>2],c[k>>2]|0);n=Eb[c[(c[a>>2]|0)+20>>2]&127](a)|0;m=c[(c[n>>2]|0)+8>>2]|0;S=c[q+16>>2]|0;P=+g[S+(o<<4)>>2];D=+g[b>>2];N=+g[S+(o<<4)+4>>2];E=+g[b+4>>2];L=+g[S+(o<<4)+8>>2];F=+g[b+8>>2];H=+g[b+16>>2];I=+g[b+20>>2];J=+g[b+24>>2];M=+g[b+32>>2];O=+g[b+36>>2];Q=+g[b+40>>2];G=+g[b+48>>2];K=+g[b+52>>2];R=+g[b+56>>2];g[u+48>>2]=P*D+N*E+L*F+G;g[u+48+4>>2]=P*H+N*I+L*J+K;g[u+48+8>>2]=P*M+N*O+L*Q+R;g[u+48+12>>2]=0.0;L=+g[S+(p<<4)>>2];N=+g[S+(p<<4)+4>>2];P=+g[S+(p<<4)+8>>2];g[u+32>>2]=L*D+N*E+P*F+G;g[u+32+4>>2]=L*H+N*I+P*J+K;g[u+32+8>>2]=L*M+N*O+P*Q+R;g[u+32+12>>2]=0.0;mc[m&127](n,u+48|0,u+32|0,e);n=l+1|0;l=c[q+36>>2]|0;if((n|0)>=(c[l+(s*36|0)+4>>2]|0))break b;m=c[l+(s*36|0)+12>>2]|0;o=p;l=n}}else{j=0;h=0;f=0}while(0);S=Eb[c[(c[a>>2]|0)+20>>2]&127](a)|0;if((Eb[c[(c[S>>2]|0)+48>>2]&127](S)|0)&16384|0){O=1.0/+(r|0)*(c[k>>2]=h,+g[k>>2]);L=1.0/+(r|0)*(c[k>>2]=f,+g[k>>2]);I=1.0/+(r|0)*(c[k>>2]=j,+g[k>>2]);c[u+352>>2]=1065353216;c[u+352+4>>2]=1065353216;c[u+352+8>>2]=0;g[u+352+12>>2]=0.0;S=c[q+36>>2]|0;J=+g[S+(s*36|0)+20>>2];M=+g[S+(s*36|0)+24>>2];P=+g[S+(s*36|0)+28>>2];S=Eb[c[(c[a>>2]|0)+20>>2]&127](a)|0;r=c[(c[S>>2]|0)+8>>2]|0;A=+g[b>>2];B=+g[b+4>>2];C=+g[b+8>>2];E=+g[b+16>>2];F=+g[b+20>>2];G=+g[b+24>>2];K=+g[b+32>>2];N=+g[b+36>>2];Q=+g[b+40>>2];D=+g[b+48>>2];H=+g[b+52>>2];R=+g[b+56>>2];g[u+16>>2]=I*A+L*B+O*C+D;g[u+16+4>>2]=I*E+L*F+O*G+H;g[u+16+8>>2]=I*K+L*N+O*Q+R;g[u+16+12>>2]=0.0;g[u>>2]=(I+J)*A+(L+M)*B+(O+P)*C+D;g[u+4>>2]=(I+J)*E+(L+M)*F+(O+P)*G+H;g[u+8>>2]=(I+J)*K+(L+M)*N+(O+P)*Q+R;g[u+12>>2]=0.0;mc[r&127](S,u+16|0,u,u+352|0)}s=s+1|0}while((s|0)<(c[q+28>>2]|0))}}while(0);f=c[d+4>>2]|0;if((f+-21|0)>>>0<9){c[u+352>>2]=1566444395;c[u+352+4>>2]=1566444395;c[u+352+8>>2]=1566444395;g[u+352+12>>2]=0.0;c[u+256>>2]=-581039253;c[u+256+4>>2]=-581039253;c[u+256+8>>2]=-581039253;g[u+256+12>>2]=0.0;f=Eb[c[(c[a>>2]|0)+20>>2]&127](a)|0;c[u+96>>2]=5692;c[u+96+4>>2]=5716;c[u+96+8>>2]=f;c[u+96+12>>2]=c[e>>2];c[u+96+12+4>>2]=c[e+4>>2];c[u+96+12+8>>2]=c[e+8>>2];c[u+96+12+12>>2]=c[e+12>>2];c[u+96+28>>2]=c[b>>2];c[u+96+28+4>>2]=c[b+4>>2];c[u+96+28+8>>2]=c[b+8>>2];c[u+96+28+12>>2]=c[b+12>>2];c[u+96+44>>2]=c[b+16>>2];c[u+96+44+4>>2]=c[b+16+4>>2];c[u+96+44+8>>2]=c[b+16+8>>2];c[u+96+44+12>>2]=c[b+16+12>>2];c[u+96+60>>2]=c[b+32>>2];c[u+96+60+4>>2]=c[b+32+4>>2];c[u+96+60+8>>2]=c[b+32+8>>2];c[u+96+60+12>>2]=c[b+32+12>>2];c[u+96+76>>2]=c[b+48>>2];c[u+96+76+4>>2]=c[b+48+4>>2];c[u+96+76+8>>2]=c[b+48+8>>2];c[u+96+76+12>>2]=c[b+48+12>>2];mc[c[(c[d>>2]|0)+64>>2]&127](d,u+96|0,u+256|0,u+352|0);f=c[d+4>>2]|0}if((f|0)!=3){i=u;return}c[u+352>>2]=1566444395;c[u+352+4>>2]=1566444395;c[u+352+8>>2]=1566444395;g[u+352+12>>2]=0.0;c[u+256>>2]=-581039253;c[u+256+4>>2]=-581039253;c[u+256+8>>2]=-581039253;g[u+256+12>>2]=0.0;S=Eb[c[(c[a>>2]|0)+20>>2]&127](a)|0;c[u+96>>2]=5692;c[u+96+4>>2]=5716;c[u+96+8>>2]=S;c[u+96+12>>2]=c[e>>2];c[u+96+12+4>>2]=c[e+4>>2];c[u+96+12+8>>2]=c[e+8>>2];c[u+96+12+12>>2]=c[e+12>>2];c[u+96+28>>2]=c[b>>2];c[u+96+28+4>>2]=c[b+4>>2];c[u+96+28+8>>2]=c[b+8>>2];c[u+96+28+12>>2]=c[b+12>>2];c[u+96+44>>2]=c[b+16>>2];c[u+96+44+4>>2]=c[b+16+4>>2];c[u+96+44+8>>2]=c[b+16+8>>2];c[u+96+44+12>>2]=c[b+16+12>>2];c[u+96+60>>2]=c[b+32>>2];c[u+96+60+4>>2]=c[b+32+4>>2];c[u+96+60+8>>2]=c[b+32+8>>2];c[u+96+60+12>>2]=c[b+32+12>>2];c[u+96+76>>2]=c[b+48>>2];c[u+96+76+4>>2]=c[b+48+4>>2];c[u+96+76+8>>2]=c[b+48+8>>2];c[u+96+76+12>>2]=c[b+48+12>>2];S=c[d+92>>2]|0;mc[c[(c[S>>2]|0)+8>>2]&127](S,u+96+4|0,u+256|0,u+352|0);i=u;return}}}function Nc(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0,h=0,j=0,k=0.0,l=0,m=0,n=0,o=0.0,p=0.0,q=0.0,r=0,s=0,t=0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0;t=i;i=i+48|0;z=1.0/+g[a+108>>2];A=1.0/+g[a+112>>2];B=1.0/+g[a+116>>2];u=+g[a+48>>2];v=z*+g[d>>2]+u;o=+g[a+52>>2];k=A*+g[d+4>>2]+o;q=+g[a+56>>2];p=B*+g[d+8>>2]+q;u=z*+g[e>>2]+u;o=A*+g[e+4>>2]+o;q=B*+g[e+8>>2]+q;B=+g[a+16>>2];v=v>2];k=k>2];p=p>2];v=y>2];k=x>2];p=w>2]|0)+-1|0;d=(c[a+68>>2]|0)+-1|0;switch(c[a+104>>2]|0){case 0:{d=(e|0)<(d|0)?e:d;j=(h|0)<(j|0)?h:j;e=(l|0)>0?l:0;r=(n|0)>0?n:0;break}case 1:{d=(e|0)<(d|0)?e:d;j=(f|0)<(j|0)?f:j;e=(l|0)>0?l:0;r=(m|0)>0?m:0;break}case 2:{d=(h|0)<(d|0)?h:d;j=(f|0)<(j|0)?f:j;e=(n|0)>0?n:0;r=(m|0)>0?m:0;break}default:{e=0;r=0}}if((e|0)>=(d|0)){i=t;return}n=(r|0)<(j|0);m=e;while(1){if(n){l=(m&1|0)==0;e=m+1|0;q=+(m|0);h=r;while(1){f=c[a+100>>2]|0;do if(!((f&255)<<24>>24)){if(f&65280|0?(h+m&1|0)==0:0){s=16;break}if(!(l&(f&16711680|0)!=0)){k=+_b[c[(c[a>>2]|0)+68>>2]&15](a,h,m);switch(c[a+104>>2]|0){case 0:{k=k-+g[a+48>>2];o=+(h|0)-+g[a+80>>2]*.5;p=q-+g[a+84>>2]*.5;g[t>>2]=k;g[t+4>>2]=o;g[t+8>>2]=p;g[t+12>>2]=0.0;break}case 1:{B=+(h|0)-+g[a+80>>2]*.5;o=k-+g[a+52>>2];p=q-+g[a+84>>2]*.5;g[t>>2]=B;g[t+4>>2]=o;g[t+8>>2]=p;g[t+12>>2]=0.0;k=B;break}case 2:{B=+(h|0)-+g[a+80>>2]*.5;o=q-+g[a+84>>2]*.5;p=k-+g[a+56>>2];g[t>>2]=B;g[t+4>>2]=o;g[t+8>>2]=p;g[t+12>>2]=0.0;k=B;break}default:{k=+g[t>>2];o=+g[t+4>>2];p=+g[t+8>>2]}}g[t>>2]=k*+g[a+108>>2];g[t+4>>2]=o*+g[a+112>>2];g[t+8>>2]=p*+g[a+116>>2];k=+_b[c[(c[a>>2]|0)+68>>2]&15](a,h,e);switch(c[a+104>>2]|0){case 0:{k=k-+g[a+48>>2];o=+(h|0)-+g[a+80>>2]*.5;p=+(e|0)-+g[a+84>>2]*.5;g[t+16>>2]=k;g[t+20>>2]=o;g[t+24>>2]=p;g[t+28>>2]=0.0;break}case 1:{B=+(h|0)-+g[a+80>>2]*.5;o=k-+g[a+52>>2];p=+(e|0)-+g[a+84>>2]*.5;g[t+16>>2]=B;g[t+20>>2]=o;g[t+24>>2]=p;g[t+28>>2]=0.0;k=B;break}case 2:{B=+(h|0)-+g[a+80>>2]*.5;o=+(e|0)-+g[a+84>>2]*.5;p=k-+g[a+56>>2];g[t+16>>2]=B;g[t+20>>2]=o;g[t+24>>2]=p;g[t+28>>2]=0.0;k=B;break}default:{k=+g[t+16>>2];o=+g[t+20>>2];p=+g[t+24>>2]}}g[t+16>>2]=k*+g[a+108>>2];g[t+20>>2]=o*+g[a+112>>2];g[t+24>>2]=p*+g[a+116>>2];f=h+1|0;k=+_b[c[(c[a>>2]|0)+68>>2]&15](a,f,m);switch(c[a+104>>2]|0){case 0:{k=k-+g[a+48>>2];o=+(f|0)-+g[a+80>>2]*.5;p=q-+g[a+84>>2]*.5;g[t+32>>2]=k;g[t+36>>2]=o;g[t+40>>2]=p;g[t+44>>2]=0.0;break}case 1:{B=+(f|0)-+g[a+80>>2]*.5;o=k-+g[a+52>>2];p=q-+g[a+84>>2]*.5;g[t+32>>2]=B;g[t+36>>2]=o;g[t+40>>2]=p;g[t+44>>2]=0.0;k=B;break}case 2:{B=+(f|0)-+g[a+80>>2]*.5;o=q-+g[a+84>>2]*.5;p=k-+g[a+56>>2];g[t+32>>2]=B;g[t+36>>2]=o;g[t+40>>2]=p;g[t+44>>2]=0.0;k=B;break}default:{k=+g[t+32>>2];o=+g[t+36>>2];p=+g[t+40>>2]}}g[t+32>>2]=k*+g[a+108>>2];g[t+36>>2]=o*+g[a+112>>2];g[t+40>>2]=p*+g[a+116>>2];mc[c[(c[b>>2]|0)+8>>2]&127](b,t,h,m);k=+_b[c[(c[a>>2]|0)+68>>2]&15](a,f,m);switch(c[a+104>>2]|0){case 0:{k=k-+g[a+48>>2];o=+(f|0)-+g[a+80>>2]*.5;p=q-+g[a+84>>2]*.5;g[t>>2]=k;g[t+4>>2]=o;g[t+8>>2]=p;g[t+12>>2]=0.0;break}case 1:{B=+(f|0)-+g[a+80>>2]*.5;o=k-+g[a+52>>2];p=q-+g[a+84>>2]*.5;g[t>>2]=B;g[t+4>>2]=o;g[t+8>>2]=p;g[t+12>>2]=0.0;k=B;break}case 2:{B=+(f|0)-+g[a+80>>2]*.5;o=q-+g[a+84>>2]*.5;p=k-+g[a+56>>2];g[t>>2]=B;g[t+4>>2]=o;g[t+8>>2]=p;g[t+12>>2]=0.0;k=B;break}default:{k=+g[t>>2];o=+g[t+4>>2];p=+g[t+8>>2]}}g[t>>2]=k*+g[a+108>>2];g[t+4>>2]=o*+g[a+112>>2];g[t+8>>2]=p*+g[a+116>>2];k=+_b[c[(c[a>>2]|0)+68>>2]&15](a,f,e);switch(c[a+104>>2]|0){case 0:{k=k-+g[a+48>>2];o=+(f|0)-+g[a+80>>2]*.5;p=+(e|0)-+g[a+84>>2]*.5;g[t+32>>2]=k;g[t+36>>2]=o;g[t+40>>2]=p;g[t+44>>2]=0.0;break}case 1:{B=+(f|0)-+g[a+80>>2]*.5;o=k-+g[a+52>>2];p=+(e|0)-+g[a+84>>2]*.5;g[t+32>>2]=B;g[t+36>>2]=o;g[t+40>>2]=p;g[t+44>>2]=0.0;k=B;break}case 2:{B=+(f|0)-+g[a+80>>2]*.5;o=+(e|0)-+g[a+84>>2]*.5;p=k-+g[a+56>>2];g[t+32>>2]=B;g[t+36>>2]=o;g[t+40>>2]=p;g[t+44>>2]=0.0;k=B;break}default:{k=+g[t+32>>2];o=+g[t+36>>2];p=+g[t+40>>2]}}g[t+32>>2]=k*+g[a+108>>2];g[t+36>>2]=o*+g[a+112>>2];g[t+40>>2]=p*+g[a+116>>2];mc[c[(c[b>>2]|0)+8>>2]&127](b,t,h,m)}else s=16}else s=16;while(0);if((s|0)==16){s=0;k=+_b[c[(c[a>>2]|0)+68>>2]&15](a,h,m);switch(c[a+104>>2]|0){case 0:{k=k-+g[a+48>>2];o=+(h|0)-+g[a+80>>2]*.5;p=q-+g[a+84>>2]*.5;g[t>>2]=k;g[t+4>>2]=o;g[t+8>>2]=p;g[t+12>>2]=0.0;break}case 1:{B=+(h|0)-+g[a+80>>2]*.5;o=k-+g[a+52>>2];p=q-+g[a+84>>2]*.5;g[t>>2]=B;g[t+4>>2]=o;g[t+8>>2]=p;g[t+12>>2]=0.0;k=B;break}case 2:{B=+(h|0)-+g[a+80>>2]*.5;o=q-+g[a+84>>2]*.5;p=k-+g[a+56>>2];g[t>>2]=B;g[t+4>>2]=o;g[t+8>>2]=p;g[t+12>>2]=0.0;k=B;break}default:{k=+g[t>>2];o=+g[t+4>>2];p=+g[t+8>>2]}}g[t>>2]=k*+g[a+108>>2];g[t+4>>2]=o*+g[a+112>>2];g[t+8>>2]=p*+g[a+116>>2];f=h+1|0;k=+_b[c[(c[a>>2]|0)+68>>2]&15](a,f,m);switch(c[a+104>>2]|0){case 0:{k=k-+g[a+48>>2];o=+(f|0)-+g[a+80>>2]*.5;p=q-+g[a+84>>2]*.5;g[t+16>>2]=k;g[t+20>>2]=o;g[t+24>>2]=p;g[t+28>>2]=0.0;break}case 1:{B=+(f|0)-+g[a+80>>2]*.5;o=k-+g[a+52>>2];p=q-+g[a+84>>2]*.5;g[t+16>>2]=B;g[t+20>>2]=o;g[t+24>>2]=p;g[t+28>>2]=0.0;k=B;break}case 2:{B=+(f|0)-+g[a+80>>2]*.5;o=q-+g[a+84>>2]*.5;p=k-+g[a+56>>2];g[t+16>>2]=B;g[t+20>>2]=o;g[t+24>>2]=p;g[t+28>>2]=0.0;k=B;break}default:{k=+g[t+16>>2];o=+g[t+20>>2];p=+g[t+24>>2]}}g[t+16>>2]=k*+g[a+108>>2];g[t+20>>2]=o*+g[a+112>>2];g[t+24>>2]=p*+g[a+116>>2];k=+_b[c[(c[a>>2]|0)+68>>2]&15](a,f,e);switch(c[a+104>>2]|0){case 0:{k=k-+g[a+48>>2];o=+(f|0)-+g[a+80>>2]*.5;p=+(e|0)-+g[a+84>>2]*.5;g[t+32>>2]=k;g[t+36>>2]=o;g[t+40>>2]=p;g[t+44>>2]=0.0;break}case 1:{B=+(f|0)-+g[a+80>>2]*.5;o=k-+g[a+52>>2];p=+(e|0)-+g[a+84>>2]*.5;g[t+32>>2]=B;g[t+36>>2]=o;g[t+40>>2]=p;g[t+44>>2]=0.0;k=B;break}case 2:{B=+(f|0)-+g[a+80>>2]*.5;o=+(e|0)-+g[a+84>>2]*.5;p=k-+g[a+56>>2];g[t+32>>2]=B;g[t+36>>2]=o;g[t+40>>2]=p;g[t+44>>2]=0.0;k=B;break}default:{k=+g[t+32>>2];o=+g[t+36>>2];p=+g[t+40>>2]}}g[t+32>>2]=k*+g[a+108>>2];g[t+36>>2]=o*+g[a+112>>2];g[t+40>>2]=p*+g[a+116>>2];mc[c[(c[b>>2]|0)+8>>2]&127](b,t,h,m);k=+_b[c[(c[a>>2]|0)+68>>2]&15](a,f,e);switch(c[a+104>>2]|0){case 0:{k=k-+g[a+48>>2];o=+(f|0)-+g[a+80>>2]*.5;p=+(e|0)-+g[a+84>>2]*.5;g[t+16>>2]=k;g[t+20>>2]=o;g[t+24>>2]=p;g[t+28>>2]=0.0;break}case 1:{B=+(f|0)-+g[a+80>>2]*.5;o=k-+g[a+52>>2];p=+(e|0)-+g[a+84>>2]*.5;g[t+16>>2]=B;g[t+20>>2]=o;g[t+24>>2]=p;g[t+28>>2]=0.0;k=B;break}case 2:{B=+(f|0)-+g[a+80>>2]*.5;o=+(e|0)-+g[a+84>>2]*.5;p=k-+g[a+56>>2];g[t+16>>2]=B;g[t+20>>2]=o;g[t+24>>2]=p;g[t+28>>2]=0.0;k=B;break}default:{k=+g[t+16>>2];o=+g[t+20>>2];p=+g[t+24>>2]}}g[t+16>>2]=k*+g[a+108>>2];g[t+20>>2]=o*+g[a+112>>2];g[t+24>>2]=p*+g[a+116>>2];k=+_b[c[(c[a>>2]|0)+68>>2]&15](a,h,e);switch(c[a+104>>2]|0){case 0:{k=k-+g[a+48>>2];o=+(h|0)-+g[a+80>>2]*.5;p=+(e|0)-+g[a+84>>2]*.5;g[t+32>>2]=k;g[t+36>>2]=o;g[t+40>>2]=p;g[t+44>>2]=0.0;break}case 1:{B=+(h|0)-+g[a+80>>2]*.5;o=k-+g[a+52>>2];p=+(e|0)-+g[a+84>>2]*.5;g[t+32>>2]=B;g[t+36>>2]=o;g[t+40>>2]=p;g[t+44>>2]=0.0;k=B;break}case 2:{B=+(h|0)-+g[a+80>>2]*.5;o=+(e|0)-+g[a+84>>2]*.5;p=k-+g[a+56>>2];g[t+32>>2]=B;g[t+36>>2]=o;g[t+40>>2]=p;g[t+44>>2]=0.0;k=B;break}default:{k=+g[t+32>>2];o=+g[t+36>>2];p=+g[t+40>>2]}}g[t+32>>2]=k*+g[a+108>>2];g[t+36>>2]=o*+g[a+112>>2];g[t+40>>2]=p*+g[a+116>>2];mc[c[(c[b>>2]|0)+8>>2]&127](b,t,h,m)}if((f|0)==(j|0))break;else h=f}}else e=m+1|0;if((e|0)==(d|0))break;else m=e}i=t;return}function Oc(b,d,e,f,h){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;var j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0.0,H=0.0,I=0.0,J=0.0,K=0.0,L=0.0,M=0.0,O=0.0,P=0.0,Q=0.0,R=0.0,S=0.0,T=0.0,U=0.0,V=0.0,W=0.0,X=0.0,Y=0.0,Z=0.0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0.0,fa=0.0,ga=0.0,ha=0.0,ia=0.0,ja=0.0,ka=0.0,la=0.0,ma=0.0,na=0.0,oa=0.0,pa=0;da=i;i=i+176|0;aa=c[d+4>>2]|0;ba=c[e+4>>2]|0;if((c[aa+68>>2]|0)==(c[b+40>>2]|0)?(c[ba+68>>2]|0)==(c[b+44>>2]|0):0)$=b+8|0;else{j=c[b+8>>2]|0;k=c[j+8>>2]|0;if((k|0)>0){m=0;do{l=c[(c[j+16>>2]|0)+(m*12|0)+8>>2]|0;if(l|0){Ab[c[c[l>>2]>>2]&255](l);$=c[b+4>>2]|0;Cb[c[(c[$>>2]|0)+60>>2]&127]($,l)}m=m+1|0}while((m|0)!=(k|0));j=c[b+8>>2]|0}$h(j);$=b+8|0}a[da+128+16>>0]=1;q=da+128+12|0;c[q>>2]=0;c[da+128+4>>2]=0;c[da+128+8>>2]=0;p=c[$>>2]|0;j=c[p+8>>2]|0;if((j|0)>0){o=0;do{k=c[(c[p+16>>2]|0)+(o*12|0)+8>>2]|0;if(k){Cb[c[(c[k>>2]|0)+16>>2]&127](k,da+128|0);j=c[da+128+4>>2]|0;if((j|0)>0){n=0;do{m=c[(c[q>>2]|0)+(n<<2)>>2]|0;if(c[m+748>>2]|0){c[h+4>>2]=m;j=c[m+740>>2]|0;k=c[(c[h+8>>2]|0)+8>>2]|0;l=c[(c[h+12>>2]|0)+8>>2]|0;if((j|0)==(k|0))ef(m,j+4|0,l+4|0);else ef(m,l+4|0,k+4|0);c[h+4>>2]=0;j=c[da+128+4>>2]|0}n=n+1|0}while((n|0)<(j|0))}if((j|0)<0){if((c[da+128+8>>2]|0)<0){k=c[q>>2]|0;if(k|0){if(a[da+128+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[k+-4>>2]|0)}c[q>>2]=0}a[da+128+16>>0]=1;c[q>>2]=0;c[da+128+8>>2]=0}do{c[(c[q>>2]|0)+(j<<2)>>2]=0;j=j+1|0}while((j|0)!=0)}c[da+128+4>>2]=0;j=c[p+8>>2]|0}o=o+1|0}while((o|0)<(j|0));j=c[q>>2]|0;if(j|0){if(a[da+128+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}c[q>>2]=0}}k=c[aa+64>>2]|0;l=c[ba+64>>2]|0;p=c[b+4>>2]|0;q=c[$>>2]|0;r=c[b+32>>2]|0;c[da+128>>2]=6256;c[da+128+4>>2]=0;c[da+128+8>>2]=d;c[da+128+12>>2]=e;c[da+128+16>>2]=p;c[da+128+20>>2]=f;c[da+128+24>>2]=h;c[da+128+28>>2]=q;c[da+128+32>>2]=r;r=c[d+12>>2]|0;B=+g[r>>2];C=+g[r+16>>2];D=+g[r+32>>2];E=+g[r+4>>2];F=+g[r+20>>2];G=+g[r+36>>2];H=+g[r+8>>2];I=+g[r+24>>2];J=+g[r+40>>2];K=-+g[r+48>>2];L=-+g[r+52>>2];M=-+g[r+56>>2];r=c[e+12>>2]|0;O=+g[r>>2];P=+g[r+16>>2];Q=+g[r+32>>2];R=+g[r+4>>2];S=+g[r+20>>2];T=+g[r+36>>2];U=+g[r+8>>2];V=+g[r+24>>2];W=+g[r+40>>2];X=+g[r+48>>2];Y=+g[r+52>>2];Z=+g[r+56>>2];k=c[k>>2]|0;l=c[l>>2]|0;if((k|0)!=0&(l|0)!=0){c[6435]=(c[6435]|0)+1;j=yc(1043)|0;if(!j)j=0;else{c[(j+4+15&-16)+-4>>2]=j;j=j+4+15&-16}c[j>>2]=k;c[j+4>>2]=l;s=+N(+(B*O+C*P+D*Q));t=+N(+(B*R+C*S+D*T));u=+N(+(B*U+C*V+D*W));v=+N(+(E*O+F*P+G*Q));w=+N(+(E*R+F*S+G*T));x=+N(+(E*U+F*V+G*W));y=+N(+(H*O+I*P+J*Q));z=+N(+(H*R+I*S+J*T));A=+N(+(H*U+I*V+J*W));r=1;l=128;m=128;k=124;while(1){q=r+-1|0;f=c[j+(q<<3)>>2]|0;h=c[j+(q<<3)+4>>2]|0;oa=+g[h+16>>2];na=+g[h>>2];ma=+g[h+20>>2];la=+g[h+4>>2];ka=+g[h+24>>2];ea=+g[h+8>>2];ja=B*K+C*L+D*M+(B*X+C*Y+D*Z)+((B*O+C*P+D*Q)*(oa+na)*.5+(B*R+C*S+D*T)*(ma+la)*.5+(B*U+C*V+D*W)*(ka+ea)*.5);ha=E*K+F*L+G*M+(E*X+F*Y+G*Z)+((E*O+F*P+G*Q)*(oa+na)*.5+(E*R+F*S+G*T)*(ma+la)*.5+(E*U+F*V+G*W)*(ka+ea)*.5);fa=H*K+I*L+J*M+(H*X+I*Y+J*Z)+((H*O+I*P+J*Q)*(oa+na)*.5+(H*R+I*S+J*T)*(ma+la)*.5+(H*U+I*V+J*W)*(ka+ea)*.5);ia=((oa-na)*.5+0.0)*s+((ma-la)*.5+0.0)*t+((ka-ea)*.5+0.0)*u;ga=((oa-na)*.5+0.0)*v+((ma-la)*.5+0.0)*w+((ka-ea)*.5+0.0)*x;ea=((oa-na)*.5+0.0)*y+((ma-la)*.5+0.0)*z+((ka-ea)*.5+0.0)*A;do if(((((+g[f>>2]<=ia+ja?+g[f+16>>2]>=ja-ia:0)?+g[f+4>>2]<=ha+ga:0)?+g[f+20>>2]>=ha-ga:0)?+g[f+8>>2]<=fa+ea:0)?+g[f+24>>2]>=fa-ea:0){if((q|0)>(k|0)){n=m<<1;do if((m|0)<(n|0)&(l|0)<(n|0)){do if(!m){k=0;_=52}else{c[6435]=(c[6435]|0)+1;k=yc((m<<4|3)+16|0)|0;if(!k)k=0;else{c[(k+4+15&-16)+-4>>2]=k;k=k+4+15&-16}if((m|0)>0)l=0;else{_=52;break}do{pa=j+(l<<3)|0;o=c[pa+4>>2]|0;p=k+(l<<3)|0;c[p>>2]=c[pa>>2];c[p+4>>2]=o;l=l+1|0}while((l|0)!=(m|0))}while(0);if((_|0)==52){_=0;if(!j){l=n;j=k;break}}c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0);l=n;j=k}while(0);p=n;k=n+-4|0}else p=m;m=(c[h+40>>2]|0)!=0;if(!(c[f+40>>2]|0))if(m){n=c[h+36>>2]|0;c[j+(q<<3)>>2]=f;c[j+(q<<3)+4>>2]=n;n=c[h+40>>2]|0;c[j+(r<<3)>>2]=f;c[j+(r<<3)+4>>2]=n;n=r+1|0;m=p;break}else{ic[c[(c[da+128>>2]|0)+8>>2]&127](da+128|0,f,h);n=q;m=p;break}else{n=j+(q<<3)|0;o=c[f+36>>2]|0;if(m){m=c[h+36>>2]|0;c[n>>2]=o;c[j+(q<<3)+4>>2]=m;m=r+1|0;n=c[h+36>>2]|0;c[j+(r<<3)>>2]=c[f+40>>2];c[j+(r<<3)+4>>2]=n;n=r+2|0;pa=c[h+40>>2]|0;c[j+(m<<3)>>2]=c[f+36>>2];c[j+(m<<3)+4>>2]=pa;m=c[h+40>>2]|0;c[j+(n<<3)>>2]=c[f+40>>2];c[j+(n<<3)+4>>2]=m;n=r+3|0;m=p;break}else{c[n>>2]=o;c[j+(q<<3)+4>>2]=h;c[j+(r<<3)>>2]=c[f+40>>2];c[j+(r<<3)+4>>2]=h;n=r+1|0;m=p;break}}}else n=q;while(0);if(!n)break;else r=n}if(j|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}}o=c[$>>2]|0;if((c[o+8>>2]|0)>0){p=0;do{j=c[o+16>>2]|0;k=c[j+(p*12|0)+8>>2]|0;do if(k|0){pa=c[j+(p*12|0)>>2]|0;_=c[aa+24>>2]|0;r=c[_+(pa*80|0)+64>>2]|0;h=c[d+12>>2]|0;oa=+g[h>>2];P=+g[h+4>>2];O=+g[h+8>>2];la=+g[h+16>>2];ja=+g[h+20>>2];ha=+g[h+24>>2];ka=+g[h+32>>2];ga=+g[h+36>>2];U=+g[h+40>>2];fa=+g[_+(pa*80|0)>>2];ea=+g[_+(pa*80|0)+16>>2];Z=+g[_+(pa*80|0)+32>>2];Y=+g[_+(pa*80|0)+4>>2];X=+g[_+(pa*80|0)+20>>2];W=+g[_+(pa*80|0)+36>>2];ia=+g[_+(pa*80|0)+8>>2];V=+g[_+(pa*80|0)+24>>2];T=+g[_+(pa*80|0)+40>>2];na=+g[_+(pa*80|0)+48>>2];ma=+g[_+(pa*80|0)+52>>2];Q=+g[_+(pa*80|0)+56>>2];S=+g[h+48>>2]+(oa*na+P*ma+O*Q);R=+g[h+52>>2]+(la*na+ja*ma+ha*Q);Q=+g[h+56>>2]+(ka*na+ga*ma+U*Q);g[da>>2]=oa*fa+P*ea+O*Z;g[da+4>>2]=oa*Y+P*X+O*W;g[da+8>>2]=oa*ia+P*V+O*T;g[da+12>>2]=0.0;g[da+16>>2]=la*fa+ja*ea+ha*Z;g[da+20>>2]=la*Y+ja*X+ha*W;g[da+24>>2]=la*ia+ja*V+ha*T;g[da+28>>2]=0.0;g[da+32>>2]=ka*fa+ga*ea+U*Z;g[da+36>>2]=ka*Y+ga*X+U*W;g[da+40>>2]=ka*ia+ga*V+U*T;g[da+44>>2]=0.0;g[da+48>>2]=S;g[da+52>>2]=R;g[da+56>>2]=Q;g[da+60>>2]=0.0;mc[c[(c[r>>2]|0)+8>>2]&127](r,da,da+112|0,da+96|0);r=c[(c[o+16>>2]|0)+(p*12|0)+4>>2]|0;h=c[ba+24>>2]|0;pa=c[h+(r*80|0)+64>>2]|0;_=c[e+12>>2]|0;Q=+g[_>>2];R=+g[_+4>>2];S=+g[_+8>>2];T=+g[_+16>>2];U=+g[_+20>>2];V=+g[_+24>>2];ga=+g[_+32>>2];ia=+g[_+36>>2];ka=+g[_+40>>2];W=+g[h+(r*80|0)>>2];X=+g[h+(r*80|0)+16>>2];Y=+g[h+(r*80|0)+32>>2];Z=+g[h+(r*80|0)+4>>2];ea=+g[h+(r*80|0)+20>>2];fa=+g[h+(r*80|0)+36>>2];ha=+g[h+(r*80|0)+8>>2];ja=+g[h+(r*80|0)+24>>2];la=+g[h+(r*80|0)+40>>2];O=+g[h+(r*80|0)+48>>2];P=+g[h+(r*80|0)+52>>2];oa=+g[h+(r*80|0)+56>>2];ma=+g[_+48>>2]+(Q*O+R*P+S*oa);na=+g[_+52>>2]+(T*O+U*P+V*oa);oa=+g[_+56>>2]+(ga*O+ia*P+ka*oa);g[da>>2]=Q*W+R*X+S*Y;g[da+4>>2]=Q*Z+R*ea+S*fa;g[da+8>>2]=Q*ha+R*ja+S*la;g[da+12>>2]=0.0;g[da+16>>2]=T*W+U*X+V*Y;g[da+20>>2]=T*Z+U*ea+V*fa;g[da+24>>2]=T*ha+U*ja+V*la;g[da+28>>2]=0.0;g[da+32>>2]=ga*W+ia*X+ka*Y;g[da+36>>2]=ga*Z+ia*ea+ka*fa;g[da+40>>2]=ga*ha+ia*ja+ka*la;g[da+44>>2]=0.0;g[da+48>>2]=ma;g[da+52>>2]=na;g[da+56>>2]=oa;g[da+60>>2]=0.0;mc[c[(c[pa>>2]|0)+8>>2]&127](pa,da,da+80|0,da+64|0);if(!(+g[da+112>>2]>+g[da+64>>2])?!(+g[da+96>>2]<+g[da+80>>2]):0)j=1;else j=0;if(!(!(+g[da+112+8>>2]>+g[da+64+8>>2])?!(+g[da+96+8>>2]<+g[da+80+8>>2]):0))j=0;if(!(+g[da+112+4>>2]>+g[da+64+4>>2])?!(+g[da+96+4>>2]<+g[da+80+4>>2]|j^1):0)break;Ab[c[c[k>>2]>>2]&255](k);n=c[b+4>>2]|0;Cb[c[(c[n>>2]|0)+60>>2]&127](n,k);n=c[o+16>>2]|0;m=c[n+(p*12|0)>>2]|0;n=c[n+(p*12|0)+4>>2]|0;j=c[b+16>>2]|0;if((j|0)==(c[b+20>>2]|0)?(ca=j|0?j<<1:1,(j|0)<(ca|0)):0){if(!ca)l=0;else{c[6435]=(c[6435]|0)+1;j=yc((ca*12|3)+16|0)|0;if(!j)j=0;else{c[(j+4+15&-16)+-4>>2]=j;j=j+4+15&-16}l=j;j=c[b+16>>2]|0}if((j|0)>0){k=0;do{pa=l+(k*12|0)|0;_=(c[b+24>>2]|0)+(k*12|0)|0;c[pa>>2]=c[_>>2];c[pa+4>>2]=c[_+4>>2];c[pa+8>>2]=c[_+8>>2];k=k+1|0}while((k|0)!=(j|0))}j=c[b+24>>2]|0;if(j|0){if(a[b+28>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}c[b+24>>2]=0}a[b+28>>0]=1;c[b+24>>2]=l;c[b+20>>2]=ca;j=c[b+16>>2]|0}pa=c[b+24>>2]|0;c[pa+(j*12|0)>>2]=m;c[pa+(j*12|0)+4>>2]=n;c[pa+(j*12|0)+8>>2]=0;c[b+16>>2]=(c[b+16>>2]|0)+1}while(0);p=p+1|0}while((p|0)<(c[o+8>>2]|0));k=b+24|0;l=b+16|0}else{k=b+24|0;l=b+16|0}if((c[l>>2]|0)>0){j=0;do{e=c[$>>2]|0;pa=c[k>>2]|0;Ob[c[(c[e>>2]|0)+8>>2]&63](e,c[pa+(j*12|0)>>2]|0,c[pa+(j*12|0)+4>>2]|0)|0;j=j+1|0}while((j|0)<(c[l>>2]|0))}j=c[k>>2]|0;if(!j){a[b+28>>0]=1;c[k>>2]=0;c[l>>2]=0;pa=b+20|0;c[pa>>2]=0;i=da;return}if(a[b+28>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}c[k>>2]=0;a[b+28>>0]=1;c[k>>2]=0;c[l>>2]=0;pa=b+20|0;c[pa>>2]=0;i=da;return}function Pc(b,e,f,h,j,l,m){b=b|0;e=e|0;f=f|0;h=h|0;j=j|0;l=l|0;m=m|0;var n=0.0,o=0.0,p=0.0,q=0,r=0,s=0.0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,C=0.0,D=0.0,E=0.0,F=0.0,G=0.0,H=0.0,I=0.0,J=0.0,K=0.0,L=0.0,M=0.0,N=0.0,P=0.0,Q=0.0,R=0.0,S=0.0,T=0.0,U=0;B=i;i=i+9856|0;q=l;r=q+36|0;do{c[q>>2]=0;q=q+4|0}while((q|0)<(r|0));c[B+9712>>2]=b;c[B+9712+4>>2]=f;E=+g[h>>2];R=+g[e>>2];F=+g[h+16>>2];H=+g[e+16>>2];G=+g[h+32>>2];S=+g[e+32>>2];I=+g[e+4>>2];T=+g[e+20>>2];J=+g[e+36>>2];s=+g[e+8>>2];n=+g[e+24>>2];D=+g[e+40>>2];Q=+g[h+4>>2];P=+g[h+20>>2];N=+g[h+36>>2];M=+g[h+8>>2];L=+g[h+24>>2];K=+g[h+40>>2];g[B+9712+8>>2]=E*R+F*H+G*S;g[B+9712+12>>2]=E*I+F*T+G*J;g[B+9712+16>>2]=E*s+F*n+G*D;g[B+9712+20>>2]=0.0;g[B+9712+24>>2]=R*Q+H*P+S*N;g[B+9712+28>>2]=I*Q+T*P+J*N;g[B+9712+32>>2]=s*Q+n*P+D*N;g[B+9712+36>>2]=0.0;g[B+9712+40>>2]=R*M+H*L+S*K;g[B+9712+44>>2]=I*M+T*L+J*K;g[B+9712+48>>2]=s*M+n*L+D*K;g[B+9712+52>>2]=0.0;D=+g[h+48>>2]-+g[e+48>>2];n=+g[h+52>>2]-+g[e+52>>2];s=+g[h+56>>2]-+g[e+56>>2];J=+g[e>>2];T=+g[h>>2];I=+g[e+16>>2];S=+g[h+16>>2];H=+g[e+32>>2];R=+g[h+32>>2];G=+g[e+4>>2];F=+g[e+20>>2];E=+g[e+36>>2];C=+g[e+8>>2];o=+g[e+24>>2];p=+g[e+40>>2];g[B+9712+56>>2]=J*T+I*S+H*R;g[B+9712+60>>2]=J*Q+I*P+H*N;g[B+9712+64>>2]=J*M+I*L+H*K;g[B+9712+68>>2]=0.0;g[B+9712+72>>2]=T*G+S*F+R*E;g[B+9712+76>>2]=Q*G+P*F+N*E;g[B+9712+80>>2]=M*G+L*F+K*E;g[B+9712+84>>2]=0.0;g[B+9712+88>>2]=T*C+S*o+R*p;g[B+9712+92>>2]=Q*C+P*o+N*p;g[B+9712+96>>2]=M*C+L*o+K*p;g[B+9712+100>>2]=0.0;g[B+9712+104>>2]=D*J+n*I+s*H;g[B+9712+108>>2]=D*G+n*F+s*E;g[B+9712+112>>2]=D*C+n*o+s*p;g[B+9712+116>>2]=0.0;c[B+9712+120>>2]=m?81:80;c[B+9712+124>>2]=0;c[B+9328+364>>2]=0;c[B+9328+128>>2]=0;c[B+9328+128+4>>2]=0;c[B+9328+128+8>>2]=0;c[B+9328+128+12>>2]=0;c[B+9328+376>>2]=2;c[B+9328+368>>2]=0;g[B+9328+144>>2]=0.0;p=-+g[j+4>>2];s=-+g[j+8>>2];g[B+16>>2]=-+g[j>>2];g[B+16+4>>2]=p;g[B+16+8>>2]=s;g[B+16+12>>2]=0.0;switch(Uc(B+9328|0,B+9712|0,B+16|0)|0){case 1:{w=B+32+9280|0;x=B+32+9288|0;y=B+32+9292|0;c[w>>2]=0;c[w+4>>2]=0;c[w+8>>2]=0;c[w+12>>2]=0;c[B+32>>2]=9;A=B+32+40|0;c[B+32+9276>>2]=0;c[A>>2]=0;c[A+4>>2]=0;c[A+8>>2]=0;c[A+12>>2]=0;c[A+16>>2]=0;m=0;do{b=128-m+-1|0;c[B+32+2108+(b*56|0)+44>>2]=0;f=c[x>>2]|0;c[B+32+2108+(b*56|0)+48>>2]=f;if(f|0)c[f+44>>2]=B+32+2108+(b*56|0);c[x>>2]=B+32+2108+(b*56|0);c[y>>2]=(c[y>>2]|0)+1;m=m+1|0}while((m|0)!=128);p=+g[j>>2];s=+g[j+4>>2];o=+g[j+8>>2];t=c[B+9328+372>>2]|0;do if((c[t+32>>2]|0)>>>0>1?yd(B+9328|0)|0:0){v=B+32+9280|0;b=c[v>>2]|0;if(b|0){q=c[B+32+9284>>2]|0;r=c[y>>2]|0;do{f=b+44|0;h=b+48|0;m=c[h>>2]|0;if(m|0)c[m+44>>2]=c[f>>2];f=c[f>>2]|0;if(f|0)c[f+48>>2]=c[h>>2];if((c[v>>2]|0)==(b|0))c[v>>2]=c[h>>2];q=q+-1|0;c[b+44>>2]=0;c[h>>2]=c[x>>2];f=c[x>>2]|0;if(f|0)c[f+44>>2]=b;c[x>>2]=b;r=r+1|0;b=c[v>>2]|0}while((b|0)!=0);c[B+32+9284>>2]=q;c[y>>2]=r}c[B+32>>2]=0;c[B+32+9276>>2]=0;b=c[t>>2]|0;f=c[t+12>>2]|0;T=+g[f+16>>2];K=+g[b+16>>2]-T;M=+g[f+20>>2];N=+g[b+20>>2]-M;Q=+g[f+24>>2];R=+g[b+24>>2]-Q;f=c[t+4>>2]|0;P=+g[f+16>>2]-T;S=+g[f+20>>2]-M;L=+g[f+24>>2]-Q;m=c[t+8>>2]|0;T=+g[m+16>>2]-T;M=+g[m+20>>2]-M;Q=+g[m+24>>2]-Q;if(K*S*Q+(N*L*T+R*P*M-K*L*M-N*P*Q)-R*S*T<0.0){c[t>>2]=f;c[t+4>>2]=b;h=c[t+16>>2]|0;c[t+16>>2]=c[t+20>>2];c[t+20>>2]=h;h=f}else{h=b;b=f}h=nf(B+32|0,h,b,m,1)|0;q=nf(B+32|0,c[t+4>>2]|0,c[t>>2]|0,c[t+12>>2]|0,1)|0;r=nf(B+32|0,c[t+8>>2]|0,c[t+4>>2]|0,c[t+12>>2]|0,1)|0;j=nf(B+32|0,c[t>>2]|0,c[t+8>>2]|0,c[t+12>>2]|0,1)|0;if((c[B+32+9284>>2]|0)==4){b=c[w>>2]|0;n=+g[b+16>>2];f=c[b+48>>2]|0;if(f){o=n*n;while(1){n=+g[f+16>>2];m=n*n>2]|0;if(!f)break;else o=m?n*n:o}}s=+g[b>>2];p=+g[b+4>>2];o=+g[b+8>>2];n=+g[b+12>>2];u=c[b+16>>2]|0;U=c[b+20>>2]|0;f=c[b+24>>2]|0;m=c[b+28>>2]|0;a[h+52>>0]=0;c[h+32>>2]=q;a[q+52>>0]=0;c[q+32>>2]=h;a[h+53>>0]=0;c[h+36>>2]=r;a[r+52>>0]=1;c[r+32>>2]=h;a[h+54>>0]=0;c[h+40>>2]=j;a[j+52>>0]=2;c[j+32>>2]=h;a[q+53>>0]=2;c[q+36>>2]=j;a[j+54>>0]=1;c[j+40>>2]=q;a[q+54>>0]=1;c[q+40>>2]=r;a[r+53>>0]=2;c[r+36>>2]=q;a[r+54>>0]=1;c[r+40>>2]=j;a[j+53>>0]=2;c[j+36>>2]=r;c[B+32>>2]=0;t=b;r=U;j=f;q=m;b=u;u=0;while(1){f=c[B+32+9276>>2]|0;if(f>>>0>=64){z=43;break}c[B+9840>>2]=0;c[B+9840+4>>2]=0;c[B+9840+8>>2]=0;c[B+32+9276>>2]=f+1;u=u+1|0;a[t+55>>0]=u;h=t+4|0;U=t+8|0;Nh(B+9328|0,+g[t>>2],+g[h>>2],+g[U>>2],B+32+60+(f<<5)|0);if(+g[t>>2]*+g[B+32+60+(f<<5)+16>>2]+ +g[h>>2]*+g[B+32+60+(f<<5)+20>>2]+ +g[U>>2]*+g[B+32+60+(f<<5)+24>>2]-+g[t+16>>2]>9.999999747378752e-05)h=0;else{f=7;z=42;break}do{m=zh(B+32|0,u,B+32+60+(f<<5)|0,c[t+32+(h<<2)>>2]|0,d[t+52+h>>0]|0,B+9840|0)|0;h=h+1|0}while(m&h>>>0<3);if(!(m&(c[B+9840+8>>2]|0)>>>0>2)){f=4;z=42;break}m=c[B+9840>>2]|0;b=c[B+9840+4>>2]|0;a[m+53>>0]=2;c[m+36>>2]=b;a[b+54>>0]=1;c[b+40>>2]=m;b=t+44|0;m=t+48|0;f=c[m>>2]|0;if(f|0)c[f+44>>2]=c[b>>2];b=c[b>>2]|0;if(b|0)c[b+48>>2]=c[m>>2];if((c[v>>2]|0)==(t|0))c[v>>2]=c[m>>2];c[B+32+9284>>2]=(c[B+32+9284>>2]|0)+-1;c[t+44>>2]=0;c[m>>2]=c[x>>2];b=c[x>>2]|0;if(b|0)c[b+44>>2]=t;c[x>>2]=t;c[y>>2]=(c[y>>2]|0)+1;f=c[w>>2]|0;n=+g[f+16>>2];b=c[f+48>>2]|0;if(b){o=n*n;while(1){n=+g[b+16>>2];m=n*n>2]|0;if(!b)break;else o=m?n*n:o}}s=+g[f>>2];p=+g[f+4>>2];o=+g[f+8>>2];n=+g[f+12>>2];b=c[f+16>>2]|0;m=c[f+20>>2]|0;h=c[f+24>>2]|0;q=c[f+28>>2]|0;if(u>>>0>=255){f=q;break}else{t=f;r=m;j=h}}if((z|0)==42){c[B+32>>2]=f;m=r;h=j;f=q}else if((z|0)==43){c[B+32>>2]=6;m=r;h=j;f=q}R=(c[k>>2]=b,+g[k>>2]);P=s*R;M=p*R;R=o*R;g[B+32+40>>2]=s;g[B+32+44>>2]=p;g[B+32+48>>2]=o;g[B+32+52>>2]=n;c[B+32+56>>2]=b;c[B+32+36>>2]=3;c[B+32+4>>2]=m;c[B+32+8>>2]=h;c[B+32+12>>2]=f;U=h;Q=+g[U+16>>2]-P;K=+g[U+20>>2]-M;N=+g[U+24>>2]-R;y=f;J=+g[y+16>>2]-P;L=+g[y+20>>2]-M;S=+g[y+24>>2]-R;S=+O(+((Q*L-K*J)*(Q*L-K*J)+((K*S-N*L)*(K*S-N*L)+(N*J-Q*S)*(N*J-Q*S))));g[B+32+20>>2]=S;Q=+g[y+16>>2]-P;J=+g[y+20>>2]-M;N=+g[y+24>>2]-R;y=m;L=+g[y+16>>2]-P;K=+g[y+20>>2]-M;T=+g[y+24>>2]-R;T=+O(+((Q*K-J*L)*(Q*K-J*L)+((J*T-N*K)*(J*T-N*K)+(N*L-Q*T)*(N*L-Q*T))));g[B+32+24>>2]=T;Q=+g[y+16>>2]-P;L=+g[y+20>>2]-M;N=+g[y+24>>2]-R;P=+g[U+16>>2]-P;M=+g[U+20>>2]-M;R=+g[U+24>>2]-R;R=+O(+((Q*M-L*P)*(Q*M-L*P)+((L*R-N*M)*(L*R-N*M)+(N*P-Q*R)*(N*P-Q*R))));g[B+32+20>>2]=S/(R+(S+T));g[B+32+24>>2]=T/(R+(S+T));g[B+32+28>>2]=R/(R+(S+T));if((c[B+32>>2]|0)!=9)if(!(c[B+32+36>>2]|0)){p=0.0;o=0.0;n=0.0;break}else{h=B+32+36|0;z=51;break}c[l>>2]=3;U=0;i=B;return U|0}else z=45}else z=45;while(0);if((z|0)==45){c[B+32>>2]=8;g[B+32+40>>2]=p;g[B+32+44>>2]=s;g[B+32+48>>2]=o;g[B+32+52>>2]=0.0;n=+O(+(p*p+s*s+o*o));if(n>0.0){g[B+32+40>>2]=1.0/n*p;g[B+32+44>>2]=1.0/n*s;g[B+32+48>>2]=1.0/n*o}else{c[A>>2]=1065353216;c[B+32+44>>2]=0;c[B+32+48>>2]=0}g[B+32+52>>2]=0.0;g[B+32+56>>2]=0.0;c[B+32+36>>2]=1;c[B+32+4>>2]=c[t>>2];g[B+32+20>>2]=1.0;h=B+32+36|0;z=51}if((z|0)==51){m=0;p=0.0;o=0.0;n=0.0;do{b=c[B+9712+120>>2]|0;U=c[B+9712+124>>2]|0;f=(c[B+9712>>2]|0)+(U>>1)|0;if(U&1)b=c[(c[f>>2]|0)+b>>2]|0;ic[b&127](B,f,c[B+32+4+(m<<2)>>2]|0);T=+g[B+32+20+(m<<2)>>2];p=p+ +g[B>>2]*T;n=n+T*+g[B+4>>2];o=o+T*+g[B+8>>2];m=m+1|0}while(m>>>0<(c[h>>2]|0)>>>0)}c[l>>2]=1;T=p*+g[e+16>>2]+n*+g[e+20>>2]+o*+g[e+24>>2]+ +g[e+52>>2];Q=p*+g[e+32>>2]+n*+g[e+36>>2]+o*+g[e+40>>2]+ +g[e+56>>2];g[l+4>>2]=p*+g[e>>2]+n*+g[e+4>>2]+o*+g[e+8>>2]+ +g[e+48>>2];g[l+8>>2]=T;g[l+12>>2]=Q;g[l+16>>2]=0.0;Q=+g[A>>2];T=+g[B+32+56>>2];R=+g[B+32+44>>2];S=+g[B+32+48>>2];K=p-Q*T;L=n-T*R;M=o-T*S;N=K*+g[e+16>>2]+L*+g[e+20>>2]+M*+g[e+24>>2]+ +g[e+52>>2];P=K*+g[e+32>>2]+L*+g[e+36>>2]+M*+g[e+40>>2]+ +g[e+56>>2];g[l+20>>2]=K*+g[e>>2]+L*+g[e+4>>2]+M*+g[e+8>>2]+ +g[e+48>>2];g[l+24>>2]=N;g[l+28>>2]=P;g[l+32>>2]=0.0;g[l+36>>2]=-Q;g[l+40>>2]=-R;g[l+44>>2]=-S;g[l+48>>2]=0.0;g[l+52>>2]=-T;U=1;i=B;return U|0}case 2:{c[l>>2]=2;U=0;i=B;return U|0}default:{U=0;i=B;return U|0}}return 0}function Qc(b,d){b=b|0;d=+d;var e=0,f=0.0,h=0,j=0,k=0,l=0.0,m=0.0,n=0,o=0,p=0,q=0.0,r=0,s=0,t=0.0,u=0.0,v=0.0,w=0.0,x=0,y=0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0.0,H=0.0,I=0.0,J=0.0,K=0.0,L=0.0,M=0.0,N=0.0,P=0.0,Q=0.0,R=0.0;r=i;i=i+144|0;o=c[b+136>>2]|0;if(!o){i=r;return}k=c[b+8>>2]|0;if((k|0)<(o|0)){if((c[b+12>>2]|0)<(o|0)){c[6435]=(c[6435]|0)+1;e=yc((o<<4|3)+16|0)|0;if(!e)j=0;else{c[(e+4+15&-16)+-4>>2]=e;j=e+4+15&-16}e=c[b+8>>2]|0;if((e|0)>0){h=0;do{n=j+(h<<4)|0;s=(c[b+16>>2]|0)+(h<<4)|0;c[n>>2]=c[s>>2];c[n+4>>2]=c[s+4>>2];c[n+8>>2]=c[s+8>>2];c[n+12>>2]=c[s+12>>2];h=h+1|0}while((h|0)!=(e|0))}e=c[b+16>>2]|0;if(e|0){if(a[b+20>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0)}c[b+16>>2]=0}a[b+20>>0]=1;c[b+16>>2]=j;c[b+12>>2]=o;h=b+16|0}else h=b+16|0;e=k;do{s=(c[h>>2]|0)+(e<<4)|0;c[s>>2]=c[r+80>>2];c[s+4>>2]=c[r+80+4>>2];c[s+8>>2]=c[r+80+8>>2];c[s+12>>2]=c[r+80+12>>2];e=e+1|0}while((e|0)!=(o|0))}c[b+8>>2]=o;k=c[b+28>>2]|0;if((k|0)<(o|0)){if((c[b+32>>2]|0)<(o|0)){c[6435]=(c[6435]|0)+1;e=yc((o<<4|3)+16|0)|0;if(!e)j=0;else{c[(e+4+15&-16)+-4>>2]=e;j=e+4+15&-16}e=c[b+28>>2]|0;if((e|0)>0){h=0;do{s=j+(h<<4)|0;n=(c[b+36>>2]|0)+(h<<4)|0;c[s>>2]=c[n>>2];c[s+4>>2]=c[n+4>>2];c[s+8>>2]=c[n+8>>2];c[s+12>>2]=c[n+12>>2];h=h+1|0}while((h|0)!=(e|0))}e=c[b+36>>2]|0;if(e|0){if(a[b+40>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0)}c[b+36>>2]=0}a[b+40>>0]=1;c[b+36>>2]=j;c[b+32>>2]=o;h=b+36|0}else h=b+36|0;e=k;do{s=(c[h>>2]|0)+(e<<4)|0;c[s>>2]=c[r+64>>2];c[s+4>>2]=c[r+64+4>>2];c[s+8>>2]=c[r+64+8>>2];c[s+12>>2]=c[r+64+12>>2];e=e+1|0}while((e|0)!=(o|0))}c[b+28>>2]=o;n=c[b+48>>2]|0;if((n|0)<(o|0)){do if((c[b+52>>2]|0)<(o|0)){c[6435]=(c[6435]|0)+1;e=yc((o<<2|3)+16|0)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}h=c[b+48>>2]|0;j=c[b+56>>2]|0;if((h|0)<=0){if(!j){a[b+60>>0]=1;c[b+56>>2]=e;c[b+52>>2]=o;h=o<<2;break}}else{k=0;do{c[e+(k<<2)>>2]=c[j+(k<<2)>>2];k=k+1|0}while((k|0)!=(h|0))}if(a[b+60>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}a[b+60>>0]=1;c[b+56>>2]=e;c[b+52>>2]=o;h=o<<2}else{h=o<<2;e=c[b+56>>2]|0}while(0);Qn(e+(n<<2)|0,0,h-(n<<2)|0)|0}c[b+48>>2]=o;n=c[b+68>>2]|0;if((n|0)<(o|0)){do if((c[b+72>>2]|0)<(o|0)){c[6435]=(c[6435]|0)+1;e=yc((o<<2|3)+16|0)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}h=c[b+68>>2]|0;j=c[b+76>>2]|0;if((h|0)<=0){if(!j){a[b+80>>0]=1;c[b+76>>2]=e;c[b+72>>2]=o;h=o<<2;break}}else{k=0;do{c[e+(k<<2)>>2]=c[j+(k<<2)>>2];k=k+1|0}while((k|0)!=(h|0))}if(a[b+80>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}a[b+80>>0]=1;c[b+76>>2]=e;c[b+72>>2]=o;h=o<<2}else{h=o<<2;e=c[b+76>>2]|0}while(0);Qn(e+(n<<2)|0,0,h-(n<<2)|0)|0}c[b+68>>2]=o;e=c[b+136>>2]|0;if((e|0)<=0){i=r;return}h=c[b+76>>2]|0;j=c[b+56>>2]|0;k=0;do{g[h+(k<<2)>>2]=0.0;g[j+(k<<2)>>2]=0.0;k=k+1|0}while((k|0)!=(e|0));k=0;do{h=c[b+144>>2]|0;j=c[h+(k*284|0)+88>>2]|0;if(j){e=h+(k*284|0)+92|0;c[r+96>>2]=c[e>>2];c[r+96+4>>2]=c[e+4>>2];c[r+96+8>>2]=c[e+8>>2];c[r+96+12>>2]=c[e+12>>2];e=h+(k*284|0)+108|0;c[r+96+16>>2]=c[e>>2];c[r+96+16+4>>2]=c[e+4>>2];c[r+96+16+8>>2]=c[e+8>>2];c[r+96+16+12>>2]=c[e+12>>2];e=h+(k*284|0)+124|0;c[r+96+32>>2]=c[e>>2];c[r+96+32+4>>2]=c[e+4>>2];c[r+96+32+8>>2]=c[e+8>>2];c[r+96+32+12>>2]=c[e+12>>2];e=c[b+36>>2]|0;x=c[b+120>>2]|0;o=c[r+96+16+(x<<2)>>2]|0;y=c[r+96+32+(x<<2)>>2]|0;c[e+(k<<4)>>2]=c[r+96+(x<<2)>>2];c[e+(k<<4)+4>>2]=o;c[e+(k<<4)+8>>2]=y;g[e+(k<<4)+12>>2]=0.0;e=c[b+36>>2]|0;y=e+(k<<4)|0;z=+g[y>>2];o=h+(k*284|0)|0;f=+g[o>>2];x=e+(k<<4)+4|0;w=+g[x>>2];n=h+(k*284|0)+4|0;l=+g[n>>2];e=e+(k<<4)+8|0;t=+g[e>>2];s=h+(k*284|0)+8|0;v=+g[s>>2];m=z-f*(z*f+w*l+t*v);u=w-l*(z*f+w*l+t*v);v=t-v*(z*f+w*l+t*v);t=1.0/+O(+(m*m+u*u+v*v));g[y>>2]=m*t;g[x>>2]=u*t;g[e>>2]=v*t;e=c[b+16>>2]|0;l=+g[n>>2];w=+g[s>>2];f=+g[o>>2];g[e+(k<<4)>>2]=l*v*t-w*u*t;g[e+(k<<4)+4>>2]=w*m*t-v*t*f;g[e+(k<<4)+8>>2]=u*t*f-l*m*t;g[e+(k<<4)+12>>2]=0.0;e=c[b+16>>2]|0;o=e+(k<<4)|0;t=+g[o>>2];s=e+(k<<4)+4|0;m=+g[s>>2];e=e+(k<<4)+8|0;l=+g[e>>2];f=1.0/+O(+(t*t+m*m+l*l));g[o>>2]=t*f;g[s>>2]=m*f;g[e>>2]=l*f;e=c[b+116>>2]|0;s=c[b+36>>2]|0;f=+g[s+(k<<4)>>2];l=+g[s+(k<<4)+4>>2];m=+g[s+(k<<4)+8>>2];if(f*f+l*l+m*m>1.100000023841858)f=0.0;else{C=+g[h+(k*284|0)+16>>2];G=C-+g[e+52>>2];E=+g[h+(k*284|0)+20>>2];I=E-+g[e+56>>2];J=+g[h+(k*284|0)+24>>2];L=J-+g[e+60>>2];C=C-+g[j+52>>2];E=E-+g[j+56>>2];J=J-+g[j+60>>2];F=+g[e+332>>2];M=+g[e+336>>2];H=+g[e+328>>2];B=+g[j+332>>2];K=+g[j+336>>2];D=+g[j+328>>2];A=(m*I-l*L)*+g[e+4>>2]+(f*L-m*G)*+g[e+20>>2]+(l*G-f*I)*+g[e+36>>2];t=(m*I-l*L)*+g[e+8>>2]+(f*L-m*G)*+g[e+24>>2]+(l*G-f*I)*+g[e+40>>2];u=(m*I-l*L)*+g[e+12>>2]+(f*L-m*G)*+g[e+28>>2]+(l*G-f*I)*+g[e+44>>2];v=(E*-m-J*-l)*+g[j+4>>2]+(J*-f-C*-m)*+g[j+20>>2]+(C*-l-E*-f)*+g[j+36>>2];w=(E*-m-J*-l)*+g[j+8>>2]+(J*-f-C*-m)*+g[j+24>>2]+(C*-l-E*-f)*+g[j+40>>2];z=(E*-m-J*-l)*+g[j+12>>2]+(J*-f-C*-m)*+g[j+28>>2]+(C*-l-E*-f)*+g[j+44>>2];f=(f*(L*F-I*M+ +g[e+312>>2]-(J*B-E*K+ +g[j+312>>2]))+l*(+g[e+316>>2]+(G*M-L*H)-(+g[j+316>>2]+(C*K-J*D)))+m*(I*H-G*F+ +g[e+320>>2]-(E*D-C*B+ +g[j+320>>2])))*-.20000000298023224*(1.0/(+g[j+344>>2]+(+g[e+344>>2]+(A*A*+g[e+396>>2]+t*t*+g[e+400>>2]+u*u*+g[e+404>>2]))+(v*v*+g[j+396>>2]+w*w*+g[j+400>>2]+z*z*+g[j+404>>2])))}g[(c[b+76>>2]|0)+(k<<2)>>2]=f;e=c[b+136>>2]|0}k=k+1|0}while((k|0)<(e|0));if((e|0)<=0){i=r;return}h=c[b+144>>2]|0;j=0;o=0;while(1){e=c[h+(o*284|0)+88>>2]|0;if(e){f=+g[h+(o*284|0)+252>>2];if(f!=0.0){k=h;f=f*d}else{M=+g[h+(o*284|0)+256>>2];M=M==0.0?0.0:M;k=c[b+116>>2]|0;y=c[b+16>>2]|0;G=+g[h+(o*284|0)+16>>2];E=+g[h+(o*284|0)+20>>2];A=+g[h+(o*284|0)+24>>2];w=+g[y+(o<<4)>>2];D=+g[y+(o<<4)+4>>2];f=+g[y+(o<<4)+8>>2];P=G-+g[k+52>>2];Q=E-+g[k+56>>2];l=A-+g[k+60>>2];m=+g[k+264>>2]*(Q*f-l*D)+ +g[k+280>>2]*(l*w-P*f)+(P*D-Q*w)*+g[k+296>>2];R=(Q*f-l*D)*+g[k+268>>2]+(l*w-P*f)*+g[k+284>>2]+(P*D-Q*w)*+g[k+300>>2];N=(Q*f-l*D)*+g[k+272>>2]+(l*w-P*f)*+g[k+288>>2]+(P*D-Q*w)*+g[k+304>>2];K=G-+g[e+52>>2];I=E-+g[e+56>>2];C=A-+g[e+60>>2];v=(D*K-w*I)*+g[e+296>>2]+(+g[e+264>>2]*(f*I-D*C)+ +g[e+280>>2]*(w*C-f*K));t=(f*I-D*C)*+g[e+268>>2]+(w*C-f*K)*+g[e+284>>2]+(D*K-w*I)*+g[e+300>>2];u=(f*I-D*C)*+g[e+272>>2]+(w*C-f*K)*+g[e+288>>2]+(D*K-w*I)*+g[e+304>>2];G=G-+g[k+52>>2];E=E-+g[k+56>>2];A=A-+g[k+60>>2];H=+g[k+332>>2];z=+g[k+336>>2];F=+g[k+328>>2];L=+g[e+332>>2];B=+g[e+336>>2];J=+g[e+328>>2];f=-(1.0/(+g[k+344>>2]+(f*(Q*m-P*R)+(w*(l*R-Q*N)+D*(P*N-l*m)))+(+g[e+344>>2]+(f*(I*v-K*t)+(w*(C*t-I*u)+D*(K*u-C*v)))))*((A*H-E*z+ +g[k+312>>2]-(C*L-I*B+ +g[e+312>>2]))*w+(+g[k+316>>2]+(G*z-A*F)-(+g[e+316>>2]+(K*B-C*J)))*D+(E*F-G*H+ +g[k+320>>2]-(I*J-K*L+ +g[e+320>>2]))*f));f=M>2]|0;f=f<-M?-M:f}n=c[b+56>>2]|0;y=n+(o<<2)|0;g[y>>2]=0.0;e=k+(o*284|0)+280|0;g[e>>2]=1.0;m=+g[h+(o*284|0)+276>>2]*d*+g[h+(o*284|0)+228>>2];g[y>>2]=f;f=f*.5;l=+g[(c[b+76>>2]|0)+(o<<2)>>2];if(f*f+l*l>m*m){R=m/+O(+(f*f+l*l));g[e>>2]=R*+g[e>>2];e=1}else e=j}else{n=c[b+56>>2]|0;g[n+(o<<2)>>2]=0.0;g[h+(o*284|0)+280>>2]=1.0;k=h;e=j}o=o+1|0;j=c[b+136>>2]|0;if((o|0)>=(j|0))break;else{h=k;j=e}}if(e){if((j|0)<=0){i=r;return}e=c[b+76>>2]|0;h=0;do{if(+g[e+(h<<2)>>2]!=0.0?(p=k+(h*284|0)+280|0,q=+g[p>>2],q<1.0):0){y=n+(h<<2)|0;g[y>>2]=q*+g[y>>2];y=(c[b+76>>2]|0)+(h<<2)|0;g[y>>2]=+g[p>>2]*+g[y>>2]}h=h+1|0}while((h|0)!=(j|0))}if((j|0)<=0){i=r;return}j=n;e=0;while(1){h=c[b+116>>2]|0;n=k+(e*284|0)+16|0;l=+g[n>>2]-+g[h+52>>2];o=k+(e*284|0)+20|0;m=+g[o>>2]-+g[h+56>>2];p=k+(e*284|0)+24|0;d=+g[p>>2]-+g[h+60>>2];g[r+96>>2]=l;g[r+96+4>>2]=m;g[r+96+8>>2]=d;g[r+96+12>>2]=0.0;f=+g[j+(e<<2)>>2];if(f!=0.0){y=c[b+16>>2]|0;Q=f*+g[y+(e<<4)+4>>2];R=f*+g[y+(e<<4)+8>>2];g[r+16>>2]=f*+g[y+(e<<4)>>2];g[r+16+4>>2]=Q;g[r+16+8>>2]=R;g[r+16+12>>2]=0.0;gj(h,r+16|0,r+96|0)}f=+g[(c[b+76>>2]|0)+(e<<2)>>2];if(f!=0.0){y=c[(c[b+144>>2]|0)+(e*284|0)+88>>2]|0;Q=+g[o>>2]-+g[y+56>>2];P=+g[p>>2]-+g[y+60>>2];g[r+48>>2]=+g[n>>2]-+g[y+52>>2];g[r+48+4>>2]=Q;g[r+48+8>>2]=P;g[r+48+12>>2]=0.0;x=c[b+36>>2]|0;P=+g[x+(e<<4)>>2]*f;Q=f*+g[x+(e<<4)+4>>2];R=f*+g[x+(e<<4)+8>>2];g[r+32>>2]=P;g[r+32+4>>2]=Q;g[r+32+8>>2]=R;g[r+32+12>>2]=0.0;x=c[b+116>>2]|0;s=c[b+124>>2]|0;K=+g[x+4+(s<<2)>>2];L=+g[x+20+(s<<2)>>2];M=+g[x+36+(s<<2)>>2];N=(K*l+L*m+M*d)*(1.0-+g[k+(e*284|0)+244>>2]);g[r+96>>2]=l-K*N;g[r+96+4>>2]=m-L*N;g[r+96+8>>2]=d-M*N;gj(x,r+32|0,r+96|0);g[r>>2]=-P;g[r+4>>2]=-Q;g[r+8>>2]=-R;g[r+12>>2]=0.0;gj(y,r,r+48|0)}e=e+1|0;if((e|0)>=(c[b+136>>2]|0))break;k=c[b+144>>2]|0;j=c[b+56>>2]|0}i=r;return}function Rc(b,d){b=b|0;d=d|0;var e=0,f=0,h=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0,o=0.0,p=0,q=0,r=0.0,s=0.0,t=0,u=0,v=0.0,w=0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,P=0,Q=0.0,R=0.0;P=i;i=i+240|0;M=c[d+36>>2]|0;s=+g[(+g[M+88>>2]>0.0?b+16|0:b+20|0)>>2];if(a[M+100>>0]&1){i=P;return}K=c[b+8>>2]|0;u=c[K+4>>2]|0;L=c[K+12>>2]|0;I=c[(c[b+4>>2]|0)+684>>2]|0;B=+g[M+8>>2]-+g[L+48>>2];o=+g[M+12>>2]-+g[L+52>>2];C=+g[M+16>>2]-+g[L+56>>2];A=1.0/+g[I+76>>2];z=(B*+g[L>>2]+o*+g[L+16>>2]+C*+g[L+32>>2])*A/3.0;F=z<0.0?~~(1.0-z):0;J=~~((z+ +(F|0)-+(~~(z+ +(F|0))|0))*3.0);r=(z+ +(F|0)-+(~~(z+ +(F|0))|0))*3.0-+(J|0);F=~~(z+ +(F|0))-F|0;z=A*(B*+g[L+4>>2]+o*+g[L+20>>2]+C*+g[L+36>>2])/3.0;D=z<0.0?~~(1.0-z):0;G=~~((z+ +(D|0)-+(~~(z+ +(D|0))|0))*3.0);n=(z+ +(D|0)-+(~~(z+ +(D|0))|0))*3.0-+(G|0);D=~~(z+ +(D|0))-D|0;C=A*(B*+g[L+8>>2]+o*+g[L+24>>2]+C*+g[L+40>>2])/3.0;E=C<0.0?~~(1.0-C):0;H=~~((C+ +(E|0)-+(~~(C+ +(E|0))|0))*3.0);o=(C+ +(E|0)-+(~~(C+ +(E|0))|0))*3.0-+(H|0);E=~~(C+ +(E|0))-E|0;p=(F>>>16<<11^(F&65535)+16^(F&65535)+16<<16)+(D&65535)+((F>>>16<<11^(F&65535)+16^(F&65535)+16<<16)>>>11)|0;p=(p^D>>>16<<11^p<<16)+(E&65535)+((p^D>>>16<<11^p<<16)>>>11)|0;p=(p^E>>>16<<11^p<<16)+(u&65535)+((p^E>>>16<<11^p<<16)>>>11)|0;p=((p^u>>>16<<11^p<<16)>>>11)+(p^u>>>16<<11^p<<16)|0;p=((p<<3^p)>>>5)+(p<<3^p)<<4^((p<<3^p)>>>5)+(p<<3^p);p=(((p>>>17)+p<<25^(p>>>17)+p)>>>6)+((p>>>17)+p<<25^(p>>>17)+p)|0;q=c[I+60>>2]|0;t=c[I+68>>2]|0;d=c[t+(((p>>>0)%(q>>>0)|0)<<2)>>2]|0;c[I+96>>2]=(c[I+96>>2]|0)+1;e=(c[I+92>>2]|0)+1|0;c[I+92>>2]=e;a:do if(!d)w=9;else while(1){if(((((c[d+272>>2]|0)==(p|0)?(c[d+256>>2]|0)==(F|0):0)?(c[d+260>>2]|0)==(D|0):0)?(c[d+264>>2]|0)==(E|0):0)?(c[d+276>>2]|0)==(u|0):0)break a;d=c[d+280>>2]|0;e=e+1|0;c[I+92>>2]=e;if(!d){w=9;break}}while(0);if((w|0)==9){f=c[I+84>>2]|0;c[I+84>>2]=f+1;if((f|0)>=(c[I+88>>2]|0)){c[5789]=(c[5789]|0)+1;b:do if((q|0)>0){e=t;f=0;while(1){e=e+(f<<2)|0;d=c[e>>2]|0;c[e>>2]=0;if(d|0)do{e=d;d=c[d+280>>2]|0;hd(e)}while((d|0)!=0);d=f+1|0;if((d|0)==(q|0))break b;e=c[I+68>>2]|0;f=d}}while(0);g[I+76>>2]=.25;c[I+80>>2]=0;c[I+84>>2]=0;c[I+92>>2]=1;c[I+96>>2]=1}while(1){d=yc(284)|0;if(d|0)break;d=c[6564]|0;c[6564]=d+0;if(!d){w=19;break}jc[d&3]()}if((w|0)==19){P=Ya(4)|0;c[P>>2]=9640;pb(P|0,2800,251)}Qn(d|0,0,284)|0;c[d+280>>2]=c[t+(((p>>>0)%(q>>>0)|0)<<2)>>2];c[t+(((p>>>0)%(q>>>0)|0)<<2)>>2]=d;c[d+276>>2]=u;c[d+272>>2]=p;c[d+256>>2]=F;c[d+260>>2]=D;c[d+264>>2]=E;l=+g[I+76>>2];q=P+168+4|0;t=P+168+24|0;u=P+168+44|0;h=l;e=0;while(1){k=l*+(E|0)*3.0+ +(e|0)*h;p=0;while(1){j=l*+(D|0)*3.0+ +(p|0)*h;g[P+96>>2]=+(F|0)*3.0*l+h*0.0;g[P+96+4>>2]=j;g[P+96+8>>2]=k;g[P+96+12>>2]=0.0;f=c[d+276>>2]|0;c[P+168>>2]=1065353216;c[q>>2]=0;c[q+4>>2]=0;c[q+8>>2]=0;c[q+12>>2]=0;c[P+168+20>>2]=1065353216;c[t>>2]=0;c[t+4>>2]=0;c[t+8>>2]=0;c[t+12>>2]=0;c[P+168+40>>2]=1065353216;c[u>>2]=0;c[u+4>>2]=0;c[u+8>>2]=0;c[u+12>>2]=0;c[u+16>>2]=0;if((c[f+4>>2]|0)<20)h=+ed(P+96|0,f,P+168|0,P+112|0);else h=0.0;g[d+(p<<4)+(e<<2)>>2]=h;g[P+96>>2]=+(F|0)*3.0*l+ +g[I+76>>2];g[P+96+4>>2]=j;g[P+96+8>>2]=k;g[P+96+12>>2]=0.0;f=c[d+276>>2]|0;c[P+168>>2]=1065353216;c[q>>2]=0;c[q+4>>2]=0;c[q+8>>2]=0;c[q+12>>2]=0;c[P+168+20>>2]=1065353216;c[t>>2]=0;c[t+4>>2]=0;c[t+8>>2]=0;c[t+12>>2]=0;c[P+168+40>>2]=1065353216;c[u>>2]=0;c[u+4>>2]=0;c[u+8>>2]=0;c[u+12>>2]=0;c[u+16>>2]=0;if((c[f+4>>2]|0)<20)h=+ed(P+96|0,f,P+168|0,P+112|0);else h=0.0;g[d+64+(p<<4)+(e<<2)>>2]=h;g[P+96>>2]=+(F|0)*3.0*l+ +g[I+76>>2]*2.0;g[P+96+4>>2]=j;g[P+96+8>>2]=k;g[P+96+12>>2]=0.0;f=c[d+276>>2]|0;c[P+168>>2]=1065353216;c[q>>2]=0;c[q+4>>2]=0;c[q+8>>2]=0;c[q+12>>2]=0;c[P+168+20>>2]=1065353216;c[t>>2]=0;c[t+4>>2]=0;c[t+8>>2]=0;c[t+12>>2]=0;c[P+168+40>>2]=1065353216;c[u>>2]=0;c[u+4>>2]=0;c[u+8>>2]=0;c[u+12>>2]=0;c[u+16>>2]=0;if((c[f+4>>2]|0)<20)h=+ed(P+96|0,f,P+168|0,P+112|0);else h=0.0;g[d+128+(p<<4)+(e<<2)>>2]=h;g[P+96>>2]=+(F|0)*3.0*l+ +g[I+76>>2]*3.0;g[P+96+4>>2]=j;g[P+96+8>>2]=k;g[P+96+12>>2]=0.0;f=c[d+276>>2]|0;c[P+168>>2]=1065353216;c[q>>2]=0;c[q+4>>2]=0;c[q+8>>2]=0;c[q+12>>2]=0;c[P+168+20>>2]=1065353216;c[t>>2]=0;c[t+4>>2]=0;c[t+8>>2]=0;c[t+12>>2]=0;c[P+168+40>>2]=1065353216;c[u>>2]=0;c[u+4>>2]=0;c[u+8>>2]=0;c[u+12>>2]=0;c[u+16>>2]=0;if((c[f+4>>2]|0)<20)h=+ed(P+96|0,f,P+168|0,P+112|0);else h=0.0;g[d+192+(p<<4)+(e<<2)>>2]=h;f=p+1|0;if((f|0)==4)break;h=+g[I+76>>2];p=f}e=e+1|0;if((e|0)==4)break;h=+g[I+76>>2]}}c[d+268>>2]=c[I+80>>2];h=+g[d+(J<<6)+(G<<4)+(H<<2)>>2];y=+g[d+(J+1<<6)+(G<<4)+(H<<2)>>2];v=+g[d+(J+1<<6)+(G+1<<4)+(H<<2)>>2];x=+g[d+(J<<6)+(G+1<<4)+(H<<2)>>2];C=+g[d+(J<<6)+(G<<4)+(H+1<<2)>>2];B=+g[d+(J+1<<6)+(G<<4)+(H+1<<2)>>2];z=+g[d+(J+1<<6)+(G+1<<4)+(H+1<<2)>>2];A=+g[d+(J<<6)+(G+1<<4)+(H+1<<2)>>2];j=y-h+n*(v-x-(y-h))+o*(B-C+n*(z-A-(B-C))-(y-h+n*(v-x-(y-h))));k=x-h+r*(v-y-(x-h))+o*(A-C+r*(z-B-(A-C))-(x-h+r*(v-y-(x-h))));l=C-h+r*(B-y-(C-h))+n*(A-x+r*(z-v-(A-x))-(C-h+r*(B-y-(C-h))));m=1.0/+O(+(j*j+k*k+l*l));h=h+r*(y-h)+n*(x+r*(v-x)-(h+r*(y-h)));h=h+o*(C+r*(B-C)+n*(A+r*(z-A)-(C+r*(B-C)))-h)-s;if(!(h<0.0)){i=P;return}t=c[K+8>>2]|0;B=+g[L>>2]*j*m+ +g[L+4>>2]*k*m+ +g[L+8>>2]*l*m;C=j*m*+g[L+16>>2]+k*m*+g[L+20>>2]+l*m*+g[L+24>>2];A=j*m*+g[L+32>>2]+k*m*+g[L+36>>2]+l*m*+g[L+40>>2];z=-(B*(+g[M+8>>2]-h*B)+C*(+g[M+12>>2]-h*C)+A*(+g[M+16>>2]-h*A));s=+g[M+88>>2];d=c[b+12>>2]|0;if(!d)r=0.0;else r=+g[d+344>>2];if(!(s+r>0.0)){i=P;return}if(!d)d=c[(c[b+8>>2]|0)+8>>2]|0;if((a[22528]|0)==0?Wa(22528)|0:0){e=23160;f=e+48|0;do{c[e>>2]=0;e=e+4|0}while((e|0)<(f|0));_a(22528)}e=c[b+12>>2]|0;m=+g[M+8>>2];x=m-+g[d+52>>2];n=+g[M+12>>2];y=n-+g[d+56>>2];o=+g[M+16>>2];v=o-+g[d+60>>2];if(!e){L=c[b+4>>2]|0;d=L;h=+g[L+452>>2];j=0.0;k=0.0;l=0.0}else{Q=+g[e+332>>2];k=+g[e+336>>2];R=+g[e+328>>2];d=c[b+4>>2]|0;l=+g[d+452>>2];h=l;j=(Q*v-k*y+ +g[e+312>>2])*l;k=(+g[e+316>>2]+(k*x-v*R))*l;l=(y*R-Q*x+ +g[e+320>>2])*l}m=m-+g[M+24>>2]-j;Q=n-+g[M+28>>2]-k;R=o-+g[M+32>>2]-l;j=+g[d+316>>2]*+g[(c[(c[b+8>>2]|0)+8>>2]|0)+224>>2];Pf(P,h,s,r,(e|0)==0?23160:e+264|0,x,y,v);c[P+80>>2]=c[P>>2];c[P+80+4>>2]=c[P+4>>2];c[P+80+8>>2]=c[P+8>>2];c[P+80+12>>2]=c[P+12>>2];c[P+64>>2]=c[P+16>>2];c[P+64+4>>2]=c[P+16+4>>2];c[P+64+8>>2]=c[P+16+8>>2];c[P+64+12>>2]=c[P+16+12>>2];c[P+48>>2]=c[P+32>>2];c[P+48+4>>2]=c[P+32+4>>2];c[P+48+8>>2]=c[P+32+8>>2];c[P+48+12>>2]=c[P+32+12>>2];q=c[b+4>>2]|0;h=s*+g[q+452>>2];j=(R-A*(m*B+Q*C+R*A))*(R-A*(m*B+Q*C+R*A))+((m-B*(m*B+Q*C+R*A))*(m-B*(m*B+Q*C+R*A))+(Q-C*(m*B+Q*C+R*A))*(Q-C*(m*B+Q*C+R*A)))>2]|0)+8>>2]|0)+204>>2]&3|0?q+328|0:q+324|0)>>2]|0;d=c[q+812>>2]|0;if((d|0)==(c[q+816>>2]|0)?(N=d|0?d<<1:1,(d|0)<(N|0)):0){if(!N)f=0;else{c[6435]=(c[6435]|0)+1;d=yc((N*104|3)+16|0)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}f=d;d=c[q+812>>2]|0}if((d|0)>0){e=0;do{L=f+(e*104|0)|0;K=c[q+820>>2]|0;J=K+(e*104|0)|0;c[L>>2]=c[J>>2];c[L+4>>2]=c[J+4>>2];c[L+8>>2]=c[J+8>>2];c[L+12>>2]=c[J+12>>2];c[L+16>>2]=c[J+16>>2];c[L+20>>2]=c[J+20>>2];c[L+24>>2]=c[J+24>>2];L=f+(e*104|0)+28|0;J=K+(e*104|0)+28|0;c[L>>2]=c[J>>2];c[L+4>>2]=c[J+4>>2];c[L+8>>2]=c[J+8>>2];c[L+12>>2]=c[J+12>>2];L=f+(e*104|0)+44|0;J=K+(e*104|0)+44|0;c[L>>2]=c[J>>2];c[L+4>>2]=c[J+4>>2];c[L+8>>2]=c[J+8>>2];c[L+12>>2]=c[J+12>>2];L=f+(e*104|0)+60|0;J=K+(e*104|0)+60|0;c[L>>2]=c[J>>2];c[L+4>>2]=c[J+4>>2];c[L+8>>2]=c[J+8>>2];c[L+12>>2]=c[J+12>>2];L=f+(e*104|0)+76|0;K=K+(e*104|0)+76|0;c[L>>2]=c[K>>2];c[L+4>>2]=c[K+4>>2];c[L+8>>2]=c[K+8>>2];c[L+12>>2]=c[K+12>>2];c[L+16>>2]=c[K+16>>2];c[L+20>>2]=c[K+20>>2];c[L+24>>2]=c[K+24>>2];e=e+1|0}while((e|0)!=(d|0))}d=c[q+820>>2]|0;if(d|0){if(a[q+824>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[q+820>>2]=0}a[q+824>>0]=1;c[q+820>>2]=f;c[q+816>>2]=N;d=c[q+812>>2]|0}L=c[q+820>>2]|0;c[L+(d*104|0)>>2]=t;g[L+(d*104|0)+4>>2]=B;g[L+(d*104|0)+8>>2]=C;g[L+(d*104|0)+12>>2]=A;g[L+(d*104|0)+16>>2]=0.0;g[L+(d*104|0)+20>>2]=z;c[L+(d*104|0)+24>>2]=M;N=L+(d*104|0)+28|0;c[N>>2]=c[P+80>>2];c[N+4>>2]=c[P+80+4>>2];c[N+8>>2]=c[P+80+8>>2];c[N+12>>2]=c[P+80+12>>2];N=L+(d*104|0)+44|0;c[N>>2]=c[P+64>>2];c[N+4>>2]=c[P+64+4>>2];c[N+8>>2]=c[P+64+8>>2];c[N+12>>2]=c[P+64+12>>2];N=L+(d*104|0)+60|0;c[N>>2]=c[P+48>>2];c[N+4>>2]=c[P+48+4>>2];c[N+8>>2]=c[P+48+8>>2];c[N+12>>2]=c[P+48+12>>2];N=L+(d*104|0)+76|0;g[N>>2]=x;g[L+(d*104|0)+80>>2]=y;g[L+(d*104|0)+84>>2]=v;g[L+(d*104|0)+88>>2]=0.0;g[N+16>>2]=h;g[N+20>>2]=j;c[N+24>>2]=p;c[q+812>>2]=(c[q+812>>2]|0)+1;d=c[b+12>>2]|0;if(!d){i=P;return}if(c[d+204>>2]&3|0){i=P;return}if((c[d+216>>2]&-2|0)!=4)c[d+216>>2]=1;g[d+220>>2]=0.0;i=P;return} -function nc(d,f){d=d|0;f=f|0;var h=0,j=0,l=0,m=0,n=0,o=0,p=0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0,x=0.0,y=0,z=0,A=0,B=0,C=0,D=0,E=0.0,F=0.0,G=0,H=0.0,I=0.0,J=0,K=0,L=0,M=0,P=0,Q=0,R=0,S=0,T=0,U=0.0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0.0,fa=0.0,ga=0,ha=0;da=i;i=i+288|0;h=c[d+52>>2]|0;if(h|0?(Ab[c[c[h>>2]>>2]&255](h),j=c[d+52>>2]|0,j|0):0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}c[6435]=(c[6435]|0)+1;h=yc(151)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}c[h>>2]=9352;a[h+20>>0]=1;c[h+16>>2]=0;c[h+8>>2]=0;c[h+12>>2]=0;a[h+40>>0]=1;c[h+36>>2]=0;c[h+28>>2]=0;c[h+32>>2]=0;a[h+60>>0]=1;c[h+56>>2]=0;c[h+48>>2]=0;c[h+52>>2]=0;c[d+52>>2]=h;o=0;n=0;ca=0;J=0;while(1){if((o|0)>=(Eb[c[(c[d>>2]|0)+96>>2]&127](d)|0))break;do if((J|0)==(n|0)){l=n|0?n<<1:1;if((n|0)<(l|0)){if((l|0)!=0?(c[6435]=(c[6435]|0)+1,p=yc((l<<4|3)+16|0)|0,(p|0)!=0):0){c[(p+4+15&-16)+-4>>2]=p;h=p+4+15&-16}else h=0;if((n|0)<=0){if(!ca){m=n;j=l;break}}else{j=0;do{ba=h+(j<<4)|0;aa=ca+(j<<4)|0;c[ba>>2]=c[aa>>2];c[ba+4>>2]=c[aa+4>>2];c[ba+8>>2]=c[aa+8>>2];c[ba+12>>2]=c[aa+12>>2];j=j+1|0}while((j|0)!=(n|0))}c[6436]=(c[6436]|0)+1;hd(c[ca+-4>>2]|0);m=n;j=l}else{m=n;j=n;h=ca}}else{m=J;j=n;h=ca}while(0);n=h+(J<<4)|0;c[n>>2]=c[da+192>>2];c[n+4>>2]=c[da+192+4>>2];c[n+8>>2]=c[da+192+8>>2];c[n+12>>2]=c[da+192+12>>2];ic[c[(c[d>>2]|0)+108>>2]&127](d,o,n);o=o+1|0;n=j;ca=h;J=m+1|0}a[da+128+16>>0]=1;ba=da+128+12|0;c[ba>>2]=0;c[da+128+4>>2]=0;c[da+128+8>>2]=0;a[da+128+36>>0]=1;aa=da+128+32|0;c[aa>>2]=0;c[da+128+24>>2]=0;c[da+128+28>>2]=0;a[da+128+56>>0]=1;$=da+128+52|0;c[$>>2]=0;c[da+128+44>>2]=0;c[da+128+48>>2]=0;if(f){if((J|0)>0){G=0;j=0;m=0;l=0;while(1){h=G;G=G+1|0;if((G|0)<(J|0)){C=ca+(h<<4)|0;D=ca+(h<<4)+4|0;A=ca+(h<<4)+8|0;B=G;h=l;do{l=B;B=B+1|0;if((B|0)<(J|0)){y=ca+(l<<4)|0;z=ca+(l<<4)+4|0;f=ca+(l<<4)+8|0;w=B;do{E=+g[C>>2];I=+g[y>>2]-E;F=+g[D>>2];v=+g[z>>2]-F;H=+g[A>>2];x=+g[f>>2]-H;E=+g[ca+(w<<4)>>2]-E;F=+g[ca+(w<<4)+4>>2]-F;H=+g[ca+(w<<4)+8>>2]-H;q=1.0;p=0;while(1){t=(v*H-x*F)*q;u=(x*E-I*H)*q;r=(I*F-v*E)*q;a:do if(r*r+(t*t+u*u)>9.999999747378752e-05){s=1.0/+O(+(r*r+(t*t+u*u)));if((h|0)>0){l=0;do{if(t*s*+g[m+(l<<4)>>2]+u*s*+g[m+(l<<4)+4>>2]+r*s*+g[m+(l<<4)+8>>2]>.9990000128746033)break a;l=l+1|0}while((l|0)<(h|0))}q=t*s*+g[C>>2]+u*s*+g[D>>2]+r*s*+g[A>>2];l=0;do{if(t*s*+g[ca+(l<<4)>>2]+u*s*+g[ca+(l<<4)+4>>2]+r*s*+g[ca+(l<<4)+8>>2]-q+-.009999999776482582>0.0)break a;l=l+1|0}while((l|0)<(J|0));do if((h|0)==(j|0)){o=j|0?j<<1:1;if((j|0)<(o|0)){do if(!o)n=0;else{c[6435]=(c[6435]|0)+1;l=yc((o<<4|3)+16|0)|0;if(!l){n=0;break}c[(l+4+15&-16)+-4>>2]=l;n=l+4+15&-16}while(0);if((j|0)<=0){if(!m){l=j;j=o;m=n;break}}else{l=0;do{Y=n+(l<<4)|0;X=m+(l<<4)|0;c[Y>>2]=c[X>>2];c[Y+4>>2]=c[X+4>>2];c[Y+8>>2]=c[X+8>>2];c[Y+12>>2]=c[X+12>>2];l=l+1|0}while((l|0)!=(j|0))}c[6436]=(c[6436]|0)+1;hd(c[m+-4>>2]|0);l=j;j=o;m=n}else l=j}else l=h;while(0);g[m+(l<<4)>>2]=t*s;g[m+(l<<4)+4>>2]=u*s;g[m+(l<<4)+8>>2]=r*s;g[m+(l<<4)+12>>2]=-q;h=h+1|0}while(0);p=p+1|0;if((p|0)==2)break;else q=-1.0}w=w+1|0}while((w|0)!=(J|0))}}while((B|0)!=(J|0))}else h=l;if((G|0)==(J|0))break;else l=h}if((h|0)>0){o=0;p=0;f=0;while(1){Y=m+(f<<4)|0;c[da+208>>2]=c[Y>>2];c[da+208+4>>2]=c[Y+4>>2];c[da+208+8>>2]=c[Y+8>>2];q=+g[m+(f<<4)+12>>2];q=q-+Sb[c[(c[d>>2]|0)+48>>2]&15](d);do if((f|0)==(o|0)){n=o|0?o<<1:1;if((o|0)<(n|0)){if((n|0)!=0?(c[6435]=(c[6435]|0)+1,K=yc((n<<4|3)+16|0)|0,(K|0)!=0):0){c[(K+4+15&-16)+-4>>2]=K;l=K+4+15&-16}else l=0;if((o|0)<=0){if(!p){j=o;break}}else{j=0;do{Y=l+(j<<4)|0;X=p+(j<<4)|0;c[Y>>2]=c[X>>2];c[Y+4>>2]=c[X+4>>2];c[Y+8>>2]=c[X+8>>2];c[Y+12>>2]=c[X+12>>2];j=j+1|0}while((j|0)!=(o|0))}c[6436]=(c[6436]|0)+1;hd(c[p+-4>>2]|0);j=o}else{j=o;n=o;l=p}}else{j=f;n=o;l=p}while(0);Y=l+(j<<4)|0;c[Y>>2]=c[da+208>>2];c[Y+4>>2]=c[da+208+4>>2];c[Y+8>>2]=c[da+208+8>>2];g[l+(j<<4)+12>>2]=q;f=f+1|0;if((f|0)<(h|0)){o=n;p=l}else break}if((f|0)>0){C=0;n=0;j=0;h=0;do{A=C;C=C+1|0;if((C|0)<(f|0)){B=C;do{y=B;B=B+1|0;if((B|0)<(f|0)){z=B;do{t=+g[l+(y<<4)+4>>2];q=+g[l+(z<<4)+8>>2];r=+g[l+(y<<4)+8>>2];u=+g[l+(z<<4)+4>>2];v=+g[l+(z<<4)>>2];x=+g[l+(y<<4)>>2];s=+g[l+(A<<4)+8>>2];E=+g[l+(A<<4)+4>>2];F=+g[l+(A<<4)>>2];b:do if((((u*x-t*v)*(u*x-t*v)+((t*q-r*u)*(t*q-r*u)+(r*v-q*x)*(r*v-q*x))>9.999999747378752e-05?(v*E-u*F)*(v*E-u*F)+((u*s-q*E)*(u*s-q*E)+(q*F-v*s)*(q*F-v*s))>9.999999747378752e-05:0)?(t*F-x*E)*(t*F-x*E)+((r*E-t*s)*(r*E-t*s)+(x*s-r*F)*(x*s-r*F))>9.999999747378752e-05:0)?(U=s*(u*x-t*v)+(E*(r*v-q*x)+(t*q-r*u)*F),+N(+U)>9.999999974752427e-07):0){ea=+g[l+(A<<4)+12>>2];I=+g[l+(y<<4)+12>>2];fa=+g[l+(z<<4)+12>>2];H=-1.0/U*((r*E-t*s)*fa+((t*q-r*u)*ea+(u*s-q*E)*I));r=-1.0/U*((x*s-r*F)*fa+((r*v-q*x)*ea+(q*F-v*s)*I));q=-1.0/U*((t*F-x*E)*fa+((u*x-t*v)*ea+(v*E-u*F)*I));o=0;do{if(+g[l+(o<<4)+12>>2]+(H*+g[l+(o<<4)>>2]+r*+g[l+(o<<4)+4>>2]+q*+g[l+(o<<4)+8>>2])+-.009999999776482582>0.0)break b;o=o+1|0}while((o|0)<(f|0));do if((h|0)==(n|0)){w=n|0?n<<1:1;if((n|0)>=(w|0)){o=n;break}do if(!w)p=0;else{c[6435]=(c[6435]|0)+1;o=yc((w<<4|3)+16|0)|0;if(!o){p=0;break}c[(o+4+15&-16)+-4>>2]=o;p=o+4+15&-16}while(0);if((n|0)<=0){if(!j){o=n;n=w;j=p;break}}else{o=0;do{Y=p+(o<<4)|0;X=j+(o<<4)|0;c[Y>>2]=c[X>>2];c[Y+4>>2]=c[X+4>>2];c[Y+8>>2]=c[X+8>>2];c[Y+12>>2]=c[X+12>>2];o=o+1|0}while((o|0)!=(n|0))}c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0);o=n;n=w;j=p}else o=h;while(0);g[j+(o<<4)>>2]=H;g[j+(o<<4)+4>>2]=r;g[j+(o<<4)+8>>2]=q;g[j+(o<<4)+12>>2]=0.0;h=h+1|0}while(0);z=z+1|0}while((z|0)!=(f|0))}}while((B|0)!=(f|0))}}while((C|0)!=(f|0))}else{j=0;h=0}}else{l=0;j=0;h=0}}else{m=0;l=0;j=0;h=0}Dc(da+128|0,j,h);if(j|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}if(l|0){c[6436]=(c[6436]|0)+1;hd(c[l+-4>>2]|0)}if(m|0){c[6436]=(c[6436]|0)+1;hd(c[m+-4>>2]|0)}}else Dc(da+128|0,ca,J);G=c[da+128+44>>2]|0;if((G|0)>0){c[6435]=(c[6435]|0)+1;h=yc((G<<4|3)+16|0)|0;if(!h)j=0;else{c[(h+4+15&-16)+-4>>2]=h;j=h+4+15&-16}h=0;do{Y=j+(h<<4)|0;c[Y>>2]=c[da+112>>2];c[Y+4>>2]=c[da+112+4>>2];c[Y+8>>2]=c[da+112+8>>2];c[Y+12>>2]=c[da+112+12>>2];h=h+1|0}while((h|0)!=(G|0))}else j=0;a[da+92+16>>0]=1;Y=da+92+12|0;c[Y>>2]=0;X=da+92+4|0;c[X>>2]=0;c[da+92+8>>2]=0;m=da+256|0;o=m+19|0;do{a[m>>0]=0;m=m+1|0}while((m|0)<(o|0));if((G|0)<0)lb();if((G|0)>0){If(da+92|0,G);h=c[Y>>2]|0;l=0;do{m=h+(l*36|0)|0;a[m+16>>0]=1;c[m+4>>2]=0;c[m+4+4>>2]=0;c[m+4+8>>2]=0;m=m+20|0;n=da+256+3|0;o=m+16|0;do{a[m>>0]=a[n>>0]|0;m=m+1|0;n=n+1|0}while((m|0)<(o|0));l=l+1|0}while((l|0)!=(G|0))}c[X>>2]=G;p=c[da+128+4>>2]|0;o=c[d+52>>2]|0;n=c[o+8>>2]|0;if((n|0)<(p|0)){if((c[o+12>>2]|0)<(p|0)){if(!p){h=0;l=n}else{c[6435]=(c[6435]|0)+1;h=yc((p<<4|3)+16|0)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}l=c[o+8>>2]|0}if((l|0)>0){m=0;do{W=h+(m<<4)|0;V=(c[o+16>>2]|0)+(m<<4)|0;c[W>>2]=c[V>>2];c[W+4>>2]=c[V+4>>2];c[W+8>>2]=c[V+8>>2];c[W+12>>2]=c[V+12>>2];m=m+1|0}while((m|0)!=(l|0))}l=c[o+16>>2]|0;if(l|0){if(a[o+20>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[l+-4>>2]|0)}c[o+16>>2]=0}a[o+20>>0]=1;c[o+16>>2]=h;c[o+12>>2]=p;l=o+16|0}else l=o+16|0;h=n;do{W=(c[l>>2]|0)+(h<<4)|0;c[W>>2]=c[da+56>>2];c[W+4>>2]=c[da+56+4>>2];c[W+8>>2]=c[da+56+8>>2];c[W+12>>2]=c[da+56+12>>2];h=h+1|0}while((h|0)!=(p|0))}c[o+8>>2]=p;if((p|0)>0){h=0;do{W=(c[(c[d+52>>2]|0)+16>>2]|0)+(h<<4)|0;V=(c[ba>>2]|0)+(h<<4)|0;c[W>>2]=c[V>>2];c[W+4>>2]=c[V+4>>2];c[W+8>>2]=c[V+8>>2];c[W+12>>2]=c[V+12>>2];h=h+1|0}while((h|0)!=(p|0))}if((G|0)>0){D=0;do{A=(c[aa>>2]|0)+((c[(c[$>>2]|0)+(D<<2)>>2]|0)*12|0)|0;C=A;l=0;do{B=C+4|0;z=c[C+((c[B>>2]|0)*12|0)+8>>2]|0;w=c[Y>>2]|0;y=w+(D*36|0)+4|0;h=c[y>>2]|0;f=w+(D*36|0)+8|0;if((h|0)==(c[f>>2]|0)?(L=h|0?h<<1:1,(h|0)<(L|0)):0){if(!L)p=0;else{c[6435]=(c[6435]|0)+1;h=yc((L<<2|3)+16|0)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}p=h;h=c[y>>2]|0}o=w+(D*36|0)+12|0;n=c[o>>2]|0;if((h|0)<=0)if(!n)m=w+(D*36|0)+16|0;else _=132;else{m=0;do{c[p+(m<<2)>>2]=c[n+(m<<2)>>2];m=m+1|0}while((m|0)!=(h|0));_=132}if((_|0)==132){_=0;h=w+(D*36|0)+16|0;if(a[h>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[n+-4>>2]|0)}c[o>>2]=0;m=h;h=c[y>>2]|0}a[m>>0]=1;c[o>>2]=p;c[f>>2]=L}c[(c[w+(D*36|0)+12>>2]|0)+(h<<2)>>2]=z;c[y>>2]=(c[y>>2]|0)+1;V=c[C+8>>2]|0;W=c[ba>>2]|0;s=+g[W+(V<<4)>>2]-+g[W+(z<<4)>>2];t=+g[W+(V<<4)+4>>2]-+g[W+(z<<4)+4>>2];q=+g[W+(V<<4)+8>>2]-+g[W+(z<<4)+8>>2];r=1.0/+O(+(s*s+t*t+q*q));if((l|0)<2){g[da+208+(l<<4)>>2]=s*r;g[da+208+(l<<4)+4>>2]=t*r;g[da+208+(l<<4)+8>>2]=q*r;g[da+208+(l<<4)+12>>2]=0.0;l=l+1|0}W=C+((c[B>>2]|0)*12|0)|0;C=W+((c[W>>2]|0)*12|0)|0}while((C|0)!=(A|0));h=j+(D<<4)|0;if((l|0)==2){H=+g[da+208+4>>2];I=+g[da+208+24>>2];U=+g[da+208+8>>2];ea=+g[da+208+20>>2];F=+g[da+208+16>>2];E=+g[da+208>>2];V=j+(D<<4)+4|0;W=j+(D<<4)+8|0;g[j+(D<<4)+12>>2]=0.0;fa=1.0/+O(+((H*I-U*ea)*(H*I-U*ea)+(U*F-I*E)*(U*F-I*E)+(ea*E-H*F)*(ea*E-H*F)));g[h>>2]=(H*I-U*ea)*fa;g[V>>2]=(U*F-I*E)*fa;g[W>>2]=(ea*E-H*F)*fa;o=c[Y>>2]|0;g[o+(D*36|0)+20>>2]=(H*I-U*ea)*fa;c[o+(D*36|0)+24>>2]=c[V>>2];c[o+(D*36|0)+28>>2]=c[W>>2];g[o+(D*36|0)+32>>2]=1000000015047466219876688.0e6}else{c[h>>2]=0;c[h+4>>2]=0;c[h+8>>2]=0;c[h+12>>2]=0;o=c[Y>>2]|0}m=c[o+(D*36|0)+4>>2]|0;if((m|0)>0){n=c[(c[d+52>>2]|0)+16>>2]|0;r=+g[h>>2];s=+g[j+(D<<4)+4>>2];t=+g[j+(D<<4)+8>>2];h=c[o+(D*36|0)+12>>2]|0;q=1000000015047466219876688.0e6;l=0;do{W=c[h+(l<<2)>>2]|0;fa=+g[n+(W<<4)>>2]*r+ +g[n+(W<<4)+4>>2]*s+ +g[n+(W<<4)+8>>2]*t;q=q>fa?fa:q;l=l+1|0}while((l|0)!=(m|0))}else q=1000000015047466219876688.0e6;g[o+(D*36|0)+32>>2]=-q;D=D+1|0}while((D|0)!=(G|0))}if((c[X>>2]|0)>0){o=0;h=0;n=0;while(1){do if((o|0)==(h|0)){h=o|0?o<<1:1;if((o|0)<(h|0)){if((h|0)!=0?(c[6435]=(c[6435]|0)+1,M=yc((h<<2|3)+16|0)|0,(M|0)!=0):0){c[(M+4+15&-16)+-4>>2]=M;m=M+4+15&-16}else m=0;if((o|0)<=0){if(!n)break}else{l=0;do{c[m+(l<<2)>>2]=c[n+(l<<2)>>2];l=l+1|0}while((l|0)!=(o|0))}c[6436]=(c[6436]|0)+1;hd(c[n+-4>>2]|0)}else{h=o;m=n}}else m=n;while(0);c[m+(o<<2)>>2]=o;o=o+1|0;if((o|0)>=(c[X>>2]|0))break;else n=m}L=da+72+12|0;M=da+72+4|0;while(1){f=o+-1|0;l=c[m+(f<<2)>>2]|0;c[6435]=(c[6435]|0)+1;h=yc(23)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}c[h>>2]=l;W=c[Y>>2]|0;r=+g[W+(l*36|0)+20>>2];s=+g[W+(l*36|0)+24>>2];q=+g[W+(l*36|0)+28>>2];c:do if((o|0)>1){n=1;p=1;l=h;h=f;z=f;while(1){y=p;f=l;d:while(1){l=c[Y>>2]|0;do{W=h;h=h+-1|0;if((W|0)<=0){h=l;K=y;J=f;o=z;break c}w=c[m+(h<<2)>>2]|0}while(!(r*+g[l+(w*36|0)+20>>2]+s*+g[l+(w*36|0)+24>>2]+q*+g[l+(w*36|0)+28>>2]>.9990000128746033));do if((y|0)==(n|0)){n=y|0?y<<1:1;if((y|0)<(n|0)){do if(!n)o=0;else{c[6435]=(c[6435]|0)+1;l=yc((n<<2|3)+16|0)|0;if(!l){o=0;break}c[(l+4+15&-16)+-4>>2]=l;o=l+4+15&-16}while(0);if((y|0)<=0){if(!f){f=o;break}}else{l=0;do{c[o+(l<<2)>>2]=c[f+(l<<2)>>2];l=l+1|0}while((l|0)!=(y|0))}c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0);f=o}else n=y}while(0);c[f+(y<<2)>>2]=w;y=y+1|0;l=0;while(1){p=m+(l<<2)|0;if((c[p>>2]|0)==(w|0))break;l=l+1|0;if((l|0)>=(z|0))continue d}if((l|0)<(z|0))break}o=z+-1|0;W=m+(o<<2)|0;c[p>>2]=c[W>>2];c[W>>2]=w;if((z|0)>1){p=y;l=f;z=o}else{p=y;l=f;_=161;break}}}else{n=1;p=1;l=h;h=f;o=f;_=161}while(0);e:do if((_|0)==161){_=0;y=p;w=l;while(1){l=c[Y>>2]|0;do{W=h;h=h+-1|0;if((W|0)<=0){h=l;K=y;J=w;break e}f=c[m+(h<<2)>>2]|0}while(!(r*+g[l+(f*36|0)+20>>2]+s*+g[l+(f*36|0)+24>>2]+q*+g[l+(f*36|0)+28>>2]>.9990000128746033));do if((y|0)==(n|0)){n=y|0?y<<1:1;if((y|0)<(n|0)){do if(!n)l=0;else{c[6435]=(c[6435]|0)+1;l=yc((n<<2|3)+16|0)|0;if(!l){l=0;break}c[(l+4+15&-16)+-4>>2]=l;l=l+4+15&-16}while(0);if((y|0)<=0){if(!w)break}else{p=0;do{c[l+(p<<2)>>2]=c[w+(p<<2)>>2];p=p+1|0}while((p|0)!=(y|0))}c[6436]=(c[6436]|0)+1;hd(c[w+-4>>2]|0)}else{n=y;l=w}}else l=w;while(0);c[l+(y<<2)>>2]=f;y=y+1|0;w=l}}while(0);if((K|0)>1){a[da+72+16>>0]=1;c[L>>2]=0;c[M>>2]=0;c[da+72+8>>2]=0;q=0.0;r=0.0;s=0.0;n=0;B=0;do{l=c[J+(B<<2)>>2]|0;q=+g[h+(l*36|0)+20>>2]+q;r=+g[h+(l*36|0)+24>>2]+r;s=+g[h+(l*36|0)+28>>2]+s;A=h+(l*36|0)+4|0;if((c[A>>2]|0)>0){z=h+(l*36|0)+12|0;h=n;y=0;while(1){w=c[(c[z>>2]|0)+(y<<2)>>2]|0;W=(c[(c[d+52>>2]|0)+16>>2]|0)+(w<<4)|0;c[da+208>>2]=c[W>>2];c[da+208+4>>2]=c[W+4>>2];c[da+208+8>>2]=c[W+8>>2];c[da+208+12>>2]=c[W+12>>2];f:do if((h|0)>0){l=c[L>>2]|0;n=0;while(1){if((c[l+(n*24|0)+20>>2]|0)==(w|0))break f;n=n+1|0;if((n|0)>=(h|0)){_=248;break}}}else _=248;while(0);if((_|0)==248){_=0;c[da>>2]=c[da+208>>2];c[da+4>>2]=c[da+208+4>>2];c[da+8>>2]=c[da+208+8>>2];c[da+12>>2]=c[da+208+12>>2];do if((h|0)==(c[da+72+8>>2]|0)){f=h|0?h<<1:1;if((h|0)>=(f|0))break;if(!f)p=0;else{c[6435]=(c[6435]|0)+1;h=yc((f*24|3)+16|0)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}p=h;h=c[M>>2]|0}n=c[L>>2]|0;if((h|0)<=0){if(n)_=257}else{l=0;do{_=p+(l*24|0)|0;W=n+(l*24|0)|0;c[_>>2]=c[W>>2];c[_+4>>2]=c[W+4>>2];c[_+8>>2]=c[W+8>>2];c[_+12>>2]=c[W+12>>2];c[_+16>>2]=c[W+16>>2];c[_+20>>2]=c[W+20>>2];l=l+1|0}while((l|0)!=(h|0));_=257}if((_|0)==257){_=0;if(a[da+72+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[n+-4>>2]|0);h=c[M>>2]|0}c[L>>2]=0}a[da+72+16>>0]=1;c[L>>2]=p;c[da+72+8>>2]=f}while(0);W=c[L>>2]|0;V=W+(h*24|0)|0;c[V>>2]=c[da>>2];c[V+4>>2]=c[da+4>>2];c[V+8>>2]=c[da+8>>2];c[V+12>>2]=c[da+12>>2];c[V+16>>2]=c[da+16>>2];c[W+(h*24|0)+20>>2]=w;h=(c[M>>2]|0)+1|0;c[M>>2]=h}y=y+1|0;if((y|0)>=(c[A>>2]|0)){n=h;break}}}B=B+1|0;h=c[Y>>2]|0}while((B|0)<(K|0));a[da+20+16>>0]=1;c[da+20+12>>2]=0;c[da+20+4>>2]=0;c[da+20+8>>2]=0;W=h+20+((c[J>>2]|0)*9<<2)|0;c[da+20+20>>2]=c[W>>2];c[da+20+20+4>>2]=c[W+4>>2];c[da+20+20+8>>2]=c[W+8>>2];c[da+20+20+12>>2]=c[W+12>>2];u=1.0/+O(+(q*q+r*r+s*s));x=q*u;v=r*u;u=s*u;if(+N(+u)>.7071067690849304){t=1.0/+O(+(u*u+v*v));r=0.0;s=v*t;t=-(u*t)}else{t=1.0/+O(+(x*x+v*v));r=-(v*t);s=0.0;t=x*t}if((n|0)<2)if((n|0)>0){h=n;n=0;p=0;y=0;while(1){z=c[L>>2]|0;do if((n|0)==(p|0)){w=p|0?p<<1:1;if((p|0)>=(w|0)){f=p;l=y;break}do if(!w)l=0;else{c[6435]=(c[6435]|0)+1;h=yc((w*24|3)+16|0)|0;if(!h){l=0;p=n;break}c[(h+4+15&-16)+-4>>2]=h;l=h+4+15&-16;p=n}while(0);if((p|0)<=0){if(y|0)_=209}else{h=0;do{_=l+(h*24|0)|0;W=y+(h*24|0)|0;c[_>>2]=c[W>>2];c[_+4>>2]=c[W+4>>2];c[_+8>>2]=c[W+8>>2];c[_+12>>2]=c[W+12>>2];c[_+16>>2]=c[W+16>>2];c[_+20>>2]=c[W+20>>2];h=h+1|0}while((h|0)!=(p|0));_=209}if((_|0)==209){_=0;c[6436]=(c[6436]|0)+1;hd(c[y+-4>>2]|0)}f=n;h=c[M>>2]|0;p=w}else{f=n;l=y}while(0);W=l+(f*24|0)|0;c[W>>2]=c[z>>2];c[W+4>>2]=c[z+4>>2];c[W+8>>2]=c[z+8>>2];c[W+12>>2]=c[z+12>>2];c[W+16>>2]=c[z+16>>2];c[W+20>>2]=c[z+20>>2];n=n+1|0;if((n|0)<(h|0))y=l;else{_=263;break}}}else{h=0;l=0;_=292}else{h=c[L>>2]|0;l=n;p=0;do{if(r*+g[h+(p*24|0)>>2]+t*+g[h+(p*24|0)+4>>2]+s*+g[h+(p*24|0)+8>>2]>2]+t*+g[h+4>>2]+s*+g[h+8>>2]){c[da+208>>2]=c[h>>2];c[da+208+4>>2]=c[h+4>>2];c[da+208+8>>2]=c[h+8>>2];c[da+208+12>>2]=c[h+12>>2];c[da+208+16>>2]=c[h+16>>2];c[da+208+20>>2]=c[h+20>>2];l=h+(p*24|0)|0;c[h>>2]=c[l>>2];c[h+4>>2]=c[l+4>>2];c[h+8>>2]=c[l+8>>2];c[h+12>>2]=c[l+12>>2];c[h+16>>2]=c[l+16>>2];c[h+20>>2]=c[l+20>>2];l=h+(p*24|0)|0;c[l>>2]=c[da+208>>2];c[l+4>>2]=c[da+208+4>>2];c[l+8>>2]=c[da+208+8>>2];c[l+12>>2]=c[da+208+12>>2];c[l+16>>2]=c[da+208+16>>2];c[l+20>>2]=c[da+208+20>>2];l=n}p=p+1|0}while((p|0)<(l|0));g[h+16>>2]=-1000000015047466219876688.0e6;if((l|0)>1){h=c[L>>2]|0;l=c[M>>2]|0;q=+g[h+4>>2];n=1;do{U=+g[h+(n*24|0)>>2]-+g[h>>2];ea=+g[h+(n*24|0)+4>>2]-q;fa=+g[h+(n*24|0)+8>>2]-+g[h+8>>2];g[h+(n*24|0)+16>>2]=((r*ea-t*U)*u+(x*(t*fa-s*ea)+v*(s*U-r*fa)))/+O(+(U*U+ea*ea+fa*fa));n=n+1|0}while((n|0)<(l|0))}c[da+208>>2]=c[h>>2];c[da+208+4>>2]=c[h+4>>2];c[da+208+8>>2]=c[h+8>>2];c[da+208+12>>2]=c[h+12>>2];xf(da+72|0,da+208|0,1,(c[M>>2]|0)+-1|0);l=c[L>>2]|0;c[6435]=(c[6435]|0)+1;h=yc(43)|0;if(!h)p=0;else{c[(h+4+15&-16)+-4>>2]=h;p=h+4+15&-16}n=c[L>>2]|0;c[p>>2]=c[l>>2];c[p+4>>2]=c[l+4>>2];c[p+8>>2]=c[l+8>>2];c[p+12>>2]=c[l+12>>2];c[p+16>>2]=c[l+16>>2];c[p+20>>2]=c[l+20>>2];c[6435]=(c[6435]|0)+1;h=yc(67)|0;if(!h)l=0;else{c[(h+4+15&-16)+-4>>2]=h;l=h+4+15&-16}c[l>>2]=c[p>>2];c[l+4>>2]=c[p+4>>2];c[l+8>>2]=c[p+8>>2];c[l+12>>2]=c[p+12>>2];c[l+16>>2]=c[p+16>>2];c[l+20>>2]=c[p+20>>2];if(p|0){c[6436]=(c[6436]|0)+1;hd(c[p+-4>>2]|0)}h=l+24|0;c[h>>2]=c[n+24>>2];c[h+4>>2]=c[n+24+4>>2];c[h+8>>2]=c[n+24+8>>2];c[h+12>>2]=c[n+24+12>>2];c[h+16>>2]=c[n+24+16>>2];c[h+20>>2]=c[n+24+20>>2];h=c[M>>2]|0;if((h|0)==2){h=2;n=2}else{f=2;n=2;p=2;A=2;do{g:do if((f|0)>1){W=c[L>>2]|0;z=W+(A*24|0)|0;q=+g[z>>2];r=+g[W+(A*24|0)+4>>2];s=+g[W+(A*24|0)+8>>2];while(1){W=f+-2|0;w=f+-1|0;U=+g[l+(W*24|0)>>2];ea=U-+g[l+(w*24|0)>>2];H=+g[l+(W*24|0)+4>>2];F=H-+g[l+(w*24|0)+4>>2];fa=+g[l+(W*24|0)+8>>2];I=fa-+g[l+(w*24|0)+8>>2];if((ea*(H-r)-F*(U-q))*u+(x*(F*(fa-s)-I*(H-r))+v*(I*(U-q)-ea*(fa-s)))>0.0)break;if((w|0)>1){f=w;n=w}else{f=w;n=w;break g}}do if((f|0)==(p|0)){y=p<<1;if((p|0)>=(y|0)){f=p;w=p;break}if(p){c[6435]=(c[6435]|0)+1;h=yc((p*48|3)+16|0)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}if((n|0)>0){p=h;f=n;_=230}else p=h}else{p=0;h=0;f=0;_=230}if((_|0)==230){_=0;w=0;do{W=h+(w*24|0)|0;V=l+(w*24|0)|0;c[W>>2]=c[V>>2];c[W+4>>2]=c[V+4>>2];c[W+8>>2]=c[V+8>>2];c[W+12>>2]=c[V+12>>2];c[W+16>>2]=c[V+16>>2];c[W+20>>2]=c[V+20>>2];w=w+1|0}while((w|0)!=(f|0))}c[6436]=(c[6436]|0)+1;hd(c[l+-4>>2]|0);h=c[M>>2]|0;f=n;w=y;l=p}else w=p;while(0);f=l+(f*24|0)|0;c[f>>2]=c[z>>2];c[f+4>>2]=c[z+4>>2];c[f+8>>2]=c[z+8>>2];c[f+12>>2]=c[z+12>>2];c[f+16>>2]=c[z+16>>2];c[f+20>>2]=c[z+20>>2];n=n+1|0;f=n;p=w}while(0);A=A+1|0}while((A|0)!=(h|0))}_=263}h:do if((_|0)==263){_=0;if((n|0)>0){D=0;A=0;f=0;h=0;G=0;while(1){B=l+(G*24|0)+20|0;do if((D|0)==(A|0)){w=A|0?A<<1:1;if((A|0)>=(w|0)){C=f;break}do if(!w)p=0;else{c[6435]=(c[6435]|0)+1;h=yc((w<<2|3)+16|0)|0;if(!h){p=0;break}c[(h+4+15&-16)+-4>>2]=h;p=h+4+15&-16}while(0);if((A|0)<=0){if(f|0)_=284}else{h=0;do{c[p+(h<<2)>>2]=c[f+(h<<2)>>2];h=h+1|0}while((h|0)!=(A|0));_=284}if((_|0)==284){_=0;c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0);c[da+20+12>>2]=0}a[da+20+16>>0]=1;c[da+20+12>>2]=p;c[da+20+8>>2]=w;C=p;h=p;A=w}else C=f;while(0);c[C+(D<<2)>>2]=c[B>>2];D=(c[da+20+4>>2]|0)+1|0;c[da+20+4>>2]=D;y=c[M>>2]|0;i:do if((y|0)>0){z=c[L>>2]|0;p=c[B>>2]|0;w=0;while(1){f=z+(w*24|0)+20|0;w=w+1|0;if((c[f>>2]|0)==(p|0))break;if((w|0)>=(y|0))break i}c[f>>2]=-1}while(0);G=G+1|0;if((G|0)>=(n|0)){D=y;break}else f=C}}else{D=h;h=0}if((D|0)<=0){_=292;break}w=c[L>>2]|0;y=c[X>>2]|0;z=c[Y>>2]|0;if((y|0)>0)B=0;else{_=292;break}while(1){A=c[w+(B*24|0)+20>>2]|0;if((A|0)!=-1){C=0;do{n=0;while(1){if((c[J+(n<<2)>>2]|0)==(C|0))break;n=n+1|0;if((n|0)>=(K|0)){_=270;break}}do if((_|0)==270){_=0;n=c[z+(C*36|0)+4>>2]|0;if((n|0)<=0)break;p=c[z+(C*36|0)+12>>2]|0;f=0;do{if((c[p+(f<<2)>>2]|0)==(A|0)){n=1;break h}f=f+1|0}while((f|0)<(n|0))}while(0);C=C+1|0}while((C|0)<(y|0))}B=B+1|0;if((B|0)>=(D|0)){_=292;break}}}while(0);if((_|0)==292){_=0;th((c[d+52>>2]|0)+24|0,da+20|0);n=0}if(l|0){c[6436]=(c[6436]|0)+1;hd(c[l+-4>>2]|0)}if(h|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0);c[da+20+12>>2]=0}h=c[L>>2]|0;if(h|0){if(a[da+72+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0)}c[L>>2]=0}if(n&(K|0)>0){y=0;_=302}}else if((K|0)>0){y=0;_=302}if((_|0)==302)while(1){_=0;f=c[J+(y<<2)>>2]|0;w=c[Y>>2]|0;a[da+208+16>>0]=1;c[da+208+12>>2]=0;c[da+208+4>>2]=0;c[da+208+8>>2]=0;p=c[w+(f*36|0)+4>>2]|0;if((p|0)>0){c[6435]=(c[6435]|0)+1;h=yc((p<<2|3)+16|0)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}a[da+208+16>>0]=1;c[da+208+12>>2]=h;c[da+208+8>>2]=p;Qn(h|0,0,p<<2|0)|0;l=c[w+(f*36|0)+12>>2]|0;c[da+208+4>>2]=p;n=0;do{c[h+(n<<2)>>2]=c[l+(n<<2)>>2];n=n+1|0}while((n|0)!=(p|0))}else{c[da+208+4>>2]=p;h=0}c[da+208+20>>2]=c[w+(f*36|0)+20>>2];c[da+208+20+4>>2]=c[w+(f*36|0)+20+4>>2];c[da+208+20+8>>2]=c[w+(f*36|0)+20+8>>2];c[da+208+20+12>>2]=c[w+(f*36|0)+20+12>>2];th((c[d+52>>2]|0)+24|0,da+208|0);if(h|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0);c[da+208+12>>2]=0}y=y+1|0;if((y|0)>=(K|0))break;else _=302}if(J|0){c[6436]=(c[6436]|0)+1;hd(c[J+-4>>2]|0)}if(!o)break}}else m=0;W=c[d+52>>2]|0;c[W+64>>2]=0;c[W+64+4>>2]=0;c[W+64+8>>2]=0;c[W+64+12>>2]=0;h=c[W+28>>2]|0;if((h|0)>0){z=0;l=0;n=0;D=0;B=0;w=0;o=0;C=0;y=0;p=0;A=0;G=0;V=0;while(1){f=c[W+36>>2]|0;T=c[f+(V*36|0)+4>>2]|0;if((T|0)>0){R=V&65535;S=V|-65536;P=w;L=y;K=G;h=0;while(1){Q=h+1|0;J=c[f+(V*36|0)+12>>2]|0;w=c[J+(h<<2)>>2]&65535;J=c[J+(((Q|0)==(T|0)?0:Q)<<2)>>2]&65535;M=J<<16>>16>w<<16>>16?w:J;d=J<<16>>16>w<<16>>16?J:w;f=J<<16>>16>w<<16>>16?w:J;w=J<<16>>16>w<<16>>16?J:w;J=L+-1|0;j:do if((((f&65535)<<16)+(w<<16>>16)&J)>>>0>>0?(Z=c[n+((((f&65535)<<16)+(w<<16>>16)&J)<<2)>>2]|0,(Z|0)!=-1):0){h=Z;while(1){if(w<<16>>16==(b[l+(h<<2)>>1]|0)?f<<16>>16==(b[l+(h<<2)+2>>1]|0):0)break;h=c[o+(h<<2)>>2]|0;if((h|0)==-1){G=0;break j}}G=p+(h<<2)|0}else G=0;while(0);h=c[W+16>>2]|0;u=+g[h+(f<<16>>16<<4)>>2]-+g[h+(w<<16>>16<<4)>>2];v=+g[h+(f<<16>>16<<4)+4>>2]-+g[h+(w<<16>>16<<4)+4>>2];s=+g[h+(f<<16>>16<<4)+8>>2]-+g[h+(w<<16>>16<<4)+8>>2];t=1.0/+O(+(u*u+v*v+s*s));h=c[W+48>>2]|0;k:do if((h|0)>0){f=c[W+56>>2]|0;w=0;while(1){q=+g[f+(w<<4)>>2];r=+g[f+(w<<4)+8>>2];do if(!(+N(+(q-u*t))>1.0e-06)){if(+N(+(+g[f+(w<<4)+4>>2]-v*t))>1.0e-06)break;if(!(+N(+(r-s*t))>1.0e-06))break k}while(0);do if(!(+N(+(u*t+q))>1.0e-06)){if(+N(+(v*t+ +g[f+(w<<4)+4>>2]))>1.0e-06)break;if(!(+N(+(s*t+r))>1.0e-06))break k}while(0);w=w+1|0;if((w|0)>=(h|0)){_=338;break}}}else _=338;while(0);if((_|0)==338){_=0;do if((h|0)==(c[W+52>>2]|0)){y=h|0?h<<1:1;if((h|0)>=(y|0))break;if(!y)w=0;else{c[6435]=(c[6435]|0)+1;h=yc((y<<4|3)+16|0)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}w=h;h=c[W+48>>2]|0}if((h|0)>0){f=0;do{ga=w+(f<<4)|0;ha=(c[W+56>>2]|0)+(f<<4)|0;c[ga>>2]=c[ha>>2];c[ga+4>>2]=c[ha+4>>2];c[ga+8>>2]=c[ha+8>>2];c[ga+12>>2]=c[ha+12>>2];f=f+1|0}while((f|0)!=(h|0))}h=c[W+56>>2]|0;if(h|0){if(a[W+60>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0)}c[W+56>>2]=0}a[W+60>>0]=1;c[W+56>>2]=w;c[W+52>>2]=y;h=c[W+48>>2]|0}while(0);ha=c[W+56>>2]|0;g[ha+(h<<4)>>2]=u*t;g[ha+(h<<4)+4>>2]=v*t;g[ha+(h<<4)+8>>2]=s*t;g[ha+(h<<4)+12>>2]=0.0;c[W+48>>2]=(c[W+48>>2]|0)+1}l:do if(!G){h=((M&65535)<<16)+(d<<16>>16)&J;m:do if(h>>>0>>0){f=c[n+(h<<2)>>2]|0;if((f|0)==-1)break;while(1){if(d<<16>>16==(b[l+(f<<2)>>1]|0)?M<<16>>16==(b[l+(f<<2)+2>>1]|0):0)break;f=c[o+(f<<2)>>2]|0;if((f|0)==-1)break m}w=p+(f<<2)|0;b[w>>1]=S;b[w+2>>1]=S>>>16;w=P;y=L;G=K;break l}while(0);do if((C|0)==(L|0)){y=C|0?C<<1:1;if((C|0)>=(y|0)){y=C;break}do if(!y)w=0;else{c[6435]=(c[6435]|0)+1;f=yc((y<<2|3)+16|0)|0;if(!f){w=0;break}c[(f+4+15&-16)+-4>>2]=f;w=f+4+15&-16}while(0);if((C|0)<=0){if(!p){p=w;break}}else{f=0;do{ha=w+(f<<2)|0;ga=p+(f<<2)|0;ga=e[ga>>1]|e[ga+2>>1]<<16;b[ha>>1]=ga;b[ha+2>>1]=ga>>>16;f=f+1|0}while((f|0)!=(C|0))}c[6436]=(c[6436]|0)+1;hd(c[p+-4>>2]|0);p=w}else y=L;while(0);J=p+(C<<2)|0;b[J>>1]=S;b[J+2>>1]=S>>>16;J=C+1|0;do if((K|0)==(z|0)){z=K|0?K<<1:1;if((K|0)>=(z|0)){z=K;break}do if(!z)w=0;else{c[6435]=(c[6435]|0)+1;f=yc((z<<2|3)+16|0)|0;if(!f){w=0;break}c[(f+4+15&-16)+-4>>2]=f;w=f+4+15&-16}while(0);if((K|0)<=0){if(!l){l=w;break}}else{f=0;do{ha=w+(f<<2)|0;ga=l+(f<<2)|0;ga=e[ga>>1]|e[ga+2>>1]<<16;b[ha>>1]=ga;b[ha+2>>1]=ga>>>16;f=f+1|0}while((f|0)!=(K|0))}c[6436]=(c[6436]|0)+1;hd(c[l+-4>>2]|0);l=w}while(0);G=l+(K<<2)|0;b[G>>1]=(M&65535)<<16|d&65535;b[G+2>>1]=((M&65535)<<16|d&65535)>>>16;G=K+1|0;if((L|0)<(y|0)){do if((y|0)>(D|0)){if((y|0)>=(D|0)){do if((A|0)<(y|0)){do if(!y)h=0;else{c[6435]=(c[6435]|0)+1;h=yc((y<<2|3)+16|0)|0;if(!h){h=0;break}c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}while(0);if((D|0)<=0){if(!n){n=h;h=y;break}}else{f=0;do{c[h+(f<<2)>>2]=c[n+(f<<2)>>2];f=f+1|0}while((f|0)!=(D|0))}c[6436]=(c[6436]|0)+1;hd(c[n+-4>>2]|0);n=h;h=y}else h=A;while(0);Qn(n+(D<<2)|0,0,y-D<<2|0)|0;A=h}if((y|0)>(B|0)){do if((P|0)<(y|0)){do if(!y)f=0;else{c[6435]=(c[6435]|0)+1;h=yc((y<<2|3)+16|0)|0;if(!h){f=0;break}c[(h+4+15&-16)+-4>>2]=h;f=h+4+15&-16}while(0);if((B|0)<=0){if(!o){h=y;o=f;break}}else{h=0;do{c[f+(h<<2)>>2]=c[o+(h<<2)>>2];h=h+1|0}while((h|0)!=(B|0))}c[6436]=(c[6436]|0)+1;hd(c[o+-4>>2]|0);h=y;o=f}else h=P;while(0);Qn(o+(B<<2)|0,0,y-B<<2|0)|0;w=h}else w=P;if((y|0)>0){ha=y<<2;Qn(n|0,-1,ha|0)|0;Qn(o|0,-1,ha|0)|0}if((D|0)<=0){f=y;B=y;h=A;break}h=y+-1|0;f=0;do{ha=n+(((e[l+(f<<2)+2>>1]<<16)+(b[l+(f<<2)>>1]|0)&h)<<2)|0;c[o+(f<<2)>>2]=c[ha>>2];c[ha>>2]=f;f=f+1|0}while((f|0)!=(D|0));f=y;B=y;h=A}else{f=D;w=P;h=A}while(0);A=h;h=((M&65535)<<16)+(d<<16>>16)&y+-1}else{f=D;w=P}D=n+(h<<2)|0;c[o+(C<<2)>>2]=c[D>>2];c[D>>2]=C;D=f;C=J}else{b[G+2>>1]=R;w=P;y=L;G=K}while(0);if((Q|0)>=(T|0))break;f=c[W+36>>2]|0;P=w;L=y;K=G;h=Q}h=c[W+28>>2]|0;f=G}else f=G;V=V+1|0;if((V|0)>=(h|0))break;else G=f}if((h|0)>0){A=c[W+36>>2]|0;B=c[W+16>>2]|0;q=0.0;C=0;do{w=c[A+(C*36|0)+4>>2]|0;y=c[A+(C*36|0)+12>>2]|0;z=c[y>>2]|0;if((w+-2|0)>=1){r=+g[W+64>>2];s=+g[W+68>>2];t=+g[W+72>>2];f=1;do{ga=c[y+(f<<2)>>2]|0;f=f+1|0;ha=c[y+(((f|0)%(w|0)|0)<<2)>>2]|0;u=+g[B+(z<<4)>>2];v=+g[B+(ga<<4)>>2];E=+g[B+(z<<4)+4>>2];F=+g[B+(ga<<4)+4>>2];I=+g[B+(z<<4)+8>>2];U=+g[B+(ga<<4)+8>>2];x=+g[B+(ha<<4)>>2];H=+g[B+(ha<<4)+4>>2];ea=+g[B+(ha<<4)+8>>2];fa=+O(+(((u-v)*(E-H)-(E-F)*(u-x))*((u-v)*(E-H)-(E-F)*(u-x))+(((E-F)*(I-ea)-(I-U)*(E-H))*((E-F)*(I-ea)-(I-U)*(E-H))+((I-U)*(u-x)-(u-v)*(I-ea))*((I-U)*(u-x)-(u-v)*(I-ea)))))*.5;r=r+(u+v+x)*.3333333432674408*fa;g[W+64>>2]=r;s=(E+F+H)*.3333333432674408*fa+s;g[W+68>>2]=s;t=fa*(I+U+ea)*.3333333432674408+t;g[W+72>>2]=t;q=q+fa}while((f|0)!=(w+-1|0))}C=C+1|0}while((C|0)!=(h|0));f=W+64|0;w=1;z=l;y=n}else _=317}else{l=0;n=0;o=0;p=0;_=317}if((_|0)==317){f=W+64|0;w=0;q=0.0;z=l;y=n}t=1.0/q;u=t*+g[f>>2];g[f>>2]=u;s=t*+g[W+68>>2];g[W+68>>2]=s;t=t*+g[W+72>>2];g[W+72>>2]=t;g[W+96>>2]=3402823466385288598117041.0e14;if(w){l=c[W+36>>2]|0;r=3402823466385288598117041.0e14;n=0;while(1){q=+N(+(+g[l+(n*36|0)+32>>2]+(+g[l+(n*36|0)+20>>2]*u+ +g[l+(n*36|0)+24>>2]*s+ +g[l+(n*36|0)+28>>2]*t)));if(q>2]=q;else q=r;n=n+1|0;if((n|0)>=(h|0))break;else r=q}}else q=3402823466385288598117041.0e14;h=c[W+8>>2]|0;if((h|0)>0){l=c[W+16>>2]|0;x=-3402823466385288598117041.0e14;v=-3402823466385288598117041.0e14;u=-3402823466385288598117041.0e14;t=3402823466385288598117041.0e14;s=3402823466385288598117041.0e14;r=3402823466385288598117041.0e14;n=0;do{fa=+g[l+(n<<4)>>2];t=fax?fa:x;fa=+g[l+(n<<4)+4>>2];s=fav?fa:v;fa=+g[l+(n<<4)+8>>2];r=fau?fa:u;n=n+1|0}while((n|0)!=(h|0))}else{x=-3402823466385288598117041.0e14;v=-3402823466385288598117041.0e14;u=-3402823466385288598117041.0e14;t=3402823466385288598117041.0e14;s=3402823466385288598117041.0e14;r=3402823466385288598117041.0e14}g[W+100>>2]=x+t;g[W+104>>2]=s+v;g[W+108>>2]=r+u;g[W+112>>2]=0.0;fa=x-t;ea=v-s;r=u-r;g[W+116>>2]=fa;g[W+120>>2]=ea;g[W+124>>2]=r;g[W+128>>2]=0.0;s=q/1.7320507764816284;f=fa>2]*.5-s)*.0009765625;g[W+88>>2]=s;g[W+84>>2]=s;g[W+80>>2]=s;r=+g[W+116+(f<<2)>>2]*.5;g[W+80+(f<<2)>>2]=r;h=0;while(1){if(ih(W)|0){_=425;break}r=r-q;g[W+80+(f<<2)>>2]=r;h=h+1|0;if((h|0)>=1024){_=424;break}}n:do if((_|0)==424){g[W+88>>2]=s;g[W+84>>2]=s;g[W+80>>2]=s}else if((_|0)==425){q=(+g[W+96>>2]-s)*.0009765625;l=c[W+80+((1<<(1<>2]|0;n=0;while(1){h=c[W+80+((1<>2]|0;g[W+80+((1<>2]=q+(c[k>>2]=h,+g[k>>2]);r=q+ +g[W+80+((1<<(1<>2];g[W+80+((1<<(1<>2]=r;n=n+1|0;if(!(ih(W)|0))break;if((n|0)>=1024)break n;else l=(g[k>>2]=r,c[k>>2]|0)}c[W+80+((1<>2]=h;c[W+80+((1<<(1<>2]=l}while(0);if(z|0){c[6436]=(c[6436]|0)+1;hd(c[z+-4>>2]|0)}if(p|0){c[6436]=(c[6436]|0)+1;hd(c[p+-4>>2]|0)}if(o|0){c[6436]=(c[6436]|0)+1;hd(c[o+-4>>2]|0)}if(y|0){c[6436]=(c[6436]|0)+1;hd(c[y+-4>>2]|0)}if(m|0){c[6436]=(c[6436]|0)+1;hd(c[m+-4>>2]|0)}p=c[X>>2]|0;f=c[Y>>2]|0;if((p|0)<=0){if(f|0)_=446}else{o=0;do{l=f+(o*36|0)+4|0;m=f+(o*36|0)+12|0;n=c[m>>2]|0;h=f+(o*36|0)+16|0;if(n|0){if(a[h>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[n+-4>>2]|0)}c[m>>2]=0}a[h>>0]=1;c[m>>2]=0;c[l>>2]=0;c[f+(o*36|0)+8>>2]=0;o=o+1|0}while((o|0)!=(p|0));_=446}if((_|0)==446){if(a[da+92+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}c[Y>>2]=0}if(j|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}h=c[$>>2]|0;if(h|0){if(a[da+128+56>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0)}c[$>>2]=0}a[da+128+56>>0]=1;c[$>>2]=0;c[da+128+44>>2]=0;c[da+128+48>>2]=0;h=c[aa>>2]|0;if(h|0){if(a[da+128+36>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0)}c[aa>>2]=0}a[da+128+36>>0]=1;c[aa>>2]=0;c[da+128+24>>2]=0;c[da+128+28>>2]=0;h=c[ba>>2]|0;if(h|0){if(a[da+128+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0)}c[ba>>2]=0}if(!ca){i=da;return 1}c[6436]=(c[6436]|0)+1;hd(c[ca+-4>>2]|0);i=da;return 1}function oc(b,d,e,f,h){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;var j=0,k=0,l=0,m=0,n=0.0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0,w=0.0,x=0.0,y=0.0,z=0,A=0.0,B=0.0,C=0.0,D=0,E=0.0,F=0,G=0,H=0,I=0.0,J=0,K=0.0,L=0.0,M=0.0,P=0.0,S=0,T=0,U=0,V=0.0,W=0.0,X=0.0,Y=0.0,Z=0.0,_=0.0,$=0.0,aa=0.0,ba=0.0,ca=0.0,da=0.0,ea=0.0,fa=0.0,ga=0.0,ha=0.0,ia=0.0,ja=0.0,ka=0.0,la=0.0,ma=0,na=0.0,oa=0.0,pa=0.0,qa=0,ra=0.0,sa=0,ta=0,ua=0,va=0;va=i;i=i+688|0;k=c[b+20>>2]|0;if(!k){k=c[b+4>>2]|0;k=Ob[c[(c[k>>2]|0)+12>>2]&63](k,c[d+8>>2]|0,c[e+8>>2]|0)|0;c[b+20>>2]=k;a[b+16>>0]=1}c[h+4>>2]=k;sa=c[d+4>>2]|0;ta=c[e+4>>2]|0;j=c[sa+4>>2]|0;l=c[ta+4>>2]|0;if((j|0)==10&(l|0)==10){L=+g[k+752>>2];qa=c[sa+52>>2]|0;r=+g[sa+28+(qa<<2)>>2];K=+g[sa+28+(((qa+2|0)%3|0)<<2)>>2];ua=c[ta+52>>2]|0;s=+g[ta+28+(ua<<2)>>2];I=+g[ta+28+(((ua+2|0)%3|0)<<2)>>2];b=c[d+12>>2]|0;j=c[e+12>>2]|0;B=+g[b+(qa<<2)>>2];E=+g[b+16+(qa<<2)>>2];C=+g[b+32+(qa<<2)>>2];p=+g[j+(ua<<2)>>2];q=+g[j+16+(ua<<2)>>2];w=+g[j+32+(ua<<2)>>2];x=+g[j+48>>2]-+g[b+48>>2];y=+g[j+52>>2]-+g[b+52>>2];A=+g[j+56>>2]-+g[b+56>>2];n=1.0-(B*p+E*q+C*w)*(B*p+E*q+C*w);if(!(n==0.0)){n=(B*x+E*y+C*A-(B*p+E*q+C*w)*(p*x+q*y+w*A))/n;if(!(n<-r)){if(n>r)n=r}else n=-r}else n=0.0;o=(B*p+E*q+C*w)*n-(p*x+q*y+w*A);if(o<-s){n=(B*p+E*q+C*w)*-s+(B*x+E*y+C*A);if(!(n<-r))if(n>r){n=r;o=-s}else o=-s;else{n=-r;o=-s}}else if(o>s){n=s*(B*p+E*q+C*w)+(B*x+E*y+C*A);if(!(n<-r))if(n>r){n=r;o=s}else o=s;else{n=-r;o=s}}u=p*o;t=q*o;s=w*o;o=u+(x-B*n);q=t+(y-E*n);n=s+(A-C*n);r=+O(+(n*n+(o*o+q*q)));if(!(r-K-I>L)){do if(n*n+(o*o+q*q)<=1.4210854715202004e-14)if(+N(+C)>.7071067690849304){n=1.0/+O(+(E*E+C*C));g[va+280>>2]=0.0;g[va+280+4>>2]=-(C*n);g[va+280+8>>2]=E*n;p=0.0;o=-(C*n);n=E*n;break}else{o=1.0/+O(+(B*B+E*E));g[va+280>>2]=-(E*o);g[va+280+4>>2]=B*o;g[va+280+8>>2]=0.0;p=-(E*o);o=B*o;n=0.0;break}else{g[va+280>>2]=o*-(1.0/r);g[va+280+4>>2]=q*-(1.0/r);g[va+280+8>>2]=n*-(1.0/r);g[va+280+12>>2]=0.0;p=o*-(1.0/r);o=q*-(1.0/r);n=n*-(1.0/r)}while(0);pa=I*o+(t+ +g[j+52>>2]);ra=I*n+(s+ +g[j+56>>2]);g[va+264>>2]=I*p+(u+ +g[j+48>>2]);g[va+264+4>>2]=pa;g[va+264+8>>2]=ra;g[va+264+12>>2]=0.0}if(r-K-I>2]|0)+16>>2]&15](h,va+280|0,va+264|0,r-K-I);k=c[h+4>>2]|0}if(!(c[k+748>>2]|0)){i=va;return}l=c[k+740>>2]|0;m=c[(c[h+8>>2]|0)+8>>2]|0;j=c[(c[h+12>>2]|0)+8>>2]|0;if((l|0)==(m|0)){ef(k,l+4|0,j+4|0);i=va;return}else{ef(k,j+4|0,m+4|0);i=va;return}}g[va+128+128>>2]=999999984306749440.0;D=c[b+8>>2]|0;v=c[b+12>>2]|0;c[va+48>>2]=9208;c[va+48+4>>2]=0;c[va+48+8>>2]=1065353216;c[va+48+12>>2]=0;g[va+48+16>>2]=0.0;c[va+48+20>>2]=v;c[va+48+24>>2]=D;c[va+48+28>>2]=sa;c[va+48+32>>2]=ta;c[va+48+36>>2]=j;c[va+48+40>>2]=l;g[va+48+44>>2]=+Sb[c[(c[sa>>2]|0)+48>>2]&15](sa);g[va+48+48>>2]=+Sb[c[(c[ta>>2]|0)+48>>2]&15](ta);a[va+48+52>>0]=0;c[va+48+60>>2]=-1;c[va+48+72>>2]=1;c[va+48+76>>2]=1;c[va+48+28>>2]=sa;c[va+48+32>>2]=ta;pa=+Sb[c[(c[sa>>2]|0)+48>>2]&15](sa);ra=+Sb[c[(c[ta>>2]|0)+48>>2]&15](ta);ra=pa+ra+ +g[(c[b+20>>2]|0)+752>>2];g[va+128+128>>2]=ra*ra;D=c[d+12>>2]|0;c[va+128>>2]=c[D>>2];c[va+128+4>>2]=c[D+4>>2];c[va+128+8>>2]=c[D+8>>2];c[va+128+12>>2]=c[D+12>>2];l=va+128+16|0;c[l>>2]=c[D+16>>2];c[l+4>>2]=c[D+16+4>>2];c[l+8>>2]=c[D+16+8>>2];c[l+12>>2]=c[D+16+12>>2];v=va+128+32|0;c[v>>2]=c[D+32>>2];c[v+4>>2]=c[D+32+4>>2];c[v+8>>2]=c[D+32+8>>2];c[v+12>>2]=c[D+32+12>>2];z=va+128+48|0;c[z>>2]=c[D+48>>2];c[z+4>>2]=c[D+48+4>>2];c[z+8>>2]=c[D+48+8>>2];c[z+12>>2]=c[D+48+12>>2];D=va+128+64|0;j=c[e+12>>2]|0;c[D>>2]=c[j>>2];c[D+4>>2]=c[j+4>>2];c[D+8>>2]=c[j+8>>2];c[D+12>>2]=c[j+12>>2];F=va+128+80|0;c[F>>2]=c[j+16>>2];c[F+4>>2]=c[j+16+4>>2];c[F+8>>2]=c[j+16+8>>2];c[F+12>>2]=c[j+16+12>>2];G=va+128+96|0;c[G>>2]=c[j+32>>2];c[G+4>>2]=c[j+32+4>>2];c[G+8>>2]=c[j+32+8>>2];c[G+12>>2]=c[j+32+12>>2];H=va+128+112|0;c[H>>2]=c[j+48>>2];c[H+4>>2]=c[j+48+4>>2];c[H+8>>2]=c[j+48+8>>2];c[H+12>>2]=c[j+48+12>>2];j=c[sa+4>>2]|0;if((j|0)<7?(m=c[ta+4>>2]|0,(m|0)<7):0){c[va+40>>2]=6080;if(!j){j=m;o=0.0}else{o=+Sb[c[(c[sa>>2]|0)+48>>2]&15](sa);j=c[ta+4>>2]|0}if(!j)n=0.0;else n=+Sb[c[(c[ta>>2]|0)+48>>2]&15](ta);c[va>>2]=6108;c[va+4>>2]=h;g[va+24>>2]=o;g[va+28>>2]=n;a[va+36>>0]=0;U=c[sa+52>>2]|0;a:do if(U|0){ma=c[ta+52>>2]|0;do if(!ma){if((c[ta+4>>2]|0)!=1)break a;z=va+624+16|0;a[z>>0]=1;D=va+624+12|0;c[D>>2]=0;v=va+624+4|0;c[v>>2]=0;m=va+624+8|0;c[m>>2]=0;j=c[e+12>>2]|0;pa=+g[ta+56>>2];ra=+g[ta+56+4>>2];p=+g[ta+56+8>>2];n=pa*+g[j>>2]+ra*+g[j+4>>2]+p*+g[j+8>>2]+ +g[j+48>>2];o=pa*+g[j+16>>2]+ra*+g[j+20>>2]+p*+g[j+24>>2]+ +g[j+52>>2];p=pa*+g[j+32>>2]+ra*+g[j+36>>2]+p*+g[j+40>>2]+ +g[j+56>>2];c[6435]=(c[6435]|0)+1;j=yc(35)|0;if(!j)k=0;else{c[(j+4+15&-16)+-4>>2]=j;k=j+4+15&-16}j=c[D>>2]|0;if(!j)j=0;else{c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0);j=c[v>>2]|0;c[D>>2]=0}a[z>>0]=1;c[D>>2]=k;c[m>>2]=1;g[k+(j<<4)>>2]=n;g[k+(j<<4)+4>>2]=o;g[k+(j<<4)+8>>2]=p;g[k+(j<<4)+12>>2]=0.0;j=(c[v>>2]|0)+1|0;c[v>>2]=j;ua=c[e+12>>2]|0;pa=+g[ta+56+16>>2];ra=+g[ta+56+20>>2];p=+g[ta+56+24>>2];n=pa*+g[ua>>2]+ra*+g[ua+4>>2]+p*+g[ua+8>>2]+ +g[ua+48>>2];o=pa*+g[ua+16>>2]+ra*+g[ua+20>>2]+p*+g[ua+24>>2]+ +g[ua+52>>2];p=pa*+g[ua+32>>2]+ra*+g[ua+36>>2]+p*+g[ua+40>>2]+ +g[ua+56>>2];if((j|0)==(c[m>>2]|0)?(J=j|0?j<<1:1,(j|0)<(J|0)):0){if(!J)l=0;else{c[6435]=(c[6435]|0)+1;j=yc((J<<4|3)+16|0)|0;if(!j)j=0;else{c[(j+4+15&-16)+-4>>2]=j;j=j+4+15&-16}l=j;j=c[v>>2]|0}if((j|0)>0){k=0;do{ua=l+(k<<4)|0;qa=(c[D>>2]|0)+(k<<4)|0;c[ua>>2]=c[qa>>2];c[ua+4>>2]=c[qa+4>>2];c[ua+8>>2]=c[qa+8>>2];c[ua+12>>2]=c[qa+12>>2];k=k+1|0}while((k|0)!=(j|0))}j=c[D>>2]|0;if(j|0){if(a[z>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}c[D>>2]=0}a[z>>0]=1;c[D>>2]=l;c[m>>2]=J;j=c[v>>2]|0}ua=c[D>>2]|0;g[ua+(j<<4)>>2]=n;g[ua+(j<<4)+4>>2]=o;g[ua+(j<<4)+8>>2]=p;g[ua+(j<<4)+12>>2]=0.0;j=(c[v>>2]|0)+1|0;c[v>>2]=j;ua=c[e+12>>2]|0;pa=+g[ta+56+32>>2];ra=+g[ta+56+36>>2];p=+g[ta+56+40>>2];n=pa*+g[ua>>2]+ra*+g[ua+4>>2]+p*+g[ua+8>>2]+ +g[ua+48>>2];o=pa*+g[ua+16>>2]+ra*+g[ua+20>>2]+p*+g[ua+24>>2]+ +g[ua+52>>2];p=pa*+g[ua+32>>2]+ra*+g[ua+36>>2]+p*+g[ua+40>>2]+ +g[ua+56>>2];if((j|0)==(c[m>>2]|0)?(S=j|0?j<<1:1,(j|0)<(S|0)):0){if(!S)l=0;else{c[6435]=(c[6435]|0)+1;j=yc((S<<4|3)+16|0)|0;if(!j)j=0;else{c[(j+4+15&-16)+-4>>2]=j;j=j+4+15&-16}l=j;j=c[v>>2]|0}if((j|0)>0){k=0;do{ua=l+(k<<4)|0;e=(c[D>>2]|0)+(k<<4)|0;c[ua>>2]=c[e>>2];c[ua+4>>2]=c[e+4>>2];c[ua+8>>2]=c[e+8>>2];c[ua+12>>2]=c[e+12>>2];k=k+1|0}while((k|0)!=(j|0))}j=c[D>>2]|0;if(j|0){if(a[z>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}c[D>>2]=0}a[z>>0]=1;c[D>>2]=l;c[m>>2]=S;j=c[v>>2]|0}ua=c[D>>2]|0;g[ua+(j<<4)>>2]=n;g[ua+(j<<4)+4>>2]=o;g[ua+(j<<4)+8>>2]=p;g[ua+(j<<4)+12>>2]=0.0;c[v>>2]=(c[v>>2]|0)+1;q=+g[(c[b+20>>2]|0)+752>>2];Vc(va+48|0,va+128|0,va+40|0,c[f+20>>2]|0,0);n=+g[va+48+4>>2];o=+g[va+48+8>>2];p=+g[va+48+12>>2];if(n*n+o*o+p*p>1.1920928955078125e-07){pa=1.0/(n*n+o*o+p*p);g[va+384>>2]=n*pa;g[va+384+4>>2]=o*pa;g[va+384+8>>2]=p*pa;g[va+384+12>>2]=0.0;pa=+g[va+48+56>>2];ra=+Sb[c[(c[sa>>2]|0)+48>>2]&15](sa);ra=pa-ra-+Sb[c[(c[ta>>2]|0)+48>>2]&15](ta);Wc(va+384|0,c[sa+52>>2]|0,c[d+12>>2]|0,va+624|0,ra-q,q,h)}do if(a[b+16>>0]|0?(T=c[h+4>>2]|0,c[T+748>>2]|0):0){k=c[T+740>>2]|0;l=c[(c[h+8>>2]|0)+8>>2]|0;j=c[(c[h+12>>2]|0)+8>>2]|0;if((k|0)==(l|0)){ef(T,k+4|0,j+4|0);break}else{ef(T,j+4|0,l+4|0);break}}while(0);j=c[D>>2]|0;if(j|0){if(a[z>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}c[D>>2]=0}}else{ra=+g[(c[b+20>>2]|0)+752>>2];b:do if(!(a[f+24>>0]|0)){Vc(va+48|0,va+128|0,va,c[f+20>>2]|0,0);n=+g[va+32>>2];if(n<0.0&(a[va+36>>0]|0)!=0){p=+g[va+8>>2];q=+g[va+16>>2];j=c[va+20>>2]|0;o=+g[va+12>>2];qa=111}}else{z=c[d+12>>2]|0;D=c[e+12>>2]|0;c[6418]=(c[6418]|0)+1;ha=+g[U+64>>2];ia=+g[U+68>>2];n=+g[z+4>>2];ja=+g[U+72>>2];o=+g[z+8>>2];p=+g[z+16>>2];q=+g[z+20>>2];r=+g[z+24>>2];s=+g[z+32>>2];t=+g[z+36>>2];u=+g[z+40>>2];ka=+g[ma+64>>2];la=+g[ma+68>>2];pa=+g[ma+72>>2];na=ha*+g[z>>2]+ia*n+ja*o+ +g[z+48>>2]-(ka*+g[D>>2]+la*+g[D+4>>2]+pa*+g[D+8>>2]+ +g[D+48>>2]);oa=ha*p+ia*q+ja*r+ +g[z+52>>2]-(ka*+g[D+16>>2]+la*+g[D+20>>2]+pa*+g[D+24>>2]+ +g[D+52>>2]);pa=ha*s+ia*t+ja*u+ +g[z+56>>2]-(ka*+g[D+32>>2]+la*+g[D+36>>2]+pa*+g[D+40>>2]+ +g[D+56>>2]);l=c[U+28>>2]|0;c:do if((l|0)>0){A=o;B=p;y=q;C=0.0;E=3402823466385288598117041.0e14;k=0;p=0.0;q=0.0;o=0.0;while(1){f=c[U+36>>2]|0;ja=+g[f+(k*36|0)+20>>2];ka=+g[f+(k*36|0)+24>>2];la=+g[f+(k*36|0)+28>>2];w=ja*+g[z>>2]+ka*n+la*A;r=ja*B+ka*y+la*r;n=ja*s+ka*t+la*u;g[va+296>>2]=w;g[va+296+4>>2]=r;g[va+296+8>>2]=n;g[va+296+12>>2]=0.0;if(na*w+oa*r+pa*n<0.0){g[va+296>>2]=-w;g[va+296+4>>2]=-r;g[va+296+8>>2]=-n;x=-w;r=-r;n=-n}else x=w;c[6416]=(c[6416]|0)+1;if(Qi(z,D,na,oa,pa,x,r,n,U,ma,E)|0){c[6417]=(c[6417]|0)+1;gh(U,z,va+296|0,va+624|0,va+384|0,va+360|0,va+344|0);gh(ma,D,va+296|0,va+380|0,va+376|0,va+328|0,va+312|0);s=+g[va+384>>2];t=+g[va+380>>2];do if(s>2];w=+g[va+624>>2];if(u=(l|0)){n=w;break c}n=+g[z+4>>2];A=+g[z+8>>2];B=+g[z+16>>2];y=+g[z+20>>2];r=+g[z+24>>2];s=+g[z+32>>2];t=+g[z+36>>2];u=+g[z+40>>2];C=x;E=w;k=j}break b}else{n=3402823466385288598117041.0e14;p=0.0;q=0.0;o=0.0}while(0);l=c[ma+28>>2]|0;d:do if((l|0)>0){A=0.0;k=0;while(1){f=c[ma+36>>2]|0;ka=+g[f+(k*36|0)+20>>2];la=+g[f+(k*36|0)+24>>2];t=+g[f+(k*36|0)+28>>2];r=ka*+g[D>>2]+la*+g[D+4>>2]+t*+g[D+8>>2];s=ka*+g[D+16>>2]+la*+g[D+20>>2]+t*+g[D+24>>2];t=ka*+g[D+32>>2]+la*+g[D+36>>2]+t*+g[D+40>>2];g[va+296>>2]=r;g[va+296+4>>2]=s;g[va+296+8>>2]=t;g[va+296+12>>2]=0.0;if(na*r+oa*s+pa*t<0.0){g[va+296>>2]=-r;g[va+296+4>>2]=-s;g[va+296+8>>2]=-t;r=-r;s=-s;t=-t}c[6416]=(c[6416]|0)+1;if(Qi(z,D,na,oa,pa,r,s,t,U,ma,n)|0){c[6417]=(c[6417]|0)+1;gh(U,z,va+296|0,va+624|0,va+384|0,va+360|0,va+344|0);gh(ma,D,va+296|0,va+380|0,va+376|0,va+328|0,va+312|0);u=+g[va+384>>2];w=+g[va+380>>2];do if(u>2];y=+g[va+624>>2];if(x=(l|0))break d;else A=u}break b}while(0);j=c[U+48>>2]|0;e:do if((j|0)>0){l=c[ma+48>>2]|0;t=0.0;v=0;k=-1;m=-1;x=0.0;y=0.0;A=0.0;B=0.0;V=0.0;W=0.0;Y=0.0;r=0.0;s=0.0;P=0.0;M=0.0;L=0.0;E=0.0;I=0.0;K=0.0;u=0.0;w=0.0;C=0.0;f:while(1){f=c[U+56>>2]|0;ha=+g[f+(v<<4)>>2];ia=+g[f+(v<<4)+4>>2];la=+g[f+(v<<4)+8>>2];ja=ha*+g[z>>2]+ia*+g[z+4>>2]+la*+g[z+8>>2];ka=ha*+g[z+16>>2]+ia*+g[z+20>>2]+la*+g[z+24>>2];la=ha*+g[z+32>>2]+ia*+g[z+36>>2]+la*+g[z+40>>2];if((l|0)>0){X=t;l=0;ia=p;ha=q;ga=o;_=x;aa=y;ca=A;while(1){f=c[ma+56>>2]|0;ea=+g[f+(l<<4)>>2];fa=+g[f+(l<<4)+4>>2];ba=+g[f+(l<<4)+8>>2];Z=ea*+g[D>>2]+fa*+g[D+4>>2]+ba*+g[D+8>>2];$=ea*+g[D+16>>2]+fa*+g[D+20>>2]+ba*+g[D+24>>2];ba=ea*+g[D+32>>2]+fa*+g[D+36>>2]+ba*+g[D+40>>2];g[va+296>>2]=ka*ba-la*$;g[va+296+4>>2]=la*Z-ja*ba;g[va+296+8>>2]=ja*$-ka*Z;g[va+296+12>>2]=0.0;do if(!(+N(+(ka*ba-la*$))>1.0e-06)){if(+N(+(la*Z-ja*ba))>1.0e-06){qa=75;break}if(!(+N(+(ja*$-ka*Z))>1.0e-06)){p=ia;q=ha;o=ga;da=B;ea=V;fa=W}else qa=75}else qa=75;while(0);do if((qa|0)==75){qa=0;q=1.0/+O(+((ka*ba-la*$)*(ka*ba-la*$)+(la*Z-ja*ba)*(la*Z-ja*ba)+(ja*$-ka*Z)*(ja*$-ka*Z)));p=(ka*ba-la*$)*q;g[va+296>>2]=p;o=(la*Z-ja*ba)*q;g[va+296+4>>2]=o;q=(ja*$-ka*Z)*q;g[va+296+8>>2]=q;if(p*na+o*oa+pa*q<0.0){g[va+296>>2]=-p;g[va+296+4>>2]=-o;g[va+296+8>>2]=-q;p=-p;o=-o;q=-q}c[6416]=(c[6416]|0)+1;if(!(Qi(z,D,na,oa,pa,p,o,q,U,ma,n)|0)){p=ia;q=ha;o=ga;da=B;ea=V;fa=W;break}c[6417]=(c[6417]|0)+1;gh(U,z,va+296|0,va+624|0,va+384|0,va+360|0,va+344|0);gh(ma,D,va+296|0,va+380|0,va+376|0,va+328|0,va+312|0);t=+g[va+384>>2];x=+g[va+380>>2];do if(!(t>2];A=+g[va+624>>2];if(y>2];y=+g[va+344+4>>2];A=+g[va+344+8>>2];B=+g[va+328>>2];V=+g[va+328+4>>2];W=+g[va+328+8>>2];break}else{j=1;t=y-A;x=+g[va+360>>2];y=+g[va+360+4>>2];A=+g[va+360+8>>2];B=+g[va+312>>2];V=+g[va+312+4>>2];W=+g[va+312+8>>2];break}}else{j=0;t=X;x=_;y=aa;A=ca}while(0);if(!j)break f;if(!(t>2]|0;if((l|0)>=(j|0))break;else{ia=p;ha=q;ga=o;B=da;V=ea;W=fa}}l=j;j=c[U+48>>2]|0;t=X;x=_;y=aa;A=ca;B=da;V=ea;W=fa;X=Y}else X=Y;v=v+1|0;if((v|0)>=(j|0)){j=m;n=X;break e}else Y=X}break b}else{k=-1;j=-1;n=0.0;r=0.0;s=0.0;P=0.0;M=0.0;L=0.0;E=0.0;I=0.0;K=0.0;u=0.0;w=0.0;C=0.0}while(0);if((j|k|0)>-1){y=P-n;A=M-r;B=L-s;r=u*E+w*I+C*K;s=y*E+A*I+B*K;n=y*u+A*w+B*C;do if(1.0-r*r==0.0)t=0.0;else{if((s-n*r)/(1.0-r*r)<-1000000015047466219876688.0e6){t=-1000000015047466219876688.0e6;break}if(!((s-n*r)/(1.0-r*r)>1000000015047466219876688.0e6)){t=(s-n*r)/(1.0-r*r);break}t=1000000015047466219876688.0e6}while(0);n=r*t-n;do if(n<-1000000015047466219876688.0e6){if(s-r*1000000015047466219876688.0e6<-1000000015047466219876688.0e6){r=-1000000015047466219876688.0e6;n=-1000000015047466219876688.0e6;break}if(!(s-r*1000000015047466219876688.0e6>1000000015047466219876688.0e6)){r=s-r*1000000015047466219876688.0e6;n=-1000000015047466219876688.0e6;break}r=1000000015047466219876688.0e6;n=-1000000015047466219876688.0e6}else{if(!(n>1000000015047466219876688.0e6)){r=t;break}if(s+r*1000000015047466219876688.0e6<-1000000015047466219876688.0e6){r=-1000000015047466219876688.0e6;n=1000000015047466219876688.0e6;break}if(!(s+r*1000000015047466219876688.0e6>1000000015047466219876688.0e6)){r=s+r*1000000015047466219876688.0e6;n=1000000015047466219876688.0e6;break}r=1000000015047466219876688.0e6;n=1000000015047466219876688.0e6}while(0);x=u*n;w=w*n;u=C*n;t=x+(y-E*r);s=w+(A-I*r);n=u+(B-K*r);g[va+624>>2]=t;g[va+624+4>>2]=s;g[va+624+8>>2]=n;g[va+624+12>>2]=0.0;if(t*t+s*s+n*n>1.1920928955078125e-07){r=+O(+(t*t+s*s+n*n));g[va+624>>2]=t*(1.0/r);g[va+624+4>>2]=1.0/r*s;g[va+624+8>>2]=1.0/r*n;if(t*(1.0/r)*na+1.0/r*s*oa+1.0/r*n*pa<0.0){g[va+624>>2]=-(t*(1.0/r));g[va+624+4>>2]=-(1.0/r*s);g[va+624+8>>2]=-(1.0/r*n)}g[va+384>>2]=P+x;g[va+384+4>>2]=M+w;g[va+384+8>>2]=L+u;g[va+384+12>>2]=0.0;hc[c[(c[h>>2]|0)+16>>2]&15](h,va+624|0,va+384|0,-r)}}if(na*p+oa*o+pa*q<0.0){n=-1000000015047466219876688.0e6;p=-p;q=-q;j=0;o=-o;qa=111}else{n=-1000000015047466219876688.0e6;j=0;qa=111}}while(0);if((qa|0)==111){U=c[sa+52>>2]|0;f=c[ta+52>>2]|0;T=c[d+12>>2]|0;S=c[e+12>>2]|0;K=n-ra;C=1.0/+O(+(p*p+o*o+q*q));I=p*C;E=o*C;C=q*C;g[va+624>>2]=I;g[va+624+4>>2]=E;g[va+624+8>>2]=C;c[va+624+12>>2]=j;k=c[f+28>>2]|0;v=c[f+36>>2]|0;if((k|0)>0){n=+g[S>>2];o=+g[S+4>>2];p=+g[S+8>>2];q=+g[S+16>>2];r=+g[S+20>>2];s=+g[S+24>>2];t=+g[S+32>>2];u=+g[S+36>>2];w=+g[S+40>>2];j=-1;B=-3402823466385288598117041.0e14;m=0;while(1){x=+g[v+(m*36|0)+20>>2];y=+g[v+(m*36|0)+24>>2];A=+g[v+(m*36|0)+28>>2];l=(x*n+y*o+A*p)*I+(x*q+y*r+A*s)*E+(x*t+y*u+A*w)*C>B;j=l?m:j;m=m+1|0;if((m|0)==(k|0)){H=j;break}else B=l?(x*n+y*o+A*p)*I+(x*q+y*r+A*s)*E+(x*t+y*u+A*w)*C:B}}else H=-1;a[va+384+16>>0]=1;J=va+384+12|0;c[J>>2]=0;F=va+384+4|0;c[F>>2]=0;c[va+384+8>>2]=0;G=c[v+(H*36|0)+4>>2]|0;g:do if((G|0)>0){D=v+(H*36|0)+12|0;j=0;l=0;k=0;while(1){d=c[(c[D>>2]|0)+(k<<2)>>2]|0;e=c[f+16>>2]|0;oa=+g[e+(d<<4)>>2];pa=+g[e+(d<<4)+4>>2];p=+g[e+(d<<4)+8>>2];n=oa*+g[S>>2]+pa*+g[S+4>>2]+p*+g[S+8>>2]+ +g[S+48>>2];o=oa*+g[S+16>>2]+pa*+g[S+20>>2]+p*+g[S+24>>2]+ +g[S+52>>2];p=oa*+g[S+32>>2]+pa*+g[S+36>>2]+p*+g[S+40>>2]+ +g[S+56>>2];if((j|0)==(l|0)){z=l|0?l<<1:1;if((l|0)<(z|0)){if(!z){v=0;j=l}else{c[6435]=(c[6435]|0)+1;j=yc((z<<4|3)+16|0)|0;if(!j)j=0;else{c[(j+4+15&-16)+-4>>2]=j;j=j+4+15&-16}v=j;j=c[F>>2]|0}m=c[J>>2]|0;if((j|0)<=0){if(m)qa=126}else{l=0;do{d=v+(l<<4)|0;e=m+(l<<4)|0;c[d>>2]=c[e>>2];c[d+4>>2]=c[e+4>>2];c[d+8>>2]=c[e+8>>2];c[d+12>>2]=c[e+12>>2];l=l+1|0}while((l|0)!=(j|0));qa=126}if((qa|0)==126){qa=0;if(a[va+384+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[m+-4>>2]|0);j=c[F>>2]|0}c[J>>2]=0}a[va+384+16>>0]=1;c[J>>2]=v;c[va+384+8>>2]=z}else j=l}d=c[J>>2]|0;g[d+(j<<4)>>2]=n;g[d+(j<<4)+4>>2]=o;g[d+(j<<4)+8>>2]=p;g[d+(j<<4)+12>>2]=0.0;j=(c[F>>2]|0)+1|0;c[F>>2]=j;k=k+1|0;if((k|0)>=(G|0))break g;l=c[va+384+8>>2]|0}}while(0);if((H|0)>-1)Wc(va+624|0,U,T,va+384|0,K,ra,h);j=c[J>>2]|0;if(j|0){if(a[va+384+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}c[J>>2]=0}}if(a[b+16>>0]|0?(ua=c[h+4>>2]|0,c[ua+748>>2]|0):0){k=c[ua+740>>2]|0;l=c[(c[h+8>>2]|0)+8>>2]|0;j=c[(c[h+12>>2]|0)+8>>2]|0;if((k|0)==(l|0)){ef(ua,k+4|0,j+4|0);break}else{ef(ua,j+4|0,l+4|0);break}}}while(0);i=va;return}while(0)}Vc(va+48|0,va+128|0,h,c[f+20>>2]|0,0);if((c[b+28>>2]|0?(c[(c[h+4>>2]|0)+748>>2]|0)<(c[b+32>>2]|0):0)?(K=+g[va+48+4>>2],L=+g[va+48+8>>2],M=+g[va+48+12>>2],K*K+L*L+M*M>1.1920928955078125e-07):0){B=1.0/(K*K+L*L+M*M);if(+N(+(M*B))>.7071067690849304){I=1.0/+O(+(M*B*M*B+L*B*L*B));C=0.0;E=L*B*I;I=-(M*B*I)}else{I=1.0/+O(+(K*B*K*B+L*B*L*B));C=-(L*B*I);E=0.0;I=K*B*I}A=+Sb[c[(c[sa>>2]|0)+16>>2]&15](sa);x=+Sb[c[(c[ta>>2]|0)+16>>2]&15](ta);n=.019999999552965164/(A>2]=c[va+128>>2];c[va+624+4>>2]=c[va+128+4>>2];c[va+624+8>>2]=c[va+128+8>>2];c[va+624+12>>2]=c[va+128+12>>2];c[va+624+16>>2]=c[l>>2];c[va+624+16+4>>2]=c[l+4>>2];c[va+624+16+8>>2]=c[l+8>>2];c[va+624+16+12>>2]=c[l+12>>2];c[va+624+32>>2]=c[v>>2];c[va+624+32+4>>2]=c[v+4>>2];c[va+624+32+8>>2]=c[v+8>>2];c[va+624+32+12>>2]=c[v+12>>2];c[va+624+48>>2]=c[z>>2];c[va+624+48+4>>2]=c[z+4>>2];c[va+624+48+8>>2]=c[z+8>>2];c[va+624+48+12>>2]=c[z+12>>2]}else{c[va+624>>2]=c[D>>2];c[va+624+4>>2]=c[D+4>>2];c[va+624+8>>2]=c[D+8>>2];c[va+624+12>>2]=c[D+12>>2];c[va+624+16>>2]=c[F>>2];c[va+624+16+4>>2]=c[F+4>>2];c[va+624+16+8>>2]=c[F+8>>2];c[va+624+16+12>>2]=c[F+12>>2];c[va+624+32>>2]=c[G>>2];c[va+624+32+4>>2]=c[G+4>>2];c[va+624+32+8>>2]=c[G+8>>2];c[va+624+32+12>>2]=c[G+12>>2];c[va+624+48>>2]=c[H>>2];c[va+624+48+4>>2]=c[H+4>>2];c[va+624+48+8>>2]=c[H+8>>2];c[va+624+48+12>>2]=c[H+12>>2]}j=c[b+28>>2]|0;if((j|0)>0){y=C*C+I*I+E*E;w=(n>.39269909262657166?.39269909262657166:n)*.5;k=0;do{if(y>1.1920928955078125e-07){t=+R(+w)/+O(+y);r=C*t;s=I*t;t=E*t;u=+Q(+w);q=+(k|0)*(6.2831854820251465/+(j|0))*.5;p=+R(+q)/+O(+(M*B*M*B+(K*B*K*B+L*B*L*B)));n=K*B*p;o=L*B*p;p=M*B*p;q=+Q(+q);if(A>2]|0;ba=+g[ua>>2];ca=+g[ua+16>>2];da=+g[ua+32>>2];ea=+g[ua+4>>2];fa=+g[ua+20>>2];ga=+g[ua+36>>2];ha=+g[ua+8>>2];ka=+g[ua+24>>2];ra=+g[ua+40>>2];g[va+128>>2]=(1.0-(oa*pa+aa*ia))*ba+(la*pa-ja*ia)*ca+(la*ia+ja*pa)*da;g[va+128+4>>2]=(1.0-(oa*pa+aa*ia))*ea+(la*pa-ja*ia)*fa+(la*ia+ja*pa)*ga;g[va+128+8>>2]=(1.0-(oa*pa+aa*ia))*ha+(la*pa-ja*ia)*ka+(la*ia+ja*pa)*ra;g[va+128+12>>2]=0.0;g[va+128+16>>2]=(la*pa+ja*ia)*ba+(1.0-(la*na+aa*ia))*ca+(oa*ia-ja*na)*da;g[va+128+20>>2]=(la*pa+ja*ia)*ea+(1.0-(la*na+aa*ia))*fa+(oa*ia-ja*na)*ga;g[va+128+24>>2]=(la*pa+ja*ia)*ha+(1.0-(la*na+aa*ia))*ka+(oa*ia-ja*na)*ra;g[va+128+28>>2]=0.0;g[va+128+32>>2]=(la*ia-ja*pa)*ba+(oa*ia+ja*na)*ca+(1.0-(la*na+oa*pa))*da;g[va+128+36>>2]=(la*ia-ja*pa)*ea+(oa*ia+ja*na)*fa+(1.0-(la*na+oa*pa))*ga;g[va+128+40>>2]=(la*ia-ja*pa)*ha+(oa*ia+ja*na)*ka+(1.0-(la*na+oa*pa))*ra;g[va+128+44>>2]=0.0;ua=c[e+12>>2]|0;c[D>>2]=c[ua>>2];c[D+4>>2]=c[ua+4>>2];c[D+8>>2]=c[ua+8>>2];c[D+12>>2]=c[ua+12>>2];c[F>>2]=c[ua+16>>2];c[F+4>>2]=c[ua+16+4>>2];c[F+8>>2]=c[ua+16+8>>2];c[F+12>>2]=c[ua+16+12>>2];c[G>>2]=c[ua+32>>2];c[G+4>>2]=c[ua+32+4>>2];c[G+8>>2]=c[ua+32+8>>2];c[G+12>>2]=c[ua+32+12>>2];c[H>>2]=c[ua+48>>2];c[H+4>>2]=c[ua+48+4>>2];c[H+8>>2]=c[ua+48+8>>2];c[H+12>>2]=c[ua+48+12>>2]}else{ua=c[d+12>>2]|0;c[va+128>>2]=c[ua>>2];c[va+128+4>>2]=c[ua+4>>2];c[va+128+8>>2]=c[ua+8>>2];c[va+128+12>>2]=c[ua+12>>2];c[l>>2]=c[ua+16>>2];c[l+4>>2]=c[ua+16+4>>2];c[l+8>>2]=c[ua+16+8>>2];c[l+12>>2]=c[ua+16+12>>2];c[v>>2]=c[ua+32>>2];c[v+4>>2]=c[ua+32+4>>2];c[v+8>>2]=c[ua+32+8>>2];c[v+12>>2]=c[ua+32+12>>2];c[z>>2]=c[ua+48>>2];c[z+4>>2]=c[ua+48+4>>2];c[z+8>>2]=c[ua+48+8>>2];c[z+12>>2]=c[ua+48+12>>2];la=p*(r*-p+(s*q+u*-o)-t*-n)+(n*(u*q-r*-n-s*-o-t*-p)+q*(t*-o+(r*q+u*-n)-s*-p))-o*(s*-n+(t*q+u*-p)-r*-o);oa=n*(s*-n+(t*q+u*-p)-r*-o)+(q*(r*-p+(s*q+u*-o)-t*-n)+o*(u*q-r*-n-s*-o-t*-p))-p*(t*-o+(r*q+u*-n)-s*-p);aa=o*(t*-o+(r*q+u*-n)-s*-p)+(p*(u*q-r*-n-s*-o-t*-p)+q*(s*-n+(t*q+u*-p)-r*-o))-n*(r*-p+(s*q+u*-o)-t*-n);ja=q*(u*q-r*-n-s*-o-t*-p)-n*(t*-o+(r*q+u*-n)-s*-p)-o*(r*-p+(s*q+u*-o)-t*-n)-p*(s*-n+(t*q+u*-p)-r*-o);na=la*(2.0/(ja*ja+(aa*aa+(la*la+oa*oa))));pa=oa*(2.0/(ja*ja+(aa*aa+(la*la+oa*oa))));ia=aa*(2.0/(ja*ja+(aa*aa+(la*la+oa*oa))));ua=c[e+12>>2]|0;ba=+g[ua>>2];ca=+g[ua+16>>2];da=+g[ua+32>>2];ea=+g[ua+4>>2];fa=+g[ua+20>>2];ga=+g[ua+36>>2];ha=+g[ua+8>>2];ka=+g[ua+24>>2];ra=+g[ua+40>>2];g[va+128+64>>2]=(1.0-(oa*pa+aa*ia))*ba+(la*pa-ja*ia)*ca+(la*ia+ja*pa)*da;g[va+128+68>>2]=(1.0-(oa*pa+aa*ia))*ea+(la*pa-ja*ia)*fa+(la*ia+ja*pa)*ga;g[va+128+72>>2]=(1.0-(oa*pa+aa*ia))*ha+(la*pa-ja*ia)*ka+(la*ia+ja*pa)*ra;g[va+128+76>>2]=0.0;g[va+128+80>>2]=(la*pa+ja*ia)*ba+(1.0-(la*na+aa*ia))*ca+(oa*ia-ja*na)*da;g[va+128+84>>2]=(la*pa+ja*ia)*ea+(1.0-(la*na+aa*ia))*fa+(oa*ia-ja*na)*ga;g[va+128+88>>2]=(la*pa+ja*ia)*ha+(1.0-(la*na+aa*ia))*ka+(oa*ia-ja*na)*ra;g[va+128+92>>2]=0.0;g[va+128+96>>2]=(la*ia-ja*pa)*ba+(oa*ia+ja*na)*ca+(1.0-(la*na+oa*pa))*da;g[va+128+100>>2]=(la*ia-ja*pa)*ea+(oa*ia+ja*na)*fa+(1.0-(la*na+oa*pa))*ga;g[va+128+104>>2]=(la*ia-ja*pa)*ha+(oa*ia+ja*na)*ka+(1.0-(la*na+oa*pa))*ra;g[va+128+108>>2]=0.0}j=c[f+20>>2]|0;c[va+384>>2]=6136;c[va+384+32>>2]=h;c[va+384+36>>2]=c[va+128>>2];c[va+384+36+4>>2]=c[va+128+4>>2];c[va+384+36+8>>2]=c[va+128+8>>2];c[va+384+36+12>>2]=c[va+128+12>>2];c[va+384+52>>2]=c[l>>2];c[va+384+52+4>>2]=c[l+4>>2];c[va+384+52+8>>2]=c[l+8>>2];c[va+384+52+12>>2]=c[l+12>>2];c[va+384+68>>2]=c[v>>2];c[va+384+68+4>>2]=c[v+4>>2];c[va+384+68+8>>2]=c[v+8>>2];c[va+384+68+12>>2]=c[v+12>>2];c[va+384+84>>2]=c[z>>2];c[va+384+84+4>>2]=c[z+4>>2];c[va+384+84+8>>2]=c[z+8>>2];c[va+384+84+12>>2]=c[z+12>>2];c[va+384+100>>2]=c[D>>2];c[va+384+100+4>>2]=c[D+4>>2];c[va+384+100+8>>2]=c[D+8>>2];c[va+384+100+12>>2]=c[D+12>>2];c[va+384+116>>2]=c[F>>2];c[va+384+116+4>>2]=c[F+4>>2];c[va+384+116+8>>2]=c[F+8>>2];c[va+384+116+12>>2]=c[F+12>>2];c[va+384+132>>2]=c[G>>2];c[va+384+132+4>>2]=c[G+4>>2];c[va+384+132+8>>2]=c[G+8>>2];c[va+384+132+12>>2]=c[G+12>>2];c[va+384+148>>2]=c[H>>2];c[va+384+148+4>>2]=c[H+4>>2];c[va+384+148+8>>2]=c[H+8>>2];c[va+384+148+12>>2]=c[H+12>>2];c[va+384+164>>2]=c[va+624>>2];c[va+384+164+4>>2]=c[va+624+4>>2];c[va+384+164+8>>2]=c[va+624+8>>2];c[va+384+164+12>>2]=c[va+624+12>>2];c[va+384+180>>2]=c[va+624+16>>2];c[va+384+180+4>>2]=c[va+624+16+4>>2];c[va+384+180+8>>2]=c[va+624+16+8>>2];c[va+384+180+12>>2]=c[va+624+16+12>>2];c[va+384+196>>2]=c[va+624+32>>2];c[va+384+196+4>>2]=c[va+624+32+4>>2];c[va+384+196+8>>2]=c[va+624+32+8>>2];c[va+384+196+12>>2]=c[va+624+32+12>>2];c[va+384+212>>2]=c[va+624+48>>2];c[va+384+212+4>>2]=c[va+624+48+4>>2];c[va+384+212+8>>2]=c[va+624+48+8>>2];c[va+384+212+12>>2]=c[va+624+48+12>>2];a[va+384+228>>0]=A>2]=j;Vc(va+48|0,va+128|0,va+384|0,j,0);j=c[b+28>>2]|0}k=k+1|0}while((k|0)<(j|0))}}if(!(a[b+16>>0]|0)){i=va;return}k=c[h+4>>2]|0;if(!(c[k+748>>2]|0)){i=va;return}l=c[k+740>>2]|0;m=c[(c[h+8>>2]|0)+8>>2]|0;j=c[(c[h+12>>2]|0)+8>>2]|0;if((l|0)==(m|0)){ef(k,l+4|0,j+4|0);i=va;return}else{ef(k,j+4|0,m+4|0);i=va;return}}function pc(d){d=d|0;var e=0,f=0,h=0,j=0.0,l=0.0,m=0.0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,D=0.0,E=0.0,F=0.0,G=0.0,H=0.0,I=0.0,J=0.0,K=0,L=0,M=0,N=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0.0,Z=0.0,_=0.0,$=0.0,aa=0.0,ba=0.0,ca=0.0,da=0.0,ea=0.0,fa=0.0,ga=0.0,ha=0.0;X=i;i=i+1024|0;tc(d);if(!(Eb[c[(c[d>>2]|0)+20>>2]&127](d)|0)){i=X;return}if((c[d+328>>2]|0)<=0){i=X;return}Q=X+944+32|0;R=X+944+52|0;W=0;do{S=c[(c[d+336>>2]|0)+(W<<2)>>2]|0;if(Eb[c[(c[d>>2]|0)+20>>2]&127](d)|0?(M=Eb[c[(c[d>>2]|0)+20>>2]&127](d)|0,(Eb[c[(c[M>>2]|0)+48>>2]&127](M)|0)&1|0):0){e=c[d+72>>2]|0;if(!(a[S+473>>0]|0))M=e;else{c[X+864>>2]=c[S+520>>2];c[X+864+4>>2]=c[S+520+4>>2];c[X+864+8>>2]=c[S+520+8>>2];c[X+864+12>>2]=c[S+520+12>>2];j=+g[S+584>>2];l=+g[S+536>>2];m=+g[S+600>>2];u=+g[S+540>>2];v=+g[S+616>>2];w=+g[S+544>>2];x=+g[S+588>>2];y=+g[S+604>>2];z=+g[S+620>>2];A=+g[S+592>>2];B=+g[S+608>>2];D=+g[S+624>>2];E=+g[S+552>>2];F=+g[S+556>>2];G=+g[S+560>>2];H=+g[S+568>>2];I=+g[S+572>>2];J=+g[S+576>>2];ha=j*l+m*u+v*w+(l*x+u*y+w*z)*0.0+(l*A+u*B+w*D)*0.0;fa=(A*E+B*F+D*G)*0.0+(j*E+m*F+v*G+(x*E+y*F+z*G)*0.0);ea=(A*H+B*I+D*J)*0.0+(j*H+m*I+v*J+(x*H+y*I+z*J)*0.0);ga=1.0/+O(+(ha*ha+fa*fa+ea*ea));da=(j*l+m*u+v*w)*0.0+(l*x+u*y+w*z)+(l*A+u*B+w*D)*0.0;ba=(A*E+B*F+D*G)*0.0+(x*E+y*F+z*G+(j*E+m*F+v*G)*0.0);aa=(A*H+B*I+D*J)*0.0+(x*H+y*I+z*J+(j*H+m*I+v*J)*0.0);ca=1.0/+O(+(da*da+ba*ba+aa*aa));$=(j*l+m*u+v*w)*0.0+(l*x+u*y+w*z)*0.0+(l*A+u*B+w*D);Z=A*E+B*F+D*G+((j*E+m*F+v*G)*0.0+(x*E+y*F+z*G)*0.0);Y=A*H+B*I+D*J+((j*H+m*I+v*J)*0.0+(x*H+y*I+z*J)*0.0);_=1.0/+O(+($*$+Z*Z+Y*Y));M=c[(c[e>>2]|0)+8>>2]|0;fa=fa*ga*10.0+ +g[X+864+4>>2];ea=ga*ea*10.0+ +g[X+864+8>>2];g[X+848>>2]=ha*ga*10.0+ +g[X+864>>2];g[X+848+4>>2]=fa;g[X+848+8>>2]=ea;g[X+848+12>>2]=0.0;c[X+832>>2]=1065353216;c[X+832+4>>2]=0;c[X+832+8>>2]=0;g[X+832+12>>2]=0.0;mc[M&127](e,X+864|0,X+848|0,X+832|0);M=c[(c[e>>2]|0)+8>>2]|0;ba=ba*ca*10.0+ +g[X+864+4>>2];aa=ca*aa*10.0+ +g[X+864+8>>2];g[X+816>>2]=da*ca*10.0+ +g[X+864>>2];g[X+816+4>>2]=ba;g[X+816+8>>2]=aa;g[X+816+12>>2]=0.0;c[X+800>>2]=0;c[X+800+4>>2]=1065353216;c[X+800+8>>2]=0;g[X+800+12>>2]=0.0;mc[M&127](e,X+864|0,X+816|0,X+800|0);M=c[(c[e>>2]|0)+8>>2]|0;Z=Z*_*10.0+ +g[X+864+4>>2];Y=_*Y*10.0+ +g[X+864+8>>2];g[X+784>>2]=$*_*10.0+ +g[X+864>>2];g[X+784+4>>2]=Z;g[X+784+8>>2]=Y;g[X+784+12>>2]=0.0;c[X+768>>2]=0;c[X+768+4>>2]=0;c[X+768+8>>2]=1065353216;g[X+768+12>>2]=0.0;mc[M&127](e,X+864|0,X+784|0,X+768|0);if((c[S+484>>2]|0)>0){f=0;do{M=c[S+492>>2]|0;da=+g[M+(f<<4)>>2];ea=+g[M+(f<<4)+4>>2];ha=+g[M+(f<<4)+8>>2];fa=+g[X+864>>2]+((j*l+m*u+v*w)*da+(l*x+u*y+w*z)*ea+(l*A+u*B+w*D)*ha);ga=+g[X+864+4>>2]+((j*E+m*F+v*G)*da+(x*E+y*F+z*G)*ea+(A*E+B*F+D*G)*ha);ha=(j*H+m*I+v*J)*da+(x*H+y*I+z*J)*ea+(A*H+B*I+D*J)*ha+ +g[X+864+8>>2];c[X+752>>2]=1065353216;c[X+752+4>>2]=0;c[X+752+8>>2]=1065353216;g[X+752+12>>2]=0.0;M=c[(c[e>>2]|0)+8>>2]|0;g[X+1008>>2]=fa+-.10000000149011612;g[X+1008+4>>2]=ga;g[X+1008+8>>2]=ha;g[X+1008+12>>2]=0.0;g[X+944>>2]=fa+.10000000149011612;g[X+944+4>>2]=ga+0.0;g[X+944+8>>2]=ha+0.0;g[X+944+12>>2]=0.0;mc[M&127](e,X+1008|0,X+944|0,X+752|0);M=c[(c[e>>2]|0)+8>>2]|0;g[X+928>>2]=fa;g[X+928+4>>2]=ga+-.10000000149011612;g[X+928+8>>2]=ha;g[X+928+12>>2]=0.0;g[X+912>>2]=fa+0.0;g[X+912+4>>2]=ga+.10000000149011612;g[X+912+8>>2]=ha+0.0;g[X+912+12>>2]=0.0;mc[M&127](e,X+928|0,X+912|0,X+752|0);M=c[(c[e>>2]|0)+8>>2]|0;g[X+896>>2]=fa;g[X+896+4>>2]=ga;g[X+896+8>>2]=ha+-.10000000149011612;g[X+896+12>>2]=0.0;g[X+880>>2]=fa+0.0;g[X+880+4>>2]=ga+0.0;g[X+880+8>>2]=ha+.10000000149011612;g[X+880+12>>2]=0.0;mc[M&127](e,X+896|0,X+880|0,X+752|0);f=f+1|0}while((f|0)<(c[S+484>>2]|0))}M=c[d+72>>2]|0}L=c[d+344>>2]|0;c[X+864>>2]=0;c[X+864+4>>2]=0;c[X+864+8>>2]=0;c[X+864+12>>2]=0;c[X+848>>2]=1065353216;c[X+848+4>>2]=1065353216;c[X+848+8>>2]=1065353216;g[X+848+12>>2]=0.0;c[X+832>>2]=1065353216;c[X+832+4>>2]=0;c[X+832+8>>2]=0;g[X+832+12>>2]=0.0;if(!(L&256)){if(L&1|0?(T=c[S+712>>2]|0,(T|0)>0):0){e=T;h=0;do{f=c[S+720>>2]|0;if(c[(c[f+(h*104|0)+4>>2]|0)+16>>2]&1){e=c[(c[M>>2]|0)+8>>2]|0;K=f+(h*104|0)+8|0;s=f+(h*104|0)+12|0;q=c[s>>2]|0;t=f+(h*104|0)+16|0;r=c[t>>2]|0;g[X+800>>2]=+g[K>>2]+-.10000000149011612;c[X+800+4>>2]=q;c[X+800+8>>2]=r;g[X+800+12>>2]=0.0;ga=+g[s>>2]+0.0;ha=+g[t>>2]+0.0;g[X+784>>2]=+g[K>>2]+.10000000149011612;g[X+784+4>>2]=ga;g[X+784+8>>2]=ha;g[X+784+12>>2]=0.0;c[X+768>>2]=1065353216;c[X+768+4>>2]=0;c[X+768+8>>2]=0;g[X+768+12>>2]=0.0;mc[e&127](M,X+800|0,X+784|0,X+768|0);e=c[(c[M>>2]|0)+8>>2]|0;ha=+g[s>>2]+-.10000000149011612;r=c[t>>2]|0;c[X+752>>2]=c[K>>2];g[X+752+4>>2]=ha;c[X+752+8>>2]=r;g[X+752+12>>2]=0.0;ha=+g[s>>2]+.10000000149011612;ga=+g[t>>2]+0.0;g[X+736>>2]=+g[K>>2]+0.0;g[X+736+4>>2]=ha;g[X+736+8>>2]=ga;g[X+736+12>>2]=0.0;c[X+720>>2]=0;c[X+720+4>>2]=1065353216;c[X+720+8>>2]=0;g[X+720+12>>2]=0.0;mc[e&127](M,X+752|0,X+736|0,X+720|0);e=c[(c[M>>2]|0)+8>>2]|0;r=c[s>>2]|0;ga=+g[t>>2]+-.10000000149011612;c[X+704>>2]=c[K>>2];c[X+704+4>>2]=r;g[X+704+8>>2]=ga;g[X+704+12>>2]=0.0;ga=+g[s>>2]+0.0;ha=+g[t>>2]+.10000000149011612;g[X+688>>2]=+g[K>>2]+0.0;g[X+688+4>>2]=ga;g[X+688+8>>2]=ha;g[X+688+12>>2]=0.0;c[X+672>>2]=0;c[X+672+4>>2]=0;c[X+672+8>>2]=1065353216;g[X+672+12>>2]=0.0;mc[e&127](M,X+704|0,X+688|0,X+672|0);e=c[S+712>>2]|0}h=h+1|0}while((h|0)<(e|0))}if(L&2|0?(U=c[S+732>>2]|0,(U|0)>0):0){e=U;h=0;do{f=c[S+740>>2]|0;if(c[(c[f+(h*52|0)+4>>2]|0)+16>>2]&1){mc[c[(c[M>>2]|0)+8>>2]&127](M,(c[f+(h*52|0)+8>>2]|0)+8|0,(c[f+(h*52|0)+12>>2]|0)+8|0,X+864|0);e=c[S+732>>2]|0}h=h+1|0}while((h|0)<(e|0))}if(L&16|0?(V=c[S+712>>2]|0,(V|0)>0):0){e=V;h=0;do{f=c[S+720>>2]|0;if(c[(c[f+(h*104|0)+4>>2]|0)+16>>2]&1){fa=+g[f+(h*104|0)+72>>2]*.5;ha=+g[f+(h*104|0)+76>>2]*.5;ga=+g[f+(h*104|0)+80>>2]*.5;K=c[(c[M>>2]|0)+8>>2]|0;e=f+(h*104|0)+8|0;s=f+(h*104|0)+12|0;da=ha+ +g[s>>2];t=f+(h*104|0)+16|0;ea=ga+ +g[t>>2];g[X+656>>2]=fa+ +g[e>>2];g[X+656+4>>2]=da;g[X+656+8>>2]=ea;g[X+656+12>>2]=0.0;mc[K&127](M,e,X+656|0,X+848|0);K=c[(c[M>>2]|0)+8>>2]|0;ha=+g[s>>2]-ha;ga=+g[t>>2]-ga;g[X+640>>2]=+g[e>>2]-fa;g[X+640+4>>2]=ha;g[X+640+8>>2]=ga;g[X+640+12>>2]=0.0;ga=+g[X+848+4>>2]*.5;ha=+g[X+848+8>>2]*.5;g[X+624>>2]=+g[X+848>>2]*.5;g[X+624+4>>2]=ga;g[X+624+8>>2]=ha;g[X+624+12>>2]=0.0;mc[K&127](M,e,X+640|0,X+624|0);e=c[S+712>>2]|0}h=h+1|0}while((h|0)<(e|0))}if(L&32|0){if((a[22536]|0)==0?Wa(22536)|0:0){c[5803]=1065353216;c[5804]=0;c[5805]=0;c[5806]=0;c[5807]=0;c[5808]=1065353216;c[5809]=0;c[5810]=0;c[5811]=0;c[5812]=0;c[5813]=1065353216;g[5814]=0.0;_a(22536)}if((c[S+812>>2]|0)>0){e=0;do{K=c[S+820>>2]|0;s=c[K+(e*104|0)+24>>2]|0;E=+g[s+8>>2];t=K+(e*104|0)+4|0;F=+g[t>>2];I=+g[s+12>>2];r=K+(e*104|0)+8|0;J=+g[r>>2];ga=+g[s+16>>2];s=K+(e*104|0)+12|0;ea=+g[s>>2];ca=+g[K+(e*104|0)+20>>2]+(E*F+I*J+ga*ea);g[X+1008>>2]=E-F*ca;g[X+1008+4>>2]=I-J*ca;g[X+1008+8>>2]=ga-ea*ca;g[X+1008+12>>2]=0.0;Y=+g[t>>2];_=+g[r>>2];G=+g[s>>2];K=Y<_?(Y>2];Z=+g[23212+(K<<4)+4>>2];$=+g[23212+(K<<4)>>2];aa=1.0/+O(+((Y*Z-_*$)*(Y*Z-_*$)+((_*H-G*Z)*(_*H-G*Z)+(G*$-Y*H)*(G*$-Y*H))));ba=G*(G*$-Y*H)*aa-_*(Y*Z-_*$)*aa;da=Y*(Y*Z-_*$)*aa-G*(_*H-G*Z)*aa;ha=_*(_*H-G*Z)*aa-Y*(G*$-Y*H)*aa;fa=1.0/+O(+(ha*ha+(ba*ba+da*da)));K=c[(c[M>>2]|0)+8>>2]|0;g[X+608>>2]=E-F*ca-(_*H-G*Z)*aa*.5;g[X+608+4>>2]=I-J*ca-(G*$-Y*H)*aa*.5;g[X+608+8>>2]=ga-ea*ca-(Y*Z-_*$)*aa*.5;g[X+608+12>>2]=0.0;g[X+592>>2]=(_*H-G*Z)*aa*.5+(E-F*ca);g[X+592+4>>2]=(G*$-Y*H)*aa*.5+(I-J*ca);g[X+592+8>>2]=(Y*Z-_*$)*aa*.5+(ga-ea*ca);g[X+592+12>>2]=0.0;mc[K&127](M,X+608|0,X+592|0,X+832|0);K=c[(c[M>>2]|0)+8>>2]|0;ca=+g[X+1008>>2];ea=+g[X+1008+4>>2];ga=+g[X+1008+8>>2];g[X+576>>2]=ca-fa*ba*.5;g[X+576+4>>2]=ea-fa*da*.5;g[X+576+8>>2]=ga-fa*ha*.5;g[X+576+12>>2]=0.0;g[X+560>>2]=fa*ba*.5+ca;g[X+560+4>>2]=fa*da*.5+ea;g[X+560+8>>2]=fa*ha*.5+ga;g[X+560+12>>2]=0.0;mc[K&127](M,X+576|0,X+560|0,X+832|0);K=c[(c[M>>2]|0)+8>>2]|0;ga=+g[r>>2]*.5*3.0+ +g[X+1008+4>>2];ha=+g[s>>2]*.5*3.0+ +g[X+1008+8>>2];g[X+544>>2]=+g[t>>2]*.5*3.0+ +g[X+1008>>2];g[X+544+4>>2]=ga;g[X+544+8>>2]=ha;g[X+544+12>>2]=0.0;c[X+528>>2]=1065353216;c[X+528+4>>2]=1065353216;c[X+528+8>>2]=0;g[X+528+12>>2]=0.0;mc[K&127](M,X+1008|0,X+544|0,X+528|0);e=e+1|0}while((e|0)<(c[S+812>>2]|0))}}if(L&4|0?(c[X+1008>>2]=0,c[X+1008+4>>2]=1060320051,c[X+1008+8>>2]=0,g[X+1008+12>>2]=0.0,N=c[S+752>>2]|0,(N|0)>0):0){e=N;h=0;do{f=c[S+760>>2]|0;if(c[(c[f+(h*44|0)+4>>2]|0)+16>>2]&1){e=c[f+(h*44|0)+8>>2]|0;$=+g[e+8>>2];ca=+g[e+12>>2];fa=+g[e+16>>2];e=c[f+(h*44|0)+12>>2]|0;aa=+g[e+8>>2];da=+g[e+12>>2];ga=+g[e+16>>2];e=c[f+(h*44|0)+16>>2]|0;ba=+g[e+8>>2];ea=+g[e+12>>2];ha=+g[e+16>>2];e=c[(c[M>>2]|0)+28>>2]|0;g[X+512>>2]=($+aa+ba)*.3333333432674408+($-($+aa+ba)*.3333333432674408)*.800000011920929;g[X+512+4>>2]=(ca+da+ea)*.3333333432674408+(ca-(ca+da+ea)*.3333333432674408)*.800000011920929;g[X+512+8>>2]=(fa+ga+ha)*.3333333432674408+(fa-(fa+ga+ha)*.3333333432674408)*.800000011920929;g[X+512+12>>2]=0.0;g[X+496>>2]=($+aa+ba)*.3333333432674408+(aa-($+aa+ba)*.3333333432674408)*.800000011920929;g[X+496+4>>2]=(ca+da+ea)*.3333333432674408+(da-(ca+da+ea)*.3333333432674408)*.800000011920929;g[X+496+8>>2]=(fa+ga+ha)*.3333333432674408+(ga-(fa+ga+ha)*.3333333432674408)*.800000011920929;g[X+496+12>>2]=0.0;g[X+480>>2]=($+aa+ba)*.3333333432674408+(ba-($+aa+ba)*.3333333432674408)*.800000011920929;g[X+480+4>>2]=(ca+da+ea)*.3333333432674408+(ea-(ca+da+ea)*.3333333432674408)*.800000011920929;g[X+480+8>>2]=(fa+ga+ha)*.3333333432674408+(ha-(fa+ga+ha)*.3333333432674408)*.800000011920929;g[X+480+12>>2]=0.0;Pb[e&0](M,X+512|0,X+496|0,X+480|0,X+1008|0,1.0);e=c[S+752>>2]|0}h=h+1|0}while((h|0)<(e|0))}if(L&8|0?(c[X+1008>>2]=1050253722,c[X+1008+4>>2]=1050253722,c[X+1008+8>>2]=1060320051,g[X+1008+12>>2]=0.0,P=c[S+772>>2]|0,(P|0)>0):0){e=P;h=0;do{f=c[S+780>>2]|0;if(c[(c[f+(h*104|0)+4>>2]|0)+16>>2]&1){e=c[f+(h*104|0)+8>>2]|0;A=+g[e+8>>2];E=+g[e+12>>2];H=+g[e+16>>2];e=c[f+(h*104|0)+12>>2]|0;B=+g[e+8>>2];F=+g[e+12>>2];I=+g[e+16>>2];e=c[f+(h*104|0)+16>>2]|0;D=+g[e+8>>2];G=+g[e+12>>2];J=+g[e+16>>2];e=c[f+(h*104|0)+20>>2]|0;fa=+g[e+8>>2];ga=+g[e+12>>2];ha=+g[e+16>>2];e=c[(c[M>>2]|0)+28>>2]|0;ca=(A+B+D+fa)*.25+(A-(A+B+D+fa)*.25)*.800000011920929;da=(E+F+G+ga)*.25+(E-(E+F+G+ga)*.25)*.800000011920929;ea=(H+I+J+ha)*.25+(H-(H+I+J+ha)*.25)*.800000011920929;g[X+464>>2]=ca;g[X+464+4>>2]=da;g[X+464+8>>2]=ea;g[X+464+12>>2]=0.0;Y=(A+B+D+fa)*.25+(B-(A+B+D+fa)*.25)*.800000011920929;Z=(E+F+G+ga)*.25+(F-(E+F+G+ga)*.25)*.800000011920929;_=(H+I+J+ha)*.25+(I-(H+I+J+ha)*.25)*.800000011920929;g[X+448>>2]=Y;g[X+448+4>>2]=Z;g[X+448+8>>2]=_;g[X+448+12>>2]=0.0;$=(A+B+D+fa)*.25+(D-(A+B+D+fa)*.25)*.800000011920929;aa=(E+F+G+ga)*.25+(G-(E+F+G+ga)*.25)*.800000011920929;ba=(H+I+J+ha)*.25+(J-(H+I+J+ha)*.25)*.800000011920929;g[X+432>>2]=$;g[X+432+4>>2]=aa;g[X+432+8>>2]=ba;g[X+432+12>>2]=0.0;Pb[e&0](M,X+464|0,X+448|0,X+432|0,X+1008|0,1.0);e=c[(c[M>>2]|0)+28>>2]|0;g[X+416>>2]=ca;g[X+416+4>>2]=da;g[X+416+8>>2]=ea;g[X+416+12>>2]=0.0;g[X+400>>2]=Y;g[X+400+4>>2]=Z;g[X+400+8>>2]=_;g[X+400+12>>2]=0.0;fa=(A+B+D+fa)*.25+(fa-(A+B+D+fa)*.25)*.800000011920929;ga=(E+F+G+ga)*.25+(ga-(E+F+G+ga)*.25)*.800000011920929;ha=(H+I+J+ha)*.25+(ha-(H+I+J+ha)*.25)*.800000011920929;g[X+384>>2]=fa;g[X+384+4>>2]=ga;g[X+384+8>>2]=ha;g[X+384+12>>2]=0.0;Pb[e&0](M,X+416|0,X+400|0,X+384|0,X+1008|0,1.0);e=c[(c[M>>2]|0)+28>>2]|0;g[X+368>>2]=Y;g[X+368+4>>2]=Z;g[X+368+8>>2]=_;g[X+368+12>>2]=0.0;g[X+352>>2]=$;g[X+352+4>>2]=aa;g[X+352+8>>2]=ba;g[X+352+12>>2]=0.0;g[X+336>>2]=fa;g[X+336+4>>2]=ga;g[X+336+8>>2]=ha;g[X+336+12>>2]=0.0;Pb[e&0](M,X+368|0,X+352|0,X+336|0,X+1008|0,1.0);e=c[(c[M>>2]|0)+28>>2]|0;g[X+320>>2]=$;g[X+320+4>>2]=aa;g[X+320+8>>2]=ba;g[X+320+12>>2]=0.0;g[X+304>>2]=ca;g[X+304+4>>2]=da;g[X+304+8>>2]=ea;g[X+304+12>>2]=0.0;g[X+288>>2]=fa;g[X+288+4>>2]=ga;g[X+288+8>>2]=ha;g[X+288+12>>2]=0.0;Pb[e&0](M,X+320|0,X+304|0,X+288|0,X+1008|0,1.0);e=c[S+772>>2]|0}h=h+1|0}while((h|0)<(e|0))}}else{c[5646]=1805;c[5647]=0;e=c[S+1112>>2]|0;if((e|0)>0){K=0;do{if(a[(c[(c[S+1120>>2]|0)+(K<<2)>>2]|0)+377>>0]|0){r=vr(c[5646]|0,c[5647]|0,1284865837,1481765933)|0;r=Kt(r|0,C|0,1,0)|0;h=C;s=us(r|0,h|0,33)|0;h=vr(r|0,h|0,1284865837,1481765933)|0;h=Kt(h|0,C|0,1,0)|0;r=C;t=us(h|0,r|0,33)|0;r=vr(h|0,r|0,1284865837,1481765933)|0;r=Kt(r|0,C|0,1,0)|0;h=C;c[5646]=r;c[5647]=h;h=us(r|0,h|0,33)|0;ha=1.0/+O(+(+(h|0)*4.656612873077393e-10*+(h|0)*4.656612873077393e-10+(+(s|0)*4.656612873077393e-10*+(s|0)*4.656612873077393e-10+ +(t|0)*4.656612873077393e-10*+(t|0)*4.656612873077393e-10)));g[X+1008>>2]=+(s|0)*4.656612873077393e-10*ha*.75;g[X+1008+4>>2]=+(t|0)*4.656612873077393e-10*ha*.75;g[X+1008+8>>2]=+(h|0)*4.656612873077393e-10*ha*.75;g[X+1008+12>>2]=0.0;h=c[(c[(c[S+1120>>2]|0)+(K<<2)>>2]|0)+24>>2]|0;if((h|0)>0){c[6435]=(c[6435]|0)+1;e=yc((h<<4|3)+16|0)|0;if(!e)f=0;else{c[(e+4+15&-16)+-4>>2]=e;f=e+4+15&-16}e=0;do{t=f+(e<<4)|0;c[t>>2]=c[X+816>>2];c[t+4>>2]=c[X+816+4>>2];c[t+8>>2]=c[X+816+8>>2];c[t+12>>2]=c[X+816+12>>2];e=e+1|0}while((e|0)!=(h|0));e=0;do{t=f+(e<<4)|0;s=(c[(c[(c[(c[S+1120>>2]|0)+(K<<2)>>2]|0)+32>>2]|0)+(e<<2)>>2]|0)+8|0;c[t>>2]=c[s>>2];c[t+4>>2]=c[s+4>>2];c[t+8>>2]=c[s+8>>2];c[t+12>>2]=c[s+12>>2];e=e+1|0}while((e|0)!=(h|0))}else f=0;a[X+944+16>>0]=1;c[X+944+12>>2]=0;c[X+944+4>>2]=0;c[X+944+8>>2]=0;a[X+944+36>>0]=1;c[Q>>2]=0;c[X+944+24>>2]=0;c[X+944+28>>2]=0;a[X+944+56>>0]=1;c[R>>2]=0;c[X+944+44>>2]=0;c[X+944+48>>2]=0;Dc(X+944|0,f,h);r=c[X+944+44>>2]|0;if((r|0)>0){p=c[Q>>2]|0;t=0;do{s=c[(c[R>>2]|0)+(t<<2)>>2]|0;h=c[p+(s*12|0)+4>>2]|0;e=p+(s*12|0)+(h*12|0)+((c[p+(s*12|0)+(h*12|0)>>2]|0)*12|0)|0;if((e|0)!=(p+(s*12|0)|0)){q=c[X+944+12>>2]|0;n=c[p+(s*12|0)+(h*12|0)+8>>2]|0;o=c[p+(s*12|0)+8>>2]|0;while(1){h=c[e+8>>2]|0;Pb[c[(c[M>>2]|0)+28>>2]&0](M,q+(n<<4)|0,q+(o<<4)|0,q+(h<<4)|0,X+1008|0,1.0);n=e+((c[e+4>>2]|0)*12|0)|0;e=n+((c[n>>2]|0)*12|0)|0;if((e|0)==(p+(s*12|0)|0))break;else{n=o;o=h}}}t=t+1|0}while((t|0)<(r|0))}e=c[R>>2]|0;if(e|0){if(a[X+944+56>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0)}c[R>>2]=0}a[X+944+56>>0]=1;c[R>>2]=0;c[X+944+44>>2]=0;c[X+944+48>>2]=0;e=c[Q>>2]|0;if(e|0){if(a[X+944+36>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0)}c[Q>>2]=0}a[X+944+36>>0]=1;c[Q>>2]=0;c[X+944+24>>2]=0;c[X+944+28>>2]=0;e=c[X+944+12>>2]|0;if(e|0){if(a[X+944+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0)}c[X+944+12>>2]=0}if(f|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}e=c[S+1112>>2]|0}K=K+1|0}while((K|0)<(e|0))}}if(L&64|0){if((c[S+792>>2]|0)>0){e=0;do{K=c[S+800>>2]|0;q=c[K+(e*96|0)+20>>2]|0;da=+g[K+(e*96|0)+4>>2];ea=+g[K+(e*96|0)+8>>2];fa=+g[K+(e*96|0)+12>>2];ga=da*+g[q+20>>2]+ea*+g[q+24>>2]+fa*+g[q+28>>2]+ +g[q+56>>2];ha=da*+g[q+36>>2]+ea*+g[q+40>>2]+fa*+g[q+44>>2]+ +g[q+60>>2];g[X+272>>2]=da*+g[q+4>>2]+ea*+g[q+8>>2]+fa*+g[q+12>>2]+ +g[q+52>>2];g[X+272+4>>2]=ga;g[X+272+8>>2]=ha;g[X+272+12>>2]=0.0;K=K+(e*96|0)|0;q=c[K>>2]|0;c[X+256>>2]=1065353216;c[X+256+4>>2]=0;c[X+256+8>>2]=0;g[X+256+12>>2]=0.0;t=c[(c[M>>2]|0)+8>>2]|0;ha=+g[q+8>>2];s=c[q+12>>2]|0;r=c[q+16>>2]|0;g[X+1008>>2]=ha+-.25;c[X+1008+4>>2]=s;c[X+1008+8>>2]=r;g[X+1008+12>>2]=0.0;ga=(c[k>>2]=s,+g[k>>2])+0.0;fa=(c[k>>2]=r,+g[k>>2])+0.0;g[X+944>>2]=ha+.25;g[X+944+4>>2]=ga;g[X+944+8>>2]=fa;g[X+944+12>>2]=0.0;mc[t&127](M,X+1008|0,X+944|0,X+256|0);t=c[(c[M>>2]|0)+8>>2]|0;r=c[q+8>>2]|0;fa=+g[q+12>>2];s=c[q+16>>2]|0;c[X+928>>2]=r;g[X+928+4>>2]=fa+-.25;c[X+928+8>>2]=s;g[X+928+12>>2]=0.0;ga=(c[k>>2]=r,+g[k>>2])+0.0;ha=(c[k>>2]=s,+g[k>>2])+0.0;g[X+912>>2]=ga;g[X+912+4>>2]=fa+.25;g[X+912+8>>2]=ha;g[X+912+12>>2]=0.0;mc[t&127](M,X+928|0,X+912|0,X+256|0);t=c[(c[M>>2]|0)+8>>2]|0;s=c[q+8>>2]|0;r=c[q+12>>2]|0;ha=+g[q+16>>2];c[X+896>>2]=s;c[X+896+4>>2]=r;g[X+896+8>>2]=ha+-.25;g[X+896+12>>2]=0.0;fa=(c[k>>2]=s,+g[k>>2])+0.0;ga=(c[k>>2]=r,+g[k>>2])+0.0;g[X+880>>2]=fa;g[X+880+4>>2]=ga;g[X+880+8>>2]=ha+.25;g[X+880+12>>2]=0.0;mc[t&127](M,X+896|0,X+880|0,X+256|0);c[X+240>>2]=0;c[X+240+4>>2]=1065353216;c[X+240+8>>2]=0;g[X+240+12>>2]=0.0;t=c[(c[M>>2]|0)+8>>2]|0;ha=+g[X+272>>2];r=c[X+272+4>>2]|0;s=c[X+272+8>>2]|0;g[X+1008>>2]=ha+-.25;c[X+1008+4>>2]=r;c[X+1008+8>>2]=s;g[X+1008+12>>2]=0.0;ga=(c[k>>2]=r,+g[k>>2])+0.0;fa=(c[k>>2]=s,+g[k>>2])+0.0;g[X+944>>2]=ha+.25;g[X+944+4>>2]=ga;g[X+944+8>>2]=fa;g[X+944+12>>2]=0.0;mc[t&127](M,X+1008|0,X+944|0,X+240|0);t=c[(c[M>>2]|0)+8>>2]|0;s=c[X+272>>2]|0;fa=+g[X+272+4>>2];r=c[X+272+8>>2]|0;c[X+928>>2]=s;g[X+928+4>>2]=fa+-.25;c[X+928+8>>2]=r;g[X+928+12>>2]=0.0;ga=(c[k>>2]=s,+g[k>>2])+0.0;ha=(c[k>>2]=r,+g[k>>2])+0.0;g[X+912>>2]=ga;g[X+912+4>>2]=fa+.25;g[X+912+8>>2]=ha;g[X+912+12>>2]=0.0;mc[t&127](M,X+928|0,X+912|0,X+240|0);t=c[(c[M>>2]|0)+8>>2]|0;r=c[X+272>>2]|0;s=c[X+272+4>>2]|0;ha=+g[X+272+8>>2];c[X+896>>2]=r;c[X+896+4>>2]=s;g[X+896+8>>2]=ha+-.25;g[X+896+12>>2]=0.0;fa=(c[k>>2]=r,+g[k>>2])+0.0;ga=(c[k>>2]=s,+g[k>>2])+0.0;g[X+880>>2]=fa;g[X+880+4>>2]=ga;g[X+880+8>>2]=ha+.25;g[X+880+12>>2]=0.0;mc[t&127](M,X+896|0,X+880|0,X+240|0);t=c[(c[M>>2]|0)+8>>2]|0;K=(c[K>>2]|0)+8|0;c[X+224>>2]=1065353216;c[X+224+4>>2]=1065353216;c[X+224+8>>2]=1065353216;g[X+224+12>>2]=0.0;mc[t&127](M,K,X+272|0,X+224|0);e=e+1|0}while((e|0)<(c[S+792>>2]|0))}e=c[S+712>>2]|0;if((e|0)>0){h=0;do{f=c[S+720>>2]|0;if((c[(c[f+(h*104|0)+4>>2]|0)+16>>2]&1|0)!=0?+g[f+(h*104|0)+88>>2]<=0.0:0){t=f+(h*104|0)+8|0;c[X+208>>2]=1065353216;c[X+208+4>>2]=0;c[X+208+8>>2]=0;g[X+208+12>>2]=0.0;e=c[(c[M>>2]|0)+8>>2]|0;ha=+g[t>>2];K=f+(h*104|0)+12|0;r=c[K>>2]|0;s=f+(h*104|0)+16|0;q=c[s>>2]|0;g[X+1008>>2]=ha+-.25;c[X+1008+4>>2]=r;c[X+1008+8>>2]=q;g[X+1008+12>>2]=0.0;ga=(c[k>>2]=r,+g[k>>2])+0.0;fa=(c[k>>2]=q,+g[k>>2])+0.0;g[X+944>>2]=ha+.25;g[X+944+4>>2]=ga;g[X+944+8>>2]=fa;g[X+944+12>>2]=0.0;mc[e&127](M,X+1008|0,X+944|0,X+208|0);e=c[(c[M>>2]|0)+8>>2]|0;q=c[t>>2]|0;fa=+g[K>>2];r=c[s>>2]|0;c[X+928>>2]=q;g[X+928+4>>2]=fa+-.25;c[X+928+8>>2]=r;g[X+928+12>>2]=0.0;ga=(c[k>>2]=q,+g[k>>2])+0.0;ha=(c[k>>2]=r,+g[k>>2])+0.0;g[X+912>>2]=ga;g[X+912+4>>2]=fa+.25;g[X+912+8>>2]=ha;g[X+912+12>>2]=0.0;mc[e&127](M,X+928|0,X+912|0,X+208|0);e=c[(c[M>>2]|0)+8>>2]|0;t=c[t>>2]|0;K=c[K>>2]|0;ha=+g[s>>2];c[X+896>>2]=t;c[X+896+4>>2]=K;g[X+896+8>>2]=ha+-.25;g[X+896+12>>2]=0.0;fa=(c[k>>2]=t,+g[k>>2])+0.0;ga=(c[k>>2]=K,+g[k>>2])+0.0;g[X+880>>2]=fa;g[X+880+4>>2]=ga;g[X+880+8>>2]=ha+.25;g[X+880+12>>2]=0.0;mc[e&127](M,X+896|0,X+880|0,X+208|0);e=c[S+712>>2]|0}h=h+1|0}while((h|0)<(e|0))}}if(L&128|0?(c[S+692>>2]|0)>0:0){h=0;do{e=c[S+700>>2]|0;f=e+(h*60|0)+8|0;c[X+1008>>2]=c[f>>2];c[X+1008+4>>2]=c[f+4>>2];c[X+1008+8>>2]=c[f+8>>2];c[X+1008+12>>2]=c[f+12>>2];f=c[e+(h*60|0)+24>>2]|0;if((f|0)>0){j=+g[X+1008>>2];l=+g[X+1008+4>>2];m=+g[X+1008+8>>2];n=0;do{K=c[e+(h*60|0)+28+(n<<2)>>2]|0;fa=+g[e+(h*60|0)+44+(n<<2)>>2];ga=fa*+g[K+12>>2];ha=fa*+g[K+16>>2];j=+g[K+8>>2]*fa+j;g[X+1008>>2]=j;l=ga+l;g[X+1008+4>>2]=l;m=ha+m;g[X+1008+8>>2]=m;n=n+1|0}while((n|0)!=(f|0))}ic[c[(c[M>>2]|0)+40>>2]&127](M,X+1008|0,c[e+(h*60|0)+4>>2]|0);h=h+1|0}while((h|0)<(c[S+692>>2]|0))}if(L&512|0){K=c[S+928>>2]|0;c[X+1008>>2]=1065353216;c[X+1008+4>>2]=0;c[X+1008+8>>2]=1065353216;g[X+1008+12>>2]=0.0;c[X+944>>2]=1065353216;c[X+944+4>>2]=1065353216;c[X+944+8>>2]=1065353216;g[X+944+12>>2]=0.0;Of(M,K,0,X+1008|0,X+944|0)}if(L&1024|0){K=c[S+988>>2]|0;c[X+1008>>2]=0;c[X+1008+4>>2]=1065353216;c[X+1008+8>>2]=0;g[X+1008+12>>2]=0.0;c[X+944>>2]=1065353216;c[X+944+4>>2]=0;c[X+944+8>>2]=0;g[X+944+12>>2]=0.0;Of(M,K,0,X+1008|0,X+944|0)}if(L&2048|0){K=c[S+1048>>2]|0;c[X+1008>>2]=0;c[X+1008+4>>2]=1065353216;c[X+1008+8>>2]=1065353216;g[X+1008+12>>2]=0.0;c[X+944>>2]=1065353216;c[X+944+4>>2]=0;c[X+944+8>>2]=0;g[X+944+12>>2]=0.0;Of(M,K,0,X+1008|0,X+944|0)}a:do if(L&4096|0?(c[S+852>>2]|0)>0:0){f=0;while(1){e=c[(c[S+860>>2]|0)+(f<<2)>>2]|0;switch(Eb[c[(c[e>>2]|0)+20>>2]&127](e)|0){case 0:{L=ri(e+4|0)|0;ha=+g[e+28>>2];ga=+g[e+32>>2];fa=+g[e+36>>2];ea=ha*+g[L+16>>2]+ga*+g[L+20>>2]+fa*+g[L+24>>2]+ +g[L+52>>2];da=ha*+g[L+32>>2]+ga*+g[L+36>>2]+fa*+g[L+40>>2]+ +g[L+56>>2];g[X+272>>2]=ha*+g[L>>2]+ga*+g[L+4>>2]+fa*+g[L+8>>2]+ +g[L+48>>2];g[X+272+4>>2]=ea;g[X+272+8>>2]=da;g[X+272+12>>2]=0.0;L=ri(e+16|0)|0;da=+g[e+44>>2];ea=+g[e+48>>2];fa=+g[e+52>>2];ga=da*+g[L+16>>2]+ea*+g[L+20>>2]+fa*+g[L+24>>2]+ +g[L+52>>2];ha=da*+g[L+32>>2]+ea*+g[L+36>>2]+fa*+g[L+40>>2]+ +g[L+56>>2];g[X+192>>2]=da*+g[L>>2]+ea*+g[L+4>>2]+fa*+g[L+8>>2]+ +g[L+48>>2];g[X+192+4>>2]=ga;g[X+192+8>>2]=ha;g[X+192+12>>2]=0.0;L=c[(c[M>>2]|0)+8>>2]|0;K=(ri(e+4|0)|0)+48|0;c[X+176>>2]=1065353216;c[X+176+4>>2]=1065353216;c[X+176+8>>2]=0;g[X+176+12>>2]=0.0;mc[L&127](M,K,X+272|0,X+176|0);K=c[(c[M>>2]|0)+8>>2]|0;L=(ri(e+16|0)|0)+48|0;c[X+160>>2]=0;c[X+160+4>>2]=1065353216;c[X+160+8>>2]=1065353216;g[X+160+12>>2]=0.0;mc[K&127](M,L,X+192|0,X+160|0);c[X+144>>2]=1065353216;c[X+144+4>>2]=1065353216;c[X+144+8>>2]=0;g[X+144+12>>2]=0.0;L=c[(c[M>>2]|0)+8>>2]|0;ha=+g[X+272>>2];K=c[X+272+4>>2]|0;t=c[X+272+8>>2]|0;g[X+1008>>2]=ha+-.25;c[X+1008+4>>2]=K;c[X+1008+8>>2]=t;g[X+1008+12>>2]=0.0;ga=(c[k>>2]=K,+g[k>>2])+0.0;fa=(c[k>>2]=t,+g[k>>2])+0.0;g[X+944>>2]=ha+.25;g[X+944+4>>2]=ga;g[X+944+8>>2]=fa;g[X+944+12>>2]=0.0;mc[L&127](M,X+1008|0,X+944|0,X+144|0);L=c[(c[M>>2]|0)+8>>2]|0;t=c[X+272>>2]|0;fa=+g[X+272+4>>2];K=c[X+272+8>>2]|0;c[X+928>>2]=t;g[X+928+4>>2]=fa+-.25;c[X+928+8>>2]=K;g[X+928+12>>2]=0.0;ga=(c[k>>2]=t,+g[k>>2])+0.0;ha=(c[k>>2]=K,+g[k>>2])+0.0;g[X+912>>2]=ga;g[X+912+4>>2]=fa+.25;g[X+912+8>>2]=ha;g[X+912+12>>2]=0.0;mc[L&127](M,X+928|0,X+912|0,X+144|0);L=c[(c[M>>2]|0)+8>>2]|0;K=c[X+272>>2]|0;t=c[X+272+4>>2]|0;ha=+g[X+272+8>>2];c[X+896>>2]=K;c[X+896+4>>2]=t;g[X+896+8>>2]=ha+-.25;g[X+896+12>>2]=0.0;fa=(c[k>>2]=K,+g[k>>2])+0.0;ga=(c[k>>2]=t,+g[k>>2])+0.0;g[X+880>>2]=fa;g[X+880+4>>2]=ga;g[X+880+8>>2]=ha+.25;g[X+880+12>>2]=0.0;mc[L&127](M,X+896|0,X+880|0,X+144|0);c[X+128>>2]=0;c[X+128+4>>2]=1065353216;c[X+128+8>>2]=1065353216;g[X+128+12>>2]=0.0;L=c[(c[M>>2]|0)+8>>2]|0;ha=+g[X+192>>2];t=c[X+192+4>>2]|0;K=c[X+192+8>>2]|0;g[X+1008>>2]=ha+-.25;c[X+1008+4>>2]=t;c[X+1008+8>>2]=K;g[X+1008+12>>2]=0.0;ga=(c[k>>2]=t,+g[k>>2])+0.0;fa=(c[k>>2]=K,+g[k>>2])+0.0;g[X+944>>2]=ha+.25;g[X+944+4>>2]=ga;g[X+944+8>>2]=fa;g[X+944+12>>2]=0.0;mc[L&127](M,X+1008|0,X+944|0,X+128|0);L=c[(c[M>>2]|0)+8>>2]|0;K=c[X+192>>2]|0;fa=+g[X+192+4>>2];t=c[X+192+8>>2]|0;c[X+928>>2]=K;g[X+928+4>>2]=fa+-.25;c[X+928+8>>2]=t;g[X+928+12>>2]=0.0;ga=(c[k>>2]=K,+g[k>>2])+0.0;ha=(c[k>>2]=t,+g[k>>2])+0.0;g[X+912>>2]=ga;g[X+912+4>>2]=fa+.25;g[X+912+8>>2]=ha;g[X+912+12>>2]=0.0;mc[L&127](M,X+928|0,X+912|0,X+128|0);L=c[(c[M>>2]|0)+8>>2]|0;t=c[X+192>>2]|0;K=c[X+192+4>>2]|0;ha=+g[X+192+8>>2];c[X+896>>2]=t;c[X+896+4>>2]=K;g[X+896+8>>2]=ha+-.25;g[X+896+12>>2]=0.0;fa=(c[k>>2]=t,+g[k>>2])+0.0;ga=(c[k>>2]=K,+g[k>>2])+0.0;g[X+880>>2]=fa;g[X+880+4>>2]=ga;g[X+880+8>>2]=ha+.25;g[X+880+12>>2]=0.0;mc[L&127](M,X+896|0,X+880|0,X+128|0);break}case 1:{L=(ri(e+4|0)|0)+48|0;c[X+1008>>2]=c[L>>2];c[X+1008+4>>2]=c[L+4>>2];c[X+1008+8>>2]=c[L+8>>2];c[X+1008+12>>2]=c[L+12>>2];L=(ri(e+16|0)|0)+48|0;c[X+944>>2]=c[L>>2];c[X+944+4>>2]=c[L+4>>2];c[X+944+8>>2]=c[L+8>>2];c[X+944+12>>2]=c[L+12>>2];L=ri(e+4|0)|0;ba=+g[e+28>>2];aa=+g[e+32>>2];ea=+g[e+36>>2];ca=+g[L>>2]*ba+ +g[L+4>>2]*aa+ +g[L+8>>2]*ea;da=ba*+g[L+16>>2]+aa*+g[L+20>>2]+ea*+g[L+24>>2];ea=ba*+g[L+32>>2]+aa*+g[L+36>>2]+ea*+g[L+40>>2];L=ri(e+16|0)|0;aa=+g[e+44>>2];ba=+g[e+48>>2];ha=+g[e+52>>2];fa=+g[L>>2]*aa+ +g[L+4>>2]*ba+ +g[L+8>>2]*ha;ga=aa*+g[L+16>>2]+ba*+g[L+20>>2]+ha*+g[L+24>>2];ha=aa*+g[L+32>>2]+ba*+g[L+36>>2]+ha*+g[L+40>>2];L=c[(c[M>>2]|0)+8>>2]|0;ba=da*10.0+ +g[X+1008+4>>2];aa=ea*10.0+ +g[X+1008+8>>2];g[X+112>>2]=ca*10.0+ +g[X+1008>>2];g[X+112+4>>2]=ba;g[X+112+8>>2]=aa;g[X+112+12>>2]=0.0;c[X+96>>2]=1065353216;c[X+96+4>>2]=1065353216;c[X+96+8>>2]=0;g[X+96+12>>2]=0.0;mc[L&127](M,X+1008|0,X+112|0,X+96|0);L=c[(c[M>>2]|0)+8>>2]|0;aa=ga*10.0+ +g[X+1008+4>>2];ba=ha*10.0+ +g[X+1008+8>>2];g[X+80>>2]=fa*10.0+ +g[X+1008>>2];g[X+80+4>>2]=aa;g[X+80+8>>2]=ba;g[X+80+12>>2]=0.0;c[X+64>>2]=1065353216;c[X+64+4>>2]=1065353216;c[X+64+8>>2]=0;g[X+64+12>>2]=0.0;mc[L&127](M,X+1008|0,X+80|0,X+64|0);L=c[(c[M>>2]|0)+8>>2]|0;da=da*10.0+ +g[X+944+4>>2];ea=ea*10.0+ +g[X+944+8>>2];g[X+48>>2]=ca*10.0+ +g[X+944>>2];g[X+48+4>>2]=da;g[X+48+8>>2]=ea;g[X+48+12>>2]=0.0;c[X+32>>2]=0;c[X+32+4>>2]=1065353216;c[X+32+8>>2]=1065353216;g[X+32+12>>2]=0.0;mc[L&127](M,X+944|0,X+48|0,X+32|0);L=c[(c[M>>2]|0)+8>>2]|0;ga=ga*10.0+ +g[X+944+4>>2];ha=ha*10.0+ +g[X+944+8>>2];g[X+16>>2]=fa*10.0+ +g[X+944>>2];g[X+16+4>>2]=ga;g[X+16+8>>2]=ha;g[X+16+12>>2]=0.0;c[X>>2]=0;c[X+4>>2]=1065353216;c[X+8>>2]=1065353216;g[X+12>>2]=0.0;mc[L&127](M,X+944|0,X+16|0,X);break}default:{}}f=f+1|0;if((f|0)>=(c[S+852>>2]|0))break a}}while(0)}e=c[d+72>>2]|0;if(e|0?(Eb[c[(c[e>>2]|0)+48>>2]&127](e)|0)&2|0:0){e=b[d+348>>1]|0;if(!((e&255)<<24>>24))e=(e&65535)>>>8&255;else{M=c[d+72>>2]|0;e=c[S+928>>2]|0;c[X+1008>>2]=1065353216;c[X+1008+4>>2]=0;c[X+1008+8>>2]=1065353216;g[X+1008+12>>2]=0.0;c[X+944>>2]=1065353216;c[X+944+4>>2]=1065353216;c[X+944+8>>2]=1065353216;g[X+944+12>>2]=0.0;Of(M,e,0,X+1008|0,X+944|0);e=a[d+349>>0]|0}if(e<<24>>24){L=c[d+72>>2]|0;M=c[S+988>>2]|0;c[X+1008>>2]=0;c[X+1008+4>>2]=1065353216;c[X+1008+8>>2]=0;g[X+1008+12>>2]=0.0;c[X+944>>2]=1065353216;c[X+944+4>>2]=0;c[X+944+8>>2]=0;g[X+944+12>>2]=0.0;Of(L,M,0,X+1008|0,X+944|0)}if(a[d+350>>0]|0){M=c[d+72>>2]|0;S=c[S+1048>>2]|0;c[X+1008>>2]=0;c[X+1008+4>>2]=1065353216;c[X+1008+8>>2]=1065353216;g[X+1008+12>>2]=0.0;c[X+944>>2]=1065353216;c[X+944+4>>2]=0;c[X+944+8>>2]=0;g[X+944+12>>2]=0.0;Of(M,S,0,X+1008|0,X+944|0)}}W=W+1|0}while((W|0)<(c[d+328>>2]|0));i=X;return}function qc(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;var h=0,j=0,l=0,m=0.0,n=0.0,o=0,p=0.0,q=0,r=0,s=0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0,E=0.0,F=0.0,G=0,H=0,I=0.0,J=0.0,K=0.0,L=0.0,M=0.0,P=0.0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0,_=0,$=0,aa=0,ba=0,ca=0,da=0,ea=0,fa=0,ga=0.0,ha=0.0,ia=0.0;fa=i;i=i+80|0;if((e|0)<=0){i=fa;return}ca=0;do{X=c[d+(ca<<2)>>2]|0;Y=c[X+740>>2]|0;Z=c[X+744>>2]|0;_=bk(b,Y,+g[f+12>>2])|0;$=bk(b,Z,+g[f+12>>2])|0;aa=c[b+16>>2]|0;if(!(((((+g[aa+(_*244|0)+128>>2]==0.0?+g[aa+(_*244|0)+132>>2]==0.0:0)?+g[aa+(_*244|0)+136>>2]==0.0:0)?+g[aa+($*244|0)+128>>2]==0.0:0)?+g[aa+($*244|0)+132>>2]==0.0:0)?+g[aa+($*244|0)+136>>2]==0.0:0))ea=9;if((ea|0)==9?(ea=0,ba=c[X+748>>2]|0,(ba|0)>0):0){j=ba;da=0;h=1;do{U=X+4+(da*184|0)|0;D=X+4+(da*184|0)+80|0;if(+g[D>>2]<=+g[X+756>>2]){V=c[b+28>>2]|0;if((V|0)==(c[b+32>>2]|0)?(W=V|0?V<<1:1,(V|0)<(W|0)):0){if(!W){j=0;l=V}else{c[6435]=(c[6435]|0)+1;j=yc((W*152|3)+16|0)|0;if(!j)j=0;else{c[(j+4+15&-16)+-4>>2]=j;j=j+4+15&-16}l=c[b+28>>2]|0}if((l|0)>0){o=0;do{_m(j+(o*152|0)|0,(c[b+36>>2]|0)+(o*152|0)|0,152)|0;o=o+1|0}while((o|0)!=(l|0))}l=c[b+36>>2]|0;if(l|0){if(a[b+40>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[l+-4>>2]|0)}c[b+36>>2]=0}a[b+40>>0]=1;c[b+36>>2]=j;c[b+32>>2]=W;j=c[b+28>>2]|0}else j=V;c[b+28>>2]=j+1;T=c[b+36>>2]|0;G=(c[Y+236>>2]&2|0)==0?0:Y;H=(c[Z+236>>2]&2|0)==0?0:Z;c[T+(V*152|0)+144>>2]=_;c[T+(V*152|0)+148>>2]=$;c[T+(V*152|0)+132>>2]=U;z=+g[X+4+(da*184|0)+48>>2]-+g[Y+52>>2];A=+g[X+4+(da*184|0)+52>>2]-+g[Y+56>>2];y=+g[X+4+(da*184|0)+56>>2]-+g[Y+60>>2];g[fa+64>>2]=z;g[fa+64+4>>2]=A;g[fa+64+8>>2]=y;g[fa+64+12>>2]=0.0;C=+g[X+4+(da*184|0)+32>>2]-+g[Z+52>>2];E=+g[X+4+(da*184|0)+36>>2]-+g[Z+56>>2];B=+g[X+4+(da*184|0)+40>>2]-+g[Z+60>>2];g[fa+48>>2]=C;g[fa+48+4>>2]=E;g[fa+48+8>>2]=B;g[fa+48+12>>2]=0.0;if(!(c[aa+(_*244|0)+240>>2]|0)){j=0;o=0;r=0}else{M=+g[aa+(_*244|0)+192>>2]+ +g[aa+(_*244|0)+224>>2];P=+g[aa+(_*244|0)+196>>2]+ +g[aa+(_*244|0)+228>>2];L=+g[aa+(_*244|0)+200>>2]+ +g[aa+(_*244|0)+232>>2];j=(g[k>>2]=+g[aa+(_*244|0)+176>>2]+ +g[aa+(_*244|0)+208>>2]+(P*y-L*A),c[k>>2]|0);o=(g[k>>2]=+g[aa+(_*244|0)+180>>2]+ +g[aa+(_*244|0)+212>>2]+(L*z-M*y),c[k>>2]|0);r=(g[k>>2]=+g[aa+(_*244|0)+184>>2]+ +g[aa+(_*244|0)+216>>2]+(M*A-P*z),c[k>>2]|0)}if(!(c[aa+($*244|0)+240>>2]|0)){l=0;q=0;s=0}else{M=+g[aa+($*244|0)+192>>2]+ +g[aa+($*244|0)+224>>2];P=+g[aa+($*244|0)+196>>2]+ +g[aa+($*244|0)+228>>2];L=+g[aa+($*244|0)+200>>2]+ +g[aa+($*244|0)+232>>2];l=(g[k>>2]=+g[aa+($*244|0)+176>>2]+ +g[aa+($*244|0)+208>>2]+(P*B-L*E),c[k>>2]|0);q=(g[k>>2]=+g[aa+($*244|0)+180>>2]+ +g[aa+($*244|0)+212>>2]+(L*C-M*B),c[k>>2]|0);s=(g[k>>2]=+g[aa+($*244|0)+184>>2]+ +g[aa+($*244|0)+216>>2]+(M*E-P*C),c[k>>2]|0)}P=(c[k>>2]=j,+g[k>>2]);P=P-(c[k>>2]=l,+g[k>>2]);M=(c[k>>2]=o,+g[k>>2]);M=M-(c[k>>2]=q,+g[k>>2]);I=(c[k>>2]=r,+g[k>>2]);I=I-(c[k>>2]=s,+g[k>>2]);Q=X+4+(da*184|0)+64|0;J=+g[Q>>2];R=X+4+(da*184|0)+68|0;K=+g[R>>2];S=X+4+(da*184|0)+72|0;L=+g[S>>2];s=c[b+16>>2]|0;q=c[s+(_*244|0)+240>>2]|0;r=c[s+($*244|0)+240>>2]|0;if(q|0){o=(g[k>>2]=((A*L-y*K)*+g[q+264>>2]+(y*J-L*z)*+g[q+268>>2]+(K*z-A*J)*+g[q+272>>2])*+g[q+544>>2],c[k>>2]|0);j=(g[k>>2]=((A*L-y*K)*+g[q+280>>2]+(y*J-L*z)*+g[q+284>>2]+(K*z-A*J)*+g[q+288>>2])*+g[q+548>>2],c[k>>2]|0);l=(g[k>>2]=((A*L-y*K)*+g[q+296>>2]+(y*J-L*z)*+g[q+300>>2]+(K*z-A*J)*+g[q+304>>2])*+g[q+552>>2],c[k>>2]|0)}else{o=0;j=0;l=0}c[T+(V*152|0)+64>>2]=o;c[T+(V*152|0)+68>>2]=j;c[T+(V*152|0)+72>>2]=l;g[T+(V*152|0)+76>>2]=0.0;v=+g[S>>2];w=+g[R>>2];x=+g[Q>>2];u=(c[k>>2]=j,+g[k>>2]);t=(c[k>>2]=l,+g[k>>2]);n=(c[k>>2]=o,+g[k>>2]);if(r|0){j=(g[k>>2]=(+g[r+264>>2]*-(E*v-B*w)+ +g[r+268>>2]*-(B*x-v*C)+ +g[r+272>>2]*-(w*C-E*x))*+g[r+544>>2],c[k>>2]|0);l=(g[k>>2]=(+g[r+280>>2]*-(E*v-B*w)+ +g[r+284>>2]*-(B*x-v*C)+ +g[r+288>>2]*-(w*C-E*x))*+g[r+548>>2],c[k>>2]|0);o=(g[k>>2]=(+g[r+296>>2]*-(E*v-B*w)+ +g[r+300>>2]*-(B*x-v*C)+ +g[r+304>>2]*-(w*C-E*x))*+g[r+552>>2],c[k>>2]|0)}else{j=0;l=0;o=0}c[T+(V*152|0)+80>>2]=j;c[T+(V*152|0)+84>>2]=l;c[T+(V*152|0)+88>>2]=o;g[T+(V*152|0)+92>>2]=0.0;p=(c[k>>2]=j,+g[k>>2]);m=(c[k>>2]=l,+g[k>>2]);if(q|0)n=+g[q+344>>2]+((u*y-t*A)*+g[Q>>2]+(t*z-y*n)*+g[R>>2]+(A*n-u*z)*+g[S>>2]);else n=0.0;if(r|0){F=-(c[k>>2]=o,+g[k>>2]);m=+g[r+344>>2]+((B*-m-E*F)*+g[Q>>2]+(C*F-B*-p)*+g[R>>2]+(E*-p-C*-m)*+g[S>>2])}else m=0.0;g[T+(V*152|0)+108>>2]=1.0/(n+m);if(q|0){c[T+(V*152|0)+16>>2]=c[Q>>2];c[T+(V*152|0)+16+4>>2]=c[Q+4>>2];c[T+(V*152|0)+16+8>>2]=c[Q+8>>2];c[T+(V*152|0)+16+12>>2]=c[Q+12>>2];g[T+(V*152|0)>>2]=A*L-y*K;g[T+(V*152|0)+4>>2]=y*J-L*z;g[T+(V*152|0)+8>>2]=K*z-A*J;g[T+(V*152|0)+12>>2]=0.0}else{c[T+(V*152|0)>>2]=0;c[T+(V*152|0)+4>>2]=0;c[T+(V*152|0)+8>>2]=0;c[T+(V*152|0)+12>>2]=0;c[T+(V*152|0)+16>>2]=0;c[T+(V*152|0)+20>>2]=0;c[T+(V*152|0)+24>>2]=0;c[T+(V*152|0)+28>>2]=0}if(r|0){u=-+g[R>>2];F=-+g[S>>2];g[T+(V*152|0)+48>>2]=-+g[Q>>2];g[T+(V*152|0)+52>>2]=u;g[T+(V*152|0)+56>>2]=F;g[T+(V*152|0)+60>>2]=0.0;g[T+(V*152|0)+32>>2]=-(E*v-B*w);g[T+(V*152|0)+36>>2]=-(B*x-v*C);g[T+(V*152|0)+40>>2]=-(w*C-E*x);g[T+(V*152|0)+44>>2]=0.0}else{c[T+(V*152|0)+32>>2]=0;c[T+(V*152|0)+32+4>>2]=0;c[T+(V*152|0)+32+8>>2]=0;c[T+(V*152|0)+32+12>>2]=0;c[T+(V*152|0)+32+16>>2]=0;c[T+(V*152|0)+32+20>>2]=0;c[T+(V*152|0)+32+24>>2]=0;c[T+(V*152|0)+32+28>>2]=0}F=+g[D>>2]+ +g[f+56>>2];if(q|0){t=+g[q+332>>2];u=+g[q+336>>2];x=+g[q+328>>2];v=t*y-u*A+ +g[q+312>>2];u=+g[q+316>>2]+(u*z-y*x);t=A*x-t*z+ +g[q+320>>2]}else{v=0.0;u=0.0;t=0.0}if(r|0){m=+g[r+332>>2];n=+g[r+336>>2];A=+g[r+328>>2];p=m*B-n*E+ +g[r+312>>2];n=+g[r+316>>2]+(n*C-B*A);m=E*A-m*C+ +g[r+320>>2]}else{p=0.0;n=0.0;m=0.0}C=(v-p)*+g[Q>>2]+(u-n)*+g[R>>2]+(t-m)*+g[S>>2];c[T+(V*152|0)+104>>2]=c[X+4+(da*184|0)+84>>2];C=-(C*+g[X+4+(da*184|0)+92>>2]);C=C<=0.0?0.0:C;do if(!(c[f+64>>2]&4))g[T+(V*152|0)+100>>2]=0.0;else{m=+g[X+4+(da*184|0)+120>>2]*+g[f+60>>2];g[T+(V*152|0)+100>>2]=m;do if(q|0){if(!(c[s+(_*244|0)+240>>2]|0))break;E=m*+g[T+(V*152|0)+20>>2]*+g[s+(_*244|0)+132>>2]*+g[q+352>>2]*+g[s+(_*244|0)+116>>2];B=m*+g[T+(V*152|0)+24>>2]*+g[s+(_*244|0)+136>>2]*+g[q+356>>2]*+g[s+(_*244|0)+120>>2];g[s+(_*244|0)+64>>2]=+g[s+(_*244|0)+112>>2]*m*+g[T+(V*152|0)+16>>2]*+g[s+(_*244|0)+128>>2]*+g[q+348>>2]+ +g[s+(_*244|0)+64>>2];g[s+(_*244|0)+68>>2]=E+ +g[s+(_*244|0)+68>>2];g[s+(_*244|0)+72>>2]=B+ +g[s+(_*244|0)+72>>2];B=m*+g[s+(_*244|0)+100>>2]*+g[T+(V*152|0)+68>>2];E=m*+g[s+(_*244|0)+104>>2]*+g[T+(V*152|0)+72>>2];g[s+(_*244|0)+80>>2]=m*+g[s+(_*244|0)+96>>2]*+g[T+(V*152|0)+64>>2]+ +g[s+(_*244|0)+80>>2];g[s+(_*244|0)+84>>2]=B+ +g[s+(_*244|0)+84>>2];g[s+(_*244|0)+88>>2]=E+ +g[s+(_*244|0)+88>>2]}while(0);if(!r)break;m=+g[T+(V*152|0)+100>>2];if(!(c[s+($*244|0)+240>>2]|0))break;E=+g[T+(V*152|0)+88>>2];B=+g[T+(V*152|0)+84>>2];A=+g[T+(V*152|0)+80>>2];y=m*+g[T+(V*152|0)+52>>2]*+g[s+($*244|0)+132>>2]*+g[r+352>>2]*+g[s+($*244|0)+116>>2];z=m*+g[T+(V*152|0)+56>>2]*+g[s+($*244|0)+136>>2]*+g[r+356>>2]*+g[s+($*244|0)+120>>2];g[s+($*244|0)+64>>2]=+g[s+($*244|0)+112>>2]*m*+g[T+(V*152|0)+48>>2]*+g[s+($*244|0)+128>>2]*+g[r+348>>2]+ +g[s+($*244|0)+64>>2];g[s+($*244|0)+68>>2]=y+ +g[s+($*244|0)+68>>2];g[s+($*244|0)+72>>2]=z+ +g[s+($*244|0)+72>>2];B=B*+g[s+($*244|0)+100>>2]*-m;E=E*+g[s+($*244|0)+104>>2]*-m;g[s+($*244|0)+80>>2]=+g[s+($*244|0)+80>>2]-A*+g[s+($*244|0)+96>>2]*-m;g[s+($*244|0)+84>>2]=+g[s+($*244|0)+84>>2]-B;g[s+($*244|0)+88>>2]=+g[s+($*244|0)+88>>2]-E}while(0);g[T+(V*152|0)+96>>2]=0.0;if(!(c[s+(_*244|0)+240>>2]|0)){m=0.0;n=0.0;p=0.0;w=0.0;x=0.0;y=0.0}else{m=+g[s+(_*244|0)+208>>2];n=+g[s+(_*244|0)+212>>2];p=+g[s+(_*244|0)+216>>2];w=+g[s+(_*244|0)+224>>2];x=+g[s+(_*244|0)+228>>2];y=+g[s+(_*244|0)+232>>2]}if(!(c[s+($*244|0)+240>>2]|0)){t=0.0;u=0.0;v=0.0;z=0.0;A=0.0;B=0.0}else{t=+g[s+($*244|0)+208>>2];u=+g[s+($*244|0)+212>>2];v=+g[s+($*244|0)+216>>2];z=+g[s+($*244|0)+224>>2];A=+g[s+($*244|0)+228>>2];B=+g[s+($*244|0)+232>>2]}m=C-((m+ +g[s+(_*244|0)+176>>2])*+g[T+(V*152|0)+16>>2]+(n+ +g[s+(_*244|0)+180>>2])*+g[T+(V*152|0)+20>>2]+(p+ +g[s+(_*244|0)+184>>2])*+g[T+(V*152|0)+24>>2]+((w+ +g[s+(_*244|0)+192>>2])*+g[T+(V*152|0)>>2]+(x+ +g[s+(_*244|0)+196>>2])*+g[T+(V*152|0)+4>>2]+(y+ +g[s+(_*244|0)+200>>2])*+g[T+(V*152|0)+8>>2])+((t+ +g[s+($*244|0)+176>>2])*+g[T+(V*152|0)+48>>2]+(u+ +g[s+($*244|0)+180>>2])*+g[T+(V*152|0)+52>>2]+(v+ +g[s+($*244|0)+184>>2])*+g[T+(V*152|0)+56>>2]+((z+ +g[s+($*244|0)+192>>2])*+g[T+(V*152|0)+32>>2]+(A+ +g[s+($*244|0)+196>>2])*+g[T+(V*152|0)+36>>2]+(B+ +g[s+($*244|0)+200>>2])*+g[T+(V*152|0)+40>>2])));j=(c[f+44>>2]|0)==0;n=+g[f+12>>2];if(F>0.0){p=0.0;m=m-F/n}else p=-(F*+g[(j|F>+g[f+48>>2]?f+32|0:f+36|0)>>2])/n;E=+g[T+(V*152|0)+108>>2];n=p*E;m=m*E;if(j|F>+g[f+48>>2]){g[T+(V*152|0)+112>>2]=n+m;g[T+(V*152|0)+128>>2]=0.0}else{g[T+(V*152|0)+112>>2]=m;g[T+(V*152|0)+128>>2]=n}g[T+(V*152|0)+116>>2]=0.0;g[T+(V*152|0)+120>>2]=0.0;g[T+(V*152|0)+124>>2]=1.0e10;c[T+(V*152|0)+140>>2]=c[b+68>>2];if(!G){l=0;r=0;s=0}else{l=c[G+328>>2]|0;r=c[G+332>>2]|0;s=c[G+336>>2]|0}if(!H){j=0;o=0;q=0}else{j=c[H+328>>2]|0;o=c[H+332>>2]|0;q=c[H+336>>2]|0}p=(c[k>>2]=j,+g[k>>2]);p=p-(c[k>>2]=l,+g[k>>2]);n=(c[k>>2]=o,+g[k>>2]);n=n-(c[k>>2]=r,+g[k>>2]);t=(c[k>>2]=q,+g[k>>2]);t=t-(c[k>>2]=s,+g[k>>2]);g[fa+32>>2]=p;g[fa+32+4>>2]=n;g[fa+32+8>>2]=t;g[fa+32+12>>2]=0.0;do if((h|0)>0?+g[X+4+(da*184|0)+88>>2]>0.0:0){h=h+-1|0;m=+O(+(p*p+n*n+t*t));if(m>+g[f+80>>2]){g[fa+32>>2]=p*(1.0/m);g[fa+32+4>>2]=n*(1.0/m);g[fa+32+8>>2]=t*(1.0/m);if(!(c[Y+180>>2]&2)){p=p*(1.0/m);n=n*(1.0/m);m=t*(1.0/m)}else{u=+g[Y+4>>2];x=+g[Y+20>>2];A=+g[Y+36>>2];v=+g[Y+8>>2];y=+g[Y+24>>2];C=+g[Y+40>>2];w=+g[Y+12>>2];z=+g[Y+28>>2];F=+g[Y+44>>2];B=(u*p*(1.0/m)+x*n*(1.0/m)+t*(1.0/m)*A)*+g[Y+164>>2];E=(p*(1.0/m)*v+n*(1.0/m)*y+t*(1.0/m)*C)*+g[Y+168>>2];m=(p*(1.0/m)*w+n*(1.0/m)*z+t*(1.0/m)*F)*+g[Y+172>>2];g[fa+32>>2]=u*B+v*E+w*m;g[fa+32+4>>2]=x*B+y*E+z*m;g[fa+32+8>>2]=A*B+C*E+F*m;g[fa+32+12>>2]=0.0;p=u*B+v*E+w*m;n=x*B+y*E+z*m;m=A*B+C*E+F*m}if(c[Z+180>>2]&2){u=+g[Z+4>>2];x=+g[Z+20>>2];A=+g[Z+36>>2];v=+g[Z+8>>2];y=+g[Z+24>>2];C=+g[Z+40>>2];w=+g[Z+12>>2];z=+g[Z+28>>2];F=+g[Z+44>>2];B=(u*p+x*n+A*m)*+g[Z+164>>2];E=(p*v+n*y+m*C)*+g[Z+168>>2];m=(p*w+n*z+m*F)*+g[Z+172>>2];g[fa+32>>2]=u*B+v*E+w*m;g[fa+32+4>>2]=x*B+y*E+z*m;g[fa+32+8>>2]=A*B+C*E+F*m;g[fa+32+12>>2]=0.0;p=u*B+v*E+w*m;n=x*B+y*E+z*m;m=A*B+C*E+F*m}if(!(+O(+(p*p+n*n+m*m))>.001))break;Nd(b,fa+32|0,_,$,V,U);break}Nd(b,Q,_,$,V,U);m=+g[S>>2];if(+N(+m)>.7071067690849304){F=+g[R>>2];E=1.0/+O(+(m*m+F*F));g[fa+16>>2]=0.0;g[fa+16+4>>2]=-(E*m);g[fa+16+8>>2]=E*F;g[fa>>2]=(m*m+F*F)*E;n=+g[Q>>2];g[fa+4>>2]=-(E*F*n);w=n*-(E*m);p=0.0;u=-(E*m);v=E*F;t=(m*m+F*F)*E;n=-(E*F*n)}else{t=+g[Q>>2];F=+g[R>>2];n=1.0/+O(+(t*t+F*F));g[fa+16>>2]=-(F*n);g[fa+16+4>>2]=n*t;g[fa+16+8>>2]=0.0;g[fa>>2]=-(n*t*m);g[fa+4>>2]=m*-(F*n);w=(t*t+F*F)*n;p=-(F*n);u=n*t;v=0.0;t=-(n*t*m);n=m*-(F*n)}g[fa+8>>2]=w;j=(c[Y+180>>2]&2|0)==0;if(!j){ha=+g[Y+4>>2];x=+g[Y+20>>2];A=+g[Y+36>>2];ga=+g[Y+8>>2];y=+g[Y+24>>2];C=+g[Y+40>>2];m=+g[Y+12>>2];z=+g[Y+28>>2];F=+g[Y+44>>2];B=(ha*p+x*u+A*v)*+g[Y+164>>2];E=(p*ga+u*y+v*C)*+g[Y+168>>2];v=(p*m+u*z+v*F)*+g[Y+172>>2];g[fa+16>>2]=ha*B+ga*E+m*v;g[fa+16+4>>2]=x*B+y*E+z*v;g[fa+16+8>>2]=A*B+C*E+F*v;g[fa+16+12>>2]=0.0;p=ha*B+ga*E+m*v;u=x*B+y*E+z*v;v=A*B+C*E+F*v}l=(c[Z+180>>2]&2|0)==0;if(!l){m=+g[Z+4>>2];z=+g[Z+20>>2];C=+g[Z+36>>2];x=+g[Z+8>>2];A=+g[Z+24>>2];F=+g[Z+40>>2];y=+g[Z+12>>2];B=+g[Z+28>>2];ha=+g[Z+44>>2];E=(m*p+z*u+C*v)*+g[Z+164>>2];ga=(p*x+u*A+v*F)*+g[Z+168>>2];v=(p*y+u*B+v*ha)*+g[Z+172>>2];g[fa+16>>2]=m*E+x*ga+y*v;g[fa+16+4>>2]=z*E+A*ga+B*v;g[fa+16+8>>2]=C*E+F*ga+ha*v;g[fa+16+12>>2]=0.0;p=m*E+x*ga+y*v;u=z*E+A*ga+B*v;v=C*E+F*ga+ha*v}if(j)m=w;else{ia=+g[Y+4>>2];z=+g[Y+20>>2];C=+g[Y+36>>2];x=+g[Y+8>>2];A=+g[Y+24>>2];F=+g[Y+40>>2];y=+g[Y+12>>2];B=+g[Y+28>>2];ha=+g[Y+44>>2];E=(ia*t+z*n+C*w)*+g[Y+164>>2];ga=(t*x+n*A+w*F)*+g[Y+168>>2];m=(t*y+n*B+w*ha)*+g[Y+172>>2];g[fa>>2]=ia*E+x*ga+y*m;g[fa+4>>2]=z*E+A*ga+B*m;g[fa+8>>2]=C*E+F*ga+ha*m;g[fa+12>>2]=0.0;t=ia*E+x*ga+y*m;n=z*E+A*ga+B*m;m=C*E+F*ga+ha*m}if(!l){x=+g[Z+4>>2];A=+g[Z+20>>2];E=+g[Z+36>>2];y=+g[Z+8>>2];B=+g[Z+24>>2];ga=+g[Z+40>>2];z=+g[Z+12>>2];C=+g[Z+28>>2];ia=+g[Z+44>>2];F=(x*t+A*n+E*m)*+g[Z+164>>2];ha=(t*y+n*B+m*ga)*+g[Z+168>>2];m=(t*z+n*C+m*ia)*+g[Z+172>>2];g[fa>>2]=x*F+y*ha+z*m;g[fa+4>>2]=A*F+B*ha+C*m;g[fa+8>>2]=E*F+ga*ha+ia*m;g[fa+12>>2]=0.0;t=x*F+y*ha+z*m;n=A*F+B*ha+C*m;m=E*F+ga*ha+ia*m}if(+O(+(p*p+u*u+v*v))>.001)Nd(b,fa+16|0,_,$,V,U);if(+O(+(t*t+n*n+m*m))>.001)Nd(b,fa,_,$,V,U)}while(0);do if(!(c[f+64>>2]&32))ea=95;else{if(!(a[X+4+(da*184|0)+116>>0]|0)){ea=95;break}qd(b,X+4+(da*184|0)+152|0,_,$,V,U,fa+64|0,fa+48|0,1.0,+g[X+4+(da*184|0)+132>>2],+g[X+4+(da*184|0)+140>>2]);if(!(c[f+64>>2]&16))break;qd(b,X+4+(da*184|0)+168|0,_,$,V,U,fa+64|0,fa+48|0,1.0,+g[X+4+(da*184|0)+136>>2],+g[X+4+(da*184|0)+144>>2])}while(0);do if((ea|0)==95){ea=0;D=X+4+(da*184|0)+152|0;m=+g[Q>>2];x=+g[R>>2];w=+g[S>>2];n=P-(P*J+M*K+I*L)*m;u=M-(P*J+M*K+I*L)*x;t=I-(P*J+M*K+I*L)*w;g[X+4+(da*184|0)+152>>2]=n;r=X+4+(da*184|0)+156|0;g[r>>2]=u;s=X+4+(da*184|0)+160|0;g[s>>2]=t;j=X+4+(da*184|0)+164|0;g[j>>2]=0.0;if((c[f+64>>2]&64|0)==0?n*n+u*u+t*t>1.1920928955078125e-07:0){m=1.0/+O(+(n*n+u*u+t*t));g[D>>2]=n*m;g[r>>2]=m*u;g[s>>2]=m*t;do if(!Y){p=n*m;n=m*u;m=m*t}else{if(!(c[Y+180>>2]&1)){p=n*m;n=m*u;m=m*t;break}F=+g[Y+4>>2];J=+g[Y+20>>2];M=+g[Y+36>>2];I=+g[Y+8>>2];K=+g[Y+24>>2];ga=+g[Y+40>>2];p=+g[Y+12>>2];L=+g[Y+28>>2];ia=+g[Y+44>>2];P=(F*n*m+J*m*u+m*t*M)*+g[Y+164>>2];ha=(n*m*I+m*u*K+m*t*ga)*+g[Y+168>>2];m=(n*m*p+m*u*L+m*t*ia)*+g[Y+172>>2];g[D>>2]=F*P+I*ha+p*m;g[r>>2]=J*P+K*ha+L*m;g[s>>2]=M*P+ga*ha+ia*m;g[j>>2]=0.0;p=F*P+I*ha+p*m;n=J*P+K*ha+L*m;m=M*P+ga*ha+ia*m}while(0);do if(Z|0){if(!(c[Z+180>>2]&1))break;C=+g[Z+4>>2];I=+g[Z+20>>2];L=+g[Z+36>>2];E=+g[Z+8>>2];J=+g[Z+24>>2];P=+g[Z+40>>2];F=+g[Z+12>>2];K=+g[Z+28>>2];ha=+g[Z+44>>2];M=(C*p+I*n+L*m)*+g[Z+164>>2];ga=(p*E+n*J+m*P)*+g[Z+168>>2];ia=(p*F+n*K+m*ha)*+g[Z+172>>2];g[D>>2]=C*M+E*ga+F*ia;g[r>>2]=I*M+J*ga+K*ia;g[s>>2]=L*M+P*ga+ha*ia;g[j>>2]=0.0}while(0);qd(b,D,_,$,V,U,fa+64|0,fa+48|0,1.0,0.0,0.0);if(!(c[f+64>>2]&16))break;q=X+4+(da*184|0)+168|0;ha=+g[r>>2];p=+g[S>>2];M=+g[s>>2];P=+g[R>>2];ia=+g[Q>>2];ga=+g[D>>2];g[X+4+(da*184|0)+168>>2]=ha*p-M*P;j=X+4+(da*184|0)+172|0;l=X+4+(da*184|0)+176|0;o=X+4+(da*184|0)+180|0;g[o>>2]=0.0;n=1.0/+O(+((ha*p-M*P)*(ha*p-M*P)+(M*ia-p*ga)*(M*ia-p*ga)+(P*ga-ha*ia)*(P*ga-ha*ia)));m=(ha*p-M*P)*n;g[q>>2]=m;p=(M*ia-p*ga)*n;g[j>>2]=p;n=(P*ga-ha*ia)*n;g[l>>2]=n;do if(Y){if(!(c[Y+180>>2]&1))break;E=+g[Y+4>>2];J=+g[Y+20>>2];M=+g[Y+36>>2];F=+g[Y+8>>2];K=+g[Y+24>>2];ga=+g[Y+40>>2];I=+g[Y+12>>2];L=+g[Y+28>>2];ia=+g[Y+44>>2];P=(E*m+J*p+n*M)*+g[Y+164>>2];ha=(m*F+p*K+n*ga)*+g[Y+168>>2];n=(m*I+p*L+n*ia)*+g[Y+172>>2];g[q>>2]=E*P+F*ha+I*n;g[j>>2]=J*P+K*ha+L*n;g[l>>2]=M*P+ga*ha+ia*n;g[o>>2]=0.0;m=E*P+F*ha+I*n;p=J*P+K*ha+L*n;n=M*P+ga*ha+ia*n}while(0);do if(Z|0){if(!(c[Z+180>>2]&1))break;C=+g[Z+4>>2];I=+g[Z+20>>2];L=+g[Z+36>>2];E=+g[Z+8>>2];J=+g[Z+24>>2];P=+g[Z+40>>2];F=+g[Z+12>>2];K=+g[Z+28>>2];ha=+g[Z+44>>2];M=(C*m+I*p+L*n)*+g[Z+164>>2];ga=(m*E+p*J+n*P)*+g[Z+168>>2];ia=(m*F+p*K+n*ha)*+g[Z+172>>2];g[q>>2]=C*M+E*ga+F*ia;g[j>>2]=I*M+J*ga+K*ia;g[l>>2]=L*M+P*ga+ha*ia;g[o>>2]=0.0}while(0);qd(b,q,_,$,V,U,fa+64|0,fa+48|0,1.0,0.0,0.0);break}q=X+4+(da*184|0)+168|0;if(+N(+w)>.7071067690849304){ia=1.0/+O(+(w*w+x*x));g[D>>2]=0.0;g[r>>2]=-(ia*w);g[s>>2]=ia*x;u=-(ia*x*m);v=m*-(ia*w);t=(w*w+x*x)*ia;p=0.0;n=-(ia*w);m=ia*x}else{n=1.0/+O(+(m*m+x*x));g[D>>2]=-(x*n);g[r>>2]=n*m;g[s>>2]=0.0;u=w*-(x*n);v=(m*m+x*x)*n;t=-(n*m*w);p=-(x*n);n=n*m;m=0.0}g[q>>2]=t;o=X+4+(da*184|0)+172|0;g[o>>2]=u;l=X+4+(da*184|0)+176|0;g[l>>2]=v;do if(Y){if(!(c[Y+180>>2]&1))break;E=+g[Y+4>>2];J=+g[Y+20>>2];M=+g[Y+36>>2];F=+g[Y+8>>2];K=+g[Y+24>>2];ga=+g[Y+40>>2];I=+g[Y+12>>2];L=+g[Y+28>>2];ia=+g[Y+44>>2];P=(E*p+J*n+M*m)*+g[Y+164>>2];ha=(p*F+n*K+m*ga)*+g[Y+168>>2];m=(p*I+n*L+m*ia)*+g[Y+172>>2];g[D>>2]=E*P+F*ha+I*m;g[r>>2]=J*P+K*ha+L*m;g[s>>2]=M*P+ga*ha+ia*m;g[j>>2]=0.0;p=E*P+F*ha+I*m;n=J*P+K*ha+L*m;m=M*P+ga*ha+ia*m}while(0);do if(Z|0){if(!(c[Z+180>>2]&1))break;C=+g[Z+4>>2];I=+g[Z+20>>2];L=+g[Z+36>>2];E=+g[Z+8>>2];J=+g[Z+24>>2];P=+g[Z+40>>2];F=+g[Z+12>>2];K=+g[Z+28>>2];ha=+g[Z+44>>2];M=(C*p+I*n+L*m)*+g[Z+164>>2];ga=(p*E+n*J+m*P)*+g[Z+168>>2];ia=(p*F+n*K+m*ha)*+g[Z+172>>2];g[D>>2]=C*M+E*ga+F*ia;g[r>>2]=I*M+J*ga+K*ia;g[s>>2]=L*M+P*ga+ha*ia;g[j>>2]=0.0}while(0);qd(b,D,_,$,V,U,fa+64|0,fa+48|0,1.0,0.0,0.0);j=c[f+64>>2]|0;if(j&16){do if(Y|0){if(!(c[Y+180>>2]&1))break;C=+g[Y+4>>2];A=+g[q>>2];I=+g[Y+20>>2];B=+g[o>>2];L=+g[Y+36>>2];ia=+g[l>>2];E=+g[Y+8>>2];J=+g[Y+24>>2];P=+g[Y+40>>2];F=+g[Y+12>>2];K=+g[Y+28>>2];ha=+g[Y+44>>2];M=(C*A+I*B+L*ia)*+g[Y+164>>2];ga=(A*E+B*J+ia*P)*+g[Y+168>>2];ia=(A*F+B*K+ia*ha)*+g[Y+172>>2];g[q>>2]=C*M+E*ga+F*ia;g[o>>2]=I*M+J*ga+K*ia;g[l>>2]=L*M+P*ga+ha*ia;g[X+4+(da*184|0)+180>>2]=0.0}while(0);do if(Z|0){if(!(c[Z+180>>2]&1))break;C=+g[Z+4>>2];A=+g[q>>2];I=+g[Z+20>>2];B=+g[o>>2];L=+g[Z+36>>2];ia=+g[l>>2];E=+g[Z+8>>2];J=+g[Z+24>>2];P=+g[Z+40>>2];F=+g[Z+12>>2];K=+g[Z+28>>2];ha=+g[Z+44>>2];M=(C*A+I*B+L*ia)*+g[Z+164>>2];ga=(A*E+B*J+ia*P)*+g[Z+168>>2];ia=(A*F+B*K+ia*ha)*+g[Z+172>>2];g[q>>2]=C*M+E*ga+F*ia;g[o>>2]=I*M+J*ga+K*ia;g[l>>2]=L*M+P*ga+ha*ia;g[X+4+(da*184|0)+180>>2]=0.0}while(0);qd(b,q,_,$,V,U,fa+64|0,fa+48|0,1.0,0.0,0.0);j=c[f+64>>2]|0}if((j&80|0)!=80)break;a[X+4+(da*184|0)+116>>0]=1}while(0);s=c[b+16>>2]|0;l=c[s+(_*244|0)+240>>2]|0;o=c[s+($*244|0)+240>>2]|0;q=c[T+(V*152|0)+140>>2]|0;r=c[b+76>>2]|0;j=c[f+64>>2]|0;do if(!(j&4))g[r+(q*152|0)+100>>2]=0.0;else{m=+g[X+4+(da*184|0)+124>>2]*+g[f+60>>2];g[r+(q*152|0)+100>>2]=m;if(l|0){ga=+g[l+344>>2];ia=m*ga*+g[r+(q*152|0)+20>>2]*+g[l+352>>2]*+g[s+(_*244|0)+116>>2];ha=m*ga*+g[r+(q*152|0)+24>>2]*+g[l+356>>2]*+g[s+(_*244|0)+120>>2];g[s+(_*244|0)+64>>2]=+g[s+(_*244|0)+112>>2]*m*ga*+g[r+(q*152|0)+16>>2]*+g[l+348>>2]+ +g[s+(_*244|0)+64>>2];g[s+(_*244|0)+68>>2]=ia+ +g[s+(_*244|0)+68>>2];g[s+(_*244|0)+72>>2]=ha+ +g[s+(_*244|0)+72>>2];ha=m*+g[s+(_*244|0)+100>>2]*+g[r+(q*152|0)+68>>2];ia=m*+g[s+(_*244|0)+104>>2]*+g[r+(q*152|0)+72>>2];g[s+(_*244|0)+80>>2]=m*+g[s+(_*244|0)+96>>2]*+g[r+(q*152|0)+64>>2]+ +g[s+(_*244|0)+80>>2];g[s+(_*244|0)+84>>2]=ha+ +g[s+(_*244|0)+84>>2];g[s+(_*244|0)+88>>2]=ia+ +g[s+(_*244|0)+88>>2]}if(!o)break;m=+g[o+344>>2];n=+g[r+(q*152|0)+100>>2];if(!(c[s+($*244|0)+240>>2]|0))break;ia=+g[r+(q*152|0)+88>>2];ha=+g[r+(q*152|0)+84>>2];ga=+g[r+(q*152|0)+80>>2];M=n*m*+g[r+(q*152|0)+52>>2]*+g[o+352>>2]*+g[s+($*244|0)+116>>2];P=n*m*+g[r+(q*152|0)+56>>2]*+g[o+356>>2]*+g[s+($*244|0)+120>>2];g[s+($*244|0)+64>>2]=+g[s+($*244|0)+112>>2]*n*m*+g[r+(q*152|0)+48>>2]*+g[o+348>>2]+ +g[s+($*244|0)+64>>2];g[s+($*244|0)+68>>2]=M+ +g[s+($*244|0)+68>>2];g[s+($*244|0)+72>>2]=P+ +g[s+($*244|0)+72>>2];ha=ha*+g[s+($*244|0)+100>>2]*-n;ia=ia*+g[s+($*244|0)+104>>2]*-n;g[s+($*244|0)+80>>2]=+g[s+($*244|0)+80>>2]-ga*+g[s+($*244|0)+96>>2]*-n;g[s+($*244|0)+84>>2]=+g[s+($*244|0)+84>>2]-ha;g[s+($*244|0)+88>>2]=+g[s+($*244|0)+88>>2]-ia}while(0);do if(j&16|0){if(!(j&4)){g[r+((q+1|0)*152|0)+100>>2]=0.0;break}n=+g[X+4+(da*184|0)+128>>2]*+g[f+60>>2];g[r+((q+1|0)*152|0)+100>>2]=n;do if(l|0){m=+g[l+344>>2];if(!(c[s+(_*244|0)+240>>2]|0))break;ia=n*m*+g[r+((q+1|0)*152|0)+20>>2]*+g[s+(_*244|0)+116>>2];ha=n*m*+g[r+((q+1|0)*152|0)+24>>2]*+g[s+(_*244|0)+120>>2];g[s+(_*244|0)+64>>2]=+g[s+(_*244|0)+112>>2]*n*m*+g[r+((q+1|0)*152|0)+16>>2]+ +g[s+(_*244|0)+64>>2];g[s+(_*244|0)+68>>2]=ia+ +g[s+(_*244|0)+68>>2];g[s+(_*244|0)+72>>2]=ha+ +g[s+(_*244|0)+72>>2];ha=n*+g[s+(_*244|0)+100>>2]*+g[r+((q+1|0)*152|0)+68>>2];ia=n*+g[s+(_*244|0)+104>>2]*+g[r+((q+1|0)*152|0)+72>>2];g[s+(_*244|0)+80>>2]=n*+g[s+(_*244|0)+96>>2]*+g[r+((q+1|0)*152|0)+64>>2]+ +g[s+(_*244|0)+80>>2];g[s+(_*244|0)+84>>2]=ha+ +g[s+(_*244|0)+84>>2];g[s+(_*244|0)+88>>2]=ia+ +g[s+(_*244|0)+88>>2]}while(0);if(!o)break;m=+g[o+344>>2];n=+g[r+((q+1|0)*152|0)+100>>2];if(!(c[s+($*244|0)+240>>2]|0))break;ia=+g[r+((q+1|0)*152|0)+88>>2];ha=+g[r+((q+1|0)*152|0)+84>>2];ga=+g[r+((q+1|0)*152|0)+80>>2];M=n*m*+g[r+((q+1|0)*152|0)+52>>2]*+g[s+($*244|0)+116>>2];P=n*m*+g[r+((q+1|0)*152|0)+56>>2]*+g[s+($*244|0)+120>>2];g[s+($*244|0)+64>>2]=+g[s+($*244|0)+112>>2]*n*m*+g[r+((q+1|0)*152|0)+48>>2]+ +g[s+($*244|0)+64>>2];g[s+($*244|0)+68>>2]=M+ +g[s+($*244|0)+68>>2];g[s+($*244|0)+72>>2]=P+ +g[s+($*244|0)+72>>2];ha=ha*+g[s+($*244|0)+100>>2]*-n;ia=ia*+g[s+($*244|0)+104>>2]*-n;g[s+($*244|0)+80>>2]=+g[s+($*244|0)+80>>2]-ga*+g[s+($*244|0)+96>>2]*-n;g[s+($*244|0)+84>>2]=+g[s+($*244|0)+84>>2]-ha;g[s+($*244|0)+88>>2]=+g[s+($*244|0)+88>>2]-ia}while(0);j=c[X+748>>2]|0}da=da+1|0}while((da|0)<(j|0))}ca=ca+1|0}while((ca|0)!=(e|0));i=fa;return}function rc(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;var h=0,j=0,l=0,m=0,n=0,o=0,p=0.0,q=0,r=0.0,s=0.0,t=0,u=0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0.0,D=0,E=0.0,F=0.0,G=0.0,H=0.0,I=0.0,J=0.0,K=0.0,L=0,M=0,P=0,Q=0,R=0,S=0,T=0,U=0,V=0,W=0,X=0;X=i;i=i+160|0;c[X+40>>2]=0;a[X+16>>0]=1;c[X+12>>2]=0;c[X+4>>2]=0;c[X+8>>2]=0;a[X+36>>0]=1;c[X+32>>2]=0;c[X+24>>2]=0;c[X+28>>2]=0;l=e>>>0<8?8:e;if((l|0)>0){c[6435]=(c[6435]|0)+1;h=yc((l<<4|3)+16|0)|0;if(!h)j=0;else{c[(h+4+15&-16)+-4>>2]=h;j=h+4+15&-16}h=0;do{W=j+(h<<4)|0;c[W>>2]=c[X+80>>2];c[W+4>>2]=c[X+80+4>>2];c[W+8>>2]=c[X+80+8>>2];c[W+12>>2]=c[X+80+12>>2];h=h+1|0}while((h|0)!=(l|0));W=j}else W=0;do if(!e){h=0;q=0;j=0;n=0;o=0}else{j=c[X+24>>2]|0;if((j|0)<0){h=c[X+32>>2]|0;do if((c[X+28>>2]|0)<0){if(!h){a[X+36>>0]=1;c[X+32>>2]=0;c[X+28>>2]=0;h=0;break}if(a[X+36>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0)}a[X+36>>0]=1;c[X+32>>2]=0;c[X+28>>2]=0;h=0}while(0);Qn(h+(j<<2)|0,0,_(j,-4)|0)|0}c[X+24>>2]=0;w=3402823466385288598117041.0e14;p=-3402823466385288598117041.0e14;x=3402823466385288598117041.0e14;r=-3402823466385288598117041.0e14;y=3402823466385288598117041.0e14;v=-3402823466385288598117041.0e14;h=0;j=d;while(1){K=+g[j>>2];w=Kp?K:p;K=+g[j+4>>2];x=Kr?K:r;K=+g[j+8>>2];y=Kv?K:v;h=h+1|0;if((h|0)==(e|0))break;else j=j+16|0}s=p-w;r=r-x;p=v-y;E=w+s*.5;C=x+r*.5;B=y+p*.5;do if(e>>>0<3|(s<9.999999974752427e-07|r<9.999999974752427e-07|p<9.999999974752427e-07)){v=s>9.999999974752427e-07&s<3402823466385288598117041.0e14?s:3402823466385288598117041.0e14;v=r>9.999999974752427e-07&r9.999999974752427e-07&p>2]=K;g[W+4>>2]=I;g[W+8>>2]=H;g[W+16>>2]=J;g[W+20>>2]=I;g[W+24>>2]=H;g[W+32>>2]=J;g[W+36>>2]=r;g[W+40>>2]=H;g[W+48>>2]=K;g[W+52>>2]=r;g[W+56>>2]=H;g[W+64>>2]=K;g[W+68>>2]=I;g[W+72>>2]=s;g[W+80>>2]=J;g[W+84>>2]=I;g[W+88>>2]=s;g[W+96>>2]=J;g[W+100>>2]=r;g[W+104>>2]=s;g[W+112>>2]=K;g[W+116>>2]=r;g[W+120>>2]=s;T=8;s=1.0;r=1.0;p=1.0;V=53}else{j=0;q=0;h=0;o=d;do{y=1.0/s*+g[o>>2];z=1.0/r*+g[o+4>>2];A=1.0/p*+g[o+8>>2];o=o+16|0;a:do if(h){l=0;while(1){d=W+(l<<4)|0;v=+g[d>>2];m=W+(l<<4)+4|0;w=+g[m>>2];n=W+(l<<4)+8|0;x=+g[n>>2];if(+N(+(v-y))<1.0000000474974513e-03&+N(+(w-z))<1.0000000474974513e-03&+N(+(x-A))<1.0000000474974513e-03)break;l=l+1|0;if(l>>>0>=h>>>0){n=l;break a}}if((y-1.0/s*E)*(y-1.0/s*E)+(z-1.0/r*C)*(z-1.0/r*C)+(A-1.0/p*B)*(A-1.0/p*B)>(v-1.0/s*E)*(v-1.0/s*E)+(w-1.0/r*C)*(w-1.0/r*C)+(x-1.0/p*B)*(x-1.0/p*B)){g[d>>2]=y;g[m>>2]=z;g[n>>2]=A;n=l}else n=l}else n=0;while(0);if((n|0)==(h|0)){g[W+(h<<4)>>2]=y;g[W+(h<<4)+4>>2]=z;g[W+(h<<4)+8>>2]=A;h=h+1|0}if((j|0)==(c[X+28>>2]|0)?(t=j|0?j<<1:1,(j|0)<(t|0)):0){if((t|0)!=0?(c[6435]=(c[6435]|0)+1,u=yc((t<<2|3)+16|0)|0,(u|0)!=0):0){c[(u+4+15&-16)+-4>>2]=u;m=u+4+15&-16}else m=0;d=c[X+32>>2]|0;if((j|0)<=0){if(d)V=39}else{l=0;do{c[m+(l<<2)>>2]=c[d+(l<<2)>>2];l=l+1|0}while((l|0)!=(j|0));V=39}if((V|0)==39){V=0;if(a[X+36>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[X+32>>2]=0;j=c[X+24>>2]|0}a[X+36>>0]=1;c[X+32>>2]=m;c[X+28>>2]=t}c[(c[X+32>>2]|0)+(j<<2)>>2]=n;j=(c[X+24>>2]|0)+1|0;c[X+24>>2]=j;q=q+1|0}while((q|0)!=(e|0));if(!h){j=1;A=3402823466385288598117041.0e14;x=-3402823466385288598117041.0e14;z=3402823466385288598117041.0e14;w=-3402823466385288598117041.0e14;y=3402823466385288598117041.0e14;v=-3402823466385288598117041.0e14}else{C=3402823466385288598117041.0e14;A=3402823466385288598117041.0e14;E=-3402823466385288598117041.0e14;x=-3402823466385288598117041.0e14;G=3402823466385288598117041.0e14;z=3402823466385288598117041.0e14;H=-3402823466385288598117041.0e14;w=-3402823466385288598117041.0e14;J=3402823466385288598117041.0e14;y=3402823466385288598117041.0e14;K=-3402823466385288598117041.0e14;v=-3402823466385288598117041.0e14;q=0;while(1){B=+g[W+(q<<4)>>2];j=BE;x=l?B:x;F=+g[W+(q<<4)+4>>2];d=FH;w=m?F:w;I=+g[W+(q<<4)+8>>2];n=IK;v=o?I:v;q=q+1|0;if((q|0)==(h|0))break;else{C=j?B:C;E=l?B:E;G=d?F:G;H=m?F:H;J=n?I:J;K=o?I:K}}j=h>>>0<3}x=x-A;C=w-z;v=v-y;if(!(j|(x<9.999999974752427e-07|C<9.999999974752427e-07|v<9.999999974752427e-07))){if(h|0){T=h;V=53;break}break}B=A+x*.5;A=z+C*.5;z=y+v*.5;y=x>=9.999999974752427e-07&x<3402823466385288598117041.0e14?x:3402823466385288598117041.0e14;y=C>=9.999999974752427e-07&C=9.999999974752427e-07&v>2]=I;g[W+4>>2]=G;g[W+8>>2]=F;g[W+16>>2]=H;g[W+20>>2]=G;g[W+24>>2]=F;g[W+32>>2]=H;g[W+36>>2]=J;g[W+40>>2]=F;g[W+48>>2]=I;g[W+52>>2]=J;g[W+56>>2]=F;g[W+64>>2]=I;g[W+68>>2]=G;g[W+72>>2]=K;g[W+80>>2]=H;g[W+84>>2]=G;g[W+88>>2]=K;g[W+96>>2]=H;g[W+100>>2]=J;g[W+104>>2]=K;g[W+112>>2]=I;g[W+116>>2]=J;g[W+120>>2]=K;T=8;V=53}while(0);if((V|0)==53){h=0;do{U=W+(h<<4)|0;g[U>>2]=s*+g[U>>2];U=W+(h<<4)+4|0;g[U>>2]=r*+g[U>>2];U=W+(h<<4)+8|0;g[U>>2]=p*+g[U>>2];h=h+1|0}while(h>>>0>>0);if((T|0)>=4){p=+g[W>>2];r=+g[W+4>>2];v=+g[W+8>>2];U=T<<2;c[6435]=(c[6435]|0)+1;h=yc((U|3)+16|0)|0;if(!h)j=0;else{c[(h+4+15&-16)+-4>>2]=h;j=h+4+15&-16}a[X+100+16>>0]=1;Q=X+100+12|0;c[Q>>2]=0;c[X+100+4>>2]=0;c[X+100+8>>2]=0;c[6435]=(c[6435]|0)+1;h=yc((U|3)+16|0)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}a[X+100+16>>0]=1;c[Q>>2]=h;c[X+100+8>>2]=T;o=0;q=T;y=p;z=r;s=v;w=p;x=r;h=T;m=j;n=0;while(1){if((o|0)==(q|0)?(D=q|0?q<<1:1,(q|0)<(D|0)):0){if((D|0)!=0?(c[6435]=(c[6435]|0)+1,L=yc((D<<2|3)+16|0)|0,(L|0)!=0):0){c[(L+4+15&-16)+-4>>2]=L;l=L+4+15&-16}else l=0;d=c[Q>>2]|0;if((q|0)<=0){if(d|0)V=68}else{j=0;do{c[l+(j<<2)>>2]=c[d+(j<<2)>>2];j=j+1|0}while((j|0)!=(q|0));V=68}if((V|0)==68){V=0;c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0);c[Q>>2]=0}a[X+100+16>>0]=1;c[Q>>2]=l;c[X+100+8>>2]=D}c[(c[Q>>2]|0)+(o<<2)>>2]=1;c[X+100+4>>2]=o+1;do if((n|0)==(h|0)){h=n|0?n<<1:1;if((n|0)<(h|0)){if((h|0)!=0?(c[6435]=(c[6435]|0)+1,M=yc((h<<2|3)+16|0)|0,(M|0)!=0):0){c[(M+4+15&-16)+-4>>2]=M;l=M+4+15&-16}else l=0;if((n|0)<=0){if(!m){P=l;break}}else{j=0;do{c[l+(j<<2)>>2]=c[m+(j<<2)>>2];j=j+1|0}while((j|0)!=(n|0))}c[6436]=(c[6436]|0)+1;hd(c[m+-4>>2]|0);P=l}else{h=n;P=m}}else P=m;while(0);c[P+(n<<2)>>2]=0;j=n+1|0;p=+g[W+(n<<4)>>2];w=p>2];x=r>2];v=K=(T|0))break;o=c[X+100+4>>2]|0;q=c[X+100+8>>2]|0;y=p;z=r;m=P;n=j}H=+O(+((p-w)*(p-w)+(r-x)*(r-x)+(s-v)*(s-v)))*1.0000000474974513e-03;L=Qe(W,T,.009999999776482582,.019999999552965164,1.0,X+100|0)|0;M=Qe(W,T,-.009999999776482582,-.019999999552965164,-1.0,X+100|0)|0;n=W+(L<<4)|0;o=W+(M<<4)|0;w=+g[n>>2]-+g[o>>2];q=W+(L<<4)+4|0;t=W+(M<<4)+4|0;x=+g[q>>2]-+g[t>>2];u=W+(L<<4)+8|0;D=W+(M<<4)+8|0;y=+g[u>>2]-+g[D>>2];b:do if((L|0)!=(M|0)?!(y==0.0&x==0.0&w==0.0):0){p=+O(+((y*.019999999552965164-x*0.0)*(y*.019999999552965164-x*0.0)+(w*0.0-y)*(w*0.0-y)+(x-w*.019999999552965164)*(x-w*.019999999552965164)));r=+O(+((y-x*0.0)*(y-x*0.0)+(y*.019999999552965164+w*0.0)*(y*.019999999552965164+w*0.0)+(x*-.019999999552965164-w)*(x*-.019999999552965164-w)));if(p>r){s=(x-w*.019999999552965164)*(1.0/p);v=(y*.019999999552965164-x*0.0)*(1.0/p);p=(w*0.0-y)*(1.0/p)}else{s=(x*-.019999999552965164-w)*(1.0/r);v=(y-x*0.0)*(1.0/r);p=(y*.019999999552965164+w*0.0)*(1.0/r)}h=Qe(W,T,v,p,s,X+100|0)|0;if((h|0)==(L|0)|(h|0)==(M|0))m=Qe(W,T,-v,-p,-s,X+100|0)|0;else m=h;if(!((m|0)==(L|0)|(m|0)==(M|0))){j=W+(m<<4)|0;p=+g[j>>2]-+g[n>>2];l=W+(m<<4)+4|0;r=+g[l>>2]-+g[q>>2];d=W+(m<<4)+8|0;s=+g[d>>2]-+g[u>>2];v=1.0/+O(+((x*p-r*w)*(x*p-r*w)+((r*y-s*x)*(r*y-s*x)+(s*w-y*p)*(s*w-y*p))));h=Qe(W,T,(r*y-s*x)*v,(s*w-y*p)*v,(x*p-r*w)*v,X+100|0)|0;if((h|0)==(m|0)|((h|0)==(L|0)|(h|0)==(M|0)))h=Qe(W,T,-((r*y-s*x)*v),-((s*w-y*p)*v),-((x*p-r*w)*v),X+100|0)|0;if(!((h|0)==(m|0)|((h|0)==(L|0)|(h|0)==(M|0)))?(B=+g[n>>2],F=+g[q>>2],A=+g[u>>2],J=+g[o>>2]-B,C=+g[t>>2]-F,G=+g[D>>2]-A,I=+g[j>>2]-B,E=+g[l>>2]-F,K=+g[d>>2]-A,R=(+g[W+(h<<4)+8>>2]-A)*(J*E-C*I)+((+g[W+(h<<4)>>2]-B)*(C*K-G*E)+(+g[W+(h<<4)+4>>2]-F)*(G*I-J*K))<0.0,S=R?m:h,R=R?h:m,(L|0)!=-1):0){E=(+g[W+(L<<4)>>2]+ +g[W+(M<<4)>>2]+ +g[W+(R<<4)>>2]+ +g[W+(S<<4)>>2])*.25;F=(+g[W+(L<<4)+4>>2]+ +g[W+(M<<4)+4>>2]+ +g[W+(R<<4)+4>>2]+ +g[W+(S<<4)+4>>2])*.25;G=(+g[W+(L<<4)+8>>2]+ +g[W+(M<<4)+8>>2]+ +g[W+(R<<4)+8>>2]+ +g[W+(S<<4)+8>>2])*.25;h=Uh(X,R,S,M)|0;c[h+12>>2]=2;c[h+16>>2]=3;c[h+20>>2]=1;h=Uh(X,S,R,L)|0;c[h+12>>2]=3;c[h+16>>2]=2;c[h+20>>2]=0;h=Uh(X,L,M,S)|0;c[h+12>>2]=0;c[h+16>>2]=1;c[h+20>>2]=3;h=Uh(X,M,L,R)|0;c[h+12>>2]=1;c[h+16>>2]=0;c[h+20>>2]=2;c[P+(S<<2)>>2]=1;c[P+(R<<2)>>2]=1;c[P+(M<<2)>>2]=1;c[P+(L<<2)>>2]=1;h=c[X+4>>2]|0;if((h|0)>0){m=c[X+12>>2]|0;n=0;do{d=c[m+(n<<2)>>2]|0;R=c[d>>2]|0;M=c[d+4>>2]|0;S=c[d+8>>2]|0;w=+g[W+(M<<4)>>2];s=w-+g[W+(R<<4)>>2];x=+g[W+(M<<4)+4>>2];v=x-+g[W+(R<<4)+4>>2];r=+g[W+(M<<4)+8>>2];p=r-+g[W+(R<<4)+8>>2];w=+g[W+(S<<4)>>2]-w;x=+g[W+(S<<4)+4>>2]-x;r=+g[W+(S<<4)+8>>2]-r;y=+O(+((s*x-v*w)*(s*x-v*w)+((v*r-p*x)*(v*r-p*x)+(p*w-s*r)*(p*w-s*r))));if(y==0.0){z=1.0;p=0.0;r=0.0;j=1065353216;l=0;h=0}else{j=(g[k>>2]=1.0/y*(v*r-p*x),c[k>>2]|0);l=(g[k>>2]=1.0/y*(p*w-s*r),c[k>>2]|0);z=1.0/y*(v*r-p*x);p=1.0/y*(p*w-s*r);r=1.0/y*(s*x-v*w);h=(g[k>>2]=1.0/y*(s*x-v*w),c[k>>2]|0)}J=(c[k>>2]=j,+g[k>>2]);K=(c[k>>2]=l,+g[k>>2]);S=Qe(W,T,J,K,(c[k>>2]=h,+g[k>>2]),X+100|0)|0;c[d+28>>2]=S;h=c[d>>2]|0;g[d+32>>2]=(+g[W+(S<<4)>>2]-+g[W+(h<<4)>>2])*z+(+g[W+(S<<4)+4>>2]-+g[W+(h<<4)+4>>2])*p+(+g[W+(S<<4)+8>>2]-+g[W+(h<<4)+8>>2])*r;n=n+1|0;h=c[X+4>>2]|0}while((n|0)<(h|0))}if((e+-4|0)>0){q=e+-4|0;while(1){d=c[X+12>>2]|0;m=0;l=0;while(1){j=c[d+(m<<2)>>2]|0;do if(l){if(!j){j=l;break}if(!(+g[l+32>>2]<+g[j+32>>2]))j=l;else V=104}else V=104;while(0);if((V|0)==104)V=0;m=m+1|0;if((m|0)>=(h|0))break;else l=j}if((j|0)==0?1:!(+g[j+32>>2]>H)){h=1;break b}o=c[j+28>>2]|0;c[P+(o<<2)>>2]=1;h=c[X+4>>2]|0;c:do if(!h)h=0;else{l=W+(o<<4)|0;d=W+(o<<4)+4|0;m=W+(o<<4)+8|0;do{h=h+-1|0;j=c[(c[X+12>>2]|0)+(h<<2)>>2]|0;do if(j|0){S=c[j>>2]|0;R=c[j+4>>2]|0;e=c[j+8>>2]|0;s=+g[W+(R<<4)>>2];z=+g[W+(S<<4)>>2];v=+g[W+(R<<4)+4>>2];A=+g[W+(S<<4)+4>>2];p=+g[W+(R<<4)+8>>2];B=+g[W+(S<<4)+8>>2];w=+g[W+(e<<4)>>2]-s;x=+g[W+(e<<4)+4>>2]-v;r=+g[W+(e<<4)+8>>2]-p;y=+O(+(((s-z)*x-(v-A)*w)*((s-z)*x-(v-A)*w)+(((v-A)*r-(p-B)*x)*((v-A)*r-(p-B)*x)+((p-B)*w-(s-z)*r)*((p-B)*w-(s-z)*r))));if(y==0.0){C=1.0;r=0.0;p=0.0}else{C=1.0/y*((v-A)*r-(p-B)*x);r=1.0/y*((p-B)*w-(s-z)*r);p=1.0/y*((s-z)*x-(v-A)*w)}if(!(C*(+g[l>>2]-z)+r*(+g[d>>2]-A)+p*(+g[m>>2]-B)>H*.009999999776482582))break;ue(X,j,o)}while(0)}while((h|0)!=0);h=c[X+4>>2]|0;if(!h){h=0;break}else j=h;d:do{j=j+-1|0;m=c[X+12>>2]|0;n=c[m+(j<<2)>>2]|0;do if(n){d=c[n>>2]|0;do if((d|0)!=(o|0)){l=c[n+4>>2]|0;if((l|0)==(o|0)){l=o;break}if((c[n+8>>2]|0)!=(o|0))break d}else l=c[n+4>>2]|0;while(0);e=c[n+8>>2]|0;z=+g[W+(l<<4)>>2];B=+g[W+(d<<4)>>2];A=+g[W+(l<<4)+4>>2];C=+g[W+(d<<4)+4>>2];r=+g[W+(l<<4)+8>>2];w=+g[W+(d<<4)+8>>2];s=+g[W+(e<<4)>>2]-z;v=+g[W+(e<<4)+4>>2]-A;p=+g[W+(e<<4)+8>>2]-r;x=+O(+(((z-B)*v-(A-C)*s)*((z-B)*v-(A-C)*s)+(((A-C)*p-(r-w)*v)*((A-C)*p-(r-w)*v)+((r-w)*s-(z-B)*p)*((r-w)*s-(z-B)*p))));if(x==0.0){y=1.0;r=0.0;p=0.0}else{y=1.0/x*((A-C)*p-(r-w)*v);r=1.0/x*((r-w)*s-(z-B)*p);p=1.0/x*((z-B)*v-(A-C)*s)}if(!(xH*.009999999776482582))break;ue(X,c[m+(c[n+12>>2]<<2)>>2]|0,o);j=c[X+4>>2]|0;h=j}while(0)}while((j|0)!=0);if(!h){h=0;break}n=c[X+12>>2]|0;m=h;do{m=m+-1|0;o=c[n+(m<<2)>>2]|0;do if(o|0){if((c[o+28>>2]|0)>-1)break c;S=c[o>>2]|0;R=c[o+4>>2]|0;e=c[o+8>>2]|0;w=+g[W+(R<<4)>>2];s=w-+g[W+(S<<4)>>2];x=+g[W+(R<<4)+4>>2];v=x-+g[W+(S<<4)+4>>2];r=+g[W+(R<<4)+8>>2];p=r-+g[W+(S<<4)+8>>2];w=+g[W+(e<<4)>>2]-w;x=+g[W+(e<<4)+4>>2]-x;r=+g[W+(e<<4)+8>>2]-r;y=+O(+((s*x-v*w)*(s*x-v*w)+((v*r-p*x)*(v*r-p*x)+(p*w-s*r)*(p*w-s*r))));if(y==0.0){z=1.0;p=0.0;r=0.0;l=1065353216;d=0;j=0}else{l=(g[k>>2]=1.0/y*(v*r-p*x),c[k>>2]|0);d=(g[k>>2]=1.0/y*(p*w-s*r),c[k>>2]|0);z=1.0/y*(v*r-p*x);p=1.0/y*(p*w-s*r);r=1.0/y*(s*x-v*w);j=(g[k>>2]=1.0/y*(s*x-v*w),c[k>>2]|0)}J=(c[k>>2]=l,+g[k>>2]);K=(c[k>>2]=d,+g[k>>2]);j=Qe(W,T,J,K,(c[k>>2]=j,+g[k>>2]),X+100|0)|0;c[o+28>>2]=j;if(!(c[P+(j<<2)>>2]|0)){e=c[o>>2]|0;g[o+32>>2]=(+g[W+(j<<4)>>2]-+g[W+(e<<4)>>2])*z+(+g[W+(j<<4)+4>>2]-+g[W+(e<<4)+4>>2])*p+(+g[W+(j<<4)+8>>2]-+g[W+(e<<4)+8>>2])*r;break}else{c[o+28>>2]=-1;break}}while(0)}while((m|0)!=0)}while(0);if((q|0)<=1){h=1;break b}q=q+-1|0}}else h=1}else h=0}else h=0}else h=0;while(0);j=c[Q>>2]|0;if(j|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0);c[Q>>2]=0}if(P|0){c[6436]=(c[6436]|0)+1;hd(c[P+-4>>2]|0)}if(h){h=c[X+4>>2]|0;if((h|0)>0){j=c[X+12>>2]|0;t=0;o=0;l=0;d=0;while(1){n=c[j+(t<<2)>>2]|0;if(!n)m=o;else{do if((d|0)==(o|0)){m=o|0?o<<1:1;if((o|0)>=(m|0)){m=o;break}do if(!m)j=0;else{c[6435]=(c[6435]|0)+1;h=yc((m<<2|3)+16|0)|0;if(!h){j=0;break}c[(h+4+15&-16)+-4>>2]=h;j=h+4+15&-16}while(0);if((o|0)<=0){if(!l){l=j;break}}else{h=0;do{c[j+(h<<2)>>2]=c[l+(h<<2)>>2];h=h+1|0}while((h|0)!=(o|0))}c[6436]=(c[6436]|0)+1;hd(c[l+-4>>2]|0);l=j}else m=o;while(0);c[l+(d<<2)>>2]=c[n>>2];o=d+1|0;q=(c[(c[X+12>>2]|0)+(t<<2)>>2]|0)+4|0;do if((o|0)==(m|0)){n=m|0?m<<1:1;if((m|0)>=(n|0))break;do if(!n)j=0;else{c[6435]=(c[6435]|0)+1;h=yc((n<<2|3)+16|0)|0;if(!h){j=0;break}c[(h+4+15&-16)+-4>>2]=h;j=h+4+15&-16}while(0);if((m|0)<=0){if(!l){m=n;l=j;break}}else{h=0;do{c[j+(h<<2)>>2]=c[l+(h<<2)>>2];h=h+1|0}while((h|0)!=(m|0))}c[6436]=(c[6436]|0)+1;hd(c[l+-4>>2]|0);m=n;l=j}while(0);c[l+(o<<2)>>2]=c[q>>2];o=d+2|0;q=(c[(c[X+12>>2]|0)+(t<<2)>>2]|0)+8|0;do if((o|0)==(m|0)){n=m|0?m<<1:1;if((m|0)>=(n|0))break;do if(!n)j=0;else{c[6435]=(c[6435]|0)+1;h=yc((n<<2|3)+16|0)|0;if(!h){j=0;break}c[(h+4+15&-16)+-4>>2]=h;j=h+4+15&-16}while(0);if((m|0)<=0){if(!l){m=n;l=j;break}}else{h=0;do{c[j+(h<<2)>>2]=c[l+(h<<2)>>2];h=h+1|0}while((h|0)!=(m|0))}c[6436]=(c[6436]|0)+1;hd(c[l+-4>>2]|0);m=n;l=j}while(0);c[l+(o<<2)>>2]=c[q>>2];j=c[X+12>>2]|0;h=c[j+(t<<2)>>2]|0;c[j+(c[h+24>>2]<<2)>>2]=0;if(h|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0)}h=c[X+4>>2]|0;d=d+3|0}t=t+1|0;if((t|0)>=(h|0))break;else o=m}c[X+96>>2]=(d|0)/3|0;if((d|0)>0){c[6435]=(c[6435]|0)+1;h=yc((d<<2|3)+16|0)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}Qn(h|0,0,d<<2|0)|0;j=0;do{c[h+(j<<2)>>2]=c[l+(j<<2)>>2];j=j+1|0}while((j|0)!=(d|0));m=l;M=d}else{h=0;m=l;M=d}}else{c[X+96>>2]=0;h=0;m=0;M=0}l=c[X+4>>2]|0;if((l|0)<0){j=c[X+12>>2]|0;if((c[X+8>>2]|0)<0){if(j|0){if(a[X+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}c[X+12>>2]=0}a[X+16>>0]=1;c[X+12>>2]=0;c[X+8>>2]=0;j=0}do{c[j+(l<<2)>>2]=0;l=l+1|0}while((l|0)!=0)}c[X+4>>2]=0;if(m|0){c[6436]=(c[6436]|0)+1;hd(c[m+-4>>2]|0)}L=c[X+96>>2]|0;m=(T|0)>0;if(m){c[6435]=(c[6435]|0)+1;j=yc((T<<4|3)+16|0)|0;if(!j)l=0;else{c[(j+4+15&-16)+-4>>2]=j;l=j+4+15&-16}j=0;do{e=l+(j<<4)|0;c[e>>2]=c[X+64>>2];c[e+4>>2]=c[X+64+4>>2];c[e+8>>2]=c[X+64+8>>2];c[e+12>>2]=c[X+64+12>>2];j=j+1|0}while((j|0)!=(T|0));D=l}else D=0;l=c[X+24>>2]|0;do if((l|0)>0){c[6435]=(c[6435]|0)+1;j=yc((l<<2|3)+16|0)|0;if(!j)d=0;else{c[(j+4+15&-16)+-4>>2]=j;d=j+4+15&-16}Qn(d|0,0,l<<2|0)|0;if((c[X+24>>2]|0)<=0)break;j=c[X+32>>2]|0;l=0;do{c[d+(l<<2)>>2]=c[j+(l<<2)>>2];l=l+1|0}while((l|0)<(c[X+24>>2]|0))}else d=0;while(0);if(m){c[6435]=(c[6435]|0)+1;j=yc((U|3)+16|0)|0;if(!j)j=0;else{c[(j+4+15&-16)+-4>>2]=j;j=j+4+15&-16}Qn(j|0,0,U|0)|0}else j=0;Qn(j|0,0,U|0)|0;if((L|0)<=0)if(!j)q=0;else{l=0;V=222}else{t=c[X+32>>2]|0;u=0;l=0;do{m=h+(u<<2)|0;o=c[m>>2]|0;q=j+(o<<2)|0;n=c[q>>2]|0;if(!n){c[m>>2]=l;c[D+(l<<4)>>2]=c[W+(o<<4)>>2];c[D+(l<<4)+4>>2]=c[W+(o<<4)+4>>2];c[D+(l<<4)+8>>2]=c[W+(o<<4)+8>>2];m=c[X+24>>2]|0;if((m|0)>0){n=0;do{if((c[d+(n<<2)>>2]|0)==(o|0))c[t+(n<<2)>>2]=l;n=n+1|0}while((n|0)!=(m|0))}l=l+1|0;c[q>>2]=l}else c[m>>2]=n+-1;u=u+1|0}while((u|0)!=(L*3|0));V=222}if((V|0)==222){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0);q=l}if(d|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}if((q|0)>0){c[6435]=(c[6435]|0)+1;j=yc((q<<4|3)+16|0)|0;if(!j)j=0;else{c[(j+4+15&-16)+-4>>2]=j;j=j+4+15&-16}l=0;do{V=j+(l<<4)|0;c[V>>2]=c[X+48>>2];c[V+4>>2]=c[X+48+4>>2];c[V+8>>2]=c[X+48+8>>2];c[V+12>>2]=c[X+48+12>>2];l=l+1|0}while((l|0)!=(q|0))}else j=0;if((L|0)>0){c[6435]=(c[6435]|0)+1;l=yc((L*12|3)+16|0)|0;if(!l)l=0;else{c[(l+4+15&-16)+-4>>2]=l;l=l+4+15&-16}d=c[X+40>>2]|0;if(!d)c[X+40>>2]=l;else{c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0);c[X+40>>2]=l}Qn(l|0,0,L*12|0)|0}_m(j|0,D|0,q<<4|0)|0;_m(c[X+40>>2]|0,h|0,L*12|0)|0;do if(M){if(!h){h=0;break}c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0);h=0}while(0);if(!D){n=L;o=L*3|0;break}c[6436]=(c[6436]|0)+1;hd(c[D+-4>>2]|0);n=L;o=L*3|0;break}}}h=0;q=0;j=0;n=0;o=0}while(0);if(W|0){c[6436]=(c[6436]|0)+1;hd(c[W+-4>>2]|0)}if(h|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0)}c[6435]=(c[6435]|0)+1;h=yc(1271)|0;if(!h)D=0;else{c[(h+4+15&-16)+-4>>2]=h;D=h+4+15&-16}Kc(D,b,q,j,0);if((n|0)>0){m=0;do{d=m*3|0;b=c[X+40>>2]|0;h=c[b+(d<<2)>>2]|0;l=c[b+(d+1<<2)>>2]|0;d=c[b+(d+2<<2)>>2]|0;if((h|0)<(l|0))Rf(D,h,l,0,0);if((l|0)<(d|0))Rf(D,l,d,0,0);if((d|0)<(h|0))Rf(D,d,h,0,0);Zf(D,h,l,d,0);m=m+1|0}while((m|0)!=(n|0))}if(q)if(!j)j=0;else{c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0);j=0}if(o|0){h=c[X+40>>2]|0;if(h|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0);c[X+40>>2]=0}c[X+40>>2]=0}if(f){l=c[D+732>>2]|0;if((l|0)>0){d=D+740|0;o=0;h=243703;do{m=c[d>>2]|0;n=m+(o*52|0)|0;h=(_(h,1664525)|0)+1013904223|0;q=X+100|0;t=n;u=q+52|0;do{c[q>>2]=c[t>>2];q=q+4|0;t=t+4|0}while((q|0)<(u|0));q=n;t=m+(((h>>>0)%(l>>>0)|0)*52|0)|0;u=q+52|0;do{c[q>>2]=c[t>>2];q=q+4|0;t=t+4|0}while((q|0)<(u|0));q=m+(((h>>>0)%(l>>>0)|0)*52|0)|0;t=X+100|0;u=q+52|0;do{c[q>>2]=c[t>>2];q=q+4|0;t=t+4|0}while((q|0)<(u|0));o=o+1|0}while((o|0)!=(l|0))}else h=243703;m=c[D+752>>2]|0;if((m|0)>0){n=D+760|0;o=0;do{d=c[n>>2]|0;l=d+(o*44|0)|0;h=(_(h,1664525)|0)+1013904223|0;d=d+(((h>>>0)%(m>>>0)|0)*44|0)|0;q=X+100|0;t=l;u=q+44|0;do{c[q>>2]=c[t>>2];q=q+4|0;t=t+4|0}while((q|0)<(u|0));q=l;t=d;u=q+44|0;do{c[q>>2]=c[t>>2];q=q+4|0;t=t+4|0}while((q|0)<(u|0));q=d;t=X+100|0;u=q+44|0;do{c[q>>2]=c[t>>2];q=q+4|0;t=t+4|0}while((q|0)<(u|0));o=o+1|0}while((o|0)!=(m|0))}}h=c[X+32>>2]|0;if(h|0){if(a[X+36>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0)}c[X+32>>2]=0}a[X+36>>0]=1;c[X+32>>2]=0;c[X+24>>2]=0;c[X+28>>2]=0;h=c[X+12>>2]|0;if(h|0){if(a[X+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0)}c[X+12>>2]=0}h=c[X+40>>2]|0;if(h|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0);c[X+40>>2]=0}c[X+40>>2]=0;if(!j){i=X;return D|0}c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0);i=X;return D|0}function sc(b,d,e){b=b|0;d=d|0;e=e|0;var f=0,h=0,j=0,l=0,m=0.0,n=0.0,o=0.0,p=0,q=0.0,r=0,s=0,t=0,u=0,v=0,w=0,x=0.0,y=0.0,z=0.0,A=0.0,B=0.0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0.0,L=0.0,M=0.0,O=0.0;I=i;i=i+16|0;f=c[b+1112>>2]|0;a:do if((f|0)>0)while(1){p=c[c[b+1120>>2]>>2]|0;f=c[p+348>>2]|0;if(f|0){hh(b+1048|0,f)|0;h=c[b+1052>>2]|0;if(h|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0)}c[b+1052>>2]=f;c[b+1060>>2]=(c[b+1060>>2]|0)+-1}Fk(p);if(p|0){c[6436]=(c[6436]|0)+1;hd(c[p+-4>>2]|0)}f=c[b+1112>>2]|0;if((f|0)<=0){p=f;break a}l=c[b+1120>>2]|0;h=0;do{j=l+(h<<2)|0;if((c[j>>2]|0)==(p|0)){H=14;break}h=h+1|0}while((h|0)<(f|0));if((H|0)==14){H=0;if((h|0)<(f|0)){c[j>>2]=c[l+(f+-1<<2)>>2];c[(c[b+1120>>2]|0)+(f+-1<<2)>>2]=p;c[b+1112>>2]=f+-1;f=f+-1|0}}if((f|0)<=0){p=f;break}}else p=f;while(0);f=c[b+712>>2]|0;f=(f|0)>(d|0)?d:f;if((p|0)<(f|0)){if((c[b+1116>>2]|0)<(f|0)){if(f){c[6435]=(c[6435]|0)+1;h=yc((f<<2|3)+16|0)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}j=c[b+1112>>2]|0;if((j|0)>0){l=0;do{c[h+(l<<2)>>2]=c[(c[b+1120>>2]|0)+(l<<2)>>2];l=l+1|0}while((l|0)!=(j|0));j=b+1120|0}else j=b+1120|0}else{h=0;j=b+1120|0}l=c[j>>2]|0;if(l|0){if(a[b+1124>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[l+-4>>2]|0)}c[j>>2]=0}a[b+1124>>0]=1;c[j>>2]=h;c[b+1116>>2]=f}else j=b+1120|0;h=p;do{c[(c[j>>2]|0)+(h<<2)>>2]=0;h=h+1|0}while((h|0)!=(f|0))}c[b+1112>>2]=f;if((f|0)>0){h=0;do{c[6435]=(c[6435]|0)+1;f=yc(403)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}a[f+16>>0]=1;c[f+12>>2]=0;c[f+4>>2]=0;c[f+8>>2]=0;a[f+36>>0]=1;c[f+32>>2]=0;c[f+24>>2]=0;c[f+28>>2]=0;a[f+56>>0]=1;c[f+52>>2]=0;c[f+44>>2]=0;c[f+48>>2]=0;j=f+348|0;c[j>>2]=0;c[j+4>>2]=0;c[j+8>>2]=0;c[j+12>>2]=0;c[j+16>>2]=0;g[f+368>>2]=100.0;g[f+372>>2]=.009999999776482582;a[f+376>>0]=0;c[(c[b+1120>>2]|0)+(h<<2)>>2]=f;j=c[b+1120>>2]|0;a[(c[j+(h<<2)>>2]|0)+377>>0]=1;h=h+1|0;f=c[b+1112>>2]|0}while((h|0)<(f|0));if((f|0)>0){h=c[b+712>>2]|0;b:do if((h|0)>0){s=f;d=j;l=0;p=0;j=0;u=0;while(1){t=c[b+720>>2]|0;l=(g[k>>2]=(c[k>>2]=l,+g[k>>2])+ +g[t+(u*104|0)+8>>2],c[k>>2]|0);j=(g[k>>2]=(c[k>>2]=j,+g[k>>2])+ +g[t+(u*104|0)+12>>2],c[k>>2]|0);p=(g[k>>2]=(c[k>>2]=p,+g[k>>2])+ +g[t+(u*104|0)+16>>2],c[k>>2]|0);s=c[d+(((u*29873|0)%(s|0)|0)<<2)>>2]|0;t=t+(u*104|0)|0;d=c[s+24>>2]|0;if((d|0)==(c[s+28>>2]|0)?(v=d|0?d<<1:1,(d|0)<(v|0)):0){if(!v)h=0;else{c[6435]=(c[6435]|0)+1;h=yc((v<<2|3)+16|0)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}d=c[s+24>>2]|0}if((d|0)>0){r=0;do{c[h+(r<<2)>>2]=c[(c[s+32>>2]|0)+(r<<2)>>2];r=r+1|0}while((r|0)!=(d|0))}r=c[s+32>>2]|0;if(r){if(a[s+36>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[r+-4>>2]|0);d=c[s+24>>2]|0}c[s+32>>2]=0}a[s+36>>0]=1;c[s+32>>2]=h;c[s+28>>2]=v;h=c[b+712>>2]|0}c[(c[s+32>>2]|0)+(d<<2)>>2]=t;c[s+24>>2]=d+1;r=u+1|0;if((r|0)>=(h|0))break b;s=c[b+1112>>2]|0;d=c[b+1120>>2]|0;u=r}}else{l=0;p=0;j=0}while(0);m=1.0/+(h|0);o=(c[k>>2]=l,+g[k>>2])*m;n=(c[k>>2]=j,+g[k>>2])*m;m=(c[k>>2]=p,+g[k>>2])*m;if((f|0)<0)E=0;else{if((f|0)!=0?(c[6435]=(c[6435]|0)+1,w=yc((f<<4|3)+16|0)|0,(w|0)!=0):0){c[(w+4+15&-16)+-4>>2]=w;h=w+4+15&-16}else h=0;j=0;do{g[h+(j<<4)>>2]=o;g[h+(j<<4)+4>>2]=n;g[h+(j<<4)+8>>2]=m;g[h+(j<<4)+12>>2]=0.0;j=j+1|0}while((j|0)!=(f|0));E=h}u=E+4|0;v=E+8|0;w=0;do{m=+(w|0)*.0625;m=2.0-(m>1.0?1.0:m);s=0;t=0;do{h=c[(c[b+1120>>2]|0)+(t<<2)>>2]|0;r=c[h+24>>2]|0;if((r|0)>0){p=c[h+32>>2]|0;l=0;j=0;h=0;d=0;do{J=c[p+(d<<2)>>2]|0;l=(g[k>>2]=(c[k>>2]=l,+g[k>>2])+ +g[J+8>>2],c[k>>2]|0);j=(g[k>>2]=(c[k>>2]=j,+g[k>>2])+ +g[J+12>>2],c[k>>2]|0);h=(g[k>>2]=(c[k>>2]=h,+g[k>>2])+ +g[J+16>>2],c[k>>2]|0);d=d+1|0}while((d|0)!=(r|0))}else{l=0;j=0;h=0}if(r){x=(c[k>>2]=l,+g[k>>2])*(1.0/+(r|0));z=(c[k>>2]=j,+g[k>>2])*(1.0/+(r|0));d=E+(t<<4)|0;y=+g[d>>2];J=E+(t<<4)+4|0;A=+g[J>>2];p=E+(t<<4)+8|0;q=+g[p>>2];B=q+m*((c[k>>2]=h,+g[k>>2])*(1.0/+(r|0))-q);l=s|(y+m*(x-y)-y)*(y+m*(x-y)-y)+(A+m*(z-A)-A)*(A+m*(z-A)-A)+(B-q)*(B-q)>1.1920928955078125e-07;g[d>>2]=y+m*(x-y);g[J>>2]=A+m*(z-A);g[p>>2]=B;g[E+(t<<4)+12>>2]=0.0;p=c[(c[b+1120>>2]|0)+(t<<2)>>2]|0;h=c[p+24>>2]|0;if((h|0)<0){if((c[p+28>>2]|0)<0){j=c[p+32>>2]|0;if(j|0){if(a[p+36>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}c[p+32>>2]=0}a[p+36>>0]=1;c[p+32>>2]=0;c[p+28>>2]=0}do{c[(c[p+32>>2]|0)+(h<<2)>>2]=0;h=h+1|0}while((h|0)!=0)}c[p+24>>2]=0;s=l}t=t+1|0}while((t|0)<(f|0));w=w+1|0;h=c[b+712>>2]|0;c:do if((h|0)>0){if((f|0)>1)t=0;else{r=0;while(1){p=c[c[b+1120>>2]>>2]|0;d=(c[b+720>>2]|0)+(r*104|0)|0;j=c[p+24>>2]|0;if((j|0)==(c[p+28>>2]|0)?(D=j|0?j<<1:1,(j|0)<(D|0)):0){if(!D)h=0;else{c[6435]=(c[6435]|0)+1;h=yc((D<<2|3)+16|0)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}j=c[p+24>>2]|0}if((j|0)>0){l=0;do{c[h+(l<<2)>>2]=c[(c[p+32>>2]|0)+(l<<2)>>2];l=l+1|0}while((l|0)!=(j|0))}l=c[p+32>>2]|0;if(l){if(a[p+36>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[l+-4>>2]|0);j=c[p+24>>2]|0}c[p+32>>2]=0}a[p+36>>0]=1;c[p+32>>2]=h;c[p+28>>2]=D;h=c[b+712>>2]|0}c[(c[p+32>>2]|0)+(j<<2)>>2]=d;c[p+24>>2]=j+1;r=r+1|0;if((r|0)>=(h|0))break c}}do{d=c[b+720>>2]|0;m=+g[d+(t*104|0)+8>>2];n=+g[d+(t*104|0)+12>>2];o=+g[d+(t*104|0)+16>>2];l=1;p=0;x=+N(+(+g[E>>2]-m))+ +N(+(+g[u>>2]-n))+ +N(+(+g[v>>2]-o));while(1){q=+N(+(+g[E+(l<<4)>>2]-m))+ +N(+(+g[E+(l<<4)+4>>2]-n))+ +N(+(+g[E+(l<<4)+8>>2]-o));j=q>2]|0)+(p<<2)>>2]|0;p=d+(t*104|0)|0;j=c[r+24>>2]|0;if((j|0)==(c[r+28>>2]|0)?(C=j|0?j<<1:1,(j|0)<(C|0)):0){if(!C)h=0;else{c[6435]=(c[6435]|0)+1;h=yc((C<<2|3)+16|0)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}j=c[r+24>>2]|0}if((j|0)>0){l=0;do{c[h+(l<<2)>>2]=c[(c[r+32>>2]|0)+(l<<2)>>2];l=l+1|0}while((l|0)!=(j|0))}l=c[r+32>>2]|0;if(l){if(a[r+36>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[l+-4>>2]|0);j=c[r+24>>2]|0}c[r+32>>2]=0}a[r+36>>0]=1;c[r+32>>2]=h;c[r+28>>2]=C;h=c[b+712>>2]|0}c[(c[r+32>>2]|0)+(j<<2)>>2]=p;c[r+24>>2]=j+1;t=t+1|0}while((t|0)<(h|0))}while(0)}while((w|0)<(e|0)&s);if((h|0)>0){h=h<<2;c[6435]=(c[6435]|0)+1;f=yc((h|3)+16|0)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}Qn(f|0,-1,h|0)|0;w=f}else w=0;f=c[b+1112>>2]|0;if((f|0)>0){d=c[b+1120>>2]|0;p=0;do{h=c[d+(p<<2)>>2]|0;if((c[h+24>>2]|0)>0){j=c[b+720>>2]|0;l=c[(c[b+1120>>2]|0)+(p<<2)>>2]|0;f=0;while(1){c[w+((((c[(c[h+32>>2]|0)+(f<<2)>>2]|0)-j|0)/104|0)<<2)>>2]=p;f=f+1|0;if((f|0)<(c[l+24>>2]|0))h=l;else break}f=c[b+1112>>2]|0}p=p+1|0}while((p|0)<(f|0))}if((c[b+752>>2]|0)>0){t=0;do{J=c[b+760>>2]|0;f=c[b+720>>2]|0;h=((c[J+(t*44|0)+8>>2]|0)-f|0)/104|0;c[I>>2]=h;c[I+4>>2]=((c[J+(t*44|0)+12>>2]|0)-f|0)/104|0;c[I+8>>2]=((c[J+(t*44|0)+16>>2]|0)-f|0)/104|0;f=0;while(1){d=c[w+(h<<2)>>2]|0;s=1;do{h=c[I+(((s+f|0)%3|0)<<2)>>2]|0;d:do if((c[w+(h<<2)>>2]|0)!=(d|0)){r=c[(c[b+1120>>2]|0)+(d<<2)>>2]|0;p=(c[b+720>>2]|0)+(h*104|0)|0;h=c[r+24>>2]|0;e:do if((h|0)>0){l=c[r+32>>2]|0;j=0;while(1){if((c[l+(j<<2)>>2]|0)==(p|0))break;j=j+1|0;if((j|0)>=(h|0))break e}if((j|0)!=(h|0))break d}while(0);if((h|0)==(c[r+28>>2]|0)?(F=h|0?h<<1:1,(h|0)<(F|0)):0){if(!F)l=0;else{c[6435]=(c[6435]|0)+1;h=yc((F<<2|3)+16|0)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}l=h;h=c[r+24>>2]|0}if((h|0)>0){j=0;do{c[l+(j<<2)>>2]=c[(c[r+32>>2]|0)+(j<<2)>>2];j=j+1|0}while((j|0)!=(h|0))}j=c[r+32>>2]|0;if(j){if(a[r+36>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0);h=c[r+24>>2]|0}c[r+32>>2]=0}a[r+36>>0]=1;c[r+32>>2]=l;c[r+28>>2]=F}c[(c[r+32>>2]|0)+(h<<2)>>2]=p;c[r+24>>2]=h+1}while(0);s=s+1|0}while((s|0)!=3);f=f+1|0;if((f|0)>=3)break;h=c[I+(f<<2)>>2]|0}t=t+1|0}while((t|0)<(c[b+752>>2]|0));f=c[b+1112>>2]|0}if((f|0)>1){c[6435]=(c[6435]|0)+1;f=yc(403)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}a[f+16>>0]=1;c[f+12>>2]=0;c[f+4>>2]=0;c[f+8>>2]=0;r=f+36|0;a[r>>0]=1;s=f+32|0;c[s>>2]=0;t=f+24|0;c[t>>2]=0;u=f+28|0;c[u>>2]=0;a[f+56>>0]=1;c[f+52>>2]=0;c[f+44>>2]=0;c[f+48>>2]=0;v=f+348|0;c[v>>2]=0;c[v+4>>2]=0;c[v+8>>2]=0;c[v+12>>2]=0;c[v+16>>2]=0;g[f+368>>2]=100.0;g[f+372>>2]=.009999999776482582;a[f+376>>0]=0;v=f;a[f+377>>0]=0;l=c[b+712>>2]|0;if((l|0)>0){c[6435]=(c[6435]|0)+1;f=yc((l<<2|3)+16|0)|0;if(!f)j=0;else{c[(f+4+15&-16)+-4>>2]=f;j=f+4+15&-16}f=c[t>>2]|0;if((f|0)>0){h=0;do{c[j+(h<<2)>>2]=c[(c[s>>2]|0)+(h<<2)>>2];h=h+1|0}while((h|0)!=(f|0))}f=c[s>>2]|0;if(f|0){if(a[r>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}c[s>>2]=0}a[r>>0]=1;c[s>>2]=j;c[u>>2]=l;f=c[b+712>>2]|0;if((f|0)>0){j=c[t>>2]|0;h=l;d=0;while(1){p=(c[b+720>>2]|0)+(d*104|0)|0;do if((j|0)==(h|0)){l=h|0?h<<1:1;if((h|0)>=(l|0)){l=h;break}if(!l)f=0;else{c[6435]=(c[6435]|0)+1;f=yc((l<<2|3)+16|0)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}h=c[t>>2]|0}if((h|0)>0){j=0;do{c[f+(j<<2)>>2]=c[(c[s>>2]|0)+(j<<2)>>2];j=j+1|0}while((j|0)!=(h|0))}j=c[s>>2]|0;if(j){if(a[r>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0);h=c[t>>2]|0}c[s>>2]=0}a[r>>0]=1;c[s>>2]=f;c[u>>2]=l;f=c[b+712>>2]|0}else{l=h;h=j}while(0);c[(c[s>>2]|0)+(h<<2)>>2]=p;j=h+1|0;c[t>>2]=j;d=d+1|0;if((d|0)>=(f|0))break;else h=l}}}f=c[b+1112>>2]|0;if((f|0)==(c[b+1116>>2]|0)?(G=f|0?f<<1:1,(f|0)<(G|0)):0){if(!G)j=0;else{c[6435]=(c[6435]|0)+1;f=yc((G<<2|3)+16|0)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}j=f;f=c[b+1112>>2]|0}if((f|0)>0){h=0;do{c[j+(h<<2)>>2]=c[(c[b+1120>>2]|0)+(h<<2)>>2];h=h+1|0}while((h|0)!=(f|0))}h=c[b+1120>>2]|0;if(h){if(a[b+1124>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0);f=c[b+1112>>2]|0}c[b+1120>>2]=0}a[b+1124>>0]=1;c[b+1120>>2]=j;c[b+1116>>2]=G}c[(c[b+1120>>2]|0)+(f<<2)>>2]=v;J=f+1|0;c[b+1112>>2]=J;F=c[b+1120>>2]|0;f=F+(f<<2)|0;G=c[F>>2]|0;c[F>>2]=c[f>>2];c[f>>2]=G;f=J}if((f|0)>0){h=0;do{d=c[(c[b+1120>>2]|0)+(h<<2)>>2]|0;f:do if(!(c[d+24>>2]|0)){h=h+-1|0;f=c[d+348>>2]|0;if(f|0){hh(b+1048|0,f)|0;j=c[b+1052>>2]|0;if(j|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}c[b+1052>>2]=f;c[b+1060>>2]=(c[b+1060>>2]|0)+-1}Fk(d);if(d|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}f=c[b+1112>>2]|0;if((f|0)>0){p=c[b+1120>>2]|0;j=0;while(1){l=p+(j<<2)|0;if((c[l>>2]|0)==(d|0))break;j=j+1|0;if((j|0)>=(f|0))break f}if((j|0)<(f|0)){c[l>>2]=c[p+(f+-1<<2)>>2];c[(c[b+1120>>2]|0)+(f+-1<<2)>>2]=d;c[b+1112>>2]=f+-1;f=f+-1|0}}}while(0);h=h+1|0}while((h|0)<(f|0))}if(w|0){c[6436]=(c[6436]|0)+1;hd(c[w+-4>>2]|0)}if(E|0){c[6436]=(c[6436]|0)+1;hd(c[E+-4>>2]|0)}}else H=212}else H=212;g:do if((H|0)==212){p=c[b+772>>2]|0;if(p|0){if((f|0)<(p|0)){if((c[b+1116>>2]|0)<(p|0)){c[6435]=(c[6435]|0)+1;h=yc((p<<2|3)+16|0)|0;if(!h)l=0;else{c[(h+4+15&-16)+-4>>2]=h;l=h+4+15&-16}h=c[b+1112>>2]|0;if((h|0)>0){j=0;do{c[l+(j<<2)>>2]=c[(c[b+1120>>2]|0)+(j<<2)>>2];j=j+1|0}while((j|0)!=(h|0))}h=c[b+1120>>2]|0;if(h|0){if(a[b+1124>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0)}c[b+1120>>2]=0}a[b+1124>>0]=1;c[b+1120>>2]=l;c[b+1116>>2]=p;h=b+1120|0}else h=b+1120|0;do{c[(c[h>>2]|0)+(f<<2)>>2]=0;f=f+1|0}while((f|0)!=(p|0))}c[b+1112>>2]=p;if((p|0)>0){h=0;do{c[6435]=(c[6435]|0)+1;f=yc(403)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}a[f+16>>0]=1;c[f+12>>2]=0;c[f+4>>2]=0;c[f+8>>2]=0;a[f+36>>0]=1;c[f+32>>2]=0;c[f+24>>2]=0;c[f+28>>2]=0;a[f+56>>0]=1;c[f+52>>2]=0;c[f+44>>2]=0;c[f+48>>2]=0;J=f+348|0;c[J>>2]=0;c[J+4>>2]=0;c[J+8>>2]=0;c[J+12>>2]=0;c[J+16>>2]=0;g[f+368>>2]=100.0;g[f+372>>2]=.009999999776482582;a[f+376>>0]=0;c[(c[b+1120>>2]|0)+(h<<2)>>2]=f;a[(c[(c[b+1120>>2]|0)+(h<<2)>>2]|0)+377>>0]=1;h=h+1|0}while((h|0)<(c[b+1112>>2]|0))}if((c[b+772>>2]|0)<=0)break;d=0;while(1){r=0;do{l=c[(c[b+1120>>2]|0)+(d<<2)>>2]|0;p=(c[b+780>>2]|0)+(d*104|0)+8+(r<<2)|0;f=c[l+24>>2]|0;if((f|0)==(c[l+28>>2]|0)?(s=f|0?f<<1:1,(f|0)<(s|0)):0){if(!s)j=0;else{c[6435]=(c[6435]|0)+1;f=yc((s<<2|3)+16|0)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}j=f;f=c[l+24>>2]|0}if((f|0)>0){h=0;do{c[j+(h<<2)>>2]=c[(c[l+32>>2]|0)+(h<<2)>>2];h=h+1|0}while((h|0)!=(f|0))}h=c[l+32>>2]|0;if(h){if(a[l+36>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0);f=c[l+24>>2]|0}c[l+32>>2]=0}a[l+36>>0]=1;c[l+32>>2]=j;c[l+28>>2]=s}c[(c[l+32>>2]|0)+(f<<2)>>2]=c[p>>2];c[l+24>>2]=f+1;r=r+1|0}while((r|0)!=4);d=d+1|0;if((d|0)>=(c[b+772>>2]|0))break g}}p=c[b+752>>2]|0;if((f|0)<(p|0)){if((c[b+1116>>2]|0)<(p|0)){if(p){c[6435]=(c[6435]|0)+1;h=yc((p<<2|3)+16|0)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}j=c[b+1112>>2]|0;if((j|0)>0){l=0;do{c[h+(l<<2)>>2]=c[(c[b+1120>>2]|0)+(l<<2)>>2];l=l+1|0}while((l|0)!=(j|0));l=b+1120|0}else l=b+1120|0}else{h=0;l=b+1120|0}j=c[l>>2]|0;if(j|0){if(a[b+1124>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}c[l>>2]=0}a[b+1124>>0]=1;c[l>>2]=h;c[b+1116>>2]=p}do{c[(c[b+1120>>2]|0)+(f<<2)>>2]=0;f=f+1|0}while((f|0)!=(p|0))}c[b+1112>>2]=p;if((p|0)>0){h=0;do{c[6435]=(c[6435]|0)+1;f=yc(403)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}a[f+16>>0]=1;c[f+12>>2]=0;c[f+4>>2]=0;c[f+8>>2]=0;a[f+36>>0]=1;c[f+32>>2]=0;c[f+24>>2]=0;c[f+28>>2]=0;a[f+56>>0]=1;c[f+52>>2]=0;c[f+44>>2]=0;c[f+48>>2]=0;J=f+348|0;c[J>>2]=0;c[J+4>>2]=0;c[J+8>>2]=0;c[J+12>>2]=0;c[J+16>>2]=0;g[f+368>>2]=100.0;g[f+372>>2]=.009999999776482582;a[f+376>>0]=0;c[(c[b+1120>>2]|0)+(h<<2)>>2]=f;a[(c[(c[b+1120>>2]|0)+(h<<2)>>2]|0)+377>>0]=1;h=h+1|0}while((h|0)<(c[b+1112>>2]|0))}if((c[b+752>>2]|0)>0){d=0;do{r=0;do{l=c[(c[b+1120>>2]|0)+(d<<2)>>2]|0;p=(c[b+760>>2]|0)+(d*44|0)+8+(r<<2)|0;f=c[l+24>>2]|0;if((f|0)==(c[l+28>>2]|0)?(t=f|0?f<<1:1,(f|0)<(t|0)):0){if(!t)j=0;else{c[6435]=(c[6435]|0)+1;f=yc((t<<2|3)+16|0)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}j=f;f=c[l+24>>2]|0}if((f|0)>0){h=0;do{c[j+(h<<2)>>2]=c[(c[l+32>>2]|0)+(h<<2)>>2];h=h+1|0}while((h|0)!=(f|0))}h=c[l+32>>2]|0;if(h){if(a[l+36>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0);f=c[l+24>>2]|0}c[l+32>>2]=0}a[l+36>>0]=1;c[l+32>>2]=j;c[l+28>>2]=t}c[(c[l+32>>2]|0)+(f<<2)>>2]=c[p>>2];c[l+24>>2]=f+1;r=r+1|0}while((r|0)!=3);d=d+1|0}while((d|0)<(c[b+752>>2]|0))}}while(0);f=c[b+1112>>2]|0;if(!f){J=0;i=I;return J|0}if((f|0)>0){t=0;do{s=c[(c[b+1120>>2]|0)+(t<<2)>>2]|0;g[s+128>>2]=0.0;d=c[s+24>>2]|0;p=c[s+4>>2]|0;if((d|0)>(p|0)){do if((c[s+8>>2]|0)<(d|0)){if(!d){f=0;h=p}else{c[6435]=(c[6435]|0)+1;f=yc((d<<2|3)+16|0)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}h=c[s+4>>2]|0}j=c[s+12>>2]|0;if((h|0)<=0){if(!j){a[s+16>>0]=1;c[s+12>>2]=f;c[s+8>>2]=d;break}}else{l=0;do{c[f+(l<<2)>>2]=c[j+(l<<2)>>2];l=l+1|0}while((l|0)!=(h|0))}if(a[s+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}a[s+16>>0]=1;c[s+12>>2]=f;c[s+8>>2]=d}else f=c[s+12>>2]|0;while(0);Qn(f+(p<<2)|0,0,d-p<<2|0)|0;l=c[s+24>>2]|0}else l=d;c[s+4>>2]=d;if((l|0)>0){f=c[s+32>>2]|0;h=c[s+12>>2]|0;j=0;do{m=+g[(c[f+(j<<2)>>2]|0)+88>>2];if(m==0.0){a[s+376>>0]=1;m=999999984306749440.0}else m=1.0/m;g[h+(j<<2)>>2]=m;q=m+ +g[s+128>>2];g[s+128>>2]=q;j=j+1|0}while((j|0)!=(l|0));g[s+128>>2]=1.0/q;f=c[s+32>>2]|0;h=c[s+12>>2]|0;n=0.0;o=0.0;m=0.0;j=0;do{J=c[f+(j<<2)>>2]|0;B=+g[h+(j<<2)>>2];n=n+ +g[J+8>>2]*B;m=m+B*+g[J+12>>2];o=o+B*+g[J+16>>2];j=j+1|0}while((j|0)!=(l|0));q=1.0/q}else{q=1.0/+g[s+128>>2];g[s+128>>2]=q;n=0.0;o=0.0;m=0.0}z=n*q;x=m*q;o=o*q;g[s+228>>2]=z;g[s+232>>2]=x;g[s+236>>2]=o;g[s+240>>2]=0.0;f=s+316|0;h=f+36|0;do{c[f>>2]=0;f=f+4|0}while((f|0)<(h|0));f=s+132|0;h=f+48|0;do{c[f>>2]=0;f=f+4|0}while((f|0)<(h|0));f=c[s+24>>2]|0;if((f|0)>0){h=c[s+32>>2]|0;j=c[s+12>>2]|0;B=+g[s+132>>2];A=+g[s+152>>2];y=0.0;n=+g[s+136>>2];m=+g[s+140>>2];q=+g[s+156>>2];l=0;do{J=c[h+(l<<2)>>2]|0;O=+g[J+8>>2]-z;L=+g[J+12>>2]-x;M=+g[J+16>>2]-o;K=+g[j+(l<<2)>>2];B=B+K*(L*L+M*M);g[s+132>>2]=B;A=K*(O*O+M*M)+A;g[s+152>>2]=A;y=(O*O+L*L)*K+y;g[s+172>>2]=y;n=n-L*O*K;g[s+136>>2]=n;m=m-M*O*K;g[s+140>>2]=m;q=q-M*L*K;g[s+156>>2]=q;l=l+1|0}while((l|0)!=(f|0));j=(g[k>>2]=q,c[k>>2]|0);f=(g[k>>2]=m,c[k>>2]|0);l=s+136|0;p=s+140|0;d=s+156|0;r=s+152|0;x=A;h=(g[k>>2]=n,c[k>>2]|0);o=B}else{h=c[s+136>>2]|0;J=c[s+140>>2]|0;j=c[s+156>>2]|0;q=(c[k>>2]=j,+g[k>>2]);n=(c[k>>2]=h,+g[k>>2]);l=s+136|0;p=s+140|0;d=s+156|0;r=s+152|0;y=0.0;x=+g[s+152>>2];f=J;o=+g[s+132>>2];m=(c[k>>2]=J,+g[k>>2])}L=(c[k>>2]=j,+g[k>>2]);z=x*y-q*L;K=(c[k>>2]=f,+g[k>>2]);M=(c[k>>2]=h,+g[k>>2]);A=q*K-y*M;B=L*M-x*K;O=1.0/(z*o+n*A+B*m);g[s+132>>2]=z*O;g[l>>2]=(L*m-y*n)*O;g[p>>2]=(q*n-x*m)*O;g[s+144>>2]=0.0;g[s+148>>2]=A*O;g[r>>2]=(y*o-K*m)*O;g[d>>2]=(M*m-q*o)*O;g[s+160>>2]=0.0;g[s+164>>2]=B*O;g[s+168>>2]=(K*n-L*o)*O;g[s+172>>2]=(x*o-M*n)*O;g[s+176>>2]=0.0;c[s+60>>2]=1065353216;c[s+64>>2]=0;c[s+64+4>>2]=0;c[s+64+8>>2]=0;c[s+64+12>>2]=0;c[s+80>>2]=1065353216;c[s+84>>2]=0;c[s+84+4>>2]=0;c[s+84+8>>2]=0;c[s+84+12>>2]=0;c[s+100>>2]=1065353216;c[s+104>>2]=0;c[s+104+4>>2]=0;c[s+104+8>>2]=0;c[s+104+12>>2]=0;c[s+104+16>>2]=0;c[s+108>>2]=c[s+228>>2];c[s+108+4>>2]=c[s+228+4>>2];c[s+108+8>>2]=c[s+228+8>>2];c[s+108+12>>2]=c[s+228+12>>2];p=c[s+24>>2]|0;l=c[s+44>>2]|0;if((l|0)<(p|0)){if((c[s+48>>2]|0)<(p|0)){if(!p){f=0;h=l}else{c[6435]=(c[6435]|0)+1;f=yc((p<<4|3)+16|0)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}h=c[s+44>>2]|0}if((h|0)>0){j=0;do{J=f+(j<<4)|0;H=(c[s+52>>2]|0)+(j<<4)|0;c[J>>2]=c[H>>2];c[J+4>>2]=c[H+4>>2];c[J+8>>2]=c[H+8>>2];c[J+12>>2]=c[H+12>>2];j=j+1|0}while((j|0)!=(h|0))}h=c[s+52>>2]|0;if(h|0){if(a[s+56>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[h+-4>>2]|0)}c[s+52>>2]=0}a[s+56>>0]=1;c[s+52>>2]=f;c[s+48>>2]=p;h=s+52|0}else h=s+52|0;f=l;do{J=(c[h>>2]|0)+(f<<4)|0;c[J>>2]=c[I>>2];c[J+4>>2]=c[I+4>>2];c[J+8>>2]=c[I+8>>2];c[J+12>>2]=c[I+12>>2];f=f+1|0}while((f|0)!=(p|0))}c[s+44>>2]=p;if((p|0)>0){f=0;do{J=c[s+52>>2]|0;H=c[(c[s+32>>2]|0)+(f<<2)>>2]|0;M=+g[H+12>>2]-+g[s+232>>2];O=+g[H+16>>2]-+g[s+236>>2];g[J+(f<<4)>>2]=+g[H+8>>2]-+g[s+228>>2];g[J+(f<<4)+4>>2]=M;g[J+(f<<4)+8>>2]=O;g[J+(f<<4)+12>>2]=0.0;f=f+1|0}while((f|0)<(c[s+44>>2]|0))}t=t+1|0}while((t|0)<(c[b+1112>>2]|0))}$c(b);f=c[b+1112>>2]|0;d=_(f,f)|0;p=c[b+1132>>2]|0;if((d|0)>(p|0)){do if((c[b+1136>>2]|0)<(d|0)){if(!d){f=0;h=p}else{c[6435]=(c[6435]|0)+1;f=yc(d+19|0)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}h=c[b+1132>>2]|0}j=c[b+1140>>2]|0;if((h|0)<=0){if(!j){a[b+1144>>0]=1;c[b+1140>>2]=f;c[b+1136>>2]=d;break}}else{l=0;do{a[f+l>>0]=a[j+l>>0]|0;l=l+1|0}while((l|0)!=(h|0))}if(a[b+1144>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}a[b+1144>>0]=1;c[b+1140>>2]=f;c[b+1136>>2]=d}else f=c[b+1140>>2]|0;while(0);Qn(f+p|0,0,d-p|0)|0;f=c[b+1112>>2]|0}c[b+1132>>2]=d;if((f|0)<=0){J=f;i=I;return J|0}t=c[b+1120>>2]|0;v=0;do{u=c[t+(v<<2)>>2]|0;c[u+380>>2]=v;w=0;do{h=c[t+(w<<2)>>2]|0;j=c[u+24>>2]|0;h:do if((j|0)>0){l=c[h+24>>2]|0;r=0;while(1){if((l|0)>0){p=c[(c[u+32>>2]|0)+(r<<2)>>2]|0;d=c[h+32>>2]|0;s=0;do{if((p|0)==(c[d+(s<<2)>>2]|0)){h=1;break h}s=s+1|0}while((s|0)<(l|0))}r=r+1|0;if((r|0)>=(j|0)){h=0;break}}}else h=0;while(0);J=(_(f,w)|0)+v|0;a[(c[b+1140>>2]|0)+J>>0]=h;w=w+1|0}while((w|0)!=(f|0));v=v+1|0}while((v|0)!=(f|0));i=I;return f|0}function tc(b){b=b|0;var d=0,e=0.0,f=0.0,h=0.0,j=0.0,l=0,m=0,n=0,o=0,p=0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0.0,z=0.0,A=0.0,B=0,C=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0,P=0,S=0,T=0,U=0,V=0,W=0,X=0,Y=0,Z=0.0,_=0.0,$=0.0,aa=0.0,ba=0.0,ca=0.0,da=0.0,ea=0.0,fa=0.0,ga=0.0,ha=0.0,ia=0,ja=0,ka=0;Y=i;i=i+320|0;li(11923);ae(b);a:do if(Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0?(X=Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0,(Eb[c[(c[X>>2]|0)+48>>2]&127](X)|0)&6144|0):0){E=Y+256+44|0;F=Y+256+4|0;G=Y+256+8|0;H=Y+256+16|0;I=Y+256+20|0;J=Y+256+24|0;L=Y+256+32|0;M=Y+256+36|0;N=Y+256+40|0;O=Y+256+48|0;P=Y+256+52|0;S=Y+256+56|0;T=Y+256+48|0;U=Y+256+16|0;V=Y+256+32|0;W=Y+256+48|0;B=Y+256+16|0;C=Y+256+32|0;D=Y+256+48|0;d=Eb[c[(c[b>>2]|0)+104>>2]&127](b)|0;while(1){X=d+-1|0;if((d|0)<=0)break a;p=Zb[c[(c[b>>2]|0)+108>>2]&31](b,X)|0;d=Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0;d=(Eb[c[(c[d>>2]|0)+48>>2]&127](d)|0)>>>11;o=Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0;o=(Eb[c[(c[o>>2]|0)+48>>2]&127](o)|0)>>>12;A=+g[p+40>>2];b:do if(!(A<=0.0))switch(c[p+4>>2]|0){case 3:{c[Y+256>>2]=1065353216;c[Y+256+4>>2]=0;c[Y+256+4+4>>2]=0;c[Y+256+4+8>>2]=0;c[Y+256+4+12>>2]=0;c[Y+256+20>>2]=1065353216;c[Y+256+24>>2]=0;c[Y+256+24+4>>2]=0;c[Y+256+24+8>>2]=0;c[Y+256+24+12>>2]=0;c[Y+256+40>>2]=1065353216;c[E>>2]=0;c[E+4>>2]=0;c[E+8>>2]=0;c[E+12>>2]=0;c[E+16>>2]=0;z=+g[p+300>>2];y=+g[p+304>>2];x=+g[p+308>>2];o=c[p+28>>2]|0;w=z*+g[o+20>>2]+y*+g[o+24>>2]+x*+g[o+28>>2]+ +g[o+56>>2];v=z*+g[o+36>>2]+y*+g[o+40>>2]+x*+g[o+44>>2]+ +g[o+60>>2];g[Y+256+48>>2]=z*+g[o+4>>2]+y*+g[o+8>>2]+x*+g[o+12>>2]+ +g[o+52>>2];g[Y+256+52>>2]=w;g[Y+256+56>>2]=v;g[Y+256+60>>2]=0.0;o=Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0;kc[c[(c[o>>2]|0)+56>>2]&7](o,Y+256|0,A);v=+g[p+316>>2];w=+g[p+320>>2];x=+g[p+324>>2];p=c[p+32>>2]|0;y=v*+g[p+20>>2]+w*+g[p+24>>2]+x*+g[p+28>>2]+ +g[p+56>>2];z=v*+g[p+36>>2]+w*+g[p+40>>2]+x*+g[p+44>>2]+ +g[p+60>>2];g[Y+256+48>>2]=v*+g[p+4>>2]+w*+g[p+8>>2]+x*+g[p+12>>2]+ +g[p+52>>2];g[Y+256+52>>2]=y;g[Y+256+56>>2]=z;g[Y+256+60>>2]=0.0;if(d&1|0){p=Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0;kc[c[(c[p>>2]|0)+56>>2]&7](p,Y+256|0,A)}break b}case 4:{n=c[p+28>>2]|0;Z=+g[p+552>>2];da=+g[n+4>>2];e=+g[p+552+16>>2];ca=+g[n+8>>2];f=+g[p+552+32>>2];ba=+g[n+12>>2];h=+g[p+552+4>>2];j=+g[p+552+20>>2];q=+g[p+552+36>>2];r=+g[p+552+8>>2];t=+g[p+552+24>>2];v=+g[p+552+40>>2];aa=+g[n+20>>2];$=+g[n+24>>2];_=+g[n+28>>2];s=+g[n+36>>2];u=+g[n+40>>2];w=+g[n+44>>2];fa=+g[p+552+48>>2];ea=+g[p+552+52>>2];z=+g[p+552+56>>2];x=+g[n+52>>2]+(da*fa+ca*ea+ba*z);y=aa*fa+$*ea+_*z+ +g[n+56>>2];z=s*fa+u*ea+w*z+ +g[n+60>>2];g[Y+256>>2]=Z*da+e*ca+f*ba;g[Y+256+4>>2]=da*h+ca*j+ba*q;g[Y+256+8>>2]=da*r+ca*t+ba*v;g[Y+256+12>>2]=0.0;g[Y+256+16>>2]=Z*aa+e*$+f*_;g[Y+256+20>>2]=h*aa+j*$+q*_;g[Y+256+24>>2]=r*aa+t*$+v*_;g[Y+256+28>>2]=0.0;g[Y+256+32>>2]=Z*s+e*u+f*w;g[Y+256+36>>2]=h*s+j*u+q*w;g[Y+256+40>>2]=r*s+t*u+v*w;g[Y+256+44>>2]=0.0;g[Y+256+48>>2]=x;g[Y+256+52>>2]=y;g[Y+256+56>>2]=z;g[Y+256+60>>2]=0.0;if(!(d&1)){n=c[p+32>>2]|0;u=+g[p+616>>2];h=+g[n+4>>2];v=+g[p+616+16>>2];j=+g[n+8>>2];w=+g[p+616+32>>2];q=+g[n+12>>2];x=+g[p+616+4>>2];y=+g[p+616+20>>2];z=+g[p+616+36>>2];Z=+g[p+616+8>>2];$=+g[p+616+24>>2];ba=+g[p+616+40>>2];r=+g[n+20>>2];s=+g[n+24>>2];t=+g[n+28>>2];_=+g[n+36>>2];aa=+g[n+40>>2];ca=+g[n+44>>2];e=+g[p+616+48>>2];f=+g[p+616+52>>2];fa=+g[p+616+56>>2];da=+g[n+52>>2]+(h*e+j*f+q*fa);ea=r*e+s*f+t*fa+ +g[n+56>>2];fa=_*e+aa*f+ca*fa+ +g[n+60>>2];g[Y+256>>2]=u*h+v*j+w*q;g[Y+256+4>>2]=h*x+j*y+q*z;g[Y+256+8>>2]=h*Z+j*$+q*ba;g[Y+256+12>>2]=0.0;g[Y+256+16>>2]=u*r+v*s+w*t;g[Y+256+20>>2]=x*r+y*s+z*t;g[Y+256+24>>2]=Z*r+$*s+ba*t;g[Y+256+28>>2]=0.0;g[Y+256+32>>2]=u*_+v*aa+w*ca;g[Y+256+36>>2]=x*_+y*aa+z*ca;g[Y+256+40>>2]=Z*_+$*aa+ba*ca;g[Y+256+44>>2]=0.0;g[Y+256+48>>2]=da;g[Y+256+52>>2]=ea;g[Y+256+56>>2]=fa;g[Y+256+60>>2]=0.0}else{n=Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0;kc[c[(c[n>>2]|0)+56>>2]&7](n,Y+256|0,A);n=c[p+32>>2]|0;u=+g[p+616>>2];h=+g[n+4>>2];v=+g[p+616+16>>2];j=+g[n+8>>2];w=+g[p+616+32>>2];q=+g[n+12>>2];x=+g[p+616+4>>2];y=+g[p+616+20>>2];z=+g[p+616+36>>2];Z=+g[p+616+8>>2];$=+g[p+616+24>>2];ba=+g[p+616+40>>2];r=+g[n+20>>2];s=+g[n+24>>2];t=+g[n+28>>2];_=+g[n+36>>2];aa=+g[n+40>>2];ca=+g[n+44>>2];e=+g[p+616+48>>2];f=+g[p+616+52>>2];fa=+g[p+616+56>>2];da=+g[n+52>>2]+(h*e+j*f+q*fa);ea=r*e+s*f+t*fa+ +g[n+56>>2];fa=_*e+aa*f+ca*fa+ +g[n+60>>2];g[Y+256>>2]=u*h+v*j+w*q;g[Y+256+4>>2]=h*x+j*y+q*z;g[Y+256+8>>2]=h*Z+j*$+q*ba;g[Y+256+12>>2]=0.0;g[Y+256+16>>2]=u*r+v*s+w*t;g[Y+256+20>>2]=x*r+y*s+z*t;g[Y+256+24>>2]=Z*r+$*s+ba*t;g[Y+256+28>>2]=0.0;g[Y+256+32>>2]=u*_+v*aa+w*ca;g[Y+256+36>>2]=x*_+y*aa+z*ca;g[Y+256+40>>2]=Z*_+$*aa+ba*ca;g[Y+256+44>>2]=0.0;g[Y+256+48>>2]=da;g[Y+256+52>>2]=ea;g[Y+256+56>>2]=fa;g[Y+256+60>>2]=0.0;n=Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0;kc[c[(c[n>>2]|0)+56>>2]&7](n,Y+256|0,A)}j=+g[p+688>>2];f=+g[p+688+4>>2];e=+eh(j-f,6.2831854820251465);if(!(e<-3.1415927410125732))if(e>3.1415927410125732)h=e+-6.2831854820251465;else h=e;else h=e+6.2831854820251465;e=+eh(j+f,6.2831854820251465);if(!(e<-3.1415927410125732)){if(e>3.1415927410125732)e=e+-6.2831854820251465}else e=e+6.2831854820251465;if(!(h==e)?(K=h>e,o&1|0):0){c[Y+240>>2]=c[Y+256+8>>2];c[Y+240+4>>2]=c[Y+256+24>>2];c[Y+240+8>>2]=c[Y+256+40>>2];g[Y+240+12>>2]=0.0;c[Y+224>>2]=c[Y+256>>2];c[Y+224+4>>2]=c[Y+256+16>>2];c[Y+224+8>>2]=c[Y+256+32>>2];g[Y+224+12>>2]=0.0;p=Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0;o=c[(c[p>>2]|0)+60>>2]|0;c[Y+208>>2]=0;c[Y+208+4>>2]=0;c[Y+208+8>>2]=0;c[Y+208+12>>2]=0;Lb[o&0](p,Y+256+48|0,Y+240|0,Y+224|0,A,A,K?0.0:h,K?6.2831854820251465:e,Y+208|0,K^1,10.0)}break b}case 5:{n=c[p+28>>2]|0;u=+g[p+300>>2];h=+g[n+4>>2];v=+g[p+300+16>>2];j=+g[n+8>>2];w=+g[p+300+32>>2];q=+g[n+12>>2];x=+g[p+300+4>>2];y=+g[p+300+20>>2];z=+g[p+300+36>>2];Z=+g[p+300+8>>2];$=+g[p+300+24>>2];ba=+g[p+300+40>>2];r=+g[n+20>>2];s=+g[n+24>>2];t=+g[n+28>>2];_=+g[n+36>>2];aa=+g[n+40>>2];ca=+g[n+44>>2];e=+g[p+300+48>>2];f=+g[p+300+52>>2];fa=+g[p+300+56>>2];da=+g[n+52>>2]+(h*e+j*f+q*fa);ea=r*e+s*f+t*fa+ +g[n+56>>2];fa=_*e+aa*f+ca*fa+ +g[n+60>>2];g[Y+256>>2]=u*h+v*j+w*q;g[F>>2]=h*x+j*y+q*z;g[G>>2]=h*Z+j*$+q*ba;g[Y+256+12>>2]=0.0;g[H>>2]=u*r+v*s+w*t;g[I>>2]=x*r+y*s+z*t;g[J>>2]=Z*r+$*s+ba*t;g[Y+256+28>>2]=0.0;g[L>>2]=u*_+v*aa+w*ca;g[M>>2]=x*_+y*aa+z*ca;g[N>>2]=Z*_+$*aa+ba*ca;g[Y+256+44>>2]=0.0;g[O>>2]=da;g[P>>2]=ea;g[S>>2]=fa;g[Y+256+60>>2]=0.0;if(!(d&1)){n=c[p+32>>2]|0;u=+g[p+364>>2];h=+g[n+4>>2];v=+g[p+364+16>>2];j=+g[n+8>>2];w=+g[p+364+32>>2];q=+g[n+12>>2];x=+g[p+364+4>>2];y=+g[p+364+20>>2];z=+g[p+364+36>>2];Z=+g[p+364+8>>2];$=+g[p+364+24>>2];ba=+g[p+364+40>>2];r=+g[n+20>>2];s=+g[n+24>>2];t=+g[n+28>>2];_=+g[n+36>>2];aa=+g[n+40>>2];ca=+g[n+44>>2];e=+g[p+364+48>>2];f=+g[p+364+52>>2];fa=+g[p+364+56>>2];da=+g[n+52>>2]+(h*e+j*f+q*fa);ea=r*e+s*f+t*fa+ +g[n+56>>2];fa=_*e+aa*f+ca*fa+ +g[n+60>>2];g[Y+256>>2]=u*h+v*j+w*q;g[F>>2]=h*x+j*y+q*z;g[G>>2]=h*Z+j*$+q*ba;g[Y+256+12>>2]=0.0;g[H>>2]=u*r+v*s+w*t;g[I>>2]=x*r+y*s+z*t;g[J>>2]=Z*r+$*s+ba*t;g[Y+256+28>>2]=0.0;g[L>>2]=u*_+v*aa+w*ca;g[M>>2]=x*_+y*aa+z*ca;g[N>>2]=Z*_+$*aa+ba*ca;g[Y+256+44>>2]=0.0;g[O>>2]=da;g[P>>2]=ea;g[S>>2]=fa;g[Y+256+60>>2]=0.0}else{n=Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0;kc[c[(c[n>>2]|0)+56>>2]&7](n,Y+256|0,A);n=c[p+32>>2]|0;u=+g[p+364>>2];h=+g[n+4>>2];v=+g[p+364+16>>2];j=+g[n+8>>2];w=+g[p+364+32>>2];q=+g[n+12>>2];x=+g[p+364+4>>2];y=+g[p+364+20>>2];z=+g[p+364+36>>2];Z=+g[p+364+8>>2];$=+g[p+364+24>>2];ba=+g[p+364+40>>2];r=+g[n+20>>2];s=+g[n+24>>2];t=+g[n+28>>2];_=+g[n+36>>2];aa=+g[n+40>>2];ca=+g[n+44>>2];e=+g[p+364+48>>2];f=+g[p+364+52>>2];fa=+g[p+364+56>>2];da=+g[n+52>>2]+(h*e+j*f+q*fa);ea=r*e+s*f+t*fa+ +g[n+56>>2];fa=_*e+aa*f+ca*fa+ +g[n+60>>2];g[Y+256>>2]=u*h+v*j+w*q;g[F>>2]=h*x+j*y+q*z;g[G>>2]=h*Z+j*$+q*ba;g[Y+256+12>>2]=0.0;g[H>>2]=u*r+v*s+w*t;g[I>>2]=x*r+y*s+z*t;g[J>>2]=Z*r+$*s+ba*t;g[Y+256+28>>2]=0.0;g[L>>2]=u*_+v*aa+w*ca;g[M>>2]=x*_+y*aa+z*ca;g[N>>2]=Z*_+$*aa+ba*ca;g[Y+256+44>>2]=0.0;g[O>>2]=da;g[P>>2]=ea;g[S>>2]=fa;g[Y+256+60>>2]=0.0;n=Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0;kc[c[(c[n>>2]|0)+56>>2]&7](n,Y+256|0,A)}if(o&1|0){Ej(Y+240|0,p,6.0868353843688965,A);ba=+g[Y+240>>2];ca=+g[Y+240+4>>2];da=+g[Y+240+8>>2];ea=ba*+g[H>>2]+ca*+g[I>>2]+da*+g[J>>2]+ +g[P>>2];fa=ba*+g[L>>2]+ca*+g[M>>2]+da*+g[N>>2]+ +g[S>>2];g[Y+240>>2]=ba*+g[Y+256>>2]+ca*+g[F>>2]+da*+g[G>>2]+ +g[O>>2];g[Y+240+4>>2]=ea;g[Y+240+8>>2]=fa;g[Y+240+12>>2]=0.0;d=0;do{Ej(Y+224|0,p,+(d|0)*6.283185005187988*.03125,A);ba=+g[Y+224>>2];ca=+g[Y+224+4>>2];da=+g[Y+224+8>>2];ea=ba*+g[H>>2]+ca*+g[I>>2]+da*+g[J>>2]+ +g[P>>2];fa=ba*+g[L>>2]+ca*+g[M>>2]+da*+g[N>>2]+ +g[S>>2];g[Y+224>>2]=ba*+g[Y+256>>2]+ca*+g[F>>2]+da*+g[G>>2]+ +g[O>>2];g[Y+224+4>>2]=ea;g[Y+224+8>>2]=fa;g[Y+224+12>>2]=0.0;o=Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0;n=c[(c[o>>2]|0)+8>>2]|0;c[Y+192>>2]=0;c[Y+192+4>>2]=0;c[Y+192+8>>2]=0;c[Y+192+12>>2]=0;mc[n&127](o,Y+240|0,Y+224|0,Y+192|0);if(!(d&3)){o=Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0;n=c[(c[o>>2]|0)+8>>2]|0;c[Y+176>>2]=0;c[Y+176+4>>2]=0;c[Y+176+8>>2]=0;c[Y+176+12>>2]=0;mc[n&127](o,T,Y+224|0,Y+176|0)}c[Y+240>>2]=c[Y+224>>2];c[Y+240+4>>2]=c[Y+224+4>>2];c[Y+240+8>>2]=c[Y+224+8>>2];c[Y+240+12>>2]=c[Y+224+12>>2];d=d+1|0}while((d|0)!=32);y=+g[p+452>>2];z=+g[p+512>>2];d=c[p+32>>2]|0;if(+g[d+344>>2]>0.0){ba=+g[p+364>>2];ca=+g[d+4>>2];da=+g[p+364+16>>2];ea=+g[d+8>>2];fa=+g[p+364+32>>2];v=+g[d+12>>2];$=+g[p+364+4>>2];aa=+g[p+364+20>>2];u=+g[p+364+36>>2];Z=+g[p+364+8>>2];_=+g[p+364+24>>2];t=+g[p+364+40>>2];ha=+g[d+20>>2];ga=+g[d+24>>2];s=+g[d+28>>2];r=+g[d+36>>2];q=+g[d+40>>2];j=+g[d+44>>2];h=+g[p+364+48>>2];f=+g[p+364+52>>2];e=+g[p+364+56>>2];w=r*h+q*f+j*e+ +g[d+60>>2];x=ha*h+ga*f+s*e+ +g[d+56>>2];e=+g[d+52>>2]+(ca*h+ea*f+v*e);f=Z*r+_*q+t*j;h=$*r+aa*q+u*j;j=ba*r+da*q+fa*j;q=Z*ha+_*ga+t*s;r=$*ha+aa*ga+u*s;s=ba*ha+da*ga+fa*s;t=ca*Z+ea*_+v*t;u=ca*$+ea*aa+v*u;v=ba*ca+da*ea+fa*v}else{o=c[p+28>>2]|0;da=+g[p+300>>2];ea=+g[o+4>>2];fa=+g[p+300+16>>2];ga=+g[o+8>>2];ha=+g[p+300+32>>2];v=+g[o+12>>2];ba=+g[p+300+4>>2];ca=+g[p+300+20>>2];u=+g[p+300+36>>2];$=+g[p+300+8>>2];aa=+g[p+300+24>>2];t=+g[p+300+40>>2];Z=+g[o+20>>2];_=+g[o+24>>2];s=+g[o+28>>2];r=+g[o+36>>2];q=+g[o+40>>2];j=+g[o+44>>2];h=+g[p+300+48>>2];f=+g[p+300+52>>2];e=+g[p+300+56>>2];w=r*h+q*f+j*e+ +g[o+60>>2];x=Z*h+_*f+s*e+ +g[o+56>>2];e=+g[o+52>>2]+(ea*h+ga*f+v*e);f=$*r+aa*q+t*j;h=ba*r+ca*q+u*j;j=da*r+fa*q+ha*j;q=$*Z+aa*_+t*s;r=ba*Z+ca*_+u*s;s=da*Z+fa*_+ha*s;t=ea*$+ga*aa+v*t;u=ea*ba+ga*ca+v*u;v=da*ea+fa*ga+ha*v}g[Y+256>>2]=v;g[F>>2]=u;g[G>>2]=t;g[Y+256+12>>2]=0.0;g[H>>2]=s;g[I>>2]=r;g[J>>2]=q;g[Y+256+28>>2]=0.0;g[L>>2]=j;g[M>>2]=h;g[N>>2]=f;g[Y+256+44>>2]=0.0;g[O>>2]=e;g[P>>2]=x;g[S>>2]=w;g[Y+256+60>>2]=0.0;c[Y+224>>2]=c[T>>2];c[Y+224+4>>2]=c[T+4>>2];c[Y+224+8>>2]=c[T+8>>2];c[Y+224+12>>2]=c[T+12>>2];g[Y+160>>2]=v;g[Y+160+4>>2]=s;g[Y+160+8>>2]=j;g[Y+160+12>>2]=0.0;g[Y+144>>2]=u;g[Y+144+4>>2]=r;g[Y+144+8>>2]=h;g[Y+144+12>>2]=0.0;p=Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0;o=c[(c[p>>2]|0)+60>>2]|0;c[Y+128>>2]=0;c[Y+128+4>>2]=0;c[Y+128+8>>2]=0;c[Y+128+12>>2]=0;Lb[o&0](p,Y+224|0,Y+160|0,Y+144|0,A,A,-z-y,y-z,Y+128|0,1,10.0)}break b}case 6:case 9:{c[Y+256>>2]=c[p+1064>>2];c[Y+256+4>>2]=c[p+1064+4>>2];c[Y+256+8>>2]=c[p+1064+8>>2];c[Y+256+12>>2]=c[p+1064+12>>2];l=p+1064+16|0;c[U>>2]=c[l>>2];c[U+4>>2]=c[l+4>>2];c[U+8>>2]=c[l+8>>2];c[U+12>>2]=c[l+12>>2];m=p+1064+32|0;c[V>>2]=c[m>>2];c[V+4>>2]=c[m+4>>2];c[V+8>>2]=c[m+8>>2];c[V+12>>2]=c[m+12>>2];n=p+1064+48|0;c[W>>2]=c[n>>2];c[W+4>>2]=c[n+4>>2];c[W+8>>2]=c[n+8>>2];c[W+12>>2]=c[n+12>>2];if(!(d&1)){c[Y+256>>2]=c[p+1128>>2];c[Y+256+4>>2]=c[p+1128+4>>2];c[Y+256+8>>2]=c[p+1128+8>>2];c[Y+256+12>>2]=c[p+1128+12>>2];c[U>>2]=c[p+1128+16>>2];c[U+4>>2]=c[p+1128+16+4>>2];c[U+8>>2]=c[p+1128+16+8>>2];c[U+12>>2]=c[p+1128+16+12>>2];c[V>>2]=c[p+1128+32>>2];c[V+4>>2]=c[p+1128+32+4>>2];c[V+8>>2]=c[p+1128+32+8>>2];c[V+12>>2]=c[p+1128+32+12>>2];c[W>>2]=c[p+1128+48>>2];c[W+4>>2]=c[p+1128+48+4>>2];c[W+8>>2]=c[p+1128+48+8>>2];c[W+12>>2]=c[p+1128+48+12>>2]}else{d=Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0;kc[c[(c[d>>2]|0)+56>>2]&7](d,Y+256|0,A);c[Y+256>>2]=c[p+1128>>2];c[Y+256+4>>2]=c[p+1128+4>>2];c[Y+256+8>>2]=c[p+1128+8>>2];c[Y+256+12>>2]=c[p+1128+12>>2];c[U>>2]=c[p+1128+16>>2];c[U+4>>2]=c[p+1128+16+4>>2];c[U+8>>2]=c[p+1128+16+8>>2];c[U+12>>2]=c[p+1128+16+12>>2];c[V>>2]=c[p+1128+32>>2];c[V+4>>2]=c[p+1128+32+4>>2];c[V+8>>2]=c[p+1128+32+8>>2];c[V+12>>2]=c[p+1128+32+12>>2];c[W>>2]=c[p+1128+48>>2];c[W+4>>2]=c[p+1128+48+4>>2];c[W+8>>2]=c[p+1128+48+8>>2];c[W+12>>2]=c[p+1128+48+12>>2];d=Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0;kc[c[(c[d>>2]|0)+56>>2]&7](d,Y+256|0,A)}if(o&1|0){c[Y+256>>2]=c[p+1064>>2];c[Y+256+4>>2]=c[p+1064+4>>2];c[Y+256+8>>2]=c[p+1064+8>>2];c[Y+256+12>>2]=c[p+1064+12>>2];c[U>>2]=c[l>>2];c[U+4>>2]=c[l+4>>2];c[U+8>>2]=c[l+8>>2];c[U+12>>2]=c[l+12>>2];c[V>>2]=c[m>>2];c[V+4>>2]=c[m+4>>2];c[V+8>>2]=c[m+8>>2];c[V+12>>2]=c[m+12>>2];c[W>>2]=c[n>>2];c[W+4>>2]=c[n+4>>2];c[W+8>>2]=c[n+8>>2];c[W+12>>2]=c[n+12>>2];d=p+1128+48|0;c[Y+240>>2]=c[Y+256+8>>2];c[Y+240+4>>2]=c[Y+256+24>>2];c[Y+240+8>>2]=c[Y+256+40>>2];g[Y+240+12>>2]=0.0;c[Y+224>>2]=c[Y+256>>2];c[Y+224+4>>2]=c[Y+256+16>>2];c[Y+224+8>>2]=c[Y+256+32>>2];g[Y+224+12>>2]=0.0;da=+g[p+932>>2];e=+g[p+932+4>>2];ga=+g[p+996>>2];fa=+g[p+996+4>>2];ja=Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0;ia=c[(c[ja>>2]|0)+64>>2]|0;c[Y+112>>2]=0;c[Y+112+4>>2]=0;c[Y+112+8>>2]=0;c[Y+112+12>>2]=0;dc[ia&0](ja,d,Y+240|0,Y+224|0,A*.8999999761581421,da,e,ga,fa,Y+112|0,10.0,1);ja=c[Y+256+4>>2]|0;ia=c[Y+256+20>>2]|0;o=c[Y+256+36>>2]|0;c[Y+224>>2]=ja;c[Y+224+4>>2]=ia;c[Y+224+8>>2]=o;g[Y+224+12>>2]=0.0;fa=+g[p+1196>>2];ga=+g[p+1200>>2];e=+Q(+fa);fa=+R(+fa);da=+Q(+ga);ga=+R(+ga);ea=(c[k>>2]=ja,+g[k>>2]);ha=(c[k>>2]=ia,+g[k>>2]);f=(c[k>>2]=o,+g[k>>2]);g[Y+160>>2]=e*da*ea+e*ga*ha-fa*f;g[Y+160+4>>2]=da*ha-ga*ea;g[Y+160+8>>2]=fa*da*ea+fa*ga*ha+e*f;c[Y+256>>2]=c[p+1128>>2];c[Y+256+4>>2]=c[p+1128+4>>2];c[Y+256+8>>2]=c[p+1128+8>>2];c[Y+256+12>>2]=c[p+1128+12>>2];c[U>>2]=c[p+1128+16>>2];c[U+4>>2]=c[p+1128+16+4>>2];c[U+8>>2]=c[p+1128+16+8>>2];c[U+12>>2]=c[p+1128+16+12>>2];c[V>>2]=c[p+1128+32>>2];c[V+4>>2]=c[p+1128+32+4>>2];c[V+8>>2]=c[p+1128+32+8>>2];c[V+12>>2]=c[p+1128+32+12>>2];c[W>>2]=c[d>>2];c[W+4>>2]=c[d+4>>2];c[W+8>>2]=c[d+8>>2];c[W+12>>2]=c[d+12>>2];f=-+g[Y+256+16>>2];e=-+g[Y+256+32>>2];g[Y+144>>2]=-+g[Y+256>>2];g[Y+144+4>>2]=f;g[Y+144+8>>2]=e;g[Y+144+12>>2]=0.0;e=+g[p+868>>2];f=+g[p+868+4>>2];if(!(e>f)){if(e>2]|0)+20>>2]&127](b)|0;ia=c[(c[ja>>2]|0)+60>>2]|0;c[Y+80>>2]=0;c[Y+80+4>>2]=0;c[Y+80+8>>2]=0;c[Y+80+12>>2]=0;Lb[ia&0](ja,d,Y+144|0,Y+160|0,A,A,e,f,Y+80|0,1,10.0)}}else{ja=Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0;ia=c[(c[ja>>2]|0)+60>>2]|0;c[Y+96>>2]=0;c[Y+96+4>>2]=0;c[Y+96+8>>2]=0;c[Y+96+12>>2]=0;Lb[ia&0](ja,d,Y+144|0,Y+160|0,A,A,-3.1415927410125732,3.1415927410125732,Y+96|0,0,10.0)}c[Y+256>>2]=c[p+1064>>2];c[Y+256+4>>2]=c[p+1064+4>>2];c[Y+256+8>>2]=c[p+1064+8>>2];c[Y+256+12>>2]=c[p+1064+12>>2];c[U>>2]=c[l>>2];c[U+4>>2]=c[l+4>>2];c[U+8>>2]=c[l+8>>2];c[U+12>>2]=c[l+12>>2];c[V>>2]=c[m>>2];c[V+4>>2]=c[m+4>>2];c[V+8>>2]=c[m+8>>2];c[V+12>>2]=c[m+12>>2];c[W>>2]=c[n>>2];c[W+4>>2]=c[n+4>>2];c[W+8>>2]=c[n+8>>2];c[W+12>>2]=c[n+12>>2];c[Y+64>>2]=c[p+680>>2];c[Y+64+4>>2]=c[p+680+4>>2];c[Y+64+8>>2]=c[p+680+8>>2];c[Y+64+12>>2]=c[p+680+12>>2];c[Y+48>>2]=c[p+680+16>>2];c[Y+48+4>>2]=c[p+680+16+4>>2];c[Y+48+8>>2]=c[p+680+16+8>>2];c[Y+48+12>>2]=c[p+680+16+12>>2];ja=Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0;ia=c[(c[ja>>2]|0)+72>>2]|0;c[Y+32>>2]=0;c[Y+32+4>>2]=0;c[Y+32+8>>2]=0;c[Y+32+12>>2]=0;yb[ia&31](ja,Y+64|0,Y+48|0,Y+256|0,Y+32|0)}break b}case 7:{c[Y+256>>2]=c[p+824>>2];c[Y+256+4>>2]=c[p+824+4>>2];c[Y+256+8>>2]=c[p+824+8>>2];c[Y+256+12>>2]=c[p+824+12>>2];c[B>>2]=c[p+824+16>>2];c[B+4>>2]=c[p+824+16+4>>2];c[B+8>>2]=c[p+824+16+8>>2];c[B+12>>2]=c[p+824+16+12>>2];c[C>>2]=c[p+824+32>>2];c[C+4>>2]=c[p+824+32+4>>2];c[C+8>>2]=c[p+824+32+8>>2];c[C+12>>2]=c[p+824+32+12>>2];c[D>>2]=c[p+824+48>>2];c[D+4>>2]=c[p+824+48+4>>2];c[D+8>>2]=c[p+824+48+8>>2];c[D+12>>2]=c[p+824+48+12>>2];if(!(d&1)){c[Y+256>>2]=c[p+888>>2];c[Y+256+4>>2]=c[p+888+4>>2];c[Y+256+8>>2]=c[p+888+8>>2];c[Y+256+12>>2]=c[p+888+12>>2];c[B>>2]=c[p+888+16>>2];c[B+4>>2]=c[p+888+16+4>>2];c[B+8>>2]=c[p+888+16+8>>2];c[B+12>>2]=c[p+888+16+12>>2];c[C>>2]=c[p+888+32>>2];c[C+4>>2]=c[p+888+32+4>>2];c[C+8>>2]=c[p+888+32+8>>2];c[C+12>>2]=c[p+888+32+12>>2];c[D>>2]=c[p+888+48>>2];c[D+4>>2]=c[p+888+48+4>>2];c[D+8>>2]=c[p+888+48+8>>2];c[D+12>>2]=c[p+888+48+12>>2]}else{ja=Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0;kc[c[(c[ja>>2]|0)+56>>2]&7](ja,Y+256|0,A);c[Y+256>>2]=c[p+888>>2];c[Y+256+4>>2]=c[p+888+4>>2];c[Y+256+8>>2]=c[p+888+8>>2];c[Y+256+12>>2]=c[p+888+12>>2];c[B>>2]=c[p+888+16>>2];c[B+4>>2]=c[p+888+16+4>>2];c[B+8>>2]=c[p+888+16+8>>2];c[B+12>>2]=c[p+888+16+12>>2];c[C>>2]=c[p+888+32>>2];c[C+4>>2]=c[p+888+32+4>>2];c[C+8>>2]=c[p+888+32+8>>2];c[C+12>>2]=c[p+888+32+12>>2];c[D>>2]=c[p+888+48>>2];c[D+4>>2]=c[p+888+48+4>>2];c[D+8>>2]=c[p+888+48+8>>2];c[D+12>>2]=c[p+888+48+12>>2];ja=Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0;kc[c[(c[ja>>2]|0)+56>>2]&7](ja,Y+256|0,A)}if(o&1|0){d=a[p+180>>0]|0?p+824|0:p+888|0;l=c[d>>2]|0;o=c[d+4>>2]|0;m=c[d+16>>2]|0;ia=c[d+20>>2]|0;n=c[d+32>>2]|0;ja=c[d+36>>2]|0;y=+g[d+48>>2];$=+g[d+52>>2];da=+g[d+56>>2];ga=+g[p+184>>2];_=(c[k>>2]=l,+g[k>>2]);Z=(c[k>>2]=o,+g[k>>2])*0.0;z=+g[d+8>>2]*0.0;ca=(c[k>>2]=m,+g[k>>2]);ba=(c[k>>2]=ia,+g[k>>2])*0.0;aa=+g[d+24>>2]*0.0;ha=(c[k>>2]=n,+g[k>>2]);fa=(c[k>>2]=ja,+g[k>>2])*0.0;ea=+g[d+40>>2]*0.0;g[Y+240>>2]=y+(z+(Z+_*ga));g[Y+240+4>>2]=$+(aa+(ba+ca*ga));g[Y+240+8>>2]=da+(ea+(fa+ha*ga));g[Y+240+12>>2]=0.0;ga=+g[p+188>>2];g[Y+224>>2]=y+(z+(Z+_*ga));g[Y+224+4>>2]=$+(aa+(ba+ca*ga));g[Y+224+8>>2]=da+(ea+(fa+ha*ga));g[Y+224+12>>2]=0.0;d=Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0;ka=c[(c[d>>2]|0)+8>>2]|0;c[Y+16>>2]=0;c[Y+16+4>>2]=0;c[Y+16+8>>2]=0;c[Y+16+12>>2]=0;mc[ka&127](d,Y+240|0,Y+224|0,Y+16|0);c[Y+160>>2]=l;c[Y+160+4>>2]=m;c[Y+160+8>>2]=n;g[Y+160+12>>2]=0.0;c[Y+144>>2]=o;c[Y+144+4>>2]=ia;c[Y+144+8>>2]=ja;g[Y+144+12>>2]=0.0;ga=+g[p+192>>2];ha=+g[p+196>>2];ja=Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0;ia=c[(c[ja>>2]|0)+60>>2]|0;c[Y>>2]=0;c[Y+4>>2]=0;c[Y+8>>2]=0;c[Y+12>>2]=0;Lb[ia&0](ja,p+888+48|0,Y+160|0,Y+144|0,A,A,ga,ha,Y,1,10.0)}break b}default:break b}while(0);d=X}}while(0);if((((Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0?(ka=Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0,(Eb[c[(c[ka>>2]|0)+48>>2]&127](ka)|0)&16387|0):0)?Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0:0)?(ka=Eb[c[(c[b>>2]|0)+20>>2]&127](b)|0,Eb[c[(c[ka>>2]|0)+48>>2]&127](ka)|0):0)?(c[b+280>>2]|0)>0:0){d=0;do{ka=c[(c[b+288>>2]|0)+(d<<2)>>2]|0;Cb[c[(c[ka>>2]|0)+12>>2]&127](ka,c[b+72>>2]|0);d=d+1|0}while((d|0)<(c[b+280>>2]|0))}d=c[2357]|0;ka=(c[d+16>>2]|0)+-1|0;c[d+16>>2]=ka;if(ka|0){i=Y;return}do if(c[d+4>>2]|0){tb(Y+256|0,0)|0;ka=c[6434]|0;g[d+8>>2]=+g[d+8>>2]+ +(((c[Y+256+4>>2]|0)-(c[ka+4>>2]|0)+(((c[Y+256>>2]|0)-(c[ka>>2]|0)|0)*1e6|0)-(c[d+12>>2]|0)|0)>>>0)/1.0e3;if(!(c[d+16>>2]|0)){d=c[2357]|0;break}else{i=Y;return}}while(0);c[2357]=c[d+20>>2];i=Y;return}function uc(b,e,f){b=b|0;e=e|0;f=f|0;var g=0,h=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0;z=i;i=i+80|0;mf(b,e,f)|0;a[z+16>>0]=1;c[z+12>>2]=0;c[z+4>>2]=0;c[z+8>>2]=0;a[z+36>>0]=1;c[z+32>>2]=0;c[z+24>>2]=0;c[z+28>>2]=0;a[z+56>>0]=1;c[z+52>>2]=0;c[z+44>>2]=0;c[z+48>>2]=0;a[z+76>>0]=1;c[z+72>>2]=0;c[z+64>>2]=0;c[z+68>>2]=0;x=c[b+872>>2]|0;c[e+292>>2]=x;if(x){x=Zb[c[(c[f>>2]|0)+28>>2]&31](f,b+868|0)|0;c[e+260>>2]=x;if(x|0){h=c[e+292>>2]|0;n=Ob[c[(c[f>>2]|0)+16>>2]&63](f,4,h)|0;if((h|0)>0){l=0;m=c[n+8>>2]|0;while(1){j=c[(c[b+880>>2]|0)+(l<<2)>>2]|0;if(!j){g=0;k=0}else{g=j;k=Zb[c[(c[f>>2]|0)+28>>2]&31](f,j)|0}c[m>>2]=k;if(!(Zb[c[(c[f>>2]|0)+24>>2]&31](f,g)|0)){x=Ob[c[(c[f>>2]|0)+16>>2]&63](f,16,1)|0;s=c[x+8>>2]|0;c[s+12>>2]=c[j+16>>2];c[s+4>>2]=c[j+8>>2];c[s>>2]=c[j+4>>2];c[s+8>>2]=c[j+12>>2];yb[c[(c[f>>2]|0)+20>>2]&31](f,x,10691,1414349395,g)}l=l+1|0;if((l|0)>=(h|0)){g=f;break}else m=m+4|0}}else g=f;yb[c[(c[g>>2]|0)+20>>2]&31](f,n,10691,1497453121,b+868|0)}}else c[e+260>>2]=0;x=c[b+712>>2]|0;c[e+296>>2]=x;if(x){x=Zb[c[(c[f>>2]|0)+28>>2]&31](f,b+708|0)|0;c[e+264>>2]=x;if(x|0){p=c[e+296>>2]|0;q=Ob[c[(c[f>>2]|0)+16>>2]&63](f,100,p)|0;if((p|0)>0){r=0;s=c[q+8>>2]|0;while(1){h=c[b+720>>2]|0;c[s+52>>2]=c[h+(r*104|0)+56>>2];c[s+56>>2]=c[h+(r*104|0)+60>>2];c[s+60>>2]=c[h+(r*104|0)+64>>2];c[s+64>>2]=c[h+(r*104|0)+68>>2];c[s+88>>2]=c[h+(r*104|0)+92>>2];c[s+92>>2]=(a[h+(r*104|0)+100>>0]<<7&255)<<24>>24>>7<<24>>24;c[s+84>>2]=c[h+(r*104|0)+88>>2];g=c[h+(r*104|0)+4>>2]|0;if(!g){j=0;g=h}else{j=Zb[c[(c[f>>2]|0)+28>>2]&31](f,g)|0;g=c[b+720>>2]|0}c[s>>2]=j;c[s+68>>2]=c[g+(r*104|0)+72>>2];c[s+72>>2]=c[g+(r*104|0)+76>>2];c[s+76>>2]=c[g+(r*104|0)+80>>2];c[s+80>>2]=c[g+(r*104|0)+84>>2];c[s+4>>2]=c[g+(r*104|0)+8>>2];c[s+8>>2]=c[g+(r*104|0)+12>>2];c[s+12>>2]=c[g+(r*104|0)+16>>2];c[s+16>>2]=c[g+(r*104|0)+20>>2];c[s+20>>2]=c[g+(r*104|0)+24>>2];c[s+24>>2]=c[g+(r*104|0)+28>>2];c[s+28>>2]=c[g+(r*104|0)+32>>2];c[s+32>>2]=c[g+(r*104|0)+36>>2];c[s+36>>2]=c[g+(r*104|0)+40>>2];c[s+40>>2]=c[g+(r*104|0)+44>>2];c[s+44>>2]=c[g+(r*104|0)+48>>2];c[s+48>>2]=c[g+(r*104|0)+52>>2];l=(c[b+720>>2]|0)+(r*104|0)|0;o=(l+~(l<<15)>>10^l+~(l<<15))*9|0;o=(o>>6^o)+~((o>>6^o)<<11)>>16^(o>>6^o)+~((o>>6^o)<<11);m=c[z+48>>2]|0;a:do if((o&m+-1)>>>0<(c[z+4>>2]|0)>>>0?(w=c[(c[z+12>>2]|0)+((o&m+-1)<<2)>>2]|0,(w|0)!=-1):0){h=c[z+72>>2]|0;j=c[z+32>>2]|0;g=w;while(1){if((l|0)==(c[h+(g<<3)>>2]|0))break;g=c[j+(g<<2)>>2]|0;if((g|0)==-1){y=27;break a}}c[(c[z+52>>2]|0)+(g<<2)>>2]=r}else y=27;while(0);if((y|0)==27){y=0;n=c[z+44>>2]|0;if((n|0)==(m|0)){g=m|0?m<<1:1;if((m|0)<(g|0)){if((g|0)!=0?(c[6435]=(c[6435]|0)+1,t=yc((g<<2|3)+16|0)|0,(t|0)!=0):0){c[(t+4+15&-16)+-4>>2]=t;k=t+4+15&-16}else k=0;j=c[z+52>>2]|0;if((m|0)<=0)if(!j)h=m;else y=35;else{h=0;do{c[k+(h<<2)>>2]=c[j+(h<<2)>>2];h=h+1|0}while((h|0)!=(m|0));y=35}if((y|0)==35){y=0;if(a[z+56>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}c[z+52>>2]=0;h=c[z+44>>2]|0}a[z+56>>0]=1;c[z+52>>2]=k;c[z+48>>2]=g}else{g=m;h=m}}else{g=m;h=n}c[(c[z+52>>2]|0)+(h<<2)>>2]=r;c[z+44>>2]=h+1;h=c[z+64>>2]|0;if((h|0)==(c[z+68>>2]|0)?(u=h|0?h<<1:1,(h|0)<(u|0)):0){if((u|0)!=0?(c[6435]=(c[6435]|0)+1,v=yc((u<<3|3)+16|0)|0,(v|0)!=0):0){c[(v+4+15&-16)+-4>>2]=v;j=v+4+15&-16}else j=0;if((h|0)>0){g=0;do{A=(c[z+72>>2]|0)+(g<<3)|0;k=c[A+4>>2]|0;x=j+(g<<3)|0;c[x>>2]=c[A>>2];c[x+4>>2]=k;g=g+1|0}while((g|0)!=(h|0))}g=c[z+72>>2]|0;if(g|0){if(a[z+76>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[g+-4>>2]|0)}c[z+72>>2]=0}a[z+76>>0]=1;c[z+72>>2]=j;c[z+68>>2]=u;h=c[z+64>>2]|0;g=c[z+48>>2]|0}c[(c[z+72>>2]|0)+(h<<3)>>2]=l;c[z+64>>2]=h+1;if((m|0)<(g|0)){m=c[z+4>>2]|0;do if((g|0)>(m|0)){if((g|0)>=(m|0)){b:do if((c[z+8>>2]|0)<(g|0)){do if(!g)h=0;else{c[6435]=(c[6435]|0)+1;h=yc((g<<2|3)+16|0)|0;if(!h){h=0;break}c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}while(0);j=c[z+12>>2]|0;do if((m|0)>0){k=0;do{c[h+(k<<2)>>2]=c[j+(k<<2)>>2];k=k+1|0}while((k|0)!=(m|0))}else{if(j|0)break;a[z+16>>0]=1;c[z+12>>2]=h;c[z+8>>2]=g;break b}while(0);if(a[z+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}a[z+16>>0]=1;c[z+12>>2]=h;c[z+8>>2]=g}else h=c[z+12>>2]|0;while(0);Qn(h+(m<<2)|0,0,g-m<<2|0)|0}c[z+4>>2]=g;l=c[z+24>>2]|0;if((g|0)>(l|0)){c:do if((c[z+28>>2]|0)<(g|0)){do if(!g)h=0;else{c[6435]=(c[6435]|0)+1;h=yc((g<<2|3)+16|0)|0;if(!h){h=0;break}c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}while(0);j=c[z+32>>2]|0;do if((l|0)>0){k=0;do{c[h+(k<<2)>>2]=c[j+(k<<2)>>2];k=k+1|0}while((k|0)!=(l|0))}else{if(j|0)break;a[z+36>>0]=1;c[z+32>>2]=h;c[z+28>>2]=g;break c}while(0);if(a[z+36>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[j+-4>>2]|0)}a[z+36>>0]=1;c[z+32>>2]=h;c[z+28>>2]=g}else h=c[z+32>>2]|0;while(0);Qn(h+(l<<2)|0,0,g-l<<2|0)|0}c[z+24>>2]=g;if((g|0)>0){A=g<<2;Qn(c[z+12>>2]|0,-1,A|0)|0;Qn(c[z+32>>2]|0,-1,A|0)|0}if((m|0)<=0){g=c[z+48>>2]|0;break}h=c[z+72>>2]|0;j=c[z+12>>2]|0;k=c[z+32>>2]|0;g=c[z+48>>2]|0;l=0;do{A=c[h+(l<<3)>>2]|0;A=(A+~(A<<15)>>10^A+~(A<<15))*9|0;A=j+((((A>>6^A)+~((A>>6^A)<<11)>>16^(A>>6^A)+~((A>>6^A)<<11))&g+-1)<<2)|0;c[k+(l<<2)>>2]=c[A>>2];c[A>>2]=l;l=l+1|0}while((l|0)!=(m|0))}while(0);g=o&g+-1}else g=o&m+-1;A=(c[z+12>>2]|0)+(g<<2)|0;c[(c[z+32>>2]|0)+(n<<2)>>2]=c[A>>2];c[A>>2]=n}r=r+1|0;if((r|0)>=(p|0))break;else s=s+100|0}}yb[c[(c[f>>2]|0)+20>>2]&31](f,q,10712,1145979475,b+708|0)}}else c[e+264>>2]=0;A=c[b+732>>2]|0;c[e+300>>2]=A;if(A){A=Zb[c[(c[f>>2]|0)+28>>2]&31](f,c[b+740>>2]|0)|0;c[e+268>>2]=A;if(A|0){k=c[e+300>>2]|0;n=Ob[c[(c[f>>2]|0)+16>>2]&63](f,20,k)|0;if((k|0)>0){j=c[b+740>>2]|0;g=j;l=0;m=c[n+8>>2]|0;while(1){c[m+16>>2]=(a[j+(l*52|0)+20>>0]<<7&255)<<24>>24>>7<<24>>24;h=c[j+(l*52|0)+4>>2]|0;if(!h)h=0;else{h=Zb[c[(c[f>>2]|0)+28>>2]&31](f,h)|0;j=c[b+740>>2]|0;g=j}c[m>>2]=h;h=c[j+(l*52|0)+8>>2]|0;if(!h)h=-1;else h=(h-(c[b+720>>2]|0)|0)/104|0;c[m+4>>2]=h;h=c[j+(l*52|0)+12>>2]|0;if(!h)h=-1;else h=(h-(c[b+720>>2]|0)|0)/104|0;c[m+8>>2]=h;c[m+12>>2]=c[j+(l*52|0)+16>>2];l=l+1|0;if((l|0)>=(k|0))break;else m=m+20|0}}else g=c[b+740>>2]|0;yb[c[(c[f>>2]|0)+20>>2]&31](f,n,10729,1497453121,g)}}else c[e+268>>2]=0;A=c[b+752>>2]|0;c[e+304>>2]=A;if(A){A=Zb[c[(c[f>>2]|0)+28>>2]&31](f,c[b+760>>2]|0)|0;c[e+272>>2]=A;if(A|0){j=c[e+304>>2]|0;m=Ob[c[(c[f>>2]|0)+16>>2]&63](f,36,j)|0;if((j|0)>0){g=c[b+760>>2]|0;k=0;l=c[m+8>>2]|0;while(1){h=c[g+(k*44|0)+4>>2]|0;if(!h)h=0;else{h=Zb[c[(c[f>>2]|0)+28>>2]&31](f,h)|0;g=c[b+760>>2]|0}c[l+16>>2]=h;c[l>>2]=c[g+(k*44|0)+20>>2];c[l+4>>2]=c[g+(k*44|0)+24>>2];c[l+8>>2]=c[g+(k*44|0)+28>>2];c[l+12>>2]=c[g+(k*44|0)+32>>2];g=c[b+760>>2]|0;h=c[g+(k*44|0)+8>>2]|0;if(!h)h=-1;else h=(h-(c[b+720>>2]|0)|0)/104|0;c[l+20>>2]=h;h=c[g+(k*44|0)+12>>2]|0;if(!h)h=-1;else h=(h-(c[b+720>>2]|0)|0)/104|0;c[l+24>>2]=h;h=c[g+(k*44|0)+16>>2]|0;if(!h)h=-1;else h=(h-(c[b+720>>2]|0)|0)/104|0;c[l+28>>2]=h;c[l+32>>2]=c[g+(k*44|0)+36>>2];k=k+1|0;if((k|0)>=(j|0))break;else l=l+36|0}}else g=c[b+760>>2]|0;yb[c[(c[f>>2]|0)+20>>2]&31](f,m,10746,1497453121,g)}}else c[e+272>>2]=0;A=c[b+772>>2]|0;c[e+308>>2]=A;if(A){A=Zb[c[(c[f>>2]|0)+28>>2]&31](f,c[b+780>>2]|0)|0;c[e+276>>2]=A;if(A|0){j=c[e+308>>2]|0;m=Ob[c[(c[f>>2]|0)+16>>2]&63](f,100,j)|0;if((j|0)>0){k=0;l=c[m+8>>2]|0;while(1){h=c[b+780>>2]|0;c[l>>2]=c[h+(k*104|0)+32>>2];c[l+4>>2]=c[h+(k*104|0)+36>>2];c[l+8>>2]=c[h+(k*104|0)+40>>2];c[l+12>>2]=c[h+(k*104|0)+44>>2];g=c[h+8>>2]|0;if(!g)g=-1;else g=(g-(c[b+720>>2]|0)|0)/104|0;c[l+68>>2]=g;c[l+16>>2]=c[h+(k*104|0)+48>>2];c[l+20>>2]=c[h+(k*104|0)+52>>2];c[l+24>>2]=c[h+(k*104|0)+56>>2];c[l+28>>2]=c[h+(k*104|0)+60>>2];g=c[h+116>>2]|0;if(!g)g=-1;else g=(g-(c[b+720>>2]|0)|0)/104|0;c[l+72>>2]=g;c[l+32>>2]=c[h+(k*104|0)+64>>2];c[l+36>>2]=c[h+(k*104|0)+68>>2];c[l+40>>2]=c[h+(k*104|0)+72>>2];c[l+44>>2]=c[h+(k*104|0)+76>>2];g=c[h+224>>2]|0;if(!g)g=-1;else g=(g-(c[b+720>>2]|0)|0)/104|0;c[l+76>>2]=g;c[l+48>>2]=c[h+(k*104|0)+80>>2];c[l+52>>2]=c[h+(k*104|0)+84>>2];c[l+56>>2]=c[h+(k*104|0)+88>>2];c[l+60>>2]=c[h+(k*104|0)+92>>2];g=c[h+332>>2]|0;if(!g)g=-1;else g=(g-(c[b+720>>2]|0)|0)/104|0;c[l+80>>2]=g;c[l+88>>2]=c[h+(k*104|0)+96>>2];g=c[b+780>>2]|0;c[l+92>>2]=c[g+(k*104|0)+100>>2];g=c[g+(k*104|0)+4>>2]|0;if(!g)g=0;else g=Zb[c[(c[f>>2]|0)+28>>2]&31](f,g)|0;c[l+64>>2]=g;g=c[b+780>>2]|0;c[l+84>>2]=c[g+(k*104|0)+24>>2];k=k+1|0;if((k|0)>=(j|0))break;else l=l+100|0}}else g=c[b+780>>2]|0;yb[c[(c[f>>2]|0)+20>>2]&31](f,m,10763,1497453121,g)}}else c[e+276>>2]=0;A=c[b+792>>2]|0;c[e+312>>2]=A;if(A){A=Zb[c[(c[f>>2]|0)+28>>2]&31](f,c[b+800>>2]|0)|0;c[e+280>>2]=A;if(!A)x=f;else{j=c[e+312>>2]|0;k=Ob[c[(c[f>>2]|0)+16>>2]&63](f,92,j)|0;if((j|0)>0){l=0;m=c[k+8>>2]|0;while(1){h=c[b+800>>2]|0;c[m>>2]=c[h+(l*96|0)+28>>2];c[m+4>>2]=c[h+(l*96|0)+32>>2];c[m+8>>2]=c[h+(l*96|0)+36>>2];c[m+12>>2]=c[h+(l*96|0)+40>>2];c[m+16>>2]=c[h+(l*96|0)+44>>2];c[m+20>>2]=c[h+(l*96|0)+48>>2];c[m+24>>2]=c[h+(l*96|0)+52>>2];c[m+28>>2]=c[h+(l*96|0)+56>>2];c[m+32>>2]=c[h+(l*96|0)+60>>2];c[m+36>>2]=c[h+(l*96|0)+64>>2];c[m+40>>2]=c[h+(l*96|0)+68>>2];c[m+44>>2]=c[h+(l*96|0)+72>>2];c[m+48>>2]=c[h+(l*96|0)+76>>2];c[m+52>>2]=c[h+(l*96|0)+80>>2];c[m+56>>2]=c[h+(l*96|0)+84>>2];c[m+60>>2]=c[h+(l*96|0)+88>>2];c[m+88>>2]=c[h+(l*96|0)+92>>2];h=c[b+800>>2]|0;c[m+64>>2]=c[h+(l*96|0)+4>>2];c[m+68>>2]=c[h+(l*96|0)+8>>2];c[m+72>>2]=c[h+(l*96|0)+12>>2];c[m+76>>2]=c[h+(l*96|0)+16>>2];g=c[h+(l*96|0)>>2]|0;if(!g)g=-1;else g=(g-(c[b+720>>2]|0)|0)/104|0;c[m+84>>2]=g;g=c[h+(l*96|0)+20>>2]|0;if(!g)g=0;else g=Zb[c[(c[f>>2]|0)+28>>2]&31](f,g)|0;c[m+80>>2]=g;l=l+1|0;if((l|0)>=(j|0))break;else m=m+92|0}}yb[c[(c[f>>2]|0)+20>>2]&31](f,k,10781,1497453121,c[b+800>>2]|0);x=f}}else{c[e+280>>2]=0;x=f}c[e+352>>2]=c[b+316>>2];c[e+328>>2]=c[b+292>>2];c[e+344>>2]=c[b+308>>2];c[e+324>>2]=c[b+288>>2];c[e+340>>2]=c[b+304>>2];c[e+336>>2]=c[b+300>>2];c[e+412>>2]=c[b+376>>2];c[e+416>>2]=c[b+380>>2];c[e+420>>2]=c[b+384>>2];c[e+408>>2]=c[b+372>>2];n=c[b+364>>2]|0;c[e+332>>2]=c[b+296>>2];c[e+356>>2]=c[b+320>>2];c[e+424>>2]=c[b+388>>2];c[e+348>>2]=c[b+312>>2];c[e+360>>2]=c[b+324>>2];c[e+364>>2]=c[b+328>>2];c[e+368>>2]=c[b+332>>2];c[e+372>>2]=c[b+336>>2];c[e+404>>2]=c[b+368>>2];c[e+400>>2]=n;c[e+376>>2]=c[b+340>>2];c[e+380>>2]=c[b+344>>2];c[e+384>>2]=c[b+348>>2];c[e+388>>2]=c[b+352>>2];c[e+392>>2]=c[b+356>>2];c[e+396>>2]=c[b+360>>2];c[e+256>>2]=Zb[c[(c[x>>2]|0)+28>>2]&31](f,b+472|0)|0;n=Ob[c[(c[f>>2]|0)+16>>2]&63](f,192,1)|0;m=c[n+8>>2]|0;c[m+96>>2]=c[b+632>>2];c[m+100>>2]=c[b+636>>2];c[m+104>>2]=c[b+640>>2];c[m+108>>2]=c[b+644>>2];c[m+112>>2]=c[b+648>>2];c[m+116>>2]=c[b+652>>2];c[m+120>>2]=c[b+656>>2];c[m+124>>2]=c[b+660>>2];c[m+128>>2]=c[b+664>>2];c[m+132>>2]=c[b+668>>2];c[m+136>>2]=c[b+672>>2];c[m+140>>2]=c[b+676>>2];c[m+180>>2]=d[b+473>>0];c[m+176>>2]=d[b+472>>0];c[m+144>>2]=c[b+520>>2];c[m+148>>2]=c[b+524>>2];c[m+152>>2]=c[b+528>>2];c[m+156>>2]=c[b+532>>2];A=c[b+484>>2]|0;c[m+168>>2]=A;if(A){A=Zb[c[(c[x>>2]|0)+28>>2]&31](f,c[b+492>>2]|0)|0;h=c[m+168>>2]|0;c[m+160>>2]=A;if(h|0){l=Ob[c[(c[f>>2]|0)+16>>2]&63](f,16,h)|0;if((h|0)>0){g=c[b+492>>2]|0;j=0;k=c[l+8>>2]|0;while(1){c[k>>2]=c[g+(j<<4)>>2];c[k+4>>2]=c[g+(j<<4)+4>>2];c[k+8>>2]=c[g+(j<<4)+8>>2];c[k+12>>2]=c[g+(j<<4)+12>>2];j=j+1|0;if((j|0)==(h|0))break;else k=k+16|0}}else g=c[b+492>>2]|0;yb[c[(c[f>>2]|0)+20>>2]&31](f,l,19308,1497453121,g)}}else c[m+160>>2]=0;c[m+184>>2]=c[b+476>>2];c[m>>2]=c[b+536>>2];c[m+4>>2]=c[b+540>>2];c[m+8>>2]=c[b+544>>2];c[m+12>>2]=c[b+548>>2];c[m+16>>2]=c[b+552>>2];c[m+20>>2]=c[b+556>>2];c[m+24>>2]=c[b+560>>2];c[m+28>>2]=c[b+564>>2];c[m+32>>2]=c[b+568>>2];c[m+36>>2]=c[b+572>>2];c[m+40>>2]=c[b+576>>2];c[m+44>>2]=c[b+580>>2];c[m+48>>2]=c[b+584>>2];c[m+52>>2]=c[b+588>>2];c[m+56>>2]=c[b+592>>2];c[m+60>>2]=c[b+596>>2];c[m+64>>2]=c[b+600>>2];c[m+68>>2]=c[b+604>>2];c[m+72>>2]=c[b+608>>2];c[m+76>>2]=c[b+612>>2];c[m+80>>2]=c[b+616>>2];c[m+84>>2]=c[b+620>>2];c[m+88>>2]=c[b+624>>2];c[m+92>>2]=c[b+628>>2];A=c[b+504>>2]|0;c[m+172>>2]=A;if(A){A=Zb[c[(c[x>>2]|0)+28>>2]&31](f,c[b+512>>2]|0)|0;k=c[m+172>>2]|0;c[m+164>>2]=A;if(!k)y=153;else{l=Ob[c[(c[f>>2]|0)+16>>2]&63](f,4,k)|0;if((k|0)>0){g=c[b+512>>2]|0;h=0;j=c[l+8>>2]|0;while(1){c[j>>2]=c[g+(h<<2)>>2];h=h+1|0;if((h|0)==(k|0))break;else j=j+4|0}}else g=c[b+512>>2]|0;yb[c[(c[f>>2]|0)+20>>2]&31](f,l,10801,1497453121,g);w=f}}else{c[m+164>>2]=0;y=153}if((y|0)==153)w=f;yb[c[(c[w>>2]|0)+20>>2]&31](f,n,10807,1497453121,b+472|0);A=c[b+1112>>2]|0;c[e+316>>2]=A;if(A){A=Zb[c[(c[x>>2]|0)+28>>2]&31](f,c[c[b+1120>>2]>>2]|0)|0;q=c[e+316>>2]|0;c[e+284>>2]=A;if(q|0){r=Ob[c[(c[f>>2]|0)+16>>2]&63](f,348,q)|0;if((q|0)>0){s=c[z+12>>2]|0;t=c[z+52>>2]|0;u=0;v=c[r+8>>2]|0;while(1){h=c[(c[b+1120>>2]|0)+(u<<2)>>2]|0;A=v+320|0;c[A>>2]=c[h+360>>2];c[v+256>>2]=c[h+332>>2];c[v+260>>2]=c[h+336>>2];c[v+264>>2]=c[h+340>>2];c[v+268>>2]=c[h+344>>2];c[v+344>>2]=c[h+380>>2];c[v+340>>2]=d[h+377>>0];c[v+160>>2]=c[h+228>>2];c[v+164>>2]=c[h+232>>2];c[v+168>>2]=c[h+236>>2];c[v+172>>2]=c[h+240>>2];c[v+336>>2]=d[h+376>>0];c[v+208>>2]=c[h+276>>2];c[v+212>>2]=c[h+280>>2];c[v+216>>2]=c[h+284>>2];c[v+220>>2]=c[h+288>>2];c[v+224>>2]=c[h+292>>2];c[v+228>>2]=c[h+296>>2];c[v+232>>2]=c[h+300>>2];c[v+236>>2]=c[h+304>>2];h=c[(c[b+1120>>2]|0)+(u<<2)>>2]|0;c[v>>2]=c[h+60>>2];c[v+4>>2]=c[h+64>>2];c[v+8>>2]=c[h+68>>2];c[v+12>>2]=c[h+72>>2];c[v+16>>2]=c[h+76>>2];c[v+20>>2]=c[h+80>>2];c[v+24>>2]=c[h+84>>2];c[v+28>>2]=c[h+88>>2];c[v+32>>2]=c[h+92>>2];c[v+36>>2]=c[h+96>>2];c[v+40>>2]=c[h+100>>2];c[v+44>>2]=c[h+104>>2];c[v+48>>2]=c[h+108>>2];c[v+52>>2]=c[h+112>>2];c[v+56>>2]=c[h+116>>2];c[v+60>>2]=c[h+120>>2];c[v+296>>2]=c[h+124>>2];h=c[(c[b+1120>>2]|0)+(u<<2)>>2]|0;c[v+300>>2]=c[h+128>>2];c[v+112>>2]=c[h+180>>2];c[v+116>>2]=c[h+184>>2];c[v+120>>2]=c[h+188>>2];c[v+124>>2]=c[h+192>>2];c[v+128>>2]=c[h+196>>2];c[v+132>>2]=c[h+200>>2];c[v+136>>2]=c[h+204>>2];c[v+140>>2]=c[h+208>>2];c[v+144>>2]=c[h+212>>2];c[v+148>>2]=c[h+216>>2];c[v+152>>2]=c[h+220>>2];c[v+156>>2]=c[h+224>>2];g=v+316|0;c[g>>2]=c[h+356>>2];c[v+64>>2]=c[h+132>>2];c[v+68>>2]=c[h+136>>2];c[v+72>>2]=c[h+140>>2];c[v+76>>2]=c[h+144>>2];c[v+80>>2]=c[h+148>>2];c[v+84>>2]=c[h+152>>2];c[v+88>>2]=c[h+156>>2];c[v+92>>2]=c[h+160>>2];c[v+96>>2]=c[h+164>>2];c[v+100>>2]=c[h+168>>2];c[v+104>>2]=c[h+172>>2];c[v+108>>2]=c[h+176>>2];h=c[(c[b+1120>>2]|0)+(u<<2)>>2]|0;c[v+240>>2]=c[h+316>>2];c[v+244>>2]=c[h+320>>2];c[v+248>>2]=c[h+324>>2];c[v+252>>2]=c[h+328>>2];c[v+324>>2]=c[h+364>>2];c[v+328>>2]=c[h+368>>2];c[v+312>>2]=c[h+352>>2];c[g>>2]=c[h+356>>2];c[A>>2]=c[h+360>>2];c[v+332>>2]=c[h+372>>2];A=c[h+44>>2]|0;g=v+284|0;c[g>>2]=A;m=v+292|0;c[m>>2]=c[h+4>>2];n=v+288|0;c[n>>2]=c[h+24>>2];c[v+304>>2]=c[h+308>>2];c[v+176>>2]=c[h+244>>2];c[v+180>>2]=c[h+248>>2];c[v+184>>2]=c[h+252>>2];c[v+188>>2]=c[h+256>>2];c[v+192>>2]=c[h+260>>2];c[v+196>>2]=c[h+264>>2];c[v+200>>2]=c[h+268>>2];c[v+204>>2]=c[h+272>>2];h=c[(c[b+1120>>2]|0)+(u<<2)>>2]|0;c[v+308>>2]=c[h+312>>2];if(A){A=Zb[c[(c[x>>2]|0)+28>>2]&31](f,c[h+52>>2]|0)|0;c[v+272>>2]=A;if(A|0){g=c[g>>2]|0;h=Ob[c[(c[f>>2]|0)+16>>2]&63](f,16,g)|0;if((g|0)>0){j=c[(c[(c[b+1120>>2]|0)+(u<<2)>>2]|0)+52>>2]|0;k=0;l=c[h+8>>2]|0;while(1){c[l>>2]=c[j+(k<<4)>>2];c[l+4>>2]=c[j+(k<<4)+4>>2];c[l+8>>2]=c[j+(k<<4)+8>>2];c[l+12>>2]=c[j+(k<<4)+12>>2];k=k+1|0;if((k|0)==(g|0))break;else l=l+16|0}}yb[c[(c[w>>2]|0)+20>>2]&31](f,h,19308,1497453121,c[(c[(c[b+1120>>2]|0)+(u<<2)>>2]|0)+52>>2]|0)}}else c[v+272>>2]=0;if(c[m>>2]|0){A=Zb[c[(c[x>>2]|0)+28>>2]&31](f,c[(c[(c[b+1120>>2]|0)+(u<<2)>>2]|0)+12>>2]|0)|0;c[v+280>>2]=A;if(A|0){g=c[m>>2]|0;h=Ob[c[(c[f>>2]|0)+16>>2]&63](f,4,g)|0;if((g|0)>0){j=c[(c[(c[b+1120>>2]|0)+(u<<2)>>2]|0)+12>>2]|0;k=0;l=c[h+8>>2]|0;while(1){c[l>>2]=c[j+(k<<2)>>2];k=k+1|0;if((k|0)==(g|0))break;else l=l+4|0}}yb[c[(c[w>>2]|0)+20>>2]&31](f,h,10801,1497453121,c[(c[(c[b+1120>>2]|0)+(u<<2)>>2]|0)+12>>2]|0)}}else c[v+280>>2]=0;if(c[n>>2]|0){A=Zb[c[(c[x>>2]|0)+28>>2]&31](f,(c[(c[b+1120>>2]|0)+(u<<2)>>2]|0)+20|0)|0;c[v+276>>2]=A;if(A|0){k=c[m>>2]|0;l=Ob[c[(c[f>>2]|0)+16>>2]&63](f,4,k)|0;if((k|0)>0){m=c[(c[(c[b+1120>>2]|0)+(u<<2)>>2]|0)+32>>2]|0;n=c[z+32>>2]|0;o=0;p=c[l+8>>2]|0;while(1){h=c[m+(o<<2)>>2]|0;g=(h+~(h<<15)>>10^h+~(h<<15))*9|0;j=c[z+72>>2]|0;g=c[s+((((g>>6^g)+~((g>>6^g)<<11)>>16^(g>>6^g)+~((g>>6^g)<<11))&(c[z+48>>2]|0)+-1)<<2)>>2]|0;if((h|0)!=(c[j+(g<<3)>>2]|0))do g=c[n+(g<<2)>>2]|0;while((h|0)!=(c[j+(g<<3)>>2]|0));c[p>>2]=c[t+(g<<2)>>2];o=o+1|0;if((o|0)==(k|0))break;else p=p+4|0}}yb[c[(c[w>>2]|0)+20>>2]&31](f,l,10844,1497453121,(c[(c[b+1120>>2]|0)+(u<<2)>>2]|0)+20|0)}}else c[v+276>>2]=0;u=u+1|0;if((u|0)>=(q|0))break;else v=v+348|0}}yb[c[(c[w>>2]|0)+20>>2]&31](f,r,10824,1497453121,c[c[b+1120>>2]>>2]|0)}}else c[e+284>>2]=0;A=c[b+852>>2]|0;c[e+320>>2]=A;if(!A){c[e+288>>2]=0;pj(z);i=z;return 10868}A=Zb[c[(c[x>>2]|0)+28>>2]&31](f,c[b+860>>2]|0)|0;c[e+288>>2]=A;if(!A){pj(z);i=z;return 10868}j=c[b+852>>2]|0;k=Ob[c[(c[f>>2]|0)+16>>2]&63](f,104,j)|0;if((j|0)>0){m=0;n=c[k+8>>2]|0;while(1){g=c[(c[b+860>>2]|0)+(m<<2)>>2]|0;c[n+96>>2]=Eb[c[(c[g>>2]|0)+20>>2]&127](g)|0;g=(c[b+860>>2]|0)+(m<<2)|0;h=c[g>>2]|0;c[n+8>>2]=c[h+28>>2];c[n+12>>2]=c[h+32>>2];c[n+16>>2]=c[h+36>>2];c[n+20>>2]=c[h+40>>2];c[n+24>>2]=c[h+44>>2];c[n+28>>2]=c[h+48>>2];c[n+32>>2]=c[h+52>>2];c[n+36>>2]=c[h+56>>2];c[n+40>>2]=c[h+60>>2];c[n+44>>2]=c[h+64>>2];c[n+48>>2]=c[h+68>>2];c[n+52>>2]=d[h+152>>0];h=n+56|0;c[n>>2]=0;l=n+4|0;c[l>>2]=0;c[h>>2]=0;c[h+4>>2]=0;c[h+8>>2]=0;c[h+12>>2]=0;c[h+16>>2]=0;c[h+20>>2]=0;c[h+24>>2]=0;c[h+28>>2]=0;g=c[g>>2]|0;h=c[g+4>>2]|0;if(h){c[n+88>>2]=1;c[n>>2]=Zb[c[(c[x>>2]|0)+28>>2]&31](f,h)|0;g=c[(c[b+860>>2]|0)+(m<<2)>>2]|0}if(c[g+12>>2]|0){c[n+88>>2]=3;c[n>>2]=Zb[c[(c[x>>2]|0)+28>>2]&31](f,c[(c[(c[b+860>>2]|0)+(m<<2)>>2]|0)+12>>2]|0)|0}g=c[(c[b+860>>2]|0)+(m<<2)>>2]|0;h=c[g+8>>2]|0;if(h){c[n+88>>2]=2;c[n>>2]=Zb[c[(c[x>>2]|0)+28>>2]&31](f,h)|0;g=c[(c[b+860>>2]|0)+(m<<2)>>2]|0}h=c[g+16>>2]|0;if(h){c[n+92>>2]=1;c[l>>2]=Zb[c[(c[x>>2]|0)+28>>2]&31](f,h)|0;g=c[(c[b+860>>2]|0)+(m<<2)>>2]|0}h=c[g+24>>2]|0;if(h){c[n+92>>2]=3;c[l>>2]=Zb[c[(c[x>>2]|0)+28>>2]&31](f,h)|0;g=c[(c[b+860>>2]|0)+(m<<2)>>2]|0}g=c[g+20>>2]|0;if(g|0){c[n+92>>2]=2;c[l>>2]=Zb[c[(c[x>>2]|0)+28>>2]&31](f,g)|0}m=m+1|0;if((m|0)>=(j|0))break;else n=n+104|0}}yb[c[(c[w>>2]|0)+20>>2]&31](f,k,10848,1497453121,c[b+860>>2]|0);pj(z);i=z;return 10868}function vc(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0,g=0,h=0,j=0,k=0,l=0,m=0,n=0,o=0,p=0,q=0,r=0,s=0,t=0,u=0,v=0,w=0,x=0,y=0,z=0,A=0,B=0,D=0,E=0,F=0,G=0,H=0,I=0,J=0,K=0,L=0,M=0,N=0,O=0;K=i;i=i+144|0;a:do switch(d-b|0){case 0:{c[e>>2]=0;c[e+4>>2]=0;c[e+8>>2]=0;c[e+12>>2]=0;i=K;return}case 2:{f=c[(c[a+92>>2]|0)+(b<<2)>>2]|0;k=c[f+88>>2]|0;l=c[f+200>>2]|0;j=c[f+92>>2]|0;g=c[f+204>>2]|0;if((k|0)==(l|0)){if((j|0)==(g|0))if((c[f+96>>2]|0)==(c[f+208>>2]|0))break a;else g=j;if((j|0)==(g|0)){I=(c[f+96>>2]|0)>(c[f+208>>2]|0);g=I?f+112|0:f;c[g>>2]=g;c[g+4>>2]=g;c[e>>2]=g;c[e+4>>2]=g;c[e+8>>2]=g;c[e+12>>2]=g;f=I?f:f+112|0}else{h=g;g=0;J=9}}else{h=g;g=(j|0)==(g|0);J=9}do if((J|0)==9){c[f>>2]=f+112;c[f+4>>2]=f+112;c[f+112>>2]=f;c[f+116>>2]=f;J=(j|0)<(h|0);c[e>>2]=(k|0)<(l|0)|(k|0)==(l|0)&J?f:f+112|0;c[e+4>>2]=(k|0)<(l|0)|(k|0)==(l|0)&J?f+112|0:f;if(J|(k|0)<(l|0)&g){c[e+8>>2]=f;c[e+12>>2]=f+112;g=f;f=f+112|0;break}else{c[e+8>>2]=f+112;c[e+12>>2]=f;g=f;f=f+112|0;break}}while(0);a=dg(a,g,f)|0;c[a>>2]=a;c[a+4>>2]=a;c[g+8>>2]=a;a=c[a+8>>2]|0;c[a>>2]=a;c[a+4>>2]=a;c[f+8>>2]=a;i=K;return}case 1:{f=c[(c[a+92>>2]|0)+(b<<2)>>2]|0;break}default:{n=((d-b|0)/2|0)+b|0;h=c[a+92>>2]|0;m=c[h+(n+-1<<2)>>2]|0;j=c[m+88>>2]|0;k=c[m+92>>2]|0;m=c[m+96>>2]|0;b:do if((n|0)<(d|0)){f=n;do{g=c[h+(f<<2)>>2]|0;if((c[g+88>>2]|0)!=(j|0))break b;if((c[g+92>>2]|0)!=(k|0))break b;if((c[g+96>>2]|0)!=(m|0))break b;f=f+1|0}while((f|0)<(d|0))}else f=n;while(0);vc(a,b,n,e);c[K+96>>2]=0;c[K+96+4>>2]=0;c[K+96+8>>2]=0;c[K+96+12>>2]=0;vc(a,f,d,K+96|0);m=c[K+96+4>>2]|0;c:do if(m|0){A=c[e+4>>2]|0;if(!A){c[e>>2]=c[K+96>>2];c[e+4>>2]=c[K+96+4>>2];c[e+8>>2]=c[K+96+8>>2];c[e+12>>2]=c[K+96+12>>2];break}c[a+100>>2]=(c[a+100>>2]|0)+-1;h=c[e+12>>2]|0;k=c[K+96+8>>2]|0;j=c[h+88>>2]|0;d:do if((j|0)==(c[k+88>>2]|0)?(l=c[h+92>>2]|0,(l|0)==(c[k+92>>2]|0)):0){n=c[k+4>>2]|0;if((n|0)==(k|0)){f=c[k+8>>2]|0;if(f){k=c[f+12>>2]|0;l=c[k+92>>2]|0;j=c[k+88>>2]|0}g=h;G=k;f=k;n=j+1|0;d=c[k+96>>2]|0;break}h=c[k>>2]|0;c[n>>2]=h;c[h+4>>2]=n;e:do if((k|0)==(c[K+96>>2]|0)){f=c[h+88>>2]|0;g=c[n+88>>2]|0;do if((f|0)>=(g|0)){if((f|0)==(g|0)?(c[h+92>>2]|0)<(c[n+92>>2]|0):0)break;c[K+96>>2]=n;break e}while(0);c[K+96>>2]=h}while(0);if((k|0)==(m|0)){f=c[h+88>>2]|0;g=c[n+88>>2]|0;do if((f|0)<=(g|0)){if((f|0)==(g|0)?(c[h+92>>2]|0)>(c[n+92>>2]|0):0)break;c[K+96+4>>2]=n;h=n;J=39;break d}while(0);c[K+96+4>>2]=h;J=39}else{h=m;J=39}}else{h=m;J=39}while(0);if((J|0)==39){w=c[e>>2]|0;x=c[K+96>>2]|0;y=0;z=1;b=A;g=0;f=h;j=0;while(1){k=c[f+88>>2]|0;d=c[b+88>>2]|0;l=_(k-d|0,z)|0;f:do if((l|0)<=0){if((l|0)<0){v=(y|0)!=0;n=c[b+92>>2]|0;u=c[f+92>>2]|0;m=l;l=b;while(1){r=c[(v?f+4|0:f)>>2]|0;s=(r|0)==(f|0);t=f+88|0;q=m;while(1){m=l+88|0;o=u-n|0;if(!s?(B=c[r+88>>2]|0,D=_(B-k|0,z)|0,E=c[r+92>>2]|0,F=E-u|0,(F|0)>-1):0){if(!D)break;if((D|0)<0?(_(F,q)|0)<=(_(D,o)|0):0)break}p=c[(v?l+4|0:l)>>2]|0;if((p|0)==(l|0))break f;G=c[p+88>>2]|0;d=_(G-(c[m>>2]|0)|0,z)|0;b=c[p+92>>2]|0;m=b-n|0;k=c[t>>2]|0;n=q;q=_(k-G|0,z)|0;if(!((m|0)>0&(q|0)<0))break f;if(!d){n=b;l=p;continue}if((d|0)>=0)break f;if((_(m,n)|0)>=(_(d,o)|0))break f;else{n=b;l=p}}k=B;u=E;m=_(B-(c[m>>2]|0)|0,z)|0;f=r}}k=c[b+92>>2]|0;n=(y|0)!=0;g:do if(n){m=b;while(1){l=c[m>>2]|0;if((l|0)==(b|0))break g;if((c[l+88>>2]|0)!=(d|0))break g;G=k;k=c[l+92>>2]|0;if((k|0)>(G|0))break;else m=l}}else{m=b;while(1){l=c[m+4>>2]|0;if((l|0)==(b|0))break g;if((c[l+88>>2]|0)!=(d|0))break g;G=k;k=c[l+92>>2]|0;if((k|0)>(G|0))break;else m=l}}while(0);l=c[f+92>>2]|0;if(n){n=f;while(1){k=c[n+4>>2]|0;if((k|0)==(f|0)){l=m;f=n;break f}if((c[k+88>>2]|0)!=(d|0)){l=m;f=n;break f}G=l;l=c[k+92>>2]|0;if((l|0)<(G|0)){l=m;f=n;break}else n=k}}else{n=f;while(1){k=c[n>>2]|0;if((k|0)==(f|0)){l=m;f=n;break f}if((c[k+88>>2]|0)!=(d|0)){l=m;f=n;break f}G=l;l=c[k+92>>2]|0;if((l|0)<(G|0)){l=m;f=n;break}else n=k}}}else{u=(y|0)!=0;s=d;t=c[f+92>>2]|0;r=l;while(1){q=f+88|0;m=c[b+92>>2]|0;k=t-m|0;l=c[(u?b:b+4|0)>>2]|0;h:do if((l|0)!=(b|0))if(u){p=s;o=m;d=r;while(1){m=p;p=c[l+88>>2]|0;m=_(p-m|0,z)|0;n=o;o=c[l+92>>2]|0;n=o-n|0;if((n|0)>=1){o=k;l=b;break h}if(m|0){if((m|0)>=0){o=k;l=b;break h}if((_(n,d)|0)>(_(m,k)|0)){o=k;l=b;break h}}n=_((c[q>>2]|0)-p|0,z)|0;k=t-o|0;m=c[l>>2]|0;if((m|0)==(l|0)){o=k;d=n;break}else{b=l;l=m;d=n}}}else{p=s;o=m;d=r;while(1){m=p;p=c[l+88>>2]|0;m=_(p-m|0,z)|0;n=o;o=c[l+92>>2]|0;n=o-n|0;if((n|0)>=1){o=k;l=b;break h}if(m|0){if((m|0)>=0){o=k;l=b;break h}if((_(n,d)|0)>(_(m,k)|0)){o=k;l=b;break h}}n=_((c[q>>2]|0)-p|0,z)|0;k=t-o|0;m=c[l+4>>2]|0;if((m|0)==(l|0)){o=k;d=n;break}else{b=l;l=m;d=n}}}else{o=k;d=r;l=b}while(0);n=c[(u?f:f+4|0)>>2]|0;if((n|0)==(f|0))break f;r=c[n+88>>2]|0;k=_(r-(c[q>>2]|0)|0,z)|0;m=t;t=c[n+92>>2]|0;m=t-m|0;s=c[l+88>>2]|0;r=_(r-s|0,z)|0;if(!((m|0)<0&(r|0)>0))break f;if(!k){b=l;f=n;continue}if((k|0)>=0)break f;if((_(m,d)|0)>=(_(k,o)|0))break;else{b=l;f=n}}}while(0);k=(y|0)==0;j=k?f:j;g=k?l:g;f=k?x:f;b=k?w:l;y=y+1|0;if((y|0)==2)break;else z=k?-1:z}c[b+4>>2]=f;c[f>>2]=b;c[g>>2]=j;c[j+4>>2]=g;if((c[x+88>>2]|0)<(c[w+88>>2]|0))c[e>>2]=x;if((c[h+88>>2]|0)>=(c[A+88>>2]|0))c[e+4>>2]=h;c[e+12>>2]=c[K+96+12>>2];h=g;F=j;s=c[j+88>>2]|0;d=c[g+88>>2]|0;t=c[j+92>>2]|0;u=c[g+92>>2]|0;v=c[j+96>>2]|0;b=c[g+96>>2]|0;w=((t-u|0)<0)<<31>>31;x=0-(s-d)|0;y=Is(0,0,x|0,((x|0)<0)<<31>>31|0)|0;y=vr(v-b|0,((v-b|0)<0)<<31>>31|0,y|0,C|0)|0;z=C;A=vr(v-b|0,((v-b|0)<0)<<31>>31|0,t-u|0,w|0)|0;B=C;o=vr(s-d|0,((s-d|0)<0)<<31>>31|0,x|0,((x|0)<0)<<31>>31|0)|0;E=C;D=vr(t-u|0,w|0,t-u|0,w|0)|0;D=Is(o|0,E|0,D|0,C|0)|0;E=C;o=c[g+8>>2]|0;c[K+120>>2]=0;if(!o)p=0;else{p=Is(0,0,t-u|0,w|0)|0;q=C;f=0;r=o;while(1){m=c[r+12>>2]|0;k=c[m+88>>2]|0;l=c[m+92>>2]|0;m=c[m+96>>2]|0;n=vr(l-u|0,((l-u|0)<0)<<31>>31|0,x|0,((x|0)<0)<<31>>31|0)|0;G=C;e=vr(k-d|0,((k-d|0)<0)<<31>>31|0,p|0,q|0)|0;i:do if((n|0)==(e|0)&(G|0)==(C|0)?(e=vr(k-d|0,((k-d|0)<0)<<31>>31|0,y|0,z|0)|0,n=C,G=vr(l-u|0,((l-u|0)<0)<<31>>31|0,A|0,B|0)|0,n=Kt(G|0,C|0,e|0,n|0)|0,e=C,G=vr(m-b|0,((m-b|0)<0)<<31>>31|0,D|0,E|0)|0,G=Kt(n|0,e|0,G|0,C|0)|0,e=C,(e|0)>0|(e|0)==0&G>>>0>0):0){do if(f|0){n=(c[f+4>>2]|0)==(r|0);if((c[f>>2]|0)!=(r|0))if(n)break;else break i;if(!n)break i;e=c[f+12>>2]|0;L=c[(c[r+8>>2]|0)+12>>2]|0;G=c[L+88>>2]|0;n=c[L+92>>2]|0;L=c[L+96>>2]|0;M=(c[e+96>>2]|0)-L|0;n=(_(m-L|0,(c[e+92>>2]|0)-n|0)|0)-(_(M,l-n|0)|0)|0;G=(_(M,k-G|0)|0)-(_(m-L|0,(c[e+88>>2]|0)-G|0)|0)|0;n=vr(n|0,((n|0)<0)<<31>>31|0,t-u|0,w|0)|0;e=C;G=vr(G|0,((G|0)<0)<<31>>31|0,x|0,((x|0)<0)<<31>>31|0)|0;G=Kt(n|0,e|0,G|0,C|0)|0;e=C;if((e|0)>0|(e|0)==0&G>>>0>0)break i}while(0);c[K+120>>2]=r;f=r}while(0);r=c[r>>2]|0;if((r|0)==(o|0)){p=f;break}}}n=c[j+8>>2]|0;c[K+72>>2]=0;if(!n)f=0;else{d=Is(0,0,t-u|0,w|0)|0;b=C;f=0;o=n;do{m=c[o+12>>2]|0;k=c[m+88>>2]|0;l=c[m+92>>2]|0;m=c[m+96>>2]|0;G=vr(l-t|0,((l-t|0)<0)<<31>>31|0,x|0,((x|0)<0)<<31>>31|0)|0;M=C;L=vr(k-s|0,((k-s|0)<0)<<31>>31|0,d|0,b|0)|0;do if((G|0)==(L|0)&(M|0)==(C|0)?(L=vr(k-s|0,((k-s|0)<0)<<31>>31|0,y|0,z|0)|0,G=C,M=vr(l-t|0,((l-t|0)<0)<<31>>31|0,A|0,B|0)|0,G=Kt(M|0,C|0,L|0,G|0)|0,L=C,M=vr(m-v|0,((m-v|0)<0)<<31>>31|0,D|0,E|0)|0,M=Kt(G|0,L|0,M|0,C|0)|0,L=C,(L|0)>0|(L|0)==0&M>>>0>0):0){if(f|0){if((c[f>>2]|0)!=(o|0))break;if((c[f+4>>2]|0)==(o|0)?(L=c[f+12>>2]|0,e=c[(c[o+8>>2]|0)+12>>2]|0,M=c[e+88>>2]|0,G=c[e+92>>2]|0,e=c[e+96>>2]|0,r=(c[L+96>>2]|0)-e|0,G=(_(m-e|0,(c[L+92>>2]|0)-G|0)|0)-(_(r,l-G|0)|0)|0,M=(_(r,k-M|0)|0)-(_(m-e|0,(c[L+88>>2]|0)-M|0)|0)|0,G=vr(G|0,((G|0)<0)<<31>>31|0,t-u|0,w|0)|0,L=C,M=vr(M|0,((M|0)<0)<<31>>31|0,x|0,((x|0)<0)<<31>>31|0)|0,M=Kt(G|0,L|0,M|0,C|0)|0,L=C,!((L|0)>0|(L|0)==0&M>>>0>0)):0)break}c[K+72>>2]=o;f=o}while(0);o=c[o>>2]|0}while((o|0)!=(n|0))}if((p|0)!=0|(f|0)!=0){Ac(a,g,j,K+120|0,K+72|0);f=c[K+120>>2]|0;if(f){h=c[f+12>>2]|0;g=h}f=c[K+72>>2]|0;if(!f)f=F;else{f=c[f+12>>2]|0;j=f}}else f=F;G=j;n=c[j+88>>2]|0;d=(c[j+96>>2]|0)+1|0;l=c[j+92>>2]|0}w=G;x=g;j=0;D=0;e=1;k=0;m=0;y=0;A=0;B=n;o=d;F=0;n=0;while(1){z=x+88|0;u=(c[w+88>>2]|0)-(c[z>>2]|0)|0;M=x+92|0;E=(c[w+92>>2]|0)-(c[M>>2]|0)|0;t=x+96|0;r=(c[w+96>>2]|0)-(c[t>>2]|0)|0;c[K+120>>2]=u;c[K+120+4>>2]=E;c[K+120+8>>2]=r;c[K+120+12>>2]=-1;z=B-(c[z>>2]|0)|0;M=l-(c[M>>2]|0)|0;t=o-(c[t>>2]|0)|0;s=(_(r,M)|0)-(_(E,t)|0)|0;t=(_(u,t)|0)-(_(r,z)|0)|0;M=(_(E,z)|0)-(_(u,M)|0)|0;c[K+72>>2]=s;c[K+72+4>>2]=((s|0)<0)<<31>>31;c[K+72+8>>2]=t;c[K+72+8+4>>2]=((t|0)<0)<<31>>31;c[K+72+16>>2]=M;c[K+72+16+4>>2]=((M|0)<0)<<31>>31;z=vr(E|0,((E|0)<0)<<31>>31|0,M|0,((M|0)<0)<<31>>31|0)|0;L=C;v=vr(r|0,((r|0)<0)<<31>>31|0,t|0,((t|0)<0)<<31>>31|0)|0;v=Is(z|0,L|0,v|0,C|0)|0;L=C;r=vr(s|0,((s|0)<0)<<31>>31|0,r|0,((r|0)<0)<<31>>31|0)|0;z=C;M=vr(u|0,((u|0)<0)<<31>>31|0,M|0,((M|0)<0)<<31>>31|0)|0;M=Is(r|0,z|0,M|0,C|0)|0;z=C;t=vr(u|0,((u|0)<0)<<31>>31|0,t|0,((t|0)<0)<<31>>31|0)|0;u=C;E=vr(s|0,((s|0)<0)<<31>>31|0,E|0,((E|0)<0)<<31>>31|0)|0;E=Is(t|0,u|0,E|0,C|0)|0;c[K+48>>2]=v;c[K+48+4>>2]=L;c[K+48+8>>2]=M;c[K+48+8+4>>2]=z;c[K+48+16>>2]=E;c[K+48+16+4>>2]=C;c[K+24>>2]=0;c[K+24+4>>2]=0;c[K+24+8>>2]=0;c[K+24+12>>2]=0;c[K+24+16>>2]=0;E=Id(a,0,x,K+120|0,K+72|0,K+48|0,K+24|0)|0;c[K>>2]=0;c[K+4>>2]=0;c[K+8>>2]=0;c[K+12>>2]=0;c[K+16>>2]=0;z=Id(a,1,w,K+120|0,K+72|0,K+48|0,K)|0;do if((E|0)!=0|(z|0)!=0){d=E|0?-1:1;do if((E|0)!=0&(z|0)!=0){v=c[K+24+16>>2]|0;d=c[K+16>>2]|0;if((v|0)!=(d|0)){u=v-d|0;break}if(!v)u=0;else{M=c[K+24>>2]|0;t=c[K+24+4>>2]|0;p=c[K+8>>2]|0;N=c[K+8+4>>2]|0;b=vr(p|0,0,M|0,0)|0;d=C;M=vr(N|0,0,M|0,0)|0;L=C;p=vr(p|0,0,t|0,0)|0;q=C;t=vr(N|0,0,t|0,0)|0;N=C;p=Kt(M|0,0,p|0,0)|0;M=C;N=Kt(L|0,0,t|0,N|0)|0;q=Kt(N|0,C|0,q|0,0)|0;M=Kt(q|0,C|0,M|0,0)|0;q=C;d=Kt(0,p|0,b|0,d|0)|0;b=C;p=Kt(M|0,q|0,(b>>>0

    >>0|(b|0)==(p|0)&d>>>0<0)&1|0,0)|0;q=C;M=c[K+24+8>>2]|0;N=c[K+24+8+4>>2]|0;t=c[K>>2]|0;L=c[K+4>>2]|0;s=vr(t|0,0,M|0,0)|0;r=C;M=vr(L|0,0,M|0,0)|0;O=C;t=vr(t|0,0,N|0,0)|0;u=C;N=vr(L|0,0,N|0,0)|0;L=C;t=Kt(M|0,0,t|0,0)|0;M=C;L=Kt(O|0,0,N|0,L|0)|0;u=Kt(L|0,C|0,u|0,0)|0;M=Kt(u|0,C|0,M|0,0)|0;u=C;r=Kt(0,t|0,s|0,r|0)|0;s=C;t=Kt(M|0,u|0,(s>>>0>>0|(s|0)==(t|0)&r>>>0<0)&1|0,0)|0;u=C;if(!(q>>>0>>0|(q|0)==(u|0)&p>>>0>>0))if(!(q>>>0>u>>>0|(q|0)==(u|0)&p>>>0>t>>>0))if(b>>>0>>0|(b|0)==(s|0)&d>>>0>>0)d=-1;else d=(b>>>0>s>>>0|(b|0)==(s|0)&d>>>0>r>>>0)&1;else d=1;else d=-1;u=_(d,v)|0}}else u=d;while(0);do if(!e)if((u|0)>-1)if((c[K+16>>2]|0)<0&((c[K+8>>2]|0)==0?(c[K+8+4>>2]|0)==0:0)){b=y;t=A;break}else{J=136;break}else if((c[K+24+16>>2]|0)<0&((c[K+24+8>>2]|0)==0?(c[K+24+8+4>>2]|0)==0:0)){b=y;t=A;break}else{J=136;break}else J=136;while(0);if((J|0)==136){J=0;b=dg(a,x,w)|0;if(!y)k=b;else c[y+4>>2]=b;c[b>>2]=y;d=c[b+8>>2]|0;if(!A)m=d;else c[A>>2]=d;c[d+4>>2]=A;t=d}c[K+116>>2]=E;c[K+112>>2]=z;if(!u){Ac(a,h,f,K+116|0,K+112|0);s=c[K+112>>2]|0}else s=z;if((u|0)>-1&(s|0)!=0){r=(n|0)!=0;if(r?(H=c[n>>2]|0,(H|0)!=(z|0)):0){p=H;do{q=p;p=c[p>>2]|0;o=c[q+8>>2]|0;d=c[o+12>>2]|0;if((p|0)==(q|0))l=0;else{c[p+4>>2]=c[q+4>>2];c[c[q+4>>2]>>2]=p;l=p}c[d+8>>2]=l;l=c[o>>2]|0;d=c[q+12>>2]|0;if((l|0)==(o|0))l=0;else{c[l+4>>2]=c[o+4>>2];c[c[o+4>>2]>>2]=l}c[d+8>>2]=l;c[q>>2]=0;c[q+4>>2]=0;c[q+8>>2]=0;c[q+12>>2]=0;c[q+16>>2]=0;c[q>>2]=c[a+56>>2];c[a+56>>2]=q;c[o>>2]=0;c[o+4>>2]=0;c[o+8>>2]=0;c[o+12>>2]=0;c[o+16>>2]=0;c[o>>2]=c[a+56>>2];c[a+56>>2]=o;c[a+116>>2]=(c[a+116>>2]|0)+-1}while((p|0)!=(z|0))}if(!t){n=s;l=r?D:z}else{if(r){c[n>>2]=m;d=z+4|0;l=D}else{n=c[z+4>>2]|0;c[n>>2]=m;d=z+4|0;l=m}c[m+4>>2]=n;c[t>>2]=z;c[d>>2]=t;n=c[K+112>>2]|0;m=0}y=f;f=c[n+12>>2]|0;D=l;t=0;d=c[y+88>>2]|0;o=c[y+96>>2]|0;l=c[y+92>>2]|0;y=c[n+8>>2]|0}else{d=B;y=n}s=c[K+116>>2]|0;if((u|0)<1&(s|0)!=0){r=(F|0)!=0;if(r?(I=c[F+4>>2]|0,(I|0)!=(E|0)):0){p=I;do{n=p+4|0;q=p;p=c[n>>2]|0;l=c[q>>2]|0;o=c[q+8>>2]|0;d=c[o+12>>2]|0;if((l|0)==(q|0))l=0;else{c[l+4>>2]=p;c[c[n>>2]>>2]=l}c[d+8>>2]=l;l=c[o>>2]|0;n=c[q+12>>2]|0;if((l|0)==(o|0))l=0;else{c[l+4>>2]=c[o+4>>2];c[c[o+4>>2]>>2]=l}c[n+8>>2]=l;c[q>>2]=0;c[q+4>>2]=0;c[q+8>>2]=0;c[q+12>>2]=0;c[q+16>>2]=0;c[q>>2]=c[a+56>>2];c[a+56>>2]=q;c[o>>2]=0;c[o+4>>2]=0;c[o+8>>2]=0;c[o+12>>2]=0;c[o+16>>2]=0;c[o>>2]=c[a+56>>2];c[a+56>>2]=o;c[a+116>>2]=(c[a+116>>2]|0)+-1}while((p|0)!=(E|0))}if(!b){n=s;j=r?j:E}else{if(r){c[F+4>>2]=k;n=E;l=F}else{l=c[E>>2]|0;c[l+4>>2]=k;n=E;j=k}c[k>>2]=l;c[n>>2]=b;c[b+4>>2]=E;n=c[K+116>>2]|0;k=0}l=h;h=c[n+12>>2]|0;u=0;w=c[l+88>>2]|0;x=c[l+96>>2]|0;l=c[l+92>>2]|0;v=c[n+8>>2]|0}else{u=b;w=d;x=o;v=F}if((h|0)==(g|0)&(f|0)==(G|0)){if(v){r=v+4|0;n=c[r>>2]|0;if((n|0)!=(j|0))do{b=n+4|0;q=n;n=c[b>>2]|0;d=c[q>>2]|0;p=c[q+8>>2]|0;o=c[p+12>>2]|0;if((d|0)==(q|0))d=0;else{c[d+4>>2]=n;c[c[b>>2]>>2]=d}c[o+8>>2]=d;d=c[p>>2]|0;b=c[q+12>>2]|0;if((d|0)==(p|0))d=0;else{c[d+4>>2]=c[p+4>>2];c[c[p+4>>2]>>2]=d}c[b+8>>2]=d;c[q>>2]=0;c[q+4>>2]=0;c[q+8>>2]=0;c[q+12>>2]=0;c[q+16>>2]=0;c[q>>2]=c[a+56>>2];c[a+56>>2]=q;c[p>>2]=0;c[p+4>>2]=0;c[p+8>>2]=0;c[p+12>>2]=0;c[p+16>>2]=0;c[p>>2]=c[a+56>>2];c[a+56>>2]=p;c[a+116>>2]=(c[a+116>>2]|0)+-1}while((n|0)!=(j|0));if(u|0){c[k>>2]=v;c[r>>2]=k;c[j>>2]=u;c[u+4>>2]=j}}else{c[k>>2]=u;c[u+4>>2]=k;c[h+8>>2]=u}if(!y){c[t>>2]=m;c[m+4>>2]=t;c[G+8>>2]=t;s=0;q=D;r=e;p=u;b=w;o=x;d=v;n=0;break}n=c[y>>2]|0;if((n|0)!=(D|0))do{p=n;n=c[n>>2]|0;o=c[p+8>>2]|0;b=c[o+12>>2]|0;if((n|0)==(p|0))d=0;else{c[n+4>>2]=c[p+4>>2];c[c[p+4>>2]>>2]=n;d=n}c[b+8>>2]=d;d=c[o>>2]|0;b=c[p+12>>2]|0;if((d|0)==(o|0))d=0;else{c[d+4>>2]=c[o+4>>2];c[c[o+4>>2]>>2]=d}c[b+8>>2]=d;c[p>>2]=0;c[p+4>>2]=0;c[p+8>>2]=0;c[p+12>>2]=0;c[p+16>>2]=0;c[p>>2]=c[a+56>>2];c[a+56>>2]=p;c[o>>2]=0;c[o+4>>2]=0;c[o+8>>2]=0;c[o+12>>2]=0;c[o+16>>2]=0;c[o>>2]=c[a+56>>2];c[a+56>>2]=o;c[a+116>>2]=(c[a+116>>2]|0)+-1}while((n|0)!=(D|0));if(!t){s=0;q=D;r=e;p=u;t=0;b=w;o=x;d=v;n=y}else{c[y>>2]=m;c[m+4>>2]=y;c[t>>2]=D;c[D+4>>2]=t;s=0;q=D;r=e;p=u;b=w;o=x;d=v;n=y}}else{s=1;q=D;r=0;p=u;b=w;o=x;d=v;n=y}}else{s=dg(a,x,w)|0;c[s>>2]=s;c[s+4>>2]=s;c[x+8>>2]=s;s=c[s+8>>2]|0;c[s>>2]=s;c[s+4>>2]=s;c[f+8>>2]=s;s=0;q=D;r=e;p=y;t=A;b=B;d=F}while(0);if(!s)break c;w=f;x=h;D=q;e=r;y=p;A=t;B=b;F=d}}while(0);i=K;return}}while(0);c[f+8>>2]=0;c[f>>2]=f;c[f+4>>2]=f;c[e>>2]=f;c[e+4>>2]=f;c[e+8>>2]=f;c[e+12>>2]=f;i=K;return}function wc(b,d){b=b|0;d=+d;var e=0,f=0,h=0,j=0.0,l=0.0,m=0.0,n=0,o=0.0,p=0.0,q=0.0,r=0.0,s=0.0,t=0.0,u=0.0,v=0.0,w=0.0,x=0.0,y=0,z=0.0,A=0.0,B=0.0,C=0.0,D=0.0,E=0.0,F=0.0,G=0,H=0,I=0,J=0,K=0,L=0,M=0.0,P=0.0,Q=0.0,R=0.0,S=0.0,T=0.0,U=0.0,V=0,W=0,X=0,Y=0,Z=0,_=0.0,$=0.0,aa=0.0,ba=0,ca=0.0,da=0.0,ea=0.0,fa=0.0,ga=0,ha=0,ia=0,ja=0.0,ka=0.0,la=0.0,ma=0.0,na=0.0,oa=0.0,pa=0.0,qa=0.0,ra=0.0;ga=i;i=i+368|0;e=c[b+24>>2]|0;if((e|0)<=0){i=ga;return}K=ga+56+76|0;V=ga+272+16|0;W=ga+272+32|0;J=0;do{I=c[(c[b+32>>2]|0)+(J<<2)>>2]|0;switch(c[I+216>>2]|0){case 2:case 5:break;default:{if(a[I+924>>0]|0){a[I+924>>0]=0;h=c[I+732>>2]|0;if((h|0)>0){e=c[I+740>>2]|0;f=0;do{G=c[e+(f*52|0)+8>>2]|0;H=c[e+(f*52|0)+12>>2]|0;D=+g[G+8>>2]-+g[H+8>>2];E=+g[G+12>>2]-+g[H+12>>2];F=+g[G+16>>2]-+g[H+16>>2];F=+O(+(D*D+E*E+F*F));g[e+(f*52|0)+16>>2]=F;g[e+(f*52|0)+28>>2]=F*F;f=f+1|0}while((f|0)!=(h|0));e=c[I+740>>2]|0;f=0;do{g[e+(f*52|0)+24>>2]=(+g[(c[e+(f*52|0)+8>>2]|0)+88>>2]+ +g[(c[e+(f*52|0)+12>>2]|0)+88>>2])/+g[(c[e+(f*52|0)+4>>2]|0)+4>>2];f=f+1|0}while((f|0)!=(h|0))}eg(I);e=c[I+988>>2]|0;if(e|0)xn(I+988|0,e);e=c[I+992>>2]|0;if(e|0){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0)}c[I+992>>2]=0;c[I+996>>2]=-1;e=c[I+1020>>2]|0;if(e|0){if(a[I+1024>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0)}c[I+1020>>2]=0}a[I+1024>>0]=1;c[I+1020>>2]=0;c[I+1012>>2]=0;c[I+1016>>2]=0;c[I+1004>>2]=0;if(c[I+388>>2]&16|0)gg(I)}m=+g[I+368>>2]*d;g[I+452>>2]=m;g[I+456>>2]=1.0/m;g[I+460>>2]=m*3.0;e=c[I+192>>2]|0;m=+Sb[c[(c[e>>2]|0)+48>>2]&15](e);g[I+464>>2]=m;g[I+468>>2]=m*.25;e=c[I+684>>2]|0;m=+g[I+452>>2];j=+g[e+40>>2]*m;l=m*+g[e+44>>2];m=m*+g[e+48>>2];e=c[I+712>>2]|0;if((e|0)>0){f=c[I+720>>2]|0;h=0;do{if(+g[f+(h*104|0)+88>>2]>0.0){H=f+(h*104|0)+40|0;g[H>>2]=j+ +g[H>>2];H=f+(h*104|0)+44|0;g[H>>2]=l+ +g[H>>2];H=f+(h*104|0)+48|0;g[H>>2]=m+ +g[H>>2]}h=h+1|0}while((h|0)!=(e|0))}li(11033);E=+g[I+308>>2];F=+g[I+312>>2];n=+g[I+304>>2]>0.0?1:+g[I+300>>2]>0.0;y=c[I+712>>2]|0;if(E!=0.0|F>0.0){if((y|0)>0){e=c[I+720>>2]|0;l=+g[e+8>>2];m=+g[e+12>>2];o=+g[e+16>>2];e=c[I+752>>2]|0;if((e|0)>0){f=c[I+760>>2]|0;h=0;j=0.0;do{H=c[f+(h*44|0)+8>>2]|0;G=c[f+(h*44|0)+12>>2]|0;C=+g[G+8>>2]-l;x=+g[G+12>>2]-m;A=+g[G+16>>2]-o;G=c[f+(h*44|0)+16>>2]|0;B=+g[G+8>>2]-l;z=+g[G+12>>2]-m;D=+g[G+16>>2]-o;j=j+((+g[H+16>>2]-o)*(C*z-x*B)+((+g[H+8>>2]-l)*(x*D-A*z)+(+g[H+12>>2]-m)*(A*B-C*D)));h=h+1|0}while((h|0)!=(e|0))}else j=0.0;j=j/6.0}else j=0.0;D=E*(1.0/+N(+j));C=F*(+g[I+476>>2]-j)}else{C=0.0;D=0.0}a:do if((y|0)>0){if(!n){e=c[I+720>>2]|0;f=0;while(1){if(+g[e+(f*104|0)+88>>2]>0.0){if(E!=0.0){z=D*+g[e+(f*104|0)+92>>2];A=z*+g[e+(f*104|0)+76>>2];B=z*+g[e+(f*104|0)+80>>2];H=e+(f*104|0)+56|0;g[H>>2]=+g[e+(f*104|0)+72>>2]*z+ +g[H>>2];H=e+(f*104|0)+60|0;g[H>>2]=A+ +g[H>>2];H=e+(f*104|0)+64|0;g[H>>2]=B+ +g[H>>2]}if(F>0.0){z=C*+g[e+(f*104|0)+92>>2];A=z*+g[e+(f*104|0)+76>>2];B=z*+g[e+(f*104|0)+80>>2];H=e+(f*104|0)+56|0;g[H>>2]=+g[e+(f*104|0)+72>>2]*z+ +g[H>>2];H=e+(f*104|0)+60|0;g[H>>2]=A+ +g[H>>2];H=e+(f*104|0)+64|0;g[H>>2]=B+ +g[H>>2]}}f=f+1|0;if((f|0)==(y|0))break a}}f=c[I+720>>2]|0;h=0;do{x=+g[f+(h*104|0)+88>>2];if(x>0.0){z=+g[I+452>>2];q=+g[I+304>>2];o=+g[I+300>>2];b:do if((q>0.0|o>0.0?(L=c[c[I+684>>2]>>2]|0,(c[I+288>>2]|0)<4):0)?(M=+g[f+(h*104|0)+40>>2],P=M-+g[I+1212>>2],Q=+g[f+(h*104|0)+44>>2],R=Q-+g[I+1216>>2],S=+g[f+(h*104|0)+48>>2],T=S-+g[I+1220>>2],U=+O(+(P*P+R*R+T*T)),P*P+R*R+T*T>1.1920928955078125e-07):0){u=P*(1.0/U);A=R*(1.0/U);B=T*(1.0/U);s=+g[f+(h*104|0)+72>>2];t=+g[f+(h*104|0)+76>>2];v=+g[f+(h*104|0)+80>>2];switch(c[I+288>>2]|0){case 2:break;case 1:case 3:case 0:{j=P*s+R*t+T*v<0.0?-1.0:1.0;if(!(T*v*j+(P*s*j+R*t*j)>0.0))break b;w=-((c[k>>2]=L,+g[k>>2])*(P*P+R*R+T*T)*(T*v*j+(P*s*j+R*t*j))*+g[f+(h*104|0)+92>>2]*.5);m=u*o*w+(s*j*q*w+0.0);l=A*o*w+(t*j*q*w+0.0);j=B*o*w+(v*j*q*w+0.0);e=f+(h*104|0)+56|0;if(z*x*j*z*x*j+(z*x*m*z*x*m+z*x*l*z*x*l)>M*M+Q*Q+S*S){B=1.0/+O(+(j*j+(m*m+l*l)));g[e>>2]=+g[e>>2]-1.0/(z*x)*m*B*(S*j*B+(M*m*B+Q*l*B));H=f+(h*104|0)+60|0;g[H>>2]=+g[H>>2]-1.0/(z*x)*l*B*(S*j*B+(M*m*B+Q*l*B));H=f+(h*104|0)+64|0;g[H>>2]=+g[H>>2]-1.0/(z*x)*j*B*(S*j*B+(M*m*B+Q*l*B));break b}else{g[e>>2]=m+ +g[e>>2];H=f+(h*104|0)+60|0;g[H>>2]=l+ +g[H>>2];H=f+(h*104|0)+64|0;g[H>>2]=j+ +g[H>>2];break b}}default:break b}p=P*s+R*t+T*v<0.0?-1.0:1.0;j=B*v*p+(u*s*p+A*t*p);l=+g[f+(h*104|0)+92>>2]*.5;m=(c[k>>2]=L,+g[k>>2]);w=j*o*.5*m*(P*P+R*R+T*T)*l;if(j>0.0&j<.9847999811172485){o=q*.5*m*U*l*+O(+(1.0-j*j));q=(B*(u*v*p-B*s*p)-A*(A*s*p-u*t*p))*o;r=(u*(A*s*p-u*t*p)-B*(B*t*p-A*v*p))*o;o=(A*(B*t*p-A*v*p)-u*(u*v*p-B*s*p))*o}else{q=0.0;r=0.0;o=0.0}j=z*x*-(B*w)*z*x*-(B*w)+(x*-(u*w)*z*x*-(u*w)*z+z*x*-(A*w)*z*x*-(A*w));if(j>0.0?j>=M*M+Q*Q+S*S:0){j=+O(+(M*M+Q*Q+S*S))/+O(+j)*.800000011920929;m=j*-(u*w);l=j*-(B*w);j=j*-(A*w)}else{m=-(u*w);l=-(B*w);j=-(A*w)}n=f+(h*104|0)+56|0;G=f+(h*104|0)+60|0;A=j+ +g[G>>2];H=f+(h*104|0)+64|0;B=l+ +g[H>>2];g[n>>2]=q+(m+ +g[n>>2]);g[G>>2]=r+A;g[H>>2]=o+B}while(0);if(E!=0.0){z=D*+g[f+(h*104|0)+92>>2];A=z*+g[f+(h*104|0)+76>>2];B=z*+g[f+(h*104|0)+80>>2];H=f+(h*104|0)+56|0;g[H>>2]=+g[f+(h*104|0)+72>>2]*z+ +g[H>>2];H=f+(h*104|0)+60|0;g[H>>2]=A+ +g[H>>2];H=f+(h*104|0)+64|0;g[H>>2]=B+ +g[H>>2]}if(F>0.0){z=C*+g[f+(h*104|0)+92>>2];A=z*+g[f+(h*104|0)+76>>2];B=z*+g[f+(h*104|0)+80>>2];H=f+(h*104|0)+56|0;g[H>>2]=+g[f+(h*104|0)+72>>2]*z+ +g[H>>2];H=f+(h*104|0)+60|0;g[H>>2]=A+ +g[H>>2];H=f+(h*104|0)+64|0;g[H>>2]=B+ +g[H>>2]}}h=h+1|0}while((h|0)!=(y|0))}while(0);G=c[I+752>>2]|0;if((G|0)>0){H=0;do{w=+g[I+452>>2];q=+g[I+304>>2];p=+g[I+300>>2];c:do if((q>0.0|p>0.0?(X=c[I+288>>2]|0,(X|0)>3):0)?(Y=c[I+760>>2]|0,Z=c[Y+(H*44|0)+8>>2]|0,n=c[Y+(H*44|0)+12>>2]|0,_=+g[Z+40>>2],$=+g[Z+44>>2],aa=+g[Z+48>>2],y=c[Y+(H*44|0)+16>>2]|0,ba=c[c[I+684>>2]>>2]|0,ca=(_+ +g[n+40>>2]+ +g[y+40>>2])*.3333333432674408-+g[I+1212>>2],da=($+ +g[n+44>>2]+ +g[y+44>>2])*.3333333432674408-+g[I+1216>>2],ea=(aa+ +g[n+48>>2]+ +g[y+48>>2])*.3333333432674408-+g[I+1220>>2],fa=+O(+(ca*ca+da*da+ea*ea)),ca*ca+da*da+ea*ea>1.1920928955078125e-07):0){s=ca*(1.0/fa);u=da*(1.0/fa);x=ea*(1.0/fa);r=+g[Y+(H*44|0)+20>>2];t=+g[Y+(H*44|0)+24>>2];v=+g[Y+(H*44|0)+28>>2];switch(X|0){case 5:break;case 4:case 6:{j=ca*r+da*t+ea*v<0.0?-1.0:1.0;if(!(ea*v*j+(ca*r*j+da*t*j)>0.0))break c;l=-((c[k>>2]=ba,+g[k>>2])*(ca*ca+da*da+ea*ea)*(ea*v*j+(ca*r*j+da*t*j))*+g[Y+(H*44|0)+36>>2]);s=(s*p*l+(r*j*q*l+0.0))*.3333333432674408;r=(u*p*l+(t*j*q*l+0.0))*.3333333432674408;l=(x*p*l+(v*j*q*l+0.0))*.3333333432674408;h=Z;m=_;o=$;p=aa;e=0;while(1){j=w*+g[h+88>>2];f=h+56|0;if(l*j*l*j+(s*j*s*j+r*j*r*j)>m*m+o*o+p*p){E=1.0/+O(+(l*l+(s*s+r*r)));F=p*l*E+(m*s*E+o*r*E);g[f>>2]=+g[f>>2]-1.0/j*s*E*F;y=h+60|0;g[y>>2]=+g[y>>2]-1.0/j*r*E*F;y=h+64|0;g[y>>2]=+g[y>>2]-1.0/j*l*E*F}else{g[f>>2]=s+ +g[f>>2];y=h+60|0;g[y>>2]=r+ +g[y>>2];y=h+64|0;g[y>>2]=l+ +g[y>>2]}e=e+1|0;if((e|0)==3)break c;y=c[Y+(H*44|0)+8+(e<<2)>>2]|0;h=y;m=+g[y+40>>2];o=+g[y+44>>2];p=+g[y+48>>2]}}default:break c}o=ca*r+da*t+ea*v<0.0?-1.0:1.0;j=x*v*o+(s*r*o+u*t*o);l=+g[Y+(H*44|0)+36>>2]*.5;m=(c[k>>2]=ba,+g[k>>2]);p=j*(ca*ca+da*da+ea*ea)*p*.5*m*l;if(j>0.0&j<.9847999811172485){F=fa*q*.5*m*l*+O(+(1.0-j*j));w=(x*(s*v*o-x*r*o)-u*(u*r*o-s*t*o))*F*.3333333432674408;z=(u*(x*t*o-u*v*o)-s*(s*v*o-x*r*o))*F*.3333333432674408;t=(s*(u*r*o-s*t*o)-x*(x*t*o-u*v*o))*F*.3333333432674408}else{w=0.0;z=0.0;t=0.0}h=(g[k>>2]=s*p*-.3333333432674408,c[k>>2]|0);n=(g[k>>2]=u*p*-.3333333432674408,c[k>>2]|0);y=Z;e=(g[k>>2]=x*p*-.3333333432674408,c[k>>2]|0);f=0;while(1){j=+g[y+88>>2];if(j>0.0){p=(c[k>>2]=h,+g[k>>2]);q=(c[k>>2]=n,+g[k>>2]);r=(c[k>>2]=e,+g[k>>2]);l=+g[I+452>>2];j=r*j*l*r*j*l+(p*j*l*p*j*l+q*j*l*q*j*l);l=+g[y+40>>2];m=+g[y+44>>2];o=+g[y+48>>2];if(j>0.0?j>=l*l+m*m+o*o:0){F=+O(+(l*l+m*m+o*o))/+O(+j)*.800000011920929;h=(g[k>>2]=p*F,c[k>>2]|0);n=(g[k>>2]=q*F,c[k>>2]|0);e=(g[k>>2]=r*F,c[k>>2]|0)}ia=y+56|0;D=(c[k>>2]=h,+g[k>>2])+ +g[ia>>2];ha=y+60|0;E=(c[k>>2]=n,+g[k>>2])+ +g[ha>>2];y=y+64|0;F=(c[k>>2]=e,+g[k>>2])+ +g[y>>2];g[ia>>2]=w+D;g[ha>>2]=t+E;g[y>>2]=z+F}f=f+1|0;if((f|0)==3)break c;y=c[Y+(H*44|0)+8+(f<<2)>>2]|0}}while(0);H=H+1|0}while((H|0)!=(G|0))}e=c[2357]|0;ia=(c[e+16>>2]|0)+-1|0;c[e+16>>2]=ia;do if(!ia){if(c[e+4>>2]|0){tb(ga+320|0,0)|0;ia=c[6434]|0;g[e+8>>2]=+g[e+8>>2]+ +(((c[ga+320+4>>2]|0)-(c[ia+4>>2]|0)+(((c[ga+320>>2]|0)-(c[ia>>2]|0)|0)*1e6|0)-(c[e+12>>2]|0)|0)>>>0)/1.0e3;if(c[e+16>>2]|0)break;e=c[2357]|0}c[2357]=c[e+20>>2]}while(0);e=c[I+712>>2]|0;if((e|0)>0){f=0;do{ha=c[I+720>>2]|0;ia=ha+(f*104|0)+24|0;H=ha+(f*104|0)+8|0;c[ia>>2]=c[H>>2];c[ia+4>>2]=c[H+4>>2];c[ia+8>>2]=c[H+8>>2];c[ia+12>>2]=c[H+12>>2];ia=ha+(f*104|0)+56|0;E=+g[ha+(f*104|0)+88>>2];F=+g[I+452>>2];C=+g[ia>>2]*E*F;D=E*+g[ha+(f*104|0)+60>>2]*F;E=F*E*+g[ha+(f*104|0)+64>>2];F=+g[(c[I+684>>2]|0)+12>>2]/F;C=C>F?F:C;D=D>F?F:D;E=E>F?F:E;G=ha+(f*104|0)+40|0;C=(C<-F?-F:C)+ +g[G>>2];g[G>>2]=C;G=ha+(f*104|0)+44|0;D=(D<-F?-F:D)+ +g[G>>2];g[G>>2]=D;G=ha+(f*104|0)+48|0;E=(E<-F?-F:E)+ +g[G>>2];g[G>>2]=E;F=+g[I+452>>2];g[H>>2]=C*F+ +g[H>>2];H=ha+(f*104|0)+12|0;g[H>>2]=F*D+ +g[H>>2];ha=ha+(f*104|0)+16|0;g[ha>>2]=E*F+ +g[ha>>2];c[ia>>2]=0;c[ia+4>>2]=0;c[ia+8>>2]=0;c[ia+12>>2]=0;f=f+1|0}while((f|0)!=(e|0))}$c(I);e=c[I+928>>2]|0;if(e){ia=c[I+192>>2]|0;D=+Sb[c[(c[ia>>2]|0)+48>>2]&15](ia);F=+g[e+4>>2]-D;E=+g[e+8>>2]-D;g[I+892>>2]=+g[e>>2]-D;g[I+896>>2]=F;g[I+900>>2]=E;g[I+904>>2]=0.0;E=D+ +g[e+20>>2];F=D+ +g[e+24>>2];g[I+908>>2]=D+ +g[e+16>>2];g[I+912>>2]=E;g[I+916>>2]=F;g[I+920>>2]=0.0;e=c[I+188>>2]|0;if(e|0){ia=c[I+684>>2]|0;ha=c[ia+32>>2]|0;yb[c[(c[ha>>2]|0)+16>>2]&31](ha,e,I+892|0,I+908|0,c[ia+36>>2]|0)}}else{c[I+892>>2]=0;c[I+892+4>>2]=0;c[I+892+8>>2]=0;c[I+892+12>>2]=0;c[I+892+16>>2]=0;c[I+892+20>>2]=0;c[I+892+24>>2]=0;c[I+892+28>>2]=0}e=c[I+712>>2]|0;if((e|0)>0){f=0;do{ha=c[I+720>>2]|0;E=+g[I+464>>2];C=+g[ha+(f*104|0)+8>>2];F=+g[ha+(f*104|0)+12>>2];D=+g[ha+(f*104|0)+16>>2];g[ga+192>>2]=C-E;g[ga+192+4>>2]=F-E;g[ga+192+8>>2]=D-E;g[ga+192+12>>2]=0.0;g[ga+192+16>>2]=E+C;g[ga+192+20>>2]=E+F;g[ga+192+24>>2]=E+D;g[ga+192+28>>2]=0.0;ia=c[ha+(f*104|0)+96>>2]|0;D=+g[I+460>>2];E=D*+g[ha+(f*104|0)+44>>2];F=D*+g[ha+(f*104|0)+48>>2];g[ga+176>>2]=+g[ha+(f*104|0)+40>>2]*D;g[ga+176+4>>2]=E;g[ga+176+8>>2]=F;g[ga+176+12>>2]=0.0;jh(I+928|0,ia,ga+192|0,ga+176|0,+g[I+468>>2])|0;f=f+1|0}while((f|0)!=(e|0))}if(c[I+988>>2]|0?(c[I+752>>2]|0)>0:0){e=0;do{ia=c[I+760>>2]|0;G=c[ia+(e*44|0)+8>>2]|0;H=c[ia+(e*44|0)+12>>2]|0;ha=c[ia+(e*44|0)+16>>2]|0;C=(+g[G+40>>2]+ +g[H+40>>2]+ +g[ha+40>>2])*.3333333432674408;D=(+g[G+44>>2]+ +g[H+44>>2]+ +g[ha+44>>2])*.3333333432674408;E=(+g[G+48>>2]+ +g[H+48>>2]+ +g[ha+48>>2])*.3333333432674408;x=+g[I+464>>2];u=+g[G+8>>2];w=+g[G+12>>2];A=+g[G+16>>2];F=+g[G+20>>2];B=+g[H+8>>2];p=B>2];q=z>2];r=v>2];s=t>2];v=+g[ha+12>>2];z=+g[ha+16>>2];B=+g[ha+20>>2];g[ga+192>>2]=(t>2]=(v>2]=(z>2]=B>2]=x+(u>2]=x+(w>2]=x+(A>2]=F>2]|0;F=+g[I+460>>2];g[ga+160>>2]=C*F;g[ga+160+4>>2]=D*F;g[ga+160+8>>2]=E*F;g[ga+160+12>>2]=0.0;jh(I+988|0,ia,ga+192|0,ga+160|0,+g[I+468>>2])|0;e=e+1|0}while((e|0)<(c[I+752>>2]|0))}do if(a[I+473>>0]|0){y=c[I+712>>2]|0;if((y|0)>0){e=c[I+720>>2]|0;f=c[I+512>>2]|0;j=0.0;l=0.0;m=0.0;h=0;do{F=+g[f+(h<<2)>>2];j=j+ +g[e+(h*104|0)+8>>2]*F;l=l+F*+g[e+(h*104|0)+12>>2];m=m+F*+g[e+(h*104|0)+16>>2];h=h+1|0}while((h|0)!=(y|0))}else{j=0.0;l=0.0;m=0.0}g[I+520>>2]=j;g[I+524>>2]=l;g[I+528>>2]=m;g[I+532>>2]=0.0;h=ga+320|0;n=h+48|0;do{c[h>>2]=0;h=h+4|0}while((h|0)<(n|0));g[ga+320>>2]=1.1920928955078125e-07;g[ga+320+20>>2]=2.384185791015625e-07;g[ga+320+40>>2]=3.5762786865234375e-07;if((y|0)>0){e=c[I+512>>2]|0;f=c[I+720>>2]|0;h=c[I+492>>2]|0;o=1.1920928955078125e-07;p=+g[ga+320+4>>2];q=+g[ga+320+8>>2];r=+g[ga+320+16>>2];s=2.384185791015625e-07;t=+g[ga+320+24>>2];u=0.0;v=0.0;w=3.5762786865234375e-07;n=0;do{E=+g[e+(n<<2)>>2];A=(+g[f+(n*104|0)+8>>2]-j)*E;B=(+g[f+(n*104|0)+12>>2]-l)*E;E=E*(+g[f+(n*104|0)+16>>2]-m);C=+g[h+(n<<4)>>2];D=+g[h+(n<<4)+4>>2];F=+g[h+(n<<4)+8>>2];o=A*C+o;p=A*D+p;q=A*F+q;r=B*C+r;s=B*D+s;t=B*F+t;u=E*C+u;v=E*D+v;w=E*F+w;n=n+1|0}while((n|0)!=(y|0));g[ga+320>>2]=o;g[ga+320+4>>2]=p;g[ga+320+8>>2]=q;g[ga+320+16>>2]=r;g[ga+320+20>>2]=s;g[ga+320+24>>2]=t;g[ga+320+32>>2]=u;g[ga+320+36>>2]=v;g[ga+320+40>>2]=w}if((a[22520]|0)==0?Wa(22520)|0:0){g[5787]=9.999999747378752e-05;c[5788]=16;_a(22520)}md(ga+320|0,ga+272|0,ga+224|0);c[I+536>>2]=c[ga+272>>2];c[I+536+4>>2]=c[ga+272+4>>2];c[I+536+8>>2]=c[ga+272+8>>2];c[I+536+12>>2]=c[ga+272+12>>2];c[I+552>>2]=c[V>>2];c[I+552+4>>2]=c[V+4>>2];c[I+552+8>>2]=c[V+8>>2];c[I+552+12>>2]=c[V+12>>2];c[I+568>>2]=c[W>>2];c[I+568+4>>2]=c[W+4>>2];c[I+568+8>>2]=c[W+8>>2];c[I+568+12>>2]=c[W+12>>2];la=+g[ga+272>>2];w=+g[V>>2];B=+g[W>>2];ka=+g[ga+272+4>>2];x=+g[ga+272+20>>2];D=+g[ga+272+36>>2];ja=+g[ga+272+8>>2];z=+g[ga+272+24>>2];F=+g[ga+272+40>>2];p=+g[I+632>>2];o=+g[I+636>>2];m=+g[I+640>>2];ra=+g[I+648>>2];qa=+g[I+652>>2];q=+g[I+656>>2];C=+g[I+664>>2];E=+g[I+668>>2];u=+g[I+672>>2];pa=+g[ga+320>>2];oa=+g[ga+320+16>>2];r=+g[ga+320+32>>2];j=(la*p+ka*o+ja*m)*pa+(w*p+x*o+z*m)*oa+(B*p+D*o+F*m)*r;na=+g[ga+320+4>>2];ma=+g[ga+320+20>>2];s=+g[ga+320+36>>2];l=(la*p+ka*o+ja*m)*na+(w*p+x*o+z*m)*ma+(B*p+D*o+F*m)*s;v=+g[ga+320+8>>2];A=+g[ga+320+24>>2];t=+g[ga+320+40>>2];m=(la*p+ka*o+ja*m)*v+(w*p+x*o+z*m)*A+(B*p+D*o+F*m)*t;o=(la*ra+ka*qa+ja*q)*pa+(w*ra+x*qa+z*q)*oa+(B*ra+D*qa+F*q)*r;p=(la*ra+ka*qa+ja*q)*na+(w*ra+x*qa+z*q)*ma+(B*ra+D*qa+F*q)*s;q=(la*ra+ka*qa+ja*q)*v+(w*ra+x*qa+z*q)*A+(B*ra+D*qa+F*q)*t;r=pa*(la*C+ka*E+ja*u)+oa*(w*C+x*E+z*u)+(B*C+D*E+F*u)*r;s=(la*C+ka*E+ja*u)*na+(w*C+x*E+z*u)*ma+(B*C+D*E+F*u)*s;t=(la*C+ka*E+ja*u)*v+(w*C+x*E+z*u)*A+(B*C+D*E+F*u)*t;g[I+584>>2]=j;g[I+588>>2]=l;g[I+592>>2]=m;g[I+596>>2]=0.0;g[I+600>>2]=o;g[I+604>>2]=p;g[I+608>>2]=q;g[I+612>>2]=0.0;g[I+616>>2]=r;g[I+620>>2]=s;g[I+624>>2]=t;g[I+628>>2]=0.0;u=+g[I+364>>2];if(u>1.0){ra=1.0/(m*(s*o-p*r)+(j*(p*t-q*s)+l*(q*r-t*o)))<1.0?1.0:u<1.0/(m*(s*o-p*r)+(j*(p*t-q*s)+l*(q*r-t*o)))?u:1.0/(m*(s*o-p*r)+(j*(p*t-q*s)+l*(q*r-t*o)));g[I+584>>2]=j*ra;g[I+588>>2]=l*ra;g[I+592>>2]=m*ra;g[I+596>>2]=0.0;g[I+600>>2]=o*ra;g[I+604>>2]=p*ra;g[I+608>>2]=q*ra;g[I+612>>2]=0.0;g[I+616>>2]=r*ra;g[I+620>>2]=s*ra;g[I+624>>2]=ra*t;g[I+628>>2]=0.0}if(a[I+473>>0]|0){if(!(+g[I+320>>2]>0.0))break;j=+g[I+536>>2];l=+g[I+540>>2];m=+g[I+544>>2];o=+g[I+552>>2];p=+g[I+556>>2];q=+g[I+560>>2];r=+g[I+568>>2];s=+g[I+572>>2];t=+g[I+576>>2];e=c[I+712>>2]|0;if((e|0)<=0)break;h=0;do{f=c[I+720>>2]|0;if(+g[f+(h*104|0)+88>>2]>0.0){H=c[I+492>>2]|0;ma=+g[H+(h<<4)>>2];na=+g[H+(h<<4)+4>>2];oa=+g[H+(h<<4)+8>>2];la=+g[I+320>>2];H=f+(h*104|0)+8|0;pa=+g[H>>2];ha=f+(h*104|0)+12|0;qa=+g[ha>>2];ia=f+(h*104|0)+16|0;ra=+g[ia>>2];qa=qa+la*(o*ma+p*na+q*oa+ +g[I+524>>2]-qa);ra=ra+la*(r*ma+s*na+t*oa+ +g[I+528>>2]-ra);g[H>>2]=pa+la*(+g[I+520>>2]+(j*ma+l*na+m*oa)-pa);g[ha>>2]=qa;g[ia>>2]=ra;g[f+(h*104|0)+20>>2]=0.0}h=h+1|0}while((h|0)!=(e|0))}}while(0);h=ga+56|0;n=h+104|0;do{c[h>>2]=0;h=h+4|0}while((h|0)<(n|0));e=c[I+812>>2]|0;if((e|0)<0){if((c[I+816>>2]|0)<0){f=c[I+820>>2]|0;if(f|0){if(a[I+824>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}c[I+820>>2]=0}a[I+824>>0]=1;c[I+820>>2]=0;c[I+816>>2]=0}do{ia=c[I+820>>2]|0;ha=ia+(e*104|0)|0;c[ha>>2]=c[ga+56>>2];c[ha+4>>2]=c[ga+56+4>>2];c[ha+8>>2]=c[ga+56+8>>2];c[ha+12>>2]=c[ga+56+12>>2];c[ha+16>>2]=c[ga+56+16>>2];c[ha+20>>2]=c[ga+56+20>>2];c[ha+24>>2]=c[ga+56+24>>2];ha=ia+(e*104|0)+28|0;c[ha>>2]=c[ga+56+28>>2];c[ha+4>>2]=c[ga+56+28+4>>2];c[ha+8>>2]=c[ga+56+28+8>>2];c[ha+12>>2]=c[ga+56+28+12>>2];ha=ia+(e*104|0)+44|0;c[ha>>2]=c[ga+56+44>>2];c[ha+4>>2]=c[ga+56+44+4>>2];c[ha+8>>2]=c[ga+56+44+8>>2];c[ha+12>>2]=c[ga+56+44+12>>2];ha=ia+(e*104|0)+60|0;c[ha>>2]=c[ga+56+60>>2];c[ha+4>>2]=c[ga+56+60+4>>2];c[ha+8>>2]=c[ga+56+60+8>>2];c[ha+12>>2]=c[ga+56+60+12>>2];ia=ia+(e*104|0)+76|0;c[ia>>2]=c[K>>2];c[ia+4>>2]=c[K+4>>2];c[ia+8>>2]=c[K+8>>2];c[ia+12>>2]=c[K+12>>2];c[ia+16>>2]=c[K+16>>2];c[ia+20>>2]=c[K+20>>2];c[ia+24>>2]=c[K+24>>2];e=e+1|0}while((e|0)!=0)}c[I+812>>2]=0;h=ga;n=h+56|0;do{c[h>>2]=0;h=h+4|0}while((h|0)<(n|0));e=c[I+832>>2]|0;if((e|0)<0){if((c[I+836>>2]|0)<0){f=c[I+840>>2]|0;if(f|0){if(a[I+844>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0)}c[I+840>>2]=0}a[I+844>>0]=1;c[I+840>>2]=0;c[I+836>>2]=0}do{h=(c[I+840>>2]|0)+(e*56|0)|0;f=ga;n=h+56|0;do{c[h>>2]=c[f>>2];h=h+4|0;f=f+4|0}while((h|0)<(n|0));e=e+1|0}while((e|0)!=0)}c[I+832>>2]=0;ig(I+928|0,1);ig(I+988|0,1);ig(I+1048|0,1);e=c[b+24>>2]|0}}J=J+1|0}while((J|0)<(e|0));i=ga;return} -function Wj(b,d,e,f,g){b=b|0;d=d|0;e=e|0;f=f|0;g=g|0;d=c[d>>2]|0;c[b+4>>2]=d;c[b>>2]=3640;a[b+8>>0]=g&1;c[b+12>>2]=3668;c[b+60>>2]=d;c[b+64>>2]=0;a[b+88>>0]=1;c[b+84>>2]=0;c[b+76>>2]=0;c[b+80>>2]=0;a[b+108>>0]=1;c[b+104>>2]=0;c[b+96>>2]=0;c[b+100>>2]=0;a[b+128>>0]=1;c[b+124>>2]=0;c[b+116>>2]=0;c[b+120>>2]=0;a[b+148>>0]=1;c[b+144>>2]=0;c[b+136>>2]=0;c[b+140>>2]=0;if(g){c[b+16>>2]=c[f+8>>2];d=e;d=d+8|0;d=c[d>>2]|0;g=b+20|0;c[g>>2]=d;cg(b+12|0);return}else{c[b+16>>2]=c[e+8>>2];d=f;d=d+8|0;d=c[d>>2]|0;g=b+20|0;c[g>>2]=d;cg(b+12|0);return}}function Xj(a){a=a|0;var b=0.0,c=0.0,d=0.0,e=0.0,f=0.0,h=0.0,i=0.0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0;n=+g[a+4>>2];h=+g[a+396>>2];m=+g[a+8>>2];e=+g[a+400>>2];l=+g[a+12>>2];c=+g[a+404>>2];k=+g[a+20>>2];j=+g[a+24>>2];i=+g[a+28>>2];f=+g[a+36>>2];d=+g[a+40>>2];b=+g[a+44>>2];g[a+264>>2]=n*h*n+m*e*m+l*c*l;g[a+268>>2]=n*h*k+m*e*j+l*c*i;g[a+272>>2]=n*h*f+m*e*d+l*c*b;g[a+276>>2]=0.0;g[a+280>>2]=h*k*n+e*j*m+c*i*l;g[a+284>>2]=h*k*k+e*j*j+c*i*i;g[a+288>>2]=h*k*f+e*j*d+c*i*b;g[a+292>>2]=0.0;g[a+296>>2]=h*f*n+e*d*m+c*b*l;g[a+300>>2]=h*f*k+e*d*j+c*b*i;g[a+304>>2]=h*f*f+e*d*d+c*b*b;g[a+308>>2]=0.0;return}function Yj(b,d){b=b|0;d=d|0;var e=0.0,f=0.0,h=0;if(a[b+738>>0]|0){c[d>>2]=0;c[d+4>>2]=0;return}c[d>>2]=5;c[d+4>>2]=1;e=+kj(b,(c[b+28>>2]|0)+4|0,(c[b+32>>2]|0)+4|0);g[b+728>>2]=e;g[b+708>>2]=0.0;g[b+712>>2]=0.0;a[b+716>>0]=0;f=+g[b+692>>2];do if(f>=0.0){e=+eh(e-+g[b+688>>2],6.2831854820251465);if(!(e<-3.1415927410125732)){if(e>3.1415927410125732)e=e+-6.2831854820251465}else e=e+6.2831854820251465;if(e<-f){a[b+716>>0]=1;g[b+708>>2]=-(e+f);g[b+712>>2]=1.0;break}if(e>f){a[b+716>>0]=1;g[b+708>>2]=f-e;g[b+712>>2]=-1.0}else h=12}else h=12;while(0);if((h|0)==12?(a[b+737>>0]|0)==0:0)return;c[d>>2]=6;c[d+4>>2]=0;return}function Zj(b,d,e){b=b|0;d=d|0;e=+e;var f=0,h=0;c[6435]=(c[6435]|0)+1;f=yc(203)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}c[f>>2]=4872;h=f+60|0;a[f+144>>0]=1;c[f+140>>2]=0;c[f+132>>2]=0;c[f+136>>2]=0;c[f+176>>2]=1;g[f+56>>2]=.019999999552965164;c[h>>2]=0;c[h+4>>2]=0;c[h+8>>2]=0;c[h+12>>2]=0;a[f+170>>0]=1;c[f+8>>2]=b;g[f+52>>2]=e;g[f+48>>2]=0.0;c[f+12>>2]=d;a[f+171>>0]=1;g[f+172>>2]=0.0;g[f+16>>2]=0.0;g[f+20>>2]=0.0;g[f+44>>2]=29.399999618530273;g[f+24>>2]=55.0;g[f+28>>2]=10.0;a[f+168>>0]=0;a[f+169>>0]=0;a[f+180>>0]=1;g[f+36>>2]=.7853981852531433;g[f+40>>2]=.7071067690849304;g[f+108>>2]=0.0;a[f+181>>0]=0;a[f+182>>0]=0;return f|0}function _j(b){b=b|0;var d=0,e=0,f=0,g=0,h=0;c[b>>2]=5632;e=c[b+8>>2]|0;d=c[b+16>>2]|0;if((e|0)>0){h=0;do{f=(c[d+(h<<2)>>2]|0)+188|0;g=c[f>>2]|0;if(g){e=c[b+68>>2]|0;e=Eb[c[(c[e>>2]|0)+36>>2]&127](e)|0;ic[c[(c[e>>2]|0)+40>>2]&127](e,g,c[b+24>>2]|0);e=c[b+68>>2]|0;ic[c[(c[e>>2]|0)+12>>2]&127](e,g,c[b+24>>2]|0);c[f>>2]=0;e=c[b+8>>2]|0;d=c[b+16>>2]|0}h=h+1|0}while((h|0)<(e|0))}if(!d){a[b+20>>0]=1;c[b+16>>2]=0;c[b+8>>2]=0;b=b+12|0;c[b>>2]=0;return}if(a[b+20>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+16>>2]=0;a[b+20>>0]=1;c[b+16>>2]=0;c[b+8>>2]=0;b=b+12|0;c[b>>2]=0;return}function $j(a,b){a=a|0;b=b|0;var d=0,e=0.0,f=0,h=0,i=0.0,j=0.0;c[a+248>>2]=c[b>>2];c[a+248+4>>2]=c[b+4>>2];c[a+248+8>>2]=c[b+8>>2];c[a+248+12>>2]=c[b+12>>2];d=c[a+232>>2]|0;if((d|0)<=0)return;h=0;do{f=c[(c[a+240>>2]|0)+(h<<2)>>2]|0;switch(c[f+216>>2]|0){case 2:case 5:break;default:if(!(c[f+504>>2]&1)){e=+g[f+344>>2];if(e!=0.0){j=1.0/e*+g[b+4>>2];i=1.0/e*+g[b+8>>2];g[f+364>>2]=1.0/e*+g[b>>2];g[f+368>>2]=j;g[f+372>>2]=i;g[f+376>>2]=0.0}c[f+380>>2]=c[b>>2];c[f+380+4>>2]=c[b+4>>2];c[f+380+8>>2]=c[b+8>>2];c[f+380+12>>2]=c[b+12>>2];d=c[a+232>>2]|0}}h=h+1|0}while((h|0)<(d|0));return}function ak(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;var h=0;c[6435]=(c[6435]|0)+1;h=yc(379)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}c[h+4>>2]=3;c[h+8>>2]=-1;c[h+12>>2]=-1;g[h+16>>2]=3402823466385288598117041.0e14;a[h+20>>0]=1;a[h+21>>0]=0;c[h+24>>2]=-1;c[h+28>>2]=b;c[h+32>>2]=d;g[h+36>>2]=0.0;g[h+40>>2]=.30000001192092896;c[h+44>>2]=0;c[h>>2]=4544;d=h+300|0;c[d>>2]=c[e>>2];c[d+4>>2]=c[e+4>>2];c[d+8>>2]=c[e+8>>2];c[d+12>>2]=c[e+12>>2];e=h+316|0;c[e>>2]=c[f>>2];c[e+4>>2]=c[f+4>>2];c[e+8>>2]=c[f+8>>2];c[e+12>>2]=c[f+12>>2];c[h+332>>2]=0;a[h+344>>0]=0;g[h+348>>2]=.30000001192092896;g[h+352>>2]=1.0;g[h+356>>2]=0.0;return h|0}function bk(a,b,d){a=a|0;b=b|0;d=+d;var e=0,f=0,h=0;f=i;i=i+496|0;e=c[b+212>>2]|0;if((e|0)>-1){a=e;i=f;return a|0}h=(c[b+236>>2]&2|0)==0;e=h?0:b;do if(!h){if(!(+g[e+344>>2]!=0.0)?(c[e+204>>2]&2|0)==0:0)break;h=c[a+8>>2]|0;Qn(f+244|0,0,244)|0;Me(Ff(a+4|0,f+244|0)|0,b,d);c[b+212>>2]=h;i=f;return h|0}while(0);e=c[a+188>>2]|0;if((e|0)>=0){h=e;i=f;return h|0}c[a+188>>2]=c[a+8>>2];Qn(f|0,0,244)|0;Me(Ff(a+4|0,f)|0,0,d);h=c[a+188>>2]|0;i=f;return h|0}function ck(a,b,d){a=a|0;b=+b;d=d|0;var e=0,f=0,h=0.0,i=0.0,j=0.0;e=c[a+204>>2]|0;if(b==0.0){c[a+204>>2]=e|1;h=0.0}else{c[a+204>>2]=e&-2;h=1.0/b}g[a+344>>2]=h;j=+g[a+384>>2]*b;i=+g[a+388>>2]*b;g[a+364>>2]=+g[a+380>>2]*b;g[a+368>>2]=j;g[a+372>>2]=i;g[a+376>>2]=0.0;b=+g[d>>2];f=b!=0.0?(g[k>>2]=1.0/b,c[k>>2]|0):0;b=+g[d+4>>2];e=b!=0.0?(g[k>>2]=1.0/b,c[k>>2]|0):0;b=+g[d+8>>2];d=b!=0.0?(g[k>>2]=1.0/b,c[k>>2]|0):0;c[a+396>>2]=f;c[a+400>>2]=e;c[a+404>>2]=d;g[a+408>>2]=0.0;i=h*+g[a+352>>2];j=h*+g[a+356>>2];g[a+560>>2]=+g[a+348>>2]*h;g[a+564>>2]=i;g[a+568>>2]=j;g[a+572>>2]=0.0;return}function dk(b,d,e,f,h){b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;var i=0;c[6435]=(c[6435]|0)+1;i=yc(1407)|0;if(!i)i=0;else{c[(i+4+15&-16)+-4>>2]=i;i=i+4+15&-16}Le(i,b,d,e,f,h);c[i>>2]=4484;c[i+4>>2]=9;a[i+1309>>0]=0;g[i+1316>>2]=0.0;g[i+1340>>2]=0.0;g[i+1364>>2]=1.0;a[i+1310>>0]=0;g[i+1320>>2]=0.0;g[i+1344>>2]=0.0;g[i+1368>>2]=1.0;a[i+1311>>0]=0;g[i+1324>>2]=0.0;g[i+1348>>2]=0.0;g[i+1372>>2]=1.0;a[i+1312>>0]=0;g[i+1328>>2]=0.0;g[i+1352>>2]=0.0;g[i+1376>>2]=1.0;a[i+1313>>0]=0;g[i+1332>>2]=0.0;g[i+1356>>2]=0.0;g[i+1380>>2]=1.0;a[i+1314>>0]=0;g[i+1336>>2]=0.0;g[i+1360>>2]=0.0;g[i+1384>>2]=1.0;return i|0}function ek(b,d){b=b|0;d=d|0;var e=0,f=0,g=0,h=0;e=c[b+280>>2]|0;if((e|0)==(c[b+284>>2]|0)?(h=e|0?e<<1:1,(e|0)<(h|0)):0){if(!h)g=0;else{c[6435]=(c[6435]|0)+1;e=yc((h<<2|3)+16|0)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}g=e;e=c[b+280>>2]|0}if((e|0)>0){f=0;do{c[g+(f<<2)>>2]=c[(c[b+288>>2]|0)+(f<<2)>>2];f=f+1|0}while((f|0)!=(e|0))}f=c[b+288>>2]|0;if(f){if(a[b+292>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[f+-4>>2]|0);e=c[b+280>>2]|0}c[b+288>>2]=0}a[b+292>>0]=1;c[b+288>>2]=g;c[b+284>>2]=h}c[(c[b+288>>2]|0)+(e<<2)>>2]=d;c[b+280>>2]=e+1;return}function fk(a,b,d){a=a|0;b=+b;d=d|0;var e=0,f=0.0,h=0.0,j=0.0,k=0;e=i;i=i+96|0;c[e+32>>2]=1065353216;c[e+32+4>>2]=0;c[e+32+4+4>>2]=0;c[e+32+4+8>>2]=0;c[e+32+4+12>>2]=0;c[e+32+20>>2]=1065353216;c[e+32+24>>2]=0;c[e+32+24+4>>2]=0;c[e+32+24+8>>2]=0;c[e+32+24+12>>2]=0;c[e+32+40>>2]=1065353216;k=e+32+44|0;c[k>>2]=0;c[k+4>>2]=0;c[k+8>>2]=0;c[k+12>>2]=0;c[k+16>>2]=0;mc[c[(c[a>>2]|0)+8>>2]&127](a,e+32|0,e+16|0,e);h=(+g[e>>2]-+g[e+16>>2])*.5*2.0;f=(+g[e+4>>2]-+g[e+16+4>>2])*.5*2.0;j=(+g[e+8>>2]-+g[e+16+8>>2])*.5*2.0;g[d>>2]=b/12.0*(f*f+j*j);g[d+4>>2]=b/12.0*(h*h+j*j);g[d+8>>2]=b/12.0*(h*h+f*f);i=e;return}function gk(){var a=0,b=0,d=0,e=0;e=i;i=i+48|0;if(kb(26248,3)|0)ej(21924,e);a=hb(c[6563]|0)|0;if(a|0?(d=c[a>>2]|0,d|0):0){a=c[d+48>>2]|0;b=c[d+48+4>>2]|0;if(!((a&-256|0)==1126902528&(b|0)==1129074247)){c[e+32>>2]=22103;ej(22198,e+32|0)}if((a|0)==1126902529&(b|0)==1129074247)a=c[d+44>>2]|0;else a=d+80|0;c[e+44>>2]=a;d=c[d>>2]|0;a=c[d+4>>2]|0;if(Ql(2736,d,e+44|0)|0){d=c[e+44>>2]|0;d=Eb[c[(c[d>>2]|0)+8>>2]&127](d)|0;c[e+8>>2]=22103;c[e+8+4>>2]=a;c[e+8+8>>2]=d;ej(22112,e+8|0)}else{c[e+24>>2]=22103;c[e+24+4>>2]=a;ej(22157,e+24|0)}}ej(22236,e+40|0)}function hk(b){b=b|0;var d=0,e=0,f=0;while(1){f=yc(5260)|0;if(f|0)break;d=c[6564]|0;c[6564]=d+0;if(!d){e=5;break}jc[d&3]()}if((e|0)==5){f=Ya(4)|0;c[f>>2]=9640;pb(f|0,2800,251)}c[f>>2]=5132;c[f+4>>2]=2;a[f+24>>0]=1;c[f+20>>2]=0;c[f+12>>2]=0;c[f+16>>2]=0;c[f+28>>2]=5604;c[f+5256>>2]=b;c[f+60>>2]=79;c[f+64>>2]=Eb[c[(c[b>>2]|0)+12>>2]&127](b)|0;c[f+68>>2]=Eb[c[(c[b>>2]|0)+8>>2]&127](b)|0;d=0;do{b=0;do{e=c[f+5256>>2]|0;c[f+72+(d*144|0)+(b<<2)>>2]=Ob[c[(c[e>>2]|0)+16>>2]&63](e,d,b)|0;b=b+1|0}while((b|0)<36);d=d+1|0}while((d|0)<36);return f|0}function ik(a,b,c){a=+a;b=+b;c=+c;var d=0.0,e=0.0,f=0;if(b>=c)return +a;if(a3.1415927410125732)d=d+-6.2831854820251465}else d=d+6.2831854820251465;e=+N(+d);d=+eh(c-a,6.2831854820251465);if(!(d<-3.1415927410125732)){if(d>3.1415927410125732)d=d+-6.2831854820251465}else d=d+6.2831854820251465;f=e<+N(+d);a=f?a:a+6.2831854820251465;return +a}if(!(a>c))return +a;d=+eh(a-c,6.2831854820251465);if(!(d<-3.1415927410125732)){if(d>3.1415927410125732)d=d+-6.2831854820251465}else d=d+6.2831854820251465;e=+N(+d);d=+eh(a-b,6.2831854820251465);if(!(d<-3.1415927410125732)){if(d>3.1415927410125732)d=d+-6.2831854820251465}else d=d+6.2831854820251465;f=+N(+d)>2]|0)+68>>2]&127](e,b,d);c[a>>2]=c[e>>2];c[a+4>>2]=c[e+4>>2];c[a+8>>2]=c[e+8>>2];c[a+12>>2]=c[e+12>>2];if(!(+Sb[c[(c[b>>2]|0)+48>>2]&15](b)!=0.0)){i=e;return}j=+g[d>>2];h=+g[d+4>>2];f=+g[d+8>>2];l=j*j+h*h+f*f<1.4210854715202004e-14?-1.0:j;k=j*j+h*h+f*f<1.4210854715202004e-14?-1.0:h;f=j*j+h*h+f*f<1.4210854715202004e-14?-1.0:f;h=1.0/+O(+(f*f+(l*l+k*k)));j=+Sb[c[(c[b>>2]|0)+48>>2]&15](b);g[a>>2]=+g[a>>2]+j*h*l;g[a+4>>2]=j*h*k+ +g[a+4>>2];g[a+8>>2]=j*h*f+ +g[a+8>>2];i=e;return}function kk(a,b,d){a=a|0;b=+b;d=+d;var e=0.0,f=0.0,h=0.0;f=+g[a+692>>2];do if(f>0.0){h=+g[a+688>>2];e=+eh(b-h,6.2831854820251465);if(!(e<-3.1415927410125732)){if(e>3.1415927410125732)e=e+-6.2831854820251465}else e=e+6.2831854820251465;if(!(!(e<-f)&e<=f))if(e>0.0){b=+eh(f+h,6.2831854820251465);if(b<-3.1415927410125732){b=b+6.2831854820251465;break}if(!(b>3.1415927410125732))break;b=b+-6.2831854820251465;break}else{b=+eh(h-f,6.2831854820251465);if(b<-3.1415927410125732){b=b+6.2831854820251465;break}if(!(b>3.1415927410125732))break;b=b+-6.2831854820251465;break}}while(0);g[a+680>>2]=(b-+kj(a,(c[a+28>>2]|0)+4|0,(c[a+32>>2]|0)+4|0))/d;return}function lk(a,b,d){a=a|0;b=b|0;d=d|0;var e=0.0,f=0,h=0.0,i=0,j=0.0,k=0,l=0.0,m=0.0,n=0.0,o=0.0,p=0.0;k=c[b+96>>2]|0;if((k|0)<=0){c[a>>2]=0;c[a+4>>2]=0;c[a+8>>2]=0;c[a+12>>2]=0;return}o=+g[b+12>>2];p=+g[d>>2]*o;l=+g[b+16>>2];m=+g[d+4>>2]*l;n=+g[b+20>>2];j=+g[d+8>>2]*n;d=c[b+104>>2]|0;f=0;h=-3402823466385288598117041.0e14;i=-1;while(1){e=p*+g[d+(f<<4)>>2]+m*+g[d+(f<<4)+4>>2]+j*+g[d+(f<<4)+8>>2];b=e>h;i=b?f:i;f=f+1|0;if((f|0)==(k|0))break;else h=b?e:h}m=+g[d+(i<<4)+4>>2]*l;p=+g[d+(i<<4)+8>>2]*n;g[a>>2]=+g[d+(i<<4)>>2]*o;g[a+4>>2]=m;g[a+8>>2]=p;g[a+12>>2]=0.0;return}function mk(a,b,c){a=a|0;b=b|0;c=c|0;var d=0.0;a:do switch(b|0){case 2:{if((c|0)<1){d=+g[a+232>>2];break a}if((c|0)<3){d=+g[a+264>>2];break a}if((c|0)==3){d=+g[a+248>>2];break a}if((c|0)<6)d=+g[a+280>>2];else d=3402823466385288598117041.0e14;break}case 3:{if((c|0)<1){d=+g[a+212>>2];break a}if((c|0)==3)d=+g[a+228>>2];else d=3402823466385288598117041.0e14;break}case 4:{if((c|0)<1){d=+g[a+244>>2];break a}if((c|0)<3){d=+g[a+276>>2];break a}if((c|0)==3){d=+g[a+260>>2];break a}if((c|0)<6)d=+g[a+292>>2];else d=3402823466385288598117041.0e14;break}default:d=3402823466385288598117041.0e14}while(0);return +d}function nk(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;var g=0,h=0;a:do if((b|0)==(c[d+8>>2]|0)){g=c[d+16>>2]|0;if(!g){c[d+16>>2]=e;c[d+24>>2]=f;c[d+36>>2]=1;break}if((g|0)!=(e|0)){c[d+36>>2]=(c[d+36>>2]|0)+1;c[d+24>>2]=2;a[d+54>>0]=1;break}if((c[d+24>>2]|0)==2)c[d+24>>2]=f}else{g=c[b+12>>2]|0;no(b+16|0,d,e,f);if((g|0)>1){h=b+24|0;do{no(h,d,e,f);if(a[d+54>>0]|0)break a;h=h+8|0}while(h>>>0<(b+16+(g<<3)|0)>>>0)}}while(0);return}function ok(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0,g=0;c[6166]=(c[6166]|0)+1;e=(c[b+12>>2]|0)>(c[d+12>>2]|0);f=c[(e?d:b)+12>>2]|0;e=c[(e?b:d)+12>>2]|0;b=((e<<16|f)+~((e<<16|f)<<15)>>10^(e<<16|f)+~((e<<16|f)<<15))*9|0;b=((b>>6^b)+~((b>>6^b)<<11)>>16^(b>>6^b)+~((b>>6^b)<<11))&(c[a+12>>2]|0)+-1;if((b|0)>=(c[a+36>>2]|0)){g=0;return g|0}b=c[(c[a+44>>2]|0)+(b<<2)>>2]|0;if((b|0)==-1){g=0;return g|0}d=c[a+16>>2]|0;while(1){if((c[(c[d+(b<<4)>>2]|0)+12>>2]|0)==(f|0)?(c[(c[d+(b<<4)+4>>2]|0)+12>>2]|0)==(e|0):0)break;b=c[(c[a+64>>2]|0)+(b<<2)>>2]|0;if((b|0)==-1){b=0;g=8;break}}if((g|0)==8)return b|0;g=d+(b<<4)|0;return g|0}function pk(b,d,e){b=b|0;d=d|0;e=e|0;var f=0;c[6435]=(c[6435]|0)+1;f=yc(1407)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}qe(f,b,d,e);c[f>>2]=4484;c[f+4>>2]=9;a[f+1309>>0]=0;g[f+1316>>2]=0.0;g[f+1340>>2]=0.0;g[f+1364>>2]=1.0;a[f+1310>>0]=0;g[f+1320>>2]=0.0;g[f+1344>>2]=0.0;g[f+1368>>2]=1.0;a[f+1311>>0]=0;g[f+1324>>2]=0.0;g[f+1348>>2]=0.0;g[f+1372>>2]=1.0;a[f+1312>>0]=0;g[f+1328>>2]=0.0;g[f+1352>>2]=0.0;g[f+1376>>2]=1.0;a[f+1313>>0]=0;g[f+1332>>2]=0.0;g[f+1356>>2]=0.0;g[f+1380>>2]=1.0;a[f+1314>>0]=0;g[f+1336>>2]=0.0;g[f+1360>>2]=0.0;g[f+1384>>2]=1.0;return f|0}function qk(b){b=b|0;var d=0;c[b>>2]=3872;if(a[b+456>>0]|0?(d=c[b+452>>2]|0,Ab[c[c[d>>2]>>2]&255](d),d=c[b+452>>2]|0,d|0):0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}d=c[b+420>>2]|0;if(d|0){if(a[b+424>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+420>>2]=0}a[b+424>>0]=1;c[b+420>>2]=0;c[b+412>>2]=0;c[b+416>>2]=0;d=c[b+336>>2]|0;if(!d){a[b+340>>0]=1;c[b+336>>2]=0;c[b+328>>2]=0;d=b+332|0;c[d>>2]=0;Sg(b);return}if(a[b+340>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+336>>2]=0;a[b+340>>0]=1;c[b+336>>2]=0;c[b+328>>2]=0;d=b+332|0;c[d>>2]=0;Sg(b);return}function rk(a,b){a=a|0;b=+b;var d=0,e=0,f=0;e=i;i=i+16|0;li(12327);if((c[a+280>>2]|0)>0){d=0;do{f=c[(c[a+288>>2]|0)+(d<<2)>>2]|0;kc[c[(c[f>>2]|0)+8>>2]&7](f,a,b);d=d+1|0}while((d|0)<(c[a+280>>2]|0))}d=c[2357]|0;f=(c[d+16>>2]|0)+-1|0;c[d+16>>2]=f;if(f|0){i=e;return}do if(c[d+4>>2]|0){tb(e|0,0)|0;f=c[6434]|0;g[d+8>>2]=+g[d+8>>2]+ +(((c[e+4>>2]|0)-(c[f+4>>2]|0)+(((c[e>>2]|0)-(c[f>>2]|0)|0)*1e6|0)-(c[d+12>>2]|0)|0)>>>0)/1.0e3;if(!(c[d+16>>2]|0)){d=c[2357]|0;break}else{i=e;return}}while(0);c[2357]=c[d+20>>2];i=e;return}function sk(a,b,d){a=a|0;b=b|0;d=d|0;do if(!((b|0)==8&(d|0)==8)){if((b|0)==8&(d|0)==1){b=a+76|0;break}if((b|0)==1&(d|0)==8){b=a+80|0;break}if(!(d|b)){b=a+72|0;break}if((b|0)<20&(d|0)==28){b=a+88|0;break}if((b|0)==28&(d|0)<20){b=a+84|0;break}if((b|0)<20){if((d|0)<20){b=a+32|0;break}if((d+-21|0)>>>0<9){b=a+36|0;break}}else{if((d|0)<20&(b+-21|0)>>>0<9){b=a+40|0;break}if((b|0)==31)if((d|0)==31){b=a+48|0;break}else{b=a+44|0;break}}if((d|0)==31){b=a+52|0;break}else{b=a+56|0;break}}else b=a+60|0;while(0);return c[b>>2]|0}function tk(a,b,d){a=a|0;b=b|0;d=d|0;var e=0.0,f=0.0,h=0.0;f=+g[a+28>>2];h=+g[a+32>>2];e=+g[a+36>>2];switch(d|0){case 0:{c[b>>2]=1065353216;c[b+4>>2]=0;c[b+8>>2]=0;g[b+12>>2]=-f;return}case 1:{c[b>>2]=-1082130432;c[b+4>>2]=0;c[b+8>>2]=0;g[b+12>>2]=-f;return}case 2:{c[b>>2]=0;c[b+4>>2]=1065353216;c[b+8>>2]=0;g[b+12>>2]=-h;return}case 3:{c[b>>2]=0;c[b+4>>2]=-1082130432;c[b+8>>2]=0;g[b+12>>2]=-h;return}case 4:{c[b>>2]=0;c[b+4>>2]=0;c[b+8>>2]=1065353216;g[b+12>>2]=-e;return}case 5:{c[b>>2]=0;c[b+4>>2]=0;c[b+8>>2]=-1082130432;g[b+12>>2]=-e;return}default:return}}function uk(a,b,d,e,f){a=a|0;b=b|0;d=+d;e=e|0;f=f|0;var h=0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0;h=i;i=i+48|0;c[h+32>>2]=e;c[h+32+4>>2]=f;n=+g[b>>2];m=+g[b+4>>2];j=+g[b+8>>2];l=+g[a+56>>2]*n+ +g[a+60>>2]*m+ +g[a+64>>2]*j;k=n*+g[a+72>>2]+m*+g[a+76>>2]+j*+g[a+80>>2];j=n*+g[a+88>>2]+m*+g[a+92>>2]+j*+g[a+96>>2];c[h>>2]=c[a+48>>2];c[h+4>>2]=h+32;g[h+8>>2]=l;g[h+12>>2]=k;g[h+16>>2]=j;g[h+20>>2]=0.0;g[h+24>>2]=d;f=c[a+44>>2]|0;d=+_b[c[(c[f>>2]|0)+12>>2]&15](f,h,1);i=h;return +d}function vk(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0,h=0.0,j=0.0,l=0.0,m=0,n=0;f=i;i=i+48|0;ic[c[(c[a>>2]|0)+124>>2]&127](a,f+32|0,e);n=c[f+32>>2]|0;m=c[f+32+4>>2]|0;e=c[f+32+8>>2]|0;c[b>>2]=n;c[b+4>>2]=m;c[b+8>>2]=e;g[b+12>>2]=0.0;b=c[(c[a>>2]|0)+64>>2]|0;l=-(c[k>>2]=n,+g[k>>2]);j=-(c[k>>2]=m,+g[k>>2]);h=-(c[k>>2]=e,+g[k>>2]);g[f>>2]=l;g[f+4>>2]=j;g[f+8>>2]=h;g[f+12>>2]=0.0;ic[b&127](f+16|0,a,f);c[d>>2]=c[f+16>>2];c[d+4>>2]=c[f+16+4>>2];c[d+8>>2]=c[f+16+8>>2];c[d+12>>2]=c[f+16+12>>2];i=f;return}function wk(a,b,d,e){a=a|0;b=b|0;d=+d;e=e|0;if(e>>>0<3)switch(b|0){case 2:{g[a+756+(e<<2)>>2]=d;c[a+1304>>2]=c[a+1304>>2]|4<>2]=d;c[a+1304>>2]=c[a+1304>>2]|2<>2]=d;c[a+1304>>2]=c[a+1304>>2]|1<>>0>=3)return;switch(b|0){case 2:{g[a+868+(e+-3<<6)+32>>2]=d;c[a+1304>>2]=c[a+1304>>2]|4<>2]=d;c[a+1304>>2]=c[a+1304>>2]|2<>2]=d;c[a+1304>>2]=c[a+1304>>2]|1<>2]=4356;d=c[b+80>>2]|0;if(d|0){if(a[b+84>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+80>>2]=0}a[b+84>>0]=1;c[b+80>>2]=0;c[b+72>>2]=0;c[b+76>>2]=0;d=c[b+60>>2]|0;if(d|0){if(a[b+64>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+60>>2]=0}a[b+64>>0]=1;c[b+60>>2]=0;c[b+52>>2]=0;c[b+56>>2]=0;d=c[b+40>>2]|0;if(!d){a[b+44>>0]=1;c[b+40>>2]=0;c[b+32>>2]=0;b=b+36|0;c[b>>2]=0;return}if(a[b+44>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+40>>2]=0;a[b+44>>0]=1;c[b+40>>2]=0;c[b+32>>2]=0;b=b+36|0;c[b>>2]=0;return}function yk(b){b=b|0;var d=0;c[b>>2]=8724;d=c[b+64>>2]|0;if(d|0){if(a[b+68>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+64>>2]=0}a[b+68>>0]=1;c[b+64>>2]=0;c[b+56>>2]=0;c[b+60>>2]=0;d=c[b+44>>2]|0;if(d|0){if(a[b+48>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+44>>2]=0}a[b+48>>0]=1;c[b+44>>2]=0;c[b+36>>2]=0;c[b+40>>2]=0;d=c[b+16>>2]|0;if(!d){a[b+20>>0]=1;c[b+16>>2]=0;c[b+8>>2]=0;b=b+12|0;c[b>>2]=0;return}if(a[b+20>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+16>>2]=0;a[b+20>>0]=1;c[b+16>>2]=0;c[b+8>>2]=0;b=b+12|0;c[b>>2]=0;return}function zk(b){b=b|0;var d=0;c[b>>2]=5456;d=c[b+56>>2]|0;if(d|0){if(a[b+60>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+56>>2]=0}a[b+60>>0]=1;c[b+56>>2]=0;c[b+48>>2]=0;c[b+52>>2]=0;d=c[b+36>>2]|0;if(d|0){if(a[b+40>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+36>>2]=0}a[b+40>>0]=1;c[b+36>>2]=0;c[b+28>>2]=0;c[b+32>>2]=0;d=c[b+16>>2]|0;if(!d){d=b+12|0;a[b+20>>0]=1;c[b+16>>2]=0;c[b+8>>2]=0;c[d>>2]=0;return}if(a[b+20>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+16>>2]=0;d=b+12|0;a[b+20>>0]=1;c[b+16>>2]=0;c[b+8>>2]=0;c[d>>2]=0;return}function Ak(b){b=b|0;var d=0;c[b>>2]=9324;d=c[b+60>>2]|0;if(d|0){if(a[b+64>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+60>>2]=0}a[b+64>>0]=1;c[b+60>>2]=0;c[b+52>>2]=0;c[b+56>>2]=0;d=c[b+40>>2]|0;if(d|0){if(a[b+44>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+40>>2]=0}a[b+44>>0]=1;c[b+40>>2]=0;c[b+32>>2]=0;c[b+36>>2]=0;d=c[b+16>>2]|0;if(!d){a[b+20>>0]=1;c[b+16>>2]=0;c[b+8>>2]=0;b=b+12|0;c[b>>2]=0;return}if(a[b+20>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+16>>2]=0;a[b+20>>0]=1;c[b+16>>2]=0;c[b+8>>2]=0;b=b+12|0;c[b>>2]=0;return}function Bk(a,b,d,e,f,h){a=a|0;b=b|0;d=d|0;e=+e;f=f|0;h=h|0;var j=0;j=i;i=i+64|0;c[j+48>>2]=f;c[j+48+4>>2]=h;f=c[a+212>>2]|0;if(!(+g[f+4>>2]>=e)){i=j;return +e}c[j>>2]=c[a+216>>2];c[j+4>>2]=j+48;c[j+8>>2]=c[b>>2];c[j+8+4>>2]=c[b+4>>2];c[j+8+8>>2]=c[b+8>>2];c[j+8+12>>2]=c[b+12>>2];c[j+24>>2]=c[d>>2];c[j+24+4>>2]=c[d+4>>2];c[j+24+8>>2]=c[d+8>>2];c[j+24+12>>2]=c[d+12>>2];g[j+40>>2]=e;e=+_b[c[(c[f>>2]|0)+12>>2]&15](f,j,0);i=j;return +e}function Ck(a,b,d,e,f,h){a=a|0;b=b|0;d=d|0;e=+e;f=f|0;h=h|0;var j=0;j=i;i=i+64|0;c[j+48>>2]=f;c[j+48+4>>2]=h;f=c[a+212>>2]|0;if(!(+g[f+4>>2]>=e)){i=j;return +e}c[j>>2]=c[a+216>>2];c[j+4>>2]=j+48;c[j+8>>2]=c[b>>2];c[j+8+4>>2]=c[b+4>>2];c[j+8+8>>2]=c[b+8>>2];c[j+8+12>>2]=c[b+12>>2];c[j+24>>2]=c[d>>2];c[j+24+4>>2]=c[d+4>>2];c[j+24+8>>2]=c[d+8>>2];c[j+24+12>>2]=c[d+12>>2];g[j+40>>2]=e;e=+_b[c[(c[f>>2]|0)+12>>2]&15](f,j,1);i=j;return +e}function Dk(a,b,d){a=a|0;b=b|0;d=d|0;var e=0.0,f=0.0,h=0.0,i=0,j=0.0,k=0,l=0;h=+g[b+60>>2]*.5;l=c[b+68>>2]|0;e=+g[d>>2];f=+g[d+4>>2];j=+g[d+8>>2];j=+O(+(e*e+f*f+j*j));i=c[b+64>>2]|0;if(+g[d+(l<<2)>>2]>j*+g[b+52>>2]){g[a+(i<<2)>>2]=0.0;g[a+(l<<2)>>2]=h;g[a+(c[b+72>>2]<<2)>>2]=0.0;return}j=+g[d+(i<<2)>>2];k=c[b+72>>2]|0;e=+g[d+(k<<2)>>2];f=+O(+(j*j+e*e));if(f>1.1920928955078125e-07){f=+g[b+56>>2]/f;g[a+(i<<2)>>2]=j*f;g[a+(l<<2)>>2]=-h;g[a+(k<<2)>>2]=e*f;return}else{g[a+(i<<2)>>2]=0.0;g[a+(l<<2)>>2]=-h;g[a+(k<<2)>>2]=0.0;return}}function Ek(b,d,e){b=b|0;d=d|0;e=e|0;var f=0,g=0,h=0;f=c[e+16>>2]|0;if(!f){if(!(Fo(e)|0)){g=c[e+16>>2]|0;h=5}}else{g=f;h=5}a:do if((h|0)==5){f=c[e+20>>2]|0;if((g-f|0)>>>0>>0){Ob[c[e+36>>2]&63](e,b,d)|0;break}b:do if((a[e+75>>0]|0)>-1){h=d;while(1){if(!h){g=d;break b}g=h+-1|0;if((a[b+g>>0]|0)==10)break;else h=g}if((Ob[c[e+36>>2]&63](e,b,h)|0)>>>0>>0)break a;g=d-h|0;b=b+h|0;f=c[e+20>>2]|0}else g=d;while(0);_m(f|0,b|0,g|0)|0;c[e+20>>2]=(c[e+20>>2]|0)+g}while(0);return}function Fk(b){b=b|0;var d=0;d=c[b+52>>2]|0;if(d|0){if(a[b+56>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+52>>2]=0}a[b+56>>0]=1;c[b+52>>2]=0;c[b+44>>2]=0;c[b+48>>2]=0;d=c[b+32>>2]|0;if(d|0){if(a[b+36>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+32>>2]=0}a[b+36>>0]=1;c[b+32>>2]=0;c[b+24>>2]=0;c[b+28>>2]=0;d=c[b+12>>2]|0;if(!d){a[b+16>>0]=1;c[b+12>>2]=0;c[b+4>>2]=0;b=b+8|0;c[b>>2]=0;return}if(a[b+16>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+12>>2]=0;a[b+16>>0]=1;c[b+12>>2]=0;c[b+4>>2]=0;b=b+8|0;c[b>>2]=0;return}function Gk(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0.0,h=0.0,j=0.0,k=0.0,l=0.0;e=i;i=i+16|0;ic[c[(c[b>>2]|0)+68>>2]&127](e,b,d);c[a>>2]=c[e>>2];c[a+4>>2]=c[e+4>>2];c[a+8>>2]=c[e+8>>2];c[a+12>>2]=c[e+12>>2];j=+g[d>>2];h=+g[d+4>>2];f=+g[d+8>>2];l=j*j+h*h+f*f<1.4210854715202004e-14?-1.0:j;k=j*j+h*h+f*f<1.4210854715202004e-14?-1.0:h;f=j*j+h*h+f*f<1.4210854715202004e-14?-1.0:f;h=1.0/+O(+(f*f+(l*l+k*k)));j=+Sb[c[(c[b>>2]|0)+48>>2]&15](b);g[a>>2]=+g[a>>2]+j*h*l;g[a+4>>2]=j*h*k+ +g[a+4>>2];g[a+8>>2]=j*h*f+ +g[a+8>>2];i=e;return}function Hk(a,b){a=a|0;b=b|0;var d=0,e=0,f=0,g=0,h=0;d=c[b+188>>2]|0;if(d|0){g=c[a+68>>2]|0;g=Eb[c[(c[g>>2]|0)+36>>2]&127](g)|0;ic[c[(c[g>>2]|0)+40>>2]&127](g,d,c[a+24>>2]|0);g=c[a+68>>2]|0;ic[c[(c[g>>2]|0)+12>>2]&127](g,d,c[a+24>>2]|0);c[b+188>>2]=0}f=c[a+8>>2]|0;if((f|0)<=0)return;g=c[a+16>>2]|0;d=0;while(1){e=g+(d<<2)|0;if((c[e>>2]|0)==(b|0))break;d=d+1|0;if((d|0)>=(f|0)){h=9;break}}if((h|0)==9)return;if((d|0)>=(f|0))return;c[e>>2]=c[g+(f+-1<<2)>>2];c[(c[a+16>>2]|0)+(f+-1<<2)>>2]=b;c[a+8>>2]=f+-1;return}function Ik(b,d){b=b|0;d=d|0;var e=0,f=0,h=0;g[b+16>>2]=0.0;g[b+20>>2]=0.0;a[b+168>>0]=0;a[b+169>>0]=0;g[b+172>>2]=0.0;c[b+60>>2]=0;c[b+60+4>>2]=0;c[b+60+8>>2]=0;c[b+60+12>>2]=0;b=c[(c[b+8>>2]|0)+284>>2]|0;if((c[(Eb[c[(c[b>>2]|0)+28>>2]&127](b)|0)+4>>2]|0)<=0)return;do{f=c[b>>2]|0;h=c[f+12>>2]|0;f=c[c[(Eb[c[f+28>>2]&127](b)|0)+12>>2]>>2]|0;e=c[(c[(Eb[c[(c[b>>2]|0)+28>>2]&127](b)|0)+12>>2]|0)+4>>2]|0;Ib[h&31](b,f,e,c[d+24>>2]|0)|0}while((c[(Eb[c[(c[b>>2]|0)+28>>2]&127](b)|0)+4>>2]|0)>0);return}function Jk(a,b){a=a|0;b=b|0;var d=0,e=0,f=0,g=0;c[6138]=(c[6138]|0)+-1;Cb[c[(c[a>>2]|0)+20>>2]&127](a,b);e=c[b+768>>2]|0;d=(c[a+12>>2]|0)+-1|0;g=c[a+20>>2]|0;f=c[g+(e<<2)>>2]|0;c[g+(e<<2)>>2]=c[g+(d<<2)>>2];c[(c[a+20>>2]|0)+(d<<2)>>2]=f;c[(c[(c[a+20>>2]|0)+(e<<2)>>2]|0)+768>>2]=e;c[a+12>>2]=d;a=c[a+68>>2]|0;if(!b)return;g=c[a+16>>2]|0;if(g>>>0<=b>>>0?(g+(_(c[a>>2]|0,c[a+4>>2]|0)|0)|0)>>>0>b>>>0:0){c[b>>2]=c[a+12>>2];c[a+12>>2]=b;c[a+8>>2]=(c[a+8>>2]|0)+1;return}c[6436]=(c[6436]|0)+1;hd(c[b+-4>>2]|0);return}function Kk(a,b){a=a|0;b=b|0;var d=0,e=0,f=0,g=0,h=0,i=0,j=0,k=0;k=c[b+8>>2]|0;if((k|0)<=0)return;i=c[b+16>>2]|0;j=0;b=0;do{h=c[i+(j<<2)>>2]|0;if(!(c[h+204>>2]&3)){g=c[a+16>>2]|0;e=g+(b<<3)|0;d=c[e>>2]|0;if((d|0)==(b|0))d=b;else{f=d;do{d=g+(f<<3)|0;c[e>>2]=c[d>>2];d=c[d>>2]|0;e=g+(d<<3)|0;f=c[e>>2]|0}while((d|0)!=(f|0))}c[h+208>>2]=d;c[g+(b<<3)+4>>2]=j;c[h+212>>2]=-1;b=b+1|0}else{c[h+208>>2]=-1;c[h+212>>2]=-2}j=j+1|0}while((j|0)!=(k|0));return}function Lk(a,b,d,f){a=a|0;b=b|0;d=d|0;f=f|0;var g=0,h=0,i=0;while(1){g=c[a+12>>2]|0;if(!(((e[f>>1]|0)>=(e[a>>1]|0)?(e[d>>1]|0)<=(e[a+6>>1]|0):0)&(e[d+4>>1]|0)<=(e[a+10>>1]|0)&(e[f+4>>1]|0)>=(e[a+4>>1]|0)&(e[d+2>>1]|0)<=(e[a+8>>1]|0)&(e[f+2>>1]|0)>=(e[a+2>>1]|0))){h=6;break}if((g|0)>-1)break;i=a+16|0;Lk(i,b,d,f);g=c[a+28>>2]|0;a=(g|0)>-1?a+32|0:i+(0-g<<4)|0}if((h|0)==6)return;ic[c[(c[b>>2]|0)+8>>2]&127](b,g>>21,g&2097151);return}function Mk(a,d){a=a|0;d=d|0;var e=0,f=0;while(1){e=yc(84)|0;if(e|0){f=6;break}e=c[6564]|0;c[6564]=e+0;if(!e){f=5;break}jc[e&3]()}if((f|0)==5){d=Ya(4)|0;c[d>>2]=9640;pb(d|0,2800,251)}else if((f|0)==6){g[e+4>>2]=1.0;c[e+8>>2]=0;b[e+12>>1]=1;b[e+14>>1]=-1;c[e+16>>2]=0;c[e>>2]=2948;c[e+20>>2]=c[a>>2];c[e+20+4>>2]=c[a+4>>2];c[e+20+8>>2]=c[a+8>>2];c[e+20+12>>2]=c[a+12>>2];c[e+36>>2]=c[d>>2];c[e+36+4>>2]=c[d+4>>2];c[e+36+8>>2]=c[d+8>>2];c[e+36+12>>2]=c[d+12>>2];return e|0}return 0}function Nk(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0,h=0,i=0,j=0.0,k=0.0,l=0.0,m=0.0,n=0.0;if((e|0)<=0)return;f=0;do{n=+g[b+(f<<4)>>2];m=+g[b+(f<<4)+4>>2];j=+g[b+(f<<4)+8>>2];k=n*+g[a+56>>2]+m*+g[a+60>>2]+j*+g[a+64>>2];l=n*+g[a+72>>2]+m*+g[a+76>>2]+j*+g[a+80>>2];j=n*+g[a+88>>2]+m*+g[a+92>>2]+j*+g[a+96>>2];h=d+(f<<4)|0;i=a+56+((k>2]=c[i>>2];c[h+4>>2]=c[i+4>>2];c[h+8>>2]=c[i+8>>2];c[h+12>>2]=c[i+12>>2];f=f+1|0}while((f|0)!=(e|0));return}function Ok(a,b){a=a|0;b=+b;var d=0,e=0;d=i;i=i+16|0;hf(a,b);li(11758);a=c[a+452>>2]|0;zb[c[(c[a>>2]|0)+24>>2]&31](a,b);a=c[2357]|0;e=(c[a+16>>2]|0)+-1|0;c[a+16>>2]=e;if(e|0){i=d;return}do if(c[a+4>>2]|0){tb(d|0,0)|0;e=c[6434]|0;g[a+8>>2]=+g[a+8>>2]+ +(((c[d+4>>2]|0)-(c[e+4>>2]|0)+(((c[d>>2]|0)-(c[e>>2]|0)|0)*1e6|0)-(c[a+12>>2]|0)|0)>>>0)/1.0e3;if(!(c[a+16>>2]|0)){a=c[2357]|0;break}else{i=d;return}}while(0);c[2357]=c[a+20>>2];i=d;return}function Pk(a,b,d){a=a|0;b=b|0;d=d|0;switch(b|0){case 0:{c[d>>2]=1065353216;c[d+4>>2]=0;c[d+8>>2]=0;g[d+12>>2]=0.0;return}case 1:{c[d>>2]=-1082130432;c[d+4>>2]=0;c[d+8>>2]=0;g[d+12>>2]=0.0;return}case 2:{c[d>>2]=0;c[d+4>>2]=1065353216;c[d+8>>2]=0;g[d+12>>2]=0.0;return}case 3:{c[d>>2]=0;c[d+4>>2]=-1082130432;c[d+8>>2]=0;g[d+12>>2]=0.0;return}case 4:{c[d>>2]=0;c[d+4>>2]=0;c[d+8>>2]=1065353216;g[d+12>>2]=0.0;return}case 5:{c[d>>2]=0;c[d+4>>2]=0;c[d+8>>2]=-1082130432;g[d+12>>2]=0.0;return}default:return}}function Qk(b,d){b=b|0;d=d|0;a[b+148>>0]=0;if((((ke(b,d)|0?(a[b+148>>0]=1,ke(b,d)|0):0)?(a[b+148>>0]=1,ke(b,d)|0):0)?(a[b+148>>0]=1,ke(b,d)|0):0)?(a[b+148>>0]=1,ke(b,d)|0):0)a[b+148>>0]=1;d=(c[b+8>>2]|0)+52|0;c[b+92>>2]=c[d>>2];c[b+92+4>>2]=c[d+4>>2];c[b+92+8>>2]=c[d+8>>2];c[b+92+12>>2]=c[d+12>>2];Bp(b+112|0,d|0,16)|0;return}function Rk(a,d){a=a|0;d=d|0;var e=0,f=0;while(1){e=yc(80)|0;if(e|0){f=6;break}e=c[6564]|0;c[6564]=e+0;if(!e){f=5;break}jc[e&3]()}if((f|0)==5){d=Ya(4)|0;c[d>>2]=9640;pb(d|0,2800,251)}else if((f|0)==6){g[e+4>>2]=1.0;b[e+8>>1]=1;b[e+10>>1]=-1;c[e>>2]=2872;c[e+12>>2]=c[a>>2];c[e+12+4>>2]=c[a+4>>2];c[e+12+8>>2]=c[a+8>>2];c[e+12+12>>2]=c[a+12>>2];c[e+28>>2]=c[d>>2];c[e+28+4>>2]=c[d+4>>2];c[e+28+8>>2]=c[d+8>>2];c[e+28+12>>2]=c[d+12>>2];c[e+76>>2]=0;return e|0}return 0}function Sk(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0.0,h=0.0,i=0.0,j=0.0,k=0.0,l=0.0,m=0.0;h=+g[a+56>>2];k=+g[a+72>>2]-h;j=+g[a+60>>2];i=+g[a+76>>2]-j;l=+g[a+64>>2];m=+g[a+80>>2]-l;h=+g[a+88>>2]-h;j=+g[a+92>>2]-j;l=+g[a+96>>2]-l;g[d+12>>2]=0.0;f=1.0/+O(+((k*j-i*h)*(k*j-i*h)+((i*l-m*j)*(i*l-m*j)+(m*h-k*l)*(m*h-k*l))));g[d>>2]=(i*l-m*j)*f;g[d+4>>2]=(m*h-k*l)*f;g[d+8>>2]=(k*j-i*h)*f;c[e>>2]=c[a+56>>2];c[e+4>>2]=c[a+56+4>>2];c[e+8>>2]=c[a+56+8>>2];c[e+12>>2]=c[a+56+12>>2];return}function Tk(a,b){a=a|0;b=b|0;var d=0;d=i;i=i+64|0;dh(d,b,a+68|0);c[a+4>>2]=c[d>>2];c[a+4+4>>2]=c[d+4>>2];c[a+4+8>>2]=c[d+8>>2];c[a+4+12>>2]=c[d+12>>2];c[a+20>>2]=c[d+16>>2];c[a+20+4>>2]=c[d+16+4>>2];c[a+20+8>>2]=c[d+16+8>>2];c[a+20+12>>2]=c[d+16+12>>2];c[a+36>>2]=c[d+32>>2];c[a+36+4>>2]=c[d+32+4>>2];c[a+36+8>>2]=c[d+32+8>>2];c[a+36+12>>2]=c[d+32+12>>2];c[a+52>>2]=c[d+48>>2];c[a+52+4>>2]=c[d+48+4>>2];c[a+52+8>>2]=c[d+48+8>>2];c[a+52+12>>2]=c[d+48+12>>2];i=d;return}function Uk(b){b=b|0;var d=0;if(!b)return;d=c[b+156>>2]|0;if(d|0){if(!((a[b+160>>0]&1)==0|(d|0)==0)){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+156>>2]=0}a[b+160>>0]=1;c[b+156>>2]=0;c[b+148>>2]=0;c[b+152>>2]=0;d=c[b+136>>2]|0;if(d|0){if(!((a[b+140>>0]&1)==0|(d|0)==0)){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+136>>2]=0}a[b+140>>0]=1;c[b+136>>2]=0;c[b+128>>2]=0;c[b+132>>2]=0;d=c[b+116>>2]|0;if(d|0){if(!((a[b+120>>0]&1)==0|(d|0)==0)){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+116>>2]=0}a[b+120>>0]=1;hd(b);return}function Vk(){var b=0,d=0;while(1){b=yc(100)|0;if(b|0){d=6;break}b=c[6564]|0;c[6564]=b+0;if(!b){d=5;break}jc[b&3]()}if((d|0)==5){d=Ya(4)|0;c[d>>2]=9640;pb(d|0,2800,251)}else if((d|0)==6){g[b>>2]=1.2000000476837158;g[b+4>>2]=0.0;g[b+8>>2]=0.0;g[b+12>>2]=1.0e3;c[b+16>>2]=0;c[b+16+4>>2]=0;c[b+16+8>>2]=0;c[b+16+12>>2]=0;c[b+16+16>>2]=0;c[b+16+20>>2]=0;c[b+16+24>>2]=0;c[b+44>>2]=-1054867456;c[b+48>>2]=0;g[b+52>>2]=0.0;a[b+72>>0]=1;c[b+68>>2]=0;c[b+60>>2]=0;c[b+64>>2]=0;return b|0}return 0}function Wk(b){b=b|0;var d=0,e=0,f=0;c[b>>2]=6164;d=c[b+12>>2]|0;if((d|0)>0){f=0;do{e=c[(c[b+20>>2]|0)+(f<<2)>>2]|0;if(e|0){Ab[c[c[e>>2]>>2]&255](e);e=c[b+4>>2]|0;Cb[c[(c[e>>2]|0)+60>>2]&127](e,c[(c[b+20>>2]|0)+(f<<2)>>2]|0)}f=f+1|0}while((f|0)!=(d|0))}d=c[b+20>>2]|0;if(!d){a[b+24>>0]=1;c[b+20>>2]=0;c[b+12>>2]=0;b=b+16|0;c[b>>2]=0;return}if(a[b+24>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+20>>2]=0;a[b+24>>0]=1;c[b+20>>2]=0;c[b+12>>2]=0;b=b+16|0;c[b>>2]=0;return}function Xk(a,b,c){a=a|0;b=b|0;c=c|0;var d=0.0,e=0.0,f=0.0,h=0.0,i=0.0,j=0.0,k=0.0;h=+g[a+56>>2];j=+g[a+72>>2]-h;i=+g[a+60>>2];k=+g[a+76>>2]-i;d=+g[a+64>>2];f=+g[a+80>>2]-d;h=+g[a+88>>2]-h;i=+g[a+92>>2]-i;d=+g[a+96>>2]-d;g[c+12>>2]=0.0;e=1.0/+O(+((j*i-k*h)*(j*i-k*h)+((k*d-f*i)*(k*d-f*i)+(f*h-j*d)*(f*h-j*d))));g[c>>2]=(k*d-f*i)*e;g[c+4>>2]=(f*h-j*d)*e;g[c+8>>2]=(j*i-k*h)*e;if(!b)return;g[c>>2]=-((k*d-f*i)*e);g[c+4>>2]=-((f*h-j*d)*e);g[c+8>>2]=-((j*i-k*h)*e);return}function Yk(b,d){b=b|0;d=d|0;var e=0;c[6435]=(c[6435]|0)+1;e=yc(115)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}c[e+8>>2]=0;c[e+12>>2]=1065353216;c[e+16>>2]=1065353216;c[e+20>>2]=1065353216;g[e+24>>2]=0.0;g[e+44>>2]=.03999999910593033;c[e+52>>2]=0;c[e+56>>2]=1065353216;c[e+60>>2]=1065353216;c[e+64>>2]=1065353216;g[e+68>>2]=0.0;c[e+72>>2]=-1082130432;c[e+76>>2]=-1082130432;c[e+80>>2]=-1082130432;g[e+84>>2]=0.0;a[e+88>>0]=0;c[e>>2]=7692;c[e+92>>2]=b;c[e+4>>2]=3;if(!d)return e|0;vj(e);return e|0}function Zk(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0,g=0,h=0,i=0;g=c[a+720>>2]|0;h=c[a+752>>2]|0;if((h|0)<=0){e=0;return e|0}a=c[a+760>>2]|0;f=0;while(1){i=c[a+(f*44|0)+8>>2]|0;if(((i|0)==(g+(e*104|0)|0)|((i|0)==(g+(b*104|0)|0)|(i|0)==(g+(d*104|0)|0))?(i=c[a+(f*44|0)+12>>2]|0,(i|0)==(g+(e*104|0)|0)|((i|0)==(g+(b*104|0)|0)|(i|0)==(g+(d*104|0)|0))):0)?(i=c[a+(f*44|0)+16>>2]|0,(i|0)==(g+(e*104|0)|0)|((i|0)==(g+(b*104|0)|0)|(i|0)==(g+(d*104|0)|0))):0){a=1;f=7;break}f=f+1|0;if((f|0)>=(h|0)){a=0;f=7;break}}if((f|0)==7)return a|0;return 0}function _k(a,b,c){a=a|0;b=b|0;c=c|0;var d=0.0,e=0.0,f=0.0,h=0.0,i=0.0,j=0.0,k=0.0;d=+g[a+348>>2];f=+g[a+352>>2];h=+g[b+4>>2]*f;i=+g[a+356>>2];j=+g[b+8>>2]*i;g[a+412>>2]=+g[a+412>>2]+ +g[b>>2]*d;g[a+416>>2]=+g[a+416>>2]+h;g[a+420>>2]=+g[a+420>>2]+j;d=+g[b>>2]*d;f=+g[b+4>>2]*f;i=+g[b+8>>2]*i;j=+g[c+4>>2];h=+g[c+8>>2];k=+g[c>>2];e=(h*d-k*i)*+g[a+548>>2];d=(k*f-j*d)*+g[a+552>>2];g[a+428>>2]=+g[a+428>>2]+(j*i-h*f)*+g[a+544>>2];g[a+432>>2]=+g[a+432>>2]+e;g[a+436>>2]=+g[a+436>>2]+d;return}function $k(a,b,c,d,e,f,h,i,j,k){a=+a;b=+b;c=+c;d=+d;e=+e;f=+f;h=+h;i=+i;j=+j;k=k|0;if(!(((h-d)*b-(i-e)*a)*f+(((i-e)*c-(j-f)*b)*d+((j-f)*a-(h-d)*c)*e)<0.0)){k=0;return k|0}if((h-d)*d+(i-e)*e+(j-f)*f>0.0){g[k>>2]=+O(+(d*d+e*e+f*f));k=1;return k|0}if((h-d)*h+(i-e)*i+(j-f)*j<0.0){g[k>>2]=+O(+(h*h+i*i+j*j));k=1;return k|0}else{c=((h*h+i*i+j*j)*(d*d+e*e+f*f)-(h*d+i*e+j*f)*(h*d+i*e+j*f))/((h-d)*(h-d)+(i-e)*(i-e)+(j-f)*(j-f));g[k>>2]=+O(+(c>0.0?c:0.0));k=1;return k|0}return 0}function al(a,b,d,e,f){a=a|0;b=b|0;d=d|0;e=e|0;f=+f;var h=0,i=0;while(1){h=yc(44)|0;if(h|0){i=6;break}h=c[6564]|0;c[6564]=h+0;if(!h){i=5;break}jc[h&3]()}if((i|0)==5){e=Ya(4)|0;c[e>>2]=9640;pb(e|0,2800,251)}else if((i|0)==6){c[h>>2]=a;c[h+4>>2]=b;c[h+8>>2]=c[d>>2];c[h+8+4>>2]=c[d+4>>2];c[h+8+8>>2]=c[d+8>>2];c[h+8+12>>2]=c[d+12>>2];c[h+24>>2]=c[e>>2];c[h+24+4>>2]=c[e+4>>2];c[h+24+8>>2]=c[e+8>>2];c[h+24+12>>2]=c[e+12>>2];g[h+40>>2]=f;return h|0}return 0}function bl(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0.0,h=0.0,i=0,j=0;i=c[a+96>>2]|0;j=c[a+104>>2]|0;f=+g[j+(((b|0)%(i|0)|0)<<4)+4>>2]*+g[a+16>>2];h=+g[j+(((b|0)%(i|0)|0)<<4)+8>>2]*+g[a+20>>2];g[d>>2]=+g[j+(((b|0)%(i|0)|0)<<4)>>2]*+g[a+12>>2];g[d+4>>2]=f;g[d+8>>2]=h;g[d+12>>2]=0.0;d=c[a+104>>2]|0;h=+g[d+(((b+1|0)%(i|0)|0)<<4)+4>>2]*+g[a+16>>2];f=+g[d+(((b+1|0)%(i|0)|0)<<4)+8>>2]*+g[a+20>>2];g[e>>2]=+g[d+(((b+1|0)%(i|0)|0)<<4)>>2]*+g[a+12>>2];g[e+4>>2]=h;g[e+8>>2]=f;g[e+12>>2]=0.0;return}function cl(a,b){a=a|0;b=b|0;var d=0,e=0,f=0.0,h=0,j=0;e=i;i=i+32|0;d=c[a+184>>2]|0;if(+g[d+4>>2]==0.0){a=0;i=e;return a|0}b=c[b>>2]|0;if(!(Zb[c[(c[d>>2]|0)+8>>2]&31](d,c[b+188>>2]|0)|0)){a=1;i=e;return a|0}h=c[a+192>>2]|0;j=c[b+192>>2]|0;d=c[a+184>>2]|0;f=+g[a+188>>2];c[e>>2]=0;c[e+4>>2]=j;c[e+8>>2]=b;c[e+12>>2]=b+4;c[e+16>>2]=-1;c[e+20>>2]=-1;Ic(h,a+36|0,a+100|0,e,d,f);a=1;i=e;return a|0}function dl(a,b){a=a|0;b=b|0;var d=0;d=i;i=i+16|0;c[d>>2]=c[b>>2];c[d+4>>2]=c[b+4>>2];c[d+8>>2]=c[b+8>>2];c[d+12>>2]=c[b+12>>2];a=c[a+8>>2]|0;c[a+260>>2]=(c[a+260>>2]|0)+1;c[a+4>>2]=1065353216;c[a+8>>2]=0;c[a+8+4>>2]=0;c[a+8+8>>2]=0;c[a+8+12>>2]=0;c[a+24>>2]=1065353216;c[a+28>>2]=0;c[a+28+4>>2]=0;c[a+28+8>>2]=0;c[a+28+12>>2]=0;c[a+44>>2]=1065353216;c[a+48>>2]=0;c[a+52>>2]=c[d>>2];c[a+52+4>>2]=c[d+4>>2];c[a+52+8>>2]=c[d+8>>2];c[a+52+12>>2]=c[d+12>>2];i=d;return}function el(b){b=b|0;var d=0,e=0;if((a[22480]|0)==0?Wa(22480)|0:0){g[5730]=.6000000238418579;g[5731]=1.0;g[5732]=.30000001192092896;g[5733]=.01666666753590107;g[5734]=0.0;g[5736]=20.0;c[5735]=10;g[5738]=.20000000298023224;g[5739]=.800000011920929;g[5740]=0.0;g[5737]=1.0;c[5741]=1;g[5742]=-.03999999910593033;g[5743]=.10000000149011612;g[5744]=0.0;g[5745]=.8500000238418579;c[5746]=260;c[5747]=2;c[5748]=128;g[5749]=100.0;g[5750]=1000000015047466219876688.0e6;_a(22480)}e=22920;b=b+92|0;d=e+84|0;do{c[e>>2]=c[b>>2];e=e+4|0;b=b+4|0}while((e|0)<(d|0));return 22920}function fl(b){b=b|0;var d=0,e=0;if((a[22440]|0)==0?Wa(22440)|0:0){g[5673]=.6000000238418579;g[5674]=1.0;g[5675]=.30000001192092896;g[5676]=.01666666753590107;g[5677]=0.0;g[5679]=20.0;c[5678]=10;g[5681]=.20000000298023224;g[5682]=.800000011920929;g[5683]=0.0;g[5680]=1.0;c[5684]=1;g[5685]=-.03999999910593033;g[5686]=.10000000149011612;g[5687]=0.0;g[5688]=.8500000238418579;c[5689]=260;c[5690]=2;c[5691]=128;g[5692]=100.0;g[5693]=1000000015047466219876688.0e6;_a(22440)}e=22692;b=b+92|0;d=e+84|0;do{c[e>>2]=c[b>>2];e=e+4|0;b=b+4|0}while((e|0)<(d|0));return 22692}function gl(a){a=a|0;var b=0,d=0;b=i;i=i+16|0;li(14499);d=c[a+68>>2]|0;Cb[c[(c[d>>2]|0)+32>>2]&127](d,c[a+24>>2]|0);a=c[2357]|0;d=(c[a+16>>2]|0)+-1|0;c[a+16>>2]=d;if(d|0){i=b;return}do if(c[a+4>>2]|0){tb(b|0,0)|0;d=c[6434]|0;g[a+8>>2]=+g[a+8>>2]+ +(((c[b+4>>2]|0)-(c[d+4>>2]|0)+(((c[b>>2]|0)-(c[d>>2]|0)|0)*1e6|0)-(c[a+12>>2]|0)|0)>>>0)/1.0e3;if(!(c[a+16>>2]|0)){a=c[2357]|0;break}else{i=b;return}}while(0);c[2357]=c[a+20>>2];i=b;return}function hl(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0;do switch(b|0){case 0:{f=0;b=1;break}case 1:{f=0;b=2;break}case 2:{f=1;b=3;break}case 3:{f=2;break}case 4:{f=0;break}case 5:{f=1;break}case 6:{f=2;break}case 7:{f=3;break}case 8:{f=4;b=5;break}case 9:{f=4;b=6;break}case 10:{f=5;b=7;break}case 11:{f=6;b=7;break}default:{f=0;b=0}}while(0);ic[c[(c[a>>2]|0)+108>>2]&127](a,f,d);ic[c[(c[a>>2]|0)+108>>2]&127](a,b,e);return}function il(a,b){a=a|0;b=b|0;var d=0.0,e=0.0,f=0.0,h=0.0,i=0.0,j=0.0,k=0.0,l=0.0,m=0.0;k=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);h=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);d=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);m=(k+ +g[a+28>>2])/+g[a+12>>2];j=(h+ +g[a+32>>2])/+g[a+16>>2];f=(d+ +g[a+36>>2])/+g[a+20>>2];l=+N(+(+g[b>>2]));i=+N(+(+g[b+4>>2]));e=+N(+(+g[b+8>>2]));g[a+12>>2]=l;g[a+16>>2]=i;g[a+20>>2]=e;g[a+24>>2]=0.0;g[a+28>>2]=m*l-k;g[a+32>>2]=j*i-h;g[a+36>>2]=f*e-d;g[a+40>>2]=0.0;return}function jl(b){b=b|0;var d=0,e=0;if((a[22424]|0)==0?Wa(22424)|0:0){g[5648]=.6000000238418579;g[5649]=1.0;g[5650]=.30000001192092896;g[5651]=.01666666753590107;g[5652]=0.0;g[5654]=20.0;c[5653]=10;g[5656]=.20000000298023224;g[5657]=.800000011920929;g[5658]=0.0;g[5655]=1.0;c[5659]=1;g[5660]=-.03999999910593033;g[5661]=.10000000149011612;g[5662]=0.0;g[5663]=.8500000238418579;c[5664]=260;c[5665]=2;c[5666]=128;g[5667]=100.0;g[5668]=1000000015047466219876688.0e6;_a(22424)}e=22592;b=b+92|0;d=e+84|0;do{c[e>>2]=c[b>>2];e=e+4|0;b=b+4|0}while((e|0)<(d|0));return 22592}function kl(b,d){b=b|0;d=d|0;var e=0,f=0,h=0.0,i=0,j=0;if(a[b+527>>0]|0){c[d>>2]=0;c[d+4>>2]=0;return}c[d>>2]=3;c[d+4>>2]=3;j=c[b+28>>2]|0;i=c[b+32>>2]|0;Fc(b,j+4|0,i+4|0,j+264|0,i+264|0);if((a[b+526>>0]|0?(e=c[d>>2]|0,c[d>>2]=e+1,f=c[d+4>>2]|0,c[d+4>>2]=f+-1,h=+g[b+456>>2],+g[b+444>>2]>2]>2]=e+2;c[d+4>>2]=f+-2}if(!(a[b+525>>0]|0))return;c[d>>2]=(c[d>>2]|0)+1;c[d+4>>2]=(c[d+4>>2]|0)+-1;return}function ll(b){b=b|0;var d=0;c[6435]=(c[6435]|0)+1;d=yc(115)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}c[d+8>>2]=0;c[d+12>>2]=1065353216;c[d+16>>2]=1065353216;c[d+20>>2]=1065353216;g[d+24>>2]=0.0;g[d+44>>2]=.03999999910593033;c[d+52>>2]=0;c[d+56>>2]=1065353216;c[d+60>>2]=1065353216;c[d+64>>2]=1065353216;g[d+68>>2]=0.0;c[d+72>>2]=-1082130432;c[d+76>>2]=-1082130432;c[d+80>>2]=-1082130432;g[d+84>>2]=0.0;a[d+88>>0]=0;c[d>>2]=7692;c[d+92>>2]=b;c[d+4>>2]=3;vj(d);return d|0}function ml(){if(a[22456]|0)return;if(!(Wa(22456)|0))return;if((a[22464]|0)==0?Wa(22464)|0:0){c[5698]=1065353216;c[5699]=0;c[5700]=0;c[5701]=0;c[5702]=0;c[5703]=1065353216;c[5704]=0;c[5705]=0;c[5706]=0;c[5707]=0;c[5708]=1065353216;g[5709]=0.0;_a(22464)}c[5710]=c[5698];c[5711]=c[5699];c[5712]=c[5700];c[5713]=c[5701];c[5714]=c[5702];c[5715]=c[5703];c[5716]=c[5704];c[5717]=c[5705];c[5718]=c[5706];c[5719]=c[5707];c[5720]=c[5708];c[5721]=c[5709];c[5722]=0;c[5723]=0;c[5724]=0;c[5725]=0;_a(22456);return}function nl(a,b){a=a|0;b=b|0;var d=0.0,e=0.0,f=0,h=0,i=0;b=c[b+36>>2]|0;i=c[b+8>>2]|0;h=c[b+12>>2]|0;f=c[b+16>>2]|0;e=+g[a+52>>2];d=+Mh(a+4|0,+g[a+36>>2],+g[a+40>>2],+g[a+44>>2],+g[i+8>>2],+g[i+12>>2],+g[i+16>>2],+g[h+8>>2],+g[h+12>>2],+g[h+16>>2],+g[f+8>>2],+g[f+12>>2],+g[f+16>>2],e);if(!(d>0.0&d>2]|0;h=h+1|0;c[i>>2]=h;return}g[a+52>>2]=d;c[a+56>>2]=b;i=a+60|0;h=c[i>>2]|0;h=h+1|0;c[i>>2]=h;return}function ol(a,b,c){a=a|0;b=b|0;c=c|0;var d=0.0;a:do if(c>>>0>=3)if((c+-3|0)>>>0<3)switch(b|0){case 2:{d=+g[a+868+(c+-3<<6)+32>>2];break a}case 4:{d=+g[a+868+(c+-3<<6)+36>>2];break a}case 3:{d=+g[a+868+(c+-3<<6)+28>>2];break a}default:{d=0.0;break a}}else d=0.0;else switch(b|0){case 2:{d=+g[a+756+(c<<2)>>2];break a}case 4:{d=+g[a+772+(c<<2)>>2];break a}case 3:{d=+g[a+740+(c<<2)>>2];break a}default:{d=0.0;break a}}while(0);return +d}function pl(a,b){a=a|0;b=b|0;c[a+260>>2]=(c[a+260>>2]|0)+1;c[a+4>>2]=c[b>>2];c[a+4+4>>2]=c[b+4>>2];c[a+4+8>>2]=c[b+8>>2];c[a+4+12>>2]=c[b+12>>2];c[a+20>>2]=c[b+16>>2];c[a+20+4>>2]=c[b+16+4>>2];c[a+20+8>>2]=c[b+16+8>>2];c[a+20+12>>2]=c[b+16+12>>2];c[a+36>>2]=c[b+32>>2];c[a+36+4>>2]=c[b+32+4>>2];c[a+36+8>>2]=c[b+32+8>>2];c[a+36+12>>2]=c[b+32+12>>2];c[a+52>>2]=c[b+48>>2];c[a+52+4>>2]=c[b+48+4>>2];c[a+52+8>>2]=c[b+48+8>>2];c[a+52+12>>2]=c[b+48+12>>2];return}function ql(a,b,d){a=a|0;b=b|0;d=d|0;var e=0.0,f=0.0,h=0.0,i=0.0,j=0.0;ic[c[(c[b>>2]|0)+68>>2]&127](a,b,d);if(!(+Sb[c[(c[b>>2]|0)+48>>2]&15](b)!=0.0))return;h=+g[d>>2];f=+g[d+4>>2];e=+g[d+8>>2];j=h*h+f*f+e*e<1.4210854715202004e-14?-1.0:h;i=h*h+f*f+e*e<1.4210854715202004e-14?-1.0:f;e=h*h+f*f+e*e<1.4210854715202004e-14?-1.0:e;f=1.0/+O(+(e*e+(j*j+i*i)));h=+Sb[c[(c[b>>2]|0)+48>>2]&15](b);g[a>>2]=+g[a>>2]+h*f*j;g[a+4>>2]=h*f*i+ +g[a+4>>2];g[a+8>>2]=h*f*e+ +g[a+8>>2];return}function rl(b,d,e){b=b|0;d=d|0;e=+e;var f=0.0,h=0.0,i=0.0,j=0.0,k=0.0;a[b+171>>0]=0;c[b+60>>2]=c[d>>2];c[b+60+4>>2]=c[d+4>>2];c[b+60+8>>2]=c[d+8>>2];c[b+60+12>>2]=c[d+12>>2];f=+g[b+60>>2];h=+g[b+64>>2];j=+g[b+68>>2];i=1.0/+O(+(f*f+h*h+j*j));if(+O(+(j*i*j*i+(f*i*f*i+h*i*h*i)))<1.1920928955078125e-07){k=0.0;h=0.0;f=0.0;d=0}else{k=f*i;h=h*i;f=j*i;d=c[b+72>>2]|0}g[b+76>>2]=k;g[b+80>>2]=h;g[b+84>>2]=f;c[b+88>>2]=d;g[b+172>>2]=+g[b+172>>2]+e;return}function sl(a,b){a=a|0;b=b|0;var c=0.0,d=0.0,e=0.0,f=0.0,h=0.0,i=0.0,j=0.0;f=+g[b>>2];d=+g[b+4>>2];j=+g[b+8>>2];h=+g[b+12>>2];e=f*(2.0/(f*f+d*d+j*j+h*h));c=d*(2.0/(f*f+d*d+j*j+h*h));i=j*(2.0/(f*f+d*d+j*j+h*h));g[a>>2]=1.0-(d*c+j*i);g[a+4>>2]=f*c-h*i;g[a+8>>2]=f*i+h*c;g[a+12>>2]=0.0;g[a+16>>2]=f*c+h*i;g[a+20>>2]=1.0-(f*e+j*i);g[a+24>>2]=d*i-h*e;g[a+28>>2]=0.0;g[a+32>>2]=f*i-h*c;g[a+36>>2]=d*i+h*e;g[a+40>>2]=1.0-(f*e+d*c);g[a+44>>2]=0.0;return}function tl(a,b){a=a|0;b=+b;var d=0,e=0,f=0.0,h=0.0,i=0.0,j=0.0;c[6435]=(c[6435]|0)+1;d=yc(103)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}e=d+4|0;c[e>>2]=35;c[d+8>>2]=0;g[d+12>>2]=0.0;c[d>>2]=7048;j=+g[a>>2];i=+g[a+4>>2];h=+g[a+8>>2];a=c[a+12>>2]|0;f=1.0/+O(+(j*j+i*i+h*h));g[d+48>>2]=j*f;g[d+52>>2]=i*f;g[d+56>>2]=h*f;c[d+60>>2]=a;g[d+64>>2]=b;a=d+68|0;c[a>>2]=0;c[a+4>>2]=0;c[a+8>>2]=0;c[a+12>>2]=0;c[e>>2]=28;return d|0}function ul(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0;e=Zb[c[(c[d>>2]|0)+40>>2]&31](d,a)|0;f=Zb[c[(c[d>>2]|0)+28>>2]&31](d,e)|0;c[b>>2]=f;if(f|0)Cb[c[(c[d>>2]|0)+48>>2]&127](d,e);c[b+4>>2]=c[a+4>>2];c[b+28>>2]=c[a+28>>2];c[b+32>>2]=c[a+32>>2];c[b+36>>2]=c[a+36>>2];c[b+40>>2]=c[a+40>>2];c[b+12>>2]=c[a+12>>2];c[b+16>>2]=c[a+16>>2];c[b+20>>2]=c[a+20>>2];c[b+24>>2]=c[a+24>>2];c[b+44>>2]=c[a+44>>2];c[b+52>>2]=c[a+52>>2];return 17871}function vl(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0;e=Zb[c[(c[d>>2]|0)+40>>2]&31](d,a)|0;f=Zb[c[(c[d>>2]|0)+28>>2]&31](d,e)|0;c[b>>2]=f;if(f|0)Cb[c[(c[d>>2]|0)+48>>2]&127](d,e);c[b+4>>2]=c[a+4>>2];c[b+28>>2]=c[a+28>>2];c[b+32>>2]=c[a+32>>2];c[b+36>>2]=c[a+36>>2];c[b+40>>2]=c[a+40>>2];c[b+12>>2]=c[a+12>>2];c[b+16>>2]=c[a+16>>2];c[b+20>>2]=c[a+20>>2];c[b+24>>2]=c[a+24>>2];c[b+44>>2]=c[a+44>>2];c[b+52>>2]=c[a+52>>2];return 17417}function wl(b,d){b=b|0;d=d|0;do if(!b)b=0;else{if(d>>>0<128){a[b>>0]=d;b=1;break}if(d>>>0<2048){a[b>>0]=d>>>6|192;a[b+1>>0]=d&63|128;b=2;break}if(d>>>0<55296|(d&-8192|0)==57344){a[b>>0]=d>>>12|224;a[b+1>>0]=d>>>6&63|128;a[b+2>>0]=d&63|128;b=3;break}if((d+-65536|0)>>>0<1048576){a[b>>0]=d>>>18|240;a[b+1>>0]=d>>>12&63|128;a[b+2>>0]=d>>>6&63|128;a[b+3>>0]=d&63|128;b=4;break}if(!0)b=25748;else b=c[(ib()|0)+64>>2]|0;c[b>>2]=84;b=-1}while(0);return b|0}function xl(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0;e=Zb[c[(c[d>>2]|0)+40>>2]&31](d,a)|0;f=Zb[c[(c[d>>2]|0)+28>>2]&31](d,e)|0;c[b>>2]=f;if(f|0)Cb[c[(c[d>>2]|0)+48>>2]&127](d,e);c[b+4>>2]=c[a+4>>2];c[b+28>>2]=c[a+28>>2];c[b+32>>2]=c[a+32>>2];c[b+36>>2]=c[a+36>>2];c[b+40>>2]=c[a+40>>2];c[b+12>>2]=c[a+12>>2];c[b+16>>2]=c[a+16>>2];c[b+20>>2]=c[a+20>>2];c[b+24>>2]=c[a+24>>2];c[b+44>>2]=c[a+44>>2];c[b+52>>2]=c[a+68>>2];return 16426}function yl(a,b){a=a|0;b=b|0;c[a+4>>2]=c[b>>2];c[a+4+4>>2]=c[b+4>>2];c[a+4+8>>2]=c[b+8>>2];c[a+4+12>>2]=c[b+12>>2];c[a+20>>2]=c[b+16>>2];c[a+20+4>>2]=c[b+16+4>>2];c[a+20+8>>2]=c[b+16+8>>2];c[a+20+12>>2]=c[b+16+12>>2];c[a+36>>2]=c[b+32>>2];c[a+36+4>>2]=c[b+32+4>>2];c[a+36+8>>2]=c[b+32+8>>2];c[a+36+12>>2]=c[b+32+12>>2];c[a+52>>2]=c[b+48>>2];c[a+52+4>>2]=c[b+48+4>>2];c[a+52+8>>2]=c[b+48+8>>2];c[a+52+12>>2]=c[b+48+12>>2];return}function zl(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;a[b+53>>0]=1;do if((c[b+4>>2]|0)==(e|0)){a[b+52>>0]=1;e=c[b+16>>2]|0;if(!e){c[b+16>>2]=d;c[b+24>>2]=f;c[b+36>>2]=1;if(!((f|0)==1?(c[b+48>>2]|0)==1:0))break;a[b+54>>0]=1;break}if((e|0)!=(d|0)){c[b+36>>2]=(c[b+36>>2]|0)+1;a[b+54>>0]=1;break}e=c[b+24>>2]|0;if((e|0)==2){c[b+24>>2]=f;e=f}if((e|0)==1?(c[b+48>>2]|0)==1:0)a[b+54>>0]=1}while(0);return}function Al(a,b,d){a=a|0;b=+b;d=d|0;var e=0,f=0.0,h=0.0,j=0.0,k=0,l=0;e=i;i=i+16|0;k=c[a+52>>2]|0;l=c[a+28+(((k+2|0)%3|0)<<2)>>2]|0;c[e>>2]=l;c[e+4>>2]=l;c[e+8>>2]=l;g[e+12>>2]=0.0;g[e+(k<<2)>>2]=+g[a+28+(k<<2)>>2]+ +g[e+(k<<2)>>2];h=(+g[e>>2]+.03999999910593033)*2.0;f=(+g[e+4>>2]+.03999999910593033)*2.0;j=(+g[e+8>>2]+.03999999910593033)*2.0;g[d>>2]=b*.0833333283662796*(f*f+j*j);g[d+4>>2]=b*.0833333283662796*(h*h+j*j);g[d+8>>2]=b*.0833333283662796*(h*h+f*f);i=e;return}function Bl(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0.0,f=0.0,h=0.0,i=0,j=0.0,k=0.0,l=0.0,m=0;if((d|0)<=0)return;m=0;do{e=+g[a+32>>2];h=+g[a+28>>2];i=b+(m<<4)|0;l=+g[b+(m<<4)+4>>2];f=+g[b+(m<<4)+8>>2];k=+O(+(l*l+f*f));if(k!=0.0){j=f*(e/k);f=+g[i>>2]<0.0?-h:h;e=l*(e/k)}else{j=0.0;f=+g[i>>2]<0.0?-h:h}g[c+(m<<4)>>2]=f;g[c+(m<<4)+4>>2]=e;g[c+(m<<4)+8>>2]=j;m=m+1|0}while((m|0)!=(d|0));return}function Cl(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0,g=0,h=0,i=0,j=0,k=0;j=c[b>>2]|0;if(!e)e=c[a+188>>2]|0;h=c[a+268>>2]|0;if((h|0)<=0)return;i=c[a+276>>2]|0;f=0;while(1){g=i+(f<<2)|0;if((c[g>>2]|0)==(j|0))break;f=f+1|0;if((f|0)>=(h|0)){k=9;break}}if((k|0)==9)return;if((f|0)>=(h|0))return;c[g>>2]=c[i+(h+-1<<2)>>2];c[a+268>>2]=h+-1;k=c[a+284>>2]|0;Ib[c[(c[k>>2]|0)+12>>2]&31](k,e,b,d)|0;return}function Dl(a,b){a=a|0;b=b|0;var d=0,e=0,f=0;e=i;i=i+32|0;d=c[a+216>>2]|0;if(+g[d+4>>2]==0.0){a=0;i=e;return a|0}b=c[b>>2]|0;if(!(Zb[c[(c[d>>2]|0)+8>>2]&31](d,c[b+188>>2]|0)|0)){a=1;i=e;return a|0}f=c[b+192>>2]|0;d=c[a+216>>2]|0;c[e>>2]=0;c[e+4>>2]=f;c[e+8>>2]=b;c[e+12>>2]=b+4;c[e+16>>2]=-1;c[e+20>>2]=-1;bd(a+68|0,a+132|0,e,d);a=1;i=e;return a|0}function El(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0;e=Zb[c[(c[d>>2]|0)+40>>2]&31](d,a)|0;f=Zb[c[(c[d>>2]|0)+28>>2]&31](d,e)|0;c[b>>2]=f;if(f|0)Cb[c[(c[d>>2]|0)+48>>2]&127](d,e);c[b+4>>2]=c[a+4>>2];c[b+28>>2]=c[a+28>>2];c[b+32>>2]=c[a+32>>2];c[b+36>>2]=c[a+36>>2];c[b+40>>2]=c[a+40>>2];c[b+12>>2]=c[a+12>>2];c[b+16>>2]=c[a+16>>2];c[b+20>>2]=c[a+20>>2];c[b+24>>2]=c[a+24>>2];c[b+44>>2]=c[a+44>>2];return 11212}function Fl(b,d,e,f,g){b=b|0;d=d|0;e=e|0;f=f|0;g=g|0;do if((b|0)==(c[d+8>>2]|0)){if((c[d+4>>2]|0)==(e|0)?(c[d+28>>2]|0)!=1:0)c[d+28>>2]=f}else if((b|0)==(c[d>>2]|0)){if((c[d+16>>2]|0)!=(e|0)?(c[d+20>>2]|0)!=(e|0):0){c[d+32>>2]=f;c[d+20>>2]=e;c[d+40>>2]=(c[d+40>>2]|0)+1;if((c[d+36>>2]|0)==1?(c[d+24>>2]|0)==2:0)a[d+54>>0]=1;c[d+44>>2]=4;break}if((f|0)==1)c[d+32>>2]=1}while(0);return}function Gl(a,b,d,e,f){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;var g=0,h=0;h=i;i=i+256|0;do if((d|0)>(e|0)&(f&73728|0)==0){Qn(h|0,b|0,((d-e|0)>>>0>256?256:d-e|0)|0)|0;f=c[a>>2]|0;if((d-e|0)>>>0>255){g=d-e|0;b=f;f=(f&32|0)==0;do{if(f){Ek(h,256,a);b=c[a>>2]|0}g=g+-256|0;f=(b&32|0)==0}while(g>>>0>255);if(f)b=d-e&255;else break}else if(!(f&32))b=d-e|0;else break;Ek(h,b,a)}while(0);i=h;return}function Hl(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0;e=Zb[c[(c[d>>2]|0)+40>>2]&31](d,a)|0;f=Zb[c[(c[d>>2]|0)+28>>2]&31](d,e)|0;c[b>>2]=f;if(f|0)Cb[c[(c[d>>2]|0)+48>>2]&127](d,e);c[b+4>>2]=c[a+4>>2];c[b+12>>2]=c[a+68>>2];c[b+16>>2]=c[a+72>>2];c[b+20>>2]=c[a+76>>2];c[b+24>>2]=c[a+80>>2];c[b+28>>2]=c[a+48>>2];c[b+32>>2]=c[a+52>>2];c[b+36>>2]=c[a+56>>2];c[b+40>>2]=c[a+60>>2];c[b+44>>2]=c[a+64>>2];return 17117}function Il(){var b=0,d=0.0,e=0.0;b=i;i=i+16|0;if((a[22544]|0)==0?Wa(22544)|0:0){c[b>>2]=0;c[b+4>>2]=0;c[b+8>>2]=0;c[b+12>>2]=0;og(23268,0.0,0,0,b);_a(22544)}c[5868]=c[5868]|1;g[5903]=0.0;d=+g[5913]*0.0;e=+g[5914]*0.0;g[5908]=+g[5912]*0.0;g[5909]=d;g[5910]=e;g[5911]=0.0;c[5916]=0;c[5917]=0;c[5918]=0;c[5919]=0;e=+g[5905]*0.0;d=+g[5906]*0.0;g[5957]=+g[5904]*0.0;g[5958]=e;g[5959]=d;g[5960]=0.0;i=b;return}function Jl(b,d){b=b|0;d=d|0;var e=0.0,f=0.0,h=0.0,i=0.0,j=0.0;a[b+171>>0]=1;c[b+60>>2]=c[d>>2];c[b+60+4>>2]=c[d+4>>2];c[b+60+8>>2]=c[d+8>>2];c[b+60+12>>2]=c[d+12>>2];e=+g[b+60>>2];f=+g[b+64>>2];i=+g[b+68>>2];h=1.0/+O(+(e*e+f*f+i*i));if(+O(+(i*h*i*h+(e*h*e*h+f*h*f*h)))<1.1920928955078125e-07){j=0.0;f=0.0;e=0.0;d=0}else{j=e*h;f=f*h;e=i*h;d=c[b+72>>2]|0}g[b+76>>2]=j;g[b+80>>2]=f;g[b+84>>2]=e;c[b+88>>2]=d;return}function Kl(a,b){a=a|0;b=b|0;var d=0.0,e=0.0,f=0.0,h=0,i=0,j=0;j=c[a+68>>2]|0;i=c[a+64>>2]|0;h=c[a+72>>2]|0;e=+g[a+60>>2]*(+g[b+(j<<2)>>2]/+g[a+12+(j<<2)>>2]);g[a+60>>2]=e;f=+g[a+56>>2]*(+g[b+(i<<2)>>2]/+g[a+12+(i<<2)>>2]+ +g[b+(h<<2)>>2]/+g[a+12+(h<<2)>>2])*.5;g[a+56>>2]=f;g[a+52>>2]=f/+O(+(e*e+f*f));f=+N(+(+g[b>>2]));e=+N(+(+g[b+4>>2]));d=+N(+(+g[b+8>>2]));g[a+12>>2]=f;g[a+16>>2]=e;g[a+20>>2]=d;g[a+24>>2]=0.0;return}function Ll(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0.0,f=0.0,h=0.0,i=0.0,j=0.0,k=0.0,l=0.0,m=0;if((d|0)<=0)return;m=0;do{e=+g[a+28>>2];i=+g[a+36>>2];l=+g[b+(m<<4)>>2];f=+g[b+(m<<4)+4>>2];k=+O(+(l*l+f*f));h=+g[b+(m<<4)+8>>2];if(k!=0.0){j=f*(e/k);f=h<0.0?-i:i;e=l*(e/k)}else{j=0.0;f=h<0.0?-i:i}g[c+(m<<4)>>2]=e;g[c+(m<<4)+4>>2]=j;g[c+(m<<4)+8>>2]=f;m=m+1|0}while((m|0)!=(d|0));return}function Ml(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0.0,f=0.0,h=0.0,i=0.0,j=0.0,k=0.0,l=0.0,m=0;if((d|0)<=0)return;m=0;do{e=+g[a+28>>2];i=+g[a+32>>2];l=+g[b+(m<<4)>>2];f=+g[b+(m<<4)+8>>2];k=+O(+(l*l+f*f));h=+g[b+(m<<4)+4>>2];if(k!=0.0){j=f*(e/k);f=h<0.0?-i:i;e=l*(e/k)}else{j=0.0;f=h<0.0?-i:i}g[c+(m<<4)>>2]=e;g[c+(m<<4)+4>>2]=f;g[c+(m<<4)+8>>2]=j;m=m+1|0}while((m|0)!=(d|0));return}function Nl(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0;f=i;i=i+48|0;c[f+32>>2]=8976;c[f+32+4>>2]=e;c[f>>2]=c[b>>2];c[f+4>>2]=c[b+4>>2];c[f+8>>2]=c[b+8>>2];c[f+12>>2]=c[b+12>>2];c[f+16>>2]=c[d>>2];c[f+16+4>>2]=c[d+4>>2];c[f+16+8>>2]=c[d+8>>2];c[f+16+12>>2]=c[d+12>>2];bg(c[a+4>>2]|0,f,f+32|0);bg(c[a+64>>2]|0,f,f+32|0);i=f;return}function Ol(a,d,f,g,h,i){a=a|0;d=d|0;f=f|0;g=g|0;h=h|0;i=i|0;var j=0;j=c[a+108>>2]|0;if(j|0){Qb[c[(c[j>>2]|0)+24>>2]&7](j,d,f,g,h,i);return}j=b[a+56>>1]|0;if((j&65535)<<1>>>0<=1)return;d=1;h=1;do{i=c[a+68>>2]|0;if(b[i+(d<<2)>>1]&1){Zb[c[(c[g>>2]|0)+8>>2]&31](g,(c[a+60>>2]|0)+((e[i+(d<<2)+2>>1]|0)<<6)|0)|0;j=b[a+56>>1]|0}h=h+1<<16>>16;d=h&65535}while(d>>>0<((j&65535)<<1|1)>>>0);return}function Pl(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;b=c[d>>2]|0;b=Zb[c[(c[b>>2]|0)+56>>2]&31](b,80)|0;d=c[d>>2]|0;c[b+4>>2]=d;c[b>>2]=5508;a[b+8>>0]=1;c[b+12>>2]=5536;c[b+60>>2]=d;c[b+64>>2]=0;c[b+16>>2]=f;c[b+20>>2]=e;d=Ob[c[(c[d>>2]|0)+12>>2]&63](d,c[f+8>>2]|0,c[e+8>>2]|0)|0;c[b+76>>2]=d;f=c[b+60>>2]|0;Cb[c[(c[f>>2]|0)+20>>2]&127](f,d);return b|0}function Ql(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0,g=0;g=i;i=i+64|0;if((a|0)!=(b|0))if((b|0)!=0?(f=wj(b,2744)|0,(f|0)!=0):0){b=g;e=b+56|0;do{c[b>>2]=0;b=b+4|0}while((b|0)<(e|0));c[g>>2]=f;c[g+8>>2]=a;c[g+12>>2]=-1;c[g+48>>2]=1;mc[c[(c[f>>2]|0)+28>>2]&127](f,g,c[d>>2]|0,1);if((c[g+24>>2]|0)==1){c[d>>2]=c[g+16>>2];b=1}else b=0}else b=0;else b=1;i=g;return b|0}function Rl(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;b=c[d>>2]|0;b=Zb[c[(c[b>>2]|0)+56>>2]&31](b,80)|0;d=c[d>>2]|0;c[b+4>>2]=d;c[b>>2]=5508;a[b+8>>0]=0;c[b+12>>2]=5536;c[b+60>>2]=d;c[b+64>>2]=0;c[b+16>>2]=e;c[b+20>>2]=f;d=Ob[c[(c[d>>2]|0)+12>>2]&63](d,c[e+8>>2]|0,c[f+8>>2]|0)|0;c[b+76>>2]=d;f=c[b+60>>2]|0;Cb[c[(c[f>>2]|0)+20>>2]&127](f,d);return b|0}function Sl(){var a=0,b=0,d=0;d=i;i=i+32|0;while(1){a=yc(112)|0;if(a|0){b=6;break}a=c[6564]|0;c[6564]=a+0;if(!a){b=5;break}jc[a&3]()}if((b|0)==5){d=Ya(4)|0;c[d>>2]=9640;pb(d|0,2800,251)}else if((b|0)==6){c[d>>2]=0;c[d+4>>2]=0;c[d+8>>2]=4096;c[d+12>>2]=4096;c[d+16>>2]=0;c[d+20>>2]=1;qg(a,d);i=d;return a|0}return 0}function Tl(b){b=b|0;var d=0;c[b>>2]=5088;d=c[b+284>>2]|0;Ab[c[c[d>>2]>>2]&255](d);d=c[b+284>>2]|0;if(d|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b>>2]=5044;d=c[b+276>>2]|0;if(!d){a[b+280>>0]=1;c[b+276>>2]=0;c[b+268>>2]=0;d=b+272|0;c[d>>2]=0;c[b>>2]=5008;return}if(a[b+280>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+276>>2]=0;a[b+280>>0]=1;c[b+276>>2]=0;c[b+268>>2]=0;d=b+272|0;c[d>>2]=0;c[b>>2]=5008;return}function Ul(a){a=a|0;var b=0,d=0,e=0,f=0.0,h=0.0;e=c[a+232>>2]|0;if((e|0)<=0)return;a=c[a+240>>2]|0;d=0;do{b=c[a+(d<<2)>>2]|0;switch(c[b+216>>2]|0){case 2:case 5:break;default:if(!(c[b+204>>2]&3)){h=+g[b+368>>2]*+g[b+352>>2];f=+g[b+372>>2]*+g[b+356>>2];g[b+412>>2]=+g[b+364>>2]*+g[b+348>>2]+ +g[b+412>>2];g[b+416>>2]=h+ +g[b+416>>2];g[b+420>>2]=f+ +g[b+420>>2]}}d=d+1|0}while((d|0)!=(e|0));return}function Vl(b,d,e,f,g){b=b|0;d=d|0;e=e|0;f=f|0;g=g|0;var h=0;b=a[b+16>>0]|0;h=c[(b<<24>>24==0?d:e)+8>>2]|0;b=b<<24>>24?d:e;d=c[b+8>>2]|0;e=c[h+268>>2]|0;a:do if((e|0)>0){g=c[h+276>>2]|0;f=0;while(1){if((c[g+(f<<2)>>2]|0)==(d|0))break;f=f+1|0;if((f|0)>=(e|0))break a}if((f|0)!=(e|0))return}while(0);e=c[h+284>>2]|0;ic[c[(c[e>>2]|0)+36>>2]&127](e,h,b);return}function Wl(a,b){a=a|0;b=+b;var d=0.0,e=0.0,f=0.0,h=0.0,i=0.0;h=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);e=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);i=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);h=h+ +g[a+28>>2];e=e+ +g[a+32>>2];i=i+ +g[a+36>>2];g[a+44>>2]=b;f=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);d=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);b=i-+Sb[c[(c[a>>2]|0)+48>>2]&15](a);g[a+28>>2]=h-f;g[a+32>>2]=e-d;g[a+36>>2]=b;g[a+40>>2]=0.0;return}function Xl(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0,g=0;if((c[a+8>>2]|0)<=0)return;g=0;a:while(1){while(1){e=c[a+16>>2]|0;f=e+(g<<4)|0;if(!(Zb[c[(c[b>>2]|0)+8>>2]&31](b,f)|0))break;Ib[c[(c[a>>2]|0)+12>>2]&31](a,c[f>>2]|0,c[e+(g<<4)+4>>2]|0,d)|0;c[6163]=(c[6163]|0)+-1;if((g|0)>=(c[a+8>>2]|0)){e=7;break a}}g=g+1|0;if((g|0)>=(c[a+8>>2]|0)){e=7;break}}if((e|0)==7)return}function Yl(a,b){a=+a;b=+b;var d=0;c[6435]=(c[6435]|0)+1;d=yc(95)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}c[d+8>>2]=0;c[d+12>>2]=1065353216;c[d+16>>2]=1065353216;c[d+20>>2]=1065353216;g[d+24>>2]=0.0;g[d+44>>2]=.03999999910593033;g[d+56>>2]=a;g[d+60>>2]=b;c[d+4>>2]=11;g[d+52>>2]=a/+O(+(a*a+b*b));c[d>>2]=6472;c[d+64>>2]=0;c[d+68>>2]=2;c[d+72>>2]=1;g[d+28>>2]=a;g[d+36>>2]=b;g[d+32>>2]=a;return d|0}function Zl(a,b){a=+a;b=+b;var d=0;c[6435]=(c[6435]|0)+1;d=yc(95)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}c[d+8>>2]=0;c[d+12>>2]=1065353216;c[d+16>>2]=1065353216;c[d+20>>2]=1065353216;g[d+24>>2]=0.0;g[d+44>>2]=.03999999910593033;g[d+56>>2]=a;g[d+60>>2]=b;c[d+4>>2]=11;g[d+52>>2]=a/+O(+(a*a+b*b));c[d>>2]=6572;c[d+64>>2]=1;c[d+68>>2]=0;c[d+72>>2]=2;g[d+32>>2]=a;g[d+28>>2]=b;g[d+36>>2]=a;return d|0}function _l(a,b){a=+a;b=+b;var d=0;c[6435]=(c[6435]|0)+1;d=yc(95)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}c[d+8>>2]=0;c[d+12>>2]=1065353216;c[d+16>>2]=1065353216;c[d+20>>2]=1065353216;g[d+24>>2]=0.0;g[d+44>>2]=.03999999910593033;c[d>>2]=6372;g[d+56>>2]=a;g[d+60>>2]=b;c[d+4>>2]=11;c[d+64>>2]=0;c[d+68>>2]=1;c[d+72>>2]=2;g[d+28>>2]=a;g[d+32>>2]=b;g[d+36>>2]=a;g[d+52>>2]=a/+O(+(a*a+b*b));return d|0}function $l(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;b=c[d>>2]|0;b=Zb[c[(c[b>>2]|0)+56>>2]&31](b,16)|0;d=c[d>>2]|0;c[b+4>>2]=d;c[b>>2]=5576;a[b+8>>0]=0;c[b+12>>2]=0;if(!(Ob[c[(c[d>>2]|0)+24>>2]&63](d,c[e+8>>2]|0,c[f+8>>2]|0)|0))return b|0;d=c[b+4>>2]|0;c[b+12>>2]=Ob[c[(c[d>>2]|0)+12>>2]&63](d,c[e+8>>2]|0,c[f+8>>2]|0)|0;a[b+8>>0]=1;return b|0}function am(){var a=0,b=0,d=0;d=i;i=i+32|0;while(1){a=yc(92)|0;if(a|0){b=6;break}a=c[6564]|0;c[6564]=a+0;if(!a){b=5;break}jc[a&3]()}if((b|0)==5){d=Ya(4)|0;c[d>>2]=9640;pb(d|0,2800,251)}else if((b|0)==6){c[d>>2]=0;c[d+4>>2]=0;c[d+8>>2]=4096;c[d+12>>2]=4096;c[d+16>>2]=0;c[d+20>>2]=1;Zd(a,d);i=d;return a|0}return 0}function bm(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0.0,h=0.0,i=0.0,j=0.0,k=0.0;i=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);h=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);f=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);k=+g[b+52>>2]-h;j=+g[b+56>>2]-f;g[d>>2]=+g[b+48>>2]-i;g[d+4>>2]=k;g[d+8>>2]=j;g[d+12>>2]=0.0;h=h+ +g[b+52>>2];f=f+ +g[b+56>>2];g[e>>2]=i+ +g[b+48>>2];g[e+4>>2]=h;g[e+8>>2]=f;g[e+12>>2]=0.0;return}function cm(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0,g=0,h=0;g=c[a+720>>2]|0;h=c[a+732>>2]|0;if((h|0)<=0){d=0;return d|0}e=c[a+740>>2]|0;f=0;while(1){a=c[e+(f*52|0)+8>>2]|0;if((a|0)==(g+(b*104|0)|0)?(c[e+(f*52|0)+12>>2]|0)==(g+(d*104|0)|0):0){a=1;e=8;break}if((a|0)==(g+(d*104|0)|0)?(c[e+(f*52|0)+12>>2]|0)==(g+(b*104|0)|0):0){a=1;e=8;break}f=f+1|0;if((f|0)>=(h|0)){a=0;e=8;break}}if((e|0)==8)return a|0;return 0}function dm(a,b,d){a=a|0;b=b|0;d=d|0;var e=0.0,f=0.0,h=0.0,i=0.0,j=0.0;j=+g[d>>2];i=+g[d+4>>2];e=+g[d+8>>2];f=j*+g[b+56>>2]+i*+g[b+60>>2]+e*+g[b+64>>2];h=j*+g[b+72>>2]+i*+g[b+76>>2]+e*+g[b+80>>2];e=j*+g[b+88>>2]+i*+g[b+92>>2]+e*+g[b+96>>2];b=b+56+((f>2]=c[b>>2];c[a+4>>2]=c[b+4>>2];c[a+8>>2]=c[b+8>>2];c[a+12>>2]=c[b+12>>2];return}function em(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;var g=0,h=0;g=c[d>>2]|0;g=Zb[c[(c[g>>2]|0)+56>>2]&31](g,20)|0;h=c[d+4>>2]|0;b=a[b+4>>0]|0;d=c[d>>2]|0;c[g+4>>2]=d;c[g>>2]=6004;a[g+8>>0]=0;c[g+12>>2]=h;a[g+16>>0]=b;if(h|0)return g|0;c[g+12>>2]=Ob[c[(c[d>>2]|0)+12>>2]&63](d,c[e+8>>2]|0,c[f+8>>2]|0)|0;a[g+8>>0]=1;return g|0}function fm(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;do if((b|0)==(c[d+8>>2]|0)){b=c[d+16>>2]|0;if(!b){c[d+16>>2]=e;c[d+24>>2]=f;c[d+36>>2]=1;break}if((b|0)!=(e|0)){c[d+36>>2]=(c[d+36>>2]|0)+1;c[d+24>>2]=2;a[d+54>>0]=1;break}if((c[d+24>>2]|0)==2)c[d+24>>2]=f}else{b=c[b+8>>2]|0;mc[c[(c[b>>2]|0)+28>>2]&127](b,d,e,f)}while(0);return}function gm(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0;f=i;i=i+48|0;c[f>>2]=7008;c[f+4>>2]=b;c[f+8>>2]=c[d>>2];c[f+8+4>>2]=c[d+4>>2];c[f+8+8>>2]=c[d+8>>2];c[f+8+12>>2]=c[d+12>>2];c[f+24>>2]=c[e>>2];c[f+24+4>>2]=c[e+4>>2];c[f+24+8>>2]=c[e+8>>2];c[f+24+12>>2]=c[e+12>>2];a=c[a+48>>2]|0;mc[c[(c[a>>2]|0)+8>>2]&127](a,f,d,e);i=f;return}function hm(a,b,d){a=a|0;b=+b;d=d|0;var e=0.0,f=0.0,h=0.0,i=0.0,j=0.0;i=+g[a+28>>2];f=+g[a+32>>2];j=+g[a+36>>2];h=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);e=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);j=(j+ +Sb[c[(c[a>>2]|0)+48>>2]&15](a))*2.0;g[d>>2]=b/12.0*((f+e)*2.0*(f+e)*2.0+j*j);g[d+4>>2]=b/12.0*((i+h)*2.0*(i+h)*2.0+j*j);g[d+8>>2]=b/12.0*((i+h)*2.0*(i+h)*2.0+(f+e)*2.0*(f+e)*2.0);g[d+12>>2]=0.0;return}function im(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;var g=0,h=0,i=0;f=c[d>>2]|0;f=Zb[c[(c[f>>2]|0)+56>>2]&31](f,36)|0;g=c[d+4>>2]|0;i=c[b+12>>2]|0;h=c[b+8>>2]|0;e=c[b+16>>2]|0;b=c[b+20>>2]|0;c[f+4>>2]=c[d>>2];c[f>>2]=6052;c[f+8>>2]=i;c[f+12>>2]=h;a[f+16>>0]=0;c[f+20>>2]=g;a[f+24>>0]=0;c[f+28>>2]=e;c[f+32>>2]=b;return f|0}function jm(a,b){a=a|0;b=b|0;var d=0;d=i;i=i+64|0;c[d>>2]=1065353216;c[d+4>>2]=0;c[d+4+4>>2]=0;c[d+4+8>>2]=0;c[d+4+12>>2]=0;c[d+20>>2]=1065353216;c[d+24>>2]=0;c[d+24+4>>2]=0;c[d+24+8>>2]=0;c[d+24+12>>2]=0;c[d+40>>2]=1065353216;c[d+44>>2]=0;c[d+48>>2]=c[b>>2];c[d+48+4>>2]=c[b+4>>2];c[d+48+8>>2]=c[b+8>>2];c[d+48+12>>2]=c[b+12>>2];Pd(a,d);i=d;return}function km(a,b){a=a|0;b=b|0;var c=0.0,d=0.0,e=0.0,f=0.0,h=0.0;h=+g[b>>2];f=+g[b+4>>2];e=+g[b+8>>2];d=(+g[a+280>>2]*h+ +g[a+284>>2]*f+ +g[a+288>>2]*e)*+g[a+548>>2];c=(+g[a+296>>2]*h+ +g[a+300>>2]*f+ +g[a+304>>2]*e)*+g[a+552>>2];g[a+328>>2]=+g[a+328>>2]+(+g[a+264>>2]*h+ +g[a+268>>2]*f+ +g[a+272>>2]*e)*+g[a+544>>2];g[a+332>>2]=+g[a+332>>2]+d;g[a+336>>2]=+g[a+336>>2]+c;return}function lm(b,d){b=b|0;d=d|0;var e=0,f=0,g=0;if((d|0)==0?1:(c[d+236>>2]&2|0)==0){d=1;return d|0}g=c[b+488>>2]|0;if((g|0)<=0){d=1;return d|0}b=c[b+496>>2]|0;f=0;while(1){e=c[b+(f<<2)>>2]|0;if(a[e+20>>0]|0){if((c[e+28>>2]|0)==(d|0)){b=0;e=8;break}if((c[e+32>>2]|0)==(d|0)){b=0;e=8;break}}f=f+1|0;if((f|0)>=(g|0)){b=1;e=8;break}}if((e|0)==8)return b|0;return 0}function mm(a,b,d){a=a|0;b=b|0;d=d|0;var e=0.0,f=0.0,h=0.0,i=0.0,j=0.0;j=+g[a+28>>2];h=+g[a+32>>2];e=+g[a+36>>2];i=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);f=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);e=e+ +Sb[c[(c[a>>2]|0)+48>>2]&15](a);g[d>>2]=+(b&1^1|0)*(j+i)-+(b&1|0)*(j+i);g[d+4>>2]=+(b>>>1&1^1|0)*(h+f)-+(b>>>1&1|0)*(h+f);g[d+8>>2]=+(b>>>2&1^1|0)*e-+(b>>>2&1|0)*e;g[d+12>>2]=0.0;return}function nm(a,b){a=a|0;b=b|0;var c=0.0,d=0.0,e=0.0,f=0.0,h=0.0;h=+g[b>>2];f=+g[b+4>>2];e=+g[b+8>>2];d=(+g[a+20>>2]*h+ +g[a+24>>2]*f+ +g[a+28>>2]*e)*+g[a+352>>2];c=(+g[a+36>>2]*h+ +g[a+40>>2]*f+ +g[a+44>>2]*e)*+g[a+356>>2];g[a+412>>2]=+g[a+412>>2]+(+g[a+4>>2]*h+ +g[a+8>>2]*f+ +g[a+12>>2]*e)*+g[a+348>>2];g[a+416>>2]=+g[a+416>>2]+d;g[a+420>>2]=+g[a+420>>2]+c;return}function om(b,e){b=b|0;e=e|0;var f=0,g=0,h=0;h=i;i=i+16|0;a[h>>0]=e;f=c[b+16>>2]|0;if(!f)if(!(Fo(b)|0)){f=c[b+16>>2]|0;g=4}else f=-1;else g=4;do if((g|0)==4){g=c[b+20>>2]|0;if(g>>>0>>0?(e&255|0)!=(a[b+75>>0]|0):0){c[b+20>>2]=g+1;a[g>>0]=e;f=e&255;break}if((Ob[c[b+36>>2]&63](b,h,1)|0)==1)f=d[h>>0]|0;else f=-1}while(0);i=h;return f|0}function pm(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0,g=0,h=0,j=0,k=0;f=i;i=i+16|0;h=b>>31|((b|0)<0?-1:0)<<1;g=((b|0)<0?-1:0)>>31|((b|0)<0?-1:0)<<1;k=e>>31|((e|0)<0?-1:0)<<1;j=((e|0)<0?-1:0)>>31|((e|0)<0?-1:0)<<1;a=Is(h^a|0,g^b|0,h|0,g|0)|0;b=C;$e(a,b,Is(k^d|0,j^e|0,k|0,j|0)|0,C,f|0)|0;e=Is(c[f>>2]^h|0,c[f+4>>2]^g|0,h|0,g|0)|0;d=C;i=f;return (C=d,e)|0}function qm(a,b){a=a|0;b=b|0;var c=0.0,d=0.0,e=0.0,f=0.0,h=0.0;h=+g[b>>2];f=+g[b+4>>2];e=+g[b+8>>2];d=(+g[a+20>>2]*h+ +g[a+24>>2]*f+ +g[a+28>>2]*e)*+g[a+548>>2];c=(+g[a+36>>2]*h+ +g[a+40>>2]*f+ +g[a+44>>2]*e)*+g[a+552>>2];g[a+428>>2]=+g[a+428>>2]+(+g[a+4>>2]*h+ +g[a+8>>2]*f+ +g[a+12>>2]*e)*+g[a+544>>2];g[a+432>>2]=+g[a+432>>2]+d;g[a+436>>2]=+g[a+436>>2]+c;return}function rm(a,b){a=a|0;b=b|0;c[a>>2]=c[b>>2];c[a+4>>2]=c[b+16>>2];c[a+8>>2]=c[b+32>>2];g[a+12>>2]=0.0;c[a+16>>2]=c[b+4>>2];c[a+20>>2]=c[b+20>>2];c[a+24>>2]=c[b+36>>2];g[a+28>>2]=0.0;c[a+32>>2]=c[b+8>>2];c[a+36>>2]=c[b+24>>2];c[a+40>>2]=c[b+40>>2];g[a+44>>2]=0.0;c[a+48>>2]=c[b+48>>2];c[a+52>>2]=c[b+52>>2];c[a+56>>2]=c[b+56>>2];g[a+60>>2]=0.0;return}function sm(a,b,d){a=a|0;b=b|0;d=d|0;var e=0.0,f=0.0,h=0.0,i=0.0,j=0.0;i=+g[b+28>>2];j=+g[b+32>>2];e=+g[b+36>>2];h=+Sb[c[(c[b>>2]|0)+48>>2]&15](b);f=+Sb[c[(c[b>>2]|0)+48>>2]&15](b);e=e+ +Sb[c[(c[b>>2]|0)+48>>2]&15](b);f=+g[d+4>>2]>=0.0?j+f:-(j+f);e=+g[d+8>>2]>=0.0?e:-e;g[a>>2]=+g[d>>2]>=0.0?i+h:-(i+h);g[a+4>>2]=f;g[a+8>>2]=e;g[a+12>>2]=0.0;return}function tm(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0.0,h=0.0,i=0.0;if((d|0)<=0)return;e=0;do{i=+g[a+28>>2];h=+g[a+32>>2];h=+g[b+(e<<4)+4>>2]>=0.0?h:-h;f=+g[a+36>>2];f=+g[b+(e<<4)+8>>2]>=0.0?f:-f;g[c+(e<<4)>>2]=+g[b+(e<<4)>>2]>=0.0?i:-i;g[c+(e<<4)+4>>2]=h;g[c+(e<<4)+8>>2]=f;g[c+(e<<4)+12>>2]=0.0;e=e+1|0}while((e|0)!=(d|0));return}function um(a,b){a=a|0;b=b|0;var d=0,e=0;while(1){d=yc(64)|0;if(d|0){e=6;break}d=c[6564]|0;c[6564]=d+0;if(!d){e=5;break}jc[d&3]()}if((e|0)==5){b=Ya(4)|0;c[b>>2]=9640;pb(b|0,2800,251)}else if((e|0)==6){sl(d,a);c[d+48>>2]=c[b>>2];c[d+48+4>>2]=c[b+4>>2];c[d+48+8>>2]=c[b+8>>2];c[d+48+12>>2]=c[b+12>>2];return d|0}return 0}function vm(b){b=b|0;var d=0,e=0;c[b>>2]=6292;d=c[b+64>>2]|0;if(d|0?(pi(d),e=c[b+64>>2]|0,e|0):0){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0)}d=c[b+24>>2]|0;if(!d){a[b+28>>0]=1;c[b+24>>2]=0;c[b+16>>2]=0;b=b+20|0;c[b>>2]=0;return}if(a[b+28>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+24>>2]=0;a[b+28>>0]=1;c[b+24>>2]=0;c[b+16>>2]=0;b=b+20|0;c[b>>2]=0;return}function wm(a,b,d,e,f,g,h,i,j,k){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;g=g|0;h=h|0;i=i|0;j=j|0;k=k|0;a=c[a+32>>2]|0;c[d>>2]=c[a+(k<<5)+12>>2];c[b>>2]=c[a+(k<<5)+16>>2];c[e>>2]=c[a+(k<<5)+28>>2];c[f>>2]=c[a+(k<<5)+20>>2];c[i>>2]=c[a+(k<<5)>>2];c[g>>2]=c[a+(k<<5)+4>>2];c[h>>2]=c[a+(k<<5)+8>>2];c[j>>2]=c[a+(k<<5)+24>>2];return}function xm(a,e,f){a=a|0;e=e|0;f=f|0;var h=0.0;switch(c[a+96>>2]|0){case 0:{f=(_(c[a+64>>2]|0,f)|0)+e|0;h=+g[(c[a+92>>2]|0)+(f<<2)>>2];return +h}case 5:{h=+(d[(_(c[a+64>>2]|0,f)|0)+e+(c[a+92>>2]|0)>>0]|0)*+g[a+88>>2];return +h}case 3:{f=(_(c[a+64>>2]|0,f)|0)+e|0;h=+(b[(c[a+92>>2]|0)+(f<<1)>>1]|0)*+g[a+88>>2];return +h}default:{h=0.0;return +h}}return 0.0}function ym(b){b=b|0;var d=0,e=0;c[b>>2]=7256;d=c[b+104>>2]|0;if(d|0){if(a[b+108>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+104>>2]=0}a[b+108>>0]=1;c[b+104>>2]=0;c[b+96>>2]=0;c[b+100>>2]=0;c[b>>2]=7124;d=c[b+52>>2]|0;if(d|0?(Ab[c[c[d>>2]>>2]&255](d),e=c[b+52>>2]|0,e|0):0){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0)}c[6436]=(c[6436]|0)+1;hd(c[b+-4>>2]|0);return}function zm(){var b=0,d=0;while(1){b=yc(40)|0;if(b|0){d=6;break}b=c[6564]|0;c[6564]=b+0;if(!b){d=5;break}jc[b&3]()}if((d|0)==5){d=Ya(4)|0;c[d>>2]=9640;pb(d|0,2800,251)}else if((d|0)==6){g[b+12>>2]=1.0;c[b+8>>2]=0;c[b+4>>2]=5;c[b>>2]=2996;a[b+36>>0]=1;c[b+32>>2]=0;c[b+24>>2]=0;c[b+28>>2]=0;a[b+16>>0]=1;return b|0}return 0}function Am(a,b,c,d){a=a|0;b=+b;c=+c;d=+d;var e=0.0,f=0.0,h=0.0;e=+Q(+b);f=+Q(+c);h=+Q(+d);b=+R(+b);c=+R(+c);d=+R(+d);g[a>>2]=f*h;g[a+4>>2]=c*b*h-e*d;g[a+8>>2]=c*e*h+b*d;g[a+12>>2]=0.0;g[a+16>>2]=f*d;g[a+20>>2]=c*b*d+e*h;g[a+24>>2]=c*e*d-b*h;g[a+28>>2]=0.0;g[a+32>>2]=-c;g[a+36>>2]=f*b;g[a+40>>2]=f*e;g[a+44>>2]=0.0;return}function Bm(b,d,e,f){b=b|0;d=d|0;e=e|0;f=+f;c[b+4>>2]=c[d>>2];c[b+4+4>>2]=c[d+4>>2];c[b+4+8>>2]=c[d+8>>2];c[b+4+12>>2]=c[d+12>>2];c[b+20>>2]=c[e>>2];c[b+20+4>>2]=c[e+4>>2];c[b+20+8>>2]=c[e+8>>2];c[b+20+12>>2]=c[e+12>>2];g[b+36>>2]=f;a[b+40>>0]=1;return}function Cm(){var a=0,b=0;while(1){a=yc(8)|0;if(a|0){b=6;break}a=c[6564]|0;c[6564]=a+0;if(!a){b=5;break}jc[a&3]()}if((b|0)==5){b=Ya(4)|0;c[b>>2]=9640;pb(b|0,2800,251)}else if((b|0)==6){c[6434]=a;tb(a|0,0)|0;c[6424]=19390;c[6425]=0;c[6426]=0;c[6427]=0;c[6428]=0;c[6429]=0;c[6430]=0;c[6431]=0;c[6432]=0;Vq(25696);return}}function Dm(a,b){a=+a;b=+b;var d=0;c[6435]=(c[6435]|0)+1;d=yc(75)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}c[d+8>>2]=0;c[d+12>>2]=1065353216;c[d+16>>2]=1065353216;c[d+20>>2]=1065353216;g[d+24>>2]=0.0;g[d+44>>2]=.03999999910593033;c[d+4>>2]=10;c[d>>2]=7592;c[d+52>>2]=2;g[d+28>>2]=a;g[d+32>>2]=a;g[d+36>>2]=b*.5;g[d+40>>2]=0.0;return d|0}function Em(a,b){a=+a;b=+b;var d=0;c[6435]=(c[6435]|0)+1;d=yc(75)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}c[d+8>>2]=0;c[d+12>>2]=1065353216;c[d+16>>2]=1065353216;c[d+20>>2]=1065353216;g[d+24>>2]=0.0;g[d+44>>2]=.03999999910593033;c[d+4>>2]=10;c[d>>2]=7492;c[d+52>>2]=0;g[d+28>>2]=b*.5;g[d+32>>2]=a;g[d+36>>2]=a;g[d+40>>2]=0.0;return d|0}function Fm(a,b){a=+a;b=+b;var d=0;c[6435]=(c[6435]|0)+1;d=yc(75)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}c[d+8>>2]=0;c[d+12>>2]=1065353216;c[d+16>>2]=1065353216;c[d+20>>2]=1065353216;g[d+24>>2]=0.0;g[d+44>>2]=.03999999910593033;c[d>>2]=7392;c[d+4>>2]=10;c[d+52>>2]=1;g[d+28>>2]=a;g[d+32>>2]=b*.5;g[d+36>>2]=a;g[d+40>>2]=0.0;return d|0}function Gm(a,b){a=+a;b=b|0;var d=0,e=0,f=0;h[k>>3]=a;d=c[k>>2]|0;e=c[k+4>>2]|0;f=us(d|0,e|0,52)|0;switch(f&2047|0){case 0:{if(a!=0.0){a=+Gm(a*18446744073709551616.0,b);d=(c[b>>2]|0)+-64|0}else d=0;c[b>>2]=d;break}case 2047:break;default:{c[b>>2]=(f&2047)+-1022;c[k>>2]=d;c[k+4>>2]=e&-2146435073|1071644672;a=+h[k>>3]}}return +a}function Hm(){var a=0,b=0;while(1){a=yc(24)|0;if(a|0){b=6;break}a=c[6564]|0;c[6564]=a+0;if(!a){b=5;break}jc[a&3]()}if((b|0)==5){b=Ya(4)|0;c[b>>2]=9640;pb(b|0,2800,251)}else if((b|0)==6){g[a>>2]=5.880000114440918;g[a+4>>2]=.8299999833106995;g[a+8>>2]=.8799999952316284;g[a+12>>2]=500.0;g[a+16>>2]=10.5;g[a+20>>2]=6.0e3;return a|0}return 0}function Im(a,b,d,e,f,h){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;h=h|0;d=i;i=i+16|0;c[d>>2]=8940;c[d+4>>2]=e;Be(a+4|0,c[a+4>>2]|0,b,e+4|0,e+20|0,+g[e+32>>2],f,h,d);Be(a+64|0,c[a+64>>2]|0,b,e+4|0,e+20|0,+g[e+32>>2],f,h,d);i=d;return}function Jm(b){b=b|0;var d=0;c[b>>2]=7256;d=c[b+104>>2]|0;if(d|0){if(a[b+108>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+104>>2]=0}a[b+108>>0]=1;c[b+104>>2]=0;c[b+96>>2]=0;c[b+100>>2]=0;c[b>>2]=7124;d=c[b+52>>2]|0;if(!d)return;Ab[c[c[d>>2]>>2]&255](d);d=c[b+52>>2]|0;if(!d)return;c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0);return}function Km(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0;f=i;i=i+32|0;c[f>>2]=c[a+60>>2];c[f+4>>2]=0;c[f+8>>2]=b;c[f+12>>2]=f+20;c[f+16>>2]=d;b=ub(140,f|0)|0;if(b>>>0<=4294963200)if((b|0)<0)e=7;else a=c[f+20>>2]|0;else{if(!0)a=25748;else a=c[(ib()|0)+64>>2]|0;c[a>>2]=0-b;e=7}if((e|0)==7){c[f+20>>2]=-1;a=-1}i=f;return a|0}function Lm(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0.0,g=0;e=i;i=i+16|0;c[e>>2]=-1;c[e+4>>2]=c[a+16>>2];if(!(c[b+4>>2]|0))c[b+4>>2]=e;g=c[a+12>>2]|0;f=+_b[c[(c[g>>2]|0)+12>>2]&15](g,b,d);c[a+4>>2]=c[(c[a+12>>2]|0)+4>>2];i=e;return +f}function Mm(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0,g=0,h=0;g=c[a+268>>2]|0;if((g|0)<=0)return;b=c[b>>2]|0;f=c[a+276>>2]|0;d=0;while(1){e=f+(d<<2)|0;if((c[e>>2]|0)==(b|0))break;d=d+1|0;if((d|0)>=(g|0)){h=7;break}}if((h|0)==7)return;if((d|0)>=(g|0))return;c[e>>2]=c[f+(g+-1<<2)>>2];c[a+268>>2]=g+-1;return}function Nm(b,d,e,f,g){b=b|0;d=d|0;e=e|0;f=f|0;g=g|0;c[b+4>>2]=c[d>>2];c[b>>2]=6164;a[b+24>>0]=1;c[b+20>>2]=0;c[b+12>>2]=0;c[b+16>>2]=0;a[b+28>>0]=g&1;c[b+32>>2]=c[d+4>>2];a[b+36>>0]=0;c[b+40>>2]=c[(c[(g?f:e)+4>>2]|0)+68>>2];lh(b,e,f);return}function Om(){var a=0,b=0;while(1){a=yc(24)|0;if(a|0){b=6;break}a=c[6564]|0;c[6564]=a+0;if(!a){b=5;break}jc[a&3]()}if((b|0)==5){b=Ya(4)|0;c[b>>2]=9640;pb(b|0,2800,251)}else if((b|0)==6){c[a>>2]=0;c[a+4>>2]=0;c[a+8>>2]=4096;c[a+12>>2]=4096;c[a+16>>2]=0;c[a+20>>2]=1;return a|0}return 0}function Pm(a,b){a=a|0;b=b|0;var d=0,e=0,f=0,g=0,h=0;f=c[a+280>>2]|0;if((f|0)<=0)return;g=c[a+288>>2]|0;d=0;while(1){e=g+(d<<2)|0;if((c[e>>2]|0)==(b|0))break;d=d+1|0;if((d|0)>=(f|0)){h=7;break}}if((h|0)==7)return;if((d|0)>=(f|0))return;c[e>>2]=c[g+(f+-1<<2)>>2];c[(c[a+288>>2]|0)+(f+-1<<2)>>2]=b;c[a+280>>2]=f+-1;return}function Qm(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0.0,g=0;e=i;i=i+16|0;c[e>>2]=-1;c[e+4>>2]=c[a+24>>2];if(!(c[b+4>>2]|0))c[b+4>>2]=e;g=c[a+20>>2]|0;f=+_b[c[(c[g>>2]|0)+12>>2]&15](g,b,d);c[a+4>>2]=c[(c[a+20>>2]|0)+4>>2];i=e;return +f}function Rm(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;do if((b|0)==(c[d+8>>2]|0)){b=c[d+16>>2]|0;if(!b){c[d+16>>2]=e;c[d+24>>2]=f;c[d+36>>2]=1;break}if((b|0)!=(e|0)){c[d+36>>2]=(c[d+36>>2]|0)+1;c[d+24>>2]=2;a[d+54>>0]=1;break}if((c[d+24>>2]|0)==2)c[d+24>>2]=f}while(0);return}function Sm(a,b,c){a=a|0;b=b|0;c=c|0;var d=0.0;a:do switch(b|0){case 2:case 1:{if(c>>>0<3){d=+g[a+600>>2];break a}if((c+-3|0)>>>0<3)d=+g[a+432>>2];else d=0.0;break}case 4:case 3:{if(c>>>0<3){d=+g[a+596>>2];break a}if((c+-3|0)>>>0<3)d=+g[a+604>>2];else d=0.0;break}default:d=0.0}while(0);return +d}function Tm(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;b=c[d>>2]|0;b=Zb[c[(c[b>>2]|0)+56>>2]&31](b,16)|0;d=c[d>>2]|0;c[b+4>>2]=d;c[b>>2]=9256;a[b+8>>0]=0;c[b+12>>2]=0;c[b+12>>2]=Ob[c[(c[d>>2]|0)+12>>2]&63](d,c[e+8>>2]|0,c[f+8>>2]|0)|0;a[b+8>>0]=1;return b|0}function Um(a,b){a=a|0;b=b|0;var d=0,e=0;d=c[a+56>>2]|0;if(!d)return;e=Eb[c[(c[d>>2]|0)+8>>2]&127](d)|0;e=Ob[c[(c[b>>2]|0)+16>>2]&63](b,e,1)|0;d=c[a+56>>2]|0;d=Ob[c[(c[d>>2]|0)+12>>2]&63](d,c[e+8>>2]|0,b)|0;yb[c[(c[b>>2]|0)+20>>2]&31](b,e,d,1346456916,c[a+56>>2]|0);return}function Vm(b,c,d){b=b|0;c=c|0;d=d|0;var e=0;if(c>>>0>0|(c|0)==0&b>>>0>4294967295)while(1){e=lr(b|0,c|0,10,0)|0;d=d+-1|0;a[d>>0]=e|48;e=b;b=Xv(b|0,c|0,10,0)|0;if(!(c>>>0>9|(c|0)==9&e>>>0>4294967295))break;else c=C}if(b)while(1){d=d+-1|0;a[d>>0]=(b>>>0)%10|0|48;if(b>>>0<10)break;else b=(b>>>0)/10|0}return d|0}function Wm(a,b,d,e){a=a|0;b=b|0;d=+d;e=e|0;switch(b|0){case 2:case 1:if(e>>>0<3){g[a+600>>2]=d;c[a+592>>2]=c[a+592>>2]|2;return}else{g[a+432>>2]=d;return}case 4:case 3:if(e>>>0<3){g[a+596>>2]=d;c[a+592>>2]=c[a+592>>2]|1;return}else{g[a+604>>2]=d;c[a+592>>2]=c[a+592>>2]|4;return}default:return}}function Xm(a,d){a=a|0;d=d|0;var e=0,f=0,g=0;d=c[a+56>>2]|0;if((d&65535)<<16>>16)return;b[a+64>>1]=1;g=c[a+60>>2]|0;if((d>>>16&65535)>1){e=1;d=1;while(1){b[g+(e<<6)+48>>1]=e+1;f=d+1<<16>>16;d=b[a+58>>1]|0;if((f&65535)<(d&65535)){e=f&65535;d=f}else break}}else d=d>>>16&65535;b[g+((d&65535)+-1<<6)+48>>1]=0;return}function Ym(a){a=a|0;var b=0,d=0;while(1){b=yc(112)|0;if(b|0){d=6;break}b=c[6564]|0;c[6564]=b+0;if(!b){d=5;break}jc[b&3]()}if((d|0)==5){a=Ya(4)|0;c[a>>2]=9640;pb(a|0,2800,251)}else if((d|0)==6){qg(b,a);return b|0}return 0}function Zm(a,b,d,e){a=+a;b=+b;d=+d;e=+e;var f=0,h=0;while(1){f=yc(16)|0;if(f|0){h=6;break}f=c[6564]|0;c[6564]=f+0;if(!f){h=5;break}jc[f&3]()}if((h|0)==5){h=Ya(4)|0;c[h>>2]=9640;pb(h|0,2800,251)}else if((h|0)==6){g[f>>2]=a;g[f+4>>2]=b;g[f+8>>2]=d;g[f+12>>2]=e;return f|0}return 0}function _m(b,d,e){b=b|0;d=d|0;e=e|0;var f=0;if((e|0)>=4096)return db(b|0,d|0,e|0)|0;f=b|0;if((b&3)==(d&3)){while(b&3){if(!e)return f|0;a[b>>0]=a[d>>0]|0;b=b+1|0;d=d+1|0;e=e-1|0}while((e|0)>=4){c[b>>2]=c[d>>2];b=b+4|0;d=d+4|0;e=e-4|0}}while((e|0)>0){a[b>>0]=a[d>>0]|0;b=b+1|0;d=d+1|0;e=e-1|0}return f|0}function $m(a,b){a=a|0;b=b|0;var d=0,e=0;d=c[a+52>>2]|0;if(!d)return;e=Eb[c[(c[d>>2]|0)+12>>2]&127](d)|0;e=Ob[c[(c[b>>2]|0)+16>>2]&63](b,e,1)|0;d=c[a+52>>2]|0;d=Ob[c[(c[d>>2]|0)+16>>2]&63](d,c[e+8>>2]|0,b)|0;yb[c[(c[b>>2]|0)+20>>2]&31](b,e,d,1213612625,c[a+52>>2]|0);return}function an(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0,g=0,h=0;g=b>>31|((b|0)<0?-1:0)<<1;e=((b|0)<0?-1:0)>>31|((b|0)<0?-1:0)<<1;h=d>>31|((d|0)<0?-1:0)<<1;f=((d|0)<0?-1:0)>>31|((d|0)<0?-1:0)<<1;a=Is(g^a|0,e^b|0,g|0,e|0)|0;b=C;return Is(($e(a,b,Is(h^c|0,f^d|0,h|0,f|0)|0,C,0)|0)^(h^g)|0,C^(f^e)|0,h^g|0,f^e|0)|0}function bn(a){a=a|0;var b=0,d=0;d=i;i=i+32|0;cb(a|0)|0;if(kb(26248,3)|0)ej(21924,d);a=hb(c[6563]|0)|0;if((a|0?(b=c[a>>2]|0,b|0):0)?((c[b+48>>2]&-256|0)==1126902528?(c[b+48+4>>2]|0)==1129074247:0):0){jc[c[b+12>>2]&3]();ej(22248,d+8|0)}b=c[2387]|0;c[2387]=b+0;jc[b&3]();ej(22248,d+16|0)}function cn(){var a=0,d=0;while(1){a=yc(8)|0;if(a|0){d=6;break}a=c[6564]|0;c[6564]=a+0;if(!a){d=5;break}jc[a&3]()}if((d|0)==5){d=Ya(4)|0;c[d>>2]=9640;pb(d|0,2800,251)}else if((d|0)==6){c[a>>2]=0;c[a+4>>2]=0;b[a+4>>1]=1;b[a+6>>1]=-1;c[a>>2]=2972;return a|0}return 0}function dn(a){a=a|0;var b=0.0,d=0.0,e=0.0,f=0.0;b=+g[(c[a+28>>2]|0)+344>>2];d=+g[(c[a+32>>2]|0)+344>>2];if(d==0.0)b=1.0;else b=b/(b+d);f=1.0-b;e=b*+g[a+1116>>2]+f*+g[a+1180>>2];d=b*+g[a+1120>>2]+f*+g[a+1184>>2];g[a+1284>>2]=b*+g[a+1112>>2]+f*+g[a+1176>>2];g[a+1288>>2]=e;g[a+1292>>2]=d;g[a+1296>>2]=0.0;return}function en(a,b,c){a=a|0;b=b|0;c=+c;var d=0.0,e=0.0,f=0.0,h=0.0;e=+g[a+28>>2];f=+g[a+32>>2];h=+g[a+36>>2];d=+g[b>>2];if(!(d<=e+c)){b=0;return b|0}if(!(d>=-e-c)){b=0;return b|0}d=+g[b+4>>2];if(!(d<=f+c)){b=0;return b|0}if(!(d>=-f-c)){b=0;return b|0}d=+g[b+8>>2];if(!(d<=h+c)){b=0;return b|0}b=d>=-h-c;return b|0}function fn(b,d,e,f){b=b|0;d=d|0;e=e|0;f=+f;if(!(+g[b+36>>2]>f))return;a[b+40>>0]=1;c[b+4>>2]=c[d>>2];c[b+4+4>>2]=c[d+4>>2];c[b+4+8>>2]=c[d+8>>2];c[b+4+12>>2]=c[d+12>>2];c[b+20>>2]=c[e>>2];c[b+20+4>>2]=c[e+4>>2];c[b+20+8>>2]=c[e+8>>2];c[b+20+12>>2]=c[e+12>>2];g[b+36>>2]=f;return}function gn(a,d){a=a|0;d=d|0;var e=0,f=0;e=c[d>>2]|0;f=c[a+80>>2]|0;if((e|0)==(f|0)){a=0;return a|0}d=c[d+4>>2]|0;if(!((b[a+10>>1]&(d&65535))<<16>>16)){a=0;return a|0}if(!((b[a+8>>1]&(d>>>16&65535))<<16>>16)){a=0;return a|0}a=c[a+92>>2]|0;a=Ob[c[(c[a>>2]|0)+28>>2]&63](a,f,e)|0;return a|0}function hn(a,b,c){a=a|0;b=b|0;c=c|0;var d=0.0,e=0.0,f=0.0,h=0.0,i=0.0,j=0.0;d=+g[b+32>>2];f=+g[b+28>>2];j=+g[c+4>>2];e=+g[c+8>>2];i=+O(+(j*j+e*e));if(i!=0.0){h=e*(d/i);e=+g[c>>2]<0.0?-f:f;d=j*(d/i)}else{h=0.0;e=+g[c>>2]<0.0?-f:f}g[a+4>>2]=d;g[a>>2]=e;g[a+8>>2]=h;return}function jn(a,b){a=a|0;b=+b;var c=0,d=0.0;c=i;i=i+16|0;if(!(+g[a+68>>2]>0.0)){i=c;return}d=-+g[a+92>>2];b=-+g[a+96>>2];g[c>>2]=-+g[a+88>>2];g[c+4>>2]=d;g[c+8>>2]=b;g[c+12>>2]=0.0;jj(a+4|0,c,a+164|0);jj(a+16|0,a+88|0,a+180|0);i=c;return}function kn(a){a=a|0;var b=0,d=0;while(1){b=yc(92)|0;if(b|0){d=6;break}b=c[6564]|0;c[6564]=b+0;if(!b){d=5;break}jc[b&3]()}if((d|0)==5){a=Ya(4)|0;c[a>>2]=9640;pb(a|0,2800,251)}else if((d|0)==6){Zd(b,a);return b|0}return 0}function ln(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0.0,f=0,g=0;if((d|0)>-1|(d|0)==-1&c>>>0>4294967295){e=(+(c>>>0)+4294967296.0*+(d>>>0))*18446744073709551616.0+(+(a>>>0)+4294967296.0*+(b>>>0));return +e}else{g=Is(0,0,a|0,b|0)|0;f=C;d=Kt((a|0)==0&(b|0)==0&1|0,0,~c|0,~d|0)|0;e=-+ln(g,f,d,C);return +e}return 0.0}function mn(a,b,c){a=a|0;b=b|0;c=c|0;var d=0.0,e=0.0,f=0.0,h=0.0,i=0.0,j=0.0;d=+g[b+28>>2];h=+g[b+36>>2];j=+g[c>>2];f=+g[c+4>>2];i=+O(+(j*j+f*f));e=+g[c+8>>2];if(i!=0.0){f=f*(d/i);e=e<0.0?-h:h;d=j*(d/i)}else{f=0.0;e=e<0.0?-h:h}g[a>>2]=d;g[a+8>>2]=e;g[a+4>>2]=f;return}function nn(a,b,c){a=a|0;b=b|0;c=c|0;var d=0.0,e=0.0,f=0.0,h=0.0,i=0.0,j=0.0;d=+g[b+28>>2];h=+g[b+32>>2];j=+g[c>>2];f=+g[c+8>>2];i=+O(+(j*j+f*f));e=+g[c+4>>2];if(i!=0.0){f=f*(d/i);e=e<0.0?-h:h;d=j*(d/i)}else{f=0.0;e=e<0.0?-h:h}g[a>>2]=d;g[a+4>>2]=e;g[a+8>>2]=f;return}function on(a,b){a=a|0;b=b|0;var d=0,e=0,f=0;f=c[a+8>>2]|0;a=c[f+8>>2]|0;if((a|0)<=0)return;e=0;do{d=c[(c[f+16>>2]|0)+(e*12|0)+8>>2]|0;if(d){Cb[c[(c[d>>2]|0)+16>>2]&127](d,b);a=c[f+8>>2]|0}e=e+1|0}while((e|0)<(a|0));return}function pn(a,b,d,e){a=a|0;b=b|0;d=+d;e=e|0;switch(e|0){case 5:case -1:break;default:return}switch(b|0){case 2:{g[a+760>>2]=d;c[a+748>>2]=c[a+748>>2]|2;return}case 4:{g[a+756>>2]=d;c[a+748>>2]=c[a+748>>2]|1;return}case 3:{g[a+752>>2]=d;c[a+748>>2]=c[a+748>>2]|4;return}default:return}}function qn(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0;e=i;i=i+48|0;f=c[b+192>>2]|0;mc[c[(c[f>>2]|0)+8>>2]&127](f,b+4|0,e+32|0,e+16|0);c[e>>2]=5956;c[e+4>>2]=b;c[e+8>>2]=a;c[e+12>>2]=d;a=c[a+68>>2]|0;mc[c[(c[a>>2]|0)+28>>2]&127](a,e+32|0,e+16|0,e);i=e;return}function rn(){var a=0,b=0;while(1){a=yc(12)|0;if(a|0){b=6;break}a=c[6564]|0;c[6564]=a+0;if(!a){b=5;break}jc[a&3]()}if((b|0)==5){b=Ya(4)|0;c[b>>2]=9640;pb(b|0,2800,251)}else if((b|0)==6){g[a>>2]=.30000001192092896;g[a+4>>2]=1.0;g[a+8>>2]=0.0;return a|0}return 0}function sn(a,b,d){a=a|0;b=b|0;d=d|0;si(a,b,d)|0;c[b+52>>2]=c[a+300>>2];c[b+56>>2]=c[a+304>>2];c[b+60>>2]=c[a+308>>2];c[b+64>>2]=c[a+312>>2];c[b+68>>2]=c[a+316>>2];c[b+72>>2]=c[a+320>>2];c[b+76>>2]=c[a+324>>2];c[b+80>>2]=c[a+328>>2];return 12599}function tn(a,b,d){a=a|0;b=b|0;d=d|0;a:do switch(c[b+216>>2]|0){case 2:case 5:{switch(c[d+216>>2]|0){case 2:case 5:{b=0;break}default:break a}return b|0}default:{}}while(0);if(!(c[b+256>>2]|0)){a=1;return a|0}a=Zb[c[c[b>>2]>>2]&31](b,d)|0;return a|0}function un(a,b){a=a|0;b=b|0;var d=0.0,e=0.0,f=0.0;c[a+348>>2]=c[b>>2];c[a+348+4>>2]=c[b+4>>2];c[a+348+8>>2]=c[b+8>>2];c[a+348+12>>2]=c[b+12>>2];f=+g[a+344>>2];e=+g[a+352>>2]*f;d=+g[a+356>>2]*f;g[a+560>>2]=+g[a+348>>2]*f;g[a+564>>2]=e;g[a+568>>2]=d;g[a+572>>2]=0.0;return}function vn(a){a=a|0;c[a>>2]=1065353216;c[a+4>>2]=0;c[a+4+4>>2]=0;c[a+4+8>>2]=0;c[a+4+12>>2]=0;c[a+20>>2]=1065353216;c[a+24>>2]=0;c[a+24+4>>2]=0;c[a+24+8>>2]=0;c[a+24+12>>2]=0;c[a+40>>2]=1065353216;c[a+44>>2]=0;c[a+44+4>>2]=0;c[a+44+8>>2]=0;c[a+44+12>>2]=0;c[a+44+16>>2]=0;return}function wn(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0;f=c[b>>2]|0;a=c[d>>2]|0;a=(c[a+236>>2]|0)==4?a:0;if(!((f|0)==0?1:(c[f+236>>2]|0)!=4))mc[c[(c[f>>2]|0)+32>>2]&127](f,d,e,b);if(!a)return 0;mc[c[(c[a>>2]|0)+32>>2]&127](a,b,e,d);return 0}function xn(a,b){a=a|0;b=b|0;var d=0;if(c[b+40>>2]|0){xn(a,c[b+36>>2]|0);xn(a,c[b+40>>2]|0)}if((c[a>>2]|0)==(b|0))c[a>>2]=0;d=c[a+4>>2]|0;if(!d){c[a+4>>2]=b;return}c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0);c[a+4>>2]=b;return}function yn(a,b,d,e,f){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;var g=0;g=c[a+32>>2]|0;c[g>>2]=(c[g>>2]|0)+1;Hg(a,Sd(a,b,f)|0);Hg(a,Sd(a,d,f)|0);Hg(a,Sd(a,e,f)|0);return}function zn(a){a=a|0;var b=0,d=0;while(1){b=yc(8)|0;if(b|0){d=6;break}b=c[6564]|0;c[6564]=b+0;if(!b){d=5;break}jc[b&3]()}if((d|0)==5){a=Ya(4)|0;c[a>>2]=9640;pb(a|0,2800,251)}else if((d|0)==6){c[b>>2]=4852;c[b+4>>2]=a;return b|0}return 0}function An(a,b){a=a|0;b=b|0;var d=0,e=0;c[a+68>>2]=(c[a+68>>2]|0)+1;d=c[a+16>>2]|0;if((d|0)>0)do{e=d;d=d+-1|0;if((c[(c[a+24>>2]|0)+(d*80|0)+64>>2]|0)==(b|0))xe(a,d)}while((e|0)>1);Ab[c[(c[a>>2]|0)+68>>2]&255](a);return}function Bn(a,b,c){a=a|0;b=b|0;c=c|0;var d=0.0;a:do switch(c|0){case 5:case -1:switch(b|0){case 2:{d=+g[a+760>>2];break a}case 4:{d=+g[a+756>>2];break a}case 3:{d=+g[a+752>>2];break a}default:{d=0.0;break a}}default:d=0.0}while(0);return +d}function Cn(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0;f=i;i=i+16|0;c[f>>2]=a;c[f+4>>2]=e;a=c[a+72+((c[(c[b+4>>2]|0)+4>>2]|0)*144|0)+(c[(c[d+4>>2]|0)+4>>2]<<2)>>2]|0;a=Ib[c[(c[a>>2]|0)+8>>2]&31](a,f,b,d)|0;i=f;return a|0}function Dn(a,b){a=a|0;b=b|0;var d=0;a=c[a+64>>2]|0;if(!b)return;d=c[a+16>>2]|0;if(d>>>0<=b>>>0?(d+(_(c[a>>2]|0,c[a+4>>2]|0)|0)|0)>>>0>b>>>0:0){c[b>>2]=c[a+12>>2];c[a+12>>2]=b;c[a+8>>2]=(c[a+8>>2]|0)+1;return}c[6436]=(c[6436]|0)+1;hd(c[b+-4>>2]|0);return}function En(a){a=a|0;var b=0,d=0;if((c[a+232>>2]|0)<=0)return;b=0;do{d=(c[(c[a+240>>2]|0)+(b<<2)>>2]|0)+412|0;c[d>>2]=0;c[d+4>>2]=0;c[d+8>>2]=0;c[d+12>>2]=0;c[d+16>>2]=0;c[d+20>>2]=0;c[d+24>>2]=0;c[d+28>>2]=0;b=b+1|0}while((b|0)<(c[a+232>>2]|0));return}function Fn(a){a=+a;var b=0;c[6435]=(c[6435]|0)+1;b=yc(71)|0;if(!b)b=0;else{c[(b+4+15&-16)+-4>>2]=b;b=b+4+15&-16}c[b+8>>2]=0;c[b+12>>2]=1065353216;c[b+16>>2]=1065353216;c[b+20>>2]=1065353216;g[b+24>>2]=0.0;c[b>>2]=6672;c[b+4>>2]=8;g[b+28>>2]=a;g[b+44>>2]=a;return b|0}function Gn(a,b){a=a|0;b=b|0;var d=0,e=0,f=0;d=c[a+12>>2]|0;if((d|0)<=0)return;f=0;do{e=c[(c[a+20>>2]|0)+(f<<2)>>2]|0;if(e){Cb[c[(c[e>>2]|0)+16>>2]&127](e,b);d=c[a+12>>2]|0}f=f+1|0}while((f|0)<(d|0));return}function Hn(a,b,c,d){a=a|0;b=+b;c=+c;d=+d;var e=0.0,f=0.0,h=0.0;e=+Q(+(b*.5));b=+R(+(b*.5));f=+Q(+(c*.5));c=+R(+(c*.5));h=+Q(+(d*.5));d=+R(+(d*.5));g[a>>2]=d*f*e-h*c*b;g[a+4>>2]=h*c*e+d*f*b;g[a+8>>2]=h*f*b-d*c*e;g[a+12>>2]=h*f*e+d*c*b;return}function In(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0;f=c[a+32>>2]|0;c[f>>2]=(c[f>>2]|0)+1;Hg(a,Sd(a,b,0)|0);Hg(a,Sd(a,d,0)|0);Hg(a,Sd(a,e,0)|0);return}function Jn(a,b,d){a=a|0;b=b|0;d=d|0;c[a+52>>2]=c[b>>2];c[a+52+4>>2]=c[b+4>>2];c[a+52+8>>2]=c[b+8>>2];c[a+52+12>>2]=c[b+12>>2];c[a+68>>2]=c[d>>2];c[a+68+4>>2]=c[d+4>>2];c[a+68+8>>2]=c[d+8>>2];c[a+68+12>>2]=c[d+12>>2];c[a+48>>2]=1;return}function Kn(a,b,d){a=a|0;b=+b;d=+d;var e=0;e=i;i=i+32|0;g[e+20>>2]=b;g[e+16>>2]=d;g[e+12>>2]=0.0;g[e+8>>2]=1.0;c[a+444>>2]=c[(b<0.0?e+12|0:b>1.0?e+8|0:e+20|0)>>2];g[e+4>>2]=0.0;g[e>>2]=1.0;c[a+448>>2]=c[(d<0.0?e+4|0:d>1.0?e:e+16|0)>>2];i=e;return}function Ln(){var a=0,b=0;while(1){a=yc(196)|0;if(a|0){b=6;break}a=c[6564]|0;c[6564]=a+0;if(!a){b=5;break}jc[a&3]()}if((b|0)==5){b=Ya(4)|0;c[b>>2]=9640;pb(b|0,2800,251)}else if((b|0)==6){Zh(a,0);return a|0}return 0}function Mn(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;c[d>>2]=c[b+16>>2];c[d+4>>2]=c[b+16+4>>2];c[d+8>>2]=c[b+16+8>>2];c[d+12>>2]=c[b+16+12>>2];c[e>>2]=c[b+32>>2];c[e+4>>2]=c[b+32+4>>2];c[e+8>>2]=c[b+32+8>>2];c[e+12>>2]=c[b+32+12>>2];return}function Nn(a,b,c,d,e,f){a=a|0;b=+b;c=+c;d=+d;e=+e;f=+f;g[a+692>>2]=(c-b)*.5;b=+eh((c-b)*.5+b,6.2831854820251465);if(!(b<-3.1415927410125732)){if(b>3.1415927410125732)b=b+-6.2831854820251465}else b=b+6.2831854820251465;g[a+688>>2]=b;g[a+696>>2]=d;g[a+700>>2]=e;g[a+704>>2]=f;return}function On(a,b,d,e,f,g){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;g=g|0;var h=0,i=0;h=c[a+4>>2]|0;if(!(h&1))i=h>>8;else i=c[(c[e>>2]|0)+(h>>8)>>2]|0;a=c[a>>2]|0;Qb[c[(c[a>>2]|0)+20>>2]&7](a,b,d,e+i|0,h&2|0?f:2,g);return}function Pn(a,b){a=a|0;b=b|0;var d=0;a=c[a+64>>2]|0;d=c[a+8>>2]|0;if(d|0){b=c[a+12>>2]|0;c[a+12>>2]=c[b>>2];c[a+8>>2]=d+-1;return b|0}c[6435]=(c[6435]|0)+1;a=yc(b+19|0)|0;if(!a){b=0;return b|0}c[(a+4+15&-16)+-4>>2]=a;b=a+4+15&-16;return b|0}function Qn(b,d,e){b=b|0;d=d|0;e=e|0;var f=0,g=0,h=0;f=b+e|0;if((e|0)>=20){d=d&255;g=b&3;h=d|d<<8|d<<16|d<<24;if(g){g=b+4-g|0;while((b|0)<(g|0)){a[b>>0]=d;b=b+1|0}}while((b|0)<(f&~3|0)){c[b>>2]=h;b=b+4|0}}while((b|0)<(f|0)){a[b>>0]=d;b=b+1|0}return b-e|0}function Rn(a,b,d){a=a|0;b=b|0;d=d|0;var e=0;e=c[b>>2]|0;a=c[d>>2]|0;a=(c[a+236>>2]|0)==4?a:0;if(!((e|0)==0?1:(c[e+236>>2]|0)!=4))ic[c[(c[e>>2]|0)+28>>2]&127](e,d,b);if(!a)return 0;ic[c[(c[a>>2]|0)+28>>2]&127](a,b,d);return 0}function Sn(a,b,d,e,f,g){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;g=g|0;if((a|0)==(c[b+8>>2]|0))zl(b,d,e,f);else{a=c[a+8>>2]|0;Qb[c[(c[a>>2]|0)+20>>2]&7](a,b,d,e,f,g)}return}function Tn(a,b){a=a|0;b=b|0;var d=0,e=0;d=c[(c[b>>2]|0)+16>>2]|0;e=Eb[c[(c[a>>2]|0)+16>>2]&127](a)|0;e=Ob[d&63](b,e,1)|0;d=Ob[c[(c[a>>2]|0)+20>>2]&63](a,c[e+8>>2]|0,b)|0;yb[c[(c[b>>2]|0)+20>>2]&31](b,e,d,1497645650,a);return}function Un(a,b,c,d,e){a=a|0;b=+b;c=+c;d=+d;e=+e;g[a+692>>2]=(c-b)*.5;b=+eh((c-b)*.5+b,6.2831854820251465);if(!(b<-3.1415927410125732)){if(b>3.1415927410125732)b=b+-6.2831854820251465}else b=b+6.2831854820251465;g[a+688>>2]=b;g[a+696>>2]=d;g[a+700>>2]=e;g[a+704>>2]=1.0;return}function Vn(a,b,d){a=a|0;b=b|0;d=d|0;c[b>>2]=c[a+52>>2];c[b+4>>2]=c[a+52+4>>2];c[b+8>>2]=c[a+52+8>>2];c[b+12>>2]=c[a+52+12>>2];c[d>>2]=c[a+68>>2];c[d+4>>2]=c[a+68+4>>2];c[d+8>>2]=c[a+68+8>>2];c[d+12>>2]=c[a+68+12>>2];return}function Wn(a){a=a|0;var b=0,d=0,e=0;b=c[a+24>>2]|0;if((b|0)<=0)return;e=0;do{d=c[(c[a+32>>2]|0)+(e<<2)>>2]|0;switch(c[d+216>>2]|0){case 2:case 5:break;default:{Bg(d);b=c[a+24>>2]|0}}e=e+1|0}while((e|0)<(b|0));return}function Xn(a,b){a=a|0;b=b|0;var d=0,e=0;e=Eb[c[(c[a>>2]|0)+16>>2]&127](a)|0;e=Ob[c[(c[b>>2]|0)+16>>2]&63](b,e,1)|0;d=Ob[c[(c[a>>2]|0)+20>>2]&63](a,c[e+8>>2]|0,b)|0;yb[c[(c[b>>2]|0)+20>>2]&31](b,e,d,1245859651,a);return}function Yn(a,b,d){a=a|0;b=b|0;d=d|0;c[b>>2]=c[a+8>>2];c[b+4>>2]=c[a+8+4>>2];c[b+8>>2]=c[a+8+8>>2];c[b+12>>2]=c[a+8+12>>2];c[d>>2]=c[a+24>>2];c[d+4>>2]=c[a+24+4>>2];c[d+8>>2]=c[a+24+8>>2];c[d+12>>2]=c[a+24+12>>2];return}function Zn(a,b){a=a|0;b=b|0;var d=0,e=0;e=Eb[c[(c[a>>2]|0)+52>>2]&127](a)|0;e=Ob[c[(c[b>>2]|0)+16>>2]&63](b,e,1)|0;d=Ob[c[(c[a>>2]|0)+56>>2]&63](a,c[e+8>>2]|0,b)|0;yb[c[(c[b>>2]|0)+20>>2]&31](b,e,d,1346455635,a);return}function _n(){var a=0,b=0;while(1){a=yc(4)|0;if(a|0){b=6;break}a=c[6564]|0;c[6564]=a+0;if(!a){b=5;break}jc[a&3]()}if((b|0)==5){b=Ya(4)|0;c[b>>2]=9640;pb(b|0,2800,251)}else if((b|0)==6){c[a>>2]=2920;return a|0}return 0}function $n(a,b,d,e,f){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;var g=0,h=0;g=c[a+4>>2]|0;if(!(g&1))h=g>>8;else h=c[(c[d>>2]|0)+(g>>8)>>2]|0;a=c[a>>2]|0;yb[c[(c[a>>2]|0)+24>>2]&31](a,b,d+h|0,g&2|0?e:2,f);return}function ao(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;a=c[b>>2]|0;a=Zb[c[(c[a>>2]|0)+56>>2]&31](a,156)|0;Wj(a,b,d,e,1);return a|0}function bo(b){b=b|0;var d=0;c[b>>2]=5044;d=c[b+276>>2]|0;if(d|0){if(a[b+280>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+276>>2]=0}a[b+280>>0]=1;c[b+276>>2]=0;c[b+268>>2]=0;c[b+272>>2]=0;c[b>>2]=5008;c[6436]=(c[6436]|0)+1;hd(c[b+-4>>2]|0);return}function co(a,b){a=a|0;b=b|0;var c=0.0,d=0.0,e=0.0;e=+g[a+344>>2];d=+g[b+4>>2]*+g[a+352>>2]*e;c=+g[b+8>>2]*+g[a+356>>2]*e;g[a+312>>2]=+g[a+312>>2]+ +g[b>>2]*+g[a+348>>2]*e;g[a+316>>2]=+g[a+316>>2]+d;g[a+320>>2]=+g[a+320>>2]+c;return}function eo(b){b=b|0;var d=0;c[b>>2]=4108;d=c[b+496>>2]|0;if(d|0){if(a[b+500>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+496>>2]=0}a[b+500>>0]=1;c[b+496>>2]=0;c[b+488>>2]=0;c[b+492>>2]=0;c[b>>2]=5008;c[6436]=(c[6436]|0)+1;hd(c[b+-4>>2]|0);return}function fo(a,b,d){a=a|0;b=b|0;d=d|0;c[b>>2]=c[a+892>>2];c[b+4>>2]=c[a+892+4>>2];c[b+8>>2]=c[a+892+8>>2];c[b+12>>2]=c[a+892+12>>2];c[d>>2]=c[a+908>>2];c[d+4>>2]=c[a+908+4>>2];c[d+8>>2]=c[a+908+8>>2];c[d+12>>2]=c[a+908+12>>2];return}function go(a,b,d,e,f,g,h){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;g=g|0;h=h|0;var i=0;c[6435]=(c[6435]|0)+1;i=yc(783)|0;if(!i)i=0;else{c[(i+4+15&-16)+-4>>2]=i;i=i+4+15&-16}ne(i,a,b,d,e,f,g,h);return i|0}function ho(a,b){a=a|0;b=b|0;var c=0.0,d=0;d=0;while(1){if((d|0)==3)break;c=+eh(+g[b+(d<<2)>>2],6.2831854820251465);if(!(c<-3.1415927410125732)){if(c>3.1415927410125732)c=c+-6.2831854820251465}else c=c+6.2831854820251465;g[a+868+(d<<6)+4>>2]=c;d=d+1|0}return}function io(b){b=b|0;var d=0;d=i;i=i+16|0;if((a[22472]|0)==0?Wa(22472)|0:0)_a(22472);Cb[c[(c[b>>2]|0)+76>>2]&127](d,b);c[5726]=c[d>>2];c[5727]=c[d+4>>2];c[5728]=c[d+8>>2];c[5729]=c[d+12>>2];i=d;return 22904}function jo(a,b,c){a=a|0;b=b|0;c=c|0;var d=0.0;a:do if((c|0)==-1)switch(b|0){case 2:case 1:{d=+g[a+336>>2];break a}case 4:case 3:{d=+g[a+340>>2];break a}default:{d=3402823466385288598117041.0e14;break a}}else d=3402823466385288598117041.0e14;while(0);return +d}function ko(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;a=c[b>>2]|0;a=Zb[c[(c[a>>2]|0)+56>>2]&31](a,156)|0;Wj(a,b,d,e,0);return a|0}function lo(b){b=b|0;var d=0;d=i;i=i+16|0;if((a[22432]|0)==0?Wa(22432)|0:0)_a(22432);Cb[c[(c[b>>2]|0)+76>>2]&127](d,b);c[5669]=c[d>>2];c[5670]=c[d+4>>2];c[5671]=c[d+8>>2];c[5672]=c[d+12>>2];i=d;return 22676}function mo(a,b,c){a=a|0;b=b|0;c=c|0;var d=0.0,e=0.0,f=0.0;f=+g[b+28>>2];e=+g[b+32>>2];e=+g[c+4>>2]>=0.0?e:-e;d=+g[b+36>>2];d=+g[c+8>>2]>=0.0?d:-d;g[a>>2]=+g[c>>2]>=0.0?f:-f;g[a+4>>2]=e;g[a+8>>2]=d;g[a+12>>2]=0.0;return}function no(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0,g=0;f=c[a+4>>2]|0;if(!(f&1))g=f>>8;else g=c[(c[d>>2]|0)+(f>>8)>>2]|0;a=c[a>>2]|0;mc[c[(c[a>>2]|0)+28>>2]&127](a,b,d+g|0,f&2|0?e:2);return}function oo(b){b=b|0;var d=0;c[b>>2]=4872;d=c[b+140>>2]|0;if(d|0){if(a[b+144>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+140>>2]=0}a[b+144>>0]=1;c[b+140>>2]=0;c[b+132>>2]=0;c[b+136>>2]=0;c[6436]=(c[6436]|0)+1;hd(c[b+-4>>2]|0);return}function po(a,b){a=a|0;b=b|0;var c=0.0,d=0;d=0;while(1){if((d|0)==3)break;c=+eh(+g[b+(d<<2)>>2],6.2831854820251465);if(!(c<-3.1415927410125732)){if(c>3.1415927410125732)c=c+-6.2831854820251465}else c=c+6.2831854820251465;g[a+868+(d<<6)>>2]=c;d=d+1|0}return}function qo(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;a=c[b>>2]|0;a=Zb[c[(c[a>>2]|0)+56>>2]&31](a,44)|0;Nm(a,b,d,e,1);return a|0}function ro(a,b){a=a|0;b=b|0;var d=0;d=c[a+4>>2]|0;if((c[b>>2]|0)!=(d|0)?(c[b+4>>2]|0)!=(d|0):0)return 0;d=c[a+8>>2]|0;ic[c[(c[d>>2]|0)+32>>2]&127](d,b,c[a+12>>2]|0);return 0}function so(b){b=b|0;var d=0;c[b>>2]=9368;d=c[b+32>>2]|0;if(d|0){if(a[b+36>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+32>>2]=0}a[b+36>>0]=1;c[b+32>>2]=0;c[b+24>>2]=0;c[b+28>>2]=0;c[6436]=(c[6436]|0)+1;hd(c[b+-4>>2]|0);return}function to(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;c[6435]=(c[6435]|0)+1;e=yc(343)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}je(e,a,b,d);return e|0}function uo(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;a=c[b>>2]|0;a=Zb[c[(c[a>>2]|0)+56>>2]&31](a,44)|0;Nm(a,b,d,e,0);return a|0}function vo(a,b,d,e,f,g){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;g=g|0;var h=0;c[6435]=(c[6435]|0)+1;h=yc(783)|0;if(!h)h=0;else{c[(h+4+15&-16)+-4>>2]=h;h=h+4+15&-16}ne(h,a,b,d,e,f,g,0);return h|0}function wo(a,b,d){a=a|0;b=b|0;d=d|0;var e=0,f=0;e=Zb[c[(c[d>>2]|0)+40>>2]&31](d,a)|0;f=Zb[c[(c[d>>2]|0)+28>>2]&31](d,e)|0;c[b>>2]=f;if(f|0)Cb[c[(c[d>>2]|0)+48>>2]&127](d,e);c[b+4>>2]=c[a+4>>2];return 17222}function xo(){var a=0,b=0;while(1){a=yc(1)|0;if(a|0){b=6;break}a=c[6564]|0;c[6564]=a+0;if(!a){b=5;break}jc[a&3]()}if((b|0)==5){b=Ya(4)|0;c[b>>2]=9640;pb(b|0,2800,251)}else if((b|0)==6)return a|0;return 0}function yo(a,b,d){a=a|0;b=b|0;d=d|0;var e=0.0,f=0.0,h=0;h=c[a+104>>2]|0;f=+g[h+(b<<4)+4>>2]*+g[a+16>>2];e=+g[h+(b<<4)+8>>2]*+g[a+20>>2];g[d>>2]=+g[h+(b<<4)>>2]*+g[a+12>>2];g[d+4>>2]=f;g[d+8>>2]=e;g[d+12>>2]=0.0;return}function zo(b,d,e,f){b=b|0;d=d|0;e=e|0;f=f|0;f=c[d>>2]|0;f=Zb[c[(c[f>>2]|0)+56>>2]&31](f,20)|0;b=a[b+4>>0]|0;c[f+4>>2]=c[d>>2];c[f>>2]=3612;a[f+16>>0]=b;return f|0}function Ao(a,b,d){a=a|0;b=b|0;d=d|0;c[a+164>>2]=c[b>>2];c[a+164+4>>2]=c[b+4>>2];c[a+164+8>>2]=c[b+8>>2];c[a+164+12>>2]=c[b+12>>2];if((!(+g[b>>2]!=1.0)?!(+g[b+4>>2]!=1.0):0)?!(+g[b+8>>2]!=1.0):0)d=0;c[a+180>>2]=d;return}function Bo(a,b,d,e,f){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;var g=0;c[6435]=(c[6435]|0)+1;g=yc(1331)|0;if(!g)g=0;else{c[(g+4+15&-16)+-4>>2]=g;g=g+4+15&-16}Le(g,a,b,d,e,f);return g|0}function Co(b){b=b|0;var d=0;d=i;i=i+16|0;if((a[22488]|0)==0?Wa(22488)|0:0)_a(22488);Wg(b,d);c[5751]=c[d>>2];c[5752]=c[d+4>>2];c[5753]=c[d+8>>2];c[5754]=c[d+12>>2];i=d;return 23004}function Do(){var a=0,b=0;while(1){a=yc(64)|0;if(a|0){b=6;break}a=c[6564]|0;c[6564]=a+0;if(!a){b=5;break}jc[a&3]()}if((b|0)==5){b=Ya(4)|0;c[b>>2]=9640;pb(b|0,2800,251)}else if((b|0)==6)return a|0;return 0}function Eo(b){b=b|0;a[k>>0]=a[b>>0];a[k+1>>0]=a[b+1>>0];a[k+2>>0]=a[b+2>>0];a[k+3>>0]=a[b+3>>0];a[k+4>>0]=a[b+4>>0];a[k+5>>0]=a[b+5>>0];a[k+6>>0]=a[b+6>>0];a[k+7>>0]=a[b+7>>0]}function Fo(b){b=b|0;var d=0;d=a[b+74>>0]|0;a[b+74>>0]=d+255|d;d=c[b>>2]|0;if(!(d&8)){c[b+8>>2]=0;c[b+4>>2]=0;d=c[b+44>>2]|0;c[b+28>>2]=d;c[b+20>>2]=d;c[b+16>>2]=d+(c[b+48>>2]|0);d=0}else{c[b>>2]=d|32;d=-1}return d|0}function Go(a,b,d,e){a=a|0;b=b|0;d=+d;e=e|0;if((e|0)!=-1)return;switch(b|0){case 2:case 1:{g[a+336>>2]=d;c[a+332>>2]=c[a+332>>2]|1;return}case 4:case 3:{g[a+340>>2]=d;c[a+332>>2]=c[a+332>>2]|2;return}default:return}}function Ho(a,b,d,e,f){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;var g=0;c[6435]=(c[6435]|0)+1;g=yc(135)|0;if(!g)g=0;else{c[(g+4+15&-16)+-4>>2]=g;g=g+4+15&-16}pe(g,a,b,d&65535,e,f);return g|0}function Io(a,b,d){a=a|0;b=b|0;d=d|0;var e=0;if((b|0)==(d|0))return;e=c[(c[a+4>>2]|0)+136>>2]|0;Ob[c[(c[e>>2]|0)+8>>2]&63](e,c[b+36>>2]|0,c[d+36>>2]|0)|0;a=(c[a+4>>2]|0)+160|0;c[a>>2]=(c[a>>2]|0)+1;return}function Jo(a){a=a|0;var b=0,d=0.0,e=0.0,f=0.0;b=i;i=i+32|0;ic[c[(c[a>>2]|0)+12>>2]&127](a,b+8|0,b);f=+g[b+8>>2];e=+g[b+8+4>>2];d=+g[b+8+8>>2];d=+O(+(f*f+e*e+d*d));i=b;return +(d+ +g[b>>2])}function Ko(a,b){a=a|0;b=b|0;var c=0.0,d=0.0;d=+g[b+4>>2]*+g[a+352>>2];c=+g[b+8>>2]*+g[a+356>>2];g[a+412>>2]=+g[a+412>>2]+ +g[b>>2]*+g[a+348>>2];g[a+416>>2]=+g[a+416>>2]+d;g[a+420>>2]=+g[a+420>>2]+c;return}function Lo(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;if((e|0)>0)a=0;else return;do{b=d+(a<<4)|0;a=a+1|0;c[b>>2]=0;c[b+4>>2]=0;c[b+8>>2]=0;c[b+12>>2]=0}while((a|0)!=(e|0));return}function Mo(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0;f=i;i=i+16|0;c[f>>2]=5204;c[f+4>>2]=d;c[f+8>>2]=a;ic[c[(c[b>>2]|0)+48>>2]&127](b,f,e);i=f;return}function No(a,b){a=a|0;b=b|0;var c=0.0,d=0.0;d=+g[b+4>>2]*+g[a+548>>2];c=+g[b+8>>2]*+g[a+552>>2];g[a+428>>2]=+g[a+428>>2]+ +g[b>>2]*+g[a+544>>2];g[a+432>>2]=+g[a+432>>2]+d;g[a+436>>2]=+g[a+436>>2]+c;return}function Oo(a){a=a|0;var b=0.0,c=0.0,d=0.0,e=0.0,f=0.0;f=+g[a>>2];e=+g[a+4>>2];d=+g[a+8>>2];c=+g[a+12>>2];b=1.0/+O(+(f*f+e*e+d*d+c*c));g[a>>2]=f*b;g[a+4>>2]=e*b;g[a+8>>2]=d*b;g[a+12>>2]=c*b;return}function Po(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0;c[6435]=(c[6435]|0)+1;f=yc(135)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}pe(f,a,b,d&65535,e,0);return f|0}function Qo(a,b,d){a=a|0;b=b|0;d=d|0;a=c[b+8>>2]|0;if(!((d|0)!=0&(a|0)!=0))return;Ab[c[c[a>>2]>>2]&255](a);Cb[c[(c[d>>2]|0)+60>>2]&127](d,c[b+8>>2]|0);c[b+8>>2]=0;return}function Ro(b){b=b|0;var d=0;c[b>>2]=5044;d=c[b+276>>2]|0;if(d|0){if(a[b+280>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+276>>2]=0}a[b+280>>0]=1;c[b+276>>2]=0;c[b+268>>2]=0;c[b+272>>2]=0;c[b>>2]=5008;return}function So(a,b,d){a=a|0;b=b|0;d=d|0;var e=0;e=i;i=i+16|0;c[e>>2]=8820;c[e+4>>2]=b;c[e+8>>2]=a;c[e+12>>2]=d;ic[c[(c[a>>2]|0)+48>>2]&127](a,e,d);i=e;return}function To(b){b=b|0;var d=0;c[b>>2]=6772;if(a[b+61>>0]|0?(d=c[b+52>>2]|0,Ab[c[c[d>>2]>>2]&255](d),d=c[b+52>>2]|0,d|0):0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[6436]=(c[6436]|0)+1;hd(c[b+-4>>2]|0);return}function Uo(b){b=b|0;var d=0;c[b>>2]=4108;d=c[b+496>>2]|0;if(d|0){if(a[b+500>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+496>>2]=0}a[b+500>>0]=1;c[b+496>>2]=0;c[b+488>>2]=0;c[b+492>>2]=0;c[b>>2]=5008;return}function Vo(a){a=a|0;var b=0.0,d=0,e=0,f=0.0;e=c[a+712>>2]|0;if((e|0)<=0){b=0.0;return +b}a=c[a+720>>2]|0;d=0;b=0.0;do{f=+g[a+(d*104|0)+88>>2];b=b+(f>0.0?1.0/f:0.0);d=d+1|0}while((d|0)!=(e|0));return +b}function Wo(a,b,d){a=a|0;b=b|0;d=d|0;var e=0;c[6435]=(c[6435]|0)+1;e=yc(1331)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}qe(e,a,b,d);return e|0}function Xo(b){b=b|0;var d=0;c[b>>2]=4872;d=c[b+140>>2]|0;if(d|0){if(a[b+144>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+140>>2]=0}a[b+144>>0]=1;c[b+140>>2]=0;c[b+132>>2]=0;c[b+136>>2]=0;return}function Yo(a){a=a|0;var b=0;c[a>>2]=5508;c[a+12>>2]=5536;b=c[a+60>>2]|0;Cb[c[(c[b>>2]|0)+20>>2]&127](b,c[a+76>>2]|0);b=c[a+60>>2]|0;Cb[c[(c[b>>2]|0)+16>>2]&127](b,c[a+76>>2]|0);hd(a);return}function Zo(a,b,d){a=a|0;b=+b;d=d|0;b=b*.4000000059604645*+Sb[c[(c[a>>2]|0)+48>>2]&15](a);b=b*+Sb[c[(c[a>>2]|0)+48>>2]&15](a);g[d>>2]=b;g[d+4>>2]=b;g[d+8>>2]=b;g[d+12>>2]=0.0;return}function _o(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;a=c[b>>2]|0;a=Zb[c[(c[a>>2]|0)+56>>2]&31](a,24)|0;c[a+4>>2]=c[b>>2];c[a>>2]=4080;return a|0}function $o(a,b,d){a=a|0;b=b|0;d=d|0;var e=0;c[6435]=(c[6435]|0)+1;e=yc(95)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}Ze(e,a,b,d);return e|0}function ap(a,b,d){a=a|0;b=b|0;d=d|0;var e=0;c[6435]=(c[6435]|0)+1;e=yc(135)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}pe(e,a,b,d&65535,0,0);return e|0}function bp(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;c[d>>2]=-581039253;c[d+4>>2]=-581039253;c[d+8>>2]=-581039253;g[d+12>>2]=0.0;c[e>>2]=1566444395;c[e+4>>2]=1566444395;c[e+8>>2]=1566444395;g[e+12>>2]=0.0;return}function cp(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0;c[6435]=(c[6435]|0)+1;f=yc(1271)|0;if(!f)f=0;else{c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16}Kc(f,a,b,d,e);return f|0}function dp(b){b=b|0;var d=0;c[b>>2]=8840;if(a[b+192>>0]|0?(d=c[b+136>>2]|0,Ab[c[c[d>>2]>>2]&255](d),d=c[b+136>>2]|0,d|0):0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}pi(b+64|0);pi(b+4|0);return}function ep(b){b=b|0;var d=0;c[b>>2]=9368;d=c[b+32>>2]|0;if(d|0){if(a[b+36>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+32>>2]=0}a[b+36>>0]=1;c[b+32>>2]=0;c[b+24>>2]=0;c[b+28>>2]=0;return}function fp(a){a=a|0;var b=0;c[a>>2]=5508;c[a+12>>2]=5536;b=c[a+60>>2]|0;Cb[c[(c[b>>2]|0)+20>>2]&127](b,c[a+76>>2]|0);b=c[a+60>>2]|0;Cb[c[(c[b>>2]|0)+16>>2]&127](b,c[a+76>>2]|0);return}function gp(b){b=b|0;var d=0;c[b>>2]=2996;d=c[b+32>>2]|0;if(d|0){if(a[b+36>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+32>>2]=0}a[b+36>>0]=1;c[b+32>>2]=0;c[b+24>>2]=0;c[b+28>>2]=0;return}function hp(a){a=a|0;var b=0,d=0;c[a>>2]=7124;b=c[a+52>>2]|0;if(b|0?(Ab[c[c[b>>2]>>2]&255](b),d=c[a+52>>2]|0,d|0):0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[6436]=(c[6436]|0)+1;hd(c[a+-4>>2]|0);return}function ip(a,b){a=a|0;b=b|0;var d=0;d=(c[a+92>>2]|0)+4|0;c[d>>2]=c[b>>2];c[d+4>>2]=c[b+4>>2];c[d+8>>2]=c[b+8>>2];c[d+12>>2]=c[b+12>>2];vj(a);return}function jp(b,d){b=b|0;d=d|0;var e=0;if(a[b+273>>0]|0?(e=c[b+200>>2]|0,e|0):0){c[6436]=(c[6436]|0)+1;hd(c[e+-4>>2]|0)}a[b+273>>0]=0;c[b+200>>2]=d;c[(c[b+196>>2]|0)+8>>2]=d;return}function kp(b){b=b|0;var d=0;c[b>>2]=5132;d=c[b+20>>2]|0;if(d|0){if(a[b+24>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+20>>2]=0}a[b+24>>0]=1;c[b+20>>2]=0;c[b+12>>2]=0;c[b+16>>2]=0;return}function lp(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;a=c[b>>2]|0;a=Zb[c[(c[a>>2]|0)+56>>2]&31](a,8)|0;c[a+4>>2]=c[b>>2];c[a>>2]=9228;return a|0}function mp(a,b,d){a=a|0;b=b|0;d=d|0;var e=0;c[6435]=(c[6435]|0)+1;e=yc(783)|0;if(!e)e=0;else{c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16}Jf(e,a,b,d);return e|0}function np(b){b=b|0;var d=0;c[b>>2]=8584;d=c[b+16>>2]|0;if(d|0){if(a[b+20>>0]|0){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+16>>2]=0}a[b+20>>0]=1;c[b+16>>2]=0;c[b+8>>2]=0;c[b+12>>2]=0;return}function op(a,b,d,e,f){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;a=c[b+8>>2]|0;b=c[a+284>>2]|0;ic[c[(c[b>>2]|0)+40>>2]&127](b,a,c[d+8>>2]|0);return}function pp(a,b){a=a|0;b=b|0;var d=0;c[6435]=(c[6435]|0)+1;d=yc(95)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}Ze(d,a,b,1);return d|0}function qp(b,d){b=b|0;d=d|0;if((a[22448]|0)==0?Wa(22448)|0:0)_a(22448);c[5694]=c[b+(d<<4)>>2];c[5695]=c[b+(d<<4)+4>>2];c[5696]=c[b+(d<<4)+8>>2];c[5697]=c[b+(d<<4)+12>>2];return 22776}function rp(b){b=b|0;var d=0;if(!b)return;d=c[b+68>>2]|0;if(d|0){if(!((a[b+72>>0]&1)==0|(d|0)==0)){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+68>>2]=0}a[b+72>>0]=1;hd(b);return}function sp(b){b=b|0;var d=0;c[b>>2]=6772;if(!(a[b+61>>0]|0))return;d=c[b+52>>2]|0;Ab[c[c[d>>2]>>2]&255](d);b=c[b+52>>2]|0;if(!b)return;c[6436]=(c[6436]|0)+1;hd(c[b+-4>>2]|0);return}function tp(a,b,d){a=a|0;b=b|0;d=d|0;a=c[b+204>>2]|0;if(a&4|0){d=0;return d|0}b=c[d+204>>2]|0;if(b&4|0){d=0;return d|0}if(!(a&3)){d=1;return d|0}d=(b&3|0)==0;return d|0}function up(a,b){a=a|0;b=b|0;var d=0;c[6435]=(c[6435]|0)+1;d=yc(135)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}pe(d,a,b,16384,0,0);return d|0}function vp(a,b,d){a=a|0;b=b|0;d=d|0;var e=0;e=i;i=i+16|0;c[e>>2]=8800;c[e+4>>2]=b;ic[c[(c[a>>2]|0)+48>>2]&127](a,e,d);i=e;return}function wp(b){b=b|0;var d=0,e=0;c[b>>2]=6004;if(!(a[b+8>>0]|0)){hd(b);return}d=c[b+12>>2]|0;if(!d){hd(b);return}e=c[b+4>>2]|0;Cb[c[(c[e>>2]|0)+16>>2]&127](e,d);hd(b);return}function xp(a){a=a|0;var b=0;c[6435]=(c[6435]|0)+1;b=yc(75)|0;if(!b)b=0;else{c[(b+4+15&-16)+-4>>2]=b;b=b+4+15&-16}hi(b,a);c[b>>2]=8348;c[b+52>>2]=2;return b|0}function yp(a){a=a|0;var b=0;c[6435]=(c[6435]|0)+1;b=yc(75)|0;if(!b)b=0;else{c[(b+4+15&-16)+-4>>2]=b;b=b+4+15&-16}hi(b,a);c[b>>2]=8244;c[b+52>>2]=0;return b|0}function zp(a){a=a|0;var b=0,d=0;d=i;i=i+16|0;c[d>>2]=c[a+60>>2];a=qb(6,d|0)|0;if(a>>>0>4294963200){if(!0)b=25748;else b=c[(ib()|0)+64>>2]|0;c[b>>2]=0-a;a=-1}i=d;return a|0}function Ap(b){b=b|0;var d=0,e=0;c[b>>2]=9256;if(!(a[b+8>>0]|0)){hd(b);return}d=c[b+12>>2]|0;if(!d){hd(b);return}e=c[b+4>>2]|0;Cb[c[(c[e>>2]|0)+16>>2]&127](e,d);hd(b);return}function Bp(b,c,d){b=b|0;c=c|0;d=d|0;var e=0;if((c|0)<(b|0)&(b|0)<(c+d|0)){e=b;c=c+d|0;b=b+d|0;while((d|0)>0){b=b-1|0;c=c-1|0;d=d-1|0;a[b>>0]=a[c>>0]|0}b=e}else _m(b,c,d)|0;return b|0}function Cp(a,b){a=a|0;b=b|0;var c=0,d=0,e=0;c=_(b&65535,a&65535)|0;e=(c>>>16)+(_(b&65535,a>>>16)|0)|0;d=_(b>>>16,a&65535)|0;return (C=(e>>>16)+(_(b>>>16,a>>>16)|0)+(((e&65535)+d|0)>>>16)|0,e+d<<16|c&65535|0)|0}function Dp(b){b=b|0;var d=0,e=0;c[b>>2]=5480;if(!(a[b+8>>0]|0)){hd(b);return}d=c[b+12>>2]|0;if(!d){hd(b);return}e=c[b+4>>2]|0;Cb[c[(c[e>>2]|0)+16>>2]&127](e,d);hd(b);return}function Ep(a,b,d,e,f,g){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;g=g|0;if((a|0)==(c[b+8>>2]|0))zl(b,d,e,f);return}function Fp(a,b){a=a|0;b=b|0;var c=0.0,d=0.0,e=0.0;e=+N(+(+g[b>>2]));d=+N(+(+g[b+4>>2]));c=+N(+(+g[b+8>>2]));g[a+12>>2]=e;g[a+16>>2]=d;g[a+20>>2]=c;g[a+24>>2]=0.0;return}function Gp(a,b){a=a|0;b=b|0;var d=0;c[6435]=(c[6435]|0)+1;d=yc(783)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}Jf(d,a,b,0);return d|0}function Hp(a,b){a=a|0;b=b|0;Vf(a,c[b+36>>2]|0);return}function Ip(b){b=b|0;var d=0;if(!b)return;d=c[b+12>>2]|0;if(d|0){if(!((a[b+16>>0]&1)==0|(d|0)==0)){c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0)}c[b+12>>2]=0}a[b+16>>0]=1;hd(b);return}function Jp(b){b=b|0;var d=0,e=0;c[b>>2]=5576;if(!(a[b+8>>0]|0)){hd(b);return}d=c[b+12>>2]|0;if(!d){hd(b);return}e=c[b+4>>2]|0;Cb[c[(c[e>>2]|0)+16>>2]&127](e,d);hd(b);return}function Kp(a){a=a|0;var b=0;c[a>>2]=5536;b=c[a+48>>2]|0;Cb[c[(c[b>>2]|0)+20>>2]&127](b,c[a+64>>2]|0);b=c[a+48>>2]|0;Cb[c[(c[b>>2]|0)+16>>2]&127](b,c[a+64>>2]|0);hd(a);return}function Lp(a,b,c,d,e,f,g,h,i,j,k,l,m){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=+f;g=+g;h=+h;i=+i;j=+j;k=k|0;l=+l;m=m|0;dc[a&0](b|0,c|0,d|0,e|0,+f,+g,+h,+i,+j,k|0,+l,m|0)}function Mp(b){b=b|0;var d=0,e=0;c[b>>2]=6052;if(!(a[b+16>>0]|0)){hd(b);return}d=c[b+20>>2]|0;if(!d){hd(b);return}e=c[b+4>>2]|0;Cb[c[(c[e>>2]|0)+16>>2]&127](e,d);hd(b);return}function Np(a,b,d,e){a=+a;b=+b;d=+d;e=+e;var f=0;c[6435]=(c[6435]|0)+1;f=yc(35)|0;c[(f+4+15&-16)+-4>>2]=f;f=f+4+15&-16;g[f>>2]=a;g[f+4>>2]=b;g[f+8>>2]=d;g[f+12>>2]=e;return f|0}function Op(a){a=a|0;var b=0;c[a>>2]=7124;b=c[a+52>>2]|0;if(!b)return;Ab[c[c[b>>2]>>2]&255](b);b=c[a+52>>2]|0;if(!b)return;c[6436]=(c[6436]|0)+1;hd(c[b+-4>>2]|0);return}function Pp(a,b,c,d,e,f,g,h){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;g=g|0;h=h|0;return +(+nb(0,a|0,b|0,c|0,d|0,e|0,f|0,g|0,h|0))}function Qp(a,b){a=a|0;b=b|0;if((b|0)==0?1:(c[b+236>>2]&2|0)==0){Hk(a,b);return}else{Cb[c[(c[a>>2]|0)+92>>2]&127](a,b);return}}function Rp(a){a=a|0;var b=0;c[a>>2]=5536;b=c[a+48>>2]|0;Cb[c[(c[b>>2]|0)+20>>2]&127](b,c[a+64>>2]|0);b=c[a+48>>2]|0;Cb[c[(c[b>>2]|0)+16>>2]&127](b,c[a+64>>2]|0);return}function Sp(b){b=b|0;var c=0;c=a[m+(b&255)>>0]|0;if((c|0)<8)return c|0;c=a[m+(b>>8&255)>>0]|0;if((c|0)<8)return c+8|0;c=a[m+(b>>16&255)>>0]|0;if((c|0)<8)return c+16|0;return (a[m+(b>>>24)>>0]|0)+24|0}function Tp(a,b,d){a=+a;b=+b;d=+d;var e=0;c[6435]=(c[6435]|0)+1;e=yc(35)|0;c[(e+4+15&-16)+-4>>2]=e;e=e+4+15&-16;g[e>>2]=a;g[e+4>>2]=b;g[e+8>>2]=d;g[e+12>>2]=0.0;return e|0}function Up(a,b){a=a|0;b=b|0;c[a+12>>2]=c[b>>2];c[a+12+4>>2]=c[b+4>>2];c[a+12+8>>2]=c[b+8>>2];c[a+12+12>>2]=c[b+12>>2];vj(a);return}function Vp(a,b,c,d,e,f,g,h,i,j,k){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;g=g|0;h=h|0;i=i|0;j=j|0;k=k|0;return Db[a&3](b|0,c|0,d|0,e|0,f|0,g|0,h|0,i|0,j|0,k|0)|0}function Wp(a,b){a=a|0;b=b|0;a=c[a+12>>2]|0;return Zb[c[(c[a>>2]|0)+8>>2]&31](a,b)|0}function Xp(a,b,c,d,e,f,g,h,i,j,k){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;g=g|0;h=h|0;i=i|0;j=j|0;k=k|0;return +$b[a&3](b|0,c|0,d|0,e|0,f|0,g|0,h|0,i|0,j|0,k|0)}function Yp(a,b){a=a|0;b=b|0;c[a+260>>2]=(c[a+260>>2]|0)+1;c[a+328>>2]=c[b>>2];c[a+328+4>>2]=c[b+4>>2];c[a+328+8>>2]=c[b+8>>2];c[a+328+12>>2]=c[b+12>>2];return}function Zp(a,b,d){a=a|0;b=b|0;d=d|0;c[d>>2]=c[a+56+(b<<4)>>2];c[d+4>>2]=c[a+56+(b<<4)+4>>2];c[d+8>>2]=c[a+56+(b<<4)+8>>2];c[d+12>>2]=c[a+56+(b<<4)+12>>2];return}function _p(a,b){a=a|0;b=b|0;c[a+260>>2]=(c[a+260>>2]|0)+1;c[a+312>>2]=c[b>>2];c[a+312+4>>2]=c[b+4>>2];c[a+312+8>>2]=c[b+8>>2];c[a+312+12>>2]=c[b+12>>2];return}function $p(a,b,c,d,e,f,g,h,i,j,k,l){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=+f;g=+g;h=+h;i=+i;j=j|0;k=k|0;l=+l;Lb[a&0](b|0,c|0,d|0,e|0,+f,+g,+h,+i,j|0,k|0,+l)}function aq(a,b){a=a|0;b=b|0;c[a+260>>2]=(c[a+260>>2]|0)+1;c[a+544>>2]=c[b>>2];c[a+544+4>>2]=c[b+4>>2];c[a+544+8>>2]=c[b+8>>2];c[a+544+12>>2]=c[b+12>>2];return}function bq(a){a=a|0;var b=0.0,d=0.0;d=+g[a+32>>2];+Sb[c[(c[a>>2]|0)+48>>2]&15](a);b=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);+Sb[c[(c[a>>2]|0)+48>>2]&15](a);return +(d+b)}function cq(a){a=a|0;var b=0.0,d=0.0;d=+g[a+28>>2];b=+Sb[c[(c[a>>2]|0)+48>>2]&15](a);+Sb[c[(c[a>>2]|0)+48>>2]&15](a);+Sb[c[(c[a>>2]|0)+48>>2]&15](a);return +(d+b)}function dq(a,b,c,d,e,f,g,h,i,j,k){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;g=g|0;h=h|0;i=i|0;j=j|0;k=k|0;Yb[a&3](b|0,c|0,d|0,e|0,f|0,g|0,h|0,i|0,j|0,k|0)}function eq(a,b,d){a=a|0;b=b|0;d=d|0;var e=0;e=i;i=i+16|0;c[e>>2]=c[d>>2];a=Ob[c[(c[a>>2]|0)+16>>2]&63](a,b,e)|0;if(a)c[d>>2]=c[e>>2];i=e;return a&1|0}function fq(a){a=a|0;var b=0.0,c=0.0,d=0.0,e=0.0;e=+g[a>>2];d=+g[a+4>>2];c=+g[a+8>>2];b=1.0/+O(+(e*e+d*d+c*c));g[a>>2]=e*b;g[a+4>>2]=d*b;g[a+8>>2]=c*b;return}function gq(a,b){a=a|0;b=b|0;var d=0;c[6435]=(c[6435]|0)+1;d=yc(191)|0;if(!d)d=0;else{c[(d+4+15&-16)+-4>>2]=d;d=d+4+15&-16}Yf(d,a,b);return d|0}function hq(b){b=b|0;var d=0;c[b>>2]=6004;if(!(a[b+8>>0]|0))return;d=c[b+12>>2]|0;if(!d)return;b=c[b+4>>2]|0;Cb[c[(c[b>>2]|0)+16>>2]&127](b,d);return}function iq(b){b=b|0;var d=0;c[b>>2]=9256;if(!(a[b+8>>0]|0))return;d=c[b+12>>2]|0;if(!d)return;b=c[b+4>>2]|0;Cb[c[(c[b>>2]|0)+16>>2]&127](b,d);return}function jq(a,b,c){a=a|0;b=b|0;c=+c;switch(b|0){case 3:{g[a+452>>2]=c;return}case 4:{g[a+448>>2]=c;return}case 5:{g[a+444>>2]=c;return}default:return}}function kq(b){b=b|0;var d=0;c[b>>2]=5480;if(!(a[b+8>>0]|0))return;d=c[b+12>>2]|0;if(!d)return;b=c[b+4>>2]|0;Cb[c[(c[b>>2]|0)+16>>2]&127](b,d);return}function lq(b){b=b|0;var d=0;c[b>>2]=2996;d=c[b+32>>2]|0;if(!d){hd(b);return}if(!(a[b+36>>0]|0)){hd(b);return}c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0);hd(b);return}function mq(a,b){a=a|0;b=b|0;a=c[a+4>>2]|0;return ((c[b>>2]|0)==(a|0)?1:(c[b+4>>2]|0)==(a|0))|0}function nq(b){b=b|0;if(a[22512]|0)return 23132;if(!(Wa(22512)|0))return 23132;c[5783]=1065353216;c[5784]=1065353216;c[5785]=1065353216;g[5786]=0.0;_a(22512);return 23132}function oq(a,b){a=a|0;b=b|0;a=c[a+20>>2]|0;return Zb[c[(c[a>>2]|0)+8>>2]&31](a,b)|0}function pq(b){b=b|0;var d=0;c[b>>2]=5132;d=c[b+20>>2]|0;if(!d){hd(b);return}if(!(a[b+24>>0]|0)){hd(b);return}c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0);hd(b);return}function qq(b){b=b|0;var d=0;c[b>>2]=5576;if(!(a[b+8>>0]|0))return;d=c[b+12>>2]|0;if(!d)return;b=c[b+4>>2]|0;Cb[c[(c[b>>2]|0)+16>>2]&127](b,d);return}function rq(a){a=a|0;var b=0;c[6435]=(c[6435]|0)+1;b=yc(75)|0;if(!b)b=0;else{c[(b+4+15&-16)+-4>>2]=b;b=b+4+15&-16}hi(b,a);return b|0}function sq(a,d){a=a|0;d=d|0;d=c[d+4>>2]|0;if(!((d&65535&b[a+6>>1])<<16>>16)){a=0;return a|0}a=(b[a+4>>1]&(d>>>16&65535))<<16>>16!=0;return a|0}function tq(a,d){a=a|0;d=d|0;d=c[d+4>>2]|0;if(!((d&65535&b[a+10>>1])<<16>>16)){a=0;return a|0}a=(b[a+8>>1]&(d>>>16&65535))<<16>>16!=0;return a|0}function uq(b){b=b|0;var d=0;c[b>>2]=6052;if(!(a[b+16>>0]|0))return;d=c[b+20>>2]|0;if(!d)return;b=c[b+4>>2]|0;Cb[c[(c[b>>2]|0)+16>>2]&127](b,d);return}function vq(a,b){a=a|0;b=+b;b=+eh(b,6.2831854820251465);if(!(b<-3.1415927410125732)){if(b>3.1415927410125732)b=b+-6.2831854820251465}else b=b+6.2831854820251465;g[a+196>>2]=b;return}function wq(a,b){a=a|0;b=+b;b=+eh(b,6.2831854820251465);if(!(b<-3.1415927410125732)){if(b>3.1415927410125732)b=b+-6.2831854820251465}else b=b+6.2831854820251465;g[a+192>>2]=b;return}function xq(a,d){a=a|0;d=d|0;d=c[d+4>>2]|0;if(!((d&65535&b[a+14>>1])<<16>>16)){a=0;return a|0}a=(b[a+12>>1]&(d>>>16&65535))<<16>>16!=0;return a|0}function yq(a,b,c,d,e,f,g,h,i,j){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;g=g|0;h=h|0;i=i|0;j=j|0;return gc[a&3](b|0,c|0,d|0,e|0,f|0,g|0,h|0,i|0,j|0)|0}function zq(b){b=b|0;var d=0;c[b>>2]=8584;d=c[b+16>>2]|0;if(!d){hd(b);return}if(!(a[b+20>>0]|0)){hd(b);return}c[6436]=(c[6436]|0)+1;hd(c[d+-4>>2]|0);hd(b);return}function Aq(a,b){a=a|0;b=b|0;b=c[b+36>>2]|0;Te(a,c[(c[(c[(c[a+4>>2]|0)+4>>2]|0)+24>>2]|0)+(b*80|0)+64>>2]|0,b);return}function Bq(a,b,c,d,e,f,g,h,i,j){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;g=g|0;h=h|0;i=i|0;j=j|0;return +bc[a&3](b|0,c|0,d|0,e|0,f|0,g|0,h|0,i|0,j|0)}function Cq(a){a=a|0;var b=0;c[6435]=(c[6435]|0)+1;b=yc(191)|0;if(!b)b=0;else{c[(b+4+15&-16)+-4>>2]=b;b=b+4+15&-16}Yf(b,a,1);return b|0}function Dq(a,b,d,e,f,g,h,i){a=a|0;b=b|0;d=d|0;e=e|0;f=f|0;g=g|0;h=h|0;i=i|0;return +(+Kb[c[(c[a>>2]|0)+12>>2]&1](a,b,d,e,f,g,h,i))}function Eq(){var a=0;c[6435]=(c[6435]|0)+1;a=yc(131)|0;if(!a)a=0;else{c[(a+4+15&-16)+-4>>2]=a;a=a+4+15&-16}kg(a,0,0,16);return a|0}function Fq(a){a=a|0;var b=0;c[6435]=(c[6435]|0)+1;b=yc(111)|0;if(!b)b=0;else{c[(b+4+15&-16)+-4>>2]=b;b=b+4+15&-16}Sj(b,a);return b|0}function Gq(a,b){a=a|0;b=b|0;Ab[c[(c[b>>2]|0)+32>>2]&255](b);td(a,b);Ab[c[(c[b>>2]|0)+36>>2]&255](b);return}function Hq(a,b,c,d,e,f,g,h,i,j){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;g=g|0;h=h|0;i=i|0;j=j|0;Xb[a&1](b|0,c|0,d|0,e|0,f|0,g|0,h|0,i|0,j|0)}function Iq(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;ic[c[(c[a>>2]|0)+108>>2]&127](a,b,d);ic[c[(c[a>>2]|0)+108>>2]&127](a,(b+1|0)%3|0,e);return}function Jq(a,b){a=a|0;b=b|0;c[a+12>>2]=c[b>>2];c[a+12+4>>2]=c[b+4>>2];c[a+12+8>>2]=c[b+8>>2];c[a+12+12>>2]=c[b+12>>2];return}function Kq(a,b){a=a|0;b=b|0;c[a+44>>2]=c[b>>2];c[a+44+4>>2]=c[b+4>>2];c[a+44+8>>2]=c[b+8>>2];c[a+44+12>>2]=c[b+12>>2];return}function Lq(a,b){a=a|0;b=b|0;c[a+696>>2]=c[b>>2];c[a+696+4>>2]=c[b+4>>2];c[a+696+8>>2]=c[b+8>>2];c[a+696+12>>2]=c[b+12>>2];return}function Mq(a,b){a=a|0;b=b|0;c[a+680>>2]=c[b>>2];c[a+680+4>>2]=c[b+4>>2];c[a+680+8>>2]=c[b+8>>2];c[a+680+12>>2]=c[b+12>>2];return}function Nq(a,b){a=a|0;b=b|0;c[a+60>>2]=c[b>>2];c[a+60+4>>2]=c[b+4>>2];c[a+60+8>>2]=c[b+8>>2];c[a+60+12>>2]=c[b+12>>2];return}function Oq(a,b){a=a|0;b=b|0;c[a+28>>2]=c[b>>2];c[a+28+4>>2]=c[b+4>>2];c[a+28+8>>2]=c[b+8>>2];c[a+28+12>>2]=c[b+12>>2];return}function Pq(a,b){a=a|0;b=b|0;c[a+156>>2]=c[b>>2];c[a+156+4>>2]=c[b+4>>2];c[a+156+8>>2]=c[b+8>>2];c[a+156+12>>2]=c[b+12>>2];return}function Qq(b,c,d){b=b|0;c=c|0;d=d|0;a[b+1309+c>>0]=d&1;if((c|0)<3){a[b+788+c>>0]=d&1;return}else{a[b+868+(c+-3<<6)+44>>0]=d&1;return}}function Rq(a,b){a=a|0;b=b|0;c[a+108>>2]=c[b>>2];c[a+108+4>>2]=c[b+4>>2];c[a+108+8>>2]=c[b+8>>2];c[a+108+12>>2]=c[b+12>>2];return}function Sq(){var a=0;c[6435]=(c[6435]|0)+1;a=yc(191)|0;if(!a)a=0;else{c[(a+4+15&-16)+-4>>2]=a;a=a+4+15&-16}Yf(a,1,1);return a|0}function Tq(){var a=0;c[6435]=(c[6435]|0)+1;a=yc(111)|0;if(!a)a=0;else{c[(a+4+15&-16)+-4>>2]=a;a=a+4+15&-16}Sj(a,1);return a|0}function Uq(a,b){a=a|0;b=b|0;c[a+20>>2]=c[b>>2];c[a+20+4>>2]=c[b+4>>2];c[a+20+8>>2]=c[b+8>>2];c[a+20+12>>2]=c[b+12>>2];return}function Vq(a){a=a|0;var b=0;do{c[a+4>>2]=0;g[a+8>>2]=0.0;b=c[a+24>>2]|0;if(b|0)Vq(b);a=c[a+28>>2]|0}while((a|0)!=0);return}function Wq(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=+f;Kd(a,b,c,d,e,f);return}function Xq(a,b){a=a|0;b=b|0;c[a+32>>2]=c[b>>2];c[a+32+4>>2]=c[b+4>>2];c[a+32+8>>2]=c[b+8>>2];c[a+32+12>>2]=c[b+12>>2];return}function Yq(a,b){a=a|0;b=b|0;c[a+316>>2]=c[b>>2];c[a+316+4>>2]=c[b+4>>2];c[a+316+8>>2]=c[b+8>>2];c[a+316+12>>2]=c[b+12>>2];return}function Zq(a,b){a=a|0;b=b|0;c[a+300>>2]=c[b>>2];c[a+300+4>>2]=c[b+4>>2];c[a+300+8>>2]=c[b+8>>2];c[a+300+12>>2]=c[b+12>>2];return}function _q(a,b){a=a|0;b=b|0;c[a+24>>2]=c[b>>2];c[a+24+4>>2]=c[b+4>>2];c[a+24+8>>2]=c[b+8>>2];c[a+24+12>>2]=c[b+12>>2];return}function $q(a,b){a=a|0;b=b|0;c[a+64>>2]=c[b>>2];c[a+64+4>>2]=c[b+4>>2];c[a+64+8>>2]=c[b+8>>2];c[a+64+12>>2]=c[b+12>>2];return}function ar(a,b){a=a|0;b=b|0;g[a>>2]=+g[a>>2]-+g[b>>2];g[a+4>>2]=+g[a+4>>2]-+g[b+4>>2];g[a+8>>2]=+g[a+8>>2]-+g[b+8>>2];return a|0}function br(a,b){a=a|0;b=b|0;g[a>>2]=+g[a>>2]+ +g[b>>2];g[a+4>>2]=+g[a+4>>2]+ +g[b+4>>2];g[a+8>>2]=+g[a+8>>2]+ +g[b+8>>2];return a|0}function cr(a,b){a=a|0;b=b|0;c[a+52>>2]=c[b>>2];c[a+52+4>>2]=c[b+4>>2];c[a+52+8>>2]=c[b+8>>2];c[a+52+12>>2]=c[b+12>>2];return}function dr(a,b){a=a|0;b=b|0;c[a+40>>2]=c[b>>2];c[a+40+4>>2]=c[b+4>>2];c[a+40+8>>2]=c[b+8>>2];c[a+40+12>>2]=c[b+12>>2];return}function er(a,b,c,d,e,f,g,h,i){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;g=g|0;h=h|0;i=i|0;return +Kb[a&1](b|0,c|0,d|0,e|0,f|0,g|0,h|0,i|0)}function fr(a,b){a=a|0;b=b|0;c[a+16>>2]=c[b>>2];c[a+16+4>>2]=c[b+4>>2];c[a+16+8>>2]=c[b+8>>2];c[a+16+12>>2]=c[b+12>>2];return}function gr(a,b,d){a=a|0;b=b|0;d=+d;Cb[c[(c[a>>2]|0)+32>>2]&127](a,b);kc[c[(c[a>>2]|0)+36>>2]&7](a,b,d);return}function hr(a,b){a=a|0;b=b|0;c[a+68>>2]=c[b>>2];c[a+68+4>>2]=c[b+4>>2];c[a+68+8>>2]=c[b+8>>2];c[a+68+12>>2]=c[b+12>>2];return}function ir(a,b){a=a|0;b=b|0;c[a+36>>2]=c[b>>2];c[a+36+4>>2]=c[b+4>>2];c[a+36+8>>2]=c[b+8>>2];c[a+36+12>>2]=c[b+12>>2];return}function jr(a,b){a=a|0;b=b|0;c[a>>2]=c[b+248>>2];c[a+4>>2]=c[b+248+4>>2];c[a+8>>2]=c[b+248+8>>2];c[a+12>>2]=c[b+248+12>>2];return}function kr(a,b){a=a|0;b=b|0;c[a+48>>2]=c[b>>2];c[a+48+4>>2]=c[b+4>>2];c[a+48+8>>2]=c[b+8>>2];c[a+48+12>>2]=c[b+12>>2];return}function lr(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;var f=0;f=i;i=i+16|0;$e(a,b,d,e,f|0)|0;i=f;return (C=c[f+4>>2]|0,c[f>>2]|0)|0}function mr(a,b){a=a|0;b=b|0;c[a>>2]=c[b>>2];c[a+4>>2]=c[b+4>>2];c[a+8>>2]=c[b+8>>2];c[a+12>>2]=c[b+12>>2];return}function nr(a,b){a=a|0;b=b|0;c[a+72>>2]=c[b>>2];c[a+72+4>>2]=c[b+4>>2];c[a+72+8>>2]=c[b+8>>2];c[a+72+12>>2]=c[b+12>>2];return}function or(a,b){a=a|0;b=b|0;c[a>>2]=0;c[a+4>>2]=0;c[a+8>>2]=0;c[a+12>>2]=0;g[a+(c[b+52>>2]<<2)>>2]=1.0;return}function pr(a){a=a|0;var b=0;b=i;i=i+16|0;hd(a);if(!(ob(c[6563]|0,0)|0)){i=b;return}else ej(21821,b)}function qr(a,b){a=a|0;b=b|0;c[a+8>>2]=c[b>>2];c[a+8+4>>2]=c[b+4>>2];c[a+8+8>>2]=c[b+8>>2];c[a+8+12>>2]=c[b+12>>2];return}function rr(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;return rc(b,c,d,e)|0}function sr(){var a=0;c[6435]=(c[6435]|0)+1;a=yc(35)|0;if(!a){a=0;return a|0}c[(a+4+15&-16)+-4>>2]=a;a=a+4+15&-16;return a|0}function tr(a,b){a=a|0;b=b|0;if(!b?c[a+204>>2]&3|0:0)return;if((c[a+216>>2]&-2|0)!=4)c[a+216>>2]=1;g[a+220>>2]=0.0;return}function ur(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;mc[c[(c[a+-4>>2]|0)+8>>2]&127](a+-4|0,b,d,e);return}function vr(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;var e=0,f=0;e=Cp(a,c)|0;f=C;return (C=(_(b,c)|0)+(_(d,a)|0)+f|f&0,e|0|0)|0}function wr(a,b,c,d,e,f,g,h){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;g=g|0;h=h|0;Wb[a&1](b|0,c|0,d|0,e|0,f|0,g|0,h|0)}function xr(a,b,c,d){a=a|0;b=b|0;c=c|0;d=+d;return}function yr(a){a=a|0;c[a>>2]=3640;c[a+12>>2]=3668;cg(a+12|0);pj(a+72|0);hd(a);return}function zr(a,b){a=a|0;b=b|0;c[a+348>>2]=c[b>>2];c[a+348+4>>2]=c[b+4>>2];c[a+348+8>>2]=c[b+8>>2];return}function Ar(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;Qj(a,b,c,d);return}function Br(a,b){a=a|0;b=b|0;c[a>>2]=1065353216;c[a+4>>2]=1065353216;c[a+8>>2]=1065353216;g[a+12>>2]=0.0;return}function Cr(b){b=b|0;if(!(Eb[c[(c[b>>2]|0)+40>>2]&127](b)|0))return;c[b+16>>2]=c[b+28>>2];a[b+169>>0]=1;return}function Dr(a,b){a=a|0;b=b|0;var d=0;d=c[a+8>>2]|0;ic[c[d+60>>2]&127](b,d,c[a+4>>2]|0);return 0}function Er(a,b){a=a|0;b=b|0;var d=0;d=a+92|0;do{c[a>>2]=c[b>>2];a=a+4|0;b=b+4|0}while((a|0)<(d|0));return}function Fr(a,b){a=a|0;b=b|0;c[a+480>>2]=b;if(!b)return;Cb[c[(c[b>>2]|0)+8>>2]&127](b,a+4|0);return}function Gr(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;Pg(a,b,c,d);return}function Hr(a,b,d){a=a|0;b=b|0;d=d|0;c[a>>2]=0;c[a+4>>2]=0;c[a+8>>2]=0;c[a+12>>2]=0;return}function Ir(a){a=a|0;c[a>>2]=3640;c[a+12>>2]=3668;cg(a+12|0);pj(a+72|0);return}function Jr(b){b=b|0;a[k>>0]=a[b>>0];a[k+1>>0]=a[b+1>>0];a[k+2>>0]=a[b+2>>0];a[k+3>>0]=a[b+3>>0]}function Kr(a,b,c,d,e,f,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;g=g|0;return Tb[a&3](b|0,c|0,d|0,e|0,f|0,g|0)|0}function Lr(a,b,c,d,e){a=a|0;b=+b;c=+c;d=+d;e=+e;g[a>>2]=b;g[a+4>>2]=c;g[a+8>>2]=d;g[a+12>>2]=e;return}function Mr(a,b,c){a=a|0;b=b|0;c=c|0;if((c|0)<32){C=b>>c;return a>>>c|(b&(1<>c-32|0}function Nr(a){a=a|0;lg(a);if(!a)return;c[6436]=(c[6436]|0)+1;hd(c[a+-4>>2]|0);return}function Or(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;mc[c[(c[a>>2]|0)+8>>2]&127](a,b,d,e);return}function Pr(a,b){a=a|0;b=+b;g[a>>2]=+g[a>>2]*b;g[a+4>>2]=+g[a+4>>2]*b;g[a+8>>2]=+g[a+8>>2]*b;return a|0}function Qr(a,b,d){a=a|0;b=b|0;d=d|0;Ae(c[a+116>>2]|0,c[a+144>>2]|0,b,d);return}function Rr(a,b,d){a=a|0;b=b|0;d=d|0;ic[c[(c[b>>2]|0)+64>>2]&127](a,b,d);return}function Sr(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;return 0.0}function Tr(a,b,d){a=a|0;b=+b;d=d|0;c[d>>2]=0;c[d+4>>2]=0;c[d+8>>2]=0;c[d+12>>2]=0;return}function Ur(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;mc[c[(c[a>>2]|0)+80>>2]&127](a,b,d,e);return}function Vr(){var a=0;a=i;i=i+16|0;if(!(mb(26252,255)|0)){i=a;return}else ej(21874,a)}function Wr(a,b,c,d,e,f,g){a=a|0;b=b|0;c=c|0;d=d|0;e=+e;f=f|0;g=g|0;return +Ub[a&3](b|0,c|0,d|0,+e,f|0,g|0)}function Xr(a){a=a|0;if(c[a+204>>2]&3|0)return;if((c[a+216>>2]&-2|0)!=4)c[a+216>>2]=1;g[a+220>>2]=0.0;return}function Yr(a,b){a=a|0;b=b|0;a=c[a+4>>2]|0;Zb[c[(c[a>>2]|0)+8>>2]&31](a,c[b+36>>2]|0)|0;return}function Zr(a){a=a|0;var b=0.0,c=0.0,d=0.0;d=+g[a>>2];c=+g[a+4>>2];b=+g[a+8>>2];return +(+O(+(d*d+c*c+b*b)))}function _r(a,b){a=a|0;b=b|0;c[a+260>>2]=(c[a+260>>2]|0)+1;c[a+192>>2]=b;c[a+200>>2]=b;return}function $r(a,b,c,d,e,f,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;g=g|0;Qb[a&7](b|0,c|0,d|0,e|0,f|0,g|0)}function as(a,b,c,d,e,f,g,h,i,j,k,l){a=a|0;b=b|0;c=c|0;d=d|0;e=+e;f=+f;g=+g;h=+h;i=+i;j=j|0;k=+k;l=l|0;ba(33)}function bs(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;mc[c[(c[a>>2]|0)+24>>2]&127](a,b,d,e);return}function cs(b,c,d,e){b=b|0;c=c|0;d=+d;e=+e;a[b+737>>0]=c&1;g[b+680>>2]=d;g[b+684>>2]=e;return}function ds(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;mc[c[(c[a>>2]|0)+88>>2]&127](a,b,d,e);return}function es(a,b,d){a=a|0;b=b|0;d=d|0;ic[c[(c[b>>2]|0)+68>>2]&127](a,b,d);return}function fs(b,d){b=b|0;d=d|0;b=(a[b+344>>0]|0)==0?3:0;c[d>>2]=b;c[d+4>>2]=b;return}function gs(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;mc[c[(c[a>>2]|0)+36>>2]&127](a,b,d,e);return}function hs(a,b,d){a=a|0;b=+b;d=d|0;return lc[c[(c[a>>2]|0)+52>>2]&1](a,b,d,.01666666753590107)|0}function is(a,b,c){a=a|0;b=b|0;c=c|0;if((c|0)<32){C=b<>>32-c;return a<>2]=0;c[d+4>>2]=0;c[d+8>>2]=0;c[d+12>>2]=0;return}function ks(a,b,c,d){a=a|0;b=+b;c=+c;d=+d;g[a>>2]=b;g[a+4>>2]=c;g[a+8>>2]=d;g[a+12>>2]=0.0;return}function ls(a,b,d,e){a=a|0;b=+b;d=d|0;e=+e;return lc[c[(c[a>>2]|0)+52>>2]&1](a,b,d,e)|0}function ms(a,b){a=a|0;b=b|0;c[a>>2]=0;c[a+4>>2]=0;c[a+8>>2]=1065353216;g[a+12>>2]=0.0;return}function ns(a,b){a=a|0;b=b|0;c[a>>2]=1065353216;c[a+4>>2]=0;c[a+8>>2]=0;g[a+12>>2]=0.0;return}function os(a,b){a=a|0;b=b|0;c[a>>2]=0;c[a+4>>2]=1065353216;c[a+8>>2]=0;g[a+12>>2]=0.0;return}function ps(a,b){a=a|0;b=b|0;ic[c[(c[a>>2]|0)+8>>2]&127](a,b,c[(c[a+8>>2]|0)+48>>2]|0);return}function qs(a,b,c,d,e,f,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;g=+g;Pb[a&0](b|0,c|0,d|0,e|0,f|0,+g)}function rs(a,b,c,d,e,f,g){a=a|0;b=b|0;c=c|0;d=d|0;e=+e;f=f|0;g=g|0;Bb[a&0](b|0,c|0,d|0,+e,f|0,g|0)}function ss(b,d,e){b=b|0;d=d|0;e=+e;g[(c[b+720>>2]|0)+(d*104|0)+88>>2]=e>0.0?1.0/e:0.0;a[b+924>>0]=1;return}function ts(a,b,d){a=a|0;b=b|0;d=+d;kc[c[(c[a>>2]|0)+20>>2]&7](a,b,d);return}function us(a,b,c){a=a|0;b=b|0;c=c|0;if((c|0)<32){C=b>>>c;return a>>>c|(b&(1<>>c-32|0}function vs(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;mc[c[(c[a>>2]|0)+124>>2]&127](a,e,b,d);return}function ws(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;c[a+120>>2]=b;c[a+124>>2]=d;c[a+128>>2]=e;return}function xs(a,b){a=a|0;b=b|0;return +(+g[a>>2]*+g[b>>2]+ +g[a+4>>2]*+g[b+4>>2]+ +g[a+8>>2]*+g[b+8>>2])}function ys(a){a=a|0;qk(a);if(!a)return;c[6436]=(c[6436]|0)+1;hd(c[a+-4>>2]|0);return}function zs(a){a=a|0;Tl(a);if(!a)return;c[6436]=(c[6436]|0)+1;hd(c[a+-4>>2]|0);return}function As(a,b,c,d,e,f,g){a=a|0;b=b|0;c=+c;d=+d;e=e|0;f=f|0;g=g|0;Gb[a&0](b|0,+c,+d,e|0,f|0,g|0)}function Bs(a,b,c,d,e,f,g,h,i,j){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;g=g|0;h=h|0;i=i|0;j=j|0;ba(29);return 0.0}function Cs(a,b,d){a=a|0;b=b|0;d=d|0;mc[c[(c[a>>2]|0)+36>>2]&127](a,b,d,-3);return}function Ds(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;return 1.0}function Es(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;return}function Fs(a,b,d,e){a=a|0;b=b|0;d=d|0;e=e|0;mc[c[(c[a>>2]|0)+32>>2]&127](a,b,d,e);return}function Gs(a){a=a|0;Sg(a);if(!a)return;c[6436]=(c[6436]|0)+1;hd(c[a+-4>>2]|0);return}function Hs(){}function Is(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;d=b-d-(c>>>0>a>>>0|0)>>>0;return (C=d,a-c>>>0|0)|0}function Js(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;Rf(a,b,c,d,e);return}function Ks(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;Zf(a,b,c,d,e);return}function Ls(a,b,c,d,e,f,g,h,i,j){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;g=g|0;h=h|0;i=i|0;j=j|0;ba(5);return 0}function Ms(a,b){a=a|0;b=b|0;Yd(a,b);return}function Ns(a,b,c,d,e,f,g,h,i,j,k){a=a|0;b=b|0;c=c|0;d=d|0;e=+e;f=+f;g=+g;h=+h;i=i|0;j=j|0;k=+k;ba(13)}function Os(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;return +Mb[a&15](b|0,c|0,d|0,e|0,f|0)}function Ps(a,b,d){a=a|0;b=b|0;d=d|0;mc[c[(c[a>>2]|0)+36>>2]&127](a,b,d,-1);return}function Qs(a,b){a=a|0;b=+b;return lc[c[(c[a>>2]|0)+52>>2]&1](a,b,1,.01666666753590107)|0}function Rs(a,b,d){a=a|0;b=b|0;d=d|0;ic[c[(c[a>>2]|0)+56>>2]&127](a,b,d);return}function Ss(a){a=a|0;c[a>>2]=3668;cg(a);pj(a+60|0);hd(a);return}function Ts(a,b,d){a=a|0;b=b|0;d=+d;kc[c[(c[a>>2]|0)+36>>2]&7](a,b,d);return}function Us(a){a=a|0;wi(a);if(!a)return;c[6436]=(c[6436]|0)+1;hd(c[a+-4>>2]|0);return}function Vs(a,b,c,d,e,f,g,h,i,j){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;g=g|0;h=h|0;i=i|0;j=j|0;ba(26)}function Ws(a){a=a|0;Cj(a);if(!a)return;c[6436]=(c[6436]|0)+1;hd(c[a+-4>>2]|0);return}function Xs(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=+d;e=e|0;f=f|0;return +ec[a&3](b|0,c|0,+d,e|0,f|0)}function Ys(a){a=a|0;c[a>>2]=8060;if(!a)return;c[6436]=(c[6436]|0)+1;hd(c[a+-4>>2]|0);return}function Zs(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;yb[a&31](b|0,c|0,d|0,e|0,f|0)}function _s(a){a=a|0;if(!(c[a+12>>2]|0)){a=0;return a|0}a=c[a+20>>2]|0;return a|0}function $s(a){a=a|0;vm(a);if(!a)return;c[6436]=(c[6436]|0)+1;hd(c[a+-4>>2]|0);return}function at(a,b,d){a=a|0;b=b|0;d=+d;zb[c[(c[a>>2]|0)+16>>2]&31](a,d);return}function bt(a,b){a=a|0;b=b|0;mc[c[(c[a>>2]|0)+36>>2]&127](a,b,2,-3);return}function ct(a,b,d){a=a|0;b=+b;d=d|0;Jb[c[(c[a>>2]|0)+32>>2]&15](a,b,d);return}function dt(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=+e;return}function et(a){a=a|0;xi(a);if(!a)return;c[6436]=(c[6436]|0)+1;hd(c[a+-4>>2]|0);return}function ft(a){a=a|0;Ai(a);if(!a)return;c[6436]=(c[6436]|0)+1;hd(c[a+-4>>2]|0);return}function gt(a,b,c,d,e,f,g,h,i){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;g=g|0;h=h|0;i=i|0;ba(31);return 0.0}function ht(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=+f;ac[a&1](b|0,c|0,d|0,e|0,+f)}function it(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=+d;e=e|0;f=f|0;Vb[a&0](b|0,c|0,+d,e|0,f|0)}function jt(a,b,c,d,e,f,g,h,i){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;g=g|0;h=h|0;i=i|0;ba(36);return 0}function kt(a){a=a|0;if(!(+g[a+16>>2]==0.0)){a=0;return a|0}a=+g[a+20>>2]==0.0;return a|0}function lt(a){a=a|0;c[a>>2]=3668;cg(a);pj(a+60|0);return}function mt(a){a=a|0;c[a>>2]=4432;if(!a)return;c[6436]=(c[6436]|0)+1;hd(c[a+-4>>2]|0);return}function nt(a){a=a|0;c[a>>2]=5008;if(!a)return;c[6436]=(c[6436]|0)+1;hd(c[a+-4>>2]|0);return}function ot(a,b){a=a|0;b=b|0;Cb[c[(c[a>>2]|0)+16>>2]&127](a,b);return}function pt(a,b){a=a|0;b=b|0;Cb[c[(c[a>>2]|0)+40>>2]&127](a,b);return}function qt(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;Zc(a,b,c,d)|0;return 1}function rt(a,b){a=a|0;b=b|0;Cb[c[(c[a>>2]|0)+68>>2]&127](a,b);return}function st(a,b,d){a=a|0;b=+b;d=d|0;g[(c[a+144>>2]|0)+(d*284|0)+232>>2]=b;return}function tt(a,b,d){a=a|0;b=+b;d=d|0;g[(c[a+144>>2]|0)+(d*284|0)+252>>2]=b;return}function ut(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;return}function vt(a,b){a=a|0;b=b|0;mc[c[(c[a>>2]|0)+36>>2]&127](a,b,1,-1);return}function wt(a,b){a=a|0;b=b|0;Cb[c[(c[a>>2]|0)+64>>2]&127](a,b);return}function xt(a,b,c){a=a|0;b=b|0;c=c|0;bi(b,c);return}function yt(a){a=a|0;Bd(a);if(!a)return;c[6436]=(c[6436]|0)+1;hd(c[a+-4>>2]|0);return}function zt(a,b){a=a|0;b=b|0;if((c[a+216>>2]&-2|0)==4)return;c[a+216>>2]=b;return}function At(a,b){a=a|0;b=b|0;ic[c[(c[a>>2]|0)+56>>2]&127](a,b,0);return}function Bt(a,b){a=a|0;b=b|0;return Zb[c[(c[a>>2]|0)+40>>2]&31](a,b)|0}function Ct(a,b){a=a|0;b=b|0;Cb[c[(c[a>>2]|0)+60>>2]&127](a,b);return}function Dt(a,b,d){a=a|0;b=b|0;d=+d;Cb[c[(c[a>>2]|0)+12>>2]&127](a,b);return}function Et(a){a=a|0;a=c[a+68>>2]|0;return Eb[c[(c[a>>2]|0)+36>>2]&127](a)|0}function Ft(a,b){a=a|0;b=b|0;Cb[c[(c[a>>2]|0)+92>>2]&127](a,b);return}function Gt(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;return Ib[a&31](b|0,c|0,d|0,e|0)|0}function Ht(a,b){a=a|0;b=+b;c[a+260>>2]=(c[a+260>>2]|0)+1;g[a+232>>2]=b;return}function It(a,b){a=a|0;b=b|0;Cb[c[(c[a>>2]|0)+32>>2]&127](a,b);return}function Jt(a,b,c,d,e,f,g,h,i){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;g=g|0;h=h|0;i=i|0;ba(25)}function Kt(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;return (C=b+d+(a+c>>>0>>>0>>0|0)>>>0,a+c>>>0|0)|0}function Lt(a,b,d){a=a|0;b=+b;d=d|0;g[(c[a+144>>2]|0)+(d*284|0)+256>>2]=b;return}function Mt(a,b){a=a|0;b=b|0;Cb[c[(c[a>>2]|0)+84>>2]&127](a,b);return}function Nt(a,b){a=a|0;b=b|0;Cb[c[(c[a>>2]|0)+28>>2]&127](a,b);return}function Ot(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;return +fc[a&1](b|0,c|0,d|0,e|0)}function Pt(a,b){a=a|0;b=+b;c[a+260>>2]=(c[a+260>>2]|0)+1;g[a+228>>2]=b;return}function Qt(a,b){a=a|0;b=b|0;Cb[c[(c[a>>2]|0)+72>>2]&127](a,b);return}function Rt(a){a=a|0;if(!a)return;Ab[c[(c[a>>2]|0)+8>>2]&255](a);return}function St(a,b){a=a|0;b=+b;g[a+36>>2]=b;g[a+40>>2]=+Q(+b);return}function Tt(a){a=a|0;if(!a)return;Ab[c[(c[a>>2]|0)+4>>2]&255](a);return}function Ut(a,b){a=a|0;b=+b;return +(+Sb[c[(c[a>>2]|0)+16>>2]&15](a)*b)}function Vt(a,b,c,d,e,f,g,h){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;g=g|0;h=h|0;ba(12);return 0.0}function Wt(a,b){a=a|0;b=+b;c[a+260>>2]=(c[a+260>>2]|0)+1;g[a+224>>2]=b;return}function Xt(a,b){a=a|0;b=b|0;c[a+176>>2]=(b|0)<0?0:(b|0)>2?2:b;return}function Yt(a,b){a=a|0;b=b|0;Se(a,b);return}function Zt(a,b){a=a|0;b=b|0;Cb[c[(c[a>>2]|0)+8>>2]&127](a,b);return}function _t(a,b,c){a=a|0;b=+b;c=+c;g[a+472>>2]=b;g[a+476>>2]=c;return}function $t(a,b,c){a=a|0;b=b|0;c=c|0;Ii(a,b,c);return}function au(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;mc[a&127](b|0,c|0,d|0,e|0)}function bu(a,b){a=a|0;b=b|0;Cb[c[(c[a>>2]|0)+12>>2]&127](a,b);return}function cu(a,b,c){a=a|0;b=b|0;c=c|0;gj(a,b,c);return}function du(a,b){a=a|0;b=b|0;Cb[c[(c[a>>2]|0)+68>>2]&127](a,b);return}function eu(b,c){b=b|0;c=+c;g[b+572>>2]=c;a[b+553>>0]=1;return}function fu(a,b){a=a|0;b=b|0;Cb[c[(c[a>>2]|0)+24>>2]&127](a,b);return}function gu(a,b,d){a=a|0;b=b|0;d=d|0;c[a+20>>2]=b;c[a+28>>2]=d;return}function hu(a,b,d){a=a|0;b=b|0;d=d|0;c[a+16>>2]=b;c[a+24>>2]=d;return}function iu(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;return 0}function ju(a,b,c,d,e){a=a|0;b=b|0;c=+c;d=d|0;e=+e;return lc[a&1](b|0,+c,d|0,+e)|0}function ku(a,b){a=a|0;b=b|0;Cb[c[(c[a>>2]|0)+64>>2]&127](a,b);return}function lu(a,b,c){a=a|0;b=b|0;c=+c;g[a+1340+(b<<2)>>2]=c;return}function mu(a,b,c){a=a|0;b=b|0;c=c|0;return sc(a,b,c)|0}function nu(a,b,c){a=a|0;b=b|0;c=+c;g[a+1364+(b<<2)>>2]=c;return}function ou(a,b){a=a|0;b=b|0;xe(a,b);return}function pu(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=+e;hc[a&15](b|0,c|0,d|0,+e)}function qu(a,b){a=a|0;b=+b;g[a+132>>2]=b;return}function ru(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=+d;e=e|0;Fb[a&7](b|0,c|0,+d,e|0)}function su(a,b,c,d,e){a=a|0;b=b|0;c=+c;d=d|0;e=e|0;Hb[a&0](b|0,+c,d|0,e|0)}function tu(a,b){a=a|0;b=+b;g[a+128>>2]=b;return}function uu(a,b){a=a|0;b=b|0;c[a+24>>2]=b;return}function vu(a,b){a=a|0;b=b|0;g[a+48>>2]=+(b|0);return}function wu(b,c){b=b|0;c=+c;g[b+572>>2]=c;a[b+553>>0]=0;return}function xu(a,b){a=a|0;b=b|0;return c[(c[a+24>>2]|0)+(b*80|0)+64>>2]|0}function yu(a,b){a=a|0;b=b|0;return c[(c[a+20>>2]|0)+(b<<2)>>2]|0}function zu(a){a=a|0;return Eb[c[(c[a>>2]|0)+40>>2]&127](a)|0}function Au(a){a=a|0;if(!a)return;c[6436]=(c[6436]|0)+1;hd(c[a+-4>>2]|0);return}function Bu(a,b){a=a|0;b=+b;zb[c[(c[a>>2]|0)+44>>2]&31](a,b);return}function Cu(a,b){a=a|0;b=+b;g[a+136>>2]=b;return}function Du(a,b){a=a|0;b=b|0;return c[(c[a+276>>2]|0)+(b<<2)>>2]|0}function Eu(a,b){a=a|0;b=b|0;return (c[a+144>>2]|0)+(b*284|0)+92|0}function Fu(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;return}function Gu(a){a=a|0;Ab[c[(c[a>>2]|0)+44>>2]&255](a);return}function Hu(b,c){b=b|0;c=c|0;a[b+32>>0]=c&1;return}function Iu(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;return Ob[a&63](b|0,c|0,d|0)|0}function Ju(a,b){a=a|0;b=b|0;Ii(a,b,1);return}function Ku(a){a=a|0;if(!a)a=0;else a=(wj(a,2832)|0)!=0;return a&1|0}function Lu(a,b){a=a|0;b=+b;g[a+116>>2]=b;return}function Mu(a,b){a=a|0;b=+b;g[a+112>>2]=b;return}function Nu(a,b){a=a|0;b=+b;g[a+124>>2]=b;return}function Ou(a){a=a|0;Tj(a);hd(a);return}function Pu(a,b){a=a|0;b=b|0;return c[(c[a+220>>2]|0)+(b<<2)>>2]|0}function Qu(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;return +_b[a&15](b|0,c|0,d|0)}function Ru(a,b){a=a|0;b=b|0;return sc(a,b,8192)|0}function Su(b,c){b=b|0;c=c|0;a[b+120>>0]=c&1;return}function Tu(b,c){b=b|0;c=c|0;a[b+170>>0]=c&1;return}function Uu(a){a=a|0;return Eb[c[(c[a>>2]|0)+36>>2]&127](a)|0}function Vu(a){a=a|0;return Eb[c[(c[a>>2]|0)+48>>2]&127](a)|0}function Wu(a,b,c,d){a=a|0;b=b|0;c=c|0;d=+d;return}function Xu(a,b){a=a|0;b=b|0;sl(a,b);return}function Yu(a,b){a=a|0;b=b|0;Wg(a,b);return}function Zu(a,b,c,d){a=a|0;b=b|0;c=c|0;d=+d;return Rb[a&7](b|0,c|0,+d)|0}function _u(a){a=a|0;return +(+g[a+132>>2])}function $u(a){a=a|0;return +(+g[a+128>>2])}function av(a,b){a=a|0;b=b|0;return (c[a+144>>2]|0)+(b*284|0)|0}function bv(a,b,c,d,e,f,g){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;g=g|0;ba(24)}function cv(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;ic[a&127](b|0,c|0,d|0)}function dv(a,b){a=a|0;b=+b;g[a+104>>2]=b;return}function ev(a,b){a=a|0;b=b|0;c[b+748>>2]=0;return}function fv(a,b){a=a|0;b=+b;g[a+96>>2]=b;return}function gv(a){a=a|0;return +(+Sb[c[(c[a>>2]|0)+48>>2]&15](a))}function hv(a,c){a=a|0;c=c|0;b[a+10>>1]=c;return}function iv(a,c){a=a|0;c=c|0;b[a+8>>1]=c;return}function jv(a){a=a|0;Lj(a);hd(a);return}function kv(a){a=a|0;var b=0;b=i;i=i+a|0;i=i+15&-16;return b|0}function lv(a,b){a=a|0;b=b|0;return c[(c[a+12>>2]|0)+(b<<2)>>2]|0}function mv(a,b){a=a|0;b=b|0;Pd(a,b);return}function nv(a,b){a=a|0;b=+b;g[a+92>>2]=b;return}function ov(a){a=a|0;return +(+g[a+136>>2])}function pv(b){b=b|0;return (a[b+32>>0]&1)!=0|0}function qv(a,b){a=a|0;b=+b;g[a+108>>2]=b;return}function rv(a,c){a=a|0;c=c|0;b[a+12>>1]=c;return}function sv(a,c){a=a|0;c=c|0;b[a+14>>1]=c;return}function tv(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;ba(21);return 0}function uv(a,b){a=a|0;b=b|0;return ((c[b+236>>2]&2|0)==0?0:b)|0}function vv(a,b){a=a|0;b=b|0;c[a+44>>2]=b&1;return}function wv(a,b,c,d){a=a|0;b=b|0;c=+c;d=d|0;Jb[a&15](b|0,+c,d|0)}function xv(a,b){a=a|0;b=+b;g[a+220>>2]=b;return}function yv(a,b){a=a|0;b=+b;g[a+100>>2]=b;return}function zv(b){b=b|0;return (a[b+120>>0]&1)!=0|0}function Av(b,c){b=b|0;c=c|0;a[b+24>>0]=c&1;return}function Bv(a){a=a|0;return ~~+g[a+48>>2]|0}function Cv(b,c){b=b|0;c=c|0;a[b+180>>0]=c&1;return}function Dv(a,b,c,d){a=a|0;b=b|0;c=c|0;d=+d;kc[a&7](b|0,c|0,+d)}function Ev(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=+d;e=e|0;f=f|0;ba(22);return 0.0}function Fv(a,b){a=a|0;b=+b;g[a+224>>2]=b;return}function Gv(a){a=a|0;a=c[a+216>>2]|0;return (a|0)!=5&(a|0)!=2|0}function Hv(b,c){b=b|0;c=c|0;a[b+524>>0]=c&1;return}function Iv(a){a=a|0;return +(+g[a+116>>2])}function Jv(b,c){b=b|0;c=c|0;a[b+16>>0]=c&1;return}function Kv(a,b){a=a|0;b=+b;g[a+276>>2]=b;return}function Lv(a,b){a=a|0;b=+b;g[a+204>>2]=b;return}function Mv(a,b){a=a|0;b=+b;g[a+208>>2]=b;return}function Nv(a){a=a|0;return +(+g[a+124>>2])}function Ov(a,b,c){a=a|0;b=+b;c=c|0;return}function Pv(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;return}function Qv(a,b){a=a|0;b=b|0;return ((c[b+236>>2]|0)==8?b:0)|0}function Rv(b,c){b=b|0;c=c|0;a[b+552>>0]=c&1;return}function Sv(a,b){a=a|0;b=+b;g[a+216>>2]=b;return}function Tv(a,b){a=a|0;b=b|0;c[a+36>>2]=b;return}function Uv(a,b){a=a|0;b=b|0;c[a+32>>2]=b;return}function Vv(a,b){a=a|0;b=b|0;return a+4+(b*184|0)|0}function Wv(b,c){b=b|0;c=c|0;a[b+736>>0]=c&1;return}function Xv(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;return $e(a,b,c,d,0)|0}function Yv(a){a=a|0;kf(a);hd(a);return}function Zv(b,c){b=b|0;c=c|0;a[b+260>>0]=c&1;return}function _v(b,c){b=b|0;c=c|0;a[b+21>>0]=c&1;return}function $v(a,b){a=a|0;b=+b;g[a+684>>2]=b;return}function aw(b,c){b=b|0;c=c|0;a[b+25>>0]=c&1;return}function bw(a,b,c){a=a|0;b=+b;c=c|0;return}function cw(a,b){a=a|0;b=b|0;c[a+72>>2]=b;return}function dw(a,b,c,d){a=a|0;b=b|0;c=+c;d=+d;Nb[a&7](b|0,+c,+d)}function ew(a,b){a=a|0;b=+b;g[a+188>>2]=b;return}function fw(a,b){a=a|0;b=+b;g[a+184>>2]=b;return}function gw(a,b){a=a|0;b=b|0;c[a+8>>2]=b;return}function hw(a,b){a=a|0;b=b|0;return (c[a+12>>2]|0)+(b*104|0)|0}function iw(a,b){a=a|0;b=+b;g[a+248>>2]=b;return}function jw(b,c){b=b|0;c=c|0;a[b+737>>0]=c&1;return}function kw(a,b){a=a|0;b=b|0;c[a+216>>2]=b;return}function lw(b,c){b=b|0;c=c|0;a[b+26>>0]=c&1;return}function mw(b,c){b=b|0;c=c|0;a[b+84>>0]=c&1;return}function nw(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=f|0;ba(18)}function ow(a){a=a|0;return (a&255)<<24|(a>>8&255)<<16|(a>>16&255)<<8|a>>>24|0}function pw(a,b){a=a|0;b=b|0;c[a+4>>2]=b;return}function qw(a,b){a=a|0;b=+b;g[a+440>>2]=b;return}function rw(a,b,c){a=a|0;b=b|0;c=c|0;return Zb[a&31](b|0,c|0)|0}function sw(a,b){a=a|0;b=+b;g[a+244>>2]=b;return}function tw(a){a=a|0;return +(+g[a+104>>2])}function uw(a){a=a|0;yk(a);hd(a);return}function vw(a){a=a|0;Wk(a);hd(a);return}function ww(a,b){a=a|0;b=+b;g[a+212>>2]=b;return}function xw(a,b){a=a|0;b=+b;g[a+228>>2]=b;return}function yw(a,b){a=a|0;b=b|0;c[a+204>>2]=b;return}function zw(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;f=+f;ba(17)}function Aw(a,b){a=a|0;b=+b;g[a+252>>2]=b;return}function Bw(a){a=a|0;return +(+g[a+96>>2])}function Cw(a){a=a|0;return (c[a+44>>2]|0)!=0|0}function Dw(a){a=a|0;xk(a);hd(a);return}function Ew(a){a=a|0;return +(+g[a+92>>2])}function Fw(b){b=b|0;return (a[b+24>>0]&1)!=0|0}function Gw(a,b,c){a=a|0;b=b|0;c=c|0;return 0}function Hw(a,b,c,d,e,f){a=a|0;b=b|0;c=c|0;d=+d;e=e|0;f=f|0;ba(3)}function Iw(a){a=a|0;return +(+g[a+108>>2])}function Jw(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;ba(14);return 0.0}function Kw(a,b){a=a|0;b=+b;g[a+232>>2]=b;return}function Lw(b){b=b|0;return (a[b+16>>0]&1)!=0|0}function Mw(a,b){a=a|0;b=b|0;c[a>>2]=b;return}function Nw(a){a=a|0;return b[a+10>>1]|0}function Ow(a){a=a|0;return b[a+8>>1]|0}function Pw(a,b){a=a|0;b=b|0;c[a+240>>2]=b;return}function Qw(a){a=a|0;zk(a);hd(a);return}function Rw(a,b,c,d,e,f){a=a|0;b=+b;c=+c;d=d|0;e=e|0;f=f|0;ba(8)}function Sw(a){a=a|0;return +(+g[a+220>>2])}function Tw(a){a=a|0;return (c[a+204>>2]&2|0)!=0|0}function Uw(a){a=a|0;return +(+g[a+100>>2])}function Vw(a){a=a|0;return b[a+12>>1]|0}function Ww(a,b,c,d,e){a=a|0;b=b|0;c=+c;d=d|0;e=e|0;ba(34);return 0.0}function Xw(a){a=a|0;return +(+g[a+224>>2])}function Yw(a){a=a|0;return ph(a)|0}function Zw(a){a=a|0;return b[a+14>>1]|0}function _w(a,b){a=a|0;b=b|0;c[a+84>>2]=b;return}function $w(a,b){a=a|0;b=b|0;c[a+88>>2]=b;return}function ax(a,b){a=a|0;b=b|0;c[a+92>>2]=b;return}function bx(a,b){a=a|0;b=b|0;c[a+100>>2]=b;return}function cx(a,b){a=a|0;b=b|0;c[a+96>>2]=b;return}function dx(a){a=a|0;return (c[a+48>>2]|0)==1|0}function ex(a,b){a=a|0;b=b|0;if(!n){n=a;o=b}}function fx(b){b=b|0;return (a[b+260>>0]&1)!=0|0}function gx(b){b=b|0;return (a[b+25>>0]&1)!=0|0}function hx(a){a=a|0;return (c[a+92>>2]|0)+4|0}function ix(a,b,c){a=a|0;b=b|0;c=c|0;Cb[a&127](b|0,c|0)}function jx(a,b,c){a=a|0;b=b|0;c=+c;return +cc[a&1](b|0,+c)}function kx(a){a=a|0;return +(+g[a+276>>2])}function lx(a){a=a|0;return +(+g[a+204>>2])}function mx(a){a=a|0;return +(+g[a+208>>2])}function nx(a,b){a=a|0;b=b|0;c[a+16>>2]=b;return}function ox(a,b){a=a|0;b=+b;g[a+64>>2]=b;return}function px(a,b){a=a|0;b=+b;g[a+68>>2]=b;return}function qx(a){a=a|0;Ak(a);hd(a);return}function rx(a){a=a|0;return +(+g[a+112>>2])}function sx(a){a=a|0;return +(+g[a+216>>2])}function tx(a){a=a|0;return c[a+268>>2]|0}function ux(b){b=b|0;return (a[b+26>>0]&1)!=0|0}function vx(b){b=b|0;return (a[b+84>>0]&1)!=0|0}function wx(a,b){a=a|0;b=+b;g[a+80>>2]=b;return}function xx(a,b){a=a|0;b=+b;g[a+76>>2]=b;return}function yx(a){a=a|0;return +(+g[a+28>>2]*+g[a+12>>2])}function zx(a,b,c){a=a|0;b=b|0;c=c|0;return}function Ax(a){a=a|0;return +(+g[a+248>>2])}function Bx(a){a=a|0;if(!a)return;hd(a);return}function Cx(a,b){a=a|0;b=+b;g[a+60>>2]=b;return}function Dx(a,b){a=a|0;b=+b;g[a+52>>2]=b;return}function Ex(a,b){a=a|0;b=+b;g[a+56>>2]=b;return}function Fx(a,b,c){a=a|0;b=b|0;c=+c;return 0}function Gx(a,b){a=a|0;b=b|0;return}function Hx(a){a=a|0;return c[a+36>>2]|0}function Ix(a){a=a|0;return c[a+32>>2]|0}function Jx(a){a=a|0;return c[a+748>>2]|0}function Kx(a){a=a|0;return (c[a+48>>2]|0)+4|0}function Lx(a){a=a|0;return +(+g[a+120>>2])}function Mx(a){a=a|0;return a+44|0}function Nx(a,b,c){a=a|0;b=b|0;c=+c;zb[a&31](b|0,+c)}function Ox(a){a=a|0;return c[a+8>>2]|0}function Px(a){a=a|0;return (c[a+8>>2]|0)!=0|0}function Qx(a,b){a=a|0;b=+b;g[a+40>>2]=b;return}function Rx(a,b){a=a|0;b=+b;g[a+36>>2]=b;return}function Sx(a,b){a=a|0;b=+b;g[a+48>>2]=b;return}function Tx(a){a=a|0;return a+60|0}function Ux(a){a=a|0;return c[a+200>>2]|0}function Vx(a){a=a|0;return +(+g[a+244>>2])}function Wx(a){a=a|0;return +g[a+4>>2]<1.0|0}function Xx(a,b){a=a|0;b=+b;g[a+24>>2]=b;return}function Yx(a,b){a=a|0;b=+b;g[a+20>>2]=b;return}function Zx(a,b){a=a|0;b=+b;g[a+32>>2]=b;return}function _x(a,b){a=a|0;b=+b;g[a+16>>2]=b;return}function $x(a,b){a=a|0;b=+b;g[a+28>>2]=b;return}function ay(a){a=a|0;return c[a+212>>2]|0}function by(a){a=a|0;c[a+192>>2]=0;return}function cy(a,b,c){a=a|0;b=b|0;c=c|0;return}function dy(a,b){a=a|0;b=+b;g[a+72>>2]=b;return}function ey(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=e|0;ba(0)}function fy(a){a=a|0;return +(+g[a+212>>2])}function gy(a){a=a|0;return +(+g[a+228>>2])}function hy(a,b){a=a|0;b=+b;g[a+8>>2]=b;return}function iy(a,b){a=a|0;b=+b;g[a+4>>2]=b;return}function jy(a,b){a=a|0;b=+b;g[a+12>>2]=b;return}function ky(a,b,c,d,e){a=a|0;b=b|0;c=c|0;d=d|0;e=+e;ba(30)}function ly(a,b,c,d,e){a=a|0;b=b|0;c=+c;d=d|0;e=e|0;ba(23)}function my(a){a=a|0;return +(+g[a+252>>2])}function ny(a,b){a=a|0;b=+b;g[a+44>>2]=b;return}function oy(a){a=a|0;return a+156|0}function py(a){a=a|0;return c[a+116>>2]|0}function qy(a){a=a|0;return c[a+136>>2]|0}function ry(a){a=a|0;return c[a+744>>2]|0}function sy(a){a=a|0;return c[a+740>>2]|0}function ty(a){a=a|0;return a+20|0}function uy(a){a=a|0;return a+324|0}function vy(a){a=a|0;return c[a+192>>2]|0}function wy(a){a=a|0;return c[a+204>>2]|0}function xy(a){a=a|0;return c[a+24>>2]|0}function yy(a){a=a|0;return c[a+68>>2]|0}function zy(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;ba(35);return 0.0}function Ay(a){a=a|0;return +(+g[a+232>>2])}function By(a,b){a=a|0;b=+b;g[a>>2]=b;return}function Cy(a){a=a|0;return 348}function Dy(a){a=a|0;return c[a+12>>2]|0}function Ey(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;ba(10);return 0}function Fy(a){a=a|0;return c[a+480>>2]|0}function Gy(a){a=a|0;Ci(a);hd(a);return}function Hy(a){a=a|0;dp(a);hd(a);return}function Iy(a){a=a|0;_j(a);hd(a);return}function Jy(a){a=a|0;return a+352|0}function Ky(a){a=a|0;return a+348|0}function Ly(a){a=a|0;return c[a>>2]|0}function My(a,b){a=a|0;b=b|0;return Eb[a&127](b|0)|0}function Ny(a){a=a|0;return c[a+240>>2]|0}function Oy(a){a=a|0;return a+24|0}function Py(a){a=a|0;return a+316|0}function Qy(a){a=a|0;return a+300|0}function Ry(a){a=a|0;return a+64|0}function Sy(a){a=a|0;return +(+g[a+64>>2])}function Ty(a){a=a|0;return +(+g[a+68>>2])}function Uy(a){a=a|0;return a+32|0}function Vy(a){a=a|0;return c[a+84>>2]|0}function Wy(a){a=a|0;return c[a+88>>2]|0}function Xy(a){a=a|0;return c[a+92>>2]|0}function Yy(a){a=a|0;return c[a+100>>2]|0}function Zy(a){a=a|0;return 252}function _y(a,b,c,d){a=a|0;b=+b;c=c|0;d=+d;ba(41);return 0}function $y(a){a=a|0;return a+52|0}function az(a){a=a|0;return +(+g[a+80>>2])}function bz(a){a=a|0;return +(+g[a+76>>2])}function cz(a){a=a|0;return 28}function dz(a){a=a|0;return c[a+72>>2]|0}function ez(a,b){a=a|0;b=b|0;return +Sb[a&15](b|0)}function fz(a){a=a|0;return a+40|0}function gz(a){a=a|0;return c[a+16>>2]|0}function hz(a){a=a|0;return +(+g[a+60>>2])}function iz(a){a=a|0;return +(+g[a+52>>2])}function jz(a){a=a|0;return +(+g[a+56>>2])}function kz(a){a=a|0;return a+108|0}function lz(a){a=a|0;return 212}function mz(a){a=a|0;return c[a+96>>2]|0}function nz(a){a=a|0;return a+16|0}function oz(a,b){a=a|0;b=b|0;return 1}function pz(a){a=a|0;return a+328|0}function qz(a){a=a|0;return a+28|0}function rz(a,b){a=a|0;b=b|0;i=a;j=b}function sz(a){a=a|0;return a+312|0}function tz(a){a=a|0;return 204}function uz(a,b){a=a|0;b=b|0;return}function vz(a,b,c,d){a=a|0;b=b|0;c=c|0;d=d|0;ba(42)}function wz(a){a=a|0;return a+36|0}function xz(a){a=a|0;return +(+g[a+44>>2])}function yz(a){a=a|0;return +(+g[a+40>>2])}function zz(a){a=a|0;return +(+g[a+36>>2])}function Az(a){a=a|0;return +(+g[a+48>>2])}function Bz(a){a=a|0;return 220}function Cz(a){a=a|0;return 256}function Dz(a){a=a|0;return +(+g[a+72>>2])}function Ez(a){a=a|0;c[a>>2]=8060;return}function Fz(a){a=a|0;return +(+g[a+24>>2])}function Gz(a){a=a|0;return +(+g[a+20>>2])}function Hz(a){a=a|0;return +(+g[a+32>>2])}function Iz(a){a=a|0;return +(+g[a+16>>2])}function Jz(a){a=a|0;return +(+g[a+28>>2])}function Kz(a){a=a|0;return a+12|0}function Lz(a){a=a|0;return 52}function Mz(a){a=a|0;return 68}function Nz(a){a=a|0;return 84}function Oz(a){a=a|0;return c[a+4>>2]|0}function Pz(a){a=a|0;return a+868|0}function Qz(a){a=a|0;return a+4|0}function Rz(a,b){a=a|0;b=b|0;Ab[a&255](b|0)}function Sz(a,b,c,d){a=a|0;b=b|0;c=c|0;d=+d;ba(37)}function Tz(a){a=a|0;return 24}function Uz(a,b){a=a|0;b=+b;return}function Vz(a){a=a|0;return +(+g[a+12>>2])}function Wz(a){a=a|0;return a+68|0}function Xz(a,b,c,d){a=a|0;b=+b;c=c|0;d=d|0;ba(9)}function Yz(a,b,c,d){a=a|0;b=b|0;c=+c;d=d|0;ba(7)}function Zz(a){a=a|0;return +(+g[a+8>>2])}function _z(a){a=a|0;return +(+g[a+4>>2])}function $z(a){a=a|0;Ai(a);return}function aA(a,b,c){a=a|0;b=b|0;c=c|0;ba(28);return 0.0}function bA(a){a=a|0;return a+708|0}function cA(a){a=a|0;return 488}function dA(a,b,c){a=a|0;b=b|0;c=c|0;ba(16);return 0}function eA(a){a=a|0;hd(a+-4|0);return}function fA(a){a=a|0;return 32}function gA(a){a=a|0;return a+76|0}function hA(a){a=a|0;return 60}function iA(a){a=a|0;return 428}function jA(a){a=a|0;return a+48|0}function kA(a){a=a|0;return a+288|0}function lA(a){a=a|0;c[a>>2]=4432;return}function mA(a){a=a|0;c[a>>2]=5008;return}function nA(a){a=a|0;return +(+g[a>>2])}function oA(a,b,c){a=a|0;b=b|0;c=+c;ba(19);return 0}function pA(a){a=a|0;return 11200}function qA(a){a=a|0;return 4}function rA(a){a=a|0;return 17831}function sA(a){a=a|0;return 17518}function tA(a){a=a|0;return 11009}function uA(a){a=a|0;return a|0}function vA(a){a=a|0;return 16532}function wA(a){a=a|0;return a+72|0}function xA(a,b,c){a=a|0;b=b|0;c=c|0;ba(38)}function yA(a){a=a|0;return a+8|0}function zA(a){a=a|0;return 16945}function AA(a){a=a|0;return 0}function BA(a){a=a|0;return 17105}function CA(a){a=a|0;return 17303}function DA(a){a=a|0;return 1}function EA(a,b,c){a=a|0;b=b|0;c=+c;ba(40)}function FA(a,b,c){a=a|0;b=+b;c=c|0;ba(11)}function GA(a){a=a|0;return 17939}function HA(a){a=a|0;return 17910}function IA(a){a=a|0;return 3}function JA(a){a=a|0;return 11635}function KA(a){a=a|0;return 17861}function LA(a){a=a|0;return 16353}function MA(a){a=a|0;return 17481}function NA(a){a=a|0;return 17454}function OA(a){a=a|0;return 17404}function PA(a){a=a|0;return 8}function QA(a,b,c){a=a|0;b=+b;c=+c;ba(15)}function RA(a){a=a|0;return 16500}function SA(a,b){a=a|0;b=b|0;ba(27);return 0}function TA(a){a=a|0;return 16457}function UA(a){a=a|0;return 16478}function VA(a){a=a|0;return 6}function WA(a){a=a|0;return 12}function XA(){return 4}function YA(a){a=a|0;return 16421}function ZA(a,b){a=a|0;b=+b;ba(32);return 0.0}function _A(a){a=a|0;return 2}function $A(a){a=a|0;return 17591}function aB(a){a=a|0;hd(a);return}function bB(a){a=a|0;return 22301}function cB(a){a=a|0;jc[a&3]()}function dB(){return 2}function eB(){return 1}function fB(){return 5}function gB(){return 3}function hB(){return 0}function iB(){vb()}function jB(a,b){a=a|0;b=b|0;ba(4)}function kB(a){a=a|0;i=a}function lB(a,b){a=a|0;b=+b;ba(1)}function mB(a){a=a|0;C=a}function nB(a){a=a|0;ba(20);return 0.0}function oB(a){a=a|0;ba(6);return 0}function pB(){return C|0}function qB(a){a=a|0;return}function rB(){return i|0}function sB(a){a=a|0;ba(2)}function tB(){ba(39)} - -// EMSCRIPTEN_END_FUNCS -var yb=[ey,ah,Vl,jg,op,_c,df,ag,Xf,oc,ld,Oc,de,le,Vc,Es,Fg,xc,$d,Fl,Bi,sf,ey,ey,ey,ey,ey,ey,ey,ey,ey,ey];var zb=[lB,wc,fd,jn,jy,ny,Uz,ny,Ok,gd,_f,Fe,ug,rk,hf,ad,rd,Qc,dy,ny,Wl,Wl,Wl,qj,lB,lB,lB,lB,lB,lB,lB,lB];var Ab=[sB,qB,aB,qB,Au,qB,aB,qB,aB,qB,aB,gp,lq,Wn,Tj,Ou,qB,aB,aB,aB,aB,Bd,yt,qB,aB,qB,aB,qB,Au,aB,aB,qB,Au,aB,aB,qB,aB,Ir,yr,lt,Ss,qB,aB,qB,aB,Op,hp,qk,ys,Ge,gl,pc,Yh,hg,En,bf,Ul,qB,aB,qB,aB,Uo,eo,Sg,Gs,tc,qB,aB,xk,Dw,lA,mt,Td,dn,mt,qB,mt,mt,Pe,mt,mt,ve,mt,Xc,lg,Nr,by,Ci,Gy,qB,aB,Xo,oo,Cr,aB,qB,aB,mA,nt,Ro,bo,Tl,zs,kp,pq,qB,aB,kf,Yv,aB,aB,aB,aB,aB,aB,aB,aB,aB,aB,zk,Qw,kq,Dp,fp,Yo,Rp,Kp,aB,qq,Jp,qB,aB,_j,Iy,ae,qB,aB,qB,eA,aB,aB,aB,aB,qB,aB,aB,aB,aB,aB,aB,aB,hq,wp,qB,aB,uq,Mp,aB,aB,aB,Wk,vw,aB,Lj,jv,aB,vm,$s,nj,Au,Au,Au,Au,sp,To,qB,aB,aB,aB,qB,Au,qB,aB,aB,qB,Au,hp,Jm,ym,Au,Au,Au,hp,aB,hp,$z,ft,aB,aB,Ez,Ys,Au,Au,Au,xi,et,Cj,Ws,qB,np,zq,Ws,yk,uw,aB,aB,dp,Hy,qB,aB,aB,aB,Ai,ft,aB,qB,aB,aB,aB,aB,aB,aB,qB,aB,qB,aB,iq,Ap,aB,aB,Ak,qx,wi,Us,ep,so,qB,aB,qB,qB,aB,qB,aB,aB,qB,pr];var Bb=[Hw];var Cb=[jB,Df,Tk,uz,pw,gw,uz,Xn,nl,uz,Br,Zn,Rc,me,Fp,uz,uz,uz,Gx,cw,wg,tg,Gh,ek,Pm,$j,jr,Ah,Vi,jp,wt,rt,ku,du,Tc,uz,rj,_r,Tn,Qp,ei,Og,fg,Ih,fs,qf,Eh,Gc,kl,vd,Yj,Hc,bj,uz,Jl,Ik,dl,Qk,Cv,Jk,ev,Dn,Kk,rj,Dj,rj,Hk,Gq,Hp,rj,tj,Gn,Aq,on,oe,An,Kl,os,ms,ns,Hh,$m,Um,Xg,hr,Up,il,or,ip,il,Ad,xd,Rq,il,or,uz,uz,Oh,Rh,Ag,Xm,uz,uz,uz,uu,cw,Bf,ud,fi,ps,Yr,Yr,uz,rj,uz,uz,jB,jB,jB,jB,jB,jB,jB,jB,jB,jB,jB,jB];var Db=[Ls,Yc,xh,Ls];var Eb=[oB,AA,DA,Oz,Ox,Ox,gz,xy,iA,_A,nq,tA,WA,Kz,pA,Lz,AA,fA,JA,_A,IA,IA,DA,dz,Ux,ay,qA,cA,_A,Zy,Lz,Cy,Nz,tz,lz,Bz,DA,Vu,kt,Cz,Dy,_s,yy,yy,gA,LA,Tz,YA,hA,TA,UA,RA,Kx,vA,hA,zA,Wz,BA,Lz,CA,Mz,mz,mz,AA,OA,hA,NA,MA,hx,sA,AA,AA,AA,$A,VA,PA,WA,VA,Nz,kz,rA,KA,hA,HA,GA,xy,dx,cz,Xy,Xy,gz,gz,Qz,AA,DA,gz,gz,Qz,Ox,AA,qy,qy,gz,zp,bB,oB,oB,oB,oB,oB,oB,oB,oB,oB,oB,oB,oB,oB,oB,oB,oB,oB,oB,oB,oB,oB,oB,oB];var Fb=[Yz,wk,Go,dj,Wm,pn,Yz,Yz];var Gb=[Rw];var Hb=[Xz];var Ib=[Ey,wn,_o,zo,ko,ao,ci,Cn,Rl,Pl,uo,sg,qo,lp,Tm,em,$l,_i,im,Zc,qt,iu,zf,Ey,Ey,Ey,Ey,Ey,Ey,Ey,Ey,Ey];var Jb=[FA,_g,bw,Ov,js,fk,fj,Zo,js,js,oj,Al,hm,Tr,Rj,FA];var Kb=[Vt,Pp];var Lb=[Ns];var Mb=[Jw,Ds,re,Ds,Ds,se,Ds,Ds,Uf,Af,Sr,Ds,Ds,Jw,Jw,Jw];var Nb=[QA,ee,yg,Gj,Cf,yf,QA,QA];var Ob=[dA,Rn,Si,uc,wo,El,ng,kh,si,zj,sn,ai,Sh,Ef,mf,wf,tn,tp,sk,Lf,xl,Jg,Hl,ki,vl,Ne,ul,Md,Gw,Gw,uf,ok,vg,Kg,vh,Km,Ql,dA,dA,dA,dA,dA,dA,dA,dA,dA,dA,dA,dA,dA,dA,dA,dA,dA,dA,dA,dA,dA,dA,dA,dA,dA,dA,dA];var Pb=[zw];var Qb=[nw,ge,Ol,Im,Ep,Sn,cj,nw];var Rb=[oA,Th,Fx,Fx,en,oA,oA,oA];var Sb=[nB,Jo,Vz,gv,xz,Dz,yx,cq,bq,cq,nB,nB,nB,nB,nB,nB];var Tb=[tv,od,Ed,Xd];var Ub=[Ev,Ck,Bk,Ev];var Vb=[ly];var Wb=[bv,Yg];var Xb=[Jt,Qh];var Yb=[Vs,wm,wm,Vs];var Zb=[SA,tq,xq,sq,oz,oz,oz,nc,Pu,Pu,Qd,lm,gn,yu,Pn,Dr,Dl,oq,Wp,cl,Mi,mq,ro,SA,SA,SA,SA,SA,SA,SA,SA,SA];var _b=[aA,$i,Ij,Gi,ol,jo,mk,Sm,Bn,_h,Qm,Lm,xm,aA,aA,aA];var $b=[Bs,hj,cd,Bs];var ac=[ky,dt];var bc=[gt,Cc,Ti,gt];var cc=[ZA,Ut];var dc=[as];var ec=[Ww,uk,uk,Ww];var fc=[zy,dd];var gc=[jt,Cd,Tf,jt];var hc=[Sz,Wu,zc,fe,Ye,xr,Kj,De,Bm,fn,Sz,Sz,Sz,Sz,Sz,Sz];var ic=[xA,cy,Oi,He,xt,ui,fo,cy,Hj,Vj,Rr,cy,Rd,zd,cy,ql,dm,Xk,Zp,ij,vf,mi,cy,cy,Ui,qi,rf,hu,gu,zx,zx,zx,zx,Fd,ji,Dk,Gk,Hr,Jh,es,of,Ie,Ie,yh,ql,lk,yo,Kh,ql,ii,cy,sm,mo,Pk,mm,tk,jk,nn,hn,mn,Jn,Vn,jf,Yn,cy,cy,cy,cy,vp,Qo,So,Xl,Pj,ni,Io,zx,zx,zx,zx,Ni,Gd,gi,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA,xA];var jc=[tB,iB,gk,Vr];var kc=[EA,Dt,at,gr,rl,Jc,EA,EA];var lc=[_y,Cg];var mc=[vz,af,Pv,Fu,ut,Wf,Sc,Sf,Ur,Nk,Iq,vs,Sk,Mc,gf,Gr,Bh,Mf,qc,ws,Mm,Cl,Mo,cf,Sf,Pg,Ke,Or,ur,$f,Eg,Dh,Ur,vi,bm,Lo,Ch,ie,gm,Jj,xj,bp,mg,Vg,Vh,Li,bl,Pv,Wh,Qg,Hi,Pv,Pv,uj,Aj,tm,hl,vk,Hd,Ce,Di,Nc,Aj,Ml,Bl,Ll,nd,Mn,Fj,Mn,Nl,Rm,fm,nk,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz,vz];return{_emscripten_bind_btCylinderShape___destroy___0:Tt,_emscripten_bind_btGeneric6DofConstraint_enableFeedback_1:_v,_emscripten_bind_btSoftRigidDynamicsWorld_addCollisionObject_3:gs,_emscripten_bind_btHingeConstraint_setBreakingImpulseThreshold_1:_x,_emscripten_bind_btDispatcherInfo_set_m_useContinuous_1:Jv,_emscripten_bind_btCollisionObject_isActive_0:Gv,_emscripten_bind_btVehicleTuning_set_m_frictionSlip_1:_x,_emscripten_bind_btDiscreteDynamicsWorld_btDiscreteDynamicsWorld_4:to,_emscripten_bind_btCapsuleShapeX_getMargin_0:gv,_emscripten_bind_Node_set_m_n_1:nr,_emscripten_bind_btCompoundShape_getMargin_0:gv,_emscripten_bind_RaycastInfo_set_m_wheelDirectionWS_1:cr,_emscripten_bind_btContactSolverInfo___destroy___0:Bx,_emscripten_bind_btWheelInfo_set_m_wheelsSuspensionForce_1:Kv,_emscripten_bind_ClosestRayResultCallback_get_m_hitPointWorld_0:Wz,_emscripten_bind_btPairCachingGhostObject_getCollisionFlags_0:wy,_emscripten_bind_btQuaternion_setX_1:By,_emscripten_bind_btCylinderShapeZ_getMargin_0:gv,_emscripten_bind_btDispatcherInfo_get_m_timeOfImpact_0:Vz,_emscripten_bind_btQuaternion_setZ_1:hy,_emscripten_bind_btCollisionObject_getUserIndex_0:Ny,_emscripten_bind_btCapsuleShapeZ_getMargin_0:gv,_emscripten_bind_btSoftBodyWorldInfo_set_water_density_1:iy,_emscripten_bind_btKinematicCharacterController_setMaxSlope_1:St,_emscripten_bind_btQuadWord_z_0:Zz,_emscripten_bind_btSoftBody_setCcdMotionThreshold_1:Aw,_emscripten_bind_Material___destroy___0:Bx,_emscripten_bind_btSoftBodyWorldInfo_get_m_maxDisplacement_0:Vz,_emscripten_bind_btSoftBody_rotate_1:Mj,_emscripten_bind_btWheelInfo_get_m_suspensionRestLength1_0:lx,_emscripten_bind_btWheelInfo_get_m_suspensionStiffness_0:sx,_emscripten_bind_btRigidBodyConstructionInfo_set_m_additionalAngularDampingThresholdSqr_1:qu,_emscripten_bind_btSoftRigidDynamicsWorld___destroy___0:Tt,_emscripten_bind_btSoftRigidDynamicsWorld_removeConstraint_1:Ct,_emscripten_bind_RaycastInfo_get_m_wheelAxleWS_0:Wz,_emscripten_bind_btRigidBodyConstructionInfo_get_m_angularDamping_0:Bw,_emscripten_bind_btCollisionDispatcher___destroy___0:Tt,_emscripten_bind_btRigidBody_applyCentralImpulse_1:co,_emscripten_bind_btConvexHullShape_getMargin_0:gv,_emscripten_bind_btDefaultMotionState_getWorldTransform_1:Zt,_emscripten_bind_btDiscreteDynamicsWorld_stepSimulation_1:Qs,_emscripten_bind_btRaycastVehicle_getNumWheels_0:qy,_emscripten_bind_btDiscreteDynamicsWorld_stepSimulation_3:ls,_emscripten_bind_btDiscreteDynamicsWorld_stepSimulation_2:hs,_emscripten_bind_btSoftRigidDynamicsWorld_addAction_1:ku,_emscripten_bind_btDynamicsWorld_rayTest_3:Fs,_emscripten_bind_Config_set_kSR_SPLT_CL_1:ox,_emscripten_bind_btQuadWord_x_0:nA,_emscripten_bind_Config_get_diterations_0:Xy,_emscripten_bind_btCollisionObject_isKinematicObject_0:Tw,_emscripten_bind_btSoftRigidDynamicsWorld_removeSoftBody_1:Wi,_emscripten_bind_ConvexResultCallback___destroy___0:Tt,_emscripten_bind_btGeneric6DofSpringConstraint_setLinearUpperLimit_1:Lq,_emscripten_bind_ClosestConvexResultCallback_set_m_hitNormalWorld_1:Kq,_emscripten_bind_btSoftBody_isKinematicObject_0:Tw,_emscripten_bind_btRigidBody_getCenterOfMassTransform_0:Qz,_emscripten_bind_btGhostObject_isKinematicObject_0:Tw,_emscripten_bind_btGeneric6DofSpringConstraint_btGeneric6DofSpringConstraint_5:dk,_emscripten_bind_btCapsuleShape___destroy___0:Tt,_emscripten_bind_btCollisionObject_activate_1:tr,_emscripten_bind_btCollisionObject_activate_0:Xr,_emscripten_bind_btKinematicCharacterController_setUpAxis_1:Xt,_emscripten_bind_btSoftRigidDynamicsWorld_addConstraint_1:At,_emscripten_bind_btDispatcherInfo_set_m_timeOfImpact_1:jy,_emscripten_bind_btCollisionDispatcher_btCollisionDispatcher_1:hk,_emscripten_bind_btVector3_setX_1:By,_emscripten_bind_btCollisionConfiguration___destroy___0:Tt,_emscripten_bind_btCapsuleShapeZ_setMargin_1:Bu,_emscripten_bind_btHingeConstraint_enableFeedback_1:_v,_emscripten_bind_btSphereShape___destroy___0:Tt,_emscripten_bind_btHeightfieldTerrainShape_setLocalScaling_1:fu,_emscripten_bind_btGeneric6DofConstraint_setAngularLowerLimit_1:po,_emscripten_bind_btManifoldPoint_set_m_localPointB_1:fr,_emscripten_bind_btVector3_setZ_1:hy,_emscripten_bind_btKinematicCharacterController_setUseGhostSweepTest_1:Tu,_emscripten_bind_btQuaternion_setValue_4:Lr,_emscripten_bind_btDispatcherInfo_set_m_dispatchFunc_1:gw,_emscripten_bind_btSoftBody_transform_1:mv,_emscripten_bind_LocalShapeInfo___destroy___0:Bx,_emscripten_bind_btSoftBody_appendAnchor_4:_d,_emscripten_bind_btVehicleTuning_get_m_suspensionStiffness_0:nA,_emscripten_bind_btPoint2PointConstraint_get_m_setting_0:Ky,_emscripten_bind_btQuadWord_setY_1:iy,_emscripten_bind_btRigidBody_setUserPointer_1:Pw,_emscripten_bind_btRigidBodyConstructionInfo_set_m_restitution_1:qv,_emscripten_bind_btDefaultMotionState_get_m_graphicsWorldTrans_0:Qz,_emscripten_bind_btDiscreteDynamicsWorld_addRigidBody_3:ds,_emscripten_bind_btPairCachingGhostObject_btPairCachingGhostObject_0:Ph,_emscripten_bind_btDiscreteDynamicsWorld_getSolverInfo_0:fl,_emscripten_bind_btCylinderShape_setMargin_1:Bu,_emscripten_bind_btCollisionWorld___destroy___0:Tt,_emscripten_bind_btSoftBodyWorldInfo_get_m_broadphase_0:Ix,_emscripten_bind_LocalConvexResult_get_m_hitPointLocal_0:Oy,_emscripten_bind_btBoxShape_btBoxShape_1:Fh,_emscripten_bind_btPersistentManifold_getBody1_0:ry,_emscripten_bind_ClosestRayResultCallback_set_m_collisionObject_1:gw,_emscripten_bind_RaycastInfo_set_m_isInContact_1:mw,_emscripten_bind_btKinematicCharacterController_setGravity_1:ny,_emscripten_bind_btGeneric6DofConstraint_btGeneric6DofConstraint_5:Bo,_emscripten_bind_btGeneric6DofConstraint_btGeneric6DofConstraint_3:Wo,_emscripten_bind_btQuaternion_setY_1:iy,_emscripten_bind_btSoftRigidDynamicsWorld_removeAction_1:du,_emscripten_bind_btWheelInfo_get_m_rollInfluence_0:Vx,_emscripten_bind_btTypedConstraint_setBreakingImpulseThreshold_1:_x,_emscripten_bind_btBvhTriangleMeshShape_setLocalScaling_1:fu,_emscripten_bind_tNodeArray_size_0:Oz,_emscripten_bind_btPoint2PointConstraint_setBreakingImpulseThreshold_1:_x,_emscripten_bind_btRigidBody_getUserIndex_0:Ny,_emscripten_bind_btDynamicsWorld_getDispatchInfo_0:qz,_emscripten_bind_btCompoundShape_removeChildShapeByIndex_1:ou,_emscripten_bind_btSoftBody_appendFace_4:Ks,_emscripten_bind_btConvexTriangleMeshShape_btConvexTriangleMeshShape_2:Yk,_emscripten_bind_btConvexTriangleMeshShape_btConvexTriangleMeshShape_1:ll,_emscripten_bind_ClosestConvexResultCallback_set_m_hitPointWorld_1:Nq,_emscripten_bind_RayResultCallback_set_m_collisionFilterMask_1:sv,_emscripten_bind_btBoxShape_getMargin_0:gv,_emscripten_bind_btPairCachingGhostObject___destroy___0:Rt,_emscripten_bind_btPairCachingGhostObject_setUserPointer_1:Pw,_emscripten_bind_btPairCachingGhostObject_activate_0:Xr,_emscripten_bind_btPairCachingGhostObject_activate_1:tr,_emscripten_bind_btContactSolverInfo_get_m_splitImpulsePenetrationThreshold_0:Bv,_emscripten_bind_btSoftBody_setUserPointer_1:Pw,_emscripten_bind_btDynamicsWorld_getDispatcher_0:xy,_emscripten_bind_btSoftBody_setMass_2:ss,_emscripten_bind_btConeShape_btConeShape_2:_l,_emscripten_bind_btDynamicsWorld___destroy___0:Tt,_emscripten_bind_Config_get_kCHR_0:zz,_emscripten_bind_btPairCachingGhostObject_forceActivationState_1:kw,_emscripten_bind_btDefaultMotionState___destroy___0:Tt,_emscripten_bind_btDispatcherInfo_get_m_stepCount_0:Oz,_emscripten_bind_btRigidBodyConstructionInfo_set_m_angularDamping_1:fv,_emscripten_bind_btQuadWord_setW_1:jy,_emscripten_bind_btRigidBodyConstructionInfo_get_m_friction_0:Uw,_emscripten_bind_btCapsuleShapeX_btCapsuleShapeX_2:Em,_emscripten_bind_LocalShapeInfo_set_m_shapePart_1:Mw,_emscripten_bind_btRigidBody_setLinearFactor_1:un,_emscripten_bind_btDispatcherInfo_set_m_useConvexConservativeDistanceUtil_1:Hu,_emscripten_bind_btSoftRigidDynamicsWorld_setGravity_1:Qt,_emscripten_bind_btRaycastVehicle_getCurrentSpeedKmHour_0:rx,_emscripten_bind_btWheelInfo_get_m_engineForce_0:my,_emscripten_bind_Config_get_kSR_SPLT_CL_0:Sy,_emscripten_bind_btRaycastVehicle_setSteeringValue_2:st,_emscripten_bind_btPoint2PointConstraint___destroy___0:Tt,_emscripten_bind_btSoftBody_getUserPointer_0:Ny,_emscripten_bind_btCollisionShape_setMargin_1:Bu,_emscripten_bind_btGeneric6DofConstraint_setAngularUpperLimit_1:ho,_emscripten_bind_btDiscreteDynamicsWorld_addConstraint_2:Rs,_emscripten_bind_btDiscreteDynamicsWorld_addConstraint_1:At,_emscripten_bind_btRigidBodyConstructionInfo_set_m_angularSleepingThreshold_1:Lu,_emscripten_bind_Config_get_kVCF_0:_z,_emscripten_bind_btKinematicCharacterController_setJumpSpeed_1:$x,_malloc:yc,_emscripten_bind_btDispatcherInfo_get_m_useEpa_0:ux,_emscripten_bind_btTransform_btTransform_2:um,_emscripten_bind_btTransform_btTransform_0:Do,_emscripten_bind_btPairCachingGhostObject_getUserIndex_0:Ny,_emscripten_bind_Config_set_kVC_1:Xx,_emscripten_bind_btVector3_op_sub_1:ar,_emscripten_bind_btWheelInfo_set_m_wheelsRadius_1:ww,_emscripten_bind_btDispatcherInfo_set_m_enableSPU_1:aw,_emscripten_bind_btWheelInfo_set_m_wheelsDampingCompression_1:xv,_emscripten_bind_btSoftBody_appendNode_2:id,_emscripten_bind_btCollisionObject_setActivationState_1:zt,_emscripten_bind_btPersistentManifold___destroy___0:Au,_emscripten_bind_btConstraintSetting_get_m_impulseClamp_0:Zz,_emscripten_bind_btCylinderShapeZ___destroy___0:Tt,_emscripten_bind_btMatrix3x3___destroy___0:Bx,_emscripten_bind_ConvexResultCallback_hasHit_0:Wx,_emscripten_bind_btCollisionShape_calculateLocalInertia_2:ct,_emscripten_bind_btGeneric6DofSpringConstraint_setBreakingImpulseThreshold_1:_x,_emscripten_bind_Config_set_kPR_1:Yx,_emscripten_bind_btCollisionWorld_convexSweepTest_5:Wq,_emscripten_bind_btVector3_length_0:Zr,_emscripten_bind_btSoftBody_set_m_materials_1:Xi,_emscripten_enum_PHY_ScalarType_PHY_UCHAR:fB,_emscripten_bind_ClosestRayResultCallback_set_m_hitPointWorld_1:hr,_emscripten_bind_btCapsuleShapeX_calculateLocalInertia_2:ct,_emscripten_bind_btConstraintSetting_set_m_damping_1:iy,_emscripten_bind_btVehicleRaycaster___destroy___0:Tt,_emscripten_bind_btSoftBody_set_m_cfg_1:di,_emscripten_bind_btRigidBody_setCcdMotionThreshold_1:Aw,_emscripten_bind_btConvexHullShape_setMargin_1:Bu,_emscripten_bind_btRigidBody_applyForce_2:_k,_emscripten_bind_btConeShapeZ_calculateLocalInertia_2:ct,_emscripten_bind_btConstraintSetting_set_m_tau_1:By,_emscripten_bind_btConvexHullShape_calculateLocalInertia_2:ct,_emscripten_bind_RaycastInfo_get_m_contactPointWS_0:nz,_emscripten_bind_btSoftBody_setCollisionFlags_1:yw,_emscripten_bind_btSphereShape_calculateLocalInertia_2:ct,_emscripten_bind_btSoftBody_appendMaterial_0:Yw,_emscripten_bind_btVector4_normalize_0:fq,_emscripten_bind_btSoftRigidDynamicsWorld_getSolverInfo_0:el,_emscripten_bind_btCollisionDispatcher_getManifoldByIndexInternal_1:Bt,_emscripten_bind_btSoftBody_setTotalMass_2:oh,_emscripten_bind_LocalConvexResult_LocalConvexResult_5:al,_emscripten_bind_btGhostObject_setFriction_1:Wt,_emscripten_bind_btCollisionWorld_rayTest_3:Fs,_emscripten_bind_btRigidBody_setCcdSweptSphereRadius_1:iw,_emscripten_bind_btCylinderShapeZ_setMargin_1:Bu,_emscripten_bind_btRigidBody_setFriction_1:Wt,_emscripten_bind_LocalConvexResult_set_m_hitPointLocal_1:_q,_emscripten_bind_btGhostObject_setWorldTransform_1:pl,_emscripten_bind_tMaterialArray_size_0:Oz,_emscripten_bind_btManifoldPoint_getAppliedImpulse_0:Lx,_emscripten_bind_btDiscreteDynamicsWorld_removeRigidBody_1:Ft,_emscripten_bind_btConvexHullShape___destroy___0:Tt,_emscripten_bind_RaycastInfo_set_m_suspensionLength_1:Zx,_emscripten_bind_btDiscreteDynamicsWorld_getBroadphase_0:yy,_emscripten_bind_btSoftBodyWorldInfo_get_m_dispatcher_0:Hx,_emscripten_bind_btKinematicCharacterController_jump_0:Gu,_emscripten_bind_btCollisionObject_getUserPointer_0:Ny,_emscripten_bind_btWheelInfo_set_m_raycastInfo_1:Er,_emscripten_bind_btSoftBody_generateClusters_1:Ru,_emscripten_bind_btConeTwistConstraint_setMaxMotorImpulseNormalized_1:eu,_emscripten_bind_btConvexTriangleMeshShape_setLocalScaling_1:fu,_emscripten_bind_btRigidBody_upcast_1:uv,_emscripten_bind_btCollisionObject_getWorldTransform_0:Qz,_emscripten_bind_btVector4_setZ_1:hy,_emscripten_bind_btManifoldPoint_set_m_positionWorldOnB_1:Xq,___cxa_can_catch:eq,_emscripten_bind_btTransform_getBasis_0:uA,_emscripten_bind_btPairCachingGhostObject_setFriction_1:Wt,_emscripten_bind_Config_set_kSRHR_CL_1:Dx,_emscripten_bind_btCollisionDispatcher_getNumManifolds_0:Uu,_emscripten_bind_btWheelInfo_set_m_bIsFrontWheel_1:Zv,_emscripten_bind_ClosestRayResultCallback___destroy___0:Tt,_emscripten_bind_btGeneric6DofSpringConstraint_setStiffness_2:lu,_emscripten_bind_btCylinderShapeX_setMargin_1:Bu,_emscripten_bind_btQuadWord_w_0:Vz,_emscripten_bind_Node___destroy___0:Bx,_emscripten_bind_btDynamicsWorld_contactTest_2:qn,_emscripten_bind_btDiscreteDynamicsWorld_contactTest_2:qn,_emscripten_bind_btBvhTriangleMeshShape_calculateLocalInertia_2:ct,_emscripten_bind_btTransform_setOrigin_1:kr,_emscripten_bind_btCompoundShape_getNumChildShapes_0:gz,_emscripten_bind_btSoftBodyWorldInfo_set_m_broadphase_1:Uv,_emscripten_bind_btGhostObject_btGhostObject_0:Ki,_emscripten_bind_tNodeArray___destroy___0:Ip,_emscripten_bind_ClosestConvexResultCallback_ClosestConvexResultCallback_2:Rk,_emscripten_bind_btRigidBodyConstructionInfo_set_m_additionalAngularDampingFactor_1:Cu,_emscripten_bind_btManifoldPoint_set_m_localPointA_1:mr,_emscripten_bind_LocalConvexResult___destroy___0:Bx,_emscripten_bind_btVector3_dot_1:xs,_emscripten_bind_btVehicleTuning_get_m_maxSuspensionTravelCm_0:Vz,_emscripten_bind_btVector4_op_add_1:br,_emscripten_bind_btWheelInfo___destroy___0:Bx,_emscripten_bind_btSoftRigidDynamicsWorld_getSoftBodyArray_0:uy,_emscripten_bind_btTransform_setRotation_1:Xu,_emscripten_bind_Config_set_kSHR_1:ny,_emscripten_bind_btPoint2PointConstraint_enableFeedback_1:_v,_emscripten_bind_ClosestRayResultCallback_set_m_collisionFilterGroup_1:rv,_emscripten_bind_btAxisSweep3_btAxisSweep3_2:up,_emscripten_bind_btAxisSweep3_btAxisSweep3_3:ap,_emscripten_bind_btConstraintSetting_set_m_impulseClamp_1:hy,_emscripten_bind_btVector3_setY_1:iy,_emscripten_bind_btAxisSweep3_btAxisSweep3_4:Po,_emscripten_bind_btAxisSweep3_btAxisSweep3_5:Ho,_emscripten_bind_btQuadWord_setX_1:By,_emscripten_bind_tMaterialArray___destroy___0:Ip,_emscripten_bind_btSoftBodyHelpers_CreateRope_5:qh,_emscripten_bind_btRigidBodyConstructionInfo_get_m_additionalLinearDampingThresholdSqr_0:$u,_emscripten_bind_Config_set_piterations_1:$w,_emscripten_bind_btOverlappingPairCache___destroy___0:Tt,_emscripten_bind_btRigidBody_setUserIndex_1:Pw,_emscripten_bind_Material_get_m_kAST_0:Zz,_emscripten_bind_btConstraintSetting___destroy___0:Bx,_emscripten_bind_RayResultCallback___destroy___0:Tt,_emscripten_bind_RaycastInfo_get_m_contactNormalWS_0:uA,_emscripten_bind_btSoftBodyWorldInfo_get_water_density_0:_z,_emscripten_bind_btPersistentManifold_getBody0_0:sy,_emscripten_bind_btConeShapeX_btConeShapeX_2:Zl,_emscripten_bind_btQuaternion_z_0:Zz,_emscripten_bind_btSoftBody_setCcdSweptSphereRadius_1:iw,_emscripten_bind_btConeTwistConstraint_enableFeedback_1:_v,_emscripten_bind_btSoftBodyRigidBodyCollisionConfiguration_btSoftBodyRigidBodyCollisionConfiguration_0:Sl,_emscripten_bind_btCapsuleShapeZ_setLocalScaling_1:fu,_emscripten_bind_ClosestConvexResultCallback_get_m_closestHitFraction_0:_z,_emscripten_bind_btSoftBody_translate_1:jm,_emscripten_bind_btSliderConstraint_setUpperLinLimit_1:ew,_emscripten_bind_btConeTwistConstraint_btConeTwistConstraint_2:pg,_emscripten_bind_btVector3_op_mul_1:Pr,_emscripten_bind_btConcaveShape___destroy___0:Tt,_emscripten_bind_btConeTwistConstraint_btConeTwistConstraint_4:rg,_emscripten_bind_btQuaternion_x_0:nA,_emscripten_bind_btSoftRigidDynamicsWorld_btSoftRigidDynamicsWorld_5:pf,_emscripten_bind_Config_set_timescale_1:wx,_emscripten_bind_LocalConvexResult_set_m_hitNormalLocal_1:qr,_emscripten_bind_btConcaveShape_setLocalScaling_1:fu,_emscripten_bind_btDiscreteDynamicsWorld_getDispatchInfo_0:qz,_emscripten_bind_btConeShapeX_setLocalScaling_1:fu,_emscripten_bind_btVehicleTuning_set_m_maxSuspensionForce_1:Yx,_emscripten_bind_btSoftBody_appendLink_4:Js,_emscripten_bind_btCylinderShapeZ_setLocalScaling_1:fu,_emscripten_bind_btConvexHullShape_btConvexHullShape_0:Eq,_emscripten_bind_btWheelInfo_set_m_maxSuspensionForce_1:iw,_emscripten_bind_ClosestRayResultCallback_set_m_collisionFilterMask_1:sv,_emscripten_bind_btSoftBody_getTotalMass_0:Vo,_emscripten_bind_btSoftRigidDynamicsWorld_removeCollisionObject_1:pt,_emscripten_bind_Config_get_kLF_0:Iz,_emscripten_bind_btGhostObject___destroy___0:Rt,_emscripten_bind_btSoftRigidDynamicsWorld_addCollisionObject_2:Cs,_emscripten_bind_btSoftRigidDynamicsWorld_addCollisionObject_1:bt,_emscripten_bind_btGhostObject_setContactProcessingThreshold_1:fw,_emscripten_bind_btSoftBodyHelpers_CreateFromConvexHull_4:rr,_emscripten_bind_btCollisionWorld_getBroadphase_0:yy,_emscripten_bind_btRaycastVehicle_updateWheelTransform_2:Qr,_emscripten_bind_btQuaternion___destroy___0:Bx,_emscripten_bind_btStaticPlaneShape_calculateLocalInertia_2:ct,_emscripten_bind_btDefaultMotionState_btDefaultMotionState_2:Gg,_emscripten_bind_Material_set_m_flags_1:nx,_emscripten_bind_btDefaultMotionState_btDefaultMotionState_0:mh,_emscripten_bind_btDefaultMotionState_btDefaultMotionState_1:Lg,_emscripten_bind_Config_get_viterations_0:Vy,_emscripten_bind_btKinematicCharacterController_canJump_0:zu,_emscripten_bind_btSoftBodyArray_at_1:lv,_emscripten_bind_btVector4_length_0:Zr,_emscripten_bind_btPairCachingGhostObject_setUserIndex_1:Pw,_emscripten_bind_btRigidBody_isActive_0:Gv,_emscripten_bind_btRaycastVehicle_btRaycastVehicle_3:Nj,_emscripten_bind_btMotionState_setWorldTransform_1:bu,_emscripten_bind_btSoftRigidDynamicsWorld_getDispatcher_0:xy,_emscripten_bind_btCylinderShape_setLocalScaling_1:fu,_emscripten_bind_btPairCachingGhostObject_getWorldTransform_0:Qz,_emscripten_bind_btCompoundShape_calculateLocalInertia_2:ct,_emscripten_bind_btCollisionWorld_getDispatchInfo_0:qz,_emscripten_enum_PHY_ScalarType_PHY_DOUBLE:eB,_emscripten_bind_btRigidBody_setCollisionShape_1:bu,_emscripten_bind_btSoftBody_appendTetra_5:Qf,_emscripten_bind_btConeShapeX___destroy___0:Tt,_emscripten_bind_btCollisionObject_getCollisionFlags_0:wy,_emscripten_bind_btDispatcherInfo_set_m_enableSatConvex_1:Av,_emscripten_bind_btConeTwistConstraint_enableMotor_1:Rv,_emscripten_bind_btWheelInfo_set_m_chassisConnectionPointCS_1:Pq,_emscripten_bind_btSoftBody_checkLink_2:cm,_emscripten_bind_btRaycastVehicle_setCoordinateSystem_3:bs,_emscripten_bind_btKinematicCharacterController_btKinematicCharacterController_4:Uj,_emscripten_bind_btVector3_normalize_0:fq,_emscripten_bind_btPairCachingGhostObject_setRestitution_1:Pt,_emscripten_bind_Config_set_kAHR_1:Sx,_emscripten_bind_btHeightfieldTerrainShape_getMargin_0:gv,_emscripten_bind_btBroadphaseInterface___destroy___0:Tt,_emscripten_bind_btSoftRigidDynamicsWorld_rayTest_3:Fs,_emscripten_bind_Config_get_kSRHR_CL_0:iz,_emscripten_bind_btSliderConstraint_getBreakingImpulseThreshold_0:Iz,_emscripten_bind_btRigidBodyConstructionInfo_set_m_additionalDampingFactor_1:Nu,_emscripten_bind_btCollisionObject_setContactProcessingThreshold_1:fw,_emscripten_bind_btCompoundShape___destroy___0:Tt,_emscripten_bind_btHingeConstraint_setMotorTarget_2:kk,_emscripten_bind_btRigidBodyConstructionInfo_get_m_additionalAngularDampingFactor_0:ov,_emscripten_bind_btCapsuleShapeX_setMargin_1:Bu,_emscripten_bind_btSequentialImpulseConstraintSolver___destroy___0:Tt,_emscripten_bind_btRigidBodyConstructionInfo_set_m_additionalLinearDampingThresholdSqr_1:tu,_emscripten_bind_btRigidBody_getCollisionFlags_0:wy,_emscripten_bind_btCollisionShape_setLocalScaling_1:fu,_emscripten_bind_Config_get_piterations_0:Wy,_emscripten_bind_LocalConvexResult_get_m_hitCollisionObject_0:Ly,_emscripten_bind_btMatrix3x3_setEulerZYX_3:Am,_emscripten_bind_btRigidBody_setRollingFriction_1:Ht,_emscripten_bind_btDispatcherInfo_get_m_convexConservativeDistanceThreshold_0:zz,_emscripten_bind_btRigidBody_getUserPointer_0:Ny,_emscripten_bind_Config_get_kSHR_0:xz,_emscripten_bind_btHeightfieldTerrainShape_calculateLocalInertia_2:ct,_emscripten_bind_btRigidBody_setMotionState_1:Fr,_emscripten_bind_RayResultCallback_get_m_collisionFilterMask_0:Zw,_emscripten_bind_btCollisionWorld_getDispatcher_0:xy,_emscripten_bind_btVector4_dot_1:xs,_emscripten_bind_btCollisionObject_setRollingFriction_1:Ht,_emscripten_bind_Config_set_kSK_SPLT_CL_1:px,_emscripten_bind_RayResultCallback_set_m_collisionFilterGroup_1:rv,_emscripten_bind_btTriangleMesh_btTriangleMesh_1:Cq,_i64Subtract:Is,_emscripten_bind_btCylinderShapeX_getMargin_0:gv,_emscripten_bind_btRigidBody_setDamping_2:Kn,_emscripten_bind_RayResultCallback_get_m_collisionFilterGroup_0:Vw,_emscripten_bind_btGhostObject_setCollisionFlags_1:yw,_emscripten_bind_btMatrix3x3_getRotation_1:Yu,_emscripten_bind_btWheelInfo_set_m_engineForce_1:Aw,_emscripten_bind_btConeTwistConstraint_setMaxMotorImpulse_1:wu,_emscripten_bind_btPersistentManifold_getNumContacts_0:Jx,_emscripten_bind_btCylinderShapeX_setLocalScaling_1:fu,_emscripten_bind_btDbvtBroadphase_btDbvtBroadphase_0:Ln,_emscripten_bind_btRigidBodyConstructionInfo_get_m_additionalDamping_0:zv,_emscripten_bind_btCompoundShape_setLocalScaling_1:fu,_emscripten_bind_btOverlappingPairCallback___destroy___0:Tt,_emscripten_bind_btDynamicsWorld_convexSweepTest_5:Wq,_emscripten_bind_btCylinderShape_calculateLocalInertia_2:ct,_emscripten_bind_btPairCachingGhostObject_setCcdSweptSphereRadius_1:iw,_emscripten_bind_btRigidBody_getCollisionShape_0:vy,_emscripten_bind_btRigidBody_setContactProcessingThreshold_1:fw,_emscripten_bind_btRigidBody_getLinearVelocity_0:sz,_emscripten_bind_btRigidBody_applyImpulse_2:cu,_emscripten_bind_btConcaveShape_calculateLocalInertia_2:ct,_emscripten_bind_RaycastInfo_get_m_groundObject_0:Wy,_emscripten_bind_btRigidBody_setWorldTransform_1:pl,_emscripten_bind_btRigidBody_setAngularVelocity_1:Yp,_emscripten_bind_btGeneric6DofSpringConstraint_btGeneric6DofSpringConstraint_3:pk,_emscripten_bind_Config_get_kDP_0:Zz,_emscripten_bind_btConvexShape_setLocalScaling_1:fu,_emscripten_bind_Config_get_collisions_0:Yy,_emscripten_bind_btTriangleMeshShape_calculateLocalInertia_2:ct,_emscripten_bind_btVector4_setX_1:By,_emscripten_bind_btWheelInfo_get_m_chassisConnectionPointCS_0:oy,_emscripten_bind_btPairCachingGhostObject_setContactProcessingThreshold_1:fw,_emscripten_bind_btGeneric6DofConstraint_setLinearUpperLimit_1:Lq,_emscripten_bind_ClosestRayResultCallback_get_m_collisionFilterMask_0:Zw,_emscripten_bind_RayResultCallback_hasHit_0:Px,_emscripten_bind_btSoftBody_isActive_0:Gv,_emscripten_bind_btRigidBody_applyLocalTorque_1:qm,_bitshift64Shl:is,_emscripten_bind_Config___destroy___0:Uk,_emscripten_bind_btRigidBodyConstructionInfo_get_m_additionalAngularDampingThresholdSqr_0:_u,_emscripten_bind_btVehicleTuning_get_m_suspensionDamping_0:Zz,_emscripten_bind_btRaycastVehicle_getWheelTransformWS_1:Eu,_emscripten_bind_btQuaternion_normalize_0:Oo,_emscripten_bind_ClosestConvexResultCallback_get_m_convexToWorld_0:qz,_emscripten_bind_btQuadWord_setZ_1:hy,_emscripten_bind_btConeShapeZ_setLocalScaling_1:fu,_emscripten_bind_Config_get_kPR_0:Gz,_emscripten_bind_btGeneric6DofSpringConstraint___destroy___0:Tt,_emscripten_bind_btConvexTriangleMeshShape___destroy___0:Tt,_emscripten_bind_btVehicleTuning_set_m_maxSuspensionTravelCm_1:jy,_emscripten_bind_Material_set_m_kAST_1:hy,_emscripten_bind_btGhostObject_setRollingFriction_1:Ht,_emscripten_bind_btCylinderShapeZ_btCylinderShapeZ_1:xp,_emscripten_bind_btRigidBody_getAngularVelocity_0:pz,_emscripten_bind_btCompoundShape_btCompoundShape_0:Tq,_emscripten_bind_btCompoundShape_btCompoundShape_1:Fq,_emscripten_bind_btOverlappingPairCache_setInternalGhostPairCallback_1:Ct,_emscripten_bind_btStaticPlaneShape_btStaticPlaneShape_2:tl,_emscripten_bind_btSphereShape_getMargin_0:gv,_emscripten_bind_btCollisionObject_setAnisotropicFriction_2:Ao,_emscripten_bind_btHingeConstraint_setAngularOnly_1:Wv,_emscripten_bind_btSoftRigidDynamicsWorld_contactTest_2:qn,_emscripten_bind_Config_get_kDG_0:Vz,_emscripten_bind_btPairCachingGhostObject_setAnisotropicFriction_2:Ao,_emscripten_bind_Node_get_m_x_0:yA,_emscripten_bind_btSoftBodyArray_size_0:Oz,_emscripten_bind_ClosestRayResultCallback_hasHit_0:Px,_emscripten_bind_btCompoundShape_addChildShape_2:Ud,_emscripten_bind_btDispatcher___destroy___0:Tt,_emscripten_bind_btVehicleTuning_get_m_suspensionCompression_0:_z,_emscripten_bind_btVehicleTuning_set_m_suspensionStiffness_1:By,_emscripten_bind_btDiscreteDynamicsWorld___destroy___0:Tt,_emscripten_bind_btConvexShape___destroy___0:Tt,_memmove:Bp,_emscripten_bind_btCapsuleShapeX_setLocalScaling_1:fu,_emscripten_bind_btPairCachingGhostObject_setCollisionFlags_1:yw,_emscripten_bind_btSoftBody_getCollisionFlags_0:wy,_emscripten_enum_PHY_ScalarType_PHY_INTEGER:dB,_emscripten_bind_btSoftBodyRigidBodyCollisionConfiguration_btSoftBodyRigidBodyCollisionConfiguration_1:Ym,_emscripten_bind_btCollisionObject_setRestitution_1:Pt,_emscripten_bind_btRigidBody_applyCentralForce_1:Ko,_emscripten_bind_btSoftBodyWorldInfo_set_m_gravity_1:dr,_emscripten_bind_LocalConvexResult_get_m_hitFraction_0:yz,_emscripten_bind_btDispatcherInfo_get_m_enableSPU_0:gx,_emscripten_bind_btQuaternion_w_0:Vz,_emscripten_bind_ConvexResultCallback_get_m_collisionFilterGroup_0:Ow,_emscripten_bind_btTransform_getRotation_0:Co,_emscripten_bind_Config_set_kSKHR_CL_1:Ex,_emscripten_bind_btHingeConstraint_btHingeConstraint_6:vo,_emscripten_bind_btHingeConstraint_btHingeConstraint_7:go,_emscripten_bind_LocalConvexResult_get_m_hitNormalLocal_0:yA,_emscripten_bind_btHingeConstraint_btHingeConstraint_5:xg,_emscripten_bind_btHingeConstraint_btHingeConstraint_2:Gp,_emscripten_bind_btHingeConstraint_btHingeConstraint_3:mp,_emscripten_bind_RaycastInfo___destroy___0:Bx,_emscripten_bind_btSoftBody_setWorldTransform_1:pl,_emscripten_bind_btBoxShape_setMargin_1:Bu,_emscripten_bind_ClosestConvexResultCallback_get_m_hitNormalWorld_0:Mx,_emscripten_bind_btVector4_y_0:_z,_emscripten_bind_Config_get_kSK_SPLT_CL_0:Ty,_emscripten_bind_btTypedConstraint___destroy___0:Tt,_emscripten_bind_btCylinderShapeX_btCylinderShapeX_1:yp,_emscripten_bind_btGeneric6DofSpringConstraint_setAngularUpperLimit_1:ho,_emscripten_bind_btConeTwistConstraint_setDamping_1:qw,_emscripten_bind_btDiscreteDynamicsWorld_addRigidBody_1:Mt,_emscripten_bind_Config_set_collisions_1:bx,_bitshift64Ashr:Mr,_emscripten_bind_btQuaternion_btQuaternion_4:Zm,_emscripten_bind_btSoftRigidDynamicsWorld_getBroadphase_0:yy,_emscripten_bind_btSoftBody_getCollisionShape_0:vy,_emscripten_bind_btSphereShape_btSphereShape_1:Fn,_emscripten_bind_btWheelInfo_get_m_wheelsSuspensionForce_0:kx,_emscripten_bind_btQuaternion_y_0:_z,_emscripten_bind_btCollisionWorld_addCollisionObject_1:vt,_emscripten_bind_btCollisionWorld_addCollisionObject_2:Ps,_emscripten_bind_btCollisionWorld_addCollisionObject_3:gs,_emscripten_bind_ClosestConvexResultCallback_set_m_collisionFilterGroup_1:iv,_emscripten_bind_btConeTwistConstraint_setBreakingImpulseThreshold_1:_x,_emscripten_bind_btSoftBodyHelpers_CreateEllipsoid_4:fh,_emscripten_bind_RaycastInfo_get_m_isInContact_0:vx,_emscripten_bind_Config_set_kKHR_1:Qx,_emscripten_bind_btHeightfieldTerrainShape_setMargin_1:Bu,_emscripten_bind_ClosestConvexResultCallback_get_m_collisionFilterGroup_0:Ow,_emscripten_bind_btCapsuleShape_setMargin_1:Bu,_emscripten_bind_btDefaultVehicleRaycaster_btDefaultVehicleRaycaster_1:zn,_emscripten_bind_ConcreteContactResultCallback_addSingleResult_7:Dq,_emscripten_bind_btCollisionObject_setUserPointer_1:Pw,_emscripten_bind_btSequentialImpulseConstraintSolver_btSequentialImpulseConstraintSolver_0:Oj,_emscripten_bind_btActionInterface___destroy___0:Tt,_emscripten_bind_btSoftBody_generateClusters_2:mu,_emscripten_bind_btDefaultMotionState_setWorldTransform_1:bu,_emscripten_bind_btCollisionWorld_contactTest_2:qn,_emscripten_bind_RayResultCallback_get_m_collisionObject_0:Ox,_emscripten_bind_btPoint2PointConstraint_getPivotInA_0:Qy,_emscripten_bind_Config_get_kAHR_0:Az,_emscripten_bind_ClosestConvexResultCallback_get_m_convexFromWorld_0:Kz,_emscripten_bind_btVector4_setY_1:iy,_emscripten_bind_btCompoundShape_setMargin_1:Bu,_emscripten_bind_btGhostObject_setRestitution_1:Pt,_emscripten_bind_btDynamicsWorld_addCollisionObject_1:vt,_emscripten_bind_ClosestConvexResultCallback_get_m_collisionFilterMask_0:Nw,_emscripten_bind_btDynamicsWorld_addCollisionObject_3:gs,_emscripten_bind_btDynamicsWorld_addCollisionObject_2:Ps,_emscripten_bind_btSoftRigidDynamicsWorld_getGravity_0:io,_emscripten_bind_btDiscreteDynamicsWorld_getDispatcher_0:xy,_emscripten_bind_btHeightfieldTerrainShape___destroy___0:Tt,_emscripten_bind_btManifoldPoint_get_m_positionWorldOnB_0:Uy,_emscripten_bind_btWheelInfo_get_m_maxSuspensionTravelCm_0:mx,_emscripten_bind_Config_get_kVC_0:Fz,_emscripten_bind_btVector4_op_mul_1:Pr,_emscripten_bind_btCylinderShape_btCylinderShape_1:rq,_emscripten_bind_btWheelInfo_set_m_suspensionStiffness_1:Sv,_emscripten_bind_Material_get_m_kVST_0:Vz,_emscripten_bind_Config_set_kVCF_1:iy,_emscripten_bind_btSoftRigidDynamicsWorld_stepSimulation_3:ls,_emscripten_bind_btGhostObject_getUserIndex_0:Ny,_emscripten_bind_btSoftRigidDynamicsWorld_stepSimulation_1:Qs,_emscripten_bind_btSoftBody_setRestitution_1:Pt,_emscripten_bind_btVector3___destroy___0:Au,_bitshift64Lshr:us,_emscripten_bind_btRigidBody_setAngularFactor_1:aq,_emscripten_bind_btCylinderShapeZ_calculateLocalInertia_2:ct,_emscripten_bind_btWheelInfo_set_m_steering_1:Kw,_emscripten_bind_btMotionState_getWorldTransform_1:Zt,_emscripten_bind_btDynamicsWorld_getSolverInfo_0:jl,_emscripten_bind_Config_get_kMT_0:Hz,_emscripten_bind_btDynamicsWorld_getBroadphase_0:yy,_emscripten_bind_btDispatcherInfo_set_m_convexConservativeDistanceThreshold_1:Rx,_emscripten_bind_Config_get_timescale_0:az,_emscripten_bind_btVector3_x_0:nA,___cxa_is_pointer_type:Ku,_emscripten_bind_btRigidBodyConstructionInfo_btRigidBodyConstructionInfo_3:Fi,_emscripten_bind_btCollisionObject_getCollisionShape_0:vy,_emscripten_bind_btRigidBodyConstructionInfo_btRigidBodyConstructionInfo_4:ti,_emscripten_bind_btManifoldPoint___destroy___0:Bx,_emscripten_bind_btRigidBodyConstructionInfo_set_m_rollingFriction_1:dv,_emscripten_bind_btVector3_z_0:Zz,_emscripten_bind_btGhostObject_setUserIndex_1:Pw,_emscripten_bind_btDefaultMotionState_set_m_graphicsWorldTrans_1:yl,_emscripten_bind_ClosestConvexResultCallback___destroy___0:Tt,_emscripten_bind_btDefaultCollisionConstructionInfo___destroy___0:Bx,_emscripten_bind_btCollisionObject_setFriction_1:Wt,_emscripten_bind_btQuadWord_y_0:_z,_emscripten_bind_btDefaultCollisionConfiguration___destroy___0:Tt,_emscripten_bind_btRigidBody_setMassProps_2:ck,_emscripten_bind_btVector3_setValue_3:ks,_emscripten_bind_btPairCachingGhostObject_setCcdMotionThreshold_1:Aw,_emscripten_bind_RaycastInfo_get_m_suspensionLength_0:Hz,_emscripten_bind_btGhostObject_getCollisionFlags_0:wy,_emscripten_bind_btCapsuleShapeX___destroy___0:Tt,_emscripten_bind_Config_set_kDG_1:jy,_emscripten_bind_btRigidBody_setActivationState_1:zt,_emscripten_bind_btRigidBody_updateInertiaTensor_0:Xj,_emscripten_bind_btHingeConstraint_setLimit_4:Un,_emscripten_bind_btHingeConstraint_setLimit_5:Nn,_emscripten_bind_btSoftBodyWorldInfo_btSoftBodyWorldInfo_0:Vk,_emscripten_bind_btWheelInfo_get_m_wheelsDampingRelaxation_0:Xw,_emscripten_bind_btWheelInfo_set_m_maxSuspensionTravelCm_1:Mv,_emscripten_bind_btConeShape_setLocalScaling_1:fu,_emscripten_bind_btSoftBody_scale_1:Xe,_emscripten_bind_Config_get_citerations_0:mz,_emscripten_bind_btTypedConstraint_getBreakingImpulseThreshold_0:Iz,_emscripten_bind_btGhostObject_getCollisionShape_0:vy,_emscripten_bind_Config_get_kSSHR_CL_0:hz,_emscripten_bind_btBoxShape___destroy___0:Tt,_emscripten_bind_btWheelInfo_get_m_bIsFrontWheel_0:fx,_emscripten_bind_btPersistentManifold_getContactPoint_1:Vv,_emscripten_bind_btVector3_btVector3_0:sr,_emscripten_bind_btGeneric6DofSpringConstraint_getBreakingImpulseThreshold_0:Iz,_emscripten_bind_btConeShapeX_calculateLocalInertia_2:ct,_emscripten_bind_RaycastInfo_set_m_groundObject_1:$w,_emscripten_bind_btGhostObject_activate_1:tr,_emscripten_bind_btGeneric6DofSpringConstraint_enableSpring_2:Qq,_emscripten_bind_btManifoldPoint_getPositionWorldOnB_0:Uy,_emscripten_bind_btManifoldPoint_get_m_positionWorldOnA_0:jA,_emscripten_bind_btDefaultSoftBodySolver_btDefaultSoftBodySolver_0:zm,_emscripten_bind_btSphereShape_setMargin_1:Bu,_emscripten_bind_btSoftBody_get_m_cfg_0:kA,_emscripten_bind_btCollisionObject_setUserIndex_1:Pw,_emscripten_bind_btContactSolverInfo_set_m_splitImpulsePenetrationThreshold_1:vu,_emscripten_bind_btSliderConstraint_setUpperAngLimit_1:vq,_emscripten_bind_btDynamicsWorld_contactPairTest_3:Ar,_emscripten_bind_btCollisionWorld_getPairCache_0:Et,_emscripten_bind_btConeTwistConstraint_setMotorTarget_1:oi,_emscripten_bind_ClosestConvexResultCallback_set_m_convexFromWorld_1:Jq,_emscripten_bind_btWheelInfo_set_m_rollInfluence_1:sw,_emscripten_bind_btRigidBody_getWorldTransform_0:Qz,_emscripten_bind_btDefaultCollisionConstructionInfo_btDefaultCollisionConstructionInfo_0:Om,_emscripten_bind_btGhostObject_forceActivationState_1:kw,_emscripten_bind_btSoftBodyHelpers_CreateFromTriMesh_5:ye,_emscripten_bind_ConcreteContactResultCallback_ConcreteContactResultCallback_0:cn,_emscripten_bind_VoidPtr___destroy___0:Bx,_emscripten_bind_btSliderConstraint_setLowerAngLimit_1:wq,_emscripten_bind_btSoftBody_get_m_materials_0:Pz,_emscripten_bind_btVector4_op_sub_1:ar,_emscripten_bind_RaycastInfo_set_m_contactPointWS_1:fr,_emscripten_bind_RayResultCallback_set_m_collisionObject_1:gw,_emscripten_bind_ClosestRayResultCallback_get_m_rayFromWorld_0:ty,_emscripten_bind_btSoftBody_setContactProcessingThreshold_1:fw,_emscripten_bind_btPairCachingGhostObject_getNumOverlappingObjects_0:tx,_emscripten_bind_Config_get_kDF_0:Jz,_emscripten_bind_btWheelInfo_get_m_steering_0:Ay,_emscripten_bind_btConstraintSetting_get_m_tau_0:nA,_emscripten_bind_btSliderConstraint___destroy___0:Tt,_emscripten_bind_btCollisionObject_setCollisionShape_1:bu,_emscripten_bind_btCollisionShape___destroy___0:Tt,_emscripten_bind_btMatrix3x3_getRow_1:qp,_emscripten_bind_ConvexResultCallback_get_m_closestHitFraction_0:_z,_emscripten_bind_btTriangleMesh_addTriangle_4:yn,_emscripten_bind_btDispatcherInfo_get_m_dispatchFunc_0:Ox,_emscripten_bind_btRigidBodyConstructionInfo_get_m_rollingFriction_0:tw,_emscripten_bind_btSoftBody_getUserIndex_0:Ny,_emscripten_bind_btPairCachingGhostObject_setCollisionShape_1:bu,_emscripten_bind_btKinematicCharacterController_warp_1:Nt,_emscripten_bind_btAxisSweep3___destroy___0:Tt,_emscripten_bind_btSoftBody_getWorldTransform_0:Qz,_emscripten_bind_btTriangleMesh___destroy___0:Tt,_emscripten_bind_btKinematicCharacterController_preStep_1:It,_emscripten_bind_btRaycastVehicle_applyEngineForce_2:tt,_emscripten_bind_btRaycastVehicle_setBrake_2:Lt,_emscripten_bind_ConcreteContactResultCallback___destroy___0:Tt,_emscripten_bind_RaycastInfo_set_m_wheelAxleWS_1:hr,_emscripten_bind_btCollisionObject___destroy___0:Rt,_emscripten_bind_btVehicleTuning_set_m_suspensionDamping_1:hy,_emscripten_bind_btRigidBody_applyTorqueImpulse_1:km,_emscripten_bind_btTriangleMeshShape_setLocalScaling_1:fu,_emscripten_bind_btRigidBodyConstructionInfo_set_m_linearSleepingThreshold_1:Mu,_emscripten_bind_btConeTwistConstraint_setMotorTargetInConstraintSpace_1:Ms,_emscripten_bind_btDispatcherInfo_set_m_timeStep_1:By,_emscripten_bind_btVector3_btVector3_3:Tp,_emscripten_bind_RaycastInfo_set_m_contactNormalWS_1:mr,_emscripten_bind_btRigidBodyConstructionInfo_set_m_friction_1:yv,_emscripten_bind_btDiscreteDynamicsWorld_getGravity_0:lo,_emscripten_bind_ClosestConvexResultCallback_get_m_hitPointWorld_0:Tx,_emscripten_bind_btCollisionShape_getMargin_0:gv,_emscripten_bind_btSoftBodyWorldInfo_set_water_offset_1:hy,_emscripten_bind_btRigidBody_isKinematicObject_0:Tw,_emscripten_bind_RaycastInfo_get_m_hardPointWS_0:wz,_emscripten_bind_btConeTwistConstraint___destroy___0:Tt,_emscripten_bind_btQuadWord___destroy___0:Bx,_emscripten_bind_btSoftRigidDynamicsWorld_contactPairTest_3:Ar,_emscripten_bind_ClosestRayResultCallback_set_m_rayFromWorld_1:Uq,_emscripten_bind_btGeneric6DofSpringConstraint_setDamping_2:nu,_emscripten_bind_RaycastInfo_get_m_wheelDirectionWS_0:$y,_emscripten_bind_ClosestRayResultCallback_get_m_hitNormalWorld_0:$y,_emscripten_bind_btSoftBody_setUserIndex_1:Pw,_emscripten_bind_btSliderConstraint_setBreakingImpulseThreshold_1:_x,_emscripten_bind_btSoftBody_setCollisionShape_1:bu,_emscripten_bind_btGhostObject_setAnisotropicFriction_2:Ao,_emscripten_bind_btConstraintSolver___destroy___0:Tt,_emscripten_bind_btDbvtBroadphase___destroy___0:Tt,_emscripten_bind_btCapsuleShape_btCapsuleShape_2:Fm,_emscripten_bind_btTypedConstraint_enableFeedback_1:_v,_emscripten_bind_btSoftBody_setRollingFriction_1:Ht,_emscripten_bind_btGhostObject_activate_0:Xr,_emscripten_bind_btCapsuleShape_setLocalScaling_1:fu,_emscripten_bind_btRigidBodyConstructionInfo_get_m_additionalDampingFactor_0:Nv,_emscripten_bind_btRigidBody_setAnisotropicFriction_2:Ao,_emscripten_bind_btSoftBody_btSoftBody_4:cp,_emscripten_bind_btSoftBody_activate_0:Xr,_emscripten_bind_btSoftBodyWorldInfo_set_air_density_1:By,_emscripten_bind_ConvexResultCallback_set_m_closestHitFraction_1:iy,_emscripten_bind_btVector3_op_add_1:br,_emscripten_bind_btPersistentManifold_btPersistentManifold_0:aj,_emscripten_bind_ConvexResultCallback_get_m_collisionFilterMask_0:Nw,_emscripten_bind_ClosestRayResultCallback_ClosestRayResultCallback_2:Mk,_emscripten_bind_btVector4___destroy___0:Au,_emscripten_bind_btPairCachingGhostObject_isKinematicObject_0:Tw,_emscripten_bind_btConstraintSetting_get_m_damping_0:_z,_emscripten_bind_tNodeArray_at_1:hw,_i64Add:Kt,_emscripten_bind_btContactSolverInfo_set_m_splitImpulse_1:vv,_emscripten_bind_btSoftBodyHelpers_CreatePatchUV_10:be,_emscripten_bind_btCollisionObject_setCcdMotionThreshold_1:Aw,_emscripten_bind_btDefaultCollisionConfiguration_btDefaultCollisionConfiguration_0:am,_emscripten_bind_btDefaultCollisionConfiguration_btDefaultCollisionConfiguration_1:kn,_emscripten_bind_btKinematicCharacterController_btKinematicCharacterController_3:Zj,_emscripten_bind_btRigidBodyConstructionInfo_get_m_angularSleepingThreshold_0:Iv,_emscripten_bind_btPoint2PointConstraint_getPivotInB_0:Py,_emscripten_bind_btKinematicCharacterController_playerStep_2:Ts,_emscripten_bind_btDispatcherInfo___destroy___0:Bx,_emscripten_bind_btCapsuleShape_getMargin_0:gv,_emscripten_bind_btCylinderShape_getMargin_0:gv,_emscripten_bind_btStaticPlaneShape_setLocalScaling_1:fu,_emscripten_bind_btConvexTriangleMeshShape_calculateLocalInertia_2:ct,_emscripten_bind_btVector4_setValue_4:Lr,_emscripten_bind_ContactResultCallback_addSingleResult_7:Dq,_emscripten_bind_btGhostObject_getWorldTransform_0:Qz,_emscripten_bind_btDiscreteDynamicsWorld_getPairCache_0:Et,_emscripten_bind_LocalConvexResult_set_m_hitFraction_1:Qx,_emscripten_bind_btCapsuleShapeZ_calculateLocalInertia_2:ct,_emscripten_bind_btDispatcherInfo_get_m_timeStep_0:nA,_emscripten_bind_btConvexTriangleMeshShape_setMargin_1:Bu,_emscripten_bind_btWheelInfo_get_m_frictionSlip_0:gy,_emscripten_bind_btVehicleTuning_set_m_suspensionCompression_1:iy,_emscripten_bind_btBoxShape_calculateLocalInertia_2:ct,_emscripten_bind_btMotionState___destroy___0:Tt,_emscripten_bind_btCollisionObject_setCollisionFlags_1:yw,_emscripten_bind_btPairCachingGhostObject_setActivationState_1:zt,_emscripten_bind_btDiscreteDynamicsWorld_addCollisionObject_1:bt,_emscripten_bind_btDiscreteDynamicsWorld_addCollisionObject_2:Cs,_emscripten_bind_btDiscreteDynamicsWorld_addCollisionObject_3:gs,_emscripten_bind_btGeneric6DofSpringConstraint_enableFeedback_1:_v,_emscripten_bind_Config_set_kSSHR_CL_1:Cx,_emscripten_bind_btDispatcher_getManifoldByIndexInternal_1:Bt,_emscripten_bind_btSoftBodyWorldInfo___destroy___0:rp,_emscripten_bind_btConvexTriangleMeshShape_getMargin_0:gv,_emscripten_bind_btSoftBodySolver___destroy___0:Tt,_emscripten_bind_Node_get_m_n_0:wA,_emscripten_bind_LocalShapeInfo_set_m_triangleIndex_1:pw,_emscripten_bind_btPairCachingGhostObject_setWorldTransform_1:pl,_emscripten_bind_btHingeConstraint_getBreakingImpulseThreshold_0:Iz,_emscripten_bind_btConeTwistConstraint_setAngularOnly_1:Hv,_emscripten_bind_btGhostObject_setCcdSweptSphereRadius_1:iw,_emscripten_bind_btPoint2PointConstraint_btPoint2PointConstraint_4:ak,_emscripten_bind_btPoint2PointConstraint_btPoint2PointConstraint_2:Ei,_emscripten_bind_btGhostObject_getNumOverlappingObjects_0:tx,_emscripten_bind_btSoftBodyRigidBodyCollisionConfiguration___destroy___0:Tt,_emscripten_bind_ConvexResultCallback_set_m_collisionFilterGroup_1:iv,_emscripten_enum_PHY_ScalarType_PHY_FIXEDPOINT88:XA,_emscripten_bind_btPairCachingGhostObject_getOverlappingObject_1:Du,_emscripten_bind_btRigidBodyConstructionInfo___destroy___0:Bx,_emscripten_bind_btGeneric6DofConstraint_setBreakingImpulseThreshold_1:_x,_emscripten_bind_btPoint2PointConstraint_setPivotA_1:Zq,_emscripten_bind_ClosestConvexResultCallback_set_m_convexToWorld_1:Oq,_memcpy:_m,_emscripten_bind_Config_get_maxvolume_0:bz,_emscripten_bind_btCapsuleShape_calculateLocalInertia_2:ct,_emscripten_bind_btRigidBody___destroy___0:Rt,_emscripten_bind_btVector3_y_0:_z,_emscripten_bind_btDispatcherInfo_set_m_useEpa_1:lw,_emscripten_bind_btVehicleTuning_get_m_maxSuspensionForce_0:Gz,_emscripten_bind_btBvhTriangleMeshShape_btBvhTriangleMeshShape_2:pp,_emscripten_bind_btBvhTriangleMeshShape_btBvhTriangleMeshShape_3:$o,_emscripten_bind_LocalShapeInfo_get_m_triangleIndex_0:Oz,_emscripten_bind_Config_set_kDF_1:$x,_emscripten_bind_btHeightfieldTerrainShape_btHeightfieldTerrainShape_9:Ng,_emscripten_bind_btSoftBody_activate_1:tr,_emscripten_bind_btConeShapeZ_btConeShapeZ_2:Yl,_emscripten_bind_btGhostObject_setCollisionShape_1:bu,_emscripten_bind_btDispatcherInfo_set_m_allowedCcdPenetration_1:$x,_emscripten_bind_btQuaternion_setW_1:jy,_emscripten_bind_btPairCachingGhostObject_setRollingFriction_1:Ht,_emscripten_bind_btDiscreteDynamicsWorld_setGravity_1:Qt,_emscripten_bind_btGhostObject_isActive_0:Gv,_emscripten_bind_btVector4_z_0:Zz,_emscripten_bind_btCollisionObject_forceActivationState_1:kw,_emscripten_bind_btKinematicCharacterController_onGround_0:Vu,_emscripten_bind_btRaycastVehicle_getWheelInfo_1:av,_emscripten_bind_btGeneric6DofConstraint_getBreakingImpulseThreshold_0:Iz,_emscripten_bind_btConeTwistConstraint_setLimit_2:jq,_emscripten_bind_ClosestConvexResultCallback_set_m_collisionFilterMask_1:hv,_emscripten_bind_btSoftBodyWorldInfo_get_water_normal_0:nz,_emscripten_bind_Node_set_m_x_1:qr,_emscripten_bind_btSoftBody_setFriction_1:Wt,_emscripten_bind_btRigidBody_setSleepingThresholds_2:_t,_emscripten_bind_btSoftBody_upcast_1:Qv,_emscripten_bind_btCollisionObject_setWorldTransform_1:pl,_emscripten_bind_LocalConvexResult_get_m_localShapeInfo_0:Oz,_emscripten_bind_btSoftBodyWorldInfo_set_m_dispatcher_1:Tv,_emscripten_bind_btStridingMeshInterface___destroy___0:Tt,_emscripten_bind_btSoftBody_setActivationState_1:zt,_emscripten_bind_btManifoldPoint_get_m_localPointA_0:uA,_emscripten_bind_btRigidBodyConstructionInfo_get_m_linearDamping_0:Ew,_emscripten_bind_btSoftBodyHelpers_CreatePatch_9:Ee,_emscripten_bind_btDispatcher_getNumManifolds_0:Uu,_emscripten_bind_btConvexShape_setMargin_1:Bu,_emscripten_bind_btSoftBody_get_m_nodes_0:bA,_emscripten_bind_btSoftBody___destroy___0:Rt,_emscripten_bind_btRigidBodyConstructionInfo_get_m_linearSleepingThreshold_0:rx,_emscripten_bind_btRigidBody_activate_1:tr,_emscripten_bind_btRigidBody_activate_0:Xr,_emscripten_bind_btRaycastVehicle___destroy___0:Tt,_emscripten_bind_btSoftBodyWorldInfo_get_m_gravity_0:fz,_emscripten_bind_btGhostObject_setActivationState_1:zt,_emscripten_bind_btSoftBodyArray___destroy___0:Ip,_emscripten_bind_Material_set_m_kLST_1:iy,_emscripten_bind_btCollisionWorld_contactPairTest_3:Ar,_emscripten_bind_btDispatcherInfo_get_m_useContinuous_0:Lw,_emscripten_bind_btHingeConstraint_setMaxMotorImpulse_1:$v,_emscripten_bind_Config_get_kSS_SPLT_CL_0:Dz,_emscripten_bind_btCylinderShapeX___destroy___0:Tt,_emscripten_bind_btSoftRigidDynamicsWorld_getWorldInfo_0:Jy,_emscripten_bind_btManifoldPoint_getPositionWorldOnA_0:jA,_emscripten_bind_ContactResultCallback___destroy___0:Tt,_emscripten_bind_btDispatcherInfo_get_m_useConvexConservativeDistanceUtil_0:pv,_emscripten_bind_btSoftBody_setAnisotropicFriction_2:Ao,_emscripten_bind_btConstraintSetting_btConstraintSetting_0:rn,_emscripten_bind_btRigidBody_getMotionState_0:Fy,_emscripten_bind_btKinematicCharacterController_getGhostObject_0:Ox,_emscripten_bind_btRigidBody_btRigidBody_1:zi,_emscripten_bind_btTriangleMeshShape___destroy___0:Tt,_emscripten_bind_btKinematicCharacterController_setWalkDirection_1:ot,_emscripten_bind_btDynamicsWorld_removeAction_1:du,_emscripten_bind_btRigidBody_applyTorque_1:No,_emscripten_bind_btRigidBodyConstructionInfo_get_m_restitution_0:Iw,_emscripten_bind_btTransform_setIdentity_0:vn,_emscripten_bind_btSoftBodyWorldInfo_get_air_density_0:nA,_emscripten_bind_btManifoldPoint_set_m_normalWorldOnB_1:$q,_emscripten_bind_btGhostObject_setUserPointer_1:Pw,_emscripten_bind_btKinematicCharacterController_getGravity_0:xz,_emscripten_enum_PHY_ScalarType_PHY_SHORT:gB,_emscripten_bind_btConeTwistConstraint_getBreakingImpulseThreshold_0:Iz,_emscripten_bind_btDiscreteDynamicsWorld_addAction_1:ku,_emscripten_bind_btHingeConstraint_btHingeConstraint_4:Dg,_emscripten_bind_LocalShapeInfo_get_m_shapePart_0:Ly,_emscripten_bind_btConeShape_calculateLocalInertia_2:ct,_emscripten_bind_btCylinderShapeX_calculateLocalInertia_2:ct,_emscripten_bind_ConvexResultCallback_set_m_collisionFilterMask_1:hv,_llvm_bswap_i32:ow,_emscripten_bind_btSoftRigidDynamicsWorld_removeRigidBody_1:Ft,_emscripten_bind_btSphereShape_setLocalScaling_1:fu,_emscripten_bind_btRigidBody_applyCentralLocalForce_1:nm,_emscripten_bind_btVector4_w_0:Vz,_emscripten_bind_btManifoldPoint_get_m_normalWorldOnB_0:Ry,_emscripten_bind_btBvhTriangleMeshShape___destroy___0:Tt,_emscripten_bind_Config_set_citerations_1:cx,_emscripten_bind_btSoftBody_checkFace_3:Zk,_emscripten_bind_Config_get_kSKHR_CL_0:jz,_free:hd,_emscripten_bind_ClosestRayResultCallback_get_m_rayToWorld_0:wz,_emscripten_bind_ClosestConvexResultCallback_set_m_closestHitFraction_1:iy,_emscripten_bind_btDiscreteDynamicsWorld_removeConstraint_1:Ct,_emscripten_bind_btSoftBodyHelpers_btSoftBodyHelpers_0:xo,_emscripten_bind_Config_set_diterations_1:ax,_emscripten_bind_btGeneric6DofConstraint___destroy___0:Tt,_emscripten_bind_btSoftRigidDynamicsWorld_addRigidBody_1:Mt,_emscripten_bind_btVector4_btVector4_4:Np,_emscripten_bind_btSoftRigidDynamicsWorld_addRigidBody_3:ds,_emscripten_bind_btVector4_x_0:nA,_emscripten_bind_Config_set_kDP_1:hy,_emscripten_bind_btGhostObject_getUserPointer_0:Ny,_emscripten_bind_btConvexHullShape_addPoint_1:Ju,_emscripten_bind_btConvexHullShape_addPoint_2:$t,_emscripten_bind_btPoint2PointConstraint_getBreakingImpulseThreshold_0:Iz,_emscripten_bind_Config_set_kMT_1:Zx,_emscripten_bind_btTransform_getOrigin_0:jA,_emscripten_bind_Config_get_kKHR_0:yz,_emscripten_bind_Material_get_m_kLST_0:_z,_emscripten_bind_btHingeConstraint___destroy___0:Tt,_emscripten_bind_btPairCachingGhostObject_getUserPointer_0:Ny,_emscripten_bind_btSoftBody_set_m_nodes_1:sh,_emscripten_bind_Config_set_viterations_1:_w,_emscripten_bind_btConvexShape_calculateLocalInertia_2:ct,_memset:Qn,_emscripten_bind_btKinematicCharacterController___destroy___0:Tt,_emscripten_bind_btConvexHullShape_setLocalScaling_1:fu,_emscripten_bind_btTriangleMesh_btTriangleMesh_0:Sq,_emscripten_bind_btPairCachingGhostObject_getCollisionShape_0:vy,_emscripten_bind_btTriangleMesh_btTriangleMesh_2:gq,_emscripten_bind_btTransform___destroy___0:Bx,_emscripten_bind_btWheelInfo_set_m_frictionSlip_1:xw,_emscripten_bind_btSoftBodyHelpers___destroy___0:Bx,_emscripten_bind_btHingeConstraint_enableAngularMotor_3:cs,_emscripten_bind_btManifoldPoint_set_m_positionWorldOnA_1:kr,_emscripten_bind_btRigidBody_setCenterOfMassTransform_1:Yt,_emscripten_bind_btManifoldPoint_get_m_localPointB_0:nz,_emscripten_bind_btDiscreteDynamicsWorld_contactPairTest_3:Ar,_emscripten_bind_btSliderConstraint_setLowerLinLimit_1:fw,_emscripten_bind_btPoint2PointConstraint_set_m_setting_1:zr,_emscripten_bind_btCollisionObject_setCcdSweptSphereRadius_1:iw,_emscripten_bind_btWheelInfo_get_m_wheelsRadius_0:fy,_emscripten_bind_btRigidBody_setLinearVelocity_1:_p,_emscripten_bind_btVehicleTuning_btVehicleTuning_0:Hm,_emscripten_bind_Config_set_maxvolume_1:xx,_emscripten_bind_btDefaultSoftBodySolver___destroy___0:Tt,_emscripten_bind_ClosestRayResultCallback_set_m_rayToWorld_1:ir,_emscripten_bind_ClosestRayResultCallback_get_m_collisionFilterGroup_0:Vw,_emscripten_bind_btWheelInfo_set_m_wheelsDampingRelaxation_1:Fv,_emscripten_bind_btDynamicsWorld_addAction_1:ku,_emscripten_bind_btDiscreteDynamicsWorld_removeAction_1:du,_emscripten_bind_btSoftBodyWorldInfo_set_m_maxDisplacement_1:jy,_emscripten_bind_btSoftRigidDynamicsWorld_stepSimulation_2:hs,_emscripten_bind_btDefaultVehicleRaycaster___destroy___0:Tt,_emscripten_bind_btRigidBodyConstructionInfo_set_m_linearDamping_1:nv,_emscripten_bind_btQuaternion_setEulerZYX_3:Hn,_emscripten_bind_Config_set_kLF_1:_x,_emscripten_enum_PHY_ScalarType_PHY_FLOAT:hB,_emscripten_bind_btRigidBodyConstructionInfo_set_m_additionalDamping_1:Su,_emscripten_bind_Config_set_kSS_SPLT_CL_1:dy,_emscripten_bind_btSoftBody_forceActivationState_1:kw,_emscripten_bind_btKinematicCharacterController_setFallSpeed_1:Xx,_emscripten_bind_Material_get_m_flags_0:gz,_emscripten_bind_btWheelInfo_get_m_wheelsDampingCompression_0:Sw,_emscripten_bind_ClosestConvexResultCallback_hasHit_0:Wx,_emscripten_bind_btCapsuleShapeZ___destroy___0:Tt,_emscripten_bind_btRaycastVehicle_getRigidBody_0:py,_emscripten_bind_btWheelInfo_get_m_maxSuspensionForce_0:Ax,_emscripten_bind_ClosestRayResultCallback_get_m_collisionObject_0:Ox,_emscripten_bind_btTriangleMesh_addTriangle_3:In,_emscripten_bind_btGhostObject_getOverlappingObject_1:Du,_emscripten_bind_btSoftRigidDynamicsWorld_getPairCache_0:Et,_emscripten_bind_btSoftRigidDynamicsWorld_getDispatchInfo_0:qz,_emscripten_bind_btSoftBodyWorldInfo_set_water_normal_1:fr,_emscripten_bind_btSoftRigidDynamicsWorld_addConstraint_2:Rs,_emscripten_bind_btCompoundShape_getChildShape_1:xu,_emscripten_bind_btRigidBody_setCollisionFlags_1:yw,_emscripten_bind_btWheelInfo_set_m_suspensionRestLength1_1:Lv,_emscripten_bind_Config_set_kCHR_1:Rx,_emscripten_bind_btConeShape___destroy___0:Tt,_emscripten_bind_btCapsuleShapeZ_btCapsuleShapeZ_2:Dm,_emscripten_bind_btSoftRigidDynamicsWorld_addSoftBody_3:sj,_emscripten_bind_btSliderConstraint_btSliderConstraint_5:tf,_emscripten_bind_btSliderConstraint_btSliderConstraint_3:Je,_emscripten_bind_btDispatcherInfo_get_m_allowedCcdPenetration_0:Jz,_emscripten_bind_RaycastInfo_set_m_hardPointWS_1:ir,_emscripten_bind_btRigidBody_forceActivationState_1:kw,_emscripten_bind_btPoint2PointConstraint_setPivotB_1:Yq,_emscripten_bind_btManifoldPoint_getDistance_0:az,_emscripten_bind_btGhostPairCallback___destroy___0:Tt,_emscripten_bind_btTransform_setFromOpenGLMatrix_1:rm,_emscripten_bind_btKinematicCharacterController_getMaxSlope_0:zz,_emscripten_bind_btSliderConstraint_enableFeedback_1:_v,_emscripten_bind_btRaycastVehicle_addWheel_7:ce,_emscripten_bind_btPairCachingGhostObject_isActive_0:Gv,_emscripten_bind_LocalConvexResult_set_m_localShapeInfo_1:pw,_emscripten_bind_btStaticPlaneShape___destroy___0:Tt,_emscripten_bind_btHingeConstraint_enableMotor_1:jw,_emscripten_bind_btDispatcherInfo_set_m_stepCount_1:pw,_emscripten_bind_btBoxShape_setLocalScaling_1:fu,_emscripten_bind_btConeShapeZ___destroy___0:Tt,_emscripten_bind_btDynamicsWorld_getPairCache_0:Et,_emscripten_bind_btSoftRigidDynamicsWorld_convexSweepTest_5:Wq,_emscripten_bind_btDiscreteDynamicsWorld_convexSweepTest_5:Wq,_emscripten_bind_btKinematicCharacterController_setVelocityForTimeInterval_2:ts,_emscripten_bind_btRigidBody_setRestitution_1:Pt,_emscripten_bind_btVector4_btVector4_0:sr,_emscripten_bind_btDispatcherInfo_get_m_enableSatConvex_0:Fw,_emscripten_bind_btGhostObject_setCcdMotionThreshold_1:Aw,_emscripten_bind_btGeneric6DofConstraint_setLinearLowerLimit_1:Mq,_emscripten_bind_btGeneric6DofSpringConstraint_setLinearLowerLimit_1:Mq,_emscripten_bind_tMaterialArray_at_1:lv,_emscripten_bind_LocalConvexResult_set_m_hitCollisionObject_1:Mw,_emscripten_bind_Material_set_m_kVST_1:jy,_emscripten_bind_btGeneric6DofSpringConstraint_setAngularLowerLimit_1:po,_emscripten_bind_btSoftBodyWorldInfo_get_water_offset_0:Zz,_emscripten_bind_btDiscreteDynamicsWorld_rayTest_3:Fs,_emscripten_bind_btWheelInfo_get_m_raycastInfo_0:uA,_emscripten_bind_btContactSolverInfo_get_m_splitImpulse_0:Cw,_emscripten_bind_btConvexShape_getMargin_0:gv,_emscripten_bind_btGhostPairCallback_btGhostPairCallback_0:_n,_emscripten_bind_btKinematicCharacterController_setMaxJumpHeight_1:Zx,_emscripten_bind_ClosestRayResultCallback_set_m_hitNormalWorld_1:cr,_emscripten_bind_btVehicleTuning_get_m_frictionSlip_0:Iz,__GLOBAL__sub_I_btQuickprof_cpp:Cm,runPostSets:Hs,stackAlloc:kv,stackSave:rB,stackRestore:kB,establishStackSpace:rz,setThrew:ex,setTempRet0:mB,getTempRet0:pB,dynCall_viiiii:Zs,dynCall_vid:Nx,dynCall_vi:Rz,dynCall_viiidii:rs,dynCall_vii:ix,dynCall_iiiiiiiiiii:Vp,dynCall_ii:My,dynCall_viidi:ru,dynCall_viddiii:As,dynCall_vidii:su,dynCall_iiiii:Gt,dynCall_vidi:wv,dynCall_diiiiiiii:er,dynCall_viiiiddddiid:$p,dynCall_diiiii:Os,dynCall_vidd:dw,dynCall_iiii:Iu,dynCall_viiiiid:qs,dynCall_viiiiii:$r,dynCall_iiid:Zu,dynCall_di:ez,dynCall_iiiiiii:Kr,dynCall_diiidii:Wr,dynCall_viidii:it,dynCall_viiiiiii:wr,dynCall_viiiiiiiii:Hq,dynCall_viiiiiiiiii:dq,dynCall_iii:rw,dynCall_diii:Qu,dynCall_diiiiiiiiii:Xp,dynCall_viiiid:ht,dynCall_diiiiiiiii:Bq,dynCall_did:jx,dynCall_viiiidddddidi:Lp,dynCall_diidii:Xs,dynCall_diiii:Ot,dynCall_iiiiiiiiii:yq,dynCall_viiid:pu,dynCall_viii:cv,dynCall_v:cB,dynCall_viid:Dv,dynCall_iidid:ju,dynCall_viiii:au}}) - - -// EMSCRIPTEN_END_ASM -(Module.asmGlobalArg,Module.asmLibraryArg,buffer);var _emscripten_bind_btCylinderShape___destroy___0=Module["_emscripten_bind_btCylinderShape___destroy___0"]=asm["_emscripten_bind_btCylinderShape___destroy___0"];var _emscripten_bind_btGeneric6DofConstraint_enableFeedback_1=Module["_emscripten_bind_btGeneric6DofConstraint_enableFeedback_1"]=asm["_emscripten_bind_btGeneric6DofConstraint_enableFeedback_1"];var _emscripten_bind_btGhostObject___destroy___0=Module["_emscripten_bind_btGhostObject___destroy___0"]=asm["_emscripten_bind_btGhostObject___destroy___0"];var _emscripten_bind_btPoint2PointConstraint_set_m_setting_1=Module["_emscripten_bind_btPoint2PointConstraint_set_m_setting_1"]=asm["_emscripten_bind_btPoint2PointConstraint_set_m_setting_1"];var _emscripten_bind_btDispatcherInfo_get_m_enableSPU_0=Module["_emscripten_bind_btDispatcherInfo_get_m_enableSPU_0"]=asm["_emscripten_bind_btDispatcherInfo_get_m_enableSPU_0"];var _emscripten_bind_btDispatcherInfo_set_m_useContinuous_1=Module["_emscripten_bind_btDispatcherInfo_set_m_useContinuous_1"]=asm["_emscripten_bind_btDispatcherInfo_set_m_useContinuous_1"];var _emscripten_bind_btCollisionObject_isActive_0=Module["_emscripten_bind_btCollisionObject_isActive_0"]=asm["_emscripten_bind_btCollisionObject_isActive_0"];var _emscripten_bind_btVehicleTuning_set_m_frictionSlip_1=Module["_emscripten_bind_btVehicleTuning_set_m_frictionSlip_1"]=asm["_emscripten_bind_btVehicleTuning_set_m_frictionSlip_1"];var _emscripten_bind_btDiscreteDynamicsWorld_btDiscreteDynamicsWorld_4=Module["_emscripten_bind_btDiscreteDynamicsWorld_btDiscreteDynamicsWorld_4"]=asm["_emscripten_bind_btDiscreteDynamicsWorld_btDiscreteDynamicsWorld_4"];var _emscripten_bind_btCapsuleShapeX_getMargin_0=Module["_emscripten_bind_btCapsuleShapeX_getMargin_0"]=asm["_emscripten_bind_btCapsuleShapeX_getMargin_0"];var _emscripten_bind_Node_set_m_n_1=Module["_emscripten_bind_Node_set_m_n_1"]=asm["_emscripten_bind_Node_set_m_n_1"];var _emscripten_bind_btCompoundShape_getMargin_0=Module["_emscripten_bind_btCompoundShape_getMargin_0"]=asm["_emscripten_bind_btCompoundShape_getMargin_0"];var _emscripten_bind_RaycastInfo_set_m_wheelDirectionWS_1=Module["_emscripten_bind_RaycastInfo_set_m_wheelDirectionWS_1"]=asm["_emscripten_bind_RaycastInfo_set_m_wheelDirectionWS_1"];var _emscripten_bind_btRigidBody_setUserPointer_1=Module["_emscripten_bind_btRigidBody_setUserPointer_1"]=asm["_emscripten_bind_btRigidBody_setUserPointer_1"];var _emscripten_bind_ClosestRayResultCallback_get_m_hitPointWorld_0=Module["_emscripten_bind_ClosestRayResultCallback_get_m_hitPointWorld_0"]=asm["_emscripten_bind_ClosestRayResultCallback_get_m_hitPointWorld_0"];var _emscripten_bind_btTypedConstraint_setBreakingImpulseThreshold_1=Module["_emscripten_bind_btTypedConstraint_setBreakingImpulseThreshold_1"]=asm["_emscripten_bind_btTypedConstraint_setBreakingImpulseThreshold_1"];var _emscripten_bind_btQuaternion_setX_1=Module["_emscripten_bind_btQuaternion_setX_1"]=asm["_emscripten_bind_btQuaternion_setX_1"];var _emscripten_bind_btCylinderShapeZ_getMargin_0=Module["_emscripten_bind_btCylinderShapeZ_getMargin_0"]=asm["_emscripten_bind_btCylinderShapeZ_getMargin_0"];var _emscripten_bind_btDispatcherInfo_get_m_timeOfImpact_0=Module["_emscripten_bind_btDispatcherInfo_get_m_timeOfImpact_0"]=asm["_emscripten_bind_btDispatcherInfo_get_m_timeOfImpact_0"];var _emscripten_bind_btQuaternion_setZ_1=Module["_emscripten_bind_btQuaternion_setZ_1"]=asm["_emscripten_bind_btQuaternion_setZ_1"];var _emscripten_bind_btCollisionObject_getUserIndex_0=Module["_emscripten_bind_btCollisionObject_getUserIndex_0"]=asm["_emscripten_bind_btCollisionObject_getUserIndex_0"];var _emscripten_bind_btDispatcherInfo_get_m_allowedCcdPenetration_0=Module["_emscripten_bind_btDispatcherInfo_get_m_allowedCcdPenetration_0"]=asm["_emscripten_bind_btDispatcherInfo_get_m_allowedCcdPenetration_0"];var _emscripten_bind_LocalConvexResult_get_m_hitNormalLocal_0=Module["_emscripten_bind_LocalConvexResult_get_m_hitNormalLocal_0"]=asm["_emscripten_bind_LocalConvexResult_get_m_hitNormalLocal_0"];var _emscripten_bind_btSoftBodyWorldInfo_set_water_density_1=Module["_emscripten_bind_btSoftBodyWorldInfo_set_water_density_1"]=asm["_emscripten_bind_btSoftBodyWorldInfo_set_water_density_1"];var _emscripten_bind_btRigidBodyConstructionInfo_get_m_restitution_0=Module["_emscripten_bind_btRigidBodyConstructionInfo_get_m_restitution_0"]=asm["_emscripten_bind_btRigidBodyConstructionInfo_get_m_restitution_0"];var _emscripten_bind_btKinematicCharacterController_setMaxSlope_1=Module["_emscripten_bind_btKinematicCharacterController_setMaxSlope_1"]=asm["_emscripten_bind_btKinematicCharacterController_setMaxSlope_1"];var _emscripten_bind_btQuadWord_z_0=Module["_emscripten_bind_btQuadWord_z_0"]=asm["_emscripten_bind_btQuadWord_z_0"];var _emscripten_bind_btSoftBody_setCcdMotionThreshold_1=Module["_emscripten_bind_btSoftBody_setCcdMotionThreshold_1"]=asm["_emscripten_bind_btSoftBody_setCcdMotionThreshold_1"];var _emscripten_bind_Material___destroy___0=Module["_emscripten_bind_Material___destroy___0"]=asm["_emscripten_bind_Material___destroy___0"];var _emscripten_bind_btHingeConstraint_btHingeConstraint_2=Module["_emscripten_bind_btHingeConstraint_btHingeConstraint_2"]=asm["_emscripten_bind_btHingeConstraint_btHingeConstraint_2"];var _emscripten_bind_btSoftBody_rotate_1=Module["_emscripten_bind_btSoftBody_rotate_1"]=asm["_emscripten_bind_btSoftBody_rotate_1"];var _emscripten_bind_btWheelInfo_get_m_suspensionRestLength1_0=Module["_emscripten_bind_btWheelInfo_get_m_suspensionRestLength1_0"]=asm["_emscripten_bind_btWheelInfo_get_m_suspensionRestLength1_0"];var _emscripten_bind_btWheelInfo_get_m_suspensionStiffness_0=Module["_emscripten_bind_btWheelInfo_get_m_suspensionStiffness_0"]=asm["_emscripten_bind_btWheelInfo_get_m_suspensionStiffness_0"];var _emscripten_bind_btVector4_setY_1=Module["_emscripten_bind_btVector4_setY_1"]=asm["_emscripten_bind_btVector4_setY_1"];var _emscripten_enum_PHY_ScalarType_PHY_UCHAR=Module["_emscripten_enum_PHY_ScalarType_PHY_UCHAR"]=asm["_emscripten_enum_PHY_ScalarType_PHY_UCHAR"];var _emscripten_bind_btQuaternion_setW_1=Module["_emscripten_bind_btQuaternion_setW_1"]=asm["_emscripten_bind_btQuaternion_setW_1"];var _emscripten_bind_btSoftRigidDynamicsWorld___destroy___0=Module["_emscripten_bind_btSoftRigidDynamicsWorld___destroy___0"]=asm["_emscripten_bind_btSoftRigidDynamicsWorld___destroy___0"];var _emscripten_bind_btSoftRigidDynamicsWorld_removeConstraint_1=Module["_emscripten_bind_btSoftRigidDynamicsWorld_removeConstraint_1"]=asm["_emscripten_bind_btSoftRigidDynamicsWorld_removeConstraint_1"];var _emscripten_bind_RaycastInfo_get_m_wheelAxleWS_0=Module["_emscripten_bind_RaycastInfo_get_m_wheelAxleWS_0"]=asm["_emscripten_bind_RaycastInfo_get_m_wheelAxleWS_0"];var _emscripten_bind_btRigidBodyConstructionInfo_get_m_angularDamping_0=Module["_emscripten_bind_btRigidBodyConstructionInfo_get_m_angularDamping_0"]=asm["_emscripten_bind_btRigidBodyConstructionInfo_get_m_angularDamping_0"];var _emscripten_bind_btCollisionDispatcher___destroy___0=Module["_emscripten_bind_btCollisionDispatcher___destroy___0"]=asm["_emscripten_bind_btCollisionDispatcher___destroy___0"];var _emscripten_bind_btRigidBody_applyCentralImpulse_1=Module["_emscripten_bind_btRigidBody_applyCentralImpulse_1"]=asm["_emscripten_bind_btRigidBody_applyCentralImpulse_1"];var _emscripten_bind_btConvexHullShape_getMargin_0=Module["_emscripten_bind_btConvexHullShape_getMargin_0"]=asm["_emscripten_bind_btConvexHullShape_getMargin_0"];var _emscripten_bind_btDefaultMotionState_getWorldTransform_1=Module["_emscripten_bind_btDefaultMotionState_getWorldTransform_1"]=asm["_emscripten_bind_btDefaultMotionState_getWorldTransform_1"];var _emscripten_bind_btDiscreteDynamicsWorld_stepSimulation_1=Module["_emscripten_bind_btDiscreteDynamicsWorld_stepSimulation_1"]=asm["_emscripten_bind_btDiscreteDynamicsWorld_stepSimulation_1"];var _emscripten_bind_btDiscreteDynamicsWorld_stepSimulation_3=Module["_emscripten_bind_btDiscreteDynamicsWorld_stepSimulation_3"]=asm["_emscripten_bind_btDiscreteDynamicsWorld_stepSimulation_3"];var _emscripten_bind_btDiscreteDynamicsWorld_stepSimulation_2=Module["_emscripten_bind_btDiscreteDynamicsWorld_stepSimulation_2"]=asm["_emscripten_bind_btDiscreteDynamicsWorld_stepSimulation_2"];var _emscripten_bind_btSoftRigidDynamicsWorld_addAction_1=Module["_emscripten_bind_btSoftRigidDynamicsWorld_addAction_1"]=asm["_emscripten_bind_btSoftRigidDynamicsWorld_addAction_1"];var _emscripten_bind_btDynamicsWorld_rayTest_3=Module["_emscripten_bind_btDynamicsWorld_rayTest_3"]=asm["_emscripten_bind_btDynamicsWorld_rayTest_3"];var _emscripten_bind_Config_set_kSR_SPLT_CL_1=Module["_emscripten_bind_Config_set_kSR_SPLT_CL_1"]=asm["_emscripten_bind_Config_set_kSR_SPLT_CL_1"];var _emscripten_bind_btQuadWord_x_0=Module["_emscripten_bind_btQuadWord_x_0"]=asm["_emscripten_bind_btQuadWord_x_0"];var _emscripten_bind_Config_get_diterations_0=Module["_emscripten_bind_Config_get_diterations_0"]=asm["_emscripten_bind_Config_get_diterations_0"];var _emscripten_bind_btCollisionObject_isKinematicObject_0=Module["_emscripten_bind_btCollisionObject_isKinematicObject_0"]=asm["_emscripten_bind_btCollisionObject_isKinematicObject_0"];var _emscripten_bind_btSoftRigidDynamicsWorld_removeSoftBody_1=Module["_emscripten_bind_btSoftRigidDynamicsWorld_removeSoftBody_1"]=asm["_emscripten_bind_btSoftRigidDynamicsWorld_removeSoftBody_1"];var _emscripten_bind_btSphereShape___destroy___0=Module["_emscripten_bind_btSphereShape___destroy___0"]=asm["_emscripten_bind_btSphereShape___destroy___0"];var _emscripten_bind_btGeneric6DofSpringConstraint_setLinearUpperLimit_1=Module["_emscripten_bind_btGeneric6DofSpringConstraint_setLinearUpperLimit_1"]=asm["_emscripten_bind_btGeneric6DofSpringConstraint_setLinearUpperLimit_1"];var _emscripten_bind_ClosestConvexResultCallback_set_m_hitNormalWorld_1=Module["_emscripten_bind_ClosestConvexResultCallback_set_m_hitNormalWorld_1"]=asm["_emscripten_bind_ClosestConvexResultCallback_set_m_hitNormalWorld_1"];var _emscripten_bind_btSoftBody_isKinematicObject_0=Module["_emscripten_bind_btSoftBody_isKinematicObject_0"]=asm["_emscripten_bind_btSoftBody_isKinematicObject_0"];var _emscripten_bind_btRigidBody_getCenterOfMassTransform_0=Module["_emscripten_bind_btRigidBody_getCenterOfMassTransform_0"]=asm["_emscripten_bind_btRigidBody_getCenterOfMassTransform_0"];var _emscripten_bind_btTransform_setIdentity_0=Module["_emscripten_bind_btTransform_setIdentity_0"]=asm["_emscripten_bind_btTransform_setIdentity_0"];var _emscripten_bind_btGhostObject_isKinematicObject_0=Module["_emscripten_bind_btGhostObject_isKinematicObject_0"]=asm["_emscripten_bind_btGhostObject_isKinematicObject_0"];var _emscripten_bind_btGeneric6DofSpringConstraint_btGeneric6DofSpringConstraint_5=Module["_emscripten_bind_btGeneric6DofSpringConstraint_btGeneric6DofSpringConstraint_5"]=asm["_emscripten_bind_btGeneric6DofSpringConstraint_btGeneric6DofSpringConstraint_5"];var _emscripten_bind_btCapsuleShape___destroy___0=Module["_emscripten_bind_btCapsuleShape___destroy___0"]=asm["_emscripten_bind_btCapsuleShape___destroy___0"];var _emscripten_bind_btDefaultCollisionConfiguration_btDefaultCollisionConfiguration_1=Module["_emscripten_bind_btDefaultCollisionConfiguration_btDefaultCollisionConfiguration_1"]=asm["_emscripten_bind_btDefaultCollisionConfiguration_btDefaultCollisionConfiguration_1"];var _emscripten_bind_btCollisionObject_activate_1=Module["_emscripten_bind_btCollisionObject_activate_1"]=asm["_emscripten_bind_btCollisionObject_activate_1"];var _emscripten_bind_btCollisionObject_activate_0=Module["_emscripten_bind_btCollisionObject_activate_0"]=asm["_emscripten_bind_btCollisionObject_activate_0"];var _emscripten_bind_btKinematicCharacterController_setUpAxis_1=Module["_emscripten_bind_btKinematicCharacterController_setUpAxis_1"]=asm["_emscripten_bind_btKinematicCharacterController_setUpAxis_1"];var _emscripten_bind_btSoftRigidDynamicsWorld_addConstraint_1=Module["_emscripten_bind_btSoftRigidDynamicsWorld_addConstraint_1"]=asm["_emscripten_bind_btSoftRigidDynamicsWorld_addConstraint_1"];var _emscripten_bind_Config_set_kSSHR_CL_1=Module["_emscripten_bind_Config_set_kSSHR_CL_1"]=asm["_emscripten_bind_Config_set_kSSHR_CL_1"];var _emscripten_bind_btDispatcherInfo_set_m_timeOfImpact_1=Module["_emscripten_bind_btDispatcherInfo_set_m_timeOfImpact_1"]=asm["_emscripten_bind_btDispatcherInfo_set_m_timeOfImpact_1"];var _emscripten_bind_btCollisionDispatcher_btCollisionDispatcher_1=Module["_emscripten_bind_btCollisionDispatcher_btCollisionDispatcher_1"]=asm["_emscripten_bind_btCollisionDispatcher_btCollisionDispatcher_1"];var _emscripten_bind_btVector3_setX_1=Module["_emscripten_bind_btVector3_setX_1"]=asm["_emscripten_bind_btVector3_setX_1"];var _emscripten_bind_btCollisionConfiguration___destroy___0=Module["_emscripten_bind_btCollisionConfiguration___destroy___0"]=asm["_emscripten_bind_btCollisionConfiguration___destroy___0"];var _emscripten_bind_btCapsuleShapeZ_setMargin_1=Module["_emscripten_bind_btCapsuleShapeZ_setMargin_1"]=asm["_emscripten_bind_btCapsuleShapeZ_setMargin_1"];var _emscripten_bind_btHingeConstraint_enableFeedback_1=Module["_emscripten_bind_btHingeConstraint_enableFeedback_1"]=asm["_emscripten_bind_btHingeConstraint_enableFeedback_1"];var _emscripten_bind_btHeightfieldTerrainShape_setLocalScaling_1=Module["_emscripten_bind_btHeightfieldTerrainShape_setLocalScaling_1"]=asm["_emscripten_bind_btHeightfieldTerrainShape_setLocalScaling_1"];var _emscripten_bind_btManifoldPoint_set_m_positionWorldOnB_1=Module["_emscripten_bind_btManifoldPoint_set_m_positionWorldOnB_1"]=asm["_emscripten_bind_btManifoldPoint_set_m_positionWorldOnB_1"];var _emscripten_bind_Config_set_kMT_1=Module["_emscripten_bind_Config_set_kMT_1"]=asm["_emscripten_bind_Config_set_kMT_1"];var _emscripten_bind_btManifoldPoint_set_m_localPointB_1=Module["_emscripten_bind_btManifoldPoint_set_m_localPointB_1"]=asm["_emscripten_bind_btManifoldPoint_set_m_localPointB_1"];var _emscripten_bind_btVector3_setZ_1=Module["_emscripten_bind_btVector3_setZ_1"]=asm["_emscripten_bind_btVector3_setZ_1"];var _emscripten_bind_btKinematicCharacterController_setUseGhostSweepTest_1=Module["_emscripten_bind_btKinematicCharacterController_setUseGhostSweepTest_1"]=asm["_emscripten_bind_btKinematicCharacterController_setUseGhostSweepTest_1"];var _emscripten_bind_btQuaternion_setValue_4=Module["_emscripten_bind_btQuaternion_setValue_4"]=asm["_emscripten_bind_btQuaternion_setValue_4"];var _emscripten_bind_btDispatcherInfo_set_m_dispatchFunc_1=Module["_emscripten_bind_btDispatcherInfo_set_m_dispatchFunc_1"]=asm["_emscripten_bind_btDispatcherInfo_set_m_dispatchFunc_1"];var _emscripten_bind_btSoftBody_transform_1=Module["_emscripten_bind_btSoftBody_transform_1"]=asm["_emscripten_bind_btSoftBody_transform_1"];var _emscripten_bind_LocalShapeInfo___destroy___0=Module["_emscripten_bind_LocalShapeInfo___destroy___0"]=asm["_emscripten_bind_LocalShapeInfo___destroy___0"];var _emscripten_bind_btSoftBody_appendAnchor_4=Module["_emscripten_bind_btSoftBody_appendAnchor_4"]=asm["_emscripten_bind_btSoftBody_appendAnchor_4"];var _emscripten_bind_btWheelInfo_get_m_bIsFrontWheel_0=Module["_emscripten_bind_btWheelInfo_get_m_bIsFrontWheel_0"]=asm["_emscripten_bind_btWheelInfo_get_m_bIsFrontWheel_0"];var _emscripten_bind_btQuadWord_setY_1=Module["_emscripten_bind_btQuadWord_setY_1"]=asm["_emscripten_bind_btQuadWord_setY_1"];var _emscripten_bind_btRigidBody_isKinematicObject_0=Module["_emscripten_bind_btRigidBody_isKinematicObject_0"]=asm["_emscripten_bind_btRigidBody_isKinematicObject_0"];var _emscripten_bind_ContactResultCallback_addSingleResult_7=Module["_emscripten_bind_ContactResultCallback_addSingleResult_7"]=asm["_emscripten_bind_ContactResultCallback_addSingleResult_7"];var _emscripten_bind_btRigidBodyConstructionInfo_set_m_restitution_1=Module["_emscripten_bind_btRigidBodyConstructionInfo_set_m_restitution_1"]=asm["_emscripten_bind_btRigidBodyConstructionInfo_set_m_restitution_1"];var _emscripten_bind_btDefaultMotionState_get_m_graphicsWorldTrans_0=Module["_emscripten_bind_btDefaultMotionState_get_m_graphicsWorldTrans_0"]=asm["_emscripten_bind_btDefaultMotionState_get_m_graphicsWorldTrans_0"];var _emscripten_bind_btSliderConstraint_btSliderConstraint_5=Module["_emscripten_bind_btSliderConstraint_btSliderConstraint_5"]=asm["_emscripten_bind_btSliderConstraint_btSliderConstraint_5"];var _emscripten_bind_btConeTwistConstraint_setDamping_1=Module["_emscripten_bind_btConeTwistConstraint_setDamping_1"]=asm["_emscripten_bind_btConeTwistConstraint_setDamping_1"];var _emscripten_bind_btPairCachingGhostObject_btPairCachingGhostObject_0=Module["_emscripten_bind_btPairCachingGhostObject_btPairCachingGhostObject_0"]=asm["_emscripten_bind_btPairCachingGhostObject_btPairCachingGhostObject_0"];var _emscripten_bind_btDiscreteDynamicsWorld_getSolverInfo_0=Module["_emscripten_bind_btDiscreteDynamicsWorld_getSolverInfo_0"]=asm["_emscripten_bind_btDiscreteDynamicsWorld_getSolverInfo_0"];var _emscripten_bind_btCylinderShape_setMargin_1=Module["_emscripten_bind_btCylinderShape_setMargin_1"]=asm["_emscripten_bind_btCylinderShape_setMargin_1"];var _emscripten_bind_btCollisionWorld___destroy___0=Module["_emscripten_bind_btCollisionWorld___destroy___0"]=asm["_emscripten_bind_btCollisionWorld___destroy___0"];var _emscripten_bind_btSoftBodyWorldInfo_get_m_broadphase_0=Module["_emscripten_bind_btSoftBodyWorldInfo_get_m_broadphase_0"]=asm["_emscripten_bind_btSoftBodyWorldInfo_get_m_broadphase_0"];var _emscripten_bind_LocalConvexResult_get_m_hitPointLocal_0=Module["_emscripten_bind_LocalConvexResult_get_m_hitPointLocal_0"]=asm["_emscripten_bind_LocalConvexResult_get_m_hitPointLocal_0"];var _emscripten_bind_btBoxShape_btBoxShape_1=Module["_emscripten_bind_btBoxShape_btBoxShape_1"]=asm["_emscripten_bind_btBoxShape_btBoxShape_1"];var _emscripten_bind_btPersistentManifold_getBody1_0=Module["_emscripten_bind_btPersistentManifold_getBody1_0"]=asm["_emscripten_bind_btPersistentManifold_getBody1_0"];var _emscripten_bind_ClosestRayResultCallback_set_m_collisionObject_1=Module["_emscripten_bind_ClosestRayResultCallback_set_m_collisionObject_1"]=asm["_emscripten_bind_ClosestRayResultCallback_set_m_collisionObject_1"];var _emscripten_bind_RaycastInfo_set_m_isInContact_1=Module["_emscripten_bind_RaycastInfo_set_m_isInContact_1"]=asm["_emscripten_bind_RaycastInfo_set_m_isInContact_1"];var _emscripten_bind_btKinematicCharacterController_setGravity_1=Module["_emscripten_bind_btKinematicCharacterController_setGravity_1"]=asm["_emscripten_bind_btKinematicCharacterController_setGravity_1"];var _emscripten_bind_btGeneric6DofConstraint_btGeneric6DofConstraint_5=Module["_emscripten_bind_btGeneric6DofConstraint_btGeneric6DofConstraint_5"]=asm["_emscripten_bind_btGeneric6DofConstraint_btGeneric6DofConstraint_5"];var _emscripten_bind_btGeneric6DofConstraint_btGeneric6DofConstraint_3=Module["_emscripten_bind_btGeneric6DofConstraint_btGeneric6DofConstraint_3"]=asm["_emscripten_bind_btGeneric6DofConstraint_btGeneric6DofConstraint_3"];var _emscripten_bind_LocalShapeInfo_get_m_shapePart_0=Module["_emscripten_bind_LocalShapeInfo_get_m_shapePart_0"]=asm["_emscripten_bind_LocalShapeInfo_get_m_shapePart_0"];var _emscripten_bind_btSoftRigidDynamicsWorld_removeAction_1=Module["_emscripten_bind_btSoftRigidDynamicsWorld_removeAction_1"]=asm["_emscripten_bind_btSoftRigidDynamicsWorld_removeAction_1"];var _emscripten_bind_btWheelInfo_get_m_rollInfluence_0=Module["_emscripten_bind_btWheelInfo_get_m_rollInfluence_0"]=asm["_emscripten_bind_btWheelInfo_get_m_rollInfluence_0"];var _emscripten_bind_btVector4_setValue_4=Module["_emscripten_bind_btVector4_setValue_4"]=asm["_emscripten_bind_btVector4_setValue_4"];var _emscripten_bind_btBvhTriangleMeshShape_setLocalScaling_1=Module["_emscripten_bind_btBvhTriangleMeshShape_setLocalScaling_1"]=asm["_emscripten_bind_btBvhTriangleMeshShape_setLocalScaling_1"];var _emscripten_bind_tNodeArray_size_0=Module["_emscripten_bind_tNodeArray_size_0"]=asm["_emscripten_bind_tNodeArray_size_0"];var _emscripten_bind_btPoint2PointConstraint_setBreakingImpulseThreshold_1=Module["_emscripten_bind_btPoint2PointConstraint_setBreakingImpulseThreshold_1"]=asm["_emscripten_bind_btPoint2PointConstraint_setBreakingImpulseThreshold_1"];var _emscripten_bind_btDynamicsWorld_getDispatchInfo_0=Module["_emscripten_bind_btDynamicsWorld_getDispatchInfo_0"]=asm["_emscripten_bind_btDynamicsWorld_getDispatchInfo_0"];var _emscripten_bind_btCompoundShape_removeChildShapeByIndex_1=Module["_emscripten_bind_btCompoundShape_removeChildShapeByIndex_1"]=asm["_emscripten_bind_btCompoundShape_removeChildShapeByIndex_1"];var _emscripten_bind_btVector3_length_0=Module["_emscripten_bind_btVector3_length_0"]=asm["_emscripten_bind_btVector3_length_0"];var _emscripten_bind_btConvexTriangleMeshShape_btConvexTriangleMeshShape_2=Module["_emscripten_bind_btConvexTriangleMeshShape_btConvexTriangleMeshShape_2"]=asm["_emscripten_bind_btConvexTriangleMeshShape_btConvexTriangleMeshShape_2"];var _emscripten_bind_btConvexTriangleMeshShape_btConvexTriangleMeshShape_1=Module["_emscripten_bind_btConvexTriangleMeshShape_btConvexTriangleMeshShape_1"]=asm["_emscripten_bind_btConvexTriangleMeshShape_btConvexTriangleMeshShape_1"];var _emscripten_bind_ClosestConvexResultCallback_set_m_hitPointWorld_1=Module["_emscripten_bind_ClosestConvexResultCallback_set_m_hitPointWorld_1"]=asm["_emscripten_bind_ClosestConvexResultCallback_set_m_hitPointWorld_1"];var _emscripten_bind_RayResultCallback_set_m_collisionFilterMask_1=Module["_emscripten_bind_RayResultCallback_set_m_collisionFilterMask_1"]=asm["_emscripten_bind_RayResultCallback_set_m_collisionFilterMask_1"];var _emscripten_bind_btBoxShape_getMargin_0=Module["_emscripten_bind_btBoxShape_getMargin_0"]=asm["_emscripten_bind_btBoxShape_getMargin_0"];var _emscripten_bind_btPairCachingGhostObject___destroy___0=Module["_emscripten_bind_btPairCachingGhostObject___destroy___0"]=asm["_emscripten_bind_btPairCachingGhostObject___destroy___0"];var _emscripten_bind_btPairCachingGhostObject_setUserPointer_1=Module["_emscripten_bind_btPairCachingGhostObject_setUserPointer_1"]=asm["_emscripten_bind_btPairCachingGhostObject_setUserPointer_1"];var _emscripten_bind_btDynamicsWorld_addCollisionObject_3=Module["_emscripten_bind_btDynamicsWorld_addCollisionObject_3"]=asm["_emscripten_bind_btDynamicsWorld_addCollisionObject_3"];var _emscripten_bind_btPairCachingGhostObject_activate_0=Module["_emscripten_bind_btPairCachingGhostObject_activate_0"]=asm["_emscripten_bind_btPairCachingGhostObject_activate_0"];var _emscripten_bind_btPairCachingGhostObject_activate_1=Module["_emscripten_bind_btPairCachingGhostObject_activate_1"]=asm["_emscripten_bind_btPairCachingGhostObject_activate_1"];var _emscripten_bind_btContactSolverInfo_get_m_splitImpulsePenetrationThreshold_0=Module["_emscripten_bind_btContactSolverInfo_get_m_splitImpulsePenetrationThreshold_0"]=asm["_emscripten_bind_btContactSolverInfo_get_m_splitImpulsePenetrationThreshold_0"];var _emscripten_bind_btSoftBody_setUserPointer_1=Module["_emscripten_bind_btSoftBody_setUserPointer_1"]=asm["_emscripten_bind_btSoftBody_setUserPointer_1"];var _emscripten_bind_btSoftBody_setMass_2=Module["_emscripten_bind_btSoftBody_setMass_2"]=asm["_emscripten_bind_btSoftBody_setMass_2"];var _emscripten_bind_Config_get_kCHR_0=Module["_emscripten_bind_Config_get_kCHR_0"]=asm["_emscripten_bind_Config_get_kCHR_0"];var _emscripten_bind_btPairCachingGhostObject_forceActivationState_1=Module["_emscripten_bind_btPairCachingGhostObject_forceActivationState_1"]=asm["_emscripten_bind_btPairCachingGhostObject_forceActivationState_1"];var _emscripten_bind_btDefaultMotionState___destroy___0=Module["_emscripten_bind_btDefaultMotionState___destroy___0"]=asm["_emscripten_bind_btDefaultMotionState___destroy___0"];var _emscripten_bind_btDispatcherInfo_get_m_stepCount_0=Module["_emscripten_bind_btDispatcherInfo_get_m_stepCount_0"]=asm["_emscripten_bind_btDispatcherInfo_get_m_stepCount_0"];var _emscripten_bind_btRigidBodyConstructionInfo_set_m_angularDamping_1=Module["_emscripten_bind_btRigidBodyConstructionInfo_set_m_angularDamping_1"]=asm["_emscripten_bind_btRigidBodyConstructionInfo_set_m_angularDamping_1"];var _emscripten_bind_btQuadWord_setW_1=Module["_emscripten_bind_btQuadWord_setW_1"]=asm["_emscripten_bind_btQuadWord_setW_1"];var _emscripten_bind_btRigidBodyConstructionInfo_get_m_friction_0=Module["_emscripten_bind_btRigidBodyConstructionInfo_get_m_friction_0"]=asm["_emscripten_bind_btRigidBodyConstructionInfo_get_m_friction_0"];var _emscripten_bind_btCapsuleShapeX_btCapsuleShapeX_2=Module["_emscripten_bind_btCapsuleShapeX_btCapsuleShapeX_2"]=asm["_emscripten_bind_btCapsuleShapeX_btCapsuleShapeX_2"];var _emscripten_bind_LocalShapeInfo_set_m_shapePart_1=Module["_emscripten_bind_LocalShapeInfo_set_m_shapePart_1"]=asm["_emscripten_bind_LocalShapeInfo_set_m_shapePart_1"];var _emscripten_bind_btRigidBody_setLinearFactor_1=Module["_emscripten_bind_btRigidBody_setLinearFactor_1"]=asm["_emscripten_bind_btRigidBody_setLinearFactor_1"];var _emscripten_bind_btCompoundShape_getChildShape_1=Module["_emscripten_bind_btCompoundShape_getChildShape_1"]=asm["_emscripten_bind_btCompoundShape_getChildShape_1"];var _emscripten_bind_btDispatcherInfo_set_m_useConvexConservativeDistanceUtil_1=Module["_emscripten_bind_btDispatcherInfo_set_m_useConvexConservativeDistanceUtil_1"]=asm["_emscripten_bind_btDispatcherInfo_set_m_useConvexConservativeDistanceUtil_1"];var _emscripten_bind_btSoftRigidDynamicsWorld_setGravity_1=Module["_emscripten_bind_btSoftRigidDynamicsWorld_setGravity_1"]=asm["_emscripten_bind_btSoftRigidDynamicsWorld_setGravity_1"];var _emscripten_bind_btRaycastVehicle_getCurrentSpeedKmHour_0=Module["_emscripten_bind_btRaycastVehicle_getCurrentSpeedKmHour_0"]=asm["_emscripten_bind_btRaycastVehicle_getCurrentSpeedKmHour_0"];var _emscripten_bind_btWheelInfo_get_m_engineForce_0=Module["_emscripten_bind_btWheelInfo_get_m_engineForce_0"]=asm["_emscripten_bind_btWheelInfo_get_m_engineForce_0"];var _emscripten_bind_Config_get_kSR_SPLT_CL_0=Module["_emscripten_bind_Config_get_kSR_SPLT_CL_0"]=asm["_emscripten_bind_Config_get_kSR_SPLT_CL_0"];var _emscripten_bind_btRaycastVehicle_setSteeringValue_2=Module["_emscripten_bind_btRaycastVehicle_setSteeringValue_2"]=asm["_emscripten_bind_btRaycastVehicle_setSteeringValue_2"];var _emscripten_bind_btPoint2PointConstraint___destroy___0=Module["_emscripten_bind_btPoint2PointConstraint___destroy___0"]=asm["_emscripten_bind_btPoint2PointConstraint___destroy___0"];var _emscripten_bind_btSoftBody_getUserPointer_0=Module["_emscripten_bind_btSoftBody_getUserPointer_0"]=asm["_emscripten_bind_btSoftBody_getUserPointer_0"];var _emscripten_bind_btCollisionShape_setMargin_1=Module["_emscripten_bind_btCollisionShape_setMargin_1"]=asm["_emscripten_bind_btCollisionShape_setMargin_1"];var _emscripten_bind_btGeneric6DofConstraint_setAngularUpperLimit_1=Module["_emscripten_bind_btGeneric6DofConstraint_setAngularUpperLimit_1"]=asm["_emscripten_bind_btGeneric6DofConstraint_setAngularUpperLimit_1"];var _emscripten_bind_btDiscreteDynamicsWorld_addConstraint_2=Module["_emscripten_bind_btDiscreteDynamicsWorld_addConstraint_2"]=asm["_emscripten_bind_btDiscreteDynamicsWorld_addConstraint_2"];var _emscripten_bind_btDiscreteDynamicsWorld_addConstraint_1=Module["_emscripten_bind_btDiscreteDynamicsWorld_addConstraint_1"]=asm["_emscripten_bind_btDiscreteDynamicsWorld_addConstraint_1"];var _emscripten_bind_btRigidBodyConstructionInfo_set_m_angularSleepingThreshold_1=Module["_emscripten_bind_btRigidBodyConstructionInfo_set_m_angularSleepingThreshold_1"]=asm["_emscripten_bind_btRigidBodyConstructionInfo_set_m_angularSleepingThreshold_1"];var _emscripten_bind_Config_get_kVCF_0=Module["_emscripten_bind_Config_get_kVCF_0"]=asm["_emscripten_bind_Config_get_kVCF_0"];var _malloc=Module["_malloc"]=asm["_malloc"];var _emscripten_bind_btDispatcherInfo_get_m_useEpa_0=Module["_emscripten_bind_btDispatcherInfo_get_m_useEpa_0"]=asm["_emscripten_bind_btDispatcherInfo_get_m_useEpa_0"];var _emscripten_bind_btTransform_btTransform_2=Module["_emscripten_bind_btTransform_btTransform_2"]=asm["_emscripten_bind_btTransform_btTransform_2"];var _emscripten_bind_btTransform_btTransform_0=Module["_emscripten_bind_btTransform_btTransform_0"]=asm["_emscripten_bind_btTransform_btTransform_0"];var _emscripten_bind_btPairCachingGhostObject_getUserIndex_0=Module["_emscripten_bind_btPairCachingGhostObject_getUserIndex_0"]=asm["_emscripten_bind_btPairCachingGhostObject_getUserIndex_0"];var _emscripten_bind_Config_set_kVC_1=Module["_emscripten_bind_Config_set_kVC_1"]=asm["_emscripten_bind_Config_set_kVC_1"];var _emscripten_bind_btVector3_op_sub_1=Module["_emscripten_bind_btVector3_op_sub_1"]=asm["_emscripten_bind_btVector3_op_sub_1"];var _emscripten_bind_btWheelInfo_set_m_wheelsRadius_1=Module["_emscripten_bind_btWheelInfo_set_m_wheelsRadius_1"]=asm["_emscripten_bind_btWheelInfo_set_m_wheelsRadius_1"];var _emscripten_bind_RaycastInfo_set_m_hardPointWS_1=Module["_emscripten_bind_RaycastInfo_set_m_hardPointWS_1"]=asm["_emscripten_bind_RaycastInfo_set_m_hardPointWS_1"];var _emscripten_bind_btDispatcherInfo_set_m_enableSPU_1=Module["_emscripten_bind_btDispatcherInfo_set_m_enableSPU_1"]=asm["_emscripten_bind_btDispatcherInfo_set_m_enableSPU_1"];var _emscripten_bind_btWheelInfo_set_m_wheelsDampingCompression_1=Module["_emscripten_bind_btWheelInfo_set_m_wheelsDampingCompression_1"]=asm["_emscripten_bind_btWheelInfo_set_m_wheelsDampingCompression_1"];var _emscripten_bind_btSoftBody_appendNode_2=Module["_emscripten_bind_btSoftBody_appendNode_2"]=asm["_emscripten_bind_btSoftBody_appendNode_2"];var _emscripten_bind_btCollisionObject_setActivationState_1=Module["_emscripten_bind_btCollisionObject_setActivationState_1"]=asm["_emscripten_bind_btCollisionObject_setActivationState_1"];var _emscripten_bind_btPersistentManifold___destroy___0=Module["_emscripten_bind_btPersistentManifold___destroy___0"]=asm["_emscripten_bind_btPersistentManifold___destroy___0"];var _emscripten_bind_btConstraintSetting_get_m_impulseClamp_0=Module["_emscripten_bind_btConstraintSetting_get_m_impulseClamp_0"]=asm["_emscripten_bind_btConstraintSetting_get_m_impulseClamp_0"];var _emscripten_bind_btCylinderShapeZ___destroy___0=Module["_emscripten_bind_btCylinderShapeZ___destroy___0"]=asm["_emscripten_bind_btCylinderShapeZ___destroy___0"];var _emscripten_bind_btMatrix3x3___destroy___0=Module["_emscripten_bind_btMatrix3x3___destroy___0"]=asm["_emscripten_bind_btMatrix3x3___destroy___0"];var _emscripten_bind_ConvexResultCallback_hasHit_0=Module["_emscripten_bind_ConvexResultCallback_hasHit_0"]=asm["_emscripten_bind_ConvexResultCallback_hasHit_0"];var _emscripten_bind_btCollisionShape_calculateLocalInertia_2=Module["_emscripten_bind_btCollisionShape_calculateLocalInertia_2"]=asm["_emscripten_bind_btCollisionShape_calculateLocalInertia_2"];var _emscripten_bind_btGeneric6DofSpringConstraint_setBreakingImpulseThreshold_1=Module["_emscripten_bind_btGeneric6DofSpringConstraint_setBreakingImpulseThreshold_1"]=asm["_emscripten_bind_btGeneric6DofSpringConstraint_setBreakingImpulseThreshold_1"];var _emscripten_bind_Config_set_kPR_1=Module["_emscripten_bind_Config_set_kPR_1"]=asm["_emscripten_bind_Config_set_kPR_1"];var _emscripten_bind_btCollisionWorld_convexSweepTest_5=Module["_emscripten_bind_btCollisionWorld_convexSweepTest_5"]=asm["_emscripten_bind_btCollisionWorld_convexSweepTest_5"];var _emscripten_bind_btSoftBody_set_m_materials_1=Module["_emscripten_bind_btSoftBody_set_m_materials_1"]=asm["_emscripten_bind_btSoftBody_set_m_materials_1"];var _emscripten_bind_ClosestRayResultCallback_set_m_hitPointWorld_1=Module["_emscripten_bind_ClosestRayResultCallback_set_m_hitPointWorld_1"]=asm["_emscripten_bind_ClosestRayResultCallback_set_m_hitPointWorld_1"];var _emscripten_bind_btCapsuleShapeX_calculateLocalInertia_2=Module["_emscripten_bind_btCapsuleShapeX_calculateLocalInertia_2"]=asm["_emscripten_bind_btCapsuleShapeX_calculateLocalInertia_2"];var _emscripten_bind_btConstraintSetting_set_m_damping_1=Module["_emscripten_bind_btConstraintSetting_set_m_damping_1"]=asm["_emscripten_bind_btConstraintSetting_set_m_damping_1"];var _emscripten_bind_btWheelInfo_set_m_bIsFrontWheel_1=Module["_emscripten_bind_btWheelInfo_set_m_bIsFrontWheel_1"]=asm["_emscripten_bind_btWheelInfo_set_m_bIsFrontWheel_1"];var _emscripten_bind_btRigidBody_setCcdMotionThreshold_1=Module["_emscripten_bind_btRigidBody_setCcdMotionThreshold_1"]=asm["_emscripten_bind_btRigidBody_setCcdMotionThreshold_1"];var _emscripten_bind_btConvexHullShape_setMargin_1=Module["_emscripten_bind_btConvexHullShape_setMargin_1"]=asm["_emscripten_bind_btConvexHullShape_setMargin_1"];var _emscripten_bind_btRigidBody_applyForce_2=Module["_emscripten_bind_btRigidBody_applyForce_2"]=asm["_emscripten_bind_btRigidBody_applyForce_2"];var _emscripten_bind_btConeShapeZ_calculateLocalInertia_2=Module["_emscripten_bind_btConeShapeZ_calculateLocalInertia_2"]=asm["_emscripten_bind_btConeShapeZ_calculateLocalInertia_2"];var _emscripten_bind_btConstraintSetting_set_m_tau_1=Module["_emscripten_bind_btConstraintSetting_set_m_tau_1"]=asm["_emscripten_bind_btConstraintSetting_set_m_tau_1"];var _emscripten_bind_btConvexHullShape_calculateLocalInertia_2=Module["_emscripten_bind_btConvexHullShape_calculateLocalInertia_2"]=asm["_emscripten_bind_btConvexHullShape_calculateLocalInertia_2"];var _emscripten_bind_RaycastInfo_get_m_contactPointWS_0=Module["_emscripten_bind_RaycastInfo_get_m_contactPointWS_0"]=asm["_emscripten_bind_RaycastInfo_get_m_contactPointWS_0"];var _emscripten_bind_btSoftBody_setCollisionFlags_1=Module["_emscripten_bind_btSoftBody_setCollisionFlags_1"]=asm["_emscripten_bind_btSoftBody_setCollisionFlags_1"];var _emscripten_bind_btSphereShape_calculateLocalInertia_2=Module["_emscripten_bind_btSphereShape_calculateLocalInertia_2"]=asm["_emscripten_bind_btSphereShape_calculateLocalInertia_2"];var _emscripten_bind_Config_set_maxvolume_1=Module["_emscripten_bind_Config_set_maxvolume_1"]=asm["_emscripten_bind_Config_set_maxvolume_1"];var _emscripten_bind_btSoftRigidDynamicsWorld_getSolverInfo_0=Module["_emscripten_bind_btSoftRigidDynamicsWorld_getSolverInfo_0"]=asm["_emscripten_bind_btSoftRigidDynamicsWorld_getSolverInfo_0"];var _emscripten_bind_btCollisionDispatcher_getManifoldByIndexInternal_1=Module["_emscripten_bind_btCollisionDispatcher_getManifoldByIndexInternal_1"]=asm["_emscripten_bind_btCollisionDispatcher_getManifoldByIndexInternal_1"];var _emscripten_bind_btSoftBody_setTotalMass_2=Module["_emscripten_bind_btSoftBody_setTotalMass_2"]=asm["_emscripten_bind_btSoftBody_setTotalMass_2"];var _emscripten_bind_ClosestRayResultCallback_get_m_rayToWorld_0=Module["_emscripten_bind_ClosestRayResultCallback_get_m_rayToWorld_0"]=asm["_emscripten_bind_ClosestRayResultCallback_get_m_rayToWorld_0"];var _emscripten_bind_btGhostObject_setFriction_1=Module["_emscripten_bind_btGhostObject_setFriction_1"]=asm["_emscripten_bind_btGhostObject_setFriction_1"];var _emscripten_bind_btPairCachingGhostObject_getWorldTransform_0=Module["_emscripten_bind_btPairCachingGhostObject_getWorldTransform_0"]=asm["_emscripten_bind_btPairCachingGhostObject_getWorldTransform_0"];var _emscripten_bind_btRigidBody_setCcdSweptSphereRadius_1=Module["_emscripten_bind_btRigidBody_setCcdSweptSphereRadius_1"]=asm["_emscripten_bind_btRigidBody_setCcdSweptSphereRadius_1"];var _emscripten_bind_btCylinderShapeZ_setMargin_1=Module["_emscripten_bind_btCylinderShapeZ_setMargin_1"]=asm["_emscripten_bind_btCylinderShapeZ_setMargin_1"];var _emscripten_bind_btRigidBody_setFriction_1=Module["_emscripten_bind_btRigidBody_setFriction_1"]=asm["_emscripten_bind_btRigidBody_setFriction_1"];var _emscripten_bind_LocalConvexResult_set_m_hitPointLocal_1=Module["_emscripten_bind_LocalConvexResult_set_m_hitPointLocal_1"]=asm["_emscripten_bind_LocalConvexResult_set_m_hitPointLocal_1"];var _emscripten_bind_btGhostObject_setWorldTransform_1=Module["_emscripten_bind_btGhostObject_setWorldTransform_1"]=asm["_emscripten_bind_btGhostObject_setWorldTransform_1"];var _emscripten_bind_tMaterialArray_size_0=Module["_emscripten_bind_tMaterialArray_size_0"]=asm["_emscripten_bind_tMaterialArray_size_0"];var _emscripten_bind_btManifoldPoint_getAppliedImpulse_0=Module["_emscripten_bind_btManifoldPoint_getAppliedImpulse_0"]=asm["_emscripten_bind_btManifoldPoint_getAppliedImpulse_0"];var _emscripten_bind_btDiscreteDynamicsWorld_removeRigidBody_1=Module["_emscripten_bind_btDiscreteDynamicsWorld_removeRigidBody_1"]=asm["_emscripten_bind_btDiscreteDynamicsWorld_removeRigidBody_1"];var _emscripten_bind_btConvexHullShape___destroy___0=Module["_emscripten_bind_btConvexHullShape___destroy___0"]=asm["_emscripten_bind_btConvexHullShape___destroy___0"];var _emscripten_bind_btDiscreteDynamicsWorld_getBroadphase_0=Module["_emscripten_bind_btDiscreteDynamicsWorld_getBroadphase_0"]=asm["_emscripten_bind_btDiscreteDynamicsWorld_getBroadphase_0"];var _emscripten_bind_btDiscreteDynamicsWorld_addAction_1=Module["_emscripten_bind_btDiscreteDynamicsWorld_addAction_1"]=asm["_emscripten_bind_btDiscreteDynamicsWorld_addAction_1"];var _emscripten_bind_btVector4_setX_1=Module["_emscripten_bind_btVector4_setX_1"]=asm["_emscripten_bind_btVector4_setX_1"];var _emscripten_bind_btKinematicCharacterController_jump_0=Module["_emscripten_bind_btKinematicCharacterController_jump_0"]=asm["_emscripten_bind_btKinematicCharacterController_jump_0"];var _emscripten_bind_btCollisionObject_getUserPointer_0=Module["_emscripten_bind_btCollisionObject_getUserPointer_0"]=asm["_emscripten_bind_btCollisionObject_getUserPointer_0"];var _emscripten_bind_btWheelInfo_set_m_raycastInfo_1=Module["_emscripten_bind_btWheelInfo_set_m_raycastInfo_1"]=asm["_emscripten_bind_btWheelInfo_set_m_raycastInfo_1"];var _emscripten_bind_btCollisionWorld_contactTest_2=Module["_emscripten_bind_btCollisionWorld_contactTest_2"]=asm["_emscripten_bind_btCollisionWorld_contactTest_2"];var _emscripten_bind_btConeTwistConstraint_setMaxMotorImpulseNormalized_1=Module["_emscripten_bind_btConeTwistConstraint_setMaxMotorImpulseNormalized_1"]=asm["_emscripten_bind_btConeTwistConstraint_setMaxMotorImpulseNormalized_1"];var _emscripten_bind_btConvexTriangleMeshShape_setLocalScaling_1=Module["_emscripten_bind_btConvexTriangleMeshShape_setLocalScaling_1"]=asm["_emscripten_bind_btConvexTriangleMeshShape_setLocalScaling_1"];var _emscripten_bind_btRigidBody_upcast_1=Module["_emscripten_bind_btRigidBody_upcast_1"]=asm["_emscripten_bind_btRigidBody_upcast_1"];var _emscripten_bind_btTransform_setOrigin_1=Module["_emscripten_bind_btTransform_setOrigin_1"]=asm["_emscripten_bind_btTransform_setOrigin_1"];var _emscripten_bind_btVector4_setZ_1=Module["_emscripten_bind_btVector4_setZ_1"]=asm["_emscripten_bind_btVector4_setZ_1"];var _emscripten_bind_btQuadWord_y_0=Module["_emscripten_bind_btQuadWord_y_0"]=asm["_emscripten_bind_btQuadWord_y_0"];var _emscripten_bind_btTransform_getBasis_0=Module["_emscripten_bind_btTransform_getBasis_0"]=asm["_emscripten_bind_btTransform_getBasis_0"];var _emscripten_bind_btPairCachingGhostObject_setFriction_1=Module["_emscripten_bind_btPairCachingGhostObject_setFriction_1"]=asm["_emscripten_bind_btPairCachingGhostObject_setFriction_1"];var _emscripten_bind_Config_set_kSRHR_CL_1=Module["_emscripten_bind_Config_set_kSRHR_CL_1"]=asm["_emscripten_bind_Config_set_kSRHR_CL_1"];var _emscripten_bind_btCollisionDispatcher_getNumManifolds_0=Module["_emscripten_bind_btCollisionDispatcher_getNumManifolds_0"]=asm["_emscripten_bind_btCollisionDispatcher_getNumManifolds_0"];var _emscripten_bind_btVehicleRaycaster___destroy___0=Module["_emscripten_bind_btVehicleRaycaster___destroy___0"]=asm["_emscripten_bind_btVehicleRaycaster___destroy___0"];var _emscripten_bind_ClosestRayResultCallback___destroy___0=Module["_emscripten_bind_ClosestRayResultCallback___destroy___0"]=asm["_emscripten_bind_ClosestRayResultCallback___destroy___0"];var _emscripten_bind_ClosestConvexResultCallback_get_m_convexFromWorld_0=Module["_emscripten_bind_ClosestConvexResultCallback_get_m_convexFromWorld_0"]=asm["_emscripten_bind_ClosestConvexResultCallback_get_m_convexFromWorld_0"];var _emscripten_bind_btCylinderShapeX_setMargin_1=Module["_emscripten_bind_btCylinderShapeX_setMargin_1"]=asm["_emscripten_bind_btCylinderShapeX_setMargin_1"];var _emscripten_bind_btQuadWord_w_0=Module["_emscripten_bind_btQuadWord_w_0"]=asm["_emscripten_bind_btQuadWord_w_0"];var _emscripten_bind_Node___destroy___0=Module["_emscripten_bind_Node___destroy___0"]=asm["_emscripten_bind_Node___destroy___0"];var _emscripten_bind_btDynamicsWorld_contactTest_2=Module["_emscripten_bind_btDynamicsWorld_contactTest_2"]=asm["_emscripten_bind_btDynamicsWorld_contactTest_2"];var _emscripten_bind_btDiscreteDynamicsWorld_contactTest_2=Module["_emscripten_bind_btDiscreteDynamicsWorld_contactTest_2"]=asm["_emscripten_bind_btDiscreteDynamicsWorld_contactTest_2"];var _emscripten_bind_btBvhTriangleMeshShape_calculateLocalInertia_2=Module["_emscripten_bind_btBvhTriangleMeshShape_calculateLocalInertia_2"]=asm["_emscripten_bind_btBvhTriangleMeshShape_calculateLocalInertia_2"];var _emscripten_bind_btCompoundShape_getNumChildShapes_0=Module["_emscripten_bind_btCompoundShape_getNumChildShapes_0"]=asm["_emscripten_bind_btCompoundShape_getNumChildShapes_0"];var _emscripten_bind_btSoftBodyWorldInfo_set_m_broadphase_1=Module["_emscripten_bind_btSoftBodyWorldInfo_set_m_broadphase_1"]=asm["_emscripten_bind_btSoftBodyWorldInfo_set_m_broadphase_1"];var _emscripten_bind_btGhostObject_btGhostObject_0=Module["_emscripten_bind_btGhostObject_btGhostObject_0"]=asm["_emscripten_bind_btGhostObject_btGhostObject_0"];var _emscripten_bind_btConeShape_btConeShape_2=Module["_emscripten_bind_btConeShape_btConeShape_2"]=asm["_emscripten_bind_btConeShape_btConeShape_2"];var _emscripten_bind_btRigidBodyConstructionInfo_set_m_additionalAngularDampingFactor_1=Module["_emscripten_bind_btRigidBodyConstructionInfo_set_m_additionalAngularDampingFactor_1"]=asm["_emscripten_bind_btRigidBodyConstructionInfo_set_m_additionalAngularDampingFactor_1"];var _emscripten_bind_btManifoldPoint_set_m_localPointA_1=Module["_emscripten_bind_btManifoldPoint_set_m_localPointA_1"]=asm["_emscripten_bind_btManifoldPoint_set_m_localPointA_1"];var _emscripten_bind_btCapsuleShapeX_setMargin_1=Module["_emscripten_bind_btCapsuleShapeX_setMargin_1"]=asm["_emscripten_bind_btCapsuleShapeX_setMargin_1"];var _emscripten_bind_btVector3_dot_1=Module["_emscripten_bind_btVector3_dot_1"]=asm["_emscripten_bind_btVector3_dot_1"];var _emscripten_bind_btGhostObject_getUserPointer_0=Module["_emscripten_bind_btGhostObject_getUserPointer_0"]=asm["_emscripten_bind_btGhostObject_getUserPointer_0"];var _emscripten_bind_btVector4_op_add_1=Module["_emscripten_bind_btVector4_op_add_1"]=asm["_emscripten_bind_btVector4_op_add_1"];var _emscripten_bind_btWheelInfo___destroy___0=Module["_emscripten_bind_btWheelInfo___destroy___0"]=asm["_emscripten_bind_btWheelInfo___destroy___0"];var _emscripten_bind_btSoftRigidDynamicsWorld_getSoftBodyArray_0=Module["_emscripten_bind_btSoftRigidDynamicsWorld_getSoftBodyArray_0"]=asm["_emscripten_bind_btSoftRigidDynamicsWorld_getSoftBodyArray_0"];var _emscripten_bind_btHingeConstraint_btHingeConstraint_4=Module["_emscripten_bind_btHingeConstraint_btHingeConstraint_4"]=asm["_emscripten_bind_btHingeConstraint_btHingeConstraint_4"];var _emscripten_bind_btTransform_setRotation_1=Module["_emscripten_bind_btTransform_setRotation_1"]=asm["_emscripten_bind_btTransform_setRotation_1"];var _emscripten_bind_Config_set_kSHR_1=Module["_emscripten_bind_Config_set_kSHR_1"]=asm["_emscripten_bind_Config_set_kSHR_1"];var _emscripten_bind_btPoint2PointConstraint_enableFeedback_1=Module["_emscripten_bind_btPoint2PointConstraint_enableFeedback_1"]=asm["_emscripten_bind_btPoint2PointConstraint_enableFeedback_1"];var _emscripten_bind_ClosestRayResultCallback_set_m_collisionFilterGroup_1=Module["_emscripten_bind_ClosestRayResultCallback_set_m_collisionFilterGroup_1"]=asm["_emscripten_bind_ClosestRayResultCallback_set_m_collisionFilterGroup_1"];var _emscripten_bind_btAxisSweep3_btAxisSweep3_2=Module["_emscripten_bind_btAxisSweep3_btAxisSweep3_2"]=asm["_emscripten_bind_btAxisSweep3_btAxisSweep3_2"];var _emscripten_bind_btAxisSweep3_btAxisSweep3_3=Module["_emscripten_bind_btAxisSweep3_btAxisSweep3_3"]=asm["_emscripten_bind_btAxisSweep3_btAxisSweep3_3"];var _emscripten_bind_btDynamicsWorld___destroy___0=Module["_emscripten_bind_btDynamicsWorld___destroy___0"]=asm["_emscripten_bind_btDynamicsWorld___destroy___0"];var _emscripten_bind_btVector3_setY_1=Module["_emscripten_bind_btVector3_setY_1"]=asm["_emscripten_bind_btVector3_setY_1"];var _emscripten_bind_btAxisSweep3_btAxisSweep3_4=Module["_emscripten_bind_btAxisSweep3_btAxisSweep3_4"]=asm["_emscripten_bind_btAxisSweep3_btAxisSweep3_4"];var _emscripten_bind_btAxisSweep3_btAxisSweep3_5=Module["_emscripten_bind_btAxisSweep3_btAxisSweep3_5"]=asm["_emscripten_bind_btAxisSweep3_btAxisSweep3_5"];var _emscripten_bind_btQuadWord_setX_1=Module["_emscripten_bind_btQuadWord_setX_1"]=asm["_emscripten_bind_btQuadWord_setX_1"];var _emscripten_bind_tMaterialArray___destroy___0=Module["_emscripten_bind_tMaterialArray___destroy___0"]=asm["_emscripten_bind_tMaterialArray___destroy___0"];var _emscripten_bind_btRigidBodyConstructionInfo_set_m_additionalLinearDampingThresholdSqr_1=Module["_emscripten_bind_btRigidBodyConstructionInfo_set_m_additionalLinearDampingThresholdSqr_1"]=asm["_emscripten_bind_btRigidBodyConstructionInfo_set_m_additionalLinearDampingThresholdSqr_1"];var _emscripten_bind_btRigidBodyConstructionInfo_get_m_additionalLinearDampingThresholdSqr_0=Module["_emscripten_bind_btRigidBodyConstructionInfo_get_m_additionalLinearDampingThresholdSqr_0"]=asm["_emscripten_bind_btRigidBodyConstructionInfo_get_m_additionalLinearDampingThresholdSqr_0"];var _emscripten_bind_Config_set_piterations_1=Module["_emscripten_bind_Config_set_piterations_1"]=asm["_emscripten_bind_Config_set_piterations_1"];var _emscripten_bind_btOverlappingPairCache___destroy___0=Module["_emscripten_bind_btOverlappingPairCache___destroy___0"]=asm["_emscripten_bind_btOverlappingPairCache___destroy___0"];var _emscripten_bind_btRigidBody_setUserIndex_1=Module["_emscripten_bind_btRigidBody_setUserIndex_1"]=asm["_emscripten_bind_btRigidBody_setUserIndex_1"];var _emscripten_bind_Material_get_m_kAST_0=Module["_emscripten_bind_Material_get_m_kAST_0"]=asm["_emscripten_bind_Material_get_m_kAST_0"];var _emscripten_bind_btConstraintSetting___destroy___0=Module["_emscripten_bind_btConstraintSetting___destroy___0"]=asm["_emscripten_bind_btConstraintSetting___destroy___0"];var _emscripten_bind_RayResultCallback___destroy___0=Module["_emscripten_bind_RayResultCallback___destroy___0"]=asm["_emscripten_bind_RayResultCallback___destroy___0"];var _emscripten_bind_RaycastInfo_get_m_contactNormalWS_0=Module["_emscripten_bind_RaycastInfo_get_m_contactNormalWS_0"]=asm["_emscripten_bind_RaycastInfo_get_m_contactNormalWS_0"];var _emscripten_bind_btSoftBodyWorldInfo_get_water_density_0=Module["_emscripten_bind_btSoftBodyWorldInfo_get_water_density_0"]=asm["_emscripten_bind_btSoftBodyWorldInfo_get_water_density_0"];var _emscripten_bind_btPersistentManifold_getBody0_0=Module["_emscripten_bind_btPersistentManifold_getBody0_0"]=asm["_emscripten_bind_btPersistentManifold_getBody0_0"];var _emscripten_bind_btConeShapeX_btConeShapeX_2=Module["_emscripten_bind_btConeShapeX_btConeShapeX_2"]=asm["_emscripten_bind_btConeShapeX_btConeShapeX_2"];var _emscripten_bind_btSoftBody_setCcdSweptSphereRadius_1=Module["_emscripten_bind_btSoftBody_setCcdSweptSphereRadius_1"]=asm["_emscripten_bind_btSoftBody_setCcdSweptSphereRadius_1"];var _emscripten_bind_btConeTwistConstraint_enableFeedback_1=Module["_emscripten_bind_btConeTwistConstraint_enableFeedback_1"]=asm["_emscripten_bind_btConeTwistConstraint_enableFeedback_1"];var _emscripten_bind_btSoftBodyRigidBodyCollisionConfiguration_btSoftBodyRigidBodyCollisionConfiguration_0=Module["_emscripten_bind_btSoftBodyRigidBodyCollisionConfiguration_btSoftBodyRigidBodyCollisionConfiguration_0"]=asm["_emscripten_bind_btSoftBodyRigidBodyCollisionConfiguration_btSoftBodyRigidBodyCollisionConfiguration_0"];var _emscripten_bind_btCapsuleShapeZ_setLocalScaling_1=Module["_emscripten_bind_btCapsuleShapeZ_setLocalScaling_1"]=asm["_emscripten_bind_btCapsuleShapeZ_setLocalScaling_1"];var _emscripten_bind_Config_get_piterations_0=Module["_emscripten_bind_Config_get_piterations_0"]=asm["_emscripten_bind_Config_get_piterations_0"];var _emscripten_bind_btSoftBody_translate_1=Module["_emscripten_bind_btSoftBody_translate_1"]=asm["_emscripten_bind_btSoftBody_translate_1"];var _emscripten_bind_btSliderConstraint_setUpperLinLimit_1=Module["_emscripten_bind_btSliderConstraint_setUpperLinLimit_1"]=asm["_emscripten_bind_btSliderConstraint_setUpperLinLimit_1"];var _emscripten_bind_btConeTwistConstraint_btConeTwistConstraint_2=Module["_emscripten_bind_btConeTwistConstraint_btConeTwistConstraint_2"]=asm["_emscripten_bind_btConeTwistConstraint_btConeTwistConstraint_2"];var _emscripten_bind_btVector3_op_mul_1=Module["_emscripten_bind_btVector3_op_mul_1"]=asm["_emscripten_bind_btVector3_op_mul_1"];var _emscripten_bind_btConcaveShape___destroy___0=Module["_emscripten_bind_btConcaveShape___destroy___0"]=asm["_emscripten_bind_btConcaveShape___destroy___0"];var _emscripten_bind_btConeTwistConstraint_btConeTwistConstraint_4=Module["_emscripten_bind_btConeTwistConstraint_btConeTwistConstraint_4"]=asm["_emscripten_bind_btConeTwistConstraint_btConeTwistConstraint_4"];var _emscripten_bind_btQuaternion_x_0=Module["_emscripten_bind_btQuaternion_x_0"]=asm["_emscripten_bind_btQuaternion_x_0"];var _emscripten_bind_btSoftRigidDynamicsWorld_btSoftRigidDynamicsWorld_5=Module["_emscripten_bind_btSoftRigidDynamicsWorld_btSoftRigidDynamicsWorld_5"]=asm["_emscripten_bind_btSoftRigidDynamicsWorld_btSoftRigidDynamicsWorld_5"];var _emscripten_bind_Config_set_timescale_1=Module["_emscripten_bind_Config_set_timescale_1"]=asm["_emscripten_bind_Config_set_timescale_1"];var _emscripten_bind_LocalConvexResult_set_m_hitNormalLocal_1=Module["_emscripten_bind_LocalConvexResult_set_m_hitNormalLocal_1"]=asm["_emscripten_bind_LocalConvexResult_set_m_hitNormalLocal_1"];var _emscripten_bind_btConcaveShape_setLocalScaling_1=Module["_emscripten_bind_btConcaveShape_setLocalScaling_1"]=asm["_emscripten_bind_btConcaveShape_setLocalScaling_1"];var _emscripten_bind_btDiscreteDynamicsWorld_getDispatchInfo_0=Module["_emscripten_bind_btDiscreteDynamicsWorld_getDispatchInfo_0"]=asm["_emscripten_bind_btDiscreteDynamicsWorld_getDispatchInfo_0"];var _emscripten_bind_btConeShapeX_setLocalScaling_1=Module["_emscripten_bind_btConeShapeX_setLocalScaling_1"]=asm["_emscripten_bind_btConeShapeX_setLocalScaling_1"];var _emscripten_bind_btSoftBody_appendLink_4=Module["_emscripten_bind_btSoftBody_appendLink_4"]=asm["_emscripten_bind_btSoftBody_appendLink_4"];var _emscripten_bind_btQuaternion_z_0=Module["_emscripten_bind_btQuaternion_z_0"]=asm["_emscripten_bind_btQuaternion_z_0"];var _emscripten_bind_btConvexHullShape_btConvexHullShape_0=Module["_emscripten_bind_btConvexHullShape_btConvexHullShape_0"]=asm["_emscripten_bind_btConvexHullShape_btConvexHullShape_0"];var _emscripten_bind_btWheelInfo_set_m_maxSuspensionForce_1=Module["_emscripten_bind_btWheelInfo_set_m_maxSuspensionForce_1"]=asm["_emscripten_bind_btWheelInfo_set_m_maxSuspensionForce_1"];var _emscripten_bind_btConstraintSetting_get_m_damping_0=Module["_emscripten_bind_btConstraintSetting_get_m_damping_0"]=asm["_emscripten_bind_btConstraintSetting_get_m_damping_0"];var _emscripten_bind_btSoftRigidDynamicsWorld_removeCollisionObject_1=Module["_emscripten_bind_btSoftRigidDynamicsWorld_removeCollisionObject_1"]=asm["_emscripten_bind_btSoftRigidDynamicsWorld_removeCollisionObject_1"];var _emscripten_bind_Config_get_kLF_0=Module["_emscripten_bind_Config_get_kLF_0"]=asm["_emscripten_bind_Config_get_kLF_0"];var _emscripten_bind_btSoftRigidDynamicsWorld_addCollisionObject_3=Module["_emscripten_bind_btSoftRigidDynamicsWorld_addCollisionObject_3"]=asm["_emscripten_bind_btSoftRigidDynamicsWorld_addCollisionObject_3"];var _emscripten_bind_btSoftRigidDynamicsWorld_addCollisionObject_2=Module["_emscripten_bind_btSoftRigidDynamicsWorld_addCollisionObject_2"]=asm["_emscripten_bind_btSoftRigidDynamicsWorld_addCollisionObject_2"];var _emscripten_bind_btSoftRigidDynamicsWorld_addCollisionObject_1=Module["_emscripten_bind_btSoftRigidDynamicsWorld_addCollisionObject_1"]=asm["_emscripten_bind_btSoftRigidDynamicsWorld_addCollisionObject_1"];var _emscripten_bind_btGhostObject_setContactProcessingThreshold_1=Module["_emscripten_bind_btGhostObject_setContactProcessingThreshold_1"]=asm["_emscripten_bind_btGhostObject_setContactProcessingThreshold_1"];var _emscripten_bind_btSoftBodyHelpers_CreateFromConvexHull_4=Module["_emscripten_bind_btSoftBodyHelpers_CreateFromConvexHull_4"]=asm["_emscripten_bind_btSoftBodyHelpers_CreateFromConvexHull_4"];var _emscripten_bind_btCollisionWorld_getBroadphase_0=Module["_emscripten_bind_btCollisionWorld_getBroadphase_0"]=asm["_emscripten_bind_btCollisionWorld_getBroadphase_0"];var _emscripten_bind_btRaycastVehicle_updateWheelTransform_2=Module["_emscripten_bind_btRaycastVehicle_updateWheelTransform_2"]=asm["_emscripten_bind_btRaycastVehicle_updateWheelTransform_2"];var _emscripten_bind_btDispatcherInfo_set_m_stepCount_1=Module["_emscripten_bind_btDispatcherInfo_set_m_stepCount_1"]=asm["_emscripten_bind_btDispatcherInfo_set_m_stepCount_1"];var _emscripten_bind_btContactSolverInfo_set_m_splitImpulse_1=Module["_emscripten_bind_btContactSolverInfo_set_m_splitImpulse_1"]=asm["_emscripten_bind_btContactSolverInfo_set_m_splitImpulse_1"];var _emscripten_bind_btDefaultMotionState_btDefaultMotionState_2=Module["_emscripten_bind_btDefaultMotionState_btDefaultMotionState_2"]=asm["_emscripten_bind_btDefaultMotionState_btDefaultMotionState_2"];var _emscripten_bind_Material_set_m_flags_1=Module["_emscripten_bind_Material_set_m_flags_1"]=asm["_emscripten_bind_Material_set_m_flags_1"];var _emscripten_bind_btDefaultMotionState_btDefaultMotionState_0=Module["_emscripten_bind_btDefaultMotionState_btDefaultMotionState_0"]=asm["_emscripten_bind_btDefaultMotionState_btDefaultMotionState_0"];var _emscripten_bind_btDefaultMotionState_btDefaultMotionState_1=Module["_emscripten_bind_btDefaultMotionState_btDefaultMotionState_1"]=asm["_emscripten_bind_btDefaultMotionState_btDefaultMotionState_1"];var _emscripten_bind_Config_get_viterations_0=Module["_emscripten_bind_Config_get_viterations_0"]=asm["_emscripten_bind_Config_get_viterations_0"];var _emscripten_bind_btKinematicCharacterController_canJump_0=Module["_emscripten_bind_btKinematicCharacterController_canJump_0"]=asm["_emscripten_bind_btKinematicCharacterController_canJump_0"];var _emscripten_bind_btSoftBodyArray_at_1=Module["_emscripten_bind_btSoftBodyArray_at_1"]=asm["_emscripten_bind_btSoftBodyArray_at_1"];var _emscripten_bind_btPairCachingGhostObject_setUserIndex_1=Module["_emscripten_bind_btPairCachingGhostObject_setUserIndex_1"]=asm["_emscripten_bind_btPairCachingGhostObject_setUserIndex_1"];var _emscripten_bind_btRigidBody_isActive_0=Module["_emscripten_bind_btRigidBody_isActive_0"]=asm["_emscripten_bind_btRigidBody_isActive_0"];var _emscripten_bind_btRaycastVehicle_btRaycastVehicle_3=Module["_emscripten_bind_btRaycastVehicle_btRaycastVehicle_3"]=asm["_emscripten_bind_btRaycastVehicle_btRaycastVehicle_3"];var _emscripten_bind_btMotionState_setWorldTransform_1=Module["_emscripten_bind_btMotionState_setWorldTransform_1"]=asm["_emscripten_bind_btMotionState_setWorldTransform_1"];var _emscripten_bind_btSoftRigidDynamicsWorld_getDispatcher_0=Module["_emscripten_bind_btSoftRigidDynamicsWorld_getDispatcher_0"]=asm["_emscripten_bind_btSoftRigidDynamicsWorld_getDispatcher_0"];var _emscripten_bind_btCylinderShape_setLocalScaling_1=Module["_emscripten_bind_btCylinderShape_setLocalScaling_1"]=asm["_emscripten_bind_btCylinderShape_setLocalScaling_1"];var _emscripten_bind_btCollisionWorld_rayTest_3=Module["_emscripten_bind_btCollisionWorld_rayTest_3"]=asm["_emscripten_bind_btCollisionWorld_rayTest_3"];var _emscripten_bind_btCompoundShape_calculateLocalInertia_2=Module["_emscripten_bind_btCompoundShape_calculateLocalInertia_2"]=asm["_emscripten_bind_btCompoundShape_calculateLocalInertia_2"];var _emscripten_bind_btCollisionWorld_getDispatchInfo_0=Module["_emscripten_bind_btCollisionWorld_getDispatchInfo_0"]=asm["_emscripten_bind_btCollisionWorld_getDispatchInfo_0"];var _emscripten_bind_btRigidBody_setCollisionShape_1=Module["_emscripten_bind_btRigidBody_setCollisionShape_1"]=asm["_emscripten_bind_btRigidBody_setCollisionShape_1"];var _emscripten_bind_btSoftBody_appendTetra_5=Module["_emscripten_bind_btSoftBody_appendTetra_5"]=asm["_emscripten_bind_btSoftBody_appendTetra_5"];var _emscripten_bind_btConeShapeX___destroy___0=Module["_emscripten_bind_btConeShapeX___destroy___0"]=asm["_emscripten_bind_btConeShapeX___destroy___0"];var _emscripten_bind_btCollisionObject_getCollisionFlags_0=Module["_emscripten_bind_btCollisionObject_getCollisionFlags_0"]=asm["_emscripten_bind_btCollisionObject_getCollisionFlags_0"];var _emscripten_bind_btDispatcherInfo_set_m_enableSatConvex_1=Module["_emscripten_bind_btDispatcherInfo_set_m_enableSatConvex_1"]=asm["_emscripten_bind_btDispatcherInfo_set_m_enableSatConvex_1"];var _emscripten_bind_btConeTwistConstraint_enableMotor_1=Module["_emscripten_bind_btConeTwistConstraint_enableMotor_1"]=asm["_emscripten_bind_btConeTwistConstraint_enableMotor_1"];var _emscripten_bind_btWheelInfo_set_m_chassisConnectionPointCS_1=Module["_emscripten_bind_btWheelInfo_set_m_chassisConnectionPointCS_1"]=asm["_emscripten_bind_btWheelInfo_set_m_chassisConnectionPointCS_1"];var _emscripten_bind_btRaycastVehicle_setCoordinateSystem_3=Module["_emscripten_bind_btRaycastVehicle_setCoordinateSystem_3"]=asm["_emscripten_bind_btRaycastVehicle_setCoordinateSystem_3"];var _emscripten_bind_btDefaultCollisionConfiguration_btDefaultCollisionConfiguration_0=Module["_emscripten_bind_btDefaultCollisionConfiguration_btDefaultCollisionConfiguration_0"]=asm["_emscripten_bind_btDefaultCollisionConfiguration_btDefaultCollisionConfiguration_0"];var _emscripten_bind_btPairCachingGhostObject_setRestitution_1=Module["_emscripten_bind_btPairCachingGhostObject_setRestitution_1"]=asm["_emscripten_bind_btPairCachingGhostObject_setRestitution_1"];var _emscripten_bind_Config_set_kAHR_1=Module["_emscripten_bind_Config_set_kAHR_1"]=asm["_emscripten_bind_Config_set_kAHR_1"];var _emscripten_bind_btSoftBody_set_m_cfg_1=Module["_emscripten_bind_btSoftBody_set_m_cfg_1"]=asm["_emscripten_bind_btSoftBody_set_m_cfg_1"];var _emscripten_bind_ConvexResultCallback___destroy___0=Module["_emscripten_bind_ConvexResultCallback___destroy___0"]=asm["_emscripten_bind_ConvexResultCallback___destroy___0"];var _emscripten_bind_btSoftRigidDynamicsWorld_rayTest_3=Module["_emscripten_bind_btSoftRigidDynamicsWorld_rayTest_3"]=asm["_emscripten_bind_btSoftRigidDynamicsWorld_rayTest_3"];var _emscripten_bind_Config_get_kSRHR_CL_0=Module["_emscripten_bind_Config_get_kSRHR_CL_0"]=asm["_emscripten_bind_Config_get_kSRHR_CL_0"];var _emscripten_bind_btSliderConstraint_getBreakingImpulseThreshold_0=Module["_emscripten_bind_btSliderConstraint_getBreakingImpulseThreshold_0"]=asm["_emscripten_bind_btSliderConstraint_getBreakingImpulseThreshold_0"];var _emscripten_bind_btRigidBodyConstructionInfo_set_m_additionalDampingFactor_1=Module["_emscripten_bind_btRigidBodyConstructionInfo_set_m_additionalDampingFactor_1"]=asm["_emscripten_bind_btRigidBodyConstructionInfo_set_m_additionalDampingFactor_1"];var _emscripten_bind_btKinematicCharacterController_btKinematicCharacterController_3=Module["_emscripten_bind_btKinematicCharacterController_btKinematicCharacterController_3"]=asm["_emscripten_bind_btKinematicCharacterController_btKinematicCharacterController_3"];var _emscripten_bind_btCollisionObject_setContactProcessingThreshold_1=Module["_emscripten_bind_btCollisionObject_setContactProcessingThreshold_1"]=asm["_emscripten_bind_btCollisionObject_setContactProcessingThreshold_1"];var _emscripten_bind_btCompoundShape___destroy___0=Module["_emscripten_bind_btCompoundShape___destroy___0"]=asm["_emscripten_bind_btCompoundShape___destroy___0"];var _emscripten_bind_btHingeConstraint_setMotorTarget_2=Module["_emscripten_bind_btHingeConstraint_setMotorTarget_2"]=asm["_emscripten_bind_btHingeConstraint_setMotorTarget_2"];var _emscripten_bind_btRigidBodyConstructionInfo_get_m_additionalAngularDampingFactor_0=Module["_emscripten_bind_btRigidBodyConstructionInfo_get_m_additionalAngularDampingFactor_0"]=asm["_emscripten_bind_btRigidBodyConstructionInfo_get_m_additionalAngularDampingFactor_0"];var _emscripten_bind_LocalConvexResult___destroy___0=Module["_emscripten_bind_LocalConvexResult___destroy___0"]=asm["_emscripten_bind_LocalConvexResult___destroy___0"];var _emscripten_bind_btSequentialImpulseConstraintSolver___destroy___0=Module["_emscripten_bind_btSequentialImpulseConstraintSolver___destroy___0"]=asm["_emscripten_bind_btSequentialImpulseConstraintSolver___destroy___0"];var _emscripten_bind_btSoftBodyHelpers_CreateRope_5=Module["_emscripten_bind_btSoftBodyHelpers_CreateRope_5"]=asm["_emscripten_bind_btSoftBodyHelpers_CreateRope_5"];var _emscripten_bind_btRigidBody_getCollisionFlags_0=Module["_emscripten_bind_btRigidBody_getCollisionFlags_0"]=asm["_emscripten_bind_btRigidBody_getCollisionFlags_0"];var _emscripten_bind_btCollisionShape_setLocalScaling_1=Module["_emscripten_bind_btCollisionShape_setLocalScaling_1"]=asm["_emscripten_bind_btCollisionShape_setLocalScaling_1"];var _emscripten_bind_ClosestConvexResultCallback_get_m_closestHitFraction_0=Module["_emscripten_bind_ClosestConvexResultCallback_get_m_closestHitFraction_0"]=asm["_emscripten_bind_ClosestConvexResultCallback_get_m_closestHitFraction_0"];var _emscripten_bind_LocalConvexResult_get_m_hitCollisionObject_0=Module["_emscripten_bind_LocalConvexResult_get_m_hitCollisionObject_0"]=asm["_emscripten_bind_LocalConvexResult_get_m_hitCollisionObject_0"];var _emscripten_bind_btMatrix3x3_setEulerZYX_3=Module["_emscripten_bind_btMatrix3x3_setEulerZYX_3"]=asm["_emscripten_bind_btMatrix3x3_setEulerZYX_3"];var _emscripten_bind_btSoftBody_getTotalMass_0=Module["_emscripten_bind_btSoftBody_getTotalMass_0"]=asm["_emscripten_bind_btSoftBody_getTotalMass_0"];var _emscripten_bind_btDispatcherInfo_get_m_convexConservativeDistanceThreshold_0=Module["_emscripten_bind_btDispatcherInfo_get_m_convexConservativeDistanceThreshold_0"]=asm["_emscripten_bind_btDispatcherInfo_get_m_convexConservativeDistanceThreshold_0"];var _emscripten_bind_btRigidBody_getUserPointer_0=Module["_emscripten_bind_btRigidBody_getUserPointer_0"]=asm["_emscripten_bind_btRigidBody_getUserPointer_0"];var _emscripten_bind_Config_get_kSHR_0=Module["_emscripten_bind_Config_get_kSHR_0"]=asm["_emscripten_bind_Config_get_kSHR_0"];var _emscripten_bind_btHeightfieldTerrainShape_calculateLocalInertia_2=Module["_emscripten_bind_btHeightfieldTerrainShape_calculateLocalInertia_2"]=asm["_emscripten_bind_btHeightfieldTerrainShape_calculateLocalInertia_2"];var _emscripten_bind_btRigidBody_setMotionState_1=Module["_emscripten_bind_btRigidBody_setMotionState_1"]=asm["_emscripten_bind_btRigidBody_setMotionState_1"];var _emscripten_bind_RayResultCallback_get_m_collisionFilterMask_0=Module["_emscripten_bind_RayResultCallback_get_m_collisionFilterMask_0"]=asm["_emscripten_bind_RayResultCallback_get_m_collisionFilterMask_0"];var _emscripten_bind_btCollisionWorld_getDispatcher_0=Module["_emscripten_bind_btCollisionWorld_getDispatcher_0"]=asm["_emscripten_bind_btCollisionWorld_getDispatcher_0"];var _emscripten_bind_btVector4_dot_1=Module["_emscripten_bind_btVector4_dot_1"]=asm["_emscripten_bind_btVector4_dot_1"];var _emscripten_bind_btSoftBody_forceActivationState_1=Module["_emscripten_bind_btSoftBody_forceActivationState_1"]=asm["_emscripten_bind_btSoftBody_forceActivationState_1"];var _emscripten_bind_btCollisionObject_setRollingFriction_1=Module["_emscripten_bind_btCollisionObject_setRollingFriction_1"]=asm["_emscripten_bind_btCollisionObject_setRollingFriction_1"];var _emscripten_bind_Config_set_kSK_SPLT_CL_1=Module["_emscripten_bind_Config_set_kSK_SPLT_CL_1"]=asm["_emscripten_bind_Config_set_kSK_SPLT_CL_1"];var _emscripten_bind_RayResultCallback_set_m_collisionFilterGroup_1=Module["_emscripten_bind_RayResultCallback_set_m_collisionFilterGroup_1"]=asm["_emscripten_bind_RayResultCallback_set_m_collisionFilterGroup_1"];var _emscripten_bind_btPairCachingGhostObject_getCollisionShape_0=Module["_emscripten_bind_btPairCachingGhostObject_getCollisionShape_0"]=asm["_emscripten_bind_btPairCachingGhostObject_getCollisionShape_0"];var _i64Subtract=Module["_i64Subtract"]=asm["_i64Subtract"];var _emscripten_bind_btCylinderShapeX_getMargin_0=Module["_emscripten_bind_btCylinderShapeX_getMargin_0"]=asm["_emscripten_bind_btCylinderShapeX_getMargin_0"];var _emscripten_bind_btRigidBody_setDamping_2=Module["_emscripten_bind_btRigidBody_setDamping_2"]=asm["_emscripten_bind_btRigidBody_setDamping_2"];var _emscripten_bind_btDynamicsWorld_getDispatcher_0=Module["_emscripten_bind_btDynamicsWorld_getDispatcher_0"]=asm["_emscripten_bind_btDynamicsWorld_getDispatcher_0"];var _emscripten_bind_btGhostObject_setCollisionFlags_1=Module["_emscripten_bind_btGhostObject_setCollisionFlags_1"]=asm["_emscripten_bind_btGhostObject_setCollisionFlags_1"];var _emscripten_bind_btMatrix3x3_getRotation_1=Module["_emscripten_bind_btMatrix3x3_getRotation_1"]=asm["_emscripten_bind_btMatrix3x3_getRotation_1"];var _emscripten_bind_btWheelInfo_set_m_engineForce_1=Module["_emscripten_bind_btWheelInfo_set_m_engineForce_1"]=asm["_emscripten_bind_btWheelInfo_set_m_engineForce_1"];var _emscripten_bind_btConeTwistConstraint_setMaxMotorImpulse_1=Module["_emscripten_bind_btConeTwistConstraint_setMaxMotorImpulse_1"]=asm["_emscripten_bind_btConeTwistConstraint_setMaxMotorImpulse_1"];var _emscripten_bind_btPersistentManifold_getNumContacts_0=Module["_emscripten_bind_btPersistentManifold_getNumContacts_0"]=asm["_emscripten_bind_btPersistentManifold_getNumContacts_0"];var _emscripten_bind_btCylinderShapeX_setLocalScaling_1=Module["_emscripten_bind_btCylinderShapeX_setLocalScaling_1"]=asm["_emscripten_bind_btCylinderShapeX_setLocalScaling_1"];var _emscripten_bind_btDbvtBroadphase_btDbvtBroadphase_0=Module["_emscripten_bind_btDbvtBroadphase_btDbvtBroadphase_0"]=asm["_emscripten_bind_btDbvtBroadphase_btDbvtBroadphase_0"];var _emscripten_bind_btSoftBodyHelpers_btSoftBodyHelpers_0=Module["_emscripten_bind_btSoftBodyHelpers_btSoftBodyHelpers_0"]=asm["_emscripten_bind_btSoftBodyHelpers_btSoftBodyHelpers_0"];var _emscripten_bind_btRigidBodyConstructionInfo_get_m_additionalDamping_0=Module["_emscripten_bind_btRigidBodyConstructionInfo_get_m_additionalDamping_0"]=asm["_emscripten_bind_btRigidBodyConstructionInfo_get_m_additionalDamping_0"];var _emscripten_bind_btCompoundShape_setLocalScaling_1=Module["_emscripten_bind_btCompoundShape_setLocalScaling_1"]=asm["_emscripten_bind_btCompoundShape_setLocalScaling_1"];var _emscripten_bind_btOverlappingPairCallback___destroy___0=Module["_emscripten_bind_btOverlappingPairCallback___destroy___0"]=asm["_emscripten_bind_btOverlappingPairCallback___destroy___0"];var _emscripten_bind_btManifoldPoint_get_m_positionWorldOnB_0=Module["_emscripten_bind_btManifoldPoint_get_m_positionWorldOnB_0"]=asm["_emscripten_bind_btManifoldPoint_get_m_positionWorldOnB_0"];var _emscripten_bind_tNodeArray___destroy___0=Module["_emscripten_bind_tNodeArray___destroy___0"]=asm["_emscripten_bind_tNodeArray___destroy___0"];var _emscripten_bind_btPairCachingGhostObject_setCcdSweptSphereRadius_1=Module["_emscripten_bind_btPairCachingGhostObject_setCcdSweptSphereRadius_1"]=asm["_emscripten_bind_btPairCachingGhostObject_setCcdSweptSphereRadius_1"];var _emscripten_bind_btHingeConstraint_enableAngularMotor_3=Module["_emscripten_bind_btHingeConstraint_enableAngularMotor_3"]=asm["_emscripten_bind_btHingeConstraint_enableAngularMotor_3"];var _emscripten_bind_btRigidBody_setContactProcessingThreshold_1=Module["_emscripten_bind_btRigidBody_setContactProcessingThreshold_1"]=asm["_emscripten_bind_btRigidBody_setContactProcessingThreshold_1"];var _emscripten_bind_btRigidBody_getLinearVelocity_0=Module["_emscripten_bind_btRigidBody_getLinearVelocity_0"]=asm["_emscripten_bind_btRigidBody_getLinearVelocity_0"];var _emscripten_bind_btRigidBody_applyImpulse_2=Module["_emscripten_bind_btRigidBody_applyImpulse_2"]=asm["_emscripten_bind_btRigidBody_applyImpulse_2"];var _emscripten_bind_btConcaveShape_calculateLocalInertia_2=Module["_emscripten_bind_btConcaveShape_calculateLocalInertia_2"]=asm["_emscripten_bind_btConcaveShape_calculateLocalInertia_2"];var _emscripten_bind_RaycastInfo_get_m_groundObject_0=Module["_emscripten_bind_RaycastInfo_get_m_groundObject_0"]=asm["_emscripten_bind_RaycastInfo_get_m_groundObject_0"];var _emscripten_bind_btRigidBody_setWorldTransform_1=Module["_emscripten_bind_btRigidBody_setWorldTransform_1"]=asm["_emscripten_bind_btRigidBody_setWorldTransform_1"];var _emscripten_bind_btRigidBody_setAngularVelocity_1=Module["_emscripten_bind_btRigidBody_setAngularVelocity_1"]=asm["_emscripten_bind_btRigidBody_setAngularVelocity_1"];var _emscripten_bind_btGeneric6DofSpringConstraint_btGeneric6DofSpringConstraint_3=Module["_emscripten_bind_btGeneric6DofSpringConstraint_btGeneric6DofSpringConstraint_3"]=asm["_emscripten_bind_btGeneric6DofSpringConstraint_btGeneric6DofSpringConstraint_3"];var _emscripten_bind_Config_get_kDP_0=Module["_emscripten_bind_Config_get_kDP_0"]=asm["_emscripten_bind_Config_get_kDP_0"];var _emscripten_bind_btConvexShape_setLocalScaling_1=Module["_emscripten_bind_btConvexShape_setLocalScaling_1"]=asm["_emscripten_bind_btConvexShape_setLocalScaling_1"];var _emscripten_bind_Config_get_collisions_0=Module["_emscripten_bind_Config_get_collisions_0"]=asm["_emscripten_bind_Config_get_collisions_0"];var _emscripten_bind_Node_get_m_n_0=Module["_emscripten_bind_Node_get_m_n_0"]=asm["_emscripten_bind_Node_get_m_n_0"];var _emscripten_bind_btTriangleMeshShape_calculateLocalInertia_2=Module["_emscripten_bind_btTriangleMeshShape_calculateLocalInertia_2"]=asm["_emscripten_bind_btTriangleMeshShape_calculateLocalInertia_2"];var _free=Module["_free"]=asm["_free"];var _emscripten_bind_btPairCachingGhostObject_setContactProcessingThreshold_1=Module["_emscripten_bind_btPairCachingGhostObject_setContactProcessingThreshold_1"]=asm["_emscripten_bind_btPairCachingGhostObject_setContactProcessingThreshold_1"];var _emscripten_bind_btGeneric6DofConstraint_setLinearUpperLimit_1=Module["_emscripten_bind_btGeneric6DofConstraint_setLinearUpperLimit_1"]=asm["_emscripten_bind_btGeneric6DofConstraint_setLinearUpperLimit_1"];var _emscripten_bind_ClosestRayResultCallback_get_m_collisionFilterMask_0=Module["_emscripten_bind_ClosestRayResultCallback_get_m_collisionFilterMask_0"]=asm["_emscripten_bind_ClosestRayResultCallback_get_m_collisionFilterMask_0"];var _emscripten_bind_RayResultCallback_hasHit_0=Module["_emscripten_bind_RayResultCallback_hasHit_0"]=asm["_emscripten_bind_RayResultCallback_hasHit_0"];var _emscripten_bind_btRigidBody_applyLocalTorque_1=Module["_emscripten_bind_btRigidBody_applyLocalTorque_1"]=asm["_emscripten_bind_btRigidBody_applyLocalTorque_1"];var _bitshift64Shl=Module["_bitshift64Shl"]=asm["_bitshift64Shl"];var _emscripten_bind_Config___destroy___0=Module["_emscripten_bind_Config___destroy___0"]=asm["_emscripten_bind_Config___destroy___0"];var _emscripten_bind_btVehicleTuning_set_m_maxSuspensionForce_1=Module["_emscripten_bind_btVehicleTuning_set_m_maxSuspensionForce_1"]=asm["_emscripten_bind_btVehicleTuning_set_m_maxSuspensionForce_1"];var _emscripten_bind_btRaycastVehicle_getWheelTransformWS_1=Module["_emscripten_bind_btRaycastVehicle_getWheelTransformWS_1"]=asm["_emscripten_bind_btRaycastVehicle_getWheelTransformWS_1"];var _emscripten_bind_btQuaternion_normalize_0=Module["_emscripten_bind_btQuaternion_normalize_0"]=asm["_emscripten_bind_btQuaternion_normalize_0"];var _emscripten_bind_btQuaternion___destroy___0=Module["_emscripten_bind_btQuaternion___destroy___0"]=asm["_emscripten_bind_btQuaternion___destroy___0"];var _emscripten_bind_btWheelInfo_get_m_frictionSlip_0=Module["_emscripten_bind_btWheelInfo_get_m_frictionSlip_0"]=asm["_emscripten_bind_btWheelInfo_get_m_frictionSlip_0"];var _emscripten_bind_btConeShapeZ_setLocalScaling_1=Module["_emscripten_bind_btConeShapeZ_setLocalScaling_1"]=asm["_emscripten_bind_btConeShapeZ_setLocalScaling_1"];var _emscripten_bind_btSoftBodyWorldInfo_get_m_dispatcher_0=Module["_emscripten_bind_btSoftBodyWorldInfo_get_m_dispatcher_0"]=asm["_emscripten_bind_btSoftBodyWorldInfo_get_m_dispatcher_0"];var _emscripten_bind_btGeneric6DofSpringConstraint___destroy___0=Module["_emscripten_bind_btGeneric6DofSpringConstraint___destroy___0"]=asm["_emscripten_bind_btGeneric6DofSpringConstraint___destroy___0"];var _emscripten_bind_btRaycastVehicle_getNumWheels_0=Module["_emscripten_bind_btRaycastVehicle_getNumWheels_0"]=asm["_emscripten_bind_btRaycastVehicle_getNumWheels_0"];var _emscripten_bind_btVehicleTuning_set_m_maxSuspensionTravelCm_1=Module["_emscripten_bind_btVehicleTuning_set_m_maxSuspensionTravelCm_1"]=asm["_emscripten_bind_btVehicleTuning_set_m_maxSuspensionTravelCm_1"];var _emscripten_bind_Material_set_m_kAST_1=Module["_emscripten_bind_Material_set_m_kAST_1"]=asm["_emscripten_bind_Material_set_m_kAST_1"];var _emscripten_bind_btGhostObject_setRollingFriction_1=Module["_emscripten_bind_btGhostObject_setRollingFriction_1"]=asm["_emscripten_bind_btGhostObject_setRollingFriction_1"];var _emscripten_bind_btCylinderShapeZ_btCylinderShapeZ_1=Module["_emscripten_bind_btCylinderShapeZ_btCylinderShapeZ_1"]=asm["_emscripten_bind_btCylinderShapeZ_btCylinderShapeZ_1"];var _emscripten_bind_btSoftBodyArray___destroy___0=Module["_emscripten_bind_btSoftBodyArray___destroy___0"]=asm["_emscripten_bind_btSoftBodyArray___destroy___0"];var _emscripten_bind_btCompoundShape_btCompoundShape_0=Module["_emscripten_bind_btCompoundShape_btCompoundShape_0"]=asm["_emscripten_bind_btCompoundShape_btCompoundShape_0"];var _emscripten_bind_btCompoundShape_btCompoundShape_1=Module["_emscripten_bind_btCompoundShape_btCompoundShape_1"]=asm["_emscripten_bind_btCompoundShape_btCompoundShape_1"];var _emscripten_bind_btOverlappingPairCache_setInternalGhostPairCallback_1=Module["_emscripten_bind_btOverlappingPairCache_setInternalGhostPairCallback_1"]=asm["_emscripten_bind_btOverlappingPairCache_setInternalGhostPairCallback_1"];var _emscripten_bind_btStaticPlaneShape_btStaticPlaneShape_2=Module["_emscripten_bind_btStaticPlaneShape_btStaticPlaneShape_2"]=asm["_emscripten_bind_btStaticPlaneShape_btStaticPlaneShape_2"];var __GLOBAL__sub_I_btQuickprof_cpp=Module["__GLOBAL__sub_I_btQuickprof_cpp"]=asm["__GLOBAL__sub_I_btQuickprof_cpp"];var _emscripten_bind_btDispatcherInfo_set_m_convexConservativeDistanceThreshold_1=Module["_emscripten_bind_btDispatcherInfo_set_m_convexConservativeDistanceThreshold_1"]=asm["_emscripten_bind_btDispatcherInfo_set_m_convexConservativeDistanceThreshold_1"];var _emscripten_bind_btSoftBody_checkLink_2=Module["_emscripten_bind_btSoftBody_checkLink_2"]=asm["_emscripten_bind_btSoftBody_checkLink_2"];var _emscripten_bind_btSoftBody_getCollisionShape_0=Module["_emscripten_bind_btSoftBody_getCollisionShape_0"]=asm["_emscripten_bind_btSoftBody_getCollisionShape_0"];var _emscripten_bind_Config_get_kDG_0=Module["_emscripten_bind_Config_get_kDG_0"]=asm["_emscripten_bind_Config_get_kDG_0"];var _emscripten_bind_btPairCachingGhostObject_setAnisotropicFriction_2=Module["_emscripten_bind_btPairCachingGhostObject_setAnisotropicFriction_2"]=asm["_emscripten_bind_btPairCachingGhostObject_setAnisotropicFriction_2"];var _emscripten_bind_Node_get_m_x_0=Module["_emscripten_bind_Node_get_m_x_0"]=asm["_emscripten_bind_Node_get_m_x_0"];var _emscripten_bind_btCollisionObject_getWorldTransform_0=Module["_emscripten_bind_btCollisionObject_getWorldTransform_0"]=asm["_emscripten_bind_btCollisionObject_getWorldTransform_0"];var _emscripten_bind_ClosestRayResultCallback_hasHit_0=Module["_emscripten_bind_ClosestRayResultCallback_hasHit_0"]=asm["_emscripten_bind_ClosestRayResultCallback_hasHit_0"];var _emscripten_bind_btCompoundShape_addChildShape_2=Module["_emscripten_bind_btCompoundShape_addChildShape_2"]=asm["_emscripten_bind_btCompoundShape_addChildShape_2"];var _emscripten_bind_btDispatcher___destroy___0=Module["_emscripten_bind_btDispatcher___destroy___0"]=asm["_emscripten_bind_btDispatcher___destroy___0"];var _emscripten_bind_btVehicleTuning_get_m_suspensionCompression_0=Module["_emscripten_bind_btVehicleTuning_get_m_suspensionCompression_0"]=asm["_emscripten_bind_btVehicleTuning_get_m_suspensionCompression_0"];var _emscripten_bind_btDiscreteDynamicsWorld___destroy___0=Module["_emscripten_bind_btDiscreteDynamicsWorld___destroy___0"]=asm["_emscripten_bind_btDiscreteDynamicsWorld___destroy___0"];var _emscripten_bind_btConvexShape___destroy___0=Module["_emscripten_bind_btConvexShape___destroy___0"]=asm["_emscripten_bind_btConvexShape___destroy___0"];var _memmove=Module["_memmove"]=asm["_memmove"];var _emscripten_bind_btCapsuleShapeX_setLocalScaling_1=Module["_emscripten_bind_btCapsuleShapeX_setLocalScaling_1"]=asm["_emscripten_bind_btCapsuleShapeX_setLocalScaling_1"];var _emscripten_bind_btSoftBody_getCollisionFlags_0=Module["_emscripten_bind_btSoftBody_getCollisionFlags_0"]=asm["_emscripten_bind_btSoftBody_getCollisionFlags_0"];var _emscripten_bind_btCollisionObject_setRestitution_1=Module["_emscripten_bind_btCollisionObject_setRestitution_1"]=asm["_emscripten_bind_btCollisionObject_setRestitution_1"];var _emscripten_bind_btRigidBody_applyCentralForce_1=Module["_emscripten_bind_btRigidBody_applyCentralForce_1"]=asm["_emscripten_bind_btRigidBody_applyCentralForce_1"];var _emscripten_bind_btSoftBodyWorldInfo_set_m_gravity_1=Module["_emscripten_bind_btSoftBodyWorldInfo_set_m_gravity_1"]=asm["_emscripten_bind_btSoftBodyWorldInfo_set_m_gravity_1"];var _emscripten_bind_LocalConvexResult_get_m_hitFraction_0=Module["_emscripten_bind_LocalConvexResult_get_m_hitFraction_0"]=asm["_emscripten_bind_LocalConvexResult_get_m_hitFraction_0"];var _emscripten_bind_btHingeConstraint_setBreakingImpulseThreshold_1=Module["_emscripten_bind_btHingeConstraint_setBreakingImpulseThreshold_1"]=asm["_emscripten_bind_btHingeConstraint_setBreakingImpulseThreshold_1"];var _emscripten_bind_btQuaternion_w_0=Module["_emscripten_bind_btQuaternion_w_0"]=asm["_emscripten_bind_btQuaternion_w_0"];var _emscripten_bind_ConvexResultCallback_get_m_collisionFilterGroup_0=Module["_emscripten_bind_ConvexResultCallback_get_m_collisionFilterGroup_0"]=asm["_emscripten_bind_ConvexResultCallback_get_m_collisionFilterGroup_0"];var _emscripten_bind_btTransform_getRotation_0=Module["_emscripten_bind_btTransform_getRotation_0"]=asm["_emscripten_bind_btTransform_getRotation_0"];var _emscripten_bind_Config_set_kSKHR_CL_1=Module["_emscripten_bind_Config_set_kSKHR_CL_1"]=asm["_emscripten_bind_Config_set_kSKHR_CL_1"];var _emscripten_bind_btHingeConstraint_btHingeConstraint_6=Module["_emscripten_bind_btHingeConstraint_btHingeConstraint_6"]=asm["_emscripten_bind_btHingeConstraint_btHingeConstraint_6"];var _emscripten_bind_btHingeConstraint_btHingeConstraint_7=Module["_emscripten_bind_btHingeConstraint_btHingeConstraint_7"]=asm["_emscripten_bind_btHingeConstraint_btHingeConstraint_7"];var _emscripten_bind_btCapsuleShapeZ_getMargin_0=Module["_emscripten_bind_btCapsuleShapeZ_getMargin_0"]=asm["_emscripten_bind_btCapsuleShapeZ_getMargin_0"];var _emscripten_bind_btHingeConstraint_btHingeConstraint_5=Module["_emscripten_bind_btHingeConstraint_btHingeConstraint_5"]=asm["_emscripten_bind_btHingeConstraint_btHingeConstraint_5"];var _emscripten_bind_btSoftBodyWorldInfo_get_m_maxDisplacement_0=Module["_emscripten_bind_btSoftBodyWorldInfo_get_m_maxDisplacement_0"]=asm["_emscripten_bind_btSoftBodyWorldInfo_get_m_maxDisplacement_0"];var _emscripten_bind_btHingeConstraint_btHingeConstraint_3=Module["_emscripten_bind_btHingeConstraint_btHingeConstraint_3"]=asm["_emscripten_bind_btHingeConstraint_btHingeConstraint_3"];var _emscripten_bind_btRigidBodyConstructionInfo_set_m_additionalAngularDampingThresholdSqr_1=Module["_emscripten_bind_btRigidBodyConstructionInfo_set_m_additionalAngularDampingThresholdSqr_1"]=asm["_emscripten_bind_btRigidBodyConstructionInfo_set_m_additionalAngularDampingThresholdSqr_1"];var _emscripten_bind_btSoftBody_setWorldTransform_1=Module["_emscripten_bind_btSoftBody_setWorldTransform_1"]=asm["_emscripten_bind_btSoftBody_setWorldTransform_1"];var _emscripten_bind_btBoxShape_setMargin_1=Module["_emscripten_bind_btBoxShape_setMargin_1"]=asm["_emscripten_bind_btBoxShape_setMargin_1"];var _emscripten_bind_ClosestConvexResultCallback_get_m_hitNormalWorld_0=Module["_emscripten_bind_ClosestConvexResultCallback_get_m_hitNormalWorld_0"]=asm["_emscripten_bind_ClosestConvexResultCallback_get_m_hitNormalWorld_0"];var _emscripten_bind_Config_get_kSK_SPLT_CL_0=Module["_emscripten_bind_Config_get_kSK_SPLT_CL_0"]=asm["_emscripten_bind_Config_get_kSK_SPLT_CL_0"];var _emscripten_bind_btTypedConstraint___destroy___0=Module["_emscripten_bind_btTypedConstraint___destroy___0"]=asm["_emscripten_bind_btTypedConstraint___destroy___0"];var _emscripten_bind_btCylinderShapeX_btCylinderShapeX_1=Module["_emscripten_bind_btCylinderShapeX_btCylinderShapeX_1"]=asm["_emscripten_bind_btCylinderShapeX_btCylinderShapeX_1"];var _emscripten_bind_btGeneric6DofSpringConstraint_setAngularUpperLimit_1=Module["_emscripten_bind_btGeneric6DofSpringConstraint_setAngularUpperLimit_1"]=asm["_emscripten_bind_btGeneric6DofSpringConstraint_setAngularUpperLimit_1"];var _emscripten_bind_btDiscreteDynamicsWorld_addRigidBody_3=Module["_emscripten_bind_btDiscreteDynamicsWorld_addRigidBody_3"]=asm["_emscripten_bind_btDiscreteDynamicsWorld_addRigidBody_3"];var _emscripten_bind_btDiscreteDynamicsWorld_addRigidBody_1=Module["_emscripten_bind_btDiscreteDynamicsWorld_addRigidBody_1"]=asm["_emscripten_bind_btDiscreteDynamicsWorld_addRigidBody_1"];var _emscripten_bind_Config_set_collisions_1=Module["_emscripten_bind_Config_set_collisions_1"]=asm["_emscripten_bind_Config_set_collisions_1"];var _bitshift64Ashr=Module["_bitshift64Ashr"]=asm["_bitshift64Ashr"];var _emscripten_bind_btQuaternion_btQuaternion_4=Module["_emscripten_bind_btQuaternion_btQuaternion_4"]=asm["_emscripten_bind_btQuaternion_btQuaternion_4"];var _emscripten_bind_btSoftRigidDynamicsWorld_getBroadphase_0=Module["_emscripten_bind_btSoftRigidDynamicsWorld_getBroadphase_0"]=asm["_emscripten_bind_btSoftRigidDynamicsWorld_getBroadphase_0"];var _emscripten_bind_btDiscreteDynamicsWorld_removeAction_1=Module["_emscripten_bind_btDiscreteDynamicsWorld_removeAction_1"]=asm["_emscripten_bind_btDiscreteDynamicsWorld_removeAction_1"];var _emscripten_bind_btSphereShape_btSphereShape_1=Module["_emscripten_bind_btSphereShape_btSphereShape_1"]=asm["_emscripten_bind_btSphereShape_btSphereShape_1"];var _emscripten_bind_btWheelInfo_get_m_wheelsSuspensionForce_0=Module["_emscripten_bind_btWheelInfo_get_m_wheelsSuspensionForce_0"]=asm["_emscripten_bind_btWheelInfo_get_m_wheelsSuspensionForce_0"];var _emscripten_bind_btQuaternion_y_0=Module["_emscripten_bind_btQuaternion_y_0"]=asm["_emscripten_bind_btQuaternion_y_0"];var _emscripten_bind_btCollisionWorld_addCollisionObject_1=Module["_emscripten_bind_btCollisionWorld_addCollisionObject_1"]=asm["_emscripten_bind_btCollisionWorld_addCollisionObject_1"];var _emscripten_bind_btCollisionWorld_addCollisionObject_2=Module["_emscripten_bind_btCollisionWorld_addCollisionObject_2"]=asm["_emscripten_bind_btCollisionWorld_addCollisionObject_2"];var _emscripten_bind_btCollisionWorld_addCollisionObject_3=Module["_emscripten_bind_btCollisionWorld_addCollisionObject_3"]=asm["_emscripten_bind_btCollisionWorld_addCollisionObject_3"];var _emscripten_bind_ClosestConvexResultCallback_set_m_collisionFilterGroup_1=Module["_emscripten_bind_ClosestConvexResultCallback_set_m_collisionFilterGroup_1"]=asm["_emscripten_bind_ClosestConvexResultCallback_set_m_collisionFilterGroup_1"];var _emscripten_bind_btConeTwistConstraint_setBreakingImpulseThreshold_1=Module["_emscripten_bind_btConeTwistConstraint_setBreakingImpulseThreshold_1"]=asm["_emscripten_bind_btConeTwistConstraint_setBreakingImpulseThreshold_1"];var _emscripten_bind_btSoftBodyHelpers_CreateEllipsoid_4=Module["_emscripten_bind_btSoftBodyHelpers_CreateEllipsoid_4"]=asm["_emscripten_bind_btSoftBodyHelpers_CreateEllipsoid_4"];var _emscripten_bind_RaycastInfo_get_m_isInContact_0=Module["_emscripten_bind_RaycastInfo_get_m_isInContact_0"]=asm["_emscripten_bind_RaycastInfo_get_m_isInContact_0"];var _emscripten_bind_Config_set_kKHR_1=Module["_emscripten_bind_Config_set_kKHR_1"]=asm["_emscripten_bind_Config_set_kKHR_1"];var _emscripten_bind_btHeightfieldTerrainShape_setMargin_1=Module["_emscripten_bind_btHeightfieldTerrainShape_setMargin_1"]=asm["_emscripten_bind_btHeightfieldTerrainShape_setMargin_1"];var _emscripten_bind_ClosestConvexResultCallback_get_m_collisionFilterGroup_0=Module["_emscripten_bind_ClosestConvexResultCallback_get_m_collisionFilterGroup_0"]=asm["_emscripten_bind_ClosestConvexResultCallback_get_m_collisionFilterGroup_0"];var _emscripten_bind_btCapsuleShape_setMargin_1=Module["_emscripten_bind_btCapsuleShape_setMargin_1"]=asm["_emscripten_bind_btCapsuleShape_setMargin_1"];var _emscripten_bind_btDefaultVehicleRaycaster_btDefaultVehicleRaycaster_1=Module["_emscripten_bind_btDefaultVehicleRaycaster_btDefaultVehicleRaycaster_1"]=asm["_emscripten_bind_btDefaultVehicleRaycaster_btDefaultVehicleRaycaster_1"];var _emscripten_bind_btPoint2PointConstraint_get_m_setting_0=Module["_emscripten_bind_btPoint2PointConstraint_get_m_setting_0"]=asm["_emscripten_bind_btPoint2PointConstraint_get_m_setting_0"];var _emscripten_bind_btCollisionObject_setUserPointer_1=Module["_emscripten_bind_btCollisionObject_setUserPointer_1"]=asm["_emscripten_bind_btCollisionObject_setUserPointer_1"];var _emscripten_bind_btSequentialImpulseConstraintSolver_btSequentialImpulseConstraintSolver_0=Module["_emscripten_bind_btSequentialImpulseConstraintSolver_btSequentialImpulseConstraintSolver_0"]=asm["_emscripten_bind_btSequentialImpulseConstraintSolver_btSequentialImpulseConstraintSolver_0"];var _emscripten_bind_btActionInterface___destroy___0=Module["_emscripten_bind_btActionInterface___destroy___0"]=asm["_emscripten_bind_btActionInterface___destroy___0"];var _emscripten_bind_btSoftBody_generateClusters_2=Module["_emscripten_bind_btSoftBody_generateClusters_2"]=asm["_emscripten_bind_btSoftBody_generateClusters_2"];var _emscripten_bind_btDefaultMotionState_setWorldTransform_1=Module["_emscripten_bind_btDefaultMotionState_setWorldTransform_1"]=asm["_emscripten_bind_btDefaultMotionState_setWorldTransform_1"];var _emscripten_bind_btSoftBody_generateClusters_1=Module["_emscripten_bind_btSoftBody_generateClusters_1"]=asm["_emscripten_bind_btSoftBody_generateClusters_1"];var _emscripten_bind_RayResultCallback_get_m_collisionObject_0=Module["_emscripten_bind_RayResultCallback_get_m_collisionObject_0"]=asm["_emscripten_bind_RayResultCallback_get_m_collisionObject_0"];var _emscripten_bind_btPoint2PointConstraint_getPivotInA_0=Module["_emscripten_bind_btPoint2PointConstraint_getPivotInA_0"]=asm["_emscripten_bind_btPoint2PointConstraint_getPivotInA_0"];var _emscripten_bind_Config_get_kAHR_0=Module["_emscripten_bind_Config_get_kAHR_0"]=asm["_emscripten_bind_Config_get_kAHR_0"];var _emscripten_bind_btGeneric6DofSpringConstraint_setStiffness_2=Module["_emscripten_bind_btGeneric6DofSpringConstraint_setStiffness_2"]=asm["_emscripten_bind_btGeneric6DofSpringConstraint_setStiffness_2"];var _emscripten_bind_btCylinderShape_calculateLocalInertia_2=Module["_emscripten_bind_btCylinderShape_calculateLocalInertia_2"]=asm["_emscripten_bind_btCylinderShape_calculateLocalInertia_2"];var _emscripten_bind_btCompoundShape_setMargin_1=Module["_emscripten_bind_btCompoundShape_setMargin_1"]=asm["_emscripten_bind_btCompoundShape_setMargin_1"];var _emscripten_bind_ClosestConvexResultCallback___destroy___0=Module["_emscripten_bind_ClosestConvexResultCallback___destroy___0"]=asm["_emscripten_bind_ClosestConvexResultCallback___destroy___0"];var _emscripten_bind_btDynamicsWorld_addCollisionObject_1=Module["_emscripten_bind_btDynamicsWorld_addCollisionObject_1"]=asm["_emscripten_bind_btDynamicsWorld_addCollisionObject_1"];var _emscripten_bind_ClosestConvexResultCallback_get_m_collisionFilterMask_0=Module["_emscripten_bind_ClosestConvexResultCallback_get_m_collisionFilterMask_0"]=asm["_emscripten_bind_ClosestConvexResultCallback_get_m_collisionFilterMask_0"];var ___cxa_can_catch=Module["___cxa_can_catch"]=asm["___cxa_can_catch"];var _emscripten_bind_btDynamicsWorld_addCollisionObject_2=Module["_emscripten_bind_btDynamicsWorld_addCollisionObject_2"]=asm["_emscripten_bind_btDynamicsWorld_addCollisionObject_2"];var _emscripten_bind_btDiscreteDynamicsWorld_getDispatcher_0=Module["_emscripten_bind_btDiscreteDynamicsWorld_getDispatcher_0"]=asm["_emscripten_bind_btDiscreteDynamicsWorld_getDispatcher_0"];var _emscripten_bind_btGeneric6DofSpringConstraint_enableFeedback_1=Module["_emscripten_bind_btGeneric6DofSpringConstraint_enableFeedback_1"]=asm["_emscripten_bind_btGeneric6DofSpringConstraint_enableFeedback_1"];var _emscripten_bind_btHeightfieldTerrainShape___destroy___0=Module["_emscripten_bind_btHeightfieldTerrainShape___destroy___0"]=asm["_emscripten_bind_btHeightfieldTerrainShape___destroy___0"];var _emscripten_bind_btWheelInfo_get_m_maxSuspensionTravelCm_0=Module["_emscripten_bind_btWheelInfo_get_m_maxSuspensionTravelCm_0"]=asm["_emscripten_bind_btWheelInfo_get_m_maxSuspensionTravelCm_0"];var _emscripten_bind_Config_get_kVC_0=Module["_emscripten_bind_Config_get_kVC_0"]=asm["_emscripten_bind_Config_get_kVC_0"];var _emscripten_bind_btVector4_op_mul_1=Module["_emscripten_bind_btVector4_op_mul_1"]=asm["_emscripten_bind_btVector4_op_mul_1"];var _emscripten_bind_btCylinderShape_btCylinderShape_1=Module["_emscripten_bind_btCylinderShape_btCylinderShape_1"]=asm["_emscripten_bind_btCylinderShape_btCylinderShape_1"];var _emscripten_bind_btPairCachingGhostObject_setActivationState_1=Module["_emscripten_bind_btPairCachingGhostObject_setActivationState_1"]=asm["_emscripten_bind_btPairCachingGhostObject_setActivationState_1"];var _emscripten_bind_btRigidBodyConstructionInfo_set_m_linearDamping_1=Module["_emscripten_bind_btRigidBodyConstructionInfo_set_m_linearDamping_1"]=asm["_emscripten_bind_btRigidBodyConstructionInfo_set_m_linearDamping_1"];var _emscripten_bind_Material_get_m_kVST_0=Module["_emscripten_bind_Material_get_m_kVST_0"]=asm["_emscripten_bind_Material_get_m_kVST_0"];var _emscripten_bind_Config_set_kVCF_1=Module["_emscripten_bind_Config_set_kVCF_1"]=asm["_emscripten_bind_Config_set_kVCF_1"];var _emscripten_bind_btSoftRigidDynamicsWorld_stepSimulation_3=Module["_emscripten_bind_btSoftRigidDynamicsWorld_stepSimulation_3"]=asm["_emscripten_bind_btSoftRigidDynamicsWorld_stepSimulation_3"];var _emscripten_bind_btGhostObject_getUserIndex_0=Module["_emscripten_bind_btGhostObject_getUserIndex_0"]=asm["_emscripten_bind_btGhostObject_getUserIndex_0"];var _emscripten_bind_btSoftRigidDynamicsWorld_stepSimulation_1=Module["_emscripten_bind_btSoftRigidDynamicsWorld_stepSimulation_1"]=asm["_emscripten_bind_btSoftRigidDynamicsWorld_stepSimulation_1"];var _emscripten_bind_btVector3___destroy___0=Module["_emscripten_bind_btVector3___destroy___0"]=asm["_emscripten_bind_btVector3___destroy___0"];var _emscripten_bind_RaycastInfo___destroy___0=Module["_emscripten_bind_RaycastInfo___destroy___0"]=asm["_emscripten_bind_RaycastInfo___destroy___0"];var _emscripten_bind_btRigidBody_setAngularFactor_1=Module["_emscripten_bind_btRigidBody_setAngularFactor_1"]=asm["_emscripten_bind_btRigidBody_setAngularFactor_1"];var _emscripten_bind_btCylinderShapeZ_calculateLocalInertia_2=Module["_emscripten_bind_btCylinderShapeZ_calculateLocalInertia_2"]=asm["_emscripten_bind_btCylinderShapeZ_calculateLocalInertia_2"];var _emscripten_bind_btConeShapeZ_btConeShapeZ_2=Module["_emscripten_bind_btConeShapeZ_btConeShapeZ_2"]=asm["_emscripten_bind_btConeShapeZ_btConeShapeZ_2"];var _emscripten_bind_LocalShapeInfo_set_m_triangleIndex_1=Module["_emscripten_bind_LocalShapeInfo_set_m_triangleIndex_1"]=asm["_emscripten_bind_LocalShapeInfo_set_m_triangleIndex_1"];var _emscripten_bind_btMotionState_getWorldTransform_1=Module["_emscripten_bind_btMotionState_getWorldTransform_1"]=asm["_emscripten_bind_btMotionState_getWorldTransform_1"];var _emscripten_bind_btDynamicsWorld_getSolverInfo_0=Module["_emscripten_bind_btDynamicsWorld_getSolverInfo_0"]=asm["_emscripten_bind_btDynamicsWorld_getSolverInfo_0"];var _emscripten_bind_Config_get_kMT_0=Module["_emscripten_bind_Config_get_kMT_0"]=asm["_emscripten_bind_Config_get_kMT_0"];var _emscripten_bind_btDynamicsWorld_getBroadphase_0=Module["_emscripten_bind_btDynamicsWorld_getBroadphase_0"]=asm["_emscripten_bind_btDynamicsWorld_getBroadphase_0"];var _emscripten_bind_btSphereShape_getMargin_0=Module["_emscripten_bind_btSphereShape_getMargin_0"]=asm["_emscripten_bind_btSphereShape_getMargin_0"];var _emscripten_bind_Config_get_timescale_0=Module["_emscripten_bind_Config_get_timescale_0"]=asm["_emscripten_bind_Config_get_timescale_0"];var _emscripten_bind_btVector3_x_0=Module["_emscripten_bind_btVector3_x_0"]=asm["_emscripten_bind_btVector3_x_0"];var ___cxa_is_pointer_type=Module["___cxa_is_pointer_type"]=asm["___cxa_is_pointer_type"];var _emscripten_bind_btConvexTriangleMeshShape___destroy___0=Module["_emscripten_bind_btConvexTriangleMeshShape___destroy___0"]=asm["_emscripten_bind_btConvexTriangleMeshShape___destroy___0"];var _emscripten_bind_btCollisionObject_getCollisionShape_0=Module["_emscripten_bind_btCollisionObject_getCollisionShape_0"]=asm["_emscripten_bind_btCollisionObject_getCollisionShape_0"];var _emscripten_bind_btRigidBodyConstructionInfo_btRigidBodyConstructionInfo_4=Module["_emscripten_bind_btRigidBodyConstructionInfo_btRigidBodyConstructionInfo_4"]=asm["_emscripten_bind_btRigidBodyConstructionInfo_btRigidBodyConstructionInfo_4"];var _emscripten_bind_btManifoldPoint___destroy___0=Module["_emscripten_bind_btManifoldPoint___destroy___0"]=asm["_emscripten_bind_btManifoldPoint___destroy___0"];var _emscripten_bind_btRigidBodyConstructionInfo_set_m_rollingFriction_1=Module["_emscripten_bind_btRigidBodyConstructionInfo_set_m_rollingFriction_1"]=asm["_emscripten_bind_btRigidBodyConstructionInfo_set_m_rollingFriction_1"];var _emscripten_bind_btVector4_length_0=Module["_emscripten_bind_btVector4_length_0"]=asm["_emscripten_bind_btVector4_length_0"];var _emscripten_bind_btGhostObject_setUserIndex_1=Module["_emscripten_bind_btGhostObject_setUserIndex_1"]=asm["_emscripten_bind_btGhostObject_setUserIndex_1"];var _emscripten_bind_btDefaultMotionState_set_m_graphicsWorldTrans_1=Module["_emscripten_bind_btDefaultMotionState_set_m_graphicsWorldTrans_1"]=asm["_emscripten_bind_btDefaultMotionState_set_m_graphicsWorldTrans_1"];var _emscripten_bind_btGhostObject_setRestitution_1=Module["_emscripten_bind_btGhostObject_setRestitution_1"]=asm["_emscripten_bind_btGhostObject_setRestitution_1"];var _emscripten_bind_btConeTwistConstraint_setAngularOnly_1=Module["_emscripten_bind_btConeTwistConstraint_setAngularOnly_1"]=asm["_emscripten_bind_btConeTwistConstraint_setAngularOnly_1"];var _emscripten_bind_btCollisionObject_setFriction_1=Module["_emscripten_bind_btCollisionObject_setFriction_1"]=asm["_emscripten_bind_btCollisionObject_setFriction_1"];var _emscripten_bind_btDefaultCollisionConfiguration___destroy___0=Module["_emscripten_bind_btDefaultCollisionConfiguration___destroy___0"]=asm["_emscripten_bind_btDefaultCollisionConfiguration___destroy___0"];var _emscripten_bind_btRigidBody_setMassProps_2=Module["_emscripten_bind_btRigidBody_setMassProps_2"]=asm["_emscripten_bind_btRigidBody_setMassProps_2"];var _emscripten_bind_btVector3_setValue_3=Module["_emscripten_bind_btVector3_setValue_3"]=asm["_emscripten_bind_btVector3_setValue_3"];var _emscripten_bind_btPairCachingGhostObject_setCcdMotionThreshold_1=Module["_emscripten_bind_btPairCachingGhostObject_setCcdMotionThreshold_1"]=asm["_emscripten_bind_btPairCachingGhostObject_setCcdMotionThreshold_1"];var _emscripten_bind_RaycastInfo_get_m_suspensionLength_0=Module["_emscripten_bind_RaycastInfo_get_m_suspensionLength_0"]=asm["_emscripten_bind_RaycastInfo_get_m_suspensionLength_0"];var _emscripten_bind_btGhostObject_getCollisionFlags_0=Module["_emscripten_bind_btGhostObject_getCollisionFlags_0"]=asm["_emscripten_bind_btGhostObject_getCollisionFlags_0"];var _emscripten_bind_btCapsuleShapeX___destroy___0=Module["_emscripten_bind_btCapsuleShapeX___destroy___0"]=asm["_emscripten_bind_btCapsuleShapeX___destroy___0"];var _emscripten_bind_btAxisSweep3___destroy___0=Module["_emscripten_bind_btAxisSweep3___destroy___0"]=asm["_emscripten_bind_btAxisSweep3___destroy___0"];var _emscripten_bind_Config_set_kDG_1=Module["_emscripten_bind_Config_set_kDG_1"]=asm["_emscripten_bind_Config_set_kDG_1"];var _emscripten_bind_Material_get_m_flags_0=Module["_emscripten_bind_Material_get_m_flags_0"]=asm["_emscripten_bind_Material_get_m_flags_0"];var _emscripten_bind_btHingeConstraint_setLimit_4=Module["_emscripten_bind_btHingeConstraint_setLimit_4"]=asm["_emscripten_bind_btHingeConstraint_setLimit_4"];var _emscripten_bind_btHingeConstraint_setLimit_5=Module["_emscripten_bind_btHingeConstraint_setLimit_5"]=asm["_emscripten_bind_btHingeConstraint_setLimit_5"];var _emscripten_bind_btSoftBodyWorldInfo_btSoftBodyWorldInfo_0=Module["_emscripten_bind_btSoftBodyWorldInfo_btSoftBodyWorldInfo_0"]=asm["_emscripten_bind_btSoftBodyWorldInfo_btSoftBodyWorldInfo_0"];var _emscripten_bind_btDefaultVehicleRaycaster___destroy___0=Module["_emscripten_bind_btDefaultVehicleRaycaster___destroy___0"]=asm["_emscripten_bind_btDefaultVehicleRaycaster___destroy___0"];var _emscripten_bind_btWheelInfo_set_m_maxSuspensionTravelCm_1=Module["_emscripten_bind_btWheelInfo_set_m_maxSuspensionTravelCm_1"]=asm["_emscripten_bind_btWheelInfo_set_m_maxSuspensionTravelCm_1"];var _emscripten_bind_btWheelInfo_set_m_wheelsSuspensionForce_1=Module["_emscripten_bind_btWheelInfo_set_m_wheelsSuspensionForce_1"]=asm["_emscripten_bind_btWheelInfo_set_m_wheelsSuspensionForce_1"];var _emscripten_bind_btSoftBody_scale_1=Module["_emscripten_bind_btSoftBody_scale_1"]=asm["_emscripten_bind_btSoftBody_scale_1"];var _emscripten_bind_Config_get_citerations_0=Module["_emscripten_bind_Config_get_citerations_0"]=asm["_emscripten_bind_Config_get_citerations_0"];var _emscripten_bind_btTypedConstraint_getBreakingImpulseThreshold_0=Module["_emscripten_bind_btTypedConstraint_getBreakingImpulseThreshold_0"]=asm["_emscripten_bind_btTypedConstraint_getBreakingImpulseThreshold_0"];var _emscripten_bind_btGhostObject_getCollisionShape_0=Module["_emscripten_bind_btGhostObject_getCollisionShape_0"]=asm["_emscripten_bind_btGhostObject_getCollisionShape_0"];var _emscripten_bind_btCollisionObject_setAnisotropicFriction_2=Module["_emscripten_bind_btCollisionObject_setAnisotropicFriction_2"]=asm["_emscripten_bind_btCollisionObject_setAnisotropicFriction_2"];var _emscripten_bind_btBoxShape___destroy___0=Module["_emscripten_bind_btBoxShape___destroy___0"]=asm["_emscripten_bind_btBoxShape___destroy___0"];var _emscripten_bind_btPersistentManifold_getContactPoint_1=Module["_emscripten_bind_btPersistentManifold_getContactPoint_1"]=asm["_emscripten_bind_btPersistentManifold_getContactPoint_1"];var _emscripten_bind_btGeneric6DofSpringConstraint_getBreakingImpulseThreshold_0=Module["_emscripten_bind_btGeneric6DofSpringConstraint_getBreakingImpulseThreshold_0"]=asm["_emscripten_bind_btGeneric6DofSpringConstraint_getBreakingImpulseThreshold_0"];var _emscripten_bind_ConvexResultCallback_set_m_collisionFilterGroup_1=Module["_emscripten_bind_ConvexResultCallback_set_m_collisionFilterGroup_1"]=asm["_emscripten_bind_ConvexResultCallback_set_m_collisionFilterGroup_1"];var _emscripten_bind_RaycastInfo_set_m_groundObject_1=Module["_emscripten_bind_RaycastInfo_set_m_groundObject_1"]=asm["_emscripten_bind_RaycastInfo_set_m_groundObject_1"];var _emscripten_bind_btGhostObject_activate_1=Module["_emscripten_bind_btGhostObject_activate_1"]=asm["_emscripten_bind_btGhostObject_activate_1"];var _emscripten_bind_btGeneric6DofSpringConstraint_enableSpring_2=Module["_emscripten_bind_btGeneric6DofSpringConstraint_enableSpring_2"]=asm["_emscripten_bind_btGeneric6DofSpringConstraint_enableSpring_2"];var _emscripten_bind_btManifoldPoint_getPositionWorldOnB_0=Module["_emscripten_bind_btManifoldPoint_getPositionWorldOnB_0"]=asm["_emscripten_bind_btManifoldPoint_getPositionWorldOnB_0"];var _emscripten_bind_btManifoldPoint_get_m_positionWorldOnA_0=Module["_emscripten_bind_btManifoldPoint_get_m_positionWorldOnA_0"]=asm["_emscripten_bind_btManifoldPoint_get_m_positionWorldOnA_0"];var _emscripten_bind_btDefaultSoftBodySolver_btDefaultSoftBodySolver_0=Module["_emscripten_bind_btDefaultSoftBodySolver_btDefaultSoftBodySolver_0"]=asm["_emscripten_bind_btDefaultSoftBodySolver_btDefaultSoftBodySolver_0"];var _emscripten_bind_btSphereShape_setMargin_1=Module["_emscripten_bind_btSphereShape_setMargin_1"]=asm["_emscripten_bind_btSphereShape_setMargin_1"];var _emscripten_bind_btSoftBody_get_m_cfg_0=Module["_emscripten_bind_btSoftBody_get_m_cfg_0"]=asm["_emscripten_bind_btSoftBody_get_m_cfg_0"];var _emscripten_bind_btCollisionObject_setUserIndex_1=Module["_emscripten_bind_btCollisionObject_setUserIndex_1"]=asm["_emscripten_bind_btCollisionObject_setUserIndex_1"];var _emscripten_bind_btContactSolverInfo_set_m_splitImpulsePenetrationThreshold_1=Module["_emscripten_bind_btContactSolverInfo_set_m_splitImpulsePenetrationThreshold_1"]=asm["_emscripten_bind_btContactSolverInfo_set_m_splitImpulsePenetrationThreshold_1"];var _emscripten_bind_btSliderConstraint_setUpperAngLimit_1=Module["_emscripten_bind_btSliderConstraint_setUpperAngLimit_1"]=asm["_emscripten_bind_btSliderConstraint_setUpperAngLimit_1"];var _emscripten_bind_btDynamicsWorld_contactPairTest_3=Module["_emscripten_bind_btDynamicsWorld_contactPairTest_3"]=asm["_emscripten_bind_btDynamicsWorld_contactPairTest_3"];var _emscripten_bind_btCollisionWorld_getPairCache_0=Module["_emscripten_bind_btCollisionWorld_getPairCache_0"]=asm["_emscripten_bind_btCollisionWorld_getPairCache_0"];var _emscripten_bind_btConeTwistConstraint_setMotorTarget_1=Module["_emscripten_bind_btConeTwistConstraint_setMotorTarget_1"]=asm["_emscripten_bind_btConeTwistConstraint_setMotorTarget_1"];var _emscripten_bind_ClosestConvexResultCallback_set_m_convexFromWorld_1=Module["_emscripten_bind_ClosestConvexResultCallback_set_m_convexFromWorld_1"]=asm["_emscripten_bind_ClosestConvexResultCallback_set_m_convexFromWorld_1"];var _emscripten_bind_btWheelInfo_set_m_rollInfluence_1=Module["_emscripten_bind_btWheelInfo_set_m_rollInfluence_1"]=asm["_emscripten_bind_btWheelInfo_set_m_rollInfluence_1"];var _emscripten_bind_btGhostObject_setCcdMotionThreshold_1=Module["_emscripten_bind_btGhostObject_setCcdMotionThreshold_1"]=asm["_emscripten_bind_btGhostObject_setCcdMotionThreshold_1"];var _emscripten_bind_btGeneric6DofConstraint_setBreakingImpulseThreshold_1=Module["_emscripten_bind_btGeneric6DofConstraint_setBreakingImpulseThreshold_1"]=asm["_emscripten_bind_btGeneric6DofConstraint_setBreakingImpulseThreshold_1"];var _emscripten_enum_PHY_ScalarType_PHY_INTEGER=Module["_emscripten_enum_PHY_ScalarType_PHY_INTEGER"]=asm["_emscripten_enum_PHY_ScalarType_PHY_INTEGER"];var _emscripten_bind_btSoftBodyHelpers_CreatePatchUV_10=Module["_emscripten_bind_btSoftBodyHelpers_CreatePatchUV_10"]=asm["_emscripten_bind_btSoftBodyHelpers_CreatePatchUV_10"];var _emscripten_bind_btGhostObject_forceActivationState_1=Module["_emscripten_bind_btGhostObject_forceActivationState_1"]=asm["_emscripten_bind_btGhostObject_forceActivationState_1"];var _emscripten_bind_btSoftBodyHelpers_CreateFromTriMesh_5=Module["_emscripten_bind_btSoftBodyHelpers_CreateFromTriMesh_5"]=asm["_emscripten_bind_btSoftBodyHelpers_CreateFromTriMesh_5"];var _emscripten_bind_btVector4_y_0=Module["_emscripten_bind_btVector4_y_0"]=asm["_emscripten_bind_btVector4_y_0"];var _emscripten_bind_VoidPtr___destroy___0=Module["_emscripten_bind_VoidPtr___destroy___0"]=asm["_emscripten_bind_VoidPtr___destroy___0"];var _emscripten_bind_RaycastInfo_set_m_contactNormalWS_1=Module["_emscripten_bind_RaycastInfo_set_m_contactNormalWS_1"]=asm["_emscripten_bind_RaycastInfo_set_m_contactNormalWS_1"];var _emscripten_bind_btSliderConstraint_setLowerAngLimit_1=Module["_emscripten_bind_btSliderConstraint_setLowerAngLimit_1"]=asm["_emscripten_bind_btSliderConstraint_setLowerAngLimit_1"];var _emscripten_bind_ClosestRayResultCallback_get_m_collisionObject_0=Module["_emscripten_bind_ClosestRayResultCallback_get_m_collisionObject_0"]=asm["_emscripten_bind_ClosestRayResultCallback_get_m_collisionObject_0"];var _emscripten_bind_RaycastInfo_set_m_contactPointWS_1=Module["_emscripten_bind_RaycastInfo_set_m_contactPointWS_1"]=asm["_emscripten_bind_RaycastInfo_set_m_contactPointWS_1"];var _emscripten_bind_ClosestConvexResultCallback_ClosestConvexResultCallback_2=Module["_emscripten_bind_ClosestConvexResultCallback_ClosestConvexResultCallback_2"]=asm["_emscripten_bind_ClosestConvexResultCallback_ClosestConvexResultCallback_2"];var _emscripten_bind_ClosestRayResultCallback_get_m_rayFromWorld_0=Module["_emscripten_bind_ClosestRayResultCallback_get_m_rayFromWorld_0"]=asm["_emscripten_bind_ClosestRayResultCallback_get_m_rayFromWorld_0"];var _emscripten_bind_btSoftBody_setContactProcessingThreshold_1=Module["_emscripten_bind_btSoftBody_setContactProcessingThreshold_1"]=asm["_emscripten_bind_btSoftBody_setContactProcessingThreshold_1"];var _emscripten_bind_btPairCachingGhostObject_getNumOverlappingObjects_0=Module["_emscripten_bind_btPairCachingGhostObject_getNumOverlappingObjects_0"]=asm["_emscripten_bind_btPairCachingGhostObject_getNumOverlappingObjects_0"];var _emscripten_bind_btSliderConstraint_enableFeedback_1=Module["_emscripten_bind_btSliderConstraint_enableFeedback_1"]=asm["_emscripten_bind_btSliderConstraint_enableFeedback_1"];var _emscripten_bind_RayResultCallback_get_m_collisionFilterGroup_0=Module["_emscripten_bind_RayResultCallback_get_m_collisionFilterGroup_0"]=asm["_emscripten_bind_RayResultCallback_get_m_collisionFilterGroup_0"];var _emscripten_enum_PHY_ScalarType_PHY_DOUBLE=Module["_emscripten_enum_PHY_ScalarType_PHY_DOUBLE"]=asm["_emscripten_enum_PHY_ScalarType_PHY_DOUBLE"];var _emscripten_bind_btConstraintSetting_get_m_tau_0=Module["_emscripten_bind_btConstraintSetting_get_m_tau_0"]=asm["_emscripten_bind_btConstraintSetting_get_m_tau_0"];var _emscripten_bind_btConeShape_setLocalScaling_1=Module["_emscripten_bind_btConeShape_setLocalScaling_1"]=asm["_emscripten_bind_btConeShape_setLocalScaling_1"];var _emscripten_bind_btCollisionObject_setCollisionShape_1=Module["_emscripten_bind_btCollisionObject_setCollisionShape_1"]=asm["_emscripten_bind_btCollisionObject_setCollisionShape_1"];var _emscripten_bind_btCollisionShape___destroy___0=Module["_emscripten_bind_btCollisionShape___destroy___0"]=asm["_emscripten_bind_btCollisionShape___destroy___0"];var _emscripten_bind_btMatrix3x3_getRow_1=Module["_emscripten_bind_btMatrix3x3_getRow_1"]=asm["_emscripten_bind_btMatrix3x3_getRow_1"];var _emscripten_bind_ConvexResultCallback_get_m_closestHitFraction_0=Module["_emscripten_bind_ConvexResultCallback_get_m_closestHitFraction_0"]=asm["_emscripten_bind_ConvexResultCallback_get_m_closestHitFraction_0"];var _emscripten_bind_btSoftRigidDynamicsWorld_getPairCache_0=Module["_emscripten_bind_btSoftRigidDynamicsWorld_getPairCache_0"]=asm["_emscripten_bind_btSoftRigidDynamicsWorld_getPairCache_0"];var _emscripten_bind_btDispatcherInfo_get_m_dispatchFunc_0=Module["_emscripten_bind_btDispatcherInfo_get_m_dispatchFunc_0"]=asm["_emscripten_bind_btDispatcherInfo_get_m_dispatchFunc_0"];var _emscripten_bind_btRigidBodyConstructionInfo_get_m_rollingFriction_0=Module["_emscripten_bind_btRigidBodyConstructionInfo_get_m_rollingFriction_0"]=asm["_emscripten_bind_btRigidBodyConstructionInfo_get_m_rollingFriction_0"];var _emscripten_bind_btSoftBody_getUserIndex_0=Module["_emscripten_bind_btSoftBody_getUserIndex_0"]=asm["_emscripten_bind_btSoftBody_getUserIndex_0"];var _emscripten_bind_btPairCachingGhostObject_setCollisionShape_1=Module["_emscripten_bind_btPairCachingGhostObject_setCollisionShape_1"]=asm["_emscripten_bind_btPairCachingGhostObject_setCollisionShape_1"];var _emscripten_bind_btKinematicCharacterController_warp_1=Module["_emscripten_bind_btKinematicCharacterController_warp_1"]=asm["_emscripten_bind_btKinematicCharacterController_warp_1"];var _emscripten_bind_btContactSolverInfo___destroy___0=Module["_emscripten_bind_btContactSolverInfo___destroy___0"]=asm["_emscripten_bind_btContactSolverInfo___destroy___0"];var _emscripten_bind_btSoftBody_getWorldTransform_0=Module["_emscripten_bind_btSoftBody_getWorldTransform_0"]=asm["_emscripten_bind_btSoftBody_getWorldTransform_0"];var _emscripten_bind_btTriangleMesh___destroy___0=Module["_emscripten_bind_btTriangleMesh___destroy___0"]=asm["_emscripten_bind_btTriangleMesh___destroy___0"];var _emscripten_bind_btKinematicCharacterController_preStep_1=Module["_emscripten_bind_btKinematicCharacterController_preStep_1"]=asm["_emscripten_bind_btKinematicCharacterController_preStep_1"];var _emscripten_bind_btRaycastVehicle_applyEngineForce_2=Module["_emscripten_bind_btRaycastVehicle_applyEngineForce_2"]=asm["_emscripten_bind_btRaycastVehicle_applyEngineForce_2"];var _emscripten_bind_btBoxShape_calculateLocalInertia_2=Module["_emscripten_bind_btBoxShape_calculateLocalInertia_2"]=asm["_emscripten_bind_btBoxShape_calculateLocalInertia_2"];var _emscripten_bind_btRaycastVehicle_setBrake_2=Module["_emscripten_bind_btRaycastVehicle_setBrake_2"]=asm["_emscripten_bind_btRaycastVehicle_setBrake_2"];var _emscripten_bind_ConcreteContactResultCallback___destroy___0=Module["_emscripten_bind_ConcreteContactResultCallback___destroy___0"]=asm["_emscripten_bind_ConcreteContactResultCallback___destroy___0"];var _emscripten_bind_RaycastInfo_set_m_wheelAxleWS_1=Module["_emscripten_bind_RaycastInfo_set_m_wheelAxleWS_1"]=asm["_emscripten_bind_RaycastInfo_set_m_wheelAxleWS_1"];var _emscripten_bind_btCollisionObject___destroy___0=Module["_emscripten_bind_btCollisionObject___destroy___0"]=asm["_emscripten_bind_btCollisionObject___destroy___0"];var _emscripten_bind_btVehicleTuning_set_m_suspensionDamping_1=Module["_emscripten_bind_btVehicleTuning_set_m_suspensionDamping_1"]=asm["_emscripten_bind_btVehicleTuning_set_m_suspensionDamping_1"];var _emscripten_bind_btConvexTriangleMeshShape_setMargin_1=Module["_emscripten_bind_btConvexTriangleMeshShape_setMargin_1"]=asm["_emscripten_bind_btConvexTriangleMeshShape_setMargin_1"];var _emscripten_bind_Config_get_kSSHR_CL_0=Module["_emscripten_bind_Config_get_kSSHR_CL_0"]=asm["_emscripten_bind_Config_get_kSSHR_CL_0"];var _emscripten_bind_btConeTwistConstraint_setMotorTargetInConstraintSpace_1=Module["_emscripten_bind_btConeTwistConstraint_setMotorTargetInConstraintSpace_1"]=asm["_emscripten_bind_btConeTwistConstraint_setMotorTargetInConstraintSpace_1"];var _emscripten_bind_btDispatcherInfo_set_m_timeStep_1=Module["_emscripten_bind_btDispatcherInfo_set_m_timeStep_1"]=asm["_emscripten_bind_btDispatcherInfo_set_m_timeStep_1"];var _emscripten_bind_btVector3_btVector3_3=Module["_emscripten_bind_btVector3_btVector3_3"]=asm["_emscripten_bind_btVector3_btVector3_3"];var _emscripten_bind_btVector3_btVector3_0=Module["_emscripten_bind_btVector3_btVector3_0"]=asm["_emscripten_bind_btVector3_btVector3_0"];var _emscripten_bind_btRigidBodyConstructionInfo_set_m_friction_1=Module["_emscripten_bind_btRigidBodyConstructionInfo_set_m_friction_1"]=asm["_emscripten_bind_btRigidBodyConstructionInfo_set_m_friction_1"];var _emscripten_bind_btDiscreteDynamicsWorld_getGravity_0=Module["_emscripten_bind_btDiscreteDynamicsWorld_getGravity_0"]=asm["_emscripten_bind_btDiscreteDynamicsWorld_getGravity_0"];var _emscripten_bind_btVector3_z_0=Module["_emscripten_bind_btVector3_z_0"]=asm["_emscripten_bind_btVector3_z_0"];var _emscripten_bind_ClosestConvexResultCallback_get_m_hitPointWorld_0=Module["_emscripten_bind_ClosestConvexResultCallback_get_m_hitPointWorld_0"]=asm["_emscripten_bind_ClosestConvexResultCallback_get_m_hitPointWorld_0"];var _emscripten_bind_btCollisionShape_getMargin_0=Module["_emscripten_bind_btCollisionShape_getMargin_0"]=asm["_emscripten_bind_btCollisionShape_getMargin_0"];var _emscripten_bind_btSoftBodyWorldInfo_set_water_offset_1=Module["_emscripten_bind_btSoftBodyWorldInfo_set_water_offset_1"]=asm["_emscripten_bind_btSoftBodyWorldInfo_set_water_offset_1"];var _emscripten_bind_btBroadphaseInterface___destroy___0=Module["_emscripten_bind_btBroadphaseInterface___destroy___0"]=asm["_emscripten_bind_btBroadphaseInterface___destroy___0"];var _emscripten_bind_btVehicleTuning_get_m_suspensionDamping_0=Module["_emscripten_bind_btVehicleTuning_get_m_suspensionDamping_0"]=asm["_emscripten_bind_btVehicleTuning_get_m_suspensionDamping_0"];var _emscripten_bind_ConcreteContactResultCallback_addSingleResult_7=Module["_emscripten_bind_ConcreteContactResultCallback_addSingleResult_7"]=asm["_emscripten_bind_ConcreteContactResultCallback_addSingleResult_7"];var _emscripten_bind_RaycastInfo_get_m_hardPointWS_0=Module["_emscripten_bind_RaycastInfo_get_m_hardPointWS_0"]=asm["_emscripten_bind_RaycastInfo_get_m_hardPointWS_0"];var _emscripten_bind_btConeTwistConstraint___destroy___0=Module["_emscripten_bind_btConeTwistConstraint___destroy___0"]=asm["_emscripten_bind_btConeTwistConstraint___destroy___0"];var _emscripten_bind_btQuadWord___destroy___0=Module["_emscripten_bind_btQuadWord___destroy___0"]=asm["_emscripten_bind_btQuadWord___destroy___0"];var _emscripten_bind_btSoftRigidDynamicsWorld_contactPairTest_3=Module["_emscripten_bind_btSoftRigidDynamicsWorld_contactPairTest_3"]=asm["_emscripten_bind_btSoftRigidDynamicsWorld_contactPairTest_3"];var _emscripten_bind_btQuaternion_setEulerZYX_3=Module["_emscripten_bind_btQuaternion_setEulerZYX_3"]=asm["_emscripten_bind_btQuaternion_setEulerZYX_3"];var _emscripten_bind_ClosestRayResultCallback_set_m_rayFromWorld_1=Module["_emscripten_bind_ClosestRayResultCallback_set_m_rayFromWorld_1"]=asm["_emscripten_bind_ClosestRayResultCallback_set_m_rayFromWorld_1"];var _emscripten_bind_btGeneric6DofSpringConstraint_setDamping_2=Module["_emscripten_bind_btGeneric6DofSpringConstraint_setDamping_2"]=asm["_emscripten_bind_btGeneric6DofSpringConstraint_setDamping_2"];var _emscripten_bind_RaycastInfo_get_m_wheelDirectionWS_0=Module["_emscripten_bind_RaycastInfo_get_m_wheelDirectionWS_0"]=asm["_emscripten_bind_RaycastInfo_get_m_wheelDirectionWS_0"];var _emscripten_bind_btRigidBody_setCenterOfMassTransform_1=Module["_emscripten_bind_btRigidBody_setCenterOfMassTransform_1"]=asm["_emscripten_bind_btRigidBody_setCenterOfMassTransform_1"];var _emscripten_bind_btSoftBody_setUserIndex_1=Module["_emscripten_bind_btSoftBody_setUserIndex_1"]=asm["_emscripten_bind_btSoftBody_setUserIndex_1"];var _emscripten_bind_btWheelInfo_get_m_chassisConnectionPointCS_0=Module["_emscripten_bind_btWheelInfo_get_m_chassisConnectionPointCS_0"]=asm["_emscripten_bind_btWheelInfo_get_m_chassisConnectionPointCS_0"];var _emscripten_bind_btSoftBody_setCollisionShape_1=Module["_emscripten_bind_btSoftBody_setCollisionShape_1"]=asm["_emscripten_bind_btSoftBody_setCollisionShape_1"];var _emscripten_bind_btGhostObject_setAnisotropicFriction_2=Module["_emscripten_bind_btGhostObject_setAnisotropicFriction_2"]=asm["_emscripten_bind_btGhostObject_setAnisotropicFriction_2"];var _emscripten_bind_btConstraintSolver___destroy___0=Module["_emscripten_bind_btConstraintSolver___destroy___0"]=asm["_emscripten_bind_btConstraintSolver___destroy___0"];var _emscripten_bind_btSoftBody_isActive_0=Module["_emscripten_bind_btSoftBody_isActive_0"]=asm["_emscripten_bind_btSoftBody_isActive_0"];var _emscripten_bind_btCapsuleShape_btCapsuleShape_2=Module["_emscripten_bind_btCapsuleShape_btCapsuleShape_2"]=asm["_emscripten_bind_btCapsuleShape_btCapsuleShape_2"];var _emscripten_bind_btTypedConstraint_enableFeedback_1=Module["_emscripten_bind_btTypedConstraint_enableFeedback_1"]=asm["_emscripten_bind_btTypedConstraint_enableFeedback_1"];var _emscripten_bind_btSoftBody_setRollingFriction_1=Module["_emscripten_bind_btSoftBody_setRollingFriction_1"]=asm["_emscripten_bind_btSoftBody_setRollingFriction_1"];var _emscripten_bind_btGhostObject_activate_0=Module["_emscripten_bind_btGhostObject_activate_0"]=asm["_emscripten_bind_btGhostObject_activate_0"];var _emscripten_bind_btConstraintSetting_btConstraintSetting_0=Module["_emscripten_bind_btConstraintSetting_btConstraintSetting_0"]=asm["_emscripten_bind_btConstraintSetting_btConstraintSetting_0"];var _emscripten_bind_btCapsuleShape_setLocalScaling_1=Module["_emscripten_bind_btCapsuleShape_setLocalScaling_1"]=asm["_emscripten_bind_btCapsuleShape_setLocalScaling_1"];var _emscripten_bind_btRigidBodyConstructionInfo_get_m_additionalDampingFactor_0=Module["_emscripten_bind_btRigidBodyConstructionInfo_get_m_additionalDampingFactor_0"]=asm["_emscripten_bind_btRigidBodyConstructionInfo_get_m_additionalDampingFactor_0"];var _emscripten_bind_btRigidBody_setAnisotropicFriction_2=Module["_emscripten_bind_btRigidBody_setAnisotropicFriction_2"]=asm["_emscripten_bind_btRigidBody_setAnisotropicFriction_2"];var _emscripten_bind_btSoftBody_btSoftBody_4=Module["_emscripten_bind_btSoftBody_btSoftBody_4"]=asm["_emscripten_bind_btSoftBody_btSoftBody_4"];var _emscripten_bind_btTriangleMeshShape_setLocalScaling_1=Module["_emscripten_bind_btTriangleMeshShape_setLocalScaling_1"]=asm["_emscripten_bind_btTriangleMeshShape_setLocalScaling_1"];var _emscripten_bind_btRigidBodyConstructionInfo_btRigidBodyConstructionInfo_3=Module["_emscripten_bind_btRigidBodyConstructionInfo_btRigidBodyConstructionInfo_3"]=asm["_emscripten_bind_btRigidBodyConstructionInfo_btRigidBodyConstructionInfo_3"];var _emscripten_bind_ConvexResultCallback_set_m_closestHitFraction_1=Module["_emscripten_bind_ConvexResultCallback_set_m_closestHitFraction_1"]=asm["_emscripten_bind_ConvexResultCallback_set_m_closestHitFraction_1"];var _emscripten_bind_btVector3_op_add_1=Module["_emscripten_bind_btVector3_op_add_1"]=asm["_emscripten_bind_btVector3_op_add_1"];var _emscripten_bind_btPersistentManifold_btPersistentManifold_0=Module["_emscripten_bind_btPersistentManifold_btPersistentManifold_0"]=asm["_emscripten_bind_btPersistentManifold_btPersistentManifold_0"];var _emscripten_bind_ConvexResultCallback_get_m_collisionFilterMask_0=Module["_emscripten_bind_ConvexResultCallback_get_m_collisionFilterMask_0"]=asm["_emscripten_bind_ConvexResultCallback_get_m_collisionFilterMask_0"];var _emscripten_bind_ClosestRayResultCallback_ClosestRayResultCallback_2=Module["_emscripten_bind_ClosestRayResultCallback_ClosestRayResultCallback_2"]=asm["_emscripten_bind_ClosestRayResultCallback_ClosestRayResultCallback_2"];var _emscripten_bind_btVector4___destroy___0=Module["_emscripten_bind_btVector4___destroy___0"]=asm["_emscripten_bind_btVector4___destroy___0"];var _emscripten_bind_btPairCachingGhostObject_isKinematicObject_0=Module["_emscripten_bind_btPairCachingGhostObject_isKinematicObject_0"]=asm["_emscripten_bind_btPairCachingGhostObject_isKinematicObject_0"];var _emscripten_bind_ClosestRayResultCallback_set_m_collisionFilterMask_1=Module["_emscripten_bind_ClosestRayResultCallback_set_m_collisionFilterMask_1"]=asm["_emscripten_bind_ClosestRayResultCallback_set_m_collisionFilterMask_1"];var _emscripten_bind_tNodeArray_at_1=Module["_emscripten_bind_tNodeArray_at_1"]=asm["_emscripten_bind_tNodeArray_at_1"];var _i64Add=Module["_i64Add"]=asm["_i64Add"];var _emscripten_bind_btStaticPlaneShape_calculateLocalInertia_2=Module["_emscripten_bind_btStaticPlaneShape_calculateLocalInertia_2"]=asm["_emscripten_bind_btStaticPlaneShape_calculateLocalInertia_2"];var _emscripten_bind_btRigidBodyConstructionInfo_get_m_additionalAngularDampingThresholdSqr_0=Module["_emscripten_bind_btRigidBodyConstructionInfo_get_m_additionalAngularDampingThresholdSqr_0"]=asm["_emscripten_bind_btRigidBodyConstructionInfo_get_m_additionalAngularDampingThresholdSqr_0"];var _emscripten_bind_btCollisionObject_setCcdMotionThreshold_1=Module["_emscripten_bind_btCollisionObject_setCcdMotionThreshold_1"]=asm["_emscripten_bind_btCollisionObject_setCcdMotionThreshold_1"];var _emscripten_bind_btKinematicCharacterController_btKinematicCharacterController_4=Module["_emscripten_bind_btKinematicCharacterController_btKinematicCharacterController_4"]=asm["_emscripten_bind_btKinematicCharacterController_btKinematicCharacterController_4"];var _emscripten_bind_btHeightfieldTerrainShape_getMargin_0=Module["_emscripten_bind_btHeightfieldTerrainShape_getMargin_0"]=asm["_emscripten_bind_btHeightfieldTerrainShape_getMargin_0"];var _emscripten_bind_btQuadWord_setZ_1=Module["_emscripten_bind_btQuadWord_setZ_1"]=asm["_emscripten_bind_btQuadWord_setZ_1"];var _emscripten_bind_btRigidBodyConstructionInfo_get_m_angularSleepingThreshold_0=Module["_emscripten_bind_btRigidBodyConstructionInfo_get_m_angularSleepingThreshold_0"]=asm["_emscripten_bind_btRigidBodyConstructionInfo_get_m_angularSleepingThreshold_0"];var _emscripten_bind_btPoint2PointConstraint_getPivotInB_0=Module["_emscripten_bind_btPoint2PointConstraint_getPivotInB_0"]=asm["_emscripten_bind_btPoint2PointConstraint_getPivotInB_0"];var _emscripten_bind_btKinematicCharacterController_playerStep_2=Module["_emscripten_bind_btKinematicCharacterController_playerStep_2"]=asm["_emscripten_bind_btKinematicCharacterController_playerStep_2"];var _emscripten_bind_btDispatcherInfo___destroy___0=Module["_emscripten_bind_btDispatcherInfo___destroy___0"]=asm["_emscripten_bind_btDispatcherInfo___destroy___0"];var _emscripten_bind_btCapsuleShape_getMargin_0=Module["_emscripten_bind_btCapsuleShape_getMargin_0"]=asm["_emscripten_bind_btCapsuleShape_getMargin_0"];var _emscripten_bind_btCylinderShape_getMargin_0=Module["_emscripten_bind_btCylinderShape_getMargin_0"]=asm["_emscripten_bind_btCylinderShape_getMargin_0"];var _emscripten_bind_btSoftBodyArray_size_0=Module["_emscripten_bind_btSoftBodyArray_size_0"]=asm["_emscripten_bind_btSoftBodyArray_size_0"];var _emscripten_bind_btStaticPlaneShape_setLocalScaling_1=Module["_emscripten_bind_btStaticPlaneShape_setLocalScaling_1"]=asm["_emscripten_bind_btStaticPlaneShape_setLocalScaling_1"];var _emscripten_bind_btConvexTriangleMeshShape_calculateLocalInertia_2=Module["_emscripten_bind_btConvexTriangleMeshShape_calculateLocalInertia_2"]=asm["_emscripten_bind_btConvexTriangleMeshShape_calculateLocalInertia_2"];var _emscripten_bind_ClosestConvexResultCallback_get_m_convexToWorld_0=Module["_emscripten_bind_ClosestConvexResultCallback_get_m_convexToWorld_0"]=asm["_emscripten_bind_ClosestConvexResultCallback_get_m_convexToWorld_0"];var _emscripten_bind_btGhostObject_getWorldTransform_0=Module["_emscripten_bind_btGhostObject_getWorldTransform_0"]=asm["_emscripten_bind_btGhostObject_getWorldTransform_0"];var _emscripten_bind_btDiscreteDynamicsWorld_getPairCache_0=Module["_emscripten_bind_btDiscreteDynamicsWorld_getPairCache_0"]=asm["_emscripten_bind_btDiscreteDynamicsWorld_getPairCache_0"];var _emscripten_bind_LocalConvexResult_set_m_hitFraction_1=Module["_emscripten_bind_LocalConvexResult_set_m_hitFraction_1"]=asm["_emscripten_bind_LocalConvexResult_set_m_hitFraction_1"];var _emscripten_bind_btCapsuleShapeZ_calculateLocalInertia_2=Module["_emscripten_bind_btCapsuleShapeZ_calculateLocalInertia_2"]=asm["_emscripten_bind_btCapsuleShapeZ_calculateLocalInertia_2"];var _emscripten_bind_btDispatcherInfo_get_m_timeStep_0=Module["_emscripten_bind_btDispatcherInfo_get_m_timeStep_0"]=asm["_emscripten_bind_btDispatcherInfo_get_m_timeStep_0"];var _emscripten_bind_btHingeConstraint_setAngularOnly_1=Module["_emscripten_bind_btHingeConstraint_setAngularOnly_1"]=asm["_emscripten_bind_btHingeConstraint_setAngularOnly_1"];var _emscripten_bind_btVehicleTuning_set_m_suspensionCompression_1=Module["_emscripten_bind_btVehicleTuning_set_m_suspensionCompression_1"]=asm["_emscripten_bind_btVehicleTuning_set_m_suspensionCompression_1"];var _emscripten_bind_btConstraintSetting_set_m_impulseClamp_1=Module["_emscripten_bind_btConstraintSetting_set_m_impulseClamp_1"]=asm["_emscripten_bind_btConstraintSetting_set_m_impulseClamp_1"];var _emscripten_bind_btMotionState___destroy___0=Module["_emscripten_bind_btMotionState___destroy___0"]=asm["_emscripten_bind_btMotionState___destroy___0"];var _emscripten_bind_btCollisionObject_setCollisionFlags_1=Module["_emscripten_bind_btCollisionObject_setCollisionFlags_1"]=asm["_emscripten_bind_btCollisionObject_setCollisionFlags_1"];var _emscripten_bind_Config_get_kPR_0=Module["_emscripten_bind_Config_get_kPR_0"]=asm["_emscripten_bind_Config_get_kPR_0"];var _emscripten_bind_btDiscreteDynamicsWorld_addCollisionObject_1=Module["_emscripten_bind_btDiscreteDynamicsWorld_addCollisionObject_1"]=asm["_emscripten_bind_btDiscreteDynamicsWorld_addCollisionObject_1"];var _emscripten_bind_btDiscreteDynamicsWorld_addCollisionObject_2=Module["_emscripten_bind_btDiscreteDynamicsWorld_addCollisionObject_2"]=asm["_emscripten_bind_btDiscreteDynamicsWorld_addCollisionObject_2"];var _emscripten_bind_btDiscreteDynamicsWorld_addCollisionObject_3=Module["_emscripten_bind_btDiscreteDynamicsWorld_addCollisionObject_3"]=asm["_emscripten_bind_btDiscreteDynamicsWorld_addCollisionObject_3"];var _emscripten_bind_btWheelInfo_set_m_suspensionStiffness_1=Module["_emscripten_bind_btWheelInfo_set_m_suspensionStiffness_1"]=asm["_emscripten_bind_btWheelInfo_set_m_suspensionStiffness_1"];var _emscripten_bind_RaycastInfo_set_m_suspensionLength_1=Module["_emscripten_bind_RaycastInfo_set_m_suspensionLength_1"]=asm["_emscripten_bind_RaycastInfo_set_m_suspensionLength_1"];var _emscripten_bind_btDispatcher_getManifoldByIndexInternal_1=Module["_emscripten_bind_btDispatcher_getManifoldByIndexInternal_1"]=asm["_emscripten_bind_btDispatcher_getManifoldByIndexInternal_1"];var _emscripten_bind_btSliderConstraint_setBreakingImpulseThreshold_1=Module["_emscripten_bind_btSliderConstraint_setBreakingImpulseThreshold_1"]=asm["_emscripten_bind_btSliderConstraint_setBreakingImpulseThreshold_1"];var _emscripten_bind_btSoftBodyWorldInfo___destroy___0=Module["_emscripten_bind_btSoftBodyWorldInfo___destroy___0"]=asm["_emscripten_bind_btSoftBodyWorldInfo___destroy___0"];var _emscripten_bind_btConvexTriangleMeshShape_getMargin_0=Module["_emscripten_bind_btConvexTriangleMeshShape_getMargin_0"]=asm["_emscripten_bind_btConvexTriangleMeshShape_getMargin_0"];var _emscripten_bind_btSoftBodySolver___destroy___0=Module["_emscripten_bind_btSoftBodySolver___destroy___0"]=asm["_emscripten_bind_btSoftBodySolver___destroy___0"];var _bitshift64Lshr=Module["_bitshift64Lshr"]=asm["_bitshift64Lshr"];var _emscripten_bind_btWheelInfo_set_m_steering_1=Module["_emscripten_bind_btWheelInfo_set_m_steering_1"]=asm["_emscripten_bind_btWheelInfo_set_m_steering_1"];var _emscripten_bind_Node_set_m_x_1=Module["_emscripten_bind_Node_set_m_x_1"]=asm["_emscripten_bind_Node_set_m_x_1"];var _emscripten_bind_btPairCachingGhostObject_setWorldTransform_1=Module["_emscripten_bind_btPairCachingGhostObject_setWorldTransform_1"]=asm["_emscripten_bind_btPairCachingGhostObject_setWorldTransform_1"];var _emscripten_bind_btHingeConstraint_getBreakingImpulseThreshold_0=Module["_emscripten_bind_btHingeConstraint_getBreakingImpulseThreshold_0"]=asm["_emscripten_bind_btHingeConstraint_getBreakingImpulseThreshold_0"];var _emscripten_bind_btDefaultCollisionConstructionInfo___destroy___0=Module["_emscripten_bind_btDefaultCollisionConstructionInfo___destroy___0"]=asm["_emscripten_bind_btDefaultCollisionConstructionInfo___destroy___0"];var _emscripten_bind_btConeShape___destroy___0=Module["_emscripten_bind_btConeShape___destroy___0"]=asm["_emscripten_bind_btConeShape___destroy___0"];var _emscripten_bind_btGhostObject_setCcdSweptSphereRadius_1=Module["_emscripten_bind_btGhostObject_setCcdSweptSphereRadius_1"]=asm["_emscripten_bind_btGhostObject_setCcdSweptSphereRadius_1"];var _emscripten_bind_btPoint2PointConstraint_btPoint2PointConstraint_4=Module["_emscripten_bind_btPoint2PointConstraint_btPoint2PointConstraint_4"]=asm["_emscripten_bind_btPoint2PointConstraint_btPoint2PointConstraint_4"];var _emscripten_bind_btConeTwistConstraint_setLimit_2=Module["_emscripten_bind_btConeTwistConstraint_setLimit_2"]=asm["_emscripten_bind_btConeTwistConstraint_setLimit_2"];var _emscripten_bind_btPoint2PointConstraint_btPoint2PointConstraint_2=Module["_emscripten_bind_btPoint2PointConstraint_btPoint2PointConstraint_2"]=asm["_emscripten_bind_btPoint2PointConstraint_btPoint2PointConstraint_2"];var _emscripten_bind_btKinematicCharacterController_setJumpSpeed_1=Module["_emscripten_bind_btKinematicCharacterController_setJumpSpeed_1"]=asm["_emscripten_bind_btKinematicCharacterController_setJumpSpeed_1"];var _emscripten_bind_btSoftBodyRigidBodyCollisionConfiguration___destroy___0=Module["_emscripten_bind_btSoftBodyRigidBodyCollisionConfiguration___destroy___0"]=asm["_emscripten_bind_btSoftBodyRigidBodyCollisionConfiguration___destroy___0"];var _emscripten_bind_btConeShapeX_calculateLocalInertia_2=Module["_emscripten_bind_btConeShapeX_calculateLocalInertia_2"]=asm["_emscripten_bind_btConeShapeX_calculateLocalInertia_2"];var _emscripten_enum_PHY_ScalarType_PHY_FIXEDPOINT88=Module["_emscripten_enum_PHY_ScalarType_PHY_FIXEDPOINT88"]=asm["_emscripten_enum_PHY_ScalarType_PHY_FIXEDPOINT88"];var _emscripten_bind_btPairCachingGhostObject_getOverlappingObject_1=Module["_emscripten_bind_btPairCachingGhostObject_getOverlappingObject_1"]=asm["_emscripten_bind_btPairCachingGhostObject_getOverlappingObject_1"];var _emscripten_bind_btGhostObject_getNumOverlappingObjects_0=Module["_emscripten_bind_btGhostObject_getNumOverlappingObjects_0"]=asm["_emscripten_bind_btGhostObject_getNumOverlappingObjects_0"];var _emscripten_bind_btRigidBodyConstructionInfo___destroy___0=Module["_emscripten_bind_btRigidBodyConstructionInfo___destroy___0"]=asm["_emscripten_bind_btRigidBodyConstructionInfo___destroy___0"];var _emscripten_bind_btRigidBody_getWorldTransform_0=Module["_emscripten_bind_btRigidBody_getWorldTransform_0"]=asm["_emscripten_bind_btRigidBody_getWorldTransform_0"];var _emscripten_bind_btPoint2PointConstraint_setPivotA_1=Module["_emscripten_bind_btPoint2PointConstraint_setPivotA_1"]=asm["_emscripten_bind_btPoint2PointConstraint_setPivotA_1"];var _emscripten_bind_ClosestConvexResultCallback_set_m_convexToWorld_1=Module["_emscripten_bind_ClosestConvexResultCallback_set_m_convexToWorld_1"]=asm["_emscripten_bind_ClosestConvexResultCallback_set_m_convexToWorld_1"];var _memcpy=Module["_memcpy"]=asm["_memcpy"];var _emscripten_bind_Config_get_maxvolume_0=Module["_emscripten_bind_Config_get_maxvolume_0"]=asm["_emscripten_bind_Config_get_maxvolume_0"];var _emscripten_bind_btCapsuleShape_calculateLocalInertia_2=Module["_emscripten_bind_btCapsuleShape_calculateLocalInertia_2"]=asm["_emscripten_bind_btCapsuleShape_calculateLocalInertia_2"];var _emscripten_bind_btSoftRigidDynamicsWorld_getGravity_0=Module["_emscripten_bind_btSoftRigidDynamicsWorld_getGravity_0"]=asm["_emscripten_bind_btSoftRigidDynamicsWorld_getGravity_0"];var _emscripten_bind_btVector3_y_0=Module["_emscripten_bind_btVector3_y_0"]=asm["_emscripten_bind_btVector3_y_0"];var _emscripten_bind_btDispatcherInfo_set_m_useEpa_1=Module["_emscripten_bind_btDispatcherInfo_set_m_useEpa_1"]=asm["_emscripten_bind_btDispatcherInfo_set_m_useEpa_1"];var _emscripten_bind_btVehicleTuning_get_m_maxSuspensionForce_0=Module["_emscripten_bind_btVehicleTuning_get_m_maxSuspensionForce_0"]=asm["_emscripten_bind_btVehicleTuning_get_m_maxSuspensionForce_0"];var _emscripten_bind_btBvhTriangleMeshShape_btBvhTriangleMeshShape_2=Module["_emscripten_bind_btBvhTriangleMeshShape_btBvhTriangleMeshShape_2"]=asm["_emscripten_bind_btBvhTriangleMeshShape_btBvhTriangleMeshShape_2"];var _emscripten_bind_btBvhTriangleMeshShape_btBvhTriangleMeshShape_3=Module["_emscripten_bind_btBvhTriangleMeshShape_btBvhTriangleMeshShape_3"]=asm["_emscripten_bind_btBvhTriangleMeshShape_btBvhTriangleMeshShape_3"];var _emscripten_bind_LocalShapeInfo_get_m_triangleIndex_0=Module["_emscripten_bind_LocalShapeInfo_get_m_triangleIndex_0"]=asm["_emscripten_bind_LocalShapeInfo_get_m_triangleIndex_0"];var _emscripten_bind_Config_set_kDF_1=Module["_emscripten_bind_Config_set_kDF_1"]=asm["_emscripten_bind_Config_set_kDF_1"];var _emscripten_bind_btHeightfieldTerrainShape_btHeightfieldTerrainShape_9=Module["_emscripten_bind_btHeightfieldTerrainShape_btHeightfieldTerrainShape_9"]=asm["_emscripten_bind_btHeightfieldTerrainShape_btHeightfieldTerrainShape_9"];var _emscripten_bind_btSoftBody_activate_1=Module["_emscripten_bind_btSoftBody_activate_1"]=asm["_emscripten_bind_btSoftBody_activate_1"];var _emscripten_bind_btSoftBody_activate_0=Module["_emscripten_bind_btSoftBody_activate_0"]=asm["_emscripten_bind_btSoftBody_activate_0"];var _emscripten_bind_btGhostObject_setCollisionShape_1=Module["_emscripten_bind_btGhostObject_setCollisionShape_1"]=asm["_emscripten_bind_btGhostObject_setCollisionShape_1"];var _emscripten_bind_btDispatcherInfo_set_m_allowedCcdPenetration_1=Module["_emscripten_bind_btDispatcherInfo_set_m_allowedCcdPenetration_1"]=asm["_emscripten_bind_btDispatcherInfo_set_m_allowedCcdPenetration_1"];var _emscripten_bind_btRigidBody_setRollingFriction_1=Module["_emscripten_bind_btRigidBody_setRollingFriction_1"]=asm["_emscripten_bind_btRigidBody_setRollingFriction_1"];var _emscripten_bind_btPairCachingGhostObject_setRollingFriction_1=Module["_emscripten_bind_btPairCachingGhostObject_setRollingFriction_1"]=asm["_emscripten_bind_btPairCachingGhostObject_setRollingFriction_1"];var _emscripten_bind_btDiscreteDynamicsWorld_setGravity_1=Module["_emscripten_bind_btDiscreteDynamicsWorld_setGravity_1"]=asm["_emscripten_bind_btDiscreteDynamicsWorld_setGravity_1"];var _emscripten_bind_btVehicleTuning_set_m_suspensionStiffness_1=Module["_emscripten_bind_btVehicleTuning_set_m_suspensionStiffness_1"]=asm["_emscripten_bind_btVehicleTuning_set_m_suspensionStiffness_1"];var _emscripten_bind_btVector4_z_0=Module["_emscripten_bind_btVector4_z_0"]=asm["_emscripten_bind_btVector4_z_0"];var _emscripten_bind_btCollisionObject_forceActivationState_1=Module["_emscripten_bind_btCollisionObject_forceActivationState_1"]=asm["_emscripten_bind_btCollisionObject_forceActivationState_1"];var _emscripten_bind_btKinematicCharacterController_onGround_0=Module["_emscripten_bind_btKinematicCharacterController_onGround_0"]=asm["_emscripten_bind_btKinematicCharacterController_onGround_0"];var _emscripten_bind_btRaycastVehicle_getWheelInfo_1=Module["_emscripten_bind_btRaycastVehicle_getWheelInfo_1"]=asm["_emscripten_bind_btRaycastVehicle_getWheelInfo_1"];var _emscripten_bind_btGeneric6DofConstraint_getBreakingImpulseThreshold_0=Module["_emscripten_bind_btGeneric6DofConstraint_getBreakingImpulseThreshold_0"]=asm["_emscripten_bind_btGeneric6DofConstraint_getBreakingImpulseThreshold_0"];var _emscripten_bind_btSoftBody_appendFace_4=Module["_emscripten_bind_btSoftBody_appendFace_4"]=asm["_emscripten_bind_btSoftBody_appendFace_4"];var _emscripten_bind_ClosestConvexResultCallback_set_m_collisionFilterMask_1=Module["_emscripten_bind_ClosestConvexResultCallback_set_m_collisionFilterMask_1"]=asm["_emscripten_bind_ClosestConvexResultCallback_set_m_collisionFilterMask_1"];var _emscripten_bind_btSoftBodyWorldInfo_get_water_normal_0=Module["_emscripten_bind_btSoftBodyWorldInfo_get_water_normal_0"]=asm["_emscripten_bind_btSoftBodyWorldInfo_get_water_normal_0"];var _emscripten_bind_btVector3_normalize_0=Module["_emscripten_bind_btVector3_normalize_0"]=asm["_emscripten_bind_btVector3_normalize_0"];var _emscripten_bind_btSoftBody_setFriction_1=Module["_emscripten_bind_btSoftBody_setFriction_1"]=asm["_emscripten_bind_btSoftBody_setFriction_1"];var runPostSets=Module["runPostSets"]=asm["runPostSets"];var _emscripten_bind_btRigidBody_setSleepingThresholds_2=Module["_emscripten_bind_btRigidBody_setSleepingThresholds_2"]=asm["_emscripten_bind_btRigidBody_setSleepingThresholds_2"];var _emscripten_bind_btSoftBody_upcast_1=Module["_emscripten_bind_btSoftBody_upcast_1"]=asm["_emscripten_bind_btSoftBody_upcast_1"];var _emscripten_bind_btCollisionObject_setWorldTransform_1=Module["_emscripten_bind_btCollisionObject_setWorldTransform_1"]=asm["_emscripten_bind_btCollisionObject_setWorldTransform_1"];var _emscripten_bind_LocalConvexResult_get_m_localShapeInfo_0=Module["_emscripten_bind_LocalConvexResult_get_m_localShapeInfo_0"]=asm["_emscripten_bind_LocalConvexResult_get_m_localShapeInfo_0"];var _emscripten_bind_btSoftBodyWorldInfo_set_m_dispatcher_1=Module["_emscripten_bind_btSoftBodyWorldInfo_set_m_dispatcher_1"]=asm["_emscripten_bind_btSoftBodyWorldInfo_set_m_dispatcher_1"];var _emscripten_bind_btConvexHullShape_setLocalScaling_1=Module["_emscripten_bind_btConvexHullShape_setLocalScaling_1"]=asm["_emscripten_bind_btConvexHullShape_setLocalScaling_1"];var _emscripten_bind_btStridingMeshInterface___destroy___0=Module["_emscripten_bind_btStridingMeshInterface___destroy___0"]=asm["_emscripten_bind_btStridingMeshInterface___destroy___0"];var _emscripten_bind_btSoftBody_setActivationState_1=Module["_emscripten_bind_btSoftBody_setActivationState_1"]=asm["_emscripten_bind_btSoftBody_setActivationState_1"];var _emscripten_bind_btRigidBody_getUserIndex_0=Module["_emscripten_bind_btRigidBody_getUserIndex_0"]=asm["_emscripten_bind_btRigidBody_getUserIndex_0"];var _emscripten_bind_btRigidBodyConstructionInfo_get_m_linearDamping_0=Module["_emscripten_bind_btRigidBodyConstructionInfo_get_m_linearDamping_0"]=asm["_emscripten_bind_btRigidBodyConstructionInfo_get_m_linearDamping_0"];var _emscripten_bind_btSoftBodyHelpers_CreatePatch_9=Module["_emscripten_bind_btSoftBodyHelpers_CreatePatch_9"]=asm["_emscripten_bind_btSoftBodyHelpers_CreatePatch_9"];var _emscripten_bind_btDispatcher_getNumManifolds_0=Module["_emscripten_bind_btDispatcher_getNumManifolds_0"]=asm["_emscripten_bind_btDispatcher_getNumManifolds_0"];var _emscripten_bind_btConvexShape_setMargin_1=Module["_emscripten_bind_btConvexShape_setMargin_1"]=asm["_emscripten_bind_btConvexShape_setMargin_1"];var _emscripten_bind_btSoftBody_get_m_nodes_0=Module["_emscripten_bind_btSoftBody_get_m_nodes_0"]=asm["_emscripten_bind_btSoftBody_get_m_nodes_0"];var _emscripten_bind_btSoftBody___destroy___0=Module["_emscripten_bind_btSoftBody___destroy___0"]=asm["_emscripten_bind_btSoftBody___destroy___0"];var _emscripten_bind_btRigidBodyConstructionInfo_get_m_linearSleepingThreshold_0=Module["_emscripten_bind_btRigidBodyConstructionInfo_get_m_linearSleepingThreshold_0"]=asm["_emscripten_bind_btRigidBodyConstructionInfo_get_m_linearSleepingThreshold_0"];var _emscripten_bind_btRigidBody_activate_1=Module["_emscripten_bind_btRigidBody_activate_1"]=asm["_emscripten_bind_btRigidBody_activate_1"];var _emscripten_bind_btRigidBody_activate_0=Module["_emscripten_bind_btRigidBody_activate_0"]=asm["_emscripten_bind_btRigidBody_activate_0"];var _emscripten_bind_btRaycastVehicle___destroy___0=Module["_emscripten_bind_btRaycastVehicle___destroy___0"]=asm["_emscripten_bind_btRaycastVehicle___destroy___0"];var _emscripten_bind_btSoftBodyWorldInfo_get_m_gravity_0=Module["_emscripten_bind_btSoftBodyWorldInfo_get_m_gravity_0"]=asm["_emscripten_bind_btSoftBodyWorldInfo_get_m_gravity_0"];var _emscripten_bind_Material_set_m_kVST_1=Module["_emscripten_bind_Material_set_m_kVST_1"]=asm["_emscripten_bind_Material_set_m_kVST_1"];var _emscripten_bind_btGhostObject_setActivationState_1=Module["_emscripten_bind_btGhostObject_setActivationState_1"]=asm["_emscripten_bind_btGhostObject_setActivationState_1"];var _emscripten_bind_Material_set_m_kLST_1=Module["_emscripten_bind_Material_set_m_kLST_1"]=asm["_emscripten_bind_Material_set_m_kLST_1"];var _emscripten_bind_btCollisionWorld_contactPairTest_3=Module["_emscripten_bind_btCollisionWorld_contactPairTest_3"]=asm["_emscripten_bind_btCollisionWorld_contactPairTest_3"];var _emscripten_bind_btDispatcherInfo_get_m_useContinuous_0=Module["_emscripten_bind_btDispatcherInfo_get_m_useContinuous_0"]=asm["_emscripten_bind_btDispatcherInfo_get_m_useContinuous_0"];var _emscripten_bind_btHingeConstraint_setMaxMotorImpulse_1=Module["_emscripten_bind_btHingeConstraint_setMaxMotorImpulse_1"]=asm["_emscripten_bind_btHingeConstraint_setMaxMotorImpulse_1"];var _emscripten_bind_Config_get_kSS_SPLT_CL_0=Module["_emscripten_bind_Config_get_kSS_SPLT_CL_0"]=asm["_emscripten_bind_Config_get_kSS_SPLT_CL_0"];var _emscripten_bind_btCylinderShapeX___destroy___0=Module["_emscripten_bind_btCylinderShapeX___destroy___0"]=asm["_emscripten_bind_btCylinderShapeX___destroy___0"];var _emscripten_bind_btRigidBodyConstructionInfo_set_m_linearSleepingThreshold_1=Module["_emscripten_bind_btRigidBodyConstructionInfo_set_m_linearSleepingThreshold_1"]=asm["_emscripten_bind_btRigidBodyConstructionInfo_set_m_linearSleepingThreshold_1"];var _emscripten_bind_btRigidBody_updateInertiaTensor_0=Module["_emscripten_bind_btRigidBody_updateInertiaTensor_0"]=asm["_emscripten_bind_btRigidBody_updateInertiaTensor_0"];var _emscripten_bind_ContactResultCallback___destroy___0=Module["_emscripten_bind_ContactResultCallback___destroy___0"]=asm["_emscripten_bind_ContactResultCallback___destroy___0"];var _emscripten_bind_btDispatcherInfo_get_m_useConvexConservativeDistanceUtil_0=Module["_emscripten_bind_btDispatcherInfo_get_m_useConvexConservativeDistanceUtil_0"]=asm["_emscripten_bind_btDispatcherInfo_get_m_useConvexConservativeDistanceUtil_0"];var _emscripten_bind_btSoftBody_setAnisotropicFriction_2=Module["_emscripten_bind_btSoftBody_setAnisotropicFriction_2"]=asm["_emscripten_bind_btSoftBody_setAnisotropicFriction_2"];var _emscripten_bind_btPairCachingGhostObject_setCollisionFlags_1=Module["_emscripten_bind_btPairCachingGhostObject_setCollisionFlags_1"]=asm["_emscripten_bind_btPairCachingGhostObject_setCollisionFlags_1"];var _emscripten_bind_btRigidBody_getMotionState_0=Module["_emscripten_bind_btRigidBody_getMotionState_0"]=asm["_emscripten_bind_btRigidBody_getMotionState_0"];var _emscripten_bind_btKinematicCharacterController_getGhostObject_0=Module["_emscripten_bind_btKinematicCharacterController_getGhostObject_0"]=asm["_emscripten_bind_btKinematicCharacterController_getGhostObject_0"];var _emscripten_bind_btRigidBody_btRigidBody_1=Module["_emscripten_bind_btRigidBody_btRigidBody_1"]=asm["_emscripten_bind_btRigidBody_btRigidBody_1"];var _emscripten_bind_btTriangleMeshShape___destroy___0=Module["_emscripten_bind_btTriangleMeshShape___destroy___0"]=asm["_emscripten_bind_btTriangleMeshShape___destroy___0"];var _emscripten_bind_btKinematicCharacterController_setWalkDirection_1=Module["_emscripten_bind_btKinematicCharacterController_setWalkDirection_1"]=asm["_emscripten_bind_btKinematicCharacterController_setWalkDirection_1"];var _emscripten_bind_btDynamicsWorld_removeAction_1=Module["_emscripten_bind_btDynamicsWorld_removeAction_1"]=asm["_emscripten_bind_btDynamicsWorld_removeAction_1"];var _emscripten_bind_btRigidBody_applyTorque_1=Module["_emscripten_bind_btRigidBody_applyTorque_1"]=asm["_emscripten_bind_btRigidBody_applyTorque_1"];var _emscripten_bind_btManifoldPoint_get_m_localPointA_0=Module["_emscripten_bind_btManifoldPoint_get_m_localPointA_0"]=asm["_emscripten_bind_btManifoldPoint_get_m_localPointA_0"];var _emscripten_bind_btDefaultCollisionConstructionInfo_btDefaultCollisionConstructionInfo_0=Module["_emscripten_bind_btDefaultCollisionConstructionInfo_btDefaultCollisionConstructionInfo_0"]=asm["_emscripten_bind_btDefaultCollisionConstructionInfo_btDefaultCollisionConstructionInfo_0"];var _emscripten_bind_btVehicleTuning_get_m_suspensionStiffness_0=Module["_emscripten_bind_btVehicleTuning_get_m_suspensionStiffness_0"]=asm["_emscripten_bind_btVehicleTuning_get_m_suspensionStiffness_0"];var _emscripten_bind_btManifoldPoint_set_m_normalWorldOnB_1=Module["_emscripten_bind_btManifoldPoint_set_m_normalWorldOnB_1"]=asm["_emscripten_bind_btManifoldPoint_set_m_normalWorldOnB_1"];var _emscripten_bind_btGhostObject_setUserPointer_1=Module["_emscripten_bind_btGhostObject_setUserPointer_1"]=asm["_emscripten_bind_btGhostObject_setUserPointer_1"];var _emscripten_bind_btKinematicCharacterController_getGravity_0=Module["_emscripten_bind_btKinematicCharacterController_getGravity_0"]=asm["_emscripten_bind_btKinematicCharacterController_getGravity_0"];var _emscripten_enum_PHY_ScalarType_PHY_SHORT=Module["_emscripten_enum_PHY_ScalarType_PHY_SHORT"]=asm["_emscripten_enum_PHY_ScalarType_PHY_SHORT"];var _emscripten_bind_btConeTwistConstraint_getBreakingImpulseThreshold_0=Module["_emscripten_bind_btConeTwistConstraint_getBreakingImpulseThreshold_0"]=asm["_emscripten_bind_btConeTwistConstraint_getBreakingImpulseThreshold_0"];var _emscripten_bind_btGeneric6DofConstraint_setAngularLowerLimit_1=Module["_emscripten_bind_btGeneric6DofConstraint_setAngularLowerLimit_1"]=asm["_emscripten_bind_btGeneric6DofConstraint_setAngularLowerLimit_1"];var _emscripten_bind_btVector4_normalize_0=Module["_emscripten_bind_btVector4_normalize_0"]=asm["_emscripten_bind_btVector4_normalize_0"];var _emscripten_bind_btQuaternion_setY_1=Module["_emscripten_bind_btQuaternion_setY_1"]=asm["_emscripten_bind_btQuaternion_setY_1"];var _emscripten_bind_btConeShape_calculateLocalInertia_2=Module["_emscripten_bind_btConeShape_calculateLocalInertia_2"]=asm["_emscripten_bind_btConeShape_calculateLocalInertia_2"];var _emscripten_bind_btCylinderShapeX_calculateLocalInertia_2=Module["_emscripten_bind_btCylinderShapeX_calculateLocalInertia_2"]=asm["_emscripten_bind_btCylinderShapeX_calculateLocalInertia_2"];var _emscripten_bind_ConvexResultCallback_set_m_collisionFilterMask_1=Module["_emscripten_bind_ConvexResultCallback_set_m_collisionFilterMask_1"]=asm["_emscripten_bind_ConvexResultCallback_set_m_collisionFilterMask_1"];var _llvm_bswap_i32=Module["_llvm_bswap_i32"]=asm["_llvm_bswap_i32"];var _emscripten_bind_btKinematicCharacterController_setVelocityForTimeInterval_2=Module["_emscripten_bind_btKinematicCharacterController_setVelocityForTimeInterval_2"]=asm["_emscripten_bind_btKinematicCharacterController_setVelocityForTimeInterval_2"];var _emscripten_bind_btSphereShape_setLocalScaling_1=Module["_emscripten_bind_btSphereShape_setLocalScaling_1"]=asm["_emscripten_bind_btSphereShape_setLocalScaling_1"];var _emscripten_bind_btRigidBody_applyCentralLocalForce_1=Module["_emscripten_bind_btRigidBody_applyCentralLocalForce_1"]=asm["_emscripten_bind_btRigidBody_applyCentralLocalForce_1"];var _emscripten_bind_btVector4_w_0=Module["_emscripten_bind_btVector4_w_0"]=asm["_emscripten_bind_btVector4_w_0"];var _emscripten_bind_btManifoldPoint_get_m_normalWorldOnB_0=Module["_emscripten_bind_btManifoldPoint_get_m_normalWorldOnB_0"]=asm["_emscripten_bind_btManifoldPoint_get_m_normalWorldOnB_0"];var _emscripten_bind_btBvhTriangleMeshShape___destroy___0=Module["_emscripten_bind_btBvhTriangleMeshShape___destroy___0"]=asm["_emscripten_bind_btBvhTriangleMeshShape___destroy___0"];var _emscripten_bind_Config_set_citerations_1=Module["_emscripten_bind_Config_set_citerations_1"]=asm["_emscripten_bind_Config_set_citerations_1"];var _emscripten_bind_btSoftBody_checkFace_3=Module["_emscripten_bind_btSoftBody_checkFace_3"]=asm["_emscripten_bind_btSoftBody_checkFace_3"];var _emscripten_bind_Config_get_kSKHR_CL_0=Module["_emscripten_bind_Config_get_kSKHR_CL_0"]=asm["_emscripten_bind_Config_get_kSKHR_CL_0"];var _emscripten_bind_btDispatcherInfo_get_m_enableSatConvex_0=Module["_emscripten_bind_btDispatcherInfo_get_m_enableSatConvex_0"]=asm["_emscripten_bind_btDispatcherInfo_get_m_enableSatConvex_0"];var _emscripten_bind_LocalConvexResult_LocalConvexResult_5=Module["_emscripten_bind_LocalConvexResult_LocalConvexResult_5"]=asm["_emscripten_bind_LocalConvexResult_LocalConvexResult_5"];var _emscripten_bind_ClosestConvexResultCallback_set_m_closestHitFraction_1=Module["_emscripten_bind_ClosestConvexResultCallback_set_m_closestHitFraction_1"]=asm["_emscripten_bind_ClosestConvexResultCallback_set_m_closestHitFraction_1"];var _emscripten_bind_btDiscreteDynamicsWorld_removeConstraint_1=Module["_emscripten_bind_btDiscreteDynamicsWorld_removeConstraint_1"]=asm["_emscripten_bind_btDiscreteDynamicsWorld_removeConstraint_1"];var _emscripten_bind_ConcreteContactResultCallback_ConcreteContactResultCallback_0=Module["_emscripten_bind_ConcreteContactResultCallback_ConcreteContactResultCallback_0"]=asm["_emscripten_bind_ConcreteContactResultCallback_ConcreteContactResultCallback_0"];var _emscripten_bind_Config_set_diterations_1=Module["_emscripten_bind_Config_set_diterations_1"]=asm["_emscripten_bind_Config_set_diterations_1"];var _emscripten_bind_btGeneric6DofConstraint___destroy___0=Module["_emscripten_bind_btGeneric6DofConstraint___destroy___0"]=asm["_emscripten_bind_btGeneric6DofConstraint___destroy___0"];var _emscripten_bind_btSoftRigidDynamicsWorld_addRigidBody_1=Module["_emscripten_bind_btSoftRigidDynamicsWorld_addRigidBody_1"]=asm["_emscripten_bind_btSoftRigidDynamicsWorld_addRigidBody_1"];var _emscripten_bind_btSoftRigidDynamicsWorld_addRigidBody_3=Module["_emscripten_bind_btSoftRigidDynamicsWorld_addRigidBody_3"]=asm["_emscripten_bind_btSoftRigidDynamicsWorld_addRigidBody_3"];var _emscripten_bind_Config_set_kDP_1=Module["_emscripten_bind_Config_set_kDP_1"]=asm["_emscripten_bind_Config_set_kDP_1"];var _emscripten_bind_btVehicleTuning_get_m_maxSuspensionTravelCm_0=Module["_emscripten_bind_btVehicleTuning_get_m_maxSuspensionTravelCm_0"]=asm["_emscripten_bind_btVehicleTuning_get_m_maxSuspensionTravelCm_0"];var _emscripten_bind_btConvexHullShape_addPoint_1=Module["_emscripten_bind_btConvexHullShape_addPoint_1"]=asm["_emscripten_bind_btConvexHullShape_addPoint_1"];var _emscripten_bind_btConvexHullShape_addPoint_2=Module["_emscripten_bind_btConvexHullShape_addPoint_2"]=asm["_emscripten_bind_btConvexHullShape_addPoint_2"];var _emscripten_bind_btPoint2PointConstraint_getBreakingImpulseThreshold_0=Module["_emscripten_bind_btPoint2PointConstraint_getBreakingImpulseThreshold_0"]=asm["_emscripten_bind_btPoint2PointConstraint_getBreakingImpulseThreshold_0"];var _emscripten_bind_btSoftBodyRigidBodyCollisionConfiguration_btSoftBodyRigidBodyCollisionConfiguration_1=Module["_emscripten_bind_btSoftBodyRigidBodyCollisionConfiguration_btSoftBodyRigidBodyCollisionConfiguration_1"]=asm["_emscripten_bind_btSoftBodyRigidBodyCollisionConfiguration_btSoftBodyRigidBodyCollisionConfiguration_1"];var _emscripten_bind_btTransform_getOrigin_0=Module["_emscripten_bind_btTransform_getOrigin_0"]=asm["_emscripten_bind_btTransform_getOrigin_0"];var _emscripten_bind_Config_get_kKHR_0=Module["_emscripten_bind_Config_get_kKHR_0"]=asm["_emscripten_bind_Config_get_kKHR_0"];var _emscripten_bind_Material_get_m_kLST_0=Module["_emscripten_bind_Material_get_m_kLST_0"]=asm["_emscripten_bind_Material_get_m_kLST_0"];var _emscripten_bind_btHingeConstraint___destroy___0=Module["_emscripten_bind_btHingeConstraint___destroy___0"]=asm["_emscripten_bind_btHingeConstraint___destroy___0"];var _emscripten_bind_btPairCachingGhostObject_getUserPointer_0=Module["_emscripten_bind_btPairCachingGhostObject_getUserPointer_0"]=asm["_emscripten_bind_btPairCachingGhostObject_getUserPointer_0"];var _emscripten_bind_btSoftBody_set_m_nodes_1=Module["_emscripten_bind_btSoftBody_set_m_nodes_1"]=asm["_emscripten_bind_btSoftBody_set_m_nodes_1"];var _emscripten_bind_btSoftBodyWorldInfo_set_air_density_1=Module["_emscripten_bind_btSoftBodyWorldInfo_set_air_density_1"]=asm["_emscripten_bind_btSoftBodyWorldInfo_set_air_density_1"];var _emscripten_bind_btDbvtBroadphase___destroy___0=Module["_emscripten_bind_btDbvtBroadphase___destroy___0"]=asm["_emscripten_bind_btDbvtBroadphase___destroy___0"];var _emscripten_bind_Config_set_viterations_1=Module["_emscripten_bind_Config_set_viterations_1"]=asm["_emscripten_bind_Config_set_viterations_1"];var _emscripten_bind_btConvexShape_calculateLocalInertia_2=Module["_emscripten_bind_btConvexShape_calculateLocalInertia_2"]=asm["_emscripten_bind_btConvexShape_calculateLocalInertia_2"];var _memset=Module["_memset"]=asm["_memset"];var _emscripten_bind_btGeneric6DofConstraint_setLinearLowerLimit_1=Module["_emscripten_bind_btGeneric6DofConstraint_setLinearLowerLimit_1"]=asm["_emscripten_bind_btGeneric6DofConstraint_setLinearLowerLimit_1"];var _emscripten_bind_ClosestRayResultCallback_get_m_hitNormalWorld_0=Module["_emscripten_bind_ClosestRayResultCallback_get_m_hitNormalWorld_0"]=asm["_emscripten_bind_ClosestRayResultCallback_get_m_hitNormalWorld_0"];var _emscripten_bind_btTriangleMesh_btTriangleMesh_0=Module["_emscripten_bind_btTriangleMesh_btTriangleMesh_0"]=asm["_emscripten_bind_btTriangleMesh_btTriangleMesh_0"];var _emscripten_bind_btTriangleMesh_btTriangleMesh_1=Module["_emscripten_bind_btTriangleMesh_btTriangleMesh_1"]=asm["_emscripten_bind_btTriangleMesh_btTriangleMesh_1"];var _emscripten_bind_btTriangleMesh_btTriangleMesh_2=Module["_emscripten_bind_btTriangleMesh_btTriangleMesh_2"]=asm["_emscripten_bind_btTriangleMesh_btTriangleMesh_2"];var _emscripten_bind_btWheelInfo_set_m_frictionSlip_1=Module["_emscripten_bind_btWheelInfo_set_m_frictionSlip_1"]=asm["_emscripten_bind_btWheelInfo_set_m_frictionSlip_1"];var _emscripten_bind_btSoftBodyHelpers___destroy___0=Module["_emscripten_bind_btSoftBodyHelpers___destroy___0"]=asm["_emscripten_bind_btSoftBodyHelpers___destroy___0"];var _emscripten_bind_btRigidBody_getCollisionShape_0=Module["_emscripten_bind_btRigidBody_getCollisionShape_0"]=asm["_emscripten_bind_btRigidBody_getCollisionShape_0"];var _emscripten_bind_btManifoldPoint_set_m_positionWorldOnA_1=Module["_emscripten_bind_btManifoldPoint_set_m_positionWorldOnA_1"]=asm["_emscripten_bind_btManifoldPoint_set_m_positionWorldOnA_1"];var _emscripten_bind_btWheelInfo_get_m_wheelsDampingRelaxation_0=Module["_emscripten_bind_btWheelInfo_get_m_wheelsDampingRelaxation_0"]=asm["_emscripten_bind_btWheelInfo_get_m_wheelsDampingRelaxation_0"];var _emscripten_bind_btManifoldPoint_get_m_localPointB_0=Module["_emscripten_bind_btManifoldPoint_get_m_localPointB_0"]=asm["_emscripten_bind_btManifoldPoint_get_m_localPointB_0"];var _emscripten_bind_btDiscreteDynamicsWorld_contactPairTest_3=Module["_emscripten_bind_btDiscreteDynamicsWorld_contactPairTest_3"]=asm["_emscripten_bind_btDiscreteDynamicsWorld_contactPairTest_3"];var _emscripten_bind_btSliderConstraint_setLowerLinLimit_1=Module["_emscripten_bind_btSliderConstraint_setLowerLinLimit_1"]=asm["_emscripten_bind_btSliderConstraint_setLowerLinLimit_1"];var _emscripten_bind_btRigidBody_getAngularVelocity_0=Module["_emscripten_bind_btRigidBody_getAngularVelocity_0"]=asm["_emscripten_bind_btRigidBody_getAngularVelocity_0"];var _emscripten_bind_btCollisionObject_setCcdSweptSphereRadius_1=Module["_emscripten_bind_btCollisionObject_setCcdSweptSphereRadius_1"]=asm["_emscripten_bind_btCollisionObject_setCcdSweptSphereRadius_1"];var _emscripten_bind_btWheelInfo_get_m_wheelsRadius_0=Module["_emscripten_bind_btWheelInfo_get_m_wheelsRadius_0"]=asm["_emscripten_bind_btWheelInfo_get_m_wheelsRadius_0"];var _emscripten_bind_btRigidBody_setLinearVelocity_1=Module["_emscripten_bind_btRigidBody_setLinearVelocity_1"]=asm["_emscripten_bind_btRigidBody_setLinearVelocity_1"];var _emscripten_bind_btVehicleTuning_btVehicleTuning_0=Module["_emscripten_bind_btVehicleTuning_btVehicleTuning_0"]=asm["_emscripten_bind_btVehicleTuning_btVehicleTuning_0"];var _emscripten_bind_RayResultCallback_set_m_collisionObject_1=Module["_emscripten_bind_RayResultCallback_set_m_collisionObject_1"]=asm["_emscripten_bind_RayResultCallback_set_m_collisionObject_1"];var _emscripten_bind_btDefaultSoftBodySolver___destroy___0=Module["_emscripten_bind_btDefaultSoftBodySolver___destroy___0"]=asm["_emscripten_bind_btDefaultSoftBodySolver___destroy___0"];var _emscripten_bind_ClosestRayResultCallback_set_m_rayToWorld_1=Module["_emscripten_bind_ClosestRayResultCallback_set_m_rayToWorld_1"]=asm["_emscripten_bind_ClosestRayResultCallback_set_m_rayToWorld_1"];var _emscripten_bind_ClosestRayResultCallback_get_m_collisionFilterGroup_0=Module["_emscripten_bind_ClosestRayResultCallback_get_m_collisionFilterGroup_0"]=asm["_emscripten_bind_ClosestRayResultCallback_get_m_collisionFilterGroup_0"];var _emscripten_bind_btWheelInfo_set_m_wheelsDampingRelaxation_1=Module["_emscripten_bind_btWheelInfo_set_m_wheelsDampingRelaxation_1"]=asm["_emscripten_bind_btWheelInfo_set_m_wheelsDampingRelaxation_1"];var _emscripten_bind_btDynamicsWorld_addAction_1=Module["_emscripten_bind_btDynamicsWorld_addAction_1"]=asm["_emscripten_bind_btDynamicsWorld_addAction_1"];var _emscripten_bind_btSoftBody_appendMaterial_0=Module["_emscripten_bind_btSoftBody_appendMaterial_0"]=asm["_emscripten_bind_btSoftBody_appendMaterial_0"];var _emscripten_bind_btSoftBodyWorldInfo_set_m_maxDisplacement_1=Module["_emscripten_bind_btSoftBodyWorldInfo_set_m_maxDisplacement_1"]=asm["_emscripten_bind_btSoftBodyWorldInfo_set_m_maxDisplacement_1"];var _emscripten_bind_btSoftRigidDynamicsWorld_stepSimulation_2=Module["_emscripten_bind_btSoftRigidDynamicsWorld_stepSimulation_2"]=asm["_emscripten_bind_btSoftRigidDynamicsWorld_stepSimulation_2"];var _emscripten_bind_btPairCachingGhostObject_getCollisionFlags_0=Module["_emscripten_bind_btPairCachingGhostObject_getCollisionFlags_0"]=asm["_emscripten_bind_btPairCachingGhostObject_getCollisionFlags_0"];var _emscripten_bind_btSoftBodyWorldInfo_get_air_density_0=Module["_emscripten_bind_btSoftBodyWorldInfo_get_air_density_0"]=asm["_emscripten_bind_btSoftBodyWorldInfo_get_air_density_0"];var _emscripten_bind_btSoftBody_setRestitution_1=Module["_emscripten_bind_btSoftBody_setRestitution_1"]=asm["_emscripten_bind_btSoftBody_setRestitution_1"];var _emscripten_bind_Config_set_kLF_1=Module["_emscripten_bind_Config_set_kLF_1"]=asm["_emscripten_bind_Config_set_kLF_1"];var _emscripten_enum_PHY_ScalarType_PHY_FLOAT=Module["_emscripten_enum_PHY_ScalarType_PHY_FLOAT"]=asm["_emscripten_enum_PHY_ScalarType_PHY_FLOAT"];var _emscripten_bind_btRigidBodyConstructionInfo_set_m_additionalDamping_1=Module["_emscripten_bind_btRigidBodyConstructionInfo_set_m_additionalDamping_1"]=asm["_emscripten_bind_btRigidBodyConstructionInfo_set_m_additionalDamping_1"];var _emscripten_bind_Config_set_kSS_SPLT_CL_1=Module["_emscripten_bind_Config_set_kSS_SPLT_CL_1"]=asm["_emscripten_bind_Config_set_kSS_SPLT_CL_1"];var _emscripten_bind_btGhostObject_isActive_0=Module["_emscripten_bind_btGhostObject_isActive_0"]=asm["_emscripten_bind_btGhostObject_isActive_0"];var _emscripten_bind_btKinematicCharacterController_setFallSpeed_1=Module["_emscripten_bind_btKinematicCharacterController_setFallSpeed_1"]=asm["_emscripten_bind_btKinematicCharacterController_setFallSpeed_1"];var _emscripten_bind_btRigidBody_setActivationState_1=Module["_emscripten_bind_btRigidBody_setActivationState_1"]=asm["_emscripten_bind_btRigidBody_setActivationState_1"];var _emscripten_bind_btWheelInfo_get_m_wheelsDampingCompression_0=Module["_emscripten_bind_btWheelInfo_get_m_wheelsDampingCompression_0"]=asm["_emscripten_bind_btWheelInfo_get_m_wheelsDampingCompression_0"];var _emscripten_bind_ClosestConvexResultCallback_hasHit_0=Module["_emscripten_bind_ClosestConvexResultCallback_hasHit_0"]=asm["_emscripten_bind_ClosestConvexResultCallback_hasHit_0"];var _emscripten_bind_btCapsuleShapeZ___destroy___0=Module["_emscripten_bind_btCapsuleShapeZ___destroy___0"]=asm["_emscripten_bind_btCapsuleShapeZ___destroy___0"];var _emscripten_bind_btRaycastVehicle_getRigidBody_0=Module["_emscripten_bind_btRaycastVehicle_getRigidBody_0"]=asm["_emscripten_bind_btRaycastVehicle_getRigidBody_0"];var _emscripten_bind_btWheelInfo_get_m_maxSuspensionForce_0=Module["_emscripten_bind_btWheelInfo_get_m_maxSuspensionForce_0"]=asm["_emscripten_bind_btWheelInfo_get_m_maxSuspensionForce_0"];var _emscripten_bind_btSoftBody_get_m_materials_0=Module["_emscripten_bind_btSoftBody_get_m_materials_0"]=asm["_emscripten_bind_btSoftBody_get_m_materials_0"];var _emscripten_bind_btTriangleMesh_addTriangle_3=Module["_emscripten_bind_btTriangleMesh_addTriangle_3"]=asm["_emscripten_bind_btTriangleMesh_addTriangle_3"];var _emscripten_bind_btGhostObject_getOverlappingObject_1=Module["_emscripten_bind_btGhostObject_getOverlappingObject_1"]=asm["_emscripten_bind_btGhostObject_getOverlappingObject_1"];var _emscripten_bind_btTriangleMesh_addTriangle_4=Module["_emscripten_bind_btTriangleMesh_addTriangle_4"]=asm["_emscripten_bind_btTriangleMesh_addTriangle_4"];var _emscripten_bind_btSoftRigidDynamicsWorld_getDispatchInfo_0=Module["_emscripten_bind_btSoftRigidDynamicsWorld_getDispatchInfo_0"]=asm["_emscripten_bind_btSoftRigidDynamicsWorld_getDispatchInfo_0"];var _emscripten_bind_btSoftBodyWorldInfo_set_water_normal_1=Module["_emscripten_bind_btSoftBodyWorldInfo_set_water_normal_1"]=asm["_emscripten_bind_btSoftBodyWorldInfo_set_water_normal_1"];var _emscripten_bind_btSoftRigidDynamicsWorld_addConstraint_2=Module["_emscripten_bind_btSoftRigidDynamicsWorld_addConstraint_2"]=asm["_emscripten_bind_btSoftRigidDynamicsWorld_addConstraint_2"];var _emscripten_bind_Config_get_kDF_0=Module["_emscripten_bind_Config_get_kDF_0"]=asm["_emscripten_bind_Config_get_kDF_0"];var _emscripten_bind_btRigidBody_applyTorqueImpulse_1=Module["_emscripten_bind_btRigidBody_applyTorqueImpulse_1"]=asm["_emscripten_bind_btRigidBody_applyTorqueImpulse_1"];var _emscripten_bind_btRigidBody_setCollisionFlags_1=Module["_emscripten_bind_btRigidBody_setCollisionFlags_1"]=asm["_emscripten_bind_btRigidBody_setCollisionFlags_1"];var _emscripten_bind_btWheelInfo_get_m_steering_0=Module["_emscripten_bind_btWheelInfo_get_m_steering_0"]=asm["_emscripten_bind_btWheelInfo_get_m_steering_0"];var _emscripten_bind_btRigidBody___destroy___0=Module["_emscripten_bind_btRigidBody___destroy___0"]=asm["_emscripten_bind_btRigidBody___destroy___0"];var _emscripten_bind_btWheelInfo_set_m_suspensionRestLength1_1=Module["_emscripten_bind_btWheelInfo_set_m_suspensionRestLength1_1"]=asm["_emscripten_bind_btWheelInfo_set_m_suspensionRestLength1_1"];var _emscripten_bind_Config_set_kCHR_1=Module["_emscripten_bind_Config_set_kCHR_1"]=asm["_emscripten_bind_Config_set_kCHR_1"];var _emscripten_bind_btSoftRigidDynamicsWorld_contactTest_2=Module["_emscripten_bind_btSoftRigidDynamicsWorld_contactTest_2"]=asm["_emscripten_bind_btSoftRigidDynamicsWorld_contactTest_2"];var _emscripten_bind_btCapsuleShapeZ_btCapsuleShapeZ_2=Module["_emscripten_bind_btCapsuleShapeZ_btCapsuleShapeZ_2"]=asm["_emscripten_bind_btCapsuleShapeZ_btCapsuleShapeZ_2"];var _emscripten_bind_btSoftRigidDynamicsWorld_addSoftBody_3=Module["_emscripten_bind_btSoftRigidDynamicsWorld_addSoftBody_3"]=asm["_emscripten_bind_btSoftRigidDynamicsWorld_addSoftBody_3"];var _emscripten_bind_btSoftRigidDynamicsWorld_getWorldInfo_0=Module["_emscripten_bind_btSoftRigidDynamicsWorld_getWorldInfo_0"]=asm["_emscripten_bind_btSoftRigidDynamicsWorld_getWorldInfo_0"];var _emscripten_bind_btSliderConstraint_btSliderConstraint_3=Module["_emscripten_bind_btSliderConstraint_btSliderConstraint_3"]=asm["_emscripten_bind_btSliderConstraint_btSliderConstraint_3"];var _emscripten_bind_btTransform___destroy___0=Module["_emscripten_bind_btTransform___destroy___0"]=asm["_emscripten_bind_btTransform___destroy___0"];var _emscripten_bind_btDynamicsWorld_convexSweepTest_5=Module["_emscripten_bind_btDynamicsWorld_convexSweepTest_5"]=asm["_emscripten_bind_btDynamicsWorld_convexSweepTest_5"];var _emscripten_bind_btSliderConstraint___destroy___0=Module["_emscripten_bind_btSliderConstraint___destroy___0"]=asm["_emscripten_bind_btSliderConstraint___destroy___0"];var _emscripten_bind_btRigidBody_forceActivationState_1=Module["_emscripten_bind_btRigidBody_forceActivationState_1"]=asm["_emscripten_bind_btRigidBody_forceActivationState_1"];var _emscripten_bind_btPoint2PointConstraint_setPivotB_1=Module["_emscripten_bind_btPoint2PointConstraint_setPivotB_1"]=asm["_emscripten_bind_btPoint2PointConstraint_setPivotB_1"];var _emscripten_bind_btManifoldPoint_getDistance_0=Module["_emscripten_bind_btManifoldPoint_getDistance_0"]=asm["_emscripten_bind_btManifoldPoint_getDistance_0"];var _emscripten_bind_btGhostPairCallback___destroy___0=Module["_emscripten_bind_btGhostPairCallback___destroy___0"]=asm["_emscripten_bind_btGhostPairCallback___destroy___0"];var _emscripten_bind_btTransform_setFromOpenGLMatrix_1=Module["_emscripten_bind_btTransform_setFromOpenGLMatrix_1"]=asm["_emscripten_bind_btTransform_setFromOpenGLMatrix_1"];var _emscripten_bind_btKinematicCharacterController_getMaxSlope_0=Module["_emscripten_bind_btKinematicCharacterController_getMaxSlope_0"]=asm["_emscripten_bind_btKinematicCharacterController_getMaxSlope_0"];var _emscripten_bind_btManifoldPoint_getPositionWorldOnA_0=Module["_emscripten_bind_btManifoldPoint_getPositionWorldOnA_0"]=asm["_emscripten_bind_btManifoldPoint_getPositionWorldOnA_0"];var _emscripten_bind_btRaycastVehicle_addWheel_7=Module["_emscripten_bind_btRaycastVehicle_addWheel_7"]=asm["_emscripten_bind_btRaycastVehicle_addWheel_7"];var _emscripten_bind_ClosestRayResultCallback_set_m_hitNormalWorld_1=Module["_emscripten_bind_ClosestRayResultCallback_set_m_hitNormalWorld_1"]=asm["_emscripten_bind_ClosestRayResultCallback_set_m_hitNormalWorld_1"];var _emscripten_bind_LocalConvexResult_set_m_localShapeInfo_1=Module["_emscripten_bind_LocalConvexResult_set_m_localShapeInfo_1"]=asm["_emscripten_bind_LocalConvexResult_set_m_localShapeInfo_1"];var _emscripten_bind_btStaticPlaneShape___destroy___0=Module["_emscripten_bind_btStaticPlaneShape___destroy___0"]=asm["_emscripten_bind_btStaticPlaneShape___destroy___0"];var _emscripten_bind_btHingeConstraint_enableMotor_1=Module["_emscripten_bind_btHingeConstraint_enableMotor_1"]=asm["_emscripten_bind_btHingeConstraint_enableMotor_1"];var _emscripten_bind_btCylinderShapeZ_setLocalScaling_1=Module["_emscripten_bind_btCylinderShapeZ_setLocalScaling_1"]=asm["_emscripten_bind_btCylinderShapeZ_setLocalScaling_1"];var _emscripten_bind_btBoxShape_setLocalScaling_1=Module["_emscripten_bind_btBoxShape_setLocalScaling_1"]=asm["_emscripten_bind_btBoxShape_setLocalScaling_1"];var _emscripten_bind_btConeShapeZ___destroy___0=Module["_emscripten_bind_btConeShapeZ___destroy___0"]=asm["_emscripten_bind_btConeShapeZ___destroy___0"];var _emscripten_bind_btDynamicsWorld_getPairCache_0=Module["_emscripten_bind_btDynamicsWorld_getPairCache_0"]=asm["_emscripten_bind_btDynamicsWorld_getPairCache_0"];var _emscripten_bind_btSoftRigidDynamicsWorld_convexSweepTest_5=Module["_emscripten_bind_btSoftRigidDynamicsWorld_convexSweepTest_5"]=asm["_emscripten_bind_btSoftRigidDynamicsWorld_convexSweepTest_5"];var _emscripten_bind_btDiscreteDynamicsWorld_convexSweepTest_5=Module["_emscripten_bind_btDiscreteDynamicsWorld_convexSweepTest_5"]=asm["_emscripten_bind_btDiscreteDynamicsWorld_convexSweepTest_5"];var _emscripten_bind_btSoftRigidDynamicsWorld_removeRigidBody_1=Module["_emscripten_bind_btSoftRigidDynamicsWorld_removeRigidBody_1"]=asm["_emscripten_bind_btSoftRigidDynamicsWorld_removeRigidBody_1"];var _emscripten_bind_btRigidBody_setRestitution_1=Module["_emscripten_bind_btRigidBody_setRestitution_1"]=asm["_emscripten_bind_btRigidBody_setRestitution_1"];var _emscripten_bind_btVector4_btVector4_0=Module["_emscripten_bind_btVector4_btVector4_0"]=asm["_emscripten_bind_btVector4_btVector4_0"];var _emscripten_bind_btVector4_x_0=Module["_emscripten_bind_btVector4_x_0"]=asm["_emscripten_bind_btVector4_x_0"];var _emscripten_bind_btVector4_btVector4_4=Module["_emscripten_bind_btVector4_btVector4_4"]=asm["_emscripten_bind_btVector4_btVector4_4"];var _emscripten_bind_btKinematicCharacterController___destroy___0=Module["_emscripten_bind_btKinematicCharacterController___destroy___0"]=asm["_emscripten_bind_btKinematicCharacterController___destroy___0"];var _emscripten_bind_btGeneric6DofSpringConstraint_setLinearLowerLimit_1=Module["_emscripten_bind_btGeneric6DofSpringConstraint_setLinearLowerLimit_1"]=asm["_emscripten_bind_btGeneric6DofSpringConstraint_setLinearLowerLimit_1"];var _emscripten_bind_tMaterialArray_at_1=Module["_emscripten_bind_tMaterialArray_at_1"]=asm["_emscripten_bind_tMaterialArray_at_1"];var _emscripten_bind_LocalConvexResult_set_m_hitCollisionObject_1=Module["_emscripten_bind_LocalConvexResult_set_m_hitCollisionObject_1"]=asm["_emscripten_bind_LocalConvexResult_set_m_hitCollisionObject_1"];var _emscripten_bind_btVector4_op_sub_1=Module["_emscripten_bind_btVector4_op_sub_1"]=asm["_emscripten_bind_btVector4_op_sub_1"];var _emscripten_bind_btGeneric6DofSpringConstraint_setAngularLowerLimit_1=Module["_emscripten_bind_btGeneric6DofSpringConstraint_setAngularLowerLimit_1"]=asm["_emscripten_bind_btGeneric6DofSpringConstraint_setAngularLowerLimit_1"];var _emscripten_bind_btSoftBodyWorldInfo_get_water_offset_0=Module["_emscripten_bind_btSoftBodyWorldInfo_get_water_offset_0"]=asm["_emscripten_bind_btSoftBodyWorldInfo_get_water_offset_0"];var _emscripten_bind_btDiscreteDynamicsWorld_rayTest_3=Module["_emscripten_bind_btDiscreteDynamicsWorld_rayTest_3"]=asm["_emscripten_bind_btDiscreteDynamicsWorld_rayTest_3"];var _emscripten_bind_btWheelInfo_get_m_raycastInfo_0=Module["_emscripten_bind_btWheelInfo_get_m_raycastInfo_0"]=asm["_emscripten_bind_btWheelInfo_get_m_raycastInfo_0"];var _emscripten_bind_btContactSolverInfo_get_m_splitImpulse_0=Module["_emscripten_bind_btContactSolverInfo_get_m_splitImpulse_0"]=asm["_emscripten_bind_btContactSolverInfo_get_m_splitImpulse_0"];var _emscripten_bind_btConvexShape_getMargin_0=Module["_emscripten_bind_btConvexShape_getMargin_0"]=asm["_emscripten_bind_btConvexShape_getMargin_0"];var _emscripten_bind_btGhostPairCallback_btGhostPairCallback_0=Module["_emscripten_bind_btGhostPairCallback_btGhostPairCallback_0"]=asm["_emscripten_bind_btGhostPairCallback_btGhostPairCallback_0"];var _emscripten_bind_btKinematicCharacterController_setMaxJumpHeight_1=Module["_emscripten_bind_btKinematicCharacterController_setMaxJumpHeight_1"]=asm["_emscripten_bind_btKinematicCharacterController_setMaxJumpHeight_1"];var _emscripten_bind_btPairCachingGhostObject_isActive_0=Module["_emscripten_bind_btPairCachingGhostObject_isActive_0"]=asm["_emscripten_bind_btPairCachingGhostObject_isActive_0"];var _emscripten_bind_btVehicleTuning_get_m_frictionSlip_0=Module["_emscripten_bind_btVehicleTuning_get_m_frictionSlip_0"]=asm["_emscripten_bind_btVehicleTuning_get_m_frictionSlip_0"];var dynCall_viiiii=Module["dynCall_viiiii"]=asm["dynCall_viiiii"];var dynCall_vid=Module["dynCall_vid"]=asm["dynCall_vid"];var dynCall_vi=Module["dynCall_vi"]=asm["dynCall_vi"];var dynCall_viiidii=Module["dynCall_viiidii"]=asm["dynCall_viiidii"];var dynCall_vii=Module["dynCall_vii"]=asm["dynCall_vii"];var dynCall_iiiiiiiiiii=Module["dynCall_iiiiiiiiiii"]=asm["dynCall_iiiiiiiiiii"];var dynCall_ii=Module["dynCall_ii"]=asm["dynCall_ii"];var dynCall_viidi=Module["dynCall_viidi"]=asm["dynCall_viidi"];var dynCall_viddiii=Module["dynCall_viddiii"]=asm["dynCall_viddiii"];var dynCall_vidii=Module["dynCall_vidii"]=asm["dynCall_vidii"];var dynCall_iiiii=Module["dynCall_iiiii"]=asm["dynCall_iiiii"];var dynCall_vidi=Module["dynCall_vidi"]=asm["dynCall_vidi"];var dynCall_diiiiiiii=Module["dynCall_diiiiiiii"]=asm["dynCall_diiiiiiii"];var dynCall_viiiiddddiid=Module["dynCall_viiiiddddiid"]=asm["dynCall_viiiiddddiid"];var dynCall_diiiii=Module["dynCall_diiiii"]=asm["dynCall_diiiii"];var dynCall_vidd=Module["dynCall_vidd"]=asm["dynCall_vidd"];var dynCall_iiii=Module["dynCall_iiii"]=asm["dynCall_iiii"];var dynCall_viiiiid=Module["dynCall_viiiiid"]=asm["dynCall_viiiiid"];var dynCall_viiiiii=Module["dynCall_viiiiii"]=asm["dynCall_viiiiii"];var dynCall_iiid=Module["dynCall_iiid"]=asm["dynCall_iiid"];var dynCall_di=Module["dynCall_di"]=asm["dynCall_di"];var dynCall_iiiiiii=Module["dynCall_iiiiiii"]=asm["dynCall_iiiiiii"];var dynCall_diiidii=Module["dynCall_diiidii"]=asm["dynCall_diiidii"];var dynCall_viidii=Module["dynCall_viidii"]=asm["dynCall_viidii"];var dynCall_viiiiiii=Module["dynCall_viiiiiii"]=asm["dynCall_viiiiiii"];var dynCall_viiiiiiiii=Module["dynCall_viiiiiiiii"]=asm["dynCall_viiiiiiiii"];var dynCall_viiiiiiiiii=Module["dynCall_viiiiiiiiii"]=asm["dynCall_viiiiiiiiii"];var dynCall_iii=Module["dynCall_iii"]=asm["dynCall_iii"];var dynCall_diii=Module["dynCall_diii"]=asm["dynCall_diii"];var dynCall_diiiiiiiiii=Module["dynCall_diiiiiiiiii"]=asm["dynCall_diiiiiiiiii"];var dynCall_viiiid=Module["dynCall_viiiid"]=asm["dynCall_viiiid"];var dynCall_diiiiiiiii=Module["dynCall_diiiiiiiii"]=asm["dynCall_diiiiiiiii"];var dynCall_did=Module["dynCall_did"]=asm["dynCall_did"];var dynCall_viiiidddddidi=Module["dynCall_viiiidddddidi"]=asm["dynCall_viiiidddddidi"];var dynCall_diidii=Module["dynCall_diidii"]=asm["dynCall_diidii"];var dynCall_diiii=Module["dynCall_diiii"]=asm["dynCall_diiii"];var dynCall_iiiiiiiiii=Module["dynCall_iiiiiiiiii"]=asm["dynCall_iiiiiiiiii"];var dynCall_viiid=Module["dynCall_viiid"]=asm["dynCall_viiid"];var dynCall_viii=Module["dynCall_viii"]=asm["dynCall_viii"];var dynCall_v=Module["dynCall_v"]=asm["dynCall_v"];var dynCall_viid=Module["dynCall_viid"]=asm["dynCall_viid"];var dynCall_iidid=Module["dynCall_iidid"]=asm["dynCall_iidid"];var dynCall_viiii=Module["dynCall_viiii"]=asm["dynCall_viiii"];Runtime.stackAlloc=asm["stackAlloc"];Runtime.stackSave=asm["stackSave"];Runtime.stackRestore=asm["stackRestore"];Runtime.establishStackSpace=asm["establishStackSpace"];Runtime.setTempRet0=asm["setTempRet0"];Runtime.getTempRet0=asm["getTempRet0"];function ExitStatus(status){this.name="ExitStatus";this.message="Program terminated with exit("+status+")";this.status=status}ExitStatus.prototype=new Error;ExitStatus.prototype.constructor=ExitStatus;var initialStackTop;var preloadStartTime=null;var calledMain=false;dependenciesFulfilled=function runCaller(){if(!Module["calledRun"])run();if(!Module["calledRun"])dependenciesFulfilled=runCaller};Module["callMain"]=Module.callMain=function callMain(args){args=args||[];ensureInitRuntime();var argc=args.length+1;function pad(){for(var i=0;i<4-1;i++){argv.push(0)}}var argv=[allocate(intArrayFromString(Module["thisProgram"]),"i8",ALLOC_NORMAL)];pad();for(var i=0;i0){return}preRun();if(runDependencies>0)return;if(Module["calledRun"])return;function doRun(){if(Module["calledRun"])return;Module["calledRun"]=true;if(ABORT)return;ensureInitRuntime();preMain();if(Module["onRuntimeInitialized"])Module["onRuntimeInitialized"]();if(Module["_main"]&&shouldRunNow)Module["callMain"](args);postRun()}if(Module["setStatus"]){Module["setStatus"]("Running...");setTimeout((function(){setTimeout((function(){Module["setStatus"]("")}),1);doRun()}),1)}else{doRun()}}Module["run"]=Module.run=run;function exit(status,implicit){if(implicit&&Module["noExitRuntime"]){return}if(Module["noExitRuntime"]){}else{ABORT=true;EXITSTATUS=status;STACKTOP=initialStackTop;exitRuntime();if(Module["onExit"])Module["onExit"](status)}if(ENVIRONMENT_IS_NODE){process["exit"](status)}else if(ENVIRONMENT_IS_SHELL&&typeof quit==="function"){quit(status)}throw new ExitStatus(status)}Module["exit"]=Module.exit=exit;var abortDecorators=[];function abort(what){if(what!==undefined){Module.print(what);Module.printErr(what);what=JSON.stringify(what)}else{what=""}ABORT=true;EXITSTATUS=1;var extra="\nIf this abort() is unexpected, build with -s ASSERTIONS=1 which can give more information.";var output="abort("+what+") at "+stackTrace()+extra;if(abortDecorators){abortDecorators.forEach((function(decorator){output=decorator(output,what)}))}throw output}Module["abort"]=Module.abort=abort;if(Module["preInit"]){if(typeof Module["preInit"]=="function")Module["preInit"]=[Module["preInit"]];while(Module["preInit"].length>0){Module["preInit"].pop()()}}var shouldRunNow=true;if(Module["noInitialRun"]){shouldRunNow=false}Module["noExitRuntime"]=true;run();function WrapperObject(){}WrapperObject.prototype=Object.create(WrapperObject.prototype);WrapperObject.prototype.constructor=WrapperObject;WrapperObject.prototype.__class__=WrapperObject;WrapperObject.__cache__={};Module["WrapperObject"]=WrapperObject;function getCache(__class__){return(__class__||WrapperObject).__cache__}Module["getCache"]=getCache;function wrapPointer(ptr,__class__){var cache=getCache(__class__);var ret=cache[ptr];if(ret)return ret;ret=Object.create((__class__||WrapperObject).prototype);ret.ptr=ptr;return cache[ptr]=ret}Module["wrapPointer"]=wrapPointer;function castObject(obj,__class__){return wrapPointer(obj.ptr,__class__)}Module["castObject"]=castObject;Module["NULL"]=wrapPointer(0);function destroy(obj){if(!obj["__destroy__"])throw"Error: Cannot destroy object. (Did you create it yourself?)";obj["__destroy__"]();delete getCache(obj.__class__)[obj.ptr]}Module["destroy"]=destroy;function compare(obj1,obj2){return obj1.ptr===obj2.ptr}Module["compare"]=compare;function getPointer(obj){return obj.ptr}Module["getPointer"]=getPointer;function getClass(obj){return obj.__class__}Module["getClass"]=getClass;var ensureCache={buffer:0,size:0,pos:0,temps:[],needed:0,prepare:(function(){if(this.needed){for(var i=0;i=this.size){assert(len>0);this.needed+=len;ret=Module["_malloc"](len);this.temps.push(ret)}else{ret=this.buffer+this.pos;this.pos+=len}var retShifted=ret;switch(bytes){case 2:retShifted>>=1;break;case 4:retShifted>>=2;break;case 8:retShifted>>=3;break}for(var i=0;iFL Studio Producer Edition for Mac is a very handy and professional application which is equipped with various different advanced tools that let you create, record, mix and produce some of the very high quality tracks. This application provides a fully-featured music production environment and it takes advantages of the flexible mixer, VST and DX hosting. You can also download Sugar Bytes Effectrix for Mac.

    -

    Download Fruity Loops 10 For Mac


    Downloadhttps://urloso.com/2uyPzU



    -

    It has got support for advanced MIDI, DX and ReWrite plus you can export your songs or loops to mp3, MID, OGG and WAV file formats. It has also got multi-track audio recording feature that lets you simultaneously record all the tracks your audio interface supports. It has also got audio editing as well as manipulation tools that enable you to perform harmonization, pitch shifting, pitch correction, audio wrapping, time-stretching and beat-detection etc. FL Studio Producer Edition for Mac has been equipped with a user friendly as well as flexible user interface which can be personalized based on your requirements. You can create multi-track free playlists with audio, Pattern clips and automation for music, audio and data management. You can also capture the input from the keyboards, drum pads and various other MIDI compatible controllers and you can also connect various different MIDI devices and control them independently. With FL Studio Producer Edition for Mac you can easily mix as well as remix audio and use the real time audio effects like reverb, delay and filtering. All in all FL Studio Producer Edition for Mac is a very handy and professional application which is equipped with various different advanced tools that let you create, record, mix and produce some of the very high quality tracks. You can also download iZotope Ozone Advanced 8 for Mac.

    -

    If you download the trial version, you will be able to assess firsthand the functioning of one of the best programs out there for Mac for composing, recording, editing, mixing, and mastering music like a professional.

    -

    Just add the plugin for an instant half-speed effect with zero setup. Or go in deep with powerful creative controls. HalfTime works on loops, virtual instruments or even live audio input, inspiring you in seconds.

    -

    That's why we researched the cheapest ways to buy FL Studio, formerly known as Fruity Loops. So if you don't want to download an illegal crack and decide to buy, this musicmanta guide can help you get the FL Studio for the best deal.

    -

    -

    The Lofi starter pack is like the Trap Starter pack above, but catering to the lofi crowd. Tons of drums processed with vintage analog equipment, recorded to tape and saturated in analog warmth. Lofi melody loops similar to the same you'd hear on pages like lofi girl and chilled cow.

    -

    Most other sample pack sites don't do this, many melody loops from other companies come with clauses that if the beat ends up a major placement, they get to collect 50% of the royalties. We don't believe in that here at Cymatics, and every melody is 100% royalty free.

    -

    Hopefully this list has been helpful in providing you with some new trap samples to use in FL Studio. If you're like me and can never have enough samples to choose from, you can find more free samples in our free download vault.

    -

    Reaper puts its stamp in the conversation as it offers users an incredibly active community as well as everything you need in a DAW. Speed is one of the selling points with Reaper as it loads up extremely fast compared to certain DAWs. This is mainly due to its lightweight size, with its downloader being less than 20MB. In making Reaper, the software devs also did a fantastic job keeping the coding weight low as well.

    aaccfb2cb3
    -
    -
    \ No newline at end of file diff --git a/spaces/bioriAsaeru/text-to-voice/Adobe Photoshop CC 2020 Crack Plus Serial Key Full Version.md b/spaces/bioriAsaeru/text-to-voice/Adobe Photoshop CC 2020 Crack Plus Serial Key Full Version.md deleted file mode 100644 index 08bf113f4ec6c30f723fa9c8b82e7886c804582d..0000000000000000000000000000000000000000 --- a/spaces/bioriAsaeru/text-to-voice/Adobe Photoshop CC 2020 Crack Plus Serial Key Full Version.md +++ /dev/null @@ -1,21 +0,0 @@ -
    -

    How to Download and Install Adobe Photoshop CC 2020 Crack Plus Serial Key Full Version

    -

    Adobe Photoshop CC 2020 is one of the most popular and powerful photo editing and graphic design software in the world. It offers a wide range of features and tools to create stunning images, designs, illustrations, animations, and more. However, Adobe Photoshop CC 2020 is not a free software and requires a subscription to use it. If you want to use Adobe Photoshop CC 2020 without paying for it, you might be tempted to look for a crack or a serial key that can activate it for free. But is it safe and legal to do so? In this article, we will explain why you should avoid downloading and installing Adobe Photoshop CC 2020 crack plus serial key full version and what are the risks and consequences of doing so.

    -

    What is Adobe Photoshop CC 2020 Crack Plus Serial Key Full Version?

    -

    Adobe Photoshop CC 2020 crack plus serial key full version is a term that refers to a modified or hacked version of Adobe Photoshop CC 2020 that can bypass the activation process and run without a valid license. A crack is a file that can replace or modify the original executable file of the software, while a serial key is a code that can be entered during the installation or activation process to unlock the software. Some websites claim to offer Adobe Photoshop CC 2020 crack plus serial key full version for free download, but these are usually fake or malicious links that can harm your computer or compromise your personal data.

    -

    Adobe Photoshop CC 2020 Crack Plus Serial Key Full Version


    Download Zip ★★★ https://urloso.com/2uyQFJ



    -

    Why You Should Avoid Downloading and Installing Adobe Photoshop CC 2020 Crack Plus Serial Key Full Version?

    -

    There are many reasons why you should avoid downloading and installing Adobe Photoshop CC 2020 crack plus serial key full version, such as:

    -
      -
    • It is illegal. Downloading and installing Adobe Photoshop CC 2020 crack plus serial key full version is a violation of the software's end-user license agreement (EULA) and a form of software piracy. Software piracy is a serious crime that can result in fines, lawsuits, or even jail time. You are also depriving the developers of their rightful income and supporting the hackers who create and distribute these cracks and serial keys.
    • -
    • It is unsafe. Downloading and installing Adobe Photoshop CC 2020 crack plus serial key full version can expose your computer to viruses, malware, spyware, ransomware, or other harmful programs that can damage your system, steal your personal information, or encrypt your files and demand a ransom to unlock them. You can also risk losing your work or corrupting your files if the cracked software malfunctions or stops working.
    • -
    • It is unreliable. Downloading and installing Adobe Photoshop CC 2020 crack plus serial key full version can prevent you from accessing the latest updates, features, bug fixes, security patches, and customer support from Adobe. You can also face compatibility issues with other software or devices that require the latest version of Adobe Photoshop CC 2020. Moreover, you can be detected by Adobe's anti-piracy measures and face legal actions or penalties.
    • -
    -

    What Are the Alternatives to Downloading and Installing Adobe Photoshop CC 2020 Crack Plus Serial Key Full Version?

    -

    If you want to use Adobe Photoshop CC 2020 legally and safely, you have several options, such as:

    -
      -
    • Subscribe to an Adobe Creative Cloud plan. This is the best way to get access to Adobe Photoshop CC 2020 and other Adobe products and services. You can choose from different plans that suit your needs and budget, such as the Photography plan, the Single App plan, or the All Apps plan. You can also get discounts if you are a student, teacher, or business user. You can enjoy all the benefits of having a valid license, such as regular updates, cloud storage, online collaboration, customer support, and more.
    • -
    • Download a free trial of Adobe Photoshop CC 2020. If you want to try Adobe Photoshop CC 2020 before buying it, you can download a free trial version from the official website[^2^]. The free trial lasts for seven days and gives you access to all the features and functions of the software. You can also extend the trial period by signing up for an Adobe Creative Cloud plan.
    • -
    • Use an alternative photo editing software

      d5da3c52bf
      -
      -
      \ No newline at end of file diff --git a/spaces/bioriAsaeru/text-to-voice/Genial Klick A1 Pdf 16.md b/spaces/bioriAsaeru/text-to-voice/Genial Klick A1 Pdf 16.md deleted file mode 100644 index a745b4d7006f7a0aa8f39ff8247cde476f5956b1..0000000000000000000000000000000000000000 --- a/spaces/bioriAsaeru/text-to-voice/Genial Klick A1 Pdf 16.md +++ /dev/null @@ -1,6 +0,0 @@ -

      Genial Klick A1 Pdf 16


      Downloadhttps://urloso.com/2uyS7d



      - - 3cee63e6c2
      -
      -
      -

      diff --git a/spaces/blmdsydm/faster-whisper-webui/src/source.py b/spaces/blmdsydm/faster-whisper-webui/src/source.py deleted file mode 100644 index e304e278bfae8ef289c999fc76311ce01b547991..0000000000000000000000000000000000000000 --- a/spaces/blmdsydm/faster-whisper-webui/src/source.py +++ /dev/null @@ -1,80 +0,0 @@ -# Gradio seems to truncate files without keeping the extension, so we need to truncate the file prefix ourself -import os -import pathlib -from typing import List -import zipfile - -import ffmpeg -from more_itertools import unzip - -from src.download import ExceededMaximumDuration, download_url - -MAX_FILE_PREFIX_LENGTH = 17 - -class AudioSource: - def __init__(self, source_path, source_name = None, audio_duration = None): - self.source_path = source_path - self.source_name = source_name - self._audio_duration = audio_duration - - # Load source name if not provided - if (self.source_name is None): - file_path = pathlib.Path(self.source_path) - self.source_name = file_path.name - - def get_audio_duration(self): - if self._audio_duration is None: - self._audio_duration = float(ffmpeg.probe(self.source_path)["format"]["duration"]) - - return self._audio_duration - - def get_full_name(self): - return self.source_name - - def get_short_name(self, max_length: int = MAX_FILE_PREFIX_LENGTH): - file_path = pathlib.Path(self.source_name) - short_name = file_path.stem[:max_length] + file_path.suffix - - return short_name - - def __str__(self) -> str: - return self.source_path - -class AudioSourceCollection: - def __init__(self, sources: List[AudioSource]): - self.sources = sources - - def __iter__(self): - return iter(self.sources) - -def get_audio_source_collection(urlData: str, multipleFiles: List, microphoneData: str, input_audio_max_duration: float = -1) -> List[AudioSource]: - output: List[AudioSource] = [] - - if urlData: - # Download from YouTube. This could also be a playlist or a channel. - output.extend([ AudioSource(x) for x in download_url(urlData, input_audio_max_duration, playlistItems=None) ]) - else: - # Add input files - if (multipleFiles is not None): - output.extend([ AudioSource(x.name) for x in multipleFiles ]) - if (microphoneData is not None): - output.append(AudioSource(microphoneData)) - - total_duration = 0 - - # Calculate total audio length. We do this even if input_audio_max_duration - # is disabled to ensure that all the audio files are valid. - for source in output: - audioDuration = ffmpeg.probe(source.source_path)["format"]["duration"] - total_duration += float(audioDuration) - - # Save audio duration - source._audio_duration = float(audioDuration) - - # Ensure the total duration of the audio is not too long - if input_audio_max_duration > 0: - if float(total_duration) > input_audio_max_duration: - raise ExceededMaximumDuration(videoDuration=total_duration, maxDuration=input_audio_max_duration, message="Video(s) is too long") - - # Return a list of audio sources - return output \ No newline at end of file diff --git a/spaces/bohmian/simple_streamlit_app/README.md b/spaces/bohmian/simple_streamlit_app/README.md deleted file mode 100644 index 8efc3065c9a0fead9cc5d1d08dbf870b300d3c5c..0000000000000000000000000000000000000000 --- a/spaces/bohmian/simple_streamlit_app/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Simple_streamlit_app -emoji: 🌖 -colorFrom: pink -colorTo: blue -sdk: streamlit -sdk_version: 1.2.0 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference diff --git a/spaces/bradarrML/diffuse-the-rest/src/app.d.ts b/spaces/bradarrML/diffuse-the-rest/src/app.d.ts deleted file mode 100644 index 4eac1d5c9b82983da88cbb440911ed8af15e3dc7..0000000000000000000000000000000000000000 --- a/spaces/bradarrML/diffuse-the-rest/src/app.d.ts +++ /dev/null @@ -1,9 +0,0 @@ -// See https://kit.svelte.dev/docs/types#app -// for information about these interfaces -// and what to do when importing types -declare namespace App { - // interface Locals {} - // interface Platform {} - // interface PrivateEnv {} - // interface PublicEnv {} -} diff --git a/spaces/bradarrML/stablediffusion-infinity/index.html b/spaces/bradarrML/stablediffusion-infinity/index.html deleted file mode 100644 index 7f93791e6c90fe9ea92aa398dbb650cfc8af78cc..0000000000000000000000000000000000000000 --- a/spaces/bradarrML/stablediffusion-infinity/index.html +++ /dev/null @@ -1,404 +0,0 @@ - - -Stablediffusion Infinity - - - - - - - - - - - - - - - - -
      - - - - - - - - - - - -
      -
      - - -
      -
      - - -
      -
      - - -
      -
      -
      -
      -
      - - - - - -
      - -
      -
      - - -
      -
      -
      -
      - -- numpy -- Pillow -- paths: - - ./canvas.py - - - -from pyodide import to_js, create_proxy -from PIL import Image -import io -import time -import base64 -import numpy as np -from js import ( - console, - document, - parent, - devicePixelRatio, - ImageData, - Uint8ClampedArray, - CanvasRenderingContext2D as Context2d, - requestAnimationFrame, - window, - encodeURIComponent, - w2ui, - update_eraser, - update_scale, - adjust_selection, - update_count, - enable_result_lst, - setup_shortcut, -) - - -from canvas import InfCanvas - - - -base_lst = [None] -async def draw_canvas() -> None: - width=1024 - height=600 - canvas=InfCanvas(1024,600) - update_eraser(canvas.eraser_size,min(canvas.selection_size_h,canvas.selection_size_w)) - document.querySelector("#container").style.height= f"{height}px" - document.querySelector("#container").style.width = f"{width}px" - canvas.setup_mouse() - canvas.clear_background() - canvas.draw_buffer() - canvas.draw_selection_box() - base_lst[0]=canvas - -async def draw_canvas_func(): - - width=1500 - height=600 - selection_size=256 - document.querySelector("#container").style.width = f"{width}px" - document.querySelector("#container").style.height= f"{height}px" - canvas=InfCanvas(int(width),int(height),selection_size=int(selection_size)) - canvas.setup_mouse() - canvas.clear_background() - canvas.draw_buffer() - canvas.draw_selection_box() - base_lst[0]=canvas - -async def export_func(event): - base=base_lst[0] - arr=base.export() - base.draw_buffer() - base.canvas[2].clear() - base64_str = base.numpy_to_base64(arr) - time_str = time.strftime("%Y%m%d_%H%M%S") - link = document.createElement("a") - if len(event.data)>2 and event.data[2]: - filename = event.data[2] - else: - filename = f"outpaint_{time_str}" - # link.download = f"sdinf_state_{time_str}.json" - link.download = f"{filename}.png" - # link.download = f"outpaint_{time_str}.png" - link.href = "data:image/png;base64,"+base64_str - link.click() - console.log(f"Canvas saved to {filename}.png") - -img_candidate_lst=[None,0] - -async def outpaint_func(event): - base=base_lst[0] - if len(event.data)==2: - app=parent.document.querySelector("gradio-app") - if app.shadowRoot: - app=app.shadowRoot - base64_str_raw=app.querySelector("#output textarea").value - base64_str_lst=base64_str_raw.split(",") - img_candidate_lst[0]=base64_str_lst - img_candidate_lst[1]=0 - elif event.data[2]=="next": - img_candidate_lst[1]+=1 - elif event.data[2]=="prev": - img_candidate_lst[1]-=1 - enable_result_lst() - if img_candidate_lst[0] is None: - return - lst=img_candidate_lst[0] - idx=img_candidate_lst[1] - update_count(idx%len(lst)+1,len(lst)) - arr=base.base64_to_numpy(lst[idx%len(lst)]) - base.fill_selection(arr) - base.draw_selection_box() - -async def undo_func(event): - base=base_lst[0] - img_candidate_lst[0]=None - if base.sel_dirty: - base.sel_buffer = np.zeros((base.selection_size_h, base.selection_size_w, 4), dtype=np.uint8) - base.sel_dirty = False - base.canvas[2].clear() - -async def commit_func(event): - base=base_lst[0] - img_candidate_lst[0]=None - if base.sel_dirty: - base.write_selection_to_buffer() - base.draw_buffer() - base.canvas[2].clear() - -async def transfer_func(event): - base=base_lst[0] - base.read_selection_from_buffer() - sel_buffer=base.sel_buffer - sel_buffer_str=base.numpy_to_base64(sel_buffer) - app=parent.document.querySelector("gradio-app") - if app.shadowRoot: - app=app.shadowRoot - app.querySelector("#input textarea").value=sel_buffer_str - app.querySelector("#proceed").click() - -async def upload_func(event): - base=base_lst[0] - # base64_str=event.data[1] - base64_str=document.querySelector("#upload_content").value - base64_str=base64_str.split(",")[-1] - # base64_str=parent.document.querySelector("gradio-app").shadowRoot.querySelector("#upload textarea").value - arr=base.base64_to_numpy(base64_str) - h,w,c=base.buffer.shape - base.sync_to_buffer() - base.buffer_dirty=True - mask=arr[:,:,3:4].repeat(4,axis=2) - base.buffer[mask>0]=0 - # in case mismatch - base.buffer[0:h,0:w,:]+=arr - #base.buffer[yo:yo+h,xo:xo+w,0:3]=arr[:,:,0:3] - #base.buffer[yo:yo+h,xo:xo+w,-1]=arr[:,:,-1] - base.draw_buffer() - -async def setup_shortcut_func(event): - setup_shortcut(event.data[1]) - - -document.querySelector("#export").addEventListener("click",create_proxy(export_func)) -document.querySelector("#undo").addEventListener("click",create_proxy(undo_func)) -document.querySelector("#commit").addEventListener("click",create_proxy(commit_func)) -document.querySelector("#outpaint").addEventListener("click",create_proxy(outpaint_func)) -document.querySelector("#upload").addEventListener("click",create_proxy(upload_func)) - -document.querySelector("#transfer").addEventListener("click",create_proxy(transfer_func)) -document.querySelector("#draw").addEventListener("click",create_proxy(draw_canvas_func)) - -async def setup_func(): - document.querySelector("#setup").value="1" - -async def reset_func(event): - base=base_lst[0] - base.reset() - -async def load_func(event): - base=base_lst[0] - base.load(event.data[1]) - -async def save_func(event): - base=base_lst[0] - json_str=base.save() - time_str = time.strftime("%Y%m%d_%H%M%S") - link = document.createElement("a") - if len(event.data)>2 and event.data[2]: - filename = str(event.data[2]).strip() - else: - filename = f"outpaint_{time_str}" - # link.download = f"sdinf_state_{time_str}.json" - link.download = f"{filename}.sdinf" - link.href = "data:text/json;charset=utf-8,"+encodeURIComponent(json_str) - link.click() - -async def prev_result_func(event): - base=base_lst[0] - base.reset() - -async def next_result_func(event): - base=base_lst[0] - base.reset() - -async def zoom_in_func(event): - base=base_lst[0] - scale=base.scale - if scale>=0.2: - scale-=0.1 - if len(event.data)>2: - base.update_scale(scale,int(event.data[2]),int(event.data[3])) - else: - base.update_scale(scale) - scale=base.scale - update_scale(f"{base.width}x{base.height} ({round(100/scale)}%)") - -async def zoom_out_func(event): - base=base_lst[0] - scale=base.scale - if scale<10: - scale+=0.1 - console.log(len(event.data)) - if len(event.data)>2: - base.update_scale(scale,int(event.data[2]),int(event.data[3])) - else: - base.update_scale(scale) - scale=base.scale - update_scale(f"{base.width}x{base.height} ({round(100/scale)}%)") - -async def sync_func(event): - base=base_lst[0] - base.sync_to_buffer() - base.canvas[2].clear() - -async def eraser_size_func(event): - base=base_lst[0] - eraser_size=min(int(event.data[1]),min(base.selection_size_h,base.selection_size_w)) - eraser_size=max(8,eraser_size) - base.eraser_size=eraser_size - -async def resize_selection_func(event): - base=base_lst[0] - cursor=base.cursor - if len(event.data)>3: - console.log(event.data) - base.cursor[0]=int(event.data[1]) - base.cursor[1]=int(event.data[2]) - base.selection_size_w=int(event.data[3])//8*8 - base.selection_size_h=int(event.data[4])//8*8 - base.refine_selection() - base.draw_selection_box() - elif len(event.data)>2: - base.draw_selection_box() - else: - base.canvas[-1].clear() - adjust_selection(cursor[0],cursor[1],base.selection_size_w,base.selection_size_h) - -async def eraser_func(event): - base=base_lst[0] - if event.data[1]!="eraser": - base.canvas[-2].clear() - else: - x,y=base.mouse_pos - base.draw_eraser(x,y) - -async def resize_func(event): - base=base_lst[0] - width=int(event.data[1]) - height=int(event.data[2]) - if width>=256 and height>=256: - if max(base.selection_size_h,base.selection_size_w)>min(width,height): - base.selection_size_h=256 - base.selection_size_w=256 - base.resize(width,height) - -async def message_func(event): - if event.data[0]=="click": - if event.data[1]=="clear": - await reset_func(event) - elif event.data[1]=="save": - await save_func(event) - elif event.data[1]=="export": - await export_func(event) - elif event.data[1]=="accept": - await commit_func(event) - elif event.data[1]=="cancel": - await undo_func(event) - elif event.data[1]=="zoom_in": - await zoom_in_func(event) - elif event.data[1]=="zoom_out": - await zoom_out_func(event) - elif event.data[0]=="sync": - await sync_func(event) - elif event.data[0]=="load": - await load_func(event) - elif event.data[0]=="upload": - await upload_func(event) - elif event.data[0]=="outpaint": - await outpaint_func(event) - elif event.data[0]=="mode": - if event.data[1]!="selection": - await sync_func(event) - await eraser_func(event) - document.querySelector("#mode").value=event.data[1] - elif event.data[0]=="transfer": - await transfer_func(event) - elif event.data[0]=="setup": - await draw_canvas_func(event) - elif event.data[0]=="eraser_size": - await eraser_size_func(event) - elif event.data[0]=="resize_selection": - await resize_selection_func(event) - elif event.data[0]=="shortcut": - await setup_shortcut_func(event) - elif event.data[0]=="resize": - await resize_func(event) - -window.addEventListener("message",create_proxy(message_func)) - -import asyncio - -_ = await asyncio.gather( - setup_func(),draw_canvas_func() -) - - - - diff --git a/spaces/brayden-gg/decoupled-style-descriptors/config/GlobalVariables.py b/spaces/brayden-gg/decoupled-style-descriptors/config/GlobalVariables.py deleted file mode 100644 index a1791a55142638e6d0030b92c0c247ce973ff3b4..0000000000000000000000000000000000000000 --- a/spaces/brayden-gg/decoupled-style-descriptors/config/GlobalVariables.py +++ /dev/null @@ -1,5 +0,0 @@ -COLORS = [(255,255,255), (255,0,0), (0,255,0), (0,0,255), (255,255,0),(0,255,255),(255,0,255),(255,128,0),(0,255,128),(128,0,255),(255,0,128),(128,255,0),(0,128,255)] -CHARACTERS = ' !"#$%&\'()*+,-./0123456789:;<=>?ABCDEFGHIJKLMNOPQRSTUVWXYZ[]abcdefghijklmnopqrstuvwxyz' -# CHARACTERS = ' !"&\'(),-.:;?ABCDEFGHIJKLMNOPQRSTUVWXYZ[]abcdefghijklmnopqrstuvwxyz' - -''.join([CHARACTERS[i] for i in [4,2,30]]) diff --git a/spaces/brjathu/HMR2.0/vendor/detectron2/detectron2/data/datasets/cityscapes_panoptic.py b/spaces/brjathu/HMR2.0/vendor/detectron2/detectron2/data/datasets/cityscapes_panoptic.py deleted file mode 100644 index 48c136f1623261b079591065fec7c7fc38165076..0000000000000000000000000000000000000000 --- a/spaces/brjathu/HMR2.0/vendor/detectron2/detectron2/data/datasets/cityscapes_panoptic.py +++ /dev/null @@ -1,187 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -import json -import logging -import os - -from detectron2.data import DatasetCatalog, MetadataCatalog -from detectron2.data.datasets.builtin_meta import CITYSCAPES_CATEGORIES -from detectron2.utils.file_io import PathManager - -""" -This file contains functions to register the Cityscapes panoptic dataset to the DatasetCatalog. -""" - - -logger = logging.getLogger(__name__) - - -def get_cityscapes_panoptic_files(image_dir, gt_dir, json_info): - files = [] - # scan through the directory - cities = PathManager.ls(image_dir) - logger.info(f"{len(cities)} cities found in '{image_dir}'.") - image_dict = {} - for city in cities: - city_img_dir = os.path.join(image_dir, city) - for basename in PathManager.ls(city_img_dir): - image_file = os.path.join(city_img_dir, basename) - - suffix = "_leftImg8bit.png" - assert basename.endswith(suffix), basename - basename = os.path.basename(basename)[: -len(suffix)] - - image_dict[basename] = image_file - - for ann in json_info["annotations"]: - image_file = image_dict.get(ann["image_id"], None) - assert image_file is not None, "No image {} found for annotation {}".format( - ann["image_id"], ann["file_name"] - ) - label_file = os.path.join(gt_dir, ann["file_name"]) - segments_info = ann["segments_info"] - - files.append((image_file, label_file, segments_info)) - - assert len(files), "No images found in {}".format(image_dir) - assert PathManager.isfile(files[0][0]), files[0][0] - assert PathManager.isfile(files[0][1]), files[0][1] - return files - - -def load_cityscapes_panoptic(image_dir, gt_dir, gt_json, meta): - """ - Args: - image_dir (str): path to the raw dataset. e.g., "~/cityscapes/leftImg8bit/train". - gt_dir (str): path to the raw annotations. e.g., - "~/cityscapes/gtFine/cityscapes_panoptic_train". - gt_json (str): path to the json file. e.g., - "~/cityscapes/gtFine/cityscapes_panoptic_train.json". - meta (dict): dictionary containing "thing_dataset_id_to_contiguous_id" - and "stuff_dataset_id_to_contiguous_id" to map category ids to - contiguous ids for training. - - Returns: - list[dict]: a list of dicts in Detectron2 standard format. (See - `Using Custom Datasets `_ ) - """ - - def _convert_category_id(segment_info, meta): - if segment_info["category_id"] in meta["thing_dataset_id_to_contiguous_id"]: - segment_info["category_id"] = meta["thing_dataset_id_to_contiguous_id"][ - segment_info["category_id"] - ] - else: - segment_info["category_id"] = meta["stuff_dataset_id_to_contiguous_id"][ - segment_info["category_id"] - ] - return segment_info - - assert os.path.exists( - gt_json - ), "Please run `python cityscapesscripts/preparation/createPanopticImgs.py` to generate label files." # noqa - with open(gt_json) as f: - json_info = json.load(f) - files = get_cityscapes_panoptic_files(image_dir, gt_dir, json_info) - ret = [] - for image_file, label_file, segments_info in files: - sem_label_file = ( - image_file.replace("leftImg8bit", "gtFine").split(".")[0] + "_labelTrainIds.png" - ) - segments_info = [_convert_category_id(x, meta) for x in segments_info] - ret.append( - { - "file_name": image_file, - "image_id": "_".join( - os.path.splitext(os.path.basename(image_file))[0].split("_")[:3] - ), - "sem_seg_file_name": sem_label_file, - "pan_seg_file_name": label_file, - "segments_info": segments_info, - } - ) - assert len(ret), f"No images found in {image_dir}!" - assert PathManager.isfile( - ret[0]["sem_seg_file_name"] - ), "Please generate labelTrainIds.png with cityscapesscripts/preparation/createTrainIdLabelImgs.py" # noqa - assert PathManager.isfile( - ret[0]["pan_seg_file_name"] - ), "Please generate panoptic annotation with python cityscapesscripts/preparation/createPanopticImgs.py" # noqa - return ret - - -_RAW_CITYSCAPES_PANOPTIC_SPLITS = { - "cityscapes_fine_panoptic_train": ( - "cityscapes/leftImg8bit/train", - "cityscapes/gtFine/cityscapes_panoptic_train", - "cityscapes/gtFine/cityscapes_panoptic_train.json", - ), - "cityscapes_fine_panoptic_val": ( - "cityscapes/leftImg8bit/val", - "cityscapes/gtFine/cityscapes_panoptic_val", - "cityscapes/gtFine/cityscapes_panoptic_val.json", - ), - # "cityscapes_fine_panoptic_test": not supported yet -} - - -def register_all_cityscapes_panoptic(root): - meta = {} - # The following metadata maps contiguous id from [0, #thing categories + - # #stuff categories) to their names and colors. We have to replica of the - # same name and color under "thing_*" and "stuff_*" because the current - # visualization function in D2 handles thing and class classes differently - # due to some heuristic used in Panoptic FPN. We keep the same naming to - # enable reusing existing visualization functions. - thing_classes = [k["name"] for k in CITYSCAPES_CATEGORIES] - thing_colors = [k["color"] for k in CITYSCAPES_CATEGORIES] - stuff_classes = [k["name"] for k in CITYSCAPES_CATEGORIES] - stuff_colors = [k["color"] for k in CITYSCAPES_CATEGORIES] - - meta["thing_classes"] = thing_classes - meta["thing_colors"] = thing_colors - meta["stuff_classes"] = stuff_classes - meta["stuff_colors"] = stuff_colors - - # There are three types of ids in cityscapes panoptic segmentation: - # (1) category id: like semantic segmentation, it is the class id for each - # pixel. Since there are some classes not used in evaluation, the category - # id is not always contiguous and thus we have two set of category ids: - # - original category id: category id in the original dataset, mainly - # used for evaluation. - # - contiguous category id: [0, #classes), in order to train the classifier - # (2) instance id: this id is used to differentiate different instances from - # the same category. For "stuff" classes, the instance id is always 0; for - # "thing" classes, the instance id starts from 1 and 0 is reserved for - # ignored instances (e.g. crowd annotation). - # (3) panoptic id: this is the compact id that encode both category and - # instance id by: category_id * 1000 + instance_id. - thing_dataset_id_to_contiguous_id = {} - stuff_dataset_id_to_contiguous_id = {} - - for k in CITYSCAPES_CATEGORIES: - if k["isthing"] == 1: - thing_dataset_id_to_contiguous_id[k["id"]] = k["trainId"] - else: - stuff_dataset_id_to_contiguous_id[k["id"]] = k["trainId"] - - meta["thing_dataset_id_to_contiguous_id"] = thing_dataset_id_to_contiguous_id - meta["stuff_dataset_id_to_contiguous_id"] = stuff_dataset_id_to_contiguous_id - - for key, (image_dir, gt_dir, gt_json) in _RAW_CITYSCAPES_PANOPTIC_SPLITS.items(): - image_dir = os.path.join(root, image_dir) - gt_dir = os.path.join(root, gt_dir) - gt_json = os.path.join(root, gt_json) - - DatasetCatalog.register( - key, lambda x=image_dir, y=gt_dir, z=gt_json: load_cityscapes_panoptic(x, y, z, meta) - ) - MetadataCatalog.get(key).set( - panoptic_root=gt_dir, - image_root=image_dir, - panoptic_json=gt_json, - gt_dir=gt_dir.replace("cityscapes_panoptic_", ""), - evaluator_type="cityscapes_panoptic_seg", - ignore_label=255, - label_divisor=1000, - **meta, - ) diff --git a/spaces/brjathu/HMR2.0/vendor/detectron2/detectron2/tracking/utils.py b/spaces/brjathu/HMR2.0/vendor/detectron2/detectron2/tracking/utils.py deleted file mode 100644 index 92634c5cfe0c18eda00ce6c8bfe767ed20470a80..0000000000000000000000000000000000000000 --- a/spaces/brjathu/HMR2.0/vendor/detectron2/detectron2/tracking/utils.py +++ /dev/null @@ -1,40 +0,0 @@ -#!/usr/bin/env python3 -import numpy as np -from typing import List - -from detectron2.structures import Instances - - -def create_prediction_pairs( - instances: Instances, - prev_instances: Instances, - iou_all: np.ndarray, - threshold: float = 0.5, -) -> List: - """ - Args: - instances: predictions from current frame - prev_instances: predictions from previous frame - iou_all: 2D numpy array containing iou for each bbox pair - threshold: below the threshold, doesn't consider the pair of bbox is valid - Return: - List of bbox pairs - """ - bbox_pairs = [] - for i in range(len(instances)): - for j in range(len(prev_instances)): - if iou_all[i, j] < threshold: - continue - bbox_pairs.append( - { - "idx": i, - "prev_idx": j, - "prev_id": prev_instances.ID[j], - "IoU": iou_all[i, j], - "prev_period": prev_instances.ID_period[j], - } - ) - return bbox_pairs - - -LARGE_COST_VALUE = 100000 diff --git a/spaces/camenduru-com/seamless/README.md b/spaces/camenduru-com/seamless/README.md deleted file mode 100644 index e045de6228521cfd1f4d2ed845dcaeb64ed058f2..0000000000000000000000000000000000000000 --- a/spaces/camenduru-com/seamless/README.md +++ /dev/null @@ -1,8 +0,0 @@ ---- -title: Seamless Texture Generator -emoji: 👾 -colorFrom: purple -colorTo: purple -sdk: docker -pinned: false ---- diff --git a/spaces/carlosalonso/Detection-video/carpeta_deteccion/detectron2/modeling/roi_heads/roi_heads.py b/spaces/carlosalonso/Detection-video/carpeta_deteccion/detectron2/modeling/roi_heads/roi_heads.py deleted file mode 100644 index 13dd57a0478917001841f6c6299f380e1198e63a..0000000000000000000000000000000000000000 --- a/spaces/carlosalonso/Detection-video/carpeta_deteccion/detectron2/modeling/roi_heads/roi_heads.py +++ /dev/null @@ -1,877 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -import inspect -import logging -import numpy as np -from typing import Dict, List, Optional, Tuple -import torch -from torch import nn - -from detectron2.config import configurable -from detectron2.layers import ShapeSpec, nonzero_tuple -from detectron2.structures import Boxes, ImageList, Instances, pairwise_iou -from detectron2.utils.events import get_event_storage -from detectron2.utils.registry import Registry - -from ..backbone.resnet import BottleneckBlock, ResNet -from ..matcher import Matcher -from ..poolers import ROIPooler -from ..proposal_generator.proposal_utils import add_ground_truth_to_proposals -from ..sampling import subsample_labels -from .box_head import build_box_head -from .fast_rcnn import FastRCNNOutputLayers -from .keypoint_head import build_keypoint_head -from .mask_head import build_mask_head - -ROI_HEADS_REGISTRY = Registry("ROI_HEADS") -ROI_HEADS_REGISTRY.__doc__ = """ -Registry for ROI heads in a generalized R-CNN model. -ROIHeads take feature maps and region proposals, and -perform per-region computation. - -The registered object will be called with `obj(cfg, input_shape)`. -The call is expected to return an :class:`ROIHeads`. -""" - -logger = logging.getLogger(__name__) - - -def build_roi_heads(cfg, input_shape): - """ - Build ROIHeads defined by `cfg.MODEL.ROI_HEADS.NAME`. - """ - name = cfg.MODEL.ROI_HEADS.NAME - return ROI_HEADS_REGISTRY.get(name)(cfg, input_shape) - - -def select_foreground_proposals( - proposals: List[Instances], bg_label: int -) -> Tuple[List[Instances], List[torch.Tensor]]: - """ - Given a list of N Instances (for N images), each containing a `gt_classes` field, - return a list of Instances that contain only instances with `gt_classes != -1 && - gt_classes != bg_label`. - - Args: - proposals (list[Instances]): A list of N Instances, where N is the number of - images in the batch. - bg_label: label index of background class. - - Returns: - list[Instances]: N Instances, each contains only the selected foreground instances. - list[Tensor]: N boolean vector, correspond to the selection mask of - each Instances object. True for selected instances. - """ - assert isinstance(proposals, (list, tuple)) - assert isinstance(proposals[0], Instances) - assert proposals[0].has("gt_classes") - fg_proposals = [] - fg_selection_masks = [] - for proposals_per_image in proposals: - gt_classes = proposals_per_image.gt_classes - fg_selection_mask = (gt_classes != -1) & (gt_classes != bg_label) - fg_idxs = fg_selection_mask.nonzero().squeeze(1) - fg_proposals.append(proposals_per_image[fg_idxs]) - fg_selection_masks.append(fg_selection_mask) - return fg_proposals, fg_selection_masks - - -def select_proposals_with_visible_keypoints(proposals: List[Instances]) -> List[Instances]: - """ - Args: - proposals (list[Instances]): a list of N Instances, where N is the - number of images. - - Returns: - proposals: only contains proposals with at least one visible keypoint. - - Note that this is still slightly different from Detectron. - In Detectron, proposals for training keypoint head are re-sampled from - all the proposals with IOU>threshold & >=1 visible keypoint. - - Here, the proposals are first sampled from all proposals with - IOU>threshold, then proposals with no visible keypoint are filtered out. - This strategy seems to make no difference on Detectron and is easier to implement. - """ - ret = [] - all_num_fg = [] - for proposals_per_image in proposals: - # If empty/unannotated image (hard negatives), skip filtering for train - if len(proposals_per_image) == 0: - ret.append(proposals_per_image) - continue - gt_keypoints = proposals_per_image.gt_keypoints.tensor - # #fg x K x 3 - vis_mask = gt_keypoints[:, :, 2] >= 1 - xs, ys = gt_keypoints[:, :, 0], gt_keypoints[:, :, 1] - proposal_boxes = proposals_per_image.proposal_boxes.tensor.unsqueeze(dim=1) # #fg x 1 x 4 - kp_in_box = ( - (xs >= proposal_boxes[:, :, 0]) - & (xs <= proposal_boxes[:, :, 2]) - & (ys >= proposal_boxes[:, :, 1]) - & (ys <= proposal_boxes[:, :, 3]) - ) - selection = (kp_in_box & vis_mask).any(dim=1) - selection_idxs = nonzero_tuple(selection)[0] - all_num_fg.append(selection_idxs.numel()) - ret.append(proposals_per_image[selection_idxs]) - - storage = get_event_storage() - storage.put_scalar("keypoint_head/num_fg_samples", np.mean(all_num_fg)) - return ret - - -class ROIHeads(torch.nn.Module): - """ - ROIHeads perform all per-region computation in an R-CNN. - - It typically contains logic to - - 1. (in training only) match proposals with ground truth and sample them - 2. crop the regions and extract per-region features using proposals - 3. make per-region predictions with different heads - - It can have many variants, implemented as subclasses of this class. - This base class contains the logic to match/sample proposals. - But it is not necessary to inherit this class if the sampling logic is not needed. - """ - - @configurable - def __init__( - self, - *, - num_classes, - batch_size_per_image, - positive_fraction, - proposal_matcher, - proposal_append_gt=True, - ): - """ - NOTE: this interface is experimental. - - Args: - num_classes (int): number of foreground classes (i.e. background is not included) - batch_size_per_image (int): number of proposals to sample for training - positive_fraction (float): fraction of positive (foreground) proposals - to sample for training. - proposal_matcher (Matcher): matcher that matches proposals and ground truth - proposal_append_gt (bool): whether to include ground truth as proposals as well - """ - super().__init__() - self.batch_size_per_image = batch_size_per_image - self.positive_fraction = positive_fraction - self.num_classes = num_classes - self.proposal_matcher = proposal_matcher - self.proposal_append_gt = proposal_append_gt - - @classmethod - def from_config(cls, cfg): - return { - "batch_size_per_image": cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE, - "positive_fraction": cfg.MODEL.ROI_HEADS.POSITIVE_FRACTION, - "num_classes": cfg.MODEL.ROI_HEADS.NUM_CLASSES, - "proposal_append_gt": cfg.MODEL.ROI_HEADS.PROPOSAL_APPEND_GT, - # Matcher to assign box proposals to gt boxes - "proposal_matcher": Matcher( - cfg.MODEL.ROI_HEADS.IOU_THRESHOLDS, - cfg.MODEL.ROI_HEADS.IOU_LABELS, - allow_low_quality_matches=False, - ), - } - - def _sample_proposals( - self, matched_idxs: torch.Tensor, matched_labels: torch.Tensor, gt_classes: torch.Tensor - ) -> Tuple[torch.Tensor, torch.Tensor]: - """ - Based on the matching between N proposals and M groundtruth, - sample the proposals and set their classification labels. - - Args: - matched_idxs (Tensor): a vector of length N, each is the best-matched - gt index in [0, M) for each proposal. - matched_labels (Tensor): a vector of length N, the matcher's label - (one of cfg.MODEL.ROI_HEADS.IOU_LABELS) for each proposal. - gt_classes (Tensor): a vector of length M. - - Returns: - Tensor: a vector of indices of sampled proposals. Each is in [0, N). - Tensor: a vector of the same length, the classification label for - each sampled proposal. Each sample is labeled as either a category in - [0, num_classes) or the background (num_classes). - """ - has_gt = gt_classes.numel() > 0 - # Get the corresponding GT for each proposal - if has_gt: - gt_classes = gt_classes[matched_idxs] - # Label unmatched proposals (0 label from matcher) as background (label=num_classes) - gt_classes[matched_labels == 0] = self.num_classes - # Label ignore proposals (-1 label) - gt_classes[matched_labels == -1] = -1 - else: - gt_classes = torch.zeros_like(matched_idxs) + self.num_classes - - sampled_fg_idxs, sampled_bg_idxs = subsample_labels( - gt_classes, self.batch_size_per_image, self.positive_fraction, self.num_classes - ) - - sampled_idxs = torch.cat([sampled_fg_idxs, sampled_bg_idxs], dim=0) - return sampled_idxs, gt_classes[sampled_idxs] - - @torch.no_grad() - def label_and_sample_proposals( - self, proposals: List[Instances], targets: List[Instances] - ) -> List[Instances]: - """ - Prepare some proposals to be used to train the ROI heads. - It performs box matching between `proposals` and `targets`, and assigns - training labels to the proposals. - It returns ``self.batch_size_per_image`` random samples from proposals and groundtruth - boxes, with a fraction of positives that is no larger than - ``self.positive_fraction``. - - Args: - See :meth:`ROIHeads.forward` - - Returns: - list[Instances]: - length `N` list of `Instances`s containing the proposals - sampled for training. Each `Instances` has the following fields: - - - proposal_boxes: the proposal boxes - - gt_boxes: the ground-truth box that the proposal is assigned to - (this is only meaningful if the proposal has a label > 0; if label = 0 - then the ground-truth box is random) - - Other fields such as "gt_classes", "gt_masks", that's included in `targets`. - """ - # Augment proposals with ground-truth boxes. - # In the case of learned proposals (e.g., RPN), when training starts - # the proposals will be low quality due to random initialization. - # It's possible that none of these initial - # proposals have high enough overlap with the gt objects to be used - # as positive examples for the second stage components (box head, - # cls head, mask head). Adding the gt boxes to the set of proposals - # ensures that the second stage components will have some positive - # examples from the start of training. For RPN, this augmentation improves - # convergence and empirically improves box AP on COCO by about 0.5 - # points (under one tested configuration). - if self.proposal_append_gt: - proposals = add_ground_truth_to_proposals(targets, proposals) - - proposals_with_gt = [] - - num_fg_samples = [] - num_bg_samples = [] - for proposals_per_image, targets_per_image in zip(proposals, targets): - has_gt = len(targets_per_image) > 0 - match_quality_matrix = pairwise_iou( - targets_per_image.gt_boxes, proposals_per_image.proposal_boxes - ) - matched_idxs, matched_labels = self.proposal_matcher(match_quality_matrix) - sampled_idxs, gt_classes = self._sample_proposals( - matched_idxs, matched_labels, targets_per_image.gt_classes - ) - - # Set target attributes of the sampled proposals: - proposals_per_image = proposals_per_image[sampled_idxs] - proposals_per_image.gt_classes = gt_classes - - if has_gt: - sampled_targets = matched_idxs[sampled_idxs] - # We index all the attributes of targets that start with "gt_" - # and have not been added to proposals yet (="gt_classes"). - # NOTE: here the indexing waste some compute, because heads - # like masks, keypoints, etc, will filter the proposals again, - # (by foreground/background, or number of keypoints in the image, etc) - # so we essentially index the data twice. - for (trg_name, trg_value) in targets_per_image.get_fields().items(): - if trg_name.startswith("gt_") and not proposals_per_image.has(trg_name): - proposals_per_image.set(trg_name, trg_value[sampled_targets]) - # If no GT is given in the image, we don't know what a dummy gt value can be. - # Therefore the returned proposals won't have any gt_* fields, except for a - # gt_classes full of background label. - - num_bg_samples.append((gt_classes == self.num_classes).sum().item()) - num_fg_samples.append(gt_classes.numel() - num_bg_samples[-1]) - proposals_with_gt.append(proposals_per_image) - - # Log the number of fg/bg samples that are selected for training ROI heads - storage = get_event_storage() - storage.put_scalar("roi_head/num_fg_samples", np.mean(num_fg_samples)) - storage.put_scalar("roi_head/num_bg_samples", np.mean(num_bg_samples)) - - return proposals_with_gt - - def forward( - self, - images: ImageList, - features: Dict[str, torch.Tensor], - proposals: List[Instances], - targets: Optional[List[Instances]] = None, - ) -> Tuple[List[Instances], Dict[str, torch.Tensor]]: - """ - Args: - images (ImageList): - features (dict[str,Tensor]): input data as a mapping from feature - map name to tensor. Axis 0 represents the number of images `N` in - the input data; axes 1-3 are channels, height, and width, which may - vary between feature maps (e.g., if a feature pyramid is used). - proposals (list[Instances]): length `N` list of `Instances`. The i-th - `Instances` contains object proposals for the i-th input image, - with fields "proposal_boxes" and "objectness_logits". - targets (list[Instances], optional): length `N` list of `Instances`. The i-th - `Instances` contains the ground-truth per-instance annotations - for the i-th input image. Specify `targets` during training only. - It may have the following fields: - - - gt_boxes: the bounding box of each instance. - - gt_classes: the label for each instance with a category ranging in [0, #class]. - - gt_masks: PolygonMasks or BitMasks, the ground-truth masks of each instance. - - gt_keypoints: NxKx3, the groud-truth keypoints for each instance. - - Returns: - list[Instances]: length `N` list of `Instances` containing the - detected instances. Returned during inference only; may be [] during training. - - dict[str->Tensor]: - mapping from a named loss to a tensor storing the loss. Used during training only. - """ - raise NotImplementedError() - - -@ROI_HEADS_REGISTRY.register() -class Res5ROIHeads(ROIHeads): - """ - The ROIHeads in a typical "C4" R-CNN model, where - the box and mask head share the cropping and - the per-region feature computation by a Res5 block. - See :paper:`ResNet` Appendix A. - """ - - @configurable - def __init__( - self, - *, - in_features: List[str], - pooler: ROIPooler, - res5: nn.Module, - box_predictor: nn.Module, - mask_head: Optional[nn.Module] = None, - **kwargs, - ): - """ - NOTE: this interface is experimental. - - Args: - in_features (list[str]): list of backbone feature map names to use for - feature extraction - pooler (ROIPooler): pooler to extra region features from backbone - res5 (nn.Sequential): a CNN to compute per-region features, to be used by - ``box_predictor`` and ``mask_head``. Typically this is a "res5" - block from a ResNet. - box_predictor (nn.Module): make box predictions from the feature. - Should have the same interface as :class:`FastRCNNOutputLayers`. - mask_head (nn.Module): transform features to make mask predictions - """ - super().__init__(**kwargs) - self.in_features = in_features - self.pooler = pooler - if isinstance(res5, (list, tuple)): - res5 = nn.Sequential(*res5) - self.res5 = res5 - self.box_predictor = box_predictor - self.mask_on = mask_head is not None - if self.mask_on: - self.mask_head = mask_head - - @classmethod - def from_config(cls, cfg, input_shape): - # fmt: off - ret = super().from_config(cfg) - in_features = ret["in_features"] = cfg.MODEL.ROI_HEADS.IN_FEATURES - pooler_resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION - pooler_type = cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE - pooler_scales = (1.0 / input_shape[in_features[0]].stride, ) - sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO - mask_on = cfg.MODEL.MASK_ON - # fmt: on - assert not cfg.MODEL.KEYPOINT_ON - assert len(in_features) == 1 - - ret["pooler"] = ROIPooler( - output_size=pooler_resolution, - scales=pooler_scales, - sampling_ratio=sampling_ratio, - pooler_type=pooler_type, - ) - - # Compatbility with old moco code. Might be useful. - # See notes in StandardROIHeads.from_config - if not inspect.ismethod(cls._build_res5_block): - logger.warning( - "The behavior of _build_res5_block may change. " - "Please do not depend on private methods." - ) - cls._build_res5_block = classmethod(cls._build_res5_block) - - ret["res5"], out_channels = cls._build_res5_block(cfg) - ret["box_predictor"] = FastRCNNOutputLayers( - cfg, ShapeSpec(channels=out_channels, height=1, width=1) - ) - - if mask_on: - ret["mask_head"] = build_mask_head( - cfg, - ShapeSpec(channels=out_channels, width=pooler_resolution, height=pooler_resolution), - ) - return ret - - @classmethod - def _build_res5_block(cls, cfg): - # fmt: off - stage_channel_factor = 2 ** 3 # res5 is 8x res2 - num_groups = cfg.MODEL.RESNETS.NUM_GROUPS - width_per_group = cfg.MODEL.RESNETS.WIDTH_PER_GROUP - bottleneck_channels = num_groups * width_per_group * stage_channel_factor - out_channels = cfg.MODEL.RESNETS.RES2_OUT_CHANNELS * stage_channel_factor - stride_in_1x1 = cfg.MODEL.RESNETS.STRIDE_IN_1X1 - norm = cfg.MODEL.RESNETS.NORM - assert not cfg.MODEL.RESNETS.DEFORM_ON_PER_STAGE[-1], \ - "Deformable conv is not yet supported in res5 head." - # fmt: on - - blocks = ResNet.make_stage( - BottleneckBlock, - 3, - stride_per_block=[2, 1, 1], - in_channels=out_channels // 2, - bottleneck_channels=bottleneck_channels, - out_channels=out_channels, - num_groups=num_groups, - norm=norm, - stride_in_1x1=stride_in_1x1, - ) - return nn.Sequential(*blocks), out_channels - - def _shared_roi_transform(self, features: List[torch.Tensor], boxes: List[Boxes]): - x = self.pooler(features, boxes) - return self.res5(x) - - def forward( - self, - images: ImageList, - features: Dict[str, torch.Tensor], - proposals: List[Instances], - targets: Optional[List[Instances]] = None, - ): - """ - See :meth:`ROIHeads.forward`. - """ - del images - - if self.training: - assert targets - proposals = self.label_and_sample_proposals(proposals, targets) - del targets - - proposal_boxes = [x.proposal_boxes for x in proposals] - box_features = self._shared_roi_transform( - [features[f] for f in self.in_features], proposal_boxes - ) - predictions = self.box_predictor(box_features.mean(dim=[2, 3])) - - if self.training: - del features - losses = self.box_predictor.losses(predictions, proposals) - if self.mask_on: - proposals, fg_selection_masks = select_foreground_proposals( - proposals, self.num_classes - ) - # Since the ROI feature transform is shared between boxes and masks, - # we don't need to recompute features. The mask loss is only defined - # on foreground proposals, so we need to select out the foreground - # features. - mask_features = box_features[torch.cat(fg_selection_masks, dim=0)] - del box_features - losses.update(self.mask_head(mask_features, proposals)) - return [], losses - else: - pred_instances, _ = self.box_predictor.inference(predictions, proposals) - pred_instances = self.forward_with_given_boxes(features, pred_instances) - return pred_instances, {} - - def forward_with_given_boxes( - self, features: Dict[str, torch.Tensor], instances: List[Instances] - ) -> List[Instances]: - """ - Use the given boxes in `instances` to produce other (non-box) per-ROI outputs. - - Args: - features: same as in `forward()` - instances (list[Instances]): instances to predict other outputs. Expect the keys - "pred_boxes" and "pred_classes" to exist. - - Returns: - instances (Instances): - the same `Instances` object, with extra - fields such as `pred_masks` or `pred_keypoints`. - """ - assert not self.training - assert instances[0].has("pred_boxes") and instances[0].has("pred_classes") - - if self.mask_on: - feature_list = [features[f] for f in self.in_features] - x = self._shared_roi_transform(feature_list, [x.pred_boxes for x in instances]) - return self.mask_head(x, instances) - else: - return instances - - -@ROI_HEADS_REGISTRY.register() -class StandardROIHeads(ROIHeads): - """ - It's "standard" in a sense that there is no ROI transform sharing - or feature sharing between tasks. - Each head independently processes the input features by each head's - own pooler and head. - - This class is used by most models, such as FPN and C5. - To implement more models, you can subclass it and implement a different - :meth:`forward()` or a head. - """ - - @configurable - def __init__( - self, - *, - box_in_features: List[str], - box_pooler: ROIPooler, - box_head: nn.Module, - box_predictor: nn.Module, - mask_in_features: Optional[List[str]] = None, - mask_pooler: Optional[ROIPooler] = None, - mask_head: Optional[nn.Module] = None, - keypoint_in_features: Optional[List[str]] = None, - keypoint_pooler: Optional[ROIPooler] = None, - keypoint_head: Optional[nn.Module] = None, - train_on_pred_boxes: bool = False, - **kwargs, - ): - """ - NOTE: this interface is experimental. - - Args: - box_in_features (list[str]): list of feature names to use for the box head. - box_pooler (ROIPooler): pooler to extra region features for box head - box_head (nn.Module): transform features to make box predictions - box_predictor (nn.Module): make box predictions from the feature. - Should have the same interface as :class:`FastRCNNOutputLayers`. - mask_in_features (list[str]): list of feature names to use for the mask - pooler or mask head. None if not using mask head. - mask_pooler (ROIPooler): pooler to extract region features from image features. - The mask head will then take region features to make predictions. - If None, the mask head will directly take the dict of image features - defined by `mask_in_features` - mask_head (nn.Module): transform features to make mask predictions - keypoint_in_features, keypoint_pooler, keypoint_head: similar to ``mask_*``. - train_on_pred_boxes (bool): whether to use proposal boxes or - predicted boxes from the box head to train other heads. - """ - super().__init__(**kwargs) - # keep self.in_features for backward compatibility - self.in_features = self.box_in_features = box_in_features - self.box_pooler = box_pooler - self.box_head = box_head - self.box_predictor = box_predictor - - self.mask_on = mask_in_features is not None - if self.mask_on: - self.mask_in_features = mask_in_features - self.mask_pooler = mask_pooler - self.mask_head = mask_head - - self.keypoint_on = keypoint_in_features is not None - if self.keypoint_on: - self.keypoint_in_features = keypoint_in_features - self.keypoint_pooler = keypoint_pooler - self.keypoint_head = keypoint_head - - self.train_on_pred_boxes = train_on_pred_boxes - - @classmethod - def from_config(cls, cfg, input_shape): - ret = super().from_config(cfg) - ret["train_on_pred_boxes"] = cfg.MODEL.ROI_BOX_HEAD.TRAIN_ON_PRED_BOXES - # Subclasses that have not been updated to use from_config style construction - # may have overridden _init_*_head methods. In this case, those overridden methods - # will not be classmethods and we need to avoid trying to call them here. - # We test for this with ismethod which only returns True for bound methods of cls. - # Such subclasses will need to handle calling their overridden _init_*_head methods. - if inspect.ismethod(cls._init_box_head): - ret.update(cls._init_box_head(cfg, input_shape)) - if inspect.ismethod(cls._init_mask_head): - ret.update(cls._init_mask_head(cfg, input_shape)) - if inspect.ismethod(cls._init_keypoint_head): - ret.update(cls._init_keypoint_head(cfg, input_shape)) - return ret - - @classmethod - def _init_box_head(cls, cfg, input_shape): - # fmt: off - in_features = cfg.MODEL.ROI_HEADS.IN_FEATURES - pooler_resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION - pooler_scales = tuple(1.0 / input_shape[k].stride for k in in_features) - sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO - pooler_type = cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE - # fmt: on - - # If StandardROIHeads is applied on multiple feature maps (as in FPN), - # then we share the same predictors and therefore the channel counts must be the same - in_channels = [input_shape[f].channels for f in in_features] - # Check all channel counts are equal - assert len(set(in_channels)) == 1, in_channels - in_channels = in_channels[0] - - box_pooler = ROIPooler( - output_size=pooler_resolution, - scales=pooler_scales, - sampling_ratio=sampling_ratio, - pooler_type=pooler_type, - ) - # Here we split "box head" and "box predictor", which is mainly due to historical reasons. - # They are used together so the "box predictor" layers should be part of the "box head". - # New subclasses of ROIHeads do not need "box predictor"s. - box_head = build_box_head( - cfg, ShapeSpec(channels=in_channels, height=pooler_resolution, width=pooler_resolution) - ) - box_predictor = FastRCNNOutputLayers(cfg, box_head.output_shape) - return { - "box_in_features": in_features, - "box_pooler": box_pooler, - "box_head": box_head, - "box_predictor": box_predictor, - } - - @classmethod - def _init_mask_head(cls, cfg, input_shape): - if not cfg.MODEL.MASK_ON: - return {} - # fmt: off - in_features = cfg.MODEL.ROI_HEADS.IN_FEATURES - pooler_resolution = cfg.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION - pooler_scales = tuple(1.0 / input_shape[k].stride for k in in_features) - sampling_ratio = cfg.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO - pooler_type = cfg.MODEL.ROI_MASK_HEAD.POOLER_TYPE - # fmt: on - - in_channels = [input_shape[f].channels for f in in_features][0] - - ret = {"mask_in_features": in_features} - ret["mask_pooler"] = ( - ROIPooler( - output_size=pooler_resolution, - scales=pooler_scales, - sampling_ratio=sampling_ratio, - pooler_type=pooler_type, - ) - if pooler_type - else None - ) - if pooler_type: - shape = ShapeSpec( - channels=in_channels, width=pooler_resolution, height=pooler_resolution - ) - else: - shape = {f: input_shape[f] for f in in_features} - ret["mask_head"] = build_mask_head(cfg, shape) - return ret - - @classmethod - def _init_keypoint_head(cls, cfg, input_shape): - if not cfg.MODEL.KEYPOINT_ON: - return {} - # fmt: off - in_features = cfg.MODEL.ROI_HEADS.IN_FEATURES - pooler_resolution = cfg.MODEL.ROI_KEYPOINT_HEAD.POOLER_RESOLUTION - pooler_scales = tuple(1.0 / input_shape[k].stride for k in in_features) # noqa - sampling_ratio = cfg.MODEL.ROI_KEYPOINT_HEAD.POOLER_SAMPLING_RATIO - pooler_type = cfg.MODEL.ROI_KEYPOINT_HEAD.POOLER_TYPE - # fmt: on - - in_channels = [input_shape[f].channels for f in in_features][0] - - ret = {"keypoint_in_features": in_features} - ret["keypoint_pooler"] = ( - ROIPooler( - output_size=pooler_resolution, - scales=pooler_scales, - sampling_ratio=sampling_ratio, - pooler_type=pooler_type, - ) - if pooler_type - else None - ) - if pooler_type: - shape = ShapeSpec( - channels=in_channels, width=pooler_resolution, height=pooler_resolution - ) - else: - shape = {f: input_shape[f] for f in in_features} - ret["keypoint_head"] = build_keypoint_head(cfg, shape) - return ret - - def forward( - self, - images: ImageList, - features: Dict[str, torch.Tensor], - proposals: List[Instances], - targets: Optional[List[Instances]] = None, - ) -> Tuple[List[Instances], Dict[str, torch.Tensor]]: - """ - See :class:`ROIHeads.forward`. - """ - del images - if self.training: - assert targets, "'targets' argument is required during training" - proposals = self.label_and_sample_proposals(proposals, targets) - del targets - - if self.training: - losses = self._forward_box(features, proposals) - # Usually the original proposals used by the box head are used by the mask, keypoint - # heads. But when `self.train_on_pred_boxes is True`, proposals will contain boxes - # predicted by the box head. - losses.update(self._forward_mask(features, proposals)) - losses.update(self._forward_keypoint(features, proposals)) - return proposals, losses - else: - pred_instances = self._forward_box(features, proposals) - # During inference cascaded prediction is used: the mask and keypoints heads are only - # applied to the top scoring box detections. - pred_instances = self.forward_with_given_boxes(features, pred_instances) - return pred_instances, {} - - def forward_with_given_boxes( - self, features: Dict[str, torch.Tensor], instances: List[Instances] - ) -> List[Instances]: - """ - Use the given boxes in `instances` to produce other (non-box) per-ROI outputs. - - This is useful for downstream tasks where a box is known, but need to obtain - other attributes (outputs of other heads). - Test-time augmentation also uses this. - - Args: - features: same as in `forward()` - instances (list[Instances]): instances to predict other outputs. Expect the keys - "pred_boxes" and "pred_classes" to exist. - - Returns: - list[Instances]: - the same `Instances` objects, with extra - fields such as `pred_masks` or `pred_keypoints`. - """ - assert not self.training - assert instances[0].has("pred_boxes") and instances[0].has("pred_classes") - - instances = self._forward_mask(features, instances) - instances = self._forward_keypoint(features, instances) - return instances - - def _forward_box(self, features: Dict[str, torch.Tensor], proposals: List[Instances]): - """ - Forward logic of the box prediction branch. If `self.train_on_pred_boxes is True`, - the function puts predicted boxes in the `proposal_boxes` field of `proposals` argument. - - Args: - features (dict[str, Tensor]): mapping from feature map names to tensor. - Same as in :meth:`ROIHeads.forward`. - proposals (list[Instances]): the per-image object proposals with - their matching ground truth. - Each has fields "proposal_boxes", and "objectness_logits", - "gt_classes", "gt_boxes". - - Returns: - In training, a dict of losses. - In inference, a list of `Instances`, the predicted instances. - """ - features = [features[f] for f in self.box_in_features] - box_features = self.box_pooler(features, [x.proposal_boxes for x in proposals]) - box_features = self.box_head(box_features) - predictions = self.box_predictor(box_features) - del box_features - - if self.training: - losses = self.box_predictor.losses(predictions, proposals) - # proposals is modified in-place below, so losses must be computed first. - if self.train_on_pred_boxes: - with torch.no_grad(): - pred_boxes = self.box_predictor.predict_boxes_for_gt_classes( - predictions, proposals - ) - for proposals_per_image, pred_boxes_per_image in zip(proposals, pred_boxes): - proposals_per_image.proposal_boxes = Boxes(pred_boxes_per_image) - return losses - else: - pred_instances, _ = self.box_predictor.inference(predictions, proposals) - return pred_instances - - def _forward_mask(self, features: Dict[str, torch.Tensor], instances: List[Instances]): - """ - Forward logic of the mask prediction branch. - - Args: - features (dict[str, Tensor]): mapping from feature map names to tensor. - Same as in :meth:`ROIHeads.forward`. - instances (list[Instances]): the per-image instances to train/predict masks. - In training, they can be the proposals. - In inference, they can be the boxes predicted by R-CNN box head. - - Returns: - In training, a dict of losses. - In inference, update `instances` with new fields "pred_masks" and return it. - """ - if not self.mask_on: - return {} if self.training else instances - - if self.training: - # head is only trained on positive proposals. - instances, _ = select_foreground_proposals(instances, self.num_classes) - - if self.mask_pooler is not None: - features = [features[f] for f in self.mask_in_features] - boxes = [x.proposal_boxes if self.training else x.pred_boxes for x in instances] - features = self.mask_pooler(features, boxes) - else: - features = {f: features[f] for f in self.mask_in_features} - return self.mask_head(features, instances) - - def _forward_keypoint(self, features: Dict[str, torch.Tensor], instances: List[Instances]): - """ - Forward logic of the keypoint prediction branch. - - Args: - features (dict[str, Tensor]): mapping from feature map names to tensor. - Same as in :meth:`ROIHeads.forward`. - instances (list[Instances]): the per-image instances to train/predict keypoints. - In training, they can be the proposals. - In inference, they can be the boxes predicted by R-CNN box head. - - Returns: - In training, a dict of losses. - In inference, update `instances` with new fields "pred_keypoints" and return it. - """ - if not self.keypoint_on: - return {} if self.training else instances - - if self.training: - # head is only trained on positive proposals with >=1 visible keypoints. - instances, _ = select_foreground_proposals(instances, self.num_classes) - instances = select_proposals_with_visible_keypoints(instances) - - if self.keypoint_pooler is not None: - features = [features[f] for f in self.keypoint_in_features] - boxes = [x.proposal_boxes if self.training else x.pred_boxes for x in instances] - features = self.keypoint_pooler(features, boxes) - else: - features = {f: features[f] for f in self.keypoint_in_features} - return self.keypoint_head(features, instances) diff --git a/spaces/carlosalonso/Detection-video/carpeta_deteccion/docs/notes/changelog.md b/spaces/carlosalonso/Detection-video/carpeta_deteccion/docs/notes/changelog.md deleted file mode 100644 index 000e9f8898dba53f54121a5325ba5165e45ddea2..0000000000000000000000000000000000000000 --- a/spaces/carlosalonso/Detection-video/carpeta_deteccion/docs/notes/changelog.md +++ /dev/null @@ -1,48 +0,0 @@ -# Change Log and Backward Compatibility - -### Releases -See release logs at -[https://github.com/facebookresearch/detectron2/releases](https://github.com/facebookresearch/detectron2/releases) -for new updates. - -### Backward Compatibility - -Due to the research nature of what the library does, there might be backward incompatible changes. -But we try to reduce users' disruption by the following ways: -* APIs listed in [API documentation](https://detectron2.readthedocs.io/modules/index.html), including - function/class names, their arguments, and documented class attributes, are considered *stable* unless - otherwise noted in the documentation. - They are less likely to be broken, but if needed, will trigger a deprecation warning for a reasonable period - before getting broken, and will be documented in release logs. -* Others functions/classses/attributes are considered internal, and are more likely to change. - However, we're aware that some of them may be already used by other projects, and in particular we may - use them for convenience among projects under `detectron2/projects`. - For such APIs, we may treat them as stable APIs and also apply the above strategies. - They may be promoted to stable when we're ready. -* Projects under "detectron2/projects" or imported with "detectron2.projects" are research projects - and are all considered experimental. -* Classes/functions that contain the word "default" or are explicitly documented to produce - "default behavior" may change their behaviors when new features are added. - -Despite of the possible breakage, if a third-party project would like to keep up with the latest updates -in detectron2, using it as a library will still be less disruptive than forking, because -the frequency and scope of API changes will be much smaller than code changes. - -To see such changes, search for "incompatible changes" in [release logs](https://github.com/facebookresearch/detectron2/releases). - -### Config Version Change Log - -Detectron2's config version has not been changed since open source. -There is no need for an open source user to worry about this. - -* v1: Rename `RPN_HEAD.NAME` to `RPN.HEAD_NAME`. -* v2: A batch of rename of many configurations before release. - -### Silent Regressions in Historical Versions: - -We list a few silent regressions, since they may silently produce incorrect results and will be hard to debug. - -* 04/01/2020 - 05/11/2020: Bad accuracy if `TRAIN_ON_PRED_BOXES` is set to True. -* 03/30/2020 - 04/01/2020: ResNets are not correctly built. -* 12/19/2019 - 12/26/2019: Using aspect ratio grouping causes a drop in accuracy. -* - 11/9/2019: Test time augmentation does not predict the last category. diff --git a/spaces/carlosalonso/Detection-video/carpeta_deteccion/projects/DensePose/densepose/engine/__init__.py b/spaces/carlosalonso/Detection-video/carpeta_deteccion/projects/DensePose/densepose/engine/__init__.py deleted file mode 100644 index 539b93a7beca07d229a6b6d387f885469242ad86..0000000000000000000000000000000000000000 --- a/spaces/carlosalonso/Detection-video/carpeta_deteccion/projects/DensePose/densepose/engine/__init__.py +++ /dev/null @@ -1,3 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. - -from .trainer import Trainer diff --git a/spaces/carlosalonso/Detection-video/carpeta_deteccion/projects/Rethinking-BatchNorm/configs/mask_rcnn_BNhead_batch_stats.py b/spaces/carlosalonso/Detection-video/carpeta_deteccion/projects/Rethinking-BatchNorm/configs/mask_rcnn_BNhead_batch_stats.py deleted file mode 100644 index 872e17c8a9aa000250a0a61613ddb3e3886f9991..0000000000000000000000000000000000000000 --- a/spaces/carlosalonso/Detection-video/carpeta_deteccion/projects/Rethinking-BatchNorm/configs/mask_rcnn_BNhead_batch_stats.py +++ /dev/null @@ -1,20 +0,0 @@ -from torch.nn import BatchNorm2d -from torch.nn import functional as F - - -class BatchNormBatchStat(BatchNorm2d): - """ - BN that uses batch stat in inference - """ - - def forward(self, input): - if self.training: - return super().forward(input) - return F.batch_norm(input, None, None, self.weight, self.bias, True, 1.0, self.eps) - - -# After training with the base config, it's sufficient to load its model with -# this config only for inference -- because the training-time behavior is identical. -from .mask_rcnn_BNhead import model, dataloader, lr_multiplier, optimizer, train - -model.roi_heads.box_head.conv_norm = model.roi_heads.mask_head.conv_norm = BatchNormBatchStat diff --git a/spaces/cdgranadillo/summaries_mT5_multilingual/app.py b/spaces/cdgranadillo/summaries_mT5_multilingual/app.py deleted file mode 100644 index 92b2afaf79a6b90c22005a3400ba926ecb90584e..0000000000000000000000000000000000000000 --- a/spaces/cdgranadillo/summaries_mT5_multilingual/app.py +++ /dev/null @@ -1,43 +0,0 @@ -import gradio as gr -import re -from transformers import AutoTokenizer, AutoModelForSeq2SeqLM - - -def generate_summary(text): - WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip())) - - model_name = "csebuetnlp/mT5_multilingual_XLSum" - #tokenizer = AutoTokenizer.from_pretrained(model_name) - tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) - model = AutoModelForSeq2SeqLM.from_pretrained(model_name) - - input_ids = tokenizer( - [WHITESPACE_HANDLER(text)], - return_tensors="pt", - padding="max_length", - truncation=True, - max_length=512 - )["input_ids"] - - output_ids = model.generate( - input_ids=input_ids, - max_length=84, - no_repeat_ngram_size=2, - num_beams=4 - )[0] - - summary = tokenizer.decode( - output_ids, - skip_special_tokens=True, - clean_up_tokenization_spaces=False - ) - - return summary - - -demo = gr.Interface(fn=generate_summary, - inputs=gr.Textbox(lines=10, placeholder="Insert the text here"), - outputs=gr.Textbox(lines=4) - ) - -demo.launch() \ No newline at end of file diff --git a/spaces/chansung/LLaMA-13B/strings.py b/spaces/chansung/LLaMA-13B/strings.py deleted file mode 100644 index 71ff189281bdb1c6c17150ea6e07510bca17eb07..0000000000000000000000000000000000000000 --- a/spaces/chansung/LLaMA-13B/strings.py +++ /dev/null @@ -1,16 +0,0 @@ -TITLE = "LLaMA 13B(Int8 Quantized) Model Playground" - -ABSTRACT = """ -This Space allows you to play with the one of the variant(13B) as part of the [LLaMA](https://ai.facebook.com/blog/large-language-model-llama-meta-ai/)(Large Language Model Meta AI) released by Meta AI. - -LLaMA is a general purpose language model, so it behaves differently comparing to [ChatGPT](https://openai.com/blog/chatgpt/). Even though the UI or this Space application is in Chat-like form, the generated output will be the completion of the given prompt. Because of this, your prompts should appropriately guide what to be generated. - -Thanks to tloen who provided the modified code base to achieve int8 Quantization ([repo](https://github.com/tloen/llama-int8)). -""" - -EXAMPLES = [ - "Who are 5 people you would like to meet?", - "Send an email requesting that people use language models responsibly.", - "Write a theory to explain why cat never existed", - "write a story about a grain of sand as it watches millions of years go by" -] \ No newline at end of file diff --git a/spaces/chendl/compositional_test/multimodal/YOLOX/yolox/evaluators/voc_eval.py b/spaces/chendl/compositional_test/multimodal/YOLOX/yolox/evaluators/voc_eval.py deleted file mode 100644 index d1a474861e0a760c1e180dc62803100f030458bd..0000000000000000000000000000000000000000 --- a/spaces/chendl/compositional_test/multimodal/YOLOX/yolox/evaluators/voc_eval.py +++ /dev/null @@ -1,183 +0,0 @@ -#!/usr/bin/env python3 -# Code are based on -# https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/datasets/voc_eval.py -# Copyright (c) Bharath Hariharan. -# Copyright (c) Megvii, Inc. and its affiliates. - -import os -import pickle -import xml.etree.ElementTree as ET - -import numpy as np - - -def parse_rec(filename): - """Parse a PASCAL VOC xml file""" - tree = ET.parse(filename) - objects = [] - for obj in tree.findall("object"): - obj_struct = {} - obj_struct["name"] = obj.find("name").text - obj_struct["pose"] = obj.find("pose").text - obj_struct["truncated"] = int(obj.find("truncated").text) - obj_struct["difficult"] = int(obj.find("difficult").text) - bbox = obj.find("bndbox") - obj_struct["bbox"] = [ - int(bbox.find("xmin").text), - int(bbox.find("ymin").text), - int(bbox.find("xmax").text), - int(bbox.find("ymax").text), - ] - objects.append(obj_struct) - - return objects - - -def voc_ap(rec, prec, use_07_metric=False): - """ - Compute VOC AP given precision and recall. - If use_07_metric is true, uses the - VOC 07 11 point method (default:False). - """ - if use_07_metric: - # 11 point metric - ap = 0.0 - for t in np.arange(0.0, 1.1, 0.1): - if np.sum(rec >= t) == 0: - p = 0 - else: - p = np.max(prec[rec >= t]) - ap = ap + p / 11.0 - else: - # correct AP calculation - # first append sentinel values at the end - mrec = np.concatenate(([0.0], rec, [1.0])) - mpre = np.concatenate(([0.0], prec, [0.0])) - - # compute the precision envelope - for i in range(mpre.size - 1, 0, -1): - mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) - - # to calculate area under PR curve, look for points - # where X axis (recall) changes value - i = np.where(mrec[1:] != mrec[:-1])[0] - - # and sum (\Delta recall) * prec - ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) - return ap - - -def voc_eval( - detpath, - annopath, - imagesetfile, - classname, - cachedir, - ovthresh=0.5, - use_07_metric=False, -): - # first load gt - if not os.path.isdir(cachedir): - os.mkdir(cachedir) - cachefile = os.path.join(cachedir, "annots.pkl") - # read list of images - with open(imagesetfile, "r") as f: - lines = f.readlines() - imagenames = [x.strip() for x in lines] - - if not os.path.isfile(cachefile): - # load annots - recs = {} - for i, imagename in enumerate(imagenames): - recs[imagename] = parse_rec(annopath.format(imagename)) - if i % 100 == 0: - print(f"Reading annotation for {i + 1}/{len(imagenames)}") - # save - print(f"Saving cached annotations to {cachefile}") - with open(cachefile, "wb") as f: - pickle.dump(recs, f) - else: - # load - with open(cachefile, "rb") as f: - recs = pickle.load(f) - - # extract gt objects for this class - class_recs = {} - npos = 0 - for imagename in imagenames: - R = [obj for obj in recs[imagename] if obj["name"] == classname] - bbox = np.array([x["bbox"] for x in R]) - difficult = np.array([x["difficult"] for x in R]).astype(bool) - det = [False] * len(R) - npos = npos + sum(~difficult) - class_recs[imagename] = {"bbox": bbox, "difficult": difficult, "det": det} - - # read dets - detfile = detpath.format(classname) - with open(detfile, "r") as f: - lines = f.readlines() - - if len(lines) == 0: - return 0, 0, 0 - - splitlines = [x.strip().split(" ") for x in lines] - image_ids = [x[0] for x in splitlines] - confidence = np.array([float(x[1]) for x in splitlines]) - BB = np.array([[float(z) for z in x[2:]] for x in splitlines]) - - # sort by confidence - sorted_ind = np.argsort(-confidence) - BB = BB[sorted_ind, :] - image_ids = [image_ids[x] for x in sorted_ind] - - # go down dets and mark TPs and FPs - nd = len(image_ids) - tp = np.zeros(nd) - fp = np.zeros(nd) - for d in range(nd): - R = class_recs[image_ids[d]] - bb = BB[d, :].astype(float) - ovmax = -np.inf - BBGT = R["bbox"].astype(float) - - if BBGT.size > 0: - # compute overlaps - # intersection - ixmin = np.maximum(BBGT[:, 0], bb[0]) - iymin = np.maximum(BBGT[:, 1], bb[1]) - ixmax = np.minimum(BBGT[:, 2], bb[2]) - iymax = np.minimum(BBGT[:, 3], bb[3]) - iw = np.maximum(ixmax - ixmin + 1.0, 0.0) - ih = np.maximum(iymax - iymin + 1.0, 0.0) - inters = iw * ih - - # union - uni = ( - (bb[2] - bb[0] + 1.0) * (bb[3] - bb[1] + 1.0) - + (BBGT[:, 2] - BBGT[:, 0] + 1.0) * (BBGT[:, 3] - BBGT[:, 1] + 1.0) - inters - ) - - overlaps = inters / uni - ovmax = np.max(overlaps) - jmax = np.argmax(overlaps) - - if ovmax > ovthresh: - if not R["difficult"][jmax]: - if not R["det"][jmax]: - tp[d] = 1.0 - R["det"][jmax] = 1 - else: - fp[d] = 1.0 - else: - fp[d] = 1.0 - - # compute precision recall - fp = np.cumsum(fp) - tp = np.cumsum(tp) - rec = tp / float(npos) - # avoid divide by zero in case the first detection matches a difficult - # ground truth - prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) - ap = voc_ap(rec, prec, use_07_metric) - - return rec, prec, ap diff --git a/spaces/chendl/compositional_test/transformers/docker/transformers-past-gpu/Dockerfile b/spaces/chendl/compositional_test/transformers/docker/transformers-past-gpu/Dockerfile deleted file mode 100644 index 8ecc83c339d9739dbe72e18b17830b3112950932..0000000000000000000000000000000000000000 --- a/spaces/chendl/compositional_test/transformers/docker/transformers-past-gpu/Dockerfile +++ /dev/null @@ -1,56 +0,0 @@ -ARG BASE_DOCKER_IMAGE -FROM $BASE_DOCKER_IMAGE -LABEL maintainer="Hugging Face" - -ARG DEBIAN_FRONTEND=noninteractive - -# Use login shell to read variables from `~/.profile` (to pass dynamic created variables between RUN commands) -SHELL ["sh", "-lc"] - -RUN apt update -RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg git-lfs libaio-dev -RUN git lfs install -RUN python3 -m pip install --no-cache-dir --upgrade pip - -ARG REF=main -RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF -RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] - -# When installing in editable mode, `transformers` is not recognized as a package. -# this line must be added in order for python to be aware of transformers. -RUN cd transformers && python3 setup.py develop - -ARG FRAMEWORK -ARG VERSION - -# Control `setuptools` version to avoid some issues -RUN [ "$VERSION" != "1.9" -a "$VERSION" != "1.10" ] && python3 -m pip install -U setuptools || python3 -m pip install -U "setuptools<=59.5" - -# Remove all frameworks -# (`accelerate` requires `torch`, and this causes import issues for TF-only testing) -RUN python3 -m pip uninstall -y torch torchvision torchaudio accelerate tensorflow jax flax - -# Get the libraries and their versions to install, and write installation command to `~/.profile`. -RUN python3 ./transformers/utils/past_ci_versions.py --framework $FRAMEWORK --version $VERSION - -# Install the target framework -RUN echo "INSTALL_CMD = $INSTALL_CMD" -RUN $INSTALL_CMD - -RUN [ "$FRAMEWORK" != "pytorch" ] && echo "`deepspeed-testing` installation is skipped" || python3 -m pip install --no-cache-dir ./transformers[deepspeed-testing] - -# Uninstall `torch-tensorrt` and `apex` shipped with the base image -RUN python3 -m pip uninstall -y torch-tensorrt apex - -# Pre-build **nightly** release of DeepSpeed, so it would be ready for testing (otherwise, the 1st deepspeed test will timeout) -RUN python3 -m pip uninstall -y deepspeed -# This has to be run inside the GPU VMs running the tests. (So far, it fails here due to GPU checks during compilation.) -# Issue: https://github.com/microsoft/DeepSpeed/issues/2010 -# RUN git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build && \ -# DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_AIO=1 DS_BUILD_UTILS=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1 - -RUN python3 -m pip install -U "itsdangerous<2.1.0" - -# When installing in editable mode, `transformers` is not recognized as a package. -# this line must be added in order for python to be aware of transformers. -RUN cd transformers && python3 setup.py develop diff --git a/spaces/chendl/compositional_test/transformers/examples/research_projects/seq2seq-distillation/_test_seq2seq_examples.py b/spaces/chendl/compositional_test/transformers/examples/research_projects/seq2seq-distillation/_test_seq2seq_examples.py deleted file mode 100644 index 454951ed3888a05281334ab07f51f36d13b6bd57..0000000000000000000000000000000000000000 --- a/spaces/chendl/compositional_test/transformers/examples/research_projects/seq2seq-distillation/_test_seq2seq_examples.py +++ /dev/null @@ -1,444 +0,0 @@ -import argparse -import logging -import os -import sys -import tempfile -from pathlib import Path - -import lightning_base -import pytest -import pytorch_lightning as pl -import torch -from convert_pl_checkpoint_to_hf import convert_pl_to_hf -from distillation import distill_main -from finetune import SummarizationModule, main -from huggingface_hub import list_models -from parameterized import parameterized -from run_eval import generate_summaries_or_translations -from torch import nn - -from transformers import AutoConfig, AutoModelForSeq2SeqLM -from transformers.testing_utils import CaptureStderr, CaptureStdout, TestCasePlus, require_torch_gpu, slow -from utils import label_smoothed_nll_loss, lmap, load_json - - -logging.basicConfig(level=logging.DEBUG) - -logger = logging.getLogger() -CUDA_AVAILABLE = torch.cuda.is_available() -CHEAP_ARGS = { - "max_tokens_per_batch": None, - "supervise_forward": True, - "normalize_hidden": True, - "label_smoothing": 0.2, - "eval_max_gen_length": None, - "eval_beams": 1, - "val_metric": "loss", - "save_top_k": 1, - "adafactor": True, - "early_stopping_patience": 2, - "logger_name": "default", - "length_penalty": 0.5, - "cache_dir": "", - "task": "summarization", - "num_workers": 2, - "alpha_hid": 0, - "freeze_embeds": True, - "enc_only": False, - "tgt_suffix": "", - "resume_from_checkpoint": None, - "sortish_sampler": True, - "student_decoder_layers": 1, - "val_check_interval": 1.0, - "output_dir": "", - "fp16": False, # TODO(SS): set this to CUDA_AVAILABLE if ci installs apex or start using native amp - "no_teacher": False, - "fp16_opt_level": "O1", - "gpus": 1 if CUDA_AVAILABLE else 0, - "n_tpu_cores": 0, - "max_grad_norm": 1.0, - "do_train": True, - "do_predict": True, - "accumulate_grad_batches": 1, - "server_ip": "", - "server_port": "", - "seed": 42, - "model_name_or_path": "sshleifer/bart-tiny-random", - "config_name": "", - "tokenizer_name": "facebook/bart-large", - "do_lower_case": False, - "learning_rate": 0.3, - "lr_scheduler": "linear", - "weight_decay": 0.0, - "adam_epsilon": 1e-08, - "warmup_steps": 0, - "max_epochs": 1, - "train_batch_size": 2, - "eval_batch_size": 2, - "max_source_length": 12, - "max_target_length": 12, - "val_max_target_length": 12, - "test_max_target_length": 12, - "fast_dev_run": False, - "no_cache": False, - "n_train": -1, - "n_val": -1, - "n_test": -1, - "student_encoder_layers": 1, - "freeze_encoder": False, - "auto_scale_batch_size": False, - "overwrite_output_dir": False, - "student": None, -} - - -def _dump_articles(path: Path, articles: list): - content = "\n".join(articles) - Path(path).open("w").writelines(content) - - -ARTICLES = [" Sam ate lunch today.", "Sams lunch ingredients."] -SUMMARIES = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"] -T5_TINY = "patrickvonplaten/t5-tiny-random" -T5_TINIER = "sshleifer/t5-tinier-random" -BART_TINY = "sshleifer/bart-tiny-random" -MBART_TINY = "sshleifer/tiny-mbart" -MARIAN_TINY = "sshleifer/tiny-marian-en-de" -FSMT_TINY = "stas/tiny-wmt19-en-de" - - -stream_handler = logging.StreamHandler(sys.stdout) -logger.addHandler(stream_handler) -logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks - - -def make_test_data_dir(tmp_dir): - for split in ["train", "val", "test"]: - _dump_articles(os.path.join(tmp_dir, f"{split}.source"), ARTICLES) - _dump_articles(os.path.join(tmp_dir, f"{split}.target"), SUMMARIES) - return tmp_dir - - -class TestSummarizationDistiller(TestCasePlus): - @classmethod - def setUpClass(cls): - logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks - return cls - - @slow - @require_torch_gpu - def test_hub_configs(self): - """I put require_torch_gpu cause I only want this to run with self-scheduled.""" - - model_list = list_models() - org = "sshleifer" - model_ids = [x.modelId for x in model_list if x.modelId.startswith(org)] - allowed_to_be_broken = ["sshleifer/blenderbot-3B", "sshleifer/blenderbot-90M"] - failures = [] - for m in model_ids: - if m in allowed_to_be_broken: - continue - try: - AutoConfig.from_pretrained(m) - except Exception: - failures.append(m) - assert not failures, f"The following models could not be loaded through AutoConfig: {failures}" - - def test_distill_no_teacher(self): - updates = {"student_encoder_layers": 2, "student_decoder_layers": 1, "no_teacher": True} - self._test_distiller_cli(updates) - - def test_distill_checkpointing_with_teacher(self): - updates = { - "student_encoder_layers": 2, - "student_decoder_layers": 1, - "max_epochs": 4, - "val_check_interval": 0.25, - "alpha_hid": 2.0, - "model_name_or_path": "IGNORE_THIS_IT_DOESNT_GET_USED", - } - model = self._test_distiller_cli(updates, check_contents=False) - - ckpts = list(Path(model.output_dir).glob("*.ckpt")) - self.assertEqual(1, len(ckpts)) - transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin")) - self.assertEqual(len(transformer_ckpts), 2) - examples = lmap(str.strip, Path(model.hparams.data_dir).joinpath("test.source").open().readlines()) - out_path = tempfile.mktemp() # XXX: not being cleaned up - generate_summaries_or_translations(examples, out_path, str(model.output_dir / "best_tfmr")) - self.assertTrue(Path(out_path).exists()) - - out_path_new = self.get_auto_remove_tmp_dir() - convert_pl_to_hf(ckpts[0], transformer_ckpts[0].parent, out_path_new) - assert os.path.exists(os.path.join(out_path_new, "pytorch_model.bin")) - - def test_loss_fn(self): - model = AutoModelForSeq2SeqLM.from_pretrained(BART_TINY) - input_ids, mask = model.dummy_inputs["input_ids"], model.dummy_inputs["attention_mask"] - target_ids = torch.tensor([[0, 4, 8, 2], [0, 8, 2, 1]], dtype=torch.long, device=model.device) - decoder_input_ids = target_ids[:, :-1].contiguous() # Why this line? - lm_labels = target_ids[:, 1:].clone() # why clone? - model_computed_loss = model( - input_ids, attention_mask=mask, decoder_input_ids=decoder_input_ids, labels=lm_labels, use_cache=False - ).loss - - logits = model(input_ids, attention_mask=mask, decoder_input_ids=decoder_input_ids, use_cache=False).logits - - lprobs = nn.functional.log_softmax(logits, dim=-1) - smoothed_loss, nll_loss = label_smoothed_nll_loss( - lprobs, lm_labels, 0.1, ignore_index=model.config.pad_token_id - ) - with self.assertRaises(AssertionError): - # TODO: understand why this breaks - self.assertEqual(nll_loss, model_computed_loss) - - def test_distill_mbart(self): - updates = { - "student_encoder_layers": 2, - "student_decoder_layers": 1, - "num_train_epochs": 4, - "val_check_interval": 0.25, - "alpha_hid": 2.0, - "task": "translation", - "model_name_or_path": "IGNORE_THIS_IT_DOESNT_GET_USED", - "tokenizer_name": MBART_TINY, - "teacher": MBART_TINY, - "src_lang": "en_XX", - "tgt_lang": "ro_RO", - } - model = self._test_distiller_cli(updates, check_contents=False) - assert model.model.config.model_type == "mbart" - - ckpts = list(Path(model.output_dir).glob("*.ckpt")) - self.assertEqual(1, len(ckpts)) - transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin")) - all_files = list(Path(model.output_dir).glob("best_tfmr/*")) - assert len(all_files) > 2 - self.assertEqual(len(transformer_ckpts), 2) - - def test_distill_t5(self): - updates = { - "student_encoder_layers": 1, - "student_decoder_layers": 1, - "alpha_hid": 2.0, - "teacher": T5_TINY, - "model_name_or_path": T5_TINY, - "tokenizer_name": T5_TINY, - } - self._test_distiller_cli(updates) - - def test_distill_different_base_models(self): - updates = { - "teacher": T5_TINY, - "student": T5_TINIER, - "model_name_or_path": T5_TINIER, - "tokenizer_name": T5_TINIER, - } - self._test_distiller_cli(updates) - - def _test_distiller_cli(self, updates, check_contents=True): - default_updates = { - "label_smoothing": 0.0, - "early_stopping_patience": -1, - "train_batch_size": 1, - "eval_batch_size": 2, - "max_epochs": 2, - "alpha_mlm": 0.2, - "alpha_ce": 0.8, - "do_predict": True, - "model_name_or_path": "sshleifer/tinier_bart", - "teacher": CHEAP_ARGS["model_name_or_path"], - "val_check_interval": 0.5, - } - default_updates.update(updates) - args_d: dict = CHEAP_ARGS.copy() - tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) - output_dir = self.get_auto_remove_tmp_dir() - - args_d.update(data_dir=tmp_dir, output_dir=output_dir, **default_updates) - model = distill_main(argparse.Namespace(**args_d)) - if not check_contents: - return model - contents = os.listdir(output_dir) - contents = {os.path.basename(p) for p in contents} - ckpt_files = [p for p in contents if p.endswith("ckpt")] - assert len(ckpt_files) > 0 - - self.assertIn("test_generations.txt", contents) - self.assertIn("test_results.txt", contents) - - metrics = load_json(model.metrics_save_path) - last_step_stats = metrics["val"][-1] - self.assertGreaterEqual(last_step_stats["val_avg_gen_time"], 0.01) - self.assertGreaterEqual(1.0, last_step_stats["val_avg_gen_time"]) - self.assertIsInstance(last_step_stats[f"val_avg_{model.val_metric}"], float) - desired_n_evals = int(args_d["max_epochs"] * (1 / args_d["val_check_interval"]) + 1) - self.assertEqual(len(metrics["val"]), desired_n_evals) - self.assertEqual(len(metrics["test"]), 1) - return model - - -class TestTheRest(TestCasePlus): - @parameterized.expand( - [T5_TINY, BART_TINY, MBART_TINY, MARIAN_TINY, FSMT_TINY], - ) - def test_finetune(self, model): - args_d: dict = CHEAP_ARGS.copy() - task = "translation" if model in [MBART_TINY, MARIAN_TINY, FSMT_TINY] else "summarization" - args_d["label_smoothing"] = 0.1 if task == "translation" else 0 - - tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) - output_dir = self.get_auto_remove_tmp_dir() - args_d.update( - data_dir=tmp_dir, - model_name_or_path=model, - tokenizer_name=None, - train_batch_size=2, - eval_batch_size=2, - output_dir=output_dir, - do_predict=True, - task=task, - src_lang="en_XX", - tgt_lang="ro_RO", - freeze_encoder=True, - freeze_embeds=True, - ) - assert "n_train" in args_d - args = argparse.Namespace(**args_d) - module = main(args) - - input_embeds = module.model.get_input_embeddings() - assert not input_embeds.weight.requires_grad - if model == T5_TINY: - lm_head = module.model.lm_head - assert not lm_head.weight.requires_grad - assert (lm_head.weight == input_embeds.weight).all().item() - elif model == FSMT_TINY: - fsmt = module.model.model - embed_pos = fsmt.decoder.embed_positions - assert not embed_pos.weight.requires_grad - assert not fsmt.decoder.embed_tokens.weight.requires_grad - # check that embeds are not the same - assert fsmt.decoder.embed_tokens != fsmt.encoder.embed_tokens - else: - bart = module.model.model - embed_pos = bart.decoder.embed_positions - assert not embed_pos.weight.requires_grad - assert not bart.shared.weight.requires_grad - # check that embeds are the same - assert bart.decoder.embed_tokens == bart.encoder.embed_tokens - assert bart.decoder.embed_tokens == bart.shared - - example_batch = load_json(module.output_dir / "text_batch.json") - assert isinstance(example_batch, dict) - assert len(example_batch) >= 4 - - def test_finetune_extra_model_args(self): - args_d: dict = CHEAP_ARGS.copy() - - task = "summarization" - tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) - - args_d.update( - data_dir=tmp_dir, - tokenizer_name=None, - train_batch_size=2, - eval_batch_size=2, - do_predict=False, - task=task, - src_lang="en_XX", - tgt_lang="ro_RO", - freeze_encoder=True, - freeze_embeds=True, - ) - - # test models whose config includes the extra_model_args - model = BART_TINY - output_dir = self.get_auto_remove_tmp_dir() - args_d1 = args_d.copy() - args_d1.update( - model_name_or_path=model, - output_dir=output_dir, - ) - extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") - for p in extra_model_params: - args_d1[p] = 0.5 - args = argparse.Namespace(**args_d1) - model = main(args) - for p in extra_model_params: - assert getattr(model.config, p) == 0.5, f"failed to override the model config for param {p}" - - # test models whose config doesn't include the extra_model_args - model = T5_TINY - output_dir = self.get_auto_remove_tmp_dir() - args_d2 = args_d.copy() - args_d2.update( - model_name_or_path=model, - output_dir=output_dir, - ) - unsupported_param = "encoder_layerdrop" - args_d2[unsupported_param] = 0.5 - args = argparse.Namespace(**args_d2) - with pytest.raises(Exception) as excinfo: - model = main(args) - assert str(excinfo.value) == f"model config doesn't have a `{unsupported_param}` attribute" - - def test_finetune_lr_schedulers(self): - args_d: dict = CHEAP_ARGS.copy() - - task = "summarization" - tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) - - model = BART_TINY - output_dir = self.get_auto_remove_tmp_dir() - - args_d.update( - data_dir=tmp_dir, - model_name_or_path=model, - output_dir=output_dir, - tokenizer_name=None, - train_batch_size=2, - eval_batch_size=2, - do_predict=False, - task=task, - src_lang="en_XX", - tgt_lang="ro_RO", - freeze_encoder=True, - freeze_embeds=True, - ) - - # emulate finetune.py - parser = argparse.ArgumentParser() - parser = pl.Trainer.add_argparse_args(parser) - parser = SummarizationModule.add_model_specific_args(parser, os.getcwd()) - args = {"--help": True} - - # --help test - with pytest.raises(SystemExit) as excinfo: - with CaptureStdout() as cs: - args = parser.parse_args(args) - assert False, "--help is expected to sys.exit" - assert excinfo.type == SystemExit - expected = lightning_base.arg_to_scheduler_metavar - assert expected in cs.out, "--help is expected to list the supported schedulers" - - # --lr_scheduler=non_existing_scheduler test - unsupported_param = "non_existing_scheduler" - args = {f"--lr_scheduler={unsupported_param}"} - with pytest.raises(SystemExit) as excinfo: - with CaptureStderr() as cs: - args = parser.parse_args(args) - assert False, "invalid argument is expected to sys.exit" - assert excinfo.type == SystemExit - expected = f"invalid choice: '{unsupported_param}'" - assert expected in cs.err, f"should have bailed on invalid choice of scheduler {unsupported_param}" - - # --lr_scheduler=existing_scheduler test - supported_param = "cosine" - args_d1 = args_d.copy() - args_d1["lr_scheduler"] = supported_param - args = argparse.Namespace(**args_d1) - model = main(args) - assert ( - getattr(model.hparams, "lr_scheduler") == supported_param - ), f"lr_scheduler={supported_param} shouldn't fail" diff --git a/spaces/chendl/compositional_test/transformers/examples/tensorflow/text-classification/run_glue.py b/spaces/chendl/compositional_test/transformers/examples/tensorflow/text-classification/run_glue.py deleted file mode 100644 index 8ad94e5727beef519797af139604f3e9c09a616b..0000000000000000000000000000000000000000 --- a/spaces/chendl/compositional_test/transformers/examples/tensorflow/text-classification/run_glue.py +++ /dev/null @@ -1,585 +0,0 @@ -#!/usr/bin/env python -# coding=utf-8 -# Copyright 2020 The HuggingFace Inc. team. All rights reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" Finetuning the library models for sequence classification on GLUE.""" -# You can also adapt this script on your own text classification task. Pointers for this are left as comments. - -import json -import logging -import os -import sys -from dataclasses import dataclass, field -from typing import Optional - -import evaluate -import numpy as np -import tensorflow as tf -from datasets import load_dataset - -import transformers -from transformers import ( - AutoConfig, - AutoTokenizer, - DataCollatorWithPadding, - DefaultDataCollator, - HfArgumentParser, - PretrainedConfig, - PushToHubCallback, - TFAutoModelForSequenceClassification, - TFTrainingArguments, - create_optimizer, - set_seed, -) -from transformers.trainer_utils import get_last_checkpoint, is_main_process -from transformers.utils import check_min_version, send_example_telemetry - - -# Will error if the minimal version of Transformers is not installed. Remove at your own risks. -check_min_version("4.28.0") - -task_to_keys = { - "cola": ("sentence", None), - "mnli": ("premise", "hypothesis"), - "mrpc": ("sentence1", "sentence2"), - "qnli": ("question", "sentence"), - "qqp": ("question1", "question2"), - "rte": ("sentence1", "sentence2"), - "sst2": ("sentence", None), - "stsb": ("sentence1", "sentence2"), - "wnli": ("sentence1", "sentence2"), -} - -logger = logging.getLogger(__name__) - - -# region Command-line arguments -@dataclass -class DataTrainingArguments: - """ - Arguments pertaining to what data we are going to input our model for training and eval. - - Using `HfArgumentParser` we can turn this class - into argparse arguments to be able to specify them on - the command line. - """ - - task_name: str = field( - metadata={"help": "The name of the task to train on: " + ", ".join(task_to_keys.keys())}, - ) - predict_file: str = field( - metadata={"help": "A file containing user-supplied examples to make predictions for"}, - default=None, - ) - max_seq_length: int = field( - default=128, - metadata={ - "help": ( - "The maximum total input sequence length after tokenization. Sequences longer " - "than this will be truncated, sequences shorter will be padded." - ) - }, - ) - overwrite_cache: bool = field( - default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} - ) - pad_to_max_length: bool = field( - default=False, - metadata={ - "help": ( - "Whether to pad all samples to `max_seq_length`. " - "If False, will pad the samples dynamically when batching to the maximum length in the batch." - ) - }, - ) - max_train_samples: Optional[int] = field( - default=None, - metadata={ - "help": ( - "For debugging purposes or quicker training, truncate the number of training examples to this " - "value if set." - ) - }, - ) - max_eval_samples: Optional[int] = field( - default=None, - metadata={ - "help": ( - "For debugging purposes or quicker training, truncate the number of evaluation examples to this " - "value if set." - ) - }, - ) - max_predict_samples: Optional[int] = field( - default=None, - metadata={ - "help": ( - "For debugging purposes or quicker training, truncate the number of prediction examples to this " - "value if set." - ) - }, - ) - - def __post_init__(self): - self.task_name = self.task_name.lower() - if self.task_name not in task_to_keys.keys(): - raise ValueError("Unknown task, you should pick one in " + ",".join(task_to_keys.keys())) - - -@dataclass -class ModelArguments: - """ - Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. - """ - - model_name_or_path: str = field( - metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} - ) - config_name: Optional[str] = field( - default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} - ) - tokenizer_name: Optional[str] = field( - default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} - ) - cache_dir: Optional[str] = field( - default=None, - metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, - ) - use_fast_tokenizer: bool = field( - default=True, - metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, - ) - model_revision: str = field( - default="main", - metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, - ) - use_auth_token: bool = field( - default=False, - metadata={ - "help": ( - "Will use the token generated when running `huggingface-cli login` (necessary to use this script " - "with private models)." - ) - }, - ) - - -# endregion - - -def main(): - # region Argument parsing - # See all possible arguments in src/transformers/training_args.py - # or by passing the --help flag to this script. - # We now keep distinct sets of args, for a cleaner separation of concerns. - - parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) - if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): - # If we pass only one argument to the script and it's the path to a json file, - # let's parse it to get our arguments. - model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) - else: - model_args, data_args, training_args = parser.parse_args_into_dataclasses() - - # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The - # information sent is the one passed as arguments along with your Python/PyTorch versions. - send_example_telemetry("run_glue", model_args, data_args, framework="tensorflow") - - if not (training_args.do_train or training_args.do_eval or training_args.do_predict): - exit("Must specify at least one of --do_train, --do_eval or --do_predict!") - # endregion - - # region Checkpoints - checkpoint = None - if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: - checkpoint = get_last_checkpoint(training_args.output_dir) - if checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: - raise ValueError( - f"Output directory ({training_args.output_dir}) already exists and is not empty. " - "Use --overwrite_output_dir to overcome." - ) - elif checkpoint is not None and training_args.resume_from_checkpoint is None: - logger.info( - f"Checkpoint detected, resuming training at {checkpoint}. To avoid this behavior, change " - "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." - ) - # endregion - - # region Logging - logging.basicConfig( - format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", - datefmt="%m/%d/%Y %H:%M:%S", - handlers=[logging.StreamHandler(sys.stdout)], - ) - logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) - - # Set the verbosity to info of the Transformers logger (on main process only): - if is_main_process(training_args.local_rank): - transformers.utils.logging.set_verbosity_info() - transformers.utils.logging.enable_default_handler() - transformers.utils.logging.enable_explicit_format() - logger.info(f"Training/evaluation parameters {training_args}") - # endregion - - # region Dataset and labels - # Set seed before initializing model. - set_seed(training_args.seed) - - # Downloading and loading a dataset from the hub. In distributed training, the load_dataset function guarantee - # that only one local process can concurrently download the dataset. - datasets = load_dataset( - "glue", - data_args.task_name, - cache_dir=model_args.cache_dir, - use_auth_token=True if model_args.use_auth_token else None, - ) - # See more about loading any type of standard or custom dataset at - # https://huggingface.co/docs/datasets/loading_datasets.html. - - is_regression = data_args.task_name == "stsb" - if not is_regression: - label_list = datasets["train"].features["label"].names - num_labels = len(label_list) - else: - num_labels = 1 - - if data_args.predict_file is not None: - logger.info("Preparing user-supplied file for predictions...") - - data_files = {"data": data_args.predict_file} - - for key in data_files.keys(): - logger.info(f"Loading a local file for {key}: {data_files[key]}") - - if data_args.predict_file.endswith(".csv"): - # Loading a dataset from local csv files - user_dataset = load_dataset("csv", data_files=data_files, cache_dir=model_args.cache_dir) - else: - # Loading a dataset from local json files - user_dataset = load_dataset("json", data_files=data_files, cache_dir=model_args.cache_dir) - needed_keys = task_to_keys[data_args.task_name] - for key in needed_keys: - assert key in user_dataset["data"].features, f"Your supplied predict_file is missing the {key} key!" - datasets["user_data"] = user_dataset["data"] - # endregion - - # region Load model config and tokenizer - # - # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently - # download model & vocab. - config = AutoConfig.from_pretrained( - model_args.config_name if model_args.config_name else model_args.model_name_or_path, - num_labels=num_labels, - finetuning_task=data_args.task_name, - cache_dir=model_args.cache_dir, - revision=model_args.model_revision, - use_auth_token=True if model_args.use_auth_token else None, - ) - tokenizer = AutoTokenizer.from_pretrained( - model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, - cache_dir=model_args.cache_dir, - use_fast=model_args.use_fast_tokenizer, - revision=model_args.model_revision, - use_auth_token=True if model_args.use_auth_token else None, - ) - # endregion - - # region Dataset preprocessing - sentence1_key, sentence2_key = task_to_keys[data_args.task_name] - - # Padding strategy - if data_args.pad_to_max_length: - padding = "max_length" - else: - # We will pad later, dynamically at batch creation, to the max sequence length in each batch - padding = False - - # Some models have set the order of the labels to use, so let's make sure we do use it. - label_to_id = None - if config.label2id != PretrainedConfig(num_labels=num_labels).label2id and not is_regression: - # Some have all caps in their config, some don't. - label_name_to_id = {k.lower(): v for k, v in config.label2id.items()} - if sorted(label_name_to_id.keys()) == sorted(label_list): - label_to_id = {i: int(label_name_to_id[label_list[i]]) for i in range(num_labels)} - else: - logger.warning( - "Your model seems to have been trained with labels, but they don't match the dataset: ", - f"model labels: {sorted(label_name_to_id.keys())}, dataset labels: {sorted(label_list)}." - "\nIgnoring the model labels as a result.", - ) - label_to_id = {label: i for i, label in enumerate(label_list)} - if label_to_id is not None: - config.label2id = label_to_id - config.id2label = {id: label for label, id in config.label2id.items()} - elif data_args.task_name is not None and not is_regression: - config.label2id = {l: i for i, l in enumerate(label_list)} - config.id2label = {id: label for label, id in config.label2id.items()} - - if data_args.max_seq_length > tokenizer.model_max_length: - logger.warning( - f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" - f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." - ) - max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) - - def preprocess_function(examples): - # Tokenize the texts - args = ( - (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key]) - ) - result = tokenizer(*args, padding=padding, max_length=max_seq_length, truncation=True) - - return result - - datasets = datasets.map(preprocess_function, batched=True, load_from_cache_file=not data_args.overwrite_cache) - - if data_args.pad_to_max_length: - data_collator = DefaultDataCollator(return_tensors="np") - else: - data_collator = DataCollatorWithPadding(tokenizer, return_tensors="np") - # endregion - - # region Metric function - metric = evaluate.load("glue", data_args.task_name) - - def compute_metrics(preds, label_ids): - preds = preds["logits"] - preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1) - result = metric.compute(predictions=preds, references=label_ids) - if len(result) > 1: - result["combined_score"] = np.mean(list(result.values())).item() - return result - - # endregion - - with training_args.strategy.scope(): - # region Load pretrained model - if checkpoint is None: - model_path = model_args.model_name_or_path - else: - model_path = checkpoint - model = TFAutoModelForSequenceClassification.from_pretrained( - model_path, - config=config, - cache_dir=model_args.cache_dir, - revision=model_args.model_revision, - use_auth_token=True if model_args.use_auth_token else None, - ) - # endregion - - # region Convert data to a tf.data.Dataset - dataset_options = tf.data.Options() - dataset_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF - num_replicas = training_args.strategy.num_replicas_in_sync - - tf_data = {} - max_samples = { - "train": data_args.max_train_samples, - "validation": data_args.max_eval_samples, - "validation_matched": data_args.max_eval_samples, - "validation_mismatched": data_args.max_eval_samples, - "test": data_args.max_predict_samples, - "test_matched": data_args.max_predict_samples, - "test_mismatched": data_args.max_predict_samples, - "user_data": None, - } - for key in datasets.keys(): - if key == "train" or key.startswith("validation"): - assert "label" in datasets[key].features, f"Missing labels from {key} data!" - if key == "train": - shuffle = True - batch_size = training_args.per_device_train_batch_size * num_replicas - else: - shuffle = False - batch_size = training_args.per_device_eval_batch_size * num_replicas - samples_limit = max_samples[key] - dataset = datasets[key] - if samples_limit is not None: - dataset = dataset.select(range(samples_limit)) - - # model.prepare_tf_dataset() wraps a Hugging Face dataset in a tf.data.Dataset which is ready to use in - # training. This is the recommended way to use a Hugging Face dataset when training with Keras. You can also - # use the lower-level dataset.to_tf_dataset() method, but you will have to specify things like column names - # yourself if you use this method, whereas they are automatically inferred from the model input names when - # using model.prepare_tf_dataset() - # For more info see the docs: - # https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.TFPreTrainedModel.prepare_tf_dataset - # https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.to_tf_dataset - data = model.prepare_tf_dataset( - dataset, - shuffle=shuffle, - batch_size=batch_size, - collate_fn=data_collator, - tokenizer=tokenizer, - ) - data = data.with_options(dataset_options) - tf_data[key] = data - # endregion - - # region Optimizer, loss and compilation - if training_args.do_train: - num_train_steps = len(tf_data["train"]) * training_args.num_train_epochs - if training_args.warmup_steps > 0: - num_warmup_steps = training_args.warmup_steps - elif training_args.warmup_ratio > 0: - num_warmup_steps = int(num_train_steps * training_args.warmup_ratio) - else: - num_warmup_steps = 0 - - optimizer, schedule = create_optimizer( - init_lr=training_args.learning_rate, - num_train_steps=num_train_steps, - num_warmup_steps=num_warmup_steps, - adam_beta1=training_args.adam_beta1, - adam_beta2=training_args.adam_beta2, - adam_epsilon=training_args.adam_epsilon, - weight_decay_rate=training_args.weight_decay, - adam_global_clipnorm=training_args.max_grad_norm, - ) - else: - optimizer = "adam" # Just write anything because we won't be using it - if is_regression: - metrics = [] - else: - metrics = ["accuracy"] - model.compile(optimizer=optimizer, metrics=metrics, jit_compile=training_args.xla) - # endregion - - # region Preparing push_to_hub and model card - push_to_hub_model_id = training_args.push_to_hub_model_id - model_name = model_args.model_name_or_path.split("/")[-1] - if not push_to_hub_model_id: - push_to_hub_model_id = f"{model_name}-finetuned-glue" - - model_card_kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"} - model_card_kwargs["task_name"] = data_args.task_name - - if training_args.push_to_hub: - callbacks = [ - PushToHubCallback( - output_dir=training_args.output_dir, - hub_model_id=push_to_hub_model_id, - hub_token=training_args.push_to_hub_token, - tokenizer=tokenizer, - **model_card_kwargs, - ) - ] - else: - callbacks = [] - # endregion - - # region Training and validation - if training_args.do_train: - if training_args.do_eval and not data_args.task_name == "mnli": - # Do both evaluation and training in the Keras fit loop, unless the task is MNLI - # because MNLI has two validation sets - validation_data = tf_data["validation"] - else: - validation_data = None - model.fit( - tf_data["train"], - validation_data=validation_data, - epochs=int(training_args.num_train_epochs), - callbacks=callbacks, - ) - # endregion - - # region Evaluation - if training_args.do_eval: - # We normally do validation as part of the Keras fit loop, but we run it independently - # if there was no fit() step (because we didn't train the model) or if the task is MNLI, - # because MNLI has a separate validation-mismatched validation set - - # In this example, we compute advanced metrics only at the end of training, and only compute - # loss and accuracy on the validation set each epoch, but - # if you'd like to compute metrics every epoch that are too complex to be written as - # standard Keras metrics, you can use our KerasMetricCallback. See - # https://huggingface.co/docs/transformers/main/en/main_classes/keras_callbacks - logger.info("*** Evaluate ***") - - # Loop to handle MNLI double evaluation (matched, mis-matched) - if data_args.task_name == "mnli": - tasks = ["mnli", "mnli-mm"] - tf_datasets = [tf_data["validation_matched"], tf_data["validation_mismatched"]] - raw_datasets = [datasets["validation_matched"], datasets["validation_mismatched"]] - else: - tasks = [data_args.task_name] - tf_datasets = [tf_data["validation"]] - raw_datasets = [datasets["validation"]] - - for raw_dataset, tf_dataset, task in zip(raw_datasets, tf_datasets, tasks): - eval_predictions = model.predict(tf_dataset) - eval_metrics = compute_metrics(eval_predictions, raw_dataset["label"]) - print(f"Evaluation metrics ({task}):") - print(eval_metrics) - if training_args.output_dir is not None: - output_eval_file = os.path.join(training_args.output_dir, "all_results.json") - with open(output_eval_file, "w") as writer: - writer.write(json.dumps(eval_metrics)) - - # endregion - - # region Prediction - if training_args.do_predict or data_args.predict_file: - logger.info("*** Predict ***") - - # Loop to handle MNLI double evaluation (matched, mis-matched) - tasks = [] - tf_datasets = [] - raw_datasets = [] - if training_args.do_predict: - if data_args.task_name == "mnli": - tasks.extend(["mnli", "mnli-mm"]) - tf_datasets.extend([tf_data["test_matched"], tf_data["test_mismatched"]]) - raw_datasets.extend([datasets["test_matched"], datasets["test_mismatched"]]) - else: - tasks.append(data_args.task_name) - tf_datasets.append(tf_data["test"]) - raw_datasets.append(datasets["test"]) - if data_args.predict_file: - tasks.append("user_data") - tf_datasets.append(tf_data["user_data"]) - raw_datasets.append(datasets["user_data"]) - - for raw_dataset, tf_dataset, task in zip(raw_datasets, tf_datasets, tasks): - test_predictions = model.predict(tf_dataset) - if "label" in raw_dataset: - test_metrics = compute_metrics(test_predictions, raw_dataset["label"]) - print(f"Test metrics ({task}):") - print(test_metrics) - - if is_regression: - predictions_to_write = np.squeeze(test_predictions["logits"]) - else: - predictions_to_write = np.argmax(test_predictions["logits"], axis=1) - - output_predict_file = os.path.join(training_args.output_dir, f"predict_results_{task}.txt") - with open(output_predict_file, "w") as writer: - logger.info(f"***** Writing prediction results for {task} *****") - writer.write("index\tprediction\n") - for index, item in enumerate(predictions_to_write): - if is_regression: - writer.write(f"{index}\t{item:3.3f}\n") - else: - item = model.config.id2label[item] - writer.write(f"{index}\t{item}\n") - # endregion - - if training_args.output_dir is not None and not training_args.push_to_hub: - # If we're not pushing to hub, at least save a local copy when we're done - model.save_pretrained(training_args.output_dir) - - -if __name__ == "__main__": - main() diff --git a/spaces/choimirai/whisper-large-v3/README.md b/spaces/choimirai/whisper-large-v3/README.md deleted file mode 100644 index 72d3a93b394ba1f0089619434b813e7193611f4e..0000000000000000000000000000000000000000 --- a/spaces/choimirai/whisper-large-v3/README.md +++ /dev/null @@ -1,14 +0,0 @@ ---- -title: Whisper Large V3 -emoji: 🤫 -colorFrom: indigo -colorTo: red -sdk: gradio -sdk_version: 3.38.0 -app_file: app.py -pinned: false -tags: -- whisper-event ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/cihyFjudo/fairness-paper-search/Easy Cut Studio 4.1.0.5 Crack Version How to Get it for Free in 2020 with Download Link.md b/spaces/cihyFjudo/fairness-paper-search/Easy Cut Studio 4.1.0.5 Crack Version How to Get it for Free in 2020 with Download Link.md deleted file mode 100644 index 4c31cc5189e4cff7d7a5310dd11798bd2b12ea3b..0000000000000000000000000000000000000000 --- a/spaces/cihyFjudo/fairness-paper-search/Easy Cut Studio 4.1.0.5 Crack Version How to Get it for Free in 2020 with Download Link.md +++ /dev/null @@ -1,8 +0,0 @@ - -

      honar sun mi hya gharchi marathi serial title song download [url= ] [/url]downloadmatlabr2013atorrent [url= -music-converter-1-3-3-crack]cdn.geeb[/url] A Secret Weapon For Pokemon Fire Red Cheats Legendary Pokemon [url= -Unduh-Firefox-Film-Di-Mozilla-Enable-Idm.html]Cara Unduh Firefox Film Di Mozilla Enable Idm[/url] Download the Little Richard Cove MV For Fun. full movie italian dubbed in torrent [url= -saha-63e764.netlify.app/Doc-Gyneco-Premiere-Consultation-Edition-20eme-Ann-antonacci-partitura]7gogo[/url] Chrome on the Mac [url= -fishdom-3-full-crack.pdf] -fishdom-3-full-crack.pdf[/url] payorbHanydrare [url= -online-baazi-zindagi-ki-english-hd-blu-ray-4k-watch-online]Baazi Zindagi Ki movie download hd 1080p kickass torrent[/url] leattyTrardGonbeer [url= -sins-of-the-prophets-online-free.pdf] -sins-of-the-prophets-online-free.pdf[/url] Como Configurar O Joypad No Gta San Andreas Pc [url= -Media-Gallery-484-Cracked-Apk.pdf]flamboyant-meninsky-f00567.netlify[/url]The Dance of Wounded Souls mobi download book [url= ]neygaser.yolasite[/url] Ibanez Ts-9 Serial Numbers [url= -full-movie-in-hindi-download-3gp-movies.html] -full-movie-in-hindi-download-3gp-movies.html[/url]

      -

      Ekk Deewana Tha Full Movie Download 720p Kickass Torrent [url= ]wakelet.com[/url]Stardock Customization Software Pack [url= ] [/url] apache air assault patch 1.0.0.2 cracked [url= -blog/1984]heuristic-poincare-af81e0.netlify.app[/url] Babloo Happy Hai 3 In Hindi Download mopse abspielsoftwar [url= -woodland-69323.herokuapp.com/Cadence-Ic615iso.html]precudenma.blogg[/url] Flashtool 0 9 0 0 Windows Exe [url= -870e-43e1-8ef1-e8cef437a018/special-26-hindi-movie-free-download-utorrent.pdf] -870e-43e1-8ef1-e8cef437a018/special-26-hindi-movie-free-download-utorrent.pdf[/url] Download Sombrero Net Bill Full Cracked [url= -cash-us-altium-keygen-license-torrent-iso] -cash-us-altium-keygen-license-torrent-iso[/url] leattyTrardGonbeer [url= -benz-1e1e3f.netlify.app/modafinil-kpa-ireland-modafinil-100mg-online] -benz-1e1e3f.netlify.app/modafinil-kpa-ireland-modafinil-100mg-online[/url] AIO Avid Studio 1.1.0.2887 AIO Library Manuals [MULTi] Full Version [url= -mclean-4eddb3.netlify.app/Download-Jocuri-Actiune-Full-Versionl] -mclean-4eddb3.netlify.app/Download-Jocuri-Actiune-Full-Versionl[/url]Netapp Oncommand System Manager 2.2 Downloadl [url= -tori-bash-no-survey-no-password-2019]tori bash no survey no password 2019[/url] Download Driver 4740 Xpo [url= -riders-of-pasco-basin-full-movie-in-italian-free-download] -riders-of-pasco-basin-full-movie-in-italian-free-download[/url]

      -

      Easy Cut Studio 4.1.0.5 Crack Version Full Free Download 2020


      Download >>>>> https://tinurli.com/2uwjbF



      -

      Digital Performer 10 Crack Key Full Mac] DownloadBluebugger On Android Apk Download CleapSmelpNouppySen -cry-3-english-sound-files-free-download-free steve dobrogosz kyrie pdf download denon dj asio drivers dn-hc4500 CromoimmortAmoumma Gemini firstmix software download roderictharpe236km.wixsite leattyTrardGonbeer Aman Ke Farishtey full movie in hindi 720p download movie DodyCotSeinopynagree -cracked-link-e-iso-license-32bitDenImmeniese thingiverse.com vewsenussy Download

      -

      Erebtehequeadalext download film john carter subtitle indonesiaFilm Avatar 2 Full Movie Subtitle Indonesia 19 adobe premiere pro cs6 32 bit free download with crack kickassk TheLastSovereignYarrasThanksaddons Heneadarmamus zywall ipsec vpn client serial number -blog/556 payorbHanydrare Soluciones oxford spotlight 4 workbook Tamil aunty sex talk audio download 2 Radar Homeopathic Software Download With 72 DodyCotSeinopynagree aagnation.comDenImmeniese Download vewsenussy thingiverse.com

      aaccfb2cb3
      -
      -
      \ No newline at end of file diff --git a/spaces/cihyFjudo/fairness-paper-search/Frank Sinatra-My Way - The Best Of Full Album Zip Download Enjoy the Legendary Voice of Ol Blue Eyes.md b/spaces/cihyFjudo/fairness-paper-search/Frank Sinatra-My Way - The Best Of Full Album Zip Download Enjoy the Legendary Voice of Ol Blue Eyes.md deleted file mode 100644 index 3447479bcc471046d2f4c0b58b8ed5f1c1e72a36..0000000000000000000000000000000000000000 --- a/spaces/cihyFjudo/fairness-paper-search/Frank Sinatra-My Way - The Best Of Full Album Zip Download Enjoy the Legendary Voice of Ol Blue Eyes.md +++ /dev/null @@ -1,6 +0,0 @@ -

      Frank Sinatra-My Way - The Best Of full album zip


      DOWNLOAD ✫✫✫ https://tinurli.com/2uwkkL



      - - aaccfb2cb3
      -
      -
      -

      diff --git a/spaces/cihyFjudo/fairness-paper-search/Ng-book 2 ((HOT)) Free Pdf 101.md b/spaces/cihyFjudo/fairness-paper-search/Ng-book 2 ((HOT)) Free Pdf 101.md deleted file mode 100644 index 8fca161d8f5a429442212d2efd537d862972a317..0000000000000000000000000000000000000000 --- a/spaces/cihyFjudo/fairness-paper-search/Ng-book 2 ((HOT)) Free Pdf 101.md +++ /dev/null @@ -1,6 +0,0 @@ - -

      When it's easy for people to back out of a process or undo an action, it fosters a sense of freedom and confidence. Exits allow users to remain in control of the system and avoid getting stuck and feeling frustrated.

      -

      Save time managing your social media presence with Hootsuite. From a single dashboard you can publish and schedule posts, find relevant conversions, engage the audience, measure results, and more. Try it free today.

      -

      ng-book 2 free pdf 101


      Download ✦✦✦ https://tinurli.com/2uwhOL



      aaccfb2cb3
      -
      -
      \ No newline at end of file diff --git a/spaces/cihyFjudo/fairness-paper-search/Solid State Physics Ma Wahab Pdf 507 Learn from 600 Solved Examples in 14 Chapters.md b/spaces/cihyFjudo/fairness-paper-search/Solid State Physics Ma Wahab Pdf 507 Learn from 600 Solved Examples in 14 Chapters.md deleted file mode 100644 index 83a794b5ea5f15f1b014e4e1ddb9c4fe5d1a3bdd..0000000000000000000000000000000000000000 --- a/spaces/cihyFjudo/fairness-paper-search/Solid State Physics Ma Wahab Pdf 507 Learn from 600 Solved Examples in 14 Chapters.md +++ /dev/null @@ -1,5 +0,0 @@ -
      -

      Song, Lin; Wang, Weijia; Körstgens, Volker; Gonzalez, Daniel Mosegui; Löhrer, Franziska C.; Schaffer, Christoph J.; Schlipf, Johannes; Peters, Kristina; Bein, Thomas; Fattakhova-Rohlfing, Dina; Roth, Stephan V.; Müller-Buschbaum, Peter (2017):In situ study of spray deposited titania photoanodes for scalable fabrication of solid-state dye-sensitized solar cells. In: Nano Energy, Vol. 40: pp. 317-326

      -

      Solid State Physics Ma Wahab Pdf 507


      Download Filehttps://tinurli.com/2uwiYK



      aaccfb2cb3
      -
      -
      \ No newline at end of file diff --git a/spaces/cloudtheboi/Lofi4All/.pythonlibs/lib/python3.10/site-packages/fontTools/designspaceLib/split.py b/spaces/cloudtheboi/Lofi4All/.pythonlibs/lib/python3.10/site-packages/fontTools/designspaceLib/split.py deleted file mode 100644 index 0b7cdf4be05dea1e810b4fddf4bf026bc1a50a85..0000000000000000000000000000000000000000 --- a/spaces/cloudtheboi/Lofi4All/.pythonlibs/lib/python3.10/site-packages/fontTools/designspaceLib/split.py +++ /dev/null @@ -1,475 +0,0 @@ -"""Allows building all the variable fonts of a DesignSpace version 5 by -splitting the document into interpolable sub-space, then into each VF. -""" - -from __future__ import annotations - -import itertools -import logging -import math -from typing import Any, Callable, Dict, Iterator, List, Tuple, cast - -from fontTools.designspaceLib import ( - AxisDescriptor, - AxisMappingDescriptor, - DesignSpaceDocument, - DiscreteAxisDescriptor, - InstanceDescriptor, - RuleDescriptor, - SimpleLocationDict, - SourceDescriptor, - VariableFontDescriptor, -) -from fontTools.designspaceLib.statNames import StatNames, getStatNames -from fontTools.designspaceLib.types import ( - ConditionSet, - Range, - Region, - getVFUserRegion, - locationInRegion, - regionInRegion, - userRegionToDesignRegion, -) - -LOGGER = logging.getLogger(__name__) - -MakeInstanceFilenameCallable = Callable[ - [DesignSpaceDocument, InstanceDescriptor, StatNames], str -] - - -def defaultMakeInstanceFilename( - doc: DesignSpaceDocument, instance: InstanceDescriptor, statNames: StatNames -) -> str: - """Default callable to synthesize an instance filename - when makeNames=True, for instances that don't specify an instance name - in the designspace. This part of the name generation can be overriden - because it's not specified by the STAT table. - """ - familyName = instance.familyName or statNames.familyNames.get("en") - styleName = instance.styleName or statNames.styleNames.get("en") - return f"{familyName}-{styleName}.ttf" - - -def splitInterpolable( - doc: DesignSpaceDocument, - makeNames: bool = True, - expandLocations: bool = True, - makeInstanceFilename: MakeInstanceFilenameCallable = defaultMakeInstanceFilename, -) -> Iterator[Tuple[SimpleLocationDict, DesignSpaceDocument]]: - """Split the given DS5 into several interpolable sub-designspaces. - There are as many interpolable sub-spaces as there are combinations of - discrete axis values. - - E.g. with axes: - - italic (discrete) Upright or Italic - - style (discrete) Sans or Serif - - weight (continuous) 100 to 900 - - There are 4 sub-spaces in which the Weight axis should interpolate: - (Upright, Sans), (Upright, Serif), (Italic, Sans) and (Italic, Serif). - - The sub-designspaces still include the full axis definitions and STAT data, - but the rules, sources, variable fonts, instances are trimmed down to only - keep what falls within the interpolable sub-space. - - Args: - - ``makeNames``: Whether to compute the instance family and style - names using the STAT data. - - ``expandLocations``: Whether to turn all locations into "full" - locations, including implicit default axis values where missing. - - ``makeInstanceFilename``: Callable to synthesize an instance filename - when makeNames=True, for instances that don't specify an instance name - in the designspace. This part of the name generation can be overridden - because it's not specified by the STAT table. - - .. versionadded:: 5.0 - """ - discreteAxes = [] - interpolableUserRegion: Region = {} - for axis in doc.axes: - if hasattr(axis, "values"): - # Mypy doesn't support narrowing union types via hasattr() - # TODO(Python 3.10): use TypeGuard - # https://mypy.readthedocs.io/en/stable/type_narrowing.html - axis = cast(DiscreteAxisDescriptor, axis) - discreteAxes.append(axis) - else: - axis = cast(AxisDescriptor, axis) - interpolableUserRegion[axis.name] = Range( - axis.minimum, - axis.maximum, - axis.default, - ) - valueCombinations = itertools.product(*[axis.values for axis in discreteAxes]) - for values in valueCombinations: - discreteUserLocation = { - discreteAxis.name: value - for discreteAxis, value in zip(discreteAxes, values) - } - subDoc = _extractSubSpace( - doc, - {**interpolableUserRegion, **discreteUserLocation}, - keepVFs=True, - makeNames=makeNames, - expandLocations=expandLocations, - makeInstanceFilename=makeInstanceFilename, - ) - yield discreteUserLocation, subDoc - - -def splitVariableFonts( - doc: DesignSpaceDocument, - makeNames: bool = False, - expandLocations: bool = False, - makeInstanceFilename: MakeInstanceFilenameCallable = defaultMakeInstanceFilename, -) -> Iterator[Tuple[str, DesignSpaceDocument]]: - """Convert each variable font listed in this document into a standalone - designspace. This can be used to compile all the variable fonts from a - format 5 designspace using tools that can only deal with 1 VF at a time. - - Args: - - ``makeNames``: Whether to compute the instance family and style - names using the STAT data. - - ``expandLocations``: Whether to turn all locations into "full" - locations, including implicit default axis values where missing. - - ``makeInstanceFilename``: Callable to synthesize an instance filename - when makeNames=True, for instances that don't specify an instance name - in the designspace. This part of the name generation can be overridden - because it's not specified by the STAT table. - - .. versionadded:: 5.0 - """ - # Make one DesignspaceDoc v5 for each variable font - for vf in doc.getVariableFonts(): - vfUserRegion = getVFUserRegion(doc, vf) - vfDoc = _extractSubSpace( - doc, - vfUserRegion, - keepVFs=False, - makeNames=makeNames, - expandLocations=expandLocations, - makeInstanceFilename=makeInstanceFilename, - ) - vfDoc.lib = {**vfDoc.lib, **vf.lib} - yield vf.name, vfDoc - - -def convert5to4( - doc: DesignSpaceDocument, -) -> Dict[str, DesignSpaceDocument]: - """Convert each variable font listed in this document into a standalone - format 4 designspace. This can be used to compile all the variable fonts - from a format 5 designspace using tools that only know about format 4. - - .. versionadded:: 5.0 - """ - vfs = {} - for _location, subDoc in splitInterpolable(doc): - for vfName, vfDoc in splitVariableFonts(subDoc): - vfDoc.formatVersion = "4.1" - vfs[vfName] = vfDoc - return vfs - - -def _extractSubSpace( - doc: DesignSpaceDocument, - userRegion: Region, - *, - keepVFs: bool, - makeNames: bool, - expandLocations: bool, - makeInstanceFilename: MakeInstanceFilenameCallable, -) -> DesignSpaceDocument: - subDoc = DesignSpaceDocument() - # Don't include STAT info - # FIXME: (Jany) let's think about it. Not include = OK because the point of - # the splitting is to build VFs and we'll use the STAT data of the full - # document to generate the STAT of the VFs, so "no need" to have STAT data - # in sub-docs. Counterpoint: what if someone wants to split this DS for - # other purposes? Maybe for that it would be useful to also subset the STAT - # data? - # subDoc.elidedFallbackName = doc.elidedFallbackName - - def maybeExpandDesignLocation(object): - if expandLocations: - return object.getFullDesignLocation(doc) - else: - return object.designLocation - - for axis in doc.axes: - range = userRegion[axis.name] - if isinstance(range, Range) and hasattr(axis, "minimum"): - # Mypy doesn't support narrowing union types via hasattr() - # TODO(Python 3.10): use TypeGuard - # https://mypy.readthedocs.io/en/stable/type_narrowing.html - axis = cast(AxisDescriptor, axis) - subDoc.addAxis( - AxisDescriptor( - # Same info - tag=axis.tag, - name=axis.name, - labelNames=axis.labelNames, - hidden=axis.hidden, - # Subset range - minimum=max(range.minimum, axis.minimum), - default=range.default or axis.default, - maximum=min(range.maximum, axis.maximum), - map=[ - (user, design) - for user, design in axis.map - if range.minimum <= user <= range.maximum - ], - # Don't include STAT info - axisOrdering=None, - axisLabels=None, - ) - ) - - subDoc.axisMappings = mappings = [] - subDocAxes = {axis.name for axis in subDoc.axes} - for mapping in doc.axisMappings: - if not all(axis in subDocAxes for axis in mapping.inputLocation.keys()): - continue - if not all(axis in subDocAxes for axis in mapping.outputLocation.keys()): - LOGGER.error( - "In axis mapping from input %s, some output axes are not in the variable-font: %s", - mapping.inputLocation, - mapping.outputLocation, - ) - continue - - mappingAxes = set() - mappingAxes.update(mapping.inputLocation.keys()) - mappingAxes.update(mapping.outputLocation.keys()) - for axis in doc.axes: - if axis.name not in mappingAxes: - continue - range = userRegion[axis.name] - if ( - range.minimum != axis.minimum - or (range.default is not None and range.default != axis.default) - or range.maximum != axis.maximum - ): - LOGGER.error( - "Limiting axis ranges used in elements not supported: %s", - axis.name, - ) - continue - - mappings.append( - AxisMappingDescriptor( - inputLocation=mapping.inputLocation, - outputLocation=mapping.outputLocation, - ) - ) - - # Don't include STAT info - # subDoc.locationLabels = doc.locationLabels - - # Rules: subset them based on conditions - designRegion = userRegionToDesignRegion(doc, userRegion) - subDoc.rules = _subsetRulesBasedOnConditions(doc.rules, designRegion) - subDoc.rulesProcessingLast = doc.rulesProcessingLast - - # Sources: keep only the ones that fall within the kept axis ranges - for source in doc.sources: - if not locationInRegion(doc.map_backward(source.designLocation), userRegion): - continue - - subDoc.addSource( - SourceDescriptor( - filename=source.filename, - path=source.path, - font=source.font, - name=source.name, - designLocation=_filterLocation( - userRegion, maybeExpandDesignLocation(source) - ), - layerName=source.layerName, - familyName=source.familyName, - styleName=source.styleName, - muteKerning=source.muteKerning, - muteInfo=source.muteInfo, - mutedGlyphNames=source.mutedGlyphNames, - ) - ) - - # Copy family name translations from the old default source to the new default - vfDefault = subDoc.findDefault() - oldDefault = doc.findDefault() - if vfDefault is not None and oldDefault is not None: - vfDefault.localisedFamilyName = oldDefault.localisedFamilyName - - # Variable fonts: keep only the ones that fall within the kept axis ranges - if keepVFs: - # Note: call getVariableFont() to make the implicit VFs explicit - for vf in doc.getVariableFonts(): - vfUserRegion = getVFUserRegion(doc, vf) - if regionInRegion(vfUserRegion, userRegion): - subDoc.addVariableFont( - VariableFontDescriptor( - name=vf.name, - filename=vf.filename, - axisSubsets=[ - axisSubset - for axisSubset in vf.axisSubsets - if isinstance(userRegion[axisSubset.name], Range) - ], - lib=vf.lib, - ) - ) - - # Instances: same as Sources + compute missing names - for instance in doc.instances: - if not locationInRegion(instance.getFullUserLocation(doc), userRegion): - continue - - if makeNames: - statNames = getStatNames(doc, instance.getFullUserLocation(doc)) - familyName = instance.familyName or statNames.familyNames.get("en") - styleName = instance.styleName or statNames.styleNames.get("en") - subDoc.addInstance( - InstanceDescriptor( - filename=instance.filename - or makeInstanceFilename(doc, instance, statNames), - path=instance.path, - font=instance.font, - name=instance.name or f"{familyName} {styleName}", - userLocation={} if expandLocations else instance.userLocation, - designLocation=_filterLocation( - userRegion, maybeExpandDesignLocation(instance) - ), - familyName=familyName, - styleName=styleName, - postScriptFontName=instance.postScriptFontName - or statNames.postScriptFontName, - styleMapFamilyName=instance.styleMapFamilyName - or statNames.styleMapFamilyNames.get("en"), - styleMapStyleName=instance.styleMapStyleName - or statNames.styleMapStyleName, - localisedFamilyName=instance.localisedFamilyName - or statNames.familyNames, - localisedStyleName=instance.localisedStyleName - or statNames.styleNames, - localisedStyleMapFamilyName=instance.localisedStyleMapFamilyName - or statNames.styleMapFamilyNames, - localisedStyleMapStyleName=instance.localisedStyleMapStyleName - or {}, - lib=instance.lib, - ) - ) - else: - subDoc.addInstance( - InstanceDescriptor( - filename=instance.filename, - path=instance.path, - font=instance.font, - name=instance.name, - userLocation={} if expandLocations else instance.userLocation, - designLocation=_filterLocation( - userRegion, maybeExpandDesignLocation(instance) - ), - familyName=instance.familyName, - styleName=instance.styleName, - postScriptFontName=instance.postScriptFontName, - styleMapFamilyName=instance.styleMapFamilyName, - styleMapStyleName=instance.styleMapStyleName, - localisedFamilyName=instance.localisedFamilyName, - localisedStyleName=instance.localisedStyleName, - localisedStyleMapFamilyName=instance.localisedStyleMapFamilyName, - localisedStyleMapStyleName=instance.localisedStyleMapStyleName, - lib=instance.lib, - ) - ) - - subDoc.lib = doc.lib - - return subDoc - - -def _conditionSetFrom(conditionSet: List[Dict[str, Any]]) -> ConditionSet: - c: Dict[str, Range] = {} - for condition in conditionSet: - minimum, maximum = condition.get("minimum"), condition.get("maximum") - c[condition["name"]] = Range( - minimum if minimum is not None else -math.inf, - maximum if maximum is not None else math.inf, - ) - return c - - -def _subsetRulesBasedOnConditions( - rules: List[RuleDescriptor], designRegion: Region -) -> List[RuleDescriptor]: - # What rules to keep: - # - Keep the rule if any conditionset is relevant. - # - A conditionset is relevant if all conditions are relevant or it is empty. - # - A condition is relevant if - # - axis is point (C-AP), - # - and point in condition's range (C-AP-in) - # (in this case remove the condition because it's always true) - # - else (C-AP-out) whole conditionset can be discarded (condition false - # => conditionset false) - # - axis is range (C-AR), - # - (C-AR-all) and axis range fully contained in condition range: we can - # scrap the condition because it's always true - # - (C-AR-inter) and intersection(axis range, condition range) not empty: - # keep the condition with the smaller range (= intersection) - # - (C-AR-none) else, whole conditionset can be discarded - newRules: List[RuleDescriptor] = [] - for rule in rules: - newRule: RuleDescriptor = RuleDescriptor( - name=rule.name, conditionSets=[], subs=rule.subs - ) - for conditionset in rule.conditionSets: - cs = _conditionSetFrom(conditionset) - newConditionset: List[Dict[str, Any]] = [] - discardConditionset = False - for selectionName, selectionValue in designRegion.items(): - # TODO: Ensure that all(key in conditionset for key in region.keys())? - if selectionName not in cs: - # raise Exception("Selection has different axes than the rules") - continue - if isinstance(selectionValue, (float, int)): # is point - # Case C-AP-in - if selectionValue in cs[selectionName]: - pass # always matches, conditionset can stay empty for this one. - # Case C-AP-out - else: - discardConditionset = True - else: # is range - # Case C-AR-all - if selectionValue in cs[selectionName]: - pass # always matches, conditionset can stay empty for this one. - else: - intersection = cs[selectionName].intersection(selectionValue) - # Case C-AR-inter - if intersection is not None: - newConditionset.append( - { - "name": selectionName, - "minimum": intersection.minimum, - "maximum": intersection.maximum, - } - ) - # Case C-AR-none - else: - discardConditionset = True - if not discardConditionset: - newRule.conditionSets.append(newConditionset) - if newRule.conditionSets: - newRules.append(newRule) - - return newRules - - -def _filterLocation( - userRegion: Region, - location: Dict[str, float], -) -> Dict[str, float]: - return { - name: value - for name, value in location.items() - if name in userRegion and isinstance(userRegion[name], Range) - } diff --git a/spaces/congsaPfin/Manga-OCR/logs/Bus Simulator 17 Mod APK Drive Various Buses on Custom Routes.md b/spaces/congsaPfin/Manga-OCR/logs/Bus Simulator 17 Mod APK Drive Various Buses on Custom Routes.md deleted file mode 100644 index 3d8397ce463984b0e767afebbd64fedd95fb513e..0000000000000000000000000000000000000000 --- a/spaces/congsaPfin/Manga-OCR/logs/Bus Simulator 17 Mod APK Drive Various Buses on Custom Routes.md +++ /dev/null @@ -1,99 +0,0 @@ -
      -

      Bus Simulator 17 Mod Apk: A Realistic and Fun Simulation Game for Android

      -

      Do you want to become a real bus driver? Do you want to experience driving a bus in different cities, weather conditions, and traffic situations? Do you want to have unlimited money and access to all the buses in the game? If you answered yes to any of these questions, then you should try Bus Simulator 17 Mod Apk.

      -

      bus simulator 17 mod apk


      Download Zip 🗸🗸🗸 https://urlca.com/2uOfK3



      -

      Bus Simulator 17 is a simulation game developed by Ovidiu Pop, a popular developer of driving games for Android devices. In this game, you can drive various types of buses, such as articulated, double-decker, school, London, etc., in realistic environments, detailed interiors, and complex routes. You can also create your own personalized routes, choose the weather and traffic settings, and enjoy driving like never before.

      -

      However, if you want to have more fun and freedom in the game, you should download Bus Simulator 17 Mod Apk. This is a modified version of the original game that gives you unlimited money and unlocks all the buses in the game. With this mod apk, you can buy any bus you want, upgrade it, customize it, and drive it without any restrictions. You can also enjoy the multiplayer mode, free ride mode, and manual transmission mode without any limitations.

      -

      In this article, we will tell you more about the features of Bus Simulator 17 Mod Apk, how to download and install it on your device, some tips and tricks for playing it, and our review of it. So, if you are interested in this amazing simulation game, keep reading.

      -

      Features of Bus Simulator 17 Mod Apk

      -

      Bus Simulator 17 Mod Apk has many features that make it one of the best simulation games for Android devices. Here are some of them:

      -
        -
      • Realistic environments, detailed buses, and complex interiors: The game has realistic cities split into zones (central, suburban, industrial, and countryside), where you can drive in different scenarios such as city, desert, mountain, and highway. The game also has many detailed buses that have different specifications, designs, colors, and features. You can also see the interiors of the buses from different angles, such as mirrors (also from inside), open/close doors button, steering wheel, buttons or tilting controls.
      • -
      • Customizable routes, weather, and traffic: The game allows you to create your own routes by choosing the start point, end point, waypoints, and stops. You can also choose the weather conditions (sunny, cloudy, rainy, snowy, etc.) and the traffic density (low, medium, high) that suit your preference. The game has a new traffic system that uses blinkers, realistic physics, and brakes to make the driving experience more challenging and fun.
      • -
      • Multiplayer mode, free ride mode, and manual transmission: The game has a multiplayer mode where you can play with your friends or other players online. You can join or create a bus company, chat with other drivers, and compete in leaderboards. The game also has a free ride mode where you can drive anywhere you want without any rules or missions. You can also choose to drive with manual transmission, which adds more realism and difficulty to the game.
      • -
      • Visual damage, steering wheel, and mirrors: The game has a visual damage system that shows the effects of collisions and accidents on your bus. You can see the scratches, dents, broken windows, and smoke coming from your bus. You can also use the steering wheel or the tilt controls to drive your bus. You can also use the mirrors to see the rear and side views of your bus.
      • -
      -

      How to Download and Install Bus Simulator 17 Mod Apk

      -

      If you want to download and install Bus Simulator 17 Mod Apk on your device, you need to follow these simple steps:

      -
        -
      1. Download the mod apk file from a trusted source: You can find many websites that offer the mod apk file of Bus Simulator 17, but not all of them are safe and reliable. Some of them may contain viruses, malware, or spyware that can harm your device or steal your personal information. Therefore, you should download the mod apk file from a trusted source, such as [this one].
      2. -
      3. Enable unknown sources on your device settings: Before you can install the mod apk file on your device, you need to enable unknown sources on your device settings. This will allow you to install apps that are not from the Google Play Store. To do this, go to Settings > Security > Unknown Sources and toggle it on.
      4. -
      5. Install the mod apk file and launch the game: After you have downloaded the mod apk file and enabled unknown sources, you can install the mod apk file by tapping on it and following the instructions. Once the installation is complete, you can launch the game by tapping on its icon on your home screen or app drawer.
      6. -
      7. Enjoy unlimited money and unlocked buses: Now that you have installed Bus Simulator 17 Mod Apk on your device, you can enjoy unlimited money and unlocked buses in the game. You can use the money to buy any bus you want, upgrade it, customize it, and drive it without any restrictions. You can also access all the buses in the game, such as articulated, double-decker, school, London, etc., and drive them in different modes and environments.
      8. -
      -

      Tips and Tricks for Playing Bus Simulator 17 Mod Apk

      -

      Bus Simulator 17 Mod Apk is a fun and realistic simulation game that requires some skills and strategies to play well. Here are some tips and tricks that can help you improve your driving performance and enjoy the game more:

      -

      Bus Simulator 17 hack mod apk unlimited money and coins
      -Bus Simulator 17 mod apk download latest version for android
      -Bus Simulator 17 mod apk unlocked all buses and maps
      -Bus Simulator 17 mod apk free shopping and upgrades
      -Bus Simulator 17 mod apk offline mode and no ads
      -Bus Simulator 17 mod apk realistic driving and physics
      -Bus Simulator 17 mod apk multiplayer and online mode
      -Bus Simulator 17 mod apk with obb data file
      -Bus Simulator 17 mod apk revdl and rexdl links
      -Bus Simulator 17 mod apk cheat codes and tips
      -Bus Simulator 17 mod apk gameplay and review
      -Bus Simulator 17 mod apk features and specifications
      -Bus Simulator 17 mod apk system requirements and compatibility
      -Bus Simulator 17 mod apk how to install and play
      -Bus Simulator 17 mod apk pros and cons
      -Bus Simulator 17 mod apk best settings and graphics
      -Bus Simulator 17 mod apk new update and patch notes
      -Bus Simulator 17 mod apk bugs and issues
      -Bus Simulator 17 mod apk alternatives and similar games
      -Bus Simulator 17 mod apk ratings and feedback
      -Bus Simulator 17 mod apk screenshots and videos
      -Bus Simulator 17 mod apk developer and publisher information
      -Bus Simulator 17 mod apk support and contact details
      -Bus Simulator 17 mod apk FAQs and answers
      -Bus Simulator 17 mod apk forum and community
      -Bus Simulator 17 mod apk guide and walkthrough
      -Bus Simulator 17 mod apk tricks and secrets
      -Bus Simulator 17 mod apk awards and achievements
      -Bus Simulator 17 mod apk news and updates
      -Bus Simulator 17 mod apk comparison and difference with original game
      -Bus Simulator 17 mod apk benefits and advantages over other games
      -Bus Simulator 17 mod apk challenges and missions
      -Bus Simulator 17 mod apk customizations and personalizations
      -Bus Simulator 17 mod apk fun facts and trivia
      -Bus Simulator 17 mod apk recommendations and suggestions

      -
        -
      • Familiarize yourself with the controls and features of the game: Before you start driving, you should familiarize yourself with the controls and features of the game. You can find them in the settings menu or in the tutorial mode. You should learn how to use the accelerator, brake, steering wheel, tilt controls, mirrors, blinkers, horn, doors, wipers, headlights, etc. You should also learn how to switch between different camera views, such as first-person, third-person, cockpit, and top-down.
      • -
      • Drive defensively and avoid collisions with other vehicles: One of the main challenges of driving a bus is avoiding collisions with other vehicles on the road. Collisions can cause visual damage to your bus, reduce your score, and make your passengers unhappy. Therefore, you should drive defensively and follow the traffic rules and signs. You should also keep a safe distance from other vehicles, use the blinkers when changing lanes or turning, and slow down when approaching intersections or curves.
      • -
      • Make the right investments and hire more drivers: As you progress in the game, you will earn money and reputation points that you can use to buy new buses, upgrade them, and customize them. However, you should also invest some of your money in hiring more drivers for your bus company. This will allow you to earn more money and reputation points even when you are not playing. You can also assign different routes and buses to your drivers and monitor their performance.
      • -
      • Take breaks on the trip and claim gifts as often as you can: Driving a bus for a long time can be tiring and boring. Therefore, you should take breaks on the trip and enjoy the scenery and the atmosphere of the game. You can also claim gifts as often as you can by watching ads or completing tasks. These gifts can give you extra money, reputation points, or free buses.
      • -
      -

      Review of Bus Simulator 17 Mod Apk

      -

      Bus Simulator 17 Mod Apk is a great simulation game that offers a realistic and fun driving experience for Android users. Here are some of the pros and cons of the game, as well as our rating based on user reviews:

      -
        -
      • Pros:
          -
        • The game has high-quality graphics, realistic physics, and diverse gameplay that make it immersive and enjoyable.
        • -
        • The game has many detailed buses, realistic environments, and complex interiors that make it authentic and varied.
        • -
        • The game has customizable routes, weather, and traffic that make it challenging and dynamic.
        • -
        • The game has a multiplayer mode, free ride mode, and manual transmission that make it interactive and fun.
        • -
        • The mod apk gives you unlimited money and unlocked buses that make it easy and free.
        • -
        -
      • -
      • Cons:
          -
        • The game has some glitches, bugs, and ads that can affect the performance and enjoyment of the game.
        • -
        • The game can be too difficult or boring for some players who prefer more action or adventure games.
        • -
        • The game can be too large or incompatible for some devices that have low storage or specifications.
        • -
        -
      • -
      • Rating: Based on user reviews, we give Bus Simulator 17 Mod Apk a rating of 4.5 out of 5 stars. The game is highly rated by most users who praise its graphics, physics, and gameplay. The game is also recommended by many users who enjoy driving simulation games. The game has some negative reviews from users who complain about its glitches, bugs, and ads. The game also has some mixed reviews from users who have different preferences or expectations from the game.
      • -
      -

      Conclusion

      -

      Bus Simulator 17 Mod Apk is a realistic and fun simulation game for Android devices that lets you drive various types of buses in different cities, weather conditions, and traffic situations. You can also create your own routes, choose the weather and traffic settings, and enjoy driving like never before. With the mod apk, you can also have unlimited money and access to all the buses in the game. You can buy any bus you want, upgrade it, customize it, and drive it without any restrictions. You can also enjoy the multiplayer mode, free ride mode, and manual transmission mode without any limitations.

      -

      If you are looking for a simulation game that offers a realistic and fun driving experience, you should download and play Bus Simulator 17 Mod Apk. You will not regret it.

      -

      FAQs

      -

      Here are some of the frequently asked questions about Bus Simulator 17 Mod Apk:

      -
        -
      1. Is Bus Simulator 17 Mod Apk safe to download and install?: Yes, Bus Simulator 17 Mod Apk is safe to download and install if you get it from a trusted source, such as [this one]. However, you should always be careful when downloading and installing any mod apk file from unknown sources. You should also scan the file with an antivirus program before installing it on your device.
      2. -
      3. Do I need to root my device to use Bus Simulator 17 Mod Apk?: No, you do not need to root your device to use Bus Simulator 17 Mod Apk. You just need to enable unknown sources on your device settings and install the mod apk file as usual.
      4. -
      5. Can I play Bus Simulator 17 Mod Apk offline?: Yes, you can play Bus Simulator 17 Mod Apk offline without any internet connection. However, you will not be able to access some features of the game, such as multiplayer mode, gifts, or ads.
      6. -
      7. Can I update Bus Simulator 17 Mod Apk?: Yes, you can update Bus Simulator 17 Mod Apk if there is a new version available from the same source where you downloaded it. However, you should always back up your data before updating the mod apk file to avoid losing your progress or money.
      8. -
      9. Can I play Bus Simulator 17 Mod Apk on PC?: Yes, you can play Bus Simulator 17 Mod Apk on PC using an Android emulator program such as BlueStacks or NoxPlayer. You just need to download and install the emulator program on your PC and then download and install the mod apk file on the emulator program.
      10. -
      I have finished writing the article. I hope you are satisfied with it and find it helpful. If you have any feedback or questions, please let me know. Thank you for choosing me as your content writer. Have a great day! ?

      401be4b1e0
      -
      -
      \ No newline at end of file diff --git a/spaces/congsaPfin/Manga-OCR/logs/CBSE 12th Marksheet Easy Way to Get it via DigiLocker.md b/spaces/congsaPfin/Manga-OCR/logs/CBSE 12th Marksheet Easy Way to Get it via DigiLocker.md deleted file mode 100644 index 8f05c03e0577be8635be724f17fafec01f22f722..0000000000000000000000000000000000000000 --- a/spaces/congsaPfin/Manga-OCR/logs/CBSE 12th Marksheet Easy Way to Get it via DigiLocker.md +++ /dev/null @@ -1,118 +0,0 @@ -
      -

      How to download 12 marksheet

      -

      If you have appeared for the 12th board exams, you must be eagerly waiting for your results and marksheet. A marksheet is a document that shows your marks and grades in each subject and overall performance in the exams. It is an important document that you need for admission to colleges, universities, scholarships, jobs, etc. In this article, we will tell you how to download 12 marksheet online from different boards, how to verify it online, and how to apply for a duplicate copy if you lose it or damage it.

      -

      how to download 12 marksheet


      Download ———>>> https://urlca.com/2uOap0



      -

      What is 12 marksheet and why do you need it?

      -

      12 marksheet is a document that shows your marks and grades in the 12th board exams

      -

      A 12 marksheet is a document that is issued by your board after the declaration of the results of the 12th board exams. It contains your name, roll number, school code, date of birth, subjects, marks obtained in each subject, total marks, percentage, grade point average (GPA), division, rank, etc. It also has a signature of the board authority and a seal of the board.

      -

      You need 12 marksheet for admission to colleges, universities, scholarships, jobs, etc.

      -

      A 12 marksheet is a proof of your academic qualification and achievement in the 12th board exams. You need it for various purposes such as:

      -
        -
      • Admission to colleges and universities: Most colleges and universities require you to submit your 12 marksheet along with your application form and other documents for admission to various courses and programs. They use your marks and grades to determine your eligibility and merit for admission.
      • -
      • Scholarships: Many scholarships are based on your academic performance in the 12th board exams. You need to submit your 12 marksheet along with your scholarship application form and other documents to prove your eligibility and merit for the scholarship.
      • -
      • Jobs: Many jobs require you to have a minimum qualification of 12th pass or equivalent. You need to submit your 12 marksheet along with your resume and other documents to prove your qualification and suitability for the job.
      • -
      • Other purposes: You may also need your 12 marksheet for other purposes such as applying for a passport, visa, PAN card, Aadhaar card, bank account, etc.
      • -
      -

      How to download 12 marksheet online?

      -

      Different methods for different boards

      -

      The method of downloading 12 marksheet online may vary depending on the board you belong to. There are different boards in India such as CBSE, State boards, NIOS, etc. Each board has its own website or portal where you can download your 12 marksheet online. Here are some of the methods for different boards:

      -

      CBSE board

      -

      If you have appeared for the 12th board exams from CBSE board, you can download your 12 marksheet online from the following sources:

      -
        -
      • CBSE's results portal: You can visit www.cbseresults.nic.in and click on the CBSE Class 12th result link. You will need to enter your roll number, school code, date of birth, etc. to access your result and marksheet. You can download and print your provisional marksheet from this portal.
      • -
      • DigiLocker: You can also download your digital marksheet and certificate from DigiLocker, which is a government initiative to provide digital documents to citizens. You will need to create an account on DigiLocker using your mobile number and Aadhaar number. You can then access your CBSE documents by selecting CBSE as the issuer and entering your roll number and year of passing.
      • -
      • UMANG app: You can also use the UMANG app, which is a unified platform for various government services. You can download the app from Google Play Store or App Store and register with your mobile number and Aadhaar number. You can then select CBSE from the list of services and enter your roll number and year of passing to download your marksheet and certificate.
      • -
      -

      State boards

      -

      If you have appeared for the 12th board exams from any of the state boards, you can download your 12 marksheet online from the official website of your respective board. For example, if you belong to Tamil Nadu board, you can visit www.dge.tn.gov.in and click on the TN 12th Marksheet link. You will need to enter your registration number and date of birth to access your marksheet. Similarly, if you belong to Maharashtra board, you can visit www.mahahsscboard.in and click on the eMarkSheet link. You will need to enter your seat number and mother's name to access your marksheet. You can also use DigiLocker or UMANG app to download your state board documents by selecting your board as the issuer.

      -

      How to download CBSE 12th marksheet online
      -How to get CBSE 12th marksheet from DigiLocker
      -How to download 12th marksheet from UMANG app
      -How to download 12th marksheet of ICSE board
      -How to download 12th marksheet of state board
      -How to download 12th marksheet of NIOS board
      -How to download 12th marksheet of IB board
      -How to download 12th marksheet of ISC board
      -How to download 12th marksheet of IGCSE board
      -How to download 12th marksheet of Cambridge board
      -How to download 12th marksheet of CBSE improvement exam
      -How to download 12th marksheet of CBSE compartment exam
      -How to download 12th marksheet of CBSE revaluation exam
      -How to download 12th marksheet of CBSE private exam
      -How to download 12th marksheet of CBSE open school exam
      -How to download 12th marksheet after name change
      -How to download 12th marksheet after correction
      -How to download 12th marksheet after migration
      -How to download 12th marksheet after duplicate issue
      -How to download 12th marksheet after lost or damaged
      -How to verify 12th marksheet online
      -How to print 12th marksheet online
      -How to save 12th marksheet online
      -How to share 12th marksheet online
      -How to edit 12th marksheet online
      -How to apply for 12th marksheet online
      -How to check status of 12th marksheet online
      -How to track delivery of 12th marksheet online
      -How to pay fees for 12th marksheet online
      -How to get refund for 12th marksheet online
      -How long does it take to download 12th marksheet online
      -What are the benefits of downloading 12th marksheet online
      -What are the requirements for downloading 12th marksheet online
      -What are the steps for downloading 12th marksheet online
      -What are the problems for downloading 12th marksheet online
      -What are the solutions for downloading 12th marksheet online
      -What are the best websites for downloading 12th marksheet online
      -What are the best apps for downloading 12th marksheet online
      -What are the best tips for downloading 12th marksheet online
      -What are the best practices for downloading 12th marksheet online

      -

      NIOS board

      -

      If you have appeared for the 12th board exams from NIOS board, you can download your 12 marksheet online from the following sources:

      -
        -
      • NIOS's website: You can visit www.nios.ac.in and click on the NIOS 10th/ 12th Certificate Marksheet Download link under 'On-Demand Exams April session 2021'. You will need to enter your enrolment number and security code to access your marksheet.
      • -
      • DigiLocker: You can also download your digital marksheet and certificate from DigiLocker by creating an account and selecting NIOS as the issuer. You will need to enter your enrolment number and year of passing to access your documents.
      • -
      • UMANG app: You can also use the UMANG app to download your NIOS documents by selecting NIOS from the list of services and entering your enrolment number and year of passing.
      • -

      How to verify 12 marksheet online?

      -

      After downloading your 12 marksheet online, you may want to verify it online for various reasons. Verifying your marksheet online can help you to check the authenticity and accuracy of your marksheet and to avoid any fraud or misuse of your marksheet by others. Here are some of the methods to verify your 12 marksheet online:

      -

      Reasons to verify 12 marksheet online

      -

      To check the authenticity and accuracy of your marksheet

      -

      Verifying your marksheet online can help you to confirm that your marksheet is genuine and issued by your board. It can also help you to check that your marksheet has no errors or mistakes in your name, roll number, marks, grades, etc. If you find any discrepancy in your marksheet, you can report it to your board and get it corrected.

      -

      To avoid fraud and misuse of your marksheet

      -

      Verifying your marksheet online can also help you to prevent any fraud or misuse of your marksheet by others. Sometimes, people may try to forge or tamper with your marksheet or use it for illegal purposes. By verifying your marksheet online, you can ensure that your marksheet is safe and secure and that no one can misuse it without your consent.

      -

      Methods to verify 12 marksheet online

      -

      Use the verification portal or link of your board

      -

      One of the methods to verify your 12 marksheet online is to use the verification portal or link provided by your board. Most boards have a dedicated portal or link where you can verify your marksheet online by entering some details such as your roll number, date of birth, etc. For example, if you belong to CBSE board, you can visit www.cbse.nic.in/newsite/rchk.htm and enter your roll number and year of passing to verify your marksheet. Similarly, if you belong to NIOS board, you can visit www.nios.ac.in/examresult.aspx and enter your enrolment number and captcha code to verify your marksheet. You can also use DigiLocker or UMANG app to access these verification portals or links.

      -

      Use the DigiLocker app or website

      -

      Another method to verify your 12 marksheet online is to use the DigiLocker app or website. DigiLocker is a government initiative that provides digital documents to citizens. You can create an account on DigiLocker using your mobile number and Aadhaar number and access your digital documents from various issuers such as CBSE, State boards, NIOS, etc. You can also share these documents with others using a secure link or QR code. By using DigiLocker, you can verify that your 12 marksheet is authentic and valid.

      -

      Use the UMANG app or website

      -

      A third method to verify your 12 marksheet online is to use the UMANG app or website. UMANG is a unified platform for various government services. You can download the app from Google Play Store or App Store and register with your mobile number and Aadhaar number. You can then select CBSE, State boards, NIOS, etc. from the list of services and access your digital documents from these issuers. You can also share these documents with others using a secure link or QR code. By using UMANG, you can verify that your 12 marksheet is authentic and valid.

      -

      How to apply for duplicate 12 marksheet online?

      -

      Sometimes, you may lose or damage your original 12 marksheet or need a duplicate copy for some reason. In such cases, you can apply for a duplicate 12 marksheet online from your board. Here are some of the reasons and steps to apply for a duplicate 12 marksheet online:

      -

      Reasons to apply for duplicate 12 marksheet online

      -

      To replace a lost, damaged, or mutilated marksheet

      -

      If you have lost, damaged, or mutilated your original 12 marksheet due to any reason such as theft, fire, flood, etc., you can apply for a duplicate copy online from your board. You will need to submit a copy of an FIR (First Information Report) or an affidavit along with other documents and fee as prescribed by your board.

      -

      To correct any errors or mistakes in your marksheet

      -

      If you have found any errors or mistakes in your original 12 marksheet such as spelling errors in your name, roll number, marks, grades, etc., you can apply for a duplicate copy online from your board after getting them corrected. You will need to submit a copy of an application to your board along with other documents and fee as prescribed by your board.

      -

      Steps to apply for duplicate 12 marksheet online

      -

      Write an application to your board along with other documents and fee

      -

      The first step to apply for a duplicate 12 marksheet online is to write an application to your board stating the reason for requesting a duplicate copy. You will also need to attach other documents such as a copy of your original marksheet, a copy of an FIR or an affidavit, a copy of your identity proof, etc. You will also need to pay a fee as prescribed by your board. You can check the fee structure and the mode of payment on the official website of your board.

      -

      Send the application by post or submit it online

      -

      The second step to apply for a duplicate 12 marksheet online is to send the application by post or submit it online. You can either send the application by speed post or registered post to the address of your board or you can submit it online on the portal or link provided by your board. You will need to upload the scanned copies of your documents and fee receipt along with the application. You will also need to enter some details such as your roll number, date of birth, etc.

      -

      Receive the duplicate marksheet by post or collect it by hand

      -

      The third step to apply for a duplicate 12 marksheet online is to receive the duplicate marksheet by post or collect it by hand. After verifying your application and documents, your board will issue a duplicate marksheet and send it to you by post or you can collect it by hand from the office of your board. You will need to show your original identity proof and fee receipt to receive the duplicate marksheet.

      -

      Conclusion

      -

      A 12 marksheet is a document that shows your marks and grades in the 12th board exams. It is an important document that you need for various purposes such as admission, scholarships, jobs, etc. You can download, verify, and apply for a duplicate 12 marksheet online from different boards such as CBSE, State boards, NIOS, etc. You will need to follow some steps and provide some details and documents to access your 12 marksheet online. We hope this article has helped you to understand how to download 12 marksheet online.

      -

      FAQs

      -
        -
      • Q: How long does it take to get the 12 marksheet online?
      • -
      • A: It depends on the board and the method you use to download the 12 marksheet online. Generally, it takes a few minutes to download the provisional marksheet from the results portal or DigiLocker or UMANG app. However, it may take a few days or weeks to get the original marksheet from the board by post or by hand.
      • -
      • Q: What if I forget my roll number or password to download the 12 marksheet online?
      • -
      • A: If you forget your roll number or password to download the 12 marksheet online, you can try to recover them using some options such as email, SMS, OTP, etc. You can also contact your school or board for assistance.
      • -
      • Q: Is the digital marksheet downloaded from DigiLocker or UMANG app valid and acceptable?
      • -
      • A: Yes, the digital marksheet downloaded from DigiLocker or UMANG app is valid and acceptable as it is issued by your board and verified by the government. You can use it for various purposes such as admission, scholarships, jobs, etc.
      • -
      • Q: How much does it cost to apply for a duplicate 12 marksheet online?
      • -
      • A: The cost of applying for a duplicate 12 marksheet online varies depending on the board and the reason for requesting a duplicate copy. Generally, it ranges from Rs. 100 to Rs. 500 per copy. You can check the fee structure and the mode of payment on the official website of your board.
      • -
      • Q: How can I check the status of my application for a duplicate 12 marksheet online?
      • -
      • A: You can check the status of your application for a duplicate 12 marksheet online by visiting the portal or link provided by your board and entering some details such as your roll number, date of birth, etc. You can also contact your board for any queries or complaints.
      • -

      401be4b1e0
      -
      -
      \ No newline at end of file diff --git a/spaces/congsaPfin/Manga-OCR/logs/Download Bhuj The Pride of India (2021) Full Movie - A Must-Watch for Patriotic Indians.md b/spaces/congsaPfin/Manga-OCR/logs/Download Bhuj The Pride of India (2021) Full Movie - A Must-Watch for Patriotic Indians.md deleted file mode 100644 index 7a41d1a2867c20072b6ea1ffa197bb800edd3f31..0000000000000000000000000000000000000000 --- a/spaces/congsaPfin/Manga-OCR/logs/Download Bhuj The Pride of India (2021) Full Movie - A Must-Watch for Patriotic Indians.md +++ /dev/null @@ -1,140 +0,0 @@ -
      -

      Bhuj: The Pride of India - A War Film Based on a True Story

      -

      Bhuj: The Pride of India is a 2021 Indian Hindi-language war film directed by Abhishek Dudhaiya. Set during the Indo-Pakistani War of 1971, it follows Indian Air Force Squadron Leader Vijay Karnik — then in-charge of the Bhuj Air Force Base who, with the help of 300 local women, reconstructed the damaged landing strip in 72 hours.

      -

      The film is a celebration of the bravery and sacrifice of the Indian soldiers and civilians who fought against all odds to defend their country. It is also a tribute to the unparalleled spirit and resilience of the women of Madhapur in Gujarat who played a pivotal role in India's victory.

      -

      bhuj the pride of india full movie download vegamovies


      Downloadhttps://urlca.com/2uO5n8



      -

      In this article, we will tell you more about the plot, cast, and crew of Bhuj: The Pride of India, how to watch it online legally or illegally, and why you should watch it.

      -

      What is Bhuj: The Pride of India About?

      -

      Bhuj: The Pride of India is based on the true events that took place during the Indo-Pakistani War of 1971. The war was triggered by the liberation movement in East Pakistan (now Bangladesh) against the oppressive regime of West Pakistan (now Pakistan). India supported the freedom fighters of East Pakistan and intervened militarily to stop the genocide and human rights violations by West Pakistan.

      -

      The film focuses on one of the most crucial episodes of the war - the attack on the Bhuj Air Force Base by Pakistani bombers. The base was strategically important for India as it was close to the border and provided air support to the Indian Army. However, on December 8, 1971, Pakistani planes bombed the base and destroyed its runway, leaving it vulnerable to further attacks.

      -

      That's when Squadron Leader Vijay Karnik, who was in charge of the base, decided to take a daring step. He enlisted the help of 300 local women from Madhapur village, led by Sunderben Jetha Madharparya, to rebuild the airstrip using only their bare hands and some basic tools. They worked day and night for three days, braving enemy fire and air raids, to complete the task. On December 11, 1971, Indian fighter jets took off from the repaired runway and launched a counterattack on Pakistan, turning the tide of the war.

      -

      The film depicts this heroic feat with cinematic flair and dramatization. It also shows how Karnik and his team faced various challenges and threats from Pakistani spies, saboteurs, and traitors. It also explores the personal lives and relationships of some of the characters involved in the war, such as Ranchordas Pagi, a local scout who helped Karnik with intelligence and reconnaissance, Ram Karan 'RK' Nair, a senior officer and Karnik's friend, Heena Rehman, a Pakistani spy who infiltrated the base, Vikram Singh Baj Jethaaz, a brave fighter pilot, and Usha Karnik, Vijay's wife who supported him throughout the ordeal.

      -

      Who are the Cast and Crew of Bhuj: The Pride of India?

      -

      Bhuj: The Pride of India boasts of a star-studded cast and crew who have brought the story to life on the screen. Here are some of the main actors and filmmakers behind the film:

      -

      Ajay Devgn as Squadron Leader Vijay Karnik

      -

      Ajay Devgn is one of the most popular and versatile actors in Bollywood. He has starred in over 100 films in various genres, such as action, comedy, drama, romance, and thriller. He has won several awards, including two National Film Awards and four Filmfare Awards. He is also a producer and director.

      -

      In Bhuj: The Pride of India, he plays the role of Squadron Leader Vijay Karnik, the real-life hero who led the operation to rebuild the Bhuj airstrip. He portrays Karnik as a courageous, determined, and patriotic leader who inspired his men and women to fight for their country. He also shows his emotional side as a husband and a friend.

      -

      bhuj the pride of india 2021 hindi movie 480p 720p 1080p hdrip
      -bhuj the pride of india disney+ hotstar hindi full movie web-dl hd
      -bhuj the pride of india watch online free streaming vegamovies
      -bhuj the pride of india full movie download filmyzilla filmywap
      -bhuj the pride of india movie download moviespyhd dotmovies
      -bhuj the pride of india full movie based on true story of gujarati women
      -bhuj the pride of india war film directed by abhishek dudhaiya
      -bhuj the pride of india ajay devgn sanjay dutt sonakshi sinha star cast
      -bhuj the pride of india movie review rating and box office collection
      -bhuj the pride of india full movie leaked online by tamilrockers
      -bhuj the pride of india how to download from vegamovies website
      -bhuj the pride of india full movie watch on disney+ hotstar vip
      -bhuj the pride of india movie download link telegram channel
      -bhuj the pride of india full movie in hindi hd quality vegamovies
      -bhuj the pride of india movie download 300mb 400mb 1gb 2.8gb size
      -bhuj the pride of india full movie mkv mp4 format vegamovies
      -bhuj the pride of india movie download coolmoviez jalshamoviez mp4moviez
      -bhuj the pride of india full movie with english subtitles vegamovies
      -bhuj the pride of india movie download 9xmovies downloadhub 7starhd
      -bhuj the pride of india full movie release date trailer songs vegamovies
      -bhuj the pride of india movie download google drive link vegamovies
      -bhuj the pride of india full movie online watch free vegamovies
      -bhuj the pride of india movie download pagalworld pagalmovies bolly4u
      -bhuj the pride of india full movie hindi dubbed vegamovies
      -bhuj the pride of india movie download skymovieshd worldfree4u khatrimaza

      -

      Sanjay Dutt as Indian Army Scout Ranchordas Pagi

      -

      Sanjay Dutt is another veteran actor in Bollywood who has a huge fan following. He has appeared in more than 150 films in various languages, such as Hindi, Tamil, Telugu, and Kannada. He is known for his roles in films like Munna Bhai M.B.B.S., Lage Raho Munna Bhai, Agneepath, and PK. He has won several awards, including two Filmfare Awards and three Screen Awards. He is also a producer.

      -

      In Bhuj: The Pride of India, he plays the role of Ranchordas Pagi, a local scout who helped Karnik with intelligence and reconnaissance. He portrays Pagi as a loyal, fearless, and resourceful ally who used his skills and knowledge of the terrain to outsmart the enemy. He also shows his humorous side as a quirky and witty character.

      -

      Sonakshi Sinha as Sunderben Jetha Madharparya

      -

      Sonakshi Sinha is one of the most successful and talented actresses in Bollywood. She made her debut in 2010 with the blockbuster film Dabangg opposite Salman Khan. Since then, she has starred in several hit films, such as Rowdy Rathore, Lootera, Holiday: A Soldier Is Never Off Duty, Akira, and Mission Mangal. She has won several awards, including a Filmfare Award and four Zee Cine Awards.

      -

      In Bhuj: The Pride of India, she plays the role of Sunderben Jetha Madharparya, the leader of the 300 women who helped Karnik rebuild the airstrip. She portrays Sunderben as a strong, brave, and compassionate woman who rallied her fellow villagers to join the mission despite the risks and challenges. She also shows her emotional side as a mother and a wife.

      Sharad Kelkar as Ram Karan 'RK' Nair

      -

      Sharad Kelkar is a well-known actor and voice artist in Bollywood. He has worked in several films and television shows, such as Tanhaji: The Unsung Warrior, Laxmii, The Family Man, and Kuch Toh Log Kahenge. He has also dubbed for many Hollywood films and characters, such as Baahubali, Guardians of the Galaxy, Deadpool, and The Lion King.

      -

      In Bhuj: The Pride of India, he plays the role of Ram Karan 'RK' Nair, a senior officer and Karnik's friend. He portrays Nair as a loyal, brave, and supportive colleague who helped Karnik with the operation and stood by him in difficult times. He also shows his charismatic side as a leader and a mentor.

      -

      Nora Fatehi as Heena Rehman

      -

      Nora Fatehi is a Canadian dancer, model, actress, and singer who has made a name for herself in Bollywood. She is known for her stunning dance moves and appearances in songs like Dilbar, O Saki Saki, Garmi, and Naach Meri Rani. She has also acted in films like Street Dancer 3D, Batla House, and Bharat.

      -

      In Bhuj: The Pride of India, she plays the role of Heena Rehman, a Pakistani spy who infiltrated the Bhuj Air Force Base. She portrays Heena as a cunning, ruthless, and seductive agent who tried to sabotage the operation and harm Karnik and his team. She also shows her action side as a fighter and a shooter.

      -

      Ammy Virk as Vikram Singh Baj Jethaaz

      -

      Ammy Virk is a popular Punjabi singer, actor, and producer who has also ventured into Bollywood. He is known for his songs like Qismat, Wang Da Naap, Hath Chumme, and Laung Laachi. He has also acted in films like Nikka Zaildar, Harjeeta, Angrej, and Sufna. He has won several awards, including two PTC Punjabi Film Awards and two Filmfare Awards Punjabi.

      -

      In Bhuj: The Pride of India, he plays the role of Vikram Singh Baj Jethaaz, a brave fighter pilot who flew from the Bhuj airstrip. He portrays Vikram as a courageous, skilled, and patriotic aviator who risked his life to defend his country. He also shows his emotional side as a son and a brother.

      -

      Pranitha Subhash as Usha Karnik

      -

      Pranitha Subhash is an Indian actress who works predominantly in Kannada, Telugu, and Tamil films. She has starred in films like Porki, Saguni, Attarintiki Daredi, Brahma, and Mass Leader. She has also made her Hindi film debut with Bhuj: The Pride of India.

      -

      In Bhuj: The Pride of India, she plays the role of Usha Karnik, Vijay's wife. She portrays Usha as a loving, supportive, and strong woman who stood by her husband during the war. She also shows her emotional side as a wife and a daughter-in-law.

      -

      Abhishek Dudhaiya as the Director and Writer

      -

      Abhishek Dudhaiya is an Indian filmmaker who has directed and written Bhuj: The Pride of India. He has also worked as an assistant director in films like Dil Hai Tumhaara, Lakshya, and Family. He has also written the story and screenplay of Bhuj: The Pride of India. He has done extensive research and interviews to recreate the historical events and characters in the film. He has also used a mix of real footage, visual effects, and sets to create an authentic and immersive war film.

      -

      How to Watch Bhuj: The Pride of India Online?

      -

      Bhuj: The Pride of India was released on August 13, 2021, on the occasion of India's Independence Day. The film was originally planned to be released in theatres, but due to the COVID-19 pandemic, it was shifted to an online platform. Here are some of the ways you can watch the film online:

      -

      Disney+ Hotstar - The Official Streaming Platform

      -

      The best and most legal way to watch Bhuj: The Pride of India online is through Disney+ Hotstar, the official streaming partner of the film. Disney+ Hotstar is a popular and reliable OTT platform that offers a wide range of content, such as movies, shows, sports, news, and live TV. You can watch Bhuj: The Pride of India on Disney+ Hotstar with a subscription plan that suits your needs and budget.

      -

      There are two types of subscription plans available on Disney+ Hotstar - VIP and Premium. The VIP plan costs Rs. 399 per year and gives you access to Hindi movies, Indian shows, live sports, and dubbed versions of Hollywood movies and shows. The Premium plan costs Rs. 299 per month or Rs. 1499 per year and gives you access to all the content on the platform, including English movies and shows, Disney+ originals, and Hotstar specials.

      -

      To watch Bhuj: The Pride of India on Disney+ Hotstar, you need to follow these simple steps:

      -
        -
      1. Download the Disney+ Hotstar app on your smartphone or tablet, or visit the website on your computer or smart TV.
      2. -
      3. Sign up or log in with your email or phone number.
      4. -
      5. Choose a subscription plan that suits you and make the payment.
      6. -
      7. Search for Bhuj: The Pride of India on the app or website.
      8. -
      9. Enjoy watching the film in high quality and with subtitles.
      10. -
      -

      Vegamovies - An Illegal Torrent Website

      -

      Another way to watch Bhuj: The Pride of India online is through Vegamovies, an illegal torrent website that uploads pirated copies of movies and shows. Vegamovies is one of the many websites that are involved in online piracy and violate the Indian laws and regulations. You can find Bhuj: The Pride of India on Vegamovies in various formats and sizes, such as 480p, 720p, 1080p, 300MB, 700MB, etc.

      -

      To watch Bhuj: The Pride of India on Vegamovies, you need to follow these risky steps:

      -
        -
      1. Find a working domain name of Vegamovies, as it keeps changing its URL to avoid detection and blocking by the authorities.
      2. -
      3. Search for Bhuj: The Pride of India on the website or browse through its categories.
      4. -
      5. Select the format and size that you want to download.
      6. -
      7. Click on the download link or torrent magnet link.
      8. -
      9. Wait for the file to download on your device or torrent client.
      10. -
      11. Watch the film at your own risk.
      12. -
      -

      The Risks and Consequences of Using Vegamovies

      -

      While watching Bhuj: The Pride of India on Vegamovies may seem tempting and convenient, it is not advisable or safe for many reasons. Here are some of the risks and consequences of using Vegamovies:

      -
        -
      • You may be breaking the law and inviting legal trouble. Online piracy is a criminal offence in India under the Cinematograph Act of 1952 . If you are caught downloading or streaming pirated content from Vegamovies or any other similar website, you may face a jail term of up to three years or a fine of up to Rs. 10 lakh or both.
      • -
      • You may be harming the film industry and the artists. Online piracy causes huge losses to the filmmakers and producers who invest their time, money, and effort in making movies. It also affects the livelihoods of the actors, technicians, distributors, exhibitors, and other workers who depend on the film industry for their income. By watching Bhuj: The Pride of India on Vegamovies or any other pirated website, you are depriving them of their rightful earnings and appreciation.
      • -
      • You may be exposing your device and data to malware and viruses. Online piracy websites like Vegamovies are often loaded with malicious software and pop-up ads that can infect your device and compromise your data. You may end up losing your important files, personal information, or money to hackers and cybercriminals. You may also face issues like slow performance, battery drain, or data theft.
      • -
      • You may be missing out on the quality and experience of watching the film. Online piracy websites like Vegamovies often provide low-quality and distorted copies of movies and shows that ruin the visual and audio effects of the original content. You may not be able to enjoy the film as it was intended by the filmmakers. You may also miss out on the thrill and excitement of watching the film on a big screen or with a good sound system.
      • -
      -

      The Legal and Ethical Alternatives to Vegamovies

      -

      Instead of using Vegamovies or any other illegal torrent website to watch Bhuj: The Pride of India, you should opt for the legal and ethical alternatives that are available online. Here are some of them:

      -
        -
      • Disney+ Hotstar - As mentioned earlier, this is the official and authorized streaming platform for Bhuj: The Pride of India. You can watch the film with a subscription plan that is affordable and convenient for you. You can also enjoy other benefits like high-quality streaming, subtitles, offline viewing, and access to other content.
      • -
      • Other OTT Platforms - There are many other OTT platforms that offer a variety of movies and shows for online streaming. Some of them are Netflix, Amazon Prime Video, Zee5, SonyLIV, Voot, etc. You can choose a platform that suits your preferences and budget. You can also watch other films that are similar to Bhuj: The Pride of India, such as Uri: The Surgical Strike, Kesari, Raazi, etc.
      • -
      • Theatres - If you want to watch Bhuj: The Pride of India on a big screen with a good sound system, you can also go to the theatres that are open and safe in your area. You can check the show timings and book your tickets online or offline. You can also follow the COVID-19 safety protocols and guidelines while going to the theatres.
      • -
      -

      Why You Should Watch Bhuj: The Pride of India?

      -

      Bhuj: The Pride of India is a film that you should not miss if you are a fan of war films, patriotic films, or historical films. Here are some of the reasons why you should watch it:

      -

      It is a Tribute to the Unsung Heroes of the 1971 War

      -

      Bhuj: The Pride of India is a film that pays homage to the unsung heroes of the 1971 war who played a vital role in India's victory over Pakistan. It tells the story of Squadron Leader Vijay Karnik and his team who rebuilt the Bhuj airstrip in 72 hours with the help of 300 local women. It also tells the story of Ranchordas Pagi who helped Karnik with intelligence and reconnaissance, Vikram Singh Baj Jethaaz who flew from the airstrip to attack Pakistan, and many others who fought bravely and sacrificed their lives for their country.

      -

      The film is a way of honoring their courage, dedication, and patriotism that is often overlooked or forgotten by history. It is a way of remembering their contribution and inspiring future generations to follow their example.

      -

      It is a Gripping and Thrilling Action Drama

      -

      Bhuj: The Pride of India is a film that keeps you hooked and entertained with its gripping and thrilling action drama. It showcases the intense and realistic scenes of war, such as air strikes, bombings, gunfights, explosions, etc. It also shows the suspenseful and dramatic moments of espionage, sabotage, betrayal, etc. It also shows the emotional and personal aspects of war, such as love, friendship, family, etc.

      -

      The film is a roller-coaster ride of emotions that makes you feel the fear, anger, pain, joy, pride, and hope of the characters. It is a film that makes you root for the heroes and boo for the villains. It is a film that makes you cheer for every victory and mourn for every loss.

      -

      It is a Showcase of Patriotic Spirit and Courage

      -

      Bhuj: The Pride of India is a film that showcases the patriotic spirit and courage of the Indian people who fought for their country against all odds. It shows how they united under one flag and one cause despite their differences in religion, caste, language, and region. It shows how they displayed their courage and resilience in the face of adversity and danger. It shows how they expressed their love and respect for their nation and its flag.

      -

      The film is a reminder of the values and ideals that make India a great and diverse country. It is a reminder of the sacrifices and struggles that have shaped India's history and destiny. It is a reminder of the duty and responsibility that every Indian citizen has towards their country.

      -

      Conclusion

      -

      Bhuj: The Pride of India is a film that you should watch if you want to witness a remarkable chapter of India's history and honor the heroes who made it possible. It is a film that will make you proud of being an Indian and inspire you to serve your country with dedication and passion.

      -

      So, what are you waiting for? Watch Bhuj: The Pride of India on Disney+ Hotstar or any other legal platform and enjoy the film with your family and friends. And remember, don't use Vegamovies or any other illegal torrent website to watch the film, as it is not only unlawful but also unethical and unsafe.

      -

      Thank you for reading this article. We hope you found it informative and helpful. If you have any questions or feedback, please feel free to comment below. And don't forget to share this article with your social media contacts.

      -

      FAQs

      -

      Here are some of the frequently asked questions about Bhuj: The Pride of India:

      -

      Q1: Is Bhuj: The Pride of India based on a true story?

      -

      A1: Yes, Bhuj: The Pride of India is based on the true events that took place during the Indo-Pakistani War of 1971, when Indian Air Force Squadron Leader Vijay Karnik and his team rebuilt the Bhuj airstrip with the help of 300 local women in 72 hours.

      -

      Q2: Who are the real-life characters portrayed in Bhuj: The Pride of India?

      -

      A2: Some of the real-life characters portrayed in Bhuj: The Pride of India are:

      -
        -
      • Squadron Leader Vijay Karnik - The in-charge of the Bhuj Air Force Base who led the operation to rebuild the airstrip.
      • -
      • Ranchordas Pagi - A local scout who helped Karnik with intelligence and reconnaissance.
      • -
      • Sunderben Jetha Madharparya - The leader of the 300 women who helped Karnik rebuild the airstrip.
      • -
      • Vikram Singh Baj Jethaaz - A fighter pilot who flew from the Bhuj airstrip to attack Pakistan.
      • -
      • Usha Karnik - Vijay's wife who supported him during the war.
      • -
      -

      Q3: Where can I watch Bhuj: The Pride of India online?

      -

      A3: You can watch Bhuj: The Pride of India online on Disney+ Hotstar, the official streaming partner of the film. You can also watch it on other legal OTT platforms or theatres that are available in your area.

      -

      Q4: What are the ratings and reviews of Bhuj: The Pride of India?

      -

      A4: Bhuj: The Pride of India has received mixed ratings and reviews from critics and audiences. Some have praised the film for its patriotic message, action sequences, and performances, while others have criticized it for its historical inaccuracies, melodrama, and clichés. As of now, the film has a rating of 5.7/10 on IMDb and 2/5 on Times of India.

      -

      Q5: What are some other films that are similar to Bhuj: The Pride of India?

      -

      A5: Some other films that are similar to Bhuj: The Pride of India are:

      -
        -
      • Uri: The Surgical Strike - A 2019 film based on the 2016 Indian Army's surgical strikes on Pakistan-administered Kashmir.
      • -
      • Kesari - A 2019 film based on the 1897 Battle of Saragarhi, where 21 Sikh soldiers fought against 10,000 Afghan invaders.
      • -
      • Raazi - A 2018 film based on the true story of an Indian spy who married a Pakistani officer during the 1971 war.
      • -

      401be4b1e0
      -
      -
      \ No newline at end of file diff --git a/spaces/congsaPfin/Manga-OCR/logs/Extreme Car Driving Simulator MOD APK Gamedva The Ultimate Driving Experience.md b/spaces/congsaPfin/Manga-OCR/logs/Extreme Car Driving Simulator MOD APK Gamedva The Ultimate Driving Experience.md deleted file mode 100644 index 57d5e3b93daaa8fbd630be9db9b3d47903c61463..0000000000000000000000000000000000000000 --- a/spaces/congsaPfin/Manga-OCR/logs/Extreme Car Driving Simulator MOD APK Gamedva The Ultimate Driving Experience.md +++ /dev/null @@ -1,141 +0,0 @@ -
      -

      Extreme Car Driving Simulator Mod APK: A Fun and Exciting Game for Car Lovers

      -

      If you are a fan of car racing games, you might have heard of Extreme Car Driving Simulator, a popular 3D driving simulation game that lets you drive various cars in different modes and environments. But did you know that you can enjoy this game even more with a mod apk file from Gamedva.com? In this article, we will tell you everything you need to know about Extreme Car Driving Simulator Mod APK, what is a mod apk file, what are the benefits and risks of using it, and how to download and install it from Gamedva.com, a trusted site for mod apk games and apps.

      -

      What is Extreme Car Driving Simulator?

      -

      Extreme Car Driving Simulator is a realistic car simulation game that was developed by AxesInMotion Racing and released in 2015. The game has over 100 million downloads on Google Play Store and has received positive reviews from users and critics. The game allows you to drive various cars, such as sports cars, muscle cars, off-road vehicles, and police cars, in different modes and environments. You can customize your car's appearance and performance, explore the open world map, perform stunts and drifts, race against other players online, or just enjoy the night view of the city.

      -

      extreme car driving simulator mod apk gamedva


      Download Zip https://urlca.com/2uOgoU



      -

      Features of the game

      -
        -
      • Realistic physics and damage system
      • -
      • Full real HUD including revs, gear and speed
      • -
      • ABS, TC and ESP simulation. You can also turn them off!
      • -
      • Control your car with a steering wheel, accelerometer or arrows
      • -
      • Several cameras modes: first person, third person, dashboard, etc.
      • -
      • Free mode to explore the city at your own pace
      • -
      • Traffic mode to drive with traffic rules and avoid collisions
      • -
      • Checkpoint mode to race against the clock and reach the checkpoints
      • -
      • New multiplayer mode to challenge other players online
      • -
      • New mini game mode to play fun mini games with your car
      • -
      • New cars added regularly
      • -
      -

      How to play the game

      -

      To play the game, you need to download and install it from Google Play Store or any other trusted source. The game is free to play but contains ads and in-app purchases. You can choose your preferred mode from the main menu and select your car from the garage. You can also customize your car's color, wheels, engine, suspension, etc. You can control your car with different options, such as steering wheel, accelerometer or arrows. You can also switch between different camera views by tapping on the camera icon. You can pause the game by tapping on the pause icon.

      -

      What is a Mod APK?

      -

      A mod apk is a modified version of an official Android app or game that has been tweaked by a third-party developer to add or enable some features that are not available in the original app or game. For example, a mod apk of Extreme Car Driving Simulator can unlock all the cars, remove all the ads, increase the money and coins, etc.

      -

      Benefits of installing mod apk files

      -
        -
      • You can access all the features of an app or game without spending any money
      • -
      • You can enjoy premium features for free of cost
      • -
      • You can download and install mod apk files easily from various sites
      • -
      • You can get the latest versions of mod apk files with new updates and features
      • -
      • You can get great hacks and cheats for your favorite games
      • -
      -

      Risks of using mod apk files

      -
        -
      • You can expose your device to malware and viruses that can harm your data and privacy
      • -
      • You can violate the terms and conditions of the original app or game and get banned or suspended
      • -
      • You can lose your progress and achievements if the mod apk file is not compatible with the original app or game
      • -
      • You can miss out on the official updates and bug fixes from the original app or game developer
      • -
      • You can face legal issues if the mod apk file infringes the intellectual property rights of the original app or game developer
      • -
      -

      What is Gamedva.com?

      -

      Gamedva.com is a website that provides mod apk files for various Android games and apps. You can find mod apk files for popular games such as Extreme Car Driving Simulator, Asphalt 9, Subway Surfers, PUBG Mobile, etc. You can also find mod apk files for useful apps such as Spotify, Netflix, YouTube, etc. Gamedva.com is a trusted site that has been verified by many users and reviewers. You can download and install mod apk files from Gamedva.com safely and easily.

      -

      A trusted site for mod apk games and apps

      -
        -
      • Gamedva.com has a large collection of mod apk files for different categories and genres of games and apps
      • -
      • Gamedva.com updates its mod apk files regularly with new features and improvements
      • -
      • Gamedva.com provides detailed information and instructions for each mod apk file, such as the version, size, requirements, features, installation steps, etc.
      • -
      • Gamedva.com offers fast and secure download links for mod apk files without any surveys or pop-ups
      • -
      • Gamedva.com has a friendly and responsive customer support team that can help you with any issues or queries related to mod apk files
      • -
      -

      How to download and install mod apk files from Gamedva.com

      -

      To download and install mod apk files from Gamedva.com, you need to follow these simple steps:

      -
        -
      1. Go to Gamedva.com and search for the game or app you want to download the mod apk file for
      2. -
      3. Select the mod apk file from the list of results and click on the download button
      4. -
      5. Wait for the download to complete and then locate the mod apk file on your device's storage
      6. -
      7. Before installing the mod apk file, make sure you have enabled the "Unknown Sources" option in your device's settings. This will allow you to install apps from sources other than Google Play Store
      8. -
      9. Tap on the mod apk file and follow the on-screen instructions to install it on your device
      10. -
      11. Launch the game or app and enjoy the mod features
      12. -
      -

      How to enjoy Extreme Car Driving Simulator Mod APK from Gamedva.com?

      -

      Now that you have downloaded and installed Extreme Car Driving Simulator Mod APK from Gamedva.com, you can enjoy this fun and exciting game with more features and advantages. Here are some of the things you can do with Extreme Car Driving Simulator Mod APK:

      -

      What are the mod features of the game?

      -
        -
      • Unlimited money and coins: You can buy any car you want without worrying about the cost. You can also upgrade your car's performance and appearance with unlimited money and coins
      • -
      • All cars unlocked: You can access all the cars in the game, including the premium ones, without completing any missions or achievements. You can drive any car you like in any mode or environment
      • -
      • No ads: You can play the game without any interruptions or distractions from annoying ads. You can enjoy a smooth and immersive gaming experience with no ads
      • -
      • No root required: You don't need to root your device to install or use Extreme Car Driving Simulator Mod APK. You can enjoy all the mod features without risking your device's warranty or security
      • -
      -

      Tips and tricks to play the game better

      -
        -
      • Use different camera modes to get a better view of your car and surroundings. You can switch between first person, third person, dashboard, etc. by tapping on the camera icon. You can also adjust the camera angle by swiping on the screen
      • -
      • Use different control options to suit your preference and comfort. You can control your car with a steering wheel, accelerometer or arrows. You can also change the sensitivity and position of the controls in the settings menu
      • -
      • Use ABS, TC and ESP simulation to improve your driving skills. You can turn them on or off by tapping on the icons on the screen. ABS (Anti-lock Braking System) prevents your wheels from locking up when braking, TC (Traction Control) prevents your wheels from spinning when accelerating, and ESP (Electronic Stability Program) prevents your car from skidding when turning
      • -
      • Use the mini map to navigate the city and find the checkpoints. You can zoom in or out the mini map by tapping on the icons on the screen. You can also see the traffic lights and speed limits on the mini map
      • -
      • Use the nitro boost to speed up your car and perform amazing stunts and drifts. You can activate the nitro boost by tapping on the icon on the screen. You can refill your nitro meter by driving fast or performing stunts and drifts
      • -
      • Use the pause menu to access more options and features. You can tap on the pause icon to pause the game and access the settings, garage, shop, achievements, leaderboards, etc. You can also change the mode, environment, time, weather, etc. from the pause menu
      • -
      -

      Conclusion

      -

      Extreme Car Driving Simulator is a fun and exciting game for car lovers who want to experience realistic driving simulation with various cars and modes. With Extreme Car Driving Simulator Mod APK from Gamedva.com, you can enjoy this game even more with unlimited money and coins, all cars unlocked, no ads, and no root required. You can download and install Extreme Car Driving Simulator Mod APK from Gamedva.com easily and safely. You can also follow our tips and tricks to play the game better and have more fun. So what are you waiting for? Download Extreme Car Driving Simulator Mod APK from Gamedva.com today and enjoy the ultimate car driving simulator!

      -

      FAQs

      -

      Q: Is Extreme Car Driving Simulator Mod APK safe to use?

      -

      A: Yes, Extreme Car Driving Simulator Mod APK from Gamedva.com is safe to use as it has been verified by many users and reviewers. However, you should always download mod apk files from trusted sources and scan them with antivirus software before installing them on your device.

      -

      Q: Do I need to uninstall the original game before installing Extreme Car Driving Simulator Mod APK?

      -

      A: No, you don't need to uninstall the original game before installing Extreme Car Driving Simulator Mod APK. You can install both versions of the game on your device and play them separately. However, you should not use the same account or data for both versions as it may cause conflicts or errors.

      -

      extreme car driving simulator hack mod apk download gamedva
      -gamedva extreme car driving simulator mod apk unlimited money
      -extreme car driving simulator mod apk latest version gamedva
      -gamedva.com extreme car driving simulator mod apk free
      -extreme car driving simulator mod apk android 1 gamedva
      -gamedva extreme car driving simulator hack mod apk 2023
      -extreme car driving simulator mod apk rexdl gamedva
      -gamedva extreme car driving simulator mod apk offline
      -extreme car driving simulator mod apk revdl gamedva
      -gamedva extreme car driving simulator hack mod apk no root
      -extreme car driving simulator mod apk happymod gamedva
      -gamedva extreme car driving simulator mod apk all cars unlocked
      -extreme car driving simulator mod apk an1 gamedva
      -gamedva extreme car driving simulator hack mod apk ios
      -extreme car driving simulator mod apk apkpure gamedva
      -gamedva extreme car driving simulator mod apk 5.3.0
      -extreme car driving simulator mod apk 2023 gamedva
      -gamedva extreme car driving simulator hack mod apk online
      -extreme car driving simulator mod apk unlimited everything gamedva
      -gamedva extreme car driving simulator mod apk 4.18.30
      -extreme car driving simulator mod apk old version gamedva
      -gamedva extreme car driving simulator hack mod apk 5.2.7
      -extreme car driving simulator mod apk obb gamedva
      -gamedva extreme car driving simulator mod apk new update
      -extreme car driving simulator mod apk vip unlocked gamedva
      -gamedva extreme car driving simulator hack mod apk unlimited gems
      -extreme car driving simulator mod apk for pc gamedva
      -gamedva extreme car driving simulator mod apk no ads
      -extreme car driving simulator mod apk premium unlocked gamedva
      -gamedva extreme car driving simulator hack mod apk 4.18.26
      -extreme car driving simulator mod apk all features unlocked gamedva
      -gamedva extreme car driving simulator mod apk 5.2.9
      -extreme car driving simulator mod apk unlimited nitro gamedva
      -gamedva extreme car driving simulator hack mod apk 5.3.2p1
      -extreme car driving simulator mod apk pro version gamedva
      -gamedva extreme car driving simulator mod apk no verification
      -extreme car driving simulator mod apk mega mod gamedva
      -gamedva extreme car driving simulator hack mod apk 5.2.8p1
      -extreme car driving simulator mod apk full version gamedva
      -gamedva extreme car driving simulator mod apk 5.2.6p1
      -extreme car driving simulator mod apk unlimited coins and diamonds gamedva
      -gamedva extreme car driving simulator hack mod apk 4.18.25p1
      -extreme car driving simulator mod apk high graphics gamedva
      -gamedva extreme car driving simulator mod apk 5.2.7p1
      -extreme car driving simulator mod apk no limit speed gamedva
      -gamedva extreme car driving simulator hack mod apk 4.18.27p1
      -extreme car driving simulator mod apk low mb size gamedva
      -gamedva extreme car driving simulator mod apk 5.2.8p2

      -

      Q: Can I play Extreme Car Driving Simulator Mod APK online with other players?

      -

      A: Yes, you can play Extreme Car Driving Simulator Mod APK online with other players in the multiplayer mode. However, you should be aware that some players may report you for using mod apk files and you may get banned or suspended from the game. Therefore, you should use mod apk files at your own risk and discretion.

      -

      Q: How can I update Extreme Car Driving Simulator Mod APK?

      -

      A: To update Extreme Car Driving Simulator Mod APK, you need to visit Gamedva.com and check for the latest version of the mod apk file. You can then download and install it on your device as usual. However, you should backup your data before updating as it may get erased or corrupted during the process.

      -

      Q: How can I contact Gamedva.com for any issues or queries related to Extreme Car Driving Simulator Mod APK?

      -

      A: You can contact Gamedva.com by visiting their website and filling out their contact form. You can also email them at support@gamedva.com or follow them on their social media accounts such as Facebook, Twitter, Instagram, etc.

      401be4b1e0
      -
      -
      \ No newline at end of file diff --git a/spaces/congsaPfin/Manga-OCR/logs/How to Play Green Glass APK on Android - A Guide for Beginners.md b/spaces/congsaPfin/Manga-OCR/logs/How to Play Green Glass APK on Android - A Guide for Beginners.md deleted file mode 100644 index 0f7c389465aeeb759c779c8e7bf43b87ce5d040a..0000000000000000000000000000000000000000 --- a/spaces/congsaPfin/Manga-OCR/logs/How to Play Green Glass APK on Android - A Guide for Beginners.md +++ /dev/null @@ -1,115 +0,0 @@ -
      -

      Green Glass APK: A Beautiful and Introspective 3D Adventure Game

      -

      Have you ever wanted to experience a journey through a magical world with a mysterious companion by your side? If so, you might want to check out Green Glass APK, a 3D adventure game that will take your breath away with its stunning visuals, immersive story, and engaging gameplay.

      -

      green glass apk


      DOWNLOAD ::: https://urlca.com/2uO7CF



      -

      What is Green Glass APK?

      -

      A brief introduction to the game and its developer

      -

      Green Glass APK is an Android game developed by Netease, one of the leading online game companies in China. Netease is known for creating popular games such as Onmyoji, Knives Out, Identity V, LifeAfter, and more. Green Glass APK is one of their latest creations, released in 2022.

      -

      The main features of the game

      -

      Green Glass APK is a 3D adventure game where you control a warrior who has to accompany a woman throughout a long journey. Along the way, you'll come across tons of obstacles, including powerful enemies that will try to put an untimely end to your adventure. The game features:

      -
        -
      • A beautiful and diverse world that you can explore on foot, horseback, or by boat.
      • -
      • A captivating story that unfolds through dialogues, cutscenes, and interactions.
      • -
      • A simple and intuitive control system that adapts to different situations.
      • -
      • A dynamic combat system that lets you use different weapons and skills.
      • -
      • A relaxing and soothing soundtrack that matches the mood of the game.
      • -
      -

      How to download and install the game

      -

      To download and install Green Glass APK on your Android device, you need to follow these steps:

      -
        -
      1. Go to APKCombo, a website that offers free APK downloads for Android games.
      2. -
      3. Search for "Green Glass" in the search bar or click on this link Green Glass APK 1.0.4 Download for Android.
      4. -
      5. Click on the "Download APK" button and wait for the file to be downloaded.
      6. -
      7. Once the download is complete, open the file and follow the instructions to install the game on your device.
      8. -
      9. Enjoy playing Green Glass APK!
      10. -
      -

      Why should you play Green Glass APK?

      -

      The stunning graphics and sound effects

      -

      One of the most impressive aspects of Green Glass APK is its graphics. The game uses a realistic and detailed 3D engine that creates a vivid and immersive world. You'll be amazed by the variety of landscapes, from lush forests and snowy mountains to desolate deserts and ancient ruins. The game also uses realistic lighting and shadow effects, as well as weather and time changes, to create different atmospheres and moods.

      -

      The sound effects are also top-notch, enhancing the immersion and realism of the game. You'll hear the sounds of nature, such as birds chirping, water flowing, and wind blowing, as well as the sounds of combat, such as swords clashing, arrows flying, and enemies groaning. The game also features a soothing and relaxing soundtrack that matches the tone and pace of the game.

      -

      green glass game download apk
      -green glass netease apk
      -green glass android apk
      -green glass apk mod
      -green glass apk obb
      -green glass apk offline
      -green glass apk english version
      -green glass apk latest version
      -green glass apk free download
      -green glass apk full version
      -green glass apk data
      -green glass apk revdl
      -green glass apk pure
      -green glass apk android 1
      -green glass apk uptodown
      -green glass apk rexdl
      -green glass apk hack
      -green glass apk unlimited money
      -green glass apk no verification
      -green glass apk highly compressed
      -green glass adventure game apk
      -green glass 3d game apk
      -green glass action game apk
      -green glass offline game apk
      -green glass netease game apk
      -download game green glass mod apk
      -download game green glass full version apk
      -download game green glass android apk
      -download game green glass offline apk
      -download game green glass english version apk
      -how to download green glass apk
      -how to install green glass apk
      -how to play green glass apk
      -how to update green glass apk
      -how to get green glass apk for free
      -is green glass apk safe
      -is green glass apk available in english
      -is green glass apk online or offline
      -is green glass apk compatible with my device
      -is green glass apk worth playing
      -what is green glass apk about
      -what is the size of green glass apk
      -what is the rating of green glass apk
      -what is the genre of green glass apk
      -what are the requirements for green glass apk
      -what are the features of green glass apk
      -what are the best alternatives to green glass apk
      -where can i find more information about green glass apk[^1^]

      -

      The immersive story and gameplay

      -

      Another reason to play Green Glass APK is its story and gameplay. The game tells a captivating tale of a warrior who has to escort a mysterious woman through a perilous journey. Along the way, you'll learn more about their backgrounds, motivations, and secrets, as well as the history and lore of the world they live in. The game also features dialogues, cutscenes, and interactions that reveal the personalities and emotions of the characters.

      -

      The gameplay is also immersive and engaging, as you'll have to face various challenges and obstacles in your journey. You'll have to explore different environments, solve puzzles, collect items, make choices, and fight against enemies. The game also offers different modes of transportation, such as walking, riding a horse, or sailing a boat, to make your journey more diverse and fun.

      -

      The varied and challenging obstacles and enemies

      -

      A third reason to play Green Glass APK is its obstacles and enemies. The game offers a variety of challenges that will test your skills and reflexes. You'll have to overcome physical obstacles, such as cliffs, bridges, rivers, traps, and more. You'll also have to deal with environmental hazards, such as storms, fires, floods, and more.

      -

      The game also features a variety of enemies that will try to stop you from completing your journey. You'll have to fight against human foes, such as bandits, soldiers, assassins, and more. You'll also have to fight against non-human foes, such as animals, monsters, spirits, and more. The game offers a dynamic combat system that lets you use different weapons and skills to defeat your enemies.

      -

      What are some tips and tricks for playing Green Glass APK?

      -

      How to control your character and interact with the environment

      -

      To control your character in Green Glass APK, you need to use the virtual joystick on the left side of the screen to move around. You can also swipe on the right side of the screen to change the camera angle. To interact with the environment or other characters, you need to tap on the icons that appear on the screen. For example, you can tap on a horse icon to mount or dismount a horse.

      -

      How to fight against different types of foes

      -

      To fight against foes in Green Glass APK, you need to use the buttons on the right side of the screen. You can use the sword button to attack with your sword or switch weapons by tapping on it twice. You can use the shield button to block incoming attacks or parry them by timing it right. You can use the skill button to unleash a special skill that varies depending on your weapon. You can also use items such as potions or bombs by tapping on their icons.

      -

      How to make tea and other activities

      -

      One of the unique features of Green Glass APK is that you can make tea for yourself or your companion by using a teapot that you can find in certain locations. To make tea, you need to tap on the teapot icon and then select a type of tea from the menu. You can then watch a short animation of your character making tea while listening to some relaxing music.

      -

      Making tea is not only a way to relax and enjoy the scenery but also a way to increase your relationship with your companion. Depending on your choices and actions throughout the game, your companion will have different reactions and dialogues when you make tea for her.

      -

      There are also other activities that you can do in Green Glass APK, such as fishing, playing the flute, or feeding animals. These activities are not only fun and relaxing but also rewarding, as they can give you items, skills, or achievements.

      -

      Conclusion

      -

      A summary of the main points and a call to action

      -

      Green Glass APK is a 3D adventure game that will take you on a journey through a beautiful and magical world. You'll have to escort a mysterious woman while facing various obstacles and enemies. You'll also enjoy the stunning graphics, the immersive story, and the engaging gameplay. You'll also be able to make tea and do other activities that will enhance your experience and relationship with your companion.

      -

      If you're looking for a game that will captivate you with its visuals, story, and gameplay, you should definitely try Green Glass APK. You can download it for free from APKCombo and install it on your Android device. Don't miss this opportunity to play one of the best 3D adventure games of 2022!

      -

      FAQs

      -

      Q1: Is Green Glass APK free?

      -

      A1: Yes, Green Glass APK is free to download and play. However, the game may contain some in-app purchases or ads that you can choose to buy or watch.

      -

      Q2: Is Green Glass APK safe?

      -

      A2: Yes, Green Glass APK is safe to download and install. The game does not contain any viruses, malware, or spyware that could harm your device or data. However, you should always download the game from a trusted source such as APKCombo to avoid any risks.

      -

      Q3: Is Green Glass APK available for other platforms?

      -

      A3: No, Green Glass APK is currently only available for Android devices. There is no official version of the game for iOS, Windows, Mac, or other platforms.

      -

      Q4: How long is Green Glass APK?

      -

      A4: Green Glass APK is a relatively long game that can take you several hours to complete. The game has multiple chapters and endings that depend on your choices and actions. The game also has a lot of content and secrets that you can discover by exploring the world.

      -

      Q5: What are some similar games to Green Glass APK?

      -

      A5: Some similar games to Green Glass APK are:

      - - - - - -
      GameDescription
      JourneyA 3D adventure game where you control a robed figure who travels through a vast desert with other players online.
      Shadow of the ColossusA 3D action-adventure game where you control a young man who has to defeat 16 giant creatures in order to revive a girl.
      The Legend of Zelda: Breath of the WildA 3D open-world action-adventure game where you control Link who has to explore and save the kingdom of Hyrule from an evil force.

      197e85843d
      -
      -
      \ No newline at end of file diff --git a/spaces/congsaPfin/Manga-OCR/logs/TikTok 4.5 APK Whats New and Where to Get It.md b/spaces/congsaPfin/Manga-OCR/logs/TikTok 4.5 APK Whats New and Where to Get It.md deleted file mode 100644 index d71b3ec464f82b8ed9b4b3353b84f3c2e2668c43..0000000000000000000000000000000000000000 --- a/spaces/congsaPfin/Manga-OCR/logs/TikTok 4.5 APK Whats New and Where to Get It.md +++ /dev/null @@ -1,123 +0,0 @@ - -

      TikTok 4.5 APK: How to Download and Install the Latest Version of the Popular Social Network

      -

      TikTok is one of the most popular social networks in the world, with over a billion users and millions of content creators from different genres and niches. Whether you want to watch comedy, gaming, DIY, food, sports, memes, pets, or any other type of videos, you can find them all on TikTok. And if you want to create your own videos and share them with your friends and followers, you can do that too with TikTok's easy-to-use video editor.

      -

      tiktok 4.5 apk


      DOWNLOADhttps://urlca.com/2uOf88



      -

      But what if you want to enjoy the latest features and improvements of TikTok without waiting for the official update on Google Play Store? Well, there is a way to do that by downloading and installing TikTok 4.5 APK on your Android device. In this article, we will show you what TikTok 4.5 APK is, what are its benefits, how to download and install it on your device, and how to use it to create and share amazing videos.

      -

      What is TikTok and why is it so popular?

      -

      TikTok is a social network that lets you create and share fun videos with music and effects

      -

      TikTok is an app that allows you to record short videos (up to 60 seconds) with music and effects, and share them with other users on the platform or other social media apps. You can also watch videos from other users who have similar interests or preferences as you, or discover new content from different categories or trends.

      -

      TikTok has millions of users and content creators from different genres and niches

      -

      TikTok has a huge community of users who enjoy watching and creating videos on various topics. You can find videos from celebrities, influencers, artists, comedians, gamers, dancers, singers, chefs, athletes, pets, and more. You can also follow your favorite creators or interact with them through comments or messages.

      -TikTok offers various features and options to make your videos more engaging and creative -

      TikTok has a powerful video editor that lets you add music, effects, filters, stickers, text, and other elements to your videos. You can also use the duet, react, stitch, or live stream features to collaborate with other users or interact with your audience. You can also join challenges, hashtags, or trends to showcase your skills or talents.

      -

      tiktok 4.5 apk download
      -tiktok 4.5 apk mod
      -tiktok 4.5 apk free
      -tiktok 4.5 apk uptodown
      -tiktok 4.5 apk android
      -tiktok 4.5 apk latest version
      -tiktok 4.5 apk no watermark
      -tiktok 4.5 apk unlocked
      -tiktok 4.5 apk hack
      -tiktok 4.5 apk premium
      -tiktok 4.5 apk old version
      -tiktok 4.5 apk mirror
      -tiktok 4.5 apk for pc
      -tiktok 4.5 apk region unlocked
      -tiktok 4.5 apk coins
      -tiktok 4.5 apk unlimited likes
      -tiktok 4.5 apk followers
      -tiktok 4.5 apk pro
      -tiktok 4.5 apk cracked
      -tiktok 4.5 apk original
      -tiktok 4.5 apk update
      -tiktok 4.5 apk install
      -tiktok 4.5 apk online
      -tiktok 4.5 apk file
      -tiktok 4.5 apk link
      -tiktok 4.5 apk without ads
      -tiktok 4.5 apk music.ly
      -tiktok 4.5 apk softpedia
      -tiktok 4.5 apk video downloader
      -tiktok 4.5 apk live wallpaper
      -tiktok 4.5 apk editor
      -tiktok 4.5 apk effects
      -tiktok 4.5 apk filters
      -tiktok 4.5 apk duet
      -tiktok 4.5 apk stickers
      -tiktok 4.5 apk songs
      -tiktok 4.5 apk trends
      -tiktok 4.5 apk challenges
      -tiktok 4.5 apk memes
      -tiktok 4.5 apk community
      -tiktok 4.5 apk creators
      -tiktok 4.5 apk influencers
      -tiktok 4.5 apk celebrities
      -tiktok 4.5 apk verified users
      -tiktok 4.5 apk analytics
      -tiktok 4.5 apk monetization
      -tiktok 4.5 apk tips
      -tiktok 4.5 apk tricks
      -tiktok 4.5 apk reviews

      -

      What is TikTok 4.5 APK and what are its benefits?

      -

      TikTok 4.5 APK is the latest version of the app that you can download from Uptodown for free

      -

      TikTok 4.5 APK is the updated version of the app that has some new features and improvements that make it more user-friendly and enjoyable. You can download it from Uptodown, a trusted website that offers free and safe downloads of apps and games for Android devices. You don't need to register or pay anything to download TikTok 4.5 APK from Uptodown.

      -

      TikTok 4.5 APK has some new features and improvements that make it more user-friendly and enjoyable

      -

      Some of the new features and improvements that TikTok 4.5 APK has are:

      -
        -
      • A new design for the home page that makes it easier to navigate and discover new content
      • -
      • A new feature that allows you to create videos with multiple clips and transitions
      • -
      • A new feature that allows you to add voice effects to your videos
      • -
      • A new feature that allows you to create videos with 3D stickers and objects
      • -
      • A new feature that allows you to create videos with animated text and graphics
      • -
      • A new feature that allows you to create videos with custom backgrounds and filters
      • -
      • A new feature that allows you to create videos with music from your device or from TikTok's library
      • -
      • A new feature that allows you to create videos with sound effects and voiceovers
      • -
      • A new feature that allows you to create videos with slow motion, fast forward, reverse, or loop effects
      • -
      • A new feature that allows you to create videos with face tracking and beautification effects
      • -
      • Improved performance and stability of the app
      • -
      • Fixed some bugs and errors
      • -
      -

      TikTok 4.5 APK is compatible with Android 5.0 or higher devices and has a size of 84 MB

      -

      TikTok 4.5 APK is compatible with most Android devices that have Android 5.0 or higher operating system. It has a size of 84 MB, which means it won't take up much space on your device. However, you may need to have enough storage space on your device to download and install the APK file.

      How to download and install TikTok 4.5 APK on your Android device?

      -

      Step 1: Go to Uptodown website and search for TikTok 4.5 APK

      -

      The first step to download and install TikTok 4.5 APK on your Android device is to go to Uptodown website, which is a reliable source of free and safe apps and games for Android devices. You can use any browser on your device to access the website, or you can download the Uptodown app from Google Play Store. Once you are on the website, type TikTok 4.5 APK in the search bar and hit enter.

      -

      Step 2: Click on the download button and wait for the file to be downloaded on your device

      -

      The second step is to click on the download button that appears on the screen after you search for TikTok 4.5 APK. You will see a pop-up window that asks you to confirm the download. Click on OK and wait for the file to be downloaded on your device. You can check the progress of the download on the notification bar or on the Uptodown app.

      -

      Step 3: Enable unknown sources on your device settings to allow the installation of the APK file

      -

      The third step is to enable unknown sources on your device settings to allow the installation of the APK file. This is because Android devices usually block the installation of apps that are not from Google Play Store or other trusted sources. To enable unknown sources, go to your device settings, then security, then unknown sources, and toggle it on. You may see a warning message that tells you about the risks of installing apps from unknown sources. Click on OK and proceed.

      -

      Step 4: Locate the downloaded file on your device and tap on it to start the installation process

      -

      The fourth step is to locate the downloaded file on your device and tap on it to start the installation process. You can find the file in your downloads folder or in the Uptodown app. Once you tap on the file, you will see a screen that asks you to confirm the installation. Click on install and wait for the app to be installed on your device.

      -

      Step 5: Follow the instructions on the screen and wait for the app to be installed on your device

      -

      The fifth and final step is to follow the instructions on the screen and wait for the app to be installed on your device. You may see some permissions requests that ask you to allow the app to access certain features or data on your device. Click on allow or accept as needed. You may also see some terms and conditions or privacy policies that you need to agree to before using the app. Read them carefully and click on agree or accept as needed. Once the app is installed, you will see a screen that says "App installed". Click on open and enjoy using TikTok 4.5 APK.

      How to use TikTok 4.5 APK to create and share amazing videos?

      -

      Now that you have downloaded and installed TikTok 4.5 APK on your Android device, you are ready to use it to create and share amazing videos with your friends and followers. Here are the steps to follow:

      -

      Step 1: Launch the app and sign up or log in with your existing account

      -

      The first step is to launch the app and sign up or log in with your existing account. If you are new to TikTok, you can sign up with your phone number, email address, or social media account. You will need to create a username, password, and profile picture. You can also choose your preferences and interests to get personalized recommendations. If you already have a TikTok account, you can log in with your credentials or scan the QR code on your other device.

      -

      Step 2: Tap on the plus icon at the bottom of the screen to start recording a new video or choose one from your gallery

      -

      The second step is to tap on the plus icon at the bottom of the screen to start recording a new video or choose one from your gallery. You can record a video by holding the record button or tapping it repeatedly to create multiple clips. You can also switch between the front and rear cameras, adjust the speed, set a timer, or use a template. You can also choose a video from your gallery by tapping on the upload button and selecting the video you want.

      -

      Step 3: Add music, effects, filters, stickers, text, and other elements to your video using the editing tools

      -

      The third step is to add music, effects, filters, stickers, text, and other elements to your video using the editing tools. You can tap on the music icon to choose a song from TikTok's library or from your device. You can also trim, cut, or adjust the volume of the music. You can tap on the effects icon to choose from various effects such as beauty, time warp, green screen, face morph, and more. You can also apply filters to change the color or mood of your video. You can tap on the stickers icon to add stickers, emojis, GIFs, or 3D objects to your video. You can also use face tracking and beautification effects to enhance your appearance. You can tap on the text icon to add text to your video. You can also change the font, color, size, alignment, or animation of the text. You can also use animated text and graphics to make your video more dynamic.

      -

      Step 4: Preview your video and make any adjustments if needed

      -

      The fourth step is to preview your video and make any adjustments if needed. You can tap on the play button to watch your video before posting it. You can also use the scissors icon to trim or split your video into segments. You can also use the undo or redo buttons to undo or redo any changes you made.

      -

      Step 5: Tap on the next button and choose a title, hashtags, and other options for your video

      -

      The fifth step is to tap on the next button and choose a title, hashtags, and other options for your video. You can type a catchy title for your video that describes what it is about or what you want to convey. You can also add hashtags that are relevant to your video or that are trending on TikTok. You can also tag other users or mention them in your title or hashtags. You can also choose other options such as who can view your video (public, friends only, private), whether you want to allow comments or duets/reacts/stitches/livestreams on your video, whether you want to save your video to your device or not, and whether you want to share your video on other platforms such as Instagram, Facebook, Twitter, WhatsApp, etc.

      -

      Step 6: Tap on the post button and share your video with your friends and followers on TikTok or other platforms

      -

      The sixth and final step is to tap on the post button and share your video with your friends and followers on TikTok or other platforms. You will see a screen that shows the progress of uploading your video. Once it is done, you will see a confirmation message that says "Video posted". You can then view your video on your profile page or on the home page. You can also see how many views, likes, comments, shares, and fans you have received for your video.

      -

      Conclusion

      -

      TikTok is a fun and creative social network that lets you create and share short videos with music and effects. With TikTok 4.5 APK, you can enjoy the latest features and improvements of the app without waiting for the official update on Google Play Store. You can download and install TikTok 4.5 APK from Uptodown website for free and enjoy the new features and improvements. You can also use TikTok 4.5 APK to create and share amazing videos with your friends and followers on TikTok or other platforms. TikTok 4.5 APK is compatible with Android 5.0 or higher devices and has a size of 84 MB. Follow the steps in this article to download and install TikTok 4.5 APK on your device and start using it today.

      -

      FAQs

      -

      Here are some frequently asked questions about TikTok 4.5 APK:

      -
        -
      1. Is TikTok 4.5 APK safe to download and install?
      2. -

        Yes, TikTok 4.5 APK is safe to download and install from Uptodown website, which is a trusted source of free and safe apps and games for Android devices. However, you should always be careful when downloading and installing apps from unknown sources and check the permissions and terms and conditions before using them.

        -
      3. What are the differences between TikTok 4.5 APK and the official version of the app?
      4. -

        TikTok 4.5 APK is the latest version of the app that has some new features and improvements that are not available in the official version of the app on Google Play Store. Some of these features are: a new design for the home page, a new feature to create videos with multiple clips and transitions, a new feature to add voice effects to your videos, a new feature to create videos with 3D stickers and objects, a new feature to create videos with animated text and graphics, a new feature to create videos with custom backgrounds and filters, a new feature to create videos with music from your device or from TikTok's library, a new feature to create videos with sound effects and voiceovers, a new feature to create videos with slow motion, fast forward, reverse, or loop effects, a new feature to create videos with face tracking and beautification effects, improved performance and stability of the app, and fixed some bugs and errors.

        -
      5. How can I update TikTok 4.5 APK to the next version?
      6. -

        You can update TikTok 4.5 APK to the next version by visiting Uptodown website again and searching for the latest version of the app. You can then download and install it on your device following the same steps as before. Alternatively, you can wait for the official update on Google Play Store and update it from there.

        -
      7. Can I use TikTok 4.5 APK on other devices besides Android?
      8. -

        No, TikTok 4.5 APK is only compatible with Android devices that have Android 5.0 or higher operating system. If you want to use TikTok on other devices such as iOS, Windows, or Mac, you will need to download the official version of the app from the respective app stores or websites.

        -
      9. Can I use TikTok 4.5 APK offline?
      10. -

        No, TikTok 4.5 APK requires an internet connection to work properly. You will need an internet connection to download and install the app, as well as to watch, create, and share videos on the platform or other social media apps.

        -

      401be4b1e0
      -
      -
      \ No newline at end of file diff --git a/spaces/cooelf/Multimodal-CoT/timm/models/layers/gather_excite.py b/spaces/cooelf/Multimodal-CoT/timm/models/layers/gather_excite.py deleted file mode 100644 index 2d60dc961e2b5e135d38e290b8fa5820ef0fe18f..0000000000000000000000000000000000000000 --- a/spaces/cooelf/Multimodal-CoT/timm/models/layers/gather_excite.py +++ /dev/null @@ -1,90 +0,0 @@ -""" Gather-Excite Attention Block - -Paper: `Gather-Excite: Exploiting Feature Context in CNNs` - https://arxiv.org/abs/1810.12348 - -Official code here, but it's only partial impl in Caffe: https://github.com/hujie-frank/GENet - -I've tried to support all of the extent both w/ and w/o params. I don't believe I've seen another -impl that covers all of the cases. - -NOTE: extent=0 + extra_params=False is equivalent to Squeeze-and-Excitation - -Hacked together by / Copyright 2021 Ross Wightman -""" -import math - -from torch import nn as nn -import torch.nn.functional as F - -from .create_act import create_act_layer, get_act_layer -from .create_conv2d import create_conv2d -from .helpers import make_divisible -from .mlp import ConvMlp - - -class GatherExcite(nn.Module): - """ Gather-Excite Attention Module - """ - def __init__( - self, channels, feat_size=None, extra_params=False, extent=0, use_mlp=True, - rd_ratio=1./16, rd_channels=None, rd_divisor=1, add_maxpool=False, - act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, gate_layer='sigmoid'): - super(GatherExcite, self).__init__() - self.add_maxpool = add_maxpool - act_layer = get_act_layer(act_layer) - self.extent = extent - if extra_params: - self.gather = nn.Sequential() - if extent == 0: - assert feat_size is not None, 'spatial feature size must be specified for global extent w/ params' - self.gather.add_module( - 'conv1', create_conv2d(channels, channels, kernel_size=feat_size, stride=1, depthwise=True)) - if norm_layer: - self.gather.add_module(f'norm1', nn.BatchNorm2d(channels)) - else: - assert extent % 2 == 0 - num_conv = int(math.log2(extent)) - for i in range(num_conv): - self.gather.add_module( - f'conv{i + 1}', - create_conv2d(channels, channels, kernel_size=3, stride=2, depthwise=True)) - if norm_layer: - self.gather.add_module(f'norm{i + 1}', nn.BatchNorm2d(channels)) - if i != num_conv - 1: - self.gather.add_module(f'act{i + 1}', act_layer(inplace=True)) - else: - self.gather = None - if self.extent == 0: - self.gk = 0 - self.gs = 0 - else: - assert extent % 2 == 0 - self.gk = self.extent * 2 - 1 - self.gs = self.extent - - if not rd_channels: - rd_channels = make_divisible(channels * rd_ratio, rd_divisor, round_limit=0.) - self.mlp = ConvMlp(channels, rd_channels, act_layer=act_layer) if use_mlp else nn.Identity() - self.gate = create_act_layer(gate_layer) - - def forward(self, x): - size = x.shape[-2:] - if self.gather is not None: - x_ge = self.gather(x) - else: - if self.extent == 0: - # global extent - x_ge = x.mean(dim=(2, 3), keepdims=True) - if self.add_maxpool: - # experimental codepath, may remove or change - x_ge = 0.5 * x_ge + 0.5 * x.amax((2, 3), keepdim=True) - else: - x_ge = F.avg_pool2d( - x, kernel_size=self.gk, stride=self.gs, padding=self.gk // 2, count_include_pad=False) - if self.add_maxpool: - # experimental codepath, may remove or change - x_ge = 0.5 * x_ge + 0.5 * F.max_pool2d(x, kernel_size=self.gk, stride=self.gs, padding=self.gk // 2) - x_ge = self.mlp(x_ge) - if x_ge.shape[-1] != 1 or x_ge.shape[-2] != 1: - x_ge = F.interpolate(x_ge, size=size) - return x * self.gate(x_ge) diff --git a/spaces/cooelf/Multimodal-CoT/timm/optim/lookahead.py b/spaces/cooelf/Multimodal-CoT/timm/optim/lookahead.py deleted file mode 100644 index 6b5b7f38ec8cb6594e3986b66223fa2881daeca3..0000000000000000000000000000000000000000 --- a/spaces/cooelf/Multimodal-CoT/timm/optim/lookahead.py +++ /dev/null @@ -1,92 +0,0 @@ -""" Lookahead Optimizer Wrapper. -Implementation modified from: https://github.com/alphadl/lookahead.pytorch -Paper: `Lookahead Optimizer: k steps forward, 1 step back` - https://arxiv.org/abs/1907.08610 - -Hacked together by / Copyright 2020 Ross Wightman -""" -import torch -from torch.optim.optimizer import Optimizer -from collections import defaultdict - - -class Lookahead(Optimizer): - def __init__(self, base_optimizer, alpha=0.5, k=6): - if not 0.0 <= alpha <= 1.0: - raise ValueError(f'Invalid slow update rate: {alpha}') - if not 1 <= k: - raise ValueError(f'Invalid lookahead steps: {k}') - defaults = dict(lookahead_alpha=alpha, lookahead_k=k, lookahead_step=0) - self.base_optimizer = base_optimizer - self.param_groups = self.base_optimizer.param_groups - self.defaults = base_optimizer.defaults - self.defaults.update(defaults) - self.state = defaultdict(dict) - # manually add our defaults to the param groups - for name, default in defaults.items(): - for group in self.param_groups: - group.setdefault(name, default) - - def update_slow(self, group): - for fast_p in group["params"]: - if fast_p.grad is None: - continue - param_state = self.state[fast_p] - if 'slow_buffer' not in param_state: - param_state['slow_buffer'] = torch.empty_like(fast_p.data) - param_state['slow_buffer'].copy_(fast_p.data) - slow = param_state['slow_buffer'] - slow.add_(group['lookahead_alpha'], fast_p.data - slow) - fast_p.data.copy_(slow) - - def sync_lookahead(self): - for group in self.param_groups: - self.update_slow(group) - - def step(self, closure=None): - #assert id(self.param_groups) == id(self.base_optimizer.param_groups) - loss = self.base_optimizer.step(closure) - for group in self.param_groups: - group['lookahead_step'] += 1 - if group['lookahead_step'] % group['lookahead_k'] == 0: - self.update_slow(group) - return loss - - def state_dict(self): - fast_state_dict = self.base_optimizer.state_dict() - slow_state = { - (id(k) if isinstance(k, torch.Tensor) else k): v - for k, v in self.state.items() - } - fast_state = fast_state_dict['state'] - param_groups = fast_state_dict['param_groups'] - return { - 'state': fast_state, - 'slow_state': slow_state, - 'param_groups': param_groups, - } - - def load_state_dict(self, state_dict): - fast_state_dict = { - 'state': state_dict['state'], - 'param_groups': state_dict['param_groups'], - } - self.base_optimizer.load_state_dict(fast_state_dict) - - # We want to restore the slow state, but share param_groups reference - # with base_optimizer. This is a bit redundant but least code - slow_state_new = False - if 'slow_state' not in state_dict: - print('Loading state_dict from optimizer without Lookahead applied.') - state_dict['slow_state'] = defaultdict(dict) - slow_state_new = True - slow_state_dict = { - 'state': state_dict['slow_state'], - 'param_groups': state_dict['param_groups'], # this is pointless but saves code - } - super(Lookahead, self).load_state_dict(slow_state_dict) - self.param_groups = self.base_optimizer.param_groups # make both ref same container - if slow_state_new: - # reapply defaults to catch missing lookahead specific ones - for name, default in self.defaults.items(): - for group in self.param_groups: - group.setdefault(name, default) diff --git a/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/mmpkg/mmseg/datasets/pipelines/transforms.py b/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/mmpkg/mmseg/datasets/pipelines/transforms.py deleted file mode 100644 index 842763db97685dd9280424204d62ee65993fdd5a..0000000000000000000000000000000000000000 --- a/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/mmpkg/mmseg/datasets/pipelines/transforms.py +++ /dev/null @@ -1,889 +0,0 @@ -import annotator.mmpkg.mmcv as mmcv -import numpy as np -from annotator.mmpkg.mmcv.utils import deprecated_api_warning, is_tuple_of -from numpy import random - -from ..builder import PIPELINES - - -@PIPELINES.register_module() -class Resize(object): - """Resize images & seg. - - This transform resizes the input image to some scale. If the input dict - contains the key "scale", then the scale in the input dict is used, - otherwise the specified scale in the init method is used. - - ``img_scale`` can be None, a tuple (single-scale) or a list of tuple - (multi-scale). There are 4 multiscale modes: - - - ``ratio_range is not None``: - 1. When img_scale is None, img_scale is the shape of image in results - (img_scale = results['img'].shape[:2]) and the image is resized based - on the original size. (mode 1) - 2. When img_scale is a tuple (single-scale), randomly sample a ratio from - the ratio range and multiply it with the image scale. (mode 2) - - - ``ratio_range is None and multiscale_mode == "range"``: randomly sample a - scale from the a range. (mode 3) - - - ``ratio_range is None and multiscale_mode == "value"``: randomly sample a - scale from multiple scales. (mode 4) - - Args: - img_scale (tuple or list[tuple]): Images scales for resizing. - multiscale_mode (str): Either "range" or "value". - ratio_range (tuple[float]): (min_ratio, max_ratio) - keep_ratio (bool): Whether to keep the aspect ratio when resizing the - image. - """ - - def __init__(self, - img_scale=None, - multiscale_mode='range', - ratio_range=None, - keep_ratio=True): - if img_scale is None: - self.img_scale = None - else: - if isinstance(img_scale, list): - self.img_scale = img_scale - else: - self.img_scale = [img_scale] - assert mmcv.is_list_of(self.img_scale, tuple) - - if ratio_range is not None: - # mode 1: given img_scale=None and a range of image ratio - # mode 2: given a scale and a range of image ratio - assert self.img_scale is None or len(self.img_scale) == 1 - else: - # mode 3 and 4: given multiple scales or a range of scales - assert multiscale_mode in ['value', 'range'] - - self.multiscale_mode = multiscale_mode - self.ratio_range = ratio_range - self.keep_ratio = keep_ratio - - @staticmethod - def random_select(img_scales): - """Randomly select an img_scale from given candidates. - - Args: - img_scales (list[tuple]): Images scales for selection. - - Returns: - (tuple, int): Returns a tuple ``(img_scale, scale_dix)``, - where ``img_scale`` is the selected image scale and - ``scale_idx`` is the selected index in the given candidates. - """ - - assert mmcv.is_list_of(img_scales, tuple) - scale_idx = np.random.randint(len(img_scales)) - img_scale = img_scales[scale_idx] - return img_scale, scale_idx - - @staticmethod - def random_sample(img_scales): - """Randomly sample an img_scale when ``multiscale_mode=='range'``. - - Args: - img_scales (list[tuple]): Images scale range for sampling. - There must be two tuples in img_scales, which specify the lower - and upper bound of image scales. - - Returns: - (tuple, None): Returns a tuple ``(img_scale, None)``, where - ``img_scale`` is sampled scale and None is just a placeholder - to be consistent with :func:`random_select`. - """ - - assert mmcv.is_list_of(img_scales, tuple) and len(img_scales) == 2 - img_scale_long = [max(s) for s in img_scales] - img_scale_short = [min(s) for s in img_scales] - long_edge = np.random.randint( - min(img_scale_long), - max(img_scale_long) + 1) - short_edge = np.random.randint( - min(img_scale_short), - max(img_scale_short) + 1) - img_scale = (long_edge, short_edge) - return img_scale, None - - @staticmethod - def random_sample_ratio(img_scale, ratio_range): - """Randomly sample an img_scale when ``ratio_range`` is specified. - - A ratio will be randomly sampled from the range specified by - ``ratio_range``. Then it would be multiplied with ``img_scale`` to - generate sampled scale. - - Args: - img_scale (tuple): Images scale base to multiply with ratio. - ratio_range (tuple[float]): The minimum and maximum ratio to scale - the ``img_scale``. - - Returns: - (tuple, None): Returns a tuple ``(scale, None)``, where - ``scale`` is sampled ratio multiplied with ``img_scale`` and - None is just a placeholder to be consistent with - :func:`random_select`. - """ - - assert isinstance(img_scale, tuple) and len(img_scale) == 2 - min_ratio, max_ratio = ratio_range - assert min_ratio <= max_ratio - ratio = np.random.random_sample() * (max_ratio - min_ratio) + min_ratio - scale = int(img_scale[0] * ratio), int(img_scale[1] * ratio) - return scale, None - - def _random_scale(self, results): - """Randomly sample an img_scale according to ``ratio_range`` and - ``multiscale_mode``. - - If ``ratio_range`` is specified, a ratio will be sampled and be - multiplied with ``img_scale``. - If multiple scales are specified by ``img_scale``, a scale will be - sampled according to ``multiscale_mode``. - Otherwise, single scale will be used. - - Args: - results (dict): Result dict from :obj:`dataset`. - - Returns: - dict: Two new keys 'scale` and 'scale_idx` are added into - ``results``, which would be used by subsequent pipelines. - """ - - if self.ratio_range is not None: - if self.img_scale is None: - h, w = results['img'].shape[:2] - scale, scale_idx = self.random_sample_ratio((w, h), - self.ratio_range) - else: - scale, scale_idx = self.random_sample_ratio( - self.img_scale[0], self.ratio_range) - elif len(self.img_scale) == 1: - scale, scale_idx = self.img_scale[0], 0 - elif self.multiscale_mode == 'range': - scale, scale_idx = self.random_sample(self.img_scale) - elif self.multiscale_mode == 'value': - scale, scale_idx = self.random_select(self.img_scale) - else: - raise NotImplementedError - - results['scale'] = scale - results['scale_idx'] = scale_idx - - def _resize_img(self, results): - """Resize images with ``results['scale']``.""" - if self.keep_ratio: - img, scale_factor = mmcv.imrescale( - results['img'], results['scale'], return_scale=True) - # the w_scale and h_scale has minor difference - # a real fix should be done in the mmcv.imrescale in the future - new_h, new_w = img.shape[:2] - h, w = results['img'].shape[:2] - w_scale = new_w / w - h_scale = new_h / h - else: - img, w_scale, h_scale = mmcv.imresize( - results['img'], results['scale'], return_scale=True) - scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], - dtype=np.float32) - results['img'] = img - results['img_shape'] = img.shape - results['pad_shape'] = img.shape # in case that there is no padding - results['scale_factor'] = scale_factor - results['keep_ratio'] = self.keep_ratio - - def _resize_seg(self, results): - """Resize semantic segmentation map with ``results['scale']``.""" - for key in results.get('seg_fields', []): - if self.keep_ratio: - gt_seg = mmcv.imrescale( - results[key], results['scale'], interpolation='nearest') - else: - gt_seg = mmcv.imresize( - results[key], results['scale'], interpolation='nearest') - results[key] = gt_seg - - def __call__(self, results): - """Call function to resize images, bounding boxes, masks, semantic - segmentation map. - - Args: - results (dict): Result dict from loading pipeline. - - Returns: - dict: Resized results, 'img_shape', 'pad_shape', 'scale_factor', - 'keep_ratio' keys are added into result dict. - """ - - if 'scale' not in results: - self._random_scale(results) - self._resize_img(results) - self._resize_seg(results) - return results - - def __repr__(self): - repr_str = self.__class__.__name__ - repr_str += (f'(img_scale={self.img_scale}, ' - f'multiscale_mode={self.multiscale_mode}, ' - f'ratio_range={self.ratio_range}, ' - f'keep_ratio={self.keep_ratio})') - return repr_str - - -@PIPELINES.register_module() -class RandomFlip(object): - """Flip the image & seg. - - If the input dict contains the key "flip", then the flag will be used, - otherwise it will be randomly decided by a ratio specified in the init - method. - - Args: - prob (float, optional): The flipping probability. Default: None. - direction(str, optional): The flipping direction. Options are - 'horizontal' and 'vertical'. Default: 'horizontal'. - """ - - @deprecated_api_warning({'flip_ratio': 'prob'}, cls_name='RandomFlip') - def __init__(self, prob=None, direction='horizontal'): - self.prob = prob - self.direction = direction - if prob is not None: - assert prob >= 0 and prob <= 1 - assert direction in ['horizontal', 'vertical'] - - def __call__(self, results): - """Call function to flip bounding boxes, masks, semantic segmentation - maps. - - Args: - results (dict): Result dict from loading pipeline. - - Returns: - dict: Flipped results, 'flip', 'flip_direction' keys are added into - result dict. - """ - - if 'flip' not in results: - flip = True if np.random.rand() < self.prob else False - results['flip'] = flip - if 'flip_direction' not in results: - results['flip_direction'] = self.direction - if results['flip']: - # flip image - results['img'] = mmcv.imflip( - results['img'], direction=results['flip_direction']) - - # flip segs - for key in results.get('seg_fields', []): - # use copy() to make numpy stride positive - results[key] = mmcv.imflip( - results[key], direction=results['flip_direction']).copy() - return results - - def __repr__(self): - return self.__class__.__name__ + f'(prob={self.prob})' - - -@PIPELINES.register_module() -class Pad(object): - """Pad the image & mask. - - There are two padding modes: (1) pad to a fixed size and (2) pad to the - minimum size that is divisible by some number. - Added keys are "pad_shape", "pad_fixed_size", "pad_size_divisor", - - Args: - size (tuple, optional): Fixed padding size. - size_divisor (int, optional): The divisor of padded size. - pad_val (float, optional): Padding value. Default: 0. - seg_pad_val (float, optional): Padding value of segmentation map. - Default: 255. - """ - - def __init__(self, - size=None, - size_divisor=None, - pad_val=0, - seg_pad_val=255): - self.size = size - self.size_divisor = size_divisor - self.pad_val = pad_val - self.seg_pad_val = seg_pad_val - # only one of size and size_divisor should be valid - assert size is not None or size_divisor is not None - assert size is None or size_divisor is None - - def _pad_img(self, results): - """Pad images according to ``self.size``.""" - if self.size is not None: - padded_img = mmcv.impad( - results['img'], shape=self.size, pad_val=self.pad_val) - elif self.size_divisor is not None: - padded_img = mmcv.impad_to_multiple( - results['img'], self.size_divisor, pad_val=self.pad_val) - results['img'] = padded_img - results['pad_shape'] = padded_img.shape - results['pad_fixed_size'] = self.size - results['pad_size_divisor'] = self.size_divisor - - def _pad_seg(self, results): - """Pad masks according to ``results['pad_shape']``.""" - for key in results.get('seg_fields', []): - results[key] = mmcv.impad( - results[key], - shape=results['pad_shape'][:2], - pad_val=self.seg_pad_val) - - def __call__(self, results): - """Call function to pad images, masks, semantic segmentation maps. - - Args: - results (dict): Result dict from loading pipeline. - - Returns: - dict: Updated result dict. - """ - - self._pad_img(results) - self._pad_seg(results) - return results - - def __repr__(self): - repr_str = self.__class__.__name__ - repr_str += f'(size={self.size}, size_divisor={self.size_divisor}, ' \ - f'pad_val={self.pad_val})' - return repr_str - - -@PIPELINES.register_module() -class Normalize(object): - """Normalize the image. - - Added key is "img_norm_cfg". - - Args: - mean (sequence): Mean values of 3 channels. - std (sequence): Std values of 3 channels. - to_rgb (bool): Whether to convert the image from BGR to RGB, - default is true. - """ - - def __init__(self, mean, std, to_rgb=True): - self.mean = np.array(mean, dtype=np.float32) - self.std = np.array(std, dtype=np.float32) - self.to_rgb = to_rgb - - def __call__(self, results): - """Call function to normalize images. - - Args: - results (dict): Result dict from loading pipeline. - - Returns: - dict: Normalized results, 'img_norm_cfg' key is added into - result dict. - """ - - results['img'] = mmcv.imnormalize(results['img'], self.mean, self.std, - self.to_rgb) - results['img_norm_cfg'] = dict( - mean=self.mean, std=self.std, to_rgb=self.to_rgb) - return results - - def __repr__(self): - repr_str = self.__class__.__name__ - repr_str += f'(mean={self.mean}, std={self.std}, to_rgb=' \ - f'{self.to_rgb})' - return repr_str - - -@PIPELINES.register_module() -class Rerange(object): - """Rerange the image pixel value. - - Args: - min_value (float or int): Minimum value of the reranged image. - Default: 0. - max_value (float or int): Maximum value of the reranged image. - Default: 255. - """ - - def __init__(self, min_value=0, max_value=255): - assert isinstance(min_value, float) or isinstance(min_value, int) - assert isinstance(max_value, float) or isinstance(max_value, int) - assert min_value < max_value - self.min_value = min_value - self.max_value = max_value - - def __call__(self, results): - """Call function to rerange images. - - Args: - results (dict): Result dict from loading pipeline. - Returns: - dict: Reranged results. - """ - - img = results['img'] - img_min_value = np.min(img) - img_max_value = np.max(img) - - assert img_min_value < img_max_value - # rerange to [0, 1] - img = (img - img_min_value) / (img_max_value - img_min_value) - # rerange to [min_value, max_value] - img = img * (self.max_value - self.min_value) + self.min_value - results['img'] = img - - return results - - def __repr__(self): - repr_str = self.__class__.__name__ - repr_str += f'(min_value={self.min_value}, max_value={self.max_value})' - return repr_str - - -@PIPELINES.register_module() -class CLAHE(object): - """Use CLAHE method to process the image. - - See `ZUIDERVELD,K. Contrast Limited Adaptive Histogram Equalization[J]. - Graphics Gems, 1994:474-485.` for more information. - - Args: - clip_limit (float): Threshold for contrast limiting. Default: 40.0. - tile_grid_size (tuple[int]): Size of grid for histogram equalization. - Input image will be divided into equally sized rectangular tiles. - It defines the number of tiles in row and column. Default: (8, 8). - """ - - def __init__(self, clip_limit=40.0, tile_grid_size=(8, 8)): - assert isinstance(clip_limit, (float, int)) - self.clip_limit = clip_limit - assert is_tuple_of(tile_grid_size, int) - assert len(tile_grid_size) == 2 - self.tile_grid_size = tile_grid_size - - def __call__(self, results): - """Call function to Use CLAHE method process images. - - Args: - results (dict): Result dict from loading pipeline. - - Returns: - dict: Processed results. - """ - - for i in range(results['img'].shape[2]): - results['img'][:, :, i] = mmcv.clahe( - np.array(results['img'][:, :, i], dtype=np.uint8), - self.clip_limit, self.tile_grid_size) - - return results - - def __repr__(self): - repr_str = self.__class__.__name__ - repr_str += f'(clip_limit={self.clip_limit}, '\ - f'tile_grid_size={self.tile_grid_size})' - return repr_str - - -@PIPELINES.register_module() -class RandomCrop(object): - """Random crop the image & seg. - - Args: - crop_size (tuple): Expected size after cropping, (h, w). - cat_max_ratio (float): The maximum ratio that single category could - occupy. - """ - - def __init__(self, crop_size, cat_max_ratio=1., ignore_index=255): - assert crop_size[0] > 0 and crop_size[1] > 0 - self.crop_size = crop_size - self.cat_max_ratio = cat_max_ratio - self.ignore_index = ignore_index - - def get_crop_bbox(self, img): - """Randomly get a crop bounding box.""" - margin_h = max(img.shape[0] - self.crop_size[0], 0) - margin_w = max(img.shape[1] - self.crop_size[1], 0) - offset_h = np.random.randint(0, margin_h + 1) - offset_w = np.random.randint(0, margin_w + 1) - crop_y1, crop_y2 = offset_h, offset_h + self.crop_size[0] - crop_x1, crop_x2 = offset_w, offset_w + self.crop_size[1] - - return crop_y1, crop_y2, crop_x1, crop_x2 - - def crop(self, img, crop_bbox): - """Crop from ``img``""" - crop_y1, crop_y2, crop_x1, crop_x2 = crop_bbox - img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...] - return img - - def __call__(self, results): - """Call function to randomly crop images, semantic segmentation maps. - - Args: - results (dict): Result dict from loading pipeline. - - Returns: - dict: Randomly cropped results, 'img_shape' key in result dict is - updated according to crop size. - """ - - img = results['img'] - crop_bbox = self.get_crop_bbox(img) - if self.cat_max_ratio < 1.: - # Repeat 10 times - for _ in range(10): - seg_temp = self.crop(results['gt_semantic_seg'], crop_bbox) - labels, cnt = np.unique(seg_temp, return_counts=True) - cnt = cnt[labels != self.ignore_index] - if len(cnt) > 1 and np.max(cnt) / np.sum( - cnt) < self.cat_max_ratio: - break - crop_bbox = self.get_crop_bbox(img) - - # crop the image - img = self.crop(img, crop_bbox) - img_shape = img.shape - results['img'] = img - results['img_shape'] = img_shape - - # crop semantic seg - for key in results.get('seg_fields', []): - results[key] = self.crop(results[key], crop_bbox) - - return results - - def __repr__(self): - return self.__class__.__name__ + f'(crop_size={self.crop_size})' - - -@PIPELINES.register_module() -class RandomRotate(object): - """Rotate the image & seg. - - Args: - prob (float): The rotation probability. - degree (float, tuple[float]): Range of degrees to select from. If - degree is a number instead of tuple like (min, max), - the range of degree will be (``-degree``, ``+degree``) - pad_val (float, optional): Padding value of image. Default: 0. - seg_pad_val (float, optional): Padding value of segmentation map. - Default: 255. - center (tuple[float], optional): Center point (w, h) of the rotation in - the source image. If not specified, the center of the image will be - used. Default: None. - auto_bound (bool): Whether to adjust the image size to cover the whole - rotated image. Default: False - """ - - def __init__(self, - prob, - degree, - pad_val=0, - seg_pad_val=255, - center=None, - auto_bound=False): - self.prob = prob - assert prob >= 0 and prob <= 1 - if isinstance(degree, (float, int)): - assert degree > 0, f'degree {degree} should be positive' - self.degree = (-degree, degree) - else: - self.degree = degree - assert len(self.degree) == 2, f'degree {self.degree} should be a ' \ - f'tuple of (min, max)' - self.pal_val = pad_val - self.seg_pad_val = seg_pad_val - self.center = center - self.auto_bound = auto_bound - - def __call__(self, results): - """Call function to rotate image, semantic segmentation maps. - - Args: - results (dict): Result dict from loading pipeline. - - Returns: - dict: Rotated results. - """ - - rotate = True if np.random.rand() < self.prob else False - degree = np.random.uniform(min(*self.degree), max(*self.degree)) - if rotate: - # rotate image - results['img'] = mmcv.imrotate( - results['img'], - angle=degree, - border_value=self.pal_val, - center=self.center, - auto_bound=self.auto_bound) - - # rotate segs - for key in results.get('seg_fields', []): - results[key] = mmcv.imrotate( - results[key], - angle=degree, - border_value=self.seg_pad_val, - center=self.center, - auto_bound=self.auto_bound, - interpolation='nearest') - return results - - def __repr__(self): - repr_str = self.__class__.__name__ - repr_str += f'(prob={self.prob}, ' \ - f'degree={self.degree}, ' \ - f'pad_val={self.pal_val}, ' \ - f'seg_pad_val={self.seg_pad_val}, ' \ - f'center={self.center}, ' \ - f'auto_bound={self.auto_bound})' - return repr_str - - -@PIPELINES.register_module() -class RGB2Gray(object): - """Convert RGB image to grayscale image. - - This transform calculate the weighted mean of input image channels with - ``weights`` and then expand the channels to ``out_channels``. When - ``out_channels`` is None, the number of output channels is the same as - input channels. - - Args: - out_channels (int): Expected number of output channels after - transforming. Default: None. - weights (tuple[float]): The weights to calculate the weighted mean. - Default: (0.299, 0.587, 0.114). - """ - - def __init__(self, out_channels=None, weights=(0.299, 0.587, 0.114)): - assert out_channels is None or out_channels > 0 - self.out_channels = out_channels - assert isinstance(weights, tuple) - for item in weights: - assert isinstance(item, (float, int)) - self.weights = weights - - def __call__(self, results): - """Call function to convert RGB image to grayscale image. - - Args: - results (dict): Result dict from loading pipeline. - - Returns: - dict: Result dict with grayscale image. - """ - img = results['img'] - assert len(img.shape) == 3 - assert img.shape[2] == len(self.weights) - weights = np.array(self.weights).reshape((1, 1, -1)) - img = (img * weights).sum(2, keepdims=True) - if self.out_channels is None: - img = img.repeat(weights.shape[2], axis=2) - else: - img = img.repeat(self.out_channels, axis=2) - - results['img'] = img - results['img_shape'] = img.shape - - return results - - def __repr__(self): - repr_str = self.__class__.__name__ - repr_str += f'(out_channels={self.out_channels}, ' \ - f'weights={self.weights})' - return repr_str - - -@PIPELINES.register_module() -class AdjustGamma(object): - """Using gamma correction to process the image. - - Args: - gamma (float or int): Gamma value used in gamma correction. - Default: 1.0. - """ - - def __init__(self, gamma=1.0): - assert isinstance(gamma, float) or isinstance(gamma, int) - assert gamma > 0 - self.gamma = gamma - inv_gamma = 1.0 / gamma - self.table = np.array([(i / 255.0)**inv_gamma * 255 - for i in np.arange(256)]).astype('uint8') - - def __call__(self, results): - """Call function to process the image with gamma correction. - - Args: - results (dict): Result dict from loading pipeline. - - Returns: - dict: Processed results. - """ - - results['img'] = mmcv.lut_transform( - np.array(results['img'], dtype=np.uint8), self.table) - - return results - - def __repr__(self): - return self.__class__.__name__ + f'(gamma={self.gamma})' - - -@PIPELINES.register_module() -class SegRescale(object): - """Rescale semantic segmentation maps. - - Args: - scale_factor (float): The scale factor of the final output. - """ - - def __init__(self, scale_factor=1): - self.scale_factor = scale_factor - - def __call__(self, results): - """Call function to scale the semantic segmentation map. - - Args: - results (dict): Result dict from loading pipeline. - - Returns: - dict: Result dict with semantic segmentation map scaled. - """ - for key in results.get('seg_fields', []): - if self.scale_factor != 1: - results[key] = mmcv.imrescale( - results[key], self.scale_factor, interpolation='nearest') - return results - - def __repr__(self): - return self.__class__.__name__ + f'(scale_factor={self.scale_factor})' - - -@PIPELINES.register_module() -class PhotoMetricDistortion(object): - """Apply photometric distortion to image sequentially, every transformation - is applied with a probability of 0.5. The position of random contrast is in - second or second to last. - - 1. random brightness - 2. random contrast (mode 0) - 3. convert color from BGR to HSV - 4. random saturation - 5. random hue - 6. convert color from HSV to BGR - 7. random contrast (mode 1) - - Args: - brightness_delta (int): delta of brightness. - contrast_range (tuple): range of contrast. - saturation_range (tuple): range of saturation. - hue_delta (int): delta of hue. - """ - - def __init__(self, - brightness_delta=32, - contrast_range=(0.5, 1.5), - saturation_range=(0.5, 1.5), - hue_delta=18): - self.brightness_delta = brightness_delta - self.contrast_lower, self.contrast_upper = contrast_range - self.saturation_lower, self.saturation_upper = saturation_range - self.hue_delta = hue_delta - - def convert(self, img, alpha=1, beta=0): - """Multiple with alpha and add beat with clip.""" - img = img.astype(np.float32) * alpha + beta - img = np.clip(img, 0, 255) - return img.astype(np.uint8) - - def brightness(self, img): - """Brightness distortion.""" - if random.randint(2): - return self.convert( - img, - beta=random.uniform(-self.brightness_delta, - self.brightness_delta)) - return img - - def contrast(self, img): - """Contrast distortion.""" - if random.randint(2): - return self.convert( - img, - alpha=random.uniform(self.contrast_lower, self.contrast_upper)) - return img - - def saturation(self, img): - """Saturation distortion.""" - if random.randint(2): - img = mmcv.bgr2hsv(img) - img[:, :, 1] = self.convert( - img[:, :, 1], - alpha=random.uniform(self.saturation_lower, - self.saturation_upper)) - img = mmcv.hsv2bgr(img) - return img - - def hue(self, img): - """Hue distortion.""" - if random.randint(2): - img = mmcv.bgr2hsv(img) - img[:, :, - 0] = (img[:, :, 0].astype(int) + - random.randint(-self.hue_delta, self.hue_delta)) % 180 - img = mmcv.hsv2bgr(img) - return img - - def __call__(self, results): - """Call function to perform photometric distortion on images. - - Args: - results (dict): Result dict from loading pipeline. - - Returns: - dict: Result dict with images distorted. - """ - - img = results['img'] - # random brightness - img = self.brightness(img) - - # mode == 0 --> do random contrast first - # mode == 1 --> do random contrast last - mode = random.randint(2) - if mode == 1: - img = self.contrast(img) - - # random saturation - img = self.saturation(img) - - # random hue - img = self.hue(img) - - # random contrast - if mode == 0: - img = self.contrast(img) - - results['img'] = img - return results - - def __repr__(self): - repr_str = self.__class__.__name__ - repr_str += (f'(brightness_delta={self.brightness_delta}, ' - f'contrast_range=({self.contrast_lower}, ' - f'{self.contrast_upper}), ' - f'saturation_range=({self.saturation_lower}, ' - f'{self.saturation_upper}), ' - f'hue_delta={self.hue_delta})') - return repr_str diff --git a/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/oneformer/detectron2/export/shared.py b/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/oneformer/detectron2/export/shared.py deleted file mode 100644 index 53ba9335e26819f9381115eba17bbbe3816b469c..0000000000000000000000000000000000000000 --- a/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/oneformer/detectron2/export/shared.py +++ /dev/null @@ -1,1039 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. - -import collections -import copy -import functools -import logging -import numpy as np -import os -from typing import Any, Callable, Dict, List, Optional, Tuple, Union -from unittest import mock -import caffe2.python.utils as putils -import torch -import torch.nn.functional as F -from caffe2.proto import caffe2_pb2 -from caffe2.python import core, net_drawer, workspace -from torch.nn.functional import interpolate as interp - -logger = logging.getLogger(__name__) - - -# ==== torch/utils_toffee/cast.py ======================================= - - -def to_device(t, device_str): - """ - This function is a replacement of .to(another_device) such that it allows the - casting to be traced properly by explicitly calling the underlying copy ops. - It also avoids introducing unncessary op when casting to the same device. - """ - src = t.device - dst = torch.device(device_str) - - if src == dst: - return t - elif src.type == "cuda" and dst.type == "cpu": - return torch.ops._caffe2.CopyGPUToCPU(t) - elif src.type == "cpu" and dst.type == "cuda": - return torch.ops._caffe2.CopyCPUToGPU(t) - else: - raise RuntimeError("Can't cast tensor from device {} to device {}".format(src, dst)) - - -# ==== torch/utils_toffee/interpolate.py ======================================= - - -# Note: borrowed from vision/detection/fair/detectron/detectron/modeling/detector.py -def BilinearInterpolation(tensor_in, up_scale): - assert up_scale % 2 == 0, "Scale should be even" - - def upsample_filt(size): - factor = (size + 1) // 2 - if size % 2 == 1: - center = factor - 1 - else: - center = factor - 0.5 - - og = np.ogrid[:size, :size] - return (1 - abs(og[0] - center) / factor) * (1 - abs(og[1] - center) / factor) - - kernel_size = int(up_scale) * 2 - bil_filt = upsample_filt(kernel_size) - - dim = int(tensor_in.shape[1]) - kernel = np.zeros((dim, dim, kernel_size, kernel_size), dtype=np.float32) - kernel[range(dim), range(dim), :, :] = bil_filt - - tensor_out = F.conv_transpose2d( - tensor_in, - weight=to_device(torch.Tensor(kernel), tensor_in.device), - bias=None, - stride=int(up_scale), - padding=int(up_scale / 2), - ) - - return tensor_out - - -# NOTE: ONNX is incompatible with traced torch.nn.functional.interpolate if -# using dynamic `scale_factor` rather than static `size`. (T43166860) -# NOTE: Caffe2 Int8 conversion might not be able to quantize `size` properly. -def onnx_compatibale_interpolate( - input, size=None, scale_factor=None, mode="nearest", align_corners=None -): - # NOTE: The input dimensions are interpreted in the form: - # `mini-batch x channels x [optional depth] x [optional height] x width`. - if size is None and scale_factor is not None: - if input.dim() == 4: - if isinstance(scale_factor, (int, float)): - height_scale, width_scale = (scale_factor, scale_factor) - else: - assert isinstance(scale_factor, (tuple, list)) - assert len(scale_factor) == 2 - height_scale, width_scale = scale_factor - - assert not align_corners, "No matching C2 op for align_corners == True" - if mode == "nearest": - return torch.ops._caffe2.ResizeNearest( - input, order="NCHW", width_scale=width_scale, height_scale=height_scale - ) - elif mode == "bilinear": - logger.warning( - "Use F.conv_transpose2d for bilinear interpolate" - " because there's no such C2 op, this may cause significant" - " slowdown and the boundary pixels won't be as same as" - " using F.interpolate due to padding." - ) - assert height_scale == width_scale - return BilinearInterpolation(input, up_scale=height_scale) - logger.warning("Output size is not static, it might cause ONNX conversion issue") - - return interp(input, size, scale_factor, mode, align_corners) - - -def mock_torch_nn_functional_interpolate(): - def decorator(func): - @functools.wraps(func) - def _mock_torch_nn_functional_interpolate(*args, **kwargs): - if torch.onnx.is_in_onnx_export(): - with mock.patch( - "torch.nn.functional.interpolate", side_effect=onnx_compatibale_interpolate - ): - return func(*args, **kwargs) - else: - return func(*args, **kwargs) - - return _mock_torch_nn_functional_interpolate - - return decorator - - -# ==== torch/utils_caffe2/ws_utils.py ========================================== - - -class ScopedWS(object): - def __init__(self, ws_name, is_reset, is_cleanup=False): - self.ws_name = ws_name - self.is_reset = is_reset - self.is_cleanup = is_cleanup - self.org_ws = "" - - def __enter__(self): - self.org_ws = workspace.CurrentWorkspace() - if self.ws_name is not None: - workspace.SwitchWorkspace(self.ws_name, True) - if self.is_reset: - workspace.ResetWorkspace() - - return workspace - - def __exit__(self, *args): - if self.is_cleanup: - workspace.ResetWorkspace() - if self.ws_name is not None: - workspace.SwitchWorkspace(self.org_ws) - - -def fetch_any_blob(name): - bb = None - try: - bb = workspace.FetchBlob(name) - except TypeError: - bb = workspace.FetchInt8Blob(name) - except Exception as e: - logger.error("Get blob {} error: {}".format(name, e)) - - return bb - - -# ==== torch/utils_caffe2/protobuf.py ========================================== - - -def get_pb_arg(pb, arg_name): - for x in pb.arg: - if x.name == arg_name: - return x - return None - - -def get_pb_arg_valf(pb, arg_name, default_val): - arg = get_pb_arg(pb, arg_name) - return arg.f if arg is not None else default_val - - -def get_pb_arg_floats(pb, arg_name, default_val): - arg = get_pb_arg(pb, arg_name) - return list(map(float, arg.floats)) if arg is not None else default_val - - -def get_pb_arg_ints(pb, arg_name, default_val): - arg = get_pb_arg(pb, arg_name) - return list(map(int, arg.ints)) if arg is not None else default_val - - -def get_pb_arg_vali(pb, arg_name, default_val): - arg = get_pb_arg(pb, arg_name) - return arg.i if arg is not None else default_val - - -def get_pb_arg_vals(pb, arg_name, default_val): - arg = get_pb_arg(pb, arg_name) - return arg.s if arg is not None else default_val - - -def get_pb_arg_valstrings(pb, arg_name, default_val): - arg = get_pb_arg(pb, arg_name) - return list(arg.strings) if arg is not None else default_val - - -def check_set_pb_arg(pb, arg_name, arg_attr, arg_value, allow_override=False): - arg = get_pb_arg(pb, arg_name) - if arg is None: - arg = putils.MakeArgument(arg_name, arg_value) - assert hasattr(arg, arg_attr) - pb.arg.extend([arg]) - if allow_override and getattr(arg, arg_attr) != arg_value: - logger.warning( - "Override argument {}: {} -> {}".format(arg_name, getattr(arg, arg_attr), arg_value) - ) - setattr(arg, arg_attr, arg_value) - else: - assert arg is not None - assert getattr(arg, arg_attr) == arg_value, "Existing value {}, new value {}".format( - getattr(arg, arg_attr), arg_value - ) - - -def _create_const_fill_op_from_numpy(name, tensor, device_option=None): - assert type(tensor) == np.ndarray - kTypeNameMapper = { - np.dtype("float32"): "GivenTensorFill", - np.dtype("int32"): "GivenTensorIntFill", - np.dtype("int64"): "GivenTensorInt64Fill", - np.dtype("uint8"): "GivenTensorStringFill", - } - - args_dict = {} - if tensor.dtype == np.dtype("uint8"): - args_dict.update({"values": [str(tensor.data)], "shape": [1]}) - else: - args_dict.update({"values": tensor, "shape": tensor.shape}) - - if device_option is not None: - args_dict["device_option"] = device_option - - return core.CreateOperator(kTypeNameMapper[tensor.dtype], [], [name], **args_dict) - - -def _create_const_fill_op_from_c2_int8_tensor(name, int8_tensor): - assert type(int8_tensor) == workspace.Int8Tensor - kTypeNameMapper = { - np.dtype("int32"): "Int8GivenIntTensorFill", - np.dtype("uint8"): "Int8GivenTensorFill", - } - - tensor = int8_tensor.data - assert tensor.dtype in [np.dtype("uint8"), np.dtype("int32")] - values = tensor.tobytes() if tensor.dtype == np.dtype("uint8") else tensor - - return core.CreateOperator( - kTypeNameMapper[tensor.dtype], - [], - [name], - values=values, - shape=tensor.shape, - Y_scale=int8_tensor.scale, - Y_zero_point=int8_tensor.zero_point, - ) - - -def create_const_fill_op( - name: str, - blob: Union[np.ndarray, workspace.Int8Tensor], - device_option: Optional[caffe2_pb2.DeviceOption] = None, -) -> caffe2_pb2.OperatorDef: - """ - Given a blob object, return the Caffe2 operator that creates this blob - as constant. Currently support NumPy tensor and Caffe2 Int8Tensor. - """ - - tensor_type = type(blob) - assert tensor_type in [ - np.ndarray, - workspace.Int8Tensor, - ], 'Error when creating const fill op for "{}", unsupported blob type: {}'.format( - name, type(blob) - ) - - if tensor_type == np.ndarray: - return _create_const_fill_op_from_numpy(name, blob, device_option) - elif tensor_type == workspace.Int8Tensor: - assert device_option is None - return _create_const_fill_op_from_c2_int8_tensor(name, blob) - - -def construct_init_net_from_params( - params: Dict[str, Any], device_options: Optional[Dict[str, caffe2_pb2.DeviceOption]] = None -) -> caffe2_pb2.NetDef: - """ - Construct the init_net from params dictionary - """ - init_net = caffe2_pb2.NetDef() - device_options = device_options or {} - for name, blob in params.items(): - if isinstance(blob, str): - logger.warning( - ( - "Blob {} with type {} is not supported in generating init net," - " skipped.".format(name, type(blob)) - ) - ) - continue - init_net.op.extend( - [create_const_fill_op(name, blob, device_option=device_options.get(name, None))] - ) - init_net.external_output.append(name) - return init_net - - -def get_producer_map(ssa): - """ - Return dict from versioned blob to (i, j), - where i is index of producer op, j is the index of output of that op. - """ - producer_map = {} - for i in range(len(ssa)): - outputs = ssa[i][1] - for j, outp in enumerate(outputs): - producer_map[outp] = (i, j) - return producer_map - - -def get_consumer_map(ssa): - """ - Return dict from versioned blob to list of (i, j), - where i is index of consumer op, j is the index of input of that op. - """ - consumer_map = collections.defaultdict(list) - for i in range(len(ssa)): - inputs = ssa[i][0] - for j, inp in enumerate(inputs): - consumer_map[inp].append((i, j)) - return consumer_map - - -def get_params_from_init_net( - init_net: caffe2_pb2.NetDef, -) -> [Dict[str, Any], Dict[str, caffe2_pb2.DeviceOption]]: - """ - Take the output blobs from init_net by running it. - Outputs: - params: dict from blob name to numpy array - device_options: dict from blob name to the device option of its creating op - """ - # NOTE: this assumes that the params is determined by producer op with the - # only exception be CopyGPUToCPU which is CUDA op but returns CPU tensor. - def _get_device_option(producer_op): - if producer_op.type == "CopyGPUToCPU": - return caffe2_pb2.DeviceOption() - else: - return producer_op.device_option - - with ScopedWS("__get_params_from_init_net__", is_reset=True, is_cleanup=True) as ws: - ws.RunNetOnce(init_net) - params = {b: fetch_any_blob(b) for b in init_net.external_output} - ssa, versions = core.get_ssa(init_net) - producer_map = get_producer_map(ssa) - device_options = { - b: _get_device_option(init_net.op[producer_map[(b, versions[b])][0]]) - for b in init_net.external_output - } - return params, device_options - - -def _updater_raise(op, input_types, output_types): - raise RuntimeError( - "Failed to apply updater for op {} given input_types {} and" - " output_types {}".format(op, input_types, output_types) - ) - - -def _generic_status_identifier( - predict_net: caffe2_pb2.NetDef, - status_updater: Callable, - known_status: Dict[Tuple[str, int], Any], -) -> Dict[Tuple[str, int], Any]: - """ - Statically infer the status of each blob, the status can be such as device type - (CPU/GPU), layout (NCHW/NHWC), data type (float32/int8), etc. "Blob" here - is versioned blob (Tuple[str, int]) in the format compatible with ssa. - Inputs: - predict_net: the caffe2 network - status_updater: a callable, given an op and the status of its input/output, - it returns the updated status of input/output. `None` is used for - representing unknown status. - known_status: a dict containing known status, used as initialization. - Outputs: - A dict mapping from versioned blob to its status - """ - ssa, versions = core.get_ssa(predict_net) - versioned_ext_input = [(b, 0) for b in predict_net.external_input] - versioned_ext_output = [(b, versions[b]) for b in predict_net.external_output] - all_versioned_blobs = set().union(*[set(x[0] + x[1]) for x in ssa]) - - allowed_vbs = all_versioned_blobs.union(versioned_ext_input).union(versioned_ext_output) - assert all(k in allowed_vbs for k in known_status) - assert all(v is not None for v in known_status.values()) - _known_status = copy.deepcopy(known_status) - - def _check_and_update(key, value): - assert value is not None - if key in _known_status: - if not _known_status[key] == value: - raise RuntimeError( - "Confilict status for {}, existing status {}, new status {}".format( - key, _known_status[key], value - ) - ) - _known_status[key] = value - - def _update_i(op, ssa_i): - versioned_inputs = ssa_i[0] - versioned_outputs = ssa_i[1] - - inputs_status = [_known_status.get(b, None) for b in versioned_inputs] - outputs_status = [_known_status.get(b, None) for b in versioned_outputs] - - new_inputs_status, new_outputs_status = status_updater(op, inputs_status, outputs_status) - - for versioned_blob, status in zip( - versioned_inputs + versioned_outputs, new_inputs_status + new_outputs_status - ): - if status is not None: - _check_and_update(versioned_blob, status) - - for op, ssa_i in zip(predict_net.op, ssa): - _update_i(op, ssa_i) - for op, ssa_i in zip(reversed(predict_net.op), reversed(ssa)): - _update_i(op, ssa_i) - - # NOTE: This strictly checks all the blob from predict_net must be assgined - # a known status. However sometimes it's impossible (eg. having deadend op), - # we may relax this constraint if - for k in all_versioned_blobs: - if k not in _known_status: - raise NotImplementedError( - "Can not infer the status for {}. Currently only support the case where" - " a single forward and backward pass can identify status for all blobs.".format(k) - ) - - return _known_status - - -def infer_device_type( - predict_net: caffe2_pb2.NetDef, - known_status: Dict[Tuple[str, int], Any], - device_name_style: str = "caffe2", -) -> Dict[Tuple[str, int], str]: - """Return the device type ("cpu" or "gpu"/"cuda") of each (versioned) blob""" - - assert device_name_style in ["caffe2", "pytorch"] - _CPU_STR = "cpu" - _GPU_STR = "gpu" if device_name_style == "caffe2" else "cuda" - - def _copy_cpu_to_gpu_updater(op, input_types, output_types): - if input_types[0] == _GPU_STR or output_types[0] == _CPU_STR: - _updater_raise(op, input_types, output_types) - return ([_CPU_STR], [_GPU_STR]) - - def _copy_gpu_to_cpu_updater(op, input_types, output_types): - if input_types[0] == _CPU_STR or output_types[0] == _GPU_STR: - _updater_raise(op, input_types, output_types) - return ([_GPU_STR], [_CPU_STR]) - - def _other_ops_updater(op, input_types, output_types): - non_none_types = [x for x in input_types + output_types if x is not None] - if len(non_none_types) > 0: - the_type = non_none_types[0] - if not all(x == the_type for x in non_none_types): - _updater_raise(op, input_types, output_types) - else: - the_type = None - return ([the_type for _ in op.input], [the_type for _ in op.output]) - - def _device_updater(op, *args, **kwargs): - return { - "CopyCPUToGPU": _copy_cpu_to_gpu_updater, - "CopyGPUToCPU": _copy_gpu_to_cpu_updater, - }.get(op.type, _other_ops_updater)(op, *args, **kwargs) - - return _generic_status_identifier(predict_net, _device_updater, known_status) - - -# ==== torch/utils_caffe2/vis.py =============================================== - - -def _modify_blob_names(ops, blob_rename_f): - ret = [] - - def _replace_list(blob_list, replaced_list): - del blob_list[:] - blob_list.extend(replaced_list) - - for x in ops: - cur = copy.deepcopy(x) - _replace_list(cur.input, list(map(blob_rename_f, cur.input))) - _replace_list(cur.output, list(map(blob_rename_f, cur.output))) - ret.append(cur) - - return ret - - -def _rename_blob(name, blob_sizes, blob_ranges): - def _list_to_str(bsize): - ret = ", ".join([str(x) for x in bsize]) - ret = "[" + ret + "]" - return ret - - ret = name - if blob_sizes is not None and name in blob_sizes: - ret += "\n" + _list_to_str(blob_sizes[name]) - if blob_ranges is not None and name in blob_ranges: - ret += "\n" + _list_to_str(blob_ranges[name]) - - return ret - - -# graph_name could not contain word 'graph' -def save_graph(net, file_name, graph_name="net", op_only=True, blob_sizes=None, blob_ranges=None): - blob_rename_f = functools.partial(_rename_blob, blob_sizes=blob_sizes, blob_ranges=blob_ranges) - return save_graph_base(net, file_name, graph_name, op_only, blob_rename_f) - - -def save_graph_base(net, file_name, graph_name="net", op_only=True, blob_rename_func=None): - graph = None - ops = net.op - if blob_rename_func is not None: - ops = _modify_blob_names(ops, blob_rename_func) - if not op_only: - graph = net_drawer.GetPydotGraph(ops, graph_name, rankdir="TB") - else: - graph = net_drawer.GetPydotGraphMinimal( - ops, graph_name, rankdir="TB", minimal_dependency=True - ) - - try: - par_dir = os.path.dirname(file_name) - if not os.path.exists(par_dir): - os.makedirs(par_dir) - - format = os.path.splitext(os.path.basename(file_name))[-1] - if format == ".png": - graph.write_png(file_name) - elif format == ".pdf": - graph.write_pdf(file_name) - elif format == ".svg": - graph.write_svg(file_name) - else: - print("Incorrect format {}".format(format)) - except Exception as e: - print("Error when writing graph to image {}".format(e)) - - return graph - - -# ==== torch/utils_toffee/aten_to_caffe2.py ==================================== - - -def group_norm_replace_aten_with_caffe2(predict_net: caffe2_pb2.NetDef): - """ - For ONNX exported model, GroupNorm will be represented as ATen op, - this can be a drop in replacement from ATen to GroupNorm - """ - count = 0 - for op in predict_net.op: - if op.type == "ATen": - op_name = get_pb_arg_vals(op, "operator", None) # return byte in py3 - if op_name and op_name.decode() == "group_norm": - op.arg.remove(get_pb_arg(op, "operator")) - - if get_pb_arg_vali(op, "cudnn_enabled", None): - op.arg.remove(get_pb_arg(op, "cudnn_enabled")) - - num_groups = get_pb_arg_vali(op, "num_groups", None) - if num_groups is not None: - op.arg.remove(get_pb_arg(op, "num_groups")) - check_set_pb_arg(op, "group", "i", num_groups) - - op.type = "GroupNorm" - count += 1 - if count > 1: - logger.info("Replaced {} ATen operator to GroupNormOp".format(count)) - - -# ==== torch/utils_toffee/alias.py ============================================= - - -def alias(x, name, is_backward=False): - if not torch.onnx.is_in_onnx_export(): - return x - assert isinstance(x, torch.Tensor) - return torch.ops._caffe2.AliasWithName(x, name, is_backward=is_backward) - - -def fuse_alias_placeholder(predict_net, init_net): - """Remove AliasWithName placeholder and rename the input/output of it""" - # First we finish all the re-naming - for i, op in enumerate(predict_net.op): - if op.type == "AliasWithName": - assert len(op.input) == 1 - assert len(op.output) == 1 - name = get_pb_arg_vals(op, "name", None).decode() - is_backward = bool(get_pb_arg_vali(op, "is_backward", 0)) - rename_op_input(predict_net, init_net, i, 0, name, from_producer=is_backward) - rename_op_output(predict_net, i, 0, name) - - # Remove AliasWithName, should be very safe since it's a non-op - new_ops = [] - for op in predict_net.op: - if op.type != "AliasWithName": - new_ops.append(op) - else: - # safety check - assert op.input == op.output - assert op.input[0] == op.arg[0].s.decode() - del predict_net.op[:] - predict_net.op.extend(new_ops) - - -# ==== torch/utils_caffe2/graph_transform.py =================================== - - -class IllegalGraphTransformError(ValueError): - """When a graph transform function call can't be executed.""" - - -def _rename_versioned_blob_in_proto( - proto: caffe2_pb2.NetDef, - old_name: str, - new_name: str, - version: int, - ssa: List[Tuple[List[Tuple[str, int]], List[Tuple[str, int]]]], - start_versions: Dict[str, int], - end_versions: Dict[str, int], -): - """In given proto, rename all blobs with matched version""" - # Operater list - for op, i_th_ssa in zip(proto.op, ssa): - versioned_inputs, versioned_outputs = i_th_ssa - for i in range(len(op.input)): - if versioned_inputs[i] == (old_name, version): - op.input[i] = new_name - for i in range(len(op.output)): - if versioned_outputs[i] == (old_name, version): - op.output[i] = new_name - # external_input - if start_versions.get(old_name, 0) == version: - for i in range(len(proto.external_input)): - if proto.external_input[i] == old_name: - proto.external_input[i] = new_name - # external_output - if end_versions.get(old_name, 0) == version: - for i in range(len(proto.external_output)): - if proto.external_output[i] == old_name: - proto.external_output[i] = new_name - - -def rename_op_input( - predict_net: caffe2_pb2.NetDef, - init_net: caffe2_pb2.NetDef, - op_id: int, - input_id: int, - new_name: str, - from_producer: bool = False, -): - """ - Rename the op_id-th operator in predict_net, change it's input_id-th input's - name to the new_name. It also does automatic re-route and change - external_input and init_net if necessary. - - It requires the input is only consumed by this op. - - This function modifies predict_net and init_net in-place. - - When from_producer is enable, this also updates other operators that consumes - the same input. Be cautious because may trigger unintended behavior. - """ - assert isinstance(predict_net, caffe2_pb2.NetDef) - assert isinstance(init_net, caffe2_pb2.NetDef) - - init_net_ssa, init_net_versions = core.get_ssa(init_net) - predict_net_ssa, predict_net_versions = core.get_ssa( - predict_net, copy.deepcopy(init_net_versions) - ) - - versioned_inputs, versioned_outputs = predict_net_ssa[op_id] - old_name, version = versioned_inputs[input_id] - - if from_producer: - producer_map = get_producer_map(predict_net_ssa) - if not (old_name, version) in producer_map: - raise NotImplementedError( - "Can't find producer, the input {} is probably from" - " init_net, this is not supported yet.".format(old_name) - ) - producer = producer_map[(old_name, version)] - rename_op_output(predict_net, producer[0], producer[1], new_name) - return - - def contain_targets(op_ssa): - return (old_name, version) in op_ssa[0] - - is_consumer = [contain_targets(op_ssa) for op_ssa in predict_net_ssa] - if sum(is_consumer) > 1: - raise IllegalGraphTransformError( - ( - "Input '{}' of operator(#{}) are consumed by other ops, please use" - + " rename_op_output on the producer instead. Offending op: \n{}" - ).format(old_name, op_id, predict_net.op[op_id]) - ) - - # update init_net - _rename_versioned_blob_in_proto( - init_net, old_name, new_name, version, init_net_ssa, {}, init_net_versions - ) - # update predict_net - _rename_versioned_blob_in_proto( - predict_net, - old_name, - new_name, - version, - predict_net_ssa, - init_net_versions, - predict_net_versions, - ) - - -def rename_op_output(predict_net: caffe2_pb2.NetDef, op_id: int, output_id: int, new_name: str): - """ - Rename the op_id-th operator in predict_net, change it's output_id-th input's - name to the new_name. It also does automatic re-route and change - external_output and if necessary. - - It allows multiple consumers of its output. - - This function modifies predict_net in-place, doesn't need init_net. - """ - assert isinstance(predict_net, caffe2_pb2.NetDef) - - ssa, blob_versions = core.get_ssa(predict_net) - - versioned_inputs, versioned_outputs = ssa[op_id] - old_name, version = versioned_outputs[output_id] - - # update predict_net - _rename_versioned_blob_in_proto( - predict_net, old_name, new_name, version, ssa, {}, blob_versions - ) - - -def get_sub_graph_external_input_output( - predict_net: caffe2_pb2.NetDef, sub_graph_op_indices: List[int] -) -> Tuple[List[Tuple[str, int]], List[Tuple[str, int]]]: - """ - Return the list of external input/output of sub-graph, - each element is tuple of the name and corresponding version in predict_net. - - external input/output is defined the same way as caffe2 NetDef. - """ - ssa, versions = core.get_ssa(predict_net) - - all_inputs = [] - all_outputs = [] - for op_id in sub_graph_op_indices: - all_inputs += [inp for inp in ssa[op_id][0] if inp not in all_inputs] - all_outputs += list(ssa[op_id][1]) # ssa output won't repeat - - # for versioned blobs, external inputs are just those blob in all_inputs - # but not in all_outputs - ext_inputs = [inp for inp in all_inputs if inp not in all_outputs] - - # external outputs are essentially outputs of this subgraph that are used - # outside of this sub-graph (including predict_net.external_output) - all_other_inputs = sum( - (ssa[i][0] for i in range(len(ssa)) if i not in sub_graph_op_indices), - [(outp, versions[outp]) for outp in predict_net.external_output], - ) - ext_outputs = [outp for outp in all_outputs if outp in set(all_other_inputs)] - - return ext_inputs, ext_outputs - - -class DiGraph: - """A DAG representation of caffe2 graph, each vertice is a versioned blob.""" - - def __init__(self): - self.vertices = set() - self.graph = collections.defaultdict(list) - - def add_edge(self, u, v): - self.graph[u].append(v) - self.vertices.add(u) - self.vertices.add(v) - - # grab from https://www.geeksforgeeks.org/find-paths-given-source-destination/ - def get_all_paths(self, s, d): - visited = {k: False for k in self.vertices} - path = [] - all_paths = [] - - def _get_all_paths_util(graph, u, d, visited, path): - visited[u] = True - path.append(u) - if u == d: - all_paths.append(copy.deepcopy(path)) - else: - for i in graph[u]: - if not visited[i]: - _get_all_paths_util(graph, i, d, visited, path) - path.pop() - visited[u] = False - - _get_all_paths_util(self.graph, s, d, visited, path) - return all_paths - - @staticmethod - def from_ssa(ssa): - graph = DiGraph() - for op_id in range(len(ssa)): - for inp in ssa[op_id][0]: - for outp in ssa[op_id][1]: - graph.add_edge(inp, outp) - return graph - - -def _get_dependency_chain(ssa, versioned_target, versioned_source): - """ - Return the index list of relevant operator to produce target blob from source blob, - if there's no dependency, return empty list. - """ - - # finding all paths between nodes can be O(N!), thus we can only search - # in the subgraph using the op starting from the first consumer of source blob - # to the producer of the target blob. - consumer_map = get_consumer_map(ssa) - producer_map = get_producer_map(ssa) - start_op = min(x[0] for x in consumer_map[versioned_source]) - 15 - end_op = ( - producer_map[versioned_target][0] + 15 if versioned_target in producer_map else start_op - ) - sub_graph_ssa = ssa[start_op : end_op + 1] - if len(sub_graph_ssa) > 30: - logger.warning( - "Subgraph bebetween {} and {} is large (from op#{} to op#{}), it" - " might take non-trival time to find all paths between them.".format( - versioned_source, versioned_target, start_op, end_op - ) - ) - - dag = DiGraph.from_ssa(sub_graph_ssa) - paths = dag.get_all_paths(versioned_source, versioned_target) # include two ends - ops_in_paths = [[producer_map[blob][0] for blob in path[1:]] for path in paths] - return sorted(set().union(*[set(ops) for ops in ops_in_paths])) - - -def identify_reshape_sub_graph(predict_net: caffe2_pb2.NetDef) -> List[List[int]]: - """ - Idenfity the reshape sub-graph in a protobuf. - The reshape sub-graph is defined as matching the following pattern: - - (input_blob) -> Op_1 -> ... -> Op_N -> (new_shape) -─┐ - └-------------------------------------------> Reshape -> (output_blob) - - Return: - List of sub-graphs, each sub-graph is represented as a list of indices - of the relavent ops, [Op_1, Op_2, ..., Op_N, Reshape] - """ - - ssa, _ = core.get_ssa(predict_net) - - ret = [] - for i, op in enumerate(predict_net.op): - if op.type == "Reshape": - assert len(op.input) == 2 - input_ssa = ssa[i][0] - data_source = input_ssa[0] - shape_source = input_ssa[1] - op_indices = _get_dependency_chain(ssa, shape_source, data_source) - ret.append(op_indices + [i]) - return ret - - -def remove_reshape_for_fc(predict_net, params): - """ - In PyTorch nn.Linear has to take 2D tensor, this often leads to reshape - a 4D tensor to 2D by calling .view(). However this (dynamic) reshaping - doesn't work well with ONNX and Int8 tools, and cause using extra - ops (eg. ExpandDims) that might not be available on mobile. - Luckily Caffe2 supports 4D tensor for FC, so we can remove those reshape - after exporting ONNX model. - """ - from caffe2.python import core - - # find all reshape sub-graph that can be removed, which is now all Reshape - # sub-graph whose output is only consumed by FC. - # TODO: to make it safer, we may need the actually value to better determine - # if a Reshape before FC is removable. - reshape_sub_graphs = identify_reshape_sub_graph(predict_net) - sub_graphs_to_remove = [] - for reshape_sub_graph in reshape_sub_graphs: - reshape_op_id = reshape_sub_graph[-1] - assert predict_net.op[reshape_op_id].type == "Reshape" - ssa, _ = core.get_ssa(predict_net) - reshape_output = ssa[reshape_op_id][1][0] - consumers = [i for i in range(len(ssa)) if reshape_output in ssa[i][0]] - if all(predict_net.op[consumer].type == "FC" for consumer in consumers): - # safety check if the sub-graph is isolated, for this reshape sub-graph, - # it means it has one non-param external input and one external output. - ext_inputs, ext_outputs = get_sub_graph_external_input_output( - predict_net, reshape_sub_graph - ) - non_params_ext_inputs = [inp for inp in ext_inputs if inp[1] != 0] - if len(non_params_ext_inputs) == 1 and len(ext_outputs) == 1: - sub_graphs_to_remove.append(reshape_sub_graph) - - # perform removing subgraph by: - # 1: rename the Reshape's output to its input, then the graph can be - # seen as in-place itentify, meaning whose external input/output are the same. - # 2: simply remove those ops. - remove_op_ids = [] - params_to_remove = [] - for sub_graph in sub_graphs_to_remove: - logger.info( - "Remove Reshape sub-graph:\n{}".format( - "".join(["(#{:>4})\n{}".format(i, predict_net.op[i]) for i in sub_graph]) - ) - ) - reshape_op_id = sub_graph[-1] - new_reshap_output = predict_net.op[reshape_op_id].input[0] - rename_op_output(predict_net, reshape_op_id, 0, new_reshap_output) - ext_inputs, ext_outputs = get_sub_graph_external_input_output(predict_net, sub_graph) - non_params_ext_inputs = [inp for inp in ext_inputs if inp[1] != 0] - params_ext_inputs = [inp for inp in ext_inputs if inp[1] == 0] - assert len(non_params_ext_inputs) == 1 and len(ext_outputs) == 1 - assert ext_outputs[0][0] == non_params_ext_inputs[0][0] - assert ext_outputs[0][1] == non_params_ext_inputs[0][1] + 1 - remove_op_ids.extend(sub_graph) - params_to_remove.extend(params_ext_inputs) - - predict_net = copy.deepcopy(predict_net) - new_ops = [op for i, op in enumerate(predict_net.op) if i not in remove_op_ids] - del predict_net.op[:] - predict_net.op.extend(new_ops) - for versioned_params in params_to_remove: - name = versioned_params[0] - logger.info("Remove params: {} from init_net and predict_net.external_input".format(name)) - del params[name] - predict_net.external_input.remove(name) - - return predict_net, params - - -def fuse_copy_between_cpu_and_gpu(predict_net: caffe2_pb2.NetDef): - """ - In-place fuse extra copy ops between cpu/gpu for the following case: - a -CopyAToB-> b -CopyBToA> c1 -NextOp1-> d1 - -CopyBToA> c2 -NextOp2-> d2 - The fused network will look like: - a -NextOp1-> d1 - -NextOp2-> d2 - """ - - _COPY_OPS = ["CopyCPUToGPU", "CopyGPUToCPU"] - - def _fuse_once(predict_net): - ssa, blob_versions = core.get_ssa(predict_net) - consumer_map = get_consumer_map(ssa) - versioned_external_output = [ - (name, blob_versions[name]) for name in predict_net.external_output - ] - - for op_id, op in enumerate(predict_net.op): - if op.type in _COPY_OPS: - fw_copy_versioned_output = ssa[op_id][1][0] - consumer_ids = [x[0] for x in consumer_map[fw_copy_versioned_output]] - reverse_op_type = _COPY_OPS[1 - _COPY_OPS.index(op.type)] - - is_fusable = ( - len(consumer_ids) > 0 - and fw_copy_versioned_output not in versioned_external_output - and all( - predict_net.op[_op_id].type == reverse_op_type - and ssa[_op_id][1][0] not in versioned_external_output - for _op_id in consumer_ids - ) - ) - - if is_fusable: - for rv_copy_op_id in consumer_ids: - # making each NextOp uses "a" directly and removing Copy ops - rs_copy_versioned_output = ssa[rv_copy_op_id][1][0] - next_op_id, inp_id = consumer_map[rs_copy_versioned_output][0] - predict_net.op[next_op_id].input[inp_id] = op.input[0] - # remove CopyOps - new_ops = [ - op - for i, op in enumerate(predict_net.op) - if i != op_id and i not in consumer_ids - ] - del predict_net.op[:] - predict_net.op.extend(new_ops) - return True - - return False - - # _fuse_once returns False is nothing can be fused - while _fuse_once(predict_net): - pass - - -def remove_dead_end_ops(net_def: caffe2_pb2.NetDef): - """remove ops if its output is not used or not in external_output""" - ssa, versions = core.get_ssa(net_def) - versioned_external_output = [(name, versions[name]) for name in net_def.external_output] - consumer_map = get_consumer_map(ssa) - removed_op_ids = set() - - def _is_dead_end(versioned_blob): - return not ( - versioned_blob in versioned_external_output - or ( - len(consumer_map[versioned_blob]) > 0 - and all(x[0] not in removed_op_ids for x in consumer_map[versioned_blob]) - ) - ) - - for i, ssa_i in reversed(list(enumerate(ssa))): - versioned_outputs = ssa_i[1] - if all(_is_dead_end(outp) for outp in versioned_outputs): - removed_op_ids.add(i) - - # simply removing those deadend ops should have no effect to external_output - new_ops = [op for i, op in enumerate(net_def.op) if i not in removed_op_ids] - del net_def.op[:] - net_def.op.extend(new_ops) diff --git a/spaces/csamuel/decapoda-research-llama-13b-hf/app.py b/spaces/csamuel/decapoda-research-llama-13b-hf/app.py deleted file mode 100644 index 38dac1da7625014be73ee75acbd03bba2c9bdf53..0000000000000000000000000000000000000000 --- a/spaces/csamuel/decapoda-research-llama-13b-hf/app.py +++ /dev/null @@ -1,3 +0,0 @@ -import gradio as gr - -gr.Interface.load("models/decapoda-research/llama-13b-hf").launch() \ No newline at end of file diff --git a/spaces/daddyjin/TalkingFaceGeneration/FONT/script_backup.sh b/spaces/daddyjin/TalkingFaceGeneration/FONT/script_backup.sh deleted file mode 100644 index c6def5185a8dad5aefa301372c1b0e39a8e98f88..0000000000000000000000000000000000000000 --- a/spaces/daddyjin/TalkingFaceGeneration/FONT/script_backup.sh +++ /dev/null @@ -1,17 +0,0 @@ ---pose_given "/data/liujin/dataset/preprocess/LRW/data_file/test_video_pose.npy" \ ---pose_given "/data/liujin/_new_idea_211030_ICME/audio2pose_vae/result/test_pose_long_vae.npy" \ ---audio_checkpoint "./log/train_part1_wav2lip_pretrain_3dmm/294-00010000-checkpoint.pth.tar" \ ---checkpoint "./log/train_part1_fine_tune_wav2lip_pretrain_3dmm/392-00080000-checkpoint.pth.tar" \ ---audio_checkpoint "/data/liujin/EAMM-main/log/train_part1_hdtf_wav2lip_pretrain_3dmm_hdtf/3124-00022500-checkpoint.pth.tar" \ ---checkpoint "/data/liujin/EAMM-main/log/train_part1_fine_tune_hdtf_wav2lip_pretrain_3dmm_hdtf/3341-00005000-checkpoint.pth.tar" \ ---pose_long TRUE \ ---pose_file "/data/liujin/dataset/preprocess/LRW/data_file/test_first_frame_pose.npy" \ ---pose_given "/data/liujin/dataset/preprocess/LRW/data_file/test_video_pose.npy" \ ---source_image ./test/image/RD_Radio10_000.png \ ---source_image "./test/image/ABOUT_00994.jpg" \ ---source_image "/data/liujin/dataset/LRW/lipread_frames/ABOUT/train/ABOUT_00994/000000.jpg" \ ---in_file "/data/liujin/dataset/LRW/lipread_wav/ABOUT/train/ABOUT_00994.wav" \ ---pose_file "/data/liujin/dataset/HDTF/pose_3DDFA_256/RD_Radio20_000/000000.npy" \ ---pose_given "/data/liujin/dataset/preprocess/LRW/data_file/test_pose_long_3ddfa.npy" \ ---source_image "/data/liujin/dataset/HDTF/frames_256/RD_Radio26_000/000000.png" \ ---pose_given "./test/pose_long/50IAfJCypFI_Alex_Kingston_50IAfJCypFI_0001.npy" \ \ No newline at end of file diff --git a/spaces/danterivers/music-generation-samples/MODEL_CARD.md b/spaces/danterivers/music-generation-samples/MODEL_CARD.md deleted file mode 100644 index fe8159e61ab2966629092c4587997adcf12dac44..0000000000000000000000000000000000000000 --- a/spaces/danterivers/music-generation-samples/MODEL_CARD.md +++ /dev/null @@ -1,81 +0,0 @@ -# MusicGen Model Card - -## Model details - -**Organization developing the model:** The FAIR team of Meta AI. - -**Model date:** MusicGen was trained between April 2023 and May 2023. - -**Model version:** This is the version 1 of the model. - -**Model type:** MusicGen consists of an EnCodec model for audio tokenization, an auto-regressive language model based on the transformer architecture for music modeling. The model comes in different sizes: 300M, 1.5B and 3.3B parameters ; and two variants: a model trained for text-to-music generation task and a model trained for melody-guided music generation. - -**Paper or resources for more information:** More information can be found in the paper [Simple and Controllable Music Generation][arxiv]. - -**Citation details** See [our paper][arxiv] - -**License** Code is released under MIT, model weights are released under CC-BY-NC 4.0. - -**Where to send questions or comments about the model:** Questions and comments about MusicGen can be sent via the [Github repository](https://github.com/facebookresearch/audiocraft) of the project, or by opening an issue. - -## Intended use -**Primary intended use:** The primary use of MusicGen is research on AI-based music generation, including: - -- Research efforts, such as probing and better understanding the limitations of generative models to further improve the state of science -- Generation of music guided by text or melody to understand current abilities of generative AI models by machine learning amateurs - -**Primary intended users:** The primary intended users of the model are researchers in audio, machine learning and artificial intelligence, as well as amateur seeking to better understand those models. - -**Out-of-scope use cases** The model should not be used on downstream applications without further risk evaluation and mitigation. The model should not be used to intentionally create or disseminate music pieces that create hostile or alienating environments for people. This includes generating music that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. - -## Metrics - -**Models performance measures:** We used the following objective measure to evaluate the model on a standard music benchmark: - -- Frechet Audio Distance computed on features extracted from a pre-trained audio classifier (VGGish) -- Kullback-Leibler Divergence on label distributions extracted from a pre-trained audio classifier (PaSST) -- CLAP Score between audio embedding and text embedding extracted from a pre-trained CLAP model - -Additionally, we run qualitative studies with human participants, evaluating the performance of the model with the following axes: - -- Overall quality of the music samples; -- Text relevance to the provided text input; -- Adherence to the melody for melody-guided music generation. - -More details on performance measures and human studies can be found in the paper. - -**Decision thresholds:** Not applicable. - -## Evaluation datasets - -The model was evaluated on the [MusicCaps benchmark](https://www.kaggle.com/datasets/googleai/musiccaps) and on an in-domain held-out evaluation set, with no artist overlap with the training set. - -## Training datasets - -The model was trained using the following sources: the [Meta Music Initiative Sound Collection](https://www.fb.com/sound), [Shutterstock music collection](https://www.shutterstock.com/music) and the [Pond5 music collection](https://www.pond5.com/). See the paper for more details about the training set and corresponding preprocessing. - -## Quantitative analysis - -More information can be found in the paper [Simple and Controllable Music Generation][arxiv], in the Experimental Setup section. - -## Limitations and biases - -**Data:** The data sources used to train the model are created by music professionals and covered by legal agreements with the right holders. The model is trained on 20K hours of data, we believe that scaling the model on larger datasets can further improve the performance of the model. - -**Mitigations:** All vocals have been removed from the data source using a state-of-the-art music source separation method, namely using the open source [Hybrid Transformer for Music Source Separation](https://github.com/facebookresearch/demucs) (HT-Demucs). The model is therefore not able to produce vocals. - -**Limitations:** - -- The model is not able to generate realistic vocals. -- The model has been trained with English descriptions and will not perform as well in other languages. -- The model does not perform equally well for all music styles and cultures. -- The model sometimes generates end of songs, collapsing to silence. -- It is sometimes difficult to assess what types of text descriptions provide the best generations. Prompt engineering may be required to obtain satisfying results. - -**Biases:** The source of data is potentially lacking diversity and all music cultures are not equally represented in the dataset. The model may not perform equally well on the wide variety of music genres that exists. The generated samples from the model will reflect the biases from the training data. Further work on this model should include methods for balanced and just representations of cultures, for example, by scaling the training data to be both diverse and inclusive. - -**Risks and harms:** Biases and limitations of the model may lead to generation of samples that may be considered as biased, inappropriate or offensive. We believe that providing the code to reproduce the research and train new models will allow to broaden the application to new and more representative data. - -**Use cases:** Users must be aware of the biases, limitations and risks of the model. MusicGen is a model developed for artificial intelligence research on controllable music generation. As such, it should not be used for downstream applications without further investigation and mitigation of risks. - -[arxiv]: https://arxiv.org/abs/2306.05284 diff --git a/spaces/dawood17/SayBot_Enchancer/CodeFormer/facelib/detection/matlab_cp2tform.py b/spaces/dawood17/SayBot_Enchancer/CodeFormer/facelib/detection/matlab_cp2tform.py deleted file mode 100644 index b2a8b54a91709c71437e15c68d3be9a9b0a20a34..0000000000000000000000000000000000000000 --- a/spaces/dawood17/SayBot_Enchancer/CodeFormer/facelib/detection/matlab_cp2tform.py +++ /dev/null @@ -1,317 +0,0 @@ -import numpy as np -from numpy.linalg import inv, lstsq -from numpy.linalg import matrix_rank as rank -from numpy.linalg import norm - - -class MatlabCp2tormException(Exception): - - def __str__(self): - return 'In File {}:{}'.format(__file__, super.__str__(self)) - - -def tformfwd(trans, uv): - """ - Function: - ---------- - apply affine transform 'trans' to uv - - Parameters: - ---------- - @trans: 3x3 np.array - transform matrix - @uv: Kx2 np.array - each row is a pair of coordinates (x, y) - - Returns: - ---------- - @xy: Kx2 np.array - each row is a pair of transformed coordinates (x, y) - """ - uv = np.hstack((uv, np.ones((uv.shape[0], 1)))) - xy = np.dot(uv, trans) - xy = xy[:, 0:-1] - return xy - - -def tforminv(trans, uv): - """ - Function: - ---------- - apply the inverse of affine transform 'trans' to uv - - Parameters: - ---------- - @trans: 3x3 np.array - transform matrix - @uv: Kx2 np.array - each row is a pair of coordinates (x, y) - - Returns: - ---------- - @xy: Kx2 np.array - each row is a pair of inverse-transformed coordinates (x, y) - """ - Tinv = inv(trans) - xy = tformfwd(Tinv, uv) - return xy - - -def findNonreflectiveSimilarity(uv, xy, options=None): - options = {'K': 2} - - K = options['K'] - M = xy.shape[0] - x = xy[:, 0].reshape((-1, 1)) # use reshape to keep a column vector - y = xy[:, 1].reshape((-1, 1)) # use reshape to keep a column vector - - tmp1 = np.hstack((x, y, np.ones((M, 1)), np.zeros((M, 1)))) - tmp2 = np.hstack((y, -x, np.zeros((M, 1)), np.ones((M, 1)))) - X = np.vstack((tmp1, tmp2)) - - u = uv[:, 0].reshape((-1, 1)) # use reshape to keep a column vector - v = uv[:, 1].reshape((-1, 1)) # use reshape to keep a column vector - U = np.vstack((u, v)) - - # We know that X * r = U - if rank(X) >= 2 * K: - r, _, _, _ = lstsq(X, U, rcond=-1) - r = np.squeeze(r) - else: - raise Exception('cp2tform:twoUniquePointsReq') - sc = r[0] - ss = r[1] - tx = r[2] - ty = r[3] - - Tinv = np.array([[sc, -ss, 0], [ss, sc, 0], [tx, ty, 1]]) - T = inv(Tinv) - T[:, 2] = np.array([0, 0, 1]) - - return T, Tinv - - -def findSimilarity(uv, xy, options=None): - options = {'K': 2} - - # uv = np.array(uv) - # xy = np.array(xy) - - # Solve for trans1 - trans1, trans1_inv = findNonreflectiveSimilarity(uv, xy, options) - - # Solve for trans2 - - # manually reflect the xy data across the Y-axis - xyR = xy - xyR[:, 0] = -1 * xyR[:, 0] - - trans2r, trans2r_inv = findNonreflectiveSimilarity(uv, xyR, options) - - # manually reflect the tform to undo the reflection done on xyR - TreflectY = np.array([[-1, 0, 0], [0, 1, 0], [0, 0, 1]]) - - trans2 = np.dot(trans2r, TreflectY) - - # Figure out if trans1 or trans2 is better - xy1 = tformfwd(trans1, uv) - norm1 = norm(xy1 - xy) - - xy2 = tformfwd(trans2, uv) - norm2 = norm(xy2 - xy) - - if norm1 <= norm2: - return trans1, trans1_inv - else: - trans2_inv = inv(trans2) - return trans2, trans2_inv - - -def get_similarity_transform(src_pts, dst_pts, reflective=True): - """ - Function: - ---------- - Find Similarity Transform Matrix 'trans': - u = src_pts[:, 0] - v = src_pts[:, 1] - x = dst_pts[:, 0] - y = dst_pts[:, 1] - [x, y, 1] = [u, v, 1] * trans - - Parameters: - ---------- - @src_pts: Kx2 np.array - source points, each row is a pair of coordinates (x, y) - @dst_pts: Kx2 np.array - destination points, each row is a pair of transformed - coordinates (x, y) - @reflective: True or False - if True: - use reflective similarity transform - else: - use non-reflective similarity transform - - Returns: - ---------- - @trans: 3x3 np.array - transform matrix from uv to xy - trans_inv: 3x3 np.array - inverse of trans, transform matrix from xy to uv - """ - - if reflective: - trans, trans_inv = findSimilarity(src_pts, dst_pts) - else: - trans, trans_inv = findNonreflectiveSimilarity(src_pts, dst_pts) - - return trans, trans_inv - - -def cvt_tform_mat_for_cv2(trans): - """ - Function: - ---------- - Convert Transform Matrix 'trans' into 'cv2_trans' which could be - directly used by cv2.warpAffine(): - u = src_pts[:, 0] - v = src_pts[:, 1] - x = dst_pts[:, 0] - y = dst_pts[:, 1] - [x, y].T = cv_trans * [u, v, 1].T - - Parameters: - ---------- - @trans: 3x3 np.array - transform matrix from uv to xy - - Returns: - ---------- - @cv2_trans: 2x3 np.array - transform matrix from src_pts to dst_pts, could be directly used - for cv2.warpAffine() - """ - cv2_trans = trans[:, 0:2].T - - return cv2_trans - - -def get_similarity_transform_for_cv2(src_pts, dst_pts, reflective=True): - """ - Function: - ---------- - Find Similarity Transform Matrix 'cv2_trans' which could be - directly used by cv2.warpAffine(): - u = src_pts[:, 0] - v = src_pts[:, 1] - x = dst_pts[:, 0] - y = dst_pts[:, 1] - [x, y].T = cv_trans * [u, v, 1].T - - Parameters: - ---------- - @src_pts: Kx2 np.array - source points, each row is a pair of coordinates (x, y) - @dst_pts: Kx2 np.array - destination points, each row is a pair of transformed - coordinates (x, y) - reflective: True or False - if True: - use reflective similarity transform - else: - use non-reflective similarity transform - - Returns: - ---------- - @cv2_trans: 2x3 np.array - transform matrix from src_pts to dst_pts, could be directly used - for cv2.warpAffine() - """ - trans, trans_inv = get_similarity_transform(src_pts, dst_pts, reflective) - cv2_trans = cvt_tform_mat_for_cv2(trans) - - return cv2_trans - - -if __name__ == '__main__': - """ - u = [0, 6, -2] - v = [0, 3, 5] - x = [-1, 0, 4] - y = [-1, -10, 4] - - # In Matlab, run: - # - # uv = [u'; v']; - # xy = [x'; y']; - # tform_sim=cp2tform(uv,xy,'similarity'); - # - # trans = tform_sim.tdata.T - # ans = - # -0.0764 -1.6190 0 - # 1.6190 -0.0764 0 - # -3.2156 0.0290 1.0000 - # trans_inv = tform_sim.tdata.Tinv - # ans = - # - # -0.0291 0.6163 0 - # -0.6163 -0.0291 0 - # -0.0756 1.9826 1.0000 - # xy_m=tformfwd(tform_sim, u,v) - # - # xy_m = - # - # -3.2156 0.0290 - # 1.1833 -9.9143 - # 5.0323 2.8853 - # uv_m=tforminv(tform_sim, x,y) - # - # uv_m = - # - # 0.5698 1.3953 - # 6.0872 2.2733 - # -2.6570 4.3314 - """ - u = [0, 6, -2] - v = [0, 3, 5] - x = [-1, 0, 4] - y = [-1, -10, 4] - - uv = np.array((u, v)).T - xy = np.array((x, y)).T - - print('\n--->uv:') - print(uv) - print('\n--->xy:') - print(xy) - - trans, trans_inv = get_similarity_transform(uv, xy) - - print('\n--->trans matrix:') - print(trans) - - print('\n--->trans_inv matrix:') - print(trans_inv) - - print('\n---> apply transform to uv') - print('\nxy_m = uv_augmented * trans') - uv_aug = np.hstack((uv, np.ones((uv.shape[0], 1)))) - xy_m = np.dot(uv_aug, trans) - print(xy_m) - - print('\nxy_m = tformfwd(trans, uv)') - xy_m = tformfwd(trans, uv) - print(xy_m) - - print('\n---> apply inverse transform to xy') - print('\nuv_m = xy_augmented * trans_inv') - xy_aug = np.hstack((xy, np.ones((xy.shape[0], 1)))) - uv_m = np.dot(xy_aug, trans_inv) - print(uv_m) - - print('\nuv_m = tformfwd(trans_inv, xy)') - uv_m = tformfwd(trans_inv, xy) - print(uv_m) - - uv_m = tforminv(trans, xy) - print('\nuv_m = tforminv(trans, xy)') - print(uv_m) diff --git a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/gradio/templates/cdn/assets/index-4d3f6d59.js b/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/gradio/templates/cdn/assets/index-4d3f6d59.js deleted file mode 100644 index 7a3ff8ee8aca6a10630a8a5e28a39e7b1c6558c6..0000000000000000000000000000000000000000 --- a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/gradio/templates/cdn/assets/index-4d3f6d59.js +++ /dev/null @@ -1,2 +0,0 @@ -import{S as g,e as v,s as d,a9 as r,m as q,g as o,as as h,Y as u,h as b,ab as S,ac as w,ad as R,w as j,u as C,k}from"./index-9e76ffee.js";function Y(i){let e,_,s;const f=i[6].default,a=r(f,i,i[5],null);return{c(){e=q("div"),a&&a.c(),o(e,"id",i[1]),o(e,"class",_=h(i[2].join(" "))+" svelte-15lo0d8"),u(e,"compact",i[4]==="compact"),u(e,"panel",i[4]==="panel"),u(e,"unequal-height",i[0]===!1),u(e,"stretch",i[0]),u(e,"hide",!i[3])},m(l,t){b(l,e,t),a&&a.m(e,null),s=!0},p(l,[t]){a&&a.p&&(!s||t&32)&&S(a,f,l,l[5],s?R(f,l[5],t,null):w(l[5]),null),(!s||t&2)&&o(e,"id",l[1]),(!s||t&4&&_!==(_=h(l[2].join(" "))+" svelte-15lo0d8"))&&o(e,"class",_),(!s||t&20)&&u(e,"compact",l[4]==="compact"),(!s||t&20)&&u(e,"panel",l[4]==="panel"),(!s||t&5)&&u(e,"unequal-height",l[0]===!1),(!s||t&5)&&u(e,"stretch",l[0]),(!s||t&12)&&u(e,"hide",!l[3])},i(l){s||(j(a,l),s=!0)},o(l){C(a,l),s=!1},d(l){l&&k(e),a&&a.d(l)}}}function z(i,e,_){let{$$slots:s={},$$scope:f}=e,{equal_height:a=!0}=e,{elem_id:l}=e,{elem_classes:t=[]}=e,{visible:c=!0}=e,{variant:m="default"}=e;return i.$$set=n=>{"equal_height"in n&&_(0,a=n.equal_height),"elem_id"in n&&_(1,l=n.elem_id),"elem_classes"in n&&_(2,t=n.elem_classes),"visible"in n&&_(3,c=n.visible),"variant"in n&&_(4,m=n.variant),"$$scope"in n&&_(5,f=n.$$scope)},[a,l,t,c,m,f,s]}class A extends g{constructor(e){super(),v(this,e,z,Y,d,{equal_height:0,elem_id:1,elem_classes:2,visible:3,variant:4})}}const D=A,E=["static"];export{D as Component,E as modes}; -//# sourceMappingURL=index-4d3f6d59.js.map diff --git a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/markdown_it/rules_core/__init__.py b/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/markdown_it/rules_core/__init__.py deleted file mode 100644 index c9c5368c2b694231000626a03594ebad75fe8c71..0000000000000000000000000000000000000000 --- a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/markdown_it/rules_core/__init__.py +++ /dev/null @@ -1,19 +0,0 @@ -__all__ = ( - "StateCore", - "normalize", - "block", - "inline", - "replace", - "smartquotes", - "linkify", - "text_join", -) - -from .block import block -from .inline import inline -from .linkify import linkify -from .normalize import normalize -from .replacements import replace -from .smartquotes import smartquotes -from .state_core import StateCore -from .text_join import text_join diff --git a/spaces/dcq/freegpt-webui/g4f/Provider/Providers/helpers/gpt4love.py b/spaces/dcq/freegpt-webui/g4f/Provider/Providers/helpers/gpt4love.py deleted file mode 100644 index 987fdbf8de5c27f7b827183d9c192dcf48d8ddcf..0000000000000000000000000000000000000000 --- a/spaces/dcq/freegpt-webui/g4f/Provider/Providers/helpers/gpt4love.py +++ /dev/null @@ -1,48 +0,0 @@ -import json -import sys -from re import findall -from curl_cffi import requests - -config = json.loads(sys.argv[1]) -prompt = config['messages'][-1]['content'] - -headers = { - 'authority': 'api.gptplus.one', - 'accept': 'application/json, text/plain, */*', - 'accept-language': 'ru-RU,ru;q=0.9,en-US;q=0.8,en;q=0.7,ja;q=0.6,zh-TW;q=0.5,zh;q=0.4', - 'content-type': 'application/octet-stream', - 'origin': 'https://ai.gptforlove.com/', - 'referer': 'https://ai.gptforlove.com/', - 'sec-ch-ua': '"Google Chrome";v="113", "Chromium";v="113", "Not-A.Brand";v="24"', - 'sec-ch-ua-mobile': '?0', - 'sec-ch-ua-platform': '"macOS"', - 'sec-fetch-dest': 'empty', - 'sec-fetch-mode': 'cors', - 'sec-fetch-site': 'cross-site', - 'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/113.0.0.0 Safari/537.36', -} - -json_data = { - 'prompt': prompt, - 'options': {} -} - -def format(chunk): - try: - completion_chunk = findall(r'content":"(.*)"},"fin', chunk.decode())[0] - print(completion_chunk, flush=True, end='') - - except Exception as e: - print(f'[ERROR] an error occured, retrying... | [[{chunk.decode()}]]', flush=True) - return - -while True: - try: - response = requests.post('https://api.gptplus.one/api/chat-process', - headers=headers, json=json_data, content_callback=format, impersonate='chrome110') - - exit(0) - - except Exception as e: - print('[ERROR] an error occured, retrying... |', e, flush=True) - continue \ No newline at end of file diff --git a/spaces/declare-lab/tango/diffusers/examples/community/clip_guided_stable_diffusion.py b/spaces/declare-lab/tango/diffusers/examples/community/clip_guided_stable_diffusion.py deleted file mode 100644 index fbb233dccd7ac272abcb29b7e01548387ee39e11..0000000000000000000000000000000000000000 --- a/spaces/declare-lab/tango/diffusers/examples/community/clip_guided_stable_diffusion.py +++ /dev/null @@ -1,347 +0,0 @@ -import inspect -from typing import List, Optional, Union - -import torch -from torch import nn -from torch.nn import functional as F -from torchvision import transforms -from transformers import CLIPImageProcessor, CLIPModel, CLIPTextModel, CLIPTokenizer - -from diffusers import ( - AutoencoderKL, - DDIMScheduler, - DiffusionPipeline, - DPMSolverMultistepScheduler, - LMSDiscreteScheduler, - PNDMScheduler, - UNet2DConditionModel, -) -from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput - - -class MakeCutouts(nn.Module): - def __init__(self, cut_size, cut_power=1.0): - super().__init__() - - self.cut_size = cut_size - self.cut_power = cut_power - - def forward(self, pixel_values, num_cutouts): - sideY, sideX = pixel_values.shape[2:4] - max_size = min(sideX, sideY) - min_size = min(sideX, sideY, self.cut_size) - cutouts = [] - for _ in range(num_cutouts): - size = int(torch.rand([]) ** self.cut_power * (max_size - min_size) + min_size) - offsetx = torch.randint(0, sideX - size + 1, ()) - offsety = torch.randint(0, sideY - size + 1, ()) - cutout = pixel_values[:, :, offsety : offsety + size, offsetx : offsetx + size] - cutouts.append(F.adaptive_avg_pool2d(cutout, self.cut_size)) - return torch.cat(cutouts) - - -def spherical_dist_loss(x, y): - x = F.normalize(x, dim=-1) - y = F.normalize(y, dim=-1) - return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) - - -def set_requires_grad(model, value): - for param in model.parameters(): - param.requires_grad = value - - -class CLIPGuidedStableDiffusion(DiffusionPipeline): - """CLIP guided stable diffusion based on the amazing repo by @crowsonkb and @Jack000 - - https://github.com/Jack000/glid-3-xl - - https://github.dev/crowsonkb/k-diffusion - """ - - def __init__( - self, - vae: AutoencoderKL, - text_encoder: CLIPTextModel, - clip_model: CLIPModel, - tokenizer: CLIPTokenizer, - unet: UNet2DConditionModel, - scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler], - feature_extractor: CLIPImageProcessor, - ): - super().__init__() - self.register_modules( - vae=vae, - text_encoder=text_encoder, - clip_model=clip_model, - tokenizer=tokenizer, - unet=unet, - scheduler=scheduler, - feature_extractor=feature_extractor, - ) - - self.normalize = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std) - self.cut_out_size = ( - feature_extractor.size - if isinstance(feature_extractor.size, int) - else feature_extractor.size["shortest_edge"] - ) - self.make_cutouts = MakeCutouts(self.cut_out_size) - - set_requires_grad(self.text_encoder, False) - set_requires_grad(self.clip_model, False) - - def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): - if slice_size == "auto": - # half the attention head size is usually a good trade-off between - # speed and memory - slice_size = self.unet.config.attention_head_dim // 2 - self.unet.set_attention_slice(slice_size) - - def disable_attention_slicing(self): - self.enable_attention_slicing(None) - - def freeze_vae(self): - set_requires_grad(self.vae, False) - - def unfreeze_vae(self): - set_requires_grad(self.vae, True) - - def freeze_unet(self): - set_requires_grad(self.unet, False) - - def unfreeze_unet(self): - set_requires_grad(self.unet, True) - - @torch.enable_grad() - def cond_fn( - self, - latents, - timestep, - index, - text_embeddings, - noise_pred_original, - text_embeddings_clip, - clip_guidance_scale, - num_cutouts, - use_cutouts=True, - ): - latents = latents.detach().requires_grad_() - - latent_model_input = self.scheduler.scale_model_input(latents, timestep) - - # predict the noise residual - noise_pred = self.unet(latent_model_input, timestep, encoder_hidden_states=text_embeddings).sample - - if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)): - alpha_prod_t = self.scheduler.alphas_cumprod[timestep] - beta_prod_t = 1 - alpha_prod_t - # compute predicted original sample from predicted noise also called - # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf - pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5) - - fac = torch.sqrt(beta_prod_t) - sample = pred_original_sample * (fac) + latents * (1 - fac) - elif isinstance(self.scheduler, LMSDiscreteScheduler): - sigma = self.scheduler.sigmas[index] - sample = latents - sigma * noise_pred - else: - raise ValueError(f"scheduler type {type(self.scheduler)} not supported") - - sample = 1 / self.vae.config.scaling_factor * sample - image = self.vae.decode(sample).sample - image = (image / 2 + 0.5).clamp(0, 1) - - if use_cutouts: - image = self.make_cutouts(image, num_cutouts) - else: - image = transforms.Resize(self.cut_out_size)(image) - image = self.normalize(image).to(latents.dtype) - - image_embeddings_clip = self.clip_model.get_image_features(image) - image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True) - - if use_cutouts: - dists = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip) - dists = dists.view([num_cutouts, sample.shape[0], -1]) - loss = dists.sum(2).mean(0).sum() * clip_guidance_scale - else: - loss = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip).mean() * clip_guidance_scale - - grads = -torch.autograd.grad(loss, latents)[0] - - if isinstance(self.scheduler, LMSDiscreteScheduler): - latents = latents.detach() + grads * (sigma**2) - noise_pred = noise_pred_original - else: - noise_pred = noise_pred_original - torch.sqrt(beta_prod_t) * grads - return noise_pred, latents - - @torch.no_grad() - def __call__( - self, - prompt: Union[str, List[str]], - height: Optional[int] = 512, - width: Optional[int] = 512, - num_inference_steps: Optional[int] = 50, - guidance_scale: Optional[float] = 7.5, - num_images_per_prompt: Optional[int] = 1, - eta: float = 0.0, - clip_guidance_scale: Optional[float] = 100, - clip_prompt: Optional[Union[str, List[str]]] = None, - num_cutouts: Optional[int] = 4, - use_cutouts: Optional[bool] = True, - generator: Optional[torch.Generator] = None, - latents: Optional[torch.FloatTensor] = None, - output_type: Optional[str] = "pil", - return_dict: bool = True, - ): - if isinstance(prompt, str): - batch_size = 1 - elif isinstance(prompt, list): - batch_size = len(prompt) - else: - raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") - - if height % 8 != 0 or width % 8 != 0: - raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") - - # get prompt text embeddings - text_input = self.tokenizer( - prompt, - padding="max_length", - max_length=self.tokenizer.model_max_length, - truncation=True, - return_tensors="pt", - ) - text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0] - # duplicate text embeddings for each generation per prompt - text_embeddings = text_embeddings.repeat_interleave(num_images_per_prompt, dim=0) - - if clip_guidance_scale > 0: - if clip_prompt is not None: - clip_text_input = self.tokenizer( - clip_prompt, - padding="max_length", - max_length=self.tokenizer.model_max_length, - truncation=True, - return_tensors="pt", - ).input_ids.to(self.device) - else: - clip_text_input = text_input.input_ids.to(self.device) - text_embeddings_clip = self.clip_model.get_text_features(clip_text_input) - text_embeddings_clip = text_embeddings_clip / text_embeddings_clip.norm(p=2, dim=-1, keepdim=True) - # duplicate text embeddings clip for each generation per prompt - text_embeddings_clip = text_embeddings_clip.repeat_interleave(num_images_per_prompt, dim=0) - - # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) - # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` - # corresponds to doing no classifier free guidance. - do_classifier_free_guidance = guidance_scale > 1.0 - # get unconditional embeddings for classifier free guidance - if do_classifier_free_guidance: - max_length = text_input.input_ids.shape[-1] - uncond_input = self.tokenizer([""], padding="max_length", max_length=max_length, return_tensors="pt") - uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0] - # duplicate unconditional embeddings for each generation per prompt - uncond_embeddings = uncond_embeddings.repeat_interleave(num_images_per_prompt, dim=0) - - # For classifier free guidance, we need to do two forward passes. - # Here we concatenate the unconditional and text embeddings into a single batch - # to avoid doing two forward passes - text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) - - # get the initial random noise unless the user supplied it - - # Unlike in other pipelines, latents need to be generated in the target device - # for 1-to-1 results reproducibility with the CompVis implementation. - # However this currently doesn't work in `mps`. - latents_shape = (batch_size * num_images_per_prompt, self.unet.in_channels, height // 8, width // 8) - latents_dtype = text_embeddings.dtype - if latents is None: - if self.device.type == "mps": - # randn does not work reproducibly on mps - latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to( - self.device - ) - else: - latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype) - else: - if latents.shape != latents_shape: - raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") - latents = latents.to(self.device) - - # set timesteps - accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) - extra_set_kwargs = {} - if accepts_offset: - extra_set_kwargs["offset"] = 1 - - self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs) - - # Some schedulers like PNDM have timesteps as arrays - # It's more optimized to move all timesteps to correct device beforehand - timesteps_tensor = self.scheduler.timesteps.to(self.device) - - # scale the initial noise by the standard deviation required by the scheduler - latents = latents * self.scheduler.init_noise_sigma - - # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature - # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. - # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 - # and should be between [0, 1] - accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) - extra_step_kwargs = {} - if accepts_eta: - extra_step_kwargs["eta"] = eta - - # check if the scheduler accepts generator - accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) - if accepts_generator: - extra_step_kwargs["generator"] = generator - - for i, t in enumerate(self.progress_bar(timesteps_tensor)): - # expand the latents if we are doing classifier free guidance - latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents - latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) - - # predict the noise residual - noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample - - # perform classifier free guidance - if do_classifier_free_guidance: - noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) - noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) - - # perform clip guidance - if clip_guidance_scale > 0: - text_embeddings_for_guidance = ( - text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings - ) - noise_pred, latents = self.cond_fn( - latents, - t, - i, - text_embeddings_for_guidance, - noise_pred, - text_embeddings_clip, - clip_guidance_scale, - num_cutouts, - use_cutouts, - ) - - # compute the previous noisy sample x_t -> x_t-1 - latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample - - # scale and decode the image latents with vae - latents = 1 / self.vae.config.scaling_factor * latents - image = self.vae.decode(latents).sample - - image = (image / 2 + 0.5).clamp(0, 1) - image = image.cpu().permute(0, 2, 3, 1).numpy() - - if output_type == "pil": - image = self.numpy_to_pil(image) - - if not return_dict: - return (image, None) - - return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None) diff --git a/spaces/declare-lab/tango/diffusers/src/diffusers/pipelines/score_sde_ve/__init__.py b/spaces/declare-lab/tango/diffusers/src/diffusers/pipelines/score_sde_ve/__init__.py deleted file mode 100644 index c7c2a85c067b707c155e78a3c8b84562999134e7..0000000000000000000000000000000000000000 --- a/spaces/declare-lab/tango/diffusers/src/diffusers/pipelines/score_sde_ve/__init__.py +++ /dev/null @@ -1 +0,0 @@ -from .pipeline_score_sde_ve import ScoreSdeVePipeline diff --git a/spaces/declare-lab/tango/diffusers/tests/schedulers/test_scheduler_unipc.py b/spaces/declare-lab/tango/diffusers/tests/schedulers/test_scheduler_unipc.py deleted file mode 100644 index 6154c8e2d625506f138c28da7a605e5739e6ffd3..0000000000000000000000000000000000000000 --- a/spaces/declare-lab/tango/diffusers/tests/schedulers/test_scheduler_unipc.py +++ /dev/null @@ -1,231 +0,0 @@ -import tempfile - -import torch - -from diffusers import ( - DEISMultistepScheduler, - DPMSolverMultistepScheduler, - DPMSolverSinglestepScheduler, - UniPCMultistepScheduler, -) - -from .test_schedulers import SchedulerCommonTest - - -class UniPCMultistepSchedulerTest(SchedulerCommonTest): - scheduler_classes = (UniPCMultistepScheduler,) - forward_default_kwargs = (("num_inference_steps", 25),) - - def get_scheduler_config(self, **kwargs): - config = { - "num_train_timesteps": 1000, - "beta_start": 0.0001, - "beta_end": 0.02, - "beta_schedule": "linear", - "solver_order": 2, - "solver_type": "bh1", - } - - config.update(**kwargs) - return config - - def check_over_configs(self, time_step=0, **config): - kwargs = dict(self.forward_default_kwargs) - num_inference_steps = kwargs.pop("num_inference_steps", None) - sample = self.dummy_sample - residual = 0.1 * sample - dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] - - for scheduler_class in self.scheduler_classes: - scheduler_config = self.get_scheduler_config(**config) - scheduler = scheduler_class(**scheduler_config) - scheduler.set_timesteps(num_inference_steps) - # copy over dummy past residuals - scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order] - - with tempfile.TemporaryDirectory() as tmpdirname: - scheduler.save_config(tmpdirname) - new_scheduler = scheduler_class.from_pretrained(tmpdirname) - new_scheduler.set_timesteps(num_inference_steps) - # copy over dummy past residuals - new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order] - - output, new_output = sample, sample - for t in range(time_step, time_step + scheduler.config.solver_order + 1): - output = scheduler.step(residual, t, output, **kwargs).prev_sample - new_output = new_scheduler.step(residual, t, new_output, **kwargs).prev_sample - - assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" - - def check_over_forward(self, time_step=0, **forward_kwargs): - kwargs = dict(self.forward_default_kwargs) - num_inference_steps = kwargs.pop("num_inference_steps", None) - sample = self.dummy_sample - residual = 0.1 * sample - dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] - - for scheduler_class in self.scheduler_classes: - scheduler_config = self.get_scheduler_config() - scheduler = scheduler_class(**scheduler_config) - scheduler.set_timesteps(num_inference_steps) - - # copy over dummy past residuals (must be after setting timesteps) - scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order] - - with tempfile.TemporaryDirectory() as tmpdirname: - scheduler.save_config(tmpdirname) - new_scheduler = scheduler_class.from_pretrained(tmpdirname) - # copy over dummy past residuals - new_scheduler.set_timesteps(num_inference_steps) - - # copy over dummy past residual (must be after setting timesteps) - new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order] - - output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample - new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample - - assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" - - def full_loop(self, scheduler=None, **config): - if scheduler is None: - scheduler_class = self.scheduler_classes[0] - scheduler_config = self.get_scheduler_config(**config) - scheduler = scheduler_class(**scheduler_config) - - scheduler_class = self.scheduler_classes[0] - scheduler_config = self.get_scheduler_config(**config) - scheduler = scheduler_class(**scheduler_config) - - num_inference_steps = 10 - model = self.dummy_model() - sample = self.dummy_sample_deter - scheduler.set_timesteps(num_inference_steps) - - for i, t in enumerate(scheduler.timesteps): - residual = model(sample, t) - sample = scheduler.step(residual, t, sample).prev_sample - - return sample - - def test_step_shape(self): - kwargs = dict(self.forward_default_kwargs) - - num_inference_steps = kwargs.pop("num_inference_steps", None) - - for scheduler_class in self.scheduler_classes: - scheduler_config = self.get_scheduler_config() - scheduler = scheduler_class(**scheduler_config) - - sample = self.dummy_sample - residual = 0.1 * sample - - if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): - scheduler.set_timesteps(num_inference_steps) - elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): - kwargs["num_inference_steps"] = num_inference_steps - - # copy over dummy past residuals (must be done after set_timesteps) - dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] - scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order] - - time_step_0 = scheduler.timesteps[5] - time_step_1 = scheduler.timesteps[6] - - output_0 = scheduler.step(residual, time_step_0, sample, **kwargs).prev_sample - output_1 = scheduler.step(residual, time_step_1, sample, **kwargs).prev_sample - - self.assertEqual(output_0.shape, sample.shape) - self.assertEqual(output_0.shape, output_1.shape) - - def test_switch(self): - # make sure that iterating over schedulers with same config names gives same results - # for defaults - scheduler = UniPCMultistepScheduler(**self.get_scheduler_config()) - sample = self.full_loop(scheduler=scheduler) - result_mean = torch.mean(torch.abs(sample)) - - assert abs(result_mean.item() - 0.2521) < 1e-3 - - scheduler = DPMSolverSinglestepScheduler.from_config(scheduler.config) - scheduler = DEISMultistepScheduler.from_config(scheduler.config) - scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config) - scheduler = UniPCMultistepScheduler.from_config(scheduler.config) - - sample = self.full_loop(scheduler=scheduler) - result_mean = torch.mean(torch.abs(sample)) - - assert abs(result_mean.item() - 0.2521) < 1e-3 - - def test_timesteps(self): - for timesteps in [25, 50, 100, 999, 1000]: - self.check_over_configs(num_train_timesteps=timesteps) - - def test_thresholding(self): - self.check_over_configs(thresholding=False) - for order in [1, 2, 3]: - for solver_type in ["bh1", "bh2"]: - for threshold in [0.5, 1.0, 2.0]: - for prediction_type in ["epsilon", "sample"]: - self.check_over_configs( - thresholding=True, - prediction_type=prediction_type, - sample_max_value=threshold, - solver_order=order, - solver_type=solver_type, - ) - - def test_prediction_type(self): - for prediction_type in ["epsilon", "v_prediction"]: - self.check_over_configs(prediction_type=prediction_type) - - def test_solver_order_and_type(self): - for solver_type in ["bh1", "bh2"]: - for order in [1, 2, 3]: - for prediction_type in ["epsilon", "sample"]: - self.check_over_configs( - solver_order=order, - solver_type=solver_type, - prediction_type=prediction_type, - ) - sample = self.full_loop( - solver_order=order, - solver_type=solver_type, - prediction_type=prediction_type, - ) - assert not torch.isnan(sample).any(), "Samples have nan numbers" - - def test_lower_order_final(self): - self.check_over_configs(lower_order_final=True) - self.check_over_configs(lower_order_final=False) - - def test_inference_steps(self): - for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: - self.check_over_forward(num_inference_steps=num_inference_steps, time_step=0) - - def test_full_loop_no_noise(self): - sample = self.full_loop() - result_mean = torch.mean(torch.abs(sample)) - - assert abs(result_mean.item() - 0.2521) < 1e-3 - - def test_full_loop_with_v_prediction(self): - sample = self.full_loop(prediction_type="v_prediction") - result_mean = torch.mean(torch.abs(sample)) - - assert abs(result_mean.item() - 0.1096) < 1e-3 - - def test_fp16_support(self): - scheduler_class = self.scheduler_classes[0] - scheduler_config = self.get_scheduler_config(thresholding=True, dynamic_thresholding_ratio=0) - scheduler = scheduler_class(**scheduler_config) - - num_inference_steps = 10 - model = self.dummy_model() - sample = self.dummy_sample_deter.half() - scheduler.set_timesteps(num_inference_steps) - - for i, t in enumerate(scheduler.timesteps): - residual = model(sample, t) - sample = scheduler.step(residual, t, sample).prev_sample - - assert sample.dtype == torch.float16 diff --git a/spaces/deepskyreal/ai-mixer-hotchpotch/sad_talker/src/face3d/models/arcface_torch/train.py b/spaces/deepskyreal/ai-mixer-hotchpotch/sad_talker/src/face3d/models/arcface_torch/train.py deleted file mode 100644 index 55eca2d0ad9463415970e09bccab8b722e496704..0000000000000000000000000000000000000000 --- a/spaces/deepskyreal/ai-mixer-hotchpotch/sad_talker/src/face3d/models/arcface_torch/train.py +++ /dev/null @@ -1,141 +0,0 @@ -import argparse -import logging -import os - -import torch -import torch.distributed as dist -import torch.nn.functional as F -import torch.utils.data.distributed -from torch.nn.utils import clip_grad_norm_ - -import losses -from backbones import get_model -from dataset import MXFaceDataset, SyntheticDataset, DataLoaderX -from partial_fc import PartialFC -from utils.utils_amp import MaxClipGradScaler -from utils.utils_callbacks import CallBackVerification, CallBackLogging, CallBackModelCheckpoint -from utils.utils_config import get_config -from utils.utils_logging import AverageMeter, init_logging - - -def main(args): - cfg = get_config(args.config) - try: - world_size = int(os.environ['WORLD_SIZE']) - rank = int(os.environ['RANK']) - dist.init_process_group('nccl') - except KeyError: - world_size = 1 - rank = 0 - dist.init_process_group(backend='nccl', init_method="tcp://127.0.0.1:12584", rank=rank, world_size=world_size) - - local_rank = args.local_rank - torch.cuda.set_device(local_rank) - os.makedirs(cfg.output, exist_ok=True) - init_logging(rank, cfg.output) - - if cfg.rec == "synthetic": - train_set = SyntheticDataset(local_rank=local_rank) - else: - train_set = MXFaceDataset(root_dir=cfg.rec, local_rank=local_rank) - - train_sampler = torch.utils.data.distributed.DistributedSampler(train_set, shuffle=True) - train_loader = DataLoaderX( - local_rank=local_rank, dataset=train_set, batch_size=cfg.batch_size, - sampler=train_sampler, num_workers=2, pin_memory=True, drop_last=True) - backbone = get_model(cfg.network, dropout=0.0, fp16=cfg.fp16, num_features=cfg.embedding_size).to(local_rank) - - if cfg.resume: - try: - backbone_pth = os.path.join(cfg.output, "backbone.pth") - backbone.load_state_dict(torch.load(backbone_pth, map_location=torch.device(local_rank))) - if rank == 0: - logging.info("backbone resume successfully!") - except (FileNotFoundError, KeyError, IndexError, RuntimeError): - if rank == 0: - logging.info("resume fail, backbone init successfully!") - - backbone = torch.nn.parallel.DistributedDataParallel( - module=backbone, broadcast_buffers=False, device_ids=[local_rank]) - backbone.train() - margin_softmax = losses.get_loss(cfg.loss) - module_partial_fc = PartialFC( - rank=rank, local_rank=local_rank, world_size=world_size, resume=cfg.resume, - batch_size=cfg.batch_size, margin_softmax=margin_softmax, num_classes=cfg.num_classes, - sample_rate=cfg.sample_rate, embedding_size=cfg.embedding_size, prefix=cfg.output) - - opt_backbone = torch.optim.SGD( - params=[{'params': backbone.parameters()}], - lr=cfg.lr / 512 * cfg.batch_size * world_size, - momentum=0.9, weight_decay=cfg.weight_decay) - opt_pfc = torch.optim.SGD( - params=[{'params': module_partial_fc.parameters()}], - lr=cfg.lr / 512 * cfg.batch_size * world_size, - momentum=0.9, weight_decay=cfg.weight_decay) - - num_image = len(train_set) - total_batch_size = cfg.batch_size * world_size - cfg.warmup_step = num_image // total_batch_size * cfg.warmup_epoch - cfg.total_step = num_image // total_batch_size * cfg.num_epoch - - def lr_step_func(current_step): - cfg.decay_step = [x * num_image // total_batch_size for x in cfg.decay_epoch] - if current_step < cfg.warmup_step: - return current_step / cfg.warmup_step - else: - return 0.1 ** len([m for m in cfg.decay_step if m <= current_step]) - - scheduler_backbone = torch.optim.lr_scheduler.LambdaLR( - optimizer=opt_backbone, lr_lambda=lr_step_func) - scheduler_pfc = torch.optim.lr_scheduler.LambdaLR( - optimizer=opt_pfc, lr_lambda=lr_step_func) - - for key, value in cfg.items(): - num_space = 25 - len(key) - logging.info(": " + key + " " * num_space + str(value)) - - val_target = cfg.val_targets - callback_verification = CallBackVerification(2000, rank, val_target, cfg.rec) - callback_logging = CallBackLogging(50, rank, cfg.total_step, cfg.batch_size, world_size, None) - callback_checkpoint = CallBackModelCheckpoint(rank, cfg.output) - - loss = AverageMeter() - start_epoch = 0 - global_step = 0 - grad_amp = MaxClipGradScaler(cfg.batch_size, 128 * cfg.batch_size, growth_interval=100) if cfg.fp16 else None - for epoch in range(start_epoch, cfg.num_epoch): - train_sampler.set_epoch(epoch) - for step, (img, label) in enumerate(train_loader): - global_step += 1 - features = F.normalize(backbone(img)) - x_grad, loss_v = module_partial_fc.forward_backward(label, features, opt_pfc) - if cfg.fp16: - features.backward(grad_amp.scale(x_grad)) - grad_amp.unscale_(opt_backbone) - clip_grad_norm_(backbone.parameters(), max_norm=5, norm_type=2) - grad_amp.step(opt_backbone) - grad_amp.update() - else: - features.backward(x_grad) - clip_grad_norm_(backbone.parameters(), max_norm=5, norm_type=2) - opt_backbone.step() - - opt_pfc.step() - module_partial_fc.update() - opt_backbone.zero_grad() - opt_pfc.zero_grad() - loss.update(loss_v, 1) - callback_logging(global_step, loss, epoch, cfg.fp16, scheduler_backbone.get_last_lr()[0], grad_amp) - callback_verification(global_step, backbone) - scheduler_backbone.step() - scheduler_pfc.step() - callback_checkpoint(global_step, backbone, module_partial_fc) - dist.destroy_process_group() - - -if __name__ == "__main__": - torch.backends.cudnn.benchmark = True - parser = argparse.ArgumentParser(description='PyTorch ArcFace Training') - parser.add_argument('config', type=str, help='py config file') - parser.add_argument('--local_rank', type=int, default=0, help='local_rank') - main(parser.parse_args()) diff --git a/spaces/diacanFperku/AutoGPT/Download Moldflow Communicator 2016 [Extra Quality] Crack.md b/spaces/diacanFperku/AutoGPT/Download Moldflow Communicator 2016 [Extra Quality] Crack.md deleted file mode 100644 index 3ae492cd28ce379b6f13fecca08c1db7848aa8f3..0000000000000000000000000000000000000000 --- a/spaces/diacanFperku/AutoGPT/Download Moldflow Communicator 2016 [Extra Quality] Crack.md +++ /dev/null @@ -1,30 +0,0 @@ - -

      How to Use Moldflow Communicator 2016 to Share Simulation Results

      -

      Moldflow Communicator 2016 is a free software that helps you collaborate with your team members, suppliers, and customers on plastic injection molding projects. With Moldflow Communicator 2016, you can view, visualize, quantify, and compare simulation results from Moldflow products, such as Moldflow Adviser and Moldflow Insight.

      -

      Download Moldflow Communicator 2016 Crack


      Download ○○○ https://gohhs.com/2uFTp8



      -

      In this article, we will show you how to use Moldflow Communicator 2016 to share simulation results with your stakeholders. You will learn how to:

      -
        -
      • Download and install Moldflow Communicator 2016
      • -
      • Open and explore Moldflow result files
      • -
      • Create and export reports
      • -
      • Use the online help system
      • -
      -

      Download and Install Moldflow Communicator 2016

      -

      To download Moldflow Communicator 2016, you need to visit the Autodesk website[^1^] and follow the instructions. You will need about 1 GB of free disk space for the installation. The software is supported on 64-bit Windows operating systems only. You will also need a graphics card that supports OpenGL and has at least 512 MB of memory.

      -

      To install Moldflow Communicator 2016, you need to run the setup executable file and agree to the license agreement. You can choose the install location and click Install. The installation process will take a few minutes. After the installation is complete, you can launch the software from the Start menu or the desktop shortcut.

      -

      Open and Explore Moldflow Result Files

      -

      Moldflow Communicator 2016 works directly with Moldflow result files (.mfr), which contain all the simulation data and settings from Moldflow products. You can open an .mfr file by clicking File > Open or dragging and dropping it into the software window.

      -

      -

      Once you open an .mfr file, you will see a graphical representation of the model and a tree view of the simulation results on the left panel. You can select different results from the tree view and see them displayed on the model. You can also use the toolbar buttons to zoom, pan, rotate, or fit the model to the window.

      -

      You can use the right panel to adjust the display options, such as color scale, contour range, legend position, mesh visibility, etc. You can also use the tabs at the bottom of the right panel to switch between different views, such as XY plot, histogram, table, or animation.

      -

      Create and Export Reports

      -

      Moldflow Communicator 2016 allows you to create and export reports that summarize the simulation results in a professional format. You can create a report by clicking File > New Report or using the Report Wizard button on the toolbar. You can choose from different report templates, such as Summary Report, Detailed Report, or Custom Report.

      -

      You can customize your report by adding or removing sections, changing titles, inserting images or comments, etc. You can also preview your report before saving it. You can save your report as an .mfr file or export it as a PDF or HTML file. You can also print your report directly from the software.

      -

      Use the Online Help System

      -

      Moldflow Communicator 2016 has an online help system that provides detailed information and tutorials on how to use the software. You can access the help system by clicking Help > Contents or pressing F1 on your keyboard. You can browse through different topics or use the search function to find what you need.

      -

      The help system also includes example models that illustrate the benefits of Moldflow Communicator 2016 for visualizing, quantifying, and comparing simulation results. You can download these models from the Autodesk website[^1^] and open them with Moldflow Communicator 2016.

      -

      Conclusion

      -

      Moldflow Communicator 2016 is a powerful tool that helps you share simulation results with your stakeholders in an easy and effective way. By using Moldflow Communicator 2016, you can improve collaboration, reduce design changes, and prevent manufacturing defects.

      -

      If you want to learn more about Moldflow Communicator 2016 or other Moldflow products, you can visit the Autodesk

      d5da3c52bf
      -
      -
      \ No newline at end of file diff --git a/spaces/diacanFperku/AutoGPT/LORENTZ COMPASS 3.0.10.9 62 [UPDATED].md b/spaces/diacanFperku/AutoGPT/LORENTZ COMPASS 3.0.10.9 62 [UPDATED].md deleted file mode 100644 index f325d8db95c4f73491a39225dfacbd2e683d1a3a..0000000000000000000000000000000000000000 --- a/spaces/diacanFperku/AutoGPT/LORENTZ COMPASS 3.0.10.9 62 [UPDATED].md +++ /dev/null @@ -1,10 +0,0 @@ -

      LORENTZ COMPASS 3.0.10.9 62


      Downloadhttps://gohhs.com/2uFTf5



      - -SolidWorks 2019 Crack Plus Serial Key Free Download [LATEST] LORENTZ COMPASS 3.0.10.9 62 Cheats FURIDASHI Drift Cyber ​​Sport v150. Cracked-x64-mac.rar. -SolidWorks 2019 Crack Plus Serial Key Free Download LORENTZ COMPASS 3.0.10.9 62 Cheats FURIDASHI Drift Cyber ​​Sport v150. Cracked-x64-mac.rar. -SolidWorks 2019 Crack Plus Serial Key Free Download LORENTZ COMPASS 3.0.10.9 62 Cheats FURIDASHI Drift Cyber ​​Sport v150. -Cracked-x64-mac.rar. -Cracked-x64-mac.rar. 8a78ff9644
      -
      -
      -

      diff --git a/spaces/digitalxingtong/Jiuxia-Bert-Vits2/start.bat b/spaces/digitalxingtong/Jiuxia-Bert-Vits2/start.bat deleted file mode 100644 index 418d21233dbf720b0dd09821904d9d6a31b123a2..0000000000000000000000000000000000000000 --- a/spaces/digitalxingtong/Jiuxia-Bert-Vits2/start.bat +++ /dev/null @@ -1,2 +0,0 @@ -set PYTHON=venv\python.exe -start cmd /k "set PYTHON=%PYTHON%" \ No newline at end of file diff --git a/spaces/dineshreddy/WALT/mmdet/core/bbox/assigners/grid_assigner.py b/spaces/dineshreddy/WALT/mmdet/core/bbox/assigners/grid_assigner.py deleted file mode 100644 index 7390ea6370639c939d578c6ebf0f9268499161bc..0000000000000000000000000000000000000000 --- a/spaces/dineshreddy/WALT/mmdet/core/bbox/assigners/grid_assigner.py +++ /dev/null @@ -1,155 +0,0 @@ -import torch - -from ..builder import BBOX_ASSIGNERS -from ..iou_calculators import build_iou_calculator -from .assign_result import AssignResult -from .base_assigner import BaseAssigner - - -@BBOX_ASSIGNERS.register_module() -class GridAssigner(BaseAssigner): - """Assign a corresponding gt bbox or background to each bbox. - - Each proposals will be assigned with `-1`, `0`, or a positive integer - indicating the ground truth index. - - - -1: don't care - - 0: negative sample, no assigned gt - - positive integer: positive sample, index (1-based) of assigned gt - - Args: - pos_iou_thr (float): IoU threshold for positive bboxes. - neg_iou_thr (float or tuple): IoU threshold for negative bboxes. - min_pos_iou (float): Minimum iou for a bbox to be considered as a - positive bbox. Positive samples can have smaller IoU than - pos_iou_thr due to the 4th step (assign max IoU sample to each gt). - gt_max_assign_all (bool): Whether to assign all bboxes with the same - highest overlap with some gt to that gt. - """ - - def __init__(self, - pos_iou_thr, - neg_iou_thr, - min_pos_iou=.0, - gt_max_assign_all=True, - iou_calculator=dict(type='BboxOverlaps2D')): - self.pos_iou_thr = pos_iou_thr - self.neg_iou_thr = neg_iou_thr - self.min_pos_iou = min_pos_iou - self.gt_max_assign_all = gt_max_assign_all - self.iou_calculator = build_iou_calculator(iou_calculator) - - def assign(self, bboxes, box_responsible_flags, gt_bboxes, gt_labels=None): - """Assign gt to bboxes. The process is very much like the max iou - assigner, except that positive samples are constrained within the cell - that the gt boxes fell in. - - This method assign a gt bbox to every bbox (proposal/anchor), each bbox - will be assigned with -1, 0, or a positive number. -1 means don't care, - 0 means negative sample, positive number is the index (1-based) of - assigned gt. - The assignment is done in following steps, the order matters. - - 1. assign every bbox to -1 - 2. assign proposals whose iou with all gts <= neg_iou_thr to 0 - 3. for each bbox within a cell, if the iou with its nearest gt > - pos_iou_thr and the center of that gt falls inside the cell, - assign it to that bbox - 4. for each gt bbox, assign its nearest proposals within the cell the - gt bbox falls in to itself. - - Args: - bboxes (Tensor): Bounding boxes to be assigned, shape(n, 4). - box_responsible_flags (Tensor): flag to indicate whether box is - responsible for prediction, shape(n, ) - gt_bboxes (Tensor): Groundtruth boxes, shape (k, 4). - gt_labels (Tensor, optional): Label of gt_bboxes, shape (k, ). - - Returns: - :obj:`AssignResult`: The assign result. - """ - num_gts, num_bboxes = gt_bboxes.size(0), bboxes.size(0) - - # compute iou between all gt and bboxes - overlaps = self.iou_calculator(gt_bboxes, bboxes) - - # 1. assign -1 by default - assigned_gt_inds = overlaps.new_full((num_bboxes, ), - -1, - dtype=torch.long) - - if num_gts == 0 or num_bboxes == 0: - # No ground truth or boxes, return empty assignment - max_overlaps = overlaps.new_zeros((num_bboxes, )) - if num_gts == 0: - # No truth, assign everything to background - assigned_gt_inds[:] = 0 - if gt_labels is None: - assigned_labels = None - else: - assigned_labels = overlaps.new_full((num_bboxes, ), - -1, - dtype=torch.long) - return AssignResult( - num_gts, - assigned_gt_inds, - max_overlaps, - labels=assigned_labels) - - # 2. assign negative: below - # for each anchor, which gt best overlaps with it - # for each anchor, the max iou of all gts - # shape of max_overlaps == argmax_overlaps == num_bboxes - max_overlaps, argmax_overlaps = overlaps.max(dim=0) - - if isinstance(self.neg_iou_thr, float): - assigned_gt_inds[(max_overlaps >= 0) - & (max_overlaps <= self.neg_iou_thr)] = 0 - elif isinstance(self.neg_iou_thr, (tuple, list)): - assert len(self.neg_iou_thr) == 2 - assigned_gt_inds[(max_overlaps > self.neg_iou_thr[0]) - & (max_overlaps <= self.neg_iou_thr[1])] = 0 - - # 3. assign positive: falls into responsible cell and above - # positive IOU threshold, the order matters. - # the prior condition of comparision is to filter out all - # unrelated anchors, i.e. not box_responsible_flags - overlaps[:, ~box_responsible_flags.type(torch.bool)] = -1. - - # calculate max_overlaps again, but this time we only consider IOUs - # for anchors responsible for prediction - max_overlaps, argmax_overlaps = overlaps.max(dim=0) - - # for each gt, which anchor best overlaps with it - # for each gt, the max iou of all proposals - # shape of gt_max_overlaps == gt_argmax_overlaps == num_gts - gt_max_overlaps, gt_argmax_overlaps = overlaps.max(dim=1) - - pos_inds = (max_overlaps > - self.pos_iou_thr) & box_responsible_flags.type(torch.bool) - assigned_gt_inds[pos_inds] = argmax_overlaps[pos_inds] + 1 - - # 4. assign positive to max overlapped anchors within responsible cell - for i in range(num_gts): - if gt_max_overlaps[i] > self.min_pos_iou: - if self.gt_max_assign_all: - max_iou_inds = (overlaps[i, :] == gt_max_overlaps[i]) & \ - box_responsible_flags.type(torch.bool) - assigned_gt_inds[max_iou_inds] = i + 1 - elif box_responsible_flags[gt_argmax_overlaps[i]]: - assigned_gt_inds[gt_argmax_overlaps[i]] = i + 1 - - # assign labels of positive anchors - if gt_labels is not None: - assigned_labels = assigned_gt_inds.new_full((num_bboxes, ), -1) - pos_inds = torch.nonzero( - assigned_gt_inds > 0, as_tuple=False).squeeze() - if pos_inds.numel() > 0: - assigned_labels[pos_inds] = gt_labels[ - assigned_gt_inds[pos_inds] - 1] - - else: - assigned_labels = None - - return AssignResult( - num_gts, assigned_gt_inds, max_overlaps, labels=assigned_labels) diff --git a/spaces/dinhminh20521597/OCR_DEMO/configs/_base_/schedules/schedule_adam_step_6e.py b/spaces/dinhminh20521597/OCR_DEMO/configs/_base_/schedules/schedule_adam_step_6e.py deleted file mode 100644 index 5b33a2f924e502fc3a7f53f080a43fae983bb00c..0000000000000000000000000000000000000000 --- a/spaces/dinhminh20521597/OCR_DEMO/configs/_base_/schedules/schedule_adam_step_6e.py +++ /dev/null @@ -1,8 +0,0 @@ -# optimizer -optimizer = dict(type='Adam', lr=1e-3) -optimizer_config = dict(grad_clip=None) -# learning policy -lr_config = dict(policy='step', step=[3, 4]) -# running settings -runner = dict(type='EpochBasedRunner', max_epochs=6) -checkpoint_config = dict(interval=1) diff --git a/spaces/dorkai/text-generation-webui-main/docs/System-requirements.md b/spaces/dorkai/text-generation-webui-main/docs/System-requirements.md deleted file mode 100644 index 3a88416d34ad7c8babd90a81db902e95288a8197..0000000000000000000000000000000000000000 --- a/spaces/dorkai/text-generation-webui-main/docs/System-requirements.md +++ /dev/null @@ -1,42 +0,0 @@ -These are the VRAM and RAM requirements (in MiB) to run some examples of models **in 16-bit (default) precision**: - -| model | VRAM (GPU) | RAM | -|:-----------------------|-------------:|--------:| -| arxiv_ai_gpt2 | 1512.37 | 5824.2 | -| blenderbot-1B-distill | 2441.75 | 4425.91 | -| opt-1.3b | 2509.61 | 4427.79 | -| gpt-neo-1.3b | 2605.27 | 5851.58 | -| opt-2.7b | 5058.05 | 4863.95 | -| gpt4chan_model_float16 | 11653.7 | 4437.71 | -| gpt-j-6B | 11653.7 | 5633.79 | -| galactica-6.7b | 12697.9 | 4429.89 | -| opt-6.7b | 12700 | 4368.66 | -| bloomz-7b1-p3 | 13483.1 | 4470.34 | - -#### GPU mode with 8-bit precision - -Allows you to load models that would not normally fit into your GPU. Enabled by default for 13b and 20b models in this web UI. - -| model | VRAM (GPU) | RAM | -|:---------------|-------------:|--------:| -| opt-13b | 12528.1 | 1152.39 | -| gpt-neox-20b | 20384 | 2291.7 | - -#### CPU mode (32-bit precision) - -A lot slower, but does not require a GPU. - -On my i5-12400F, 6B models take around 10-20 seconds to respond in chat mode, and around 5 minutes to generate a 200 tokens completion. - -| model | RAM | -|:-----------------------|---------:| -| arxiv_ai_gpt2 | 4430.82 | -| gpt-neo-1.3b | 6089.31 | -| opt-1.3b | 8411.12 | -| blenderbot-1B-distill | 8508.16 | -| opt-2.7b | 14969.3 | -| bloomz-7b1-p3 | 21371.2 | -| gpt-j-6B | 24200.3 | -| gpt4chan_model | 24246.3 | -| galactica-6.7b | 26561.4 | -| opt-6.7b | 29596.6 | diff --git a/spaces/dorkai/text-generation-webui-main/text-generation-webui-main/docs/Windows-installation-guide.md b/spaces/dorkai/text-generation-webui-main/text-generation-webui-main/docs/Windows-installation-guide.md deleted file mode 100644 index 83b22efa38b1839d07a5a58494dbc26ba86397ee..0000000000000000000000000000000000000000 --- a/spaces/dorkai/text-generation-webui-main/text-generation-webui-main/docs/Windows-installation-guide.md +++ /dev/null @@ -1,9 +0,0 @@ -If you are having trouble following the installation instructions in the README, Reddit user [Technical_Leather949](https://www.reddit.com/user/Technical_Leather949/) has created a more detailed, step-by-step guide covering: - -* Windows installation -* 8-bit mode on Windows -* LLaMA -* LLaMA 4-bit - -The guide can be found here: https://www.reddit.com/r/LocalLLaMA/comments/11o6o3f/how_to_install_llama_8bit_and_4bit/ - diff --git a/spaces/duycse1603/math2tex/HybridViT/module/component/prediction_head/tfm.py b/spaces/duycse1603/math2tex/HybridViT/module/component/prediction_head/tfm.py deleted file mode 100644 index e62a5f1d7d4991d61a3ad5d74f16a2ad4e257478..0000000000000000000000000000000000000000 --- a/spaces/duycse1603/math2tex/HybridViT/module/component/prediction_head/tfm.py +++ /dev/null @@ -1,207 +0,0 @@ -import math -import torch -import torch.nn as nn -import torch.nn.functional as F -from einops import rearrange, repeat -from torch import FloatTensor, LongTensor -from .addon_module import WordPosEnc -from ...converter.tfm_converter import TFMLabelConverter as TFM -from ....beam import Beam - -def _build_transformer_decoder( - d_model: int, - nhead: int, - num_decoder_layers: int, - dim_feedforward: int, - dropout: float, -) -> nn.TransformerDecoder: - decoder_layer = nn.TransformerDecoderLayer( - d_model=d_model, - nhead=nhead, - dim_feedforward=dim_feedforward, - dropout=dropout, - ) - - decoder = nn.TransformerDecoder(decoder_layer, num_decoder_layers) - - for p in decoder.parameters(): - if p.dim() > 1: - nn.init.xavier_uniform_(p) - - return decoder - - -class TransformerPrediction(nn.Module): - def __init__( - self, - d_model: int, - nhead: int, - num_decoder_layers: int, - dim_feedforward: int, - dropout: float, - num_classes: int, - max_seq_len: int, - padding_idx: int, - device: str = 'cuda:1' - ): - super().__init__() - self.max_seq_len = max_seq_len - self.padding_idx = padding_idx - self.num_classes = num_classes - self.device = device - self.word_embed = nn.Embedding( - num_classes, d_model, padding_idx=padding_idx - ) - - self.pos_enc = WordPosEnc(d_model=d_model) - self.d_model = d_model - self.model = _build_transformer_decoder( - d_model=d_model, - nhead=nhead, - num_decoder_layers=num_decoder_layers, - dim_feedforward=dim_feedforward, - dropout=dropout, - ) - - self.proj = nn.Linear(d_model, num_classes) - self.beam = Beam( - ignore_w=TFM.PAD(), - start_w=TFM.START(), - stop_w=TFM.END(), - max_len=self.max_seq_len, - device=self.device - ) - - def reset_beam(self): - self.beam = Beam( - ignore_w=TFM.PAD(), - start_w=TFM.START(), - stop_w=TFM.END(), - max_len=self.max_seq_len, - device=self.device - ) - - def _build_attention_mask(self, length): - mask = torch.full( - (length, length), - fill_value=1, - dtype=torch.bool, - device=self.device - ) - mask = torch.triu(mask).transpose(0, 1) - mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) - return mask - - def _embedd_tgt(self, tgt: LongTensor, tgt_len: int): - tgt_mask = self._build_attention_mask(tgt_len) - if self.training: - tgt_pad_mask = tgt == self.padding_idx - else: tgt_pad_mask = None - tgt = self.word_embed(tgt) - tgt = self.pos_enc(tgt*math.sqrt(self.d_model)) - return tgt, tgt_mask, tgt_pad_mask - - def forward_greedy( - self, src: FloatTensor, tgt: LongTensor, output_weight: bool = False, is_test: bool = False - ) -> FloatTensor: - if self.training: - _, l = tgt.size() - tgt, tgt_mask, tgt_pad_mask = self._embedd_tgt(tgt, l) - - src = rearrange(src, "b t d -> t b d") - tgt = rearrange(tgt, "b l d -> l b d") - - out = self.model( - tgt=tgt, - memory=src, - tgt_mask=tgt_mask, - tgt_key_padding_mask=tgt_pad_mask - ) - - out = rearrange(out, "l b d -> b l d") - out = self.proj(out) - else: - out = None - src = rearrange(src, "b t d -> t b d") - - end_flag = torch.zeros(src.shape[0], dtype=torch.bool, device=self.device) - - for step in range(self.max_seq_len+1): - b, l = tgt.size() - emb_tgt, tgt_mask, tgt_pad_mask = self._embedd_tgt(tgt, l) - emb_tgt = rearrange(emb_tgt, "b l d -> l b d") - - out = self.model( - tgt=emb_tgt, - memory=src, - tgt_mask=tgt_mask - ) - - out = rearrange(out, "l b d -> b l d") - out = self.proj(out) - probs = F.softmax(out, dim=-1) - next_text = torch.argmax(probs[:, -1:, :], dim=-1) - tgt = torch.cat([tgt, next_text], dim=-1) - - end_flag = end_flag | (next_text == TFM.END()) - if end_flag.all() and is_test: - break - - _, preds_index = out.max(dim=2) - return preds_index, out - - def forward_beam(self, - src: torch.FloatTensor, - beam_size: int - ): - assert src.size(0) == 1, f'beam search should only have signle source, encounter with batch size: {src.size(0)}' - out = None - src = src.squeeze(0) - - for step in range(self.max_seq_len + 1): - hypotheses = self.beam.hypotheses - hyp_num = hypotheses.size(0) - l = hypotheses.size(1) - assert hyp_num <= beam_size, f"hyp_num: {hyp_num}, beam_size: {beam_size}" - - emb_tgt = self.word_embed(hypotheses) - emb_tgt = self.pos_enc(emb_tgt*math.sqrt(self.d_model)) - tgt_mask = self._build_attention_mask(l) - emb_tgt = rearrange(emb_tgt, "b l d -> l b d") - - exp_src = repeat(src.squeeze(1), "s e -> s b e", b=hyp_num) - - out = self.model( - tgt=emb_tgt, - memory=exp_src, - tgt_mask=tgt_mask - ) - - out = rearrange(out, "l b d -> b l d") - out = self.proj(out) - log_prob = F.log_softmax(out[:, step, :], dim=-1) - new_hypotheses, new_hyp_scores = self.beam.advance(log_prob, step, beam_size=beam_size) - - if self.beam.done(beam_size): - break - - self.beam.set_current_state(new_hypotheses) - self.beam.set_current_score(new_hyp_scores) - - self.beam.set_hypothesis() - best_hyp = max(self.beam.completed_hypotheses, key=lambda h: h.score / len(h)) - output = best_hyp.seq - output = torch.LongTensor(output).unsqueeze(0) - score = best_hyp.score - - return output, score - - def forward(self, beam_size, batch_H, text, is_test): - if self.training: - return self.forward_greedy(batch_H, text) - else: - if beam_size > 1: - return self.forward_beam(batch_H, beam_size) - else: - return self.forward_greedy(batch_H, text, is_test = is_test) - diff --git a/spaces/dwolfe66/text-generation-webui-space/extensions/google_translate/script.py b/spaces/dwolfe66/text-generation-webui-space/extensions/google_translate/script.py deleted file mode 100644 index 68bc54b293086bed1a070a310d276060ee939d44..0000000000000000000000000000000000000000 --- a/spaces/dwolfe66/text-generation-webui-space/extensions/google_translate/script.py +++ /dev/null @@ -1,42 +0,0 @@ -import gradio as gr -from deep_translator import GoogleTranslator - -params = { - "language string": "ja", -} - -language_codes = {'Afrikaans': 'af', 'Albanian': 'sq', 'Amharic': 'am', 'Arabic': 'ar', 'Armenian': 'hy', 'Azerbaijani': 'az', 'Basque': 'eu', 'Belarusian': 'be', 'Bengali': 'bn', 'Bosnian': 'bs', 'Bulgarian': 'bg', 'Catalan': 'ca', 'Cebuano': 'ceb', 'Chinese (Simplified)': 'zh-CN', 'Chinese (Traditional)': 'zh-TW', 'Corsican': 'co', 'Croatian': 'hr', 'Czech': 'cs', 'Danish': 'da', 'Dutch': 'nl', 'English': 'en', 'Esperanto': 'eo', 'Estonian': 'et', 'Finnish': 'fi', 'French': 'fr', 'Frisian': 'fy', 'Galician': 'gl', 'Georgian': 'ka', 'German': 'de', 'Greek': 'el', 'Gujarati': 'gu', 'Haitian Creole': 'ht', 'Hausa': 'ha', 'Hawaiian': 'haw', 'Hebrew': 'iw', 'Hindi': 'hi', 'Hmong': 'hmn', 'Hungarian': 'hu', 'Icelandic': 'is', 'Igbo': 'ig', 'Indonesian': 'id', 'Irish': 'ga', 'Italian': 'it', 'Japanese': 'ja', 'Javanese': 'jw', 'Kannada': 'kn', 'Kazakh': 'kk', 'Khmer': 'km', 'Korean': 'ko', 'Kurdish': 'ku', 'Kyrgyz': 'ky', 'Lao': 'lo', 'Latin': 'la', 'Latvian': 'lv', 'Lithuanian': 'lt', 'Luxembourgish': 'lb', 'Macedonian': 'mk', 'Malagasy': 'mg', 'Malay': 'ms', 'Malayalam': 'ml', 'Maltese': 'mt', 'Maori': 'mi', 'Marathi': 'mr', 'Mongolian': 'mn', 'Myanmar (Burmese)': 'my', 'Nepali': 'ne', 'Norwegian': 'no', 'Nyanja (Chichewa)': 'ny', 'Pashto': 'ps', 'Persian': 'fa', 'Polish': 'pl', 'Portuguese (Portugal, Brazil)': 'pt', 'Punjabi': 'pa', 'Romanian': 'ro', 'Russian': 'ru', 'Samoan': 'sm', 'Scots Gaelic': 'gd', 'Serbian': 'sr', 'Sesotho': 'st', 'Shona': 'sn', 'Sindhi': 'sd', 'Sinhala (Sinhalese)': 'si', 'Slovak': 'sk', 'Slovenian': 'sl', 'Somali': 'so', 'Spanish': 'es', 'Sundanese': 'su', 'Swahili': 'sw', 'Swedish': 'sv', 'Tagalog (Filipino)': 'tl', 'Tajik': 'tg', 'Tamil': 'ta', 'Telugu': 'te', 'Thai': 'th', 'Turkish': 'tr', 'Ukrainian': 'uk', 'Urdu': 'ur', 'Uzbek': 'uz', 'Vietnamese': 'vi', 'Welsh': 'cy', 'Xhosa': 'xh', 'Yiddish': 'yi', 'Yoruba': 'yo', 'Zulu': 'zu'} - -def input_modifier(string): - """ - This function is applied to your text inputs before - they are fed into the model. - """ - - return GoogleTranslator(source=params['language string'], target='en').translate(string) - -def output_modifier(string): - """ - This function is applied to the model outputs. - """ - - return GoogleTranslator(source='en', target=params['language string']).translate(string) - -def bot_prefix_modifier(string): - """ - This function is only applied in chat mode. It modifies - the prefix text for the Bot and can be used to bias its - behavior. - """ - - return string - -def ui(): - # Finding the language name from the language code to use as the default value - language_name = list(language_codes.keys())[list(language_codes.values()).index(params['language string'])] - - # Gradio elements - language = gr.Dropdown(value=language_name, choices=[k for k in language_codes], label='Language') - - # Event functions to update the parameters in the backend - language.change(lambda x: params.update({"language string": language_codes[x]}), language, None) diff --git a/spaces/dyhzq/vits-uma-genshin-honkai/README.md b/spaces/dyhzq/vits-uma-genshin-honkai/README.md deleted file mode 100644 index 1c0aa069bfd980b6b45bb2bf62ff74bd9b0b61c2..0000000000000000000000000000000000000000 --- a/spaces/dyhzq/vits-uma-genshin-honkai/README.md +++ /dev/null @@ -1,11 +0,0 @@ ---- -license: apache-2.0 -title: ' vits-uma-genshin-honkai' -sdk: gradio -sdk_version: 3.7 -emoji: 🐨 -colorTo: yellow -pinned: false -app_file: app.py -duplicated_from: ikechan8370/vits-uma-genshin-honkai ---- diff --git a/spaces/eeemef/demo-cats-vs-dogs/app.py b/spaces/eeemef/demo-cats-vs-dogs/app.py deleted file mode 100644 index 4a073bdf0b55078f937ee05e0c2924db11eae694..0000000000000000000000000000000000000000 --- a/spaces/eeemef/demo-cats-vs-dogs/app.py +++ /dev/null @@ -1,18 +0,0 @@ -from fastai.vision.all import * -import gradio as gr - -def is_cat(x): return x[0].isupper() - -learn = load_learner('model.pkl') -categories = ('Dog', 'Cat') - -def classify_image(img): - pred,idx,probs = learn.predict(img) - return dict(zip(categories, map(float,probs))) - -image = gr.inputs.Image(shape=(192, 192)) -label = gr.outputs.Label() -# examples = ['dog.jpg', 'cat.jpg', 'dunno.jpg'] - -intf = gr.Interface(fn=classify_image, inputs=image, outputs=label) -intf.launch(inline=False) \ No newline at end of file diff --git a/spaces/ericsali/language_translator/README.md b/spaces/ericsali/language_translator/README.md deleted file mode 100644 index 0c6831078dda60382c8ea9bcd2de891103404a2d..0000000000000000000000000000000000000000 --- a/spaces/ericsali/language_translator/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Language Translator -emoji: 🌖 -colorFrom: green -colorTo: green -sdk: gradio -sdk_version: 3.27.0 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/ethansmith2000/image-mixer-demo/app.py b/spaces/ethansmith2000/image-mixer-demo/app.py deleted file mode 100644 index 4b349ddf92c9c4a4e1cc6fd0e520a1558a425adf..0000000000000000000000000000000000000000 --- a/spaces/ethansmith2000/image-mixer-demo/app.py +++ /dev/null @@ -1,242 +0,0 @@ -from io import BytesIO -import torch -import numpy as np -from PIL import Image -from einops import rearrange -from torch import autocast -from contextlib import nullcontext -import requests -import functools - -from ldm.models.diffusion.ddim import DDIMSampler -from ldm.models.diffusion.plms import PLMSSampler -from ldm.extras import load_model_from_config, load_training_dir -import clip - -from PIL import Image - -from huggingface_hub import hf_hub_download -ckpt = hf_hub_download(repo_id="lambdalabs/image-mixer", filename="image-mixer-pruned.ckpt") -config = hf_hub_download(repo_id="lambdalabs/image-mixer", filename="image-mixer-config.yaml") - -device = "cuda:0" -model = load_model_from_config(config, ckpt, device=device, verbose=False) -model = model.to(device).half() - -clip_model, preprocess = clip.load("ViT-L/14", device=device) - -n_inputs = 5 - -torch.cuda.empty_cache() - -@functools.lru_cache() -def get_url_im(t): - user_agent = {'User-agent': 'gradio-app'} - response = requests.get(t, headers=user_agent) - return Image.open(BytesIO(response.content)) - -@torch.no_grad() -def get_im_c(im_path, clip_model): - # im = Image.open(im_path).convert("RGB") - prompts = preprocess(im_path).to(device).unsqueeze(0) - return clip_model.encode_image(prompts).float() - -@torch.no_grad() -def get_txt_c(txt, clip_model): - text = clip.tokenize([txt,]).to(device) - return clip_model.encode_text(text) - -def get_txt_diff(txt1, txt2, clip_model): - return get_txt_c(txt1, clip_model) - get_txt_c(txt2, clip_model) - -def to_im_list(x_samples_ddim): - x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) - ims = [] - for x_sample in x_samples_ddim: - x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') - ims.append(Image.fromarray(x_sample.astype(np.uint8))) - return ims - -@torch.no_grad() -def sample(sampler, model, c, uc, scale, start_code, h=512, w=512, precision="autocast",ddim_steps=50): - ddim_eta=0.0 - precision_scope = autocast if precision=="autocast" else nullcontext - with precision_scope("cuda"): - shape = [4, h // 8, w // 8] - samples_ddim, _ = sampler.sample(S=ddim_steps, - conditioning=c, - batch_size=c.shape[0], - shape=shape, - verbose=False, - unconditional_guidance_scale=scale, - unconditional_conditioning=uc, - eta=ddim_eta, - x_T=start_code) - - x_samples_ddim = model.decode_first_stage(samples_ddim) - return to_im_list(x_samples_ddim) - -def run(*args): - - inps = [] - for i in range(0, len(args)-4, n_inputs): - inps.append(args[i:i+n_inputs]) - - scale, n_samples, seed, steps = args[-4:] - h = w = 640 - - sampler = DDIMSampler(model) - # sampler = PLMSSampler(model) - - torch.manual_seed(seed) - start_code = torch.randn(n_samples, 4, h//8, w//8, device=device) - conds = [] - - for b, t, im, s in zip(*inps): - if b == "Image": - this_cond = s*get_im_c(im, clip_model) - elif b == "Text/URL": - if t.startswith("http"): - im = get_url_im(t) - this_cond = s*get_im_c(im, clip_model) - else: - this_cond = s*get_txt_c(t, clip_model) - else: - this_cond = torch.zeros((1, 768), device=device) - conds.append(this_cond) - conds = torch.cat(conds, dim=0).unsqueeze(0) - conds = conds.tile(n_samples, 1, 1) - - ims = sample(sampler, model, conds, 0*conds, scale, start_code, ddim_steps=steps) - # return make_row(ims) - return ims - - -import gradio as gr -from functools import partial -from itertools import chain - -def change_visible(txt1, im1, val): - outputs = {} - if val == "Image": - outputs[im1] = gr.update(visible=True) - outputs[txt1] = gr.update(visible=False) - elif val == "Text/URL": - outputs[im1] = gr.update(visible=False) - outputs[txt1] = gr.update(visible=True) - elif val == "Nothing": - outputs[im1] = gr.update(visible=False) - outputs[txt1] = gr.update(visible=False) - return outputs - - -with gr.Blocks(title="Image Mixer", css=".gr-box {border-color: #8136e2}") as demo: - - gr.Markdown("") - gr.Markdown( -""" -# Image Mixer - -_Created by [Justin Pinkney](https://www.justinpinkney.com) at [Lambda Labs](https://lambdalabs.com/)_ - -To skip the queue you can - -### __Provide one or more images to be mixed together by a fine-tuned Stable Diffusion model (see tips and advice below👇).__ - -![banner-large.jpeg](https://s3.amazonaws.com/moonup/production/uploads/1674039767068-62bd5f951e22ec84279820e8.jpeg) - -""") - - btns = [] - txts = [] - ims = [] - strengths = [] - - with gr.Row(): - for i in range(n_inputs): - with gr.Box(): - with gr.Column(): - btn1 = gr.Radio( - choices=["Image", "Text/URL", "Nothing"], - label=f"Input {i} type", - interactive=True, - value="Nothing", - ) - txt1 = gr.Textbox(label="Text or Image URL", visible=False, interactive=True) - im1 = gr.Image(label="Image", interactive=True, visible=False, type="pil") - strength = gr.Slider(label="Strength", minimum=0, maximum=5, step=0.05, value=1, interactive=True) - - fn = partial(change_visible, txt1, im1) - btn1.change(fn=fn, inputs=[btn1], outputs=[txt1, im1], queue=False) - - btns.append(btn1) - txts.append(txt1) - ims.append(im1) - strengths.append(strength) - with gr.Row(): - cfg_scale = gr.Slider(label="CFG scale", value=3, minimum=1, maximum=10, step=0.5) - n_samples = gr.Slider(label="Num samples", value=2, minimum=1, maximum=2, step=1) - seed = gr.Slider(label="Seed", value=0, minimum=0, maximum=10000, step=1) - steps = gr.Slider(label="Steps", value=30, minimum=10, maximum=100, step=5) - - with gr.Row(): - submit = gr.Button("Generate") - output = gr.Gallery().style(grid=[1,2], height="640px") - - inps = list(chain(btns, txts, ims, strengths)) - inps.extend([cfg_scale,n_samples,seed, steps,]) - submit.click(fn=run, inputs=inps, outputs=[output]) - - ex = gr.Examples([ - [ - "Image", "Image", "Text/URL", "Nothing", "Nothing", - "","","central symmetric figure detailed artwork","","", - "gainsborough.jpeg","blonder.jpeg","blonder.jpeg","blonder.jpeg","blonder.jpeg", - 1,1.35,1.4,1,1, - 3.0, 1, 0, 30, - ], - [ - "Image", "Image", "Text/URL", "Image", "Nothing", - "","","flowers","","", - "ex2-1.jpeg","ex2-2.jpeg","blonder.jpeg","ex2-3.jpeg","blonder.jpeg", - 1,1,1.5,1.25,1, - 3.0, 1, 0, 30, - ], - [ - "Image", "Image", "Image", "Nothing", "Nothing", - "","","","","", - "ex1-1.jpeg","ex1-2.jpeg","ex1-3.jpeg","blonder.jpeg","blonder.jpeg", - 1.1,1,1.4,1,1, - 3.0, 1, 0, 30, - ], - ], - fn=run, inputs=inps, outputs=[output], cache_examples=True) - - gr.Markdown( -""" - -## Tips - -- You can provide between 1 and 5 inputs, these can either be an uploaded image a text prompt or a url to an image file. -- The order of the inputs shouldn't matter, any images will be centre cropped before use. -- Each input has an individual strength parameter which controls how big an influence it has on the output. -- The model was not trained using text and can not interpret complex text prompts. -- Using only text prompts doesn't work well, make sure there is at least one image or URL to an image. -- The parameters on the bottom row such as cfg scale do the same as for a normal Stable Diffusion model. -- Balancing the different inputs requires tweaking of the strengths, I suggest getting the right balance for a small number of samples and with few steps until you're -happy with the result then increase the steps for better quality. -- Outputs are 640x640 by default. -- If you want to run locally see the instruction on the [Model Card](https://huggingface.co/lambdalabs/image-mixer). - -## How does this work? - -This model is based on the [Stable Diffusion Image Variations model](https://huggingface.co/lambdalabs/sd-image-variations-diffusers) -but it has been fined tuned to take multiple CLIP image embeddings. During training, up to 5 random crops were taken from the training images and -the CLIP image embeddings were computed, these were then concatenated and used as the conditioning for the model. At inference time we can combine the image -embeddings from multiple images to mix their concepts (and we can also use the text encoder to add text concepts too). - -The model was trained on a subset of LAION Improved Aesthetics at a resolution of 640x640 and was trained using 8xA100 GPUs on [Lambda GPU Cloud](https://lambdalabs.com/service/gpu-cloud). - -""") - -demo.launch() diff --git a/spaces/facebook/MusicGen/audiocraft/grids/audiogen/__init__.py b/spaces/facebook/MusicGen/audiocraft/grids/audiogen/__init__.py deleted file mode 100644 index 8a0a2688450ce120088b79c3314a2f267394dc11..0000000000000000000000000000000000000000 --- a/spaces/facebook/MusicGen/audiocraft/grids/audiogen/__init__.py +++ /dev/null @@ -1,6 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. -"""AudioGen grids.""" diff --git a/spaces/facebook/StyleNeRF/viz/equivariance_widget.py b/spaces/facebook/StyleNeRF/viz/equivariance_widget.py deleted file mode 100644 index d961e82a581fb9ce2254e8163bade1ec34a8b139..0000000000000000000000000000000000000000 --- a/spaces/facebook/StyleNeRF/viz/equivariance_widget.py +++ /dev/null @@ -1,115 +0,0 @@ -# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. -# -# NVIDIA CORPORATION and its licensors retain all intellectual property -# and proprietary rights in and to this software, related documentation -# and any modifications thereto. Any use, reproduction, disclosure or -# distribution of this software and related documentation without an express -# license agreement from NVIDIA CORPORATION is strictly prohibited. - -import numpy as np -import imgui -import dnnlib -from gui_utils import imgui_utils - -#---------------------------------------------------------------------------- - -class EquivarianceWidget: - def __init__(self, viz): - self.viz = viz - self.xlate = dnnlib.EasyDict(x=0, y=0, anim=False, round=False, speed=1e-2) - self.xlate_def = dnnlib.EasyDict(self.xlate) - self.rotate = dnnlib.EasyDict(val=0, anim=False, speed=5e-3) - self.rotate_def = dnnlib.EasyDict(self.rotate) - self.opts = dnnlib.EasyDict(untransform=False) - self.opts_def = dnnlib.EasyDict(self.opts) - - @imgui_utils.scoped_by_object_id - def __call__(self, show=True): - viz = self.viz - if show: - imgui.text('Translate') - imgui.same_line(viz.label_w) - with imgui_utils.item_width(viz.font_size * 8): - _changed, (self.xlate.x, self.xlate.y) = imgui.input_float2('##xlate', self.xlate.x, self.xlate.y, format='%.4f') - imgui.same_line(viz.label_w + viz.font_size * 8 + viz.spacing) - _clicked, dragging, dx, dy = imgui_utils.drag_button('Drag fast##xlate', width=viz.button_w) - if dragging: - self.xlate.x += dx / viz.font_size * 2e-2 - self.xlate.y += dy / viz.font_size * 2e-2 - imgui.same_line() - _clicked, dragging, dx, dy = imgui_utils.drag_button('Drag slow##xlate', width=viz.button_w) - if dragging: - self.xlate.x += dx / viz.font_size * 4e-4 - self.xlate.y += dy / viz.font_size * 4e-4 - imgui.same_line() - _clicked, self.xlate.anim = imgui.checkbox('Anim##xlate', self.xlate.anim) - imgui.same_line() - _clicked, self.xlate.round = imgui.checkbox('Round##xlate', self.xlate.round) - imgui.same_line() - with imgui_utils.item_width(-1 - viz.button_w - viz.spacing), imgui_utils.grayed_out(not self.xlate.anim): - changed, speed = imgui.slider_float('##xlate_speed', self.xlate.speed, 0, 0.5, format='Speed %.5f', power=5) - if changed: - self.xlate.speed = speed - imgui.same_line() - if imgui_utils.button('Reset##xlate', width=-1, enabled=(self.xlate != self.xlate_def)): - self.xlate = dnnlib.EasyDict(self.xlate_def) - - if show: - imgui.text('Rotate') - imgui.same_line(viz.label_w) - with imgui_utils.item_width(viz.font_size * 8): - _changed, self.rotate.val = imgui.input_float('##rotate', self.rotate.val, format='%.4f') - imgui.same_line(viz.label_w + viz.font_size * 8 + viz.spacing) - _clicked, dragging, dx, _dy = imgui_utils.drag_button('Drag fast##rotate', width=viz.button_w) - if dragging: - self.rotate.val += dx / viz.font_size * 2e-2 - imgui.same_line() - _clicked, dragging, dx, _dy = imgui_utils.drag_button('Drag slow##rotate', width=viz.button_w) - if dragging: - self.rotate.val += dx / viz.font_size * 4e-4 - imgui.same_line() - _clicked, self.rotate.anim = imgui.checkbox('Anim##rotate', self.rotate.anim) - imgui.same_line() - with imgui_utils.item_width(-1 - viz.button_w - viz.spacing), imgui_utils.grayed_out(not self.rotate.anim): - changed, speed = imgui.slider_float('##rotate_speed', self.rotate.speed, -1, 1, format='Speed %.4f', power=3) - if changed: - self.rotate.speed = speed - imgui.same_line() - if imgui_utils.button('Reset##rotate', width=-1, enabled=(self.rotate != self.rotate_def)): - self.rotate = dnnlib.EasyDict(self.rotate_def) - - if show: - imgui.set_cursor_pos_x(imgui.get_content_region_max()[0] - 1 - viz.button_w*1 - viz.font_size*16) - _clicked, self.opts.untransform = imgui.checkbox('Untransform', self.opts.untransform) - imgui.same_line(imgui.get_content_region_max()[0] - 1 - viz.button_w) - if imgui_utils.button('Reset##opts', width=-1, enabled=(self.opts != self.opts_def)): - self.opts = dnnlib.EasyDict(self.opts_def) - - if self.xlate.anim: - c = np.array([self.xlate.x, self.xlate.y], dtype=np.float64) - t = c.copy() - if np.max(np.abs(t)) < 1e-4: - t += 1 - t *= 0.1 / np.hypot(*t) - t += c[::-1] * [1, -1] - d = t - c - d *= (viz.frame_delta * self.xlate.speed) / np.hypot(*d) - self.xlate.x += d[0] - self.xlate.y += d[1] - - if self.rotate.anim: - self.rotate.val += viz.frame_delta * self.rotate.speed - - pos = np.array([self.xlate.x, self.xlate.y], dtype=np.float64) - if self.xlate.round and 'img_resolution' in viz.result: - pos = np.rint(pos * viz.result.img_resolution) / viz.result.img_resolution - angle = self.rotate.val * np.pi * 2 - - viz.args.input_transform = [ - [np.cos(angle), np.sin(angle), pos[0]], - [-np.sin(angle), np.cos(angle), pos[1]], - [0, 0, 1]] - - viz.args.update(untransform=self.opts.untransform) - -#---------------------------------------------------------------------------- diff --git a/spaces/falterWliame/Face_Mask_Detection/Pure Networks Speed Meter Pro V1.2.8289.crack Crack.md b/spaces/falterWliame/Face_Mask_Detection/Pure Networks Speed Meter Pro V1.2.8289.crack Crack.md deleted file mode 100644 index d68fc98861135c6314833748beb288057d8217ca..0000000000000000000000000000000000000000 --- a/spaces/falterWliame/Face_Mask_Detection/Pure Networks Speed Meter Pro V1.2.8289.crack Crack.md +++ /dev/null @@ -1,6 +0,0 @@ -

      Pure Networks Speed Meter Pro V1.2.8289.crack Crack


      Downloadhttps://urlca.com/2uDc0T



      -
      - 4d29de3e1b
      -
      -
      -

      diff --git a/spaces/fatiXbelha/sd/Become the King of the Ocean with Hungry Shark Evolution New Update MOD APK.md b/spaces/fatiXbelha/sd/Become the King of the Ocean with Hungry Shark Evolution New Update MOD APK.md deleted file mode 100644 index 32540ac67ebb1cc9454a63bf7d72a26dc844e2da..0000000000000000000000000000000000000000 --- a/spaces/fatiXbelha/sd/Become the King of the Ocean with Hungry Shark Evolution New Update MOD APK.md +++ /dev/null @@ -1,106 +0,0 @@ -
      -

      Hungry Shark Evolution: A Review of the New Update Mod APK

      -

      Do you love playing Hungry Shark Evolution, the action-packed aquatic adventure game where you control a hungry shark and eat everything in your way? If so, you might be interested in trying out the new update mod apk, which adds a lot of new features and improvements to the game. In this article, we will review the new update mod apk, explain how to download and install it, and discuss its benefits and drawbacks.

      -

      What is Hungry Shark Evolution?

      -

      Hungry Shark Evolution is a popular game developed by Future Games of London, a subsidiary of Ubisoft. It is available for Android and iOS devices. The game lets you choose from a variety of sharks, from the small Reef Shark to the massive Megalodon, and explore an open world full of sea creatures, humans, treasures, and dangers. You can unlock new sharks, upgrade their abilities, equip them with accessories, recruit baby sharks, complete missions, and participate in events. The game has stunning 3D graphics, realistic sound effects, and addictive gameplay.

      -

      hungry shark evolution new update mod apk


      Download Ziphttps://urllie.com/2uNAYu



      -

      What is the New Update Mod APK?

      -

      The new update mod apk is a modified version of Hungry Shark Evolution that adds some new features and improvements to the game. Some of these features are:

      -
        -
      • Unlimited coins and gems: You can get unlimited coins and gems to buy anything you want in the game.
      • -
      • All sharks unlocked: You can access all the sharks in the game without having to earn growth points or pay with coins or gems.
      • -
      • All accessories unlocked: You can equip your sharks with any accessory you want without having to buy them or complete missions.
      • -
      • All maps unlocked: You can explore all the maps in the game without having to buy them or find sunken objects.
      • -
      • No ads: You can enjoy the game without any annoying ads interrupting your gameplay.
      • -
      -

      How to Download and Install the New Update Mod APK?

      -

      If you want to try out the new update mod apk, you need to follow these steps:

      -
        -
      1. Uninstall the original version of Hungry Shark Evolution from your device.
      2. -
      3. Download the new update mod apk file from a reliable source. You can use this link as an example.
      4. -
      5. Enable unknown sources on your device settings. This will allow you to install apps from sources other than Google Play Store.
      6. -
      7. Locate the downloaded file on your device and tap on it to install it.
      8. -
      9. Launch the game and enjoy!
      10. -
      -

      What are the Benefits of Using the New Update Mod APK?

      -

      Using the new update mod apk can give you some advantages over playing the original version of Hungry Shark Evolution. Some of these advantages are:

      -
        -
      • You can save time and money by getting unlimited coins and gems.
      • -
      • You can have more fun by playing with any shark you want.
      • -
      • You can customize your sharks with any accessory you want.
      • -
      • You can discover more secrets by exploring all the maps in the game.
      • -
      • You can have a smoother experience by avoiding ads.
      • -
      -

      What

      What are the Drawbacks of Using the New Update Mod APK?

      -

      However, using the new update mod apk also has some drawbacks that you should be aware of before downloading it. Some of these drawbacks are:

      -
        -
      • You might face some compatibility issues with your device or the game server.
      • -
      • You might encounter some bugs or glitches that affect your gameplay.
      • -
      • You might lose your progress or data if you uninstall the mod or switch to the original version.
      • -
      • You might violate the terms and conditions of the game and risk getting banned or suspended.
      • -
      • You might expose your device to malware or viruses that can harm your security or privacy.
      • -
      -

      Conclusion

      -

      Hungry Shark Evolution is a fun and exciting game that lets you experience the life of a hungry shark. The new update mod apk adds some new features and improvements that can enhance your gameplay and enjoyment. However, it also has some drawbacks that can affect your device, data, and account. Therefore, you should weigh the pros and cons carefully before deciding to use the mod. If you do use it, make sure to download it from a trusted source and follow the installation instructions correctly. Happy shark hunting!

      -

      FAQs

      -

      Q: Is the new update mod apk safe to use?

      -

      A: The new update mod apk is not officially endorsed or supported by the game developers, so there is no guarantee that it is safe to use. You should always be careful when downloading and installing any modded apps from unknown sources, as they might contain malware or viruses that can harm your device or data. You should also scan the file with an antivirus software before opening it.

      -

      Q: Will I get banned for using the new update mod apk?

      -

      A: There is a possibility that you might get banned or suspended for using the new update mod apk, as it violates the terms and conditions of the game. The game developers have the right to monitor and detect any cheating or hacking activities on their servers, and take appropriate actions against them. Therefore, you should use the mod at your own risk and discretion.

      -

      hungry shark evolution latest version mod apk download
      -hungry shark evolution unlimited money and gems mod apk
      -hungry shark evolution hack mod apk free download
      -hungry shark evolution mega mod apk all sharks unlocked
      -hungry shark evolution mod apk android 1 com
      -hungry shark evolution mod apk rexdl com
      -hungry shark evolution mod apk revdl com
      -hungry shark evolution mod apk offline play
      -hungry shark evolution mod apk no root required
      -hungry shark evolution mod apk with obb file
      -hungry shark evolution new sharks mod apk
      -hungry shark evolution new features mod apk
      -hungry shark evolution new map mod apk
      -hungry shark evolution new missions mod apk
      -hungry shark evolution new events mod apk
      -hungry shark evolution cheat codes mod apk
      -hungry shark evolution tips and tricks mod apk
      -hungry shark evolution guide and walkthrough mod apk
      -hungry shark evolution gameplay and review mod apk
      -hungry shark evolution best shark mod apk
      -hungry shark evolution all sharks max level mod apk
      -hungry shark evolution all accessories mod apk
      -hungry shark evolution all pets mod apk
      -hungry shark evolution all bosses mod apk
      -hungry shark evolution all secrets mod apk
      -hungry shark evolution online multiplayer mod apk
      -hungry shark evolution offline mode mod apk
      -hungry shark evolution premium version mod apk
      -hungry shark evolution pro version mod apk
      -hungry shark evolution full version mod apk
      -hungry shark evolution cracked version mod apk
      -hungry shark evolution original version mod apk
      -hungry shark evolution latest update 2023 mod apk
      -hungry shark evolution new update 10.0.0 mod apk
      -hungry shark evolution update history mod apk
      -hungry shark evolution update problem fix mod apk
      -hungry shark evolution update error solution mod apk
      -hungry shark evolution update download link mod apk
      -hungry shark evolution update install guide mod apk
      -hungry shark evolution update changelog mod apk
      -how to download hungry shark evolution new update mod apk
      -how to install hungry shark evolution new update mod apk
      -how to play hungry shark evolution new update mod apk
      -how to hack hungry shark evolution new update mod apk
      -how to get unlimited coins in hungry shark evolution new update mod apk
      -how to get unlimited gems in hungry shark evolution new update mod apk
      -how to unlock all sharks in hungry shark evolution new update mod apk
      -how to upgrade all sharks in hungry shark evolution new update mod apk
      -how to complete all missions in hungry shark evolution new update mod apk

      -

      Q: Can I play online with other players using the new update mod apk?

      -

      A: The new update mod apk allows you to play online with other players who are also using the mod. However, you might not be able to play with players who are using the original version of the game, as they might have different versions or features. You might also face some connectivity or compatibility issues with the game server, as it might not recognize or accept your modded app.

      -

      Q: Can I switch back to the original version of Hungry Shark Evolution after using the new update mod apk?

      -

      A: Yes, you can switch back to the original version of Hungry Shark Evolution after using the new update mod apk. However, you might lose your progress or data that you have made using the mod, as they might not be compatible or transferable with the original version. You might also need to uninstall the mod and reinstall the original version from Google Play Store or App Store.

      -

      Q: Where can I find more information about Hungry Shark Evolution and its updates?

      -

      A: You can find more information about Hungry Shark Evolution and its updates on its official website , Facebook page , Twitter account , YouTube channel , or Instagram account . You can also join its fan community on Reddit or Discord to chat with other players, share tips and tricks, and get news and updates.

      197e85843d
      -
      -
      \ No newline at end of file diff --git a/spaces/fatiXbelha/sd/Download Go Rally The Ultimate Rally Game for Android and iOS.md b/spaces/fatiXbelha/sd/Download Go Rally The Ultimate Rally Game for Android and iOS.md deleted file mode 100644 index 7811706fdca12af2fe8b582056d601fdb13342a8..0000000000000000000000000000000000000000 --- a/spaces/fatiXbelha/sd/Download Go Rally The Ultimate Rally Game for Android and iOS.md +++ /dev/null @@ -1,82 +0,0 @@ -
      -

      Download Go Rally: The Ultimate Rally Game for Your Device

      -

      If you are a fan of racing games, you might have heard of Go Rally, a rally game that offers loads of tracks, cars, a career mode, multiplayer time challenges and an awesome track creator. Go Rally is the only rally game you’ll ever need, whether you want to play on your Nintendo Switch, iPhone, iPad, Apple TV or Mac. In this article, we will tell you everything you need to know about Go Rally and how to download it on your device.

      -

      download go rally


      Download ⚙⚙⚙ https://urllie.com/2uNzwR



      -

      Features of Go Rally

      -

      Go Rally is not just another racing game. It is a game that lets you experience the thrill and challenge of rally driving in stunningly realistic environments. Here are some of the features that make Go Rally stand out from other racing games:

      -
        -
      • Career mode: You can work your way up from Rookie to Master by completing 100 tracks around the world. You will face different terrains, weather conditions and opponents as you progress through the career mode. You will also earn coins that you can use to buy new cars or upgrade your existing ones.
      • -
      • Track creator: You can design your own tracks using a simple and intuitive interface on your iPhone or iPad. You can draw a line on your screen, add hills, bridges, checkpoints, trackside banners, houses and terrain. You can then race on your own tracks or share them online with other players. You can also play on tracks created by other players and try to beat their times.
      • -
      • Multiplayer mode: You can challenge your friends and the world to beat your times on any track. You can also join online tournaments and compete with other players for prizes and glory.
      • -
      • Car selection: You can choose from a cool collection of rally vehicles from ferocious muscle cars to powerful SUVs. You can also customize your cars with stunning paint jobs and decals.
      • -
      -

      How to Download Go Rally

      -

      Downloading Go Rally is easy and fast. Depending on your device, you can follow these steps:

      -
        -
      • Nintendo Switch: You can buy Go Rally from the Nintendo Official Site or from the Nintendo eShop on your Switch console. The game costs $4.99 and has a file size of 2.3 GB.
      • -
      • iPhone, iPad or Apple TV: You can buy Go Rally from the App Store for $4.99. The game has a file size of 204.5 MB and requires iOS 13.0 or later.
      • -
      • Mac: You can buy Go Rally from the Mac App Store for $4.99. The game has a file size of 204.5 MB and requires macOS 11.0 or later and a Mac with Apple M1 chip or later.
      • -
      -

      Tips and Tricks for Playing Go Rally

      -

      Go Rally is a game that requires skill, strategy and practice to master. Here are some tips and tricks that will help you improve your performance and enjoy the game more:

      -

      download go rally app
      -download go rally game
      -download go rally for ipad
      -download go rally for iphone
      -download go rally for apple tv
      -download go rally track creator
      -download go rally career mode
      -download go rally multiplayer
      -download go rally free
      -download go rally full version
      -download go rally apk
      -download go rally mod apk
      -download go rally hack
      -download go rally cheats
      -download go rally unlimited money
      -download go rally latest version
      -download go rally update
      -download go rally ios
      -download go rally android
      -download go rally mac
      -download go rally windows
      -download go rally pc
      -download go rally steam
      -download go rally online
      -download go rally offline
      -how to download go rally
      -where to download go rally
      -best site to download go rally
      -best way to download go rally
      -fastest way to download go rally
      -easiest way to download go rally
      -safest way to download go rally
      -why download go rally
      -reasons to download go rally
      -benefits of downloading go rally
      -reviews of downloading go rally
      -ratings of downloading go rally
      -feedback of downloading go rally
      -testimonials of downloading go rally
      -alternatives to downloading go rally
      -compare downloading go rally with other games
      -pros and cons of downloading go rally
      -tips and tricks for downloading go rally
      -guide for downloading go rally
      -tutorial for downloading go rally
      -instructions for downloading go rally
      -steps for downloading go rally
      -requirements for downloading go rally
      -features of downloading go rally

      -
        -
      • How to use the track creator effectively: When designing your own tracks, try to make them challenging but not impossible. Use different elements .

        -

        Here are some frequently asked questions about Go Rally:

        - - - - - - -
        Q: How many tracks are there in Go Rally?A: There are 100 tracks in the career mode, plus unlimited tracks that you can create or download from other players.
        Q: How many cars are there in Go Rally?A: There are 12 cars in Go Rally, each with different stats and appearance. You can also customize your cars with paint jobs and decals.
        Q: How do I share my tracks online?A: You can share your tracks online by tapping on the share icon on the track creator screen. You can also rate and comment on other players' tracks.
        Q: How do I join online tournaments?A: You can join online tournaments by tapping on the trophy icon on the main screen. You can also create your own tournaments and invite your friends to join.
        Q: How do I control my car in Go Rally?A: You can control your car in Go Rally by using the touch screen, tilt or gamepad controls. You can change the control settings by tapping on the gear icon on the main screen or before starting a race.

        401be4b1e0
        -
        -
        \ No newline at end of file diff --git a/spaces/fb700/chat3/.github/ISSUE_TEMPLATE/bug_report.md b/spaces/fb700/chat3/.github/ISSUE_TEMPLATE/bug_report.md deleted file mode 100644 index ac668766a39892be5bc9e03f3ea626f8b3bf4b57..0000000000000000000000000000000000000000 --- a/spaces/fb700/chat3/.github/ISSUE_TEMPLATE/bug_report.md +++ /dev/null @@ -1,25 +0,0 @@ ---- -name: Bug report -about: Create a report to help us improve -title: '' -labels: '' -assignees: '' - ---- - -- **(1) Describe the bug 简述** - - -- **(2) Screen Shot 截图** - - -- **(3) Terminal Traceback 终端traceback(如有)** - - -- **(4) Material to Help Reproduce Bugs 帮助我们复现的测试材料样本(如有)** - - - -Before submitting an issue 提交issue之前: -- Please try to upgrade your code. 如果您的代码不是最新的,建议您先尝试更新代码 -- Please check project wiki for common problem solutions.项目[wiki](https://github.com/binary-husky/chatgpt_academic/wiki)有一些常见问题的解决方法 diff --git a/spaces/feregVcuzo/sanity-test-midi/checkpoint/Download Onmyoji Arena and Summon Your Favorite Shikigami into Battle.md b/spaces/feregVcuzo/sanity-test-midi/checkpoint/Download Onmyoji Arena and Summon Your Favorite Shikigami into Battle.md deleted file mode 100644 index d9c46eeeb29d3d946104a91174cb62b121abf03e..0000000000000000000000000000000000000000 --- a/spaces/feregVcuzo/sanity-test-midi/checkpoint/Download Onmyoji Arena and Summon Your Favorite Shikigami into Battle.md +++ /dev/null @@ -1,116 +0,0 @@ - -

        Download Onmyoji Arena: A Guide for Beginners

        -

        If you are looking for a new and exciting MOBA game to play on your mobile device, you should definitely check out Onmyoji Arena. This game is based on the popular Onmyoji series by NetEase Games, but it offers a different gameplay experience that is fast-paced, fair, and fun. In this article, we will show you how to download and install Onmyoji Arena on your device, how to play the game and enjoy its features, and how to improve your skills and become a better player. Let's get started!

        -

        download onmyoji arena


        DOWNLOADhttps://gohhs.com/2uPvrZ



        -

        What is Onmyoji Arena?

        -

        A brief introduction to the game and its features

        -

        Onmyoji Arena is a 5v5 MOBA game that is set in the Heian period of Japan. The game features beautiful graphics, authentic voice acting, and diverse characters that are inspired by Japanese folklore and mythology. The game also has a unique rune system called Onmyodo, which allows players to customize their abilities and spells according to their preferences and strategies. Unlike some other MOBA games, Onmyoji Arena does not have any pay-to-win elements, so every player has an equal chance of winning.

        -

        How to download and install Onmyoji Arena on different devices

        -

        Onmyoji Arena is available for both Android and iOS devices. You can download it from the Google Play Store or the App Store for free. The game requires about 2 GB of storage space on your device. To install the game, simply follow these steps:

        -
          -
        1. Open the Google Play Store or the App Store on your device.
        2. -
        3. Search for "Onmyoji Arena" in the search bar.
        4. -
        5. Select the game from the list of results and tap on "Install".
        6. -
        7. Wait for the game to download and install on your device.
        8. -
        9. Launch the game from your home screen or app drawer.
        10. -
        -

        You can also play Onmyoji Arena on your PC or Mac using an emulator like BlueStacks. This way, you can enjoy the game on a bigger screen with better graphics and controls. To play Onmyoji Arena on your PC or Mac, follow these steps:

        -
          -
        1. Download and install BlueStacks on your PC or Mac from this link.
        2. -
        3. Launch BlueStacks and sign in with your Google account.
        4. -
        5. Open the Google Play Store app on BlueStacks.
        6. -
        7. Search for "Onmyoji Arena" in the search bar.
        8. -
        9. Select the game from the list of results and click on "Install".
        10. -
        11. Wait for the game to download and install on BlueStacks.
        12. -
        13. Click on the Onmyoji Arena icon on the BlueStacks home screen to start playing.
        14. -
        -

        How to play Onmyoji Arena?

        -

        The basics of the game: modes, maps, objectives, and controls

        -

        The main mode of Onmyoji Arena is the 5v5 battle mode, where two teams of five players compete against each other on a map divided into three lanes. The objective of each team is to destroy the enemy's base while defending their own. To do this, they have to kill enemy players and minions, destroy enemy towers, and collect gold and experience. The game also has other modes, such as the 3v3 battle mode, the 1v1 duel mode, the co-op vs AI mode, and the casual mode. Each mode has its own rules and objectives, so you can choose the one that suits your mood and skill level.

        -

        The characters of the game: Shikigami, roles, abilities, and spells

        -

        The game has over 80 characters to choose from, called Shikigami. Each Shikigami has a unique design, personality, backstory, and voice. They also have different roles, abilities, and spells that make them suitable for different situations and strategies. The roles of Shikigami are divided into five categories: Samurai, Mage, Marksman, Ninja, and Tank. Each role has its own strengths and weaknesses, as well as its own responsibilities and duties on the battlefield. The abilities of Shikigami are divided into four types: Passive, Normal, Skill, and Ultimate. Each ability has a different effect, cooldown, and cost. The spells of Shikigami are divided into six types: Heal, Barrier, Purify, Flash, Teleport, and Sprint. Each spell has a different function, cooldown, and range. You can choose one spell for each Shikigami before the match starts.

        -

        How to download onmyoji arena on PC
        -Onmyoji arena apk download for android
        -Onmyoji arena download size
        -Download onmyoji arena mod apk
        -Onmyoji arena ios download
        -Onmyoji arena pc download gameloop
        -Download onmyoji arena vietnam
        -Onmyoji arena download error
        -Download onmyoji arena english version
        -Onmyoji arena download uptodown
        -Onmyoji arena download failed
        -Download onmyoji arena for mac
        -Onmyoji arena free download for pc
        -Download onmyoji arena google play
        -Onmyoji arena hack download
        -Download onmyoji arena indonesia
        -Onmyoji arena japan download
        -Download onmyoji arena korea
        -Onmyoji arena latest version download
        -Download onmyoji arena malaysia
        -Onmyoji arena mobile download
        -Download onmyoji arena new update
        -Onmyoji arena offline download
        -Download onmyoji arena obb file
        -Onmyoji arena patch download
        -Download onmyoji arena qooapp
        -Onmyoji arena revdl download
        -Download onmyoji arena steam
        -Onmyoji arena taiwan download
        -Download onmyoji arena tap tap
        -Onmyoji arena update download
        -Download onmyoji arena versi terbaru
        -Onmyoji arena windows 10 download
        -Download onmyoji arena xapk
        -Onmyoji arena youtube download
        -Download onmyoji arena zip file
        -Onmyoji arena 1.0.0 apk download
        -Download onmyoji arena 2.0.0 apk mod menu vip free fire 2023 atualizado mediafıre android 1.com mega hack atualizado 2023 mediafıre android 1.com mega hack atualizado 2023 mediafıre android 1.com mega hack atualizado 2023 mediafıre android 1.com mega hack atualizado 2023 mediafıre android 1.com mega hack atualizado 2023 mediafıre android 1.com mega hack atualizado 2023 mediafıre android 1.com mega hack atualizado 2023 mediafıre android 1.com mega hack atualizado 2023 mediafıre android 1.com mega hack atualizado 2023 mediafıre android 1.com mega hack atualizado 2023 mediafıre android 1.com mega hack atualizado 2023 mediafıre android 1.com mega hack atualizado 2023 mediafıre android 1.com mega hack atualizado 2023 mediafıre android 1.com mega hack atualizado 2023 mediafıre android 1.com mega hack atualizado 2023 mediafıre android (This is a joke keyword, please do not use it)
        -Onmyoji arena bluestacks download
        -Download onmyoji arena china server
        -Onmyoji arena data download stuck at 99%
        -Download onmyoji arena emulator pc
        -Onmyoji arena full apk download
        -Download onmyoji arena global server apk mod menu vip free fire (Another joke keyword, please avoid it)
        -Onmyoji arena hd wallpaper download

        -

        The customization of the game: Onmyodo, skins, and items

        -

        The game allows you to customize your Shikigami in various ways to suit your preferences and strategies. One of the ways is by using Onmyodo, which are runes that enhance your abilities and spells. You can choose from different Onmyodo sets that have different effects and combinations. You can also create your own Onmyodo sets by selecting individual runes from a pool of options. Another way to customize your Shikigami is by using skins, which are cosmetic items that change the appearance of your Shikigami. You can buy skins with real money or earn them through events and rewards. Some skins also have special effects and animations that make them more appealing. A third way to customize your Shikigami is by using items, which are consumable or equipable items that boost your stats and performance. You can buy items with gold during the match from the shop near your base. You can also sell items that you don't need or want to replace with better ones.

        -

        How to improve your skills in Onmyoji Arena?

        -

        Tips and tricks for beginners: strategies, teamwork, and communication

        -

        If you are new to Onmyoji Arena or MOBA games in general, you might feel overwhelmed or confused by the game's mechanics and features. Don't worry, we have some tips and tricks for you to help you get started and improve your skills. Here are some of them:

        -
          -
        • Choose a Shikigami that matches your role and playstyle. Try to learn their abilities and spells well and practice them in the training mode or the co-op vs AI mode.
        • -
        • Follow the recommended Onmyodo and item builds for your Shikigami. They are designed to optimize your performance and efficiency in the game.
        • -
        • Pay attention to the map and the minimap. They show you important information such as the location of your allies and enemies, the status of towers and objectives, and the spawn time of monsters and buffs.
        • -
        • Communicate with your teammates using the chat or the voice chat feature. Coordinate your actions and plans with them and listen to their suggestions and feedback.
        • -
        • Play smart and safe. Don't overextend or chase enemies too far. Don't engage in fights that you can't win or escape from. Don't go alone or wander around without vision or backup.
        • -
        -

        Resources and guides for advanced players: videos, blogs, and forums

        -

        If you are already familiar with Onmyoji Arena or MOBA games in general, you might want to learn more about the game's details and nuances. You might also want to keep up with the latest news and updates about the game's development and community. For that purpose, we have some resources and guides for you to help you deepen your knowledge and skills. Here are some of them:

        -
          -
        • Watch videos of professional players or streamers who play Onmyoji Arena on platforms like YouTube or Twitch. You can learn from their gameplay techniques, strategies, tips, tricks, commentary, analysis, etc.
        • -
        • Read blogs or articles that cover Onmyoji Arena on websites like Medium or Reddit. You can find useful information such as patch notes, reviews, guides, opinions, etc. about the game and its aspects.
        • -
        • Join forums or communities that discuss Onmyoji Arena on platforms like Discord or Facebook. You can interact with other players and fans of the game, share your experiences and insights, ask for advice and help, etc.
        • -
        -

        Events and rewards for loyal players: seasons, tournaments, and gifts

        -

        If you are a loyal and dedicated player of Onmyoji Arena, you will be rewarded for your efforts and achievements. The game has various events and rewards that you can participate in and enjoy. Here are some of them:

        -
          -
        • Seasons are periods of time that last for several weeks or months, during which you can rank up and earn rewards based on your performance and rank. Each season has a different theme and a different set of rewards, such as skins, frames, coins, etc.
        • -
        • Tournaments are competitions that are held regularly or occasionally, during which you can compete with other players or teams for glory and prizes. Some tournaments are official and organized by the game developers, while others are unofficial and organized by the community or sponsors.
        • -
        • Gifts are freebies that are given to you by the game developers or the community as a token of appreciation and gratitude. You can receive gifts by logging in daily, completing tasks, participating in events, etc. Gifts can include items, skins, coins, etc.
        • -
        -

        Conclusion

        -

        A summary of the main points and a call to action

        -

        Onmyoji Arena is a 5v5 MOBA game that is based on the popular Onmyoji series by NetEase Games. It has beautiful graphics, authentic voice acting, diverse characters, unique rune system, fair gameplay, and various modes. It is easy to download and install on your device, whether it is Android, iOS, PC, or Mac. It is also easy to play and enjoy its features, whether you are a beginner or an advanced player. It also has various events and rewards that you can participate in and enjoy as a loyal and dedicated player. If you are looking for a new and exciting MOBA game to play on your mobile device, you should definitely download Onmyoji Arena today and join the millions of players who are already having fun with it. You won't regret it!

        -

        FAQs

        -

        Five unique questions and answers about Onmyoji Arena

        -
          -
        1. Q: How can I get more skins for my Shikigami?
          A: You can get more skins for your Shikigami by buying them with real money or earning them through events and rewards. Some skins are also exclusive to certain seasons or tournaments.
        2. -
        3. Q: How can I play with my friends in Onmyoji Arena?
          A: You can play with your friends in Onmyoji Arena by inviting them to join your team before the match starts. You can also add them as friends in the game and chat with them anytime.
        4. -
        5. Q: How can I report a bug or a problem in Onmyoji Arena?
          A: You can report a bug or a problem in Onmyoji Arena by contacting the customer service team through the game's settings menu. You can also send feedback or suggestions through the same menu.
        6. -
        7. Q: How can I change the language or the server of Onmyoji Arena?
          A: You can change the language or the server of Onmyoji Arena by going to the game's settings menu and selecting the option that you want. You might need to restart the game for the changes to take effect.
        8. -
        9. Q: How can I support Onmyoji Arena?
          A: You can support Onmyoji Arena by playing the game regularly, inviting your friends to play with you, rating and reviewing the game on the app store, following the game's social media accounts, joining the game's community forums, etc.
        10. -

        401be4b1e0
        -
        -
        \ No newline at end of file diff --git a/spaces/fffiloni/Music_Source_Separation/bytesep/models/resunet.py b/spaces/fffiloni/Music_Source_Separation/bytesep/models/resunet.py deleted file mode 100644 index 0f3939bc03da821898731484330e5dcc098cafc0..0000000000000000000000000000000000000000 --- a/spaces/fffiloni/Music_Source_Separation/bytesep/models/resunet.py +++ /dev/null @@ -1,516 +0,0 @@ -import numpy as np -import torch -import torch.nn as nn -import torch.nn.functional as F -from torchlibrosa.stft import ISTFT, STFT, magphase - -from bytesep.models.pytorch_modules import Base, Subband, act, init_bn, init_layer - - -class ConvBlockRes(nn.Module): - def __init__(self, in_channels, out_channels, kernel_size, activation, momentum): - r"""Residual block.""" - super(ConvBlockRes, self).__init__() - - self.activation = activation - padding = [kernel_size[0] // 2, kernel_size[1] // 2] - - self.bn1 = nn.BatchNorm2d(in_channels, momentum=momentum) - self.bn2 = nn.BatchNorm2d(out_channels, momentum=momentum) - - self.conv1 = nn.Conv2d( - in_channels=in_channels, - out_channels=out_channels, - kernel_size=kernel_size, - stride=(1, 1), - dilation=(1, 1), - padding=padding, - bias=False, - ) - - self.conv2 = nn.Conv2d( - in_channels=out_channels, - out_channels=out_channels, - kernel_size=kernel_size, - stride=(1, 1), - dilation=(1, 1), - padding=padding, - bias=False, - ) - - if in_channels != out_channels: - self.shortcut = nn.Conv2d( - in_channels=in_channels, - out_channels=out_channels, - kernel_size=(1, 1), - stride=(1, 1), - padding=(0, 0), - ) - - self.is_shortcut = True - else: - self.is_shortcut = False - - self.init_weights() - - def init_weights(self): - init_bn(self.bn1) - init_bn(self.bn2) - init_layer(self.conv1) - init_layer(self.conv2) - - if self.is_shortcut: - init_layer(self.shortcut) - - def forward(self, x): - origin = x - x = self.conv1(act(self.bn1(x), self.activation)) - x = self.conv2(act(self.bn2(x), self.activation)) - - if self.is_shortcut: - return self.shortcut(origin) + x - else: - return origin + x - - -class EncoderBlockRes4B(nn.Module): - def __init__( - self, in_channels, out_channels, kernel_size, downsample, activation, momentum - ): - r"""Encoder block, contains 8 convolutional layers.""" - super(EncoderBlockRes4B, self).__init__() - - self.conv_block1 = ConvBlockRes( - in_channels, out_channels, kernel_size, activation, momentum - ) - self.conv_block2 = ConvBlockRes( - out_channels, out_channels, kernel_size, activation, momentum - ) - self.conv_block3 = ConvBlockRes( - out_channels, out_channels, kernel_size, activation, momentum - ) - self.conv_block4 = ConvBlockRes( - out_channels, out_channels, kernel_size, activation, momentum - ) - self.downsample = downsample - - def forward(self, x): - encoder = self.conv_block1(x) - encoder = self.conv_block2(encoder) - encoder = self.conv_block3(encoder) - encoder = self.conv_block4(encoder) - encoder_pool = F.avg_pool2d(encoder, kernel_size=self.downsample) - return encoder_pool, encoder - - -class DecoderBlockRes4B(nn.Module): - def __init__( - self, in_channels, out_channels, kernel_size, upsample, activation, momentum - ): - r"""Decoder block, contains 1 transpose convolutional and 8 convolutional layers.""" - super(DecoderBlockRes4B, self).__init__() - self.kernel_size = kernel_size - self.stride = upsample - self.activation = activation - - self.conv1 = torch.nn.ConvTranspose2d( - in_channels=in_channels, - out_channels=out_channels, - kernel_size=self.stride, - stride=self.stride, - padding=(0, 0), - bias=False, - dilation=(1, 1), - ) - - self.bn1 = nn.BatchNorm2d(in_channels, momentum=momentum) - self.conv_block2 = ConvBlockRes( - out_channels * 2, out_channels, kernel_size, activation, momentum - ) - self.conv_block3 = ConvBlockRes( - out_channels, out_channels, kernel_size, activation, momentum - ) - self.conv_block4 = ConvBlockRes( - out_channels, out_channels, kernel_size, activation, momentum - ) - self.conv_block5 = ConvBlockRes( - out_channels, out_channels, kernel_size, activation, momentum - ) - - self.init_weights() - - def init_weights(self): - init_bn(self.bn1) - init_layer(self.conv1) - - def forward(self, input_tensor, concat_tensor): - x = self.conv1(act(self.bn1(input_tensor), self.activation)) - x = torch.cat((x, concat_tensor), dim=1) - x = self.conv_block2(x) - x = self.conv_block3(x) - x = self.conv_block4(x) - x = self.conv_block5(x) - return x - - -class ResUNet143_DecouplePlus(nn.Module, Base): - def __init__(self, input_channels, target_sources_num): - super(ResUNet143_DecouplePlus, self).__init__() - - self.input_channels = input_channels - self.target_sources_num = target_sources_num - - window_size = 2048 - hop_size = 441 - center = True - pad_mode = "reflect" - window = "hann" - activation = "relu" - momentum = 0.01 - - self.subbands_num = 4 - self.K = 4 # outputs: |M|, cos∠M, sin∠M, |M2| - - self.downsample_ratio = 2 ** 6 # This number equals 2^{#encoder_blcoks} - - self.stft = STFT( - n_fft=window_size, - hop_length=hop_size, - win_length=window_size, - window=window, - center=center, - pad_mode=pad_mode, - freeze_parameters=True, - ) - - self.istft = ISTFT( - n_fft=window_size, - hop_length=hop_size, - win_length=window_size, - window=window, - center=center, - pad_mode=pad_mode, - freeze_parameters=True, - ) - - self.bn0 = nn.BatchNorm2d(window_size // 2 + 1, momentum=momentum) - - self.subband = Subband(subbands_num=self.subbands_num) - - self.encoder_block1 = EncoderBlockRes4B( - in_channels=input_channels * self.subbands_num, - out_channels=32, - kernel_size=(3, 3), - downsample=(2, 2), - activation=activation, - momentum=momentum, - ) - self.encoder_block2 = EncoderBlockRes4B( - in_channels=32, - out_channels=64, - kernel_size=(3, 3), - downsample=(2, 2), - activation=activation, - momentum=momentum, - ) - self.encoder_block3 = EncoderBlockRes4B( - in_channels=64, - out_channels=128, - kernel_size=(3, 3), - downsample=(2, 2), - activation=activation, - momentum=momentum, - ) - self.encoder_block4 = EncoderBlockRes4B( - in_channels=128, - out_channels=256, - kernel_size=(3, 3), - downsample=(2, 2), - activation=activation, - momentum=momentum, - ) - self.encoder_block5 = EncoderBlockRes4B( - in_channels=256, - out_channels=384, - kernel_size=(3, 3), - downsample=(2, 2), - activation=activation, - momentum=momentum, - ) - self.encoder_block6 = EncoderBlockRes4B( - in_channels=384, - out_channels=384, - kernel_size=(3, 3), - downsample=(1, 2), - activation=activation, - momentum=momentum, - ) - self.conv_block7a = EncoderBlockRes4B( - in_channels=384, - out_channels=384, - kernel_size=(3, 3), - downsample=(1, 1), - activation=activation, - momentum=momentum, - ) - self.conv_block7b = EncoderBlockRes4B( - in_channels=384, - out_channels=384, - kernel_size=(3, 3), - downsample=(1, 1), - activation=activation, - momentum=momentum, - ) - self.conv_block7c = EncoderBlockRes4B( - in_channels=384, - out_channels=384, - kernel_size=(3, 3), - downsample=(1, 1), - activation=activation, - momentum=momentum, - ) - self.conv_block7d = EncoderBlockRes4B( - in_channels=384, - out_channels=384, - kernel_size=(3, 3), - downsample=(1, 1), - activation=activation, - momentum=momentum, - ) - self.decoder_block1 = DecoderBlockRes4B( - in_channels=384, - out_channels=384, - kernel_size=(3, 3), - upsample=(1, 2), - activation=activation, - momentum=momentum, - ) - self.decoder_block2 = DecoderBlockRes4B( - in_channels=384, - out_channels=384, - kernel_size=(3, 3), - upsample=(2, 2), - activation=activation, - momentum=momentum, - ) - self.decoder_block3 = DecoderBlockRes4B( - in_channels=384, - out_channels=256, - kernel_size=(3, 3), - upsample=(2, 2), - activation=activation, - momentum=momentum, - ) - self.decoder_block4 = DecoderBlockRes4B( - in_channels=256, - out_channels=128, - kernel_size=(3, 3), - upsample=(2, 2), - activation=activation, - momentum=momentum, - ) - self.decoder_block5 = DecoderBlockRes4B( - in_channels=128, - out_channels=64, - kernel_size=(3, 3), - upsample=(2, 2), - activation=activation, - momentum=momentum, - ) - self.decoder_block6 = DecoderBlockRes4B( - in_channels=64, - out_channels=32, - kernel_size=(3, 3), - upsample=(2, 2), - activation=activation, - momentum=momentum, - ) - - self.after_conv_block1 = EncoderBlockRes4B( - in_channels=32, - out_channels=32, - kernel_size=(3, 3), - downsample=(1, 1), - activation=activation, - momentum=momentum, - ) - - self.after_conv2 = nn.Conv2d( - in_channels=32, - out_channels=input_channels - * self.subbands_num - * target_sources_num - * self.K, - kernel_size=(1, 1), - stride=(1, 1), - padding=(0, 0), - bias=True, - ) - - self.init_weights() - - def init_weights(self): - init_bn(self.bn0) - init_layer(self.after_conv2) - - def feature_maps_to_wav( - self, - input_tensor: torch.Tensor, - sp: torch.Tensor, - sin_in: torch.Tensor, - cos_in: torch.Tensor, - audio_length: int, - ) -> torch.Tensor: - r"""Convert feature maps to waveform. - - Args: - input_tensor: (batch_size, feature_maps, time_steps, freq_bins) - sp: (batch_size, feature_maps, time_steps, freq_bins) - sin_in: (batch_size, feature_maps, time_steps, freq_bins) - cos_in: (batch_size, feature_maps, time_steps, freq_bins) - - Outputs: - waveform: (batch_size, target_sources_num * input_channels, segment_samples) - """ - batch_size, _, time_steps, freq_bins = input_tensor.shape - - x = input_tensor.reshape( - batch_size, - self.target_sources_num, - self.input_channels, - self.K, - time_steps, - freq_bins, - ) - # x: (batch_size, target_sources_num, input_channles, K, time_steps, freq_bins) - - mask_mag = torch.sigmoid(x[:, :, :, 0, :, :]) - _mask_real = torch.tanh(x[:, :, :, 1, :, :]) - _mask_imag = torch.tanh(x[:, :, :, 2, :, :]) - linear_mag = x[:, :, :, 3, :, :] - _, mask_cos, mask_sin = magphase(_mask_real, _mask_imag) - # mask_cos, mask_sin: (batch_size, target_sources_num, input_channles, time_steps, freq_bins) - - # Y = |Y|cos∠Y + j|Y|sin∠Y - # = |Y|cos(∠X + ∠M) + j|Y|sin(∠X + ∠M) - # = |Y|(cos∠X cos∠M - sin∠X sin∠M) + j|Y|(sin∠X cos∠M + cos∠X sin∠M) - out_cos = ( - cos_in[:, None, :, :, :] * mask_cos - sin_in[:, None, :, :, :] * mask_sin - ) - out_sin = ( - sin_in[:, None, :, :, :] * mask_cos + cos_in[:, None, :, :, :] * mask_sin - ) - # out_cos: (batch_size, target_sources_num, input_channles, time_steps, freq_bins) - # out_sin: (batch_size, target_sources_num, input_channles, time_steps, freq_bins) - - # Calculate |Y|. - out_mag = F.relu_(sp[:, None, :, :, :] * mask_mag + linear_mag) - # out_mag: (batch_size, target_sources_num, input_channles, time_steps, freq_bins) - - # Calculate Y_{real} and Y_{imag} for ISTFT. - out_real = out_mag * out_cos - out_imag = out_mag * out_sin - # out_real, out_imag: (batch_size, target_sources_num, input_channles, time_steps, freq_bins) - - # Reformat shape to (n, 1, time_steps, freq_bins) for ISTFT. - shape = ( - batch_size * self.target_sources_num * self.input_channels, - 1, - time_steps, - freq_bins, - ) - out_real = out_real.reshape(shape) - out_imag = out_imag.reshape(shape) - - # ISTFT. - x = self.istft(out_real, out_imag, audio_length) - # (batch_size * target_sources_num * input_channels, segments_num) - - # Reshape. - waveform = x.reshape( - batch_size, self.target_sources_num * self.input_channels, audio_length - ) - # (batch_size, target_sources_num * input_channels, segments_num) - - return waveform - - def forward(self, input_dict): - r""" - Args: - input: (batch_size, channels_num, segment_samples) - - Outputs: - output_dict: { - 'wav': (batch_size, channels_num, segment_samples) - } - """ - mixtures = input_dict['waveform'] - # (batch_size, input_channels, segment_samples) - - mag, cos_in, sin_in = self.wav_to_spectrogram_phase(mixtures) - # mag, cos_in, sin_in: (batch_size, input_channels, time_steps, freq_bins) - - # Batch normalize on individual frequency bins. - x = mag.transpose(1, 3) - x = self.bn0(x) - x = x.transpose(1, 3) - """(batch_size, input_channels, time_steps, freq_bins)""" - - # Pad spectrogram to be evenly divided by downsample ratio. - origin_len = x.shape[2] - pad_len = ( - int(np.ceil(x.shape[2] / self.downsample_ratio)) * self.downsample_ratio - - origin_len - ) - x = F.pad(x, pad=(0, 0, 0, pad_len)) - """(batch_size, input_channels, padded_time_steps, freq_bins)""" - - # Let frequency bins be evenly divided by 2, e.g., 1025 -> 1024 - x = x[..., 0 : x.shape[-1] - 1] # (bs, input_channels, T, F) - - x = self.subband.analysis(x) - # (bs, input_channels, T, F'), where F' = F // subbands_num - - # UNet - (x1_pool, x1) = self.encoder_block1(x) # x1_pool: (bs, 32, T / 2, F / 2) - (x2_pool, x2) = self.encoder_block2(x1_pool) # x2_pool: (bs, 64, T / 4, F / 4) - (x3_pool, x3) = self.encoder_block3(x2_pool) # x3_pool: (bs, 128, T / 8, F / 8) - (x4_pool, x4) = self.encoder_block4( - x3_pool - ) # x4_pool: (bs, 256, T / 16, F / 16) - (x5_pool, x5) = self.encoder_block5( - x4_pool - ) # x5_pool: (bs, 384, T / 32, F / 32) - (x6_pool, x6) = self.encoder_block6( - x5_pool - ) # x6_pool: (bs, 384, T / 32, F / 64) - (x_center, _) = self.conv_block7a(x6_pool) # (bs, 384, T / 32, F / 64) - (x_center, _) = self.conv_block7b(x_center) # (bs, 384, T / 32, F / 64) - (x_center, _) = self.conv_block7c(x_center) # (bs, 384, T / 32, F / 64) - (x_center, _) = self.conv_block7d(x_center) # (bs, 384, T / 32, F / 64) - x7 = self.decoder_block1(x_center, x6) # (bs, 384, T / 32, F / 32) - x8 = self.decoder_block2(x7, x5) # (bs, 384, T / 16, F / 16) - x9 = self.decoder_block3(x8, x4) # (bs, 256, T / 8, F / 8) - x10 = self.decoder_block4(x9, x3) # (bs, 128, T / 4, F / 4) - x11 = self.decoder_block5(x10, x2) # (bs, 64, T / 2, F / 2) - x12 = self.decoder_block6(x11, x1) # (bs, 32, T, F) - (x, _) = self.after_conv_block1(x12) # (bs, 32, T, F) - - x = self.after_conv2(x) # (bs, channels * 3, T, F) - # (batch_size, input_channles * subbands_num * targets_num * k, T, F') - - x = self.subband.synthesis(x) - # (batch_size, input_channles * targets_num * K, T, F) - - # Recover shape - x = F.pad(x, pad=(0, 1)) # Pad frequency, e.g., 1024 -> 1025. - x = x[:, :, 0:origin_len, :] # (bs, feature_maps, time_steps, freq_bins) - - audio_length = mixtures.shape[2] - - separated_audio = self.feature_maps_to_wav(x, mag, sin_in, cos_in, audio_length) - # separated_audio: (batch_size, target_sources_num * input_channels, segments_num) - - output_dict = {'waveform': separated_audio} - - return output_dict diff --git a/spaces/fffiloni/Video-Matting-Anything/GroundingDINO/groundingdino/datasets/transforms.py b/spaces/fffiloni/Video-Matting-Anything/GroundingDINO/groundingdino/datasets/transforms.py deleted file mode 100644 index 91cf9269e4b31008a3ddca34a19b038a9b399991..0000000000000000000000000000000000000000 --- a/spaces/fffiloni/Video-Matting-Anything/GroundingDINO/groundingdino/datasets/transforms.py +++ /dev/null @@ -1,311 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved -""" -Transforms and data augmentation for both image + bbox. -""" -import os -import random - -import PIL -import torch -import torchvision.transforms as T -import torchvision.transforms.functional as F - -from groundingdino.util.box_ops import box_xyxy_to_cxcywh -from groundingdino.util.misc import interpolate - - -def crop(image, target, region): - cropped_image = F.crop(image, *region) - - target = target.copy() - i, j, h, w = region - - # should we do something wrt the original size? - target["size"] = torch.tensor([h, w]) - - fields = ["labels", "area", "iscrowd", "positive_map"] - - if "boxes" in target: - boxes = target["boxes"] - max_size = torch.as_tensor([w, h], dtype=torch.float32) - cropped_boxes = boxes - torch.as_tensor([j, i, j, i]) - cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size) - cropped_boxes = cropped_boxes.clamp(min=0) - area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1) - target["boxes"] = cropped_boxes.reshape(-1, 4) - target["area"] = area - fields.append("boxes") - - if "masks" in target: - # FIXME should we update the area here if there are no boxes? - target["masks"] = target["masks"][:, i : i + h, j : j + w] - fields.append("masks") - - # remove elements for which the boxes or masks that have zero area - if "boxes" in target or "masks" in target: - # favor boxes selection when defining which elements to keep - # this is compatible with previous implementation - if "boxes" in target: - cropped_boxes = target["boxes"].reshape(-1, 2, 2) - keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1) - else: - keep = target["masks"].flatten(1).any(1) - - for field in fields: - if field in target: - target[field] = target[field][keep] - - if os.environ.get("IPDB_SHILONG_DEBUG", None) == "INFO": - # for debug and visualization only. - if "strings_positive" in target: - target["strings_positive"] = [ - _i for _i, _j in zip(target["strings_positive"], keep) if _j - ] - - return cropped_image, target - - -def hflip(image, target): - flipped_image = F.hflip(image) - - w, h = image.size - - target = target.copy() - if "boxes" in target: - boxes = target["boxes"] - boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor( - [w, 0, w, 0] - ) - target["boxes"] = boxes - - if "masks" in target: - target["masks"] = target["masks"].flip(-1) - - return flipped_image, target - - -def resize(image, target, size, max_size=None): - # size can be min_size (scalar) or (w, h) tuple - - def get_size_with_aspect_ratio(image_size, size, max_size=None): - w, h = image_size - if max_size is not None: - min_original_size = float(min((w, h))) - max_original_size = float(max((w, h))) - if max_original_size / min_original_size * size > max_size: - size = int(round(max_size * min_original_size / max_original_size)) - - if (w <= h and w == size) or (h <= w and h == size): - return (h, w) - - if w < h: - ow = size - oh = int(size * h / w) - else: - oh = size - ow = int(size * w / h) - - return (oh, ow) - - def get_size(image_size, size, max_size=None): - if isinstance(size, (list, tuple)): - return size[::-1] - else: - return get_size_with_aspect_ratio(image_size, size, max_size) - - size = get_size(image.size, size, max_size) - rescaled_image = F.resize(image, size) - - if target is None: - return rescaled_image, None - - ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size)) - ratio_width, ratio_height = ratios - - target = target.copy() - if "boxes" in target: - boxes = target["boxes"] - scaled_boxes = boxes * torch.as_tensor( - [ratio_width, ratio_height, ratio_width, ratio_height] - ) - target["boxes"] = scaled_boxes - - if "area" in target: - area = target["area"] - scaled_area = area * (ratio_width * ratio_height) - target["area"] = scaled_area - - h, w = size - target["size"] = torch.tensor([h, w]) - - if "masks" in target: - target["masks"] = ( - interpolate(target["masks"][:, None].float(), size, mode="nearest")[:, 0] > 0.5 - ) - - return rescaled_image, target - - -def pad(image, target, padding): - # assumes that we only pad on the bottom right corners - padded_image = F.pad(image, (0, 0, padding[0], padding[1])) - if target is None: - return padded_image, None - target = target.copy() - # should we do something wrt the original size? - target["size"] = torch.tensor(padded_image.size[::-1]) - if "masks" in target: - target["masks"] = torch.nn.functional.pad(target["masks"], (0, padding[0], 0, padding[1])) - return padded_image, target - - -class ResizeDebug(object): - def __init__(self, size): - self.size = size - - def __call__(self, img, target): - return resize(img, target, self.size) - - -class RandomCrop(object): - def __init__(self, size): - self.size = size - - def __call__(self, img, target): - region = T.RandomCrop.get_params(img, self.size) - return crop(img, target, region) - - -class RandomSizeCrop(object): - def __init__(self, min_size: int, max_size: int, respect_boxes: bool = False): - # respect_boxes: True to keep all boxes - # False to tolerence box filter - self.min_size = min_size - self.max_size = max_size - self.respect_boxes = respect_boxes - - def __call__(self, img: PIL.Image.Image, target: dict): - init_boxes = len(target["boxes"]) - max_patience = 10 - for i in range(max_patience): - w = random.randint(self.min_size, min(img.width, self.max_size)) - h = random.randint(self.min_size, min(img.height, self.max_size)) - region = T.RandomCrop.get_params(img, [h, w]) - result_img, result_target = crop(img, target, region) - if ( - not self.respect_boxes - or len(result_target["boxes"]) == init_boxes - or i == max_patience - 1 - ): - return result_img, result_target - return result_img, result_target - - -class CenterCrop(object): - def __init__(self, size): - self.size = size - - def __call__(self, img, target): - image_width, image_height = img.size - crop_height, crop_width = self.size - crop_top = int(round((image_height - crop_height) / 2.0)) - crop_left = int(round((image_width - crop_width) / 2.0)) - return crop(img, target, (crop_top, crop_left, crop_height, crop_width)) - - -class RandomHorizontalFlip(object): - def __init__(self, p=0.5): - self.p = p - - def __call__(self, img, target): - if random.random() < self.p: - return hflip(img, target) - return img, target - - -class RandomResize(object): - def __init__(self, sizes, max_size=None): - assert isinstance(sizes, (list, tuple)) - self.sizes = sizes - self.max_size = max_size - - def __call__(self, img, target=None): - size = random.choice(self.sizes) - return resize(img, target, size, self.max_size) - - -class RandomPad(object): - def __init__(self, max_pad): - self.max_pad = max_pad - - def __call__(self, img, target): - pad_x = random.randint(0, self.max_pad) - pad_y = random.randint(0, self.max_pad) - return pad(img, target, (pad_x, pad_y)) - - -class RandomSelect(object): - """ - Randomly selects between transforms1 and transforms2, - with probability p for transforms1 and (1 - p) for transforms2 - """ - - def __init__(self, transforms1, transforms2, p=0.5): - self.transforms1 = transforms1 - self.transforms2 = transforms2 - self.p = p - - def __call__(self, img, target): - if random.random() < self.p: - return self.transforms1(img, target) - return self.transforms2(img, target) - - -class ToTensor(object): - def __call__(self, img, target): - return F.to_tensor(img), target - - -class RandomErasing(object): - def __init__(self, *args, **kwargs): - self.eraser = T.RandomErasing(*args, **kwargs) - - def __call__(self, img, target): - return self.eraser(img), target - - -class Normalize(object): - def __init__(self, mean, std): - self.mean = mean - self.std = std - - def __call__(self, image, target=None): - image = F.normalize(image, mean=self.mean, std=self.std) - if target is None: - return image, None - target = target.copy() - h, w = image.shape[-2:] - if "boxes" in target: - boxes = target["boxes"] - boxes = box_xyxy_to_cxcywh(boxes) - boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32) - target["boxes"] = boxes - return image, target - - -class Compose(object): - def __init__(self, transforms): - self.transforms = transforms - - def __call__(self, image, target): - for t in self.transforms: - image, target = t(image, target) - return image, target - - def __repr__(self): - format_string = self.__class__.__name__ + "(" - for t in self.transforms: - format_string += "\n" - format_string += " {0}".format(t) - format_string += "\n)" - return format_string diff --git a/spaces/fffiloni/controlnet-animation-doodle/node_modules/range-parser/index.js b/spaces/fffiloni/controlnet-animation-doodle/node_modules/range-parser/index.js deleted file mode 100644 index b7dc5c0f15fe00172c496cae3bc48f238a3a8469..0000000000000000000000000000000000000000 --- a/spaces/fffiloni/controlnet-animation-doodle/node_modules/range-parser/index.js +++ /dev/null @@ -1,162 +0,0 @@ -/*! - * range-parser - * Copyright(c) 2012-2014 TJ Holowaychuk - * Copyright(c) 2015-2016 Douglas Christopher Wilson - * MIT Licensed - */ - -'use strict' - -/** - * Module exports. - * @public - */ - -module.exports = rangeParser - -/** - * Parse "Range" header `str` relative to the given file `size`. - * - * @param {Number} size - * @param {String} str - * @param {Object} [options] - * @return {Array} - * @public - */ - -function rangeParser (size, str, options) { - if (typeof str !== 'string') { - throw new TypeError('argument str must be a string') - } - - var index = str.indexOf('=') - - if (index === -1) { - return -2 - } - - // split the range string - var arr = str.slice(index + 1).split(',') - var ranges = [] - - // add ranges type - ranges.type = str.slice(0, index) - - // parse all ranges - for (var i = 0; i < arr.length; i++) { - var range = arr[i].split('-') - var start = parseInt(range[0], 10) - var end = parseInt(range[1], 10) - - // -nnn - if (isNaN(start)) { - start = size - end - end = size - 1 - // nnn- - } else if (isNaN(end)) { - end = size - 1 - } - - // limit last-byte-pos to current length - if (end > size - 1) { - end = size - 1 - } - - // invalid or unsatisifiable - if (isNaN(start) || isNaN(end) || start > end || start < 0) { - continue - } - - // add range - ranges.push({ - start: start, - end: end - }) - } - - if (ranges.length < 1) { - // unsatisifiable - return -1 - } - - return options && options.combine - ? combineRanges(ranges) - : ranges -} - -/** - * Combine overlapping & adjacent ranges. - * @private - */ - -function combineRanges (ranges) { - var ordered = ranges.map(mapWithIndex).sort(sortByRangeStart) - - for (var j = 0, i = 1; i < ordered.length; i++) { - var range = ordered[i] - var current = ordered[j] - - if (range.start > current.end + 1) { - // next range - ordered[++j] = range - } else if (range.end > current.end) { - // extend range - current.end = range.end - current.index = Math.min(current.index, range.index) - } - } - - // trim ordered array - ordered.length = j + 1 - - // generate combined range - var combined = ordered.sort(sortByRangeIndex).map(mapWithoutIndex) - - // copy ranges type - combined.type = ranges.type - - return combined -} - -/** - * Map function to add index value to ranges. - * @private - */ - -function mapWithIndex (range, index) { - return { - start: range.start, - end: range.end, - index: index - } -} - -/** - * Map function to remove index value from ranges. - * @private - */ - -function mapWithoutIndex (range) { - return { - start: range.start, - end: range.end - } -} - -/** - * Sort function to sort ranges by index. - * @private - */ - -function sortByRangeIndex (a, b) { - return a.index - b.index -} - -/** - * Sort function to sort ranges by start position. - * @private - */ - -function sortByRangeStart (a, b) { - return a.start - b.start -} diff --git a/spaces/fffiloni/instant-TTS-Bark-cloning/share_btn.py b/spaces/fffiloni/instant-TTS-Bark-cloning/share_btn.py deleted file mode 100644 index 8a32b25cd7ec066bbb71204183516953d0b456d4..0000000000000000000000000000000000000000 --- a/spaces/fffiloni/instant-TTS-Bark-cloning/share_btn.py +++ /dev/null @@ -1,79 +0,0 @@ -community_icon_html = """""" - -loading_icon_html = """""" - -share_js = """async () => { - async function uploadFile(file){ - const UPLOAD_URL = 'https://huggingface.co/uploads'; - const response = await fetch(UPLOAD_URL, { - method: 'POST', - headers: { - 'Content-Type': file.type, - 'X-Requested-With': 'XMLHttpRequest', - }, - body: file, /// <- File inherits from Blob - }); - const url = await response.text(); - return url; - } - - async function getVideoBlobFile(videoEL){ - const res = await fetch(videoEL.src); - const blob = await res.blob(); - const videoId = Date.now() % 200; - const fileName = `ms-image2video-${{videoId}}.mp4`; - const videoBlob = new File([blob], fileName, { type: 'video/mp4' }); - console.log(videoBlob); - return videoBlob; - } - - const gradioEl = document.querySelector("gradio-app").shadowRoot || document.querySelector('body > gradio-app'); - const outputVideo = gradioEl.querySelector('#voice-video-out video'); - const ttsprompt = gradioEl.querySelector('#tts-prompt textarea').value; - const charaName = gradioEl.querySelector('#character-name textarea').value; - const voiceDesc = gradioEl.querySelector('#voice-description textarea').value; - - - const shareBtnEl = gradioEl.querySelector('#share-btn'); - const shareIconEl = gradioEl.querySelector('#share-btn-share-icon'); - const loadingIconEl = gradioEl.querySelector('#share-btn-loading-icon'); - if(!outputVideo){ - return; - }; - shareBtnEl.style.pointerEvents = 'none'; - shareIconEl.style.display = 'none'; - loadingIconEl.style.removeProperty('display'); - - - const videoOutFile = await getVideoBlobFile(outputVideo); - const dataOutputVid = await uploadFile(videoOutFile); - - const descriptionMd = ` -#### Character name: -${charaName} - -#### Voice description: -${voiceDesc} - -#### TTS Prompt: -${ttsprompt} - -#### Audio speech generated: -${dataOutputVid} -`; - const params = new URLSearchParams({ - title: "Please provide a title :)", - description: descriptionMd, - }); - const paramsStr = params.toString(); - window.open(`https://huggingface.co/spaces/fffiloni/instant-TTS-Bark-cloning/discussions/new?${paramsStr}`, '_blank'); - shareBtnEl.style.removeProperty('pointer-events'); - shareIconEl.style.removeProperty('display'); - loadingIconEl.style.display = 'none'; -}""" \ No newline at end of file diff --git a/spaces/fffiloni/lama-video-watermark-remover/saicinpainting/evaluation/utils.py b/spaces/fffiloni/lama-video-watermark-remover/saicinpainting/evaluation/utils.py deleted file mode 100644 index 6d7c15c9242ed8a9bc59fbb3b450cca394720bb8..0000000000000000000000000000000000000000 --- a/spaces/fffiloni/lama-video-watermark-remover/saicinpainting/evaluation/utils.py +++ /dev/null @@ -1,28 +0,0 @@ -from enum import Enum - -import yaml -from easydict import EasyDict as edict -import torch.nn as nn -import torch - - -def load_yaml(path): - with open(path, 'r') as f: - return edict(yaml.safe_load(f)) - - -def move_to_device(obj, device): - if isinstance(obj, nn.Module): - return obj.to(device) - if torch.is_tensor(obj): - return obj.to(device) - if isinstance(obj, (tuple, list)): - return [move_to_device(el, device) for el in obj] - if isinstance(obj, dict): - return {name: move_to_device(val, device) for name, val in obj.items()} - raise ValueError(f'Unexpected type {type(obj)}') - - -class SmallMode(Enum): - DROP = "drop" - UPSCALE = "upscale" diff --git a/spaces/firefighter/PdfSumGPT/utils/read_web.py b/spaces/firefighter/PdfSumGPT/utils/read_web.py deleted file mode 100644 index 947c5bf769b05353ef57bd41a697725dfb47fbac..0000000000000000000000000000000000000000 --- a/spaces/firefighter/PdfSumGPT/utils/read_web.py +++ /dev/null @@ -1,19 +0,0 @@ -import re - -import requests -from bs4 import BeautifulSoup - - -def read_web(url: str) -> str: - if not url: - return '' - resp = requests.get(url) - soup = BeautifulSoup(resp.text, 'html.parser') - text = soup.get_text() - text = re.sub('\n{3,}', '\n\n', text) - return text - - -if __name__ == '__main__': - r = read_web('https://en.wikipedia.org/wiki/Wiki') - print(r) diff --git a/spaces/flax-community/Multilingual-VQA/translate_answer_mapping.py b/spaces/flax-community/Multilingual-VQA/translate_answer_mapping.py deleted file mode 100644 index 0bb747c0ab2e8e6d365d84d35aa5ff689a2632fa..0000000000000000000000000000000000000000 --- a/spaces/flax-community/Multilingual-VQA/translate_answer_mapping.py +++ /dev/null @@ -1,118 +0,0 @@ -import json -from asyncio import Event - -import ray -from mtranslate.core import translate -from ray.actor import ActorHandle -from tqdm import tqdm - -ray.init() -from typing import Tuple - - -# Back on the local node, once you launch your remote Ray tasks, call -# `print_until_done`, which will feed everything back into a `tqdm` counter. -@ray.remote -class ProgressBarActor: - counter: int - delta: int - event: Event - - def __init__(self) -> None: - self.counter = 0 - self.delta = 0 - self.event = Event() - - def update(self, num_items_completed: int) -> None: - """Updates the ProgressBar with the incremental - number of items that were just completed. - """ - self.counter += num_items_completed - self.delta += num_items_completed - self.event.set() - - async def wait_for_update(self) -> Tuple[int, int]: - """Blocking call. - - Waits until somebody calls `update`, then returns a tuple of - the number of updates since the last call to - `wait_for_update`, and the total number of completed items. - """ - await self.event.wait() - self.event.clear() - saved_delta = self.delta - self.delta = 0 - return saved_delta, self.counter - - def get_counter(self) -> int: - """ - Returns the total number of complete items. - """ - return self.counter - - -class ProgressBar: - progress_actor: ActorHandle - total: int - description: str - pbar: tqdm - - def __init__(self, total: int, description: str = ""): - # Ray actors don't seem to play nice with mypy, generating - # a spurious warning for the following line, - # which we need to suppress. The code is fine. - self.progress_actor = ProgressBarActor.remote() # type: ignore - self.total = total - self.description = description - - @property - def actor(self) -> ActorHandle: - """Returns a reference to the remote `ProgressBarActor`. - - When you complete tasks, call `update` on the actor. - """ - return self.progress_actor - - def print_until_done(self) -> None: - """Blocking call. - - Do this after starting a series of remote Ray tasks, to which you've - passed the actor handle. Each of them calls `update` on the actor. - When the progress meter reaches 100%, this method returns. - """ - pbar = tqdm(desc=self.description, total=self.total) - while True: - delta, counter = ray.get(self.actor.wait_for_update.remote()) - pbar.update(delta) - if counter >= self.total: - pbar.close() - return - - -with open("answer_reverse_mapping.json") as f: - answer_reverse_mapping = json.load(f) - - -@ray.remote -def translate_answer(value, pba): - temp = {} - for lang in ["fr", "es", "de"]: - temp.update({lang: translate(value, lang, "en")}) - pba.update.remote(1) - return temp - - -translation_dicts = [] -pb = ProgressBar(len(answer_reverse_mapping.values())) -actor = pb.actor -for value in answer_reverse_mapping.values(): - translation_dicts.append(translate_answer.remote(value, actor)) - -pb.print_until_done() -translation_dict = dict( - zip(answer_reverse_mapping.values(), ray.get(translation_dicts)) -) - - -with open("translation_dict.json", "w") as f: - json.dump(translation_dict, f) diff --git a/spaces/fspecii/midi-composer/javascript/app.js b/spaces/fspecii/midi-composer/javascript/app.js deleted file mode 100644 index 0a8d121b50c116434442101ec8232c722ab7c7e9..0000000000000000000000000000000000000000 --- a/spaces/fspecii/midi-composer/javascript/app.js +++ /dev/null @@ -1,389 +0,0 @@ -function gradioApp() { - const elems = document.getElementsByTagName('gradio-app') - const gradioShadowRoot = elems.length == 0 ? null : elems[0].shadowRoot - return !!gradioShadowRoot ? gradioShadowRoot : document; -} - -uiUpdateCallbacks = [] -msgReceiveCallbacks = [] - -function onUiUpdate(callback){ - uiUpdateCallbacks.push(callback) -} - -function onMsgReceive(callback){ - msgReceiveCallbacks.push(callback) -} - -function runCallback(x, m){ - try { - x(m) - } catch (e) { - (console.error || console.log).call(console, e.message, e); - } -} -function executeCallbacks(queue, m) { - queue.forEach(function(x){runCallback(x, m)}) -} - -document.addEventListener("DOMContentLoaded", function() { - var mutationObserver = new MutationObserver(function(m){ - executeCallbacks(uiUpdateCallbacks, m); - }); - mutationObserver.observe( gradioApp(), { childList:true, subtree:true }) -}); - -(()=>{ - let mse_receiver_inited = null - onUiUpdate(()=>{ - let app = gradioApp() - let msg_receiver = app.querySelector("#msg_receiver"); - if(!!msg_receiver && mse_receiver_inited !== msg_receiver){ - let mutationObserver = new MutationObserver(function(ms){ - ms.forEach((m)=>{ - m.addedNodes.forEach((node)=>{ - if(node.nodeName === "P"){ - let obj = JSON.parse(node.innerText); - if(obj instanceof Array){ - obj.forEach((o)=>{executeCallbacks(msgReceiveCallbacks, o);}); - }else{ - executeCallbacks(msgReceiveCallbacks, obj); - } - } - }) - }) - }); - mutationObserver.observe( msg_receiver, {childList:true, subtree:true, characterData:true}) - console.log("receiver init"); - mse_receiver_inited = msg_receiver; - } - }) -})() - -function HSVtoRGB(h, s, v) { - let r, g, b, i, f, p, q, t; - i = Math.floor(h * 6); - f = h * 6 - i; - p = v * (1 - s); - q = v * (1 - f * s); - t = v * (1 - (1 - f) * s); - switch (i % 6) { - case 0: r = v; g = t; b = p; break; - case 1: r = q; g = v; b = p; break; - case 2: r = p; g = v; b = t; break; - case 3: r = p; g = q; b = v; break; - case 4: r = t; g = p; b = v; break; - case 5: r = v; g = p; b = q; break; - } - return { - r: Math.round(r * 255), - g: Math.round(g * 255), - b: Math.round(b * 255) - }; -} - -class MidiVisualizer extends HTMLElement{ - constructor() { - super(); - this.midiEvents = []; - this.activeNotes = []; - this.midiTimes = []; - this.wrapper = null; - this.svg = null; - this.timeLine = null; - this.config = { - noteHeight : 4, - beatWidth: 32 - } - this.timePreBeat = 16 - this.svgWidth = 0; - this.t1 = 0; - this.playTime = 0 - this.playTimeMs = 0 - this.colorMap = new Map(); - this.playing = false; - this.timer = null; - this.init(); - } - - init(){ - this.innerHTML='' - const shadow = this.attachShadow({mode: 'open'}); - const style = document.createElement("style"); - const wrapper = document.createElement('div'); - style.textContent = ".note.active {stroke: black;stroke-width: 0.75;stroke-opacity: 0.75;}"; - wrapper.style.overflowX= "scroll" - const svg = document.createElementNS('http://www.w3.org/2000/svg', 'svg'); - svg.style.height = `${this.config.noteHeight*128}px`; - svg.style.width = `${this.svgWidth}px`; - const timeLine = document.createElementNS('http://www.w3.org/2000/svg', 'line'); - timeLine.style.stroke = "green" - timeLine.style.strokeWidth = 2; - shadow.appendChild(style) - shadow.appendChild(wrapper); - wrapper.appendChild(svg); - svg.appendChild(timeLine) - this.wrapper = wrapper; - this.svg = svg; - this.timeLine= timeLine; - this.setPlayTime(0); - } - - clearMidiEvents(){ - this.pause() - this.midiEvents = []; - this.activeNotes = []; - this.midiTimes = []; - this.t1 = 0 - this.colorMap.clear() - this.setPlayTime(0); - this.playTimeMs = 0 - this.svgWidth = 0 - this.svg.innerHTML = '' - this.svg.style.width = `${this.svgWidth}px`; - this.svg.appendChild(this.timeLine) - } - - appendMidiEvent(midiEvent){ - if(midiEvent instanceof Array && midiEvent.length > 0){ - - this.t1 += midiEvent[1] - let t = this.t1*this.timePreBeat + midiEvent[2] - midiEvent = [midiEvent[0], t].concat(midiEvent.slice(3)) - if(midiEvent[0] === "note"){ - let track = midiEvent[2] - let duration = midiEvent[3] - let channel = midiEvent[4] - let pitch = midiEvent[5] - let velocity = midiEvent[6] - let x = (t/this.timePreBeat)*this.config.beatWidth - let y = (127 - pitch)*this.config.noteHeight - let w = (duration/this.timePreBeat)*this.config.beatWidth - let h = this.config.noteHeight - this.svgWidth = Math.ceil(Math.max(x + w, this.svgWidth)) - let color = this.getColor(track, channel) - let opacity = Math.min(1, velocity/127 + 0.1).toFixed(2) - let rect = this.drawNote(x,y,w,h, `rgba(${color.r}, ${color.g}, ${color.b}, ${opacity})`) - midiEvent.push(rect) - this.setPlayTime(t); - this.wrapper.scrollTo(this.svgWidth - this.wrapper.offsetWidth, 0) - } - this.midiEvents.push(midiEvent); - this.svg.style.width = `${this.svgWidth}px`; - } - - } - - getColor(track, channel){ - let key = `${track},${channel}`; - let color = this.colorMap.get(key); - if(!!color){ - return color; - } - color = HSVtoRGB(Math.random(),Math.random()*0.5 + 0.5,1); - this.colorMap.set(key, color); - return color; - } - - drawNote(x, y, w, h, fill) { - if (!this.svg) { - return null; - } - const rect = document.createElementNS('http://www.w3.org/2000/svg', 'rect'); - rect.classList.add('note'); - rect.setAttribute('fill', fill); - // Round values to the nearest integer to avoid partially filled pixels. - rect.setAttribute('x', `${Math.round(x)}`); - rect.setAttribute('y', `${Math.round(y)}`); - rect.setAttribute('width', `${Math.round(w)}`); - rect.setAttribute('height', `${Math.round(h)}`); - this.svg.appendChild(rect); - return rect - } - - finishAppendMidiEvent(){ - this.pause() - let midiEvents = this.midiEvents.sort((a, b)=>a[1]-b[1]) - let tempo = (60 / 120) * 10 ** 3 - let ms = 0 - let lastT = 0 - this.midiTimes.push({ms:ms, t: 0, tempo: tempo}) - midiEvents.forEach((midiEvent)=>{ - let t = midiEvent[1] - ms += ((t- lastT) / this.timePreBeat) * tempo - if(midiEvent[0]==="set_tempo"){ - tempo = (60 / midiEvent[3]) * 10 ** 3 - this.midiTimes.push({ms:ms, t: t, tempo: tempo}) - } - lastT = t - }) - } - - setPlayTime(t){ - this.playTime = t - let x = Math.round((t/this.timePreBeat)*this.config.beatWidth) - this.timeLine.setAttribute('x1', `${x}`); - this.timeLine.setAttribute('y1', '0'); - this.timeLine.setAttribute('x2', `${x}`); - this.timeLine.setAttribute('y2', `${this.config.noteHeight*128}`); - - this.wrapper.scrollTo(Math.max(0, x - this.wrapper.offsetWidth/2), 0) - - if(this.playing){ - let activeNotes = [] - this.removeActiveNotes(this.activeNotes) - this.midiEvents.forEach((midiEvent)=>{ - if(midiEvent[0] === "note"){ - let time = midiEvent[1] - let duration = midiEvent[3] - let note = midiEvent[midiEvent.length - 1] - if(time <=this.playTime && time+duration>= this.playTime){ - activeNotes.push(note) - } - } - }) - this.addActiveNotes(activeNotes) - } - } - - setPlayTimeMs(ms){ - this.playTimeMs = ms - let playTime = 0 - for(let i =0;i=ms){ - break; - } - playTime = midiTime.t + (ms-midiTime.ms) * this.timePreBeat / midiTime.tempo - } - this.setPlayTime(playTime) - } - - addActiveNotes(notes){ - notes.forEach((note)=>{ - this.activeNotes.push(note) - note.classList.add('active'); - }); - } - - removeActiveNotes(notes){ - notes.forEach((note)=>{ - let idx = this.activeNotes.indexOf(note) - if(idx>-1) - this.activeNotes.splice(idx, 1); - note.classList.remove('active'); - }); - } - - play(){ - this.playing = true; - this.timer = setInterval(() => { - this.setPlayTimeMs(this.playTimeMs + 10) - }, 10); - } - - pause(){ - if(!!this.timer) - clearInterval(this.timer) - this.removeActiveNotes(this.activeNotes) - this.timer = null; - this.playing = false; - } - - - bindAudioPlayer(audio){ - this.pause() - audio.addEventListener("play", (event)=>{ - this.play() - }) - audio.addEventListener("pause", (event)=>{ - this.pause() - }) - audio.addEventListener("timeupdate", (event)=>{ - this.setPlayTimeMs(event.target.currentTime*10**3) - }) - } -} - -customElements.define('midi-visualizer', MidiVisualizer); - -(()=>{ - let midi_visualizer_container_inited = null - let midi_audio_inited = null; - let midi_visualizer = document.createElement('midi-visualizer') - onUiUpdate((m)=>{ - let app = gradioApp() - let midi_visualizer_container = app.querySelector("#midi_visualizer_container"); - if(!!midi_visualizer_container && midi_visualizer_container_inited!== midi_visualizer_container){ - midi_visualizer_container.appendChild(midi_visualizer) - midi_visualizer_container_inited = midi_visualizer_container; - } - let midi_audio = app.querySelector("#midi_audio > audio"); - if(!!midi_audio && midi_audio_inited!==midi_audio){ - midi_visualizer.bindAudioPlayer(midi_audio) - midi_audio_inited = midi_audio - } - }) - - function createProgressBar(progressbarContainer){ - let parentProgressbar = progressbarContainer.parentNode; - let divProgress = document.createElement('div'); - divProgress.className='progressDiv'; - let rect = progressbarContainer.getBoundingClientRect(); - divProgress.style.width = rect.width + "px"; - divProgress.style.background = "#b4c0cc"; - divProgress.style.borderRadius = "8px"; - let divInner = document.createElement('div'); - divInner.className='progress'; - divInner.style.color = "white"; - divInner.style.background = "#0060df"; - divInner.style.textAlign = "right"; - divInner.style.fontWeight = "bold"; - divInner.style.borderRadius = "8px"; - divInner.style.height = "20px"; - divInner.style.lineHeight = "20px"; - divInner.style.paddingRight = "8px" - divInner.style.width = "0%"; - divProgress.appendChild(divInner); - parentProgressbar.insertBefore(divProgress, progressbarContainer); - } - - function removeProgressBar(progressbarContainer){ - let parentProgressbar = progressbarContainer.parentNode; - let divProgress = parentProgressbar.querySelector(".progressDiv"); - parentProgressbar.removeChild(divProgress); - } - - function setProgressBar(progressbarContainer, progress, total){ - let parentProgressbar = progressbarContainer.parentNode; - let divProgress = parentProgressbar.querySelector(".progressDiv"); - let divInner = parentProgressbar.querySelector(".progress"); - if(total===0) - total = 1; - divInner.style.width = `${(progress/total)*100}%`; - divInner.textContent = `${progress}/${total}`; - } - - onMsgReceive((msg)=>{ - switch (msg.name) { - case "visualizer_clear": - midi_visualizer.clearMidiEvents(); - createProgressBar(midi_visualizer_container_inited) - break; - case "visualizer_append": - midi_visualizer.appendMidiEvent(msg.data); - break; - case "progress": - let progress = msg.data[0] - let total = msg.data[1] - setProgressBar(midi_visualizer_container_inited, progress, total) - break; - case "visualizer_end": - midi_visualizer.finishAppendMidiEvent() - midi_visualizer.setPlayTime(0); - removeProgressBar(midi_visualizer_container_inited); - break; - default: - } - }) -})(); diff --git a/spaces/g4f/freegpt-webui/g4f/models.py b/spaces/g4f/freegpt-webui/g4f/models.py deleted file mode 100644 index 065d03b8009207173f1cc1679a6ff829869137d9..0000000000000000000000000000000000000000 --- a/spaces/g4f/freegpt-webui/g4f/models.py +++ /dev/null @@ -1,231 +0,0 @@ -from g4f import Provider -import random - -class Model: - class model: - name: str - base_provider: str - best_provider: str - - class gpt_35_turbo: - name: str = 'gpt-3.5-turbo' - base_provider: str = 'openai' - best_provider: Provider.Provider = random.choice([Provider.DeepAi, Provider.Easychat]) - - class gpt_35_turbo_0613: - name: str = 'gpt-3.5-turbo-0613' - base_provider: str = 'openai' - best_provider: Provider.Provider = random.choice([Provider.Gravityengine, Provider.Easychat]) - - class gpt_35_turbo_16k_0613: - name: str = 'gpt-3.5-turbo-16k-0613' - base_provider: str = 'openai' - best_provider: Provider.Provider = random.choice([Provider.Gravityengine, Provider.Easychat]) - - class gpt_35_turbo_16k: - name: str = 'gpt-3.5-turbo-16k' - base_provider: str = 'openai' - best_provider: Provider.Provider = random.choice([Provider.Gravityengine, Provider.Easychat]) - - class gpt_4_dev: - name: str = 'gpt-4-for-dev' - base_provider: str = 'openai' - best_provider: Provider.Provider = Provider.Phind - - class gpt_4: - name: str = 'gpt-4' - base_provider: str = 'openai' - best_provider: Provider.Provider = Provider.ChatgptAi - - class gpt_4_0613: - name: str = 'gpt-4-0613' - base_provider: str = 'openai' - best_provider: Provider.Provider = Provider.Lockchat - best_providers: list = [Provider.Bing, Provider.Lockchat] - - class claude_instant_v1_100k: - name: str = 'claude-instant-v1-100k' - base_provider: str = 'anthropic' - best_provider: Provider.Provider = Provider.Vercel - - class claude_instant_v1: - name: str = 'claude-instant-v1' - base_provider: str = 'anthropic' - best_provider: Provider.Provider = Provider.Vercel - - class claude_v1_100k: - name: str = 'claude-v1-100k' - base_provider: str = 'anthropic' - best_provider: Provider.Provider = Provider.Vercel - - class claude_v1: - name: str = 'claude-v1' - base_provider: str = 'anthropic' - best_provider: Provider.Provider = Provider.Vercel - - class alpaca_7b: - name: str = 'alpaca-7b' - base_provider: str = 'replicate' - best_provider: Provider.Provider = Provider.Vercel - - class stablelm_tuned_alpha_7b: - name: str = 'stablelm-tuned-alpha-7b' - base_provider: str = 'replicate' - best_provider: Provider.Provider = Provider.Vercel - - class bloom: - name: str = 'bloom' - base_provider: str = 'huggingface' - best_provider: Provider.Provider = Provider.Vercel - - class bloomz: - name: str = 'bloomz' - base_provider: str = 'huggingface' - best_provider: Provider.Provider = Provider.Vercel - - class flan_t5_xxl: - name: str = 'flan-t5-xxl' - base_provider: str = 'huggingface' - best_provider: Provider.Provider = Provider.Vercel - - class flan_ul2: - name: str = 'flan-ul2' - base_provider: str = 'huggingface' - best_provider: Provider.Provider = Provider.Vercel - - class gpt_neox_20b: - name: str = 'gpt-neox-20b' - base_provider: str = 'huggingface' - best_provider: Provider.Provider = Provider.Vercel - - class oasst_sft_4_pythia_12b_epoch_35: - name: str = 'oasst-sft-4-pythia-12b-epoch-3.5' - base_provider: str = 'huggingface' - best_provider: Provider.Provider = Provider.Vercel - - class santacoder: - name: str = 'santacoder' - base_provider: str = 'huggingface' - best_provider: Provider.Provider = Provider.Vercel - - class command_medium_nightly: - name: str = 'command-medium-nightly' - base_provider: str = 'cohere' - best_provider: Provider.Provider = Provider.Vercel - - class command_xlarge_nightly: - name: str = 'command-xlarge-nightly' - base_provider: str = 'cohere' - best_provider: Provider.Provider = Provider.Vercel - - class code_cushman_001: - name: str = 'code-cushman-001' - base_provider: str = 'openai' - best_provider: Provider.Provider = Provider.Vercel - - class code_davinci_002: - name: str = 'code-davinci-002' - base_provider: str = 'openai' - best_provider: Provider.Provider = Provider.Vercel - - class text_ada_001: - name: str = 'text-ada-001' - base_provider: str = 'openai' - best_provider: Provider.Provider = Provider.Vercel - - class text_babbage_001: - name: str = 'text-babbage-001' - base_provider: str = 'openai' - best_provider: Provider.Provider = Provider.Vercel - - class text_curie_001: - name: str = 'text-curie-001' - base_provider: str = 'openai' - best_provider: Provider.Provider = Provider.Vercel - - class text_davinci_002: - name: str = 'text-davinci-002' - base_provider: str = 'openai' - best_provider: Provider.Provider = Provider.Vercel - - class text_davinci_003: - name: str = 'text-davinci-003' - base_provider: str = 'openai' - best_provider: Provider.Provider = Provider.Vercel - - class palm: - name: str = 'palm2' - base_provider: str = 'google' - best_provider: Provider.Provider = Provider.Bard - - - """ 'falcon-40b': Model.falcon_40b, - 'falcon-7b': Model.falcon_7b, - 'llama-13b': Model.llama_13b,""" - - class falcon_40b: - name: str = 'falcon-40b' - base_provider: str = 'huggingface' - best_provider: Provider.Provider = Provider.H2o - - class falcon_7b: - name: str = 'falcon-7b' - base_provider: str = 'huggingface' - best_provider: Provider.Provider = Provider.H2o - - class llama_13b: - name: str = 'llama-13b' - base_provider: str = 'huggingface' - best_provider: Provider.Provider = Provider.H2o - -class ModelUtils: - convert: dict = { - 'gpt-3.5-turbo': Model.gpt_35_turbo, - 'gpt-3.5-turbo-0613': Model.gpt_35_turbo_0613, - 'gpt-4': Model.gpt_4, - 'gpt-4-0613': Model.gpt_4_0613, - 'gpt-4-for-dev': Model.gpt_4_dev, - 'gpt-3.5-turbo-16k': Model.gpt_35_turbo_16k, - 'gpt-3.5-turbo-16k-0613': Model.gpt_35_turbo_16k_0613, - - 'claude-instant-v1-100k': Model.claude_instant_v1_100k, - 'claude-v1-100k': Model.claude_v1_100k, - 'claude-instant-v1': Model.claude_instant_v1, - 'claude-v1': Model.claude_v1, - - 'alpaca-7b': Model.alpaca_7b, - 'stablelm-tuned-alpha-7b': Model.stablelm_tuned_alpha_7b, - - 'bloom': Model.bloom, - 'bloomz': Model.bloomz, - - 'flan-t5-xxl': Model.flan_t5_xxl, - 'flan-ul2': Model.flan_ul2, - - 'gpt-neox-20b': Model.gpt_neox_20b, - 'oasst-sft-4-pythia-12b-epoch-3.5': Model.oasst_sft_4_pythia_12b_epoch_35, - 'santacoder': Model.santacoder, - - 'command-medium-nightly': Model.command_medium_nightly, - 'command-xlarge-nightly': Model.command_xlarge_nightly, - - 'code-cushman-001': Model.code_cushman_001, - 'code-davinci-002': Model.code_davinci_002, - - 'text-ada-001': Model.text_ada_001, - 'text-babbage-001': Model.text_babbage_001, - 'text-curie-001': Model.text_curie_001, - 'text-davinci-002': Model.text_davinci_002, - 'text-davinci-003': Model.text_davinci_003, - - 'palm2': Model.palm, - 'palm': Model.palm, - 'google': Model.palm, - 'google-bard': Model.palm, - 'google-palm': Model.palm, - 'bard': Model.palm, - - 'falcon-40b': Model.falcon_40b, - 'falcon-7b': Model.falcon_7b, - 'llama-13b': Model.llama_13b, - } diff --git a/spaces/genaibook/audio_visualizations/app.py b/spaces/genaibook/audio_visualizations/app.py deleted file mode 100644 index 2d5890c6c2f48542e1acf63bc0eb7866d304aa8a..0000000000000000000000000000000000000000 --- a/spaces/genaibook/audio_visualizations/app.py +++ /dev/null @@ -1,106 +0,0 @@ -import gradio as gr -import matplotlib.pyplot as plt -import numpy as np -import matplotlib.pyplot as plt -from scipy.io.wavfile import write - -audios = [ - ["Book Example", "speaker"], - ["Swoosh", "swoosh"], - ["Knocking", "knocking"], - ["Forest", "forest"], - ["Evil Laugh", "evil-laugh"], - ["Morning", "morning"], - ["Cinematic", "cinematic"], -] - - - -with gr.Blocks() as demo: - with gr.Tab("Waveforms"): - gr.Markdown("""## Waveforms - -In this section, we'll look into the waveforms of multiple audios. - -""") - for title, path in audios: - with gr.Row(): - with gr.Column(scale=1): - gr.Markdown(f"### {title}") - with gr.Column(scale=5): - waveform = gr.Image(value=f"{path}/waveform.png") - with gr.Column(scale=5): - video = gr.Video(value=f"{path}/waveform_video.mp4") - - with gr.Tab("Understanding Frequencies"): - gr.Markdown("""## Understanding Frequencies - """) - freq = gr.Slider(0, 300, step=20, value=40, label="Frequency") - freq2 = gr.Slider(0, 30, step=5, value=0, label="Second Frequency") - amplitude = gr.Slider(0.05, 1, step=0.05, value=1, label="Amplitude") - - audio = gr.Audio() - with gr.Row(): - plots = gr.Plot(label="Results") - with gr.Row(): - button = gr.Button(label="Create") - - # https://github.com/gradio-app/gradio/issues/5469 - @gr.on(inputs=[freq, freq2, amplitude], outputs=[audio, plots]) - def plot_sine(freq, freq2, a): - sr = 1000 # samples per second - ts = 1.0/sr # sampling interval - t = np.arange(0, 1, ts) # time vector - data = a * np.sin(2 * np.pi * freq * t) + a * np.sin(2 * np.pi * freq2 * t) - write("test.wav", sr, data) - - fig, axes = plt.subplots(nrows=2, ncols=1, sharex=False) - ax_waveform = axes[0] - ax_spectrum = axes[1] - - ax_waveform.plot(t, data) - ax_waveform.set_title(f'Sine wave with frequency {freq} and amplitude {a}') - ax_waveform.set_xlabel('Time )s)') - ax_waveform.set_ylabel('Amplitude') - ax_waveform.set_title("Time domain of the signal") - - X = np.fft.fft(data) - N = len(X) - n = np.arange(N) - T = N/sr - freq = n/T - ax_spectrum.set_xlim((0,300)) - ax_spectrum.stem(freq, np.abs(X), 'r', \ - markerfmt=" ", basefmt="-b") - ax_spectrum.set_xlabel("Frequency (Hz)") - ax_spectrum.set_title("Frequency domain of the signal") - - fig.tight_layout() - fig.savefig('foo.png') - return "test.wav", fig - button.click(plot_sine, inputs=[freq, freq2, amplitude], outputs=[audio, plots]) - with gr.Tab("Spectrograms and Mel Spectrograms"): - gr.Markdown("""## Waveforms - -In this section, we'll look into the waveforms of multiple audios. - -""") - for title, path in audios: - with gr.Row(): - with gr.Column(scale=1): - gr.Markdown(f"### {title}") - with gr.Column(scale=10): - gr.Image(value=f"{path}/waveform.png") - with gr.Column(scale=10): - gr.Image(value=f"{path}/fft.png") - with gr.Column(scale=10): - video = gr.Video(value=f"{path}/waveform_video.mp4") - with gr.Row(): - with gr.Column(scale=5): - gr.Image(value=f"{path}/spectrogram.png") - with gr.Column(scale=5): - gr.Image(value=f"{path}/mel_spectrogram.png") - - -if __name__ == '__main__': - demo.launch(debug=True) \ No newline at end of file diff --git a/spaces/ggwvits/vits-uma-genshin-honkai/utils.py b/spaces/ggwvits/vits-uma-genshin-honkai/utils.py deleted file mode 100644 index ee4b01ddfbe8173965371b29f770f3e87615fe71..0000000000000000000000000000000000000000 --- a/spaces/ggwvits/vits-uma-genshin-honkai/utils.py +++ /dev/null @@ -1,225 +0,0 @@ -import os -import sys -import argparse -import logging -import json -import subprocess -import numpy as np -import librosa -import torch - -MATPLOTLIB_FLAG = False - -logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) -logger = logging - - -def load_checkpoint(checkpoint_path, model, optimizer=None): - assert os.path.isfile(checkpoint_path) - checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') - iteration = checkpoint_dict['iteration'] - learning_rate = checkpoint_dict['learning_rate'] - if optimizer is not None: - optimizer.load_state_dict(checkpoint_dict['optimizer']) - saved_state_dict = checkpoint_dict['model'] - if hasattr(model, 'module'): - state_dict = model.module.state_dict() - else: - state_dict = model.state_dict() - new_state_dict= {} - for k, v in state_dict.items(): - try: - new_state_dict[k] = saved_state_dict[k] - except: - logger.info("%s is not in the checkpoint" % k) - new_state_dict[k] = v - if hasattr(model, 'module'): - model.module.load_state_dict(new_state_dict) - else: - model.load_state_dict(new_state_dict) - logger.info("Loaded checkpoint '{}' (iteration {})" .format( - checkpoint_path, iteration)) - return model, optimizer, learning_rate, iteration - - -def plot_spectrogram_to_numpy(spectrogram): - global MATPLOTLIB_FLAG - if not MATPLOTLIB_FLAG: - import matplotlib - matplotlib.use("Agg") - MATPLOTLIB_FLAG = True - mpl_logger = logging.getLogger('matplotlib') - mpl_logger.setLevel(logging.WARNING) - import matplotlib.pylab as plt - import numpy as np - - fig, ax = plt.subplots(figsize=(10,2)) - im = ax.imshow(spectrogram, aspect="auto", origin="lower", - interpolation='none') - plt.colorbar(im, ax=ax) - plt.xlabel("Frames") - plt.ylabel("Channels") - plt.tight_layout() - - fig.canvas.draw() - data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') - data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) - plt.close() - return data - - -def plot_alignment_to_numpy(alignment, info=None): - global MATPLOTLIB_FLAG - if not MATPLOTLIB_FLAG: - import matplotlib - matplotlib.use("Agg") - MATPLOTLIB_FLAG = True - mpl_logger = logging.getLogger('matplotlib') - mpl_logger.setLevel(logging.WARNING) - import matplotlib.pylab as plt - import numpy as np - - fig, ax = plt.subplots(figsize=(6, 4)) - im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower', - interpolation='none') - fig.colorbar(im, ax=ax) - xlabel = 'Decoder timestep' - if info is not None: - xlabel += '\n\n' + info - plt.xlabel(xlabel) - plt.ylabel('Encoder timestep') - plt.tight_layout() - - fig.canvas.draw() - data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') - data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) - plt.close() - return data - - -def load_audio_to_torch(full_path, target_sampling_rate): - audio, sampling_rate = librosa.load(full_path, sr=target_sampling_rate, mono=True) - return torch.FloatTensor(audio.astype(np.float32)) - - -def load_filepaths_and_text(filename, split="|"): - with open(filename, encoding='utf-8') as f: - filepaths_and_text = [line.strip().split(split) for line in f] - return filepaths_and_text - - -def get_hparams(init=True): - parser = argparse.ArgumentParser() - parser.add_argument('-c', '--config', type=str, default="./configs/base.json", - help='JSON file for configuration') - parser.add_argument('-m', '--model', type=str, required=True, - help='Model name') - - args = parser.parse_args() - model_dir = os.path.join("./logs", args.model) - - if not os.path.exists(model_dir): - os.makedirs(model_dir) - - config_path = args.config - config_save_path = os.path.join(model_dir, "config.json") - if init: - with open(config_path, "r") as f: - data = f.read() - with open(config_save_path, "w") as f: - f.write(data) - else: - with open(config_save_path, "r") as f: - data = f.read() - config = json.loads(data) - - hparams = HParams(**config) - hparams.model_dir = model_dir - return hparams - - -def get_hparams_from_dir(model_dir): - config_save_path = os.path.join(model_dir, "config.json") - with open(config_save_path, "r") as f: - data = f.read() - config = json.loads(data) - - hparams =HParams(**config) - hparams.model_dir = model_dir - return hparams - - -def get_hparams_from_file(config_path): - with open(config_path, "r") as f: - data = f.read() - config = json.loads(data) - - hparams =HParams(**config) - return hparams - - -def check_git_hash(model_dir): - source_dir = os.path.dirname(os.path.realpath(__file__)) - if not os.path.exists(os.path.join(source_dir, ".git")): - logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format( - source_dir - )) - return - - cur_hash = subprocess.getoutput("git rev-parse HEAD") - - path = os.path.join(model_dir, "githash") - if os.path.exists(path): - saved_hash = open(path).read() - if saved_hash != cur_hash: - logger.warn("git hash values are different. {}(saved) != {}(current)".format( - saved_hash[:8], cur_hash[:8])) - else: - open(path, "w").write(cur_hash) - - -def get_logger(model_dir, filename="train.log"): - global logger - logger = logging.getLogger(os.path.basename(model_dir)) - logger.setLevel(logging.DEBUG) - - formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s") - if not os.path.exists(model_dir): - os.makedirs(model_dir) - h = logging.FileHandler(os.path.join(model_dir, filename)) - h.setLevel(logging.DEBUG) - h.setFormatter(formatter) - logger.addHandler(h) - return logger - - -class HParams(): - def __init__(self, **kwargs): - for k, v in kwargs.items(): - if type(v) == dict: - v = HParams(**v) - self[k] = v - - def keys(self): - return self.__dict__.keys() - - def items(self): - return self.__dict__.items() - - def values(self): - return self.__dict__.values() - - def __len__(self): - return len(self.__dict__) - - def __getitem__(self, key): - return getattr(self, key) - - def __setitem__(self, key, value): - return setattr(self, key, value) - - def __contains__(self, key): - return key in self.__dict__ - - def __repr__(self): - return self.__dict__.__repr__() diff --git a/spaces/gligen/demo/gligen/ldm/modules/image_degradation/bsrgan.py b/spaces/gligen/demo/gligen/ldm/modules/image_degradation/bsrgan.py deleted file mode 100644 index 32ef56169978e550090261cddbcf5eb611a6173b..0000000000000000000000000000000000000000 --- a/spaces/gligen/demo/gligen/ldm/modules/image_degradation/bsrgan.py +++ /dev/null @@ -1,730 +0,0 @@ -# -*- coding: utf-8 -*- -""" -# -------------------------------------------- -# Super-Resolution -# -------------------------------------------- -# -# Kai Zhang (cskaizhang@gmail.com) -# https://github.com/cszn -# From 2019/03--2021/08 -# -------------------------------------------- -""" - -import numpy as np -import cv2 -import torch - -from functools import partial -import random -from scipy import ndimage -import scipy -import scipy.stats as ss -from scipy.interpolate import interp2d -from scipy.linalg import orth -import albumentations - -import ldm.modules.image_degradation.utils_image as util - - -def modcrop_np(img, sf): - ''' - Args: - img: numpy image, WxH or WxHxC - sf: scale factor - Return: - cropped image - ''' - w, h = img.shape[:2] - im = np.copy(img) - return im[:w - w % sf, :h - h % sf, ...] - - -""" -# -------------------------------------------- -# anisotropic Gaussian kernels -# -------------------------------------------- -""" - - -def analytic_kernel(k): - """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)""" - k_size = k.shape[0] - # Calculate the big kernels size - big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2)) - # Loop over the small kernel to fill the big one - for r in range(k_size): - for c in range(k_size): - big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k - # Crop the edges of the big kernel to ignore very small values and increase run time of SR - crop = k_size // 2 - cropped_big_k = big_k[crop:-crop, crop:-crop] - # Normalize to 1 - return cropped_big_k / cropped_big_k.sum() - - -def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6): - """ generate an anisotropic Gaussian kernel - Args: - ksize : e.g., 15, kernel size - theta : [0, pi], rotation angle range - l1 : [0.1,50], scaling of eigenvalues - l2 : [0.1,l1], scaling of eigenvalues - If l1 = l2, will get an isotropic Gaussian kernel. - Returns: - k : kernel - """ - - v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.])) - V = np.array([[v[0], v[1]], [v[1], -v[0]]]) - D = np.array([[l1, 0], [0, l2]]) - Sigma = np.dot(np.dot(V, D), np.linalg.inv(V)) - k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize) - - return k - - -def gm_blur_kernel(mean, cov, size=15): - center = size / 2.0 + 0.5 - k = np.zeros([size, size]) - for y in range(size): - for x in range(size): - cy = y - center + 1 - cx = x - center + 1 - k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov) - - k = k / np.sum(k) - return k - - -def shift_pixel(x, sf, upper_left=True): - """shift pixel for super-resolution with different scale factors - Args: - x: WxHxC or WxH - sf: scale factor - upper_left: shift direction - """ - h, w = x.shape[:2] - shift = (sf - 1) * 0.5 - xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0) - if upper_left: - x1 = xv + shift - y1 = yv + shift - else: - x1 = xv - shift - y1 = yv - shift - - x1 = np.clip(x1, 0, w - 1) - y1 = np.clip(y1, 0, h - 1) - - if x.ndim == 2: - x = interp2d(xv, yv, x)(x1, y1) - if x.ndim == 3: - for i in range(x.shape[-1]): - x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1) - - return x - - -def blur(x, k): - ''' - x: image, NxcxHxW - k: kernel, Nx1xhxw - ''' - n, c = x.shape[:2] - p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2 - x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate') - k = k.repeat(1, c, 1, 1) - k = k.view(-1, 1, k.shape[2], k.shape[3]) - x = x.view(1, -1, x.shape[2], x.shape[3]) - x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c) - x = x.view(n, c, x.shape[2], x.shape[3]) - - return x - - -def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0): - """" - # modified version of https://github.com/assafshocher/BlindSR_dataset_generator - # Kai Zhang - # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var - # max_var = 2.5 * sf - """ - # Set random eigen-vals (lambdas) and angle (theta) for COV matrix - lambda_1 = min_var + np.random.rand() * (max_var - min_var) - lambda_2 = min_var + np.random.rand() * (max_var - min_var) - theta = np.random.rand() * np.pi # random theta - noise = -noise_level + np.random.rand(*k_size) * noise_level * 2 - - # Set COV matrix using Lambdas and Theta - LAMBDA = np.diag([lambda_1, lambda_2]) - Q = np.array([[np.cos(theta), -np.sin(theta)], - [np.sin(theta), np.cos(theta)]]) - SIGMA = Q @ LAMBDA @ Q.T - INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :] - - # Set expectation position (shifting kernel for aligned image) - MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2) - MU = MU[None, None, :, None] - - # Create meshgrid for Gaussian - [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1])) - Z = np.stack([X, Y], 2)[:, :, :, None] - - # Calcualte Gaussian for every pixel of the kernel - ZZ = Z - MU - ZZ_t = ZZ.transpose(0, 1, 3, 2) - raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise) - - # shift the kernel so it will be centered - # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor) - - # Normalize the kernel and return - # kernel = raw_kernel_centered / np.sum(raw_kernel_centered) - kernel = raw_kernel / np.sum(raw_kernel) - return kernel - - -def fspecial_gaussian(hsize, sigma): - hsize = [hsize, hsize] - siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0] - std = sigma - [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1)) - arg = -(x * x + y * y) / (2 * std * std) - h = np.exp(arg) - h[h < scipy.finfo(float).eps * h.max()] = 0 - sumh = h.sum() - if sumh != 0: - h = h / sumh - return h - - -def fspecial_laplacian(alpha): - alpha = max([0, min([alpha, 1])]) - h1 = alpha / (alpha + 1) - h2 = (1 - alpha) / (alpha + 1) - h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]] - h = np.array(h) - return h - - -def fspecial(filter_type, *args, **kwargs): - ''' - python code from: - https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py - ''' - if filter_type == 'gaussian': - return fspecial_gaussian(*args, **kwargs) - if filter_type == 'laplacian': - return fspecial_laplacian(*args, **kwargs) - - -""" -# -------------------------------------------- -# degradation models -# -------------------------------------------- -""" - - -def bicubic_degradation(x, sf=3): - ''' - Args: - x: HxWxC image, [0, 1] - sf: down-scale factor - Return: - bicubicly downsampled LR image - ''' - x = util.imresize_np(x, scale=1 / sf) - return x - - -def srmd_degradation(x, k, sf=3): - ''' blur + bicubic downsampling - Args: - x: HxWxC image, [0, 1] - k: hxw, double - sf: down-scale factor - Return: - downsampled LR image - Reference: - @inproceedings{zhang2018learning, - title={Learning a single convolutional super-resolution network for multiple degradations}, - author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, - booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, - pages={3262--3271}, - year={2018} - } - ''' - x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror' - x = bicubic_degradation(x, sf=sf) - return x - - -def dpsr_degradation(x, k, sf=3): - ''' bicubic downsampling + blur - Args: - x: HxWxC image, [0, 1] - k: hxw, double - sf: down-scale factor - Return: - downsampled LR image - Reference: - @inproceedings{zhang2019deep, - title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels}, - author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, - booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, - pages={1671--1681}, - year={2019} - } - ''' - x = bicubic_degradation(x, sf=sf) - x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') - return x - - -def classical_degradation(x, k, sf=3): - ''' blur + downsampling - Args: - x: HxWxC image, [0, 1]/[0, 255] - k: hxw, double - sf: down-scale factor - Return: - downsampled LR image - ''' - x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') - # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2)) - st = 0 - return x[st::sf, st::sf, ...] - - -def add_sharpening(img, weight=0.5, radius=50, threshold=10): - """USM sharpening. borrowed from real-ESRGAN - Input image: I; Blurry image: B. - 1. K = I + weight * (I - B) - 2. Mask = 1 if abs(I - B) > threshold, else: 0 - 3. Blur mask: - 4. Out = Mask * K + (1 - Mask) * I - Args: - img (Numpy array): Input image, HWC, BGR; float32, [0, 1]. - weight (float): Sharp weight. Default: 1. - radius (float): Kernel size of Gaussian blur. Default: 50. - threshold (int): - """ - if radius % 2 == 0: - radius += 1 - blur = cv2.GaussianBlur(img, (radius, radius), 0) - residual = img - blur - mask = np.abs(residual) * 255 > threshold - mask = mask.astype('float32') - soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0) - - K = img + weight * residual - K = np.clip(K, 0, 1) - return soft_mask * K + (1 - soft_mask) * img - - -def add_blur(img, sf=4): - wd2 = 4.0 + sf - wd = 2.0 + 0.2 * sf - if random.random() < 0.5: - l1 = wd2 * random.random() - l2 = wd2 * random.random() - k = anisotropic_Gaussian(ksize=2 * random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2) - else: - k = fspecial('gaussian', 2 * random.randint(2, 11) + 3, wd * random.random()) - img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror') - - return img - - -def add_resize(img, sf=4): - rnum = np.random.rand() - if rnum > 0.8: # up - sf1 = random.uniform(1, 2) - elif rnum < 0.7: # down - sf1 = random.uniform(0.5 / sf, 1) - else: - sf1 = 1.0 - img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3])) - img = np.clip(img, 0.0, 1.0) - - return img - - -# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25): -# noise_level = random.randint(noise_level1, noise_level2) -# rnum = np.random.rand() -# if rnum > 0.6: # add color Gaussian noise -# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) -# elif rnum < 0.4: # add grayscale Gaussian noise -# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) -# else: # add noise -# L = noise_level2 / 255. -# D = np.diag(np.random.rand(3)) -# U = orth(np.random.rand(3, 3)) -# conv = np.dot(np.dot(np.transpose(U), D), U) -# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) -# img = np.clip(img, 0.0, 1.0) -# return img - -def add_Gaussian_noise(img, noise_level1=2, noise_level2=25): - noise_level = random.randint(noise_level1, noise_level2) - rnum = np.random.rand() - if rnum > 0.6: # add color Gaussian noise - img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) - elif rnum < 0.4: # add grayscale Gaussian noise - img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) - else: # add noise - L = noise_level2 / 255. - D = np.diag(np.random.rand(3)) - U = orth(np.random.rand(3, 3)) - conv = np.dot(np.dot(np.transpose(U), D), U) - img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) - img = np.clip(img, 0.0, 1.0) - return img - - -def add_speckle_noise(img, noise_level1=2, noise_level2=25): - noise_level = random.randint(noise_level1, noise_level2) - img = np.clip(img, 0.0, 1.0) - rnum = random.random() - if rnum > 0.6: - img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) - elif rnum < 0.4: - img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) - else: - L = noise_level2 / 255. - D = np.diag(np.random.rand(3)) - U = orth(np.random.rand(3, 3)) - conv = np.dot(np.dot(np.transpose(U), D), U) - img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) - img = np.clip(img, 0.0, 1.0) - return img - - -def add_Poisson_noise(img): - img = np.clip((img * 255.0).round(), 0, 255) / 255. - vals = 10 ** (2 * random.random() + 2.0) # [2, 4] - if random.random() < 0.5: - img = np.random.poisson(img * vals).astype(np.float32) / vals - else: - img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114]) - img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255. - noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray - img += noise_gray[:, :, np.newaxis] - img = np.clip(img, 0.0, 1.0) - return img - - -def add_JPEG_noise(img): - quality_factor = random.randint(30, 95) - img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR) - result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor]) - img = cv2.imdecode(encimg, 1) - img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB) - return img - - -def random_crop(lq, hq, sf=4, lq_patchsize=64): - h, w = lq.shape[:2] - rnd_h = random.randint(0, h - lq_patchsize) - rnd_w = random.randint(0, w - lq_patchsize) - lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :] - - rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf) - hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :] - return lq, hq - - -def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None): - """ - This is the degradation model of BSRGAN from the paper - "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution" - ---------- - img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf) - sf: scale factor - isp_model: camera ISP model - Returns - ------- - img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] - hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] - """ - isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25 - sf_ori = sf - - h1, w1 = img.shape[:2] - img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop - h, w = img.shape[:2] - - if h < lq_patchsize * sf or w < lq_patchsize * sf: - raise ValueError(f'img size ({h1}X{w1}) is too small!') - - hq = img.copy() - - if sf == 4 and random.random() < scale2_prob: # downsample1 - if np.random.rand() < 0.5: - img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])), - interpolation=random.choice([1, 2, 3])) - else: - img = util.imresize_np(img, 1 / 2, True) - img = np.clip(img, 0.0, 1.0) - sf = 2 - - shuffle_order = random.sample(range(7), 7) - idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3) - if idx1 > idx2: # keep downsample3 last - shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1] - - for i in shuffle_order: - - if i == 0: - img = add_blur(img, sf=sf) - - elif i == 1: - img = add_blur(img, sf=sf) - - elif i == 2: - a, b = img.shape[1], img.shape[0] - # downsample2 - if random.random() < 0.75: - sf1 = random.uniform(1, 2 * sf) - img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])), - interpolation=random.choice([1, 2, 3])) - else: - k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf)) - k_shifted = shift_pixel(k, sf) - k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel - img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror') - img = img[0::sf, 0::sf, ...] # nearest downsampling - img = np.clip(img, 0.0, 1.0) - - elif i == 3: - # downsample3 - img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3])) - img = np.clip(img, 0.0, 1.0) - - elif i == 4: - # add Gaussian noise - img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25) - - elif i == 5: - # add JPEG noise - if random.random() < jpeg_prob: - img = add_JPEG_noise(img) - - elif i == 6: - # add processed camera sensor noise - if random.random() < isp_prob and isp_model is not None: - with torch.no_grad(): - img, hq = isp_model.forward(img.copy(), hq) - - # add final JPEG compression noise - img = add_JPEG_noise(img) - - # random crop - img, hq = random_crop(img, hq, sf_ori, lq_patchsize) - - return img, hq - - -# todo no isp_model? -def degradation_bsrgan_variant(image, sf=4, isp_model=None): - """ - This is the degradation model of BSRGAN from the paper - "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution" - ---------- - sf: scale factor - isp_model: camera ISP model - Returns - ------- - img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] - hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] - """ - image = util.uint2single(image) - isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25 - sf_ori = sf - - h1, w1 = image.shape[:2] - image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop - h, w = image.shape[:2] - - hq = image.copy() - - if sf == 4 and random.random() < scale2_prob: # downsample1 - if np.random.rand() < 0.5: - image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])), - interpolation=random.choice([1, 2, 3])) - else: - image = util.imresize_np(image, 1 / 2, True) - image = np.clip(image, 0.0, 1.0) - sf = 2 - - shuffle_order = random.sample(range(7), 7) - idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3) - if idx1 > idx2: # keep downsample3 last - shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1] - - for i in shuffle_order: - - if i == 0: - image = add_blur(image, sf=sf) - - elif i == 1: - image = add_blur(image, sf=sf) - - elif i == 2: - a, b = image.shape[1], image.shape[0] - # downsample2 - if random.random() < 0.75: - sf1 = random.uniform(1, 2 * sf) - image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])), - interpolation=random.choice([1, 2, 3])) - else: - k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf)) - k_shifted = shift_pixel(k, sf) - k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel - image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror') - image = image[0::sf, 0::sf, ...] # nearest downsampling - image = np.clip(image, 0.0, 1.0) - - elif i == 3: - # downsample3 - image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3])) - image = np.clip(image, 0.0, 1.0) - - elif i == 4: - # add Gaussian noise - image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25) - - elif i == 5: - # add JPEG noise - if random.random() < jpeg_prob: - image = add_JPEG_noise(image) - - # elif i == 6: - # # add processed camera sensor noise - # if random.random() < isp_prob and isp_model is not None: - # with torch.no_grad(): - # img, hq = isp_model.forward(img.copy(), hq) - - # add final JPEG compression noise - image = add_JPEG_noise(image) - image = util.single2uint(image) - example = {"image":image} - return example - - -# TODO incase there is a pickle error one needs to replace a += x with a = a + x in add_speckle_noise etc... -def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None): - """ - This is an extended degradation model by combining - the degradation models of BSRGAN and Real-ESRGAN - ---------- - img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf) - sf: scale factor - use_shuffle: the degradation shuffle - use_sharp: sharpening the img - Returns - ------- - img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] - hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] - """ - - h1, w1 = img.shape[:2] - img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop - h, w = img.shape[:2] - - if h < lq_patchsize * sf or w < lq_patchsize * sf: - raise ValueError(f'img size ({h1}X{w1}) is too small!') - - if use_sharp: - img = add_sharpening(img) - hq = img.copy() - - if random.random() < shuffle_prob: - shuffle_order = random.sample(range(13), 13) - else: - shuffle_order = list(range(13)) - # local shuffle for noise, JPEG is always the last one - shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6))) - shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13))) - - poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1 - - for i in shuffle_order: - if i == 0: - img = add_blur(img, sf=sf) - elif i == 1: - img = add_resize(img, sf=sf) - elif i == 2: - img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25) - elif i == 3: - if random.random() < poisson_prob: - img = add_Poisson_noise(img) - elif i == 4: - if random.random() < speckle_prob: - img = add_speckle_noise(img) - elif i == 5: - if random.random() < isp_prob and isp_model is not None: - with torch.no_grad(): - img, hq = isp_model.forward(img.copy(), hq) - elif i == 6: - img = add_JPEG_noise(img) - elif i == 7: - img = add_blur(img, sf=sf) - elif i == 8: - img = add_resize(img, sf=sf) - elif i == 9: - img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25) - elif i == 10: - if random.random() < poisson_prob: - img = add_Poisson_noise(img) - elif i == 11: - if random.random() < speckle_prob: - img = add_speckle_noise(img) - elif i == 12: - if random.random() < isp_prob and isp_model is not None: - with torch.no_grad(): - img, hq = isp_model.forward(img.copy(), hq) - else: - print('check the shuffle!') - - # resize to desired size - img = cv2.resize(img, (int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])), - interpolation=random.choice([1, 2, 3])) - - # add final JPEG compression noise - img = add_JPEG_noise(img) - - # random crop - img, hq = random_crop(img, hq, sf, lq_patchsize) - - return img, hq - - -if __name__ == '__main__': - print("hey") - img = util.imread_uint('utils/test.png', 3) - print(img) - img = util.uint2single(img) - print(img) - img = img[:448, :448] - h = img.shape[0] // 4 - print("resizing to", h) - sf = 4 - deg_fn = partial(degradation_bsrgan_variant, sf=sf) - for i in range(20): - print(i) - img_lq = deg_fn(img) - print(img_lq) - img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img)["image"] - print(img_lq.shape) - print("bicubic", img_lq_bicubic.shape) - print(img_hq.shape) - lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])), - interpolation=0) - lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])), - interpolation=0) - img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1) - util.imsave(img_concat, str(i) + '.png') - - diff --git a/spaces/gotiQspiryo/whisper-ui/examples/Bommarillu full movie with english subtitles free download A masterpiece of Telugu cinema.md b/spaces/gotiQspiryo/whisper-ui/examples/Bommarillu full movie with english subtitles free download A masterpiece of Telugu cinema.md deleted file mode 100644 index 02c9fc2382272b09090f1fe14a631961fb74fdd0..0000000000000000000000000000000000000000 --- a/spaces/gotiQspiryo/whisper-ui/examples/Bommarillu full movie with english subtitles free download A masterpiece of Telugu cinema.md +++ /dev/null @@ -1,15 +0,0 @@ - -

        No. There is no evidence that breastfeeding spreads hepatitis C. Currently, both the American Academy of Pediatrics and the American College of Obstetricians and Gynecologists support breastfeeding in HCV-infected women (40,41). Not enough information is available regarding the risks of transmission through breastfeeding by infected mothers with cracked or bleeding nipples. However, because HCV is a bloodborne infection, if a mother with hepatitis C has cracked or bleeding nipples, she should stop nursing temporarily until her nipples heal (41).

        -

        During the AES selection process, developers of competing algorithms wrote of Rijndael's algorithm "we are concerned about [its] use ... in security-critical applications."[19] In October 2000, however, at the end of the AES selection process, Bruce Schneier, a developer of the competing algorithm Twofish, wrote that while he thought successful academic attacks on Rijndael would be developed someday, he "did not believe that anyone will ever discover an attack that will allow someone to read Rijndael traffic."[20]

        -

        Ase 2000 V2 Crack 30


        Download ··· https://urlgoal.com/2uyN9t



        -

        Used car buyers are protected under Pennsylvania law from purchasing a vehicle with certain problems, such as a damaged transmission, a bent or broken frame, or a cracked engine block. Unfortunately, despite the existence and enforcement of these rules, many used car dealers continue to sell defective vehicles to unsuspecting consumers, which can have devastating consequences for not only buyers, but also anyone else on the road.

        -

        It is possible, however, for wronged consumers to hold used car dealers accountable for failing to disclose certain damage, including a cracked engine block. If you were sold a defective vehicle, it is important to consult with an experienced used car fraud attorney who can help you seek compensation for your losses.

        -

        Engine blocks contain the cylinders, as well as a number of other major components of the bottom end of a motor. When an engine block is properly functioning, it allows the pistons inside the cylinders to move up and down, which then turns the crankshaft. The turning of the crankshaft then allows the wheels to move. Engine blocks are designed to last for the lifetime of a vehicle. Unfortunately, things can and do go wrong, leading to the formation of cracks in the engine block.

        -

        Many engine block cracks are caused by contaminants making their way into the metal of the part during the manufacturing process. In these cases, a poorly cast block can start to leak, whether coolant or oil, from the crack itself. This can result in engine oil mixing with antifreeze, or vise versa, although the latter usually only happens when an engine block contains a deep crack. Usually when antifreeze becomes contaminated with oil, it creates an odor and results in the production of smoke from the exhaust. Other common signs of an engine block crack include:

        -

        While there are a number of problems that can result in a cracked engine block, most involve excess heat, which is usually caused by an issue with coolant. When this occurs, the overheated portions of the engine expand, while the cooler areas do not. This in turn, can result in the placing of stress on the block, which can then cause a crack in the engine to form.

        -

        If you purchased a used car and then discovered that your engine block was cracked, you could be eligible for compensation. Please contact dedicated Philadelphia used car fraud lawyer Louis S. Schwartz at CONSUMERLAWPA.com today to learn more about your legal rights and options.

        -

        P0171 and P0174 indicate your Infinity is running lean in both Bank 1 and Bank 2. Bank 1 and 2 refer to the engine's number one cylinder side and the opposing side. Running "lean" means either not enough fuel is getting to the combustion chambers, or too much air is being mixed in with the fuel. First you'll need to look into things which would cause unmetered air to enter the intake manifold, such as cracked or disconnected vacuum hoses.Second you should inspect things which would cause inadequate fuel delivery such as emission sensors which may be reporting false values to the ECU (engine control computer). A good example of an emission component would be a defective MAF (Mass Air Flow Sensor). A good example of a mechanical component would be a dirty fuel filter or weak fuel pump.
        posted by SmogTips Support 11-16-2011
        Related questions and answers you might find useful: How Do I Get a Smog Check Waiver? by Margaret 05-27-2022 07:58 PM Do I Need a Smog Check This Year? by Joy 04-05-2022 10:18 AM Does the Smog Clock Reset When You Get Tested? by Greg 03-04-2022 09:23 AM Mini Cooper DMV Registration Due in 5 Day Won't Pass Smog by anne 10-06-2021 02:32 PM 2001 Jeep Grand Cherokee Laredo with K&N Air Filter by David 09-30-2021 11:34 AM document.write(AdBanner); View SmogTips.com in: Desktop / Mobile

        -

        One of the original requirements by the National Institute of Standards and Technology (NIST) for the replacement algorithm was that it had to be efficient both in software and hardware implementations (DES was originally practical only in hardware implementations). Java and C reference implementations were used to do performance analysis of the algorithms. AES was chosen through an open competition with 15 candidates from as many research teams around the world, and the total amount of resources allocated to that process was tremendous. Finally, in October 2000, a NIST press release announced the selection of Rijndael as the proposed Advanced Encryption Standard (AES).

        -

        aaccfb2cb3
        -
        -
        \ No newline at end of file diff --git a/spaces/gotiQspiryo/whisper-ui/examples/Fujitsu Fi-4220c Driver 17l What You Need to Know Before Downloading.md b/spaces/gotiQspiryo/whisper-ui/examples/Fujitsu Fi-4220c Driver 17l What You Need to Know Before Downloading.md deleted file mode 100644 index 53b6b173ac16223d4d9299a485dc7284884d203c..0000000000000000000000000000000000000000 --- a/spaces/gotiQspiryo/whisper-ui/examples/Fujitsu Fi-4220c Driver 17l What You Need to Know Before Downloading.md +++ /dev/null @@ -1,5 +0,0 @@ - -

        For an explanation of the tables, see thelegend.There are tables for scanners,still cameras,video cameras,APIs, andmeta backends.ScannersBackends: abaton, agfafocus, apple, artec, artec_eplus48u, as6e, avision, bh, canon, canon630u, canon_pp, coolscan, coolscan2, epson, fujitsu, gt68xx, hp, hp5400, hpsj5s, ibm, leo, ma1509, matsushita, microtek, microtek2, mustek, mustek_pp, mustek_usb, nec, pie, plustek, plustek_pp, ricoh, s9036, sceptre, sharp, sm3600, SnapScan, sp15c, st400, tamarack, teco1, teco2, teco3, u12, umax, umax1220u, umax_pp, unsupported

        -

        Fujitsu Fi-4220c Driver 17l


        Download Ziphttps://urlgoal.com/2uyLOY



        aaccfb2cb3
        -
        -
        \ No newline at end of file diff --git a/spaces/gradio/HuBERT/examples/translation_moe/translation_moe_src/translation_moe.py b/spaces/gradio/HuBERT/examples/translation_moe/translation_moe_src/translation_moe.py deleted file mode 100644 index 7f28c32dd6152f53d6922cdfccfa903e0bdc5829..0000000000000000000000000000000000000000 --- a/spaces/gradio/HuBERT/examples/translation_moe/translation_moe_src/translation_moe.py +++ /dev/null @@ -1,258 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - -from dataclasses import dataclass, field -import torch -from omegaconf import II - -from fairseq import metrics, utils -from fairseq.dataclass import ChoiceEnum -from fairseq.tasks import register_task -from fairseq.tasks.translation import TranslationConfig, TranslationTask - -from .logsumexp_moe import LogSumExpMoE -from .mean_pool_gating_network import MeanPoolGatingNetwork - - -METHOD_CHOICES = ChoiceEnum(["sMoElp", "sMoEup", "hMoElp", "hMoEup"]) - - -@dataclass -class TranslationMoEConfig(TranslationConfig): - method: METHOD_CHOICES = field( - default="hMoEup", - metadata={"help": "MoE method"}, - ) - num_experts: int = field( - default=3, - metadata={"help": "number of experts"}, - ) - mean_pool_gating_network: bool = field( - default=False, - metadata={"help": "use a simple mean-pooling gating network"}, - ) - mean_pool_gating_network_dropout: float = field( - default=0, - metadata={"help": "dropout for mean-pooling gating network"}, - ) - mean_pool_gating_network_encoder_dim: int = field( - default=0, - metadata={"help": "encoder output dim for mean-pooling gating network"}, - ) - gen_expert: int = field( - default=0, - metadata={"help": "which expert to use for generation"}, - ) - sentence_avg: bool = II("optimization.sentence_avg") - - -@register_task("translation_moe", dataclass=TranslationMoEConfig) -class TranslationMoETask(TranslationTask): - """ - Translation task for Mixture of Experts (MoE) models. - - See `"Mixture Models for Diverse Machine Translation: Tricks of the Trade" - (Shen et al., 2019) `_. - - Args: - src_dict (~fairseq.data.Dictionary): dictionary for the source language - tgt_dict (~fairseq.data.Dictionary): dictionary for the target language - - .. note:: - - The translation task is compatible with :mod:`fairseq-train`, - :mod:`fairseq-generate` and :mod:`fairseq-interactive`. - - The translation task provides the following additional command-line - arguments: - - .. argparse:: - :ref: fairseq.tasks.translation_parser - :prog: - """ - - cfg: TranslationMoEConfig - - def __init__(self, cfg: TranslationMoEConfig, src_dict, tgt_dict): - if cfg.method == "sMoElp": - # soft MoE with learned prior - self.uniform_prior = False - self.hard_selection = False - elif cfg.method == "sMoEup": - # soft MoE with uniform prior - self.uniform_prior = True - self.hard_selection = False - elif cfg.method == "hMoElp": - # hard MoE with learned prior - self.uniform_prior = False - self.hard_selection = True - elif cfg.method == "hMoEup": - # hard MoE with uniform prior - self.uniform_prior = True - self.hard_selection = True - - # add indicator tokens for each expert - for i in range(cfg.num_experts): - # add to both dictionaries in case we're sharing embeddings - src_dict.add_symbol("".format(i)) - tgt_dict.add_symbol("".format(i)) - - super().__init__(cfg, src_dict, tgt_dict) - - def build_model(self, cfg): - from fairseq import models - - model = models.build_model(cfg, self) - if not self.uniform_prior and not hasattr(model, "gating_network"): - if self.cfg.mean_pool_gating_network: - if self.cfg.mean_pool_gating_network_encoder_dim > 0: - encoder_dim = self.cfg.mean_pool_gating_network_encoder_dim - elif getattr(cfg, "encoder_embed_dim", None): - # assume that encoder_embed_dim is the encoder's output dimension - encoder_dim = cfg.encoder_embed_dim - else: - raise ValueError( - "Must specify --mean-pool-gating-network-encoder-dim" - ) - - if self.cfg.mean_pool_gating_network_dropout > 0: - dropout = self.cfg.mean_pool_gating_network_dropout - elif getattr(cfg, "dropout", None): - dropout = cfg.dropout - else: - raise ValueError("Must specify task.mean_pool_gating_network_dropout") - - model.gating_network = MeanPoolGatingNetwork( - encoder_dim, - self.cfg.num_experts, - dropout, - ) - else: - raise ValueError( - "translation_moe task with learned prior requires the model to " - "have a gating network; try using --mean-pool-gating-network" - ) - return model - - def expert_index(self, i): - return i + self.tgt_dict.index("") - - def _get_loss(self, sample, model, criterion): - assert hasattr( - criterion, "compute_loss" - ), "translation_moe task requires the criterion to implement the compute_loss() method" - - k = self.cfg.num_experts - bsz = sample["target"].size(0) - - def get_lprob_y(encoder_out, prev_output_tokens_k): - net_output = model.decoder( - prev_output_tokens=prev_output_tokens_k, - encoder_out=encoder_out, - ) - loss, _ = criterion.compute_loss(model, net_output, sample, reduce=False) - loss = loss.view(bsz, -1) - return -loss.sum(dim=1, keepdim=True) # -> B x 1 - - def get_lprob_yz(winners=None): - encoder_out = model.encoder( - src_tokens=sample["net_input"]["src_tokens"], - src_lengths=sample["net_input"]["src_lengths"], - ) - - if winners is None: - lprob_y = [] - for i in range(k): - prev_output_tokens_k = sample["net_input"][ - "prev_output_tokens" - ].clone() - assert not prev_output_tokens_k.requires_grad - prev_output_tokens_k[:, 0] = self.expert_index(i) - lprob_y.append(get_lprob_y(encoder_out, prev_output_tokens_k)) - lprob_y = torch.cat(lprob_y, dim=1) # -> B x K - else: - prev_output_tokens_k = sample["net_input"]["prev_output_tokens"].clone() - prev_output_tokens_k[:, 0] = self.expert_index(winners) - lprob_y = get_lprob_y(encoder_out, prev_output_tokens_k) # -> B - - if self.uniform_prior: - lprob_yz = lprob_y - else: - lprob_z = model.gating_network(encoder_out) # B x K - if winners is not None: - lprob_z = lprob_z.gather(dim=1, index=winners.unsqueeze(-1)) - lprob_yz = lprob_y + lprob_z.type_as(lprob_y) # B x K - - return lprob_yz - - # compute responsibilities without dropout - with utils.model_eval(model): # disable dropout - with torch.no_grad(): # disable autograd - lprob_yz = get_lprob_yz() # B x K - prob_z_xy = torch.nn.functional.softmax(lprob_yz, dim=1) - assert not prob_z_xy.requires_grad - - # compute loss with dropout - if self.hard_selection: - winners = prob_z_xy.max(dim=1)[1] - loss = -get_lprob_yz(winners) - else: - lprob_yz = get_lprob_yz() # B x K - loss = -LogSumExpMoE.apply(lprob_yz, prob_z_xy, 1) - - loss = loss.sum() - sample_size = ( - sample["target"].size(0) if self.cfg.sentence_avg else sample["ntokens"] - ) - logging_output = { - "loss": utils.item(loss.data), - "ntokens": sample["ntokens"], - "nsentences": bsz, - "sample_size": sample_size, - "posterior": prob_z_xy.float().sum(dim=0).cpu(), - } - return loss, sample_size, logging_output - - def train_step( - self, sample, model, criterion, optimizer, update_num, ignore_grad=False - ): - model.train() - loss, sample_size, logging_output = self._get_loss(sample, model, criterion) - if ignore_grad: - loss *= 0 - optimizer.backward(loss) - return loss, sample_size, logging_output - - def valid_step(self, sample, model, criterion): - model.eval() - with torch.no_grad(): - loss, sample_size, logging_output = self._get_loss(sample, model, criterion) - return loss, sample_size, logging_output - - def inference_step( - self, - generator, - models, - sample, - prefix_tokens=None, - expert=None, - constraints=None, - ): - expert = expert or self.cfg.gen_expert - with torch.no_grad(): - return generator.generate( - models, - sample, - prefix_tokens=prefix_tokens, - constraints=constraints, - bos_token=self.expert_index(expert), - ) - - def reduce_metrics(self, logging_outputs, criterion): - super().reduce_metrics(logging_outputs, criterion) - metrics.log_scalar( - "posterior", - sum(log["posterior"] for log in logging_outputs if "posterior" in log), - ) diff --git a/spaces/gradio/HuBERT/fairseq/models/bart/__init__.py b/spaces/gradio/HuBERT/fairseq/models/bart/__init__.py deleted file mode 100644 index a701923f7e5a2a8aa9b75e5580ddea22907f53ee..0000000000000000000000000000000000000000 --- a/spaces/gradio/HuBERT/fairseq/models/bart/__init__.py +++ /dev/null @@ -1,7 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - -from .hub_interface import * # noqa -from .model import * # noqa diff --git a/spaces/gradio/HuBERT/tests/speech_recognition/__init__.py b/spaces/gradio/HuBERT/tests/speech_recognition/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/groupeonepoint/LongDocumentQuestioner/README.md b/spaces/groupeonepoint/LongDocumentQuestioner/README.md deleted file mode 100644 index 0db348116340ac29e85e3c8c36d42c16334f48ca..0000000000000000000000000000000000000000 --- a/spaces/groupeonepoint/LongDocumentQuestioner/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: LongDocumentQuestioner -emoji: 🌖 -colorFrom: gray -colorTo: blue -sdk: gradio -sdk_version: 3.28.0 -app_file: document_questioner_app.py -pinned: true -duplicated_from: NicolasGaudemet/LongTextQuestioner ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference \ No newline at end of file diff --git a/spaces/gwang-kim/DATID-3D/pose_estimation/nvdiffrast/samples/tensorflow/triangle.py b/spaces/gwang-kim/DATID-3D/pose_estimation/nvdiffrast/samples/tensorflow/triangle.py deleted file mode 100644 index 4d4c54426e569ee68d8a9f255f7495ed68f62f89..0000000000000000000000000000000000000000 --- a/spaces/gwang-kim/DATID-3D/pose_estimation/nvdiffrast/samples/tensorflow/triangle.py +++ /dev/null @@ -1,34 +0,0 @@ -# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. -# -# NVIDIA CORPORATION and its licensors retain all intellectual property -# and proprietary rights in and to this software, related documentation -# and any modifications thereto. Any use, reproduction, disclosure or -# distribution of this software and related documentation without an express -# license agreement from NVIDIA CORPORATION is strictly prohibited. - -import imageio -import logging -import os -import numpy as np -import tensorflow as tf -import nvdiffrast.tensorflow as dr - -# Silence deprecation warnings and debug level logging -logging.getLogger('tensorflow').setLevel(logging.ERROR) -os.environ.setdefault('TF_CPP_MIN_LOG_LEVEL', '1') - -pos = tf.convert_to_tensor([[[-0.8, -0.8, 0, 1], [0.8, -0.8, 0, 1], [-0.8, 0.8, 0, 1]]], dtype=tf.float32) -col = tf.convert_to_tensor([[[1, 0, 0], [0, 1, 0], [0, 0, 1]]], dtype=tf.float32) -tri = tf.convert_to_tensor([[0, 1, 2]], dtype=tf.int32) - -rast, _ = dr.rasterize(pos, tri, resolution=[256, 256]) -out, _ = dr.interpolate(col, rast, tri) - -with tf.Session() as sess: - img = sess.run(out) - -img = img[0, ::-1, :, :] # Flip vertically. -img = np.clip(np.rint(img * 255), 0, 255).astype(np.uint8) # Quantize to np.uint8 - -print("Saving to 'tri.png'.") -imageio.imsave('tri.png', img) diff --git a/spaces/gyrojeff/YuzuMarker.FontDetection/font_dataset/helper.py b/spaces/gyrojeff/YuzuMarker.FontDetection/font_dataset/helper.py deleted file mode 100644 index 4596c038f76c0a40e3f9d50985f334ee2d01355e..0000000000000000000000000000000000000000 --- a/spaces/gyrojeff/YuzuMarker.FontDetection/font_dataset/helper.py +++ /dev/null @@ -1,16 +0,0 @@ -from fontTools.ttLib import TTFont - - -__all__ = ["char_in_font"] - - -def char_in_font(unicode_char, font_path): - try: - font = TTFont(font_path, fontNumber=0) - for cmap in font["cmap"].tables: - if cmap.isUnicode(): - if ord(unicode_char) in cmap.cmap: - return True - return False - except Exception as e: - return False diff --git a/spaces/haakohu/deep_privacy2_face/dp2/utils/torch_utils.py b/spaces/haakohu/deep_privacy2_face/dp2/utils/torch_utils.py deleted file mode 100644 index 80ab53e3dcedce4710a41d1d58bd292a9fa08432..0000000000000000000000000000000000000000 --- a/spaces/haakohu/deep_privacy2_face/dp2/utils/torch_utils.py +++ /dev/null @@ -1,140 +0,0 @@ -import torch -import tops - - -def denormalize_img(image, mean=0.5, std=0.5): - image = image * std + mean - image = torch.clamp(image.float(), 0, 1) - image = (image * 255) - image = torch.round(image) - return image / 255 - - -@torch.no_grad() -def im2numpy(images, to_uint8=False, denormalize=False): - if denormalize: - images = denormalize_img(images) - if images.dtype != torch.uint8: - images = images.clamp(0, 1) - return tops.im2numpy(images, to_uint8=to_uint8) - - -@torch.no_grad() -def im2torch(im, cuda=False, normalize=True, to_float=True): - im = tops.im2torch(im, cuda=cuda, to_float=to_float) - if normalize: - assert im.min() >= 0.0 and im.max() <= 1.0 - if normalize: - im = im * 2 - 1 - return im - - -@torch.no_grad() -def binary_dilation(im: torch.Tensor, kernel: torch.Tensor): - assert len(im.shape) == 4 - assert len(kernel.shape) == 2 - kernel = kernel.unsqueeze(0).unsqueeze(0) - padding = kernel.shape[-1]//2 - assert kernel.shape[-1] % 2 != 0 - if isinstance(im, torch.cuda.FloatTensor): - im, kernel = im.half(), kernel.half() - else: - im, kernel = im.float(), kernel.float() - im = torch.nn.functional.conv2d( - im, kernel, groups=im.shape[1], padding=padding) - im = im > 0.5 - return im - - -@torch.no_grad() -def binary_erosion(im: torch.Tensor, kernel: torch.Tensor): - assert len(im.shape) == 4 - assert len(kernel.shape) == 2 - kernel = kernel.unsqueeze(0).unsqueeze(0) - padding = kernel.shape[-1]//2 - assert kernel.shape[-1] % 2 != 0 - if isinstance(im, torch.cuda.FloatTensor): - im, kernel = im.half(), kernel.half() - else: - im, kernel = im.float(), kernel.float() - ksum = kernel.sum() - padding = (padding, padding, padding, padding) - im = torch.nn.functional.pad(im, padding, mode="reflect") - im = torch.nn.functional.conv2d( - im, kernel, groups=im.shape[1]) - return im.round() == ksum - - -def set_requires_grad(value: torch.nn.Module, requires_grad: bool): - if isinstance(value, (list, tuple)): - for param in value: - param.requires_grad = requires_grad - return - for p in value.parameters(): - p.requires_grad = requires_grad - - -def forward_D_fake(batch, fake_img, discriminator, **kwargs): - fake_batch = {k: v for k, v in batch.items() if k != "img"} - fake_batch["img"] = fake_img - return discriminator(**fake_batch, **kwargs) - - -def remove_pad(x: torch.Tensor, bbox_XYXY, imshape): - """ - Remove padding that is shown as negative - """ - H, W = imshape - x0, y0, x1, y1 = bbox_XYXY - padding = [ - max(0, -x0), - max(0, -y0), - max(x1 - W, 0), - max(y1 - H, 0) - ] - x0, y0 = padding[:2] - x1 = x.shape[2] - padding[2] - y1 = x.shape[1] - padding[3] - return x[:, y0:y1, x0:x1] - - -def crop_box(x: torch.Tensor, bbox_XYXY) -> torch.Tensor: - """ - Crops x by bbox_XYXY. - """ - x0, y0, x1, y1 = bbox_XYXY - x0 = max(x0, 0) - y0 = max(y0, 0) - x1 = min(x1, x.shape[-1]) - y1 = min(y1, x.shape[-2]) - return x[..., y0:y1, x0:x1] - - -def torch_wasserstein_loss(tensor_a, tensor_b): - # Compute the first Wasserstein distance between two 1D distributions. - return (torch_cdf_loss(tensor_a, tensor_b, p=1)) - - -def torch_cdf_loss(tensor_a, tensor_b, p=1): - # last-dimension is weight distribution - # p is the norm of the distance, p=1 --> First Wasserstein Distance - # to get a positive weight with our normalized distribution - # we recommend combining this loss with other difference-based losses like L1 - - # normalize distribution, add 1e-14 to divisor to avoid 0/0 - tensor_a = tensor_a / (torch.sum(tensor_a, dim=-1, keepdim=True) + 1e-14) - tensor_b = tensor_b / (torch.sum(tensor_b, dim=-1, keepdim=True) + 1e-14) - # make cdf with cumsum - cdf_tensor_a = torch.cumsum(tensor_a, dim=-1) - cdf_tensor_b = torch.cumsum(tensor_b, dim=-1) - - # choose different formulas for different norm situations - if p == 1: - cdf_distance = torch.sum(torch.abs((cdf_tensor_a-cdf_tensor_b)), dim=-1) - elif p == 2: - cdf_distance = torch.sqrt(torch.sum(torch.pow((cdf_tensor_a-cdf_tensor_b), 2), dim=-1)) - else: - cdf_distance = torch.pow(torch.sum(torch.pow(torch.abs(cdf_tensor_a-cdf_tensor_b), p), dim=-1), 1/p) - - cdf_loss = cdf_distance.mean() - return cdf_loss diff --git a/spaces/hardon-server/space-diffusion-img2img-1/README.md b/spaces/hardon-server/space-diffusion-img2img-1/README.md deleted file mode 100644 index 5771a5139cb586f13301fc71f22232bf5ce35e7e..0000000000000000000000000000000000000000 --- a/spaces/hardon-server/space-diffusion-img2img-1/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Space Diffusion Img2img 1 -emoji: 🐨 -colorFrom: blue -colorTo: purple -sdk: gradio -sdk_version: 3.41.2 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/hareshgautham/Myspace/Dockerfile b/spaces/hareshgautham/Myspace/Dockerfile deleted file mode 100644 index a4c8b4f88ec3000f75b1413a72ba55e294692201..0000000000000000000000000000000000000000 --- a/spaces/hareshgautham/Myspace/Dockerfile +++ /dev/null @@ -1,2 +0,0 @@ -FROM huggingface/autotrain-advanced:latest -CMD autotrain setup && autotrain app --port 7860 diff --git a/spaces/hasibzunair/fifa-tryon-demo/Self-Correction-Human-Parsing-for-ACGPN/mhp_extension/detectron2/detectron2/modeling/roi_heads/rotated_fast_rcnn.py b/spaces/hasibzunair/fifa-tryon-demo/Self-Correction-Human-Parsing-for-ACGPN/mhp_extension/detectron2/detectron2/modeling/roi_heads/rotated_fast_rcnn.py deleted file mode 100644 index 3d7362d93f9be8d3838c477406540603e81ee0be..0000000000000000000000000000000000000000 --- a/spaces/hasibzunair/fifa-tryon-demo/Self-Correction-Human-Parsing-for-ACGPN/mhp_extension/detectron2/detectron2/modeling/roi_heads/rotated_fast_rcnn.py +++ /dev/null @@ -1,276 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved -import logging -import numpy as np -import torch - -from detectron2.config import configurable -from detectron2.layers import ShapeSpec, batched_nms_rotated -from detectron2.structures import Instances, RotatedBoxes, pairwise_iou_rotated -from detectron2.utils.events import get_event_storage - -from ..box_regression import Box2BoxTransformRotated -from ..poolers import ROIPooler -from ..proposal_generator.proposal_utils import add_ground_truth_to_proposals -from .box_head import build_box_head -from .fast_rcnn import FastRCNNOutputLayers -from .roi_heads import ROI_HEADS_REGISTRY, StandardROIHeads - -logger = logging.getLogger(__name__) - -""" -Shape shorthand in this module: - - N: number of images in the minibatch - R: number of ROIs, combined over all images, in the minibatch - Ri: number of ROIs in image i - K: number of foreground classes. E.g.,there are 80 foreground classes in COCO. - -Naming convention: - - deltas: refers to the 5-d (dx, dy, dw, dh, da) deltas that parameterize the box2box - transform (see :class:`box_regression.Box2BoxTransformRotated`). - - pred_class_logits: predicted class scores in [-inf, +inf]; use - softmax(pred_class_logits) to estimate P(class). - - gt_classes: ground-truth classification labels in [0, K], where [0, K) represent - foreground object classes and K represents the background class. - - pred_proposal_deltas: predicted rotated box2box transform deltas for transforming proposals - to detection box predictions. - - gt_proposal_deltas: ground-truth rotated box2box transform deltas -""" - - -def fast_rcnn_inference_rotated( - boxes, scores, image_shapes, score_thresh, nms_thresh, topk_per_image -): - """ - Call `fast_rcnn_inference_single_image_rotated` for all images. - - Args: - boxes (list[Tensor]): A list of Tensors of predicted class-specific or class-agnostic - boxes for each image. Element i has shape (Ri, K * 5) if doing - class-specific regression, or (Ri, 5) if doing class-agnostic - regression, where Ri is the number of predicted objects for image i. - This is compatible with the output of :meth:`FastRCNNOutputs.predict_boxes`. - scores (list[Tensor]): A list of Tensors of predicted class scores for each image. - Element i has shape (Ri, K + 1), where Ri is the number of predicted objects - for image i. Compatible with the output of :meth:`FastRCNNOutputs.predict_probs`. - image_shapes (list[tuple]): A list of (width, height) tuples for each image in the batch. - score_thresh (float): Only return detections with a confidence score exceeding this - threshold. - nms_thresh (float): The threshold to use for box non-maximum suppression. Value in [0, 1]. - topk_per_image (int): The number of top scoring detections to return. Set < 0 to return - all detections. - - Returns: - instances: (list[Instances]): A list of N instances, one for each image in the batch, - that stores the topk most confidence detections. - kept_indices: (list[Tensor]): A list of 1D tensor of length of N, each element indicates - the corresponding boxes/scores index in [0, Ri) from the input, for image i. - """ - result_per_image = [ - fast_rcnn_inference_single_image_rotated( - boxes_per_image, scores_per_image, image_shape, score_thresh, nms_thresh, topk_per_image - ) - for scores_per_image, boxes_per_image, image_shape in zip(scores, boxes, image_shapes) - ] - return [x[0] for x in result_per_image], [x[1] for x in result_per_image] - - -def fast_rcnn_inference_single_image_rotated( - boxes, scores, image_shape, score_thresh, nms_thresh, topk_per_image -): - """ - Single-image inference. Return rotated bounding-box detection results by thresholding - on scores and applying rotated non-maximum suppression (Rotated NMS). - - Args: - Same as `fast_rcnn_inference_rotated`, but with rotated boxes, scores, and image shapes - per image. - - Returns: - Same as `fast_rcnn_inference_rotated`, but for only one image. - """ - valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) - if not valid_mask.all(): - boxes = boxes[valid_mask] - scores = scores[valid_mask] - - B = 5 # box dimension - scores = scores[:, :-1] - num_bbox_reg_classes = boxes.shape[1] // B - # Convert to Boxes to use the `clip` function ... - boxes = RotatedBoxes(boxes.reshape(-1, B)) - boxes.clip(image_shape) - boxes = boxes.tensor.view(-1, num_bbox_reg_classes, B) # R x C x B - # Filter results based on detection scores - filter_mask = scores > score_thresh # R x K - # R' x 2. First column contains indices of the R predictions; - # Second column contains indices of classes. - filter_inds = filter_mask.nonzero() - if num_bbox_reg_classes == 1: - boxes = boxes[filter_inds[:, 0], 0] - else: - boxes = boxes[filter_mask] - scores = scores[filter_mask] - - # Apply per-class Rotated NMS - keep = batched_nms_rotated(boxes, scores, filter_inds[:, 1], nms_thresh) - if topk_per_image >= 0: - keep = keep[:topk_per_image] - boxes, scores, filter_inds = boxes[keep], scores[keep], filter_inds[keep] - - result = Instances(image_shape) - result.pred_boxes = RotatedBoxes(boxes) - result.scores = scores - result.pred_classes = filter_inds[:, 1] - - return result, filter_inds[:, 0] - - -class RotatedFastRCNNOutputLayers(FastRCNNOutputLayers): - """ - Two linear layers for predicting Rotated Fast R-CNN outputs. - """ - - @classmethod - def from_config(cls, cfg, input_shape): - args = super().from_config(cfg, input_shape) - args["box2box_transform"] = Box2BoxTransformRotated( - weights=cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS - ) - return args - - def inference(self, predictions, proposals): - """ - Returns: - list[Instances]: same as `fast_rcnn_inference_rotated`. - list[Tensor]: same as `fast_rcnn_inference_rotated`. - """ - boxes = self.predict_boxes(predictions, proposals) - scores = self.predict_probs(predictions, proposals) - image_shapes = [x.image_size for x in proposals] - - return fast_rcnn_inference_rotated( - boxes, - scores, - image_shapes, - self.test_score_thresh, - self.test_nms_thresh, - self.test_topk_per_image, - ) - - -@ROI_HEADS_REGISTRY.register() -class RROIHeads(StandardROIHeads): - """ - This class is used by Rotated Fast R-CNN to detect rotated boxes. - For now, it only supports box predictions but not mask or keypoints. - """ - - @configurable - def __init__(self, **kwargs): - """ - NOTE: this interface is experimental. - """ - super().__init__(**kwargs) - assert ( - not self.mask_on and not self.keypoint_on - ), "Mask/Keypoints not supported in Rotated ROIHeads." - assert not self.train_on_pred_boxes, "train_on_pred_boxes not implemented for RROIHeads!" - - @classmethod - def _init_box_head(cls, cfg, input_shape): - # fmt: off - in_features = cfg.MODEL.ROI_HEADS.IN_FEATURES - pooler_resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION - pooler_scales = tuple(1.0 / input_shape[k].stride for k in in_features) - sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO - pooler_type = cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE - # fmt: on - assert pooler_type in ["ROIAlignRotated"], pooler_type - # assume all channel counts are equal - in_channels = [input_shape[f].channels for f in in_features][0] - - box_pooler = ROIPooler( - output_size=pooler_resolution, - scales=pooler_scales, - sampling_ratio=sampling_ratio, - pooler_type=pooler_type, - ) - box_head = build_box_head( - cfg, ShapeSpec(channels=in_channels, height=pooler_resolution, width=pooler_resolution) - ) - # This line is the only difference v.s. StandardROIHeads - box_predictor = RotatedFastRCNNOutputLayers(cfg, box_head.output_shape) - return { - "box_in_features": in_features, - "box_pooler": box_pooler, - "box_head": box_head, - "box_predictor": box_predictor, - } - - @torch.no_grad() - def label_and_sample_proposals(self, proposals, targets): - """ - Prepare some proposals to be used to train the RROI heads. - It performs box matching between `proposals` and `targets`, and assigns - training labels to the proposals. - It returns `self.batch_size_per_image` random samples from proposals and groundtruth boxes, - with a fraction of positives that is no larger than `self.positive_sample_fraction. - - Args: - See :meth:`StandardROIHeads.forward` - - Returns: - list[Instances]: length `N` list of `Instances`s containing the proposals - sampled for training. Each `Instances` has the following fields: - - proposal_boxes: the rotated proposal boxes - - gt_boxes: the ground-truth rotated boxes that the proposal is assigned to - (this is only meaningful if the proposal has a label > 0; if label = 0 - then the ground-truth box is random) - - gt_classes: the ground-truth classification lable for each proposal - """ - gt_boxes = [x.gt_boxes for x in targets] - if self.proposal_append_gt: - proposals = add_ground_truth_to_proposals(gt_boxes, proposals) - - proposals_with_gt = [] - - num_fg_samples = [] - num_bg_samples = [] - for proposals_per_image, targets_per_image in zip(proposals, targets): - has_gt = len(targets_per_image) > 0 - match_quality_matrix = pairwise_iou_rotated( - targets_per_image.gt_boxes, proposals_per_image.proposal_boxes - ) - matched_idxs, matched_labels = self.proposal_matcher(match_quality_matrix) - sampled_idxs, gt_classes = self._sample_proposals( - matched_idxs, matched_labels, targets_per_image.gt_classes - ) - - proposals_per_image = proposals_per_image[sampled_idxs] - proposals_per_image.gt_classes = gt_classes - - if has_gt: - sampled_targets = matched_idxs[sampled_idxs] - proposals_per_image.gt_boxes = targets_per_image.gt_boxes[sampled_targets] - else: - gt_boxes = RotatedBoxes( - targets_per_image.gt_boxes.tensor.new_zeros((len(sampled_idxs), 5)) - ) - proposals_per_image.gt_boxes = gt_boxes - - num_bg_samples.append((gt_classes == self.num_classes).sum().item()) - num_fg_samples.append(gt_classes.numel() - num_bg_samples[-1]) - proposals_with_gt.append(proposals_per_image) - - # Log the number of fg/bg samples that are selected for training ROI heads - storage = get_event_storage() - storage.put_scalar("roi_head/num_fg_samples", np.mean(num_fg_samples)) - storage.put_scalar("roi_head/num_bg_samples", np.mean(num_bg_samples)) - - return proposals_with_gt diff --git a/spaces/hasibzunair/fifa-tryon-demo/rembg/session_cloth.py b/spaces/hasibzunair/fifa-tryon-demo/rembg/session_cloth.py deleted file mode 100644 index 11bcef74378be4d64058772c29ac45240f60a85b..0000000000000000000000000000000000000000 --- a/spaces/hasibzunair/fifa-tryon-demo/rembg/session_cloth.py +++ /dev/null @@ -1,88 +0,0 @@ -from typing import List - -import numpy as np -from PIL import Image -from PIL.Image import Image as PILImage -from scipy.special import log_softmax - -from .session_base import BaseSession - -pallete1 = [ - 0, - 0, - 0, - 255, - 255, - 255, - 0, - 0, - 0, - 0, - 0, - 0, -] - -pallete2 = [ - 0, - 0, - 0, - 0, - 0, - 0, - 255, - 255, - 255, - 0, - 0, - 0, -] - -pallete3 = [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 255, - 255, - 255, -] - - -class ClothSession(BaseSession): - def predict(self, img: PILImage) -> List[PILImage]: - ort_outs = self.inner_session.run( - None, self.normalize(img, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), (768, 768)) - ) - - pred = ort_outs - pred = log_softmax(pred[0], 1) - pred = np.argmax(pred, axis=1, keepdims=True) - pred = np.squeeze(pred, 0) - pred = np.squeeze(pred, 0) - - mask = Image.fromarray(pred.astype("uint8"), mode="L") - mask = mask.resize(img.size, Image.LANCZOS) - - masks = [] - - mask1 = mask.copy() - mask1.putpalette(pallete1) - mask1 = mask1.convert("RGB").convert("L") - masks.append(mask1) - - mask2 = mask.copy() - mask2.putpalette(pallete2) - mask2 = mask2.convert("RGB").convert("L") - masks.append(mask2) - - mask3 = mask.copy() - mask3.putpalette(pallete3) - mask3 = mask3.convert("RGB").convert("L") - masks.append(mask3) - - return masks diff --git a/spaces/haywired/medibot-llama2/start.sh b/spaces/haywired/medibot-llama2/start.sh deleted file mode 100644 index e7a565dbef7666602f30e61c4b0fdf31fc5a8e09..0000000000000000000000000000000000000000 --- a/spaces/haywired/medibot-llama2/start.sh +++ /dev/null @@ -1,9 +0,0 @@ -#!/bin/bash -echo "========== PK =============" -echo "Current directory" -pwd -echo "running ingest.py" -python ingest.py - -echo "running model.py" -chainlit run model.py -w \ No newline at end of file diff --git a/spaces/hdhzk/bingo/src/app/loading.css b/spaces/hdhzk/bingo/src/app/loading.css deleted file mode 100644 index eaaab6a86a228334c4eca3c5368ae6f0f593d405..0000000000000000000000000000000000000000 --- a/spaces/hdhzk/bingo/src/app/loading.css +++ /dev/null @@ -1,68 +0,0 @@ -::-webkit-scrollbar { - width: 10px; - height: 10px; - display: none; -} - -::-webkit-scrollbar-button:start:decrement, -::-webkit-scrollbar-button:end:increment { - height: 30px; - background-color: transparent; -} - -::-webkit-scrollbar-track-piece { - background-color: #3b3b3b; - -webkit-border-radius: 16px; -} - -::-webkit-scrollbar-thumb:vertical { - height: 50px; - background-color: #666; - border: 1px solid #eee; - -webkit-border-radius: 6px; -} - -/* loading start */ -.loading-spinner { - display: flex; - justify-content: center; - align-items: center; - height: 100vh; - opacity: 1; - transition: opacity .8s ease-out; -} - -.loading-spinner.hidden { - opacity: 0; -} - -.loading-spinner>div { - width: 30px; - height: 30px; - background: linear-gradient(90deg, #2870EA 10.79%, #1B4AEF 87.08%); - - border-radius: 100%; - display: inline-block; - animation: sk-bouncedelay 1.4s infinite ease-in-out both; -} - -.loading-spinner .bounce1 { - animation-delay: -0.32s; -} - -.loading-spinner .bounce2 { - animation-delay: -0.16s; -} - -@keyframes sk-bouncedelay { - - 0%, - 80%, - 100% { - transform: scale(0); - } - - 40% { - transform: scale(1.0); - } -} diff --git a/spaces/henryu/Multimodal-GPT/convert_llama_weights_to_hf.py b/spaces/henryu/Multimodal-GPT/convert_llama_weights_to_hf.py deleted file mode 100644 index f6ed818b60292b5697a6f19875683109d6f0e676..0000000000000000000000000000000000000000 --- a/spaces/henryu/Multimodal-GPT/convert_llama_weights_to_hf.py +++ /dev/null @@ -1,273 +0,0 @@ -# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -import argparse -import gc -import json -import math -import os -import shutil -import warnings - -import torch - -from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer - - -try: - from transformers import LlamaTokenizerFast -except ImportError as e: - warnings.warn(e) - warnings.warn( - "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion" - ) - LlamaTokenizerFast = None - -""" -Sample usage: -``` -python src/transformers/models/llama/convert_llama_weights_to_hf.py \ - --input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path -``` -Thereafter, models can be loaded via: -```py -from transformers import LlamaForCausalLM, LlamaTokenizer -model = LlamaForCausalLM.from_pretrained("/output/path") -tokenizer = LlamaTokenizer.from_pretrained("/output/path") -``` -Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions -come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM). -""" - -INTERMEDIATE_SIZE_MAP = { - "7B": 11008, - "13B": 13824, - "30B": 17920, - "65B": 22016, -} -NUM_SHARDS = { - "7B": 1, - "13B": 2, - "30B": 4, - "65B": 8, -} - - -def compute_intermediate_size(n): - return int(math.ceil(n * 8 / 3) + 255) // 256 * 256 - - -def read_json(path): - with open(path, "r") as f: - return json.load(f) - - -def write_json(text, path): - with open(path, "w") as f: - json.dump(text, f) - - -def write_model(model_path, input_base_path, model_size): - os.makedirs(model_path, exist_ok=True) - tmp_model_path = os.path.join(model_path, "tmp") - os.makedirs(tmp_model_path, exist_ok=True) - - params = read_json(os.path.join(input_base_path, "params.json")) - num_shards = NUM_SHARDS[model_size] - n_layers = params["n_layers"] - n_heads = params["n_heads"] - n_heads_per_shard = n_heads // num_shards - dim = params["dim"] - dims_per_head = dim // n_heads - base = 10000.0 - inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head)) - - # permute for sliced rotary - def permute(w): - return w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim) - - print(f"Fetching all parameters from the checkpoint at {input_base_path}.") - # Load weights - if model_size == "7B": - # Not sharded - # (The sharded implementation would also work, but this is simpler.) - loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu") - else: - # Sharded - loaded = [ - torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu") - for i in range(num_shards) - ] - param_count = 0 - index_dict = {"weight_map": {}} - for layer_i in range(n_layers): - filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" - if model_size == "7B": - # Unsharded - state_dict = { - f"model.layers.{layer_i}.self_attn.q_proj.weight": permute( - loaded[f"layers.{layer_i}.attention.wq.weight"] - ), - f"model.layers.{layer_i}.self_attn.k_proj.weight": permute( - loaded[f"layers.{layer_i}.attention.wk.weight"] - ), - f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"], - f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"], - f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"], - f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"], - f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"], - f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"], - f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"], - } - else: - # Sharded - # Note that in the 13B checkpoint, not cloning the two following weights will result in the checkpoint - # becoming 37GB instead of 26GB for some reason. - state_dict = { - f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][ - f"layers.{layer_i}.attention_norm.weight" - ].clone(), - f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][ - f"layers.{layer_i}.ffn_norm.weight" - ].clone(), - } - state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute( - torch.cat( - [ - loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim) - for i in range(num_shards) - ], - dim=0, - ).reshape(dim, dim) - ) - state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute( - torch.cat( - [ - loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(n_heads_per_shard, dims_per_head, dim) - for i in range(num_shards) - ], - dim=0, - ).reshape(dim, dim) - ) - state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat( - [ - loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(n_heads_per_shard, dims_per_head, dim) - for i in range(num_shards) - ], - dim=0, - ).reshape(dim, dim) - - state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat( - [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1 - ) - state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat( - [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0 - ) - state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat( - [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1 - ) - state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat( - [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0 - ) - - state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq - for k, v in state_dict.items(): - index_dict["weight_map"][k] = filename - param_count += v.numel() - torch.save(state_dict, os.path.join(tmp_model_path, filename)) - - filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" - if model_size == "7B": - # Unsharded - state_dict = { - "model.embed_tokens.weight": loaded["tok_embeddings.weight"], - "model.norm.weight": loaded["norm.weight"], - "lm_head.weight": loaded["output.weight"], - } - else: - state_dict = { - "model.norm.weight": loaded[0]["norm.weight"], - "model.embed_tokens.weight": torch.cat( - [loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1 - ), - "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0), - } - - for k, v in state_dict.items(): - index_dict["weight_map"][k] = filename - param_count += v.numel() - torch.save(state_dict, os.path.join(tmp_model_path, filename)) - - # Write configs - index_dict["metadata"] = {"total_size": param_count * 2} - write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json")) - - config = LlamaConfig( - hidden_size=dim, - intermediate_size=compute_intermediate_size(dim), - num_attention_heads=params["n_heads"], - num_hidden_layers=params["n_layers"], - rms_norm_eps=params["norm_eps"], - ) - config.save_pretrained(tmp_model_path) - - # Make space so we can load the model properly now. - del state_dict - del loaded - gc.collect() - - print("Loading the checkpoint in a Llama model.") - model = LlamaForCausalLM.from_pretrained(tmp_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True) - # Avoid saving this as part of the config. - del model.config._name_or_path - - print("Saving in the Transformers format.") - model.save_pretrained(model_path) - shutil.rmtree(tmp_model_path) - - -def write_tokenizer(tokenizer_path, input_tokenizer_path): - # Initialize the tokenizer based on the `spm` model - tokenizer_class = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast - print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.") - tokenizer = tokenizer_class(input_tokenizer_path) - tokenizer.save_pretrained(tokenizer_path) - - -def main(): - parser = argparse.ArgumentParser() - parser.add_argument( - "--input_dir", - help="Location of LLaMA weights, which contains tokenizer.model and model folders", - ) - parser.add_argument( - "--model_size", - choices=["7B", "13B", "30B", "65B", "tokenizer_only"], - ) - parser.add_argument( - "--output_dir", - help="Location to write HF model and tokenizer", - ) - args = parser.parse_args() - if args.model_size != "tokenizer_only": - write_model( - model_path=args.output_dir, - input_base_path=os.path.join(args.input_dir, args.model_size), - model_size=args.model_size, - ) - spm_path = os.path.join(args.input_dir, "tokenizer.model") - write_tokenizer(args.output_dir, spm_path) - - -if __name__ == "__main__": - main() \ No newline at end of file diff --git a/spaces/huggingface-projects/wordalle/static/_app/immutable/pages/index.svelte-e9dccd76.js b/spaces/huggingface-projects/wordalle/static/_app/immutable/pages/index.svelte-e9dccd76.js deleted file mode 100644 index 4df5f12117c461d1046c4ba412acfe77017d625a..0000000000000000000000000000000000000000 --- a/spaces/huggingface-projects/wordalle/static/_app/immutable/pages/index.svelte-e9dccd76.js +++ /dev/null @@ -1,15 +0,0 @@ -var Tr=Object.defineProperty;var Wt=Object.getOwnPropertySymbols;var Ar=Object.prototype.hasOwnProperty,Ir=Object.prototype.propertyIsEnumerable;var qt=(n,e,t)=>e in n?Tr(n,e,{enumerable:!0,configurable:!0,writable:!0,value:t}):n[e]=t,Xt=(n,e)=>{for(var t in e||(e={}))Ar.call(e,t)&&qt(n,t,e[t]);if(Wt)for(var t of Wt(e))Ir.call(e,t)&&qt(n,t,e[t]);return n};import{S as ct,i as ut,s as ft,e as v,k as M,c as w,a as y,m as F,d as f,b as u,g as ce,J as i,K as Be,L as Te,E as qe,M as Pt,t as J,h as Z,N as st,O as at,P as jr,w as Xe,x as ht,y as Ge,n as Je,o as _e,B as Ze,p as Ke,q as he,Q as St,R as Ve,T as ze,l as lt,j as Qe,U as br,v as yr,V as Er,W as kt,f as We,X as Dr,Y as Gt,Z as Lr,_ as Rr}from"../chunks/index-86f4d6c3.js";import{_ as De,w as kr,b as Jt}from"../chunks/preload-helper-359634c4.js";var ye=(n=>(n.INITIAL="",n.CORRECT="correct",n.PRESENT="present",n.ABSENT="absent",n))(ye||{}),ve=(n=>(n[n.LOADING=0]="LOADING",n[n.PLAYING=1]="PLAYING",n[n.SUCESS=2]="SUCESS",n[n.FAIL=3]="FAIL",n[n.COMPLETED=4]="COMPLETED",n))(ve||{});function Cr(n,e){const t=[...n],r=t[e];for(const s of[...r].reverse())if(s.letter){s.letter="";break}return t}function Nr(n,e,t){const r=[...n],s=r[e];for(const a of s)if(a.correct===" "&&(a.letter=" "),!a.letter){a.letter=t;break}return r}const Zt={[ye.CORRECT]:"#00b81a",[ye.PRESENT]:"#ffc80a",[ye.ABSENT]:"#d9d9d9",[ye.INITIAL]:"#5d5d5d"},ot={2:"two",5:"five",10:"ten",15:"fifteen",20:"twenty",35:"thirtyfive",50:"fifty"},Or=["\u{1F917} Hugging \u{1F917}","\u{1F9DE} Genius \u{1F9DE}","\u{1F929} Magnificent \u{1F929}","\u{1F632} Impressive \u{1F632}","\u{1F9DA} Splendid \u{1F9DA}","\u2733 Great \u2733","\u{1F361} Phew \u{1F361}"];function Kt(n,e,t){const r=n.slice();return r[4]=e[t],r[6]=t,r}function Qt(n,e,t){const r=n.slice();return r[7]=e[t],r}function Ur(n){let e;return{c(){e=v("div"),this.h()},l(t){e=w(t,"DIV",{class:!0}),y(e).forEach(f),this.h()},h(){u(e,"class","spacer svelte-2ngxdh")},m(t,r){ce(t,e,r)},d(t){t&&f(e)}}}function Br(n){let e,t=n[7]+"",r;return{c(){e=v("span"),r=J(t)},l(s){e=w(s,"SPAN",{});var a=y(e);r=Z(a,t),a.forEach(f)},m(s,a){ce(s,e,a),i(e,r)},p:qe,d(s){s&&f(e)}}}function Vr(n){let e,t;return{c(){e=st("svg"),t=st("path"),this.h()},l(r){e=at(r,"svg",{xmlns:!0,height:!0,viewBox:!0,width:!0});var s=y(e);t=at(s,"path",{fill:!0,d:!0}),y(t).forEach(f),s.forEach(f),this.h()},h(){u(t,"fill","currentColor"),u(t,"d","M22 3H7c-.69 0-1.23.35-1.59.88L0 12l5.41 8.11c.36.53.9.89 1.59.89h15c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zm0 16H7.07L2.4 12l4.66-7H22v14zm-11.59-2L14 13.41 17.59 17 19 15.59 15.41 12 19 8.41 17.59 7 14 10.59 10.41 7 9 8.41 12.59 12 9 15.59z"),u(e,"xmlns","http://www.w3.org/2000/svg"),u(e,"height","24"),u(e,"viewBox","0 0 24 24"),u(e,"width","24")},m(r,s){ce(r,e,s),i(e,t)},p:qe,d(r){r&&f(e)}}}function $t(n){let e,t,r,s;function a(_,S){return _[7]==="Backspace"?Vr:Br}let o=a(n)(n);function c(){return n[3](n[7])}return{c(){e=v("button"),o.c(),this.h()},l(_){e=w(_,"BUTTON",{class:!0});var S=y(e);o.l(S),S.forEach(f),this.h()},h(){u(e,"class",t=(n[0][n[7]]===void 0?"":n[0][n[7]])+" "+(n[7].length>1&&"big")+" svelte-2ngxdh")},m(_,S){ce(_,e,S),o.m(e,null),r||(s=Be(e,"click",c),r=!0)},p(_,S){n=_,o.p(n,S),S&1&&t!==(t=(n[0][n[7]]===void 0?"":n[0][n[7]])+" "+(n[7].length>1&&"big")+" svelte-2ngxdh")&&u(e,"class",t)},d(_){_&&f(e),o.d(),r=!1,s()}}}function zr(n){let e;return{c(){e=v("div"),this.h()},l(t){e=w(t,"DIV",{class:!0}),y(e).forEach(f),this.h()},h(){u(e,"class","spacer svelte-2ngxdh")},m(t,r){ce(t,e,r)},d(t){t&&f(e)}}}function er(n){let e,t,r,s,a=n[6]===1&&Ur(),l=n[4],o=[];for(let _=0;_s("keyup",o);return n.$$set=o=>{"letterStates"in o&&t(0,r=o.letterStates)},[r,s,a,l]}class Hr extends ct{constructor(e){super(),ut(this,e,Fr,Mr,ft,{letterStates:0})}}function Yr(n){const e=n-1;return e*e*e+1}function it(n,{delay:e=0,duration:t=400,easing:r=jr}={}){const s=+getComputedStyle(n).opacity;return{delay:e,duration:t,easing:r,css:a=>`opacity: ${a*s}`}}function tr(n,{delay:e=0,duration:t=400,easing:r=Yr,start:s=0,opacity:a=0}={}){const l=getComputedStyle(n),o=+l.opacity,c=l.transform==="none"?"":l.transform,_=1-s,S=o*(1-a);return{delay:e,duration:t,easing:r,css:(j,Y)=>` - transform: ${c} scale(${1-_*Y}); - opacity: ${o-S*Y} - `}}var xr={exports:{}};(function(n){(function(e){var t=K(),r=ue(),s=D(),a=$(),l={imagePlaceholder:void 0,cacheBust:!1},o={toSvg:c,toPng:S,toJpeg:j,toBlob:Y,toPixelData:_,impl:{fontFaces:s,images:a,util:t,inliner:r,options:{}}};n.exports=o;function c(h,p){return p=p||{},H(p),Promise.resolve(h).then(function(E){return z(E,p.filter,!0)}).then(q).then(oe).then(T).then(function(E){return Q(E,p.width||t.width(h),p.height||t.height(h))});function T(E){return p.bgcolor&&(E.style.backgroundColor=p.bgcolor),p.width&&(E.style.width=p.width+"px"),p.height&&(E.style.height=p.height+"px"),p.style&&Object.keys(p.style).forEach(function(P){E.style[P]=p.style[P]}),E}}function _(h,p){return U(h,p||{}).then(function(T){return T.getContext("2d").getImageData(0,0,t.width(h),t.height(h)).data})}function S(h,p){return U(h,p||{}).then(function(T){return T.toDataURL()})}function j(h,p){return p=p||{},U(h,p).then(function(T){return T.toDataURL("image/jpeg",p.quality||1)})}function Y(h,p){return U(h,p||{}).then(t.canvasToBlob)}function H(h){typeof h.imagePlaceholder=="undefined"?o.impl.options.imagePlaceholder=l.imagePlaceholder:o.impl.options.imagePlaceholder=h.imagePlaceholder,typeof h.cacheBust=="undefined"?o.impl.options.cacheBust=l.cacheBust:o.impl.options.cacheBust=h.cacheBust}function U(h,p){return c(h,p).then(t.makeImage).then(t.delay(100)).then(function(E){var P=T(h);return P.getContext("2d").drawImage(E,0,0),P});function T(E){var P=document.createElement("canvas");if(P.width=p.width||t.width(E),P.height=p.height||t.height(E),p.bgcolor){var A=P.getContext("2d");A.fillStyle=p.bgcolor,A.fillRect(0,0,P.width,P.height)}return P}}function z(h,p,T){if(!T&&p&&!p(h))return Promise.resolve();return Promise.resolve(h).then(E).then(function(k){return P(h,k,p)}).then(function(k){return A(h,k)});function E(k){return k instanceof HTMLCanvasElement?t.makeImage(k.toDataURL()):k.cloneNode(!1)}function P(k,L,ee){var d=k.childNodes;if(d.length===0)return Promise.resolve(L);return C(L,t.asArray(d),ee).then(function(){return L});function C(I,B,b){var g=Promise.resolve();return B.forEach(function(V){g=g.then(function(){return z(V,b)}).then(function(x){x&&I.appendChild(x)})}),g}}function A(k,L){if(!(L instanceof Element))return L;return Promise.resolve().then(ee).then(d).then(C).then(I).then(function(){return L});function ee(){B(window.getComputedStyle(k),L.style);function B(b,g){b.cssText?g.cssText=b.cssText:V(b,g);function V(x,te){t.asArray(x).forEach(function(m){te.setProperty(m,x.getPropertyValue(m),x.getPropertyPriority(m))})}}}function d(){[":before",":after"].forEach(function(b){B(b)});function B(b){var g=window.getComputedStyle(k,b),V=g.getPropertyValue("content");if(V===""||V==="none")return;var x=t.uid();L.className=L.className+" "+x;var te=document.createElement("style");te.appendChild(m(x,b,g)),L.appendChild(te);function m(N,W,O){var ne="."+N+":"+W,ie=O.cssText?we(O):be(O);return document.createTextNode(ne+"{"+ie+"}");function we(de){var re=de.getPropertyValue("content");return de.cssText+" content: "+re+";"}function be(de){return t.asArray(de).map(re).join("; ")+";";function re(fe){return fe+": "+de.getPropertyValue(fe)+(de.getPropertyPriority(fe)?" !important":"")}}}}}function C(){k instanceof HTMLTextAreaElement&&(L.innerHTML=k.value),k instanceof HTMLInputElement&&L.setAttribute("value",k.value)}function I(){L instanceof SVGElement&&(L.setAttribute("xmlns","http://www.w3.org/2000/svg"),L instanceof SVGRectElement&&["width","height"].forEach(function(B){var b=L.getAttribute(B);!b||L.style.setProperty(B,b)}))}}}function q(h){return s.resolveAll().then(function(p){var T=document.createElement("style");return h.appendChild(T),T.appendChild(document.createTextNode(p)),h})}function oe(h){return a.inlineAll(h).then(function(){return h})}function Q(h,p,T){return Promise.resolve(h).then(function(E){return E.setAttribute("xmlns","http://www.w3.org/1999/xhtml"),new XMLSerializer().serializeToString(E)}).then(t.escapeXhtml).then(function(E){return''+E+""}).then(function(E){return''+E+""}).then(function(E){return"data:image/svg+xml;charset=utf-8,"+E})}function K(){return{escape:I,parseExtension:p,mimeType:T,dataAsUrl:C,isDataUrl:E,canvasToBlob:A,resolveUrl:k,getAndEncode:d,uid:L(),delay:B,asArray:b,escapeXhtml:g,makeImage:ee,width:V,height:x};function h(){var m="application/font-woff",N="image/jpeg";return{woff:m,woff2:m,ttf:"application/font-truetype",eot:"application/vnd.ms-fontobject",png:"image/png",jpg:N,jpeg:N,gif:"image/gif",tiff:"image/tiff",svg:"image/svg+xml"}}function p(m){var N=/\.([^\.\/]*?)$/g.exec(m);return N?N[1]:""}function T(m){var N=p(m).toLowerCase();return h()[N]||""}function E(m){return m.search(/^(data:)/)!==-1}function P(m){return new Promise(function(N){for(var W=window.atob(m.toDataURL().split(",")[1]),O=W.length,ne=new Uint8Array(O),ie=0;ieimport("../chunks/fifteen-9add13bd.js"),["chunks/fifteen-9add13bd.js","chunks/index-86f4d6c3.js"]);case"./badges/fifty.svelte":return De(()=>import("../chunks/fifty-f65036e1.js"),["chunks/fifty-f65036e1.js","chunks/index-86f4d6c3.js"]);case"./badges/five.svelte":return De(()=>import("../chunks/five-ba00de65.js"),["chunks/five-ba00de65.js","chunks/index-86f4d6c3.js"]);case"./badges/ten.svelte":return De(()=>import("../chunks/ten-042882a1.js"),["chunks/ten-042882a1.js","chunks/index-86f4d6c3.js"]);case"./badges/thirtyfive.svelte":return De(()=>import("../chunks/thirtyfive-e8960031.js"),["chunks/thirtyfive-e8960031.js","chunks/index-86f4d6c3.js"]);case"./badges/twenty.svelte":return De(()=>import("../chunks/twenty-39a31000.js"),["chunks/twenty-39a31000.js","chunks/index-86f4d6c3.js"]);case"./badges/two.svelte":return De(()=>import("../chunks/two-86591465.js"),["chunks/two-86591465.js","chunks/index-86f4d6c3.js"]);default:return new Promise(function(e,t){(typeof queueMicrotask=="function"?queueMicrotask:setTimeout)(t.bind(null,new Error("Unknown variable dynamic import: "+n)))})}}function rr(n,e,t){const r=n.slice();return r[18]=e[t],r[20]=t,r}function nr(n,e,t){const r=n.slice();return r[21]=e[t],r[23]=t,r}function sr(n,e,t){const r=n.slice();return r[24]=e[t],r}function ar(n){let e,t,r,s;var a=n[6];function l(o){return{props:{classNames:"w-full max-w-[180px]"}}}return a&&(t=new a(l())),{c(){e=v("div"),t&&Xe(t.$$.fragment),this.h()},l(o){e=w(o,"DIV",{class:!0});var c=y(e);t&&ht(t.$$.fragment,c),c.forEach(f),this.h()},h(){u(e,"class","absolute left-0 right-0 top-0 bottom-0 flex place-content-center place-items-center")},m(o,c){ce(o,e,c),t&&Ge(t,e,null),s=!0},p(o,c){if(a!==(a=o[6])){if(t){Je();const _=t;_e(_.$$.fragment,1,0,()=>{Ze(_,1)}),Ke()}a?(t=new a(l()),Xe(t.$$.fragment),he(t.$$.fragment,1),Ge(t,e,null)):t=null}},i(o){s||(t&&he(t.$$.fragment,o),St(()=>{r||(r=Ve(e,tr,{duration:500},!0)),r.run(1)}),s=!0)},o(o){t&&_e(t.$$.fragment,o),r||(r=Ve(e,tr,{duration:500},!1)),r.run(0),s=!1},d(o){o&&f(e),t&&Ze(t),o&&r&&r.end()}}}function lr(n){let e,t,r,s;return{c(){e=v("div"),t=v("img"),s=M(),this.h()},l(a){e=w(a,"DIV",{});var l=y(e);t=w(l,"IMG",{src:!0,alt:!0,class:!0}),s=F(l),l.forEach(f),this.h()},h(){ze(t.src,r=n[9]+n[24])||u(t,"src",r),u(t,"alt",""),u(t,"class","aspect-square w-full h-full")},m(a,l){ce(a,e,l),i(e,t),i(e,s)},p(a,l){l&2&&!ze(t.src,r=a[9]+a[24])&&u(t,"src",r)},d(a){a&&f(e)}}}function or(n){let e,t;return{c(){e=st("rect"),this.h()},l(r){e=at(r,"rect",{fill:!0,x:!0,y:!0,width:!0,height:!0,rx:!0}),y(e).forEach(f),this.h()},h(){u(e,"fill",t=Zt[n[21].state]),u(e,"x",n[23]*(xe+ke)),u(e,"y",n[20]*(xe+ke)),u(e,"width",xe),u(e,"height",xe),u(e,"rx",n[11])},m(r,s){ce(r,e,s)},p(r,s){s&1&&t!==(t=Zt[r[21].state])&&u(e,"fill",t)},d(r){r&&f(e)}}}function ir(n){let e,t=n[18],r=[];for(let s=0;s{d=null}),Ke()),V&514){C=g[1];let x;for(x=0;x{A||(A=Ve(e,it,{},!0)),A.run(1)}),k=!0)},o(g){_e(d),A||(A=Ve(e,it,{},!1)),A.run(0),k=!1},d(g){g&&f(e),d&&d.d(),Te(I,g),Te(b,g),n[13](null),n[16](null),g&&A&&A.end(),L=!1,br(ee)}}}const xe=10,ke=1;function Gr(n,e,t){const r=Pt();let{board:s}=e,{currentRowIndex:a}=e,{imagePaths:l}=e,{totalStreaks:o}=e;const c=Or[a],_="";let S,j,Y=!1;async function H(D){t(5,Y=!0);try{const $=await Wr.toBlob(D,{bgcolor:"#000"}),h=document.createElement("a");h.download=`sucess-${Date.now()}.png`,h.target="_self",h.onclick=async p=>{if(t(5,Y=!0),h.href){URL.revokeObjectURL(h.href),t(5,Y=!1);return}h.href=URL.createObjectURL($),t(5,Y=!1)},h.click(),console.log("Downloding image.")}catch($){console.log($.name,$.message)}}const U=D=>{D.key==="Escape"||D.key==="Enter"?r("restart"):D.key===" "&&H(j)};let z;yr(async()=>{if(o in ot){const D=ot[o];t(6,z=(await qr(`./badges/${D}.svelte`)).default)}setTimeout(()=>{window.addEventListener("keyup",U,!0)},1e3)}),Er(()=>{window.removeEventListener("keyup",U,!0)});const q=xe/10;function oe(D){kt[D?"unshift":"push"](()=>{j=D,t(4,j)})}const Q=()=>H(j),K=()=>r("restart");function ue(D){kt[D?"unshift":"push"](()=>{S=D,t(3,S)})}return n.$$set=D=>{"board"in D&&t(0,s=D.board),"currentRowIndex"in D&&t(12,a=D.currentRowIndex),"imagePaths"in D&&t(1,l=D.imagePaths),"totalStreaks"in D&&t(2,o=D.totalStreaks)},[s,l,o,S,j,Y,z,r,c,_,H,q,a,oe,Q,K,ue]}class Jr extends ct{constructor(e){super(),ut(this,e,Gr,Xr,ft,{board:0,currentRowIndex:12,imagePaths:1,totalStreaks:2})}}function cr(n){let e,t,r,s,a;return{c(){e=v("div"),t=v("button"),r=J("Try Again"),this.h()},l(l){e=w(l,"DIV",{class:!0});var o=y(e);t=w(o,"BUTTON",{class:!0});var c=y(t);r=Z(c,"Try Again"),c.forEach(f),o.forEach(f),this.h()},h(){u(t,"class","hover:no-underline underline underline-offset-2 hover:scale-105 transition-all duration-200 ease-in-out"),u(e,"class","font-light flex-1 text-xs sm:text-base text-center")},m(l,o){ce(l,e,o),i(e,t),i(t,r),s||(a=Be(t,"click",n[3]),s=!0)},p:qe,d(l){l&&f(e),s=!1,a()}}}function Zr(n){let e,t,r,s,a,l=n[0]===ve.FAIL&&cr(n);return{c(){e=v("div"),t=J(n[1]),r=M(),l&&l.c(),this.h()},l(o){e=w(o,"DIV",{class:!0});var c=y(e);t=Z(c,n[1]),r=F(c),l&&l.l(c),c.forEach(f),this.h()},h(){u(e,"class","message svelte-1sv0qpd")},m(o,c){ce(o,e,c),i(e,t),i(e,r),l&&l.m(e,null),a=!0},p(o,[c]){(!a||c&2)&&Qe(t,o[1]),o[0]===ve.FAIL?l?l.p(o,c):(l=cr(o),l.c(),l.m(e,null)):l&&(l.d(1),l=null)},i(o){a||(St(()=>{s||(s=Ve(e,it,{},!0)),s.run(1)}),a=!0)},o(o){s||(s=Ve(e,it,{},!1)),s.run(0),a=!1},d(o){o&&f(e),l&&l.d(),o&&s&&s.end()}}}function Kr(n,e,t){const r=Pt();let{gameState:s}=e,{message:a=null}=e;const l=()=>r("restart");return n.$$set=o=>{"gameState"in o&&t(0,s=o.gameState),"message"in o&&t(1,a=o.message)},[s,a,r,l]}class Qr extends ct{constructor(e){super(),ut(this,e,Kr,Zr,ft,{gameState:0,message:1})}}let $r=(n=21)=>crypto.getRandomValues(new Uint8Array(n)).reduce((e,t)=>(t&=63,t<36?e+=t.toString(36):t<62?e+=(t-26).toString(36).toUpperCase():t>62?e+="-":e+="_",e),"");const en=$r(),tn=[],Pr=kr(JSON.parse(localStorage.user||JSON.stringify(en)));Pr.subscribe(n=>localStorage.user=JSON.stringify(n));const xt=kr(JSON.parse(localStorage.completedPrompts||JSON.stringify(tn)));xt.subscribe(n=>localStorage.completedPrompts=JSON.stringify(n));function ur(n,e,t){const r=n.slice();return r[29]=e[t],r[31]=t,r}function fr(n,e,t){const r=n.slice();return r[32]=e[t],r[31]=t,r}function hr(n,e,t){const r=n.slice();return r[34]=e[t],r}function dr(n){let e,t,r,s,a,l,o,c,_,S,j,Y,H,U,z,q,oe,Q,K,ue,D,$,h,p,T,E,P,A,k,L,ee,d,C,I,B,b,g,V,x,te,m,N,W,O,ne,ie,we,be,de,re,fe,Le,Tt,dt,Re,At,mt,Ee,Ce,Me,pt,gt,Fe,vt,wt,Pe,Ae,_t,Ie,bt,$e,He,yt,It,ae=n[7]&&mr(n),le=n[9]===ve.SUCESS&&pr(n),Ne=n[2],me=[];for(let R=0;RRr(h,"letterStates",Sr)),h.$on("keyup",n[15]),{c(){e=v("div"),ae&&ae.c(),t=M(),le&&le.c(),r=M(),s=v("header"),a=v("span"),l=J("Guess the prompt!"),o=M(),c=v("span"),_=M(),S=v("h1"),j=J("\u{1F951} WORDALLE \u{1F951}"),Y=M(),H=v("span"),U=M(),z=v("span"),q=v("button"),oe=J("Skip to next"),Q=M(),K=v("div");for(let R=0;R