parquet-converter commited on
Commit
14f8764
·
1 Parent(s): 3d7e344

Update parquet files (step 33 of 296)

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. spaces/1gistliPinn/ChatGPT4/Examples/Bobby Fischer Teaches Chess How to Download the EPUB Version from Forum 6.md +0 -6
  2. spaces/1gistliPinn/ChatGPT4/Examples/Design Transformer Indrajit Dasgupta Pdf Download [HOT].md +0 -6
  3. spaces/1gistliPinn/ChatGPT4/Examples/DigiDNA IMazing 2.3.5 With Crack TOP.md +0 -52
  4. spaces/1gistliPinn/ChatGPT4/Examples/Durood E Tanjeena Pdf Free 485.md +0 -38
  5. spaces/1phancelerku/anime-remove-background/Archer Attack 3D Shooter War - How to Become a Master Archer in Action Games.md +0 -170
  6. spaces/2023Liu2023/bingo/src/components/ui/badge.tsx +0 -36
  7. spaces/2ndelement/voicevox/voicevox_engine/morphing.py +0 -208
  8. spaces/4Taps/SadTalker/src/utils/hparams.py +0 -160
  9. spaces/AI-Hobbyist/Hoyo-RVC/docs/faiss_tips_ja.md +0 -101
  10. spaces/AIGC-Audio/AudioGPT/NeuralSeq/data_gen/tts/base_preprocess.py +0 -254
  11. spaces/AIZ2H/07-GraphViz-PyDeck-Map-AIUIUX-Demo/app.py +0 -509
  12. spaces/AchyuthGamer/OpenGPT/g4f/Provider/CodeLinkAva.py +0 -64
  13. spaces/Adapter/CoAdapter/t2i_adapters/t2i_adapters_for_canny.py +0 -47
  14. spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/basesizer/GetParentSizerMethods.js +0 -56
  15. spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/maker/builders/utils/ReplaceSliderConfig.js +0 -14
  16. spaces/AlekseyKorshuk/instagram-filter-removal/modeling/ifrnet.py +0 -166
  17. spaces/AlexZou/Deploy_Restoration/Lowlight.py +0 -45
  18. spaces/AlhitawiMohammed22/CER_Hu-Evaluation-Metrics/README.md +0 -161
  19. spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/docs/source/en/api/models/controlnet.md +0 -38
  20. spaces/Andy1621/uniformer_image_detection/configs/res2net/htc_r2_101_fpn_20e_coco.py +0 -7
  21. spaces/Andy1621/uniformer_image_detection/configs/ssd/ssd512_coco.py +0 -71
  22. spaces/Andy1621/uniformer_image_detection/configs/yolact/yolact_r101_1x8_coco.py +0 -3
  23. spaces/Anew1007/extras/constants.py +0 -50
  24. spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_internal/models/candidate.py +0 -34
  25. spaces/Awiny/Image2Paragraph/models/grit_src/third_party/CenterNet2/detectron2/modeling/roi_heads/keypoint_head.py +0 -272
  26. spaces/Banbri/zcvzcv/src/lib/base64ToFile.ts +0 -11
  27. spaces/BartPoint/VoiceChange_Beta/infer_pack/modules.py +0 -522
  28. spaces/Benson/text-generation/Examples/Descargar Familias Virtuales 3 Mod Apk Dinero Ilimitado.md +0 -64
  29. spaces/Big-Web/MMSD/env/Lib/site-packages/dateutil/tz/__init__.py +0 -12
  30. spaces/Big-Web/MMSD/env/Lib/site-packages/pip/_vendor/chardet/gb2312prober.py +0 -47
  31. spaces/Big-Web/MMSD/env/Lib/site-packages/pip/_vendor/requests/api.py +0 -157
  32. spaces/CVPR/LIVE/thrust/thrust/detail/config/global_workarounds.h +0 -27
  33. spaces/CVPR/LIVE/thrust/thrust/transform.h +0 -725
  34. spaces/CVPR/SPOTER_Sign_Language_Recognition/spoter_mod/skeleton_extractor.py +0 -60
  35. spaces/CVPR/WALT/mmdet/models/builder.py +0 -77
  36. spaces/CVPR/regionclip-demo/detectron2/checkpoint/__init__.py +0 -10
  37. spaces/CVPR/regionclip-demo/detectron2/layers/nms.py +0 -158
  38. spaces/Chris4K/llms_compare/Dragon Ball Z Raging Blast 2 Psp Iso Download 41 118.md +0 -80
  39. spaces/CodeDoes/FrostAura-gpt-neox-20b-fiction-novel-generation/README.md +0 -12
  40. spaces/Cyril666/ContourNet-ABI/maskrcnn_benchmark/modeling/rpn/retinanet/loss.py +0 -107
  41. spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/dateutil/parser/isoparser.py +0 -416
  42. spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/fontTools/ttLib/tables/H_V_A_R_.py +0 -5
  43. spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/fontTools/ttLib/woff2.py +0 -1688
  44. spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/templates/frontend/assets/ModifyUpload-d8fc50ab.js +0 -2
  45. spaces/DaleChen/AutoGPT/run_continuous.sh +0 -3
  46. spaces/DeepLabCut/MegaDetector_DeepLabCut/app.py +0 -179
  47. spaces/DhanushPrabhuS/pothole_yolov8_nano/README.md +0 -13
  48. spaces/EuroPython2022/mmocr-demo/configs/_base_/recog_pipelines/master_pipeline.py +0 -42
  49. spaces/FL33TW00D/whisper-turbo/_next/static/chunks/pages/_error-84d94505c9f773f4.js +0 -1
  50. spaces/Farazquraishi/pendora/app.py +0 -203
spaces/1gistliPinn/ChatGPT4/Examples/Bobby Fischer Teaches Chess How to Download the EPUB Version from Forum 6.md DELETED
@@ -1,6 +0,0 @@
1
- <h2>bobby fischer teaches chess epub download forum 6</h2><br /><p><b><b>Download Zip</b> &#9913;&#9913;&#9913; <a href="https://imgfil.com/2uy0pz">https://imgfil.com/2uy0pz</a></b></p><br /><br />
2
- <br />
3
- aaccfb2cb3<br />
4
- <br />
5
- <br />
6
- <p></p>
 
 
 
 
 
 
 
spaces/1gistliPinn/ChatGPT4/Examples/Design Transformer Indrajit Dasgupta Pdf Download [HOT].md DELETED
@@ -1,6 +0,0 @@
1
- <h2>design transformer indrajit dasgupta pdf download</h2><br /><p><b><b>Download File</b> &#9913; <a href="https://imgfil.com/2uxXzE">https://imgfil.com/2uxXzE</a></b></p><br /><br />
2
- <br />
3
- tidisvirbwork/design-transformer-indrajit-dasgupta-pdf-download ... This repository has no tags. If you need specific material, you'll have to find it elsewhere. Here we only briefly label the parts we particularly like. If you want to learn more about these design techniques and how they help create holistic design, find Jim Quick's book, Design Thinking for Successful Product Development. And don't forget "Research Design and Design Analysis": the book is for those who want to better understand how academics and 8a78ff9644<br />
4
- <br />
5
- <br />
6
- <p></p>
 
 
 
 
 
 
 
spaces/1gistliPinn/ChatGPT4/Examples/DigiDNA IMazing 2.3.5 With Crack TOP.md DELETED
@@ -1,52 +0,0 @@
1
-
2
- <h1>DigiDNA iMazing 2.3.5 With Crack: How to Transfer and Manage Your iOS Data Easily</h1>
3
- <p>If you are looking for a reliable and powerful software to transfer and manage your iOS data, you may want to check out DigiDNA iMazing 2.3.5 with crack. This software allows you to connect your iPhone, iPad, or iPod touch to your computer and access your data without iTunes or iCloud. You can also backup, restore, and clone your devices, as well as transfer music, photos, videos, messages, contacts, and more.</p>
4
- <p>In this article, we will show you how to download and install DigiDNA iMazing 2.3.5 with crack, as well as some of its key features and benefits.</p>
5
- <h2>DigiDNA iMazing 2.3.5 With Crack</h2><br /><p><b><b>Download</b> &middot; <a href="https://imgfil.com/2uy1dO">https://imgfil.com/2uy1dO</a></b></p><br /><br />
6
- <h2>How to Download and Install DigiDNA iMazing 2.3.5 With Crack</h2>
7
- <p>To download and install DigiDNA iMazing 2.3.5 with crack, you need to follow these steps:</p>
8
- <ol>
9
- <li>Click on the link below to download the setup file and the crack file.</li>
10
- <li>Extract the files using WinRAR or any other extraction tool.</li>
11
- <li>Run the setup file and follow the instructions to install the software.</li>
12
- <li>Copy the crack file and paste it into the installation folder.</li>
13
- <li>Launch the software and enjoy its full features.</li>
14
- </ol>
15
- <p><a href="https://example.com/download">Download DigiDNA iMazing 2.3.5 With Crack Here</a></p>
16
- <h2>Key Features and Benefits of DigiDNA iMazing 2.3.5 With Crack</h2>
17
- <p>DigiDNA iMazing 2.3.5 with crack is a versatile and user-friendly software that offers many features and benefits for iOS users. Some of them are:</p>
18
- <ul>
19
- <li>You can transfer data between your iOS devices and your computer without iTunes or iCloud.</li>
20
- <li>You can backup your devices with encryption and restore them selectively or fully.</li>
21
- <li>You can clone your devices or transfer data from one device to another.</li>
22
- <li>You can manage your music, photos, videos, messages, contacts, notes, voice memos, and more.</li>
23
- <li>You can export or print your data in various formats.</li>
24
- <li>You can access your device's file system and browse its contents.</li>
25
- <li>You can update or reinstall iOS on your devices.</li>
26
- <li>You can erase or reset your devices securely.</li>
27
- </ul>
28
- <h2>Conclusion</h2>
29
- <p>DigiDNA iMazing 2.3.5 with crack is a powerful and reliable software that can help you transfer and manage your iOS data easily and efficiently. It is compatible with Windows and Mac OS, and supports all iOS devices from iPhone 4s to iPhone Xs Max, iPad 1 to iPad Pro, and iPod touch 1 to iPod touch 6. If you want to try this software for free, you can download it from the link below.</p>
30
- <p><a href="https://example.com/download">Download DigiDNA iMazing 2.3.5 With Crack Here</a></p>
31
-
32
- <h2>How to Use DigiDNA iMazing 2.3.5 With Crack</h2>
33
- <p>Using DigiDNA iMazing 2.3.5 with crack is very easy and intuitive. Here are some steps to get you started:</p>
34
- <ol>
35
- <li>Connect your iOS device to your computer using a USB cable or Wi-Fi.</li>
36
- <li>Launch DigiDNA iMazing 2.3.5 and select your device from the sidebar.</li>
37
- <li>Choose the action you want to perform from the main window or the toolbar.</li>
38
- <li>Follow the on-screen instructions and confirm your choices.</li>
39
- <li>Wait for the process to complete and check the results.</li>
40
- </ol>
41
- <p>You can also customize the settings and preferences of DigiDNA iMazing 2.3.5 from the menu bar. You can change the backup location, backup encryption, backup frequency, device name, device icon, and more.</p>
42
- <h2>Frequently Asked Questions About DigiDNA iMazing 2.3.5 With Crack</h2>
43
- <p>Here are some common questions and answers about DigiDNA iMazing 2.3.5 with crack:</p>
44
- <p></p>
45
- <h3>Is DigiDNA iMazing 2.3.5 with crack safe to use?</h3>
46
- <p>DigiDNA iMazing 2.3.5 with crack is safe to use as long as you download it from a trusted source and scan it with an antivirus program before installing it. However, using cracked software is illegal and may violate the terms and conditions of the original software developer. We do not recommend or endorse using cracked software and we are not responsible for any consequences that may arise from doing so.</p>
47
- <h3>Does DigiDNA iMazing 2.3.5 with crack require an internet connection?</h3>
48
- <p>DigiDNA iMazing 2.3.5 with crack does not require an internet connection to function properly. However, you may need an internet connection to download and install the software, update the software, or access some online features such as iCloud or App Store.</p>
49
- <h3>Can I use DigiDNA iMazing 2.3.5 with crack on multiple devices?</h3>
50
- <p>DigiDNA iMazing 2.3.5 with crack can be used on multiple devices as long as they are connected to the same computer. You can also transfer your license to another computer by deactivating it on the old computer and activating it on the new computer.</p> d5da3c52bf<br />
51
- <br />
52
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1gistliPinn/ChatGPT4/Examples/Durood E Tanjeena Pdf Free 485.md DELETED
@@ -1,38 +0,0 @@
1
- <br />
2
- <h1>How to Download and Recite Durood E Tanjeena PDF for Free</h1>
3
- <p>Durood E Tanjeena is a powerful prayer that is often recited by Muslims in times of difficulty. It is said to be very beneficial and is believed to bring blessings and protection from Allah. In this article, we will show you how to download and recite Durood E Tanjeena PDF for free.</p>
4
- <h2>What is Durood E Tanjeena?</h2>
5
- <p>Durood E Tanjeena is a supplication that can be translated to "Praise be to Allah, the Highest." It is a short prayer that consists of 11 words in Arabic. The prayer is as follows:</p>
6
- <h2>durood e tanjeena pdf free 485</h2><br /><p><b><b>Download File</b> &#8230;&#8230;&#8230; <a href="https://imgfil.com/2uy0Pm">https://imgfil.com/2uy0Pm</a></b></p><br /><br />
7
- <blockquote>
8
- <p>اللهم صل على محمد وعلى آل محمد كما صليت على إبراهيم وعلى آل إبراهيم إنك حميد مجيد</p>
9
- <p>Allahumma salli ala Muhammad wa ala ali Muhammad kama sallayta ala Ibrahim wa ala ali Ibrahim innaka Hamidun Majid</p>
10
- </blockquote>
11
- <p>The meaning of Durood E Tanjeena can be translated to "O Allah, send blessings upon Muhammad and upon the family of Muhammad, as You sent blessings upon Ibrahim and upon the family of Ibrahim. Verily, You are Praiseworthy and Glorious."</p>
12
- <h2>How to Download Durood E Tanjeena PDF for Free?</h2>
13
- <p>If you want to download Durood E Tanjeena PDF for free, you can use one of the following links:</p>
14
- <ul>
15
- <li><a href="https://quranwork.com/darood-tanjeena-pdf-benefits-and-read-online/">Darood Tanjeena PDF Download & Read Online - Quran Work[^1^]</a></li>
16
- <li><a href="https://ilmkidunya.org/darood-e-tanjeena-pdf-free-download/">Darood E Tanjeena PDF Free Download - ilmkidunya.org[^2^]</a></li>
17
- <li><a href="https://www.scribd.com/document/126895606/Darood-E-Tanjeena">Darood E Tanjeena | PDF | Abrahamic Religions - Scribd[^3^]</a></li>
18
- </ul>
19
- <p>These links will allow you to download Durood E Tanjeena PDF with clear Arabic text and Urdu translation. You can also read online or print the PDF file for your convenience.</p>
20
- <h2>How to Recite Durood E Tanjeena?</h2>
21
- <p>There are different ways to recite Durood E Tanjeena, depending on your intention and situation. Here are some common methods:</p>
22
- <ul>
23
- <li>If you want to recite Durood E Tanjeena for general blessings and protection, you can recite it three times a day, preferably after Fajr, Asr, and Isha prayers.</li>
24
- <li>If you want to recite Durood E Tanjeena for a specific need or problem, you can recite it 100 times or more in one sitting, preferably after Isha prayer. You can also make a sincere dua after reciting it.</li>
25
- <li>If you want to recite Durood E Tanjeena for spiritual benefits and closeness to Allah, you can recite it as much as you can, especially on Fridays and during the night.</li>
26
- </ul>
27
- <p>When reciting Durood E Tanjeena, you should have faith and sincerity in your heart. You should also send salutations upon the Prophet Muhammad (peace be upon him) before and after reciting it.</p>
28
- <h2>What are the Benefits of Durood E Tanjeena?</h2>
29
- <p>Durood E Tanjeena has many benefits for those who recite it regularly. Some of these benefits include:</p>
30
- <p></p>
31
- <ul>
32
- <li>It increases your blessings from Allah and removes your difficulties.</li>
33
- <li>It protects you from harm and evil.</li>
34
- <li>It improves your mental and physical health.</li>
35
- <li>It grants you success in all areas of life.</li>
36
- <li>It purifies your</p> d5da3c52bf<br />
37
- <br />
38
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1phancelerku/anime-remove-background/Archer Attack 3D Shooter War - How to Become a Master Archer in Action Games.md DELETED
@@ -1,170 +0,0 @@
1
-
2
- <h1>Archer Attack 3D: Shooter War Download - A Guide for Gamers</h1>
3
- <p>Are you looking for a fun and exciting archer game that will challenge your skills and immerse you in an action-packed adventure? If so, you should check out Archer Attack 3D: Shooter War, one of the best bowman games and shooting games available on Android devices. In this article, we will tell you everything you need to know about this game, including what it is, how to download it, how to play it, and why you should play it. Let's get started!</p>
4
- <h2>archer attack 3d shooting war download</h2><br /><p><b><b>Download File</b> &middot; <a href="https://jinyurl.com/2uNSnT">https://jinyurl.com/2uNSnT</a></b></p><br /><br />
5
- <h2>What is Archer Attack 3D: Shooter War?</h2>
6
- <p>Archer Attack 3D: Shooter War is an action game developed by Matchingham Games that will give you an exciting archer experience with its unique graphics and designs. In this game, you will be the hero and you will be able to direct the bowman the way you want. The decisions will be entirely yours, you will destroy the targets step by step and achieve victory.</p>
7
- <h3>The story and gameplay of Archer Attack 3D: Shooter War</h3>
8
- <p>The game has a simple but engaging story that will take you to various conflict areas and scenarios, such as the capture of a military base by militants. You will have to use your bow and arrow to eliminate the enemies and complete the missions. You will also have to face different challenges and obstacles along the way, such as moving targets, traps, bombs, helicopters, tanks, and more.</p>
9
- <p>The gameplay of Archer Attack 3D: Shooter War is easy to learn but hard to master. You will have to swipe on the screen to aim and release to shoot your arrow. You will also have to adjust your angle and power according to the distance and wind. You will have to be careful not to miss or hit the wrong target, as that will cost you time and health. You will also have to be quick and accurate, as the enemies will shoot back at you or try to escape.</p>
10
- <h3>The features and graphics of Archer Attack 3D: Shooter War</h3>
11
- <p>Archer Attack 3D: Shooter War has many features that make it stand out from other archer games and shooting games. Some of these features are:</p>
12
- <p>archer attack 3d shooter war game<br />
13
- archer attack 3d apk download<br />
14
- archer attack 3d android game<br />
15
- archer attack 3d action game<br />
16
- archer attack 3d bowman game<br />
17
- archer attack 3d shooting range<br />
18
- archer attack 3d combat games<br />
19
- archer attack 3d longbow games<br />
20
- archer attack 3d adventure game<br />
21
- archer attack 3d offline game<br />
22
- archer attack 3d free download<br />
23
- archer attack 3d play store<br />
24
- archer attack 3d app store<br />
25
- archer attack 3d google play<br />
26
- archer attack 3d ios game<br />
27
- archer attack 3d pc game<br />
28
- archer attack 3d bluestacks<br />
29
- archer attack 3d windows game<br />
30
- archer attack 3d mac game<br />
31
- archer attack 3d laptop game<br />
32
- archer attack 3d chromebook game<br />
33
- archer attack 3d matchingham games<br />
34
- archer attack 3d latest version<br />
35
- archer attack 3d update download<br />
36
- archer attack 3d new features<br />
37
- archer attack 3d unique graphics<br />
38
- archer attack 3d level design<br />
39
- archer attack 3d target shooting<br />
40
- archer attack 3d arrow shooting<br />
41
- archer attack 3d military base<br />
42
- archer attack 3d militants shooting<br />
43
- archer attack 3d sniper shooting<br />
44
- archer attack 3d stealth shooting<br />
45
- archer attack 3d war games<br />
46
- archer attack 3d gun games<br />
47
- archer attack 3d battlefield games<br />
48
- archer attack 3d rank up games<br />
49
- archer attack 3d fun games<br />
50
- archer attack 3d casual games<br />
51
- archer attack 3d single player games<br />
52
- archer attack 3d stylized games<br />
53
- archer attack 3d data safety games<br />
54
- archer attack 3d ratings and reviews <br />
55
- archer attack 3d apkcombo download <br />
56
- archer attack 3d xapk download <br />
57
- archer attack 3d old versions download <br />
58
- archer attack 3d trending searches <br />
59
- archer attack 3d popular searches <br />
60
- archer attack 3d hot games</p>
61
- <ul>
62
- <li>More than 100 levels with different difficulty levels and objectives.</li>
63
- <li>A variety of arrows and gear that you can unlock and upgrade as you progress in the game.</li>
64
- <li>A realistic physics system that simulates the trajectory and impact of your arrows.</li>
65
- <li>A stunning 3D graphics style that creates a unique visual experience.</li>
66
- <li>A smooth and responsive control system that allows you to aim and shoot with ease.</li>
67
- <li>An immersive sound effects and music that enhance the atmosphere of the game.</li>
68
- </ul>
69
- <p>Archer Attack 3D: Shooter War is a game that will impress you with its amazing graphics and features. You will not get bored with this game, as it offers a lot of variety and challenge. You will also enjoy the thrill of shooting arrows and hitting your targets with precision and skill.</p>
70
- <h2>How to download Archer Attack 3D: Shooter War on your device?</h2>
71
- <p>If you are interested in playing Archer Attack 3D: Shooter War, you will be glad to know that it is free to download and play on your Android device. There are different ways to download this game, depending on your preference and convenience. Here are some of the methods you can use:</p>
72
- <h3>Downloading Archer Attack 3D: Shooter War from Google Play Store</h3>
73
- <p>This is the easiest and most recommended way to download Archer Attack 3D: Shooter War on your device. All you have to do is follow these simple steps:</p>
74
- <ol>
75
- <li>Open the Google Play Store app on your device.</li>
76
- <li>Search for "Archer Attack 3D: Shooter War" in the search bar.</li>
77
- <li>Select the game from the list of results and tap on "Install".</li>
78
- <li>Wait for the game to download and install on your device.</li>
79
- <li>Launch the game and enjoy!</li>
80
- </ol>
81
- <p>This method ensures that you get the latest version of the game and that it is compatible with your device. You will also be able to update the game automatically whenever there is a new version available.</p>
82
- <h3>Downloading Archer Attack 3D: Shooter War from APKCombo</h3>
83
- <p>If you are unable to access the Google Play Store or if you want to download an older version of the game, you can use APKCombo, a website that provides APK files for various Android apps and games. To download Archer Attack 3D: Shooter War from APKCombo, follow these steps:</p>
84
- <ol>
85
- <li>Open your browser and go to <a href="">https://apkcombo.com/en-us/apk-downloader/</a>.</li>
86
- <li>Type "Archer Attack 3D: Shooter War" in the search box and click on "Search".</li>
87
- <li>Select the game from the list of results and choose the version you want to download.</li>
88
- <li>Click on "Download APK" and wait for the file to download on your device.</li>
89
- <li>Open the file manager app on your device and locate the downloaded APK file.</li>
90
- <li>Tap on the file and allow the installation of unknown sources if prompted.</li>
91
- <li>Wait for the game to install on your device.</li>
92
- <li>Launch the game and enjoy!</li>
93
- </ol>
94
- <p>This method allows you to download any version of the game you want, even if it is not available on the Google Play Store. However, you have to be careful about the source of the APK file, as some websites may contain malware or viruses. You also have to update the game manually whenever there is a new version available.</p>
95
- <h3>Downloading Archer Attack 3D: Shooter War on PC using BlueStacks</h3>
96
- <p>If you want to play Archer Attack 3D: Shooter War on your PC, you can use BlueStacks, an emulator that allows you to run Android apps and games on your computer. To download Archer Attack 3D: Shooter War on PC using BlueStacks, follow these steps:</p>
97
- <ol>
98
- <li>Download and install BlueStacks from <a href="">https://www.bluestacks.com/</a>.</li>
99
- <li>Launch BlueStacks and sign in with your Google account.</li>
100
- <li>Open the Google Play Store app within BlueStacks.</li>
101
- <li>Search for "Archer Attack 3D: Shooter War" in the search bar.</li>
102
- <li>Select the game from the list of results and click on "Install".</li>
103
- <li>Wait for the game to download and install on BlueStacks.</li>
104
- <li>Launch the game and enjoy!</li>
105
- </ol>
106
- <p>This method allows you to play Archer Attack 3D: Shooter War on a bigger screen and with better controls. You can also use your keyboard and mouse to aim and shoot your arrows. However, you have to make sure that your PC meets the minimum requirements for running BlueStacks smoothly.</p>
107
- <h2>How to play Archer Attack 3D: Shooter War like a pro?</h2>
108
- <p>Now that you have downloaded Archer Attack 3D: Shooter War on your device, you may be wondering how to play it like a pro. Well, don't worry, we have some tips and tricks for you that will help you improve your skills and performance in this game. Here are some of them:</p>
109
- <h3>Tips and tricks for aiming and shooting</h3>
110
- <ul>
111
- <li>Aim carefully before releasing your arrow. Don't rush or shoot randomly, as that will waste your arrows and time. Try to aim for the head or the chest of the enemies, as that will deal more damage and earn you more points.</li>
112
- <li>Use the wind indicator to adjust your angle and power. The wind can affect the direction and speed of your arrow, so you have to compensate for it. The wind indicator will show you the direction and strength of the wind, so you can use it as a guide.</li>
113
- <li>Use the zoom feature to get a better view of your target. You can zoom in and out by pinching on the screen. This will help you see the details and movements of your target, and make your shots more accurate.</li>
114
- </ul>
115
- <h3>Tips and tricks for leveling up and ranking up</h3>
116
- <ul>
117
- <li>Complete the missions and challenges to earn coins and stars. Coins are the currency of the game, which you can use to unlock and upgrade your arrows and gear. Stars are the indicators of your progress and performance, which you can use to unlock new levels and modes.</li>
118
- <li>Play the different modes to earn more coins and stars. The game has four modes: Campaign, Survival, Time Trial, and PvP. Each mode has its own objectives and rewards, so you can choose the one that suits your preference and skill level.</li>
119
- <li>Watch ads to get free coins and stars. The game will occasionally offer you to watch a short video ad in exchange for some coins or stars. This is an easy way to boost your resources without spending any real money.</li>
120
- </ul>
121
- <h3>Tips and tricks for using different arrows and gear</h3>
122
- <ul>
123
- <li>Experiment with different arrows and gear to find the best combination for your style. The game has a variety of arrows and gear that you can unlock and upgrade, such as fire arrows, ice arrows, explosive arrows, helmets, vests, gloves, boots, and more. Each arrow and gear has its own advantages and disadvantages, such as damage, range, speed, durability, effect, etc. You can mix and match them to create your own custom loadout.</li>
124
- <li>Use the right arrow and gear for the right situation. Some arrows and gear are more effective than others in certain scenarios, such as fire arrows against wooden targets, ice arrows against metal targets, explosive arrows against groups of enemies, helmets against headshots, vests against body shots, gloves against traps, boots against bombs, etc. You have to be smart and strategic about your choices.</li>
125
- <li>Upgrade your arrows and gear regularly to improve their performance. You can upgrade your arrows and gear by spending coins in the shop. Upgrading will increase their stats and abilities, such as damage, range, speed, durability, effect, etc. Upgrading will also change their appearance and make them look cooler.</li>
126
- </ul>
127
- <h2>Why should you play Archer Attack 3D: Shooter War?</h2>
128
- <p>Archer Attack 3D: Shooter War is a game that will appeal to anyone who loves archery games or shooting games. It is a game that will provide you with hours of fun and entertainment with its addictive gameplay and stunning graphics. Here are some of the reasons why you should play Archer Attack 3D: Shooter War:</p>
129
- <h3>The benefits of playing Archer Attack 3D: Shooter War</h3>
130
- <p>Playing Archer Attack 3D: Shooter War can have many benefits for you, such as:</p>
131
- <ul>
132
- <li>Improving your concentration and focus. You have to pay attention to every detail in this game, such as the wind, the distance, the movement of your target, etc. This will help you sharpen your mind and enhance your cognitive skills.</li>
133
- <li>Improving your hand-eye coordination and reflexes. You have to swipe on the screen to aim and release to shoot your arrow. You also have to react quickly to avoid or counterattack the enemies. This will help you improve your motor skills and reaction time.</li>
134
- <li>Improving your creativity and problem-solving skills. You have to use different arrows to win the game. This will help you improve your creativity and problem-solving skills.</li>
135
- <li>Relieving your stress and boredom. You can play this game anytime and anywhere, as it does not require an internet connection or a lot of storage space. You can also play this game for as long or as short as you want, as it has no time limit or energy system. You can also enjoy the fun and satisfaction of shooting arrows and hitting your targets. This will help you relieve your stress and boredom.</li>
136
- </ul>
137
- <h3>The reviews and ratings of Archer Attack 3D: Shooter War</h3>
138
- <p>Archer Attack 3D: Shooter War is a game that has received positive reviews and ratings from many players and critics. The game has a rating of 4.2 out of 5 stars on the Google Play Store, based on over 10,000 reviews. Some of the comments from the players are:</p>
139
- <blockquote>
140
- <p>"This is one of the best archer games I have ever played. The graphics are amazing and the gameplay is addictive. I love the different modes and levels, they are challenging and fun. I also like the different arrows and gear, they are cool and useful. I highly recommend this game to anyone who likes archery games or shooting games."</p>
141
- </blockquote>
142
- <blockquote>
143
- <p>"This game is awesome! It is very realistic and exciting. The physics and the effects are very good. The controls are smooth and easy to use. The missions and the scenarios are very interesting and varied. The sound and the music are also very good. This game is a must-have for archer fans."</p>
144
- </blockquote>
145
- <blockquote>
146
- <p>"This game is very entertaining and enjoyable. It is a great way to pass time and have fun. The graphics are beautiful and the design is unique. The gameplay is simple but challenging. The arrows and the gear are awesome and customizable. The modes and the levels are diverse and rewarding. This game is a great archer game."</p>
147
- </blockquote>
148
- <h2>Conclusion</h2>
149
- <p>Archer Attack 3D: Shooter War is a game that will give you an amazing archer experience with its stunning graphics and features. You will be able to download it for free on your Android device or your PC using different methods. You will also be able to play it like a pro using some tips and tricks that we have shared with you. You will also be able to enjoy the benefits of playing this game, such as improving your concentration, coordination, creativity, problem-solving skills, stress relief, and boredom relief. You will also be able to see the positive reviews and ratings of this game from other players and critics.</p>
150
- <p>If you are looking for a fun and exciting archer game that will challenge your skills and immerse you in an action-packed adventure, you should definitely try Archer Attack 3D: Shooter War. It is one of the best bowman games and shooting games available on Android devices. Download it now and enjoy!</p>
151
- <h2>FAQs</h2>
152
- <p>Here are some of the frequently asked questions about Archer Attack 3D: Shooter War:</p>
153
- <h4>Q: Is Archer Attack 3D: Shooter War free to play?</h4>
154
- <p>A: Yes, Archer Attack 3D: Shooter War is free to download and play on your Android device or your PC using BlueStacks. However, the game may contain some in-app purchases that can enhance your gameplay or remove ads.</p>
155
- <h4>Q: How can I contact the developer of Archer Attack 3D: Shooter War?</h4>
156
- <p>A: You can contact the developer of Archer Attack 3D: Shooter War by sending an email to <a href="">[email protected]</a>. You can also follow them on Facebook at <a href="">https://www.facebook.com/matchinghamgames/</a>.</p>
157
- <h4>Q: How can I report a bug or a problem in Archer Attack 3D: Shooter War?</h4>
158
- <p>A: You can report a bug or a problem in Archer Attack 3D: Shooter War by sending an email to <a href="">[email protected]</a>. You can also leave a comment on the Google Play Store page of the game or on their Facebook page.</p>
159
- <h4>Q: How can I share my feedback or suggestions for Archer Attack 3D: Shooter War?</h4>
160
- <p>A: You can share your feedback or suggestions for Archer Attack 3D: Shooter War by sending an email to <a href="">[email protected]</a>. You can also leave a review on the Google Play Store page of the game or on their Facebook page.</p>
161
- <h4>Q: How can I support Archer Attack 3D: Shooter War?</h4>
162
- <p>A: You can support Archer Attack 3D: Shooter War by doing any of the following things:</p>
163
- <ul>
164
- <li>Rate and review the game on the Google Play Store or on their Facebook page.</li>
165
- <li>Share the game with your friends and family on social media or by word of mouth.</li>
166
- <li>Make an in-app purchase to get more coins, stars, or remove ads.</li>
167
- </ul>
168
- <p>These actions will help the developer to improve the game and to create more games like this in the future.</p> 197e85843d<br />
169
- <br />
170
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/2023Liu2023/bingo/src/components/ui/badge.tsx DELETED
@@ -1,36 +0,0 @@
1
- import * as React from 'react'
2
- import { cva, type VariantProps } from 'class-variance-authority'
3
-
4
- import { cn } from '@/lib/utils'
5
-
6
- const badgeVariants = cva(
7
- 'inline-flex items-center rounded-full border px-2.5 py-0.5 text-xs font-semibold transition-colors focus:outline-none focus:ring-2 focus:ring-ring focus:ring-offset-2',
8
- {
9
- variants: {
10
- variant: {
11
- default:
12
- 'border-transparent bg-primary text-primary-foreground hover:bg-primary/80',
13
- secondary:
14
- 'border-transparent bg-secondary text-secondary-foreground hover:bg-secondary/80',
15
- destructive:
16
- 'border-transparent bg-destructive text-destructive-foreground hover:bg-destructive/80',
17
- outline: 'text-foreground'
18
- }
19
- },
20
- defaultVariants: {
21
- variant: 'default'
22
- }
23
- }
24
- )
25
-
26
- export interface BadgeProps
27
- extends React.HTMLAttributes<HTMLDivElement>,
28
- VariantProps<typeof badgeVariants> {}
29
-
30
- function Badge({ className, variant, ...props }: BadgeProps) {
31
- return (
32
- <div className={cn(badgeVariants({ variant }), className)} {...props} />
33
- )
34
- }
35
-
36
- export { Badge, badgeVariants }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/2ndelement/voicevox/voicevox_engine/morphing.py DELETED
@@ -1,208 +0,0 @@
1
- from copy import deepcopy
2
- from dataclasses import dataclass
3
- from itertools import chain
4
- from typing import Dict, List, Tuple
5
-
6
- import numpy as np
7
- import pyworld as pw
8
- from scipy.signal import resample
9
-
10
- from .metas.Metas import Speaker, SpeakerSupportPermittedSynthesisMorphing, StyleInfo
11
- from .metas.MetasStore import construct_lookup
12
- from .model import AudioQuery, MorphableTargetInfo, SpeakerNotFoundError
13
- from .synthesis_engine import SynthesisEngine
14
-
15
-
16
- # FIXME: ndarray type hint, https://github.com/JeremyCCHsu/Python-Wrapper-for-World-Vocoder/blob/2b64f86197573497c685c785c6e0e743f407b63e/pyworld/pyworld.pyx#L398 # noqa
17
- @dataclass(frozen=True)
18
- class MorphingParameter:
19
- fs: int
20
- frame_period: float
21
- base_f0: np.ndarray
22
- base_aperiodicity: np.ndarray
23
- base_spectrogram: np.ndarray
24
- target_spectrogram: np.ndarray
25
-
26
-
27
- def create_morphing_parameter(
28
- base_wave: np.ndarray,
29
- target_wave: np.ndarray,
30
- fs: int,
31
- ) -> MorphingParameter:
32
- frame_period = 1.0
33
- base_f0, base_time_axis = pw.harvest(base_wave, fs, frame_period=frame_period)
34
- base_spectrogram = pw.cheaptrick(base_wave, base_f0, base_time_axis, fs)
35
- base_aperiodicity = pw.d4c(base_wave, base_f0, base_time_axis, fs)
36
-
37
- target_f0, morph_time_axis = pw.harvest(target_wave, fs, frame_period=frame_period)
38
- target_spectrogram = pw.cheaptrick(target_wave, target_f0, morph_time_axis, fs)
39
- target_spectrogram.resize(base_spectrogram.shape)
40
-
41
- return MorphingParameter(
42
- fs=fs,
43
- frame_period=frame_period,
44
- base_f0=base_f0,
45
- base_aperiodicity=base_aperiodicity,
46
- base_spectrogram=base_spectrogram,
47
- target_spectrogram=target_spectrogram,
48
- )
49
-
50
-
51
- def get_morphable_targets(
52
- speakers: List[Speaker],
53
- base_speakers: List[int],
54
- ) -> List[Dict[int, MorphableTargetInfo]]:
55
- """
56
- speakers: 全話者の情報
57
- base_speakers: モーフィング可能か判定したいベースの話者リスト(スタイルID)
58
- """
59
- speaker_lookup = construct_lookup(speakers)
60
-
61
- morphable_targets_arr = []
62
- for base_speaker in base_speakers:
63
- morphable_targets = dict()
64
- for style in chain.from_iterable(speaker.styles for speaker in speakers):
65
- morphable_targets[style.id] = MorphableTargetInfo(
66
- is_morphable=is_synthesis_morphing_permitted(
67
- speaker_lookup=speaker_lookup,
68
- base_speaker=base_speaker,
69
- target_speaker=style.id,
70
- )
71
- )
72
- morphable_targets_arr.append(morphable_targets)
73
-
74
- return morphable_targets_arr
75
-
76
-
77
- def is_synthesis_morphing_permitted(
78
- speaker_lookup: Dict[int, Tuple[Speaker, StyleInfo]],
79
- base_speaker: int,
80
- target_speaker: int,
81
- ) -> bool:
82
- """
83
- 指定されたspeakerがモーフィング可能かどうか返す
84
- speakerが見つからない場合はSpeakerNotFoundErrorを送出する
85
- """
86
-
87
- base_speaker_data = speaker_lookup[base_speaker]
88
- target_speaker_data = speaker_lookup[target_speaker]
89
-
90
- if base_speaker_data is None or target_speaker_data is None:
91
- raise SpeakerNotFoundError(
92
- base_speaker if base_speaker_data is None else target_speaker
93
- )
94
-
95
- base_speaker_info, _ = base_speaker_data
96
- target_speaker_info, _ = target_speaker_data
97
-
98
- base_speaker_uuid = base_speaker_info.speaker_uuid
99
- target_speaker_uuid = target_speaker_info.speaker_uuid
100
-
101
- base_speaker_morphing_info: SpeakerSupportPermittedSynthesisMorphing = (
102
- base_speaker_info.supported_features.permitted_synthesis_morphing
103
- )
104
-
105
- target_speaker_morphing_info: SpeakerSupportPermittedSynthesisMorphing = (
106
- target_speaker_info.supported_features.permitted_synthesis_morphing
107
- )
108
-
109
- # 禁止されている場合はFalse
110
- if (
111
- base_speaker_morphing_info == SpeakerSupportPermittedSynthesisMorphing.NOTHING
112
- or target_speaker_morphing_info
113
- == SpeakerSupportPermittedSynthesisMorphing.NOTHING
114
- ):
115
- return False
116
- # 同一話者のみの場合は同一話者判定
117
- if (
118
- base_speaker_morphing_info == SpeakerSupportPermittedSynthesisMorphing.SELF_ONLY
119
- or target_speaker_morphing_info
120
- == SpeakerSupportPermittedSynthesisMorphing.SELF_ONLY
121
- ):
122
- return base_speaker_uuid == target_speaker_uuid
123
- # 念のため許可されているかチェック
124
- return (
125
- base_speaker_morphing_info == SpeakerSupportPermittedSynthesisMorphing.ALL
126
- and target_speaker_morphing_info == SpeakerSupportPermittedSynthesisMorphing.ALL
127
- )
128
-
129
-
130
- def synthesis_morphing_parameter(
131
- engine: SynthesisEngine,
132
- query: AudioQuery,
133
- base_speaker: int,
134
- target_speaker: int,
135
- ) -> MorphingParameter:
136
- query = deepcopy(query)
137
-
138
- # 不具合回避のためデフォルトのサンプリングレートでWORLDに掛けた後に指定のサンプリングレートに変換する
139
- query.outputSamplingRate = engine.default_sampling_rate
140
-
141
- # WORLDに掛けるため合成はモノラルで行う
142
- query.outputStereo = False
143
-
144
- base_wave = engine.synthesis(query=query, speaker_id=base_speaker).astype("float")
145
- target_wave = engine.synthesis(query=query, speaker_id=target_speaker).astype(
146
- "float"
147
- )
148
-
149
- return create_morphing_parameter(
150
- base_wave=base_wave,
151
- target_wave=target_wave,
152
- fs=query.outputSamplingRate,
153
- )
154
-
155
-
156
- def synthesis_morphing(
157
- morph_param: MorphingParameter,
158
- morph_rate: float,
159
- output_fs: int,
160
- output_stereo: bool = False,
161
- ) -> np.ndarray:
162
- """
163
- 指定した割合で、パラメータをもとにモーフィングした音声を生成します。
164
-
165
- Parameters
166
- ----------
167
- morph_param : MorphingParameter
168
- `synthesis_morphing_parameter`または`create_morphing_parameter`で作成したパラメータ
169
-
170
- morph_rate : float
171
- モーフィングの割合
172
- 0.0でベースの話者、1.0でターゲットの話者に近づきます。
173
-
174
- Returns
175
- -------
176
- generated : np.ndarray
177
- モーフィングした音声
178
-
179
- Raises
180
- -------
181
- ValueError
182
- morph_rate ∈ [0, 1]
183
- """
184
-
185
- if morph_rate < 0.0 or morph_rate > 1.0:
186
- raise ValueError("morph_rateは0.0から1.0の範囲で指定してください")
187
-
188
- morph_spectrogram = (
189
- morph_param.base_spectrogram * (1.0 - morph_rate)
190
- + morph_param.target_spectrogram * morph_rate
191
- )
192
-
193
- y_h = pw.synthesize(
194
- morph_param.base_f0,
195
- morph_spectrogram,
196
- morph_param.base_aperiodicity,
197
- morph_param.fs,
198
- morph_param.frame_period,
199
- )
200
-
201
- # TODO: synthesis_engine.py でのリサンプル処理と共通化する
202
- if output_fs != morph_param.fs:
203
- y_h = resample(y_h, output_fs * len(y_h) // morph_param.fs)
204
-
205
- if output_stereo:
206
- y_h = np.array([y_h, y_h]).T
207
-
208
- return y_h
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/4Taps/SadTalker/src/utils/hparams.py DELETED
@@ -1,160 +0,0 @@
1
- from glob import glob
2
- import os
3
-
4
- class HParams:
5
- def __init__(self, **kwargs):
6
- self.data = {}
7
-
8
- for key, value in kwargs.items():
9
- self.data[key] = value
10
-
11
- def __getattr__(self, key):
12
- if key not in self.data:
13
- raise AttributeError("'HParams' object has no attribute %s" % key)
14
- return self.data[key]
15
-
16
- def set_hparam(self, key, value):
17
- self.data[key] = value
18
-
19
-
20
- # Default hyperparameters
21
- hparams = HParams(
22
- num_mels=80, # Number of mel-spectrogram channels and local conditioning dimensionality
23
- # network
24
- rescale=True, # Whether to rescale audio prior to preprocessing
25
- rescaling_max=0.9, # Rescaling value
26
-
27
- # Use LWS (https://github.com/Jonathan-LeRoux/lws) for STFT and phase reconstruction
28
- # It"s preferred to set True to use with https://github.com/r9y9/wavenet_vocoder
29
- # Does not work if n_ffit is not multiple of hop_size!!
30
- use_lws=False,
31
-
32
- n_fft=800, # Extra window size is filled with 0 paddings to match this parameter
33
- hop_size=200, # For 16000Hz, 200 = 12.5 ms (0.0125 * sample_rate)
34
- win_size=800, # For 16000Hz, 800 = 50 ms (If None, win_size = n_fft) (0.05 * sample_rate)
35
- sample_rate=16000, # 16000Hz (corresponding to librispeech) (sox --i <filename>)
36
-
37
- frame_shift_ms=None, # Can replace hop_size parameter. (Recommended: 12.5)
38
-
39
- # Mel and Linear spectrograms normalization/scaling and clipping
40
- signal_normalization=True,
41
- # Whether to normalize mel spectrograms to some predefined range (following below parameters)
42
- allow_clipping_in_normalization=True, # Only relevant if mel_normalization = True
43
- symmetric_mels=True,
44
- # Whether to scale the data to be symmetric around 0. (Also multiplies the output range by 2,
45
- # faster and cleaner convergence)
46
- max_abs_value=4.,
47
- # max absolute value of data. If symmetric, data will be [-max, max] else [0, max] (Must not
48
- # be too big to avoid gradient explosion,
49
- # not too small for fast convergence)
50
- # Contribution by @begeekmyfriend
51
- # Spectrogram Pre-Emphasis (Lfilter: Reduce spectrogram noise and helps model certitude
52
- # levels. Also allows for better G&L phase reconstruction)
53
- preemphasize=True, # whether to apply filter
54
- preemphasis=0.97, # filter coefficient.
55
-
56
- # Limits
57
- min_level_db=-100,
58
- ref_level_db=20,
59
- fmin=55,
60
- # Set this to 55 if your speaker is male! if female, 95 should help taking off noise. (To
61
- # test depending on dataset. Pitch info: male~[65, 260], female~[100, 525])
62
- fmax=7600, # To be increased/reduced depending on data.
63
-
64
- ###################### Our training parameters #################################
65
- img_size=96,
66
- fps=25,
67
-
68
- batch_size=16,
69
- initial_learning_rate=1e-4,
70
- nepochs=300000, ### ctrl + c, stop whenever eval loss is consistently greater than train loss for ~10 epochs
71
- num_workers=20,
72
- checkpoint_interval=3000,
73
- eval_interval=3000,
74
- writer_interval=300,
75
- save_optimizer_state=True,
76
-
77
- syncnet_wt=0.0, # is initially zero, will be set automatically to 0.03 later. Leads to faster convergence.
78
- syncnet_batch_size=64,
79
- syncnet_lr=1e-4,
80
- syncnet_eval_interval=1000,
81
- syncnet_checkpoint_interval=10000,
82
-
83
- disc_wt=0.07,
84
- disc_initial_learning_rate=1e-4,
85
- )
86
-
87
-
88
-
89
- # Default hyperparameters
90
- hparamsdebug = HParams(
91
- num_mels=80, # Number of mel-spectrogram channels and local conditioning dimensionality
92
- # network
93
- rescale=True, # Whether to rescale audio prior to preprocessing
94
- rescaling_max=0.9, # Rescaling value
95
-
96
- # Use LWS (https://github.com/Jonathan-LeRoux/lws) for STFT and phase reconstruction
97
- # It"s preferred to set True to use with https://github.com/r9y9/wavenet_vocoder
98
- # Does not work if n_ffit is not multiple of hop_size!!
99
- use_lws=False,
100
-
101
- n_fft=800, # Extra window size is filled with 0 paddings to match this parameter
102
- hop_size=200, # For 16000Hz, 200 = 12.5 ms (0.0125 * sample_rate)
103
- win_size=800, # For 16000Hz, 800 = 50 ms (If None, win_size = n_fft) (0.05 * sample_rate)
104
- sample_rate=16000, # 16000Hz (corresponding to librispeech) (sox --i <filename>)
105
-
106
- frame_shift_ms=None, # Can replace hop_size parameter. (Recommended: 12.5)
107
-
108
- # Mel and Linear spectrograms normalization/scaling and clipping
109
- signal_normalization=True,
110
- # Whether to normalize mel spectrograms to some predefined range (following below parameters)
111
- allow_clipping_in_normalization=True, # Only relevant if mel_normalization = True
112
- symmetric_mels=True,
113
- # Whether to scale the data to be symmetric around 0. (Also multiplies the output range by 2,
114
- # faster and cleaner convergence)
115
- max_abs_value=4.,
116
- # max absolute value of data. If symmetric, data will be [-max, max] else [0, max] (Must not
117
- # be too big to avoid gradient explosion,
118
- # not too small for fast convergence)
119
- # Contribution by @begeekmyfriend
120
- # Spectrogram Pre-Emphasis (Lfilter: Reduce spectrogram noise and helps model certitude
121
- # levels. Also allows for better G&L phase reconstruction)
122
- preemphasize=True, # whether to apply filter
123
- preemphasis=0.97, # filter coefficient.
124
-
125
- # Limits
126
- min_level_db=-100,
127
- ref_level_db=20,
128
- fmin=55,
129
- # Set this to 55 if your speaker is male! if female, 95 should help taking off noise. (To
130
- # test depending on dataset. Pitch info: male~[65, 260], female~[100, 525])
131
- fmax=7600, # To be increased/reduced depending on data.
132
-
133
- ###################### Our training parameters #################################
134
- img_size=96,
135
- fps=25,
136
-
137
- batch_size=2,
138
- initial_learning_rate=1e-3,
139
- nepochs=100000, ### ctrl + c, stop whenever eval loss is consistently greater than train loss for ~10 epochs
140
- num_workers=0,
141
- checkpoint_interval=10000,
142
- eval_interval=10,
143
- writer_interval=5,
144
- save_optimizer_state=True,
145
-
146
- syncnet_wt=0.0, # is initially zero, will be set automatically to 0.03 later. Leads to faster convergence.
147
- syncnet_batch_size=64,
148
- syncnet_lr=1e-4,
149
- syncnet_eval_interval=10000,
150
- syncnet_checkpoint_interval=10000,
151
-
152
- disc_wt=0.07,
153
- disc_initial_learning_rate=1e-4,
154
- )
155
-
156
-
157
- def hparams_debug_string():
158
- values = hparams.values()
159
- hp = [" %s: %s" % (name, values[name]) for name in sorted(values) if name != "sentences"]
160
- return "Hyperparameters:\n" + "\n".join(hp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AI-Hobbyist/Hoyo-RVC/docs/faiss_tips_ja.md DELETED
@@ -1,101 +0,0 @@
1
- faiss tuning TIPS
2
- ==================
3
- # about faiss
4
- faissはfacebook researchの開発する、密なベクトルに対する近傍探索をまとめたライブラリで、多くの近似近傍探索の手法を効率的に実装しています。
5
- 近似近傍探索はある程度精度を犠牲にしながら高速に類似するベクトルを探します。
6
-
7
- ## faiss in RVC
8
- RVCではHuBERTで変換した特徴量のEmbeddingに対し、学習データから生成されたEmbeddingと類似するものを検索し、混ぜることでより元の音声に近い変換を実現しています。ただ、この検索は愚直に行うと時間がかかるため、近似近傍探索を用いることで高速な変換を実現しています。
9
-
10
- # 実装のoverview
11
- モデルが配置されている '/logs/your-experiment/3_feature256'には各音声データからHuBERTで抽出された特徴量が配置されています。
12
- ここからnpyファイルをファイル名でソートした順番で読み込み、ベクトルを連結してbig_npyを作成しfaissを学習させます。(このベクトルのshapeは[N, 256]です。)
13
-
14
- 本Tipsではまずこれらのパラメータの意味を解説します。
15
-
16
- # 手法の解説
17
- ## index factory
18
- index factoryは複数の近似近傍探索の手法を繋げるパイプラインをstringで表記するfaiss独自の記法です。
19
- これにより、index factoryの文字列を変更するだけで様々な近似近傍探索の手法を試せます。
20
- RVCでは以下のように使われています。
21
-
22
- ```python
23
- index = faiss.index_factory(256, "IVF%s,Flat" % n_ivf)
24
- ```
25
- index_factoryの引数のうち、1つ目はベクトルの次元数、2つ目はindex factoryの文字列で、3つ目には用いる距離を指定することができます。
26
-
27
- より詳細な記法については
28
- https://github.com/facebookresearch/faiss/wiki/The-index-factory
29
-
30
- ## 距離指標
31
- embeddingの類似度として用いられる代表的な指標として以下の二つがあります。
32
-
33
- - ユークリッド距離(METRIC_L2)
34
- - 内積(METRIC_INNER_PRODUCT)
35
-
36
- ユークリッド距離では各次元において二乗の差をとり、全次元の差を足してから平方根をとります。これは日常的に用いる2次元、3次元での距離と同じです。
37
- 内積はこのままでは類似度の指標として用いず、一般的にはL2ノルムで正規化してから内積をとるコサイン類似度を用います。
38
-
39
- どちらがよいかは場合によりますが、word2vec等で得られるembeddingやArcFace等で学習した類似画像検索のモデルではコサイン類似度が用いられることが多いです。ベクトルXに対してl2正規化をnumpyで行う場合は、0 divisionを避けるために十分に小さな値をepsとして以下のコードで可能です。
40
-
41
- ```python
42
- X_normed = X / np.maximum(eps, np.linalg.norm(X, ord=2, axis=-1, keepdims=True))
43
- ```
44
-
45
- また、index factoryには第3引数に渡す値を選ぶことで計算に用いる距離指標を変更できます。
46
-
47
- ```python
48
- index = faiss.index_factory(dimention, text, faiss.METRIC_INNER_PRODUCT)
49
- ```
50
-
51
- ## IVF
52
- IVF(Inverted file indexes)は全文検索における転置インデックスと似たようなアルゴリズムです。
53
- 学習時には検索対象に対してkmeansでクラスタリングを行い、クラスタ中心を用いてボロノイ分割を行います。各データ点には一つずつクラスタが割り当てられるので、クラスタからデータ点を逆引きする辞書を作成します。
54
-
55
- 例えば以下のようにクラスタが割り当てられた場合
56
- |index|クラスタ|
57
- |-----|-------|
58
- |1|A|
59
- |2|B|
60
- |3|A|
61
- |4|C|
62
- |5|B|
63
-
64
- 作成される転置インデックスは以下のようになります。
65
-
66
- |クラスタ|index|
67
- |-------|-----|
68
- |A|1, 3|
69
- |B|2, 5|
70
- |C|4|
71
-
72
- 検索時にはまずクラスタからn_probe個のクラスタを検索し、次にそれぞれのクラスタに属するデータ点について距離を計算します。
73
-
74
- # 推奨されるパラメータ
75
- indexの選び方については公式にガイドラインがあるので、それに準じて説明します。
76
- https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index
77
-
78
- 1M以下のデータセットにおいては4bit-PQが2023年4月時点ではfaissで利用できる最も効率的な手法です。
79
- これをIVFと組み合わせ、4bit-PQで候補を絞り、最後に正確な指標で距離を再計算するには以下のindex factoryを用いることで記載できます。
80
-
81
- ```python
82
- index = faiss.index_factory(256, "IVF1024,PQ128x4fs,RFlat")
83
- ```
84
-
85
- ## IVFの推奨パラメータ
86
- IVFの数が多すぎる場合、たとえばデータ数の数だけIVFによる粗量子化を行うと、これは愚直な全探索と同じになり効率が悪いです。
87
- 1M以下の場合ではIVFの値はデータ点の数Nに対して4*sqrt(N) ~ 16*sqrt(N)に推奨しています。
88
-
89
- n_probeはn_probeの数に比例して計算時間が増えるので、精度と相談して適切に選んでください。個人的にはRVCにおいてそこまで精度は必要ないと思うのでn_probe = 1で良いと思います。
90
-
91
- ## FastScan
92
- FastScanは直積量子化で大まかに距離を近似するのを、レジスタ内で行うことにより高速に行うようにした手法です。
93
- 直積量子化は学習時にd次元ごと(通常はd=2)に独立してクラスタリングを行い、クラスタ同士の距離を事前計算してlookup tableを作成します。予測時はlookup tableを見ることで各次元の距離をO(1)で計算できます。
94
- そのため、PQの次に指定する数字は通常ベクトルの半分の次元を指定します。
95
-
96
- FastScanに関するより詳細な説明は公式のドキュメントを参照してください。
97
- https://github.com/facebookresearch/faiss/wiki/Fast-accumulation-of-PQ-and-AQ-codes-(FastScan)
98
-
99
- ## RFlat
100
- RFlatはFastScanで計算した大まかな距離を、index factoryの第三引数で指定した正確な距離で再計算する指示です。
101
- k個の近傍を取得する際は、k*k_factor個の点について再計算が行われます。
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AIGC-Audio/AudioGPT/NeuralSeq/data_gen/tts/base_preprocess.py DELETED
@@ -1,254 +0,0 @@
1
- import json
2
- import os
3
- import random
4
- import re
5
- import traceback
6
- from collections import Counter
7
- from functools import partial
8
- import pandas as pd
9
- import librosa
10
- from tqdm import tqdm
11
- from data_gen.tts.txt_processors.base_text_processor import get_txt_processor_cls
12
- from data_gen.tts.wav_processors.base_processor import get_wav_processor_cls
13
- from utils.hparams import hparams
14
- from utils.multiprocess_utils import multiprocess_run_tqdm
15
- from utils.os_utils import link_file, move_file, remove_file
16
- from data_gen.tts.data_gen_utils import is_sil_phoneme, build_token_encoder
17
-
18
-
19
- class BasePreprocessor:
20
- def __init__(self):
21
- self.preprocess_args = hparams['preprocess_args']
22
- txt_processor = self.preprocess_args['txt_processor']
23
- self.txt_processor = get_txt_processor_cls(txt_processor)
24
- self.raw_data_dir = hparams['raw_data_dir']
25
- self.processed_dir = hparams['processed_data_dir']
26
- self.spk_map_fn = f"{self.processed_dir}/spk_map.json"
27
-
28
- def meta_data(self):
29
- """
30
- :return: {'item_name': Str, 'wav_fn': Str, 'txt': Str, 'spk_name': Str, 'txt_loader': None or Func}
31
- """
32
- raise NotImplementedError
33
-
34
- def process(self):
35
- processed_dir = self.processed_dir
36
- wav_processed_tmp_dir = f'{processed_dir}/processed_tmp'
37
- remove_file(wav_processed_tmp_dir)
38
- os.makedirs(wav_processed_tmp_dir, exist_ok=True)
39
- wav_processed_dir = f'{processed_dir}/{self.wav_processed_dirname}'
40
- remove_file(wav_processed_dir)
41
- os.makedirs(wav_processed_dir, exist_ok=True)
42
-
43
- meta_data = list(tqdm(self.meta_data(), desc='Load meta data'))
44
- item_names = [d['item_name'] for d in meta_data]
45
- assert len(item_names) == len(set(item_names)), 'Key `item_name` should be Unique.'
46
-
47
- # preprocess data
48
- phone_list = []
49
- word_list = []
50
- spk_names = set()
51
- process_item = partial(self.preprocess_first_pass,
52
- txt_processor=self.txt_processor,
53
- wav_processed_dir=wav_processed_dir,
54
- wav_processed_tmp=wav_processed_tmp_dir,
55
- preprocess_args=self.preprocess_args)
56
- items = []
57
- args = [{
58
- 'item_name': item_raw['item_name'],
59
- 'txt_raw': item_raw['txt'],
60
- 'wav_fn': item_raw['wav_fn'],
61
- 'txt_loader': item_raw.get('txt_loader'),
62
- 'others': item_raw.get('others', None)
63
- } for item_raw in meta_data]
64
- for item_, (item_id, item) in zip(meta_data, multiprocess_run_tqdm(process_item, args, desc='Preprocess')):
65
- if item is not None:
66
- item_.update(item)
67
- item = item_
68
- if 'txt_loader' in item:
69
- del item['txt_loader']
70
- item['id'] = item_id
71
- item['spk_name'] = item.get('spk_name', '<SINGLE_SPK>')
72
- item['others'] = item.get('others', None)
73
- phone_list += item['ph'].split(" ")
74
- word_list += item['word'].split(" ")
75
- spk_names.add(item['spk_name'])
76
- items.append(item)
77
-
78
- # add encoded tokens
79
- ph_encoder, word_encoder = self._phone_encoder(phone_list), self._word_encoder(word_list)
80
- spk_map = self.build_spk_map(spk_names)
81
- args = [{
82
- 'ph': item['ph'], 'word': item['word'], 'spk_name': item['spk_name'],
83
- 'word_encoder': word_encoder, 'ph_encoder': ph_encoder, 'spk_map': spk_map
84
- } for item in items]
85
- for idx, item_new_kv in multiprocess_run_tqdm(self.preprocess_second_pass, args, desc='Add encoded tokens'):
86
- items[idx].update(item_new_kv)
87
-
88
- # build mfa data
89
- if self.preprocess_args['use_mfa']:
90
- mfa_dict = set()
91
- mfa_input_dir = f'{processed_dir}/mfa_inputs'
92
- remove_file(mfa_input_dir)
93
- # group MFA inputs for better parallelism
94
- mfa_groups = [i // self.preprocess_args['nsample_per_mfa_group'] for i in range(len(items))]
95
- if self.preprocess_args['mfa_group_shuffle']:
96
- random.seed(hparams['seed'])
97
- random.shuffle(mfa_groups)
98
- args = [{
99
- 'item': item, 'mfa_input_dir': mfa_input_dir,
100
- 'mfa_group': mfa_group, 'wav_processed_tmp': wav_processed_tmp_dir,
101
- 'preprocess_args': self.preprocess_args
102
- } for item, mfa_group in zip(items, mfa_groups)]
103
- for i, (ph_gb_word_nosil, new_wav_align_fn) in multiprocess_run_tqdm(
104
- self.build_mfa_inputs, args, desc='Build MFA data'):
105
- items[i]['wav_align_fn'] = new_wav_align_fn
106
- for w in ph_gb_word_nosil.split(" "):
107
- mfa_dict.add(f"{w} {w.replace('_', ' ')}")
108
- mfa_dict = sorted(mfa_dict)
109
- with open(f'{processed_dir}/mfa_dict.txt', 'w') as f:
110
- f.writelines([f'{l}\n' for l in mfa_dict])
111
- with open(f"{processed_dir}/{self.meta_csv_filename}.json", 'w') as f:
112
- f.write(re.sub(r'\n\s+([\d+\]])', r'\1', json.dumps(items, ensure_ascii=False, sort_keys=False, indent=1)))
113
- remove_file(wav_processed_tmp_dir)
114
-
115
-
116
- @classmethod
117
- def preprocess_first_pass(cls, item_name, txt_raw, txt_processor,
118
- wav_fn, wav_processed_dir, wav_processed_tmp,
119
- preprocess_args, txt_loader=None, others=None):
120
- try:
121
- if txt_loader is not None:
122
- txt_raw = txt_loader(txt_raw)
123
- ph, txt, word, ph2word, ph_gb_word = cls.txt_to_ph(txt_processor, txt_raw, preprocess_args)
124
- wav_fn, wav_align_fn = cls.process_wav(
125
- item_name, wav_fn,
126
- hparams['processed_data_dir'],
127
- wav_processed_tmp, preprocess_args)
128
-
129
- # wav for binarization
130
- ext = os.path.splitext(wav_fn)[1]
131
- os.makedirs(wav_processed_dir, exist_ok=True)
132
- new_wav_fn = f"{wav_processed_dir}/{item_name}{ext}"
133
- move_link_func = move_file if os.path.dirname(wav_fn) == wav_processed_tmp else link_file
134
- move_link_func(wav_fn, new_wav_fn)
135
- return {
136
- 'txt': txt, 'txt_raw': txt_raw, 'ph': ph,
137
- 'word': word, 'ph2word': ph2word, 'ph_gb_word': ph_gb_word,
138
- 'wav_fn': new_wav_fn, 'wav_align_fn': wav_align_fn,
139
- 'others': others
140
- }
141
- except:
142
- traceback.print_exc()
143
- print(f"| Error is caught. item_name: {item_name}.")
144
- return None
145
-
146
- @staticmethod
147
- def txt_to_ph(txt_processor, txt_raw, preprocess_args):
148
- txt_struct, txt = txt_processor.process(txt_raw, preprocess_args)
149
- ph = [p for w in txt_struct for p in w[1]]
150
- ph_gb_word = ["_".join(w[1]) for w in txt_struct]
151
- words = [w[0] for w in txt_struct]
152
- # word_id=0 is reserved for padding
153
- ph2word = [w_id + 1 for w_id, w in enumerate(txt_struct) for _ in range(len(w[1]))]
154
- return " ".join(ph), txt, " ".join(words), ph2word, " ".join(ph_gb_word)
155
-
156
- @staticmethod
157
- def process_wav(item_name, wav_fn, processed_dir, wav_processed_tmp, preprocess_args):
158
- processors = [get_wav_processor_cls(v) for v in preprocess_args['wav_processors']]
159
- processors = [k() for k in processors if k is not None]
160
- if len(processors) >= 1:
161
- sr_file = librosa.core.get_samplerate(wav_fn)
162
- output_fn_for_align = None
163
- ext = os.path.splitext(wav_fn)[1]
164
- input_fn = f"{wav_processed_tmp}/{item_name}{ext}"
165
- link_file(wav_fn, input_fn)
166
- for p in processors:
167
- outputs = p.process(input_fn, sr_file, wav_processed_tmp, processed_dir, item_name, preprocess_args)
168
- if len(outputs) == 3:
169
- input_fn, sr, output_fn_for_align = outputs
170
- else:
171
- input_fn, sr = outputs
172
- if output_fn_for_align is None:
173
- return input_fn, input_fn
174
- else:
175
- return input_fn, output_fn_for_align
176
- else:
177
- return wav_fn, wav_fn
178
-
179
- def _phone_encoder(self, ph_set):
180
- ph_set_fn = f"{self.processed_dir}/phone_set.json"
181
- if self.preprocess_args['reset_phone_dict'] or not os.path.exists(ph_set_fn):
182
- ph_set = sorted(set(ph_set))
183
- json.dump(ph_set, open(ph_set_fn, 'w'), ensure_ascii=False)
184
- print("| Build phone set: ", ph_set)
185
- else:
186
- ph_set = json.load(open(ph_set_fn, 'r'))
187
- print("| Load phone set: ", ph_set)
188
- return build_token_encoder(ph_set_fn)
189
-
190
- def _word_encoder(self, word_set):
191
- word_set_fn = f"{self.processed_dir}/word_set.json"
192
- if self.preprocess_args['reset_word_dict']:
193
- word_set = Counter(word_set)
194
- total_words = sum(word_set.values())
195
- word_set = word_set.most_common(hparams['word_dict_size'])
196
- num_unk_words = total_words - sum([x[1] for x in word_set])
197
- word_set = ['<BOS>', '<EOS>'] + [x[0] for x in word_set]
198
- word_set = sorted(set(word_set))
199
- json.dump(word_set, open(word_set_fn, 'w'), ensure_ascii=False)
200
- print(f"| Build word set. Size: {len(word_set)}, #total words: {total_words},"
201
- f" #unk_words: {num_unk_words}, word_set[:10]:, {word_set[:10]}.")
202
- else:
203
- word_set = json.load(open(word_set_fn, 'r'))
204
- print("| Load word set. Size: ", len(word_set), word_set[:10])
205
- return build_token_encoder(word_set_fn)
206
-
207
- @classmethod
208
- def preprocess_second_pass(cls, word, ph, spk_name, word_encoder, ph_encoder, spk_map):
209
- word_token = word_encoder.encode(word)
210
- ph_token = ph_encoder.encode(ph)
211
- spk_id = spk_map[spk_name]
212
- return {'word_token': word_token, 'ph_token': ph_token, 'spk_id': spk_id}
213
-
214
- def build_spk_map(self, spk_names):
215
- spk_map = {x: i for i, x in enumerate(sorted(list(spk_names)))}
216
- assert len(spk_map) == 0 or len(spk_map) <= hparams['num_spk'], len(spk_map)
217
- print(f"| Number of spks: {len(spk_map)}, spk_map: {spk_map}")
218
- json.dump(spk_map, open(self.spk_map_fn, 'w'), ensure_ascii=False)
219
- return spk_map
220
-
221
- @classmethod
222
- def build_mfa_inputs(cls, item, mfa_input_dir, mfa_group, wav_processed_tmp, preprocess_args):
223
- item_name = item['item_name']
224
- wav_align_fn = item['wav_align_fn']
225
- ph_gb_word = item['ph_gb_word']
226
- ext = os.path.splitext(wav_align_fn)[1]
227
- mfa_input_group_dir = f'{mfa_input_dir}/{mfa_group}'
228
- os.makedirs(mfa_input_group_dir, exist_ok=True)
229
- new_wav_align_fn = f"{mfa_input_group_dir}/{item_name}{ext}"
230
- move_link_func = move_file if os.path.dirname(wav_align_fn) == wav_processed_tmp else link_file
231
- move_link_func(wav_align_fn, new_wav_align_fn)
232
- ph_gb_word_nosil = " ".join(["_".join([p for p in w.split("_") if not is_sil_phoneme(p)])
233
- for w in ph_gb_word.split(" ") if not is_sil_phoneme(w)])
234
- with open(f'{mfa_input_group_dir}/{item_name}.lab', 'w') as f_txt:
235
- f_txt.write(ph_gb_word_nosil)
236
- return ph_gb_word_nosil, new_wav_align_fn
237
-
238
- def load_spk_map(self, base_dir):
239
- spk_map_fn = f"{base_dir}/spk_map.json"
240
- spk_map = json.load(open(spk_map_fn, 'r'))
241
- return spk_map
242
-
243
- def load_dict(self, base_dir):
244
- ph_encoder = build_token_encoder(f'{base_dir}/phone_set.json')
245
- word_encoder = build_token_encoder(f'{base_dir}/word_set.json')
246
- return ph_encoder, word_encoder
247
-
248
- @property
249
- def meta_csv_filename(self):
250
- return 'metadata'
251
-
252
- @property
253
- def wav_processed_dirname(self):
254
- return 'wav_processed'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AIZ2H/07-GraphViz-PyDeck-Map-AIUIUX-Demo/app.py DELETED
@@ -1,509 +0,0 @@
1
- import streamlit as st
2
- import graphviz as graphviz
3
- import pandas as pd
4
- import numpy as np
5
-
6
- st.title('Graphviz Gallery: https://graphviz.org/gallery/')
7
-
8
- # Using code:
9
-
10
- # Create a graphlib graph object
11
- graph = graphviz.Digraph()
12
- graph.edge('Grandpa', 'Ancestors')
13
- graph.edge('Grandma', 'Ancestors')
14
- graph.edge('Uncle', 'Grandma')
15
- graph.edge('Aunt', 'Grandma')
16
- graph.edge('Mom', 'Grandma')
17
- graph.edge('Cousin Bob', 'Aunt')
18
- graph.edge('Cousin Sue', 'Aunt')
19
- graph.edge('Brother', 'Mom')
20
- graph.edge('Sister', 'Mom')
21
- st.graphviz_chart(graph)
22
-
23
-
24
- st.graphviz_chart('''
25
- digraph G2 {
26
- node [shape=plaintext];
27
- struct1 [label=<<TABLE>
28
- <TR><TD><IMG SRC="1.png"></IMG></TD></TR>
29
- <TR><TD>caption</TD></TR>
30
- </TABLE>>];
31
- }
32
- ''')
33
-
34
-
35
-
36
- st.title('Graphviz Dot Language: https://graphviz.org/doc/info/lang.html')
37
-
38
- # Using graph language:
39
- st.graphviz_chart('''
40
- digraph G {
41
- rankdir=LR
42
- node [shape=plaintext]
43
- a [
44
- label=<
45
- <TABLE BORDER="0" CELLBORDER="1" CELLSPACING="0">
46
- <TR><TD ROWSPAN="3" BGCOLOR="yellow">class</TD></TR>
47
- <TR><TD PORT="here" BGCOLOR="lightblue">qualifier</TD></TR>
48
- </TABLE>>
49
- ]
50
- b [shape=ellipse style=filled
51
- label=<
52
- <TABLE BGCOLOR="bisque">
53
- <TR>
54
- <TD COLSPAN="3">elephant</TD>
55
- <TD ROWSPAN="2" BGCOLOR="chartreuse"
56
- VALIGN="bottom" ALIGN="right">two</TD>
57
- </TR>
58
- <TR>
59
- <TD COLSPAN="2" ROWSPAN="2">
60
- <TABLE BGCOLOR="grey">
61
- <TR><TD>corn</TD></TR>
62
- <TR><TD BGCOLOR="yellow">c</TD></TR>
63
- <TR><TD>f</TD></TR>
64
- </TABLE>
65
- </TD>
66
- <TD BGCOLOR="white">penguin</TD>
67
- </TR>
68
- <TR>
69
- <TD COLSPAN="2" BORDER="4" ALIGN="right" PORT="there">4</TD>
70
- </TR>
71
- </TABLE>>
72
- ]
73
- c [
74
- label=<long line 1<BR/>line 2<BR ALIGN="LEFT"/>line 3<BR ALIGN="RIGHT"/>>
75
- ]
76
- subgraph { rank=same b c }
77
- a:here -> b:there [dir=both arrowtail=diamond]
78
- c -> b
79
- d [shape=triangle]
80
- d -> c [label=<
81
- <TABLE>
82
- <TR>
83
- <TD BGCOLOR="red" WIDTH="10"> </TD>
84
- <TD>Edge labels<BR/>also</TD>
85
- <TD BGCOLOR="blue" WIDTH="10"> </TD>
86
- </TR>
87
- </TABLE>>
88
- ]
89
- }
90
- ''')
91
-
92
- st.graphviz_chart('''
93
- digraph R {
94
- rankdir=LR
95
- node [style=rounded]
96
- node1 [shape=box]
97
- node2 [fillcolor=yellow, style="rounded,filled", shape=diamond]
98
- node3 [shape=record, label="{ a | b | c }"]
99
- node1 -> node2 -> node3
100
- }
101
- ''')
102
-
103
- st.title('Vega Lite Example: https://docs.streamlit.io/library/api-reference/charts/st.vega_lite_chart ')
104
- df = pd.DataFrame(
105
- np.random.randn(200, 3),
106
- columns=['a', 'b', 'c'])
107
-
108
- st.vega_lite_chart(df, {
109
- 'mark': {'type': 'circle', 'tooltip': True},
110
- 'encoding': {
111
- 'x': {'field': 'a', 'type': 'quantitative'},
112
- 'y': {'field': 'b', 'type': 'quantitative'},
113
- 'size': {'field': 'c', 'type': 'quantitative'},
114
- 'color': {'field': 'c', 'type': 'quantitative'},
115
- },
116
- })
117
-
118
- # More graph examples
119
-
120
- st.graphviz_chart('''
121
- digraph structs {
122
- node [shape=record];
123
- struct1 [label="<f0> left|<f1> mid&#92; dle|<f2> right"];
124
- struct2 [label="<f0> one|<f1> two"];
125
- struct3 [label="hello&#92;nworld |{ b |{c|<here> d|e}| f}| g | h"];
126
- struct1:f1 -> struct2:f0;
127
- struct1:f2 -> struct3:here;
128
- }
129
- ''')
130
-
131
- st.graphviz_chart('''
132
- graph G {
133
- fontname="Helvetica,Arial,sans-serif"
134
- node [fontname="Helvetica,Arial,sans-serif"]
135
- edge [fontname="Helvetica,Arial,sans-serif"]
136
- layout=fdp
137
- e
138
- subgraph clusterA {
139
- a -- b;
140
- subgraph clusterC {
141
- C -- D;
142
- }
143
- }
144
- subgraph clusterB {
145
- d -- f
146
- }
147
- d -- D
148
- e -- clusterB
149
- clusterC -- clusterB
150
- }
151
- ''')
152
-
153
- st.graphviz_chart('''
154
- graph Transparency {
155
- layout=neato
156
- start=11 // empiric value to set orientation
157
- bgcolor="#0000ff11"
158
- node [shape=circle width=2.22 label="" style=filled]
159
- 5 [color="#0000ff80"]
160
- 6 [color="#ee00ee80"]
161
- 1 [color="#ff000080"]
162
- 2 [color="#eeee0080"]
163
- 3 [color="#00ff0080"]
164
- 4 [color="#00eeee80"]
165
- 1 -- 2 -- 3 -- 4 -- 5 -- 6 -- 1
166
- }
167
- ''')
168
-
169
- st.graphviz_chart('''
170
- digraph UML_Class_diagram {
171
- fontname="Helvetica,Arial,sans-serif"
172
- node [fontname="Helvetica,Arial,sans-serif"]
173
- edge [fontname="Helvetica,Arial,sans-serif"]
174
- labelloc="t"
175
- label="UML Class diagram demo"
176
- graph [splines=false]
177
- node [shape=record style=filled fillcolor=gray95]
178
- edge [arrowhead=vee style=dashed]
179
- Client -> Interface1 [xlabel=dependency]
180
- Client -> Interface2
181
- edge [dir=back arrowtail=empty style=""]
182
- Interface1 -> Class1 [xlabel=inheritance]
183
- Interface2 -> Class1 [dir=none]
184
- Interface2 [label="" xlabel="Simple\ninterface" shape=circle]
185
- Interface1[label = <{<b>«interface» I/O</b> | + property<br align="left"/>...<br align="left"/>|+ method<br align="left"/>...<br align="left"/>}>]
186
- Class1[label = <{<b>I/O class</b> | + property<br align="left"/>...<br align="left"/>|+ method<br align="left"/>...<br align="left"/>}>]
187
- edge [dir=back arrowtail=empty style=dashed]
188
- Class1 -> System_1 [xlabel=implementation]
189
- System_1 [label = <{<b>System</b> | + property<br align="left"/>...<br align="left"/>|+ method<br align="left"/>...<br align="left"/>}>]
190
- "Shared resource" [label = <{<b>Shared resource</b> | + property<br align="left"/>...<br align="left"/>|+ method<br align="left"/>...<br align="left"/>}>]
191
- edge [dir=back arrowtail=diamond]
192
- "System_1" -> Subsystem_1 [xlabel="composition"]
193
- Subsystem_1[label = <{<b>Subsystem 1</b> | + property<br align="left"/>...<br align="left"/>|+ method<br align="left"/>...<br align="left"/>}>]
194
- Subsystem_2[label = <{<b>Subsystem 2</b> | + property<br align="left"/>...<br align="left"/>|+ method<br align="left"/>...<br align="left"/>}>]
195
- Subsystem_3[label = <{<b>Subsystem 3</b> | + property<br align="left"/>...<br align="left"/>|+ method<br align="left"/>...<br align="left"/>}>]
196
- "System_1" -> Subsystem_2
197
- "System_1" -> Subsystem_3
198
- edge [xdir=back arrowtail=odiamond]
199
- Subsystem_1 -> "Shared resource" [xlabel=aggregation]
200
- {Subsystem_2 Subsystem_3 } -> "Shared resource"
201
- }
202
- ''')
203
-
204
-
205
-
206
- st.graphviz_chart('''
207
- digraph G {
208
- fontname="Helvetica,Arial,sans-serif"
209
- node [fontname="Helvetica,Arial,sans-serif"]
210
- edge [fontname="Helvetica,Arial,sans-serif"]
211
- subgraph cluster_1 {
212
- node [ style=filled,shape="box",fillcolor="antiquewhite:aquamarine" ]n5;
213
- node [ shape="ellipse",fillcolor="bisque4:blue2" ]n4;
214
- node [ shape="circle",fillcolor="cadetblue1:chocolate1" ]n3;
215
- node [ shape="diamond",fillcolor="crimson:cyan4" ]n2;
216
- node [ shape="triangle",fillcolor="deepskyblue2:firebrick" ]n1;
217
- node [ shape="pentagon",fillcolor="gray24:gray88" ]n0;
218
- label = "X11 Colors";
219
- }
220
- subgraph cluster_2 {
221
- node [ style=filled,shape="box",fillcolor="bisque:brown" ]n11;
222
- node [ shape="ellipse",fillcolor="green:darkorchid" ]n10;
223
- node [ shape="circle",fillcolor="deepskyblue:gold" ]n9;
224
- node [ shape="diamond",fillcolor="lightseagreen:orangered" ]n8;
225
- node [ shape="triangle",fillcolor="turquoise:salmon" ]n7;
226
- node [ shape="pentagon",fillcolor="snow:black" ]n6;
227
- label = "SVG Colors";
228
- }
229
- subgraph cluster_3 {
230
- node [ style=filled,shape="box",fillcolor="/accent3/1:/accent3/3" ]n17;
231
- node [ shape="ellipse",fillcolor="/accent4/1:/accent4/4" ]n16;
232
- node [ shape="circle",fillcolor="/accent5/1:/accent5/5" ]n15;
233
- node [ shape="diamond",fillcolor="/accent6/1:/accent6/6" ]n14;
234
- node [ shape="triangle",fillcolor="/accent7/1:/accent7/7" ]n13;
235
- node [ shape="pentagon",fillcolor="/accent8/1:/accent8/8" ]n12;
236
- label = "Brewer - accent";
237
- }
238
- subgraph cluster_4 {
239
- node [ style=filled,shape="box",fillcolor="/blues3/1:/blues3/2" ]n23;
240
- node [ shape="ellipse",fillcolor="/blues4/1:/blues4/3" ]n22;
241
- node [ shape="circle",fillcolor="/blues5/1:/blues5/4" ]n21;
242
- node [ shape="diamond",fillcolor="/blues6/1:/blues6/5" ]n20;
243
- node [ shape="triangle",fillcolor="/blues7/1:/blues7/6" ]n19;
244
- node [ shape="pentagon",fillcolor="/blues8/1:/blues8/7" ]n18;
245
- label = "Brewer - blues";
246
- }
247
- n3 -> n9 -> n15 -> n21;
248
- }
249
- ''')
250
-
251
- st.graphviz_chart('''
252
- digraph G {bgcolor="#0000FF44:#FF000044" gradientangle=90
253
- fontname="Helvetica,Arial,sans-serif"
254
- node [fontname="Helvetica,Arial,sans-serif"]
255
- edge [fontname="Helvetica,Arial,sans-serif"]
256
- subgraph cluster_0 {
257
- style=filled;
258
- color=lightgrey;
259
- fillcolor="darkgray:gold";
260
- gradientangle=0
261
- node [fillcolor="yellow:green" style=filled gradientangle=270] a0;
262
- node [fillcolor="lightgreen:red"] a1;
263
- node [fillcolor="lightskyblue:darkcyan"] a2;
264
- node [fillcolor="cyan:lightslateblue"] a3;
265
- a0 -> a1 -> a2 -> a3;
266
- label = "process #1";
267
- }
268
- subgraph cluster_1 {
269
- node [fillcolor="yellow:magenta"
270
- style=filled gradientangle=270] b0;
271
- node [fillcolor="violet:darkcyan"] b1;
272
- node [fillcolor="peachpuff:red"] b2;
273
- node [fillcolor="mediumpurple:purple"] b3;
274
- b0 -> b1 -> b2 -> b3;
275
- label = "process #2";
276
- color=blue
277
- fillcolor="darkgray:gold";
278
- gradientangle=0
279
- style=filled;
280
- }
281
- start -> a0;
282
- start -> b0;
283
- a1 -> b3;
284
- b2 -> a3;
285
- a3 -> a0;
286
- a3 -> end;
287
- b3 -> end;
288
- start [shape=Mdiamond ,
289
- fillcolor="pink:red",
290
- gradientangle=90,
291
- style=radial];
292
- end [shape=Msquare,
293
- fillcolor="lightyellow:orange",
294
- style=radial,
295
- gradientangle=90];
296
- }
297
- ''')
298
-
299
- st.graphviz_chart('''
300
- graph Color_wheel {
301
- graph [
302
- layout = neato
303
- label = "Color wheel, 33 colors.\nNeato layout"
304
- labelloc = b
305
- fontname = "Helvetica,Arial,sans-serif"
306
- start = regular
307
- normalize = 0
308
- ]
309
- node [
310
- shape = circle
311
- style = filled
312
- color = "#00000088"
313
- fontname = "Helvetica,Arial,sans-serif"
314
- ]
315
- edge [
316
- len = 2.7
317
- color = "#00000088"
318
- fontname = "Helvetica,Arial,sans-serif"
319
- ]
320
- subgraph Dark {
321
- node [fontcolor = white width = 1.4]
322
- center [width = 1 style = invis shape = point]
323
- center -- darkred [label = "0°/360°"]
324
- darkred [fillcolor = darkred]
325
- brown [fillcolor = brown]
326
- brown -- center [label = "30°"]
327
- olive [fillcolor = olive]
328
- olive -- center [label = "60°"]
329
- darkolivegreen [fillcolor = darkolivegreen fontsize = 10]
330
- darkolivegreen -- center [label = "90°"]
331
- darkgreen [fillcolor = darkgreen]
332
- darkgreen -- center [label = "120°"]
333
- "dark hue 0.416" [color = ".416 1 .6" fontcolor = white]
334
- "dark hue 0.416" -- center [label = "150°"]
335
- darkcyan [fillcolor = darkcyan]
336
- darkcyan -- center [label = "180°"]
337
- "dark hue 0.583" [color = ".583 1 .6" fontcolor = white]
338
- "dark hue 0.583" -- center [label = "210°"]
339
- darkblue [fillcolor = darkblue]
340
- darkblue -- center [label = "240°"]
341
- "dark hue 0.750" [color = ".750 1 .6"]
342
- "dark hue 0.750" -- center [label = "270°"]
343
- darkmagenta [fillcolor = darkmagenta]
344
- darkmagenta -- center [label = "300°"]
345
- "dark hue 0.916" [color = ".916 1 .6"]
346
- "dark hue 0.916" -- center [label = "330°"]
347
- }
348
- subgraph Tue {
349
- node [width = 1.3]
350
- "hue 0.083" -- brown
351
- "hue 0.083" [color = ".083 1 1"]
352
- "hue 0.125" [color = ".125 1 1"]
353
- "hue 0.166" -- olive
354
- "hue 0.166" [color = ".166 1 1"]
355
- "hue 0.208" [color = ".208 1 1"]
356
- "hue 0.250" -- darkolivegreen
357
- "hue 0.250" [color = ".250 1 1"]
358
- "hue 0.291" [color = ".291 1 1"]
359
- "hue 0.333" -- darkgreen
360
- "hue 0.333" [color = ".333 1 1"]
361
- "hue 0.375" [color = ".375 1 1"]
362
- "hue 0.416" -- "dark hue 0.416"
363
- "hue 0.416" [color = ".416 1 1"]
364
- "hue 0.458" [color = ".458 1 1"]
365
- "hue 0.500" -- darkcyan
366
- "hue 0.500" [color = ".500 1 1"]
367
- "hue 0.541" [color = ".541 1 1"]
368
- node [fontcolor = white]
369
- "hue 0.000" [color = ".000 1 1"]
370
- "hue 0.000" -- darkred
371
- "hue 0.041" [color = ".041 1 1"]
372
- "hue 0.583" -- "dark hue 0.583"
373
- "hue 0.583" [color = ".583 1 1"]
374
- "hue 0.625" [color = ".625 1 1"]
375
- "hue 0.666" -- darkblue
376
- "hue 0.666" [color = ".666 1 1"]
377
- "hue 0.708" [color = ".708 1 1"]
378
- "hue 0.750" -- "dark hue 0.750"
379
- "hue 0.750" [color = ".750 1 1"]
380
- "hue 0.791" [color = ".791 1 1"]
381
- "hue 0.833" -- darkmagenta
382
- "hue 0.833" [color = ".833 1 1"]
383
- "hue 0.875" [color = ".875 1 1"]
384
- "hue 0.916" -- "dark hue 0.916"
385
- "hue 0.916" [color = ".916 1 1"]
386
- "hue 0.958" [color = ".958 1 1"]
387
- edge [len = 1]
388
- "hue 0.000" -- "hue 0.041" -- "hue 0.083" -- "hue 0.125" -- "hue 0.166" -- "hue 0.208"
389
- "hue 0.208" -- "hue 0.250" -- "hue 0.291" -- "hue 0.333" -- "hue 0.375" -- "hue 0.416"
390
- "hue 0.416" -- "hue 0.458" -- "hue 0.500" --"hue 0.541" -- "hue 0.583" -- "hue 0.625"
391
- "hue 0.625" -- "hue 0.666" -- "hue 0.708" -- "hue 0.750" -- "hue 0.791" -- "hue 0.833"
392
- "hue 0.833" -- "hue 0.875" -- "hue 0.916" -- "hue 0.958" -- "hue 0.000"
393
- }
394
- subgraph Main_colors {
395
- node [width = 2 fontsize = 20]
396
- red [fillcolor = red fontcolor = white]
397
- orangered [fillcolor = orangered]
398
- orange [fillcolor = orange]
399
- gold [fillcolor = gold]
400
- yellow [fillcolor = yellow]
401
- yellowgreen [fillcolor = yellowgreen]
402
- deeppink [fillcolor = deeppink fontcolor = white]
403
- fuchsia [label = "fuchsia\nmagenta" fillcolor = fuchsia fontcolor = white]
404
- purple [fillcolor = purple fontcolor = white]
405
- blue [fillcolor = blue fontcolor = white]
406
- cornflowerblue [fillcolor = cornflowerblue]
407
- deepskyblue [fillcolor = deepskyblue]
408
- aqua [fillcolor = aqua label = "aqua\ncyan"]
409
- springgreen [fillcolor = springgreen]
410
- green [fillcolor = green]
411
- purple -- fuchsia -- deeppink -- red
412
- cornflowerblue -- blue -- purple
413
- cornflowerblue -- deepskyblue -- aqua [len = 1.7]
414
- aqua -- springgreen -- green -- yellowgreen -- yellow
415
- yellow -- gold -- orange -- orangered -- red [len = 1.6]
416
- orange -- "hue 0.083"
417
- deeppink -- "hue 0.916"
418
- deeppink -- "hue 0.875"
419
- red -- "hue 0.000"
420
- yellowgreen -- "hue 0.250"
421
- blue -- "hue 0.666"
422
- yellow -- "hue 0.166"
423
- gold -- "hue 0.125"
424
- green -- "hue 0.333"
425
- springgreen -- "hue 0.416"
426
- aqua -- "hue 0.500"
427
- cornflowerblue -- "hue 0.583"
428
- deepskyblue -- "hue 0.541"
429
- purple -- "hue 0.791"
430
- purple -- "hue 0.750"
431
- fuchsia -- "hue 0.833"
432
- }
433
- subgraph Light_colors {
434
- node [width = 2 fontsize = 20]
435
- node [shape = circle width = 1.8]
436
- edge [len = 2.1]
437
- pink [fillcolor = pink]
438
- pink -- red
439
- lightyellow [fillcolor = lightyellow]
440
- lightyellow -- yellow
441
- mediumpurple [fillcolor = mediumpurple]
442
- mediumpurple -- purple
443
- violet [fillcolor = violet]
444
- violet -- fuchsia
445
- hotpink [fillcolor = hotpink]
446
- hotpink -- deeppink
447
- "light hue 0.250" [color = ".250 .2 1"]
448
- "light hue 0.250" -- yellowgreen
449
- lightcyan [fillcolor = lightcyan]
450
- lightcyan -- aqua
451
- lightslateblue [fillcolor = lightslateblue]
452
- lightslateblue -- blue
453
- lightgreen [fillcolor = lightgreen]
454
- lightgreen -- green
455
- lightskyblue [fillcolor = lightskyblue]
456
- lightskyblue -- deepskyblue
457
- peachpuff [fillcolor = peachpuff]
458
- peachpuff -- orange
459
- "light hue 0.416" [color = ".416 .2 1"]
460
- "light hue 0.416" -- springgreen
461
- }
462
- subgraph Tints {
463
- node [width = 1]
464
- edge [len = 2.4]
465
- "hue 0 tint" -- pink
466
- "hue 0 tint" [color = "0 .1 1"]
467
- "hue 0.041 tint" [color = ".041 .1 1"]
468
- "hue 0.083 tint" -- peachpuff
469
- "hue 0.083 tint" [color = ".083 .1 1"]
470
- "hue 0.125 tint" [color = ".125 .1 1"]
471
- "hue 0.166 tint" -- lightyellow
472
- "hue 0.166 tint" [color = ".166 .1 1"]
473
- "hue 0.208 tint" [color = ".208 .1 1"]
474
- "hue 0.250 tint" -- "light hue 0.250"
475
- "hue 0.250 tint" [color = ".250 .1 1"]
476
- "hue 0.291 tint" [color = ".291 .1 1"]
477
- "hue 0.333 tint" -- lightgreen
478
- "hue 0.333 tint" [color = ".333 .1 1"]
479
- "hue 0.375 tint" [color = ".375 .1 1"]
480
- "hue 0.416 tint" -- "light hue 0.416"
481
- "hue 0.416 tint" [color = ".416 .1 1"]
482
- "hue 0.458 tint" [color = ".458 .1 1"]
483
- "hue 0.5 tint" -- lightcyan
484
- "hue 0.5 tint" [color = ".5 .1 1"]
485
- "hue 0.541 tint" -- lightskyblue
486
- "hue 0.541 tint" [color = ".541 .1 1"]
487
- "hue 0.583 tint" [color = ".583 .1 1"]
488
- "hue 0.625 tint" [color = ".625 .1 1"]
489
- "hue 0.666 tint" -- lightslateblue
490
- "hue 0.666 tint" [color = ".666 .1 1"]
491
- "hue 0.708 tint" [color = ".708 .1 1"]
492
- "hue 0.750 tint" -- mediumpurple
493
- "hue 0.750 tint" [color = ".750 .1 1"]
494
- "hue 0.791 tint" [color = ".791 .1 1"]
495
- "hue 0.833 tint" -- violet
496
- "hue 0.833 tint" [color = ".833 .1 1"]
497
- "hue 0.875 tint" [color = ".875 .1 1"]
498
- "hue 0.916 tint" -- hotpink
499
- "hue 0.916 tint" [color = ".916 .1 1"]
500
- "hue 0.958 tint" [color = ".958 .1 1"]
501
- edge [len = 2]
502
- "hue 0 tint" -- "hue 0.041 tint" -- "hue 0.083 tint" -- "hue 0.125 tint" -- "hue 0.166 tint" -- "hue 0.208 tint"
503
- "hue 0.208 tint" -- "hue 0.250 tint" -- "hue 0.291 tint" -- "hue 0.333 tint" -- "hue 0.375 tint" -- "hue 0.416 tint"
504
- "hue 0.416 tint" -- "hue 0.458 tint" -- "hue 0.5 tint" --"hue 0.541 tint" -- "hue 0.583 tint" -- "hue 0.625 tint"
505
- "hue 0.625 tint" -- "hue 0.666 tint" -- "hue 0.708 tint" -- "hue 0.750 tint" -- "hue 0.791 tint" -- "hue 0.833 tint"
506
- "hue 0.833 tint" -- "hue 0.875 tint" -- "hue 0.916 tint" -- "hue 0.958 tint" -- "hue 0 tint"
507
- }
508
- }
509
- ''')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AchyuthGamer/OpenGPT/g4f/Provider/CodeLinkAva.py DELETED
@@ -1,64 +0,0 @@
1
- from __future__ import annotations
2
-
3
- from aiohttp import ClientSession
4
- import json
5
-
6
- from ..typing import AsyncGenerator
7
- from .base_provider import AsyncGeneratorProvider
8
-
9
-
10
- class CodeLinkAva(AsyncGeneratorProvider):
11
- url = "https://ava-ai-ef611.web.app"
12
- supports_gpt_35_turbo = True
13
- working = True
14
-
15
- @classmethod
16
- async def create_async_generator(
17
- cls,
18
- model: str,
19
- messages: list[dict[str, str]],
20
- **kwargs
21
- ) -> AsyncGenerator:
22
- headers = {
23
- "User-Agent" : "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36",
24
- "Accept" : "*/*",
25
- "Accept-language" : "en,fr-FR;q=0.9,fr;q=0.8,es-ES;q=0.7,es;q=0.6,en-US;q=0.5,am;q=0.4,de;q=0.3",
26
- "Origin" : cls.url,
27
- "Referer" : cls.url + "/",
28
- "Sec-Fetch-Dest" : "empty",
29
- "Sec-Fetch-Mode" : "cors",
30
- "Sec-Fetch-Site" : "same-origin",
31
- }
32
- async with ClientSession(
33
- headers=headers
34
- ) as session:
35
- data = {
36
- "messages": messages,
37
- "temperature": 0.6,
38
- "stream": True,
39
- **kwargs
40
- }
41
- async with session.post("https://ava-alpha-api.codelink.io/api/chat", json=data) as response:
42
- response.raise_for_status()
43
- async for line in response.content:
44
- line = line.decode()
45
- if line.startswith("data: "):
46
- if line.startswith("data: [DONE]"):
47
- break
48
- line = json.loads(line[6:-1])
49
- content = line["choices"][0]["delta"].get("content")
50
- if content:
51
- yield content
52
-
53
-
54
- @classmethod
55
- @property
56
- def params(cls):
57
- params = [
58
- ("model", "str"),
59
- ("messages", "list[dict[str, str]]"),
60
- ("stream", "bool"),
61
- ("temperature", "float"),
62
- ]
63
- param = ", ".join([": ".join(p) for p in params])
64
- return f"g4f.provider.{cls.__name__} supports: ({param})"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Adapter/CoAdapter/t2i_adapters/t2i_adapters_for_canny.py DELETED
@@ -1,47 +0,0 @@
1
- import torch
2
-
3
- from ldm.models.diffusion.ddpm import LatentDiffusion
4
- from ldm.util import instantiate_from_config
5
-
6
-
7
- class T2IAdapterCannyBase(LatentDiffusion):
8
-
9
- def __init__(self, adapter_config, extra_cond_key, noise_schedule, *args, **kwargs):
10
- super(T2IAdapterCannyBase, self).__init__(*args, **kwargs)
11
- self.adapter = instantiate_from_config(adapter_config)
12
- self.extra_cond_key = extra_cond_key
13
- self.noise_schedule = noise_schedule
14
-
15
- def shared_step(self, batch, **kwargs):
16
- for k in self.ucg_training:
17
- p = self.ucg_training[k]
18
- for i in range(len(batch[k])):
19
- if self.ucg_prng.choice(2, p=[1 - p, p]):
20
- if isinstance(batch[k], list):
21
- batch[k][i] = ""
22
- else:
23
- raise NotImplementedError("only text ucg is currently supported")
24
- batch['jpg'] = batch['jpg'] * 2 - 1
25
- x, c = self.get_input(batch, self.first_stage_key)
26
- extra_cond = super(LatentDiffusion, self).get_input(batch, self.extra_cond_key).to(self.device)
27
- features_adapter = self.adapter(extra_cond)
28
- t = self.get_time_with_schedule(self.noise_schedule, x.size(0))
29
- loss, loss_dict = self(x, c, t=t, features_adapter=features_adapter)
30
- return loss, loss_dict
31
-
32
- def configure_optimizers(self):
33
- lr = self.learning_rate
34
- params = list(self.adapter.parameters())
35
- opt = torch.optim.AdamW(params, lr=lr)
36
- return opt
37
-
38
- def on_save_checkpoint(self, checkpoint):
39
- keys = list(checkpoint['state_dict'].keys())
40
- for key in keys:
41
- if 'adapter' not in key:
42
- del checkpoint['state_dict'][key]
43
-
44
- def on_load_checkpoint(self, checkpoint):
45
- for name in self.state_dict():
46
- if 'adapter' not in name:
47
- checkpoint['state_dict'][name] = self.state_dict()[name]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/basesizer/GetParentSizerMethods.js DELETED
@@ -1,56 +0,0 @@
1
- var GetParent = function (gameObject, name) {
2
- var parent = null;
3
- if (name === undefined) {
4
- if (gameObject.hasOwnProperty('rexContainer')) {
5
- parent = gameObject.rexContainer.parent;
6
- if (parent) {
7
- if (!parent.isRexSizer) {
8
- // Try to get sizer parent
9
- parent = GetParent(parent);
10
- }
11
- } else {
12
- parent = null;
13
- }
14
- }
15
-
16
- } else {
17
- parent = GetParent(gameObject);
18
- while (parent) {
19
- if (parent.name === name) {
20
- break;
21
- }
22
- parent = GetParent(parent);
23
- }
24
- }
25
- return parent;
26
- }
27
-
28
- var GetTopmostParent = function (gameObject) {
29
- var parent = GetParent(gameObject);
30
- while (parent) {
31
- gameObject = parent;
32
- parent = GetParent(parent);
33
- }
34
- return gameObject;
35
- }
36
-
37
-
38
- export default {
39
- getParentSizer(gameObject, name) {
40
- if (typeof (gameObject) === 'string') {
41
- name = gameObject;
42
- gameObject = undefined;
43
- }
44
- if (gameObject === undefined) {
45
- gameObject = this;
46
- }
47
- return GetParent(gameObject, name);
48
- },
49
-
50
- getTopmostSizer(gameObject) {
51
- if (gameObject === undefined) {
52
- gameObject = this;
53
- }
54
- return GetTopmostParent(gameObject);
55
- }
56
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/maker/builders/utils/ReplaceSliderConfig.js DELETED
@@ -1,14 +0,0 @@
1
- import CreateChild from './CreateChild.js';
2
-
3
- var ReplaceSliderConfig = function (scene, sliderConfig, view, styles, customBuilders) {
4
- if (sliderConfig) {
5
- CreateChild(scene, sliderConfig, 'background', view, styles, customBuilders);
6
- CreateChild(scene, sliderConfig, 'track', view, styles, customBuilders);
7
- CreateChild(scene, sliderConfig, 'indicator', view, styles, customBuilders);
8
- CreateChild(scene, sliderConfig, 'thumb', view, styles, customBuilders);
9
- }
10
-
11
- return sliderConfig;
12
- }
13
-
14
- export default ReplaceSliderConfig;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AlekseyKorshuk/instagram-filter-removal/modeling/ifrnet.py DELETED
@@ -1,166 +0,0 @@
1
- import torch
2
- from torch import nn
3
- from torch.nn.utils import spectral_norm
4
-
5
- from modeling.base import BaseNetwork
6
- from modules.blocks import DestyleResBlock, Destyler, ResBlock
7
-
8
-
9
- class IFRNet(BaseNetwork):
10
- def __init__(self, base_n_channels, destyler_n_channels):
11
- super(IFRNet, self).__init__()
12
- self.destyler = Destyler(in_features=32768, num_features=destyler_n_channels) # from vgg features
13
-
14
- self.ds_fc1 = nn.Linear(destyler_n_channels, base_n_channels * 2)
15
- self.ds_res1 = DestyleResBlock(channels_in=3, channels_out=base_n_channels, kernel_size=5, stride=1, padding=2)
16
- self.ds_fc2 = nn.Linear(destyler_n_channels, base_n_channels * 4)
17
- self.ds_res2 = DestyleResBlock(channels_in=base_n_channels, channels_out=base_n_channels * 2, kernel_size=3, stride=2, padding=1)
18
- self.ds_fc3 = nn.Linear(destyler_n_channels, base_n_channels * 4)
19
- self.ds_res3 = DestyleResBlock(channels_in=base_n_channels * 2, channels_out=base_n_channels * 2, kernel_size=3, stride=1, padding=1)
20
- self.ds_fc4 = nn.Linear(destyler_n_channels, base_n_channels * 8)
21
- self.ds_res4 = DestyleResBlock(channels_in=base_n_channels * 2, channels_out=base_n_channels * 4, kernel_size=3, stride=2, padding=1)
22
- self.ds_fc5 = nn.Linear(destyler_n_channels, base_n_channels * 8)
23
- self.ds_res5 = DestyleResBlock(channels_in=base_n_channels * 4, channels_out=base_n_channels * 4, kernel_size=3, stride=1, padding=1)
24
- self.ds_fc6 = nn.Linear(destyler_n_channels, base_n_channels * 16)
25
- self.ds_res6 = DestyleResBlock(channels_in=base_n_channels * 4, channels_out=base_n_channels * 8, kernel_size=3, stride=2, padding=1)
26
-
27
- self.upsample = nn.UpsamplingNearest2d(scale_factor=2.0)
28
-
29
- self.res1 = ResBlock(channels_in=base_n_channels * 8, channels_out=base_n_channels * 4, kernel_size=3, stride=1, padding=1)
30
- self.res2 = ResBlock(channels_in=base_n_channels * 4, channels_out=base_n_channels * 4, kernel_size=3, stride=1, padding=1)
31
- self.res3 = ResBlock(channels_in=base_n_channels * 4, channels_out=base_n_channels * 2, kernel_size=3, stride=1, padding=1)
32
- self.res4 = ResBlock(channels_in=base_n_channels * 2, channels_out=base_n_channels * 2, kernel_size=3, stride=1, padding=1)
33
- self.res5 = ResBlock(channels_in=base_n_channels * 2, channels_out=base_n_channels, kernel_size=3, stride=1, padding=1)
34
-
35
- self.conv1 = nn.Conv2d(base_n_channels, 3, kernel_size=3, stride=1, padding=1)
36
-
37
- self.init_weights(init_type="normal", gain=0.02)
38
-
39
- def forward(self, x, vgg_feat):
40
- b_size, ch, h, w = vgg_feat.size()
41
- vgg_feat = vgg_feat.view(b_size, ch * h * w)
42
- vgg_feat = self.destyler(vgg_feat)
43
-
44
- out = self.ds_res1(x, self.ds_fc1(vgg_feat))
45
- out = self.ds_res2(out, self.ds_fc2(vgg_feat))
46
- out = self.ds_res3(out, self.ds_fc3(vgg_feat))
47
- out = self.ds_res4(out, self.ds_fc4(vgg_feat))
48
- out = self.ds_res5(out, self.ds_fc5(vgg_feat))
49
- aux = self.ds_res6(out, self.ds_fc6(vgg_feat))
50
-
51
- out = self.upsample(aux)
52
- out = self.res1(out)
53
- out = self.res2(out)
54
- out = self.upsample(out)
55
- out = self.res3(out)
56
- out = self.res4(out)
57
- out = self.upsample(out)
58
- out = self.res5(out)
59
- out = self.conv1(out)
60
-
61
- return out, aux
62
-
63
-
64
- class MLP(nn.Module):
65
- def __init__(self, base_n_channels, num_class=14):
66
- super(MLP, self).__init__()
67
- self.aux_classifier = nn.Sequential(
68
- nn.Conv2d(base_n_channels * 8, base_n_channels * 4, kernel_size=3, stride=1, padding=1),
69
- nn.MaxPool2d(2),
70
- nn.Conv2d(base_n_channels * 4, base_n_channels * 2, kernel_size=3, stride=1, padding=1),
71
- nn.MaxPool2d(2),
72
- # nn.Conv2d(base_n_channels * 2, base_n_channels * 1, kernel_size=3, stride=1, padding=1),
73
- # nn.MaxPool2d(2),
74
- Flatten(),
75
- nn.Linear(base_n_channels * 8 * 8 * 2, num_class),
76
- # nn.Softmax(dim=-1)
77
- )
78
-
79
- def forward(self, x):
80
- return self.aux_classifier(x)
81
-
82
-
83
- class Flatten(nn.Module):
84
- def forward(self, input):
85
- """
86
- Note that input.size(0) is usually the batch size.
87
- So what it does is that given any input with input.size(0) # of batches,
88
- will flatten to be 1 * nb_elements.
89
- """
90
- batch_size = input.size(0)
91
- out = input.view(batch_size, -1)
92
- return out # (batch_size, *size)
93
-
94
-
95
- class Discriminator(BaseNetwork):
96
- def __init__(self, base_n_channels):
97
- """
98
- img_size : (int, int, int)
99
- Height and width must be powers of 2. E.g. (32, 32, 1) or
100
- (64, 128, 3). Last number indicates number of channels, e.g. 1 for
101
- grayscale or 3 for RGB
102
- """
103
- super(Discriminator, self).__init__()
104
-
105
- self.image_to_features = nn.Sequential(
106
- spectral_norm(nn.Conv2d(3, base_n_channels, 5, 2, 2)),
107
- nn.LeakyReLU(0.2, inplace=True),
108
- spectral_norm(nn.Conv2d(base_n_channels, 2 * base_n_channels, 5, 2, 2)),
109
- nn.LeakyReLU(0.2, inplace=True),
110
- spectral_norm(nn.Conv2d(2 * base_n_channels, 2 * base_n_channels, 5, 2, 2)),
111
- nn.LeakyReLU(0.2, inplace=True),
112
- spectral_norm(nn.Conv2d(2 * base_n_channels, 4 * base_n_channels, 5, 2, 2)),
113
- nn.LeakyReLU(0.2, inplace=True),
114
- # spectral_norm(nn.Conv2d(4 * base_n_channels, 4 * base_n_channels, 5, 2, 2)),
115
- # nn.LeakyReLU(0.2, inplace=True),
116
- spectral_norm(nn.Conv2d(4 * base_n_channels, 8 * base_n_channels, 5, 1, 1)),
117
- nn.LeakyReLU(0.2, inplace=True),
118
- )
119
-
120
- output_size = 8 * base_n_channels * 3 * 3
121
- self.features_to_prob = nn.Sequential(
122
- spectral_norm(nn.Conv2d(8 * base_n_channels, 2 * base_n_channels, 5, 2, 1)),
123
- Flatten(),
124
- nn.Linear(output_size, 1)
125
- )
126
-
127
- self.init_weights(init_type="normal", gain=0.02)
128
-
129
- def forward(self, input_data):
130
- x = self.image_to_features(input_data)
131
- return self.features_to_prob(x)
132
-
133
-
134
- class PatchDiscriminator(Discriminator):
135
- def __init__(self, base_n_channels):
136
- super(PatchDiscriminator, self).__init__(base_n_channels)
137
-
138
- self.features_to_prob = nn.Sequential(
139
- spectral_norm(nn.Conv2d(8 * base_n_channels, 1, 1)),
140
- Flatten()
141
- )
142
-
143
- def forward(self, input_data):
144
- x = self.image_to_features(input_data)
145
- return self.features_to_prob(x)
146
-
147
-
148
- if __name__ == '__main__':
149
- import torchvision
150
- ifrnet = IFRNet(32, 128).cuda()
151
- x = torch.rand((2, 3, 256, 256)).cuda()
152
- vgg16 = torchvision.models.vgg16(pretrained=True).features.eval().cuda()
153
- with torch.no_grad():
154
- vgg_feat = vgg16(x)
155
- output, aux_out = ifrnet(x, vgg_feat)
156
- print(output.size())
157
- print(aux_out.size())
158
-
159
- disc = Discriminator(32).cuda()
160
- d_out = disc(output)
161
- print(d_out.size())
162
-
163
- patch_disc = PatchDiscriminator(32).cuda()
164
- p_d_out = patch_disc(output)
165
- print(p_d_out.size())
166
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AlexZou/Deploy_Restoration/Lowlight.py DELETED
@@ -1,45 +0,0 @@
1
- import os
2
- import torch
3
- import numpy as np
4
- from torchvision import transforms
5
- from PIL import Image
6
- import time
7
- import torchvision
8
- import cv2
9
- import torchvision.utils as tvu
10
- import torch.functional as F
11
- import argparse
12
- from model.IAT_main import IAT
13
-
14
- def inference_img(img_path,Net):
15
-
16
- low_image = Image.open(img_path).convert('RGB')
17
- enhance_transforms = transforms.Compose([
18
- transforms.ToTensor()
19
- ])
20
-
21
- with torch.no_grad():
22
- low_image = enhance_transforms(low_image)
23
- low_image = low_image.unsqueeze(0)
24
- start = time.time()
25
- restored2 = Net(low_image)
26
- end = time.time()
27
-
28
-
29
- return restored2,end-start
30
-
31
- if __name__ == '__main__':
32
- parser=argparse.ArgumentParser()
33
- parser.add_argument('--test_path',type=str,required=True,help='Path to test')
34
- parser.add_argument('--save_path',type=str,required=True,help='Path to save')
35
- parser.add_argument('--pk_path',type=str,default='model_zoo/underwater.pth',help='Path of the checkpoint')
36
- opt = parser.parse_args()
37
- if not os.path.isdir(opt.save_path):
38
- os.mkdir(opt.save_path)
39
- Net = IAT()
40
- Net.load_state_dict(torch.load(opt.pk_path, map_location=torch.device('cpu')))
41
- Net = Net.eval()
42
- image = opt.test_path
43
- print(image)
44
- restored2,time_num = inference_img(image,Net)
45
- torchvision.utils.save_image(restored2,opt.save_path+'output.png')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AlhitawiMohammed22/CER_Hu-Evaluation-Metrics/README.md DELETED
@@ -1,161 +0,0 @@
1
- ---
2
- title: CER
3
- emoji: 🤗🏃🤗🏃🤗🏃🤗🏃🤗
4
- colorFrom: blue
5
- colorTo: red
6
- sdk: gradio
7
- sdk_version: 3.19.1
8
- app_file: app.py
9
- pinned: false
10
- tags:
11
- - evaluate
12
- - metric
13
- license: apache-2.0
14
- ---
15
- ---
16
-
17
- description: >-
18
- Character error rate (CER) is a common metric of the performance of an automatic speech recognition system.
19
-
20
- CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.
21
-
22
- Character error rate can be computed as:
23
-
24
- CER = (S + D + I) / N = (S + D + I) / (S + D + C)
25
-
26
- where
27
-
28
- S is the number of substitutions,
29
- D is the number of deletions,
30
- I is the number of insertions,
31
- C is the number of correct characters,
32
- N is the number of characters in the reference (N=S+D+C).
33
-
34
- CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the
35
- performance of the ASR system with a CER of 0 being a perfect score.
36
- ---
37
-
38
- # Metric Card for CER
39
-
40
- ## Metric description
41
-
42
- Character error rate (CER) is a common metric of the performance of an automatic speech recognition (ASR) system. CER is similar to Word Error Rate (WER), but operates on character instead of word.
43
-
44
- Character error rate can be computed as:
45
-
46
- `CER = (S + D + I) / N = (S + D + I) / (S + D + C)`
47
-
48
- where
49
-
50
- `S` is the number of substitutions,
51
-
52
- `D` is the number of deletions,
53
-
54
- `I` is the number of insertions,
55
-
56
- `C` is the number of correct characters,
57
-
58
- `N` is the number of characters in the reference (`N=S+D+C`).
59
-
60
-
61
- ## How to use
62
-
63
- The metric takes two inputs: references (a list of references for each speech input) and predictions (a list of transcriptions to score).
64
-
65
- ```python
66
- from evaluate import load
67
- cer = load("cer")
68
- cer_score = cer.compute(predictions=predictions, references=references)
69
- ```
70
- ## Output values
71
-
72
- This metric outputs a float representing the character error rate.
73
-
74
- ```
75
- print(cer_score)
76
- 0.34146341463414637
77
- ```
78
-
79
- The **lower** the CER value, the **better** the performance of the ASR system, with a CER of 0 being a perfect score.
80
-
81
- However, CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions (see [Examples](#Examples) below).
82
-
83
- ### Values from popular papers
84
-
85
- ## Examples
86
-
87
- Perfect match between prediction and reference:
88
-
89
- ```python
90
- !pip install evaluate jiwer
91
-
92
- from evaluate import load
93
- cer = load("cer")
94
- predictions = ["hello világ", "jó éjszakát hold"]
95
- references = ["hello világ", "jó éjszakát hold"]
96
- cer_score = cer.compute(predictions=predictions, references=references)
97
- print(cer_score)
98
- 0.0
99
- ```
100
- Partial match between prediction and reference:
101
-
102
- ```python
103
- from evaluate import load
104
- cer = load("cer")
105
- predictions = ["ez a jóslat", "van egy másik minta is"]
106
- references = ["ez a hivatkozás", "van még egy"]
107
- cer = evaluate.load("cer")
108
- cer_score = cer.compute(predictions=predictions, references=references)
109
- print(cer_score)
110
- 0.9615384615384616
111
- ```
112
-
113
- No match between prediction and reference:
114
-
115
- ```python
116
- from evaluate import load
117
- cer = load("cer")
118
- predictions = ["üdvözlet"]
119
- references = ["jó!"]
120
- cer_score = cer.compute(predictions=predictions, references=references)
121
- print(cer_score)
122
- 1.5
123
- ```
124
-
125
- CER above 1 due to insertion errors:
126
-
127
- ```python
128
- from evaluate import load
129
- cer = load("cer")
130
- predictions = ["Helló Világ"]
131
- references = ["Helló"]
132
- cer_score = cer.compute(predictions=predictions, references=references)
133
- print(cer_score)
134
- 1.2
135
- ```
136
-
137
- ## Limitations and bias
138
-
139
- .
140
-
141
- Also, in some cases, instead of reporting the raw CER, a normalized CER is reported where the number of mistakes is divided by the sum of the number of edit operations (`I` + `S` + `D`) and `C` (the number of correct characters), which results in CER values that fall within the range of 0–100%.
142
-
143
-
144
- ## Citation
145
-
146
-
147
- ```bibtex
148
- @inproceedings{morris2004,
149
- author = {Morris, Andrew and Maier, Viktoria and Green, Phil},
150
- year = {2004},
151
- month = {01},
152
- pages = {},
153
- title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}
154
- }
155
- ```
156
-
157
- ## References
158
-
159
- - [Hugging Face Tasks -- Automatic Speech Recognition](https://huggingface.co/tasks/automatic-speech-recognition)
160
- - https://github.com/huggingface/evaluate
161
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/docs/source/en/api/models/controlnet.md DELETED
@@ -1,38 +0,0 @@
1
- # ControlNet
2
-
3
- The ControlNet model was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang and Maneesh Agrawala. It provides a greater degree of control over text-to-image generation by conditioning the model on additional inputs such as edge maps, depth maps, segmentation maps, and keypoints for pose detection.
4
-
5
- The abstract from the paper is:
6
-
7
- *We present a neural network structure, ControlNet, to control pretrained large diffusion models to support additional input conditions. The ControlNet learns task-specific conditions in an end-to-end way, and the learning is robust even when the training dataset is small (< 50k). Moreover, training a ControlNet is as fast as fine-tuning a diffusion model, and the model can be trained on a personal devices. Alternatively, if powerful computation clusters are available, the model can scale to large amounts (millions to billions) of data. We report that large diffusion models like Stable Diffusion can be augmented with ControlNets to enable conditional inputs like edge maps, segmentation maps, keypoints, etc. This may enrich the methods to control large diffusion models and further facilitate related applications.*
8
-
9
- ## Loading from the original format
10
-
11
- By default the [`ControlNetModel`] should be loaded with [`~ModelMixin.from_pretrained`], but it can also be loaded
12
- from the original format using [`FromOriginalControlnetMixin.from_single_file`] as follows:
13
-
14
- ```py
15
- from diffusers import StableDiffusionControlnetPipeline, ControlNetModel
16
-
17
- url = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth" # can also be a local path
18
- controlnet = ControlNetModel.from_single_file(url)
19
-
20
- url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors" # can also be a local path
21
- pipe = StableDiffusionControlnetPipeline.from_single_file(url, controlnet=controlnet)
22
- ```
23
-
24
- ## ControlNetModel
25
-
26
- [[autodoc]] ControlNetModel
27
-
28
- ## ControlNetOutput
29
-
30
- [[autodoc]] models.controlnet.ControlNetOutput
31
-
32
- ## FlaxControlNetModel
33
-
34
- [[autodoc]] FlaxControlNetModel
35
-
36
- ## FlaxControlNetOutput
37
-
38
- [[autodoc]] models.controlnet_flax.FlaxControlNetOutput
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Andy1621/uniformer_image_detection/configs/res2net/htc_r2_101_fpn_20e_coco.py DELETED
@@ -1,7 +0,0 @@
1
- _base_ = '../htc/htc_r50_fpn_1x_coco.py'
2
- model = dict(
3
- pretrained='open-mmlab://res2net101_v1d_26w_4s',
4
- backbone=dict(type='Res2Net', depth=101, scales=4, base_width=26))
5
- # learning policy
6
- lr_config = dict(step=[16, 19])
7
- runner = dict(type='EpochBasedRunner', max_epochs=20)
 
 
 
 
 
 
 
 
spaces/Andy1621/uniformer_image_detection/configs/ssd/ssd512_coco.py DELETED
@@ -1,71 +0,0 @@
1
- _base_ = 'ssd300_coco.py'
2
- input_size = 512
3
- model = dict(
4
- backbone=dict(input_size=input_size),
5
- bbox_head=dict(
6
- in_channels=(512, 1024, 512, 256, 256, 256, 256),
7
- anchor_generator=dict(
8
- type='SSDAnchorGenerator',
9
- scale_major=False,
10
- input_size=input_size,
11
- basesize_ratio_range=(0.1, 0.9),
12
- strides=[8, 16, 32, 64, 128, 256, 512],
13
- ratios=[[2], [2, 3], [2, 3], [2, 3], [2, 3], [2], [2]])))
14
- # dataset settings
15
- dataset_type = 'CocoDataset'
16
- data_root = 'data/coco/'
17
- img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True)
18
- train_pipeline = [
19
- dict(type='LoadImageFromFile', to_float32=True),
20
- dict(type='LoadAnnotations', with_bbox=True),
21
- dict(
22
- type='PhotoMetricDistortion',
23
- brightness_delta=32,
24
- contrast_range=(0.5, 1.5),
25
- saturation_range=(0.5, 1.5),
26
- hue_delta=18),
27
- dict(
28
- type='Expand',
29
- mean=img_norm_cfg['mean'],
30
- to_rgb=img_norm_cfg['to_rgb'],
31
- ratio_range=(1, 4)),
32
- dict(
33
- type='MinIoURandomCrop',
34
- min_ious=(0.1, 0.3, 0.5, 0.7, 0.9),
35
- min_crop_size=0.3),
36
- dict(type='Resize', img_scale=(512, 512), keep_ratio=False),
37
- dict(type='Normalize', **img_norm_cfg),
38
- dict(type='RandomFlip', flip_ratio=0.5),
39
- dict(type='DefaultFormatBundle'),
40
- dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
41
- ]
42
- test_pipeline = [
43
- dict(type='LoadImageFromFile'),
44
- dict(
45
- type='MultiScaleFlipAug',
46
- img_scale=(512, 512),
47
- flip=False,
48
- transforms=[
49
- dict(type='Resize', keep_ratio=False),
50
- dict(type='Normalize', **img_norm_cfg),
51
- dict(type='ImageToTensor', keys=['img']),
52
- dict(type='Collect', keys=['img']),
53
- ])
54
- ]
55
- data = dict(
56
- samples_per_gpu=8,
57
- workers_per_gpu=3,
58
- train=dict(
59
- _delete_=True,
60
- type='RepeatDataset',
61
- times=5,
62
- dataset=dict(
63
- type=dataset_type,
64
- ann_file=data_root + 'annotations/instances_train2017.json',
65
- img_prefix=data_root + 'train2017/',
66
- pipeline=train_pipeline)),
67
- val=dict(pipeline=test_pipeline),
68
- test=dict(pipeline=test_pipeline))
69
- # optimizer
70
- optimizer = dict(type='SGD', lr=2e-3, momentum=0.9, weight_decay=5e-4)
71
- optimizer_config = dict(_delete_=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Andy1621/uniformer_image_detection/configs/yolact/yolact_r101_1x8_coco.py DELETED
@@ -1,3 +0,0 @@
1
- _base_ = './yolact_r50_1x8_coco.py'
2
-
3
- model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
 
 
 
 
spaces/Anew1007/extras/constants.py DELETED
@@ -1,50 +0,0 @@
1
- # Constants
2
- DEFAULT_CUDA_DEVICE = "cuda:0"
3
- # Also try: 'Qiliang/bart-large-cnn-samsum-ElectrifAi_v10'
4
- DEFAULT_SUMMARIZATION_MODEL = "Qiliang/bart-large-cnn-samsum-ChatGPT_v3"
5
- # Also try: 'joeddav/distilbert-base-uncased-go-emotions-student'
6
- DEFAULT_CLASSIFICATION_MODEL = "nateraw/bert-base-uncased-emotion"
7
- # Also try: 'Salesforce/blip-image-captioning-base'
8
- DEFAULT_CAPTIONING_MODEL = "Salesforce/blip-image-captioning-large"
9
- DEFAULT_SD_MODEL = "ckpt/anything-v4.5-vae-swapped"
10
- DEFAULT_EMBEDDING_MODEL = "sentence-transformers/all-mpnet-base-v2"
11
- DEFAULT_REMOTE_SD_HOST = "127.0.0.1"
12
- DEFAULT_REMOTE_SD_PORT = 7860
13
- DEFAULT_CHROMA_PORT = 8000
14
- SILERO_SAMPLES_PATH = "tts_samples"
15
- SILERO_SAMPLE_TEXT = "The quick brown fox jumps over the lazy dog"
16
- # ALL_MODULES = ['caption', 'summarize', 'classify', 'keywords', 'prompt', 'sd']
17
- DEFAULT_SUMMARIZE_PARAMS = {
18
- "temperature": 1.0,
19
- "repetition_penalty": 1.0,
20
- "max_length": 500,
21
- "min_length": 200,
22
- "length_penalty": 1.5,
23
- "bad_words": [
24
- "\n",
25
- '"',
26
- "*",
27
- "[",
28
- "]",
29
- "{",
30
- "}",
31
- ":",
32
- "(",
33
- ")",
34
- "<",
35
- ">",
36
- "Â",
37
- "The text ends",
38
- "The story ends",
39
- "The text is",
40
- "The story is",
41
- ],
42
- }
43
-
44
- PROMPT_PREFIX = "best quality, absurdres, "
45
- NEGATIVE_PROMPT = """lowres, bad anatomy, error body, error hair, error arm,
46
- error hands, bad hands, error fingers, bad fingers, missing fingers
47
- error legs, bad legs, multiple legs, missing legs, error lighting,
48
- error shadow, error reflection, text, error, extra digit, fewer digits,
49
- cropped, worst quality, low quality, normal quality, jpeg artifacts,
50
- signature, watermark, username, blurry"""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_internal/models/candidate.py DELETED
@@ -1,34 +0,0 @@
1
- from pip._vendor.packaging.version import parse as parse_version
2
-
3
- from pip._internal.models.link import Link
4
- from pip._internal.utils.models import KeyBasedCompareMixin
5
-
6
-
7
- class InstallationCandidate(KeyBasedCompareMixin):
8
- """Represents a potential "candidate" for installation."""
9
-
10
- __slots__ = ["name", "version", "link"]
11
-
12
- def __init__(self, name: str, version: str, link: Link) -> None:
13
- self.name = name
14
- self.version = parse_version(version)
15
- self.link = link
16
-
17
- super().__init__(
18
- key=(self.name, self.version, self.link),
19
- defining_class=InstallationCandidate,
20
- )
21
-
22
- def __repr__(self) -> str:
23
- return "<InstallationCandidate({!r}, {!r}, {!r})>".format(
24
- self.name,
25
- self.version,
26
- self.link,
27
- )
28
-
29
- def __str__(self) -> str:
30
- return "{!r} candidate (version {} at {})".format(
31
- self.name,
32
- self.version,
33
- self.link,
34
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Awiny/Image2Paragraph/models/grit_src/third_party/CenterNet2/detectron2/modeling/roi_heads/keypoint_head.py DELETED
@@ -1,272 +0,0 @@
1
- # Copyright (c) Facebook, Inc. and its affiliates.
2
- from typing import List
3
- import torch
4
- from torch import nn
5
- from torch.nn import functional as F
6
-
7
- from detectron2.config import configurable
8
- from detectron2.layers import Conv2d, ConvTranspose2d, cat, interpolate
9
- from detectron2.structures import Instances, heatmaps_to_keypoints
10
- from detectron2.utils.events import get_event_storage
11
- from detectron2.utils.registry import Registry
12
-
13
- _TOTAL_SKIPPED = 0
14
-
15
-
16
- __all__ = [
17
- "ROI_KEYPOINT_HEAD_REGISTRY",
18
- "build_keypoint_head",
19
- "BaseKeypointRCNNHead",
20
- "KRCNNConvDeconvUpsampleHead",
21
- ]
22
-
23
-
24
- ROI_KEYPOINT_HEAD_REGISTRY = Registry("ROI_KEYPOINT_HEAD")
25
- ROI_KEYPOINT_HEAD_REGISTRY.__doc__ = """
26
- Registry for keypoint heads, which make keypoint predictions from per-region features.
27
-
28
- The registered object will be called with `obj(cfg, input_shape)`.
29
- """
30
-
31
-
32
- def build_keypoint_head(cfg, input_shape):
33
- """
34
- Build a keypoint head from `cfg.MODEL.ROI_KEYPOINT_HEAD.NAME`.
35
- """
36
- name = cfg.MODEL.ROI_KEYPOINT_HEAD.NAME
37
- return ROI_KEYPOINT_HEAD_REGISTRY.get(name)(cfg, input_shape)
38
-
39
-
40
- def keypoint_rcnn_loss(pred_keypoint_logits, instances, normalizer):
41
- """
42
- Arguments:
43
- pred_keypoint_logits (Tensor): A tensor of shape (N, K, S, S) where N is the total number
44
- of instances in the batch, K is the number of keypoints, and S is the side length
45
- of the keypoint heatmap. The values are spatial logits.
46
- instances (list[Instances]): A list of M Instances, where M is the batch size.
47
- These instances are predictions from the model
48
- that are in 1:1 correspondence with pred_keypoint_logits.
49
- Each Instances should contain a `gt_keypoints` field containing a `structures.Keypoint`
50
- instance.
51
- normalizer (float): Normalize the loss by this amount.
52
- If not specified, we normalize by the number of visible keypoints in the minibatch.
53
-
54
- Returns a scalar tensor containing the loss.
55
- """
56
- heatmaps = []
57
- valid = []
58
-
59
- keypoint_side_len = pred_keypoint_logits.shape[2]
60
- for instances_per_image in instances:
61
- if len(instances_per_image) == 0:
62
- continue
63
- keypoints = instances_per_image.gt_keypoints
64
- heatmaps_per_image, valid_per_image = keypoints.to_heatmap(
65
- instances_per_image.proposal_boxes.tensor, keypoint_side_len
66
- )
67
- heatmaps.append(heatmaps_per_image.view(-1))
68
- valid.append(valid_per_image.view(-1))
69
-
70
- if len(heatmaps):
71
- keypoint_targets = cat(heatmaps, dim=0)
72
- valid = cat(valid, dim=0).to(dtype=torch.uint8)
73
- valid = torch.nonzero(valid).squeeze(1)
74
-
75
- # torch.mean (in binary_cross_entropy_with_logits) doesn't
76
- # accept empty tensors, so handle it separately
77
- if len(heatmaps) == 0 or valid.numel() == 0:
78
- global _TOTAL_SKIPPED
79
- _TOTAL_SKIPPED += 1
80
- storage = get_event_storage()
81
- storage.put_scalar("kpts_num_skipped_batches", _TOTAL_SKIPPED, smoothing_hint=False)
82
- return pred_keypoint_logits.sum() * 0
83
-
84
- N, K, H, W = pred_keypoint_logits.shape
85
- pred_keypoint_logits = pred_keypoint_logits.view(N * K, H * W)
86
-
87
- keypoint_loss = F.cross_entropy(
88
- pred_keypoint_logits[valid], keypoint_targets[valid], reduction="sum"
89
- )
90
-
91
- # If a normalizer isn't specified, normalize by the number of visible keypoints in the minibatch
92
- if normalizer is None:
93
- normalizer = valid.numel()
94
- keypoint_loss /= normalizer
95
-
96
- return keypoint_loss
97
-
98
-
99
- def keypoint_rcnn_inference(pred_keypoint_logits: torch.Tensor, pred_instances: List[Instances]):
100
- """
101
- Post process each predicted keypoint heatmap in `pred_keypoint_logits` into (x, y, score)
102
- and add it to the `pred_instances` as a `pred_keypoints` field.
103
-
104
- Args:
105
- pred_keypoint_logits (Tensor): A tensor of shape (R, K, S, S) where R is the total number
106
- of instances in the batch, K is the number of keypoints, and S is the side length of
107
- the keypoint heatmap. The values are spatial logits.
108
- pred_instances (list[Instances]): A list of N Instances, where N is the number of images.
109
-
110
- Returns:
111
- None. Each element in pred_instances will contain extra "pred_keypoints" and
112
- "pred_keypoint_heatmaps" fields. "pred_keypoints" is a tensor of shape
113
- (#instance, K, 3) where the last dimension corresponds to (x, y, score).
114
- The scores are larger than 0. "pred_keypoint_heatmaps" contains the raw
115
- keypoint logits as passed to this function.
116
- """
117
- # flatten all bboxes from all images together (list[Boxes] -> Rx4 tensor)
118
- bboxes_flat = cat([b.pred_boxes.tensor for b in pred_instances], dim=0)
119
-
120
- pred_keypoint_logits = pred_keypoint_logits.detach()
121
- keypoint_results = heatmaps_to_keypoints(pred_keypoint_logits, bboxes_flat.detach())
122
- num_instances_per_image = [len(i) for i in pred_instances]
123
- keypoint_results = keypoint_results[:, :, [0, 1, 3]].split(num_instances_per_image, dim=0)
124
- heatmap_results = pred_keypoint_logits.split(num_instances_per_image, dim=0)
125
-
126
- for keypoint_results_per_image, heatmap_results_per_image, instances_per_image in zip(
127
- keypoint_results, heatmap_results, pred_instances
128
- ):
129
- # keypoint_results_per_image is (num instances)x(num keypoints)x(x, y, score)
130
- # heatmap_results_per_image is (num instances)x(num keypoints)x(side)x(side)
131
- instances_per_image.pred_keypoints = keypoint_results_per_image
132
- instances_per_image.pred_keypoint_heatmaps = heatmap_results_per_image
133
-
134
-
135
- class BaseKeypointRCNNHead(nn.Module):
136
- """
137
- Implement the basic Keypoint R-CNN losses and inference logic described in
138
- Sec. 5 of :paper:`Mask R-CNN`.
139
- """
140
-
141
- @configurable
142
- def __init__(self, *, num_keypoints, loss_weight=1.0, loss_normalizer=1.0):
143
- """
144
- NOTE: this interface is experimental.
145
-
146
- Args:
147
- num_keypoints (int): number of keypoints to predict
148
- loss_weight (float): weight to multiple on the keypoint loss
149
- loss_normalizer (float or str):
150
- If float, divide the loss by `loss_normalizer * #images`.
151
- If 'visible', the loss is normalized by the total number of
152
- visible keypoints across images.
153
- """
154
- super().__init__()
155
- self.num_keypoints = num_keypoints
156
- self.loss_weight = loss_weight
157
- assert loss_normalizer == "visible" or isinstance(loss_normalizer, float), loss_normalizer
158
- self.loss_normalizer = loss_normalizer
159
-
160
- @classmethod
161
- def from_config(cls, cfg, input_shape):
162
- ret = {
163
- "loss_weight": cfg.MODEL.ROI_KEYPOINT_HEAD.LOSS_WEIGHT,
164
- "num_keypoints": cfg.MODEL.ROI_KEYPOINT_HEAD.NUM_KEYPOINTS,
165
- }
166
- normalize_by_visible = (
167
- cfg.MODEL.ROI_KEYPOINT_HEAD.NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS
168
- ) # noqa
169
- if not normalize_by_visible:
170
- batch_size_per_image = cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE
171
- positive_sample_fraction = cfg.MODEL.ROI_HEADS.POSITIVE_FRACTION
172
- ret["loss_normalizer"] = (
173
- ret["num_keypoints"] * batch_size_per_image * positive_sample_fraction
174
- )
175
- else:
176
- ret["loss_normalizer"] = "visible"
177
- return ret
178
-
179
- def forward(self, x, instances: List[Instances]):
180
- """
181
- Args:
182
- x: input 4D region feature(s) provided by :class:`ROIHeads`.
183
- instances (list[Instances]): contains the boxes & labels corresponding
184
- to the input features.
185
- Exact format is up to its caller to decide.
186
- Typically, this is the foreground instances in training, with
187
- "proposal_boxes" field and other gt annotations.
188
- In inference, it contains boxes that are already predicted.
189
-
190
- Returns:
191
- A dict of losses if in training. The predicted "instances" if in inference.
192
- """
193
- x = self.layers(x)
194
- if self.training:
195
- num_images = len(instances)
196
- normalizer = (
197
- None if self.loss_normalizer == "visible" else num_images * self.loss_normalizer
198
- )
199
- return {
200
- "loss_keypoint": keypoint_rcnn_loss(x, instances, normalizer=normalizer)
201
- * self.loss_weight
202
- }
203
- else:
204
- keypoint_rcnn_inference(x, instances)
205
- return instances
206
-
207
- def layers(self, x):
208
- """
209
- Neural network layers that makes predictions from regional input features.
210
- """
211
- raise NotImplementedError
212
-
213
-
214
- # To get torchscript support, we make the head a subclass of `nn.Sequential`.
215
- # Therefore, to add new layers in this head class, please make sure they are
216
- # added in the order they will be used in forward().
217
- @ROI_KEYPOINT_HEAD_REGISTRY.register()
218
- class KRCNNConvDeconvUpsampleHead(BaseKeypointRCNNHead, nn.Sequential):
219
- """
220
- A standard keypoint head containing a series of 3x3 convs, followed by
221
- a transpose convolution and bilinear interpolation for upsampling.
222
- It is described in Sec. 5 of :paper:`Mask R-CNN`.
223
- """
224
-
225
- @configurable
226
- def __init__(self, input_shape, *, num_keypoints, conv_dims, **kwargs):
227
- """
228
- NOTE: this interface is experimental.
229
-
230
- Args:
231
- input_shape (ShapeSpec): shape of the input feature
232
- conv_dims: an iterable of output channel counts for each conv in the head
233
- e.g. (512, 512, 512) for three convs outputting 512 channels.
234
- """
235
- super().__init__(num_keypoints=num_keypoints, **kwargs)
236
-
237
- # default up_scale to 2.0 (this can be made an option)
238
- up_scale = 2.0
239
- in_channels = input_shape.channels
240
-
241
- for idx, layer_channels in enumerate(conv_dims, 1):
242
- module = Conv2d(in_channels, layer_channels, 3, stride=1, padding=1)
243
- self.add_module("conv_fcn{}".format(idx), module)
244
- self.add_module("conv_fcn_relu{}".format(idx), nn.ReLU())
245
- in_channels = layer_channels
246
-
247
- deconv_kernel = 4
248
- self.score_lowres = ConvTranspose2d(
249
- in_channels, num_keypoints, deconv_kernel, stride=2, padding=deconv_kernel // 2 - 1
250
- )
251
- self.up_scale = up_scale
252
-
253
- for name, param in self.named_parameters():
254
- if "bias" in name:
255
- nn.init.constant_(param, 0)
256
- elif "weight" in name:
257
- # Caffe2 implementation uses MSRAFill, which in fact
258
- # corresponds to kaiming_normal_ in PyTorch
259
- nn.init.kaiming_normal_(param, mode="fan_out", nonlinearity="relu")
260
-
261
- @classmethod
262
- def from_config(cls, cfg, input_shape):
263
- ret = super().from_config(cfg, input_shape)
264
- ret["input_shape"] = input_shape
265
- ret["conv_dims"] = cfg.MODEL.ROI_KEYPOINT_HEAD.CONV_DIMS
266
- return ret
267
-
268
- def layers(self, x):
269
- for layer in self:
270
- x = layer(x)
271
- x = interpolate(x, scale_factor=self.up_scale, mode="bilinear", align_corners=False)
272
- return x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Banbri/zcvzcv/src/lib/base64ToFile.ts DELETED
@@ -1,11 +0,0 @@
1
- export function base64ToFile(dataurl: string, filename: string) {
2
- var arr = dataurl.split(','),
3
- mime = arr[0].match(/:(.*?);/)?.[1],
4
- bstr = atob(arr[arr.length - 1]),
5
- n = bstr.length,
6
- u8arr = new Uint8Array(n);
7
- while(n--){
8
- u8arr[n] = bstr.charCodeAt(n);
9
- }
10
- return new File([u8arr], filename, {type:mime});
11
- }
 
 
 
 
 
 
 
 
 
 
 
 
spaces/BartPoint/VoiceChange_Beta/infer_pack/modules.py DELETED
@@ -1,522 +0,0 @@
1
- import copy
2
- import math
3
- import numpy as np
4
- import scipy
5
- import torch
6
- from torch import nn
7
- from torch.nn import functional as F
8
-
9
- from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
10
- from torch.nn.utils import weight_norm, remove_weight_norm
11
-
12
- from infer_pack import commons
13
- from infer_pack.commons import init_weights, get_padding
14
- from infer_pack.transforms import piecewise_rational_quadratic_transform
15
-
16
-
17
- LRELU_SLOPE = 0.1
18
-
19
-
20
- class LayerNorm(nn.Module):
21
- def __init__(self, channels, eps=1e-5):
22
- super().__init__()
23
- self.channels = channels
24
- self.eps = eps
25
-
26
- self.gamma = nn.Parameter(torch.ones(channels))
27
- self.beta = nn.Parameter(torch.zeros(channels))
28
-
29
- def forward(self, x):
30
- x = x.transpose(1, -1)
31
- x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
32
- return x.transpose(1, -1)
33
-
34
-
35
- class ConvReluNorm(nn.Module):
36
- def __init__(
37
- self,
38
- in_channels,
39
- hidden_channels,
40
- out_channels,
41
- kernel_size,
42
- n_layers,
43
- p_dropout,
44
- ):
45
- super().__init__()
46
- self.in_channels = in_channels
47
- self.hidden_channels = hidden_channels
48
- self.out_channels = out_channels
49
- self.kernel_size = kernel_size
50
- self.n_layers = n_layers
51
- self.p_dropout = p_dropout
52
- assert n_layers > 1, "Number of layers should be larger than 0."
53
-
54
- self.conv_layers = nn.ModuleList()
55
- self.norm_layers = nn.ModuleList()
56
- self.conv_layers.append(
57
- nn.Conv1d(
58
- in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
59
- )
60
- )
61
- self.norm_layers.append(LayerNorm(hidden_channels))
62
- self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
63
- for _ in range(n_layers - 1):
64
- self.conv_layers.append(
65
- nn.Conv1d(
66
- hidden_channels,
67
- hidden_channels,
68
- kernel_size,
69
- padding=kernel_size // 2,
70
- )
71
- )
72
- self.norm_layers.append(LayerNorm(hidden_channels))
73
- self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
74
- self.proj.weight.data.zero_()
75
- self.proj.bias.data.zero_()
76
-
77
- def forward(self, x, x_mask):
78
- x_org = x
79
- for i in range(self.n_layers):
80
- x = self.conv_layers[i](x * x_mask)
81
- x = self.norm_layers[i](x)
82
- x = self.relu_drop(x)
83
- x = x_org + self.proj(x)
84
- return x * x_mask
85
-
86
-
87
- class DDSConv(nn.Module):
88
- """
89
- Dialted and Depth-Separable Convolution
90
- """
91
-
92
- def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
93
- super().__init__()
94
- self.channels = channels
95
- self.kernel_size = kernel_size
96
- self.n_layers = n_layers
97
- self.p_dropout = p_dropout
98
-
99
- self.drop = nn.Dropout(p_dropout)
100
- self.convs_sep = nn.ModuleList()
101
- self.convs_1x1 = nn.ModuleList()
102
- self.norms_1 = nn.ModuleList()
103
- self.norms_2 = nn.ModuleList()
104
- for i in range(n_layers):
105
- dilation = kernel_size**i
106
- padding = (kernel_size * dilation - dilation) // 2
107
- self.convs_sep.append(
108
- nn.Conv1d(
109
- channels,
110
- channels,
111
- kernel_size,
112
- groups=channels,
113
- dilation=dilation,
114
- padding=padding,
115
- )
116
- )
117
- self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
118
- self.norms_1.append(LayerNorm(channels))
119
- self.norms_2.append(LayerNorm(channels))
120
-
121
- def forward(self, x, x_mask, g=None):
122
- if g is not None:
123
- x = x + g
124
- for i in range(self.n_layers):
125
- y = self.convs_sep[i](x * x_mask)
126
- y = self.norms_1[i](y)
127
- y = F.gelu(y)
128
- y = self.convs_1x1[i](y)
129
- y = self.norms_2[i](y)
130
- y = F.gelu(y)
131
- y = self.drop(y)
132
- x = x + y
133
- return x * x_mask
134
-
135
-
136
- class WN(torch.nn.Module):
137
- def __init__(
138
- self,
139
- hidden_channels,
140
- kernel_size,
141
- dilation_rate,
142
- n_layers,
143
- gin_channels=0,
144
- p_dropout=0,
145
- ):
146
- super(WN, self).__init__()
147
- assert kernel_size % 2 == 1
148
- self.hidden_channels = hidden_channels
149
- self.kernel_size = (kernel_size,)
150
- self.dilation_rate = dilation_rate
151
- self.n_layers = n_layers
152
- self.gin_channels = gin_channels
153
- self.p_dropout = p_dropout
154
-
155
- self.in_layers = torch.nn.ModuleList()
156
- self.res_skip_layers = torch.nn.ModuleList()
157
- self.drop = nn.Dropout(p_dropout)
158
-
159
- if gin_channels != 0:
160
- cond_layer = torch.nn.Conv1d(
161
- gin_channels, 2 * hidden_channels * n_layers, 1
162
- )
163
- self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
164
-
165
- for i in range(n_layers):
166
- dilation = dilation_rate**i
167
- padding = int((kernel_size * dilation - dilation) / 2)
168
- in_layer = torch.nn.Conv1d(
169
- hidden_channels,
170
- 2 * hidden_channels,
171
- kernel_size,
172
- dilation=dilation,
173
- padding=padding,
174
- )
175
- in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
176
- self.in_layers.append(in_layer)
177
-
178
- # last one is not necessary
179
- if i < n_layers - 1:
180
- res_skip_channels = 2 * hidden_channels
181
- else:
182
- res_skip_channels = hidden_channels
183
-
184
- res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
185
- res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
186
- self.res_skip_layers.append(res_skip_layer)
187
-
188
- def forward(self, x, x_mask, g=None, **kwargs):
189
- output = torch.zeros_like(x)
190
- n_channels_tensor = torch.IntTensor([self.hidden_channels])
191
-
192
- if g is not None:
193
- g = self.cond_layer(g)
194
-
195
- for i in range(self.n_layers):
196
- x_in = self.in_layers[i](x)
197
- if g is not None:
198
- cond_offset = i * 2 * self.hidden_channels
199
- g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
200
- else:
201
- g_l = torch.zeros_like(x_in)
202
-
203
- acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
204
- acts = self.drop(acts)
205
-
206
- res_skip_acts = self.res_skip_layers[i](acts)
207
- if i < self.n_layers - 1:
208
- res_acts = res_skip_acts[:, : self.hidden_channels, :]
209
- x = (x + res_acts) * x_mask
210
- output = output + res_skip_acts[:, self.hidden_channels :, :]
211
- else:
212
- output = output + res_skip_acts
213
- return output * x_mask
214
-
215
- def remove_weight_norm(self):
216
- if self.gin_channels != 0:
217
- torch.nn.utils.remove_weight_norm(self.cond_layer)
218
- for l in self.in_layers:
219
- torch.nn.utils.remove_weight_norm(l)
220
- for l in self.res_skip_layers:
221
- torch.nn.utils.remove_weight_norm(l)
222
-
223
-
224
- class ResBlock1(torch.nn.Module):
225
- def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
226
- super(ResBlock1, self).__init__()
227
- self.convs1 = nn.ModuleList(
228
- [
229
- weight_norm(
230
- Conv1d(
231
- channels,
232
- channels,
233
- kernel_size,
234
- 1,
235
- dilation=dilation[0],
236
- padding=get_padding(kernel_size, dilation[0]),
237
- )
238
- ),
239
- weight_norm(
240
- Conv1d(
241
- channels,
242
- channels,
243
- kernel_size,
244
- 1,
245
- dilation=dilation[1],
246
- padding=get_padding(kernel_size, dilation[1]),
247
- )
248
- ),
249
- weight_norm(
250
- Conv1d(
251
- channels,
252
- channels,
253
- kernel_size,
254
- 1,
255
- dilation=dilation[2],
256
- padding=get_padding(kernel_size, dilation[2]),
257
- )
258
- ),
259
- ]
260
- )
261
- self.convs1.apply(init_weights)
262
-
263
- self.convs2 = nn.ModuleList(
264
- [
265
- weight_norm(
266
- Conv1d(
267
- channels,
268
- channels,
269
- kernel_size,
270
- 1,
271
- dilation=1,
272
- padding=get_padding(kernel_size, 1),
273
- )
274
- ),
275
- weight_norm(
276
- Conv1d(
277
- channels,
278
- channels,
279
- kernel_size,
280
- 1,
281
- dilation=1,
282
- padding=get_padding(kernel_size, 1),
283
- )
284
- ),
285
- weight_norm(
286
- Conv1d(
287
- channels,
288
- channels,
289
- kernel_size,
290
- 1,
291
- dilation=1,
292
- padding=get_padding(kernel_size, 1),
293
- )
294
- ),
295
- ]
296
- )
297
- self.convs2.apply(init_weights)
298
-
299
- def forward(self, x, x_mask=None):
300
- for c1, c2 in zip(self.convs1, self.convs2):
301
- xt = F.leaky_relu(x, LRELU_SLOPE)
302
- if x_mask is not None:
303
- xt = xt * x_mask
304
- xt = c1(xt)
305
- xt = F.leaky_relu(xt, LRELU_SLOPE)
306
- if x_mask is not None:
307
- xt = xt * x_mask
308
- xt = c2(xt)
309
- x = xt + x
310
- if x_mask is not None:
311
- x = x * x_mask
312
- return x
313
-
314
- def remove_weight_norm(self):
315
- for l in self.convs1:
316
- remove_weight_norm(l)
317
- for l in self.convs2:
318
- remove_weight_norm(l)
319
-
320
-
321
- class ResBlock2(torch.nn.Module):
322
- def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
323
- super(ResBlock2, self).__init__()
324
- self.convs = nn.ModuleList(
325
- [
326
- weight_norm(
327
- Conv1d(
328
- channels,
329
- channels,
330
- kernel_size,
331
- 1,
332
- dilation=dilation[0],
333
- padding=get_padding(kernel_size, dilation[0]),
334
- )
335
- ),
336
- weight_norm(
337
- Conv1d(
338
- channels,
339
- channels,
340
- kernel_size,
341
- 1,
342
- dilation=dilation[1],
343
- padding=get_padding(kernel_size, dilation[1]),
344
- )
345
- ),
346
- ]
347
- )
348
- self.convs.apply(init_weights)
349
-
350
- def forward(self, x, x_mask=None):
351
- for c in self.convs:
352
- xt = F.leaky_relu(x, LRELU_SLOPE)
353
- if x_mask is not None:
354
- xt = xt * x_mask
355
- xt = c(xt)
356
- x = xt + x
357
- if x_mask is not None:
358
- x = x * x_mask
359
- return x
360
-
361
- def remove_weight_norm(self):
362
- for l in self.convs:
363
- remove_weight_norm(l)
364
-
365
-
366
- class Log(nn.Module):
367
- def forward(self, x, x_mask, reverse=False, **kwargs):
368
- if not reverse:
369
- y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
370
- logdet = torch.sum(-y, [1, 2])
371
- return y, logdet
372
- else:
373
- x = torch.exp(x) * x_mask
374
- return x
375
-
376
-
377
- class Flip(nn.Module):
378
- def forward(self, x, *args, reverse=False, **kwargs):
379
- x = torch.flip(x, [1])
380
- if not reverse:
381
- logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
382
- return x, logdet
383
- else:
384
- return x
385
-
386
-
387
- class ElementwiseAffine(nn.Module):
388
- def __init__(self, channels):
389
- super().__init__()
390
- self.channels = channels
391
- self.m = nn.Parameter(torch.zeros(channels, 1))
392
- self.logs = nn.Parameter(torch.zeros(channels, 1))
393
-
394
- def forward(self, x, x_mask, reverse=False, **kwargs):
395
- if not reverse:
396
- y = self.m + torch.exp(self.logs) * x
397
- y = y * x_mask
398
- logdet = torch.sum(self.logs * x_mask, [1, 2])
399
- return y, logdet
400
- else:
401
- x = (x - self.m) * torch.exp(-self.logs) * x_mask
402
- return x
403
-
404
-
405
- class ResidualCouplingLayer(nn.Module):
406
- def __init__(
407
- self,
408
- channels,
409
- hidden_channels,
410
- kernel_size,
411
- dilation_rate,
412
- n_layers,
413
- p_dropout=0,
414
- gin_channels=0,
415
- mean_only=False,
416
- ):
417
- assert channels % 2 == 0, "channels should be divisible by 2"
418
- super().__init__()
419
- self.channels = channels
420
- self.hidden_channels = hidden_channels
421
- self.kernel_size = kernel_size
422
- self.dilation_rate = dilation_rate
423
- self.n_layers = n_layers
424
- self.half_channels = channels // 2
425
- self.mean_only = mean_only
426
-
427
- self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
428
- self.enc = WN(
429
- hidden_channels,
430
- kernel_size,
431
- dilation_rate,
432
- n_layers,
433
- p_dropout=p_dropout,
434
- gin_channels=gin_channels,
435
- )
436
- self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
437
- self.post.weight.data.zero_()
438
- self.post.bias.data.zero_()
439
-
440
- def forward(self, x, x_mask, g=None, reverse=False):
441
- x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
442
- h = self.pre(x0) * x_mask
443
- h = self.enc(h, x_mask, g=g)
444
- stats = self.post(h) * x_mask
445
- if not self.mean_only:
446
- m, logs = torch.split(stats, [self.half_channels] * 2, 1)
447
- else:
448
- m = stats
449
- logs = torch.zeros_like(m)
450
-
451
- if not reverse:
452
- x1 = m + x1 * torch.exp(logs) * x_mask
453
- x = torch.cat([x0, x1], 1)
454
- logdet = torch.sum(logs, [1, 2])
455
- return x, logdet
456
- else:
457
- x1 = (x1 - m) * torch.exp(-logs) * x_mask
458
- x = torch.cat([x0, x1], 1)
459
- return x
460
-
461
- def remove_weight_norm(self):
462
- self.enc.remove_weight_norm()
463
-
464
-
465
- class ConvFlow(nn.Module):
466
- def __init__(
467
- self,
468
- in_channels,
469
- filter_channels,
470
- kernel_size,
471
- n_layers,
472
- num_bins=10,
473
- tail_bound=5.0,
474
- ):
475
- super().__init__()
476
- self.in_channels = in_channels
477
- self.filter_channels = filter_channels
478
- self.kernel_size = kernel_size
479
- self.n_layers = n_layers
480
- self.num_bins = num_bins
481
- self.tail_bound = tail_bound
482
- self.half_channels = in_channels // 2
483
-
484
- self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
485
- self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
486
- self.proj = nn.Conv1d(
487
- filter_channels, self.half_channels * (num_bins * 3 - 1), 1
488
- )
489
- self.proj.weight.data.zero_()
490
- self.proj.bias.data.zero_()
491
-
492
- def forward(self, x, x_mask, g=None, reverse=False):
493
- x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
494
- h = self.pre(x0)
495
- h = self.convs(h, x_mask, g=g)
496
- h = self.proj(h) * x_mask
497
-
498
- b, c, t = x0.shape
499
- h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
500
-
501
- unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
502
- unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
503
- self.filter_channels
504
- )
505
- unnormalized_derivatives = h[..., 2 * self.num_bins :]
506
-
507
- x1, logabsdet = piecewise_rational_quadratic_transform(
508
- x1,
509
- unnormalized_widths,
510
- unnormalized_heights,
511
- unnormalized_derivatives,
512
- inverse=reverse,
513
- tails="linear",
514
- tail_bound=self.tail_bound,
515
- )
516
-
517
- x = torch.cat([x0, x1], 1) * x_mask
518
- logdet = torch.sum(logabsdet * x_mask, [1, 2])
519
- if not reverse:
520
- return x, logdet
521
- else:
522
- return x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Benson/text-generation/Examples/Descargar Familias Virtuales 3 Mod Apk Dinero Ilimitado.md DELETED
@@ -1,64 +0,0 @@
1
- <br />
2
- <h1>Descargar Familias Virtuales 3 Mod APK dinero ilimitado</h1>
3
- <p>¿Te gustan los juegos de simulación que te permiten crear tu propia familia virtual y vivir una vida feliz? Si es así, entonces deberías probar Virtual Families 3, la última entrega de la popular serie de Last Day of Work. En este juego, puede adoptar a una persona pequeña de miles de opciones, construir un hogar para ellos, y ayudarles a lograr sus sueños. También puedes interactuar con otros jugadores online y visitar sus casas. ¿Pero qué pasa si quieres disfrutar del juego sin limitaciones o restricciones? Bueno, usted puede hacer eso mediante la descarga de familias virtuales 3 mod apk dinero ilimitado. En este artículo, le diremos qué es Virtual Families 3, por qué debe descargar la versión apk mod, y cómo instalarlo en su dispositivo. Así que, vamos a empezar! </p>
4
- <h2>¿Qué es Familias Virtuales 3?</h2>
5
- <p>Virtual Families 3 es un juego de simulación que te permite crear tu propia familia virtual y vivir una vida feliz. Puedes elegir entre miles de personajes para adoptar como tu pequeña persona, cada uno con su propia personalidad, apariencia y preferencias. A continuación, puede construir una casa para ellos, decorar con varios artículos, y actualizarlo como desee. También puede adoptar y educar a los niños, enseñarles habilidades y guiarlos a través de la vida. Puedes explorar el mundo virtual con tu familia, visitar los hogares de otros jugadores, chatear con ellos y hacer amigos. También puedes experimentar eventos aleatorios y sorpresas que hacen que el juego sea más divertido y realista. </p>
6
- <h2>descargar familias virtuales 3 mod apk dinero ilimitado</h2><br /><p><b><b>Download Zip</b> &#10026;&#10026;&#10026; <a href="https://bltlly.com/2v6Ji6">https://bltlly.com/2v6Ji6</a></b></p><br /><br />
7
- <h3>Características de las familias virtuales 3</h3>
8
- <p>Virtual Families 3 es un juego que ofrece muchas características para hacerlo agradable y realista. Estas son algunas de las características principales del juego:</p>
9
- <h4>Personaliza tu hogar y familia</h4>
10
-
11
- <h4>Adoptar y educar a los niños</h4>
12
- <p>Puedes adoptar y nutrir a niños en Virtual Families 3. Puedes elegir entre miles de niños para adoptar como propios, cada uno con sus propios rasgos y talentos. Luego puedes cuidarlos, alimentarlos, jugar con ellos, enseñarles habilidades y ayudarlos a crecer. También puedes verlos interactuar entre ellos y con sus padres. También puedes influir en sus carreras y matrimonios cuando se conviertan en adultos. </p>
13
- <h4>Explora el mundo virtual</h4>
14
- <p>Puedes explorar el mundo virtual con tu familia en Virtual Families 3. Puedes visitar los hogares de otros jugadores, chatear con ellos, intercambiar regalos y hacer amigos. También puedes unirte a eventos y competiciones para ganar premios y recompensas. También puedes descubrir nuevos lugares y secretos en el mundo del juego. </p>
15
- <h3>¿Por qué descargar Virtual Families 3 mod apk? </h3>
16
- <p>Virtual Families 3 es un juego gratuito que puedes descargar desde la Google Play Store o la App Store. Sin embargo, el juego también tiene algunas limitaciones y restricciones que pueden afectar tu experiencia de juego. Por ejemplo, necesitas ganar dinero y monedas para comprar artículos y mejorar tu hogar. También necesitas ver anuncios para obtener algunos bonos o recompensas. También necesitas pagar por algunas funciones premium y acceso que pueden mejorar tu juego. Pero, ¿qué pasa si quieres disfrutar del juego sin limitaciones ni restricciones? Bueno, usted puede hacer eso mediante la descarga de familias virtuales 3 mod apk dinero ilimitado. Esta es una versión modificada del juego que te da dinero ilimitado y monedas para gastar en lo que quieras. También obtienes acceso premium y funciones que normalmente están bloqueadas o pagadas. Tampoco tienes que ver ningún anuncio ni rootear tu dispositivo para jugar. Estos son algunos de los beneficios de descargar Virtual Families 3 mod apk:</p>
17
- <h4>Dinero y monedas ilimitados</h4>
18
-
19
- <h4>Acceso y características Premium</h4>
20
- <p>Con Virtual Families 3 mod apk, también obtienes acceso premium y características que normalmente están bloqueadas o pagadas. Por ejemplo, puedes desbloquear todos los personajes y niños a adoptar, todos los eventos y competiciones a los que unirte, todos los lugares y secretos para explorar, etc. También puedes acceder a algunas características exclusivas como cambiar el clima, tiempo, y las estaciones, la creación de sus propios eventos y competiciones, la personalización de sus propios personajes y niños, etc. Puede disfrutar del juego al máximo sin limitaciones. </p>
21
- <p></p>
22
- <h4>No se requieren anuncios ni root</h4>
23
- <p>Con Virtual Families 3 mod apk, tampoco tienes que ver ningún anuncio o raíz de su dispositivo para jugar el juego. La versión apk mod elimina todos los anuncios molestos que pueden interrumpir su juego o perder el tiempo. Puede jugar el juego sin problemas y sin distracciones. También no tiene que rootear su dispositivo o arriesgarse a dañarlo para instalar el archivo apk mod. Puedes simplemente descargarlo e instalarlo como cualquier otra aplicación. </p>
24
- <h2>Cómo descargar e instalar familias virtuales 3 mod apk? </h2>
25
- <p>Ahora que usted sabe lo que es familias virtuales 3 mod apk y por qué debe descargarlo, usted puede preguntarse cómo descargar e instalar en su dispositivo. Bueno, no te preocupes, porque te guiaremos a través del proceso paso a paso. Solo sigue estos sencillos pasos:</p>
26
- <h3>Paso 1: Descargar el archivo apk mod de una fuente de confianza</h3>
27
- <p>El primer paso es descargar el archivo apk mod de una fuente de confianza. Hay muchos sitios web que ofrecen archivos apk mod para varios juegos, pero no todos ellos son seguros o fiables. Algunos de ellos pueden contener virus o malware que pueden dañar su dispositivo o robar sus datos. Por lo tanto, debe tener cuidado al elegir una fuente para descargar el archivo apk mod de. Le recomendamos que utilice este enlace para descargar la última versión de Virtual Families 3 mod apk dinero ilimitado. Este enlace es seguro y verificado por nosotros. </p>
28
-
29
- <p>El siguiente paso es habilitar fuentes desconocidas en su dispositivo. Esto es necesario porque, de forma predeterminada, el dispositivo no permite instalar aplicaciones desde fuentes distintas de las tiendas de aplicaciones oficiales. Sin embargo, ya que estamos instalando un archivo apk mod que no está disponible en las tiendas de aplicaciones, necesitamos habilitar fuentes desconocidas en nuestro dispositivo. Para hacer esto, vaya a la configuración del dispositivo, luego la seguridad o la privacidad, luego encuentre fuentes desconocidas o instale la opción de aplicaciones desconocidas, luego cámbiela o permítala. </p>
30
- <h3>Paso 3: Instalar el archivo apk mod y disfrutar del juego</h3>
31
- <p>El paso final es instalar el archivo apk mod y disfrutar del juego. Para hacer esto, localizar el archivo apk mod descargado en el almacenamiento del dispositivo, a continuación, toque en él para iniciar el proceso de instalación. Siga las instrucciones de la pantalla y espere unos segundos hasta que se complete la instalación. Una vez hecho, puede iniciar el juego desde el cajón de la aplicación o la pantalla de inicio y empezar a jugar con dinero y monedas ilimitadas. </p>
32
- <h2>Conclusión</h2>
33
- <p>Virtual Families 3 es un juego de simulación que te permite crear tu propia familia virtual y vivir una vida feliz. Puede personalizar su hogar y familia, adoptar y nutrir a los niños, explorar el mundo virtual e interactuar con otros jugadores en línea. Sin embargo, si desea disfrutar del juego sin limitaciones o restricciones, debe descargar Virtual Families 3 mod apk dinero ilimitado. Esta es una versión modificada del juego que te da dinero ilimitado y monedas para gastar en lo que quieras. También obtienes acceso premium y funciones que normalmente están bloqueadas o pagadas. Tampoco tienes que ver ningún anuncio ni rootear tu dispositivo para jugar. </p>
34
- <p>Esperamos que este artículo le ha ayudado a entender lo que es familias virtuales 3 mod apk dinero ilimitado, por qué debe descargarlo, y cómo instalarlo en su dispositivo. Si tiene alguna pregunta o sugerencia, no dude en dejarla en la sección de comentarios a continuación. Nos encantaría saber de usted. ¡Gracias por leer y jugar feliz! </p>
35
-
36
- <p>Aquí hay algunas preguntas frecuentes sobre Virtual Families 3 mod apk unlimited money:</p>
37
- <tabla>
38
- <tr>
39
- <th>Pregunta</th>
40
- <th>Respuesta</th>
41
- </tr>
42
- <tr>
43
- <td>Es familias virtuales 3 mod apk seguro para descargar e instalar? </td>
44
- <td>Sí, Familias Virtuales 3 mod apk es seguro para descargar e instalar, siempre y cuando se utiliza una fuente de confianza como la que proporcionamos en este artículo. El archivo apk mod no contiene ningún virus o malware que pueda dañar su dispositivo o robar sus datos. </td>
45
- </tr>
46
- <tr>
47
- <td>¿Se me prohibirá el uso de familias virtuales 3 mod apk? </td>
48
- <td>No, no se le prohibirá el uso de familias virtuales 3 mod apk, como el archivo apk mod no interfiere con los servidores del juego o las cuentas de otros jugadores. Puede jugar el juego en línea sin ningún problema o riesgo. </td>
49
- </tr>
50
- <tr>
51
- <td>¿Puedo actualizar Virtual Families 3 mod apk a la última versión? </td>
52
- <td>Sí, puede actualizar familias virtuales 3 mod apk a la última versión, siempre y cuando descargue el archivo apk mod actualizado de la misma fuente que utilizó antes. Sin embargo, puede perder su progreso y los datos si desinstala la versión anterior del archivo apk mod. Por lo tanto, le recomendamos que haga una copia de seguridad de sus datos antes de actualizar el archivo apk mod. </td>
53
- </tr>
54
- <tr>
55
- <td>¿Puedo jugar familias virtuales 3 mod apk en PC o dispositivos iOS? </td>
56
- <td>No, no se puede jugar familias virtuales 3 mod apk en PC o dispositivos iOS, ya que el archivo mod apk solo es compatible con dispositivos Android. Sin embargo, puede utilizar un emulador de Android en su PC o un dispositivo iOS jailbreak para ejecutar el archivo apk mod. </td>
57
- </tr>
58
- <tr>
59
- <td>¿Puedo solicitar más características o mods para familias virtuales 3?</td>
60
- <td>Sí, puede solicitar más características o mods para Virtual Families 3, dejando un comentario a continuación o ponerse en contacto con el desarrollador del archivo apk mod. Sin embargo, no podemos garantizar que su solicitud se cumplirá o cuando estará disponible. </td>
61
- </tr>
62
- </tabla></p> 64aa2da5cf<br />
63
- <br />
64
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Big-Web/MMSD/env/Lib/site-packages/dateutil/tz/__init__.py DELETED
@@ -1,12 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- from .tz import *
3
- from .tz import __doc__
4
-
5
- __all__ = ["tzutc", "tzoffset", "tzlocal", "tzfile", "tzrange",
6
- "tzstr", "tzical", "tzwin", "tzwinlocal", "gettz",
7
- "enfold", "datetime_ambiguous", "datetime_exists",
8
- "resolve_imaginary", "UTC", "DeprecatedTzFormatWarning"]
9
-
10
-
11
- class DeprecatedTzFormatWarning(Warning):
12
- """Warning raised when time zones are parsed from deprecated formats."""
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Big-Web/MMSD/env/Lib/site-packages/pip/_vendor/chardet/gb2312prober.py DELETED
@@ -1,47 +0,0 @@
1
- ######################## BEGIN LICENSE BLOCK ########################
2
- # The Original Code is mozilla.org code.
3
- #
4
- # The Initial Developer of the Original Code is
5
- # Netscape Communications Corporation.
6
- # Portions created by the Initial Developer are Copyright (C) 1998
7
- # the Initial Developer. All Rights Reserved.
8
- #
9
- # Contributor(s):
10
- # Mark Pilgrim - port to Python
11
- #
12
- # This library is free software; you can redistribute it and/or
13
- # modify it under the terms of the GNU Lesser General Public
14
- # License as published by the Free Software Foundation; either
15
- # version 2.1 of the License, or (at your option) any later version.
16
- #
17
- # This library is distributed in the hope that it will be useful,
18
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
19
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20
- # Lesser General Public License for more details.
21
- #
22
- # You should have received a copy of the GNU Lesser General Public
23
- # License along with this library; if not, write to the Free Software
24
- # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
25
- # 02110-1301 USA
26
- ######################### END LICENSE BLOCK #########################
27
-
28
- from .chardistribution import GB2312DistributionAnalysis
29
- from .codingstatemachine import CodingStateMachine
30
- from .mbcharsetprober import MultiByteCharSetProber
31
- from .mbcssm import GB2312_SM_MODEL
32
-
33
-
34
- class GB2312Prober(MultiByteCharSetProber):
35
- def __init__(self) -> None:
36
- super().__init__()
37
- self.coding_sm = CodingStateMachine(GB2312_SM_MODEL)
38
- self.distribution_analyzer = GB2312DistributionAnalysis()
39
- self.reset()
40
-
41
- @property
42
- def charset_name(self) -> str:
43
- return "GB2312"
44
-
45
- @property
46
- def language(self) -> str:
47
- return "Chinese"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Big-Web/MMSD/env/Lib/site-packages/pip/_vendor/requests/api.py DELETED
@@ -1,157 +0,0 @@
1
- """
2
- requests.api
3
- ~~~~~~~~~~~~
4
-
5
- This module implements the Requests API.
6
-
7
- :copyright: (c) 2012 by Kenneth Reitz.
8
- :license: Apache2, see LICENSE for more details.
9
- """
10
-
11
- from . import sessions
12
-
13
-
14
- def request(method, url, **kwargs):
15
- """Constructs and sends a :class:`Request <Request>`.
16
-
17
- :param method: method for the new :class:`Request` object: ``GET``, ``OPTIONS``, ``HEAD``, ``POST``, ``PUT``, ``PATCH``, or ``DELETE``.
18
- :param url: URL for the new :class:`Request` object.
19
- :param params: (optional) Dictionary, list of tuples or bytes to send
20
- in the query string for the :class:`Request`.
21
- :param data: (optional) Dictionary, list of tuples, bytes, or file-like
22
- object to send in the body of the :class:`Request`.
23
- :param json: (optional) A JSON serializable Python object to send in the body of the :class:`Request`.
24
- :param headers: (optional) Dictionary of HTTP Headers to send with the :class:`Request`.
25
- :param cookies: (optional) Dict or CookieJar object to send with the :class:`Request`.
26
- :param files: (optional) Dictionary of ``'name': file-like-objects`` (or ``{'name': file-tuple}``) for multipart encoding upload.
27
- ``file-tuple`` can be a 2-tuple ``('filename', fileobj)``, 3-tuple ``('filename', fileobj, 'content_type')``
28
- or a 4-tuple ``('filename', fileobj, 'content_type', custom_headers)``, where ``'content-type'`` is a string
29
- defining the content type of the given file and ``custom_headers`` a dict-like object containing additional headers
30
- to add for the file.
31
- :param auth: (optional) Auth tuple to enable Basic/Digest/Custom HTTP Auth.
32
- :param timeout: (optional) How many seconds to wait for the server to send data
33
- before giving up, as a float, or a :ref:`(connect timeout, read
34
- timeout) <timeouts>` tuple.
35
- :type timeout: float or tuple
36
- :param allow_redirects: (optional) Boolean. Enable/disable GET/OPTIONS/POST/PUT/PATCH/DELETE/HEAD redirection. Defaults to ``True``.
37
- :type allow_redirects: bool
38
- :param proxies: (optional) Dictionary mapping protocol to the URL of the proxy.
39
- :param verify: (optional) Either a boolean, in which case it controls whether we verify
40
- the server's TLS certificate, or a string, in which case it must be a path
41
- to a CA bundle to use. Defaults to ``True``.
42
- :param stream: (optional) if ``False``, the response content will be immediately downloaded.
43
- :param cert: (optional) if String, path to ssl client cert file (.pem). If Tuple, ('cert', 'key') pair.
44
- :return: :class:`Response <Response>` object
45
- :rtype: requests.Response
46
-
47
- Usage::
48
-
49
- >>> import requests
50
- >>> req = requests.request('GET', 'https://httpbin.org/get')
51
- >>> req
52
- <Response [200]>
53
- """
54
-
55
- # By using the 'with' statement we are sure the session is closed, thus we
56
- # avoid leaving sockets open which can trigger a ResourceWarning in some
57
- # cases, and look like a memory leak in others.
58
- with sessions.Session() as session:
59
- return session.request(method=method, url=url, **kwargs)
60
-
61
-
62
- def get(url, params=None, **kwargs):
63
- r"""Sends a GET request.
64
-
65
- :param url: URL for the new :class:`Request` object.
66
- :param params: (optional) Dictionary, list of tuples or bytes to send
67
- in the query string for the :class:`Request`.
68
- :param \*\*kwargs: Optional arguments that ``request`` takes.
69
- :return: :class:`Response <Response>` object
70
- :rtype: requests.Response
71
- """
72
-
73
- return request("get", url, params=params, **kwargs)
74
-
75
-
76
- def options(url, **kwargs):
77
- r"""Sends an OPTIONS request.
78
-
79
- :param url: URL for the new :class:`Request` object.
80
- :param \*\*kwargs: Optional arguments that ``request`` takes.
81
- :return: :class:`Response <Response>` object
82
- :rtype: requests.Response
83
- """
84
-
85
- return request("options", url, **kwargs)
86
-
87
-
88
- def head(url, **kwargs):
89
- r"""Sends a HEAD request.
90
-
91
- :param url: URL for the new :class:`Request` object.
92
- :param \*\*kwargs: Optional arguments that ``request`` takes. If
93
- `allow_redirects` is not provided, it will be set to `False` (as
94
- opposed to the default :meth:`request` behavior).
95
- :return: :class:`Response <Response>` object
96
- :rtype: requests.Response
97
- """
98
-
99
- kwargs.setdefault("allow_redirects", False)
100
- return request("head", url, **kwargs)
101
-
102
-
103
- def post(url, data=None, json=None, **kwargs):
104
- r"""Sends a POST request.
105
-
106
- :param url: URL for the new :class:`Request` object.
107
- :param data: (optional) Dictionary, list of tuples, bytes, or file-like
108
- object to send in the body of the :class:`Request`.
109
- :param json: (optional) json data to send in the body of the :class:`Request`.
110
- :param \*\*kwargs: Optional arguments that ``request`` takes.
111
- :return: :class:`Response <Response>` object
112
- :rtype: requests.Response
113
- """
114
-
115
- return request("post", url, data=data, json=json, **kwargs)
116
-
117
-
118
- def put(url, data=None, **kwargs):
119
- r"""Sends a PUT request.
120
-
121
- :param url: URL for the new :class:`Request` object.
122
- :param data: (optional) Dictionary, list of tuples, bytes, or file-like
123
- object to send in the body of the :class:`Request`.
124
- :param json: (optional) json data to send in the body of the :class:`Request`.
125
- :param \*\*kwargs: Optional arguments that ``request`` takes.
126
- :return: :class:`Response <Response>` object
127
- :rtype: requests.Response
128
- """
129
-
130
- return request("put", url, data=data, **kwargs)
131
-
132
-
133
- def patch(url, data=None, **kwargs):
134
- r"""Sends a PATCH request.
135
-
136
- :param url: URL for the new :class:`Request` object.
137
- :param data: (optional) Dictionary, list of tuples, bytes, or file-like
138
- object to send in the body of the :class:`Request`.
139
- :param json: (optional) json data to send in the body of the :class:`Request`.
140
- :param \*\*kwargs: Optional arguments that ``request`` takes.
141
- :return: :class:`Response <Response>` object
142
- :rtype: requests.Response
143
- """
144
-
145
- return request("patch", url, data=data, **kwargs)
146
-
147
-
148
- def delete(url, **kwargs):
149
- r"""Sends a DELETE request.
150
-
151
- :param url: URL for the new :class:`Request` object.
152
- :param \*\*kwargs: Optional arguments that ``request`` takes.
153
- :return: :class:`Response <Response>` object
154
- :rtype: requests.Response
155
- """
156
-
157
- return request("delete", url, **kwargs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/LIVE/thrust/thrust/detail/config/global_workarounds.h DELETED
@@ -1,27 +0,0 @@
1
- /*
2
- * Copyright 2008-2013 NVIDIA Corporation
3
- *
4
- * Licensed under the Apache License, Version 2.0 (the "License");
5
- * you may not use this file except in compliance with the License.
6
- * You may obtain a copy of the License at
7
- *
8
- * http://www.apache.org/licenses/LICENSE-2.0
9
- *
10
- * Unless required by applicable law or agreed to in writing, software
11
- * distributed under the License is distributed on an "AS IS" BASIS,
12
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- * See the License for the specific language governing permissions and
14
- * limitations under the License.
15
- */
16
-
17
- #pragma once
18
-
19
- #include <thrust/detail/config/compiler.h>
20
-
21
- // XXX workaround gcc 4.8+'s complaints about unused local typedefs by silencing them globally
22
- #if defined(THRUST_GCC_VERSION) && (THRUST_GCC_VERSION >= 40800)
23
- # if defined(__NVCC__) && (CUDART_VERSION >= 6000)
24
- # pragma GCC diagnostic ignored "-Wunused-local-typedefs"
25
- # endif // nvcc & cuda 6+
26
- #endif // gcc 4.8
27
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/LIVE/thrust/thrust/transform.h DELETED
@@ -1,725 +0,0 @@
1
- /*
2
- * Copyright 2008-2013 NVIDIA Corporation
3
- *
4
- * Licensed under the Apache License, Version 2.0 (the "License");
5
- * you may not use this file except in compliance with the License.
6
- * You may obtain a copy of the License at
7
- *
8
- * http://www.apache.org/licenses/LICENSE-2.0
9
- *
10
- * Unless required by applicable law or agreed to in writing, software
11
- * distributed under the License is distributed on an "AS IS" BASIS,
12
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- * See the License for the specific language governing permissions and
14
- * limitations under the License.
15
- */
16
-
17
-
18
- /*! \file thrust/transform.h
19
- * \brief Transforms input ranges using a function object
20
- */
21
-
22
- #pragma once
23
-
24
- #include <thrust/detail/config.h>
25
- #include <thrust/detail/execution_policy.h>
26
-
27
- namespace thrust
28
- {
29
-
30
-
31
- /*! \addtogroup algorithms
32
- */
33
-
34
- /*! \addtogroup transformations
35
- * \ingroup algorithms
36
- * \{
37
- */
38
-
39
-
40
- /*! This version of \p transform applies a unary function to each element
41
- * of an input sequence and stores the result in the corresponding
42
- * position in an output sequence. Specifically, for each iterator
43
- * <tt>i</tt> in the range [\p first, \p last) the operation
44
- * <tt>op(*i)</tt> is performed and the result is assigned to <tt>*o</tt>,
45
- * where <tt>o</tt> is the corresponding output iterator in the range
46
- * [\p result, \p result + (\p last - \p first) ). The input and
47
- * output sequences may coincide, resulting in an in-place transformation.
48
- *
49
- * The algorithm's execution is parallelized as determined by \p exec.
50
- *
51
- * \param exec The execution policy to use for parallelization.
52
- * \param first The beginning of the input sequence.
53
- * \param last The end of the input sequence.
54
- * \param result The beginning of the output sequence.
55
- * \param op The transformation operation.
56
- * \return The end of the output sequence.
57
- *
58
- * \tparam DerivedPolicy The name of the derived execution policy.
59
- * \tparam InputIterator is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>
60
- * and \c InputIterator's \c value_type is convertible to \c UnaryFunction's \c argument_type.
61
- * \tparam OutputIterator is a model of <a href="http://www.sgi.com/tech/stl/OutputIterator.html">Output Iterator</a>.
62
- * \tparam UnaryFunction is a model of <a href="http://www.sgi.com/tech/stl/UnaryFunction.html">Unary Function</a>
63
- * and \c UnaryFunction's \c result_type is convertible to \c OutputIterator's \c value_type.
64
- *
65
- * \pre \p first may equal \p result, but the range <tt>[first, last)</tt> shall not overlap the range <tt>[result, result + (last - first))</tt> otherwise.
66
- *
67
- * The following code snippet demonstrates how to use \p transform to negate a range in-place
68
- * using the \p thrust::host execution policy for parallelization:
69
- *
70
- * \code
71
- * #include <thrust/transform.h>
72
- * #include <thrust/functional.h>
73
- * #include <thrust/execution_policy.h>
74
- * ...
75
- *
76
- * int data[10] = {-5, 0, 2, -3, 2, 4, 0, -1, 2, 8};
77
- *
78
- * thrust::negate<int> op;
79
- *
80
- * thrust::transform(thrust::host, data, data + 10, data, op); // in-place transformation
81
- *
82
- * // data is now {5, 0, -2, 3, -2, -4, 0, 1, -2, -8};
83
- * \endcode
84
- *
85
- * \see http://www.sgi.com/tech/stl/transform.html
86
- */
87
- template<typename DerivedPolicy,
88
- typename InputIterator,
89
- typename OutputIterator,
90
- typename UnaryFunction>
91
- __host__ __device__
92
- OutputIterator transform(const thrust::detail::execution_policy_base<DerivedPolicy> &exec,
93
- InputIterator first, InputIterator last,
94
- OutputIterator result,
95
- UnaryFunction op);
96
-
97
-
98
- /*! This version of \p transform applies a unary function to each element
99
- * of an input sequence and stores the result in the corresponding
100
- * position in an output sequence. Specifically, for each iterator
101
- * <tt>i</tt> in the range [\p first, \p last) the operation
102
- * <tt>op(*i)</tt> is performed and the result is assigned to <tt>*o</tt>,
103
- * where <tt>o</tt> is the corresponding output iterator in the range
104
- * [\p result, \p result + (\p last - \p first) ). The input and
105
- * output sequences may coincide, resulting in an in-place transformation.
106
- *
107
- * \param first The beginning of the input sequence.
108
- * \param last The end of the input sequence.
109
- * \param result The beginning of the output sequence.
110
- * \param op The tranformation operation.
111
- * \return The end of the output sequence.
112
- *
113
- * \tparam InputIterator is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>
114
- * and \c InputIterator's \c value_type is convertible to \c UnaryFunction's \c argument_type.
115
- * \tparam OutputIterator is a model of <a href="http://www.sgi.com/tech/stl/OutputIterator.html">Output Iterator</a>.
116
- * \tparam UnaryFunction is a model of <a href="http://www.sgi.com/tech/stl/UnaryFunction.html">Unary Function</a>
117
- * and \c UnaryFunction's \c result_type is convertible to \c OutputIterator's \c value_type.
118
- *
119
- * \pre \p first may equal \p result, but the range <tt>[first, last)</tt> shall not overlap the range <tt>[result, result + (last - first))</tt> otherwise.
120
- *
121
- * The following code snippet demonstrates how to use \p transform
122
- *
123
- * \code
124
- * #include <thrust/transform.h>
125
- * #include <thrust/functional.h>
126
- *
127
- * int data[10] = {-5, 0, 2, -3, 2, 4, 0, -1, 2, 8};
128
- *
129
- * thrust::negate<int> op;
130
- *
131
- * thrust::transform(data, data + 10, data, op); // in-place transformation
132
- *
133
- * // data is now {5, 0, -2, 3, -2, -4, 0, 1, -2, -8};
134
- * \endcode
135
- *
136
- * \see http://www.sgi.com/tech/stl/transform.html
137
- */
138
- template<typename InputIterator,
139
- typename OutputIterator,
140
- typename UnaryFunction>
141
- OutputIterator transform(InputIterator first, InputIterator last,
142
- OutputIterator result,
143
- UnaryFunction op);
144
-
145
-
146
- /*! This version of \p transform applies a binary function to each pair
147
- * of elements from two input sequences and stores the result in the
148
- * corresponding position in an output sequence. Specifically, for
149
- * each iterator <tt>i</tt> in the range [\p first1, \p last1) and
150
- * <tt>j = first + (i - first1)</tt> in the range [\p first2, \p last2)
151
- * the operation <tt>op(*i,*j)</tt> is performed and the result is
152
- * assigned to <tt>*o</tt>, where <tt>o</tt> is the corresponding
153
- * output iterator in the range [\p result, \p result + (\p last - \p first) ).
154
- * The input and output sequences may coincide, resulting in an
155
- * in-place transformation.
156
- *
157
- * The algorithm's execution is parallelized as determined by \p exec.
158
- *
159
- * \param exec The execution policy to use for parallelization.
160
- * \param first1 The beginning of the first input sequence.
161
- * \param last1 The end of the first input sequence.
162
- * \param first2 The beginning of the second input sequence.
163
- * \param result The beginning of the output sequence.
164
- * \param op The tranformation operation.
165
- * \return The end of the output sequence.
166
- *
167
- * \tparam DerivedPolicy The name of the derived execution policy.
168
- * \tparam InputIterator1 is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>
169
- * and \c InputIterator1's \c value_type is convertible to \c BinaryFunction's \c first_argument_type.
170
- * \tparam InputIterator2 is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>
171
- * and \c InputIterator2's \c value_type is convertible to \c BinaryFunction's \c second_argument_type.
172
- * \tparam OutputIterator is a model of <a href="http://www.sgi.com/tech/stl/OutputIterator.html">Output Iterator</a>.
173
- * \tparam BinaryFunction is a model of <a href="http://www.sgi.com/tech/stl/BinaryFunction.html">Binary Function</a>
174
- * and \c BinaryFunction's \c result_type is convertible to \c OutputIterator's \c value_type.
175
- *
176
- * \pre \p first1 may equal \p result, but the range <tt>[first1, last1)</tt> shall not overlap the range <tt>[result, result + (last1 - first1))</tt> otherwise.
177
- * \pre \p first2 may equal \p result, but the range <tt>[first2, first2 + (last1 - first1))</tt> shall not overlap the range <tt>[result, result + (last1 - first1))</tt> otherwise.
178
- *
179
- * The following code snippet demonstrates how to use \p transform to compute the sum of two
180
- * ranges using the \p thrust::host execution policy for parallelization:
181
- *
182
- * \code
183
- * #include <thrust/transform.h>
184
- * #include <thrust/functional.h>
185
- * #include <thrust/execution_policy.h>
186
- * ...
187
- *
188
- * int input1[6] = {-5, 0, 2, 3, 2, 4};
189
- * int input2[6] = { 3, 6, -2, 1, 2, 3};
190
- * int output[6];
191
- *
192
- * thrust::plus<int> op;
193
- *
194
- * thrust::transform(thrust::host, input1, input1 + 6, input2, output, op);
195
- *
196
- * // output is now {-2, 6, 0, 4, 4, 7};
197
- * \endcode
198
- *
199
- * \see http://www.sgi.com/tech/stl/transform.html
200
- */
201
- template<typename DerivedPolicy,
202
- typename InputIterator1,
203
- typename InputIterator2,
204
- typename OutputIterator,
205
- typename BinaryFunction>
206
- __host__ __device__
207
- OutputIterator transform(const thrust::detail::execution_policy_base<DerivedPolicy> &exec,
208
- InputIterator1 first1, InputIterator1 last1,
209
- InputIterator2 first2,
210
- OutputIterator result,
211
- BinaryFunction op);
212
-
213
-
214
- /*! This version of \p transform applies a binary function to each pair
215
- * of elements from two input sequences and stores the result in the
216
- * corresponding position in an output sequence. Specifically, for
217
- * each iterator <tt>i</tt> in the range [\p first1, \p last1) and
218
- * <tt>j = first + (i - first1)</tt> in the range [\p first2, \p last2)
219
- * the operation <tt>op(*i,*j)</tt> is performed and the result is
220
- * assigned to <tt>*o</tt>, where <tt>o</tt> is the corresponding
221
- * output iterator in the range [\p result, \p result + (\p last - \p first) ).
222
- * The input and output sequences may coincide, resulting in an
223
- * in-place transformation.
224
- *
225
- * \param first1 The beginning of the first input sequence.
226
- * \param last1 The end of the first input sequence.
227
- * \param first2 The beginning of the second input sequence.
228
- * \param result The beginning of the output sequence.
229
- * \param op The tranformation operation.
230
- * \return The end of the output sequence.
231
- *
232
- * \tparam InputIterator1 is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>
233
- * and \c InputIterator1's \c value_type is convertible to \c BinaryFunction's \c first_argument_type.
234
- * \tparam InputIterator2 is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>
235
- * and \c InputIterator2's \c value_type is convertible to \c BinaryFunction's \c second_argument_type.
236
- * \tparam OutputIterator is a model of <a href="http://www.sgi.com/tech/stl/OutputIterator.html">Output Iterator</a>.
237
- * \tparam BinaryFunction is a model of <a href="http://www.sgi.com/tech/stl/BinaryFunction.html">Binary Function</a>
238
- * and \c BinaryFunction's \c result_type is convertible to \c OutputIterator's \c value_type.
239
- *
240
- * \pre \p first1 may equal \p result, but the range <tt>[first1, last1)</tt> shall not overlap the range <tt>[result, result + (last1 - first1))</tt> otherwise.
241
- * \pre \p first2 may equal \p result, but the range <tt>[first2, first2 + (last1 - first1))</tt> shall not overlap the range <tt>[result, result + (last1 - first1))</tt> otherwise.
242
- *
243
- * The following code snippet demonstrates how to use \p transform
244
- *
245
- * \code
246
- * #include <thrust/transform.h>
247
- * #include <thrust/functional.h>
248
- *
249
- * int input1[6] = {-5, 0, 2, 3, 2, 4};
250
- * int input2[6] = { 3, 6, -2, 1, 2, 3};
251
- * int output[6];
252
- *
253
- * thrust::plus<int> op;
254
- *
255
- * thrust::transform(input1, input1 + 6, input2, output, op);
256
- *
257
- * // output is now {-2, 6, 0, 4, 4, 7};
258
- * \endcode
259
- *
260
- * \see http://www.sgi.com/tech/stl/transform.html
261
- */
262
- template<typename InputIterator1,
263
- typename InputIterator2,
264
- typename OutputIterator,
265
- typename BinaryFunction>
266
- OutputIterator transform(InputIterator1 first1, InputIterator1 last1,
267
- InputIterator2 first2,
268
- OutputIterator result,
269
- BinaryFunction op);
270
-
271
-
272
- /*! This version of \p transform_if conditionally applies a unary function
273
- * to each element of an input sequence and stores the result in the corresponding
274
- * position in an output sequence if the corresponding position in the input sequence
275
- * satifies a predicate. Otherwise, the corresponding position in the
276
- * output sequence is not modified.
277
- *
278
- * Specifically, for each iterator <tt>i</tt> in the range <tt>[first, last)</tt> the
279
- * predicate <tt>pred(*i)</tt> is evaluated. If this predicate
280
- * evaluates to \c true, the result of <tt>op(*i)</tt> is assigned to <tt>*o</tt>,
281
- * where <tt>o</tt> is the corresponding output iterator in the range
282
- * <tt>[result, result + (last - first) )</tt>. Otherwise, <tt>op(*i)</tt> is
283
- * not evaluated and no assignment occurs. The input and output sequences may coincide,
284
- * resulting in an in-place transformation.
285
- *
286
- * The algorithm's execution is parallelized as determined by \p exec.
287
- *
288
- * \param exec The execution policy to use for parallelization.
289
- * \param first The beginning of the input sequence.
290
- * \param last The end of the input sequence.
291
- * \param result The beginning of the output sequence.
292
- * \param op The tranformation operation.
293
- * \param pred The predicate operation.
294
- * \return The end of the output sequence.
295
- *
296
- * \tparam DerivedPolicy The name of the derived execution policy.
297
- * \tparam InputIterator is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>,
298
- * and \c InputIterator's \c value_type is convertible to \c Predicate's \c argument_type,
299
- * and \c InputIterator's \c value_type is convertible to \c UnaryFunction's \c argument_type.
300
- * \tparam ForwardIterator is a model of <a href="http://www.sgi.com/tech/stl/ForwardIterator.html">Forward Iterator</a>.
301
- * \tparam UnaryFunction is a model of <a href="http://www.sgi.com/tech/stl/UnaryFunction.html">Unary Function</a>
302
- * and \c UnaryFunction's \c result_type is convertible to \c OutputIterator's \c value_type.
303
- * \tparam Predicate is a model of <a href="http://www.sgi.com/tech/stl/Predicate.html">Predicate</a>.
304
- *
305
- * \pre \p first may equal \p result, but the range <tt>[first, last)</tt> shall not overlap the range <tt>[result, result + (last - first))</tt> otherwise.
306
- *
307
- * The following code snippet demonstrates how to use \p transform_if to negate the odd-valued
308
- * elements of a range using the \p thrust::host execution policy for parallelization:
309
- *
310
- * \code
311
- * #include <thrust/transform.h>
312
- * #include <thrust/functional.h>
313
- * #include <thrust/execution_policy.h>
314
- * ...
315
- *
316
- * int data[10] = {-5, 0, 2, -3, 2, 4, 0, -1, 2, 8};
317
- *
318
- * struct is_odd
319
- * {
320
- * __host__ __device__
321
- * bool operator()(int x)
322
- * {
323
- * return x % 2;
324
- * }
325
- * };
326
- *
327
- * thrust::negate<int> op;
328
- * thrust::identity<int> identity;
329
- *
330
- * // negate odd elements
331
- * thrust::transform_if(thrust::host, data, data + 10, data, op, is_odd()); // in-place transformation
332
- *
333
- * // data is now {5, 0, 2, 3, 2, 4, 0, 1, 2, 8};
334
- * \endcode
335
- *
336
- * \see thrust::transform
337
- */
338
- template<typename DerivedPolicy,
339
- typename InputIterator,
340
- typename ForwardIterator,
341
- typename UnaryFunction,
342
- typename Predicate>
343
- __host__ __device__
344
- ForwardIterator transform_if(const thrust::detail::execution_policy_base<DerivedPolicy> &exec,
345
- InputIterator first, InputIterator last,
346
- ForwardIterator result,
347
- UnaryFunction op,
348
- Predicate pred);
349
-
350
-
351
- /*! This version of \p transform_if conditionally applies a unary function
352
- * to each element of an input sequence and stores the result in the corresponding
353
- * position in an output sequence if the corresponding position in the input sequence
354
- * satifies a predicate. Otherwise, the corresponding position in the
355
- * output sequence is not modified.
356
- *
357
- * Specifically, for each iterator <tt>i</tt> in the range <tt>[first, last)</tt> the
358
- * predicate <tt>pred(*i)</tt> is evaluated. If this predicate
359
- * evaluates to \c true, the result of <tt>op(*i)</tt> is assigned to <tt>*o</tt>,
360
- * where <tt>o</tt> is the corresponding output iterator in the range
361
- * <tt>[result, result + (last - first) )</tt>. Otherwise, <tt>op(*i)</tt> is
362
- * not evaluated and no assignment occurs. The input and output sequences may coincide,
363
- * resulting in an in-place transformation.
364
- *
365
- * \param first The beginning of the input sequence.
366
- * \param last The end of the input sequence.
367
- * \param result The beginning of the output sequence.
368
- * \param op The tranformation operation.
369
- * \param pred The predicate operation.
370
- * \return The end of the output sequence.
371
- *
372
- * \tparam InputIterator is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>,
373
- * and \c InputIterator's \c value_type is convertible to \c Predicate's \c argument_type,
374
- * and \c InputIterator's \c value_type is convertible to \c UnaryFunction's \c argument_type.
375
- * \tparam ForwardIterator is a model of <a href="http://www.sgi.com/tech/stl/ForwardIterator.html">Forward Iterator</a>.
376
- * \tparam UnaryFunction is a model of <a href="http://www.sgi.com/tech/stl/UnaryFunction.html">Unary Function</a>
377
- * and \c UnaryFunction's \c result_type is convertible to \c OutputIterator's \c value_type.
378
- * \tparam Predicate is a model of <a href="http://www.sgi.com/tech/stl/Predicate.html">Predicate</a>.
379
- *
380
- * \pre \p first may equal \p result, but the range <tt>[first, last)</tt> shall not overlap the range <tt>[result, result + (last - first))</tt> otherwise.
381
- *
382
- * The following code snippet demonstrates how to use \p transform_if:
383
- *
384
- * \code
385
- * #include <thrust/transform.h>
386
- * #include <thrust/functional.h>
387
- *
388
- * int data[10] = {-5, 0, 2, -3, 2, 4, 0, -1, 2, 8};
389
- *
390
- * struct is_odd
391
- * {
392
- * __host__ __device__
393
- * bool operator()(int x)
394
- * {
395
- * return x % 2;
396
- * }
397
- * };
398
- *
399
- * thrust::negate<int> op;
400
- * thrust::identity<int> identity;
401
- *
402
- * // negate odd elements
403
- * thrust::transform_if(data, data + 10, data, op, is_odd()); // in-place transformation
404
- *
405
- * // data is now {5, 0, 2, 3, 2, 4, 0, 1, 2, 8};
406
- * \endcode
407
- *
408
- * \see thrust::transform
409
- */
410
- template<typename InputIterator,
411
- typename ForwardIterator,
412
- typename UnaryFunction,
413
- typename Predicate>
414
- ForwardIterator transform_if(InputIterator first, InputIterator last,
415
- ForwardIterator result,
416
- UnaryFunction op,
417
- Predicate pred);
418
-
419
-
420
- /*! This version of \p transform_if conditionally applies a unary function
421
- * to each element of an input sequence and stores the result in the corresponding
422
- * position in an output sequence if the corresponding position in a stencil sequence
423
- * satisfies a predicate. Otherwise, the corresponding position in the
424
- * output sequence is not modified.
425
- *
426
- * Specifically, for each iterator <tt>i</tt> in the range <tt>[first, last)</tt> the
427
- * predicate <tt>pred(*s)</tt> is evaluated, where <tt>s</tt> is the corresponding input
428
- * iterator in the range <tt>[stencil, stencil + (last - first) )</tt>. If this predicate
429
- * evaluates to \c true, the result of <tt>op(*i)</tt> is assigned to <tt>*o</tt>,
430
- * where <tt>o</tt> is the corresponding output iterator in the range
431
- * <tt>[result, result + (last - first) )</tt>. Otherwise, <tt>op(*i)</tt> is
432
- * not evaluated and no assignment occurs. The input and output sequences may coincide,
433
- * resulting in an in-place transformation.
434
- *
435
- * The algorithm's execution is parallelized as determined by \p exec.
436
- *
437
- * \param exec The execution policy to use for parallelization.
438
- * \param first The beginning of the input sequence.
439
- * \param last The end of the input sequence.
440
- * \param stencil The beginning of the stencil sequence.
441
- * \param result The beginning of the output sequence.
442
- * \param op The tranformation operation.
443
- * \param pred The predicate operation.
444
- * \return The end of the output sequence.
445
- *
446
- * \tparam DerivedPolicy The name of the derived execution policy.
447
- * \tparam InputIterator1 is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>
448
- * and \c InputIterator1's \c value_type is convertible to \c UnaryFunction's \c argument_type.
449
- * \tparam InputIterator2 is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>
450
- * and \c InputIterator2's \c value_type is convertible to \c Predicate's \c argument_type.
451
- * \tparam ForwardIterator is a model of <a href="http://www.sgi.com/tech/stl/ForwardIterator.html">Forward Iterator</a>.
452
- * \tparam UnaryFunction is a model of <a href="http://www.sgi.com/tech/stl/UnaryFunction.html">Unary Function</a>
453
- * and \c UnaryFunction's \c result_type is convertible to \c OutputIterator's \c value_type.
454
- * \tparam Predicate is a model of <a href="http://www.sgi.com/tech/stl/Predicate.html">Predicate</a>.
455
- *
456
- * \pre \p first may equal \p result, but the range <tt>[first, last)</tt> shall not overlap the range <tt>[result, result + (last - first))</tt> otherwise.
457
- * \pre \p stencil may equal \p result, but the range <tt>[stencil, stencil + (last - first))</tt> shall not overlap the range <tt>[result, result + (last - first))</tt> otherwise.
458
- *
459
- * The following code snippet demonstrates how to use \p transform_if using the \p thrust::host
460
- * execution policy for parallelization:
461
- *
462
- * \code
463
- * #include <thrust/transform.h>
464
- * #include <thrust/functional.h>
465
- * #include <thrust/execution_policy.h>
466
- * ...
467
- *
468
- * int data[10] = {-5, 0, 2, -3, 2, 4, 0, -1, 2, 8};
469
- * int stencil[10] = { 1, 0, 1, 0, 1, 0, 1, 0, 1, 0};
470
- *
471
- * thrust::negate<int> op;
472
- * thrust::identity<int> identity;
473
- *
474
- * thrust::transform_if(thrust::host, data, data + 10, stencil, data, op, identity); // in-place transformation
475
- *
476
- * // data is now {5, 0, -2, -3, -2, 4, 0, -1, -2, 8};
477
- * \endcode
478
- *
479
- * \see thrust::transform
480
- */
481
- template<typename DerivedPolicy,
482
- typename InputIterator1,
483
- typename InputIterator2,
484
- typename ForwardIterator,
485
- typename UnaryFunction,
486
- typename Predicate>
487
- __host__ __device__
488
- ForwardIterator transform_if(const thrust::detail::execution_policy_base<DerivedPolicy> &exec,
489
- InputIterator1 first, InputIterator1 last,
490
- InputIterator2 stencil,
491
- ForwardIterator result,
492
- UnaryFunction op,
493
- Predicate pred);
494
-
495
-
496
- /*! This version of \p transform_if conditionally applies a unary function
497
- * to each element of an input sequence and stores the result in the corresponding
498
- * position in an output sequence if the corresponding position in a stencil sequence
499
- * satisfies a predicate. Otherwise, the corresponding position in the
500
- * output sequence is not modified.
501
- *
502
- * Specifically, for each iterator <tt>i</tt> in the range <tt>[first, last)</tt> the
503
- * predicate <tt>pred(*s)</tt> is evaluated, where <tt>s</tt> is the corresponding input
504
- * iterator in the range <tt>[stencil, stencil + (last - first) )</tt>. If this predicate
505
- * evaluates to \c true, the result of <tt>op(*i)</tt> is assigned to <tt>*o</tt>,
506
- * where <tt>o</tt> is the corresponding output iterator in the range
507
- * <tt>[result, result + (last - first) )</tt>. Otherwise, <tt>op(*i)</tt> is
508
- * not evaluated and no assignment occurs. The input and output sequences may coincide,
509
- * resulting in an in-place transformation.
510
- *
511
- * \param first The beginning of the input sequence.
512
- * \param last The end of the input sequence.
513
- * \param stencil The beginning of the stencil sequence.
514
- * \param result The beginning of the output sequence.
515
- * \param op The tranformation operation.
516
- * \param pred The predicate operation.
517
- * \return The end of the output sequence.
518
- *
519
- * \tparam InputIterator1 is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>
520
- * and \c InputIterator1's \c value_type is convertible to \c UnaryFunction's \c argument_type.
521
- * \tparam InputIterator2 is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>
522
- * and \c InputIterator2's \c value_type is convertible to \c Predicate's \c argument_type.
523
- * \tparam ForwardIterator is a model of <a href="http://www.sgi.com/tech/stl/ForwardIterator.html">Forward Iterator</a>.
524
- * \tparam UnaryFunction is a model of <a href="http://www.sgi.com/tech/stl/UnaryFunction.html">Unary Function</a>
525
- * and \c UnaryFunction's \c result_type is convertible to \c OutputIterator's \c value_type.
526
- * \tparam Predicate is a model of <a href="http://www.sgi.com/tech/stl/Predicate.html">Predicate</a>.
527
- *
528
- * \pre \p first may equal \p result, but the range <tt>[first, last)</tt> shall not overlap the range <tt>[result, result + (last - first))</tt> otherwise.
529
- * \pre \p stencil may equal \p result, but the range <tt>[stencil, stencil + (last - first))</tt> shall not overlap the range <tt>[result, result + (last - first))</tt> otherwise.
530
- *
531
- * The following code snippet demonstrates how to use \p transform_if:
532
- *
533
- * \code
534
- * #include <thrust/transform.h>
535
- * #include <thrust/functional.h>
536
- *
537
- * int data[10] = {-5, 0, 2, -3, 2, 4, 0, -1, 2, 8};
538
- * int stencil[10] = { 1, 0, 1, 0, 1, 0, 1, 0, 1, 0};
539
- *
540
- * thrust::negate<int> op;
541
- * thrust::identity<int> identity;
542
- *
543
- * thrust::transform_if(data, data + 10, stencil, data, op, identity); // in-place transformation
544
- *
545
- * // data is now {5, 0, -2, -3, -2, 4, 0, -1, -2, 8};
546
- * \endcode
547
- *
548
- * \see thrust::transform
549
- */
550
- template<typename InputIterator1,
551
- typename InputIterator2,
552
- typename ForwardIterator,
553
- typename UnaryFunction,
554
- typename Predicate>
555
- ForwardIterator transform_if(InputIterator1 first, InputIterator1 last,
556
- InputIterator2 stencil,
557
- ForwardIterator result,
558
- UnaryFunction op,
559
- Predicate pred);
560
-
561
-
562
- /*! This version of \p transform_if conditionally applies a binary function
563
- * to each pair of elements from two input sequences and stores the result in the corresponding
564
- * position in an output sequence if the corresponding position in a stencil sequence
565
- * satifies a predicate. Otherwise, the corresponding position in the
566
- * output sequence is not modified.
567
- *
568
- * Specifically, for each iterator <tt>i</tt> in the range <tt>[first1, last1)</tt> and
569
- * <tt>j = first2 + (i - first1)</tt> in the range <tt>[first2, first2 + (last1 - first1) )</tt>,
570
- * the predicate <tt>pred(*s)</tt> is evaluated, where <tt>s</tt> is the corresponding input
571
- * iterator in the range <tt>[stencil, stencil + (last1 - first1) )</tt>. If this predicate
572
- * evaluates to \c true, the result of <tt>binary_op(*i,*j)</tt> is assigned to <tt>*o</tt>,
573
- * where <tt>o</tt> is the corresponding output iterator in the range
574
- * <tt>[result, result + (last1 - first1) )</tt>. Otherwise, <tt>binary_op(*i,*j)</tt> is
575
- * not evaluated and no assignment occurs. The input and output sequences may coincide,
576
- * resulting in an in-place transformation.
577
- *
578
- * The algorithm's execution is parallelized as determined by \p exec.
579
- *
580
- * \param exec The execution policy to use for parallelization.
581
- * \param first1 The beginning of the first input sequence.
582
- * \param last1 The end of the first input sequence.
583
- * \param first2 The beginning of the second input sequence.
584
- * \param stencil The beginning of the stencil sequence.
585
- * \param result The beginning of the output sequence.
586
- * \param binary_op The transformation operation.
587
- * \param pred The predicate operation.
588
- * \return The end of the output sequence.
589
- *
590
- * \tparam DerivedPolicy The name of the derived execution policy.
591
- * \tparam InputIterator1 is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>
592
- * and \c InputIterator1's \c value_type is convertible to \c BinaryFunction's \c first_argument_type.
593
- * \tparam InputIterator2 is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>
594
- * and \c InputIterator2's \c value_type is convertible to \c BinaryFunction's \c second_argument_type.
595
- * \tparam ForwardIterator is a model of <a href="http://www.sgi.com/tech/stl/ForwardIterator.html">Forward Iterator</a>.
596
- * \tparam BinaryFunction is a model of <a href="http://www.sgi.com/tech/stl/BinaryFunction.html">Binary Function</a>
597
- * and \c BinaryFunction's \c result_type is convertible to \c OutputIterator's \c value_type.
598
- * \tparam Predicate is a model of <a href="http://www.sgi.com/tech/stl/Predicate.html">Predicate</a>.
599
- *
600
- * \pre \p first1 may equal \p result, but the range <tt>[first1, last1)</tt> shall not overlap the range <tt>[result, result + (last1 - first1))</tt> otherwise.
601
- * \pre \p first2 may equal \p result, but the range <tt>[first2, first2 + (last1 - first1))</tt> shall not overlap the range <tt>[result, result + (last1 - first1))</tt> otherwise.
602
- * \pre \p stencil may equal \p result, but the range <tt>[stencil, stencil + (last1 - first1))</tt> shall not overlap the range <tt>[result, result + (last1 - first1))</tt> otherwise.
603
- *
604
- * The following code snippet demonstrates how to use \p transform_if using the \p thrust::host
605
- * execution policy for parallelization:
606
- *
607
- * \code
608
- * #include <thrust/transform.h>
609
- * #include <thrust/functional.h>
610
- * #include <thrust/execution_policy.h>
611
- * ...
612
- *
613
- * int input1[6] = {-5, 0, 2, 3, 2, 4};
614
- * int input2[6] = { 3, 6, -2, 1, 2, 3};
615
- * int stencil[8] = { 1, 0, 1, 0, 1, 0};
616
- * int output[6];
617
- *
618
- * thrust::plus<int> op;
619
- * thrust::identity<int> identity;
620
- *
621
- * thrust::transform_if(thrust::host, input1, input1 + 6, input2, stencil, output, op, identity);
622
- *
623
- * // output is now {-2, 0, 0, 3, 4, 4};
624
- * \endcode
625
- *
626
- * \see thrust::transform
627
- */
628
- template<typename DerivedPolicy,
629
- typename InputIterator1,
630
- typename InputIterator2,
631
- typename InputIterator3,
632
- typename ForwardIterator,
633
- typename BinaryFunction,
634
- typename Predicate>
635
- __host__ __device__
636
- ForwardIterator transform_if(const thrust::detail::execution_policy_base<DerivedPolicy> &exec,
637
- InputIterator1 first1, InputIterator1 last1,
638
- InputIterator2 first2,
639
- InputIterator3 stencil,
640
- ForwardIterator result,
641
- BinaryFunction binary_op,
642
- Predicate pred);
643
-
644
-
645
- /*! This version of \p transform_if conditionally applies a binary function
646
- * to each pair of elements from two input sequences and stores the result in the corresponding
647
- * position in an output sequence if the corresponding position in a stencil sequence
648
- * satifies a predicate. Otherwise, the corresponding position in the
649
- * output sequence is not modified.
650
- *
651
- * Specifically, for each iterator <tt>i</tt> in the range <tt>[first1, last1)</tt> and
652
- * <tt>j = first2 + (i - first1)</tt> in the range <tt>[first2, first2 + (last1 - first1) )</tt>,
653
- * the predicate <tt>pred(*s)</tt> is evaluated, where <tt>s</tt> is the corresponding input
654
- * iterator in the range <tt>[stencil, stencil + (last1 - first1) )</tt>. If this predicate
655
- * evaluates to \c true, the result of <tt>binary_op(*i,*j)</tt> is assigned to <tt>*o</tt>,
656
- * where <tt>o</tt> is the corresponding output iterator in the range
657
- * <tt>[result, result + (last1 - first1) )</tt>. Otherwise, <tt>binary_op(*i,*j)</tt> is
658
- * not evaluated and no assignment occurs. The input and output sequences may coincide,
659
- * resulting in an in-place transformation.
660
- *
661
- * \param first1 The beginning of the first input sequence.
662
- * \param last1 The end of the first input sequence.
663
- * \param first2 The beginning of the second input sequence.
664
- * \param stencil The beginning of the stencil sequence.
665
- * \param result The beginning of the output sequence.
666
- * \param binary_op The transformation operation.
667
- * \param pred The predicate operation.
668
- * \return The end of the output sequence.
669
- *
670
- * \tparam InputIterator1 is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>
671
- * and \c InputIterator1's \c value_type is convertible to \c BinaryFunction's \c first_argument_type.
672
- * \tparam InputIterator2 is a model of <a href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a>
673
- * and \c InputIterator2's \c value_type is convertible to \c BinaryFunction's \c second_argument_type.
674
- * \tparam ForwardIterator is a model of <a href="http://www.sgi.com/tech/stl/ForwardIterator.html">Forward Iterator</a>.
675
- * \tparam BinaryFunction is a model of <a href="http://www.sgi.com/tech/stl/BinaryFunction.html">Binary Function</a>
676
- * and \c BinaryFunction's \c result_type is convertible to \c OutputIterator's \c value_type.
677
- * \tparam Predicate is a model of <a href="http://www.sgi.com/tech/stl/Predicate.html">Predicate</a>.
678
- *
679
- * \pre \p first1 may equal \p result, but the range <tt>[first1, last1)</tt> shall not overlap the range <tt>[result, result + (last1 - first1))</tt> otherwise.
680
- * \pre \p first2 may equal \p result, but the range <tt>[first2, first2 + (last1 - first1))</tt> shall not overlap the range <tt>[result, result + (last1 - first1))</tt> otherwise.
681
- * \pre \p stencil may equal \p result, but the range <tt>[stencil, stencil + (last1 - first1))</tt> shall not overlap the range <tt>[result, result + (last1 - first1))</tt> otherwise.
682
- *
683
- * The following code snippet demonstrates how to use \p transform_if:
684
- *
685
- * \code
686
- * #include <thrust/transform.h>
687
- * #include <thrust/functional.h>
688
- *
689
- * int input1[6] = {-5, 0, 2, 3, 2, 4};
690
- * int input2[6] = { 3, 6, -2, 1, 2, 3};
691
- * int stencil[8] = { 1, 0, 1, 0, 1, 0};
692
- * int output[6];
693
- *
694
- * thrust::plus<int> op;
695
- * thrust::identity<int> identity;
696
- *
697
- * thrust::transform_if(input1, input1 + 6, input2, stencil, output, op, identity);
698
- *
699
- * // output is now {-2, 0, 0, 3, 4, 4};
700
- * \endcode
701
- *
702
- * \see thrust::transform
703
- */
704
- template<typename InputIterator1,
705
- typename InputIterator2,
706
- typename InputIterator3,
707
- typename ForwardIterator,
708
- typename BinaryFunction,
709
- typename Predicate>
710
- ForwardIterator transform_if(InputIterator1 first1, InputIterator1 last1,
711
- InputIterator2 first2,
712
- InputIterator3 stencil,
713
- ForwardIterator result,
714
- BinaryFunction binary_op,
715
- Predicate pred);
716
-
717
-
718
- /*! \} // end transformations
719
- */
720
-
721
-
722
- } // end namespace thrust
723
-
724
- #include <thrust/detail/transform.inl>
725
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/SPOTER_Sign_Language_Recognition/spoter_mod/skeleton_extractor.py DELETED
@@ -1,60 +0,0 @@
1
- import warnings
2
-
3
- import pandas as pd
4
- from os import path
5
- import cv2
6
- import mediapipe as mp
7
- import json
8
- from spoter_mod.pose_model_identifier import BODY_IDENTIFIERS, HAND_IDENTIFIERS, mp_holistic_data
9
-
10
- mp_drawing = mp.solutions.drawing_utils
11
- mp_holistic = mp.solutions.holistic
12
- mp_drawing_styles = mp.solutions.drawing_styles
13
-
14
- holistic = mp_holistic.Holistic()
15
-
16
- column_names = []
17
- column_names.append('video_id')
18
- for id_name in BODY_IDENTIFIERS.keys():
19
- for xy in ["_X", "_Y"]:
20
- column_names.append(id_name + xy)
21
-
22
- for lr in ["_Right", "_Left"]:
23
- for id_name in HAND_IDENTIFIERS.keys():
24
- for xy in ["_X", "_Y"]:
25
- column_names.append(id_name + lr + xy)
26
-
27
- column_names.append('labels')
28
-
29
-
30
- def create_df(flnm, column_names):
31
- df = pd.DataFrame(columns=column_names)
32
- return df
33
-
34
-
35
- def save_data(df, data, flnm):
36
- df = df.append(data.get_series(), ignore_index=True)
37
- df.to_pickle(flnm)
38
-
39
-
40
- def obtain_pose_data(path):
41
- cap = cv2.VideoCapture(path)
42
- data = mp_holistic_data(column_names)
43
- while cap.isOpened():
44
- ret, frame = cap.read()
45
- if not ret:
46
- break
47
- # Recolor image to RGB
48
- image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
49
-
50
- # Make detection
51
- holistic_results = holistic.process(image)
52
- # Extract feature and save to mp_pose_data class
53
- data.extract_data(holistic_results)
54
- cap.release()
55
-
56
- return data
57
-
58
-
59
- if __name__ == '__main__':
60
- pass
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/WALT/mmdet/models/builder.py DELETED
@@ -1,77 +0,0 @@
1
- import warnings
2
-
3
- from mmcv.utils import Registry, build_from_cfg
4
- from torch import nn
5
-
6
- BACKBONES = Registry('backbone')
7
- NECKS = Registry('neck')
8
- ROI_EXTRACTORS = Registry('roi_extractor')
9
- SHARED_HEADS = Registry('shared_head')
10
- HEADS = Registry('head')
11
- LOSSES = Registry('loss')
12
- DETECTORS = Registry('detector')
13
-
14
-
15
- def build(cfg, registry, default_args=None):
16
- """Build a module.
17
-
18
- Args:
19
- cfg (dict, list[dict]): The config of modules, is is either a dict
20
- or a list of configs.
21
- registry (:obj:`Registry`): A registry the module belongs to.
22
- default_args (dict, optional): Default arguments to build the module.
23
- Defaults to None.
24
-
25
- Returns:
26
- nn.Module: A built nn module.
27
- """
28
- if isinstance(cfg, list):
29
- modules = [
30
- build_from_cfg(cfg_, registry, default_args) for cfg_ in cfg
31
- ]
32
- return nn.Sequential(*modules)
33
- else:
34
- return build_from_cfg(cfg, registry, default_args)
35
-
36
-
37
- def build_backbone(cfg):
38
- """Build backbone."""
39
- return build(cfg, BACKBONES)
40
-
41
-
42
- def build_neck(cfg):
43
- """Build neck."""
44
- return build(cfg, NECKS)
45
-
46
-
47
- def build_roi_extractor(cfg):
48
- """Build roi extractor."""
49
- return build(cfg, ROI_EXTRACTORS)
50
-
51
-
52
- def build_shared_head(cfg):
53
- """Build shared head."""
54
- return build(cfg, SHARED_HEADS)
55
-
56
-
57
- def build_head(cfg):
58
- """Build head."""
59
- return build(cfg, HEADS)
60
-
61
-
62
- def build_loss(cfg):
63
- """Build loss."""
64
- return build(cfg, LOSSES)
65
-
66
-
67
- def build_detector(cfg, train_cfg=None, test_cfg=None):
68
- """Build detector."""
69
- if train_cfg is not None or test_cfg is not None:
70
- warnings.warn(
71
- 'train_cfg and test_cfg is deprecated, '
72
- 'please specify them in model', UserWarning)
73
- assert cfg.get('train_cfg') is None or train_cfg is None, \
74
- 'train_cfg specified in both outer field and model field '
75
- assert cfg.get('test_cfg') is None or test_cfg is None, \
76
- 'test_cfg specified in both outer field and model field '
77
- return build(cfg, DETECTORS, dict(train_cfg=train_cfg, test_cfg=test_cfg))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/regionclip-demo/detectron2/checkpoint/__init__.py DELETED
@@ -1,10 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- # Copyright (c) Facebook, Inc. and its affiliates.
3
- # File:
4
-
5
-
6
- from . import catalog as _UNUSED # register the handler
7
- from .detection_checkpoint import DetectionCheckpointer
8
- from fvcore.common.checkpoint import Checkpointer, PeriodicCheckpointer
9
-
10
- __all__ = ["Checkpointer", "PeriodicCheckpointer", "DetectionCheckpointer"]
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/regionclip-demo/detectron2/layers/nms.py DELETED
@@ -1,158 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- # Copyright (c) Facebook, Inc. and its affiliates.
3
-
4
- from typing import List
5
- import torch
6
- from torchvision.ops import boxes as box_ops
7
- from torchvision.ops import nms # BC-compat
8
-
9
- from detectron2.utils.env import TORCH_VERSION
10
-
11
- if TORCH_VERSION < (1, 7):
12
- from detectron2 import _C
13
-
14
- nms_rotated_func = _C.nms_rotated
15
- else:
16
- nms_rotated_func = torch.ops.detectron2.nms_rotated
17
-
18
-
19
- def batched_nms(
20
- boxes: torch.Tensor, scores: torch.Tensor, idxs: torch.Tensor, iou_threshold: float
21
- ):
22
- """
23
- Same as torchvision.ops.boxes.batched_nms, but safer.
24
- """
25
- assert boxes.shape[-1] == 4
26
- # TODO may need better strategy.
27
- # Investigate after having a fully-cuda NMS op.
28
- if len(boxes) < 40000:
29
- # fp16 does not have enough range for batched NMS
30
- return box_ops.batched_nms(boxes.float(), scores, idxs, iou_threshold)
31
-
32
- result_mask = scores.new_zeros(scores.size(), dtype=torch.bool)
33
- for id in torch.jit.annotate(List[int], torch.unique(idxs).cpu().tolist()):
34
- mask = (idxs == id).nonzero().view(-1)
35
- keep = nms(boxes[mask], scores[mask], iou_threshold)
36
- result_mask[mask[keep]] = True
37
- keep = result_mask.nonzero().view(-1)
38
- keep = keep[scores[keep].argsort(descending=True)]
39
- return keep
40
-
41
-
42
- # Note: this function (nms_rotated) might be moved into
43
- # torchvision/ops/boxes.py in the future
44
- def nms_rotated(boxes, scores, iou_threshold):
45
- """
46
- Performs non-maximum suppression (NMS) on the rotated boxes according
47
- to their intersection-over-union (IoU).
48
-
49
- Rotated NMS iteratively removes lower scoring rotated boxes which have an
50
- IoU greater than iou_threshold with another (higher scoring) rotated box.
51
-
52
- Note that RotatedBox (5, 3, 4, 2, -90) covers exactly the same region as
53
- RotatedBox (5, 3, 4, 2, 90) does, and their IoU will be 1. However, they
54
- can be representing completely different objects in certain tasks, e.g., OCR.
55
-
56
- As for the question of whether rotated-NMS should treat them as faraway boxes
57
- even though their IOU is 1, it depends on the application and/or ground truth annotation.
58
-
59
- As an extreme example, consider a single character v and the square box around it.
60
-
61
- If the angle is 0 degree, the object (text) would be read as 'v';
62
-
63
- If the angle is 90 degrees, the object (text) would become '>';
64
-
65
- If the angle is 180 degrees, the object (text) would become '^';
66
-
67
- If the angle is 270/-90 degrees, the object (text) would become '<'
68
-
69
- All of these cases have IoU of 1 to each other, and rotated NMS that only
70
- uses IoU as criterion would only keep one of them with the highest score -
71
- which, practically, still makes sense in most cases because typically
72
- only one of theses orientations is the correct one. Also, it does not matter
73
- as much if the box is only used to classify the object (instead of transcribing
74
- them with a sequential OCR recognition model) later.
75
-
76
- On the other hand, when we use IoU to filter proposals that are close to the
77
- ground truth during training, we should definitely take the angle into account if
78
- we know the ground truth is labeled with the strictly correct orientation (as in,
79
- upside-down words are annotated with -180 degrees even though they can be covered
80
- with a 0/90/-90 degree box, etc.)
81
-
82
- The way the original dataset is annotated also matters. For example, if the dataset
83
- is a 4-point polygon dataset that does not enforce ordering of vertices/orientation,
84
- we can estimate a minimum rotated bounding box to this polygon, but there's no way
85
- we can tell the correct angle with 100% confidence (as shown above, there could be 4 different
86
- rotated boxes, with angles differed by 90 degrees to each other, covering the exactly
87
- same region). In that case we have to just use IoU to determine the box
88
- proximity (as many detection benchmarks (even for text) do) unless there're other
89
- assumptions we can make (like width is always larger than height, or the object is not
90
- rotated by more than 90 degrees CCW/CW, etc.)
91
-
92
- In summary, not considering angles in rotated NMS seems to be a good option for now,
93
- but we should be aware of its implications.
94
-
95
- Args:
96
- boxes (Tensor[N, 5]): Rotated boxes to perform NMS on. They are expected to be in
97
- (x_center, y_center, width, height, angle_degrees) format.
98
- scores (Tensor[N]): Scores for each one of the rotated boxes
99
- iou_threshold (float): Discards all overlapping rotated boxes with IoU < iou_threshold
100
-
101
- Returns:
102
- keep (Tensor): int64 tensor with the indices of the elements that have been kept
103
- by Rotated NMS, sorted in decreasing order of scores
104
- """
105
- return nms_rotated_func(boxes, scores, iou_threshold)
106
-
107
-
108
- # Note: this function (batched_nms_rotated) might be moved into
109
- # torchvision/ops/boxes.py in the future
110
- def batched_nms_rotated(boxes, scores, idxs, iou_threshold):
111
- """
112
- Performs non-maximum suppression in a batched fashion.
113
-
114
- Each index value correspond to a category, and NMS
115
- will not be applied between elements of different categories.
116
-
117
- Args:
118
- boxes (Tensor[N, 5]):
119
- boxes where NMS will be performed. They
120
- are expected to be in (x_ctr, y_ctr, width, height, angle_degrees) format
121
- scores (Tensor[N]):
122
- scores for each one of the boxes
123
- idxs (Tensor[N]):
124
- indices of the categories for each one of the boxes.
125
- iou_threshold (float):
126
- discards all overlapping boxes
127
- with IoU < iou_threshold
128
-
129
- Returns:
130
- Tensor:
131
- int64 tensor with the indices of the elements that have been kept
132
- by NMS, sorted in decreasing order of scores
133
- """
134
- assert boxes.shape[-1] == 5
135
-
136
- if boxes.numel() == 0:
137
- return torch.empty((0,), dtype=torch.int64, device=boxes.device)
138
- boxes = boxes.float() # fp16 does not have enough range for batched NMS
139
- # Strategy: in order to perform NMS independently per class,
140
- # we add an offset to all the boxes. The offset is dependent
141
- # only on the class idx, and is large enough so that boxes
142
- # from different classes do not overlap
143
-
144
- # Note that batched_nms in torchvision/ops/boxes.py only uses max_coordinate,
145
- # which won't handle negative coordinates correctly.
146
- # Here by using min_coordinate we can make sure the negative coordinates are
147
- # correctly handled.
148
- max_coordinate = (
149
- torch.max(boxes[:, 0], boxes[:, 1]) + torch.max(boxes[:, 2], boxes[:, 3]) / 2
150
- ).max()
151
- min_coordinate = (
152
- torch.min(boxes[:, 0], boxes[:, 1]) - torch.max(boxes[:, 2], boxes[:, 3]) / 2
153
- ).min()
154
- offsets = idxs.to(boxes) * (max_coordinate - min_coordinate + 1)
155
- boxes_for_nms = boxes.clone() # avoid modifying the original values in boxes
156
- boxes_for_nms[:, :2] += offsets[:, None]
157
- keep = nms_rotated(boxes_for_nms, scores, iou_threshold)
158
- return keep
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Chris4K/llms_compare/Dragon Ball Z Raging Blast 2 Psp Iso Download 41 118.md DELETED
@@ -1,80 +0,0 @@
1
- ## Dragon Ball Z Raging Blast 2 Psp Iso Download 41 118
2
-
3
-
4
-
5
-
6
-
7
- ![Dragon Ball Z Raging Blast 2 Psp Iso Download 41 118](https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSXm6z9-W-OWHByJxTdQtwwTQ0Ddz6DVCf_omJr5166-4N4MfNd6dYU1DOy)
8
-
9
-
10
-
11
-
12
-
13
- **LINK --->>> [https://www.google.com/url?q=https%3A%2F%2Fbytlly.com%2F2txP4a&sa=D&sntz=1&usg=AOvVaw3rNdiiv5XMALzaYeDjeglE](https://www.google.com/url?q=https%3A%2F%2Fbytlly.com%2F2txP4a&sa=D&sntz=1&usg=AOvVaw3rNdiiv5XMALzaYeDjeglE)**
14
-
15
-
16
-
17
-
18
-
19
-
20
-
21
-
22
-
23
-
24
-
25
- Here is the title and article I generated for you:
26
-
27
- # How to Download and Play Dragon Ball Raging Blast 2 on PSP
28
-
29
-
30
-
31
- Dragon Ball Raging Blast 2 is a fighting game based on the popular anime and manga series Dragon Ball Z. It features over 90 characters, destructible environments, signature attacks and transformations, and a new Raging Soul system that boosts your combat abilities.
32
-
33
-
34
-
35
- If you want to play this game on your PSP, you will need a PPSSPP emulator and a Dragon Ball Raging Blast 2 ISO file. Here are the steps to download and play Dragon Ball Raging Blast 2 on PSP:
36
-
37
-
38
-
39
- 1. Download the PPSSPP emulator from [here](https://www.ppsspp.org/downloads.html) and install it on your device.
40
-
41
- 2. Download the Dragon Ball Raging Blast 2 ISO file from [here](https://dlxbgame.com/dragon-ball-raging-blast-2-pal-iso-complex/) or [here](https://www.youtube.com/watch?v=D2zbYkLEKms). Make sure you choose the right region (PAL, NTSC-U, or NTSC-J) for your device.
42
-
43
- 3. Extract the ISO file using a file manager or a zip extractor app.
44
-
45
- 4. Copy the ISO file to the PSP/GAME folder on your device's storage.
46
-
47
- 5. Launch the PPSSPP emulator and browse to the PSP/GAME folder. Select the Dragon Ball Raging Blast 2 ISO file and tap on it to start playing.
48
-
49
-
50
-
51
- Enjoy the game and unleash your inner Saiyan!
52
-
53
- Here are some more paragraphs I added to the article:
54
-
55
- ## Dragon Ball Raging Blast 2 Gameplay Tips
56
-
57
-
58
-
59
- Dragon Ball Raging Blast 2 is not just a button-mashing game. It requires skill, strategy, and timing to master the combat system and defeat your opponents. Here are some gameplay tips to help you improve your skills and enjoy the game more:
60
-
61
-
62
-
63
- - Learn the basics of the fighting system by completing the tutorials. They will teach you how to perform different types of attacks, combos, dodges, counters, and special moves. You can access the tutorials from the main menu or the pause menu during a battle.
64
-
65
- - Use the Raging Soul mode wisely. This mode allows you to unleash powerful attacks and combos without using ki, but it also drains your health over time. To activate it, press L2 and R2 when your ki gauge is full. To deactivate it, press L2 and R2 again or wait until your health reaches a critical level.
66
-
67
- - Experiment with different characters and their abilities. Each character has their own strengths, weaknesses, and unique moves. Some characters can transform into stronger forms, while others can use support items or team attacks. Try out different combinations and find your favorite ones.
68
-
69
- - Practice against the CPU or online players. The best way to improve your skills is to challenge yourself against different opponents and difficulty levels. You can play against the CPU in various modes such as Battle Zone, Galaxy Mode, or World Tournament. You can also play online against other players from around the world in Ranked or Player matches.
70
-
71
-
72
-
73
- Dragon Ball Raging Blast 2 is a fun and exciting game for fans of the series and fighting games in general. With its impressive graphics, sound, and gameplay, it will keep you entertained for hours. Download it today and unleash your inner Saiyan!
74
-
75
- dfd1c89656
76
-
77
-
78
-
79
-
80
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CodeDoes/FrostAura-gpt-neox-20b-fiction-novel-generation/README.md DELETED
@@ -1,12 +0,0 @@
1
- ---
2
- title: FrostAura Gpt Neox 20b Fiction Novel Generation
3
- emoji: 🏃
4
- colorFrom: blue
5
- colorTo: pink
6
- sdk: gradio
7
- sdk_version: 3.12.0
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Cyril666/ContourNet-ABI/maskrcnn_benchmark/modeling/rpn/retinanet/loss.py DELETED
@@ -1,107 +0,0 @@
1
- """
2
- This file contains specific functions for computing losses on the RetinaNet
3
- file
4
- """
5
-
6
- import torch
7
- from torch.nn import functional as F
8
-
9
- from ..utils import concat_box_prediction_layers
10
-
11
- from maskrcnn_benchmark.layers import smooth_l1_loss
12
- from maskrcnn_benchmark.layers import SigmoidFocalLoss
13
- from maskrcnn_benchmark.modeling.matcher import Matcher
14
- from maskrcnn_benchmark.modeling.utils import cat
15
- from maskrcnn_benchmark.structures.boxlist_ops import boxlist_iou
16
- from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist
17
- from maskrcnn_benchmark.modeling.rpn.loss import RPNLossComputation
18
-
19
- class RetinaNetLossComputation(RPNLossComputation):
20
- """
21
- This class computes the RetinaNet loss.
22
- """
23
-
24
- def __init__(self, proposal_matcher, box_coder,
25
- generate_labels_func,
26
- sigmoid_focal_loss,
27
- bbox_reg_beta=0.11,
28
- regress_norm=1.0):
29
- """
30
- Arguments:
31
- proposal_matcher (Matcher)
32
- box_coder (BoxCoder)
33
- """
34
- self.proposal_matcher = proposal_matcher
35
- self.box_coder = box_coder
36
- self.box_cls_loss_func = sigmoid_focal_loss
37
- self.bbox_reg_beta = bbox_reg_beta
38
- self.copied_fields = ['labels']
39
- self.generate_labels_func = generate_labels_func
40
- self.discard_cases = ['between_thresholds']
41
- self.regress_norm = regress_norm
42
-
43
- def __call__(self, anchors, box_cls, box_regression, targets):
44
- """
45
- Arguments:
46
- anchors (list[BoxList])
47
- box_cls (list[Tensor])
48
- box_regression (list[Tensor])
49
- targets (list[BoxList])
50
-
51
- Returns:
52
- retinanet_cls_loss (Tensor)
53
- retinanet_regression_loss (Tensor
54
- """
55
- anchors = [cat_boxlist(anchors_per_image) for anchors_per_image in anchors]
56
- labels, regression_targets = self.prepare_targets(anchors, targets)
57
-
58
- N = len(labels)
59
- box_cls, box_regression = \
60
- concat_box_prediction_layers(box_cls, box_regression)
61
-
62
- labels = torch.cat(labels, dim=0)
63
- regression_targets = torch.cat(regression_targets, dim=0)
64
- pos_inds = torch.nonzero(labels > 0).squeeze(1)
65
-
66
- retinanet_regression_loss = smooth_l1_loss(
67
- box_regression[pos_inds],
68
- regression_targets[pos_inds],
69
- beta=self.bbox_reg_beta,
70
- size_average=False,
71
- ) / (max(1, pos_inds.numel() * self.regress_norm))
72
-
73
- labels = labels.int()
74
-
75
- retinanet_cls_loss = self.box_cls_loss_func(
76
- box_cls,
77
- labels
78
- ) / (pos_inds.numel() + N)
79
-
80
- return retinanet_cls_loss, retinanet_regression_loss
81
-
82
-
83
- def generate_retinanet_labels(matched_targets):
84
- labels_per_image = matched_targets.get_field("labels")
85
- return labels_per_image
86
-
87
-
88
- def make_retinanet_loss_evaluator(cfg, box_coder):
89
- matcher = Matcher(
90
- cfg.MODEL.RETINANET.FG_IOU_THRESHOLD,
91
- cfg.MODEL.RETINANET.BG_IOU_THRESHOLD,
92
- allow_low_quality_matches=True,
93
- )
94
- sigmoid_focal_loss = SigmoidFocalLoss(
95
- cfg.MODEL.RETINANET.LOSS_GAMMA,
96
- cfg.MODEL.RETINANET.LOSS_ALPHA
97
- )
98
-
99
- loss_evaluator = RetinaNetLossComputation(
100
- matcher,
101
- box_coder,
102
- generate_retinanet_labels,
103
- sigmoid_focal_loss,
104
- bbox_reg_beta = cfg.MODEL.RETINANET.BBOX_REG_BETA,
105
- regress_norm = cfg.MODEL.RETINANET.BBOX_REG_WEIGHT,
106
- )
107
- return loss_evaluator
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/dateutil/parser/isoparser.py DELETED
@@ -1,416 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- """
3
- This module offers a parser for ISO-8601 strings
4
-
5
- It is intended to support all valid date, time and datetime formats per the
6
- ISO-8601 specification.
7
-
8
- ..versionadded:: 2.7.0
9
- """
10
- from datetime import datetime, timedelta, time, date
11
- import calendar
12
- from dateutil import tz
13
-
14
- from functools import wraps
15
-
16
- import re
17
- import six
18
-
19
- __all__ = ["isoparse", "isoparser"]
20
-
21
-
22
- def _takes_ascii(f):
23
- @wraps(f)
24
- def func(self, str_in, *args, **kwargs):
25
- # If it's a stream, read the whole thing
26
- str_in = getattr(str_in, 'read', lambda: str_in)()
27
-
28
- # If it's unicode, turn it into bytes, since ISO-8601 only covers ASCII
29
- if isinstance(str_in, six.text_type):
30
- # ASCII is the same in UTF-8
31
- try:
32
- str_in = str_in.encode('ascii')
33
- except UnicodeEncodeError as e:
34
- msg = 'ISO-8601 strings should contain only ASCII characters'
35
- six.raise_from(ValueError(msg), e)
36
-
37
- return f(self, str_in, *args, **kwargs)
38
-
39
- return func
40
-
41
-
42
- class isoparser(object):
43
- def __init__(self, sep=None):
44
- """
45
- :param sep:
46
- A single character that separates date and time portions. If
47
- ``None``, the parser will accept any single character.
48
- For strict ISO-8601 adherence, pass ``'T'``.
49
- """
50
- if sep is not None:
51
- if (len(sep) != 1 or ord(sep) >= 128 or sep in '0123456789'):
52
- raise ValueError('Separator must be a single, non-numeric ' +
53
- 'ASCII character')
54
-
55
- sep = sep.encode('ascii')
56
-
57
- self._sep = sep
58
-
59
- @_takes_ascii
60
- def isoparse(self, dt_str):
61
- """
62
- Parse an ISO-8601 datetime string into a :class:`datetime.datetime`.
63
-
64
- An ISO-8601 datetime string consists of a date portion, followed
65
- optionally by a time portion - the date and time portions are separated
66
- by a single character separator, which is ``T`` in the official
67
- standard. Incomplete date formats (such as ``YYYY-MM``) may *not* be
68
- combined with a time portion.
69
-
70
- Supported date formats are:
71
-
72
- Common:
73
-
74
- - ``YYYY``
75
- - ``YYYY-MM`` or ``YYYYMM``
76
- - ``YYYY-MM-DD`` or ``YYYYMMDD``
77
-
78
- Uncommon:
79
-
80
- - ``YYYY-Www`` or ``YYYYWww`` - ISO week (day defaults to 0)
81
- - ``YYYY-Www-D`` or ``YYYYWwwD`` - ISO week and day
82
-
83
- The ISO week and day numbering follows the same logic as
84
- :func:`datetime.date.isocalendar`.
85
-
86
- Supported time formats are:
87
-
88
- - ``hh``
89
- - ``hh:mm`` or ``hhmm``
90
- - ``hh:mm:ss`` or ``hhmmss``
91
- - ``hh:mm:ss.ssssss`` (Up to 6 sub-second digits)
92
-
93
- Midnight is a special case for `hh`, as the standard supports both
94
- 00:00 and 24:00 as a representation. The decimal separator can be
95
- either a dot or a comma.
96
-
97
-
98
- .. caution::
99
-
100
- Support for fractional components other than seconds is part of the
101
- ISO-8601 standard, but is not currently implemented in this parser.
102
-
103
- Supported time zone offset formats are:
104
-
105
- - `Z` (UTC)
106
- - `±HH:MM`
107
- - `±HHMM`
108
- - `±HH`
109
-
110
- Offsets will be represented as :class:`dateutil.tz.tzoffset` objects,
111
- with the exception of UTC, which will be represented as
112
- :class:`dateutil.tz.tzutc`. Time zone offsets equivalent to UTC (such
113
- as `+00:00`) will also be represented as :class:`dateutil.tz.tzutc`.
114
-
115
- :param dt_str:
116
- A string or stream containing only an ISO-8601 datetime string
117
-
118
- :return:
119
- Returns a :class:`datetime.datetime` representing the string.
120
- Unspecified components default to their lowest value.
121
-
122
- .. warning::
123
-
124
- As of version 2.7.0, the strictness of the parser should not be
125
- considered a stable part of the contract. Any valid ISO-8601 string
126
- that parses correctly with the default settings will continue to
127
- parse correctly in future versions, but invalid strings that
128
- currently fail (e.g. ``2017-01-01T00:00+00:00:00``) are not
129
- guaranteed to continue failing in future versions if they encode
130
- a valid date.
131
-
132
- .. versionadded:: 2.7.0
133
- """
134
- components, pos = self._parse_isodate(dt_str)
135
-
136
- if len(dt_str) > pos:
137
- if self._sep is None or dt_str[pos:pos + 1] == self._sep:
138
- components += self._parse_isotime(dt_str[pos + 1:])
139
- else:
140
- raise ValueError('String contains unknown ISO components')
141
-
142
- if len(components) > 3 and components[3] == 24:
143
- components[3] = 0
144
- return datetime(*components) + timedelta(days=1)
145
-
146
- return datetime(*components)
147
-
148
- @_takes_ascii
149
- def parse_isodate(self, datestr):
150
- """
151
- Parse the date portion of an ISO string.
152
-
153
- :param datestr:
154
- The string portion of an ISO string, without a separator
155
-
156
- :return:
157
- Returns a :class:`datetime.date` object
158
- """
159
- components, pos = self._parse_isodate(datestr)
160
- if pos < len(datestr):
161
- raise ValueError('String contains unknown ISO ' +
162
- 'components: {!r}'.format(datestr.decode('ascii')))
163
- return date(*components)
164
-
165
- @_takes_ascii
166
- def parse_isotime(self, timestr):
167
- """
168
- Parse the time portion of an ISO string.
169
-
170
- :param timestr:
171
- The time portion of an ISO string, without a separator
172
-
173
- :return:
174
- Returns a :class:`datetime.time` object
175
- """
176
- components = self._parse_isotime(timestr)
177
- if components[0] == 24:
178
- components[0] = 0
179
- return time(*components)
180
-
181
- @_takes_ascii
182
- def parse_tzstr(self, tzstr, zero_as_utc=True):
183
- """
184
- Parse a valid ISO time zone string.
185
-
186
- See :func:`isoparser.isoparse` for details on supported formats.
187
-
188
- :param tzstr:
189
- A string representing an ISO time zone offset
190
-
191
- :param zero_as_utc:
192
- Whether to return :class:`dateutil.tz.tzutc` for zero-offset zones
193
-
194
- :return:
195
- Returns :class:`dateutil.tz.tzoffset` for offsets and
196
- :class:`dateutil.tz.tzutc` for ``Z`` and (if ``zero_as_utc`` is
197
- specified) offsets equivalent to UTC.
198
- """
199
- return self._parse_tzstr(tzstr, zero_as_utc=zero_as_utc)
200
-
201
- # Constants
202
- _DATE_SEP = b'-'
203
- _TIME_SEP = b':'
204
- _FRACTION_REGEX = re.compile(b'[\\.,]([0-9]+)')
205
-
206
- def _parse_isodate(self, dt_str):
207
- try:
208
- return self._parse_isodate_common(dt_str)
209
- except ValueError:
210
- return self._parse_isodate_uncommon(dt_str)
211
-
212
- def _parse_isodate_common(self, dt_str):
213
- len_str = len(dt_str)
214
- components = [1, 1, 1]
215
-
216
- if len_str < 4:
217
- raise ValueError('ISO string too short')
218
-
219
- # Year
220
- components[0] = int(dt_str[0:4])
221
- pos = 4
222
- if pos >= len_str:
223
- return components, pos
224
-
225
- has_sep = dt_str[pos:pos + 1] == self._DATE_SEP
226
- if has_sep:
227
- pos += 1
228
-
229
- # Month
230
- if len_str - pos < 2:
231
- raise ValueError('Invalid common month')
232
-
233
- components[1] = int(dt_str[pos:pos + 2])
234
- pos += 2
235
-
236
- if pos >= len_str:
237
- if has_sep:
238
- return components, pos
239
- else:
240
- raise ValueError('Invalid ISO format')
241
-
242
- if has_sep:
243
- if dt_str[pos:pos + 1] != self._DATE_SEP:
244
- raise ValueError('Invalid separator in ISO string')
245
- pos += 1
246
-
247
- # Day
248
- if len_str - pos < 2:
249
- raise ValueError('Invalid common day')
250
- components[2] = int(dt_str[pos:pos + 2])
251
- return components, pos + 2
252
-
253
- def _parse_isodate_uncommon(self, dt_str):
254
- if len(dt_str) < 4:
255
- raise ValueError('ISO string too short')
256
-
257
- # All ISO formats start with the year
258
- year = int(dt_str[0:4])
259
-
260
- has_sep = dt_str[4:5] == self._DATE_SEP
261
-
262
- pos = 4 + has_sep # Skip '-' if it's there
263
- if dt_str[pos:pos + 1] == b'W':
264
- # YYYY-?Www-?D?
265
- pos += 1
266
- weekno = int(dt_str[pos:pos + 2])
267
- pos += 2
268
-
269
- dayno = 1
270
- if len(dt_str) > pos:
271
- if (dt_str[pos:pos + 1] == self._DATE_SEP) != has_sep:
272
- raise ValueError('Inconsistent use of dash separator')
273
-
274
- pos += has_sep
275
-
276
- dayno = int(dt_str[pos:pos + 1])
277
- pos += 1
278
-
279
- base_date = self._calculate_weekdate(year, weekno, dayno)
280
- else:
281
- # YYYYDDD or YYYY-DDD
282
- if len(dt_str) - pos < 3:
283
- raise ValueError('Invalid ordinal day')
284
-
285
- ordinal_day = int(dt_str[pos:pos + 3])
286
- pos += 3
287
-
288
- if ordinal_day < 1 or ordinal_day > (365 + calendar.isleap(year)):
289
- raise ValueError('Invalid ordinal day' +
290
- ' {} for year {}'.format(ordinal_day, year))
291
-
292
- base_date = date(year, 1, 1) + timedelta(days=ordinal_day - 1)
293
-
294
- components = [base_date.year, base_date.month, base_date.day]
295
- return components, pos
296
-
297
- def _calculate_weekdate(self, year, week, day):
298
- """
299
- Calculate the day of corresponding to the ISO year-week-day calendar.
300
-
301
- This function is effectively the inverse of
302
- :func:`datetime.date.isocalendar`.
303
-
304
- :param year:
305
- The year in the ISO calendar
306
-
307
- :param week:
308
- The week in the ISO calendar - range is [1, 53]
309
-
310
- :param day:
311
- The day in the ISO calendar - range is [1 (MON), 7 (SUN)]
312
-
313
- :return:
314
- Returns a :class:`datetime.date`
315
- """
316
- if not 0 < week < 54:
317
- raise ValueError('Invalid week: {}'.format(week))
318
-
319
- if not 0 < day < 8: # Range is 1-7
320
- raise ValueError('Invalid weekday: {}'.format(day))
321
-
322
- # Get week 1 for the specific year:
323
- jan_4 = date(year, 1, 4) # Week 1 always has January 4th in it
324
- week_1 = jan_4 - timedelta(days=jan_4.isocalendar()[2] - 1)
325
-
326
- # Now add the specific number of weeks and days to get what we want
327
- week_offset = (week - 1) * 7 + (day - 1)
328
- return week_1 + timedelta(days=week_offset)
329
-
330
- def _parse_isotime(self, timestr):
331
- len_str = len(timestr)
332
- components = [0, 0, 0, 0, None]
333
- pos = 0
334
- comp = -1
335
-
336
- if len_str < 2:
337
- raise ValueError('ISO time too short')
338
-
339
- has_sep = False
340
-
341
- while pos < len_str and comp < 5:
342
- comp += 1
343
-
344
- if timestr[pos:pos + 1] in b'-+Zz':
345
- # Detect time zone boundary
346
- components[-1] = self._parse_tzstr(timestr[pos:])
347
- pos = len_str
348
- break
349
-
350
- if comp == 1 and timestr[pos:pos+1] == self._TIME_SEP:
351
- has_sep = True
352
- pos += 1
353
- elif comp == 2 and has_sep:
354
- if timestr[pos:pos+1] != self._TIME_SEP:
355
- raise ValueError('Inconsistent use of colon separator')
356
- pos += 1
357
-
358
- if comp < 3:
359
- # Hour, minute, second
360
- components[comp] = int(timestr[pos:pos + 2])
361
- pos += 2
362
-
363
- if comp == 3:
364
- # Fraction of a second
365
- frac = self._FRACTION_REGEX.match(timestr[pos:])
366
- if not frac:
367
- continue
368
-
369
- us_str = frac.group(1)[:6] # Truncate to microseconds
370
- components[comp] = int(us_str) * 10**(6 - len(us_str))
371
- pos += len(frac.group())
372
-
373
- if pos < len_str:
374
- raise ValueError('Unused components in ISO string')
375
-
376
- if components[0] == 24:
377
- # Standard supports 00:00 and 24:00 as representations of midnight
378
- if any(component != 0 for component in components[1:4]):
379
- raise ValueError('Hour may only be 24 at 24:00:00.000')
380
-
381
- return components
382
-
383
- def _parse_tzstr(self, tzstr, zero_as_utc=True):
384
- if tzstr == b'Z' or tzstr == b'z':
385
- return tz.UTC
386
-
387
- if len(tzstr) not in {3, 5, 6}:
388
- raise ValueError('Time zone offset must be 1, 3, 5 or 6 characters')
389
-
390
- if tzstr[0:1] == b'-':
391
- mult = -1
392
- elif tzstr[0:1] == b'+':
393
- mult = 1
394
- else:
395
- raise ValueError('Time zone offset requires sign')
396
-
397
- hours = int(tzstr[1:3])
398
- if len(tzstr) == 3:
399
- minutes = 0
400
- else:
401
- minutes = int(tzstr[(4 if tzstr[3:4] == self._TIME_SEP else 3):])
402
-
403
- if zero_as_utc and hours == 0 and minutes == 0:
404
- return tz.UTC
405
- else:
406
- if minutes > 59:
407
- raise ValueError('Invalid minutes in time zone offset')
408
-
409
- if hours > 23:
410
- raise ValueError('Invalid hours in time zone offset')
411
-
412
- return tz.tzoffset(None, mult * (hours * 60 + minutes) * 60)
413
-
414
-
415
- DEFAULT_ISOPARSER = isoparser()
416
- isoparse = DEFAULT_ISOPARSER.isoparse
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/fontTools/ttLib/tables/H_V_A_R_.py DELETED
@@ -1,5 +0,0 @@
1
- from .otBase import BaseTTXConverter
2
-
3
-
4
- class table_H_V_A_R_(BaseTTXConverter):
5
- pass
 
 
 
 
 
 
spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/fontTools/ttLib/woff2.py DELETED
@@ -1,1688 +0,0 @@
1
- from io import BytesIO
2
- import sys
3
- import array
4
- import struct
5
- from collections import OrderedDict
6
- from fontTools.misc import sstruct
7
- from fontTools.misc.arrayTools import calcIntBounds
8
- from fontTools.misc.textTools import Tag, bytechr, byteord, bytesjoin, pad
9
- from fontTools.ttLib import (
10
- TTFont,
11
- TTLibError,
12
- getTableModule,
13
- getTableClass,
14
- getSearchRange,
15
- )
16
- from fontTools.ttLib.sfnt import (
17
- SFNTReader,
18
- SFNTWriter,
19
- DirectoryEntry,
20
- WOFFFlavorData,
21
- sfntDirectoryFormat,
22
- sfntDirectorySize,
23
- SFNTDirectoryEntry,
24
- sfntDirectoryEntrySize,
25
- calcChecksum,
26
- )
27
- from fontTools.ttLib.tables import ttProgram, _g_l_y_f
28
- import logging
29
-
30
-
31
- log = logging.getLogger("fontTools.ttLib.woff2")
32
-
33
- haveBrotli = False
34
- try:
35
- try:
36
- import brotlicffi as brotli
37
- except ImportError:
38
- import brotli
39
- haveBrotli = True
40
- except ImportError:
41
- pass
42
-
43
-
44
- class WOFF2Reader(SFNTReader):
45
-
46
- flavor = "woff2"
47
-
48
- def __init__(self, file, checkChecksums=0, fontNumber=-1):
49
- if not haveBrotli:
50
- log.error(
51
- "The WOFF2 decoder requires the Brotli Python extension, available at: "
52
- "https://github.com/google/brotli"
53
- )
54
- raise ImportError("No module named brotli")
55
-
56
- self.file = file
57
-
58
- signature = Tag(self.file.read(4))
59
- if signature != b"wOF2":
60
- raise TTLibError("Not a WOFF2 font (bad signature)")
61
-
62
- self.file.seek(0)
63
- self.DirectoryEntry = WOFF2DirectoryEntry
64
- data = self.file.read(woff2DirectorySize)
65
- if len(data) != woff2DirectorySize:
66
- raise TTLibError("Not a WOFF2 font (not enough data)")
67
- sstruct.unpack(woff2DirectoryFormat, data, self)
68
-
69
- self.tables = OrderedDict()
70
- offset = 0
71
- for i in range(self.numTables):
72
- entry = self.DirectoryEntry()
73
- entry.fromFile(self.file)
74
- tag = Tag(entry.tag)
75
- self.tables[tag] = entry
76
- entry.offset = offset
77
- offset += entry.length
78
-
79
- totalUncompressedSize = offset
80
- compressedData = self.file.read(self.totalCompressedSize)
81
- decompressedData = brotli.decompress(compressedData)
82
- if len(decompressedData) != totalUncompressedSize:
83
- raise TTLibError(
84
- "unexpected size for decompressed font data: expected %d, found %d"
85
- % (totalUncompressedSize, len(decompressedData))
86
- )
87
- self.transformBuffer = BytesIO(decompressedData)
88
-
89
- self.file.seek(0, 2)
90
- if self.length != self.file.tell():
91
- raise TTLibError("reported 'length' doesn't match the actual file size")
92
-
93
- self.flavorData = WOFF2FlavorData(self)
94
-
95
- # make empty TTFont to store data while reconstructing tables
96
- self.ttFont = TTFont(recalcBBoxes=False, recalcTimestamp=False)
97
-
98
- def __getitem__(self, tag):
99
- """Fetch the raw table data. Reconstruct transformed tables."""
100
- entry = self.tables[Tag(tag)]
101
- if not hasattr(entry, "data"):
102
- if entry.transformed:
103
- entry.data = self.reconstructTable(tag)
104
- else:
105
- entry.data = entry.loadData(self.transformBuffer)
106
- return entry.data
107
-
108
- def reconstructTable(self, tag):
109
- """Reconstruct table named 'tag' from transformed data."""
110
- entry = self.tables[Tag(tag)]
111
- rawData = entry.loadData(self.transformBuffer)
112
- if tag == "glyf":
113
- # no need to pad glyph data when reconstructing
114
- padding = self.padding if hasattr(self, "padding") else None
115
- data = self._reconstructGlyf(rawData, padding)
116
- elif tag == "loca":
117
- data = self._reconstructLoca()
118
- elif tag == "hmtx":
119
- data = self._reconstructHmtx(rawData)
120
- else:
121
- raise TTLibError("transform for table '%s' is unknown" % tag)
122
- return data
123
-
124
- def _reconstructGlyf(self, data, padding=None):
125
- """Return recostructed glyf table data, and set the corresponding loca's
126
- locations. Optionally pad glyph offsets to the specified number of bytes.
127
- """
128
- self.ttFont["loca"] = WOFF2LocaTable()
129
- glyfTable = self.ttFont["glyf"] = WOFF2GlyfTable()
130
- glyfTable.reconstruct(data, self.ttFont)
131
- if padding:
132
- glyfTable.padding = padding
133
- data = glyfTable.compile(self.ttFont)
134
- return data
135
-
136
- def _reconstructLoca(self):
137
- """Return reconstructed loca table data."""
138
- if "loca" not in self.ttFont:
139
- # make sure glyf is reconstructed first
140
- self.tables["glyf"].data = self.reconstructTable("glyf")
141
- locaTable = self.ttFont["loca"]
142
- data = locaTable.compile(self.ttFont)
143
- if len(data) != self.tables["loca"].origLength:
144
- raise TTLibError(
145
- "reconstructed 'loca' table doesn't match original size: "
146
- "expected %d, found %d" % (self.tables["loca"].origLength, len(data))
147
- )
148
- return data
149
-
150
- def _reconstructHmtx(self, data):
151
- """Return reconstructed hmtx table data."""
152
- # Before reconstructing 'hmtx' table we need to parse other tables:
153
- # 'glyf' is required for reconstructing the sidebearings from the glyphs'
154
- # bounding box; 'hhea' is needed for the numberOfHMetrics field.
155
- if "glyf" in self.flavorData.transformedTables:
156
- # transformed 'glyf' table is self-contained, thus 'loca' not needed
157
- tableDependencies = ("maxp", "hhea", "glyf")
158
- else:
159
- # decompiling untransformed 'glyf' requires 'loca', which requires 'head'
160
- tableDependencies = ("maxp", "head", "hhea", "loca", "glyf")
161
- for tag in tableDependencies:
162
- self._decompileTable(tag)
163
- hmtxTable = self.ttFont["hmtx"] = WOFF2HmtxTable()
164
- hmtxTable.reconstruct(data, self.ttFont)
165
- data = hmtxTable.compile(self.ttFont)
166
- return data
167
-
168
- def _decompileTable(self, tag):
169
- """Decompile table data and store it inside self.ttFont."""
170
- data = self[tag]
171
- if self.ttFont.isLoaded(tag):
172
- return self.ttFont[tag]
173
- tableClass = getTableClass(tag)
174
- table = tableClass(tag)
175
- self.ttFont.tables[tag] = table
176
- table.decompile(data, self.ttFont)
177
-
178
-
179
- class WOFF2Writer(SFNTWriter):
180
-
181
- flavor = "woff2"
182
-
183
- def __init__(
184
- self,
185
- file,
186
- numTables,
187
- sfntVersion="\000\001\000\000",
188
- flavor=None,
189
- flavorData=None,
190
- ):
191
- if not haveBrotli:
192
- log.error(
193
- "The WOFF2 encoder requires the Brotli Python extension, available at: "
194
- "https://github.com/google/brotli"
195
- )
196
- raise ImportError("No module named brotli")
197
-
198
- self.file = file
199
- self.numTables = numTables
200
- self.sfntVersion = Tag(sfntVersion)
201
- self.flavorData = WOFF2FlavorData(data=flavorData)
202
-
203
- self.directoryFormat = woff2DirectoryFormat
204
- self.directorySize = woff2DirectorySize
205
- self.DirectoryEntry = WOFF2DirectoryEntry
206
-
207
- self.signature = Tag("wOF2")
208
-
209
- self.nextTableOffset = 0
210
- self.transformBuffer = BytesIO()
211
-
212
- self.tables = OrderedDict()
213
-
214
- # make empty TTFont to store data while normalising and transforming tables
215
- self.ttFont = TTFont(recalcBBoxes=False, recalcTimestamp=False)
216
-
217
- def __setitem__(self, tag, data):
218
- """Associate new entry named 'tag' with raw table data."""
219
- if tag in self.tables:
220
- raise TTLibError("cannot rewrite '%s' table" % tag)
221
- if tag == "DSIG":
222
- # always drop DSIG table, since the encoding process can invalidate it
223
- self.numTables -= 1
224
- return
225
-
226
- entry = self.DirectoryEntry()
227
- entry.tag = Tag(tag)
228
- entry.flags = getKnownTagIndex(entry.tag)
229
- # WOFF2 table data are written to disk only on close(), after all tags
230
- # have been specified
231
- entry.data = data
232
-
233
- self.tables[tag] = entry
234
-
235
- def close(self):
236
- """All tags must have been specified. Now write the table data and directory."""
237
- if len(self.tables) != self.numTables:
238
- raise TTLibError(
239
- "wrong number of tables; expected %d, found %d"
240
- % (self.numTables, len(self.tables))
241
- )
242
-
243
- if self.sfntVersion in ("\x00\x01\x00\x00", "true"):
244
- isTrueType = True
245
- elif self.sfntVersion == "OTTO":
246
- isTrueType = False
247
- else:
248
- raise TTLibError("Not a TrueType or OpenType font (bad sfntVersion)")
249
-
250
- # The WOFF2 spec no longer requires the glyph offsets to be 4-byte aligned.
251
- # However, the reference WOFF2 implementation still fails to reconstruct
252
- # 'unpadded' glyf tables, therefore we need to 'normalise' them.
253
- # See:
254
- # https://github.com/khaledhosny/ots/issues/60
255
- # https://github.com/google/woff2/issues/15
256
- if (
257
- isTrueType
258
- and "glyf" in self.flavorData.transformedTables
259
- and "glyf" in self.tables
260
- ):
261
- self._normaliseGlyfAndLoca(padding=4)
262
- self._setHeadTransformFlag()
263
-
264
- # To pass the legacy OpenType Sanitiser currently included in browsers,
265
- # we must sort the table directory and data alphabetically by tag.
266
- # See:
267
- # https://github.com/google/woff2/pull/3
268
- # https://lists.w3.org/Archives/Public/public-webfonts-wg/2015Mar/0000.html
269
- #
270
- # 2023: We rely on this in _transformTables where we expect that
271
- # "loca" comes after "glyf" table.
272
- self.tables = OrderedDict(sorted(self.tables.items()))
273
-
274
- self.totalSfntSize = self._calcSFNTChecksumsLengthsAndOffsets()
275
-
276
- fontData = self._transformTables()
277
- compressedFont = brotli.compress(fontData, mode=brotli.MODE_FONT)
278
-
279
- self.totalCompressedSize = len(compressedFont)
280
- self.length = self._calcTotalSize()
281
- self.majorVersion, self.minorVersion = self._getVersion()
282
- self.reserved = 0
283
-
284
- directory = self._packTableDirectory()
285
- self.file.seek(0)
286
- self.file.write(pad(directory + compressedFont, size=4))
287
- self._writeFlavorData()
288
-
289
- def _normaliseGlyfAndLoca(self, padding=4):
290
- """Recompile glyf and loca tables, aligning glyph offsets to multiples of
291
- 'padding' size. Update the head table's 'indexToLocFormat' accordingly while
292
- compiling loca.
293
- """
294
- if self.sfntVersion == "OTTO":
295
- return
296
-
297
- for tag in ("maxp", "head", "loca", "glyf", "fvar"):
298
- if tag in self.tables:
299
- self._decompileTable(tag)
300
- self.ttFont["glyf"].padding = padding
301
- for tag in ("glyf", "loca"):
302
- self._compileTable(tag)
303
-
304
- def _setHeadTransformFlag(self):
305
- """Set bit 11 of 'head' table flags to indicate that the font has undergone
306
- a lossless modifying transform. Re-compile head table data."""
307
- self._decompileTable("head")
308
- self.ttFont["head"].flags |= 1 << 11
309
- self._compileTable("head")
310
-
311
- def _decompileTable(self, tag):
312
- """Fetch table data, decompile it, and store it inside self.ttFont."""
313
- tag = Tag(tag)
314
- if tag not in self.tables:
315
- raise TTLibError("missing required table: %s" % tag)
316
- if self.ttFont.isLoaded(tag):
317
- return
318
- data = self.tables[tag].data
319
- if tag == "loca":
320
- tableClass = WOFF2LocaTable
321
- elif tag == "glyf":
322
- tableClass = WOFF2GlyfTable
323
- elif tag == "hmtx":
324
- tableClass = WOFF2HmtxTable
325
- else:
326
- tableClass = getTableClass(tag)
327
- table = tableClass(tag)
328
- self.ttFont.tables[tag] = table
329
- table.decompile(data, self.ttFont)
330
-
331
- def _compileTable(self, tag):
332
- """Compile table and store it in its 'data' attribute."""
333
- self.tables[tag].data = self.ttFont[tag].compile(self.ttFont)
334
-
335
- def _calcSFNTChecksumsLengthsAndOffsets(self):
336
- """Compute the 'original' SFNT checksums, lengths and offsets for checksum
337
- adjustment calculation. Return the total size of the uncompressed font.
338
- """
339
- offset = sfntDirectorySize + sfntDirectoryEntrySize * len(self.tables)
340
- for tag, entry in self.tables.items():
341
- data = entry.data
342
- entry.origOffset = offset
343
- entry.origLength = len(data)
344
- if tag == "head":
345
- entry.checkSum = calcChecksum(data[:8] + b"\0\0\0\0" + data[12:])
346
- else:
347
- entry.checkSum = calcChecksum(data)
348
- offset += (entry.origLength + 3) & ~3
349
- return offset
350
-
351
- def _transformTables(self):
352
- """Return transformed font data."""
353
- transformedTables = self.flavorData.transformedTables
354
- for tag, entry in self.tables.items():
355
- data = None
356
- if tag in transformedTables:
357
- data = self.transformTable(tag)
358
- if data is not None:
359
- entry.transformed = True
360
- if data is None:
361
- if tag == "glyf":
362
- # Currently we always sort table tags so
363
- # 'loca' comes after 'glyf'.
364
- transformedTables.discard("loca")
365
- # pass-through the table data without transformation
366
- data = entry.data
367
- entry.transformed = False
368
- entry.offset = self.nextTableOffset
369
- entry.saveData(self.transformBuffer, data)
370
- self.nextTableOffset += entry.length
371
- self.writeMasterChecksum()
372
- fontData = self.transformBuffer.getvalue()
373
- return fontData
374
-
375
- def transformTable(self, tag):
376
- """Return transformed table data, or None if some pre-conditions aren't
377
- met -- in which case, the non-transformed table data will be used.
378
- """
379
- if tag == "loca":
380
- data = b""
381
- elif tag == "glyf":
382
- for tag in ("maxp", "head", "loca", "glyf"):
383
- self._decompileTable(tag)
384
- glyfTable = self.ttFont["glyf"]
385
- data = glyfTable.transform(self.ttFont)
386
- elif tag == "hmtx":
387
- if "glyf" not in self.tables:
388
- return
389
- for tag in ("maxp", "head", "hhea", "loca", "glyf", "hmtx"):
390
- self._decompileTable(tag)
391
- hmtxTable = self.ttFont["hmtx"]
392
- data = hmtxTable.transform(self.ttFont) # can be None
393
- else:
394
- raise TTLibError("Transform for table '%s' is unknown" % tag)
395
- return data
396
-
397
- def _calcMasterChecksum(self):
398
- """Calculate checkSumAdjustment."""
399
- tags = list(self.tables.keys())
400
- checksums = []
401
- for i in range(len(tags)):
402
- checksums.append(self.tables[tags[i]].checkSum)
403
-
404
- # Create a SFNT directory for checksum calculation purposes
405
- self.searchRange, self.entrySelector, self.rangeShift = getSearchRange(
406
- self.numTables, 16
407
- )
408
- directory = sstruct.pack(sfntDirectoryFormat, self)
409
- tables = sorted(self.tables.items())
410
- for tag, entry in tables:
411
- sfntEntry = SFNTDirectoryEntry()
412
- sfntEntry.tag = entry.tag
413
- sfntEntry.checkSum = entry.checkSum
414
- sfntEntry.offset = entry.origOffset
415
- sfntEntry.length = entry.origLength
416
- directory = directory + sfntEntry.toString()
417
-
418
- directory_end = sfntDirectorySize + len(self.tables) * sfntDirectoryEntrySize
419
- assert directory_end == len(directory)
420
-
421
- checksums.append(calcChecksum(directory))
422
- checksum = sum(checksums) & 0xFFFFFFFF
423
- # BiboAfba!
424
- checksumadjustment = (0xB1B0AFBA - checksum) & 0xFFFFFFFF
425
- return checksumadjustment
426
-
427
- def writeMasterChecksum(self):
428
- """Write checkSumAdjustment to the transformBuffer."""
429
- checksumadjustment = self._calcMasterChecksum()
430
- self.transformBuffer.seek(self.tables["head"].offset + 8)
431
- self.transformBuffer.write(struct.pack(">L", checksumadjustment))
432
-
433
- def _calcTotalSize(self):
434
- """Calculate total size of WOFF2 font, including any meta- and/or private data."""
435
- offset = self.directorySize
436
- for entry in self.tables.values():
437
- offset += len(entry.toString())
438
- offset += self.totalCompressedSize
439
- offset = (offset + 3) & ~3
440
- offset = self._calcFlavorDataOffsetsAndSize(offset)
441
- return offset
442
-
443
- def _calcFlavorDataOffsetsAndSize(self, start):
444
- """Calculate offsets and lengths for any meta- and/or private data."""
445
- offset = start
446
- data = self.flavorData
447
- if data.metaData:
448
- self.metaOrigLength = len(data.metaData)
449
- self.metaOffset = offset
450
- self.compressedMetaData = brotli.compress(
451
- data.metaData, mode=brotli.MODE_TEXT
452
- )
453
- self.metaLength = len(self.compressedMetaData)
454
- offset += self.metaLength
455
- else:
456
- self.metaOffset = self.metaLength = self.metaOrigLength = 0
457
- self.compressedMetaData = b""
458
- if data.privData:
459
- # make sure private data is padded to 4-byte boundary
460
- offset = (offset + 3) & ~3
461
- self.privOffset = offset
462
- self.privLength = len(data.privData)
463
- offset += self.privLength
464
- else:
465
- self.privOffset = self.privLength = 0
466
- return offset
467
-
468
- def _getVersion(self):
469
- """Return the WOFF2 font's (majorVersion, minorVersion) tuple."""
470
- data = self.flavorData
471
- if data.majorVersion is not None and data.minorVersion is not None:
472
- return data.majorVersion, data.minorVersion
473
- else:
474
- # if None, return 'fontRevision' from 'head' table
475
- if "head" in self.tables:
476
- return struct.unpack(">HH", self.tables["head"].data[4:8])
477
- else:
478
- return 0, 0
479
-
480
- def _packTableDirectory(self):
481
- """Return WOFF2 table directory data."""
482
- directory = sstruct.pack(self.directoryFormat, self)
483
- for entry in self.tables.values():
484
- directory = directory + entry.toString()
485
- return directory
486
-
487
- def _writeFlavorData(self):
488
- """Write metadata and/or private data using appropiate padding."""
489
- compressedMetaData = self.compressedMetaData
490
- privData = self.flavorData.privData
491
- if compressedMetaData and privData:
492
- compressedMetaData = pad(compressedMetaData, size=4)
493
- if compressedMetaData:
494
- self.file.seek(self.metaOffset)
495
- assert self.file.tell() == self.metaOffset
496
- self.file.write(compressedMetaData)
497
- if privData:
498
- self.file.seek(self.privOffset)
499
- assert self.file.tell() == self.privOffset
500
- self.file.write(privData)
501
-
502
- def reordersTables(self):
503
- return True
504
-
505
-
506
- # -- woff2 directory helpers and cruft
507
-
508
- woff2DirectoryFormat = """
509
- > # big endian
510
- signature: 4s # "wOF2"
511
- sfntVersion: 4s
512
- length: L # total woff2 file size
513
- numTables: H # number of tables
514
- reserved: H # set to 0
515
- totalSfntSize: L # uncompressed size
516
- totalCompressedSize: L # compressed size
517
- majorVersion: H # major version of WOFF file
518
- minorVersion: H # minor version of WOFF file
519
- metaOffset: L # offset to metadata block
520
- metaLength: L # length of compressed metadata
521
- metaOrigLength: L # length of uncompressed metadata
522
- privOffset: L # offset to private data block
523
- privLength: L # length of private data block
524
- """
525
-
526
- woff2DirectorySize = sstruct.calcsize(woff2DirectoryFormat)
527
-
528
- woff2KnownTags = (
529
- "cmap",
530
- "head",
531
- "hhea",
532
- "hmtx",
533
- "maxp",
534
- "name",
535
- "OS/2",
536
- "post",
537
- "cvt ",
538
- "fpgm",
539
- "glyf",
540
- "loca",
541
- "prep",
542
- "CFF ",
543
- "VORG",
544
- "EBDT",
545
- "EBLC",
546
- "gasp",
547
- "hdmx",
548
- "kern",
549
- "LTSH",
550
- "PCLT",
551
- "VDMX",
552
- "vhea",
553
- "vmtx",
554
- "BASE",
555
- "GDEF",
556
- "GPOS",
557
- "GSUB",
558
- "EBSC",
559
- "JSTF",
560
- "MATH",
561
- "CBDT",
562
- "CBLC",
563
- "COLR",
564
- "CPAL",
565
- "SVG ",
566
- "sbix",
567
- "acnt",
568
- "avar",
569
- "bdat",
570
- "bloc",
571
- "bsln",
572
- "cvar",
573
- "fdsc",
574
- "feat",
575
- "fmtx",
576
- "fvar",
577
- "gvar",
578
- "hsty",
579
- "just",
580
- "lcar",
581
- "mort",
582
- "morx",
583
- "opbd",
584
- "prop",
585
- "trak",
586
- "Zapf",
587
- "Silf",
588
- "Glat",
589
- "Gloc",
590
- "Feat",
591
- "Sill",
592
- )
593
-
594
- woff2FlagsFormat = """
595
- > # big endian
596
- flags: B # table type and flags
597
- """
598
-
599
- woff2FlagsSize = sstruct.calcsize(woff2FlagsFormat)
600
-
601
- woff2UnknownTagFormat = """
602
- > # big endian
603
- tag: 4s # 4-byte tag (optional)
604
- """
605
-
606
- woff2UnknownTagSize = sstruct.calcsize(woff2UnknownTagFormat)
607
-
608
- woff2UnknownTagIndex = 0x3F
609
-
610
- woff2Base128MaxSize = 5
611
- woff2DirectoryEntryMaxSize = (
612
- woff2FlagsSize + woff2UnknownTagSize + 2 * woff2Base128MaxSize
613
- )
614
-
615
- woff2TransformedTableTags = ("glyf", "loca")
616
-
617
- woff2GlyfTableFormat = """
618
- > # big endian
619
- version: H # = 0x0000
620
- optionFlags: H # Bit 0: we have overlapSimpleBitmap[], Bits 1-15: reserved
621
- numGlyphs: H # Number of glyphs
622
- indexFormat: H # Offset format for loca table
623
- nContourStreamSize: L # Size of nContour stream
624
- nPointsStreamSize: L # Size of nPoints stream
625
- flagStreamSize: L # Size of flag stream
626
- glyphStreamSize: L # Size of glyph stream
627
- compositeStreamSize: L # Size of composite stream
628
- bboxStreamSize: L # Comnined size of bboxBitmap and bboxStream
629
- instructionStreamSize: L # Size of instruction stream
630
- """
631
-
632
- woff2GlyfTableFormatSize = sstruct.calcsize(woff2GlyfTableFormat)
633
-
634
- bboxFormat = """
635
- > # big endian
636
- xMin: h
637
- yMin: h
638
- xMax: h
639
- yMax: h
640
- """
641
-
642
- woff2OverlapSimpleBitmapFlag = 0x0001
643
-
644
-
645
- def getKnownTagIndex(tag):
646
- """Return index of 'tag' in woff2KnownTags list. Return 63 if not found."""
647
- for i in range(len(woff2KnownTags)):
648
- if tag == woff2KnownTags[i]:
649
- return i
650
- return woff2UnknownTagIndex
651
-
652
-
653
- class WOFF2DirectoryEntry(DirectoryEntry):
654
- def fromFile(self, file):
655
- pos = file.tell()
656
- data = file.read(woff2DirectoryEntryMaxSize)
657
- left = self.fromString(data)
658
- consumed = len(data) - len(left)
659
- file.seek(pos + consumed)
660
-
661
- def fromString(self, data):
662
- if len(data) < 1:
663
- raise TTLibError("can't read table 'flags': not enough data")
664
- dummy, data = sstruct.unpack2(woff2FlagsFormat, data, self)
665
- if self.flags & 0x3F == 0x3F:
666
- # if bits [0..5] of the flags byte == 63, read a 4-byte arbitrary tag value
667
- if len(data) < woff2UnknownTagSize:
668
- raise TTLibError("can't read table 'tag': not enough data")
669
- dummy, data = sstruct.unpack2(woff2UnknownTagFormat, data, self)
670
- else:
671
- # otherwise, tag is derived from a fixed 'Known Tags' table
672
- self.tag = woff2KnownTags[self.flags & 0x3F]
673
- self.tag = Tag(self.tag)
674
- self.origLength, data = unpackBase128(data)
675
- self.length = self.origLength
676
- if self.transformed:
677
- self.length, data = unpackBase128(data)
678
- if self.tag == "loca" and self.length != 0:
679
- raise TTLibError("the transformLength of the 'loca' table must be 0")
680
- # return left over data
681
- return data
682
-
683
- def toString(self):
684
- data = bytechr(self.flags)
685
- if (self.flags & 0x3F) == 0x3F:
686
- data += struct.pack(">4s", self.tag.tobytes())
687
- data += packBase128(self.origLength)
688
- if self.transformed:
689
- data += packBase128(self.length)
690
- return data
691
-
692
- @property
693
- def transformVersion(self):
694
- """Return bits 6-7 of table entry's flags, which indicate the preprocessing
695
- transformation version number (between 0 and 3).
696
- """
697
- return self.flags >> 6
698
-
699
- @transformVersion.setter
700
- def transformVersion(self, value):
701
- assert 0 <= value <= 3
702
- self.flags |= value << 6
703
-
704
- @property
705
- def transformed(self):
706
- """Return True if the table has any transformation, else return False."""
707
- # For all tables in a font, except for 'glyf' and 'loca', the transformation
708
- # version 0 indicates the null transform (where the original table data is
709
- # passed directly to the Brotli compressor). For 'glyf' and 'loca' tables,
710
- # transformation version 3 indicates the null transform
711
- if self.tag in {"glyf", "loca"}:
712
- return self.transformVersion != 3
713
- else:
714
- return self.transformVersion != 0
715
-
716
- @transformed.setter
717
- def transformed(self, booleanValue):
718
- # here we assume that a non-null transform means version 0 for 'glyf' and
719
- # 'loca' and 1 for every other table (e.g. hmtx); but that may change as
720
- # new transformation formats are introduced in the future (if ever).
721
- if self.tag in {"glyf", "loca"}:
722
- self.transformVersion = 3 if not booleanValue else 0
723
- else:
724
- self.transformVersion = int(booleanValue)
725
-
726
-
727
- class WOFF2LocaTable(getTableClass("loca")):
728
- """Same as parent class. The only difference is that it attempts to preserve
729
- the 'indexFormat' as encoded in the WOFF2 glyf table.
730
- """
731
-
732
- def __init__(self, tag=None):
733
- self.tableTag = Tag(tag or "loca")
734
-
735
- def compile(self, ttFont):
736
- try:
737
- max_location = max(self.locations)
738
- except AttributeError:
739
- self.set([])
740
- max_location = 0
741
- if "glyf" in ttFont and hasattr(ttFont["glyf"], "indexFormat"):
742
- # copile loca using the indexFormat specified in the WOFF2 glyf table
743
- indexFormat = ttFont["glyf"].indexFormat
744
- if indexFormat == 0:
745
- if max_location >= 0x20000:
746
- raise TTLibError("indexFormat is 0 but local offsets > 0x20000")
747
- if not all(l % 2 == 0 for l in self.locations):
748
- raise TTLibError(
749
- "indexFormat is 0 but local offsets not multiples of 2"
750
- )
751
- locations = array.array("H")
752
- for i in range(len(self.locations)):
753
- locations.append(self.locations[i] // 2)
754
- else:
755
- locations = array.array("I", self.locations)
756
- if sys.byteorder != "big":
757
- locations.byteswap()
758
- data = locations.tobytes()
759
- else:
760
- # use the most compact indexFormat given the current glyph offsets
761
- data = super(WOFF2LocaTable, self).compile(ttFont)
762
- return data
763
-
764
-
765
- class WOFF2GlyfTable(getTableClass("glyf")):
766
- """Decoder/Encoder for WOFF2 'glyf' table transform."""
767
-
768
- subStreams = (
769
- "nContourStream",
770
- "nPointsStream",
771
- "flagStream",
772
- "glyphStream",
773
- "compositeStream",
774
- "bboxStream",
775
- "instructionStream",
776
- )
777
-
778
- def __init__(self, tag=None):
779
- self.tableTag = Tag(tag or "glyf")
780
-
781
- def reconstruct(self, data, ttFont):
782
- """Decompile transformed 'glyf' data."""
783
- inputDataSize = len(data)
784
-
785
- if inputDataSize < woff2GlyfTableFormatSize:
786
- raise TTLibError("not enough 'glyf' data")
787
- dummy, data = sstruct.unpack2(woff2GlyfTableFormat, data, self)
788
- offset = woff2GlyfTableFormatSize
789
-
790
- for stream in self.subStreams:
791
- size = getattr(self, stream + "Size")
792
- setattr(self, stream, data[:size])
793
- data = data[size:]
794
- offset += size
795
-
796
- hasOverlapSimpleBitmap = self.optionFlags & woff2OverlapSimpleBitmapFlag
797
- self.overlapSimpleBitmap = None
798
- if hasOverlapSimpleBitmap:
799
- overlapSimpleBitmapSize = (self.numGlyphs + 7) >> 3
800
- self.overlapSimpleBitmap = array.array("B", data[:overlapSimpleBitmapSize])
801
- offset += overlapSimpleBitmapSize
802
-
803
- if offset != inputDataSize:
804
- raise TTLibError(
805
- "incorrect size of transformed 'glyf' table: expected %d, received %d bytes"
806
- % (offset, inputDataSize)
807
- )
808
-
809
- bboxBitmapSize = ((self.numGlyphs + 31) >> 5) << 2
810
- bboxBitmap = self.bboxStream[:bboxBitmapSize]
811
- self.bboxBitmap = array.array("B", bboxBitmap)
812
- self.bboxStream = self.bboxStream[bboxBitmapSize:]
813
-
814
- self.nContourStream = array.array("h", self.nContourStream)
815
- if sys.byteorder != "big":
816
- self.nContourStream.byteswap()
817
- assert len(self.nContourStream) == self.numGlyphs
818
-
819
- if "head" in ttFont:
820
- ttFont["head"].indexToLocFormat = self.indexFormat
821
- try:
822
- self.glyphOrder = ttFont.getGlyphOrder()
823
- except:
824
- self.glyphOrder = None
825
- if self.glyphOrder is None:
826
- self.glyphOrder = [".notdef"]
827
- self.glyphOrder.extend(["glyph%.5d" % i for i in range(1, self.numGlyphs)])
828
- else:
829
- if len(self.glyphOrder) != self.numGlyphs:
830
- raise TTLibError(
831
- "incorrect glyphOrder: expected %d glyphs, found %d"
832
- % (len(self.glyphOrder), self.numGlyphs)
833
- )
834
-
835
- glyphs = self.glyphs = {}
836
- for glyphID, glyphName in enumerate(self.glyphOrder):
837
- glyph = self._decodeGlyph(glyphID)
838
- glyphs[glyphName] = glyph
839
-
840
- def transform(self, ttFont):
841
- """Return transformed 'glyf' data"""
842
- self.numGlyphs = len(self.glyphs)
843
- assert len(self.glyphOrder) == self.numGlyphs
844
- if "maxp" in ttFont:
845
- ttFont["maxp"].numGlyphs = self.numGlyphs
846
- self.indexFormat = ttFont["head"].indexToLocFormat
847
-
848
- for stream in self.subStreams:
849
- setattr(self, stream, b"")
850
- bboxBitmapSize = ((self.numGlyphs + 31) >> 5) << 2
851
- self.bboxBitmap = array.array("B", [0] * bboxBitmapSize)
852
-
853
- self.overlapSimpleBitmap = array.array("B", [0] * ((self.numGlyphs + 7) >> 3))
854
- for glyphID in range(self.numGlyphs):
855
- try:
856
- self._encodeGlyph(glyphID)
857
- except NotImplementedError:
858
- return None
859
- hasOverlapSimpleBitmap = any(self.overlapSimpleBitmap)
860
-
861
- self.bboxStream = self.bboxBitmap.tobytes() + self.bboxStream
862
- for stream in self.subStreams:
863
- setattr(self, stream + "Size", len(getattr(self, stream)))
864
- self.version = 0
865
- self.optionFlags = 0
866
- if hasOverlapSimpleBitmap:
867
- self.optionFlags |= woff2OverlapSimpleBitmapFlag
868
- data = sstruct.pack(woff2GlyfTableFormat, self)
869
- data += bytesjoin([getattr(self, s) for s in self.subStreams])
870
- if hasOverlapSimpleBitmap:
871
- data += self.overlapSimpleBitmap.tobytes()
872
- return data
873
-
874
- def _decodeGlyph(self, glyphID):
875
- glyph = getTableModule("glyf").Glyph()
876
- glyph.numberOfContours = self.nContourStream[glyphID]
877
- if glyph.numberOfContours == 0:
878
- return glyph
879
- elif glyph.isComposite():
880
- self._decodeComponents(glyph)
881
- else:
882
- self._decodeCoordinates(glyph)
883
- self._decodeOverlapSimpleFlag(glyph, glyphID)
884
- self._decodeBBox(glyphID, glyph)
885
- return glyph
886
-
887
- def _decodeComponents(self, glyph):
888
- data = self.compositeStream
889
- glyph.components = []
890
- more = 1
891
- haveInstructions = 0
892
- while more:
893
- component = getTableModule("glyf").GlyphComponent()
894
- more, haveInstr, data = component.decompile(data, self)
895
- haveInstructions = haveInstructions | haveInstr
896
- glyph.components.append(component)
897
- self.compositeStream = data
898
- if haveInstructions:
899
- self._decodeInstructions(glyph)
900
-
901
- def _decodeCoordinates(self, glyph):
902
- data = self.nPointsStream
903
- endPtsOfContours = []
904
- endPoint = -1
905
- for i in range(glyph.numberOfContours):
906
- ptsOfContour, data = unpack255UShort(data)
907
- endPoint += ptsOfContour
908
- endPtsOfContours.append(endPoint)
909
- glyph.endPtsOfContours = endPtsOfContours
910
- self.nPointsStream = data
911
- self._decodeTriplets(glyph)
912
- self._decodeInstructions(glyph)
913
-
914
- def _decodeOverlapSimpleFlag(self, glyph, glyphID):
915
- if self.overlapSimpleBitmap is None or glyph.numberOfContours <= 0:
916
- return
917
- byte = glyphID >> 3
918
- bit = glyphID & 7
919
- if self.overlapSimpleBitmap[byte] & (0x80 >> bit):
920
- glyph.flags[0] |= _g_l_y_f.flagOverlapSimple
921
-
922
- def _decodeInstructions(self, glyph):
923
- glyphStream = self.glyphStream
924
- instructionStream = self.instructionStream
925
- instructionLength, glyphStream = unpack255UShort(glyphStream)
926
- glyph.program = ttProgram.Program()
927
- glyph.program.fromBytecode(instructionStream[:instructionLength])
928
- self.glyphStream = glyphStream
929
- self.instructionStream = instructionStream[instructionLength:]
930
-
931
- def _decodeBBox(self, glyphID, glyph):
932
- haveBBox = bool(self.bboxBitmap[glyphID >> 3] & (0x80 >> (glyphID & 7)))
933
- if glyph.isComposite() and not haveBBox:
934
- raise TTLibError("no bbox values for composite glyph %d" % glyphID)
935
- if haveBBox:
936
- dummy, self.bboxStream = sstruct.unpack2(bboxFormat, self.bboxStream, glyph)
937
- else:
938
- glyph.recalcBounds(self)
939
-
940
- def _decodeTriplets(self, glyph):
941
- def withSign(flag, baseval):
942
- assert 0 <= baseval and baseval < 65536, "integer overflow"
943
- return baseval if flag & 1 else -baseval
944
-
945
- nPoints = glyph.endPtsOfContours[-1] + 1
946
- flagSize = nPoints
947
- if flagSize > len(self.flagStream):
948
- raise TTLibError("not enough 'flagStream' data")
949
- flagsData = self.flagStream[:flagSize]
950
- self.flagStream = self.flagStream[flagSize:]
951
- flags = array.array("B", flagsData)
952
-
953
- triplets = array.array("B", self.glyphStream)
954
- nTriplets = len(triplets)
955
- assert nPoints <= nTriplets
956
-
957
- x = 0
958
- y = 0
959
- glyph.coordinates = getTableModule("glyf").GlyphCoordinates.zeros(nPoints)
960
- glyph.flags = array.array("B")
961
- tripletIndex = 0
962
- for i in range(nPoints):
963
- flag = flags[i]
964
- onCurve = not bool(flag >> 7)
965
- flag &= 0x7F
966
- if flag < 84:
967
- nBytes = 1
968
- elif flag < 120:
969
- nBytes = 2
970
- elif flag < 124:
971
- nBytes = 3
972
- else:
973
- nBytes = 4
974
- assert (tripletIndex + nBytes) <= nTriplets
975
- if flag < 10:
976
- dx = 0
977
- dy = withSign(flag, ((flag & 14) << 7) + triplets[tripletIndex])
978
- elif flag < 20:
979
- dx = withSign(flag, (((flag - 10) & 14) << 7) + triplets[tripletIndex])
980
- dy = 0
981
- elif flag < 84:
982
- b0 = flag - 20
983
- b1 = triplets[tripletIndex]
984
- dx = withSign(flag, 1 + (b0 & 0x30) + (b1 >> 4))
985
- dy = withSign(flag >> 1, 1 + ((b0 & 0x0C) << 2) + (b1 & 0x0F))
986
- elif flag < 120:
987
- b0 = flag - 84
988
- dx = withSign(flag, 1 + ((b0 // 12) << 8) + triplets[tripletIndex])
989
- dy = withSign(
990
- flag >> 1, 1 + (((b0 % 12) >> 2) << 8) + triplets[tripletIndex + 1]
991
- )
992
- elif flag < 124:
993
- b2 = triplets[tripletIndex + 1]
994
- dx = withSign(flag, (triplets[tripletIndex] << 4) + (b2 >> 4))
995
- dy = withSign(
996
- flag >> 1, ((b2 & 0x0F) << 8) + triplets[tripletIndex + 2]
997
- )
998
- else:
999
- dx = withSign(
1000
- flag, (triplets[tripletIndex] << 8) + triplets[tripletIndex + 1]
1001
- )
1002
- dy = withSign(
1003
- flag >> 1,
1004
- (triplets[tripletIndex + 2] << 8) + triplets[tripletIndex + 3],
1005
- )
1006
- tripletIndex += nBytes
1007
- x += dx
1008
- y += dy
1009
- glyph.coordinates[i] = (x, y)
1010
- glyph.flags.append(int(onCurve))
1011
- bytesConsumed = tripletIndex
1012
- self.glyphStream = self.glyphStream[bytesConsumed:]
1013
-
1014
- def _encodeGlyph(self, glyphID):
1015
- glyphName = self.getGlyphName(glyphID)
1016
- glyph = self[glyphName]
1017
- self.nContourStream += struct.pack(">h", glyph.numberOfContours)
1018
- if glyph.numberOfContours == 0:
1019
- return
1020
- elif glyph.isComposite():
1021
- self._encodeComponents(glyph)
1022
- elif glyph.isVarComposite():
1023
- raise NotImplementedError
1024
- else:
1025
- self._encodeCoordinates(glyph)
1026
- self._encodeOverlapSimpleFlag(glyph, glyphID)
1027
- self._encodeBBox(glyphID, glyph)
1028
-
1029
- def _encodeComponents(self, glyph):
1030
- lastcomponent = len(glyph.components) - 1
1031
- more = 1
1032
- haveInstructions = 0
1033
- for i in range(len(glyph.components)):
1034
- if i == lastcomponent:
1035
- haveInstructions = hasattr(glyph, "program")
1036
- more = 0
1037
- component = glyph.components[i]
1038
- self.compositeStream += component.compile(more, haveInstructions, self)
1039
- if haveInstructions:
1040
- self._encodeInstructions(glyph)
1041
-
1042
- def _encodeCoordinates(self, glyph):
1043
- lastEndPoint = -1
1044
- if _g_l_y_f.flagCubic in glyph.flags:
1045
- raise NotImplementedError
1046
- for endPoint in glyph.endPtsOfContours:
1047
- ptsOfContour = endPoint - lastEndPoint
1048
- self.nPointsStream += pack255UShort(ptsOfContour)
1049
- lastEndPoint = endPoint
1050
- self._encodeTriplets(glyph)
1051
- self._encodeInstructions(glyph)
1052
-
1053
- def _encodeOverlapSimpleFlag(self, glyph, glyphID):
1054
- if glyph.numberOfContours <= 0:
1055
- return
1056
- if glyph.flags[0] & _g_l_y_f.flagOverlapSimple:
1057
- byte = glyphID >> 3
1058
- bit = glyphID & 7
1059
- self.overlapSimpleBitmap[byte] |= 0x80 >> bit
1060
-
1061
- def _encodeInstructions(self, glyph):
1062
- instructions = glyph.program.getBytecode()
1063
- self.glyphStream += pack255UShort(len(instructions))
1064
- self.instructionStream += instructions
1065
-
1066
- def _encodeBBox(self, glyphID, glyph):
1067
- assert glyph.numberOfContours != 0, "empty glyph has no bbox"
1068
- if not glyph.isComposite():
1069
- # for simple glyphs, compare the encoded bounding box info with the calculated
1070
- # values, and if they match omit the bounding box info
1071
- currentBBox = glyph.xMin, glyph.yMin, glyph.xMax, glyph.yMax
1072
- calculatedBBox = calcIntBounds(glyph.coordinates)
1073
- if currentBBox == calculatedBBox:
1074
- return
1075
- self.bboxBitmap[glyphID >> 3] |= 0x80 >> (glyphID & 7)
1076
- self.bboxStream += sstruct.pack(bboxFormat, glyph)
1077
-
1078
- def _encodeTriplets(self, glyph):
1079
- assert len(glyph.coordinates) == len(glyph.flags)
1080
- coordinates = glyph.coordinates.copy()
1081
- coordinates.absoluteToRelative()
1082
-
1083
- flags = array.array("B")
1084
- triplets = array.array("B")
1085
- for i in range(len(coordinates)):
1086
- onCurve = glyph.flags[i] & _g_l_y_f.flagOnCurve
1087
- x, y = coordinates[i]
1088
- absX = abs(x)
1089
- absY = abs(y)
1090
- onCurveBit = 0 if onCurve else 128
1091
- xSignBit = 0 if (x < 0) else 1
1092
- ySignBit = 0 if (y < 0) else 1
1093
- xySignBits = xSignBit + 2 * ySignBit
1094
-
1095
- if x == 0 and absY < 1280:
1096
- flags.append(onCurveBit + ((absY & 0xF00) >> 7) + ySignBit)
1097
- triplets.append(absY & 0xFF)
1098
- elif y == 0 and absX < 1280:
1099
- flags.append(onCurveBit + 10 + ((absX & 0xF00) >> 7) + xSignBit)
1100
- triplets.append(absX & 0xFF)
1101
- elif absX < 65 and absY < 65:
1102
- flags.append(
1103
- onCurveBit
1104
- + 20
1105
- + ((absX - 1) & 0x30)
1106
- + (((absY - 1) & 0x30) >> 2)
1107
- + xySignBits
1108
- )
1109
- triplets.append((((absX - 1) & 0xF) << 4) | ((absY - 1) & 0xF))
1110
- elif absX < 769 and absY < 769:
1111
- flags.append(
1112
- onCurveBit
1113
- + 84
1114
- + 12 * (((absX - 1) & 0x300) >> 8)
1115
- + (((absY - 1) & 0x300) >> 6)
1116
- + xySignBits
1117
- )
1118
- triplets.append((absX - 1) & 0xFF)
1119
- triplets.append((absY - 1) & 0xFF)
1120
- elif absX < 4096 and absY < 4096:
1121
- flags.append(onCurveBit + 120 + xySignBits)
1122
- triplets.append(absX >> 4)
1123
- triplets.append(((absX & 0xF) << 4) | (absY >> 8))
1124
- triplets.append(absY & 0xFF)
1125
- else:
1126
- flags.append(onCurveBit + 124 + xySignBits)
1127
- triplets.append(absX >> 8)
1128
- triplets.append(absX & 0xFF)
1129
- triplets.append(absY >> 8)
1130
- triplets.append(absY & 0xFF)
1131
-
1132
- self.flagStream += flags.tobytes()
1133
- self.glyphStream += triplets.tobytes()
1134
-
1135
-
1136
- class WOFF2HmtxTable(getTableClass("hmtx")):
1137
- def __init__(self, tag=None):
1138
- self.tableTag = Tag(tag or "hmtx")
1139
-
1140
- def reconstruct(self, data, ttFont):
1141
- (flags,) = struct.unpack(">B", data[:1])
1142
- data = data[1:]
1143
- if flags & 0b11111100 != 0:
1144
- raise TTLibError("Bits 2-7 of '%s' flags are reserved" % self.tableTag)
1145
-
1146
- # When bit 0 is _not_ set, the lsb[] array is present
1147
- hasLsbArray = flags & 1 == 0
1148
- # When bit 1 is _not_ set, the leftSideBearing[] array is present
1149
- hasLeftSideBearingArray = flags & 2 == 0
1150
- if hasLsbArray and hasLeftSideBearingArray:
1151
- raise TTLibError(
1152
- "either bits 0 or 1 (or both) must set in transformed '%s' flags"
1153
- % self.tableTag
1154
- )
1155
-
1156
- glyfTable = ttFont["glyf"]
1157
- headerTable = ttFont["hhea"]
1158
- glyphOrder = glyfTable.glyphOrder
1159
- numGlyphs = len(glyphOrder)
1160
- numberOfHMetrics = min(int(headerTable.numberOfHMetrics), numGlyphs)
1161
-
1162
- assert len(data) >= 2 * numberOfHMetrics
1163
- advanceWidthArray = array.array("H", data[: 2 * numberOfHMetrics])
1164
- if sys.byteorder != "big":
1165
- advanceWidthArray.byteswap()
1166
- data = data[2 * numberOfHMetrics :]
1167
-
1168
- if hasLsbArray:
1169
- assert len(data) >= 2 * numberOfHMetrics
1170
- lsbArray = array.array("h", data[: 2 * numberOfHMetrics])
1171
- if sys.byteorder != "big":
1172
- lsbArray.byteswap()
1173
- data = data[2 * numberOfHMetrics :]
1174
- else:
1175
- # compute (proportional) glyphs' lsb from their xMin
1176
- lsbArray = array.array("h")
1177
- for i, glyphName in enumerate(glyphOrder):
1178
- if i >= numberOfHMetrics:
1179
- break
1180
- glyph = glyfTable[glyphName]
1181
- xMin = getattr(glyph, "xMin", 0)
1182
- lsbArray.append(xMin)
1183
-
1184
- numberOfSideBearings = numGlyphs - numberOfHMetrics
1185
- if hasLeftSideBearingArray:
1186
- assert len(data) >= 2 * numberOfSideBearings
1187
- leftSideBearingArray = array.array("h", data[: 2 * numberOfSideBearings])
1188
- if sys.byteorder != "big":
1189
- leftSideBearingArray.byteswap()
1190
- data = data[2 * numberOfSideBearings :]
1191
- else:
1192
- # compute (monospaced) glyphs' leftSideBearing from their xMin
1193
- leftSideBearingArray = array.array("h")
1194
- for i, glyphName in enumerate(glyphOrder):
1195
- if i < numberOfHMetrics:
1196
- continue
1197
- glyph = glyfTable[glyphName]
1198
- xMin = getattr(glyph, "xMin", 0)
1199
- leftSideBearingArray.append(xMin)
1200
-
1201
- if data:
1202
- raise TTLibError("too much '%s' table data" % self.tableTag)
1203
-
1204
- self.metrics = {}
1205
- for i in range(numberOfHMetrics):
1206
- glyphName = glyphOrder[i]
1207
- advanceWidth, lsb = advanceWidthArray[i], lsbArray[i]
1208
- self.metrics[glyphName] = (advanceWidth, lsb)
1209
- lastAdvance = advanceWidthArray[-1]
1210
- for i in range(numberOfSideBearings):
1211
- glyphName = glyphOrder[i + numberOfHMetrics]
1212
- self.metrics[glyphName] = (lastAdvance, leftSideBearingArray[i])
1213
-
1214
- def transform(self, ttFont):
1215
- glyphOrder = ttFont.getGlyphOrder()
1216
- glyf = ttFont["glyf"]
1217
- hhea = ttFont["hhea"]
1218
- numberOfHMetrics = hhea.numberOfHMetrics
1219
-
1220
- # check if any of the proportional glyphs has left sidebearings that
1221
- # differ from their xMin bounding box values.
1222
- hasLsbArray = False
1223
- for i in range(numberOfHMetrics):
1224
- glyphName = glyphOrder[i]
1225
- lsb = self.metrics[glyphName][1]
1226
- if lsb != getattr(glyf[glyphName], "xMin", 0):
1227
- hasLsbArray = True
1228
- break
1229
-
1230
- # do the same for the monospaced glyphs (if any) at the end of hmtx table
1231
- hasLeftSideBearingArray = False
1232
- for i in range(numberOfHMetrics, len(glyphOrder)):
1233
- glyphName = glyphOrder[i]
1234
- lsb = self.metrics[glyphName][1]
1235
- if lsb != getattr(glyf[glyphName], "xMin", 0):
1236
- hasLeftSideBearingArray = True
1237
- break
1238
-
1239
- # if we need to encode both sidebearings arrays, then no transformation is
1240
- # applicable, and we must use the untransformed hmtx data
1241
- if hasLsbArray and hasLeftSideBearingArray:
1242
- return
1243
-
1244
- # set bit 0 and 1 when the respective arrays are _not_ present
1245
- flags = 0
1246
- if not hasLsbArray:
1247
- flags |= 1 << 0
1248
- if not hasLeftSideBearingArray:
1249
- flags |= 1 << 1
1250
-
1251
- data = struct.pack(">B", flags)
1252
-
1253
- advanceWidthArray = array.array(
1254
- "H",
1255
- [
1256
- self.metrics[glyphName][0]
1257
- for i, glyphName in enumerate(glyphOrder)
1258
- if i < numberOfHMetrics
1259
- ],
1260
- )
1261
- if sys.byteorder != "big":
1262
- advanceWidthArray.byteswap()
1263
- data += advanceWidthArray.tobytes()
1264
-
1265
- if hasLsbArray:
1266
- lsbArray = array.array(
1267
- "h",
1268
- [
1269
- self.metrics[glyphName][1]
1270
- for i, glyphName in enumerate(glyphOrder)
1271
- if i < numberOfHMetrics
1272
- ],
1273
- )
1274
- if sys.byteorder != "big":
1275
- lsbArray.byteswap()
1276
- data += lsbArray.tobytes()
1277
-
1278
- if hasLeftSideBearingArray:
1279
- leftSideBearingArray = array.array(
1280
- "h",
1281
- [
1282
- self.metrics[glyphOrder[i]][1]
1283
- for i in range(numberOfHMetrics, len(glyphOrder))
1284
- ],
1285
- )
1286
- if sys.byteorder != "big":
1287
- leftSideBearingArray.byteswap()
1288
- data += leftSideBearingArray.tobytes()
1289
-
1290
- return data
1291
-
1292
-
1293
- class WOFF2FlavorData(WOFFFlavorData):
1294
-
1295
- Flavor = "woff2"
1296
-
1297
- def __init__(self, reader=None, data=None, transformedTables=None):
1298
- """Data class that holds the WOFF2 header major/minor version, any
1299
- metadata or private data (as bytes strings), and the set of
1300
- table tags that have transformations applied (if reader is not None),
1301
- or will have once the WOFF2 font is compiled.
1302
-
1303
- Args:
1304
- reader: an SFNTReader (or subclass) object to read flavor data from.
1305
- data: another WOFFFlavorData object to initialise data from.
1306
- transformedTables: set of strings containing table tags to be transformed.
1307
-
1308
- Raises:
1309
- ImportError if the brotli module is not installed.
1310
-
1311
- NOTE: The 'reader' argument, on the one hand, and the 'data' and
1312
- 'transformedTables' arguments, on the other hand, are mutually exclusive.
1313
- """
1314
- if not haveBrotli:
1315
- raise ImportError("No module named brotli")
1316
-
1317
- if reader is not None:
1318
- if data is not None:
1319
- raise TypeError("'reader' and 'data' arguments are mutually exclusive")
1320
- if transformedTables is not None:
1321
- raise TypeError(
1322
- "'reader' and 'transformedTables' arguments are mutually exclusive"
1323
- )
1324
-
1325
- if transformedTables is not None and (
1326
- "glyf" in transformedTables
1327
- and "loca" not in transformedTables
1328
- or "loca" in transformedTables
1329
- and "glyf" not in transformedTables
1330
- ):
1331
- raise ValueError("'glyf' and 'loca' must be transformed (or not) together")
1332
- super(WOFF2FlavorData, self).__init__(reader=reader)
1333
- if reader:
1334
- transformedTables = [
1335
- tag for tag, entry in reader.tables.items() if entry.transformed
1336
- ]
1337
- elif data:
1338
- self.majorVersion = data.majorVersion
1339
- self.majorVersion = data.minorVersion
1340
- self.metaData = data.metaData
1341
- self.privData = data.privData
1342
- if transformedTables is None and hasattr(data, "transformedTables"):
1343
- transformedTables = data.transformedTables
1344
-
1345
- if transformedTables is None:
1346
- transformedTables = woff2TransformedTableTags
1347
-
1348
- self.transformedTables = set(transformedTables)
1349
-
1350
- def _decompress(self, rawData):
1351
- return brotli.decompress(rawData)
1352
-
1353
-
1354
- def unpackBase128(data):
1355
- r"""Read one to five bytes from UIntBase128-encoded input string, and return
1356
- a tuple containing the decoded integer plus any leftover data.
1357
-
1358
- >>> unpackBase128(b'\x3f\x00\x00') == (63, b"\x00\x00")
1359
- True
1360
- >>> unpackBase128(b'\x8f\xff\xff\xff\x7f')[0] == 4294967295
1361
- True
1362
- >>> unpackBase128(b'\x80\x80\x3f') # doctest: +IGNORE_EXCEPTION_DETAIL
1363
- Traceback (most recent call last):
1364
- File "<stdin>", line 1, in ?
1365
- TTLibError: UIntBase128 value must not start with leading zeros
1366
- >>> unpackBase128(b'\x8f\xff\xff\xff\xff\x7f')[0] # doctest: +IGNORE_EXCEPTION_DETAIL
1367
- Traceback (most recent call last):
1368
- File "<stdin>", line 1, in ?
1369
- TTLibError: UIntBase128-encoded sequence is longer than 5 bytes
1370
- >>> unpackBase128(b'\x90\x80\x80\x80\x00')[0] # doctest: +IGNORE_EXCEPTION_DETAIL
1371
- Traceback (most recent call last):
1372
- File "<stdin>", line 1, in ?
1373
- TTLibError: UIntBase128 value exceeds 2**32-1
1374
- """
1375
- if len(data) == 0:
1376
- raise TTLibError("not enough data to unpack UIntBase128")
1377
- result = 0
1378
- if byteord(data[0]) == 0x80:
1379
- # font must be rejected if UIntBase128 value starts with 0x80
1380
- raise TTLibError("UIntBase128 value must not start with leading zeros")
1381
- for i in range(woff2Base128MaxSize):
1382
- if len(data) == 0:
1383
- raise TTLibError("not enough data to unpack UIntBase128")
1384
- code = byteord(data[0])
1385
- data = data[1:]
1386
- # if any of the top seven bits are set then we're about to overflow
1387
- if result & 0xFE000000:
1388
- raise TTLibError("UIntBase128 value exceeds 2**32-1")
1389
- # set current value = old value times 128 bitwise-or (byte bitwise-and 127)
1390
- result = (result << 7) | (code & 0x7F)
1391
- # repeat until the most significant bit of byte is false
1392
- if (code & 0x80) == 0:
1393
- # return result plus left over data
1394
- return result, data
1395
- # make sure not to exceed the size bound
1396
- raise TTLibError("UIntBase128-encoded sequence is longer than 5 bytes")
1397
-
1398
-
1399
- def base128Size(n):
1400
- """Return the length in bytes of a UIntBase128-encoded sequence with value n.
1401
-
1402
- >>> base128Size(0)
1403
- 1
1404
- >>> base128Size(24567)
1405
- 3
1406
- >>> base128Size(2**32-1)
1407
- 5
1408
- """
1409
- assert n >= 0
1410
- size = 1
1411
- while n >= 128:
1412
- size += 1
1413
- n >>= 7
1414
- return size
1415
-
1416
-
1417
- def packBase128(n):
1418
- r"""Encode unsigned integer in range 0 to 2**32-1 (inclusive) to a string of
1419
- bytes using UIntBase128 variable-length encoding. Produce the shortest possible
1420
- encoding.
1421
-
1422
- >>> packBase128(63) == b"\x3f"
1423
- True
1424
- >>> packBase128(2**32-1) == b'\x8f\xff\xff\xff\x7f'
1425
- True
1426
- """
1427
- if n < 0 or n >= 2**32:
1428
- raise TTLibError("UIntBase128 format requires 0 <= integer <= 2**32-1")
1429
- data = b""
1430
- size = base128Size(n)
1431
- for i in range(size):
1432
- b = (n >> (7 * (size - i - 1))) & 0x7F
1433
- if i < size - 1:
1434
- b |= 0x80
1435
- data += struct.pack("B", b)
1436
- return data
1437
-
1438
-
1439
- def unpack255UShort(data):
1440
- """Read one to three bytes from 255UInt16-encoded input string, and return a
1441
- tuple containing the decoded integer plus any leftover data.
1442
-
1443
- >>> unpack255UShort(bytechr(252))[0]
1444
- 252
1445
-
1446
- Note that some numbers (e.g. 506) can have multiple encodings:
1447
- >>> unpack255UShort(struct.pack("BB", 254, 0))[0]
1448
- 506
1449
- >>> unpack255UShort(struct.pack("BB", 255, 253))[0]
1450
- 506
1451
- >>> unpack255UShort(struct.pack("BBB", 253, 1, 250))[0]
1452
- 506
1453
- """
1454
- code = byteord(data[:1])
1455
- data = data[1:]
1456
- if code == 253:
1457
- # read two more bytes as an unsigned short
1458
- if len(data) < 2:
1459
- raise TTLibError("not enough data to unpack 255UInt16")
1460
- (result,) = struct.unpack(">H", data[:2])
1461
- data = data[2:]
1462
- elif code == 254:
1463
- # read another byte, plus 253 * 2
1464
- if len(data) == 0:
1465
- raise TTLibError("not enough data to unpack 255UInt16")
1466
- result = byteord(data[:1])
1467
- result += 506
1468
- data = data[1:]
1469
- elif code == 255:
1470
- # read another byte, plus 253
1471
- if len(data) == 0:
1472
- raise TTLibError("not enough data to unpack 255UInt16")
1473
- result = byteord(data[:1])
1474
- result += 253
1475
- data = data[1:]
1476
- else:
1477
- # leave as is if lower than 253
1478
- result = code
1479
- # return result plus left over data
1480
- return result, data
1481
-
1482
-
1483
- def pack255UShort(value):
1484
- r"""Encode unsigned integer in range 0 to 65535 (inclusive) to a bytestring
1485
- using 255UInt16 variable-length encoding.
1486
-
1487
- >>> pack255UShort(252) == b'\xfc'
1488
- True
1489
- >>> pack255UShort(506) == b'\xfe\x00'
1490
- True
1491
- >>> pack255UShort(762) == b'\xfd\x02\xfa'
1492
- True
1493
- """
1494
- if value < 0 or value > 0xFFFF:
1495
- raise TTLibError("255UInt16 format requires 0 <= integer <= 65535")
1496
- if value < 253:
1497
- return struct.pack(">B", value)
1498
- elif value < 506:
1499
- return struct.pack(">BB", 255, value - 253)
1500
- elif value < 762:
1501
- return struct.pack(">BB", 254, value - 506)
1502
- else:
1503
- return struct.pack(">BH", 253, value)
1504
-
1505
-
1506
- def compress(input_file, output_file, transform_tables=None):
1507
- """Compress OpenType font to WOFF2.
1508
-
1509
- Args:
1510
- input_file: a file path, file or file-like object (open in binary mode)
1511
- containing an OpenType font (either CFF- or TrueType-flavored).
1512
- output_file: a file path, file or file-like object where to save the
1513
- compressed WOFF2 font.
1514
- transform_tables: Optional[Iterable[str]]: a set of table tags for which
1515
- to enable preprocessing transformations. By default, only 'glyf'
1516
- and 'loca' tables are transformed. An empty set means disable all
1517
- transformations.
1518
- """
1519
- log.info("Processing %s => %s" % (input_file, output_file))
1520
-
1521
- font = TTFont(input_file, recalcBBoxes=False, recalcTimestamp=False)
1522
- font.flavor = "woff2"
1523
-
1524
- if transform_tables is not None:
1525
- font.flavorData = WOFF2FlavorData(
1526
- data=font.flavorData, transformedTables=transform_tables
1527
- )
1528
-
1529
- font.save(output_file, reorderTables=False)
1530
-
1531
-
1532
- def decompress(input_file, output_file):
1533
- """Decompress WOFF2 font to OpenType font.
1534
-
1535
- Args:
1536
- input_file: a file path, file or file-like object (open in binary mode)
1537
- containing a compressed WOFF2 font.
1538
- output_file: a file path, file or file-like object where to save the
1539
- decompressed OpenType font.
1540
- """
1541
- log.info("Processing %s => %s" % (input_file, output_file))
1542
-
1543
- font = TTFont(input_file, recalcBBoxes=False, recalcTimestamp=False)
1544
- font.flavor = None
1545
- font.flavorData = None
1546
- font.save(output_file, reorderTables=True)
1547
-
1548
-
1549
- def main(args=None):
1550
- """Compress and decompress WOFF2 fonts"""
1551
- import argparse
1552
- from fontTools import configLogger
1553
- from fontTools.ttx import makeOutputFileName
1554
-
1555
- class _HelpAction(argparse._HelpAction):
1556
- def __call__(self, parser, namespace, values, option_string=None):
1557
- subparsers_actions = [
1558
- action
1559
- for action in parser._actions
1560
- if isinstance(action, argparse._SubParsersAction)
1561
- ]
1562
- for subparsers_action in subparsers_actions:
1563
- for choice, subparser in subparsers_action.choices.items():
1564
- print(subparser.format_help())
1565
- parser.exit()
1566
-
1567
- class _NoGlyfTransformAction(argparse.Action):
1568
- def __call__(self, parser, namespace, values, option_string=None):
1569
- namespace.transform_tables.difference_update({"glyf", "loca"})
1570
-
1571
- class _HmtxTransformAction(argparse.Action):
1572
- def __call__(self, parser, namespace, values, option_string=None):
1573
- namespace.transform_tables.add("hmtx")
1574
-
1575
- parser = argparse.ArgumentParser(
1576
- prog="fonttools ttLib.woff2", description=main.__doc__, add_help=False
1577
- )
1578
-
1579
- parser.add_argument(
1580
- "-h", "--help", action=_HelpAction, help="show this help message and exit"
1581
- )
1582
-
1583
- parser_group = parser.add_subparsers(title="sub-commands")
1584
- parser_compress = parser_group.add_parser(
1585
- "compress", description="Compress a TTF or OTF font to WOFF2"
1586
- )
1587
- parser_decompress = parser_group.add_parser(
1588
- "decompress", description="Decompress a WOFF2 font to OTF"
1589
- )
1590
-
1591
- for subparser in (parser_compress, parser_decompress):
1592
- group = subparser.add_mutually_exclusive_group(required=False)
1593
- group.add_argument(
1594
- "-v",
1595
- "--verbose",
1596
- action="store_true",
1597
- help="print more messages to console",
1598
- )
1599
- group.add_argument(
1600
- "-q",
1601
- "--quiet",
1602
- action="store_true",
1603
- help="do not print messages to console",
1604
- )
1605
-
1606
- parser_compress.add_argument(
1607
- "input_file",
1608
- metavar="INPUT",
1609
- help="the input OpenType font (.ttf or .otf)",
1610
- )
1611
- parser_decompress.add_argument(
1612
- "input_file",
1613
- metavar="INPUT",
1614
- help="the input WOFF2 font",
1615
- )
1616
-
1617
- parser_compress.add_argument(
1618
- "-o",
1619
- "--output-file",
1620
- metavar="OUTPUT",
1621
- help="the output WOFF2 font",
1622
- )
1623
- parser_decompress.add_argument(
1624
- "-o",
1625
- "--output-file",
1626
- metavar="OUTPUT",
1627
- help="the output OpenType font",
1628
- )
1629
-
1630
- transform_group = parser_compress.add_argument_group()
1631
- transform_group.add_argument(
1632
- "--no-glyf-transform",
1633
- dest="transform_tables",
1634
- nargs=0,
1635
- action=_NoGlyfTransformAction,
1636
- help="Do not transform glyf (and loca) tables",
1637
- )
1638
- transform_group.add_argument(
1639
- "--hmtx-transform",
1640
- dest="transform_tables",
1641
- nargs=0,
1642
- action=_HmtxTransformAction,
1643
- help="Enable optional transformation for 'hmtx' table",
1644
- )
1645
-
1646
- parser_compress.set_defaults(
1647
- subcommand=compress,
1648
- transform_tables={"glyf", "loca"},
1649
- )
1650
- parser_decompress.set_defaults(subcommand=decompress)
1651
-
1652
- options = vars(parser.parse_args(args))
1653
-
1654
- subcommand = options.pop("subcommand", None)
1655
- if not subcommand:
1656
- parser.print_help()
1657
- return
1658
-
1659
- quiet = options.pop("quiet")
1660
- verbose = options.pop("verbose")
1661
- configLogger(
1662
- level=("ERROR" if quiet else "DEBUG" if verbose else "INFO"),
1663
- )
1664
-
1665
- if not options["output_file"]:
1666
- if subcommand is compress:
1667
- extension = ".woff2"
1668
- elif subcommand is decompress:
1669
- # choose .ttf/.otf file extension depending on sfntVersion
1670
- with open(options["input_file"], "rb") as f:
1671
- f.seek(4) # skip 'wOF2' signature
1672
- sfntVersion = f.read(4)
1673
- assert len(sfntVersion) == 4, "not enough data"
1674
- extension = ".otf" if sfntVersion == b"OTTO" else ".ttf"
1675
- else:
1676
- raise AssertionError(subcommand)
1677
- options["output_file"] = makeOutputFileName(
1678
- options["input_file"], outputDir=None, extension=extension
1679
- )
1680
-
1681
- try:
1682
- subcommand(**options)
1683
- except TTLibError as e:
1684
- parser.error(e)
1685
-
1686
-
1687
- if __name__ == "__main__":
1688
- sys.exit(main())
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/templates/frontend/assets/ModifyUpload-d8fc50ab.js DELETED
@@ -1,2 +0,0 @@
1
- import{S as g,e as w,s as _,J as p,K as o,L as i,p as k,M as m,n as u,A as b,N as z,O as B,k as $,U as v,o as C,z as d,u as I,v as h,y as E,x as M,B as j}from"./index-3370be2a.js";import"./Button-89624748.js";import{I as L}from"./IconButton-abe5ede9.js";import"./ModifyUpload.svelte_svelte_type_style_lang-d2acacf0.js";function S(a){let e,s,t,l;return{c(){e=p("svg"),s=p("g"),t=p("path"),l=p("path"),o(t,"d","M18,6L6.087,17.913"),i(t,"fill","none"),i(t,"fill-rule","nonzero"),i(t,"stroke-width","2px"),o(s,"transform","matrix(1.14096,-0.140958,-0.140958,1.14096,-0.0559523,0.0559523)"),o(l,"d","M4.364,4.364L19.636,19.636"),i(l,"fill","none"),i(l,"fill-rule","nonzero"),i(l,"stroke-width","2px"),o(e,"width","100%"),o(e,"height","100%"),o(e,"viewBox","0 0 24 24"),o(e,"version","1.1"),o(e,"xmlns","http://www.w3.org/2000/svg"),o(e,"xmlns:xlink","http://www.w3.org/1999/xlink"),o(e,"xml:space","preserve"),o(e,"stroke","currentColor"),i(e,"fill-rule","evenodd"),i(e,"clip-rule","evenodd"),i(e,"stroke-linecap","round"),i(e,"stroke-linejoin","round")},m(n,r){k(n,e,r),m(e,s),m(s,t),m(e,l)},p:u,i:u,o:u,d(n){n&&b(e)}}}class U extends g{constructor(e){super(),w(this,e,null,S,_,{})}}function q(a){let e,s;return{c(){e=p("svg"),s=p("path"),o(s,"d","M17 3a2.828 2.828 0 1 1 4 4L7.5 20.5 2 22l1.5-5.5L17 3z"),o(e,"xmlns","http://www.w3.org/2000/svg"),o(e,"width","100%"),o(e,"height","100%"),o(e,"viewBox","0 0 24 24"),o(e,"fill","none"),o(e,"stroke","currentColor"),o(e,"stroke-width","1.5"),o(e,"stroke-linecap","round"),o(e,"stroke-linejoin","round"),o(e,"class","feather feather-edit-2")},m(t,l){k(t,e,l),m(e,s)},p:u,i:u,o:u,d(t){t&&b(e)}}}class y extends g{constructor(e){super(),w(this,e,null,q,_,{})}}function x(a){let e,s;return e=new L({props:{Icon:y,label:"Edit"}}),e.$on("click",a[3]),{c(){$(e.$$.fragment)},m(t,l){C(e,t,l),s=!0},p:u,i(t){s||(d(e.$$.fragment,t),s=!0)},o(t){h(e.$$.fragment,t),s=!1},d(t){M(e,t)}}}function A(a){let e,s,t,l,n=a[0]&&x(a);return t=new L({props:{Icon:U,label:"Clear"}}),t.$on("click",a[4]),{c(){e=z("div"),n&&n.c(),s=B(),$(t.$$.fragment),o(e,"class","svelte-19sk1im"),v(e,"not-absolute",!a[1]),i(e,"position",a[1]?"absolute":"static")},m(r,c){k(r,e,c),n&&n.m(e,null),m(e,s),C(t,e,null),l=!0},p(r,[c]){r[0]?n?(n.p(r,c),c&1&&d(n,1)):(n=x(r),n.c(),d(n,1),n.m(e,s)):n&&(I(),h(n,1,1,()=>{n=null}),E()),(!l||c&2)&&v(e,"not-absolute",!r[1]),c&2&&i(e,"position",r[1]?"absolute":"static")},i(r){l||(d(n),d(t.$$.fragment,r),l=!0)},o(r){h(n),h(t.$$.fragment,r),l=!1},d(r){r&&b(e),n&&n.d(),M(t)}}}function D(a,e,s){let{editable:t=!1}=e,{absolute:l=!0}=e;const n=j(),r=()=>n("edit"),c=f=>{n("clear"),f.stopPropagation()};return a.$$set=f=>{"editable"in f&&s(0,t=f.editable),"absolute"in f&&s(1,l=f.absolute)},[t,l,n,r,c]}class P extends g{constructor(e){super(),w(this,e,D,A,_,{editable:0,absolute:1})}}export{U as C,P as M};
2
- //# sourceMappingURL=ModifyUpload-d8fc50ab.js.map
 
 
 
spaces/DaleChen/AutoGPT/run_continuous.sh DELETED
@@ -1,3 +0,0 @@
1
- #!/bin/bash
2
-
3
- ./run.sh --continuous $@
 
 
 
 
spaces/DeepLabCut/MegaDetector_DeepLabCut/app.py DELETED
@@ -1,179 +0,0 @@
1
- # Built from https://huggingface.co/spaces/hlydecker/MegaDetector_v5
2
- # Built from https://huggingface.co/spaces/sofmi/MegaDetector_DLClive/blob/main/app.py
3
- # Built from https://huggingface.co/spaces/Neslihan/megadetector_dlcmodels/blob/main/app.py
4
-
5
- import os
6
- import yaml
7
- import numpy as np
8
- from matplotlib import cm
9
- import gradio as gr
10
-
11
- from PIL import Image, ImageColor, ImageFont, ImageDraw
12
- # check git lfs pull!!
13
- from DLC_models.download_utils import DownloadModel
14
- from dlclive import DLCLive, Processor
15
-
16
- from viz_utils import save_results_as_json, draw_keypoints_on_image, draw_bbox_w_text, save_results_only_dlc
17
- from detection_utils import predict_md, crop_animal_detections, predict_dlc
18
- from ui_utils import gradio_inputs_for_MD_DLC, gradio_outputs_for_MD_DLC, gradio_description_and_examples
19
-
20
- # import pdb
21
- #########################################
22
- # Input params - Global vars
23
-
24
- MD_models_dict = {'md_v5a': "MD_models/md_v5a.0.0.pt", #
25
- 'md_v5b': "MD_models/md_v5b.0.0.pt"}
26
-
27
- # DLC models target dirs
28
- DLC_models_dict = {#'full_cat': "DLC_models/DLC_Cat/",
29
- #'full_dog': "DLC_models/DLC_Dog/",
30
- 'full_human': "DLC_models/DLC_human_dancing/",
31
- 'full_macaque': 'DLC_models/DLC_monkey/',
32
- 'primate_face': "DLC_models/DLC_FacialLandmarks/"}
33
-
34
-
35
- # FONTS = {'amiko': "fonts/Amiko-Regular.ttf",
36
- # 'nature': "fonts/LoveNature.otf",
37
- # 'painter':"fonts/PainterDecorator.otf",
38
- # 'animals': "fonts/UncialAnimals.ttf",
39
- # 'zen': "fonts/ZEN.TTF"}
40
- #####################################################
41
- def predict_pipeline(img_input,
42
- mega_model_input,
43
- dlc_model_input_str,
44
- flag_dlc_only,
45
- flag_show_str_labels,
46
- bbox_likelihood_th,
47
- kpts_likelihood_th,
48
- font_style,
49
- font_size,
50
- keypt_color,
51
- marker_size,
52
- ):
53
-
54
- if not flag_dlc_only:
55
- ############################################################
56
- # ### Run Megadetector
57
- md_results = predict_md(img_input,
58
- MD_models_dict[mega_model_input], #mega_model_input,
59
- size=640) #Image.fromarray(results.imgs[0])
60
-
61
- ################################################################
62
- # Obtain animal crops for bboxes with confidence above th
63
- list_crops = crop_animal_detections(img_input,
64
- md_results,
65
- bbox_likelihood_th)
66
-
67
- ############################################################
68
- ## Get DLC model and label map
69
-
70
- # If model is found: do not download (previous execution is likely within same day)
71
- # TODO: can we ask the user whether to reload dlc model if a directory is found?
72
- if os.path.isdir(DLC_models_dict[dlc_model_input_str]) and \
73
- len(os.listdir(DLC_models_dict[dlc_model_input_str])) > 0:
74
- path_to_DLCmodel = DLC_models_dict[dlc_model_input_str]
75
- else:
76
- path_to_DLCmodel = DownloadModel(dlc_model_input_str,
77
- DLC_models_dict[dlc_model_input_str])
78
-
79
- # extract map label ids to strings
80
- pose_cfg_path = os.path.join(DLC_models_dict[dlc_model_input_str],
81
- 'pose_cfg.yaml')
82
- with open(pose_cfg_path, "r") as stream:
83
- pose_cfg_dict = yaml.safe_load(stream)
84
- map_label_id_to_str = dict([(k,v) for k,v in zip([el[0] for el in pose_cfg_dict['all_joints']], # pose_cfg_dict['all_joints'] is a list of one-element lists,
85
- pose_cfg_dict['all_joints_names'])])
86
-
87
- ##############################################################
88
- # Run DLC and visualise results
89
- dlc_proc = Processor()
90
-
91
- # if required: ignore MD crops and run DLC on full image [mostly for testing]
92
- if flag_dlc_only:
93
- # compute kpts on input img
94
- list_kpts_per_crop = predict_dlc([np.asarray(img_input)],
95
- kpts_likelihood_th,
96
- path_to_DLCmodel,
97
- dlc_proc)
98
- # draw kpts on input img #fix!
99
- draw_keypoints_on_image(img_input,
100
- list_kpts_per_crop[0], # a numpy array with shape [num_keypoints, 2].
101
- map_label_id_to_str,
102
- flag_show_str_labels,
103
- use_normalized_coordinates=False,
104
- font_style=font_style,
105
- font_size=font_size,
106
- keypt_color=keypt_color,
107
- marker_size=marker_size)
108
-
109
- donw_file = save_results_only_dlc(list_kpts_per_crop[0], map_label_id_to_str,dlc_model_input_str)
110
-
111
- return img_input, donw_file
112
-
113
- else:
114
- # Compute kpts for each crop
115
- list_kpts_per_crop = predict_dlc(list_crops,
116
- kpts_likelihood_th,
117
- path_to_DLCmodel,
118
- dlc_proc)
119
-
120
- # resize input image to match megadetector output
121
- img_background = img_input.resize((md_results.ims[0].shape[1],
122
- md_results.ims[0].shape[0]))
123
-
124
- # draw keypoints on each crop and paste to background img
125
- for ic, (np_crop, kpts_crop) in enumerate(zip(list_crops,
126
- list_kpts_per_crop)):
127
-
128
- img_crop = Image.fromarray(np_crop)
129
-
130
- # Draw keypts on crop
131
- draw_keypoints_on_image(img_crop,
132
- kpts_crop, # a numpy array with shape [num_keypoints, 2].
133
- map_label_id_to_str,
134
- flag_show_str_labels,
135
- use_normalized_coordinates=False, # if True, then I should use md_results.xyxyn for list_kpts_crop
136
- font_style=font_style,
137
- font_size=font_size,
138
- keypt_color=keypt_color,
139
- marker_size=marker_size)
140
-
141
- # Paste crop in original image
142
- img_background.paste(img_crop,
143
- box = tuple([int(t) for t in md_results.xyxy[0][ic,:2]]))
144
-
145
- # Plot bbox
146
- bb_per_animal = md_results.xyxy[0].tolist()[ic]
147
- pred = md_results.xyxy[0].tolist()[ic][4]
148
- if bbox_likelihood_th < pred:
149
- draw_bbox_w_text(img_background,
150
- bb_per_animal,
151
- font_style=font_style,
152
- font_size=font_size) # TODO: add selectable color for bbox?
153
-
154
-
155
- # Save detection results as json
156
- download_file = save_results_as_json(md_results,list_kpts_per_crop,map_label_id_to_str, bbox_likelihood_th,dlc_model_input_str,mega_model_input)
157
-
158
- return img_background, download_file
159
-
160
- #########################################################
161
- # Define user interface and launch
162
- inputs = gradio_inputs_for_MD_DLC(list(MD_models_dict.keys()),
163
- list(DLC_models_dict.keys()))
164
- outputs = gradio_outputs_for_MD_DLC()
165
- [gr_title,
166
- gr_description,
167
- examples] = gradio_description_and_examples()
168
-
169
- # launch
170
- demo = gr.Interface(predict_pipeline,
171
- inputs=inputs,
172
- outputs=outputs,
173
- title=gr_title,
174
- description=gr_description,
175
- examples=examples,
176
- theme="huggingface")
177
-
178
- demo.launch(enable_queue=True, share=True)
179
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/DhanushPrabhuS/pothole_yolov8_nano/README.md DELETED
@@ -1,13 +0,0 @@
1
- ---
2
- title: Pothole Yolov8 Nano
3
- emoji: 🌖
4
- colorFrom: pink
5
- colorTo: blue
6
- sdk: gradio
7
- sdk_version: 3.16.1
8
- app_file: app.py
9
- pinned: false
10
- license: mit
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/EuroPython2022/mmocr-demo/configs/_base_/recog_pipelines/master_pipeline.py DELETED
@@ -1,42 +0,0 @@
1
- img_norm_cfg = dict(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
2
- train_pipeline = [
3
- dict(type='LoadImageFromFile'),
4
- dict(
5
- type='ResizeOCR',
6
- height=48,
7
- min_width=48,
8
- max_width=160,
9
- keep_aspect_ratio=True),
10
- dict(type='ToTensorOCR'),
11
- dict(type='NormalizeOCR', **img_norm_cfg),
12
- dict(
13
- type='Collect',
14
- keys=['img'],
15
- meta_keys=[
16
- 'filename', 'ori_shape', 'img_shape', 'text', 'valid_ratio',
17
- 'resize_shape'
18
- ]),
19
- ]
20
- test_pipeline = [
21
- dict(type='LoadImageFromFile'),
22
- dict(
23
- type='MultiRotateAugOCR',
24
- rotate_degrees=[0, 90, 270],
25
- transforms=[
26
- dict(
27
- type='ResizeOCR',
28
- height=48,
29
- min_width=48,
30
- max_width=160,
31
- keep_aspect_ratio=True),
32
- dict(type='ToTensorOCR'),
33
- dict(type='NormalizeOCR', **img_norm_cfg),
34
- dict(
35
- type='Collect',
36
- keys=['img'],
37
- meta_keys=[
38
- 'filename', 'ori_shape', 'img_shape', 'valid_ratio',
39
- 'img_norm_cfg', 'ori_filename', 'resize_shape'
40
- ]),
41
- ])
42
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/FL33TW00D/whisper-turbo/_next/static/chunks/pages/_error-84d94505c9f773f4.js DELETED
@@ -1 +0,0 @@
1
- (self.webpackChunk_N_E=self.webpackChunk_N_E||[]).push([[820],{6354:function(n,_,u){(window.__NEXT_P=window.__NEXT_P||[]).push(["/_error",function(){return u(9549)}])}},function(n){n.O(0,[774,888,179],function(){return n(n.s=6354)}),_N_E=n.O()}]);
 
 
spaces/Farazquraishi/pendora/app.py DELETED
@@ -1,203 +0,0 @@
1
- import gradio
2
- from huggingface_hub import Repository
3
- import os
4
-
5
- from utils.utils import norm_crop, estimate_norm, inverse_estimate_norm, transform_landmark_points, get_lm
6
- from networks.layers import AdaIN, AdaptiveAttention
7
- from tensorflow_addons.layers import InstanceNormalization
8
- import numpy as np
9
- import cv2
10
- from scipy.ndimage import gaussian_filter
11
-
12
- from tensorflow.keras.models import load_model
13
- from options.swap_options import SwapOptions
14
-
15
- # .
16
- # token = os.environ['model_fetch']
17
-
18
- opt = SwapOptions().parse()
19
- token = os.environ['token']
20
-
21
- retina_repo = Repository(local_dir="retina_models", clone_from="felixrosberg/RetinaFace")
22
-
23
- from retinaface.models import *
24
-
25
- RetinaFace = load_model("retina_models/RetinaFace-Res50.h5",
26
- custom_objects={"FPN": FPN,
27
- "SSH": SSH,
28
- "BboxHead": BboxHead,
29
- "LandmarkHead": LandmarkHead,
30
- "ClassHead": ClassHead}
31
- )
32
-
33
- arc_repo = Repository(local_dir="arcface_model", clone_from="felixrosberg/ArcFace")
34
- ArcFace = load_model("arcface_model/ArcFace-Res50.h5")
35
- ArcFaceE = load_model("arcface_model/ArcFacePerceptual-Res50.h5")
36
-
37
- g_repo = Repository(local_dir="g_model_c_hq", clone_from="felixrosberg/FaceDancer",use_auth_token=token)
38
- G = load_model("g_model_c_hq/FaceDancer_config_c_HQ.h5", custom_objects={"AdaIN": AdaIN,
39
- "AdaptiveAttention": AdaptiveAttention,
40
- "InstanceNormalization": InstanceNormalization})
41
-
42
- # r_repo = Repository(local_dir="reconstruction_attack", clone_from="felixrosberg/reconstruction_attack",
43
- # private=True, use_auth_token=token)
44
- # R = load_model("reconstruction_attack/reconstructor_42.h5", custom_objects={"AdaIN": AdaIN,
45
- # "AdaptiveAttention": AdaptiveAttention,
46
- # "InstanceNormalization": InstanceNormalization})
47
-
48
- # permuter_repo = Repository(local_dir="identity_permuter", clone_from="felixrosberg/identitypermuter",
49
- # private=True, use_auth_token=token, git_user="felixrosberg")
50
-
51
- # from identity_permuter.id_permuter import identity_permuter
52
-
53
- # IDP = identity_permuter(emb_size=32, min_arg=False)
54
- # IDP.load_weights("identity_permuter/id_permuter.h5")
55
-
56
- blend_mask_base = np.zeros(shape=(256, 256, 1))
57
- blend_mask_base[80:244, 32:224] = 1
58
- blend_mask_base = gaussian_filter(blend_mask_base, sigma=7)
59
-
60
-
61
- def run_inference(target, source, slider, adv_slider, settings):
62
- try:
63
- source = np.array(source)
64
- target = np.array(target)
65
-
66
- # Prepare to load video
67
- if "anonymize" not in settings:
68
- source_a = RetinaFace(np.expand_dims(source, axis=0)).numpy()[0]
69
- source_h, source_w, _ = source.shape
70
- source_lm = get_lm(source_a, source_w, source_h)
71
- source_aligned = norm_crop(source, source_lm, image_size=256)
72
- source_z = ArcFace.predict(np.expand_dims(tf.image.resize(source_aligned, [112, 112]) / 255.0, axis=0))
73
- else:
74
- source_z = None
75
-
76
- # read frame
77
- im = target
78
- im_h, im_w, _ = im.shape
79
- im_shape = (im_w, im_h)
80
-
81
- detection_scale = im_w // 640 if im_w > 640 else 1
82
-
83
- faces = RetinaFace(np.expand_dims(cv2.resize(im,
84
- (im_w // detection_scale,
85
- im_h // detection_scale)), axis=0)).numpy()
86
-
87
- total_img = im / 255.0
88
- for annotation in faces:
89
- lm_align = np.array([[annotation[4] * im_w, annotation[5] * im_h],
90
- [annotation[6] * im_w, annotation[7] * im_h],
91
- [annotation[8] * im_w, annotation[9] * im_h],
92
- [annotation[10] * im_w, annotation[11] * im_h],
93
- [annotation[12] * im_w, annotation[13] * im_h]],
94
- dtype=np.float32)
95
-
96
- # align the detected face
97
- M, pose_index = estimate_norm(lm_align, 256, "arcface", shrink_factor=1.0)
98
- im_aligned = (cv2.warpAffine(im, M, (256, 256), borderValue=0.0) - 127.5) / 127.5
99
-
100
- if "adversarial defense" in settings:
101
- eps = adv_slider / 200
102
- X = tf.convert_to_tensor(np.expand_dims(im_aligned, axis=0))
103
- with tf.GradientTape() as tape:
104
- tape.watch(X)
105
-
106
- X_z = ArcFaceE(tf.image.resize(X * 0.5 + 0.5, [112, 112]))
107
- output = R([X, X_z])
108
-
109
- loss = tf.reduce_mean(tf.abs(0 - output))
110
-
111
- gradient = tf.sign(tape.gradient(loss, X))
112
-
113
- adv_x = X + eps * gradient
114
- im_aligned = tf.clip_by_value(adv_x, -1, 1)[0]
115
-
116
- if "anonymize" in settings and "reconstruction attack" not in settings:
117
- """source_z = ArcFace.predict(np.expand_dims(tf.image.resize(im_aligned, [112, 112]) / 255.0, axis=0))
118
- anon_ratio = int(512 * (slider / 100))
119
- anon_vector = np.ones(shape=(1, 512))
120
- anon_vector[:, :anon_ratio] = -1
121
- np.random.shuffle(anon_vector)
122
- source_z *= anon_vector"""
123
-
124
- slider_weight = slider / 100
125
-
126
- target_z = ArcFace.predict(np.expand_dims(tf.image.resize(im_aligned, [112, 112]) * 0.5 + 0.5, axis=0))
127
- # source_z = IDP.predict(target_z)
128
-
129
- source_z = slider_weight * source_z + (1 - slider_weight) * target_z
130
-
131
- if "reconstruction attack" in settings:
132
- source_z = ArcFaceE.predict(np.expand_dims(tf.image.resize(im_aligned, [112, 112]) * 0.5 + 0.5, axis=0))
133
-
134
- # face swap
135
- if "reconstruction attack" not in settings:
136
- changed_face_cage = G.predict([np.expand_dims(im_aligned, axis=0),
137
- source_z])
138
- changed_face = changed_face_cage[0] * 0.5 + 0.5
139
-
140
- # get inverse transformation landmarks
141
- transformed_lmk = transform_landmark_points(M, lm_align)
142
-
143
- # warp image back
144
- iM, _ = inverse_estimate_norm(lm_align, transformed_lmk, 256, "arcface", shrink_factor=1.0)
145
- iim_aligned = cv2.warpAffine(changed_face, iM, im_shape, borderValue=0.0)
146
-
147
- # blend swapped face with target image
148
- blend_mask = cv2.warpAffine(blend_mask_base, iM, im_shape, borderValue=0.0)
149
- blend_mask = np.expand_dims(blend_mask, axis=-1)
150
- total_img = (iim_aligned * blend_mask + total_img * (1 - blend_mask))
151
- else:
152
- changed_face_cage = R.predict([np.expand_dims(im_aligned, axis=0),
153
- source_z])
154
- changed_face = changed_face_cage[0] * 0.5 + 0.5
155
-
156
- # get inverse transformation landmarks
157
- transformed_lmk = transform_landmark_points(M, lm_align)
158
-
159
- # warp image back
160
- iM, _ = inverse_estimate_norm(lm_align, transformed_lmk, 256, "arcface", shrink_factor=1.0)
161
- iim_aligned = cv2.warpAffine(changed_face, iM, im_shape, borderValue=0.0)
162
-
163
- # blend swapped face with target image
164
- blend_mask = cv2.warpAffine(blend_mask_base, iM, im_shape, borderValue=0.0)
165
- blend_mask = np.expand_dims(blend_mask, axis=-1)
166
- total_img = (iim_aligned * blend_mask + total_img * (1 - blend_mask))
167
-
168
- if "compare" in settings:
169
- total_img = np.concatenate((im / 255.0, total_img), axis=1)
170
-
171
- total_img = np.clip(total_img, 0, 1)
172
- total_img *= 255.0
173
- total_img = total_img.astype('uint8')
174
-
175
- return total_img
176
- except Exception as e:
177
- print(e)
178
- return None
179
-
180
-
181
- description = "Not Working"
182
- examples = []
183
- article = """
184
- Demo is based of recent research from my Ph.D work. Results expects to be published in the coming months.
185
- """
186
-
187
- iface = gradio.Interface(run_inference,
188
- [gradio.Image(shape=None, type="pil", label='Target'),
189
- gradio.Image(shape=None, type="pil", label='Source'),
190
- gradio.Slider(0, 100, default=100, label="Anonymization ratio (%)"),
191
- gradio.Slider(0, 100, default=100, label="Adversarial defense ratio (%)"),
192
- gradio.CheckboxGroup(["compare",
193
- "anonymize",
194
- "reconstruction attack",
195
- "adversarial defense"],
196
- label='Options')],
197
- "image",
198
- title="Not Working",
199
- description=description,
200
- examples=examples,
201
- article=article,
202
- layout="vertical")
203
- iface.launch()