diff --git a/spaces/0x90e/ESRGAN-MANGA/ESRGAN/block.py b/spaces/0x90e/ESRGAN-MANGA/ESRGAN/block.py deleted file mode 100644 index 0e63bd216c7e244b26e67b66dde7a8542906a953..0000000000000000000000000000000000000000 --- a/spaces/0x90e/ESRGAN-MANGA/ESRGAN/block.py +++ /dev/null @@ -1,261 +0,0 @@ -from collections import OrderedDict -import torch -import torch.nn as nn - -#################### -# Basic blocks -#################### - - -def act(act_type, inplace=True, neg_slope=0.2, n_prelu=1): - # helper selecting activation - # neg_slope: for leakyrelu and init of prelu - # n_prelu: for p_relu num_parameters - act_type = act_type.lower() - if act_type == 'relu': - layer = nn.ReLU(inplace) - elif act_type == 'leakyrelu': - layer = nn.LeakyReLU(neg_slope, inplace) - elif act_type == 'prelu': - layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope) - else: - raise NotImplementedError('activation layer [%s] is not found' % act_type) - return layer - - -def norm(norm_type, nc): - # helper selecting normalization layer - norm_type = norm_type.lower() - if norm_type == 'batch': - layer = nn.BatchNorm2d(nc, affine=True) - elif norm_type == 'instance': - layer = nn.InstanceNorm2d(nc, affine=False) - else: - raise NotImplementedError('normalization layer [%s] is not found' % norm_type) - return layer - - -def pad(pad_type, padding): - # helper selecting padding layer - # if padding is 'zero', do by conv layers - pad_type = pad_type.lower() - if padding == 0: - return None - if pad_type == 'reflect': - layer = nn.ReflectionPad2d(padding) - elif pad_type == 'replicate': - layer = nn.ReplicationPad2d(padding) - else: - raise NotImplementedError('padding layer [%s] is not implemented' % pad_type) - return layer - - -def get_valid_padding(kernel_size, dilation): - kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1) - padding = (kernel_size - 1) // 2 - return padding - - -class ConcatBlock(nn.Module): - # Concat the output of a submodule to its input - def __init__(self, submodule): - super(ConcatBlock, self).__init__() - self.sub = submodule - - def forward(self, x): - output = torch.cat((x, self.sub(x)), dim=1) - return output - - def __repr__(self): - tmpstr = 'Identity .. \n|' - modstr = self.sub.__repr__().replace('\n', '\n|') - tmpstr = tmpstr + modstr - return tmpstr - - -class ShortcutBlock(nn.Module): - #Elementwise sum the output of a submodule to its input - def __init__(self, submodule): - super(ShortcutBlock, self).__init__() - self.sub = submodule - - def forward(self, x): - output = x + self.sub(x) - return output - - def __repr__(self): - tmpstr = 'Identity + \n|' - modstr = self.sub.__repr__().replace('\n', '\n|') - tmpstr = tmpstr + modstr - return tmpstr - - -def sequential(*args): - # Flatten Sequential. It unwraps nn.Sequential. - if len(args) == 1: - if isinstance(args[0], OrderedDict): - raise NotImplementedError('sequential does not support OrderedDict input.') - return args[0] # No sequential is needed. - modules = [] - for module in args: - if isinstance(module, nn.Sequential): - for submodule in module.children(): - modules.append(submodule) - elif isinstance(module, nn.Module): - modules.append(module) - return nn.Sequential(*modules) - - -def conv_block(in_nc, out_nc, kernel_size, stride=1, dilation=1, groups=1, bias=True, - pad_type='zero', norm_type=None, act_type='relu', mode='CNA'): - """ - Conv layer with padding, normalization, activation - mode: CNA --> Conv -> Norm -> Act - NAC --> Norm -> Act --> Conv (Identity Mappings in Deep Residual Networks, ECCV16) - """ - assert mode in ['CNA', 'NAC', 'CNAC'], 'Wong conv mode [%s]' % mode - padding = get_valid_padding(kernel_size, dilation) - p = pad(pad_type, padding) if pad_type and pad_type != 'zero' else None - padding = padding if pad_type == 'zero' else 0 - - c = nn.Conv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, \ - dilation=dilation, bias=bias, groups=groups) - a = act(act_type) if act_type else None - if 'CNA' in mode: - n = norm(norm_type, out_nc) if norm_type else None - return sequential(p, c, n, a) - elif mode == 'NAC': - if norm_type is None and act_type is not None: - a = act(act_type, inplace=False) - # Important! - # input----ReLU(inplace)----Conv--+----output - # |________________________| - # inplace ReLU will modify the input, therefore wrong output - n = norm(norm_type, in_nc) if norm_type else None - return sequential(n, a, p, c) - - -#################### -# Useful blocks -#################### - - -class ResNetBlock(nn.Module): - """ - ResNet Block, 3-3 style - with extra residual scaling used in EDSR - (Enhanced Deep Residual Networks for Single Image Super-Resolution, CVPRW 17) - """ - - def __init__(self, in_nc, mid_nc, out_nc, kernel_size=3, stride=1, dilation=1, groups=1, \ - bias=True, pad_type='zero', norm_type=None, act_type='relu', mode='CNA', res_scale=1): - super(ResNetBlock, self).__init__() - conv0 = conv_block(in_nc, mid_nc, kernel_size, stride, dilation, groups, bias, pad_type, \ - norm_type, act_type, mode) - if mode == 'CNA': - act_type = None - if mode == 'CNAC': # Residual path: |-CNAC-| - act_type = None - norm_type = None - conv1 = conv_block(mid_nc, out_nc, kernel_size, stride, dilation, groups, bias, pad_type, \ - norm_type, act_type, mode) - # if in_nc != out_nc: - # self.project = conv_block(in_nc, out_nc, 1, stride, dilation, 1, bias, pad_type, \ - # None, None) - # print('Need a projecter in ResNetBlock.') - # else: - # self.project = lambda x:x - self.res = sequential(conv0, conv1) - self.res_scale = res_scale - - def forward(self, x): - res = self.res(x).mul(self.res_scale) - return x + res - - -class ResidualDenseBlock_5C(nn.Module): - """ - Residual Dense Block - style: 5 convs - The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18) - """ - - def __init__(self, nc, kernel_size=3, gc=32, stride=1, bias=True, pad_type='zero', \ - norm_type=None, act_type='leakyrelu', mode='CNA'): - super(ResidualDenseBlock_5C, self).__init__() - # gc: growth channel, i.e. intermediate channels - self.conv1 = conv_block(nc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, \ - norm_type=norm_type, act_type=act_type, mode=mode) - self.conv2 = conv_block(nc+gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, \ - norm_type=norm_type, act_type=act_type, mode=mode) - self.conv3 = conv_block(nc+2*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, \ - norm_type=norm_type, act_type=act_type, mode=mode) - self.conv4 = conv_block(nc+3*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, \ - norm_type=norm_type, act_type=act_type, mode=mode) - if mode == 'CNA': - last_act = None - else: - last_act = act_type - self.conv5 = conv_block(nc+4*gc, nc, 3, stride, bias=bias, pad_type=pad_type, \ - norm_type=norm_type, act_type=last_act, mode=mode) - - def forward(self, x): - x1 = self.conv1(x) - x2 = self.conv2(torch.cat((x, x1), 1)) - x3 = self.conv3(torch.cat((x, x1, x2), 1)) - x4 = self.conv4(torch.cat((x, x1, x2, x3), 1)) - x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1)) - return x5.mul(0.2) + x - - -class RRDB(nn.Module): - """ - Residual in Residual Dense Block - """ - - def __init__(self, nc, kernel_size=3, gc=32, stride=1, bias=True, pad_type='zero', \ - norm_type=None, act_type='leakyrelu', mode='CNA'): - super(RRDB, self).__init__() - self.RDB1 = ResidualDenseBlock_5C(nc, kernel_size, gc, stride, bias, pad_type, \ - norm_type, act_type, mode) - self.RDB2 = ResidualDenseBlock_5C(nc, kernel_size, gc, stride, bias, pad_type, \ - norm_type, act_type, mode) - self.RDB3 = ResidualDenseBlock_5C(nc, kernel_size, gc, stride, bias, pad_type, \ - norm_type, act_type, mode) - - def forward(self, x): - out = self.RDB1(x) - out = self.RDB2(out) - out = self.RDB3(out) - return out.mul(0.2) + x - - -#################### -# Upsampler -#################### - - -def pixelshuffle_block(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True, - pad_type='zero', norm_type=None, act_type='relu'): - """ - Pixel shuffle layer - (Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional - Neural Network, CVPR17) - """ - conv = conv_block(in_nc, out_nc * (upscale_factor ** 2), kernel_size, stride, bias=bias, - pad_type=pad_type, norm_type=None, act_type=None) - pixel_shuffle = nn.PixelShuffle(upscale_factor) - - n = norm(norm_type, out_nc) if norm_type else None - a = act(act_type) if act_type else None - return sequential(conv, pixel_shuffle, n, a) - - -def upconv_blcok(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True, - pad_type='zero', norm_type=None, act_type='relu', mode='nearest'): - # Up conv - # described in https://distill.pub/2016/deconv-checkerboard/ - upsample = nn.Upsample(scale_factor=upscale_factor, mode=mode) - conv = conv_block(in_nc, out_nc, kernel_size, stride, bias=bias, - pad_type=pad_type, norm_type=norm_type, act_type=act_type) - return sequential(upsample, conv) diff --git a/spaces/101-5/gpt4free/g4f/.v1/gpt4free/usesless/account_creation.py b/spaces/101-5/gpt4free/g4f/.v1/gpt4free/usesless/account_creation.py deleted file mode 100644 index 0581945372f5c08918e6cf5df2a528f52c93cc00..0000000000000000000000000000000000000000 --- a/spaces/101-5/gpt4free/g4f/.v1/gpt4free/usesless/account_creation.py +++ /dev/null @@ -1,3 +0,0 @@ -import usesless - -usesless.Account.create(logging=True) diff --git a/spaces/14-26AA/sovits_aishell3/app.py b/spaces/14-26AA/sovits_aishell3/app.py deleted file mode 100644 index 7f0c1e2ead4d208c0dbaa9640c11b1c59ffa9b4d..0000000000000000000000000000000000000000 --- a/spaces/14-26AA/sovits_aishell3/app.py +++ /dev/null @@ -1,39 +0,0 @@ -import gradio as gr -from inference import infer -import numpy as np - -spkdict=np.arange(175).tolist() -spkdict=['speaker'+str(spk) for spk in spkdict] - -app = gr.Blocks() -with app: - with gr.Tabs(): - with gr.TabItem("Basic"): - gr.Markdown(value=""" - 本模型为基于soft-vc和vits的AI声线转换模型。\n - 模型混合了aishell3(174说话人,共约80+h)和opencpop(1说话人,5+h)数据集训练,用A100单卡在60batchsize下训练了350左右epoch得到的。\n - 模型对于通常的说话语音转换效果良好,唱歌的话需要在目标说话人音域范围内才能有较好效果。由于aishell3数据占比过大,训练epoch不足,opencpop说话人的高音部分质量不佳。\n - 模型中各说话人的适宜中心音域分别为:\n - aishell3(0-173号) 女性说话:A3,男性说话:C3\n - opencpop(174号) 女性唱歌:C4-G4(超过C5基本失真)\n - 如果转换通常说话音频,需要参考上面范围调key至目标说话人中心音域附近(如男性说话转为女性说话,key=8,反过来为-8(4-16这个区间基本都可以试试))\n - 如果源音频为部分虚拟主播音频,通常音调会高于正常女性说话范围,可达到F4-A4左右,请适当降调\n - 对于说话人的详细信息(如性别、年龄等),可以在文件目录的spkdic_new.json中查看\n - \n - 若合成效果不佳请首先考虑如下因素加以改善:\n - 1.音域范围是否合适,可参考上文调整调key的参数,或更换说话人进行尝试\n - 2.源音频是否存在杂音/bgm,请尽量使用干净的音源进行合成,录音时保持室内安静\n - 3.源音频是否存在混响。较强的混响会显著干扰合成效果,导致ai念错字/音调识别错误等\n - 4.再合成一次试试,每次合成会有部分随机性因素参与,微小的声调问题可能重新合成一次就不存在了。\n - 5.部分对源音频的消伴奏/降噪处理会对合成效果有较大影响,虽然人听不出差别,但是对ai识别的频谱有影响。 - """) - sid = gr.Dropdown(label="说话人",choices=spkdict, value='speaker0') - vc_audio = gr.Audio(label="上传音频,建议小于2分钟",type='filepath') - vc_record = gr.Audio(source="microphone", label="或者录制你的声音", type="filepath") - vc_transform = gr.Number(label="调key(按照十二平均律确定的半音,一整个8度就是12)",value=0) - vc_submit = gr.Button("转换", variant="primary") - vc_output1 = gr.Textbox(label="Output Message") - vc_output2 = gr.Audio(label="Output Audio") - vc_submit.click(infer, [vc_audio,vc_record,sid, vc_transform], [vc_output1, vc_output2]) - - app.launch() \ No newline at end of file diff --git a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Dont Panic! Heres Why Your PC Makes a Crackling Noise and How to Fix It.md b/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Dont Panic! Heres Why Your PC Makes a Crackling Noise and How to Fix It.md deleted file mode 100644 index 4c1671fdb9664da0168b5300fe315466f7c15baf..0000000000000000000000000000000000000000 --- a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Dont Panic! Heres Why Your PC Makes a Crackling Noise and How to Fix It.md +++ /dev/null @@ -1,28 +0,0 @@ -
-

Why Does My PC Make a Crackling Noise and How to Fix It

- -

If you hear a crackling or popping sound coming from your PC, you might be worried that something is wrong with your hardware. However, before you panic, you should know that there are many possible causes for this problem and some of them are easy to fix. In this article, we will explain why your PC makes a crackling noise and how to troubleshoot it.

- -

What Causes Crackling or Popping Sound on a Windows PC?

- -

Crackling or popping sound on a Windows PC can occur for a variety of reasons. Some of the most common ones are:

-

why does my pc make a crackling noise


Download File ::: https://byltly.com/2uKzYR



- - - -

How to Fix Crackling or Popping Sound on a Windows PC?

- -

Depending on the cause of the problem, there are different ways to fix crackling or popping sound on a Windows PC. Here are some of the most effective solutions:

- -
    -
  1. Change your audio format: Changing the audio quality on your output device can solve some sound problems. To do this, right-click the speaker icon in the notification area next to your clock and select Playback Devices. Double-click the default playback device, which has a green checkmark on its icon. Click the Advanced tab and use the Default Format box to select your sound quality level. Try setting your audio quality to 16 bit, 44100 Hz (CD Quality). Click OK afterwards and see if the crackling or other audio problems continue.
  2. -
  3. Disable audio enhancements: Some sound drivers use software enhancements in an attempt to improve your sound quality. If these aren't working properly or if your CPU is being taxed too heavily, these could result in sound problems. To disable sound enhancements, use the same Properties window. Click the Enhancements tab here—if you see one—and check the Disable All Enhancements checkbox. Click OK to save your changes and then test to see if the problems continue. Not all software drivers perform this function, so you won't always see the Enhancements tab on all systems.
  4. -
  5. Disable exclusive mode: Some sound drivers seem to have issue with the exclusive mode option that allows applications to take exclusive control of your sound card. This shouldn't normally be a problem: Blame bad sound drivers if it's causing issues on your system. You'll find this setting on the same window where the Default Format option is. Disable the Allow applications to take exclusive control of this device option under Exclusive Mode. Click OK and see if this solved your problem. This option normally isn't a problem, so you should probably re-enable it if disabling it doesn't solve the problem.
  6. -
  7. Update your sound drivers:A missing, corrupted, or outdated sound driver could be why you're experiencing crackling audio. Updating or reinstalling it can fix the issue in this regard. To update your sound driver manually, go to Device Manager, expand <

    ddb901b051
    -
    -
    \ No newline at end of file diff --git a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/FL Studio 20 Keygen Reddit The Ultimate Guide to Unlocking All Features and Plugins.md b/spaces/1acneusushi/gradio-2dmoleculeeditor/data/FL Studio 20 Keygen Reddit The Ultimate Guide to Unlocking All Features and Plugins.md deleted file mode 100644 index 392a4efed6642bcb3490bd253e89393158223a06..0000000000000000000000000000000000000000 --- a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/FL Studio 20 Keygen Reddit The Ultimate Guide to Unlocking All Features and Plugins.md +++ /dev/null @@ -1,40 +0,0 @@ - -

    FL Studio Keygen Reddit: How to Crack FL Studio 20 for Free

    -

    If you are looking for a way to crack FL Studio 20 for free, you might have come across some torrents or links that claim to offer a keygen or a patch for the popular music production software. But are they safe and reliable? And how do you use them?

    -

    fl studio keygen reddit


    Download > https://byltly.com/2uKwL4



    -

    In this article, we will explain what a keygen is, how it works, and what are the risks and benefits of using one. We will also show you how to use a keygen from a reputable source, R2R, to unlock FL Studio 20 and enjoy its full features.

    -

    What is a Keygen?

    -

    A keygen, short for key generator, is a program that can generate valid serial numbers or license keys for a software application. A keygen can be used to activate a software without paying for it or going through the official registration process.

    -

    A keygen usually works by exploiting a flaw or a weakness in the software's protection system, such as a weak encryption algorithm or a hardcoded key. A keygen can also emulate the server-side validation process and generate keys that match the expected format.

    -

    How to Use R2R Keygen for FL Studio 20?

    -

    R2R is a well-known group of crackers that release high-quality keygens and patches for various software applications, including FL Studio. R2R's keygen for FL Studio 20 can unlock all the features and plugins of the software, such as Edison, Gross Beat, Harmor, Sytrus, Maximus, and more.

    -

    To use R2R's keygen for FL Studio 20, you need to follow these steps:

    -
      -
    1. Download the torrent file of FL Studio 20 from this Reddit post by u/orbital_malice42. Make sure you download the one uploaded by Deepstatus, who is a verified uploader on Piratebay.
    2. -
    3. Extract the .7z file using 7-Zip or WinRAR. You will get two folders: FL Studio 20 and Shared.
    4. -
    5. Install FL Studio 20 by running the setup.exe file in the FL Studio 20 folder. Choose your preferred language and location. Do not run FL Studio after installation.
    6. -
    7. Copy the Keygen.exe file from the Shared folder and paste it into the installation directory of FL Studio 20. The default location is C:\Program Files (x86)\Image-Line\FL Studio 20.
    8. -
    9. Run the Keygen.exe file as administrator. You will see a window with a button that says Register. Click on it and wait for a few seconds. You will see a message that says "Successfully registered!"
    10. -
    11. Open FL Studio 20 by running the fl.exe file in the installation directory. You should see that it is unlocked and activated. You can now use all the features and plugins of FL Studio 20 without any limitations.
    12. -
    -

    What are the Risks and Benefits of Using a Keygen?

    -

    Using a keygen can have some advantages and disadvantages. Here are some of them:

    -

    Benefits

    - -

    Risks

    - -

    Conclusion

    -

    FL Studio 20 is a powerful and versatile music production software that can help you create amazing beats and songs. However, it is also quite expensive and requires a license key to activate it.

    -

    If you want to crack FL Studio

    -

    ddb901b051
    -
    -
    \ No newline at end of file diff --git a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/GSG HDRI Studio Pack 1.8 for Cinema 4D How to Achieve Realistic Reflections and Shadows.md b/spaces/1acneusushi/gradio-2dmoleculeeditor/data/GSG HDRI Studio Pack 1.8 for Cinema 4D How to Achieve Realistic Reflections and Shadows.md deleted file mode 100644 index 4db5b6f4cbbe95c68e4e717f34a9a6601906233b..0000000000000000000000000000000000000000 --- a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/GSG HDRI Studio Pack 1.8 for Cinema 4D How to Achieve Realistic Reflections and Shadows.md +++ /dev/null @@ -1,150 +0,0 @@ - -

    GSG HDRI Studio Pack 1.8 for Cinema 4D: A Review

    -

    If you are looking for a way to create stunning lighting and reflections in Cinema 4D, you might have heard of GSG HDRI Studio Pack 1.8. This is a bundle of two plugins from Greyscalegorilla that allow you to browse and apply hundreds of high-quality HDRI (High Dynamic Range Images) in seconds. But what exactly is GSG HDRI Studio Pack 1.8, and why should you use it? In this article, we will review this product and show you how it can help you improve your 3D renders.

    -

    What is GSG HDRI Studio Pack 1.8?

    -

    GSG HDRI Studio Pack 1.8 is a collection of two plugins for Cinema 4D that make it easy to use HDRI lighting and reflections in your scenes. HDRI stands for High Dynamic Range Images, which are images that capture a wide range of brightness values, from very dark to very bright. By using HDRI as your light source, you can create realistic and natural lighting effects that mimic the real world.

    -

    GSG HDRI Studio Pack 1.8 for Cinema 4D


    DOWNLOAD ✶✶✶ https://byltly.com/2uKyNB



    -

    HDRI Studio Rig

    -

    HDRI Studio Rig is a plugin that lets you browse and apply HDRI from Greyscalegorilla's library or your own collection. You can then rotate, adjust, and place them in the perfect position for your scene. You can also create professional studio quality backdrops and seamless floors with this plugin. HDRI Studio Rig works with Cinema 4D's Standard and Physical renderers, and it is ideal for product shots, motion graphics, and animations.

    -

    HDRI Link

    -

    HDRI Link is a plugin that lets you connect any third-party render engine to Greyscalegorilla's library of HDRI or your own collection. You can instantly browse and apply HDRI with a simple drag-and-drop interface, without having to deal with complex settings or file paths. HDRI Link is compatible with popular render engines like Redshift, Octane, and Arnold, and it is ideal for photorealistic renders, architectural visualization, and VFX.

    -

    Why use GSG HDRI Studio Pack 1.8?

    -

    GSG HDRI Studio Pack 1.8 offers many benefits for Cinema 4D users who want to create better looking renders with less hassle.

    -

    How to use GSG HDRI Studio Pack in Cinema 4D
    -GSG HDRI Studio Pack review and tutorial
    -Best HDRI lighting presets for Cinema 4D
    -GSG HDRI Studio Pack vs other HDRI plugins
    -Where to buy GSG HDRI Studio Pack for Cinema 4D
    -GSG HDRI Studio Pack features and benefits
    -How to create realistic renders with GSG HDRI Studio Pack
    -GSG HDRI Studio Pack compatibility and requirements
    -How to install and update GSG HDRI Studio Pack
    -GSG HDRI Studio Pack free download and trial
    -How to customize and save HDRI settings in GSG HDRI Studio Pack
    -GSG HDRI Studio Pack tips and tricks
    -How to optimize render speed with GSG HDRI Studio Pack
    -GSG HDRI Studio Pack customer testimonials and feedback
    -How to get support and help for GSG HDRI Studio Pack
    -How to use GSG HDRI Studio Pack with other Cinema 4D tools
    -GSG HDRI Studio Pack alternatives and competitors
    -How to add your own HDRIs to GSG HDRI Studio Pack
    -How to use GSG HDRI Studio Pack for animation and motion graphics
    -How to use GSG HDRI Studio Pack for product visualization and design
    -How to use GSG HDRI Studio Pack for architectural rendering and interior design
    -How to use GSG HDRI Studio Pack for character modeling and sculpting
    -How to use GSG HDRI Studio Pack for VFX and compositing
    -How to use GSG HDRI Studio Pack for game development and VR/AR
    -How to use GSG HDRI Studio Pack for photography and video editing
    -How to create stunning HDRIs with GSG HDRI Studio Pack
    -How to use GSG HDRI Studio Pack with Octane Render, Redshift, Arnold, etc.
    -How to use GSG HDRI Studio Pack with After Effects, Photoshop, Illustrator, etc.
    -How to use GSG HDRI Studio Pack with Blender, Maya, 3ds Max, etc.
    -How to use GSG HDRI Studio Pack with SketchUp, Revit, AutoCAD, etc.
    -How to use GSG HDRI Studio Pack with ZBrush, Substance Painter, Marvelous Designer, etc.
    -How to use GSG HDRI Studio Pack with Unity, Unreal Engine, Godot, etc.
    -How to use GSG HDRI Studio Pack with Premiere Pro, Final Cut Pro, DaVinci Resolve, etc.
    -How to use GSG HDRI Studio Pack with Lightroom, Capture One, Affinity Photo, etc.
    -What are the advantages of using HDRIs in Cinema 4D
    -What are the best practices for using HDRIs in Cinema 4D
    -What are the common mistakes and pitfalls when using HDRIs in Cinema 4D
    -What are the latest trends and developments in HDRIs and Cinema 4D
    -What are the best sources and resources for HDRIs and Cinema 4D
    -What are the best examples and inspirations of HDRIs and Cinema 4D projects

    -

    Benefits of HDRI lighting

    -

    HDRI lighting is one of the most realistic and natural ways to light your scenes in Cinema 4D. By using HDRI as your light source, you can achieve:

    - -

    HDRI lighting can also save you time and resources by eliminating the need for multiple lights, complex setups, and long render times.

    -

    Features of GSG HDRI Studio Pack 1.8

    -

    GSG HDRI Studio Pack 1.8 offers many features that make it easy and fun to use HDRI lighting in Cinema 4D.

    - -

    How to use GSG HDRI Studio Pack 1.8?

    -

    GSG HDRI Studio Pack 1.8 is very easy to use in Cinema 4D.

    -

    Installation and compatibility

    -

    To install GSG HDRI Studio Pack 1.8, you need to have Cinema 4D R20 or higher installed on your computer. You also need to have a Greyscalegorilla Plus membership account, which gives you access to all of their products and training for one low price.

    -

    To install the plugins, you need to download them from your Greyscalegorilla account page, unzip them, and copy them to your Cinema 4D plugins folder.

    -

    To use the plugins, you need to activate them with your Greyscalegorilla Plus account credentials.

    -

    GSG HDRI Studio Rig works with Cinema 4D's Standard and Physical renderers, while GSG HDRI Link works with third-party render engines like Redshift, Octane, and Arnold.

    -

    Browsing and applying HDRI

    -

    To browse and apply HDRI with GSG HDRI Studio Rig, you need to add an object to your scene (such as a sphere or a cube), then add an HDRi Studio Rig object from the plugins menu.

    -

    This will open up the HDRi Browser window, where you can see all the available HDRi collections from Greyscalegorilla or your own folder.

    -

    You can then drag any HDRi image onto the HDRi Preview window or double-click on it to apply it to your scene.

    -

    You can also use the search bar or the filters to find the HDRi that suits your needs.

    -

    You will see a small icon on the tag that indicates which render engine you are using. You can change it by clicking on it and selecting another one.

    -

    This will open up the HDRI Browser window, where you can see all the available HDRI collections from Greyscalegorilla or your own folder.

    -

    You can then drag any HDRI image onto the HDRI Link Tag or double-click on it to apply it to your scene.

    -

    You can also use the search bar or the filters to find the HDRI that suits your needs.

    -

    Adjusting and customizing HDRI

    -

    To adjust and customize HDRI with GSG HDRI Studio Rig, you need to select the HDRi Studio Rig object and go to the attributes panel.

    -

    There you will find several options to tweak your lighting and reflections, such as:

    - -

    To adjust and customize HDRI with GSG HDRI Link, you need to select the HDRi Link Tag and go to the attributes panel.

    -

    There you will find a few options to tweak your lighting and reflections, such as:

    - -

    Where to get GSG HDRI Studio Pack 1.8?

    -

    If you are interested in getting GSG HDRI Studio Pack 1.8, you have two options:

    -

    Pricing and plans

    -

    You can buy GSG HDRI Studio Pack 1.8 as a standalone product for $129. This will give you access to both plugins and 10 sample HDRI images. You can also buy additional HDRI collections from Greyscalegorilla's website, ranging from $49 to $99 each.

    -

    You can also get GSG HDRI Studio Pack 1.8 as part of Greyscalegorilla Plus membership for $399 per year or $64 per month. This will give you access to all of Greyscalegorilla's products and training, including over 3,000 materials, HDRIs, and other 3D assets, all of their time-saving plugins for Cinema 4D, and 500+ hours of pro training.

    -

    Greyscalegorilla Plus membership

    -

    Greyscalegorilla Plus is a subscription service that gives you unlimited access to all of Greyscalegorilla's products and training for one low price. You can get over $13,000 worth of tools and training for only $399 per year or $64 per month.

    -

    With Greyscalegorilla Plus, you can:

    - -

    Conclusion

    -

    GSG HDRI Studio Pack 1.8 is a bundle of two plugins for Cinema 4D that let you browse and apply hundreds of high-quality HDRI in seconds. You can use them to create realistic and natural lighting and reflections in your scenes with ease. Whether you are using Cinema 4D's Standard and Physical renderers or third-party render engines like Redshift, Octane, or Arnold, GSG HDRI Studio Pack 1.8 can help you improve your renders.

    -

    If you want to get GSG HDRI Studio Pack 1.8, you can buy it as a standalone product for $129 or as part of Greyscalegorilla Plus membership for $399 per year or $64 per month. Greyscalegorilla Plus gives you unlimited access to all of Greyscalegorilla's products and training for one low price.

    -

    GSG HDRI Studio Pack 1.8 is a great product for Cinema 4D users who want to create better looking renders with less hassle. If you are interested in trying it out, you can visit Greyscalegorilla's website for more information.

    -

    FAQs

    -

    What is HDRI?

    -

    HDRI stands for High Dynamic Range Images, which are images that capture a wide range of brightness values, from very dark to very bright. By using HDRI as your light source, you can create realistic and natural lighting effects that mimic the real world.

    -

    What is GSG HDRI Studio Pack 1.8?

    -

    GSG HDRI Studio Pack 1.8 is a collection of two plugins for Cinema 4D that make it easy to use HDRI lighting and reflections in your scenes. They are:

    - -

    How do I use GSG HDRI Studio Pack 1.8?

    -

    To use GSG HDRI Studio Pack 1.8, you need to add an object to your scene (such as a sphere or a cube), then add an HDRi Studio Rig object or an HDRi Link Tag from the plugins menu. This will open up the HDRi Browser window, where you can browse and apply any HDRi image from Greyscalegorilla's library or your own folder. You can then adjust and customize your lighting and reflections with various options in the attributes panel.

    -

    Where do I get GSG HDRI Studio Pack 1.8?

    -

    You can get GSG HDRI Studio Pack 1.8 from Greyscalegorilla's website. You can buy it as a standalone product for $129 or as part of Greyscalegorilla Plus membership for $399 per year or $64 per month.

    -

    What is Greyscalegorilla Plus?

    -

    Greyscalegorilla Plus is a subscription service that gives you unlimited access to all of Greyscalegorilla's products and training for one low price. You can get over $13,000 worth of tools and training for only $399 per year or $64 per month.

    -

    0a6ba089eb
    -
    -
    \ No newline at end of file diff --git a/spaces/1gistliPinn/ChatGPT4/Examples/Designing With Type 5th Edition - The Essential Guide To Typography By James Craig.pdf !NEW!.md b/spaces/1gistliPinn/ChatGPT4/Examples/Designing With Type 5th Edition - The Essential Guide To Typography By James Craig.pdf !NEW!.md deleted file mode 100644 index dfc1c5166054bc73e68d398e5c2fd2daad0634b1..0000000000000000000000000000000000000000 --- a/spaces/1gistliPinn/ChatGPT4/Examples/Designing With Type 5th Edition - The Essential Guide To Typography By James Craig.pdf !NEW!.md +++ /dev/null @@ -1,7 +0,0 @@ - -

    Typography is often regarded as an uninteresting topic. It is no less important than any other medium or discipline, but it is often not given the attention that it deserves. Sadly, some designers today seem to think that just calling oneself a "typographer" will get one a job. It is time to dispel that myth. This book is designed for anyone in any field who wants to know how to design with type. It is true that not all designers think of type as being important or useful, but even that attitude has changed. Designing books, pamphlets, posters, mailings, logos, advertisements, and even Web pages means knowing something about type. And now that type is commonplace in both the print and the electronic media, the need for designers who know type is not less than it has ever been. This book presents the essentials of type and shows how they can be utilized as in the design of anything printed, from books to pamphlets to logos. It is to be hoped that this text will be the first of many on this crucial subject.

    -

    Designing with Type continues to be a perennial best seller, as well as one of the most frequently cited textbooks ever written on the subject. Where it was once considered a dry, obscure subject, of little relevance to graphic designers, it is now accepted as an essential text for designers and design students alike. For the new generation of designers, this book still offers the most complete, current overview of the subject.

    -

    Designing with Type, 5th Edition - The Essential Guide to Typography by James Craig.pdf


    Download Ziphttps://imgfil.com/2uxYRV



    -

    This book is about a way of looking at typography that helps us think about type as a form and about the people who designed it, as well as its use in mass-communication. The book begins by defining what typography is and isn't, with particular emphasis on the rationale behind it. Next, the book outlines types of design and typographic criteria, with sections on structure, form, function, illustration, language, visual and verbal communication, and media placement and organization. The authors show how these methods can be applied to any kind of type-based communication, from books, posters, logos, magazines, and broadsheets to websites, advertisements, and classified listings.

    899543212b
    -
    -
    \ No newline at end of file diff --git a/spaces/1line/AutoGPT/autogpt/commands/audio_text.py b/spaces/1line/AutoGPT/autogpt/commands/audio_text.py deleted file mode 100644 index cae32d4eb78c4268bf6ef1bae3c15a399af046bf..0000000000000000000000000000000000000000 --- a/spaces/1line/AutoGPT/autogpt/commands/audio_text.py +++ /dev/null @@ -1,36 +0,0 @@ -import json - -import requests - -from autogpt.config import Config -from autogpt.workspace import path_in_workspace - -cfg = Config() - - -def read_audio_from_file(audio_path): - audio_path = path_in_workspace(audio_path) - with open(audio_path, "rb") as audio_file: - audio = audio_file.read() - return read_audio(audio) - - -def read_audio(audio): - model = cfg.huggingface_audio_to_text_model - api_url = f"https://api-inference.huggingface.co/models/{model}" - api_token = cfg.huggingface_api_token - headers = {"Authorization": f"Bearer {api_token}"} - - if api_token is None: - raise ValueError( - "You need to set your Hugging Face API token in the config file." - ) - - response = requests.post( - api_url, - headers=headers, - data=audio, - ) - - text = json.loads(response.content.decode("utf-8"))["text"] - return "The audio says: " + text diff --git a/spaces/1phancelerku/anime-remove-background/60 Seconds! Reatomized - A Crazy and Funny Adventure in a Nuclear Wasteland - Play Online for Free.md b/spaces/1phancelerku/anime-remove-background/60 Seconds! Reatomized - A Crazy and Funny Adventure in a Nuclear Wasteland - Play Online for Free.md deleted file mode 100644 index dd78971091718bd8e4c9cc98f07b721c8af77379..0000000000000000000000000000000000000000 --- a/spaces/1phancelerku/anime-remove-background/60 Seconds! Reatomized - A Crazy and Funny Adventure in a Nuclear Wasteland - Play Online for Free.md +++ /dev/null @@ -1,129 +0,0 @@ - -

    How to Play 60 Seconds! Reatomized for Free Online Without Downloading Anything

    -

    Do you like survival games? Do you enjoy dark humor and quirky characters? Do you want to experience a nuclear apocalypse without risking your life? If you answered yes to any of these questions, then you might want to try 60 Seconds! Reatomized, a game that lets you play as a suburban dad who has to save his family and himself from a nuclear blast. And the best part is, you can play it for free online without downloading anything. Here's how.

    -

    What is 60 Seconds! Reatomized?

    -

    60 Seconds! Reatomized is a game that combines two genres: survival simulator and dark comedy adventure. It was developed by Robot Gentleman and released in 2019 as a remastered version of the original 60 Seconds! game from 2015. Here are some of the features of the game:

    -

    60 seconds free no download unblocked


    Download File ✸✸✸ https://jinyurl.com/2uNODe



    -

    A post-apocalyptic survival simulator

    -

    In this game, you have to face the consequences of a nuclear war that has destroyed most of the world. You have to scavenge for supplies, ration food and water, deal with illnesses and injuries, and make tough decisions that will affect your survival. You also have to deal with random events and visitors that can either help or harm you. The game has four different modes: Atomic Drill, Apocalypse, Scavenge, and Survival. Each mode has its own rules and challenges.

    -

    A dark comedy adventure game

    -

    While the game has a serious theme, it also has a lot of humor and absurdity. The game is narrated by a sarcastic robot named Dolores, who comments on your actions and choices. The game also has a lot of references to pop culture, such as movies, books, games, and celebrities. The game also has a lot of funny scenarios and outcomes, such as turning into mutants, becoming cannibals, or joining cults. The game does not take itself too seriously and encourages you to have fun with it.

    -

    A remastered version of the original 60 Seconds!

    -

    60 Seconds! Reatomized is an improved version of the original game, with new features and content. Some of the improvements include:

    - -

    How to play 60 seconds free no download unblocked?

    -

    If you want to play 60 Seconds! Reatomized for free online without downloading anything, you need to find a reliable website that offers the game. One such website is [Gameroze.com](^1^), which lets you play the game in your browser without any registration or installation. Another website is [60secondsreatomizedgame.com](^2^), which also offers the game for free online. Here are the steps to play the game:

    -

    Find a reliable website that offers the game

    -

    Go to one of the websites mentioned above or search for other websites that offer the game. Make sure that the website is safe and secure, and does not contain any viruses or malware. You can use an antivirus software or a browser extension to check the website's reputation and safety.

    -

    Choose your mode and difficulty level

    -

    Once you have accessed the game on the website, you can choose the mode you want to play. The game has five modes: Atomic Drill, Apocalypse, Scavenge, Survival, and Challenge. Each mode has a different objective and gameplay. Here is a brief description of each mode:

    - - - - - - - - - - - - - - - - - - - - - - - - - -
    ModeDescription
    Atomic DrillThis is the tutorial mode, where you can learn the basics of the game. You have to collect supplies and family members in 60 seconds and then survive in the bunker for a few days.
    ApocalypseThis is the main mode, where you have to complete the full game. You have to collect supplies and family members in 60 seconds and then survive in the bunker as long as you can. You can choose from four difficulty levels: Little Boy, Fat Man, Tsar Bomba, and Scavenger.
    ScavengeThis is a mode where you only have to collect supplies and family members in 60 seconds. You can choose from four difficulty levels: Easy, Normal, Hard, and Impossible.
    SurvivalThis is a mode where you only have to survive in the bunker with the supplies and family members you have. You can choose from four difficulty levels: Easy, Normal, Hard, and Impossible.
    ChallengeThis is a mode where you have to complete a specific scenario with a set of rules and conditions. You can choose from 12 challenges, such as Cat Lady, Twins, or Soup Only.
    -

    Collect supplies and family members in 60 seconds

    -

    After choosing your mode and difficulty level, you will start the game in your house. You will have 60 seconds to grab as many supplies and family members as you can and bring them to the fallout shelter in your backyard. You can use the arrow keys or the WASD keys to move around, and the spacebar or the left mouse button to pick up items or people. You can also use the E key or the right mouse button to drop items or people. You can only carry up to four items or people at a time, so you have to plan carefully what you need and what you can leave behind. Some of the items you can find are:

    - -

    You also have to bring your family members with you. They are:

    -

    60 seconds reatomized game online free
    -60 seconds survival simulator unblocked no download
    -60 seconds apocalypse game free online
    -60 seconds bunker challenge unblocked free
    -60 seconds dark comedy adventure free no download
    -60 seconds nuclear fallout game online unblocked
    -60 seconds post-apocalyptic simulator free online
    -60 seconds atomic explosion game unblocked no download
    -60 seconds family survival game free online
    -60 seconds scavenging adventure free no download
    -60 seconds reatomized unblocked game play online
    -60 seconds atomic shelter game free no download
    -60 seconds survival adventure game online unblocked
    -60 seconds nuclear blast game free online
    -60 seconds bunker survival game unblocked no download
    -60 seconds reatomized dark comedy game free online
    -60 seconds apocalypse simulator unblocked no download
    -60 seconds atomic adventure game online free
    -60 seconds fallout shelter game unblocked free
    -60 seconds post-nuclear game free no download
    -60 seconds reatomized survival challenge game online unblocked
    -60 seconds nuclear war game free no download
    -60 seconds bunker adventure game unblocked online
    -60 seconds reatomized comedy simulator free online
    -60 seconds atomic bomb game unblocked no download
    -60 seconds survival comedy game online free
    -60 seconds apocalypse adventure game unblocked free
    -60 seconds reatomized nuclear fallout game no download
    -60 seconds bunker simulator game online unblocked
    -60 seconds reatomized atomic blast game free online

    - -

    You have to decide who and what to bring with you before the time runs out. If you don't make it to the shelter in time, you will die in the blast. If you don't bring enough supplies or family members with you, you will have a harder time surviving in the bunker.

    -

    Survive in the bunker as long as you can

    -

    After collecting supplies and family members in 60 seconds, you will enter the bunker. This is where the survival part of the game begins. You will have to manage your resources, make decisions, and deal with events that will affect your survival. Here are some of the things you have to do:

    - - Feed yourself and your family every few days with soup and water. - Use medicine to treat injuries or illnesses that may occur. - Use weapons to fend off raiders or other enemies that may attack. - Use tools to communicate with other survivors or explore outside. - Use luxuries to - Use luxuries to keep yourself and your family happy and sane. - Follow the instructions or requests of Dolores, the robot narrator, who will guide you through the game. - Make choices that will affect your survival, such as who to send outside, who to trust, or what to trade. - Face random events and visitors that will have positive or negative consequences for you. - Try to find a way to escape the bunker or get rescued by the military or other survivors.

    The game will end when you either die, escape, or get rescued. The game will also show you your stats, such as how many days you survived, how many items you used, and how many endings you unlocked. The game has over 100 endings, some of which are funny, sad, or bizarre.

    -

    Why play 60 seconds free no download unblocked?

    -

    There are many reasons why you might want to play 60 Seconds! Reatomized for free online without downloading anything. Here are some of them:

    -

    It's fun and challenging

    -

    The game is a mix of strategy, luck, and humor. You have to think fast and smart when collecting supplies and family members in 60 seconds. You also have to adapt to different situations and scenarios that will test your survival skills. The game is not easy, but it's rewarding when you manage to survive or achieve a good ending. The game also has a lot of humor and absurdity that will make you laugh or smile.

    -

    It's different every time you play

    -

    The game is randomly generated, which means that every time you play, you will have a different experience. The items and people you find in your house, the events and visitors you encounter in the bunker, and the endings you unlock will vary each time. The game also has different modes and difficulty levels that will change the gameplay and the challenge. The game has a lot of replay value and surprises.

    -

    It's compatible with any device and browser

    -

    The game is designed to run on any device and browser that supports HTML5. You don't need to download anything or install anything to play the game. You just need an internet connection and a web browser. You can play the game on your computer, laptop, tablet, or smartphone. You can also play the game on any operating system, such as Windows, Mac, Linux, Android, or iOS. The game is accessible and convenient for anyone.

    -

    Conclusion

    -

    60 Seconds! Reatomized is a game that lets you play as a suburban dad who has to save his family and himself from a nuclear blast. You can play it for free online without downloading anything on websites like [Gameroze.com] or [60secondsreatomizedgame.com]. The game is a combination of survival simulator and dark comedy adventure. It has four different modes: Atomic Drill, Apocalypse, Scavenge, Survival, and Challenge. It also has over 100 endings and new features and content. The game is fun and challenging, different every time you play, and compatible with any device and browser. If you are looking for a game that will test your survival skills and make you laugh at the same time, then you should try 60 Seconds! Reatomized.

    -

    FAQs

    -

    Here are some of the frequently asked questions about 60 Seconds! Reatomized:

    -

    401be4b1e0
    -
    -
    \ No newline at end of file diff --git a/spaces/2ndelement/voicevox/test/test_kana_parser.py b/spaces/2ndelement/voicevox/test/test_kana_parser.py deleted file mode 100644 index ef800b60003b5d14b90a8eeb86e0fa29a919f878..0000000000000000000000000000000000000000 --- a/spaces/2ndelement/voicevox/test/test_kana_parser.py +++ /dev/null @@ -1,688 +0,0 @@ -from typing import List -from unittest import TestCase - -from voicevox_engine import kana_parser -from voicevox_engine.kana_parser import create_kana -from voicevox_engine.model import AccentPhrase, Mora, ParseKanaError, ParseKanaErrorCode - - -def parse_kana(text: str) -> List[AccentPhrase]: - accent_phrases = kana_parser.parse_kana(text) - return accent_phrases - - -class TestParseKana(TestCase): - def test_phrase_length(self): - self.assertEqual(len(parse_kana("ア'/ア'")), 2) - self.assertEqual(len(parse_kana("ア'、ア'")), 2) - self.assertEqual(len(parse_kana("ア'/ア'/ア'/ア'/ア'")), 5) - self.assertEqual(len(parse_kana("ス'")), 1) - self.assertEqual(len(parse_kana("_ス'")), 1) - self.assertEqual(len(parse_kana("ギェ'")), 1) - self.assertEqual(len(parse_kana("ギェ'、ギェ'/ギェ'")), 3) - - def test_accent(self): - self.assertEqual(parse_kana("シャ'シシュシェショ")[0].accent, 1) - self.assertEqual(parse_kana("シャ'_シシュシェショ")[0].accent, 1) - self.assertEqual(parse_kana("シャシ'シュシェショ")[0].accent, 2) - self.assertEqual(parse_kana("シャ_シ'シュシェショ")[0].accent, 2) - self.assertEqual(parse_kana("シャシシュ'シェショ")[0].accent, 3) - self.assertEqual(parse_kana("シャ_シシュ'シェショ")[0].accent, 3) - self.assertEqual(parse_kana("シャシシュシェショ'")[0].accent, 5) - self.assertEqual(parse_kana("シャ_シシュシェショ'")[0].accent, 5) - - def test_mora_length(self): - self.assertEqual(len(parse_kana("シャ'シシュシェショ")[0].moras), 5) - self.assertEqual(len(parse_kana("シャ'_シシュシェショ")[0].moras), 5) - self.assertEqual(len(parse_kana("シャシ'シュシェショ")[0].moras), 5) - self.assertEqual(len(parse_kana("シャ_シ'シュシェショ")[0].moras), 5) - self.assertEqual(len(parse_kana("シャシシュシェショ'")[0].moras), 5) - self.assertEqual(len(parse_kana("シャ_シシュシェショ'")[0].moras), 5) - - def test_pause(self): - self.assertIsNone(parse_kana("ア'/ア'")[0].pause_mora) - self.assertIsNone(parse_kana("ア'/ア'")[1].pause_mora) - self.assertIsNotNone(parse_kana("ア'、ア'")[0].pause_mora) - self.assertIsNone(parse_kana("ア'、ア'")[1].pause_mora) - - def test_unvoice(self): - self.assertEqual(parse_kana("ス'")[0].moras[0].vowel, "u") - self.assertEqual(parse_kana("_ス'")[0].moras[0].vowel, "U") - - def test_roundtrip(self): - for text in ["コンニチワ'", "ワタシワ'/シャチョオデ'_ス", "トテモ'、エラ'インデス"]: - self.assertEqual(create_kana(parse_kana(text)), text) - - for text in ["ヲ'", "ェ'"]: - self.assertEqual(create_kana(parse_kana(text)), text) - - def _accent_phrase_marks_base( - self, text: str, expected_accent_phrases: List[AccentPhrase] - ) -> None: - accent_phrases = kana_parser.parse_kana(text) - self.assertEqual(expected_accent_phrases, accent_phrases) - - def test_accent_phrase_marks(self): - def a_slash_a_accent_phrases(): - return [ - AccentPhrase( - moras=[ - Mora( - text="ア", - consonant=None, - consonant_length=None, - vowel="a", - vowel_length=0.0, - pitch=0.0, - ), - ], - accent=1, - pause_mora=None, - ), - AccentPhrase( - moras=[ - Mora( - text="ア", - consonant=None, - consonant_length=None, - vowel="a", - vowel_length=0.0, - pitch=0.0, - ), - ], - accent=1, - pause_mora=None, - ), - ] - - expected_accent_phrases = a_slash_a_accent_phrases() - self._accent_phrase_marks_base( - text="ア'/ア'", - expected_accent_phrases=expected_accent_phrases, - ) - - def a_jp_comma_a_accent_phrases(): - return [ - AccentPhrase( - moras=[ - Mora( - text="ア", - consonant=None, - consonant_length=None, - vowel="a", - vowel_length=0.0, - pitch=0.0, - ), - ], - accent=1, - pause_mora=Mora( - text="、", - consonant=None, - consonant_length=None, - vowel="pau", - vowel_length=0.0, - pitch=0.0, - ), - ), - AccentPhrase( - moras=[ - Mora( - text="ア", - consonant=None, - consonant_length=None, - vowel="a", - vowel_length=0.0, - pitch=0.0, - ), - ], - accent=1, - pause_mora=None, - ), - ] - - expected_accent_phrases = a_jp_comma_a_accent_phrases() - self._accent_phrase_marks_base( - text="ア'、ア'", - expected_accent_phrases=expected_accent_phrases, - ) - - def a_slash_a_slash_a_slash_a_slash_a_accent_phrases(): - return [ - AccentPhrase( - moras=[ - Mora( - text="ア", - consonant=None, - consonant_length=None, - vowel="a", - vowel_length=0.0, - pitch=0.0, - ), - ], - accent=1, - pause_mora=None, - ), - AccentPhrase( - moras=[ - Mora( - text="ア", - consonant=None, - consonant_length=None, - vowel="a", - vowel_length=0.0, - pitch=0.0, - ), - ], - accent=1, - pause_mora=None, - ), - AccentPhrase( - moras=[ - Mora( - text="ア", - consonant=None, - consonant_length=None, - vowel="a", - vowel_length=0.0, - pitch=0.0, - ), - ], - accent=1, - pause_mora=None, - ), - AccentPhrase( - moras=[ - Mora( - text="ア", - consonant=None, - consonant_length=None, - vowel="a", - vowel_length=0.0, - pitch=0.0, - ), - ], - accent=1, - pause_mora=None, - ), - AccentPhrase( - moras=[ - Mora( - text="ア", - consonant=None, - consonant_length=None, - vowel="a", - vowel_length=0.0, - pitch=0.0, - ), - ], - accent=1, - pause_mora=None, - ), - ] - - expected_accent_phrases = a_slash_a_slash_a_slash_a_slash_a_accent_phrases() - self._accent_phrase_marks_base( - text="ア'/ア'/ア'/ア'/ア'", - expected_accent_phrases=expected_accent_phrases, - ) - - def su_accent_phrases(): - return [ - AccentPhrase( - moras=[ - Mora( - text="ス", - consonant="s", - consonant_length=0.0, - vowel="u", - vowel_length=0.0, - pitch=0.0, - ), - ], - accent=1, - pause_mora=None, - ), - ] - - expected_accent_phrases = su_accent_phrases() - self._accent_phrase_marks_base( - text="ス'", - expected_accent_phrases=expected_accent_phrases, - ) - - def under_score_su_accent_phrases(): - return [ - AccentPhrase( - moras=[ - Mora( - text="ス", - consonant="s", - consonant_length=0.0, - vowel="U", - vowel_length=0.0, - pitch=0.0, - ), - ], - accent=1, - pause_mora=None, - ), - ] - - expected_accent_phrases = under_score_su_accent_phrases() - self._accent_phrase_marks_base( - text="_ス'", - expected_accent_phrases=expected_accent_phrases, - ) - - def gye_accent_phrases(): - return [ - AccentPhrase( - moras=[ - Mora( - text="ギェ", - consonant="gy", - consonant_length=0.0, - vowel="e", - vowel_length=0.0, - pitch=0.0, - ), - ], - accent=1, - pause_mora=None, - ), - ] - - expected_accent_phrases = gye_accent_phrases() - self._accent_phrase_marks_base( - text="ギェ'", - expected_accent_phrases=expected_accent_phrases, - ) - - def gye_gye_gye_accent_phrases(): - return [ - AccentPhrase( - moras=[ - Mora( - text="ギェ", - consonant="gy", - consonant_length=0.0, - vowel="e", - vowel_length=0.0, - pitch=0.0, - ), - ], - accent=1, - pause_mora=Mora( - text="、", - consonant=None, - consonant_length=None, - vowel="pau", - vowel_length=0.0, - pitch=0.0, - ), - ), - AccentPhrase( - moras=[ - Mora( - text="ギェ", - consonant="gy", - consonant_length=0.0, - vowel="e", - vowel_length=0.0, - pitch=0.0, - ), - ], - accent=1, - pause_mora=None, - ), - AccentPhrase( - moras=[ - Mora( - text="ギェ", - consonant="gy", - consonant_length=0.0, - vowel="e", - vowel_length=0.0, - pitch=0.0, - ), - ], - accent=1, - pause_mora=None, - ), - ] - - expected_accent_phrases = gye_gye_gye_accent_phrases() - self._accent_phrase_marks_base( - text="ギェ'、ギェ'/ギェ'", - expected_accent_phrases=expected_accent_phrases, - ) - - def test_interrogative_accent_phrase_marks(self): - def a_question_mark_accent_phrases(): - return [ - AccentPhrase( - moras=[ - Mora( - text="ア", - consonant=None, - consonant_length=None, - vowel="a", - vowel_length=0.0, - pitch=0.0, - ), - ], - accent=1, - pause_mora=None, - is_interrogative=True, - ), - ] - - expected_accent_phrases = a_question_mark_accent_phrases() - self._accent_phrase_marks_base( - text="ア'?", - expected_accent_phrases=expected_accent_phrases, - ) - - def gye_gye_gye_question_mark_accent_phrases(): - return [ - AccentPhrase( - moras=[ - Mora( - text="ギェ", - consonant="gy", - consonant_length=0.0, - vowel="e", - vowel_length=0.0, - pitch=0.0, - ), - ], - accent=1, - pause_mora=Mora( - text="、", - consonant=None, - consonant_length=None, - vowel="pau", - vowel_length=0.0, - pitch=0.0, - ), - ), - AccentPhrase( - moras=[ - Mora( - text="ギェ", - consonant="gy", - consonant_length=0.0, - vowel="e", - vowel_length=0.0, - pitch=0.0, - ), - ], - accent=1, - pause_mora=None, - ), - AccentPhrase( - moras=[ - Mora( - text="ギェ", - consonant="gy", - consonant_length=0.0, - vowel="e", - vowel_length=0.0, - pitch=0.0, - ), - ], - accent=1, - pause_mora=None, - is_interrogative=True, - ), - ] - - expected_accent_phrases = gye_gye_gye_question_mark_accent_phrases() - self._accent_phrase_marks_base( - text="ギェ'、ギェ'/ギェ'?", - expected_accent_phrases=expected_accent_phrases, - ) - - def a_pause_a_question_pause_a_question_a_question_mark_accent_phrases(): - return [ - AccentPhrase( - moras=[ - Mora( - text="ア", - consonant=None, - consonant_length=None, - vowel="a", - vowel_length=0.0, - pitch=0.0, - ), - ], - accent=1, - pause_mora=Mora( - text="、", - consonant=None, - consonant_length=None, - vowel="pau", - vowel_length=0.0, - pitch=0.0, - ), - ), - AccentPhrase( - moras=[ - Mora( - text="ア", - consonant=None, - consonant_length=None, - vowel="a", - vowel_length=0.0, - pitch=0.0, - ), - ], - accent=1, - pause_mora=Mora( - text="、", - consonant=None, - consonant_length=None, - vowel="pau", - vowel_length=0.0, - pitch=0.0, - ), - is_interrogative=True, - ), - AccentPhrase( - moras=[ - Mora( - text="ア", - consonant=None, - consonant_length=None, - vowel="a", - vowel_length=0.0, - pitch=0.0, - ), - ], - accent=1, - pause_mora=None, - is_interrogative=True, - ), - AccentPhrase( - moras=[ - Mora( - text="ア", - consonant=None, - consonant_length=None, - vowel="a", - vowel_length=0.0, - pitch=0.0, - ), - ], - accent=1, - pause_mora=None, - is_interrogative=True, - ), - ] - - expected_accent_phrases = ( - a_pause_a_question_pause_a_question_a_question_mark_accent_phrases() - ) - self._accent_phrase_marks_base( - text="ア'、ア'?、ア'?/ア'?", - expected_accent_phrases=expected_accent_phrases, - ) - - -class TestParseKanaException(TestCase): - def _assert_error_code(self, kana: str, code: ParseKanaErrorCode): - with self.assertRaises(ParseKanaError) as err: - parse_kana(kana) - self.assertEqual(err.exception.errcode, code) - - def test_exceptions(self): - self._assert_error_code("アクセント", ParseKanaErrorCode.ACCENT_NOTFOUND) - self._assert_error_code("'アクセント", ParseKanaErrorCode.ACCENT_TOP) - self._assert_error_code("ア'ク'セント", ParseKanaErrorCode.ACCENT_TWICE) - self._assert_error_code("ひ'らがな", ParseKanaErrorCode.UNKNOWN_TEXT) - self._assert_error_code("__ス'", ParseKanaErrorCode.UNKNOWN_TEXT) - self._assert_error_code("ア'/", ParseKanaErrorCode.EMPTY_PHRASE) - self._assert_error_code("/ア'", ParseKanaErrorCode.EMPTY_PHRASE) - self._assert_error_code("", ParseKanaErrorCode.EMPTY_PHRASE) - - with self.assertRaises(ParseKanaError) as err: - parse_kana("ヒト'ツメ/フタツメ") - self.assertEqual(err.exception.errcode, ParseKanaErrorCode.ACCENT_NOTFOUND) - self.assertEqual(err.exception.kwargs, {"text": "フタツメ"}) - - with self.assertRaises(ParseKanaError) as err: - parse_kana("ア'/") - self.assertEqual(err.exception.errcode, ParseKanaErrorCode.EMPTY_PHRASE) - self.assertEqual(err.exception.kwargs, {"position": "2"}) - - with self.assertRaises(ParseKanaError) as err: - kana_parser.parse_kana("ア?ア'") - self.assertEqual( - err.exception.errcode, ParseKanaErrorCode.INTERROGATION_MARK_NOT_AT_END - ) - - -class TestCreateKana(TestCase): - def test_create_kana_interrogative(self): - def koreha_arimasuka_accent_phrases(): - return [ - AccentPhrase( - moras=[ - Mora( - text="コ", - consonant="k", - consonant_length=2.5, - vowel="o", - vowel_length=2.5, - pitch=2.5, - ), - Mora( - text="レ", - consonant="r", - consonant_length=2.5, - vowel="e", - vowel_length=2.5, - pitch=2.5, - ), - Mora( - text="ワ", - consonant="w", - consonant_length=2.5, - vowel="a", - vowel_length=2.5, - pitch=2.5, - ), - ], - accent=3, - pause_mora=None, - is_interrogative=False, - ), - AccentPhrase( - moras=[ - Mora( - text="ア", - consonant=None, - consonant_length=None, - vowel="a", - vowel_length=2.5, - pitch=2.5, - ), - Mora( - text="リ", - consonant="r", - consonant_length=2.5, - vowel="i", - vowel_length=2.5, - pitch=2.5, - ), - Mora( - text="マ", - consonant="m", - consonant_length=2.5, - vowel="a", - vowel_length=2.5, - pitch=2.5, - ), - Mora( - text="ス", - consonant="s", - consonant_length=2.5, - vowel="U", - vowel_length=2.5, - pitch=2.5, - ), - Mora( - text="カ", - consonant="k", - consonant_length=2.5, - vowel="a", - vowel_length=2.5, - pitch=2.5, - ), - ], - accent=3, - pause_mora=None, - is_interrogative=False, - ), - ] - - accent_phrases = koreha_arimasuka_accent_phrases() - self.assertEqual(create_kana(accent_phrases), "コレワ'/アリマ'_スカ") - - accent_phrases = koreha_arimasuka_accent_phrases() - accent_phrases[-1].is_interrogative = True - self.assertEqual(create_kana(accent_phrases), "コレワ'/アリマ'_スカ?") - - def kya_accent_phrases(): - return [ - AccentPhrase( - moras=[ - Mora( - text="キャ", - consonant="ky", - consonant_length=2.5, - vowel="a", - vowel_length=2.5, - pitch=2.5, - ), - Mora( - text="ッ", - consonant=None, - consonant_length=None, - vowel="cl", - vowel_length=0.1, - pitch=0, - ), - ], - accent=1, - pause_mora=None, - is_interrogative=False, - ), - ] - - accent_phrases = kya_accent_phrases() - self.assertEqual(create_kana(accent_phrases), "キャ'ッ") - - accent_phrases = kya_accent_phrases() - accent_phrases[-1].is_interrogative = True - self.assertEqual(create_kana(accent_phrases), "キャ'ッ?") diff --git a/spaces/3laa2/Text2img/README.md b/spaces/3laa2/Text2img/README.md deleted file mode 100644 index 4d60b6f1a40e69db3a64878d7e1684b9d909eda4..0000000000000000000000000000000000000000 --- a/spaces/3laa2/Text2img/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: Text2img -emoji: 🔥 -colorFrom: yellow -colorTo: indigo -sdk: streamlit -sdk_version: 1.19.0 -app_file: app.py -pinned: false -license: openrail ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/42digital/DeepFashion_Classification/README.md b/spaces/42digital/DeepFashion_Classification/README.md deleted file mode 100644 index 02067ee98ac4740840bebbe632b4bc3c28c5716b..0000000000000000000000000000000000000000 --- a/spaces/42digital/DeepFashion_Classification/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: DeepFashion Classification -emoji: 🏆 -colorFrom: purple -colorTo: blue -sdk: gradio -sdk_version: 3.39.0 -app_file: app.py -pinned: true ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference \ No newline at end of file diff --git a/spaces/AI-ANK/PaLM-Kosmos-Vision/app.py b/spaces/AI-ANK/PaLM-Kosmos-Vision/app.py deleted file mode 100644 index 6b3915c20163b4499d64970e55f1a880869c3aa0..0000000000000000000000000000000000000000 --- a/spaces/AI-ANK/PaLM-Kosmos-Vision/app.py +++ /dev/null @@ -1,165 +0,0 @@ -import streamlit as st -import extra_streamlit_components as stx -import requests -from PIL import Image -from transformers import AutoProcessor, AutoModelForVision2Seq -from io import BytesIO -import replicate -from llama_index.llms.palm import PaLM -from llama_index import ServiceContext, VectorStoreIndex, Document -from llama_index.memory import ChatMemoryBuffer -import os -import datetime - -# Set up the title of the application -#st.title("PaLM-Kosmos-Vision") -st.set_page_config(layout="wide") -st.write("My version of ChatGPT vision. You can upload an image and start chatting with the LLM about the image") - -# Sidebar -st.sidebar.markdown('## Created By') -st.sidebar.markdown(""" -[Harshad Suryawanshi](https://www.linkedin.com/in/harshadsuryawanshi/) -""") - -st.sidebar.markdown('## Other Projects') -st.sidebar.markdown(""" -- [AI Equity Research Analyst](https://ai-eqty-rsrch-anlyst.streamlit.app/) -- [Recasting "The Office" Scene](https://blackmirroroffice.streamlit.app/) -- [Story Generator](https://appstorycombined-agaf9j4ceit.streamlit.app/) -""") - -st.sidebar.markdown('## Disclaimer') -st.sidebar.markdown(""" -This application is a conceptual prototype created to demonstrate the potential of Large Language Models (LLMs) in generating equity research reports. The contents generated by this application are purely illustrative and should not be construed as financial advice, endorsements, or recommendations. The author and the application do not provide any guarantee regarding the accuracy, completeness, or timeliness of the information provided. -""") - -# Initialize the cookie manager -cookie_manager = stx.CookieManager() - -# Function to get image caption via Kosmos2. -@st.cache_data -def get_image_caption(image_data): - input_data = { - "image": image_data, - "description_type": "Brief" - } - output = replicate.run( - "lucataco/kosmos-2:3e7b211c29c092f4bcc8853922cc986baa52efe255876b80cac2c2fbb4aff805", - input=input_data - ) - # Split the output string on the newline character and take the first item - text_description = output.split('\n\n')[0] - return text_description - -# Function to create the chat engine. -@st.cache_resource -def create_chat_engine(img_desc, api_key): - llm = PaLM(api_key=api_key) - service_context = ServiceContext.from_defaults(llm=llm) - doc = Document(text=img_desc) - index = VectorStoreIndex.from_documents([doc], service_context=service_context) - chatmemory = ChatMemoryBuffer.from_defaults(token_limit=1500) - - chat_engine = index.as_chat_engine( - chat_mode="context", - system_prompt=( - f"You are a chatbot, able to have normal interactions, as well as talk. " - "You always answer in great detail and are polite. Your responses always descriptive. " - "Your job is to talk about an image the user has uploaded. Image description: {img_desc}." - ), - verbose=True, - memory=chatmemory - ) - return chat_engine - -# Clear chat function -def clear_chat(): - if "messages" in st.session_state: - del st.session_state.messages - if "image_file" in st.session_state: - del st.session_state.image_file - -# Callback function to clear the chat when a new image is uploaded -def on_image_upload(): - clear_chat() - -# Retrieve the message count from cookies -message_count = cookie_manager.get(cookie='message_count') -if message_count is None: - message_count = 0 -else: - message_count = int(message_count) - -# If the message limit has been reached, disable the inputs -if message_count >= 20: - st.error("Notice: The maximum message limit for this demo version has been reached.") - # Disabling the uploader and input by not displaying them - image_uploader_placeholder = st.empty() # Placeholder for the uploader - chat_input_placeholder = st.empty() # Placeholder for the chat input -else: - # Add a clear chat button - if st.button("Clear Chat"): - clear_chat() - - # Image upload section. - image_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"], key="uploaded_image", on_change=on_image_upload) - if image_file: - # Display the uploaded image at a standard width. - st.image(image_file, caption='Uploaded Image.', width=200) - # Process the uploaded image to get a caption. - image_data = BytesIO(image_file.getvalue()) - img_desc = get_image_caption(image_data) - st.write("Image Uploaded Successfully. Ask me anything about it.") - - # Initialize the chat engine with the image description. - chat_engine = create_chat_engine(img_desc, os.environ["GOOGLE_API_KEY"]) - - # Initialize session state for messages if it doesn't exist - if "messages" not in st.session_state: - st.session_state.messages = [] - - # Display previous messages - for message in st.session_state.messages: - with st.chat_message(message["role"]): - st.markdown(message["content"]) - - # Handle new user input - user_input = st.chat_input("Ask me about the image:", key="chat_input") - if user_input: - # Append user message to the session state - st.session_state.messages.append({"role": "user", "content": user_input}) - - # Display user message immediately - with st.chat_message("user"): - st.markdown(user_input) - - # Call the chat engine to get the response if an image has been uploaded - if image_file and user_input: - try: - with st.spinner('Waiting for the chat engine to respond...'): - # Get the response from your chat engine - response = chat_engine.chat(user_input) - - # Append assistant message to the session state - st.session_state.messages.append({"role": "assistant", "content": response}) - - # Display the assistant message - with st.chat_message("assistant"): - st.markdown(response) - - except Exception as e: - st.error(f'An error occurred: {e}') - # Optionally, you can choose to break the flow here if a critical error happens - # return - - # Increment the message count and update the cookie - message_count += 1 - cookie_manager.set('message_count', str(message_count), expires_at=datetime.datetime.now() + datetime.timedelta(days=30)) - - - - -# Set Replicate and Google API keys -os.environ['REPLICATE_API_TOKEN'] = st.secrets['REPLICATE_API_TOKEN'] -os.environ["GOOGLE_API_KEY"] = st.secrets['GOOGLE_API_KEY'] diff --git a/spaces/AIConsultant/MusicGen/audiocraft/models/unet.py b/spaces/AIConsultant/MusicGen/audiocraft/models/unet.py deleted file mode 100644 index db4a6df8e309c21fede37abdbe3c862932027641..0000000000000000000000000000000000000000 --- a/spaces/AIConsultant/MusicGen/audiocraft/models/unet.py +++ /dev/null @@ -1,214 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -""" -Pytorch Unet Module used for diffusion. -""" - -from dataclasses import dataclass -import typing as tp - -import torch -from torch import nn -from torch.nn import functional as F -from audiocraft.modules.transformer import StreamingTransformer, create_sin_embedding - - -@dataclass -class Output: - sample: torch.Tensor - - -def get_model(cfg, channels: int, side: int, num_steps: int): - if cfg.model == 'unet': - return DiffusionUnet( - chin=channels, num_steps=num_steps, **cfg.diffusion_unet) - else: - raise RuntimeError('Not Implemented') - - -class ResBlock(nn.Module): - def __init__(self, channels: int, kernel: int = 3, norm_groups: int = 4, - dilation: int = 1, activation: tp.Type[nn.Module] = nn.ReLU, - dropout: float = 0.): - super().__init__() - stride = 1 - padding = dilation * (kernel - stride) // 2 - Conv = nn.Conv1d - Drop = nn.Dropout1d - self.norm1 = nn.GroupNorm(norm_groups, channels) - self.conv1 = Conv(channels, channels, kernel, 1, padding, dilation=dilation) - self.activation1 = activation() - self.dropout1 = Drop(dropout) - - self.norm2 = nn.GroupNorm(norm_groups, channels) - self.conv2 = Conv(channels, channels, kernel, 1, padding, dilation=dilation) - self.activation2 = activation() - self.dropout2 = Drop(dropout) - - def forward(self, x): - h = self.dropout1(self.conv1(self.activation1(self.norm1(x)))) - h = self.dropout2(self.conv2(self.activation2(self.norm2(h)))) - return x + h - - -class DecoderLayer(nn.Module): - def __init__(self, chin: int, chout: int, kernel: int = 4, stride: int = 2, - norm_groups: int = 4, res_blocks: int = 1, activation: tp.Type[nn.Module] = nn.ReLU, - dropout: float = 0.): - super().__init__() - padding = (kernel - stride) // 2 - self.res_blocks = nn.Sequential( - *[ResBlock(chin, norm_groups=norm_groups, dilation=2**idx, dropout=dropout) - for idx in range(res_blocks)]) - self.norm = nn.GroupNorm(norm_groups, chin) - ConvTr = nn.ConvTranspose1d - self.convtr = ConvTr(chin, chout, kernel, stride, padding, bias=False) - self.activation = activation() - - def forward(self, x: torch.Tensor) -> torch.Tensor: - x = self.res_blocks(x) - x = self.norm(x) - x = self.activation(x) - x = self.convtr(x) - return x - - -class EncoderLayer(nn.Module): - def __init__(self, chin: int, chout: int, kernel: int = 4, stride: int = 2, - norm_groups: int = 4, res_blocks: int = 1, activation: tp.Type[nn.Module] = nn.ReLU, - dropout: float = 0.): - super().__init__() - padding = (kernel - stride) // 2 - Conv = nn.Conv1d - self.conv = Conv(chin, chout, kernel, stride, padding, bias=False) - self.norm = nn.GroupNorm(norm_groups, chout) - self.activation = activation() - self.res_blocks = nn.Sequential( - *[ResBlock(chout, norm_groups=norm_groups, dilation=2**idx, dropout=dropout) - for idx in range(res_blocks)]) - - def forward(self, x: torch.Tensor) -> torch.Tensor: - B, C, T = x.shape - stride, = self.conv.stride - pad = (stride - (T % stride)) % stride - x = F.pad(x, (0, pad)) - - x = self.conv(x) - x = self.norm(x) - x = self.activation(x) - x = self.res_blocks(x) - return x - - -class BLSTM(nn.Module): - """BiLSTM with same hidden units as input dim. - """ - def __init__(self, dim, layers=2): - super().__init__() - self.lstm = nn.LSTM(bidirectional=True, num_layers=layers, hidden_size=dim, input_size=dim) - self.linear = nn.Linear(2 * dim, dim) - - def forward(self, x): - x = x.permute(2, 0, 1) - x = self.lstm(x)[0] - x = self.linear(x) - x = x.permute(1, 2, 0) - return x - - -class DiffusionUnet(nn.Module): - def __init__(self, chin: int = 3, hidden: int = 24, depth: int = 3, growth: float = 2., - max_channels: int = 10_000, num_steps: int = 1000, emb_all_layers=False, cross_attention: bool = False, - bilstm: bool = False, transformer: bool = False, - codec_dim: tp.Optional[int] = None, **kwargs): - super().__init__() - self.encoders = nn.ModuleList() - self.decoders = nn.ModuleList() - self.embeddings: tp.Optional[nn.ModuleList] = None - self.embedding = nn.Embedding(num_steps, hidden) - if emb_all_layers: - self.embeddings = nn.ModuleList() - self.condition_embedding: tp.Optional[nn.Module] = None - for d in range(depth): - encoder = EncoderLayer(chin, hidden, **kwargs) - decoder = DecoderLayer(hidden, chin, **kwargs) - self.encoders.append(encoder) - self.decoders.insert(0, decoder) - if emb_all_layers and d > 0: - assert self.embeddings is not None - self.embeddings.append(nn.Embedding(num_steps, hidden)) - chin = hidden - hidden = min(int(chin * growth), max_channels) - self.bilstm: tp.Optional[nn.Module] - if bilstm: - self.bilstm = BLSTM(chin) - else: - self.bilstm = None - self.use_transformer = transformer - self.cross_attention = False - if transformer: - self.cross_attention = cross_attention - self.transformer = StreamingTransformer(chin, 8, 6, bias_ff=False, bias_attn=False, - cross_attention=cross_attention) - - self.use_codec = False - if codec_dim is not None: - self.conv_codec = nn.Conv1d(codec_dim, chin, 1) - self.use_codec = True - - def forward(self, x: torch.Tensor, step: tp.Union[int, torch.Tensor], condition: tp.Optional[torch.Tensor] = None): - skips = [] - bs = x.size(0) - z = x - view_args = [1] - if type(step) is torch.Tensor: - step_tensor = step - else: - step_tensor = torch.tensor([step], device=x.device, dtype=torch.long).expand(bs) - - for idx, encoder in enumerate(self.encoders): - z = encoder(z) - if idx == 0: - z = z + self.embedding(step_tensor).view(bs, -1, *view_args).expand_as(z) - elif self.embeddings is not None: - z = z + self.embeddings[idx - 1](step_tensor).view(bs, -1, *view_args).expand_as(z) - - skips.append(z) - - if self.use_codec: # insert condition in the bottleneck - assert condition is not None, "Model defined for conditionnal generation" - condition_emb = self.conv_codec(condition) # reshape to the bottleneck dim - assert condition_emb.size(-1) <= 2 * z.size(-1), \ - f"You are downsampling the conditionning with factor >=2 : {condition_emb.size(-1)=} and {z.size(-1)=}" - if not self.cross_attention: - - condition_emb = torch.nn.functional.interpolate(condition_emb, z.size(-1)) - assert z.size() == condition_emb.size() - z += condition_emb - cross_attention_src = None - else: - cross_attention_src = condition_emb.permute(0, 2, 1) # B, T, C - B, T, C = cross_attention_src.shape - positions = torch.arange(T, device=x.device).view(1, -1, 1) - pos_emb = create_sin_embedding(positions, C, max_period=10_000, dtype=cross_attention_src.dtype) - cross_attention_src = cross_attention_src + pos_emb - if self.use_transformer: - z = self.transformer(z.permute(0, 2, 1), cross_attention_src=cross_attention_src).permute(0, 2, 1) - else: - if self.bilstm is None: - z = torch.zeros_like(z) - else: - z = self.bilstm(z) - - for decoder in self.decoders: - s = skips.pop(-1) - z = z[:, :, :s.shape[2]] - z = z + s - z = decoder(z) - - z = z[:, :, :x.shape[2]] - return Output(z) diff --git a/spaces/AIGC-Audio/AudioGPT/text_to_audio/Make_An_Audio/ldm/modules/ema.py b/spaces/AIGC-Audio/AudioGPT/text_to_audio/Make_An_Audio/ldm/modules/ema.py deleted file mode 100644 index c8c75af43565f6e140287644aaaefa97dd6e67c5..0000000000000000000000000000000000000000 --- a/spaces/AIGC-Audio/AudioGPT/text_to_audio/Make_An_Audio/ldm/modules/ema.py +++ /dev/null @@ -1,76 +0,0 @@ -import torch -from torch import nn - - -class LitEma(nn.Module): - def __init__(self, model, decay=0.9999, use_num_upates=True): - super().__init__() - if decay < 0.0 or decay > 1.0: - raise ValueError('Decay must be between 0 and 1') - - self.m_name2s_name = {} - self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32)) - self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates - else torch.tensor(-1,dtype=torch.int)) - - for name, p in model.named_parameters(): - if p.requires_grad: - #remove as '.'-character is not allowed in buffers - s_name = name.replace('.','') - self.m_name2s_name.update({name:s_name}) - self.register_buffer(s_name,p.clone().detach().data) - - self.collected_params = [] - - def forward(self,model): - decay = self.decay - - if self.num_updates >= 0: - self.num_updates += 1 - decay = min(self.decay,(1 + self.num_updates) / (10 + self.num_updates)) - - one_minus_decay = 1.0 - decay - - with torch.no_grad(): - m_param = dict(model.named_parameters()) - shadow_params = dict(self.named_buffers()) - - for key in m_param: - if m_param[key].requires_grad: - sname = self.m_name2s_name[key] - shadow_params[sname] = shadow_params[sname].type_as(m_param[key]) - shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key])) - else: - assert not key in self.m_name2s_name - - def copy_to(self, model): - m_param = dict(model.named_parameters()) - shadow_params = dict(self.named_buffers()) - for key in m_param: - if m_param[key].requires_grad: - m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data) - else: - assert not key in self.m_name2s_name - - def store(self, parameters): - """ - Save the current parameters for restoring later. - Args: - parameters: Iterable of `torch.nn.Parameter`; the parameters to be - temporarily stored. - """ - self.collected_params = [param.clone() for param in parameters] - - def restore(self, parameters): - """ - Restore the parameters stored with the `store` method. - Useful to validate the model with EMA parameters without affecting the - original optimization process. Store the parameters before the - `copy_to` method. After validation (or model saving), use this to - restore the former parameters. - Args: - parameters: Iterable of `torch.nn.Parameter`; the parameters to be - updated with the stored parameters. - """ - for c_param, param in zip(self.collected_params, parameters): - param.data.copy_(c_param.data) diff --git a/spaces/Ababababababbababa/Ashaar/poetry_diacritizer/test.py b/spaces/Ababababababbababa/Ashaar/poetry_diacritizer/test.py deleted file mode 100644 index b230ddf5ba4901aee0cf5e5d102fcca328038eeb..0000000000000000000000000000000000000000 --- a/spaces/Ababababababbababa/Ashaar/poetry_diacritizer/test.py +++ /dev/null @@ -1,31 +0,0 @@ -import argparse -import random -from tester import DiacritizationTester - -import numpy as np -import torch - - -SEED = 1234 -random.seed(SEED) -np.random.seed(SEED) -torch.manual_seed(SEED) -torch.cuda.manual_seed(SEED) -torch.backends.cudnn.deterministic = True -torch.backends.cudnn.benchmark = False - - -def train_parser(): - parser = argparse.ArgumentParser() - parser.add_argument("--model", dest="model_kind", type=str, required=True) - parser.add_argument("--config", dest="config", type=str, required=True) - parser.add_argument("--model_path", dest="model_path", type=str, required=False) - parser.add_argument("--test", dest="test", type=bool) - return parser - - -parser = train_parser() -args = parser.parse_args() - -tester = DiacritizationTester(args.config, args.model_kind) -tester.run() diff --git a/spaces/AchyuthGamer/OpenGPT/g4f/Provider/You.py b/spaces/AchyuthGamer/OpenGPT/g4f/Provider/You.py deleted file mode 100644 index 1afd18be4560fe684744d10e34ddcdd833238178..0000000000000000000000000000000000000000 --- a/spaces/AchyuthGamer/OpenGPT/g4f/Provider/You.py +++ /dev/null @@ -1,40 +0,0 @@ -from __future__ import annotations - -import json - -from ..requests import StreamSession -from ..typing import AsyncGenerator, Messages -from .base_provider import AsyncGeneratorProvider, format_prompt - - -class You(AsyncGeneratorProvider): - url = "https://you.com" - working = True - supports_gpt_35_turbo = True - - - @classmethod - async def create_async_generator( - cls, - model: str, - messages: Messages, - proxy: str = None, - timeout: int = 120, - **kwargs, - ) -> AsyncGenerator: - async with StreamSession(proxies={"https": proxy}, impersonate="chrome107", timeout=timeout) as session: - headers = { - "Accept": "text/event-stream", - "Referer": f"{cls.url}/search?fromSearchBar=true&tbm=youchat", - } - data = {"q": format_prompt(messages), "domain": "youchat", "chat": ""} - async with session.get( - f"{cls.url}/api/streamingSearch", - params=data, - headers=headers - ) as response: - response.raise_for_status() - start = b'data: {"youChatToken": ' - async for line in response.iter_lines(): - if line.startswith(start): - yield json.loads(line[len(start):-1]) \ No newline at end of file diff --git a/spaces/Adapter/T2I-Adapter/train_seg.py b/spaces/Adapter/T2I-Adapter/train_seg.py deleted file mode 100644 index 82ed0724ef757a93e9f9fdd4ef3ada4a0203f906..0000000000000000000000000000000000000000 --- a/spaces/Adapter/T2I-Adapter/train_seg.py +++ /dev/null @@ -1,372 +0,0 @@ -import cv2 -import torch -import os -from basicsr.utils import img2tensor, tensor2img, scandir, get_time_str, get_root_logger, get_env_info -from ldm.data.dataset_coco import dataset_coco_mask_color -import argparse -from ldm.models.diffusion.ddim import DDIMSampler -from ldm.models.diffusion.plms import PLMSSampler -from ldm.models.diffusion.dpm_solver import DPMSolverSampler -from omegaconf import OmegaConf -from ldm.util import instantiate_from_config -from ldm.modules.encoders.adapter import Adapter -from PIL import Image -import numpy as np -import torch.nn as nn -import matplotlib.pyplot as plt -import time -import os.path as osp -from basicsr.utils.options import copy_opt_file, dict2str -import logging -from dist_util import init_dist, master_only, get_bare_model, get_dist_info - -def load_model_from_config(config, ckpt, verbose=False): - print(f"Loading model from {ckpt}") - pl_sd = torch.load(ckpt, map_location="cpu") - if "global_step" in pl_sd: - print(f"Global Step: {pl_sd['global_step']}") - sd = pl_sd["state_dict"] - model = instantiate_from_config(config.model) - m, u = model.load_state_dict(sd, strict=False) - if len(m) > 0 and verbose: - print("missing keys:") - print(m) - if len(u) > 0 and verbose: - print("unexpected keys:") - print(u) - - model.cuda() - model.eval() - return model - -@master_only -def mkdir_and_rename(path): - """mkdirs. If path exists, rename it with timestamp and create a new one. - - Args: - path (str): Folder path. - """ - if osp.exists(path): - new_name = path + '_archived_' + get_time_str() - print(f'Path already exists. Rename it to {new_name}', flush=True) - os.rename(path, new_name) - os.makedirs(path, exist_ok=True) - os.makedirs(osp.join(experiments_root, 'models')) - os.makedirs(osp.join(experiments_root, 'training_states')) - os.makedirs(osp.join(experiments_root, 'visualization')) - -def load_resume_state(opt): - resume_state_path = None - if opt.auto_resume: - state_path = osp.join('experiments', opt.name, 'training_states') - if osp.isdir(state_path): - states = list(scandir(state_path, suffix='state', recursive=False, full_path=False)) - if len(states) != 0: - states = [float(v.split('.state')[0]) for v in states] - resume_state_path = osp.join(state_path, f'{max(states):.0f}.state') - opt.resume_state_path = resume_state_path - # else: - # if opt['path'].get('resume_state'): - # resume_state_path = opt['path']['resume_state'] - - if resume_state_path is None: - resume_state = None - else: - device_id = torch.cuda.current_device() - resume_state = torch.load(resume_state_path, map_location=lambda storage, loc: storage.cuda(device_id)) - # check_resume(opt, resume_state['iter']) - return resume_state - -parser = argparse.ArgumentParser() -parser.add_argument( - "--bsize", - type=int, - default=8, - help="the prompt to render" -) -parser.add_argument( - "--epochs", - type=int, - default=10000, - help="the prompt to render" -) -parser.add_argument( - "--num_workers", - type=int, - default=8, - help="the prompt to render" -) -parser.add_argument( - "--use_shuffle", - type=bool, - default=True, - help="the prompt to render" -) -parser.add_argument( - "--dpm_solver", - action='store_true', - help="use dpm_solver sampling", -) -parser.add_argument( - "--plms", - action='store_true', - help="use plms sampling", -) -parser.add_argument( - "--auto_resume", - action='store_true', - help="use plms sampling", -) -parser.add_argument( - "--ckpt", - type=str, - default="ckp/sd-v1-4.ckpt", - help="path to checkpoint of model", -) -parser.add_argument( - "--config", - type=str, - default="configs/stable-diffusion/train_mask.yaml", - help="path to config which constructs model", -) -parser.add_argument( - "--print_fq", - type=int, - default=100, - help="path to config which constructs model", -) -parser.add_argument( - "--H", - type=int, - default=512, - help="image height, in pixel space", -) -parser.add_argument( - "--W", - type=int, - default=512, - help="image width, in pixel space", -) -parser.add_argument( - "--C", - type=int, - default=4, - help="latent channels", -) -parser.add_argument( - "--f", - type=int, - default=8, - help="downsampling factor", -) -parser.add_argument( - "--ddim_steps", - type=int, - default=50, - help="number of ddim sampling steps", -) -parser.add_argument( - "--n_samples", - type=int, - default=1, - help="how many samples to produce for each given prompt. A.k.a. batch size", -) -parser.add_argument( - "--ddim_eta", - type=float, - default=0.0, - help="ddim eta (eta=0.0 corresponds to deterministic sampling", -) -parser.add_argument( - "--scale", - type=float, - default=7.5, - help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))", -) -parser.add_argument( - "--gpus", - default=[0,1,2,3], - help="gpu idx", -) -parser.add_argument( - '--local_rank', - default=0, - type=int, - help='node rank for distributed training' -) -parser.add_argument( - '--launcher', - default='pytorch', - type=str, - help='node rank for distributed training' -) -opt = parser.parse_args() - -if __name__ == '__main__': - config = OmegaConf.load(f"{opt.config}") - opt.name = config['name'] - - # distributed setting - init_dist(opt.launcher) - torch.backends.cudnn.benchmark = True - device='cuda' - torch.cuda.set_device(opt.local_rank) - - # dataset - path_json_train = 'coco_stuff/mask/annotations/captions_train2017.json' - path_json_val = 'coco_stuff/mask/annotations/captions_val2017.json' - train_dataset = dataset_coco_mask_color(path_json_train, - root_path_im='coco/train2017', - root_path_mask='coco_stuff/mask/train2017_color', - image_size=512 - ) - train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) - val_dataset = dataset_coco_mask_color(path_json_val, - root_path_im='coco/val2017', - root_path_mask='coco_stuff/mask/val2017_color', - image_size=512 - ) - train_dataloader = torch.utils.data.DataLoader( - train_dataset, - batch_size=opt.bsize, - shuffle=(train_sampler is None), - num_workers=opt.num_workers, - pin_memory=True, - sampler=train_sampler) - val_dataloader = torch.utils.data.DataLoader( - val_dataset, - batch_size=1, - shuffle=False, - num_workers=1, - pin_memory=False) - - # stable diffusion - model = load_model_from_config(config, f"{opt.ckpt}").to(device) - - # sketch encoder - model_ad = Adapter(cin=int(3*64), channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True, use_conv=False).to(device) - - - # to gpus - model_ad = torch.nn.parallel.DistributedDataParallel( - model_ad, - device_ids=[opt.local_rank], - output_device=opt.local_rank) - model = torch.nn.parallel.DistributedDataParallel( - model, - device_ids=[opt.local_rank], - output_device=opt.local_rank) - # device_ids=[torch.cuda.current_device()]) - - # optimizer - params = list(model_ad.parameters()) - optimizer = torch.optim.AdamW(params, lr=config['training']['lr']) - - experiments_root = osp.join('experiments', opt.name) - - # resume state - resume_state = load_resume_state(opt) - if resume_state is None: - mkdir_and_rename(experiments_root) - start_epoch = 0 - current_iter = 0 - # WARNING: should not use get_root_logger in the above codes, including the called functions - # Otherwise the logger will not be properly initialized - log_file = osp.join(experiments_root, f"train_{opt.name}_{get_time_str()}.log") - logger = get_root_logger(logger_name='basicsr', log_level=logging.INFO, log_file=log_file) - logger.info(get_env_info()) - logger.info(dict2str(config)) - else: - # WARNING: should not use get_root_logger in the above codes, including the called functions - # Otherwise the logger will not be properly initialized - log_file = osp.join(experiments_root, f"train_{opt.name}_{get_time_str()}.log") - logger = get_root_logger(logger_name='basicsr', log_level=logging.INFO, log_file=log_file) - logger.info(get_env_info()) - logger.info(dict2str(config)) - resume_optimizers = resume_state['optimizers'] - optimizer.load_state_dict(resume_optimizers) - logger.info(f"Resuming training from epoch: {resume_state['epoch']}, " f"iter: {resume_state['iter']}.") - start_epoch = resume_state['epoch'] - current_iter = resume_state['iter'] - - # copy the yml file to the experiment root - copy_opt_file(opt.config, experiments_root) - - # training - logger.info(f'Start training from epoch: {start_epoch}, iter: {current_iter}') - for epoch in range(start_epoch, opt.epochs): - train_dataloader.sampler.set_epoch(epoch) - # train - for _, data in enumerate(train_dataloader): - current_iter += 1 - with torch.no_grad(): - c = model.module.get_learned_conditioning(data['sentence']) - z = model.module.encode_first_stage((data['im']*2-1.).cuda(non_blocking=True)) - z = model.module.get_first_stage_encoding(z) - - mask = data['mask'] - optimizer.zero_grad() - model.zero_grad() - features_adapter = model_ad(mask) - l_pixel, loss_dict = model(z, c=c, features_adapter = features_adapter) - l_pixel.backward() - optimizer.step() - - if (current_iter+1)%opt.print_fq == 0: - logger.info(loss_dict) - - # save checkpoint - rank, _ = get_dist_info() - if (rank==0) and ((current_iter+1)%config['training']['save_freq'] == 0): - save_filename = f'model_ad_{current_iter+1}.pth' - save_path = os.path.join(experiments_root, 'models', save_filename) - save_dict = {} - model_ad_bare = get_bare_model(model_ad) - state_dict = model_ad_bare.state_dict() - for key, param in state_dict.items(): - if key.startswith('module.'): # remove unnecessary 'module.' - key = key[7:] - save_dict[key] = param.cpu() - torch.save(save_dict, save_path) - # save state - state = {'epoch': epoch, 'iter': current_iter+1, 'optimizers': optimizer.state_dict()} - save_filename = f'{current_iter+1}.state' - save_path = os.path.join(experiments_root, 'training_states', save_filename) - torch.save(state, save_path) - - # val - rank, _ = get_dist_info() - if rank==0: - for data in val_dataloader: - with torch.no_grad(): - if opt.dpm_solver: - sampler = DPMSolverSampler(model.module) - elif opt.plms: - sampler = PLMSSampler(model.module) - else: - sampler = DDIMSampler(model.module) - c = model.module.get_learned_conditioning(data['sentence']) - mask = data['mask'] - im_mask = tensor2img(mask) - cv2.imwrite(os.path.join(experiments_root, 'visualization', 'mask_%04d.png'%epoch), im_mask) - features_adapter = model_ad(mask) - shape = [opt.C, opt.H // opt.f, opt.W // opt.f] - samples_ddim, _ = sampler.sample(S=opt.ddim_steps, - conditioning=c, - batch_size=opt.n_samples, - shape=shape, - verbose=False, - unconditional_guidance_scale=opt.scale, - unconditional_conditioning=model.module.get_learned_conditioning(opt.n_samples * [""]), - eta=opt.ddim_eta, - x_T=None, - features_adapter=features_adapter) - x_samples_ddim = model.module.decode_first_stage(samples_ddim) - x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) - x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy() - for id_sample, x_sample in enumerate(x_samples_ddim): - x_sample = 255.*x_sample - img = x_sample.astype(np.uint8) - img = cv2.putText(img.copy(), data['sentence'][0], (10,30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2) - cv2.imwrite(os.path.join(experiments_root, 'visualization', 'sample_e%04d_s%04d.png'%(epoch, id_sample)), img[:,:,::-1]) - break diff --git a/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/buttons/RemoveChildMethods.js b/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/buttons/RemoveChildMethods.js deleted file mode 100644 index f07d12dc1e9506ed3a7027ddb9878f0bbd0d9596..0000000000000000000000000000000000000000 --- a/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/buttons/RemoveChildMethods.js +++ /dev/null @@ -1,55 +0,0 @@ -import Sizer from '../sizer/Sizer.js'; -import IsArray from '../../../plugins/utils/object/IsArray.js'; - -const SizerRmove = Sizer.prototype.remove; -const SizerClear = Sizer.prototype.clear; - -var Remove = function (gameObject, destroyChild) { - if (this.getParentSizer(gameObject) !== this) { - return this; - } - - this.buttonGroup.remove(gameObject); - SizerRmove.call(this, gameObject, destroyChild); - return this; -}; - -export default { - remove(gameObject, destroyChild) { - // Remove gameObject no matter it is a button or not - if (IsArray(gameObject)) { - var gameObjects = gameObject; - for (var i = 0, cnt = gameObjects.length; i < cnt; i++) { - Remove.call(this, gameObjects[i], destroyChild); - } - } else { - Remove.call(this, gameObject, destroyChild); - } - return this; - }, - - clear(destroyChild) { - var buttons = this.buttonGroup.buttons; - buttons.length = 0; - SizerClear.call(this, destroyChild); - return this; - }, - - removeButton(gameObject, destroyChild) { - var gameObject = this.getButton(gameObject); - // Don't remove this gameObject, it is not a button - if (!gameObject) { - return this; - } - this.remove(gameObject, destroyChild); - return this; - }, - - clearButtons(destroyChild) { - var buttons = this.buttonGroup.buttons; - for (var i = buttons.length - 1; i >= 0; i--) { - Remove.call(this, buttons[i], destroyChild); - } - return this; - } -} \ No newline at end of file diff --git a/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/customprogress/Factory.d.ts b/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/customprogress/Factory.d.ts deleted file mode 100644 index 54a5919382c93759cb9fd74af8b877dc93e24903..0000000000000000000000000000000000000000 --- a/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/customprogress/Factory.d.ts +++ /dev/null @@ -1,5 +0,0 @@ -import CustomProgress from "./CustomProgress"; - -export default function ( - config?: CustomProgress.IConfig -): CustomProgress; \ No newline at end of file diff --git a/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/customprogress/Factory.js b/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/customprogress/Factory.js deleted file mode 100644 index 9be40cdee19d776e5eed254fa0be4cff4cf02d78..0000000000000000000000000000000000000000 --- a/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/customprogress/Factory.js +++ /dev/null @@ -1,13 +0,0 @@ -import CustomProgress from './CustomProgress.js'; -import ObjectFactory from '../ObjectFactory.js'; -import SetValue from '../../../plugins/utils/object/SetValue.js'; - -ObjectFactory.register('customProgress', function (x, y, width, height, config) { - var gameObject = new CustomProgress(this.scene, x, y, width, height, config); - this.scene.add.existing(gameObject); - return gameObject; -}); - -SetValue(window, 'RexPlugins.UI.CustomProgress', CustomProgress); - -export default CustomProgress; \ No newline at end of file diff --git a/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/space/Factory.d.ts b/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/space/Factory.d.ts deleted file mode 100644 index 2a7230ccc2713f61640536d2e64d94d858c3c48a..0000000000000000000000000000000000000000 --- a/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/space/Factory.d.ts +++ /dev/null @@ -1,3 +0,0 @@ -import Space from './Space'; - -export default function (): Space; diff --git a/spaces/Andy1621/uniformer_image_detection/configs/cascade_rcnn/cascade_mask_rcnn_r101_caffe_fpn_1x_coco.py b/spaces/Andy1621/uniformer_image_detection/configs/cascade_rcnn/cascade_mask_rcnn_r101_caffe_fpn_1x_coco.py deleted file mode 100644 index f42165d9fd14600858681e695de7927aac865652..0000000000000000000000000000000000000000 --- a/spaces/Andy1621/uniformer_image_detection/configs/cascade_rcnn/cascade_mask_rcnn_r101_caffe_fpn_1x_coco.py +++ /dev/null @@ -1,4 +0,0 @@ -_base_ = './cascade_mask_rcnn_r50_caffe_fpn_1x_coco.py' -model = dict( - pretrained='open-mmlab://detectron2/resnet101_caffe', - backbone=dict(depth=101)) diff --git a/spaces/Andy1621/uniformer_image_detection/configs/dcn/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py b/spaces/Andy1621/uniformer_image_detection/configs/dcn/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py deleted file mode 100644 index ababe58dc3fdfbbc6c366f48271db31bf6e2e9e2..0000000000000000000000000000000000000000 --- a/spaces/Andy1621/uniformer_image_detection/configs/dcn/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py +++ /dev/null @@ -1,5 +0,0 @@ -_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py' -model = dict( - backbone=dict( - dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False), - stage_with_dcn=(False, True, True, True))) diff --git a/spaces/Andy1621/uniformer_image_detection/mmdet/models/losses/gfocal_loss.py b/spaces/Andy1621/uniformer_image_detection/mmdet/models/losses/gfocal_loss.py deleted file mode 100644 index 9d3b8833dc50c76f6741db5341dbf8da3402d07b..0000000000000000000000000000000000000000 --- a/spaces/Andy1621/uniformer_image_detection/mmdet/models/losses/gfocal_loss.py +++ /dev/null @@ -1,188 +0,0 @@ -import mmcv -import torch.nn as nn -import torch.nn.functional as F - -from ..builder import LOSSES -from .utils import weighted_loss - - -@mmcv.jit(derivate=True, coderize=True) -@weighted_loss -def quality_focal_loss(pred, target, beta=2.0): - r"""Quality Focal Loss (QFL) is from `Generalized Focal Loss: Learning - Qualified and Distributed Bounding Boxes for Dense Object Detection - `_. - - Args: - pred (torch.Tensor): Predicted joint representation of classification - and quality (IoU) estimation with shape (N, C), C is the number of - classes. - target (tuple([torch.Tensor])): Target category label with shape (N,) - and target quality label with shape (N,). - beta (float): The beta parameter for calculating the modulating factor. - Defaults to 2.0. - - Returns: - torch.Tensor: Loss tensor with shape (N,). - """ - assert len(target) == 2, """target for QFL must be a tuple of two elements, - including category label and quality label, respectively""" - # label denotes the category id, score denotes the quality score - label, score = target - - # negatives are supervised by 0 quality score - pred_sigmoid = pred.sigmoid() - scale_factor = pred_sigmoid - zerolabel = scale_factor.new_zeros(pred.shape) - loss = F.binary_cross_entropy_with_logits( - pred, zerolabel, reduction='none') * scale_factor.pow(beta) - - # FG cat_id: [0, num_classes -1], BG cat_id: num_classes - bg_class_ind = pred.size(1) - pos = ((label >= 0) & (label < bg_class_ind)).nonzero().squeeze(1) - pos_label = label[pos].long() - # positives are supervised by bbox quality (IoU) score - scale_factor = score[pos] - pred_sigmoid[pos, pos_label] - loss[pos, pos_label] = F.binary_cross_entropy_with_logits( - pred[pos, pos_label], score[pos], - reduction='none') * scale_factor.abs().pow(beta) - - loss = loss.sum(dim=1, keepdim=False) - return loss - - -@mmcv.jit(derivate=True, coderize=True) -@weighted_loss -def distribution_focal_loss(pred, label): - r"""Distribution Focal Loss (DFL) is from `Generalized Focal Loss: Learning - Qualified and Distributed Bounding Boxes for Dense Object Detection - `_. - - Args: - pred (torch.Tensor): Predicted general distribution of bounding boxes - (before softmax) with shape (N, n+1), n is the max value of the - integral set `{0, ..., n}` in paper. - label (torch.Tensor): Target distance label for bounding boxes with - shape (N,). - - Returns: - torch.Tensor: Loss tensor with shape (N,). - """ - dis_left = label.long() - dis_right = dis_left + 1 - weight_left = dis_right.float() - label - weight_right = label - dis_left.float() - loss = F.cross_entropy(pred, dis_left, reduction='none') * weight_left \ - + F.cross_entropy(pred, dis_right, reduction='none') * weight_right - return loss - - -@LOSSES.register_module() -class QualityFocalLoss(nn.Module): - r"""Quality Focal Loss (QFL) is a variant of `Generalized Focal Loss: - Learning Qualified and Distributed Bounding Boxes for Dense Object - Detection `_. - - Args: - use_sigmoid (bool): Whether sigmoid operation is conducted in QFL. - Defaults to True. - beta (float): The beta parameter for calculating the modulating factor. - Defaults to 2.0. - reduction (str): Options are "none", "mean" and "sum". - loss_weight (float): Loss weight of current loss. - """ - - def __init__(self, - use_sigmoid=True, - beta=2.0, - reduction='mean', - loss_weight=1.0): - super(QualityFocalLoss, self).__init__() - assert use_sigmoid is True, 'Only sigmoid in QFL supported now.' - self.use_sigmoid = use_sigmoid - self.beta = beta - self.reduction = reduction - self.loss_weight = loss_weight - - def forward(self, - pred, - target, - weight=None, - avg_factor=None, - reduction_override=None): - """Forward function. - - Args: - pred (torch.Tensor): Predicted joint representation of - classification and quality (IoU) estimation with shape (N, C), - C is the number of classes. - target (tuple([torch.Tensor])): Target category label with shape - (N,) and target quality label with shape (N,). - weight (torch.Tensor, optional): The weight of loss for each - prediction. Defaults to None. - avg_factor (int, optional): Average factor that is used to average - the loss. Defaults to None. - reduction_override (str, optional): The reduction method used to - override the original reduction method of the loss. - Defaults to None. - """ - assert reduction_override in (None, 'none', 'mean', 'sum') - reduction = ( - reduction_override if reduction_override else self.reduction) - if self.use_sigmoid: - loss_cls = self.loss_weight * quality_focal_loss( - pred, - target, - weight, - beta=self.beta, - reduction=reduction, - avg_factor=avg_factor) - else: - raise NotImplementedError - return loss_cls - - -@LOSSES.register_module() -class DistributionFocalLoss(nn.Module): - r"""Distribution Focal Loss (DFL) is a variant of `Generalized Focal Loss: - Learning Qualified and Distributed Bounding Boxes for Dense Object - Detection `_. - - Args: - reduction (str): Options are `'none'`, `'mean'` and `'sum'`. - loss_weight (float): Loss weight of current loss. - """ - - def __init__(self, reduction='mean', loss_weight=1.0): - super(DistributionFocalLoss, self).__init__() - self.reduction = reduction - self.loss_weight = loss_weight - - def forward(self, - pred, - target, - weight=None, - avg_factor=None, - reduction_override=None): - """Forward function. - - Args: - pred (torch.Tensor): Predicted general distribution of bounding - boxes (before softmax) with shape (N, n+1), n is the max value - of the integral set `{0, ..., n}` in paper. - target (torch.Tensor): Target distance label for bounding boxes - with shape (N,). - weight (torch.Tensor, optional): The weight of loss for each - prediction. Defaults to None. - avg_factor (int, optional): Average factor that is used to average - the loss. Defaults to None. - reduction_override (str, optional): The reduction method used to - override the original reduction method of the loss. - Defaults to None. - """ - assert reduction_override in (None, 'none', 'mean', 'sum') - reduction = ( - reduction_override if reduction_override else self.reduction) - loss_cls = self.loss_weight * distribution_focal_loss( - pred, target, weight, reduction=reduction, avg_factor=avg_factor) - return loss_cls diff --git a/spaces/AngoHF/ANGO-Leaderboard/components/top.py b/spaces/AngoHF/ANGO-Leaderboard/components/top.py deleted file mode 100644 index 941ed3874abc2f05b433dbf35411c75422b842f1..0000000000000000000000000000000000000000 --- a/spaces/AngoHF/ANGO-Leaderboard/components/top.py +++ /dev/null @@ -1,13 +0,0 @@ -import gradio as gr - -from assets.content import TITLE, INTRODUCTION_TEXT -from assets.path import SEASON - - -def create_top(): - gr.HTML(TITLE) - gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") - with gr.Row(): - season_dropdown = gr.Dropdown(choices=list(SEASON), value="latest", label="Season Select") - language_dropdown = gr.Dropdown(choices=['en', 'zh'], value='en', label='Language Select') - return {"season": season_dropdown, "language": language_dropdown} diff --git a/spaces/AnimalEquality/chatbot/app.py b/spaces/AnimalEquality/chatbot/app.py deleted file mode 100644 index 4f256467dc20074ea0ddbbbcf267323ef180170e..0000000000000000000000000000000000000000 --- a/spaces/AnimalEquality/chatbot/app.py +++ /dev/null @@ -1,21 +0,0 @@ -from lv_recipe_chatbot.app import create_demo, ConversationBot -from lv_recipe_chatbot.ingredient_vision import ( - VeganIngredientFinder, - BlipImageCaptioning, -) -import os - - -# for Hugging Face - -if __name__ == "__main__": - vegan_ingred_finder = VeganIngredientFinder() - img_cap = BlipImageCaptioning("cpu") - demo = create_demo( - ConversationBot( - vegan_ingred_finder=vegan_ingred_finder, img_cap=img_cap, verbose=True - ) - ) - demo.launch( - auth=(os.environ["GRADIO_DEMO_USERNAME"], os.environ["GRADIO_DEMO_PASSWORD"]) - ) diff --git a/spaces/Anindya/Marketing_Campaign_LLM/README.md b/spaces/Anindya/Marketing_Campaign_LLM/README.md deleted file mode 100644 index 00c52c28dda23b424f347d6cae756ad951464356..0000000000000000000000000000000000000000 --- a/spaces/Anindya/Marketing_Campaign_LLM/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: Marketing Campaign LLM -emoji: 📚 -colorFrom: red -colorTo: yellow -sdk: streamlit -sdk_version: 1.26.0 -app_file: app.py -pinned: false ---- - -# Marketing_Campaign_LLM -Simple Marketing Campaign app using LLM diff --git a/spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/dotenv/main.py b/spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/dotenv/main.py deleted file mode 100644 index f40c20ea202b283260a278bc38b0c63a8e3efc1e..0000000000000000000000000000000000000000 --- a/spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/dotenv/main.py +++ /dev/null @@ -1,382 +0,0 @@ -import io -import logging -import os -import shutil -import sys -import tempfile -from collections import OrderedDict -from contextlib import contextmanager -from typing import (IO, Dict, Iterable, Iterator, Mapping, Optional, Tuple, - Union) - -from .parser import Binding, parse_stream -from .variables import parse_variables - -# A type alias for a string path to be used for the paths in this file. -# These paths may flow to `open()` and `shutil.move()`; `shutil.move()` -# only accepts string paths, not byte paths or file descriptors. See -# https://github.com/python/typeshed/pull/6832. -StrPath = Union[str, 'os.PathLike[str]'] - -logger = logging.getLogger(__name__) - - -def with_warn_for_invalid_lines(mappings: Iterator[Binding]) -> Iterator[Binding]: - for mapping in mappings: - if mapping.error: - logger.warning( - "Python-dotenv could not parse statement starting at line %s", - mapping.original.line, - ) - yield mapping - - -class DotEnv: - def __init__( - self, - dotenv_path: Optional[StrPath], - stream: Optional[IO[str]] = None, - verbose: bool = False, - encoding: Optional[str] = None, - interpolate: bool = True, - override: bool = True, - ) -> None: - self.dotenv_path: Optional[StrPath] = dotenv_path - self.stream: Optional[IO[str]] = stream - self._dict: Optional[Dict[str, Optional[str]]] = None - self.verbose: bool = verbose - self.encoding: Optional[str] = encoding - self.interpolate: bool = interpolate - self.override: bool = override - - @contextmanager - def _get_stream(self) -> Iterator[IO[str]]: - if self.dotenv_path and os.path.isfile(self.dotenv_path): - with open(self.dotenv_path, encoding=self.encoding) as stream: - yield stream - elif self.stream is not None: - yield self.stream - else: - if self.verbose: - logger.info( - "Python-dotenv could not find configuration file %s.", - self.dotenv_path or '.env', - ) - yield io.StringIO('') - - def dict(self) -> Dict[str, Optional[str]]: - """Return dotenv as dict""" - if self._dict: - return self._dict - - raw_values = self.parse() - - if self.interpolate: - self._dict = OrderedDict(resolve_variables(raw_values, override=self.override)) - else: - self._dict = OrderedDict(raw_values) - - return self._dict - - def parse(self) -> Iterator[Tuple[str, Optional[str]]]: - with self._get_stream() as stream: - for mapping in with_warn_for_invalid_lines(parse_stream(stream)): - if mapping.key is not None: - yield mapping.key, mapping.value - - def set_as_environment_variables(self) -> bool: - """ - Load the current dotenv as system environment variable. - """ - if not self.dict(): - return False - - for k, v in self.dict().items(): - if k in os.environ and not self.override: - continue - if v is not None: - os.environ[k] = v - - return True - - def get(self, key: str) -> Optional[str]: - """ - """ - data = self.dict() - - if key in data: - return data[key] - - if self.verbose: - logger.warning("Key %s not found in %s.", key, self.dotenv_path) - - return None - - -def get_key( - dotenv_path: StrPath, - key_to_get: str, - encoding: Optional[str] = "utf-8", -) -> Optional[str]: - """ - Get the value of a given key from the given .env. - - Returns `None` if the key isn't found or doesn't have a value. - """ - return DotEnv(dotenv_path, verbose=True, encoding=encoding).get(key_to_get) - - -@contextmanager -def rewrite( - path: StrPath, - encoding: Optional[str], -) -> Iterator[Tuple[IO[str], IO[str]]]: - if not os.path.isfile(path): - with open(path, mode="w", encoding=encoding) as source: - source.write("") - with tempfile.NamedTemporaryFile(mode="w", encoding=encoding, delete=False) as dest: - try: - with open(path, encoding=encoding) as source: - yield (source, dest) - except BaseException: - os.unlink(dest.name) - raise - shutil.move(dest.name, path) - - -def set_key( - dotenv_path: StrPath, - key_to_set: str, - value_to_set: str, - quote_mode: str = "always", - export: bool = False, - encoding: Optional[str] = "utf-8", -) -> Tuple[Optional[bool], str, str]: - """ - Adds or Updates a key/value to the given .env - - If the .env path given doesn't exist, fails instead of risking creating - an orphan .env somewhere in the filesystem - """ - if quote_mode not in ("always", "auto", "never"): - raise ValueError(f"Unknown quote_mode: {quote_mode}") - - quote = ( - quote_mode == "always" - or (quote_mode == "auto" and not value_to_set.isalnum()) - ) - - if quote: - value_out = "'{}'".format(value_to_set.replace("'", "\\'")) - else: - value_out = value_to_set - if export: - line_out = f'export {key_to_set}={value_out}\n' - else: - line_out = f"{key_to_set}={value_out}\n" - - with rewrite(dotenv_path, encoding=encoding) as (source, dest): - replaced = False - missing_newline = False - for mapping in with_warn_for_invalid_lines(parse_stream(source)): - if mapping.key == key_to_set: - dest.write(line_out) - replaced = True - else: - dest.write(mapping.original.string) - missing_newline = not mapping.original.string.endswith("\n") - if not replaced: - if missing_newline: - dest.write("\n") - dest.write(line_out) - - return True, key_to_set, value_to_set - - -def unset_key( - dotenv_path: StrPath, - key_to_unset: str, - quote_mode: str = "always", - encoding: Optional[str] = "utf-8", -) -> Tuple[Optional[bool], str]: - """ - Removes a given key from the given `.env` file. - - If the .env path given doesn't exist, fails. - If the given key doesn't exist in the .env, fails. - """ - if not os.path.exists(dotenv_path): - logger.warning("Can't delete from %s - it doesn't exist.", dotenv_path) - return None, key_to_unset - - removed = False - with rewrite(dotenv_path, encoding=encoding) as (source, dest): - for mapping in with_warn_for_invalid_lines(parse_stream(source)): - if mapping.key == key_to_unset: - removed = True - else: - dest.write(mapping.original.string) - - if not removed: - logger.warning("Key %s not removed from %s - key doesn't exist.", key_to_unset, dotenv_path) - return None, key_to_unset - - return removed, key_to_unset - - -def resolve_variables( - values: Iterable[Tuple[str, Optional[str]]], - override: bool, -) -> Mapping[str, Optional[str]]: - new_values: Dict[str, Optional[str]] = {} - - for (name, value) in values: - if value is None: - result = None - else: - atoms = parse_variables(value) - env: Dict[str, Optional[str]] = {} - if override: - env.update(os.environ) # type: ignore - env.update(new_values) - else: - env.update(new_values) - env.update(os.environ) # type: ignore - result = "".join(atom.resolve(env) for atom in atoms) - - new_values[name] = result - - return new_values - - -def _walk_to_root(path: str) -> Iterator[str]: - """ - Yield directories starting from the given directory up to the root - """ - if not os.path.exists(path): - raise IOError('Starting path not found') - - if os.path.isfile(path): - path = os.path.dirname(path) - - last_dir = None - current_dir = os.path.abspath(path) - while last_dir != current_dir: - yield current_dir - parent_dir = os.path.abspath(os.path.join(current_dir, os.path.pardir)) - last_dir, current_dir = current_dir, parent_dir - - -def find_dotenv( - filename: str = '.env', - raise_error_if_not_found: bool = False, - usecwd: bool = False, -) -> str: - """ - Search in increasingly higher folders for the given file - - Returns path to the file if found, or an empty string otherwise - """ - - def _is_interactive(): - """ Decide whether this is running in a REPL or IPython notebook """ - main = __import__('__main__', None, None, fromlist=['__file__']) - return not hasattr(main, '__file__') - - if usecwd or _is_interactive() or getattr(sys, 'frozen', False): - # Should work without __file__, e.g. in REPL or IPython notebook. - path = os.getcwd() - else: - # will work for .py files - frame = sys._getframe() - current_file = __file__ - - while frame.f_code.co_filename == current_file: - assert frame.f_back is not None - frame = frame.f_back - frame_filename = frame.f_code.co_filename - path = os.path.dirname(os.path.abspath(frame_filename)) - - for dirname in _walk_to_root(path): - check_path = os.path.join(dirname, filename) - if os.path.isfile(check_path): - return check_path - - if raise_error_if_not_found: - raise IOError('File not found') - - return '' - - -def load_dotenv( - dotenv_path: Optional[StrPath] = None, - stream: Optional[IO[str]] = None, - verbose: bool = False, - override: bool = False, - interpolate: bool = True, - encoding: Optional[str] = "utf-8", -) -> bool: - """Parse a .env file and then load all the variables found as environment variables. - - Parameters: - dotenv_path: Absolute or relative path to .env file. - stream: Text stream (such as `io.StringIO`) with .env content, used if - `dotenv_path` is `None`. - verbose: Whether to output a warning the .env file is missing. - override: Whether to override the system environment variables with the variables - from the `.env` file. - encoding: Encoding to be used to read the file. - Returns: - Bool: True if at least one environment variable is set else False - - If both `dotenv_path` and `stream` are `None`, `find_dotenv()` is used to find the - .env file. - """ - if dotenv_path is None and stream is None: - dotenv_path = find_dotenv() - - dotenv = DotEnv( - dotenv_path=dotenv_path, - stream=stream, - verbose=verbose, - interpolate=interpolate, - override=override, - encoding=encoding, - ) - return dotenv.set_as_environment_variables() - - -def dotenv_values( - dotenv_path: Optional[StrPath] = None, - stream: Optional[IO[str]] = None, - verbose: bool = False, - interpolate: bool = True, - encoding: Optional[str] = "utf-8", -) -> Dict[str, Optional[str]]: - """ - Parse a .env file and return its content as a dict. - - The returned dict will have `None` values for keys without values in the .env file. - For example, `foo=bar` results in `{"foo": "bar"}` whereas `foo` alone results in - `{"foo": None}` - - Parameters: - dotenv_path: Absolute or relative path to the .env file. - stream: `StringIO` object with .env content, used if `dotenv_path` is `None`. - verbose: Whether to output a warning if the .env file is missing. - encoding: Encoding to be used to read the file. - - If both `dotenv_path` and `stream` are `None`, `find_dotenv()` is used to find the - .env file. - """ - if dotenv_path is None and stream is None: - dotenv_path = find_dotenv() - - return DotEnv( - dotenv_path=dotenv_path, - stream=stream, - verbose=verbose, - interpolate=interpolate, - override=True, - encoding=encoding, - ).dict() diff --git a/spaces/AzumaSeren100/XuanShen-Bert-VITS2/monotonic_align/core.py b/spaces/AzumaSeren100/XuanShen-Bert-VITS2/monotonic_align/core.py deleted file mode 100644 index dddc688d76172b880054e544b7a217acd013f14f..0000000000000000000000000000000000000000 --- a/spaces/AzumaSeren100/XuanShen-Bert-VITS2/monotonic_align/core.py +++ /dev/null @@ -1,35 +0,0 @@ -import numba - - -@numba.jit(numba.void(numba.int32[:,:,::1], numba.float32[:,:,::1], numba.int32[::1], numba.int32[::1]), nopython=True, nogil=True) -def maximum_path_jit(paths, values, t_ys, t_xs): - b = paths.shape[0] - max_neg_val=-1e9 - for i in range(int(b)): - path = paths[i] - value = values[i] - t_y = t_ys[i] - t_x = t_xs[i] - - v_prev = v_cur = 0.0 - index = t_x - 1 - - for y in range(t_y): - for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)): - if x == y: - v_cur = max_neg_val - else: - v_cur = value[y-1, x] - if x == 0: - if y == 0: - v_prev = 0. - else: - v_prev = max_neg_val - else: - v_prev = value[y-1, x-1] - value[y, x] += max(v_prev, v_cur) - - for y in range(t_y - 1, -1, -1): - path[y, index] = 1 - if index != 0 and (index == y or value[y-1, index] < value[y-1, index-1]): - index = index - 1 diff --git a/spaces/Benson/text-generation/Examples/Colinas De Acero 2.md b/spaces/Benson/text-generation/Examples/Colinas De Acero 2.md deleted file mode 100644 index 898a38ed15645761e4b81d922173cddc039811d8..0000000000000000000000000000000000000000 --- a/spaces/Benson/text-generation/Examples/Colinas De Acero 2.md +++ /dev/null @@ -1,92 +0,0 @@ - -

    Hills of Steel 2: Un juego de tanques basado en la física con batallas por equipos 3vs3 en tiempo real

    -

    Si usted está buscando un divertido y adictivo juego de tanques que se puede jugar con sus amigos u otros jugadores en línea, entonces usted debe echa un vistazo a Hills of Steel 2. Este es un juego de tanques basado en la física que es una secuela del popular juego Hills of Steel. En este juego, puedes elegir entre 18 tanques diferentes, cada uno con sus propias habilidades y objetos únicos, y competir en batallas de equipo en tiempo real 3vs3 en varias colinas. También puedes unirte o crear un clan, participar en ocho eventos en línea, subir las tablas de clasificación, ganar recompensas gratis y chatear con otros jugadores en el servidor activo de Discord. En este artículo, te contaremos más sobre las características, la jugabilidad, los pros y los contras, y las preguntas frecuentes de Hills of Steel 2.

    -

    colinas de acero 2


    Download Filehttps://bltlly.com/2v6LXY



    -

    Características de Hills of Steel 2

    -

    Hills of Steel 2 es un juego gratuito que ofrece muchas características para los amantes de los tanques. Estos son algunos de ellos:

    -

    Clanes

    -

    Puedes crear tu propio clan o unirte a uno existente y competir con otros clanes en las tablas de clasificación. También puedes chatear con los miembros de tu clan, invitarlos a jugar contigo y compartir tus mejores momentos. Los clanes son una gran manera de hacer nuevos amigos y divertirse más en el juego.

    -

    Eventos

    -

    Puedes participar en ocho eventos en línea que tienen diferentes modos y objetivos. Algunos de los eventos son:

    -
      -
    • Equipo de supervivencia: El último equipo de pie gana.
    • -
    • bunker bash: destruir el búnker enemigo antes de que destruyan el tuyo.
    • -
    • Captura de estrellas: recoge tantas estrellas como sea posible evitando el fuego enemigo.
    • -
    • Batalla del jefe: Equipo con otros jugadores para derrotar a un tanque poderoso jefe.
    • -
    • Duelo raro: Lucha contra otro jugador usando un tanque raro.
    • -
    • duelo épico: lucha contra otro jugador usando un tanque épico.
    • -
    • Dominación: Captura y mantén tantas banderas como sea posible.
    • -
    • Alboroto: Destruye tantos tanques enemigos como sea posible en un tiempo limitado.
    • -
    - -

    Tanques

    -

    Puedes desbloquear y personalizar 18 tanques únicos con diferentes habilidades y objetos. Algunos de los tanques son:

    -

    -
      -
    • Joker: Un pequeño tanque que tiene un gran golpe.
    • -
    • Morty: Un tanque sanador de bombas.
    • -
    • Stinger: Un tanque que causa estragos con salvos de cohetes.
    • -
    • Buck: Un feroz combatiente de corto alcance.
    • -
    • Titan: Un tanque grande y robusto que puede llamar en ataques aéreos.
    • -
    • Wally: Un tanque que perfora a través de las líneas enemigas.
    • -
    • Sparky: Un tanque de relámpago sobrealimentado.
    • -
    • Ninja: Un tanque de sigilo con espada fatal.
    • -
    • Gatlyn: Un tanque de disparo rápido con torretas desplegables.
    • -
    • Phoenix Continuando el artículo:
    • Phoenix: Un tanque ardiente que puede revivir de las cenizas.
    • -
    • Reaper: Un tanque mortal que puede cosechar almas.
    • -
    • Arachno: Un tanque parecido a una araña que puede colocar minas y telarañas.
    • -
    • Blaze: Un tanque lanzallamas que puede incendiar a los enemigos.
    • -
    • Frosty: Un tanque helado que puede congelar enemigos y crear paredes de hielo.
    • -
    • Thor: Un tanque atronador que puede convocar rayos y tormentas.
    • -
    • Draco: Un tanque tipo dragón que puede respirar fuego y volar.
    • -
    • Escorpio: Un tanque tipo escorpión que puede picar a los enemigos y excavar bajo tierra.
    • -
    -

    Puedes actualizar tus tanques con monedas y gemas, y equiparlos con diferentes elementos como escudos, imanes, boosters y más. También puedes cambiar la apariencia de tus tanques con pieles y pegatinas. Los tanques son una gran manera de expresar tu personalidad y estilo en el juego.

    -

    Tablas de clasificación

    -

    Puedes subir de rango y convertirte en el mejor de tu país o del mundo ganando batallas y ganando trofeos. También puede comparar sus estadísticas y logros con otros jugadores y ver cómo se apilan. Las tablas de clasificación son una gran manera de desafiarte y mostrar tus habilidades en el juego.

    -

    Recompensas

    - -

    Comunidad

    -

    Puedes chatear con otros jugadores en el servidor activo de Discord donde puedes encontrar consejos, guías, noticias, actualizaciones, memes, fan art y más. También puedes unirte a la página oficial de Facebook y a la cuenta de Instagram donde puedes ver las últimas publicaciones de los desarrolladores y otros jugadores. Comunidad es una gran manera de conectarse con otros fans y mantenerse al día sobre el juego.

    -

    Cómo jugar Hills of Steel 2

    -

    Hills of Steel 2 es un juego de tanques basado en la física que es fácil de aprender pero difícil de dominar. Aquí hay algunas instrucciones básicas sobre cómo jugar:

    -

    Controles

    -

    Puedes controlar tu tanque usando dos botones en la pantalla: uno para avanzar o retroceder, y otro para apuntar y disparar. También puede tocar en su tanque para activar su habilidad especial o elemento. Puede ajustar la sensibilidad de los controles en el menú de configuración.

    -

    Estrategia

    -

    Puedes mejorar tus posibilidades de ganar siguiendo algunos consejos y trucos sencillos:

    -
      -
    • Elija un tanque que se adapte a su estilo de juego y el modo de evento. Por ejemplo, si te gusta ser agresivo e infligir mucho daño, es posible que quieras usar Buck o Stinger. Si te gusta apoyar y sanar a tus compañeros de equipo, es posible que quieras usar Morty o Phoenix.
    • -
    • Usa el terreno a tu favor. Por ejemplo, puedes esconderte detrás de colinas u obstáculos para evitar el fuego enemigo, o usar rampas o pendientes para ganar impulso o saltar sobre los enemigos.
    • -
    • Trabaja junto con tus compañeros de equipo. Por ejemplo, puedes coordinar tus ataques, cubrirse las espaldas o compartir objetos o habilidades.
    • -
    • Sea consciente de su entorno. Por ejemplo, puede estar atento a los movimientos enemigos, proyectiles, minas, banderas, estrellas u otros objetos en el mapa.
    • -
    • Diviértete y experimenta. Por ejemplo, puedes probar diferentes combinaciones de tanques, objetos, pieles, pegatinas o estrategias para ver qué funciona mejor para ti.
    • -
    -

    Pros y contras de las colinas de acero 2

    - -

    Pros

    -
      -
    • El juego tiene gráficos coloridos y animaciones suaves que lo hacen visualmente atractivo.
    • -
    • El juego tiene física realista y dinámica de juego que lo hacen desafiante y emocionante.
    • -
    • El juego tiene una variedad de tanques, objetos, pieles, pegatinas, eventos, modos, mapas, Continuando el artículo:
    • El juego tiene un montón de características, recompensas y actualizaciones que lo hacen gratificante y atractivo.
    • -
    • El juego tiene una comunidad amigable y activa que lo hace social y divertido.
    • -
    -

    Contras

    -
      -
    • El juego puede ser frustrante e injusto a veces debido a retrasos, problemas técnicos, hackers, o tanques o artículos desequilibrados.
    • -
    • El juego puede ser repetitivo y aburrido después de un tiempo debido a la falta de variedad o innovación.
    • -
    • El juego puede ser caro y pagar para ganar si desea desbloquear o actualizar todo más rápido o más fácil.
    • -
    • El juego puede ser adictivo y poco saludable si lo juegas demasiado o descuidas otros aspectos de tu vida.
    • -
    -

    Conclusión

    -

    Hills of Steel 2 es un juego de tanques basado en la física que es una secuela del popular juego Hills of Steel. Es un juego gratuito que ofrece muchas características para los amantes de los tanques, como clanes, eventos, tanques, tablas de clasificación, recompensas y comunidad. Es un juego divertido y adictivo que se puede jugar con tus amigos u otros jugadores en línea en tiempo real 3vs3 batallas de equipo en varias colinas. Sin embargo, también tiene algunos inconvenientes, como retraso, problemas técnicos, hackers, tanques o artículos desequilibrados, repetición, aburrimiento, gastos y adicción. Por lo tanto, le recomendamos que lo pruebe por sí mismo y vea si le gusta o no. Puedes descargarlo desde la Google Play Store o la App Store gratis.

    -

    Preguntas frecuentes

    -

    Aquí hay algunas preguntas frecuentes y sus respuestas sobre Hills of Steel 2:

    -
      - -
    1. P: ¿Cómo puedo desbloquear más tanques en el juego?
      A: Puedes desbloquear más tanques alcanzando ciertos niveles de trofeos, abriendo cofres, participando en eventos o comprándolos con gemas.
    2. -
    3. P: ¿Cómo puedo actualizar mis tanques en el juego?
      A: Puedes actualizar tus tanques gastando monedas y gemas en ellos. También puedes equiparlos con diferentes artículos que puedes comprar con monedas o gemas.
    4. -
    5. P: ¿Cómo puedo cambiar la apariencia de mis tanques en el juego?
      A: Puede cambiar la apariencia de sus tanques mediante la aplicación de pieles y pegatinas que se pueden desbloquear de cofres, carretera temporada, camino trofeo, eventos, o comprar con gemas.
    6. -
    7. P: ¿Cómo puedo contactar a los desarrolladores o reportar un problema en el juego?
      A: Puede contactar a los desarrolladores o reportar un problema enviando un correo electrónico a support@superplusgames.com o uniéndose a su servidor Discord en https://discord.gg/hillsofsteel2.
    8. -

    64aa2da5cf
    -
    -
    \ No newline at end of file diff --git a/spaces/BernardoOlisan/vqganclip/taming-transformers/taming/data/faceshq.py b/spaces/BernardoOlisan/vqganclip/taming-transformers/taming/data/faceshq.py deleted file mode 100644 index 6912d04b66a6d464c1078e4b51d5da290f5e767e..0000000000000000000000000000000000000000 --- a/spaces/BernardoOlisan/vqganclip/taming-transformers/taming/data/faceshq.py +++ /dev/null @@ -1,134 +0,0 @@ -import os -import numpy as np -import albumentations -from torch.utils.data import Dataset - -from taming.data.base import ImagePaths, NumpyPaths, ConcatDatasetWithIndex - - -class FacesBase(Dataset): - def __init__(self, *args, **kwargs): - super().__init__() - self.data = None - self.keys = None - - def __len__(self): - return len(self.data) - - def __getitem__(self, i): - example = self.data[i] - ex = {} - if self.keys is not None: - for k in self.keys: - ex[k] = example[k] - else: - ex = example - return ex - - -class CelebAHQTrain(FacesBase): - def __init__(self, size, keys=None): - super().__init__() - root = "data/celebahq" - with open("data/celebahqtrain.txt", "r") as f: - relpaths = f.read().splitlines() - paths = [os.path.join(root, relpath) for relpath in relpaths] - self.data = NumpyPaths(paths=paths, size=size, random_crop=False) - self.keys = keys - - -class CelebAHQValidation(FacesBase): - def __init__(self, size, keys=None): - super().__init__() - root = "data/celebahq" - with open("data/celebahqvalidation.txt", "r") as f: - relpaths = f.read().splitlines() - paths = [os.path.join(root, relpath) for relpath in relpaths] - self.data = NumpyPaths(paths=paths, size=size, random_crop=False) - self.keys = keys - - -class FFHQTrain(FacesBase): - def __init__(self, size, keys=None): - super().__init__() - root = "data/ffhq" - with open("data/ffhqtrain.txt", "r") as f: - relpaths = f.read().splitlines() - paths = [os.path.join(root, relpath) for relpath in relpaths] - self.data = ImagePaths(paths=paths, size=size, random_crop=False) - self.keys = keys - - -class FFHQValidation(FacesBase): - def __init__(self, size, keys=None): - super().__init__() - root = "data/ffhq" - with open("data/ffhqvalidation.txt", "r") as f: - relpaths = f.read().splitlines() - paths = [os.path.join(root, relpath) for relpath in relpaths] - self.data = ImagePaths(paths=paths, size=size, random_crop=False) - self.keys = keys - - -class FacesHQTrain(Dataset): - # CelebAHQ [0] + FFHQ [1] - def __init__(self, size, keys=None, crop_size=None, coord=False): - d1 = CelebAHQTrain(size=size, keys=keys) - d2 = FFHQTrain(size=size, keys=keys) - self.data = ConcatDatasetWithIndex([d1, d2]) - self.coord = coord - if crop_size is not None: - self.cropper = albumentations.RandomCrop(height=crop_size,width=crop_size) - if self.coord: - self.cropper = albumentations.Compose([self.cropper], - additional_targets={"coord": "image"}) - - def __len__(self): - return len(self.data) - - def __getitem__(self, i): - ex, y = self.data[i] - if hasattr(self, "cropper"): - if not self.coord: - out = self.cropper(image=ex["image"]) - ex["image"] = out["image"] - else: - h,w,_ = ex["image"].shape - coord = np.arange(h*w).reshape(h,w,1)/(h*w) - out = self.cropper(image=ex["image"], coord=coord) - ex["image"] = out["image"] - ex["coord"] = out["coord"] - ex["class"] = y - return ex - - -class FacesHQValidation(Dataset): - # CelebAHQ [0] + FFHQ [1] - def __init__(self, size, keys=None, crop_size=None, coord=False): - d1 = CelebAHQValidation(size=size, keys=keys) - d2 = FFHQValidation(size=size, keys=keys) - self.data = ConcatDatasetWithIndex([d1, d2]) - self.coord = coord - if crop_size is not None: - self.cropper = albumentations.CenterCrop(height=crop_size,width=crop_size) - if self.coord: - self.cropper = albumentations.Compose([self.cropper], - additional_targets={"coord": "image"}) - - def __len__(self): - return len(self.data) - - def __getitem__(self, i): - ex, y = self.data[i] - if hasattr(self, "cropper"): - if not self.coord: - out = self.cropper(image=ex["image"]) - ex["image"] = out["image"] - else: - h,w,_ = ex["image"].shape - coord = np.arange(h*w).reshape(h,w,1)/(h*w) - out = self.cropper(image=ex["image"], coord=coord) - ex["image"] = out["image"] - ex["coord"] = out["coord"] - ex["class"] = y - return ex diff --git a/spaces/Big-Web/MMSD/env/Lib/site-packages/botocore/errorfactory.py b/spaces/Big-Web/MMSD/env/Lib/site-packages/botocore/errorfactory.py deleted file mode 100644 index d9a1e9cd9cf542c9d01cb35bb934711799e45aac..0000000000000000000000000000000000000000 --- a/spaces/Big-Web/MMSD/env/Lib/site-packages/botocore/errorfactory.py +++ /dev/null @@ -1,90 +0,0 @@ -# Copyright 2016 Amazon.com, Inc. or its affiliates. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"). You -# may not use this file except in compliance with the License. A copy of -# the License is located at -# -# http://aws.amazon.com/apache2.0/ -# -# or in the "license" file accompanying this file. This file is -# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF -# ANY KIND, either express or implied. See the License for the specific -# language governing permissions and limitations under the License. -from botocore.exceptions import ClientError -from botocore.utils import get_service_module_name - - -class BaseClientExceptions: - ClientError = ClientError - - def __init__(self, code_to_exception): - """Base class for exceptions object on a client - - :type code_to_exception: dict - :param code_to_exception: Mapping of error codes (strings) to exception - class that should be raised when encountering a particular - error code. - """ - self._code_to_exception = code_to_exception - - def from_code(self, error_code): - """Retrieves the error class based on the error code - - This is helpful for identifying the exception class needing to be - caught based on the ClientError.parsed_reponse['Error']['Code'] value - - :type error_code: string - :param error_code: The error code associated to a ClientError exception - - :rtype: ClientError or a subclass of ClientError - :returns: The appropriate modeled exception class for that error - code. If the error code does not match any of the known - modeled exceptions then return a generic ClientError. - """ - return self._code_to_exception.get(error_code, self.ClientError) - - def __getattr__(self, name): - exception_cls_names = [ - exception_cls.__name__ - for exception_cls in self._code_to_exception.values() - ] - raise AttributeError( - fr"{self} object has no attribute {name}. " - fr"Valid exceptions are: {', '.join(exception_cls_names)}" - ) - - -class ClientExceptionsFactory: - def __init__(self): - self._client_exceptions_cache = {} - - def create_client_exceptions(self, service_model): - """Creates a ClientExceptions object for the particular service client - - :type service_model: botocore.model.ServiceModel - :param service_model: The service model for the client - - :rtype: object that subclasses from BaseClientExceptions - :returns: The exceptions object of a client that can be used - to grab the various different modeled exceptions. - """ - service_name = service_model.service_name - if service_name not in self._client_exceptions_cache: - client_exceptions = self._create_client_exceptions(service_model) - self._client_exceptions_cache[service_name] = client_exceptions - return self._client_exceptions_cache[service_name] - - def _create_client_exceptions(self, service_model): - cls_props = {} - code_to_exception = {} - for error_shape in service_model.error_shapes: - exception_name = str(error_shape.name) - exception_cls = type(exception_name, (ClientError,), {}) - cls_props[exception_name] = exception_cls - code = str(error_shape.error_code) - code_to_exception[code] = exception_cls - cls_name = str(get_service_module_name(service_model) + 'Exceptions') - client_exceptions_cls = type( - cls_name, (BaseClientExceptions,), cls_props - ) - return client_exceptions_cls(code_to_exception) diff --git a/spaces/Big-Web/MMSD/env/Lib/site-packages/pip/_vendor/idna/__init__.py b/spaces/Big-Web/MMSD/env/Lib/site-packages/pip/_vendor/idna/__init__.py deleted file mode 100644 index a40eeafcc914108ca79c5d83d6e81da1b29c6e80..0000000000000000000000000000000000000000 --- a/spaces/Big-Web/MMSD/env/Lib/site-packages/pip/_vendor/idna/__init__.py +++ /dev/null @@ -1,44 +0,0 @@ -from .package_data import __version__ -from .core import ( - IDNABidiError, - IDNAError, - InvalidCodepoint, - InvalidCodepointContext, - alabel, - check_bidi, - check_hyphen_ok, - check_initial_combiner, - check_label, - check_nfc, - decode, - encode, - ulabel, - uts46_remap, - valid_contextj, - valid_contexto, - valid_label_length, - valid_string_length, -) -from .intranges import intranges_contain - -__all__ = [ - "IDNABidiError", - "IDNAError", - "InvalidCodepoint", - "InvalidCodepointContext", - "alabel", - "check_bidi", - "check_hyphen_ok", - "check_initial_combiner", - "check_label", - "check_nfc", - "decode", - "encode", - "intranges_contain", - "ulabel", - "uts46_remap", - "valid_contextj", - "valid_contexto", - "valid_label_length", - "valid_string_length", -] diff --git a/spaces/Big-Web/MMSD/env/Lib/site-packages/setuptools/_distutils/log.py b/spaces/Big-Web/MMSD/env/Lib/site-packages/setuptools/_distutils/log.py deleted file mode 100644 index be25f6cabd839af772dd74399c57991c222d3da8..0000000000000000000000000000000000000000 --- a/spaces/Big-Web/MMSD/env/Lib/site-packages/setuptools/_distutils/log.py +++ /dev/null @@ -1,80 +0,0 @@ -"""A simple log mechanism styled after PEP 282.""" - -# The class here is styled after PEP 282 so that it could later be -# replaced with a standard Python logging implementation. - -import sys - -DEBUG = 1 -INFO = 2 -WARN = 3 -ERROR = 4 -FATAL = 5 - - -class Log: - def __init__(self, threshold=WARN): - self.threshold = threshold - - def _log(self, level, msg, args): - if level not in (DEBUG, INFO, WARN, ERROR, FATAL): - raise ValueError('%s wrong log level' % str(level)) - - if level >= self.threshold: - if args: - msg = msg % args - if level in (WARN, ERROR, FATAL): - stream = sys.stderr - else: - stream = sys.stdout - try: - stream.write('%s\n' % msg) - except UnicodeEncodeError: - # emulate backslashreplace error handler - encoding = stream.encoding - msg = msg.encode(encoding, "backslashreplace").decode(encoding) - stream.write('%s\n' % msg) - stream.flush() - - def log(self, level, msg, *args): - self._log(level, msg, args) - - def debug(self, msg, *args): - self._log(DEBUG, msg, args) - - def info(self, msg, *args): - self._log(INFO, msg, args) - - def warn(self, msg, *args): - self._log(WARN, msg, args) - - def error(self, msg, *args): - self._log(ERROR, msg, args) - - def fatal(self, msg, *args): - self._log(FATAL, msg, args) - - -_global_log = Log() -log = _global_log.log -debug = _global_log.debug -info = _global_log.info -warn = _global_log.warn -error = _global_log.error -fatal = _global_log.fatal - - -def set_threshold(level): - # return the old threshold for use from tests - old = _global_log.threshold - _global_log.threshold = level - return old - - -def set_verbosity(v): - if v <= 0: - set_threshold(WARN) - elif v == 1: - set_threshold(INFO) - elif v >= 2: - set_threshold(DEBUG) diff --git a/spaces/Big-Web/MMSD/env/Lib/site-packages/setuptools/_vendor/importlib_metadata/_adapters.py b/spaces/Big-Web/MMSD/env/Lib/site-packages/setuptools/_vendor/importlib_metadata/_adapters.py deleted file mode 100644 index aa460d3eda50fbb174623a1b5bbca54645fd588a..0000000000000000000000000000000000000000 --- a/spaces/Big-Web/MMSD/env/Lib/site-packages/setuptools/_vendor/importlib_metadata/_adapters.py +++ /dev/null @@ -1,68 +0,0 @@ -import re -import textwrap -import email.message - -from ._text import FoldedCase - - -class Message(email.message.Message): - multiple_use_keys = set( - map( - FoldedCase, - [ - 'Classifier', - 'Obsoletes-Dist', - 'Platform', - 'Project-URL', - 'Provides-Dist', - 'Provides-Extra', - 'Requires-Dist', - 'Requires-External', - 'Supported-Platform', - 'Dynamic', - ], - ) - ) - """ - Keys that may be indicated multiple times per PEP 566. - """ - - def __new__(cls, orig: email.message.Message): - res = super().__new__(cls) - vars(res).update(vars(orig)) - return res - - def __init__(self, *args, **kwargs): - self._headers = self._repair_headers() - - # suppress spurious error from mypy - def __iter__(self): - return super().__iter__() - - def _repair_headers(self): - def redent(value): - "Correct for RFC822 indentation" - if not value or '\n' not in value: - return value - return textwrap.dedent(' ' * 8 + value) - - headers = [(key, redent(value)) for key, value in vars(self)['_headers']] - if self._payload: - headers.append(('Description', self.get_payload())) - return headers - - @property - def json(self): - """ - Convert PackageMetadata to a JSON-compatible format - per PEP 0566. - """ - - def transform(key): - value = self.get_all(key) if key in self.multiple_use_keys else self[key] - if key == 'Keywords': - value = re.split(r'\s+', value) - tk = key.lower().replace('-', '_') - return tk, value - - return dict(map(transform, map(FoldedCase, self))) diff --git a/spaces/Blaise-g/summarize-biomedical-papers-long-summary-or-tldr/app.py b/spaces/Blaise-g/summarize-biomedical-papers-long-summary-or-tldr/app.py deleted file mode 100644 index ac74e825792a0c6435930a2b7b33b848327e7f9c..0000000000000000000000000000000000000000 --- a/spaces/Blaise-g/summarize-biomedical-papers-long-summary-or-tldr/app.py +++ /dev/null @@ -1,280 +0,0 @@ -import logging -import time -from pathlib import Path - -import gradio as gr -import nltk -from cleantext import clean -from summarize import load_model_and_tokenizer, summarize_via_tokenbatches -from utils import load_example_filenames, truncate_word_count - -_here = Path(__file__).parent - -nltk.download("stopwords") - -logging.basicConfig( - level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s" -) - - -def proc_submission( - input_text: str, - model_size: str, - num_beams, - token_batch_length, - length_penalty, - max_input_length: int = 3060, -): - """ - proc_submission - a helper function for the gradio module to process submissions - Args: - input_text (str): the input text to summarize - model_size (str): the size of the model to use - num_beams (int): the number of beams to use - token_batch_length (int): the length of the token batches to use - length_penalty (float): the length penalty to use - repetition_penalty (float): the repetition penalty to use - no_repeat_ngram_size (int): the no repeat ngram size to use - max_input_length (int, optional): the maximum input length to use. Defaults to 768. - Returns: - str in HTML format, string of the summary, str of score - """ - - settings_det = { - "length_penalty": float(length_penalty), - "repetition_penalty": 3.5, - "no_repeat_ngram_size": 3, - "encoder_no_repeat_ngram_size": 4, - "num_beams": int(num_beams), - "min_length": 100, - "max_length": 512,#int(token_batch_length // 4), - "early_stopping": True, - "do_sample": False, - } - settings_tldr = { - "length_penalty": float(length_penalty), - "repetition_penalty": 3.5, - "no_repeat_ngram_size": 3, - "encoder_no_repeat_ngram_size": 4, - "num_beams": int(num_beams), - "min_length": 11, - "max_length": 62, - "early_stopping": True, - "do_sample": False, - } - - if model_size == "tldr": - settings = settings_tldr - else: - settings = settings_det - - st = time.perf_counter() - history = {} - clean_text = clean(input_text, extra_spaces=True, lowercase=True, reg="\b(?!(?:Although|Also)\b)(?:[A-Z][A-Za-z'`-]+)(?:,? (?:(?:and |& )?(?:[A-Z][A-Za-z'`-]+)|(?:et al.?)))*(?:, *(?:19|20)[0-9][0-9](?:, p\.? [0-9]+)?| *\((?:19|20)[0-9][0-9](?:, p\.? [0-9]+)?\))", reg_replace="") - #max_input_length = 2048 if model_size == "tldr" else max_input_length - processed = truncate_word_count(clean_text, max_input_length) - - if processed["was_truncated"]: - tr_in = processed["truncated_text"] - msg = f"Input text was truncated to {max_input_length} words to fit within the computational constraints of the inference API" - logging.warning(msg) - history["WARNING"] = msg - else: - tr_in = input_text - msg = None - - _summaries = summarize_via_tokenbatches( - tr_in, - model_sm if model_size == "tldr" else model, - tokenizer_sm if model_size == "tldr" else tokenizer, - batch_length=token_batch_length, - **settings, - ) - sum_text = [f"Section {i}: " + s["summary"][0] for i, s in enumerate(_summaries)] - rates = [ - f" - Section {i}: {round(s['compression_rate'],3)}" - for i, s in enumerate(_summaries) - ] - - sum_text_out = "\n".join(sum_text) - history["Compression Rates"] = "

    " - rates_out = "\n".join(rates) - rt = round((time.perf_counter() - st) / 60, 2) - print(f"Runtime: {rt} minutes") - html = "" - html += f"

    Runtime: {rt} minutes on CPU

    " - if msg is not None: - html += f"

    WARNING:


    {msg}

    " - - html += "" - - return html, sum_text_out, rates_out - - -def load_single_example_text( - example_path: str or Path, -): - """ - load_single_example - a helper function for the gradio module to load examples - Returns: - list of str, the examples - """ - global name_to_path - full_ex_path = name_to_path[example_path] - full_ex_path = Path(full_ex_path) - # load the examples into a list - with open(full_ex_path, "r", encoding="utf-8", errors="ignore") as f: - raw_text = f.read() - text = clean(raw_text, extra_spaces=True, lowercase=False) #see if it works - return text - - -def load_uploaded_file(file_obj): - """ - load_uploaded_file - process an uploaded file - Args: - file_obj (POTENTIALLY list): Gradio file object inside a list - Returns: - str, the uploaded file contents - """ - - # file_path = Path(file_obj[0].name) - - # check if mysterious file object is a list - if isinstance(file_obj, list): - file_obj = file_obj[0] - file_path = Path(file_obj.name) - try: - with open(file_path, "r", encoding="utf-8", errors="ignore") as f: - raw_text = f.read() - text = clean(raw_text, extra_spaces=True, lowercase=True, reg="\s(?=[\,.':;!?])",reg_replace="") - return text - except Exception as e: - logging.info(f"Trying to load file with path {file_path}, error: {e}") - return "Error: Could not read file. Ensure that it is a valid text file with encoding UTF-8." - - -if __name__ == "__main__": - - model, tokenizer = load_model_and_tokenizer("Blaise-g/longt5_tglobal_large_sumpubmed") - model_sm, tokenizer_sm = load_model_and_tokenizer("Blaise-g/longt5_tglobal_large_scitldr") - - name_to_path = load_example_filenames(_here / "examples") - logging.info(f"Loaded {len(name_to_path)} examples") - demo = gr.Blocks() - - with demo: - - gr.Markdown("# Automatic summarization of biomedical research papers with neural abstractive methods into a long and comprehensive synopsis or extreme TLDR summary version") - gr.Markdown( - "A demo developed for my Master Thesis project using ad-hoc fine-tuned abstractive summarization models to summarize long biomedical articles into a detailed, explanatory synopsis or extreme TLDR summary." - ) - with gr.Column(): - - gr.Markdown("### Select Summary type and text generation parameters then load input text") - gr.Markdown( - "Enter text below in the text area or alternatively load an example below or upload a file." - ) - with gr.Row(): - model_size = gr.Radio( - choices=["tldr", "detailed"], label="Summary type", value="detailed" - ) - num_beams = gr.Radio( - choices=[2, 3, 4], - label="Beam Search: Number of Beams", - value=2, - ) - gr.Markdown( - "_For optimal results use a GPU as the hosted CPU inference is lacking at times and hinders the output summary quality as well as forcing to divide the input text into batches._" - ) - with gr.Row(): - length_penalty = gr.inputs.Slider( - minimum=0.5, - maximum=1.0, - label="length penalty", - default=0.7, - step=0.05, - ) - token_batch_length = gr.Radio( - choices=[1024, 2048, 3060], - label="token batch length", - value=2048, - ) - with gr.Row(): - example_name = gr.Dropdown( - list(name_to_path.keys()), - label="Choose an Example", - ) - load_examples_button = gr.Button( - "Load Example", - ) - input_text = gr.Textbox( - lines=6, - label="Input Text (for summarization)", - placeholder="Enter any scientific text to be condensed into a detailed, explanatory synopsis or TLDR summary version. The input text is divided into batches of the selected token lengths to fit within the memory constraints, pre-processed and fed into the model of choice. The models were trained to handle long scientific papers but generalize reasonably well also to shorter text documents like scientific abstracts. Might take a while to produce long summaries :)", - ) - gr.Markdown("Upload your own file:") - with gr.Row(): - uploaded_file = gr.File( - label="Upload a text file", - file_count="single", - type="file", - ) - load_file_button = gr.Button("Load Uploaded File") - - gr.Markdown("---") - - with gr.Column(): - gr.Markdown("## Generate Summary") - gr.Markdown( - "Summary generation should take approximately 2-3 minutes for most generation settings but can take significantly more time for very long documents with a high beam number." - ) - summarize_button = gr.Button( - "Summarize!", - variant="primary", - ) - - output_text = gr.HTML("

    Output will appear below:

    ") - gr.Markdown("### Summary Output") - summary_text = gr.Textbox( - label="Summary 📝", placeholder="The generated 📝 will appear here" - ) - gr.Markdown( - "The compression rate 🗜 indicates the ratio between the machine-generated summary length and the input text (from 0% to 100%). The higher the 🗜 the more extreme the summary is." - ) - compression_rate = gr.Textbox( - label="Compression rate 🗜", placeholder="The 🗜 will appear here" - ) - gr.Markdown("---") - - with gr.Column(): - gr.Markdown("## About the Models") - gr.Markdown( - "- [Blaise-g/longt5_tglobal_large_sumpubmed](https://huggingface.co/Blaise-g/longt5_tglobal_large_sumpubmed) is a fine-tuned checkpoint of [Stancld/longt5-tglobal-large-16384-pubmed-3k_steps](https://huggingface.co/Stancld/longt5-tglobal-large-16384-pubmed-3k_steps) on the [SumPubMed dataset](https://aclanthology.org/2021.acl-srw.30/). [Blaise-g/longt5_tglobal_large_scitldr](https://huggingface.co/Blaise-g/longt5_tglobal_large_scitldr) is a fine-tuned checkpoint of [Blaise-g/longt5_tglobal_large_sumpubmed](https://huggingface.co/Blaise-g/longt5_tglobal_large_sumpubmed) on the [Scitldr dataset](https://arxiv.org/abs/2004.15011). The goal was to create two models capable of handling the complex information contained in long biomedical documents and subsequently producing scientific summaries according to one of the two possible levels of conciseness: 1) A long explanatory synopsis that retains the majority of domain-specific language used in the original source text. 2)A one sentence long, TLDR style summary." - ) - gr.Markdown( - "- The two most important text generation parameters are the number of beams and length penalty : 1) Choosing a higher number of beams for the beam search algorithm results in generating a summary with higher probability (hence theoretically higher quality) at the cost of increasing computation times and memory usage. 2) The length penalty encourages the model to generate longer (with values closer to 1.0) or shorter (with values closer to 0.0) summary sequences by placing an exponential penalty on the beam score according to the current sequence length." - ) - gr.Markdown("---") - - load_examples_button.click( - fn=load_single_example_text, inputs=[example_name], outputs=[input_text] - ) - - load_file_button.click( - fn=load_uploaded_file, inputs=uploaded_file, outputs=[input_text] - ) - - summarize_button.click( - fn=proc_submission, - inputs=[ - input_text, - model_size, - num_beams, - token_batch_length, - length_penalty, - ], - outputs=[output_text, summary_text, compression_rate], - ) - - demo.launch(enable_queue=True, share=False) \ No newline at end of file diff --git a/spaces/CVPR/LIVE/pybind11/tools/pybind11Tools.cmake b/spaces/CVPR/LIVE/pybind11/tools/pybind11Tools.cmake deleted file mode 100644 index 10f15a30917056f8d69cff833e2c905aede08e50..0000000000000000000000000000000000000000 --- a/spaces/CVPR/LIVE/pybind11/tools/pybind11Tools.cmake +++ /dev/null @@ -1,188 +0,0 @@ -# tools/pybind11Tools.cmake -- Build system for the pybind11 modules -# -# Copyright (c) 2015 Wenzel Jakob -# -# All rights reserved. Use of this source code is governed by a -# BSD-style license that can be found in the LICENSE file. - -# Built-in in CMake 3.5+ -include(CMakeParseArguments) - -if(pybind11_FIND_QUIETLY) - set(_pybind11_quiet QUIET) -endif() - -# If this is the first run, PYTHON_VERSION can stand in for PYBIND11_PYTHON_VERSION -if(NOT DEFINED PYBIND11_PYTHON_VERSION AND DEFINED PYTHON_VERSION) - message(WARNING "Set PYBIND11_PYTHON_VERSION to search for a specific version, not " - "PYTHON_VERSION (which is an output). Assuming that is what you " - "meant to do and continuing anyway.") - set(PYBIND11_PYTHON_VERSION - "${PYTHON_VERSION}" - CACHE STRING "Python version to use for compiling modules") - unset(PYTHON_VERSION) - unset(PYTHON_VERSION CACHE) -else() - # If this is set as a normal variable, promote it, otherwise, make an empty cache variable. - set(PYBIND11_PYTHON_VERSION - "${PYBIND11_PYTHON_VERSION}" - CACHE STRING "Python version to use for compiling modules") -endif() - -# A user can set versions manually too -set(Python_ADDITIONAL_VERSIONS - "3.9;3.8;3.7;3.6;3.5;3.4" - CACHE INTERNAL "") - -list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_LIST_DIR}") -find_package(PythonLibsNew ${PYBIND11_PYTHON_VERSION} MODULE REQUIRED ${_pybind11_quiet}) -list(REMOVE_AT CMAKE_MODULE_PATH -1) - -# Cache variables so pybind11_add_module can be used in parent projects -set(PYTHON_INCLUDE_DIRS - ${PYTHON_INCLUDE_DIRS} - CACHE INTERNAL "") -set(PYTHON_LIBRARIES - ${PYTHON_LIBRARIES} - CACHE INTERNAL "") -set(PYTHON_MODULE_PREFIX - ${PYTHON_MODULE_PREFIX} - CACHE INTERNAL "") -set(PYTHON_MODULE_EXTENSION - ${PYTHON_MODULE_EXTENSION} - CACHE INTERNAL "") -set(PYTHON_VERSION_MAJOR - ${PYTHON_VERSION_MAJOR} - CACHE INTERNAL "") -set(PYTHON_VERSION_MINOR - ${PYTHON_VERSION_MINOR} - CACHE INTERNAL "") -set(PYTHON_VERSION - ${PYTHON_VERSION} - CACHE INTERNAL "") -set(PYTHON_IS_DEBUG - "${PYTHON_IS_DEBUG}" - CACHE INTERNAL "") - -if(PYBIND11_MASTER_PROJECT) - if(PYTHON_MODULE_EXTENSION MATCHES "pypy") - if(NOT DEFINED PYPY_VERSION) - execute_process( - COMMAND ${PYTHON_EXECUTABLE} -c - [=[import sys; print(".".join(map(str, sys.pypy_version_info[:3])))]=] - OUTPUT_VARIABLE pypy_version) - set(PYPY_VERSION - ${pypy_version} - CACHE INTERNAL "") - endif() - message(STATUS "PYPY ${PYPY_VERSION} (Py ${PYTHON_VERSION})") - else() - message(STATUS "PYTHON ${PYTHON_VERSION}") - endif() -endif() - -# Only add Python for build - must be added during the import for config since it has to be re-discovered. -set_property( - TARGET pybind11::pybind11 - APPEND - PROPERTY INTERFACE_INCLUDE_DIRECTORIES $) - -# Python debug libraries expose slightly different objects before 3.8 -# https://docs.python.org/3.6/c-api/intro.html#debugging-builds -# https://stackoverflow.com/questions/39161202/how-to-work-around-missing-pymodule-create2-in-amd64-win-python35-d-lib -if(PYTHON_IS_DEBUG) - set_property( - TARGET pybind11::pybind11 - APPEND - PROPERTY INTERFACE_COMPILE_DEFINITIONS Py_DEBUG) -endif() - -set_property( - TARGET pybind11::module - APPEND - PROPERTY - INTERFACE_LINK_LIBRARIES pybind11::python_link_helper - "$<$,$>:$>") - -if(PYTHON_VERSION VERSION_LESS 3) - set_property( - TARGET pybind11::pybind11 - APPEND - PROPERTY INTERFACE_LINK_LIBRARIES pybind11::python2_no_register) -endif() - -set_property( - TARGET pybind11::embed - APPEND - PROPERTY INTERFACE_LINK_LIBRARIES pybind11::pybind11 $) - -function(pybind11_extension name) - # The prefix and extension are provided by FindPythonLibsNew.cmake - set_target_properties(${name} PROPERTIES PREFIX "${PYTHON_MODULE_PREFIX}" - SUFFIX "${PYTHON_MODULE_EXTENSION}") -endfunction() - -# Build a Python extension module: -# pybind11_add_module( [MODULE | SHARED] [EXCLUDE_FROM_ALL] -# [NO_EXTRAS] [THIN_LTO] source1 [source2 ...]) -# -function(pybind11_add_module target_name) - set(options MODULE SHARED EXCLUDE_FROM_ALL NO_EXTRAS SYSTEM THIN_LTO) - cmake_parse_arguments(ARG "${options}" "" "" ${ARGN}) - - if(ARG_MODULE AND ARG_SHARED) - message(FATAL_ERROR "Can't be both MODULE and SHARED") - elseif(ARG_SHARED) - set(lib_type SHARED) - else() - set(lib_type MODULE) - endif() - - if(ARG_EXCLUDE_FROM_ALL) - set(exclude_from_all EXCLUDE_FROM_ALL) - else() - set(exclude_from_all "") - endif() - - add_library(${target_name} ${lib_type} ${exclude_from_all} ${ARG_UNPARSED_ARGUMENTS}) - - target_link_libraries(${target_name} PRIVATE pybind11::module) - - if(ARG_SYSTEM) - message( - STATUS - "Warning: this does not have an effect - use NO_SYSTEM_FROM_IMPORTED if using imported targets" - ) - endif() - - pybind11_extension(${target_name}) - - # -fvisibility=hidden is required to allow multiple modules compiled against - # different pybind versions to work properly, and for some features (e.g. - # py::module_local). We force it on everything inside the `pybind11` - # namespace; also turning it on for a pybind module compilation here avoids - # potential warnings or issues from having mixed hidden/non-hidden types. - set_target_properties(${target_name} PROPERTIES CXX_VISIBILITY_PRESET "hidden" - CUDA_VISIBILITY_PRESET "hidden") - - if(ARG_NO_EXTRAS) - return() - endif() - - if(NOT DEFINED CMAKE_INTERPROCEDURAL_OPTIMIZATION) - if(ARG_THIN_LTO) - target_link_libraries(${target_name} PRIVATE pybind11::thin_lto) - else() - target_link_libraries(${target_name} PRIVATE pybind11::lto) - endif() - endif() - - if(NOT MSVC AND NOT ${CMAKE_BUILD_TYPE} MATCHES Debug|RelWithDebInfo) - pybind11_strip(${target_name}) - endif() - - if(MSVC) - target_link_libraries(${target_name} PRIVATE pybind11::windows_extras) - endif() - -endfunction() diff --git a/spaces/CVPR/LIVE/thrust/thrust/detail/numeric_traits.h b/spaces/CVPR/LIVE/thrust/thrust/detail/numeric_traits.h deleted file mode 100644 index 168b9ad0f4b63657845915ba1718737773be687a..0000000000000000000000000000000000000000 --- a/spaces/CVPR/LIVE/thrust/thrust/detail/numeric_traits.h +++ /dev/null @@ -1,130 +0,0 @@ -/* - * Copyright 2008-2013 NVIDIA Corporation - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#pragma once - -#include -#include - -//#include // for intmax_t (not provided on MSVS 2005) - -namespace thrust -{ - -namespace detail -{ - -// XXX good enough for the platforms we care about -typedef long long intmax_t; - -template - struct is_signed - : integral_constant::is_signed> -{}; // end is_signed - - -template - struct num_digits - : eval_if< - std::numeric_limits::is_specialized, - integral_constant< - int, - std::numeric_limits::digits - >, - integral_constant< - int, - sizeof(T) * std::numeric_limits::digits - (is_signed::value ? 1 : 0) - > - >::type -{}; // end num_digits - - -template - struct integer_difference - //: eval_if< - // sizeof(Integer) >= sizeof(intmax_t), - // eval_if< - // is_signed::value, - // identity_, - // identity_ - // >, - // eval_if< - // sizeof(Integer) < sizeof(std::ptrdiff_t), - // identity_, - // identity_ - // > - // > -{ - private: - // XXX workaround a pedantic warning in old versions of g++ - // which complains about &&ing with a constant value - template - struct and_ - { - static const bool value = false; - }; - - template - struct and_ - { - static const bool value = y; - }; - - public: - typedef typename - eval_if< - and_< - std::numeric_limits::is_signed, - // digits is the number of no-sign bits - (!std::numeric_limits::is_bounded || (int(std::numeric_limits::digits) + 1 >= num_digits::value)) - >::value, - identity_, - eval_if< - int(std::numeric_limits::digits) + 1 < num_digits::value, - identity_, - eval_if< - int(std::numeric_limits::digits) + 1 < num_digits::value, - identity_, - identity_ - > - > - >::type type; -}; // end integer_difference - - -template - struct numeric_difference - : eval_if< - is_integral::value, - integer_difference, - identity_ - > -{}; // end numeric_difference - - -template -__host__ __device__ -typename numeric_difference::type -numeric_distance(Number x, Number y) -{ - typedef typename numeric_difference::type difference_type; - return difference_type(y) - difference_type(x); -} // end numeric_distance - -} // end detail - -} // end thrust - diff --git a/spaces/CVPR/WALT/mmdet/models/backbones/ssd_vgg.py b/spaces/CVPR/WALT/mmdet/models/backbones/ssd_vgg.py deleted file mode 100644 index cbc4fbb2301afc002f47abb9ed133a500d6cf23f..0000000000000000000000000000000000000000 --- a/spaces/CVPR/WALT/mmdet/models/backbones/ssd_vgg.py +++ /dev/null @@ -1,169 +0,0 @@ -import torch -import torch.nn as nn -import torch.nn.functional as F -from mmcv.cnn import VGG, constant_init, kaiming_init, normal_init, xavier_init -from mmcv.runner import load_checkpoint - -from mmdet.utils import get_root_logger -from ..builder import BACKBONES - - -@BACKBONES.register_module() -class SSDVGG(VGG): - """VGG Backbone network for single-shot-detection. - - Args: - input_size (int): width and height of input, from {300, 512}. - depth (int): Depth of vgg, from {11, 13, 16, 19}. - out_indices (Sequence[int]): Output from which stages. - - Example: - >>> self = SSDVGG(input_size=300, depth=11) - >>> self.eval() - >>> inputs = torch.rand(1, 3, 300, 300) - >>> level_outputs = self.forward(inputs) - >>> for level_out in level_outputs: - ... print(tuple(level_out.shape)) - (1, 1024, 19, 19) - (1, 512, 10, 10) - (1, 256, 5, 5) - (1, 256, 3, 3) - (1, 256, 1, 1) - """ - extra_setting = { - 300: (256, 'S', 512, 128, 'S', 256, 128, 256, 128, 256), - 512: (256, 'S', 512, 128, 'S', 256, 128, 'S', 256, 128, 'S', 256, 128), - } - - def __init__(self, - input_size, - depth, - with_last_pool=False, - ceil_mode=True, - out_indices=(3, 4), - out_feature_indices=(22, 34), - l2_norm_scale=20.): - # TODO: in_channels for mmcv.VGG - super(SSDVGG, self).__init__( - depth, - with_last_pool=with_last_pool, - ceil_mode=ceil_mode, - out_indices=out_indices) - assert input_size in (300, 512) - self.input_size = input_size - - self.features.add_module( - str(len(self.features)), - nn.MaxPool2d(kernel_size=3, stride=1, padding=1)) - self.features.add_module( - str(len(self.features)), - nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6)) - self.features.add_module( - str(len(self.features)), nn.ReLU(inplace=True)) - self.features.add_module( - str(len(self.features)), nn.Conv2d(1024, 1024, kernel_size=1)) - self.features.add_module( - str(len(self.features)), nn.ReLU(inplace=True)) - self.out_feature_indices = out_feature_indices - - self.inplanes = 1024 - self.extra = self._make_extra_layers(self.extra_setting[input_size]) - self.l2_norm = L2Norm( - self.features[out_feature_indices[0] - 1].out_channels, - l2_norm_scale) - - def init_weights(self, pretrained=None): - """Initialize the weights in backbone. - - Args: - pretrained (str, optional): Path to pre-trained weights. - Defaults to None. - """ - if isinstance(pretrained, str): - logger = get_root_logger() - load_checkpoint(self, pretrained, strict=False, logger=logger) - elif pretrained is None: - for m in self.features.modules(): - if isinstance(m, nn.Conv2d): - kaiming_init(m) - elif isinstance(m, nn.BatchNorm2d): - constant_init(m, 1) - elif isinstance(m, nn.Linear): - normal_init(m, std=0.01) - else: - raise TypeError('pretrained must be a str or None') - - for m in self.extra.modules(): - if isinstance(m, nn.Conv2d): - xavier_init(m, distribution='uniform') - - constant_init(self.l2_norm, self.l2_norm.scale) - - def forward(self, x): - """Forward function.""" - outs = [] - for i, layer in enumerate(self.features): - x = layer(x) - if i in self.out_feature_indices: - outs.append(x) - for i, layer in enumerate(self.extra): - x = F.relu(layer(x), inplace=True) - if i % 2 == 1: - outs.append(x) - outs[0] = self.l2_norm(outs[0]) - if len(outs) == 1: - return outs[0] - else: - return tuple(outs) - - def _make_extra_layers(self, outplanes): - layers = [] - kernel_sizes = (1, 3) - num_layers = 0 - outplane = None - for i in range(len(outplanes)): - if self.inplanes == 'S': - self.inplanes = outplane - continue - k = kernel_sizes[num_layers % 2] - if outplanes[i] == 'S': - outplane = outplanes[i + 1] - conv = nn.Conv2d( - self.inplanes, outplane, k, stride=2, padding=1) - else: - outplane = outplanes[i] - conv = nn.Conv2d( - self.inplanes, outplane, k, stride=1, padding=0) - layers.append(conv) - self.inplanes = outplanes[i] - num_layers += 1 - if self.input_size == 512: - layers.append(nn.Conv2d(self.inplanes, 256, 4, padding=1)) - - return nn.Sequential(*layers) - - -class L2Norm(nn.Module): - - def __init__(self, n_dims, scale=20., eps=1e-10): - """L2 normalization layer. - - Args: - n_dims (int): Number of dimensions to be normalized - scale (float, optional): Defaults to 20.. - eps (float, optional): Used to avoid division by zero. - Defaults to 1e-10. - """ - super(L2Norm, self).__init__() - self.n_dims = n_dims - self.weight = nn.Parameter(torch.Tensor(self.n_dims)) - self.eps = eps - self.scale = scale - - def forward(self, x): - """Forward function.""" - # normalization layer convert to FP32 in FP16 training - x_float = x.float() - norm = x_float.pow(2).sum(1, keepdim=True).sqrt() + self.eps - return (self.weight[None, :, None, None].float().expand_as(x_float) * - x_float / norm).type_as(x) diff --git a/spaces/CVPR/WALT/mmdet/models/roi_heads/bbox_heads/double_bbox_head.py b/spaces/CVPR/WALT/mmdet/models/roi_heads/bbox_heads/double_bbox_head.py deleted file mode 100644 index 6c154cb3c0d9d7639c3d4a2a1272406d3fab8acd..0000000000000000000000000000000000000000 --- a/spaces/CVPR/WALT/mmdet/models/roi_heads/bbox_heads/double_bbox_head.py +++ /dev/null @@ -1,172 +0,0 @@ -import torch.nn as nn -from mmcv.cnn import ConvModule, normal_init, xavier_init - -from mmdet.models.backbones.resnet import Bottleneck -from mmdet.models.builder import HEADS -from .bbox_head import BBoxHead - - -class BasicResBlock(nn.Module): - """Basic residual block. - - This block is a little different from the block in the ResNet backbone. - The kernel size of conv1 is 1 in this block while 3 in ResNet BasicBlock. - - Args: - in_channels (int): Channels of the input feature map. - out_channels (int): Channels of the output feature map. - conv_cfg (dict): The config dict for convolution layers. - norm_cfg (dict): The config dict for normalization layers. - """ - - def __init__(self, - in_channels, - out_channels, - conv_cfg=None, - norm_cfg=dict(type='BN')): - super(BasicResBlock, self).__init__() - - # main path - self.conv1 = ConvModule( - in_channels, - in_channels, - kernel_size=3, - padding=1, - bias=False, - conv_cfg=conv_cfg, - norm_cfg=norm_cfg) - self.conv2 = ConvModule( - in_channels, - out_channels, - kernel_size=1, - bias=False, - conv_cfg=conv_cfg, - norm_cfg=norm_cfg, - act_cfg=None) - - # identity path - self.conv_identity = ConvModule( - in_channels, - out_channels, - kernel_size=1, - conv_cfg=conv_cfg, - norm_cfg=norm_cfg, - act_cfg=None) - - self.relu = nn.ReLU(inplace=True) - - def forward(self, x): - identity = x - - x = self.conv1(x) - x = self.conv2(x) - - identity = self.conv_identity(identity) - out = x + identity - - out = self.relu(out) - return out - - -@HEADS.register_module() -class DoubleConvFCBBoxHead(BBoxHead): - r"""Bbox head used in Double-Head R-CNN - - .. code-block:: none - - /-> cls - /-> shared convs -> - \-> reg - roi features - /-> cls - \-> shared fc -> - \-> reg - """ # noqa: W605 - - def __init__(self, - num_convs=0, - num_fcs=0, - conv_out_channels=1024, - fc_out_channels=1024, - conv_cfg=None, - norm_cfg=dict(type='BN'), - **kwargs): - kwargs.setdefault('with_avg_pool', True) - super(DoubleConvFCBBoxHead, self).__init__(**kwargs) - assert self.with_avg_pool - assert num_convs > 0 - assert num_fcs > 0 - self.num_convs = num_convs - self.num_fcs = num_fcs - self.conv_out_channels = conv_out_channels - self.fc_out_channels = fc_out_channels - self.conv_cfg = conv_cfg - self.norm_cfg = norm_cfg - - # increase the channel of input features - self.res_block = BasicResBlock(self.in_channels, - self.conv_out_channels) - - # add conv heads - self.conv_branch = self._add_conv_branch() - # add fc heads - self.fc_branch = self._add_fc_branch() - - out_dim_reg = 4 if self.reg_class_agnostic else 4 * self.num_classes - self.fc_reg = nn.Linear(self.conv_out_channels, out_dim_reg) - - self.fc_cls = nn.Linear(self.fc_out_channels, self.num_classes + 1) - self.relu = nn.ReLU(inplace=True) - - def _add_conv_branch(self): - """Add the fc branch which consists of a sequential of conv layers.""" - branch_convs = nn.ModuleList() - for i in range(self.num_convs): - branch_convs.append( - Bottleneck( - inplanes=self.conv_out_channels, - planes=self.conv_out_channels // 4, - conv_cfg=self.conv_cfg, - norm_cfg=self.norm_cfg)) - return branch_convs - - def _add_fc_branch(self): - """Add the fc branch which consists of a sequential of fc layers.""" - branch_fcs = nn.ModuleList() - for i in range(self.num_fcs): - fc_in_channels = ( - self.in_channels * - self.roi_feat_area if i == 0 else self.fc_out_channels) - branch_fcs.append(nn.Linear(fc_in_channels, self.fc_out_channels)) - return branch_fcs - - def init_weights(self): - # conv layers are already initialized by ConvModule - normal_init(self.fc_cls, std=0.01) - normal_init(self.fc_reg, std=0.001) - - for m in self.fc_branch.modules(): - if isinstance(m, nn.Linear): - xavier_init(m, distribution='uniform') - - def forward(self, x_cls, x_reg): - # conv head - x_conv = self.res_block(x_reg) - - for conv in self.conv_branch: - x_conv = conv(x_conv) - - if self.with_avg_pool: - x_conv = self.avg_pool(x_conv) - - x_conv = x_conv.view(x_conv.size(0), -1) - bbox_pred = self.fc_reg(x_conv) - - # fc head - x_fc = x_cls.view(x_cls.size(0), -1) - for fc in self.fc_branch: - x_fc = self.relu(fc(x_fc)) - - cls_score = self.fc_cls(x_fc) - - return cls_score, bbox_pred diff --git a/spaces/CVPR/lama-example/predict.py b/spaces/CVPR/lama-example/predict.py deleted file mode 100644 index 878b7988c113778f48ec3f940d2031a30c12e03f..0000000000000000000000000000000000000000 --- a/spaces/CVPR/lama-example/predict.py +++ /dev/null @@ -1,89 +0,0 @@ -#!/usr/bin/env python3 - -# Example command: -# ./bin/predict.py \ -# model.path= \ -# indir= \ -# outdir= - -import logging -import os -import sys -import traceback - -from saicinpainting.evaluation.utils import move_to_device - -os.environ['OMP_NUM_THREADS'] = '1' -os.environ['OPENBLAS_NUM_THREADS'] = '1' -os.environ['MKL_NUM_THREADS'] = '1' -os.environ['VECLIB_MAXIMUM_THREADS'] = '1' -os.environ['NUMEXPR_NUM_THREADS'] = '1' - -import cv2 -import hydra -import numpy as np -import torch -import tqdm -import yaml -from omegaconf import OmegaConf -from torch.utils.data._utils.collate import default_collate - -from saicinpainting.training.data.datasets import make_default_val_dataset -from saicinpainting.training.trainers import load_checkpoint -from saicinpainting.utils import register_debug_signal_handlers - -LOGGER = logging.getLogger(__name__) - - -@hydra.main(config_path='configs/prediction', config_name='default.yaml') -def main(predict_config: OmegaConf): - try: - register_debug_signal_handlers() # kill -10 will result in traceback dumped into log - - device = torch.device(predict_config.device) - - train_config_path = os.path.join(predict_config.model.path, 'config.yaml') - with open(train_config_path, 'r') as f: - train_config = OmegaConf.create(yaml.safe_load(f)) - - train_config.training_model.predict_only = True - - out_ext = predict_config.get('out_ext', '.png') - - checkpoint_path = os.path.join(predict_config.model.path, - 'models', - predict_config.model.checkpoint) - model = load_checkpoint(train_config, checkpoint_path, strict=False, map_location='cpu') - model.freeze() - model.to(device) - - if not predict_config.indir.endswith('/'): - predict_config.indir += '/' - - dataset = make_default_val_dataset(predict_config.indir, **predict_config.dataset) - with torch.no_grad(): - for img_i in tqdm.trange(len(dataset)): - mask_fname = dataset.mask_filenames[img_i] - cur_out_fname = os.path.join( - predict_config.outdir, - os.path.splitext(mask_fname[len(predict_config.indir):])[0] + out_ext - ) - os.makedirs(os.path.dirname(cur_out_fname), exist_ok=True) - - batch = move_to_device(default_collate([dataset[img_i]]), device) - batch['mask'] = (batch['mask'] > 0) * 1 - batch = model(batch) - cur_res = batch[predict_config.out_key][0].permute(1, 2, 0).detach().cpu().numpy() - - cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8') - cur_res = cv2.cvtColor(cur_res, cv2.COLOR_RGB2BGR) - cv2.imwrite(cur_out_fname, cur_res) - except KeyboardInterrupt: - LOGGER.warning('Interrupted by user') - except Exception as ex: - LOGGER.critical(f'Prediction failed due to {ex}:\n{traceback.format_exc()}') - sys.exit(1) - - -if __name__ == '__main__': - main() diff --git a/spaces/CikeyQI/Yunzai/Yunzai/lib/bot.js b/spaces/CikeyQI/Yunzai/Yunzai/lib/bot.js deleted file mode 100644 index 0c478ffd702713f8e2a1e0002553843feb445d45..0000000000000000000000000000000000000000 --- a/spaces/CikeyQI/Yunzai/Yunzai/lib/bot.js +++ /dev/null @@ -1,231 +0,0 @@ -import "./config/init.js" -import cfg from "./config/config.js" -import PluginsLoader from "./plugins/loader.js" -import ListenerLoader from "./listener/loader.js" -import { EventEmitter } from "events" -import express from "express" -import http from "http" -import { WebSocketServer } from "ws" -import _ from "lodash" - -export default class Yunzai extends EventEmitter { - constructor() { - super() - this.uin = [] - this.adapter = [] - this.express = express() - this.server = http.createServer(this.express) - this.server.on("upgrade", (req, socket, head) => { - this.wss.handleUpgrade(req, socket, head, conn => { - conn.id = `${req.connection.remoteAddress}-${req.headers["sec-websocket-key"]}` - this.makeLog("mark", `${logger.blue(`[${conn.id} <=> ${req.url}]`)} 建立连接:${JSON.stringify(req.headers)}`) - conn.on("error", logger.error) - conn.on("close", () => this.makeLog("mark", `${logger.blue(`[${conn.id} <≠> ${req.url}]`)} 断开连接`)) - conn.on("message", msg => this.makeLog("debug", `${logger.blue(`[${conn.id} => ${req.url}]`)} 消息:${String(msg).trim()}`)) - conn.sendMsg = msg => { - if (typeof msg == "object") - msg = JSON.stringify(msg) - this.makeLog("debug", `${logger.blue(`[${conn.id} <= ${req.url}]`)} 消息:${msg}`) - return conn.send(msg) - } - for (const i of this.wsf[req.url.split("/")[1]] || []) - i(conn, req, socket, head) - }) - }) - this.wss = new WebSocketServer({ noServer: true }) - this.wsf = {} - } - - makeLog(level, msg) { - logger[level](_.truncate(msg, { length: cfg.bot.logLength })) - } - - em(name = "", data = {}) { - if (data.self_id) - Object.defineProperty(data, "bot", { value: Bot[data.self_id] }) - while (true) { - this.emit(name, data) - const i = name.lastIndexOf(".") - if (i == -1) break - name = name.slice(0, i) - } - } - - async run() { - await import("./plugins/stdin.js") - await PluginsLoader.load() - await ListenerLoader.load() - this.serverLoad() - this.emit("online", this) - } - - serverLoad() { - this.express.use(req => { - logger.mark(`${logger.blue(`[${req.ip} => ${req.url}]`)} HTTP ${req.method} 请求:${JSON.stringify(req.headers)}`) - req.res.redirect("https://github.com/TimeRainStarSky/Yunzai") - }) - - this.server.listen(cfg.bot.port, () => { - const host = this.server.address().address - const port = this.server.address().port - logger.mark(`启动 HTTP 服务器:${logger.green(`http://[${host}]:${port}`)}`) - for (const i of Object.keys(this.wsf)) - logger.info(`本机 ${i} 连接地址:${logger.blue(`ws://localhost:${port}/${i}`)}`) - }) - } - - getFriendArray() { - const array = [] - for (const bot_id of this.uin) - for (const [id, i] of this[bot_id].fl || []) - array.push({ ...i, bot_id }) - return array - } - - getFriendList() { - const array = [] - for (const bot_id of this.uin) - for (const [id, i] of this[bot_id].fl || []) - array.push(id) - return array - } - - getFriendMap() { - const map = new Map - for (const bot_id of this.uin) - for (const [id, i] of this[bot_id].fl || []) - map.set(id, { ...i, bot_id }) - return map - } - get fl() { return this.getFriendMap() } - - getGroupArray() { - const array = [] - for (const bot_id of this.uin) - for (const [id, i] of this[bot_id].gl || []) - array.push({ ...i, bot_id }) - return array - } - - getGroupList() { - const array = [] - for (const bot_id of this.uin) - for (const [id, i] of this[bot_id].gl || []) - array.push(id) - return array - } - - getGroupMap() { - const map = new Map - for (const bot_id of this.uin) - for (const [id, i] of this[bot_id].gl || []) - map.set(id, { ...i, bot_id }) - return map - } - get gl() { return this.getGroupMap() } - get gml() { - const map = new Map - for (const bot_id of this.uin) - for (const [id, i] of this[bot_id].gml || []) - map.set(id, i) - return map - } - - pickFriend(user_id) { - user_id = Number(user_id) || String(user_id) - const user = this.fl.get(user_id) - if (user) return this[user.bot_id].pickFriend(user_id) - logger.error(`获取用户对象失败:找不到用户 ${logger.red(user_id)}`) - } - get pickUser() { return this.pickFriend } - - pickGroup(group_id) { - group_id = Number(group_id) || String(group_id) - const group = this.gl.get(group_id) - if (group) return this[group.bot_id].pickGroup(group_id) - logger.error(`获取群对象失败:找不到群 ${logger.red(group_id)}`) - } - - pickMember(group_id, user_id) { - const group = this.pickGroup(group_id) - if (group) return group.pickMember(user_id) - } - - sendFriendMsg(bot_id, user_id, msg) { - try { - if (!bot_id) - return this.pickFriend(user_id).sendMsg(msg) - - if (this[bot_id]) - return this[bot_id].pickFriend(user_id).sendMsg(msg) - - return new Promise(resolve => - this.once(`connect.${bot_id}`, data => - resolve(data.bot.pickFriend(user_id).sendMsg(msg)))) - } catch (err) { - logger.error(`${logger.blue(`[${bot_id}]`)} 发送好友消息失败:[$${user_id}] ${err}`) - } - return false - } - - sendGroupMsg(bot_id, group_id, msg) { - try { - if (!bot_id) - return this.pickGroup(group_id).sendMsg(msg) - - if (this[bot_id]) - return this[bot_id].pickGroup(group_id).sendMsg(msg) - - return new Promise(resolve => - this.once(`connect.${bot_id}`, data => - resolve(data.bot.pickGroup(group_id).sendMsg(msg)))) - } catch (err) { - logger.error(`${logger.blue(`[${bot_id}]`)} 发送群消息失败:[$${group_id}] ${err}`) - } - return false - } - - async getFriendMsg(fnc = () => true) { - if (typeof fnc != "function") { - const { self_id, user_id } = fnc - fnc = data => data.self_id == self_id && data.user_id == user_id - } - - while (true) { - const msg = await new Promise(resolve => { - this.once("message", data => { - if (data.message && fnc(data)) { - let msg = "" - for (const i of data.message) - if (i.type = "text") - msg += i.text.trim() - resolve(msg) - } else { - resolve(false) - } - }) - }) - if (msg) return msg - } - } - - getMasterMsg() { - return this.getFriendMsg(data => - cfg.master[data.self_id]?.includes(String(data.user_id))) - } - - sendMasterMsg(msg) { - for (const bot_id in cfg.master) - for (const user_id of cfg.master[bot_id]) - this.sendFriendMsg(bot_id, user_id, msg) - } - - makeForwardMsg(msg) { return { type: "node", data: msg } } - - async sendForwardMsg(send, msg) { - const messages = [] - for (const { message } of msg) - messages.push(await send(message)) - return messages - } -} \ No newline at end of file diff --git a/spaces/Codecooker/rvcapi/src/trainset_preprocess_pipeline_print.py b/spaces/Codecooker/rvcapi/src/trainset_preprocess_pipeline_print.py deleted file mode 100644 index 7b19e3e9a5788552b6acb9cd6747bda7ae93146b..0000000000000000000000000000000000000000 --- a/spaces/Codecooker/rvcapi/src/trainset_preprocess_pipeline_print.py +++ /dev/null @@ -1,146 +0,0 @@ -import sys, os, multiprocessing -from scipy import signal - -now_dir = os.getcwd() -sys.path.append(now_dir) - -inp_root = sys.argv[1] -sr = int(sys.argv[2]) -n_p = int(sys.argv[3]) -exp_dir = sys.argv[4] -noparallel = sys.argv[5] == "True" -import numpy as np, os, traceback -from slicer2 import Slicer -import librosa, traceback -from scipy.io import wavfile -import multiprocessing -from my_utils import load_audio -import tqdm - -DoFormant = False -Quefrency = 1.0 -Timbre = 1.0 - -mutex = multiprocessing.Lock() -f = open("%s/preprocess.log" % exp_dir, "a+") - - -def println(strr): - mutex.acquire() - print(strr) - f.write("%s\n" % strr) - f.flush() - mutex.release() - - -class PreProcess: - def __init__(self, sr, exp_dir): - self.slicer = Slicer( - sr=sr, - threshold=-42, - min_length=1500, - min_interval=400, - hop_size=15, - max_sil_kept=500, - ) - self.sr = sr - self.bh, self.ah = signal.butter(N=5, Wn=48, btype="high", fs=self.sr) - self.per = 3.0 - self.overlap = 0.3 - self.tail = self.per + self.overlap - self.max = 0.9 - self.alpha = 0.75 - self.exp_dir = exp_dir - self.gt_wavs_dir = "%s/0_gt_wavs" % exp_dir - self.wavs16k_dir = "%s/1_16k_wavs" % exp_dir - os.makedirs(self.exp_dir, exist_ok=True) - os.makedirs(self.gt_wavs_dir, exist_ok=True) - os.makedirs(self.wavs16k_dir, exist_ok=True) - - def norm_write(self, tmp_audio, idx0, idx1): - tmp_max = np.abs(tmp_audio).max() - if tmp_max > 2.5: - print("%s-%s-%s-filtered" % (idx0, idx1, tmp_max)) - return - tmp_audio = (tmp_audio / tmp_max * (self.max * self.alpha)) + ( - 1 - self.alpha - ) * tmp_audio - wavfile.write( - "%s/%s_%s.wav" % (self.gt_wavs_dir, idx0, idx1), - self.sr, - tmp_audio.astype(np.float32), - ) - tmp_audio = librosa.resample( - tmp_audio, orig_sr=self.sr, target_sr=16000 - ) # , res_type="soxr_vhq" - wavfile.write( - "%s/%s_%s.wav" % (self.wavs16k_dir, idx0, idx1), - 16000, - tmp_audio.astype(np.float32), - ) - - def pipeline(self, path, idx0): - try: - audio = load_audio(path, self.sr, DoFormant, Quefrency, Timbre) - # zero phased digital filter cause pre-ringing noise... - # audio = signal.filtfilt(self.bh, self.ah, audio) - audio = signal.lfilter(self.bh, self.ah, audio) - - idx1 = 0 - for audio in self.slicer.slice(audio): - i = 0 - while 1: - start = int(self.sr * (self.per - self.overlap) * i) - i += 1 - if len(audio[start:]) > self.tail * self.sr: - tmp_audio = audio[start : start + int(self.per * self.sr)] - self.norm_write(tmp_audio, idx0, idx1) - idx1 += 1 - else: - tmp_audio = audio[start:] - idx1 += 1 - break - self.norm_write(tmp_audio, idx0, idx1) - # println("%s->Suc." % path) - except: - println("%s->%s" % (path, traceback.format_exc())) - - def pipeline_mp(self, infos, thread_n): - for path, idx0 in tqdm.tqdm( - infos, position=thread_n, leave=True, desc="thread:%s" % thread_n - ): - self.pipeline(path, idx0) - - def pipeline_mp_inp_dir(self, inp_root, n_p): - try: - infos = [ - ("%s/%s" % (inp_root, name), idx) - for idx, name in enumerate(sorted(list(os.listdir(inp_root)))) - ] - if noparallel: - for i in range(n_p): - self.pipeline_mp(infos[i::n_p]) - else: - ps = [] - for i in range(n_p): - p = multiprocessing.Process( - target=self.pipeline_mp, args=(infos[i::n_p], i) - ) - ps.append(p) - p.start() - for i in range(n_p): - ps[i].join() - except: - println("Fail. %s" % traceback.format_exc()) - - -def preprocess_trainset(inp_root, sr, n_p, exp_dir): - pp = PreProcess(sr, exp_dir) - println("start preprocess") - println(sys.argv) - pp.pipeline_mp_inp_dir(inp_root, n_p) - println("end preprocess") - - -if __name__ == "__main__": - preprocess_trainset(inp_root, sr, n_p, exp_dir) diff --git a/spaces/DCandE/rvc-models/config.py b/spaces/DCandE/rvc-models/config.py deleted file mode 100644 index c0c16e0017efbcaf250cb539a1d0edb4e83575e4..0000000000000000000000000000000000000000 --- a/spaces/DCandE/rvc-models/config.py +++ /dev/null @@ -1,88 +0,0 @@ -########################硬件参数######################## - -# 填写cuda:x, cpu 或 mps, x指代第几张卡,只支持 N卡 / Apple Silicon 加速 -device = "cuda:0" - -# 9-10-20-30-40系显卡无脑True,不影响质量,>=20显卡开启有加速 -is_half = True - -# 默认0用上所有线程,写数字限制CPU资源使用 -n_cpu = 0 - -########################硬件参数######################## - - -##################下为参数处理逻辑,勿动################## - -########################命令行参数######################## -import argparse - -parser = argparse.ArgumentParser() -parser.add_argument("--port", type=int, default=7865, help="Listen port") -parser.add_argument("--pycmd", type=str, default="python", help="Python command") -parser.add_argument("--colab", action="store_true", help="Launch in colab") -parser.add_argument( - "--noparallel", action="store_true", help="Disable parallel processing" -) -parser.add_argument( - "--noautoopen", action="store_true", help="Do not open in browser automatically" -) -cmd_opts, unknown = parser.parse_known_args() - -python_cmd = cmd_opts.pycmd -listen_port = cmd_opts.port -iscolab = cmd_opts.colab -noparallel = cmd_opts.noparallel -noautoopen = cmd_opts.noautoopen -########################命令行参数######################## - -import sys -import torch - - -# has_mps is only available in nightly pytorch (for now) and MasOS 12.3+. -# check `getattr` and try it for compatibility -def has_mps() -> bool: - if sys.platform != "darwin": - return False - else: - if not getattr(torch, "has_mps", False): - return False - try: - torch.zeros(1).to(torch.device("mps")) - return True - except Exception: - return False - - -if not torch.cuda.is_available(): - if has_mps(): - print("没有发现支持的N卡, 使用MPS进行推理") - device = "mps" - else: - print("没有发现支持的N卡, 使用CPU进行推理") - device = "cpu" - is_half = False - -if device not in ["cpu", "mps"]: - gpu_name = torch.cuda.get_device_name(int(device.split(":")[-1])) - if "16" in gpu_name or "MX" in gpu_name: - print("16系显卡/MX系显卡强制单精度") - is_half = False - -from multiprocessing import cpu_count - -if n_cpu == 0: - n_cpu = cpu_count() -if is_half: - # 6G显存配置 - x_pad = 3 - x_query = 10 - x_center = 60 - x_max = 65 -else: - # 5G显存配置 - x_pad = 1 - x_query = 6 - x_center = 38 - x_max = 41 diff --git a/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/templates/cdn/assets/index-7648fc8d.js b/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/templates/cdn/assets/index-7648fc8d.js deleted file mode 100644 index 161b8d1ff63da7d47bbec48045861e2c83fb9097..0000000000000000000000000000000000000000 --- a/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/templates/cdn/assets/index-7648fc8d.js +++ /dev/null @@ -1,7 +0,0 @@ -import{c as F,e as I,s as ce,N as me,t as c,P as _e,g as Ue,T as E,p as Qe,h as J,E as v,b as se,j as Ze,k as Ge,l as Ve,m as Ke,f as Je,i as Ye,n as We,o as et,q as ne,r as tt}from"./index-3ba00a4a.js";import{html as rt}from"./index-c48bd2e8.js";import"./index-1d65707a.js";import"./Blocks-c9e1499d.js";import"./Button-f155035a.js";import"./BlockLabel-66866176.js";import"./Empty-eec13822.js";import"./Copy-9f1657c4.js";import"./Download-daff1959.js";import"./index-f8ff95a1.js";import"./index-7f39cecc.js";import"./index-b6ab4199.js";class X{constructor(e,r,s,n,i,o,a){this.type=e,this.value=r,this.from=s,this.hash=n,this.end=i,this.children=o,this.positions=a,this.hashProp=[[I.contextHash,n]]}static create(e,r,s,n,i){let o=n+(n<<8)+e+(r<<4)|0;return new X(e,r,s,o,i,[],[])}addChild(e,r){e.prop(I.contextHash)!=this.hash&&(e=new E(e.type,e.children,e.positions,e.length,this.hashProp)),this.children.push(e),this.positions.push(r)}toTree(e,r=this.end){let s=this.children.length-1;return s>=0&&(r=Math.max(r,this.positions[s]+this.children[s].length+this.from)),new E(e.types[this.type],this.children,this.positions,r-this.from).balance({makeTree:(i,o,a)=>new E(F.none,i,o,a,this.hashProp)})}}var f;(function(t){t[t.Document=1]="Document",t[t.CodeBlock=2]="CodeBlock",t[t.FencedCode=3]="FencedCode",t[t.Blockquote=4]="Blockquote",t[t.HorizontalRule=5]="HorizontalRule",t[t.BulletList=6]="BulletList",t[t.OrderedList=7]="OrderedList",t[t.ListItem=8]="ListItem",t[t.ATXHeading1=9]="ATXHeading1",t[t.ATXHeading2=10]="ATXHeading2",t[t.ATXHeading3=11]="ATXHeading3",t[t.ATXHeading4=12]="ATXHeading4",t[t.ATXHeading5=13]="ATXHeading5",t[t.ATXHeading6=14]="ATXHeading6",t[t.SetextHeading1=15]="SetextHeading1",t[t.SetextHeading2=16]="SetextHeading2",t[t.HTMLBlock=17]="HTMLBlock",t[t.LinkReference=18]="LinkReference",t[t.Paragraph=19]="Paragraph",t[t.CommentBlock=20]="CommentBlock",t[t.ProcessingInstructionBlock=21]="ProcessingInstructionBlock",t[t.Escape=22]="Escape",t[t.Entity=23]="Entity",t[t.HardBreak=24]="HardBreak",t[t.Emphasis=25]="Emphasis",t[t.StrongEmphasis=26]="StrongEmphasis",t[t.Link=27]="Link",t[t.Image=28]="Image",t[t.InlineCode=29]="InlineCode",t[t.HTMLTag=30]="HTMLTag",t[t.Comment=31]="Comment",t[t.ProcessingInstruction=32]="ProcessingInstruction",t[t.URL=33]="URL",t[t.HeaderMark=34]="HeaderMark",t[t.QuoteMark=35]="QuoteMark",t[t.ListMark=36]="ListMark",t[t.LinkMark=37]="LinkMark",t[t.EmphasisMark=38]="EmphasisMark",t[t.CodeMark=39]="CodeMark",t[t.CodeText=40]="CodeText",t[t.CodeInfo=41]="CodeInfo",t[t.LinkTitle=42]="LinkTitle",t[t.LinkLabel=43]="LinkLabel"})(f||(f={}));class st{constructor(e,r){this.start=e,this.content=r,this.marks=[],this.parsers=[]}}class nt{constructor(){this.text="",this.baseIndent=0,this.basePos=0,this.depth=0,this.markers=[],this.pos=0,this.indent=0,this.next=-1}forward(){this.basePos>this.pos&&this.forwardInner()}forwardInner(){let e=this.skipSpace(this.basePos);this.indent=this.countIndent(e,this.pos,this.indent),this.pos=e,this.next=e==this.text.length?-1:this.text.charCodeAt(e)}skipSpace(e){return N(this.text,e)}reset(e){for(this.text=e,this.baseIndent=this.basePos=this.pos=this.indent=0,this.forwardInner(),this.depth=1;this.markers.length;)this.markers.pop()}moveBase(e){this.basePos=e,this.baseIndent=this.countIndent(e,this.pos,this.indent)}moveBaseColumn(e){this.baseIndent=e,this.basePos=this.findColumn(e)}addMarker(e){this.markers.push(e)}countIndent(e,r=0,s=0){for(let n=r;n=e.stack[r.depth+1].value+r.baseIndent)return!0;if(r.indent>=r.baseIndent+4)return!1;let s=(t.type==f.OrderedList?ee:W)(r,e,!1);return s>0&&(t.type!=f.BulletList||Y(r,e,!1)<0)&&r.text.charCodeAt(r.pos+s-1)==t.value}const ge={[f.Blockquote](t,e,r){return r.next!=62?!1:(r.markers.push(m(f.QuoteMark,e.lineStart+r.pos,e.lineStart+r.pos+1)),r.moveBase(r.pos+(C(r.text.charCodeAt(r.pos+1))?2:1)),t.end=e.lineStart+r.text.length,!0)},[f.ListItem](t,e,r){return r.indent-1?!1:(r.moveBaseColumn(r.baseIndent+t.value),!0)},[f.OrderedList]:ie,[f.BulletList]:ie,[f.Document](){return!0}};function C(t){return t==32||t==9||t==10||t==13}function N(t,e=0){for(;er&&C(t.charCodeAt(e-1));)e--;return e}function ke(t){if(t.next!=96&&t.next!=126)return-1;let e=t.pos+1;for(;e-1&&t.depth==e.stack.length||s<3?-1:1}function be(t,e){for(let r=t.stack.length-1;r>=0;r--)if(t.stack[r].type==e)return!0;return!1}function W(t,e,r){return(t.next==45||t.next==43||t.next==42)&&(t.pos==t.text.length-1||C(t.text.charCodeAt(t.pos+1)))&&(!r||be(e,f.BulletList)||t.skipSpace(t.pos+2)=48&&n<=57;){s++;if(s==t.text.length)return-1;n=t.text.charCodeAt(s)}return s==t.pos||s>t.pos+9||n!=46&&n!=41||st.pos+1||t.next!=49)?-1:s+1-t.pos}function Se(t){if(t.next!=35)return-1;let e=t.pos+1;for(;e6?-1:r}function we(t){if(t.next!=45&&t.next!=61||t.indent>=t.baseIndent+4)return-1;let e=t.pos+1;for(;e/,Ae=/\?>/,Z=[[/^<(?:script|pre|style)(?:\s|>|$)/i,/<\/(?:script|pre|style)>/i],[/^\s*/i.exec(s);if(i)return t.append(m(f.Comment,r,r+1+i[0].length));let o=/^\?[^]*?\?>/.exec(s);if(o)return t.append(m(f.ProcessingInstruction,r,r+1+o[0].length));let a=/^(?:![A-Z][^]*?>|!\[CDATA\[[^]*?\]\]>|\/\s*[a-zA-Z][\w-]*\s*>|\s*[a-zA-Z][\w-]*(\s+[a-zA-Z:_][\w-.:]*(?:\s*=\s*(?:[^\s"'=<>`]+|'[^']*'|"[^"]*"))?)*\s*(\/\s*)?>)/.exec(s);return a?t.append(m(f.HTMLTag,r,r+1+a[0].length)):-1},Emphasis(t,e,r){if(e!=95&&e!=42)return-1;let s=r+1;for(;t.char(s)==e;)s++;let n=t.slice(r-1,r),i=t.slice(s,s+1),o=R.test(n),a=R.test(i),l=/\s|^$/.test(n),h=/\s|^$/.test(i),u=!h&&(!a||l||o),p=!l&&(!o||h||a),d=u&&(e==42||!p||o),L=p&&(e==42||!u||a);return t.append(new A(e==95?He:Pe,r,s,(d?1:0)|(L?2:0)))},HardBreak(t,e,r){if(e==92&&t.char(r+1)==10)return t.append(m(f.HardBreak,r,r+2));if(e==32){let s=r+1;for(;t.char(s)==32;)s++;if(t.char(s)==10&&s>=r+2)return t.append(m(f.HardBreak,r,s+1))}return-1},Link(t,e,r){return e==91?t.append(new A(P,r,r+1,1)):-1},Image(t,e,r){return e==33&&t.char(r+1)==91?t.append(new A(le,r,r+2,1)):-1},LinkEnd(t,e,r){if(e!=93)return-1;for(let s=t.parts.length-1;s>=0;s--){let n=t.parts[s];if(n instanceof A&&(n.type==P||n.type==le)){if(!n.side||t.skipSpace(n.to)==r&&!/[(\[]/.test(t.slice(r+1,r+2)))return t.parts[s]=null,-1;let i=t.takeContent(s),o=t.parts[s]=ut(t,i,n.type==P?f.Link:f.Image,n.from,r+1);if(n.type==P)for(let a=0;ae?m(f.URL,e+r,i+r):i==t.length?null:!1}}function Ne(t,e,r){let s=t.charCodeAt(e);if(s!=39&&s!=34&&s!=40)return!1;let n=s==40?41:s;for(let i=e+1,o=!1;i=this.end?-1:this.text.charCodeAt(e-this.offset)}get end(){return this.offset+this.text.length}slice(e,r){return this.text.slice(e-this.offset,r-this.offset)}append(e){return this.parts.push(e),e.to}addDelimiter(e,r,s,n,i){return this.append(new A(e,r,s,(n?1:0)|(i?2:0)))}addElement(e){return this.append(e)}resolveMarkers(e){for(let s=e;s=e;l--){let g=this.parts[l];if(g instanceof A&&g.side&1&&g.type==n.type&&!(i&&(n.side&1||g.side&2)&&(g.to-g.from+o)%3==0&&((g.to-g.from)%3||o%3))){a=g;break}}if(!a)continue;let h=n.type.resolve,u=[],p=a.from,d=n.to;if(i){let g=Math.min(2,a.to-a.from,o);p=a.to-g,d=n.from+g,h=g==1?"Emphasis":"StrongEmphasis"}a.type.mark&&u.push(this.elt(a.type.mark,p,a.to));for(let g=l+1;g=0;r--){let s=this.parts[r];if(s instanceof A&&s.type==e)return r}return null}takeContent(e){let r=this.resolveMarkers(e);return this.parts.length=e,r}skipSpace(e){return N(this.text,e-this.offset)+this.offset}elt(e,r,s,n){return typeof e=="string"?m(this.parser.getNodeType(e),r,s,n):new Me(e,r)}}function V(t,e){if(!e.length)return t;if(!t.length)return e;let r=t.slice(),s=0;for(let n of e){for(;s(e?e-1:0))return!1;if(this.fragmentEnd<0){let i=this.fragment.to;for(;i>0&&this.input.read(i-1,i)!=` -`;)i--;this.fragmentEnd=i?i-1:0}let s=this.cursor;s||(s=this.cursor=this.fragment.tree.cursor(),s.firstChild());let n=e+this.fragment.offset;for(;s.to<=n;)if(!s.parent())return!1;for(;;){if(s.from>=n)return this.fragment.from<=r;if(!s.childAfter(n))return!1}}matches(e){let r=this.cursor.tree;return r&&r.prop(I.contextHash)==e}takeNodes(e){let r=this.cursor,s=this.fragment.offset,n=this.fragmentEnd-(this.fragment.openEnd?1:0),i=e.absoluteLineStart,o=i,a=e.block.children.length,l=o,h=a;for(;;){if(r.to-s>n){if(r.type.isAnonymous&&r.firstChild())continue;break}if(e.dontInject.add(r.tree),e.addNode(r.tree,r.from-s),r.type.is("Block")&&(pt.indexOf(r.type.id)<0?(o=r.to-s,a=e.block.children.length):(o=l,a=h,l=r.to-s,h=e.block.children.length)),!r.nextSibling())break}for(;e.block.children.length>a;)e.block.children.pop(),e.block.positions.pop();return o-i}}const mt=ce({"Blockquote/...":c.quote,HorizontalRule:c.contentSeparator,"ATXHeading1/... SetextHeading1/...":c.heading1,"ATXHeading2/... SetextHeading2/...":c.heading2,"ATXHeading3/...":c.heading3,"ATXHeading4/...":c.heading4,"ATXHeading5/...":c.heading5,"ATXHeading6/...":c.heading6,"Comment CommentBlock":c.comment,Escape:c.escape,Entity:c.character,"Emphasis/...":c.emphasis,"StrongEmphasis/...":c.strong,"Link/... Image/...":c.link,"OrderedList/... BulletList/...":c.list,"BlockQuote/...":c.quote,"InlineCode CodeText":c.monospace,URL:c.url,"HeaderMark HardBreak QuoteMark ListMark LinkMark EmphasisMark CodeMark":c.processingInstruction,"CodeInfo LinkLabel":c.labelName,LinkTitle:c.string,Paragraph:c.content}),gt=new j(new me(Ee).extend(mt),Object.keys(z).map(t=>z[t]),Object.keys(z).map(t=>at[t]),Object.keys(z),lt,ge,Object.keys(_).map(t=>_[t]),Object.keys(_),[]);function kt(t,e,r){let s=[];for(let n=t.firstChild,i=e;;n=n.nextSibling){let o=n?n.from:r;if(o>i&&s.push({from:i,to:o}),!n)break;i=n.to}return s}function Lt(t){let{codeParser:e,htmlParser:r}=t;return{wrap:Qe((n,i)=>{let o=n.type.id;if(e&&(o==f.CodeBlock||o==f.FencedCode)){let a="";if(o==f.FencedCode){let h=n.node.getChild(f.CodeInfo);h&&(a=i.read(h.from,h.to))}let l=e(a);if(l)return{parser:l,overlay:h=>h.type.id==f.CodeText}}else if(r&&(o==f.HTMLBlock||o==f.HTMLTag))return{parser:r,overlay:kt(n.node,n.from,n.to)};return null})}}const bt={resolve:"Strikethrough",mark:"StrikethroughMark"},St={defineNodes:[{name:"Strikethrough",style:{"Strikethrough/...":c.strikethrough}},{name:"StrikethroughMark",style:c.processingInstruction}],parseInline:[{name:"Strikethrough",parse(t,e,r){if(e!=126||t.char(r+1)!=126||t.char(r+2)==126)return-1;let s=t.slice(r-1,r),n=t.slice(r+2,r+3),i=/\s|^$/.test(s),o=/\s|^$/.test(n),a=R.test(s),l=R.test(n);return t.addDelimiter(bt,r,r+2,!o&&(!l||i||a),!i&&(!a||o||l))},after:"Emphasis"}]};function y(t,e,r=0,s,n=0){let i=0,o=!0,a=-1,l=-1,h=!1,u=()=>{s.push(t.elt("TableCell",n+a,n+l,t.parser.parseInline(e.slice(a,l),n+a)))};for(let p=r;p-1)&&i++,o=!1,s&&(a>-1&&u(),s.push(t.elt("TableDelimiter",p+n,p+n+1))),a=l=-1):(h||d!=32&&d!=9)&&(a<0&&(a=p),l=p+1),h=!h&&d==92}return a>-1&&(i++,s&&u()),i}function fe(t,e){for(let r=e;rn instanceof ue)||!fe(e.text,e.basePos))return!1;let s=t.scanLine(t.absoluteLineEnd+1).text;return Oe.test(s)&&y(t,e.text,e.basePos)==y(t,s,e.basePos)},before:"SetextHeading"}]};class Ct{nextLine(){return!1}finish(e,r){return e.addLeafElement(r,e.elt("Task",r.start,r.start+r.content.length,[e.elt("TaskMarker",r.start,r.start+3),...e.parser.parseInline(r.content.slice(3),r.start+3)])),!0}}const At={defineNodes:[{name:"Task",block:!0,style:c.list},{name:"TaskMarker",style:c.atom}],parseBlock:[{name:"TaskList",leaf(t,e){return/^\[[ xX]\]/.test(e.content)&&t.parentType().name=="ListItem"?new Ct:null},after:"SetextHeading"}]},xt=[wt,At,St];function Re(t,e,r){return(s,n,i)=>{if(n!=t||s.char(i+1)==t)return-1;let o=[s.elt(r,i,i+1)];for(let a=i+1;a"}}),Te=new I,De=gt.configure({props:[Je.add(t=>!t.is("Block")||t.is("Document")||K(t)!=null?void 0:(e,r)=>({from:r.doc.lineAt(e.from).to,to:e.to})),Te.add(K),Ye.add({Document:()=>null}),We.add({Document:ze})]});function K(t){let e=/^(?:ATX|Setext)Heading(\d)$/.exec(t.name);return e?+e[1]:void 0}function Mt(t,e){let r=t;for(;;){let s=r.nextSibling,n;if(!s||(n=K(s.type))!=null&&n<=e)break;r=s}return r.to}const Ht=et.of((t,e,r)=>{for(let s=J(t).resolveInner(r,-1);s&&!(s.fromr)return{from:r,to:i}}return null});function te(t){return new Ve(ze,t,[Ht],"markdown")}const Pt=te(De),vt=De.configure([xt,Et,Bt,It]),Xe=te(vt);function Nt(t,e){return r=>{if(r&&t){let s=null;if(r=/\S*/.exec(r)[0],typeof t=="function"?s=t(r):s=ne.matchLanguageName(t,r,!0),s instanceof ne)return s.support?s.support.language.parser:tt.getSkippingParser(s.load());if(s)return s.parser}return e?e.parser:null}}class D{constructor(e,r,s,n,i,o,a){this.node=e,this.from=r,this.to=s,this.spaceBefore=n,this.spaceAfter=i,this.type=o,this.item=a}blank(e,r=!0){let s=this.spaceBefore+(this.node.name=="Blockquote"?">":"");if(e!=null){for(;s.length0;n--)s+=" ";return s+(r?this.spaceAfter:"")}}marker(e,r){let s=this.node.name=="OrderedList"?String(+je(this.item,e)[2]+r):"";return this.spaceBefore+s+this.type+this.spaceAfter}}function Fe(t,e){let r=[];for(let n=t;n&&n.name!="Document";n=n.parent)(n.name=="ListItem"||n.name=="Blockquote"||n.name=="FencedCode")&&r.push(n);let s=[];for(let n=r.length-1;n>=0;n--){let i=r[n],o,a=e.lineAt(i.from),l=i.from-a.from;if(i.name=="FencedCode")s.push(new D(i,l,l,"","","",null));else if(i.name=="Blockquote"&&(o=/^[ \t]*>( ?)/.exec(a.text.slice(l))))s.push(new D(i,l,l+o[0].length,"",o[1],">",null));else if(i.name=="ListItem"&&i.parent.name=="OrderedList"&&(o=/^([ \t]*)\d+([.)])([ \t]*)/.exec(a.text.slice(l)))){let h=o[3],u=o[0].length;h.length>=4&&(h=h.slice(0,h.length-4),u-=4),s.push(new D(i.parent,l,l+u,o[1],h,o[2],i))}else if(i.name=="ListItem"&&i.parent.name=="BulletList"&&(o=/^([ \t]*)([-+*])([ \t]{1,4}\[[ xX]\])?([ \t]+)/.exec(a.text.slice(l)))){let h=o[4],u=o[0].length;h.length>4&&(h=h.slice(0,h.length-4),u-=4);let p=o[2];o[3]&&(p+=o[3].replace(/[xX]/," ")),s.push(new D(i.parent,l,l+u,o[1],h,p,i))}}return s}function je(t,e){return/^(\s*)(\d+)(?=[.)])/.exec(e.sliceString(t.from,t.from+10))}function U(t,e,r,s=0){for(let n=-1,i=t;;){if(i.name=="ListItem"){let a=je(i,e),l=+a[2];if(n>=0){if(l!=n+1)return;r.push({from:i.from+a[1].length,to:i.from+a[0].length,insert:String(n+2+s)})}n=l}let o=i.nextSibling;if(!o)break;i=o}}const yt=({state:t,dispatch:e})=>{let r=J(t),{doc:s}=t,n=null,i=t.changeByRange(o=>{if(!o.empty||!Xe.isActiveAt(t,o.from))return n={range:o};let a=o.from,l=s.lineAt(a),h=Fe(r.resolveInner(a,-1),s);for(;h.length&&h[h.length-1].from>a-l.from;)h.pop();if(!h.length)return n={range:o};let u=h[h.length-1];if(u.to-u.spaceAfter.length>a-l.from)return n={range:o};let p=a>=u.to-u.spaceAfter.length&&!/\S/.test(l.text.slice(u.to));if(u.item&&p)if(u.node.firstChild.to>=a||l.from>0&&!/[^\s>]/.test(s.lineAt(l.from-1).text)){let k=h.length>1?h[h.length-2]:null,b,w="";k&&k.item?(b=l.from+k.from,w=k.marker(s,1)):b=l.from+(k?k.to:0);let x=[{from:b,to:a,insert:w}];return u.node.name=="OrderedList"&&U(u.item,s,x,-2),k&&k.node.name=="OrderedList"&&U(k.item,s,x),{range:v.cursor(b+w.length),changes:x}}else{let k="";for(let b=0,w=h.length-2;b<=w;b++)k+=h[b].blank(b\s*$/.exec(k.text);if(b&&b.index==u.from){let w=t.changes([{from:k.from+b.index,to:k.to},{from:l.from+u.from,to:l.to}]);return{range:o.map(w),changes:w}}}let d=[];u.node.name=="OrderedList"&&U(u.item,s,d);let L=u.item&&u.item.from]*/.exec(l.text)[0].length>=u.to)for(let k=0,b=h.length-1;k<=b;k++)S+=k==b&&!L?h[k].marker(s,1):h[k].blank(kl.from&&/\s/.test(l.text.charAt(g-l.from-1));)g--;return S=t.lineBreak+S,d.push({from:g,to:a,insert:S}),{range:v.cursor(g+S.length),changes:d}});return n?!1:(e(t.update(i,{scrollIntoView:!0,userEvent:"input"})),!0)};function de(t){return t.name=="QuoteMark"||t.name=="ListMark"}function Ot(t,e){let r=t.resolveInner(e,-1),s=e;de(r)&&(s=r.from,r=r.parent);for(let n;n=r.childBefore(s);)if(de(n))s=n.from;else if(n.name=="OrderedList"||n.name=="BulletList")r=n.lastChild,s=r.to;else break;return r}const Rt=({state:t,dispatch:e})=>{let r=J(t),s=null,n=t.changeByRange(i=>{let o=i.from,{doc:a}=t;if(i.empty&&Xe.isActiveAt(t,i.from)){let l=a.lineAt(o),h=Fe(Ot(r,o),a);if(h.length){let u=h[h.length-1],p=u.to-u.spaceAfter.length+(u.spaceAfter?1:0);if(o-l.from>p&&!/\S/.test(l.text.slice(p,o-l.from)))return{range:v.cursor(l.from+p),changes:{from:l.from+p,to:o}};if(o-l.from==p){let d=l.from+u.from;if(u.item&&u.node.from= self.thr: - z = self.thr - break - fractal[ix, iy] = z - self.fractal = np.abs(fractal) - self.type_ = FractalType.Julia - return self - - def create_mandelbrot(self): - """Creates a fractal of the Mandelbrot family, the fractal is stored inside self.fractal""" - fractal = np.zeros((self.n, self.n), dtype="complex") - x_space = np.linspace(self.xlim[0], self.xlim[1], self.n) - y_space = np.linspace(self.ylim[0], self.ylim[1], self.n) - for ix, x in enumerate(x_space): - for iy, y in enumerate(y_space): - for i in range(self.max_iter): - if i == 0: - z = 0 - z = z ** 2 + complex(x, y) - if np.abs(z) >= self.thr: - z = self.thr - break - fractal[ix, iy] = z - self.fractal = np.abs(fractal.transpose()) - self.type_ = FractalType.Mandelbrot - return self - - def plot(self, **kwargs): - if self.fractal is None: - print("Nothing to plot. Generate a fractal first.") - return None - random_colormap = np.random.choice( - ["orrd", "inferno_r", "hot_r", "jet_r", "purples", "agsunset_r"] - ) - fig = px.imshow( - img=self.fractal, color_continuous_scale=random_colormap, **kwargs - ) - return fig diff --git a/spaces/Eddycrack864/Applio-Inference/extract_locale.py b/spaces/Eddycrack864/Applio-Inference/extract_locale.py deleted file mode 100644 index a4ff5ea3ddd7c612c640544099ab98a861b8fe35..0000000000000000000000000000000000000000 --- a/spaces/Eddycrack864/Applio-Inference/extract_locale.py +++ /dev/null @@ -1,34 +0,0 @@ -import json -import re - -# Define regular expression patterns -pattern = r"""i18n\([\s\n\t]*(["'][^"']+["'])[\s\n\t]*\)""" - -# Initialize the dictionary to store key-value pairs -data = {} - - -def process(fn: str): - global data - with open(fn, "r", encoding="utf-8") as f: - contents = f.read() - matches = re.findall(pattern, contents) - for key in matches: - key = eval(key) - print("extract:", key) - data[key] = key - - -print("processing infer-web.py") -process("infer-web.py") - -print("processing gui_v0.py") -process("gui_v0.py") - -print("processing gui_v1.py") -process("gui_v1.py") - -# Save as a JSON file -with open("./i18n/en_US.json", "w", encoding="utf-8") as f: - json.dump(data, f, ensure_ascii=False, indent=4) - f.write("\n") diff --git a/spaces/Eddycrack864/Applio-Inference/get-pip.py b/spaces/Eddycrack864/Applio-Inference/get-pip.py deleted file mode 100644 index cf68a2b3426decf01bde021a50c47a2115af303a..0000000000000000000000000000000000000000 --- a/spaces/Eddycrack864/Applio-Inference/get-pip.py +++ /dev/null @@ -1,32657 +0,0 @@ -#!/usr/bin/env python -# -# Hi There! -# -# You may be wondering what this giant blob of binary data here is, you might -# even be worried that we're up to something nefarious (good for you for being -# paranoid!). This is a base85 encoding of a zip file, this zip file contains -# an entire copy of pip (version 23.2.1). -# -# Pip is a thing that installs packages, pip itself is a package that someone -# might want to install, especially if they're looking to run this get-pip.py -# script. Pip has a lot of code to deal with the security of installing -# packages, various edge cases on various platforms, and other such sort of -# "tribal knowledge" that has been encoded in its code base. Because of this -# we basically include an entire copy of pip inside this blob. We do this -# because the alternatives are attempt to implement a "minipip" that probably -# doesn't do things correctly and has weird edge cases, or compress pip itself -# down into a single file. -# -# If you're wondering how this is created, it is generated using -# `scripts/generate.py` in https://github.com/pypa/get-pip. - -import sys - -this_python = sys.version_info[:2] -min_version = (3, 7) -if this_python < min_version: - message_parts = [ - "This script does not work on Python {}.{}".format(*this_python), - "The minimum supported Python version is {}.{}.".format(*min_version), - "Please use https://bootstrap.pypa.io/pip/{}.{}/get-pip.py instead.".format(*this_python), - ] - print("ERROR: " + " ".join(message_parts)) - sys.exit(1) - - -import os.path -import pkgutil -import shutil -import tempfile -import argparse -import importlib -from base64 import b85decode - - -def include_setuptools(args): - """ - Install setuptools only if absent and not excluded. - """ - cli = not args.no_setuptools - env = not os.environ.get("PIP_NO_SETUPTOOLS") - absent = not importlib.util.find_spec("setuptools") - return cli and env and absent - - -def include_wheel(args): - """ - Install wheel only if absent and not excluded. - """ - cli = not args.no_wheel - env = not os.environ.get("PIP_NO_WHEEL") - absent = not importlib.util.find_spec("wheel") - return cli and env and absent - - -def determine_pip_install_arguments(): - pre_parser = argparse.ArgumentParser() - pre_parser.add_argument("--no-setuptools", action="store_true") - pre_parser.add_argument("--no-wheel", action="store_true") - pre, args = pre_parser.parse_known_args() - - args.append("pip") - - if include_setuptools(pre): - args.append("setuptools") - - if include_wheel(pre): - args.append("wheel") - - return ["install", "--upgrade", "--force-reinstall"] + args - - -def monkeypatch_for_cert(tmpdir): - """Patches `pip install` to provide default certificate with the lowest priority. - - This ensures that the bundled certificates are used unless the user specifies a - custom cert via any of pip's option passing mechanisms (config, env-var, CLI). - - A monkeypatch is the easiest way to achieve this, without messing too much with - the rest of pip's internals. - """ - from pip._internal.commands.install import InstallCommand - - # We want to be using the internal certificates. - cert_path = os.path.join(tmpdir, "cacert.pem") - with open(cert_path, "wb") as cert: - cert.write(pkgutil.get_data("pip._vendor.certifi", "cacert.pem")) - - install_parse_args = InstallCommand.parse_args - - def cert_parse_args(self, args): - if not self.parser.get_default_values().cert: - # There are no user provided cert -- force use of bundled cert - self.parser.defaults["cert"] = cert_path # calculated above - return install_parse_args(self, args) - - InstallCommand.parse_args = cert_parse_args - - -def bootstrap(tmpdir): - monkeypatch_for_cert(tmpdir) - - # Execute the included pip and use it to install the latest pip and - # setuptools from PyPI - from pip._internal.cli.main import main as pip_entry_point - args = determine_pip_install_arguments() - sys.exit(pip_entry_point(args)) - - -def main(): - tmpdir = None - try: - # Create a temporary working directory - tmpdir = tempfile.mkdtemp() - - # Unpack the zipfile into the temporary directory - pip_zip = os.path.join(tmpdir, "pip.zip") - with open(pip_zip, "wb") as fp: - fp.write(b85decode(DATA.replace(b"\n", b""))) - - # Add the zipfile to sys.path so that we can import it - sys.path.insert(0, pip_zip) - - # Run the bootstrap - bootstrap(tmpdir=tmpdir) - finally: - # Clean up our temporary working directory - if tmpdir: - shutil.rmtree(tmpdir, ignore_errors=True) - - -DATA = b""" -P)h>@6aWAK2ml*O_EvJ33*7hs003nH000jF003}la4%n9X>MtBUtcb8c|B0UO2j}6z0X&KUUXrd;wrc -n6ubz6s0VM$QfAw<4YV^ulDhQoop$MlK*;0ehK(> -3ZJA0oQV`^+*aO7_tw^Cd$4zs{Pl#j>6{|X*AaQ6!2wJ?w>%d+2&1X4Rc!^r6h-hMtH_d5{IF3D`nKTt~p1QY-O00;mZO7>Q7_pjHy0RRA2 -0{{RI0001RX>c!JUu|J&ZeL$6aCu!)OK;mS48HqU5b43r;JP^vOMxACEp{6QLy+m1h%E`C9MAjpBNe- -8r;{H19{ebpf{zJ27j)n8%0=-6Z#elILRo@w9oRWWbO{z8ujDS!QAC@3T%nJCf;1rX6ghzu#Z}R@K&*?Hgj1WFD91+adaM4G`4Xs@*hA^t@nbDYdL)-aOjsW~3}QVVby(8=@7U$ -Fzj5Y{w!2hUUH`?e9j7WDA;>-1aos>7j{2$~BfyL8p@__Y98dsP#Bs7^lWF -=e_gr;(4^?am?Cp93+7b-!?~nb}-$cPSR1zckA*zNp!)$;YjlZrfn&RWNM}=QA7*cb8A{(9@{5!vBfq -rEMoeu5FvJZngI@N#4#(2v$WnMGCAVD?b9t8W^qDfcFBe5ZZF%dPAPaq#>ikclG~yPvCg`JUGb_W2#PdCXxx}7!|T*xc9qdnTILbO-nAJaF2 -~0snMFDU<%E01X4*yW9@|}F2;vY~;0|XQR000O88%p+8eg`F$&;kGeqy+!~6#xJLaA|NaUte%(a4 -m9mZf<3AUtcb8d3{vDZrd;nz56RT_b?l9y`mj3AXtV0MT+&(WJ!7$x|Xq_^eh*q` -qYNbl$TgcX!{RW4b=Vw*pI`moV*K|DJ2bY*KQViviHGglIK{X_)>pN=IEr427|<0g`vfCSX-CrF6hnx- -fU6^LzLVM{GttvQ!RX(K-@qvQ<9nZh3{TwCd*xxj~wep|+d4YrpRGd3uJ(;$x#MJ^wO(dX9-I(W~SOL -|!j@ev4#PBd+t2O-3Y4TDlA%@&y9h}l?d7(gvc*a&O+atWdOv5| -XtFg8N1I1Eg2~6T^Prn{|GZSIw2~Ql9c?>!a3=lwO6eT!TZzV{RAoH`=gPAEk0OKF^-L_LxAV)%Ld>V -rC7Ea!84dqJ@cSb~%=6Dm=^V^deci#%k)qhs`k`mikNs;GRv|TRB1+w&XWHK8?pSmvO+Mn5HP0Rg& -0e2!{O&s!2A%Oz`W5|6)QOoeMptG0vVbf-p%MA<(l*rGUrRG$G|nf0000U0RR9D -0001RX>c!ac`kH$aAjmAj&U%1)EvFVxRjSzi=C>J@cM -k87yJyz4~-Qcqlg}hXv}1CF`fEox?~SG{pae%Dy$pBG>tnWs3{>FohpTZSG@fe-hAmws@4PFv7Mv`H@ -JnAXTbgKqwrl)IWaYE>+%OsO9KQH0000802@m7R+hDJp-}+<06hW#02u%P0B~t=FJEbHbY*gGVQep7U -ukY>bYEXCaCvo+F;B!W42Adn3hP*|5~K?fa1xA6Cs^1JI)&D4jnX98E~x(=w{RdN$P(+xdH(X;aUMbE -La7HDOJ;>ViJroJQOYSq=f31Z#UCgsvZ;PjisC7~V50}YW@1zhN!C_4fs|i^>lX7r-W?|$V(y(g0ZOD -x-5bTWf^iasXM`rih^?Sk#%z{jZl{Ri-7?Gn9_p -NH(fR_VZQx#ZustU5xCHVj%1=)fT*F;XSi#wiQR~iuoy}(RFp&L9pfC#Zn^7Axz>2yIKB7|@~y3-1&J5eC&FySna4hw0fjd92G^LTzc+Br>7Y7w1=({ -s_3<|LwzLQl3jT^=CKlyadUgD7M{+)3>-rRJjjOO9KQH0000802@m7Rtz49V_OUW00Srh02%-Q0B~t= -FJEbHbY*gGVQepAb!lv5UuAA~E^v9(T1#`|xDmeVS714ZB@>eSIHgphB=gYhxH9p$W;~m0sZ?Bwghq@ -hk_(WwwJ!hnbT%XT~X$2UELOWbx^D5} -p)=7nt84rjpQ!t=bvqBu6SXjxf*{)}V#v6kjnleUMl*qKLJw7ma)>Zw|O-`#U0v?-c6x#d+}i#X$=E%t?3;qCzPO{p3XDn-l0g8$MLf}@FhxjzhJPffk$LZTb= -tRL0mAd`8KB>SS|Ny1Wz!%10ZP4l!(Z9X~Qr(M}5e1M{2V-3vl>e`}|vFvt@s535m*|M}OlVSM$)RrHcBrimd6?lFPUdh -^8oI-}L;caqLRJjDa?_Dr07Ysf#%z>QWYbSDW3_SKrT&dAFG`Lt`@W9KJiJ}-Jm -Eim0UQMILLA#<&5?}IiA5v%!>tEItSETqsiWmt%EBta_NRXj{H*Zo{ba+L0f#Cr>zURR@B*qHa1TLRl -QIY3XdTuN;Q8cY|sQ{2jC4o$vPgD13HO~sl#?~l?=&A}cMFP(CNl(yMsR`-t2i}7DFz8rYgPveC_)gi -?sXaiv@_U|jtx7a74!l@<;4JHe05F%Q2)SdHLgXxn>Gh!i1WT2K^_-Mqe1LMOvU4R{fH+QfQ%eQYa2d -+e#MFwQ*oaQwvhGC2wTnRW_zJ##J9Pw*x1bE%az6lfqS#7Kz)e-Rnn7GhG_W5G{(q)4xvM*rJ>eb1rMlGrLDy?OC^}{4osLlt4f7K8F}Z|`B#E1o*9RQ|@+2V@Bv`<7P)h{}C>a!R4k{Eil{;q0l?#-&mQ~4}M0|c2#OI;L{3Tudz_N!_rY+hTGzghD(#5kNVHprZaZYt##W$uR8%mb^&)N6ivKk8Fogh -BMr8%*?0wS)XN@6p#nApa&Y-w9Ew#Zu@h&NSzS79U`3ykgq8X+X_$OD4A`np9UQ(OZ&?G>pd7)u100h -6&Ehk$^P1yyq9_uwBi4bItZ;{YLK4idID%pU;f7}zm-6NU3Bg;MsQ)C_Xl%pd#APfelK6ZX)4MevarN3gu`&(XOy?+-ilBrvl6uD3dNNZ)`pUd=i?WZkc;yu4_~oaIcdwK6<&R*Ivfg2cB}&44 -buBuR0s5klsH#FHwVF%6r=l3b;v1Sm=o@?fr!Fer2uDL9L&_isoatz297jX@o{A}`XCC6WOfkP0%87K -kvdJZNsFYvO_uCPfDQ#!T$k!x23L!YQl05fIp!Qum#J6eLAwB~uW~Tzhl*@BpO*0iZn3-W@i=nr-W|( -11w{K!f#O~7gF*~{#IxcX?lmI`bj@X}m2N^O|Q*fI&p?b#N0ES?Pkc+y}Zj6*0Av01gLhWTd -nOTbhdhE1BKPS3Fg`Z@s&2l@TrvgBPRJC~P2NN1QqdwS}`bs=5XEmp~mF78qqjMEpthH9w@9Bbi4O^< -&W#%iuEa|8!D0@I9@+SrhW~?;jIcMk1?8@}gUVbulb{fRenF5C)Hq^fLi3aX)oB9={Aw5B1Eya}ud)zI$Kgq)lD -w*#4Ftggw^aT0%+Vu2)HvSC$KTnIVg4EflgOXhv&oh3ZSz1L>6#^bnq(m1-OmeK*vFp=M92_79T`!l} -{9`kKpLiSkSXPgGNTXzCM!m$>YmKH1A`kiHiQ*43y-)7dhX|M$wzbh0!*8wWuO -$+?!aMXV))oSMbZk=4=^~Bzkn$82y9L)OTJZ?WBoqw*oo)B@x+ciJET=1kF<^8cqPG -P!?R*vWNM|ELa#g+A5(FI=e?5HVwlmM86Sq%vDSn84<7Nu4Cy@v^93Go0~&XH@{(?4R;W-+{wnaSX4h -dBLaWBKHJuX_r9tZX^)!C5M>y}CCk2Bg3Q180j_`3MbCnUAON=wR_Mw>=B(2!qdobEOu2v5=yT@shGM -~r3jQ4Lc*S5nc8W7-2G(!r^M~cFZ6m}#W&xX`N#98l}tUwm`Ct`*ss)D%~d2{jaf3BD8RZT}pLU*I=( -}#C|8y|~WONGYELk8FDK9$3V(nS{-09xll!z%G^#&nYYK%@=^l2j(@kWt-j^soOk{KTUk>+MW2)n^^6 -(IL-fyvERX*?qG*p`hD|5y$?@0$n)X&O2H;^6Ex)SV+1jP-txm+iOw9lzzJAF$`cMda)C%T -GVJkVYGtLqIROwK@kZ{Ay>IU@jDOX%0SdYm|x;oqbm2$vloyp_(hz1t7I43OljOG#o7wOvTf?rAeARa -|#tj9{cl%YbU1ah!CbL`!H33}dzr -htU}qX&Y?3r~m~9(#^Nq?X+Q|_9G!Gbecu}-EupvSfdppnjX=t2xj3q;=s^aZd#RHI3bE@&IndzQQe? -i1`zO-;MmiOM@SbDofi_1tz~EAd#Gh=@ohyX!HEeD{|0MK8X+k#$FHr^$7_}l_w`+ZnbT?no-_f_d2^ -gF__@%r^IIH%GBQ!NI72pmqqVd1vE@1Pr*4|@_{B@EF0PV~*Do$#zj*ila-FfeFvbZm^^FGfkZ#J7flbgK~uVgNF>Y#FaF`LaUF7%-+Dl7KV>@&S?9zU2OZ+>URZm -08I^H`XRZB-mZDJ|^~e)wBFx(RzKvAh|7nx7WpE4{G`@lqRnzbUOQa+zItGP;bDTa~9p6_;}JQPNqll -{?c=cqexYp>wOMvQqd?a(Phwky}+65WS0HZFSa?+{nDh^+sm;N5$kqW|%M-jMb-&VrJWYFY;ULN#F04 -%D&c_;;kb)4@Ign6Q{aT8=KTs))4rLN4~GJJ9cF{|Jba5iQjiDJrX0$TIOnOF^e8sbtn^X)T$NFj-8@ -{iD(+L$w!^1W||6QX|+Kfkl2FcySN}PQI%LV?h@~meaT}{!YWRZ`NhSX?_PZK;&t-(w{Ko2ub;lU!un -ZJX>5qe<=~GOsoIK!+!4%fY?Ln9d#;VG76M;4bMf#m^kaD;@PQA1r)*v2LSj&^GbPMkK6><66k7}t3G -%k;6qC2p4udo4tT?R?rHN8dg)qrSbuz1WRSnNFs+5(4TFfe%EoKWbTh8VSp>k7KDv@TRHLsjAy~-W$1 -1NTW?#JpWLXRdK6RW#F?EzNxpE#>lp) -L@KQmY%OvdbHSvR#Q(wVAd@e}J8Z3r!je`je)Ck^oa=V6;$d%XlO!@K+b%*1V2d^Xy2w4ltjxNEf#-3 -%Z{ALUeFZ1U3)_(q;J7d`IZmt%WR2RXZX+EXcUxBd?R0*?FT5;q^X!cf+#1h3DP+kJ#Eet+Auqb=xQF -Q9DDq=$BF)ebs7G3HsErkC)iV2`(78&*QQLjTPOCZkd?wy2ag;d-6k?}x1rJg}=7ORhL$$#ZPN^$zNj -Tg>9AVKS|J*h^19BgTg-Si7jbyU#zk3OeHjX#w6z)PBwmsR4&u*u~na&oyv#6o7)N(dOcowdnwS-4$gvNc5Z?Za7Vbu|?4jtqNxFtz=&^dnjT11v;4IL1ID{P8VIaktI_HeD -ph^a6s9Mm}XTh}^EIel%nssby5GkriNRV6AM)!D*Xygb1)d3!pB5HAL~sf^1LseG+ybyersu{iS!=M* -kuF}3F4jbb^91EN5$b*Ak}P;HI_0()yqv%I|AL85vcWASBqD&-~0$E7x=R_5}LkN*5*=wa8h^Qz7UIU -fvi%EVSL^kBCir+nM7d*!60Km<7sPqu|i+!T_ZXPIzO$7*Xs4&En>KIlwV0X?HObwzqXrbaTfl$l{}e1zjN>Bi_ss8)0_r(d{QhFWq$@a3>XM?j}$soOk6IBI -&u#!le>AE~2k_cxYGN!FNPI=l!F}8{4xeyA%X@jh$HDXDyZ`<-I6shZfA>e12}YZck^uA^W39p#_)p2 -?1tXA~?YD!vm?bE50NhSCj^BGD}h;>RuQ2#i7i&_fqLqRTWi}nLKk*4+C{cI`FT+ETMNbO%(&2ZV})a -A$64|l(d)5`Or`KCEg)Hd?>D=q(YqtM3teKWMm{m^@+;W!hw$?$yfP(7znro3iP!k!L^00BCW;vx+q -NX+TzEJ+U|VJoPE$|UH24jzygsZkM7^8isYA9!ZY7WyC6|sYS73jlUte`zO3Aa%^$)d*#Z|nEMSSVQD -}>o;@grJ5^0LOK=tx&yb%(S`XAOR9&=~f75q}ZKF-<~5a7#-pFZMQ;&TtGsIz)hE2gRavlZHtiLkZvY -{ZwSV!k~w`La8T+vQ`*YDPlDZwC{UD=Zn-1a&Y^0ko|)NIqvml?~u{qy;lD}oo_g+kf^F0msufq*K--n%A)TfOG-cds<|N9Wt{C3jrdGQS^DtTw`*s)69PYV+`VKuz?ioy -k*jhrh$Xa2Iy{pQ=Fyl3ea31xSnpRs%F+~5Fr=M|@FUGJj7EPZA#cIXKycEe0A9=P<3{}8VzrnB+QX`x)Je2|u-Qb7SFaxVx`#8w*J1 -?3mE?gP}g#VDb`lB4rk&&9(}DF1N9{N5@jA)J!i*ogX3G6MTP6My3*$(1bVg6Qn -!M<@5_Si=GPt~X7Kslz*{=cXBHm-h3x${9v=mfe)LP!=9;k=?-iw;ej0gk3T6$LlFQ7_SU{0H>s^A5X -RmB11KbUVj#A&NVnbCr5iDb9=9evaaM%=xCes3hP=|4Q^Ujqt`09VfB&Qhe3F5AVAI-HESy7v%BPx6i -L$CGVeKUA;`6J$?54s&BwuR;+;#PRW5^x1{c7xm^-ibAT-SjIplI?u)PTHiPyg{W)cffQhkmQ6|=OrXGd}tA1a}6Ww-9cMttV?p{AAlI_b6x~JiL+-AL7nso0=65n;wTcxPwCEg;}^VA%A;aqSj&R;3?n -$c0ZvFlx;`;?_X60p-s5Yv@=La!0Vlg7lsaAl+m^~pwj*M_>Vn$>pu@K3X0Djh9+SIsLaDjd@l=_sol -#DA(LX;(&l94T@u&$%E?2W2XHVCECWWn9$hLc>O!&WNLBrg8u29`Jo7%R#nbcs~q;;hx;bqPP3bll?F3jeP|ga5#Al)jQ3x_KVI8q`TLdzllbIEagHuxU>s~JyP!>yR -(CO7kVK@`0wzoO$a#7#)7?Z2S^$Vg-rb~G}mtJs_M#JrkmB3!{49w2^?@W>4O@Xw-K*(-ps(;%|1m^9fopm0d{)eQjvRPV -r~Jt6SOhBZZ{nvUJ`3Uh3yHs$nK=`gHg#{t|7t9X)aIbjC#7x3p*|N?nxw$cSpgj43U}16A`8*Z>wH@ -*JIFIqUwr8gv07It?g!0&E*`rRiiI@qfLgyEvU*n3S<0rR{Oc{i2pONRc`?tYpf4{_vWiNOMZXYsa^e0Yj~!AIh~K}y6eSo2|#uEhcCW-@|c1Fd2C0wmF -F~CKcT-qpqrVVbJF0DTl(C`SoE2_aTcP#tr!~U0bTI+ZeW_@dBeEnnCt@+J2Z)Znf|DN9VPual~~t1! -M7Ri90X)lJFnw6b_0|XQR000O88%p+8N-^Lqfe-)y4>kY*9smFUaA|NaUukZ1WpZv|Y%gPPZf0p`b#h^JX>V> -WaCyxe{cqbg_ILjkoQk3{=BVp#INS{Q?y|-01xu44>Bk1c&=iY~d66Z7lVj+@>r)(#x6-zXbBX-C4u;?6q0EG38$n6SIy;6Y0g76B>mk4(a3 -Az+XULh7tiTpO>Y*)yXrCcqf05G>~x8f2|UvYz)r4dd%BIH<^2+07sE1_*#v`w|Z}kB{^Hh@FT3LE8#LtQ(<>_cJ>^o;uiL5>%Da%wyb#Pq-!YY -%>F8_Rbesb~o`tWj4om+=Dx4b%oC&1f-JJv!i>~fx~jpQ+4G=lG&^@=O1BqBEPBo?(_vlr}o1& -~%ro(_Hyc?uhh5W)a|2P38`IUEdrzBqq-`Y!(I_n<_B4A=^31vJ}T))9{gTeItQ;h4c< -I{KN7gy60+_>dZfeZk4u;N(>+Vz5c0DZiJ0~ITlzG5oWRnXW(@@Sx!Oo&=7?vK~gt4Xi{Y5*S4^AYK~ -F8M+%#e!D6JG=Pl_-qo~X2ngC=~dTzRq-|ZEK*Kuu1`NqCxH?b*Y9Vagse76HfPg(D`b(A?R#K>v`N7 -8t=>TLx;(v%4Wr(ko=xqt_|x$fEd~3M&T<#@Cp26z1qDiY@o9Q>b$T+5FRo6eS3oUM9cem7<`>d!za# -ecJDlfy#iIwGj?Yd{;0`oJ -v79`GqA_1rBFZ!PA1}gjxKvt$7(AEQnl1w&d1YE7$DmB>n=^9_R|c&Tw} -!J2(Po}*xkJlnHU@+B}XE5NdWABr|e2plrk{(YdSPlbX2z}F!67#PzcAARBse$2-fogfN;l@*2+T3RE -*(apucRs~@SFbeB8#J*qno}~p>v>CWpB>*8UFqna3py*>G3OE9kQN#it#3h%jq*QEQY}gJW3~T|pqR? -MyyNd1~UIAhtmL&a0vw0XTQN&fKBb0qC69HSht~&H68MYZ0sWKB)2z(f^H$%fl(9YQN7%>IgkeG;pW` ->?@)bP_VRO4;7>OH`^S&d_%B5>ua=--9NL;N;kEiX7^KpewYC=wGJBJ?5_Dn1C&9~zyS59l9v2_6jRd -Z$6?j8KWhm+qMaAOpQ$>>mTsA%lM@LAdBB!{EQca8xfK^tw(w!pF_378?46MkeRG$1t&c!J{3%7`7ZB -&Unz|dO=v%<>;tQnA!ROdbh~HaDDx)UDdyU&8SOG(%6n^kye9CS!^K -!DX=<5VSWi-2<<9aEWiRVF+h7HK={K?*i1@EkUp%0Vj3w}1Oc{E;Ds9K$Cszzogp!)z>g{x*t`*wJ~X -TVyv{z;u@IgqI#*SN)E>F11%XGcnE~3vNrGo!voxs^O+NrbWEBK4v49N32w77?UK}zsQ -N=Oj;@NTptBVXdGzP>ANMJL_En|!d<2tJ)e>BHbtH?QdDg4rSbG0ccEY*;QgZdqqX$=uELywNT3G?QS -i4v{IKlXh3K_Bd`B6{BuI8XwS8dX5KHOCz>wZd$gK_Y<2fWF^91lIL;;1NuSwAw$clQM(|3^{BI-Qlp -a(|^+ZLf%J~^}t#C)nCvcJZX?`c>99=#1{$1v>hfYykwP37I#REE}G!+EpVb%5Gs$n6Jnict8pjrP$7 -fiXT(}r_NxOAb7HmmjWYGK!+O_43lXj19v<|SFn}8Du|w}4zVgs@kwSjV(}oRC(vBf_-d -Gcgg)FJZF2L-tQd4c~#az0_pvfehRM2LC4Z5TQZVU;BuA$|WAvucW+m8doIVA?JDQmGdJwf1cRm41n? -4_oz_6JRpXUM#w=%-yTg;a94D{;HxsscYJ3Ms06(_S!iyA)z#DXX^LJ01h<@0{y24y;z`(guDf`b7O0 -5r)VUG)7X%eansLNUgbn#A?|ixug#Ja5(#J-lVEjwzE@+6ko{Q^g=@f8x}$cU#o_1wr$|*6=`%Y5B=X%BL*$3H4hLr%2n>|3BEEAGA3F8a!tYyGJ90%X5}*^eSVmxdN8Ka+(NEfy7Caq3Q>G0)GuYLUBor4ta(uy>;)d7?$Uy-KM#l@>EZ*?@ -80tMA#jAP4hVasWjaQI_q)0GWH`0(`;rz<^v{s7mZj+!t&%N|Yp>wu7rkzye!E1tBUakx(ql&N5*3@HZ7X%?BZeQdI7!pa;z7?k5PRs+W904N?}q4 -^&+9oE8L+@MirpRSMBc@KvyHQ%ClE*VHu)jt>sPpsxc>S2_VupjPfk?9^WLfEo)g`Ex7~gZ)l;jDYVfg&0+xP>fjh~cfPx}ui2 -!V|~l2Bj6Yi;ZsDLEzkM{7V@?!j3=&Kq^J<|mC8YX{#}YAfv&2p%VN!#NW9vIv9EQs{)NU@sL^i%YGX -Ex}F+8AvuHuokiAU!dYpzUZ2JlF)Xh;5#`d4fRQ|uM{isvQOc~MVL2vGv4%ZOh$c~b}}mbP!eC1Jh!q -9cEJ$Uc-dX+=nx$dF8u>c@^x`d#)Lq4HwnYfAG5z@aGV>XD;A^@Db&7Hfi&XiZ=kTQ8ET04MC}8Vl?3 -?Vpt-)#f3r&|wxD`U78^LybY@;S9hZI$JfP%a*;52{eegj(QI$k>k*SduZh@rzJuoH;8UYzSPC0ldP- -Ky1q$-8HqYGG6gO{of65g?7Q(B$Q>ta27WH(+kBH{^IjjTb+g;)yS@` -8-PR-d2YSvd-H`fs4LNWcA>cAw_n}|}2(dxU2QX|45ya9f|B*qXZhvS#*lOFSw+=?QoYwVaG^a~_%Z# -%X*2=B6VP*__f3I!xciq)xUQXJ;qKdReH8%~z0^zG}e$?xpysoar#E5s#h$m`+ -P6e&<56#J*L}p#SdN@ihRQdowu!Qn2^J>!bVs5Fz`KLDhwxt;5Izn@tj&%C{KLELN^TamrU={I -Lw&ZHENEq2bJCNJ_LE5f@ZPMoCkt)4N#BRobzO=@iE7FQ0z2&bR5K^kNTEZW7RGbAU-Rm*p%$ly+t{@ ->DqZ5~yS=o)R?!WaCE%-NCE&@XVhi|P@%oZUgQ{B$`(3ghq5oSIS#w(yIZICp9be&4p=_&bx8iw|F6a -xkWNS@RjhZ_KLd^kZ)6JTDkc$}F-I&l^^kN2V6sPU{aa0TPr$s^ZPRx@Cida3g012Oc8@`3e{hYkEu6 -2^SYOydTtrL5b*pIn@xBP_T-#xuV&4p{u*{Z5aHGcj27E-9q4GvqqF85{fx)kMW$jvugz5e0Hzy9SpN -pRl;Sbt6obg3erECVw+q3Wx!`xbQ%Y_UqfmqGAW&egg5A^uD>mwNKx9`1O${#3UAd^Y{<$FFA-9X_GI -hfmsk{{_ich#&FQsCgj-NF$bHQorYpJzOXm*d0 -t7_|AR#Qxl#sEn6yc?c)%r;4M&kZ$;+##_^UyeYQOVKoz?G^zz@+XAOu>$w0--q)ZA`c_^Ky;>dU8OJ -*6%^^XJ9f3wJW%YLlWhw^jbBuv?V-=&IW~e7z-HWu5@>`mn`nGrA%(uGcOs5gsR`O<%f3@Rj%A@yH&K -#1V+TK?s04awJ6%eUsf+3-BSOpX#c>PWf2~nc$G7cF8*w_4l&|o0+C&{{@>P@;4$ezZQX;H%R*$?Bn9 -ii(>YiXtF(RSuQ`*YX5;1E)4(VDgZ`}Nmf$68C_55%~|O3!$p{#Cqg_n50fd7x@*iJ?6d=1b!@#H6Xw -QSE!Lm^%|OZM$j)BPz-&QhfobO%{yAHPn790H6MTdUiHu?~83cxUEZTfUv1_;tWSEH#tFaCmMR4CR^F -AABxYpQSK{D^*EPRAJB5G8%|vZzLF+c4iu<|``%jI&fMzEowll%;yl_@8|Q;Q+?5_)?H>9fmQLmTOOy9$#nIu@8J)v<)An2fsb}{-z?A{6XeEfwYd -5AjLOg&%`=%G0>w0|7{of8Kc2HO;MG7e;yU`bQIp4X94oX$eCiid?UwFJ+iX1%To^AESHYjSxQYEN3g -vB)#o4OG16{4P_?l}}+%zal+H)SdoxnW9QUHMc9#|wT9hnc<{O|H2NIyhy}s??lRr1wIq_JWVh;*1@x -o^bu2TW}UnK+$BXADpHmfc4VHZ|ZC@KWSC&tvd@>>6%Lx)m5~{q2jU?)&01MgQD%h31WM-kaw6rN^IR -{d%xrI2WH+5-b8)>+?y!R!+bRJ@tq-_b|vTK(Q0<|X8sjnuzQ`we -0SV0XE9Q~UTGQ2!d+;pu>ObMP43+h!2c{|^KXUzfqXJ|d=Z**K2u|7my#@7n_}-^hnyF!&!(O9KQH00 -00802@m7R>_yM1-u&o0J&TM02=@R0B~t=FJEbHbY*gGVQepDcw=R7bZKvHb1ras-8|cJ<2IJ>{tAS>T -P-CLdoq_)%DYaD)2&Xs(igAoPA27eX^Mm-#uTX`NV_#ERc-Az%+~(K{=@!BzGTk@0Kto7b&{7^SJIM5 -;Nalk;M@Vv^Cll6xhj)9Q=(Eb7UiPItN9|YO0f!~yKpZ3qob=uqQo+ft5k|N?=P>!+jm!@EY_mTMY3G -wMJZ-Qz7%1$E*D8Q7Y_-3irZDP@`EHRWs!yHEi^yMSF#98=?j7h|H%(48I?G4E~Zk03#TxW0r@OUQ!z -_YsSMn5A&*ow)d)hHcm&TXH4+LiPh*kgrHJK9X0gbr`O-h~Jn!g8V;kk!ESayuLdn8;R>}`$noP};G> -^hm*1zU+n49^z3d@Dlwy^EgS{)JU2~4}p^HdocMT;=WMq&;WUQO2{=(Cbx$&JhP3JIrMUj1-B37)^2J -pcCW?KdOwB8ke8I4hBKc`*{N69vED(Yl4{NW9PB%Mk-2lHbG3^TIFWUn{9f<-^*^8jlNpJc2K31uHLm -dM44r2a2dXHESZC^Usm_!s9Chlf|+CU{zY~0JRK@yJ}@1Nfm{wU8CY6SUSLWShQJ_Ajd}n{;2mNRJaP -Jeeeo?*KeCdeT@qerbqSr27CHTS%z^~hNk`3p^`6v(nT_@aHhNZ0hRH8c%VvTRo(rJe;5HQFuf!C%jE -PdnvMMt80E(BlyF -2@K*y&2I9%^=5?HR$Q5{K3!&Nq)c}^#j5i;W6H@#EBvTW)VznM6ZVY4*!TLPK2Tdz{;}oO5*}6fy@}d -AOkf#a*5K@f^i&){9YEbG=Dhpl6jUF(i@7;`r6w;XWoz5h9|W3diqntq5o5!WCKLdSF1EB2fz>cLoiL -l?C#{MsN@h=J4!>P#Cfus6h&SPtVGt+2f1~%kYWmJj*KTHw(?1u>8>x55JpvH5?LVTOAX^R5|o)aicQoBh0jzZfsH~EgqRYcm{wV|5cv#wIf+KtLuMqn0d`rg%@7O^+T~TjC= -j@%R0@Q*^2H>&4AYlY* -QLO;84`b9zay+e)6!`1bH!EeBR!^Qb3_qh?3R^QNgP`U`CDYl+{`$23dIt=8ES_q)ckK~Az^&dxSY&{ -Uck>iBj(KdmIU^etbB%i*+M=|m8*1Vh>45v1_U%pGL@$N|somCTjLQYvYEKyS75(>|D@`fY5E)F0R*Ji9wya -u?s(Fw7GZyy}BMroek$8BS_mI1C+d+b0=QIDPAW{o}E>CQf|!jw!D;jJa=duPwA6A9kQ%)8 -z&oGqAcX?(M>Ft*pvZjQyZ^R#9vc;&Sqc@Atq1to-@m>;SrNrF5}*GNswO}Drc^ -_uhA<}l6E8p~Rja};4lg$BZYwkX!`+t1(aWjOc2hFf)Z2y`$|LO(xu3^s|w3MFMKe6tlctS3ozn0rQZ^sK4P-FYHw3;)9 -0KME&Xge|Jl?=N<_jNvKU7H}g)ZV$Gb~TqkW$+JJ1|lR9emx6UuPXkv8Vo!0JeWv_&(nhZCG(8d;Ihy -p5zH@~WM`ISw>-`T-G?*pHQB%$3uf!-pu=fYR^URB>!{!f`Y0$?ftlzmXYw8A2NO6+NBE?di -I#Iymx?5aX&~7pm^;0tMs$*MP0EU4Y*tN!-TGbU5Dk$fV>h<&$8Ptr>F)LTknDGSIx?}|I;7O(sE#?@U -@K!$&b;Tq=-N$*;Gx)Xq;H_X54SD0HWnuOYTcdZk!Nk9yhyJQx#~VllekSyj1T)iW?h*}!INv3A~%BL -%NWyU(rHsDi!r>q7Ppq-;QFlnCd^@T2DRnu**E|osZ=FxP{B?CgMh$Vz!2dyzXyYhXqBw|7FlWonF!- -uN-54K=i*PFe<^053J_*2%Mj)a>SQIOWR^t4wZ7-zH*~fe5$(5SU}rHtj$w7L-;7}~k{+r&`v>CQ9Rx -#uL%G>y0^b?Twfk?jBzf)do~S8W|))#iXSmx7Yx`DQ5CnhFX8FiynLBgSxmFJy -(Q%(!+6NTKH-Qq(m5pEo2~^3Cm0EqJFYN*RC3%E7DuPemf;%XGI7Q2WI=LFXDG-6Rjp{^A(6uvCJdHI -JMH1Dy_qgWBAm#6&z|!f)8lv*7U5FEKW!2=pAt*A+qOnR8IIpDjNG96R1y;qJIJ`fqyr2T1C@3$#L(| -WmW(1q6(kjYv_n=7UKF@;e!HZGDejE;JQ44aJrFwbgA*$@5wWR^!b8J=L>5uv-_mTGZbnh>M*BGeN<9PzqK{?t(Tz^;>mfK7^HPXwt_amwUCps*Veh05 -k~o+=gVo5(M)zu>v2S;a)v7nDs&_~PA*|qDjd>Eg~&@p=&+cp>*Mj~H^cTENXZexvJ@MJwfH%qEwow~RWySpFo} -WR#3PJ>r_g47WLVe(s8?V!2;z~5dl|+h`n!NN)I+o|vWL_b1yht%D`}M@-5RODskz^nyPoDJK9@WKIFw6_^=tg+~XI%y1F_?pt>2)=%W-U^$3<~?x;rIdt7GWq -@7IVMK?dCrC6gaJ$W=uIOmFKrIq7G$M^~CYl<3j*B&`NC1ihzk -&DWM{(7=9oqa8h(#*XP$F}SU8HZ1091Ud~&_RT<}3>-D}YQZ@??i=3BsDVvqppN5V=Qk4dpt{%aBh`` -8dBd839e?lpg_J4EN>s@Eq@-?-drh)0jXfFy=Y0mV!NL~FVE2J@+A_!nBp10ukQzvT?!(S3ifUC3U4S -*c8t$R7bF_14ja6qUIrOF5Q9Vw}y5i_28+jjN+gUwJ(-TiO7SQ%7kAmJ+X@YNh*ex=$_6>a}?xYQ>v) -V-|_fZTbYFQg`wphb)aZ1-tY!xsRZEe*71PB7F>J=gC;6Bn?Y^dELm|dLH?xPwc0_B#L7zqxpPCiArr -e;Es*=@Lw<*H8afu7+HT` -+V8tWGA%NK1}?&n<_m%gZ|Jl23PIy5{A{@(`W1bCBwMzV%oo;V-dI$(6su^k%%(Pbyfs*=YkLvqtCs;uGBhrn_9B603ta6!sx!g4 -_7szMNSbPB#XIkbT_S0T+M{W}L&j-oPFoxR?&Nf-%m`3~sKU-Tat&-F)k38e#1LHK6Qj-9X}kk@)eN> -Vw_!TB8m36omA~5W5tB3C{~Dvl|mk?BR+bruM;lWs{|-K(|*E(U?_fy6%l?A_R~}@*-WJnM|# -!%cp&eey^|o)KC;2Q3FxH?E3bi+%x(`0bkxn9z!|Kg**xEN^xABLW^~_7W4LQWv;?GX-Uj}g$J;;FEw -IZh>SY#onKhSTnLHz_^?*Z#RM6bOrBOw}hDQUI;Vw`{tae% -7cDS#x?szW2C2M_7!Rdkz-RTdzT)K}*>GPC097}Y88^Ik(D3EB+2hGuWDaBouKV;*1o|Egpkcx3Vj_y -O$TCifr;uO7!QYhwQYUfl65MICx(>18;*(`}*hkzF|bLJG`S%9?|r1=9zizP!Lb^sAqSJi`$Bvtmbg! -yA|3sj{naYzdaL;?n^vsIFzgwT^w?4B(+qZmtx<;Wynl#cp;_x#er;4@I501|u+w23A74k(9waf&tcc -L2cXZQi}am7xQn#Pm{@&`kP;RZNDvyqd7c}hVh3kOdXMVzU-2d<- -ZoeT?bP|Z;Z$HVxmW54%#mnN!5&5?SjshO!YMnpm8ftBJ%*g1q2(<<2-d(f8=uV#RxY*H~IERBebSOq -5YUl#ZMOyRE8}f-SIDai)b-c?w$-7Bes}(P_8?qyEUHU)QL^AG#XbnG0pP2E*;grjd-1h@{{CnDGym% -?((cp&noH?s_yrBCWl$lm{+5BMt=4VKw{5Xe|i^|Fdd2m4(_%TpPp$7(-jyh5-|`1h$qy*0l^twKr=H&Hs+T? -wa{=?Ap^It?$j4d8Nd)7}|XtH+cy2?@XqSDj^>LVT!NS6mbLaa>6npEz#)GSkUyjAm1hKs{NmBvG0oZ)mw1m -gXT+AuOUrau07DIJN+05yoJi#Id%#O)Y~W>u!z5FFJ`@D$Q}%u8{X6^1|hcw2&_bXEW?<<1G5HVuxNX -al(u+8u8gdlAj3xC25FuL{;V()MjgdbIjS=+MSI(iX_Al{GnwbE9#r+i+NsxsT5%2T@`IT)isS?SDN% -jLJwg3t7J;1SDHi^eIJ@NfKAv?r9a`RuX?F^$0RB3j0l|R{5r@|c_LoqF%T(A3b3NV%Hw0xb)vE7q;* -xI$F0{%AG3aW`rW&Wv#Uw)>h$tet!vC0oHTQTj)rL;i#g+@2Oe`nvc11}-IZKmL>n6l+v-SHij7;)l$ -4pN?dg^kfLp#G3oOhU0fBDe%oF1?=wqb1sEI`qtY?(3661#Vj@3N1Q=`%0<0zB&+TrWhCa&H9F{x!rU4BGzp0o``lE`x -eDu%WSlR#-j-PJXJ*r99AcIuT@+D-AHQBvnD^c^9nhgAkK(h?^p=&7M_=cM5-4a@f#^bmzU8#RTr#n= -wwd?ni$1VNj;>{y!6Uw@IIS>29{$-wQrmKr%zT#pK`KpIuDeOx|8yx{LPm? -DfPKT6faAR;!pCE0;!QX-5J)2i*1C$OTlJ1HO2N;_o5B>IeBDT%xz&Letf*n6@h>&0)IO0zU;o9g)=(rgIRh)$k -FH0e4d}IPvzIU_(5|d*_;f+UDv-FEguoYL08lXNQ>67llC=b;Knq%kt}=-V49tSNN+C-H(gzDZ>9P#f -v@6UFGKk^e+9H2r?r<7-OnGnUWFvL@-inoG3c>ieTr6!FN!3NXyqSDJXsHIR=s%w=#9Iw|sk$c*&{^( -*XTDjU1mnlqbQxybc|h1`a_FWI4Awg=s(N&tsOXIDHGVm4x7lKXLO_BJoSmaoYb8*~q1)@XfSSL -C9L&$$$x97Ru#E1Vk#GD*;XRE4W^&I;qyk-cnf%7e(*$z0BOfA7CTMyK#>Bll)DpQiX|-D`i9<*+dYp -E0KzRQ%F>In#xH^x1sHHkhtVJv7p5TqK6O^Ng;x>;jlAhWKY5ZmCV(bL$j6bgOUlg)R=3yNY2uR4wsE0S0YmU&^78ck>#Jb$m#fLe+tb&te+b^3z6JC1MKHOzcy~c#d)|*nXld( -R;U3api({kK%4cyyWs%D;gJDqBaufi=F{pac`eW8Rf+k5T+)o!*iF0j?q8q9mAc0r%*@zeE65~5y?aJ -(^tdVoi1JhlH7>EGvZ|qD=NI3ZGqh0!{LA|Rd7VS4YkxAWS@5xIfQdAWMLT-$r98wtSJW|PdFdQJQGE -7c|nLy54Jlglg7hm265T6Fo9CBayeVC)cSca3pdZlQ4Nug9}<>WVYRkZb%GY!i*JDhw -qn@VsPLsVwW7?~n$~2J_Fwg}v=u(&AowVL06(GaDqu_5(wOHSN1){&ZY#uw(`3evWJurR%OweA${Cxq -f2%QnuYExV-QFmzjPl4I)P<#+7dfXmpT~tQ6msTN%+s9)9WKtw1xxfFc`L1KPus1*Q*e!niSz&rF;*? -9x=4k&0^_mBI%>zDVa3|Mbiz1(!+enG?-LUTK=fRuFO-h3=5()R4L6)QA(h_BHvNm1AJXA -thX3Sph7I=>y|v%+N8J!YUf^#dpV!Q!GB_+f8jChorOvjW09=p9E7;Af3h%{m8JakF99{c==q8nY>QVBbaL{JY7-WY!y7{r>DMrxVH;o?v^U;=}dn7^1ue!Cw`id>;)dfn_&N1 -Rrbv^VJ>iXnm=RU8AQ*QoeG9X&}lj@jR)z$(POUvpX^wM0)sIMvZ&*9U(x|Ln-ea4C7gtIx$7xC5BIa -`Qy46_)JX|&2&;GHz1>>Zxe08noa7$hjvjQ#KvuPSHbFI$z^roQMz_r2~>+}=%x74&rqSRQwfVCya_S -$g%=&_4Qp;MA$Xw{qj)6Rmyt -?aZnLX>M;y{%&&dHH_8_S^*jX9^=us7sD`#notfkewh~o-KXXIb3=XK=)mJzW|Wa+v;DL34CW&X|HOR -hxba9#=B)n%P)h>@6aWAK2ml*O_EskVqo?Qq002}0000#L003}la4%nJZggdGZeeUMZDDC{E^v80kil -xhFbsz8ehQJ(3Y~o!Yzu71oyKN+NJv4cNQhtasYJ1-tE{6v-IUeB+zDmX&JiY^EYaP^Rn&xLBg_?`@_o1&v~&MZO9KQH0000802@m7R%wcA+pq}$0Qnm -L02%-Q0B~t=FJEbHbY*gGVQepOd2n)XYGq?|E^v9(S>JEmI1YZFze49eWDLwWEpWwU2gn|Fv0Yq%-d? -aRun$2n(Ae^f8js|Yg1*xoa|=)k!d??jo!0bcb -%x6)XD})rubeoZs#C!61=PYaejq^n8ggaHpK@wpa#wu||U!Oxwtj&~i$Pw$M;W)WV~68DFDqd&p+e;#BP -7qnjF-_ly}@RCS5o6Q>0vbD794x+Kv?bG --^W>{^V!vQuuw*TU6CRmV43y%+d;TQW{h{~Xt$Xfv^Fd)`MYFbgFtu1W;A`!)Ijp=Xa0z~A9%);lYV} -D=bya7M%M7L<+uWWQ-8MkCqJUT~F|*>S6`921}WPS(7i>dXtZi4w!A(7E;g_pL;zO20A|5&edYohloUBtnz4m@)G_SIbd_^6FGP=48kKIBTWd(HaQ6@ -h!w1pS2%XBZ)QRo(s0Fd60Cbz}l+T~3FEeJApl{wb;9usbT6R!|>?YxDK&6{~yjBCu5^z`7Brsa1J|s;#$GPvRHo}Tuq=i`EHcq=EE-5{;J1#TQjawKi -b;qBvLSy0ODpQIlo4REm%^*T1!+x^_#$AS-kBkN*oXY(F1uL=!3xV?OBQ^qPUSGbRQ^l;x*}}1gTIJ30km&aEqXdG5!`+avbZOL%c*Q4B(}Rny_M{nbm -lJX=ei?D1U(^y~5)4d;`D$Pd9W{$~^}qYEc3l2Y{?*6R-hbbr>PsOWX&62%$Y5ir5b -Y=<8E+P2BNDTCHBbE>xfJM<=JoXtM@wwM(y*y&y}yQlbF_X9;~Jp!_08M2KTPGBR~S~;Sq6T4 -#N;x>%f7(or^Aagb=683RIpIy#k9Gi{A-$YT!~T{v*0H@PV5vgqQNK(DfFcD%b4Vz8gDh$be{13$hd_ -ZcNf4WD|nyzHgsF452+F}31DFJUZ&I_5xesppKmOtH^L@Yhf#Ti(*U%7e8OW+Ou!iqdq -1Bf)f+WEi_yT1>JEqpxFhxhbOu4=U}DA@-bg>w2C_d*W#Y4_2fs9eW0*Vwh`^iF8}KSY? -1vp#n1Fj+E$-|a3#h2v^F#)Wsv4kkD>4v?XsVi~cMeou4~f-|z}*t>4V*7kuMJVda`>^fq*Sa|48aus -0N6Oi|bxJ1mD(#B)#CC=rU(>HJS=AmES#=&lcVIo;XFJQ&dp%61pS9w$q&VX?n?%0CVEz6nD=q)G~9iUqHC+5HSnW*Zu7B(VtS=KjoI-;hqLO{M^66t_3+& -Y43_b(3q~d7?cvNq_Hq=E@j-pu3>+-1)oX_vbN8;@Dy!A@>~zM&;)$ACScN75kDr{mpzWa&x7J5AxlI -JHmXPMCpVbVXsW(>E`sjQgU~Lcd>za(+s_$yZr|^{72Az81pkaai$~RB~aAJ2C1}%pF;{hfL~J=JFpk -7T%apygF4&bD)uvydZNx(lx6{xzz*TERCPDN4E-HF>SZS(b+Jix()Y({l@B`ax_HG7h7>`v4tERz3Ly -?zI^!TOEdHsX$tOl)?*Jd-EnG6(r##^!8ijvg)#19GraHvAW?CNWi1s$#=hk#NLNPjuBtS9%DdPIVyN -!b6D(px(iTxt122^?vv0BD)#<%Y@o{c9!0mqr(29(=Cp!i01(jCyvc=XxTrPCR0LZ%@`>ft$-60j*O9 -xEH*jxYiX(F9J5M(`-dPLXajP!F*O=JPCUMRzjV$gM=06aA%DyW`jot=!9wn-EZ#Nz;7-KkvwCB6~Ot -$(ANSNI-rlr}LVs^3SQpsN|QtJ&0!+5Z4gO9KQH0000802@m7R(R! -C9=Qqt0Oub703-ka0B~t=FJEbHbY*gGVQepRWo%|&Z*_EJVRU6=Ut?%xV{0yOd8JufkK4Eve)q3n9Sk -BbJVFsH+QO)}n`S1vL9Kc!;2)!nk2jRgDsIfhv$B?*w?brEKfDpV$ -Wy7z87tkX(>zP7j~)Im15&xKPp-I=TdIBqT2dbS?fA&REJ8cxK8!XzpA5}6^-1}m1$O{N^!+RM}=LoC --kufUcdRgIxg9Zv@Fw2$(QUxWO~Wo)>_CaEoT;@7ImE5^D37OF3s*zA}qe=jlwC9$WX^pWgil^dy1eD -*)GmxrDVxH>`#qs>qn06)8?+N{YkE}wC0Z-)%-#GgV%T-k}oRF8?Y3MD(4R%pe#9b(fISPMRoVWFFp= -u+2=_?uO09^yZX{BP66+^PDu?OV9Rxq^CE3ao$%^jG_u7oP~q=HePvgsfIu2<&g33e>LEV7dUNsi!`0)*A%f;uOR -RQ8Ml*&F$!o)v2Ee_{Qo~Cjn?&z~N`Ptk4X2KJC#&Ub@%Z(HC^;NS^S!@4%|E6Ys7my{PH20{vK`Ov6 -7s!79xC1}S;OlRryj?<7b@!vxKeGylUy{jS#t6G`Z9U>%QaiG`PskE&-UkM`Ssb)tFvELXIKB3&t@}< -0?@6sLxh^m=#C#(45qSR=ReTz%E$?;$>yjLA=dN^v1c%pXkj) -94(l#5#cG#6d-i?Qfh^)3f5^oaVs-!x*KJc7I8b5&4VhN)f&_I%^w?VsjS!8{NfN;%3&=8sG)Wdck#A -(>&eMmE#g?g+iA^^+x1^wT3mQLto;ql_C;i|AVViY_p0MlY$h3qo)12uYXZ!(d!a -Xh;#~)$4Q2;=n4%d>+34t-8`EpWY<^o825nu`5;3TV)OAZ2*$eLHt6pc$}lnhqa^Hvw>qvb0V3c6ih&yT3oO;DHNdA(R_*0V7{6UW -oVN7NijMtddllXXkbNrXoThw(bH9X1N0{a#S?br)2(+$libc#%`;Jm%xTq@#0Sc;75msKJ;EX(9dk7l -iSzf=GAUAG1F%YVA=&679yx`ns-q$%D_c%_b{`a7>ESAmF*E-}waR#bUO;1AcFBZjdOszP;I?j=QzH-4Y$Rb#FZ>E{_=I!%CPs@@V8yv=&p}l-M@^w04G2?7 -g4aa}ql)C^>b)vM^x*=9J#2!i+CgY(4=G67$ef}SkuO(~i+_-$xR -*%regnyK^lV1Q_1(5_u{Khc)>?dVso)X4SEQK@5CL}Aal6S1GE{{hiB$8oozbA{qNcVC} -)pN>+m@$&zMx)XS{8VP0$+BsF`i0eHe*b8W;Oj+jX9irb)S1Yg3$zzB)D8_Ow!q7>C#(oehA;h-zFiN -3dCM|W>lj^?%d?Kga%mQ*q^voV{>X3iEZ`R^#0LU{6!9MkHK=j)d#Vio23u9H*kmZk~Lc&P0Icd0{Qp -*&NulWjQ8T2D^0dY(@2Uyk_TH&GI*Xy~G<9IoMJa5(t;{5C7 -+B2|q|3!24e{*Mj}nxJsFzG+8$_|;5%%|yu=}uzEE*g&|6X)(e_D?KgY7|x1Ig1wop2sFXM{6ricX<6 -msCKmrz~tXlA#MAHwVt -|VrBv+DOMquK&xDsVoq355*}1u0(~56Bi*JYiX=vVec9m#jSbLu|9W-#K6&x{#m|??#jE$!k^_@0>}*owmPfiVcY@*Cb|w;_31Q(I86iV?vLddrl&<(o^~Z)DO;Ca>E|u^@kYZxK|Lc$4=U-&lygX%3 -Kd>7zoFU@l$=x7d}~8sh|6B%`ua=%N5E?K7{+TFDwy5{USfY?0-;80|XQR000O88%p+8=?eQ`WDEcRLM{LR9smFUaA|NaUukZ1WpZv|Y%h0cWo2w -%Vs&Y3WMy(LaCzMtYmeNv@%#P?Mn+Hx(W!BeN4vlVXdJsRki>!Qq#ulfz>~PU%4sDq;v||uW} -7IAHk<0ywf(^A_HY0o^V-U+IFHt=gQ(z5+f)Uwt6xOk@DpJ4hVDc!0rMq%dWj{ixdYJhM>U!<{lg`xYJhy8 -HY+&D(*XVhMfeOymX?b5g&-znun~d1sA{38|Dlm%hx0!iyy^P35YlnNy3VKJbx^R-4rw-kZ{huG5LE&3Xi?A#Z0sk8$4HY8Z -4P5g0C$C52|qU*6tn2r&cv(?T;m%Wi*t$>d7f-Gxi}mE$G**b0c(4a744}5iN<{tzvEZGe0=rSJiGoV -xtiWS_~;4-q7+xZ{QGyWUO#{Kw>QrL*;gpw*Fui<0Jtcgy~8N?Zf+jeD*i3aTyHj;QtVk?w9UZ5&@7F -y+%j4TA^b^Vb4|aH<-C(R?@p+wdPQMLVn8_ExgGx)qE!%;3s41ibBd&rb{xznvh47KG -hPk+J95A%k?$UVV~1HJj1j9xSJCh>F;iA=n#-R1?c2F>J_VJA!AC^~Daq%_$Gq1|vx=+n)d-` -8q)!z{2h$HvsY>_(7lqoV;|T;;pW@KNoN8c=$J$q|;QJ@9z~q(FvHfdN<9oCwn81LI&ZC((=g%qDPY! -L@{5@LCFYt4eC_>`It$n6|_CC?n2D`Q8Kx;>~TTFu}y>#G8_}O?}oF;)$j -m5u0Qax$QuF%69AvikREW{NZAgM_dl?1#PJ<;rr*`v(G>OnAvRPnnt(*?XS|h%)2wh$)6zR*=!Xjo6S -r%>RTvuJE;Djx>r@x&&_ -3j8!Gy3oR47Au>~!hxIxjL@%mT?}pf?s`Wd7*lMxrvpUt{K-}y+ADbEl6&pp0pnF(JrV;DjLxzS+%cuR4WRiJ^^qx>A -?1NoEf@Av}jC}Es?$=-u%~2E|8}YsaO9M;7;}|1^%#Qu~LH}FIA|Lty9)uH72Esq_A@=D30V-0b5>2s -%2YZmh@<~4qIs&d#(tzU$9W_e^G!ghe#u3vSS(c=pj2&2CqVA%5i|cBBr1s5 -9|nhi|hz>2~;haQ{tGA4w9;T#u)i3ykC|(;NR#Qm-8U5bay|862h!1ODjp@mhp&MlG -cji{dhsmNpVCwo-IbH7};>W~ysqwB661{za$9YBWv@QOiu#+FW3O7eQl8A -DI%CBdUcZo69 -!oaWK0-OaVVynb#wyJeGF21j!)cgCpcxG`Vo3&uZuJtz^y#Q&*0=CW9ogSv2=%i#eT(EU~3oe3qa^F| -f`Y|DjKj}2Z1i!z_a*ZB9t$1X^Iv*n%>@BGX;Tl}D0b(a_)Kb@+2G&o;OlGaD-OGjl7suXfC>M=k+wN -(?lWx#~m2cD(zi4N@Mr3`ZOfl%9P%T+>1SM&`*c53h3b?HRp9OUA42|m%YUT{1vs@9K6^jllY?jRycI -J@pXEMa^8$!DMMW(A*lE_>!Aq~&=fi%YQ70X>TMWpx0C(q2vPHJ5iuF2sqVJN}7ltPmp|HlZC^U~L-s=>+`O|>?Ox~P_Ba%bs4X8`@W1YEPXPVD -zC5yg6$BIrzGb&yEK(SKx>-*jX1k0_p)sil_d6_Qt!Ryv<{9}iz)e!oK0I0*1XN9lF28}?4>a05}nzX -u|f@7h_5qw3L#3}jVEN>s -pE%7pitq%!p|H;ix3dF&-r~_5uTg=Gg$O5U_ecn;jS2D~I3`$T`i^pr3! -#1a)_Jv-X+$Aez~r-DN(dtp9;3?V*})`6CM3r!u#r9bV^7H~gx=m0>;SzS)uvIiF|KC+xK-+FsdV+1@ -vG%S#5wy8~!QUsC(mtPWzN$iUD=-+IY7?KcBBjJ)T~;9Qi60sa&mlA$_N-V5uoD@YeyR^9UgB7t1=?R -Yqx5Qhc&hiveJZ*EP7n6z29`*AC7AgBwWu&C!Yj*x-=yu7krPT|_?OSnEd;4_F6K -urzQyrZ@PrUTUIou=^~x&g=N-jam%Fnf@MUn3sx?iK*|Ff@-ko^-5sHC-Dh2j6R0W7k(o8*N8M5K1|~ -i^OXy?DRTb7T96!dk)gihyPPC8{{&D=0|XQR000O88%p+8&UflGXaE2Jga7~l9RL6TaA|NaUukZ1WpZ -v|Y%gPMX)j-2X>MtBUtcb8c_oZ74g(Pjj$fq)2mk;S8UO$z0001RX>c!JX>N37a&BR4FJo+JFJX0bZ)0z5aBO9CX>V>WaCx0r -O_SR;620qJVClnO1LE8=FVBjt^q)0dVv2S4$yxh%|8(o1sR;=Z(ASP3{zUhoDM!B}3^JU@Z9!W -=^OJ4i+~D}tF>VR1UqW;dM6{V#UBf{mRLH#(=_#5CPeO}&Bx)5VVMX;hqm`{VO{@$3En9zNWCzDr0WG(-jXHg{IpL*qv>-O0xMt)7JhFxSDlO@c~ -_Kkq;O_9@xss;#+Bv(1~;c8~x8FgcwF{fbh_HZv;$nqkkXlM-MBLA&L~>bWIvtXg)iSgXnVX2;HVQVK -aIiZP5ME^yW}F_YT82gK318iF#7BE_z9&VUu0?ZUZZkQ^y08hT=@KD0MV%PmM^JeZZ}e`6D%ZfzV)03 -Z3O;AF%6%ub*hMWQ8-VD6X6IlUP^8pevaGQlteu2aymiqo1@RDoGHM^?8tp;ib$kc*UG*J%=G -bVKDqWr2;a@cxHvC8C3hP_id3It2`B$aT+Ie!FnOcRz31PS0-mrQZ;Ljkfy|rias&g*yTlheaEdwu~ -J36Z1BkbQ<8ha_Qn{&{7yJmgh0ji_uh^%XXjTbSxhFYA7#f5_@7FR*lMWu4I)Kk~0HTS&j}_mQXhYip -uh56#k_wm-rjR;U@vq;SU-K|3W?)X^UgtkOctrB87}J#B>n`0Lm@Nk6FY{M%i}E3AR)6(yOt`0-Vfhv -UUp~1xDA5O-^#Nz8S6&MV^nmIzmzX|Bjm*=%8j;1@*nzk|AsaXL70UsJ7F1679 -G&h(c#vQ@!dGl}M@=$5*2=S?pu$N%vzQ;7c|;o~Q4FkY{}O8UKy*hkh+-$p`Ez+C5X{Co!kInr@NGr} -nwhwqEYJO;ycTi=!2!Odm^J0VH_7j)I><~-a&;VyWU%yN6?`oFNAFrEC%Z0s5~^L$}CJBQ5*`&@Gg!= -!)Z*t}~l+l6@zh`Pc4S>WH`P^d?(C&k{fQsCjVERjqtmjadAAGpeLDz<74lNCfHJ@w~PSk6IXhT4PP0 -s5&YD!B=bvK;z%N6Mj+@6ln}`B;ZV;xmX&f)P2fI0QV9Gt$fwYA63l$(&%5?L(sh1CyZvhr5NMnqK@9%7cd5CJ?YzG#8x5ER; -6(pkDP36$Eh9LjUV9=`$kBpWg;&=#C{qHw0J4QJ7ydlHTl-3V3cp~uN5%Fhnc -NZY=uBN?w2f;c6Hxfvi7|z{*mIWUPefqL`OFow_o-1Dh*}=HCZ5OX?XAbeGJycO^v -L>G!Cka?49;AJMF}?Kl}olPPSJP3jtu~-F>d!UDu~Drrs<6>^LgpVFH5uDJzWWvSUtdBW$a)X({&^>Jj8 -GVk-oy^5!7ot -994L{BFdDM35$XLG2bU>A?bD5WrW~3Jx*wXsIZa`j#(GB0itA4x{^N$m?lZg1wCceE(eS0M;hoW3;YN -nzV^X|uR__Mjg8DCTC0FR_Yr?T_ye436pya;+P)h>@6aWAK2ml*O_Evldu6ol7000&u001EX003}la4 -%nJZggdGZeeUMV{B1i_`Sl3nTDPNXr55@GF>(N7~2kxTs5MXpk5gCH1< -)GpH|XX_%3a;+0vEhKugQR$}l8b&%@t9n&uc_xgN^?QBX9_pXD5s_Sp=*wtr^sYX`%I!}gDWvs#`5^< -5YUd(7Oxcx460u6;l-(+uPuX3TE1imD%9cfz$dNyosVwBLGL5wfjf%FcPn!wLXoEN0v`(rtmj+0~C{f -kXXcuco%boy)E}V)vbdt-rygFEF{>rcZtlsA7DGW{#ra4Hu^#b0zohf_DVgX}quH{-3Np63XN%ldToy -dXa6k3~$ys+RambOAZ9x*&O4-a<_Q}^@!;pWr)?&*@yZ5DK0^NL$MbneVmv0?nl| ->h0Yd`KokbFAJ5#*UGfEo>Fy;Z%`6MN@BycN+diwm%G|Kwley{Gm&q(-lxN+@Mp`&sSaKm{Y9pad5j> -u^;@1kvobF-Ud7!>d^=^M3fV^HJTrPTWhwbYqW&u#Pp3~qgp9|k_PHhAp&KYqo5S*u$p^VXoS6d!Ou1 -PteLL1oqE{l}w2V~_8;cEjbG2Z86XUBgc_9*+zE(I*k-};lUZk-!yxAX(IEN)UXEXL3lpYnlj7FqM1l -O$2UC`F8TN`tpik;+qG8&Csf~-7oJP^E-bLTUKg$(BmYy%}SC#@;?s*w=qKLvD13F!5lt&m0m@j -1DZ8YsMj=$~hlfnXF+i(09mS_W~r%p?p(TyDZ(sGht_cV+);1&kH@a$RNoitPxK}%^qlkL;~mOPj{mv -h`sVxce_kVvw?gxt|4oU%-k9GbK2P@znrauUn(CRPkv>;5Hr69UBGpf&SqatcH>F+n22M(1pxP1dgk= -h1tDrP`lq{$tQZ;PPdV;6k9EX(7pgMEtoqSx_ch&j>+`xwJ@-QB1!^TTHVEETu4kFu>LQ6rFjiI`mTQ -)8l`Y@d2BkZzk7Cg+@Y2#yc5V1D5}C?fMj*v|er(X?8zqjkXK}Ww%Atq+NO;FBcbImmP1*unfZ=>Ak& -TcDMN%!en4$n~FB9BANM^_+& -4De9njjym42i*5BJ8S0nE^^%=Vb#lfG!9cdo9Te@Si}YKhqhrJ}c?h -*c>0>Afb2cXBY;V!AQ2314#T~rq*slAsfGWg&x`c9TPy38EIvjH`JgciF{5hZiPi`n{jz^%7RpLhcak -s9+`hwXJ~8925;0EJ|nzdoDxw<8XX#;&}uGpKHs5R+<_74+l>aj^AAp#N-9H0U9R-s!}~UgcX)htO1A>Uh$H>hr`MP0vTQzg -9?PNe_KhRqeJwGqX?IvBJNH@ptUAWV^zmfkq)yE@%0yx02AJbbeN*SXQ?Z8mnec#>I~oE&`?mK&8(tVEp)*kh#@kZW``OU3xjQhNcQ4jxlGAeF<(mzaIlr}8IMmeHtF?)9XD%gnDZ}k_p`I?kZ+L_;FARv0+iGAea>tqBehm=JF$lM_fmi@ -R%M9|DNT`=<}yj9@YP5Zbc?ZWFz*qwHM(gF3sOwk-02jdZKQ~{KE-7aG$$l``5xSsLk=>b4^cou1zmp -7Oj914vi+8BI#5F$EWe-M^M|L!V!rsu=L`P$bb0@9cXjjl2$f@8(kThuLiH+)a=8I66t+E~a-T|HY0Q -Gt*aMed!LYVrNode#&~js{7s&~ysg+o^x~?D~A!Lb&V4GGcpkAagi)-?Oo+q^5Ft>;DP32>EmC^B%<= -yq&Ia?xiBRyhHA@ndQwQ*zws%p&NOSyFE=>5HQ-ak}lsp7*Y;jnZN*cxTf+g2yBM;;y>cby$(7Y+YgB -YWF=@?a~vxvIgb~%(73HQPjXO91MFdY>FAVi -deUA>V>NW$d5)ui51_Hl2Berfb#ubB;Fqj-+tsQmfqHS1p5%P$ni-KB~tdBeIV7Q-~;=uB -1#s-@1AevMc9IF7rsUQ`Wl4oE+8ZgxaYS$XxBI1qsPn<(rHOmn0~S`4+v1^^_fSQPqeO*r?hN?0d`3e -q`%JY{G%^Nzaj$j=_%IZ^&u7R~6LRyK6eS+_i`lKjFq)zC~R#BbYdSQ8=%!@1MgkoYLu+ru(2t;CR35 -Q2(euOoV$QGCQtNcLgBUz(v*9ae}4mu|NCi<03sA&mGlsG&og{zea}|Dw-bMvFhk4r&?v*&2k#au|Mv -F8a`5uT@LOD!r!3}T!_07;Vl~GxePu@faBn~9KO%!)5i-sE;Ls-I?PUaG?uGkGY)R5D}3$kNt)kFoKs&+PDwbN`c8bw=s$y>D24$0-&Fd~*FKT7pUEFu_g -__X`!mvaNfG>^BI4Aips!SKAR5Ngh^On3%3?j485#N+W2t{l+bOVaA|NaUukZ1WpZv|Y% -gPMX)j}KWN&bEX>V?GE^v9>J!^B@Mv~w8D`w%kBDqUqD2nY`$5u&7_EI_(79@uvA`svLp -k%Jg|NZ(kFA$VvDz3XaS6LE)nVy;Mo_2)@7llIxBAAecD( -+_gS-4=?p&{_0#oQ7xTWFr3L)2s;vU3jqXi#bFX!w)@fDiI#%m!Eq|*UUFa&!ExhJFo57rmMpp%nKce -N;%W{*?i+G@$^^PWF -e!oOUF(1ybTQyR@r1?hI49$#epw0ChkRtE4Yeba1IWB-YCxGvCngcWa0IN5E(|n{ZH^72D?g#{rlRMy -zvWnN~>^8+!6DI7EfM?1go27a7Pn{I$D(GtXA)e(~OpC2dzmu|9WHj^MTBlW2cJ| -22SsHZs`Qr3EIXOOgb(;L}`g{bO+az^0OV$-^t@m9ZR^?phb-XC6RoW!Lq)k=k2HcPI^n@Qi&^s&U`n -~CNwmp0OK-(s*a8~PWvxF@oeJ<(Y89nRjOH_!LX}#2TtrwT)@7}&lUL9Y&I=$H6X_eJ8(*@YSDW|}sy -&iHk5a`ITcMRjdp=X1HNSh?XUatotNmXf9>xB1AqLCH@Chw%hqTFO+xp`IJ(3Tsj@ptNNS?Ebm!9U#C -`1>5;g6NQbByEs&X$ZBUzj>gTM;*pJ>Udn;)C@`~GZO&gPez304E8>^Gjp@;c3RMEQE2e^xX0pPzR&> -hwTM12tdHDqqCUWjkA4%gJ>vz)wn3z#_%{$r19%zN>pW`)!{M;!CNHal*9POO^wuJrw8nsbPH6vL0Y* -o-v9CvV^}8F4aPEnd7V0&~#lj(jny7O6o1Qh)fW}j5JXRpfH!F~@4N37iOn~)CADN_2lD{vqysvKcw) -R#={R=1jWbgYk@mC3`^QI$AHsZNlML1q`&4`2TYPbd@y)=+nMAwElLg;Zip9@k4@=M52F*f|hLWtQ?& -u)`B=&hvEtUO%zdLlx3B<*->PZaJjSPLnaUEco@6$Q>57ctkcSyx#>A{)lr)D795w2gWgqAo*zX`Gy4wf}>h9O+G~4qAL|v}YMj*}L+Fa9LL&n}TE7EG4ltsQpLiu8T0LvH*N9sc~0gO -+gkIW-AEqAWbc+z0H={gaD0DwWSJ&Tq;`NL5#ByJi+xt;S(QC2#D?$7p_dX2IQl(-m%z&GW6k(cSb7C -DKtQywvDwE|Y6LBM2!v9&;|%S|=Y)V|8VwzSqMJ{i|*J{%inV(HNXXA*k_~ -`EqRd5_W-shJORgjS%(Yaf`*;fOJONYCJB=F)U9=0a${S3k2kXF>}Nbv6*etf@P3Jz_^2>EQ3@70O<{ -ZBxymJ6exg(v3o3>l`TSF?S4cH{>iw@9QjEGtdG58glo`U(Zf2teTDa(n^` -YHr>4ZZgxqq8?mN_w@(1q*%V{(*mISmasoytmZ(I+<7x=qiq5=mzL8^PM*t#m$=?%sl%1u*ebBaBHg$j08y_tfo1Y%eFGLZJ7PUosz80Uh*6)2bLW)8-#$e|(OC96 -x=_ImyV)EE!}b^^G+1A@*s1;s=%GMf!_h0sTe6gc@V#a&jF1;r@t(kjEHuzp3s;A3eBc7yTc_IStdQr&0_I6g*z!EVBh?$o4VH?@wPXQC -mFnneZJS#Uv(_+Z4{8hZn?m%7v6;Ob!H%)8<0I)IV^Q?jQ9KpnpDA-Ww>ZlD-=7nmqm9AxNMF|FdjxP -TpI0plcdIxJVAP?PY(ZyyB_y>(oU@+p$i?r0Jvjdsrmw*~|*5a4&*(cbYl%ez>RO9BBIfA@FZ}fl}{= -?0XfCTgNpFEaVJi$d=L)PX2T;oYGW*{|~l@*X_T^4iFho$=4@%h`=Z(oko>G}D)a|U&C{`&Iu$?+SbH -+?v{z5|bJ7)Uc$D>951i)%FykP}cOL*^a8(<9ey4Pv`==o|ST#)~Z1{u3~-y+(`{_j#q86g2# -in9d%Cya&AGvlQiLi8_x(nBqei`y){0r1fw==6%Ujs}=zQWEnVHJ7X@x#J_|qE>O9O&PhDbEe-{Nj-WV0nO*bL0^tR}-5UF0jXijlI)LQ1is>_K$&L5hg9XO>ZCg^p2<@skuKi@Cu5F6cw9PIe{mI1oWF&^^>V;&)LA!1%~FuwP;L; -Z!qrY7lvKko6z6n~^fviQil@}3#V%NoIhYe}**5fQ+GLVnH5PCFJ3d&83qgL(+o{A@W=gKS7qXZY)Wn -62^mbO^oFTj8xT|WhbHG;KgB_jOrC8fC*l5(V)1St=n1K%t#?!Gvuoy7JXvK7c -p^VsH{Og4hO#vd*xNsEUHlzufUudoR7Z-2Ti3j!VRN^*93roR5_h1Dt~fN5%er{lBNLyE8Sn -GM(n6(}cslcyPZj|PBfK>b4%Y>?=CLi9{+UuC?WAvTHSI|A`XQ3#@`c3@5?GW9_Oiyl)lr5%5rnFR9WL=Z(ahP -5lPGRPUF!Y3fhW}JYQX2o?Wz2<{edk2F7OLc5y&oX*U@n%0G@r7y-M -H?vwl;KfJbrX;9Lvjmr9HlcNhX#6AaaRfsna$`0cE5xxxOB+)~0DyPMkKk)B`E)9weHO*(BN{6U25Oy -`Vym&g2P|p3iLngPblnZ9Yfc~@J^WLI~caY{;;?ym@y_iC?AhJ5{02nqY7~topkhQ8RN^zd7)$x$|sORp@cS(xrRfSyu@zKg>8 -|ZtyY`Llz{KIxe<0De)!d_NZ3Y8s~$?CgD%S!i_Lj2UoRuA8b(0Sz`Wq+BWF5_5npVP^lbsBA}D^d3y -x;ezDATwLxkn`u!~5z*?MuAqY|CiQVy?N+TD4!qwM)S(W$sTg`)8ldbDK9Q ->we+6Cz}+j%S$nQ!7bfloVKO?ett>>yz+PWm*i(JmGsMSbmw0FU3gk@k^ispbZc4<@U&%GkEb8czr-~rAQ(i6ur-<-vb( -}$Z7!JG%bgyWPcy2`vOn-JP`Zcbfd=MIJU?vR=@9G&q}!qYcNl;|?%@=5FXfz({H+=0yI9E?iDeBBH! -jzh!?V?stq;t__u2S!*H2!r-2h9Z~j?}0r!Qq -Nl}E!4fHjuI1`;SmN<4Cu-P{U<Gj1q>yZY+dzK~(qzl7O84=V%A%CD#abQJ6M>iOjQnkU*+Ti3_u2 -du3_E*St1(K?2-74R=Qildc@0gOVQy&oz+*n>h+AwK48B}K~FjW@b7_%j_t4i%yX)_rT=eE|dC@a-!a -kmDY7u<*EIvz`UVHW!dJ7MU4$GacN5)&gO$`4rs3LdL87)iBM7}IIF7DQAttb06 -kWZhS#YW$m{QZNqyj=0!T_|f@7twD!0#x~uD6d3al?Mv5bX0gUiayz7&Yx9MyaG@Ml@qG(F9AUQWZSt?r`|WehPtn0gJ_2ph8;5ld)Thn%9a|moBUhddXL!01~$4hF!8k%3;j_;i-SCWYjM$<@(N+jwFZ99GZ2xbs@W;^?~*6!R->F4eP;dMV0Thu_ ->s&zGYFEHh!7Bbz@8zqO(zGDLl|JM8ZQYktX=wyAB~(S-S$C{Tc5P4PH}t*TzxM!ZEX5rC11^#pl4bz -A50E?x|(R71%~$wR(sK+o-E>J+wT7^?*KEo6Jg)`0;H=e3<8_>GIxpJM7L6bS$>4~|Q(Q%Y_rAPeE96PhQ`6)R5T-dwjc>rfq1|^ -G9u#1c@-+}|9V@fzoSTgMe(u^z3F+T_#Z4jF?M!l#3%)p=m35o^U(ZIx1ufRnH?i&f9#!g8LMnACNLB -u#fmEnCkST2jYZHg(40;Q`Abi_fDv)5~mi*+k -vI71}4LBUNKsm&ri=vE%Kv9Z=+D&HfwBZs7fd$q-*Ck=uDb;$+0bqH9h8pGh)hXKrIp*4Xp3_t-ih -vKIgWg+)2z&;Q*8J*9F)*u=U+5s8DHvroY+Um?Q_KYV8p6hZCY9nl`@;O%fic|FKE(_I`9rU5r!KmVq -+)V9F}uadQ1L&N`Fiw)*6=6M`$vIWc8W3gS3Wz`;XpLsR%%qjCw0Cn1V9>^U-FEH_pGBd{8;bxmruyp --Gx7mjH(eG2Lq=>{g0oNd51|j<`dW-=lVeu$BmR5KwC5v2?RT~AK?^%^on95e-0dkN{MJ4UobS}XH5< -*A8IFaJ3NVslC$WDPQ3{$T0{+EjGoTW)SSPMIYPYiE|^~SVdcE>ga1kPqP?1%pj4f8+4Xdji}8fLxE> -ZJ)$3&zoevv=TmsiGL6kq9=Oj)`y-!1$K$yW(3)pl{X)3mB6~{M;ioh#Xuh6-2P^+z+`1U=PBpXk#jH -K*>E2Q0Cyv)MnTrhHZWePgNGtYcn;qF6){ic7lZV7K~awOI>ZDQjXj-m@65F?qn$Z -=TWG(W2rW`i#yOMJJ)B@($H=~NazGxdmRbQ;3SY8L{)Px_wSDKceWuc@i+DEvoa>u(wgr*6Oz$ -#)GIZw9=Pf!E8jo7{BP?&%_d(2r_a*OWVwNI_c#!p%IB~tzn{df -(Mm@d{Nz2BDwa?1bHR>&~AmKZ{RXfb;h?ypg*6AUqT7b>ZdyjG$0j8cX5!Z_LJ@_;~m;t~5-MjCFKksf3BGZ>hYC)%RNi$((~ncxeG;$ -f03b;}*%LdJzO0E_;@Xi{5f_7LHUSA^hiLD` -8sEO{=$~<$|mheL*fjDztiCk02`KFm&I^Nz$$tpM$`BNc(r3%5J#k$gUO}+`;VsKw{1yEMHy3q-Kt-% -+{k$cJ6HR5lB1I00|G`}e)^9;Neya$R!pj1KQGd^(0&8;zX`vMC$D(s>=@Fh0@AyJBV+{z>keGdNSh8 -<%tcaEJq0anF70!tkrlP>?v|ahO0}dk!g5`v3JjTvP^)mg-* -Z($YT}7QvXLAkwZj=6m#?IWcW+mgcq}0yf%PtD_1pbSy(AL@*h6BX>=}9crqcD!#%<- -Z!no*(4)PKE<(qk9%aJ}n7UWjLu2_ep>d;N0D9ZBnk3;k|@0FnKGdZC3lbE)eCwcX=!ppGC}xEchHH0R(c{{h3JbVx`b!Tr(AS@Ajcr^@&mrsKmk -c-OF9U%xid5;V}-c;!ee#HvAs!)afwqG$f_*3%+0v6m!EVcZ-Acg;@wWnJzm=h8O;v16|9u#?3IzL^d -?0laClQNROz)&*%mP6r?I*WK8;vM^<$*gHA -28$3<+gik$J(Fy*9wKs-}s`Y2CDaNZ)eck6uU!m!= -!=xUhP<`VO5uRGeUdQCZ!F+~C$$Hc0n_t+rRdR^0a^kb(!DU+hctPXkf7C=GKWsbDC+sj4=HA!N`>M`CnMU-v$|cUq!Dc-?W%?e%%* -32(m#?uuW7XS;&H8n^a<=Hxuvsm*|Ty{8UZz-4X6t@Qn%X@$T0Vcqfx2Biv`X-#B;>=Ec&r-0ovudc{ -2EQeyX{eZg;VCi;HsPm*q2br0muQTHIY*3)a}-6Z9n;+=%vCwGye_b^NulKIn956%0c8DS^9x;=Q(tp -Hq;mYfS;?CvAW*dNVxijQQl@V3H7u$jHJ&qsW4onMRG@YFqV_qcg8{vS|F0|XQR000O88%p+8B1cUvD -**ri1_J;9Bme*aaA|NaUukZ1WpZv|Y%gPMX)j}MZEaz0WM5-%ZggdMbS`jtg;K#zgfI}j_bZw`L4th1 -CTmQL8V`Drc-d^43d3$=X~{6G@b|Wh6hY$7p`kNx9`C)hL|gIP8iJ0r`rxXnEfRm|6uptmKa+7-Nh6P -dtn>@i*UB76@cn>z84wA70s|Hy>NL^c0(j7mxoT^8u8(5$gkPwHXyCCltsf_Y|?@ -bazAbT%1;nR7TlsoI-!ZeoFm9ncwe2f7^*iYQPz7(BS+|5D0dIh=&-BKB;^@8jFC_@_H`Z$XtJSS13J -*xt6yLdi(ksU6fiR@1{S8_q17R`#sbS`8mA!grDO9KQH0000802@m7R%ULjxDo{b000XB02u%P0B~t= -FJEbHbY*gGVQepBY-ulTVQFqIaCv=JZExc?4F2w4p}83542g^T8XyA>cQ>p+(K~cE>_br)icQ;E70Hm -~q}j0lzK4>XG`-#ew9pGlkq;k|&hz|>Q#;5ksk0<9sG+RzE;*c)wN|AZgRSju&=g&plwX|E_cV7>nQ -D;ElbhAzu7cuDn&wTtbmeD-+K~+Zt3l5-#TZUHU)1o)IqTk%9)r>+!G;D$3GyssIN|7K#nJuC|}#r$&MPaJ+hlW`Di8J -kDM>X*PaAFyo`yD=<{n^>g8TpCu|Edp@-RaGXpzg7hTEF2B0)Y(~J!id -#MB9=B3E3;LhcgUs$-&>iho({d*iyLBFuS6ZGONManxGE5qw(XwW)WOO$avWjhotx(hDgh;b&>^?K_( -Ej7LvW`Lm2$}`kE6r90yq{drjurM;EVwwX3>OHFSM7GQ=y$tvJ)GBj98wIwyA}41Mh-qP6w7<4~jq47 -lAxl~F=weWFcZIp5n+H{xL3lV}01A?aeC030XSO>)wasG$Wb?p#c~N=)F@D=tLfezOMxl1p(Q@nq~FS -*yu$x~B&Y3U9$F{69z&Q>e_|J`p1f8)uA5anlOK3t-^~pfL$&S#vSKHnC%KKk=Z-EHX&Nic_Vv^?*F1JlyRk3 -wd`6AlCvw>2&Vl**J^sExhGwEfE4l`H864+`5m*qr)=r7a|44W>+d(WkqDo}83@Kpn7&2csvITfu=#S -0^>yi9IPgk}9LaXOXvBQZdO<2F+hu+AE46CD|c^{LxGaPxog!96|#u{&#MAy&UYIjl3rNVO3-c91XAA -^+m(<^=b{yY*uhFR#S!Ad_P#A}mi`g$+`GP+m6Lc_d9r5!)3P1!r7}loDo6`SYa>?q?PiG%4~U#=4!< -kqM%ReSQxr0dXc^WQ-xD -JbVC+zNs8swE5c=}l4DGo3&&X8|1wdHnI{EA@!#sfy~_meJH&bQwR<*XDxgsO(Hqi=DVUh@>vs+bOLK -UD8;Z88N!(+izz3L!syIwGky~mCz@6aWA -K2ml*O_Etc+9(rX4008n3001BW003}la4%nJZggdGZeeUMV{BqHObI+ZkDEgIXE) -EqVO+|A?N~uULg*K|q4G0Jo1z}H(L@i?O7^x{2q@hYPHH)HXHsf_8l_665C*AHFC3B{Sm7|`OO4h_28 -?@t=KXYvo@})6c3R)%Prfn)V>ognQq!|~6DG;UmmRCi_#Dm{@U?x+o5OiO$40NY9*)PR{uv$C!se7bkSy=Mi_;of)!&1+s!m3h&W8TOR -3&iBDPtNlqSIeBnvc%{>t>pTn>=wuH}X|U8C4oN!9W?4q7D$B^4Y@=K;YFLIT&boj^35o2JcQM+{X0w -8o#2D47KKBtvtgShmGUB8+3crk1dw1(3UmE6-RI0$`N`*3^xMR2RM;M&62=1({9j -};kJ2OTfM+ovvh5QUR;dcAjeD;v=R6HL*Hc+jI1*6^|#_7CNd*7Tma7-R<}+a?Z#&P*proF60KF^r?# -{*>M&Ev-iw>mjP-UdTrs8nPHzlN;4C+yz9zR)imfRLooI5a-K?RKOlcCWx4V>0EK^hgA;VEwG~<`JQZ -t>_*R+t<{e|zmR8V55ix{RJZV=jxSM&1e@A~go*^b9o2Kn4XZI@xMw#?@5mQ`XO#XUxrl>x7p$%(Jh^ -sd#tSA4FOOMsGN((_EZg@xV9MeU-r@y9C^q~yT#>L6Q~zPxJd^+ZlLTaDY -#;}k?NQbsv#iE3m&*KEuac`m@6r2@C<9&8K|VZx6#7m0u|VLX&r@wS>77NdUq% -Z2d1a1D;V*60r3bMZqbvM$^T{*;hw8(-}Na7NeP{^FwW=o>8Ds3X}+b7wP4Av6+>hH}DZ4Pd(m -T%@CoXb=scJWGmDrOT_LpU9KDFcoh>-IW$q%X8H*;WM+(g0p -WM<@a82vAhcOU{ZAv>PdygY2kZ#7JZ-+v+VWEl_Qv$Jb;KIKcKyKhCXki< -ERx+Rm3t!)qp6v;JwGkU57*4E)2#*|R6FhaBIK#i7~lyD;-uCnhp>giTl}hS%V;RRO6J(_Ui(j;r`-v -<7XDl!Y*oRq0DT>M;YcMgnv4Xe^L04r>`u)B6B*`8Jvj6oxn|HHNLkT?FTwl{26<9Qrp4SqLHguzqgh -o#kEJ$+fengRFR>sQwwPw1-vJQYxA3#WuKQsKO-ER{ED*x)`(>k!<8RD -zir1Vr1%$Y<|MZJ -7_BMjTtMvgZy_~lK=j`4tiJraoOEe$K7*mW#jNt}WQra|F*yX&Y$2}uQ*^-)382h4Uy93Mw=S~1LB1_ -`tU9h(pK2)ITV$^JdedNGitvLx}A3>|rMR2>?jh3O#YWcuUgWzToznb*=vws0lO9KQH0000802@m7R+ -NCe|H}*j06{7M02=@R0B~t=FJEbHbY*gGVQepBY-ulWVRCb2axQRr&06bk+_(|{?!SVNQCP~!O438WE -G|LQyc#q}g5c7k*jos+#NFjtE9ykb&erh%-Wfh5QlcFv=!Xh{qX#)0&ht0JO_JnqR5Btu#YIax+Dq0G -$<)v#Npf<+51r^0X~b^F+nsxa(R!qNmis~RW_&tIcdOV}b=}kMWZR1asYHt}8h%0C(4p&kCZ+kVjvXx -GzP)IVIeEn^m6NxuWj$4*&&hi(;l-~**RT^atK(f!a-iI|v?;2F7gA9*$g&bOlaAV#5C8b^@n0Xx*Pl -Os{2ZMq+AZG=unY>q&U)#;%)`gmeJ}bLC6t9M4qR4_OwVdssge$AU*d#v=$o8K)hlr!M00Y2@&&m+bA -m2*Oug6d(z0ynft6);a&l5NR7&!xXG$Ia&YJFx=nquEvZ>QZ@vf~IFj5Dfv(*WK3pDzIbU2%{{&53xC -s(Y$5TO4(3@2MR9`8ma7upbTe$BR|gne>VmZ@aTHYbm0zmqGYt4EJ6ugAxXoIfWYM9a+5c%7P6Iw851 -@nMjPTrff#zH3=cuDRNe^b5T<@E{A&V%2kPpd&4_(mFZNuO(6~9o1w5QvCVJVj$OY0peB94sfT(JzWg -D=C#`EZ^ouk5hY0Ez(KR6I$e$hGt6St -aLW%QHV&QBYFLYdWJaEorx7~5g*2hkr_KVh*uE6KWU{=X%>Ygl5`i$rjEZm|IJhEQl2#}kGJ>H_4bR+ -Y_rioIH@|4aHG1Kld$xKlj5P)2EvFY9)oidvPGssZ1gII`rkW-2=LD!`*<4ycd?6u^BP%EG% -^lJ@1s|YSu;rm?G;rxfLjbEeEvhlT?s1=(x;Sl|0YLh)}d5 -vi}z;n`NGC#ax~BuOvD)0JtV(ve%^Rzg!jo`D2YvtzQyA9 -k-TiUiI7vscy`aX^WDI11S)|%bie!YWtFc~usbE+8$;ZX-JM6UXVx0+lbyM`-cl$%9}$H1e5{77+v*< -ZREaDKac#kO>4lneoP1cXm0`z0V-C<`K>dXSnkQ%IOZ@JUAk3v7PfLlA|311=8x!>C(Z1|TQ{2}ao04 -qOFO0(?E>fS)0WxqytXP<4P4u7L_@w(nV`AiSeM_7>?Q(!w&sEc&96!qzARYZRi38mLjQB6GE&beo$r -Xc#Fif8PsZ?KA@rP?JIG2Yd74q>m1wNP>|;9JAPNj5?M -ZsYh*EO&2+6&^Xf;95eX`px?@Hwkn3$8H_?i^5ygUWRb2sk%m-sLYiyf}RHy-%K>y*5MMU)X2)h3 -yfYlfCPG&P|Y2;!09-?2`#9y?kviek<&61s#r*qr|v1|r?PIg-diLXfXsJ#LC_rWMi7cR-tj9)! ->&{>d{C$vb6!E~I%GIrQM(-!{#aRb!p8xT0k(R9ZRcj)rReo*^Y*V@FTmf_aTKYghW1oK@YQib%LbcM ->zRNyfpFe3XX{w0!ekd+G2>OuV8gmFX~Gu5mhB{{4aN}SakE}cDGsfcBax*5=BZgiBvDu+ai7>yC@^x -e#6@6Dm&Uosh+&)Yde5ugfi&C)Kb$cE=7Z_iWR}W9cbVU1*qeZ@qH$roF>d$S|dmu2;hI=2eVE16m%O?x3s4gn|(%dKhlxXQh -rzp&&ee_T6hKlYijes|I_AFe~dyun|924rYQjAG^NQ|+1HA7YQFG4akOr?!j^GNxIhObg-W-{3&5dzk -f^EwP)|+j0jrJBaG>4<3b!-VE|2I002F`rn`YSj6MYS}ZCwULO0L*p-aebuJ@%{Dx>3E>A_FOHa%~Cb -@5aaCfv$C&lqhY94h)fWXe}EAN?0C7;l -oF}d1sgy{fEdA{Aks(`Ld;PCcaO=4K-F1^{Lj)1dGZ?K(u6NuZm)_S9(l=cLSb^-h2_}d_)xs{#mj1k -W0r!b0{rTJ6BcddrbhfW=d$=)&afM&fcs&ykC@Yuz$OBY}9O5P#)g{h$i$=RRe8JaCuXVR>U5K%KyBz -csazsJRZZ1Dz*H{K2`L@kzxc3Pb(Mw+f9g5}B6Y%T^naH)``U;-;x+oz3dxJ~Yz`Ih!?&H&vp3X$LBd -{dY3eq4@(`uDW{Ev9g2Xc#dDmm4{1p4?0?0K_VSe9Th5;iI8z-w$5}$^VO2)EOu=<~x1%VG*b~3xhE> -6O5T|im~v~X1#*E68IG`g;EWm=Z;m_$JxX91}ze0QbC%aC}$|=Bmj>oVpwlaG2zQ>I_fdHdI5p-Fksr -jUOhPVSI05IGd5NP0k9Ym^ccT&vVuawB|}}IeJT&MokAhZP=6{2N?J+=9nE}rsd+pc`Bwa1go( -5B^D`*3D~fe`=*xIi2^ER$mFjZ^3|wIt5kVhGFK^n8$@zIgenJ+rMHOU1liMSPAv_bssHZj-6ycNtjO_-h -oo;*%kf1DI=X(E0Ep~asrrH8S(AC%A_R+dP!~wVUDo2<@oO4D5O-N9GGUK6Ev;w`JL0JUujJ;|ZIt5T -ytat|trors3$GHCc`N>)cT)l%#N&GH<=Z2W!woP%2!>$8FBv&9`M4GCEG|k0CHPni4v$fuK7N8_qGGf -z#zwp@R<*sxD1>iWvrred6)G{bDp|@+yRkd^PbUdSbcol3)b&F&5jRGuEt?5i956m3wj1yZdGh~c5mt -YrWiXCsGC&=}May;&#B`TmG5n#yJ*I&m`);ek-D|sfj3#s+9aG#P)cIrJKnLR)#2c`+|EY}`un{pbqh -a`K;m&dmGh%JfV^9W(sosH%l9>(=Mj)87d64BpSiPXtWrVLV2)coHwhi$b^CUJ#;_X3q!N<}Z#@k^w2 -iX(*5$zRri%flH=gn#~cb$?q8mQ1qR+_CZ_X@S9N8IkU)UQFL5pGO<8ku81X!nTi+8;dX&)+~! -ykD&NrEsXu*r}RBDBrLX6jH3^E7zXNHpVEYffl)-b&Yyn#mT@hoDM3T&JkU6Gw`AijRiI}o--Mm6V^p -T3EP`fUu%Zv0#N(W;Bnok5m25&s2J?YNqBlew|EF*0;=K$RC!Qz!g;Pe)Cnm$fRcQP!!uF~cRIp*DCw -?6e;G8$Yy>w=_Fhzw70Ua%x2NP|Q|E}h&avrmNuCye0VKGmS6mEz2!N)J#(gN)1GDc1tvy6P{+`JEmEN0 -ss+)Slt0gAE|@)TDZJG=HGwLqK}8ab*N$uWqD?B*Ad6}hu6DeK%^ZuMk_mK@!N*E!Od(oh98!Bc^E&f9^CFJ5HV&#r6;5kuqsr(bxN|Mk9z;02;ZpLQ!~||pq2W%O1U -@-hwZ?YU+P>6IXvJj$4^1sG3ShOU)BHQCQk&F>;*i!x?+sepKPfZW_!_D^Mh#w@cEtX639Ui$*#K!EvaAhkr_ce|Yt7*ML5i3MR+BhL?D)oLp -VRVmHl{~`^p&{Z49^3 -(e3gC@&aMUHHEDDKNptK8Vvz)o2`-=#;n<5CWS&O+WJ1pUZ!sr-t&fz7pE7x?1{^=aijxYcC!tlehWy^a0=P)h>@6aWAK2ml*O_EsNWs53qk000O`001BW003}la4%nJZggdGZ -eeUMV{BsY} -X4i$C9u0`{KODXCqUMz06ww%3%}nk%eSK9?VjPfva)2Nlk5T3Qn -$R&%i>ioxLh&bFL|^(?4Il|8d2>ul6f;DP*@|S4{`J&dL?L?VFM>RPRPKaVn~gw@?-5u*zYQk6X^m -Q!EKKErn^A?~0lRmop7xl!H`nlQZCbt=R`S6V!y- -1k1)<|X#_LhKti9u1+U&b6Xq^!gD!it$P~VDok9B(wB#?#Qpxz^b?sLuaU3n|7q94dhP0o<+ -rNrnNeWb4XMBCdBgwFiA2$ZOKjVTa)T2CE*z3-Zeh!#ys)zB5iMAe1{foV}V`L0O|(fWII3#Fixq+I*ewCHx<0D*U4)=V{y1H+{Epi^> -&$!f+2(RO`S^6J6N*@6pztx0=S$JEw?_1^gQ^n~W3p`{#n{o%uD*q^dea!0}OfstUKX}4h>=!fh%^m@T;Q00&0Qx|6q;@Ty=+pe1I>1-fIZRW6eGO3zS`ZGGS -!2o(TX*<1QH&)X@OF{oyj3r-QM^TjP}fz{fUqRf9W?z=Qa2Q)x=jdP4S_>wXe`jfg!@E2qOdtqbiUr!c`c2A*|qFNn* -XS6-HB{JCLJMvc9W#&?^Tcwr9px&|2G{Ah`HM;gC=InuC=9+kmmhl&FeryRMNZ$H#Y~+xBY&`o{{K9` -E+e{um5Bkaqls-~Y$&*}cf`F(CAYLCb^wX3SF59NOoRBzO%Sd*t)cGd7m)kwC26!CMIS9BTv?-k2fVt -P?v9Q0cj58{qF6AaUB&X%4Fs8*#$c5D!92Qh3#LRvsyEBOsLw24^T6T4~N9qihGzjvAmg=v9o~7!0GS -(ym8~aAbW?gaNskMms>6@(M9S;Y+pWlm`}DoCEYe2ZX%t+Jm2)_%2|*lno7WbkdeK68-)&Bzj^6LDg7 -wr;QzPG74??%?B35@5JoE-)r#A!xn&5MRkb|aanfHkc5#0(NdI5Ci-9OGrU^;P`%Ce=?1IOuEACSw%^ -vUBZ+D1mHHj5wM~?|jhwBqQmZ+>CCHL&f<4$PX2jOy^{2U5qc;BRFW{j#A`1oM<3cjdhEOTJTRb^nxfxHZ^waMwwa4{5Hsc#chatn2uW+B?t -oH!j^E^AkW@d-ew!-~d*$g>`r}%_ZgG*@w5Ca -jwy8Ze5{QCPJF3;23^LN*07dI(p;XYufJWck+Km6t5@+>`n|JOh!Fh0M2d;Tu{`1bt#GClqN^zC`5(a -rh)q%_KE@kuA=FhiA!P1^QVn#r`SYn_p^HU^aYs_($g!*1w=7MV}k7nCS!F`LHzQi;#ns$5{sK&KboW -Y0=vHfn*SYm7Zdk?JQ}0swk|`9obElVWTeV$7KY>e5X^DwCpnpe76k4Q&~~#aJdEa?Q}7#%LAg4 -K3!yIpA*?opH^EP52xci%?n3MN(g{tjxR$yS)LAW~7=1sd^h340T6I7;X -5a$R&w_PYxAi?(UBV7zCnQ-x>sBK~qov4ci?n0zTMJ$Eu4#GDa?-}`2p5EcTg+PQ@DR7aJ;6+GP+KXb -3mb6a4q>(j4;-3(li{}LmCNG?=&jnC)IU;}<|WUnzFDH7KEY%O*%$bCFfV67k`hq^%RsV$uObI((c2Q -Gv?TJu9MjrayH^-WAC?HC_#V0%FnnrEVXMzmmgePT{>&wSwva;Fv9RqP;|n!TEGZFJ0ybZECbMaYd~7 -lO*!roN6ZaT!fV<-~4cLb}_(d69OjFtHiI<15WVuPDF-wBUB?oB%h@#E(7x@H>gR?j&Zjv<7_#Z{Z$G ->W!*8OTH9z5RmhtvQFJs_Gnqei5Eb)KUR5#BMuQKJ(6m~;IM{vsD+NI@uW5WBrn!3^;%Knqx*@{eVK+ -IOLGM~;yPL}Nug8VuR}m{o+#vOEVLRCNj`@f{dcCc5}nGTUP>rGOR=r?uz}k=9h^mXqL1JFm%E$BMmH -(nyyvUcbJ7wCeuM5eRiueGV6%8pQdoNI?i>oE7wf(Ai$Z7-VvJs5|~qV)i#59f}ktEKXZ};F~^VtpLt -1LlG9R&I_=Hs2U)}R^(e|MnRm~gE*{7dO$%j#-wXMC{T9-Y-0FeWW%D8-(~s!$PDEr8w(Edl+(HM(|J -d|k9x3Z5=uwkzWMfzo#TmfqaB28?lF9-ZzVW(36GMj^5T)U3TZ&%PC|#-_{=7jy-O1(-gSwUBLey?%q -A6`WHMbWIq~nA*lO626jeHv05esV*;bm1Q;PP%SmG(zBxwzdTh}lMxC$_)Q2oZqQU@+;gk$ql%Kn0-2 -=q|rr+6Gp{$&syya={K*^}X5+uwr}6RVj1@=7V)I=26zjv?!>#A;9)lcjgX%vUF90a6k_uW#OI*>sd- -EV;hem)Sq}=_6j;f(fHdCc7h08Tn+w-cRIioH3>e^Ep)KK9L5~Dl-71;l(;5S6~EaXjA?6_V#*oEIy3 -WW)(m-b5w<{pkCu0Lwnl}TyurEm6CPw+&JXuz-#eV?8uL}Hy$(-K)Aq^-)-l{I686y`ea}%p;0lUQ4y -K%NmgfuY1+EzDK3wvEgUyKIbxU!97f>td#}XNtwz)OGJ*KYZMRH;&<=w$zS&S9g*XDefJNnMHG_Buc` ->%w0rTJ!GN^45(Bjd-Lz`1W!vX!cJHQa|hEA)ik0fY}-0Y7qJr((DYIyUzZ~ovg0Y{%MzuBkm#W<%uU4F*kZ^h -y`{^WNhlr$6TWS%Ds -K0b~yN}Ts;!?AQH7tD4U*}^1T9AK?)9Fx)S07FJ*G8q?4yNqm -KGWzXzaKepe;!_v~T+=66`j*2Hekg+U_Ou}7n}+iwx)`CHid}RV6Syr-W-0RT4I -}EnZ%4?fI+30F3P#Cv8PFU~BUS`RU7cn{0 -i1flmpkE@*0!5cgwL12E%PWt($k@9k&ICBu%gg{tl;Qt*>;gmxQtt?_ms3}9I!pX78KzrBZ8}^E56h# -nchSE8rC>y)bt3U(l8gpGN%p&Qpr0!e2~fX#`>s*xv)OxBENPY%!16PW?!@^rqc^I<|T~zKi->vE#F_ -U_gA;)_GX};jGzk>YfiU*0L>pA>FOh04RME;Sevt~o|XPBP3y=~PAuct68^t7gkK_6y34b|jn7yDE%~ -vT3WRbwk;AFkrNwR7bbw&XnS0sz{0fWyid}3VRNlKiD94I2YfpmpH4-Wu!eBRag&}Z)7+R1vq~_kCW2 -#)DM$$B+P&yOsPK2rOB|0DXs^MV#+`^})qbtG@szr37PCfDc7atVcb9hu4^kMfhpa#!;-DjTYZ*{M}- -op$I%Q{x_3_tU#xW|3~cRv#`GnxK_B^Vm8GkYA4W1fJHMRcE^iOOH1|2{m3)%iu38hl>AE<{c#71(3y -mqaX5-w8}tei#&GouUqsfr2}q#2XDGnfd -ixaV08$<)hD7Xvc#L+Rj7QAQ)D?F+Y^Bg7EU4HzwSN>N@&6u1tUlOKeoln~RWL~UIT$igpP1x7?%1XQ#fZI_e9fwJ-O8B&(6MU}OCx0x;dP4YHVqvpw-;j*ua-o_; -U&+!qV$NOaTdvv$n)vv_+@6aWAK2ml*O_ExFPS;?LT0090I0012T003}la4%nJZggdGZee -UMV{B%ZW5@+ehpiK*Voo!5oDh6+HYWy@zF}fMAfuP$Ovy-dA5FPoShJH -=A=nDKS$?Xu(tSv-1kAbQX6Z!?-3t{{0~YF6i5V5z#etI7El$e%vJqt4!j&v|H?EvXJC0=+l7zW!s}Ygi7*>8jwGXHk+)XarKq@0kW^vTm_LCxTJ>u~8b9tvFXS54=0e>TER$Me;xu?G>J8 -k?)qcEm=ydvqw;*(&(Tfd?G#@%k>j_4gcRa7Vri7nVc98!8M-I`rV}P3Enrahm#-esdLr?mlO5y4Kjy -?~xw)rVE(0_5Mo7ciKYw6Wi7^0%ECqW_00 -LN<%->|j+>k(JA1Geh=Z1)XKL-vyQH^_P%;x#-Vh_GGglFs=R}n{dUvfvw-e&1HKs@u+ -!H^;r0%N~p*a(lg623zcU3jry1$Xg{_^DE!?i7Qpx6=5cQkhFOp+g)xh;)9S5yKyI&sof!KAN!F7>q& -npakjW>?*;I1KH*|Na#0IcU!tB+4WUg}RV)%`%IcfCi=MnK8qlo6;^zqorc5nbKH}IpP58cwH=g6IRV -}p(qT=taS6Is~xdG;KgNlfqEmz!yS0CSB -oWJ*z!RIHls~?^|6TRf(?fKApj-0sTx<$DE_gBK#+1yAzy0pXix?5HY4AOHjan$(1KO86Fxxm~JJ4F=Kr6JG0Nn!JwxF=xH|Tf&(TFlzK -{-hN0#Hi>1QY-O00;mZO7>R$dH_pU0001V0000X0001RX>c!JX>N37a&BR4FJo+JFLQKZbaiuIV{c?- -b1rasJ&UmofG`Ze_FT~ups+GP8$<;pC~3-=|G$6*Hp`aPQbN@*g$_`J<)t2scH*1-GZ9*mYV(2AoVfb -RM)?f`T!O8zsV`QJ?77H)jX><@T+@d7A8~*OP)h>@6aWAK2ml*O_Ezha)iII;001fv001HY003}la4% -nJZggdGZeeUMV{dJ3VQyq|FJE72ZfSI1UoLQYombtD<1`R|&tEYL545K?@LXw;j=e*y1l&p-@UU8S-N -b3EI(D#~_5$L6XU0xir_CPZ`jTcof1a<5(=<&US$<%94!Ks22_@7Xn3T|n21#|zRAG}8_Cdr(P2t$kRltqK)=`VX2eK$cI3g@^ZJq3v{V}Y!&=_vH@&;elYqIx}c}pKF4%! -sl5UXYmV`48p3t=0{Iuu3W_eZY4Rl40*_}~yu3v^nrj*+XAaDiv>*pObuxleM6wh&J#KCQfL*-{mdm6 -{#!P>x#18mxrI5aWP~HGojyZyF@P(N|pVTr-Mv@y}8c)`l6 -+~%##ti?R0RB>;@KjQ!o0z}wJkOs#T{ft#E|L#{)SH>$;PHKL*sNzR!y_f+QnO+%h_hbg>s?QqfHAOM -#nGxSjK)PVa`)RnoPcuXy^5tYod3n=0_n9PPd|9d1cVR1)1b$}FHxc5GW^e07+zyH`9{H>xdw=eShDU -53dgIB%Y#VMg+mJp01Og%>f{+ -WGfxvcpGJV&W@`~q&xuAkl{AnOb&JRaCJfeFbZrc>>2c6ujZ8;3^jr7_}-$t{l9yqcZepcN<5Q>HTP8SvOWK7_B?YYAnTo!PPSN^y*c@R^pQu -+$+=X!2`I-z1J9BDLF5Q1DOl2LUOKJR{*Vh(^VKWJ1z*0AbbXmo9JfHew$7Tzo+(!tn&1D-Xn5CrN3ytjVk!i8s -8LtBeOgUWp%T#VkV34GVi9uh$*-U5j5e+Dcf!==q*^G5c#irpj<4>LQFq!T9+-(SPy_tPjkaq|92lBD -1zhHeQ{nyO^x6aXa`b6C4NEHRn_n|EO+Xl`evc2>gy`^oyb_aXzaIrVNVC;V+f58wmeZ1~QFz@>3C4hLNA -rl6-ZKDSLKK$r+YekLY$P78Kmn8V84;M4q!=KNwAA(D=z*?u*xi$tTT{gti4->oulo*cTzDDkHsqrF* -Ws0-d258<$xVB|dpSW4{n1k#9EW~MSU=a>K%1n0Pon0(@8=|~2vpJXP5Rwu5>D!Q09Ekiz^cSso@-I+ -J0|XQR000O88%p+8nG}$9g$MuuogDxG9{>OVaA|NaUukZ1WpZv|Y%gPPZEaz0WOFZLVPj}zE^v9x8Eb -FjHuAfF1);?vQfn*Q;(!B;^B#)a-d%x38ft+{IfpDw4QCG*fUYzz0-z2gQN*MOps$JhcD)ka -t-{3-V-8il26(dZ7(L6_j~C3&5Ei8?7JHmpvwpFljt6wv12xoV6n`CdHmCHq8ACMx)oY!C1botZEjBG -!%Ec6e!7vH~JVji3qq{{C-us?kyJ@9$x!Vr#%*+fu9<|6EJ16zT_@)0Qo&5x177AH}u;!4k>;-+;xE2 -VOmZKW}8iX}eK~w`x6wpSQIXTQu-s16ipqzoA)gjbw-y>MaG^pYx<=vr{G<=RVI&am6mtp4k$03H+GQ8C6@|f?6L0v2(VyjctUweDE -1Rr>>DG%s2juK>HrY^;sD7<77|lz0BT~-0h_mHz$q3TG`$$$4(zG3bFpES(9TkEtJbnd(^S@&V`UBlD -2BGIx!Okwk90OoMG?tVQDv_96$;W*rR$RCaS-(gORgJPnRBBP>J9q`hb-F{P^(OY59LKiQVhZK_T3$= -LGg3$dq(=+4%zFHL*)ed4JQ`9RT0yI)m&l-$AiQm6v&47M^QkW!4bss(D981x$zohE!&mT#Ww>Tg+?n -p@^)!mb2vG7T=Kco8B@;CSU54_mV}nazAYTctwFg9t>;Z{+tr@(b$cXZC&8bwERU@QuhH7Bx=x -`@-d=9KB8{OPx|^t~5GDlFmn1Eq!}9x$Ft`x{&-f#PH+x=b6?j$1>WAqYj#4C=lA1vOXtAqipX{`*6K -eb*w4h}mp<-C6a&OOR6-7PdwyzkWQVXQIs0qFbB9AjsHkK$wmfFZR_?=rjY=rkpf}#E;1Pq2p!jnK1K -V!4db-%GWlajU@Bam=H=o2Enmg1xyo|&M1vz<)89=V|)&Up?_ohVjbY)b_$;-8_x+Pd27m@nDm -gqlxZMhtc96T+2gBA3m64b3<-ssFyYxiTgL+wW<#tH#K)FDX(^5Cb| -kSzr=sDm|t#bXmVT+5j4Rdcs?)iM8?JH1N)9@IFT9yJXdW9fMC=e>J%}M(){a<(HZl7?CQYmFG@d7*J -(Vhuz|dx^8pPtLDRY>^IeOte*%NvG?qo-&)uw&j&k_cpZe>0b}t~uu!-=y6&8KrqEl=$d|<(iQbICRz -TW}41LZ-+Ez<=Bm@%@)aa49D9-&DpEeXZZ_C>VRt# -J8P$K-hMi$4+iS1asrCVnW5JHr>-8cHEAnf$IX3I2+rv2z#{X2N__j1S3Osy?{y~5*h?oU;2+_3dBsjHGhaI#v8ha%^6%|jK#C-{m -w)6NiGLn;yoiEIZGP_kEBtX-EVwOMNKzye=vHy5s`(Dj9X!+xkBi#Hqy&}nJKB5fI7{S})cYfI&}c;H -o!fC2xyr^ZA}{Y+JR!@kRNn%o>07&tYxYg^YG_7H|P0On^Duns?XdQ5)CjOF#fdo<<|tamB&+FU|edmsb3iz8 -nG2x0EgsZgO3PW~K=QvzFJ(o~|U14#=ICAC7aZ~=lMc%wkBLiOx#4k}au_~F@QZm+G3G5ELv_a8WE_ -G1Iv=G15RU!m>qd&IOokcb4>NaMU%==im==Yp&1OgkOMD)hKnb(p|&tkVOD)BjXD*`3G>BQwa^Bh<-k -*;!wChJeB>%2FI44AxNPDhNm9g=gBd7j3{VsUE21`T5~+h)op7LT=A<{%~INTH)8?9YCJ9$lY|}etpf -tfJ6_lBnOKC1J`Y$46tVQ$5nT_sI*D%jWoXiP)h>@6aWAK2ml*O_Evr7qGjBfL8zr)}#syHOX{2tl+L;!N4VF8PAP46YR~`Dn7tWUACeMTPAsZZ4+KNdX& -}ptJp=7n^9+@z0%k^ObtcTaPAU^QWc>*2KPmue~=EtUl$Dix<{o~^`q_OCDkVgAT98sJmWS#+?-oz{y -C*C0Q7|OxykOxfdET*Qc)Pz!a7{Xq-(@bH*#hE>$^RWt}37EGiWG%^5X2rFxx*(OWTIt2q&x?~((R9I -f#9E{r9o$XaR}F@T-j*|_d5eq{S(XXKy@z!iVk9pgzl+X=oqJSu38VXV+>jEuYv?U*#nuP6E8xpF>MGohSp -iZRATAjV&ZySjQ~3`i$%{GBKj@Mti7r4ABo-}+6{F>8rs4xjthy5o7sPLQ8ypuEK<~`YDJ#8x -xx9JUwdZyQXNua~fIX(Q;&kj@`mthNzSKkfnojIXS>GY&(r)hzUYXzo1kv~vN0|XQR000O88%p+8q@a -j{vaa6Ux_XgB&YYPu!{LxDh$AjRyonA=KP7#YF -WikgYaRs<#WHreppeb};ra;`>70CvS-8n(u9=XXbRuT4?XXZ%9=g80@|peU3hJz)AaFx3R~V(g$5e!L -Wg<|?qas(C-Hk@$*{n?^k<1r%z{DyS-caepJlb?R7w5CFGrIkKay_13-QK_u48!Q0DFoPwC+hoqK<8q -gN*0BHmbu)C6=$*BAC;o$x`OExz|L$my_(EtXkga?d<^9MWDK-9$Q}proC1fKhnd~(@Tne!I~`B1zYG -aPV_hDLX{D}EP0F86x_9v&*%wMUDOl>D$;e1Ah}ay4)c_d@{?*|hAVMs@%#6PgmF -41%tFi&@{kWwJ)zYdZApGb1frm4TQ|8kk&-Se>KTVC??!d* -QlF)pxLsZVL>2GqKeG&p7#T7cRr@35}Q%A~8Z*@Ld{3VDw!w&8)Ex$vXaGj3iBPB-**IT*}Tesbjxi+ -_GyelQnSe`(J-3ubDYB-Q+@7#2{r77_PMJ`p2L1{h8D+Wt7)4ocNqfP6(XtKE`4?XPKH({O`nuxhLBp -xsi*4MFllwtmbUwjna5LA1@%R`vh;M796l6m2+L(I}-}J=7OeCE>f*Vp}rK;L^oi>=7kEb-Gt6w<-LcQtIU0xc)(LV;As8kVKc0=? -SkV{OFMxf&WmD&KHx7P2Ox$A(4=8XlBzBHh}mGb%_!V;taSTk5{*Xr-f6!!rLnxAzum@2660f}PCl{r -?ivox9F#eJZmSw3DgTuukAs>V$QM@u>`tVxG*i718We>FPTQxA7E1xy<-F8y+Pw`P8dM#4M_tC!wzD9 -%MB>$nG~iaQO!R)SYI5XO*R{d%SBDWslp)1kW&1fPA72$D_3#-Z0!%Aa%ZU($E6}H=E|w!G5N1qSR`% -Xubuh){J>G;HPw4$0z+_Xa+Am)FUalxh$V+GJU&{)k1?x9?}aB+Q@H!wnsf0%IdmNPm9}l*&-DyJ&cf -Pql0+JB&v@N^ZOVvtDUs^7ptI>+Kny8NnISKuU^VxSTS3}=2Rv;Jlq@eVbvvTQ;q>b -@(dOID!mneZC5fWn6qjvj;(8%300P|tke?=@LmBf9Oam~kn0Z>Z=1QY-O00;mZO7>P_Pr^AC3jhFDCI -A2@0001RX>c!JX>N37a&BR4FJo_QZDDR?b1!3WZf0p`b#h^JX>V>WaCyBNU2ogE_1(XMQ&B_$WVPL+a -eaX6 -^|F*=#g&?@rPwi1R%Id;XJ-A6B(J$ytM(<(uqz*neaJ2{RfX)btTIs~`9#B&SsBGyQE>_HqE((n%S7> -bC3d@{NG<-UemsPts-&tFAf;Scl(XyW%j=Nc+@7AE-Q0{~iejB@YMG!w7R{e9_&e<`h4ktlS&`~*8(z -f@ZoJNNuJqz}0E4f=7(@QJ;-q~e=&|a*vq~a-i$f_+f@debq?P$Na=CXx! -k*I5AsYX}#K2)oHJuGx3KS4?e1ou_QcSt=mKIb<}+Vlxo`X;B!)g^qF(6y+exgMUj293Ppd-R-etz2@ -LM2;8LDH!88u;5z=8?8@8_@*seXGH6E=E)jihN(>5tfUa(3KF3PLfEcZkMA}gu$Dr&NxzGRz1NFGc6-#UZOdk`6F%QtCazgAcj=1rB -rzqeSH*y1-NKGgyC`yJ)~3m}W>RHrTbO@B_yq}sv)K22Ugh8!PDu)_#yfWX?EK8!}W{yI*S;;vc2*ep -rYSi>k^@q8Vy>F?|-czV{*!`IPjM{p`?5&Q;%s9L*uq4OU0%xdn9E@2=+5%Ux*@c|kI!W>0$SGGJa=P -qyJf2O?#kp)qOAKcbwG(^O16;!T2&Tno%UNC?=`*i;8@|t-=LfwS8Ph^%XvHWG2XBAW;ai66;ja(tjVib_m*O5Ra -5f&Q^ACR-?2IhP8`^^ezjBWKmf -^(ww<^FgS#k+o#xCkbBB6xLi~b`ra5r@OJoPQ#AaH>L=SlLamW3XXT4fE}xz%Od3=i9EwH@z2B~|q$w -*LuK;0`+cec})dDcGt25*#~_ZoiCe3-uv;97Y<Od#5^@tSK##;KKz(s^iAlK~+sz`EMkbKj^6 -j#^M0hC0|n8%v>yqJbY<7}pg6?#U$>LcR&oh^Om^7OP83rcut$7uK^7Y2&Tm{wM*T3m`~U -dGytO9^O||WZ;DO59#@~!Bg~+M&+S8B)9xvRrk|H77_JL~`j(9M)InOwQz`M{4lwjat8u)ZD5#8RLT{ -p5t&E6giON&AHa&h^$j~6XUr`tJZ#jUcj}L+wOymk`p5{-G4Vh&<2`Iwoi(g&w -56NI6vnfv*ZDA638k*O%P9uX@Ox;Y3&_4bbn$8I-!2EruR1UM&?BOG27L?h6(|f+{9_j -hsTQz?REqsS&M?KqN{k(2Kw%K!s8sc2NKn8cD=Z7}JwRZEd%>&8MvJb>Nmg(!|4fS#R!9S%{=!!U^oN -AO~3xd^3{`Kh2sJhCz3bdi3l6&svx8G5+ZDoIz+w?KTxZ_52(gKaS>_^lY_S`?OmgjkN7HZD&K$xlaV -wq$TPr#&r3J(3`n#*?b(v52O6zY&+^svxRSv`_Tn3rN0>p%%<6=}`(hMiZsLW%okuI-%A5;|^Ju)XZ{ -kz8nx>N-UF8kLeOR77`AyM{n2oPt8fAq7y>3|}fLvb*2BTwrFDiNwL(!jSbEqX;KPBXU6UQg+H= -U5h>g*^u7s!+uKNq$8h%?lQlHQoij#Nkubw9^>H#_*AC3Mh`mtgn9znpW27ed4}$6xFbFfcW*U!oyqV -}ng?kMm)_8KPDRqM!y`$A{x0)l>SmDU7*BV9a4%CZ}mt8stAx8DQBhJ7`z0^8z=-Ic3>Lm(x{$uBaUB -isUw`bUUZG60-=4&=`G_ny3nG917|BM6>{%h~*{3?C|>QN1Il=Oq=;d$tI8(@eGjqD!E{Co*Ehw#HW+ -z_^%VW;Dv3URO%psc6_;dcruW~44HswV;d^_ocUlrC;?7)aZbo3fMwVk@y-e8;!c&7OECRJf3hOa2Y} -w$1D%S#eUCdA6Am9yn-&*F)HMl9YM&9S;DLD(VqBU(;(l5r=?#l9FtkuK$2YS?4*!OBAkf+IhqQx&r> -uF_nk2#K~z=kO|P$?KP*q6Vs)FL^(i(Rtqc}^n%!08uHfuAi@tCg9XPt4Dtu=LB!!n*Pfd;F*ca2JAfV6j@6aWAK2ml*O_Ev&T4d9yy006%k0 -018V003}la4%nJZggdGZeeUMV{dJ3VQyq|FJxt6b!RScd7W8XZ``^Oe&1igstAq*Y=q=>aW+6|J7@tn -=VH4ru0hZewaZ2lRg$u^F#O*;!;3^}cN3$2uqATl3=#HED;`V5wH#H&^~$Z0R#vR#^V@D -G`dxUH6PZ5fRik7_#*@pS&uEhg{5f|ki+ih{;(#OqB3i8Ej0Z8Z7@RitX+ -i@2QifNiTAZs4j@`6E3S-aL_mAqbH$IT23CDzs89LCl?M1g?=)cAJy5^9iV#F^xB_v?s+~@$x>{N(^% -=tQkpWsIyN>mB;JR?H=U8UYz|gU8oEoNf+|c1*_8{09UTv5eH5^#aX1}?+xVXBxImsgXM(jq#Ok|3Sc -<~fh#|^8QVSxd~;{B6QvhR3rPO*$ew7T@Z6!=761387&^DLdvReTQ6%$I|BT#;>X(h?}H?OIN0&pJ+N -v0ANa-VnW)&-4jBGsle$(MGL_UD%-O73BRV@>TYHvm)^0kW0}wGSA-W4SA=tH9=0#l;A=rP>`|ZsJ=B -@{v$jfFH`bOR#>uh)v5s69n+V%V>zCM*++)V3wIv=L@H-U4+@;X4~kTZGsAtHQ1ji;jtx!?49a_JFZl -JaiOxMvBBdO7PYwTW@+=BGI6Lzp2+&!9k=D$j{+0Ybf_IZ1yf6f&9(X011NuuVdO(h-Ket-0iQ=7nf} -rgWK+Gym2E`lkok&IW*uWFSKrZ^K9cx6vC_FSlmPupJ+uOJA)vv>;{L+}X#gH6! -0My{#aV4pz*M3k*>;=Z1};sQ537|E`&O}D1Ahl3Mv| ->X91QQTDY`4dymdReFT6fe7?Q-I|v8r4@Sxs@|Y&9G9zo-1Cc%a8our5>~St~n)Jvm$!3IX_Ow*4EJ4 -cLJyGiXn$o<9eYkvym|sEYT`M113pc-ZHPb!uC*E#96!9IxjWA -|RM}BS1uo4uHqt!4oMI9Is(idh&azp~jniSql}ZIYAW<#e`5pmjMvKj&+0Ls}hf+P2We>@!BHMCP@~v -*?>LA{m@!?8+jj?iq>2lhSd8v+?wF>7wr!(e*^cD3w -`U?0%J379(F?h>eyV_Vx>cnpmmugh?{{fn6(vfCPtgcJ^BG;)9w%9XdKwqQ@9i4j~%3P4YY!?Jeu;Tx)&BbqDzg++0;&ziLIYJwxjh>7A9{uW+X~4~1UW=^6a>>lGNN0?*Xxz5jc -iOgYiDRY)Sf>i59pfT4f7I4FTDU-Hh!lhTH$`veQ^5)62lJijyx!E_y*-5_Y8kfExgRn%eqdXu1|+l< -oxl|N@x#imMI#87^`p5YfEED*6-+2>uC?bEp)I-;(AuzrO*@X3gaOFx8O(B+tH1#uLkWZBU&$v?hxFq -d1YN`PE)R4BbSJS<-{AI(<65Ltq&4pb!b0A3$5+czt=D+_?o&a2X -l~2VWfd6X48M*4qP1%cF!I>{s&9=JpAPe41};79F?T8o1>ait@;lJ!`9-zTZr|4=a~6G(U^-1v(wR`k -8xTH2_A;`Bwk5!;bXCvI!K0SJo>WpPBMH`<}=-(0cy6zyBf>l=YWMp;xCUx_w`g-=V`G@81VALgvN|0 -l}!~pipKwucV!tqntT?bCP|PQ3djj>}V;5AcZ+gDTq1hdR`ovGSO=ThQsdtdC$3hsKLsuWOe5J$WaG -wD1y|2CKH!ivD1uw!g0nK0%Tq+ofO6*J;Yj`Irdm>N0?0}3JddzM@Du-XC5e%J|8Vm{zr;Fcf{xlRf{ -fn34QO*fA`7#-(qUs?B9?Du|?k5Mh)E$hy97nK8#aS6dd*)B*Y#0)#r#$VMFYCC`T~f{C5<})|aP{1M -EIJDYy*ve7WXrvnT@iGk=ak2TRj^!iyiSa6!-EVV7-hf$@R8z2~4iCC4HEuqJQd^lp!S6^aJRuEyS;y -C#cD1_fSW#>LNw_fxwJO>lIXE@q#Z>cKtIWRl(PVc?j)*=aX(cAWKY+O-#CKR1yyWn`Dqy5ESI1u<-T -WTTPpA}u%SgkK{N8w_di844e;EWm1*!bA(o0C~l2ag?JOMq^n+fs~CqDu~;G2Q7fAJ?p_^P#6F}2}Q- -rnJ6-P^u-8f)zHA;sGELz%Zt-Y_@!!Qir&tX^Y6SG4ffHVV_rDV1mb`Pu(36~uOvpeXFlHek*Gk8V<9 -{m{3^CYI^H`2mfG8WKSu!k9tA0g*E9B_a-5~ii}g<~2!(`%VK7g4nZxUX;ne5J)k(}>@GJT+zRtK0od -CV4WXGX-#>9VK{c(47b9+NCKGVP5eZ9QC0x%fR{lJcTpCmd1cX9XU^$(#I1ZQAQ{L`Sc|1HQ1!1PZ)X -T7{~$6Nx_$@L=>FGq>Re%zBsd%m=UkNE!sP)h>@6aWAK2ml*O_EzczR>S%Q007q%001HY003}la4%nJ -ZggdGZeeUMV{dJ3VQyq|FJy0bZftL1WG--drC3{U+cp$__pcy46q5m4+a87iK@|*0H()?96ie5aAYf_ -f*k(hMDoHt2fBg>7Dl^+?wI`~!HPZ%2SpUF81A%7S8YL -p-EjM=75o%uNluHX*GLe^pN1k$Dp+c^tIm4I_98qS^o`71Ww_s`A+MSZ;WHo%IrP}YAtfKHg@VVg{_8 -{$DM_H0*Zg;d4z+_XOQ)Mi(jX`Y{^ar{B_wMeG`}-*oRfA^!)cLyMqU!!rt6BL3Ix27$B!nqdXoNR}O -FV-RJ#srJpQwN>D_d&7HZ_7lUjVbQT$p^%O&L{yG>ryYalIr`={*ztE6|$R9b%%n1*#fbH}xOZ)TpjBJbLFf04|&UfG?)TvqS}%z`w=1*sm?6H`OUHypIdgYbvDds1ul2`wRw7XA8LRWi|2s$e -RIBL<~W|6W-jMm4$w!gRUg2gm055KF>@QN%R01I~~t7~_uS;hv8Uh?a2yW{z&z@p9+(Kky2?Dkcdq(~ -@V_603qKEnfY)(Tr26#MDiN?ouJBlIQ@^tAc*L!h%X_paHB1G2toBoUQdE{OCEv;RvzP3&!6Y{8 -BHslDC-QoM$zj-X~v$qeTi2j-gANeB71O}Q~OiT+{0DDhOnxNDVG@#n*~|jlE0ONo1l{rx9p0T<1_gn -kPU?`FYzB%08B2EEfyDvjzPRsRw`OSeX-b9s5KM4-Is5==9205Qb8p}d!=ZtVFUU~VWZ0{_Pf%LbjQp -NE(X;_t_EZ1n(1pC;(HJ`O8B02sfNa2*MR!hUw*q{@9TxT4%nUjnmFcLYuax$2v|=_3Xj21JlTJLc*%W8et2C_%+(K{)D^(Q5W;m&Wfc;k= -Mw6n~xNZkQ(9YU`ocbq(t^`j)Z-+_lwwmMw(XBRw=r63n>?Q}q((hAlq1N%{dh#G~&o=!>Df90hY25}`sM-|Gf?z8?rw+_JTB -0{|HLqs0jYIa@zY<6+SVvcb9Kqnk})Y<*mkb%TS$4#-+PgD@j~YU9^OW7<97Sc(I3oUM?~tZTP84BIw -8IdeRb^ZLW%WGr<#UZMS%r-%SAefkCR$d6HAoE4}x9c!~GuED9pJbZ?6W>vJt3k)Wj!jL-Q0si2;M~y{;F^ZHfa~yZpN{Z3~4T<` -%GU34=hNYA -hLk$gc{=uHIQ9Xa?=z(^=r8>_8j-!T`UP0E`n0VH`#XqvN-3w{F!MPYgLF1Lz%4T@MLP|xOD_YN|IXNs(`o4f|Q3TSYD-Oi>Btz$z|_Mv5fRbS-HYTHzCnMa>baMt2=oZIZf)$EQTlan~aWwS -Y)YFFBHDoE!G~gR0sb1}jHhcNy%Q1(^2%_RxY4yz)RlQS;A*vMVb3Z&>Rz@L_QqI1tmtdT=wre4R(aTq6IdjN$lzYH?^yorhJF3bI;m~p6wE{g6U^`E-+ff(>8xZQGjcrp -vI1tQ>heAjq&`#>Iq=Q{n`iLB?Owg|*`myYwH}R&yLB|;)5hDj8g%9eavzfSi&k)k++P>;Bs -?D$XMud=2(E9**5YP6L1{sxN8rkAisFKSYKLr;88?P%;6i%Od+Ex%`}utbj-R+Kv%Qe8kU4@h<=p4s< -vVI2?g%jrK2!d1p!_V8Oe$G;?sUj5_4sZO7^(OaJAexBm%5M+byTolj{;eQj%q=%8m_77kxHVY;DjN2 -PIQ39oNaxMYyH_tl9x%6y5Y;~n4W8tloxc`Lgj3~#5v{W4VMVdOTkb3_(D#?x}Hl=CrSeKup>uykhpvXQeuJf!be6y --(b{zBde*lC$xr#@eSJfr?Ur~9gTz-r-fDgj>$4c*a+L^;!4oK~;ln49xDJx>X&V6qz{?J0@li@W9Js -|j^B7qN$>|5AED;%#cT2cgPV5**AdLB&K>!^h#EeR7Am!;T)URD}|qrN)k!eI}yg`aKK4bs)Y>fYpEZ -RYwXqsR6tjGWET6md7~a2pz(2RivxEi4aVDAAfTnMpqPC8>7#WWzbfL`y|z6K1+W`5N5Kpz~^q-n87o -tOiz7MM=pJK0d8t$vM$8!Lm6*^H7bCEulS-Co)u~v_L5ERUIRk7uaMxl}Y(@WX;PYH1kSRBN>^))tt+ ->kvWsUne%wBaisgxoGwsHf}H@>*bp$7toG`NkK3264xCn{NlZ(wwMPbzhv3(Dm& -N7up6d5{2x$D0|XQR000O88%p+8zsURG;{pHxrv?B39smFUaA|NaUukZ1WpZv|Y%gPPZEaz0WOFZQVR -L9MaCv=IQES^U5PtWs5Qc&cj@WaU3#DZ1ptO*5ed&r&?6a*^mOM#rSH}MPPO=@xX}i4G(%pT&`@Xx2X -gh5jX}E2q*hgYGN?q4N)zi_w+Nd(RCAxDRHx|ffxaYEm(dJ$|44Ev~!n$ZMbfTk7C{|Pc|bjMmS))cU_MKd*Z;5d}5H+;I6}6!kFSMFqTG9R7h?uxx&20vXk+dt|NlKIF7 ->;ZxI#<4+0Tg;hWS2m!#vx6R*)?ibgyGje`Fj)(NEGitK^(7E1CWTtil?5H1vk8~D`=11%_LNhKr@r% -9>tz60*~UP3?;3K^GJ_#vP0(p&%0oWy6H(KUI%h7elWNAlT2ofAswkh!RpHo(TOv1d@v7I -d2Ah4_y)Y$7q$rdgR$S#jjsX^02B3=iSY)y~=uk@e4F|D*|xmy++%F9She`=wUMV{%xF`d7gE(r} -YY$$3B#*K`!+UUMZK4nYJ(^)Rls~}TGM$y*e{AbvOHJ<#;KUilTgOE5tvyP%7O1r^tk>qhcoxvCuS}e -hpgEL=(G0UP1xZbE?^rM4iCNZCqqldeL7qW?SEtVmdzi}2=iv9E9 -R#mIWeE8b2yD9O=~QQJlSuN)&!|Nf(z%sG(Hb&V>^Jksl7^3W4{lZ!$Z+&wS>i>J5XbqvDwEd;da_6G -dTe#pZ+4Kf|ul-nmoB-Cwg{|He@p5rAxLw8tuE1J4k}#fHZOutPT7gvQN_JA5cpJ1QY-O00;mZO7>QX -!<0Pg0RRAO1ONaY0001RX>c!JX>N37a&BR4FJo_QZDDR?b1!IRY;Z1cd3964j+-zLz4H|#swyC5QO{9 -#FVRY^)LYtKq6j%*0JmVfW3yRQ_1`-N%tDm)#aM6N^PA_PB;A5G&IqyyvNf6<{1i=xHYz>ldLva8kZ; -nuXatNjSuT}BQliN&jm*x%Vt&zWD^w8(`|`e4a<^=#;|46L6oq=~94uiA`oh^T}N7S3vVZUfgyK5ehfI%^IuF -~F|&16S#4Pv4Aq-%$5kt@;qqyO0HDj`TyHsh%;ja^1t5p1Gmd)KuD+xM_u>5Lm#f) -RQ>C|tfud_bHe*@!Ryg98n>}t4befy-A31g6Fy4Md?crI{xl~`?S+&B>azQ01}Qn11GwO^NWp``5*C}~LA!m%tyv9-Ip -*pe&BNtclS-qEYAwG*2CkX=bLqnT%3725S&DAe-(p0fRFCwPZ=uX-#bLDU}p!0kY!JyXXX=={kCcFfV -aA_CvEBu8JUR5|+EE6N#ebM&3TkCkQYX~Y2q-Xwgb@lZsN7vua&OTjVFLGL;vX -BIe`rsLR0TfjOH~}e0ZdN6i$lcP)8oAV`!RND>ew -JoU?7Xf+7ZqNMY(|p!*q}u6aV7|1wpUvhHa|htH8VfC7+uIAW3npFr?Mv7tg0Pw_deTWzSnP?a`lC9G -k@L-LUYflnUPjbC7q_5-oCX{qb!~T+m;hF|ucNZ|^!I`)Qt?6cgIcY0)&L5nPoDx*_+s|bs$#e!Rh6w -)tGdNf+JJN3OJ~uStyc&>Ns^fFb0&Mh1nIaCorw{I?=Wq3q9LoQ1sxg35LpC%^Mmdg7o>u~A1Hi7;@y -Fs-^4)7@gOy88Sc}c*S+9-1^T%eWMLy35d;_vnH%vJS$=oGdhT7_V+9!{Yc-M$X#fgf;LQ2O36j$b`Pbx5SC5_BvG3z;c4Hm0)P{h -{mX8YPlE>PJy=PAO!xZ_`=a#p4Kt&E?`A3kI1SL!Cfbus|RxQ9TH#QK~&6%nch17Z}rAYcGMU~fX{YndU%5#XU~R*~d$mK-I;|C~YyKrtmv>h -I06m^h18f&f0uHr>%!cWvoynZjVYpS4O)D+k>71WMWgnoI6&RtFE#8?QzYL@05LvG61t%d$;f_}Z}Dy -jyQaoo&+&T^M1B$TP^2!ddVqR=Zt4d4#;GZU)*mRotJ`C}T&6Pg8F~W_saz(ig|WsD`h@n75g>-Yxh; -H-eFCxlT{mZ#ZvbHk0|$OfjN2ZCGc5U~?6j#ne&Jh*U04M{zdJZ^{?W;jfnIs!UK^x4@Wu*<< -DM_F`LcK^nQx0~qH)gn1b+XRT}sOnI`7iK9?0qt#4dojuR@i$7>s@DSQAOhHg}Tf$OJn4!N)^e!#~0# -k^J=|rC<|M3AaU0ESm^bAOMM<^&zb)esHUDw5a(CsFf;2lrI^C2QSPea6d_MZb0$E8B5TaRt1uDrPD4 -w?N -jftm@-7NIsFrc%FLHZ}NVCe&u&(kpt|qU3_ZD5vU!9xIv&8`ua;#?pt!q_D5HC1+Su;$$(zFb`D|tMm --4&B{D_8aX#Mg+Uf7t^Q3){jkfnac$M%pg_`Ge4ONyCvBQMJfigBF^et8ov_J+C+7MPo~C08Okf!2zP -T>hMCfz>9XZit^&3!20|XQR000O88%p+8<~jzZP6Pk|bPNChApigXaA|NaUukZ1WpZv|Y%gPPZEaz0W -OFZRZgX&DV{|TXd8Jn0Z`(Eye)nH-P%%sb9ASGk;1yfa0Ue5FK)SsI0l`RTnGHp%B$dJ_`oHf;iIil^ -55@9goA=$Xk00+M+D;n>Qa6oI&E{Zq3%YY1Hx@w*#(%l&(GE6u>IfGtzpK+0?nLFb@IhF&88DsbO7@D -X)~4)u^}>DVvgPIljg77~9(XSuL-i_*RxK)b>1{-Hj1HX<%CXN@t0_&iF>)|gXvNqp2;tEvF3U=ah^* -S0+9RaB0xS)FVU=!MuIlJ?JN&%nVI6n9C8ruwdk_EI-oATySaWI7@tQjxp?`3Tcf_6%&%Li~3k_c5B? -Td*v?bNqaTfzwS4;8Cx|e3PxxuA3G8IX_N9Hu6v(3g!01fP;7D}q(LpaMBQ@lmSip^$INp3B?SGL2-j -l|^RXR+G={bgAeK1UF^BSNLA4CO!{fWzM>chm}IErMseGrI08B!IzCpHT4E!~I7%Xw!06rr_a=Xp}a{ -=(>7ApQM;qD*lt{F_?SH8>E9+48Ttmzk$c``kzuDQX=rWW}_juC=UhP{01Mj!rkZ$;Ezj^kH^_^a>x@ -Rly`F@b;V`2T^#euL-(0=zGg>7o&m<^u>X@wi%ZiHWw&2u37Os>JV6|YMAvia`*%lD!;xEPq<-d-(pG -5g7HSPj(<>*HL3SBwK+DsOP^4ukk?tbATeRg8UQDGGKh8{V(OmRx-9B3}{BOpxdnHexd)M_YwF6U!#G -OxjV}-*q`=P$3AyRrunSV!lapo9Cs3|ES8aH~f#^}Dwf7vc$7n2Z8uYv%#FlN||<97?(H1x~Q*+&`{P -eG#exF?0q%Bqf7y|7eVEPOOimDYr?^h(YqP6U?TxhRPt!xD3>o((IzyyT#LriuA|V#psY@5l4L1o@LC -#=eMdZ_(wmskW-V@rL*CZ7H{LBV;?sem#>;MuU+}_SyD0!=;`H^%$-!H1B6-O1dK_;i1F4~{qXEm*qD7T+eo_w;RAiMd}W`+2SNk#2dmH+BJTal{B~=4zutp((F?|`= -R*izkXFx^P2g1kaIr{!gd<(IfS3Z9M(_)Rw!Caf-cyGIZBzdsfQUd4U|}YIeT5PCgLSDGMyxlILvWlh -UMxR$$rcxVD=P3rk>+vPM41~7I$Z=de`>UB+e6h@k(rXbpot~N0LVQg$JaCyx={cqdImB0J1m@)`Vp%T5j!1W5FTw -I#C-SpDLh?DLWUV}?fBbghDR5+v^A;|sh_daIG8FDCpBxp}qY$S3%-n@C=@69;h?y9;GvaZYODCZx)s -j4*JtDUUVrmDN&%6wDTZIc(>ue^~*>$=)Pk7k$FN(%kv;{Eyg+p~*{kfjSuca)W;}dVwA~y}Q?W&^ -b)kMRnZ(;gu(+@If(t0DCWVdgw0icP#wfvZ5)pnbfE7LhV67YE|Kel--x3X-W^ZPkHzfJ2h$=6BUmPx -9Tx~dxeB5$sftdMEh?&e3csR>n+Hm!m=SF!{5?Csk(Z|ATn&!5Ad_)nH`Y|>TQq;_jr-sE*vB38UzU{!^RatoTImegAhVgve?-uT900!L7zWt$f({ -(sWcY4$U|mFptUnisIjyijvNZxanV><_>85*-kY8OF5Vb7BX4 -oUd(dmqS|aMc>#O!3ZD4)f_rRpmAM$;mC8@ttk@?&+37}Vj+3QoYl4D*6I16q5J0s8RPe)HT{SY}7dU -eQq?oUBCin#YyUjsd-73wiur!%eZL@2egO~)I>~LlS?>qSY0(L0_>ARoq229elX#w2gE);}D3CK#?aw -Y4eZ^cmczmu{`Hbu2eiwWp%QF=1*_xwOV=b!_s7I=a=V_nr2O_RttIx1*~MBMLIm?UMol}R!?Iy%aVR -4GH2TF!)Hc{n>IsDmJ|$yn@w6=Cy~K(J4b=-on`@6TU~5T$I@TqDSUflpG+M5~Z`>V9;gb~1ylgWZjE -=YKrEzzzNl&@S4#=$^jHR(fA@IcQMTF#Zr#Gkw<`%zqK{4WT@i>`eXMH3?}YG*KB-(v>4Tu6ZHCR6ri{di}G!r4U-T-S&C{7G*fj(yTK?h -v<mr99PR3W1N&Zoqab>N|wJEfLu`31_nh^#%2zKq=*q=nAaAlDh|Y+tm`gJ -gARcv4p?ZTwMzy)Wu>|?-wA?g1Pe|&9HGCC}2b|!Rl5H8i3i;!~t|p#+_mF(za;gzW_H%_tmv5cCiZs -!SSLhj~kq|Ma5zG2^bNqK49Ou_^nmiFa;(ArFe_N5m+x0!FaUiz`($jt&(63mI4IkGA~Jmka;H-i+oe -U!WJFh`bGiPKCY#ziW_+>K-$^TO+{{pS-;GO??E%bAM6Sny0*c*su-;hfeW%Vt#YmGwDw_mO=|22T3GwX#CUnHn(znSF -dNJ;{4v8)CrMZfSyGMRxaNDDG|!Ei$WdJ>C*uUaOk%60z9yHI}hZI?RDPfVgbCuk>GOHt&@xd5djdQ- -Wnc8dbgRQM^E#bFA4NyM!pFm)Q_h_unlM*(o;qS>=7}BhOH|S -3#vEuQJ?KO65xsO91F%T}wIh4PsgHhjhY&tT9z*_p{&z^!$Eo1!&FZmpI;ck5&!uwUR}Y8aHIsBUft- -P@*uo01nCvv^ae@)k+pr19Z3s5+VN!r~}Ml2|h@ffoG?GDAWoQbf*`%Km)vyn?0FxU$;vW`0b`Rgy>| -l5lfArDvSLhUoT22S8_FIm0edk@LYU3Y6e6I7_Nh>dm75ffZMzT6kb=iJx&2V1SjH}BL`>!6Z-wu?WG -3%R6Nz+u6!(etib~>+}S@AR2nlYkRhA2hKZEIeLnVBVAqmmAZ&Hk)*x@1-pYpoG|dPFLQSo4{0X9P9N -db9MF)na)=)(AVHK;d2vxm~ -2(<7oN901M14=0P~p(CJWzLUHE`2Ig1G56y;b1a-;e@q+*398OP?To|e4~`FE5+vVX?g44*!Ju#iyYq -P;W7{k+l>vVL3Z26Htj*{39a|eDKOo -}epWmuRj<0F?v`Bfe&nHcJ>4b-d0kytBR;e6xQRBfYxOT_uJcRzidH))pNWemS&;pq|pOQwc;$iitPP -#Dz*K!9z5J#4iDk(!rjy??Ms0`usRU3cVVKC-h`A<1>BuH_>F>eUAHk4lzl{ot7~UP56V-hD^*Q9gxw -i`b49QqcncNH%rV?p#u{RV0l-ZCo-S*r?E>p5|$Ok4bu2H|~Vr%`NC=59#*R0ZlFw@Nxzgl;|>oWIYy -nU1Y}d?%|=CzseE|2EZ~Ef4g||nxrMd0dixB0)&zXm@!=CD-@!}%=P5~z%bLcwFv5XIvf)$5xGNj@g#}TU;L=}FRxvM|KB)+{xNSUkV -O7+RaSjr%rRglU?Bx5_xEyPS`u<9KbORerysy$AQIrPsDSoc(I*mI|Y3!fjDgCNRcpr -sy7|2u}n<{(nKHV0ZKhTI~RZW!yhAY!Rc-siDSugVc^2hzBQJK_5l+q3PNpx2l3WKBYk76Q6JF{89UDiENF`5!laSwN -H)Qjn1TndIl67aUQ*cnI=&<>D9=~Cgp;kc12K}M{LpC@9yZB9kCUXNax@hSAAe8VF%kGc_a>#n(iW_J -Q+!%@0Q{dCmOqdG@z@DseF*{Ixzqi0Gi!Hm#4Iqj2;^S&ejlVf?=%4lq&SaihjKCdNPk-V%yew?e`It -xg*VNCcKq^m=W-4ev`1K8`Pv?G`u>dK-!9zLd>7&{RXvv%l+HXumDK_6?eZj8s0e1jLT=F2PFEl?DBj -CnTNcQ(}%{mPKVm_a!p2wlfj-hC(2XN~?$ZRXK&H66N4_@!6E8M!g^uL!nS|Lc`y3`y+#8VD$Fgfkv+ -{NT0EYj>-nW8cn=YNQ=kv?t0TT@AdbLN+qC^>SIU>FlnIsnMS}V1nq?@gRy}?{mE$*u(OpvPs3M%tN! -hv)1Q&!{=tJT$VUkQr#S=e-{ -mgcvJ`7z=}C1%)!2QqqVXe;c}x~E;@Xlr*9(_k#bNfzlaIam+9xE?F2LmZ7Chd*NH* -SPUP5kNR10*o~sj$S*KQ+yA53O{V#<;^}OG<84Sma_rVkl#PVEk7LN(_lI_Umm=&JMnDsP;7nwMmQQ8 -N<(?ty_oF!Sb^N($4#7e{RhuI>m7Ir@$i8kMVw%A@WYRWWHDCnNZvA8rYg?>G3zSiO&v6~IT55KP?Dj -aNPijA5y}PQvgmqxFuGX=I2xok_YOg8S;|8P*e8AH97OCnWfTt9;#7Ah;F#*o8JnI5AP_OQjf-Fm2!8 -s*a3RXnnEORA)e0Ou+Z!_sHA_#s2F+R4tq8G$kv!7ccFvdk(h<%ol}Sug$=%qW8A9~3`0OtfmZyK -o2|Xi^RamreY`+#JG5RhH*mpFO=%I(jjll@uAO91}|+UyLkZ*2!I=Eoq?sAPCcwXFM{^ml8BzDRHSFx -u~GbWKgi6Q<6I!`6$()2ui?c+rYq)031mVM>yUzsweM`*nni(lBq&u?{_`Ix;t8T8DL;FxB`>IdZs52 -uEw+Bhm^2Z!S^9)kFPR(0-NVq#{?}}XQ%uN#82=ul@gig_|su3%V{fu=(j2_L*OO;g454vp*a;fls@o -g{t?HktHIE#%kFrkYqSq-P5fZg1kIdygyMnq83xdF;C69vQT(^ullwUyold4gFb8pyJA_vd0Qa -nQ%(kzOM_V#2yD}Q9#3bL1@$l_G -M%$)`+g9ebQ+~>p=c`(A6Z)FmTpo%dWw~SxQ;<`8PL4;VGT5B67ahQzo1hNd^EsVf-<+CT3^t=F -Vfqvd8D=J+6L-;k$&^_&w$b?n)To=epX;*cUM!H)Sl`o!gi~O6+_1jhx`!Ue|ne9rW*m^1H~FNl%M(E -IhHFB^%I^N_w^iLAft%4?yvKckLltVG=-hWrP?%_Aflf9}lm;2pyyi6=HX+8y$i0gWSjF&Xy=`8bkpI -l8~+cfhTBOh|4Qa=naqZpzQ7@81o@n%&~4ux@yc&KBL!xo3fEG3M`m|^Eu`vmn|hG$vXGp64t0xO(oh;&>hjPsSU31|ir=2-Ui%#wqwbTNw9Z -p-ziIql^$g#4NssYxQ)HQ7K@;Y@h2?Omk+yW(dqn=7u3&J{W*Nv1JX~peCzJl5JEd<$=9}L7Hy30`qV -q4u{ub!_TZ-k%C0IH}k9YA?@nbB$cX6}@X!-7ij52shr4kxA(Qn2JrPrQFu`~B%y!4RRbazDO`f0jQL -o-J_PzWz}=OaV3tUjhgUy6KTx^c)VNxVBB4J;(_W*Ap~k0Xl-A00~iamEPqr22;g&xa)x6L_&89~NCw -bPl<45TNti;ADA#zF+|sh8cki`%kAD2JYOck -u#d4`7*~xg?8oygNqi|5gFqt)qePVAZ!T-Nuw`!Qa?z*7*g~(DDm -CzyM|FG*|~3|ANGwH_(3Cn*fqi+p4$SSxXk9(PFQmfN*Zh=8(n3$J~U_#>&(VHf%d!DUhqBUv<5pcr& -;5rbr400bMy?&XeW2L=HGY=HdXN1=wa+qSsdAiuG&a?58(J(?bKanSZj%YCTuhPS#=7_tvng -nYV#V7Q{o)5Z5!9#GB4)S8TqHzs2QB=LZ1%TzzG<82!ZIRO>)LmS9j0%w1;nnE!P5@0%{f*(_c(-$H< -Rb4QXq3h~OCn7xEP|k%PlyfuJe(*8v=>Rl-1~`~*?B9L-Ol}!|EUf3M$jcA+#5#VyF-A!mfJJ);K2w2 -UMpRkQl|ZF!Q*FWL;nG-ht;!uE;W(w}qNDM8Nw78fL5jeAKAYc4zXa#k_8eJA)j(vSP2ATQ`f -|C4-9%$oo41}*A?#z^USrZXGq#NrQH{holQ$)XQ!Fi4t(>^L23YD?=@z=uRZUKC{jLS>|KW6A* -4Q9113rbOOzpg0U>h2?nBWwD)vCnF_;S`cQ?qbMS;N0)PTcDwg(K5A@I(uzhs?b&6tSYGt@Oa{|wp;l -xV9_xLDj9?Ak(qO272c1LV;uN8y~*(;cs_aQfj;o5FBe!>MN!@2P!z^U7=H?0$ -?J@iy#AI#?=6tTS)zm1@wjGcRChaU^>xJTOM_n!RfSiw6Sp|LmchlZOx -DFPqA(ToE6W|nG-JgwROb(@c6_@DPx`$Yg#PT7{hX9GD5X@UNwPY&lL--Dbl3vb2#zlBENyT6fHPTcL -tWHU3Vy<^_SfW$Zq;Qzs-&U588344J(j*BAj29$?S?x109TV;3}6nus-_@&e#XX=Q>=tpR!98Ni5RFA -`CCZoupVO+<5)P~<&x-emK1_64(pFZ$FWBCy;R%9^##A#I9K;s5$almzSVm$%`K&6 -oa_PKEJ5{FpaO8-)7xSBcAj?R;U+zKbjp --0LX89I?>NNVyhn-g%iR)xS{*_(ghC>J-gL%xTp@Xn!}Y~+w02e=J_{yMMzbZ>Qo=X#&SK{OjF2o?B9W7E_%cg5@3Stn!&?kdZYFxH_3tCkiv9!8!INE1@cNR+f5iir- -e%}7$ibtG;c_60mlZTiLi}}XdMd!BoTpL})d6VO1m6FT3fDn3kC;d5>0Ny`%^ZQdgx*(Ng -0(&hsDJeGJsE7}1mdwZ$Hl(rT>V$4}&^aINR(e_AOz6<6ZQz+ZGMFe%O!<_dQTy~dUI^exa^ArhtCr% -*T`d;XWjW_I5Aw+qE!8aam_3vws>2l?nyB!ef)q>SoypBAur*y~eD?a;pI@CNbf@vfOYkS}&E7Ig@tj -#ZrZRmM!|Lv3+)CbBI_SmcI8nfl;hv*LLZ^GKJCne@MRpmfs!qBcut4Iz6lkpdNpU_v&}mG#NT7-aob -MnO^w4y0rZ@0juwv4ep4gMIyfHJD=ynv7JRWFy-h(nW=9mY`$~jo2z!eduMq)lFNjTM7hz=v$77^v6$ ->snvr87DHLhcg%jSGr~8jp|mzBH3)v!bC3hN~=VYr2d-rzl6QuQ>!^ATuf^GVv6%Ejr}ks$y~#tQ_+b -@ppa8FO5ae1C{dmS_v5JjHR|9LN?^mbE!tkPtPB;A6jejaEVsc&qc0+<*Tdr= -X%^f8&H@iF$7rVS@?4_406Feg0B&ExZWWPfp=O$43$=AL|KcT|j!sIi7eY-b3Pxca9G+_?GMU>jT8`L>g?k;Hao>@znRYwHpjN6 -!3K@aX7&QZ3odWrA4xuwhSd9Rk7X^uPWHXbCBtZ6g6sS!19K!nbEzse1j^m;SYcKuCs!>dCecVGQV+m -{KWP8&DraBo_3hCaVjP86+8;v*E8{B2f=KDQ60nuKfQeY?v!K9T4?5*>xR`Q2}eA3xHEU{g)4V#0|UZW0%ITh{Qjumb?=@Z=1QY-O00;mZO7>PRIjbaK3;+PBFaQ7^0001RX> -c!JX>N37a&BR4FJo_QZDDR?b1!UZb963ndF2{iZ`?NW-M@lR5kxwyh4$5e@=%|f3odAaOWMQ1Fcj{Jy -USQBsifqO7WwZt!!MB%wYKBrUTz<}YjS2dobMTlAG%ib6Rv;P?QX}L-N{z82hw(ZM}=g>Z2nH` -fl0mB-**6KcRv2-{Y82HkBjqvzWMd_io9kG6SQx|ioE5rUy*lR&)bI9EAoN;F|cOCR^;Q*)$p~UvOm! -@JKp8x4Qr}ay0H`+0%ZIfL<}j;)mbP&o4fFh@r5%4b#k6U_<{xh*rcfIC7G2+PY>Nkf%j^%bV+SyS -R*}g~-Y+{_Bw6>(yV>Vhs7fdRoz*T7;jeWPb-e3cenY`xV)-zGTe}7j1K3O&=u!GO1-Q88Qh-WhdBn6 -p~$j535X|MMM?Uu>Q6c*FZ)}fOc2l-3PrALsAw4LOXP{w-~aoYQ8SJ>s|C5jdI{}V-b3~9%|Zyh29F@ -v$7rfZU9T=+tAw2P6&LCNHJg2(S>|5{?3HDfg-S}sg$I|{eSa*{}xV`{hManrc>!>`b7LBN%ETCFw*Z -CsXP$Uu0Ml#2_>5ry^OS5!tQ!O$(FOalKF`v@o~?9yIWq@WX(v|cIwgL3(*r){# -DtejfQn(R;&8;V5sc#$4Bp8x=7bg28{7g|deZtYp!6^W9)rS3%UQOTan{xD~M==v5<_&)4g>feU_DG$ -KDwZ8AezNJpUx-cBc{8{|hbN=fVDuHj!e0Z)p>CIL$I7K6@;R4r-RUb -!ww=9DyaeSbO+3wa2hJx5ljgJfcMZ`l_~WaIhje%I9ZL?=jh9WU^K?C{uAh+OQ6HZYcNIf}G|jJ{8^u -Mh}SAO8zOQGp#To}CIPaWL~^U0JakR<|A2O2p(hnUkOI?HQ|>tw1?JT9ho7ZxS+`awdm<#9W>(o^2}* -v_B@Hs5L2_L~*U~5~y8=Ln9~Kn|;f{VTyFzC&^YY_9w$%*pejK<7BQ&NmXeW6Vwb5dT5*788HWt)UcG -Th(2fq$x}5yc})6H7?GD6@TH{)-3K~16iQ&v6;w_AUY$GUF{0)BZIuIOo|uWignPEK>@{Kr`<*hn$V}8em`i7&}$x-j<)EH(M#&8ij@mw^hGc9SzdC|m(UfwHlXL_sZ+zpGq -UTWZ)4-lV{fC$YtO`b@L93gsLc<@s_j&WP+xlR*cccxpeQ^QFrdNgBq$695?$G -{1e(QRbrUIMINPA^X9r7X9q<%Hpn;Xu+;GEZc~_VPy9as@6h{z*SELjJ#DU8rL!V3qq_~Fm&f$viz=7 -^6w&5C^rHDmtH?h5MVcnjI>vKYiv}dY`av|I9;_4s@}c00@ZXS=$?b~C|1&<&w#3k+3kF2R4*tVvdH -R^@=DAp9Cqv2Qdln0m{d%Fl;Mq$0H_H$OlRZFw8`+Iq -`{(jO2^~ErrtA>Oa>kaFn1Z&T2%IF5*dC#rB!7CC?2iq^~r!Qb*=@n$#SUUMd|8*(jPs^x%yO>R$?XV -JX9^MW{}t=gn+m*hjUYt5ZEry5vIv>j1|+JIWFp}z(1>r8QEV~exO9b`PCLV3{tz0u9>!6$R28XR4etq>4n>ie9$1A`a0=s_-JctpUuUaGS>p!R&r(Lp6Ktf^*X%{CNdOk{ -h&;z8h=wJo1gJJc0Y(tM$74Tuc(!t$8u`yvR<-xZmK&b?ECrQ?`v?tGDu^DuQcy^K(H7FBzs<1sWw+C -m;>T0!et%+(VZXn3J9+1<8@HFiSRLVKRd~n=%mw6!iCb*wDjHeOnbEEHkAU)^Z3r^ -4N`yhLKVp4ui=ny?Qel17C$=aq9Sg5euZ%$H*n{ukS4zh*jk^yGK9yYm$ei$qqns{1Hh)Mr^ZKDFVlB*vh(+qoizccyb2WeMkLl(yX48gFyVWb+m8u;@Dt}9j0U;-svK~hzAd!%6PngK8Rp@*^xd>{c -4vynKyhj^+g6W?nmvEH}bsfFQb>0eM`s7vFwCls^_SjwGXl~h&J4p3GPU%blmhyi{Rvv3c7FBj?!d~l -%uUX2!`1f(3qbX}$;an%=QE!$d!mZ00CBEX*XY=($y&b-KM#o`HKUcR7(p%h~G2`d7WfPK;(7r@ooj6 -60mpumcw`q61L+c|!f;ifkBP}|vzAQ%N&fY%Jo57mbEFKzZ-3l#;Nad;U8!;b@7gg`TPP-?0kP+!C|w -{nm+SVUeZoqJFG4VJ~vPq+FdLR?X;&WvS(E12#t(1N`w4R)pewDcO?8n7W#=t4MJj7Pt-^(Rj -}c83$5F$g8URW6#vDQco@S^@YMF&rR{JtbKTsy(Rbhf#^ZCDkzQVs+qwVxrNe>LG_3wXVcy)2nn?` -K9tei5R{noy{Bf4vd|1Vs2}IvVW#3Z2)7nII{Njl#JNth!`cbXL6^60MQNh3ni@wLRi$d{j;dNPe)7kw%h7%mIM$1s_y)Bu1PV-X0eWDQ9=k`c&yJkRQJ{&*aB6@wJCb(T|E0;r< -h2uGwr^x+aMHd!RcQLM(`a-v;e4K&`4fdxxZ8m;>!A( -dIF9R9*s!}g#L+D&Ddx{BmriS1uy7=m8NRR2HvY+2)C?%L(<;f(FxhevLyr`*j8ZS0C2$yVstE6Y0Gt -M3OF4|7M^7+=hYdT6Kc;QX2mF;ZUlb{_XXOm -$a6+w5yi6bmyTkH4k5N?dM(4 -v_e#6P)uJbQq2LJ#;761Ss0 -001RX>c!JX>N37a&BR4FJo_QZDDR?b1!pcVRB<=E^v9RSX*z~HWYsMuOL(ukXBphu+SFN7kF>PoJeWa~G4oDgk>x9SnPzuPtP7czboH5{L+Krp3aGp|tCcGIlDXZs1THj_AQgQ|KT#lB75 -hCEYcJx&{(Oo>vM*hZIa8>`F<$ToE}r66n(9h{fHkY5cX^dvyuN`L%(J&wx0i3mWPW>cayp+631JT_R -tCX$YEPvsq -X5mIsp>S!47s04fhf&XpT7}MF^=XzpSGB5p$u-N0N|%)$jrb;n)^tSR83N#;bjURntDGuDjJ2CW?%Dc -xuH%{}v10HMbkC+lX<4tR3JyXZ!bOKbH8r4Kz}9j!8lkI9l9|uT6b|Lwti@S|lCvxUGHcA7QMuZ=V~* -YTcnEdQyeNt+4*?g; -M!S+bknnFXb02dj>=hd`|iBQWU^$25ll-!O;*V~B-ydNoJGGv86m(=iVcKY@1P!C+klfZlRL2!MV`Bt -q@^kugUlQc1vl`yd!6BpU3tGZ)C<+hDK6KzPOCfJZHqR^Hua8FVWp0z7 -X99?k09psNY;We^VSV0KrH>fj!NYW^&WtkO#0cxlhO+`RJ(_54OFqxQOOglA5`7-XFkORGV>;crL9)9)V+sZ`uHbCPK2#6N$eHoG+o6OA>`McZaIq=kdN_uZry49aKRRQcoeZD2jyM#fd?11i+e$ -cAtWTAh1W}2lf*=_}2sPp^oFq-gHkXMm2pw$#X?w%LH>>ATBJOeR -zFC>{q2Z>w}xFHzO_OfTo_dK?;1L^Vc`0^P4HYqjw-~B3aI0(EXXX^Nyb8wn6_0S2j;fCKHhHF^T#a> -K|+R@P6O(;aK)O3>}F)9zzuSdCiDxHJx6iwZ@qX+N#K_y|6>vwEkbk0>mxdz-fuYaqlV0PHMP;JS^Nc -E$jWR5s3Z}`F)ZZ36FeFANm+r3`R9)B5w7JguHM|VMPKG%+$CkMPssvCcu#N&k&zZpX$*pgOyOm3-V+ -47WIF&J-i`D4azNYNWThy#piZk?A$2^ixoZ^Zb?w<{E2ngCIiPhAwP9%S|H>V`Tk`;SDq34PoL>Kwmj -B>fT3i=b*;HSHd?w2CmnMobN@9=@gw%FIIy9A_)XN~=!1yhFeCW;j>LWcUXUM>B>ku0A`VoydahxrPi -PZ8;=+-{k9O^tw9XM&8yd$nee9_{9wD%gPT{fP@7)=Kf`igSXTRAgo1)}d+zsMZaGc{$h55u$yE~jHK -RI_XIq-icQ)A#|+HUe#0X*%Pz?3!%`bjeS4^T@31QY-O00;mZO7>P&AVkH%2LJ#Q82|tt0001RX>c!J -X>N37a&BR4FJo_QZDDR?b1!pfZ+9+md5u_GZ{xNSe)q2+1QaU)ve0LvUZ5vUdKOKyi)6RwAqWIUq8)Z -+Nu{V{-J<{f%nV79lx4R@5KH9TIG1mRmWRGmnl;^iFWdcUr@8~{dfjt12qw+uZ@d}BVD|K}2RgU&vuK -6lx>Gs(pyBDc5%!7JZsnkJcE=B*{yg@$_p#TqYk9LW(t6n!<*R7xP8B_`zH&687`1E$r=sF**UE}F@= -sB=ASz^)E$9MqMb*gSnGd3@y2F9Dwd1}rujg0>&Gk3{Q!OTi*Z21y?{oI>^s*=wm9xrEmq03tA_}J)Dw69Wi?LoA9Nf;frILM)L;@*_hqU=W9k9xJj$Oy%@E<^>$zNNLaB!84; -wpy*Kh7SXKcI(6V^E91|giFK`DonnVhLDXAtOVfy&nUIK~SP}2%7a$_ -Dm;`sV?EdCz4G!-c$y?11TsG`Q@EXiD@{36|J&XeggOfO082heQ-JU&mloi7h`@w2_&x)dOWOCnvS)~ -$xj1s;fU0y-RXEh2V797oZU6)o$I*4YMvGsd)2dCOtO^o4kQ5}eGC_FUE!ORVxR6%#F%!IcabYR~HQ6dYH`TK$K -!i}*9=zPEZtTmsj-mt(QA@QHc-;mSZ-Ezm;P8+)Dh$f+nH?CSp=QN>u -+ptfKfHGo`5U;WpjJs1Y%yG<3{2q!Vi-akmN7b5|oi_d$g*rltpl^JU4s9A7nLqOiGys4^U9b+l^Di9T(8UL<9y5IuJS4!ik2tl(Fx^F!unj!FaoHlqo -;l84x$G?_!W18Q8g#*eAF*pV1s!t1wvQg9$5(}l)yW!R>!jMAQw(VQm6wjO}kGJD=eb(**34Ashd8A( -aj0R%>Snt%zx$p5(-LHbL^PZT|7$EK}#A6_6butTBJ0|!xYJ<)PM@dE*e8l!9L6|$fW|~#`m&^-bbeZ -l6MokLC`{f)9cLsexXa$})7SVwX^q=XjsYNbt^p^dFYKm!wC{1DDBEcs;fI%R -ofTpWT;434`((Lcmgek<12=aI`m8AGDBcTLXAe2~4l0bVOaBKqXfetTfk0g&o?bveGf88VRpRzYOl82 -fzge9avXacI~q(+NDFCek%Ji5#=*QQqr5>eEy8{2xrzJpH2@UQqCQa!a&vY;W9=z0@#*qL%VtwyCF0_ -3{Q$vi~K?WRIXcW;@6w-{O}XbvA96NI+%BJwbjlS_(M>QrgmFTgpWt+ULCNn7^UX -_)K62O8_c*h;xmiykIf(Nm33}vpI1FB+hiON6+>&5sGh>=r#LA9IurEgo`9p -U8`m5#wFu*Teed|rm$2@xd<M>0N$6r90wqZ9?T6DW@cMXpRY5eSOV2hgPfu}_qN(G-B+`P}wKehLZ>8@&?qhop<^rWgVH -dKP%ylRu%DoXf%;xN~LyciQyB$k$wX$^&i`$s-+u%8$VTm1ojOOVzrkYPg+sM&wb?KzR#I$wvcu~ZDm -L^xzE`a;v)6AcCq>A{`_4rL1#elpwZFZZ`gCYmvArte2uTv8TJb&E`E -+FD|@qu-3{)~qfugk`=BU-Hum+nQ@Z*cfO+T)1RJGstH8aU~iIpK?2`y6eY=J$GF*4Rm%!ScS-)#dDO7@<89|KtUlSv8}_H_ -~?U_t -xEpJe#eOvmDdiF<`N4QBS)J!`SC=Iz8=mk-BJy((>9$bf^>DcfCPp)kgBp9r1p;0?&qKJCB&%>>t?c_ -4Dzf1neYPkjmgQSJ)Tw|5poM>xKNCca!XboDcre?gdP}>k{WxaD$&sUlzO+5YPTqiu -0YqW7RDmT_VO=LHfY;BcdCi5zxgb!TeKIotQkL`%C%v&$XaO^9F -+2BS4ZoWE<9AxK-y!L?a+M=XGwnmKMum1-EzbyH>dAQ8YVGKVsTzG1Nd`KcyHt6yEuW1@=CHQGF#TZ3}i((p9)x=EndAj{ -HHklC%lYm8}|6TkG7?*hn(8qZ1j>}w7PL1>*!QkO#>J6w2y -Ir;HS?8{c7?i3$LGfv71P206+ -#ZTafJuI&=Agf=(i($t!XOT5WoBy>$rokBo4EG<`b}*4+LvHu^EBwcA2%ebgVA?f!*w8qY)Ao*K2G&g8b@)HPX -388(3-e^dVvE-MPuc4cGtG)sCCY%{i#ZBV3G2hR}**$g|mOyl(s`h- -T_b2gyjv_u9J(J4m3Lv6qhtR*57w{eK39W8V`&*lEHk`*v6Aj7j=HmcU8oO~#Q#7Bo#WbX%eUa`2cku -oP4K=bVhH^y0e4~Z=1QY-O00;mZO7>ROJ13D&2L -J#}82|tu0001RX>c!JX>N37a&BR4FJo_QZDDR?b1!#jWo2wGaCxm+ZExE)5dQ98!MP|Z1Gch#7zPAYG -4u^6P;9{3Z6AVwV5GCng%(wka_as1-I0_mT5?(kGZ0%M`P`Auz3|A$U89X-N^dr@-ppip)wX-G+tx`n -TN}M&x^ay#7Fg{2OQ;rX=yQh#@mC;bduCv -6;0rJHZYS!h1N{MCT4`VhwR;nKmh3^gEiV;_x^2#hvQD_xqO=NZC+pLnZ{EE7^l1tLUrPvc>jp<{?~K -uA3ZWY?!Xxs#R;ns|b7w?(52ll{0mqY$DN(p=zjRsStd;7p*^J@mLuefEu=MT7cX`hhY(#nB7F^r#=D -;Jt%h_T|5jla)chZ)f4ybKwfLGEiS*^`ZDETk&M!4;Hyn|gsh)%|5e1D5`E1fonDcA#fNTA`!jDKCCX -X+N&2^_7p;bCy}g4v8*8bL+p+c`4&(YIxs*J1~pFJ`k@sf4xB6$3OId(Pt8GdG{l{qJki88A$kax3@f -DmVpp(5+$S2)B$JvVsQc3hGjV&1YUhz)I}*%W!xzt -xsUn$|hx~s637ihD9e!*G`VZz=l%pNS-oOye$MTzUMsN9xD-a*B-U?33N=_Bhmhekv-IPW_JR|b#=qz -|sV)K!ogwUbT!Lu-kiqBjy_&l{sR>?V5lEqghz46_ZCaxKBUVtJmQL99#yLL*BBj{$C0fO__&W!Ui#I -yP&K`Zhr6Qm7t6LG&2rW%N0cebo={iKt+W{!(=jomo)p1zWvhzv(*iO&@B`F|*P*n;!vLKf=?ydYCUy -T2|iJD-7h5E;Owx<{=Kpy*u=}y)eam3b+=na)q{e*&50zN%t01Q>63qGYN6%^;vQ<&0Zq*)smWw_v}t -Gg&Mui$3jq{A%}R-=AMG4>Jn0(4qhDRwD>lO$1N+bHNTU!Fo$e$8Bo{i@I+|iW9Erqny}BR(rV>*s!J -tc8sH5yKmYX06Ldcv9Co%acTBqWVmyA~Zi}9DF%&B4lhviTVRpF`YfX76L~d}e1|GFq-1y!0a`U2*o< -c9BF;r^#oiK#GI2EmGy}~U`t`C!m2d6dJD@qbp%&nufJJZ6M^z&XQ3lphl{#Ms791FskT!%e7?wFWa_ -E`K>`FxllF7>;$+)yp%Faur8YjF53-CqdaD19f?5Pi8>Fx&j!luu;)4|S>93UHf*l>sc`@gx$;t34>) -_+1@MWc{+(>qDnwIhFOPW}*CwJ9=GN7AlP+{E^iElOX%(S(yOqMJz=Q^GzvGz3^e4{hu4W{E;U%O -yV9+oba%!IsoeRNccw&t-bi$VvBCPVx4fXBpLB9`4ebatp^r(po^Nbjo~l$4%(veA$ub;r}v)Tn+~dJ ->FN1*)F$T!TMfT{b!wCQj8CF9=RfSJ_GQDR5BWL84z5CQomo)RV9xs$xZV62KvEV1a_?BV@2DK4Xwid -K<=o9hxfH^2pY`3oN6N2K@JK|Jb4RXgAU|P#uqi{?efs+&A<_@LeZH!2E(ve&pW=R5jm0|d2xRvNC6L}hw<(~dkCHp^g<|lW4w|lyda9&ZlFtGhk(8Wyxi|)>&9!8b` -egVgw+Q9e;Uz$jJSdF;;Bb&~*t^;bO%406hsy?qaDQ)9v`m=oZ!7+#Zvt_V*i@j!&nPRI>Trr}AuZow -B$)|IS37Y*If1o@*(kjICK8Cgy@D%p3Du{dYS{ -6UzyOKx2a!g1=nzokIvc$AN8)+m&NQIjZDX_t~=uy20UeJrwRhhr^z+Qa4y>(*0)Gi=1W --cRmc_ew#@55_1?kY`BWgNme$Yayc$hPC~`sRI}ed`I~9Fii5F|aBJ!v5|1L|Dx5yy-i7W;!U>27er_ -508DJ)PZcj>u?n9HNi`VJiiRQ(qCH3eeYP%tr4;0i{I&DA@6aWAK2ml*O_Eyt%4K6zY003G8001Wd003}la4%nJZggdGZeeUMWNCABa -%p09bZKvHb1z?CX>MtBUtcb8d6iPlYQr!LzWXUecUTKu9-xQ8U_10Q=mt9mCsA5a$8Ke3p>IDWX*Q1- -N)0*4^7o@pso6DfqEnWW4aioTtRf$niZ+n5J}b0GpyuQ_z)K+=U53}_g{p5c_`aMdK3vNs-bc_K5Y0s -J)fcz$jOYH73m>%k#cs!Phv$|U8?-?wRbdT{K4Kn==C$Jqo%7%Or2;uoW0N3Vs}(#wC)3&t_{Cze!_c -zzpdoI9$U-@tJI-q!LTqVJRxUrSyYO>j6V;psyNQPHu@6aWAK2ml*O_Ewaha2N*y006}V001KZ003}la4%nJZggdGZeeUM -WNCABa%p09bZKvHb1!0Hb7d}Yd4*KlZrd;nefL)od6@$={(t}-mhJ-dVZ|`)-JmTx)+$S?L@({%kFsh -f?t;!h087-lkUFs*ybBE2v_;VcH-Oi^sL+e7Imd#7Hosrhr-RO@2RXP@FTP>=|=Ih->IBD)75|4h>%gy2qO?0!tS^lk0 -9oBt|zI1<;h#adm)Ix$V!Z~s1L9|5%_`@!-3;LT)~)YlN4c>BMy59B4gE78SDxoYTUS>?~ce* -Gahmzz-=RqN;sPEMh5&Ya6_Pwiu!56Qj9%lefuzt`ShP)h>@6aWAK2ml*O_Er~{`FBeJ007wn001Ze0 -03}la4%nJZggdGZeeUMWNCABa%p09bZKvHb1!Lbb97;BY-MCFaCvP~%WA_g5WM><7M~JG^#M5)T1ugp -QcCY;ZLQ;_vZQKdsQV-)S -J0$WYL%47457pmIn7#59>eET|I-W%>IqQ;2Jz;iNi^QXX_aO9Nj{K}jRI -(a7X|qDs*0KT)v -7~xxKON?)YZQIgOF*D@bGw3LJl;o)C8rLCZPk7Wwes1^@tF82|tz0001RX>c!JX>N37a&BR4FJx(RbaH88b#!TOZgVelWNCABE^v9(SW$1 ->HVl5hUm>^{-~(K5eP}lX$bfC_hGJb>tR41H6t2$ZUDWt2Pm+@!g8cW9l4VP_@4B|@fCUH=TNFipBtK -FX`&KH$YPs8qX1CfZxo76k;{QyzrKbiI-_($?mtZpXs%vXlIl)%6c_A7UXn37(I#E{zG}nITkM!b6b1 -jr?_RyH6O_k6_iA`sOY;?Zi8vO1bHn_q|^Ei-L(g5#EXzljF;zk=@*PLEHQA(<%ZKA2*ectl&itnJ<( -xdVUUbweE+m}n5_h5L%4Iey3yFX+nF4Q{L-KJHt1U*=*x~2hD+z4}7Xat@f_PCA)tX32kwCmglDBpp3 -X5Xbn(eOPK#d@_`l{H6&FJ-67$c}Ug#P!*V;ZKqzzeB4)V`MbrOxxWo3`oARlCLg-pl5M~$+5tMp4OAHebQc}#G-cY0CokB;2j4R3U(o&=Iw#OZii -@Y<=fob@64-Ui<(X0Ehs`4QVsQX&F+6ci;+WteiWXd&@GhA75qgQTOH|oJiz%6k?!HdbWlY)vf;^P)m -fZRl8$1^1!>c5?|9b -`QAdql2(R6**yns8L}tC@e^!$Hbk8jKI3qhRfQ?24^xRw)h?oKt-KUKm@?_rR-1&4|Iazp?0Z912E$U -E6}#0g_i8)O*KVrP=M#fI!0&)W6@UL3}-VKxyh;)jyM8;HW)d;6?|_*IZ+sRhSiLEO&&>D4+@_-&hB1 -e>QZAp(fAXE9FOP5!3Pm~2qsj*I5HN-*O2a7A`)$*`smR&SVj}Im)sV(FC;88|5R>wIo3C7E_u^PL!q -fKtr&1s3sk;=l4AhajjQvCVoV;ZX8|!>x&|e-2eNc9vF{Os7Y*8iCr{Lh(GCif%0e@4I6{Hi`Lz^7$c -QxD`C(8dYRQ2bnYBLT?6I^h&M-s}7_YTtH&R_8PD*wZaB|CFy=l){)E;Afe_Z@}@%+z=9Es^Z5fhbHW -BHtP6N~i5=mJTxPXLsGnjwpFq*{e#CDmb~ms)}B%os32X^huA$EZqtQV-x3nm5863QHsDG}E32sa_qh -lZbKwz@>cd5%1kWX+2A3pU8aha2TUbKbt9Y0aj -cfwq8)Di7oEFtiwPhS*UJyRPWpAV|pQ%NBzTk-ibVk4jngW%|{s4w&LX$yx2XT_MJyiX--Gi<@Rvjh& -==(ek}iNdW}L6><2mQ>%odEwSR#?}Ykt7IxI(e>WM13Jplr0`-z$h=ODKY4i -!1$wqfZsYkz(jar>`GA_|CUAh)MHUSsW_~H{<6wTv6Ycmw579kI9^$DOuxz&yL?;={(7n%MN#ECm7;` -wz#{1Jr5f+xIEM?l+@{YJOgC5YLdAUycqd;V@m}^^203Qny&AG%dR9&bN&vyc)I6piVT2BsckR@8du1DL>Jl+@lz4tW^{BOpHkzotD8Hd!}=`e{;T<+537ci6|aYShzw;)<`k~ln`g+uQg8B`jx{9fQ7;tSPYY*z>i(?fG~QpE{LWMJPWl1p{mk+oqCd~6)8X(YCMT-re;A$t`7lBYBi=`M)4 -o^o1~2aKjp7S~p1bIT(*+p_I&7Zz-0fuF>G4irJG2HQS-kEdipVqCeR7DXFwha5>UH&A0^LUu5PP{mR ->EK3<9p~r20zkpJdAOG?LA^h1iXTqaXPnkp^wY^D^qa)4q`RrUmW)_U_J*=R@OWK~-W#zVX_AoqcTuh&bOI`&hI -kV@*NdvTT52=aQFl4@(70!^Ld?%H5>9C*CT@TDMc%@6OmQUiwNU>=)a+d}$s8`ef^Q8f}Yg&D~RMZ(z -~+@{}_*Tn*gfM#nTwc%(jL? -}Sr?!~V~y%itH0D39H}V!4XR8aXHW~Nd~m8|q%~f&=xN1&ZaITp_`0jO#h{F&KW|M?)5oJ*IlkxULki -vkj}%a1z!gvyz~2{cV}EU(q7O=wUwokPX&}-$c%jg|#$zK7fT}2pPNVmbiuY{gEoId?(Vb4GA2d1gWP -%5TL=AgtQKZ6OgYqCPc`!DBA(DV*0ftWKFct#(4EJ#q&=S))>VjTiHqkDUV!bnSO6rrI)s%yz(v$8h` -0(kSJGt{Wrbmm?Ll_7)Ym@CUlEw6FBk%w$SB%yz+_wZrVRnWUZ(REu7>xmD&uUeulVV4D;gy4wJWyM= -aX9)tv*wY_6#FK(f1VHV)T1=P#X?)&*Cx_56NaIN(@zS~NH#Tq?GOIS*~Jc|eKnd@-)D`>&s0x&80d) -S^}OVaA -|NaUukZ1WpZv|Y%ghUWMz0SUtei%X>?y-E^v8MQd08FOG&Lz$jmEAElNx-$;{7FNX}15fna-6*(6LcwG&xBDz-;u$-9+OR2T?oiWq?a2Mvhkx}4vhck~H>mS*Q;R8wQH(f#` -MyN^Z`MYGF|6x*z<#jbC6jgq2Si*8dYv2BXJk^-K(M#wMp?tNL`oiYRhf7E^bXGE#^0ApkALVp9R85)5Im24%(k+)?007NPdg-LR`IV3JXD?QciyzmHOz`;iRl>{M^c4?_nM6$ex_3-Za%5AA~$KoOb)y(>Clj4FDRAFl6eQx)GN6n=~YqWWDn$ -<;FWSvy6;q^J_ZcN0!plPwV>C39nW&qTG9V*0=@oZPtM_z@b4RHgYTHK%phhScsGVu)2op -t{FG5ZSR}rP5=|dUr#RtF9RagU@)cl{ONr%qlqB@eG4+(k!gipWZ^A{1+4$r)F6XsX=N*)DN#2(Gch| -c&0r=k!c73xMDNK6;UB;NypyWg13eZA2v^&wec5g1Jar*}cR1y$lC>GTMsU#&%gDjOzn1XUJI=fj#1_ -bwSD8{G{n&Irp1%VX?PT4}&x{T)7#PtOSo)D)$fC>$FLlonFuj_A0LLrL{JI+KOw!w -Eqw+#=X9@h5^L_&>vmJ`9-X|1@GEYt^?h&30wFA=#R@TGW=-Iu4LG>^t4a{EnnR6YJy>5n?dpRS7oDF -hB`eaK}ny;sW%fVvK>{b~htsXi=2-IpoLBTB^*U1<{~H3F`pleO8r)d3S>ELWvtt&R~@=&I)yJ9{Hz< -ViA3=@9Jh>M~m4AMp_N%ZzOf5g*Tk+%dh3sJP^{TlV7^$=)|Kqd;yAHm3fA;`24;uk{uYEL=g>>`Nj^8!HTMx@z(mXxnXK0X -w#b7`#+=yTx^@Af8O%hXPUQkkVFmwQ0s}!JdANHeI(veZYTJ^v#nKD;vaJttUuP*hh1WR1CobL?G3*?j|IRDfNpnykR6B{Q(9ti1(+g;*?MA)k=(KsNKNMj^S8;2k0E+LpB}taKj{@Uk-^Z4k -^n6j`MIl!zbmt_OKJ2=J947h6qiwl5kxL`-5V+PU6^h*D$^@QWeq>wlL?L2xTyAGMVgP>MCRZ%<{I -n(CTYKtDx;)2`SAKGWGzJ@*r6=>H*OM#{$`K2lA(81x~)o6s4{x)~@Tb818{CDx|>P7PM7zFEgdESeu -iPyo%BAoC<{0$VKsh@RXpVj1SZXkUtKzP|uK$x6o6fHxpk)cNztbfi3KZlG%=2;IygK@e;5V--0tY -N!mc!pl#cH8XB35fja1swn+6^(G+oDjU2sy;wIgUA4c>JT}I&vl&#vO~_6Y-ItI&z*v%4?qBU%5C{~h -%MS|y)JV!-sDE}41 -7TX>JJQxsT@6)EKtHWSQW&OLoB -pLftC%hnwYf%3je!`o@NbN#PNdv&elJN1%RCfq?j>`{;J*=(5|e7!*JZ$MkkIlO>C4^cD`9t{^6#4I_s -;Gct1bMk@zox4K8_A2tz;OH9GXh2ut7S5@G#erl1lY=c%IfZaF+s-3B968{a*z(|Xg{5of`u*Z)orSa -?QzNXmX@riJSWtGrK)kC9`9;r-CQ2#*SAxaH*$G+t6zivW4s;4(ZG^;eMRRA~w(?iIDFtv#U8tkoZkn -bVrpKUlkLP*yRfh0+^9-+-l**OEJV125kZNA1N%VI&`+|MvYe*@MO%&Lt_*q~BIN*P#)2A5cI*uyvG2 -muW`mlQRqX9~5xuR1ZmlLxRq5Q>xt~xg!w5$|o9tLn$ltqA1ll1oT -2y6d{l^M7Y|>sDTKLN{vk1f2iL0sO-wiJ1Iw5QExKAFn~#9Hg|l%Pz2Lf^i;Tp{WFeWwt02E2suv;tr -ZO7n^M@!wcq)SzOmbW}SpynH -S(Y(YblF>N)QXd0y#J9jKGo`u*apL8;F=wGfvR#2yA9%QDDm=ge`5J$OB${Fru**w>i&bLL=xE)e+1_ -EAtRI`s1`8(cPoD@khQsS>5?0cVL`J{xQ+C0qPu%MS6`j!Uo7ptCfH)4gEqEu6e0lav8Jg*(Q%k!%m@B0Dai76M?Ylc3=(D*AsW6Ve`#cE2!il4^+f -WO`%Rf|XozZTdoVUGs2{DLIt}Eh7^)CY70X+pTb-ECBeTHb8R>lBPi>kW?H>tk6Dvc!P;3VuJp@yo2ERaUuL1dH%^n% -Anyw#DT?gmqQkzb8{~^F1wR*$6*o|pV3-~x1Y{llZ(s9GgHc2RoX_e4b`shnaH}XEpJ>IVOpa(G!2^7 -5BE(Wo$XRgIa;|k4TTXW2;dYujNKckK1`*IC75fBEr&mN@r7IO!OCk~dv)zjw*eACBu4JI%Wm}{;Yqh -AkTeD+U3HlRIzbGqWn>hCMtF+IZuM$VU}>MF;y0}l6F(F$i*D-XwP(31 -B_nqbsc7xMyWs!>@u3R)zYbiaXM6RA7?p{2l5dyE~mp28OfIy^s4BII%VXncCDeFSBwk~-rh0oO9%^{ -KEs!5$2?en}2H))8%{uv0Y_{Wuz2KLHcb~O25NB|?;*=|@xHs -0-pDHcHw&7ADo>D!C>7Y5}5DCXCtI^D(N%O#zyUc)a#JB{zP!JhIRD*fZ^7(VbQd4o)l-yh5?s?Oex( -Q?Y{;6sCr~KbUtDhdGTK#C{a7%V0jY<$wQYzSM9^N%YFn_|gXdUPHu<#PSCn75fY<-j!>Z5|VV?(ACs -H#JMY@h%P><<#fv26z7!PbMZF0ogkB;8o>JsyHVA;juE=eEzIL7Iu;`U9NidE^1S{OQ$COVDu+VtQZ! -wt}!_rQ_1N%&C-%jW5l8hW>^U<9%rzJzr-vAQIQ0Ul56v -+tuI}2yGO(z|fKOcKnCN=rD(?Q$-82_Ds%x&`#7!I~TZ;)encO}F7YrD3Ah;WMuETn8(Zfi=RR3&mqn94PB -0IQxuIAA%khhw*Y7*k#tQ>3`k@`=5#0DXI>{`Zl0jh!vMUPuJ66klQew`h8|%W^B5zI!bA2s^Cc{d&{ -!a@V(+MC7`s0$MawQ_<^+!lv=~cba4TZHX){^tUJOTM6yxz&RFNx?b8(C9Z4;=WefGb9;{w#Ujgt(+v -*6$1wWRnyC%wSiLki8_l;cAYpzvTeob$6_E(ug2OGqda>T?vK-J6mzf(|_6rS=3G`oBsG@n)-ABa0iP -8r>e7h7~3|0t7AM5D%-zzm7DIQJ)$o@ -5h?C>XD~t_^RAefBNIC0y__4tkSw+;kKC<7ueh(qd-2Q?^ZW0F33cU3|M*V68E&pE3q%P!hz1VUtT@hTN9($b4rHYY@Rr-D5E;mDz?Y;{sggO~Py=&#Th`;%^2-i(Ng*j+c@8Z^Z4|yu%nWTHT1_}7TFtRKIO# -&uk=pQQ?hA#3w@9dxth~EiPNDvvu*P*yAK=V*;`bTjnWhPP`<~k5FzT$vvU>3vjI;Sd^VQjZett8)*F -bC;Uu|DUe-vN&OWtqM_$}V#BzJ4R3QzJ4n6UYn>G4=a7bAFB%=5c7+z?7k7vBsA>#iStlCSucB~4g-v -*vrQ7U;ZL=*7elBRu52Y!!c=u@+x_(f_s#mtZVKTO5yoqW`INB*VCPtkX7qlt3Nx`+T2hMC--TD1a7> -8R2`~{{v7<0|XQR000O88%p+8Z2uE)ks|;A@sj`mB>(^baA|NaUukZ1WpZv|Y%ghUWMz0SaA9L>VP|D -uW@&C@WpXZXdF?%GbK6Fe-}Ngd^rj3Z6xL2|>u$NB_Z(YJTn)6>(_)30evCX*kVeP7kG6Rq5oyryDc~zh5KU;aUZkw&>uXgZMsHdm@`QoH_^!>@BzdU{Z-Ap`bn_p%9QuZ_P6 -yTL-8#xotst*4CVb@npU2bNAUZ3uF`0l3~9v(5|UA4=Lcd}kJZN4j)Z_9IMpl&CZ)w+^xH_|xo%k$2l -R-TVF1-fla+htidb+s%v)vvOs%dH&i`3{f(taabw+p?2?<7YSMwkz9Cin8Nh3iZ|{MO6a{fnvFQzm!B -hgKu^u;OAS}^=jaUn^u;qtEY9>mz#}T&8Wd+pnO}M?XmCkrhn4xYxU-7{SGF(`uRf2&68>)anAhar@G -tka1hCFXGhZ%PQ+gMvVp;Xk6Mk`v#NgkNI#sZxozNKmjbeFR&vwjK>by<0`}EV)HF)O`;mS*0$|;=+p -;f~P2IQ6Mnic*PapBak=}@&i~mT|PL}QRqUe^*&LI1ep1s6Jqdk!(FrQ-A%5`TutH&?kscdDvlw*|Y% -l2IM#qO%Vu$**C4`0x;k-nF>nz|1yZK`oAe+gFMNBPUXYUNheeX0ZPqr3oVq5Av_cDVT(SPle< -G<5j+`;(Jr#mRr1o;-i~^oQreJuk}c!gl+f{u*wrWSDM_Ok4Me>u{HC)h%`VvwgK$6}9X)&2qR$B&(J -ea{0DsnQon0t>OOr8X-9SU;gys#ScH8o;F`k-rw!Zc6D@A6tJ -#EAr|7*#M>p4nV6tdF`Mp3+3hzyK7K*7luwX`?d0{*(b0w$8Gx7t&k7QrMKL`(`W9&iG8o>IkbgxI|5 -Y}9t%Uz8Aj3?6fO`G<$c*_n8<)#C9Iu*wc=n=0Kp2hg@kFwvlwSW!TUjPB&f8xA?fl&k8ekV$<^umQa`bn@}A09@@#+ZBQ$x6WFslTy+uGfk$v7y1ssKnsX -y-~vl~unWA=fAJ#ex^$+f7P-Y4ihMHZm)B%kE}XsSBfmb(o0`OG8Pbn11}fYa>bHFf9&0MD9EX3=}17 -;bB!LBZBpRckt9dtoTn@u^c&~cv59(tmG%~zbUW2RT39u$mHd|Z!#vGSy)i6nty;om1uKS)^C9 -z@e8Fq?ycTC+(>V|xWNvzRcus%{s1kP7l}3jrG}ciq&Pu2Sb{D+KMIbJZU<*O$unF%$?b6EN!zA}CF< -XOwcKyYRw&9?DM`NoD%$jbO$UgyGRK__%#*c~i$<>zy5pv=U4ZR|M>dP)89?h;@uIC8x+7*z1 --|qV9C@1l#1rEP=to#w*=Ke333qo+w!dx-5y4fCCnL&t&IZIf$a%`9Hs-RMQ6@M1qdu#2}eF`VCYIi$ -W<;*FW_{9?Ez;{xret3RDV(SF!Zw0C)AmQfdM`Fez&QX72-=r3J#CdT7q&sgCQ$G=|XOH8qiKQcuE2; -wLsHKpN`m`X-N77a75J?h24pu=dUfZE25KDG)G;>zA`3f>Ls&VH@61$D^!$h1J4kcdnSNwt)I+ElQdtSw7{@AI&8NR(4rDfMi;t05WoQGa -N5q216U$0!iFczMz6H!Eb164tEu#1m;+ch9Q2Y_IML=z6zn_U%&A?`I9X1SYEb2!(J_01Dymp3uYw0CLwwKSbZX0UG$^MaHddlMFDtM$QG|Sd`qyVl#TAWWMe*X~h4{n0 -uYGk0j)L-7v+wavDZpjV4v&~W{LP@%QN*$X3DKgY0dgprlPM_ydU5B^0Muqe=Z{}aNg(ZHyRCZVc{`K -#m|_uJu?-zzbGVue^3`Zs9wv$^LzE!7+u?#3ns&K(%u>1YAi-dyY2?X$4VqaRTVz9D98mLg+eN6%prF -hP@5oqqixjlIzt@Olmsu^qF -Oy-!#OR8AESH$gH4)~RBcH-F&#b1;ZO3k+3;}T!+^DhW?%^qf#8 -$9dMHF&j{1NyDeE$L!56Ad?lgSQJr(dEUJ0G`9~P=lquxp=zvW>$6lVkW*|e7^vh4)X4dtWIA_>P{eV -v@}DfX?^}DznTA2l#RvZ7qgDxBtU<~bTFU#_;TtpnHGXbOzv2 -7dw0Un|`39*AaprdEK;7u!?<{F&!i(6bjAkF31~W0i?j;=@lL$19&xTdfi8nlC(pntDBiUg+ajh71OT -!u~83xM**nLcxchM{+tols!RD7X`Tu5|YgkIa!^b{wqC(q${M6eYcO7_r1cKQ&>$&ZuUtql(s&u3dMo -9_MndlQ@uaR(fz7w$|Z`LES(a$Ap*#%QURVc^idYXpK$KV -2u`yg{!Fx)%!q4T2V5)h6o6(?KrSO#In7yown!=kL-R8{c-b~^3~3($oyZyTc!C3`F$=oHGBk-?50(o -f0ET4>ic>C9+C+}O;_EC)7sQq+VSr^m*lC&ycYq_wSAn$wXBn_-vj? -5DyJ(u8EosNbfJ3tb^)pY4DPRaq0t_v%myoB0(`P=z37MAJG$x0)xWnwbp3rgEtmBzyAItzBS)F&>#A -ya#h*`U@G3p}74=0X~l_L_*dLYQ93x^gZ4Qyym0gpw#r4b&p$^_HX#Fce}J8VLB#{S*!#Mzayc7Pq5w -*`xTwhCtgtSNXSc}2xn|9bD9T~!pWY#U#5SbTPk{PPbA26^Li;znmg=+ah%8ggc1K&>rdTW?RR6y*8k!e`2S*7q1#8NP= -_IcJpG)+72U0YGufR@h3LO*dG)^AEQ9Vhg9t0I?f()z$bXzi?d89bB1lY&pQ*x;&2I*S{RN$8XVp+aB -XXfQ^PR?HaiF^<*+O`&4HKHx|HUWOZ6(59;2MY+|lvla*Bj{oA5`Ib72ImAG&@*h>B+4yPmGg3q1Q&Y -6cvm7#C18nb8rTNKuMfULG-fc0C@+7Krjbpe5f6^!WE=d|RU)z?&cgoCrAD438~(6TW!cuOkl|r -XY`Ic#anlR^ggZ(gYT>0BmH?$k&UF?7f)40sA|xGYO*LzRgc`ivNI2F}^=T!gm0(jQ>)M|*$6_u?&1f -_^6_0{ddM0J9-B0LoCD*b#@HGJ`a)6Xv0o+)+0U!NV}UtTX#^>c4b1a7w=35q~vdwo7>z{ -*SY4%~GG0fUxCel`j%VEZm$f3P&yj6ir*yO|h!ZWrxm|SA0a@5i0GEpo4C6tQm%a%PJ3Rw{LeKDwJJN -qX<^53?OSpPQGa>h%u7t$LzU$> -j0%Ouze78kXZimmKAj0i49c2{C5*}j&+lCgoCVvBuEqU3!eL3Jql0|&H3A`ZX$8jD6bENN>xV -#%+ot(Mu$T;$Qv)sHDAL&#ToIi?(jybdgMjnf#H{?2Gs<^`}N9%f=Rgn*-iH{0Jg!+B=x8~&Nt{S+V? -UTDVx3#TcCHdx&_nR$Y>x2!u*US-q$0+E)QXjzwB`f;u0e3mG8=GgE;$fcZ>-}9G -#vYCTZALo;?x(2q%d>w+%?vgyyY-g&-%qm>&L+CXyZ#&ec|i_`5^_Zj*Q!M)p~9K2!0{g5E~Qs~Xv#L -^^`62BA1tYLF4FMs*EGsRsc0ySzv?LJ2X7h4H7^4ueAkh%Ew4?e@akP$-iq7Ehe2?=y{>$!fi*Em=Tq -vp>HG46NK;QFT<|cv(1;X^4-Z!>2*3ALRXU4AZO^pR$K0FD8%DflL}s890M8f)hj<%%cZ8ll=K;k(1L -h5Saf?h_Ng+Bwe-=g{+mBo9>{*y&%iW$T~L%&rh6VfS>XZCx$lJ;}!=e#~iOom<00}pCLa{obfk_*K^ -{r)gvOLC=&~>v>rFJF%ijHXEv!Cch7-7hKfK$jjdKDMvP&f -)IS@!%}S!`kMqDaaT!BNqiic*6|;#zTP}AaCq_L1!(^I=+(RAvn9&gQdKS@foI9-Nn#Xj9gFIk -UEFnC;uW^>KF-=q+H@>o=4csG!4kUUWfsrWU~Ep+fW -a$@2Aqibe9N-_dhmL{{c+%xd=MuGB}okd>5ML*nXxQfwYB_^#DW!^xr)!>r7I`RWgR9@$(R6=7v -o^p?ZOJ5Ux^=vrSprl!aO4Rc+!U=xp6S;cQKvsBap8uKr~+i@!_Y&)Fw=(kMn?yyaiIN?2TTvRVBq#B -Z%E+}i`9a?F(b_k3j5h|hD0ffN@K)Y&M%9w_^DkF`&^gDGdl;oGEp?t8GAk#)#^QKNUQfVJyT4?BxNtm4l&(7+Wn3qF{#si665l)08_}!>W<`~ipmR6C -Id++cz4846e1_ZpsLq+(Zn3>&H)4{%F?mEc-#0}X>6l~7N5u7KEs#us9q}`8zNVs%K5K=fMjsB2ASjS@Cg~nc5UKIOQM8I(zvzXmR~WeA^pJkPqv8>KD|4o$8YxtrOaY4 -uBjoB*FB$=<_HWONR;tX9;qnR=N@uTyCBV_`b9J5Kvb@4+0jfv=CJOC;*z#Kdg$eeokS;IE`aCrob`F -#3c?tZ~H#>l(!&n~bC=1_J=p~97!NMa$2vZ;w80agS%X)^;fz`#Tg%MPguBWUcV3lc{ZpD6QO&sNN_9 -G~P(;9zbjbc!nhy)7b{}8>-GgPEuXi|EeTf<0S_-7?S`=nT%;wD_iaeowsiI%BJkQ(VvwK5qO-D``Q_ -6ZL<8%9I%`p5QIB;h1AF87Qbj_NJq12j_7@JH#a9p?a!PirRL$}0sJI~4GztMBP&>gIvtl|3dMYm-kA+{%27q1!JnI4(_ -pcgEQOIGvLj+o}!60_?8UE%bdxvNhX^a_M(?#NtKERt7tqYCu3NkDzeUZv?E= -ff^4K7PwY=lcIVWVP}7%xHFLjS3%e4|h_cSLFVJC8mD$|M#TK&ks&(H$;DFyIH5Y5>u~NsWYAE|kTPLd;9CF -TmffjfX}pTC%2tG<)Xe1E^(7|^Xy&*VZzJ_wU+(xItimVxtLh#}R*K#Q -fs>p)3aNzO|@JAA;@(Q5;GzTiN)?Q2(r3)qmA;M8Mryf3^Kj*Ve*F7W5tlnR|8K`ZBbZSIhs(w3k~CN -Cp+jSs%zkh~)SmKXFrPG@V5T3y3g?Xt?otfOqoPN#P -$$w>kUwt{v@-L>po6JIJ@k~?%ivc-f&BWwfY<=ECT%M{%Z@1;&OCX1Ep4=Y4TQa#E0#Nc~P#`i`QiVgJc?%tIRrgGw>)Zxa0#2b66N)6@b$ePr6J=gAT&?pUio3O*s8p2MXflsBAlR1()*^mU -#2ksuLz=4SUbPaucdZfnA~iD^1a*aBP)qm&(#}7TNQYM3LET`98bOf(ZZ)1#<_|D?Zu!3?`n0ba|v*h -;B;sn?(0FW^o4c00xX#BG9lqFPRk(QJ#RL7BLpM!h&%C+N=*3#B@5Qvh?EqpT2+%XLRY%Z$p+9EW#EH1Tc -Bc(w|B8=&O*9N+XzZE|>wv$p&oClbacMvWw&3A@v^mRZEq(cE%%O#<{9y>TcPzQ9yrZ|bx~7aRvqN_FQYjw25&Ugw7DnKI;D@!*eS38Yq~T8E>hqr_pOMKasdjrs;vV;A8AK+Ic=3 -=^xSGs>@;PNU?dn^ZChFb$pr?SES>6JHLf>In8h(E28oO|GGzf8|u7XC31VT%L|om95jJFD_a_6W-jNc%A$hP;r_p78B_7*iBJa~BSCrNd9twaZ^@zJR3yI$Z8{6d&)|( -DZiMNncWKEAQpd`tidnuCOU*BmWB>P(oj!RQ(2zbbB)fBS!K4Uz`ICpnLURa9i`V7w`qIKgvpYnT9VBjgPdiWl@z{ghDnn2%{ESVQ*YE -YI=H1*Zp!lsc+-JG_UDNJ$u1V$-;3Z20 -5Xl6i@A(>@TqX06J|@JyMA{zArcB<>+PI6D=^hH^#^MmdBp$>+W>bXU+?-M0!qJzZNu4cDDD8G@M0ff --=dQcd5Yb|NQLpF3q*+@Mn0Tn&!aML>$&ufglDf<0wFb52>CCzoC>e~XOswX^FeE*5UZBsu)Ui_W58Q -p0B$He3u=iCQRbOq~cGp~4*TLl`VNJS?x>I8XeM;vdJMNOk<2e68k?8~GtzKj+k*53c-o!jVi0`u}vm -FYSis;%(}aEhPn9NBDRagp&(DP!+^stnjWZYwFDs>>ZPY3dUBr%+4z<@kdwwhD$tBhv$h@S&O>J1;)_ -0jywpdt6z00G4!)sWo`zBq-x-n4NT~6z3y)nGe*BLQo -!>{lHlku%Qb57|1lUp`C12!Dq_k`)*+|PJZRZnWu+@G84^*DDzFbhYhj3klD6;-+@`MK!Qzu?}WE&x@ -#ug{tb@)8Hb1!G!J1gbLm5sKX;0W39fXOMgm#F%aoP=Mhng{P -WfkP-tlc|3>(mQ4-62BQczBZ94I{CbAsldlx^r+aaNx4_JPAt--8&~UFtX8?6&rqVh}FVi5$AHj7DF@ -DHGXrx>RN;{L-9nC%qWkC~+kpnhEX$2hR$tU72sN=F5w+s&hiVQb(naE|Vt@z+~}dAx&<)E)lN5Kw~= -F5-lndT6T_~gcuEwvT`h(vKx%WLcFw1Zc7Ra;h%#FgioBEGbVG#*vMY=uyjIo66J_opwBAJXlPCHVOn -)3HBxW&1h%QF$d*4o`Sz#prb<%zwNZleqrV7LAx$o?(8nkc{80&(eok=?n~ZLlNl{DAbl|YC`02-I5s -1M;>4apY^W-LmKxXOg2)k$&=!yb=Z1X9!Gu|?$p5RXC0+7c9$J~CH#M>PDQHhh=y`dl?oMl&68$;iApAY$RVZUG4e3V -9#U=OIJ=>n(2t6adb&F>-;BR(d!aLNfUMJX4-O!+Ss9sq2}suoZawGS%t) -6X}>FUo3z*XG)>tA={Q0{n0adKsIUw9XRH{=t$APn78>S`J7*x1Im*U0Tf-@i8(Q%2YM%JU_e|_}=WV -%?oalKwH{fY|#r#1Zc0&8aUN(erEkm5V-=Pl%AI=<`$H9j&V4w^r2dM@z|Oo4oK2)AjtXO^VTlNboM&ew*^477?kvxaDh -h!Tw$}jmC1LFJJGT}9q(iEzBD&-!3OkrnJW8dx6Lz(#l%7!($#lbBRuycebPf-_Te7Zv7nqRCY<-4PafASX{xmf5_zyaQkR -WMt}I7VEe@p0${hQNnk4w1ki3@k6`el3Rc-oD&ETSNxs9M4`VeBXiY!H2E6{kYbD-VrJG)NObApc+z+KvRw_dpG0BiK~5U{nhE8#1W*p)I0poO!!z;1hokqRco3r*eRxNm?X&@slNylyW2@q$ -llUao_-EAdXL1tUn#Zg03aJb>fwPg^O*C+`mg{)!cgKBmOq6!!m)=n{$B-Q9W@+NbZG&6L$<%;PKo|< -8`?JNh9iU8-jJK!90TI>PbIv$%CR|}k(*ne4R?ADt^{K8CpogyEjby5=7aNP#1eu1EIVvQ@{xeGp=(CPJv@#RZhE6D1`ovG;OW(=y4{M^7&9pjM>mlJ%YxCH*{4Fn9DhqsbL;PtnmX^=&HrH -7!JzOU826EK36qd9z1wpW(S7F-F4Fx#aY=N-_P&eH7%mVMr?Ns&1{ovm>^t#=CXg&3xC90@P+%;O5Ad -K!)(F8q?!%P7ko1jHA<95XheXGmkS-_RM48`a^LD(D{E>ayFcj~KRUCiMk}Kx`BnACG3Bj=f=6a37n- -O#RVT=xq-~A}b)>v9S12iH#(KLgUTD4(KX;|~60>k7$AL~{zLVm%jFL<>#8>m`HGN|wVAYgdtd8uKw? -#X$_2h$w_R(@8-wgiXgQZU-vp^XCj^KfU!Fnl8zATi9Z{x?ud0|XQR000O88%p+8mqlXa?ganM69Pvf?~eES97(Y+m9|W(?N$`qK)BDn*mHXK}*9r1 -|?P{FcvZR!FL=R;=auqHerw>2+(s}vsvxJc+2gA#=;~i(mhX-aS&XnLy64pw|We^0JOpPIz{-F*!_B&i<)Z|cd0crR%>8$k8WmDKD*4V9Cna&IiR(1 -de{Y_HUSz9)~O2ni~R1NSD5g3Fvy7rH+pR6Hd042XF>!=Gt%V^j+q3zenv0;D|v8iUxN^aLaUHZZUjD -XsyQbUIlAA-}`9K4AqS^9@VcpO*`0^~@Z~QUU@&cY@u~!C1EDFzd>D3bKJNb{x*3Eeo@X#9^f?N@NlO -6yShc$a*5Fmf8qyZ0zvsEL?(K)%K=`K#VwRFZo_s{>0M#V##`?`k$>Avf#GfqfeQ)W&f&Wzp_~6*GT9Gm_LJaUh+rzF%0P}zMdBw#43Q1e(+ng}h2O;yso#0#qCG6nP*3RMMt^4=1NIn7+`CSRj3 -8eXyjD6H&SlGxkSQ}^+;@Ns;&7f;2<`lE$qlG`<~)GrR{8QNl#j5mClt}PZe6 -y-IH~!yH9NG790lL@XK;Db9*$w -)VRBv0!HPi7XnZqS@)tI2v$U?GSfkn0@6aWAK2ml*O_Ev%-NU|;x000F%001KZ003}la4%nJZggdGZeeUMY;R*>bZKv -Hb1z?CX>MtBUtcb8dCfa*bK5qW-}NhSbUQ2U%2b?W)5KHd&Pm+HyN=_Dlct@VhoU4%LQRo6g0!ve^uO -=(0)QYz$#&YCyG)x%Ao$>Ue}&X?mF0z)mFc9&vP5?jFC^J~uF|>vnz;w7xL71=Y`^NY_C8Lsbf)H=S) -MILv0ecHVICf(>%MrSCPiQTC{vloMV9x)`&FT`G*0^BW4TIXhu>VORT!zXkU2aGm)TS%I@FVeTuKY>; -`Q6(cgN8`kAJ!7iwk}E`-#(SATux%d%)Von-jbKyAFj?!*Nz@JYS#~-5CM?iJ-=Hx@4*594gQ?mu27aRFLZTPkzeSYn;1tvHhHYK=U*=m>;`%TA|*+AedT(5QU~uuf^M8$~IwD~f;-o#_1Z=; -P_hE1>#N=mKAWjd4-rT@Ybk1P1M?0$N3Y*dqUcU(v-c7q8!+{c!SQ^yc`7qfe(F;azwqG_-><%`)+FD -7sJj;@}Y;HkC8bj73%^Q{-NyB;B6ae<{Xbt%poa5PV!H%{GimJC&fAz*?zAv5?|APD&{lw-8X32*eF$n&PD=y8lToh6l@mM9Q0Ph4u2m^ -#peP5MAT+V!GGiq_=C7DecE)J&vV(SXG)-V-Ordx4C|M~Ni+k -OIbJutla>IbVQeV_HL&reZ0VS-uATOaW-Dl6VXPVx}2LF)3Cq6>>C5m~{;o=y2?G_QWd*L@5nG#~EUg -vIkcrDFyloRFit4y@4E;8tj}H6rkuzjc4x(PXa`Y7V>tLsEI0o2iXdhQ6PLoo!;>{g}BOi8X|+Y7%;x -JjrY;JlZ$spA78(XPLF>&KJ`4y=c5m2Cucu)Ag0N?_P#lO_320J3X&|l(ov$WWHer7(bK2TpFL`I1rk -`Tv!o=cf~aBlKJ6AaDoMm-5vOxwp2*o8G@ua1a~Y>_A*J}u^Qp9%lKRt&0G@tXlzz)Ugmvat -S;Njo7WIPtGnr9-W>>9KtX7z#?B)exXd&Ed>l427o1vx4r~!Q*imk`rY7?V948vTovM`EK;Q9>Np5$0=UaejrR5A6 -TcfR3IJrsrGj!6M9WdD~-S;HhRqe%>Vy36=htAEMi8F=d6R+*uEHVx+kknuLA1Q$SQ$5mzYgVPFj7Wj -RUEhRe^d53iQd=Ab1KIwPE8irBGEVWT*T8UNa7~L4~jDgqft8i^LQKpHW-=T~(c`}#>~s9sN9VY2__L2BA!kE6 -1Ay`-HUP7Uz!}C8xCREb(}yTPNDxMSn+iENR;L{t&|skg;+EuO?UXVG5m|=fHW299C>C*6Ud+4quT!@zDg47gb -RB+>}No0n>D$_RM>SG=aY#I`{UTeQWI*Ll6xw_OmB#CM%9FU#Cz@ApJ46Bjz{TRq7oi`H!7 -CH8jR4mr;XQd^$V%c^{!01u+WsHoK8fBliV^b167v37eWa8l?s3kpUnuxkoEA4iJIEYx4|i7tHk0*-n -yj3Qik%0=lGfs@s9FiG+O0IzlxE%ao*SrtAw{-cPI;yn`C$^S=Nvp~4;bMxMi>Wxl%&l|by4Uggx*N+wedv&6%O*RdpAKoniokmYwAY5Q1+Oc` -P9Lje70VZuL&JI+~eNKoz+AO=?|6dl$cj;zG+{*eCpawxiw#J)&mT2a)yY>NCz`?WWC8zM+EP --6Ybn(M;3P`EEX)gV>k19)DPEt4uHKvOU<$qM>2_PNZs|$DV_XD<9$hb8a47}*s-cQt?L{5IID>Wi)L -vc=S3q(eV5%ny<&wc-`epzK8!GEXD7aszU+7qYz)f3irZuy4rPq)#4>03OB1^tTPz5w14x16aGbJfi8 -_ba(ug&9yA0D)-~zP3G5wuzOFBFIDdzvk|+m-?W{I7dfO$lHP?_19`Ja7fsK3<()t$6D^tO>@Xi!3Oe -5j763eyPk7uxNS#60m;zZG=k)OR8@8c?L*V*r^l3~4aK*)zlb<*EFz*Ci#D~bmM=SZ>JaE&5dI30nLT -)~Pt5BJZX4h^eM7cYrfQU(&JrANwZXoJaCid8;sG6`hIK9K_;l51tJsXB4T(o?38 -@+q!zx1nLWab>%F`O$hxSADh*2NO3;Jw6{22SUgA#=(lXr_vN3qKJX -aF=>C@&IxkjO_+0V37MRq2^MI08iyL>&-TLVl|D#cDoKD3tD1ysjOf5z#f|&mt{z7`Tfkd(JfW5XeSs)0Gy;(>ApPNaK)j{wEGtf*Bl&@+po;EdVleFFXg*!F`)4Xxe-IU!GX`mr*Qwe>& -d6@c`ckb4rO})5-_Pe#@eQF!0gblN)S7|^9W( -STHD;(*r!>@y$EvG0ABp9Uo(TMGh{nqS{Bv(B%a5Jblrx+YAm&>?QR@bive&RU{y$65b``k&gQ+4hww`o*lM1F~fT-FKV*dAw*p^Rj-&0nN{?ja=L$j+azQ01vx6>~;zcvA~hK#Lm9K5pm(BO(Y&y-qu&<3T>xo7W-23JFONTLliEzHam4caAUwS3Hh -sO4_#1`rqTJfL@SWiRDS@M;mJNOk!p=v2+*ZFh)55p_x5z&lWOgT9lCJNUHix?Z=pBb_PqmxIG6muS# -ks5ANA7tJ>|U&6MI3tUhVikISGODIQCSu*Q@1BUN5x8<+M?Ix7_Mefl5?ny4DmJiKX5|_kcBpAEs_JNTPJr5h3not627N>->nP)y#~o@b#X0N<=~g{?1;G+Q^e!qf!ed4sS8-5a3MNiH>J?j|m -9AH@UL+D7(^-oZG@#)IdR#|JN-9!#h4Y;dZ^gQ~~0TJN16eD{3+6rR`RZvX((6*Y1;tkyt)QpMldrO- -p|f+03f|EL)o#kUr1zwT0*8s>K?Otb$J^6iN(yMaC%Ki>Z`qr~5?eh+M`#>`!sAU0ZJ0Lo5HUQ=Lp*D -!H5;&Nxqt>Y4BCgZi|S&dfARD$*E$33OWQ% -j5TIcUtYh!OY>8taIk}N3_w|bD!?p->bLw>Rr9fhF-Ie=k1_*tewpfKS=8uEz3AvcRl34Tv2#$bn99h -eqM=J{g$C_3Q!K|EFIPt@lWvDT!W#XbFf!n_L^Lp#(nLA7QrSsx)yG6sQh?C^u{%%5dOuiA%NtB!sN$wC>`wcTrP4$Rui*j8lTy>9u?=L==9Vn*!NPplhkzvQtn0gH&mJGtVfF -eAE>oI}O}Jszez$+-umagb<4JFaA)aU2S*|u+M6wEJjymI8DtP(O&Cwv&A4A}+rkHg%VW!pFJwn^~ss -4U7f~rlEs;;=#4fnd>^%i%pcEyg!cB7K&w>m;Z#OrPtqoq7z3tPOAmE`C2e^a|OR?6p60j-BZ{Bp_Y^T8#@@oWar!Nj{ivCo;V -1?pBqeYPD2JoZHJ>m~)~-Lsyq)WlBlcXyl0j5NBJ*V;9og%dxmBBHsz1ey3(Ms&16x?Z{6_p_X(Xk^t -hBM_?dbGK1IwegPe14k-4yjNqT_;2lR~ANcv~2Jg68dND2WFAZ^D0fr{s8(=F#u{W3Nc0$)=-Q^UgC$M+ll%v?za2+N~W~-}lC;TaXW)s?d3 -=>^VYyS3Ucq&&EJ={&1(&~QPH$U##*9!>m(}zgFp7Kx$Z2wWxcKK|a^?xrPQ@`F@KK}+#O9KQH00008 -02@m7R&}Hfv=Ipa0Mr)%03`qb0B~t=FJEbHbY*gGVQepKZ)0I}X>V?GFJEM7b98ldX>4;YaCy~OZExJ -T5&pivf{;;Io61@Q1@4M1+~Sb<+MsCy)G3m}Fa)kd?K0MiI+F5w8zjH|p5cpL)^@Jww+4Y%B8S77;WN -(+l_beqRdOp;YuI5Yv|tCp8l~=7tu!lDTg$DpEk?mPwK<7H90kPC&A0)Iqje$nW=}wa -n~P-&AZPm==3=FDk|{sP=+&N@8BN%+kW%_FCjnvp;snHMDD4+6&c@J-oU6nKwqzE^lhq$?n{+t)gwLV -!aWpk}${0hU^>mY?Y;bd*cMLNvXOc9>@S;`_3xW7}`;8cb4t=y?`~JMQLFqOjB-+Xz!&~E%}neMQIrR -SE?0kbM!7n?QtzMnw{Lkk{ZUq(l`O{Fn28k+gaP0^=h@1cGqum#A?+YJHCQvD``wG%<7Ln{_xTTo>VI ->w-R9>Kg-@2#DwvdcGBDjNI2QUj{KY0c)$jTF!bgNtB>mi!@r`C`%YRm7^o?6_rM1!-`^n;THoX<@ed)D!+?d6}YX)q#FnAkZm5ER0Xco0r`|-r`a*uHP*;fD!{9@d&*K -t0KJzC|5^9aYF;ri9zuKsaV{Qc_R*Z<{;_=-KpScJi%e0p}9VNPm3u?)CeR*UyUs-?j&W -+WWXf_iYQ)i@vRdF2?y_V!q)F?yNp=KA^FygrA5*5y(o(1VzH=1J&C( -_G_?ly_5AAEH^MyeUq3{%g(K*aAf~EyGs?BH0kcc}2 -U#tA7rPvEB0pxl=XDfaF#+Znkti -%!7jn+$kWcd*O5-=%5uKk2Ul%APtxO*xnr(GQ5OxOjXNPE_sc_5xh{E?W5s+sL8$tM(q0Kt49Lqo#4{6TI25$Rig-mPJ)H0J#149u>oh4K|JzXs`Rwp!e` -Gx*|4a1jT{O{M~kpk!3i2@qC{6c@9Q6O`-@8u9nKM+%R8sRa?WbSofSrXL@BjLfR^3OrS*>~yBz|GQA -m?L_}ocnQe^c3cvh`*Z&aR$?QVxt4R6GuY&q=^`<_VPCnAwUDa99>W12>Q<=9H=8;rW2* -CrRywx_nCtYW2YJ^{)IsKJW|WHeK9EUjVLlbmAS~NzqR}hyoBhKqC$Qn9`^)8Wp}JY7ft(7)8Z9$z#~ -SMIYZi5fwnZC8itH|!J7j=nipgj-toG&zSe8e+5NQiYDHt1i7lUFr8|va2@wo;jXs`lZKz56O+ -4-14E7Wfly^nw`x}{VGb_Rl`t{?t$47*^_Sms+3*c6xqjEs1IAl4G~tXK{&JY(PfE48jIMW^d!NW>f! -ZH)TX1D;;TrzF?!x|5Yr`OP2ToY>fB&;(kK^uccLh0iWWy9wid33onbj-&NJ6Z0SqGB{Gm(a~M^}ZLR -zM3i+;Rn)}_r#g5WXvuERF6>AD&-O#Cr@pT9?bloGWwhpTg -Q^OjyO0{?>x`X=?f%i379ikP-hgiFReiLfm1H2<3f$1k0m>IRca)P76MI&x6dauIVl5iK{{?d+*re>m -a$Sf*N&$}B-C1#T!)B_SJX4M>19(XuqR+(*f}(uqv2v70Z?@ybgI8ht0W~&R4yI>B9r<}m-Bl08t -VnslfUlU^Yv(n|{gX^j{detbza0M}c2e!x$t}C|Z<@;+^6Zs#MzKh+h37URta1OZLlB#d3w{oMoKCa% -Xtywueq@KQ8x)geaV^)pGdDpo$_fj0j`-M9L;2X>KH|rlzzi_314F|Y0xy#(FUxvBW^%2eIe%LixpE{ -k)Jxivk_PyARcn;Zg0_LD%{-H1>V?GFJE(cb7OCAW@%?GaCx;^U2oes7Jc`xAk>H0Gm5gE1 -@<987RYqdo$O?rplPSOC<>XD=$MTx3L+K9DEi;`T#}L~TTU{&vq78K7VjbNz2|<>a$Tv~utMG4$?|R@ --CL#GS9%-1%v8CQ-72%KNM^FE)tXhZN>W)GQJ1_(#A7BZBUP!HUwm0U@IvOd*-EU%8?|1@lGB2iebl1 -9EVbc9VL$OJ$6(hg7llr=1!<9Q-~4j%&x`cei+|t7%;As8Hbz49LDr_>g(x3d@wzEXsF5~hF6y*@?)6 -F*Tz6Y#D_-7-v{uT*>`s_;&A+NTUCR=`A4ILKLQr?uf;~y_mc^kSJdpRwQ~a5EBo0rO-n3G)7 -fM)dBxr-BQ#Sb!?~9@&JS$al$kYTg2x}rC63X+a-!I>`J9fBizROglRBeJXY)DBWnLZ`CLX0WY#|^c* -q@Wve~Ot_%&bH$jx;M305^QgjAC5h<8vHLvqIhr7HwACKo45Xj?$_YOZj-jyxnm;EY_@ozkt1t682#w -v;barT4rj8T~VI`UxXOo#`o0TjC<5{Mf(%=LPh>YjQE0qDS-GYt_^DEd`~cwZ0L{VfJZHHQ4u07buxj_TM~vA<92Esyf}(7}GZ>4E$Jx#G?d89`S(3 ->lJ^$_e^6LEOtBcf;@)j=F!c03Pa=iDH^}C+V;P~|B{l(jh_wO(M=H=4!n@fmdF*l~31_y}Ct -U+@VO0?DOIBSa&_z2!Q2(Fi01tGYk6#q0d;$!FD{&yh7+9Cm!{#Gv(*7YLrU0HKKu*bJf;EZB5x%UMh -u&%k`^71EA&QCdExEqV-X92gRW%ov5J-)lbisi5^8&Y~JqHRcH)CG2O9r)8Ph{aQVw*ZG0Vf-ewyPU| -5<_j5{Y(VQYaFKClvLskm}Y33rvVeK6_CR6BUjr}|~92(h!64e6UqocrlYYzQ6#i2&Jz-9|!HbRt7@D -T*FaJxoLMr~IM)6|sk4}*$ -Zu2PARIDVZc3lrgQQM06WlW%A#49SZP?Vlu@6RdiU@H(J9ScYBx1#(S~#5zmhKif|G3LPL!(o&L3ZeJ -%?DQ*mJ&$Z2T5C6h(Kh?tU-E%k=y(q#w`+!&|PXc?<{wiA%yy5qVn49r>ofJq0lyDNzS}!7;GbJRg$y -YRCGD4E>ShTHnCOfxqi@Kk$xa_aR{WlRQ`)`ibUcJJ8nSyQJRseIA2`Pg!4F8g$}-Tm)ykW)Q -|@Dq@B9Ofuq*xuM+~jvU};YMSml^ONlh5`UTigOL`u6T5Qcj73{i*)nxv9R`pdN+(s9<$&V0 -Ue#vDUKcI0}@D167UnVXS1|6<@nLhB^1(SuEwcRmIQ_e8`u@hcZqRhkPo* -+S^W@V_yu+!ZsQN^8zgih_u1@+%zmJsf9GR~>LNlC8ll?g9CL+lII(J|aIx^Z~HGN~2JBJ#1FoHd>Sv -HW&-C>_P^-@gmj4Mcw8L?;Y(>q?b*F!;z4a|x?BB@iQO?fZdK`$=dQT5J=$ZxJdq1pLlU0H7Qiya(S= -clp%yA01g`X`ipq5o4crUB%5R+|gMbv5A?2E>-~F_UbN$hSR5)aUL0$u>mk5P7bCXJ`x|b?!KJKq}5L1K7;mfGk^cfM?aEw*nvDIz+>JIpd-3GJdDf>hd% -f=_$+6`(Z`1pH7|bXMqV~!q8_OP{)$1{;CN -Fe-MaIUN58}YsUVLD_52=E(r}%PmE`Dcf<94;sIYL>_%1$If$~IyTt(`s1;~ubeFHK2BiDQ7_D2hpW2 -JterBg>*o_0u(D$XiQ0bGS-R?PoM}S<&PoqLu^gDt(%Kg_WkXXUw|icuCa?f4d!n3~Ei;branl-A5Gmo&`SQeW5z@%}sw{Mtvkw -$eBN%e;a*?`xQ+s!WHgqxWacKX9I7>#1Nudy8ClI -m0iFs;sMc(EF)J~I)Z;beeIv0+}g|glPgzNPNMxgq2Zwh7q -Me0c^0@eFoNgNjs>2^>9`l-IL7`yoR;O2{{T=+0|XQR000O88%p+8sh&krfdl{m{0RU69{>OVaA|NaU -ukZ1WpZv|Y%gqYV_|e@Z*FrhVqtS-E^v9BR@-jlHV}Q+R}AC_%dI2tVjl_^NYNnc#Rf&z3n#(0NCJVD -Xq#)9R7uL02Ko0MQWwjc1T7i_iFlcrGiPoTn?h+zi&CamsoVsj+EDG65tg^#2h;gXm0XBrvtbW~kjo% -gXtkk26mcS?$Xf|k6q(TG&3o}yXj`(J%WWf~ODO>drwJ_^m@y%yXAcQ=z+a(Qw2d6Im*n$dY3oawi-1U -Fl>aB>rx>HgF~y(Alp}%{UhL}?Y4u{0!Wn8KJ -5dRVqgz@qIT^OI((UqO>={bIS4r8#eVK({+4#l-Cgl(Z3C(;#@OP*+@Y$W;4e|Qpx0$tiZ1u<)wvP7P_d66wl;0qyDfKrTI}H=}PtW@=}=@HIV+j1ieo13Vm< -an=>3;)JrE5mcc|Br_I_v6Pw#Re+m6u-0`@KL6Hyq(|xW!C65Xa&}vMK4i7q1(KF_vjTqJcOqh-63@O -I{*^=ckC_ZuG^X+mtMBV=)~qCypwCGc9II*aYZ(!r`ql32N|AR4lkMXL92?59DoWnN@OASF2%|p)Wt^ -?-F{A}}R;7LQ=ZRe6t09ico^61?May%iR -<}&f_=-rejF0KAgtzZCqHuaoC6kC%`;7Kh;o*K0>D&dk7(=4594y)t%D5EoAk;InW9{cFxfZaE{<*uC -Hc1=ay%u2*D5E3mb*E&{sJ`2UQZ&96)%AiiTngrK$m>KIW7wL|nrHL=c!btaGkMK1^s+>GXzvrq1j!HXIEU#&faeG;-XHtQr-*1&!uHj^emG8ybGmIs9ZhlJ8QjjZKg4z#hnV -gV#;TW=OhZYdSXM42T`NQ3W_$n$mS&yJEI&t35(bFS)yperpBGQDIr@RfWw@cV}f>zhmO5f3UFp9!dV -_W-<=rSKvg0piYDfi=I6%E$`$*tGChM-xoJmw-fmKTl?yYb6r-Ci)h34M*PjszbJ_=NcX&mqYcLY#H7wU;n)QJpJ-%c5yxVHl6(*4hF$LP)h>@6aWAK2ml*O_Evl&QQ=_)00 -6iU001HY003}la4%nJZggdGZeeUMZDn*}WMOn+FJE72ZfSI1UoLQYwO8A2<2Dd|*H;YkQaM!w1dA4h( -Jh)}oo%q2#Aw|XMG(leL`Q5SQ6MR2-LLNqNy(BgNp`pOi=`nsmvhL&ktl1a45YF${F5ofA`s59Y^u~q -S?JavyC=QY!BWW*%(@oU19Ox5u6&zy72;F_0Gt^JGr3j( -nm<~)+lTab&td5VQ42`h>uLCc+;acJ=_9W)wB83nfI%S9xonCoX*5q9IJj++k{gyW!@?1q`~*as1L^39Q -Z+eOU?kugz-O4xyOnXfay|#CaHM{GNEFwyQ7PAG^clo~^>@AoUui@;h&<|p?kbqBO^$zW;?vV_BVbi# -ooof6D3Vfq5}L;_%Z0{`TET*YTydpDmT`Pr1H*&T)CHQC@Wj@7>~cDWt0nXRh80tSEefhLnO;qk-+!A -VSJ%_qUuPe$&XeoO?Cjmy>vIs%C4D7^8W0gGf-uCi<`5wF)G}h8^Ni5nJ%|+!x4V-9InLSzWuuK{g+zUcdFPuT -T_GJCd5b?5Wv3MdhU<3`_5!2uScE;(1c7iw@$B=NqCyj!w*q8wl3U>FEt -Zs}vcG;BA#btt5RE01dR|^+J3pVRo@2VH -^EEaV=6q?rf}X$TmKeL4{kavFCJ+{}MkzIx3xM564mP`UCYM)m?u`v7ycCzu?&2tl4JVc1gBFs9?SW# -C%BZ9-uD#6BWU>5~pSo-7;HrL?1KQupp&s)itMwek;LXI+?=v-~ABxGuV)E>7Tlr+#+lBbyuf!{MCDu -+<)m7?Qo;?JMh8|gB@I>O)uul+*pR$JNqd37f?$B1QY-O00;mZO7>PkZ6D*(0{{Rc3IG5f0001RX>c! -JX>N37a&BR4FKuOXVPs)+VJ}~5b8l`gaCwbZTaTMM5Ps)ZSnNYV0#0tmvVC81Ah=Yr2Pi^Rj(xEleXB-}kCHZz8f_sfoxF) -A;?unc$wcd|1sF^VNL&`03$k@l5W?+9SAb$X8lHM3!}Fm@FZF(clz;zwDxj{|2QI#E-}$Ej5HuXJB_u -gx8E04W|`LQNB|3N&LN}CKsw2%b#m$dM|HmIBvPCqI-_YnC&Id6v!}@T+DDbiB -Z_xvKo$pu^L=zUh%Cpg1ij*Q~@(NKKcUvFgaOcCVsWwU^xbw$q{nGtq85&&wbuKeganEISA=;xd~NZB -$6&zwGbKVJI-Q;>4+wQoMo+!bE{AX$pZKBc#9e!w#;}`>hdMiyGknS+{jXJ)1v#nk5zUA< -R$HmiP+gp5WGNv($CM|zQ));BsFYT0?7~ts}l=5!QGyNv1e<_nPIwb4nZ+%nZ52C2_C&UkIgQY6Q&v0 -hH?z3h`PQLo-FK2i<%#_?FpMRIns{o8q9A*fMcI>eTJX+te_Zyb;rJKxW6Yp!gHiYe79r9pPJicRC8H -j*A00Fu&6Jq$M}vQH4pl#vGX`-oecci|l -()C)AJ8@47!^X04povqD;HMGPzFFx$UjMwlcJV1kIjkp^Q0o|$RC`Ve>&~w7k(2hU*Z?kzDcEdF$) -G>5%9XlVBJ(w*m%kk-Uok#-M1TXl32ae%8$PVrt4~Fl#vdVhxfiYF|qz -&xn@TwNA1N2zHKQi8x+^!B$QB*279>8uE(oGeqEJ*}0!wqO~9SHbZT?FII1#f%P%L>@yh*66@6aW -AK2ml*O_Ez9u{xpOA=`0guhumgNhHu{H2RGOl -1-79wOCdkjuQT=HZn=WjjAfSR_5Vqn=R`+Pb>4_=PJ+4_cULxlWc8%7P7udlZE+NS|EQ*idB-Tqg9!2 -M7=MdkI=71M*{xNUQg)r;=j*Nqo;p7efsCKS3mHhlWfmlp5|$)mUWV6=66=hBvU2-e3mS0{&rTYQZ7> -E{Hk-^>P1rNR!EHRU~rhE>G(pe<#PWcKb#2t#h -rhW0abxmq58N~L^x;EOubaKjAboP%Q7$fx~2J2dcCToRuLnls)^WEs*LbiU*}C8tF#JZpzX4bwq@$`( -zCNSr%x}UcW+)qFHbK{o}FBrM6XU>o*Fj6Uhm4Z_47xhIN?M{<9hcDP4o?y`36|sqF%?q^igrWu7r3X -E?z%-JrghU4@$&pm1GIR6j!QL;V?wCUPoz?T^pF@cZ4DpVYjH-SM+Nb$R??l20&6pNaJ)OGQ$No^tRk -!=OtGvQXlJ54tE0L+a-kWQJwQB+#`%oS(x{mYK`wne;g$%U)E=|8a?{qyv*x-nWsmv&$p$*x6lyPoGPK2)_37r)i3DTD2g(Wtt -bNRaI{QiRf#{yN}XnPxj)Z=SR;e%m~sElqRb0b)_eK|3?i`qs8Z=_ET;bs%v5qi{3~TrDG;doYy;W|^ -@xgzJ4Y~FKQvGr+ph?2UFO^3OTZmr?`WB4pjv9+nyQwdz2gYY0P`^mt3pc6Slu%H!!W#L*-T)4dS3aM -1VQkWM-ft_wA8{5H>Kgi`Xk#Wcv0s9)km2LP!g}-Jfr6!Pygad83-#B8WiokR28+Uz?`L^A3&@DMh#6 -7J;6#SFZUC%yMn>+4FS`m+y;Cj}6q)ELOy97qB_8ZiBp#JNt1ZJDVl( -W1>V<6^pxu}S3#`C!Vqk_QZbHo~KZ`tG|Y=pUxnWpjkZ!g91u?WI2Xv7pSK_b#h0`c+l{q#vsLnCtHUysEIUrom -LU88)xmd6Zk2Jo7ugwwIc=*f)VFl(ULj;w;k)qI2iCgKsb9yeN4`%V>U(oy59X*KG&TQda8x&&=i^K& -E1YgO`ZS2?@3qNARv*+$h@d2E#+nO`deqh$&lYJU=ZQb|D@xIl3W44uUJ>ACpsx4(yZh_%Wv!a#YJBB-uFdfg93~5U6#TG5GE?jZIaS=#9S_G)I$V*uj($J^iccarWvLb74a~lz -;`=!V=gs>|pUOtF{ID?8;zr<_-*NEd}9;=>Rs=5SXBYq~exo;TXf%ygPFP`JNFnRTK?5uWXN2!6$qlm -U2go`dRRA9T0yOBmQmT)z9O=9Rfh!cZ6Wb^)^E`;7x`Co#9K5Ie)_Nvdf)7a^wNjGr*?~$Ql$b -U^{dXGPT6qPno3PQ;-gTn6p+Ja-P6>NwTFsK-H*wnIUU9qlp~QDMgiU%OytiWRzsNNWeyee*i21zm`` -ZI29Tz%o@z+j>V8!)jJ`OAc;<8l1(?@n|X%vSx)l+Wb!OoQqapvhNnqNOB+Ym32`0B5SZ4&tF`)<=$b -C_G+7FCP(hObFbP%w-C$H)rFIdme@yP?Le)E^8l|7q3ym0>#&ZBlNu9Xk0Pt1PTWO|75vMWjXOP7dl-KkH4BK$MEe=9Pq-Rt-ZeRJxuxUNW{x_HV4+D -74N)FHVMp%wcvd2E~32IW$>ao$8~7z`xn}EOd3g(QES3lBO`jg8N$5Q$s^6t3uF`w3vidpfJ>8WW5E+fKFkp2u)$?P05Pt -svRyAK-;5G~(!3|ii@4ximdVrGxpxQ>tS -ePV>6Lc4Q^vF)SkYJ5Rc?wEHXqj#nItLt;toCMSqJIh6)E^@J-Dz$OvC85KnROJPX$o#ZXKWocyo*GS -aMiw&&^dNer>{Fw_hqZWhO#Sj^c+?kRtmQm&03*#(wTS`#;JZWRUb`yV7ieRI1RCK!c?cqKM6#yHHvX~av6Xd~>Z%(v?+lq+UUvzauW2nq)G+Es^sRlPfmNEIflz$craM5A4I -X$L`64uD6 -b>)DXn*CnwRbi{1)RBaMuGnMj0`BwmIzq3R5{O})H`t8XD*1cJ13s-2h8rgzeDNX${v8F=U?PHO*y=V -(mY&edmJay=*y{yWrNK<>d$a4*QaR4_-|)uyaN6riqWdc5PSywOXy#UsNydg0sK&aU$9i49q2v^8JRw8~B*PzhKg7ez>a5{iD_L6 -;ZcQ>(O{{VQ#R!<$!AFtfTEfJk({X;Oy1gi<1{GPTvIG1%3UN2`+xbAX|U$6dLyH_#nW1-gB9x5Y>SK -!5nYm*T-P_b=Z -fbq+N5B!M8j^JLskn(w*E_;-cJ=_T8z65FW5&fqRzR7rG9(IV5+LnONyPqZDj^7ih?4?qvOu8LeTzZi972OA%nm{%Kozu9@9{t+|u1{^#4(?-}3Bp02|gegev=l7>qY -I%)WZHizpM?#fWn$ugk-Nb~X;hlHR0pqd>H=}9^N{h=l9O9d*`fdXHIRr&cEd7xCR}TqYjAELK5!($! -xoL;VvMohCB*qZ`>zzUjw;RAP)4Yr^?T}Zh9Z)rjptTzU(0Cj-%$jIg@iwPiUI}h=kMe`YunjJ7+m(I -;T?`_1^}s%=#ursI*8K{NfN?u5 -mGlmz*k3?fIdxd*9!x(DR>77+EOa+ur-2qd-EPEf|&i&E{AiFhW*4wVs2WIPV#7YBbh=iB(s%~smU&3j?< -SGn}$H5Hq;y9B|FWvg2=B8e>mze8JyvKRD(4o+J-R=TjfFC{s1%0tJ5D(-=G28B$Y{!QX%V1Tr0MCIN -hYCJ?5)?=fK0Yo`@CrAe1*X%J(|UcUhAq6r2XTnM62hFzE~JhiRqtX~b5cA(?xYaDaBE`hI#&eGie*b -K+=Im2Ki;G*N0uug{KfiTHX -+8i$F1C&*@+Vf$KeE|U}I`OLfo=vhYo0Q^@U{k@V=W=nsh6*>1VO|~Isx9xaD;h7ngEfXDuO!&A*HFM4dlM;hzjmExr=p4 -lLb=)%tDi_QQ=V-AArCWmH)k02eH3uItFn9szW>ia9%-e%xnXqVB!ur_#_MS5+h7U;$J{;4l$9e9k{! -?lxOi$cM|3^^foX4xCH2yD3nn-iiGL{ -6cp~ZW`C_nZ&b&WBpRa`DI6u1=k;*K2p^j}ycJ3ioU9cWyB#o5g!C{8b$o^O%AL*4acBz4z^5GH$Q># -+N%t8tp1}s~yL%wCIS6_XJ9p0(x`%uy(*k~!RF7^8%5byS^6;T!Z~n!YN1wE?@lBRx1Ap*N#;nEvci? -$UX45NWckEZ@cqi&V1DaDWUr`Zrfnb_cwN05@VDmYvtNGjyY(g4F*XB6|2R*}BSP<92IQEEaM{+T<$C -ZPD=BHdRr5+pgMQAk#nRHe3hzq| -U_?dDd9;8;vp+q7^?728l98LDsaHZN6*CT!7lJG*NXJP5`!4k0(l1>cKg4O+wvc3mna*;ci|cR;=m# -+2Hn7fn&rr5@?T%ElG>c-@hRk`ob48d^H@3*G}HvX^v*brj5k?kSjFWcP_mJ|j_($wt -|$~Yc5Ajdt_cU})tvlDaQf~H=a<^niKW=Fr}SeLC#S&Vj9v`betSG+Wu)Y6^qL!eCZx4(BRYg@C1;su -}oIJ83Okkm%iVp)*mzz^wKD&iehr&N9kv->Eq0Mo+TVXqw@9dN6dp)et>Z&_O< -1$7$p$4gQ;JWLv}r?j4@{muB(BAte6BL791jQ}tgxbHp{S{Km3U#b)rj*3J$qn`%|}IsAaTpAQ^&;E4 -6@J_rl$B5EVE4Ujs$R#ar$nVYQGiwijryXSqb&kA|27RdUEw}^vP}dnN_j2O<_=s{Jf -kHo<-?*;zGIl0YRK-x!6y?#N^ChE{oteRGVCY{5dpT+m$lO|ChAsB)SK>WKi_K{7Tccne75d(coS( -Jp!_L~ZKK!)FK8RUs2t-X=F7M7Y>&Dxg!A>&IyVo%r>On7B<-+>9%rWs?)0z;3-djcBpWLQ3UMbSt8{ -!P^TpMzaYfC8Cz}J@0*IAQAz$+{{gK+Qh>54a4NS7K~2K>uW?BLy7Qd&L$-Gt&tG`ta@V_ffEvIAEM= -$lVAaxZilNs|)@>Ak&-hb3#Xt^8w|4eRQ&$9aCeE$*K)c2Vw$iEpA%JJWL;Vu0DCk_?<@vmur=xYBvX -?Sj}zyBl-`499;>uxIWP6YsRqF18Ciatdxndu~)^ugg8OU(it0j0_%G94E{hxFZCh@P<7J4wgN3<%^n -xrw6LgZ@;erGrMsu+DmbGCC~>MSPgqKlg##*1%saGO12%1SeIG385j@6mYRDYUJjBP!PCnRiu0s+Sc#MPXSoD=UZ_p+%+?8}3W8rOJ;!sB?b{yoIp+VBb&=-eg1V=aOy%;n&?o(1y5 -+X0wS2ZK_pi#gZsh3yX+WIp1pV9l1>0iE`{@dl>%@_R{M -$^kj=GpjPdP?o-#(|p(=vS#+SI2FE-LAbu2Z74H10^>(mKF@3yJyfJTtnys~=IJ^J&{gXIoun;pK -dtbLbqT)ewi)%fKc5SgyBZ7~F*EBVheU`u?QrXb)KL9)K%5gKor0Xc_Pzlz$7PV -kn_FDz9>De;tM+^^-^{8RTF5HWw+}XsoVkur-$i)ayQg{Z=k^vFMuYyZap3Fw@cKo4f8WGMt0%E#?yCS7O*ZSo=sFv8(*|f@&=fh6r=~dU3~8+#5Ux;|IE0yNTtu=DD6Yb8uO6{JWMYk0Vzt}3dXZ^8*P0W7!Q8o> -)dLi2tyXmy;Ljqv(WvD-Ig65TCsQKp4T6S4mbVM;jyy0FmOB3<;4?kYpERY?r~QruH~RAt|z -;I`s%SnigU&PGYG}^yzR9+{P(bS?q#-Dj7)xK=RGp~`*6|2ftwxXh?qJ^b%ke;~Gz>p^%Wy?x!9t -!(4W>&NyCJ;c*f2%kN!xM7TJ^|AD;{)dnNKLlY>A}+-#ZyORVL5w<{XaK046uz -39sRp}=EBBdZe8p9ZoQx^e(&p}VF$()kr@oyh3@G=u|EnaHL%8157=Yx7*}Et3VAn*o+@N|2*Hm|ZaV -y@8dtU|33Q1~NUr`cvDh<9i9XsT^ChTYRv)(S+Mrynn2>-H3RJQ1}Yw+*PW6>XI>qwoA#FPr8+w08z_s#;>NAKSMo{JKwSS&_9R -NpoD>;KQ8SWa32GxZE!8ougl1)bgJf+tkK0Iv+N}UFJw-q;S+`fo;$J(;F@n)0s0qxQD -mAo+m#2tcA?-Cu(@KJW6$;7iW%*D=`7jhpULPAzxYEixwj8cg?k+B2#{b;cnO3(l-h%_#HDyQQZ@mv; -{Bjn+5+5<$OuruAkIUD{{v7kknj>=Nuhs22zNQDgJ(;Bz{nmVfWQxL=`%$I3^qIk{EEFEc4+xv9~>zy -hXz6b?LLV9ftIBbVAV`+=?#r0PpK;fc;GnVWXT@u#dPB%$O-!J9gQl_y$6xXXwDk6h?lsINDjYj80>1Ezr}bP5n=&3O(!-33r;XbW8_(e) -OHc?o`Gz-mZQC;h5}Fyq5b92m24khLLf#cMb=a+SyCNNh6Upd}Z$!D*NaY>dXcZCpe$x3^sa^kW?M6;&mtawuV;-|`ZoVcft>T -Q|IxePYzH~z=v~XtpNhaz=4uw-{?J*%7uY?O -B47y)#t)Xx^37otf6*C -__}xfe$^7YY5AR^On^TJGUNZ0~jnz*og09AJvJc`d1W57KylUOyp@qwqfhFV}{zsS%^{dG}Vxw&XKVP -&7@Pji49DKdNIjy1UYGXc9s_~&P_kAl!ZP_gT)m?5Q6J4#`4S=;Q -O-6mN{VC>ue-EgkpMZqH2zzqGKg=-;qNT -wl?@kp+foQS7@WNHV!3$#2d7fgPM}y5}`1RZq3LMsuJ!TO9Ni$AU|<`@}+*_X(#T6bJ`n@qJ=!%X@1T -23tN$kHCOI8K%&i -_)bkQYWehr`A(__@_MEi4m&Q6XR;+<6^HBO{Q>4bN@t$AAsKbr-Gs#33`TSCeuKw7p;16Xuh7ey~DTP -+AIiDGkR)(d55TFllJ(~=!H(`5@`<#{yAHhX{o$Y0OA)x6Kl5=1_{+|Y*1I6vF(XVR^`e$)=sNHDJEE -6nGa@cm+~N(ZAWCV!)qjc&M3PiYT&Jfr<6)gu_!ue?7wp*^6e4*JXh!rm$1^uZ4qB6_CP7u3)x83#i~ -0lIi`(t&=U&7^}K*P-6`GxNJ|q$7xfiVYptONB3(T;!aqlg0yK(Istk)SeO%nwP4 -2NXVGIKJYR*Ll9(;YthzpF&Jg5ec4wJrUT&Y{vP4p-y_lZ&VxMjFxaGfL_?apZTt?JpYIaD(8D}IFhX -mefwp434D&!Ffp%>8L-`~?a&il_q}swfnFwNee?Ole(>4L@dD;M^xn`m(Qa-RWGJxeI`H-`Y@m-B5m? -jZxl5`I;TBAZqg+Fbw<;$D0;X!92?UsHgu5B_?U?mG|e^EC3ugsMMs!OqTH3D%_B%;=zFny=%HQi -AlZ?n@O+o!RH|i1Ik>3-xRv?C5I}qo6_mgdinEw1Z3!8=ygPz&pLioXB8u>iH(0pX+#d*A1WOGqmJ-y -*53QrX;zhO`DPTU3H~C&ZaofP9V}eLN&PlgIfsQ>?mt4UwQOvB9-OyO^o&aRnfn)R+3P|H)DsnW4oi_7OE+w}0&E8WdSB+oS958I -DTCR>0fJkPoQAlUWP8QX@#F&r2he9R&O++ifGNKCMGs4sbS`&6c~Tuhm=;{MF;Nmz?y!P)h>@6aWAK2 -ml*O_Evy0b3{%6003(M001li003}la4%nJZggdGZeeUMZDn*}WMOn+FKKOXZ*p{OX<{#5UukY>bYEXC -aCu8B%Fk8Mi%-ccE-6;X%q_?-Dp7C&a*8sON=q{H^SII=3R3gR;PS3{Wtm0!dAX^1C0tzb@rgM(@$m| -_3eif)8kKYul#moE#c}}vP)h>@6aWAK2ml*O_Ev$8*Y#Ng003GC001ih003}la4%nJZggdGZeeUMZDn -*}WMOn+FKKOXZ*p{OX<{#5V{dJ6VRSBVd5u*~kJ~m7z57=TbXj?!3N3nDAVD|%N>L=;L(?9L!X8WGHM -Z;-Z{7?|*ZYvjQ4Cs^QbFN?mW#0PqOV?ZJ5K!9e@^bk(w4MV#yWkZkZxmk$yHJ#S -Noby}Us>O<_C?wLZ|mf6r>_0$6!!146Mr(OecH)rJqWJP?F`^5UYy^W0B8CzOeK4L`~9ysW8s2W1C?Q -pPYD5{59Yv0&9UkyH>NR!)S7dKV|ZvDdh)x1V)>z>=%2H^(N+n{O!=Q|DUZE}o|?`%6fv0WH`X*Yy@H -c^(_iV~Rz|l2$=f!!gL)8OHx@puG9ZG(J*_H~9Zh`jrllPpbV%Yo$T1iMQL}gKhRK>Wy@ngMdkfbBpk -X)iv!*jnHOY9eVAW_AgnJ;Oj(igi^i=f%pA{{>J ->0|XQR000O88%p+8BE&_;v;nqrXFTiyHAI`0lLs29#dhQiC!;oo-^0JXcMdZd_8~*Q|8Hy4qY1 -avGz~w`{qR8RA&od)gx2iKt)Ld3+Ewtu$;z-&>`=^q(@WSwd8}8mH?S8e~Y+#3be3We|D{)kIs%B=_% -I2;o!{Q?b|9(_eC2}KGv!ds7nH&4-CnGw3TM6&UsLnpU=Pi=54S|ueM^Sv>wOGO3jcR00OIZU;hbVm!odzk -`pvF!M#2MKWCI!jsZ;Tg3(~;A$WP4|xU~3fBSf`gzczZ?;<~UaOEjE4(_0SL1_t^8R?ek1oxI -(SX2R9Cjp=q53WzwfABWIHhLjS^Linnsf&>FGVIEOvm>hGN -Nv?LU!)VB|M*l*>iBT-Tq_uC_!MU?B43S6TGm$GpEvw{NEBwvs~36hdYZ}B*m~hVSo{Bte+em)YuJP*Otf1j*L#ZeTUHSFf*h21wd#4sb?I3vE(BcgCtnT^`sZI+23&l5sCM=#W{zYlrZbaP{EE^TC0 -6j0odqibfAVo}8(cM&U9hpK+1StCTDS$r=reqI^&Nr;x2jbQ(k?K@N@(%bN+s0353Xy_=u2g+bNR>@K -rS;NbcmJ5$hrfz=+<0ie3mm4`_OF+KssvRjt`*fY~K(KcZ25zBn3lXbDZP&Dcqbmj+B7cyygti(s8*W -l(AIm`@N|u3pNt0zZ-0+_kRk<3TP?>t|Qr=acVAG3jCoYth57vQhcW}@3cuGRdWtGZFsx@0aMY|Jr@( -;*ejaUZ^q~y4oomvLMcL8&T+uDbuoqQ_Y8d&&e{n-Oeo?RVF4b)%O&q -b?Y&uGYm=5N7ARUD+_s9uO7?V;H)R`Av>xqR(WV|@`HhDVX66!O?#0O>Gsclod?K;)d9u-0cHcpe3-{?l4g>tqA=dME3!(z~FS7KA19XSM1u!a}i0Jd0J&9*D?vvBRGpRiar6&7L -5m`((%{(8aAD}>h0;ZU(FZ*9pO|TrU7m$29$9Uw?VHp|R#vzxW;y{i9FkgJd{=GE^*+YxNpUIoUC1<* -K$_gErF1}Q#h6szDH%2FpMx3G9MQ9yUzMO+3kh6Q{v+iL@r!a`M=_d-9S7g7N_16>u -;#NqZ{yu-WZfTT~K4nS~PGb_!uxHhJ}ehL735L__$BA&y7$0HS1gIfpn5ay4FTA=!N=@c_KUHRf0ybN -J8`Ol%g!anLBlpJY>u=)SY>j5UGweedxofX?}Wj7r1#6I^^+KC5qvtVkHQP6!g|ImY9Lc -b3A52)B2h|O5vsW0~X)QBAo6zupwvwE9vSjnO9$3X-{2EuP2C#L?T|1(p=ef5gzZCT0(NJ2_eeX(t)g -Z@)r4Le)pz#eauLF^hwDXQ}X4?!7=QgL@@AChlyJyE;f_r&(T-(BzXyJ191794FBj#9_F$waOlIb{8W -0W=Rb#3R6*r>W_rHnxh|!*xH69ob!&e6FW=1cO|U88`X$`&n(<@xA@*ty0zO0*|EE|9Oq4CNq=Gg4UV -N&}1{yc_&+|FFlGkw9jD#9kVkw9CayVaAIEF^POf<2}==+dk+)oUCO|#uyv{va9`z-lQ^-1qyEV5m8J -~Jg82A&$#{UySPZ*~xJS+(M8Z|lpq&BffWilq$eW!fgB4!~4LvcgNxCK%OHs87SXqpe5dni+<{McR;~ -XH2(BA==Q4)-LW}+l@^Nk7VofJTasHJvn?5sNN{})^cG(1x40pk!^d!5Kvj61ZPunrC?rr~EPO}tXz= -Y@=b>eLr+D{&Qmfe74k4pPC3#=Xn}VE`RWb1h9Ng`RxSNDl;;&zDz=1{{k6<&oduLt6UY{`HxChXveeS6eD}kZchs0|`vKE#Fm&7jcrZ-$L%-T4lSl$>f~~@)kEj-MzZ@C&QD3FIv$Qq -RC~S=2wR=h;A*S~d^{sFb+>~ipyKLAim0|XQR000O88%p+8Y)E<&7YP6W3mpIeDF6TfaA|NaUuk -Z1WpZv|Y%gtPbYWy+bYU-PZE$aLbZlv2FJEPDc5^OpdA(U%Z`{Tee&1g)-5@YGSj|K8=0ZgpR7MTBP7 -oV#5kVkk$>Hu)Tn@__O5Ozh@BPjhUWOMbG7?mPWiEH-JNK*1xwefLMO$Uw+R|-IcoF_9%|V{ESGn@4| -E9FZqp6PlM>|}pl|SJ^|IuBBZ+^0wKFcgFd>_@Va3R;t{K5Bfi? -t};ze_~K(*12RC=rk3f0u5#PRT4nc&IFzk7rR#Cu+vcoF^NY^kt1~b%RoTj9{3@;RDuyx@xB$^XczIA -x_fX&C`R`z^F^86z+w+^7>cKR&I_t`>BH3J*PClNrE_9qQB9<()rWZNY&7(9z_ -52kDHr!>CL}B-n{?t_J{YKpfb(u88#cG%KzC(8wC0h_S}o3_Gu1bSx4ccsS2BxHgML1(V2l_tewqaXGeKYhIs_%Vg3EO}%&BH;k;(fCs`l -Xw@7(@&#)+f?F>DxHootdr!w(l}DzK=lPT*@(feDcwyQEzinlr=-Uu-ytza)aPKk7hTMNp|pD(uR~c` -shksOtmrqU%5@Wvx7%&_D7+2&(ISt|I=SIcryMV@#j5J|-qXae7 -5rSHNqUO9bXlwk?CZAK-D8X*UQnRrP+Mr;^Iyws|hyMj2{MN)h3YR@_(iQRvSq^W?dR15Lh6=9xv*p5 -7xoS<*s-At)OW62Vb?IS!r!=Z`&euT@SNA#cxhAIc?g31-DP2RKSGM4!m4oSWD^AT4%Dzxvv3_fsMELd!-g -M`dIV2>YW3ucYKX{QfJN(+^wLcsxj;@Y!y?PTe;FT(ds5|jG9xf$;9_(cynm*IF`baR{&pgncYI% -%O*X@6s<&KAs1hM!HM$i_$V2E~_QKNVpWpr{RFj>|gO)L^g_F-Di!?ms$tPkO=9yh}vm8B~>@!I^>S& -q#;Td#&>dWYAUV?|a6JF3bHPlEitr?pkSy8}#1${TQH}YL|uYb4Mf1>mh>s=p@R|GAnTXWopbj{qtIm -qgI%`duye$cT`{6$#0@MzGia3>UCxw4$7p~ijVBG)L -V7-yM-U9HLq0L;68D{gkA5kqL^G>Hw=bNSn}uBz4v}OT6~>ES43(tA@%GEP!hsLUwDFd(F>>_TCOa$BO>f3Kl^&E<68!H2#hv;g{SJoO*r{&CC)Vc1~nIg5_|K{t -+zG$z0bLidAO0R~A*;dnj{2Bp1mk2F^aF@d&)k^PBwQI98!rlop?o`i=+zh2dmRL1SyBuA~e42Mos65 -@2d+6z3li2D)(q<1tJe}cZ}3#xwRwot4LYg4iqQA#75B`eK3Q -0`{Sm~o|?L`z8;5U-2vJF9ZCD4?nT`n8ArFPUq+DYyIRZe6NO(;obKixHGIY_!uOyGA>bVPzHHJ%TIf ->U#UcrDzGR5F22xu)tFXg%??q)Vtfa5k_SV -U6QW=&FT+qc+0T-YpkMqkg?os1<)13~r;hAP|J+=r*t`izLqeGLgz6v$s+=7jx74QJs+l4JOCF56NXq -(n@6aWAK2ml*O_EvkzDE>PD002J#001BW003}la4%nJZggdG -ZeeUMZEs{{Y;!MPUukY>bYEXCaCuWwQgT!%NKDR7OixuP$w(|wNY2kINzBYER>;jyNzEyS2o|Ll6r~o -Y=9MS_ab`(oYOx-dl9Cb^08mQ<1QY-O00;mZO7>P2FrZI)0RRBr0{{Ra0001RX>c!JX>N37a&BR4FKu -sRWo&aVV_|M&X=Gt^WiD`ewNkro!!Qio{S~Yx8*udjL7kzUiav&}MIi_=9SD&nK~jPSLH@mz<426R=u -{0dZSu%Fo*QplaLRFUKvP@Ko!so?R+%k7pbyF#P_45*f|EWV$Z!cnpUtvn?4V3UZ=~j}tx*TAmDvsGS -BjTP_fb*h1u)dU;PFugteFG_|T_#C!=-tTLd(82doyF`$V7Bsd!> -Qc?rk40r~O^`Nd=bAn|ZUWlM=3_?H!pUlV>SqZF{pTZ=QeO-!cYzUx?ibCW8byGq@tRO^RLJ#WS5^mK -krhxl3yjz18#_1$1Pf(hg9`nRtO*JPesT-E42LJ#Q8vpc!JX>N37a&BR4FKusRW -o&aVWNC6`V{~72a%?Ved9@i`Z`(HT-M@m<2F%(NqkS1L1Kw(^*-&8ZhQQ5$xt_{MRLn(|G?H@a1^Ms0 -BSngo?4&I+Kcv+0c;8=SqbMT3pZ`w2d;W|>Q8eMZrWT6)E$hmz1+%MGlqJ8KHB?A8DMY;^>d^4&nsoc -i>X49^JW~mIrI?^sB}>R}jpB7h%Y>{B4Ksf)sYuA%3gDATn$ogNQ?elI34veqk_(opx1x-a0pOCBJf} -$RT!>nD`>(2^wx3IpZTX)0pvz2lpPR{K1*|$DrqL>jCzF@2F3x{irEf2OO<$j{mM@p9W%_3M`Wz6WTr -*EW^%)u^nw-D6OfQ!g=>={JHp}W=!%H?5(O>VrdUv;8p8ZMB{(W}#{aL#C_TBw-eheD__!TmqWF?i7o -KkRl{vl)9eDPc>(f~G`%2`3uYo?|en9sG%*HVE|!3CRyun!FoWO)kyVRNnRdIj(sc9;{52P9})s=0Fy -?1MgU>WWQba`uA{H@qP_eqoC2Y1uNOou30RKVtDNka;Kjl5#@Jvpj43?L3uI2JS`l7>$Qp=0!Bi_ -MD~|>n77LQE;mF1w*GDCErW$FWY3z}uT(Z-Kb$D8{yD!8&*-}Z`Dv+KOwIFx*Wa^-I_i;1>=#H -w8hLc+xc_3GS8BfAhX8?WJ^KB~FKP`x#|DR4?%>#q$n92u~JB2!0v2}+z!=N0)gMFZxDi0~}N$XD@2=()~*K_`SeMwGq}*c)eDG6vjbWgfYiZ;iiOdqI -e%V=?YNX!DS;-b3qnneN|7YkmWyt+&!k>OgCGG3N>&-&WAX!e{<&h*f)TZ))#nNV1&E2x6zgXj-&Vc@ -?Y{M4!AtO0S^?Vhn{RGzskjCoLL6&Hg^}&b&1-tYbdiC8%*r-L`ynF}9@5p8j_2LYob0t*Z$N%@tKl= -_itXey)=}#VeD4Zy*B=b$itaEOqTU2115pnEaFwRLRV6En#C^dLlX?yU-C+kOcs_t*b~A}NCfFXzT3v -Zr3Ya!e%?WL#Fwv0l4EO;a{0+fl;<{B0f#D%1Dd4)bQT>Is(vGQZo%goD9+0AYrdcTytWZvY(4m{Kp} -20m>9qmZ7RBSR5vgh8^NRnnGU!Pt{Q&SFFI=h+lA= -!-xTO(tINt*qq$*vLr<-04_*VH*HB3>&}O{)X`j=-0Zfx^lC)iKvg|B>)>7=5`h&)5us_O9yMIfjL2h -xi7B1~(;hL7-{Nh-3^VgfvTRj-<_uxY1&ZUSr)ttR*MjB@m$+H6TViG>Lg6I*%QKk$53>Q;KcMQ@)z^ -w#(d;IqU$SeO9gJ6yiJn6Z(~yc1hfrD@FewIRVwQI9(f`h5Q*t$p7EwZ;$H7^q$8d6qXu7M8Nq9WKK6(&*IWl=XNBK(QFlz)wUicW^5_KgN_U|il3}qXbGI99b3=#!IgAe%k6mh -33Z(1T;Z5LCs%b{0+F9-DIb|?>>0qe%m2m0_TAtqylVv=&l0FNc+(<8?kcs=rg%E{IuSx6!aR&ZqigM -b2n?$qU)ElXC)VYOorX8#_lfyO`@IF^aN@Sp=5u?3=EtA5B`Q=eUn>guHlBy4~v -uc>3Kr1T@3{p`qb70SjALXXI&39A6h{z7W^B;Q1l|Qb+SV}7E5NUHyPZlQhedD^uevE1A?dqYWviSuu -lQku*-OFCC(tuw_ydw*BggpE)|gN*IY#-G*6x(O8hZOf|&gS+6-D;ww*efA4MU61|~W+O+g}3{hR?o( -x+D7Gq_4(9NluY)hf=B-fb;%(op>biqQbtS0w}0Ile^c77Z{w)0ewy&qZDBScNZTf@20sxHJ>lu#6WR -@F6C;2iF91)6jbV9!&ZEy_YO{+{vgkw{!yAmKO0=+WP;I*<+(E>lTNi>}qwR)oWS-wqfId(6X3k>0TaQ$TzCq|uTV!qJJ=# -^qO(iVF=7FhysvebQw-wq1q(61tgstI4(=Seg*}>l$9>X+V4ByR0GuQg)Q0ldWnb%qevq^BPiwErOuW -Kj|kZ}XWDH2_|dVqv`r8!1o6F`n%!9StrVi7)l0Y}$%_v*ghJmAk!H%g91yP_=#67&0{{Tn2><{l0001RX>c!JX>N37a&BR4FKus -RWo&aVW^ZzBVRT<(Z*FvQZ)`4bd977TZ`?KzzVEM?vKK9)RgtRz7X^YE?WH;7(1T$Rv^48wO_2&odE* -%V?;TPvQr?{6=x;3`yMe -`u;$+jB2RBlFSgf?0>LdmblwdgQ4mD-~v%nH9W81Wao52ovcZvV8_*xhc|DB&Dj8`}y0!Dw%ds&_yiW -9%Ggac_hh`!Dz*_=SYND%`kxI>WId7%`x6@ly`8s|L7mxMAAxJE?_zVkI!6)zf^u -9kp9Ll7-aLb6!MA_#CQZxttb^ddc7oCGf_1dwWY>{xKR??ZnA<_4jc2Js#`DTpm|{Al>FRqeD;*eX&n -%6YrO;Q-#?+i@Qqkm;bp+4w9VGq~d2vY0M-Te?nV>x%&?rAA`O#bM=>?JrR!e)D0HVq8z<(9$Sa=eIA -NMKUhsM`oFtgVTaU;?JfnK%;$#qn7Bq -&0w7Y!~mMgaGA`T-En(?B3nD%f-!!u*Q27Du7;cMstk$S* -SJAQk3y>nFdb{8K4^T@31QY-O00;mZO7>RYm#NLd0RR971ONaX0001RX>c!JX>N37a&BR4FKusRWo&aVX>Md -?crI{xg;Py$qc9M?^D9Q)3rH!sN6OxNsiIYHtCi)#P~1AU|ok1-^MAvt -HC>Sz*SQ520cL~t<8t9izI-{Qxv0C|*Be=sH_^h{vp2pB`a_!eRcZ?;7OG-NS>X&MwN4uHOm!3s`Dij -hrga)C)}*u!5XC8!N3kL*H|EwabxP@nzr6zyzxR{X>vNp9VSqp@E7n>btSgx7k@T9<^b+vMJMK%6$Pf -*VgNxcdzc!Q<3rerSl8%BsF_Ro5e7t%X#omhaL%RX?3v2AYE@I?JUP)j4K~yY?#B(UWc6g`}h5zB~^@ -{a3|2ly5-!SRfb7FL>-NfxJ=|L+C_8#=HS0ouC&nVIXX?T2E5qD_Bo#oTD6iI34b9nBpWo!Fz9;UgjP -}Up^H#0y-+o+X5+%70z7NFM=5Uei5sBBRr<*wQvq -aTDCdpBE-()JP;uBCy0|XQR000O88%p+87j9e000aO4F$w?xD*ylhaA|NaUukZ1WpZv|Y%gtZWMyn~F -KKRbbYX04VRUJ4ZeMa`aBp&SE^v8;R&8(FHW2>qUvW^r*nlL*D4Mkf_6BqV1`KPFt)GHGV5F19nI>71 -vMUt%?>kbKEHQ2-Ac#dCpSyeR;hk!u4&XY?8(XVAi2VC;5G_2H$H$5oHz9}kfi*C61>tH_IR^p_Cj0bQf2OI -#EC!l|Mn&X=XI6e6u`ucW(z?59wg2kT7gEA@B@jT|76}nI!U2eMJ{TULY@4jV73OeGVsmYJ|`oBL -7&C9@!dZ+@aeZtaJRXIf31??m}_tZgU|PW=5y$rnX=(W>|YvY8-hKsE`ohRU{98kf>VPsfKGUW6SD)K -SV7Q;Hz8XTP_nYY2#?7sScE+w2-5`+t#nJeAdshyj6jJBP0-?5f^>?JY#IC4INK4~v{|F^N`>XA;bjwp%2KoyF^&~?>`Bbf>?#dB)lA -s$d5iFdT!tdBpoh1&Z^%=HUx^yXvYLKpg3G;)=owQSs2LYxGJF(heVP7;46Cu^HSg=`4O)^tEZLq#h) -!t`cqF+@AYuY|thAnP)YRpOjBQ@*UgXMrtaoVlEDHi0gDZO~b127((siBgFNMhs;WK(9}FhFWFVVWLO=d-JzpO -T9S1>Yz3KL0)HNVd7fWn80rv~@vAe;ZleT#_nqci38_E&vI}zVt8)=fkCS?LOm=f6Qfqs-P+s(=$s@H -pkF&HiFtA!q!da~*ZPB$xdWgl?yN65d=fSI8`FwcZRFiY-Au^LqGOu+)t*N-|PbOt#ch)S~Jj^!y^I} -Ym^TnsQ3c~TfNcgXev>EJUEXh}u|MvFX`eyP8ke$C0B8-1Ne)zbBvNhDvoaoZ?jkiir*8XPOe%kck6f -gm#3IHCNXsNYFpi`@}+Z3$o`#g1*lmCD6e!^EpL+v!DVH-TvEtLyNL-8cAjcNsnR(K$`r{*Ck0#=r)B -{xd@4-aZiZQ1x1l4U(1*)U_2iSWpRrV`cRkb*|jFm0igel&$JXg#zZInAa}1ZQ|f`y55}^LGlenYfvw8n+E~5!PN$JYh+jMX}Fa85iO9KQH0000802@m7R>$3tSh^Sh08>!_02}} -S0B~t=FJEbHbY*gGVQepLZ)9a`b1!UZZfh=ZdDT2?cigs>-}NiF)F$ENjA%=V(?s2A?K(>B*0FsoXS2 -Inm4b#C4I>UYAxKFRNB@2A15c78DQQk~R_$>(AaHSUao@OLv0B$n8!ftO-qv-gb_#ANTG<2*Wqol`R2 -SxFZC|WwRotvayEF}rG*4Yqmc@Cx7LAfSi>6*hxoE|_6iP`I=}xwZd$gN1Ok-XqI}!Z7|L?a)+4C1i& -;S1N^U<)>GL(of%tH3H!uufP&tf+tv -&^hheqEu-v*NvPD1YptEO)}p;Y*CaF*5%gx{fnccSJ}~jy+3+={PNA~?IV{$E#0se^lN+XRiWk~<<_E -Tt_!7C*vMSW+e~!rGD9F4Y!JUu>$31)RI)AWx%W=qv`CumQ`fmHEuw#yo4*Jp^XK&nHeY^Q+!WRJv4D -jgiHwxBHDQMQgU`fVJH;a8gF`}Y1ZYv^@+O_vWhsHD8w2?zHb1YSSJm$9AUn$@ni;-MFJ$|Q+LA1*fM -v1_7-45Odeh|4ZzWoQuBMR`O<6#L-k7Dhl97mz1!OL(xs2*7cv}KL*ggxu;d&`r0Cp{->!K_H;rV6M) -={Tqx|1D$_xA0ZckhqB&R#q_esOdRSS7JqiYNOA@ifAx&%XRzKOH>z!aN -WHo!=baJvoO&}xHC2|oHFOFkuP>9N$DFZ9r@T%nMT;{pVX&KR#C_Aar=>4)#5yK*}hOx^US3v;JkaB0 -ys#9%r4uq*T(F)--QN4)H1`9pY!#tpKQQ=6y2IvSvg{X-t=Y2kV*36g1m3&z(>a#TZehG3Fd2JE$K$Y -Wq2rdBn+wq&%drCHiD2t!OIrQhX!ltb7@$J#u=!^ZwQ&@(>0Z1W=3YR94KZ-f-p_Zpcp?VTb67-ctC1ibt2Gdhl?49nMz8;Ji2Rw?QB}7Hs{l@tj3^R9Nx(9X -E}FVqM@jnWBm#m7?ielQjRz_(E~IKx5INOKkxvn>0x>K%(WR7Yh6!krqOUyC_bCQu$O9`ba94~PL{e5 -n!aYk}fKy2j#9T8f{9g)%@(P5_<#~63b5|bBbyI^%1pWcsa!{Y5$!UK -R0_c4W4tVD@>ss#v@c*S%?o>`Y-4nku_H1Wyq$EV4M`LZtNQr%8w$;m%HKK*nOrwBu|Zlj1@xZ5oLIZ -l75izq;KlVQ9!fw -c^`!>nsfODQ)lyxWCT1!TKC&*>u@lz%C{$aifZ#sM(ud5P%u7W!f>@rgGq(LCHi|Ajb=ZQ~ -9E1LzFHy#r`;bP0c};bzNR$_K17f#wk_}3|MlD!(?Ye7O#z+7SRM;JWI0FV&>8Qk|iY85<*%2J984m; -&4Qa}Ty6u{ZUf6cTXsQ*>j0dMAj4E+p^+3QS!TvLE(2V}|c37w^2j|J{ExJ-CK$s~~$D^AD`oV7VA@4 -W=ybS;{t2>Y^s=*e#V`##NF^aT6%Xz&lfF8UTQC)#R;_jfx%sY^?isdYzy~d0oB|d^D4#U%1Z_#~iir -uDKLJuAPFvL?@!#VJ1umbz6mx2ZsH?)r`DM+3tI^RTRJj+=+3Jb;?J#hy|d?QLF`^)EX14Ch{F-0Agu -@0L#y4>$Ad@Eal9lilmVLgVI6{{rlfyFt91qx6NhGnIDN9gXNYN+Q0`o(O>1gcjMy7LZ4IukY^eaMBU -zfdCq8EJ)%mT1j}^wgRQXq9YLT*QCotp^nehX|=|jh>~<4cp(hmQY9aUNU~Wz*MXHihZZ9vQscaaS*| -A5-{6};~X%w3pS#q1kVkZtYL-2C8*23X1Rmy`dxLuS@fYgjINkCpj(hQh67u<0&Rpqt5J&HnmKV(mOb -6jpD*BUP4a9GORPx4QltR>SexKK&IZ7LEw9plpW_hVzZm<)=!uHxyLYcB)QFNIm1!gv=&w_t)1p}b){ -dXXpo>HU-T^rNlQaOi8+|WfcYf?@@Q~I`QIms#KXEiXuEZr+`VOQ5R=U)#NnUs8fYPWu_1EYJ$|=21f -+jr`t#mR8X@Sya3Gy&nAnz=SMq#*xv3x)ga?Z%JQR|wWX?P9MpeQ-wg89@29J`fI!5+xpji9^Hvr^Sl -obY?_8tQBI;t5m2Y*kz=TjS!RR%*cc1Hr-gj!lq}on_sXIdST_og;cvVGPyXp!W&L_@kBfo%MKmgZT( -H3UvwiXn-CtSaXApXKgv4kv~G1Wk8_QS`&nZu;zv1#ADo}$ELVe)LIA7p7h?q&ja(`aTB<~vYCU~+SA -_7VKn@Ev;)2jD9tO-cesyg5KP3$)1N;&_+}ELnn_>&_4S)~N6()fA5F%EH^G01SEp!}iNi8(Lz8msC0q3j@_|$}_Eo$iDPNgJ^L~`v7(cI9(j5#@F@g~f8c~gfyU|@1diOmhB -03D(af-sFv;`nqj>CwwfkbN5K1<|g8xMn#EC!ODGfut1(b7Q1^AOB67 -FvPmX-#adiq9W(_)Esx3ywM@n$nrRWbL!*9c6%!~)2s%(NExHo+##c+<09ECUSYfge+42+kUp)tB(T0 -VvxA3Or{Lne_4aJDsdx}3gcpP(#hCvCoq36X4aL?$;no_ZPB~jV -N)s-5jVUHH0(DO~}JXk2pj42pQ^+00i_2&iH3gGtFk#L_cRnPpPhKfyY9l)|B+%0;64aWI)Fga0=g7> -vl8clz>6JkqeX}XP5dmiDwN&A0|gl&X}YOUyBUA?CU1o5ubb7X%_sNY&GNXqpNs<8d#?Hl%#M*qmk`g -W-b}an@%jhy^|#F6>b=3-*RR-atKBAR?IKOh2%`CO7Z -i)B@TA593+Mi^wfybOM(vBmkN&tTLPWRh;Oa0CQ@LohL%N*#omh%Fh$(&;5`LoZT=u9Q1-9hWS9_O1d -UZr!gJ%iRBqZNskLuzTv$cy*izTzdf;sO(v0hAmJD)e^Z&Y9MMu^fX0xI0Co -VXstsX~y}&2CDso&Sh2qZJM|fn$46jAUG9(r4#8(I8d#x~)QusL*&WIb<;M2#!rj02DN)Z?q1nQvh=f -=WgKYu&=D^uNk=|&fBeVSoKbJ4AszzdsWL2BoSq73YLIcwdXikqS4aNOeP2g!yZhLhs0Swc9t+N2x~T{W9HAU*$7yX7r?9 -(Qb7P+m9@yjoTcZlzo+olDCB8hZ}O%NnbWcl#WNl}%KOs3oNprU$Uw2ohX+N1(*fMSz_fRPhr13M2D3 -l{JftZ%sgE~WA$`^ef#d7v;8Jt8KrMZQfVZJ%3PuLpWc0d|_&+?5|--Oj1U<3RhvGlMSA{;b-Zx-M&om9o(HA2~$q9U$80=Uk -zHC&lZ{x`+@LP?vMkY9=BZx*9ksN8Wb|F}ylEfI11#)4#-g}Vf$2%DDj%GRnokVF8L# -C;n%1hX+H=1{cnD$&%59>Z3_XcWzuCGak9ZfU}dS&A4c66uyu>biXM+7jE>QTT*aBcw)bnw7x&&b0x@ -a%TA8L>86AEMCU8Z*LlG>p1<0ebcvf^J>-0Wo`9oEM&I_1Xwb|3hfu)~W{W;x^&MYL}NF+4VPRl)vFdH_xA@>?vSxU0X$ZB~fg)3ZHLm0(Q7srg0K9nn;$|}q_;<2{52Ln -+&abkAZoZ-2{U;m~L+2@`xwxbZsO^VcxFnS0wm?;u#4~U6^?txm+J#wf3m!(#f#>tVAa!W)xt)Y_4vD -~oIBFW;t-Z)(|E`-FGnel{GqfmwcFQd>(g75%u}`V)HW|FdKR!p%3XyU+TywicSWJcUNB$AiD2d4T9C -Vrd3Ys#H{y%U9ex1GN^D)pMeo37@brL`F6dD=onY$g9qRXPoj?A&S-d$ASq@;Sv*p*h$y#zc -Xg2>}CLaGKwB!yo!&;wFb^Rmk&dJN!+G`6mL4Q}pr-SpI!zV}33Gwg!v9K9Q*%WLU*GR6WLn?6BC>-w -l*-}%y9o65#y5o5{22fJtg*4*MzOx|H_2xwumSA(KxY`klOxz6EEM)B@n@p4^OdkB*&Lmt9;E)Smapl -u*MN)JK$PB~v70;k{B_4Qa}+?U^mmA`dEtR6(S;T{iW@oKS%e)^i715I}m? -(1E;Cnx)-cc`CC*C)AD?l^4T{i&5YuC}2PB4GS}ZrG9TZhB+g4WFhYcTNz;h8{uMc~I8Kmvf+ty_7RC -m40t!qmR+QWDd)K96w0V{B(tI>uswh{zr21Z0~;_?|pUpvw6_}O|!kzPfgq8-}}Xs91(lABS@KBItNj -=qqw=OGR(Gn7gd~%>T78l{(xY1H+oh@0Nrh3S=X0%M0$y7MNP6u6H9A4QPy}tuF%Do3Kz(!`BI@2*I0g1nvcFAvn&n_~1$Uc;tPdR3~Tq`(Nz;A -$&P>k9}fk5mVhcAH>$p<~~{T`}T!y#PEzk{)LjT4ZD9@BzkQ<{RUn_!l)Fgpq6;A`8-1fm)*kR6{Y3tj$SGv9sFsAYYf-5Z -~5b7$CNB+DM}f?eF7oIE}?4SzNbTPH6R?XR0Vyx12wI^;J{CI*MZ!Tmu>4dH<}XpDyd)AN!xt`$3Fg) -)Ov>x}wN5TpMPs1k5vU4G*t@vGnouK^ncqpp{-xSV~}!kNCt3KR&~k9l`fbL9op -iIqaLR%IR|=7CU0W)shTqPhhl1#d?dft2@O?k(kgxv-)9**9xyCelDa|e6Wqx)x|}n -t4deyf*3t;hUGBKr_iM_R_WA<_{l%u$M0_O;Xb|hch-HI#u&@+(tCI@lwu$J=a3wBvZKC5IrNakFE`; -CeLpLtZ;s7$H=W8$8|@`NWiN4W|5Rsip7}T5-hJ~t`ttFYUrk*F%o2GS_7c6cLkM#Ogzj|v3t#AaW(z -Y}-)*#&FpPyW$rj7l!eUeICB1@8pntO;RibAy{U!zjWayX>)oV7v&Kp2q>)ZFr}%j?dh+r(J*f7|a8A}HZ$x-70G$1d`E75ip${-we$(OiFcF)E? -U;&JA=`#g?e?j|wfwSfkX2f7K&1d$?B6IA_BvMHU%;MOkY2nAjrG@zYoh(dUydi-_@PG7gr3KYa^bwQ -$za)fO23Z@TH|rpfs@Z2TCf30OA -4w03HAU0B~t=FJEbHbY*gGVQepLZ)9a`b1!paXk~3>E^v8eP))1bFc7@!S1f*)783i=TcCyVNO|yhrI -1r8#cZT?B&tY8yZLzkzH3J*Nvey+GxF}tG)-f^DTs%VSTIJEkQ1==v?p%O`~$*{5 -*3V)k5rCYh~gPeK3ES}2o9`0Ay4sOi%j4`AuG8A%{}BYkHI2gKr8>3i|}L4t#j=k+);a7Yi7{*9J6rWYp9 -!u7tzt64?+sk_aA0vI!tj`{QIgstbnE5u$M|6*xJqmTZ?*Nr_OGukFfj#-*c+9U4685y}GaHLB9ByowbeVM3Eiz@BHOg3>K*AzbQV?4#tBa#>5Pjjf_SWcHd_nTyP)qVYva3{rStu^@*@%Qmg&_+I*}u( -nKtA!)i=EEZWQoMSgq*sQq8Of4@L3x+32lJNgeIuo^PO5vqrzK~#-39pQ%FBkx2nQ|;MdZ+dcRAJsQ7 -ufMLqwtcZt~B1IDRg?D?BJ`kRQk>(YnBAZk>24;n=~vWxAEi;LCH$`!sKBgmphhO37wYVo1Uz6>+?s) -{W8S+z4P|A+wR28ZnyF;*%m1n*H`T6_blo8DY-n;x4xq1RZxqGzDt?eew3MKVuzTX!$&De4*k$6`+?8 -$e8PTgRGIgz;_UT~3C)DvH|XhTeO{w{SS5~ZD|+DZ#Yl}Ab)C+#7s^E9Zg_J -xP?WUyo(8|R^BkIfc7$jeSYxLY56K@JUmpqJnY!9H`|DX@hXeL9;Pl#{nz`WVZI0*TU3rSpEsp~QB2V>(n5%B2UWy@iPIXx}&6V-rbY%&*h4ZJ&v?)en?bdMY``hw61 -k$87?!=x75Qs!$4t!BTzeEWv9gR|>WWD*B1ECGVK8)gWSO93s6CMKQxaa5Z#)-6ZY^nHFtf1VXW>19{ -1>xo4(P6^PT!zKMz!0{1Y9(Q{@$6Z!P)Wc@OlEVAiC6Bm0fGNKhR>S<|EDb%$6e2@%j)2t4PYo)NC66 -B_Y&n5D$co*q5U){YIyD%bpXFZ9J%^$c!`5hB}JFd6HOgN&lc!**QJe>zOkC1cW8bWoy -|C0>tPX{1H0+PctFyE@uq$0woeI6-5|xD@@d-X;bgh{-y6akqvhp5B=0040lSYOQ6~>X-N%rql^TE}z -IFzqo2NU16YnKNw7ImTlR-6D&}jx0q#I&foEmU;pi7Sc1u@o@aDTk^1rE`u!yU$xQqtn>w6d{E={Y() -Ev%_lP-mS$VD0mST~iT<%J}8&)f5^c$1yOtx>SBS6+SBge5t_pQlo{H=tD{$fa;+op0I-)rKLw -$h!Vq_>my{x3TmR{1%5!%$WsG96)`a(S)?V7ubD$zrVffx%+D~xj$m8#&&)QtL>HHmZEN%N`Pa|C`(_ -qAA!EgboJ_uS39?dFt~GPbki`OK*VY_VPNQ7Zg=&v(6tcDGsC%DCh#|EQ+uha>Tdn(O3ZLH@E5KJ(pHy=!R -jxFmV5xQCOn?8vPmaK-D+j(dNx@$@p8uP>D>XPs`;PAPf4DJhWgRJq5YG)ec`$35@PU632A_#+e810nk5hFxCOnI-Ld=lJf_7qq?KRHSX4J7&@Z|%_k -%UkZ{x8)uVqWk)gU7V)LiQ;F34FgfIKPo}_C3>k0cg0MCP}nu^6+x7sSe{V{?qYW;|)VvH{#Txy32E% -+|{O<~9i8BI6=Nbo?sGF&)tH7z(}FH1mbvoE4s72#?d1Xs&!#Ar#lMqQKszJQ4s*BME0N*bBQ$795K1 -<#A+)s_$y=iVEqKj2p}i(<3;D$+(jqGn0|l7 -Krz@q)fP4<)8qSTB2DYLD}~#|UrQYf~e-t0ssJW2LJ#k0001RX>c!JX>N37a&BR -4FKusRWo&aVb7gF0V{~b6ZeMV6WoC0OaCvoAOK;mS48HqU5ZPfZ(0agt9TuPihCYs4um^T13PZ8!MvE -+IqTDq9ew1Vx=v$8V{Dk@v!I^nC@Xz -z>~Js;xfZ8|K9qE>_D5jMPsXU~K4^>6Vc&aM6fya0fui3-ws=d%#Y!+AZbN;S4w__lJkfsKC7p6A}Y_*nJ -xc&4(K5OH!a`>;84ym$xzcG5ScuFwe!JX0XJy%n!zCo@GrVydQR`klli%>m+H_(YKcdB;?DC!M&PpKg -gN$w%zBiW!M*lm#8>tF~p)&zoGV+w3a__dLIqR4Qdo^OXxej_}mt|bLFIO`fYF~h@Gt7I($-hsTtK+R -IQ;*^phZBW@UkVRt^1}vHpL;{l^+b6=fK;}wn>8tAE&^wkwd+g-2BTHBtqvm%r;*t?F|G>53(Ksh@d6 -55OrsgMh{ATpTFQfQe@Y8fpk_5Lr_9a|@iLc9}Y8H!I?i5ogPEHe;^!kPWlVorh*EE^K6qa)|^G<)w7sgNpaD-5P3BM_27#uQ4 -3Fx>R7$BM6)eKG4Tk*_5K0spTcoGE{W`SpCTpH7GQaAV-*9gmZOK;%M2p_x20MkvFQ=^(ISod)@Wq6F -nS*k`7*Z30bLE~-&9**CnJSU$??qm{nh3TyDa;s4AcX>CxL)>J3lrF}vnT-0wlRo+p{?HN -44`yv_6*frpMekBb#lr_uTYsp{Fm3|4>T<1QY-O00;mZO7 ->P!1xIDS1ONaM4*&oq0001RX>c!JX>N37a&BR4FKusRWo&aVbYXI5WprO~d30!RZZ2?ny;n -sL&jLv27ypxO3fzy)&H0tJe0(B@_YT3VuPHWVq4R19^o|GhJmB8ifc&8a%XHZ{+W-#j9#+E@>+bxCPW -1-`ANK7;Iz|B%k7@VWNVXs%LtXlf;rPO_FY%btZUjAb>?pZFOSndfKsqW!?nQ(39KuxN%gUMk0OQ`Ow -dlT^~T*;MZ=eCC>(zKbG-XJH-sNBz=d-elSo#=ma2k}iL-q>Zh(lK+ZqY9vXLTyf_xK#RWaTYoWnpCo -|KX0r*OpLEV^*C_6V1Ah@vTT=_`CH^!eaOkukIIpe1zhJZgiPFI;f)Nar#-elw5Wd#VbA?D2=Bkz9n4 -a)C8(fDkS>}}SF3aEm$8Zu}XJ?6UXLTDTvq?t@ev)qb8&OcA654aR!0DSB6T`@=NPM)se!B3NJtMe9x -V!%NvCE(kC1xSD^jWqY5EHovZUqeW0jD< -bGjFWLz^RhGs2F_4Lwl7D&0eKak-1XpVrDbv8cqUEjZ_$@s`JQgW+{CtBT!Mq%H_;9N5eHG -3KH?WKEl?yrh=s?FaTvSDOk^7C_~SL9@7~kRK+C2hCDH+VXrK;`<;G%-bJc{dKpY`rF6l82viYFEC1w -~D<8bSmMaQZwnF#X$(Ow@1zXkD;&MDrp{y-*y`>ro`U7z|S0@tpWMgMXFV2El$*|*4!5K)I+Qg~^0;7 -}wN;PQ5h{lf1;wDb*I=UZ+g3lr8oi8c!t~CiScCbQ)BeiFOMIY0BPCi%Isn3&fHR|@g&2FN6{Wz%B*%GL8Jut3fu*%TTIYA -`OdqH`7Up{Uy@7k$%?MdU>^5S_(B7jWs%S>qsl2=HkxnCtt?djJ4g5i0W#jvXp|Kaf%((fNZF-Hn~zes?~e@)3)|$+zd@abq6GUOL~XB0syyukV8V+@Dta)~fa+=j!OBD -x_W5qON3g8QoD|Mi`?_ -TfCur$i|9-3?kgi@H&O(&ZMm>GiQ4--v?jpQMyIcE5Vok2rO}%zj#v1-E2RUcP+w;wUB*qe -XiSqK52A(B6Ts@)W&1=)y~nO?(Sj-_%1kUW|)vRVWun57K~c88(FA2{Ue~M=peT)oRl!a6#Iw2amn*80fVZk}Ot%k_aNR=>Qs6h -D0bDqMzivI7!7# -Sek^Ze;aiUOVY+o}Jkr4fsGtNjn!SUuFt4aadGhfEwv2_I2hHGE{%Hr|^a$-aB3ScNZ>+p=Htr9CwO$ -fqF}svb3R${l~p=@Sv9cLFzP&ls3xkXa4PpWt -B?M8?isQ7Jh!Wc|wS5t?e_|?>K1cs(f1f8n;z++bNWw;io{6^}4X@`eTwZ;m~qzw`HI_GAPTdnf8*-< -LHib@OAh^-`PuvBphuTm7!EU5|ksNw%@+a&`Y`c)unnhx8AQ>c#;jf^^3^VloYz$s{A9>oxk|4;WGnw -3X;-@YIIHGbbdzA}6#2f>kHbYEXCaCuWwQgY7ED@n}ED^@5dElSO)RLDy$DbFv;)&+7BOHxx5N=q_xGD|X3i}kp -al$5vtP)h>@6aWAK2ml*O_Etk!O8<-%002Eu0012T003}la4%nJZggdGZeeUMZe?_LZ*prdVRdw9E^v -9pJZp2?$dTXmD-gJ@mfWLZJKl|B)iJeR`LU`vvd;DFIa(G?=F83G1(UcbPmJ`VDLQx-9ydx5-be*|AO>931hsFX~n#b=$LUU6d@D{cULa`Z?di{T~Zam -pFHx6m69hLh!OKdR8SD&A^h9S1eic?qJvPtGcS&i=^yWg$or8!c1UQ7zMCD_6c7ntwN_`{~DO+MRt&; -=|R2S@vcuAesKXH^j9wQmDmh@-I#B~3YIIGu+R4b)>zkOYQNt(fQGJV>Q%NYI>8Rs9p5I!s!Y_wXFnb --;JfI%qU^V<-|$L~Sr2X5bB^0k=ygM07Uf34-~u4_8~wE8+bwT*9b4BQ*@ig@KrvL*ck-c{UU -i@m;EAnT?_boQfyiEe%Li^k-XUBTrWrmW)V39$N0qX$3Pw(HK8YbQ_dkdVjTY -W2UFW^G#c&o`4or$b56E9ew1CP5hM|50tNxonwa(t$E?aX@(cUU()V_OTuwAn!dpF&(N^aYIG4ZZ!k1 -5pJ@tK^-IZTS@=oN`dq?kE-q8^ -M%Jy%8+9(pIq^W=r2)+UdDhLBQWXB3dBs(?4+5}Wm8oDV&eksQuCM(bmdHaVzf$(0%)+7!@+ZyOH6Rc -S;%mx+?_FBx(;QskMx&Ie?M^p7&;)@#lF{NPyk)_1J|RzrrZI$!5O+-27G@a2#> -i=<;P)k7$NHgbX^RKH6T!SCe8QdXfl=+3krGv55E}u$qAZ$buXGRm(FaAx4->?F-wn=&bJ!^8e -NJ1AY(c5CntovJq -1^O0OMcovuM!Iq&~*!-0lxQ(q?8ATMZYp^p(Wg! -n9gC90XH7}Qa}*GAE>DhRt;Z0c>3f|e}4M-kKaM6v3~eyRXuw0^l|mw(}#b0%$}6R!$<7la -9ST?dvIrRrvBG9(@ZxwfW8rE+-SDFyIh%!8;S0p$UXpN+k3>hH~N>)gy`?G?<0R2DAkj<+DryZvnLK0 -ixO|M~u>Hz&t$UYs1gc@CLNdJc2ap>{QczT*RMyTA -VP76ogSaQ@W%j}OZaDR&Rx0!YMG=Q)+?qd8r;Kaa&hp#ICG}(b0tiCxrE&=^LLdq -@!QMUZ!ao02}vl%;wCZng@7sm%XRum6X5eF%c0LH;O#N-774;nxnbqy5`A1uvivmX2U8xJZHteh{y(< -FC-VdC($t=EodnMGh2?o9?vQ*@VIVm16&J7tof?@;T~%Wk2oQyU`hgNm6R)HDhKKB`=7WInehqFPV-E --?R*bbtRSS#)q&){w32PNrOw7{2Up*_;)0_%Ia+bn(QMh -hn}KHphp2XGz~^IX^d~UH<&a7unR$YeN^SYmrxdF2?W;WHdJv$G(ouvp9h$>B5IE -Ug#tUkwliT;dqJ-#ZE7!aGKNAGf4bi5pXlm^b8_27zEL(fQM7s=m?W{}tO>DBJJ3(XVos%kME{hD;>4 -hRFq@ylrBy=1lH_aA@%}e|16#tjyMB*c^h#9v -ql_Hk<_A<#W&wLVlDI{z4+10DZ*bz-xpx~Y4{}HCorEu=s{2fxpkVwIkwc9i4jIe9q%;9hk%PNTK!mU -c?>1ALxj`NXi>%n~Ape?JPs!U$0C>Xtmwafeh?B4Y!C8zbC*?(LIs1jzEiEPjBHv`E76fQ1aSUu$v~q -Ndd$bl)`wC;iDUJZJQP&wMn$Xa@MJu$l2^!=AK47oFZfiBMlgXJr>{1N&3K3qx!3J@F3FwYF#88C{`y -Bil`-q1?!YMQ0=^Ukh7}KJiv*W|qjzYRbdsI1YstRIof$`?rA7asgG4@Nenvy$#+2|IS5A+)l7G1QwV -`o59xI&|I9w4PcXxKjBW# -y@uHU25Sho#x_fi*LJa@M74`2!NEz705uticY0YT9~y-11Tvk8O_Io8IDp49>WC&CVS5Zi11qyPkBHsMHdvj?ilSll$3~$> -&q#b04>qetT>?2bIJV=*q4b=^lq+EtMA`$`F+Z)Nw2{yz@CS;VZu|~L_ktguj|r@$c4>Hfna5UuFdh7}9p2Mi!+P_`3BzYb<#;MH6)YlnzMa>!hdWK_SrP_LQrjGNo7jbDqU((T=^psUn@G>07x -qv?)EF@sqKkaH>cyYDgP#dGC}bb89*GAg;viZpe~i;6vlDDaR*j*ut!ei*P%)mlQ|QmCJ*X()$Jbi8} -M0Qsy8x9K}}lOc)INWeoval~iEoRXnU=%Oc2VHb(m}CaC=Q@y$iUS4A_bdw63a4IFe1;=zfSD`|pqvK -+H$Sml?^Nk)yk56b4ZRHYrs;$01?Go29wsO0Cjuaj-jmm7T~WwjI@WmX7|5ZekBt=a=GYkA;)!CEFQt -?N#=#Xh0NuHpi_$*iTDKmZ_Y$m0Urei^{a;yBrW<6wYZKnpTSw(__ebfuf30&^nlxd>X~$aw@BRynblDW!RaICBhhDGc*h!pCq~wOam_3iZg -NNnB7{BZRihvbRk~Q~$AdFl>@(-0Ye|-$1v}Z7^4IY0V+k1O|xkAfO)QwTBs4^6?3$SxqAja+1ly -Lj7!2O8v#YE0?P_Xh$q{wSmpQv05XaX7w*yg2vt|FVu$>mW4mjs5LKwcW^4*3b(fH&Ni+-@qv+5=vOD -x-8Z>1vDxw&dQ@qXu8`*dbOF#wlBrK}OMI|mDc3})lZCh@lWfHIn^uaPsi(FK`Cjf#LA){YIK?dKxuzu{@&E9SeuB@ho@ -$=-u$7^pvbUDhAqM#Hlp0M&RsCSr9N7pPYyysk%an}i}Rh5HTa%#bIyxg`H*s0|LpF{-hoi)1zQK0c6JF~8T|v(huyZJV_Fcb&f5BPBnEXn}#(nssK --nVfwd7{Oy%hUP#pJfkEnkS8)!tMU?vj;TuOSg02PSVPVd-+wXyb-f8oK6GGKWuf_vk;B|uLbTtGEpt -3AAUfRodO%3-c!YE>IpQtk)VwC~@u-Y5WFLCD(+E-xezkB!yJF@9*WPiIIyQoDE`5MlcrFsyx4FeP8{2b-1*~01(wra --q+MNjf*3-uBFtHG=s~-TJgZA7oAyau@2ad_~onO)EHO%svE_P<>VYgDD|Sr{5ibi=Yx=??1YsLg8#f -!C2@?;bt7=bzdN#rKhGhKOHrHk0pBHyc6|nq)LV!)C^*9!S0Y-&hjxt^J@$G1Zdn_gdg{e$YJB;n9-T -0^FElh?om1N$*s8}KxN-y-5|))bh34}e{gbsh<(Rr=^jt>+w^=+-OBsa8hNYa#>|V|q51iOMe^;pm)A -viArA5P7L?tW&w@S(dh4~s;1MDiV47!l7HD_naXaY}b}6Y24m`zlAW3-w^Vsp>LWb!e3Iha28koy6yo -asE{UCB`8ver)7mkt<#~zFy_XPC4jr-|-d(Z3F!_q;By8BLx9g8nBwISi591*Uu -gIa1=TCs8g^FCLtr1uyHNmD%5NQf*x;A;R^u1#?jde*TIy^|1sR1?m!fcd>@@Oh@PDd9rO)GC(r@2%MWv)Nw}3I!3 -ox2@X)d7pQ-C(zqz%mml+B}zh4z4&;Ge~7d@-$bILo3xd<-Ze{axA7BHz5Qi8)z%-4@zVdD7Wd-`38b -@P*s7lrYI}9u*f5>0n+g#OXl3u5b+>%zP_{hl?1a`G8x#~lsbI_eN(|Wod|6mU<+f=S#6&gCfeO_9H$ -wKZw2W1R_S<*L#foK_wunQ%kr$pBqux{Dz5ol8@s0 -J*WytwA_;bmhDaqVRjkn>G4l6@Q4qrF_AZ}IWomWn`@rEhUZFCA-hl32UwY(15i7pqRIijQ#Arsih0po2HG#^d -NfD~Ye_qy)`?~U^%J=z9d4rA{ed5vCe)q|;(8s8X0nWdNCWDHifv4VQg^)!m1mXR3h)&@fi_tdLIM?q -CsrmX*FB%E#ApWr4J%-{1;`UK)K(-{ -@Te6nl9N{`cl6A8xa}U;{O9sO9KQH0000802@m7R!m7DT}}f40AUCK03HAU0B~t=FJEbHbY*gGVQepM -WpsCMa%(SRVPj}zE^v9hRl$y=HW0n@6(w>AWEtObX=$Qlqn%AI*(kfWQ41L;2G1DVu}$~(-=}Qcn3>s -;a!EKeG_HE}UcIs@%ksA`U;c!i_Y;Dcjl>z1=U!;Vin1(=f?jItLAzqKdWK#rk6*nM9i)}?X6A}Npk1 -T<#R&CqjrfQPE%(|s@W}*dE{iqJ2*cVFszF;8IRr4PCEEyv{P*19ui?eNNpjb$J0ai7viSFc&O0{i0p -*tQ7doSr!#z1c;w%wnix<+dkwD$Wd7Q6Fe0bzN^{n-?X~S{@7LBBLZ==k@_1An7X4xsJRrH|?H1oanNi9H?zp5>D)I9Rzd}j37(r!*k@}t*()R=fe!?_X^rX@~fBz)Ue4&~TnzymmMqe -;PztdNAE-4`aBq2_8`85Qnn1yd5I5W>n0i6#SWRkMvjotKCU%OJNIa7UckrADc!e8S2Q5rvKF_4FGB&iwd -#w?u_{SIqJKj}1j;hMOcXdG_yNyAX}bfQ#2V7;3+OXGYCQaE3&N%w~zk2So5`}OZ}i%q*(I~MxI9<@- -_^F}xDLjFfP*nkkrp$I_9X9d!JZ` -6Qq=T3b)lP|frKEuqmkW(c6w%P8Hq;4s$m+=TBdH04`;D#epJ>fzc6D`%o`dUAe4P|MgMRg$SVQ0F(8 -$7ZfK?R#0xo@Cs*#0?O_aFnA$`%1GQTkp|3hb}9TsPOO6rP#08mQ<1QY-O00;mZO7>QwD<0_m1^@ui7 -XSbu0001RX>c!JX>N37a&BR4FK%UYcW-iQFJy0bZftL1WG--d-B@jJ+cpsXu3y2aC?IdDkOKQ;zy-E6 -U4nLL(6}40AP{JYwz){6M$$>VqW^t&q)1V=;xySlO+XO6@Q(NL+;d0Aar{=?HI<+xS@Mc0a>wQW_lvY_SN>(YS;`rnF{N#L|AD@0cf1h8T{c)0#PfWFFvp<%almU70Z`G=1Nn& -QSheAN?xot&5asUX;fu3SB29D3Tmoz#s6lgp`?Y*=|-=uLmLTzQEkOFyVp^KAY_uv92zr7=?C*J$@7N -REYBxV6qRgAa?JKx>o)gh;T{P-O+A1noNXdJ)?e6AKH0E})x52q+n6ti>tfi89ye5%d7#g3NcLCGaY&BEPPoZg*Tl*obhk^!yMG3w%J0dtLQIOfpfI35Z0U!tolmSKqgEYN=kVVWHimA1@!>rm!R -f>(Sg4-OaN^CUXfUatYvfbVwpv>*sF}Nh~*P9yp*Y7k?5`Xzhk}qE;ab}^I^k35uok^%`(r+=SJsYW= -og|RJQY7(bh0JKymE@(0)4-6)NI(X{j>u8Po~+M|m4GasESJbnx9kJEWmPgEZ+y+1oxl6oZ(v0R -LZh!bC%liJd@9ZjsW6;dM%mJNA3aA%2P@hZ0MT*+5xmr%+i-^*UQnHMGN741A}0bIV?9GV;zc8v!}Gs -e0!Q_;i8lpXpFaXj6vHpqg%P;pscdB-z(P(G -_io{tK6U;m&7^XWf7?}SsSRsu)PzJd7;zI7h;Ncm-E8c0PK^xtJ&o4|v{s}J`t@>^4v=Xl&pPD0F3xbjYoen~@19%e-Fu1wJGJBL -#MDUGoRaRKFb$3fdo|*UryC`yL=D3!&YGRXFCb#CCs#+;evHM8S-mE_y>!~aRL%TR12W8LJ;NT~QNYg -GqZ?2MT~W2*T~Sf!`)+n(T}>OG;ZVYLo+tgRz^Y{$JnaX-e;k>y@wJHxPVv)$(kyq!F7NZs_fQ`eNAM -U078g+UV6ibYocp2h;TZ3_qOrmpvad{!#QNwBii6(-9AS49w%A&Ff`g9mDlzq8N9xoXz+TJY)sG|Bb-sG2S{ -jiZRLOa39re1EQbt**S}yXC;nun!s|a^E4-e`SjO~kVJ&0oqs$eqdJcQxwdJfTJFk;*9-Bn}08mQ<1Q -Y-O00;mZO7>Rus?7n{2><}r9RL6$0001RX>c!JX>N37a&BR4FK%UYcW-iQFKl6Yd0%&EWo2wGaCwzk- -EZ4C5`Xt!L1-UV-jju7AARe^<FG6bsY{1X`kOHnOB6r6$f||M#02QX(bGX_|*bw&wfeH$x@} -g7^ISz`k66WYssJ*t@&Ck3kU3W=X<}B1zbatpoh>mX}*`EB@CC-Fz-}Ti2CpL>5FW$fRzPTvhwzaVJE -Pw5ka1XEXeUZKM`y!{i>x?Wd#=c@uRXl-%wbL!4G+Bc7TrsMa1sfx?_Kq11tZeIIQ -b^ZtWt5!(+9oEr?yf%EC716$fB0|m>H5o6#BPPIt -5Og2ONf&K7vjBWc*YyV}E3YPUNEp(Pe;7l_^nXnC -qPB7IgI{a3xq-HLQ3 -Iie&_Mz_E&V;8FBGc&hu7bZvA9*sg5DyXk<{RMPWd^WOfLe6R1hIneuWwkbs-{Y-BJR0Ox>kOlgwJ`5 -brXT9bCeI*0!1XZWu=6t_9BP6??8)L)MDaE0?3e9lHxHy*f_LO`3;~UBR|>Zz_5KvOt~{knR=UU*YMF -a^AXHYvCrpy8;vs2S2KonQOJkBQue&AMTP~#`wX}N@!C2r__G{TGK%?Gn*f!KN!a5~!ds9;1*MHvDAU -|L*`&v(%ao+_)rj#!Raz)8*J8|f%QtHk&5BYs62r$`^l2Ir4FF1#AW4#hePXmI^6wxCBnHte(U6uUCK -rn97}rT6fzF4j6s{q5P};y?<;M8YbPzrXrB@bC=dM;puo@zzdkuvk0EO|(*bpQs%pA5_v0u;529Cvv? -p!b*ZR_Hr^T}C9f$-fONh?IT1wdF~5Xh?7I_Q`s2z6FEE!cG}rb1?Q -T-HG%ef%OFJ*q_+k~Ruxq%8K`?4Pshu`DW{b?~?6Pa!@YW24uc4Og%R^blyk3YL; -^9u45paVTeq(104hVwnWf_uC_K%@KosyAmYv);H1TTh6V-)FLhSqM&b3T8ej7-^(ut6#PSX= -tl+j0MJLn0d33a;{8i-u~LwlJu#uAtAzAb1`&>y7{yfJ$&U&{SH|`aLXPSU?{c-{`7n8_^SaHT?-Jpk -KhJ4foQ7K$>vZJDci_x)m8ZvF -2|7sY4*lJ5N6bE92lX8-l_n;3TA9) -E7Tu9#y;?X5kuK|$p;Oy^jmDVUdV($0-RHXRPG4VkNy09`w{v$lOFb7v*x)UEaMU~o9F5B?bpbf085~ -_NlqWr92PY*^=|E5ug;evXQqR9Ghaui;SNJtK~I>`0v##=>SSdEZ|z_lAWc9{EffHQMKhO_9Px-c56; -o$;il(QE01vC4gL6v~Y!Uc-?`8dH12yKG7}Q5ifwiH2DVXewg{ag^-tY_krW{Hf6z%bV!AL+Hg4c+9TMKE_>JJOx`F -&czaNG2kq`6b*ewjm4+oS7a_xQ7;U$vxZo`qF(^!H1!(n+iqon-c+J+Ie(CHNppm&bR<8ac(SI-g0?B -_nxj(VHn>RO0K$~Xb!i8@4U}mHZR7*+=?6Iy({CeqCPPky1NHF)q3{;-35gG8`(Lv!c -ELafxS@MS7y+h%jwaczv0;>%wa5D)USyU=l3h%cH8kHe9{FqK#J}!n;Nt2JGfO_JpuyCbqK6;Z#Bc7# -DjwsIN(5Zvh;STdWjl+@5ry=ApC?3xl~YVc=J~9n#MziL?8w)e213_7_*@aPFIozf29<^h6`OtJc}v% ->)~wPtSM2X?mqG_O#Bz_vIKd%BM6*Y*7V^X&Mij8dU@{M_ZUpaqskf{k;)jbUYsvIGQ{?;5qm&r#|bm -Eb_Bn0c>2mQbe1$#UsQ3|}7xN3S;xbT9>1SVqSxz|E&{G4o_>FN -5Wo2lNB+y^b-Op8{-CR-c^0QQ}EM#Z}F|DhLpZdnWG6UDh2{NFEhF`AgE{rHZosn#F^DDI8H4GS3)gS -UtARqxSox||y7K689@t$IxB7NH6MJCA79Fbm1xpIu@1d15D-9-7|biYvMZiDN$dKTt~p1QY-O00;mZO -7>Qttz_hi7XSdSNB{sJ0001RX>c!JX>N37a&BR4FK%UYcW-iQFLPycb7^mGE^vA6JpFUqwvxZ=ufU_{ -CQ>WYPTEXc&*)}c$H~*H6MJl@og1Hrfk;R~O_6*AX<5zWf4|)YKmsI{kDGh%r&Fi0h>yi$vENuG2!bn -F+z6#)o-v*!Ow~n^mzB&`EY1@#h3~B5GQ$R*rmT>~p(;cymogq@qT1%=11rTpYoRI}yOgWCxs=BZv3Wga`Ls9p23F4I&l!h)Ad*tRV%kp^nCEb|S6HIX2uZ#-h~x&5!J^XTmF=V!mo-@Tbq(`mNTK -VHeW(!bt_OaOiIQa@fuWjfyS0%7Wh%K|CLQ~h*<k-OAes%u(^!>$cbai=o@$1Fq*>6* -ZK))T(-*0cPx~MsApMkUizD^rBSEYc17Rj~lp0aD9iadjp-w#1mWgS;FFlkFLCFU?GQ?ine0?)fY-yA -^*#Lh&FCtTzX&70OMXx%?sJjH_8qgfmmjsY99g+DZ_woGBiMF6TqNsl52yv%@Hz-u9h5)irKcKAwEQ6 -iSSPOC^{kFw0OjmWCOsYKE+mDz)xeF49Rh8mp_^152vv2S4s`6>skkijv^_!Rm+H=tV8lB!YvFaCijUPxE-nNHLkG{eWOv!yyQw$|FE~4N7?F>#7sdB?Jd)X32VUfkG~xs!`i -N#E;0s8=mo%XtWM8@LSz98jVnAL*L9Q?+_U4g4)JWl<|#-BG6zr#KM=Qgds4NwA>vC+LY0k)rfbb^X_ -1;)Ny}*KcX{VWqB#AmS!cFN+fK%78$D*wj3UU%&JNxhwEHb;mGRqa4AzDn|&Myk{|_O_;@8&dAXYnix -;3gx;a04e|;WZUeDjm-`$*$HotQ>at}MXBk~qEK&Jv4d3FK0&W4Ln -lG7NpXCHovGI)%Cv06+#mUjpLRMkAJ9_@la(DCF*@U2t1MF0=iQqf^HJO?YdIrAXDPl3y`TWIC;W7Sq -^z%^n$;tDh=P$ZlKt*Afdj~>fIu3xNK*|-k4qLucW+S1Q1bse=`YdnPLJ0;snK@dAJ@QiWMG7jn0KJP -Xbh>4o(TUet0z8I;@>&6qvpHJyN^Dff*lRF|0@OnT1b7E1>(UfMOM3`VDd;~9h6fdRPo@ScH$fLsz1d8FYC)5 -xkEnd?y|LT}69i})c9;D)977O1nxfl7#QSAAuG*l1hOv9liYVmtRI_^XUBD@AK=+cW=+%-A2Ek -Ue8Z|y*R%C;Tan?I{ga;0DM&eHU`{1Yz=;WKfibt(f9mSU^(s|B6|QSafdj)r$zC**n#`S&SV*b)tJL -CuwH5{iz#~}tCTMoHr_x(p?T%D1RqvGtA=?tZ=jt&6{(DYU_+;-**v(KUq$nqh-RVE0Fw&mkw2&?l@B -6{<#@sl{}T=;PqijSPZ|GS3ve+qWOF!!5|4$ZF`TB&y6Uk1**x?h9I!tGOY-bl%i3V%*Li|`fnMJO&P -9ghtg3cwEW%Z26sA-hn#PlffwT}YM<89n0T$erJiYhqZ6nFKTh?eDBAPO1gN90~~+co=wD -G-u&pU6^+oZexnX~VPK7&R%`ZxxzTpdH!feavN#0`^o!V5zc7p92_`!DHaqL$*a21%wYsQiQ+=f=_+) -rB2B8*LDn|0kj7nsgni*n^q81i84509|Ob~egtr|s1c2?1}%=?_G#MAE_Ogl?6;v#s9Wsl@x&PnmN^y -3o7P -8*>X+k3Lg!0f^s9ojT2>OriS%Oi?aY7~7n;IkQfBzxRLHc_<_AkQA@;z~l9R>1SR%#16YaD>3s-J>Mi -^#qpJpuDt=A&jDO^m2jE^1PQGczc}&4L)($5zyB3ubNfpmv|sLx-&f6cRWKmCrQVC-&P2F}_(OoIRbe -r@QC((_a5yvKX85a1ASz(=HfQL!1DAMjg0$0e --YfBUj_Vb9i}m{tg20==byMoB8ECJq`9*7ZtdPiew0e?#a-MCn5DXf(DdnW(SjolR6NMi;n?ZmjcdE4 -_UA-9Vk{OIU15uui8GkC}i -oT}XUqD3&GysnBGDc9zIL-K=7PhXqd8GJz;8U#>VDB!uWoH=lAZeLx#zn!v5ZUjJ^9fvRXs1cpPgW$m -=@;crDcTAK>mGHZPp6*^;1+dV#GS}v`gvH2Jd)Dav_lYXi(5w%OXL{uG@a2o}IUE17h<}cMe6d)t7so -H2A0EFvJpN_!-`TSd1Ct^85Kj9U)@bBMhv*fi`H6n&ToG< -{Yg57>JMR*<<^$ti+>AS7e2c}g)1$|G_g#J(#GIx3w{EX_@b6R=>Q^^oOTW#VF-wGb2t)L9#ML7YI#* -zg%6|1@O~Yilqvi}Nf_YmAzKu@#6c%sEX}K4n`BRG`ns?~gpKeYCUOfYDum^@cwn!!r;OiKB8tQfDA= -GsM-XlmJ&>58T%=@zrv*66lzSppdx`m@xD -gQ#=(>lV8H~_M`aZ~h@F}t4UNNqA!VF`__7O3u)V%9cM)UfhQo*^MxGEuCM`w~G%QK&;@aNc~*|P?hH|J%U(_I#{_&^S<;-&K*(C -sY1`;jB?3c>B}?{_VDf;X14q3glEtMRedf}h|_<8^oo2!Jc@qS+5_ycriFTUBeA)6hW4zxGYK;Ho-&Y -sd+6EM@z{KXu%ieFu%sZ9_3ooaG{z^vA|&t^|pbo~RpKQ6;9u?op#UY0MZ^CTRoTqL2e+HF4D5V;K$n -RzAtBN%7GW3I|UT60Z**&>@fYln)<}-uk*1WwTt>l;VZ)c-PGArF5uKLl+C+NUg});b8cHBe%RvfKzo -Q6TH?+Ur5p&u(?1Bb#@=j7&;ua_5)#DvI81QuqiMN{2a`fZqd@i=HPJA_k}^2orN|q^_tVk-*ztvnoN -fV3v1^_=fbY(dW>MfrZJTd)~U^BHk6Md%+p5EKEw5$W1(6)I@&#G495l5P11F42hL -HnbhfVgW9ak3^tA-8I7W|~$5cN2BnEN)?UfKh4c>UP)Z1@w(Ri|~4=J7*gp8I7F&X#fYXn5a&bCv3(v -?zA#(qPcNB7tb(`@wQMIhghVPP#H^$=M@WH%EGhm)Q3n4i5Qd&Tn747)s8}U%!(GI-_sD!y{nZ)p}!2 -S;%;gKA83jNQ|TADU*THmoESum@x#{UNO6v_HiN22d-A69kb7I>Pe@Zr0oTF<%F)(zv$-uul&3HGHaN -}-2h@r+(6|?Gx&dMu$gIpmR6qO*Q7_Qp~Kiu?*FG9(ylG`8#l#FroqsuA2@(kvwHd)%s@w(;Rm!xNuE -AH1c1j5jquoUNISBQ1;oz*dj}4hDtN5(AiUCPL+~+VwWj;XD9{NUaFt@Ng -swOckJgpYP>LKFX^{#l15LrjRT==oT;MF?!O-KF5P@5YnEDn|N8^Zx$BT4+clR#-r&UD-7j=nQpOT%f -jFW~-8%Fn+HLm$xfa4Eoe4BYNx50Z>z~VH#{WTR9Yn~;k&cNVmN=uW!8r8bZ2Fu*WEw9enpWfPM5FWu -{;M%t4>Ka68$0*|gB49kdtxQwxIx@U-&shv)%{O339bjwd-3o)X70IwGqdJIgm-2&^0}wtPi&l9B&ZD -kz!K|X4PH8Akxjh+E%}Y}v%(D)xHGdSL*G5oh239wYJ!LPCe=wmdU8rI03KisP_jn_CrrJE%YY1zg6$ -DdPWObmmt_WM@$lqWw${OrOg1k=IxGmp>-m1{CqAK3B0}LFn77vUYz)vqRK*v%WctWPsAXE;A@C=S?1 -%U_hB3{{apq2WJt8jn-$KWdMn!2POc);*{o)uy*OxDTVuxP@bC%|H@){0McyLT+0Mt_~ -usCRT2RKcUMpJ~3Uq9XVPA)-Gs125p^Gyz63bG7_8t`|CNr^3{DlxeaM6>pZ_0B9W6D@B>1px^OY!((x2~cl?gPT!PqHm%}SMPNdScS)_$AGb&e -<7vJDep;3jq97}CZR_ObWZ7mj4o&4`@}oMx6!D1B^1U*!%gSLjV47F8Y^;ee$d1)P8Rpi@Y+bJxHeu- -l6p%?a8Njok`LHEB_khCGo8he3M`Ike!_M@FcvaC>_050o{nw<9dZjkI4tp+9En6a$9VU_ri?qJqw(D -T*|f(t(G}fT$w1%qt6et7adeu8x9nQrYq*XF8A-l-0A!o~$s|L?fds>zb{nyCdLd4cDUPz|u%g>0)+k -OR{LQsABMv0yez>(~IU4IXjn%t|5e>fvX-4NH%1NrxM4Hr_rBYBjX4Ibu1ht*g#Z5Cd@g0#BlZ_$WV(+o-$043gtlTw(?} -VcqG3=Ilnii(PxcPiqr2ceu|Cg;tFb~DRS>#2gW${n0N1%anK{08CQJ!(iGO>-^z@mvKzRvCMPJbu1I!+;qQ2wrHv<&xrOmAz}-$d7XkLzz;&ahn%c -)&-X-EWUfen>~;)=@7gs~Qacox8Oz_&7l2V)WLdj-UBbD6bJ@tTYihcCx{)+ -vMSK4&f3R1_!w3=RPh!a??ZP&G(x9-U)b5#AOoX9UKDt5yMLX@pmO!S(V_Qxta -<{Ivk^1WuEB(T&w`^SIXk4?oqXrOvin#13eb}-4?Ei&pw_@fzkRbO!GK?|7sJoF1_$gd#TeilCowM*d -f7&MvJ@tu)arME_Uz;fv^)6%?HUCu;W07>(r{6Gb=ABN>b*BKH7XUqoua*+6ltQpJpa|Bo_*A>7JWUt -YsmT)A3Yy_k`NOZExo!fgqYmfo$~i)tR=o;M72%yB4FnY2Yo!R1Q2E;GofEI!HcRg)t6P=zVbvNseaX -0#9;cQ+H@3Cld90~>*94h{TO3un#IDoL)KVE?b}$ULGRl3YW?OjvtBRMJUbogYF_Lb>O`2{?L-)z#<3ir|qB(U<8QMrZ2j*7blPATXo$YMfw76qYT;J}^vYu -JgRl8xY+~Q{4?#(ppJPWTsm`KPIe;Jgj}LSpnC7uV4}Y$yw`tvup|Z#3y(!F2g666~Ds&=%nY9?bHKm -)(n&==8z|u(`U64nNVNTmfP4haa3VV~$q3Jc^$Dz+)KOUJgCZrbt#}nst-R8X@oU!J_dqW3mP4Uz4f! -o**hBbx$5Sq?i5+e!@ZC!bM$b`gDDrO=hdBu -g!}6V|7iBBZT=td8{jtX86$2bcZ={g6}tdtr$}dQYQ{qc~yywVQ@6X-DVzZn_cT%R9%+tMUe*NYig4h -Q|r7=6I*V8ak(EaIPIhTI8`R4SLF1TxIs>|h63frd#D=4HI5BqB{ -(gDgD?*StVX1vBkC=_c!{-zYZ8RxdYaLNGJlXOQ65H|&H6I!YD$4`mOQH*sTQS#-dJyY$&3pp++JKpF -2OL^2ZDoK?`KK605-0_Rb3lj?>|bfA?Y&Nmx~i`Xu&$yv}NQNIbEfD?hW%v%iiZ~)#qQ1O1;gG4A;k| -EyuLJN-}+ihVUT`4~EU*`uJJPSL4gX`9Pxnt5RIMYds#?3X?5yrdKZ?T%JNK+Ny-g^7@!+UC057;T~P -Kk=%Cgsf3=Gbd^^d)%jPH~`=$BefjiFurS#Y(3B_N!Mi)Fh||Jh3%9SS@LSa -5={*`-7D+=0Z>Z=1QY-O00;mZO7>Q?wHpV)1pol)4*&oj0001RX>c!JX>N37a&BR4FK%UYcW-iQFLiW -jY;!Jfd8JovZ`(Ey{_bCKa6cplY{N~OCNY`;U6L)ufNW?|3|LVZlytH=OQJ?naor;SeRrhZ?KErW4~| -0W?w)&p9BY+=-R3e|f=qLzEnLaaj^S6#Pz$T{U=Z^=xy+}F2h1X+ryBn$&{#7~RfLJD1TTNTy}!P_Ut -HdNxczN$_wKLjF}z2UtIS|qi_9$QOe9nM9Aa)I-B&7Z(QcGpU#cv_kZ-QFW(Y6feuWULBvBiN8mctK% -o-3`1UL8hf4~YwgxbIcHGj5(HH`%%Xpb7c`OYC8pYZ$SOE`0OC;qghK<-7QW0TJ8DSMFgO%EVr6?KH52%5JLzTsHS!j -$1Hca47rPVbBN+tJFsN0f+d5*-;fe;5qGi)iU(|@M4~b*Z|#a60Mne%QZ6k;rH -<0~AtALCfoR)~5!rA^o&tm^A~Am2TA@z3uZ -_$DU0_*or4<36P{Xi@q7E#*=ZC8upZZgm>f>hpR)j$rZ=+*0w*2UHKRvNm5J55 -GlfmSki&bm!!fG%_OBV}GRgN>?k%@szC&k&yHrdo5F7b@vV$sjuVyoNQ(pNpSh%FTfs@& -+(Xo^L!w$T7__eR$5iS!+6$joM`05Qmy3iInaVI1~kB`Gz*=SHYK+sN}g!cOXLc8-D=|`Xuu&%{cpt+ -%*U<`*{p>e%eFZf|pwPbm?2v=*(_z{Fo$`MHcR7YqB!0G)@l0fJ-1G|{Ivva*D&MABY$!#Ph_su&#?f)-y -rw+92`H~_S6%!fsP?;TXM=vk_T)E$;#Q(_@F#c!a1&G_?rN%is4%4!ohu`D;EThuBH3+|uf%(WZj)p4|7+!k#$n(!_65#2xwnKpB4+@vgD`Y-A7GJ)#Z4Wi}W^Px8wh*^Txm>FwWX~IVn|a~64 -{RUzKPWgw^6qpwi4+VqML$#GkU)8))KP`3ft!jG=PbSMM8U)I!PoYLj`}+CTc)Xvr=yEb%FEUSzGdid -MI<|4x1@F>PXPY;JCT#t}gz#N%N#P{{m1;0|XQR000O88%p+8Ew6iDx&iOVaA|NaUukZ1 -WpZv|Y%gwQba!uZYcF_hY;tg8E^v8$mEUjEFc8Pz^H*4wCZ$ql-Yb=tX=4bODv<{eLY|vkTZ3Z<+u2$ -n{&&vK@21d)EjizPeg1r}E~WHTDO(px?pSVxcD1pd$f{OQf%d{nqZ3MLl3*+>DRVeTedu2st3qiltb; -z*Dl*hWg=B9{Mf|zOBGM(~U$^)C?(zQa!~3Uq8Oa;mEol>LSu-xR2djl*a4MhHd66X$L7uNT{d{3Hd66Qd -j+CCGklFn}+^iQ(;zJ30!jYZyoTo7oJ`U7ABT|=e;y4{^;=IjB=fZlzKO+rdErka!D_E1AF$zIE2!*2 -*lvd>SEqO8;)}we+BbgN&ww+3>hO~Bf97^v{aXO<6U*bbLbhw(e&bTX%2n6dUDy$7&W_F{s>5n&ZvGA -(_=P$4fZ%3SmHKD^?(8-d}r2^Y>8={>a-mH-Np(ly)1-U(x#7jz9kShxN+q5C>0R -A0DbtaxN&reak>|45%I#5u*_UIc?ERx7f?$B1QY-O00;mZO7>O&00002000000000a0001RX>c!JX>N -37a&BR4FK=*Va$$67Z*FrhUtei%X>?y-E^v7R08mQ<1QY-O00;mZO7>P*l&{*B2LJ$;8UO$x0001RX> -c!JX>N37a&BR4FK=*Va$$67Z*FrhV`yb#Yc6nktytTR+cpq=_g4^J1d#wmXcM3hF5H)F0|d>b$Od`YE -(BVlZPmJ!q;}&j_TM|hn@CCaZju^EuqHWYhBId_^m4iULaVZ%vTPgDZb`v9))cJCOD6DpNAm;SF|k-K -my1PNcP*EsYInP`*)6ubt%*E#@Ha7AuW41$O~n#&S>`e!?@9sxf1ouhKKC82f9y~ftrBv@U`wqoG*nl -1X?6?xTb^pgfShvnPhWCYvqlQ5=F_ltPE>R(FSjM*PVgPu(foL2*Ut&}vaFokhnCmisDD|3cS%T2o3< -%)wUjlmbPnkj3_$+|Hhj^G{?*GyG7hdu3-B5*H$8gFnNZUM%lw^e+j5W*5`3QVS&ulxnn?;#rWS0+WL -B^(?JJqF=Cg!i@kr8fY1>76d*fP^;PN;Q>EAR*Kx$-X(58(FM8MgN=LI6k=iY0nx!g -Oo;0-k3x%X7Vk?TFrC&qF(&5&ZLiyATLJ1hftj0(P^?b0@06M9rsmvDp!iWK?<`90S$_D$1n|z8?CDR -)2ztR977-q1=gwFn6a-%q4u6st3k>q;{y#PewhNitj}s0$*hTBuA}+f>K3(v -lEyD7$qO8=m6_a|5)ZVCt%wE@k$JUYjto)G9>JyUpVEtL|u -2UqzSG$oA9GpGm8#4=HSO$ZxZe+c_$-fItYCVSrao=My}OJd};&*5mytQGOOEB0+)6cpxiK8a5PWDGwor-SrO-frTqETc_-#}YBy%Z94lILkVc}MX-)=+Qc&3Aj%Zh}Q((I891Ek#8LZC -)UBB7~4a{1TN%!K-BJcPN21~b~E)-tUXW0O^?n`VYMA_Ku}==+i9t5{3buEd(0%!4uti!R};u#TzyRw -%+^B6{GM0yWTnAm9bGxh>R&P20;;b5)pc#xhJKU=u{tm0Yk3qd$Gss)P#2Wn_PwzVBv42;Gqc83AILMR$)a+dQOjfx7Lm4 -!EUoasDc3eY6jD6@yW{tDJ?w(RH2JqDQb>CQ$_>e)_x0Aiy7m;l3qM1FXbM%ca=Hblb3i=z!SOu -E~`Wjc}_r`?|1*;+jmc|y0);K^SK$C!W+yAs|yK`(R#S`+X}Qkd8EI}vo{J?97q0FsScSwb?b43E!k2 -HRYIc%tI6GCtd|;XGhwqOAK0Va=*~O=RuX^Jqe*o#KLggb_-$8C%BTp1G`!FRa(3Q~#?m9dhh$56!@i -i*WB+o90%*B6Cf*7EKMGv&e8Ka-8)2H#CR&v0+XotpDqZ)|-N=a=HqNsx#Cf#adr%ID6X1>ey4Lo17Y -K^n`*9E_`A5V|v~75?U*=%vLk+=Lu -j;g|F1h6!k37sTRSY)YrJ*w1nZ9DTbLJr8CoIJtw*_(2YQYrFsE?9Z&w1AhO6q^)nCwB)+FJJ0SL&)?E@{CRS;DYvK24a&Y_l -*2#;9q!Cjhi&upME3-XW<8|h8BC-TnGJ;U5JY=|Vxs=zX5&rVIUrT8Q?H0RJ@yf -n7NJgkO9H(gz@AhZhiubCQbpLh_+czH1$U1_kAXE4fWyZ(tOhO2)~ -InO#M5Rf|sADqGTbFqRbXT*RMQ8U|(9FYu$woH7~b9vn||sX7Gh*-rhi-V17hnqP+4|>~KmGD*y14_=L19=gU%pCTEyMjdNM7K>^c^P7rz~xbk;g+!gk<~!d9 -2WJ3*iB782D$V`E#tq&sk<_H~%0zHOLG@y)oC_fZW6C!wg%Mf2ZNlS9pxI+Jygyxf<(-*{flm!r(bKi -EnbySwiFI9H|xV;y+MJ0|XQR000O88%p+8<~*X@H3|R#SSA1fA^-pYaA|NaUukZ1WpZv|Y%gzcWpZJ3 -X>V?GFJ^LOWqM^UaCyxd+iu%9_T68>QBXv}%EHWGunz`2SZt?V6zF7%w$pjY1_CY7iKeosCFvw?kbmE -Ec#%k1lHKhtutJgA)ZyW|-{@-Ba-m4U>zWm+;*DHXW~t`4w^eiNzH+(P3ce%i(84OQt1o$@Xw@*0l3% -JqrQ{zBzEH(s;f;b%o0_HMZ6)E=72UD&k0W_mlbRA67L$B2baB$AW2!x|9A+%a?q&qfH5nG*Z#JrU>v#2rkA@?3kh@R -kTMS*)PDis5X1tn37wja@O2ef;T(Xs4*mh{VOYg3MKXh$gra(UJ!UHLq`r!Id0BbSt%{y@z*sdCS4>` -2WhyfW}Pm7`}NmXS0D5Duf}$0J!EAiz)bSJsPj8kx2z}8dqZX3vi7H+zR&HVU|S|wQ?SJXt%?bJtDWPC)%+`E&1;_$D<6>%TWE-*mKv1G(tR2J*GwUs&_LmlmRZdS2*VB`_o5`@pbc&2*AgU^%(P% -*wpsf#-SHJX$5eI3iObIeB2DVSp9r`OH -{Llz@Ot_?A2%;dfNR(QuMI+^3Ek-T;AN4?zh0qqktxNLr;XC6TyWFLiq@uH1@fg*nB!fMhC8yi~^~)sD%`w@Mv_1GfvpgqNE$h+`BGl ->iynfwiLHJ6t(>Aksf-Pxw4k0Ki+;#KE3~fPUOcxWk=+NyVa`fU>q6kG{aC;Yy>)Fd(#^dWMfZ&cVU| -R49qG$I(S}&b|(Q5*DBNxA;U$5v6B9Ej@{!wPAZ6+HKX8OW^6VJPW=$4=W&Lk4s3|=Yh9^od*cziv)* -U-f?-J6aY0Zn3T(sflZcBDjdFo+a-GhkN#S2Abl*ij6wiC#nrT-jlW68eF7itJ!@l~;*|M=6KQz#m#R -4mbF(xLfHPW_F(R8j4WC2BAVDD9Bv_Z@ru=^BdC`(Z$(T!`;%pj?W<)lHa-M%r(APh%Zcc_82DQ}r7; -6Ze0r{jqBCE}ZXgw355KC?flF6!mJ}Q~weh$JFm23B58ho74d6~?yfbZtX@0*QG?l*B1r5a)4r1)QCZ -OTwx8bY!&tj1<|)g4M!VH+|_So8tvRox(ad9teobhmZ=Lf$|PR8R;&B$~&jD;}h?sG*23B@|Rd54w)C -QeTl5r@~~A@L1n^L<*$OO~2L2W -+&%?qU%d+7tA`Xn{WLO`=Y9oEvj?FTEK^R0t=%_nW={l|ygKlL@S-W-u7j$QRiEeW;)bg|zjFyLamoy -I5m9y7@G;Zd(z{gsSRpaTB44>%zsCN~n5tiT?spe_kfI4hucErdFfkF#}c}7iv&sTVwd%i6ax+jqK=` -HhR!0BX&&y=b&Y`a~hwk@Z?{ -GsO$<)C{cAP7SJ-WfawULLjNIs)JzWUB{oYNTmT`c@R%J8eF;BlfyHiPM~&j0aU0hB7FH3?lL~`QccR -=eTv?#xLX~+vwaAjyP@h;7?KZC$E}Vasj16j3WUoRZJ%u&(KDQ&RG{B9GdhGB}%wIPo-qBM}cnHl9rMY%pMR+@C -zJG4s+KDBn?q<6J$Mwexg6C0iZMxAmM6zOK5_pxXes62H26yqk4ZQlH)wEcT&OH>gki$sLZl$ToV?hy -;Dm6g{ukPyW{DXfY3c1a2AC158_W=el&6;V~FW8ycg?ocxmS+P!j9LQREHD#0j_cC+b38wJ*Xc8WDOl -(Y`&&gkfb^!z6d*Kum9JTXrK=dGy`CW8<@!t*y&f3p?ie4CBbg*;Po*ke4J -^nueZ?!ahP0uG4sNP6X()cVF_N7_{mcHoJ2Q1ZJnlUwX6;;i#-h_nY->Wph_HulX?$YYgmdR_ZaCkoR -YxLjaiJ0ILbEU}=`n75zrlend;EXl`FNsyLI@t$Mj*D^p;)~!yuCOs?YEJ>N -OFSH>GvK50zKuM)kyt-L|i_x$80a^=gR@Wl&t#;;?*!HjMh34WM|CCB~UGPI2>@k#J7EfkbEx+JvV?d -C}b^)VW}`j>fCMu41nswGCCD6@bO(Lte8${d{oJvVs8T399@_jD=a1@6&a|9J7_y05@3x5y+7V>1>+L -{!N@8P5{gkh_CT!m=%9@_$wZKkHT{b*x?bu@OQ<)&S}rTa#i37>phHd0AnVL~&%EdK#9;yY-FM_nT3m -GKuhEaH3tOXM=>ti*QhDAJC0V`giO^#)EbCIA>cL8QGkwg#s{1L3e=)6T#DXeJ#CU#YlZO6lx%0Yp$HL$=%YeRwGarp!|E2}IW9p8Vohz#r -oI5TA!64p3Z-^hSx+@&d+YKSpjTkOun(Sk?NV^`hqZ2kX-&@*e4fJC>#lB(@7 -wb0++4q}%)Y_*dNZd6`0!O>c6qnH?w`D`0LhhY^TOkkXKh=z{P>mb@=f05FRC?+3loGj@|)MXJJjvXS -2e&`N4Tx;#1e~&*>jVs1|wy6(QS?8O6nLy# -E@=&*P)qg()rp$jiE`yPovA%xy?#hxB4F-~m>Hp_9m;59P&8RW7R|T(B-N>IV9W -EaSs^F!pUbWV^7qU@O!khSrJ%s>#Q*JXjkev}(|eZ$h)4M4wJu>+(GK+9qg>FNq9ai?c!{V&ZWzH5k9 -H0FL%R{areAXf8`ywI)vZuTU6xYvTtrt5mPswZkENJv&3p0M{(6PRc+8yrgH-C8>kua&~rhw$WR) -MCs75R^0^Bf$;zC`7|l%V02D@5bw|)+;IdDqc5ZV8`*dM9EJKGcGjF;J_YD`lE@43R9Cj5?oHhiIyy%w8s -nO+ju23$>n!zkUn_!7n-K8_iet>sBMhL(UcF(XkpaB1JFN$pd2^SdlbiIRSi{7Hlu0TZ@dOStYvmgHQ -qw5W-^&YVNpF(}4(RJ4~ggXM@(Vx*HD)!P-w&5F;brEV{FkD_QTeb08u#E2;5h8nnIQh8{qfDdM#kK(Tj=#v-hf!5twmRP&U30Kq;a#i0VD{ -v<%l_?BDD2o1s2d=o7XqVwm%N+(Zp6Fu0McBL2Yf5zj6m#%Bpob+j5Ky_BmQvf3EAmfmAZRqdTe$z;I -`W}h}Pk_^BAn{C+oB1rF}B3DZ(m-lz)0HQgz`!lj2}sVp!GjNt131ib$4OveY=*0fK>yo!%F)DWR_&{zP# -6-Jh3H_?IQDIRQ-e|$Q>FfG*JEsE#=57!`t%fkV~dx;8pwJ!rJsn@)LA5Bvc6{cwn*YnvCq3dDXWHNJL?CwvZ!K^-v4)@ldNPIpd1WnbaQ= -maUUNpNbOjcgQ1fE%s8`|4YqI5>5O>tfxjn*#;l>K1U3w*|;Pnv{y-B{SLtIfm~LO@d)z;tH7Bx}Rtj -qVZ=epVGbuXAPeB%$l-q=N^5MR${+=VqlV!zO9PJsU1y!0J9pXOA>Hqr45PY)a15KDUjI0W{XfEjZ4u -*AWT6dfaTT?5(&f}a%kY$PwDoU{n#PXPucJF-vpEDU%BZq>WSZS4kV%JfIrEJA)RIkktuzvD_|J-qpr -%Mzi$Mbz%V3~k1#sJ1Lo#|NZ5ke-2zX6f21)qur9DYM-~+YaU4N>8q%8q&umFJ@`MN`E-rFI}#w)GxFhF}Ek8`93mq`lo?H@2ICXzJ*!O#mbTz-;cz{}3X -Kn&z0GmA61_4I6Mecu&N8f{faQpiJq7=)$ph)s+ -Ar$X%b&e?>^k_P;LN7!|TQ%+_WDjl8fhq;{O$I8v*reorTlAcSyaBZ@<|x{U8(r#-l8rmC3-eBc(#p5 -s;V2hR&%)UT>TVHiK7Zyfj94jdb6K18ixegMR*QI3`cS{+HM7$%R*+|^M4;pCi!r=72s{Li8|s4Eq0d -42ZZ_g0=-~zg*x`c&WS3&9aDTQ6_vVG9Fypxg8yJ8GzZ0<8IK%0Bx&$^l_z4NfUP^D_i31<**Y!cffw -ru+NA@g_h?WlaKcgpt?j#6CvF&#s?i1iT@YMH)z<@E!vPD_h62Xfk4^B6H;=_KWcXja#EIiVuV8eno- -Q^9{4S?4L*8C+IRN06u(C8i)>+T1NVvD!?>u>&GR(-3L{1Or1dQ0O|57U$UeNbV^irAaB*x5Y+tknclB6GxJGvj7Ss&TO{J1=#Sz{&?oQW+Yf -p&fp8{8E|5Aox`RIO{E%w@T*vGe)Fa?y>qBrNuz45r(sLt_Sw*+^yQ8;utD$4MY^W5c+z9*i7EDPpi3u;VrJ^sz -SD2B$(fI?sqn(w?>tj~THL)W6WOA>HgR&WFr?tQMd{WtvG3erC=9SV6}o=noTh7LJdW6YWBW;i;>Dhel%i;_Ms?)*>)qgXj3$*-B%tZa3o0F4=BhL3-&7&?j(&N937;_Q*9z^SSIULAA)3M%nisLA-gE9NJuMQZj1%9~Ex=~j(TGr%n1s=&c3 -Vd5ihbApq>9j@Boa?xnuiUPae#3gyjFpYyR$=r{Bm>lAptZgabN3E7)E~pf-3*Ye2uxq{BL)X*fj0tQ`JM784F5E)(RTb&l( -9(A0o6kZcU%?+<_d?V;N2iA?z<0i)Fy7CU_qmN%-J{`%W2Q}1xm@E=C7Lp@NL3&f_+*nr-J0YMBRzyLwY?848nvz`;Q6zxoYX%IQvs -fm@z&_DEY}Bu#u->`)lJc^uD|WmF#K)Q{V&}23`p|F=$yiVB*54T`4SY`gi1MXIa|+P|K5q$o0I-e)5 -`&x!+EamvM#dGf9#uc@>Q?tk`c^BA42a2P%p>Bq!j13m#OZU?G#~O^gXPLH3x+r>e-$NxIidG&UwTm5 -obs$RjD##vcV~e?NFM*tS-nh%WumN*scZM9TiQ&g6o!Oid+j;mFcE{9^wxChGjt|Ei*g+@aOOsPNy-R -~7>s~%8{JU{#C_kJ1zm^232;P)vA=xH1>|5RU4T)%-It7bYu_6}T%U0Zy7uJ70tcW2@HxAqdFLb{Xla -UDH|!*BM$LdAUq%QWq2+X7tlvi`Gqe*`+|z(Iwr<KJ{!7nDWlG6Y-wHh55==)HL@6n@2$nZ3K656mRuJ4DP%LbOEo -XS@NbBf5g2J9s5o~ZPkW%4$nFFC4_PZ1%jdZvmuV1R?-{m$c?AqxJamrDxKig(_{Y;+za09bDV>RS2_;`tVT3OpXmZ^k -qg%VCxw78lCV`xZOB%P{Nm~3nZg1);#oAHq|U%2Unu}Y8Deb}RU$}Lu>XtvjNMLbMA`6todqPTN^8Jv%0}tsb;o2t^D}N2MwHgQuuF&0P}ZJVW_BZhQ42S2D -VEGISb6?QJ94Q7P`G-dWiAQxqs`&Y|)gN=F`9ywH?*#51*0m=0ev)09Owot(q=c^n+%85DupdZpn>)G -2Q`Jf#@ci3|(E#?QH)V3ElK)6-o#fRq3*Bq{+8W>@g2)oHqN6(qX4y2F@y+ZB0mw9breWNBLl_5aY(T -)NZpKMYOM9|Hix>JiF2AAK2E;!~qc;M$@RGSsk#drFTf!oU~FSk_)}LM8{?{9@)&n#pp96cwvFj -u2g$nH(2~%W3@o;$09K2A^|l-2*@y<@6<#cv}(q|~F2`Qkf4VH@ -NA%5^#Umb5JG0W5wquw0fyr5*szHMQ9fwYxecYEt^aR$`S-Wc*7nc3?s0`Z(_iPOeJU#W -NacY`HkfX(`blVTj;>>UP`M_{b3g9h82($8G8g>Zke2f_Q)lG80q%*6Z@0fRkJtXZDFpnMR=u-E0DNZ -wK^4#o2M-Z2hCq~K@14+~{)~?2pFPBdh>1!yh6NaL<(ZR7XzTpwZzey=hNJ=ig3^PP# -@Z>=im)0^i<8{$EpHA)H(X?;{X~k{ukjh}a~sw9T{`jO<+UrD86hcW93v~l3&@@58Ja{NS%6|qoZiAo -U!Z`W;1Y#EWz*4`nyh3kKD;BWZ{mz;Eyhlw(9d0^fS)@Ge9jdgQYp4#Qs+2=?-7G%a6(aY0&cKoO#LW -jRD5tFW^atjv`4|w8foifSUCh}pJXPSz#*Lr66_SkSY$u)0dVt};ZE^lwB9>k~-GX_8R -QeVSjuykQ)I4!a}`YGidTFoR{iFRzySj%MqD-QG~6F-!4OiB$uF~L#yQ~1OWh4Ij=B~wJiwyhyX&u^s -HSQM{E%4<2uj9i9i(|5%$eDjsUYqPKthV{2-#MpmKMHv1#<;%-YsNlN-5BJr^i8^*(w$yu{cL=#q+azJD#magkw}&XcpUI2#`YzGIo&XV)$C>-rk`BeO#rCkH)OjU)$YFb|#Rn -uW>+Q(kSxO5e4yBx{C!OqON|^y7v9@l2LcBMC5hS5Gcf(5JSOo*dJ&A!OM_K?d?K|iwYNVMVjqMwb=uc!03+RX;(EBu)B&TmMygJ2Q~i#AVW{(Ts@Ohgh -oXC6()4sdVh5-`JR16tfQtz$BN&Yb@n8pZ`eg)B=0gUoSN+sIs5UP7s(r^<<_ilcg~`@y~=O2qU3_LY -jSt3Ua0EjNVH%!w>J595C=R*_ME$%5CNsQr&G$Jr0I-|rW_XKz`wC4Yv5%BkqhB$LD|j-?73hVL#3i>o>_=HWra?(cj%Y?Yn07irnm4f7ld -P+H}+5B+2@1>SkY3PS8$_qz)Dgg2}KUYJlKd6(z{&p*13zETTT1$i(6ywtI(wwHfw5fglV9Ou!oa>~D -Wx{E82LoA@FDPhp`f1?HuLl{PyD8rDCQK{bl)t?q9NB>^ba6v>*(V(U>Mu188`%Ok}1vy{l?T^Ejf&= -WPi!QD8C_uJ@Zp{Qejh4!#Te4R?Fn!zi<>fKj7EtGOyKlTy}k%1@UVqS3s!x@I?jIR+4u35RGZ*Ysmw|L1^^71|>08ZICzyA=;{qpox@}7sWq`dp*I@AP=5Gh --ignw|KDn?h)50KxUvI&sW7tY%IH9Sl8j&%Ng4ulb=KFaMt=RJiH^dMx(D_7{x@rP>6_2BOIv?s>Fyf -8&8Sv`eHwiI;=;$s9B-{|c*E~mT|VUUqqA^dCShJE(U1_Z6+#mLl2-m>vgR<`$#zR1WH}h6b -3ao3%T$JP^e!{NwMm%*5r7eMz_l7T3GfpwkOC~!q1Y}($_=kS^ExGs2`ft+hkmj!q2@P5v*g5$cQfNh -i5XGk7yZ_`hrDt3moHbxIc+HaJ_GiSygSbEDVE?^`@6aWAK2ml*O_ErD@0006200000001fg003}la4%nJZggdGZeeUMZ -*XODVRUJ4ZgVeUb!lv5FJE72ZfSI1UoLQY0{~D<0|XQR000O88%p+8rH;n*fdv2nB@h4rF8}}laA|Na -UukZ1WpZv|Y%gzcWpZJ3X>V?GFJg6RY-BHDb!lv5UvzR|V{2t{E^v9BS6gorITU`+udt>226y$4rAa3M1{WAB6#hC6L$?BCK!t#~nGw*oiBH)Ed^&L)Aslx -31i*k(YLY;`UQn-o$#G$OC@eT>wIFZ724>v&N#62p55LM%LfogZ0~Y&$QBp5k51f#8Y5qQq}rxB7wV&r@{t#LkC*lhhyaEk*gy%JLct(iyqY4II14m!ir-SZmmG2NbAc^Wg;Hxo`p;X2ISOsU+#}Y9DqFJ| -9L%uH(ge;$Ww=I1i#{g!iiqf?OnKxMoP$NJuDz9>^S;(^)Y?@>FW9-y}Nn!=KbYO6iVPpx=pWrCYL+u -ZXKjUF}EypyACGA!b?X4NZ}B_S}z!&7>%gu2l1fq#1B&C=aF~uMeSlVohBuBn}N7vIX`GMN6wv-HPh) -pVrY0tE|%3gj;@q+k{9x;$eFi>d26WKbH|=pKzYHXi6TjBwCUsE2A~;9?F=JnaXc?5DXnN4;4v<5i~!05OkijLq*GnP5=;+a3buQLhd -DYwq3M#?enC^4V8T^K`Ky8Uod<4!!mQsxQyTK~c2+NFN-th>D=vL^#o_(^kO8&YqaTtUh+g&u_xFdI@ -KgY^LU2`;aUV#E+&-mBsMCNJg}Gl5ycpy|Cx!MKfOp<3I*HxzmoNW}i6^N{ky5(q%B3sA*A#eEQ-=K` -MzL+gE|-{9{Vb@_McW_)lFwSIxQoK9*4Hza=XsN@;>&zwGZ}F`ilSF}j&VIg&YV6d#02DB`PIFd79;Y -pH;>+71E9gPl7%2CPX?0&(*-?x%PBUDFM$MT(6~&eu^Ukx^1eEnGOB~osO@-*-9L2?l!Z-e4Rx*-vo>r=1kL@eN%migS -Lr&+~SZro2dP3Lp6$Atga*nd%pXdut*LE&LbenyK0SWk3 -(c%&c2?-c)y=R8sWzKVXY16+tgIKTU|te#)K8Bp>0Lv2t^rB*)74M42`G`&iZ$oO>apF+6?<3~UTuRY -Xl+W>B=lbqFf$p_HCJHC;Tg?O>DkcmKoO!?|q6Hh>?jvyBH{!Y^dYPk$V?PPCcboOVA~MjibRP) -h>@6aWAK2ml*O_EvuIe@k8h0052!001fg003}la4%nJZggdGZeeUMZ*XODVRUJ4ZgVeUb!lv5FKuOXV -Ps)+VJ>iag_KQi+b|4<@A?&lcbE;h26h+*1jr8Ex{t$#V%yzNEGA}aOM)b)&A%Td#c8}Yoi4UM_>y`^ -swj#d7^IRx!VWb$8OUfD%#J$P8VBA?u0v4dgQLw9cYPy@q7Z^cYg_>1h1fbXf+gFud(_If#vZIQci4r -tH|E~M@$B_PgSwX8J)io<8=vGbpgXrG9nfhxG@E#|MZI6x-sn9!qes-?B_n+7(54t?t5N`u@7f1;l`i -*t+Hh|L#L0lE5zvljAgm9#6rmCn+`GubJJY@4VlJ(MBTcC5-Z(v|1OVQOxgZK3vqW8_b3; -b!bPanYCK~aT8WzshI`;anV>A`g|~E?Tlzzi{lOaG>jqi@=^iE%ncZ+dyuf@wa7m9&zXpIXr+6~V9VQ -WcK6UD4mI~0JaDTS{Wd@^_w3S~*>_yk#1~IUt?`~VG*CF?z(P+RVz041`lx`9+_TL|AeSZsc%??m;x+ -}D(|k--dFtgRm~p6z>ZF;8Wg2JQ&}J89{!~vS;|T7sT!2X{#hTt6{HqVnz^D}Y65;CQV?GFJg6RY-BHOWprU=VRT_%Wn^h|VPb4$E^v8$ -R7-E$FbuxyR}kJ|HsE?Y^$;LCbn7064aK&*AzMtW)|LcGPMd!}N{ZZgZK{i2=(*sY!yXk -{?xj{R>b>k?r!6==+a5tk=dJAK@aq~@6a`~)GTM63jNyYn2RW{ZP)6sTka!xg+0tbnez#ZR -;qIN%*#K@RiFEMa`<$><|y5YutjAt=U&^jaIWukw+$ICDtC({aPGss`Mf035R)Aq<16S&K{! -4`$|yc>~VlgBB*g{{pCo@(e4;hPKe*B}UsJlOyxnN@K0DI7Ktm@<9h1R%$-Q)!~Kv1L;B7bjc;MSgI}6x@B_b8$svU!2G$*L*wI_yJ~Yx9h_Pt6ea>J@-)%DYI3S -K6a*k{2K6s?&)9Ss4fgi}WJ_G8h&LuGrxi#83*~wA*WAe}s(n07x(nl8%@QJ#(SpZV85)*G!ZMjIt?A -%4yL-Mna&zUTjo^QOK#;RCUtL2oKO{|@@Pn$d_(^hR(M!h|*AHoXrNUEJaSeuh>6OO9KQH0000802@m7 -Rx-2@E;0iE0G0><05Jdn0B~t=FJEbHbY*gGVQepNaAk5~bZKvHb1!0bX>4RKZDn*}WMOn+Uu}$c5El5-Q8T$Oy}eI&6_c$^aD -69xZ|V;1%^AR6&Z9dTheJm2IzTvBv#L+1tO$%MjmGGWb1-bS`>1ev~fP9m#R;n+7?A;^hhQ-)l4b}M) -9FO%yJM6)K3!qUU|bC^-~(HMo{ijP&>%lPEsK}o8t5Yibdn482H`76kw)^vLN`pQ`Yfe2*-S5j5fP7^ -OyNB8Qp@l8;8Ww+f338mjj4hQC%vJ3=Oun;O5C`Jy;eFo}i5U9@yqj=z9$9G~=eXkEF}MQlb_yv(@}? -sDp80LYfr#6~A9g1Fh5MSQNf_U`Ug?Soh%G2V2RQ;v+Ct6-6PSBdn83WW=RNN%jP#QIYGH{=E;Jp*(K -TnQ%pF47m0I1kvUgA{DvKU$?c_lMn2WSzpy6qHkT$Vds6dtp`*fMyz!!BGID;CG0Qh?n;_V(dv5<(xH -RWZq2%&^N-=u!nr2Oj(*e|%q!qd&v+n&@+aH=(khq10%a~!k(cDf)3vfgpzMP-K-?WtrWHH^;V-R`nv -uH=8#!A9Wl&`%FgI~`SO3sbt=_wplW)(zrw+$G0Bnq!Um)hu-JcEZG9p3HY&tSuDaaw(!|w3v+Zd(QN -CJpGIp7E^Hi7j}tkLUCOL6poBwS>+sMV!zJsqzP+=9R?9mmt5SBo@CJK~}WDLw}(EV2vvjABieS*cUO -@Loov7I2vRwO91>tkkwRDZ{C+u1rs>`*qg -*j`V{*pu&!9H=P*#^WWku&m0m_yNmy{zeKaj`T-w3Vh02hU|Vd`(cR(2n&pxxqn -Cr@Nt*aRcdAY-%We1AE#~O~|KpsCWidT;!Ie?LEUL4K?}~)WCgfat`7BOY7_bYQtKKf8|E`g(f~w*lP -)h>@6aWAK2ml*O_Er%7#bxRN001)t001Wd003}la4%nJZggdGZeeUMZ*XODVRUJ4ZgVeUb!lv5FL!8V -Wo#~Rd3{n%Yuqppz3W#DhJX!QK@X*{kRH;cv{0ImYbio&kG)D{NtMRkE~Wpy`q*{6m_`?AM)PLgycsn -*>j|_S24x1OifIGuy&Zv$E_&hQy?3Onk(!lHryLi*&~(;wcXZx9VM}6f?Q=LIZYHI>8`(a`sL%1^qtq -Jx60Z!Qk2(27N(UaMT};$sm{a)481&+xXfHx!lZ-L`%K;fnw9&)$nLi(pzGh!7gpnf((J;n3>|vLvh{ -GOH3y1FA+xIntcv93B0{KlgcZKZsKh#Umh$K5nQgq74o~=JFG7yfgJJ}7q`7q1&J-U8ub4*oLIX_r~@ -Wlj*$sh6O6w{4p2&Rx^r#-^M-2+6fg+83L;Vfr)M4G$_;3VyVEac`u^$?~uh4qux$BZNn_c5D4sDK;r -C)~GKouB#STZVv9^L2lq0vJmfQo4*i=SMna47|hLG}P5C22w_*rePt_Rj4*aoQBQFGTk`9SH@h=(dqO ->xuj3&x3?btq$&P|dR{|LcGOKZBb)h^Dx9ahST|7!)a7cn7d6Y)q#BXw8M|1hONR3jY*y~Iu-9wXC9E -*V-z_?VyL?4qSK6cZ*4Nc1sWf(FTP`Ka@~0MFq$qpvGSic715X>ppR6)4RKcW7m0Y+q$$X>?&?Y --KKRd3{t(Z=5g?z57>;kRpM!wR*~7rSy=Gs+HO%%C)L20|PiQHnmN*tE&IK{$L3kXng^XJ#Xf{c_8{h -8wXOitxzoyX{#-1jPAi52OotgdOtX!6_+F(4q~9}1y!vL9gc(1PgptDY5i_;D$? -yW(VQ@tFShdT!0DX(D(v$bV6Ec$I_!#XlFb#Dusp}gzK2~t%XhR&v}c41P*B6>O_XN=)S~Q&Y0poGFA -{mYHXkkeX&D_C>hqm@ls+=z^`y`57wDo+?J{L{lA#ROFcSXbH`aNjF&*0;{w59Kh)E{fOj8e6~Ft?kA -1w8Wm&`rtq?vd>pb`){v17AkIKOqgaX$gJls9N<>mWC048-Pi71cgMx!hY+;!kIM0y|^uwxajHKUZrn -CU3odo*(p7I$E#yl=ibJ@pfx+*EHrpj}3NmM= -`T7z5XVCe4JFF%t7xXy|5*lsbcNpX!$Y*0xr+Zmsb8<1ig(9axFFeOm4|#eN`?IoVd}pBOr%>24H~}W -Boty0KiZbjrkJj2>twZb7;w*x{DjeMMtMj7;Tr-#^hsJ2L-D-BjRhWD-;4Jxtg%T@1T8uVLr`a~bqzu -#=lZ!h3lF~d%_4RKcW7m0Y+r0;XJKP`E^v9ZR!xuFHW0n*SFkDyNQhQwuLhJun%!O&4bY;e%|ei+k<5l71(I6F -Soptp_#uh3oo-N|K3EoKIGlO&9>;W?gw%wIVW50SsCyNvoEm*ddMQStPZOGmH$76N3-W2wRPcr+&Sj! -gSyQe-;#%1IDwy#n -DlEH@%)*miQPhb!iB!9!J5{H?<%rJT#Ec%aB!Id!x#=`1MYp_L#ycvJi-gGEGO^R+CJWY`0Kati2XDx -Aa{2!Aol`)X+hLM9G{ot6l^hWre6Z@)RF2#mSUax=6&5Qd%gkVGO7MDtIzy3-g@>3N~E*ocB3Z}qEIs -!n)c+_?+I>{=;&m4cg-UW<5YK4dIl|y!Rvpd;UaSDyb|&cpZ5WX$;`lPe%oA;p7zD0BxEB`#K{=5!{! -QkT6y{-`O}EeP`CqB>_|CPW4V=yd{pQGU1neNkaZ4+75h;Q=$)mH7CV2W=zU7&h}R$FnY0objE50OPZ -_AvG`VyNv4`YQ#CKQf@yZU-EH2>NLU?8$8_AKw8AjY}zV${6tC|>aUnw&Gm#g9;E`D#NqmbB(L&FK4W -Q#6C&e~89xat7U+Jg|vT=hMbO6REkbLbvnRgj=9|086fRQyyb{}z;I3+sI%Pd`5|_i?BlC#UR|DC{_? -r<2uJxGrYd!iAs)CiV@hg;m70hTM_gvYJ%8w}th=brU-^^QmdSU<1vg8F0b2#V9Lv6{WuSeu$M0Cnrs -{>e6enCu(kuTR$`ASffkw3B$=FRoF`D_ZdQ#OFH(sjaVe%TT^%=X@qUDF2^WV@$2Rmp;<+5n-h*BO}Q -O}rdO2(*_l0S%)gBqsi6#l=4Q448z2L@7*d=`W)m)_Q|`;gArSp#$--bcX%z8>-6eZF*v~_je%#XAZo -eJ*Nu`D3gHO`(11*s#{fwzD|Et8eK-{0=$`%gpDxFUHfVnJ%lAw9%jlIXN+Jtaz_tjVa89Qu>hOaG5n -%vt5LJ^ngH@6aWAK2ml*O_EzED6nixQ001)p001l -i003}la4%nJZggdGZeeUMZ*XODVRUJ4ZgVebZgX^DY-}%IUukY>bYEXCaCuWwQgX{LQpn9uDa}bORwz -o%Ni0cCQ7Fk*$jmD)NzBQ~%u81&NKDR7OiwM=<5E&m;sO9rO9KQH0000802@m7R$jL1pbG*300IR705 -bpp0B~t=FJEbHbY*gGVQepNaAk5~bZKvHb1!Lbb97;BY%gVGX>?&?Y-L|;WoKbyc`k5yeNUx8gD=gl&1TlY -b?;WV?g^r-`lYzq?-zY#307N&|8{8Ne@7}LB5#*Ty#0nMTUTVy#98m>=y8d`-Xt{5g#UAc1l+j;wEf* -1>p{8z5TU!*$h;cjAZz`|{rlRh9$Ve?ZWep*QbaGEA+m>HSjzPpG^hru==E=yNM%Ns4{MYZAeD+uOru -r)9tEz}; -_cTsI6;d~N$bJr5M`vA|pEhXegUj;7PY^CvMvnx6KeEsyGyk_&73O|-_o=UN2vTwP^m^j-KPU8|7Yse2 -REySCcHkK{j4O9KQH0000802@m7Rt==d!N4E@08?uK04V?f0B~t=FJEbHbY*gGVQepNaAk5~bZKvHb1 -!Lbb97;BY%h0cWo2wGaCyx=YjfL1lHc_!Ch*-EOen~9vfdOo%AR8@S=Gjmv*b;76&C`MLlF@OAOI+ta -XG*J`ZX^AlF(+2*G!@)I@{KD)pTlAH7YOLE-Q+>yi{4aRP$|KEb<)+)MLYh6TY -o|jp(Q+2ku$}Tl_+hkpG5Jl0!LB1hSi>fH}qRXqYb&oc6UT6UBo|K(_(-ryLK54JbSN`L@E2_&&z{LE -l+N939wfWg-^Q~QPyWEb^?koZ~SyKXl_F&ai8#T{b{qPGJMs1s-%~m>{Km0<@=iBhRTZsyyI5y=IaRB?fH$kGX!TS9Nr6N)_vm&t5>%SU2MRu?&!_bF{O>PL(#L-}dHmPYXW -#LoN9B&cd_z<>Egu6Nvw5NU*OPqF@we}Eshg~;8vc0-NVsP7%f97^SeRIC6rP1>m*_IXj>rDT;1 -&V0%OM0AdYXkIE3C;QIB14E1p673Q4Meb1`$t}X3qPm$<+NN?2i&U8>mRgRnM0mqfo=Xrhtrcgl+ -CF$gT=^ -l6MXNVm1|24&qk;SvEs(Z>C7i<2FvC7MeR=ZuJbm@@`}FC_`J*R~&L5@E9z8vof&gOMS50vXymqnH8! -HcIAm&d`(!ZYk{cH*>##du~i9gB8&dGGomcL{R;BMM&>U2ed)#$o_XZxXS@^;}^U3c3?FVnVLR@-i>b -lJjhAWt(@>#SW1&^l|nyxYST2D>d$oCa%pv27YeaJ$LcE9OGprZ;)F&dZc(TQ#z_TawtW$rc@;gd?Y2 -l`i!v+ZG@sK)Li*4r?G_0`{G|(o^!*`=>Wo$_b45l!RyHVXGTMe=&Tn_)m5P34|tw -M*0v;dv3W7!t~9e|k-}7~W|^Y8o~h_1{dxgEBHL=I+fLqtblS(DOUp~WoT+(bM&s5i)n?Z^ZgsJmsKc -+-v#Qi?O#IY<)WN|4ZW_8#$7c6PU?F@@&*GF;c$!WQ4jf9*Qj}rrBZ?}#nHi0Pw#0>MQl&9?gn@Q#*vh6NFv%r3TS0Rm?lp5 -`^gz=r>h`E-$zoUNq@ka&P`}xZ!#BALH?4nSm)=Q+#T&ryjTZ~>(dssc%8Cgl*TG^QJIwZu9jv_EoGmj?FP4Oh%V -qE17?$D(M>EU-tqq8MGi6^!dOrWef*Em6wscUhRcpe#YM3Zol3sb&DE6ctBJ%|e%hugJ@(~5}*DLw@) -;I0v0$iZu9E7%~7m3XY)zGE9_n-3qNE+iaMLIRgLqLHB8o_a6Z*pn@gM(RaS`lZPc)EzgG&qMo0U6dc$PJqlmMtbgiQV?`<9@q#d%9S)z`Ym%DQMP=<o -eNzFrJ)qfmszBd2H+iecdZZ&?%Nu)~2U*6)Z-W~BL!wh`KX;mc0J($L1M234E0@+RKG);-^ -$DLC^a9b7D;7jn<@q7yL&m(URG9$D-t-Do?pqg4*^1p^OlP#6Qi8Ep=~P(EVQv#(Q9(VwP0y2^Vxg!8 -y?!@W+jp$~BEPVR7+k@T+JGCXWB -&nuiSvoILEs(eZcp1|-~;IgFLZgGH&w~{4o4Ox*VaYe8K}1RYnjw3in4N>jcW6*WnCZcLQ@b3JAavX- -X#JCKj-TlHt`C*K@ugLjjC1(?2>E1@!GnP2pv|X0;eIrMk|Y>G}vy0T1i&Jrn8Jcf?|Dn31>2q?NYWi -90w+|Pn6$|h~&)3YrqKieri`0uqKo=)Zd#nG$7tTAqRRgq4f=L10oT)cfJO&^SVt1d~39ns3Cg1X)jZ -<5>QTGAB;^8{z<(lnz78}JX-+VF7#E6uEo#|krqu1dKY`J0;+&X9f#d%qrM;RBV=x+7>y$%pBlmz3La -~eunz74xw!Y*4Flf2em}ex0mAGp#GnU$aH%D~z-HASY<74bwv^9QM4JK{W4#9OK7clH-lFBhUP(;Jq -Ku09%B9xU61_j2pzds-}S$vO{;N~HdtU+PNWTuE7{yorBX_psE+~lBxBYO^FO%~Vh(Lc8-APRX%%5X$ -Cb^4hKdr}}oAOOV7XV1@1W(p-#f=Mg@7&p&AV9Cmefju-$loFcg&%ggX^+bXou`qA49Z54dd-_ccO9{ -js3>J`k1>`Ss*;$gv6V$z&8sKj^V$3t#jhKV5RMiHomz-QGUrUNMjeaU+`>B{VK61|D8T4@X2$S>00Lo(KmjJjFwS`N0lU*?dXwOE|oK03(x@hB(5rHDufz8#*s3&Hy9Btpv4?CQb5=RofdYBf*Y)DHk -DiE2ruF53^KQhH(IG7Q8`2MUEn3P(*IC-Hy|KmgIjo-g`@JF#QLEMUVk|^Bi2w|iRfx$Q%Pl%TLYFm= -MI;B>K3DxEW)LO#HtpsqE&a3o6O1`-!4SE7|BO@t{QVTKvJS{lT$nsZB5KGs2F@`pcF=Ou$zEdii?%E8 -)Vv94sIDi3}zZ~#^VK`B7hc^ZlEg(x#>l+#4YLjb(Nz6#+WJPK9~q-!vaYRsZefkCu4_D&9lW78g%6n -Bv$LgLut0|y1Jbm9bJMR+s+fh|alUq1ZO*BoO0SUnYc(PoL{b8L}T1_wt+o1m< -swr8y(I$Ttcbm*#d)l#=Oh-v%r-y)xjZ7Tsj_!~r2j8#h7PFhcWl0u8$U7|eMq^m^n*G!kcPa8!=enqvtIK=^hK05gRaBRl7sJ@eRcm%OGZWecmkq$<2qA2ueo -SbjnIP}C^nF$eNtOU~uudpioh@tN;$a{Uc(7HH2I*rnOV$M6wsLp7&(vSzVHiI81^ -0~nQQ%o>Q_1&r#2O$=zCLVct{e~7lTGNf$Ze}RV+^|ksu^f5TMlZXWZTxHD3#DGQ3+i3?BhJPB^-i(5 -ussC(&?+Da6!!W$J&@lEgloaR@xILx5>2l*SW`|n8J|j&TL{5dX+fYjZEL+~V|h61McJJ)38J?2_dBwS(U1VOK^bALlCd#Qy`26-dFqB{Z#oiwsg&^D*wWs3%6-BiDTFWQ2Ejbp8F6Gh{ -7IM@UobZd4kIh>1clX^!KZ8V}0Sv(@9yW;ePIz*Tcl0QYFWDn?Q -j89=a@Z@KM;85m;p0QUQUjNP(GBkr?>18(=q0suGJr+UBhnUO^XCpk?Y)YiE3F2#g+=;7GoJj}v7q!D -77uU;Hvbnp=W3=<;Khm7ONEKXYQBEBpgeUn}XzXYdl)3c`wqWf#cKaAi)tsmWlfEI@G!{J~_ -S8Usklcg8%_OhEccT2G2^Gr<(y$VUWL8EvT|YiD&t2!}^}wjt23aueW$ybhW~XW=>0b8!?aWOc&VY-y -WsZQdB4Xx&;kWWypG*<_KBNCRt*LcB{B$D2rNhJ&S -FdqE~@H^mJygvKmUC4?CjOclNYBi(&sPEPoFbtq@=6#VqNn7fa-IAl_KtT47v4y;hG-M=gG;pk6wL$?o9!AC`lp$s-Qx0v{YKp$j8~4DVhoUQ}xC -iBRBI9I*Og)ZOUj3NAL!W7R;O2*r;n9*!V$hxY)*O&$v`v5%rZy9$*@}2pi -Y@`PeCF51U*+pS^~%z0FPf+1Ouf+624 -RX%|D5F|^)i-pU=8j-Tz(6@@4D8lbNOTgk27!P9fb5_xs5&L|TM8D~fpK@Fvj(XgiT4|O9u}OlNQ0Nd -OIDuTB`;WZ-2J8gA#6n%39K{%6%6XTjPB5^hb~-HE^}|?UweFOvkTHueGe!O!JRKJ1BJ89G8Z+48ld! -oR3>w<+VUyG#08Px-u!TfY;62w0y7`0rqpo$O#Bw}gknayiO8kEPDNP*w+sc&hc!^5#?!*u%vfp;J!D -cHk7dbz}$4T(`i|b9!4H=R)bzm14Wl*r9;ZNRo4EW#0&EEq8CUj_n;pf(>p^z(HD9IMk`*juv-dI0i4 -h3+f@>^UD)wZj*9nTPB&o@)j8~P2nB@|ttvL-N5nr*qTwW$nju2&ULowA<_>mW@DOsQ}9a1pFQvBxnt -MKxzw+}m~@Aj;gZV}}V5_Ex}N*OzQ7v6(^<#iGiVIc>vnoW)9{y#+f=cNh#;ppHZS-l|^1&8EO -T~iBFLWjKEYU8UBzY9!D);lL@UKWA4-uA^S)Wa2?wm{qmQf -QmO3dMzqYK2y;S*TtUF3SqnGgahDUn<94g(JJN-Ed^DfES;Io$$lQ(I_m10|8Gl7P+K)U7rl&M>#A?J -HIhl91T|uXKa5ikRm(E_Xu1o9n@ZHv!EK7#_Hh!Yh@;WQ>r3tEfw#W=Chz`{w8=37_h_r+*Dw{_ -Cx`mAiyw=Ann~`-V=C~9;shZ29J_r-yq$-jl8vT$hp`$yX0}erB9~$?6WomSLKv3Gz*rB2%W43yf35u -vBJDcULmUJD>->W*01Ej{t%0xOIoEi*!IzNG$OIa8~VP6=ZCXR+7*9gHq@`0&o>OFCi^dhglLyxid-4 -h-xAQ_l#gUL=M!qCoKId*t-2J>-L%t$mHiT>l~BWUcOfndu?WR?&Pnp)&6D~$n8b~4WnjSfk4;!i%!0 -BX@%oBnfWm5Py#=L%!SF<%huvSa5B&IZOq?tPz8BkS@KpKKh#Ww$S3%bIbVl(PV -vbIi6q9_toVPdON^dnhYCc`t#uT(3u?UH@q0yutqk4|K739)G1aWHeP=}cb`4U^7>Zg@_EPsqyQO)5> -Yc9tn3QRra*m})`Jmad7ZOaZ3pLLSih}OZ7;uMjzQe@73dw@L_f=x+YCPwskoj#NoUcy15({$ -b^AkZkUJ$NwV#g*i8ymJI0!AL8VR1@Q@d8roV(P-tgU~@_IRWIpWu3KB5a&Zw7!GTzVtwd!~e7aOGg= -u7mV9*~cn)A80*(ybF5C7(+$9mxDwDcjFM`+tGE6r+*yyu>O>Qefvic3^%_T<<>HQ?X`bi+B&a&9#mBdg)d%S}*`!qo>XXUTw&qD%&&}Ydq%zo`C0RDbhQ!z+C9qfWxzeJMZ~&+w>Qn0JbSf*`+?L1jQYa+E<1`c2_4 -x(O5N#mrdpKtz^mdie^X=Hw(5R`*8$*N}CawtrRN>73IEI0?6mntR5>{Y4_Bv@XI9f3K4+B`%4B4dLx -wsc7_)+F{Fe5^No5trNG89Cp7VdjCArs2C!DJmfx%Qay09m(Zi2yvg|^YOFlA5Wlt6&ALdNUih!ozHg -MLAW@rZ!E`T$QmQZ*|H6*`pYPj-fi?#04$Tv@jDdL( -RFsMT=Gk<{h)ny#?kjF2=nN)gCRS)`>)s8H-HetzF$T`T3(6vwR9EAH4g1|H&|ZA9$5dV^K_oP+7WKS -(Lu$`SHz#7pNalEmd)r6yFtk!Xo{=&d>poEGS9&)?cP8tw?3GPlJQ2^uukZzpFYo@1cLzh6=uhMSOeS -D)4}&PFAyNw13!mEUT!4E+g(ot&2J}HV0AJst{)Pouw5o^0-KL!I6TK?IQ`8uIQRe97+jlckD+yRxXe -4>DT?w5HwG_cJCG2xe_R|t}n=258yI+aP4Kx1w=qsGg*LRa4jLDep*-Ksg>{D(sYfs|$^23ujYl^Y_T -{u3y9wYl-^==Q**{gKjQIz`!!eW1@$#7~Pz__cjx+#^Tt@TETf$vmI^@V1ynFu@g@ovavkDXY-wVnH? -T8Y8?V3BE`DHFl52*z*UO+JwC{vru9+km+Ls#xq*-5!U+h5CUieAxfrtI7L{E;Pivm;a1G#@Yz1v8lR -G#qQ2RW3lq;*jrO{OxAUv@vVzR=lYABZdjp?w8NO*-koEyXGL;}yKvm!xajdz^(Wb~gU8n%#UoUhdc( ->DMmI$&2p+X)JfAVJt;zA3*?Y<^z7^9Nv!SCyOotN+O=(l|`f)t0>Db`$fQb(V!L5QW@@Vi>Emk^HX& -e3=Ww!VFKA$r*w>mJ+lrZmcXE=e7Kh7#2o9qa8*}m}D)?WdbXdO3VJht)6$q;S!T|JidVNFM->2V)d0 -bZdO)350W@QKU6cjB94YHv9#De&()lL+td5;RA_-py&AW}QrJqrn|vjDId>hhI2@g6>M$1I^9<17P02_hCQ*TK2Ih_D@#y+j~qny)5av5=;3*$FB -Yz33l@`(7a+8%&GX#K>+_{ -$|?>|bOxOcD+PUSmnkX>Z-gZ;1kV8lc`S(ze<*3sJg6+?ZCqz1EZSHk4kVe_#8$0Iycjhs!M=<nPZn9=FZYu{x{8W+45#=i{$z*XL53P4|Xv -~+l(f5&(5p(Go>F$o$6jGx|pgi~^aO6$EVsotCM$tPn15;OM>SZi~?qWHCDu?%4I~9Ao87OXn=3P|zPhtGP#~ACwun -Me4^U;E3+-JXgb^5OqE{l_M+c8s-Ht&YP9sr7J?5})=j{T}o5iZqHPwAVcsfnh|H-O}u>hSV4j_$LWHg_ut2O3+@IKCME%zSHpDc!FqSKkAuxY0hX|P)x(Dm -)qknqgB!0+!R3FuTmBRIy2(nILt~8zOB=WKNHX%%PxpzjxJm}RBzM69Fy$1tn2y}QyG@Bo8t71D8yGB1LHlcOCM|U}9MS2sv-3yae}D -2a@~)%pF(8CUG;)ttfkhNPm&<79c(~`MGU~4`Ij+(J-kV6*VU_+-z&Q446he8tHr;aeo -TSBme_oxOou54M? -z>)jrD>k{%A*ewCJQ#|(TNJBLs(KMJ#tI?-id_(>{%DS=7O&l^kZps%QC$%cY)ZuU#JV+=Or7>qP?c( -U>kV=In+zHk9mh{xZC@#hUpD79W0UMvHj*n6FCTQEPtm%VjSCV?xiS;W1}?uknUIw6uLj`^Mu7~p=JC -YRtrJ*YK_2r{q)oD?)K;gL>QNcviJNKT(~r4iMD+*Hj~M)yWp?`^ZIcYG -O^4=kv2C*&9|`n -_e3MtBUtcb8d97C4irhF5efL -)=UKVWd_yZce5J(6M!v>PP4UJIS%)1C{6h=FMX6i-L4;fi3B0J$`l2@$b>PoEzaaDp{pBQ61a1e;})q86p3Ax{~>D_;Zh -YC7GTkCH9PC`avaA)%m>3sx>HYv_6!ze)chD1xN#K^ -!!hq;2;#3dBSY48bzsNsI!UT1fL(~p{ZrvkGjA$5iFyb}Q!lJ0bj#`pF-x4XDq2}9c`j!4(=1AOIy)n -T%X4jc1vdQFfa`651v`z1^$~>95^PYTrJt4Vjr`X5J2Rz-66a8Lk=L;Kc?Q)I{^9$G#DD?a*jFL-FoL -Kd6f`?E+=u!g*@(sVf=d+nR2hk-~@GWFv+X4SA0}gu@>cj+9e&7%t=gnmzK(tcGDvo3#xG2{VJAy$&& -%f@9UYM5Dw3-iYHd|ls134)rCi#fnj(?gOZXp#6_f}m89N&28>z4+X^iC*Io=<5E00KAAcYE<$LK1rc -;!{TiTB)a=EvzCZAnjBa*5isH7j|jt(x~pldi=2z3xCm_lCE -&_(?CPA7wd_<9%XsX|!qLYc6|L%!lb-aqNS8(7eIV)0Xdfx9WnazREmbNk|UJ5F -aW++LE^Ta*jSFfVlO;uxN<#o`X@el@9Lh&<7#%|(r(!-Q>ev6qwlwMCoQi_hgJL$i0dufEzH&FbqXl;Tcl=C>{IhZ=otVX)+_f4JSX!T;f!HI99U%U&u=%-FU79rhcJ -;Ry%OrQ^ocXqNhJETNsf;=ASJZ0^*S20zgKcC*%zQL!BX&A5TzXwhE~{hvr;b*|hN<+|l(T+N07WLNC -`ikJsH=!Rb$vugG)P)h>@6aWAK2ml*O_Ex^YvKb8$0081Z001EX003}la4%nJZggdGZeeUMa%FKZV{d -MAbaHiLbZ>HVE^v9>8*7i_w(+}v1*>gpDd$rjNYTQD)3kRv%QL~*UexeSv1ZR3_#>1+R0okU&JO$?U`_XJdCTN>8okPY7BeLm>>%%uEI@H!yv&$t -t4h`lteXjzi7Zcf16UiWL1fz~AOP{w(rLk!n(akV0jaeBSVeoEOMpF3pWu7(*_GPZ%@7EOyjTZ~{t$@e3Ey!}gzANG7OwR?n;^a=0nXKaqM9y)k_` -vI1;Dbf^H+nobq3((AX1y-&c#&t$z81`RIEPMEBF(qCL&CTAjZ1f4g3MrhvG^$!v{h$uVk#-^=XEXXs -c8q0W1-?4g#MGA_~!WLHE;@~jo;49DsoU)GwDnCeg+gYK@=ADANVi@3_QgDlWkszjv8KrI!$wJG%?qE -9Xccg;H{-tYUYrZk;?@M -|YCP~Q;B1xi|tVGSxQvzJ4;c?Qvj&H?Lh0$y_%fyx?;8^o25kECGS0QeF$>3GQo`0%M`x>5lqsOQ9dP -yW6V1ZhIT{r1Itb^~v_*oR*Twi~GvtB>DSx3JO7R1Ylp!Etc -(+t94+#(*1>YV4FXg&vnnOgsWtmJSFnN5LlE`MxngfI2O!7SFs^jsLb=Hvo_GPH*%1;6Q9?>2(p#Vzl -9+D3hu0X4@qmLhJHouzR!w8@XLX~H9btgHS_YA8m*|}ZIVxBL-yMj>)0gqj9Jh+F8&v%oME_gJWuH38A>efU|V@0|=&MunistlOH{a^cp__`RoC -P9s>_}1B!I3DWg=SmtwCO=ml{QbT;wm+`yh8DMJN=$PmQuWL|~<5n~KgpqB@sde+rEheUXka{1y0vRz -w!M6<;8Iioaj(woIB7~pu_FtwL$0r0>zfr&d{ATx*bnnScrdBLh$z5~C)Kq8#|{l&NF>HI%U{N%;05gsv1FpbEeyRksoDJDaSj2y5FAiy-*#jWs|R}wXkX-ak -Fu>3m#`ql`inPSM2ehkpR<5Y?{ySLHw9@T6i%)^LK;T7V~Br<7hSx=yrK(eFK{~YPA9&KLMCYf`a>_q -5J;>g@^%lP@ZVnWySxC8$+7T)67`24s@ok9qF~EVV#PWFyJ&v+VZk=Wrz$LPb!Y$ude=ggNBg0OKzpL -<4zy(37ASYS{*nZ$Cd!;82B4GES;|Y4??&j{AnSO}DXP2b-vvDUmxKwaVc9Vh;!+9W1CXzRw%I=aBiO -1yrBbUP-<7f!L4;VhZuohjOHdBN5LHEd&KsR?f>tH!eze@#+fp1zY*{7NR$#7vSB9oDWiYAOXii^Bs~x;J$OcVlQi1F -^hsd$J_}*@}3wEAsAT(mH^d0$M}qBI69ViNPEDp0=tO6hGmiVAmVzdx3+}}G{jladO(s^B;7jUMtvN4 -ELes#=TKQAuXqL8k&)_^5TJ~X*7b2E%GBO;%FyzZp-j4+cVA^HV@FF3~t2*e-N-o!YKOk`~ -;670l)Wh4i+3%!&W{_Q-(H#8AVoq!ntBY#u$ek1q5GAWeF@39F&NU*;&Fgt6;@Wc;_(c<5XkWoEi$Z& -nUP4;LFg``KLLSh@RSBPW&fbniVAk4%V+zSL*hMh7BV+5rkj627a@rd4u2q#IW)@SC8R*eZSiBp^U*p -u~?pY8&HZl_Fnw%+`yl#Mg7X?J1pLi1MBH-Asf(d&#z0`Jr>;bmLMgl9uvvJH?Yyxz4G{2+p1T))dfb -H=fpSR9cB01>7Y$A@4OY|EK)Uu$aa;K$svpqoxb!0O&@b17a&~Tc+v}#}tq -@w>wCEh`!0=ftfTF|M3TGJ91@7@`t-xXrk~QHFQo?;M4qe5+02^k&t@V*ic@btL&W&8&fuu>GoLZ?;u)nfEg%mUW+oHR*!|aSzayy -;_QM|UR^F52F%40xw{`2ZJf_*Yntts&@Rg>REXpC(N_o|P^++`eyXwF8!&XsO_DetH>*>mW?7>|1T)7 -V(iLQRE2G7GFW47rwak|EMA?2+~iu@L~0y$LZSDUDsezmC>Fp}B_7^^Y2Eq5#+EDW&(wxY+W}5Gy4&k=N#`wiBxn|}DKEG@fpLVFM|=9HogY#R9 -0SGB$6gv#Z}WXiz7m+-g3HA5t!yE43{Bs}Ca?g4*|B}(MFVf5KXrIA**KH$_j$SpE2^NprW}fnL)*H> -(B3t3BfoHUdZV}+GuNj_SDxz-ebb=C`@#qjL-4jOQ#$=OBo7hwnY3BY1=ySO1X%7f+V_246rijEbM8j3_vZ6A?2}JEq&A(KETXK9DE -hq(RBO`sBTr3qN1o2NyjJY^ymAQS=z`m5?~lsx1NGV0FTY+AtHvl4yw&ApU>e!3$%!Fytz!T;KHcQYB0HSdd2A@GG`cX$&A4N;R&9_C%I`#_IqAqJF? -e`z)6GHdo}CBps{RS1#Q}YqK)Q{DNPfoWK2Tg>0FPXQ@wsYf7a-o?Y_Cb3zOswr`MghA!>?V+%tU4jL~n^*%jvi_H#&sUAn@&+CF)vi9}#;BvxZ3ihlgPQs}jyL&2H}h+OVZp|Ga2(2|ht9P -0*&bVg@>9#sgkVVA&~b-#a1-Ce9|XF9$E!HeX}Vpbe^SDPkGL5{ZfMnar|1sSkXDc^jrtVm2`hciN~5 -(-j1CR(aKlDQYJ3pjD+4m@$atdP1`mWirryYEWuDAwtaJW4HnA%_F*6qle>Arfnb_@^JwS|!@=^;Jb% -Of-;QOJ{7+|6VY9p`&#jI-HmPk)FpX{tn?PGj;X|&6~EYjV=n{EM(Jl)K(M|d@PImdM=1ddSv6LRC`! -v^3cP63SE?P-t=3R8(1Vi*QNkQ}~#WFeJZ4-SsUDCj9k`hcXV484s`_6yIq^nek=dkP-PU);zWS5rQT -9x#4*mL=wt;dSFjcft~!obhaR;+STNe61sR{Iv>3RCUP|)Uo4RAacA7I<3?1yW4Qyyop0AXQQj(?E;G -=W-s9h&l2!h7X93xgTWStraM6GgX@>B0-tE8K6u-Mq&pa$d74GWs~cHtgPZaT>f1dS(7~0DQw0D(p1b -FA#a?1Tj~Az{_3|y=hVHN7E+N|o3;%TWQT*YxhFJ##B-9fzy@2A#?qv;%wmCAMrcl+EnDwR{4^sRH8t -Ei(=;W~BVTj3f^@m5BrUl|CRkN4o61L)ZP&?=40MRf>^s6DMcWLymzj!<{nG`NhvdmqfM310kDXfc^9(-Kuh;EUZfY;xmelPPJomLlM}KtF_0DWnj*8#6HWp5 -y3oe0fbr2GLJ;3MNUrKWu7E*9yLYYu$op0za8MS)QOXRLz(*+`caQUpj7h;^^e$X~f8IrjCG4Ix)wWb|tfube?f&6JG3Mw{)RrJL -?b5+Od}spH7Fpxbbuz{EH8>`!(oDTj%@ofZe$SVjun-MBYR8V1E#TAN>6fm5wk|)_DI>&*-IXehodCc@Eu`iTlkoz_I(kF@GrW{Opcr(ybOcAtaWua`PdOjpjj%rn0239tCC`x1S@%`-9^M9ll;_?Kn>8E2u{^eZP1`PSJgwu$Wd`Op2^tt>;=ooWlsE{_N*JaEPSkTV+E7Uch)u)qmnsF{iCxG*bx^}EjWa|WV -QOZt`m*wq-BPRsztB~EuICB0IP)h>@6aWAK2ml*O_Ev7YiIQ9t007WM0012T003}la4%nJZggdGZeeU -Ma%FKZa%FK}W@&6?E^v9>JZpE`#+BdsE9OwyW3Zth+v&E)OqD&3Bd6N+L$%bjU0H=8awsB(02BjA=5h -Sr_dezc3}rdn?T1Aik(l>=&V9^qI-O45$ba-jE3akMDX}g}DVn@hMRhfqLhYouZtAuZWqoypW%{*lI& -3BFyE5NeTc$Rp{9s=Cwk(Uwlsm24`q~a5bc>(zvX_eMx@`lKnVMuG;5qx-$x-&~k4Mk`>-g1=b1HgTZ -TZWyye#v}Qu5mm#j@jXKgvqBc~`gmdfdUAZT6y2y4mZdE9xpQ`R%N4u*qz~YiWum&58=TLW^`+7G_z? ->s3u1Rji@>u#{YD+84AyWC`ISvMAWr&M-|MX{ch>~8D -!J#wjdkbawBeJtBADqTAXaVO-<8L{|Nt@1x{Rp5cZ;4$qyhK%lG*eAQxX-O -Cv6QPKA?6mH`W8nK%^ZQxc!7^>}D{F+q7oR(erXQb9Ar^XJ6Y=P>77sII+$me_6$BkBA3hYvn8zXPW|)WL=i^t)fOJuT -PKv3JA@sRoKuV5|17}{3d-ghp`?%eDsYtS{0}P(#g@QpK$dty!^+>A7K68z5VL#N -BoW;e0TnI|GyvZKglk>p1u7vLwue7`Q+sFo3o=IvezeP$FEsH|&y1-d5N)Mjh(Dti#tO5SE`35pXtUm(ltTGT_Axb-Rp>;o@8ipG=%ruoyar}kA@U*= -_|Uq=f?fMeub7gw1ASpg|hdi5kHE2+8%s8mqASU%$`&VD#LJ;Mb-+oVorDfXO^Qm#>CqMcwKG(Jd4X) -7d!t>FcgC0T~Tk!2tblVu6m6Qt2r-ph-k0sO1d7v^)gd+-!7%s3pI7nbSCz{qt`_Mp)YTwYwTOt%!3k| -d2eAe2QjpAFJU9Y*M|n$;TQ%vG=_Nz8+lM8@!i{i*tn71pUSvBA=3=Vg~M0%0<8#Fn73DI&Je%+Uhj!i$Hr@h$QJmd51Hhw?Pau?$05)2Qbiht1L1_WjVxgaxNxiG|7n -XEwb>JYkz!R>55N_H%^r=Z>%Qy?uxrG=1S0_cNkZ`FKnNFn{_w(sN6GsDz?hm$kUz&}8*^%eFSWhC@G -SMYZi`llrwXQloj48E!dTzfZ9?02LGvLmoArZFg#2uss`HVmo%1O4_k!^PP9!xGd9bCirwLY**cP%}j -kPw&AzD>SsZ!?O1uQtf_OJxcNsfkji{2&Lb)yMVzo$he^|T1J6Q$uaj9_|>bqkyWEqAup1B?fqExrkx -;4zv_)NkZtSsbqg*baa>?Rx{ZJYgnW0m?TLEz`V;ZCF0Q=(yu2Y0So0_~=i0B?*H#qn5T&)FW*Zjk~! -&$axIX0ipKHJqf}{AoWfwLVjKhv4Y% -*XNo(qjG{em2cuOmhn@d4<{ss|Hg;2vTj&Ls^fslvrlk7S0fV%~O#k7k2$peI6*aXVKYX;)lT;5%htC -$O%&v$6cp05;(5CNmD)xQE7-E7o+;+~eWG<0SmH@a%;z){I2n9meGz@&vH_jpPUePz2V7Q3ninV9;RW -1Trw6rXN2E_(w3pm)SIh0j~4TvHx^`IYoxW7XA*8TMtyW)6j&mw#A^B4GC?QFkhjsfuTLD4tFfBHSg$575k++#f$VYZs`5Zq`o!ikz}g?*ZXW7g -{;lKUuZ{Cnd{BU5$&+vByO?&R}8OL>slS-jjf3o#nrtvUqrm{0TMR$AIBKP5+-U2R>%6^UxSJ@Gy1ge -fL=`(2hKarx?fnOvDf!IY4HUB5w2foI;Tp$?96U&G^R@!RD&&CazbW2u;S>6a{eA2$ -F8dBF0-ry4lfEs=5~DP{rLEFwNQ$xMb*KyI;g(BS@gyHZl648&v6cP4ft9a(%Y~o}gHwwb&kWiaKPD_ -44XmS6xUnL4ui`@wTVa?`R;y$r{%cY|Yg8rC;c?zInP1!@I(jgw#@`-rNvGK`2r=M*%$%ObZvuzpaFf -06${Y$zkkf1C%4{0-#B+03CpV^|Um -wD;zG&eviF=2N@b4EPaG-yt-Pa|h;PCsCP59;z&f!z@LKYg8ZNt;xmBJ^y9!yB{>e>H!DpUvphhfG9pIM-(1_}jM=D$ux@&m -5NVzgcwq{C!keM>1rXazKrxkA4#I*3b!>>Ms=mE41rsQfV*V)ehDA)!p$dBkRn8h*y+ib1b&$pb;T;>(jslG%iaR9J|4H)_!P -yhtOQK5T>5jPYu%AafXiXkvRTES@4&zW=Ph@d*z#X%IX9(D%Lp1nAZ2G4@<+?id1*w^|3_KGb?T;)5R -95C1&62xK50g3yJLj!SUANIyb1hc;USuQ)24MY+Lc2u~FP^soH4Da0*N^0*#5!v-L=xfuo>%w4LYDij#R52#jvAge&i`NvDG&9CW71#Ne2`&{G(`a -DB*le$9V>$}xswRu$SHR1THNkubyr~wbT`Na?;Oc3#2n2TZ$URExr6agz$u{NS+o(xicAL7t+6d4^0O -XPmy&xn64l{~2ROD*L6ag(x&9xvw5fhVP^yN_Nfl(Bv9mcKji3MOsA+#Xy>b5KGXL}J+!g>(S*yVSc# -|8t&Zc`+dWvhm6mD9RW2RbZNel7){5lAR|Hp>_fir+uuxHFAopwSU^%;=jVId>-zGoz>uM}`pBhoOJ( -ZDLo=;rVdM1K)p?3UZ4YW`Ss{9H)Qq@lrrnU@}%T$z0gY#oHNFYGT&-aQvMllcD0&8Aga(x$Jjl7aWX -{9{&P>*IJ3Oo$3~jbA2u!f=|I7aYSrM5sbZT7f=f}dA$s-@y_Ff{`A=X+GCOcy>t{io?aL%IlhST==h -*>g6>BU4D`DVeJ1npg0djfJx)X8GfvIkIk|_PFPWQs^#}s%wzvW-x#Zj(X!H68BoWWY#ZYI@)oIJ$Ie -u{n_Hbj&DeXy#Bvm^{6(LgsPi}q=c>hc;p1dTt(Xpp#Ir}Vl6c}Jm;rCWABSI9-+arkWY5#X!Ax}7UPsg`Ku0(_`djecj@M71 -pqMdJa_ynJ8bw#f4adnfIMWB2a>(K&b$$e8+c1tLS2W_;)}(%cITa~Q#o*bKwuK}SwQlfbrg1jxkAg -L216f&3tB_=51XGJl^@t*+2=WP6Up(d9Ae3JIS`NW5VkoLT^hRJ#O^C1Nb2$$I*X!pgWG(Ht)J@X?#? -({#ql+S}-fe?{h~p;b75X%;%Sxb$E($2VexZM;WGiW9(>$dG19cW ->4TlbZiqkb=m706O!PMC`6Y+`uMWkej?aHsPHm(z(1EWtg2s}{Z(P*F+;T@+p*NT&NhanmWRfSQoGh& -qlPN4qg$L&v{qyjhIZ)242chr#I<0Fq4=9AP$h@74)7-f4uhkIdzxS;R@@Js-9K$3hVglXoHbYuGT*O -W0{})ZACGhI((zsU}ZdniFoLh+5Fo>ci+P2}XD~vTU?S9Fhy5*ii+*k!n01*nd4d_M=%Z(LltGPLPcr82}xBEEXe? -n(vj_PSk4(}tqbr+D(V!bKqULP+=^geZq`jf8@;blr3&zy^!r5u6AmDwu0e{pD&VJ%`%?sss1vVPPx}?*v=zTaCBqL5W -Dz`(es&;z4yh@8`+eE{<4hT5;X}jFg!0QlLlM$4d{iNA{Xy!g;E;_n*! -84K$v(dhH!@H^PaPwmYCc0b9rQt2Q1ux@KN@RzEFuey${^}iSIXp@WK4r0jIbf+A7@ -k5h5P)95>|vRVRs%eDqn5pdTbh>9Q_E?haRz*gVXh0(Em!kjY1u>a(^w=a9nKj_Wr9dF&D>C4h01&@& -Kee>^+ek=YE-Qk=3pedRI>~nz4zI&JH75qejkL4zB!IT200nr^?=rxycdGhcQE{#Al!h}tKsnQzM%~f -0XO3SnJcDIG;WD$@)wp-d0NQToBGsfru5GqD$K340J6Z2JnKWid>=rG{sF?p6k)cwpa_I`|mLm -EGy({wO;&yb+NTJAaFj7@c{}T?mW5EySPSyugDDGz{?ymZUDBpWu(1`%~@c -s75YfC3|B3H~WHr`CtLs0$j83oIJ2*fb0cu|0X}Ra8Pggm3?yY8bJOaeC0Jok`5vQ=H(5J#LIK28(l~- -fy2fs9tV24qj77HliS9X-{)5#P`N~|NyKtu -$2&2cwRLP%rPx}@O14&|f-pdng9ro|0Gts$HUE9z(RVjEBiE*OmsQe`=vzA#gXHH+k!*X4H2Y1{inGno?-J;8Uk;;4WZ_@S_8 ->+sn~r;&n=JXhJFb$)Fk?~SC|Ai781gE4K8c~cXvHdd(Two>Cpm{z@>=}kAi4@l-gNNjjDhZ(eO6qFu -I`6yUsfMVoJqDThYw;HRbPLhpQjoO0K9=UhDFz{UYTd7nvQ!>HJirj?zMXITAXZ&i>n(|W!HC2RkqD9 -qUg$(5Z|xP*Ni>@5N86a(y -Ac7at3(Oo%hpLSQx(091DtK`T2r@j9)21q{Y8uWWg0RM|yoPS-OycW -^2vvHKgsiMH!&(T*99qc{w$YWswqyctflYMbtZs{aDM$Ex;wIIy(5yw$<_ZAFJQM4<{k2}&XAW+gIfg4Pi;AVpt%>~Bb?fiA6`J+!yZpN|Aqs-Z_6W9;y(cR -_IYC^7tJeC_c0w1R#iuT-SJY2wTRbteOG8{TU=Hj}6en;TO_+tm<G+ljSy@5DRhqAR80S*Rc1ej98Fid$2##N=~0AJ6}P-GE9k}KII17iAuo-GREo<*@dJ3Fh|5+*OXg -vHO#X&2HorN6Hbxkh6BC|gaJxX#lhh+4byh{BgdToAv2)j+o>u3*t+d4+|We%KMVGJ;(6hbe)>Hi%^E -lZ}|FOOnzC(Tb}Qq&7>~NXiamx_0bAH$>707~vO&)ke0=B)W?e>|T2;-gDBn7NmGZh6RHGW3 -XZdUpiv_98j)mv*(-kCZee~OVX)2d2h*IVFJt0WDVG<|2aSA^?4xd1^EwuvNAQ;v+qf{eW79n|`<@2p -Bvh_mXk92eF+fC#e}`>!7T!K#cshgF-g$33j)M)oh}>$dGL%C=xBdUS?6PPh*5Lhwj~A}vt1<&`sS!^ -Ra6pkfr$1p6ItZ*77FDhdmV0HLP2nG*4UPK*prz@Xw{=`8I~jEDWcZRQsZ7|;$-PO~fGG-IsxGFg8|B -R$uR;e?8T4h3uul_fpUnvpOcF$TqCzzA-)Ds -Jzj98TR#Aza~LYYBzB}@jv{NDXyH*&6D)zFA{-I`Z7f(M?23AYYk268ZHPJp3JCfI$c_Aj*vOc4LeyB -Z8bpZ*hqTCowD0$amJ8eg*0@C%M;eZ`EiVTF%7hp)*ux12>x>Kg>nG?F*-<$(Ew}flsO5_cg$|qqoQA -_5M3m?>lQq+691--;UmyvE$5&0MXJ44nb61(Wai-WhaPlM|HX72gaZ$mbu!Y9BKhAS#h0n4EP_OYDMF -s)A_Q>z2%d7*wf?pQuL3uIKZvu$WNWfSwZDi_)1{fmHEf(HKYnhWbuU_zaU8CkV^j9F1)M_j7q$AtG9 -~L|d(^iQ9!2xP9IM_m{jZ0lx$7W1$VA+{Be|@%*;o)hOe>0GL+%rXt-AQPA!6&lUA~j -V3zK_${O_DU6h=6$(kgnPaR=wL{`9&mkCSM8o}700jpM(phzbDhL3D}w1A?*F>%9j#n9z;@NV-Qs(t| -BW8Zf*@%Y|?3Z0{Xb$!`Xmlj;yJlL!nE7$#XhtfJNCuumQea(G)=*~q_@swzHf*sqd^xQ}~Qp!=ZiXO -ot;O}ynnhi*|2Gi6aVMJN-vr88M3xPmRc)XMCp&URy55bUMwj`sKfq01KNVSQYae2;s=vbXShrTs4SA-pH;pe@I}(!b(_A=ZULX7}`;*?mZ!9)jWmW -M1^e2mvj$LW%H1lN+OJEa?9wkqP?B+w%`u`PPCv#%82p!p<(1_QLr(bTk|Qj%{g$gSpnYgK^?sF&p2Te0iTD!2^cpZAr%)#3ln^!QGgaid5EOqfEvr1l_S&!2 -|_;J^lzt?^LdLTnDLvp{Z#%Em#JQLLF!1ni!qP@70`-390h|Ipfd0Epr}L6lG4zH`CY`TziNegX*RHv -zc0^~klW6R?D8Ke_MP?MXbdD7A|To-oU@TpdAxHzUE7Yv-u4fNSC-Jg*v*4X{XzD5N2^h;H2jNA^HT; -_-{;0B3t(LwrBj9k65ptQ06nzu))F0#_C^k!>?H6^X7EUDaS+NpS#@C8Bs}@8~!%W#{*qhiFoNglg)m -TS42q&jU+0;b3U$UO4jGGZ-ofK#%^gii*hBLM<&7E7P5}f*Md;fffyDiYmb01PT1S@qi_Jw2UB|rSXz -DumZt^U|z84%K}v)x#`9OX(1)|%pwuU0~MOx@QF5?E=IxX3eH5CG9-n9I!!w+y*<#zRXyDqj_S~J5D_ -LosY((f2U!+uMsgGiPee4I0pK@(QLKs*85hV(JTOaBg&Z=o4s(H( -7}nYJadd$sPb@^=8^=;p?bqBPnEan^8p#p0SC4&lq?Zk)5dVu-4!blt0;xh!}ag9ne1DP#|}+=*7t1c -R)F=%C@QTe?W3tL!@XHIFt>DEM>_L%;FFP3~0r&0}O;gEOw$q6JwIn`ru(=XH9CMAJI*z|7!Zhy(?+4%;UAN){k -TBX&>PiQ64DEwE`}H&r~qvM>UM7R3S^kwFK38bM8ox}j8wa^Ey8RO!+wwI$?;lAL^=Cn>94H@9iVipU -~nM_(8r8I?lQ3(2}OeXvYaIhF -BdyOU7EES#B>of%@9rr&pXuMNouFMiy}6}z(aVC>S5_Zy@#{O*Z}BT)vV=?>S=7X=KbBZ~aC1Zb-QLbEKi1FZ_Q2gJ1eB+%B+d -TbH{F7MTgG`gN8$pg9FPct43pU(%>slG^30*oZwnpFpZ`tSU-Z7>ILv-JCn`$gmB#Mky<8nf$HF=jryOhfe(w&9nIxcv43;q)!!0I4) -z0%Q%KrXb%RBS*10*zu+3Q&lQI=0H}pdDNlP(zJdy5St;W|W%79Bu#+GPW5{#zLc}>VX8f(z38S|q#MYog&K12tRWElMkZqUq|(B+rvaB-?kOv@e5 -o=TSpW)cjR9JdGmB4faIKo2gytJsPL+zaTIm{ZKt5p2-GLaiIos#nsi&^Swx#U&4JaCBg1j!7 -H<&5*V2_^Om$45vy!6R2IwXvGd6@w4SsQxQt#Rl`@T+Oln`=B=Lk!<)(HWP8)GD^sky?PTdySvSW6HXB=<)J&w&N1(}eui>>RqX>Yk5H^xViLz{xB -E%b_K9ad#56r{OS8GDt=kM?bD3Ee*#&#TKU|Kx>di$!E)w16s%ce*tH9N4XwrI*>5>HO3v99hI|YH;q -|cYjS^<(O4a}9@lF?zcCTJ3sIw=MFuVh*1Z+sD%RD2Ebj~n&~Umyo)I4bM+YEl>or+f+Fd_R$zI^-iK -|h6j?|C(_lOQCaZFeVI)q7ftZP+;~ -{JQ|BG!yK($RIERl5R6=C9+XW(wMc-wMmIsC2!v?vvQACa8nd0E_^ -;07D!vU)0*yGngDFnGtzN@q;yS%TU<94v1#Ofm;JR4UI9jwlJZO7Q)iEVl|nIZQ2HlZ8vbvY7Si>1Y4 -Uk2yeTv)unk{&=9G!Xixf;Oza0gdm4^xA!Nnxw`Buo_&_diYAQ|aJP(mw!)Ri<)NAmSI%yS&h3oo_?< -~5>NnHciiUHMKle2~1x>>CccA2|T@x6^LVO2ByB(Gh0)jgC5?8)H%dHS$n|qeDO|UyKK+3az`tZhu@N -dpaNo5P`d85M`SLQ=`Z#o}cZNR+||tXzqsZhLRr|3vwr>H+%K;KZ+mTJb&?IC4HXl5oGKR)PXv8O!I^ -QXP>t8y0)}s%MclI1b}2vHe|rxw`C=a0}OgU;4sjegyD4^3)ar+JW#<*6rs#MYZC*OJSWFKb;E&hEXz -vub>zM*V9lh4#;ySw?Xq5vLnVc!%$^K|6sdEfcAH$J9d=N|v8sWGCvV<7f1<*ESfAH}w4fnjNAKJY=z -W8NfCMPT4Ptd0S{#&pL2^u(W)UVs(1{1_G{O|XRW -p*h(-lmR^^Z9@N<>`6yoYoViH;^JHauLxs!)j1WqA-hs`0}S@ak=F{r(bN3qIPRK<0d&$#?5i4{z60Y -h&u<9XKcz$AFFUk<9PjSOf9PDQfTM{Gb7-+-GQNg6-Ko?2T+ZQOnSOtr5AH)&Fwvsp!bTY3gczOm@!c -?Wl)E5UFi&lgy^;FYgZ8iO1^9m$r&1t5{|+(#;0E+>LSr!Gn8&?p%L+cq8zqTe!;ai41$9gTw|Hi?&j -$ZE=TUKlxqrQ@VV*UEj~%LTp21x!7P)iMU}`3535#KYKjqvT;>4642EAg@et$!l<7l=P&$XpF>qUq%w -jvya+6vWVWD1*SSBP>F2^Y?A-=;D_F@3jOsbod(4EB3;E -9JRam{5vRb#jZCSkd3sG+gvbrTIMIb#H?w8l)Nfk8mW@cdKaCejk56H~p~oJLicx`j#*b8edoRU9oFM -Wg9A7E4_<~I+Q|E<{3)w&(NWsGi{XFo{V))Kfajs6foh)nKbD71`h2CCrlKa=u()ecnI78S;C4r!$Xv -+)V#CgMZd*RTv!jXk5LF}V;LePA(s_AB>4C6AQH=$mQ5h?iEAoP_d{PFDhu_wz6`jb)%^?<@Mq1(W)#!5i4if>$BNu^s+GTT?)d(oajydr45L%$yyAXs)V#jnsbEmIE%SyGZN#sS7te -nHIPd|$H$-jVTz69;f~2>O|%ss)+rriRl{LSILwa>!iFcREsu;4WV62Z7mXC1@)?KlFzkjwKT3>+G6m -=a8^mL<{I51vA^@ZaS(SuWdRGBUl3sh1P`Po@Wve7fZsypnvSUkmO>F4`L`Akbi=-^pN$a&nEpF#*48 -K&qJ2V0L4UNmmnNhB|1XUB#D*N6VO0_{($N!i7~jZK)>+T1cZ9y&S)sFSzJE}5S=Yj#@#_=!H%&;`-S) -}s&IL5R5i{&Ob<9sJ5!LCe``LD}5A+)Ew)S(B5aiQE` -*$Mh`mG;#;U3Elez=D?8&&<)Y$Ttr=y1Cc8y8wQjJ&`wt5GE*sRCg=>rBGP_=eadKO4NL~eAf#9TG#i -I0!Wp)Oa&XZv+*F6Q999k;vf_Mo*D6j|XZmSNr}9wh=x+^&FObrK_XrOLCT|^CsN=8%QM_hjX}`8pW@)B2~bzrLFNNz{dD?(xtdEw;_}%50&(Bvo0M+`(FQa!<2Kt46 -Du5*kk5gy<{5Bg-bCEU=LNzPv%E$$EW`h6i4_>gN7mwbNiB_Fz7i#6!Hm2XAMF;_wP?CL{qlF&?;5>f8 -wDZf)!ElKPltxInI2qH#V{^Il{b2GtMcFlC;&-0G1wHl6%d=aG8v*!yXa**I$330pp<|ubjF;03Rfpea=}2B1A2SgT{{?8=w+1{BkWsp9)T0Mw -=<2040AJ!Rk`XPi>}z8H>JpV*Pz}*G>A;A$W3o9=iMUkjB)gc+?2#+NA3600!(DW~E549=frl4->q6E -=yiFsK_=LWFuJCj=?0h3!_on{t#*o<^e3j!&S5)=f)sd=gObPLPiYv%A$=Q%h)NI8C80*xoi&eFg5c- -bB&nB`Iq|2u@k59spTg2a{);UQu$}rk$Zy%4=p0#HpvmKNH(%_0BPwdUyz67Cs1s -+Ys}J*%N=o%Qy0t3L1p?P`z!41Cgr>et8|K^{dU3f#N3iE^Kzm$rkPDbc7B${LZfq|9-X&|Cu#}vh?f;ia&Rm{wzsbqF0>e4pe|`>|$s -@9Q*g~Jy{8OYD{3tObm!Wt3E39{N{hSQy?<-HG&VWJF)dX=h%qy!J04wKiTvkYOOn~S4bd -=K%R8#(LHTYADVQzx~EGSgc7SZ56~A=mi6I|jx*VA`l`O21F45hz{8CaGD9q`u18u~=%nj94S=mWI3O -wt9U2MHykHQ6xV+W|N%1b9FHTCYm4WUA&^{v9ejt_8s2m8XiRN*49O=%jN2R0XmHQdLSgheNR{u7vDC -KoBM1juIr8PV8{#$muwY1_r#w~3IlyOk+FyJV9eCBz<7wee;TQ01f4rX19iJ`?t9*^l;=G_D93YVAAa -eJiPVZl4Mm;J_(@;s6phbNi9JlVr$Kdwp+!+%7Cw!7?oJUKC$1?R-)lDFH8=>`d^08;g03C7wssdCb0 -pDN?^DFY5S>hX?mEj6Q`WTOrp -FF!y0win_t~!@jl!`#E}g+QD}R;dsniGIxb$&3qdL+{X=PAB-P= -9X@bw`f?7qRXbPMMu}t=lY85xjQ$kjxxT8(dRR(1RCT9=nC1)1>)i{|H358_xp7#u0)HPf_r$>?P`8T -1Rmvr{0YO(Bki&ak1-g6Z(pD6+<)#S(O8xg9S3shvbdx=3`lrdoxT>o(oKVUIrO_d+TZx@7kY&VHh~S -^^>xGT=}s+}Is9)75%1sIGk*Ubk1rbME#R*NCpVC5ib8)iSP8Q~OlT5ACiMP2g`^B((|iPIYYk<(Jd9 -@9nN*;yxWN=f8IhA%VOHc7!=QZ)L3T;}Gtxk2y-B8MUqWtXEAP~WnQ(A0Mct^3=W!-s(~H|RR;vHuFt -IQ?%o9A**B_cay;%jsILug_lZVGljU?^W6- -2TrQPoxEM`xDJGe)-M9#z}qdg2c8604tmuSHB!U=f1L(s#U^Qcv7|#b9a;dH1xgx6}rg@Xw{0cD}HJA -3{t0AtP)1~nYI=hVUr9-Jxn8_e?;aWK*{IYz(0z;%O;WdlF&yNlKf`4B{MlPDuT-{7zyTv|Ke3B4iFh -JjDOx@dOlZMLbs2S^LKMqGwIn}SYuly>2K30s+ns)XkP5Yb3!2W4)DIXm%Tt`f4$j%EcYqE2V*S$9LE -Izn-P#c%Ge+gA$DiwNO!_SL;lMv$|WZVY$aEhD(fsK%j`Z%fALrn9kw!LkyE;?-DHu!N10pIegCUW=j -yJId5PF}&a#T3j*9P_wNDVnOW5e^ETy)p+h@7`ugN5_kms8W_Jnk9MuSIOdf+3ZEkmy|9pmh?sts8lX5@U0bkVH`c#8E8aHUZf4)a&e9SUEqIZ -x;!Nv(`CMDg0L@58XC%joee$p@>XCA&~*fm&xfAKWFgHJ=H?kdg6&fz-mZAZm@Xn?s>L{w6%FQPUdnO -;Y-A!qIeyX~QO5QjbV1?_o%NY5UCuFoL|tE1xvRw3vt&fmXTFNVGZzoTC5+r=M1F^7k^ -Gu5hT$d2JR0i0>~G|W&hRe(FE$Qvom_91hLvL -|e+%Ve*On(JVSwbDFIx`EnjLm*6KvYy808@HSXzgBQ>*?3sNYN*Qi@ym6e~AXLzGZh7*>$45_}B;S6U -Jo*}S!7utheD&2_dx;y__0ZrAcEf^U0vV3_@$Ja^{6UxOVZIimjId^{5Y=uA>x%)3wNRI95ZmpR|3_x%S -6>Cz6-Q6|q_$F^#9OUesiOL?m8iB(vV27>Sk&@e;?8I|Fjdae;FD&wY$*o8y1()IIVMn{j+jcPye@f3x(bHUdB9ddfI~`Sj?3`?~n=AE7YIbU!KlA -QHkFyhk9GJLF3_w(_O3USfrwlh;B<`xTA%I#MxsUJW{*IsfqvmiR{j0wU27z`xwNM8`WwibCZ2n_D49 -lJeL?FP~q(kd(K~d5McYoaQDbIu$N4lrv!;Yp%k)%r#B3IkK~xe0F9f#&%=^FU)HLis`tgw~?Jk5{_K -!&Vz)5WGVdBGKixN$acs5&;tR%tAL~yFQsc`2Q-Aos`;kFqB?W}(3NBI8nJS;Uv2@0+8A=QBfL0|Yh#>(JGGMX$=h7 -d-sT@lGBD;{ulNQ0n>^sJ8F6b}aQocOTNM{3uob0GgzRlz*rwUhBPjq-~WpUU@p*1324w`wRJ^RsN!m -;WDGY5PXA}G_5-@RK`L`C7N+Oi2R!`AAJ#s0@6q*kxo(o3KwABywDOMzsj86Jvho2HH2i~-AdjCWK6y -$m9e4FCkncfP*rVyae<}t**9Y1?+w2SMZRunbR4+~CcP(d23`!Nlg4S2K9*_<&DGVFo7Bo*4+-kznw) -vEBrY#=ck^nT$eQz7uhiAT@~PCluzK*4o>M^F$`T5{gU1^TtaS+e-t;J4uL<0m8xrMMuNjzrHV6xhpD -@Je`smR&U;XQe!>03uIL~RVvXeYub9p?5C!V}D<2g_h@)NGtUBA8n!UjUtIc)HGQXi}YBYb~uMZP}o7 -7TASe(SG=9Zqk?r0#Z@6aWAK2ml*O_EsmISv2_s003YT000~S -003}la4%nJZggdGZeeUMa%FKZa%FK}b7gccaCxm)OOM+&5Wf3Yu)0)2U7<~Y9^5)8(DYDrkp+^VmqkF -((%5EJCKZy}t!wzdXNIyQ>S24gSpmDS$(e6n-;76cS8C%}p*I_;HnX+SJC^C9fXqp)ER*&9t;xYa{#I -tLmT~(M<(q3dpR*fj-K@SYWts8^P`Nf~DYAP(=&3CslWPg4#l3-z$o3za^GnK=lSQkS38j_HL?QnJuE -Y*5X+EGq45n}MpZYNLS1Jcai6S-dh5qosI#Cpj;$QXG_wc2X26mv_l(P3T&7m}q2^ZLHjv$}SDBob%v -Ppcp0e9oiV(#PNJekdASs|=tfx!>p7BhxV4r|8IsC1mi7K-(pWn0MZxvfgF204G+0u*+^R$3Qm>7%J2 -VL!fM@3ev%gq|ph{xE=EF)=Wd;?=B`BO8>IMgW1S>UY+e`9x+up~ZkSanc8x_7!!eF9vQ@ic*yGzB@# -}yJ=7EKFxxxq06VF`F!BlE*&8xDq8PF++NcYqYPVXL$XY&ac0s7QB+{#gvm8i+L2(I=^a>3d`ad#xO> -(VortJso?Jo;Za -WC(EA#!FJ&7W1dQBtUgBG36mXPlLR>Oa_b$aBLBQ17%;E>+P6|vcx$Y2bu#{U)<4=ldV8$ -G%>=Pq!}~f+)y<+KlbiIFq$oaZWrKI*on|cWkIdwgP^&*c)E|ZUqjCJ`Pl=R8cjWEp>ki{D>35e!Vrz -XU$`mS;V;+KP{(Eb|AFI7y&C3X&|yARSHcWZE2IVXH|+m3Mw@sYz0-|J_9)$!xh?nr*@6ClXO7Xyzu! -@;L@w?-rq|49ZFUp(+|SiwSmLui#(rQ0g2d-%?^(A(Y3_8h={(0f+z#H?4pKVE5vKdVcp-3p0OZVRwt -}WrAWyqwf4qHri&{JV04OglYkWl=q}CRH?R#IkQq_P?rN9do^!`m{!I9luG+#_ktjY< -+$tF3A;Z$r^y}MwJaU-p%1nmP1~;b+I9`EEpC_=H|LzM_AOMf>^usic%3$WT7xY|Al|LwUCsMb_0onD -P^RB%&8ofhI}eS9oEVxkJNPhMX*~>9F+NGm`}=v)$FJjR_UL$YSJz2ct(Mc5KC%cmb{f$X7&bK#fGC8 -1lP|e2c^k;#^x?>&3wTI;S}KkyPCAdZu8=DyLN`#45?>{dW|x5EMrmA`@h6Q*th80%yUr(EA##9*=L@=+Ed^M$*Rl*odkm8&XqdKu_=XQ?~tL?H#W@5m;k^Pxltg&0nt7A2&98^f23%5CuqA=mO>f7 -4*8YPSOOtjMIb6)b;#_0un}rv*01Xe8<~di6Se9gSs@QO_c|PTN+QnBt>Ic~wz=7}HX3%oQ*4QAAQxJu ->8mI7PL1_V{X@?grqT1XKBDJ^d&xt-Xg^(v^lD$xbFH_$joDXFO9KQH0000802@m7Rv1kPWzrh}0A^q -S03rYY0B~t=FJEbHbY*gGVQepQWpOWZWpQ71ZfS0FbYX04E^v9RJZp2~Hj>}{E3lkOnVLv+vRjq9^VQ -sKE;G5Ex@?k~B$wOrxM)g*WX2T9B`IrkUjO&&2i^odPB!{rOC-=}H2RGOs(sh?qu3sr&Dgf}a8~hy)_ -faI?$=G*Y^&Ybwr}@>pVrknJB(GWeu_=8xs^FK$cOgOZzMM!PhHjQbfYhu(^7m@)OE40ufC}Uc=cU3R&7(%OYwt*pFbYDTAnfBuIjS9YM=wW&*X=Vq_%?|>Zhh^h7pIt$8Y++ -?PDG5c2ju$c5=+uRg-tU+*Ti!=J#QcQ2={67G*IOy8nL`gM1Ch_tpAysUb|809a;2FCvpp1-bo30&C&t9U=>q1{*gcqnSw+-rFKp@H?^AeB#VEyiD?t$J`Xv4iNLJfQmI6VGcFXUoS`K1EjZ3jUQTGRs$e{&EfngsN!h_hh -J$2bt_p%W;HzhFQ%}qu<-pTRM1E1sj8lEF~1WjWN8YlWMKS-J!P^ldT#-MU7CL -MsM-R17{2C7TQRm-cRH%+)q{LqheUJ4p{f3Ukjx -9)=F;e}t1QbL4R%Ee&ROegW`<`sXSDuo^m2CWi*87_4U-vhQK-Bu`rUBJ8ujJNyCZ!KI4=ZmCp}0Bvj -C-vZLVRR2RWt-^BVc60vQFZ0Mq5Mc$kHSp%(z#;YveW0_!!6W(t`(Ukb5#YXsWKq)P?hRk?qWBR^_(P52=_6so2_28x!sdZ~m6Q5@gp#<;xTb72Fn^?k6{!$h@q(kPBIe{nG^pvp@CwQZbXhOVy06uQC3+s~DmPm%4l^aM -(@aLyMsMOi1lKB(~b*U~hN|U@CQRftKK!j04&~{9!#Z?jZ^uAB-Y0Cb(K-p%m`EYASGfMRVA%QHq$d> -^?PeBZr}YMRYnLL$VdnDjO6s>eq|n0-s-?PN(kr!Pvq#(v9N>Kn2wGx&>rx_ob+1aSvL&0iO|`QSadv -{9eF_$b|}!pOOfh6_uTBn=7(tB6v;!@*|M|jXDA@nTktsCr_`ylXjQ~pdIQmAMPp~t7uN?WF<4;{C;H -KqrvH6kG8r?lb6ZDUrDrb*y0KXinrI_VMdF^HR>-tH~qmGn65MpJ89E!5$Z>0F1~a)y~&(fu~6=c3*N -F{4-An5Dmh0+zk(IDyIv3%DsIBiZ6sAhZpAHxkBtN+1pEeyl*cHQN&OKuDE8eKs8u%gp|q|78m8l|WR -`-TU~++}2MKOgvynbqtG?jggLYOv3fN0f{CAmWZZ{yC`My9dc+f0|5h6ZMyTzsGn6Gd(2>hcW;9gCQI -Z%UP@`5LPD>rvA{433g4}peSTzz(JA?xnheNi9KAU|5BRX$2xf)`ZAc;9&0h<8p}=Vd`L9<37m4+9x7 -nW?9zrKH89kxf42Lxg_EanOo_ls0RP&{Ehhg5wqQ2wl`jc_sXNRtYC^)sNgYB0VaLL3eN#M -E9Vgif?{V1p{gW6IIggq>v7pT8|kNzmxPa}Pe^EvbmW1|?Va2ulm2N1LYr)P0S1c -7=Hln>|xz3>hs9s4`cK%m@GGkLMH$OY6k&$F`HZe@@9AXl_9{e7AmE+oxJJpL&zC@NA0%`+?2|G${R7PL|qLDb@ -f^>At#z5W$)Yt%&Pf@jR;wqT0f~R6d2Hn_r06K*Ju~FsY#ur3fo`EZ?0WoaY=I2MRg(+FNgD*Em)P-e)GFyR>yaoTb$z=AQ8;lN1>vWOuy=seVU5Y>3 -l6a__NVT2Q4Iqa%Zoq#>t_TZ*Y>B(UD~1Wh89XGaS&PMJ`QpgWuUudWb0x=`UlRK&8Co{{;ZAp!DFH3A?lsI{vlk%TfB<{2bR|w!zinMA>uW9B -BxPe-Igo`HJG^;w5bc=%pb;LxRqs?eK -V%!OVVz^LAm3G{PMFT`I9CN}vOy -i=zTLc0w(TGw3gnj%-W=)Mg6%VB -VJTm#T&02o91MdT2pkXrdNBJCA?ygq;11&zI|#g~gMI;Ea&_&H6LDBJGm3c04eE6=7aLs~je -0@$=e=!bk#`b3k!1yPHt3L&iu3E -24f02MP(M`G_LBt!e;=3Ox!xe`NpnMQ_Ra3r73~M`ioq&a|reP(HPSJ*HV`rwFPW2+=%#gRVq%nTWsy -eA_{Jcd6n;2$1m9O+h?Zo2QC%QQ>TSGsB-_L{ttjqWSoVDjaqvke-c&;|7Cq ->XA#?HZ1T(J&wYb*Vg5S&sgdFmdeTPs3CQ+e;g5=X3W|OPMWrm0usz5VO_&N&2QHf4OVL6YiX9i9LxU -^|%jC3BvB|h?=AIXF;eL`6SU3!$~JsC43yJJF^m}XH4&!Cr0od6eMRzU4KQe>{pBY2cb4+p);ZsMAQ% -z@74$oT_j7h;|b_X7X*mji&;I^EC{yec5pJr=?YtsXV#yjJlxY7rkW(5c^hByvQDYf=KThoYrlSgC^8 -YhR6XULo&%>`_d--EZ97A|xq?rJNLwI9+~6TL!_CQD{^M;Att`E8P$2BJK}ln_3plp-V%%PrSx1ng7B -7X3x<~vv2EqU2N{2nCMU76UxXuW3vpA9iW-PIh&%!J$7HoKgKjq5)$N8X6Wu849%3j0Ecsv_3R`!$~_?dqX~<7xae<%b -o!FF%h9*Jtq~FzWgvtQb}92$=5|yvySLNzqFvAJd#ck@mJ)HE>OJWe)2=8S(S*Y$A1R*5kkZ9WJS1W@ -+p5~!P#U>0w1Oh|13<5`pn?eq&(LqD`@;uzcdDum?}p8`vDZ?9^!*1LQ<|5n5otAWtH)NYLn8o>g5*v -<&QS&(4DYBs3pdD`-b=2gHV*aQPB@qRzwt3$v8rTnFK)UZXBqZKlDUuu9-y=`gN4ZVTT&L3vNwDu$e5 -K0~A<8^}$uTg|N4m<#2&jNds73N;Sh1cwRJEsaw|r=hVDWF+b&o(7L>ci@!J*etYP_NC0C}xkIy=1lK -;yoMwpru&rpT`vX5t7pdRc*?!AA%<+!6+ZS^MeXe&EH0SfhkNrWSIfYTqV!HxOcQD2DSuE0`6TGyojrl!Tkr89FZv5-3Bx?M`G8-FNMYGYy+|3^)?U1y`fOUFxGMfjAbN -GO_mDLP6qkDn+^MbKx_GE>F-*#fp<~8!=iqvsNpr+mRc|<|w+BZa<}^4C_ZaIa)EOL%`3}$9MH(xJ|% -Rb&CL1sc}K&3`cS3M6t!q$8%e0$L`o<`VA^cir|hoPtF -$TT@aUbQM+sQ#e#UiQx#`Zfz%v3>$WBcim$$Iws>;AbfZa;tQo}=%4&Nw&6Ma@SGp4#rHHMH;55^ph! -~WKJ%?2ceCuG7c2s084r80s$&h}}rSE_!Da@s~m;Jg$lk7f@d*tspbYm-8VcELFunxry~W&Q -aZVwn;RDu=mMOHDsthcI(3bY<5s;XH%cm;!)amjJk`C`*r#N%hr^VQVbitLb?A}h7k7?xf+%f5(q4-4Mxex-)7mXohKTUP)H=oS>nQg}k{bc&alsFV4Hhx-c@)FNun2_G97B-H7Fk)=6P_-J`){vRX$5w`D(iJ$eneKxs>b<`S$1Y=-EjkkQIpWr4 -={>tWrmUyl-YO^q#?!983DyC1lNSv0}ubJXf6i}PHR%J;hi8);|Gl#qi^rD!Vrqe1C{1^^NekMj! -1t7`Ng}<0>PF_3XkeX6<2#LUN2g#ulgoOcy7(5RYkeo7*Sb@n7Is$P`v*&?C7uSK0*-qdgMoQ1`W7=` -y?jcZYQ4Du!@;wW+NdI=xEdE0Ppfoupcvb@cB#Q-Z7Ql~Rm5zI-nh;xTZi{9Ii~-o)R}i}*&IJ%dry) -UodD%G6pgYzfb8{t88_!9dIU|o97!?Tc@JHd^iUDj)<#KA7groRS7*1k+!KeMg2@x -6+p(6j~$t}Hnow5gz}@P)O$Utx;Ip<|5-ACLHPt$TWe9-+*f_uU{aD~=hu_sscA-(fXS=;HiA~$d76T --KKP>P{W3cf59YXjhWmL${$v=-x>_fTrHH)+V=?L$j~-MEUCo2X-)VL5{1h>&KGHIRXIJ#400dA~#A2 -r3aiN~O7^G^@n>DV6ZDi2G!rZpY&Efo4Po2w81EuX`OUN@1gb8o<*wMAgeG$=kb5L{AGRV4l9sPBujb_U113W!1Q*>%cV~xg0>;+!%`A+$;lVDyNLKgLr~Wv35W= -I-HVCux5qrpla(yA+RT^xpW5SSsjR1*f=F39#a{^M&k~!kXWu)w%}FKnS#QIAin3?chzH1HRcX9+6+) -7=S#eYfwtlYKl4h!4n1ad!FwygdEa2@rou%(c{a~E(?jNS91yDl^2C-8p3n1vWk+4;{L#a`9$tR$Co$ -VPXKuLzl0N`36TwF&71RQ|`Yr&v2wDH@xBvUsH9>(8#}08uoDeqwrI}?c9c5@^8(CxCnXl)46iu18f7;_zP!8J -A-7${*(>_gxD+APf<x3-s5_2wsA~if;6A9i?s%gjE^7bJjZY86`p{ -8W;fLGPS(Xpijnm7iM$@V5+~ScnmvIYjevt|3I5POX5uZ`$wHVB91o@I+h0J<$4=_AJw4F*xD7)tP>m -F$ROW$?^0;}wwZwQZ25sbGDr(Ew!CLJn(mo)brs~J4sNM9tKA0aR`4izfe!}Ylo+N)k4osK|(?_(t3j -<^^oV2|Q+W&0m1W3a)TP1zy8&Pt5EjPu1YuRX@uEyLGO#Z%bYKR$DmC4L8v#ZatFE*clzUoeY%)UT?; -(iET_uhLy+K6!HOjJh{a;AuMnd}w&eXl;hp6}jG1%I+sVZE&ne!8>?j-W3P$zX)!sURUTdD?Ca(Oilo -yGX>Rlj(nicgPbal+ja}9yQXL;n~}7B8G8Z(*>vmAxy}@-@o}@eDTF+I&LtoET{u@h*&$3;2)cy;^u~ -Y$^aIf2&AG&buJAUmoEJn^f@2RjKg?>F{bebe#ir9!SO|?Je0iv|%Zpw#K -^!7E?9t1egKDklHib$Wblig8GOKQkT{kQ36&cKk2!cE@xw8pZk}QlVjWD4a6H1RgHnd3|P%PA8=+xFSYte*>=Z>yMz0m;J0ad8&mcf^CrZv4`AN;1tXEvXT`UK4hjvhy(An+ -%#oN}Wx`6vK}cC3^*9bG68-N=&!)U+O!%K30N^yI^FJv8}$|_KMD;u1}*J=m@GkbLW?3K3T}d*M~)Xo -1pOPh4`)!KZ9tt$6;E|i1G^lm^ulo8*I*t*9L06iOC;V%c)h=q>m%rq- -K3xzv*qYS;4lvdpr{aw}U25{`|fS{M#wtc@YdIuWb*Wp2-02@TOwLTLj&vp$K&i?f6SGqcma%Lp#Q!@r7?+!9738BR4~L?CACtS?)^H622U@b -J*f(mn?anv@837)>YC5fpYB*d)hqkrkJ$%*YN+q9Owoo}VXAPV9-%q?cd3atWUUj#fo@Kz`4*U-zo-Y -{U0AZA@$e=~>iC2c={9W=Prm4wC|*E9l}de4(Vk`_kJ!OQk#W~jLBFn6pI_S@9W@9%*g!;`CWmpm`j; -fE?=l@V8R+|`Vy3reaLq-Mo@MgDKXry|Dlp3K@WCbDnt1r?B10Bbi|t}ES)c6ebN&w&pgiYjcbtQdGa -L*&ckIEaFw-%IJXNCP*Cv`OZ*Eace};+^l1z@E(g~IS2T)4`1QY-O00;mZO7>O&00002000000000a0001RX>c!JX>N37a&BR4 -FLGsbZ)|mRX>V>XUtei%X>?y-E^v7R08mQ<1QY-O00;mZO7>Re8_TKx0000-0ssIY0001RX>c!JX>N3 -7a&BR4FLGsbZ)|mRX>V>XVqtS-E^v8`P(fxYSp{0jFX-jf6#whkW5tY5l?k1(buWV -zt#A)e*4jO4@XQpOqKtF?P58#?Wtng^Pw|kEXJUh_@UV}Pntv9CbJ_i?8g=-Z#Vk^c|cOoDfd85W=xN -h-uc8m?S`WIPHN8%604%L{s&>PdmRmiZOoMr~%WTO1-Hk&i^Jh^2oH^!9Siok;v+@g@bAg8@%g*EViE -P9|DL0>1pL|R1mlJ-5_+Lu6i#PYq6bLhfhReT%~ePry3e6P2JyZfuq>9mNg6NDGiO%r_ojMWn}@nUHv -dk569ecMGZh+{i5w?ob8b-|N|-!lBq%@QbZKvHFKlIJVPknOUtei%X>?y-E^v7R08mQ<1QY-O00;mZO7>O;&nGf68UO%5UH| -|q0001RX>c!JX>N37a&BR4FLGsbZ)|mRX>V>XY-ML*V|g!fWpi(Ac4cxdaCxmfYmeJTlHc_!IvV&!0y -GS6_x8gLPJ3|T7-wAK7>;xK;2kg&*%~pXNQF(#Sm*VBzj}1DpOh!T3D}K??5?h^cU4z&xm>=GC)rlAE -zjbuR9!O;b=NKy?+#K__EkT<5_Kz1^-0u9oMgZ6`lGBwp~Svxn(k5EE*9`i4BhFbkq@$gnZJ*9FORYv -;H7|Hk%_Kt&hURysFN&3finRLz!Rsw`%RX^2Ik!tebq>%M7I}Z*Y2CT9N>>$wB3*qB=~j1LH3WelA;j -HsvCEWbeCKT`LUEIMqG)$fRPo=-DLu%0u~Rl@9PRs8Fx3{jxF99?a3QZOJz2*+}FJtfB<7#ZNy{Us-; -*x0$LJR0E8>p7c9Q(Wl;?WLBrRJ<#M@LTnQvJ)2?psVV_4_QK&;VHkH`nW{!X&kQg3zM=4HS4ex;o2z -x&cV=prRb3C8Uw?Yj)5b36)4HwP!Wzi_PSk%W;*AJrU?(bm{^QSti#lG*3uxQf&&0&fX`duaW#n=oLK -;tp>Ap4=~nrTFNDC(Bq4d)Z$u3x<1sV{2e;wzX|08cjJ`&z-@KWfZ2;wK4zz8g;s;73qEsIvS4sN40~ -sVF}b_YP2$lX_pvUR@ZRxjZv7-`Z#HLO?{>10q>jlt4&5_?Lr}&A0d@HFOfC3HXX+;2Wui{{htC&GQD -Ce16rc0i;@18yfJUM#k(&e_nUPOOh0N^IwHJeAo9~AN;BKZw;rwiO#UspgKRup{RYO`3Uwo`*3f7H~I`5yo5&BosF)0gxxHTkHQHxs@olytY5oYPgZQCU;BAI!Ax;oldAJ|aIn=A -;I9U^s|GDm(S^RP-{z{5Sk2xfzff{2x3Za{JuXJa9lUwLwVA4>0ASXzD5l0|lE0l^AkR2RTD>vyhTQ0 -!2`X^dw_@vmH>`r8rq^FkqVmmT&s*p`PI$Kyx&?JDz}iySk}|b3PRJYIaH%k2O&4<&aO}HxHl!?8+e@ -`zAlg1{h~ej(vl(^JYdg7>>4OW-`htkRG1SPdV1AG~-+FTfn#fm0(0jM_};2o1YsQB<8+0I4VDpzAYA -r7HHAd*xC%p@;yCU<#}5iWuC7W3s962{f?|&IQ|4?IkxjXh!b1Q_c3qp?iPy$*l3Y69u*7=kzwh@H@A -^?vIM(Zzhzte9`?Nv=Kt<^TzwDZk|F$Cu>*eqNRyKRffqM_C(FcM9^D)M_gh3zfFh%#CZ}~@gW(ozp$ -rb_AB}8*2Y;-=PZor{LHU~f?NU=g-7tWq0R0=m1=8DFQ1RjzZ0x!C>&<|h!$6`&*8rvfAOIbap@TAEeC94UN1tEJraL`^){1s8ElWEQ_5Ko-+Uvm~l-V}LHEPxY5Gw5#z)onm -;9X8)tO9JRtGZL?wnUR#f>@q0I0HyPS6tvHO6p -%_+|vCfQE)u^P&v|izZ41R3K6kuda{cw^5<0gK_GJ(;bK`aij-5D~GN}4JAlJf4-dv5TdrlO{`EDv*6 -X5=5SmfUe=8?-krQMhQ-nWi%g1rHv!(z5^}wcv8h$=XvQ{8zST55v4M^E(p8SF`-dIoZOevU*(-K-6G -v!+A4`iXo4@R_=vyGIkJM7f6yjMg4luDm{t`S9XvD2}rj{GQ1TP-RZfeF|g)|9SM(6B^-Q2{?Pha()r$xwQ@Au%?AVo2}{Pfvu2FETlOc{$|bzxW2PD1Ph{CPV9h*mdI=Ffyq*G2a#$UhCd~0Z7_Z``Bj9 -_A_H5R+mX-dI>l8T07;=#J91VP0N*D?fAeNXg-_-jX#8_7NWaw@btgZIv8+^I^%#bK30Qs$lJhwDfve -{eK>mV5fEfF8vVVn`%`niC8O|f}S>C^3$*S)tH)SVrAEIvpRT%#J@UI`SeaZ -azLUWa8$``(#+-P@(Hf9Hha7ugBAUUsTdCj&pE_)aTp}MkYcz;Z~MqcXz;VbPYT;h^2^yBM94SolVTO -3Je+m?l(dORSp@SC8TR%sjv@`M5pSno!ALF#k0!XNAGX{dN)mh?CpyH(n0tt7`R?|Vw~kMpx{X`!H7E -!G)bU0K&QT2E%E+KN6cY_^H;D+MEz~VkYH6`uyA?*i9b9c@GvFuG&#+hv~8pp$q8``lztHq!BttLfct -mA#?UCh@bFQ{`D)6W0>z(AsGK_1s;RN;Hd#p>ECxnW^j$}(6hNIzzBW1ro1A1$VxbL?RbW50x7uJm63 -A0ASU2K%qzY8f65u&HR|N+0MuLMa2lOWx2a6-*7+tj?hch|06-M0fr0#`FD92>unMJ*1UQWO{i(Xdd;bZ`(OVwPAr1^Ny01Z<{vxIM`BCqT(!cjode%ny*SRLR)}oL;5HW1D_#nS$g --MF6{PrO>mXHHz);nJqT?ukm-WEVY8!Yj28n5LK1CyBa#&*ecj4#bb^+z7o&NVWbq$)ZM5k4Uw+ekR< -8KGDSYNdYXwJI!Mfb@dpQ%Q(Y~K7DGl*0@@9VNV}UN)2oQ?*)*Iqhb4i6=cwwu&t0eQOv>p;a(>8I6C -^sQ8YhM_=BytA-Onw|d>Q^iU+9Kwl$7$C4qNDS}X*W?e=nTx*z@tqM-#WC(iW4f~3MQ<*2*nxWgXet3 -dA)G76w{heS)C|(M(AgP<^axZpz}^xc{$E?V#5OSBpgR+j}se$%KGsjQxOzdT2AdhG$1j(5w+6rS%?eSm9l -8L{YVdc;2TEwg^rl~TgJjsqWvoXx80*jziU?}t2}WJMp$E4E13fB0rmgERkhAw>^c-8KxfaVE&d?Hvo -Z|t^0HC16GG;+IO5a|z4|U(Q#NA`jf53{8U5wTBR)B=nERBBtjHN^{+sJg-DC|+zRLXmQ2L{47e1Rm@ -Tumu(|0PEfV65IdVtl8IuBpn20b!?;XTzw4%8NS*qQ6$`iCGK5Kl&aoKE!^Red@pRg*n7P) -E%O?}I8BNVKyj94bzzyi)6lGSC?X~r(XW+{WhS$&3HAZvS8cT8R#@=OLP?I7w9sJ_bR5(Jf=5A5q98x{o_w~!XgR>ngR$-P&L9>%990`iWHxqFoqAaT5)jcivkmD%Ll2eXcDf4tn>LmXMEelA -z|j7_^td|9H@HnOFH@`{E>n5XJ+By66-jYVCF{W;<0GsZ~5u-r2SSxG#!X3*u?^1u)>$6OOp`+CpsmE -t)r)2z)UA7EvT&6)nrz{x?}td=oKwc);(RqpDykAD24WbGi+nusg~?HT2s)m<5qZ3fiiawG_*|}jm8BUHOoCIuahq}?aNnodQ8vG?JB83xk)|;be2=; -Uw;0ArJ7NqTu>n1`|6ouIGBg9yMEC+v6SQW`c9A|k$?l@HTHh|hTgLvj^t&Yq8Tb@ZZ<}uWPqTLTTwc -K=C=`j=Ywt*0SNyhMpLf|eKy+l5`1DwqEBA`si9NVoY2K@B$%oG|fjMV!OKsKF;iLbWdZ2QvcTae4l5 -jmCHJi*j0UqpRxe9lXUFDny5;t9;>4F$GaJc?OgHh9jqHXa2wk?JLEp8uDl@pKa1b`wMoYkG*agDSQj -Xe1msj=3Nff_bT%2IJ(w5TO-`jEASFUo;$lz-+(<p92EGj{|4IOi3nHQ9eOx+$NRwgcEqwg3GGf1a34j4PdB%1DoDDX%elWKCYPy -qe%-8rjU8bF;7VR({pn&urHdwdR|d2zneHL5<;CwmMW9fUHMroM-noQ2rqRjxfgar-Bi0~~P91qa09g -lw9oQIbs2Txn+OU=WEsAUB9N^cOzJ0DQ<|3Ski -`c1v|QH2#jXY$BTXMg1b5Cere -d`iu$BYii^5n82=RD0Q!Y{{BiK}Je(hD(T|;Cnd(^FzvbBD??u(2ru+{sVv#3>UYSy7O3Lv<$`h@ij> -S2qNAFt5SV$$sUt0&7Z(Snl=P5J2nV03o=WIvavJ2E~?lT1&f+E}U9kdt0Ap6FH8zMc9&DY~Ji1}e33 --=G1V3GoufV7hWcrDX?%SCD&@Y<)a+>7{g)fHc6$zXJ+Kn>N|24R%x41EiS;n1_n=Seyw?E|#+7i-n=p$P48{mL`2#l{dn2ur<3+b1`S)T;KbUN?SC+@PB{~ -3)xfh2`JTYpINBdw=sB@_y7@%VDkI7KCR%ghN&v0)Qjjm|~;A@)Ax-?lu6N96h;n4{%? -v>3=x$?@;L3LMpaR5|8t{lMuqp25+1bz7Gm-ohPveO2Ss%ZIQq&Qq5^^Wg7V`hO~Ni|ay_b$u=HQK`c -YNdvH-rZ2$R_i;t!3PTayi~kqa6ApQ3ZxGuLkiTGH-`)^>3rof7vc!G_D<>c&9AcnZH_dj!w$$-KeWF -Uk1UAO#R(zUZe*QxTPcpsnrIcrnwnZRy++1Tj)Z}~sInGLRZ0E5?2&kf0z)nC6g>r -W(m-?eJ&b+iehTChlCVRa|jOlsFztBoE-fgim}#;j9~@Cd$44LV|`c>KnR$h`)DponT?XH$OCFtX^Zn2zW?+BstQY=)B6bB)m;@H84>Qc9c)<>ykqw+~alI`%*TjNC1POA4BCQS(H_LO -VrXcxS0^?=POSK+fWhei9d!N*yGjt-q6zBNWPw`Mnf1h-+>j;h@5aRl#m;;cuk?KX5c!~e+`ue_x$RMB230x3(D;Z=dI*>DbXEeBhAy?gq*^ib5vrveD3 -!WFB-?>@FsFbK+iO3N~G`20!xz4;J3H_Pp7<;safki|3L -gvTk#`KQ#nB-(jj+4hT?RLu169OU#9B+J7ke8VgvurxKePFWNX+)kERkmSpJUsC<*8|B;(1VchE-^m> -Ia5OykwndZO>FAA6{TCyDJ9?eh!O1+Vjm&ODnYLkfypJ7u1Eipy2Y`BxP(8z9wp#K21Ca7_m;NasQl7 -psVQ6D?&b?~ICYAF677bV9rkd$L<-jeS>FM&Fs%(dI}rmswS5tx_UP>paqgE|h6@%B)C{o}juoIm}~* -`OoP`7{N=#!+Jl5aYNKxQ2)H=JIRpRw3-AZOUAo8=5Ax(udHjHMAB_KvH4REAtQoBy@%N)OS0O-!p!+ -LX?dx@H})pQA3{orp|OlJaadzTRbLlrpqb1QHih6&^~{D`@J*i^x>X9IUo!3*@&q|hsaJR5I2xygthA -{vAX)#e~Z${Csho8e^N#8=|ZlL9Vmo4C$qYAeeJ8np;t83ggfiEkS;eQ4rt9UI-m9Tt}Pf^1IO*TH$ps<@+a;^eE -B@dxv?;JSHW|n`pUBPlwJvxTW3=>d%OrpbyeGH9xp|@2}w#9m&g2b#CH;sM>;Kf)CU!OxsGoA>#Wqp? -ADpv?a2JCj6+@9YVroH6c%?7&We&UJYj(m=5t+MGsOzO69!%aTR@zz3HUu6(J@@m(G$EhA;nBL&+I|O -6pH9`Ne9h0^nni>=7{9YRo5r^q1RmD@X9$fy!;J=)b~{!Fmqp8;rkvq(f=q-_(caRC13nBkGtCopXf+ -ldiKYsujXzq+~;*OGn;_xfnU7VW*H?(i*V9PjXMg7U4>3u9`WufCCWVxH^1F)!8cjjiJ2h>Mn(mr!3(_@OGreuli2 -hUdPPcXMtWH?Lo66eXz&PhN<$! -weH%#4h}fc(qs6}HwZ8teEMYE7{%{&FP!R?TsY@qL~~AnI`Q{OC~=MR3-hyysJl6@J!(dho~m8=3pFf -QZxbm{)R~VzN2DCS&3$Yl=1m+;u-3&R@i*UU=>C?kY~Ln9^B8v7Auv*8f$4@Yb)Hq>=8liWQ-pNmKc|?1ru*Y+%25J;_J0@}fuL -EA7`h_o2MZ=PxsB(XLb91bU_04=8;tz4_5<|qlTwv%Exy4=@nPpdUb!nAAJ7N52gI;tM2UOb>sOUg$@ -+~&E!?4=zxX$T2#i=I1L{|3)6SZ$4gVhx*uX&x8^cw$C1GpFN)PY1}7zj$`8FTvFYg7i%-p-!m>2^Jc -zR*9?ce+G*F7fQDz!DO`+0{VX{>*o_tq5W;Kp%@}JKbk@KNfw_4s!1Fh|6H6)ehU)2v^$EMt_9tQBoP -bJQOYDX$5~HgI0FHO#NrZ<4j-Ut9UcYdOC=a!yt|3cp%_9 -Sb*YQ4XL64>nVt{naBo3%nYd?3u!b~+b^tp*A9tYzuQK}O5^BEpKiRjcjI&;8X`l?D|mb(nz5{j!oT= -G2G?{LjUi{@|<-JV<%MJuxRiR_Gyp;Z__PD>^)IcbYRt1tc!P)h>@6aWAK2 -ml*O_ErD@0006200000001ul003}la4%nJZggdGZeeUMa%FRGY;|;LZ*DJgWpi(Ac4cg7VlQ7`X>MtB -Utcb8c>@4YO9KQH0000802@m7R>J@y-$(@j0Av&Z04o3h0B~t=FJEbHbY*gGVQepQWpi(Ab#!TOZZC3 -Wb8l>RWo&6;FJfVHWiD`e)mZIr+cp&aucshXV2}Y#4`3iefug|z1nH2b+YiH#8R;r!Ba;eAC3B0u`z} -93QMThHn}cCNg4mSq*ExsxQfj2w5WVdfzawnZ38~4s6yJb<2Az`&4U*orkdsfHW`ff;CpUd(7QS%&o+ -OR2?^suqkHBjoi;hs)LF(45S)7e;!uQ`7z60vo;uA3Av#y`v&zD-C*E~a=}?;mr9OH$2>h^b -j)+`bqRO0+WzhqbK*b5RWObvW1YoD)X=J;W&A!^LML225ygM$nA_1YLq -*gRuwt1s46ts#K$tNoTFA1JR`O*LE!ao>03%+awJ=vk!Uj&wP)w%CunT#n8>4(QFYx;PBeGD(se8qyd --w1qzFr1%Pzo)e{IPT)^1shW=pTHx|>Mt=UqT%RWde^^7f(8H~E$^1yrz2wCEv&(_#(%p>dDZ~QmY)= -9i%uHGY2;<)MEQ#Ev-+wH=|5&Dl%Y8^YCuyD*Uj^gYZm`)5tF2n96!{1}vU|h>TGM$yyS7|O}tsQ_NMb~rPgyfO^VM$m{qV)d&!`%>iB>JxKoQK1Ia+FA4U8vKh9lnAR>Vb*W|U#*X@B}CrI -1~dh=LOOBrK@_ZRl*_+Ll0HQ|x3tf2!uMDmK^vxA#BPfV -{%KSA-q+*D~(7+!&muUIB8QBIPR8CRawG8*Csa5(TD=Oh`t>FD|kP)h>@6aWAK2ml*O_Evl4EVRU74E^vA6Ty1aLM -iTz6U$LbTSOQpHlcKnT?o>3FIv3+|i7#=kC=7$4#FfRG;<8-Ij%wt;-^}bgNy$#)v_+nwf4s{qf`|ee&$+$v=-@{3B+Mt8L7lHsTjvz2_8lk|#LxoDC)TU=(iezIwcQkvynh-RIY#VFy(jS~7a$d@$EUHU0?K%7&Gi;G5|9MkfWhJb+X -Y%!m^U}=z0Y3~4Zurj$ZlP^9i&iupu@p)UDU3>Sa?10frE?$d2KM+4G2lWtPR}vxXi2}qEj4_-V@sqf -Ne&|xZMtd7bj8b>J8r!m!^h=rI_p9%%*@ItUaGYS1}}xyon#JYWkx>9s=R=M1nsoHYE_Gw$A8S0NV8R -HJ1Ul;Elo*siu^J|nQzSsPu0iK2u+kXY-VgVx!~<{Y8$6SHccm^5h{}91O}7goe}xyaoO-J-)iad+>V -RX$wf!{AbTCCXMW@PXmr3HUx^}TpeM_+ShVOSu8VfX+7)Lf+mmCaY>~6*WZSMp6(yrrNB@3v{Oag+dh -+AxvzIT@?O+NaYnyh4_1uDN(jo(JF;Ze?)ER!joO1dySj_q$#cQ6z7<+s)~o -duFQS0@lf(J8RsY^t_cb7p*qSh8Sr0^?|WxM;d4Gby=*%_vL3pPfRF?U0_>T~{D@)jUyFwq%7Qv#A!| -ZsQ#+O{SJ)!`n?$F*{`BHNFrP*CJhKmpmP^OXd5gY628{R}ftKS1A({gG9V|~b-^`tR(Ba1GVPPYG2YZ$NY}MjxKMvfh{YC{pg9Yr>el(Ac`tMNFk -VC^IYWE*eUE#K07p>iNO6bPZtl|FOxw?O#rl!NHngf_rN`SvjdjRuORQ6+iuRo8Br#o>O-5|G#1^R?* --m~x6O)wGl`F*t8qwkecPw^_H8nviKi>TAq}qqfxk(T2;`A>cM^0H2fRo^!;;nZkiOM4~agx+) -q`srUfcVHM}OWUYWHY{}cj3fRK-!hpwwAv{HfF<3`Z!~8PhQ`Q)Ug5$&BgRKSd2S^rIE;)d8(Omu&J{ -8KdC~5L{wLk=$)ezp+O+nbJQn3pnVc-qt18q@)8ELsp>#WJv`a(nw=?bp#YRk=(9fIv`XwRmu3kVUxA -c$$T1`sDf(Gt1m-x8lODK^c5ryc%?ic^C~!-?nSgf~o0XXSmk{Hb&?YR_ -`a>~@|8yMfy3_Pr!gx3vp!j+mj&nS7hjD0_8K#?2ai$Cl_Qy#j2+z1^GPg$fR;mGx&SD(6wE({*efq9 -H)+;Hvpy&2t@J)A?AAby+%n@!R#!gM{}R`DWqpE~1AkUul~>-3vT2|ZodgL{S^$|Hn5CR&}DjfVYrh8lc=kL(PL+r7&jC=a(q+yK(E%&@9n4aG6A`T5dVLlEI%TW())=}4 -)7@dj3dxR8U-(Q**{q8(?!I&Tj`+3;eD%g-tdOQjSd+A(eUN6icOlLLWzm#Jl{5FFJpYfiJ>1w*!W$D(z#QkQ?z(5b_Ub2MCGOaTJVO -9>*4wo8sQMll>4?6_y98(`pxQ%r$O>dVOC@KiMJqDah*BH;KJTQ)40^?1QBbZ`xGbh`Q{59dOUtFf9E -Rfm)!eXoa$ncFla7BUgKS5#y`aC*lJH~EE*AZEI8BRL=y_SPu7T2PgUe^~2qIV3YafKG+MxnO{tjn8nOGQbw2pS;@(XlB8jw;{;JRw*vs>7D$o4N!Gz>u!(@cV9&80pMd^qPaR&&8Dr9Muv@G_ZvZ0^Q@pP!oD!g -aUi3enrchH0L!)7^W0lYR`u;HKt{#^fM&{rP5Qn+)Fc#4bSXwZjS -b^@Vn3tk!*p>cge>AA)+rjkpt=8G{}W;2OBEpaQ|MoOkN)xdnxW4F7`D9^|*cqlj~&|i> -{2})Mu+tV`|;KB`U^0fC8b?(b={%*s|AbbqsMoI^yz`GwcVhvbjwNtNu?2(CS7r_PRQ}V92P?c4+Im! -8ab1{zINc4F$G1ut{CGrO{ihY7f7<8Dkq4I7xC`bW7|DJkd8I)KYbzM5~ias5gVR&Ua5dtdCDbps}un -W;)C;>Hird~;m-C!IU%G8cFF+}g7%9y&7{xnnnq{bo8T^B#-W%WJ{(&$ao+qLs%A)y!|1hd~@mk=xr#|q}h66nwi -A~*9h8GW!hbXCo2)2*XWUAiLnZ2@1bC{##_8PqwDpW$j}|3qj}Wue+5+@6aXU`MU8|L|$4TwGVB$Z~o -b)3I+wBt#fNoyPneu;=_DgV=;-Gj#|A>2kpp3#$xZh$5K$Bu!#BBogw1s=qGaCPHkMHH%eo#i@tN6hL --~cWa-{;I@Vy5e=(g;B@idlrpKld!7v+{5}Ph8yGj9B>fu@e<;Zn2C^MiWW&{@Ss7c$zR26#u2VHN%fwnrPo@Lo3~9%QI_JGzWb4FL8pnz!vsu&4lQGws`z=snYur8^&Sm55bCLViM7F(Xa -4gtqexh1for@)d_+_wA^`O=I=8%7QEeHZj(VlQ#-ju?cooR@u;HlKq&UIDfkPSUfLS)1puo{uisjax& -~;X+(IHx^vX`x%s}AkWg_fbX}j9JV4TpMHXu`1lAapfwq3Uwguo??Hr`23FOS=o8RRV~bY? -9*#{Te~0lPAmBb`CFiMrCSD$(pe*Q-rlDfxaz(hIv!>+JkNWG2zny9 -hu2+b!+TzJ(K0=%6SQ(>%v>}r&&Q$ec5GrW!mu#wE+Gan;!nD#(8bUVqnCSpX-Nz8UR!?F=*8u~90w- -C@UvZycfcIVQH58`0UIO4sqo4AqqzZaDnQ7^0`nTxMfWkp{-DNv_19fFA0B{pvTpdYhw4dGg;Gec09) -7Y%c2%%<5;&cz(vu)?*oBO6ILrOz+s>p+yX??9gZA0LJtLAfnUi}dk=dCkFQ8ioT%ZOnL -hSRsHpZ3HeYa9@DC-6$WsAgj9Qfqhf8&C3jM&~I%_I8>wZZsdLY>Y>FR(6kvimk_&^@+dI?C355ET7{ -f-oWi1gqKIkQU_mv^KS*xsI1vj_hZn1i=czbvcl%^Py>nSlee1{G0g -?*=xZ!fv#J*h^irti;&To9gg+Kddm}${_?X_ysKg4c~zY#e*Zzac$;hx`*->=5G(EKRs~gl8S;bbZB> -}sVJ9SZ-YNP;nm;h c@H~3hRBC-GkQbZKvHFLGsbZ)|pDY-wUIW?^G=Z*qAqaCz-LYj5L5lHdI+dO66MN@Py5zyWt -U==QRcnav>C$sqA=E^rKnl3EsHid5K?JzAgt`&CuHACxq=i~F<$l2~MSb#-^WtGZKfcU?cQW!Db;!_d -@=i(0-}@7v|jb&b$3n(pqdZtpJEeYa)9VF!OR^(nt#@Ld1&{&o54>({TodHe29Q+oAPy&U9UZ~E?Uy# -0ZzpKk}=SBr)_zlN@tzrL-7YW3%8hr`Gp@2V|dUGI0g(|5a}?%Jx6zkcAq?RmT8`j>*>w7)*=_+KkE# -GZ~FhB-vEZkdhUn1 -F`eFZ{T4?38(-lXOab|}YwIPwDqDCJL+ZKcng>GthP?RqPQs%a|x^1AQ!_Wzj=)v6k*w=EE*fZn -jk^2=XZvELzRzIuNcHeLHySXt;CeI-nBdlPup?TUX;E6vL_{_Hiz@8#P!^fJ|Xt8mjD{#Xg_PH@WZ_) -xC+y4p8G$=ipz@7jP$EU<3H8&NcMd#~Yr3x6MJ`iS$=ZE2FJ#@!CN33sB{^?XP><{`F&)f&yMyIh)J;7c%AvY5^T)k4G&T-kQ;7{XoxY}D2Ihy#5sfeXLy -I(MZ-Zmk404R@zzWLw-g9d6}n7;=XuG$QC%*{d -x-mItQmsCPCU;Wt6N{IKfl>D~Mw$(i^9T7b{BK>SHQYj_r{FyPSZmg=mwM}9AB`txd2WY$i9Y7Pi_Qz`h|71(4RAgD~y*4auvbC~j|oa^7{Vk^~cW^`G=}=50Wswf -|i0fd5r5JABrE2Hl;tgGSD;pq-qIl{e6ML~`Z93?~7kaF3-LMl%y&h985z-u6Lr?{~N`{%+z5`EP>u> -FtAV=?@n{_r<<$R^_^?n>{p|NvrcFvJY`rpPqxhWP_Nc)s!qDcq${=n=1u01|d>VNhpS_V=z`mjB3X; -Vx$5`;F-4gIHYf!EFAInb{Z;D(@za)*>BC-Ziu^#)fdi~d~M+2P!|yY)iW2foZ78-W00#B*rzx@V^#IJ0B!5o*)-~9UupJW@Dz -z&NM!73Ui=pa~JS3B&q9^k?pG=Mpy%l#TV6rD~)Mr);nnT6RXbMY^EW-xA?m#xcI&O>1u5nd^i5t3tI -SeszmY5`E$YFtYW@tRl0;845PP2g1tdEm}*|Ha)dt7@azf?+HSD@tkO6p8E(t~x0bfa -C1>C81BuUZzya2TT#TD#j*}<=%w;5W6#d%|!G>6Hq}7n`#w;fMHjBM)XXdGGvfl^3MdINp8_BU568ji -!5cyQ|Q;OgwA?D89C^f*S`p6OV)J$p0*3$l*lNdTG+Ri}|hDHoR$)Z*`!PkCsPw1uj&ZoBHM1dk=j3} -%?{6`W3K2j+eW7ChvInb2p<}?jm>syDq;zqZ2Jzucv@4osD%n%HQuu5(|Gh1i5Xv*L(H0D@6;N}cqj8 -aGmUOUjVp~KcqbqA*6u-p`${+D5>Hf@o4+x&w4$PGroe1Hv!V=GY>9K^E146s^tT#9mnS_Htp>e@^A) -B)l>vKRWS)g5?UMT)pk&3Sn19W3+=ePs2_$h>J!S$&bs5wW{VdgFj@a7<*K$bQU|(C}$I!i^Bo>^<7T -W&80~NXm2k*LV{}#q$R@x*9%{=&cfBsqihU1WPO~J~BK|ptCc+G#NMY!HV(QPsGj -3+Znq#@TTb=@h1>0A8xbp2_9eRBP&DFWd4+GtNwn!%VzAl-}C2l7YLsecNt>g$u3F4$0uQ+SR>&mVIH -x5ll+qOu|AepQb5eqJx}eQJmNq92Y@B)o%pywk|x>hGgK(f>;!f3$IgKO64)NazO(SZh8H8=R4#TC&>MRVMMGWOKV#= -ufOhge7$d)13`P=cfa!Gz$kTxwh>!)eUER*SlZTtj4%|kH25B-&n-BOFUHVtv2H%MQo9m@_k*>3;QN$ -iHgCa*tk6xSWGCC=L>GY4>-X$mKmRxDEu)N+u9}}u&Rx)ji~*c5snLU{7a&)hSP;f+5PzIzV$;=3YLz -Gazsj!X|MDEYG(Dn(+_MSH!l#!UDMxLBM&o~5iI$Wb -4d^`7XicJB@KXdt?__G#9^R#_830CpiV;P{wiru%}W9w)yO6?cU_SHkQzV#|MP$ne4Lgjb%0;U6Bv^* -S%gTmOrY0i?OttWD;Pr+)viIdT{p$ZlI#*)4Y%Hn^@1qb1l2zBabC$&|1#Pl`9HaCC8jifN0Zvx9A-X -~BuEk@NFBpZpi4Cq%o%%7tHkxwQU!QPVW|M%a|*iTh^4~(Wsno*GpWiM7>_cmMz;-<6$cmWhAlk}jgc -R-y$BAPw(hq_{y^Z6wMSquN2Urqp0HIN2hgaSZx4F?!1KM!Ls4gl-mA?H&T=H}G*IsV9TAqpL*S6@hL -;($nYxKP1D5ZQ+bhEqKPRhK}?|QgtTd?S2hVs2{0mQyP`oyscsad?_#ZV%jAHILOn1fT$WQ1^ZW7QLXUV}tbk677q{{*I!pkNC#N)l?~>MGzJ(=F -Z&xby2>v?XB|VRQJTPw$oF?5q+Of3ZPR_E45W4p{tO$of^8)D3)2;8Lq$mVEfM8($gpyaw1*(ck{b52 -Zyn*DY?~iYL~5Hy|PqLs#_p)327}N$HE$7PzCJ6WdnO+iKoLd3TTu`+R8Ahfuv_sxZpZ6v}M2ut?%l# -YDgub$Bt}FI(n2Fbt2DBhID1XjmkwhS!;q{CTWRq)E)E_wfadbZKbfC_|Xw3@OTkA;cJuO2|%RN2jA_=T -?Xm8_)H07Dz6-^$Rh5!>z>Sl&ojA~I&}72o+GOBHLUO5sGD9opaAdJL!3pNqkb-K)Symok+?q93CHLj -fOCS7NF~wUR-M2%HSb9s@_KPyi`_TSZY$FE0Of?FFmsY?%&3DW(P;x>}_Kt^ -P4lpwSG&V5#CHyw1QDKRMa+S1vrw%-c4$HskzDU7&sfFb!`jVwp-B7$dn>&no!qEYp{VP#N~tky;;01>57n&#^(;5Ao= -eQcO_7cqDu1j2E(Tf9SR*MDI~>Ur<_~}br5oir0YuMB>WFC=m^M4JBpv6#k}*iOtyY`?*)H!99WXDkc -aP*vY$v^#e1d51Jz`Yjp!<#m%^2dIkP2J+0d8drkmzy!A&@rDff@iiimPO(&$E(hD0gNO|9edxmrDNo}IM(iA1}BO)?|pL~1MgNZ8wHl?r|1b0WMF?$4+o)-7BsvqF_Nl>RQE{KzBV>2Q6nM17c?CFW-Ob6}YH+VOc4LmA3&rr}Uu03kg8S${JqwWedGpT}L3~?}OaKiDnGI{j$uXEf+Hvthbep -vYCcFLZf@t>e#X=;j=c)Q8zILJ^2^;e@2sK%EMn+n-Bx{!}N!NQy*bNU-u4-^Z|HK~nt#33~+=@D3k*|}4JmRcS*jINr9PMa -p$ICV{@5JQ(|EFA5Wodn68t%^f9=b(-jET1sO@xGxmccT9gT+Sejd;h-wqP{q1fznA;7m5{9S$M*Ks2Q-xhUA1eUF5-r6YqLwyYYM4hSQL1_o&T6$cryty{ -1b>!r*FVAyH3=jf#%qF8!wqG)WWw_`O7hC|#7J(4=>2ysRbRAwhZV)#%YQ|ycCd&x#BkE~ye2kYnFg; -cIa4#*wLZp)zq$J)K3Agx|}st%7>Cr+q-*>e?r#~s9*^|+96|CaNWkcTKtRox%Vk;p$7NXH7cDF$iqE -ZjO(&nuP}Lj<)UHr9q7v6;PhYGifBF;glU=}m>VEN;h>CQY}f8ip6B6teDEC&b)=(3EvRp_knHm;ozb -a-l}g62yZ73lbF#6aqgr?CeIcU)TozkicWeI7^Pg89WYTN(nWV#qs4ZNt&lCIZm#K!KVOey@hdQd?AT -t5$<16w}iw$3I|z7;g{ySDFFwP;ya`uy8&_@KT;3{rLEpI3IfRLphqeWYPh?>IAF^kB_7_k0CJhwR3J -YyEIDU?1oY%@ME;Rv`eWC-QE|XV-Q(s)`h+eF<>;-kZa;X7Id%_RE(<;NTI2jmHS@sx0a+<p^Bt8VtC^ZrnN(2dokuHZHjWv?s!`uO3Tv7f7pKp~k|seD;9_A3y8AI2y&qs_Q -U3Kc8|L1Kk2cBS^_ZLCAkU3v9C+khNy!rgrb%qM3==pqNQuWa6$-V?t)ht+EtkdfCaDsR)g+hp@7RBjjd&`Ih3FR#R5WJfO%2eANpj>tXOfl_Ju~>CO -9?jr$BI_jBv5BFnV`#T4X|!t8mHh0Jy4TDqJkKzKF2!?jdg6-5p)!{eoP^d*FeBX*V-Q@7H3E|Y{ZW( -EF+#>q}Cr|0^|u^FfJI(vd&uykZLKRINM>t;P@Kv*P?@u0WqBr!2yk+z7$Jyo}si$mg4HV8O}6ao0mFP_sWQ5P1kXp}`F7N$23M-a -OtGU{jaZCi<`$PvL?WY>{Rhj6U%R@^$LByvfecgQ*;r=n=)^#WpjjbL31TwUh;*8cPN<47>kb$P6Urp -1>E*yVO#+-Wefn>+sh+0po1BzqgKK7>b3$H_Z1^x_ACv$5`t7^x8T+Z*Q$-J2$J-sn9K0eAEe#t?@l& -B~yqlLYM-`*Pa#`X7E3c=zHnd~ygYA*-{So6!P{!-qg;~<0|v^7QN+Q{5YQCNgbKqR3EO- -ZYKoxSU1A{epqj-1Mq)5w7&Z?eE0bZye4Rb!>u42_UDjdkNmTq|HRHw<{{PF1%IG&I#Bn}`?2Dsmg2Y -Z6hdic_jWIYFTkq+oSZ-VmjI_Q=U^RqC4kckz=msTYy~p&b=)Qz00RTsS-Ci&Kd;icD{h>9zO9)BSq3 -UJHze3)(xdGh-z_9gmO2fLsplKsl1Qr-=q6%#R4_`BAul<|Gd*S -D)elN=qf;ga3H-84L3jPj~by5_VtEl -q7TPvH88Oe1y&}uEXJ%Z{$0t)SDu5Qc*PsP&x8F={x-3KmARU-}dDX__>Oa~j}$ybd2y6&6Cjx!E5lv1RlGTiB{wCtV -98DS66S%oxFSet%agL(@MZ_f*T%^>UU&9kC`m8l*-D)*$Cxw;Qurgj&xxzXsg-xuiQ3?rr+CBK1G3rd ->I)e0GnSD!$>1;f9$x#$+gDtGk+a|>s3*GhJGvx%1aX?L==3282f2gFy)l&QKB2}XePHTdAWFmodwTPS+{`)hW94%v-P2!>4zJX9-p-fR*Az0*yritCd ->skj~ElFjgvpB(DxafE{F_q-TOBKfgF#_cju;87)BeyNl_%eQkKNDEz7Se=00jOsRG(DeS40z}Lrmgz -9&BB-0m<{|OGg1feD3|105B&jrw^^e77X=MSoy&SO_z@mf1YSya+sNWYbP0E5qy}@s+Fj# -^AXBX|@;!Ej>M34{_C)=)B%^lMbW3F>;ufE3Tm_zA{jg;FrBSJy5ggt=z3xlxPW*By2_VOkE-)eS;T~ -*ZGOWwZ3idiwd9J*b-6ff;GuI&G{=Vbut#fn#$(YZp0?#k(+XD-}{|1VHW0|XQR000O88%p+8Db-rPy -aoUONfrPAHvj+taA|NaUukZ1WpZv|Y%g+Ub8l>QbZKvHFLGsbZ)|pDY-wUIW^Z+FWM5-pZe(d>VRU74 -E^v9}SWR!+Mi9O8S1go6q(C7Mm!%75uag|ztkY)f -YMOk~2u{`+l*1t-U>4psX_*m+;g+b1h%I+)mf&YNHah`hScSMtc -Out!bfpmGbH~ZkW-cx&R-39hw7I#stSd!PP*}+-PPSC$+Qe0w-KIBeXKQ?OPx2*7_yHJE=%aURj57JDtphk^tX}If_-h3dMKYD&1A|));LT;_2%* -XFsFTo(jGC6J~Oy1;a`_*`35u&-&Z@lX -@g1}Iga(R_#KT8Cs%9{1q4UZ2mtWP2HKOhX(X>9t7%C7>-Ow8_DL%m|IO{=F$Xn|RV*aJ7!AW{Id-a? -@G33HEN=a$+*!TSDag@BBgqb+ugX>+huam1%HySyOkI4N}G0n_C;LqqgxLg!dV3J4q_DEbQr~+Y8KJ{9b%*7E1ivA-A8M53q(Y4UY;F~{efb_hxJ{rfIJI?!yOYUxUbz{<; -V%$T$x8n?SZPKer75beGF^6O!jdh`k4F`iqf$H__ftA~RMipq{R#w%}#SUZkfeINxJm6sL^)ayjyVuu -<|MOKB0m4DX{f}#)!!>Z(fOfAUTJ9ZE>=3o7VZE+4CFRHA7Q~^@SdRv7zl -PNEuUN~G?(I_&NvO6DxP#%o%=))(>>;B9=Un4XoeCDl@P?(;B|9<)hK8K$Gj@^Pq|H1m<;;+5dYAXd0 -N;vhhdAOosS+1lypbt3vNSC#Ch?_pz#<&4!+J?VsU}(;^EZ?)FDn!S|i4{Kg3Rt6zPHD*_T8d$3!pS3 -42fZAX-8g9}FQ+LyzQgKax@8r)9CnAJc=uaMm%;>#)MvcH9PKR7P(lC}X&@=@G#Ui?(!rOaK)%6C7j% -VT1|RbIEl9Hc2)qHd>f7yXFOPsIcwJZP9l%&qAGTn_4*uju1|6xCXJ!hJ7&2GP1Tw0a(kctJogTK?Vc -0>!wT_sxou6U!r-JxP}D;p!U(POrz-($DO}$b<^tBQ;)SuyEh@74JXz9)qSLU6M?@BwA9%y!& -=TE@@iIXnA|AzbyO52R-V6b+4CeIz%#%UtvogDrz@5MTyL9ASh(JQ8HVM9Eg+7aMWV=c~7Pf(8&Y!A7 -lZu9&A|f1Q4Cww(tr2OMsME? -Yez7Xll_OrbN5ewF>`utSEHy@I+gHMv(MWF)f;26x0m=mjUoBh+)=Ku}P&R(48CD?HAJNB-iCrhXvdh -=43VkB~Lyf9*++z0UIIBdx;;juitdXSs(LnH^-bDZl%2@Qqc7YWE`V!f1BAeshQt~_gOk#Z#N)*PHn@ -8)694B(7n4k4$PlVvsugb4`X_iE{r3?Y@sZ_BE){z{ihczQzuypho+nK-pY@3@?tg!6I0qSPW*i|FMW -z~ytj{mx5?+F8O#sOSz7MGjnThQO9KQH0000802@m7R<*OmdWZ}F0AMBn051Rl0B~t=FJEbHbY*gGVQ -epQWpi(Ab#!TOZZC3Wb8l>RWo&6;FK}{ic4=f~axQRromyLS -z(RAc_sCAv?PpT@6&8%{!d{U)eWwkX=x=_}&++D6*W97QJ2`|F+Y$cs)VP4Cs(1mQ&OuUA`fY((s6Ys -!`wrZ!UCR|##fF1gGSO5O$`rXz0{O0G|?|yunU%$C}dwc!u_0_v@WdqvA9$NTs{m;=zZ~7{mvyi_@v> -U57%96T1c{e=9yNPVq)y7yD7wR1`qKG$nB^GDy+$G1esLFefD{uAw4e5JvWR5epX98gNBUL&z|13PC( -JS%RkYT`T^Pq%PC9~%qbS+k@c~;85Xw^95U%@;x0m^g$G@X(8%trpix|Gf-myKQl>^8wAv=dSkfLk}D -;gaFK-pnTO(;CC0$q)ukSW^;7TyKmh@D?^=@XMQP{41OEp88k=e<1%3(a5l}63@myif7$CAZ&?vqsoJ -jK|^Akh%jcE#+`^`lGnh}HJFhurB)c_X5>%e0WS#10&%N@C?#bAumY-&n~CC+nDgXjVzqCC!XpUE65{P-4dZExN3VB0K!iGC=2FIDb^h5?9wSvUWT68M@)%TB?LLX23@DaR%$)un?<5>TZ@_Kd7=G>q^o`t!#5>y|UF$ -z|1nb8d0N>tp#G-<0Tt^(u!Uc0VAPu%0B6}a^5b+MSD-=8s{zwOEw71)>gqh%1*PJ;9xX@fj9?XfrCJKf^7(ejxX&OoQwfLxecPB{1iisuE_z#9!OV1EWIBH>iZ{_R5iSF^g`RiOZtUl --=N-9mBF9eqmBsI>UsBj1&mPz2^#_=lm#v%`U%&bb^M#;I-tdX2%e@P@yluQtA^zRP%>lt&%}8@_Fj5=JloTu7AkkQrC2ojhQ{ -^jEp+^PPA}H@q=UXZNv?Fh&1qT -fwBYu2T@ppoI&~pPEELZV6DG^s-eJ*-GkBjm+#(fh0Cz$RiqPZJ!M&kuxHLQ(-sp)-@V$cp^k -Ze7D`KE|=-FaZ8rj^lNZoLng(xooH7Vt8RmeF{s+q1f)94r>?;IxV4{0Zt8=H51+C0?yGcygF1iTz2p ->y~$a`DIobt!c>U7d5%lTC>yhUBwnxd;7BWHIsRZde@vxAXU1yp=k49PLisLtl6|J~<(dQ!FclIE^2V -&;^VQ7TVGN?Cr$s6OeJ#H6>_kiapAqM9oA&MF+(BVT-w`X9OM}3YrC@xgF=rlR2TeE)A8nFz*dYR8LPEZC#TQd -4gmLp)F3(p%xdIZS9T+(22sdQ0#dWtBl~uknBZM2~bX<3RX>P*Cc;&^iTy-sq8%|5Q;JAl$U@?Iri`Ltr99Qau`DUoN=>5@&FPC3;X8hYZD|%LCSwF~C*Gu!fNLoQsuhs` -K!Qfdt=ytW=Zskgsx;adEruMmwa#s%<58YPrTxH -S}$2<>ueW-#R%c?IJoWpN`E+*Hk_vS&mT=%wS-(nn!3XdDD^EYnoUd5b%xEz4=@B3MkD)+=@RA4&Ra{ -p>F^_?p<;K(`W)Y(J2j*B?>(=UYmS6xrO48*1{$aCTnucNnjz3Z*h+pLA@y(URIkes?ph -%_NWS$E7pbj0E^4>UaDVR{}H!S)b$p!bpOu;E)Iiyii;hDGeae9iL7BpuPBajk($X#0&qS~x+W_3#UwN^yuj`nrc+(m(R|G2^pS*ll2Wp-j0r*$dGydntzRohP$p`T^m0%yhA -3J2$5#(`bKEqt87^UEEpe-!SL#kkyTI@pa59yi8H0-qMGF967C>`X>WP7!{SPenvuXcZq&0TtfFrQ%~ -6DaJv7B0du1LT@ho -r;!tgxiYoI>ijpM;oqsUHaiJsJj`uTqh@gpt?^FF`0_mrT6I;vA68LC8_~|^CN)?x(nL-& -mOr~i*9B|s(Rc4$cvYSqaMP`tE7e^;2i^b -s6^6@@$E_%zyWHs64=@U8kcn_HkDRr2p{e@(@=?(0hCE6|V(vlRpVCQR#Jv@?A$+=zgkoP-3xbY+w7p -SxX=(E@(GNlyMi<&U5{ewP|>$U&xo@#&C+ng=Yzh{RTt83ppB-pUsf|y4XhRL!=eSW6Zn -@6aWAK2ml*O_ExMKo!sXG000~e001ul003}la4%nJZggdGZeeUM -a%FRGY;|;LZ*DJgWpi(Ac4cg7VlQ%KaBp&SWpXZXdEHiBYveW*eV<=(aS6<@Q-{!(Vn|_|un;KQvMrR -7E=FTt&!~|luOufOmi+fU^0yOD+O+hgCd_0c-E+?UlnZN0%8XK+d1^)Zt1#3xDE*Ip-NV9de1sHHn!}Hx@RSK_%|4_9k{<2jz4sZooT$oTEBlKbS -`t@c}pMoQ!Oo*tU;n0L3BBaTc@cOC8z0TwOVCLI7dIps>fbWi8jfK@W5|MQ>mp-)3sw&Z0PIn=)KY0? -uREVL-ijBS(=$z`*e3qE0NuaJttGYZ=JVWlG=ZSs7XZESc0M%URttq0C1`B=@cBMpNFI2xkzX|TL@2t -;F5Gmler6-5S~h~$x1QZBeqR$O+lYKolRUG$s3BEW95v1lu|Q29AtLr0Rnzz%1U^-1MGwJ2QvPEkS}1 -^F*7cvUk;6Jt#b0>j!6V$#qr#5vz`6?_9aK1mrDJw+`af_(ccCOe*g-eDx*V@`-9L_yIQE2elsa>H?nSyv`QkEGkr%9MjLtbnw1%$@zI`^y -*lNSeo+(VKsES^Bpn)$gJ_AFpE*#*XV1V0q&-tBiworXaEQhyU_SPgaV9PIEZecD{mFOp{vtzeOwJ)- -S!m7)2yE#O@nVKvl2cd<4HTYhW%t5HLn~4w*y8TD(@q`xulD+ls_h&O1fTi0*LG)|rXm5{bms}PFTQt* -{j4kCghgv{w77AsWj9CxmgbqxDo)D5Dqm9BKC1m$WBtD^xM8k187{`-7-j1v7xtaY}bfaB`qdD!4^iE -{n*kg>F2Nuo?r5etZtu=OL7@S2lM8E5%y6H=h(5O`;&!6-zq*irrfvwQbCtcI6}moDHair!NHN)W~z-bD;M!nkX)3x+1$4 -3CfD6Zw-K<;yOH?bz=~f(`9{>K31sa4#YrtTxf+IaX@X26;C&Bu40;Nx0r$jo#s$*-g~pOvsSF(^T7_ -B}^tvs=rM;Lp-w`#%b=3^&c~JjV~ce}la*xpO4m2&%X4^H$pTsMyj5nOb8P;@n_^kv63r- -apqj8uG~#tzkD2;cI(n#%cO?4)P)h>@6aWAK2ml*O_Ev(dFx~6~002%E001)p003}la4%nJZggdGZee -UMa%FRGY;|;LZ*DJgWpi(Ac4cg7VlQ%Kadl~OWo>0{baO6ndF5AaZ`(Ey{_bCKRli7>ETkU>3ymSw~+I(sl%zx=wE78)u_y>zXC0M!K{tWaE);~4L -5pCJ0KBrFx4o>U%EKR2f6<344iijVA3+r -ovUt0KQXBPbi9A>JQjlraL-fEu3!Fx23o(@}; -8IzM3Y$(f@IkZg4v{aFu-2_D3kC!}pq2i|k)F9%W -ASY{GaA?<#p`{gG8=$)*}>rl_`Z@W%m3oEE%|;nx_FB#Gf1s0QJ;z=Lr$P_i4;j_!JCDue|$P*w^dST --e-bT5{(g}@+&dv2ChV>}$i^$pDwB$h3iyrv#6p+qL_oB`qQb+4 -?O&czkYW(A7XmI5f>s(YdvR4A}bIeG-mWrlF!=3zYNGDq -bhF<}#aWrtPa3~Vc8Kmk!*^DK4|y{{UPyF`Y93%Wg3;<~u -`=!(Odw*0-Pd4u#L4DEGzU@9QW^!VKu~&z}+co%j`5kOjJL28MzjLVVASZkmc)WM)xSzPp&IVmM^n1b -of!zHl9SHujSobg41*5WG-CR&;|K$8~I0h)&_63Q^v6lD0{puq1%MIG)r6B;M~08mQ<1QY-O00;mZO7>RL>tC;k4gdgpEdT&700 -01RX>c!JX>N37a&BR4FLGsbZ)|mRX>V>Xa%FRGY<6XAX<{#OWpi(Ac4cxdaCx;_e~;TX68+zwf^~4HU -3j%=f#Lw;RG{6Yxu8KCY|<8oy@ghmXq#ABQbZ~nH^_ItH$zgQWOZg}KzgUT9Dl;qbN@@K6m)fYROpBFxBk}c -ZTNiRAvQ(Ryl~k)bO5V#dubQY%v-^~`i&~=!?ZszlS(PeF3-yOg%Jd*lS2j{t#d}$(jbHRbs^zt$KV` -EL*EHUeDlajtwb~S)CFR;aX+)~U^(+7Fv6YcFO`Dlc`Ddz;nUVR6Caw43nNW#i>q2TDVab=btCJvk^L#(wNUdQOY_=}ObTe^JNgd~v`LG?uYPI22 -0|WNtfiUQ7T}m(S=Z!SKX^;Br|(`*2)hoRRGKTs?u9Nz1W2y -glbzwM_U(tGLSDnXd6A3=4$s?{>Ve@&v5!4?}3cR#3hW!1aYnjUr%0QFMC?fB#&S(k^wdVAr)Ew#72)oVx6W -fGP<%k5v$=WQRu+sG1ER(FIxTc5OL6e`aMAz|@!;EV;>cz3==*T -;7$x!e!Q}K2XyWO|Ba;oW5Rbn1lb1s$O+XzEn|L~0b^?p|1S!J>(4I&yz^G+G56zxn9HWl-MKo1q$OM -Q)DvxeXgZvi7(Ozcv2~f?cAy3%dE_N;U#l?4{37ya6qRJ!I2wCybgY~UUXV50|IpUFb-4U2> -VuW9PTpoXNFn>hC~SKxYH{No=zesbXa`Oza!v}+!jyz_as;vwu98rD$s8@Fa+4CQMeK99msdOaE_o@L+4tDdk!Fo`bTJxTi2LXe@^Kx2}T|2SFXY+MXu|AroeLlCzcSK_2oD-@L -+NS%{G{>RBg*t$i_tis^RR>V|homo`z+z>xk0(}M2#pYF8<~sf -itp;L)6Uq;ntj%OkK_%13U$SYcW*m$tgFJt7NuKbmiG!d~TFj?*I^)q>R6cUKdc-1U!*4k>eyUK1TII -QRl(PU~wvLZSEVP)Wu6X)!zaP>MHF@>~6h+q6(IKs=&5Yis1%h$092yq;zJm(g!qBK8!7YXdL-6uSrJ -1wW6Q(MSD%;?^^m!t#=oGZv>?QS1TBJoI)BGsXQiRSFE%#-ZCNxT1L3QqGBn(OmGGQvVMY>}PU@=xf% -ns?xRFKj&TJSLTwWVz|JdIDnNsfdv1v7e{m@4VSEjo*x8fGZ%tcjk8x84S2g?PYZz77bDaB+b#v#00b -VWJaZN&lOtrDt@;m6Z`pvCUS6K+d`1!4j(PHQKf5RK58CQ1Eo^f@w#h3WbEn3kk8Q^zDy -C0!jsML5qC;})Kp-BJ+4rpGk%){(&*talxgsLBdPd?`Jr$8~H9sOYeMHy*4i%HJlRH1ndYzF87^gJsK -g-Fd(|LeC1LJF^N&ve~VV)46{|!FJRo{7q7`5>1SEn3nhG`_Dic0MM{9MDyOL833>H;`=vO -FJGcfNgJ>*P_PoemMW`qIc+GHigQkKuet3L-<;y}pm#XNG%V+&OGQ -*$R56H@sV)xMe`|;zwp@p=>GV0PFQNhN3!Lo0)X=&In{RYQNC`F#FD5{Yr9>I11`+0asCj^S2O?;lGWbR0=6 -17>v0K@k~9L5N@p0^Gzxc{j5yGXy%EUCsI*u -lP5^I`X!riqsT{k1m*e{&$~Q754xG9#^9JO;o9HE3xgNY69Esi-dET2c*sL@CTFeJ8R&Tl+S-Q}oOOW -9F2^n%tFQ9pJ#-vCusfVkeQ%8!x?Dtx$UD>%2z>#UT2Uc=GJk`t}VqZOoc`ju=XQDx@c`jkn8WG4LJy -O|J?!bG7Lzg4cNA9*YL~g_b6p3}Cs)l6&pDOc$5xg7^LX&j0J@VQy+lUQ>H`H}ojwodMo?;xepQ9nHI -9M0m!Vy!TQ^e|5 -@#IoI6i1+^rSg?e6ERsARaFZOxM<=os!+Sb!k85FIF2jEfd_0)J9VtP$5iqL)=(K=4ou0E5%Oy1TuI3 -2D)PQH>UVI_4L=x5)ihkla)+4|13p(274U$qxqZM{$k;@Oukx$INsoEVf1s&MzFC3_3+GKk_*x|z+#wMS8;GGYI`v2bdU|xN86*O>`x|+yMj`wXw@k -yX`k;RoW2u0CbtK98~YN=vzc9{BVgd_@o-Zm01NjwggAud;BZ_aI~{^$+;ME&q!Ed@J#X}BoRrlq?*v -Lsu}#~S%LWg?(`EhtykljJtn^jR|(X|rSal8cvQXViRKiBcl(Lzgf~Z=(hOmVnSqu#{6|DE@vY956hBl~yv?lQa?DV19_WV3!Ig} -4SRH#wx7AH2K!ooHW!(8;}=?V~0a$f@72{jj3lY#W;Zr8buu623Gm3Z2#;|6bNfc$qzKP=9OS`kPWq` -xmNo`^SLHgVzZ6Nuwe1|#$3s49(|49_q2qS{?*BPgsqEfyLHup*BC=IPT8_oFTZ~J?YDoO -b?AIh03#Jql>ZTuxu -{V5fsjOG>vBiI4@HtYZs&#%&eV-d4ovU60G(6r7~oxUjdw6U;$O$jQssJ|{PwL+zf3tF*{kdb1KxtWU -pQjZp~Eua#gmwj}sXd_C|U*3d2gq>gmMM#G;K_Vk%_s1IZkb=yUKaHebKoZtkuR0sn1VBGg4YAbF@E);1X_de?SHu) -SzJwT{#g{ae}LCtNQ2)tA&3zkx3W1e$=&MQ9ofZ_O3;-Yj6nx{oGaX_sr#R?ueXt*Y-@cUbg3<2W$J| -SxUQ8zj<^&Ci~OOzOwC4@Z%~P>$;wwz&{=7w%R(7RO#+k2UkJkyCPTU{NVc|eluWonhWhmHN+ZYqqD7qgBXC~H*xO_CJ-Jp>B29CowsszB -?ggy{v2mfN;qz@T6o)myAaeEJ*Z1^Mje>FsjD-#0V?{@~v-{|it{0|XQR000O88%p+8000000ssI200 -0009{>OVaA|NaUukZ1WpZv|Y%g_mX>4;ZUtei%X>?y-E^v7R08mQ<1QY-O00;mZO7>RwCX#E|1pojS4 -FCWm0001RX>c!JX>N37a&BR4FLiWjY;!MPYGHC=V{cz{Wq5QhaCya6+fw635PjEIbeRY2iXu{ZB$cfQ -TP)fb+a-%76i_gh#@6i08r6&pIA5RBBiq>QC7Y)Rsx0;NoYS}I=}xC}zN)fD>B`c~=+&ZVNIywKbEB8 -^Nf?popph?4;CX2wt)%%*Ul>W1Zpg0cT3eY@qiH5-#jnq*DO5#|wW@;$RW;I7qI?Xf#lTLlkY&w0-=T -lp<9}pyS&3OG=}A_(HmX`sC7-47GF>ZaNzcLedGTPR)hm-p`{>NjtA+~k#Oi=(_r8G^RZgn0z;6^x%V -iBMS!HX=bR~ZytCy1f0YV{Q;mYjUU}dwaNm&<*Y-J2kO6(N1Ggi;N0{A6V5yPR%WQ7PASsR_NGK9*x3 -aEubh^RFkaV+)osps`|y~Yy4@*dUP-b9+EvKFyp@zE^ -2_a_~J!^!j*m?mM>$L|>IA}pXZ=N}^91>xz&XfQi`W0cFc52dVJh>S?fbBR~ZNR{*Do^aWW0>AHNW4PqYi-)|^u|p-z!wos$LHyFm_!s$X_AaT# -)D`;op6fpj!)NddNICA2^vW_N^fX8{a#R(-C8yj}r=M5+-TfzZ!-KO|Fv3cp8Cz0N7DHI#0k7T}Go -c04rn^eZ&V%FT&xFsl4zC)+cNq^~aN&Bz}L9(#3c -z1(e*{dBIXP6-%sQ5h~4OqM`?mjA6_QuZtHbCjeH7|cnVX!^JENo4kvbu9SHV~q85ciO$Ql)3V&Zsqa -7d(qHqYTsfW$`%7NGEbUaTjIo)j&)w;A>fkMM=1s+c1oE|D&%}P;y?&6g6PCde7(6>xQ5V-1doxCvt3 -duBj~#qqQPZWwS*t~p6%Kl>WSKvpy-C|;T5ft<2DXu3Zdiw&M5%Ienp~WM>G+JGfVUe_ -q^$q$-8<;nrn?V*eBA4~)!X}TE8QN?wLbRgcqYv8{dU8F@H-4pyQ^5~zizy%+}0!LF~Hw+l<6h+%da5 -qE&iJ$tugH`_k(cVRs8pL-wri5@Y^J8^1UmK09S*m0=|A8w(;*SMZIr^zspR|Rl?p`~=uXdsN@i_*!b%$DqdXb2mn}LpXo8z -ua%a@ky%+W`TvZ! -d;1cyg>#~j8(MiTDKJT3W(b17E${`+1Cz*5vs4?INtw4}pL~rPk6WU&7)R01Wd0*TT;MD_%kpx)XW2r -#?`<`L6eA2~M!<>#!{Rymv&*U@e?lVNaEWKbGH3@OH7o%VB#tY$R=Q{q9=BrUs -pS-Zt_jZ40oiOn#mV#cp9Sz}&pKUGDBWy;l`}8nZqW@Z%sI+w%7G=U?yJ#?kH3PZurw4`v*`<0|XQR000O88%p+8N_aUx)&T$j_X7X`8vp4;ZUu%)`W@SGXz2P9 -+wuJK%|DZ6+3jGR?!+g8)NLzN%h(+rghC7Z@GIP-fxWD)g@ZQWjtJX$%iq!Lw8flrUTmR5chn7MOeo> -1Q7|u{BPG}&>}x5pp&iK})anG9#0+%086;(N$J&KQ35K`mo?<4JWf=)~y*6%QJs1LXr=IpO{`##>C23 -g4*pIUkK;k>fz`tECN9--=!S#cqmpgPHhzjo3H-8=ot%1kQ{WE)8zuY{(uHh$KT{Fg_32!kvg5?P{9* -Y$NT3K=y;&lm)chz&&FlP5y%Yel~Ov)wfMB^C(Ou*tvI=&~xB$Zo~hY~v5uE09Vwx~^OSJ8~c;_t_FE -MWNyHdO*azetF0ss -Jk1^@sa0001RX>c!JX>N37a&BR4FLiWjY;!MRaByU4a&s$>G)$KoUT9-kORk$R{#Lv9L!twYP;Yl3I$3gf5%w6@TWp*2O{5 -O@P@h6qQ#cO5)q(-Q+aQn_g@dcBdb(zqcg@13L0gVlDdutBCoNl60Tc{$Ri11T?g9c`WVFPNUOlFXIE -qQ|D$FW`yD>aH3xdt%REk$Iu8D}bb9Kg2=djFlM4ilrw9@^MZkZ9-mSS5c9uNVqHATH`zzp5J)Ss&u9 -WzaNTCpYJt$H693=BpU^qPi=!DR$GoOYzFx~=hb=9Ey^G=IEvuPee -hNgAQH-(qjW~o#>>EG!+l0t0L}pX#(F-D)yO=dRRKA4Gjs7&cyFNQ!%n4$3Jm?uhJ1Zs*N}U7a6AS(S -Oof6tJDH6NE1_AS+v+a5Q1fjY9jcvDIrHo*u)j}SsjI{4C^Y9ibMT&{3SAK{Bg=v~$_@6aWAK2ml*O_EzL$jcert003ME0012T003}la4%nJZggdGZeeUMb#!TLb1!3WZE#_9E -^v8WRojl+HV}Q+R}8cdmH|iJW}60eu?14>rf^}{i**1u2m&oFjU-|zQY9(7LYjZ?kd%ChUrdUe%QgZpSOBG(smkgGF?*(P%p@;gjyrf5 -U%sY%MIkt4FPsKKpN(F~PFbs)3fbX?8$aD4lj%5Xiffm=j|j%Wd}bdGqwR-fmaHYzTIJ;Ne}8mbk?Ns -1hD5mo}u}%HjT>gBN#eVt@?N;Qc|NAR>KCif~yM3CgX5RKKn-h|G+X*rM -_3qsbX&~>66Gx`s-QB*wy}b+mp9IUXAZc*}WhZkd5~nS4(>k?v2v(hxmQylx{$csIlbCn#mzUlwh||= -n69pgtL1e<2*PQIB+R9j -yVtXf`kxQiGn)vG#w~%$c=nEl52KAcp1UITp3@p;mPnJex$>r{~@d|_E>8Yu%=3D!U#u_>NWkq_UeFF -_E*+P8GmzezhCL(H`s9@JPkt^x=dZ5u}$LXWsi^EgH0 -}V3vg%4O(}>_elP7qLvfS)J>DY42ww$p|>akO)ATC-xawxC2<#MQ8!$Y(Vo!^qwXSCZepiGgNg#&M%XY_T=l!%wg)^{<65f7?#= -i@ylpqZN8V(1Xfl@6aWAK2ml*O -_ExsEiLrAA0003M001cf003}la4%nJZggdGZeeUMb#!TLb1!3WZE#_9X<}(?X>@sCbYW+6E^v9ZSZ#0 -HHW2>qUvX1DOhO$cPTRCK;11g`3V>qOw{^=0N2bV!ch5a{JUR -%1UwO%Era7=OgRQKuVJq|+KK=3uUR}I~pJh=oEv`f^^bS6=m5N6}5R68msAR37=A&gT3(&htlq+aQe- -lcN;bWzRELlE=&rOx{k)2tIDo!@M%w!!`EWKtcTo`La?pB8*z`svBy_V%)yjBP@Hbc0*eMnoYa-Pt_c -Ca!loRJmzCQ@fal$zI7&G9oSS-}rSH|~Z7OOq;RdMWDy5u(v3k?JO4b-GT_0GOfwF&QIr9@aq^zlf6X -?`-(QfdE&HGQNZsIT7VjCR!$?%%l$8(WxbBj`oZpj^jlHr|&`OdTOjWfsbXrgGO;^D$o-2n!{4mN`u} -?D4XI6!D2HPooVV4f*}4XMHv>X3K3`Q88M$;ETYc3#Pc;I7pJtfF@fSa$1jU%ON&m|=)6ZpY(~w($g; -Y$6YU!MGmPWlSBaJsqNIN;)eXxH3L=^X@v4?hrNXFRNVc_>wKFzgq-%5#QidVNfn7gi4@Sv?>op}{F0OfJSlTEpizJBQgGLH>aK&LIWk%Ae -c_BCZ)*yrerl7&(Oq+sZT4aE(WgHDmsYnP-_88qYC@>y-2*K@La(frV#2eG04L1d2p7SzntxAFjri;j -1Ncs?{zEN@Q3e?DTSUEZtB=qU3Row7OdRmqHJ!Snkv -UOuo+`QZs|!BuezsZNlKWRZ&)8|EvSfw0n*lGm9rjZGm3U=)W!MaRp7GFznPr5lg?qg=ExY-O^Nb{LM -ja&3aFjZyig97kvv77-=y4Bc96>s2o-`Aodk%(W!lt=tJoYOuiw3+6w+Kh!!EU!O`efnQ&}n$eC(yDtH)j>E6n&hYqhV(!_ayBpIeY4vc51ijcj@BL1`LIJ8;Hxdmskyg -o41$A<*VRs>WSP+A!Zd(6?#!S58y?wg#OVWM^D0-JO;q?M}%{Jk8mE7%6TW1ULX$4Go|uo@{m*>5(gZ -U(eowoX7W@?O!oEguOoA`+^o3nO3pJ1&9@en*q(LdX;-a-XnI&IkMs)ns0`C$zE_{d`?^~k+u@OV8yz -Y7Pp;+srov`7VR0|Gj?Qr+EG|a4Fg1PS8K!Xvcwjc1{CMi#wf1CP6DdQshgZH>< -l^&DS>pT`)i{kDe2r7>|F&f -E;*-uiD_ehuM!dnl25Vkd++0~M}Du5Zu+2rtr^X8gy6rQ9b9h0KDoQz`2b^Rs*l`(La#tAgIj;cyW4i -&UC?qw6se}7OB~NEGY|S~FIf*~oi~*XcnFGJiAPX|(utSJHg)kn`$t7?nF5xjgEP^%rhya>j9cyNHsj^Q)T>$cvCJg -3u-DTO_{>E>H&K{hq~_|u2jHK3z++SG<(Y7+U=*3_7@v-rAJ&M`LKpXrd3U=ps$Pl!olC3;qD0X4@T#gA^*) -GS2O?X_+UEeWkw%|uX-0}&W}d!gyFzEb_6}_g!^OGp%V^oGw1pLHUEBt_kN)B?R^H}Pjc%)yRD^uBhu -SF`Ug-;0|XQR000O88%p+8Y!f}Mm;e9(@&Et;9{>OVaA|NaUukZ1WpZv|Y%g_mX>4;ZWMOn=bZKp6E^ -v8Wj=>IsFc3uV`xTR(AklsRi5&e6Qem}?(2}xB_N#Q#GgcR6fh6>v`zORR1 -}BWdNSN4?F@`8ibIPKd-6f)d@8xQ6TNjpYEPn39yI5`Pa)S`%gegVwhc2M18s`?bl*WcoMiX%P1>0R% -b*oy5M|hV{{|Ie43N*VWg)_@5$0N1<-qHt9O9KQH0000802@m7R?xP^j!Xpr04ojv03rYY0B~t=FJEb -HbY*gGVQepTbZKmJFJxtKa%E#-bZKvHE^v9RSKDqIHxPZ_uNZ6|Di!h?=%Y{tFk-hgkj6pcA}xYoLG6 -wtHWaxfxpD+U|K1sLFO)15El|HmBIkN$&J3OBd3FO^Q@0AiZ-fWAZ4_=%dk5YaCH0y<0kv3?1PZr@Ct -)=mI}l6LdZ@9nSP3tUc14zx!HjGe>p_|IngsiwydM(=0v(6AAqX7GsL{QU!c?i-xJZ -<>y?sMg4)D0ir9V~a*qUj=(8c4!^R^wt_-9gYh9aane9WeLJT)mlq=_J;tk;N8RH-5fkR%Dxf4+7Kqv -ffidVvh4Qm{fE0ZH;?xZ@5*04{#??ppYDH$1?0)i90-7{Qo=cSFPqyDoli0UN%uLOXFz`q36er-tfW+ -gD&59Bbx_S27qb7(Xi6u01)qB8f4q7PZzH^LuRX49aFNxxg4Dt!_}HRzVvX~N ->ed4Rl^=q^`MAww`{g?L1Lf!fSLYCp=%hYEg<1^m**KI$YQ?0mSN0wu&>BPene3<6_sd~(rUo<-}tH2 -<9ypLD3qhU8~Mrn4@=coKh2gGp56UOLw -weysA*_kP07?YC*c?EZIBAM1g0{g&_Ak|Nt!iA|u&OE12ZbYkmexYVF5KTi9X7OlS4vQ_Vm01dPKGUp -k*^6Cy+>z(S7D=>;?Oy5JCFvZ;5diGViFG9Z_mO>;X1CD^g)KHpRAJPgurl7SDQIevvv(^LzO`7clvr -P)bO42jl5(DU?jq-DbNqs;p`N9EGb91{O*+rXu3BA1Gt%#iEKO=aiN{V$b&BV};Al2S1Y+vhZe=}f_H -nQu*(B1r!O{{@Cr}pfabsFl(>d|CGTcrSoFnj1S6IA2^hHRnr9O6{M=ys(`&XzyOD}gL=a0iAtv!)Sv -ubfvs?jMK?$;X458i>bp($}DX&3XN=|J&s&5p*A)Z-ZWAfzKj@`l#ZjFG|Gcfqfl!S10>!cpd;>b;FOR+ZL{_DB-J4bMc&-IE4AfdpqS!+fbp-w9eR>gXlf~1l?| -z6hCFdPQ9h~MNEfk6HuaB?U3INg27+43PQ!%`{nDasHUYj(0GMZ|hZZi= -1)SvTHpslDu$ad_GwMPnII-fjVom^x!F6oFpvLkm#hVuib!^qH37a?!U*x+h~W{9KxxJcp+6dePlG1q~IONmWsB*NYJ4dslL*7>Ke29AyH9=irOmm4Fv6H+3D(bj37 -Wt7PwJN9C<$rX=`wQ}qlBf&O{4AOb(9r7BygOan@Vk-NpN}D33_fB1Ndh;}7%Dxlt3-%>Js9o~P -Z2w`}eip>mVAh;4?mO79Kw(-7k^Xu!i^qY2BP>k2 -jz7f|{p6g)BT|XaQg7xL7Dful9dGV)_dJKk#hwvpWry_ox?1XA@nhHQTnkBMKrlVF*-=C@237LYS^fc -&AdtQfm8YW0GQBS&=ek7Zxe_eF-7-yCZrq2J5F}&7}-$DH4<-=@o;Tc2^vFfYB9je6-)9i0hO9KQH00 -00802@m7Rwj=1UF`z^0EP?z04V?f0B~t=FJEbHbY*gGVQepTbZKmJFJx(QWn*+-b#iQ9Xk~10WpZ;aa -Cx;>O^>8D5WV-Wuox);4M92VsU=n$ZM4!zQF2JKm(>cnp%|P2o7kp1t5*N_R2eXa?w(bYgbQ|2pU+j# -)LM1Se(8mLW}@qrw(OVQ3MF~F+tu{37kyR;X+fhb>r@4;$tt0tw8fy?+3E*fHsT0RvQ{bk(S811w{AJ -gK9+_SuQ+Xme3{+-gzHh!=D36JCK%)5bz95oaquMJMvak+(Mi%_P|8Vgm -j{m*+yU`X7Y9zo}FpvHFv48M;5VnZ1h}f{!HHte*E;=iO8oB(pbK(F%#i2C1X+B5RW;F&X>pY<=y!bW -wp{Bx3SmU)Itsk|1=a11mRYxR9z=*Au8`GaVu!Ql5Nm+_cLBc_gbR9%A?_?*{{m+0A{@JK~~!ooXMQ5 -fyI~`L#^;y^3!M}{~+&m&Sp4_JEgxYk*`vYLcKh~2D#%SnPYet_q*VM{6ybG*&j;C*c&8MSK2|#(B^v -Zuz3oogyn}8VxtCK0*&A@S$>B0p-(Se+77+t0Sg4ql5{z3L^_`kkLS4gZ+d`9DY=m%(n&$AG{&OU-Z4 -|k!h~nS{Dhf*#zFg8Nl2Y`Aq+B6acThCqU2?R#BornMWqiM+hupFP{f~XGqlCwSxx{q#etVEc%*2LyX -+b4EOBre4A4RBtjBe-?Z?1Lh+pc?3XFvc3Gj$rt7OWGG0tq@;t?*WQE-gO2ivTt--RZXldz2%Y%w>+X -0YjbU>}rbAK(A#tdJ#6z$8FLlvxWb673m=VZ5rCXNWAE-#ZwuQhH!dHIgSR75bRyRckQ4l9d^W+Sykd -d*?c3!mZBZN;Rbk4M-zH~`2gt&BZM49+d?(Gua -Rl>BzI!rYgZ+~$vG;gY7h(NXz=$Yv|0sXMNlV5Q{`0sG<=)in{W&cH$GkfL(MR9S#67Ig!JhP$qqb7$ -_Jr)p4m7zCn6eKOg;3PmHzh7?OKF}&$<@K*gsNlqsf_F90^9p51~+nJdW3YjS&)_c504{;mK=St|fY` -Un|>hxgrJj{T83eqbrpKtD0*GkuioZsMym07ahuCAVum;#BXhjhaa?&6;cZwtTGA3qpqT!u3E+4(sUb6)ySNySYUF6G*}TR!o6%_xtm&5&IiZO9KQH -0000802@m7RxA2Smkt8}07eJ^03QGV0B~t=FJEbHbY*gGVQepTbZKmJFJ)(EUuReo{Dtct| -tu$b6+L2bk?O_=FqNF~>K?ETJ-X#APLw2%EJv&!X@J<59pQV -*DIfctm|WxD&Gjnv8DmW{7W2TxfI9@0@dNpG0$;P-0LpYGS^)@X5@?q1<plR8p6Lbfhu=d4GM!?!P}= -XB3PcPody=k+yi+Oxj`bf5>By%MN5K-1|`W!rR5%J0_*kr_^sKXmso@=*yJ0qf=EY0YGF#)NTuMpalRK56}gfYH?V?Ob{xy&-l3%2Rrq -KG-OvP{MxBf|C=_hoVjA$FR1xe%3^iR^j%J9V*x5)^6uxWvXa(mWz#XB(mmB9PP3xV_^a- -*?wXsVFa+Xl+3^W@+-`2$c(0|XQR000O88%p+8#v9NV4gvrGkput$9{>OVaA|NaUukZ1WpZv|Y%g_mX ->4;ZWo~0{WNB_^E^v8`l;3OHFc8Pz{Z}07i?t=DNgxzM_RuaJgRBi*_vDx$+j1i6NJf$g`R{j<9XDYy -Oi%XR=YD;4wm8&ETgX+xa}$X6tx`Fw`1wuuPv&HTQmX^lQ!V5UI`c{xJA(J7#+cyo_1Ev%n-XtHvXkX -z1jgz#g#{!5;0fD;5z^Z~@6Qh-AdM}@4}^|x`6u%Zn9K)>?c=hC#u*>xRu^0~#LcE1G@A|*pA~1*;fl -zuF1WU08U)Lir`PX4Uw&-gmMDwnQLYZPsCcL|f*DZXBwnN&^Ce8in`4xIrGy4SQ1B91W7QUGV4bjFmc -`&jrZE2IbdG%+gpj8_&p&{*UgvR_Rw|7qY!0l#d)J!hwmLzIJ&-1i -a@W^y429g_97lsAAr!GA0V%8LIGhu|7B?5qd6Z-)kd0Z>Z=1QY-O00;mZO7>PfWM%2m1ONc|3jhEj00 -01RX>c!JX>N37a&BR4FLiWjY;!MVZgg^aaBpdDbaO6nd7W0@Z`(Eye%D`d&>ms~iu}}v2Izpa3)TW%8 -Z0T&Aq!Mmq9S$@DUg&MBgp^0?@0Mq>~-A?1XifK@4mbH?r7EZ#(Gj-T5nA25)}{3=E*gKSMBD%l}l=C -I`XSt=?5B*KPu-l`qX=6v}luP(yKl%lm;};^0HNVCzM{h@bfV{j^^^xbiMFv+uIM9zkIsAPLkr{%f-9 -TH|K9ZUKE$-zg=9@8@fvfpA;x*79MMUege~cA*}-=fY%1WzZv`dBR2Vw7fMIx`$W}iK4$@{5N&IgvMS -`GmzrH1SUsg_Mrke|W%?Y={*ij1pXT3;(vx0T@1~pM+E@xl#D!ZoDetYRhSEWl9Nq)ZSXIJe# -Vw{rIQ&)QBq|G-9Tx&IrDc`VTUm<1NisDl=LYElmaxjP+JaoJ&TrmlEW{iNX)@}D)~mjibhYvg(#^;> -QdtU$5+$dHGodT$jPn5x=&rF=>wNN~?Omj+xU9mu9IzGTnmJLba@PLG|DVD`}iTZWwQgKlP6BRVxLQ;-sX;``(?+W)I3Y!cxh)t4+i>xK^SRI_%3Zv(s^qA-`fSoi8|QDOl$P5-gZm0lY~VU`+I8fNxm -GhHCY|wKane2{Q&H7+#GD#BtcugwzXVjqdQAuVpb;TG&+)c^iPgq4YZR*`>5ylO$X8DTVc(TW=xMNBE -dH$#DUOxejl#1N>3;$$B?3xWkWpn*k*c?5K?R#R@um -PEinwl84L_HGY;$r-Tg!F91UjpopPv8@{T#LGWlHmYnUYpCg-*T`_sZLgzyDP(jU1!+w74vrBzFyN)S -jwK&);kd~Go#}VI9GKLqm50HP5y*~O9fUkI+b1zSJ1`iBd|jNi&_6pFwE6Y4`%2q6A4M*$JaO3hlxnQ -BbjKjy-5hoL^!;5C*41SCOmSDGKeS**r~kcUc9%2}|271`J8(EEuLC7<;2jjwY;0u%rMApigXaA|NaUukZ1WpZv|Y%g_mX>4;ZW@&6?b9r-gW -o<5Sd6iggkJ~m9{_bDFb3a6GwaRAOw7msZ$xz?=z`nb8$9Xcc8%1lUg{^kOWDs-L*(sM%6=7ESniEY*>BSMlzq_B=#-V*`B~I&WRvCh0-o -B;3(ZUEcfB<$yoEjIO_TH53!7I$aopK*>GN7Xh-zv@Vi#6(m9<_fmz8FNX!N#L!sis6yp`4CIveTAUZ -XY^an7CmQ_N6zgS_6x|}h5zG81{wiT>0`k7~IelHk@(>vx(G{XE^F -j3c{^b!x@6Eih#O2-;&O5t2eBD%A-70;Anx2^MxJJ)Um9%5@)0e%Eqm9(&B>@Eu`vZj1zjpClR!In!l --%9=M#he+-v>~S)_ueK3E6ouc0Uzdz=stZA`_^i9V_WQ=ZeU?C)>tMTFI)(~B0g`dxR<7NY{}jkEyBI -+nktBd*guwo#JC9D?CmM>fC}j>juLVIuR_cq9ZVreTPr;;V7u6{vb9!d&szAG?I}j{-R6=7Md5tkbTt -3I5vAk`G0~NxYDUbMH743*QX^;;{vdlnL{O3%Vb$)0G1RtzgKJ?$P^^rD#06djHy5V^3S`^81D>CyoTVhvTXU+@6qt*0J4A4Ke2>)o^exrR$IR) -qh7nkG1>KNMnYVY|sqFf$G-4pUHNo?o-sewitS@?~8zkv)R87Adb43SGT-G;pBePp6@WQ_sZPS -$R&XyW<^&2|s2xKE(tV*Ft}D_kL}&=WCtX$2-NlY2$P7{Fc8{oWz>j0nlYZ5$7I%v31jZB;GIV;d+jB -s64E_PhVAUEGY|ttJ;PC5v!MKOsE;>ewD(mAE0RkOyf?ATHH~{!)-(|>iI^LCbd9pS}5mXciVvs7(m8 -Zm9Ta(y4LptW;?LPhS&I0Ad>M1t5R(Vt@@mMmJLp_%GQ77-DP*tZnJgA|n)PZD_$!gWQb+X^w*iG$rx -=eZ*#7diF0SKOb#cq1~v|JJfT@!r<2q2h5$#dwWK!-+2$f-^+yx8WB{ -2dyPBL*(Y=AwefE7LlWuBT*;k*~Lq8w6h9(`wM`HvhGIQju+17J<#V!bEy3M=yncbW86}eHxh*#$o-9 -yK82A`V6;Kr0(250s -=4EEmjZ_WRZQx1YfMR*J6m10NyJjvjxM7?iedzlp-Mu{Q(&1cf6Q45XS;omCMCl)<8aA|5C+Oc5lTP3 -W4YgOTO?txh<(Q(is+&-4j&9VH{4@0WRj&D{m|1t+34w75s;!ETJGGi3#cQfhcEyjxirMc#y&r!h`G%#Ws;M;U6$EvGB3A9+GmJRx#=EF2adGPE`JZj#wcw)VcceEz&>SBUNoMXNJo -SI;E~PF%da__4D@y#Tf=IT@h|qX+B1uyFC>{D)woM??g09(@X%iGaHi=vuc%^ud-cFEM#?TjjCdxN6q -C5I$%YB?7Tp%iBA((Wd#sI^W)JA9jD9zqt7JyO-bp@Z&$D7R^*S%~Cj)tVHtSd{R-JAA?KZptiGH&}9 -|qwLX^CXm~922*`(u2gI54E*it -%3iorujtePMRx0O*97pBhmvq0L^$L>Bg>LbK+Xx_ypSUo)BfkzDKtQlHH0pD?Dur$Wf84L$|6n%q80B -v&PDMBw~dPgc&|ocy>UvCr04o*%YY`u$k1=5gStg^<5~I#VOn4@u}OXn}QuS8Yi*{X_1Y)sXdv0z+i} -j3C(_(v?@uY9C)Zdp$vzhA!qX*m;q*#{pzw?ir8wpp)%rL}JGv9usK7 -Kw_#0cx(sb%@mQ}lSob1AUf;y!0kSy0MytfER{qXMXr!(hw@ZPN{=__T5-odPAwm9Zoj((y+KYtnEgp -Oz_%hS#y8GwDu)!iXug>?lTO}lp|G&y0VkT^F4W-;N3FkfM2#+aP!K}lS+ju2GSqMh}1|r>NUWzgEK?H#Frh9d5Yi5sj11k -kz`+I(OVpf@^9>%B$1@^?EEmtu;%_c&mkpU&5>A;KLC01wi_Hy<+an^@8;mwH_J&P2QzzFpS&yTBJ^Y -wo{H)TMTGYMP)h>@6aWAK2ml*O_Ew|SPc2vh007Ja001BW003}la4%nJZggdGZeeUMb#!TLb1!CTY-M -zLaAk8YaCwbVQES355Pr|EIPzqf3(QAh12-xP!woIlP^3mpHIODHNvG?t-_=@d=Yz{ja+mME`@Z8Sr9 --KN|H%YMofw;PFO6n|Qc6f-O$zuY^$uj38S5d+GbPSHnao%$wHH=%#d0r|W2tnT8tXD8y*PS8K1X5r8 -i!v|IGK&#Ch!Q99rlWn=Xvjvp7ksGh4Z!xjIkvGJCu2D*}CY_E>`(XtxfVZ`F7s ->?%w-CIT`azu%Tv$PDHEu^EtPF#VssT~WEKZ*I}$VEQr|e}oMNENIJtJ7|v(6YZv$XibX{vK0wP7jwJ -W%Wn}UxBwl^Q_%-h7Qp=ztc_9qY8aGGh0m>q$mX~s39L%!3JHM2#%L$E!ip_$j5VA&q2y%c4wW3Z0w} -!RhEuCx@vvmd9E9xzCkzsoFsb3%b)}>{_9BHe;vrW~kY7+s0|XQR000O88%p+86k2`I1qA>ADGUGr8~ -^|SaA|NaUukZ1WpZv|Y%g_mX>4;ZXKZO=V=i!ctybS}+cpq>_g`^P2Ur3W+Hw}8&5!|WniT0~t%&gI>1v_+HZXqt;be1bgMGjy4 -PO#Z*RI)so07! -)Ywtc8b5kkV;3LLHm}v{#4>M`@M&=`wS9b7+<}KBOD~ez(la@LgP}6vE56X}T95?cAv;^G1Up==BD3s -hnLyct`?2bwZDU(m@HGwNTH$a6^Aeb>A_#G2NM6(J?2BlVaOuGHI+_=C5zU~kmgHX%1gNxJ~Rs)v^&v -2c}n(7*{N{yR}V4a}0QM!dz)xBV6ad~HLXU-OjEw{VA#O&KeH`tw$iz@yvg(??K)fDw|d0aL>H_KwVt -UlDs538bSj_cDUD~i==MT_#ZSgd)u*oPwB@NQk4o*b=<_s2dS_5k)FIplJF4#@+T$EzgdGinFdGk(qL -;ql{E_M7pE!1<`=X>xJ9`F#Ctv%dOxvH5=a<@W04I>`>s82yDm7SBa`j4+kL^TT~5Q1rv|jLq+l6OzD --6)8?f+uY>vxQFLy5z`57(~vs*yJDS%^f!y3WpCM~)=KAaa~mJNQ_+XT>})z;PoIgLJtOHo<${)iL5f -z`uC#`G2bmE3)l(h}aj%(A2GG$S -q_q<}C)O@Yg^sRL5j`{cXL@azMrbHJ*OqLj-E6?C2IbNe7cda@9b?1(UR8zVXmGcTR!0ArT}pYD6u(1 -(L*lI-nuNJFT{wwn_^jQy|2o -mF@jjeWgPS#LpX-yXk1fuxnqGX_~KFW}kER1sa($93S1&<{!8D?a-D=;C7jjbBp%eSl4Q}dCjnZEO!N ->xOdm=zBn}&WP}hdqqiF30?RSEmpqp773QzVNw^xOe2HepRq(Nr)u!4}z3IHmsOzIbJO_ySfZ9H+V1d -8Kfco7bdrFS-5sx9>yByEbT@4jWN65L$ccdCmgO1)v%_>#1G@+*A97T0P1e_fT!Q)*+_SvH0wii@mPw -gw^GR2O?+YZx{hDpPbS>Y@YB0?GhmjrJ-?3#A)KG*`7_2C9_%sQLBLl1y|eu8jkt;i`HRWOf2us8k%` -woemzDO_4vbje{=RW>ChdE-*v!}4ftwY$DvHcMcvr6nZWxf5h3zFy2RRN96~*ZQa0F=?l}@ARK_=La_Q)J+sVnfa$_L8_l(j9B%*`4#lmm3 -UgZHE$D=&Hs&y+JAXAnQa;4-4%tRfh#{kU?gMDG;+3|tH1s+0Dh;`^HA&fV*f>#`7fFGGmtM9dI>#XJ -_*k=zfhKlY8hzfqFpD-LrgdNnqfZgHc2$4}#$kd*aOo_?Bl|aeO5sVo@wFqti7l1_U&mU5-?2?yk6p{!-Sc#@JML(1TmZa3s6e~1QY-O00;mZO -7>Q2YVO4#2LJ&66951m0001RX>c!JX>N37a&BR4FLiWjY;!MYVRL9@b1raswODO$+cpsX?q5NuA1VWm -fVFEec*w9UP1|5=Qlwdj!7yZ6rffEnsFGA%qv(I%-I02;l&-@z0|_LGynF8Mx#N*CFO{}z$IUL2>q)9 -r&g`L-#g<9;>GsdJ7xDS)i}PPEuU^gAFS6kJaCtprFJxk8?9vL&*O{2H-=u-}>(WY9@ND8_m9mUtS-> -P1i^Qiy(05Zye+`P?NRxA$>}K_w0reocFqUT-$N3jpD?KK$vNAJKE=^KP)Pir~WLFh;W-^g!AOC#9;7 -4-2$@Q`rbx-K?BX*^3gspVJK#x|NDiIraWKW~#(UTwj3K&vFc3`Q}=rO^Pok;G`aaOUM!%Fz`@&GeSR -9=EDYne%VV0&qIOl2FPS&6o@d!Y?EMy2fS!R{2PYvJ~TQUjb!CXd+dPJq=QKNrOYV4-DfipRi_3WnD_x!ZHS>6;TxUY@0f4nWP=oj4dwOSd4BR^%p}_9wg -id&BR59f(++|rk#uNiQ?A6+CQC00vDP^R92uBfx2_jKHUm*3CR8k1W@&f?X+lnFAHE0@MJUQ!Y~`Bnqg@gcHNm`h!SN4TB|83# -f4-FTo+9j6?(w$l)D9rWA=xB^U}k2TP|j{9nh>RWD3Xr^`uq0U)PD#|AoYj2VO8I-ZSVqmxNY*Wha$* -h?c^;r93_Z%ZfYuAgO7%xF;C* -D5{2$y4Rj$n!jwMcwf2Dhahk2Joa;`6;w5QXc+5KIZjknSfVYl6l%fzSeU8uFcU@SlYdIU{L27O(w{EkHc<9>_Z-I<-I66)d`tigXz{MZ%wOah75qqgB4~uUZKxX4x@dc-c6iLx8vcCV_lL-FAnqBslYA07PaA)M{PRXa7 -=`5`{fdcsCKq7Jz!qg1L;IQm`SP -3YSs8SZ%!otG<`U&KglHY2Cm-!>+I-kQ_*PtcMc~ZYM(x6CN$SOZzevrC9ZFwJ4cjIZE+TOU$3EkfHs -$W^Uxj|jkuKHv}nLtF=&cadem&Tk;eA&o2o7^4t0;=i?5GFXLs$o@re2T3jDQh4`M{-9d96`!p6#j!+ -one`>Y>($ulFm{TmwX8@O+B!X?)8<&| -Z#{e;)(ea~Wh#BgsZ^m>->FvyoR0^2wik~fmvScrDjRJ-WFfftV+CD2#?gi4($e9*vef)S1|}9xJZ_2 -4(#{$>vr@^1eC=M)kgVoH2aeThPZtyx4~8fN(CO&!4zc4!`vqM%s5JF0+iK=`>^fh%Omy{J*X -&s6Nu|KeOg7}UkchJe`CJQe@6aWAK2ml*O_Ey(_5u>63000{U0 -01oj003}la4%nJZggdGZeeUMb#!TLb1!LbYGq?|Uvp(+b#i5Na$#*qR8||Hdi -?D6kqBw`_dqiQ@{$gYCvpE46KLP9U^2xEgi{HF*RR01dn281xi^-8o!ABtRcT4~%ob_-DW%9>&)ypd2 -C}U_lHAA;3NI5{#U!7$vR2G*KWQ!L0xF5>0qAiZlKJ1yt;7k{nN$gk8SQRC%!y6ZBKjS${9`d5^v*Zo -mfNBt_DV@U{XcGuhr0`?da{Rgxr1oq9e7rBsd0tY3zSD4vKGOL%_;natyp0$CT3k4%gX_r}LF%T%<@s -Hb~pVnf`)yGuxF!w2h=$J^r)@qxXX^2o=3g%eS5(-uBd*hjdYb~nt#uWMYu*A}b$0AhI_z*?tzeP#+y -=RY=?6w05Q+u}OU%Ixm@m(49)T|)Y>PSaHWZ~wvAFm=$|UYC3HHL)JpIlKF)EAo-;?%c%lDL!pz@uZ^ -_Rya|@Jr4FCXeEdT%>0001RX>c!JX>N -37a&BR4FLiWjY;!McZ)ay|Zf7oVdCeMYZ`(%lyMD!jhEXz==_WlKdO}s4lQ^kysU6t9`U;&vti+YI7m -CzzNh?C(|9&&G4=yRvc6#mM6vQHTXJ=>UJ+qSQO;J{CQRJ2QTxD`Tl6pjxWnS2qthl?A`CaEVUhzE5M -5*j};hxmaJyxqy@Dx`s%VNz^Uhzf7l@f{>2sfl5WML<+fuysGo04xfqSTXSYYXvCW|f_)b{lWzB;SqM -8^roEFURb?$VJJk0v7zpHDAeUtFDz*`2690EsPfI_nn2dcz$-H)rQ>FK(`e!B -ep*#e$=3?3%ZyA1_beoLrw>oF_kBy-(on-Pu2eQLLp}*tH^8bt#fmmZK4#AW;>s1e-R>4m@7)ER05~o -^Q%xA(TQuI1@m*^MwKK)PNLa5RFD7G6wd#EIx_+s!EHRzya%NSr%n@`gtKp&7uiuN)QBEW4KfzWpZhj -ev}(QD_F5u)TLrec&t`}DZ&X~KiB!p)uq8mMNCZ(JJ}(j?aza)!d(D+_RNam -l%uiTrFk(kPuz68rnq;8S;b2mA3D!XPDMeM6IlC@v&>|c-U>7;Nk)Uo{HD;V?;!t9OEqKno6Q~#$ZO#H#1}sR@v17r2H}_m-l|~CzG>XS8BKtR0z1~Q4!no8SvO)F0#L -vqjwF>_i)2ZYz?b0gm!re=(P4Uh_~Yd8r^(?}FtXq*0di%PB%wQ|64`R>-d^zX4y+xcsvF~JN?QQw>& -=9$8@3@e_ZGhRwC$`VW}u2SJhj5snznZ?G+szA=3=Kv%RG&ax_TLp9Hz;Jm*C(!be?ER0f)qhkUNFVW -De>G4y4XfR9y%eOZi!(4j+EDvRWYxvIH?MiZcBQNV3S|-UA^g;}#LXrq+7{T0^E2MzIqI@qO&L7&Q_@ -6*D%3%2QS$NsKKG)6xk#_%X}Gy~y%{%$_(8qy3D()M}|C1jl@CNiPngZ?`N&U$-b~(n*AKcr@S8{^5} -LB{(<={nd`PupVNsIf&a@uPheKC=(P()#Wc#qoX4%qcd=o8yx@eCc!j;$boaC4 -NHu^YkCBLAvlTaI}UdbbXytSCOgAwLNgSknC*W5Qzi1W%u4pA)B-mlv1)d~iDjjn>;ay^MKAt{G+YL~ -HNF?E)#rB@I2UByYeODyt)T%FER8ACzqlW<(J|TPScdvs&cojzgv`ZoUHxEE%LIB_)}jQzd5fD@~)7Q -)f2jfcj{W18tcJf}=t1+mFL&nG+jXM7^7~v3}jmjk=aF?TC2aA+)9ImMw!{309-N255V>2Nra9flwB} -zZU}muuFar#Q!Q}9?tA?k_LrodVs9MGptP}E0R`-saSLyb=A!~{phbvMd!yZkv5f&4TSE!Qx)liik6Y -*@*@>i8HuUL_97ND6BAdSu|n5mlTMA+#3H}=nt14_%2B{8gEQ9jk^#jH?QVytqu5hhDQW&Cnt>K?ODv -A(1k+Xr%0(=yP|KJ|(EN#dfOV}5s2)S~&)lmvun2_w`-*A;Qw@e*WoSI--%fwIxww3LHF34|%vRDfEU -ahXIBsum;pns5p6o)4NEaRxSA)-V2@ZurUVvaTC;%u%_aq8?0kU;KBd4hmbhw1dW~z5LWY$DS?IKr(zr=-4}-H%pRW2Qy|R7Usn+zEy_<=18oJ%1=u@y;5ER+P9&IhKPwV+_>c9xCpoI`QQQdDIKBgRw#2=8DcGI7hZxIQD*0V -rs7fvvRgp+C_#OqiIJOTMSt-Nv{8!`tv1o6^M&K>d+cW%LJMs=9DlT4+b030(Ppzv!c2%B2Aw*Ta@k9jcV9z%W$r(?8D$cOdre6> -_>OPrn(6hYUdM_A`PNFaFIQ_NpCXz=r%i%WyLm#8kx81TUv)~v!QKMLX-_#K@FVE5^zid33giwC`T7% -u`w=9?>eQwo=Bv`R55_-K -dn<<@AbCYke5R5@WZLk1KPr++OUgP|~J|?v#7|PI+q|e0Br7LhA+3s<&JWL$|JuYIrbA_`ewb5#%Ujf -`EF$9MY4d#WC)s7_IP1VP&hNOo&nP|UWhKL10yZwo7y2zLE4pdkf`v+EH)4tU%pesjOp*vH$?NEw;*H -AR;ZWM`)1V6@X7bSw%Hpq&5p4Flwl>_!xz&Y1gYtbg8pSn?Pv2oLX2AAfJjG_2dBOh9pE@HE|&!SpTv9+rRmWFd(IDs`Y>X6+m{|4%q*_4_hx<_m$EmnK&Y`#r`Vo2#8Eir-%8q -!xb5<}Hcp0OZQ7)!gh#Xw;d%=hv!(MBt8kwL>OJDcsTVb?RIWKuBh0o=2YL=JQE=jGs -N(+#f^xLsw($-Nt~@=sw32N87);9iUzBhRiq&ZR0}q9JG(&=1vs5XU)CB|C%rYZryCa8tkopG2^Y1>S -w$4T7$=PrbW47KMXl*fay5znRVE=LmFl>Us&o|$^DSd^LtTfW+TrK`o>Ak`mAW&w-JNj|&i{r|^njMcx9*S|Yo51`sKEPz5rZGg)XQ!ly!vOSoBvRM0*L;E|K9$flokC^ecenMsv<9JxA -&vD9sqy_yZSv_ABe5nqE$=}~%Tq5+et?1v_VMxkn&k1@6aW -AK2ml*O_ExpAbZ9pl002i<000{R003}la4%nJZggdGZeeUMb#!TLb1!Xab7L-WdF?#?bK5qSzx%JiGB -;;3OVb}|+O4+ACQY5LXVN5-xZCY{JuD?c7Hf)B3DUCa@&A7B0|3DfIqBYZZg%c68Hpl*hlhvvjR$9|b -y?M7UKX{yt@CWQm+>1}RYhrjT*-Q!C}n;w6SZ`@X0~5mUR`CymHAoP5$jTAx9g-{nip!>)LCwS)k$ri -x5{}0#1@$a*i<>p8?BQ{$-PBYu3&DV+dkA4OnvrNzprIgmu0R@^CHXP)gsB23`H&Bwzg{MJp3HKoe=&8xON!)5R{ZXpY+m!zx3Z -8`QkS~n4A5+c(l6WgI#YVk+jX6lMUwNcbAWE9K5y1$FrwZ*{VmZ@zAs=XKh6^b80_%^*V#IXZ)A~{Rk -Yr&tMX?#uj6G|UR$z!-DG+CHIM~*{S_K;p|TnduVsF)LVlByZ=E$Y8O1S*}(|k)Bo+P)wZOa>snjluu8Ko2)8}l`QHpczHQbI^clq -<5lu=S;ecYfKQFh*jVId70t^PFu582!`Yi}-v01mcXz<1ZjxLUHv{O_2hL+V;J@IEID9v6zY -r+BvUU)s>VU@1vJyY7O*^QO3+W@AR`oL|S%?kwyNZLMj4N% -{h(8Rt~!ce%HRdP-J6ORcaX!1Xn~^Wzv75yv1C=g>h5j_;j&!QScZ{H$1%_!@=m0vj*BPLw<~oOl_E& -hN0RM=tmN#w^qU16&ab^KrTNM%KWI)MUG;8u*zXjpXAyn6C5l64tht$^~&QaGc>-KM)7cK=`T&Q3+et -*H=h$n4we=?qc+FnH9eI0Zm8;AO|Q;Bu6N`DDwC-cmPT=Q~2#Wtw2ib4=SLk3gMxE-`xw63i$Td+j?0 -R@ECXzb0Mo%{O4$Z(7tp)w=Z|dsvmHdKoh3rTmv|RtpFT4zbEd_L{W4}^c&kPCaC9mM$rS9S|p;T?JF -19Nx{Zh4hj9P1CfbDl72@Cxm&`TF$e@7R -X|{MdExZHQaepfUUogA}O{SH-iyxW(NiCz=(@%A%5!N`;*8NOjI1;Nd>8y@55b@I-&{R;!C8477eK?N{y}%r|c*7vmpJ3}nlNJ+iKaf2 -Yi4w9M@<{xUfu-Ll;*u(X4Fqm#s;q33IDPZ>{Peqb=RcwwSyn0%AAlzweg4_W=k3M=MP)>8ruf5@{mq -Dx1b$0L+6>SZ2_hs;?W#R6IX!*XSu3_X`f3L1nlv3an^96--CP`91}=`&KP!aq#h_p^&_v)Hp&~q(dq -EEs-qVG5hrr~moHsR^&U4)uog^qq -tI$$$#Upf-{3^hO~j!zsCa%>W{Gxa8!c7BDZyl>}I?#?ekS*74?7~SFS^*;d|pT@!OIV9;cu?1a#-kj -K2Ck3<7hxqJ=_h;v)W17@eqFKEUYW0^U -yFov{CSO2nCV30dp0a&ep7#tV572U<&b1!`(6IS%Q-QDVYWw*TkR{B+F?<nJP7;FMUR<%N|!rowuU>;!fKU!c)t~;8VX7VBry5NrsbTFKeft -Xyns+{sCOsF=rb2K4DMf5~KXUVlUAlxeojRZ11QV;DOdTt5Ov4T*)1j_*ALEvN&pbHZdU3@L6ev+n0Q -k)>9&l8xro(G121x$aexxNOU1^H!)&-8Ay%+OoxusALONMO4=G%CQmF?_6AU6> -;;L9r32~}|xKUHCCSNF;>XMI`i`gGk9IQZcHUYQG_uieoi^+HS5WjeNe)jeadI%n<1q`!&XGOp -)4ir7_m?yx!+?Bx^4Bi%HV*_FijEfR<`MRk)>l -zu_vfw`#6Ezv8h&SC3-67YWrNP-Ed(Dm`t<+df&(9<4*o2DX{16B6LF{4a^Jd7LA$H}#7@GxUZ`tgZ# -`I0Vg@OGBhgr)3_I*^lmu*qS_5>c3~891k6Qxl*aue+G6>+{kM}T-pjxVI?FSKVOyzg{Q`;Sl(k`A_S -FpnFZV)AYESsu@;NShBx({e`5SR{1kq&mRECnXQ8-lyLw;{ag2x5Rq15Pezo((!9+h04qVgt+(<{fO_ --(-|p&Dic1Ti$+fzx3?A7FVGtwJEFg)6htS>Hj~#MQ7q8{oTh3=B-O~fqk%uEjlotMW@YCD9V_(Sp%} -+wBuES{9ob&aK&+eDFaHKLqr_t6ac#LY;uSsQeVZkUgE-#ow`W^=mJu8L%H5okU)sAfnq$0?6#Q16k -bgqun7Dv3;aCpC_CPg<2FNJ!BFP{gL!X3AGjO>v!LHcBXEv(IY-W7{e_nmFiV!|O=8FA4!%HiJ;Mf0G -S{DNYn0YSUM6*yHvwU46wk!*(b183OkV@Myt_$syto(NeQkxChaFP?=tw^}nUWUlZlL$#x&?^Z$pspW -0($_t>s`o=#b6E&)OmUkdjpQ6^dSUst%`lXc*;!=;t`Eb&C(+#3EM2;du_=@4s9rEJTYlj%%vc -ow~g~MZ&roCZB$z7UID|)+hhe(O(y*6*|TRYnim)Qi?W<06$s4<5CG7)IJ!+C2$)H^xYVf)-}EAKU_T -VKCto~y`sK-=o<99@ABPDJ~=#YT#} -EXl~QLKV5ZO6FUhhEG8uNJ6iFwiQ{53F5^TF*A5X7+OOVxnB#iK}0bVQgf&I;!4cqJi(x_Q97tH5wwA -WsB-XqlVn6af~0Zh_=@p|wSn&hp*(8;B*!QfX$F=FL;+|^Q?_ -a$-eII`~`>#{Z-Pm*H3sP|*g#`TBDySbbnWti%$vH?ZsGu~d6F#a*XySuBy9TdthLjNvFj6i~-@b~v{ -xB}5T_fQRxZ&^!SK}kb9Um4qk-BxgzZvwtwr{qC8g&~S=5!MVm=#iGej{VGUF8{2&gKOXwSk95->qLn -;tbwTR#S4jEV6l$hnT9D2X@L7oRS$#($vx(o$Pf0_A&|JLW6b(@u{552>b6{RQm}60|1DTx2cB_v)1e -1$yB)9HOOsn5A8wfbK#!KbB-a=xLMM@CU!9S4Lvp#Gt4j~*tA%Ps7^3_P#VHu%AK+mcs^nZL!!>amO9 -wiIBO7srkq~!5TxruF)-|Waq!vXk`n;772liY$-!qG{cn-6;zozqewnA5mkPPr5k{NEn=t_|oO7^>LD -5m%yn+Z)r1B;Mv9iMQNSvV^Us>0CR)UWQkv9vR3z*g35`+hA0;pDJn>oV(NLrd;i4B8F~y02$~xj!ZjWC&j7};8d=ILc6=;=~HHU<=Aa3;m9Ad*7W_p)w(8mhn5Rj -3tR*|BY=o#k==&ax{>>s$>zcgbRiPa)@4N2fO9t;gS%Zq%%{*C94CQepuh&Bo%0CY$YUTclZF!>Wb|# -W71r0Rbh?v>S!#@z5T=7uSF~!7vznB==&Ht1tGTPz#Q(T`>Zdz+I6QRv>pa@ob$z=6Im8{pG8cgk%#vBvYv7#OmT^q$Deoli|61*0s6$MLJV#2-sd5 -%Xe!{LOT*O}DoPzhuJ#`>LncjN#<8EJp@=?h60boZR5J}a`0%Ug@LS(+k^fZlL=fOSYf@jG%|gCCG&-~pJtwko~XYp?CcW3P6^xiye&D5 -^dpz@RKzc~SV*%B1EAWRR#Ec}#45qDh~Cwk=rEzs_cds##+J*kKHzM^@7rGb$1U{8HC(z-(n#kTq!$Ti~xNS>u -5aN?#}(3&iUs~Jlxr|*63{sAM1CkDZ5+WZud(b$_G@$L# -Q}WGchb3JR5yEoGCHF*0DF7NZnt`JTLdHv=gI)W&xQw{ROnBuf-H-LlG=`20Z2;#eVRwV*p!3(iIj@S -J;h_5t#Y6kdeNzcw<1IPsRjhBupNO57~;c6pD@>ie{zjTAG#rSjk@+3`{X?$)@2kvPIe&2dcKibPFSg -!!WUsX7k$r72^CB0{H(}Erh8C=WP%K7OL@w(Q`-F@Q$`=BCh3@B3Aegb#5(VR8<5Tas?XxzMcKT(-7h -nkPW2UyQHK&z3U_y0CnFxg)v?zkQr#W*`66zD#its{rSsM)!Okyewefcewaxb4_&C#5mXF=FyR_PI^g -Q-B&+%!09S4+$K*Qr;!xAkn|MeA!pru1B;I0}zX5ik78W7}ybmHbtFY=4f+srg&uE&ncQ>Eg(KG@ALh -s@ZAMY$YO%7^@=N=*|Y$S$c4{WNgGDTEV=<3$~NAQCle0b=@w%k2JJlLw -}7l@M^;X2jDJILUa;dYn%4k6MRI&O4ZeRzu4%loUv=( -0L{RGCV{D5m_d=OKxw9DH1gy`4oE7-fufXMpzT0@yhtOiwx&Z;Ea3VIw*37?~g>r*7*b7Bw60)fFPYX -=)hIYZ-{Vsg)%h1ohCw9oC7`^v0~)UYN9k~nO+UsJZ?F+ieF9Ba1OOuD7f&>Jbz(`pFMmCPQUa=G};W -cmoHCL^Ruu9B?i5zK+b>DJvuqaAf=Wyd0C0atBc@wieQp2ONLow^yMUVmmH<{@kvNMZ3yQ`V9gxGja* -aGh`6Gc5#lbohGHtq|`B2BKpN-DH}~>sh898# -Xt2q!JVmHAZd9GVAVDt1Mlx|0`opu*OGKb(n)g?HBJ7A0tx1}~cLK*D=gnm%T*}bAo-Q@&uU%RdL?7H -7wa|Tn;Nk;1a(Bkc2wLU}ixv39l(oSKI@UZv&o#}P|+?u+|Vm?NVxL9*jp`Xme?0?&>Y&wflrLuYCSH3ql&NALtzS1d -Xj!(bUE75ZmN1KJqvi$kM<|giPLHUb0-`5E-*8E+k5Zj**$+VU?o+Kdi&8R9t -pI`(vYmFc^AtdNJnOSWj99qW8)7s>WPE5|Wg~p4sd!U -5>z&E1w4&(8MDgUA&MBbtq|tO*J&vgmS@1&lJDdJ->>j8MCd@mA{Y(_l1 -1kd*P5W!+gCA-OH}01FNG0WP59zTJc6$%QXx9eb>Jj713SV`%mo`jWpmjTm#_ -JCL*L1l$VSaqj6AWl!-#xo?Z9#70IsYvJBz^ZbAYL8BJTUD8mMYkpkM(^I;%KV;bpN11w| -v_>FZBu$Q*aP+iB%5BAaob2#3FuVAdSc5AI05BP-MZGf;tEFU1i$#SYgLqe19k*FR7|*vy`Y~2*G(%R -Ty2!_HQzvPHv&;^SQJ=V#i@W{dD^G^V9clUc7$&$ZLC)^ePuS__DygpJ;6}dvBPbEwZpHI;JXHbT-@{A!LvnaFyzkb=QDqv>F+RV -!ys>+|d^*VJ7*K8T1=6$3W$aY9`=j-e6i({iZY}&@dR~t{t;-5GqeS~+TVP#DU2lDBR}!_PKUv^bgU! -G{x^~Otj>T7BiIXEI8ldpJbD>{5u0BEx_2qUhC8g>MPRi-OgcGS{a`NKX;u8Veya86nR6|g$xfD11Eo7(mD91cC#AE$J6oqBa;dKoqA6w8L4Hgg1I)@+XqGO9N9G -hO-Y6hq^o9MRJJwVDfus8k?5dSHMcQT8~`@L;-4A#`6I!Ge#0>wR?sPfzISGkAI$gahMe@WiS}c(izT -R_T@tH0(>4Ye)C&T(HUY2>P-TJmol}$CLk{g{dFb#ZCHREafZT -vQ7l{0qi(Dp@}fV0|O-Rs#@voai|os8CrcxW2;Dtoi0%E=)~x{D3F>kB(e3N_N<5DmvCaA_TNNQ|{n? -(a5+<4M6Skom67qQ=r$>7^<8p+?D_JLaIN(n90FehF=Uh>2++Tgv -!*LLW=`9+i#Rvt${-URI2p@*XPlvBu53aif3S8`Z*A`IY@4f}U6G3@py(Ns%a6l7KyTs%F&zU>O@%u9 -;db}0>b%aW)7~G(Ex5D@r5WJ@6aWAK2ml*O_EtNz46t_r005~30012T003}la4%nJZggdGZeeUMb#!TLb1!XgWMyn~E^v9Rl -TA*;Fc5|JKE=qZRth~pC6Is>LR2hZ6-AbtOcD#n6KsRX?XjKyBx#rR!VAyL_uiAnobykwwDJla)MTN; -S{Y>;=%_;N80VZZ)%9dOP>)u6vaGh$fgk$Vcc?v@A%kbBwcKmW;A7~KF;;5n9K7Q2Bpp`I)b-NhoBC5 -`%OIRUf4B6js-Rw`s&ZtYl)c;^UHMjeP!9GH0ii143y0(@B7|_7yb}WMA?ISGpolFQaB<8dk`-QzL*X -?HhJqJjsPM;=fbId1=a%g=_1(KF>`O?8v`#y~YlW$BHcjj4;ZaA9L>VP|P>XD)DgeN|15+cpr -r>sJh%!^((Fv<-Twfi1cSS|C8N36ec^v5{zLBy(3HRg&_q^XvOaeOPhQ_#oT-cr)|n&68?7V?9;9F1# -^~OVqH?n7UTFp8i@+Dr;Kurw*$$uHN$V-KpaZz3;p-S~eTH>$?UEg>*g{u5_vs*^zZ=tmtI%B$ -p&rV(T_^#1kk#xFszA+bhd0YwsqAkLR@{xiz+xjrzjnpD*4@x}I`OR~K8W4LNVuNfIh$i<4u?qGtbhT -uZY|%a*eYr;?H@Dh^ycWn&U9>rVb)bea%87mK@@l6ypXn2XDluFP&=>0W8SAtA&=vZn3tvb_6U$ilyEhN{ddkJJ?=5J`?`+Tc4{LPND~CE{6)pY -q74^>tvDM1(wqPpC^XqkJ(p5WBaU-Pzb`jIE>--uRs5?j$?&^%NA`7Rb>nB1&&nSt1jqi=z*qDE)d!6)Lemh|gRoeY*#5170yz$K_f;Nl2h&FkF%>%P{eg&5(xuw&K -EaR2Q~KIE<`nL3@~Q?4f{etltc?=U{bX{c)COasxUBA^7V6^)16rEH(1+yS{J3otXbG -Oz<fPR@A;4jG=_Zsv^=JUvGKdJ=GAsGrcX?<+(uhKBxf7 -@Zq)!MlmoxcL&9?3RZ{vg+w`k41C4cRGyOw8yVMi)+qfnu72%XV~fK3IlbUJc&BjvK3&~^zS;gGw_kq -R{wB5$ukor}Wq3q#*CJM%!WRAmP)h>@6aWAK2ml*O_Euc^VO#tK002`F001Wd003}la4%nJZggdGZee -UMb#!TLb1!pcbailaZ*OdKUt)D>Y-BEQdCgaCZ`(Ey{_bCKQ&Gh3EMfcVH3fzu+X{3`(WKaiG*D>iWO -I>8jil^&!~Xm3NJ*9ywGFy23xZhIy^!}j_ZGRUv~ggMb|%B4!v}XTqM8*(@4y`^sW#Ba-b(A1a9KI2l -_-~Rg@4wlGMvqx!PQohx(2odi>|Jc>IhQpbtYIJ4$^Idz-e7tGWktA1h*9q(zK8zrYT4ZTcPq2bJ$A( -?x5lCZ_GdNf?mFW=Vr-Apt7}TEGyx*7PKOFze|f-vtyX(u#w^!-aFK>Q@^A43H#~hWL&wzfSDDt29fZ06LyNY6%pPilgm(SpOOVQBp%Su --9DeyQGWr^k$#4!j6Uz%8C1+_)XF`8O+CfZacnUR&_TiwOkT@vUNdo6S8<%KRwePHJYVHAC?I==urp=5#9r8{wtX4L@%oab;BXJ!G;gU5z8WUAU2n(L{R&sHw{P_)F>-6TFMPkfl#ksURA9WxUt5q}oNbmqx1{6=4!B2U-m6Ic -JDaBZb0+my>CCGKp<$?if-7?)s^5}Q) -5MVV?p#_Xz_XE*IQyCKzEX8$*>FxV)aQfD?4n=0gH1#3Ex6n+v!LeQwyx-JSdn5VjSRqe(~3y5F&3F_ -Ui1{36GbOV<3jv7c#lWbFSrrTzCay#HDRJEjrc5)iBN#JEw2_tr60IsQs_=y{5H=ya6#$n?$>06Is`Z -3RC0ICr|BN|wZfqGNGwW%o!Xr6F!Tc~KtdM~U8L9aH=^?RNs0PUQKylKKGC9s51wr!?D$nO?EC<*ptf -HF$N(qB$O+-y>*3jKs -E>{NXVpGcSKRqjg%P23jh -G{BLDy)0001RX>c!JX>N37a&BR4FLiWjY;!Mjbz*RGZ)0V1b1rasty=AGOxeb4idlt@WQZru#zY)KEF_m>~3lly}8`$$ -wsyb1=Lcl#F0K!?)QVT`>XU+t`D8Y6@(=Qmua82N+T=zSyL`{heRBv330v@kh-sw)nZPYCDw$i5qJ*) -5{G+?RLYgfv#GL7aP-{;%#zlNC1nJlExKg%8Bk|_P)?1gx=urkuEi0RQ=La4?T;9CC{&+c$+`UGUaUC -3sy|hJG|4x>rP`Bc9J(! -V;l_4)q9PCKDkX*9(SR6md|TWvaye{~#3Qpc+^nY_{aJy+!`b7$Fta$-p_U)tKtBgZu -`b-I=~o=qU9iy=a~APl&Di-r;v3E{S(dpxHGmHC|w%{c6IL0AD05<-bx`VBkIPegvdu5e6{EGI({;ZV@?SJvR5 -O~hTCbBzaeHp3~Ju&g{mz@q?Gnh@rN|rFK|s{RJUdx7BFxH7*O(}hI&GM+2(;2&=aUEYBQbrx?-;?tL -N+_SgF++@H!kIl0?C39jR0AI7$*o6v?K%@T}?`_`KkX)kb2YfYb$t6uJ~|1^!D7D5~y1V>Y0sL5kE28w}q6f*l~k4nw+ueEpWnRo(tt3C{b!*QE8!UV}z5Zl&-mJnP3t)-x#PW -s*b7x6RfcLEY5lvsd?hOhN~#K -=Y>1JGE)q+6xJ-AbX3(r6Ve@fgGn5x_6KWsS0;9$D5(LMziH9!5mOeY}ybSx6nVL@qzr_UcUbHE!=)9w!EpZ0cvMNm?7ighVCc5`*DOKK*CPg4ioHPp_R6}@B$GWp-?J`vXtm -P6!~?YXh4wxlmjr6?FEPawOj>-dg;*9#NWp%XGd-%-B)}sh%c>e^*I;`1q!#@iP1VU|A25bjE`Z0Kuo -q2YUb{SFuO(zZI?j4DCZ6`Q2msFS&~9+biMD0-cih5C-Dz9y58mNM?`*gn~h#KLbPB#(u9!XH1P?ci= -qMOO{g(V8XQ6`BXHwhDga}pm)vr8>tS9+D?!Eq#K0^(cto4_O)zXMcW?oQw}UmKR4t?fHc7;X>(j^W! -WZm&4L}cYLLsQ(1C*zfkBV#IQXRYssY-L*Wt+6;=LsM`XFuZngcefNH^TSs5Fcc}g(lCY{GL;WqvB8s*x_8*AM?Sexjuu&E%v%jeBhwn}*@FvC;>?dcFL68;o(u -LxsEZvximrP&g@JcC{{c-ShOr6MSA%d%RG3(k$o{pl86O+oL_k>5x@#SQj53;0WK -f@c@-*Sm>>!!EK7FYax{?anvFtRwU3KnIQNGMqQ!h=qGyOhC~d9!w1!)L3Bv=mN-0qlTZ%9TvPqaE2{ -Ld=^Dh_j7iz4AdFkj1xP3+U>mwh|(4AL4B8uu~shvon_owOfa-8cLa|;k}AnwcPlR{=y}sl6BusFLoN -V(^AXgFNZL0xihCAH#6|-hUi;;&)_m( -yH)79zSteM?_oLQ&d%t5cG+nGt?&zT|af&w9Wi!Rp<2CC`$OkOe-Y}LW4U;Of{QF8~~B;8(Y)-!#cww -JM8>358YR=d@Bh5LFdJ+b33;=NF>4zN(;bj^bPC|09k}NQY{dHgs!fzUnHk%SiLT -z6#j;&RkFq#cG^3E?qyb3*y%CMXC1s8q=7B1H2D4H(!#>0qyf!H;IaEmLYl01yj)Xv4=(LCk`(3sJuG - -Cx;9czA?A^df$;Aso~2i<)3Nt6h}ve4tip6({F=Gf -w%G;E&fkW#|8D~UosnImKqfK==4M;9I%dU1R6&ZKRVDj#as0uRdHkp-`;FP9W0f^%-s{4uW1e! -F+#&??C(Rgq41DPV2Iej;FgfNZtLXUkp*Sf8YBV3P*Y*OAd?wLq~|;j1G~K3y{lFJrVc -hMUBJ#f#)>NbJ>K`0swP#cAz=GWicsO9KQH0000802@m7R>e9LRN)B#02Uqq03QGV0B~t=FJEbHbY*g -GVQepTbZKmJFLY&Xa9?C;axQRr#aZi*+qe<`?!SVk;BYc3t4-fs)Q8*d`jVhYHcj>}1@;1gmMELIvZ# -{u?z%zpw|8bp>S4*-9&l~-A(6%5a2~&TapkU2+A^Vat!C2wkXC4`RAs`4N^Lf>-h`jZqz$**@Y9N2Q_ -4!rO09M*SG5%nwvub+*H;hHzOy{PO~T@i*L)+i+h7k3@D9Z1^&w%GGPenPCTgL%RXSl;jg_kARl=?hj -rg9!r|)X`GIJ~%*`%2S)*5Kiy_J%uTqk};I#`oIcLB85rWRb3reEkq#-Rw~U@Eex|;ZW-4 -C_HQb+=2dlAIMWpA3>g87?3Oq$Nr!mG;Q7mUFJ4||tJmKzqxD`^#X{6~Q9?_rH_unEviHwdtC!iu`Ni -|qG7`;J>=yT1A*w~r^R4itZ&!cIh|@CC;vWm*1WTw+7S8s5I&1BJ)B5rQi1Zq?0P=5+yjqCT>vPN~p0 -mZ*onLQ|LBhI!Kb(6hkZaYK)LvEPCSGN@(RTalulMyoze@sM-T0T}EI;Qv>q^OGaODSvg* -pOu6mcG}w%kQMpKrtgyGK%d=$G5AnnikGc -m8+j*c;>?_IpkB*|@2y%m5g;mh+#gfx2AQEQBx9$}=A=5L0je_4;F++Pvr4(yYlz&QEUc{fhC-Qp`G= -}ORuf6f3eM*H%Cc*{7t=~;VfVV8(go8~jB+NleGs5Jz@>}OlaTs15qr$?I95;cod{r1?2T4;vH;+6W^ -&bl@qASKb67aXWx<@+;B>Y(Kxh>JJ+}ZH7x5lEy?oligbk1p40@bE!dbK9^w0{iJV87~dD0T`d^XA(l -rv5+A7zlK)2762^G9~+faO>;@Cnfo(6(&XZyq;qSvT<@(go#Ch*>F42>Dt8P4OqgPFEdWo -&6x&{qB9sPf-h1pJi!S+&(1#eUnSiQysD{wq)Qv%q|IZCd9`p2$Ulm_`a8Mv;Oz5w1KQ6)#7IdeVV4QA<(bOOL}Pr -!Y*ug&hT8lmJ-w-!1sUy}=0$bj%$UKxM(yjMH-4fZc-tB&^_K44RCPq0LgV%Qe|2`Y*NwX#R0GCWV%i -;~?#xfD7SMUJp)Dw#{$85~+!VN`Y3x>1q!CivCrJ{^7bo4lrjWdR?ickf*SPwsME|VWtteEDxl_1wjIF2S${($3(i&p_U-D9*c$ -1xwl{1cW7Wd_7trweWiAJh01de5N^#A4sw%Q32Ecl1+>~4;V2)`A~i`%0`>rZBQy_0hO7(|-MBgJq4C -i!HWfHqWj+tM_R<~yO{1Z>YkO$p9o6j`P;ho9iWdWq9M~aYWdvCr&a|%l^E?-(O)5S`eC(|H=|tZ|rt -W1PEH3?acp#16Sw?^MoHHt4S(b(=@RL6i*?yrveLcu(&Locc8OyHefb4q2AJ+%_9@-W?f!NN^+{o*jX -?nM7dYNddWjVme$!yYMs7Kurhzi(@TgYh!Bf9jchfW>#JLbn3q-BNmWg=+~sflG*|2o6@NSkWg2X2Mp -b3vrj?TX7(@P^63_%QeQ!5{se{0Vz6z>T~jDoQA8k#nf7%qYl1=3w9i!(bE>m`$Lo4Xu|YqxCqM!>*F -`t;aWbt>4lfQr|#Xfx|vf;Lw5R&{*DQlWW;n1EZ?KGzhJhs$s^e^#mWBL1?G^iej8=iD`Ti|;PJzFUsmSxn)X7Lfd@o5pwI~2Gp769IQzlps+CY!G__N9puI(U8@Im -2iUm^d-pg5TbXopO$tbbM$55dhe7S{(PS7*CR2b|%F30E@vEj016OtcknCGamxkDbeXfmrs52wj)0;e -&jj0XwaF*gJ1JU8g-|aIR$smoM1;_#=ECST4@-tHaM3Il%e|T7kbPQsQp;$EkQLN;%dO}ytJqUR4hcO -5A8V)29#Feqq{5QvUWwg+*d=12&%rhpPUr};s33xZ@XaEzT{i3c@D~Xx9#|$Kk;J4X_Yw|PACuY>K=L -~29ei5l7K@$6Ot`Tq7@<;-nH6qw)hQF2Q_GZKZkR$FLK8~qABqzGxe*@?Iy#Ha<8H6GR>jSL#+x~mXI -E5x*Z1BV1tzwfck~3O9elx!e7cgao2JXp#}Q$tHoC&o2;R#$%5^KOL!J0qC!v!cfqT4&nX^6T_+7uNK71mR+iWoowRhmp}XvbxCN{@VoPt? -!VCfP#o@Pe(S{ExJwg3ZG?&Q3i36+b``6;Rv}eJ7bqS-p3L2%2)g+gTrm^>w5zFzGhS^#GrQg4XkGE# -4~)S#Js3jS!xd!Gav(nrE~lCEA*O#F5mg&b+~P0Qq>p1t0 -KYI>0W>(rm$=4hZMt;i(q)gad^7=ZO6R6iI(nvW{D^=I{|IZsggA(RQplfx{O|2cr=YKJKC^(DsKXH& -pKUEw()1R}6pr3kpthvZ{Rhq8tT>+Fj#pFo4C8!O_|yd;D)r|MQvs=Qa6H>Q%K;)}@AC*JWVbcQaO-t ->yzq423Hz36O9_3=8WI> -&wZCk0LqYhXP5PK;etOgWU+B931yD-^1QY-O00;mZO7>PegReH;2><|fA^-p&0001RX>c!JX>N37a&B -R4FLiWjY;!MlZg62^YiVw0E^vA6T5WUOwh{h*zXGMk30a+K%jv`&wQ|O7H!FwZfX{69hiJTjeF|N|Jyb?N|1wk;I$xT%%!}4;ql -EuoumfHW)>l#=zZ-yKH+i`i54S@7J_x`m$jqpVJf -WjV8xm8{}K7Qg`LV{wxTTB{q@1&EZx$zbqUsZvcX!xQKjHvzdsvo@SDc>ebBS#td0?D+NR$(z@wa~eB -)`EE4!;p1rNDjWi;>Vd-)T=N+?wc~J(U=-GF^ -pevnWO20s3XiCdsF0Fwk#EUyEW^wU|+>w?RVwOZ#Vp5g7(bvKskx~9fHm>v1DnjlqgJ6Z@9h;Blh?O1 -DjfQ5INroh=8^5WQ@qz^;)KDpt~w_2r;(iR~QDSWE#jNtPm&}S2Ewm7=Fl%79K&!#dfQw5e+x*_>Ub@ -!qlpu1x`p^L3Ag%;2G?L9u-#HtPdeh6-kWob`CEWR&Jbxt?*Br!?3Kv;7JfQzkmEOusg{mg9$i@UBZj -ZMGHPe*PA1TOIc*Zj{UVefIK4xrlwV>Yqyg4MTZSrcRE^1=R#(4c3>qEIm*=8_|Anu*IB8>i1-|-=U~ -VSr^z+fBR%TFCUub#Nu`Uj%o{IwN8B_ssurj;NJZoov>MGX=v6}?GsoR(4MUrlgfbTKoQW%;AQUKRYC -K|Dz_NM)qKMR#YKvpM@Yy@^&Xbm#O<5$B5=(glrhN_TXaa+ac5>>{tqLsh98{qVESdJ9s3C`Aq1EiFm -P<#OuQ;fNAfpiMTO}rvNGvtgVSD6PV$3ZW2hYBB}CP1C2;)gCR6XO|3(Cef+>L1tTZ`TWd_J+*r -L*AX!d=JiFFHJz1%;uAW?%D$i^vrEA!i?cYQ;t3NI)2qUmVk(Jk)RZwRuTW+#4)xE7jQM5R;X(4=CK7 -an4eZl@ctOEaHPs@XYgUDA2056Gzte(i;Q6(UlLl0#J-h{dV+aL)58jBJVZj53tUa*6&U4;byB0@~BO -04RfE2|qE;KjC42OJB)g(gr0s&UJQ3i_sNS(GJgxFe>EPm`0=cgNq+Xhg#_|AjlQJ8fOyc~OiI|G^~Y -f+sIi!eH)o35d)Hc*CvWuo#Lvto|N(Qk2l~LJS*g^-q3}PZ5?-3M5EbvY?&VC%@;Xn6a06Zqptt(U2t -tyH*lKU<>2hiI -8OBh$>WERuO5>*9g;;DGT8(lWyJC3py12n6TI%N;8QO&VbZ!GLg1KJU3ky5_|S)KP1!E8fRDhl2>QaX -~e!jg7cxp%$-(Ugb7XAabuT%~Yaj90H1}S~wWdAU;P8v<~gZ5F4-1kBG+{3uk!^V_*O2hKDJ>Cq?zsgtPBu30gzt;i!fKe!lk_sROF -QWlM(A(V=!M+;0k#PEh3!y%O`+EaC}$9gRHMrh4fsEu$mhfi<@zJj*2;rjD0=(`Xxop&(1gT2zWXDpa -zRn|sJNHeaiwZ#zGjMqe?5yhnz<0de4hls)c8*Vzjxh&dT6^&H3EMie)8dYYIEVxf^48iPJWqa)9pu~ -5dPWTM1)Q6@M3*f);q4(IgW$~rK91lr|XCb9WepSkh;s{R%>L;|gkjAzfEJqzr@JiQpaf!$UQW&ZpL& -j(0FE!vUXk-gBc5fHVF$F()^@yey{@sVNq|F*&kKh{e1p^<#?7pm~m*8XXA^^=)Ta>O`{1jsDu*=5VL -;nHl*dfBQiqpK*A{?*7N8VZ5Cw!oh@z>)b?-e6?DK|D^`VtJma(@ZlS!`kT?<}^&2nBvu~OILT$7$j=l%K_0q9m06qWbfwCzZ9C}w77ltAXdF=n@LVL50eQ_#nt4 -g{PJ#!b@xEmToquYet`@A&I|OxOc?Yb=)a+DLWe|W!W&K7dXNh~(!so6!F`2kMx%){{n5&VF?i(fPvZ -f4LTYgSA}tX!90j#mKK}C*p4yF!&TWJcIwG0vJAxqC6t5Uv2!+u_E9TvV{ftL|rL)WLMMaPThnUFSRX -q?DJqYj6y~b}uJjQ3A|24#8JKEit$5~Now8MmUIti(NFGQ1hmxJDJra0_`0qA4CSSFTBX#Y4{jfJr_; -n;r%K-2(Z)9m-yX}Q5DR;sQ{V?hly8fp{Rs#0ZErk)YG`(t_0J4 -f)jf))VS3nP46xM;f<~VuXrxA!*ROlKI7Cgd^&-;n+Vi6Jvn_)#D%h`#lRh=@a#_e6NW@5a6Uk&#tOU -B^x;3mmOOsWUK*q10%|Y4NB{SQ&&n5wPn$c24J*a>m>t&u*$jGy`!Lg7Xm_8se{k3M59uI&ZTGOdLD* -yOtBf0aw{Ik*Uc)yP!OdlzQz1<)zC#27du7(yCORZ={u(*lllS(#GZ1vWr)+b -!>oeg;oF>}D#SUfOo1xxZ_B8XD?fEz*!{N)rTSht20?`bOivfy`%v4#+d^Knm!cbGkhDa}CgLW3{^zU -WEtLD_DV^K!4Vj>^re{|3humUF0vs0J^xJ19>_Xb>jZDE$z*%>k-CHBTEMU>Un;4yC=uZAb} -*j3V}g9)MU)kyzKHQOJ2afX3@i!fHjs1NR-oC)Z^$6lR$_~G~vLa4}c@y&Q*!&fq8TCSkyg|wwx5|_z -S=m#QMp^g_h0{{Tu1^@sX0001RX>c!JX>N37a&BR4FL -iWjY;!Mla%^)haCv=I-*4PD41V`t!Kp7ca`Cm<9y$XlFkCkvK#>4lvta0ggW{uWZ937FOuQ}-`G5U9WlhB^R$JyAJ_}>jk_Tla@rQtVcpVp -&~ZL}xVe3Q_wZ{`6dUZ|3&u4gu0z}77E4|>!l8o8cL$u$YCR&Iy&tET6|XdIz`UusGT -CojMHG#F8Bs@TU6w`mwgOLtj>z1C#65k%UJn>mvjHodPJO((j7gGjb9-IYA^|b;e=?_a8sh0H1oCPIk -sxctY6f4T63OWXH%0w}D;~tJ;y5D)!}UV9>OeKUI}nI05!JZCcHnKg -qaKC6-)(^Y$eur?+@DC!e8?)yqYaCUK2Y$g?i}PmK6i%cw`*B*tpmN9xM#2@@AxX6|qFW|{cX%i5B({{w4y(fQcjeMPQ{wvBvXDIq${$M23uf%R6p$eRhQhV47rjcMad49f_IWzogrx5`+(@9E542 -SO3@R&7-`y)4zvWht`<2#TdDC0`uORXGus5FF0Q{KP30*4OY!kRpPZG%i6dAQ7m;Cd?EAI=99zAd3-y -nqdc=*CVtIhar$zJvG^BIO9KQH0000802@m7R!z3%i5~?30Duhu03iSX0B~t=FJEbHbY*gGVQepTbZK -mJFLr5ibai2DWo~vZaCwbaZExE)5dN-TaZ^7;9&EK6HZ&;a4ngJ?#j-YNQfxz4sI+vlxyqzKQg)4P|9 -y9)^y*gje5`sclkN~1U6_BCyT!}681ZVGQ|C$$n)6 -tPz{FmK(bD|AoJuu{lt}$xp{+l^a`Gj*Oq17qGgHYn>!1A8-DqM+tpB;|=np_Qvs?C+svF -OIK8_NZ9+Uu}@opfuc_q90d49V^|)kogoasL@|%4}GLwXlP{2Vuo+t|v%7l;bT?fiv9UnZb4=NM&V#A -jZ;}!V6{&XtzeQlNQqxl*Wmq%~wFsVnxtq^`3WTdAZ6esnCYt+je@--Syr&^Wj66%UcwMg@1bN|9c#q -q~yf&Gek&`GALR(kB+cVku%UG_=5tfZx5!gwZbV^NIKfmR0Sx_LLiFABG1uUpgKTFt$2*%AbkEvO{*y -^;nwNjTB@WEk}&L}BnWx4Gy9NLV8lh`*1B1(yWS}@QH|rUHRiJ1Pkj)}MpkYn6|gth=%S%>MYR*8Prb -99A#JdMi|=k<%+6CtJmqRxKRSQ<-P1{D>}_<7Dmlq!N`%ODL0Hb?#+9@4c*12Y`=AGWD7kftWRhCych -_P`k%+C91eh~IR?Iquy8r-h#?Lv{4&K}>jM1idd~nLJv}{p2TUB~Veeh-Jf{*v`<0F(r(IB62B%k25) -e`LjGg=Tr?Ikh;goE80)%bovo#nx5>RMaU0jFUZT6!z3ToOuteB9G+ABRD18tXiD1>x+Or>jcucv`VP -uHUn$E7n6(ff(sWK(M|j3K=@9A~w;4qG)!)1T`ojP@P{|w$o-=oyc_8tK|Eh9`<(Rus4;V$A*0W-HQ> -IjFJ=(TcI%atR`jG#5CJ%kRu^0$&GNR`@qEs0-;kA${rKGIM0kg*+YRT;u{B8bX*cCe>gb4+(r%JX)1FwEPI8 -j{A^3WTgLDALSfllEOKE&ok?8krY%x`GD8`Wkv?Z8)Q|tOICx?zCHdu%f|iGQ_g=9crCC6iIt -w=nLF~KLT<)(}iC~p{8B^`{3p3lF30z1 -}`gS!E{JyVu+$qG*Bs<&($_l{Q89t6{Y&SRn5-6xk1^@uX5dZ)j0001RX>c!JX>N37a&BR4FLiWjY;!MnXk}$=E^v9BS8Z?GH -W2>qU%{yuDglbx^rMFcXt#7L*0e?2wZMYFpe5R7E0F?8#dQt;_ucVD5@n}N7X*nd^6q%gJ@@dGB+2`( -ZKX0~)rrz@DKuG0MYd9X;bKj;+-%5p!&psLyk@$XB}p=y@y6QJa=nIKvz3w!VGZSV(J-y)ni0R_%6%R -0XsOang$-}*H@9wfEynaKAG)^ohTnLL(ZkAfTK&u07w{w}{=>{|Y+NUP*6uUO^knG*&XDGRtE4P!==CDpvNzOdfT;_Jc~#`oUzeA!AcCP4HM9t4wf~LUxx?cRx>+OQ;-Yz^Cn*=w -5*)3BV0SZ?Bdm60WPRE3!@)N2F8;-6h*X(Fhn(Pl`13RgJ__x5h9{l|wDO`L`aYz*@-GA7w6%VRMrvjvyx1Uhrm;6%1z8>JXcJr2bh}GE1)3gmuA333MbQ~>9iqBMjknqc -S|_51_tcgLbrf&nmkH!a-Lm3zOg#k0<^>dR$!nSvQ4vtOE4gc4z8VUYP;XNg|u`5Vx&<;(`0}u$!@#{ -mw4~!$AmiBa6NcQ*88oQNPE8-xgh61bl$I9Fq^J69Hiz{i8<3Q;CxJEKrSghOFj-fv|AQ~2AK7`0PT3 -u3MA|}66-W><9_{agFz}LVB6&agiaY(px9aVlW?6Z%>Ea3u-vtgZ7g@C;zEyGXU`00wXd39zHdSgq6Xh!A4sk+1B23cgB8+0~V;A0`V*0oh_%F(}ZVV -I{LjZu{%!2;xYH2dw=)K9OB3bMfVg`U`gnbJzTEl>@a~2_PGquK^)VDw -yDL^8;4n>NU|&<_(xiIj@b9$beK4!0|TRdkg;xkXWX1mYdxJ82N+Sg+{|a&N#m>sj1_hgf;+56!NS|m -j>91u=*ff)PLe=u^u}thVk_u1VkB6>9a_Wi9h(5NsCfuuHgwWwoWdARDAo<#plD0vHHE6)>1&LH5^*4f8?TBhv&r;@34p{G6xS&&TQQwu~sn+J?k9DIi* -*a3%ulE1jhmgd>F*tYq`A<@lDqPf+04S}~+L;Y31oV^G6+i?en!IK~Pq`5ld(OT@d+RJ3Rc+7JLxLx>8&Y#G`vsB)N;ygC< -v4MHTev_bS^lcCB#$lcK5ITY>wi#70|XQR000O88%p+8FRk9iF984mR00419RL6TaA|NaUukZ1 -WpZv|Y%g|Wb1z?CX>MtBUtcb8d390EP69y;zVA~s;UFZq(ZrKi1Bn+8Vz@44w!p~Dbm?@6`1IBVqe7U -|B;Rk_0ZcwR&IAa-N3YaECIw!B3z#!yz|_L3B&VKJhRonF1dLCfhzA(8 -nhgO44HLQB+<7#9;PI^WfePfC(7)TUk3<}-XVBc*I)FXWWv01*$6)rWBIw-Sz4{5v<7@6aWAK2ml*O_E!B041lEs006%Y000{R003}la4%nJZggdGZeeUMc4KodVqtn=VR9~ -Td97F5j@vd6efL)o3WAjzTj{@8^|Y9wbe@Y3*!ZW- -`m!fzt@FYxzQ(HDa$`7`(Cwm{;SqX_Y(&Xit*#WyvcXoq?duK)nd6=AiP|YO^a6q=CM$Wx4TycJ_(NN-N^6^FbtyCFLSxD -cQE|C;MkFtlgyfwJvd708W0@6M#cio_pC2y>fJJxAaH{!%GQBr3yrjffy(H_O9YMD+ct{8Hn%h>_WE- -t@w1Uy$VKG=MxXnsh^WzAC;j#dNa$}v<6#?d?0eR80^1Gc*cb))|cFG8QN(m6m=Ym0fP&J>%bD$mn0s -D!u1Zdh##LGe5(Xzr6E?qbAl}XApB4;@gGi14`qx1EXVmV9#M>WlAku@$ -22ffNVZ3&t=EsO;5Hg2xeQirHsp4G<#dVRvpPkz{(5t``C%~k_qZsla>ol$n^uc6>@vg-a05m_s8Z}p -d*t{J0(7!E-xx==rDKC<#|$(`okX|w;IofqIWo>11yC;j&n%lE)P>t1@5p23Wbd3@+G*FjC}r1RmMKmriC5mmK3ZSHl;$2{gK>is8BLbOEy$~gMNf)geoOcE -_aTD>42WezpD>jZ|V0{aAM4bSmVWtsy(5X4}?7gBDLGdobB!H6ZcoKZ(pjP%qayA#Qnlz4)%1d^So^C -&cUjm(kLMeaU!8yhUUO2mup|E3eqi^0w8iTDooUpRf^dfQB4heUi`uVE#0-Z+z{qhVj*-Hl`G=-FRGT -)kfnt$I@WUyxGSLOi+c`18|U*YgM~p#4KWl{z5$*nfz-9CTeRef=6{*DTM87zyT%K7_YIUT7$j1|c(T -1D$)B%*G$=4A2tB0Vln$b2@@n*VkV~Iv<{L!HMH?GIr}kkAd&ytbq0%tN02*U==?d`*?E|^7BsW24LK*BWG!<0V7_$O -bRBdLF8D%kO2V}IiJL@w>mT-a}Ap1^Zxo2&M-T>MrFRg6}7wq?a(2h^Eq@sm`=guUApGD~?fVHf2t5h -LAlCwD<8(?aC%DiEI|LCuuy`y-D}vh9|q@r1oeRl$>lV}sK?&+L-i%dAXeT2$-B&peUM7kkY~rGNjd$2!qt>1QjM#O^uOceKJj;p@CmiNtm(fq%8fH8hjYlJ -31TaSyY|+@~z&^(YWjfTvycvx~C|e?jCPv7DwJ3g~XMPx_d@I5bMjO3)a}oZ0dUpQi-P`c&^wsJALXT -Voz}lTmgl1OmeOSY2hM&x1>;Ze9i$m<7bJJk_12wU-$z -p5^oQpQLZSd$jYI0t#VAu(hX_S;PN;gjrY?q5Ee2LjEQ^hnFiQq~wCDvP!7K+^npqL&NEaJIfe3_L+f -UJJ~{QPy_qP-87e7br*efebi_v_#P{N#`CJZKGrpS)-Oxrj=j5@kCaH!HFzOU6uXK(;n8g@B1*9k3%{ -*fa5&Z$Zb9?tGPHvn9_1cz!ejLbov6^FGiwhasgB`NW}oL=F6_o5#<_KbXenBHuS!ZOSE*KGHn&FF(x -Y*N?|@)BIwC9KtSB1qw*k#!eoGn;D6v83*iNr79RGK4{PlkOpoWIy~9Iy34J|WyGQl&v^to$W+F-Vrf ->eB4bPBSGp<{UnauzXTN}YWH*WiR)$z2KM8hpGM^cC9kDFO-&gSa3V#Q7;g=ug*N?{Z>pS3>)*;{}$n -uZx&QD2|MzL6d_-CI~h=jupR~uh#_#76JkJKSg%JCUkzSN=FhQ?m;Wzc&F -cq~5cGLrodGsKbxqTK?4@vLs<0#2ep`WX0Bep`pQ!NPiK~j%5MX@srY&=u#he~bQk8sr1qZNpnc{Vm| -2W8%armzBJ0{8w%F_G?No~5WjY|nFvJEs^~S~9XL*l*B2+DkCKR;p-T^VzHxzuE4v<1=V7lS+YanjIg -1|AbnDtrA6O2Et`~XpCOGIrAorzW(y=?4RMq+3BgLCkori%cKZ-z6R^LNB+G&eg485(c5ProrR3HqS$ -1yZO_2!g-fso*a15#AHLKAfKKreeq7HhCK*Y%gm%}XijGvF+-}PP`9QQ_x1vvANqi-e)dUSOQ3dA){< -lxU@DolL_RWlUT`=s7mKptD=)Cf+Q}p4#@wg%&SEN%;%K+C?y>}Myk|zKUS{-RTSPQyNS%fkU0Wk2y$ -4O7xWXDaq4@f@1`sFATngZ|zq`fo(2jn$4EBG2M4QI=or_tuWYnO4uQ!-%@hYi<5@Pf!YM3y4rrCvl -~NX(FAl$8lOC8=q&mTcy`Dq#)IMyU|GhFKnJLLek$lqyMqRY|lxAy}n>eY<>eJ#Nc0?tYv0sG%mHv!U -_vG#be-p~OpAz=Q=s;HZg314f4PGPQWjZ|vNqXIgsKO|dYoLs&wz@Em~QHQRw}y$MwjgRU)Tqg$`(O_ --(0VR4a{&fA&=WW`~o9k65UyBWBnX7skH1R7QaH#|>aBYp3Lqm&T-V$K@o>>-$E)*S;FEj}kS3IY)%nYpY~|Ma%SoBdxxlnK?NsuW3$DQ{IBx -LN1~G1+hXNfaqKOsfhT5Ct^{c_QceB9P|$N0J%3+hwU;;WCR#)#l&Zc;0-;D*zSsh*=ihC+kI4SUQu^ -Q(X4X76#ztxVX>5f*Q+e7cfJvF{J>`8juG-y$b8>}-)go2j;onB?sa|8; -xZ9wt0|jbkJ>7Sa(stIHS8_vQ{~~w^440VZDm8ZCS<&CS22W_Xp>Wz%LHw-R-*9){3iHS=DgMt-{;AI -Pvrc}WC@F6+ngd;qnD_;-~d2_Q8jKP*eql~P_yMZh=|Kly;MyZf-6~M`2k@q1P1Uea9R>4I#U=@_V); -+(LaOeWAp}~v>;^_5Cfls3`|jd&&VE -6VL5>E&0|oAhOkvyfwnL0-AjJ*g2p#hSV`=vsYWh>Ak_?g(;EgzJkD3_Z6@dkW5NylAjL581$pHr>b0 -l>#hw%=%8r9hitv3aI6V4QET~l!bnxyYtrES%u_6zza$aQP)D)*YM(fD0#)a*^W2*H+2OVM~yRozNkicnkSmA0VTh^SeX%e72rzk@{lQEM|o%0_c|plqY66%3+>Q;1^ydYA_4!d6n}4bU?6T6dqe7FB -XQNZ!n8+%fpNGpYM+Pzrd0Iv1`)VNukO)o(_4eGm#}s{Pnr+izqR?6zymwVKkR&a1V9fD{Xis07zl=IQK{tO?twd;=#_PVqgk> -S70{_&Yg_Iq$>ApQoxpSM -QGmH`J>n9{!m;WU=OyMy-2tWH0+rl5F -}u>a*yVpv{9=9fWoPUaJD(@ub^tt-Zi8RL+OA_1FVMg3QZ_}hk150TP|;?S_4~3iPWJ!fpH1OU(*6s& -P*w1(p-xp;|`&b!@3t5U!iw|%{5Uw@!V<@Yyl;UK$`0O3~d7Ft3!!WHDCa-A*UU4V0iH5cBYj`=(v0D -g^Y<5mXVtHogFmUl{;@O3lMPSTq8YD%;W4(wm=-c2V1a1{PJ%&Wjkey@>{@s)PcKehhZLl{fx! -Lrqiw!BeD1a4JxSfR`9{r}H*-JtLog7Bnp{dJ|BKSiXgHnHSj)Yzq2D)%D)p2(&L1UxIHWW}Ozm4P73 -^>d$R-1QfY+k~pe$ykbEb2%fUlR{K=IW)+5arqljeS`62O9UlPjV1V_uoc -Khx=Nr4)rXsfmfCK@RwP+(Qm~yM2@xXaqxOVuB3H6n1}&**LEmgxFNOn-L$ge*l4}6L$R9Uc|^@|6)q --;VA?3Fc5|p67Vv?V#MW7gX6!pdOG#8sfxB#FpIND%}nPhb#8S!-w6>bR_=&2ZrAd_R%IIDF59XcW=b -i%06rI{UY)HRg=;1|Zq4E2r(u*kZ}DS_nO)~YFQ+EQvsfnCa-I&id_=p|{|+Uw_eD3mgP$hWxJ^Pj>u ->rXvobq3tr14AUCvq}rXXgQE6PP1*MkMI%3HS0P^Vtl0qolIv|VF!^-XjI(#?w^_nqdT5KbFdE -LxQ&4Pz=|u`JiV2bPK1nLUK=?g(Tz8pNHqot%%`6X0bRT59&aOCcbQF+8xvSDW^17bRn8Ca5Yw)sx<= -OCLVzW?jBP-PC@fZ5*1k{@u!iAI~mxKvSp#q6k1|nr|IlZyJeB{=u;gLtvs9Pa^~qIyzIx>(8~dfc>4x=)8)V$XW& -75O0yp5@2;rZ;=1$Xi}tz4d=et=l&Jl#e0(toZom_hE{K^%Cq~_yAjMTgCoY+j>jTX@P$HRwKL+@>&E -hf!?s2W~uO4(AOfl9?*8X18#YvEM3VpA{dT@8sLGb8`Z0q&^$HNm;nL{NbIze4Ub|T_Vk(83+Mi|Kr6P3#+H83z`&^Ku;K -KGPCbuqF>tZLC)Q8toBkf|M_NrfUN@?g#4Ps^#Xb|q+V37uBUT<}i~30^dM))nFLb7XFS4)q37)qf-{{3HO8vT!B@Sb>l(`_@-6D$beAkA8Uv2 -6OkQyAl6k0Hr;BJ>BLR)IrVy@UJRX-{zP#nk;l9?;$vZFv~bgMpp!3o+vbXVXKss%)nPco0L78O(Y!} -xOw)9M7MJj#8b_=(Xx7pJ_{E9Wt)oFS{762*9Ou5iOsEc&^|FqTGT2mR2pm0Fg<}ALEw!$B6#2HqRw2ZXLkv!yJ;Q!Cz$PB*#QaGH$gF+E6O -E?r^;O8!<%H!Hkm3Y%}aL*al&+=P`kn-?cN-3cmWRLNN0H^o@TSh*LY%J2%TfYC+Fv{^$$9=A@Q^`9i -FR5-DLSE>v4^1)>rJzt%O&ycwH{X0sFC}qjwawa@z(VSVak?7;n(B*8&698;w~&7qRTO#!Mn#LEwGE^ -H>?bPdkdQ6&0_`66 -GhT>El=W@=bcs`$WBQb}8XP^_!#B?fd$R;j2WFEKfyJM926x*Vx5!rEIz*o=7nyV``Nwa1`f9y`A@rE -`x+$AN2*?QHetiJcy8^ctN8?AMWsheHS>%P}|(&mD8cUHdXQuml&*Slj_(b=GJ8*jKfZ=(R@;;Tjm%j0Gcmx1~J4cJ#JA? -xAywmF=bj2QWbsKearQiJ1mm4_zWQt=ZWmpbJuPfHBEoZ@uIr|$Wi5r?***x!lM@9 -YhU(dzzG_*wz5snl4@8gc-V`d;rVcAaVNsjjBKGCI)-0l;7a$RlQ0}+oBiB@hN#J{hzLKet0@!<_LK> -~B6_L+3`p-;Mtv@zYj5>6Sd{ZvfN|SO4NxCa)&cyU$SIX&|4>J_(CS$ju+}$@kyI5z_AafD!M(RI-@3 -j*^fb?`;^Ikp0)V-5*9Gsy+?p#ihc9^?hxGsvO9KQH0000802@m7R+Gz(-}?ms0DKex0 -3HAU0B~t=FJEbHbY*gGVQepUV{TPmL$eXW49KLk5bhhS=p>F -fZI*N~vHCP>NKuqGo9RZ=i}!aaO0X0@>2ZwB#r$skVt*ms|~7`LO5I76~|ifwC!FZOIe;L=z+NH}I}~Q2BTxI6Zz5rd?{y&yMep+V -IWMO7h)`JY7aYHZ|L#Q(X19b>7SK{LbPhSu8$w985Al3WGWlw_1^JCd66phj^Y{;K36;9mHp9cmxB%M -G5O}n`99(a@C2U$fRM#N&CEUoI-YO$&6in<-|J_c~oT&2#oZKrJo5r0gg+BEQ@1W?8}usGmPYjeZA)h -{`8aaJ_&8CBfbZrL#56wnDP&j3x}w=x45rBbDRFE2pl|ehHWf=!}d3B{o1VqEEsi&L+SZ)1*}X1U9u@ -64JJ*je%i(i9m2XA(P_=ccLi3Bm<_#E5!r$WB_roP$q3WERB9_@tW$90UU36yKpDW&bybqSdh5F8Ja) -lL`4;=e&{Exb$Pk~?*NHt-wkV{@jqK`@2x=zp -np*Oj9)X*pL0JqM8&NUD3xE-e+<=-Sp#{X~pNv47z(-zJGQdCTA0c#H##1qjqYd|D -pQZr!(2e5fODH-!ufjFvmJ)~GbkU{&lWT3$oZ(#K&3i#_k327gNQ$wzX0%r$Ae8}=|!g7oP$GTzohI= -WbV!HB?Am2V+AemwX-Udb)72LBD3f^ESt!a3zx)LX9MSgOege>9z5-4ZM1A)RUwZ?Hnc}X!~tglQ#v9 -@i0Io>keobF<_ma>k5_CvjA2aJN&9bQUo$oh+zCZ!Z#+RGlcw9w_fzRn+4(1ce<96_+5+B$LpMUjqI@ -nnmRZKbadc$gslJ&(AH9cpH;!#l79Lrrk6@>5Z^J=vn?L%f8Z?s5{%l_QpqEZG@~AA1X*lyMv&~?q8mc)wQ@su|FSTCo9MBTq#P9 -_e6=WDWoT(JcS~9{>OVaA|NaUukZ1WpZv|Y%g|Wb1!psVs>S6b7^mGE^v9}T6=HX$PxcvpJGcRFnN&} -+3_W|5a*f;5}bkDT^swZEgY3zlPig5lFQpAB@0ErduR4RE+2N%I}}CHAb_QP%+Act<2SQP^OB2-WPH6 -&i}fVcU%9lO1e>e`&q=i}VV;=L52>uC(~myj&D3uKD}Oa$d0?c=evwM -ed&{SRcNpl^f^7#Y#UToxRuxNTFb|tPCC-)|4DtKii -${N#Z|lQ^SrOPBSnQMljLQm{~JLJa^l4-WB+X$d_hQ)WhuJn|IuQ`)2;Ukf!Qf|DdqW5 -%DRi*n`+Am1gd|ZJ5$S#ulqhdK{)rKdU7q%jD!|N=GXp%&5rAq!%uvL2R#~E0hP&R_Y3nD8KklAZ;%X -y}y)4W%;D9DwlnK=erp-SW4IbasiEtO2&4FzlV;X_LkefS!_EC+_z4(0C2Mg0qB&xe=m7!GVhd7%&jJ~ARte{n6=+X} -#)(6=UMu5sq&5eilli0>MJ`Z#Q?wrtE+T0GaWUM{?9R7r1g&%`EUgGABD4lq@CrBK{_Z+smGXMAghQ{ -FgGme}X;Cwjso)?*AsNAwF$UK*(qt?l5WbMoq)$3TGukrW;V0-UVn8BgGFqYBAQuMS@E4vIzLwhA2!? -G|dqH1bl+o^H_h3@eZz%^uu@A`mi@$#VZehHD>`*RIeDk0RCVkPsF|?^=aB;vpG8&;VVpP$=WUFKdCV -ggcl$@WphB`PE%$z~&*2h4aQS$x33pQA(Y1x%eiTBJy=_K7UW!8ejPMGQ{Ju@mZ+rY-!Zy|WGsN^oKH -k$w6Wi%BjDQ5DO;zpu9f`UjT7~H44OG}bg9TJWkfJ^%JYpd&^A1A=On`Ms$JiHv8i6d}8m7e{EmWmvD -R>h5}iNETLTBRb1LKxR-UVpUULxr#wi>R;5<#^P&+Q5y1R|t_N3}X!6Nu?fSiC|C=xiSn=adOK*gJ2E -`enHi3Q;LflYO`4_nf7!L3%=s=9Ty4VI+YW|D2yg}31&0->EnlRls7O8EjSvehdHNv{RhB3`+_rLS{z -o$e2uJwL_I1dqah=pc*)5fW97IK(qhQ6d;N6@kRu4kuGauBBa-8ZcJC-qGuu9AOUB9D)07Q$5~gD=Jw -vg8%rTJzvf&lvUn{M>2)Y80r}FU@<1T8>WEHK$#j|HHJA*{-`jU!Iz}^&ZKty;!;8L!#2K>W7;2J_N7 -&}o?c3>~}9Yvo%G%(vb4S%750+!sNl19DM-2TQ;`yA2aMlSp2Rm|-#khomO -sv$*17KgImHQ7MN5ZGJ~;i0g$z4++>q0Xaa)gIiW91P@BKG)of#<$NP^BleNECfDO17EJp}Napcg`UFh -U9yiLrr_KkZ>nVU-yU*6OM)M6d%J{J}i_^WG{)TOB)X>;}Di6lM(twe!kZ=4`t0Dxo7E`Vi$H -yvHtx$ohUU@#(R3J7SVqMdX@Ve|-08{VgmerW87y1KXb1t+$F?-9owu(h*?yF|+w! -cLFYqbKqc)UyGH|%KJFHxs1eX!=I6BZ;f_ -OvO|rCLU=*4P4*1@u;?w;+{#1BD(DjCdWtP_Ud2A;|^#2mbkk_-C)W)GAWM!?oab=^q7+W?9K)s^TC3wg)wrHygG7a@3#G>k3u; -2FKOH4Rt4bA*d4jv5Ycsf{``Yn*dXwP!&o{84f&v`YMZ>qCq=P!LTPuK|lloBlK=rOabYT8>~$bw%_2 -^TZXhn4M<^4F)KrAQUzR_Ifl6jQzE!677hi|1rOjJIGWx<+CyBZ@NW%(#A(HnoF`+9HC)uDc!K$cqAqPruZ#fR+bX2~Yt10~4Fv>aHYo@+W81moIr!Q`U1BqDHb -Wn26T@;mamo$fMY2jjQ|Ip~Sj+><)QSkDImgc3m!#N^L-rb`)+=FTxY4vR^!~@X7-K#*bmTAcs9r0$b -uHwu8{Bk?9OlKLYuO4$nv5{T>cCA4IJfBgf7`;4!6VMBSI)=KgF5sP2%#P)urD5^Nd#s`4Zcsn{!ANV -q+}ZD<$9j?Cfm`y#5=2Voi9x+k;W(0^|-wP!>6*gNegS>3V@-=mn>VUD#(2}aachPmPVn9r7qOcMVGs -G9FFxDoj>qoq5fymdPbc2EN<_4lb3KO -9-b6K(&LJO8dHA7XR9#Q{pVMeqDFpLw1D=8+hJ?l^+$Ds5;jw1qCn8?6e}n -}l?PSpn%`Yf@U`mWtbY>b0$IZu|hQF70m6hhQo|6yDr#qjc55!wN5S7(-AZ7X*-q={hXP#j4qCVr3)c -c(3k&yt}74%4I#ZYbii$+HiRk9?iq}`WC&y>Ur$J{a!M?3}^h(Hkc1w=GCdc!mvne?`Ssc$7&(9$ -Lk^9pZ(TkHAE#b&nLd7mEj$VfIaQ@h-FTU3UYjkr=Cv9{B&`0wm5q3oLa^+0K@ -hDY+clkN_ia4XO~%ecL{jJHy@tq@yAZzo6}L|=Zlk*#n&&K)AKYIT=G>l1ECYXlP|*KhL}0rJfE3nSj -&^wUxV{I{+%GpvpG5N=pO0D)pprbTyD=c>eHmtC4=wmbj-6EN{{qo3+rT-tx?_z9AwRhwQtMH+NVQ`KV -(d+RS&igBwgd%}vU7*paS6|W`SzR%kH987yu60R7+(iH0ztXx#uPAgqZjlY8Q<#L?b5!OVWL0;}*qo} -*bCEGi9aAL3J?ADa6_l&mUThFmIsDA!ZU<+*>NU1T${#7BXj5Mxvms-_ej!9o_80gMY#7YkHR~qB}sn -S8AH;#{RcyHFApp-VDS);wyhVW3Z83o6~?%VE+*q?CphA|q)o8DkuLbcCEolnJ3a5KXK!8Q=^z6NAoR -8pISRDTV>5869g(iq(BoBC{4@M7lTVa+qTM`P~r-WjnduqruQR -t46IFvto}g&ndjH-s@R*KVZ8l|J&xUsmr2jm9#we^`Q7nR}LM>#Ay>ZD7m`&TSzXIW|TR?1Y~b)#{#) -6zhjbI{`|wV`yitHqW#gAA57JTyq1-|+u00^GiDuD;J#Ub{SSu_nlHXI;ft$^oT|%V8WXf>YfN>O`fH -sEH##B?0_F%!u$NJ(r`_SX+IvtrxE7RU@Aq+kC)`-6rX0a0YQm?9cX;xP)|R{^W -zi5IB6+WAJ{E|)B!KGHq4JRnqL&)3%Dj_*M;cc086-FYD-7MShPyIVi0igaTKMql9)saM4U9BZPf?8) -x}-GcSR6(Qio%0U^D*Fl$?%3Dm2@H7QNy7ooymu%v1$rRIr`j3B{dSUcD_lKUu`?fDNt-_s4rE)h%`= -_Y3qnMRBCW#_i@8kLrhS4Y9D|cEa%>^LB*!zT33&-eTCp@QHo8C-R93O;2R+jRzYV{mzFyraR&O4AVy -iI7zaDdmA~)t8+5%UdAe;YXsx78CX55+ORlm!PuqknmAANd+d4Vx0gM+n_uir2jsdVO>7!Vi@{JU&ON -AC@Zd9=L>-N(Xi#TZxtt7-t16NrDN*fs -9*b)ru^wcxST9x;i%OE@o4hV7u2^1G?5Fb!HoN1E60&B6tlLIbbEdl8PBv|lBu7VLi_yixpU-N-F#_d5W=%=_69gWtRV{r**U{>`iN|9SKFZwq?#qTcI^m!fF()ti -<#`KsdHT`L=X_pMN-)!*|S4xn$o+qE#KywZ2?x}EL)Zoe~EKi1GKjp(yne?&nEB@FH -rwUxCgUG~21-9%<;88c%SvI$Qwp`K@;x=wPd1|D8F0tDyUVN25Jf0JL?a0VcW|0*+i;H5n#5Rjt6d`t -u2hJ(nf;6A#^6{0^vt!^57)BU=51E!##!FC-sZR5K0Y`;%&8ywhPOD!Ocfixe3RA` -IbLfiVUv>pA;gWs7Z#SS6e@g#5)oo3Wci+AI?u`AwxAKm&>ml50cE8~@D;r6&XjKVk=OF%BLyRbeLFe -e`D9eyY8C$Z;|V4Rme+e$b6$cR*S-I#HZ(QdH3lUz%4%xVSY+_(a_ZOMB+Vrih%w@zkwdI*)KopJL -u=j2{bnBUJI}*WH4LVkJL!nW~hl7A%(Y^{go`pO!w?JZ|Pq1G~jl~-PbS{(G&j}#WzEKp%}tpt36XZZ -;B1-f48HSD7UbNwtP$0fk0hbOs-R3XmBE|l|7RPX2Wr90mB3@u6vZPQ(xjxCav-Yok8`yJ_`mCS>$z% -r~+oPtIJRbj)|fH4BbFB;wH0LleyBD^zwcKb7VD*H(Y9Fw&mP0yUJBN3Cw2{ypt+LvZMeCCCGv68^gR -^`(+5+jj3n%5B>#GvdPgw0%bxTNv(EBF1a4E47E>o?EnlC30a&EZbXTdun`nl|?lIT -WMA3`Go((3|yqS&l$1YnJBUNQy;ei;~;zK7syo-9Vq0#1gn=fPd$Wb4SPt>uOSRv?vTy>Km9gwZ1q=7 -9wRvWq5~R_3}jWbSvFI=S}&Mg7d-r7s -fUGlp7t%FjUy6vLk|U{6#n;yztdI(41AzmuWB&DssnXKR~-%ciQ4f(tVMxKksyy9#L;Nb0{ARJ$od5U -I%q!V_e|2Pf-j~TwI@~z -d(MEE$@Fd_azJ$6a;QTf@Ifq_L&%q3Pkd+SI2}@u6`Ri(kDG)rs5|;-S#P1p#qhqv&5_}CH#-r38r!Kwji+88$?>I8Y>0&3eBMG9RbO; -l3)b@G){4fZj>A|>zO4AESEv}pgK`Si6B%I9DbK^5D5KPF5RM!j=GMpkY^(le$A3Dnc&fF$VX -uX4o^l%6VF%#Wg-JXsu4&OJ0#GtumX>;SHaq@{P1b=GnPvIc9Vbeh}C)Tg;;<|tUG`Mp^HY&bwzBu-Y -7IRE~hQ)pDk-QHS?qHAag7RDAY*s5!d0SEv69*0OBvO{Ba*!rM1KraD~T!rq2k5^QnX{yLMW08<~3(s -aO2YhqO?@xug&=Idj6`374(eU^q%4so8vTG~<&GM~hD7(x7G? -dE$wAh7rGBa}4@dlUCma{09d$ZO+`g&^jI(JhU+elI6Lb#fa@e3d6H-jS){{V~T3hX^KdJi#;yfJj|p$p@h);17*$iB%NY4W)5Frr_PB?TTcF>)AYpZOK<1;A$ -1vp^*!zmE@ZdASe5o#Go4~4dR_#mqgx*`YkF5(G{JXCGvaS -k~JMoLg1NDD*WVxEzbYZS-3g}9|v;zrzI($Yqc@udP2WmfE+#kLCKy&co9w+_Q48R9p}V=Vpt}%z2qPsTTydODF~g>exrODxpEPwkEP3A#wc{z<8&3y?r5m6ey^y@;{0d) -9kcU|l!{wl5UGuqv^8=5Xu1s;;M-zH~F2$mXM=2;I{4nSZ#MLG$fJolp0z=!bpKDjvTxhPSVZCi7UO%@O9?P);9kz^Qp -XGw|u{>cs;Vn0S9By4k)=vYHK~$H@};f120f2;)?o9)zM4B2b8eu*I2p6RGZG`3`iC=$Nx?$nY1;ft1 -EerZrB4J6<}|+ERK#~%Fx-lyED%R4sg+ko59TR)~o3ska&fUj>#KAZ8KX)u;N*NRXg{hABvrO?rHDM= -*=JUxYIO6D`aMP-0!DS?xDUDjjS$?Qz5P^J(aHm$-KWwuT}S|8`rSu#IBFw``Eb41hWfcFu)#1p9pyXP=SJ?oUNzxS -YH(Vg@*1w2rPb|B1Z7U>+J*aK3d{Rp?UXQN{)G&@WvG>#ZSGGT%QeS{5-^{SM&o|HVE>&Q@zs6o!+^& -oqj!k=AaQjx97N6fQ_+)q{F^cbZ|N_k&bGB4d0NDsv1HL88+U3xyL=V(r*Hy*Py*>`(Ki0d^8mpBZDf -E8F;z?9gEDsQZGu4M%Z2Gcq_@zGvU*;k+TqE{<9v) -w+v6+{%VlyGJ@-4710fcpY5sbh}SPLEaUcin|E?^-6FT>Q3~bM?xrvGpZO?XM?1Qt8eke*QABiOlzVi --A4vdAr~m?SWa~4mW~&~T43m9*OqMQ>?hr6`-tV+dyDUvE6uxiYY+;>6WVqh3avm1$soK37A^>;;#jW -hx!M@c3TC4UEtEFG^fzuY0X#h_i;e*YCAyD5DDzLtV$Ic=Ib`y*vu5KR5s{4Gef;x|d9SP%`QgWSqwz -V|<1PvlRBt(d-z#hPgqQ%33A&kuc5b;3tLhE7$&WwhKu2!+hF_7^h3q7@bjTsV4)CF#j?ZnQrd1!HJZ -77S}WD{|XIJgGr;+AQ1KT60tW2=q+)V|qg@0Srkk_3N8@_;<#Uc)}a{A<;~>+y>>$_z;zc6MP5Q`kZF -dXn%N=o1Ntmyd7@?dPZu_WHo`m6BE0Y7a^=a_My1x!)w`I~NMWy7Z?nG1?BAmJNDWGpe#G&i?sNSi(x -~*udv1y;YcwNoxsc2ej?5}# -4THet)Zr+mJ3Cyn#*;}740x2`b&{iQ5JZ}M@wM87iLj?0vJ+v_kP5LsQY2v{7Ddpl8tjkOd4P#z#-+W -4|>DH6rpgy^Q$WDva!Z6BJyT-0Ef?1s=qx9T@FDihpEc+!XxS6-?{_{PGCMi9JJY<+TP;-59tOvcI2B_%%c2ZC>_J0B_XMw~| -i53f8w%t8HhMW!n(sevUtd7AVa4q9nK2bm -nEpD+~Al|7>jR&pU59QETLnop=LIp|A;0%SHA&{c_*PraiM0_6;QeFYl$_0z9FD_U8|>g%)9)32cC*N -a$J$}gz9`YBecLd)$QS#=6ePXE4tvD;CYL03tthX|*QKX-R*OOc0$AS5fE -H{vk*-lq`SdV{b&TU%_(_csKe22nv>3M=28Yk#A<8>!p<7KdWPS_2zlR80i7s*2spGU>@V|MqvLzN(& -Q-oMEzTLHZ=abB|pZ9zoVIaY{-w3chB5+K3nF0<))s@`$Zw#m@NMP|A&B5oUBHY-iY3}3CJ?V?e0)6R -fP0HCpWlNIz$O&*N-AlruaI5!CDb#XU8EbGhG+@>^crV<+hAZa*Jf+Qu+4sXwBd#5x!ydI7=Q6kaoj@;_V1Uy5HCacAPoh`PgPFY`GG6ynHA=36*R-%;nOa+y)A;fb3)jWcs>n -Fm}vqkYkA3ad{&YSgX|@;^6n4q%Ak_xwO9k_K8ZEYqxm_QxX*&aRE1H -b5Ny1+eFYgSv9ctZ6kKGPxRmVa;2tp5*s~8d{g68Cje_M$SB|vB09G6}o==Gd$AdEb4 -S2>}wp~U$bZ-^6Ll|)`O;`hOQ_u0R}wn0j&jaR8Pk(X8um?WTd2Lip^aSI~YCvJ6`?bj2lME#b)-4`Sk#6E(pBa69K|sU*j;>*R($;fyH#%;~M1o`ucDV<}>N^ND6ejGH?0sM -u8s*JUVH4)j;I9KcVxEsHQ{_lhD_@4Aw1cpx7@EBjemWEJmSydq8^L*z*sKkyA8eyc9Ztyp<(4JDbIAe#2eG3B-S -}6rzpmK}CxUJTjia`jT%SpdJpdg9n%QbjYPcVBSf;Ae^Tpo#-=C(a6t$c&yDEx{)!j(0V!)n)ogo`e! -z4sE;MjkRF4LD}v`1J#4WUjq5Rb*H@E)s6=V1j0lpzue4iZACD*rpIi%^@Q;@_^ -8(~bft!YALB!!$y@Jw9Nq@yYVj!Y3GJN2|K=<>`E3~67P7(VkkHJYL=SoO9O=tYQgDYV?#CJa&p%SGX -B%(VpE37;<4D%8+K-q@EgU{C@hHKVNFJduX%(jv(TWxn)Eyw#6NMFilWjkDs`v{@INi<@(s-jWiF)v6 -sf{blxF4?+f0$Cq#jVh%)mOa8G1N2*Ef}SfR-TYyO2*KK+ULQYKE_Bi4`fxFFqF?ID`?(viatc~&*5I -6h7&n9{O!P--L+WJl+4teoU#R*i8)3L5Gc;>=VFI{S9AIR154mKp|j`$|GTHt3x2j`%$o;k_tHP!X?f -%;ya|wVE!k;=nj|^D6^%m*9Wy$9e|CC$0}Sm}XzosTR4H`2-S76NLaC0c(`V2A{9lu#eSn}LEpbe&Yd -+I~n^z=zh?JE71G%UvcyWs`uCh;*ztE24ae_{P==iAuwF9-p-0R>|9kb*g6hTQ=%D*u7@l&7c)3mt!< -JEj&=yLh&DqLb6*dztTuYJ&DP6G(v0>q))AzE|je?5Qv@C__cA!dBwrvbbYCa`wRgZ?x36wUCT(d{tO -$UpN}kopc%%L?rRAD4+018$iFdjkyHM}Ic+e;M>>dCCJuCmE?_E4;#pK7rsM8`Up`R*`#Hss$PudS%- -aaXf56x_`so3ugf0-YWk_@?A~yxUe(;4yR@UOCYk2wF7gB3697Y<_k`j3C)k( -68zQM$-3J2Ep#CuHF-cfyV`s?32R0)CHj}P3PuT#vOToBZ(yFhVR=J`o(A -U{O!Z4yDqDUyq%qSQLwH41fXXJr&0#FifjgKkGAoKL5WyD5T1mEry9@T8@HR+K_>7HzksxTXjD1CI76 -2WcX0+QEg99F;l`mzk}V!_#1E0(c`k-Ed86QQH(|`gS&_;;-7d~BI|-D5 -fW(?S(?A&2BC&5!`lcvrz=bEdddaT-y>wN0bsB+4L^3oo2HiOtGD01dixHKMM+&0C?hA=yv0K~Y$@JADtAu^AJC<;qz@p0bveQfIxXi+o1m3b$8FwSn<|6x!@cNbCp2(q{>`Mbm#FwZCV4rIl0^K@>IxEUZ2vZn -c7qEo%QxGzR%X+*#68v=4lK3sMCu*LiX=2Ndkm=?WqQ*Rf&OxS(I#Fu~g-Qnsuyul-%~H&kx8g;0{RM=Ne?cT27d>8&r#)E44ARCeA1OyP -YmZ_Dv;gHT(|o&Hlo_>Ig#`7l=df^DUbrGT4LPs-n%>Z5sz1-zcs%n==Jfv|qp))@z$6TU!+E830}x? -d@6aWAK2ml*O_ExVfyZc@S003qa000*N003}la4%nWWo~3|a -xY(BX>MtBUtcb8d97DXkJ~m7z3W#H&Y^bdXpjwGneM3sN -HkN~EQ3JcSI3FCoc{4*T7K@}+ZJOOuQy43h6I*=6C)JdqpccQW$rU+awgSq+8_`;Vju#D4!D?|iiQ2+ -6!kLDNnbHp6e@(pLIvcyxQ0B#*?U*)?$kff -yBjs!ivObz)bkyb_hXCE&K{nnEKy)7kqd_Q#Og8F<46umMy~+)CXM9|s_K+fge1;^m#v8qcaM$wCoW6 -ov9QuGG;QD8mu#a@jc&0d^;}x*@S}>Tc1yl($mp2&N0rCzn^R|Ni~*-PNUdCEg$&;^V#EBiya*v|kHt -%nkAt!z+}f9Ov8zib#P2B66fL-Bns_LvAAiI|@O=8A9dVIqD6Ss%e-JFaeYSTCBnuBJ!T<*0U7qLyDS -xI7`F<-Z%);1c+SM2AyJ@j3@W95dgTPjgn2E&l>{IBtm4^cgj@(GMIYCjFc7dCEiy=I#$6+=AbWC!GQ -GX<=~R{zg=Cu%P!yk0Tg@2q+l0+FNbGf*T|Zd;306zvehaHRHCiId8BZ)M3O7gEpogCu$;iUVlW1OVcQa`_{d@xG0scx=os!` -U27h^=wJ`e=jWk(~Kv*Z32Ho -A3^HPN0~fcb9rTZYdMlknt}F`l?G|JoIVu5k$O~|7jY5Z1UeqMfntUa_xW4ZFjanbd2NXmLyS^TI;ti -3((Dw{#uQ=Ks^;7YuYI0N?{eU8h;!s0eFGpWpi_CH?TnIz09oZG_+&a>Pv0)#4z*xpdM*$!{4wraIC{ -fU_?6kB4PQe@zQo|93x$s!#z5|&1$0JWD(+K9!Y8#4#By_M5!?~d;bfVZ;22W$e)h#qT#|?>aGTVnxl -XJ4<%8t?QLemYs*WIg>xKeKO`0v^^qaHDmO`t^yW`r=Aef{L&3B$9 -88PhlMdtFJZjg=v(VAPJ#&G60hgO#_D6Wmytbwv^96+0Lv!FbrkImR7v=ux>ThRG;F(g-Z(zgIPsKur_YCLx8ncrq_uLxCO_cX-we;MYT$-S#9_C~u!Xxo(&%vq$s*NHP$PpFX@~hH;-u`QKr%d_t319=2VJ#be%av08~A54OqIQOC0H@x7PD@ -wiLxweIC2mw811&0B*Fz7`TX&sLqT8;zk`%M$@-2b`H)x8`J-?=cf=AV13gyd>?cp4#PW1>j^Iov5`k -zmd4Ml;_J^H*(Jk>- -{CmKDnKYzbwnt?5v^6w1cU^#+Pmg^nhK=)tTZU$mVgLiA1JZ5_m{u1VCPx`^bmR4ueIY%0P4yM+)SCaGpXvklT@1#C|Zt -UrCi)=F>1p=Of_rZ45Fh_|BzmWDTpwO!!Ulp3VLzm2UxH49jWgMa@}csFR4nb_9)JPW99>Ou`E@rveLO5hGHs}0`(Px#jITbOf4&j`F* -!WD`dyrV6o+TOi@%T0K8(ciZx@r}%S&-S0b=9Ri<9v&q>j&yPCkDapZy}<1LoQJl{gunj<101)j1WZh ->edgk=*I=3IyoGlj>Lz -<)5Bkm3F{o_U=0zFc@$qh9b+Pvc?kcGuEytQSec{qv#SZbj-alSs{;AU`0{up4kzPF6wAlS`6*Tt1q( -RmLJ}LQBliEW -oR*py@?okL+$A5O;QF2^hTN%o_(-6%12Jg0Jn`dHCH=f4e(gB9{b>Mb_mB@3&UkO^H$T{~p#~t0 c{Aypn=R#0;{ -Nu^Nm;45Y`aGKamu!Yz=7r*ZT3E<4uB!g%ce|>!|4i3Z~Wbb!p?_>7c*8F#S*W#xGVeOB^+aZW-CIIx -^j(|UOR?)3P592YtG=gS#1yHJ8PThLj}j2h{`L_(X4 -gyOZx&XQFX7Km8CS;JwGC?7q!%)~iZ=M4I!<0OfbD#{Cx&?}HoC2_5cnsQ=VKfK+D)(`tNTD}a$Z@Qh -lWvb+l*k6Rf)Xu@PX`hrXrRQM26UMGD6Vs4uSy1j-97%8vBxl$69f)cy^j;&3ZX0%J7`W7?hO1MC4j+XKshT4bu@8@>FyY2K` -ojnq+c=f8u($8b57j9Rv%>QB{kb)n}cXDQ${xu2D>CjNVG8xs)#=(-mNUrfG)K3rGW{-ULI!Hh>?T?u -W@)Ut)W30#$zxCjQ4{=gv7w9nHiQ@vqCx17gnJ(ceu|x*5;cO| -LKFcE!I+y@^J;$g-qvaiDDmHCtdP~4Iq(-`A859aUg;>!)WqT@>xkih -iln_P(k$gBn(>IlxLziqBM49!WT~Mi3!tA$*T*p7gpdI3mMLK -?s~riCu6QDGVq>UjTZN1QhfJ+{PLtk=N^LLn|8V6Wbb^0kt=Nz!WTpS|6tuukDSoD0u7kh$Z*7Nk_H4 -{&tB_ZPZyiUE~2s*SQ-=^FdH8jNo6>8?<2RqMFsvq!sMOPNuEa>nl`1bV;?&?^;(@_@7Q^rXf`;(0*u -Pv~!z%QQ=cAgU3?C9E)sq%AUn63!jn0`Y{NENXHv1g{R2EZ2Tcv -kttE+0zHL+CMc#t|v*Sm9Xdo-Y(JpN6XMwaAYtpU#wBe<_sO`|DA(k^E!z5tk%YMvVUig`@4;2=$K-A -RH|;Mgn#cP}Y9@B&#m@_qZQ04^o=32(nQrT|O^RVC+cTEx*ETB9HnTQ>xmhEXCYPA&DyV^VLKESo>`A -i>p?z!WTsr0CM5Z!+7%9oo6P2aFv0trfSr)NFRGUIO2dS{mnxr-mC;8zh&an{v}4t*o<`NH>$!rikk3 -@bi^+3t)DwUCT#saP^+7+5o75?KnlOaL^uY=uv_7id~;vaaIG~YQs$AL@bC5Z9=B4s#g#h(QsRF>fNL^!@ob4UkoLK!8Ddg`S$bHR -T!2v%QekmhR#?I2p_84u1BZ#-5r8BN>=r-0*!PHIqI)Itt?Sr^X2UG|Gf0pL#u39x?e!AGDtE&u1#yn -O6OpSI(dPtzX!IM0-PAZlGeXi5|yB3>r3C)3W#CvJ2r*NFeI0OE%(QqpL{EhLM%(}5Z|zNH?CGKe_gc -T@LsuZ?W6@Y98v&O`a={F%oYp)Z4_WZ_^sK5$kCw%PJ(t*`^*b1IV$fk(4L>h_1KeRQd>EOxm{q|)?q<=}H0oIhPSw-Ngzc*bA&u`#I&JSyQdI3= -~gJAS@ctek8P9Y1-k`g;|iwdy}o&HqE!T*I~%H_x&qgdFi*ApdX^t~|b=gMk;!w#)1_6jIhNKGu-iML -y3Kp@ZwTnZm^cdS5}XQl!`gNGFlfygpr>o?H}fgud*yHD*2xpajivrRJQ|hA9_r5ITzhVjx^sMHEW1P -sgXn?<*+?WE0RDLeNLv)+mjuNkodl*3eqy&?cegS(V;tGnr_X;A`kcanwN?!rU(E6{Ix<;97E(@Kq&+ -2og{mA(Z^5tE-DkncTApG*d{mDZjSSIQnH=MQ9|fqi{*1iYiW9+B!PkMd00W7+^du`Kb-z&s^pN^I!D -P29n5SqHG)=TVc}JyOUX3@=ouU-HaOk$?#M?ekZ%5AQQo^)MF2r;|FdSlW+b|JgGce<@KTCCbyErM|f -+JF<|;grCx#^iLcG{QoU;<)#NI0y#&cFO77TBn*3GZ`UqwL#ba0eqtP+77c09XaP_0H;I$76I(OQjma --x%ubM`g*sI~lXBz6E&~DUgK)^v5C*C}cmB-KSjxgm&r!;2x4ZaM_{vs9&-1Apz?pa1Uiz8)>AB!hNAnxeTH0lC|IncdKV`V+3{Qf?!Sd#(OU#+@zXLnWm?v~wJd(V>){1|urKw3{o -(400cY1lOgg~9PaA4!R`IK3n_geJ-F-6Z>n_2%_(nZ(mLD+8a}t76PdZKL(L2$Q8}gg~62ItYI03xgD -XTI=S1J3X0P9F-lNB2;#D*SMS0_r*gH`SC+ab6UYH@IIO}<{YdW&C}+5M2Y}k+Qf?HePBZf+f%bXkVuH;!SC<%Lz$Som^F=Ac9o$aEOO6H~%~ -f@ru&bx-?C=`jL3NU@VReJyPCH+es~H;%jTLrUPUDp|$a2gkx6LddE!OBY$!Y_}^}n4;0h`YQ(uiO}+ -i+ClSnm|f=?fSYWZR=Nvwx<~!40=T1{fGfCGPE($bZB^v?Zzu|5V%*#l0nN9zCbzJleYKVrs1L>YJlE -%P>!$j+;kY7OD`RSFDr84sAy6p@8oOlXb*yMaT%(L7vVVsSid$$!bg7tY|Dx#mp-`?~_nz$JiE%NWtS -`^IoXV`^grM1R|M*v9~okK)8#oTpOXAx_UZxf?GF(`?byey4ub6b|Te2zqf~Li2}-Ax)-y(-|ppWr=x -FP(+95!i-*k+Tm|CoF|?Vg<-0ZL%XTIy9CU( -WSnaciqDsI=Q{du=zfTf*JSZV9v3Zrk~Ks@*DM>9X6Zh}YR|F;HtGvDR)A3GOM)zM17JdR5z1iJMz5; -KfTBwHu%=qH}2%#wKCtAOYE7!)r+3a*zKU0=T}9%H0F-R`Xwj4^VrW#y0r3GFv9`W6%+~tihhB>}_g( -PD1+-;I5i353+^?`kxPS=E6{f{KqFZ^203^fwU&lCw87ohnIaWc%6L9x&ij%>N$+iT>mpGasdwEAx`| -$+iybSOOVZ#z9!NQ7hBOhoTgdgdKuI&@DB5A{@hA_6GEh}Z$e4e??Zq~&flVf--Z&^@Y^xQ)D5Wo -rLXW>7O|0CC%%V*N~9MS&R=Zca1=JPxiKqV61;p;q=MIXKK0I{+g?{YfZ4KiEeW146*YgWw4+l`WivF4NIdhP12?7=@V&WDi>4yk`6yZ(O-#_P#b -UdM7b2!ZV5%_{mafl-j&n7w!>6c?u$@%Am6%x -Ob_Y@-d+tE{4u8X%oUc#*D6m?XHHbi3xi=@eBk^4_5Z?)^ -^=OFlFh5Cm@S89PzYoA;nH+j@oPm*tM#g#ggn67vkQfr>iR66sQlK*gegwtY@Knw7dFCYLeEn91xeeo -~8!8a>f)M40detff3wms;0c7E0R|U-Xwi*;KT~(+gbkxCo$1c0D2iL#HT_q0g+{Y8R=%e_@Y)7g8476 -wHpPNk;!wRydGYB#p$ymc3`~jkMERzS%4MTTIpR?=7p7J#aewyAa*o{^eDjlbzodJdhci1l#R!*N%-| -=_n5uH0lbRd6`#QfozX{Y)N!91GAdE`6#h#yNOG#OACtZen69pkFcAP>}OSEuxfePQFnJY5=Ns1u01F -m0BGS&Tj|70AJxVX9l#!d7P8;IM_iR&~^?TEfzQ<>?{AX9%IA5I$1_F_bb$>sn4NM{Hr?WVJ14YZ*mZ -`rr+O)!pGvrzIB$NwsOf=&``-{~|L!7E@DLP{-=gK@R{zpI8= -dYiMFAXVs0twL}bEfZ@bi(M-oy$7J8ug9ZRK9K+>x<7uE8Zs`fTQ58&^2SBHFCs(P3=QF&#dua1_K*z -TUh#(Am#yr}Ku^wN6wNVIYcilPy4Aq8@Gg|BM8Op@J599+@%ak443|crK4KR0LKyxL!;W^*LAg;R+C> -!9b4sE?sNE}J2lc%YKu}zIUNg<4G=;KN1U~EGhn<_&?JV_x1%oCJSfFMrcb(58i`$SDT%+eZ4s&4CO5vQiJ?W1V{d-@nI7$*kFditcPr_uk)tY7yO(ey-9tEK--ZQj^s -4RGI5^y-Z{XvyqHGU$)$u`_kZNDjk2Uz|{a|S0fLfIlnrMi!2e_v -BpbC`3eXaI2N4|WdJ$oh`z#u3?0JH|cXOqhyrZ@fJFG9q&ext1Sh^cebOTn!|cknQuDTRw|o@&_06^T@j$#Wc3?B^gwAi6$XoeX5;PK*g9b(omY`1E%$v)!0elwM;dM$CrFyK$hP-XW+7 -nnB)Esxa4O7Ak@g+{~+=N3MJgYi$Bi{`nk`q&~wG=|Q`5N0+N5xvHoycYAdeTaE|M8FAk-#5#7}B0mf -^lT(xl27yQZxsCsM|j#m32@CZcSS_h!Y>uzrMaUeSTr<)-<1uM9_hj&%OrN!-nw}U()05I6S%ADn7Nw -FE^JX#2%W>qtX(LMp8Bkomg!&Jq>~;9gGI?G+W=;&Yxi8g%6&NFn-3miI5y_NP%&YpHn`5PFKlS6G62 -at3ym)y2)+I9W*{Eh1JeeW6*}shE^TBQkEf|tqU_~tSjw#3mF9Hf=exnP$@%2@ -gUl@vLlGC2oKg>9ZihGlQyhHG9P|K}A)k#W}}Sw@i|?c)ASqg2SQIQ3q2xVeF}w>cL3IfRtyFkB!H>2 -FlrZ+dTOwm}!db5}hULG(G5GabB9z?2$CQg9sZLaK(7pKq|01twvJXf%1fH;SC*5kLNxN-?cD?MbW`_mMV)5x#PI -GlQlL>n(;2d+gYsGFmYM6*bNw{l?&BeLSL8ldJuvb@chvb#iCFuI>+)kz2UJc4FvD;h~&eoG+Tv|G0N -#3jBtumE8o(om3#L0m4-800;^2eUdBs0@CjFhQB`T?$9Yycjt;JF0vln2qz^2 -H6iyAj{_?*Q&~4YNNH3L{f1nc0&7^4p$Y&kHPIA6ji0L|ul8Q#gKNe~B-6_I-1?83KF$fNB`V}}k*67 -+A&acyeK@YV(qdp7#~AswnoBxBpiy%K+_2^V`mJkDBsZ)%a=Jmyp%AWi+k&4#E{MRP20qT@;GSdwC^? -_ui&rF}o3n;hvdFtx$yxw_>?F4oLo`Zn3KL-Zgt>`8_1`p+?w!eKHyj#fcMwMGer%{F}7WyX9AY^KD3(~7;^@<@CMY8?9B~Vklqt1=u$P@4HqeDnjODj$1Y6IsS3wZza -ybgy7r_9p}9CH1^s1mcyVz&aSksp$G@E6wPlyx_=@Qk^v@R`4zG?cYX^wyy>hzTss%QN!1!0c#X{Gqc -8dl6ZE%YT{&_KIB5L$)ZHM`%l|qw_>oLrlDT!1`-L{b#Dx0=iYc>-9{GXxerwG$F%ob##p6j!C3Yh&> -)i#W)GrHPV^AZirNDcP3GMcBDim|hxI^$TYO<~~&Yc0L_E4bGWqk=W{%TlLGw~DKhV@_dEMiW#`Q_-{ -v-dRAK04#h0e@z3La!XdR5fRhXb^#iTxS~KU24~8hCVU9AzEdd1d6Z@7MszLIJMu$Q{Fq4uzI4(5LwK -}s@30g)a#7JL=#xETcoxcg8PXMQn_)ov!~vg``EM=pnG&A9YY+O+B*rsjeLU-1eE-91T|-m2EmTO{S>g&0{ -kHXhzIy?}rtXY7J6t$e2|iBLFE*Rl4O;3*cAqO*Y|>H5oNBSXw1uWMbk)z(OM7(cf8BMQI0acP!;gnBI1{xeC2S9oi-umn4EaeH06J+$wW!D4L_m(dIX8XIbCZE%HIj>K* -zaUBCM`lFQHk+6p3m(AUql?F{uMr$TZ_oWx}@+&qh+FGRUwe4@-+Vx_WUfpy=O1pPyhz>c$&N3Shcs1 -`X3uE4_qTwm<1g%pBD7-p^Cg@EE(Foi%^3&yhrHAWEJ}s$H@xTym?#GuVjgn`KehZ9YQwRjGt7WiTA0 -jv49$>JQ$XN?0R8gPePlg7-xRSz~eRpdWE$Du&f?XF%DHH2GTWK{6$xtJOr<&uaETUqsx_f6Mlo9Pb< -r^ujbX3e~9qi`W?A5>T>dBacU7pO@HS9B%cxM00m+8xwdZV#%wWYdD;iEA{s73Hf+^Eszjd=BwnmwcY -6>gxEn-U7&5Q3BI^!DF1Ax&De_GnP!ccN!x=>}7?(2;pfXV-FX1E;w1vuBe-`#e`;f&$wSbj5f$GhWq -)mxbr;x*+Z2pe$u|}jo@jFwNmUFmqphdUut4-61= -pKfV)4>qSVh+Vof$sSacrQ>%?(cBm?73P90}h%?d<8vL#Mo@%(|-vC-i%$f{-#sp{N%~1rgn7s_8gn@ -(#Kvc;+ZA6**mzR;(Wp$CM5>p2>u?BXKSH&ri~Zq9@dQ~_CJbvP;o$xX -x_fQ8q}ipQQaQf!-WZG+CIHT&)B(Kjs)Ba8Y1XMxfiW37$X+QVq0=!v7(YYi(12D|y8cXGG0IYw -P0)pq}sWhjdlw1_E*3bsC=%=OYp)b0rr_3GpQ~a#&bQ3ON`V7=xWf$OZ_k=;|W8YMUH3cq9?u+3SH3>Z-2^{I!S$CN<=8^H^5=^7n_$zH9 -p@{!$95WxX+&cPAVgCV{0%RERaRaUMj``hk-9@o`nIqx!4Q@-UqUv$^MX}F1BG}Y0n|-F`Na% -9GD`YkiKx|r;$El9l0gN&a{KxxnaJI=C?SMVCEn90)AXG@6aWAK2ml;P_Ey1>u)w}&000`Y0RSKX003}la4%nW -Wo~3|axZjwaA|I5UuAf7Wo~n6Z*FrgaCz;$X>%J#vMBl;zoG|aw#v?Ro!O!>8w}s*IBh(7PGdjR!!p3M3r -1@R70rZ-4IZzq24nvEbeT8JFL`Z$SF2gx7AyGQJbF>C@}>Flec3|qmv7n{A -e)D;^E$tH1C2%x9@l40^zb_vfqVR>ST4->Lm0LGt~w?^4>#+jE%NhfozLFFFB$#gCr_JfxTvd(aBW6r -o;Ht9-5SfICs%C|J$zbSKyTiMk6$dSybT||T+QQ>FIQ2ypI}nvuJ -f-}#a^{oWbHX_9J>ovRSS4NHgY74O`1%ClA>=4@Hy^|XRQ(8IYM&OC4P8SbWOTj#50QPmgrR -k5y%nQrQ=Xk!Qqz0t6Q-X>I|F3-wU{3KsaPxGem%9>S~UKAInMeV)A(M(|~TKg2HQ0=v{vDMWhtTmr2 -ED>5@F{`-L`_~Ll|E|lqeg8UWp@wOPf#{j80kg}C@aL59PjAgb*cBReA1}+ii5`T+>31)G{F@t*!h|2Ip9;W#JN-YwMk{N#q(4@zdL)SVdQ%r!j;$B4Vb1e+`0FyiYO>R!Si#9)Xgg -!%X#==3Yu^-hI6$gl=UEB@Yh7Qxd}a4O(0`vs8N#9Hc?)z#(Fe7FFRB_y@%*R465tng^=q+G?ML*D9+ -Z~S|2=Qcbq`$MfPP*yzm&zLdf*Y%km`O{TzTccFB{tppp$EL;K)y1`iH!oo!cK9BJyD^e)e^i{1qphZ)vp@bk6tT*Ma4o47C-3$e1nOe19^5v%RCS#Vn$yimqgJ~ZmA5Q1RtTK~( --0R)TfE;C~a9HAc!})Tt&fD^|T$b%s@AdQ7(=Y$@0Jw<5dQqY1v7Jtb4X_m>evY4-_HNeyYa>;@=>wSQMP9!xY8a;lH5 -|cng2Xd<#?vvJEnx$%k%fU1x`yw?vREAm0BNY-??1&#Fc~!veB=;;WKrK;O`M`U6R;V8&4$5L3A1u|U -N+eovTaa)RnCeG2q=KMD4GTs03;rO6$QfMb}q{10(Zg0bcX(xiww>=>aLoOyo8!a1)n3#;i7*HJ-NxC -MJ%lQ2NT^N8Au2P3(2@0KxySXZ(y&~JX`(g)D3$&?T<3(J(hyE6aSq9^ufKu4|VS#gMWu{8(b`RMchj -}K6?9ygJ8Dc#rA>u-B)W3ocWs9pO!1?lbN?EoUa?=W{2z1u?KCnxtO-^rY#Z+1lVjYhGhdXMVkY~8Lr -2fW{pR#wQzW9G(#WgH`#*`ZM`9l{~I2Ew&%AUjMD9@Em(C}RoV66A_sxPPVYAiy;wro!2(F!jh->=KC -Sj&`cZS{v*>4VN^W4oTqDFA*o^N{!UBqNjj(U}xQU@X5UnOetE<(tTrDab+VJyn_VB?-k&NcN+AQZ&; -ku_NKd40-wlNt|^Y3-C9cM!(f0L=uQDQyDBG65e4~g{Sthsd>^@`<|{(t?+x__r0kFZ-!@d?{bHO;7q -yP};;MU=HPSsJ3F?p=;eU@r+!0l&G^2R~M;LeXTd1lUI+agjm65|4bKo6H@}g%g9l0ADH;h=8n8{Y6< -fP<6cqrXPEq4MA2ZXVqDqug`%5QQ^@f16~TSFh@~lf4^r(o#^rKaGW7;bMywb?(t}p9l)Z(vp1uVZhM -15>WAZUGwQ!SFq0|dfQq%)B2poyDY&^>J64at`G_2?l52>T$H#hFEQCs}g|7qp)+#LbDGF7e;8d^Xx> -$KPM022k+d@!Btr~cO0Q>zv=7t4biS!NW1=18F1i0BYPmoD^Q(Y7pFiF570Uu9z<>6a1!Bf2ex`#Z_r -eO{U_#KOgwGsI50ZQ1C*u4ee7xF@rQSUHX?cv~XFd`ku>WW}Ydf%l=eJ90$*_L9zq>B9_#fTA=f`>5s -sdnM*jyl>%1H1_V8Yw;YTkH7;qf~X+;ojo>>STMvHk$iRr;}NVRxP9a -y9`W$WJS1p+UXW1xO?f?f(|AUeFebtSgWg5Y#)656v-!AFKr@5^p(NXWVAl<2Dn;$(TmNlr)R6NqT9) -v6^q9=R81|RdER`M=bGu)K$Ts`)^6P8{-cOIy>(HALF@aZHWrB+wgo#mw-GNZMP#i=82OjpIhV=41<& -X!tzM!8L&uoRS8YnSpprzdt{J(M%!yLUBS83!;|C{a3M?NLWGiO!5VM?aH7P6)(P3%d8|Lr`lPY%<01 -0-iVQ& -7rvNGU&*TsQ6%A^gu`aP1c0284@Qv4*`@t(LI+Ga$2POF0DxN&HK(vC{t`_H#TE@@A${&5?J%lK9N4* -#T_5$60Wz!z6A4d@WEJp?`*$5F&H|bQ`NK_F%!vGo+HhUWkTv&WcGG_vVyVbkYS$^Sr%nQ~kr^f1AE} -`TsuOw-fO7g9i_GsgZqlkUhi$pC|+L7|(0rn-rbf+B&1<(`vP1-DpgJg3sa0AD+MZ`A~X$1e@#_y8Li -!hq;j#dDBWmK*wB@3E4T_X7+KzJv6joRT-+!br55agb+`;uJI1CErHPl%o^>;Hu)5QeyY8HFZ-5DfOO -QfBu63f8E2=PHoGiH`N+4S%**0|XNa2sI4$5s0o5KpM4WzG6l+iahlk&EO059nj`XYq;Bs68_gxg(dE -2g={XhQkbaU2B)>m*wuO?M}_Qw(q7zeg4HGOQ#9WaN#o*q;s>%Q`{={ko0z0<)5;&?VMZ&{S+8bk -2wXk>)bXQ6Zv&T35VSIYipQ|Sj;C|_8ep2le{TnWaG7o9^*XBL8j!hD%<-ekTCUUGMOZrd$TzmVv`93 -?*P67cJI=BVnp1d?~8m9cP8EYS9q2VvBu~_`h`I4!#i(1(y3cqb6i}}HiSYaCl=XHP8_-;@|~RE*$Ge -ahSI)i@;{hsN -Iy`fO_}SO}T7IbsHUoYrR>85m<<#itkg0cnr%7_?&`~bg2Mwe2+7^PK74VvP$`yd5b09bFHRJe$9H4W|-u_kRw@zcRWO;O=~llVmfUzfotBtv|dzb -mSW**?BhnA%8C#$R%u7_g|8ByN?V>@F{TRKn9&oh0nbrVFjoZ@$(JdTDs@F&wH}42z?vg2CEOp)GKq* -&SVU%7v7e^Ye#eM|(O#7W2ykoG%VEo!`A!VHOTpXCgctvE8Vw|ou{cK>GdJZ_YUgQ}83O6|C7xp_=oW -!W5s4))#=Mw=bT`MFkD?tWr;mAevv&UCQO|aUM5VhxnT1XC?I6)ks9ph@be>kP2w*IL)=R$vJ=<}p$+ -iDb(W_jQtzCBzJN7dWFoLc+F$t#8T7V>qKz*8M>Ms1CvjhHyv$DIq7a^U#jiuezwZqL_oUSqI^*YP#K -neZY@5FEg3YG+62|RFm0Tm1%yP{*4=ZH|r!bQCB8w*GkpU3tjiy_|2Hmh?n+EAlTOkC6KKn3r?>3vZy -^Ez8rXQ+IttT0S{UoyiCe9CL$#_{C(EP?`Six;xqXh+#!>0vP3G;@k-AOG6*I9ZOb;>#LIs}HzaK!eV -iDqaV-i*$aE>@fiqj~*P4wpR68nbgGvNDNdnU5!oDXmfZq$NtY`U2o3##PT~HAi7Yh0FVP@sl6eg7OC1kQ-w^$7jhfR2OK|~Z0(fkKS)Q%9 -YSnER@$mtF=7;Oy5-`Em7ubecB)AuN>%}+w4;u01B%B82mx%4L%KcIh4idp=5)TfxVTa}M*jt0H-(zj -zGvFmXSotNc&2*hje}~Q&}*-DyhaBgYq1_NQ`Ht@iA6X2Wt)OmIGmvkfus~Q&44&V2}>h -VYM8uaK6`N@eZalx7UVn=E}8`1?ADB;mCqXE0pfBd?Jcax^beLN`BxF1IP;iCTfZR$<7YHOsD-ZHR1T -5h*^$_)e#CFOz@`DWBO&N9{!Gw1}reE=J0YdtEP%7dL{8p#;$}KFkdSbF3yi+wYUPl2TooyS%1mOGk8 -?ou2qT-9)l15I>Z!Hj8#zAP6Q4WgdPUm$2#{jVtpDhVxIiQYX^s>UK(S36R%)WNLGwJK$zkgf~@5&%O -5uGFu^o$fZf)pJRt$k)CrMm!e#)&kvi9cb9v}5)Kh#*>*Us_WZkYAkhd)Hc=_NTvNDmbF|4(0T>#d3C -bK{tpH-_ti|lk(ZQ2G+t#kH=p>w*25~OdKgK&Sz>$2K3>}YiXf*-SGfC>%UBl})g6Vhug3N{sQkVIYK -r6b!h;lYh}Ead(J(sqFg)?UxLXu0O?qn>rbQaAYKQO|SRQnmHtp6BqDDulXta-woC>1WS(ztSDh&wB| -6u%MZsf^yQ*P1=V&zGt62O5fyb_bovx^~ga~4+Y?ZJp!v(#AL-O`LB3voGLfYhTk2IvtJGo*~J%4&ka -538D}^3MxOM1H@aY|?DHPFPAG(gUp>!fN4?XJk)MD4)2qW*)5qU`|LPy#zkGvNtk*Q!L4dA<{mdN;%D -2XI8`OR*+J`0WHAs-0kBoH(@f>q}za8JdB=8zMHtrydLd)_LJ8d0@LJvXbQj~H_G{7Q@6oM)3LZKU+# -OMF^^!uNmJ%2WRe0ccN8#{+U=5uL6cyFTk_}GyX^XRh3-`2%Kekw1s{#by)Gvnpu-eFZFvj&V@>-1wo -d;^C3;@Bt7lru*G{qp^TrsB;YEmboO$%w7zRrS`uBIxYvCr?;)%HPQZ$pNsAc(`qCg_&R%zcx;KQ@oL -)$~Wmt`M=WT&R4R}!$tWIvnt&5Syi8zF1>F7!1SW7Ob6geotqzRT@<39mc=9ea(}F#iLW6%rH36I3=G -tR9!~Q4e2Al`xwER@+e{E1ZHFdGJXFy#tQc99R^5MRy?s2NNm?qjB9n&cx2Rv4kzs!-IrYe`gXZ>VfA -8TjiTo&zz_}D&$igtO8d|C``vLW@l`o`ou)Fa&5!~_RN~tu|{!+{r0tX<$_5--rH;w}%-XBV16i{~pd|=%+ILzSyXuxbL)?@_O@N~gs$0}2rSz1W^=9ym8E3-To`PFGL&FBBzG_5xL -c54Le(ck43(g-!AEQD^D>7B?%HG3MZNTA2lL*wp@R;I>?Pz2vYvCbxAOuEJgzRI?Md=1%+iWZ!zw3R5 -s7wCoToIH&$McfTm4Kcs>R21bGa5`kC=yMP_bOkp3uqXqc;0+v7@}er20jZmCOW+C`jzgGx+4n&H2yb -KzM~4r`D4ve9!__gWQp_BCFD44Y%LUKJSUPb5D~Tc}*_pw{!pSY$paxsMt6Ip{dW9Y@n~D{LjMgyWbw -M@&>m|;h^mnYPs4^G8W0k;u+F_B>5(@lL4+$T-HqT@ZQ9a;oDW4wbnT)rQy2j!y+vy3D)M3h=H6)ofv -X5kA+x<~u+p$Ba=T8`G&H)=~05H~|Jxjh)H#ui!p>XlK?TJF8-%ed^|0(N`%hfpytYt%JyaXqi++5sV%Av3t(go>%I#3&VHya8woY3RU82$ZqLsr%98DrXw!m3jKrTiNpuZlND)GEGQ|T2RG?RZ -;MDgZ#w;L2~)gWHCKkR;M{M25;a5l? -^qZ!y9QoeCMuq*;tWpju=_tjz)ba(7YBSPc)YQa1BQmDn!7Hb2l8ESdm=ZfD#KAzGq`CxG*1x?`Sk!F -3MTXc3T&C^M%SKb`06!3YZj@ -ousv@>V?t!}b5Ot^OfocFc^HIpbASlg-!gB1Z9JYGJCT)FPf4he9 -cjyjWZs2#SG61fbZ2wwE9pA@e0VhIeNQWHv3TQ-R;s -t5gqPkmaZ5QY#X?;uOGBQo_?_^2X${NyP<@$8s%(P324TSC%wx+y@?1SiQQ-VSeI-RpLPJ8SD&(Kbev -3vA=M$QxV`b??qWaY -y5k?1)17=j>DB1wZc^5{;A?kuWqVR|r6Hg;Qnsq)aws~!_q1QpyH$5VbitKU-3>xV?N?Bb+#zO$?+5j -0x2y>JDKg8ZJ&={a*uc=I$rxaGGo0l{&u30P}XI)HlqKlnCrEi{0A1WQ`l$TOQ6*UGCuG8%I8j*5KtYJavqKw|kmE2Y&X-?&fva*}o|bJR*R`5gNK~WSa>vqiU4?UDK^Q&;|;TW9(Mrl{Uh?DaeS=dk6L!} -O)=Yx0-l9P!a7gA^|N+#MfF;sjMW8cRrIUMb!tr>4a^rZqu)HuZHDNK{r_j`I(WamHMrEF>|SCCCx1w -7(=HNb3eguKocO>z#`ng`7u|kEC7O$C1)3ebCu|oDUJ#OoWQtt3I$522+28ZoThz+20d;sU6pkvUFxR}H;(fuPRE8r<0x^~a*vk= -2ZhmO>#NWQUB++v=-tD2>NmVnM_BhbeF1g*Or=UPZAuInI$zbS=CbAiW9P9=x43&|g5z<1gtdYie45i -#@{HHH&>B(9eLB3TjOl_u#Llu>HI!>AoAPyoG*1eZK!+XLDq^_mdhtP(w{UuBLhyhO0f) -A#JZh4zYFsb?KYIy3MZ$#-FS+wRJiLt#Y+HB}z0|8Ggj&2Oea`Q;xlOr00vh={*E2k|~qQL~!Q9GvO@ -RUYOG-2v)2yYt6_0#lQ&eBweqZxE60v5pZRN9Bz1|ZcA>=haJ+TZoTzT9me-gBOGz-P6nJ%OEuq7~VP -Grh~ut3kL1pWh2${p>DGQ1eT4{T$QYZu5BCu$vJq51gR3%M)P@p&gNA?cWTQ54bUA -9`Mvvt2e{ww)1?uYOs(a_;kV(G@Jht^J><=P!v9ju`p{l*rPmS(401OvoK3_b>5u0*g`YQ@*}2y#e8U?8JXX5E68M~ZK58_rR@X}^A8@ -}J?S>Fy!0KK13;|T&qu$}?~P8*-+Hk!j=9g4y#&2diVu&v5v3VnRvG7reNu?!Ro-1*FR8qOQ`fhhLiu -t2}XZAKRC^i18?Fo=I=5?nNe7;9jV_?6NmjoGtEytYaXDoZvSIm~C#1eh5OT%5tq3{%jWu>HGiCfL6I -emXil-g!$MZr@P)w>DhB&;La(BOPRNp5iQa(a+&0(g~3Rj$4_e!NXr}xq!1%RkpDviG03JElo`r!F31 -M40htTHVET->PxY1&H~MX%BRpVZK+@%TLOLH$Hopar8`yNQc{j~W2|T#NH*j$nrdNZ&G(}J+B&AAK^m -T+*USz$N3omGN4~gNw^xakxM_ar&OI() -5rIt$k;8xwbyLn^pO*O=$d=zDSbQ!<$7v-jg3zD;~p^=pHa7-GLo1&(X^{Lc^o-IBIiyIFOP8S$3b8c -e$t!@F28pZ8)0nX*8v`-PUIgWv`*X*+a^>aczfulfXrR -Fn69HCPk69F6{<~w?{+m%oYQGJJOMK65M1oSxqlLq2zlf?*VTn=|cD*VA|8>?{`>++rV}~#N0I9D*fn -mO_`K?{sIZy+3JJxUqLURvR;Ir-_-*DEz|$e(5c^QdUG~p -o3yRp4SDxI98!!$)n3Pf@03>PNZPyWu-_X7EPy(~G}6Neq~JLQF5#f^nmvZRRiWUMC0Tj{xLN#G_6sN -y`4O~RKQa2n)ymL|NS|Dm>h3K-c)5&~O8YIEY24vb-qs24O+s^=#AUIpBS%1Y3lZ*=@ -gRxd=Cc@NWC94C{6l@CYUa1@&@@K -Pl2_!vvY#VQ0jK6dgv9Rgr{*adh8XHgsE{+dEphNl&f)3dK~m|o`Ok_y@HQV6Y$`nSBMg@#>MEdqDnF -5^%y-kwzQq7lyZ(k&^~_hlnD*p%8M(yvA97Zi>IX*I>Xl!*yrEk6_M}DZr>Re%Y?^FYpuxYdG}$_!hZ -0;7Fhd}4NaiA!O??{8lE8I2M>_rg1rA^L$vVRAm!0V4U;y~2M?0sJbkhu3N$xB4kPt3!=vq=8s5ijqq -)BfAG?u&_9$f|EcCIz4EFo&>j6(-M9kDQDsL6=187>UO(2pjeE6(T%SsUn!}zF4AxitHrlm$;|49=gZ -HrskYF?f}gZqdysJYoXS?s4-teQ<-Sb2f?UbO2dRv7Ed@V{8JTmiQghS8F9J_u509b?v4>#Ke;jgAEC -_&VUefR`~*tFFBlG-YhVJe~IUy+B*ssW?YWpG{O`C~-ACPOq}>&C(iYFKov8v5aA*#)n-rqrd7Ko_nYzTWM5Ybkct)hzJ6eEwtF-a)`3a>S~m|Ew1>cuabPylkD~+C7*xw)#qQ_y{}(S9{lm4>n}X4Hf&+mZ> -u(6_5~#L>9VRtHmjENy{5fd77i%NWIJS1dGz4RuXpPtr;2u7!4EqoRiLSMa}S(;>V=!7d=(GaVK8sS7j$~~_`BzCra!!T_Vf48@lu0L1p0K6h;6UEsZ3l`j3z2*c~24O+YF -zki~Mb2BG)@3&R$HK{E|~wR2{Sa?4(mfs%t{uXAR|h+>~J$exm68{!?5_^dBJiVZdpcZ?T#ui__o&_f -R<*;OUI++jHI>idr-(1hapVz@CW<>x;$-Hv!1zw`2z({&BMSSh`?jT|Fzq%SKwbN;&baD#eF1K8{?l4heLTkcZ(x`+Wf_~mJomyXUQFg* -t7DQLoW{VzwoNZR!~A*g}pBKk!P%^3-DL>_3$ -MkHWG+Y3bJ!BK8O?iA>!I%D!l2zfod_~ZIP_Q;6wPtSeWpWTyGrR9wo5Ewc(wN99^gJoAK?0uYESPx? -D~D0xKInS%qo|H4c9CGL7g=$^6I -V?6u4%efRvrtW-Ir?-OhN)o`~C;`wL<5qxPNe8fNKN?uU;*6r{b1xC{SpRN0S##F{Z<}igKE~by@?#i -)PTH!(ASe$pJuK$w<66~`7+2URe!acPxLK^%Z2}Qa&p}xA=s`M}&4AK%#v2c6uI?i&BJb0_#bkqnafEU-)d)LK21UudX;Jr)w0jJJ>n&jJ#eJO;T5q -?W4b)>MHE29X*tYOGiVWufI>=i9xAZ+a%?cpBt*92A6GkD2K&e_~R%Bb3B^&)QGvD{9(VI1|loO?A(9 -{Jp&SwJ|ZULddE#%a1<4Oo?jJP~V9O{yu`gR1Lll&Z -=rYxFIdqcOHOKAHc6r_;X$HG^cv@b1!>=M*N*d|B@rk%)t8t=+4yv^o1ZE3@F{lV1&{Vr8DX(;Ac}2Z -e~##a|uiwkLs1|U73?yDGf%{p6RC!FW{FBDLv8-_ckQsmWb=Xg9+Wt3Kf*4s8iL3LLE(rGH&{n$RrPu -m!(C8U$U(H&8!a~#EqJ(Cm1%5@)?XtK}6iQ5vWNm#-Q_SD?9f4()*an -T$Eft9?EGBWU8-wsFO67~?BO4A+0-y7Z?nza)Nz(wB+<66&P7Cb`p8%^cel-H1>-DoasTAnu{bv#AyhB -^P~QMGyuP^^o%mffokB5yl~1v8`=Wmx_ML3*-9uVR;!H4jMA?v)Bk#f3oWJj`*}jB*T?rTDsgxQ2i3@ -p<$torw*_>ZC);)5=q|zVD(yiECMKM_8teBil0&t`3GdruFW&OYl0hq!SwA4)S%P^R;arVqT_y?C9Bb -Sb0cizFV{3!7AGH7{_F}G>ol0eAMw%bBF1!2|_`725a1j2kIZVq#UY6xgE-tJe?r--BE-~-}_vMcZCk -v}8x${;o6dV9#J&(%eXT4tTk&_}4mV(W|Khrsw4eB;!!bMK=0;pgUXxXQ$9DTO|qhZNX5Jf8uv>-iq$ -gS_%xTPOY4q#?27Q5lT_{#(U$uzoVq!|gMNXK-cYbco`td|(40dut_cJLB4uQGCn()^$zE1zZgs7#NS -$=wc5rZC&D+eA8kc$I-xPdG)bB%IU%z -5nrf1JyK0TywZ`5^BbVK6(PR1Kf01Kd~)NA^Jdf2Xm%xfl)ORnR7u%|{qHQju_@O-KDVljDrQ7$jG@) -m8`E;-#}%pVk(1lVIQX}0ws5I(s)AAA#gvw9_eUcqRN&;t<(XMJpHv2UxI2m4(t4!#;Qd(FX$Ns)4iq -%sv;DTN7k^nEt_N5y^`uKe_RzA*z9`6xC3>bA}<7L5*Cd6Q)dgP24)WcrjHKAU?rUHHi)gACF -P-U=$Ih0h;n#_${wqoXX%Ekx)?77Wma~9e^@Gd?Ck`=2NCsU(vdUVfTd3_s=wIfDxQL@O#9#s;l$hN= -YFcFlYm82&!@CPs!N6foG;j9C`|_((*0r5L*)Uf5-~I5!WcqS?tIn2$uY#%R+=F~P{t2t??_ -6wCvygz%Xz*!6E4c)u+tohuI}7Z@TDT+Pm|?OFdZG56F1-M18{}|y&pkt#x}dDYz)Pb|#9AL%L# -KI@mz21x8MZ$9y}@_tT4UTTanU7tu2CYeCrxt827ObhVn#_SG4>LQ355s~+L#`Xb@z8|p -EH;pJvbh953Nl&S_be5E)Xko4aDBlesj6RD<;9%HXW(Z15gL5Y-dxC7C{|2+;40K`dY%t>Unln~Tsyd#Uh}H8`4LkBRtWN( -q&Nze3syV>JV4N+hnfg_(X3NdIkby@UHkX~4h&>ZazCDhO+)O^(YSGHkNNL4$vWE+mt7A^_fcI6a`BK ->s19bElgTXC|x*&}{9;$N=hQa1&MxTa(Jm(-uz7kdIQF}~GqB}cSzauAVfz~s4AX9KqG_@;QF<6~#>I -O(HWxf?MuWuIymb@MvlI_VcrvMf8(Bbg_h0cLi8R0V$;0K4!Hf+dtPT3%scVyHCqd*&HPe_#F$hd_ii -m^!@!*^^HrPAj1=9-C1O1wj3gfU@7RLn!-m5sNcXWk>t{mcQVpR+Tpb9k5vxfvUStp8w`Spj$`4z|VnVg_F?tNJY(a~~>IZ3D8!>>O5g&U$5PyJ5 -D8!u+fFJ&LmeLTj7q?G%v3@mBJB+YbjJeIPlI(?bjNd5YaK^9~tJ0J2vERbaF%j?lzZ_ -tzFu&2R_H>btcJtp6e?jd3ODFKVsNv_1}&;&mLAXW=}WdnCyHxKBIua6r}9y&$FSO|4}jlxP5JmFzf@ -BOxrvXi35(4%w}OX$tCh^y*XW$v+VKfmwbp~2z$X=WmGgW4(MzUH4>Pxe~{)dUIkKvax3s(a4Pb>&nI -6giAYTB{gT5Jw+=j6T~%#pNRP~g$cS|zl$rH9l~(kK$UE_bOB9=Dc(I~RW+0C9V)l^!eI%zesfh5ls+ -4RPR$?Et?pP)QO&H*r((zeJRq0>=nzSt67G%I(Umz>Nq5PjsN;QIS$qDz=7+4H#F9QCG#2h26WY>w=5erZF(n5HjHD`wq0zx{28J<4kK-6HR)uS&S9g~y4{O&4FW(i^o+f~MNoVWl -g9StR@VcqP@#-PA0MKO~84yD=V=a9@PxB@-to(yDya8*#8|td|dP0Ph!k%`il0&1NT}% -mlRb?7bmo6}|2gdQ%jqM55$0LX1kQRn1{jB#|O36en`O4}k86d)s`5dln?a!UVTxE)j?bcED5Tw0-H^e&odk>FCbZ>Tq-%@j3D+>cRm|la@*2_!~$VOQeD$-Gu>vpE_chWxa8*Ks)#i -V=(cHBRx3!8^-IVXr`POx=Cy0i+kwNhb=A+?h77W(U8oUdQS=wvtxSEZ)e(ifn+ah-DAO^x`o8W9!Yu -Yvj{R>oYfOnYBggp(&#SgdsS%G<(C7{F}QFDQ-V{OhAvUtu|Ir{u^_^f%AjUM`qDX2^jPsy44!^{gd -{Th>wv77yxupuBc_uKa}sw71zfY`uNNG8t<>7wI^8Dt;oyHOor?OtTJ~^d -0)e=Ghd(qqA5vRikk-iHc$;9Sq~xZOMA?9^=Ky6^9zGbQ+-8Xy4TtbM*Ig5BcQ8iyVWY90zVu)KiW*J -1f+Q#o{#iM1K7zD*C6dzm&nr*mNqzV7Mc@WTZ1SnR3($bxfmoNaJ*>8H=L+-DgHQM-vnzWSiBTO(dg@ -Y{TlZwd9yCv+CS`7}b)Aa-kRe*@`SLySz1s@E$5h3G=xp6a1x9N#RW?UILIOV6Zwa&$pQ!4NRsnn!;i -CWYND{g|^fb+Hc`BdcSrA8%(MHbDKTVf3e|4dgoy6a0d-tbmyw}fu;C&;(2~SD_GIi|6+i-n+NA&!Z| -^_MnfICOc~i_=yF6A{YOsw6&~F0P}Ls!U?&ch*u9OP_dFsPX_ON_FfsSX)9;%bqt5>iB#`uepTAs23DLBpt<=C<@~ -4skYs7Vv|Ne|%dVH}=>7D2dg)$G7 -4&U!Q#}W($-pxXoQjVYg7IkHT+m|91@E0mFH!K0S_q*Oig*(_;BHEu8HO9+x6kYRSWj8QGo@F;ctcb^ -$|H*rnGr#%Y{O!nX>!P2{lcZm}2<=5o8VK|}cKl7#esdhg8@s2%l!@_ha+-3 -2pu7JFGTSrJLQSCh0~y`$D_S*;rNy+Y|LLNL&>8_l6-P-3Qv``6Ww(Bn(fgKU&Hdc)&{S -26u;X*V;shkG;1YLv{K@PvOnLdSd`>x$Va=UJ#X<+T?_w`5B#h~X^kvz3d3H|Gyyk@?fyS4U?R@6NtRmBRua^WSRICHQlar^_3I(_o{C{%d_9 -_NWO+{aTE<+vZ?8(Ul&`684%r{Xl9jw;$f?QFYX-7%@sP{|=I=O^wycn1U2!=^xBr|DWY_K$)UIza2j -8rCQ3hPuka^0f?T2o$VJ8J=&9ZG~SRPGE82cun4P_}(OpHG+78L%y9!^OV4{dkSn#kBqXM-jCi3oACi^286@s!zRZjzJ?lD8R -#FCB(fdtqTe1C)C4t(wl%Ot+WS@clk#IUHk1KKj;``A}vTCJ{|XR~vFnhKW2Yh~G@ip>*th_E~my7iw -eho780PgrpFSDm$)!^3hvuk_}4?%fG~Z)UC_2z`{*%NItbum^0dzL>I1BB^jtvrRl|7eAjlY<7gE;s&NxsSXY8z*RqXR&fnwxI3Ktf{cC+(L~25f&jHUE_Ij8Qbaa*LOe`hfIiqoV2N6ZEH*tha}r>SW$3*ssk>(LiSL}F3EB -11IT%Cg)>*Z>Rj=cG0K-L0$apo78_fG09Aa#46d~O<0H1Ax;9=o5D0?B4q-1J~|9^uNrI7cZ`TOe5&W -WPd^h@4R6{fUR6v76Je1IEk$3X67e;0k{S)7vcuN7wyv)@ScGXpoSyM4Te -kN3zdOuV_c8A|~I?w|dJO-@VHT^pARL!FyXLvM2u?yLQB`(e17uf7|5sT)TeI178C}kA4f+4+6ZS>j( -FTa?qKQKxkv&`pPx1-XT6znSUZ2qzT{KBR6WblY6H<=xy%dTEXyYt-!Ca~u3(&=Y9;-VI(!R_kY< -YfVjz^O%n$#CXzEUXScOfq?B=;|0?cArgq}^nzt-*g&Ti6v7qmJFMudC3$0OzzSR%{sx+ -PSFB38Rze?lAJxp-T5NE7=*C0>rKV5=jS1k~6^KC-1gh|XLQR}d;uw%#!y|(L;z*Vl#w%splNsR>$O& -|tsDy>`Gnw#1b9jBCFt9C_O9|>0gJdN#TV7G{ZVS!~MNzqj9AZwoYs0>)O<+nsnwSWgVPTjJIIB)h#x -ArSAOVGymmO(=NGLisnF9JVFZ{i=n5bu -Ov$(j`!pQio)99?K$lW#^I9_sC;sgtPH3VJ?~B+dM|rUTIBY&25Am(F1y-vo2adA`go5tpj=Ym!8HS* -K+brPoe1NY=B8nFbBsp-b&d>npu(`^xVi-z`cb9Jk`8kyDFNNdMFj{kAlzKr!qF||W<~duKrzT -GhNDqooG5sdH=Kflb{LWXDwbG2z+%oc*Tf)7Fth^YA&!aiZ`C!)vy4L0U?(frt= -r^RGeWSFuq;g}TzW?U@_fC`0DT@0anX1W@6O46F*dS>?w9A}D9A+?8j`??dX{Rgc@7&<;+~Dur;P2ev -@7&<;+~Dur;Qvl;kk#+M6svh390Wn7yCwe*sc4RuGufnb -kRFc2oB2`ML{miVEJO|M7EqITuxtH$3-7m#m@ygK?-5m*pV|x^I2k8%X1TY+PRB|&sPRu1Ezi+nK0+5 -MNaDDU`S}adDt=u6|o4QjMbu|S_U6(~;J4RU_w_HReVjp6~Kh!sU4|e*}*w}K$wl5RS{SJIcX>*8<;c -vfEo$oX@6&tlfSql5kdu`m}6o -OgLlmyK{P~MCfvlYa)8QF4vRkJ0j7OXxEvbll~|a2<$Y-GxgQ5`4@0qUO6(52HqlMT|9Oplj{99&%b~ -E^f0@hz4+162%a;CF`+`0G|gz(Q -Nr|7Q`Xn{|PyJr#@H$4Y&=d*cW&J0U^qg&2L~`N12#2?x_`@MXB7*kkBsV=kRBYTQ1Ek!`_7|EW3#6X -K^yZ+y>Q`O_@XkHFQ{W{v2FTO|5<>nc&HEz5+Q-D%afJj3LJ!_ps0W8wvz$XtfJZ)BmrU?qSRJqd=1h -(Mh`^*wzgbYKp^_!A&T-GLBUK-|8Yw`*{JcZ -^sr$?V0GDeB`sym(CZC4FzgWcXcU-;ZP+(?1>i?V>@5O@!`c-X7TyLcVIONg=?SUcj@cfL6ARxYuMen!fpCT6kwx59a+Os(BbCNU=IdJ(0<6_bbk-RhwLqHYoVlqvw*mDQM -REozG?j6;n!b(?Q6bAngEIl5Xhs6qCl;690gf252*37j_eu;j*3#`7Rd>roQD3e*Tm3_rEX#MR#Ck7XN2nfrb7*cin61 -=<#RDLUrd^bOHAJN%6nvq!=Z*l`fP~r9KvGekaPiqKdaxz25ZaA74Ly`rY)|tEXto-tYgP9%-*Pt2KI -Q*z|wB-k}kygIDAuz*knY^KvPPBv^97D@&6)T7oo;dkx(gHrWZ8y&suK^2aAEoso+Em%OIP@F$#Hda& -NeW!^dY-(fsuNs9_6OWY@jE5B-(y5;|KH)=hF -K>}3T_a{33JRiXwb+GwM9VtkHHXob}+czL$U;e;)i+}Loxz20^zgU7fdEZ$LbkF_ASiQ@g50=QvFg*e -#2UUna0-M8{AU9d`8>wDRK1g%~|8*~$jtjwaShAvcvtTT1jPM!0~Z_RN-EC=nr=+rTp7cD74`q)GH`i -gEL`MO+c(G4YEbmBEAF*MpRB#Z#p>%5|qt2qv9%rUSYO?o8Ar!pYPqK~r$PL|i%>A^TmsL-;x@-RC(mpPz2x*F4VsOhm8nRmD?G`UzC8|G+# -$-(_ar}r*`XF3Rj}d(u{9_5j>!UIZt;E+puFpXco;}5+7>S{KmM&1MS&A?dvYQ%rZ_j46QQ40Wbs#vx -fHTPxPBc*ev;0+uJfxTlWY5SPBw%MnsUY6WDC>N0)qjwO&AnrmiiEw^20~RI$#~AhyiF1t;6EsBm7zy -kp@nK)huZD;s$B>|HfiSZZIz!9HUm&hNF)!X}T&hvFaMzq8tTX>s>118 -Ail|0>o87#o8kd%n>1I6#dtMZe;B --zjij{a>Lz#uj>?k*n2-UN6U9_ -YhhMuTLfUP?&;Cb5?NY_u^g%%p#+8Mio6TEexBpL%Z}p+}t68;K5#y4Rp%I_!x+ -f#eK%p-V=KL-$$~N7D_S`vYg~!=@HvKus9tL>eT6?dM@Tbjc#rHO;t`9NnC$bqAS8HH?Mj07Jl}(iJk -2<`rD?~(89j`Yn@{O` -k66B{YKNBgjUi;rQ?kNBw*FkRl^5bBtg}l%cMEEmqS=CB@q#0nKiy#LHl3B}%ya*!zxH!|^Tc?~}V9D -m3a%q2sp$X^6@MQE=a0PEn_LTQPsYou!bKoSLL?b+d1oQeu659hY{7P`s=8{&;nDJhnl-yqvMB#IdhW -)mF;Klv&KZcUMQQKEEaU5Vmx5cE?d#|+gwr+Q|-((7&V?adVZck3UCQxT2`FU0RcFl?M3Am~*EjZTE87>r^_tC%JP -N3`q@tNW_-SifXJ0q0ivE6~5ozOVurl>c~)e1G6<*%rJ0`Nw%Rsdnv&#QT$iFNn%#;@J&{J_m&Mze%1 -P&q@v+&ZA!u{)#CmsS!*HhAJw#uFZU@h^DkZgo)k-89gRIiKlj0VQ1mA3N-6sVt2sT{$WkN%Wt19r4b ->Eq$SKL3dOKypDZDcY;%QONXT7Z{H>Vgx}I5F8F_;Ljf}ZEjHGg$qJ1Wcp7u{*pxD|i&T%)u_bKoyg) -yQ(}FpcW~?Q~lM}rcsQ^mJ+qhb{NoxEyZ@lmcCRe?!kNYt}PH}r?xpDMmf!F4HLFydlVzkb3Up?HxS& -n#1(@{KrQCM1p$p`K8Nk<=nX}FGPYTs@2{=VW&0<~U1UGQjJua~97*O7KQm;eijY#QyNU}`hzd*c?svLbZhO~DeXa7_$6x;8s6mTMGjFx* -B9((zeiWTLCAn$0#fi}e};c3%`>N_&T)I#_q$tX#PikC82RL$ugxP0pNLgAtf0rg}*izUL};mW9(4qS -r&3Z002(#B?TbjGQi_Y~k5ZCdrhtDcb$@S3A(|w!R9&_2Vv_=q`)+@6-dNU&)4kmaUk^wCGUH8l0uY%!hOZkXB8~E0sU& -t(YHKJ$v^TMHR#8v>3AlMKq-0bpaH9dDW%?lylXV{+Y}#D)O<_>)kjF#MblwbdiGYyzekU3W`3wZew_Q;=x&Y{<7Iv;y!qKAzGI+PX%qZR -_6U;4l}2@yVeGGl-GoC4h?#(rcNYt*QoD?h11@!b%#6S?!gGMMbK6$@plwcjEd_P7IC%Ri(y&8!tpEp -cWh{s}^w^4a>onuOAyveWp1TYm}S6INcq1JP|u4 -x6{asN&*5lVwt36fE0|EhRB|rpas*ACzmh5d8wq9h2m;wZ1XOD6CzM`uFzkYj%qlPu~T|rpe{BwiGG{ -4v09qF4VKqonRl4FHa)e&t@4ezBAPpb224tW2xo!d_GDCUbq8n$13Z^aH1oc=#BUCyRP{+XO>Gpeui3w=idTa=uTV28laisSQ%&(x#bF!%*mDLp -usQr@C~ne5C3Zyh~77b}q=5Xdz2&aTmy5HYyB02TeRRxoJS -?B9!sN0XP*&^fJ?dg2XN46-m0bhnRe`7oU2j+cC+-E#{pJW4?oEg0RQqpU<6S!b<3t)k@$r=2gh5dTGaq{3@Cs~Ga$4Qo2!8E -6ED8$m_Q2L5zRL2Vm;Hzr2hveDOYkNMqQ!SkkYS9;-obmzNOyaobu4y{ZZX~Ly<}RU!x|jU}?TX)#2t -2RYi|(RYp@Z)l4JRaa@Ei@6tOfynJ~L~-3_#cp?vL8qejgt1A@obkU@WdEtT4_qkm2XZxkv?Q7MYSWW -G<}RUAgL^d1b=s(}P?RJ8>Uo;XcA{<>G}rSPgh{u&+1ux@ss@JHaN?DIB5kmDLVbO~w2sDLF0+7g-0R -_Hy|#LD4ot^Qvf8gBGQEiUj9;6yqCS=-jO+fK1UrTXA7KC08Jnec-sY__w -e^Tb3JQp< -|(NldUR8Pm7QU;vR_Bl|H`T)w0|2&k_*mn_2`k2<3`#H8Igm*5Ml+kT{ -1JW!IQzbDUirbJv@L!Oh6?3w4`H87z1*mL~w?9Y$FSkk*iW;1dB5FQ#Rb$de%(_==x3ydJfl1sm#)ocq -WI};mn>Sn1hkBFImvFx9*Jpig3DT}0t_RHkXKPukhTf<~**DokUh2VM_by%I4(2?;KDe9U7_kS0e-=i -~xcy5@JwboyMwnpq3^|KH{bNj=AlH**Hj$i*ga{@$GaYis)!~H}M -v-QPz#4^`p;{OJe)xRii%A6OnZd`A#;H!ul@x+pFl#1(Rwy>IXbQK{lZ*xFum})(86}`3*bAX1^siTflSuEq#m(==*-~HS$qLh8xws)K -VJu_g>FV@TIswjr8BMH5dAA88dhItV1jy-xCZA;KrVcVwFZi!-Giol8<4NRhnay~fr1KLSi6YD=lm)q -pq(AIet$^&+rjWMwgxjs2wlM=bG0mZtJgPb{+)}%DgFc4Say+hA-iVjsegCb=9?Ot?Ea?q`kGVQkJVn -|V{$FE;b+{So}QK#CXUP15Q6?#6+ja$xEruloiT*N*Y<;<4(RtV?K@z6{%UTeZG!nvk|y(6{%y1U;GNMNJ9%AvIIN+`Rk0U){vUF4q;diwMjp;AP`HG@h#hi?~wVHAg_6{xJHM3{lJu#6^a~JBXGenDW -&7$GWq=Si~+ivS*FX{(%O{x}+FT^J)ouK}eKCM&p_aZNsq7Yn@--D!>GWxXvFW127(c-p^Nj1oK{gZ1 -)lWu(6QE&cG-vIs`k52yUt;Jy_mfpVbq~aeuFiMyX2rj%_w1DHTIz0D4gD%$X6`9A5GxViQlpn!qZ)W -_ntgmo^j(feq;!DFVyK6T+xNs!YU%q8Gs*4y?x&})*?U44cZNZh9&z<+{ha&syoPu`V+VS5}{J%7cr! -YA39DiPt352mUm+>$MkNA~9E3do8bHW6%MGC1{I8Mh_wdYEzO&@RA=JrkLU%%akE)$MRND9=05X;A+h -CJwlfcRxUAti4!IWr%1&-bV+-Yb5lPP4~rVuW+2g>54NKgF|JEv}6Kp+QUn%|7fGkD0bOATmK~0+5lK -|Etf&%oVY+)kf(tmqBIA{=`KSYwafjD2neB-=M(8`v&hOO!B#9Id`YFyHEM^SU^Ja|3oeOvY@LvuK~V -|p)iq4WeTD(o)yTG7qa6IWAhL-aj?q3PrHurjjh -)=wW&h_?g8RdVmm?f3`Mn=ke|+gFg@8U7S4N~e+BXc6rAvjD6knn9%6~dPoDZh)e~ngtxVPg!H|woga -KUTQ*IT=N?Sq0fmv4Y*2FIr^bsREBt^x0y!J!~{OWR#wyK450TiIVGN90ezh30CVv;>678u!7-R+H)e -K5dl%2OTvtlHjn#Ow9O0Yryx@}ezt{!_e$Bcl`Jk7RDVE$k*aFWE~6L-m-BKV$V~tk$?L8Gwsryv!R4 -H_E73OwYn`EL7ZJ9t3B|)V@Dy9DxP_6-;Z^lsy=#+gsa*tWcq{j$GC_)o|pARfukvT#NcPfXqvwzi{s -I;aGAAlFcbarXaI!=Okrez+()$h6AmOGdNFcvA#SMc;<|hbW6AZK+#X(l+pH}tup@S$=>7TL8LR)Fx* -tlhIepG?a_+!fGr&3-+}N(;mTxle1_hTrA7{+gqx^}f4+-AoGhN!@ea_VusN+akF8uTmUT79{Gf@Q48pAYzfa#4yUDVkvh*)mUJ -r~7oWt=7xDCPo)ya|afe-z_3=cj*|G>d;xRW81ti+dgx!-(S&KK@veEpI9N>u_oE>LyA -(KRauDk)@B1`l!w6=Y7`RjI&|?w9jgtK$H7sonOenXw1VtK7q2=P@B|xfMutBQvBTnHeRAEO&|-5aFi -VYFB1-P=lZ{LeLM8=u2pgLTsO&5Zm*1E=gM|McCJfq1Xxv!`qLV-$c4z-)UhR{=8GLa#ZE;2WkL|EHi -Vmi9fI8vG(p-$m#`SvSTMPxh?&>xG-Ly5>_ZS1sN(*qC-KrSKL& -~jwD0%>WFxqZ%yAtvm6rihZBYDi}(w5VwbjX;1t)MN!BDF{B>YC81L=0;=)Dmx-Qh*(g0?vYhfnML}B -!---{o$_CsLT=zWZs(HDwO@c{#Y(7E)J8eb4VY1}*`&+>J^ -$-&|Z=Sz|~^!^k00U34zzr#-P(6&f2befCTA0y8ZR_=)JJy|R>65fSV3YFf^Rcw;!lI|{Br#`!=}ZjW -!m<%a_VFc`V#_cBznHfmnHYO3ik9(_(vor5~oubyQivE?SPOhzO%_yoQOR*#bjc-)UXWWHPBtWJG`nk*(C} -{%c`P7X@LQzx79qkRwKJnq)tC4E%dcF^*1S%G=2hh&0Jj5GK`}*q_@UGwYd;1R^ON$^J>GJRP!3}uF* -*y6bED5ar+?JBjn5d;0q&t25&*YG{)bk!Gva44O!Kni^{HXa;xJl{))^+9OrOr%KBh@UX-;sb$u{j9| -+e^W#5_LfigfGssO6qL*I?sJ`Sy&DftB65}<*De~7@5^R%k#qFGlI&#=n8!Xu>n^iw>RW=h7Lc;N=^N -o2I_8Truqc`f|?OpK3iDqt{j -gHj!!u|RQ|onYM);?G!{=Uey(Vly@LJxEfo>NiCTk|``Q30Cm!KhWw2zNifs+HKrH47QC(Av-C(+wAzNxP;dxN*~APOl}3MU7aJMFQr?Pk!KUdg95&=# -44%^M4FG`+@VPB-bNS&lwUlL -6bWQD9Q8Uo#NPJjp7vC@Y{7n(bD6qFOe}p%6;b^*VerjwpMI!alr#o+6^${tfJxeCs;O{A$6iXA4lYu -qwID`*t^nM{T2{dkTk|eBGE+K*fVIw7$*lhKBokfgUIv7=Wut&nS+K#0S2dE&)5j;$)|fyATHAZOycX -;du|u^Rg^SBp5p3L-yR(kKPKxmj=f4NIQwoN4A_=ufTz$P#WD}pq2()q33B%@jM+mA-L)n7T59h2&{ -U9wQ@p5QM!2DMLc+d=fbgGbl!r`bQBA}DR_b(x%PO7aIH^BdznjHLA18~=?-wB3kX<|Ls6kDlNeNsbw -KS#SI56+2E%z3F%&m3wpqCD!-TCK%ZvkjJfRn?A9*@sSszw`?<%56Ci_l+fhjh5&rzRs-i-gEg#9VJ< -Q7AQW>15D?y#bYBo7gaSc)wb!4@#{5W$ZNz!B0SjT#a2 -_t!aL9`TIo(RI8A@FcQ6Z_iNdV#aWiS=AHY$xTTSS!07IW@V^*EM^5CC5b(bZv^K*rG@tM;X_*hr*A? -^f0j>|2#J%VLr0K(eM{`ObjEW9y#TYdPs%vzSBIIUKE%hPPq)H-Ub>Y1rQAe*Bo@7 -4hu|Tkg_YFn8gyc@T`1StZYV>JbN9R*mR^M`R1E%wB11B?%%)~XW^(d4A%6#9-7j@;z@onPRimRgwef -{DSH}6M#q-)RK4~O057y;s(f@8MggBaku*RcpRjsCquRB^jPi=0Db<;HigB62RCQr6<~HL>SlE!O*Qs -d^3z=3d_L^G#u`n&#tWrSLJtIzinR-_$mbbZ-t7tn= --zQfVy6IWPU3ozZL_N3%`uhdL9qqdW6|ds{;x5S7T+N!aG76W@c&{ZN)tqFsPx>$WnpcaX!nM7E}`V} -m3V2KB#f)>pO|=tZM7a@Bpn-Yr;rQBr!Pf5#K>r?!Ug>$ABSZ@(F+~q$@;2ykN3@DL-x$dZ&B>r9-pE -`;;dygveZ)#dyiLFZ(5Zfi+}f?l&ieHdilz|Fi(0Ws;YZsp7fqtJ5cq~K7-e!3D)Vj?4usq2f62DGWL -QQqn}{Q*%$6v&ypMU);#L{jpKY)sxAAd_ct2|NWUs)y}#$pxj#1Zq^IWsX5l5G%`YWI`7=+=BYau=V9 -XPK<#o$E>3vsR1rW`X9;)lzWBk?oAz!cAb4Q-a1M|X%q#pKIGofC=&)yFkV&-G0-g8sz4G3Gr%7^953 -sM(z>*>>a`xqF0%J_kyTJ9I%LZ -ME8(>_I^QCO0b0PS#Or>MZ{mdRi$Jd_s)Cl7n-{GYU$#xK=1ztP)h>@6aWAK2ml;P_EsMici}Ao007$ -o000&M003}la4%nWWo~3|axZpeZe(wAE_8TwJy1b%!ypX2^9p8quEyZR$%RwSeM5&}#iqfC0&e5qS2% -5T(n_mcNf+y8yilx}f-xN^4N6J*BH!#CWmz-IN^(u3t(?s$gLfDUN*`s~Ql<}d6)G)3-Y7G}7Z8pDWx -LoWcz{8SzSQ8a4fek0_}}DpC -c2lWRwpuku2?E#4SnND4u`q=o99}mdpN@BS)FYju^MxPKcXL_Z3c%OtvT=seUsJ$s6k}!W=7lxy))7_ -Ef}9}ie>g<-4gHlj*rS;^Ax#zfD<<}77Aauzol)fM8UeIN)(tgoc9BYf3&U|IA;OteBF#WgJ#S2^LE8 -P`;AwOjz;z>?aj^p2T)4`1QY-O00;mZO7>O(bDXyj0RRBe0RR9b0001RX>c!Jc4cm4Z*nhVVPj}zV{d -MBa&K%eUtei%X>?y-E^v8mk3nk!F%X6C^DBn+q6dR3^db~0+ET%mLVM^fgzOlD*~~HFe@McbgJ|UU*iit<$AY7yEvUbQ`d^++uVc_U6nwr{NM6K#dKx=c(wrGuy -SlsN|SyUSzdWW*}Zgg^QY%gD9ZDcNRd4*HUZrd;ryz47i`62zHbK)Mcbysb=UlhDpd1&8&p&GR2QpDy_%kniDGY7 -HHC{mWsiIatbVT~>iYJfTJr8sN(Z&2k<3JjcJP+S{cxwE73GurmpELvUc<2Yls=;R -W@I_oS)~~NXW#YWVn?W57E=a;#GnRl>3=&E0&$$oeiUKaIq@g@q?B6YC{2B>b1_f;08mQ<1QY-O00;mZO7>Qh=}f -=>1pol46951s0001RX>c!Jc4cm4Z*nhVVPj}zV{dMBa&K%eVPs)&bY*fbaCx;@-EZ4A5P$byLD(237p -~y8+e-jHWQqF$v_a6g=-vccI>$t0Q6s51?y&!Tccesp(Mk6(0YN14c)Yvc?~X^$*xl{*pReDG9Ij+}Q -sRDZHt=LF*xTis-`QG;lzrw(%VIK{%$)FNkwT&2^`{I9BX$DR1-mSHx`)?qi#PCzG9$2UdzQP9CAiq>2^%Re?4-<{2*yD9vj5kDJZyr5mf4#i=Zel6elQ5xOEHuKe(V-LAi -Wxx885Y?80*>rY?TSDWN+bGi9;x4vtX(2{2TwMdQCQBUqLEJwx5vb#l|Z+ZGa5&Q0@CX-2;bFF*Z*S1 -C-yXO}ZhL0#7c`h<;L~)-S!0ctF*^2!=z5TYCF4*+;a&z^OUar@l*PHe9pNU -S?hmvv@!BMTUeC1CiyUTsv>o$-N6to?(98k9goe}EcH?4eRZ8h{&EnYRSgn5B{B9IG>RaSnC|O$+UGI`!{&sD|- -IMa;e-7zWX)2QWo;QXMcuWWkKYU4al3#w&m)1O{tEVV5~*IqGz8PL(btRw-I|1XciKq{;~uanLO9$vH -&B`1|#^RpXMIA_KknMGqIFPW=IIK$dvhS3|&KFJZTd>i_eeCU{DrbQLxRrKI|qjR>=zSd%iX)L4xIQ> -nrkxvfOr%0_*9v=a+Pr8RMtit14(J?NP+oJb!S5`bBDTF7{oVLI~69tb;zWmm}(iE8>bH_@*}Lb}PhfF32UaCnpDZIa~B25M%B3*474Pw===51yLWA>is8qQ_iu%33={ReGov#thx -dtwLvfTvKKibV2C(~!@rxbS*i7(2hn=tPM969%n1|Zu#5To*DZN>`);~_WThDbc36)^@iWKrQC8Pl@(I$0K5n&u~9t2uc%@RP& -gZr6g*cL%@ZM9i!hB%SBE{V4r>7JO%)<$pYTN>VHF0NasyW$IU0wNM+^x5fQlNy_WZy|*nNer2lW6ld -S0&3PH!?0j7FLq!h=j7Ne!^A5gS^8CKKh)7ixMs39({SdB>_P!W^laQIB-QnA%WaPw#du(O -DYX`qx^0n>2x*i`1X2(tPM0eq0R_$tTQY4Ev8^l-@W`f_EwDGs--pD{&(okrk1Z>vt4(RGc@wf-q`e}n`9k3o~S4_|WT^ -%5M2Hs>xr+VNXcP>ZUb&GIfHFw*%5VV}IU=zu0zS -gYV}-4=H#F;s4%+p6kB@UBV16V9muy@9kObf0Tf3=hunzxPP*74E~tm`Ym0?@}UofqkEO}NW;Nh0ssL21pojc0001RX>c!Jc4cm4Z*nhVVPj}zV{dMBa&K%eV_{=xWi -D`eom5S4+b|5h`&SUnB?c0sE3iv|9{M#PKu{D*4!b3aO~+bf$&lnMUeW(P(uxzO9g4O(*pNv+K0cBj! -2Id{*Z7B2cxS4{%1z-Hxc3vdy8QMX9;{4ZCag0$8bpKOJd-JEhvR96+RI#`oxn{c(gMd<$z>E>TwFwp -0wLv3VAj7e^>Fhvh1^(>Wu>s>K)nebE&=w=Fc-D*ARP$sg+-A?PUHwuk4r3#Z6K4WmqrWQByE!1n)2Y -vXasGnhnY#YQ52<0I0v`F;T>lg1|IPwihvGfgAMwjLzRzUiwzmzaIBCH;nDbM#}%^&YmFVor(o9)9>G -qi8b^TpN?LT+k4EEX5i?Zi@#~CIWn2jFMOGxjQH*=iFNkrJrLV_wDYf*=<$*$bVaZ=t!{$Vh%5dF^O( -f1tnec*4$9SN&KfioHcl5Q@Cyaz0TXkCkU)27O^u>wt>H8Voq^{_N!)F4V1i+V%wdOr|nX@wqaY}UVa -L%DJ6_*apyHwsj2uW&rzpM!_h?1C)RfQ -DMU&IyFq3@RKSbiXL2yX5Dft((Wk))G>l=~>DcLZWrBuSIrl*N3Osz6lBPb&>;?mWj8rVreRcy|x=qr -7g!C>tTBHur|wVO9MJ%lbHpPyknjs;Lta{6ocJCgi2@I4y;08mQ<1QY-O00;mZO7>Q!HL1E!0RR9B0{ -{Rb0001RX>c!Jc4cm4Z*nhVVPj}zV{dMBa&K%eV{dJ6VRSBVd7Y9?Pr^VDhVT6qlW?X%j299QMlp~OL -y&{FX4wvQq}^R-rwISv0g6;3M(ttKosVbUdD{*=PVb(&_f+Do4_l_^Lgu)U0rYzpS1@FK(IzTO!((Q8;-AP)h>@6 -aWAK2ml*O_EujONHORU001CB001Tc003}la4%nWWo~3|axY_HV`yb#Z*FvQZ)`7PZ*FvQZ)|L3axQRr -y<2T_+c=W`u3v$pD`jd%q7^5bo%5AvE^(YH*JWl>v1fOyd>$1=LK4Rm$t6JB+O7TX*WCa}fNxfkt5wx -ZBob%<{rYq_e8jFlz5m<%Lz41~yx5n?W-D*_lRRUmiV}6$0e2c=AXK`4X-!j?p$-2yUjPJrE4Jw(Wg6Wq9Y@NrUGJc>Z-2S`xsOVIBX~;^mCJTKoVbCox|uUM{OL@!`Me*@V -Fd1ojCZ3l=imUL|1nOagmKzTr=71FXwfl7W5{!1CmYy<_>Beg1I4Uj63}Z-NO?@dYqy2OJD5xkXLc&t -NsVoiPwk2|w0lxY>cSO<`Z|Hq0*Q-%XiUg@7@zm0%ajXiH-P_1ss3OAd0*n6Dn*zPy|1dAF~cudkc0Z -+ef0!;LtshIX2pP&sETcT;f*uh$y-!0`tMqxJ&Hfa3t2JF -PoXB_z7E6zMCaYZl3G0_Ttl1ijvVOqf8)MKya%qRFlrQarAOZU)knm3ziy1hrSE#cK{9moTNbJ8!YC8 -`46*nxd$~4Q%ogbxQ#u}~GBK!qjDVs%w{_XQelw(wKFmX_K5w1DA=X>&HIDoclRPp~qt?>gw0L@^ElG -c-kUb9`&>@WcVT|Py;kV&5T-mh7@XW>fZX(jOhS74?k>^)8MM;-@wVp#cw@YoAF{iNZ&TJKzc32=ffn -|cQ@r2bxyYVRHo?QRvHz*O(VYX%>&3$lqAjAft6@QJO!iN-9`VhHh2=slD)uGoqL>$x=_{UW%3?SbNC -1C|zma&h=CqSVA|zJ~a{9VM3Kb7iJ5NcqQJVlYfd(5>f($ui6YsNwFJp*fi1JXx#N<7Wo%Dk0}3e*mpV? -DEX$qFSX%^xU8_c{qSnnLq6hUs=pSI3x1=SEJxjwAAVaI;6iL%JDto$XsipH*;T7ESg``FFkKMb*u(< -ib`p%gzgwttCbefN3(h$0FnaXnKyMkl6F=0OhkoA;kO3TX<$Q1R`E&8sg;rIdz6NJ3Lo -YZx?rFNtduJ_uW0neK8|v0%T$!(YDpw`s?>aS9AjDlmb;J&Og8_VRr0a<5_+y^mljRr4bkEt(@vI@<%#R|oP#?-LOB$SEL%(;By0g5JWWJO ->syr!y{2O@z*o~q)gRm6Z__7J<%F(-e=pN{^CaN~TwxO`5>jSaXz5vX{<6~FpZDu^>~YJ{hS9>KFhlnRxvR;1W6P{XVK&mF$&g%yu`o6?vzR+;mhR+@NUN9Wk71dCbTz`#Ja4w6a;-Ip -fX6faHbEo+*!3{wyCPlMh7Y`Pa|MS?E(2;XOF8G6nGZZkb~|_qqDuDx`>UPT#d&rtS;m0`WZ)8YI~p_b@QBCv-&^Xke1*%%FGpUegucY0(|fK2kt`pFJReqPqe&zs=2mHyadFVX -~gf;xeGh9j0-IXkpc6%$u`cv$dIHuW`91d9ySQnjOi@Q4EqJK%tor~oSa31`ORO#{b#GU+2j165d=qB -k2U5V}gW6C11;b^@rU0v&E;Pz4$>dfoYcV&G>?RTuC~SXqM2Va`QbI(4T_hg}TpvR8L;1C8o7X-ZECS -h1)MU>5(-+RRi?M~~7cdJ2rxFFF~Ahld#-rDXe8kS#_>;sTJzd9%ieTL=QRDB}-c3*cWWVfmGY8nRIr -Ajt_q1mJPd8R+`wPgS|G1ZfsLgWWsZ^15Kr@~LXEK9Aa6u}(dPmORK6LDGVNKH2dA|7R7kXxHa;LxEm -zcD~&+@U={Cl|1jPBp|BF67(3OG!TJ!?L(Z##pXnK091JwY8u07s=ft|7AF8wPY{GOWF3HX^XvOx&)5 -w(IV#A4lmQAg1;$a19tZ1jzAye<7f@vuR49qd{Uvl<|v)S75bHdz*MNpg%4z_c9VL78Buh1&`R -rCKZ*MM;i<)2Y#V0UiM%!1Y^zbgAW$yHJQKRe2UC2pGcD)WZkMRbN^|R0x+|oikn>$0<29N1%a;0C&zfH&3UinHh-A$GdtE -JfiMu}!TipioB0yw#8$+*zTL -v9dGt>QlF>>5Rg@~p|!-#M56iaLzaPz)J3ak9t#!%XUYTy}yArnO|c0|}Pv_A*33?l~YZW)HfcF&u3r -)vqE+mdic4LTFiDPt+wjuo^1EeFLteBDVKk4F12G+k#lpv#>LF$22%)?8Yv`w^%f&0V#6AZ1RJjL|hH -GXkQqn_~5@a>PDhgf~~^&e(g3QYx`HUA)1{tWLrZ2I9L-PU%$M$)@U$iUt5sAipicY*SZ@n%w8$do?4 -saN3TUaHJYwB4_`^kwDr-h}ViBPGm1?!qjYREjk-mZp2KKyR_Y>qPToMtkA;U(1K21)qZr!XOnXeen| -bHO`)d{(Y0Ppc+siH9zS4W&og~5FC@E|xy4j$KZFch?tr=GA9=RHdoNgFuoGkFH6k6=zysHrp{imPN@ -b4C)wkL~(>^R>){f}X9w;7;1qT3T1At0^ADL0nN@3bK=ai)aoirsEZxIvsNr7clWh3SWn{@IUSIcNmR -%YqEq&q;7K5a^;?Uih2Qde*-DtAF5Vt{YbpLQmjV(d79Df^Fe20wh)o40~wTg9UYTa{nbr)#E;PjfeH -8O68tA%81kRZ>#I)OUtW?H}DIwkO?=q?1h}m`25MJ6}4v-iCNJ6?KJD0~khEe_~Y-vC4=`dJZR0sM^w -}=Dtv0qG`><`!OR)L>)0&4N67(csjNw3ia#P?d^;9En5?%8uAdDAIp?X9hsWkjZ{_Aic-ikte^L-kDr -5T$<{{4jp57gue}al+Wnum>@OkgS#u4LcpA@Dw -XO!YySqork&|caySB8u^6HIaSbN2d+w19R7AV3 -f1os~*FC5_+H-*CYNTU_$I_?+(b>z_>^t_uo7am)E7NvsJ=DKbkl0jA5Mcjv@h=b#Rw#rQsOFwSe>zq -_y3pu6uIR3PPaBHlZY99ar@n61>qL~dv1&xuktEFaJ)KQ~ZEU>GOf^__TbT^hwcomV^B!TFQ60CqZUc -g^>d^M{tGnlKW1HuV^Qpev<9Gl8PHsmYO9pi(!XiUztw61I85YbuMm&fDpxY`eTw$A(B-iG0rx2mq7X -Mzbt~R5A44y*P9lg58^kdhvJb%gP$MzkgVX5Qg2s)0wXNJVAwR;-4ZND*C?eEi>UQaYqK){btu7Q_Y; -dY)9XJn*7Lq%J36V|2&ea#FW%Hm-yC=?ODdco=p2-xOx_ -+6RZ4Hp9Q7C8t=_PHsmQaIan2p9Alq+7^mhmpY8om4>B|SJY#D388tUGV9ez -3Gi-MF88Z;qP;EB -TYn0C%ooex#STy6uEYu5s`N5DV%s3A9AIs;OVDsUlw71ZL(7rQA``% -QftH|dgX+U<%xHsX@F>BP0WWi$00;8FxD3~Fj?d;eY -L$q2@p^7`(dMUb?BuYaYSG8eASGO-zFZ-yqR55H$Uq6=mPV59?818+0a+KlRJBUomk-#xN(Moo+8k7F -MHr^)VwmSu4vxb0@J|`&o;B#Ls4v{m$~*kqZ=8nLdQ!Yx7imCk)7TeyfzrBsWJA@bD6Jr4w5q4ws@0$ -tntD^9r0P1f7|X65$Kl`4*hAMnVm^Uy?1)-ZPbA+7zc-J%H-Euss?6;J4OEh+ZueQal#rb+78FU0tI( -Wa4@uZabdVdmkbaJ2Z2E2gRKGd|tG5>E{&7QVz~uh`P)h>@6aWAK2ml*O_Erdizg4V8a$#_AWpXZXdA(OnZ{s!)z57=X&LKAHDCq*d1n?ovC -cpy0cCiVt1-gYoOCyVGiWEpHj{kk%kg_d*v_MgyK5W+3@bS&en-5)x=Pw_Bzj{=f?rpnqYFURDdJnha -!_CjXhzF+%@g$wMW^^&SNXAd9Ami!kQ%NSMN|C!2cdaaHy84jaj7F8SjR@4V6;Oq0TI+)NEE_6ch`&g -;;rmAYlctgFXf!Ic^j_RctrxObvB5Vd+m_tKE`CrErne)3&v-nJf1evzighv((%H_GLW-&t$y}^!Rn% -gwU=@f2y^-65TA8JABuk-8utG+tMORhiW^iD+=2v-$7Rs0@moS_I-SQ -8KyFKm@?5_&d@Pw#*rLvU&V3=i5QT4&!CE&v^12)IE`Zt~xUn`43aVp`@M)+Emc8yr5`8an@EwXtZSqxVlhcp!?qIQe@d!Eo-3n5o=-gKYK -AhH?ey6f4uAMzmgkV9n4hW0$=EG^8Y5(+DbW1Ibu>LbivpVi{`luzG0b=O4#_Pku$*@M4DKHAx`^U>l -gmyzMX`34(kNE)AtYEMS_0SXIR>b2ZJp%jq4UpGh#Ykx-}Dmu?&v2#LNr`}|sAqcqr -aq}l9&aPRocEt!?8|`-(psPEII8Lf~i8KS4yRG4abI?$1EU1dol4rrtyYgTdD;m|r;A#o?xOomxl&Lt -e1fiiWIv4NZ2z!=r@6%RX1uBIvazl6ap{k`%QUwzZ&)#TY&YssHwEp(`y0nGQT69foGV7MtAFk0sfDR ->I(|arykE4h_c~t3#O!v>xTr%iYPo`o%7dMAyiQhxhhScv*pF&if4p7XZAN0F$ -f#o@{ugQzBolZOpZHGQkgw&w9Mc)U&?2fS$%vzvhnLt~ZN5i}O`-kV}{OiNr$J09xe>oD@Br%#Ei67;FCdsWbwm&Y}sOlM-S|JetVR -?wI7572zhp}(Ozz=}1|FJGmcExJL`xlmz#;3*^^K+lF&*#XY&Ea2^29`!`i`8)6Y;R4?x1WH#J6IhhC -&jK|GT*qu#1%9yrvo6gW*Fx=CNE|aTiG%b&lCb%ANacf{Z-mSicO)1t)2ziPc43YG(s_icCR911w8;sN<%Ncg>Qj6JkS3(@$Th&o3ze2%e?p7pmip7 -6|MNcI?-jBMbLKnfT(K$42Yoo2!*DumZftefU83L`x#3L=$=5M$yk{>iFL9CRl_*0BWm@Jf-ZGA1Vz{ -}JV?Cs7nF(33pw@Kx21RS8v)R674BR|d9{l^-VI7z--|3m|d@u>8w`V{O!pEO}3^3wg3V2yjei+$*3h -KcAIJEfAli)*CLpsRa{k!{a#>cVhoYrcweaZ4k`SE>?Tc`C&*!N$b9z_g1-s?CSDWzdK{|WPEu`|J -=6`63R7cwdU{7kE4_GIUGXJCVglp&|X0MA84P>+UK+O1^jtF4_d8OLQ|l(1(P%)siv}H9rUf&!w({-- -B}CpXP(iS{S&edij#tq;8L+6{P;+VXh}(80%_;kS#1#Lc<4f7a+Tpwd#B5S(@wYB -MW-<*O2HpQ(NkJVrZkH?V(~AHjn^t;47(ySXZck}QJ(fOkSYW+=i-`Q5Crx8=PC~ZH-xhU#<#cL9;%e -hhmxXW6-%}-@AZ-*&&Yi3ge3o#N@ut-RM@KD&T*WN4opEI#SKen0$KIIMJ -e%#C*gw_Ij&xf$0Ha(@OjI_g+|tbR~zul!Y>(S-Qpyh;F8_BC4V|fyKHaoHL}i54q4gUT^@029erv -HOY0-Payi^ZUY=C3ch|EuL{@11B+E@hK4(E*M=LYSh{OFYfQkKgg)VFbZ5t?+c0wL)_shs5^*W{^4sL -HZOPJyjgd)&7EJS*?Ew6Ejz0oNaWH$(>)jR(4s!3R?j|2|`i`vM8nQc$&f>uLwAm5ORf5b{bely+a@S -H7jIr~raVeV7);29MHVtckFRqpi>wd{NECUxau;{V;9#l;*T|=)0rn5WzYhYdn-jf1ct~#5atKV -sHPqH#Wp&ZWDJd&7Ov{jOl77h{|L-Sjw=$pj+njE|sl^AN9JKj7ELD?3>HfTweEK --@Mx&jr%Y)@1~;zyo^WYf{zEIv9-SYiGqBvXPXaU-Glu1M)ziQliF41#zw*0HH&e}8f7SXyhHx7X^}q -@#^zmt=;g)M*^^-ZRQ^_EyicDxR(`-uU1hGWc1Jwx+R5AQNn-mv)!7xgO-nSfBOkk=lC@1Uy)Bhw)oI -7H5VM6bb7{JBAD*28o~xV^*z7x-5OFCbZb2h*W#*WX+s>$OhYxJ%%|I_FHle{iG#YtrtWsoqnNy`A&e -H0vSx3oOUL6r(2&OFX$k2oR*P~IlfxrVUem~sK``OuV1k4>L@4I|T!7OY_%hW>WkHgg&IlRj3TQ6zdC -xvUPj$ItXUh98QO9KQH0000802@m7Rvw9Gffxw@0Kppo03`qb0B~t=FJE?LZe(wAFJob2Xk}w>Zgg^Q -Y%gE?lxl<|GrK4T@P{;yHo!I;><*FwgMmRy^q3i$Qbo#+cai_ -zb4g03BztC4v^9d*Baw%f_i^syjQ#rY%|9>R$x^(o>U|^c*XBliHP`Ir^A|s`w~fr%PrT8Unw`zg+~S -{PE|eA*?+c-fTuISfvsX3G*W%)3_Ix&zo4RTYTXHRayz2gvRrl))f%)IRm2x?ot(t1XYFTHCtx!ePF# -mR=?*aQTd7m}nU#-waXWBGvZrVoZZqI9+`X16LEsflYH!?T=fGn>zH8*e@Ev3pQuf@{7n#Oz-oOYt4QYjpU{LO*FB4=Z_*Wigr^2Ta>Gmc|FpPP7#D -V|4=F6w>Syi+r=8^iALkdBWjMjWtm?Fc{&8SvcODgM%V{v`kb-PYoQqLmZ)>XYFtAUOsbUa#CcgVdsV -X*y)YU3EJiTA)D>&%f*Ubd%68JMfv?1lt>Ecw%~er~hM9^j#~>Qs#H3+7H=1z`psKxJ(~}+kQeumJBu -qBgXGNbMgrgO)w`N``gGiabgM1@V;_FLd3()n)=(k-ai|0eBdLUJ3 -fQfMXPa|PvX$lDdpTDI7l6|vDfTk^O3H$koT~sE3TTxi*%=hYRAm?(Hf6ZGVmsJsf(3v* -qkD3xa2C$D&YwYE!Rn@3mSV%!f;6k0KwWH)ky=Hr1HlVzZCJ?F3j0(pU@Ef{kRX)JMvDEl6BDd8-&#{ -@VaU`Sl#%2h9U2bVq-r_~2W%SB83f} -L9TXXox?*j*Fqt1n*>(MLsn*0c_=qsi3-)?HNcWN^Y$sB~HHdTY5)1u}LR8;Pd;Q81FWI-`MSwWw;XV -Lf}2{<+0CJ9@C-yc%8MQpP%V`S2ZjgFHEYLXri1zuuWlB9=mPmZmHZMCdaxY$2Bwi+>{?c#&zVPxao3 -4xF<%}^kEa%}C88^S%qH^aT(W`|#aQ@zGUn+aLfHf+nAJ@XnJc+V~LfOpXyxzV?foc)W?CLP%ixf;u) -D1t;VUf!RP>AI9Aj?!poPO`sSOQ#L-t|yA}E9ZeF+@r+mwm#x3?)_rR%T`zcZI0_*>|PiTk=k4|1%N& -V7>Ep_z-i(-apG81_hNd^z$CYBEtw|Vb+B?*Z$P2hmrAPmb{XaQ{3=R2`p8^rC)kv=Fv(IXE64n%!TE -PSolp@_R=k)L0dAu$EGSEks{mAgYbu;_+2k!)6>36i-V&37M(-sh2dY4NbIQl^2U)R5hEq%{&^8VQSR^mG|hhG&*TQ4S?SArEonJrFAg>nUvp6#_K9rrw -rQ$n0s{bRkmpf&k$><9;YtdZh7q2`MUljsI3Dl{~x-Z)Zr0T-*3B7U-=;b+Wa34ls0dA-Ww;>QMY(OlwzkiD|0B*R6fs`ciso)5t^se -y=a1vG6G50t-)NQ@Sb}(5*mbMiDcOl7Et;!9(h7>77Icuxm5!jbjL;J9_v4tw3Zlrc)kiQ?r?#UP<2B -;g#@?z2P_m~WF>gS3_=pc%sPl&hGev)(8#+r89()=Iw@mU01jov&7RES#BUaSnxe;7b*(esfsvdPw}& -G7E~~3Lc2#o_hAvb1K3dQCHUpEC_3F?4vFy2Pl1PUogk)E -Ox`5WCYi0%BFo+%wF}sDXqrTGBMXPC0$>KKF?tlV4v|YqT7B+yI9<{gdQRV8AybVMap^WIgKx?Ep?D1 -uoai3tz@QD)W?N`(Aieg=7>!pa%83u!N$sdQ6ZHGZO#0cmgq=Cr6Ku%Y)aKHw@0;xCn7NQTv -@FM1+vX#p?CF&F^z!6U$S@I1M>+9$T1|tT@w06*ZSA|!&Z9?8<~)y!>c=tT`;!QdEuVt+(~tl7!nUId -CjvI9vF+1}@KcfL&Ho26cKJk%4XE->Ye$xSvg;}d+)`tA>c+}6Pu5yeNsPsIP)WC>k}<#%Ur}$Pqg~S -+vvPgf_R`k1lAz4G)gzXqiRqz*(N%!fm7;rU*KnC#BMq{L?J}`td({Cy&8b)aHBRk@EeBEsD&LK#`~N -R~{Wnlc0|XQR000O88%p+8oDoK1G64Vp1_J;9BLDyZaA|NaUv_0~WN&gWV_{=xWn*t{baHQOFL!cbaB -yXEE^v8mkwI(1KoEuR`zsc6QP60GUIICYwos5#sE6KUyP24Q&2E^TK-*tmO`_REbDDkco1LAPNPd3oz -80@&VC$-1!c)Nq_~AsZS5MFKg;2}ABJZq-MAX82)L=a<-ZHR^IRYheQz>1*VjZu9$jOy5R+*|8NMczz -V!6HeTW6V^*|b&%>Wg#5cBr{Qg%BC!gSM%V=g))p^QLMV(|2bfI3I!4$)^XZJJkcBGWZ7+pas-~o>7P -G?Gyua)JAz9SlupndNWad8#tE0h0CtqED^mg(|)VzOk&>2=;ei$U_7+a{j78E@a*Vel0oCRrA_Vjn)& -e9#TC>&5G2=^z1?SctAfkNVUC5-I|d=%DJ?v^{r|XhwdLugV6Kwoax%ZJ{21{grhy2!Cfl&$A5cpJ1Q -Y-O00;mZO7>Qb{)fJx0002;0000h0001RX>c!Jc4cm4Z*nhVVPj}zV{dMBa&K%eV_{=xWpgiIUukY>b -YEXCaCvQwO$&lR6h-&*D<0!k!-O_Mi#{Q65!oV$7zTaj19gVyEb`yiWEer)bMLt~fc&_oGc%*g2{QIfa$gMU7E1i-oAzv@ok)ldA9(sI`V2yiYs`AxEo -OJ6xM`nD9qrEUEuBPacgOA(YZhqZBORDkoQlApef~;H%4uac&{D_|f%ce4o)AR8A+?sgZ4gFs6oi))z_NGgtt`|zD1DT%U^+!d`~ERpknelr~EggyN0)7SUcq -J~S=?6p`|_7R@#f}NlJ^#^vPMb2)yHcC!TCMTZwR^%WJyuT?xT2Ttn3-+Pmc?Iv!)3eD$Y#XI5tGKCZ -vFcuxnUq>>nMLV4%^Mch3m`EQznP{v$?5h!as!vNFlP_YaLp}zRK>nu?wORdTGch^j?-;l_REur)%(S -S;g4LsQ}$Z5vbfS(=?OgN&{%fIx8N2$-3e><=jqp%dDsO@ZkFzG&Xy1EVK$je3Mg4-Aa6BfssWkpw6K -tr$S+a+oRwQuz^v2o1(=fcp6$4_%qr%n>A_aQFyfjsqZmnI!ZINPg<~Q~PEJ|#wLy!NNtfA|`{mv3w@ -FaomM-tFK0LDD{L9tX%UiY+bn51x^*?wFX}789WPPjnlmIx`H&%=d5`rVfW6lnRIZ*G?0sO@ -6BI9&RYW{qw^18gOR~)Zk<|kf%Y423_})N3&Pxv8jMRLPk+03#jnomPl`!pS&6AvJ7)IVTF8wd0~!ra -h&FU>3reDB!q1j(gj_S;Q9ApAC^RmJ;j+L4_}pUjT@*O;a2+hfcp~n(wK`E4!s#-*TV5}3Zs^?$~QZ@JzKkYF5RD+N~K*EoJ*?J0eDf~3a9~L$7K -Kqh0B@ZGAT?Dg~`%Bfqk{n50z@zs;8k2W^OOk-EkoetS9WTL+7?N)}_^1(1Eo>Y0f44P84P%8pbQ!Bg -4rhG`5#VKzBblq`f5N@7MDluk8ZcYtb0cpnA_C6`V_o70T4xD1lO^ -%tjW1t?b-C{oN)UrenPwfHwmVYSLPAq^Z -2tQr(I!>?#+iFRCW#Kss1mbQrolT-d$65U#gP$tLdeTrZIuaT(iZXKjiFzIPiC3%dklPqdd94hBshAB -GP?)g)<~4Pa%pGS`nV-e8kY4e0I(?`(slp?ohAp-M?sA3jXDekZ)^o8Zt_4Ehq{!r5aE(0^QrIj@dbI -}Xa^AlcLZhKd?}sHSttZeI*St0mEu$ui<;9sg`|<2-B%)jYN4$=y&u}lJj9=VgCWkFr%ADWP29{7yfa -#Cf2?JC{MC_0_2#B|aZ1wSFKl8fvM`SX+aS2KbED?v{^N3wDF3*9DFpSV|NMs`CLxd)4~3Rq>~>AA`}- -SdJ44miRZMrZyIq=)ivxoHe3Z99V-(Jyj=ZL~>~C?1f}Tp-8;Tv7N@6cVXJn9L-+O+`=>^qPu&<4rtni?Obh1p$G`Pr$SaZyIi^^t%#13J`WuS(#tDn@+j>i_9nNGvDAv!p~SR6m__jyq+0E0}k?l3?} -K2fiL7(LNBxVsGetsxp->~rQa|*_Bc3b0A3A&;kZNM^~m4caJu2SZF$X(y0(+~!tIfyr9S$jmh~#`5O -AK8A|I#I&+##QOk0-X`F9Y5HR$Q$nS%OA++fFM9Hl3uC|m@_wI5~ScPe5?L>Tq@!!|h>`sTyOgIPZSy -8lPb{gjS5=y?#*3a`F2MkCs2NR-$&x2}~Kf1Na~uzXd68yIV@*FJlAPm{IcMVO#R6XRjLqd5Bj2LhLh -Da}a1t@vxl8!o>1QRKkg&(4eYfceV>-F@Hm885*>X1EsNdYgAws0R2ZgaxMozJ?ck#y*>o+&|oG5na= -iIHs=`ch~U`8t?z9pB~sdcX9detv>FjPR{=Thc|Y;?(UmYtLx0Fj8c|Sr$}&N?lPEu65^QXXbE3{RdD>0|XQR00 -0O88%p+8Uefd&!2tjO2?PKDE&u=kaA|NaUv_0~WN&gWV_{=xWn*t{baHQOFJob2Xk~LRa%E&`b6;a&V -`ybAaCv=GO^e$w5WVYHOp}WZj@d5s64*n#ZE0aCr5~_2qsrrCs3I9@oX!6Gj%>$vAgNB)%zIC7KD>sX --#%bZC8GsOd7WE9IM6k6d+lU-!(3}&NDF*P^8R2=hC?fGjnLCcPf^DkL`+XJ2k7v%W-RLP#Tt -zw#29kV>Y;xXcX>N;yq)<^o(&Kj+tt`1`s8bOzXFcx*_i3`qZwfcg##Q=>D1BBcTw6(ypXrd6MKG3Nz -`j4zs3BM!43-Nx^FuG$|>^Gt{#gdwk6L+?i)Uy0m^*2oWh*wPaiw<3snI$rsOVaA|NaU -v_0~WN&gWV`Xx5X=Z6JUteuuX>MO%E^v8Gj=>GXFbGBOp2G4emJ$z8sfTXR4I;}SDNX`toEUVn^mqh(vwb8kxL4@-#CG{!^ -g+>l&v-7uU$onjI!`RZ5-!6>wW^F|Y_^n=mbPGRL5ocF67PR7MptxBi|&RyrdfhWVi)?VL*4^T@31QY --O00;maO7>P-?UaibQUU;|K?DFE0001RX>c!Jc4cm4Z*nhVWpZ?BW@#^DVPj=-bS`jZZOpw{v!h6wE& -9%{2s`Jc+jLKfd5~E>FbgD*Kn#MHYs?@(NPs}_>#w6d#E?5Ov#Pu8+_cyk3dh}X5cpc_n>O^nzbRe!N -ZQReUjL_DHDOSlitPH$Y?}TX&we}n*mxcOPZxYU*#CS#3jObIr$=~6qW<3S#s~_=P>RM0hJq=QWMG&;VI1_)1mc@iT(hLTwZ#=I1WPtJu_4e6LTq4WLm(Rl-6Y5+q&7sn!Ke+ -BZbD>3QyY}o(7|$=EsOj-2RI%^8;0D_;U>m6DZXLi4T)~hU=z?ACfLx(CVe{tvYaZwH%Ppp(G3&5&4& -`?&od^ki4b^$!6T!n2n6YK1gK5n_wy*$U0rQQ_E3*>mjcKTfjyU?hxDFg$hF_)0!RI%|j$X -RxC)i+hbNWr#&=k;^sSDD9_gv1cyR9gb}*QH;9~Rr65NZ$64=;nnLSRD6m8dwA>9SsbDcP>30s0gF$0 -X8pGVnkAM$54LM&hHFy~dy#`C_@O~*{mWh -SN!ZLrl%O@qo1ViLl!)94r;e?T0j_=q8+-yS#gh${*mx#RJ@M@P1!?VD(Dp=i=?OMEd``QtW6GO{K6R -+cXe$Mgy?3LY$)C-Rc+Noy!V7Nig2|i6^7g<|&+gR{U(_rUfuW>9sX*Op^6e2vHJcX?f)rr1I3@&4iZ -t;h6sn2w|y+MfEUb?0volA*_qemBV74Aw*x*;b#RIXaRF6rrUW{T849aR;t`Y?)R(lX_(c>$lG?rIq=Maecl$XS225^DP&0m2k=uiC}aZVhX9DR_$cpm~}}AM>f;IlPq713wWehTn0~SEQ} -(z9u0AM)VT|LT%L`s3Hqh92yqrGu*P<+aqwH`%y2o*%o5ZKOanbnO=avcSe&g>vtG~4X=ZgUEAM$($j -k_H5crNImOb#`C1H{4@tTSZ3M=TE+TV-eVo5t;hor}6cjd=+FzUpnnD%^c%+o%s_}yWKrVEl=u`ctWw -i-#{;vsfOx9!kc*W92=yjgieQFs(Za)vWpWqyG1IWqQK?J&ug -HLX+AM0jwB-iJ9Iiqgd^wM^ZE21)NWFfPD0S#ION;B#_vz -bdsZ=bEj+tjxl?_%gBTKacb-ry6Fc)5ig=8dn0MTnU1q=;tlVlGNnGrfvFx?cl2OX^L&Bf&^T{wTVHR -p4wAJkNrf`FF5>zak6h6mXzd9Fd@uKcd{tajU`Omj4P1J=yZfMX?s3l(e_R;nKxF!HMlD03>A`1GVxq -f3GecrT1KYjZT02cIr0yz4yGeDwo9RHDgZ(8%m)Bn44{Z?F~roH{+TR44dlk^|o{-Y}DqVK*{MG*euK -iB^e{pUA?VVG|}&bME>B=Ik(`2WM@eW31-M~`h%7mxbeYx+|XJ=$c!-yvy#0b>RyVUj^{_$%;Dk_A<< -7kpyqhDsK&OaOQREF(54wZL%*U<=<+0GHt}!IywH7`%bW1-${PGSmx#iA|7fFlLz}3KuX0s7}SpAClO -h@iHZb{04lo`0Pub8KEPKz$j4+Q{JgQe_7#EWdO@@`PFXf5kbMfp@M_ -VR(+TRy++PVDnwl?0@S&LiHcNQ4=Wuyz1Wz76(WzZ;6w3F`oKtkGdtjA-=_8(5q1p5zSHqO_5>EG)6IdhxoCVe!6}^Vl@GOyMa$*xkDH -PF!raV?P1-p5&Cs@MXnwm%1jZDXWq5UqS~qV1>1yj)q_>e3ba%T7`BaP>8aEqV-i&&0?HD9^Yy(gC4}1BB(Bj-2w -#Wn9cI!&zj0EaD`F1&@_$>E(b}jOPKD9TSE!iytS35c8`Fbwc0m-o>b|S1CG3p%Dr#3fFa^*bEkXCWS -F)Bzun=k7#Rkm~=XZ9;HE&x8svBD#SE=Uk+huEsmPcjK&y<#FCJZ2P^uXh^ul -s$aq`h`UrT$ihKTSwR9WUcXMonqi&eKwFy2W*xfyj2_YXazHLL_C<>HY-KZsLRS}pK>cO(SYT&a6zJO -+tpN^-^42EJd5;FXg(unkza)zTLt;vd7vCj;&G6`?vprQ%Sh7B7g(IE18UP$Of$nhtSYk=dh;p_4iQ3 -+HGQGb%%7e+OGQRu@6zC5CQvky8;ZS=?xlfD0&lz8j=J2tcr$DGZhqr!O%c0{M$<5M~pT8ytV(HnEA~4IXY7Y&kKI%b+I-P8|NVM4lI -ky!u3GHe=a`^%Y73-Dz|q|0WYkGH^Cl#&T1C|xVreI3R9H -`d-UMgG1F;DQE;2;5of%kF_-ECA!wc>uQZ)`g3)Z53ZJ>fhTo=4ilbSOmSPJsisLZ-mE{&smc~kHo0{ -&#%Pw~PU9|E4Yf&ShCV0M`a@-5NQ!2NlLx7|-?7l7L3-!2cJnE&JD0hlMe+L<8d4Pf7tyZ~+{xVB%mG -VXmVJF?4hqv2oM+D;Q6)2@YT0XdVrKh>>6ApEt!lfudN@`xjk!)~erUti_t1O<2A>Cq{B%=NDD1`;mx -=0why7E*kSHBKF8Umr@$XwijE$cI-TL3X`HtIRZZsX1%6;&Q^O%lN2meb?BU){ukSs$Q~#>YEqc-2^| -5v%{>blQ^w;nQ_MG$R9^;zvH?`fX7#`(cUm*xO9(HYD`g8L}t&9_tOJ9*TSm5d(wJu#T-)dh*WyDd_- ->UF)P_8a}E_b84eQp7;Kg#l3XCt_4C{Z;S6|$KS6QCV0MYklh1Y!3#+D+ZXKU=S@TlF5#?=&Jd!%ZkN -k3LE6luT6w=7Tc1#om9oACJjEoL7_BTgEIv>JllsYVlvK_MnDErrSqeyF^gZsyS*7CpB)6?y9LEhY^DMn&tare$wYsM1t~}vthb5&UCd -5h)9!5LkW3_D!ZAP!Yu}0PknRp$uHTjV{hh5xT`x9g`3cl}!RThs^kb{lzZKoP`fLDyNaA-1nzYF^N?yVfg<24^5yk#y0tSo%9y4Y7Aw8B#A(F}4_bX?z2tn-~CJ^pc+ -V29Fm-3_g&c8?%6G%KQdash7nVpec@RaB%i;6Oo%3plQ6=wTW;8C(BWws8MPGY6_e$-Xz4*2p}1ZUGz -Kn{4z?T;ezTwJ_F%RCmTHaOYvJSmS?Q~gjLh+4d*xFw-bKGE68!Qr*vWM55N-aPaW4OBG7FU{#+E|hi -=ujKMP{$yCT-I;0%6T;sQWx1V2D-IpwD)1_0)RV*muxciZ3sf-dwX@)Ur#-VY*g%ub;5{v!4o-+iEB` -TaQeVNkB1MFIa#0KbDdssZ7v&)_5%4c4j#v?-r$kZ!#i$1G%jwslvIrJ3F+u^&Ph`7VTcP7Q1Ap#dTQ ->Ek>1m^q+@qlf>q1RV^7vw#SmKZP(@owsOLo-2S#0nEVlE1-(OLHoIV7c$G;mWr2^0H|md{lQ4^`OWM -twtb17#X6vV@9=5s2lN7v9slN`68M{WD58YKGT;hz1t->b1_Avgh1ds9U+Vm-^ZQ-RC>UXC2PcxKPA5 -cLY9RfAb?aNhT}Tn%9cN4w{d!-*iQI~T)rID$x=N>A*P7SOEc3uJtXnCHnNXqX?sh2-;roh>tW=ud=u -l0!X5@E{m!CtExgsz>tg~`ZTZ>98{b6JhyXL*S$R5U#zrfy{4h*yd8ebvo^Imk5ElL0u2y18cvO4WjN -rB_&JRlF^Ny1E>ORyIRF1g!X!tG_}2`lw1D^MGf^o4w$s`7ESJ**UG(I-VhzcP=mLtAGMDm#j9WO7{@ -*cpy9z2+WBSMcj@B#Na~dryZ=1_$}LVdOH{L{zj}Fa+OFV)o!&8(0~=X)i2j3Gm2Gw3{b6mXAlP -t>cA`7TK|&hZQrc#tf&fX0c9-xdRTsb-tV07`s_V5OTn}Yi)gbkxfeEl4L)h2EU<3InGIAP%qFn~z>#Dvz{Q~9B;0~K5}+Qx4>JaUIb6K)1hnc35vN2NUJk)3oC*Q%ud2q3`1tu@B2&QD1{nU7g=RBCdp -U?5PZMIQmGQa3s=g-fECrf^@k6e<{3{Zx>5>NZ`E5aSvVUt;F4yLZ>AHP#rjMz7etOW;wBWD&hsCl@O -O=P^Zkr`34AMSZx8%lkuHt%fy}JV@zukB#ieU(e#*-dD6#ThEh`2zoCckF0$lugWpHpe#ircevj^9%% -M34%_pPnMe)6Lwt^eU>??E(_&(kJDs)8iM87r^xq~mEX)3Y*>BeBB1$?y9r&hh;%0F`e{GZh7l(e(h4 -*92=+6=DFS;A~iWvZirkD+kFN!t^7b*ZWD^ROA^)f?8i;7(w)ge&FKu~`zxRGTjiY?w@GG0VG;2U(hi -J1*bY)E_)0TO^Le}GyBM?p(WF9ZVr9WwxmKLCH=O&TtIg-R9%fFX+|fC49D77sL@EX!L2H?bKU!{qT%g~;eH=Zo81BQOz2G^toKc -aMh6TW!`5nw*O%O-zrO?@zG6!IegNGBhUM*zXYFJK2XoVZhF(xr{G!|(Ks!gp25u;XoS{6?+QKdO5PJ -c%#&_?Wzbc*<>!F}kpLBLtbQcvG-7;YetPJ*rP34;b|8ePJ%%Y55Ef(DHKp?8$JxKSUF8iRy9G?=0L1 -fKSUg9B)~2KQT-DLOFYAc~sxII)GW}=O@zn{*vu$u!1kt1N7mO=cSNl2RD-~zwG9WSbGV^CKg3kDG3tT*qhC>gX>3s>TN({F(nX8(du-gq=l -5Cd`k5eS9?X#H&b8kGO;m=84mWB;FU7^Ru7pqO}hk*RQz=PA8dlapwP+)7@6OrlE*fH(qQlsg)J3B^& -c!GZ-fqja%O1D%eMi_IAa0FN%B8GV_*X?Ouha5ez;47LdCl==-6)5L@-;n5kSI6_yWZ=`BzXZ^~*+2eA>Qw&M3bO2{Wyq1-enfPw -1zRFiAo}#LxXjPyPTqKSh33KlG8lhlgc=`Y(RqQNJuA!p(vK(@AMf4wkZBAQ+^lW#lJ;(DNBSG*md{-lC>KUh%nHhw6OEqQNXuK -TaJDXfc;8#H&Z#!dtC0doHWdKb;%1a*bc;M%Vp$QeP)m}HDs)4v$jQYhuiL{V91DmSEPf}hR*`yv#wt -!<%$|xxqAvXOjBiPoyY6I3f2UnLhfy@wUt*^L$rQWUAx^j$k_YW^}VlcrSEq#+fq!NjdWrS3XGPizFz -5_DblAX#zGEi+lUVuiM-pcfM@6W;Vhw7$?>$6F3Mv(`$pmv<&a)zKj0tkh$BoAEWW~HEs?NwgI26L(~ -s-wtQHz`J`4e6uIAW`*rL}Ci9A)l-5X7MM#6((P;n=&w+WVp;z}vk@cE2DWp^+U@2m*e -y|seBXiv|p>&^4=&D^M=cy;jH70dKIG^m6FxOOlTNjWWjifz36(S>vfpV!eKa!)B{=-A86dUp)ApU0=z&tK)#2or?l{yavnjDInd?jR`0mNZlle{xpbu8?K??XcQgHla4?l&@89^@Z=#x0ks$tnwFQ5=h8@}1gb -}(~~4+ZbfT$O#%`Li!6sW<Z7|TUJIuej!9c(6FrOPt^V_Wr@L90+3HVMb(G=pUN7G)Vct6^Mzw#{8 -JBm7Z*hb#dgwWag5{CENy=vZVLFQwpIOk0KxVyT-o)vw*LfN{|*KC5L6{GL#WXg}2ZyukRt!(RbZ>fU -OPxd-TxiRKU!UMXR=hd6;T#k6L1v)++70IMS^G;Brl!kD~Au=?#|g=Y9pja`&|VaG+eKRQy%SBs&H~h#kT{yui!19=J -4uf>v!Ygn=)=uV|9eVZMq3~-hZ@a630jqe%Xr}9~acTFt(-=n+vTVi2jyd8w!DSWXYLXU%(3WPiov`2m!|>j# -y-OD4_yH5#nj^&fHuhI%#TB4BWN}_t-_Apca4SpoYT}%du~DT7IjKW^xhvc=_Ui$wa(W&kJgoV -%gl6OF>Yetm4>h@H%Pu+PdEXq%43nDzJNtfe)zU#l6$QVE{#oBYl^7)@c*j?m%-OSiyRLo4YnchcgM+ -n=rkz?f>OmI{$cVC1YvMQSzO@u|cZ(glS}UEnuW5(hv#i7241$8Y2h*<(a{$rF;Yl$o^MV+6emZk%ei -iMUmHgP{#Y4+$5&Zb~X&Lr!(6Zl*`7JHOexhYKMSmH!54a1l!CnlE!I$U*5?g}p0>HCg!FhPHL1e=#C@F{LoXVzdCXDo7R&N(67hWSI}JH}n;+PZ5jVg(iL%l0d&qD$#~Y7ve>{C}Z%N -F$tGOuo#$H{z*`asRgVMqc%jaL{;GN;zyydg}0I6;%ix^N;Zof2U!kb#9z@e`D*bzr?}r~S>*lSpk?z -fwCqL2^q*;&#iF`k{*Ti#?O&i}f(ALT;yUVF*ZR@25^6<7Novg1&JT}`)MPL^B7S+cj%AyP#t!CBv)m -2}Y6g0i33*kwI4kwWhqIa#rR>d)A=7N!baQ<9t5b_;C@f^ --hWWoJ3fjg^i9X*~259S*C*QQYOz9m&rGa*`+QI=f8Mp%r=vFVp4Nw^a5x#}His5@6{=aS0DFrytf7v -l9eUyLDPVIIQR-kLQEHDAOcLDJC4&8~M0B?;DHZgK!+6!OaD!3e?>t&dU_7+mZtE)T}BY-j`W8aJrye -l}pHD53Z#|X4je3;aZ?nKe1iBx1ib|NviIHfI8?sAa+-62aur~q*hJ>p_4kGErnh!ed$RzC`wz`I-#zi>Goi)Qk!b2%juBvS7Fbp=_PmKXHR -!aB%S2AHEwoUp7t|FrTXqL&4cZz^ghdvUKrKXN={=E@@{W>SeKPeC!@OB4YWGiHjS3g)WaJmjoD@Clq&lkry=Z>)^wRg+!z&pJ1DU79l|{bIZ3ANQbz*0**GbPm#00-5sAM8*k!ZFTXL3BM1B3d`ebQivdPFz0)5E^y -1vC~6KsYHH<*x?>$?Pd9>b0jRMSC4cZX*1#3@-As+%{JfH_YOc)KH8xI6|$ue3&0+??7{1XvS!F3{S> -z!fxGdOx)>l5U(Vv6i>938YJ{{umudKeWveYXth_-aXsQ9*=Sg)-gYQ89}f>!Wd`I{8u}HvIj%7{f}< -)=@Vd~&ihU-{WDEAGnkcX6`=+QElHwkKw8~jia&k0^i!TbCk;#acI$+xi -{w^)}fxj`Sz-@lipm|)rBDQ3idMIo+c$5Zl|jox_r=*esaFw=&~v8A%@rC?LgeKn61etBzT-S29%}Da -r(d=dPgV^a!XbPxXpM-U&9HB@7Kq6owf04Jsp@+ScX@Q4==|~^9c$n>1{c=WpIqR)+*GVy7!(Hg@zG{ -Em_j19HCk>&O64>c$gGC$7|%;tczxwnwm;>(7ZiAvb8&Um+LW<(!$brCO;C$j(Y^d8V-#0b{DTZ>VnF -6aLQaGGn0sKA|)=4cnDu0cS2x8-TU6N)FTGD4YIl&4jjCr_H7yxoJ^frvvYH$>r<-}o3h8fM{nPE`_3 -$$3BU!l$|`BR%t&*s5PT2houxl&mNiy-0B@2eZ$zmP_YY6ehoC(7Vp$+gQfGNTjCXBqSn}G3R%mzglN)026PY^I~z~OP -ggqekT0|HF`WvGzgE)KzR_uV1*Wtb3W{IaR;Y(exOjq^S>)uRnNf(65w^Fzvqc8W&zBMSFPSiY+xuQ- -zvxA^~hD0Yb-5NLrfQ!p%X+~$$40pfYEv{4g`C1-?im$u8#ZIFBUdTD=mWzg@I_Pdq+nu7}cJ_(hdyE -UZc(rtoLOeEjX~dyW2Y>FYd_E@$wkkXdddceSTPzkZcoA=iO5F?4fIP4&DZd5h- -@J8xBGr5Ed(LD(M2Rm&&1UrLuG|!aID|g!(&yW==wQ2y$jHBd*m^+F+H|Ek|!=4EYjXH@ZF;?t3)P|Z -GavRyqLC-ePQtHj?vrU;#l-5sQJb)tm^dCF~1(Ep&aE$S5Uh^R7#_s#%^v_b8-z%n&C{VD*ST-c -4zuL*nZDk1vY}kpJy*hB?Ff2xs8#Q2*S(h!&zrTo@998|OPv*;`t=y7Hl&)up0?TvP22F~1k`OHuZDF -Na3#+t@3O^a&roi;Pqy4{g?Mg+lAV=CMPsk}?YZe8^ORPaCM9&=SkvV2w(o$)=-DaJ6E+@*wVn_A%g6 -wX^M;uWAJdsFq&>zA^|)upf5F#vHiP>1?X7~rpM -yt+J`4MY%n}5q5SV6QnualwKnR#28I+-61jSJdqi_O7aEACg@dVkxZ*DSd$p%5-#ZCi21po{aFJKkFA -d5kl_>vg;IzpCSAciJ4Zvin(w0sVT4UQ}UHc`4Hj{-}YTbn&7k#FFG0k-vexC|N)^2CxY)i7NoH -z%rI-TL5yzg0V5Wbcu?kqs0S=zOq6i_~og4IRxQ&$$X_>`7i**1N5)sV3r_?XYm1hhOL? -%#a-@*|I`sb9b#{lwO_`@@Enx=lH##M%x*7i^ckahenrIMQ7!e+Rs=cRXf4sZhSY?Or{3}37DDZ-b*Enf0fbrj;F>`vw*g-q9>#aEc^o0*& -bhwf<5cANB}y({hiB${_Ohx&gDUWc71>6@}M8D@9$TJ;60Ti87VxG5Jo53?UbMgw!hJof4KAGLot!a) -am?u#xL=aNYd8a^<>a*Nh;&=u&9y2_c60Qd;AgF`KT;2btL$CALnf29?YuSGP`4fJorZ|*{`r>l^63hVxpZxKFj)fZ5fspdF9@*&&cZ{c-6w_r@2*FTGgMD-uf;or9rqGMZASd?xss -3!C_+SLmKlCGCpfYH8ir#|W3#JL8oxPLZb}2&294C5NGd+9g?&Dl~p>K1>Ti6;?%j-cc+*3kKL%CJO4sNf9G$IDgzgk2~owhe&m2SQKA`TsU7IWw$#uNaQ=PXuKF&-4r%zfD;z~?E%obh`)hdAy(vN@)F8%~_KI7!NvQk11Rn% -LP%inWi6LyOR-W56n$QK0 -9YQyo}Ss!j6Z$sGK&EM)if0^;wKKk^oLi}^#Q1PO%jA*(dbnf}ATc5QGaBl95 -$g1viHM^ag?c{CXuj^zCg`n;rpWq7AV}ufW9IGHWx%ifp^pKLo0Puw^$YW7?+f&IUYI|7U!bpE81PWB -8auu-g70kL_xLNQdz#wsj<+o>c0tbJ(;+6=najn>O(Isw#>YcSC4VSJyL5BmSZ2@u -F`bKjTwrJ9sHnI*Y&B=tOn-5<9u+8%U8Q`<3?$1t^?Ro{PZkMn?t%y28me$P5DvOHUJuYDBA$4U&cy% -&cLl7O~Reka@NiwQCO3Zl@go+RELPa^;j~8AzHU_kgSC(PzBip -O&H#{3C_T#M7@+5p`jCcdMk=$JMYsufxHo|Gsg!58AXys`#6gMESL;nyg5=?}+*R_`d|g|DDr*8k7Gx -=C7d`pe`OPa2LMPFBV%e^QzsDydochSDI(M#6REwuD{MU4PIFvNVJ5JhVX)yNxI-I34j+{5D@?`f-k1 -t_?3$a^e;fikoc^d_{WF|e5uEj2Cr}lY_S0Yy-tx!O91{4FU1`gVo4n(h(&KF_{&E9im(WR1(Siyj?m -W?QA>CRioDWO(xqYrLH{Kb3risDko*-CH(%^574%u$C)XkyGxMnSZ@&9170IkTG=GHXbMVosil$F&Th -iG+uB^pBN8|L)R1#z6n-(!qY0{oV#`yyUL(E -_X4lyR68wTyu)s3!GG9G@(;;Cdf*(Zi0b2?t&DewL^~fmKPSiRUW(YCXgbnQq6faS1N2FyPdaA7%JNh -g3=<|aP1n2^|j=JdeLEV?ybPq7L7*bKYA=(#s0Ir`>JW$

    gcjP?dlKCf$vSlk}dQwhdz -uMPS3wndybnQ&0febQcyxHlWerf*X@C3|#Hh$*uEc0b56oNNYTi4i^NAC^hElSx}H5fOfcDm-%#M+hc -hg(ShIA{6p{<@-|y~c%Xx*MP?Oi*6vA{aCQzWVt4kh>b6PXtJ$&;;^LNm(i4p6(_^xB87$<<3rQs`92 -s@oa{2{F`rA;fRk2~^md!+=!MBp8Z24bp(CagmnsX1Q`Cx`lFh|H!;Dvjw5Hrt}Z|NZyPLX#2rnlL9f -9T5rq}1KyW(v1*B*h#9lbY-uud+lgHSyYjSm>>lxX&=RNZNm~y`JyerYks_2rnA1GYP>Jb7Rz>-oFmQ3OmJq8?tx -nOF&lP^XCh2{wSt}#Lf(QqZR38AIY~JUS!Ni0Lmw?F-V^Tmd?T2&jPpe6tB^t>f61kV(>h~!;Q6~j&P -nxH{&>fqs<3nVEw7`R;od6leyNn;#`UV5S7F7#)~OYlpda+PI9gYIum~jDi5}z{M^$N0$E)rnyFRJ<- -q?j{ff<}6*EvH7^=>T?X@~Q4DiOxtH=7GZRxHr?jRkFO5`R;KAIb)Q9{s^+9fP(Aw0&V2|1VGW0mXkZ -(N8vT3L$U`p%@HDP?(@8nnV$jq8OY(aF{}Hlz{0kQ$guh8DBVDQc!?Q25^cqiwQhI78^D7N&*EiyObH -mHWd0LY{SGWI`Rej@T)L!{E9k!V**Rbq+}rmak@bDG8417eR049u;0KomMmbr^m{95oGdH=rR}Vevvi08JtO+VlI$Ke>J8pBTa+%?LB~%z-=-u0 -YFcc07EY9tvRlkAUcC+$WT4rd(YEd)Y*cHw*9gaKyd%p82XzQ>t4vu2SPls=e@k8 -sW@Am#nUaIB1pZRl>1;Em=jCvq&yRj1&iKGr?S-ixObmB<+KB|H|4WQkg)r)+)X*ctJ2D -ZFPJfshm+QXguB$pKFuzCEa&a2rc0KkJdLuGeAq_q9amewatcliDXtc`dJU(kd@03Tqg#|Te+Q!QAZG -SM6xVCOnlZ50=zdF(^A#LL@${k-rtPMb^$cbsc4G1YZKeu=!v^)$5h}%)r-IU~JTtCvy<_;PlNUi`x-`LZw*OOXG9q_3mls~iJZDp>ZCWg0Kt;+Mf3NMFzg!*fd;ZX-$>JYsA3>UFFK)f};z!RP&$bxKy-o8^Yr}d479M(9L#V&PmvU -P6`&FNGWk={Hx9mBdjoGkWs;K)mVx*$n^UR_GL#!ZVdze1Le{>o> -D{rApMy|Q3IjX#xE?r5cL26X1RRGP`~)?(K}0Py=q -eBQ1Hi`ycX{X<5hfvXPkPNIhxr#=zJ?$B`UZS@!=)4HL`m3vruhu@^G7?|>Ljw)vsSa~{K@O -Zvqa7_21Q9?ZUnkXJ+c#4q*geUIlv8`G0)JBE!yk+nihj&LUydl2pgfaea0OhvG@;6}@T%+Wh==?We= -6`X{Kfvd2=liL+FF{~948s(OBQOx648l+-PGK;G;TT0D;1K;~09K5@Dhwq{z8VoNLAwk5VXr7EVyPYw -5euRMe8hkI%W;U8jW&6?fiY}>UV>SWEQl8$Fdn^^{0FlF4T%7-MHWblBLH>3D^a-A?qA?Iec75LWRb` -?xkyrqS}+sHWiU(f3hcsPwH2^%p##CIGJgy&9Rl*@k*1b7WinY#4-g!omt?`e0@CN=Uc7()avX!bKO? -nn_J;ZZTlRHoORtK*;==;h{Z9dDH|{>N;U@J*Xj8!FMiHes!klTTcC@%(C8ziSroLAde10g-cmMA5m$ -oq!e#y6fRa~@K>$Bpb_#-A(4{!bnVb(Q|Lc;-O;H8^V$Gm*GbInR`Sp1KAA2I@7;D4=UT0Wsg?^J^&UR# -%-t-)RW`)Co1>i$2Wkd#^I4vWOMidVXZld)$NcD3@@l1>J9I8i_!w5aDr(S^&p9U@_HI);>2=%aA)`l -G$qbhUx1}D_%!l65QEB@3Yb(R7BsF4BH5Q48yBa_Sq?APEc?oAYe4RLxisjYLVeAJ{!I3>ZSG5KQTpp -Cc_Go|`Vx4!=6Gm>d6ZeUK5HTp9IhQ-wX3v9dbC8IGR}^e6(JBgL$3DjCuG!s%qUCFgA5cH8Jd0~ic9 -J7-V6$BYiQSWXp!nXl3j9QW6#mmMfPH;YN9d1XQqY%iQhRYVqNT9fGg~%3d1~G$?1Q=Z{2;vha${vQJ -dF!j=ubO;QI7Ae8Xp_US#ZYmB!aH=fVC$$fZcQ(Ur!L(4lFYkkpm4|;k})}o7C`%2U7 -2VN$*uvf?#N;E3O5uJ$Quu^=3Lo0V%7iP&cw|dseNT<<8-%Gc8Ix5#|R_riNz!7JwxuQ=Y7YWKw%t1Q -_nPz&I>5vw_>CF>G2QtYrEA5sP^Z!TOdvvRcx8I_DK1DU}8Qyawhqp%#5+p0*bjV0h6b0eaUw-VoYwg -;*-hboPs9NPhq6?YNe8QZver7M4Zcp+_I$-Z(bLdPlI1#ivUMCbfFBir+ID3LWKls5t#WvR0md=V&j? -c>3ZGzM6%GdMA-}rE1M1*JG=-wq$KFS)I&!JHqPQ1H==Qkn5Mx$u7;+~GhT}|4X*iZCT-{pIiOFQ&vQ -euAB-0XT2iiK4*CNT3J+F8v@Bu$Lun8P2VtUFzXVRLYkZ=jON{`J5Al7WQJw>Mb%ClvkDZN3&tKV1I@ -j)~!*+n*pvgoa6mK~Va`>M4o?Xvvr@J&J%{;uTSfcvG#hUwRuPZLso6~*ef>U|_BPd@XqlIx?UEv&Ox -|oi{Z2u4Wn8U^#V2#|(e?@@mz5==TltYwdAM{I^;&R`h<%y;`xD*M5Jj%f1&&@3<>s|Fx)yimTgdXYL#J|&+x3BZG418K57Jqmg0v7 -itrZxU32yy@-iaNQBzI0x2)^c71ocg`I^IPTQ3ra$ui5l`jBjyFua`o9mOG*%fNty1!`G+^H?@BC?0VWOoe`sf(YHyE?gxP~Ne0{CpLM-I8OaxK -A3a_0>dw9#)Dc3ew!(4fLr#ibMSZ)*$@-X7w2@`Hw7k&sqi<-Tl -*+9oatPkBJ38#en}<2^W9B9X`HAC)>9o9-H)9 -R8Ft_n$>EJ-C%TvjA1!T%)@-rM0d?R<}~h@cES5B&vrekogcFg_r9VWlgadr+Zs#JYFO=p6ss;H$;^- ->H&&nff^fZ9+NI)YHr3A;){d4nbhtOd!rFM=C8MfZNG$K`!lSnW89n2ce39=O<{ -NwQOz4C2?$$qC^jHS*tH|I33>Mt~ozU+O%sQL{3Tp38>z_#6DvoR}M>#1xuC#^!jah@0KUx<8D?8=q3 -3q{>jvh;KWm{G!n+t7m>w(s5cHqhqOuVnGJLOsDTz*k2gmg@6Q<+)fle6CQ%`5%%{a?WMe+yIHkDItQ -DIh*4A)Ih%I;L2xDmo&o114~%a_>@0fJ-^NE3z;ik5&~H<9p79Qb673MV@$KXSL;$E*9jUABrzXFWm2 -UGSBp3a%Lh`eBihx5|@KgU$K%Z579X(b4D*87jC_e4E5bCm(Yk~0IBOjTiR^ -I9$Y}O#6-JYj{zZiqPb2vtz81WX-aSM|2cCzL=}w8mMRDiU**W<0O&I&@^I2%!(?wnKKs%o7sBmyk^8 -J{Ro%|wSdht}Vcd>iz<`I&Q{@pKFqSEppk?~}jM=_H*LQB|##_WsJQzaHSVC-frhIz{0X_U>aPu{e5- -`(~xL{W$7sO^-5Qy%q*R&PQNa0N~;Tk!5!1lYX{vNXZxW)HD8$rP^M -q@C6AqYh<3_)TanhS2OfH49bbEyo>TCFdN6jTIK7!;i;Vk-*JAi<7&9J4VAXfw-+&-2Z|uMhz_dmP&e -=sAeifOSv-q>+owu6K}+~0ZY(NnZmtH#&&wvr`KiJD-<}QhLs0k8+59GM10N#)C2o5kWu -;(D+$d6fE^49kE&9FBX>*rZY0~R887xZhesu?22uK_^VPk}(1ukZTxQT{@KdMGJyaiHMI)Qmzh*)m}x -^%>Txe|NU)s<1ccy2+QPcQPh3ojy-JfO2j*@>xiyM3Qi4hmoIEE1BkJMX#msYgnD>Fm4Zc_O2L@eU6=xiR3#2NKo=~nCqTbJZ;>G=2kQx -P#1%7_OrrqOna5~xvr;r|BbO}-2*;stJ6?t0fNG2P6P|ZD*(u!cg<-IKFs-tS-E}VpldkMor?s_fgS? -{i~N-3i074Dqw5nPGnf}aT~k{gkqG|0Gd2j%e`O>^#M3|KQGe7Hb-;cMeUC4>7=reP6V0UP*Z^?bRvR6R0 -DZK^`t2mrimA*^Uyfx6n33J|Rk(rWny(PprpQr*uu=bn0ueYRkXHZ6B -=*eOdV*;x^%*;x=fLnf@QdZ4j#*GJxQ@3UuY*M1|s~S00sB#It%yyuRect!wAn -Xrj5a8FHJG@@uJC)|+!BiK?vrP3F*E{}ohShk?a{J`Grnj`?$f-YT;vTY${v@&}WAJ;W&m-<;-e24~k -8cO3O+a=)?Z}sD5tC*ejN{!TqW&S-k`s+Zr0iTQCNs2(WE(aI>RK(*K}1I53uh+7d}^iap!;gJ2KeM0>U})f$oJn@=^6f&>bXzpX#LK -tG79)t|~W0{fEmI(;5?Z@;)R+TR?WKr8io4PV&cOFm9$KTXg_ -!6zT7pUO!S7|RFEjMgV#3j%mrKJap6XUSJn=3%fDCsa}?-lHEre!T>t_U3RKjcndNS&_Iv(W~3xXKOsSvj!Ja6Qc5hbE0EAQGUJWxZI8rT3-0BoYe8^nWbBT43SpWCOe#OphsqSV^+3<9%eoviQSTy|XkIw0vS8E@T7r`df1Bh7wgptQrgDUMkSLoz2FR=aE5!mpBZA-Wk&AA2kO60d+1 -_q>*d=1MK2F=z1|G6hEN;XHnmf=+oozS%-uJ)Y}o)`Pw(51v&_V%7EUkBh8mu(tP;*3B>aGoYWt5xYL -1(s&d11(CVfL)aIYVRJ}qlk{Y=pRFpubp5hT*O!oXKG#2aReT<;5572_ZPWEW;(Rz=4}BZ2|0fq_;px -GTDinG*ZC^-#H(U7-Q@;1aATq-4Fu|m_7_|9>9m1V9`TD`B<^NziBnFAB1$dypXhi^kjc~HytDp&5PHCa -UWifopaOb+`3-pQ8R0Y(sUE|H2>7I=T3P( -5!flQa0Pp+@ZQw-_A$~KIg+{7?dV!Poagft6QcuRDlmMK2_)3*+g*U8DZme*5hs%u?u^K|5%;%AxhCO -Ox)R~T^r&v51@lz>FHD#}q0@IVHUAC?|8T<}vGChQ-=iTzfgVN@wEtrWOdte-qZo=H3{E3BK{6CgFds -H!te9176Y2nMa6tW6cq9o>@WB}Xj{s`o|0Km$QTn*65sLxDQCs$6g)Sfh2LqEyfK?Tpuksl<3R?a_=?Mqxr8K}dF!h%JHJuewfdj=RV@$xH=7lnw6Gj3q0ZBo61^_7ubmM@a9RkiQ+ -prk;YcRhB!*K&c_bV83$obM+E8D%bCc_<7`dHulk4FIx|8p?>)-$-Gn)Df~-0#$1e(3UNF~e(MqgL@x -f^f|nGHTFd(I7_6f@!_Ozda-9=TrKVGx}a~2Kr40|7g0@`60i9*pA+WW8T(>!Vxv5%GuZNvvAR%i+$| -Jyw9E1&@gF1!dHzs?u{oGsY2#v@eE2S*c(=qJJRUuN{RBZri*m;E+NefF|?PIXKW;Pa(8IWlwbC634P -gk;YR}5_m}GlZeDF}5C-a6%H1g%Q@b8@J=!-i5yYtm)mK$gZe!-CA#Xo9ZQ_uUHpP>!ogU2n#5MP$G~ -HA6%pxVn@nIg}D_f5H=Xh%!@2WydcOsg7c&7tB?V^(D&*xYW{AITum}Ad@BFHR7-p(eh}r9n4`mhoQFA8!e8+t@&b!?xVECvrfoiUJ9$c|iz5qMzWDc3(nqqhEQOcs(kn0Ymh8}Ek5 -s8dGsF=eo1QT`NG0G-K&pN(X1n3Zn-{{`AAClLPYxQv0|}HaSBVQ -zQ=_FD_4&C}lOd8`;TC-uEDou9AP>nRd}2r|@iI%_Nyae+?HYPTxups}n=NQ>dVIq2t~UuZmd`>+#4B -FD!Q-*LXRI1V?>o2ZBz3Gr4wD-}^W@Ood}9nTl0TNT=Z+10ru3mSFvZEZmnBer1aIU+v(lHR3;R{Noe -=ju9(NVkAzZII}_}gRgXwCSZE~L1Q>h;so_!0f0zB!+i#Plt3~a2$iNFi_d&=L`=6ias)6!8vYMOd^Ge9 -YY+uTIz^Dt&4UW<(Cu)7fY;<_mis$?cE^<7CFev-97Cf!P{Mxf%?#gj``+{WUV)m{*&R69$KOPZl=H_9ro_=y_yh;+4dpeum2+ -T&S{^f`DoFu*EI#QgpLQ6tm^8PDb8eF=n=s2mhcXlCPB^WQ}UbH?m9qI?O&`SZK{$&a5m~lAk;om7Tb+bkguxxkw`T-g(wI9sm9p3I?A|ci)(%DXzZm2DjGQ9R|Ie}e-|yrn{Qid>e2?KcLQphHV>C&@G)XcjiP0-AGAKgO3~Hdfh)`Pt6W=05RorDSN-gk_HW_)Qxm{{0pB3y -_SJ4p{RZEX4I6(bcT-Nr!lIuc{L7sDy3iBxl|&%d7o?P4r@?aI0uHW?B|hG6&c?rJU#M3oAkk;8^rZ8EvU8&Zv#c?9{1|%4RwB+9Y@kQja -;syuMu{){i0|MN6m<ycMd;VLO`jJZUNj%Pez5lRFU9f-dQjgsAz6PoPPZscOE5>W=o`(z^pNzNYeNtKg9_jp-m ->nf5PzhVZOcwjBl8G3eF`2$Lwf9ZBSSVRz9#pQX)2Rug8rnRMt)&C+w1Hn??hv%%>FZwnD$0soH#)d`?;S+f~OE? -|6yghvJN)-{cQ~HV(7oUjmxrO_s^wqOy&=xhkl -A-&Z$O&dL3e750Y~G4BEKjCZkcW{M6kJoPccHeEqUK(>B&w8XI<56^xi7f^N5m3bLlF`}o+L!*!nqaCa|ACE7jWq4+$hpY7rxB$U?CH$hQ_ -<$n!|MepVa4@ie`Lz1U+H9oA`u%A -pUf%$H2VYBJSv<%D6x3da;L(sA6+UAi5Ui8fujKKuTz{I)$rAQd3J}jys8z#Xpn2lP|5#FYVu?z&_MZV!40T2(gaI7)<#{`37C2xR_||rkZ!IAt13FR)_*V+m@FstWZxucaU?;%Bt%sS|L^shbTOcmR+|e6yI4(hC#$S^A(ZCsv{w?s=fE9~af~pNndKu -!!~gK=~9vms4z`6_Rw>EkngJkb@x#L6(9Ok{KV?cp8Qx9)GX&<@Q;O!%)M(cH!ph#P9D?e$bZl6T}(l -1#ShlI@@GIeqLrs_)jt+&dG3%2~zFPk4UZ;VkLM*Xoa0!AWZmfLHz@?q3D;X^c1JjYw>RIpZUQwRZ+m -{kn4V(ul{Fo?O${oL*I{yed#vFUH?eku;e0`NJOJg1%pYiLo;}$eHu04c@nF*F7B1YDv&!z3GbVO8WH -!|^aUp5`kG!Q^<@{tKD(>6jOpBI#*a7~H^+U2p5&+V;ClG|RIh9WU20`+F<0XqwNo_efI5du>n$-E=6 -n9YH8>OTPxv&pdk0DZk~Z0opaHWNS5IPaa)*)mzN4LTj4U^tvBwU_``|g1 ->aRL(SzZtrCQfOPvu!fAdkBaQ4u}fc34qO>LCxK(g@q;pG{*?_ciD+WkXnD*sMz%SxEZ5=x=c2z+5z9Dn8WFVD5Jj9Kcp+-yd;Nu+UICQr_C^<3V` -L<8;M~lD;j9doS?H?>uSc8dGMca?80~ke;suD<36Vx~EybbN4SF3Ke80de++>vrEF&;WD+i-6i0<+hIU^1f@|kC4Ik&R=9p*hx>vueg-SSGq8m~Rm%v1vZYHh`*3XA55JVpOJQjX8}tRnQ1S`=n(po9e)(RY^J{6-vd>~P-;|XP1C97ew>QCF4RB?lGfrA`yN_3r{5f=J3MfAzJ(+i+=`$xi{ZJ@$Pg87pKAU0v8Y`SvnUcwQCsU;{IYoT9U8@}yO%b0`30B8-IG&l^LpD1SB3|u*Z25zL%AWF4pK`8Ftq{5=n?yO -1j!KnL8cEXi2Ft2kcllO5NW_DdADqp;d=9#y2B!LN@vS|b&JnGYnB*F=eN{9Q)o!MZ@YGfC^b@{o*f)z=yYIzeD<6sIz&#x%%-`pHY5VEl$i=}oo{7y -PJx!XlJ@rozFYPmeG%PBMWX=O@+aP^6s8?Xnf$L9$j^t#Jx_4$&jX@sGCbfgFS3^#*u6d7gZ;MI0^(-XibQDkyF?Znj<;q6MPWu{s>rdngiick|JQUB3`g`=(CU|q -~SXW+;w!$Zvt@)+qObXhBvv`}z+0qULywzo4u&*2j2%Mo?`Xc{qlEvTvih*WM25>#4LGSO1i0e6l8Y& -I|65l$2ncq8hNTBvPeidJnU0)oCl@a{>AmOJK7ghQCvu?H;c;9m89LSwtgXVnV+7z?DpCmQ}k!UmVJ) -Y5_bkPW2c|P#I^1l%MS0GETiRzb$MBr?&s^r=};!tWP%6zDN_4hP|vO+2`Mj*=IjH|>g4&h*?^3_1!HXIa -$^O!#|k9)W#Z(aABO1YNIBe0CX+uQ33Nd`Z*jty3j~MW*x$#7ZLELV}3Vwu%gEiDz&*pK74ccXeK -G{gBX2$!>1mrpGQ{643g0pT2$4z-5+)&pso-wrNacyH~|TYEFMY>hJoZpzj-_-n^5i6rm@MC)^6JZVB -!Mvg}H|ydtJ;aPEF6=-V{kjh_7^@zkma$zp9@}g>kAeI4+p0XGW)9L)9rqzi+AV9kg8`>u`Ic3zCxc$ -iEL-b_>hK`5}(3(N6Aho?c`2kqV9SxRJbQQv@efzf}fc{d7}`gJs&%t%UHov^u9%|d8o2vZ|>NmYhM# -q27OV7i++Rs$zE9ZdogleVCBuXdZpXqN9yHV{bOllIri6P&!aDsZzqmg{5@(wKC=@L;{0=*sDB;3IXw -4NHHG(RqJ5h$Cr(tkIFE>q<}Q*`LCGi+@&P$K3X-#V%h&f$q~PhBi>gg|R&^#+-il1(XRm&gMSr<@&- -nbb{3!J*qCR(^7;bnLb3ouIyDZcy#z{8d;Qy`U2G((7b=gv6n^#^(CWb0b@* -MDIGn#(Tj+UCR`>?>wX#;|G@y3>o{n+3E4ZMumBMq0p(8@x%DcnX6Jbe4M|nv)Lr}D~m$b4}0A>#MAj -Mdvr9Om%*tskBJ=WUyR-;w`Tm0Be41d^W6w{kAMgbH~DH@ -1!;22z5r6-G3XaYfm7ti@@^zR#dS|844B}Gp(_lofD8J3@NN3D0AnvJdXqUQr4uyxxspVJ{? -(i*0|+FwY09mzOCX?5v2xjT6E^*1mI0%HS`3lE51saTi7#*^CV#Avd>ee`w(VN}~z8O##>#=`JK -{uo6>T4B%XLsdqB|>mTBB9e>VB{85wXvDkMFw~vkM`Z*)vW&Z37<-%99bhHe5lYMX!Ddf#c1qKEw@{Q -nbxtZ{r*wbe9`-$X{D*+~?yHi;3QTi4p?aWVf%NJK;Mg6sB*;+bofB9^T!dR0qBK(snzaCr$V}ynIF% -0s07D-XH1Qf38XkO%far)TLtDygUy))QO^6i!+Tr$Cvhg@dVmS6c_6r9+otvO=EBmUqk;&azehK)b(& -7!{Oa5B;^)&UBw`3MUIv_zn)!sMGld+UukS~igWw2Pt|UYy}cGoUiVJ3^x@~#Q_tmOOLDOh~0@MidO8BELtJ1dz8j{ARcKaSi$WQwjOt3*rO%q7cnj#>MTV=^Wx8wT^yADZY9arU -rNW1PCl3NS`O#K5Im6g<2cl93-}+r?t5qmy;>@s3~Nhr$ty8`hKAyl|N=Zo8JCThWjAS+F_-YRq~xzG -4wqZ{K5pkde1u3B!4x-Fuy1nd={z#_Dc@P%Zh&tKj2xmKjrt{nQhJ+bx#`>=z`pQC-$xlmpB+wxT?c9 -(jF@w=DFy1UQ!&30i#L*?Va;JK;}Z7_NPg@W?UHJlS)Gs^LovbY)zxty>EfUu)1tLg3EB=f0EA%WjWF#=Rsf^yL`ElO`(z$dEo^c^ -cB#d3_Vvsd;E*@x9bI>jZ -_HJ_3B=itMNE?oyg1Y6uyeL(a32M6TSE4%%=76@??|VW%&?A2b95*#aI2~3J4YL?=JRd_<_~Q7JkyR+ -*hVY9op(?lkh0j-JRd@MRa;H_|`lH{jGcIr)kcAvJ3{q24W9Kt3nwec~gPJ>M#E=1~GdsW2Ei!-Hy=a{aXzmkez -6L!c6UwBRGD;joNNCEHtUG>q7P--^M_T$PIwePtae3^Oatd|d%_K>Y+v|9ayuaP-d`{(ww4jNlZ4QWS|W1V!Wc$Agk9j^GSvH-a%BT!Z6) -Q_vU~X#}Qzn|vb50Hx?6UE$_qnH>h?BUivHasU;@X4H$v0QLa1Y-YgJ*4ewVBnANnhA;x)gwB6uGMED -S0ia5q|0mu|f)g5yYpkcS;#j;PXP$zZT)Nft^3DFC*v2AP4i;0Orzx$QVvwmcE89fxGJ&s4H$;eI{FHs+w(<54uuQu5tM8o7RT8>3kB7ypLdx*zVC}sS7 -6DrhuRu`;ZUoZP-3Z=<4rjFFDxa}MLjm~!^R8T#y2yZ-gelNqS5fv$4iPan={sTshy!AZeRe3F&op2v -2RCWz^1jP<>{HAhMaEJ!4+Lu=wSID#@ja{*uB>$$f2eyA-k?Zpv_>*a~D| -W^ty?9p$`F5nr>O~A%0cYiTvEi=VPcH=8J^ZigKc&F!eu;J;_7(r&PVDIdofLL+G>+*Dae1qfulMfo7 -~oj=*{$%~y3hwJC!hGDC`v1LEFG>-x@ff5J1_nG#nQV9`I|@v_?~|%PYN1r6S@9883Q)$=KaL%C-~Mz -hB)i{csX^rO$bx3QzQMNE2z^KACX|0c@aD%aKKulpGSGTjJG|HnfK%C_Ocbcc(hKH=fjH^ij%sxj4Op -_LoPQ^mc2^6wf!NvrH9x)Gu45-Rkn{WA~K7@{<&kNtSvZ2y3RX&-%xIFIjP=MT=8O{C<1!UqO+`@ba3 -UbqNe8Z;&RFzP36H5j~2|IvvbakW?|im`LLIyYUeW#Q&9rkWnz*_A@taxGOA7d0;999&&D$&&w1ja3% -160SFK}~Bow_H|lESVx8Gl_1Ez@SB$*x;S~Pn`X#6*<{ -*mz(QhvI+E{6eu`?_G1K`A-#EqENwBF6QCmzvZCZIL0~Ug@pWpYvoPcX#^VP -Lb=h*EZP7NxLKm6^{4s!pKCwvmkfj)PcoE-E$o;zvyp7DLLjqq#ZEiSC{B|XSDpPl?96Ce=&-J8Y_Z? -5lsuDmsqv55E=1H#YRKHD%y8dzOy^j#dr2ulIQ&$!}|nty34ui#vYidfIc(c!w;8Ge|qyXq5bK-A -0ZF=XFsH=&3caDuH{7`L2&{7~Wi4?^1BjbT_9%7uv{zJp`3>&sO<9$rSR -^;nFGRrd!F%G3u>-qR;%rAtLl}4pQu)*gmFsrS&3aeJ0Z#!&BqlXIN_mjopPmkc8LQw=l(*46<#!v<4 -pTNu?i}ovqheNd|@fvRyZp>(=6|JNY7lyiE&Wrvi3jM6Gq -ub`l`iIAEW|xs6A|G=6j%rI*v*UTaF=P3_rpw%oU8Z*=%cHNJeRxcvyaoKePtoj9(wUfJb@@PvA(@OG -s%wLAQp+Or_LLkRwAd$uPoJLz?+mZVsdvnJE6Z7Uyjl3N_|-(WxBWoHQ)}H9jXywS!DY^E4zN>yK5(~ -D$taT*GOpesVv=RvLCbbDnuFw@XsbXOJ*Ekt%)7OW+%-=oXA>cH -~fxrq2Z<>y~HQD^Msf#UH~H`+D9Umn_cy%JOfy#uVflrOTs>`^T-whxJ#W5vNLju_Q`jI84$%q169mK -VQJ=zuw39a0aGmPzpyG3I+1582zzpAccX*Its3wz)lNN=9=)F!<{t~Bvix;r>%e4zn!f_(weI~s6FAf8`<9c7#4E{1}B6^sM -`N28#vb4Ak?h1c@{CQ3Nauv=dP**qLr@e-R2aQ<7@Kv@FM-TnMkc;DYm6g9qPSNbr|Gx^?6!uw8Oyul -Fm7s_P$VC;pNhod>ENTf~nIN*!EWua-E% -?;%DTp()0@BxohV+xYZWDNhuTJ)-$wEO8S}@!W26CEnXqS=f1EIQasoFETrE2B)q&-)<+Eq(28$ZH6z%P^)EnepEY9%h5*p5qJWTK66m`!t-o_fw -p{TiM?l9S@_j`7Fov)WGay!Jw>*Z0$keCc7J?b)Xc4US=T~KXj6?A^gWF#J5)y%}pOXK*bzQWOdMq}q -HDPyA-uSrQ5W$!@;m41i8=*{+_drJBt=?luHeO2pr2Sy*6>wLKjSs>AGgH*Db%~ghrmML##_mxkh1d( -RLU4$lX@u;ygpQ@(!Ygg{&(J%dRX-z~UxaVybDxnoNOc$)-)jQU3jH_Sl#SbdTa*v7(yS0@2=}uFp*H -;N4Wi(V}FgW%5$UrsNGl&c}3!{${$UkTfIqj0a9;Sn{$Ls$`-J3Nzifu`w@BE5>=YB2bq0Rb%c?KaSi -8tm!2qXqE{Q3*Z%&N+)%u`i;`nzV=?3{=!g#Zxy}V@%hFK -Us`E^Vao6_C+0inrt|1lDwY2OyV1W9_2yJ6q{D!s^PI3Sm;KMjp -YEEijjDi!w+FF_itvVB$Z(f7)XrYs+b`D|&s@hjSGYi&qqB=qFmPUj%}SSAd$PSEo&>K{t!ABHy^37X -d%bo@9M7Z1H&OU_;#k9jciq6nhHH8r@ofh{qZ98ISgtmhiRzX~ngN@bq_h8Vh!nC|w6~~xwSGC#imrN -lHQGqRa@XDky&4IoU!xrhtwBpA!^zV -W7zt^IkZ*kQ=fODfAE{g_fC>c;LeL=L4;?fu>5rzvz0P=pG=8810b!d-@3SMfqR*6ThJY1ymVdJTk&- -23+%<%rGxzF4Njb@o}_&YH_>oMoJLhBl}Dyy@ENZ!i|^5z}Jl%{8e ->&(RFBPoY2?bs|(>qbQgBjqPi3cd_)LIN><;Af%5w6lu%f4k&Vwyb?-M_BZKSpThrf_WDH!}(9<$Fql -j@w9IR(nm -do0gwDN7N>CoWxVvao -~-9^jZ*d^jcE-6TulDb>h)_i9e#~PbUWX{Np&?z>glwUf$B5Lvi$DAa%?!VaE^<{Ff!6NFD8I`tf^^w -9cWy{(EyJPvv?Fba-hW`Jax+2a(|!?8h-{(c1*?D{dTP*1F?AMYmx^MKpGr`&}Eu;O-3pgaJN>&d1^W -Yab&y6vW%n@3;7`9>v?&$M|A3Hw6xA2K(`h;~(Go+l_(a&PQqYH!C|8LVJy0h~bIFo%rxyz>p~M#Z{L -kZ9zeN8$FmcnJt~Gy$U4Ou*JThnCVDE)onMjA5H$spiU21Pni(V4}@gD -Ax?VqyX+`C_0-wXtx$cm<}&(jLZnur^n0Jn@;gSMJR5;w^q&E(BBDRja%U@6B!Zy~%eX$o3v~%)#yj+ -TMfB11slK^OcXSldbB$-8$O*#u8^Z54C>3FRtY#HE9|wm@(=_fX&e0OWuFUO23X0aRvdk_k4=TsgiA< -q$VljUJsYbd8<+pVqdMn(J_Zsndot`CX%(9b!nip9V1=ymT-yVa#jLmhcbBsAjkm`hZVhhek ->fd@WJF&VX$XxK>6teT6QuJCepNw0HcIpaPZ3XM6YIqd6 -%_#~WOwoR$`08pyKS$p=5HqtMYJ=UC}4S{nSk&?Gtu?g#4X!=d>bQ&y}KM+*P?6)-nTz4@P|LHqglv1 --mN%B_7-C^(4EoEy07j$K&|yAe14&b!gxW%!>aU|Rjg<1EYEaUY3Eplw-t-MvFul)p}S$-MI@AjowfN -p8H1ZpYM}jMM|gY_udH}n@U}C%Fc1pEwf7Y;^M1hvFgP}dzR_tNrkRg13O-yR$T4u`PsC&Zy7w26 -+Yd~#IfGp&En5`U%;_xFgA-li#c$fv{CUrv(7{#wn#pCWiBa{dD}Oa|N)Q80WVec!a!$J_*4r0z-7xA##Cp|p(IKYuxQOn;+TV+_OnM5t6{p*fzpDEr7IB0VKr}yIOVv)1( -6ola+_PE;EPn*4%RHgMtoFIG%s17V;y3>8saNTq7+W)lAYVdfn>#=?CrG>o6Mw4+y*)E;zmjoJUkR9; -0`p!!Gj7M&+w{7`iV^=h;l}gI5w#+0v+qUdo;&^EgdBWh~Tzk`<>lP%th}m -7b1A1x2CWAjR=+TF2ZeIoyZ?CF-Bch!pM6@HJH|u831b>~`RC>LwbG$P8D?cL~GN>`&)xq@OU*l8-*N~6tFR4DnUZ8$avj8p -fjkA2I>TYmTj44-17NQ=)(p(TzukGOz22sKANuFhgm(N*PX!G2v5~_|`uy196Bq5j6#qaPDRuwBM`^n -L=#P{A!N2os%%;?Ro_W-9Kb1%Ro0t0SEbMPy=8v`HPnGzGflc&DPeP8fs*E^#fK+-^Vta9gdX#uG_|ffy;*U=qdCY(x@f -e>x_ZT})+0swG(_T!{9}95wBl?7>qfjKWqftqqN7wUm>!j98vW%V*m4w#FXVUKE7W(+h5#_A4bi6_Yc< -FiZG|_esLl`-1jcVEPSbtWk8sp?!I&=mCgGtSehSvx#bwTl%e!7L4L>1Z@SULX5>o)cE{H4f>6cR_u; -2rM4|JYr{@99vhnpe4)}Ys?DTRg>IH1>5WT!rNjsy3(A)?|;{kz)MMW@J3v(B|^VN3EUvy{3?u&yEl) -EjP!Vb0vvJg4Z=jU06@3XS+7?L0MSjWh~>1+h)jlsR^y8+z*Nd@9r-xL?uZ>N`S@!(4XtI~hvG^WqwE -fkrnMhsTRsy2CP=M~^{g9$5Lse@)TyZIvNxjU3gG4eIRbejdyu*A|kW1Yq{H%ba5ncgEDXD=2ms_mD6 -ba&XATc0+5t5ISmim21sM5p)@phhvMQ+OJnM!w{b!Y4sSg{L#p3~4q2^q -6M?bDDp% -mXy;nZ+P)M3n^fW5Y$#D~@ZTRO7^6O~_FuKXfpxz>*Ugf$?V7Hrel=k5zjxW+1`hu2CI1pmkC+Mi&`> -7CXC5It&f$np4EFxNBswO?vh>iJ-pkJmB@B?NK!))YGcjVb|xAYTk2< -1EE{;Kbi90z(yd?0H6nUgytqVUmr`I2%Se{!~Q_*ip-9&>VOdfautS(+WIA*heC6F%w!3O!Kw5SGTDW -5B<(x8uYIH>fhj07ES1ORUc8{4Tkg-@FTwd30@s`~(y{?bBvo%GkYgFFNN -78$Ido|3{q*sX;?h80wNiz>!9($6h38YPzr40tnRu%Zqhc=wp)6+m`lvkE~=i8V_T|jAiIsSHegzlxA -%sQAGWc0%d^F|1e!`M?tTVci4elVDYk0dpNbACSy+~2W|0sabaMR_)i5^NEdJuNcab%@q=3DL9g&>nC -L{2XtYOOSVsJDcxDy_1g;^Uz0sy%tHqCeRsgp#4#gyP*%uDd4hFSiWQ%(aPjG@8yMEk-h3UX~0uI+ -0E>0Z>zg$jAp<63&uI(0?{HZr}tpcn(~}78pG+-g1&VwxQN^~GDV)!Ij_UO!+7567J89SHcSu~H``05 -Mlu{0-jr{5|K;?gr%YBEw9x+mZoduI{olgf|Gn$~8G!%pwf_={Ve;?_+X-NFWJ4V@bvumhMDl=5`Y>_ -X>0$P9Ov#TlAvpUH!tItJmzi&fVd!C8@_2BIa?v`_S{*`$3@kKV-zBy5x)rz5pgoW^JpKt}jRDxvfGd@&8JoYQ7>NM -cUL_9(lML3J}kDx#oy~il>{|$tJ>%tRB(@nj}%QLsHzuWyPJ(JD24*P=SWoN#(Wm-={KL%_|GMGs1~C -6{4OJr;`Y0x35v_lOp#JDr-DvF0Ze5p1v9fA5!&nmUVYsY^g3&c0Iq~4S3B{oZ8EHi8HIw)?*m4fE3E -V%w$a{=d?bdZ`&5pjmw_5&fBOuQAkuir*oXG>^%i4fj{ToEj=xyj3wkrq2ChN!M^*tb2yY-E;R|AVwl -vNhm -ofV2m^H{g6Mt0n2~PY>_TiuTbqYIdKGVa+?B^z-pCpv{o%&($NAoMdk5r54rN${`Pj0c=!$BTDRhu~voKl_-%e{vy@n;nZF4t$P2*iV0Y+{dgX^cjxGkJUt -f83e_<$5vVY7JjUxXd>;k|8uy`KOKy?@IPou4;&T0nrD1MMj-LA@9t~tU)J%!zs+Xz0k!!HsQvcXXC=Uoi2hGk0(@J_pH}iu99rmdJco1Acb -6;7R=O_F(u$#`$lfoiu8*pEaf5BJ(AT=0m;264#hegcY0OXB8ITu3lA`Q2ItYH95p8~fqItcqdORezI -$sBW)Xqt7CjRMZ_k>3nbp|@B5*l&yqHaA9N03OJd!M7g2+vvjsSMR4U -fn+0+naPNY?4@UBe-ksMS0As~6|<@57;w7#1e;s*1G)Qs3tNhG7R>97U}s%5PpEtW$&R|-(qy@=4dKA -RDnD_=({|2FC#L~>xPyk?t$(rjs@-c>Xk6@hLkWMVp7FJ5@x!K_#$slar1ImvdBxp4xw2C? -|8#*H!j-gyJfe0^}0fmdWG69$KRxGWU9GiIP66XKfojZ4q+IYPdCA>^1aZi-XjoFjRLhhnZ`d(CQDmOCx2$V -X0^Q5OYvhZUK_t>aLeiLzVF^e2#sO{fw8A*>`tqG?F%wWR#k562h=>ETx>xTQr8Vw!%`NKhA65Pl0L* -NhyZ*j!pnn@;{>4jv1~I=s{X2-EaT28v3L%k0xki%sPsbJxr!V~IiSCfFZ`$-{x&Zqe)KSS1Pj$@Yr5 -}OUPUL=`p0)F!eP2gDtxPID#?X)M>L;&iCuv`Tu2T5pbe$f=>dP7AVe9oPh6Y7P`}TmS=s>`oeUYCjy -!~bS>vtxWqX%~2=^>}1j|AWYV9w -$!W-R&`)-ZFGwS5G_XBeTxk6Xqrb4qjtU{S7!?qCFsg8OBP2h`Jz)jiF=2Q~=So;@3d_}i+c+v-=Z<` -3t-5`ml2)J`*|L8L%RT4vPK)kI`;sqN$s*lL|Y3}=IWymk3md(qncQoQ*3sW3i^>=l7_|8QKY{6M1Ix -pw$%Ah54I%f#Bm(Pm=pOZHdTw}V$ZCNt&81Z3)06P(D6`G`OR}iUEGO}O_3+6*UV{Iz!7=CLyH -9moKLeMq&;28^kQ9xQ2c|$I -iXBM@@K1Yx33lwy(8o>Xh(b(`(K8e}@&KTZ*yZQ|Qin?kweygllb4kGa2@m@CK+^0!0jv{h7UpYPI`{ -8#{8JNCO(O@JB}eAnzP>r`4xE~KOQM)eoV2U*8EIZnTRCd -UwcR<{sXU8@KKTzrDW+I;mheMt7m+I%s(Fj_J-;gD~&EBP#9^8ceh%Cl|EcTBBaeuv^|L&;8v*w?W#Z -Dgn7+wAGPpIND+ZWj+(VHD3d2uW_3;ec$|i$?qTTQn -RIUqgRw9w{P}hMi2R_eiC)K2htq)OtWzcB-bQ?X5pGo4rA!j;16)Le|OLQ4%>f+jHGkNX#cqz#dl&v? -J#Jp3Zf`PWS0i}V@d>Ya4Q6^iVoybME(s -w#kQ2KTM+Vb`1b0tWNGl}XlJc2Ia<+BShVa+z((nfurcIb0c#ea=B^ivrA!gni)5<}6L|uO*Q*1~4H? ->pHa@-|iT_?!qoVsy_GT#K{Xu&{|J(}?VXuNN(Ng~%yBOg2nfmWLjy&^alz_3h&4(cScE<=@+g=m9zK -!av3{Vq!;er5~0^_eHl|=dqd+!LnScP)Ysat6(dSRfV@P-)Q_RA8IlhJXqv*F&>^EkH^jWwOI^RE%7c -;xO@nh%@LLU|5x-Wy~cm=Ss&34#I#$Tq90$bIa*p8RLNh240`SO&ZHInDx<6|BkoDHOHI5gdG@;mEkv -AYu1h!ix*2KfK3PG0{O5D**aiRes%MuAk$IbZ}J(8G6X<>o -Er6`rb$6Epx6g6ufYA`xlC?xw;!u?@%FuThI1&dtymPLwzP~+ -VRz_cd#47K3FHqrq8*|F{_X*=znqL3BL-JGzZQFoIw-L{bF2e?o|#7Db1R8+1%n;rPdo8a@ -gPnm(v&{0X3r;!l)ydI)&2^yktf>M-QqE0+(0KDw|+4MiN|S3840rpc1S2`9pi0_Sjpi;wfsLs9fArE -i=blVnFc_Q%e9r`v~DYko+Eciv8XJPp#%2-?od_x0~37fFB8LaEObT6WOt!}K6Jn#*{0G^LMdDC8)j5 -cIE#BKC9?MYrJhj;@+C)sURB#-6$2rW{4lRzv&#Y0Q@&qV9peEJc1dpxH~2^t*!Ss6>EorHCTY0pCOEj(iU{%&6#dcMYATCCH?;B3uNo -d^hj`oG6|5{N8s7T7e)Md~XWC|)ltlx>01fy(ucRrgCmxz~v=&_Y4e`XKb47oRa4&Vsl54KDVQ%XMdy -b8^KI+4o;Rm-eC+gRRm{|cfo$z8XJRiMr29C(!%zp{o_-0tmx(t8d*x^+T{3HuOV~gVJ_rBxYY_<%~- -kF-Ya=9f}A{+J8{s#55d_DOC5Or~}a4CfIr3=sgN!r|cslaV5?v#n6SDY**Do0AJ6?Q0A!xB1sUJ4S> -d|!isP=LHi=vJh;=;XroAIm}nf(v8s6#-p?--x`BTK*a>kjKI>%YC -W+Oo0xPMPtUNgddK|mdS3W2Ccjbt#k<)kb7!EtH-_v<`Wj!>G=4PN@J;Ihx67ko^fS_i}H9& -!1`A}o0k?v59nBTlADmfg@qJ;%G!;;TYh2awo590v$GT`}O|KzpD?Uo^N0ZLHK?8LLaMt)XGe3M3x3% -(R$*z@z^)FlNKuH&qAr-&5E61oAn*Ku8PAy{Pi=++y-q)pSPzzFq6n;syd;3=QugX|%*<*eRhATJ(Eh&sp+#A5%Q&E?@ -s&~G8BPZSfF)VA~I|v7?g%@5&dJQf>6XBS{8@%eSmGq!Y7f|vJAbY(a)Zibr)gqGkV9*?@Z80KYT0#BwBQR2Dn#-tP)>gEoA-Q)v}8b_!;r ->R1g7o8saO1Hb6@ORJDT1R31d7X^UOTifmwkA1}|$+ymnp7KXAv`poa+vEZm=WU5BkLKfNO_6mr(-7{67Z-djI{^uJQ-e{5LN14Hp0M5`USS5PeeZsr;zFbNW -zA#GjOeogVDS0%wO*;uz?Qj{F0X{wXrO-QXd;13dyRu*Bne;bPOvCAB?VFPqCwhPnne1== -l>ZtXzk%JyK*HdY)#Qy0_~InNd__ACwp)M8P+GWhOYTO6LlhSLFU50Y$8dcgWT0E -Z`)o0J;Edt+oF$q$Vy-PtXi@;vQ*3RX^9uzhiL0JYg^s477IE|^4DqC7V>4obm#9`Udp05*jF5jwOIJ -ypNaUV4Sk;te0^R3)Cq{y=?aLMP;--bR0FEXt*;;BRzP|fO!g-}^s&zO8`9u1FmqIEOB_$DWL~%^_(>hFJ0=Icio=>eSf=ch$Iz0}P>8?#yr}uc?Z0_aXTqw>#1jd706O=}qcxoea{@nu6@RVekQmsU0i>=SebE -y!(Zc`@h}1vi{o{Z89WCD9V)`9{RS*w@_3N%Q_KJDYke2|^UEj -xrR1MTJ}sg2=s)eCuv4m?jK#=7(o*6;kmG0#IdmK8&a-}QdW3&$C#mGXz#U``)`fnWPSnw8NhmX_)T@4P?<2ZHP8^F1i9oBTf-b{NPma -&f08K`s+#dk=H%H#S=;;|BuzYRtdW%^62e*i@)7MW -vys`Rn(t@`+APpToLS^l)Z@%Wr4Mp*Ub_f!=W^*}uQV(o#1Ex<91YHap<=!V76P~^S_{%sEF&aL-S3^um-AB)7>W -$3EJqB1T?lw@G>}zLz62qr5F5_2s19bw)uuAL2cVqhd7ANHKV=gauDdWiacIk;S_qBT@x8fLBKv%bUq -nES17N_d8FxQ90pB3XJJ)3@`@i402RJ_Dj`2=f%HCjb^BYG||ypuG-jxz(%Y}&H}QQ`;-CYMBMKK$}{ -OJrW+>zX!fSW>nkV?3S=fOQr$lHbn%3h@5i9{jyj0e%qF8`jGddc6^cBy;nj(7C&whgO%6O*3%%OT8k -!<~)Ne>nM3ipCXWS>cZE(vq@k(YC=7oZugcNuBUE&Y=iC~)M}n&nPS$KjYVkN;U5XzNsX5h$xuA6i-wRmg)8>&i%c?#+UGHc!>^#A|FXlJHnBWbOK-`nuqd1KxRY1z_*a(S_d7?5WSqN8m^8iBx+0;pHdO@3>dt> -QytziSxL;BL~U~gnqpJt1>gPa!F2rQ@0n^yX#N#h8B^Z)>^k+JE6<9lvcrk={pGh`v)+|7&X=Kp*vYS -{t+*}G#|e`!THbUe=`4hg7!Zx3P&KCAb&iT`M0k0+hNVWyvldZ&Ikz~@jxVkA^S%Nhp3+-8vO|nNIxF -TA1bwTpB;GeFWl!dj~0K9T=K*2`R6M94^HhUc1)TPhpZ8yKBpwn2jkFBD>3`DG2;V#b}T#W`I4O~{R+ -|WLm9b)6!kfJp^2m8Nqm6t5b}Q$bnX|0;v=Ay_G4q_+feGD$<+(%RhxUX44*iIBz=uSAQNS$wMb=M>c&*IFH|hTOkA1iN&#}|Lv;1TA -z`wKnWA(s4k>*yKbEt$p~goGv9#cPC3`~>U=LSZcvhrEl>A2kSC8hp%=K5=Zc5-?W59otcIg -=9NxM6lL=s-QevgO0$8+CilHr-VqU7p;aIXG*m`0vGEwuBbJ_fQLeFnmzWXxjWH`r2`LhyI+7m_{+Gs -%2(4u-l)hLEd-GyF_o4l4{_@%9CgR_V&XK4Y>nQN-?5mXwBHsyu*jIDmBva50e3NG1#nLw*zN!cw?R% -COsds1EatGF5SRFBY$j8i%+;QZzbm4A8Hm+4%eQwF|0`xxjKR|yE&s4nmQry5h8I^;!^%JS^?-S%+UC -m2HH$tCWz-Lfs%bV+uWu1L2O`@43t0UWl$7ym?50c4frTJy7x-SLa8=x-2aNH@~kbdg^|F`2F}w<&^e -4pn5a-bd7VLPQ|Ws7A=Ot8`aO8hTv`Wm*I#C&HVw?tp!!x9udI-xB4&^dM8XUY;CCz&sajM7mfqKoh~ -4;AwHA!1n_=k)>&(!P9^Dsw1=$LCwPJ>^#rdg_A48^Gi>_Y{W9)T$sbr#6;jt7*b1B@Rr#*yd)BTefg ->AnGxIXC_Gl73Xhl?6fjAbitW%JXyFJdjH5Ii=uUHe5}*X1q -Hko34&WW4{axYI-hF4Lr@{RlR$memf1(rCo>uv{aB@Q0JqR@wMA|0#qf8vg{a>uzE@hbe2_cM2C}W38 -{^I~b!`7KVd9JWbqDKW7CXlC#!9hwbA)p@2TCdE^(w{Bqd*HRnb9gVVT}8S>ce)0ibH -i~LmtwS*EB3lZA6N#th@@jZ31;A3Vl7y;DWN%GH|2r2O%CCCJiM?|#9`}t1+Eabb8VM6RcnpNw`dZO) -e^uMEMes)-yhifOutetB4qCDT>AizA&no0k;0G@v6o~(p1kGeDtE}sq?Sa-QdJQoY$yMm>e_lVobC&< -ohHv17`R1mr+5nN_{BZcmxk#&c>y%+N}i^N=nUujF6q9rN_axc48)dTc(xTv -d#X2NobdVbr)G8NC_%VDplxyX>=2A%6>u`j(rzh~*@l4|G+324guz5K`p^!EG;s}kETkoP9Iv%V6T-j -S=Q^ac_86o{-TuU*ULp9B-L)B22t;Xk0dc7)6plP3Oa-|d!$3ft81f8Tu1Tje;X9Cz~YI6T}jt)xl37mot;Z1}cZG0# -@ls)k08^r!H+ffV-2OvoLy$SKB;^EVTuzqMlSnejIfWZ#mTGXE1`gkIV+fkx;D}-CTvFw}lX4J_aL*) -$-QsL~%mI-PcQ5ehTAI2YQnBO$WF0-14%koyt2K-Hf{M}5f-;xySx{31R%h&%IKhdS}K+2(~J-=a35 -#vJBnAJ8!i$)|HmheUrnw=NYTPO9{GS&fDO?lqL?8@K{W91R1ohDc5_`8{k -)u~|q02FE8*cu0QBsQQadt`GYnvYo14@<}%?l+&=c$Yj^mK;T4P0Ha}Sw>?4S^E{NMWxa*zbY(<~-Ox -l-ULN;yU&(3Ey{vHAr6%~d&_llM=k8Y0q#XkGBdxA&UUbcM7{}%*(jL)6?&u6bhRa=>TRsdEy{=|?9? -gBsLx}6Xs$#ni6V=>VAnFry+JDLNZos6iesE0|o-?c@v@^`Jaaw^hR6pmJ%rL%)!CgVCbGsDEb`d)`X -?nmLP~p;@k}*HueALK@(BA9vlZ)1MHj3vVx~x?`IA@$4=RVgeFn^=sn$%viIi+4p!KW -jSZ9J{u-0d2Scs!0_$fEj~HLOaJiln9eQK$Z2cb-Ul&_>24*sJN -A7$u&uo2SU35np3`G%N*19$bO -cQwydaCxl?`24VE+T{prKsh~zRJObW8qz0={#bK8LFofyPBzv$-td2{(N6M^wyss!lxHCv5>># -8=#46l+DR*-YNHc#^TlrN{OjH&SyAmHM~XJUHHvYHCIxRCvF#t38p7zCOUhj=fRHFhLq2vG)|px2r$d -(lRuS3B03{%sFI8p?uFZ;CHG4dYpqFIsvn=m=QNG&d$LV3446gFMJ-OuJ+pTxiDQsQ$6`KAEC8E5ii8 -kda}9(R{`u)(+@mFM>J%%!evT8+zDa=}kI9k2496QBL$ay~z?M`a;#JGU?MdG5E^;t_##@?6ubI*6tq -WB%mcBdF2p%MIvM*%2;S5akLxo)|T_>)x2){E#=$0aZ37^s<7*fCnu`SdV5v01)LCoR~$}P*xtT%%4| -(dM1!F)Od9MH`&%j(YEdALaV0EPfKO|{>$yt2>7K6NM6*KP0LYZ1cm$5}<0DFkz|vWyp2q87yh!Ht+E -D1a|B}(RjNNNg>4^EM(yy%}*5ScJ-KyJw0#07gKA)%!o@_B2BDk@U$O^H51Z!Kw)z$FPrTOCZP? -(l3RSvM`tqBCY{B!G`J6;~2B2L@3;EhaSla_70z^4<;et@bY|}U$|zRo+r8l -(6bo1!MrNadFr)#BJZ8Uxl5WP8kprhS0Y8qo!}%&W(iWCw6ES@t9y^6Xy+#P^9I~tI0`J~jV@uRSSe#x@o}qP4QgfSak;&;ia+TVWOVej(7hr`kB -?-0oCjeaMc!U}9fpp`$EpcC?u};02s1(-{~2W;pNjauX!N5S{FG8y`u~?=Y5f<)QeD87_(QSu<+1cS!u!$qU7Ae(cM2bH=3p}t1+yZ5uSvTygf(rFAkr*ZMJ?ul-W -n6Q(nNEG~J$Twr>jhzVTSBt%}Yd6ygDgY*$bnd0P;Qh(>-teMd84#ypp_fE(|-}He7#;xV~LX;mq|V3EEZ5e%o+|Z*yveu5qT{QK_ -)OA70}9^K^lEWoZ$Yo5>dM%TwJ)GS4ghzBGO4FD -HNnRISPA{ycf$mqdP70Pf`A;9QOun$_&MpQtR~HktzxIL-EbwA}-nMXe))DSSkS({p9`&}D;AH(7^%Er2VWmZ9DAjQLZ|xW1*+CC6 -ghXrPw{3{+N;N3F(|5nF)uL2krP$lx&puZ;H#n&?P*-D4xmW=aN-nJGeBulnCz9zm#4d}VsFZAzBvUa -3oFgai6E70XM`NLj8p@otN9TNP*jT_cXeMq{Qr{oUdxVZTd?3eUvb_Qw}m(74TKloL-Y$ -C1VRWS5MSS*GG|wvs%>uHHqjkX6-x_YCR%7_jxoo`Tn7P+1rwADqvS*vva%>Zkh;^WduzqwyJh)HajD -D`REuK_=$MU&{-v9ut-Jbd;P;wK5d+6e?tH;(MQYD4fD$nM%TZ_ -*#R4-ywYhc`@`94}^~tgZo9Fr_kqx8@6MnfCH^!faiI~GKn5!L>z|@Va#}jmJpfo)J^js1%wQ3OTyxo -MjKc7>KJL1d?>-Ji;`qH1pIZFRQA?N>a@;0~g^j}}R#lO&&uN+3--~Lw3!gbS!9gO*Z1S*AlA|BN(|J -m!S>{fp4{By16|D{*@UJm*vSNY3I&@}$!a=;@~g?@ykDfn0<+$l_vA4`Jp#}F1KKJ}o#mSZ{esqw>fe -5XO_m+tiRqv3)a<(`K_EqJ7#sO;-1Aq4$9M-E<=LBHW*MRu%S?i?>eK04Isu@qWB2fac*%4Fc@0!Ql@ -esq$7AFGIr`gHc^M-Lj2A95`Fg^7=L%b_-w9Xi+W&hP$`i?Pe6M`HeyO3<%P5I>O~i*r}ty3zeN)+4p -%^oNQWKIyDB?U;8QXsyH_y#j}Xqqh^CYzlWU6gN8i+TJy){Er8J*Wfx9=%PUSL-C8Mio7{_f;UE<)&k -+1`DT0mjm&+cQGe)@px1-M>5dD3sT@_mHlZC$g`d*VU*F%~xjo>|?(gs19`I-P_h+~Ft<)6wt6Edqyi -i$WEMYCbE63Lp6PUlSnNKPqnq?WuEPwuUmIp+IHO@@&gmOW*)!|0k&bv$F&ujN{=9!*8ka --uO^N8SOuoB>ODJBBX|&IoF+7hTFwsaqn+36H#mu+Y_d*0lF2FDu44M)dWh;{C21GeMdTLdIa2OaTQT14DYfK6 -6JBr9|_gchaSij=XTh>4^!m&yB%Fd>IFlUFLom7D9Xf@%?^0|s3#dI*(ueNq7@M)A*9UNR+F{+zJ22_z@HJAU#@ulP-<#J0DaD29TqNeb$trFG0<sz -l_zibl3(D2)81^$oKZ<%xN!DAgysz-93yFS%ifSes@SHvGvgv`j -*Pl!lzu524QU#(iKvA?78iI_+KyxQak?bJA4rBK)Roh^Pe934GaJLxF2hA5FA8)35nUK*$?|Duw=)INS -q$Q%YfL{&k*Q5G%ohb0@LQ(x~j}&g5DCqt+aJ@eJF6YadGYB -#DI>8I`cI17iTd5(^A!Pw?+jyi;9DMPiT&#*BD -#Gg;(bu;Zs4S&}!VHO;*I$Wf-I$ALJ_k_c2$z1>(YOku3bg#wYqj3Izr=HIPj@wTWc|t(qIE(qHnH`m -s&k*SC!QF=nCfOB`*?K(8t3Y`!>k@SS6v2+8d;`KA9)bdxJi5znjkhOl($}>0Ey2Ev4ctaO?Y{S1nY6 -2zJK5l@RyOafyBIO7pjI3!geQVkrR?LSz*e -8$y&G^CJLWdlD8ZMfO}S%jcA;431|3hJ?RlCjJJRyyA#>mAS9Wu3Q{V1;f0Q-m^Gkiyb4f?#*ywD~_s -92m&w`=azO1a_TD$@OD3yNb55NihwZQAX_9h}3AK;#zeCk{5b_^?3UjDyF3s0-q|Rg0(fI31h><|=J8Twb)J#?nz6l*GnqkA -dX+mRt}5SQ5!Y13ThzR(fjBL;R2xe^OiZ@8oCcbQDiu3*Abg%+n&=GUD&}$?YxS**iq;fZTdTzrsMsh -^^&s#-&Mrb+Li)MBVt5>7+j>9zV3xh1#coPRPN%^xhOH5r8@xCX2Cd;)2;7z+)bj1ixeJ%M7{jJT`zpW$J? -bU7+7hikyh&b>1@WxAV=+~p74<4kPIX5@Kz>vUbb4BwgJbXUVkYe%1UmtTpzZWHN&hQ=n)CioVfAkh| -7*DZdgy;4_AeX#cT7w1qlN+gh=IV_C;CK>HjNZKkP!WpF@W&#BKdW}>>fy_)W?B(k0n2bgAjPwRqxnY ->~ZL)Hv@)`Dv3QV#=&D_LVbi#kl!sRhig}*^l310FZwH3xQ)Q-m)uchU)XuscR+h9WvXKI)|R(>xC4ugbW -E{C>HCV@`jURJ3pHH%@kB+K?9LOZt_}PsPuHY0E}04fh+{zEBvzZ%^+Z(}4qwk`MffZ~dj3@6vucJBL -)=v23e`cTv&uPYh0$qY(te!r2zZ)~%I9ktv&nQ3XM{>l4&jGuiEcvb*rHPv&jFpSo3;98jMf^2B4mX` -pbcsY+*&|SVE6vpjr0e?O^`cYzdtDLg`d|dOJfR0Qr6|0O3(rOpT~JLcVq`Fhr0dX_z}o$cBj5dOkiVt$ -PRIFXz602UgYCmFX5hg6-}_9^ -AQ4QlakbrACu1&fMTIa2-Q%wlt0V75N)~?z_FANdX$2H~zCl$$3c? -7bH1jnZ%N*{#W{@b=#~Uff}mt;f3j0;bmC!}R6%_>0}TiU<3nk5Jo5jK}Z<- -Wri8XkG7CK_B{ZU_~;7|AI)#<2w4w7*7$&K@Y65}{<=SN4{UMhSews3jgVP>#I`$*qRA1Y?`C#IA8Ri^5qIWd@NW5mB<$dtL=K}knKlD*D01vo7`Y@?O6CvBV!ydR7pXmByH-RHZ%6n -%YWPD_|4`T}Q=-2`OQh|(*53qs0ulCEdeBEc?d8tSK_G^%qz9S*PezGCDq<0?Nr-D6Pi2i6%bl -uc}^gB&~%a=T_bmVytNy_>` -n)D@$`M`!I-bgMBqUV5?%BvUP%n6?aS7(`mYfd2dLdInUlZVkvvu@Qnd+wuBDap;BSZ)+iphy<+g`#xmq+7sIY%lS -Jr?V&4SF;Uu>Ly7Vs8PoB-SlH&z#G6Q^EkxYL>ynBLhTV -O`czu$y+>fqC=mv<$#u0-K`u*ZUPunaIb;u!6ZtJ3p5_s_*TmSCX2;n -d>H+^V{lK%e)ObU<$Z56lbBmLUW7Sdf}h)`ax^94{c~S+u~?!OJNL3>Ahg -3((f*k`0mxQCK#7deJh-ifGVQd~g#`&f!_&Q5($pPy%tz^l4y8O2l~ -t@~Fn(9jm@N$9PIsdR>^7|bOb|HvR$7ZV?=B -xt=ZY9dbURJZtIlVvwf2Q?JKKh_QhR^2u&38mYi7%B;-7^PEi}zBQ*`x>hQ#g;)RjAk`ZCmp7M|>SYI -0a8Uv@iwUx(Ia?ck@`HWAjOj?uXPEFpd51aa%@JXmSGX=ZOH%r?I!)s7AHg)1N4<&I6IQ+D}^KyO7CC -W5)CCthboc1q;SH@?Q*2^xqPh=w|H1RrbxAiWH+=P%ipV4i+vlgJUUlUVAf`xC>Vz91$QbwYWl7`WAu -?=yYU|;Pp`_d}lWTOk2V0-UN1tBX4&69)xVWpZi%ir>&GeDUWH;na6T -aWGzXkIp|O5AFn!>;MQ@X{383Ha-S*k=zj9adSLp@x#o|Pxoq*FkQDN)7^hhoGzhn9YXb&K(tQCSw!> -^*i^m6ee!zir*>&C{1oe@yDF*|W)+DFGsi{M%QdT6m8eXmPBI(dBAx2@4XocYxdICM9=QQ|nU@=R_48 -t^G$X1V&Rx4+tQ(IwMbjvfQ*=hQgqa}gX|#4#^u3lUf4_tHa`7x$ilC##cYl2>vm00Gc=>aO@SpDay# -x5$UO%KONSMUHofn}5O5zkwg1`2T1`j526hP)jB7f%=Aa!(Sz&pc$j+(<`*&9Am1SI@#@HdW?$Z;qUA -LWw}_Q{15M;+z_$J4f*RNS;9Op~iIdwtOf~k{{d(qK>M_ooem8 -CnG*yEuVT$7(RI3PJp1#u;DM_i=Y1B3_7}&k8;X=D1S+hL~y%YnB;rzLJCG5=^O3b>+~=EP|VwZG>rg -yS!C1ISg(~C+k31(X&RX}*fJ)l`Kk#nm+zSb>+8000sc^4$-CbKT0cq@?xG*wkz01;E4Hr!t>3q)oV0 -Q`+62C3MlLSDhZK=*x^2938T0Fm&0Us7bh+uvC~usm(%;KBxnmpP{k-t*9ZTDPoAD&TGoH_(`wWKnDT -w+W3@A2gUx=~C`gdX_3u`kj*3~HP6Ix83lkvgYYZm{S$x^-DA0Z%4wE+Qqf+Tgqpr5f-lTGP;7;BN+%+zx4k>QfBu(Z6#Ok`Zh_dly%~23flRI7QJ_gdD -Z{leOX+hQY2~DO#uxO;_&7Z5yByP6f>q3|%Rb~#)+>hXzqgH$|Td3^gyf<24cE`Y^PwO;v5Yn7eRMAI -$-J=i5x|%Q^Nh;l^=0Hc^7|;GVzmL@Am@b7GO2Bmq4?$9K|E_bX!@N{(5iXbg3uC%Gv(djuc<{Fn3Fj -zKU(vlCfyn2Z#BXN>7qDo(mlXz$zsydv`PhuCW4T -NQ67>QMbmzpOfy%>Ft))M@;1p9A=sDJ@U5>5np~&wg^60`UC11Kvw9wGe -ewVah(h|)ywBQ~;+2bdWmJImWp=5emQ0dUzndbgGxiB+*p=r0=57a?AFX{3)L1Z33mwmteC&$r%x$I} -+!~Kl(dS%KZeN4{@UxrYr}hJYXx`{{mqXix&7&w79*K+dA>Czx=1xPL{%^BzH&N~*E}?f3OK)3Ih5&Xw -;yQl-|q#!KXMDZ+~lCInf!fc(Dn5$BwhDT1E&RSWlr(RMXAq=tG^`a9-QT;9H-_`waPcG$mgdlb1zgj --t$d%6R(dgiWyx(5NcAUJqNRQIbu`3n)ERCgI@HY=%UR!KHNyq4c;^qE4!V$#%&if?((0x$0*i*d({I -}Jx0kiJZVEJLr3!0~17pXKDvE!Tbt3fY)7$TpK;)HYaj>-0f>R~;=wPI}*EBkGQ(Nd^ndW^dxe9zj2~Lv -Th3Q46e3d?Q$575vunLgyt?zAH<-&{WKd<%dcJ`8OR(}Fl&VJ`YoXn^fREs_sZ0IyRk=MmF$UWN?h;g -HV3R-D+e0v5IlveiUMyv?dq0l~*JL}bJdh!$P{tnbz#eXuPV -jdje6=;be~WIcOy$d|Afh5g%nl_Lp0BL#eNvXKoRGOTpa(1hz2W)h8b^v@H{M`^v%n$mR1QmKE?ZnA{ -SfK7BC%L-@-!}d)@VrlGr8C=1-XCdsQSACv48i#A0%OaJm`yv;64!CXlbq -Pt?b#>d;Itj=EXuHw&lfkrqYCBcwR=h`!hZBS*Bczs|{{32J|R*hGMb;Y5Lb`pJub-BM2#K5EAX%A|s;>gn;7LnKyJYmT(LKHg!Ci1gPihq=iaOh~Fr^tWfpQ8?A#=kUU#6XYBz<#yB;^nt!DKt1AAdorz0T=J7?1XOA)fkI#;L?AHp{^{I35Baz6woz+Xfs3zNMh9NoC&@u&zC(>js6ijcezK78rqf(IaQ)h)ME -OzsMCH)|A98SGiUsLX3X9HnTjVRzD7pNI;B-!CtIUG->m=Ig?V&17!?NGpYFMBV_0`uoI);e{O3TLZb -b$D=$~1V4u1EGWM9_O0zjM_dC>;W=;E1Fr2zt8(3ut^mp4%5iIPD#9>0U-#_G}r_&RuDUHyvf=8hc7~0k@CrkP+UUn&qr~&Ci -}EsCnW=3wWk3DZVV;~O56=u!i1tmqr{ykJWT3Q^L}7vXsg@VlPM%n3Gn0+Gw4_oe5#@) -CGk29(d-BtYFGe|J%Ffsrb}MGa)^Y9B-~6>}ZfdqDg-ytc^eXRX<646k1NkKl^S6 -_v9PkY7oBBM>#C;5E;<}#iTh&N!=_zN@HdfmEtO^^n-(z!K#R@|d6fdz}(wW!7OOtd5P=~h)M@iY`Yj -pBf7s>gJgXJ&WE`js*`%bH1vzcr@`C=BdQ`THU)by7aFH>IVC~y_Ev{V4-T~c)*M$enZ;FXyqmz{eF> -qQ9gBKF48oK7`34O}5-$}M3Z`*S|`e#70(r`6Wr>rEuDH(wBK|ToeK}tZR3*J!aK_f7*3E^l9>sM13(80nL3v&B{dJnTAdftr8L?v -1R-yK_2VhCCLkZUMVBzda2do}k(6AfJbM7R#Sy!`+QkOI{PVWtEkcdHAr9{2L?o6G`FyaJsb(>QpZ-v -Y`hs*h`1U_PdwS%1_Y<*Z+$+u-|tms`L$p#W9Q>H}(wr;XI>8a^g0EC%w%_^(Znf37W?=U0xj&QlrGd -d8Ob!*Bgf7KKm<2o!4Z-b`FE4hc})&OGR?E3(|SvPKfmfAv?h|@VO`AWjw8O87Zh!<~qN&?9$?&A`jq -dD*ES|T{oomuXQ+-ubFfo@cWa;=Ma7!z5bw^ZH6oo;V|)?!6|+CybRmPoZBD&HO**mB;n@baTgW{hWl -#cse7LsUhpBq!E_fONOjFy4&pmP4&yRz<~W;d;hyVS{=(zOJ~LWnN)mUUeloV$1yvhy~HK>bRFYxmWU -WUQZLUJwtpl)y+W?3xigd_7EjE9GO+l2KPV%#nv9Jo)72e{k;d`iOHzoKj^f|+d8%%T|UI$sm$w0rT* -cKpV`mfJLEg>`Q`3EEK^eyh(Z*O6DR~yAOsQ=j_#Xal7JzCAaN3eFzlB)jECXMCw~cjvYQxwEL+3)R| -b>9M;G|l<|*vo=&$?KQRLt}$-$nEl<3jojvw{kDRi`3;UBl@L)Ygc#gCw$nseev^&-DZ%^pg@AOGtjK -a#`+dDMav#BoL#IdaDFM>Y8P75+Dj9t;Zp(62*QI6wGaOdNM{c+?=DDs}i+M?YL}kbjfZU$P_pNGZH8 --`J5w%l?UfvWU_oYrfqt>FcR%(J$RB7C_rLS7oGc$xh{H>4|;bN#H$By>ox)4^maWwc12zD;K8rNK&p -2x&eIU8)bI;X8Dq?JNrQodzT|U`=ymh`f=NhM!wl(0bhNx+{j=1(9>SY-Ft@)SA5Oi9EynkPow$|1+y -6#P=C{Z{>%1r^?JhJ#UjPV7Tb|m^au}lR%`_Z@{$tDDaFSG_JSI2;zC@UWx)eG?G`gBOk_F*_d@KRH^ -slyI3`Wcg+>Gq0*Fhm1*9NSHq%~F;bCpKEMe}#_skjRQ_O?XdMEDD)2RhATAMuT2F0O@!16;%_I}f4mSLEL_JB?K) -^qjsu5JLCgWYBJ2~7vZyM`qO>_T7jarA-n66o2^%-wpeOl0IfZmr)lr@a7OZHtlOO)Ab|rNN#vN+OEi -Q-4xk+I0;+hR+JSJyOrVgG~XAYuB>me4i*>ayz%gUCmiA=Yd0zCz{P@pd}qI5%;k&-NT0m -V28>SgD_%W4vP892v|4J8jeDf#}FZxkEE{C5jOkTh4AFwf84y;VL$DmMg*a(kqX|6d8et?BFM~rfCJ)c0`Z_;`tmBh2u&>NA%cqjk+Yumt$oYbXzF*RcgMmBaI|mzx^>H0Zcu~LiUHl -Qr_XA^aO&nKe<~gB51m`U4=w>aBYMqNxil`S^tUM4M&t+s -_@5R+s38TH_NzKBdvu#E`iNEY9#V3F=;st_rV$er^I5xIoU_tPsE2_l*M3V_1YDaz%6?zg3F0bKEGis -IBIH}LLlLMC3qT=t4A0@a+g8_sMS$;yMmp>n&+kaGhZvoF)TqBUmW_sLnh`>$zby89D6@^jux&E?rn% -X9Xi@ANzDQ8t08nsLxITQnxmfDkV8__VQ37^B=qzXCVZ_RrN5@IGRPHocjVGz7L7kOisk5hZt0M9IW+ -ltDE#WeC7TeRB=_aJ{?NoG;#Mtr~RJls1JLC+x~+cAuswH067+^PVw&C?kd5F@N-06TUqqK!3Na)#AY -wa yY4)7^r-548=BgA1_;_fH^xi3E>As0ar#td^8(1y8*UBEOs3!t=d9NW0kp3d!g8E*uY-#&G?8p -(hm=zKm;QLCLBTl8uSjzQa-Zy9wYir!X41QX<4@@MfHLqD0uJ_Q+g#3JGxU?29AxAEhBd)qzOU=cCJS -LvDmxIQZ)#$~1o0Wbs)wBad<;;1lfroHllIx=LFK?*YN)t4vVMDy_yxBs;uyOZD?fQB}6ZVFnIWgh9j -Ox`}0s9Ig_*6x;W}B}y-r)Q``abWznK%9(#VeXLr6ZAegWlVR`aXl_2qFoq%+_A4frkOwh3O8ty|#~SXj@Ak4oal%LvbpL=*L?)5p?}K4Nwh6Yf0fXw3Uqpkh0d`<*=FF_Pk-gz%?NF#A+2?q -l1}xNpa@W05`mbQ#7U0+)iH1_$)WWbNFPL=IQLJpME$QXe^R>}Y>DOa%||#=l~6f_*Hqv;R@lj_>8E< -Avl6{a4!llkX~%|EfW>Y}F)>oj)~*EFCe)eX0&7w}ZmzTbsBBx|1gcT!-u|j`J?oo4Ek-PQccP>JL}H -$e%vef$_Z^cdFM*V$@1p)#rDp&4hI)VNGe;1mD%@D&Oel>j*|wbdNK8-G`-pU&`1=fPA#8wf$s66!g7 -nmy7&eV2I)s&w_yHGn~IL?E6v$xv8wWXrF4x2K=IdByGU4QQf|8{NV%oJD(5mXCKht`Fwys`+)w==L7 -uN2lRJ7pMN9@j=tP;vv`*H@M@38@XOf^0S49Q;z^MdWnW|5yP4Y^v(E*)-fh{4%-NF|TX!1K247iaW^ -hHm&kE+Ln+SJCvWftURm(|w^I~V~%^gfkO^DcJf|9ZBV{D)+R(QP|L)oWs5Z~!C0+0O?X)u? -Tw!N$Sn!JUo;uoYS4%iCV@(jMZW51CR&Kn)Z?0%mS)?E=&_L*;-^h*((HwmDCKGEOoW45UGw8dFtDbO -G5%BJYXw$`FoDgwm?-D4FxHK>V|RsUQy88#wKNWTNl~=zAIyZEj8xQMmd+RE`t)A1FSP}Q6Y#lK0eLC%!9PokeC1#y^Q*t@826APpNPqSaTwX)G -C|T!J4wU``JL2WW?A^5|uc_PsaLE~oO6=|!H!O4CCbr7U3c9}+1-}qCn2=>qUfrFux)pGNqIP}`A8yFJVdQD8#vg=wh?+3&9C{If!S -p!bo$zG6-u~xNMqgUDqJi;bm(jrH1es3&{Pag7$kS7%#`>29*++T&oGVW_dkWKT|#bE&NEKWXBShe^G -y$~&kzunprpCzx<|mRijI580-_*wZjHG+ouDoYL(2eL+vi};F&-y6PH@K}T*##4c;28CAPDVZks#q&s -xZ=Ba`p{af0Wm|Po2;dOy8ghwHERFm3PG*-J=+urs*3q*?n^O^BUuH|Fh -R=d)cD!qYFJBwj9DF5v)Q`<+kUlmyb4jw?|ME;leM#2aOSQs%Hs#NcNV_iKgot{!-MQcU@FN!iKy!82RQ-`qD#13r{@@yipS*>l=sP5%4;nnHWjp6M_?!v)L{wY -p+hMtW2aNIMp~LAU4?Rq#mC4znFC?$PCbw^GU)|1iW>)VeXGC;Uqe)4+*qnQ@2los00#bl*;r!kd*in -sU!IRHtDAS1y}kT(oOJRN;e%#vdOV#o1;hn3Z5RlDIj`u -PPk6crl9SuMzb}ZE<=||f9qpAs_pXBRD;{x8oLe ->iwF(9+tPw=#FM*=^2LL(LjkK6Lubzvk?b8X(q!h`nO921>6EXg{!6u+Lpt-F>6?&K=}dQ}bdY`uxKuBFLaTT6Qde>cQ -CQ`gqBX88$H@2;!AFRS4Bx=6D~5&??@k!7L1QyF`mtEUcoB(x6lOB3HGo7>sotqWioLc9JX7^RjA;lw -?rK>S}N-E;r?F%R@~KL)VBzz+6^rKbP%RDFT$-48Ud(IMLc!ERdgu;HFV7Pa -94MjSS*TK9TdzJL3>__f?roE&T=MEOqRZW({0ZKhQ3PB--G5>G)J-z-0c8B+tO?jd?)T9=DE8S>c -5H!vLWmMzqq^n`7Led_0qnKM;;#URtn&)c@1Hhm{?jy71W0Wfy1b2vXQ|HOQQo*rK@E6+Zd1cT701!C -X+bBDyA@A|z(;#a%<&@O?a2uTnqMUW7JKsXBivSKODKhB%zfl6p{C?OG_R0)nBh_}Ptj!j8&R4?tXv0 -qm#9qE=&vIO}gOThH#S2&tCp(B%X2sRVP${dOxS2%XS59x^gQt)r}3Xx-VFv&k_Y3Ol${An3YkYj8Za -zGsQ>6IYyug+^b+>sxt3glD9bS&e2Gzt%_CJ#Nu0zF{-u>JgN=jxx_KBa&)l(1flar>`zs!t}zV7Xjn -mhbHno*5h^&|fEV!E3&(cpaVT-1>8yL?%$%A4RAEZjtvveQ%RMjx{-rby0O={#c!~|97!ZaT2?%;*Cz -fYb)_C4g@o!pV}jik^bzBwu9T>Hksbh!>gP*NZt=ZxxI}3rS^cfe>sKga(Yf3>cs -R(Xmac&4+XggV@6Xv@;BI_#ed)Ys1#)~P -1<^@GLaw6vxsP6V*;p5j9$zk((@`Zv^!b|42nuyU;Xg$9*U|t`%O#h(Hva(DUT%l0hwp5%Qt}(*$GsD -w1@ZUJrrAqe6TNs&s@rZIy;^&=6ox!)`lefeZ{;?UQsC#7p35oj#Rw1DhrY~Yao9t-{GTh7~&^H=z4R -HSgxTQ>V(yv+GQ9PLh!dla(-(({ZmQ&HE)@L8~d^?iAf0X;4;71F-o+tQkn9LIFm%1){a}pbFX|_2WV -kYOqJW8{a@ggApD8jCwyt9K0N6>zdOIBgPw~6A^g>UQw~d(Dou;5Z -zCws=>Ky_1s>P#$a>;q14)i^3L1#QQhatkC%6m!W?OAdjNaJ8UtW^e#oq(l8P;q$4s2?#PCIVEry|TB -2U!G`zwhBaLL~?HJFC31a+h>?S>}_j`b;Uk465X5fnBJ9@O?ctJ=sixGq7M)_Fm_sR$sLj42#?b|fFx -PiJjCHT0eeEOg^xeSNR+G!$gid{ubGB{6+dJNgI^J*r1=7{_r6#y|o&EImPlz(E|tP#i`u>nw -=6qEsPjD36*G*eeNMqE;6eVsH{rAem(NM71?2m|GHsBv*1Rf5@^H2gsRdg6*a%-RXEg1Rc2Zp|N>p8s -lhn@aY+ghqNBdXi?>f0TXq;(Hj5RJ7Cd;@`>H>zCulWdW!{Xuf!%B_r*`IH~}*5SIT0DqJaR+Zk&trwJ=dyna1PiivPh!BEp96z7EH2sJ4b2|uQjGUICZ4n`47i!1=W6rC7@nc!}V-PSmy&(EL-+-kC?NW#) -mmBRtvu_K!M32c{AyCa3lfi7D+k6ECEb6etcSMeyf6u$X#Xlm6@4ei&N=F6EgsF&y3b_wY#RS^t*Ov1* -LPq~Kvg8sng|M*yQbPeMg696gKG*E^&&QVDVM-w_kf#-5uPHoGv|ni@OTqa8+1yFUvQ@O?5a32XsqZ`BkDa7}5HUd($SB}Xb_WGQKA%HB`v-! -&!WIpu^pgOU%CPrg2uB}4Bm)g~UXE0vGYiH^ZsVowQ8@^M$@N{wpN -L#hCUu!7@Rewy&>&3ty_+yWH+fB?ag285%jRE1MoP79J^3V2O)|y4-lLNCtlArEK=e~xTNsN;RqIJ_O -w-d7BYX@fQV-+~4^MvIEByfPi8!}4ynp1|YyzflwY5W=)4%R<)M%}_KEiO&YQ~D696>_uWTV6$jjJ&h -<0Rv=ZfWwKFSD1SyMp1S#PE^g~k-Uj{5<9J74R%BloGO^HGX?Y1<0jRw?+q;CWj!~5W-|`iIy(;**uG -S1+1bzUNK?@1rrSc7RYfWLBw|8nW>74f8z=4*$zfkvBKuG621MnRewi+=gLz8O^xZLh$xTiV2_Zv4Ee$@j{2*n9;-6M>Ys9ZeflRL<}XSNOc5F*t3bG*UegHSxUE157_^CRt5jhv8vx6_FGm3 -|HP^g3WP8mBq$UkDQss|1d8IH6acl;tbO}Vw?G&tVU&Qe--sy0A4dT4Q<9N<$zf+lVqoV`dyEgkA491 -4cySP`UuOkC>S%t#Kg~mAa{SBEBU6oGM@&v&hj;-9e-&HKp(7n#VE<0Ze?q#_^P{i?{d7$2oGU>OUIvl-J^o`>W$`H}^D|RNBS -elkdfld^e=C}F^PY-E3_vP5SbRuBCImdFvsTJGbQ)ty8N%5fZa5UKt39U0P+-h`(Al84a^8GuJ>82*tfk6iuw<`TD9D$WX34oojXL+Uvc8W+{3okd}|y^$AF+5Mnp>7D0h{hw)K}E -3a={0lcU?1Aou&~ffD;#Vrjk~uW? -mS&Vtkc5teK1Z4mZ&gDCAF%^nTi28N8xxv0(9z$x_HuPD#+ZtV#)+Jn{N#eqjwlXj!eCm>-_rne^-`k -z8oM3%nN`f&{OS@y`NPKj|5+EYAp;NPGsS#(7`Iw<-CLqGNzB`_TC#kf -}hWJOF^yb<2XP^y|{%d#7#3K|14jlj+>V4XA!)bGm(!^Wt>j7J#`#<^UAtVE&6ybPU7PtDouJYS)jj{ -l>rr4{vedjRkeo=O)rZMgUB58%gm`ykui@)l(_JwR4HDoo?#DeylkOW13X25cMQW*P-Sj#MI2*9efpl -=!80{uu*8wvlF`!5mGxH{WYXe1Xff-JxWbBa6%m?&wm|)Y8jTx^4a&_zJ&R0j%Cy)8d`~L`>Qh5}T~q -I2i_CfR|JY0PkFvO2&c*4Ji+7m^4(?$LYUkF}N?DsVzclfi4(O6hRXJnaf7?7133k6Qz;K`iou!KoGZ -!>jOD$Z9X`Y!md$;y3ViB*#gU>G~zfSzNkY1!X~|0-~!gd(gyGm3Y2X=pZVZoVkeeGB}Yh8%H=u630B -ryUaaS*e~=Aa4#ZbPh{ELBNXtg9yV7nELr4UWT%Xf94YFBK~rxj!C!kFsm5@y^vr8Gq&=wr991Fz3{` -#qvhSiQvDQtJk33laqTkjevJf?w%ye_uE7HTTuHg=ecWTA#a^dYA^ewUr^OPBmn*zRee7AA4XN`FQck;nNTA{iH9I(ty>_pQ5nppT#dJ8378bO#Wqhi=qCElOt`c2ip4E -Fx2t|PA&yhn%4YUTiWLs51oMv??Wn%AMn%HZ0CttMsQW@Q1xYO#JfJ5jrF?emU^VpeJN;+P42cf91@_9AUYLqJzbID@p!*RK4KG%2tE5tt7J#Xyp4&3Q`4MqkuIc56y5gO*QuLkm$j&!HO~qjh2lEM$e?JNtRZNFv1bkTxwvj9;KRM4RguqR4-;^*Ii5&PcD>m5xV -~AG4`o3@)wi8U&OH(56UG3k2S%~Y9KKk;I7wk$bb?wu|W2x)NpkzqCg-;WWpY^i&Q)9#1BktKS -M4x(gxPrGsQi*q-$QXdFdX=c+|0~7m{OW`Iq4yT>y}-j!!Xg;*qH3!_sGG*M7#q5ob9Je3Xan6{SEIo -;qlrCC^T8jtzF@ycZdvPeDFeNNM1`?4C{iAX?}%JT`gph{ScCHN+{XQ=fBW*4|EY+pONt<+MY23+cUr=4$9q2hCxn&B-Jywnnz6eF -gH?bv@O_vY(iCI5D@&!bDezt9)VO -$;G11SKIHBvEjKTogj$C;}n~4sYNKr9cdYsBfXK9WaqQ`r7dfvZsPbcrU{3EkMLRPAq%3fNwyE%zvlS -Z=$aatf6mho(=eH$Y_@sjrNQZ3hwecXudeE_GyA;vti -rcC%f%-+NawA>Z5VBJgoW?4mxi*2m#&`k@l0k_eswHrb -gA;Ww<`!pplQfv@`Zr8Ee<(G?1~5$-67>bpW~adB0g0{E+t?3O1e({ -OLlyA)sH6!VwjGmU&gHQ7gQXxBmv@5c2&>wU#aSY1y+*O>k$jAdO;1f9uCMdU9L+57Xm-UWr~dSnXz) -^V8&-2J%B%)tIA417*dUYME}I`R+uA<8yR(5GO$Yxb)8$Wm9DreLeF7g?BRp0@zwTv_G7&Jc4(Pi+a*&7_;Bz%Zr5$Yd` -xiyJK^GBJrE#U*{%n!6u@9h`5bRdQm?C>h$+|e3744F>w$p6tD}BJ96Hj?am8%nScr -a{6fJlZ0lpbFJ}SyV)}-+vV0*;=XI(-#Em5*T6q>i0YKS#r~29@ZnvR80PBqSHqyCt5(vq5n{wLm?wW+H{ -0%Ap4#AMoymfNke^@dku*~I00p(217VBiSUSa~e><;gXtN!x`NnyR#oCOnd$_jldSw?%d23HEHQ;nQ& -E2#+upUw75McnOMPEEWFrY1VBv~ZWUh<&W%}+ZC;9Fi|a}sCp40mXF6`V-WG+g1b1lL5XzZGA7pa6Q( -+6`vi=!&j8Nf78}uq?y{ZSq>72)CsEIm@MXS}|b>LM-EDIduDmn`f@o^*R9LDx{#y0E_Czs^SDYM|#3 -Mxzf9~93LvttTrx=cjMLy+0E2jBr>13VOpSQgD{M3FMTtoo1wcUBBQ-~bkEtoDf -B4%O#_;~c@I&}_h=zPzhgi*)48p<{kb#m!QHrL*dCZb$ -R6Bm*Qdx^dkfibnP$6%%|FO1yfePZJG?;O>0X%FN&K5h#iI9Q7y`zfgvjL^oe#Rb&`G{CT -Ia#x4v^e(7Mlz=OPem27T99*UF&cp40u1@Lg&2&DgK#%~*aQ-+wTu&gWz5>1$YvingUyR?o$A|u&Rad2#VR0%!CB(y>~ne=G`kS4xqWDz#HT|H%SFt7N(?8#DQUD ->pRcgKqZDwvQ&dxLY%l3?xzRa+x*Ze{?QiR_r>*9EgU4JQT>)O5rj2CxU8oproD;&RkSE9}lejfZ1TZ -&6Tip)Qhh3n(}K=;pM8c{VJzYk2WpZ`K`l-or3L)rmlr6#|nOaC0qr@pv*S -rirJDS+tm7r5;!H4@9~3Z)eVxPYFB)fwgi4QZ&`emwzNyxk(km2u&4IKu1EaP-z>ri{A#^@GjI7Gp?P -9jMK)jDt*G!-Oz|cOfXy3H7u7pk?Xi1}LoZN=$wxFqsU%wugx0tl6?t=8EnB45vAhf?Uey%qDe=qZv| -lKoWdaPRhsNk%qDhyhd<{Wa=%bhh9nbbC^46wfag>J%5|s)L&%~HK3Ez?QQ|Lq52@ulp-W<7A)trNxD -Ow>DRXO%iU7-+7X`DZn`}mQ26X2wX41eoca^-VYp#?|x3-Mk7)Mer36MMkxA*K-ryFP{szsX -x$n)@X7&iE-*?A49{V!+|ecRjon<(O+EcExj?~CZ+U9?2e&F_H-xcNbtf(U$zBanRvA&DY53ZdT&9(H --0bWe6+Z^gzueviY+_C~D@i-YOzt0;WWu3=k1@a=|a;@y+Hxge6-oy-<=Y`zaq-<&Xfmu}oV74n|BlT -!OY!(IP6-Ffj;_8s51IlJiHzqYyE{M{|R6Y0sF5Vrlf3k+rZo)P#xA`#h(r#oXT+H0QMhQar2pgr25e -&3=a_}vMR^@+4nK7>%A^=)^QFr;l>4uMj@&G5$~{oY>Z1pbZR+ua`U -Z~Wfw_JCjTd#fr2y9T$o+rza2ciCV8P*9$yS&0j-G>=4i_(UHldmPUBB3k4bKO{$W_00#V>3ueLPZE@ -Um{eDTCAz|cgcFc==-3``J(wn+pwo#;4*dDXZm{}#G(3>#Q~f3gH#n0)&N!e356=toz@-is`q8=QKuA -s1aZ;1}K|1_u4QuxWz@MGLK#fv&X^J^5pW01Sc~9$tvLP)pnAmF|eSCI)|G7joJ%xre1GEB@WHTN4TW -_B2mSeAtpByboyDySVyqZ#ij3P>_Lx?U&6WQERR0pHEAl}j+n(+wSX=&2EFrFGqd&-!xc?{Qz&f`q2r -sb199amCur}Ta9&_jN7<=~t289`lLi7ja4#=CdfqhRsElqcOyN@+b_uT( -xnzl=~IAPDYyagflOb7XqBfI@~@811TYWQBvfW6BH#G9s@zekis`ED!mWVgh`+g$E>lzb --*Zdl3e9j`kF4^Z&H!`Y2Qpo4Njv1ysW+?wtF$ -4cWUg&K*i$7bl&yBr*O1c=ol5{EmQ%RSf-}1iWUm=nlv5r}z4a#Ezq+B?ah!bjPGq)MN`FYcsxOa!hk4?BA+ICqA(ZYnI$Jn#QK~fIP9qM*IerWO97wXzg9@PDY -aO}``P~&y0+Sw-0Z*RbOV96=tvDP4BUo6kY6cZ)q0*ghb!Ezhd=bYI?X&+djXjZ#tk}xBLA$sXAc_ra -N(b$~=LuRlEsl>4t`O& -)vI;|Q&l~#_18&AfEB`S~(yev!)$YTxr?8B3}Dh+PZ{#4kSMfSzOr7nbq;|*6GD^fxB2(VfjS&_|RkL -DUu@J%L`!d@GQcdtIRn2C9(ZWJkWr5FWi1%5$A&XxdQj7`(p3UV7VY{IJk89M}~SbB$22 -+iG0%ag~h<4@Ljm}CnC8)3xPOE{<0nV~rq$j!x_&?6$n%EHGPksr@)CDMc8v5&!115L+^- -`tLd&b`D9^rUs>p)1mqUg(3Yu^r`E@|1{y`);j|J?*U3^CUS?1#jKb5qERN?7*aR&SyNI5pif9Ci7 -7rhslugH8@Bl3fuf-wY*0TM+fS%{O|?Ng5vwRet7q!!;`f9Inlcz0+Fq9crXx -~#n*4Ae;26~DOL9xmK3jKobcnF?r}TyMDjAOGsGLxe8OzLd -4kcWAQ2aVo&i0i!JCW=ia<&1k3g?NvPI41vr&ja83k|_ET)kSSk(n8hk6`g)NFm5h8-WlU!C;i!3ug%Q9^?8K*apQr%!= -Oyr49BVZ-tayRtw*$9{U7?x5QSS{+?~e$!`-#@;wuqzEw>katBKL>{ocNhUNL5hNbd%(>l2mf#Y~bcl -#LHWP^v_gKhA;(H+|FzAe4Wf4y7S;rEz@56R!XbBowh(%a7C_w=V-jEvkvbnHD}7AD@a5|ABsqVXOZZ -*X*rgpnV&n!`J6BR`KXFl?pAmT|1&1D#VKvBj7Asr^f;cY14v0mWAnpG;7iPb(dM2>-4&e@mCp6LyKO -tL+IJDl6(;&?Koo41WUN7w*%aU||RwY6&?$+LbFlf+*7fDa{7W%bPs=C+_bjj?7fAomJx1RAAhU1 -z5E?5?L?YtqHG+9H06*SvazV#ZeQ4&JaNj%#KY2!+vTr7k%+#b#oQ9%O#C|eWh1Ko;L18o+>i!^I82a -5_-4i%Oh!b_uxeJGq>ZF|;*yCmc3gPLzzJ{%1MZ%-?Z5G)H&jCnZ31mBg^CCBRHn9uDNvQiw)d1W^CX -YDdp*fkN9@qlI8^Qe_~OqOo&P3wccaDijiGq2MEmq%5v!v5C4bJyerYH^GJMM%Nfvk+XSrLOt*b;`M= -#Np`Bon|t*-p_mvgefMm=f}-{w96F?kV1dm*X`S4z^R^;kJvv$>S-wzpOuMG*?!8|KCIxvu}-MRHXZ_ -p&hg=PT3wJQD_0y@B24;au1+K6FWiB|U4(CNN@y~r@=6PQK5FlhP_M^}lD#uA0guZOd@4w%9iRB~Vx0 -9?dpAHSE7Ou+=F1GnucGu=v|m57j6WpM;H}=b>2)Net2 -w}_gWG#`n`<)UxwFrJ^z(5JXQzu?i3Ofio;#<`HT%Q$z7$2ieQYLNd7RnP!z9srONT<*AJ`L{fl!2l3 -&b_i(Nv3;pYSNo0pT8B;R{70`O7fw#qqwX__>}k!#ptoi3W)`^n?;A<0>S2(}}36VO|#y{ -`q{Te`P{~XaXd4sk@=%&LzyDO$$CDlPWouggU5f>4F4JG0Xx=v;?#kz5WIWwWFg@rQI!Fq-4=EHo`UQ -jW_Wbch|f7HbkEHt4b`E2;1`9sQ%zn4$y5hsgE -#HP_GL-@u_SPlV8c@oqLV`>(4A?zO7b0UGh7M~-^EjrD_zGTEu}a&p3k^tK)}kcgTaVmY`#C>5M&_ -CqzFS(mKPV}%8j|aT(3!P8BpDB)brrT&y2ZPp+pIHnO@a7oSy+sn9?({=b?^8>QO*Mjz$OZiZ15sMer -yE<=}D#EHJE&R~j@#j+uz2K%#I$uhu@Lt-H$NBa~+xwIuGbEg4T(ZNrPWt+mDv4of311`NH}BG@do`j -$?YlXgV&1?d-+nDcxDZ)Y%+zo>XQzWUZ_J$Td&M>Il(4_`Im4(F^#qG{2As8E2Qc?2D{YsMd4 -NE}np+3!9FOWsHK*Ht=xcj+X6GA#ip_wlt18A-;Ft;vkahN!5u<56Pp<`{YzZF{l9@g1K_S^eh)3NN| -v}~O2{p~A!_;1(x1QUO1oi97SP;7&T1db9U1Y#sX5*P)M1hgH;af~3he|`@q=Gor=w4u8V7{lbsx#6Fc=ddn?YS(Z{|r@_S{GjM&-83AF -=QINzJJqG;y>WN$GdI_Si0qUA@= -uh292(WjQZ4oAej?@@S2^7IdpNQDs>RE7)tO&u^Am_-Z&;l!j1v0t8v3_c;C2Pb{k6nq!ER^iYISBY+ -$skH^)@ZCiniD=e0elF?WTy0Pi1m*G*pMD0KgM+QJ -HqCKP`p)FTa0rN;tB2q6J(8nVx58)~R6*zqWK`lLDb -RZ<-8vFBP$Bx3&xm(4(X;j7eZ@Z3v)pO$KAk}dc+Q~ydD9e1A~`)(zPgR!=YG0YAC{9bQ`lijvFpp^SURq%AXoTlR{TVb!l2om3N9N1Q> -^DAD5J>TV=!UvEi&osi^AY(e2`T!yz(jCTBZzjmsMh2SC(Zji&5vruiYhwe!9f!h!tVC>cJ>YVEIUGyT(X&yNA_sA6#Z~ao|4*45|)tL~C&}bWvm!8JlspEyNO{m2g2DhONAXqia3?qKX&N -&&*ezCY24~SQ)f}VBx9K+nTh=;ER_wA!u>+w}r@OH7~BwTKDI7 -~>#g~H)jPtc&3J~70NlSj4L9kq?edLX)Fm3&WolUNXQrSM=PdiTn -`mDS-$5-FE_EqEyOz>{LJE&8jT?rz3os9!7iD`ZUs%qw<0&Y(lMqSK!4qmNtQ!45o;6 -=bx|ThO-)!f$S761^$$@OuhY^yc=zX)`#n*MT>@nS(o#b6+*tN%F*YAMiVf5zTjoJr3?`q4668;%}gt -?_15^ZF3O3(@N3zq^=J-mdN{6^i5HX(;Z}PS8eCu(Oy_i;a$l&+OwKJB+^tnk*4^ANaIV-aCRTgoXWF -15?UE>s{9us%?A_({2R2mqbT6tpv4_U0bju=!2s2t&n#|W@rRkkAAw@v-=M|)F@b-87Qc8*;Cs*ciRb -?vnt#*_X7tGGJ0KlW9J0)pLx#}?Hu`z=U@!~UBqGvQ3)CP-;=6R?p0wi-Laq}vctp$7y1sI!Y}+evN4 -3K_%#9$i=O&%%o2U2ry1PcMoN<0_FZ%IZ&-UOR*4&nlWo1{H|B>d;fFJzy2kO3oqegRrR5F~p5Kj3TM -symQ8?9=p?+-8szMf!yT)+CrPTGC%rlczx4sqUNwe?m{3?n-D0rgY{Sl8#nD1_Txh8^9I%*>q$G4F2A -4E2m&KbC_e&-!{B9FSEFu2UL8tOQxHKr~1$u?Lu1_@n|IkKK}zwc4}v{xvJ|=^7Ld{T7>#aMTu0j6fI -iqvHDWRL2jTLaV&Cn?e2af1E%6Z?~VHWL5s_Hxv8HVE^MqK3VF&IqM5uJeVLcf`UP6`vqbk0mC>>f;d -Hj&@Pxqp~T)pg?`gQQ*V>J8B*xY5QMTlR^Gdfh&>uc$US1-8siqaIfn`=*~FI@? -CUgGt&9{4x7`M{V!Xc;Mc=W|(7Rp~zpGH&evov}4}kf*zLf1v!U(!++--hi*ObY3PEU@#4 -LP*852WvzhY_}?0djn&AMJ%J@ZAVTZF~Kpg%e|nMIU;N^=4NdTqwlQhY{k^rH-5Kz`t^MrIfN#+k|IA)AK}WA&Bjv}(PEYybAd}~DbP2JOa7(x)0C| -$;bHd=t1&umrS;t}VG0=CsOK+wy#N7v03~fUZkv_%OX}u?2YDebF2pu#hZy8YNFSEThR)JX}$2|nAiS -pKMY&%Q~<{l~^1D;wlc^mF@eb3qRSrzrW}UNQ%G -|Nx~3_pcINDD2!}|4+cSSpA14!IEhdw{7s5tjO?ZCecBbWlMu7FXl9E1o*{eb7^U`F@%AT1y^GY}ma5 -w2u0D*tiuM^D>08KPgR~g-JBjY3K>RH$x~nNj165;W9+$00M~!wLcfK~KLSW&$BM9O -UuU(F)(`m6n1C-1R*dqiI|9Dm($DPZR~Uw^!?f82yHOCQok))|gFsmx&fyZGby{e(4IsvJhtqsI;<#% -dN_dFfG?#kDc=EF&+UC`O$Tb{_2Y4xa14g -FPnIHBitREh)kdslPKE(HUl&!SPz3IG`Pvdse% -@VM|Bh#aUo-)}T^c5*;?~Ii!pxL%3fe@pHK}9d`ASrNbBxJnx_3S&3O=lUwoSr=cuOP>&WvJLvgY{#w -qREXW;TE&-^VRO>!)qszQo5J-^{aZM9M|m!kfEIJge-8-BO -?E&p1OYPnWq)oM;2d!GFCT+^9|?_$uk^d`btBzH(XZ(K#6E^&Q+{RfvQZ?eZic_+JRLwqS7UcE&1=E1?i+w+_Ow&DWhA -TBu&<5<57MqK@?>0{Feen_x6*En}}5Rj>wY_r~^>7zl=}GABDTd3)B&geWgesG@5C9)@#8OzL4KpVJ7 -O&6i3jk7&TV>$Mn0oz(e@n<;gHCuv;SstR3MNjE?gb4UkjCIJFzkgbTjdzcCe0a`k~Pf-&1uHq6&o5~ -?J9vsTO&|6i`gM$EvDKHML8-|r2DrpBd#oApT#H;CRlR~dm(= -={St+gA_Fa#Ow@p!`ggm5JI7?^>n03PhWN@Gn0CAlthSG*l}J -QUF2OM+?Mz|IEf={5MteI>jzWhTkXqvqf)(HQpX{bQjz-E;fk@Ex0KHkU&6x(3wgRXZqg?C&@G`~Yg` -%1a}PPUJ$y$!*n}yAs)l>!No{h0aw`>QrnmUfcOs%UK@x{`NRw6MXfnaXJ(y04>AN6rBwAy)6s}jY5W -sKpoRVn3Q&a2iQ|PQuUMQ2Sl;%LhoN+tCI$)0Q1hL4DL2)4_(C;Oz*?e-M5m#|ZG-_VB0sJ+YOhX^a&BT5k -eCc;|5ko+5jrTrqpx=+d{warEN5@9)_TgIol+Q)VVi1|v&ze8CGq^|0+qby*DSzjEi80}Yf1$=8;Kf9 -|PX?;&k>T9G0OPx)2eEGupv}a#Kn?CL3g5C)ryWI!XdZ<;*cGD{K4>5%cHiCOeU^%1eUAH8%S4oCGvf -NMb`N8L1&;}Wwq1(nz3t%!ah>sjDmQ)6l<7z}WNuL=-0okS3dBP&4vCXWaIZTmW5EFa87#M3n40cFHw -YGpb9mM5+fV?Bik>F80N50f2PghcmSrO8}ds^BFd-UxURLSdo)i?XhcFB{3H00@+0&ooMvsSWaWQ8l?GhIR2u?IswmiE$~BrBH9<@Osc@0!;^G;ZH~}-pFuatmj;|Vi=ru; -gObX5{l;i6RKao~aG%BqTwP)Vx20sp@d>T)Q>N_~0 -m|4*i;h_FiK|SFZ~|E$8`0!#0d}yyL}c?gtzWKkiC(4QnLOBD5Lq>SLm7*&xk5Fy{?}bZr;s#yV%o1c&zzE+{Nyuy3lNo_hWf< -|#acvoCjz%rYE7OSh)YKXtBDolY%25Tbe0UzZ5EZO<1 -6MNE^qbPG8z1@7eIGbg>e@G4-J>p7eQZ@w$2TC^B&h-(aCjvBsweYp{gVbH&2&xA!gH$9%($=Slz+IK -M)!d$GnCbd$BDn>|&Z(=!gl7VpxD4!fBMODSc9Z_g={9rs;^=4Tlq6{3M!kfW%&1d<}+QLkp5Y)cq1a -$YGvs=)>DKgUTSf7nGPa>hatcMpHigq?Ken<(Xb1KOM!qVB5Ssk|6)LF*k13i{_#gYz}zW~z7pxmDZM -xXC(Y|19Xfyr%1LOmz3=4l{aO+`6KyAKcP&(S!N_XC|BlAlIed^>(1$GuU`cdDlU^+9^)8I@ZT8`X|8BGKSZCL${;x6Xo8kDslK=f141&~eUtalNzvUaQiaspAX6bLwA^Yv#*2`B&?*F& -FeL{*qy{|9J#OQ_yDFplGI9@c~33&!u -;mj@WSgT}n=O4F%{ui*Q3}alEg(K{{eXb>HhTL6Kb+4tv)+Hn_TH2J`)5>^+bNO!p=B>4@(Fa1Ol(24 -_2rMd3YxxNQi{cJR5uzzwW!m~oeIh~DLhU4P+6sF1(xsBrnr9ptTASCzlC0)Lo8|N3f9JFu5Ug^G4Q$ --#4u`%FJTszKuGXRx62wpjB?mq3KHI8Y*|2w3S9SD7pZe?R=bUzfZM)AB5h=s=vNr-+I4*UwOm6^?m`r@`iou{Q`dF4g1 -#n1^nF`_A|4NfsezE@!}jVFovqpK?!l2W;!H(sD0@gW-r5ypnKx^a(qQ>7E^0r1WIS+!2lg?z;w_g8A -Dxt$xC@XBGaNXH?V-y5IP#DCRCCd3!tL2^`jQTjFPT7j+xr$}&mfw -m2=X<9T*~Ov)vQ2|p3r-6fob{L+!Ho?2+h87VwqN)%@}$`Qt9QM=gw{9KJ@@mQ2x*_ro+N=|X686JFi -=-396bodxU3?CY=?7|R72ymc7a(Nm4Sr5COM;H4fBY2> -=*X$|xDa0y@m+nyVj&;Xy{7XalNyoE+Y$z99VTkK{qs23{5p?zpL2!0%OZxNCQ)F%;nNm(A(@28|^G~Jfb*NU1z -OFwUIcrVB!8?!5e!lalK;N|c->CrOytf;nPm6HTtUnQ&$C_=ms_Up;j1FBw5jkrb1`Yj<9`v~zy&$te -qRwNUj -4}6oU3yfe8Lh3H2C%%R8lS78$wEdf6+1Z&n%-?@oPl{}lPAHKf1C$+tTjz`gfi10pE6g9zx;<1>g>VZ(8>LC2dqXb(K)kj?^KnevF5@4D@X0MesH?L-+A4iak{|Y -dELKvy8N;`-LGBy&!CibyZDpSeE@&wb-(L$9d-W1%K$zMCFCKsa#pRrZwFQ6)3FVu?8l~SOnyUdDwqU -%=ODa!7myIQAJS;&4{}pa)w)jd^^;@@Wrv<~O*fo!Za%-c&$!vZ#TlOK5Eh2BZ`Mfzt*X6&r%zfdD}4 -`^+x6YRQ8ItI$^JON-k2+GA#ZvrUP)8qp=VsTlWOTiJ!A2<^G@bZj5+1@`R;#ENp^v&$P2pw7Ph~sr^ -J6=49s?#3GZ^M&A@x+kXbgAqN3E!C1TzsAiOv;GXl(FwD*WZAtwm~XQq};ZSmGn3Hac#IaU!OlWGsBO>shQ{n<6SM;SnTPGwpN -DYXbNE1^n?#;TjM{!yFcpIPss@jh1v7$)F_b6R0@pH|sT>S~YcbmrmkLd`p}tkU-r%YJzF?TzGUIHA> -(!Kx<#gLRh$Oo~kUS`P&xe2F4byylYw8oHEbmR3fVl7ev-d*X|J`NWtW)#Hsg9v^MfP159Htq&A-avJ -?XI%Y##f)D4AiFk*i4XYRAttrNYDqiwqD(Jop$0cOE#l7|;Bb}b;>E~q=1eX4dcYiZ=-QKkgin5J%ix -#zSCdYTo_t&xs|8$YhvI&1$;0q;OkiakuCcmv*h3+Z-%?)e@7k(%GiFc6z0pF7=(D(F-c#l0vXgl~#2 -e8GrG5M}r#2=|3+eKTfxH}a1Jw^lHeM*$Psl?>2&$nyVqQ8^K_h=!>yA$m#LxsNm(=KC+?Rvc1_CWNb -lHjf__}19nL+bY!jV&aFk~gh7+a(u3aF0i~JtgSw+xGAo+)E`tDq2*#13*3#mH89jtKXFT=NRv+Y5)h -=6+fx$hc~Df#L -j)2dmo*sMThRKOL<8y2T&u5cts+f3!nj-{Q{;4sgEjy)>R9bH;65#sLvvFo>b~zs$W?v!iCWEqu?f@I -BwzrLpCWR+C+2B=zP;!Bh2%X~So1(fK#^7URcDzD@~7qw3pw1LEC+FnaC!r?d -qg*ZLuIf8bfJcaR_}BhrT8nm0x6-(2eTPAUp5tV?zYe9Wk2x153MwaOr7hdU5>(`;bNlw1x}nxw`>iI -X-)ng$N%wXLxl0xuP~Nbhs&GR1vo!;1X80x^RjLSgeepV^`sH`Qw#`2FHb1I@`c@<@7`@Y(2AuCh?lh -H;zW?KR{#1HAd~ahQQvrPb1R$yAq<$wg*QA4bhxB$>LfM9)crKj%ilK^Lk{3D#O`OKES+pmz4Tj60(Q -oIaF0kz`5|&U|HPt4upZ7CtwRq?jK`Rp5iDSnfT$vS5GaGl8dGbwkACjuTFg!UL}Ab#7@rH?9K?n&kz -jxlF~cme)<^d8}M_+lhadGG))e@by{ErB^P2kTm6!5RvK$r2hV)t$1Q}#WRH|Mf8?%hzObhHx4@;zf#)!pQ~1JKT1d95Wc?|jmc9!Iggt7T;q`oHwWDQ)N -J-!q61+0Kwi4%RMF48Y&!p1aN-?Z#B{ypy**!-nuDIFdV3T3DiiNFg54Iztx@>-2@)!U|rj!4vq!xC|3VG*$ytCGR!|OXWVj6?OUug10cFB)0Aqv3OvW%#hPrp8Le)M@=%Q(= -$~*orqj(R6yIt}u|Wo54X=@-*rJ%3+C2xLC*fb>lk!H$T=p$lG=|`oq*AGFS{I!eg49B8eV}JBQ*xhI -S0;6WYqgmMqi!@90W3SP{7d%GHj-GpRC}~Ak)V5x3c@BP#^*PI+^OfyA~emVI?7LpE0nRGyPiS}d`1A -#Cr_BaP#3Z#9*oPYDS94=@MJn{An4Z4}u-j$4X58!Cjx}w -DAXY<$qO#LVlXfVERZ@kRL`~PzQ-mKP?g@aTLWIS4jSfB1Z%w|HL8i_}HiTAj%#89YUtaCoq6~YEP)o -P}+Ut-%g|z<^#{&e;@ynO=9Wx&RT_;{D8_vekT0-)AYkmqkcqBw(z@*6JO~k4{n{vo!gy8*E-LBYcz< -QeY+>RC17<7l62O$zA0&c{X9CgB0(H&D$RrBUiFm(oQkFAH+bT6L+ -0iJ!Woncjm0~|b0VWIoDZc=Ju?VD58WohB9p*^EY2LBc237E&*+dqP*GQpG2qmO&#m!(Y6$n?~YD~G> -RbI^jfJlf5QTHC@FVTrEA)KM01evjiKQD{E!xr$Qnr?VegOj<~S9%Mj!g*#-i~_|eFmAv?Wqi~1C~^w -3;*R!H}GN|cFiI#$$%kneuJdV0E=jhA -kOjk{@|YL1j}uyv5=snn~{nTLA_luFjj)z7}A7DZU8*T;>Y=to -Xt(A;sv793QU_(3v|aB`kNjSX~1jtuSYG4LOdLdE@1Bz?ZTP_OC}Ch@1}M`PPN9S==${p|RaNtSI%Z8 -p%{vK&5#yMo(jWolG2UZn8r2b}-i7Q`H#po@*Z!hAkyC=fNt~vo)`0UDuDPZwN6UxK$LN!xNB)m4!9HRS>+`}3>ES;yYx?poiKO*+-W -XqEN9)PQ<~R!7*$fhND)1@JXgN+A+|j7fWBiddbwO(5`p8v`5-~8kc$9~uFM^NxF85E~>%tez7f};q9Q -WS>c1WjQyN#PhqQ3OGw42d#7&Br6irw9`{N+J*8oR9v^A;*XuvWe7ZY{Bl?cJIg>~&j|S=8!J%Kq5`3KE?&Egnm3)RCWPhdQ6MqI5Fxl~YKNyLBg+I~k-4PO>i3$5Z^wX=DQ-^c -LK5_f~`WgHZn@DA-!kML4$cfvXc?IE>*0^ZBW*E1m*W|JSSjpz2V4W6XnxOLGKAl)ZOSpVO_hch)zM{fJc)_1plJqU{CazBebbQ -9pKu{6k#O@c>Uv~Z|vzovZTu2lm0=*Cn8G-fU_S)3v -=sL8y}fBrihDXY&qFBF?Ti`o+Q+tdvsG+W3B64s3K!0OM*m%&PHvwlK}+sz;42dH*Nj=KKK03W`F{ps -P=ccXLFIpR+Y6tdtbfX^6O0iRT)9P*X<{O5%`vSo`WmSGOx&gAt)K^V@|Nc!yS3xwX1ZFbm;09}%H5AwsGSCO -Nh=OuT5PWmRr`cH{dr2aNF=Hg{m718B;l(f?& -a1LvzDo@}%q;^mt}@m!-wQ=edg6RuKxSdEmOCIMr2=Hz0!v;T~2+)#cSSkKsU;(d+yK=dF>3GGFF&QX -6})DWaIyhQDq0odhAnP+m)#@LdW2X^f;3IDBBg}F&Xa|Q1NlV*oXQS_-D|?XB>DEf93 -+k2Mva?!^`h$X7Irt;lEcyh7Zq3{pJ}>B}>d5LAC;Y+YD$MgGx2XKdIcoUsUc&;m=-iXFcV&oUrWe?j -^XlnM{|S>@~4WJa@*|$G-PIoFQ;{!}EK0S>KYxw@*+WNo-E|Zxf8pm!@~%E4NHO0v;!CR-`Yv&Lf@ab -RL|c%ocB-p8Rb;AQaxp`e~~dSX39vH*j%W)UV3j?y<0O -(EezU>PEH^3nn51pt!Mwk(-2!|7EB2K#DF6n%dLT2hitQCRcHaBObleNZ#RQF}q+t{xc)l!v?SfwX%% -KH9HVo+DA!J0q~#4a%s-aN>7d9i}lXGEZKr_NVeWc8;A2OEsmz~e= -kTsvjV{d)BCXE$fFX4i=CITz2=NjgS) -u2>P?+J&MI#uRIBCOKGr7L&VmsH>9sz&Pb{X$m!*~Y8*rYK$!GVKA{x?Lq8X*Uz-Hd9#=G8j#+O{AaC -CnItNN{akRB6hZP%}nZ~IAjN~{gUS$Xkqv36M=9avw_^Tcz{o5J3&&3+5)@?y?1v-p>+z_z#6n-%iZx -r!?nTt{Yv=mG3jJUX{|-Br3x59(EkqNy+PXFvbOg=1T{biYf7S2}}eVBj*z1m7oO*;~Dluo-FUUvKU&}Un -m7_RwsBx2-l8EI)*voOfJQC?K%5nb;YQlD;40q|ZA`&g>cB1ovPmbjd=9w=TZKLwQ#r@!};H!x`5ARUlJDQYh16mv*6~@t-y8_=o40)Oop9a_` -n`FPqm*hWh*a|9`Fi&T7LxWUfnV0eNNxe07xN&FgyJc=SLGL|NdR^@_p8$+b85LtM$wFv -g73-Q-f5TGF(wmxJjPYtBC@O9qPvf5e|wC;6Hs8EOeTsUWHhSYs=Vsk8J8MF!W(15a;e+yy|blm2bsvgiSaVeUD9ZH^qfvIUG) -tRu$rnF)zdDEXmf(tJO$fJO{0V$c=22z#NF3I?LF_`y`X+jUMIc$w!BJIpUOr7T>;{PLn3-wP-d8`LN -KN~y2)%St%O>oRY6-+T=Lud^)d({W~(uHKi90gQg1eV+#g8|2$N4dYy0|-;p8cA+q|#SU)VIx@@{_-_ -t`I2{>bAgt$tDZ$6U|Lf#4pW$o_%NV1(Eq;J-QY0DAxRmr(Qn)ir#Bq5t9e{|HgxpP|nqPVt$Pv4hKF -;23j=-yO{p%%OjD=pf^t`i)iM8h;^HIO1d~TxCMG|Hi_B3yxG$W1dK*&mK#a*}hy2rOyDxtXKO_G -tF7uJXW6+~@7Do5;9z`a}XDam3m5Y9cEPpvudUQ@4)sw}cuR?sTuj`2Z^$`q;E;oMdcejqiorGB=QmD(06ZORFUk>$L -r81Zh#`4+Z6Sxv@?dIm~cl`_Z^yj&}O=QL7>|ALU6C$>wv#0<{5C+Ci1IIb_ln_(zBP}jmbiBX#ZUm-{wfOs)vW>1S9GNcr3lN{8GKCO4t?auYl3(U=F0bC%u?Jq@b0eI+kP -#)6nS}84@TzPmHrN*`-5c8DUPKG}UVDYebQ -MynHVRA?JLzelBkaR^yYpb{jwD=Tg&h2t;?FS2149#J($y>=>Wm>_`W!ogIrByTdOSK}3BYL08dP)*% -(+LA(}ww7jnW29D~VK;r11cTf758d*$!6YPiLKK!Vj6`YQ;KTN+&`OB&e^!05L)_GMLojwXA#2hWZ|i -fE6YID2p=K2n7u?xj|2Ef`^Zu?C*+MAd+mx^O$vW(v8V9u@&gdeOF=6?cZfqz;v^T+&DYI*&pH -|J;IWk5RbN62GFW8%$YAAeah!=8L9@hokuxX@~xEu2%|Xki5iX78~nIWzNwOgAUIxZL?U(tR)6DuGi= -w39#qslpVswij4Q&Ai>|I)q+*r$0Ph0d!nmz3KuIt(2nYhw8vf>a{vgx)3V(!sxhXk36l3VxJs&N3|K -G;hM{BRe;5xhKX>ZHOHR8Gb4vR7phz3c6HT?}tDUfm<>Dv){LZGaB54R@J!WbsBQMR7Fap!A-j5cS+o>Ge#!N-G=&Ur(!R3C#@wA?}mIq{7G -@rjPSHq#rk0!ZG2_|y@+HkXUAfz5aWYx$)xQdzMAB*~7EkNMhg{L`Dy49++7B+T|xCG)4EcsdT;)0IL -`DW#t(g)s5;sfQ9e+6stFa0;fN6h(<=Q|3jiTG&k-ElZV96{Nm-8elGjfeJVdf?lH`6N8! -17VZI5ot}3W9LJ7G(Cd8$Gy=17J38WRiwEO+%koG`uz`uoXmca4f5Zq- -)aKL{GX)V_fj#<4xf>~c8u1Al|m!=s+7t$Tt9z{FpOaJuDm`AYn=*;=HZ7t*Blgk8tFXqW?-Tah(9&y -l@VYnzYo3wx@)fHx9ID8RwDoPIP$pR#&IDk-69`3UROzX^u&1Y$d -|SdEsw#+?|oqy$UY%m;(heNnA?}?AQKipT{*^o(--q;i#e+$VCI!p?nnWDmM<~t -*j)CH?CqAED9#!U9{BXd{6q;3djDL@LO9%U2Dx9J=Mi!;C)`T{<+wfZOLCs9D|QGS3l=dpU;Q>*79j!{LRM7)3 -Drsl>7SENB<`H^@k(BtE;3?nkE^PCP{{3V4Nah5+^Ab#W4cL5t4yP1VMjl$Kj9CeZd_1q}dmhXzU0c< -k_K>g=dHE*CC|}9|aot&%+bDX-%?El?HQ2Im4f#N(?!|2uSwnl_Zb4%JdTeVX{Nw8D%~T(|=*d8S*gv -`6uRqesoliTp9M6=k!HDEIzVq=%=$Y{?uC@nYi7`!-whL{SXo#y*Rs}&+{WsmwqZ(vf@bnrGFcqkmAF -RBfo_wELKs>HznBS#fU8VS}y2?uh*Yed#!-;{ahJcn{}AyPrqa5!Cw@zyf58`Us*Wt#fE2Ff_d -v7yHUjTb#{^S>DyRz|2KgzcQqOo)*W#*gdM|u5m5Mkqu+4Xp9p;2bw2&(VGbJx?~Y;tcIsKWsMln{$5 -VV~=q&8~%mVf$Ijr-|dkA9dxVQ9MF=q(qM`3EM{P=*luQcS!9{RN9z<(%-iVf$}6_$kJ-4XcYZDk5n6 -qU{ljo*~la=k>saB8qDRcq+!jma})ovlf*u9g$gcIHWHAj`C4iZ0+~cy*fu0TXZ29->$5-n*#Vu0``&pCo)&%H&PxLRYF(ZQ~%;1*8kG1msvmMt5%6xL}D-H(E__eSzIJXcP{f=ivz -pwUMvJs#r5ZH!KYf;DTlMW(Vs&;Lz$tbZ79rJ_m^MFzsn?IXsmPr?kR}H`uK!aZkTd+%=-A4iYs(Z3O -VV^8yPSw-dk-4jf{qhqj!bK2dXc*rvv*ePjzw-Q+Vt%*(B->F$-WCT>zWYVjB8xnK<0U@y?+_XX;!QP -v&-Dp*^>XckeF(5tUgw9qWnp1G{%Fw=+CIpWB8<+8i03QSWV32dL;c~!Ze-hAh7u=(nl6*n= -J6SU(m6iA%!pGRBD&6S$JowUjI(%vU+f8vt1j_-;L=J<)hu}tsJ&QvxSzwI8d^2(zGk -?0eF}QY4x+=x^`B@!{G8i=uK_{KQs3oN(h{unF843Z#@$0^>5}AY88PrD4Tw@?J&Os)WZOnbFa_-t%H -6FzZ#QL6koS2nrf@IV3+Q>3G(9xA~p_$rXseqWRhGh}QqZpqgR5O?iL7XcKbe6pI?uko#UwoEl&TN_fEY>a@ -?N6#qq5X4mEd$HKgAt=5xWOl?MC?)&-|LGds0_$=qxmY+@YO@Ph2xNV#zpP{ww_>N&wM*~;4Ls2CP5J -hY$_rc9thh9M6JwIF7xR>EO5H~Z)x{w|I6a_qmYQ*i7Bf@zkJ*FM>O@fdwxSsKmO^v$|9PeDH4NebVp -4%P4D<=XTStb(&!GP_7@cK)4HM@{S{`8n$(@9X4nT`Acy1?@=56I0OTN;)X}1Qj34@WOUe#$h)?^k)s6an9o5SjWx&Yq|YLU9O{STGavP>;%{dmN#y~Z(B&I+x(3n3(B%}}*rO*Ub1V6F`Z2oC -uP&<#k01Lv4&4Ot3lTZ$S=mZG3YTEU35Y6VclP~vE-E$P -v>cTPOQv5PuL*U}$>^~6De}DGlF2n$wwv)Jgge-TY#l^QyOi%0V&V3QgjhJ -qNEQ`9$;pd@eh4frQ1ov+@M%qHh*rBie-b%1+I;rivNvv*ncd+bR)F>^GPJdGpbd}Ou@=grgC>Lmd)C -j_y$lSWY>2`mlrCDaI{CbYJY=3jab4cBuV_K|W1Yi{27_OVM?HioqI_c~n -4xW0wzI%k=hXtm?;w5k6%X*Eh>8To{No!of=N9SinZg4~aSP`)L7aR09MxHO^XBSujg-+P!P~F%tx=; -ypw{f0bTOEy=_76;6c75-T?6`NwvPN!qiAprv}pEsGB_=>?MQO!PBX`zlx -%F=1bS6p+o`ejX1SqfM$c=s0ws1Ws-AAZw{zR0aJ}I#&EF<5N{u<&QX`7-rp7S^+>TAS@C;r1G*}oaq -8ubeBs+5YEI#k3^y;*;u68qG0>@Z`%d!=&fm|VB-9%lb|HxpsN>EYbw`27-X0##Fbtc!2rlw%i#8nGd -xw@IXg&Mg>?7mE5$0naQnR^-8cf6~1y8i$n|eM2?x>sz8I&!2D9EksgHSK0)j20p9M^Dyd_zEGsIO)C -=a2#Lk7EYcjCmE9NS=ozL+zfi(DJQ;Cm=lEXI=P$trXV8birNqH5B&)%NE|Jz0%+Y)Y-cV}N6Z;dwCTp&QrUQG@1NwGzd|dH;8YCK8|NtqKrcycN38X*1Iwx~-l{(vPlDbrQs|)|I5r_nHh7aPBlaxos{;a|mDsuU5F$n?ZvQfd-8Px@;(PU`e6RK>=T{kY>c#-5#2Q<%sJ=D#SM9UOhr0#y$oYC~$fD$&|u14gE3gt;5w1kH)@u^Zxj}Bt$e -j#rc+A08wQr>MPhBMvnsG_L`(n-OpAz*5Cx_3(&+T@tUlhlV{oVP{h(N4H%lu_5Xma3=$obTFldb*st -P7!j?lVsrs*;+{@eCVeeKeJ$wMLmTqHfyk8?StW2LWI5?SS~||rUQzI=u`RW1b}y%}vQ`gXCh%Wjs|;RaZvs7y=}TUO^Il -AigvMbNr{SsY3>hfPU{Sc@6@Amr*SN*WhcTp)ELyv$I%^)O65Hvy36n!)~At;7WCPGB@f?k4J|qs(y -ZQ`l1c8s|qWsK}3U8MOEm%8Un#lMgrF@o^ART9&v7Wnd!|`bd>`% -%WSjRr(fsdU0IhOC)dm2-A1^Ce(-qFqo7ET@R6Wm*3vCI<+jGFi%SJm -E@JCxp$E;TrL!W*iH%)LMG2a`)5xq#TC44W(PFoZYs``GL|sEyLpz4zshO-!?Xc#wBde-0TeTQD=tiF -tKOc?g_pYYMJc9J4$9B?0&sMlu_hnVO%|IGU&)W%OWI{=)cR#w!eJpNyj2P1E^v?xt+&Qq;7yeSW=dX -pFDQUZTy>srnvM^y3h5A7eR2xLJx?wfXU@d)=y=Xgk!ZcDHc=3+X=bQ93R7^5(0YZN$;HFz9SP5!yu7|kIg0gXMDv6^y?yfWE(L;j1&W4boQ -MGFQU}kxc%dC*x?i(e}#z(?;t~>9w&F51l{!@p7{zHd?{sV`C{=}isC`}U#i4g=sBQ%EZ -?gb_Znn4K|-rddq8bh(4GWNqw5J$E-%@1O|Q|g^zAM-%qBYQ!lzf$SZUW0y|4*7G3Lc|B5&Wj_aQKtIK#x^+0>Asa;*{aNTDBcl+59G4n2wwnUC?KQZxDcPN0uN*}iuu@I6GTJFNb1P3_xD1H=FYSEhXGqe70UeN4H(X1dLKu++b5$*pcrRJCesEbfMjZC -?>B0Iy;_V!+Pa9+HQ;`K_qjd?k)c(#e7l$rjd^fMhvr%_!WWaga%U%eGAcm#3uu`BU2L3&MlCq3SB4e -aSiRz#wWEK`cYC%MDfBjBCuTC3P4aFceWg^A$0KF}P&aTEh$|`(rZu6H(FV$?)7c}jZZ~Pqtk8J!q*F -9@qmk@EU%^vZ#7$&bbyoRcmjiEzue|`F&*A;4QI7P+%|(S^!?m~vh|tNCo55F%QynY5ZckeCAUl3cZ9 -vA)rw}9-Kwl{MJ;XgOQ}J$3rgKRu+>ES=))QWvU#VjGU$rhK*SWF7^Fj2fVGw-!XGr -{Y_rA~BChalP$b+{4|!s#TJ*Hol<^p)nCoGF8U57cjq>wG2)~GfKl7p!69wiGWDt);1pLJ%L^xi>w7m -fQ$t`d)v)D9wyI9*`D#MSDl{w$7Hx~$-qSrl9B)zxZ3~|1$BXkaBhth()7~GN-D)B%vk!J&x7oQZ5~^ ->P-4!!y#}5*hOp;UuAeFZydX=_(GXmtoNu??MzBO{iFw8sAeJwG+dB;Wta+F%<#9VGBNhe2wT>$3zu*0SA_)_&~T{Xn$-_KvP~@MRqUf#JnNjc;%{p@> -6=nP1t-?Mx2Bi5-%~^ldQy}&CNoer+5ZYC`h+-aYFzsdw4kOk04X^EcDPQ+HV!>Fx@tqDX0ZLjD|{|A -TXu7?tb2h38KC7th&DnjV5n4a3hTA4wlaytcjsiuW$Bj$i-Mp`4THp~K#yif&uk0mh -rzZ^i8Xj~o8iP=8ByOi%Z7QdBe;mo(6>z}A}_Qq<;%T;PA#xZ7Ax+pWn~CPq$FRwnd%F?{6z+O0PG=%-dn33Fm+8FRyOTi_nghSJ4(HZw+rbI`LP -2GS_?}TG;)$jt!wp_okr>cZIP4MHJxIFY|ub}~plMP?!S-qWJvjN>shFnCZB9rag7 -paQ~P^8)h$_rEDY*^)GF%5N?FOxwlh;})zQCB?%Ppi+j3#4YD2%etj+gVS;38o;6z)t|vcwp;*EREH313-g}M?UdW?x0Q~wmhw}O#6Km`r;vnoF;2`X0IB5T -2U2X2xW7VTq1v^qArpeEMIG=I7$0iB%wl`~kR6-vW9Q -lX$@6;JXj&A2e2`u@{4T+D^K7{y;C?}4*2L2_rksT+F{}u;v^Wp!!h_Kz{p0fB%&V4(NE#Xx`3=l-`C=zu`L2LrvieJB090<~`iTRW9Iv9Q8&d>7p5h%0E;=)jVb -kwm6jb+Pe60Glg>RqZ~x7%n{TVBRkQkgy8MH{Wn6wPD<{2NJ&pLnG -SnCEA}-EnLZc$p)l^+mizIg#-7$2!c?II{vLv$eR>NZ%e_Io1@n3E)QGnYb~GWoZK!xq`2cG?)3#Bzk -GlO_AXG=??57nh`=}A``{1AQ-Sp>a&w@NO6KMQMd -uHUpZuajm`I!p|r$;gI&dYY|a=b{6;282@T;%?J{ww3LTL>aM3c~P@z|mnC;G^{HP~!V217h?MwmY~J -bNt3XJaFe->8EL~_)OkD3dqo-o9(cRAG!biMyQX7!`~SX`Y;|r{k`#^Wl9v+y9s*x=j-vfG#>B -&VdDY+zcU_&@Hf@1hC0;cE-8&ivj_Sd@MqQclGSCG*M(723YjS?d4?}c*w&Cw5(s!x;OUJ<-nzXTRc%**zoi#i$ -RhDc&s}5=PJO=`F8uaO<;7m^2rJ^$OBh}8emeVNoGF&E-SIlD7fZM2#Rm{|(_(Z!i>>~ivf}ov9eOtJ -D5Cnb$o>m!r+%3P@`Y*Pv{h|)H!-^boF1Pqm|MI_fyEHA`Co$kG)2-g}U%0xhyGP#s^2~p -6^4p;b)6}$7X4vk03`G@K;UxX0;gn9D*|XSGiUFExz=|T`z)y7>;)o$iVv1vGIp(x^lAr=%#?(Pq}U*hC25}=#_ivR} -1y(y!+g*mY_xz?GHX|`U -(Bd?Y|54Lf84&2EZu6SqSGrrNJ(h&8w172;sA_i!&O;xseXdtKe6H3%ZdbJ5YUr^OjFH<7E=~E`86k0 -QH&>r7U&SOXgMigTL3~Wu;CyB7&D|k;EJg33TvW&Ak7K0IKy@VF|O+Ud#B$*28`g)Us{xlUVnxC~Z8U -SIOnv3L{#fs18cLif$!Js$X#$nh~N=?Bp0xgiJiqNg=>MJGC!|u);)AbUeX(I@zZRM?jvBXbkJ8};co -3E)R!_@0_VSHPE5Q~3fm{Ozi(KJPSXp_Z3GM+WGNX}Wj0NAr3<2iK)^Ve1SzPa|he%Z)@PW6z;R|BR! -X+=O`n%(ks0zA6>S7Ts)CKUNaZYxOQZvfRUvx7XQhbs8Ol?Fdmv3$-p -PfIa1)t(VBC$OWO5k1e1t596#E2sSR6s|AhCFem-Kf^a8AFOZims;^+Cy*0&}Tnj+CUI`r3cl5rctx; -VZ+L$D&z|y6jqvnE~y~~7OD}9VGhAvTZn)+ybL=zZYsA*hqpnb1`Jl%!YJtnL`!5?H^wGC?J7{w}{p; -sWb@rdoY(bZE%*QlSeBQ%67OhUN1R0`0IxOvO{2IeEuTTy5B+Ph#bFWtS;cLfhOd8vgtc1EH -3CU%dVUOV%GLP-Xb0>%KVi1_2Dh7N-ns_ddZ+7PRIWq*FX|g)Vdp#_IXTvKPQO^hx6w1Q%Np`8!e#&U -hb4YF_PSV#6aK7gfbj3~vA8dBo -ZD@kAnk2#7{>4UrA^sh*9q=EiI5&h`Rp^wT1`qMOXP$ula3D_t6LVp@3bLKb$NgnI%=R9Vs{?!21q&O -lyJDAuR*fDMg`}9v{2Ro$WgNnhQKoR;aVa5~(<=WZbj%SWpIOq{E`kK$eKAoB9LBf#FNLJ==J20jCNY -Y@xjW|;ZvkRancOv`Yr`VyAOsV}kHMqsH-T5x%{E8DKY9irx@=ef4X* -t_G1cAsWkwfd!dqPdf`uLGkFNmVX7S%<{MSCzWYK|E(0_80Njubd4AbVoc08lpS;%kaLEHb;5y+jlp7 -LoVL%-6j8c#lXM4ug`CwbgT3Mi!*aaJ*LNLJrm1Fp^(E*l&8)9)ZL=2fgh{&C0AqTYyPGFIC@s)*Y^Sj -$@t~ek1%Y93Nbs^c8{j?!5za_f%Y=r^GFEGWU3FH3=5UI)%S)p#o-oW;tHw<+eegU|c;q_o|@hGB#fU -%SAGR0?{H{D2ks}S!T6KSv35$-Wid)Y8Q);N%SSmE8T5&yY_~K!QpznP<;vcHHn|*cDMrX@}XN~(O## -TDbhSKVy=f(^E{o0U8F|rItCm809u%M*>=$?`g9sy3A -8&*urRq2VVmP=Wy9AOdFjQQ?RER>xGvr=RDBJr+m@gmPWiOfng`gn$aaU39o4I!9wwIU|C1e`bSTn7j -0b!o;Day&6{U#Kh}ZWKgyiju1WbYi|Dm7X%xV8;lrU%6TeB_)?KtQ*Vz# -smL{xA$sx6HTLq@A(yTPko=rp{vdXNq|TaQRt4GgM<*_*B_9*-L`vs+&wdOx*U2FUZHL6^{(}V^?YC0 -@T5g&FJvDcp+OhmH+*Ti%e8(Gv1TG! -1#UvC2kKKW8lR>?gCnK(_0mamFLD_rJ`RW!J -l66W7$3jO^x}`Ms=FSUlUD7ykjKxkvG-L7{KLOm16KbEw42Zadk8rE(XV(@~|soQrX6BPM*A+7T?!8D -?LmMA&~dLPR;Yknv?vH6b0uEB|1(t2gd0^xk%4jfReFzFai-AUKy~d3u3&7Dt%oO|L)BNNG4emD0bOR -(h4#Q0kvZ`Cos*;?$D!AsK9Y>yxbj@KT>iBAQ5d9@Jse-lRMv;HL3iOp1RDeO)#janeva|rM+OctJad -kjT&Y0+S`w7qli(-vMvD8Pn8t73pK!_OP>n9ov#%swqb&_fLL=s!}_G{ZTl65Kv|2iv^VaQL -`ifUAiK>zbz0J#PkoZDjHBItaNDpK|W8)GxJpNFa)uw^Arp*=N!w;CVrXUbbaT^WzTKR1ZcKq(<`6Sn -Akxro9{U35{uu_iVI-fay=pyE){r@2uI(>%*a6c}su13=!yCh0=#NG4T2HQ`T~zkDhFQ(l$w?+ -0km)8ve!5P55>UcpofT>XX>Np)u2!;1e?)UD3t-t2PV#m*_OhL>dd_FJLES`y>Au&Fc1{0(-QA57E=K -{r)nUrxa$5qrOBrwq4SJbxm#b7Z6&1a|-V9WM4k%W&(a$9CfbFXrMjP=yg$E8z5p{gD+S(wrP$XyjO3 -mgjFLZFdt(nm~%8h!{u<>?z$YfV~?q~LHFttcFnM>;f{ypxXD8Qae5Hpw(~?xEJ=RNHJ|Ux|&d5GpjxWP%c}FL}kKx -GHkagy!i&2luM4sP!=(Upa87srp`;{<85#_XLFvEAhr@2G9O&=r1&rw-ZMnC(d3<_0ftczdmH`fSD)z -dOxU-BjEGsEoDo0xVLtE&G@KL6=Tp+a#?Hj-V$xGAdVB#kLm0Y4cif&jp1BWR~riWh$wAxkT!oY@t_NvMiX>1!+9{mrdSZXrMe@e2op5qYiERe^Subo_1=@ -s`~3_$V|-#x7*%54*c9co_{u$^=l!O%x=_!Yspg&MN*DWek!^^)a&y}fx8MW4DC*Z1IqB*H}et8-sOD -F@3h*e{VgJ&W?_yq(Si;eR%z`v0hI_b8v#-fHy9~8>@+P#5Z*XBEc?;Cn|t9CoRgHKTqPZcar -w(1k1~Cir^fRt)30QIqUL;gVu+7IA*tMj -wOXiQP`6O&4XH)A@9}+9dy|Y=Vf+eo!s-uqGo2mo{6FcZWy2qdCfQKF4NxPaYQth(@M7p>g!=`Fmct% -pIgwo*L8aK@{@&g*+`Nzz5|xTrX#k%4_DnZRt)LZ@WMHqRR&m5HpC5bE(Z9Do@3E&OrU*KH_rl@Dg;7 -XS58*ryO2X35*=*fXQMp)&xYd*R0y06p&CdcW;#{$AsNx4-&uYr`NU@9L5+O?krrB&NK6~>&@a(q-U6 -xs;!k*75%!x8~pizLZ|SlSx; -Q=G8TTwl*>-^l;p^O`mG!!sOq`5GGa%8mCt+Ro#*v|{+y~?cnb`VDo>tnfB(7&!{CXm*|1mY(9n1bF) -bLje{Ud6)E%F03#AuvEPzpv7nnYj%Lq6?r+KAUa`vKdF63BF~-KNsLJ87eMd)Yy{r^{e+AKHWle^9@0 --$8fwMMnD?$a{h`j=kHv!@Y)UV~ratqwzh~mLPj<4@&mP8iZ`z?-$e%eRq6^;a=6Tw?skjGL2wgktX( -93>tZ741;%tN3v)9b{}J8Um6Sc=;L;Fcj)=@1iNq0PD`VAgE@i!)91QNuV1(}g;A9+6F4=F2 -+)Sxab#$scIp&I*D5h8FIu5cqFs;m!(yPiW!s0%{SW!2y;`;_Xsc&N9l43IZW)}yQ?utsy>^ -5J(6kU9?MU_DwsB#=df4x}3BVyr>OZp(AKfHc-Xu6Hn($Fds$pp+)kAEk=^$aj?``yv6y;Gmc79xM%Vtkqg0r@^m^ssnBO#uCG -8KW1toHf^r}XvX4EroT{O(VGw&U5+~+QsGa+;KBTzU*Z&xt1^4%g+eH30ME@7d{S4H9Z>jI$nm{lLK} -d|oP#oF*K=DuOW|Mbg4GQl?u5hpyrfpD*zri$p1NA1S;V;&g@rJpd!u2MWH!M$~-7B3A_cRHL?5-gxw -qxg>Z;AKf+)dbTGJacW19s%yhc~*!BSGZHl%5c=DyGh}dzPe4C6A@SbVeo_u$?Om?k~ -q`T&i-5UnXk2mHdX_-v-wKUnbYNwszTzG~ak -9^Nj1 -XZ#oX>JO<$9|xhUD21e|;LYh%~P|ph2l_pKCe|30k$$2|>#|zh7@-R$l`HzMk*=g%d;`Uvl=u9?B@cU -KsO1UR$Qzpd|&2_V%MsudZ(YyWUA7xnwLuN9^837pO3b2o4{^`5l_6l1PoOlkN8Lfl9j%yak#wT*TWzV=S)X -gsP_dA?ZIBDC_@S=zauikCGRms$IP)g---!j38iE$-vokNde6h?TxU;p5%}CuyRjHvD35mqj)H+cpLM -E&>|l}1Nt+7leiZ2q_FJvb^-IJ6A$`j^R=SUm5+Oo8!yN=CPn2^T>Z_-}^c-oiqVp{VN)ESNM;=m4>z -sAWDD-;omkS{FRIW-i_CzcUF^Yzkiq(xq0V-7?QHZicqcM-@=bI;?-w{>5D?(o}DR;MiODG)dqJD6Fiah6hvp31jdUe(|UQM89<+Tt`&A&ffe>pULr&>-S81b -kWSp(?Fh}O8EDnbX`C`gN<%9f&#%$pe2HbRPiq7mzABDfs1D_GjgPLxq77>V*(5-A&C2(&&b9iIfw)6 -i;Xy+yNyjMg{_@zWOK(Kr0~))=>h`lDp4{tg2oG2J>CxBdqe=PA1%A<_oPJUAmL}}vDPwKiS6>cBI}r -USVYXxH9zBO<({$}mR_vh1k+5-g^>cs$^d(?ULA)Z+t-qhJf0+1TJz&5{mFwYC`2ef=B$Bs0Iy$!;20 -?ezo%e(?ZQ@QF%J~JFicgmXT|jsDvhh2@&Wi&MSPd#&U+xu*`t3WYfaXLYb4=f#^b?+{s7}dt_78cdx -*PvV6@5_b^NXJo2`$?`U@{<58DS1nG`gpWoFTNfxMC?<)@js0wJ|)TAGLFu`CJ_FtAvQz$SW)pn~t6y -s;8p?Bz+fKyuA`+@(K(YKlK(7sL3It&-bK>XunCuQ{pa!p;n}VS#&i#&Zk2^2>fastra+gakuCXv4jO -`c#S5?u5E*(`E!Do5>%>LsWC7aoQHPf+2~XoR^~HY@zh(2HkD(QZ%@)i3kPZ0*aL>i4B! -UdQP(NP?D?}3_y#l~pWG#B4oliFt?SEhVPJFg7Q9eP2B^IG$htQ$FVLRws+v+ZXPuxP<>xNE#jns%fb -o?&uBcMzoj(TVBJMitD%f;(-UCr{4ihG#2W!*00J`E-Ighy)tNogw&QBObrf&a<%(kC`kOs|>BdC67m -+5Qq5Qa^OGdboje8?Vkwz|8%W?N*#Za`6#^6Mr`}{CP*B^aU7xW&v+wF?<^5{Pi@>7-d^Ma@6<7Zc2T -^28Pac;@@TirrJ+xGBNpw&vN*iU>lofUoRBwlgt48_Ma1sa<{dK_*cAfBZtVI(b --$T;=P`CFBgjTBMG@bVTkXnba%{s*Yi@;UYoOVMf}~{9>3eVuy-aZrQfj&@;#06iz6@fTbW<)DTDl*S --PxpP2|ntlf5~AmHF%c3z@&E@8z4!hyRrMrtAOh4AAFN-w-)(4=}r^ivg)y;5N`TOulr0bDtZ4(1_c)SUI}HHuh&L38j -1YwMAvGFd_dkA(#~btlOIHQ12XbiEyJY6dIMycz+oWdn9ZKuQs(<;k3s;1jujd@0xQnn0a+UxVyUa>DQy_2U)5t6$Z2{4Dpsc7t3v1+Tc14!(NWJl}xjX+BP8V> -=&_Gsi0Kyy2Sg;kBtu)f!Jp6kA)RliZ)Cffn@@2Xk0SDtHMVxkfE?GFhLmCH@$l$%H6@KCPWIA>- -KGT&n#CjQc=I2poG5V?WQ(SoBkP}}>czSXgW4*xb}xGT?hEJpuRhw%{=a{j#LpF!|H%U1DkeX_;>V^o -m?Q~;fJvG}F$|-3H;@gKAryiMn8s1^Q-7&+hty3JC)h5zcYJP_l#KhI|41o;3mQhzP%5VIORf?)8;>&=r0AQEkE>{uL}od(bx7$J@U{!O*VjH=y3YHhfRA*ufpzQ67 -DptJBn;hR2b&(dfI&W4q>yWBT6Q@pkeI;&*T${X2>IpA0+=GYLor)7A-dYs&}^rYrm`>$P3h+q{r%>> -K+SczZRG`QAAM$A6%QeD%7O5x_qPqx{yeFDJNfn8S9HD1TKQq%$xL4?& -o49Z!@-i(G>e&}>}$Kl97~}{7rr;!ffs-4UfY}3RExFrQn0tTAbfOwC_lV~?c~QfX8!rypXqVnx85Nq -MrQ@G#EwHnUog_aQeL8|$>z)hfga -Ik`EeYY(5+5)RJ(-7*LZqrSkJ->(#6_2(sahFr&d71#VeYLNXL5A+Ru%ty3m< -T%{!4e}!5Hs%DS-C^~Ib3U}vseVBOI10o^tS6?Q`wWO34l3`pkatu?rPXx+T`k7p4C}oS2wZ1mY^KQE -OniJRC56aYp@uJHJtbWr3?^}Sp5oAWS9)EvdF`D?H(C?udWMrf{@Omo#J&|+y)y9%{4F8#jOpZobAGE -Al&e>r$kLY0$A5*dPxF`2jL)Ja`<4}@?%M(aNL+Rc2Pq8!r51wIT|Q!q$5w&nA2UXi33}Z><-&UIU5& -F)$?0c--nA&+_wLwGXo!@Hc(_J5d3(fAos3mowzOUB75Ny1mnF^+D7aRYXQ%h5yO4m!NAKASvy1NA=O -w3&m(HJ&f5m&T^v>FeVf)*PH2y{cM1Fn$Iq#^mRj!vkK4?d*Lvi;=yp9?^DPVx<>?g(V5Ns-HlkuYF8 -*LX{fkp%%q^02yt*akrghub8YO_1rT$UWC`DLaKcvV1joxZV7wi1^9Ly2xT=$7exhjc_`;cvpV2#$?`5qh07Y_+Jk@r9G?b -Toq6Tf7@BSja>AEV`taFRN8F7#DUVv0IeZHAN9`OI{;C@>^`Zq{FdOQrmcYyL8L@%5v2f!u5N0Qa9W$ -SG1aCZY?jrWMG{=O-FsTKv@c`bd**)Ak_wF6?{`E?Mi0AtW#5r?BxoYxGU<;SYdbmXXkz$O(e`GkOYg -!Ewl+rHj1GNXcoD~hLgus&e73ie6pEt3ZVyY~?a9>=q$6Z{W*9K+S_(VRzkvS9&ddQS8P-gBLoku!aB -kIV)P`Q!i*0_J_dIE^pD*j~0D4IxWg(gdiAk~|kwRY$i7$k%E^f^Suf$F%EsGx$95scO2t(Fv -x!=*84Tj+-+r0$25E5b;%NG9S$yTBy%fG(Rqc7A*$EIG(7Z{)ybaniNoF4gm_OugWtIyWOq2&2_;4BNgV9 -mN}Hm)%Es}%Ee59lpyJ;u>tIiyC*TK#yU14W@d_F6%9Ale>d_StLHxytfPL;t6!=bx@)rMR24>?!k_* --L&3V>|Efkxg`Jj3?dpo{&mY59<17Tx+WE+m#|G%PEuQ#~tG|vAZPwB@E-xjpkugq-v=4K#W7M8z!?N -QZN2G;m$GVII7Ma?fgs^!NqXFH|`nh5=D;;zfz1q2jfim#Td*B0V#7$HwG^T7-2^LE@ZEmjOscLZ+Yh -qiae+a`b`#H}i6 -z@U*Qbcpyaqlg9*YU!3ABu7#gqbrtd~uVWaXi$D(=~p$x)%>@Kn#G*&PZx&AKuWB_`pF_GTX1SJ_IKBQVCP@2`$6p@7)jCuy&FA|7`!1Q4bw2Tfh0-c -(C!C?!U*}P1Lh`IH|$BFT`Xc>($LY{6b0EO>OKoG*i9=pSjD$1sZa3|p>}B7uG&CxuRMBtJHgbhMYlh -LF9E@Ksd(^?Z*H#;5_@2g`c(#-e(T*0grhHmzLGuqh><&%Z>#Ke>BQbTn7)Ue?{fByuPD5~b{Ow-F*d -l~ggc7vRY(c`ezIVH`Ar9-zt3QsyL?-SZ+Ll)!5OLVCFvrd*ErejVqD129OHS0{@J{Rw@cxp324vW%C -3j^u5^MU^fHSpbNdJ|3bo5$HrN9`aL-)jFHuJRE98~To^1X$qv8#Dys*4m^S{llfPS8up&LKVt#HGpc -B0l@V_pa~w)%(zTCTH+@eQ?rudpR)Usd`)Ne9n~{{TXCeVsC=?J%K2nuE%u&8@jt%Ty?m?}(;Bz4(9~ -#MxPTg*vv!MUE8^#TCD?ySAW#su{CxLW*>_+XE4rC4Y6}w7Sv*eVh}QAf?3aWU72*Siqnl2b>zvAu7M%Xn>by~$ITIfpjMZYqtw|Z%+(ppUGs*l4ERhC5j~iI+hs4Yyz2 -%zazesN+q<`N;zi~yc0P$urnSxXC8Lt+-(HDL7xfvG(R54*QO7u)eD~tc$}BZ5gD5C^(0i1GNldi)vLyr1YZMszy??~!_rm -C4Li3Jf!8wpeC2u~_ApSvjcaBZraV-sZWleQw68^eg{N1xY3e#AfI=85oaO>G&d4-;Um?qj(17N5-kAwLJp{ae<03#)X2G<|OHBq^0^cZl5ttQrEsdCT8w7&X1ne-$ -ieM-!=dLSVtxarMAL2&ma2BwC%f-3*43?#KfCY|7D7ov2T_Nm&N$p_A>QA)*U_=jKxDja_CAxMITT7d -EY+OD1!H7eT9qjvPMf6<@NK9VQ1S3&yR_GX7=TEu21ysh31iiJcp42w{JH9CuYi$kn5geXc-<)o4gY@ -DM+)h5KO1mN)IfypC}EA3H_Cy@Jvo>c;(j>QBYzOpNE{YIiHG6Mo&HKj)~dZlAG|?k -r*$KdV_uf-F+vW{;gt$WZj@&k0Nso<1#n(6<;0%+F3?P7`?xDY*#ynf9+7>;Ki$RyHc}of -D=c8CSaRK~7+~AvA)W){2R9U9^u{BNVco>a>B#mx3=ybU~kF?0?CPkr<5umta7~Ima9uBX7!-5Jph47 -TO6ZB8)qjvrx%+I8allWh5P#0fi;_unf-@EI3p7g6beqc-x0YeZ%k~qG}N&-h{65ZW1af;kv0pGrWNC -^7W?k<3L0fwi4e3?dpzD<;NIhXF9m*ji8=x(_X@6s?qK4nY+x@QGKXxDnkd)OB8)^wZt+vMSHLWk_3{ -xo{CoOjM(V`lN5PW=UAioaA5(z`yy-w}WE?f -$951V_xuNq?3Ihi?>)o4oiRbmH^yYs@}t}~z=bywdo}%Ap>G7_Gsd(Lo`1raPJ6uPD`S$5Z^m>463MJ -LWm(@i*7Lo&|0dVI#Ph!mMctUv`eTA1n>RHv1K%YGr2ph;fbSpYcTbaLa`E$K05F#?y8*xHsqF%V>Gq -w0>$ywR36rwX3U>R>;ry}f*Wo5+u}yT~s9}us7z(f3;01dfhtsgh;=4H4g$PIDafA+HE3o?VAje=I{^ -tu*(=Ha93`Yg;Wk}7Db05mG`m%uGES?c%KAJD^enU7YM)A9}PQk|Fg!3h$@(UtBERArl_a9tahwXe9x#xV0A>1VM;VL~$;$5B+1I6Y{2vsTwg`E^ZE9?i}-%c9O=~-~I(m3XLmZko**9 -8TdHA7XEP@dhT9Ehv_8E*dn@`iPO!hayYW>P9@sn_kw9VDoYelRdvBg3m}5Fmz+xT3`!J-Tk9#Iss5R -o5BzYb`v+WIN1sDeCmk~hY81G(+mbpQpZtW^x!jk4t9i_G{ -IIGzGn}BJ@PLW5~T-nudm&UTw!i$YU?#&4dHPpteuKkZ)H5KD&b%?tu3_`>!x9?R-S{wA~4K|>$|a+5 -{KznKXXr{5Qi01M42A7=?8pH$*b){Hnp!)*=gY`?HPYQcGQ*A>(ZU<1N9HI`K --qNS*ea-_N8mt@S%MXL>;5dy<$1T@|Nn>2S@Id-+JeQE`g}^tJ#HW#kN_fEDs6;llWBaQ12r{sNAJ?>_|T|&NIr76SH&R^Uvc_;Rg!&d?;9VG$AHwv0w++7hX)R23<69e#xa4Qr)q -l=`p7ufydmAac8#p?#Y)AUrOlff^^)9`B7T29sMb8JSBK$*!)!=Qs0_1p0bDk^3Hf7|=tv9P2NGRNsF -o0u!^ojJTEU?@+%_`$SL=1P>Yvtr5G};v{=9Qlhtck_5YzPNCKK9nZL -SiyH8pq|qk<^;&>WRT82Ia2as|T?0>J~EUsVevoNdi{n$l5;5<3U2HlIEn-g9$;h9`2x$oXsn1EO^V* -h1r4!?6N5l;E9xQ9H8fC8Xklz%2AwEKjJgd@k+zM)2))fvosw!8={7n|{AxLe#?dpd#)g}%Ze3806^HpRo53bFSL;ME70t8==}=gMJL=OJ;h=}t -v!Jh20=6%d1-xycHcae8tR0qKwBwjjd-4urvb48j4kNsCTmM54Cn4TcU@@`N4T)0AVY#JnAp%#hz_@- -Bi`>0mnG#3pxe(Z^F2s^F`cfv9=*>!Ju8BA*|6bz@Fe5tpl@-X2f(ggx0tzUZ(V5B--B6xT;T&D@flgZdoGX5$8G5!omEvnbf-wEo*~sr4Ppc;q#(dx@R%$k$7mM -HUD}C%u$HiI1YsVTzm1Kt?y+^<;`6~D_W(48^G;T{DGuzkEsg739=G`R|5ASOW$e87lP#24%d=22mygOY&M~{dgYj_pR9uBfW -4n(DruNQ-0IgskgBKvZ)V|D2<(XCg-uHJOb^4{FpbZ=0h6L-fFxz?87vtSwp@e;Ks;(=qMX{n#8) --7L+N_aHG3d`s0r_3VsfVQd#9Ygal4Jr?Nn~{XVGS^z_-}iM==|M=ie2 -1d`iW>XJWvgRE*a}zOKc(nTh7&@!hifcTyRBJ{ndS@do9&7PVxW0tjQ+4|yzW) -FM$%G=ldufbE#*1o`J_6@aKB=&(X>q}PP6x?0XC~{+$Vhs6dbafo?*~_tH)#^|cAi -`&SemtXdD0GL>v|aOj?ru!T3%j?jm7un_Qk^c$bK#h ->^3TRZ})XWUHYJVYXTD%(&Q29`t(Yl#{fuOn=rBJv(I*0YI#%f#&f}-YI&5H+>9KYho|rUDA)0JY~=J -v>q1&WRYu~oMe3yTMU6s8_flWyp33(W{?OUE4(zp#_^XM&(|mxS|OOvt&7n2pd)$(ny<;VzskcwzaqL -=y7SHGLQJdT0_c!P7f(_I61NBKjs;JTm{AWF)t45%JKBe^O+4#9-A3RIrn-PiIpscQCX~3|ohqQbML -*W=etx@zxF*?|Ydf>VUjf`8cB7pAMI6=%BalNu)D*BZzJG2+81nGPF4Y8+j>EKRn$PQTwm>U2aT}znx9{Zs};34+5)b>9z8+dGHL>Lp~1&wjc2~;A;TxWPev^%gvf{^Wd-5x~yv1 -LalMyM?p$-b71%;=8JE!4si4IE^O!_MB@H-)iQen>)>kc#V6m`?zZFDe=hh#`L6_g7@`|I^KQ}DNb8@ -O*Y(F^ni%~=WNQP^Ol=Y_UyDknz7E}Y#d78d&y!|3ll(O+E6j6kU)?H@PWkS8?j!lzL>{;ybsa6Nwh{ -GxcdImWn#6BKC;FcY{yFgDDGSjz_i^Cw*pFAxND^M4kUbp2wq--?kW65bjN)YlQbflB)z;Pa2*dc0%@ -x$Y)LZAv4^+POp6))@__2|!+v8BdH??;wvAb!I5<{LYxduRWA~fSS<6%~=Q$4`5#KMt=ycA+^n^L3h4 -@12VFn>s|_vn0huCqYa8g6KLXv+|D2V&BAof%;W4dkZEubbU8{_sl9mylT!QSx~Az=QV_Q{`}U1aH&1 -ytdsV<@`~3^n9)XPrHIcu;YWYBV4gKhH<#4&_)sZ4ZWVF8{91qGBrw-@(aP=EhvvY+;)NsJAtLOJ^>@ -9IZW2sSO?2BQbb?KI}E8*m*G@gy7lq}#_jSVUvryVRS|u}F%`*=ZMiS}3-~M)27;8H_r!$JNI#~+wo6 -gq;mo4S-2J701o$WRQa}Z)6k4kL!3(s7s!<=b -QAvuV{Sk*LlU2ArwjtmiL3maXAJ=0`)oM_O}wy-;6GZJ>-fpiE?~WJYd;STE?fE?T9ctPgk -K(=H6W!hmw$HQMw#Dtq1M0m?#(S`8d!}I91mCw4;csg&?OlGw-(oq+`Rq$~FQ545UCn|1{9&jHN!ql+=yI~K9+@AV^%rte$e_s7Z~AAf&(;J$eCU+%%$uv3#OVXtelN`c%lW9D@3La -Tkj-0!2UkGX8@cMaw#>*NKeX)5-6Y7X=&xf~f9 -Q@dsq4lL1lrb$eq@0)k0Q0Gl2*vKi$B-wztH#Z4;b+66E^AnMz)&0H1hS*^L3Ihl4rRrnfYN?99awGI -X1a0IjGo1riTs)@Lv6O9n;$R=T3<+Ap${UXRLyWeRDN^g#RP?%b6IXF|8qIPeb4{pHu`7k;kS4HQY>&khy@D4ad`LsC14bV2?)Yy9Eb2vYY5^ -u2IBD^mqy?n<~9`DsCWqN;q487V&si+!Cq%Td|q{#ytPFN?{{o+V8cL&-V^$pF2LW8K{3ALD@y(m!h5 -KCQzRP%Zg2|y3L$sPU}9e-2=++)27nvj2FPAB8NSOpsrRtFZ6V@~klT|J>3its+q-y!`t2-^?XQQuO9 -wXKPTqQffHq0T(;pN|B*V_Em{s+@|dE@`v-|HSO|1wi={r=!SQ_uZ*p&I1)rYD@e%w8r7J9Ktaq?h$j<6>*3(zU`5#}^jKWLDKGigQ=omCrXoiqEpwIfv_ -zAS{T1lSTv&V)iaYho7#z_aa?VzasjIexq(Ks;+l$Pd>%LEAB|mWS)f>peiKkUc*n%$4yFIUkrzXT -yZsm@O-~cuJ)7>#6j807k%UX?J>^@=)EVGDIGYhq~&lN}(7NSb^=_Z&!3Tna2j7laj -;O!DK(N%)gUT8i)N{R8K=Io0dSV?O(AQ7*-F=ZWF4ND>- -;q0)RRqdf$XXTb!8?*8D498{ytIqg>7U_(-_xMl5X4V*Zff^1(x*$f9Q)leA2K~N|y)0^N##q@_!Ef= -X=&aT;bocd+rBzk5dSZQ5&r%Fa(FTy$gb142M4Lu-X_gj=m=-qwkT<$)2Ny_vU~|o-@8Kb8@o?X5y|QR6WS -%Z|CQYbKePMY+RKBG?nH1SlIu2rAXhesSukQSpUNw6&JOb*95v>R -dEJ)51&KPdi{x;Cq}-~T#y!}EtJ_dlHZ3H1K{T^~UAi#vX3EG1wP+UtEOiY8%{!f}d1D0nYgArP9RQH --QW6eVGVLLll>{Da}0Zqx6<8YH?CWeC}=kJES$LhPl%)J~V9x6g9=d30mDWaHH_w1*>*xAW%?f#KVG3 -Eh!&_YZkHckT%QWJjg#OKd|W3CZOYsZGKV@6MaC2j|oeJCg1YNkIOKjw>0u)H4&koWmZi0aT!DD*xLe1F0BNVM -VLN4F`Wy`vm5uJgB#Zqskafc>B*Qa@z?a`mH>W%v0MruzMAvhdvB%6D%svVou8pQo{x54_jkZx4Cjls -O{3_iga!^z^=FRAxWO2F~;+S+~?wr>WuDXh)cr(P_j1;V_90jHMyr%NcIM-UVpSHhqRz3#Y+~f;vK-c~qq -392^-dIZqqfpVg_)qFgbOLB+~me?$wnX_W>)N?qdv$g5)1EbMvyIl(Sd7pGQTuX;w)*Msh*$1a?cI|V -DFaD6OdmhczIF>|$q8nY-W#Rp!hEpkkW9fDlDoo0jyq1WA;R-VodikeZu<;dkN-cL~_E~87B&9$GNx6 -5VISWnP?0->H9PMKhKx!+sO0I@wk2(*HLNRL3}`lNLKi6(+eDn_U->*-v)s=$67qQaZ??iKa`Tn9n)>4h}M1UR-VBjuq9gFgiAdnGD^<5xE1UCsgex=bE~LK#g>4t>~18Ik8e!1a!1=$gbx$ -g>o?5{y_{iV>)`Qi%YF4Ork2KPz33Vyj7w~`U+qRhp-zaRJ_wtZXwE*xZiN!PYxrOYa2lcP|!ZEpuBz6t!!k$i8-&wZRH>I+Yv`~se5^b^_(DhbviXm2ZpC+PndvTmM -0%WH~GKRz1fnZ*tRYB&R67Pm8s4ZeRIt21AQYJ(F%B@muQ3#i0Q#K%@?hOw)ducMfw8ed)l(1mO@eE}KVS9b#k`&-L#Rndv21!&mnxiWzXa=2NNbxCnf?^r61-frk~MOqS#b3Xz(S172% -FfyYb_v$CfTxdiKDbxS**kP7#wkmUk%=Q_{?fK=T;E-^P0Ueb`&F{;Ky6tD -R+kOw;tgvM*2kuX{Ee>#T_C{~EGq(;xq@dKQ+ -Xrs_?REW_kfRV1!BL9D(4DfA_y%NQ7(@t^*!|~loWRk~OI66X`sl`YzY2^Hdm#z=Zd}_BCU3i4a)+MK -p1u1N!R{t=?;+${2xZ@82KNUWt;eW6M}{Rk>LiFA;%>Yerrvrd_^)@LcczZ*_;VLC#dl~8N4tv4zAgT -?GuhU>QTc?}m0LFYo@Kj80RiqUa`0|w{H~XQ_myv}*}Lk%JtdffdqW%f_qEpcUTe*LS8J^|kck||&Z* -Ay{-5C0Pp|mA*1Cw%ze>FS2t3;~W#6p*^__l*3h*=KgcrBi>l@X^+oJuu!R!?`9;m`|9l}Dd`c -|DZ(5gArq)%UqN>;iJmZ|_YG&<`x^OslIvtMCDEwcDcl@t#zX0eT_?_>IV)4H8Ld%u8x@`io(egXgF4g2i<0{+Px_SyRd{F68A -Gf@TLSE>qqHudIOukR7>YzAHCLJV*2<;P<@+cA -?VQqC%ji#R~f6#f6RV?fxw;pn9)?<$FfOEKYXt!~>1U^QfwjgN@^6DL-#L|6HtOP|5^>%xVr^1H%E|y -y9+1RJi2EDrm-O&=j9%)bVYK;hjD!9^MyH5qVvOaW=83MmR`qlRJ^oq*cO@{yt3SRO!@FG^%SM?^+8o -)x&TBRk?J01P5=go|gh0F6w-`nUuVXR2kq0RbT0^Ty#1s}EBJfX9Zwd7+NZv^51+~Bx=gG=|Or7R1vd -}{=8v+D!pPTXSW*s$w4XOIWowS05MQAEDJlvwY>F(Iq7?gLY-jnoBM4rF&duuW>UuQl4(RXAk_RZLE& -D;4!6=Fhrzl`nejKKQr~8zb|H21h{}fW5B6@8|ZheS{VkA1)~72GRMsk(;TP`!e+vQg&9E8U+wyW}=- -uk9ZEcv7QdiJ#Bz{H$N&?mL!nBk+)lp-dslB9Uh7;`eauKOTQZ!s&@+)$n?tB6Jk4wotD^wAD5=b -xclYVKk&eo^-r9IWvDB#WzAJ)k~2J{oYS}cm4sPm|#ev^Xgb&;*50{w%$bjnl%I=bKu&H6X6xkw{e-? -}w{hijUOSks>=9>Muweqyq^W^Q)Ad3H%1c?e4{IRsuSy#x}l`cYNkAJ&}%-&7S85}k#hoYs5WNW4DHXHVTq48EKE7m6dxa68(zMUA)S^JchKsPIvdZRN6j*}qEMdONo5vub!QQKf6;#?L%SZzYIho0+GlzKBfl$RKa1}f-MNM9Tl;^ct4J5A -XBNdDO;}G#mt)`dfA$m2wY&cbVe~RFCEtLiqmHLpv^Kb+hLU%INJq4q(nk2@YP@z*>_fiXIH-fe()eV -;FsvfN@;Yi^`%?gHNbvgWVl0g=QK{12b>UgFam>@w$Df+;yF+QP6Bxl3o=6=WNbBMH(H%jKA2A8^hyi -tJXn(qT!Rx5#f2v*@M}0idJ8}))rK^F-ux8iUcK$8jwxgo)kJ?7baiI9-WDFFvfFZsfD3kUUGToo_8j --J6?3vHrt>{V9&mvUr72C-?tTD0xlk$$VHHx!%c)XashjRkUj$NySC|9@)E4{ZC7=KDdR0l`Ux0#O)45rP77n7}~-r*IsBQG5fp+lNGe@Td4TeJ6JIQZsz7@uJ>h^ -&6^;^EVo#c9fXJyQ)-{?nTU>;alomDZT4WA^SdPj_&CxD&LiusW(jC8wsi15E=S{G~bp?+u#KIm5Cm< -SDWR?J2CZM*j`cw?eH7N_uj_jotsMYH(bv4r#1|oM{f%!Vh7gvTY5Sr_S_WtcGkn+Nvge|4gT8<)n(T -JO#jpX3`d!IqIq^BgcDxOzGg}+@z+dM{j&z(o~g<-X8PEj^qfmwCJnX5a0vd@l_;3>ubq4xzd(9)(U% -y}$M9~x^FE(D6S+Ss&2#bu?EXey>d$ug#iLrOO?qiUU+T}~X+xL$v0Wq!yp&&-{r#$ee`nd>uNwGwmc -6g~qwEa$yzb0#M-F7oyT|a$SubdN!#DgGbvGs`hI&26r@MuXb`x4aTb#ptDB;63noE($at(>IC>Yo0X -e9Qrenfpsh#DV0?&x7WIXvxO3;W8VWY|(h5Cd0{Io+b;keMX0juLF0T_)4m(&HHWv;DE_PZGYspKi84 -*x||xRxgPlYX>7b^o8Z0?C06Ma)a*d*IqrDg6HW#MgYO&-!s!c|D{cOOLI(3mrOubNXMP)+<#%kDd}- -?7%y6DhG%5;0F^w=t75!dwO6!0773qF^oMC<;!R*WIR;sB&yj_=6@lFNxY)W~X-s5g`rwwL%K*1mYKF -Z$4{L+JnD)ki1Q|i*MLv_yAxkxmhZ_gc{+%%V_L2J^4#WT1oPQ0&zcJqr2{Vu)Fq9xjihyyHqHu7F$r -OT8`0io)Wyb;eR9SE@3CRB&eE&@HJ-X%O&fbY=PgCve{he*!j)VCYO+WX>L-x%4moSdR`%EOVYx(UHz -eC?{Q3vhWHwxT?A)4*o;=3C?`im&MyP&)cPWBg#_brAkD3j!VZ`f_~pgje*4S?Z2?}Z`z&+S68_+5LP -f2`&mm*ICO4n*#)4uO#QP?&OeUCz|S% -5Bcy%tef#^627JV{A0x30?fm|yNW3>@uRlj(;NQK0e5@Mycb5IJ>OBnx{9PXGYq$65Lg223PLDd|FYM -z&S+L67aw7!vff6gNsR{qu#b9Pd=i(kh^eRPSb2xCdi5om!CyXD?vMDPLuP(=V9okBbST*xOAWS(ew( -eS;*Tj?W+^0!oHmIf7DYJQOqx-N48Ky&GS>5+Ukh_YBh8~k_?+7-u7YLA4*T?lxxTm*8d2**&VouM7t -&sQ}66cA4ymT44qrAjwX2T;Y!yEacFI1i6da@1;P>4<`cGK(NCIVSR@CHPojML*8mk4F)u7lE9r6M^- -D<9H|1y@hGx<1{WNnf~(ssfaJLkPm4FK6oRxRYIX2z0#P+8WLMqlXrSzFh4^B_O#OUOgt&VCrQkB`jj -nUKKY1B90pg@LuTtP+{0@s`ZC{b^3#snC%nF*ZcJxTemEiIwiAYqk1Gyk0*5XOgiQCibNoYEL&4+T;{ -2fTd&TtY8t=1&d{TyPJJ=-)=b%ubh0QxRuCn<9!Af~LOBfK(S5KuaKYsu^b-3H-!O>rp0#E@%HlcQfN@kfC?9P -yWWt^ -S#U6c3szt=U5HaOAGs2wA79&zK9leLrknE}3kQBB-^(ULn4{5>$Yiv!?sC%akC7Pk{-*t)-V1y$-}{L -N$d{DYX&KKo!t!CHl->DW4UsRzh0}H+3#f&v3xyXdWLw~BhvLk$ccPo`by#f@;+a+kd-eQ{64padEh^ -^?q*~d>VrI`IWUxS?>1U%)U%Yc{&^fZM=V7=?B$%FHYL}mF^wCxQFT%Ts`XcY2dUyqX;V51kka9 -{{6@!8Ht_@tQ1#VZOvjEDSc#PBeHBUZ^V+`ysl!BirwR~C?X3xnCRyUlAmoyLqUS*fC~IzUUp&9YO~s80L^q3QunK=%eGLi5_bI9H+t6 -)i~;Z7FdMJH_KL@snSRWtMwW6om|6(Fd_-7i%t&?pYl8->>idFMGWe_x4-G(GQp`Oa4%Y^nd+a(fOO_ -e5>L7Z2S*64T3hB4DXtTIJwL1Kp3(s@DR|aMNH{Cx0B<$NDhhaplSC9ewXwo*`6@L$er+}Zy9{*^Aym -=eRqAFx4#_vmfP7FGfM77m{`73+1;!N-FuFscUfoh_AcHXkbac{inBe71jaj@+UBL={olr^;bc$sWaz -sniTWz21LAKa_x5Pomc2JQyt~YHN>1&~W!M`SW^c=;-KqX>osL*@2WQ#k1Dt8JXUW7OQ8iTQlxd!RcJ -R_9{wL$&>gs(bwk&bE{DH0f6h5IXjZ_8Zc63BS6)ZNTy3_0!a%!~) -y1OnA+&x>fL2MM?=Gco5FnGM}nXPaLX-G5e~zp-NAJ7*h-w_F*Fo=iqB^OGdRCFI6&rMGwXFU~gK#sZ -%V{*fvdy0Xy$k-qWt;N>ZVK0J1fuh+`KA-!&aGAR2G4flU18?$`>Y8i&J2P+Z&KK%XW_>a){=d)i!p -9ufxxQT3>6eV#Kgb)x!iS3U6dDc7Gx9tdQ4+_a!sD9&f6uR%fZFCTS+h>x*9&V`Z=Pwk--kS3ivWLp- -i!d0uZ_dSUO)vB<_>fWW0`&AH(!yv{sR0q_{fpBA3VI*Y9i5 -oJWt+sobP_GEyitQ!1u37y34r6_`4)O+O_XN?C+KC_qxsH+peI(n>097gs9&@__N%K#{V4hYUQk1=EQ -%q)EGF+Q(PCUCFjOCrt_V$*u2rXou>)9Vu5G@xD|Ew-nHqBw0+$_BG#gD!DKixqOIOX#QNdb$147eSp -ViKfPEQ1uHsMQw!igl(>MW0t;Wh-3rywwz?H8Hq8H4@;9mhI-C6i(7}Mh+-d7gI4{X`SzTZ+lPHERm4 -q`eePrz7n-B27JH@$eNm+Fd9JRjStS?1W_Rj(@(3!tIjDq*hE0cs{R -Jx;u8Fr(4CJW<>+xbG%%D`7HEZMAYj9y-xJTR-gXK^#@eYv_eIW8`bo$e0ZlIv%B64wG8UxQ{PC_OH -$i&37vr_yAWy{-&!O(W1-fq_~p3>i*8Txk*}gY(|VU#{h~_`Djt!ZGe^pWK;SY7!)JRF0InAme5UTRd -oi{JBKmDW!`84|yQhwjfTYdoN{Gqf+=?73L=TrCx6s-=1LD97NInCcGv*XFU;FhE+{$htxGBQG|p -8Mb6M)LWCjddv|#^7y=zOWuVP7(Y;}4EwlP05$1dPT+z9zHr3GBUiE)F4c;QVfut>&;dy$@ziNaa0aD -vVUYS){)nPn9#+c@aTdrfR&lblLwkhINz*;i!Kq)Y<*B@--r6gF*E$|tTH?dE?cHqr-Q5lNo!i@YcQ; -nHp=KVk0%iQ?T1^U&l2&oAtrz{7HO5!1t3XGimys`lta|inFv}F3NLx|xtn7fwKZ+WJwW4W=2B(ELUhJ_O=ef650x{KqT9xb*kG3IvS+{M+7g2ZD_;%0=ds+`~v4E+kIhZGFOVRj0c>{@@7PdaD#VH^ -wGp?OTM)VS{LdZAiW+5W)lOEjF4{-Q0|MJn7yHh{%w$GJ570>X@fYjRdB!#GN -zBY>Y(iTx2)Uu6;cin+8Y{Vk+03)H!3SdHB(Bf!Px8SG`OqxN2<^!h1q{}N^PBPsG$E+H24!&{GXZe15W+!Y(L~;Np!L&T&!ARL?vkjx1JK -)qE&kHR{-xb6+4Zk>m8~ZT>j+ah?C -_GJ)T@&VO~8!0%k=zq-uNE#95qM~nci)~Rb>)iambV4xbKwO540Xh)K#^Gisvbm`c*_UV#n0$9q);=l -$tUQ+nHg8q63`sp>YG_73xqkghGxk3|Pl)2%ip1|Qs=V}_}UL-qyDv9_MUT#5ocyg!o=&c-+q%VNj8` -j%`yZiF>`e0w>WYmaqkWbpHtg7lv==2$FAl^Zlt{QuN|JQx9#W#pnnbfI1bthM -73KEHWD#fO{JeJPD{l**$;@^*14`!~j9xC{=ZFd|p>wAO6yX`>4I#+f;NWRE-3f`JFIC)F#+lQ~i^{A -7lNEC9Ks8_u>ubH-Z%%NKPCN>-D{&U|hCt%bY&r;mnEM63cJjibv4Z$PUzGE+)uxxl8*7kHz*Pplfc7Cq$r-%{wmp(|!y$~;n -9t;EAQ!Vup#`fr{wr1keN1XxiQzOnV5o06i6Z+&F!nya3$c3GC5``JR0HASoPux(cw%8mL=)%Jf`RpF -0^X(qT-i`CP?Hgok0%Vv8Viaf?#6lXS5xly>=;s;mS}Me(U1`EB`%XS8Bqp9?}cK)Kp%l_S=O8urKP|+9IMNW*c=51k}`xZ`|JQ(#5TvZOxJ}uBMn{Y5XpBpe$Mf0MSYd&(b+ceI1G*PRkE=c3Wy(PFlkLn0gT!zj8I2~pbjtRZttxXWA73l -z($v}Z5zWdBDyulbOy?`$-4Zd%yu}P8XDCFaWl21_-w#H~9?fi(f)clEG7mLBWDj{l28XFBB~8n%HpR -Ou30(1#Rgm?nf&6(Tk0gDfZ-s)L9xzGwys%+t^%U`?V0Ne17Tp(A#0d%qnTmaf4g^sMrHH+C1tCF-fS?UeVxNIYEZ$*X_TEgx(j5_gX*tQrU7Z2McCDlh -5k|zGGQiN!^(N50K!k*M(1*U|Bz8yNFCGKXUVfJ%d!ishcV)P3?j+r}_x3Wu{8wNS{c2FKO^RhZ7{$= -N9Ar<5KzlDZ2EF(5(!HP$&fZNb?+z8>U4a7PYl -(c{gcd5 -3-aPqVFu8BKGVoM@k+Dyk*L~ZveB9!EPrLrn&`=*<$^hcE?nTn<#~GX;X#_?_!y;VJ&w0xn99}C&<>f -3E5LCHE3;rjF)_J?*t0z@ -f_pkN#W5fXuL0wPF~gm8%b)UPFr_E?3#eS>!e&3Dpcw~zyOmcLQ$>@B|o6MMEK#ebz>m%n9%lDBFd{< -cvE(LG$^>0aQs%hzo&7~6BpIQdTcrtd88FI6zGJUA%J-z4^Wqu -;+y0UCv`WaT~lRwc)))8-KSBLh-Jow<`<%t=u(xe{(_mTU2IMSg7G8RB)S)_=Nab)aCz(sH~y-Z&Lm5 -qcW^>`p;4MeeC~;sQf$E{JB06@J*md93#$mA(j&)Cc=cq^XKglCc6)&6V<4$e0HE_JxN_IJJ?W -gr^S^4mI{#1}W@;QW1@uoTY|HBcTLF818Ld){Pa8z<%lkdX+3K$a+;^H|D!QZ*fDTW-WhsaDtR0?Kg( -m|7x{Ai}PmBjEih0OOa<>j8)t_t(EZk#-$B$6(pM8KN&z=P|F{#-nulXE`)}@TeG+Dxff$&djdK -}_LlAJov_}(Zk+Giu~htd!O&aUEr<7#pzX$hMthnXLf@s;U%+$rwnBY-5G3#5yUU`czb+Ue$^En~Y^T -XyUA{Y|zSUH>SK1Xwq4!pAz9-=mqRZTY%u-zzjmAJppp11p!F4 -}!lJ)%Q%k~&#Ma$nGvZZ<({KIoz8nBZT^Bj2h=k@J)45hTw_Nmn0Rn39VzUgg;`zXeIKHY`uyR>5edX -NiCVDf*XsY5Ju(@}zyOljhjkFuhQ4Z;bTeCI4AtGVm|AY@K20tfM)QNM -*}+DtzZ%Um(8nrR&(jsB@*HID -vc5{ovZ6csG^SyU}s1&{z0SKqBGmPxQG3;wH~*@0@^_LvzG$4Z{zXQ-#qARNgZ^KA81%?kDT%pIADV5 -?@uqK?Cb!q*2WEgr+ogsV;C7C6B{$Hg0-h-)TnfPQe-I*Oy)Typd`bb>UZxQeMW3n;*o5BwUsXh{T>i -W{RWjJ~Q%m2Wz0~hZY*dq!ABo2aGJKv5468b8x&HF}5m{qh~VLp6FmC#(5l_ODQM1IVR#O7Y4$#-ELz -S;1r9dDCNLCL{?9V4R>vs$3tNV+AhlpzCq^w1of|o%qY%J*yqEQ&c2{eiPp%E8{$T=u)6GC4sK$(NXk -#NUA-5EFf@3=YyFXTF?U*d@I-*=gI>tn;mEh^lS*Cj(pDn8rYbGZ_|gJk)*tTYITc&&bs}F73EHXAC4 -LY_wM=~py; -2NuiI1c9wfuxnKpVg@F2l%wRo+>Xv2qrPuZv3G->+Vc9>LZm+4F(}mHGi!o3qB4qfZ&p@sz^^cJwu1u -su1ck;QQa!k_A2yll`-bn^RAPYNTh+6p>W5)sd}en^!}yJjDS~ET@f7b}e}I(4%<1KTj|ux$g7q)~#J -%MCOQ@FGD(RAL8}GV9pC37I|dD$q}AHzYD6y(NF@(3rWV;DtU)sk|pT^%^br+E>p4(4&$YHT_3oMsYY -990_T)D{p?M3s0i>e;L}NLfP?DJ*l0mZTsw{LNpjt~LXx5)5v91fq9PK{*TBizw6zJ`x$#PhXF966Vb -;nns{+?2sFMO_*lR=>3!UF8<${`hG$NxZS6Xk$D}mV^7&BAydN>7-pjYhiWEaw7L)FZHTIyvbxz4Mc3 -Lfe^_ocqct!~v59n?tLHHxa_BGV)AOxZ7Ma({b8w1kp9~Lc#e+atf{FlXQf -7twX6XFbux3`C)YZ>;2(!M=wxVw*P*8ha~{{2}#@ZE3B@MD`agrV@p);C0lUeIJnM;z~}KuNN1mhSu)-t*z{=a3GE-=K?nb8B#~qTKgnk)3Dngd2Ga*}sJ -`;q=YrseLDR!(-^LjO_Q^`&$k;hTip+Z|99|B{A_nnD0Bc(A%^MjCL?bru&2F-H5kAI*i%ef& -1-h~Jgt`wl?--^t(Gbi_NP%fHD0nZXz=vElP5d`(1HP46t8*3Mtrq|u+V^uiA`zL;dI!gP;?Y!d`$uH -3@yR}WLh)$643R?R9VKzP?LT32qnTW=Uoa2LqZ%3{&WjbHKYta5bsQ8+Dw!rq6>*j`(FOuo_AjZT4{? -Nv3u;lphL#RGOCrqq;b|sv#04)e4tjH*=;)j)2$=62qI=>rB;3Fu=P7ik>ygJl -hC_^O{PSmp0A3C3g(S`UlSn`4>_$B2ZT1l``hbY5|)W75;jgxV9}HXEx3apQ*nr_v|1h^dDSv;<*6R! -7sk;Ll_}-oXY_{;CjM(V7_S-On5UeQ8fq(?LEzc~2`SkqXtsSC~F*D~mvjICAC9Azz7QC6>dOccpf*) -NQ$yG0ZzAZw%bzaJ!j{n{-}@=Pd}jyKy4b@YaQsX2D~xY_JAAiYO(mL6?w6OnWiVtk9SA!57K`jE8?v -HT8wh{^_q_q4*XjzdL##|ErIF3bwy}(noCl6YlmVK*|1fP1*vI3=sz#-3faqvD+yW_$vp%eBWW+f;gVO-HxK&iF%9j+brZ4`@ekO+$7#I65EUIMe)$CQL&BOp50rc!J -Y1B(H@I&u2J|(Jl>WeDIT^t|DkwH -3{Er^FA2v{6#EX#9-CeuOBWMz*n1$9|wKqlWu9kUqd3M?QYb&aWwbVJ>Ns(uI;-3-yNK+pTyA3%6+>` -e{4eXANz>H7hUuC9t=PN^WRxkYYq?oIOr=ew{WVD|@EAI+Bt(D!J1|kQZ0_D+Le;m)MFUo>u)l9P?8kml@oPXQ -(5*oHEJcK=?wnaF(M#6^a!%t~o?U537etv^-WS`twA^Nd3wxIPPOzypV52M4KuyaEl -Dwo#Ae7W-CeK2ecM>nh%`##3%4hwCNBWe$pVIW@9^m7RSrZmbT-$M&8i_k6Adu;mfBvf{*Q=lpch=8M -m3uy|yLQlSoqFm>_pAmj^?`g2O0OIVoK9+=@iT#hpt@=I99;q(VzzIS6avFT}zR%#)*0FZM -TT#sfOJ%2~+lVueu0e7U5Y0$9NX*IC4{IMp?_Q?&0cCP@~^n@8$sa<|y5BNn -ig^~+-dZd!V!ytU68*TtxX^4GL#UZ;a#a!Vtb&j17m9z2uT376Lz}Gg=R%^zEqyT;1O4e0?dv`HS_B_ -ZH@VMU}Qjgy-QV4~ROwsBUogWm;vd|M&AHJY>96sWjm)%XLyKCtx&K4u!zRDlK*%AQ3y51D#Y%d^U`0 -|<2N7)=qT#n=N>OBq$@(3HlO)FKz^k<_GBg}wee7!uCQ!kY206Z^O@A$ak;ObtK)5l6AKc173$9FP95`4M1Ni)PwKQyhk1nYP^oVMn@eH<%$;P34E0+c5*3>vc;EUFSEl1m-`t -&$10fPcD>Jb$p|o(uGL9}3M`Ydd}3yl|CB$e&8YNf^Z_976~KLg8)1r&)#=dy_VN=ZtB#7vqq~P -8fIE2=8WT2)b8kN6B7ZgMSX8Hk=f{{S8uVr-J0Wt~-nO2{ww0MmxXVCPt9AyIH<_y~J;ZN&ZqZ<~?Eq -OuNI(n@aAMkl8K_gMm9RLZH3AhsyU=q0~;7Q{tTpf%jKU@O?oW7v9#t{iEJ63wo=GVLM^{TT06AJ$j+ -|BZMmT7o@I@B9;Odm}z5NxxZwWH}nMjC-7-UPr$F>ljZz9eA<5p{uB7LqbJ}u;FGY!r(gLy0$+r-?1X -zt=izY6+(!}_BzpXHfiP{}(-98ViQ5{;>(lq**csJB4Ucq>DTjE}- -Q$m+C2^=iREqQ{TE)pxaOV`bys(BK!%NNxPOA@o1sf~vvLs$;p -f^9KyV;BIsEUrF0E*)z%hXxjU2XtytB@rT&N($DeiAD;Uyto?M}4>1j-ARMG96h>i?geizbF_c0v82d -DaeKB#z-+Bid=gQt&X&Xb^n~&edEE_ij-=l!}gXIVwa+VkUggCfg{-)gSX@R+|j<#h7fz)f! -?){=v%9b*uv1SDr2^&15^8%yDGwan=eJ*HHz@QLgH=4MaBP3pnFbsi;COvZ3P&-$I0!){H@ZpO|mgh7 -~C6J(sz=xk&Lvk@t89d<}Tq9`GEVVoi5;-P&_JcJC{er!R3#-X*K%pW@i|c#ERn(?I8^obB( -d3ixbUf4i#h1fqezcsTwf5dFMim#5Vy#4++poI%88bOQ9iJMQJiVN?uQ(GX@34<52bz1>RzxxB_Paq< -duvk~J_7Do-?l`_e(j9-+9x*4Yy>#!OkhTIA&1cD{jAIsD5&My@08PX!LBIgcEa#U$Cj!spZKwL<-?a -TBSQ9Hc4<0}^k?a>ZqUzP}9Ue2d=q#h+)7_}4EtJ-L6@=y^+H0!?9q$6~xOJ{?jYp1HXpf=~U>lzO{f -{)rdPr#zw9M}dg7DihIF5_}1w;rxOk3FlMPHdBBNoSTXwh)avn8^)GElb#y?DmC5;)8Mkm|6<0z|8p` -t=z^ISnx(WZ8pm{dFo!T*Z87Yl;_%>KhZQKc7ud>mY#A!Zrq|dQUE)$%Ln^9(Y=LI;_WnL7Op>qQN)5 -c1sfgGDlut~XZLVU1k^3;VF?t%NlhgIPijN%hT}%lYxVD|tH_LWx>UOnMSpa;Cu~4-Vvh?h6e$ -jhzTCSx#NAB=JxJ(Wf&hA|MK1S1qm^Hvi1t;qu?=nz@q5qnLYNf{0zEE%Ta4?CLFb#5y9H8()3p=Hiq -bM5J%xSGt_VFXGN+AhQXAqZG9rmxyJ-}U=CPh+DL?6;fO(!$mR@h)Nw3}Br1W`~C!iy;QVY}jGa!8qU -Zvy!R<$_F1@<(XGF6zSDSNOt$?vpfVV^pVEWb+zDg*_`eE7mzwy?I;FqRMBrna -^xH0}KD{JLxa!EpQz_r;XJw8!sEd^8rZHammj#34_kXi4sMK -dQ1#XhFsT3ALCT&*w%4)XCtTb!XJXDnb|#T@1wxGb_3ohZ#%O;Dq4GT|}w;6n#JJRy#wAK)Y795ng{# -W$cDleVuEB)RGLc_l3&RyQnjIc%Rk!9EY$Z9hL=`184ev!b9gSW3Df&K?Z!qeH5k31E6I2iJ830xoI= -<;vy6x%_JlA5N0$$O2Z$GlEp{Qe;%?OMz)e)ZyV|+jnoaN5^0QM?PZ6#SaAyJ}F)aqWy(?n2iaElN%5 -ojT}b$s98Z?fUeM{t^#8hOk(+$I4%4gX93MM4$yW(ZzK2xb$!9V$kQ~lnjHoZLJyGt6wZ)Kg4~tgzE> -V+WlhPaUEgANcDPq}0Da!a#ZY10uJQEz6mnD+f-X4W&27otM2tseLw@c$k11-G5Szin;W(xuK1k2s^cpBOdAM#DeZb4Q=x+TZ)gLAa&Nsf{T}-8Wr;3g3k6F{41?cjpNfXeb!^}lmL -vnN)i@JdNh>U(!{DUGmS{F9Rlf0hUj(o=K`Au-ect1zKcIcEw=^ttKXU$o%*PI#dd&D->if-%ADbfGI -dA}t|e>LY1MQ_wbK0yS9KoH!CC;Dl7$?jQ#?;R#swC`*0wxn+{mKfeST8!^dYu}I0_98dx^Fn4U-fPN -m@{P}uz36N=IDN}tLD>%Dwg=JM!Y@zuJ$?9X(Y-;$U&@r`@m|B0CGRXMwD&jf71rQ>@-EKx#(mqGled -3gg6%kQ=cI1|nT`5_@7%*qpVPgxIm`Esl(z=fd&0lpwI_DUNquWCk-79-j^c_%1pg^iD+2SIo!zb~=& -)`AYpaavtGgkpzortEm99SklT-0;vB;!aSmk-y!cO -1k*E0?iTK_pDBM(V?Vq3wNKa@s{r-raoj$C&QsZ&DkNIhVC+^fVOT2cW=LsgC)ycx$j&DElsi3VAaY3 -(H(yJsi0Zd)u!(n>wajQW?z=Nm)cQFbg`}>%T%HLLp@&k);s+wVgtOrN~VEvs^G1LVQQQjNukDj*J`~g9Q64Rl{nHQW5+};```8MfylFP*$=lak*;9L- -uWAc^=_QbRP!^fW34fr{?;+hddACiRzlzc)m*pZUtvoqy|k?SQEJA;OB`GaO_@XXHsuq -witrYO4gTsuF|=t7O;I)_u;J04AKYS7%B5@H5l_?EEe#9EX|wlUfP@mTy!&{fx2~S(!+f|KQFX=^rDc -P-9Ez`xhH17S>Jz%F{<8g#A|r_AYml4yd|vy_ -t#5kr{6U;I*(g`uJv9HUV93LaSh1Rwdu?tH6973YWI6u@%8beH~FpA_A}N~ -<{T8~5@?}=vpkG|J;B-)cY9ysk)PCT5}#uF0N3-1?3{+a4W*pb>i^5!n>9IVu3Llm{0iTz&&NESh`s; -;Vi1T~z#X&1D8$UKZ&0~vm&;Yh_CC8i+7ZsmM1WppO3%C2Gpr?SthOUi;2%^femcht92Cud5csnX^O~ -b~6xlFgwa8AlT@@I{ZmQ_Il9iR)BRlQea_fP~2P)xaL-TonedfVv8G=OY5com*K!CxQTP}nzU9`mv0u64g42`oNJdZ=)Iv`(ky7_H@+DvN>c2^EGDBmlv{LE-D;hAS#y#UF7G{{R!!VuIZWaU0;t8Jv -Cr#GNWG*Po;os+*1|QFfQkBz&)ymK81CkjHIU@I8&dDCY#k&m`o>S4p0+J845X{N`8}_uZd@vuY1D8n -^H2(I#jB_cMNgbwrpo9L09%>L3N`Wzf+B -ptuC)}<2FcoJ_p&vV6U%z#F(jsCL(3G`!YondqQ*I0jmE8p<6ZHIZ2#G8-gvSTH*+LDVq#4BrGOMXEnVNYDO1}hzvX4)J)U*e2KI^}ELKYb#+K -+x%I(cX&Rj#pz(UycFA(VpPo!=uEOyeZA|3vN^DMr9Bf)Y3 -mV?XVB-nsK0BV**yP|eaKq8<9zAJ~lKRVv%pN8i6Qdc*yCa -_>OZ+JXWB8|T9PVNISA0J`29EdL0w+J?%lOgRw}=0o(TDUg@=S(D!6u=Pr`b=7KhDaDN>9*7oDw*%{1zjl|yyKZw<@{Z)VN?mVPE|%y$UyEoDMxH~P# -l?WW%tu-m!rg7Klvu96$eiEj5}Ty2ZsR74NYERKjbig9oXM_H@7o~5cs9>|&7-8N-At ->+xeWWd%qliW+g1>A6YSVHIc#5A -~U+zKlwJvF+|<}#;|hS)wVYf;aSnZ8(Se*=f1GVQ0hDAfrgDAFzAfd)|zSGeqC& -XZHk1H_@a~zSIS!m$p%6u2&SYgF?%DK3jbc?JsFyAf`j&m!jn?ZI=A-Ku*boubyfNz&a?5kx)XX=s=YNp`Z$ -FzBpz(l@|(h!lRBtDwgrju;fPmko_y8-CUk|joI|*a7~reH?c|ot4T44_2YOzSRqGz4$L!QpI;#PXKnGAcO5n!yhN!{>Ki9-)X#hS{4|Xn5*4D*l1}D?h978Ts8glGeZ=^|1meF9l0^!l -Mv&dPuO6t*MR{ic5?^Ul*Q`xrf)mG;TaTDXD1~a`BdED#7yllcVCZS)9j_ffcsLj6r!GH3XclVnY>&; -_>JnBYok?_gj;urw|no!VZMfC-R5DEMcMCLko%=}o?2j2-%XgTViQXcj5a2OrdU^1KKO#_Q}Mj$FGP7 -DriYs`flakGrs|fe7X!H#$$)7lfUCAD(at5i1tvs6kQ#G{`R=dpY^Hg}>26SG$|<43k|pNnjyn5mcYA -0V!I`+D@&<6p8e3sW2XgsYiEd+g$?oF(D*E{TT1sj0m((GV=6ckh1QF$pvl_RM!O9>5@Kk3Rp> -9uUo=;NQb7c&jPcLt-R0LEq=e>yu`B)a0+zDwL!AZx?Z1Z-2spj(^`|Z_q+L)DR7c0v5>F#3 -r*lBwM6FhUYNJ^Y24KtH!)NXzq0q1Zx2b$!eJvhKqsjQ<*f3w_K)qJ>K14h#9)9pbRx#^Zky&(i>pWk -0zP44=&1bw(|59>TTmPoTLn5fpaZ=x?`6wHmmXWjoHOt@>XP-Q+-rMBiX8Qx$h_`FNfRs)f0ax#`oS> -7w%h6eBw23D&5kig$~uggVMlvZF`EZ*nlQ*Qg?lOWZ|r^x;&Klu0(4K3b6Chi@+P2e|0VJWpH0}k9~5 -L@14GL9KqJuFa>F%4g6o{LSJRbYgi$?ia12lnA@cs=-!U%+rKP~!DpNdIDA8Ii>Y -C?%agli}5JJ5=#qY{)+$7~t;fl|@WHO1oWkoqS-+OSY|oW3*Yqe&(?G!hPhf$W%=z@kHsAAvps3D_}i -_jQ!+PaqIU4@?O|$Hd5?DjRoqKosX^#DIXMnZIPi$vT3PhBm^{rh%7Rpo^p7*$_nU%t0L`Bv1?xPyD=u(mnK7ocbS@m -R61@ds}@$1ZqO<(#imd!unrs;Jf~iO0XJsuucv`9IcfKJqYt#Jl~D3Zb|@`j7-Tu=zk`AS3!pFOEkb=I}Yd?1g%Oi*6 -?BMZU;5(K|ly(hZMOFHGjtHpi^=?T3L^ingHbeN1cr_0t}X)ZBzYlHN<1@nIo;pS3?p(k0jQqf)rgfVFWKDLvSg8TbR -?-zb9q|Tg^d@y{preEv0gg4P0H60RzT(y?K$ac4@R{BG5)f -PM~i9=jk#RuE`aQMYJ0@VTC82JUfpzlZCGI7PxVK3Wg@FgI4AVCWs)THiCev@6)ITA~1r8kxBy_uf*h -nHEL}ex(F&4FNk}RhKD7&T8_S%0DU93iGRoqIWzl8$D#ldy5me~OkJyBo^WB89DcjZ+#-Ysr{L -}1&kTypPP&-i?5p*i5%A$Ahrl~t6Vs|nn`itR6NgD!@85(?@|&6VY50yGze!C$JcscBZvB4M5BTpteC -w}J@PD}N_o$F0D43)^5(pHG;xtM^1h&IOgxKLCLL=lMiSSdi0s=q0-0A3$4xor*5aiGtfR0w35IMjd{ -ORI3l5RVE`+2PfLJoZc2tQh@v(M1%;i88fC=enJ%eo{z;2``#cj*VtB_9U^;#akr9pvH3??&%Qc-#U< -4yc;ZhX6tZAKg6r?Gog;BlOW$pbw|Mqt$4CR^l_HyDue54#;^3G|)%&>G0s&FZ}C-;Ojsg*!nFYc#At -*ywMy*g}0K*pg=0I>}P?LWBVTyg2&vzA3&9Lar+(G?F>xacLD7YT-@RK-oN8Veyajv#C^oI)=GRe#;E -y9ME8TR;`IPbe5szLub?Wjc)_xqqY21Vot3p5=t#$XMOW6Rm3sNT!FxHrzuEk(+0J(R(%=n$9^bwk)8 -KZFxE;>^pet@x$D!ME?F02ZP7YhGwR?&U`{vwRQnY98>s{r4Vi}1|KQKLbjXTl%w*r*3WU1W}Ve -uc3Y=)pQ=b(l{%wxE9VH2&VrZ&m+EACEMhae}UZdUl(tFE#nv7+h^r+bETn^U7yvVy^R!;ogswyzhG! -PL{G!djTbgbAK|0B6#X{&I6cxIfKMz4VNaljC#WbvK{FSU!WRnWv$8bDud}S6mk&zEeF$WPXz&MYpH%R(i!ti1Az`D(V~$mD(2(KOl7!pCeqX~}o?MK5;N!?JThDN~kPMXwff-m)$M$27IC-$l+%=0EOWyFQ$4V30G(=eU_S -$(^|DHAd!(&eNV#+L8c2bj?@A^#c)2B-RV#wyJkV#%54;T;UOO5fNbc3Sl(GqX~xsIuIYu7hyBfae_2xK`&WQ`mXCYfkkL$?3AQR7Qb?(I_i7CPY -Zm^OOl8nf60=fo;v$ZxgPO!waL7WKf*rX_Zh2S;y(Sw?!OKEDOhfu&YN3EqueCfVCUJ?Xp94RFm6ou= -e<-6hYw$EWR&pDVPs@73S@YI@Tz-xB}{I?9HiO3PYZ5m -n1jgHIW^9uszLyG#YK7#nVr75s`O~dejL}k&L?l8z -p=%`t2X^zv`;6U%qOXD%BG60lo7*KvQzS91MEd&n@nWv6ZyCe)>UFTf~m5ar18kyRh45WhGq=Oiu6k{CNBAbF3zzmb)Xp7SL3@5Icrxyc#}ja^3&*N9u7S+YZ3HwV}bZ+4v#;ADLby)@fVH!F7bbqaX)ULRPwvI^3n619@#(${%?%>1@J?&1 -FFUG0ZOrt$o8RGogB65Lx!3>U>@6>$5pRbpfNADeXkG3YxmAMkI2zAsAE-@2ZE4*HJb?xOw?^c~0MoBIX -y{bAPd-vNCG<^%p6&}TXt_qDJK{0sE`T;J-OycL&A;QNwSgG{^?TD}b&gQ+SBD9U?@Yq(~!vtLtZ!dSxK2FnxFFc;{5kNZ71ZV{^{F9{`pusx^=2yq~}jsyHQoiukkBbz(kDFP6Q_j2 -n09WB7%<74W@i$5+jc)!cVe^Lk=6=MIG(Ro5r9m7O5!+dnB(0!)6n{8`^BX4H#uR#`E9Pep9E&$-K(= -R1~7<3{JPg^tC1WX)OH19L@j -YKHuhM{@r{0A>`8J9#lybp(varNMtA8KMSu|dPKW}S7S$z-GkBLwES_1Pd|1n(MO(nkFD^|w9%jQ>gZ -s*F>*8^?g1I24+4wQpHb-Oh}d|16g&=dnD}e6OLi1;vh-K-g5*b70{;k0d=wfYL~*!?u}GyQWEXW~N(i$o47uIv+D533mHL(BL3{N)_EUf7nFNJ(`k&vpAXhJ-<4E=u -fsD3M*bQ~Zq8p1l}LQ>+5^HKUPXBdYIi#h9;(m=R9z&VN7TaKwEY8i<9-)_KGXpVbm7(UUZzDZlCwhQCjr2U(OX$gi@3Cuy1p6-VrN$!hntaRzX@!KSn=xxe{%Lm -s{+_@yr&RTLBc_6+LJ7up(1?s2=L`uA3=d9XDq=I%H*X`|x;~afkzW{ZzFv1Xod%0N<5I8V10B8cn{@ ->p6Te(Nwc#6s5f*fDUg_yK@}RWl-hX -k)X0ig`Md%FX!ycQB|tv&A@6xt%@d)_OXdaj;A2%NpIHRaK)Qp7TI#yQ8~x_lz^xMM&GWs}AwKH8Yfv -ZrYF=o{dm{4bmQksmT;Q-DA1fVhqs*R%>tcuCiiBn(h*NpZ##xML5wrnCqL#Zm*{h+{gK$-%S4J9?Bg -yqip|2C&tj~^1T!C6tLQD!Km1s8D=Crz4V>(X)KxifV|p0+>EZ>l3L$mklPt~SS9vTB -y<1whKHM$FPT+{UqbiNdB&v*eu2sHU9yQ#vw@74YOtd79W(peRl)Xw(+cHx7 -6We4LtAmP@u+WK31~R3+%ig+)#84!QT~@%yRw7T`{AG__@Fog@^n0yq#f@f#5JKY)#mq1}#%JhGx;1z -{78FmG`&wlJ{8YOlvtpHgf!_6cBq -dJd3r3bKoJB<)KT!1N;sZpO;XNi>HlRXH>hA9+l!nQ6{*;L=**Af_!J5>M|A{@g$U?-A{%YqTNQ;yt@ -D#I=ys0HTAg|&1_pnDQB({eMTzLZElVoih^KZV|reB%7SMBWxK4F$Z)chH13fBIQNsm%ax*-3OOhFU;_9Oi7uF9r!dp%Rdz_^HVb#y4h&84$}aD_^ -kx}saML`Ime`WM6Rva3&FtaMH@=&JjOKW?**`fMDBsSIbG<~6QQEcZ`THBx^+4*}yoeU>hQi+8PUHTc -6Hc#8lcL6ddo=LeIr<~8<@aiwuLyWY@7W0>S=XK|-zH4f9Tgk8yjytE$spx!No*{4V;l26SA9-XfJ@Z -z!5ZrmFDH{_I$Sy@F%x93>qbc8;{I*OIUUV2f1u5`|ND6yJ3pRH_}jVtKmXTtNPcuH`TJLWg_D1};(M -4#pwQttLc$n?&^Q4>1cK4{jwLZ1KIUeQp==tZ5R}6AlW6Q`7;=YdhY%`!44dG{0rGalg`uAbn)K+h#y -`G$@P`Rg_|NBPJ{s4D%Gal+bM)pQpY9*xBX5HoO7Ua321AaSntkQR6MVXO(&&?MKtH}E;Zb&q@dH4T$$uy4Us81LqX%~X)~6HI -9d!?1_Vmi}fVf&AVUTzY#qiM1e>7NAXTaQkP_Kco@AOGqn@6foud#tVUQx~G211Qjeu08Bwpr&-&LmfW59O@=YMB4!1v4f%hibf%rn0D`|se`76d@Sc%C -^+oS!p%;IhiQUGS>hffG}3EpgSrs=6CqM$0erJT9nq)`qRG2AHBwJL|kczyv-Xa_jbR>qc?ISzt0e2a -UF$B(j*o<7woLcxvc~zhx&wM;Sy_-|CpmuXkEY$HtptY+_+_W9z)}Ge3u#YqV*2u7#ei-RUyO3QcB;7 ->N}1VcWppRg?bV@6Uz%o*5X@47fO&xRWSiry8?d_FW?l7o9dPv%J#99ovux3)-g5U~5Y5WDaFOlXKMZO -AJe>WrQ1+8BhEgPc*pwbIi>6Qv-Gdmp$2FS7s6!|kqA?OCFdF)3LsLI(H;kxbv<@XdLwp}q=RG!1AAY -%i?$eJX^B0Ne!;UEaxp@+H$leq55qkD$xYN$VejY!13XcrmM`-M@K>9Qd(jSfK{W)Q5XWhRtPYMskus -y^Q_%Z#mM2Y)wnscd_w#%Hu2(d^nk-TFocCbBQfTAnHqJpi^p@hsfb@R5hI}1WQY!9oeVc?LeBz{W$)xEXhpG>EL_? -_8{(1|&Yio||^~GH$J*rpcv6c?Ntg9x=Zz+&&aM;cEmD87oo_pV(Lmg$^nt&Lm0d@A;oV2OinLs%D6L -GhB?c|!)3AnsqPpRFy^aM+$HYBo>x$M3%fo1{SU>~RIZMG)a -8jY7IWM>mS@GMManGtfZ)cQ@uP^Gvxi)j}ytq{+%7kY^-e3|Y&ykvlKvs3m!wR$;`F`8C=X{RkYJMTf -IT&t35DRbJxwLwWupSAOSNXkMZ9KTWUzhwXabYn4GSxUZdBZzQdY0#yR>lWa-cFPaqR;cwYS7v#Ujo| -A`%VO*iE&~ezQzrN@pOf)o;9#X+4z*37aqPVt7D3zz~h%E*=jc#U*SqQHz(>fQW=9J-QDUd|D^}cQq} -r7c`AOO0k6w6g0y)XhdYF|xU?gK;GFRS5))>hWpBc+bh@T^1An=+jS0ezPJ6h95DD8J%FO_ruG^TGo1 -ctD-TCzho3VBh1#j5*0wu*OF9c1pn7uRn;+F7!A)Z!><&KDQ=9zzqci`q(qs?E=2&mMScG+rB-MZ;k& -#HT)Gb>4Iy=Hp+XjD8V6khszKp^!#H|0VRCnXT^JJi>>t0qb8T`jO!dmh4DR%vZ%ZBR0 -BH8dNLTZm!{-;Szt^YyL0GH(sKfA&JmUTs-&zrnCrl}V{=vN^COsV`PQyfFUrlri8o}kE7{O;*&CMnW -;2&{$P)f)0T$&3XC@V=-s7@UdPh<*R^;ryzjq3H|3Iw|*f3|;?$s8@v3vfEdEqwmD74Ws)?{x$qMlMv -^z_a1ALbxI*wWR7_iDGZ8#);d1*mQBZAVY2_;=vu)oEYn!Pna0<(QSQx}6KxNvm(UvrDYnYFSK9HKJM?ntn#25bR@7$CVXG5y$shGetkC}N7k(wnynKN*989sn -U1d?Fw{T4`YWFL{>ty+6h&h6(UwQk6h%T54a3l3SOo3Z3MTe11WLg0&$%G_F&V;+X1twp9jXY#0jT1S -!3Fv83{If~@ubAJLE9h8waHO+h(7ie34RnssgEIi{83TeFU3DjkvmzW@k43#&;rre=OG?7Q8R@9Dju@hiNVpc=8x{#vz?mB;IE}bw?)d7Tkr^NA -esnQF%%{W)W=0{syM_%67{5D}?dY;!{)j;yA<^Uu0CdFOKcN=b#-ghriKrQ01vV))Xq&R`*Yj{8h1fJ -&LPl71wyR-`obisC!jVYW=GO8=hG)u4y>tc=s?){~cVZmaAFjS8gce>%k3yAIahO+;9sfx53Wbd7Ncy -QtwuQ#~YgV=#EA>6B37Ez5^$?y9(O$jPD#jmUox;>l=|r8NIf5QL*qPc22Z5k}F|N){K~ -uOeN5OG~`P3dPNBh&ZkoBZ^;6$buMx&*!|Ke!T6W{5b!grgs((0PDEd -}8_Kd;*;$WWsZHtrCviJxl@2A_uN4(Dcm!vNS}On6IG%QztsJVZivZT^09%TrgRZ%psMe!CovC+El5< -c~T0%}%Q{ZtD-}`|T$@@td3*$g4$HRBv7a`k5MLUEKiMea -Qz1>MkN^3{*!CFo&yF(ZVM(4I`J$g1vxP?|N{Ss3DgBt3ryt<}>?0hVeng%3=yX(6ljHaoSGGMa5x+7 -L%Ag~_#px$JAx9N9%8uITp*0vCeJ*9|9C0Qx9XhsP}1&JPdUwohyF(X)aavI%=AJn~@lXA$ -vV(#7zgi|{uiA>*1L{Z=bpr3f5x<+P-Jr9Su5j%5AEj%3H(_(DDNUz=0Hog%_fowNzU=kDb*#Wh906E -$h4jKC+~v@yZA>9g|ja`-|1jxy#~ixt)1Ep&HOw5o+P-#$wCW(a)o(B;>o=|r=C_t5=Qv@<=`QfJBdY -N7k$LeU)qMJg5$JVjL8$&DVDB_OTvstEUJ#&!*we^K7YM -6sVs5Ho=J*+xtK2Bw2va8mq|4V1a*`F2{3DhUzf{o;cxd00&+WY{;Ns@lt55)9HR?z#q^2jJ -93~{*dI{gYuAVCLURYXo*hn7V+IkadJO{I`t&$uQOTDD%{G+flHp5&=!l{8Jhs -|m0Mog*N2ACvH3T)rI2<|4lMKvCTbtl73Lz_?JR7y -KlBEjEW48fu}A>%%$CTsDgODc5n+Xu&v)7GhbUuzp&yHAU92UJ=LA*!Xm+V^sk#b9_B4fCPjF^tIK50_l)M# -XfU!m16T%h(L2pAZoxNXd^>wfBdw5AMRyXqVf;Fv4ndPf&l0elb&L=B4)#a*JM|{@d3pTT~9RuDLv_V -mG)ibW2eZk){B9!i+8@JIbL#|Z?k%p|XOs}!TTi --_k(JOHPTM$aC>BQHpZd;Q`@RXAnHayLnoKGt0z3!Khd)@n>d^-!l@DKh-qA~!3hld9j(h1i%PIV-$rUC{3UwPVb+_pYqEctQHW>IZx)p{8ve~f`lpR0*B1um~2keQUq -ZGK`gM<%&w3Ep2)4z*R2ZB1x7Rh63E5nZIEMf;m(SIYqY6p%!YJCZLoJ4<&K4ALD{FCSh+)qcFZ5=5%Aby;6Oa?64 ->b`(EL-!zPu;g9w~KNRSsGjupHF8s!rUlaG|@{7q2@Vm>;cMq!H9{l~W-xKxHqT2lS)u!V})T>)Q1L_ -xZqNAY=y??i~zq>NvS4;alE4%Nk82F={-q&B0%CfU|W*7@wn#L}Wx#C{bcr(kGA*`_;9h{xZ`&!=?VD -uyGS!JwC;pbCxd(en`1{acLuJRbqB)F_%by2Jx74cxFS@_n@$@jDo_$Ll~U-w1#%93yAj$tJW0;l;ko -=9w4?X`Gl&JQ(3i8J?Gn2eN5B@M;zYDZ;a-6+hRb=ho&F%pPs0U}9^U9OmK3DqMnb|iWZ6ZfJqXp!WO -3QEWgN%9Uu>+4z+(4uy>@s4gFSp|Ll_d}Fz{qF2~khndh=T-VeM((2%|BTcAx9j!%V@&$nSA7dY|GMJ -OK?g-36rxFlz+e)C4j*m|gGl73O|sC(qbz|wUas&#){a~jaa7O_4NmyTXeHFqsE{0nt3M4o=|?IAj=# -*O9{s5(b==?!D?3Ev(}UjaF^Ec!+9RDD^Pm*`YY*=I;bZy${RojHhf>~`)?ND3L4kbkf`4v(Ord@xMf -Y_cvU=nZmC}zO$`^gpJ&ckcwtA$($Rp;(*70<@um_;?I&=-vrao4 ->d3mdJ2%Gl7z3iA&0=)(I|U#4lJs%@ec4+VV+sks|g>=`|20_wJNwXjzU`h7;OG^>|++R2OIGR()qVn -1AM=n|7kTp^NT(DVS%6c#Ui|+T*dMBNbsISuO~-;r|t`4s5V2+Cl6ZLR$k~SR5NgD0fbz->nrtIY`LD -S3F)&v^03Hqitipeo^YzuUlXgyUYB-GH(}D6U0>Hr?9-E1d*uFCsK|GyM9@;bM9zT>^`zZ;^H!|vqqj -~Qbq=@#zPw~h72C+RbPLZh6|~NNN^VXu19p5pr|nZ2$+vztoBJC(%`ACN)$DSfV=lXP!4R?KZAcy``S -B8%4Vlx>aufy9vo)%Kjww#nm{Xx_+GMK|&vWlqdA(v{r(PTH-rUB9xG8q&a;>L%0Rd1^_z7%!^rh^Gh-S7<{Qi?AZ&Bwxq;3M@(Ae^h7nG=JQXitMv?L3ElLW$DDgL -55j(1JH#J`s$^a4UopKf*3vshcBi|)CIi^(*eTBgCYISbZZ{usJ?siJc=8ql3j-eSb(lyPHEocq=Qx7 -f^TzT+!24L4_u7Y?*sQyb+gcaO6-G)HfhG$$Br1r}k>zHYyzchmXWk_(j~alrq^FZS5YfMYwum7Qufe -5gQq^RQ?ucy1FVm3C}nzxIojPo43MBH)aVCvYL|)d1>udzMR3RZ#W?4muP$~LI@4WrO2B?Cd8N&2!;lr{*eMn9kG1?F&+YoK>}cPnx61}cg2_Y)gx;ifa~_#2WKm)R#7Hyu -m!WuPHnU4M@t-n+g5b@M5LH48OPjBGF_0#2r!xHp2g^vF@7J|A*lrS-CIBFwSlcN*kt6AY^c-Fj0@E7 -txuYGlI(w!iYEf%@O^;Vi67#|BIf(Y4or?)tRyL>sWRO%{8@HmbADqwV=@OvA6$FvF-aqj-N)mFHNQT -7#^^{jt237K|ilQ@IoQx3N--(e94N(GgdA7#bdI6V#1HW)1JZ}!#?Fl5@FS0bf0W#k18XEdCunqdOz~j!fw6WPl -tf4WQ}!`djN+rUY9~gAKnD2{&PWe+b%;Kw68$Tu9x6Gyu#P19XGCcSR|k}Xj^QNYBczU{hY)-mACwLI -Xv(F?M@Sv|prlU$GeHmiki*(B{V2bE293yc$AkYCR(kh$jXgVIxA0Z>r;P9aH&{vf{}on}{s~s%Zs>& -6r_jk24ii -ipV8gH^VIDcT$m2m=moyhl+^L -#`bDc8607UO7dt7OHwV{e71v*w&y{rTMMog-33ml&bo-0C_(`91R)kqF4Bot4#&5_DHQ-#Ja9xit?K8$WOV#7b=;P;Y>#cX-k4vv1EYaq}=F0A=wygAl2#vG^>v+%Fu2^ -vM4oGjhvrvqcBB@XZu&hgSxVu9_8|Pe;=vxo5`jvr!TrtP%n=2FW1NkzH!46ra=qatL0`SR%JyGxFjF*i=_NlkS-%nRljyhUHL+?a -r`GpFP{mt&sQ`}$qXWn=`j+A?==(Ozzy;>Q)*$r-=KX$1=Il>%9CygRgv6vlR$2nRsBY^i-!arVz>#eTi>7x0vt=UeXB=SLqyseSYpvi -OY|VEu(XjWI!*aBKM7WQs58gK}Z`rKby#k)4E^C(K8QU?K_zZ0$8qmTb={|%x%xCdwcr*M5unQuxZ~6 -p&*kTE4boR%g8;D&if`#ZsbJ{NvEb%($`GDzEuJCWb-Bdf0}!*Za1;CTlk(|(f2y%C8xe42}BS%>5eF -b5JCbG^y?3cZM$vPcDt&p-|>B8xXLyg(2|AbnopWjZLW9CU}mlq?~iC~3nBG(mJ(ph`YmGL5@W5O2v( -i#dd>txYDN|#+%u$F`vZ(Q45E|Sepp{B!8rvU_2+XU4(IrGIzE$TB4CXVq=&?C%P1sogGG|3y|c_$0M -VewV7TzNq7h}WeD?IX(nghMu+*)oj%Wh=JfZhjE{p+^5^<6VJ(_rynRZUa9UF)WbuJ$1*bBmt7&vElJ -tI=F6twNYW^Pq-3G5(tXo6d0I6XojR|0>_X~TL|z1WNlV5LNZ|7g(ZOe -Ecwx>O@d?%n5IrPZ$Ka(@p)b;2j|i#Nbg`P$J(?lQWmI?F|U5FtAO;!D>LOdb)XICtK(GZ@H2nfNt -uT`hhFG4*K(8of{QH*wY^yrM?jp=e)Ltgv2LJgIkVYS&W=}s%rho!Br=R5b;K;x7Q)#fsn7Z`p-axNd7JumHp^fErwc1K@1r -FQ2VMeg0uv2QaPE{>yNl0;BR&0(A<>KH@_#TSXFKlb@n_3tI(A)fbm#!aZZfW4|%u@HC#peIHMw~`%y -HXoXf-O813pq+_*N$19KXeiK3dtb?LWz>%p>!Y?>Ns=I>Eo&UH&uO@x0xrAV&!D3u~&y_|NH8L6?B1Ssm9hF#|9hm|E1MD!mZ7V#e;*6*(RBVv -70ek1V}s1TY$FqB+jizP6cVlWi>R4!uEtzLlz6vtSgc(aCRz(FhD=2Ny_CNu}Qm8<~9e2Q4>rE4Swq# -S4vMy)W1Y;LR{dfXr@j)Jx-db7#GQ-EhHEUqs_{Axx9D0b(YY6SwI6in-2Ah(WUTb`W-6*T~~v;Q<*3SQR#IpZ?g;@6Q5X*b#irFTI -;rzUs#4!tbLm71Ugws=~nB+jpV>kw}b4H(6G0)&ay?T5?z2C1YS}u^S#PlOe2!}mCNK$i>*6RA`K(@= -Rymz%1p=4a$eCr-N4L>N^g=v+Hxfm;#Yi4b9ASHhMUBq%Z@0dPwi&c*gE5NJ;wff+}sCHie8^od{5k9 -ko2(jw!r9_Wbf8It9PQ;b!50x$DNZveFS}8o4ya*aHL!CK3T+TZC7BHROZ(W>>EHO|AyXW)EsLb=AieZ)X#GMqKs3x;>YptK{ -@f+sTm^nQ{RjP6jA2&lijWvf(+GuPIEi8yjj`KgABmHnrlgQ<2sz0>&3)x4E4DBs=rAt{P_F~^u?$qq -*iE#b_#Cv-O`CNkPaht9BmyucBR~ZXApu8XGf>}Sm~H5|*!n6{fJfP{v|}*>oB=x1iLJ-{!!tVFs(B@ -7O<>q9ZyK%-|nX9dG`H7E+CbU^0=zI6_iU_5cXTgvDm0o;?HPhes*6qk6)E#fi46P^1!thQPLcTpW&v8F%SGJ4X5PrbqC3&z=?Fb5CIjo7 -#}PH=)MVb$O&~m}r}0NZcVxp7aAMcd8vdU8~Of>`A3u<mBKTTsdSmhM-jgC=lyGxABuLshu!G_byD0n=Hs5KX0hV#|*{{ -2+M&suc9oB+Iw!>OCr9lTB?q$Nf(3Bv}yJI``%8C+5!=BcTboJ&u-9qCirx3ZTSH9wxnM_)F(a%;1tMX!U%b|%n_=KcXdG8(*;6GD%z>cRPr@B>{a|+ty>FgU0HABzbc|scwgWq4ARxEbHLK94xE0>ZYLbN%>ul#=QV)h3)5k%22Yxq$h;m`N&DxmN~tg=n-D&eRGgFgqUfOnh`pk-gyI%6M6x6|xdokyVMGwyt~ZM+=G4ovV~SX0B|lU@)UxdKXXywDf)-9y6w3*h_Wm)==8VPLGm -4?y~#L*7h?Ay5<1ir<}R&_+ByMg2(naMhSK7HW~*#dF$o#c5ySZKi{?~{$J1WUGE>f^NsqTKt>f=+0y -#6Ex40!sqz!I`U{tRPF_;P3RQi~AQ4pJKto~WDPLWXe_~rJm04NN%7ID*T)p0Mz0JyOfOT>X;pMc$Gl}1Z -h!`jU-h^*+F{N>{G{TGU-Q8NkFhP*v*!(d}Jp5b$T<`s_ak(`xGaLc^aGex*B@NYs;U1>L7i~XjZX`W -$Tqp>R{y|dR@8@8Q5B=5Yi~j1gX{~x3c@+KWLx0skzaE2*qKyIpR#*H{%)ycT@5T!6o+#PFSMMYTLoe -(3TNwE@NIik&`c2>k0x$TN@7g%UFLJ8l=W?phH$7D&)#s&lc7%uCUaYVe#LC8oSDxUEHklHtB%YcBal -3t!%=GOjJm}ntU1*II2a+1EmPEh~cUd{cX^v<9W -Ct3VzM_}?Shpk_na*cP{Zk&tis?w&2tz@7OiJ$Bps7X)8vlIE?C|*{yui;NV-4jRQSXd{OdBF~hAfSv -s=B)8iZhuPW{h#Q*KhWafBcKT(p!M&*l|e(Fs%L&s7IK(L^$}^of3+%eQ5;D_POh~^+b^;?@DpbZzq)m$a`Vo=3!kB%NM}{^ -Z%`TGI)7w(k27nzUz3JGInnG-8eS?Iz4pU*@5I-pUv5r|0XPa{Z#Z!(^RaI5b;#d{IC5Ww_^+0LsH-x ->v(YnG_2<21_@6l~MT%I4=eN5zhaK%YMfBKV0$y&STUXQsXpBVJPUnM;VHu5Pb9LTcc`{W!Ei${nU{K -j7H}m??xj))tX?wgrqBYuKzE$wpO46i-2Yjs`$JU9|ctfa3^#t9k3wn#%|5DEAFl#HE3IIe*+Q?NUv8E7V1Hzsg73a~xTz*W -rVA(*Fs8Rw%(us}oe})=XFwN5LPZ65Byt3OteI|bu=NX%GVjMCb_MO~|L}!(K^42i;b^C>v{eKnb1MGhn=ba$_ -{}AVw`Ymg1Bt&g+F};|J_YZwKnWy)$O>M8IEAkqdY-D)M{lZcL2QBao>75~DBi)7h)&V!Umf3WDGq!U -X=I+SRjyiIhec1QcJ?@uBGVCaGukofms3~+V4J0{R?V+yhaEF{c#0dX9&R@cNhL>$be!jic$#1pcIY~EQ1gzO0NIWG>Nbzjp8JR|3ct{MuBlXm4Mj;bg -K&|6oBvI>u3ZR!`f=nzoPdvVA**A{1Miz1KGxz86aT? -yK{SY?@D+G7^j|g$V6vV24*qQn+760`_gDD$>YprP17qI5x!@c8U!Csji|PWeLg~$T8E!nO-*zNaO2W -L`gv5pK?Gw1SDSq=+RgPcW6QEz(Cm4I_o-s~?3JHEOg`-^_5u=aWT%SukL%sKyH;U>)batS3=9?<8Aw -HPP>DjkTq94&$-mA26_E?{mg$lhH(n2dprdhIN+n0vv?6XM-dIurz;QsE0x+Prn=A-fbK%;?K1k0C6< -sYEl*gH8ARJtXCxk=E?;n4ug!G+z0`y^@aOMoz7YtialRK)AyEl_IzKDhE`?yl#JmTtZ ->Ag|Usakg$bBATc_LwLp3c{w_tn2z~A^OrHJ#K90)~2uuA(i1#P1{S@$iy6y+OLs=knOJOukkPJ&BplU=QE6$ -NPi;>LAcuDfpbOtbS-YjT9k$IC;EHO~=P6>b%V0w!Hz6T)pP<|7m{R!_98We_BJXy&knFDG|Z_{AwuY -7Bl2AZ^69X3i@nWe|A-W!5~3+BbKKYj-12gd^;D -Vffg=9AEX_W)S;hq2dq0ex1f}j)XA%UV6RNo3R*YxyRd%GdpXR5eO4@>VA -CroQKgmeD?TcPbdfCPDs)D3_B;84ByX|5S=32O;>$Kj|XPB``%5|^8Mr7LDRX<%;QoTQJ#%UQNu#f56 -g?q)jrZojmH{nB3vV~?v*B8ESu_gIes>x-dD9de=?v>#yrYnD7x;LmDS~}L|L%d*Nco1#5qdd=Gaef1 -wpB-3l5^?><1%#3kAcxbA@z7sP$1eQ@A54KAj`X_w8xq_UbXF8I(7bkO8Jar2^NH*#=@BT}qz6JZ|G; -Md{n3tUJ^j3QJR6QFzztCgK1=1c-)t^u}>zgw-itG*@qVu5toQFbb1!}`vse -{xioq9=!xCFX6Z}C8yBW{v$^iXm*9mS+>&Z_{5q+p7nLjs+r9;E{?wIMrkg!P}PP9dRHAwhGG1>QwjP_34b1pqKL%YP%M##GuyB?8#A?5LT;Prh~7W$#dSr%?j -bSMM%p<>8jKQg;Mx(bY}U+PMgacdSWHKx@Oi4iQ5Dz%y?NRAH0ow+ISWBvN7F}3UsNqC<47vrpt*R7Q -KGu@x*_tCtsaUwPzWZ`waRORuN=j4%AAnQ2TW`fa{TOFHr#^z>3ro8vNq(8;yEVlQ%=$bFtOubOw#&4 -kW{4F*t*85Hn>3hf|Ug}P?hmJ3s{Vq9`o^UvL<Hp5uEy#M$Le9Z+m -Is-GXHjJ+LKA%r0N^_c#-v649{eJ*Hok;B&MuV>r$Yy`)EeZy4C``*xLn(t0mI);D~2?~B ->U;Ex^cT_yy8%fkgChZB|W;iCE`xS%BKH}eO7$y^%_g%&IrNQu_d{}!rk~p#Av#En4WYRyG4A8L3l~7 -uf3bs^_@r`><)ngnzmZ^V9dcZOJRH$k50VG3$YdtxrzWy|#vM^S+(Q -rl;03R#$_d#E&+kVwH0tt@4osKP>8Y1w!IA2A;+bJ;ustQ;o)U?{p<~>hPS*+=bRWy2lfu3FI2ZLE=| -ZN`F|~VeC^<3f7cG^ByUuhzdw(a!NQ((!z@~B9{b`Z~$WC%;o8`M%_;1I4B2~XT_bZ9|!+Ae2Cx&5g9 -7ib>NIqgDO0U!jC)baHq)41#a0X*B^waj{HEaV(Gh%ZAz(4~_f`Bf)m95~^7OW9p{#vYb2K$^kA)wa= -xbdy5g#nzX-1yc?kyiReZOR<$2`e-EsNrN8i0}yP*IJNkc(^slfFvWenO?17EV416mFod%>=bk(QYpw -2QZ%^x8to#RdN+xJAo0Vw8NoKyHUyXutlW^=x*C(;YC-NDkRe>Yg^CV$AgtZ`t}+^0 -TMkmda`Fq5{~h{d2>-goJ3CjT%lzy5v{*VDeENq{B&aIEIo&&Zn#BD -gO!N&T>n`goD=dU4i>aKAAlC=Q!fs(e#EbN`ZS@{z+Jl!qU9GG381z3mpA!yV(8wEabzm&lT<`c!KfM -~BDmAd6Ugo}>)U`pau~eeO)susvveICt-O7ZU!2j88r1P3Nf%2(DmUkHHaskCtGV=Bc{Sv-x6OmU(+O -_@<9%x-`-vhm!r`c4O2q(;XQ~mcGAS<(?(ueiBEHRECE$o0*5Z7i>{kt*#?NwuD&69hS%i~afhgs1Wqu~%A@}&M9XkSl%c -@Jn*P~`N)Pa_cmWL(q3FGNyv7t#BB=0$>1V?H?r!fm1<%LtI*PN^_k?TH8W2sWotP)2Lv;H|p7c&byo -2!dcZ3Zety?8%+*baYT^xD{`<1?)K{qfc6)%ohMrv$#P)Wy~sI_l?WeTev>@t>V>ZBEWH;klK-w&}A` -F>^sCTYYJWq=tiD9Js_)OwczaaEJY(W{@{PS{QfY|sBi}3v6fPxc^K#LO7C-EKG?)TdWr*l --m@?Q>Xsnhxx4=<>a9fXAIahzUx7PDTXpFLZ8xB-l_Li_n_HgB>$8w-}b0`-FO^>MLonZbT0sraRJ<`op~i3FdS&%tXX`WogOUO;Lj?!zR`i?qx?qQ-(E7|Im86le)7!5IB!pgqnMo%rd^0O5$C4};QnE%u==5B!QTH@$Vl)f`b5HP@vKhhIb9l24 -SgM0DlYaP}|L#VSbOy85uJy@JgQ?Mu&m4L>9*gYg%i$b75lh1pUXQ|i$IE@v5|uB9G16I -i7u?0lISLW;EPOV)^o+#98LT4Sks(2#1S_ -a~q5l}1K;+4e=bi`4F=l>R%ozuH@_FVG@P?<;wjW`r_Mo?)N(l2!R4L}FYpZ}%rPo4R8iDh9bH1D==Y -4m)&;-k8oVXj8InFSlt}u460JcML*gibP&7uPIJ+_mOIBNA}aG6ys8W%1861xa^iQxifc(6zj>w -T#%N<$o_;#sWeVVc&8|{KbFwekK}Ap6y~Rd8M$i`$Nf;V?WEC|0OB{mG&%K*~hr6rYm!ep4iA6H6A -o3zo)H*J7n_S;*Gpc4rU|Og@b)IxeWcPt@AU{GG;l)3+ABo<@%s@*z16v38*T@!{MC$$_Q!ZblD6qqS -#l>#mlM5W7!w723*XE-6i+;4SEffm}FhoQ`h})O58nB3drke7YrTS!N5Gvhshb}$AV%BE$YI_NhVL^G -sChHuQg?eA8PYrJBQ=DByjKOw2?3tXcTiU$*!1WR?my`ry)uDzuxQoO#bm9gZQog!g0BOj9|+2>(3=# -{s;Fz?*9N`#jnRcnmL35sQCYcUjN10eg(RJd&?h2FG!X|F^a(vhFYn@8UbPiMgVOPWc>+f6+|flCFnI -m#1Qh+j*%5#fW9;WihL_FmD`XNkRHPU`rw<|H9>K}G5|!1G@bbLH -dNV7nq`lRz8Nn`{s09^(5^o?JHDzMBY=y87>GY&HMvnco)v05N|zJljQ#8Gz#i~t29KPTQz2N&t}nLq7uoJo^u_`^j=35O5!5sjf;g8EZv2&@$OEc0zWU$rB -wV^B=p$~y=ppwFJY(M35-2T<4hM_-L;Co7-y|$D^rd-v(nirXCS(s6uQu~f -L*X1T#0HRK2$=!SI@=ruaD5YaY^$W*$j5~aBQ(9;S5K4hLdNmbG8XX&+vw$Z~epu`GblR!FmKYBQ-)R -)8FciTM+b6^zw2&zG;L_;3tvqIKF2dc9GwNVy{EZF2_fAKWOQxofdRQ=O^-%E0+08ojxGLIN+(UC(V_ -U6NDYirvKRZn? -G42tN?eyVYFca>+(B?S%YHAw+u{FC>mnl9rMwM#c!^1u7;tX_etb^c1ln)sC)IRTFvVO~`=Nomy)>A0 -tF(o-j*g?8GLAHrM%emw$!~^R9E*&+Dj-f=C&t>Ha`cgM9bZVBa-}l)4jskWd$K1L@qgU82C@#3@KG8 -aoeW+V{FATNfie6ghvvXL@Jd`0=?vRmT+Ga|+b9vfK~dn2VxyMXft7=plaL$~eYq{c$9Wj_+}8S_V71 -vflI-^YmQdS>&nMgmJe!BnBn!9HMFA++DOs6JjpRKt6UQ(jX@;H11!M`!K#}Lr2v+Jsq#OVISBBkpZ)S0>)OxpjrcTYb}C#w?(= -E_Zr(9xmAZ<};_WM+SM<@7Nc*mruv$V9;-ex@ok&%Mn3-?8;K;TNYvmObMzw?u9vs)szwx(!E-Nz9Nu -P8vPlY;@y3Zh&hg3R)Uyn$-xT}j@=8|n9{Wk-Kt^1ZJ)2>(|M$vmVSnfnD1e-xlp0WKbIBi&YF42SJ-?;^{!CFT7*Ttmx!Ap-up`w#}s17cLqwcgAyU#TYtmk{(k3AuN`&GIyb;y -FVu`J+#aZscophJwAP1%&*J0h?{ZAg_4U8NG5?d>{)S_I-12*liJ=UM5G=|v7>1E+7>xlza2jPvh6Z& -8YK3HKJ+?AU8l{O(T|5a2H1RSh2ufFamXctswxmIH&2B$JHy6x;22}*=bCSty&BDnhhr34Nz>I3sI7z -m~w_+ol)MoQZZ=ra(MaS!1nP2M9(LiWmT^mD!k_TOaeh+*rT438~%z77mTV76sWv}u2%8&^bR2)idGh -rb>X9v1@UJ>QioW_7WLYDj!{k<7+wDWZsxhLyE%O+=Mn6gnxc>*czaJCYX3g4$|-5ySz<`J<5mErs -0c^W4?RZ2Jwol9PL;zIXaD})M+qfSq2_(7|;Y0^*X_R!Wb{gEQ5*L6?(JLkj1Va{rroaIyh^ezRG^3F -vI?YHIs*m7s>1jvXEyItnoQf=jCgFN|bm~=JX=r8;v{~)>meeEVD&q17oN~34@;{r=3LB~TlkX^YY>w -t6Z>*`kx8R@sCq{h=-Pxu -rlQAGaKogt076}Ap5)6!!kmc41hk{NxAc3{HG6OYsO@ugua?DN{u0Wn|sM19|=ScLB4GcKHj|7&0%Hgyyz{& -x`Q~9UQ4YZ_+P=a_}&T;vN3i@qu}*1cF>IJmvIyuk=}pCZ43Hpw?#0`;+ENjpBv`k3w(Gq5p%$(*xq@ -*Om>zS33M~Oul&$@g3?FtkTyNy2?;lGd|}A58i#o$h&{Pa{9Se%`$+c>+KeF2bMOq5T@|_2%Mo{cERu -d_zHJdjCGE{Y&9i9BHerZ)aOI3}l&N1os3>N`E0e>=E6ZVzDyPpvz)5>Dkp||XjS{-R{6fEBLx#NaR- -UYU*WD8N7_A#|%o|g*=R%&^-4zRiMbah;Zd7Y@7YQa>L}IafiB6Zth8^u`h}}I5zS<@K!eyvVnSLoQ7@u`61z|uN;ukBqv+$$Wb5r^P>6#`LrRAZO!%Lekp2v?`_@VXr%G02{~Pv`T;xmxr=io$ -R>f8_Ha--SeE_ZwgvsLqsq2lT63IL$xXOik$uQK*2jf;QkUm1HdG7xyovpfDD>gBC1%{kI1n$UGW+Z} -EU62{o!NHoap4z1h>uK+qVABmq1z5u|4rUVe|;REw?#A2JGscy8mAvFsjW|OzeY@m#XajovU>k@ofDo=d^*#vXl?ee1?Rn;P6 -Wc+h)MkxreES^FlumM$W%sR*-or@~rixwhxdWhi5ijkUd&Igl4A3(2~sy3^&*7sWQ73teZ7xI}c& -kXb90%k`$kRLp%^BjjAfuU3H=`bQR(E)1~?>S_5MT^ukgVeT|Pc_R3%_(xF!;A@Vr|jw1@ -mfIVC!s#EVAQl1?9$Q8I#-HHaaKC*bc-Q;^-JR=^l$U@1t4t91TB!+SlcDDEd~Lt{Mg_w~VjC*Gh55agFL -V+q*u`8F3t1B{0NJ&{}+txsv#P!0?nx{8NOmqmZ>>q$5J#8n#g!UlNgfQ(5PEvtN`-r6s9#Y>7(Ub2+^P=+`Z%$=wZBopv|^HFMi+n4c4qJt?#laV--|=c=t -+`8Ualg>5xx3Ol%9#BgHkYSkm&Jr{tH77zhFUMO|JwF{jadIzjVLfFtqRP^`jUdK~NNp6D)?T(Kd-uB ->EXkTcc0{-`uk{RncM_Kv<6u85mR -DKM;nz!-44alHhT)`5%{118p(&4+6xi665P7_-T3l_1JrIpex -MBHb3TvQPB40k#Rc)KcnSEbVy8Z}gEkyY%z>As;Z~W607E@ig?GGqirv?62|hqW*h^_MLIoN`2;!fiM -XJWDGji9BO#}Vtxz+6JQ|B6u%vt;-C5s-G=*a_Tlb9%Ko^w5%&0A -qIM56!WO@nA_JhlGGxY8s+wdTZ)9a=H{FzD$gLC6?0fGz8si7qaUoV2PurAjn)~8sVT%Gh(eEf1#KOl -V?}G-YLE{t$< -`4CyG>dl=7`TCa@uOCy|vSOAyJqfhSRPQuip~lDYwv+jj{{Cxa^q<4o`x?zQT+IcMe_&xfeL?K|H6LG ->g6$nyldf-MUy0hy=vJ;h56a{6vJs*S(1SMOdfy)NJ8?eD(TqLTQ1-_hIlTH%bG$KKsVIbYv -+!KL)keHJ(;XrO+Ltza3I(yoa6}=rN5HNA~*XF_TvX?x$oRKs8=EsE4Ec{nh{Ad`~f*gBSklloNpW8zFKerr<-gl`p;XLK`HBjAaV>)X@=me_o`X|*!_P*otd=NMX$U{{%*k8ZPI~vAbQZ*ot;9&C@-}e -1?k_lg-kpzZ?rpLXZHJY7|=r$~iY%Yd1NF#2?rr;;3g!L=--GuJlP<(X{xqhd5*KECe;0977yZ(_6B> -!v&f$vJJ>juv0yVRj5@{ZtMK~nRp$KrRH&cD<#y)q#|$4}7g1l2;=lAQ$I5zq1|<>_62#9fv1R`Tb(l -*K-tkhqBJx|t-#A(TaYXt8)A;Ny-vL47AKPPMqb*H!QFfjb=`RzvnqUpVf>Gj?RjSJNptiWARjE`!TE -dR6Lv3E25OF(wI-Ox~)((Tb<8W^X6fMZ?y@tE(Gc-DbxdVs5B+@i3X=qns=)o1Mc$uNIUSt)vsr4wMY -EEL$hVyr_J&=*)b$-h<=C=sZr_@maV$)>taKwO1!6O!YQ|Cbr=HqL#Lq^+eM^^cJ)qVoHP)sdOoMb4!FJjEw$m@p=(ut}=T4{EiT -I4VL$xBLXeUIfG$E`VTjQ>v0TpRbfT-O{Os{bPUktu79kmKl{3%@7^Jy5!^Jl -hVLjl(^re$^(YFdY76WBJ3YV++#%_zM1~K46PaOvsXm$J_mxaFN)_;;$vuL6-HZE?AdS4c&*(9;)goH<`&gJS*lf6d8t -yihJab2>#GfaNT)K4302R9pYFF2d%7CJ$yhOzAAFYKpJ)ZKXcmL`$tFdhxl?)|E~#HqO -vAsW($`A9e?EPFZoratViN65X;ertsE`2-)!BpQXqFU*UWD%Moqc=bO*vF9I_+8GWuxU -7plACwP!p?KFe&^?fGD6HcQ^%=5UUQ|4dO;R2c8gAD-JwubB7;xC~dP)5xirClHLV-6MSy*_Egv7h9Ew5gQUTWuB&44%@U0U!}mA~Zn1K_FQSO~KeG>U!maqbM$aj=HG1QlyV<5j2#6RCipXnp%WSgHA -Z-0@lcAsj%8-0(GPHF*JCvdQm@H~9@2~Qkb~Ngb`Xv6(J=TAjdjaYN{RQr|{LH-!@4P@p@H6*1FYB>C -#k~Oag8mNo0@Mro#=Yv#b*sMVm8iIWR^_9Q73eDvW)7|!*I{|+aK24`pvLH>M{34*oyyx^7N)N(rcWP -rz}RigEs{S=23s0ZKTE^I?eVVK@hj?TJ7{<9oR=tQaG?}3f6&-#fs=CqtHjf{{Ux+yVdXDKplF}yl^j -(K>VrMZkD_y~STk*Q&oew9P+f3-Ib!|OI5q^{>(9B2Z+a#Cg9+Jk_sCUWymmQq!)E*VMr<~6-R^plnu -LQ`!axWwFkKmuL^K0~g+re_a_(KP&&FZqjM1o2OD_iI>_?_OX;m8M;@%fqwkl~JBJi5%hLb*?UP?W|4 -ceIDgvu3A%o4WgdP)h>@6aWAK2ml;P_EyM7nV-r8006fT000{R003}la4%nWWo~3|axY_L -a&&2CX)j}Ma%C=XdF@wSYuq>#efO^r(}#FqVkmv+5=bG0!UpzZC|S0!6jx(k&nS^4Bgr#yANIHJy^{P -f&SXjQu-%0QRMZnSaCb~Z^8QPE4b2V-%2E>xx2hf9{eTd}uqmlsLG@TrWhS=c7UCN -p4lYYMP&jB%S+Lc)sC|2FK&udl8@e!9)CZ$Gn3_KQ|lAV8G)|m@GPR|?Wl -YsxM6x*GX9dlre*wC4q*0BSy16PhYjX08b3?7`}g%fJ)b477Y(1gMyS&ZKwh`Y~>&!;GX63E#%(ezmo -t__)Ol@pR#T|rLlPL8NUE{MC4qbGQ}u<^m30$=eWyR4Uq2R1fN2$S5mIo?ApG*=G;2Q3BE85Wa5f82L;NnRJu{p9OFwPCI8{2T -DK9V`l;N8RM!9TahHLx*_CYC4Sx$SsA-gGc}UVm=N8{r6#f^#^ivdsVJ*&JpxS0@%==H`9u{8$ -Xq1==+kAugf#-uZ_pHL7N9)e*u)w3US=JbVqgapcviG3`ByH-8|IJBFioecCzYUrtj_A-#*dNwg%2%( -;Us=_vf;uXKkw|;B=Vgg-B!splmk}rzp!ULORTFtk;*BuaUmrv%zV)gToWg=j`i7+L&2u_F#ALIf4n~ -#-{+p2Ri$3wINo9n)T?~mH=X(Axhz-pDS?j9vAI>HVjM2sp)A&ae?#xd=u0elQ-GE95>lzBIe_2w`mE -7@T^N8h36aEWKy6hRhsYWC9Qgec}Rj|Xp^Sus6DIrmkdMkeD8yxy0>p -x(%C!$!4c -h)#tDp9OhL$IlE^LK--V{aOTUu{B#U52ysaqM)fG!&*qdX3PeF<_SA|7Fxw_}Hzp7-3j}Tix+j_megTxB+?@SNrNSL}= -bY!KWgcx15}HJt_$7$Q7`8CzErbN4%PpNo9R#~f17JLHyAlzmwL*uO=!S(M%qYZ)F5=Ke52y=|?)Yvv -8AEsQ1drX(s5=-xU7)UB36#=TntEdEC}ijuvyz1CEe4Jb?t7!FJGAItx_x*2WTL-u$Ag~d!Od_4U3ln -@#_rXm-yOljWb`ofdJcd`X%4Xgvkv3};sv@~3q&%Yny^r%sXt+P6$Tgvup+M%%RHy-6~iMi7t!{+Y8V -Q>O!7sO9iSJ$7QltJVIvv#juzGGqL*ELZE*SAvEltWDiQuE#1eRDe!~{%`X&@Y+Hfh9Hmdhsv^{%wet -vd({`1*6z{JCyV-NHO*WbvDlSX49#TxWBVwe_IO-PNoDvV^pG0aTv%vVGzs+Us4Q6$9-AU=mJvZW&`klZjxnrr*6&MZ=xPoFGYa -_9X(T4?h)A+71!tZy8lPabNvy$t=>V1x|wm8Sc>T -17-7P>NGQc-;f{>zhuHW}DES?{tm0%|TVWiO<4-OO=Jqn9q1e1Z$?3GxEzZ3=aPKGg{`hXx^X`WI>nw -=l4>MOa1Gp;ZSrhF(b^o6>|HWzZua2AQoXOBE1kBt}&;YL}(CL&eEY6*Kd*@$1je9$2vo38{hJ?9Ryc -BBbB`H_iyCfZGnhS1zr7BOw^s?pWj`ono=u3T&s@OFbw}X}_1?JGtn)09-rRSTYQ;Cx)wDv414#(rZN -E9W$(ld`_b~KR#jzeMPEHVGN;0qR*S=emB#~nVE5mOB>hcKajCwIEHi)UF@#Sn)cmHvTwdFdn?%~r+o -1SUwjN5%uOQM>C|;=f5W(+_^kq217=~0srZlXz`yT4n0i&m%yCfdJ*TyXbqJ5@XLgnzD>)Pjs0LWjH8R=@Rz8nq1%5kyUdxzV{Ep`kQNb5|VwIRF4EdH?_)0001RX>c!Jc4cm4Z*nhVXkl_>WppoMX=gQNa%FKYaCw!T -U5_P2lBVzTSA^7BEl3H3e@Aq0j|4RIl!gYj0F8QYP*IgMsVOR%tfCS7>(`#gqNZ0GM%v{f$vSzChkux -xz4qGcet!46-~Mm==#xJ``F#8A$;Y33{?#YjN1uK1@xN^U#e08u^SkZqAMUm<9`FBl|LWPx?c;|Rcia -8z?Jp1i`~Kz2XYubJfBgB?{qtvU9v-*nFYoVOz1g0}d)~i!`_U(_?%&+UC;xQ!_q&%5KixfU58rQZex -uEJ|L1paUO#{K)7}5o?ES;5*YVHCpB^6lM>M>B`S6&pKYzS?_U7)z_T8_x_@5v3?2)#9`ZXT)!<+4$k -Kf(Oc^=WkZ@&Hg?ZcNZx2L@K_4f4c_1)v&?_T6cK7M%h=JEc!pJSNsyngrh@yfRS<=NxEZC~EM{M+OG -kK21&^zhC0=3)Et*Ec^ryt>98Q}y!xyT@mbzcOpzKi=JKuOGgD^GkH>58JN~KX1>Uz1kk{UfjRV=3^q ->Y|mc3_~79&KL6vxi~H|?<)xory@=t^>o<3gKfZoDhkyS3o9(l^*U{7M&v&ox9%D3L{`}p``{(iD&+e -b!y?TAOJ$t?V#A~mA_{U6rN=LrBI8~Pus`4 -b;}H#+_6_A*xE@$Dzy|II1*$4Fmn_pfaBhnV~LB^r!@{t{-jeRsG0{QB3O_{QT>`{vqBQGaY}8^~;v-fBY#-@WmFRdVKck&9Bk%Xy7lOJpK5e;}ai#^yITAU;mZf -fBNL>&p-Ln9(7^Vx?_w=chW`sEj2ee(XceRX&Dc8ZzI-C1t8;M&+fI9{k_umvT -fgd6|ekP|81Xq{-^&(r}Dd-X!xW1zYR9TzyEyq>Umh@v+rKg*D%nppWXlR?A3n{Cledt*<*C^%g2WwA -LxJV!=GP0zkeBT{2xEOdGpinKltF6Uw(Q2?#0jVzxn0&NBQ8#_{if2|K$9adTiT!@BP!Zzu#+}C0?py -zI|z|WAM@__3cZm=SyX;{d(y*+tK;p-jD00bB&|Mjs!3{Eg4OiVsG2K6q#Jy}TE{z5B=g{j!hTNWcCR{_r;+_v|}%K^^}Mlgds#yozo5`VE`u$Dg17u>B -BDO$QS0=INiF-rRij>VumAexlaD|A?At#*`RePZPd@tQ>nC4){_WEb<9|7X!9sof!?Q;$E3E3@zj -)LQxmMZ2haY|R$+urU`Cp&V_qJwy;QJrn{62c}eZC{M-qUZt{^HwDpMLT`zy0FrpFVjS?|kPb{Aal># -~we%K5wJ<s*AkyRd;BQJx-Esj&T-zhbMfXnZ(ASbw$9PA-Bxc3-HJEF)7#i@JN?*tJh;{}Znwr -i#~J--@xXFU9rBSg?(8=)M^0X2xH~;>@yQ(Dd0UqQZzDc5XY{B?&yRS^7CW7pi^V9l(Vfb(u6a22n;1sS%s -v?I&U)}0&x&_Nr%SKV8Z%NVv%fpjixuhgH>NgcgbAAbM!V;{iH}ET2KI2qI>!%I9HTfH-|T}Q@z=Ry5 -5+Z#N4G}fi^a%4@XsUdA%<`h(;NS&?cl)!V>>a57|_{bDfY9n&e4w*eJefYAzte=9&hO#E1WT3XUtcu -Z^?FRtXo;}@_vTtIID&3?=hj}=#Fn^*>^t4Kw|XKt9Zf@t!*p*8E$mSeCGsn1Xm;XRnTW_4 -lkdVS`RBULou!%$aQxjYmT)G5dbf?h)2q>KU`t_ULp=J6pV&?pJ#^Y`5;QZi~KkdqfvzbSq|yF~>5N6 -7w4?v-l8i>25G)?ua&ySl`&RIF4BEu<)7f)_xNMr`;N}x@wHM#`_C49m`IqX>GcrVjss}3mpvGi(jMD -EL3BdM{(1qoz=eI#8|>~*{SjV#=ONsl~|+bpr+nfabAn5jjpnV>F;Fwg^lwuY%iWw4m>OEj(HQ#qS0= -2Yn_vbc3CV-7@*@iSZ1J!BK`RF^HM%>}Rxp$gez9oJe-F;z%3FFzXeH`OueqHfcfMdm!jd((sLUg)>&j{B -$=sE3TriJ)AVn)It5wv0j{XAQ`h9kE2^h)%oD?cyK@P1(V235MQ{9b?_|qN|-V;auUXMSJA -O`WV?Oe!>{YF=~0hajTsSdO#B~jCBz>r6hjIF!u+c;&%AF -*y{biW*|V0CG+xEL&d#fu6QSj%~;x&c<4 -*b6Sgy724RW5++>aw;Xfen0DVa3<9@fg~SI26 -7XPZ*0Atr4wbp_-O)#<~Rz#3(wU&EVY%N#9`7^ -Hf-2pwi~#l+8P52BVs^J*TCqbtMP=18*1M6|fq6*nN#%bK&XCNE{*b1`+bXY^@I{1*T0hr6?D6HyPjD9DZh^cLMf_x#K75flBGIAfs!bTh#_RY6yUHD&cNuh&eJc -Yg0G*fb_@DT@*K-7SZvb2S9^>)oe;F78rJAMD5gJ#P!Q6~Tkr?R=pfOL=byMuy0d{=wtD5UYbU;)ECBOs)-;wAbz*GM!R}7gi{VO1 -PhxOp#kkVSJh1c3k7rN(umYEC_?Sw>tIIvBvGH`wKepc>Hy}_>Q*Ne_eQ_+E4}&ABO^kBxSG(X6_CUN -}%kN}kjLQ6}0AK--jUkaU$AaQxj7`9w5g&`?Zj1p>)zTi8xMcD&nO6i1-ftXYmjQ$}5{iST&OlT#sVo -NJ7@dfe`z?HJtXnK%0~R-Y=m7sVf!5gdUF3z8#ipyoi%Qxx2&fy#GCXT#$%w~q=OJ)O$& -C|ThpcfKj#^xP%~w!v)Y+9UiU$csX-#IfljB!wfMkC)3h8M#3ThAnRs8!>Mk_w_MElXSs$`LMn3`RH4lMHdNsjgw;!Og(P^>)>cpfOdk_8KcG+#i2ugq=wJ58Z#(?W<_V6&Dh&De=Pz -F2P_MVYf1Q@o^wQw@H?Vkya-D9JmI-(P@OCmrc8YVL6QIX=jnbvTh5yL$(u_YAO#2K;Y|UQX;@kmKo; -FUx9qx#n1?ONeHHF!X2az`&Ey-v) -Lo`gQPcxSW&BnxHI=12CP-?qjP&>)!P1vV0mPGji_PZs3yW414y(F`aB7Q&>K83)$IN2jsO`GPbt3bU5b26ZKzfs5_AZsAaF3gNNB3dUX}py6xT?TrU^1JA(q!jBHf!~)UTNJ|R-w}M -mKk^{^*A8(5Iwvh|#zz&(C<{@xNe27MQR2;)DV}tDGX(JjHq2m=LGGK -0Gwn9&0c5XpO5R8uN)6H@Qi};7WR{{Kb}zep-!)2RHDMJd4n#h(9st^df9O0;@5H)wRtuz7alOv|f*U -90-|)`02l=87+!CEOPv2_7>#!K?x$@k-4s7e1lZcFk|#lG -1(Il!XT`Xb~KFBgY@b^qS1x*M7>w``MlJzcDqD#}WYH*E<~J -fDs>1)ivvog=`6^zMw0yt_JT~stB;)u_0@z4Ahc!k!YTE)6HtXaxOc00AL2bq?%SzN-I_iihCP6jeIu -}wn>v>4+-a$?M~ubX9R$>aT-hL0tkhb8O&;QmGT`f(io|aBN?es8kJOjNZ?+4DkU7+#Z^~f80jBYi=Q -l~ogQukkeWoR#1GE8xJ`6);Hb=xkK7jxTmlmt^8hLXGeO>zmYgi9Ta~P(`@@|F^qvxHGI@okvMiS4lH -Y;#4L=D25^is&9srXhsRoPH<*Hg!CVzy`@2~?cJJ|iJ{!Au1<4~6`fg^&ujD~y{c@9QDciLD^hM5V#c -roXAJ4-|0j4HYi&qANrZs3v%P8^Y`V3K4_O+07g04y9iD;~pj3mX(BVr8<7*aE -OdR#ZRwOMkR4s{BHP{m^XYNK=4@|rX+E3|_+!yiSo5tJ^5KVErg3lTuvj9woyS!#HNt0a{i78Iv%EFs -xIhhfTYaZZBhFi!w@6-y+0ZoP2V8h{3Sf-dlVIu&UYwxU@pOZ9zY(X-#8?P`AdXY)!cA+|e0SX$1qfB -Fn?#+Q<-6nfe!UN!jqdlyM_O!D>9jCbB5)`oYR458WSha$>6>Bg!3GE!DWQCdxrV>M%n`k$TUN|*U)4 -)5Vrg-|cJE6pvDRL(tTGDi+7KDoUEBGkBIV|)yVuq3KYBz96M*`A!OPdk{xVOc=pIR -v1nR;w3668cAsQso-21>?2sMU}#?&WG1zC>o6qSlZIBLj|Q2Zw{tEFEJ2qsVsR$|`skeM>p3DTtJcL} -c!_u%y7hB&jRy7e5IZLm6sVKx=R#R!avt_GayDxQTc|)4dt02p`AQuKE%j0_C0N?mb0ixH8_qNxed3R -|`DS0h7ERj;bXO-wZ~;nVI-u1}-U-HX~mnWM#1oAaW2n4!K3r0+LCfWCTW#8r(r_0^R}-PcqUh3SaSJ -S;xV!oCng5PLDe6Zg}$oh1W88EoR9T^fBz&YLy3e0%zUo6^|FVgxXxGCUK`F5e&wXPj+zd$;A(r_Vf= -Vg6?uju>+&9mO9g)E$cWkWIUZgRy<~<#L(CSoiX>TN8qz1O$O#y+@YbUFTtP9tUJZ%_nX)xsuPIc7{H -LN0mU`Ton2DZ3B^+gEWo5lYzBdHRFT^0F1XrV@RP+ih&Mp9Fs9XveP@T95VSiA}c&uoyKlCR|eL#A0Jd9?+PXqR*ExWk3>EJ -$f`$l}yXuQx-wkDDPPrIH(tBcH)Wm)PcmiI`INqg@YS8QplrI-$mMm>pP@&PQ4>oY+7^&yMkgnsBpQy -sRIdzMI9$IRRkK63)L#pL8qDI?%MlkaymI#p*lDYHU$|4&+-$w-wtpIf`^L!p<5PY#Yfd4z(P?F>U3~ -(R=e~c{I85WRuHdI(a8n9<`;blseCou@XSHY1jj*-*uwITlz|kPP(SHOnlIl16Aa9T>F-zlA{Gu?hqu)J|5)59wp@8G*gwDFz1Ep_#Xa2tw7_WCbaI$B*pqNgb!DrGqJ4r~S2E+n`1>=_fm#qzLFSW=g>1OqjTT8EL*#+?TkfL*Qw+aK=6wBHkb$%5Zj7gR+0bY{!dvcCj -dL?(ETjRc`t)^3*hi1<|gq7S$e6L0(5d4Mm0d`a!sJb+7F=czu5G|4I1^=m2VE_AF&tg$H-W>Xla1;^vv^Ri`9=3yOX6jh2fw5KfOdu -NdzwG|SryT+FS>@}-o};Uz?(Id)U}~iMDKafEg%>3aF8LQ`71cfu5y|FHVJCjjG6`GNhDBaXHNi?BYE -12?zJ5<403B$GN{jpm)&`mEJ?*m(Yi2Vr56XhJ-%p=xYwcr;kepG_X@1p7DH1Vz)tO`aeB4x?g}bIqD -(Dm?&uHUf$R%$1))QP#WULtT+)`_W_N$uI6mCak_jfBm_ipIsk^@Lxpfz2QxyUM4pU>y$ac|}pgfQFv -t-mNs_^5KkGBTH_G34~3AbTBkCOo4408_UIW@z6t{b}7Uain7WCKLNnpHYo+^OUo1tr)Z6^ov0Ef8Bs -ab!4}4o1=aWoPJKJNT@ytw`rEL|7}TAxqE$ET{HbaB2-AV_0AzTj>Y|M^#S-YLa25U39O=IQo=-ZJIh -x5V$s#154h6Ng=sA^vS4Z;1)_D2Rrax`TxZ~RCKRY;qWYMCeW-*50I<4T2jz#D~iqh6%GYhV?ZSijp| -D8#)Pypbg!+N6_YK@s>fnlNQ$g!0A{w72+KmT{iK75Z++KoPy4H4;aWHNk}i#Y%Hbk&5X_MN$pi~RRS -^(S3y!$~YdS%80I;fsPa;g8c|HJ-b<+SYty%C&GyvhN8<;M;bx0I>db_3&2^TGNaVPOtbs&9Q?N;Jj( -_=9fT*=U1FFy`&b6dksU=LlcW7j(`-^cvsXED#@X;Iq6ej~nEFh(O?NI*KG%Z`$A2o3;A4PHCC&mI_# -*=mSjiXy%FMay`M?lq8-3*d)rlJVj2YQ9E}GBjcz!@zaI1hm62uD8SXX1&@CTrzaVjcOjQtW$Q_a8Vt -FP;rBGnE>3Zd2E-PDP{!Jh^b%e%4*h!s=8P5r;69>Xh8>Ftbxy}M6v>|WyRM+4bb=&YR&Etv@|G{M)E -&u@==tU=`XA+2D=q4L!q>B7AL6bB3rOCNFOR%!sbbZ>Jg2Bv(|wgE87iRQYaP`l>o(Bn}Zh!VxQ{hDJ*C2CB6XAYI*M8gWD5`oAjNIC-}*HVf -lIpd0Us~&XV^+rhzX9VgwYLRxG-O%n$tmi?`{dzt9F9703mHRa7jm-v2_LZ41Dp-gR0P}kI_%kRf;av -Z1hm4X2nCD8U<+ZdfhL3K=-;eYp)g&h*5|<8q41Bj;(3QE((kRE~G+})gmWc)&BTbK*5Dex^*1l5F|_ -IlO<29q*e$_Oe}+f?|c#{L*QZSoc<7l=^`Z^bAHji*5(lu43Wi-MS-F9D`piAwr2AWmM%E&bcjo22*Cr*Ee!L>`T~<|SH6TPPyr?A*ey{tSuB*z@{)~{V_V&*KtpO)6AU!6{#Mbw) -~OCpZ3alqxkRqIp%Lt=lr21}7RT5-mE@wzD3vBvz7hC-*#o-QLPA`Dh!s+36C1<$2Smgab}0>nNS@hh -DnD)91%(`Rt1Ww%^MLNPnByWQtw=T6vI_^OUJ8bV+O?6Tyo&cV=gTbtdQ-CP#_G8*(7jgkH>u1$?qEgbX1kgnF?J(2&Jmxi50M*4EWua7lAbiz78}X#5iot8=ACXoV`#uN5VLLqJIWW~wRqdiw -mU-2p$zva3?Fn4*~)zv0c>QX^=9kaMScqaKEArI0UF5cX*D8rQm^dmWjmoc0nEBa@Fax7$|ldBFaXt+V=}TpnL6Xg -erjw`YvpfMv{R#jZYH&x{X6Ut8qmspsH}AC_#y=?T$71GwSZKj}dUGghlkzbkKV~9b8RbrX(IK*iiS> -qQZmHALl|lG;<^#uu92$R&}qi$s4tmZ7JdOI3;P~LU}2Jep=TX4un0(hQZ>R$C-c!)gyKDvR`zsrCI$ -uJ%|a4te$Tf%p0>>9Vt)sJZ881{_t7QC)o7i_D{Vh3l(uljx+rq08+R=RY>}AJLqe~UbNBL)UJQXDz{ -lV>GH)BpnL6D`2c8D<%E6`2-T-2Qg)9aV4(#2W|apPwXsc!vV?-%?qC$;u0`GvRiUWL$yD_-ZBY<5>=imqep@;6i#7rb?5_FEk*zP+x}9=! -F>-n#?AVz34Hf}9=@Q-ElwQcbV12#hPZ@JWU+%aC+%yOJ)nEtW;#~`515Jcng!_KuC9kYQj)2Su-`=3 -Y&s@%$h9n!z2wg-y4TUttg#1ahRP&&p1`j3>@J5vhHe)1Y9)qj##c{`o^o~O7s-P|w?v!=uj6P2u57S -IT{w)!syB~(QGU^tDmX*qItJ$j-2kZqH?HFbuRwY#UyrrciDU={d7A$n;0!qw_tQQ4QS;MM}65&`fICl -Cg7Pxlbq?vBEHu(YGeuVY4vS6arJ+{fr%M{{eE>|jm}B)km|R;GyoCCTKLIg*>1U7k|(!_BPmutUeyF -8UJBqN*e($P}r;A`yoc)^md%LE&&kf$6DmvXy#eDe57~_*8vd=UXbe*CH=RWvQWVELC@*@`&P(bu|h? -tz@UQ3?^tg-E!#AJ#^>Xul}B{8%R*7vDB-{$iNnnvr=||$V7sts6d~n7FM^Skb@xW5-jZuJ~8~+Vk1D -&TIrMzQmB%YJ;uqF9MZ>di-UxsfXdq8A-H@qMv?WxrtVb<2FElTTv;K=6ja#da*V8-XZ4|xRPb%nAON -T&3&K2ORXmrvXS?7MFw1}z9@73Bm}yF~r}kU@B=BR}b5nCNPgmMKh1*oNcJZD~-Rq(BK$A4lrPM8V;P -FTj{W{$ZMV>;U$oKIq;X$+Dh{dO#tD$?XWI-MOut{P`DUbjaj`y~uH>WD3G7<7~Ln~SEzni(@VKwG3K -pojGxP*N%Kx`vVX#nbEcr6;@8mfl@tz~8`B|mRjp{Dx@DrqHoL|E;xGjdkL2&V$N=NSmt2v}pkV!~jg}pr#!2i=7)w6Cy+6S$E3&6dJnML4Le>hC{_{W+niEE_ -J5QASfz-hsLQoA2j%V_c)#!apf3!UqwUr+L)~kg-k7`=!b-kCjtp1RaT$9eG-KgE_uk1v|uDUX1|}ZD -d`{3y;j-W4D6;Br|Ajw-_lH3c3FKn9~vsD$YYXa6gmIlxem)pw97eR6}FyCgz>6HW#D1ooMf_(>W9dY -Jnr4qXR)e>C%O=3zzVdi$2N4Y1%hp;2~(aY5oZ=%b6Ydh#t<+byj2BabWH(3Ry=DBk2!kQV;j2HigPP -UZ%s|7rwXBuvGReOaY?t#m)}W`S;nfy-=(L;df~^!lN&;lur1WMAOSs!rovDnZf?G0f0=#c(vCPG~xy -!m2$at-QAt*ED*u8nK4)fp`%RtfJD0}pomdX6SZ8va9mF(|DX$d=;I!f0?7Jsuzf{{mVm(M35?^><9j -Cw2(Zco0tseAPVz@8WG*cofOWKATDi3+iwuGHUiUuYUV&?p(Cc9$5|TfN%lJkFWNX7M6Gm?Ir2PpCHT -NC`p3x~cM7xLZh*Je&&6(lzlsPX-SSA4Pa7E{{S;G6?EPlywH|dwkL*5Q$=JWMNb$%5n~YhH(DnIw!$ -I#lA4dMclAk+_MzWHF{?-OqblJfp8nk-pPGNw=&Q@7v&8@BuaT+q@jClCNabEhtWz9++1SE=Sei@0p< -O$gOnnGoG{Fz>(cS{JHSrzwb1x||%5ccOazX$uxi;~Q?sV#GMpcOY5 -#T=v(?eM6n`xx)2@)H*_IDtF5`J3)4^KN2f_#MURo{DOosX?qeJteJ8q4G5QK%$`H+%!>!+nZuIeNva -1{eHEJz65x+odQGhO%IE8E5xKnsS*JRbAYTX(34c1<`;^Efs2|91y$Q^uA7~K-`;J=oC-8Rbnk+EH-c -q8a?2qvSIxp$2SBh#N6)+;rlEW7q|MFat>_en@EH~D=ER>#h9I|t4?~K$onmPHliDVak`a;Ch1b!&j& -7mdV;RL_ibpbm&lb~9?^6Kiso3fs{3a~nM-+8=L)9>=$^01EVdSwMEoApVP_*SvRqvyoYKc%N73xL3P -GlO990RPwuEGsI>}q#_+klBl$C8?@dvIKD=W< -deh9hxNgn^I}h;{q(x8u16;CsQXo~*j*tkG=h2(GR~X0!en3VD>xu(WRpNzUsVq>HO1RNkLqe;JAtUJ -|RNXA$ZM;zTI^_hAs!a`+lgM2pK_=C68hy>#_cvzRi(|-^y!NSUOY@os>No)8(bc_H4=sC6fs<%eX(~ -%bXj78p)gBuvWsm8Tl^3cDBPU~~ouPXj(&HQv9{ebXHcC;{N?B6!hAS}2vI;?ZpD^1CRy0TNeU|WXZ>3y3LF!&T|BL5L#-IF{JfJQyCLnb8qA`=%W*uKG?7?G -LZb(P?>b|Egv!Q#f1gha(V`PIB?zDK1R>AZ?03%|S^d0l6uQ^uSwa};hInsu -WdL9WRl>mR+LRH35ZugGmz(-N@B^4}D83z6o`vppI~1B$CrY}TM0cs`fPgangfyXg)1~pTf>yjx!^+` -dlgNZx;%aoSm6C8f@=!XVbZZB7V(YClQI8GkTL@rkpX9BV -RZb-D~$`HYEmR3%tQw#{egCz4C+D&*@blm2QEVSjM8%Uj+>jf2c;KU39Nt=vqA)-nBtodUcX@Gz2+yO -cJvorKaj)R|R8FCO@32Yu%{hG(Be`a#A7O1(olP^0F^kK5q~uE$H5FH0(5HvFw3jQS=!ZwwF4>a6gI-kzwPPs!! -!TO1M&saOkJ*)IAL9^5#-T-13hf*5&A8b`1#K6wKSoX?>bgD2pYt--0-=9wnsQvK55b#<@1b!@X;84l -c#2UcCW$Z(OF}%t1 -yIzGe_Q%`=YCR)x&yglSfwQOqIIwKCv^80eHYvy(g!WHDXv_!#D?Os(|UzfdDRvn_8Z@nkg{c$dEx?X -6cQL0OV0TMa=9srnaM;8)A=UvX^?8j_$QB=a+d<8=>&nqfyFq4*d>g9irM`GdBe-Q?+YOpVzU0OD_9W -_ew_Bn`g0%z17ocl=q4AUb=!rt)R;4O)zIQoQ9?)FDxEny07HVI=a`2oO=u%bl0ZXpH8SZy0UBFEKAA -9_+~9r=fkRcZI5;Qj29i<>)>*Q;XNNz(}n^n3(=sQE;FxKLDE7XU-E|w1qL(6ClOs)H|^f{Iy{qxK!T -*C=P~2uvjUZQkoyBWC1TUJ_94n>Wx>aXsxm@uE0B96oF-_0{1G4B~Z_7!WySS_LUryOn!-jkrUA17YQrb -xSM2uyNH}Ht7^Vkhl)k#XT{MQr5EbNPQ}I2HX^I36&z=N=dq@vN!D0kd9H`h1AKrG4u4QOMsrY=H(p( ->dd=2KN)^K`v!m3v~mIu`;BVTrWW-yGNUb0ZUTcepgB5h+#vlNO1>xx*e?1KwOh)Y)U+teSQbZ$|8yG -hqFq{#6o6bpbNNJiBZSjBO{GET>be2ZB)qQ4LQ*5AO@|N@H(eAcmcJ&Jx<4JWJ+6!|Jqa!2pAW4j`6R^2Z;{A)3*-&=3hQ+Vw#spd7zHtxdU$nF -PaVqQaziZAQr--Wzf)BS{kyeo)-7!E03QpeR9SNbgz}_bytSpa_&hwPsNT_UR*LDHA$54*#q!0#-yQOPE>uY{Yc<)yV|k~OCG0K;#RKH+G4g_R5O=|;U>;56N?m4G_X?%am!eBkO)I0zo436 -f(!cT;jxBi07PS&`v>2vwD6jJ6%8<)HpnDxmdlgooGAbr`c^`;ZN`Q{#%g>CKm>uLThLsl_mB|N%8xEYuaJ+Swv)P*j_$Q0L)vEE%HkV{L$WXMuhOd=1* --6OBhMXFrzNbGk8RV^5Jk?J_05j%wNM=H3Tt@(K%8DtS`Ve;%Xpbdy>!_$1b^^-h*(b2s&^mWY(IJl=~gIOJloYh-Wh3(gC -_BZ0n6uNNTvZ5mg4COlJWe@0H8?}`VKUuvYn^-+4JGA9hbXeD}v;=l-StuX}B^VBwM=!d8(Ht}Hv*DW -3@aul*0963e#ag|YR8|tVnP{3*3D@G0xHe6ZP5>$)DL1m*-Y&d@?iJ8O->ADU&(K*+=Y}1nze@P6unF -(H^^81gN+58`wB_@~>uG1h^Ejub;3-otqsMAI1InQsDAF+n{@OIf-szR{Y{aYV%halaemf8FC0OXNU9 -bJ1=+Y=&Ht$lBnTHIoic+doZbO@Q#(;6<+`T#T((!YK_-2q(4Jky3!vV|JEec?(Lt(k2_ml{MvU(g2K -DRFqb6MD+J06fAVj!RS+ZM4XNjBl&Rmkt>g}~7>)o7ni2jlfnLTPm --b*#|Hy4}nna&YGvFW;sqFXNYzTwuuBmVW -mw>7J=q<~EF=UPB;3La7o=(YS-9dHc|*AU4mFQEk836xQgrxC5#Hc!y -eU88Ry0RTYj$l#8h4PXT}v|yQ -F>B{bx|GH_eL~J<&vZ(wBG1flInIe(&J~oVYwl#+%>aad=YTv`^GUyd^IA2ht?g&CYl~3|P!#fzz*Mu -!BGni4<@AFlS|7lpL4Ks1^)3bNMrLuZ5FJ!!sYGEZr+ROoRQ9UjvcHj2S5&vy^oGK9H5x0}f9gUj601 -SMPo<=5H#)(H>4YOTQ+d`Ue`yBa=jTMGY{Il-CB5w&t1He&HQ-uN5Y%H8oD0GMzdaH%C4JuRjdguDCY -`Sv_)?AT=Au+j%Pu?H=5Rr#m7k$}8(3=O_~OZf?uwhh*8%QMJ~D5N -)>vAw(ZgLlJ?-_%gNI2H=i^W_|ClB)Ku_l$2Y5Cw%xXVcNW4&Zj{c{MB#UgG6=x&ngJ^jZpYxlQni&H -G-duaesex|A1O_wRIcuO;IwaK-B@y@a=ULmzcWpiV=^(u+3=D!P{pn)aMDT!y>Zc*cuEz65Z2>UVVHi -fZK!NV$vmoaW_=pb-fuE992zyI)=cGnHS*k?~F4>&(%!2P_CVTT3OmS3-F(&Lv~cmw#nnk_t@;axxMu -xz)Gp#=UAN5yli{bX9;58HQ&cc=(kBKr_GBgPOhHo-=hwVpknF6Tj9q4}3ok8iq0R{iwe3@=#oL)s?W -po2OJTMbC}8u`Ua>m!KD> -_ZwMpxFSh&llp2BCx>=&A7BLE!d3!+}_f>#obc@rYemNhnwnhjiy -{}ml*xd^55?x%F29cMwJ~p-ACdnn5RVfv)3h%sBfmt0(XGt1GknJXiYrp!-y=o$T5{2Q-bk+M-@;h^I^V5CAR+n7HRwXWRO(QSD -I{d6Z^bbSb>q^@`c^LzsLc#&L?)`Fk%Qwu4Mg#^KUJY}2%OR|&*U}diEN|O|FF`DO4*z -Fr}5BhJRL6bz(jAvAvX*xSjVrAm42OXv$&~Rmy8cUcK9ttepScmojh{mj>ZcHBv+aTa@mrH&j(YS-oS -A67rtb9o&V_@*sdN}cOQGQYuY29#SWp~E@QD|c0F{;WR#4XSAVJF;K~Z*Soh3{=YN$DDaJs*Sgx-K(* -F}xEnsz9BT!31>$uw0-@qk9@^R$6L5zApc{+nwzKgAf!Yh!x$BUHEi(9%Fh~4Pzi7mfZgG+F43UOfbd -OF3riUkyld4$vhrZU%lJBC*Rl3NZqwILPeJ%6WPpLAaBa<7_408M5ou8oz|VAv1ScF!_$AOI?=f(Hsb -+fa}SNE-@$pij9{rUxx9Pb{9_v$7!4k^% -pQW)~D5D1>vIJ~GyrV=**^)Z&SuNfKIJZOm>Md+q@DVv_8Q<=*=4@x;@?d1} -b>#FkEyPvs`Ez7H?oKw>s@~$i`dfS&LWmTAAt3H~1%xG<8mXkrlZVy*F10@$N4?-tFs_^bkO48-EaD^=M0=Y -i^OUyU9UP2VnQCqhFx2E?;5GdLmD!cK8IpXwt?V4HFN3IJ`ZETwLF>Cw}0#RKz!45nR*wNLNB)LJ-_+^7r!`1`3B -_&Do{3eHJZff-kOqFY-mCCSG9>K`;p0nhNTNX5AJHPhVt}-Nj@)h6Ey}tV&U)1^P=KlatO9KQH00008 -031s8R(v6Y`a%N$0OJM#03iSX0B~t=FJE?LZe(wAFJow7a%5$6FJftDHE?ooVr6nJaCwzfU2oes5PbK -qSi~s -%cI-ve|7XL%<)HWMUT5OqSR&Jygiei&9NkxwlAC?I*E<;R<0|w*>dea5h0og`<3QWZLBQmmY~p+H#D#P*63sZuu93b6}Aqp6_%NtDf}yhJy2~b -%7iA%xpW757~x6i{5NBPFHJ6sI)o~nqn)7Ivn}1p!>8$z#_XV!o>;R*H}h((WCrk9W~?2PaI_0Cx4k$ -u3_{YQ5E>fL@7;YMmdJ;*U)VZC=tH-6I_=2VACLnrpj?qsSX%WOJ7Ed&$H!%qUkeziIOCmE}kDy3#XCA{0>aA++hWCLRVI3Uqd(uCW9pY3`Eo)jY -o^;pnf=7Ob2O7!&yQR&7)*7ikIUkq4_eI&(cAcC}lob9L&6C^4a17l%;`_IeQ_MJGB0c@j3`pIc>!YW -6T*#Y!nInBD?y3%}^P=+4l>`#n1_W;celOY?|MYb6p{BH8cZMmSkME&kGTj4Fe2+QD1KEAK%0yTobj!6>)^ -&x6m8sv2CTuwo>y681FM_$V?8IBcxo1vmE=KHETG1te;fM%YN-SMmA+X-)Aov=gPCD(bN4ZovbFa$HB -PKXk?^D3CY*Tl9*+`wQ;E&5IO5Q+< -D166P)h>@6aWAK2ml;P_Esz{)OMi>001y2001Wd003}la4%nWWo~3|axY_OVRB?;bT4CQVRB??b98cP -Vs&(BZ*DGddF@$kbJ|D}{?4!HOX})i0~j28H+EjCz{WO-4L)8fh= -U>#JH?3(poL1G@A6kd9 -;G@5yB5O3PH9PnIKvtH^>(Ik#NebfuD5c`3dL$D0bDydkL!Ovtx{3M_LfVzAP41N`YvJzxI;V7mAGaN -P2Rsf0~~g+@%PGJVFHE}&|xD1T9)>e<;VKxB%SspdG;VcCE>A`t#JVTUKV@Lc7~!3@XD2ZeKt5Z#&nS -Gt$Z$d?l;5q79Zd33)}W6zDw4^ugE;G6z}tv2+9puiidIX3p17T%03(;e2t}rAA9+63Pdr-= -7d$j`Z5)Spt%N@bmNvX@_32gw*eP8LSNJ&1{cPY!3yW{1CEP%e8PJr+g7Ml?SG;5ME03&o$Jw4#BaSs;cprw9 -bd(#K}+rrqyRt@S`3Yn@K5)q8jiSy&pg@Lz}|CsR<+CY;JQUA4f*0dUvoT-;zqt=_zC_8xfmSIu6l(e -2VzyF)d)uXTFOi~en`L-+m8eY@Kz6Lp1HnwX85W#pBKhk%@Tu%s=NDV-oZ`UBh>V1tfLWAmGUn=K*1C -^8Wu)5SqPbUb&Y&x<8%gT5v?B-c|#n)?#m0sB(k18|}_zqf=Z@!q>MAqucyXBR=?W-@K^Z8kfy(uhXped(C#s=+yA5m@7mI#mx -HZr!_YE7auxXRfe-kozduiO4U45Y477MrI^i7%A|ZbGe-5m;tKI*z_-#X$oYlp-3$P8Jvd}ZngW@H^ybHS2KDyo -ksVjeS1l7saiQc(E{Cmr(rxax)`gJ&(79kt+pPjRQ1qZv(>!o-=%?G=JdQRhGZBLHOesZfpCTeD!rqY -=ZbJ2{Da(PPIU|^bKvOs9|^@}=J%O!EukVuGQNz0{MsFqqCkae@5mr2Od(Qo{#N9R}1{(4Cw|6Ih?+k&P>pJEUhs<`%( -nqc^uOn&CHQL^zw5t289BmD~x42)(nM-tpw1av|$+$Cis~6SgGmx(b0T9FHgeWrtJBnqp9zG5ta&$a8 -~CCxrvLL=`ckCp)Q5OB-gsJnm92uE(pV!&!se~3FS@8aO%U(3_Hd%Lw7hKM-q0l;dV@1nNA>*CiWC?* -hv8|P0VViZJG4Z;V8IlMYnKZ3)h}Kd#2}6=s6q&3WeneaEc2*T%`mgVkT$~!%{VL%n`ekm%>#&e}*J) -FAb+#0zMpi9(IrA%yic=HiH<}K%l@+Ognk@{mr7u#X~v{ObdNVKp+AtBR&dygM)(H*<=uQsxk5T*yCE -C2rjP1sNUSbxTvegyB)By^-u^~o4Tk~oQHMq(_o=QP$d4vJJqMdrwqqEKV`jP6uv7TzdUF -?>b4O|%_l+E`FzM}EI$lGC2ACs2U1x#FK}Ul)MTd1<(i@9uKxA?E7w2!p3>j?Tg;shSngfX^Od)wjT4 -xIZ2cBmxD^=tB4oBa?lAF?LpT9sxPMmAyFQgP{Z%nSB-=q@PrlLp~ex`R@^W!J||L63|Oj_uju6V%~T -BoUXFb*BhREcO*GvAHnG#Z$k^WX^a9d6--hpx}u3`=Yt{t$HB#@2 -5d<_wFvrCqW~8)J-f$!$HKuIvCgMkSQQS0Sq*%*Gbv3tJ?LXe8G$tS^EkQ?7YZCv-r@>39l?D3cu_V6 -%Tu4%JMZ;w)k!Dh41V0z^i0klV}m -KRrscr%oOnOdR2*Qql7JW%(jwpbpmRkuT<#cv$86u6$5MVdhH}M^31Nv{mkMM;;iHry&rCRNb9UBPk~ -2B)E%PuN&Wd6-vxnP^!7xjO3EJ42owW^+mg6S)$OhLYKt-_8mBmWPDnj|1<}DvUxDMGIu1phm6pu2#{ -K7`)I#gIr6S8bbGb&d_Lc1Zj;c-|AA0Td2-CJSKn+G(RIZC2oTfylU1#_dR3dWrOxx%hWUJOkq$a2!+ -$kxj)THi#n+UWeY{$Db8|-jsGAY`C<gUbIOm+O`Nxm>Rt%w_!m@;8_NEH3ZEfXeq*ueb${$-cqhWg@BZ_ -bRj@^$Q)J{<=wkEb453^WqCxo^gwyNU9l(u_k=qds?*F`ck=zH>vl_1BmnJBj-=Zf}zfRv)}{Pox*VN8tq9oiMaVAxC%zszfc=krhw>A+&)@$1Sp7E --=w(l$F!@bT@kxe4G7@Tu`k>!FQZcdh?Vx)4TSi>ePO{?ygTKDaimpRoPAWUXtNXs$eOlp_{iW2d=-T -|M>VV+d{e9L?h^^pD>@negimg{sfSe6=yodu@?RBUXX@%rHp-|I%N_1o#PG?uyuhdmEaOog;RgJ%JYu -H953$}3(EHGZs%j&Mz^L2D3A;aH0Lo=C2*il^ZWZBESZ1tm3jA7DOTBbU -6W&lYwrv4e*sWS0|XQR000O897^_9G~vD>zytsQOAi15DF6TfaA|NaUv_0~WN&gWV`yP=WMyAWpXZXdEHfQZ{kJ}{?4x$U33zt#D%LWHRMv2aF9bK2Jxa(6h+ozuVHn|F4|oua({h -i{R-IRMe3(o{$P)1o|)&F+403i{ROwfyRi$C@nGmKhHyKX4*rHSz88%PSZ*my727aDI1FS!foZsx|1i -!8zVCLCU_LQYfzKHg27L5!8hPkgFvBqN8-1o+?x_M9f~mnof0r8VlRZ6vWm0H-RePzD7X*fxRH@xplo -%SoI!+L)sfe;z`xsMg4KxQW=w4m@fe^Ls4)i&Px%JgBr<$r~8l+4HQW(Y75z=hxRu3%z_eA}K8RHwpc -5n$;p#dXd7MraU8Gn?Dv$Y~BwyK4SQqVFqFId<$#4-Y(2v9U&I)z6e3=k3gDiy}>WWd7Mnj#S(9b2`b -YNvAz@7xtksK!d+jtZ)f%`94T=40@L`BZ2MM8n?N^tM!LWD8kjg}_K6e4_3(P=?=a?q{krTHuS*&9h~ -QZNOePiLv!#H}^KMg+<4}u^TFnbZR9inFhc_0=q@+@c{vm=nIY&tSLmAh7oTg0{X&_@$&n0wS>O=06+ -TkdEZ?=T%#{4jbE{UDH7Z5aRdWER*DD{W8nyJKb#M~V?_UUJQ*(^Z1tn@(j6`qFq+Px53~M!IUcMg{W -;85^VxJUbO08V<`P>m>qIUj4iR!EQOSTB!njVUKVW+`7RUqGl4pu-_9?@O0)j_mAAhKaT#8M?7eh)xu -YrXiq-n#8VmLcEeURJ)> -IpB6X6VcX=tx#Lp9o#-zXGOxFt;@$1B`Yr*|^2XDM&9IObFM*ef+wun#_^2@rg#B6{RdDd3kI=)NV&5 -%<5)hU83KD3ML5C&-SLf)qO9)_W=mq{sHG{MBMNi0n%dvVaPop78w$n!OY?krFAJ6WbXK=aAhw1$Z{_ -|3CIQvvTf3N`q_*tYbqxB-l$g)}wvbsoDO9;-^H4!`0LK@UUkbj|RKS3?(v5oX)zD-0i6!kRz1yD-^1QY-O00;maO7>O};>Tb>2mk;q6#xJv0001R -X>c!Jc4cm4Z*nhVXkl_>WppoNXkl`5Wpr?IZ(?O~E^v9JSZ#CSI1>KOuTYT>3pe0|+1lDU=H-qdFheb -Y6p)&m%jSr%Wl+V)K1oi({`!4dHrN4@%j{9LTd~w?bwAzxbZbsdj{n%_-j~6M4F}!cXxd|+hvV*V>>1 -gU$_bmT1RHC)l!`~J8wY|(!!F`KWE63BrR2TP20Q+WYa=WRgcZJxHS;0rRkj)iN?HlAb8#=CI1!q~A+ -twRLw+Qz@p&S!v|gu5`rOJ`8GPy_*6ss}*=4M=bzci^MZgvtr}6MAu1Qz2!Bs2EYTY_}dv?}>ilgEl> -qHTokgQ=7VT8UHLFP#}R#wYJ3jb=R-o^@J7hK=5OBpS-T(c&Fg_hZvU2g0uR!(BN+TcGP#k3#q{B;QB -00GiSE;QF0LO0YxFcXLN0hYgKn>b}YS4@jQn(TfcWf@n&X{>R69S1Vp&{C=b_)BhCq1R>$@|V#S8wvw -g*cYLM#`Tx!B9cB152Y`Z5sVv_(3)8lQ1;1?X>JJX$58L!f6s)(KHW{>#|nGvwYInA8XNGH)wm`55$= -Qz)?xI9MF^MPp7f4FP{HO0zvKh_( -azmj}TDiuVE>M4qsD4ON=6V`?r)nqpbR$0C}b{WQ_2C))KFO%_vN>K>8%#f>P%9o-qBcx!1UFvuN6;q -3htW*Z0S#L7x%m(98XE^^ho}5qTmz^0cvX8jc^W$|QBT=iMs@bA?&6|I8n*YA}+x72{@6MXPKlb}KZ; -HkLWPcTV|EN~#l}g2rxB;7iFsH(j1wywgPUZCLcrxo=&E~VOlO8^X=eYOG`};51b|6AFpGy$dd|opm3 -L7XTwVa2}oA#b}IQn$K8;wW3I%|GnqgaWyQ%OJ4Yg= -`=zfvF+?uC)--{}g42=XW|HdeqxgxIC_HGP|GnJ8>?Z{_2|!eQ-z?4m_ -hZ!=i+JVK_oL_hS{xKq$YYDU4!n4^*6aXSpS$M*3?3whjsuT=L9UXvcF0L#(1rZIOmAW8qedyC9!cut -^uSMYV>4J)@%hwSQB8Q^n~jqyML2ecwE+y}~>RRJGz+sOJx{4$SLpbf1Nt)oOM3_c!Vjp;Xjgh^fJL! -gcgL-*}X)_(Iq=6KYBQd$(fPmW+17PYi88{dCoU(neoqB}UtwU1QQAnn54cm~M!AMTFcsB)Z)Z8vUe7 -(0qYLh=Qj%WB;_nHD! -O>@Kl8U6J6%GSu>OAY^kOos`QoP7Un)Z%P^MOw8>lqM)gBClU9v@d@q#pa^qZf+b8>zLX{1C4|V0+~| -bn66XflZ+tBi1o2@d{S^yhYT-2SuwEYLB3|Cn49e8Po{vSY)pA;;Up{teu@sL?JSL!7H_K(`;ATnyMV -m5`Zbad>xr48y?O7lx4M+!2!*r+oD8;N#&}S$XqU8W(;{A2XO1LIcEY7V<;=YmeTlxcSjYEb{q)+2% -N3Pu#VpG`8Q~Lf`FeRydkwer&sfqGWkOCwWO9kh+77nxDJ5%+O9LWdZ>X$p?Yg&4*7%Nuf+KIRj^06C -CH7EnO~Rr0l+FB^$`NED+GtnRW+*(r&{&$#AisYK^f2Zad#8bK%WS-|g)Xkx{K|6286tAuih`o}vI^v -(M3zcFUl&dm5ql27xugt~d8mJUE*0d}L9r>R0y&gA8|5L6(jHgdP)kdSO1IbM3v#>8^x-M>X&uenMdI -TA&{3STv;PB+Xu$mJot}T?`p4-lvz9wTWq;o-RQa>4F{{r-}QQgj3i4@isq|#-zfWzH7aEyI*@dQ$JG -ae5$q`i{ca-x`SmMn8bYXO5ZDC_* -X>MgMaCwziVQ=C%5dF@t7_}d+y`{ObtCMb9^>mcdF1nUhK((q?6*7qf);cj~J9N2Uf6sP8NTIv8s1n4 -Ud7gPQ^PCh)4djRkuym>m2eVe8r_&a!o2Fy9WdILvBsXmK;l2R^%dPR;b+IQ7@JD4*;eIrNerxIkP;W+1exS9>ui7TCQ=_!q -QRim^vRn{sD-+<`H$Jq>-~VG~$Nq6;DDYJ(XK6W`$My$Q++xh3Jmyuk;|~T#JlO2oYMciXPT>q4F|+P -$R`mGre{!rJ8dxDzz^N?3~uBpqS;Pc_K`J2N9N7p8TdX{47P -+_*?JhX%}BtyHUwA}9x*j71w|EMABlgArRQjeCA~>~`{MOfel -C9Qf}p`GcuE*^!A(cJs$DHrO!ypMvLcC^w@eg9^okWSX$*!6Q(uJs1Z_@Nxw~TksgtQMG_+Z(2R&Xb9 -i@!CJX)#;CB^!q8(i!(uCR7@J8qhIsT|@MdI1#v?DeO^0~F@;L`L)@;Gen8CrAZ!FVN^OaDADfgg1K5 -UPTK&z-dI=b9x#)lfqxIt#G*>fp5Lv*>wAq(7ib%fk8sOU*W$yv(-jVGAF0C5&H1Algt3mox7TR#F`e -;7$V$EY+a_WN1z&cl?+yl}yMxaeL%}Fl{fu?j9PK?` -(dG&>d3-L8v6>$`D_MM90BxgxkM3H3}PM0?h60TRVYF=<~T8=<7y3GufwDw0MXm6w7Tf}~kQ=Bd9+V7 -UUF{Ym4dOYiF_NB6mmE)XOxdqZ{$g66$JuLqg%Oc_4Xcul%3a?qHf8y(TRAD!QxFSvz6!KN6nObS -m(=GMye7F4H!d?CcFaJf@RBX{ai73yjD#n&M@GOS*vTtBttOdg{2GqLeT=-M8<0aw;((Z|sM9T{NUO@ ->AWk4!Q=zi7t3^%UuTG_@cTMqB*y>e(h*F%~{5$)8nQGM1|X<+g;P&36;YZPKuyX#*2E&r`_>8=A -02tpj?xAmsTJc{v&HeP^1=Za=TZXupreh=4S -Qanci*D`n?WmU~I+a_}Mn8bYXO5ZDC_*X>Mg?X=8LQaCwE0O>4t242JLd6@pzh2)XRA -5$GxHJ{Vie*2@^9sJ7CWI<~QumHhkJ&6?3tXii3Yl=q|dwgv8;G8<5>vz}r3xtOi0r&;y#{Pvi`vU8f -UOx4GWGK2VC!LoNGr%EvFFn}`bt?UHJ_=H8zjWuvv+!q6VxS3DqCA?E>e+alCARP$S+KMfpk;g(H8jA -B>Lk6U`Zf`YoE_wa?Uv2%r*4?00p9yxbn(YapF$AcrjK~Kg(<_Qb8A`P)h>@6aWAK2ml;P_Ev>a#sY5x002Y>001HY003}la4%nWWo~3|axY_OVRB?;bT4CYIW#$Na&KZ~ -axQRrl~mhq<2Dd|_g4(!7aMTYc-sQa23yo|t$)M$tO)NzkB$Yt>^*ywFNxBZ&@=2P@;h8h -TX*Mq(x{n`+6B-Ts@g$Auel+br(Fd{3Mw8}Srm2-1sfD7xSu;sTh4~?s5|ObR%3zBc$IzjcULx{=Us# -zPTQWKM3mAx>uy>i*F-%2KYMBWyjdu98J7f1h0H&F-wLP;eJg;e0?Gb;zO4xw4t8mrUQ>)*m?(OX#fV -dbQQBNsKLad{N9orXP*Ol~*_ExS+Z*0r8Kf^*a7WO;Mq}o_n&^3XfCvRw0`K{51`XP;yD=TajRLU(gI -g|TW5WAzwl#~fgmeJdzn} -$0Qu>g3WEuN(};$^gx6L2Jm}z?}#P*;qDi<4i@?pb&t0l5IbZnwS*7+(al{*Y=d+~3f-{B%;=&7=StT -k^&WN$?ePIX6#9xWq7_r=I4@NP2#BR`!}-_gVotruGkxnNNpCWLzC$dOh8O*-kz}z`62Pd+3hgTp2f# -Q^`d^XJyC05*^XI^RFq}`~G^N2bp&re8$$Z#fjCu*p7RhXy#t~7+Y{NU7|$_%SVUe$-{qKBF#o4x2B*d+X{Och%jtuV0cCGqW_dU -ym9ofCn|>>amd5F&>QD5ZiUFUQu8shzxSlUGp;>{lwuVwbL@B4tRVFveq1Uq?<>!JcvJSXz4x5sTycV -)-TrpFOvlUd^dTNK8jVZ|=W27E*1C*_b%AYx*~n?Rlvp~;Wy`V3+jRXWO^oK+AC4=rhFb0D6xTkxkZ~ -w{2~uA!l-hbv@tljzI-SR#Yp&rHiuxwV5vCAwUq2-sY^MGAyz9tefLHtmtUj1KgyuP0);@aA^DV?ugy -#K#=3hQ;>^}>&*uEadz4b5j3~YUM((%yCr4|LBwFK;0O3S{qny&UWUws6mgx-{5^KT$ec-%r?HU0)rO -9KQH00008031s8Rw38C7UKc{0Fwp)02}}S0B~t=FJE?LZe(wAFJow7a%5$6FJ*3ZZF4Sgd8JfsPunmM -{+?fP;uA<)MR}2?N}EXA6g)ywHDMB;Qj=WU2-ogx2ZqFt-^Fgji$EG$zQlg)yL;~L@$K#H1)&h27GPH -hk!;q6R@?&D2#vvtc3L&dm1?ZJQm(kJ(87k7cYKMxAQM;+6c%Vk65nAF0e- -fy!w_%vs+bpi|L#lQnPu6(l*k6;yW=V?B_-sLpjrZk_wNhL{>mf+!^L!Za!f+bNF6&bsl#%#i(u|Ms< -I?ZR{nB^=@!q^`lx#OSVG;Gg3cH*$hbQXn)N51Vs7Neh+4(j`;VeI|%CojVg^bVb;_gHu{=X7WM^i1b -z%cASTRIA%sE}dfbTRnZg2c2#<vXCcpK>8zv1^6V|O41YH$ON{F~6!l7}>K_S;&Y+zl+zkj`l73;KgisIE5OQkVny`h&`4eSTXa1 -C6%P(hMk31Tt!yPx-va?%4}jyOi2;^mYYmKko!ix~h(L#Ta?x$4__tMbvIStW|}=P<{1wAY@czfx}0O -Z9s!|>eM@*0}asUjiLR=^3kr^<_I)y=1Ul*Nj^(sAX250rml!WMJ*L*$@)#xNbS*t-efyTj!sX -vZAzkINN@7efqqnEH&??ncEGWJJM7#&lcQ7L&0W|Q=?8xSP)h>@6aWAK2ml;P_Ey*v2=;CT005>B001 -BW003}la4%nWWo~3|axY_OVRB?;bT4IdV{meBVr6nJaCxOxZExC05dO}u7$wpPB;tddPP!zQ(-C44w_ -p$uRk^CN7JCe$?8Lg}eT+`yNjCp4ZM{x - -Rr-g3VI);%4;3M4=IwhLyGHMafjpCNjwrfu1Dzl-(OZPU -rUS7gU-oaOt#*+j7JvNCkCfZ2r{El?`lA(i=#q8>)zODk&%{jev_3c0t_J4+5k@Ur9zVLs)B!*GZEQ$ -QM3%)5qb{6gvJheCUkF9e?_KL%zf`ol^fYB)(iFoPen+#e~^V;sh{o$K6MY=-hdIZ~APr?|D<-olKxN -976|2o$=J`KJ`0e7(IotO@q20;Gu6pE`r41&S%-t9M2gEtvowk|KbezpDGsM`L1ykl?FYPB$7T7#>@y~^u*|7a~)h_kb^^gErrJqJ5fn$&k@ -H#F#QflE9Cwjyq+)>OqLU<{4z3W}W2EU{PG3P{@nndZsHYFW+&|H@_w0%l8_!u5iL1RB4rDcs(rtnAa -7q*Y>M3dJK7#_l!JDrtLrk+V%d{SjddLBMHA2SHt95;tkThFVd?_%a#(w -mgHhsO}Y@v5RZ+Ct-$_TnUS64s{zlD#Vwr4bd>G4h={BoE{_tB$m;|3FNFzS0f&%H0xIljQ5hM0}Wa^D_dNPAO`^Fp;QH9-Zfl}=BeAuUU -pY|QbQ`RWcsaoR+pTnz8(4C;D?_b*ZP6OV^c;S}%{Y_hs7%-bHT{&1F*b+4R0CNtN=M%Cr}k+*xV3XVG-567ocIU -1K9Bi1XOE2rb)7TT5GMOzO8{-pI)oy_)*>Lue3r@_EI8M&*_H2%nw9{b;6%9~E;it6mXky&r}yc8=5k&Ab(w~ANRTfac7y7klV?88&#Eao*n%MP)h>@6aWAK2ml;P_Exp?*ZFY<0059L000~S -003}la4%nWWo~3|axY_OVRB?;bT4IdV{>gTaCz;TZBOb*6vyB5DNgi_Ccr{@5H$M&5tSB7|c+q5i}cf=FuSeDPMq;1>uOjKU+XKpz&F2FIsi}65xmwT?xW*m#A)46Tx%rhO^#j -j%K2>%NjL*Eh0a$Rud@iB}RzT@Vtm>{p&0&g|(;G}s9#d^Jl7P0a?G%O2L(z>8>my2gUUiPHv*q$&)b -I%bc?&&#}0NgY27xYc*Ntjc}0k+Ts&w>8Jn>cpRe+-Rfjsz16ijpBX2iGyYpV+VqSU7XgnGJ%EO?PRJ -f$)IY<3AjM*H4|XX)LH{ZjZ4$)M}55sk@5dP4@vh+{Ko{4Y#?#-t^}q%hd7Wj;V9o<-lB+QJFh=jnp+ -YL<<@M*ACkI(Y*j}Vm;manF|+7K*<+ZcMBY|0FHnY=1~W5IA?U_DYkk677mA4U7C-L!E0B?VA{U#1cQ -(Npdt43C(a`nahSW@m|IzNKrMW44{m!8188&~;d?_>8{NU<1!^(WSc?O=bTX$i%S2=BmSDEGz?P%IeM -@cL;uVd{cBegfq}E@z2i=yY!F5lC2J{>1pxu1vG*sw6sQsSS$^&SeuVPHmjEnM1j19D$IvC0^_n2w9% -dS7-_`29YYYY?i%yFD`ZsL>zhHGTD*l7?g$A0qriRxTRmmFs@hH$2k#|^`@pIi? -o&y?vC)5i6ndo-A|q?&%MMz#0L+AFLLF6H(dS3{r-s(on&8*NOza}2VPx&1M0b~N}CPBOS|p_qk2+#9 -f;1zgF6GhY^~31l^r88TUs+=>ym;--w;ic&X)+!Sfs6mnCfZY6RnN!?21R+74v$*nAPE0bGU>Q*7Qiq -x$_ZWXCpmE5XQw<@_+rEX{Bb{26f`+qB0P+nx@c4n;RTkIQUHFB$+NoC|#le*Q(tuA$|lUrTt#>kCH- -59wssoRL$MpCyCxs9Z5I=SgmH=W#csoR*`#!|O2xs9c6oZPt7jguRfx*6nVNZkx_!>#T#L%W?e@He~g -hM3m|c*ZT!8ILM}MxHZ-w;e$Q0hv5d~woI>kt#TT}};t(*^VW- -s{B4u`3wECi_N3b&Qhxfg!R_8o{Yw*f{{GK1_7IWR9$3_-EI)^2~WW!Yk(=i>vx@u7D6IA#LZLqpv!o -<+x_L|*Vivyv}rc`}&`y+RAnNvzd#fcZ -b@Y!+)}df?+9+C$wIi5A`9bInk=n0OH@$$m=+eZqJW5$R^1%C!t|fUTwQsLPwqx0fyf)f;U;^BQ6<=xWBmH*_+_n(6U)27 -P84#kt5TGW&>|rM5lKp;>_>~H|Qp|ijM8LN0)XUaXs^v-%st(bl6t2UR9omrJ2-|BM8_(SJSmq9&1xe -_g)U61Cqbx_dT(kQI1pn6m7zBSg@D79EXUPa2%io1PBX~8$-?dZ(ultYxz7YHi!Cz!w2p*N~8NqSW`< -)Q{ld=5W2!8N~wfh0^{qehu$5-6DuY5p;-S56{l-0KmP?~Tr6u!6lyB7@KW6t1X_~$J79rs~Eup9zdT -+TrFyM4~EmNw8K^1ifT$=>m4L$Q#SH~0sbByZU0T2kKdtsj>+d}A|~mN?w0zvQ#~(z-12?7p0E(*r!a -uWZP^p4~@fUx~w4;_#`718#c%hs0rvUrqcvFrJV+e9D9G1o)0m7d{}O9|7)%dszQ5zl!j)hBy`@qS)r -g5uvsCKK@!F%q~Bb2yX)t{MzVE5`NvOarkxT2+nLDzWxJHO9KQH00008031s8Rwv=Ag8tbpY;f8wFqa!qPUwt@rpLvBsLwj4{FO(aFYtWeV6 -Rd1D!UqDP_rIYnQb7uL1=DV2j*cH=`YrBK1wWWHuLG8D1{{%&)d5bz>NE2skXu=KGPkfPN(pA!GF^{a -$b=W_ssTT58V8sHOdiz%FU0A_|x!%@@KX^bo=llZ) -S#27aR!V!3lmkz61h7q#VjV=@hIhcg;*gGlL?ORka4IGTqd0C*q*E)6GUXzSL@x=`xI1u{(op&JGISl -vtF0{hPQ6W0bS^t#o~yrqmyQkv?_y7*Detphd?^o~MQLubfVr36K$3lcJ>T|;~P03j0niZ-G-r^xVS6 -gI&CTl&=Z?nX0@I>QJ0)R{~=L+{}dwon?os9(Y)Hrr5u7+Gm1?GAy1;J!EM-T~3M>JR$fgNy#A?+ts? -Dcy`F)S+=_;`O_;L1#ka*dm?z#@Blr9Z -Zm&!SqORI5Bc%EE;jcg0+x5Lw4hxsoS|vc2WqJ5e`&pm2SmmO&V)8&p@g5-`haiZ>4bDY~bJQK_r{G% -fWEF1qo`KIfz0lu6CApu{-5<9PbtwV>Tsne|qoVkFI-zTCEm@%$Q_3fz_+oFrP4<(2Ps+eSsg@W~RhzHpH`uWVM^Bp?8d%lLp&SPPZum^%4!Zaqg#bPc -(vhWiHGSm+vD0BaX(gJLExu>+`zGNF-I7Fs}Kh15VC7mFXvk&8w=a@n!R}owNjO7E{GKrW@ifoshFJe ->^)82C5;gZAk*}a=&*-gmZV@$l?<%I|4CXzku0?Z!Fn^?k1%j%l%qjH!Vnj#6t-30C!V)$8J&!TP=!M -F$a{==J(7kN^Sl_l^vnI>-5lnoo07!rfcxlN2pTv0* -JpaCTgqY)7?aPal?0ZuXJtJkc@0-zVcHdvVxs)dH-P^|@5hYVG4Ijn&<^^n#A(LyV5QOv$BKa2 -asezE9StccY2doq4`@H|gPJa9zST{@pP;yl;xEi~HsvqWr#EhKkwh`{V_;M5dPWP@K6#1rJ2Y(W#>ny -1HGSrARa1uy6JKSehm7M(rO^O9KQH00008031s8R%pw*%54|`0RA)p03ZMW0B~t=FJE?LZe(wAFJow7 -a%5$6FJ*OOYjS3CWpOTWd6k-Lj}=FfhQIf(NQo~-YM9EXtV@oyD*=X?)?i>8(8&7*HE=LT)AV6aH}3i|qbzb)7$t9}h==B;oSxaNOR%IqoiQc5ln;&r1ost~hl$%3& -_W9=h;p)r&Q&gAx*T;+FXQcM-xZ9QM!@HYbld6@|WG!?wGrI_UZNI{!LDPynnO1y55zG>++Fz*YAIq)FT*q{)L -h9=#b=l{4_E(a9pR -&(Cl3;H1*EFm0dRIPO@7{g7JWUEYw*39<#b2Mkd{OQ_`KkQ<-ud~xCog{bKF6k{^K0sFqqP6uu{lrFyTE!OOSh{lzc4RP&qNJ}s(Tq>Fs~{QuJ7<>BgQ_nT9 -G7wGq8|E^peZcfXu$9>vPTHhbEn^b<+?`azSo4coFsyXQ5>K~V>g6BE?(f(bMesp;_98b&r!}SeAf4r -A-hp2V9Q^%o}^747U`B(qS!zVxdA3^2TNfLg3fwFQ}?~aEL<>EDpjN!+$?|rX=kJ*2ufKcb@2SRbzt@=wL$t3idT)(6L -tB4;)w{Ypd%L?RKYX=a{NfyemVetQO=I~}`L5pi^5b^CU&gxux$|T(aej9H<%_eYPhOqh%l{>%`R?%BxO?{>KYaE4>^~p -o`&=y$)`RyKM@%No<-eXD#g~iMm%D<~z58(U=QPlFU*@O(B$21D9-Tk@k5^C6e|UJFbiO+&rH-fh-;j -?OPV3m`)6&*@T9?}Mk?+bF>uH&Xep;di@9Jq;h9$=h`8B%Z;?#r5=lQhh&Ij}735iwNOTpIKn!fgn$ -F@(7*EX+zJ1$mOvWzp7nI1l>s%*t$3f-cXzR83L{HJAkF1^(r_F=QH2hRXy?XknRxRTwj&kBLPl7MYU -%yuEWA6ecLla6QBIoO9P4cTz@~n;AX(7Zl*ItQ}G1a;>J&)&bUsi9JGahO~-GeWWI4a;UFA_{fIwrVQxnW)(7|lSWIpGEi+$=r#;7?@Hn -bBdPL%Kt->0#Y59oHM#cZV;T%h5HpmwzENm|Jrvbx29o6<;2a)H?V`JIv?EpN$7>ZeL~|3y&3Tb^hv* -c6%wBwzwQastAE0bUbCn>DQWMK%2rUIdA11ro|q0AqCO~v<3fbbs9(#uuvrpIIJ#@m#=;ShsNz)YHR8 -s5H7SP?i9%6zQrPk_yI95x-D8B0v>>%s8WSFd~F4M){#Xgt%u3kZ1dIaHC& ->dw5Eu&%vErEpn_EHIF_lsp0Rr1hunAUTdpO*He>4E2v9Xpq$}NL#E9lm6)DdY8A%{pHt+s4>%!Lc+T -(n#OBj3p|HrB+tL4akCm<W7ATL1ys-ECrCZs1&?EG#jF2xRhVC^TnU6EL!5wD>jfwiHSf}8Lln|eK)p(*fmrpTUn -8~K7kKIlRtxFBMKADMMPF! -h^C!7B`k1!JkRxTCSN73^@v`Z~B4i)4Hx|Fw$C{#;o^Ed#4FRCVZ%v5-^bzHwP}q*_}*x+6#e#N?Wry -JMEyzEjK9l{;$fc)&nhHWeXcR-#f>w`{(;Tp9IcWr%;TGM8KK6)kt1q=9KbZ|aPYjIno6ql2xnh%8XW -jkRe4eF}+eh@W*eUBLCsn>woR(5e97FdOEG@u+neOh8;1!vp3JZkj6mZ!5uOstgXnCfubH0_K&^*e2M -Wf8o$F96lO+F^)A!4N|Un1~IpfTTH=Qg*bes;x52mCPqXh=9x`4;(k|Dp^bqbRS%MpG?UF>Wa3@rGJD2tml5TctdcI^qw4WvL8WM4geFvx$PCVb=jhE%g)42g$-=~e0vL=SW8f);2v>m6+ -%lL?J`y3y@@^GJfg!Dfl|qcq$PpV*5&~9}@1Po;fQ^w%jsl|&7*JgeeJVA#Z&T$I46_@92b`FcAKj2$O=dQ0#SL?tsYPy&b26~Y*{gzrVn8lO(UCp -kb=#KZ+loUVeuk6rAz={)sc$K0Ndj9Kb&BmDB9K+h;%9`tAOZC#Hv~^|r=TheDxIJZ2}*{tZc1 -4pxH4IX7CSb`;e&mTS!9Huj7Sh0s1(gxYzu*9h9CfI8PhZZ@I;8NTlopdYvVq4k)Qa_WXcICpU^(t%I=03RYBmElx8lpTc$@o`PCwNalmg)b-%Y1Oe;I44{PGWn3d4(5j41&mRX!8)sJLiPNZO3bR7Lf_0kZVidylm`f>^GMwc>*l@J_aXmeS7(BY -154aimYTC4I89cN;CTR~ExIwy-4+!G<1+W_zizD_((5%GyZ -0=VhT2EPn7zT3&Uo!QAY3|O$AwwwsVj%S0~f^%*ja3x(iRKwow7QD!46H9_$2MW22>M9H!3mC_yqi(# -LV|3!(zUs)7W*s@vNb_8kPlr|Rl63kx~9#Ux0`0pfx<5LL7xjh(l5>`|5$C@fG|l%aniBzt6rTe7cwN -l1pnMO!j?#Zg5Aio&R77XyHS+Pd890XxS8eab*ht!Xp4)6+_p -EQGkXw%Utd*$jHd^PV$MTpcxv!g&Z|F0f^W#GBC!dP3De&1ij&)hZUBCvqcmUnp_-$EC2+BeN&q^#F+ -*enngiVEa-RzEuo-M6IA}SZC@b`Dp61-L4b$)EGVafyg1Czi1uN`0pxQs9p}-XOvWUDv;Y?ZpA4KX36 -4xQJ5m@;5;jb7)Etq((F1*@lU&YbRZZQ!&EJQ~7lYu#BnTPn4y%k=W -_+StO#TS2CGGI2wI#$WY!eiwDe6jCj5gzye!i^+ZqqStg6A^RqjMgG8fG~mljltnRarxPe4S5FQBSfC -_ujeIZ=fF&~K7z6^!js_`mlrnjai{|NT4cdTC?un0ZSw;yu8rc}8oAlWV3f7)xFksw{!2!I9l}NrvES -~626T>lbtfPWRv;%ZF7^ejCQj;JfulNwq1njnW&d9&;}Y|McyMkVdf}+$U@;Wx|LZs))#C95e%e?YgMx<6>|l715l#ZO&wg_EH`6N#M~F@6p2rJS8 -?yQJM(D6Y$Lhb%<38u%w;KIx_6a0^6BHl2u=(?=gahqsQBBMa_UfSVD}-VylDfGdlymz$b2T1h);6Dq -0pmIE4>R6oaFuu;ijIQMeEh9DawbPtN~RG-|%FN2l=EU{vWCRh#o5Qg9qxCwC%CD9;mD64MMl(C^+Av43dA?Nu1}y=B%W2-ICv -#M4HGg*RFYkClh*X#}#>oaERX6b8qGvGqDVAHwE@NAm7!?(ZR&{nZ&z=g=uQ01C>k;E1Ax-1rw4i>fVuPvHrSb@Hy6Hb$;YY98j)ZM)C2ND%!1LFP8*3$r#2 -vJi+%*QT{sQZ++zGXtSu^v -+tFBlVa(U$*5T*ojgC6#iGZAQm`IPJwjw0VBYpO@_&OX^|=mTi#+?p-revB?1qH6Q-D)CqbtGRh;m}v -{m$MXVlmk=UD*Ps4@X1;oQ<%NRRp&WT<=Xa&yx$xHA#-lkx#ouxL`&Huk*)wRkUbup0HS()tG1BfGQl -P)wHWgg47nBJCtC>r#8Jtl3C7z2Rg^IavylkIdU$CpO<~SU4KK2!aHzN>8S4o3}#sgw=Z4hW$L)a`ZE -kCum_i9)1%7inmf`Pj2Y+c@#8}V^w>>ct1d#XalU$(hjan1vjDcVRz0$J4v$=;O0?g@l4obE01UGRJu -j0Q4T(1QeF5Xt-at@T})f|+IJAdgSm1N-p=5m2o48g^nH{c#F$WODZzSH8GNNn4pswcI -P+&s9vL@zz^Hn^pApwkOa+yObtEiFh3;Fj~bpFuId*2u=CTrcOn_A!L!l9v+2p}F@zVdF&0Z37$HW|t -}ZmG%WAX0Ya(GXsoy#dRTE+a7J_jq#cIx!%&w%zEvziT+3tYG(k+mH?a_;_v{5H@OV7uvH4_9mG7gHb -Fe%{{S9k@ld4YAZY^A}9HH3Gyl!aY9ZwxyP6sPx}GVFeKkASJSY{;s(0T|*T*-GU&Ej;MtZeCE6q>Rj -%JizjuuFs;!iSui{P~*EN5#lDA9;*8{`2-W;=-X+hHsnG8f!T@FJVbA~^yh2aRfa?v$8#Dh7pj9Es)a) -i`s*2!U5p?NAGVp9~X-kHF+yc{rdILQfRW?x>??Gp4e8vyoZ8#;uA+0)ML=*;dMlP5{DCqQxD{=x!pe -K|#+=9AmMU0lC9`5#bA0|XQR000O897^_9oK{>vJ_7&%*#-arA^-pYaA|NaUv_0~WN&gWV`yP=WMya3Dw7X8^{`z~CkI)a -Iwtj+{IcH|h%ucg;`J?{eel(@=C>~7H0rkhT_<>%DZ8n;;*fPzm+(<1H#U^Kxj!N@QDkZwcZYYDT+c< -@ewDb~@cl^Z4?AVei$Y0<<{FJ@R#ExMq%Sy{kcxkl5U%NAQ{|Cf0H}+u9EDO&$t?NDGuc?F$T)P^nww -_vXn|klxzXQd^@GeD4Q4(SuCG6Nfaen9|HriXcuDr1=*ZvO{qKU9yX)e{q%95@L6?*c9=C$7%ee567D -7m)6)AmX6RP%XOLx-ne!8SFJ5);dtl6TQ -d9_wD19&Vm){aRy+69~2o|PJgLegU)G&G>!t9wf<;Saf=*g9C~ZMS#Ic4X|3vD6Yi)Q@TI00c)Ud{l!h1cJ21&|rzD -8cl@;38C>#WnK@xukBI=LEqs3#WemGi82Wd*fSwa!bqhv9Pm*Xg*`7)W$(m|IfWj;w9#JnW(i^K&eO9 -Lfy_ChLmX#El6btq8fv=vW`F=s5XQ6%t0cJ*J)P#L}1_Y25b&|8uPY2!QeY$bLF+xN?K!E&B&2TPxIJ -M?c4K|+637(oj7P!^ybDr0Pi`o{SXI*EY2dE4vVT=)LD=@BhcSYG>RFunW3BhqX%3TsO0W?Nxj79uPg -1{hw^U>QFoci%Z8+=<%ZMjUZ?7kcA7)~yuTR%$*WRXSNsW_N>eqtVEeaPD9}z*?8ta4v8yup0%fRuV^NwQ4z5MVqca($r`^_`~NaoS{~``x4 -hayMQ=0zCuwSF0|VEvBaOS-wVAGLC|l|;lt}<|D4?7B6=A2)=$t8wfg#{x1+u*ElNK32ikLcmVIS4T_ -NT5Lvr;RlM;GUiOug=9`NFXzH0mrP)h>@6aWAK2ml;P_Er^-^I_LH001$N001BW003}la4%nWWo~3|a -xY_OVRB?;bT4IfV{~_Ba%FKYaCw!T?XD%om8So569CcAe -pDK))tDlJHS+NaQpP>@o$eWpTD@h|LWU^+vDroUtaz1#}_Z2&wu~$!%r_Czj^-V)zj^p7mp7w-`u{L*S! -1I{_00BAKyIAZ~pn=?+-6t{rK>7d-dJz%|E#3y#AAiH?O~W{^P^{b=${RFJI4pKK=OWiGR!+-#&Zw(N-=00Zet7!(!?(`l{ -Z}vFJUxE>)12mSUjOzF^OM`{FVCO;?e^K@i@!ZR{&4%0Ei{`AXQ -weOxD9&WE+efQ?)`Cxy%{qpLk+c(c&-ku)5eSGch=R&->J%9P_?_WL5@Bi@X+sE&ISs(rM^4mF`_0(@ -3o_=_}*YKY|`SSMh!|VB^w|{)PH_T{tBKK=ZIcW<}PA0GA+uf_aFi+o?=@8&Ikcr{n@+lM#LA78w7>VKWv`+7d$i*Ik -=KmYr~+~#i{9;Zazp3ful<1hbTd-&qj%fB(-`ITQ6^pCg4?`|(&y?N*M^V8#$ohg0)VRz?Ue%;@9rqF --$?mM?L&5NGD{I?f#3qGG;|M2mE$<%FXn~+?fW-xe*DARKmYvmyAR*~^zNIV|IpL#f0*BR`u%@jW2fA2 -x8MElzu%5`YtC1iALaAfADykA>!UN}{ZXral#X2EqdrQn>x)P2@zH2!FKqos-#$FQ{dtS}dbnq6{cr! -Y@AdoNq~FD_zrFoaeix3BCCrzh-}AE%;x@sEak{`EQ@`TQ -?S*48ty-WQ(>LGWzMt9-%`)}Svp+w3>n-->t1tfg*+=ic_wiSM{^;{Bo_+MEFTeQc(@ -(y7_TKzI=WwoNeE<9BPfO;ey#4#9PberhF>dkRpFaNJtIt3BUmvWeFYQ`i`R<1|f0z&RU0gHI<+HE8` -1Gp}pMCH@zxwpqpFemuul>ziQ@P&KJGa!2WBxpk>zz4?bN*V(`grtrZsVO>&+pvkUs_4)s@CR3$NZ>V -X1SJw_SHU=Pxx6C&ypcgD^s?jIgerf6M -$_^GIzybDCdn=Ncogg&PdK=1|wAsrG{}%&W?|*0vl>C0CYe#2Djnm9Di2Yc1B5y{%QQZQX5NxSnLK%3 -8?W&&)%vO=;^3+buYfwc-(kBaN;2kw`Fa!lSs^c4sp$YU -u*FgAiL3xb;)(C8;rGs^XFPAq-m_>zv{VutW~}aSG=>cNXWdlWmb{DtO=u}BGx~xb(+Dntjzr0x#pdxhFhD#9rD`HHT}7@^V-G}r8TE>ZB8z0>Uk))Yc0+YrrzD^xd- -!mYr%74oU)eeTFbN~eDJu(ShqbZ(_8yin8Z3MYs*thY(q}`bbxWV)v0iRk854%si{6S2V(t)6i&5yA- -MBTgVT(Ntt~)c=Mt?WQLp)sXO3Bnq*QrR^C -l2i~ird|g37&Fo>V^Ku>sj6WgqkRRcget7uX&P}aL(WQ+UVLZG?@qIiUCfydoIlSa$Y-|*IwlHy>u+G -Qsu5ExHz~6&)HpZwB!0lE+^8vR-mmX$vI?pT<-UrC+9w)aWcn^Lzhm~Ay10PuMgRY1L&hqxPmW@R-cB$GEVIC~s8Up=XjyM_1OF%=R0hZiM1&E -G7+SmQ&xa&z7SB=j8A53U{I=_)QR-A`JeRU!;ol)jD-0_0e%$(bVfI6cA<(6jKChI#J*qa>E|TpO_1-pZZVg5J@+~{bHvVa@iZteZnn;%a%kj2T2Fk&nZ+uxSL)F?MTP{Ia-Yh%~R3zfAV0iA|yCA1*>Q@ckQSz$Zdx~_GGW-ct6C -I_Z;E==8IUtBfLDBPPq+0m2>~I@3#t7^-@6JgB*r1)3`b=xcDW@tKh66Zabms3FbGWXHU1&>{a^&aVk -2oYL&>Na`PDb^Ruz4VZwI+euG~7Ptx^Yos0=?$@KavM<|-U15d67Ld|RuO639T=5!u$QRdQgt+(AGbY(Q4Kc)+!?=|U%W4Bv -^CJ_SU`WGfs>P(*UoR7PVNvJ&G2pqp2_z2Lf~#pWqoiwAD6I5Z9IP!THNMeFD_j9odgl#I{X&!-cz#p -%y&t9%dSLfBROQ!(Qhw!$O});8;m2)hOMW65J-I;F3btypN6qg)|wIS^g~^-m>(4~ESuZ1M?&5Nmbpm --e*#v!Le|>I5Ym9W;{xh1jI9$#b&<>4Cq7woGt@v&b>Qq)m(m>{_ESiNpiV>8@>WuA^UHR~O(-3=&8$ -qkINWS2+A&(S`?iVVSUC?mpXe0x43_y9056KEekr0@DzM5@0W1+74!LqQOp-JT_KylXO(^@Ho0lnF4O ---_UALD(wLpCnye$C%6Sb --tVacn~vm^n0n$}(qwgc6gIgz!9rcV^?={J@4Jy73{-RUIIwwQI`_mpKoCNnr$GERR{F0e6~O-Sg=g8 -MQdEFc4GTf(@Nu_a+}@Ruo=qM$Kk8V^U+aFmr|$0lF$yIk%E)CM#mFQi$Yiy<8bb6dADrl*h2&aY|=g+KQ0D#VfonyEW}` -|@e{5LKEANnmykoD8%z&XzadAx1HlW*0VJzY<_uOa?Rrp1kHr149@y+P*{(m0Rn+!nO!nUPv5moC8G* -_YG#3--up)>`kW|1Pyc@jMTtave3nUx8hs`@;xz50W^LFeUyIzx0tFmZ_w5oxPZE^{MlqKZyIZHGP$9 -i6}9?pyRKmi8NHC0ee1svDm`9nD-l_0uTt$lF5(F|FP(g0JYZ3EEei6BI -DrF?wY2l(!Mzo3zV>~@=~^eUs#cMYjnmI_OTap==ZV+|_kwHGx-HiQ({u1Z2Ny5ffs4{kkvCQeL(t$Y -`<_ie!UVn3im(m_4AH%$3!1vBa}Wxv2Q9^}gD)~vLxotF>jCJ3Lm7LdfQ4se*OworON_4#p1K&l3mG~ -NhJrT`LiWyMjJ*N^Cpf$FigR-XE-YbLR3q9dmk^VBtnoQi9j1bbr0UFA2=O3$i2~=k`(&;_hI0j$ATG -4MOw3tvRf|WN!<~`7j56c|)FmqrW%DeqiE&t`<^#*)l$yV2Ya$p!`BUnK;zV9&21r^3>1;C^jPi1C}^hy#niRR&PB_&YL!py&11Ar{uv7*L9Wj-q%j -p48*Lm#rOlK>*fbO5hEL00+f;0B~>=gz-QWjWO~ku_FDvj>3t{eFafEwOz`d}0b1;x-( -BEr7EPE+IYv;S3gcAQ_MZ*H)vgY_m|c0$}#Ff2SnllEf=aKB#4Jbvi{wr0x=cBDq+X6c+gEu|qA8VfK -OQTITsP@zXg%$t@xEPle@0I3-hAHsl~-Kpcg?-PbK}VKY!t*b##sSpS|lsc@P4@9^$JALPPTcq}u2!= ->{wdF;^Dt#5(={f-l!WcNDHb+9RT70F0Kx~4vV>2Z53dV6QU{;sMN$r6Or>J8C!K_W{ZGj?;wo~)WEIM84VqMg;&*FEX4m{OJMGO(3 -FcTTcV498>07S=dCmp|l9+|@o2LbvL+Z=*t2qbV3zEgq%W1IkmNvdf?%m{K~tvo7ft`e#jb#lUo5~^u -n&}3BMDukoZfIz+Z34*mjRo~zcqEEnrqQ2z04W#h%K)a$>BNoF5==mo5!B2g?f~nlTK@W5|Pp4iOu1C -@B(e=d2agx}kIcs6OxSjo8ShsTpj&_%&W?HCvMhcWz<(q~lROmv~reRpJ@<-Hhz}v5nA?h-YMysOSq` -VWPgZJ$bshN5?2t(-2%(-b;?gUL&Ww{O_0_|{VbyZP#C;aYO^47&i3l|*F_a3IO-D3kqSVBA}h^`6LT -o;DH)}j3eG6ikXboD*8L@?9k?2Hg#z2VCkD3D^3N^u|vk7BG5_=5kTVp>ZktsuN-HCf~Vzr{YTJ;m%Z -M1aKYTS#pp0f_2_4mu%-;rr&ADeMS*Ih0f`z;usv@?)-95jI+-hao#ToYL24SISUZjzI0nAC;wj53F6o3`fKs*M -}t>#kGU^pa4ZM|NM)nw$@OsDfwNK=uizObyvjLb8)T|RrNW^IB#cD}-o$e`46D!m4Pj63Pbx8n~2!kPX?GKjX-z9YY43XG3gQ2s{}gl --d38nNg#}0g4mnq~i+e9pM5HfL>HcjB*Eymyrd-+!sGl0pf1L46OP@8h90)<4&9k&|OQ&1ug@z+ofjC -AtIS}v2MRxZx-_pA+g+h(=&)VR9xS6RX5!N6}Tj=q4d^5Gnb-9X(0tU&|(?p1n6==oSxkNR1Y=ze*y* -B`4XC0=l6u|))i?9%dkdAL|ch*b|kqPO}+dp78Lb?n**vB!k_L3Od)#@njKw_4xK9?>Bds_IQLL8PUq -0YU{`cb44LiQ#b7Zaqq4(k0WhFBZWT51ck_HQ$(0X9px>M;^j7sH0_C+y&=hR7&_ -8{&;h`A;$da#JBUiLv?%rp3<%bQjXzMq^iRshBfPHWn1wuz@Z1S1@N^cI2zT*jJbSq?P9;Qlx{1@@=Z -$dXv_Hg*ZG#tg15^mGM{O)R>Xb5rp#7xlDu$Y?IP5(yeN!JwowmN|B)>@c&88!2J~do-M?<+(f)7V(VOXEW50l1q~`Gyrjq>W(=Nl`OVHNq`ewXIJbCZF!h1v-X$UWkb`KaV -eY@xY#Ujb8P5S^W8MC5}fGBY9noe2!LS#wAx$_^a7683A0r-#Fu1QVecR^;6ZAvTiv*^U2ZRKmg;`3E -u42cBwf}#YVhGaSH%nFwge1FA8Ame#f*$I?QozTabx=8}*&#fIOb;`dvs-uaS0WUiG%YY#*04BqYm3-tq;gHz9?pc;*r4D@ZZO9K=7{~ -u#&FQ$MJE50{p|+h_|kHaPkhH%_&811#*v)EWD?do9H;mP;!+{pACJ1B4j{}Kel(*_LZM3$U!R0;^DaPFEAVnhuBYY#KB_vi{38LmIbkA#}8=0d9DG;%&LhS`WA%7 -UcIiqO?$YP(mv1p$JtO*tMCfnCpugSoJL!x#36(d!@!LbO<|XFd+-VyFP)$P#297rzOqO&nXjH>J}m%blehtlm}daJjc`J8nEHL;XyB=mTULrR4t}lKK0viX -Tyc*Pz_9?6GgcsFU96H|g0lI)MrOlM=>XS_Rb0HnNn0kVa%vi_ye2^rnFw~>uI%&S9M@42BVD`|x -?tBo?@m_?&S*s<2CyOgGmj|(i0IOAmhhBlmrhX?Iq9oxQrBU@i%nm*G+O=&Ku=m4~0f`aQ)&SgOz!Hr -~jzBUrd*oUYQE4PMH9|xglv;@fGSIF_=`zf6x(F=?!tf_{=`_oxs|Gupfri!nAvNPP27>yHfJ_XuD^m -*Gb^)YkBWY*kM|v}ifVjts0kjJd*JL8@Aui)Eq7NIUsBSQ~>r*luY9-p*SlV`~vX>d^=(y^ULT8ekT{ -sg7wjl#G=3muJ_=XZX=N@XajwzG^uACM{8+ify0so|acHuSNHj$?c&tIZ~41TSs=Pp^V5b|BGQV9wta -uyN@zfk^?jcGNr7xfKbMo3Ic!W`(MaKf{nU~aV}WAD{2TcPxz5^0{-gWm}jK|Ll=Xo&(PBcM%bVZn(q -L>8eQFH$Hg9V%}ZuYi6z_tmEY*$^J==m7U%tw>jx*RrS&!{>EOLMtSZ_p-+rJ8fksH_i#)iY>X8cC@k -rzRrRm{mh{nB4l@}RUIC|@X!TnJa+*L!KXwS8Bw7UUL_&bWT7PJY*?D8yXmGCMdk?@B}ibrGdh(Idn=^XJ^vE$uXqo9UCfMOp$C6jcD(gJ^_nw)!)2 -``1QEy>QAE4gha3PUo&}Nrvt;#=@=+hjB{G6760h-;7HD;3ZM{fUL1fnnWRXR$xUMv0ets8#oLM0;D} -lgJt8XhvsSNV?C8~1!Cl;k#RlJg}gc0-35)v?zyX55;>bGhZnsBp+YS3Y-zzZcNLjeNgjgWhE -54W2rh>;JVoQy1(R>f^7?FC*UFZGU8hWHMYZY=mUBIdQT0J0F1EoW3t~;#I3)aKL5vfA&;VOz>-eI+; -oOxj#dH{U#{etUx&?1E6Ob(?X~40aCZ=+*PBUaQB=Yvy#Ov^pLdoTOxcc;SxVO`l!@B{jAO_+BjB2G0 -4xN7N!dl~7U-XQmjXXlvs#HrClE~|b+8ehX=Yds5kIj4SkQz@EaY2M%Fw4KK?j-3VBvnmB+gy(k} -q>z66X;(E6jpOb8WKpI*@{Z1Q2A%x*J16yd$ND&*^@^KxwlJfVgbUBdTXDA9aS=L?(!>1TZnL1rst11 -A&9c8mVf9CRB-0%1(AhJrfkkRG1ek!E-fE$vG$UaRM8h$4iG*A-)&`3K6qqnNn5dg>u-HFS(iJ13)?? -nVG=QnUs5+(8fkUAT@! -Lf(HAU1K2>@lArnA-@&a)9}m|7FphkY^!i46f93o631W^wi|?HZVbWLN9#t$Nhs=B}Xc#MU;m#|Hc(m -cpz;xh&PfVr@9kISM<@T?Ye8z-BjnNOL+!3TtLZAkx5Xg1e>pV36BH4NFv-;g^#Ux6je8gGt3AQY?rhtQgKz8ktcp$uKlLV7MM}*1GT@;h)Izeh?BN4KZgV+ -qM1m!?P3ANJ5aB5~zP*PAVK*33G7&$9h%a*$Hjv@h}dy6INF@Rt%Q)<<(#{4lJcmYI7%dn;xasvj~h~ -E(bopaa4R0?XFCF&NYTWMGI!BI9{QAho7@Kvl!3{2KEGZIx{Ie*!bw<}{VEsf?IJq_i2sQiF_IQ)3Oi -Q?>H{^lUhL4pbtq%}3lW|D)n7ohgC`yHg21zuXzummz+*L8{G7it)nm!N-gxVV1^2^w=xY19TGepcOG&nuC94!!FjT -TYou8e5_o>NiQd^O_*coU#-QecZbTh*^`nkB3b$HnY~L!+fPxY5=wjY&9J87iX4uAmZ{hE#=Wm7~FHg -QHTf&A&p@*nWm16umhjZhh|hm|9J)(C)H7fOugo`qV6HPM{S75`vHpq*mjYHv89{u5}#Ldua@gSK|pw -Gi!eMoO}+0Z%i<7OVe^9DM7KqKrSgC!U=1Wqk+_UFORXxkYH(v0&f5%QGjHuJ0v}d -EP5?(OLLlcZktuYrX_wv>%L`$Knp?O8v|LP6|GnJO>VOpAh0wN(%BCed`O;0;#=! -8~H9jZE5I1}k-Ux%=E+7?QV(WeQ@PD3clLNx(0nY$g-EnrhXA!1&n;iq1Cq@{F5$g_#99CgKW=v3i4~`issnR-dI!Xhzyh)F8nS|+;FA=Uw?;wqKHDCvZNlN=Sc;wr@g3qrrC-+^D{#qV;g4FcAzjW -NsWvMFdJA!w`s)JjiW$?cFO$VCd_?l6RSd!@WuNqeE24j(r)3{5XMit-(jbSqjBPb`!A!&WUgnr`RM% --AmUr?9uqmiKyF*cPlPv({nF=*Jsax`9?P0X?ICr^BAtxNvl1&v3-O3YMOM}2$v_Tz;!-ity~nMIi!Ia@4#(lN~K!(!_HYWNXwmYLQMvd;EBYobKG0)AYc%T1(lbR5eGB}s -pPfFlt6lz@M|gJfo2z9TC|H#r-+0F+%+=^KW#p*KXEY~6RW3g0>(=25mwfHfR#y61Bd;C`?m?+Hh;Tl -Cc~qrL%L5|Uz!;Spbt>9$C7=5NKPVHO-mwb{Wk7LTp44qK|)Kx^~L7GwQdUY+E#oLiEM(uJ#xs%a5yO*s0Q3~(kO*5-WV~I+J^wKp%wVLgI1Lt+o -yJ9{sH#>w?3q7qp-qw#L|HTiU*-ThD5{dLT{)9U7|WO4$#8^+w|CwAYUeh1(yX=;Z~H?tt~`lw0)`KE -QR=m8XA)#nv7^P{jM4%Cim_S?W=#YsHYJJ&CB#Y9)&v1;EZdF}+E~6_K2s=~lcL9|%#lXk6(csz<~{h -$`1V67HED=2MY9u`EQ>Ye#~x|Nv1PQPC>RAma%i)KA}#AuvB?7xb=d2J{D9#JcApkQW11&2(_@@#=gH -eRP_?p-W7pk7<(MgB`q-(d#@X=vGhz)Zh4>Wp&vM$LIm)$*X9{T_sNZDsOf%7`3Q6#U1zeb<7RXo2#2 -K=QtAb|Z4{G-mtGVa2L)qDL4lmMlJ5{aHYto;df3&z!_e1??szOndp_5=@NdD;IFI~HYCX-{LpUm+q_ -O!A}cvu&2`#merl49)YIv%o6d15ICbaR9du6&1+pl%SciF9YUp6m;0%_M`CE4q~8yOVcAqDJC;C9a9O -9#v+P8(h1XChO|xAm~*oc@hbp+p4xkuMs0e_=o6R&)7^pd&tP}M3Kw2%V~-o4To7s!-W{jcyLEzPtl= -4g8iUv0GKGJSctO3)2UragBgrzj2>>Bwuib}>z*Y^d0;p-J}Gt*^QBsMKPpl9>`n=+f9Tq1}kBzBlApK5k&lsUGir|L0&LIt% -({n`g$Qc(Dps&^pD7Ox$3W&lI6AH(1ym=`oqMC=F|fIiV(o=Mo+z^%Sl;jE&A1PDo23vT~m`h(3ZGLk -&$y<4RmGmQwiz?(N6sbg?E({zyv5EuO>yW9GdFfH|pNZQOeBL4xCv&Nb!)cKf+6368g^eQGh_o@zOBy -Oj|4O7o7>OT~kwt;AI0b_UHmXW}AUU%5Ajffc1)>A{S}3hVWtCoA=Rbhe+(I8auOF83+TBakvYmjjbt -V$*4dkvLywvs;MG1h0_2!HwB|fVvHd$de|8xfHd1c5Hlb_IbO4_u3jfoSF -j{7``%yfi&ZCHB)h{h9l2m9c`0jZ3joBCE*@7bxV&}o9I0cbqTJz}@)r!!39GCk0M2RxGGr&38SK<+_=Uc1aD;YlY_XR~i@= -^(gf#trmvk|!1XxX{GOvJ1si31@vH2;r=<+gV<_)FulaE!l`_a%O7X9c4z1WW7rbZND6J5S@t%Y*rOT -lblnDd8fWj)ULM4R8E>M+@oi=(NQ!jF*JO|>`G%~mSZV9;j|nDv_}7p^Vp;8bV)O1$c##0hGY-1!@j& -GtKbrvHD}K`A}hl8;1#4h5C#%F>h_yLW&|3|>G5tAG=;Ugr}-qAM|E~+Uo)H|QjY^jHZ9q{tw* -ElYnR)gSemWJh=DaCPe8mZ{bSX(UW~P@=I|3pw0{buST5$Y5=5!d5BTc$a5o4v`$mlePfbnOFs3}a*} -2_EQs=u8niy;?#<5!vXtv>Iadyc~VYibyjF?0^EKK%Y8bjm3D4GQ_I!r=UB0~+Uq=`UyoYDA5RR_13L~JMO>RVor0owr(*K3w0SmM;> -{Rrn+!XV(No7&rzH?2prC++~evAfi;yW-&{qJHfeA2sTH-1!NS2Bsz>sF?V8Mnk~s{#F>0A?9&eB65jYgMm2R3}5TS&D -qO^WvtYuIILu&-!_SYY&_3B&aT%sSLg8HMSqx;2M~aancB_9d;*-6l`-Okcc({b&Jo -2qs=Z3<*RR>QW`3sH;<^Iy0@wRYQH0--73uuKN)%762kfPA~~rWxQhO9CBRO(AFjUpRvnUs>)#x*PVq -bx{z}A2Nw9-)-PmgCuCX^d{S#q}!Cn~zIT47D4G16ZPBjr64e3j)j7AXzJ9nNvMXQ8Chh-_>;~6(E -oCm13x!KuL7qv>%f%IN)H|3a%*MVytMr%o7NQVB8=zZJX$J8hYMJw(a_xY;6be`D6^${(|(9&JgkSu) -f3WIPEyP01CO;h25$}2=H>4&=mo~whM5wiCu^M02PHcY9!jkutQZu1`&xq7I|mevmq2#rIEUPn9>~HT -H6&k&4e9W9(7GD*OzEdu^eIhmKA(NOZ?e9cFL-c`(NMyTL;B--{lrC5Y$-?EA+yfOiy0%s8 -_KAsRGk6WN@|LDXmmI-qkD}+c>u{P)#mtJJ!9YUx>S64i@egq@_!6d+qeWVctr<;$9qM^bz&Q3m8(5m -aO5CT&>OmPbn=(b#LvfSPA%ybCph}l+w%EnaR^3rBBzvgc1Ss1{AJ?UM9l=_wcSAfbY!}L!2!?@0=Vo -OIp+nOZvz;5lFKoLSCtVV^(Xu{q4P30ZMEm+mI*PsuF}G%ui6qEHM?`P#^>`+QM~Y+H1v%9>6IqyrZI -ZyZxiU>B?9mQ%Z@xtkeUOsAJqbqiD`~!;;qXL7Gt72>|BP<{0|pd}+A(sFZxDwSx4e>v)rKOL{2hHoI -+1bR5z9IFeUG%krB&9a$X)o&*F}*KXkVZaiNb9cMB-fZUwz&4WU1R%`VOmHO%M#|k1@s6T-|jUz&C_lZGQbVGrI?G*s`!;DltZkjU)n?Mc0eO;hFldN3b~@Nh-iGH=E?U3*$k~2d%?3U3WACi@$ua&TP5wvoG -MigOfh|$!-qMS=`st{%cS9(2gsLt#IeJ^TjYbuJ0m-=?Yf*ctl#or;MEv4CB~U)mQnXlCX5e2hl>_9A -^`ReHkNVqit{Jtj0n-)E}a!{HV+C)N%B98K=~7NNJQ{p}9hw#guZJMGHYd?5#PgDn^ -IiEGq$w_TZ2qhqZKfiyrXeT+^)W;e*}Y*Za5szQI2?wf<6VN7G47nvgY5Zx@=F3ibxSFv^S5lKzl{u0 -G`V_hs*9dh46bVcZHxmPzH3YHzd*)Z*~c6E+aAK7Ku#;BJ{9#$g^6n?E4PF8yxhdNwkvhAuQRp~lxRqantlwhS*W%R@bx*C{KAh{aTRCG_kzUhW)268p?0B8 -wzxFby1BV%S@nm(30?sV4#oR5_$y-)88H?Wk&|Rs^bx6oZ5QfP8^lNwfUZnq_I-|I2{zIbffF`$_YF_ ->c{?l`V()1C)ku$NJAtpAca&*cK>Y<(nJ^CFvN%vW2I4gP@<$rXR$4|0S!DAqe~ZhEXM7Dd9V7NhmVST9ba-&}m8K8C -~9&iXdKMI%L|5w@Y=%M{4Hcbl=^pD&UpQr)NgiVO=4}ao-7Eo#HoixxHdw@k@?!w6?2tQb4z%&|((FL -6{@Ki2j-HcJ&Pp@h}e3vBO|1L9~ucFd=Q1>~sPpoe)VUo>2&+7jQCqwrGR*Yi`g*R`FqRN%(^Z$-e5; -s_jxjxn4My>D9&`Xql}qKr-Yd -uTL4J$t~iR(Aqq-~7y5cVjK$i-orv9b`A(K~u%DX!XS0O^biaw$FIgaFn3qJ1=!ov?ePM_3_U!*h_`e -^)E4E#}lkK(vg$bUlM!z^|ndlsav;DARp=CiZebrn}G!)0BA4aVx`Pu>UwySsgApr%1;53mKS#8E?jg -q|w2H`PZ;_N#!LiIV4dLFo|XC57W+AiMd%1n*>u>RIxHj_DENu8y)aU~Z%p-3E0s$9PN)Ns+|?|V*V% -Y-oy_)1FqdiV(V8&qCZY8?6@eDp$$%f+V+Uk>1A#3No|vPZhV_^_|bf#0Y1bKe{jJYmacY-^;U$)Lgt -Thj2}kSNO}Ok5o@!;E?J`Zgfym8 -vNwd$=C34}#SoV&9$|>Yi^urDg#sgH%wkz3|W7qH$-_kNXwjE(Lme3X1b+@<;5Z7#=V(3q4LUEd$Yx1 -_@90zI_@pNC4WsS$_yD&&Hj@W{R;^GOa&M_y=LOx@GnjPQep}7W{#Opv>zX!>!qC+9O)tnPzcF0~oth -u{<7#9fnpl3ge)tOU0Z4rzNw^p1y6G*)`qtec$TDXwEAvHoGZ9C4U>U+BSYjVAn{Vj(YT@Q0-l=9R?|y_{)iV -nB-N`+!zKu$(Hqbg@TMIntJ;gpcO05Feb?r@h$o?AccVV;VhjsPuQ?Ftz(h|s$mmr}6(8PXjF&@+Uhd -JbsO>VI8XFyt-B}w@)r7n%aqBoD2{@EUD15AC1E8fUS>IkObM3R*$##XAM12 -bB0I3D7m4u^)kOc9CH)wU~n@H~@LyPhpK>+zycNE=TuFE}`qpw3)XU%t7{_PLzED(c#F^RDG7;Oz=`S -mU@@r$M}oC{p*ObH1XlX#+iEG{rpZL7Ds(I#DzcE_UC=JeA->C(SuqYJJKBVtLKN!`G{aT@z`HBa2}s#ty7~85bP#EZsNULxw|@K9+qdt2c=LzbtCw&6A5cpJ1QY-O00;maO7>PvfZ%^W0{{To1 -^@se0001RX>c!Jc4cm4Z*nhVXkl_>WppoPbz^jQaB^>AWpXZXd6iV#ZsSG_efL)o@rw;OZoEZ-Zi6i< -D|XhXZ;)gJc{0WlWe;{VW6X>aXurN^e2Mqspsk)HlIM^-q}Xm>e`q**oXlxDiAVEvM8oMK{+r&3ZMWK -#?U)u;ZlxBAVpA|lN0s?1l@fhpx0J)yZ=FLYT6&4d2Yz8?_H4Lcch09o`f!bF&6mB6 -tZlBsn!MB2~~Txl{;(rIA76}9V(?q)@;$uvfe0}13Z;EYsVxU?SswjE=r9c=$q0oX;+4Jk~+o{{~l5?nehNa_Ra4%*`dglO~?YeXBS+HqN{9vBcyPm}E -PVwF)ef2OA>Nuqi7e2-Wt4KL<*WRlfhNf4teE3|J=I0$B=B>oIUG@MK)*>k9VJjv#xG^Oz(p@^1Il1< -{(G)ic>N|uXs)F(=r&k_eQuZjF7aS6)GK*@r=kjfoff5vzn3RDH{#0z80IZJF53H&1a=6}sl8NEI93& -=&#dy*w-<9qaKC3Xkf_tSL2a+z-rOP}|9^xFVILVr;hK??X-mY^OhV{DIx#`zFBi-5iRFc{q34t~8G5 -Uo;J-g{^?fB26_q}^(j)>PEbcf!6cL|8TqF#JWMRh&INeB+34CmM$val+xh&|BxRZk5P)Qu7%ZA3SOB -%#NNDq}qgJj{V-64WvHB&uZo6u<;zjo3dXXycdjf)ptd$)7g5qcoGC=o^IY_QbKQQvHdreOvqQEZ(9EVP)h>@6aWAK2ml;P_E -s>7j3jX<0093`001EX003}la4%nWWo~3|axY_OVRB?;bT4OOGBYtUW^!e5E^v93oZD_*N0O!Q`4kBl1 -K0rV+IiTgF3bS3ORg5iWqTwU4bP21OH_$yNpzER71U2Z>-$n_H&AY%#}_ime;@J?v0}xF$p4d1e*eGn -<>Nm;`L=xXBL-8|gn&OcrM?fT8_FV}bF_EmZKooD9yZ?7NjUtIli{huCtbNl -W-zux_Fd*?5CaQXiBZvOqn-SySO^~>_}d!P7^ue!S9S--r`t6o2pPrv%C)bl*@h~K^Zi}L8roAQ)v@5 -|Hc`|G>EUB8?&`RexF!`;o#zh;`B-hcK_`AaE(xw`w;^8L-5zuw)vEuWW+@S!~1mhay`yuN++Vg6aFH -#a}uUERHB)n46QUzhvaR}X*B!2Vd?-~L)&T)iuI*Dr7G=i{>w59R9J%Rk)S<^H#~FK=GG=TE=BdztAl ->WAyQxAz~{@Xz1=P`-)8!<+`RL#ue0 -{~ArH(%{~og{KVO$$@2_9|`sOlE$hGBPo;?5O?|yh*9)0^``IkpepFaBb`Hz3hwOQ$Wn*Ezkx_SFcOz ->sNtnRMfJ-pAr^MJoRe)`ov=Z;5TKKbU!^B)=g*H4~*`}ocGeD%XOkDiwAe|Y-+c -h4SwQOdLH>yJy!V*cJD|Hl%)$|K+2W+h)`X&}tuHquUy#N2& -!#B6@{_1>l%Wn(%$8z(kyt{q4EPubdiS5Mt{$Y3Xl;8IEGDiR6i_5asTy*vBU*BX4p5^whZ(ilmU%$D -%y}K-5-rhfO>0ch@-lf&Ld|vxfOZnkh{_h9_Vw)AlI^PB7Gf%zK~%;f&l{qNhpbsoItspa#}|5sVQ*iU})hkQ_%Ha>iCwh -tfFo)6kGj*lN4A3j*Ne2_=Z59$}o^6`V_aGt!p20A`kGoJF4B`*Kd*VVrM;nVv0haW%7U;7-y(>QmA` -;Rxi%QX!B59QOouWJA$zkTN8>bg%~djCrx@ps>P^)rsp*8hQ3&9U9Si>KZ{;7@OVeet@y4z7tIakQs@ -dU|m&ci^YzKYst@t4H7b^rt7!oo^NiBJ4-S@#Qnb}eMWyx?ZYp&s08S9d#)-~fA2k&en&)+hbtYP0WvznP5M`qiOEyG;%gf-)8y=6Ym -w&gLsj;zJT^Xsu@NPAw~w@mC<^C`o;$a-a2Mmt!HmM1J3;oh^(OKxtNI3FAtS5~f{OrmE_rDslkIdj{ ->9`(F4bI7KYy0*)@9eLH-bK%}Ivvti+Wo5v5bURz#nT5@LEDej4x#uxk)-`*yWWXz%o_AhkvTH8PQ%A -#qu$YmH7{kggZKV~}Z%-}kUyK6QXc5nPMa&zT<8BLbB)hr)25gQm-Oh&UDdE -HpD7JD`?JHu0BAuIFDLiWpxzGSd5{L1SY9AiJQ2~50>Gt*mRhjETPp~mp~wz>is5LP-jp}KiBYq;hyr -L)yRpWK&Q>dp!*nLzeC(`(poUUfOLk!&#gmSuyn)r3@O{QVR(5n+uA-j -W-hK8Uc<0inygap&6{G_*_7-8yVvvj%6e@li?QPYc1TfGTZ=XHd=QVyBo3D0%<{!H^Sat_ikb& -D_9v@^5uZ$Db8wl!II|W7BObiT4c_@F`_FYNkIA!E{9%a!mCX@il7WPbVP~v -v{8#}nP3>{|;0%Qdi9G}0%Y_L^aHsLUDIpTyB59@e9#=n75e6VmIKFLzmm6cm~`+nf_dHcwsWmArP93 -uc!+=VPq>Dhph$6l@rCeHG8z#+Jqacvtzz|H}rbpdGB_)#nlJFF-B5nGB;v2q9Al);q(MlLMX7MrL`y -feOpPi8d16s!$^Em-7<&n&UF_%aTj4Z-PmMwovFUcF*k9WbrCJD+9fLT1H^d_F*SfHtgfTZOMtSzUJY -%;aO?@!)=l`T6IJeZ?G@BLl|MD@Y#<;|YhG68u=$MtwQquCoD5rDJJ%U_1idGlDZ0&CZt^HjEHV0iIFV2+ubO# -bMAL&g-d(FmA;KDr$OVC-vQQ%1+l766>3*@#}9r8(G-Jv%rSylgx0<;wnSOID<3GlNo{xQR_*zm*U64 -kpKiI-uUQxt7=yD5|V_Y-e!qvJT-ZQ*m`cq^fnFd3_|`VEa~%=0LPh!xgl;Pvz@8CZ;>E;$5Q!CzUomAi6Za3 -Kfh4T!0@XPoFThn$17C)A6!5X^@to@ZL!cVrq&FPmaKC}o%1iLS#+=3(E3HJAY6#ezax;G5B!h7Qs{w -Fg_vw1<A=MY=U5-#0utva72zXhFv8+(3p&Hg?&{*ZK6$Ozq1QGfg!PlnJA$HV=QIC^`tDs*9w3Knq -owNR7~z7)@U>kBnb|9a0fj%w&y%#ZR`S*0>$Hb2biBXvGef{AO~C{7+)mx2?@kty!9lmZF)5(eh7*O? -1+WLA+mA+9*`L`#b;mu8$g^-FM`BG4Gf)+8#q0nO`&O+uTdXsn@XS&1>MO8!P{2uz5}&8SD{ -01e=>4U>;aKoy3YiDA!ute7Rnc*t!4-MqM-SXLtx1)K0?zz(F$HJDZtuQHX>@SA~DFf2|dwZ*(di0YO ->`(ko2G4?IvzbMSM;$guQnTml7AY(N3bPcf+aZNm2c{c)f16f -MPCmYtys%$y{{s3|84LW*gj2L!UAsZKbADDPTnpm+A#fgjnRLiphs364Z#f>L)LMv`tS?dG7lTTxZ*w -PwH$ad@`987?T68gGM5B9Y#I%B2DKd^Id%ipq){FFIm7cm>Qu&`8#2#nAOVb-xrSsCyN(cYMR%q{ma( -M=nJRuVpRQCR0i*UQ0XdlKw3RDNcl51jz<|!+{wt~|Q9GcsMJ1%&W -3}DMH7arJ*5}RxoN-{)E2@AW|Fv!;Xz^INIQm|4L&;NOeh!WPr2D{^2k^TQtQ -gRVY%^llR(2k;)LFE6FeV68jm-cnH>j+ -u%tRO>Yi*dw>dwn1Sbsv_$y&hff`??>oygTE?5!jw*zbX9Nj7lp17CxsHwbgg9O;5p!FG~;HjIM@l3S -J&aM-f9u?zAdvMbbqOcYB7qIV)Rbf~gEjSR99P*+~u*uhM(vME`cE{=9nSr}Twc?+}yUYux%QSp3v_q$kFRCpKI`b%T6-BfTNt -4>+J8fPL9eu3=eLljhvlVUraTFG?>*1~-UB6$GtP&w<5|c*gyR%NzT%HW!i{PIw_cRVY4`uP=rZ!tEf -1&wNOo7TC&0K8`yMtos1Iwn{W6BoM4CD-gS9NRXv*xWVWUfRENkz;4`D7cf#GWSHE-yz@}?J%Fs6kCR$r4PDj=uC2t2^E7iND<;R?55g#HwWA^xc~}Epc9F}KBiDnTjsqw^J -8q0D#iAu%06uz#^ua(6Bj~tsZ!-5q_eb0Wj=L5~{8&|Rz^l5LO%tI9N}@0{X+}I{oC;@JAN+7I+l^Qx -kv|c;7HoP4r?=pA3}}OBqpNIcOfVB5ZLEZVv+ACbAUr@}3$$rwH8V%xSD(Pr;N(S%Il8PITmS+P@F1K -EDIM0X)w*bNzrjO9QBz*rr78JN$YJSs*0oKI7Xu=uv|YNzR5~1D7Yb40I&lCtnVna}0Bv~FvC2-ft|# -s;CBokdnMVwpG_R8$;u;0JZ&R2<{aX&jC|6(yv3ZWQ+2 -t7y^`~wn;7|Uc_%C(wW}w=r$^474b&wP_ssFjm_=26i}sT3_PAn@T)=@K^EU4kIO>JqBhNj$P50i<|& -vi&#z5((UjhJDgeu-bf{Xk8cP<#7{Z=UR|#iBgD*fygM~K5)G4z-6(~<6P?{}La5#NCRs;kP4znq|1l -%EcxX50+A8}dq{DviG7g#DX1ye>Seur9BnGd0<4^e}N27ng=$-s~=0!EU3j10uyrfdXb7Fnzmu#fC=B -@&MAej@~cYlW4neQFv(>;~d>bnUza3I^CI0iT9|ll|V+dswP0O)LVS1ldnSc4&T{g6|Hb`@%XyW*Zt{ -W5pBQ){Nil+>yVMn8>n*tR$S`C!!cO#(g1pocSj}$S?d#$}?Fc404E|Q6fG57~T3aO_Zs>Cqgu4> -Up0$I``3xRN;CspfNQ=L<3A{Wc_a6L44l*EGBlud{xJy;1gyJ_%rI54G}dxJI#Y)DlF{V;I=mlA|YR= -So3vJgQ_Rn^%Pi20QOaiWYN#1^=0u@b@GlHP*(r!1E+N~tDbX9Q9N03HF|54h7wWz>L(J&Oq$oDPSkp -cr4aHcCQcG&_VG0E&%jn}#7)D9;ctP8}LNap*ZPpUu(bCzl-r{Mq%gt%xJPlJ_IlCQ)yiY1# -OHM7N(R!2lh92AmVHQ1&|0-^1uq!eg~6_o-+LI=_t`@e7cC_<2b!(FWX5J_sC1x&(iQnSe4>Vol|y%O8KHQ>M!JMQ|+BNjeijOHW){hB`hXn)??N4Q1Xe(U4A%I -RBlnmLtqWgp@iqD17AqOM+SLX`49;3Wku`2RxW`tufi8%<^Z@&7}T<;9#v4Vvzmb>$mK@Cg#8!<2uM#w_wDe{izXRZoK -KbIQilPwC?2;ageo7$c?VwIG1`i2R8pso!d&R1h-0#bP?KimW3f?#kHLWKo-~uT2b=`zInb~METIE{4 -MH1&No-(5PI({)B}_0gmTIsVyuDGCs}GeU(w0-lx4Vg65aM0OrijYWZ?zoSAVG6H^DW(dHrcgdf -v1$f<|#)#kA8N=1Pm27)thV>x4z|cpw>za|7!yG6a!eD11eKRGJ%n%IRN1%$(TA*(2I5cO8JjnvV`a<*_o@T5Uc;IT^a_tfyFo$D!>A+SR6T!e+LB*_b6`cl)B)-)u`D -_`uv}XACnt4y7t`S8^Uau_{=gj3wPM9D@Foz!rr|$|TD~n_)Wxy#w|ys9f1(VA&lZmQ1RkmNtaz26rk -Zl$0Nn$C2n-q&vXF9qG!_X$2I^p%tl$;3>^!3RFEfDZK*)$)=quI50|wN%}MhPZy(GkS)Y>Ary{UZ4* -JJ7-a95eYI+a(9|TkWLE?F5HhilL>Y0K`XNM*9CuTaXXA*Lp?G#Ypz2`k7B8^hrt2Z{b+v5^GIWI0O@ -6rAtAIn3FUK>vPdVd|46sL5tg6On#|C*RS;o%aP+kM5_CCPAXg8=V@!&BXFzV<+nV!rS{?^Qm%;*U*- -7Yt~?aV<8N+jyGY0+g>$#MHWnLH$MQ5q99kjT-UXauNq->o!MHOO&WtY;aNP8-Ko;md9*d^@ppwYo}) -q)^`M)lw;}Z8b4L9}y_Y1Vc}pUCah~uM_RV4>gf#wQQzAiVP3yZV>rODYjbh0~{JFP$``?%hqrB-_rIBw^b$Z#T0s>`;aq%Bq;I9S@{*ZBx&+e- -AP?l|D9Lz_t$n!=?zT6@^`{r^`igq1pM^O&pjbS%0JYvg(O88&#{;NH&nH3bu|eNHr^u_|akktJwra( -9%)4MLZ#rv|~0QN?gDuq%iAx){KVAF=#`wQjl>PO_~?OVj_V!&qo!rp9Ika<~uBbLO_ZF64GQr^ION1 -$J90L4>K>FX$1pu7fd>>9GIlj6J>McVQKC(&&Dhvgu08ZdZ#szUD8AOgAzj}V;ykFJ~Rg-)oGKDowU} -stVsbcr(KO&7KlCf4M-+6>z4YZ&8QJ&v%AQq7%V|SPp-V#8V2{E@uyn7v!J2wblMYj;ChF(KP&pXeF8 -ELk^-u2!|WX;U|@KwZ77ycWrZkeih=a9Rl{h7yvEQi*D5NZrVxm`speso-+oQ{LUQr2E@}U-_(Y3Cby -bKVw8y|+Y@joi8e;6p*)&EX6;N&uoT70-H>C(s_gV2_t@S^38;obr{56`gmrc!`dNySl!bGEaxRG5IY -7_-gp}HxH@)DD$K3lC~wHNiN?(PuqScYt$pHfa6dAlaa!Bm^EW$anwhype_5gF8@z0_mxEZniUxWLTWxJgw2@|5pn) -Vb#IxE>@He^5W>HNR3ZWu3C)G%TVajEMV^iRjLpjtHrjf;@$v8|-8~RQdJ+&&;ad2pztWB;);bpf(Ws -5shdbV>JJS|JJa>KS;L$^hLdz@Lru0_&!Li}jpZBgnOCchLH$j2M~FMYF=$*Qc@Ag$J0pgAXmQfk!0s -23DpkHHea3w=i2+6wQQph#qWMKzg -vZ)vufvFTM&36V#BSXETJ%|L~!wF+Ug?SZ%>)v;UOS_b|>6v{HtG}M$O0FlkG+3nPIj!+ZKd0CXW)X8 -xOdxKmHO&6)VS#(59u~3gEHVQNa{&~?%uWVRYW&$9bW4v#NbQnwY&_7AFu#g}lBdxHntXaik^XRH-Fu- -4wVx6jD#0+!rjcAs`X+HVr`cMTobWpLO}ruYV0<9&I%kMZC7it;%ZVZG|BFWPk29yN`WAe<7`tNXoY(9{DooxY -J+{?29I)VsFZr^no?>NDB~$iPU2j%&@@Iv5{$+YCE#GfL}4nSVQ{?15JqseNz6`Q&kGF|e@d6TWQ -p(ssVRW%ro#X -Wlz5OqcWmmwT|og$BXA*575XjS>pzIuuArm}qwTc=(R{nl0!|r!-{`b?n*7N>> -Uj3ayzwSPaUBx|u@Q?QW7oOaUuw@uN1=k-D4y?HZaC(8sjOi^(!#HnT{J1`AA3$L++(+Qh3vvzPo4Mr -~%Y#gEX0z*bFQ=(BB9H7;t^evRy;BgJM__zqmT(Wu>Q-SgB-o2>+_p$XDyA(b-2BCVunsZXr}xvaS8#l9BkTw83c)pkxN>IpFI1S_g`cR^#OE67$n$z_EaA60JORPxyr>*aJMjn!ih3d?GWp4?k -Jh=^usH?>`QRD3EWq^i1XGQ7z;EjUcDHm0aZ*>MCT+wGS|PlrS!NVVN#g!InU*->hP&8)|>7#P1IfK! -IocUsB@NqJFTs*_0z;Nlf^z_H6E)U;bJqZP&^%ykKvB7-GIy>1tR!H2ph -m#DO70w8SIAv#h`pg+-xeH5BY4_mD?A(NA?6zm?QQ(>dO9Y*LSqxIp)5C5l@(2%|nsPNo8EcS`KTGec -@-g6PUB`x+Mo(>X5~oKYJdR;^fJT7y1_Gf{brz_tvxW}wvLxx@7E6Ca#Te{qKUy_I1(>azlQh$AJQh2}Jbh)i0hVjS2)(Kt*=9v{o4GyXrEWt!N4Ht#k -vkJz!Xf*%dEmvq$l-YrRIpi2t5Oj)Mj+I{;>qt>1~)V*AYkVlo>}Z9VFM6?+To$SN!mRjK#=0JQ~?)S -wY%2RwQ7nfqs=ss5}w*IiMG$9%NjP&$v1jt6Kg>E=rW2*~FeyesVtSY0PjNzR+TvbuCF_95^+!z) -zS3pnkD+dlwSkJFHAPiYK-xO+~wyW(#q=QN$D&eQ6f;?hE^tF1v?KVzSgiJID0LlsgGB0Fdb?ukW( -UV+-=FwP35HGvwBfqV^S|u3N9`9;7Kv`^TAprYczYT>*;Ab -V{$DI`R|}FNIySsSQKMCIQ*)U1fUJgJeMAApp|a(anRXfxsgbw`e|(FALG9r@bu2D{%Pjea83npJ=+nzqQZ0YIX!@+GH;Bc5|`sS)?YXl(tuhFKH5MYr=YBD6Ja*U+y?8{?Y>^Ifsi)$E9m?~BDkpV84LjwbnT?QK&)NGxIot1+L -AyiKAPcadMbCsaDZ57ejt3x(tg?T=FaX?1fQPf=p-Y6A-HZ*S74u6Ttg$fxWv^E;?H}Pb-fTPplyO9U^uxT9ok1YnYFb7k-G|-8e4YEQU7M(DU7#wz8+a+B&2NKC8FPmd2d -nsVz@s9)6R@As_Jsn5hyb?%6NPfmSQJA;1m@zjlJHM-C`@6aWAK2ml;P_EskB%N;%g007?x001KZ0 -03}la4%nWWo~3|axY_OVRB?;bT4OOGBYtUaB^>AWpXZXd6iV(Z`w!@e&??kg%^+r4XIALUexN011TyP -gh5rF&|;5a)%7mgT_!ziKgC>|u~fcoQU{Dt0#Z8n;;*fLG -6+(<1H#U^Kxj!N@gDkZwcZYYDT+c<@ewDb~@_x!}l?AVei$Y0<A8PQ}4rvKS6OZyi1W%G!LAmX6RP%XOLx-nAz9Lx9V(><)@;$utXeCX0X&u&YsVxU?Sjp1&q@tLA?dLY8XC~=)x9H@@Q2(_Y#l6g -+wGmQ9T_`hEVYCW^<$d50Bob^niQsCPsr{?3C^A7B=w$l3+?d&LNxk}HKH|B<+!L+2Mma%ucO81>2g6 -)@`TAC4BuAWdmFol``!XucT5%W* -WP*>XOcrh_g~%6yVIhrkM|X)B%>W6oG&qe$Qv+10-_LuK@4-!C9%LG -MTwq>b;;vz6E#Y~N4Q1Ko@n=p+L6=C;?nx$eEc=@BhcS -l)VQklg>`5otCWg*7F0v#qc%3lWwL0}OxBL;v=D@Am!&PlQ8JI~<845I=_AIFEfRMYffiPtbVpNrPu{ -@EjrKI%IR~ch;<-^)Y@@DKGoA=NR6U{cP_&W1K7hUDYa`tR~a@!MM?AWJ)-9v>$-2%Y3*PI2c%uf>tY -uyR%xg9IK*D*Pkdcnh*Z)xC)o3)$YE;wa+dfj;*gy*2fFYwq6za3jCwkD-ksP4k{RySzUCS?yW->fn{SUubom$MZN15_O(MTE#|PW&etkBv2pI_*v%$Z^A{88(pYK7dkAmT!mO -VIB*okX05#M7HBFXAjUD$I3I=txaBOkkICkZVv|Z9sWZsLp -v;ogN>*28q_?12s$%bxUiFy46PK&pHyu&$G11<7o+TI;Q)ES-T4ICv_7i^E_UvzFL7RRb=XBQ!KL7iV -FoL@iY(e4e4r@YpqN+E7oA_2ervc6$Yuwbrc&R54j5!q|u+U9Q&796wfyFs7xb>LtGa+UmB;f_mhw6Q -X6op-s@E7kmjbGCUJ<(mvN|5qg7zkik_K8t*HxQeGo|Q=t6tGr(8sC4o{&=s3lh5kY@b-2 -%x&QnF))$>{D*U0mO)p}HB~-jB~eUJh -^7&BxoD>$}ka9;dZaF)6c6$(4#{Ai2z-Nw|CvCq_j74D%W=m_%w3JZqRa)QFKt1&D~%<~P|e$pX_gX8CrW+1!;^h~)M)bV8&k=vgM(R~Emg5u#SjZtqtLl#M+%Z2r4j^?tQpvBvdXh5G-TJF!N;8we9+TeuPNYlVwaf%Qg-DNaijyYwcKS|%M0mGajF)h!zlw8*sd~4e?{ -<7)X8?rVu$0q>;CuOzy4eQ`$Ocgf5ZmT+4uB%9j8&YHvN;+*RN^8Wj2q)#)_Iif84&}YkwJp{RRJ~6+ -iv7wFpm`<+BVIv ->?TknM{fQ=hHcVK;dA*J7%DK+6ektoNAakiehnLW*?pcDlW+(+U69C$6voc?jL{s+XdxilP$Gc#wJ9D -PRX&@f=kpDL$B8wxzH^WRrSqEhw+S)Llg%g!afcSOXnSb^f|^4vp7Pcmi~5wHB#v1uKedNrOYwJ)%HdD&)bO0>v7>&|fWqH1p*_(1ckU>O9p^57{q4%#> -7>D!(A()vmxKa!tzN8r(3}l@3zMGhAY9>@ky7B;bVABADu;K8s{vO_>17e-4ro+5lyGfBILq&uSIaI& -m5%Wkl!97{u6D-5U5r*%EKyW=>V1Mx`s(TB;ZMn3E3j<4KIP6C<`o@o}*sGaX8d9&Wu-OGs%%Mu7=mI -rn5afCJSWL$!iUuL(;~0wlgsJygIb0HGA9v+=vJT|uG*$vlHe7Rv!kP;E6@oB9}dAGu>5tPPcLPPd7k -u_YLJ$!=k(Fglr0oTe3TDY+;oRWOY3C2G?kd;(h$>^Fp)k-~_>MuJjv$&J{E%JoEL@rm#iC$@(qK(br -o4B9t~bNoWN!}}G&ilC4?;fs1$FS10-YsXae8pJ5P+O`SRZ#n~19-uv1M=P+o!Jk0}$6I+d7z~sy!Xt -G^XGiQ*I|-tvQ17TrFn1#qF$BEm7;1kOJy|axJ6Adm5|gRJXX{0@xy4}Yw1+lL@Ab7^H#@A(0qHQrV~ -)JcLT+A0K4J|$uoY7L(yRdL<7v!iWLw@^P=YY4B-mJ5d^EEz=pGA52J#p7;>vgF0F;r4R$xD(&iV}q{ -T8*_)JcE0L5;t0Ms1`{ilrb~W>jhcF$^S17@8q3z}BhlJqk*0;PxWto@Pyf3&9Jl)z6gKz~>l=jNl{f -?2+0KcT3~2vT<^3nFrJ$v9+D$G(%Bas&d8o%c?e*X3qfg9-deUYJz={iPG3C)l-TxM=O!&Q7gR+OhML -+#{M>%sJvhF*H@o1`oYnJ%uOP4B9}(5UcFw#jc6ostY1N2)KIqIo>iGc+1hrEBvg|?nF`>e1l$>?s7W -Exy_AEPabu#F;L74;>M4YjglG#HO6}W7roRiB(kx#Rs;wi?1xxKoTPTV#qba8r;WW?&Y0rVtREt+ntq -L7DkX*{uaTaq6yN!M51j+;TA_g4ZK@>;M?ftz@zi>gMtb&Rt9}6Aqf|xAds_Hg`sYgR-TCNG+U~85F9 -8h2Ap(pfDYc51a{elWylOELQ9CibULJF{cL|84SfB>n|@NQH&0K*2nX4CtE4b;1`YN5zGJV_e?UU1k` -m_vbR!?d(tdk>1qR+TSt3x^n=&8YhzYXWS}$VVvR7qNH*A%Ciw(u}BA4%O4MiY&BAnIfuD1kmi=S)-4 -!*wFf?Jfp7K<^hCSxL{duK7bk0j2)^VHb5C|V}Q(){!+$_BFOnPA#pcK04bb!_dd_cl~A|EzKs>@ZJS -+~5>v2|(#0E|Vkwovb+3vtm`rkx93n_7g7@*LLednA1Zr8z^C>Ad%K(7T4nKTV&@(g_$a)oW>kD#I24 -2MJ#J1hqK5^-@RYEE;c@~u+buGdkO63|_sm!;fE-8h!^d&M&pb-fpXj?SxT#S`PTDiZvq#_v1QLbExs -)ME~VLia2b$@twJ{~t>(_d;&X8(2v#Y@11v -(gC(P-<2vzs!(&%h3C{OYFBLL0igvVTV!x#TNU4Fw9Z{54sP!pfUi1qUPiU+Q=C$oyQ1HYvLLuE+Jqe -hp~w-E&k0D0YBD=8+ulY=y2psBniTl?wTEg9TSx$M2@>*a?p~*5oLJawq2V@pLQPr1nq3A@BI+uL^L{ -q79t<)Bi=kYr?xqrah|Reat5#&w7-rUA@fXO5{;#B|9(#yGm5pJAWLP5KC{szZE-tN_t)d$tNYx!(h) -dO*Ek0!`i!dgI(qa;d!h|x0AFvf{GUa?uwZih{a*T{Nw>d+&iC7@_!4-no{F9nTZLx7}eCuC5hgi#`* -c!^%@zE=u*=b3w(tsw~K-CS=gJd0SDE<T;KcQYe$^45nv28@mW_4hmw3)p=9M%Rf}l -kZGaZsTr8!ttWuqX9-2{Od1cQ;V#*1>5TvOjY>3j^5sr?s$dt~YV%V-CKf0RLhBUon_MW9tl_Xbs{9d -Rg)^}4GTUlr%L5Rv$TAGK+Er4egSt_YPN{dtw@}PRAPJqIx&{JoP-#vx)Tx4uPS6IUb^n-(ggAh%tX- -M2@WToz#1HP@f8J>^STXp>P^q3#KY9@z2shVzMo&+x0VG+H&?_xX|UOxUjykKIZAwQg4-(LAo&%C8qq -bqs%&R<$R9eGP9A1Ctg!e8p1UL1Q%Z$y}j@BEeS;h(*Q_jf~dp8WW=zt(&HmjkPjD`1W#nljr&Jy$JT -V}K;~_C`hnyWIwXH%o#WOf@P#SCbynCAA1S%}h;}(0^?2xl7)Xq`R4*I^t?Pc@(M6KMZdl-;M9?hZ8p -I>t7c^eD=S=JAfi%)zk~(mzlo0emA=G`9)ei5tjckzWWG)K8((8N1q-i!z+62J2|hqyna7E-(A*-4xt -z6nRi?)FNc<8A+}_YMxzim~>$>$T%Gi%=k4K8jM_Zd7MRDMK|57PhdsnV<{fx)_gT -ry_{Zu1G=wDst7?SMsrn;ng*mG_21;j}FEi#tb|BMQ -aOAEnZ~SnW=NBLkJeG5!$nr;;z)Jqx@QsKOgoN}E45}UZ5k>`6v12z;@l2_Wq})6$W)fRExytGQHJG2OOth(cTBxDCUV{O^A+}+s@ExO0cTYF -3&Uu1A{G9J7{^MIow}{vxJWL93`}0O8TyX6gOxOQVx_Fk@l4TfTFSSfI_hG;AZ5-(@g8g#?cg6>k&@*Mm~ -mkpx;Iw)3+^~FC1e2R}OxtHR341-!~?f_R1!+zU}0zX2#omY1`|%pRT5L)fX&wva_$L_NZ0uwQH`o+; -o;DiHvy3vqkCQLWfT}@+CUys-c7leF?+Si~u^ZGWN)WV)uni&_K9uxZwvW{sdI5BiEGf%p;Q^j>uyg7 -h08zG)Xn^bgpGK#Bpw1K?ZvR^~V$61Oj4xb)5bt8FzzmoHqHg$=1zK#i@NFh^?Nw(#xKjlxfcf9Ovd< -lal?4iBdxqs?7vf_nUN$Wf>ZM4K*XZE!}eqOigQjqzR85%oXeW -P4t$z2Ry~D0`tDb(fvzJj_WB%i-aMe{^=oC;)nEs;Nm2O!liYK}tq8T@D`1$idc%R`x-$$*0jDUMi<} -Ak?oi+a?{#6J8;zgf2p+jfCYyO~56K!|UAPLljH4*w;fHuX-I ->r-jw88IZ0S0SOREJXjr73TP!iqFO~iKb^{9S=X38R428F$nn=yo7(@;GtCv1*=VG|cl8ec^&Lw4XK6SI>S$-DQ*EPl`oqho$%!dks9$9Ls;Q(~01J-gd>Gwp+nkf`A?K -15bKJVdvD)ZMgm|}|NukUk(m^qP=%2nJ7MQy)5B-xje*ArTfTG{XyS>zYr9uDWTXoX97tLOQ)ry_uaDFx{D&9v)4;r*h4|~hnMN^F -_AORcVeEGoU1lnE2ZD4`n@9${?W43t^p?pUW&fJcDkdn**Kk}W1;WaEd->ZQ6euU$lE&^RdS<8tR+jT -4lqcRIGj}LwJou}8{Lo2@5ht(!r}i(Nhmf|yJ2qv9_fCdo}x9YibGGYq -U1c|*$#y7hp+zg7L;cf#&0+_%fv755z_7JwUkt6kqHcvE?TUVH&rYnb1PhC3~x)O4%C93ENUe|EZ++8 -ge)v#cWA_0?1z{bOy0=Jmkuwm?Pt@16m^mG;ZJzvHBlW;}K2F^ad}4|>xv>*qbS3^r4`A3nk!L;udC3 -A>|UGidi5x)=GqEOu%SSI6~N|6Ts4L2`RTpAO1rjr8ee)}@>ilnMQ8OdITHir;F2J;}^{Gq5L-S*nN9 -3?J^J!l<|=(LP`K-zUXe%^#=Jw;0d-54iZB|G4i>W^H%%+=bEdhOs-XA@&mX?@A4CiPL8My+osq#a8! -vX~)Zj?B7sJ0|XQR000O897^_9>m=F$Aus>{#AE;f9smFUaA|NaUv_0~WN&gWV`yP=WMy%g}QzRfPV8Ja-MMVA`V;7)g%0sU#X-NtL?~BkPn^t3*-JE9AUhb#g_?;|{7qAA{)k -CW9<;|?B%##r(PDIvcpZ)rO<*TQEc=lcS_Sx4@zkBhteD&@3U;p>=pZxZ-i_gl-U#`pd4>y0gxx2b8U -*EsJE;sMXpYH$n&F$?~et!G*!`;oRtH=9?^6K{H`tGs3%HMo>@u};xyPLyp$A_DrKjdTn=KbgYoZpo4r>lp5D?i-a{^jB3ZTX -_)9X^)F`|`ub$6xO6&gajmy1n`N;p*Wdv-alU`ntTofAjdays_VvkM|$StE;>6aQ*t`{T@Ci;;~%az5 -b{BhwT6M{`Jk9k9_sv?sYy6cl~(%@b>+uIsC(SKbCK=-{+l{KV08kKjhQ=@Zsm%n^)QS+nZO{cki#u) -%)^}@819N_nG>J8+mcwNcrYIhu7@>u3X>bzjN)sUO&9gZ;F3upRRU}cv*6-e{=Q7{pV`FqvPj!(;v%i -uExWso?rgz6#V^3UzeLZ4f{*Zeg2UH=7at%VO4&^Y&dr@O89TTOL=j9{b`Ds%wL=2|Cr)8Ipo{>oXOYMk5@Oh@AsqsIhXf+-r -())^2^ms{av|vQ||5`FU#K^ZW23*zJFNV9Odupdzqkr_ -2p%0mOr|>`?uR%f*0BSo0~T|^f$Nn_YarltNZtl{Pa&xvhU$$#}^idmGa|@{N_LVuRQ(k_y3PZ<+F<% -_{9~Al~48N;r?y8`k96F<4=k2|Mghj0;JrV?-L`hZa<`bxXtHF3-BQ)Ik!hn;M;c}0NdmBt6%Q!Z}0! -|QFH#st9Ms-*DT4y^}m0(zI&B;zxw$$F?;oHVG~Va=ZBW8@_MW8b^{5x0~bef9R+?!TS!+u6U!FF)77w)WLueteha_ -Sdd|na}xO0PC~gKfk!hN&D&LpMQAv^^c^MQzW?s0=TGu~Ib?i!FkN5&a`nJmCl>$x -`v(~>)}dVP5uSYY?bDxLJo}$dvqz0S>GJ07<3Hzh-sl&(W1s)@^825@dH(c&{Pg|v-#>kxzx>TbDfPH -a+iNuave@)&8qLgq@YOEeeB@uVU6z=38GKjcsF!i{d0G3>FT;AfjAq#bLvH;dKiFjs=9fOQXZ~tjnyt -8W_kP)qaq!*D%M82pwfd!b&CBFv`EK!(yra{uYhBtnxc -$iAxz8MYRhr3zRGPe#qn_i|d66Id(vG}RHrXk^qggbSCZE1W(BwczPMWDZcV5OEJVQRAH_c7k3PU?KCSOJf9^WqtguTBcHS;DDtPd9$>_C=W(kO6fAznb4{LW@?4Y -WnqA|XIrpnO(yv(E#iQl5vSC3NJr_L}Jr^^w=&|UL3!30MXpF}9xIQoPL-0+dX*8W?&`cV7GL2^ROpH -{GYeqMto6*haW@C?AYmRGlH@Z9Bo$d+eZ0PCqbb113P?!xpoE|}sphwUH+%Rs>b+e#n&@<>6^bC3iJu -5vcJu5vc*Q)fW^r-Zx^Z-T%JQ;WN9JkT4(K8n+myGU>?v3t^?v3t^?v3t^3wFA7y0NjW)1%it?#gvzX -J58JGED-1H?ESmFFygPZ=s2q%6^E -R7o&ZEmK}1Q!IRoqH=zx7_z5&ccritOP^yb<h1j&3I;Y@0u#jr6z-G<%}3+zJzW3M)Qk;#mYZ5gWRe!hG~-d2knNXaSea -WZeUjPR_Mky!FHN#+=&P1Kz_)cjtzBesHY9hCTJ>6qhY2s$#Q{%adU&^E@4KvON>-AkLY+r_wC;*yu|U0j%O6nb37vqEE{@ -)P{%Vu&9dQwctqARn~nw4N4mv%zsXDT1Kn|t80~E6j(hZUj}Bo;G#mE|Ysu#dc@s}~1XMErVsMPLh~{ -TZs$b;q2eeTHl3Pf}TES&y87os86AH&Bt)^Xr)rWReRx5|(#_+!0HqIKn#2Y`w0Xq&DV%PvhHar>**t -Ie^VAj5g**d1*J3Vl`j^p)y-Y>iarNQHuRYEn0wtCyaZa@A -duP66X)g7HLPxfUS>m2%_>dDMhXzY-aLk79Zz7Pmz{cV= -X1_7#+0X+}gzf#-;3WZL3ve0WGQeekOI$!U^n|Gecnt6u;4#2sfX4uj0UqPD4;hc-xZpCtWq`{7mjP1 -?AQ>>V0Ez(=11JVi44@b=wScJwOf62F_2eb_fu5C~U?pH`0Y(Ch1Q-c05@002NPv+5BN(-8=mAEe?{( -|ROByCJ8+wA3fTRT&2{001B)~|3kpLqBM&SGnHs5ge+0bL`b?c3F11rRPMVISUkzDSwnLo|H)FcOD9f -Hm5EJhF>rGvqg2ZHNNfAej6(8$f -n)&50FtnVZ0HFjgH2k2Vg-s7C{~~d7tE&7beci4?aoMEk{{>^BrA}Fv1UV0AX%{)xW{bh2^1?&Q+bdI -6f01yK(YGfJ0p2XexN6itU$5?$qFPZkR+mQ1a?hCk6F!z9zd}I#R?QFP^_oF7|BcW13iIc1(Fp=66$3 -`PlAUE6f01yK(PWv*mO4Z0E!hT*0%lpNM4d3=m{h%kgPzm0?7&_D`u+##R?QFP^>_)0>ugxD^MgjZS~ -~q171>rWCfB?sBGv7BrA}tn5_yFD`u-=wklk^f{_YFDj2C?q|S5QChG=PDp-NgXG2dgQo%?CBNdEPFj -Bz?l)g1E(!fXqBMpqSldsR@CHbN8O{W<&lZKvP1l6OVL^OzelP{BBX<(#*kp@N@7-=W3p2Mj5ILPz(@llL@U{FEilr+2*fEHdVrDE_qt7ZNdqeltTeFFFk20bG%(V -@NCP7cj5ILPzz8x&HuL}^4UDuizL@Zm238taA&AO`o?xVb5!ie-^aLXfj5ILPz(@llq7HKQ{W#YRUed -uz2P++{bnHn7Bj{ocI^58?8WK>Gpo5yy6rU5GHN|6MSx^_oUFaq7k_P=~vW_y09gK7^(!odvBSe1La4 -j&>!AJ)q9gK7^(qpgNf|qo#(!ojxD;;~%!AJ)q9gK7^(!mH;KO1_0kq$;W80laHElcCVOFCHTV5NhVj -y>sMq=OM?ZZ`A;BOQ!%Fw(&Y0$(=t03-d>9~Qi%gOv_eI#}u0lMY5Y80lc7gOLtKIvD9-q=S(TMmiYj -V5Fb%#e$b~u+qT_K}kcL%Z8p{L>e6GRwFcTM9+=Lw~17CFw((D2P6HAhZek~gOv_eI#@x5%*JS(CTJ> -6qv9rD+7Bnz{mh21B?tXGQh|HBLj>KFfzc%03!p8jIAT0qvyC_Wq_ -3dRtENDfRO=41{fJ&WPp(YMoKFfzc%03 -!p83@|dl$mqu&7hW>J$^a_^tPJc4p=Lwo$cCO^WPp(YMg|xeU}S)i0Y(NG8KduUlb7TNdV-Y!RtENDf -RO=41{fJ&1U0)Mq%_!2g9tT13CnP6ptl?hfR_GE&Q2}ULunP6mskqJg77(s~3h8|#Kf|0p-Ne1}2Zb-%1&=ago>$7q%+b<9W+McG(of1&EX{rtSqpyz{l?7H7_GEz(LWXSU2}TweSzu&=kp)H;7+GLsfswU&i8;Jvft3YT7Fb!>lLbZ=7+GKh!8aR -vf{_JA78qGzWPysc*z1Q3#= -@#valx$j4Uv+z{mn43ydrmb&vApELC>IP&@<>6^bC4ddRBT?u -2tz#=~3xX=~3yid5L8>p5s<}HhMOCHhMOCHhMOCHhMOCHm=p^(dp6Y(dp6Yv3W_Fvm?jt^z8KP^z8KP -^c?gY^c?gY^c-Ak&|}bJ&|}bJ&|~uw%Wyo$o%Edaob;UZob;UZob;UZob+5=YtduTW6@*LW6@)s>$X_ -8MbAY~u!0QP(YZRBR!7e2$XT5%T1VsTWYIcVw2mg-5h*)av~DLa$vF9h0%g%=)(Gu -dBDffW-jd=+KhfeCPlX@#i4`!!-%Q*R>BKtUG(cvJ073pM80>@XNt$})2hz$&!1*|LxlASFX2v3e4Rc -+^;EaT*hf*Wy+j}x;NWCJH|a02*3j6}S9$>z*UCvKeZvnX$>42hy`=$a9#Xx!u_1)k~zlLqNAv@#=-3 -++l$YDR!i@N_1{iO9^Dr9uc>h$M|?a8v}1o4mv@IgW~2a6E?eS`gTbeN?bY1+MKdDwL+Y%N#dQ+*}#* -LTVoE&DkazH+hM{qYRfBEREhn&3g@CbeABICSET&;S4A*9a3f(r6$=yjR-#U0+&T}4c&P_Q##z -j$dWPb-@M()*!o*g3?@VG+E;g~^}W0zO!%B61oH}N(v0s*Kqq@#lyd)%O-4la#&-tf@{$72veM}03)S -tocgs7oOPuyx`rITv|7Jpnge`M0Kh+{jh}wn>h*ksG9n0G+~c&xHjoOKA`CtEe6hab(<19*2pxlTmkcBRiBm;?mIaN<`~Q!iAougPYUtB&IH$46$QP4Y{xog*XXgL)|j6(WY5-CEO0>V6=O -cr(>_OlL$J!?mSuE5qTVPpXAA`s@4G&^H8=a@57sNM*A|Ing}Kt`#>;TVE?5_(R8Jgw|&T`LiYsz27X -C>A)2^S!UT+l8#UxjYf8Yfcmz2{5NFa|$)6PDN4IldWSpG#0W*gZ8cn-Q+e${oF)ywiWuOq$HnPh?%Q -jb74}OdeUf4AnH+f0n7Mz-Z0>?s20z{Y`mXW!PLm71jA{7zZ%*5x8-E&N|xhz}k{nn{3L18VrRbux7H -FM+uXI6_+9S9^&1~bGJD7Yx(Wn75`sF@Krd7N=T#>v=qmW*@_>ZrljjeLvMT>t~HU@c@zI{+}^P3Dk- -0BvT$ZlZASb<0h1;mYJH+fOAz=^LEb2kx9Cg1fw5y5d5fA;@QuW6Mc1X6cYKL?EvlzZoZAIC>^bnC(p -tm~BN;tDv14B*IO?I~!&Q?2Cj{$Snb}+&_*WP)K%Y+~g$=5DhkKgu#W&I7JACyK~mr37G;B%V7-x7jv -ZQ+P934p~ZI3dd@@g5=Z{3h({)0LQ>0EY(v~|MDE~moj4?9)L1u%l~w435w05^rlLM++~g(JW$Q3oNE -L?qT!=>s5t@^SG}69KfKX5%jf}4mGn*>A2w@GbU*hDclll@!m8&8x+~gWSpFKoyk -Uos3Cizl06c^xM!}N2xaZ5p>VAmN~IyWnj8rltHE}??fSl4k4oJj_JIf#P07i}8d8aGu5xJOvY-c4Ae -TKt9-LwuIc0(;N4_p7X&N_qi4kBr*}v$UYid>(yFptb{{e1eeKR%o&k)(jYfWuV6-kBm)HyEoC8}XSk -1~){kmL+wS;#4vwl$Wbh(xGX6M->ASdgBLK+RZ;ZYO?|QCt{yJv5hVvvlr=q8K#qLRQE~of!JFnIOY1 -CsRe>gDu2%!W5CdHE!|}!ygAaxKS8ZNyR$((1IH+WV-^OR8;4%JtY4sp4!!oQbY<`&N`-?n94pT+s-~ -FD-_s*Lb|9^WM?QG1&!WOrfkZ9@*ogtJ5;};^3OvR6Pn*#$@Fi`krRLvG*L&rvmL1DyQ+1Af#Deu;*3 -;FCA;jzyCr0&S&_Nx6q2712T;mjY3 -N(Ck8g9DEsKy?bx>sV+z-T+dfN@PDXXHelj?!aQwYwFkK|vqsdMB^fRZ#_jEl6@6{hZ(AC4T-MLnDas -%!H6e%v{j<4cRHUfYn(k$iLNXb@3rGKALz?fD&!clp}p2R4~k}%$ -CkGFgMbYrWTn>KLj&Ow3A+Q-+Yn>lILytm3?`0f(!@Xs#jyJ0v^&(jI -!@G7Zj2yEu?2gU9mSR)C2d4k4#BEy7^l9wvzDPUw<+BU(?B*+ya>Dh{-9M%`-xPQE06NsU6P0L|1TVCzlyi#uO?RN*6(gMM4(4R6e -;Bs@{wVb*N66o9pj=Ox>%qFI;n~@4O6y8(Y3EzpW+z?&KhX7~BrS8?`6cGW8Y* -WZHqQRL$2I_*0jE+&6Qo6*7B_G0aBacxqWQXv$c@*Wl7fuDA;ol6pRFQ2f8_cVUY8evW8@Sev@Z#Fm( -qu_QR{-c#krk-F#!X%l3jYYD!{x-;pQHti#0?TLPb2k5Kanh>0%_vBrRsfoaEVvv{U$FlYLN=8EDk;C -5~-{-4Yo%`KLztTSwPk=$ZBF-n0;u9V!tYRZ0|SfUY#!i?qXx}T&8k&7X09g+_9lYAnft-n -V#9AZcTXc(zE4@Tf#ga3U%YsVck13Ke9aBin2&c3)5wQ^7ZHuK+J)omo;}mpV@PJI=nU5U@IC -Zb)s$XY9sk3ntOV$Y`0x)!1S1CBghtd(23@yJ(FIkMH%ZL(fzC+!sQ>$L6(>0YDkd>#BgXd$)rc^W0F -a^Yt`j{X?opr_dnlyIpI>+tA0ooE3a*M&MIv8e>ipAV<8c;rp)=bsfb)P%axFWD{FnP02_nW-LU=+dh -RH{u4#mh*)lqs8`AQh_*NwTKyTQ_1$@`MNtg^Gnzciz;gd$lS5Cex=nZyh*utR98%nEBAjE{<8)(qXm -WB#2BN>{!9{lG3yDyiVO~2?gu$J}MDNuH!uUDQi))8@q7Zk;yh``9XEy=4@M`3ozO&kk#!0x#60aztx=U -Hgei=-XeD|>#ado?Di#t!<>e~I-a08t_q=q09&tNVp?nRY0sLNGZ#N0OahTCxEf(OF7J -+R3Y_do3E>wyZT&!W?3!naOBCmXyidVtEG6;?6_`~c`tiE+g-+e8N -nyYu$50wmx}41SfgB;xM3D&wR4I-s-pA25l3zAukQyS-scTU8>XJLCh^q=P5eZFY=hR^sbt{gBVuyC4 -WL`;Z+W`X<(OX2RIPoxbPFVh;DOJa#q3D@5*ajO3@LDFvr%`{86*0=AARGIE(-dgx%ZHWrynjoUf@wqsFv3G83$;h}|6wB2PQC7WX7@Yd&+khhd#Acd -Rg`HbJFdyTFTXOk~N0JM~;!`P~~uM&J=N*JWQP>M3ewYgP_>kRG9j#D?H?ln~Rk0CWzl({6ghy!7Fbc -T*OCq-7}7EnMR=mIt~#lzR#mOb -+4u@l5&}x-!Y7h)i^HY -LR8D~)1X8I@N}vr{#Hrh^D#vx*j`EdFQKPu?UN`Dqi?T8 -@QCfR^lqui6w~3Y=Cr2r7Q3Q+$u`|&RPe#2&!76R%hn%|CLS323AM=+}Vb&!k?tGTaJfakb2Ms3dT>< -gVUt@pqNIDN$cN`nky?WPic2g)M9>Wiif~FE7lpmqsJJoEQm}4U-z$A|=??9v8iYys7Dca_ -B57_@O$?iB_!daUqZcg0-VIDxU`VRGh^F>sg1L-0)HJWZ6V+>WWD60vkCA>p6babfAb6oV2r7SFS>AS=RI71An<1gBS=wj7&x{;a)CFHTJOUWpm2 -=FJA3#?cVmq=Gb=>8(-l~06KPzGAAXR!+i+!G>N&3RI9*yG+JqFykkYNH9dyqrx{tf#8OWBpayHV -JrbP2S5BQoL7jjB2@gO^?IDPYQ8C)@8<*FsOD4C;!;y6CN#-nS8;QO_LQ<~nMU+P}HYg-{bNR(I2=Fr -Lzi>s4_Ko=gRE2CT=avzY5x(mo05^>%yyo57?MO=u|J}0MZJhO4oz)W00N2;rsJ`8*4y$f1FC~8-Mid -H)IxXDYp^0#=wpq8$%GA=mFXrs0UXVM%u>e|+DF>^^URdbG$Wu|@eYTkxI+%0WFn$n_^R$R7LOcW!$l -}#15QBb&RWaPY=`28J$&yE8K?lbP5%JGX-YWDzjmpkVGu@onX_f3gM6`{eNe+M@U5RLbDAT|dysH4RYBC53vGAm;O5HgiQb@eLrtSBl@KPD>S4y -*dpEMdVHB2@0fX-iS%R{KRUDaOl!t{{4RXtggH8|%1y@Z5#QTmMVuT*t1rC&tB)sqB(i>%5SvcB*>*} -}DRR(gra<|Wj<7WSJ_FKpBdRh*X}TZ&gkg^jBW5J5&L=v6LCw2J7J)TW_Vhi@Jg)V&%#4F(p9cvQuzm -l~)Jj(OmmXFe(0iukce4})As+s22Kza+sn_qf!(Dos2@f~y1|{=z;e@@qg7?r -Xh$v+!RGnGXk$mN4@K?GMP9>Nr?Qq(4>Rw&RLkbgI#j?uMar&;PN?7y8yAVvJg`5-!<)RKnuUG{M4a) -P@9cP8=Ubl)mFcPY&?%Je!yNC2X5j_ULnRpmcZASNKE@?JG*QgK}+x`N$_2i3h -w_!hO73@P1)YPQfTJEZz@^2wWC%+obrJkl7>vj)nMCfT`?_vV>g*7hAsz>{WRQhgW -%l-jmam+*8RF8^DzkKgT7Hv$WBN<_PFW0174lSvR1AcobNLP;iQ-6-zQV$1(IGH%|2R8fzb4A_U>I -8|k*^-3yf!W(C*dv!^8;&{AK1-!e;hbf(@s)&LFIXy|<|2@}(=+^DASj4xF8x+LRZwongUK@`PAWD9_T^6nC-DaqszhA>SIx`K04*{%} -0Yv792NDR9m9SR1fG(r-<=p;_x>rMqjiq`Nfk>5IKpkEkNST -#eEkm_0t{Qw|pDwTwAV|Yu$hPZ^g1Xl-Ra{0%gWl&wknCvmj=tmQFl8w+QW>ncV3Qf*qa4hTd34E;Y7d3b3c>h -iI=#x_ZxMuMP=V-Nf5H>=Ih$H;+Q%bfRHiuRwc9~ZR^lYW3DI*Ii&B@a~_83C#AjsfGP -i?+lM-6rg<9VO;eftv2glvYHKTU|_af%h -t{o&Z7Q^pdI@pEeIRaxDsc6_tG4q_9FahWAre>UPvWntWKiWau3R5cn+`!Jj~;qeoYEwSG1MaHMNKNq -kl4n!;w9TXA<6M8mCcSV0;{+T^+)ErYsnxM0JbST!S1D!$A;8~)1FcHN;J!(seVT!SY;L}%vH3lBNEa -*RfUK_+A=6XGF7H*zvxN@uk(K4CFp&IG9U6oiXNryDP+-6M6rO7A2R88s%RAhB@sgf7Q3rUQ2LD0L(W -lQ1XXXO8qBVsUMVV6Nu}?oEGURl201aEbrV@$O2oKwsZuIqj|(qh3|GcewGj}3*eWV>(^Vy>%m1|b5(lCr>oRnK2InR(?>bsfRnq#Wx-Ard5X*!;Hz) -%TF+;1ywnWaMLQml}!9Dxu=9QsQs%t@}>*E?6t>T=*m(PTv-{_r>cr -pM;67Su=Pt-XL=CbAgd~1D{fM?IQ!?!lTq52_E&`olFoEML?Z02YQ{Y(ktZLbBYj_9RT -so9sP-H+yGpkwdD~PKpm7Z@xa01+>t0!BZMC`gEQY@;J&KW#2bJcoBVURQx~iv$FS@Ec0jgd+y5E0RP -4y)zo06X=8jNlKbUFcB!09Q~rI)4El2L7tF&W)K2Z -J&HOD4Yj61nXMS0y6pOgO5JNHZN>X~OkP-NNu8WS3#|%8(4k$oDm$S^7k-eYeCNFV`7Ov_ -g#lq67A?;+Nqsf#F*)A!(ghHk&IgI<#K~%kQnl<0~w@TfsD_AE1T2LUhlq4g=bk0c0NS&kFb@5g2d&SZh0{E)(e$ -~!W(PW(IalDTYg`_IWL%b)^AF99=``1pgE$3~!qxZd1G7>r(B}IBFjFA+-<8%^_O3%u6byYO+YH%r73 -W}sTh4$(mm%3L|?V)m%m>k=5f~ObdQmwk)>Z#IHn4PJD5h2bcH4?2DfQs{dHk>)hxCIBObhYpJNwrXt -17LP4@N_LB2^M8}T$4udzw75E{A=Mi&h)-lYO)Nm)KvjX;2L5BqNqyGa(>8QvE3vWc3lv%v2&9O;uMg -d^FVzGJ~hyCc)cTTLGDJ;4V6don>x_Vr70jYaVw6bhRS}r%IBn}$2o4FrF?dK_5M+>xcvM-UIl-5@qY -kNO9KQH00008031s8R!US6?w>IL00O1}03ZMW0B~t=FJE?LZe(wAFJow7a%5$6FKTaSVPa--WpOTWd6 -k_}kL1RcrQh`{67Y)+XtWuTWRM|aA9#aITQjmGv?L7tWVE_VR;^pz+Ul0Q+Qt6&jX0;Y{DAQQyMiBF( -Us&$#*O&0@*W=k<~RTRze^l{`0R_z=byFXi?5GMeEwzox66O>yTAG9H_7kbW2 -@P-?rafQmt!0#6SJ@PcGY=HkX(>2H^>9^ -d@+>G8+Qzg)V)50?+`E?@of;fHr`pWlDKRBs-?dwTiw%eZRaKRrBL-oN|)!#}#P-(P-t_w(h|%eR-Oh -u4qqefWMMK3rbDef?kFJ@wcB`0n-N_rHvxpWnXjZ)d3f@bL8G`(Ll&AHMkZ^7+I2uJrPUhqn(;{oQ=^ -^LK9^U-cJ%{`l(Q?fZwz%lDU`#@PEG&MS2vLcV?$a=E|jhu78p{pI1Y|NA)i-yfdd_mNBfB>j4}=Occ -6>2v+tmmh}yKAS&{7yhn`{^jzf&&JcQul(enUV`(TzP>!Z)nR|=*S`Ose!%`l|Iy3p^4-Jb=l2ia|NQ -3TeuVzJmw*54n?HW}?KhY0i$7ofeS7g@`{J8F|Gxijzta6*`~3Mxk3as@OYrrjzpJO0Z$JFfh4%ye>3 -Grp*k7^5XPxU07AK$$9TmN&P-uGSLo7a~gUjF@|PxGsX$6isFmwk!+^vnO(9KLz?_OE)s{UzrG -{r%G@O6Lr{qg&L==+;@@18!s#Jl$ -&#;^Wq>#x1$l&=4hZr60VeEW4D`Op5l9AE7JkDJPGK6>68`g-{9KR>*E^~EJ4}Ql_f}9x|RfOOY1*V+}?kNy0wcvbH -CmN`bs~3fxfYB3-pbJTcB^O+yZ@LaTe$stFu7gSdRtz#(FH!H`Zf;zOmjG=o{;4fxfYR7U&!6XMw)4U -KZ#Z>t%tyu^txa8|z_#zOfz_=-c}HU!ZTSj}`j1u6KpLturU; -=z3P@8|!a{zSiGQg}$*KEA)-^SfQ_V{T2H5e!L2Od)HT?Zy(2lzP;TD -qN6e8>C4<&8A8QYqqRCGX2j4eBXIiV^9bYgtoN}x`RT|5Ch -p*jV3LUju8gg!`tJfXq`dP0*8_Jk%I@Ci*e=o4eNO~6lR_Q9VR`)vY%Vr-}h1d6evCLkz6XMs``3?LM -t(?V&CPkF#l(=>oXP167nwE@xu5;e^WP}DRHU{M>Na}!|HG!39p(=-4_P167#HGRGXkecQNL~8m33nV -pvM1@lAFo06i4g)GRZ79G})9wH+HSG=nQ`7DMGPUtZH33ac+XdLvR4{;3Q^9~vP2~VQH7#WDsc9htQ0 -*APK&Ymb4Ma7qY%r>gm7T$;Hdb~9quO1c;-PdvD}zyOKr4e$`=o=;7#N?#!Ki)GK~JUote319&~H=>j -I)4I`>4|lM(z4L42;@~{@^&3?u&i{N=Hd$Flrwal)fHkPb%eV{S7T -wTJ!`g3__FGZ?jp4hp5AgF@+8*%^%5LuY}~rn5ll_ym=~sC|57%3##Kj|&7w?c+mG2BY>-mKluN4;>U -rRUcr~q51%$4wVBKbxhK6Dm_#mVAL@_!(=e(Pd>FDVAP?%TfwMfe0IoS)S(&!qYf1e7DWJRS14We4HA@&{o| -IPbZi&51f^rUxFsm9ItG-E4->ZprDOlNB`Do=P$(T0bW2dW>7Y=m@4hmWjtaVEDD}5rP^z!9GL-83tP -G{cGzOql-*9CpJ#<@_rZZ{|$pHOZ$C>;d4-Jo=Qb#*%#Rnw%i6 -by_vcQUFE=qxJ+#(Oy#RnuV9?POFR7)nn@^#Ofjm@zPvo{Z`PL+Qz=nu-nzrDIjzCMYdBD3p#hcblMe -(J`P@D{6*PEua}nwSZa;-V*y(NsO7%5 -vfl^g+fzt6O&#gddjB+SYs;_zrl<78AH7{@pnRkJGSWKgTjmu5dP&8=IPD6hDu)$HwZX1Xs&ZJNRI|TAsrJGZN>vUkl#Z`%ZYz{(b6lZRo8 -t-|&dZPrUB4CtUU2F5q`VAQSXB?|_0mK6h|2>?dj)QtvU;ojtZKdJ>VQD$*kL9x>bB_^P`c?DP&#&)35>dh4hp4 -Xhnc{rTj-!rI(C=|jJk~-W&)!oO%xb4X`;ZWsi=E1VPKpEjGD%Ws|k#nG?ie~q^Sg>CQT(6HI*R@jGD -%0+zE`DG}&O(q{#-OCQUXNH4S=9VAQ192css@X7;HK{(ps7dt!Mo -m@6fYPy{OkmVhbqpx2YLY?e*kL9xYEsdGQPbEzCNOFmAB-k2Y8qe6OkmVBc9;o_nnv$$0;481|G=n8- -9IpD8lRLVFltgi5R96%DS=UwI)Y%-q!u6;HQmQ)!Kg`1KQL<6#s)^s+StITdD2-526WI<>8za&jGDF6 -fl>3|+yq9=jjLORk&c(tilDOW>p~=HLK{rs9EIzM$OuTz^GY!5EwO -&uYM;mYSyL%M$Oukz^Hlj+9oh+)-DA`&Dy2Fs9C!d7&VVwY6hd`@deQgM$Hjp07?fdXE16WpMz#FYHm -6PlpcBsl#Wm1GZYGB4d9s>mfItG-k(gCGa$A -HqYq0C@ZscL#d>DWJJFsh7#nZc+sKB3HDRMAxjqsp#hK&dV=7*!6P7D~tdF@sTMYz8wJRmNs8gHdH{1 -~VA7XrjQVMH2-^EpF+bN*7HO7`3QL4@NDT7cgoWB%HyhWvts7j9LcxW-w|Q3wZ{kmch9hj9M0X3!rpR -YzCv2MQ4H1vG!*$YEi*}QHy2{j9SK0pTVeQEcF?TTE#zLOKs3l~BfYQ)Gp;QF}MlD* -|VAK*i?Wt4_rWuTqhiL|*fV#FiPg68H|!WX$GU@NSeVYS(0WjN}i+{jFPEn2BYLEn!za9ie@ -lMzM>h7lCfw8qvR}_!6;daW-vtFiL)&8H|#lX9lC>;F-ZFS$JkJY8?=t!6 -=z}W-v;wo*9git!DeWZFv?CHFv?aPFscrS&tR0zJ7AREJ7ARUJ7ARkJ7AOzJYbX^JYbY9J -YbYOJOzxhi3W_4tEGTZvb7X2O1_o?M#;!hz$iIQ3K%78Ndcqe9VuXx%pL`dk~5=#Q8Ho_FiQ4@0!GQ+ -P{1hJ8wwaDH$wrV{ZTvM~z^FF%^#Vqz6<@$8wc-mHrB-|aqtuEoV3b<%1&mTFzJO6`#TPJ2t@r{)sTE(qD7E4X7 -^PNx0i&8G8;ok2IWVee=D;X5>kAmAW_V?;e!?s)~9lO*5M#&PefKjppEMSx@0 -Sg!<2fzYGso}qXQR?q6V3a!V3mA2bEoT9v)QVrgD7E4jFiNfX1&liGdI^+{4P^nN)SF+xsQaYTE*Q`; -Rt)I0r_#IX1B|+>KESBE>I00rt3JReSppU?N|t~HjFKf_0i)yqSimUt_ZKiq{rv@uQh$E|qtxGDz^MB -`;{ryh;lF@U_rb~qjJn&X4W-&0z$iHY7BETH|7P!N7R?C!;nw0G5+cn;Zbk$*4^ZfaPS=CI`TBGHR0pU|FG5)38FRreTFrO~VSMnuZlh$0 -w9!g;K5k6-u@CS18rmuTZMBU!hcMze1_jeuYx4{R*Yy6UtJdRGUGC(kf#%8)>lI4JcClWebZi&v6-o~s6iUaRv+ET~?>Z=yj*l$s6-w_qD3p#3Wlc~zZbMlUl#Y)q>&d81&HD9Z -)TU(`S}o0|3O$*4`u`t@Ygre^(`p>!;uHACrGKx>B -5u{_ocrHg(8N*A3LN*A3LN*5giN=GHHHz?gS0Hvc~)*F;=(-?r#vE{5cC{;<_pj7vR+@Mr9eB7W^cYN -HSRJVNGpj2f!L8)%?n4olgLRlv$9gX&Ng3?{bIF+jNzMhQQ)OlY|Ms4c6uP386HQLvcQJWg=>&d7-Fw -Sx^YE$QZJsGvB(Y~IH+SF)YPeyHOw68OiYO-f2)y&OMI`*J-hSF8XfYMdRfYQ-uUkj9uU1}{*I_{BJ3 -zUv~B-R3@V;@@!l#YFDEl@i4v9&AeB5E!NI{R&2@d%uEFH&qZArDpvKMyWTyf>G+tuV9oq?<*LkM*9jzsRh1 -*QEGv&V3bbsHa8S1?LV@)eA_jrLOoqi&=9RKX -~9%_|tCu6YHc)HSbQ)KtbjvS5_j=oO4o8@+;2YNJ;$N^SHCMyZWn!6>!SD;TA&c?F}?HLqZly5<#(Qj -@%bQPZNcK0ECOcS1@WGA6Y6Gr6zd=qtqm?V3eBV6^tq>DKJW1^9n|(YhJ-9bH3Y_#3erbT&8x2}K(_j-f@IHmAV8TDL9Sq#GeNF^nNvNkpqX<$uE3d-J+9!HdhmS&nswjg6+}}PzK -=k&?wq`WY3jrG5op%ElUGnpo%nPG)>c;wxVE}l0Jhch4zjIYr$F24bqcnvUZ;SYQaSnvG<)R&Z))225 -op%^&{qI%^}YTe-0JlX#8t0%Fs^!?0&>+g2Fg{}7%*2|E#O>rwE%S0)dJF0R|`;AT`gc;^_2(gs;@j~ -SG`VwyXtic-c`>IfLFaLLA>fU2;@DdA%J<#CAb25n>B-ajv2TDd(IiSf_n}cxB`3*7Px|ZjtRH|eU1g -Vf_=^fxB`B@5&jDLh36Fb^PTTk@XvR;Ujabh*?t89eJA@B2=uM&S1`~wre6U;-RH$74>Hs4N<*o!`*$^-{}hdqKX`iLqM9P~~1h`#6}sts_ -k4IfxS_{FB~e?t1jruKhA{KcmJe?tDnCIdi10LCTGdQ?Aeg+)ey>EbnyY~%naQ7|&4({F)z`@m3~2z2 -3pW-Rm73+@Hg2pxJ8~9NfK@!NJ{Y5FFgS2EoDIYY-gVH)#e3cdtrtaQCVN2X}ooMm)y0d!2%VyVof=x -O<&~gS*!$IJk$849#A-;GnVw5>hg@-D?>f+`X2;!QCqt9NfKf!NJ{Y5FFgS;=sY(s|g(3y>`IC-D?LN -JiIQzL3te#0y8$59TE~VHn|-VA~QDG9TGA#Hu)VALNhk`8xm48`bgGD!H8eAV8myK=EcW>W>q+%GdB4 -k60$S4!&!mgpqvm1=^2}>5DD=ao4gPS`5ApgF-YLx@f^?u&5m0F2M^~hfrEzwm%zcpiA&(%QFUZ+@Ti -J<0tb)rCx1ea#wKS)LXyTNYehno#wKq?LYBs+@PvdgjZNtZ327Re;u8|$G&bcYB;;xI5xom=P_~VPM2 -$_pjf6;zO~#FcOpQ&>jf7B*P1cQsREwt+uf@G9K3rKfP;6h0&wu|RR9j&T`l0Cycr2e -8=K4-2~it;M5_QClwTtuY-78JQpmtTSvV5nHa2-U67n`SnK%*xH#WIA5)wE1h-&`iU|fBjPY%Y_*ZJg -NADJ{#F`{#w9E_{4{K>(%`Z}K+jH|En$-z)MLqhaMTz#ES4u;Ga3E>-Y_5QO!v-h6`n!W!l(Cpo2g=X -(ID>QqzS)o~pXBqVc$T -m%Wx9FZJ@cZFu>;9a4)Ss^rQ$3{Fy$V!lq&k@OKc?p{D{+&~^>;(xC9U*@~LPkf(V2}{f5xTcOA*Cba -IY@}<2w4geaymkOfP|oqkRc!;sUu_nNQmkPHT)B@Izs*Ygs_fKLq8#{Bh#48sh~P9)6G>?@z -4+1Ky}%~}P>>Sp|*NLc1P%r_Jr -_`xcSOY(Cq6xL9?&(1kJwA6Eyo8PSEVNGeNW0&IHX~DHAk%T};sIbumM;=ztuLxIG6(o|-3L=aYjm`8 -uB*jLFye9A88taX3sk~IC;f^gOe)(9GqMU;Nav+00$?pIB-y{_k?_pQ13k<;3FolN^o#;MS+8pD+(N( -Tv6cQQ_N?b!aa%S04wOwf`U>BxJit -NC*k}E)pU_LOzRxjF6DgA|WKCkEk-iL4_P7#Ds)W4ia)gV%A?t2nq=~HWHFTLY9q$sF09nBOxm!WZFm -w3kiiEB&3Ced>jdJA$>&e6daVbBOx#(6o8PB7!vdD<3RInh0v^+W`u@>JR%9HA$>%e!9m$Z5^_WOh!l -c@v(ucx!Pz?!I5>N^0S9OAE#P4BE&&b}?-Jl(@h$-lmgi9CQ*-ey0S*@L65wF*E&&b}?-Jl(@h$-l7V -i?^VDX*+4i@hT;9&832M3GSJ2+Upy1~KXwG0jxuS#%G&X|NaktklL;9&7O1qbDYNk|k4nPCzlMWT2ug -M-Cu85}HL%iy34F$u9EQM{JH!Q!LvaIknSgM-Cu5F9L8g9sN1J7o{AA22OPBj2Z_6Q+&B2#Z9Luwx35Bw@!CGD*UYDTI>5; -`I&=+Czm{lCXygxg>o=*BKnNhYHCgVGk9eNx~i~WRvs}oeLaX{b&Gi&^{}~lZ1U%$R`Q=tPoHV_E{mJ -B&&}`>YUH607SF99%aa2bx`(;Go@E2rY@#)dCK#rUN**ng!tCY8HTlc6lMWB<%7+bV=Cdh3t -~BrwidFp{SOG^pdd43-KkfdY=ae?fXK2N!aCu1e4HnmJ%XN!oDwLn1u3J5<*Nufh-9rCZR-@gcy@hBu -he$Nhp&gA;=^Y%94;|684xO$|USDLzYSCSxE_DCZVSzC8U{zU1x|h3A@gaXA<_9AzzCZT5P=HNB%1QX?Lx?#EKYj=~Ct=4Of=c=Fq@9ExI)u2Bu)7a=Cw)ZM2ORW+h>&;^b^s#sBeOr;b;CJ1|{ruL=H;$sXqup2|xA+NhlGn7I4shNMxae9|eRkl -(0h*X((ZbB;ruQ4oT#pgdLIyL`Rl>e6WUGW-UI@`BlO4uWWn3b?22stZZM-YNm;{L3#Vno*m9JC_{Su0`x55iW$ZXcwrgxx-fTM2 -u6khjuDR*gWjK2;)drP=L+$dzWd4>DJpy*&tBX-aZQNL^`m`yh6u+3kbem3Do8YTJYnA9==zX7J=-v; -PO#D@}1N3E?Zv{vV{TH2Z%LztZggLH{_kR>`JK6?0K)yt -iOd3#L|?^l90sG^yrm@D3)fg5wcjCy+#OQY4#c+jiuRZggBOFuMzTCnw>=mWNCI5A(5piq9q}crP*tQ -OqOP^5kgs-y+%l7X-Z{Dh-GPZA0d~e*?ojymZo5qgk+YcWR`?zmZoTyglv|kD3*k9mZmJ0gmjjs?3IL -gmX`cP!3@oQU|@!3KOitebM?8PdGo8FS$hIPTAKY)NNH(yLm{T6+53c?mS*o0f?Ap)R1%U}n%z){YH4 -;uA*-d?`-HHTrU#fLq_s5Vs3gR-G&`M;*V62CLSRd?(+P+8{gB5Qn*Ef=8Jhi=#~GSk2{Sai5@u)?zmVY4?3hA?OCRx(q -1o%bK(kkOfo8An0?l6C1)9CO3p9Im7ijicJ~`NKp7)c3?dEwuIoNKV_mhL|=6OFk*zEE`o=daK3xO`p -E-xgyG`qYI>C)`-LZ(ZzgA1W9%?>W4x-?~_B*eP3n;#eo4%(fCV3%fh7Lr|>-C2lsX-ZH@$aZP=Ya!g -Fk8B!&X0L8=&<-x-yEHqv5b)CM;6lPnvx5r}FU<}vWV|#xxDfKv?9M{UOS8`kF)z(NE9AU1`>YW3((I -~2(o3^r3Q;f3jwxilG&`mc_R{Q_LfT8SV+wIE&5kMLy)-+f5ctxj=Vz@#vmdq!4%#t=%$H`z6hdE`T} -()QX?7MN_NCcbgxr^AXAy#5nten_erfg*A^N4+BZTaiW{(iUUz#03NPlT|1R?&V*%5^Nmu7Dd0$`fGJ -xG9Q_VyqGrrFzr447tb4?49$ePq+fsaZYfj69j99&|>YOj8d!BTuHO2c3~ -8)6|2`$dhU6IA`R^Gks>7R+C)3p7&B&8!>hNad$+YT<0tc(>2 -OO-f7I3h72Ejq~YBTa=ntHVvc`{AC+KfDzrp|0eo=j6`HX~1_sWY3AC)28{1strS$B~gI)6{j%$dloyUwknYQ^Ff`gl{7&y3jRf2(jr$dhT|ogW+wJ^31WGA+FGgM;Cn9~=zt{NP}?e!#(SwSa@+Y5 -@ns)dCKNs|6ekR{}T~Ud!NMcrAm2;k677hSxGUsGepP}|l$@CE)d -B%v3Trg5KvS1`Ma%xt0G9yo>sXLjGC)3oO%*c~z>P}|l$uxB*GxB7bl3_CPWSaVw8F?~I{mP6ynWlba -MxIPlzcM3Frm0_L$Bn);O)c`{A?%8Wdjrev6mJej8MWJaD$Q+F~WPo}9 -mnUN>c)Sb-8lWFQsX5`5%$-L(o1?ygL5aCc>bgS+bx9Nb-p;Nb460|$3k6g -arMe!#)q^#cy>t_^T-cWr=!>eXiC$u#w9GxB7bdbJsOGHv%R0S@loCBVVmy979>&TK}WOjC+TMxIPNT -nXUd;duuK56=!bczAZe!Naoy4j!HhaPaUh0S+F%^5Ed%^$rdmUhm+bvNbaDWZL2R0tb&(dkZ*tcuxQa -56>w$cz901!NWTMICyxL!NJ2<9vnQp1Av2v*E=|Pc)f#zhu1qeczAV#gLlstIC%GbfrEFiQ*iL^bqWs -Ny(+=MyH_PRc=x=6gLlt6IC%HGgM)XkN^tP*N&pA%t^{yU-Q`Pjx+LPcJ+=k@?>`Pjx+LPc6Ev~@?`qRp^@bxBTr^m?> -Hk*W>=>;BTr^mUpOOAW>;T0BTr^mUpOOAW>;T0BTr^mUpOOAW>;T0BTr^mUpOOAW>;T0BTr^mUpOOAX -1{t)Gc@};XJ|hBJJ2jvB2Q*lKQ|*!W>-HqBTr^mc0@*=%&rb^MxM;B4sS-D%&rb^MxM;Ber`sd%&vZJ -MxM;Ber`sd%&vZJMxM;Ber`sd%&vZJMxM;Ber`sd%&vZJMxM;Ber`sd%${7CCkOZB%ABCtl{rDPD|3Q -o*Wm=suEQCcU57I?i>Jtw*^?`ChGtjh49%{?8Jb;(Gc>#EW@vW(%+TyTVTNY!2?d(HClqMjv<3?_dzU -EC>|LTjvv-LC&92@8&7rC*(A<1vXl~M6pjm%qBTr^m4>}`HW>33+2b#rh=F8cF -ix)?3zD0xM$b=$-zFNBcB}Hvupn3;GSLcCkOZJ3O_lxXIJ>i!9BaePY&+c6@GGX&#vc_gL`&8uh8u3U -7^|4TcO#NS)ti`W`$w6O9$?WR&XXMHBk?{>V@?>^(|1^(|1)+!DnOphF7H7`p3E-qK}Md;e)GBj2X9^%;NZ>c0vwdDAR|v^m#-irPiDV)?F@6aWAK2ml;P_Ew2)oUZ$n`ry%?=c^tA4KJ9EkQyP!@gK0XT-gwskLa)>|8%>t)BxwgXA!KK17lQV^Xh -Ok?zO+}f|WI31aKo28437!9CEbyhtWl@JvrE|0sRC~6iJ9&6NUDB8xl+rzGw&-SFt(D9G9?OiiV-k*b -A?CJcr-ngDdK5xK1NyzYx5N_paP|{hhX}oix~J2Qj2$wTTEYkYnC313+Ynuo!Zhp&8C|sC+-Xiy?`gO -29zQ^cMxU`pv}URt7nSOO0k!mXw0M{;7Zgt)>1&)M@pSQci&{91EarD$lI2cG5Th$Aw67r?1d~D1e*h -xxjmD$JV^BXFEvADsrQs~0nC5Y^81Wli19iIR5 -@+M6JyL7OKcPgT#;SAALZ}$BHayImqWI@{a4n13m-NE+#HeIls=i9;3XHkdVbx|brH-!> -Y*~mcBp5Z52ceB*qb-q?#*@g?M;_xnIiJqM}z6z|9nK6jYeTjNl~^H_GKZ$vSEPX7JZ&Q#J#&85;5M1 -+To2j;&3nY#(At;DYC89d_wm3nKWc3hs+UDuESxD{mz;-tUlIHD&=Lb_S{D{Wk26%&lu;*pG2+F$!ap -Y8;l!`My7;whwuT`y3B^>0rGrt42MHJT6k@VN@lP^%ri)V0qkAdZc%AnN0VR$D -(y`~~}?(JK)Q{SF^KzHaufhg-ae9>IO|ANUBZzJBTL=5kT7W`MiI*`!X9C0kira!GRKTrL$0B0&jjiqHX|745Iz0YEgK=^oI^ -Wqo^ZE`$aLGd=zC^wSMUfuB7K|4~03y*fEnZ%z)6PA`tsPjAi+|D;CdKHGVwE^jk+R^~VPDqX6>VxFn -IQg4gD6f0Y@;Y}bUuK`PWpSUCs#vHxAk)o1&FX5F-e({-FIJ -WNTHY6B`^5=X?~1Y;pOsl!XLEJ^*h-XJrDY@Q{?To9TdUo}J*B_(7SeCyrsRhGN!&EB80vT`HJ?CXBFjl_v^vEEJVMt>L0`)1* -uQ~FUYT{Oym<$llwgQatouUfIU&iC%b33P@&I9RFcOs%VIv0hG`1UFaxa&r0l?ER%WIQ^i0IXFK*IKB -Mvy_@Si?XJ4`b&~SCdk4X}a#oe;s(y5eI{|Nx&JSO^6$d|^yg9l2&}e^ra(Q}maiNaS&eef>cW{1ra` -^tu!MS?({`}q9#nHY}7g^T3xN&C4$>idN6M0uSPtLPC&6ibY`Ue-@$|<;^Ss^=sGDwd?ya{v;B!mw40Q!J}q4cF5L3teBneNFN>m_sGo|e -Zl=CHaBCx@b@W`@NGtXJ!i|jmQAejQpGYdtc6JtJai{9X``nr3qSmC&8;6XEx?JBc9m3wPoVGhXe%x` -Jm+4KqN|kv&yG=_~W&g3xRx@XFdfhB&>|U+!uALX1O<6j-RkO@Nsm$(6m&q%a(RtlwV7u -AaV{uo%aM4)o{Q2HY8|l-TOZV*8TK%AQcU-2c-Dsk^!}KTr1&991GQTKa?@c=Moz-zW(tTS0JnoNfn( -YT|J3?RS-1ajy%y;KW{}n%zemmPwF#T8EpIHAy_m^UEDTW|+0_h+FNo?Gk|MkN0wZr{;4g=YzZj1F?_{xuYF -%3oJ_w!>~=!J<){1cd0zia -*Am=xWLKEc!9bPXIz_vh`0rI|;B7G9fZ-ZGabKFIfgCWq4d_M$YoOFxKYR#a)Gf%6@^&l+O(u%JJsKjBb|EuI4Y1O|h*JVqE!J|~xAEZAg%4Z4?MgU)d#Y0gMK2m|Z -ufM~J)WOA1k03*9B-0yetAPht+o -M6Cff4O*A){{v0B}Mx__W-&z77$<5>pIm-})m6Bm#Eq*EKX5Q7VJZN+H%1@-}B^_#Lpum%(udP?W=8lB(Uh?985!+9D$|Uj}#ge`zB}*h%JHfos23m*0K;UTDw_3Qumn?tiMsvK* -S+77}#=L5=?0D`YV_?)U#nAa!9S~ -g@Da=Hs7)F!v43a|(4lzQwo$z9cYGY(c`LX+bJg~?HlTky8NeL{MS!5#^#FOnQ&lVa#Qc~=gU0T%r;A -8@)_Axegj=@S`6=r1wcVUt+W$DKg-OrImjd>}2N&J{Y{;+@nNfIC#YsDe)%t(($v_P+g$YLU3qT&6Qq -(19!VSUr$$!OQdT*so%9v#SjBl5k6jjQz~v#en)t_&YbKr31T1|(z#rkkF4KjTY!tTG?svtk|kiER)M -#=lAei4QR@vP5Ec%|fsJEl8g&Kc7l`9VnW1cAFLG#I -P-hD2eJo$Hfl2Cl*V-W0Gx74-R2Nn68S`-X1i$2;lR@O~O0i@{8#$=@Jp`M@Az>SEI6F6u1#0+8%!RV -7@akQ!KsW=xW+?TeiOj#H?k8eN1ino|<_F7%%zD}}76$gTbgZ|MY)%m9X3F-9Ghj6 -Cf@oXBFQea{&Ggp~kdewxp6#0nQlhL@jYzHBnJP}{<|7uKi!Qmge>ZJ9GR&U9mj$dvh=fR6+!!ZSm4U -;8?<>KXjB{zB{%SfG)tSlfeK8VNOm=|GaD&QXu67|?~%SoD#*7(rRcYtoGo8YYGD=dgU#&?YgTAPoi~ -Vf{-;HOyDid|6N=^UM5VU&nx|Aq~e4BOLoT#C%YuhPZDBe-JzogwFsBSf(&|NB(jHo=56qd4X+Y1dzb -UY9C`P2N^sp0Dx{B@FX6&>e@cS1Oe161V1u!5Eb5Gbi~YEedXo8rn~t -?KPeE^xc)tehg9nBq(2|WrA6s7|nA7-iXSak5u^PO`SekBjA~6B|7VISPu8?-U<NFm8PvShg}e;9WL`Z-{R@f{%QW#N_|Ug$%%iSU;NBylK#!^p62}nENCXNkjK~Qin -$U5@~KhbK}DjH^orKA}%pV8~gwGFa^+Fj9{=~!!m@(G%$zd1#*#v$r=ELh-DE(QJ5Ez*n;IXD|~1^KJ -r3#V)-6K0y^LL?!w?AR9F&WM~yrm2^hq_5SF|K0D!j=BxJ1VMf35J2JZ!rFZKYz691I;{`VgNG8y?X2 -Vy`&lxffau(bd@GPZ?%EqEa4Ni1+i#5w}WtWmTfIT0Yr3ayy=5sW9}TA>`4XhA=tnXx~gl2O+BFCJEm -jG@JhFOg4sud3D*Fd7X0lnS{khQde -u#u_0FO&w~Li1P$|t6@3PJL6ksT@2GmG9i%WjQx6p^*>nw#cEEUSoaMCH}>_X!9;irZv-O0s2K<};w1 -6UW53*Bq_B<*J;T=MlNzKd8Xm!pTDS<^lK3j=K8X@BfsjCYVyrbhal*Ei)-ui6ZzfRmhoT8>4@+45On -g6Mz7xD--!lXo`J)^IX0qSDpsyHfq;UiLM&LIh3dC&;yTrcE8|RGl{D~j^*!Qy$u3+@YsEoqLT!)#f0 -Yb9GXg_eq7f5MEIwM0O*C98?lmCBh(U%`|YXM-QHSL3+h>pO+nqkI8lnBU~2I57^uqKBNDyh~FE+HWX -l`x|tQTU#C1Y0%iZCE=OgOU-z61x#>9iQI$L_XBXA*fjF>%cXCg85o(5p=@XOdC?q`0m2^BGEl17Iq{ -ek=RHc@{Mh>`XfgfKxqWfvQWj43|WUj;gI#hiV?NoH!1+}7rRKr9Pwtg<--bSA;X|XO=4={!;Dc ->X;#X&EFj#%TJ`jr??iGQ1Bk&u0=0I85fPar(XSv$h*_kcVs!~6v_vtFDvcvABmIteJ`B>%Ei`G}C@8 -3?(j;DtQmq)M8&OfLh)W5XjFV9Xdr++#<`^Aks*X_{J>Dl{NuczlnZ>E>8&yOx%pS^kMuIeaiFTXwb_ -t3S?#go&Mw{EMK2bTxljCiNLKF=0vI?Y#kJ)Q1W*>bU`p8u#$i&fUC+5BmS_osDHr^{)XE#2aXU2~(; -D!sd3W-r>;iGIvi^_83V@rq4cW!c}G_-tL4&1;~q*Na8-HrA?nLv8zh)?r$)XkLQr{F=_3#uJeCkf|m(&8uubt%?VA>; -AiI-Ywj$tD4~^X3ajU<^`?YCV#`|Haaw~t?ovgp7&+;IWN{#t1c*dvglsLyI7_-jgc<2jdqviI-4}_0 -nTR43wPUB9ybU{S92GM)oi(L->Q6@Rv_y-%T~_HdA1E(1fzvBuSLV}(FAU|GB -nwR2E+u;`tA_Bm3@f&s-%K61U!IDY!Fo@Ke!dXY0|yi019rRo+}l(MVd#2|8!L;?nYz!)MNv9W&a(XhK -MtW=@{Z;`+~$r{a`i`mq=&XP=7 -jZsIgo)3#h)^05p&7aJrvE10Hw%aZEhi1iI>+#*N$Zm#|F(@$<5a$XVoJa{j%>A(&5hXml)3Doypc>K -}oq1hm>8C9k4;AO*s0{vM?vFwDTz%~R3W~W3J7g?$?cW3EI;NXut73g~JDsO>Iu!BiqF4@I>Iiepy`c -sQws1Ii<}LDhle)tWi)E44FFX$JUWxwa^@biF9KkkhmM&-O<`w*E5aS57Ru4t_sp{CLeN#Oq?>H8M9b -2eA^k5xCJeQ%3uJ+U)_+CN3QRnHqrlWwa>`h1OUF)&-9r8`@H)%@Vl?c!C=C+L5e`Xz?%qDl8dA>&f0J%-nhT~wu6{q4W@(vJ_GBz-*ihwr|#<{O$U3k4{qu^-!bxM}D+=4uLEjsI -W*I?4&4BD&`iUHh9QFB=}`~TgJ6mrA3Y@nvZa$PL?4f?wEt6~?A#O+mOGD0EZe7J`9MDv%YOw>O9KQH00008031s8R -&z>e++Q640CJcC04V?f0B~t=FJE?LZe(wAFJow7a%5$6FKl6MXJU11XJK+_VQy`2WMynFaCz-r>6#ox -cKxrXC<}W48<@(hrK@Diwj>w^TgzAi<3)D6q%K4at*&-=2_(z-6CjphFgwFK4C~CmVD^2R@9QVXnn%! -+I3p@f#;vFfJ8x%1Wp;Jy59lZ=DsE)t$y4Xvh`eKCc(%4aSifQU?*7`!aN~y4clI_``lA~*Pl^BA?2p -zrhNt=)wZYl-;l`+TVz72*wSVx!sDCK_=M(+Wk>N^zb(>Z}ok(qx~~I*>2Cl+YaA+;P@>EjxHZQaP;QoBgbyM>2Pg-?c$zV{HGmvd9hZzs&;k%Y6$=gt -~1eQYhSHCK~J9Vt>}Mf1j#={PZBuP@KXfV-9%55-WwWzhO}PN@Ux_KQ^U_`xJCN@1!+w>d7i*^4ZlD- ->1y~zG7>Vtmq;gV4ZloUcQpJ8fl2FMl1|7BzDin?0se}>WPq<}I3!>BI%!R&>J1Vl`N}uRNJuAd5tw} -C+oTgRC%+~z8TW4pOh)os0+Xxr4q1d`fbSBR^!+~RgiP!Q8YX>wNYGBQzN3#c+|}sEWLoPQ{)F@qX!u -hy+Zz3h^g-ayNgpi@e?eO7L4Qfmwr>0t=_Aze*90b`{)WI!4S!1}RiodLi>}e{Nf#uR-)nd&LC2Rgsw -aAUAGuf>y`OZf*Vy<061ToA~Ty-e~QEywP_y@H(-Oj0sA0t^t~A54S1Tofg0ou*dTAf)8q}*AaB41c>~Tw-hd7A25gWwV1v8?Pm?#$Y4QeYkT>9 -I@&@@#lQ+<5@&=lXya5~J4LBQl12)JTutDB{eULZcT;wfS_u>rc+NnFRQ8(`EY}6g5Q#V>0)Q#2#bpt -l28=V-`jn>(y8*n!2M&H?}8?CcZH(DFi4cMS=zy@^#HmDn4X;3#>XQOVw26Y2As2i|B-T2B})Q!HUsT --(4-T207>IQ01H(-Oh0q4=(=pz$#qp?BVfDP(yq*FIqPg6GOUN6qD>o!z3E~Y`Q1*zEUFt_WK-Qd%fyN5ZlqH;Mq*GmV1v35Wj^XoEE7tj?x@? -RVPa9;Ji`Q?%#peQ=Q2!qsvDi;qHc@ZZJ}-_h6(!4M%@^9ChAUiyFF4jOLe1gK3!mes)C{i|TffrbOdRs@p={Xq+ici7%XAd7vdtX;IzjY07l!wxlWZ8zx|{Y=#No;>!a -8XG>H1RNXD@brY&{N8PyeKD=%Vb@RM#Cx!`H&(SaeoU5|iLfvS+7?s@?!^B^j5?@$&ni6o1G$qUH1|# -KA-8`?m0M%`wZk}O+zVoSWZI}>FD=JOtM0J

    *lF$UYe5Ub@L1p3w2vmcL8Zimg;7uDP5>;7u1a}^i -g5L@w$O#GE8Mo$Jn`f8+_CeiF3=`ae*}QHZbr)cmq*s`r>rB)Qp3hd-o -vylpW}|L=qlf*JWj0JK6((S>T!snY((b2pLfwL%sW2&zVFEal*UhR -hLC<-p+hUkl(v%*(ZU=SUtO^rsSJ_!xaxALbLfuX(OxzeI?S#4s?`-1$Dks#9PUcwGT>y1kR5!1}#EI -(m>2*6%-8||}SKX{Mr3>mV&2GvasJcsE9LP&k`Ya9<40CaYV2Y~i_Gy?DK;1mU#OFqMC#u_GnC#Frr9 -Z>O1$8^A>t=0)cc8i*q$x{J-Q}t4ZfMm_m}F<1VZuvO@~E4arYt>m^Xj?_NK<-L-7csbJ?|{)cA&ah) -Xh=dV6WmUOn8O~;A~#Eg}MRfGfec!frK(jwk5|x-4@l&qi(>(SD2J%OAe2^aT^z3VUkYWKs}rsh^~u1 -v75IgC*A7?I;WEZ;fwp&k^?x`87635-jf4$aUkJ_Dot4)!^D!N4r%VdB&4worEgUbmCtKqrQYMR -i*Y6Q5~H7u1c$d3IB#8z%Gjx-EtY>s1RZ>IS_1vp5M_3=~Wwk|47iIrK}^ -SaBErgUPMIH7Kf>h?+9EU%kI-9U@3FmYm-0G?NxGTkuQ6%{5t)$Jrr+0toBa{n&kMtEMDvH-6eU+Lov -lhSX5w@^1PO_}a>Thf&NR5x!+PI{WsLfyPHrG>iF)0FAOftI>%bdjYvFg;Ca@wx%e@l^{vubXF>Skjb -$^HrE=!-U+ZC3{N_U>_Ud%d;g1aPhk-G4A3G6BpFY+LE(SUN@_*J6(0Nw&ZXO6N~ERQFnQ~Zk}P{hPr -i{lH8F+9s0^s-A<^Rr@8?b|AI3Mbz^|l8{sE^ir7tA8tP`L?s8D~PBlylpzfAF!-U*=B|ERXJgVD?*N -wij876>pscs8(SE}2`TXJ~R%`!}Q)D1X?>c;4*Ltks#F-&}>DOMp?Rc4C-Vs2gzgs -s+_ac?^^JznhY$y1f}D4ye2Is+(t+pc5~uTUVHno5{QCUNGuL>x#M+ykn_*{;Jyrb@M7r(hU=!#l9uS -Cv{_Zi$dM{EjjeASwQNx7$#1wKy*-@0YQaf`i6u> -m*13uU(Mc}VZ8^ilXK|pVuG>-^XsIyaQMb?HK)@cT8|d7q8))ILT3{I_>8cxT=SAIsOH18=i!TmrYp< -K!2i}jLvZ!ueg$a+kEvnlIbvyC8E!1sM-Ig?^g}QgM>b6ifW-3#K3G4VN3w5K9OleA<>h@=tSg4z0m; -lXG*Uh7Dbh0a{yQL3(B@4bN)$N43d4`Ek>UN^Kd4`FFx_Mi2D(cR)C5NZFS=0?U7j>s^giqg+W1;T!l -LL1qb)yp>)a|o4Q2QlhW!sN137DcASH84XH;=gi`>?v5FgM^zbWi@+H&dbvB-2}k0UOK>I8%WM;7o57 -wj5ys*kEqJ*^V#)Jk8udGi52$k1$E!2M;vU5hj+?rvMww4cK6Azy@;zHkcc*!Q6m-FgN7tb+qB)NK*ntTSINwSnoPn|Jz@MRc=HpGv20%Mm8&ehG)VK~uR74n#SMj~B -vQsGE2C6b9&ny7gX4vRJnvx_Nd<#oT3PZd|m5X6|&m1YKlvx>=&z!rUy;ZDDSn=yt%|>2`?&(akFjv@ -kc|Y@!>j4dwCBD&M5o9CC -XtZs{60@%YVa#%&(tojmfMcqzz!Sj-oJimnZo&~^O{E}8e-DK@len~~$yOX*-mIivPFIgPbU4UQ0%Th -Wy@zu#Ia>9hU$s%!AU&3Q<%XXadFt=qpj!)*cY=Za6+`FQ_q$=tzBXgJDFLCm6GdF&T-bqQ8L*PvRuejF!$iG{i?s@utXDVMq~_lZv`4)jcQbW*t2>|171 -Yz{H}u9c;)+_qx-moAow$9(6l0Om^yCN^NzMOIFpFl%Bb9`&G=XI&rff$6|H6$WmI)d-W)~EmpU;t(5 -*mwRM#_r1E9%CymgvktzzdtBacFX^`AD0ycFI(f$eZzHAU_!5ii_DbE_Fd^|*s=K1@-AUaR)s3 -Drm6!02FL7a*SoXj>IKIR|c}cp}%_}eQN!@7eg -H7j@=ogJdELC@UO~oQj(ZIf>Lw9Y)Ll{c?xb#u>ULq6Skja(3=@mj?N4=c3=Sh@x^Y^-W)XmuhZ&BTxs_t~^cA~m@)a}zSv8ZmZ)Sc{tr(>+ByQ1#h -N!^w-rG>g#s@o%VTfAISdvsNz5 -jy6ECS2Rm|H6bCw~>$VgJT6W}E4ln_|W}|LPUAGg}-O_1F@~sthSJb^Q)D1L~>IRxeb%S>EsBWP1Q{4 -`V13^7G3==dit?K4cw@<^Qsi~WEUr~2O-3vqA7S)};58h&!uy#{gsGD`*t3`G5&YohWDbo!Td|{3QUs --kCJk`xRd&;7^c@-v33==2CfkARsH|?i7@wKAvg`sYX>UOaao@JO=Doj|^J$J*zLfzh8ki(;H%i&WN> -gE*(T6R6To>46QI-74b-_|0@R0L0=Rg?#6sPG^SvM^F-($w -k#NP`6?a$Mt){i&?uxr711t@9-@9keRq+hOQ*hhbO8<_*T7RW>`p(`)@ARm@u~{44*&EeX1}n9-;i%R ->KiC}A25Ys^MsKh-SUXc2_0Nyw=i@LB^)@yJy)*qE9`BFNZLCQ+zQCIo&Yl{s)~;DUw|07Tt~VMC*RE -CF4*Q$3-&6h7q3CQ_yJxtuB0newTf4s2m4At6{LpZ1v=MishbG2-2!E>`>8-De0o~d=wc5XC^V)rTZa -HymxzlNNms`sRZ##VRf#bIvIJ$i3#|Mrt-+FBM*zp^0I$qmfyC|nY{2Fex@I0#5CzBIQqrn6Xr_peNH -m1?W1Z_^E%?a9?Mq3lKJ&m>}=+ZR0G(kJlXlH_UDLPUy$k3V!TvMPC*(n7Zp`BK6gLbi@KqEBuY!8gs -?ojY_Z~-QGI=Vp3a4;QSpr$zJPQz-B!|96`s7Vf|V+_ldhb4yU6G)I^8VQ3hQF8&UQ -YY(%MMJ2awHvmF{yDs9v-qEz$UFrrlR-H=f#C!waW2EqPFVNHVVRalE)S1GJbus>GV62bmNVI6|~Kw( -{t?Y(;M=I0^)K;BfYM -HhIf~hqs4>$n^7HAMmtLV^H(7Nxwm(t0T3Z!f4Ulc~y(!VN<-rLIxqxbf|DJ+hot; -V9*xEsgORuiC@xGNTunsq$$>TwutH3KWa;xO9k3-G+F$6>V9mB7QUE{yR&UD`7M#d@l%Pu~eJj-#s@4 -uFXjg|+fifWp(QEATFWVo|B+R)L9CrN(_0Py09)T%|+-#IY=?t2qQFmQ|oWybe$VgKznFfN?OmHy{Ya -qra=-+XNyzudRpi#v7>Z%z(4^Z4Bpp6Rv#R>y&{0Bg~!Y%@&OYA= -Z(lvH3K)T5O3m|=hoIJmTbr5#Ql{|UA1JxtV|8DZo?m+f5>SPjP9J)uo@E!9I;|<^;nTi;10&kGni18 -NiCYg{JZvz*R){`t~X9>6n7Tgx&9pEC~dJ=D^3tT*H>N?&YaPh>c>v$nIr3$F)cyaGZB~aJ#;{KCrps -wS^Jt!4HUB`?0m#QF0;_YJor7{STc)OT?sSbi9-Y(`}Duf`3w~P6gDj`VX?PC6=QV5cGyO@8e7J?++F -6LhIV`y9YHEd2I>MH&bl(!|G~2N=iHH0;qpXp -t5!;)?)9L>SUb0ON?7n7)?*iij{FuK*P3ZnRXUXdom>6SMRxK#}S;4ADS{k_LwK8bGlI@kOr#6gg*1$ -QuAfMEIgN0mczE@$t6+iiq$Ggp-%9N9QJ1@=yt@6~dRm1VbR2uK>gv -E14TVNg6A4c=6cR-R2uC!OB>`%7;fIFOfB<+Ip!{{HK*gb3!5|)+M}&nCT?gbl}FOSQ$R&f;K}jRK -xI@2>lvVNSS?(VX93Ea2ys0JRET3VO-3N&!f2ldDlQdRb^HQQajiftW5uAMR2krw@k>DEPcXQ`F9Vf7 -!Z3@k03|;qw?H{l*2MT#pj0G}V;a48PrC1Vc0A$l=-DSA12CHiIbYV@n-$%b6UmD*xzJL6{`11I{@k8T> -$B&GEHhy&c*!c1B6Y+FiyJyesw;a9k*zG5l<6k&I<%}z^a>grXTw;|oUOD3etDNx(RypGnsB*^f*sPp -!1y;`ZRXLpT#Q9CkKKXzLCnaW|e7@tBzH$kkkbJ&_)bR65TH=Z2d*u?$9{GgFEqdh=ycPM7$8x-K35J -h+&f_{|v#s9&m7%GL*uw4cf4bZl@cTfg+(y{)LP;!P8gPFJDbZ0aw>|NzI<5-&Ts>B;9V)Es}0`VgYS^12oM7l74q$0V -O$)?vw=tyS_VR0l}J=mbaNg5Ncy4g&-|&Gld}Z#!L!92#%Q)g0#HN6oRz8%@l%A9cBtaTHa;~VPbh3D -FkVGn<)fod7CK&>3Ewd1nGF2DFkVFn<)foc$+B%X?U9{1nGF2DFo?wn<)fod7CK&X?dF|1ZjDjDFo?x -n<)h8dC#N}gaDaIAqWLBlR^**WG00$u^fORg&-uzObQ{SKl_ptg3ur{DFmTGW>N@b&vBAMkb9iX6oQZ --W(q+n5Hp1!6Z2*YA?(hk5Ty1nQwTC0Z>A6$WV1O^2vT*JDFo?zn<)gLIA&4^Qg4_k1fe#}6oPcU6^0 -aoG`-Cff{+1QY-O0 -0;maO7>PsLtEjW7XSdXfB^s{0001RX>c!Jc4cm4Z*nhVXkl_>WppoWVQyz#gP@;b(H#)*p83&x%DA-V#nu -P*M8`?g8#w4q!{phh!+sv6jK7^kURMj>(OX{cL3aY_+T)&Z_vM3+3al|=se(Wtn~*6&RysZ*8Jgtt+V -RCw*2AdpnujMRC*UT`-5TSbZ_JQx_`%&p?@g+>(l=5cz?}bUs>5(sU56*zrWQR_8#!VKe-1h$9nhs>s -P}6b`DnV*;vP)ss}44{PW$Y-OABZM~>XpId=Prqn+a?4<9*JS*>iZRKou?!e-l*%HGO8e_td(bZ<+mo -_Da~jMY9^uQQq -L_ZzGe*7uui2iYNhi^v|RgsE)zK4tsCTC*$1WqbV@8>m?Qob|!>;|nIUWAG)DSutO+Yc*ECW_!&Vf5VP?to|lexP|73|B3NErusMSQLg` -i(xa}Fqm!K@c#qDikI6r<5IN4)l3doEr%_K(TTOgyOYCa*x?1`uma=uO|GWio=i%^~2b`X*gWV<}mum!(kA23JwG1Ne-ind>l -sW6o+f3a9E*k`zF#^4qFae4o7_~TP`7R7;=)sP^a+2*&GIpa&Z`4BsmO(PUVNu_1rmJi*pHvw1wp`PM -j2nA*VQuUzSsG7=5QW3^~PN$SDp(PH`A=io=jo97Z|$IE+qG9EP0YFys`6A*VPDImKbf%faE<`(Yg5Y -5XuOZY~ZN;D>?BB!{7L#TpUK@68tc_F2N6@>v`wH=sC}GI-3ut^WoZr!wgd9a~R;t$6>(_3miu4sW>e -7VRSM>4x{gU92Wer9)|@#EO1zOivyjM;fK-pGH@8CwFC|qkV{w&=i_kfhZ&8`=dh4V6yk>k4nv-b!-5 -}%Z2d6FMR8d0!`U3x%O$ip3|QvlFm|s54ntm6Ka8Hs;4u15aTw1L^W_qdQ~7ZGoQ`3~d=Bg75`rIwT* -h-cn-AyaFk0v1Ft9U~A4VtBa2S2$nzx2yQ$jv0wFv*{IDK}1wT9o4r9FSe2MW$#j2_EC9?hS0>0L)mrH<^bI&CdNw#kSiTNBZ^Eq81 -xrD%B<8ujIdQ;^RbKtP>oKB0wuz!n{59@Kbyj;Qz4wsor=y6zUzJx-?_D#fCSPlaK`TVeuOO(msGINP -SI9!MyM&DD-TPyQ9T{edcc}|y|OBmyawK%NhhjsE{Ee>br60ou}d`^c=mhqe}&W9Nq7M8<$epr}4Y>p -qs4$jaI>&=(I4o;O13mit@W#q%lGL*AFfT7z2q1B!g3h$qH$R8!$K}m2#1B|bOMJ3KP+%q$R+eR4 -7rT=IA+e_T{~|rd%nbO;ILjU(VlRaUDfjX!-jKsQT?#MVRQVjz+t_7xDY>#){Etb3z@f;&0(l!a(LE$ -81fAB;UYNf#T;grular$va#p5-VYbTVaUsnOPIo8sLRV?!4E^8YMq~$!|Xa;SPl#GCG_6 -o5d5&fVPXF89Nyy)I1G9I?{Nt8C4~1l^f(N8?(>IdK3_t}C9oexuD4deb2`2EIACRGIDc3#AD(=jj$e -@Gb9fH91X|DVIo+bpm(cUWdh1IF`7k<3aTs#0T%yGJ5+&xtCC-=7;xJ0gI>=P-X*kHdQJaR?k1=B*XthqF0ch#$`8aEX4{lw87$@6!qEUKWx|2 -plfN56ACuuuE*&I4t<#IdE9WB?JzaIbTBHFl1xbm(b&I5%VP=&(05{^)!B1$R*0-aQ1V$>|CM%4h!qR ->v6acKdi^$?D@mBc>XZEmShfRf3JB#IjomU%z?v#A2vRhDCE87+0P#~<~@!Qa|waN+4-;*hjnrZt$Y} -b7i`{|z+oYmi1T4~(U|XtA(yfKurOaj;IQzV4t-Cx4*VRR(+TTK==ou6a;jVctrzS$o#DBJRz9r7VW{ -(+KMZ-n=1X|-cS70KVLpfT)`8da!;s5Z2VUT?Ieu8kB?LbVdH(a(is0~K&RZ+Q50{opWc%R)IIK5cVh -$V@*1d$B;&8m~CA$oEH;0XXPKV-+{T@dlepq-;C*%^lm&1B~*bELAFkeF8aG8EsFCW(P!|`)EcD|d>V -aW4ee^}r!))Md^k%HuH9De_^+Q{=;X95!bCVJGG=JF$!5uxkv5_5AQ0IIQP~ -A(z2n$h$F@5IBqnQ2D;c0Xf%v3CQ_4jMgQ5j{|b9?{Ppb{CmxilN^ScYrcfQVYE(h7;=ikkZ0$Iop}B -*JA;?a4_gjf4(H&oFkeELx2E-7B!RmsYhap -enhtbDWxkM2h7UoN6aTt9pkRJv@^KlrhXP8UG^VZloY5lO}@Gj(VA%3`sTtaw{!}{ULXy|fSSYJYq!) -RRwhbI_jC!dXnEru5i!+NiAXnn4^h%GPy_+f#=LM#D!n%A1$IG122j^(iBu&EptUgMZOhanr -vVZjeWURFOW*GudLKn9(GENDBJk|USPokbTMkEku+^LMy~Tmn^X4!b=i_kpN0AE -PaJC-?=;qB~V`2#>ev5-2f?dsFn@d;@Px_E^3BeCTHZ&fFJWVcP1c#yKdy7MuwkB}6kX%CRZMxVFv$3 -|bB`k(5hNC{pjU|eRhYNX1ht@NCN~eY4B4!VxXH)HPEw;mKRCl)>wj4H@!*;fWojv?pI9%qp=>!hzy~ -UCJZMymd!)*Ah9kv)Y6~mCHTH`0%4wv{cT_G6Ovco0LmdKtwy!>DpBTS39Ti5CLcuNLt-&(F>Em$^-=Bzk!J6PwO--Sa>F`v)`Sm) -W``2l9|$ee4Htr8y}1&TRDu_8QwhsqQ#mZ85|HhOnk#b(hoR1QX$i<>gu{?ac%`{H!7!`R+F^@fQ!%W -!!q4odtQl^HwZ2QIh2hestj#_gF4GPR3&2k>%<7Rb>{<+443oTDQi&qma3NFHvfZ$NVc`vqSz|cc4GZ -CLc^EeS4UU+@Y|pJ7wj4HDu2$YJzh>Iy&gIG11>wH&q_HkHGAxda@Y{SZf`?Aa38?{H*u80r)p20~}}Ar2vzK^)z2&gw@Gj)AkV^=DxWtu*wdPBpk9n^xv54 -~}1V5}dU!o8W$FFhRupG7=-qjoy{IIYBJX+`S!+N;{wm6L+E-{zL_QTn^gdraY73NDoo@*}g(8|i*@c -4#@@}7+~|GwUazg9VSp*!fF8~TH-%J4#WSXt|>RW|y=ihsGcHLUbDD#Jmyx6#`;Um5zBhta&nHm{q@Q%o0m4u4KH*gd!oBDmJ$2;BU7bVUyZuz>?vtI -9rw$)ERavcUM}wg5?VdLtm@}8F)$!0cN!1yvZc=r}YAvbO#%evO*2k)sRK2m?F%`Xo#J5Ql>F>lLybCL3 -WchIyA~|vPOr7*-ailhsN1WR_V|{yU8k@Hp!_fyZa^MJ+V7FpV%qPM){eD3`}T~liz;h(3tcM?({3e=*YO9W@jCvHG+xJT -r13iTlg8^fKpL;(JETQ*(5-_`)_R+1bf$V$rqOBYIZUH-)N`2z3e=cJXQx+Z8l9TaTXWFpy!0AOqm$B -WGL6nij~|bNq_N|%?~jN*{CNB^Y5aJslE#n6pOD6n$DfkMkH?>p7S_?C-MgJ6H6^l2H>5jAQ;&YCM4L -mTg=Mr!I!sbnMY}bYju0x9GpN!X^}D30AEr)YtQ{pyJ;klko_voqbuV`4-`+`@`Ups?IoAH1H1$zdhq -Sv$3#({TcgIKyi)hi_9Vbbd0EdR;1ZiOrExLG564}Edn(eXleUhRYsJFi$EvkY3=_%5}8d|i0(LQ2pPK#!sfdC5@jqw&!)d4 -jh{__Pa40vJEZZe`yWUP%V^TUAs)BGGMaSK5sTaEK#+vHUNtPEMQ6ksw6Kgu@`q`7CWWIyXBcjG)v$^ --?Z|m(VHGVJsSD7;DjGCWJ!tA+xU`Xfgs6@N9mxBksX9noho%alowZ~FSc0k?u8?@mqXkjHDbqG76Zuw1WcL|!hG^!*%05LkVXbc~OK~cwqO1=zDT^>~uuR -v7SheOBxpCR&dYa1dzx&8$rKf4}+$WO0-g~;z7XD&B!1|;t8-#+{vWOjEy(ckdNVDX##w^v_)@8UQ2| -9%Rpn`rzp!}=QdnSLE2zy5Y!hsrO&oj0KJD{$vcsQeP#!8zXG*Wk|EP`UTnc?T+YKRXodI89buTym -4&w08arZTW3$2N$+75Y75zba2CHCW`w2DlhKatItACRENu~nW*j~sEO)6hMK63f+0tF3b#.Z>? -4DegFds3xy1H+oWol3qts6{}(I-+&mFRL7Rygs2V@&b_xFh9!BaFxOQkq=jL62Vz)~hpoR0vBiv6@Sj -kX4{>qq2m-D$BKR4AB-o9d2+DsSqPn0`v(wxt`a?}0LR7yuTP(O2v->p{A58E?2i2hiJw7K=N)OELsRu&+h0Ib<>0`52{HN|Na9xz!+Oy0YiR1ML -&I+%snf{(A45oeUF9_B*dp_F>+CVuHE61q)TcGv$YWqL*CDE7lbZYB -Dt}Q=J#lj*cYz%ue!9wAG$1|>F)XJ^V?O#fh^ihG{scsI-=(2M8XU#7E~>l%(M#P2A6m%@QIDTIeB@Y -VwQ{<*aem#up!@)Uv;u){N!)FyK(+f_k8%5M+d -%tKdI`Ub%y;;f3W5cIv2Z}tN&Mso9wM~QSHL&xZSbaPaGZZ?6}eJ%4Y9ecfGUO-|7u}5BQyd%A!}R2i -h&S6*50+bieO!cDh^VdcDrNKU6XE>UX>ATmJZOyX%`5x@Z02>Ym_w@M!Q@@Obbe!Slfj!Ow#igO`GrgI9uAgV%!BgExXVgSUdWgLi^=gZF~>gAalagO7rbgI@-}3O)%w4SpSb -7JMFj5queZ6?`3h6Z~d$b@YSL!=oRLu8kfUT_62u^yuiZ(G#N|k8Xs+b?eH?ou^NBS}m{LY1(+(#@iJ -eZ`*j=#@kG@@iu8T-nQ}fShDfQuSi|y;Qvze=k+<# -P6r-of!T+X?XnLK^cp76)K)PpeBb}z;X=WQIE&hiNyI1lB_3t8vL0pFK->o6 -W6=iUk!l0+v1kMFr4Ph!3SIT%@UV;hs*C+i%`p782fn*F3jbeFO9KQH00008031s8R$MqzrP>w%0F-| -L044wc0B~t=FJE?LZe(wAFJow7a%5$6FKl6MXJ}<&a%FdIZ)9a`E^vA6o!OV%#(Blx=db8cNhl=}jY9 -8CCW*LMbj-yer7#QQPLl(X9Syt3Jx!7HL^+I-lV@wOwaeNiD>;cI@3AePGd?FTekb1fml%cqF7Tmk6gJnoNfiPBfFR7|Lq2|o$2IqFl~&k?@Xq%# -)Z-N>UMDK_AEFa{q==lc4o2_Y;SBl&}bfQd}FdZnvI?gqCfdZ8>dH41>3iy{})FaPmH(mC+}$EY;biL -x7#>%^4R&47YC;wJ^R?;%()XMPd7FjdmD}DryaH1Ycw8c93CEy1&H3ms@jQEF;}lJRV3)1;bF|^l)orG>5_Qb_?I%YzVQodycFNkOpSH`?wBH%4B5ivkRhzBk(=Oc_dh7$+$zSaMi1pn|EPe}gtbmPx%(;mNRi5)u}+$)%nq=be&pRBGr5z>KVdTK`=_bwvm^N#Yn_hC-J -i3O^;7v5tdn%8?((5Z^PFsA$*bbk+%IVQ`55~{ -2uF>$uF_itdo~n>r{P(HD-0c${I8IH8x7A`Z{aOx_*PrOIqQZ>;u#DCj36@gB|o+OlA}CHj`N=@36kv -P`}Gsv-x_DwN6jf@O>t;YCd3{bklM^Ol8)`N33xQvhWA&3QHS*%+7?g^m}*M8PZM(ckd3HvR0S1XVcK -?u=Z>o+CA2ujcvT4RuX?c5%#3*jWvqE#bO%A6pH5w!bv9O| -p@EpPiqL_)Gh2;h23enGMx3yLe{f{#Y|+`>SEL#OU6A6xA}@U)pDT20lBV*(N@Fd1h;Uws6dL%#KyZ> -^1k<2~(H!*@?a&vlCrmb_dMnyfpOL`ONlnne7|+?EGvb-)DQd%+Ak7gbijppY51ER~@q*vln8vEuY;2 -vl$ufFuSNcdwFKNXONEB^yBhu$87pBXZDJ+5edP)`xsaeW-p&-JD=^CO&{odwqrImuDj1p){QXQwbSI -LLRunjqjZIrSYw$Vox+fWz6H -a>8v?dy;gY(p+$TMb$-^vV&a3%zm#YC+rAEn!>IXYW4v=-(5S4{gr?+MWTlJp-?80&UNE?R9}RF0-=M -`)QzU!)u#CJKt*?K^u(~XhU8K+LiIzM$k6&+AD&##LV7(lvy8Wdk)$T+Vc;z6Oa@LZK$O=Z4Imi73T?>lQDof7fpX -f(YqT?faL}Gl*a3pJumNp!vg!wsP!(uHR-g?z3vH-bXhT(?4OxLUWChxg7s|9DE6|3Vg*H?L+AyKZJc -vYV1=^4mXhU8M+GxEPw9#6DHsma{p(@aZoP{>jYD2r7#3P&p4%#$ftAaM*=bScGY3Q`gR*zV4+M3lPM -ot@jEEA7tpq=lut*joYy3=0A2a(Apc7Dk_Xw!rpAg8@n(AGF@4Yc!}cIiw0G|+~;YG`Ymww2W*W=sAw -PCGx-HgekaSn}6QcGuip%O!s`g|-!^jZTV)N6>mHXrmMRt4D0aBSz5H#3M$~ZW=+`C?0{l5VRpL6_1# -$)7Hcz=)}b%S!gE@BKbw^piL8YfSk4l+K`KYwhgCklxZ6|?fgvJ%xP;fZ6j!FGHoNLoeyozl0P$OYn- -+w(?;vXoVEtqMyp5G5!%W3AMmTyL7OJbLEAyQG-#VWh_nFh6*z4(Xrpfj?JTs@Oq*Sn4%#$fwT?%uKw -A@!__c(#h1DZw@rcptk+q6PG)^0`i${`v%%Sb4t4G-N=b%j!c7U8VVYw2Ol_7+S!RKO0WFD -$uqPk2q)>Iql@#Bm6>h(54A<(AGF@$n{#MU3xrH;Odd8K-v61yz>Q&WE-p9a7t6FY@rW -6;EjVqc_TN3Cfi@bKw<8jAMc+MQ=CmQZcaJOr?N*X$^NYbjnp$&pA25qwkk>zLF`I~Dr&^Fq}Zs -fEz&@M0@F@m;HJfeZNCLXZ@ZL@g92-=!>Bp=%Kh)0seBmAs)%%=JJqVI?l`OJn~M5GN;D$ItwdZTS69 -Wi2dema7M9}2S}E6j$x$l?*G3bP?A%!aHm8}dRc{va#NhMZ+KRE61)v&@F7FdMSMY{&|;AupDWptZtm -$cv>TXss|Ca+cXp6=p-uG8<|^%oc{sPTFUgorWXq{5EB_aLk_fT?e0C9cCjIUxwMZ%GQ_Jnnc@(+4*Z -niextA#S(1|vo%|5N@sS$&T25*PhQN*&tzw`X~Mn;+J4oc4OA``j%c>lSV^=s;Rre@&1h>@X%`3W0=L -%WuN^7hXloYyX`pRoYmL!k$Rdq)0@Z?`tqDg&vWcCavJTobVe6P^SI24FfObWkw%I0jBWN3~9kBsz%_ -{98p{;S+nnYW(O8da1BgrfN__^uQ5t^?rGTItuTS>Gvd)OhDm}qO(`&n5!vPR4T@>(IRvSj!=rN?(7WN`H))W|y)X+vIhJOaSjciNhGq;zQKJ8jJt_Ub%_)I{1Erww@_Xy72Cot(nyGS$ZkkYq@C_yXEW!RP4iWcMcU42ud~tC>|n2WIHEDy8fI7AXjd -%J_R}rwY>phXX~I^uh20tLGL3frdOsthje{%T%ONXnv^6_xG)CLX&Kk(28SRR#9TDjwZT1fwv}wZJW5 -{}LhjdQ6qE5S>k@l*bcA_iLPQU(ujk<$2O<2XYLt25hW@n8Vw9R(bpp#X*%zLd|gykoVF&@E^ZUM*@H+MulUQ4N6LQ?seyKpt4C}+h| -Gs}O;(SjPMg*0piL9Dj;luw@H_sBgLZ-ONX4ODoh5(ezj-8a!sR}QOqtD!a?Gar`XXlg`OLPmc*Km^K -;l7MJhJ}Fv>_kBW!jJrYNV~(TjM3r=7;Z~J)f{uy?I2l;?K-zqm!k+073H{(rlTwnbF3Tqd*(idnKV= -pwTWJ+C?tYHiNe2%_BC_ky=1oW3%UOj@=rM-FteU!IMTl4A>bh6YkZM0ry@rco@M{GH5Q)( -x=;uJKt*y18R$0Y70m0b)k0tKK9bRwr0(r#%n{amDfh=%6e@JTOw;h?M_PV1N1Ej`P6m^N -e!uOBOx*I+E5Gd+7+jEb-cEXge2cQ@k;^9}j@mV(cD~oPL2Vle$vSy$O+sRY+GYuf5w)w7kXTr({mjP31JP*_9qSY0t>DS -gIM`}jxi*{*ugrq!Zewe<$)y6EiHH-g!bgCR5PN$>c)!-}VgV~ -MgIF_S{+r54L@?^X5;LeTlmD!EqY&01^MBPq;-MHV&!S+OUHfh|POt<2HCNJnrN8Q{&8VXGb2;=BklRuyyA&#L}hZD!TxTy165)?968)%INNWYx}G?Pk^PT#(sA41P!vEtx?b@``H==4YQw -}KSAT{XR8!6(0;Z`(I;7{l8lb8R7s=lD^=2H`%0DMfSO8`G~P|6N*eEGTqP}EYmnAt+V7FpV%j0n+Dv -S`kcph%{cuACboE_+!#|9S@Vn>v)7TUdIvAcpYCMEv -|!DNhfQo&onwy+aA;CG;Ir}(K*`onFb0pnMP-4yTvp*HRD};(CEBucbG;eWxLBXIwRYBK8}*c=Hu|65 -PSH1{3&UCJ~m0?^YLe-@%i|3()fJ*1!++oo&H>Ul%%MPKHb5NkrY+YrB=sDii+sb{p-&C28_rF6cAAPFi&QJ(5n7B#)m8KSNS<{C&D -a&yo}!e~+Ydg!Jh6yL1@eAW1qnpAO@%NQ(;Sb>`A}lA;2-)an9BQ2`yQ{Be@x@q2WzPmm@Jgh%cEnzX -2Z9>M-1NzzUU(*A}tX_P%G^l$0@BTbN?vi^=Veir>bY5Xj@bcsZM8vO%l{51L|Y5cMtkj5|Te0kILv|b3@@pWpuK?e+n-uqeX*4{e-Rffcd#>Mm_P-!Y?UNbm3?%j -D4a#UPPO=5(+t+#tn--0U3^E!~x$ug;P515G&o -B&HH^Fo#0+aRSArz{iUQP)EE#hz{-W{<~1+oz=sc^6bZu<*Dh@SnR(KRaS?qX&)!IbO?e5=a;D^bEajGCsIVNZ-)MG5j~gxHcT`|3HmlkA8 -7^N%tUlMbQj|)Ee4Jr@u!d;qe;hv@KZ>a(WHq*^eLpz!0;jX^rg|jtRVLErPFBA1S0hGy?Ck= -;`!2Sbd>L@@}=9rS%DbT_u`4dLH!D9JW)_ThZ;{5s`@olNslJ=8{UB`%YsPZsxNIviz-00>c^1-CN=y -wsIo5Hzrs(TO6p@;!cU>f!r;Ne&!Ec6;6K72LX9h<8p0nzm6f%WyNMsC4J~zSVjH*F}Z$gvRD4P@gcxy8b@-2w691QQ<5T#dCw -k7(p-@pgG3sK&)Fca@Vl;<5zu=gRxw__4NfG7(>%MT&SUqwj!2wHrzB9ZP@zVsOwwvVC3zf&pqY@cTg -OqCM^9$dN+F(*JT@|^3izjzXV!EA8c(K8#lQRfEm8tZmcckBId68d;8$A^SJA>iwmC){*Wo8kAvx5Br>cfxnW_rmwX55f<_k -HQ~>ABUfWpN5}BPmV^x|58vp?Fiva*B0001RX>c!Jc4cm4Z*nhVXkl_> -WppoWVQyz=b#7;2a%o|1ZEs{{Y%Xwl?VWFz9LHJ3-|JHhGGH5Qr>c7X3IxcKBPo$qMzUfEhGnE3OB1b -TmfevoMVKQ8^Ct%a@o@-=;}9GI!6zid$H4*P@M34@mA{2P30>XwR96qTaX+c)o}QWBH@2=ywf$6g|N7 -3Y>YA7L$G01M!@Xy=?+!*g4PO*H -;FUi{qWa?y+N!HG&h3=f?-b$?)zV{F6G-xG=mm*u5YAzdX^nI@+Z_i4%>j!Hs^@?%27jTW3#QK7VR!` -@*TMv)dOhoq6s;<7DH(u}1i#x+fYB8jZ&qkDq!x5=azJ&8y9@R~f6%CTgo`)zePf)`^CS)ia42DBJcq -r-!89Pdh#IY!7Fh9=f*eIY&*}o_G2UY}?N`ZQHi(XPw_Bt$M*}o78sEQIp!XoE|#1?IlM|e%teo8d&w -R({G|)anz1gUvO$me%n>2-(++?=d^8E^>-ar*?vFooOyfV`-v!%Zm&5_+g82qv`r3o$5Cz5fzv@!!^= -+7KTRk>7Pj)am<&&X_u_-*;rE?+=_#WFmj)w06q*$Qi2SPMW>p6rY@g*?Y14 ->Qm8wG+iIe!&QS=d4pI&5Gx2`0YNMvhy?_(WPn&g5K9PR0YNMwh!q5}fFPC-#1ev7dV^R%5DNri1wkw -zhy?_(Kp+kvhy?_(fFKqK#410C1p={zAQlM30)bdT5X<}^76`-wf;fO677)Y&f>=Tj3l4}$&Ie+W=Ri -#I9EeGt12M^SAXXT}B+r4EI++78$#Wnkc@D%R&w-faIS@+>Vv^G!)*O8>k5QEj;le?T9We*Q{*IUfV( -f?o!x2jch_NH)fLJgbu`Ch9*b#F;%y7hF$siUG#1erx$PZ%di2Xq>h$(0;FC*5xdoYi?@+a&3qlxN*7(3!}qY0JY5tj<$rAHH+1!7egh$|mWWPrFj(S%*T=74Q6Am%vYqE -<}^2x7qiF0I -|wV%5p$vmjw7z_I%19^_FpxD9kGBQE^{5RfFQ=vgn}T38L`L@V&9BdA`lmo5i1B{0YQv2Voo$67vP8& -5>4RXaYN8QK}=xAg-f{Qddogr90w^XT(K1;tUW|CtewG28em -lM4LeDV5uq@F$cuut|P`EUbW?Gt2J2%9dY0ZVn#Fp9r5xrVvZx`L=#13#KgJEzRq --f#6?9D7{r`tqFfM{x_oW5))BALs)^-0;ss>H3jy&G95D~X85wa#G?9@Jv!aQ>zFFs>W-%{x;K{mmcE -tV}ak-8df|xT|hcn_bLG0^@aWs+N5pUdNUFAVsomZSQKukt?4#f7&ItMC?am1=rM_k>E*dN6Hj+n80t -)NvCr8?q5GGgy&!q*YwXo3UcO<2BGB#3#Fb-ZYzLm+nWQI$9AiUM){X5Ie-V*gbW5`kDk5K9PR2|+9o -h$RFuj3yKUFTGzX;B_Otwbq*-j9mE_*EDCbO7{oL=&|mUJFMo5r`SlL{Y0IBnQN+`ie6T#JqLHivV%Ug -4nsC>x|g6Eq&Dl=M`tc05KyYE_JdFgBZW!3|CDE2x3`;BbErng5iksgBUwv;SFNWWF6(9^;adCP70o^ -vzz`nw=VY;XHk$N77)auAV(}J0AlQjF^K&gu|ObRhfRM9nXFrbj2MHMl@S-|h*a`B_8U6f+i@emDyi -Iz*gu*mC?oahVh95F8=W`Wpp*tzjka^o%h3pxbkuz(!qBo -hL1SU?U7$YGpJ2*_apIV>QD1>~@R92Stn0&*Bf#DZanVKRX^96$~Ski!AuFis{E?dmn>zNsCtX}gIa#*SDq9I+|}#410CVKl)2u|gn*(S)}nE-0G7AjZ+eih`Kuh) -K@ph)FKb5!>B}-8-b_aNKqiIgAZ)K@o8PIb27?3`2}LtQZ_#(TF&M!z&sQD{F|Io1q4=X}gIa#)cRt6 -W$Rqo~tV+B9{3Lv2QXV@`G3+5aWorsANK{6^JtoF%QHUhByPn8HSjgZ$3k87fraAeGTHcZ4F}mlkJFc -M9fGg%3L%7lL_pI*EN|4Ac!|2nW+3+ogff97kCX~)3ye&{^2@eksri@;fNU#F`TPgx+BiNinypn6F8d -K2uGX|5oheZ#shIiG{JJjJ>sx?Dc2m1+twV`KMRS7F^9b)V*GwHOeRW5pn)t0>4$~A55&(TXhRr -GO>`EI$khAD=Fr-A|?(y*H_J9)3)ZY{wZ*#uArrB`GW}@5c@7&E7K6;U;@w7VMDxLGj$8$FwYQY1QV> -KYj(RI_fo1k9Jgh1Sgr$yOMR)%o5RaqF(Da#*f${Nyi~UVD<(4bUE{5osLo4uHkfd(ni|BWZEcA4Per -!-@eL*z?{fIAm|%d|JDA|i)YZX+UocVROLg{L4(Ix)L2TOAAl5$>NhW-^`&s%_T`@~0IF5J|wwd68cp -*#Ic*z7#i0xM-Iafl>Vbiweu>L9igEQ+Zx3Br}TZ-R( -{b0W8bxU(S+$_6&6ht_*z}dg4iALY!XXIVhKqs86=jF#0rvFLJ~_zVhKr%cl=S1#1fKNF-R;Si4`QVf -+Us<5=#b&B_gqaB<5rj&=LzsVgX6a2#H0062okQVTlDIv0#wcH=7WU#QxdDB0^&Nj9(&&NuDDy$#Wzo -d5**+FFl)R+MOocp)HcclHrMK62~M~HHph5asD^!I3&*Ri8&;e-XvzF#Dv`Cd*byXaXazE&KOq36H7> -9PC9`}jME9pAhGl&v4kX+RrSOIl2||z3ttlBbVB4Ou|Omih{Pg4i5Z?)XSiE%o?Au-1jV-nY%nC -*#6C9$t3W{?ScTQX~iEB?>42j!z-ygU9bx$YCC9zmv5?3{yfQ#4|>4dK*W~37pn6VQzi -7P;2yW@mgCzr&c_QdN>Vw_H35*IXM=j(|fiHk`m$|P~^iPwU}GFdy}6jZM#Hf=X?J+Xu&_TCIrLK1s# -hKcu_C~q@N2}xYco)ety;W3FNB=L%_C#J;OYkT+%5>xAZB&OD0B(}R@x<_7<*tD%ltbe%MurWw186<| -=uvK&SpP&#DV^8e=irspVnB)>Y@ghhZBssBrh&74hwwp*|PCCKZ5EG{p91=6q35iGyXY71mcE;%hUON -Fv47dL&m&7ajvh#YS6Dskv?j4>yNM*mo*0uDuVRB=*1_?_n8ec46Bm+BU{72OiR*MCMdJ1H#6j|oo!fg&;<)W5k{IX2-syz@j -2$Gggd~PDb}*g5B!=sWz2A1uPhz||G4{m%YbRDTov2PuypVJvd9%amrY5mzTa#G-aNn_mp4flJ4yF^B -#J-*wlGr;ZhHrK-wu#4{*gu_EQ4(i(;uR%v({2;*wy#NS+SVl2Kipk0y-AGM6Ei$9Br)8c*w+)|oVXY -g*Phse#JrrCN8&}~#4Wo|JpDz~drjiFZB1hRvyeACmQP}sPB7l=V5AcQlDMjGcB~hPNnRmO{OYk|kA+ -7Q9?sR#&fw+YXt2|`ezU*dzdjl4A2cR6`;*4baHlaEPa1=J!-GjNATeO?Q7%R#uIyYM%O2I`jg>!^rY!_JUEE@y*Ah#>(0iFSH}B0(LdBBG@fqsq -CbSypB|4U`(Zc9q3Pp3O@C@!?C%%vBvY)jP=+vl!sojrB={Hd+&)8|fI --hScI_NB{bp1a&Q*?15Qg!U?}Ry;T_-4h}n9+_5Utg5uCVl_ysL98~@YBN?_X|)xr?X=pC)lORN#A-L -Kc4M{Ys^$icY*?#lL<0~xSD8VpoGZ<+HCjhtyD$imbEO%$%DLJMU1hpBNdug&PMQ&x>GGr*V%bZ}W{g -$(n3}87jJBGq(u}s6tI|Bmg1IWqcn5P;n( -+>zDvi}|7%gzLUocwJ(T*Ffm}Op$B)PNg>c$EVeS>_Xipl=t>agW= -GO76Msw?U%4lvKPaDmx;~As5b$rTbQ61*tWG>cdhhEammD&=HW-il~bTo5~wv?k01p-GiS7)o~Xy(#v -wH(b{m(iDgkY+B*R>#rI71?sn#|fi3=i~8TGwgBC$FCdBJs&5H=AMt=Fq(Tle$!~~`S>lP={mY8Yu^s -bXr_IAJFJ3OV@!QJETY*;Ir_Gqq*f_A-w8`-rM-M7tf1LT8TpQmJ-aCv-_eufy_ALTgojT@Z~S{l&*r -pK=DnkjKK)L1N9Ui-lx^?ml@6_xXYYhZ-|VCedpA7#W;^B9yW!DyOpU*7r10pQ=D3V|@9LvBlCkbx9i -p1GKdvyCi7?o?cZV_0!&*K>MfTH -?^p8l>^KhmFdhF{5ygB&?B(>*Pm&oYBo=$IM^ij@Kf0wkdhPLVM6*3`V4Q(?b_ej&{!PI}BH2q;K{bs -mS?#1+gME7d?V-nrV=~WWl>*-HObe|6|-Rsavk9Npxn*(_CrGFz?pB8icTjSBdSSWpQwM{3F9==7+Dy -pkF-&j{h!}93iKTu{|m|bEYYcZ^za`^)*tZb)_wHw9g_72&vtMAH|o!*9YKwMOpSGk9aG}W_ -N*%;GCg|uUt|cQ`^S_xqY9&aD>~+yoPCc}U17&mIQto?y1sRPM;z_n(Xr)ygBt7dIz5uV -NwTi5YwLTP+8~qefV7?>t}u2_WUNPy1uR*jIWWb3+x7S2OVwr(KUnd=ylt(uCPm^L1#) -o_hr|f?hi@U6?V<(o_&kds6bQ7?4L=E$Y+ju_CKWR`g-(HkowgYK=veE=6$m0(f3aDOo1Q&1*y8eo;l -ec)97m}AbWJOUn5nQ*E8iE(j}nnfb5y_j$S8KSJyMu9nvMPO#xjOhugXE?Glu*6zJ0vq7z}>lzjLjQZ-!!ozed$H7t& -Q&Pd-AvJmoP;E2}+EXZc(jL*xuWf~*$MnZ^FKTC@=&5l;S8!x5=;1p1h*Vu0J#}VuCu)DuqP&_eNo_E -?^wmx@j*-KlXYr9$^+}_Yg)Y;`WY8n@h)AW4hEg;%e@?0{OqrpXnj1)Ix1q>_9Q`$^+Oe7rDCSa;;~> -j%^bJz=IU_$k{VP)SIa4%VZ;={SMo%h=$yDS#0;=q9NY#}ErtOhcb!B9@kG@K(u8hp*>`#pvB@SeQXH ->7YAuT%EH%W|)2o25GNYz$^o&xl{v=?cax+uF-QQAPReERpKMuia}X}ls!Le_uwBT}`mn#=x_b|v&Mo -SFMnMYe=4nYT&Q7b1Oln0}j7T^4<=nSGa3eZuJT!t^_&>MM~3>+eX^Y^2NJ9TLN`=#e?Ko$9KZbYkcf -Xlp``?dkVO46C9C)sdmTied%&NO43bOWP89l25-+VpJ7f-Eb}g$wk7@#qaw^{JwdShLqjjf$dcJ?~@o7MMh -@&6B5IsX!vLLSLq9oT7E!cbf)MI_$jIS#-h)tGa9NmYM=|~-;Jsb2;G?!14rR#i>i8$L|qjP^+zN|Mb -W?i8L4jKF#9J`U3dI(cv!C<%L-I4UOMyKg~rLomEq{d?%>(`lYvfUuM8#^$2)`FC!+pzYI`u4Y>)c42 -PcoeG92xUUpaVMcXT|S3*7CGZrthL2>w8N7Vs=I{%*c5jcyd;15IJ9oc0eQo -;X=~t$2PQN~VYx?%|o$0&NA5Pz&elY!T`qAvGvo~fxp1l{2!;{C3oxgHvyW4H`wpE>F8?nx^>nuCc>M -Xm?vb9!c+11XnP4{({U1!;KmK|%A%ChO>^-K4<;Gy0ly_=-qTJMwIb8_%dCo>sm+ey82pT+5RQZLz2N -YhBG6R$ZD&xT@S8edgx_|)CP(;fCuUONx1EB?6@J@kob2$Mu0R}q+c0^-;kS*AQ{lIrI!T4!c7h{E_- -$uua)jS@N+uP4+sT(4;rDE@;Wvq&9DWl{>hL>KHzE9{Cu1q$H^JtU!*3FEgx^$ED*PrMqQO!)~6|-8`*+j^O)~GvIZLz5f?bO9KQH00008 -031s8R_91_uy`i`03-AP04D$d0B~t=FJE?LZe(wAFJow7a%5$6FKl6MXL5COb7^62ZEs{{Y%Xwl?VW3 -v99MOQzt6Ae*hy?B*mPA-cTX!(5?MB&pbL?32#J%)NNVH>qZwspY)es;HMRvvw!zqp1Q=rOS938}b2V -#;weq=|pD@29b#|S1pG(!jb=;@=ro$KTOSz_YUEbRL?0t59WP9sk>(ctAhgP2&Zl2%Te(2m2Yuo3CyA -SQ075{5zxO-`P>+Ep5wSMu^*7k1e%=+eqjp4&rc85pv|NG2v_r%uu;l|R^y{*on)(5tB)_2#R8s`6$9 -%>z5|LAbzO8&o-L#@X)H}FsGL#>m;3v0C9(&@*}oH=&n=4U(YDsY`KoqKw5`9U$=cQVx+Z -IX@*A40Mfpul*8b$TG`X+jZ)@jU`;*_%p8%j;JYx -W~0Cv7GFSd#}z{)r}cl>Ad|-|DD;rm5QP@N-SpPV1XmFlrya&^FeB`K5LoS}?y-a(*29hxFK7{4cRho$d++Kwu~DGIF@ -lku4UXX8Oyk_56ieATgDC9GH(1u)3{-nmT_YrmT^NijT=X888GH%G0aYL?^ar+rJ_A!oemT_b2dd7{dE#pRzV;Q$2VU -9+PI<4XvU2YP2+|dGwy(>#9`bHRN~0E9jGK>7%FiXw*!^nPOHbbr;u@DClf>^j*PoWYx&baYMF@8+&fTxE-hj=GsJY67o11cUPej% -@_SM?kS)WKjZd8C6FhWaYK%%L`K;xDseDw?4uszt}agc8FzE21Zu5}8ylO(jl-ywaaSAn-Hb~7j2pq% -Gj4@SGy`n9tK_a`+lO%^AEpb~7|1S)YDcax|D`<~H0Za?F$?kd4iPr0iEJFbOF0`ze^jN5@q{Q9{4PzmH&MJ2 --1u9hv$y#S|4RD!L?%D5pfdo1I|)-$^Rr%B@uQk)EuanFo#d!d -pLvr0l3cL2s6z_`6KZW!Q#WZZD*u~tqxj9U$v(*333>3}fTnO%T`1DyT>oY~2^9mWlLRu|wvt=CoJVB -B*#9nfp#BrJNm(*a>pV|A5a>w2?F9Mb`@lbJ0}cGc?YUA#x1vr{D%+{=uSez^yHy-S0+;ZzcV_h8 -!aIp0_V_m&aiJx(Mp%R}3IF7CoA5>DEaU(k)E8})BZU-uXJeF}|C(|D?r55059x$cpfD2~aGoNw$p%R -C2PoX#&BIEWm?ui#C{fryIjL{AlAmjEi?wQZH{TTP;yGpt$f3iLIOXkb){sY7b;IZZG3@WZc+#tXU-vU>ZCGmILuv$O8ksFM -8@4y?SR^|3=NP%eWmGx5Ky{8Mni@Ay3S>9T|6k;$#5ht}aei8+VY5JBV@5YsRgLlluKW$B -cXC+W~{1k|r7V%o}$IRN^phM^{M*<947D>|>mH+||bIXa|hOZ5X#By+$d+$IuJr*N$d+$IHhmka<=c?!d`H324Tz2FjN^t{ -igXm+mJ2ahHUvZN8?^}<92+x%q!z|Aa1XW+hN>Z8Fv8Vo^;0Ts7*SI8*;tjfR2nCTaRVjkjMItg2T8~ZB -n}_qj5*$UU1_M(p2JQ+&H`i$hdJBb&T62t|ehIgu888Imo_KB2tBc#Ksl;dbO*JWjca4>B!xzUQCD_UIzwz! -MC6F!SR<%j(&WXkyjeEh3d-56gtdNob88;4NQivON*@SWXA?_xdO1x^5D&f{{ktvM^oLAqDUEI;PdEX -1w#T`k>%yx0B(xi4X#DqI0+>2t|euGLvkP^RP+|>y;j-vrm;!~OoKuWxf+cBubVcd?M5=S$j!?^uQlR -=EzFX6@kT0JFd`Hgnfqj5*$UKHc@YX)>=++OS5Cr?VengM+fcK}i{GhN(%%WoW{#9`b`HUm~8ZuPxM? -ea$7j=sI%zU{aA#z9KFdI24zWN~@{tLKzd`?eq9b|l<>%O;ylxP$ZpdXbVuH3MoFG8%U@?r7YQ-K4}T -;dU&WoX6ES)yC~ZN}4oozh#p_22A;tCLM^|t2EhV-`1{J^zG=|(YGPbYfDLhUOsb`_#=N8?@;9g9s!7(N9#d!lIA$quZyp(>rqi;vwUU1*`n^MwX!aZ?N5+LCoA8-c&C4LEakhy?Dxg%N`g$63IR%b?AzKYoD1KM`F8Z}Df_lpC -t!mOC9}~9=;Pb7(@^49m~7Iwz4GmZ7rPrLD;jq+?gcUK`K(Mj#sWfK)K8ZAt(m+#DwEY~COe97YiA`I -cQo!rG43FhNynN=Y(4GDWPp#mLk->v=vA5YYbk***84`VW6flc4=CUO>#dpeYvFc`1yra+3qKlnH0}j -AZfxAZVt2nOB_U9WmvIL`B|hJp3}M_szI+p8vAd&(+mUfM_~o0FSG((RM&pjgz2L?j^XeKjl-z3+8w?#&LD2=W2||u*t&^~+rhXU#*LkfW!${lT@NT4cQo$1)3_aT0kP|GP>G{B83L7fH3 -J6tf56*H0}jAZofY65DRd;7EU_)xUuU=^>I5g?n(D?JB+)@K5oAS??H^)k#ReWTdjE4_a2 -Qq8uwxwcaTxsAy!U$Ex>VP+||bI$hZS6z^P{30luN&$hiF&_Y@|T_!)PIk*;DtS4+Ez#$9dPc=nq3Of -Yt088_syj2kiw)qUJSR!;hLl{ipIlf_9t< -MvyCqcU!7`)J%T<6acw_FM8E;xoYxlt^MabH_nx;H=e{NNwkJU{%%`sVO_>)aD --+iT}`hub@?-6z&|Tj$r$w>GzSTf@uiJG-s*&DQSr+WO}D=7rYo@bWJG`*}D=*S5FU*Deg-eR{b2J|`jn@5_p4>dQ`{dg0`qt(Ha<^N<9op~N;l`HO*;ec6t?l#lFN(*z^s%5T`|>_LLKPpu8e^~TbAOc -6s^e4O4$nSoRmBIF1Dp;g*KG3728MdThX*Xm)byS_uO|+@m#dE?e3S)N}_2GNKKF9FQlf&@t0E5<9L_U^f(@rnj -XhPQq$vjx6~*O>5}qhT^?wfyi>bvO_R52H_DS}1)b#7|H&WBD$KOg#zaD=lHG!g*yO@GY)U21tCeHoiH=7ET#FJqIgJjmnd$;pNvB7XuD;yxKOyG9V28*KL>_=MwgXMXvLbIeq$jkdd_`WDCn1VhqJEEEg{a?T{|!;U%dSDxZ?pe_sJ~7gzud=dK;O`mrxO4q5ifgK9q>mYUiB -UPc6tS39u&+D=pzxY`DK8xeTaEbusdLnM7-$X9)KQ+c+B3||#?DJKKA| -iR|fI1TKy6@nSz6eqL$g~QJiFo06a6(>#D1H{pO9#Y}h*v(|2ml<3c;|O;@Lz!_BC_B{BHsEiaiEPvy -!LVF05%fw-iH|jYb4^u50?ehNW`1JYaxw9y!zqM02+yS_rpMeGZOLg@8e(pE<|ApIL_B0<`KcC!8a1| -{>Q5ibR!W70GuCeBM}(@Ub-L~Nl)VjZ$J}fZPgJIkpm<+%pXG(#(=-`6Ntj)ES{0{wBPzagC-s%T=kz -r6b};q&YKYPc(CCwpoxUW>eNdp6R@T~B_b8TMf){05sn3(6OjwxlK&Q(#=hTzM!A3#e+NXpfq7HfD -G#pnL^rbL&mcrl7+O5C~qOk6}oDO@)lf0qzq{rQQpGiF0zKSjVN!y8bsodwh`qm*a+ngZA7^b6Q%T_j -VSlwgOotD5#>JaKguE6h;koK52X>ftq=D3NJNylj}G?tAd4t**BtEQwh;+MnsAixFOgHE2}da%EEQ=* -nsAh_LZ*j~ujM{u5oN;H@;i`4lnGzUZ$cJPCVVZw3|T~(^0oXlWD#Y`*YbOiMU*LD%WpvzQKlT_w;_u -tQ;t&JnkfN@l%xCxWD#Y`QGOn>h%)6UKL=SvnR1k`Ko(J^9OY*qizquBFC_?pchte{>ySm1ct;-G#!d)AAQ?Egjmtpk2;P$ixA!3DQOX!ctcmC?U@}Y{r@UKhynG$u72L$$+5_7P~XIc;kDdMaUa=;(D2~ngXIHczx3M0iIdI2IOz -f#1x6RAkYqMa#m2W>@)hEpeUkskj1%Me9KoH*b-5q?0@HNw+L0D{vdoD@P3c+-wP -3zgn>c#Gj^2}2;E8NCKo1ctot&Kpq0wZgmp;07KZq7g{_?z{#_oJqetT)Q|td{4 -21dx~n}#@gnEC)Y0I^64jccGlN6r7r%J)!nVtt?l!}?bVBGmk$3i(rfN(^`iLGhq2}HBPZWm9A>fE?v -+dH=hik>FKz9t@2)>JT-_G9`f&T9LBH3_UwO3AM~A~pt7|*w*4I}zhP#49AAZl;#?G+#f7doHJ+XFnx -O@1X?3wJ-*~{50*=Mr->{fO=`)u~P?DN^H*%z`eX8)VLmVGJva`u(%tJ&AGuV>%LzL|Y1`*!x7?7P|P -+4r*VXFte(n7xtxDEo2tlkBJ2&$6FqZ)U&9ewqC$`*rr4?6=ul+3!Ysqi06Xj-DG`AAM}}@zEznH%2! -{&yQXhy*T>h=u@MYMla{5?181F4;?%C$f*yVS-n`5VGufsD!-mTk%DxM7+QqUw}%$3qbxQsKmSQ+Zfc5k^zQed -*J+(4=^0t1L>!ffZ^C46MVv504jUT@CkQufS`_)8!#N(!{ws%fZ^C4=pAJU5{{kR+8j!iXcsQxb>216 -F2snVrbL0!*d8D-`_YH|mqi5?*?+@H@tCBh}6yMy9HpSTHb&+AZ$Z^_v1pgh -qhyd`71gNLL~bgReb2QLnhQ!os>gBnGj7#?8#C!i9-Lv(n~`h-pp9qJT)LMMps<4_5m;My_zCUPR9`v -bFVA}5Fr#flZeLWmC4iWR~_05vFAh)l!gN(E47dUKtRfv^xZ#&bYC9huo36fFp+BR3o2=_Q)Z1wF~|3 -Yd=kYy_%r1G1?oldIisYkIq!iglsYogEk5Z9RBp`N?lF+$bq$F@|7byvw -+eJ!(=5~>ikhxu?Bw%hADG8U`MM{F@c9D`$xm~0rP;M6~36tAJN`mBek&+O(U8E#HZWk#DkK08`g5!3 -PlF+zaq$DtI7byvg+eJ!(;&zdekhoo>Bp_}VDG7($MM{FQB9&Uf(>w_4LkzVmIFG`|a6oB;ZA5qT7w^o5aYzBl{*TvhT>gg%;U&WZ#i}3oWwm -$i5440_>ZatjWGX#0~bXAh(Xb6(>(Ca8m)k@%s;yui)PJA;Z1nU5$n_FQ^2RSb=GBC}5gT}EfxHnLLu^9chz&HpAl`@#G??-LaBv0ViFYG5Zf+ -;sjo1L=3)+p?m?snLMr^?O1?xs^V8I3JMr`251?om@V9y2WMr=U;lo?n*Ui{TEuv^?kqEI59M6>}O6 -cwjyWRqMX+T4+AG>fZ_T%%cBb>te&;;JLpXcku;xkj_N4P}UGmsUB51j6pN7YRgZeF!0K)#PjRh^r=F -qeomd`5Haqs>#>r5x3j>MLJPhkV5$cw*#B~;oJ^v_J?yju-PB3+JTM!aMccM^oMghu-PBZ?Z8HVcxh3 -B$TG@=n#wJF=8WEOZX7my!?|(T>J7&Qw|c{ot#hBKNIYzI*{)a-M7X;IG-> -RFP2dT4OAVBh=49AZUYqs6=#z#g+oYay51WS)epu!UX>@@v^My3J!13H$UEo~VF}lD@r2$Gp?CxYrLf -}zm2Y8uxksK&=K&?5DY)H_m -dp+)K)sdphxfO;!dVqk9tugsor{PH%zw_-eI(>F67v*~-E$C(&S-wboirf=qDX4Ch6b<;QVBcthCp&z -sB8^7$$u5Ts=X4^OO1+(v)my?@~-@KgM?EF?}(QN%@v}m?|Gg>rTzhC4*D@N=0ZI+GJ?;G5SZM1&h;G -S!v_4_8G)LXxE8JEHA{l3YQSoGd+t?kX#ciRpzQx<6bQ^s4d7~00_rkF2RNfZkl3OHoKYYio1zDtQ6R2v(FD$+ -Jl(?V3FlcDW>Yv*U9&5kd;cjrvFk -{KPPq_7*@<2Aq4dNq?+mIcIRiDYmWwunidhwe%u9{Dgv{+;Q<0v8+C0t>X*rW=&CRJlMiY!HnV55X7Yz$gJ3c00D# -!GOM0ENvl2~XI_Qlu%R_Fj>ul-tI;Dl{6!uAk79HoI0LvXN3CFWeSmrlu8dG4=I%yXiA%1QlKeqcKJYLAf-w -HF>$*nKup}`|I1aVf4OQ20(FJkM4qO!+3;QD93{?PHKmP^c$uDe%~JWb5_R>b;bI35p7y5Ue~k7<8os -o2;>gjXA3lBT`0-;$BN8VuBJqgCNsCB4B5|QbBp#7?MB+k=NIW9(LX1Pf<52L{T{#q7m27xAPA}0)HV -n~eFgPkUY9L8RE7;t@Nu|-?sMn~0Bwf8+!;@nuAwao?CvH$mfNBk|DWIeP#TuR_LO>g}8gr%zmuh&L4 -DoD~YIq$6;cQfDc+CdUY%bK?Wa3Pv7u+9Mo;1?_-iY);5T-T!M;9P^b!6= --HEx0#leVD{)6R5p90Gpav!zz!4#+E%krHI!8SIgeom?ZeU;P{>B?>#8XkI&SEVHD& -~T7^#uc-in-uieZhdIVlFtho9}VEH`Q4J+It$7#d)%H)brv2T#Z$zIb;}5U&tRI$EbK0NJ2+Qgc -pP)l4~`IdTdE}C24z-HKb~-da)UShd}4P2(oFSVf;@matysB5)Vtgw9!H?W5hzn1fx>u+hTvVR#;X3z -`^4J0qgS@qH#XMKd4un_1-p@cFD)HAb82;Er8`)SQ&0*q!tV&bNsI71!f&BP_#NSQgx^Ao@H@iqLYzQ -9_~VyXkOCPE;kk|+$mj^qbtFMXOL(q#pzA&1xxNftZwk-#E_A&sJlA{B^|tU_??c!7!gGBEy51O`>jU -U|XLzo!LDyTua~-*-(HoxYc=(Lw@Lb39XLN_>I-WtJJv`TO{*C_d$1e|X{*4ClT*vu0I>d7w=ig`%&v -l%Cqenc~asG`a@m$CGH@d`g9p~R@6VG*=f1^)4*Kz)hM)6$7`L{a72RQ#mr+BX8{2Q&}xsLO1G>hjt& -cD$vp6mPrKyMh&b^ZlVYhXB!<S}iCm;qU=ztmslX<(ky3$;hN{>FHj$5 -%3T)1)Dy0IONJ&ZsHj$H*3Tz@NDHYg6R#GakiL|6tU>j6Stss(KDzFVIIzNe{mkMlyiq21h=%oUiNKQ -%xHX0Ca7uaY(xZRK`5|mPtCnYF$Kc~o0N&~G$hEnP#6)8%o?^L8HrN&We2e&(uMUGPHq!l@eO>+sD+c -cMwlv1a5QbBV?mQtd*L@cBRn(OQcFSm5}$~3q5Y^D@JbCZezH-yJ+nwwV5e-UYlO>-$rks4?&adDgG# -;;`F+iK=3ncCo#T9(rJOnSpxDWS?_glc+d$w5%9s8hP)h>@6aWAK2ml; -P_EuwXtW6#p004H80RSWb003}la4%nWWo~3|axY_OVRB?;bT4dSZfA68VQFn|WMynFaCz-rYnvR$RsO -DDG01>yu$AeayI=uXc5H(#L6W%&mXUTW4PNaoyCX+Jm -2Bs%GsyScGXPJZ2OC?*EQ93s;l3A_13A=FYWK%ZS0Nr&ThUk+S%IOKYQ!WaDQtwIeT!^{@1~1vbVo`b -F|+W-`(5YpERzGcW!Two_;VHT`>Rq+GuiVcWbnL>eOS6*15(fb`Qpr@hc>oc>eNpo0qOU^X$dOM&seBhWV#+uJN$Zc&u^e=O6w38Hac@fAUed)nxd -mW_aFa_-AH#pTVDF&ASZ$JiDrirAhb~*kw)k8R4(7_8G&!IK$gL*3TQPy%|r7@HZLWW8?V}>u13Fd5g -7gG5pI6?=bvr)=!J|{}nb5d^+Em;n{$V^Q)|%HtYXg)}BxQd#rt*wSS+@Cu{zXteYO2&JWly`D*x(bu -(b?zc$0WIm7>nwdc3%pV_qWu)fZQ-(l^)F~bLJINxN$@3Q9KV#8;X`E54JjCJ!bteXyN{~d<&e*TS(G -H3n#JHxxI{dZYE{Gs?B8zvvmf3SX7H{WN&Z?R~9z`EhX`60V(llAl83}^6<*uCPT|1s;n#qgi7ZaDr^ -Hu@&JxBtWX;g8(U*me2vKVmpv3y18wY}O9{j`h!G`H(SKo2|h^&R}dUAAXu$mpv8@MpTE4c)D!%4?U5*`lS1prE(&EHV=H71LDVR42U1?=ZPP1K>W -Z95O_<P@6p7=5PfcVi(K> -WZ1;z#!Z@uPh}{J;a^$9Mwb2VRW$(S1Ptz{?Rox(SFMctHG^oq+h!e?a_*HXwfB0rBIy0r7*{0^$cA5 -I^vO#EB@JIx_kM<>GYs|L8k}T4R{|+TS)Mub-??;6AAwAjQBYP%N9RwOF -;a%Eyai*tL=mcel781nhO%Y(&CqhUvhfTO-aG8wfF_Wk8a9Y{9306-Io;nlEp7LJzC;NxM?hYE%9reo ->+n(cuA)RctOFhBYwb(C4S4bMEvZ^$8dTC;s<=fogRt!C5s<;L8k|JG2#at5I-KeM8uE&7fSr-rKIAI -Mf|{vIX!?25T(<2Z+;7Ta|7PI&{rRw)~1>%?Xc2g5Su6sg=Ka#~SSv|3 -cA9xyzUm*Tid%H^_{#aHI`YERP5p6{*ekrM^YQ!JM;!mykvl;O->Z}#N>t}_CU#a-<5Eb0ptr+nG4u~ -IkImM6J35XxL#4n}sOT>@Wc0 -!0>srUh}W;Ul}^{hDY3u*jlUefAODt;~T$Fh2W7qog(d;AjdOKJRQU**l+4$JD{R48xm){4K9#IIER6 -7koH|0t^`7V!fwwz-SuB^5vLdEy70Nb#p8eo$LQ6u&_HfU80LOz|_ytF0c_Pfh%8m^JY?7DN2ND^2{8 -$GQNGZtb@D2YvPYU{E0n&%V9+Pyr)|6H%=t -+*NVSZ{O(>I;{aDp{4t3?@xk2=tI@`OQ4_!GXMKrZTd^S)@kctqRTF;&J^q^bSIO#Oil0$ZZS}Z*jv# -(8=V}uFswjR;b1CAlS{}c$Mw^!SrIWh?@yE*QS=Q$6ik#f7mg3J@aZW}(@v1UoRVAv*yy}V{ah0sqqb -%7V20i8}O1qwDsyV$$2b>St0#5I2B}D!VD&7i9KV+MCB-ih|FUZJNW>pY@e9OX -t#bTrRO&@yAm9kq&UhD$=I?4h#B -OO{+&)jz6)-pE2TRlyQucyFyuJsa8)-{EcH(=hPBEZcCc7%v!~-Ez2wrzohsDt4C7&=%yg?OI8p1FIb -j2amj|nAK;RRU$T18zNF&U*6K-pa#te$IJJ6GD}Huzmr+B!te#~RXiql#jo}FfuD%19? -9dE6o0HQF9I*9_|g7EWc4K8++|5Ui~{0)hehK3SbMv`6Y)O!PsIC}wt`>Wl`MYgJ1m0Wmn{BR-(k@Te -oS+@y-$^U@32VU-vS=+KJbEjyDK61Ggh&IJ?qCHej%wx ->+}Gx2=S*D{IQaHB;pqYzvT2t<@jR}zhv<%iC)^}KPc7BUJ)5oaMwxqpXE%Bp$K>S#33s(Hvq#lX*BPI1nPLDRJ2l!$?z!i!3r7!Mk_jVisE0A#jhp)idp;;@e5WDdMQc#u`GV&-m -cc-mxv#DH7Yhpd%I{~FsWxnEPlc20l_a;@!N-#h@U;9b;SnP&-xPo$=ci1W^)2xuf5$!#1Fh+Hm8)-B -Po7~_$9@^BE&CPJxe0~7W)7fe-`!GoPyO;XLC-8AMuv7dL-hP4(_6#G+$m!eSRyB;+L!*G+*$+T}kmP -t)9dlzeN18&TmPZyOPxt>-?71>d~h03m!k37bE`EHQHDjKYQk?r}(AK-Blret>RC7ehY9#6h9v7N+^D -b_+u&lYMtNGDt-*7WI2Ax>d|`qlH%7Ae`3Wi5dV@kciU`pmpxm@Ab#cMZf*6%wR)6UJi1M>@9~t3+EQrzh6AU0gR!i8eGZmc}2;>5 -9&H-Gw709x<^*0cn-k1jDvf_hNj>&yA>wBb%Moe(lEp6&f2`V^X -kSq9qkTn)UlRNkBYr83Uz^PtOYkd+Ul9D-bGx|eg3oV7%I1u8eoG>LZ8oQ5@yDvvBN4yk^u$Wzk8^%Y -BL37xnP;sa(cAqb|X1GlHx}XB-5YONk^GUu|6Z^f~CQWHN*>S3#MeLa4xo`CrAEC$4 -n_K7xkmqh%4D^C1Mt4G+}jYa&xOD6RIPec5Y;*Ui9z)K$A(h|R<_@#5ZpuCmz_)}Xw>?Z8d%=s|Wor*6K-3{1{I$t4B!V*IGT2#~-U;gGBtwte(VHPpoSEsk3?{k6$8w$?B1aKa -%2CmS{^%{5i|&VXN&3k6%grc!n0N_*W&3AM;a?_$9?3iTEYOAB*@So!d>E&MA5Psfk}u{1rRD6{}!_r -1+(R4Ztg&)e|S3GcobALOpC%r9Zw^C-odH_)pmJtw?G7k@j|Do!gaoKT;ZhV!6KhmS6w^|kn`M*P4RTay`Z#Vvk8@B>bh#xD^++OKAz9^iEve@ekGI6Z(Xk;b3 -1q#m|R;wgT~>Ct9$VmNC?{921&Qv8t)?n;V3RvN!_a91M!I0tvNd%If2uO)tEr5-7pQ#!aSIX!Di{IR -k*wTgeGiQle=hmS6YV_5vkG=AWTtRD1VlK8brJ-BYcq#iBtONw84ek+#MqgDJ`;ujRZ(&~w&__Y-qw8 -UR4{xw$oN{c@=@y~dl-S%S~-$MH|ye|oU>G)RFwsvFjzE<#K9@2bhT@w6Kr5^NOX^UUl+ST$t+Amh{O -Xqgil=qh<_?5@EswMbaEQ_Dr-y@PaC8tLq{#8%r#5mXML+cXpqnm1%=2TYdiRJXfI=3qw-x7!)&1=D5 -CE{OcrzdB7yX-!uPwI)K_$A`6n&MxU#Sc7<;+JZ3O2n^K{K_o;#1_A#_<@(K&8Z}QN%7ajf2^b)>D+E -wr$y6iT#dEA^Z(;+KwZ#j4 -aJ9p6e@sVA}GZ?nB!c3!Oex=m|_+)=}aZQOI)K>597AJmt10Fs)|J -6(5UsuJyB;wa*b5@M_CB?s<#IHTSRTFd|`qk -v4agm3mTd?#8OkDOf%A=5EvyZPlvOBYFIZYjd{PXIR*L#@-r-w;!j+Z8LMF>6+b4Y -BGveniXU)I{2JodZtk8a#h=ac`1!mYLHxkWrE^MIJ-`cQ^`QTXTRjr-FX`Z}HmgS>eo67i%Hv1-N|b0 -zeSS;G>Zz@sb+CE>S0kNsR+O2~PrR(2SQQ)A)#H~GzeN0KUy%3(#UCr36YWc8^#CuY_#>rrO2ogUiVd -~ZQxpI6su8n#nBr&iaEt?7k{Aiyjol~%S>U7SU_@ -`HmsQ3pn;%D(5<1;KmsUC^=Qy<`3b>i3N@dHou85VR?4UZpivCUmHuSiypQt_jkn)qwtk3{^f*#WM(x -Y#pP(CWc$S!_Dzx+;Dx@hhz!zzbIV67ego9?9cJ^EBVzl01Gb@k?1fLOK4L_-o>yUNs)^cV-8;`1q@r -#}9nX6hH9#09ORXFA#s#6hH7ftEVRZB`N;d0WLnycpkqtt0xxmW0(~ue(3;L;&e{!=5ED^U)tPFZ1u$ -2+?5o+K>YRQ?ovOs9x0E%TEssq&dJ9UkN2hXTd|UQQae4%D$XhKex&nT+Pz)v`7J4%Q+s|(;C*FP=F~ -OXw7jn@)uYYkRDOm9-531uV%2!RuF8B2-e-EBUAX3b*G~oYzLxiudVg8xcBPyiCGSVd>Crm;v2uC@hd -*%^|ElwTtP*V}swi`dW%2VX=!svM(^J>xJUWX%aW#IaHm9~4zt-r9MEsG??E)`I{Hd$)D{FJsMVXgcn -{%a!zr&m!-V>YVdTTc&@dK~7b```AxZc{Wi67KkmWyze3Vrt@d{nW(ohFKGTqb7deeNFuCpVd+P=x0X!ubw*fn0czrl)kv -LHF{~hGumq0x-;A#-kOZ|4;qs@!%1Unyw%v*ois-G#|M+fc&9PhAC7m%JGUE?(fx`0y;+$ThWq>D;qB -4Ku8t=6_IDg?X6)d>-J84HjmP)y?cAE&8&1Z%J5Ts-cSi@V-?(nZL^y@kmZ8TQK_>oM$CJl1E}uX=1S!%m+$J$){ktli`OS;-jogvWRszveL>$FF;g$MK}ccpOi8jK -^`-V?2(JdCbM(N!2gb_JCo2rFNPO^UKs#iX_ah(N4}VVu2RJ{OWW^7YXxAv(sUiUzd*Z3G<7x(_@%lk -sW?N&UuX8k2Ak<27({hZ+eX1j}4FU`|(>I`qwIzqFq5n0>wV{WYHTY-!D`zNe~>d(7_R^!+39oX6}AUDLlDpZA!FW8i=Kf`{yOW8V+&cRl99@WcB -(kGU}VQ|zM0To{8XcFAKljLe5|*<&`0%n#*?r*{{I@9z^Hb7A=Ye&1s@jDhd(s>e(i)a;svOc(<{0oO -fbqsaWtc+q1vip)>wA9&10G4P}NLyy@g2L88yJj -PempL>iy<(nSkPx)VX%mmW)WAVH^Fmd#J7@m^{CXAl{A-(;YHjK>wbc;X}N6%yQ>TBA&k@#6piIi4&Jc(DdLv0^P&z=kXN+O)LW+^CwBJm{0~jl>3C -4P-tyFAj~c>nuot8kT0-@1o9R3Hw5w}_9}sVjr}cw{8e(}evcM`d({&c+_>K-`QzU8#0Lf^{o`Kt#0d -r`0p#BH^wb)>MYs(x!*%;@!Yvo{0e1+tQPPSwc$aV+Xa+IS?-6cer8R8uKH)Z8T8IW85N^ZGX4f4O?! -ui-1IbRO2J+c7(39tO;8{QP@HthG&!&eSK&K4y+4Ru#J9Us_dImK8P9fx&hXGB$RS5$Ob3n6ig+d>*G -oZ=0TA@GdoaWxig?!eWCf`Yh9FsYq$#=3L$7Bv@@||?ZF$n{jd?z3B*(ho9orGv%G6yvIPDZpaX#<*k -CnZ{#v;j@NlM}63Tr~MkQnY512H|hxZO!6^^0)D}rtx0h-5Gh*MC;qaOU$ggXyNbkpCZ%-+UgPfX@YH ->Z9+dosEe{s@IMf2g6!dXpC#1ZPy#c)MMF29jL_Ulns%7+mOD*Di;qmu+$tJ+IluzVou0wNa_ -HGNw{oTv`l7ij(N8l>u4rzh3{4t&qPf*EX!!*KO=w-9uMujMC(thvYVR8Yew|Pg+5kbkL8x7lcvueKB --q7kDnS=tCe*~%!BoCYs0pr%Ir|EsHafI@hfot;H}r0Et5>EeA70Q2YcgN!|lzz-GlLD{K{x^-x}T<&9j5N+cLD^8ofLk?QISZZj -HyA+oOr~vNt|H+&&mh|L<^n@6Pb%XtHtINF<|&jP@}?$A}uEV2oZd;>0KsBRh=7FnYp>2cr~>EHE0ty -ztH2-Mq@pd)vIE%^TUge$Bhqyjjg_)Vwpz3(~v|&8yG6=gdpZyu!@;%DkP-tH``}%sa-sP|VxIyeiCl -!Mp?v;~RcAWNw(-(6r%X!@!1a4YwL1HLPhU((s`nKf`o}eGJtYUNIzM7{kzmp#t;Vn}^&y(&hm+Ppf$ -}&2wlTI`e>;hsiuS<}oqPgn0nWYBx*UtYfoi%?dTk(JVc)%*^e2;?(~GP)h>@6aWAK2ml;P_Erp3qb= -AQ004}10RSfe003}la4%nWWo~3|axY_OVRB?;bT4dSZfA6La%*XGXl-v~Wo#~RdF`F)mm9}*#lO#Afl -x^#B@$g#jg<)#Q8y2iymxDN^wj;?=xq9*ua0IHCp)9vt*u8|$*I=!lY{YW{L(1>H+8CYVSHz_dq4eWd8&1NZ{1k3F2S`srEz}+7wf3+h=cV}pUT|KT-eq#3-g4BARc||^V8yZX(tOBYblyzZ^Sa{1xe=g^5ItAtzWB!(NCiyKnf7^Mrb0+UOHRj_n|Im4Leu5 -9)aISQI><8~SZ<(v_Ixo(T@zLwfJLc7VWDfo66WRZ1wjM5{m5X8JjbYU&hGnA|mJAF_ZwyNYhGlgOD+ -Y!Y#IW$iuz(mA2*ZMbVSz9#8pNMz1u?7;h84uHtd3#jiQ%MC469f$%yYxFU|2#7Cv~{t0b$t1 -<%VN8UN;MlEYHk=~SXm4^U<`?22{9}h#c;y -Fu=K{T*aQqmn+-z@<7`+~$8b^|!wJN&@WilpHY~j{tRRL(4Q{v=43oU_Y`6|LtQmN?jKFdXONe0!F)S -Gv=48VPVpuXTj6(?yhH)q%A%+#iFb*YfHY_2ACB!f%lu*?%EFgv@#IS@ImI%WFVp#gRVdaZq0Wl1-;V -_{@1XFa<-wpFZ2^A2-bZjp-j6(^`MY5OF)X|>EEpIT5W^x2h99yiI!31i#xQonFqD99n1SJD8`kQ;Fu~6Y!#p -<}dBd7!)!{O#j+bwk^F5xTTa1|%D`mq1VwjN)dt(?+(J?TL-LOCy4%0UbLkWyw(I|!m2g5|Ujh><_!L -Yy>Cb@`VX|rJmN+B_vtQm$?1Q=GU$1rxo2?N6k!mxxGP9TO8h~WfbIDr_(eZz?-hB=)QFqB9Th7*M0g -n{A28^gF$qK+xLcrZ+sdewcyZQHQs;wK=66$8T(Vi;$`F}Pv1W^S0Vd;_~-4u)aFS|B$ZC>w?t=5$I_ -&xRRObfMgE;|*&eJ0(g&36g#KhIyS57{khj5)Np%oe~@ji$>kBgc#=Z4aeYyal=}pZWvF|DPK1nXio` -@VeE$Co)S14_U;?5?uG@zu!0y4HANSB-*8fg8?GaisKpK2P{Kh<^PLiSiY}BJ_Mf7|oe~@j$I!6GaKj -OFN-&mh2nL3s8&*njy32g -97@8{Tf%8^f`7N-$Q@2?mA*!m#kfaKxPw6f=ataL7)Hl2C$x>$8}-1jBv8u!D(Mc34|CH|*ax%)u}YB -?4i1b9Yz^(>JWv3BxKBhHF{AQHvW6xQdRfv)A&CHeuKS0vE%fR?%TMEW9zy$%g&iaJ+rP-k}6;SYxcB -i@*&-414ztZ-5)FA(SA>MZ0_>;1nIp4JURLo%7L;1;e4-Fvc(rCH(t_Lt)rIlvuB9xJeA-Y#3rVOy4l -XFz%Fyc)#J2P@)z$%$uSMxO}5zijL)m^{4!B`9r=r%QtYR1Sgb;VfjV`eZ&5p5^(tj#;}4IR@E_#mv2 -aj;U+sJ6vA-z{f2R;1jew07?u#jc#1CaP6=KpL2@-WTnB~)#xTiCiL=Z|~H@v2u5+xWeal@=^nAbO4;)d-Mo%6vh?;FMqYyP1GXQNAh4 -0E#K#M=#H4C79Tjll4Fg%YB=8(#Gk9S$Wz^$o|;utu+5eWwJ*a2=sU*EXy4p`;Fzy -@14QmWH90Ved`}i7+gyW4PIDc(dGa9aD5A%QskV*v`>mv?DD1t#8m4fd4b~D!Va5h)FdD{<61Z(RK@|4gU=5pLyuq4cP&i>wST;}LlD1)ztC?YHd -TXvx0-IrFG3Xk9XT}qdWUx49n^mX6$nr=odjDhM^f&2*dvUYMe}hgW(mJVczPE -5;M%pBrt|+*M03@eCXPBhGM!x+QZ4NHh&|7aMu4J(LYPBffU$FPJL#+d|;hT%S -!5@J|F4C8(^RUN}PlL+I6aWo9uhJD?zgc!z|1a2F~ZkV&(a4l}QBpT*r5+!c9WGyqvKEHv)bHkJvFJ% -(8QNsOvY|K8F3Szj~el?C8#uyIehH)t2?S^sNFvAUF3^PIr91Y`80n-l7)Hb1nS^4PVT@tCcw@7o;aK`4^!rYR-+k=@|B3ywR* -17O}cv!N4$_q4WRk4LC!`!El&H2^>m53|9{&IMFb6!<-qq$lY)>7_K9fuuJINTb3CO$4g<{t`=&74); -m;n_*5S;omjPpm3meHJnMTRlC~CqhSt(BblJ%^-1tHlqjJvFB-;u61A9NyXU)ecW#auj-hMVfAL1MeG -;-dhH)n0-6!E44Re;z`R;NVCX)zchH)mL*3k?{6AjlgLnjEs&V9H!7{-|d#|_6YL)YvYItGS0ZkUlt1 -nL^bZa7T48pbem!_}i<4u%B-!~TmmRuB!7kqyx(!CJgg#~M1D3_EvRNDAY2wPqgXC -?IfgkCbdh7210WmBPhVj}BjA7rk8+ -d{a?7#7|b77)XVgJDADy8Rkx$$k65T4=$yMCmLCK4r?7t}5yJ!>&Lm_Y3VU~}VG1)c -2~6R&$|M*RZn9~ZLt(tR8m90H+9X!cG>j=+N7Jy~PQtn1u_VJdl4#ZoKYYosce9#zGR&cHqzmXUg;&0 -G!=J)<>Bb7Ya4i&WzD)wp&kcye&b8f~M8baoUA$g60t$O~NpMzfcvJYH^1=y&!Z;Y_c;R(TB%*0nvuz -U2W#s<)5eLKm&1#%B35;RkZHDpu9LBK!0=j0K)fB>Tqs?lZb7aF$~u+!#0Ts_Er;dyWv_g36fXct -=6#4jy?%J-iIF>?noLXLScB_LWxlON#JZaP`jGiFkV6zq*DUB;ZWQ9;3agmgc8KWB@B~e^>V{>?B;%wnHtk7Eurh$ZGGG!JPwD=`9>WMN03Sgh -8-4&!+}x>0XZxnhlMAH1;Y-*R6-yQ3&ddoIgI!9@lPd0+;+H@RD$G{hr_mG%^j?G91gXmL?{m9 -EhYS0)-Z?hBpqk7VeE$)9QIzzEEpWdYndU3u^+}94wDY!oqZsOVJrbT%t?p+{cz(PF7d;)aG1BH1dGG -Gbhu=*VY}zMJ18MJth_mlbBR!X7{|jBa@aqYSThcL=MtF1c!xFbJtZ)QVLZ&>aF|?z5f5Vyhw532W*u -F~T!Pg)TnmTo4r^}p&F2z$i?vX>gbd_|aV`K-8ssqc!;E~GkxNwPu --Fg|ufPwJ+}s+Dl6gA9^U_i}J5T4V63GRki-7@@NxHWb8Tx~+db@_cr1Q61`a=bei-(xZGs=h?ZXT|yy{#6`(e&vy3O~)MAnu2VHSs -zykEjO!*UKw$YDHB$Kf!}hdKQc91i1U9FoCdJWq%FCH(t`@iGqoc{&D%Imu2ki)otxP-$5#SlNi!P{G+WS*{s!>s<{5)M`Veo=zeTGjfSgei(C@ -<%bD#A^b3p!#qD+(l0^8t;AuLA8y-x*gbg2{$a`R!<==^oLoXMIIJLt{c{QIhnvkM7#x<6!`}VFob_~ -g>tV+B5;&J&^bf;)82e$&;p+2r3_mOw9On4p#^>pXtRdDlm-MZb%+r0)#_=$tZ4Gl6#}eM#{J>bk+YU3P>8iJ_VLOc5B -{)Bb6t^8N;V{n*m&6iv*x`~`qNIHoZ}TJVGLDZb#lsv9HyaOgVhQYr738q+<}fE7#vB%q!~U^^gdAqX -!<=>r7!UimOGw0FJWVGchhZ$?9S>taTs@Z9jCeR?yF^JmT++5yOFYbKmnh-z$76|Cx3(ThZ{>6VuJ7% -PUKsC2WwRXlkt-Z;tHF{-yFl&wXTC?eJyf@yv)tZf7nPq>U7I}6!osNgMMxV -Gcn%$f3WpX-F2lwyZnC!M5+rPJWb9Qey8&CEgH;0{!4zlCk80}8| -}2?O%Icwnm+Hd^lz<;!~K1ILf3{jc1MpLJbr5H{MF0b{eEY#J=nf>{mOIaub$gJd+yAY?Q55}FJF23n -JcZ+t;1{(^exfpEC%NDuL!Xi8d+53LRCdoE!3o_CJVJ)RND)+Q&c+(wOdrX3$<5NdkeK+RQn5c;Hu^` -Dhs6c~n8D&+ -hQJP^^#p@@{IICin(hRgJRw)NYUaHbOtJG4JX0+8(m1eZnQkCX$l`K_h#yeT6(u{ZFR@pL|TjI|d&8_ -c*(cI!5F`8T1&l}Ax>lcjX*7S=;a|$}~=!q@DlYQM|=Ck6K^0?95I)2G$ZXLgDG`Ef?jONzyq|w|uP8 -!Xv;}b@6>o7NK+r2R6PVKmLnA^1D)?x0^j#~#&z^%jFogKFhb8B|oI?R39aqBQQWyh_<+>sr(j#EZ+> --ZJJ9=DEPHJV$;X`{Jy{F>3+I)2?~ZXKUAny#bxGpAi`g?j}@-%YD%_X>8ttG^fz3SPdeYZw%ad@n7b -Q*`k?Z5z7<3*So%Xm<+!y_cSUCn=csUV8f7qI2(Qr`Ijm_Fj7S?Lon__w+R=8ung#_U&%Lt@qNiZx=f -``svxX`vsrgPtU$<4*wfQ(r4dZNXEDKwJS6Q8Pnd^maLeZ^wYEN6zzInkG*+E}x(8Kd4$&%S -F8|64}VXK%*K825o5dsCxv?F0Aj`E8>W*!y`Sy0_2o7|p$XzF;)>W3X*B_haz8M$5kr8vYLShoJaHVW -96HQ#?K8gtkn@tVW7F4WI{{&|kC6pVHG!=o-vTdyBNJhJ|*Uw9axuBZV%(T+$aw(NYkI= -;-W&SpXnX*4lk1n(RY)1i&sd~MHJhoW%ej9ejAX5=lCIs?(OvZB)a$0t0cNN)E|&oe17-ns%JAVeL;G -kOidQ{_6AlbSCjerUf=3uYqFrT*Ry&;y1vtTU8}cA*WW#Q_I&ys()IV9Ufb$j(lxqziPd|g>#q(yW%W -Mk`r7rR)d!^OdV6`jL(+A<-Mn6Mli7EWZeA~a(6TQw-Mn7pWUdW{+LuF%=(z8Zs-G1kzE5IS7medjNzLk_ar`e*^; -Ju#hM$qDuNwKfqYp^cSB;+5M<0@^OQVPG(SI9tkUhj{6#s`*T^c=%kN%fbT^c=m=YL45zG{NhKO$8>2 -x;!}OC+YH4b0ij|Cq$IGJ^m7Pe{~P%)I~nPf5(`qJ#b!srrdXZ*O8NweThsA^kb2X;}j^F7v-2F|BGq -ul!3Aby4Jj=6^-1zF=fm=YLJAu8LmzHzexoCFoqgLaM%Al8XIXQnhC^r}f}<67}UG-!%U_qh`}k(p<# -(-;=8ABJm$c)K`lf`1~J9)rFC}ng0{1X<-B=%J`HvE&~$(nM7R|8I}3Jkeby+)&47~`g)N=oc|lCSz$ -C@Uo&dvVd%78BQdS3y%gao?P3Th6xAthWBOF<8ziPx^=YvGoy4>%dM3}mPGVXWJ)kJHRNBUn`w4>NK2H+P(DY&%Z^Y{)V;m>px2S7P2$*Zo^gfAcO?|5ArzB?2Wx6DWtV+8OGL7?}k(d@mPH+AJiJ8AN;)f*a>tu$6s?UsvDV}2 -EEG|yJshB@cnfmG$%3Cj9e)^dUt<$Zmn`}>}JEQ6L-QoV}|1a+?9&h`uK84ft$_r;MJ-ayF#m -i>*_s2JfyW9JdgYj(q(rA0CgX`1cz`?9e+MWKmFW=i!11T=Y}_K?u=fzb$k5co!z^8ll|$z?A}ZFzc~NW{LAyN%)dJS -+WfWooAbBkZ_nSGe=z^>!Rrs+c<|1HcRzalqc_qaczo;s08mQ<1QY-O00;maO7>QuKO_ju1^@sA6#xJ -u0001RX>c!Jc4cm4Z*nhVXkl_>WppoWVRUJ3F>rEkVr6nJaCx0rYjfJj68)}U(G|Wx7PAQA;3W5MEtV -mnE=FF!*-E)wlq?2&%0j~(4bHN^eoyO-0oyE9$kKG5KK&Xo?Mh|;ht7Ln2O}B|oZe{Cqw}Hb{ErUkR; -&t59|XBt-pkMn$We1aGNMcMw+sT0u0#1GbOee2;OR&hnhPU*qcr(YZCIIwK`4!c+J$%$fm#VoYC&d?Y -3PrHiF|J*u(VvRL+N`)sxZQ%UMU?vz%X4Yoviy>ct*_WZWCMFrSde}T5Uk}V5sWUsMT!RFtJy?LERvr -G3!P&7Lm|TVxC0esL*J6w?=%`sP-8vM3pi6%arr+G_DRoCb=+EwW+#OASe1R@X0 -VxWcSdzc)zH%qM28t_0 -mSRrkz9i=8F< -H9kl08bz!BbZymeBZ`A43hLRUP1}MP<@V;EYbU#o^*XdkEhE*@Sz&2a9-8`||O`GU?f|Wxb>Wwbm`0} -Y()`n9WKeEL4s6))1Xh=NAulS0Znu@1B)bcgRkv=U{On%vHRYDvEH8O_3_F1a>C|-Dp|;aqo|r)1 -A&n*O&BP`e0et7k%6`i7N57TF6k$EqD42i#9K+cn5SR4i;Lx;6=Wa*r_XNP@F&*6U!%%w+nf+^nya_d -}p#)>Z67xhd-&GB7oe5{B(~zV`u!wk~}e=q9=^*>_`)=GlXwxxM!?m6dU#f4^0+XDC%NqKBN5>)(~A0 -+A~h+R5`2wOx41>jgXM~TP{q{Y~lsj>>Q6fV_g4eoXvdp@q9M(*~jy>n6Gs_UyJ!#$MdzBuYEjUoB7% -$J~Z)b7sh>Hz7GlC8z2Ra`9AcI#+@?X>0Z7U<2z-()2;X>uU#1Tk@-Gme6KVLqqxCR}!jam?prd~R;`03`SGg8439<#V6=dBJ=a*?wT1! -xuNbFs{dZz0R9(*(Js?UoYcxbF&8^d3=55>%Yq9KKHZFeEq&v;~&W;eI^`6#l08c$;J~7wi_H70{JL{ -4c1y%3zc5R3hhiG6(>Kf@o(xS=7AvoVXg44U_bd~$1emP6D0DCo{(t73-8z7{cD!q6?s_*F^{$D7yb>T+HhBX>H -x?Cl`#wD2CST^r@Dy5Wag`UTU~9?jhzEgr1rb&erXGS_AGzDKY5DqP692>nu@ECS`3B1S}BpgI0M;ca -Im(^baA|NaUv_0~WN&gWV`yP=WMyAWpXZXd7W5kb0Rqs{m!q*Xn%nonxUZGw%fB4gE_h#Yl9bXPjomOgj@();i?i-5_Yq{eqX9 -CE*~rr6qJ-NUtUtB>fm7aht9g+&iiz6-tP8CT{^oMwEs;n$R3mqX#AiI`FbkpSr`iSRLzu}(k#{?1;V -Pxo5%W2#?O5f_((F31qIFFQ75bMY%8R$8v^o;Bd)sXK?YkV=67z)Ehqdv4l}dM#7Dmn%K@}PxOMjn_zYng*)aw7Fzgxp$t3UpE3R$EAv#5nclM3enFCBOli^wivI22rVh -wbk`w9d{i&c{F5`ri4t-yMypHyBcju3E$KdHedJHKeQS;niT&ts%KmW+CQa?h0}q;u%zi8j-|$5-Ko> ->pziR0|SF8J%}fXH2V?@a7qFdGGFeM!$3#(&R;-^fS!_?QKW5^o@0gDL3wUv7g~z^Rk|GTC&Zgiw!9#w)A`4@E(yaHlX>hTdYYSpeWn+4ev-Hs-KLqi{v -?0WB+HN{R-Hul&PI?5sr16LxiZ6OL!U(N~rpt3nE;vju@&~MTbi-8nXSE(Z8iIw>25Py`~AK -#Iba=T>#XLDmF_Za&BzY3b>3jxuoSQ^vvrTQO8K=5!_dc9JGAA@ -!JN@&mJy$EpU;SR0-GH)p`*1%Y#)>POB(g^THB7(I1`}xrpZL%Oh1{FjSOZL`t&FDbtIE{{+I<$`Q=J2m#Y+0K-4B6vlDJHCw|(F -WjQTmxYL~YI0m5!{pwB{H!8BXkiEHG7mXzj9N@_9O9oyt?*FoYY3sN2kyg(pr5td;-85*8>saTp(rNp -iH?`<>1sNU6XC98Zo6dUJ(-k%DsK_rEaGsvRZa)1RD`LxiHaEp+ccCZXmnUf4i+-A=aCTbN1fFn#&KR -mR7PSxZS3JCFaBRJLX)BFu@%;;g7`Dqi+UbdJ5{Xb2K{qxoVjfGoh$H%tMdQOux&j=_*2H<%H#v6X^}#n`D?@E-Y`I!quZ@p*h1M1Zho$h}q;<7)-3VH|1=;sAN7a`J9fNHlO0pT5at*g -WUMHYXHv0ifFOp-jsKj>_^H^fff2~g>YT3nx(37eqJ}Rr~_9!AYYA5tv?t~F1uTZyI6|H(zcGZTH>2q -`VIB8LvnlV6*r~LTsufo+j-7$Km=1X!!a}RS88PzXkiN<;dy~(|97~z9+8x@UaNbBA<5Aib+HJ`+pZP -`QCO58FS8F6ZssJ>`bWaGIwu1oX$R3w^A^wb9pfHvOAY9$(C>-bT;B`Eh2mGa7^t!hm6e?%(9h|M%M} -z(;Q3x=bh5j+cNfXQT=2_)^$n9e^5&U1QY-O00;maO7>Qnww -sbV1pokp4gdfq0001RX>c!Jc4cm4Z*nhVXkl_>WppoXVq<7wa&u*LaB^>AWpXZXd97A!Z`w!{{m!qrB -B}&h!a}S4lBkskfdnl91V&YqM%G}DVN^4NX2$8#U%zK;Fb|vTcD1NgVCLR)&pr2HUtN`d=&tuL7}0Rh -?TuzVx*LwWf6@iptI8F5D^6oAmO`?ax+>%(3_YozB90l&rFi4o;3ilxZMdb7TOL@YDS&CSvPT$5VFk? -Y`5TYbhHFw0*%D~jkGM4f+i)DM*NGGXvqDLOpL(No`UAi;Q93&hG-sBFwAiMI#ZXK;tj!joR+ehrI(= --l+JGoEZ&D|YY3ghZO}XLvjfYt#T_vp+iv;=AO#KEYL{ChAr-_J{TCC}sz|fLaG}+pflBvaPwZ(rHD| -fH*d{c!|gNaru+9)Ay19XDDYS1|r3(fS_Ngip=$*9QwKsvXyRS5-5lIEc>87atTiOKMHrQyF;p@_EbD -3KvVaJgEp*JiK$!)Q)JZjc{6aLF||O_D_{0yqyvz@_2D3~k(*SsnE4J0i0k5$Y?zr!~1HE^zN+yPm)a -eQdV((RPRp2tYMv9e?z|#yQqOdP^~CsP~@b5*#uONyrp-g^J+|0Fmeq^dv1fC5A^y+yDY>>FdCI9M3) -KjGpOhXFBbSyysikqCU7q)iWfq-oygH$VxM5w;&FHr{1*t2#?O)U^wue9sB;k8}(*0>W`|5GL3henXZqBEZ|h^b-MVgnYPE^xG -n`!dP;YeqFE`Rvr4ngOlHG0u(n8hTz>U*JVsXQ5B#d2V({xKIZyMK-JM%8i?~l$qaNQa#pMx8A*+#1c -ggx?^aXU#5_lB4;xil87yJo>kNS<4#H#2whl-=xHxJ)pDJF6j+%Y-d?U&LsBsFsB0|P0Sev~r1Ib%wn&kmZS@u*j)>n} -7?l4s%F$0S&&wR$s$J_7xG^u2!YKqWZ1%tyQfb#M5|C*i^Z9WXOyT$zlS}80J?+_7}a&)hZ&D+7(cLE$xW&aMv%+%twTqYzAN4Z -__wMQ$$>Wm&;=>WWB14N(Y-(L{)gx@50Cz0a3`@JW5`~#wdRnMX_SGeA)i<3N4F!LA^6UDt`k| -O9KQH00008031s8RzJEWEu8}Z088O>_9VyxrAtGUfU4?rLMCy*t+6B9X_fu!?}ZDij>T}d7g -PQc5ZI2FX|6QW1l8tZ{SA*>QAQLPx=k^rglTKHK(Z&E1{SqPbZv&rAPfsNXclf#2Ysjo_NiS<&F~Wc< -i*H7|>Sjz%W+A3BZ2vH!gL?4e6BJ6>8vp?rh954%23nD-km%w6gd#nKs)G5L2Md&K?`i98YLjY#A@NV -y5KE3T(A@RQDRxZMQq1xC(DkPf7|)tfi1!Zr*sZtHjgF8L`Y!U)?so!9w)N%qs;#u8i2wEg?fkPE%00 -wN_h1v@Y;4sY}29sCTQ-77!S%(@YEHnn));s0N*-SQ=)EQu5SrPFAPx9p&6np>v9vBEu75cS%7$M@%J -uXoL8TPDEOird%Zup{&($v#|%|NB*29+@d}jam5XC3i72CF@h%|=E`znma@`j*GGMaWg^i&5gKaHZ+m -h_T)1jN>pU!90^PlOd7lu85_Iw8{`U5YzzGD)bObQUAD#Mg3kT?h)2cdV5h+cm@8PA@}?1$r-KZqh4P -DAQZ&2n7lrd}ml5FvahQcw@2)}~2)ZCwd{>>;+@?R46 -=olor!(L93XcZ&x8kN*q+!xC&Qd&vGyS{a>ZRj3C~#NDX$R70|_e|| -l~1~64XT;(`Md-sH?RnAs?D5N_g^7!R!%fZ}x2&y!B{Aw;hKf`m7d%pn9o+_Z#viqsit)fQ#(pG`J=r -vnbQ4iDmUcUmeFTz$a(Ze{ZKysIUsY2$n;g>z6R*NOG_(k-+=tST8rR2Ckart5HQ(7zpuHnU^Zn;dGx -C_*3k!}V3b|x@=KQpxasXu7Y?O)_;#dnnDvN`VZdZYD0eM0*Ez}~H0T^8H?{oyFrvBG+zS@9g@ -Irp5j{M>cgohxC7AvkxP%;LH0IQ>`n4)b#EI%)r@>z}G720uYpZ`A$;P)h>@6aWAK2ml;P_EsrY=JHV -v006gk0012T003}la4%nWWo~3|axY_OVRB?;bT4gUV{>zDE^vA6oNaTPxE9CX=Tm6vH|>nc#l{b~oqd -s{PB*RdFt#(DzRF-MC)~x53plCw&i(H92mwBT5E#d)cQ=8SMEdK11nB&HB&*R7|B%z+my0Vhx;PtNO@ -`!jbba=X6lfbq4KjV8~pd& -|lHOH;qRMNz3KRu}mYdT*rq$y+_vz{{X|}#`So*=}{w~b23|p7W1bvJZ9^04X1ht$osPoq%|1mU_vNA -CMUK{#!TyzG4-kUMCZIFXRZ@?)@&8H-h2PUM@S*$((wKuHW=Sh&4%J~-9Z+xS$8GrK>XwYC4_8 -XQP=|U@o14|lwoE8IvP|mulo&pFWNH4xrlro=g-oIgA?Gfb4_o&Wp%&z`b3akfhZNF2ZpCMdEH;Vjk@ -rTxt{?8^BP;j;E_zLDxEo$v@>tjeo0`sv<%DJ*pzYxoFbEZWhR2A^C|UV*v9gIuU8BVZ<3kL(2!|~bgP~znDVstV6!LI)NVtO^4Ovw55n4FNC -lkxQ8>~?fACO5a^o9oH&n2-sjaTBw~6g6_v#0xOFbfG2ZG%zgN=T-j!x7UXYwCCi(c%pEdO=`gtMGSa -F9@kslL)&%k!}>yzO@n?S)`B>0&?L{E1T|_Tq;Yh#@Z2RihMvN5?)?BBo26ksSPr}hX25PEdza3_+z -HFQCEoYZ|krm0Hu7HH}+q -H^n>1I?P(9Un*nPI;GaS%v!h9T9;YtmRjpEYrRryJ!Y*}YOT+#^(EGLyY-p1KDX9sig%Fd%$nXWl`(6 -2skH&KHYl|=VAckSHBGdG%wX0GZcV6(WXzheD3i^YwOOgP8M8JkwPrGFW~nukSu;zm&6%}%skJ$?HZQ -eCnKfE!jWTPr)Y^hsTS%;_p^6!Up76sF?+ho?q%Xw1=kahnz8*JINs}q~M^O^trz|VKO;STu6}4aKvI -I#N)5+cCaKCBsb?Qpgz1MEO{U$Y-+wQ~tj@_UW-FaZ4@!e>6bq7E+8nUM#aX8R9smTL!d3SmJc{uu5; -D@2$f5ZB}Gi}57?*e0H({~?9>}s1hb77c3&XC)Ul0%=LE;E_NMIH?A&ZbVrWa_dbsbege;N7Wp-+k9S -`X6)pXE%e+06YIMA@u&G?qBB7)pCz6bKz>a3omu;wTp9Ko)jV+Y -V75q>ZNfv0>1*@Z6i!e{6>4@Eo$;_LYra$ZmB{7jy+Tn0*k7WVc<{_L-6qSO!<0)DHu||-lSq+65xws -UMz -pOopOd62!+*E+NxvxhR*!8jfs6a3_mg%f**+t!;egc;76?mKSe`) -zY2Z|gP41RABhaZk4%Q(MQSy#$Di6o@3Y5e+5lshZ -26YUf^(eQptoM`U41y1zaICi36uYW%|#XdAl$ixrQTRw2G+0Cu+;WqLEcWu2Jb?5 -DP@_v(xCk=qjGV}B*gM~+IAk3EzyAGsz`KK4n%eB_Mc^lr3ey->F~KwCHGeg@6-mi0TreB^LM`PkF&v -&LJ_#qbUx9#kWy?Za=;m|E(mB}i)v(lkL@N08PPr1b=8eL^;$VS29;hS3U!(Js%NHI=n5yFlCV$!J -)HFh~@PsYgHS7dUcfCW~c}aLA}gK%^pH(nb9cWguuNGpB2_R8jY&ba=&QW6lt_|rJaxRF-{RdTN3Ewy -S91B>xcU|6Ny=^Uli^O`xQyJFIRyKs{K^x%2a~qnAX0WwzXCp(;83N@@sQ{mr*l`8%W0pBd3_R_J(WQ -;+k;EkbGW#KZ-;a%Mh-WPSY>7hH*_I!?-4sAzYKlFs{jD2-hSsjB7F(!ZnEuC -3C0HkyuJh1f_Lf9g`a1{=a@x?Dln=KL1VJnTCuEIqrET65iKpbjP-)9S11TI_1!t|`A<$zfz8$8o!5s -Kj1CBEgDY~=-BcIDG~xJJanqyJe^$6OP`G3>Pud9Guxn{34o@=U|!N}decVv996_fVcfHN*8(h-WzW; -er%ixT421we4dvaicT%#v)w(!KdN%2CULhyiJ(?I3c;RC?q3W)D6}o+6^~ugS1KCTg0@&N@SpxYht9G -JXnk1?(4+_Q|$!){)aNHME17W!=9M7m1Ek>2MR9Ja!f1v0D_rTBEw88lOd*Us6T;Sp+m83zSxQ75dYu -sH*{KIAJ7b!KvD~@7v -`2tZe7NCyp!c9{5bn(ch4C*vtMc*O>Sf)ARRE!}Xy{u*wAYu<}(V_(VDWl+?tG*pY8D*F1VGix5L_YnU;TbS*DKj3Kdx8AHvFb|f;y7!qrkF=R5t7 -!ny~44DiuhD3%LLncFvA(3ImkjW5ZNMx8XWU{}`Z1W-+_VzLv^7axL_VzLv^7axL_VzLv^7axL_VzN_ -;eFMv6Moe$?d_u;5Bz=R+jd>0l195h(x?_BjmjV?R|6p=jW&=3f9okknx5-huSlL*kKA}$k-Th>N -+Nq(t{^Kz_=MlY?C2B1C&|iB`&*G*vZPafp1fFw@JS-W_#~6%@aZroUg4!>_4G2c7@sn^11v-M)MA}N -tN33Aqgre%R73yZzP7r&e`5J*nqr;fZlgy#LJ^6tIjkr~FZMHt@>?lqp9X<0hCFSX1;c+;QqeT`gStf -V^r!>;l4{Y6se`=K1P$wuW%^L@MshMd=x0sS6>Y~ic9$0Fs7mL+Td1QeovojnzW7k_lwDQn9(b#Cb*2 -0AJ$ZwZaz+0=QE4{6sp@H~N@sxd4=^uEj^mV2GDzva&%jv43A9%~@x}tCUJaN#=A1a=5pelm{Z< -T?r3|{Sds@`&jsu%~}a)z!LJ3mkLPd`(Y*@3svOjl;LpRHF}Q@&xUih0njNE)WDn3-=c@EBpiL^?bo( -aufp@6aWAK2ml;P_Er|0ik;;E005E! -001EX003}la4%nWWo~3|axY_OVRB?;bT4vcb9HQVWNBk`E^v8mP{B$AF%Z4)S3K~dAia1{7Cg13ir^O -MMMNYfligr86OycD|K6l)w^W?dFz?O0_eKZqkw$M^3)6cJ3A@+r`eXU9UOqiOZ?4h!WY`H?RYspK+{ -VEdyTA7|hm+Rrq^1AKcC=a@7}AOuvx_*`RHm0Rel>+FMNYEHH|qHnZ!v}U8JFy|QJF@6aWAK2ml;P_Euc&qVQ1&0000P001Tc003}la4%nWWo~3|axY_OVRB?; -bT4yaV`yP=b7gdJa&KZ~axQRrwOIRa<2Dlh-G9ZPK>?@rx=z|0u-@CnIgXMTb?m^8>*j)-K+CjEgciM -&l&t&L-$&|g$?5ih6_AI>nc;9A-^}Rbr2e5x=VmaX;h^t~rVd>W$Nk^w2<=JZgk~E~V=dOgXOjAA$w> -rsr~VXDGMfA1h3f!2-iGObhqUA&_d=z~18KXFN*MSe6d=3eFI=h}*Q8by)`$lEh=+m4b{tFFZR87&g+ -loOUiD6C`vSpquXMcbY0g5vq{ZG!tRBU*k+s|7s7*-C{wbYzI%g13OWvlQlr%B40Zn+o^$TCdH|Z-s) -M63ge$C*tixr|frl09v$h8(*dPmSOq)^fQKHMnZQcO2{{4lA^zRK=vEtD7tCY55Lncf@gt~BQqs8#q1 -%|FmyMdUG`G+&A!J|C6}iTTT4lm`D+EyZeYmLh+N`{gj?X&c>L}Ckfr6voF{&4rsFrGr`JxRDrr=0Ct6XZ -8tlJKqA4V;62AP^UQMflNzQxx!3BwLUGTKZ!!yB*JG)Ehm}AHB(>H<~?s04-dBT{t+FB(^&#AQ-pO%n -$ca90Kl~N&glcz01LHFnciCUk_#@XF8?p@q~JG-zYf^tb4_QK(2k0Yy=#1J97{onGTRQ}rD7c99!Kag0Fufi6+YJu26cvid%DY<`J$O^CB -qKh*SG5=Y@1yitJixos)OQm#+E>#d3(z_mbJLhL-op)!ycFu_AQ>+|&$QfOIBlw&&8Y_*Y3HLjJYr$( -Kx2}W-O@@e%7LC}JFK5wCBG|?@z?f_qP(tR#yzK;+c3Lf9xkN@Ei&Gxn+r@;C`wH65{62jfCO6IR4wl -1s~IyY3V(#UOh%XVFBgGb@R0{Hb*;&Zp=v?58FIHoox^_X;bDggSuaM!|WmsV1-&{8~ezH?dN3E@f}! -V*E37D`FG$>eUs7CelVJbLlizRl8Ga`|cR?tbXF)4_in`bhuyEnd8IozZxHbL&o=p*y>sIMdtl@CpQH -o%7#_5N7T33;L6Z7Y$3dAfXh` -YdrJ&m@9vyT1g_==>-aLZAP%}_68M;rmKZ{8%#E6SzjoPnb^W-6#9n&2@`Vx|*l$OzYE<+U+ -1IER{Y!Jkxg|Y18(*bFyLSzRR0uvUsnGgj(6ncS-&Uwds(EZVwW43>fimFW8p -20h8I6~ukPilHe$q?&#sV5Z2UY@mLv`I}y_oBu*Y!J^?lGk+1Eb1!7+3FLdq-GKzE#A?249?io@`&Fu -T@tj62wavOR-4UJBD)2q^P0x5s*Ni69Yz1twTD8zzhTMfZ-MCUen)e`HHVxVS$tqr~x7{LMjjzUCblu -PBr-X#_0eJZBv-qCwE8;n@<;(Oy{yH!bVRcKZR?!IPib{&tl)aKwQr!_amhHF-&6G4x1rF4ITb$-wg= -+kDE8UQ->trN4XEr?Qv%nZG+pRPa>4}BlD(z>S<;LQGt-P7>7(ln_1=H7Snu1Q{TmvRev)ZaQVeR?o% -DEnloU7B4uoL?H`Exg(Azm@ZOdswp$3wT@o4Mo3l{3Mh0FBVK+0K~J3zHEy;COz~X_>*{K$?B3r^jN= -bb|E=ShI(KUt5^eO!34dLjCb*HW?4=#G$NiP0V6;@uV_ceA0zy1EGl_KWy7^S@{r-p>D;s!P+{3=B^u -VrZ6+9n3#YP7Ola!7MNWzA5wyzMW}=+>f{wsco$*P4mbvsA|XOAcH2K|jFViw>}B&*ApU2xbI0Ub;zD -?axK0U^NY6Vpx?9uN#u=ylWM(2ZC&z3v~C{t?+-r)Wj%jH-9*~k?*!{3<^^Q|zryi&ItLxW -u{%wbh#xwWM$#bsS24rp6K}=_Dq8!?FYE3uBvxl4a(F^7HKloBh}C8_keE`HXQ -u!3?HhZs`mb+a@nIKF_hJRPbo1Swk$I{PHSFQqMN3%k3VmtGuWrCLLmM;Yz2~!gCYMKp0@12k_UN8*r -s5?Jq7ShMtCpM=qV0co+Rem6@O}&w^^y-?`np#(*v`awOVn9CHybg5PF(Eq4KmlRk(-)_5J(9*w>B!0 -Z>Z=1QY-O00;maO7>PFa+w;D1pojk5C8xs0001RX>c!Jc4cm4Z*nhVXkl_>WppodVqa&L8TaB^>A -WpXZXd9_z-U)?TBDI`KWyN_bWIkPD0a*{8z*=qe&t@xYD463#K$T6mi -2tBNc^UZC-2<+(Z}wwg>*fW4Yprm_ss&(shbA8@eGhliAbVJn22@m`Ww=#VPG85f_-qLIppZ7h!`qlwfRyGW -0}k|e5sX16>g|8+6+O6HDG>q`-&xqnH8uF_uy_s3WzptS@cIUf;A@ -*H^7Su3JPCA1|jqat04)4xh`5ih3XS2A6#l$;_2NTF@CE+{@XPnI&uD22#^PZeL6nS0q=i7jT -ye455{rUXmSMm*j!yZ$h^ySx1!+yhQbq{!s_`X+z{uw-Zj`L -gr_{TnF4=i`6gtjMj8}yux=e!nTNXVXKnpF5#+u3px^d^IngW1&j#kZ&Y`VgSLXSYhVKGJ<*5!}wp9S -rv-zQ3n>OZoP#lJc3A3hMLFy$if5%1gW3ee>Kt3a^S>O6UQ7-x*9FQSxN$`oXuG>tNh#yGJQAsd~pat -*(IY!Fb|5yMC`Erl&=%mn+v7$vozrjp0SX7e#z=5ynhw@;hCBuLo+!ZGmNF9gX;mfocvh#Y -zi1#6p4088Q!K$+y}9G7??`zO28D4yOC7bx7Rx!7b{rhCpKznL6FkU8xvCr33xVQxZSd&lBa7{dN!XG -X3VxQ6641Z)J8v`-bFvlk3$|mIMuJDHPe66K=*Vr(|t}3iL=mLMp_t5fBnBO$9(4;Jm^R4 -+IG=30*x?|3t{?~wvRrSk@dSUhK!K*3&@!K#H+jp5B$8`=WeN|Uw%P5tX&&(Y(*L7-<;eImB5- -`OoEOC7h5yy`9W4F>@$#%Kk*ddWiKS{Ze{%d&o;C`9+8S)_{{T=+0|XQR000O897^_9`;4eQRs{e6rw -;%CApigXaA|NaUv_0~WN&gWV`yP=WMyAWpXZXd9_w;Z`(Ey{_bCKNKnAW94~G$U~SN1j -$aaYeuE^V2#P?UCCcV1kp@X6Re$}Cdbcg7%diOnVv+YeclX@!sLRXd2X4oA(*?|?!|}o%!|iN2{1eXD -UbZg5*-=XAJBH5)p$(I7sRUR8V -L7)6%z50@L7&<4%_`o6%tP>ud6X*(M8V#ysa>Vi!~|mJfxtu{e -X8yaP=@=)_Y;*0SKw{0UwF$IyC5XAi8k?LHTMSC!Jrceu^O^K_8KLqGWCJ+ly-;O;}0anM4z#ZU_&8R -G>F44GN3JdnL78&wF8621AG}+)?nd0+@LKgjk{RCjEP12kRdTr6B`pMK -;jBOhxOA7|D8d%PBxSkCxSgozq(jNB!Y)T7>jhIa$ml6j^83|O!T6j-$E>bjqnKzka`jdA-ixZls -2aG0b;M;_WRdY{dd=WfVGV)=N=d@M*nb#T((+)6cOlT&oC{lnmIaajsfO7J#R;3*(#rLhkq;_Vox1#p<|*k)&*?c@;3V?0l}Rlb#)bzvpNrU2#Ef9*Z4zt^KNlYxHMM}b5e -lYydoj~rOpfU*PgrcwOU?CluB1KP`jB6XA_PlY{URum*IqS-L|4 -((1EK@un?SP`{q$G&b)S~SK4)|EkxvEx){>O2Km|t0Ukl?rE`gq<_C)K@of1{U8kZRLyxpRMoApm8W& -3ivW1_dU!YzL;E?+dtSW+aQhLg(?Q#;)${{9N`IA(~lAock9ecT*4j&KB};x<|~_d*?2!pt0HSuo~uFh>*Tp{DI3>P{7md -5R!RnAjqRf%UjiINeL}odYNi&O`LagTvn&Th`J#^j0=UD7IUynNK(IwtZq^o{KjM@Gn37JG|GZl$ade -acOdI)J3-un59r_h8N6=erPsfr^}t@bV~i|Rqrj9jyoTpAU62P_3c$kP8}PG&Pdtpd$L?FM())454_t -BUhb#Pjl^zHkT+7Qq!pkh$$Y)+IQ+Kx -(DAE{dNLT=gF-Q*5Kuy6oM9V=x*!Xtf+sJ!KZP!QdG3%%lQDbz9^s#AZg;E^aLI(Kw{Zf=*e -6nW+m`QEO_(mmkrwEhNAO9KQH00008031s8R!S>wIo1yV0024w04M+e0B~t=FJE?LZe(wAFJow7a%5$ -6FLiEdc4cyNVQge&bY)|7Z*nehdDR>JciPDDcmEYz{H_PDpaY!b9MZei#^BJy*w5gXrb!+w(gLc5M75 -F$cfJ1Yo!QmLN?Kva<@H_lau<7dW_EYJXLfUXs{hDk?|LvI!$G$<8u!TM@V5ICDShd=4|_iu#-d#9{$61J5TWfEp(;g@J1aHh^8RC+2t?<`Zv00u5<^AF+U&b -i-h1y$)U5q=D_Z9DemTo-cj@!sO2L<+$lH8Ze8@cYO_B@31Re7xgBZS;g|B>9;&eFHnq(NYZ0SP>Ew+mLDDzveNMuSXAL$T% -E@Tr-#Xu>4&(cWe`ohqlRF&IsjXgJXP^va*jG8Alr-eGkYB_P-&_hIw2Y#SbH-ZM5RmB8qi5E2+`|_Y -dOUAYu(Ry(12Y%a1V)Eeq0^3C*TkX(DfNiY&>J6s<9J&2dX1|5s6=o14mn+&YVA`~=avpY(Lj^{4Lc>yJ -5=o?}$i0cJ)vh{7y9Z=7Lbb(4L-#S=@Y1GNf764KA(E$;R0ljZ8fOOySJiksZJsu$F%?02#+pSi!(K> -6k2zeO8NZChvqpJg*&*@2}QaQQttk7Y=3Kw|h+HgMHd*XPmVtkVi~}cadOh3At;UC$(nc7j+{l-%4;dOV(ZnMsVh)dV9l2fb;aVOx~Bhxefw-d@c?*4) -RZ%$sh|u11stG7x#ZM~ZwZSo<6l9r3m-NU>^4X@8Xbal)yb_eN$S**o8YS?q!D@Y -rSFBCjqlBYQxRGhX2vYI#+f@YlSR=&X8@TSf>(+F2JR*d#sN5kIvG-T8PX-|+Yb1KIzcShu$YZ;xtU# -{$4%WD;9YFDl?5G&u?*Onn(#Muvw%0$yvNZj=-lKQcHCTc$3Pi*p59nXFAN -r~S7+@k=) -?~UKy4zB>TX|$VS^6lXI?ey~fq&L0lO?ur4gqa_}WDV0>Z)}HE=amm1Kc6=nA3yi|pDJ?c-nd%|UH#Z -RJNx&4eyK&U?*^m8$iGg=55~7sM7z1T1K?kh(^hQmHO|jpzHYQC9a4E`yOy`*jaK_*yHeLcwR2ESE!4 -{#R7(r>DhKsS3-x^t>P!oDo`ZU+g?gQXdZC4Co#nv3kHCHv|A$nYa?lOPj#fdi;hpcki#6Ne8)h0?NM -^Q6!}FKlow{_*cmou^;m|pActioS8j3Cv=s>(#(*S~+j52MKzwIs`UvylOWQ1QaVm&o3yomLYx&YVR`1mg5^x)5=xlZ#Wpv+RIzF&w6tGNYJ+Cj?1 -N9k!(Au0!UY=Kx}#I*=m^*cxg4NJgH^I+-mPQwVv}$c0X&3+*IP`$InbeFCCLBu68PA4U933@Jg*F3v -k5bNEnL_QR(vp7ewrCGusoOG+)$Sr82_T+hy?9v|kLMl(0`g+*G|qrHITT~n=~QUZw3b_TMfr4Vy -E10!52MpVfYc2a(zT7=B0`50AecB(0H5h6Ir4I+zY_+tVIS-j6?u~(b -T>V$hDYw}!YM_eW%NkR;9WU*-3P$2(1zQHyG6hGm<4iOX(yY$%%y11qL@^|PP{jqH*%vHbW8D -Rd{%Ur7fO&jHTZcNk)N^M%SQ%7eas`SxKdzycg(y(ML?NysO0+slHAg4Wc$p_-j3mfaU>t-MQ9^zYT$ -aPwTiJbj#wI585laU!(9nHEC8LRQ37f#BIQDyj6%l2`qE4GgFt^pyUa%WM=uE3 -o5g?|8*KWeMHhb6s2?_)NgD$q$-ZjJp`jLXy#Q+=MW#x#i8@=llTHJRJ*;kk)OH1C4`=!ow}n<0AH^2 -KzDg_+mAy!Kg?$H=EyT)|X{>c1i|OU5#!I4& -+0K5KTT;M%9cn?`!1{vtbhcF~6Vpe6-$N&OUz&OwGLay5DlgmqT*(XS}ah@z$0L?l4!n}~W5 -(Pvme%=@lt}Asta3(;s^66g!rUZ?OhSaZ_5$2TeBF7Bypu=9B6b3JQH7%R^ebVodW)uGiPMx*u#Ib|G -VGZV5Hg&a3JB?5Px8F|@=k{_R)}Gi}kt8bl_}a?H*GlC;#>^`pKlgjseE9ge*~I@UdJc#q#2o038!zf -4bVD9OlH!>GxMa`AdkHuYsh+)PwQFCbLZ@VMdv)89=}yukiu?@^H`p1I>5nXs4KkLVP8P&}d0sF7-oP -rg)qM5hRYRPkfxG=(C@IQ9%0SAa-_y$?QYxX7&&s0RdU5vuBMaQ^??M);!^pXc{Z4|&9z^UO$X@rLI0 -i%k$FL9nImdvVk3$@TCa+X7Y>egk@S?2zAzk)UtPG<Ssk;T0|Rq0#DmQZ>b8p94&b#3ixgd5=o -EF0&-M*}xHal#|KJY{<5yp@4@}h{>p$_&9yyc5HEm_YrFQty()NYFw_KOC+b>jTurVgVD8K_wqzU?Uq -QXK&^lKFuIx!CM5zpBFEFN9+#Wga5}`1Yl$p@Knhi@eGONiobYIuBpnaOW=Y8-`|>|F56up~%tSPVjyIE1QZdYLvZB1TC;_-?8_cLjS}Ceb -(T3qftcw@K>J`P&X@$M -a8UwI2<-O!Z_XHTfxO=`&^b9l~{lcZyhE${6pCJK@V!#kwhbBdxBe=5+5bqYm~;zm(Jj@an_?I+dg2^ -UrnT!C850rjrtkNFF}(d}poz;ZB^g1wT-GA$Fzr)i(|uL^KeqUKL7Y@#v@D>H3le43@V*9xd~I@Eeja6RTV>c^b%K!)-)3y -RONzDfj?enD|4`PUTqt?B2f4zOu7OW<@=zSLEt7M11J_{CROg-P9(OPpwVh)~gg)N?|=tum$+#-71WQ -1aeY0YSe|)i3y?|*M#hJerrCBsK$d(TSqlsrHp -6+O{Po4#_ZE)T#NVj>zp^pcK}aJt1u{~BuSbKujMUISmm*$dm0HGxi*ibqzPvdK#_U0*z+poxfjSdAb -BuJSq(`BiMS?H5sE~MFd}_7xStQz3^M -qxN~IQS<^kOJvdalIwj5heD^HD|EtnPK*;gVfA#3Q#S~T)F>0(^^XvhHeN2#Pnk?|gQ-&-sgBvVgpi2 -s18S|fi>Uyoh&E+0x7gZhU3o@RX^!-z|_6{HSO&D!g5jn6a~D3)VYiju>~C0@NxkB(o_#?cw76!zF|S -u~3%DK7(5f_2S5aVYU7@rly2sDzBYM=9s)UU2*>-*EB`&-(Chc*(7p`W;m=<&gH*I~s(;t1JA9s)8SL -cu7ux-;u2QBDQ4&dN|`UXos;bgK{|YQpRa&i~j;pO9KQH00008031s8RszNx2vGAWpXZXdF@&MZ{j!>|Gj_3yH=-#9ZCu9R&$-}==ud_+3n -D((A%5qjUp2quxes9c1qdP{qOgl69OSgq22Ckb-J_?V88eA`|f9FZ?E`)^VX+M7p^)Nt!}Rc=U3MkKS -BxZ-VXl3g$hh429Z%=MORO71mFjzRRI5Fk8C6bvt<3T&>+PiWZ@j}s~>U>TKQ(iLjD2fDguuM5b~kWF -&+nDfCa+?6(avc4TV3ap(q&g5X_i^;o(Gs^6igL-8;DATI1X&9`KM!xQPZ*c*uMuJRWEcOv9AM^q3D} -Ft>bd5~P<10&Rux%m@{H04{Kz)_&xn#t~@NoyBSiVhvOX6=q2O5Y&_yt0?pwBtz*Iob^HzEHxd12rTS -aO;N2e0-~ZbAtekrM4J1NtRVu@!cU$4_t$rQIO~3apU!S?&$|6DACT6J70&WU9wUj#R0;$}twI){e(P3JH2p;W=h>WeH(gMI+vL!e9zW}(2?F)Hs}L|OW`2A#mG* -Wfz`iCFL;(FHwZZwnux+fu2p2Ioo}BK>@Zyp5*gH1?gth68Zd!;!KFTHVVnQ)q9;57h+Bd@4{Ybeakc -s;W_ty8xx!iRbIyn1z~~X{ZKhoP_QI2YcMy*ujL52NC8(LO?T!+cOx9J3Bj`WLm>rzwI0!He;?z1_RR -$Ey`@nDUYl>d?7i7zLkNZ55F -8Xp(536p9e#M6#xeZVwC)9OwAFwNRe&o}<0UQn;Fte4*YW3k5fVV`3~!ZNKbc?#~dLN -{1Q=4?~}P&O9t5nikPi9tYf~-10e>B&DYUUkrI*$OTiXogRg@1^nFUx|r*?Jr^_Ey=?Vc7yZt47fzws -NLFNM%O_L;VaT`!Ldp!n;!jiVQC%XE52sHV(eiimVLRSSm4mf&rG{tbN)>FFbatb->i^T{yJ7dLinQ>7poV{;+g>T^~OOrTp6Pc -?iRd9ASbLxrlx}UPdKSwMEszLJqHA{eTz@!+uk@2150l~JJ)chGDxtZv&xdqZ;vkb`>p*HTAN#E6&z- -ojFx>F`X7YnxaxmzylR?KB9ha3wSdNqxRcwj>~EV%yQvG9LaZ^{fy@i(l%=vOmOgCN=1+<;B^G8V8gT -808{?6K0?rLrvN3)@txOCowgZlW-NU7X&h`Q1$ras!0i1VQ$D4ua-4LOd@8%`YML$Y?B*#%>8}f?F$X -1U4FWirII|OfOk5irA>k>KFmpygh)UdZU^HMsxjY;ARF -mA2TWLKqTx!dI*((UVp`JeOrZ|HWp+3mJAzufJsHR!F~UMciDdh1ibUY^~Jpi%-4dpesQ%x& -)*X?>Wk=dz;=yz__WsubW32DqoXypV)dPrFCJJDBzI>awlf?WPmSb(efz^{wDC!q`I9H3A@xi#<>mX7 -5`Pe7N;)=Xs!t9Mcu=2-2QkItHLI&|bU?ojVkrt0Lw&MwM4D09{Au;PLJuCS?HoGzBg)|9W-ANUQ)IR -NTF|Ehji<}^@YmCL0_!z?#i8~x7uK4~l2b-MjQ9o(4xiDW`Md^)>l!r6G;m&{flM_hj8*42AFFhhd3~ -%BcP3U>g4H=*3s&d&*80?%|tytT*j+i9fX -HYpFkBjtq!3wWE$rmrbN$}S@PHu3V^CpgyTRP5pk>m2Hn;o}th1cGqyu@(@wa@2#n3OpxP%fS8o -$sIj?(3_!oT=-V6xRz^DY4NCfq#zk_umw3`iSCd-i3fG#b5!Q8ucR_!METvnn&weAnA+)%0RbtM-KzEO7cFEUS7p7iIBi!!8eB9zR<2uu -e-moZ^mkCXp+;!NIY_grrRnIo4wHI?uygN&1<&WaPgMy3(=_Gtw(>Qq-f=DJ#&QA%amNQZbuv6>26D# -!>#7B5H)Npd)n&Ge*sWS0|XQR000O897^_9|3CYAWpXZXd97A$Z{kJ}{?4x$C0`&VZpi7Xy?yv8xZSW -b0uBqxz@w`0q%roO5=jW#%c(5O*4$P(_+wpC9n7O0h;hos?&N&1d3a(^p#z_hz5mR6aGVwP{Q(_6Zh6 -rs|XBRr8x7r24+gilHwbYu+=5}6f@fkCcvMmOO5>`Nk>FagRj!5Xs@@m00L+Pefdxy~l4WoS$WVh8uqgCK -@VbALCS@y0WMNcFB&DE4qTi6%9TXymh;WcJW~zcmAv6#k|12ctXCh`vVN5xXu^q!&Q<g_ -lc%+<4>}HX#QWjzIj75|y3Pi!y*wm&`YGR1^H4&HygfG>-1Io~EYQIvc&;r-iU{|e1?1PZdCED=EX>L -to4@no0;xyzg(>f_Z(`gKhm#`bu9{)fqN@Fp4V4sPGk -bP=VQZy%RFvik6OfI)=6q&NZ}(Fkj?Pw*QrVtlFu4i+c{q2+_N>$CL@80Kv{tOTEsl67@J@j1*dcD97cM;a0q)_-`rIiUF- -;&08Q!5V>?)cjJ-GY|j^MOPG>^*hGIe{_KCaieFryYAM2hz(TJE+8AEbsTM3}9@Qf$Mk?Ur}}HI~~`t -qeclxyw3D^0fPyNa_C#$B&@8*fXftBIG2a4H3L34G&3mE;*d#I=Q?#dk-ije4Uf^k3i0v<`YWeGP;jP -RMXJJS3CQMc~_O$9G>FO67c(7YLLyTh|J~NgX~@A*$HKmP>2KZIQ>gkzHZcO<>4J@r{1?V+p;~+_1dK -x^>@|2XKXoc5YFwRj1~UmzI>?kH1HAVL$xRF(iw--;D4y@2YB3%i(}e>wrgCgD3_9QUG8B@dAA2&@8S -A5yP@A&+@J1Y(CHkO*z;<&IJN_O6il7RFNf`vNhKS>6Bbh*QA4D%`%kVHjFv$dJb5<0%*Ovs*uzb4m^ -K@Kz+wNTB&i^}DVy_@z0mTk-QFH`-&W{X_@&LaPQIvDy>%%sE{+je$u;+Zb%p@6 -aWAK2ml;P_Ew(pokO_*008s=0015U003}la4%nWWo~3|axY_OVRB?;bT4*ga&u{KZZ2?nO^>lo#4r#< -dw<2q)m>vjL30ukLQv3v1c)|rl1;KY+Z%b;2lw|xr$eHgnOD5=-n-9*6@Gi)K8s47cAX}PBgnJ_G|j%04ClJU*9aDkGw)kKmamJyff%0XMd#^D%e(%{@7Hd~|~@DvLkQ!E -z@yD^r~|HX$nM^0goymx-{c3pS%=sMiP--X+7(>0+gKj@;=Y!w7UrO&00002000000000Z0001RX>c!Jc4cm4Z*nhVXkl_>WppoNY-ulFUukY>bYEXCaCrj&P)h>@6aWAK2 -ml;P_ExC1HmB --Mm7%iTbXac@dsf+*8;SGN*e*CR010Awib9@fDw&0j#R*Hg)~qICvqo>NYuG5WWBLb^vhRXHA*B&6ah -Z3A>VQn6v66BcuacHh+*i<>-C}p_OdSY-YzfRy?=)vZVS1tOIhF<0^Y{&2lW9U0d8|CPn0j>w^8(|gj -)Abpihm_JCqj-kgjuCqEE7JS_h@k68{( -z*qFZk*ILS5Z)o<6be#cEVVcWmzw3Ye{Qdg=k?CI^92d!G}(OW)-5u@LQihLeb^S2S&+S*krKdZhdgV --Y>kY<`u@uIs+*%?QY|R_Ln;bcxEoP|(-lm36cl0Bjs;E5VHLs(1Moq5La24IAM+_6RZ#doW+(d6W -p+2Wku(qIHG8B<`%i@=^+OfUeT2#~I-c5gr4b4fKJ`S&MuqHotq7Xsrf{%+-tD^ -WZ9!^pN5%z)L3vbkDKQr2R2Ps(m~4kA6bIQJkW#)~3^&DBMG@W(HwKIq&Sewfk1d=R&BDMayX@fEpXT -#kLJTVD>8VWo9L8Mk~#k>ozxWow8WV2O=yoXlIrjXFSUMcFElWr#X2u*`n?{Chkcfs!^ZkOGrQ^2Pqm*;*l$oeuA$nSXpG2 -uM5M@|&N^heLrkoAk|a2Y$I}6N>Oyfs6T5-XT_&&gHwR)Twt{$bH{{!cahw$Rv;~vMS(SHu@;LlO9 -UH6+%xg=75s`MbKXa<;O7N#Z9hBWA3OQAm&^t;M?{{^CdRYdZyn0hiF{-cHsFPtosVpbc~NA&(Z_?CA -BNp*pl2&old_L=@P3Qsf239HqrImwB_9N}AsJvQN&?KVjyRT75+>?=1W4gchp-UvEw0R%S+n_3t40l* -vhPM4JIM5ovKR*Sx-Cm#x)Jv+-Yu71d!BfBjnf5lT_aUYh6mA$!(ih@hNx#69PXzDGi_Z{3P-n4+<;>rJ=zI%h~XNE&jLGz`1$tca` -^$=ULu?FaG&s8749c%#p{RA_f#KpgB0m?&OixlRNQpXtqC{Hm>3B^Vb8JRD9H;lb!_GtnB|f*|EfnR? -jK@>v}+1s%v9kxL(hck+%0l~yujd7`7QdfmiioZAB(dWi=YzTUod4(m+KNQ!hTx@DPBsmjOI?3v5;gx -gyzvdP)h>@6aWAK2ml;P_ErD@0006200000001Ze003}la4%nWWo~3|axY_OVRB?;bT4gXbYWy+bYU- -FUukY>bYEXCaCrj&P)h>@6aWAK2ml;P_Et9qQrImK008(j001cf003}la4%nWWo~3|axY_OVRB?;bT4 -gXbYWy+bYU-SVQy!2VP|D?E^v9xTia6;+17vOuh<_x9H=rju+)OQ$=hFK -}?mD!E?-6j9`&2;T34c%+az;r`KM4t>0ezx7NO-w6wIO3 -Cm27kr~AJ1w}?2!*?i52bPc`;UMz&AVCpPSO{Vc$s)t@EZ>0w@QB(4k-jTwfp0i`q({beAx3P$a$N>dr20lxokKhh%#cN0L%I~EX!b>BOv!gTmmOpNv=SrA~GxR3|CUJ2eqE6KUIxtgF$ -q*({`TWQQ5br8V^;TEiWl432=-gp%W?Ns!I_3f!^~VWwPc24($qOBas2q##Sn^8&|VkjEHz9jH^*AI2 -TgF&?9|z+PI*opzt*S^sE%BavFm-IMoOeavMzt+k0 -DL3DSKRRm)sBcVOdUxtf>7(bS?9WephK{hw&|0ZQbt59P*`Y~hskAS78!#}o)3jVPI^#}?~A+87U7*G -P!83<)LB*2JKTvHu6@Pess>$BG7THVcdvOY;>MA;XiJmFY>4!(`xAj=^8OB*FB7_lMDbn=0ohJ_Ija0W`>{F;iW0$MS$S0kuJRnbs%$Q*vC+zXk;VpIra$Hi -WIzFl%;#K@%w(&{K$OM4Jx@(_P7uNC3{C~nm41W%wcS%JDJ1KGy-d_gt<;a0`UI4 -qUf4p2-xt88Ia^7kWyu*WzgmG(J=M-E|>k3G4OIZa6-w6+LOo5)*fqU0egRPx -T02M{A{4KI+M=Ja;TvuEl|h?HKmML>M{9i>@m!~*n`ethmF$-1oP0|E`{U}Bio4-lyZWl -d>3G-1ZC`iB8r%&$u%H^!}o8G8Q#u -)5k-V5fmScnejsSnc%4S1NL)W^TB<8cRqlE(jN -+$uBJ4xoVcHOka(DQlz5zYl6abUmUy0ck$9PSm3W=qGa;kJ|;sg&8Pm%+P_sL%9@0rhjSWP@mjwROM- -?OyI<<5VlM=-~TiUh@Bk??T|d4-T4?<9o0Fg}on@m~6D4~~s?6BDTG5m}Cd*!6_kx^7KbH>_#vrgh8e -wPvi_){r%4&07oB9qX>OXx+1xtYz!I^}w369$JsA$JP_;srABoX}z*uTW_otYt?#dty%A^_pvGKgY_{ -sV@0iXYs30veYU<>KgX`bdSiXD{@7w{AT}5qiVep`Vpn71v5DAZ?Arf-Dn1lo*$U|T5?cgqE3s=nsti -6{0o9+Oo0Wp$P`D08+-5W~GM9wpIOfV`#j_+?v}a*?pf4FV`G3jpuP>}cL -CsG8+X9mMjY^7fd@4>MOC(_>Kk{jrKc|iZ&8(wW$pU|&q&-4ZDl`*2N8FR+6@ -km=Y-e{kVFIulYu1{*C`n)z_3~STItg&P~)aH%X+Fj#wafps{Oc$@cqB(`(nS4a*86MVUMIcEDcwrJ` -c8Q4-Y?-J0SlpMQgEImwDz|{^v8HN|v>|O)8!YbrQ9+d0AkO#u7#71tCtgax({FDI{8RjXsD02rY4?6 -xU(^P)8SPGS=QAsm>f?+OktGaOO92uh#+}80u-|*(fVthW&%r#;_j`M5u9|PnHS?YM-uz&GG*vTduA3 -X?C-bxU#r%2m%4Y9o|7PFjz~}o<{ -k5{xoF-qm&|4J0sMVvJ~AJhPt2$0GjqrsF-OfYbKIOXx8WXhX>$Us`B-hvLub8U+-g3yscnxU=%yt+@ -#X)WINM2Jd3euA=SjH-@fIxZMTT7JN8@*)M^RVBd#W#!0_FI7?eB^tv -yoTaO`;FH|ZE_J=><;atNLA2XRM;y_gPAS?SW=JG5UM>jsJCa7fNa_$bS76Lo0`FMQkCzb@(qDIieie -1=31{zEBLv)8r5}Gt8^x>dB1&PzeNX -9a7(k0^yO_}5RP`!Q~(x!{dj3uD63)?MAj?rZa9KtW<43tC -Rt+@(5=tKm7>95b{%va;B@tn?CMjxcJK8W=>{WgtK{Y_8K#5dNA7j*J(3pJn|WTCF`MHC6*kCh70X5_AIpiW76;@t -IT;+#txlrf4{clwnS+BaZ5aUalr{>``ghZFin(@A4619=MY-W1@|usV4FfWNrdsek13Phs8|%Amdj%v --3b%ytQR;T`VWE#96xjqc6foo_t$r?wsktyyct-h3Rjw;#t`8<69!Ey!!u)9lt`Y -}(m;jNP)-*eu%8+0WHc(hk_+s6zq(UC*Xf!rtXF1Nk8Q4VaV5GcGYqdR=M -*~>)h8KK<0h|nftk2^}K^6?)r|GF3s9vP}a@_z0+`+C}${BLtILtZzjv%*&c$ -{hcB96#>t2rP2|xlJ~?4K}W2GfL_Ju~<%N;e;-x*xr3gz-z=M?}Yvb9%yL~og*#nmAu&mNubB_0RNROS@^@bdI)mda$)jmyp^r-&sJP)OpMoc40CNUO!I7v%N-?qWO --#yzM7i+*~aGywnn7sLa|UtNqB~Wdw<5WFz -w5niEmYwUfr@Ry^%f>-?AuO*s>`7(dOC{f3VdX=c-M4ce&BvG#s^*T|fhV)LTTIA?j_S&JuNwsPjZ! -AnF~W-X-cHQST9TiKxp&y-(B!M14rqM?`&0)F(uJO4MgWeNNODM14urS44eH)Hg(3A?hko-x76=sPBm -So~R#)`jM#XL{*6zCF;*4dWA%LNwkkd`$=?wL*F2O&`@fe`(rL3aqd?=ONUihbQt#7vO!vm7h;(6k!i7<%Cy|5HY|G7QF7c# -lE)cLsJr(oS=-Jt{eOGMPXCiW1rh_C+K$O9QJ!&{B#k*p)Cl3F4Ft~ditR~hic0qgm=FzNB%*#?0;G -5`e#oqUA`TuqbDHR7*t&j7u@`1srfYBuK(pt+jr-S(?DJ5w~aTx)5>ofQvn~}0S_)dxLootP)h>@6aW -AK2ml;P_Ewc%k4VM<000UB001BW003}la4%nWWo~3|axY_VY;SU5ZDB88UukY>bYEXCaCuFQF;Bxl42 -Adm6_yyfgj3rfHU=7s03ntjF`lf{X-zNZ%D&L%-*XkM#Psw&J%7G|Mh=tmc9-Ez66PHyctOpPCRolFw -TD&v1odqbaWsO+9VMd*j0oOeoApP#hMpsN*Q*TRIdNu;T(&$ML^GU81snQHy<{g*6bB5MPNja2mP5~{ -aOAX+qlHeANu-MvlkwH}EL#4ru-jMA<|&rajB29)wpog&US3Zg3;L9=GjcA3A5vpUA;1I7=Kjv#&z$= -OP)h>@6aWAK2ml;P_Eu8at%iyN007zv000~S003}la4%nWWo~3|axY_VY;SU5ZDB8AZgXiaaCx;>!II -iI5WV{=R5b@fEz8*8B$Y{V0OQP%FpvVKCaLU}OJg@!8zXxqv4p?hmh8b8;#B4k9{}~!d);omwz(pHmL -CM$B#L~+fJ`TTFk1#>%~I%EwryLhgh{f^;#~@40 -~`cZAjxpHoRBD?f<_7iiLw}jDkHgITrs}ENSX-~LVU|OO=Z_w0^E>9sr=^p8hCflzOfu)M!T8VT1@&ni4D@lMRUdm(%ZmwXONme_s7JIdQEA!&uKr{r`(ir_*LddeX~(YC7u -MA%-8L2Wl#S=q)M*V4MWD63d5F!bX~^vbwyMHMDCu90v=op_)7pO6sb~zJ?-={?-Ld!L_>VHeFA}JSc -yF387GWOMe)d~Vz}CaPK-BF#v?dU>zv4$0_YY_;=uyDP+%7Vs;t-6+XdJ`*#PJ>ZrBO1 -mP%-MUa?@^V`=KTN9osv#X1R3MI94%MR_cjr#hJraM5BZ9wU|j9$lZ+ZTJ~#h%WYBaK?ST|dB`keRqV -!G}-JLId}tunS{wCG-2h?U2LI=?6nM!>E_ -v&GN237wb`{YNIKZcyeL`(svB72*$OeM8Gw`?IH+fb)aW}FTr#=f2;xhGRH%3CgmC6es~+qR>M -=^l>z)O!`T_*wE-UQCaa(hyeZ3F2CF*o)-uQyStWo^c0Fio%0zm=!Aw(}_&m>qg1BRbN)JGe)+gDzm` -5Dgn2NZV@#*CDZe@BE2A_@mTc-lBS4G$WZUvZL9T~j}D0*cO1p22r9)eN}0j~neUTF-0R~4XpRWV*yf -a%pS`J0*-Ml|~N3tsS=yx=u?!E5q@*W?AS$qQbS7rZ7fcuijLey>>@o21LDaUi2ahph$hKu -_c#ahXwXNcPPzKAFL)-cvP)h>@6aWAK2ml;P_EuDTtYomjhFf#S2BS1Q -o?U=BWOJEq^Z0SC*>^JKdd*YzmghPVTXu4E{A$9^uHLX$<9WghC -0G(iB2{9lgV7OT$ER8tIA8M4h~ki+^`8xRm|+u8C-uOb3ntZGah|1S66zQ -z(f0Uwz#mmPjRY6zA4p3${!LDe%4`@%Sb2{r;j6c6Q|c8L>F_J$egYStA=@XQi8zEGD$}G%d|b8pG2gGMr|+{&@aAJj59@|EKo -(XW?aGjQWknRVm#8|7Cz!k=McS&=OWb%T>i3UE15H%Bm~8^&f|wd3(&!6Fb<-cklj7?ca|a%k6eo-(~`*|C#<Os_>ba2Y}q=1HZ3)=k2&l$w_E -zJN6w0y?c-IB>ju6dDJw97f|D7jvPDJY`lYXbx+oT{wYxQ-QtU`J;lL7oVQ+su4Psi74htIf;pspNfn -66Q4eB*Dj3BA+Ia+`Rl(0hu4mRJ}Yt`QxjTKmGX+FQ3-i@lp -zv>aj%~Kgs;l7^h||zQo!A*6Tvi)NAoYC-DQ@@W(i^CPOO1eB-*otc_t7KF8d(+Ye$hc#}FW1i*nA?=&v7o(8p?`WM299BPnW=J)pMu{Fp}Xn2okKfj&~x5 -*&a60ohV)BMV-|;-!=seUT9pVS-|^=xvwO}mq=t#gUZFS$a9%Df$V7C@I=+a3ApJLYYZFM*#8wW9?0L -0i!%`=QiVJ3A&V@d1?UBBP4 -8-xdkYZg3~}YYgqJ8Yq*2thlR%SB31rW1Wlty&XB`S=P3=!VvCK#wY_0Tg`jD$dyK{na^();x!DEKG@10w@y-qcRm1BY(jft<$t~&z8D6# -eEjd(_#gK}kT`ig7}88aao4#_*p>Bwo#Xwoh^%Kc&WEdc?>P6t?LY7MJ&bY39rXI|kbQu}=M;det|^+ -+-epG>NQ3Q#(BC~P`qgH#V3b8axNmBy4tlVEksemG~?2*46~5D{$)uy;cV2o09{dKEc9@NUDA6Ih|Br -DfPSL))Dg4)J-Y9?by>#N=_p=G#Xwon2e~;RI3`+*F=kmBF}GcjjbY64mP?`PzR~2M -g0&c0QA!IZYPisyZG$t>Ew)}c88yM}QYsyB%YO^{iT$cdy5r+|u4yraz_TIj*W%A2q&?M?Dz0N5qd;)mJ+s7jFN?NomIA#Rm -bEsY#V_JVAUv(8&NhSKgvc0`q|KV91PtNkqMqeO<#s^UpGN9N$7bASu(I~2hGd6WSDqUf8_U2Wu3%7Y -z+)$At_LU02ffb3#tYfQ&@@Ye8pB+M@C2krbjYqCbY&Z$fLqJCNjPxy0d&rq -ExO)eK#i|cT9adFB5i!mWg!+2#4SZ?7FiWlpEcvn4Cgi}B|CT@S$f50~#|7rg*RpuODi;Ig7H@gAM`+o0#T=Y5r4-X4eByuoW(MdfFb~mqP7RXLqyIIP>2rv`PxKc3Sw-#;Pgr7@%s8>9c0(c>T1$TkinGC -g1e?!C*5OvEXPlbln65_ap*>SDhTR4kw-sh}ZVJF0=#QIgjo(=LS`1kN6nlc^8V>kEY(aqdl{v{T@%Z -bSmI%dwUL!%WWI%`K(=ZfLxvwn~i3DMpYjY`^H8^uIO9lQGF_f_D&lU6iO9&X@iIR8?N!=u-(!*=gyN -AY&anbdEmu~9Me1pH$;jDRs=Co8Bc@Gl*H)6t~E|WL<&p5)S*^djb|9a3p2!HE{jYB!=`xUK3L - -AP#2+h;LVl_tSnx}e^dm66c9=0*PbA*QJRsz#=@OCxWVZAQ0Lo^ex#W(^pd(!?ud02f4Xuqp$vlqW-!SSe%;=7%B#%#~orWfTq>%tTSew`0q{J;Bt -GiVDnY)67`Nf6JwK(n*?n`ehn&8=ToYx|!n*pdH~2+8d1N? -w4EZ%YA38Y@GP=r$Xrf2kMJay9#1M)7i=G=xfY(?*BtyW4kM=_)7+-z;74iJ>GvwMXCaBq|a|k7LjQ<-VeT3FE)`|H)J~2!IY_f#;b|F)2VI7%WSjRP -1g|L*(55ck8rG4UA(kWI22C|=4(9y|`T7!S?swK>lH;$dY%vK+qUMC4nbLRiop04)ozfem91QY-O00; -maO7>RFgOr9w1ONd23;+Nk0001RX>c!Jc4cm4Z*nhVZ)|UJVQpbAX>MtBX<=+>b7d}Yd6ie&ZsRr(eb --k^*AKA+TWym93j{FGZJMGfitIzSn}@a#XlrD1OOXOet)jp0kh)Q_oMZz8k;LJd3(uTk7I3SITJyuv! -XHX9dt?%RXW9y^;p&GUuVeV-@mILs+zM721i|+x4X(i;!k_oIcMp$uka2-=#PdRF3(Vp(x82)bNqV<} -@47FhHc^yml|#&=;Z{{#USC1G`hh-uQcvzv6h$d!kW{?DgcFRGOeDsVgCtWrv1qJWu5KcrpMy|4CO}a -pWRj}VuKO3%+S>$+u!RRDarBwYy3ZkGrCCv6+M@>V9q`yB#2y>Z!8hef(r!oaPUgQcVaE0uer0G5L8=)l&7Fd4LdsBxW_1%F)bf@=iSj$`~ho#8}ed(p>G=Z_r{b6i -}yd>fZBb*y)}?~!tZdea`dJY7I@xv9s|f_K%7+^_-`ZPlG`OKt@2A-U+=YJ{#Vp?>(HrPs5V9W>`1Zw -q)Vg(x(r;%?mIA<(r>-|y9ex{T9kiRLv1zV)Rdo@D4VJ;FFd#p!EMW^Un$*++oMATWsj(V>4W!wvHDh -~zt(0meMbErH!m~Y)-Lv2sS<;|J4%0yeY)ox4JqNlF2LBHZu+OU>o93eBg>bgyv9{uLvSE&&uS8|OX# -J5gZ@7oaAR|_>Ggog?hOIIq&qDKgU>fp1vuCLr?Tb9)iy_pzCDIs4cQU)>ippa)>DAC;Aa7v+Kt%hBl -=Prn~+#erE)S#=7lyq^g=L8gD8jZw(!nRv3EgdqAj)T%xA&Q8BYis`pNHvkN2qD(i35{&^;i+mbn)HwJkL1IN>LXg!M`GWczC=AQx^V0z@;;QZk#a#3=B_kgIPvW9>Wt=MG~4sOu^E8+1rw -+S+|%P>6rEyu~J+e@Q}@xGJ!mC*kYbiQj6L9an&Mg=CXrDT_3ZQ2|V(n2ozS9v`ox=B=N0f>0RnT -I5UU$9^MM1jfG%jod`T-j4}hwQoi&>zpC1s(-@}|8;c2zIgRiN??s^jSR!|`_FeSOxhlCq-rW*MU@lr -XaK!Odm$&N!!-0Wp!4gj-3^vMhywC+V9~QGYgn5ukP8N&hE$BXiGo6%@Eqam5Ik3#_1#FQ$Sx%>O=jQ -X>-E`^9=64IN(4OO!&)L}-PsxbHQmsd0Gc_m7^m!kav -}(gI~jLHWI6B@;2zs}IfIS&=}u*|@5h$qET@xIix2nio@|m$Ce`8Zx8gq^2gq?CB#xtT90f|Ka-gw1l`oBOWBdS -fi(6)!O~o-!qKxVcRpZY3;&}FwTiP+fTA`3#w^Cs`%6<@ZVH$#d&&w=&E_JJZe_}4Y4NQ^m_cO&pIU$ -)$MaijTDq3E3)^ED$2Un3U^a^b+U{rv^C@K~Kx8hJ$(?r)t-CYmb;wPz!(=2OakJlX&6h`qdSRs^Qg$Np}Rva}1H2#NJDd9+u{jzZ5g^m|(Ny?g3+94!h%o -6sveb1m@g%{bNny|L~IE-PJP&gTpyw#7j%JxX -BOAjtX-qHm!shS+ls@vkQ*PgDl#1fl%WvD?Z%h{k5(BtwCpCP8>m5sJDIL4ZuB69VHUd -^hxpgIy3)(=I7LWNVYd%FW6(NbA%tDL=g@E}L{SG&E1i4s{zNDnK3y)%WoI -0H*aW<;+VJGY>MGl?|6Rj~gghuD`O9RAW7ZTWz@!XzC02dkAtV&&)2=BMp6H-#!8wb52mvHD++QHcCr -Cb(R>^qHED)7(Ig`r}HcU_HCrlcB;3jAk+ck=Q+AzfmgY%nAT+qmE|qq0^Zw*N_))Y87Fle%+C&2-OVYSm;PLn0hMi4d-g!e!!heGK#fUp8B -6^2fxn2Pc%KG@Q(gdRC>!o0ic_zBt)9J4S@Sag%wZmg}6tfG9#&zz<|P{DEcvTpIS%WJ+^cd*-0U$2# -;uI4#V!j@mQ2wzt%l$Q}Ev;(xQD?FIk<-Wvb_9{>OVaA|NaUv_0~WN&gWV{dG4a$#*@FL!BfbY*gFE^vA6SzB)!M-+bNSDXe -ZhJ;YC(=>`iBpVZl)`kdh6F;q%-N9_L?4X%hV=Ak^y=N}F%q$l}5?6gFFYN4``{kQ6P=+?0FIjXu74R -EPd@=PC_~LtOJ?@EB538OQZ@wMR_pf7 -X;1H;sP&+84to7st*=fmI=#^;u76SMo6hBB|FhhGlgYc$^uO*fbSRb>56946e{gkr3C;(NzHc<33}G| -_LGDFOJ&pa~>n)>c5^9$Q-HVT-4V-V0bF8c35oYfUqjWLoU-!-p^IKP~5o0m0oEZ@|Tltdb-t(d)5}s -G#B%WBAm&>|`6n+{D)TNSIzaXMb6Ha3?3>YEFSvr{z)=eg~q6vnh^ZxayT3?(B!J=_02zNzttTi9^c* -W6B-K^M~P)1O@ekm7Q=%mXzom_08<1(c=p<3mXW#}eASx6WN3S^eXzK{(kBj5P~QIZvX4Hg8(6nkO;V -oI{qDrt2~+>qk7FIFM~S@|5W&m0~IDI`=t5YzD(wG%&>0!7KJW=TVxf=M@VV}=gQeTMeMOT-1NT-#6% -^p3Cvi-aHvjF<2M1NZZp9hI_e#5#kjd^9&Cyk3Z8tV&Eas)HY^oZ9d~M9LB?d+^dq5xjur8+=o-k^v9 -4n(9i2TQ@bh^W&7P)vGBNwF%F$x!rA3B^AB@{yn^|ZlKC)B$HCfprCHz^#Fx8R%2QwGop-+V`DN+P&8 -H-YxQWdX8V4PA*ll0ffYsF+Sx`Mk|jfA43dw^mKrF+)(1b9=gi7b^}@0=()_YwB;RU7ew<#l8+db)oS -iasiv6~T#5AkWq0^{ng|gRGZ+raEDyAqWCFs$1#^){gdmHCk0##Gj2cKlziQa6ivnPw(hm1;uohkvGAn84rHV7V*aPvgVRn3@L2iM72X^enE5U3=04yGG%@dT6xPb -Y!ngKvqE{44cE_s%uRQXE=+t8oQ!ch6eB{P2&&;Y2q_|tCQ8Jb0UX&xgyx5bfO-$276?0?j>SOZlffT -#lBV0u`5U`77@#6YYHu9ICopJE6rN-sR20P4KuaNI -5o##lw3IzLtlx12jGLk0Cz8%UNy;9hO=#hS1zOPV_@(IwFC_Xp<{?5sw0A1n6IdHkbw=AQ4EBFk8Ocw -vh|WyY=(qbz?ri`P3+&%xu^PrmX3w0%GZ(G-lBgCr;%eg2z -n6d?1Zvc{jhBzvu|7E!$GQEC+MYc;n^R#!;6k0|2_Yc~9m+jV0mL|HR@cBjjuP^eP%q{G0H805*$(qA -<$nvypAf1XIDPdfXnreLZGq{>;N%c%4uG-mvPQ@1e`x!`(B@o-L?rUdvwF6`WbH<(Xf;)-R8kO?_~V# -(cQ`;Z8W7IWgUTc{La=7E4EggghTmM70AWO4k@7u%9(fo9QCa_mQ~{heIsZ#Xe)9Hr|Du^#LD%KFh5= -Xjdadt^t}3DpcvExUDGd*Xxzjs6yX<&>bO)pB(@SsE8C-RH`0#1aZ+C{nZtr5nY?5%Om01ry-&^Io4N -U@6aWAK2 -ml;P_E!DIPZ3Q3002t>001Tc003}la4%nWWo~3|axY_VY;SU5ZDB8TWpi|MFJE72ZfSI1UoLQYQ&w=! -FQ_caOwTA$@XF6iEXhdBQ}9SED#=N$R4_6yG}cpa3U*O2)^*NFEGQiMV_qh0ssIP3jhEo0001RX>c!Jc4cm4Z*nhVZ)|UJVQpbAbY* -jNb1z|Tb7^06Wpi{caCxm(U2mH(6n*DcT&WL9qzpmBI<-zv1&$f+0>c=B@z9^ld -{~hP+ZNeuX~KbJ%vvRM18Gb+$Be`N#$5a!BFWt#5?eXQwo%N;0Wv^~*Didfi2%)b7GWL4>5jy`^8>ao -j^^}H9$6OSOPcbKib3F7wqWNc@&-Xr -lWw2P|#p@O1PXe~4X|#lA3`i{mXd-4vNc=Ls2m1UIFSxDM7<1T>C;}QsnIviB09gSMPiS{wjTmeb{6= -WX1a6n0?G`VA@S>7z&K85zkfZY>^yHxa|peeXG&R^_M~Vd{?xxZ4cBnfm^uAe=W7p8O!Ve -=HciX2u|R@C&@xjKAyO_>+0RpnPnm44?Yt5Esq($J_C|?CF!qR%iaaAY4j<=KG-x4e+&mm57&47w~V6 -E3e9zzf$WN=wAYCS@+)HQ0i9`JgZ+pPzRokSgW~Nyp;HZ -Pp{UXuI?uo!il;oH6O~Pl6D{BE??|+SA1B(Ymsk>Ny?RL%;W*J=y_EYA%0zqh5-R*jqP= -?Q6h%+8S1*~uA0^tWPxOAPTB5!GnrKzOGSRMMpm#;2UB^K9%1pbCfdi^T?K%cls7kf#7SA5cpJ1QY-O00;maO7>P3YWLnZ2><}LDF6U20001RX>c!Jc4cm4Z*nhVZ)|UJVQpbAbY*jN -b1z|Tb7^#McWG`jGGBCMb963ndDU83bK5u)e%G%+*$B|!8Px@8d*%wd5 -%nK)>P!3(_?Pg7gVetX=Ki`-2Pvonzk7 -pKgCY`{>!wTv({=V{dsJbVXybiJfHr)_A7vZKjUed_JoTn&YrClp4{i@ -FINk|?rJbg|BPWI7Utew;N3G|Tq{{_P;B5JJevsB4ilQ5)KGXNDSiplkH7-PTk(m%X* -EW}FiE-K|pvy3`cf%QN&ab0RG1hSviXZ#Xq1d=5rwTYD?Uk!&epgrAD17Nat(lx<6=q|0umViUDr=IM -XR25MVA4QYxaTyCMFGeSy4RvGMF3^)lq0Ua=fI9e<*dgq;F=$D}tp^(g&Sh$V>k|lj+I@B_8Rd2Pem| -Oj7Mz(pP1MV8JUMm%9OsJ`4MW*_1IAr8{wd$gLLRs*#TYnX-r&98_u|+WGUg -BH1?iwxFM&OTC-~P=udNsU=a={#rF^>aO5e3H00G}vM96J)}jN`z^`ltXRl5>4JMO|g3-1vIxtnz{sf -pln3=xT>wtsEOG11OQIb^z7lI>VcHdYTwm$oAWx=pjk?&9)N($?@9>vhpe2GKT;K5^Z;@;;b$1h!SmE -&IVG~W2s`L~0at!pnb_nRx;bOj|2xnC-NQ1=4|#`^)vTyY*gaL_@_51^=aXDwYV9OPFE*}X#jo~|>@+ -M$07Z+28R5UMh{rOci>dLarJ18j3|i2HTp#lhbPQ@Z#!WKpGPe>YU8s*J1F@|PNlxu%!uxcb-wN3W5S -iAH6h8R>%TkwFejm1SWD8Yse5Nw60hnk0=UlcVDwGjaCVLGYJOH-xf2nvBPjqoc|3v8e0Ap@T*v2aN^ -8k%Nwpzfo~-I7L?5uWgAdMJc$ym8`j13=`6Yzca!~fQ>Uhk+ss-bHUIsq_zQ)fX%F4PpZEPYEb -JiqgvZ543{cI9-h@MjlLayiMV5c0K8^z>S%Hr+ufQKa4@DQoCgPv*n*dSooEM2YFt_U{sX;geFw_k#E$Ml#5i7TcoX_iU_pKf9?e-Uk{B;Ql8ly&5kaJ(B}FmiYtcRk*ytM0z_nvc{hePG==?%k-P?Gg^w=VXoet5l*So|nq{S@ -XNv?!W9-r)fE#@6aWAK2ml;P_EuwfBWdOZ00 -31Q001oj003}la4%nWWo~3|axY_VY;SU5ZDB8TWpi|MFKKRRbZKF1X>(;?bY*jNE^v9>S>JElHV}T-U -vYCDEDx&ICfyza7+98OSc>%rnsj+63W1jCm@7?cB$dSf{f?AmQL<<|U4soHiXsv3j&~pLJ|3APIG4p* -vD>AA*HRF(Bm#aT%5b`d -d9&3aQV5#I&KZ7OcP_)@g#v!`xTf5Aq^0~xzWVw&*=g;+Xp0~eS5nRj3@01t-n+75bFz6Sb4~`K2-iS&h;GeBDmBTg9lsUub05Mc0(^^$>%V -ma9^1mPxe|ve-huh%9{20Kx@~kq%qS>AW|Zy9WOgcJxMm|c8q6a4z=Ue0_sr+V<6Ls7$clJ8kt&K+k`d19wYOwF?n&`~QZSd<;{-Ta&E^EY&rZQ&eta6=&{Vr;4AwsF>;fk8`st>!S59Z7m#b%|UA!hMd=nP5bTHaVI<1UTZkUm&v-dpGAbzq6>Fwd@UPL3bXAqQr|#a -|`iF{dKltd-_Slo?UCIzzV&Hf_gy)I+MDUVOIy#v5P8pA$I1ouIwvL3`f<{By?)_N?o}|7iYx+WmO>w -fG%>Qc!ITON+q&8+tBP&vF~I;_ElbNi~AK(7sHUvsv^R{;QRr>SgGM)Y~qJBh -GRJn#Ztdnd3DNd~&{4XV&NK}po&yIKo#S2C61|JM}32!|j4hbK~FrCN;nZ|Q*SQW|AgL)X);1Z6RyugN+*k-A -q;rHO|o_TI15PBckt?D+d^I#HTnP!>2WMvslr!dYk`?s7d8&`#8e?jm522e`_1QY-O00;maO7>RR7i -?(j0RR9>2LJ#m0001RX>c!Jc4cm4Z*nhVZ)|UJVQpbAbY*jNb1!LgVRUqPUvy=2bS`jttyRHl<1i4t> -njF&s12#vZEl4e+O*4dS=vGjr6-{#i6A~%gUZE7$`*1R`wW;Ejyn5(MM{NLKbA0?Sx -GYP+$wgMYC|M7F0!PVj#re|}(YJ(v75~aZj7)1DcJHNSG+(5wvW`viO(iTi(NTF2;wdB^KvCtjlZarr -nTQV+5Ym{Y78gA7qm(%m!a$z;H@=>#@LOp>?XOXK%Z_$Bj%Z2H!t7f@ox}1Q{SYw;Kk7fR1!bDCw= -;yWWO^| -`^Fmkw%aFltlr@)k`~(c!&%WD4bkJW10ekbV3^5q=&+R0B^k?7JhE2Dv_&+32fnj*3~uJ%-d1TN-=*0 -Ee=yUIo~ZARCh_gQOF{@QfKtgyq!eZ|IHlD8z$iU!)8;p>72W_)O9KQH00008031s8RzS!y@qhsU05= -2x03!eZ0B~t=FJE?LZe(wAFJo_PZ*pO6VJ~!Lb98erb#!TLb1rasol;v*gD@0+=T|iN!jegxdowXn+0 -15iGs4Sa4C&x7nv|BbMdjbyauL|(H1>gTzRT(PnsbIco|l5`QiUEk!z#rLEwE4&N_2TKnY!rCpP}iwM -{ywmQ4#@@Fh&vpJubcZ%AcczP;jk8@C-$qDfm>BY!S(FE>w$TnBg6WT19xv`brSCTdu99mZfZexwI@R -qF73!0-OcG#%cAVD+}opLxPCJN|lZTnlz|60#qRw3Pb_JE-TLd)94;ksXN{5#W6lE8P32lpT@`agQ9C -qxCX4D`d_2pP)UHsd!%t5zePY!aRlL3Pgn)%-4#j|^FnFAem}P^1|$g4k-DhJPHVWTXCH4o9p245aP| -f`wD$%$9m@y_!}JgN!ln$vA2Nnb*$9T7!>pbBRNg^{W0?nSe$AbiQHn+8v?-+v?41bCUhU_Nx43K)a{V3|i1`9W0LUz0{W8XtY+mhCpZ%NqkdIg#}RP)h>@6aWAK2ml;P_ExU-2 -ayf~004as001fg003}la4%nWWo~3|axY_VY;SU5ZDB8TWpi|MFL!BfbY*gFUvy=2bS`jth(Muo`U6#_GZVI3Jd=6CJgta{1`4Qb|IeeX7_mNpuKPZXjaA -~OXrzoyf?Q6^TJyLy!DSV~S>I&;%n(%2LA8Qdo54XqByH?mK@lEywR4olYBw|xq-6GtLuFz`4))J}XK -crWr}n}bYvSF9STaCk@p4!Ux~cp@t0G9W7os?en<@V^APq)8#7zP=zwhSBZ2lv74tb|~$3zj -u1(d}L0kycpej!;$ZUz;0t~o5#L^sWm_9*p~}~U|cVCy_{~TVRstOx7m_BD>W+08m_2wDRNiH;>GFH* -l_wZUom}NHZ1UAdzdN=YsBFRyu;M`fe_bDtTz^`zCgVan|qtmzW0e(YGZ-7&Qd<%%W@^&gr&6UJ`+oN -s%@R7`Hi=*RYz+!*E2OccFna1bRAc(8PS7$T5fYl*GmTP_j4?RHDqj_+se|tI7&;mOVaA|NaUv_0~WN&gWWNCABY- -wUIUtei%X>?y-E^v8;QNeD)FbuutD=cxKoz{wV(lk}#GR8C{1QTVuR-tuEwl=9;v%%lbEoI_1Ut+&JK -R+iU2yOz%TyAU`!-0$7u|w2IjbP@Q6Pa?);LUu9CU;Q~O`-@sjMXPd^rvY;p)E~@w#6LS0q+ssPP}&( -5?An#CWIGvu(@UQvC -dD{LD*ym1p#T6K0001RX>c!Jc4cm4Z*nhWX>)XJX<{#9Z*6d4bS`jt?S1Qd8#j{Ze?0}38ZVm;)wb-J -T(raNII=v^j$?T(Imxb~VOs2_*io~a>5F8JH{Z9fv9EWY4?f3V_V)Mo#c{D(m+8%-7QyjIJb8Th^Z@?(OnjT>(OR5GKc%Y>n!QYCNnRzfs0& -dq67hOnFN$287xVf)DiiUdX!1C!Q}_)&B&CR8yu2>c>!vQ?+fA7y%OtN6)_IbMm#4=kug*`x`duxeJQ -l}iuP)x4e)aa^?9Dm;2<`UfWw8{~>Ab0%GMP?Ax?B|{G{3Hjtf`YJf8X1azZaGIR3_?EwXXK|>T-RwC -*V*0SY><3yIHcT#VP%AQkF$|B*ea0mC?;IIudyS=-(wJb%XX|B3>1F0%Oe)W(bcenCmpn=f&mYEAdD1 -w7);i;~Z#_-<+N)B-D2vfxb-Z^(v`gsOzXo_@^;Fu9J5)J%ndXo&qD27BF{`P+z23a)Aw_O3dLi^)lx -^onAL-R;M}86WYixmD%LD$mi+J>!_@djTQ0{zOU$eJ8V;C^ponPzK`)!leeFLD$<-jRI4nlgHO8Zz)ct$TV~~I=KT1tP12C`{EQ!3!hU`6%}XibdL;FWJvj`VuE%GFZD-gG;DUm_g1)f&LG7K+$aUdKcoE9n!v}wqNr*^#`ncwFle6+@! -!j%70OS1^(Sl$-(WIV!;v^R_)^#nhGQ`_+k^nj0DY4c*HPBuWjq3LY0-tbBfj>^+ZU|?uzxq_StjAES -gt@j2E)Gw;lt6N@SooewsFHg?9(@5R!dJVHFaZ8|}q5TVd*ZYQ?5wqAZ8u%n|@}O=VY7JX6#vB(mZdK! -Z7%MRmfo^|`z~dS{k_9CjcC-$q%(9}RPWdVQ~To2GGIAp%p@mvPRTj&WK>@22-4aNB4d~)^*k)fn@7lpN9BBmUH4_r1MX=I -X-uL@b#}4v(%{fSO3 -qP<02Z)#L#Bp#d7OY@2>*)7Q0)r&R^6(Ej0PUwr=fNJMu<8Ux4j6s95ySoTSI2SJ{=UIUu*rb7BJi;g -9&7f~+2fa!4s+K@R)5r%g{JQLt?+$C#-3Cl9N&eCd;#15EMk)^Y>h?WHmbAJ93r8uJqk%GtyEJ|??;U -+jTAOzRo3^@SGB&v!WpeJIsC;;)$=2Mh{<>^RpMdI9Qm!x=s9Az;5G8l=;M6Vz9n>ljN@_?_+HE5TmI1G)}7ZABiO?dwG -+1r=T#jCRm5!KLeMTBOzCjzaIRL}|;5TiPqr>F^Yalc4s3j-jg0<<8^7Eu|^P+y^cRRRM*C5kM%PBKw -I%aVl$`=Cr8piuMU&?JwNcbqy1yDP@uEs`96M;9>Cf`?+8)>V?t$0##24;ns)b&s=Ki@2z>q^cZnT5_ -%5Q6Gfp9_4W`y!>l;^@*|QlFYy|1QCbjd!N>eVE8USH~_B~ET86C_pv*ntt@;RIz4_B8y#5pz?YDK)@-01ONk{9Y~(Ku->W%b8MEvz-3O$Im*(%0f@Lj^+$`TpWNV{C)F%kC4nOG$RvH$@%hhCw -C+>%B~dIi>vPR==_`*#65fR3{{H^qhl~ym#wv>-;xC6kJjCz?A5MmzTB=M>`;holGR4l^xvxzR!lJvW7o|!w{Y903nU|r+*)!Jql0%{Oat@$?>!ElTMBT8XHj -$a&2T7dfVR!P-C{H-nQ)DCS^Kbwei*=1g#K3~r`5T~(u80o^6u)797XnFA3?fNM!Eb|deDdaEdiMI_^z7BMmk5Y{cyscvZ%^NxJRh_oD7{F> -DXT!OOlUeN48agIwLIwA3ku@(Bm=#ApOBqt@^~=n1n<_) -%{c`?*tc4Nvw_wSGbG>+B>vESOYE-t1_j||8)W_YnYh8+53IA9>OgCm)XB2R>J*UTMO~4pkkObj)Lx* -J2AF~uR8OY?yW|fa-rh&$P33Ntz{7Aljnf%44VzUAqz+`uZmxrJjEY_yiF^oQ_OY1}V=`2^k@-|61`u -}w9n6;C7%ag-nG{v{VtV!$@gD*{eGi|;l<%8h9@nPppVK>_TSU?V&Ik7&lOGa^*Uv7#)}E+zu~6S3EG -MwSG%GkomD+8+A-D((oeJ821z=+oMMMHshN=6((`aE~ZrAWvencog;yfc@FOATdUnqV=r0iDg-B$2b! -vft=;7-?FS{6Cki2>p@7!hVOFxDU{NdGd05F%$!0jL8C8~K?;rGY1oXy9pY3ml`FV+S&l)WCVEF(UG; -WROCbf_1@6DACM}fS<*2$`Oe&o(%Oz1otD;569p{YEgnoi_p}H@4zoF?kfY7YJ!6wGs$kC8V85C9}1N%AhO>IzzqNRIRXZGW$!!L~RR1tzTkUxZ?XEvF#u$*@!s7D-`bK4}_IhH5 -ObqPWH2x>?CbK*BOY!Lu>~5ymldWI9`Sl6!+#AviKAW?5!g6DN{T*tSeESeSQ-lr{tC4EL}g+BLXBp< -MW=nw9CQmB@6iCk$;lFj>Zq9+sof*Iq_AR*YM;|}7FUJ=n7b -_RHwI_DrIA*y6GvQWhO1qf(s)G%nC2lr|I^vS^IZFcA`>gX259lj>8qGyS*G(wliQv3i2^hcktI}?R@ -nC2CRb&tnw4+Cq)2uXGF{RJ)31lboMLWNw$eTX1<3{(812Y5jJ!C>SenmsyJt+1Xo6_A;2DEMje4t!U -P8Hpt@bdqDONY%~az(nrTEE5sNq2RybWU2-2v!&&%No%&lJltSKmJ0MiGH^k`GKR+JAu&Q@4i0ME79s -UUJC21)l)#!7i%2fCPIN%cy4-{r;zChLNFZg*X)Tzc`f)_g15#UZ8$SA?g*4;H4&Yr`PrLq^+g^M^@V -n!*fV@efT&5tEv#4eXsG9jaeJ67Uz?@lwId33$RfwN3G -$GqikO~1?a*#TtwTaP&x=DhuZUusBhqS$GDTi6%!--ab_zR|@16oZEKXG-cE*P)DcwNfluVEC&fo$2e -HHZ=rmPnEEqNx1Q5&8BlauiPh$g%3~w__b;Eq9Xq+FJcd4Vjx!qouO<_Qk)as~3cIC5zQip1^I3ZaCN -dB>apsLr5w5{^=gqr2Q>j@qF18Re-=z_zI{kzf!H(BC4XgE(7Cth^3}eOv;wi>2TEVt}3V#3+N8@0$u -D*-qj9*@|Qg$VrYL2>_!HeJ)S+*s_o*{V>|t$q1qXwqzA$D`$PDo)9alXVn8fF^>{vPW?2Etz*Xs1Jq -9dS(sF`h3Jeg685zKswiHNHV?Y?)z5^C*M(Ct(hp*SK*F#dcZ5gRo9=N6B*|H9uh~ZDs -T{QIf`xnB)>S>H+ZAhJhFT`lO+foXc(ZW@v!(;Ve&#nS$Yj3$+$l%}%Tpil8o#>B>Rharv5&TB|HY>7 ->H_9Lsx}NE>RRvEoRgHit5Mz20eWR2Uo{x2ZJMmC)9Vgo@^-VtF{R{Pozp2?gtGV_$*`Ac(ZTT<0I6^ -0Z>hpkdbpjqrKtYbq%;2WNXe_%SOTmjJdrQp;HIT(%r1uhd-D4zp&xw8z-ZF_YPUvVzg_y(KVd-KpTy -TAOC|*#C3glX{8SNqXOS4MGX&l_W&C_={!gj2VWCnqVFVn=87~qdsWA}gl^S>yrfWQ&s3JK3j6So-%b -hYzrnnn2yD#YOU?D@(0$;HUch)5{DrnEJa#38TFsbnpVG}%a77(mwa?#abv^@XLmyq;CY(!|Fo1L)%o -QFY8}?rOWKb~Dh*1!`g5>KnE)twbi^6ZK;J36 -vDV@QzQzPM~6?YbkMCz5e8GtS{w|lWD#|ohykgm0WunXG3`A+fnHw0ll@$XFu7nr3jg2`2TiNu;PcP_ -@J0JgJtXD$g9+LhU&A@D0UbDy0K*;>jlo@et_aq$)sevfOkbR(Zq8nR#)OyKWu!Oi(O5O|02H_4WRKG -PlxC?GMU%COLb)l)UC396l$Tf)O*ujlnngDxcQ6EMzgEpN&j09C|={20{XcO` -&;GHvNZbx|7W^i%2IqfexP0y@j+UAk@%aV8pE5LMa{9?AWUEUjuT{aFiy4*m<)(9 -kg>Qg;|+EU3yOieVZyc1+XC9&@gI5H4iGbR)o*C)lpx86GXmb$bnubpehn_mQyzDi^C{b@2Gfr%#dMb -LdZ5ZUn;+~6ZPK`B>TRSB}1)V2j0 -V7J52R**Ic>Q5OCQpqf -HU_vk!oK8dARC?X!K44bn8;CI_O2C5`x^kL;wl1C3LrrjExpMLeVLC0!X;l}iz|ljU8RDN@Eoz2N6fS -3W4$w|(T$i1I&wz0~9NK~RJk8@N%TM6wu3mih#dE1`Dgjm#o%xeg)?X&HG+7i|`ha%IB1WxyXkcF#e( -JMDtmjZ5Rt>C{XXnSKr{sHM>7^{kppiYmuv}O%Kq1gA+dwR*GSHsTH{}m?PShDhe#-~)c={d@!oOvO5 -C>}c0n*E~qH1R!Il4Rj>AaOhxn0=Z?6C(MzW;^tr0@Ts{ACz&xmy5_#u`#L_sQD8&;{7R*%DEk50lpU -2~l7`#|H)hy{TW>w^tIa1w$lm7gNVylEARmV!L>fYlloFS1wR+y$pRxZF)EfJq1QC(^+L -DV=(Oo%Di^!UL_$+Ms8!`pviCZ;=WxqTo2x{J$eS-t&9!uw1^yu_rDC3nCO^cqnqw0BL3|nN9nv(qTU -)fVi_l&{y{6vzVfbL#S}T(6>4mFc%FWywX7r+LoSHy64E=xk^vK?|bM2{(zf?HX)qmQ7yN|Kb(`UO)8%R*xs -E3#1CV~NM>S=AT%?g@qKj{!{Zngz)7j_Tw4C~{uA4_bEk^HC_4fn+hti>tvJ1lVnl>Slt@!(7GkI{1V -Pa>&jp%cjC!6_A5bN0y>yBmS}P3koFU6F9~1n)=)o{q)urPwt&HwO~6N9!QMRlo1Gi?oB6ZsXu?WQKK -CcoC)fH__@N5)d6&-|)^ZKwIfGXjwSwh~<&SWd>z3Yk&}UXq;Dc*mi3F#JRv863f-)_CcMKQ4V!748z -b(-VcYi_CSA#0zy6;a+^>d7_ia7ZJT>yu%zsw7I_OC#*m%yT!lapZ%KLLsTwB0M6dqlEw)*e)3V8PnT -Ms#?@lYK(c{C*zWp@yMdYZNtjrqK$ld(|XW -2b^Rsgo?`|ZZf?4WrFOZt#pe5w3)6N4ZFCvkm6#t1q`*=2!nH<8-Z|>jZmT->E^_#J(V10{cx}BiQ4XU<0829um5rD?v5}PFhs79b}U~*=CAXaOEy~PV%1jb -xg4#5Qiv@3X*Cih0V0yA=Sn@~oZtO_n=Xuw*RoYmpXQ;5x@nzK;gHLjZLES*tiXJ%wwbfqX@%LB)P&$ -`kvA{e52h$rbd3qe5Jx>}xIg-KuoOO8=0S6LfKsC2X6h(5qNsVnG)NlMkSwNem2(hi;a^t=2{|bZyEhv`OhGA7HMf;d+gFnp_J>KD%gH&fgC4 -IT2+s6x{4PP|xvLi-wTrHd7K=EcTN**l@37e$4Mw5P_&r=AfzrnhtXO^8GJYZM%IDW%tnv;Mnp6`V?u#%tJjbM!(b*<0Rij@1<0`g -{i$CQfVg@i&SLRezU(5an$w;K``Wr6wO1jq^jzz|lxfuuK}9l+;~|s9LDA6<9i4z~poRLpyG|t#Sw(^ -p5O8lhp*(CSjI^F8Ml8BEqt1No5BznDuNUo(Ry_{ZFoUJ8~eCud)g9@cm;DEs~k(R2%AFg7=5NjC7pd -kyf6+?{JerKNC+HUk}OOQzB@Ekj%ABP0O%kOx{XkKx2v7)Oiyl6@lAoR(_Ix2z|SOS_V0f&Cu@os*5E;~zP4t#im(#D+A_ZlGqjQ$-3gMUDYEZ0fnHAWqOH32P96{S)h|jhV -5L0ab}mG4dbU_luU&+0-7$R0=6<{8nD-%k;+z)c%TmMZQr7gyPWB_J4uyarI2-ROe3LATyTsgzjY!Qe -K@8H;;1w(!@y0?9eI&Io>G}q6p&WK@+QhQfq(ae~n%|vTuL@*UwSijUuuB|MY`lt866qndcxaKtq+1G -+2?|-M1K0oe@-+jO)|($09^(@=-!ZzrcQR6;m5llM2y97@Q%%a6V0VguIOTg{g523N5@7mWj<>O-QAdIn-!e`TsmL$iEOe%F7&K~s5FV6qieroI&^^XPF>wz&mZug -Psdbnic5L5Uaj%o;MW`yaASA~){Ra$RZUv6vP|jjskFsXE|kP^1 -~+tyqyfr^{uay{J*U=KFa=o%TQdV@ZwzD<++F<@(_~TEW+w1d>t1Jabp27L1K((6rZOz@WNCg|a -V{$^n(K@TsPI}3%4|7+>1-ek-)Sm%n~#Wt8cv56cv2w;KPbr(`?4!}tBCU){9IW5NZ*Q6O#nZj3uh}l --hc%|yrUasHwAETu^gEoPe45rT2x`g!7deysS+{Z=nWmzE)zV>bou(t$+u(i>g4;2vG~i$zg>l!(^Ks -!l6Xs+N=mAfFeZH{#Cdv?M|i6^BIt0}@qD|S=0jn?I=rY;m+G~527y8>mhe;TTzaQ6;4mH?xwF<1Rpg -Y{XJnXT#pm+{+F(oGo8vaYqp^69^i~gUQ~k#Mdn6(S7eLWd ->W)osA5v -Oq=Vw7H~wE{3G5u#0aHxc=%R2v@(I@kyz$`pG@Ij7F9}8zz6j{zC65YTeRSS)he*O%qXeO^3e$dO}2H -z)*a$e$$9xiab7p{a=rzl*p3k^uzr2zGX6QG{gLx{iVwI&sbb_m=M`JY2BU(N2b$MX8dCTALn`_#DUz -aG1~FG{hiJ1TOK@X4bx$?7vD(j|8^+?q$?uy~Frsy<4MLw{-ek-l^W+`##A2KZta|z~$94a1Bm9+xLH -F4`!O9Gh&n0sx+gijUCq=SZe({*4lFUO}=72F7-?X6039(gog{<*LA!>K|q$~Y$0D63Q<<77~b6zF!r -db+oav&5o=u*2(?54U)- -A-g>4&TR)x_>tyLhwbL$9j$d|SBF%aLF@kH)|gcD1Z&E=&KeL}XPJ;I!7XUp(YQ@}#Zo(gWeW^l>@hR -1;TQJ8^fi*emzSq6&XkKaXB&b(A0UJ2?HATlx_5iK^TlOhUMuG0acsj$xj3gZU<# -baxLEymwr|oE`z>G-ag0Fc@R^*W7(%VwuBFN^9Vv~addr{HGPLE=vXS9M;j76~}EPx{RCi7`y+_Q3}; -_4YjsWo#TwS(C^)MdNfD({I@3e!>Dq=5T|=7-kE9fhzF3vR7(8Er?V+(dExoKWKYJQvwv=8Sl{g#~io -w!;F$ery<9lD%*2ey-58`#o{Cyi6t!Nw)Eb8}y=Ov5cF3EQ)9Mi>7^}swMUDgL|(t>s*$+;}pAP#$8aT>+~A)1_M2N>?-SpMaKLAGeU_~jioo -dWD86Ip$uJ@AYJIn)e7l3M=0V`Uz))#%i67k{u-`sT{oqSn&(oE94SP+lwuid0Jp4XVVry-_&$05>r+W|;7-Fz5A72x416zieY?@~cTY94M+tZWRj -&0!yamLrpF*Cy!_z;SQEJa&ChZtlzrL@HAoQt$Z+T$w#{?+QuW%#xm*oV;y}_Sr?6bDam>S`C_JmCkN -6tl70WNAC1QTwb=G@s;gMI|dnSG2O^V)}WMby)4D^JLJ^N+Ryh`84Z^eHD{(eQl?w=N|nQyu?W~t9gW --0UX|3>Z^t4?OcW9gD2x%+f-h)Qb&oyaoTs|+*A$QP@h+dX7!J>#x0Rmfm(Z3~B^LB`_d9u`hAXh>O~ -e*7G?Fq_Onz>_F~;3`5%6|_dH*+IvcEgD08p})>Pt^C1DV&1Rn5Z0x9o@}JNx_woua6R-+*)giuz(Xx`bxvv&2YuGbh~asmz8uW}(^cx -ZTFFU$K;^OQipq);-b%%`n2dwf&4n2Q-<(t>jyH7%zxU^D6h3AO4eJxOV8YG4xU{uEec1FSYZNj@Qtb -n%L%qBx>5?RckzJIQ6*o6n?#cH;>f61dD&d!oHWNEd4OP6QcmWE#Gr7Yp#MBkCpu{Z_Uk@t{Os#DFVFN -@wxa%b&4W=UAWR#uw?R&UHxI8INw>V*89iPk7$wUsM -BpAHOU){0D{qV%M0#Wg0uyi_bOgURFOsbm|-gwQY#L`k?t!|LSYp`HAE=-}9(?#n2ZI#@_R&Td6hE%T -*D-$)k257v+C0ldAw=W-2osuM)y3>a40*~a2j#(bt^MGPeWU<;Ek7hO4%Xa#0d%Q%m;xp7Oj-hqtQuE -MPf;Sipo|#AXOa&Wj#A!!z|7j#@ON+)wGoJh<`hGTo%`-0B8I&FN;9Ip?K4j2biXHFP=Iu%4O -H9+!rD969O_IL~)s)o;Or?eyP?_PuoX(A-tth-iS8ZG-Zr%}P^k -tA-z{wW${Pf3^1C_o~G|d*!C_yUD@fCZ1bu|2ufSE1Uj@^I(SsO7Mf)8O2?q^!&eNjS{5aZjt_f!Z@e -l&Wne+>xPS)-*9-rI<0liDJYR=npKjEZmXrM_rY(UH&x)r=y&Fk$M4SGJnsdDw^sjf|H%mcH}-&^pY;#_L+I~w`s(?~_x --&tjb1-oIm4a)`E}jm{IugbZDWtYTgpOS;D}+&G-PqqmZ8R2zm)B~rEYMNTgLQac5kO0i*424F0=h8T-4 -QN*v5Le=@6lAGZyu=;J0L`R}uvyJUQHHish$f3hbC}v{K?L9$?z5;w?B>o}(_JcetT~r>1Zh2fx&1G) -wSJC3F!4q0*flrQVz}e?!s8W#hYx0A%^O+#lE4OTFR@L4X>^v}j$-iY#;m-`odME7W&##87A-iwc0)f -=X3;_fnQ>5t$}O<}|TW$KP1?U%}da>HOQA(uGDE@j*EN_Ig|ye`$=w8~?jp;vwx|Ze18RcuNLu`;C3GKmJUAhuS88U!{qi-%%oiZ!o~^2+t9|pEjQIF%q+vc6}Rp9QHvOlom)6=Zr|? -NhnBY>@xj<-^N9Gzl!3OJ2ir^+^|w)Zn}7JGMGz6f5f4R`^jd|y!DG+z-i3fl2yuHP>$xM*Kb3s*L}) -Usbah?eZa8nD)Mf_nw$2E-jg;>0a&%R|_DW0rH++D}cDWT2$g`9r$WF3?@NaLSr;`;vT^zeR{yS)0>$ -~*a)D8&k6nG90fg=ohMV1?s;GecvPW&t_L=Q&&nk;S&R7|x<-c}rlleQf4=b>NKwQiO -~(+y*3(}Y3zYMKm$b)OB+y}H>2(BjWMXt}5<4_`;0{G{I~DGAU`10K&?0^+%OO9=yzqN(a)xhd`i9in -nGiBaAl@1ejeZV&L5#|&$9=MlYAyyLvi7*~vhF+LmyZtc5VK>GcTGmosz6cd#vKC@w<2Ctlf!l93?`{ -I~hFpj=A@7}lD_V$@beyge6X$dZ|@=bcEx9YeN2BoU{!7e$t9bNUL2xo!+g{gRFB+jDeU@E<6PS=G~% -l^V}{Hvs3@xWsff>%_0dF`m0k|Nq{V&B$jme%X`{&D$w8C5vIb`&cF$c%O*#H)O^=sf;Te*sWS -0|XQR000O897^_9$~So0vM>Mu@yP%H9{>OVaA|NaUv_0~WN&gWWNCABY-wUIWMOn+VqtS-E^vA6eQS5 -y$g$ve{R+fBJ|Go}o_BJztL#;5&0L@B*V>-U+@ttV5ZRP40s#&HN@BA2zi&PI{QxP?WH#AdoMbEl-PP -UI)%EJ?>c`p9;ZZhk7G-^PoNfB$(I4^6!Q+F+*|TQ7ZOg0cJ{vt7XJ35w`4>m~~5ZTKY&(2=IKb!XVeOAwAKtzA^YYjnXmxF_4+pMzLY`N(-t(eWQOw;z+rY@nwVpf&CXp5>lIFKJMi%xv=mHLHc=AHRf_u{^< -%1ia;y6CR0pH*{p1xQdo8(nkVbmjfJ=&#j_ZmYljtz7e8va?gw$LD2-ZJpiE#To}R$y(7hn|3ZbS#sX -20H`YezHg!N7jNXpThVqemKbD&&#v#PM`f}SYa$%-}GgrTV5A!CuXhqc~iDDvy*IIz#ta0b= -#~(+ixcsm#K@Dm;sH<h$&VXi1>472s7BJ$U}&{Rb-d9tw@}7q8!cIDPr@>|Gw -Ej{M!(vp4Ua=k(YA{Qm6yhqLFoKR58{{hROKJv)03<@`=V&G-L)`VOj%x$zgTzkM@1`|$(zaY|h*0fW -%9gLzeST{e4$6f$Zqe-iV4d`xX2E5LtGvyPYqQ&F}m)@#6Ch8XLJ!x(@WF4r#Wn`~jtK<9v4h$ZlrvM -&4CY}AQrDVwv);PV1Xltoo`0vgFmB!+q}rpN_>@0DFvH|+}OW1BU#$d*l;3Fu$uPyI9s9NV4Z2mm2}| -1bA7jv?~;O4PvhVD-bdZ-M)X13jF1C5m=vEYGk&)?Z5;P5@%xBNEFVkyZ9xR`PH&7-lbabb87Sj>CS( -zYKJ}SS+aH6PmF^_fHp#tZ=3jd##6KdV36frC3qPV-i<>9cV5-wsJ{j8ToYs{JA!xI(BGZzdqMBKElB -8M_7)~1=xnM7MrRcQI#73Eb#o}cnYK}>IJ$TuhP<&Oq6Kjwxz+GVt;B;oq(j|H(S>#_ppiqWJHtM -(Qa!ynW(v12(o(?aM3DrD#4OBh>nDc4_B3N8qozP6C2oAV*?<|~*Bn5Y4k~Jh8sUHjyiLnw_#eAC)I# -8l?Pc1U)H|xG>;GG_%7`p=w$bhDf$biNU)4%Cp3`@J(6EK2V+8u4-9Wqjb=eto+?7=YlAyUE)`4uSg)z3Z#6n6E)8o!FjOR`OF!&dAGhkP!4$-7b9V**0!1{II6=Y_Aq9nsO_E|z1E>ahl6>*+OZ&SZ)dWbPG$@=e> -cXV5o74VCGMMxA3$rMYWhYR6f+X|HR_9767a1DJ-fffFIGDB&V>!JkEX)SuFsez$u`2^BY_vcOt(P&} -jja+W@U-bv`R9R84`CUy6AFd;nIQ1&a#5EbGlZuA*M7x@;t-S5yA*TwIn#{q+0GP2F!`W?T5xcVk2_C ->LN@*^suYs;qBdm0y>jV1P;jE4{&z*|Mwz@)VjFQQwwrQ=`T`wXh8xKSBO!O#yNoUi(QQw=C-gDXV(C -Q+_pr$}=oKBH`gw0(8lGQKmwa3+5OgMK~X@9j-`?jPg8yi+s7wpx^YzwCrXGsVG6Q*tZcBl7I=aphoR -f56o?g6uG)@Q7}=R5WL@ADn1U1*}ZP32H&C%K_+{R4?vICfEFTr7i9@`X$rbUcUQtx*(&%r4htW!c)J -o9#0=?*^=mMo_BRs~&qJ-v#FH{YKPKVeTq?s@j|nFs9B3LT_-G(X^eNZC^rxn*nE)nXQz1>*58G-UEj -cX>*GBzME&tV -;s@S-LJ}}qO;iCVK+Pz^2u3*yMK-=4y8ir!K;`2Be)3x(y^-32hx9nY1i9ui?V&?*OpyPoL-jKMp0p; -^3Q*v?Hf7Pnh`>Y=?RBy4vc-nVT|zN6)5kdED0qpUyP~aesX%KAGm|XAJEV_IR_UT;)JFo0P_rl5$iS -VTi9f%o#I2}KzHpUXHq&>jgYV}B>m0-nkiPRBS%%ES&q9 -F6kQZBV;!70pUL3}}Y5J&|Lp}>05t-|OeP)|jY!`50#8hqClxMz*^E0F@QKKr(z0Fx7o!-ew1HafEfWm=Ne` -!)>SdL=#0cB6rN#W*6CqI@Y+JRB9In*H4alKg`Jk4EiE5APaZw|L~0KCTkx0KQ>ZtqOJFxsm3 -vC?Pk>IEkjmOFN)Sik3_8Ha_ -P5gA^YFaW=d>)5(k4rRCr=2)9n4az+IbUSKtB553RXHgL@G;F|dT?G~!?rV;uxJlJW^*j&%b?cP()D1 -CgZAx!P2HxgJ6mJX{mUybyJ#$4pqJk3J?frhH_whod{zF0(CR-70|fRXuyfNk2EaLgfk=!7NTPAbZ2N -qz45)uu^^QEas2n?Dv^%#u&MUE|0x^1#jEtwp`H0K}Oq%Fc20(=!@$TvP_QMjFni@@kNwt!$NL@l94^ -53+)W-%=Q5;dYD@vp_RQ-C2n<(p~#LtK(_;X$DGS| -q5wyS+#eg%p|SUb@uNwpmf#~P23we%H|T^XnCmzshLD&}$R#;9x-X?;Mi^m0?rWtnQLsGUkL%N9n}iV -m0!>uBUaubXVuw1S0|Es1EH$YsU-8n}d5D6jf8Z8voa#>EBthd`XcD{c?{=mEhG6ZvG2q616=VpOwH{ -K-+Ckn1YSy{hI;*uKnv_^MFbQa56oop2}O6r}qeY(uHX^#Od^+QRWl7mB^K;@#3+@{1B@|9JkH>$n*( -Vk2$R%G$qOT|8`C${ns{mfuoN^zjwa}828sTOBkMb(N)VKg -@h1U=e!V?=d-Ua3UjyIROYa<1q-^?t2Ikk~W_MT)EC -d}0#Fz@5=~1V!foJb;P37xR{-n!BPr7lA9s$=@a_vW{gZ>34lcJ0wtE|At2tV9ul$SM-Kq=R3V@=zWb -^`y0ruTF^1sycTm(NW@4bWqyw6${$tE0fh0{nS}((prD+?Kelf_p9k^z<*k%I*q#;~bgKq7hx4_a40K -;#M#;sZRECQ#zYYrvcAwDC!K$NOM0|74rzwcim>Mo9vM){pgteXQ9O(xAqlhkaA(F;Dml$+7cqyxU3Q -vGwT`8${ItqXb(6R$2D3fyjM$2p~(#*t1LG*EcetCQ6FPZ+7UkN1P^*cq#*~x>uW?f8SsWaxSNhDh#m -*tce78>ppH=1*sGM%r#7stc-GmN>1#kzJ2* -{pX_)UpOP3DBAh8-hISy6u&ad8jz(XK7~cL>IZoTND?xIlEX=<*0HfYoRPMQlgL;^pVR3f;pS<$ -6p#_M=c-V+ai{gml++6f0#T$_oLp_J^F6>pig>vt*gNbt)5vW!d@B{uh!Hv&7Y`f`6BJ0~Lb3w5T6X8 -*M&Z38jkA(U-4$C>{8pQ;XR$;P2703jeiBjS9TBno6XP7D9};^2>JM~bGv`2V)mi%Ea#Mn((wD&E7Xr -i8L_Oc?Kt6k1?*&B@qUV-;+}O@d-P}>+-KAh+Eg0Yt0?aIcBlMjT7@T?TUREr7g9i!_AA7w+4Ni1+Xr -cTJNN$=+kT2EI4Hb5ADPLUZ09P|8F*lDDaLAPmUb##Mj11*Czk -K29C4B9$QP*NUfaIjdkWr9*TXv1*w4?e;ueRFr4FxJ!HFI*bd73$WTa;I#3;YE -1N!<5s(aBHz{xJrfmK^SwEk%K68ahL_Zhg6fZUcC12ljx<(cS>jp*`7>Cg=7H7F*R6i`k~Fx*+Vw>U_ -rm#`NjmRP>l8IVoHL$dD@)DMu<1D7z5ts{QQycQ0vTDCTiDq1e%LdR|N~2EumtbWjn -C&RfL^N-hLjj#ps@~&^EAU?Q~;*K?2Ns>u8M7E_FPaY)RtR~IswetH87Aw$eHqa+jf~I^NB;TPJC>g*$F^(Mx>t}NYBPq?;DG{NHT`(C(FHPD5m!ndgrFRZnq -U=)tJ?gIUiK6_E0);SiXJi@CP+Hw}MR||hM7VMvCxdAXT09OkOf-dFSd{4UL><<3?1_isEYHBn`KlS~VWfu@hMv^fI@r=E(*SXP?@FQ#a -iN>q(#3hFdw^2q-Z9r?%nLO*gR+x1ZXAUDXbsW;?mFOPi&X3Nb0RxSHLdc?l>REjJY?X;n8SQ&vL_^c -?ucDvnhMwNV0O^D}bUQE6aYA)hlkt?I*s><894Q}M*_tVUNb9vQMK*Hm`I?i1`!#j!9=X9xb$YQJNBe -GN((J9PVNg$L75-G!p9W$y<79Y6Koe%e(0M6)~7rH){Y$FJj{0qVJ*m@y8#f>^@pG3&GZ8 -O%b#hb(M1IdO=kAyxCM7N_e;>M{4Ivt*dTQpob>Xp{LkNL}j(xHp)A#_AThPC3eEPs1v1}k -OV4xa#2uAdBr*9NrrR-L&jc)!GBPm?GVwX0?HRd3&Ivs{+(glLBa&OobB)+brODUL0K=Gcy&S+a)Qk%o*4CqW5#HNA}=+hcQ%0|=+t2l6HW$AKww0_Es_cvaHs+eT4D&vAPQr -S%o}BFI4|uHDGy-sfcYpA+^IT2Td|U0JoljS6uERfQZ6W!OF_mRaWK5^DZ@USt;SvMrHMSKi8}ny2KP -hVO{et^Z<92w+2_RbmzL6wb;>BD{cn9Vn^yTHo`EWLPg7J2k36I5IRb0xD@2Sqp@;S{Q=UV)#UghKps -)_z#Q08(Khg2`7h!;kH7>PN&Q27OvctItFiG42O+^|3SXUw0KUh4_0dq{1Hb+CAjvmZ`kZq9Ep!Osef -{e|dYU0ygP1jkKJZVbN{_-n~-re)jt8p$Hhh7T^FC{7Z*ujT;z){zQRKC*O!0fU+^FN_VqXF+iLN(jB6eS_x0yrVB{~ylPPuvbZKpe@uK -5T>Gfsy>g77!5lX2RLkgZc2Cm{W}lw -*ZtcW}judoWz)Wsk@IhYq=Ov=DC{GFTN>1PU;yhwxTzHVOksHWUH3Y$|lw6CLI!xo>y7Hn*n}8DxgLf -m);yPw<-Gx2{|mQy@dvaH5gAs&%MdX)wyYr`DPLGETsJ(w%5c-|M*EUf}m5;)~L6Z+Y`|G0uK8MVEiE -6tl~3z7jR&KpJt0@w7!^UXLyT^#DiEx4h`)Wf=*-e$qYZ$U@-0PGmbqyNPQyNmlQvIh+{6BA-L#;)e- -|Y2=`GOtS}sVChZE22}hPZ1D4v(E?l@5?*i|mpqM#S#d5<)j++VS37;Y%t1-On6(KqL|BC#aenf>00g -C`82LDYGRsXxavI^WAZoWq?WWGykI})p!S#!4I;oW9k|!n=Gw&QBr{jodXYA8y7MqGs?|yW@=yTltI;cWPFY$)=R5_Sn%r5@f -q5r%BT2CA;*YZr0uSjGK(t3R;2*AqsIt$dUwo+~vhQjc2#4}pPn@OR)d!hc<(Idg&II-Vm;tGPJbxnf -Nt|TKfqwCcaq|$lxqVEXSZ?<|to%s_lsy&sVd}AEm06GmSC89mYgwqwOBSFY4}(en*!+ -Z3_dlSK86qUaM$y`SHi+eyuH(Gl>51O%NEdUh2X)kk{on<7S-KWEHwI*wAzL -G2Bp(fV#$mhT+&4uWdLZiteyE0sEv(m3TjqQH7r+-kj41=Z1URV8glD#@Oq#$U#esJ2drIN~Cb4N)bY ->{(0S!!`4m+*TRIy-24mhcBQKhVy0R*IAUImj4*l(3!4o*1kHRYZ3I`b&Jc6G!f@}SRbdpZSE-OaCns -Xtjdl|dYG-(Ds^8;b&L8+j4I$S0Bk(Tz8uF>i!kLp2o!oZweroO`qeu7HeBq2!d=>*~Lk -HjP9iXx(DXI~5p+>hn(P<S(9a-YGpexy3?F1xst`c~uVADJVYj1dekm@R!bN6^*?A2hQsM -ktzJ;s;%yzJEJU3c2R+oqgR@*@>hZ$C~>b`biu6h%ta|f6NdDIbA?Z(kEC^B(nUUqOp@>n`Rqq6%P46 -eMh3{jXv;0&KfjA=%kETZG%dYT6z+Ko6}q$g=*jChAI^?>Q{wdP3yy)gMk%Y6ElTliEpdzOgKTUn^wK -6ytr#ED6?CK49Wo|}d(v5l1X=wy=|RnauqmVLOq6R%wY|dzB^|jJt+Uf;Hiv_8sSOs>0PO;jw|HQKWw -&;zvNQjN3Z`@?g<5o6ydXS5Yk+Hd?{wD1vNF1o8Jf5piJ^$~R?NGloYd`h)^6&-oWvw#Iv;ZgRBiH^ZQc$u6X3AXYpMO -e)9kc1CM0<&u$l*r_M|XB5N@;JWZ^h^QCql``v7XA2lJJyog(&1!<##ni8ixHMN_L?1=rmoQDZ05q`- -o`OfxbQHslZ1;PKrQCIdtSC6nV1N$A?#aQh%FG?igEF4jWpSjPEbkx@R!T?9luXOlA!-6M%i6ux>(ti -bVADb~jK2aIfZlwFx#hZ!A|PnxDCn!CXmdVp#+^fFn|$;r3g&M_Sh{M#fG>OIaD4Ox%tP0uDLE_Pms+ -DUQro3>Rs~1hU -N}aMu6v>ZJJ_-qXV8c27_`oIoC+5pDzCjG=O_d2Pm2dz|XjA^Dxf@x`ma(C&Zl@}pFe2u~t44C69uem -hB;l!PJHS)S46xU#KNRb0Y(&9mobq{2Y$0My=t5SOYVU08Si-+6UmpO -_|dK*-6OwI&t-=dH4offtunN)V0iPgH_j+M<|V3nN=N}Fb9C~$R}VcN2kU%8svZkIBgwmMnbXmD}_5} -WKYN1WpLawPd22c2id91$uLTVOOf*hY&wmx1gW+=w8En)OdYI5~M+OjppOOhUl&PlP<4sMFAt)!Dnzv3K;?qkxsSTBQuPnlJ -oqdL?_yz;kuKdIkj+`T0C)#0Jm`O)2!U7Npp2J>SJQC8lE)Mc$KR7z1BGc%pXZ6U>OV;_V -H6XM^4@NwF>^C(fnsAuys3Wm}NX!{NR$;Ulx}SyVQZgwMY2$-n7|Z+dxv*~K8w0nSH#1&sMN;C_#CG3 -__m+h5{yG>2g2X+)1a4QWP0<$d>jq21of|6M#E_F -Z^IHK7AGJd?aR^4*{)qX_@AAJTpTc!h?D=sg*f01u~+0Lc|+7{vvhG>R=5aYdPZ7qWw{hkmQ=E2 -6$vPhCsG!lLgq;@mqW%PI@1~c2nJ`HHNps~{y6O&x1an;%VA -L*Zd|A<8>ar;?T%E97=?RL!cRc_?Y1@%tn84Mj{YleeN6vY^{?HtaPD~j8(5Z|2h|>YTA`jMJsI -=viFl>gBahUU~%Gn*=A){=Yyg63j(Tk_~#l?}#FfZh^+k0h$C$y3Q-E`@ltB?J+G#FswGEltif_iqE# -*Ca=X+V0%A;kMl4x-NXXJ2Ol1@2g{rz4aO`_%;UXd(jPZrHy~#B@s~Oi -rHmKK{&bRk=AXW&WLK-+ZQ_)>%$)c+!k*k^PpH6^ye>2SSYcYl*jO=tVkK8dIEU7{ -fdJ?*6nRECl$hN@3@#@T^!x3(%bKi-zxZ7%JbLwD_(y4I#W>ixZ(#$D+}9`3Wj%FF`!gJk4QD-XD!sa -Yu<Ai=OYf$=2Vuq>g60ikSK}E>Odv^hWL>mFMN&8IM0bO%GpOnWyG7%C-TignuaBQT1&alSz3s1?d -fK#CPeDf(Eqc?Rq8^L~fvU%x405VYwi6Kb1M%j4RtK&kx$XBkZngWQl{ty*%4J#~>cAC&Q@1TY@W7Qe -gLp4$q7JB+ODk-L@Ow>)wu*ZxOn)XWc)BgXa*Yr;YU1MJ?SFiCgtvphaFmurn;l9oisp=@Yz;J-bd4? -_7zcw86A1vOFnuNP4cuXc1t({9cMB=FZ1~_>tnjq{}{k-SHa3K^Tj9(nM!fLo={mg7bL|?TEvEXOZ(~ibYG213=z -37RUv80!X9LKpXer%uX2!aDxrrsw&yG|DeQ?fMSb#o&T@;!X!jy@Oyy_W3utnMwvtgI1aD_oJI;UZ2D -yuja``#7z45DY7zJN)8Ip^9N!zD!m_1lbG)r6H#Z(=Wn>CK-G7-Ban~O2&MBJ9l?e^l$KDpeIbJtf&3 -4y<)aQ1Ih;Xnu#bSE#b4MI605qptNC62b9ea9MTWLZ%X(U^gRM_HBTnyBZWF~-U#8sHw6Agh^-wQW;W -q^iMeP&0Lq*J@SC@xgWF(nFMCJkGv-@#CvA(9Y{crEZk%RCc1jm20(sgRD!Z8wkK)LFf(q!}sV;^*XNu%0Og -K5IW8^^PvRH&LO%RwYvpWvVtoxlA6{PkkYq;PH7)u=q3BeSTf5nX;FK>e^ ->-+z-U%>Lq?8xE}v2p)Nb2$9}sObOqqN3vw`9Z*lCW<4PoSmsw>?1GngD#V72LF3dWVCEbInW2AnDH6 -1nD>un_K50X5zUEM(O>JlUSwMS(TDepb-Lr|o?{5lR*SD=2uAhUk09P{T1wBEB|u!DWsNack@KQ-L{* -HU*1MIrZzLNSPp`$jPL$^k$i$aNBcO2Oxi5My0e@2YgI{;q=}1g#JwIeAMl5vuK+QuUDsA^+LhA41KE -%g1hB56dX{ad-k-IFFvE|E`dD1PeV0)-z -Yp`{+{M6a^D12osSMcrZiFZG-=s=z=hH*9E{z0q_x7#s#h-<{Nq$Xl91zjH^t9xH`bnPJN7{vsl9zet -SVT(jzK%C+2q{uf~La;J#m;HOU$0r1wa+e?LHxk9Gr|EB}144$d43--{;^ -jiZG5z9Tn253aPZu9>j8 -4&P%$8t1S>xQBAZQ74Tx~_U_{19%YpoFU$xqN6~dnOP3wopzF8f-dtR?2m*85LFx1RkC-w3wC16aknv -y_h^;0-F?_kCD`AUTI!w4I&uEva5}aeb-a2{zoP9u?YD(loo`J15^%obiA`a0cos|92hh#J@4AFtJLr -gX9aQcCl5;*&AN9-}*X6uozqJ4|8SaD2#o@tk6y)$N-g*~1jB%j+I{}{>e?a==~;m7t2 -#0om|f$K-k!~G=NN>&rOQUm9rNUpcTdzu#a-S*H+<)z^rQY(kSR$zOT=yt`qWxiJMy$*E8_$BViwwMgx)`ss@aC=CbTQ9^vRzmg2zK{ -&bQIc(hGfZqYm^!tMG^+E!9$FO+^-*9BPIWoTzYY^QR`*$&a3x6^QH1!n&uZLIj8huDQEqOZe|4)`2V -os3M%d8a3|6vcHnK@WyCk#`L-#rGE(!e^?vfD58h5JZyBT(pJj!5{PhfZyhX3b2qZp04w!QNwmorxY-R1%?Ak&k)|#f97!b58h0x20ChkWzRI&h -MpyQGO4>mq^^&M>E;VN4GFC`eNRR+N4=U0<<*L3qi~ZL+kM>L4_jGkLR6GCt_+xl|i9S2Y6)ZaFo7tj -KbOrxI^Aa%&rf5xjH796^y96Oq#ueG~Hy_m8YX(6UfYdRxZbi%M_wN-N=B!nIsg5y^&|KE3zID@p)RqWrT}dfOVNW_y|LaH?bpx9;!!>ZcPz2xqra+kK}*2h! --%YRY%jVahAr!b8(*|GcJfEKC4BU!jQ%}m%?tnj_*XoXHYh}F25Ihm48^;8(jJItZ~j{QT-Y=+4#ENg -Y|}j8)Yvb_*`NILiMnmYlU<_vd%!Mq1xE8p_UO4);ZeH$<<-2Y8a{2jpkl!^6F)8MY?y2ubRm*7jv_& -3*2(Wgzy8bl513(r{80tnAz5UYN+uf6RFz_~JRNX^d -DKFy1&uA;%$Y>F8OT=S{Rzq7#7SMZASQfvM~^HJ|>JJ%PXG#fE*)o*{0 -TBozS~a&qC&Ots?m46$a}Q97An4fcFm_{9*!>(scapsFHW8Pk8dGffChp>000&Sb_vHdbD=9d!z|$Z2 -{`E>MY0>jcj7oC)^mu+}%(U)NfqKGI3wSL&VMwR7fVSKDvJ|BT`){dEPP4KFo8bQG -NPU+9WVoPvhQxqoK8jbh3xCd71yU2 -~+lJUjWepkc)M190nvOR^_Q?JvC?E#K$1-xWN{iTYXiMf;}SZ*BJuP9|##Eq>fk&WJ%H{04-q;~AUl2 -BPS)-e?HbLT(6Q4&qj`cR|TEJ=41L??DyDT#B>~d393(E+h{rnQ6K!Hf_m|;2RcRjVmKGDNMK5)6RhU*afTGgIP -*q(CBi`*O{<;dmWG@};{;W8TX+^Kwl-k9jIobPLWRO~ -N|v_yP8=NF)(#r+Xqd%08!7aiF4ca0(>pyO!fl($b;RTTB4&5mTEcE0$yuC}`m6$V4YN1maEZ_?oqO} -d#x7i;kW@k2pbf=**2R{Yb~ZY32*8`~`}ISC=9tWv8XG#r2oG&Rd&tzG3DVMG)we3BbI_iH -SN*z21`gK7m4OR#%K)fMVdL8LSl-8Jz@;4Bzt&TX<0htRC-5_mKM-b~kx9oPfi(XK34sC1h-oxF|p=4 -0Shqta@6L?l{=+E#il6gKFg9(^{((MgMu=9;$*#d<uLId`0z@&T*)#jOq7K( -PzV&;n9-9|nbB+iE__jq$J6@i;e|UHUD&ke=MQEL3Fd-0ONvCu$J#4e!V58!Ou6kp#Wb -RbaCaqio7D<~ZcZ|8kme+pZ!tRiE#AR--BcMuOOlx -p6_r)>d`R)FjO4Nyx11QY-O00;maO7>PNk{{Xe6aWBXQ2+oO0001RX>c!Jc4cm4Z*nhWX>)XJX<{#FZ -e(S6E^vA6Tzik(xV8U(J_T>mK=Q6fd2GArbvqYGv$Nd+ve{rVX>XARwk*-Mc4SGVq;cGf``!CHhonS3 ->~S`^7u&@OK}MFy!}H>Kk<>$R{>8b7@;J%XGf`Ko^WW2xvxjF7#f!Yyt7N^Yg#Th9o;`W`mH11Ng?sT -P{4ps4w0N0BGAm^)s$5hXDPHfZO`eH2`KsE5N{VmuI*Y?9!86=QB|;39RVrE5RgPb4CFNFT6~THVrFe -Pu;_}s-%b@yDi7<=BiyvOyTwnd^?adF@Z|EV~oh92MSC!a=^Bi?Fhd{O@jVUjHd9ljwO}ZN3AaQmLlmTK=P!Wi=J_`gK^AyIjTJ -uho=s8C~8d?OVIeXa5j`?E7*Kg4@s -WoZMc?KP^b@nzWh-})kI6~!Gj0<_hyrnLN`{jP_l%ImC(IH_Y?_r6`HHbGL>SNR2wMo>#M1w#tg~~CU -~@<8HI0_tler4442+{bKPvN$~pd3-$`(a1v=*u=jiY%4zK?<|Ba_1#BwF(c$rl5xnIh3H6^)Ryvj3aN -OH-d>k4g?FilE{2?9dOD$F7ooHY$*kZQOkFf;H$inrGPh!t)Qlu3Wbc4RU%_eGqqb`P7)VH -QjRK3jj0}tqD8m|7!$0Z{{g2X>ux*J{5kBvDp}Wxt%E;lTSOa}gsI46mFCeDGOIT9KZq))0xGWdQ_QS -zt%qVA_U-U3m}F)85H8${Znz)*>Oq(dNhW;OLvL#I(Q{Z&mkNp7{i*4DNp=T8#H3<*nZTayXW~)miAQ -3H4nHZ(q?~W`oCO6W>29O4Oy`(aB$@FB>tcQA`FxXus@_Z1ZJOPFUIwwe%jz@*sXK2X!cvq;cH1TQp? -C{&X_V!j6f~^U3Os<0C@2b)4zHd~sW07-3W76WbJl|bJG%v^VDd<F4hn;L32v4UnD?HHTb$R`1rdF~EFQklS1QGQC!>9#a)iu!- -VuIWb-Wt#I!yD~&Mtc*N9m@hEJSWqsB22gK7Fx$M<$!7Vv#i(>kj)~CUkcNS#gt@~RAIydZOoC -B>L%Tw+?dVkPN0@@^&UigGD2XQ25oLo{J3(w416RB_CI8q=j@jCci3zI5E;h@4CCMD_*Ud1_?buxdEK -5l+3J#$@q_ccW6U}O&u?c$3#&u*v`g##LBv=-;1}DDWn6?_m^}S=A?_z=6S$;oInl!i8o^n2A^6A?785#ASWRFzVD@s5;AxdfD6_wjQ=0qGmk -^ov@U`ryNfJbtTnsLeTJ9vyeb1a2x!@CTeusO#(%Rqv(OvBn6rZzwEx$!7K&AWwOpXkvlS9u)zSqOD@<@BkL8W;#TfC1TaN}k1+5&b4ZLy6;e^ejs9s6HpGm;P=762TEvvI -v;G=op|{%PYOLd-$}%y!cfyvA^Ixm~{MP=`7>odDxL~m;%VMKK7$oZhG$8MA>ZPwjC3mo<#7oi4Im3d -%$d=(P>8#!GH*gCSwvz5f8!mi?aBYkTbvld$kBO{U*8w6EmX6kK4g;}X)GHCL+2Vj3rBV=OMuM*k54k -!kdM6bN^(1aI<$yOO0ceY1eY|5LUQQv&k}N@gSzE%kx!CX~Q#*pJn-ZRqeg^ZUAY;F& --i|Z!fw)PA1a#c?=UoVf`q+x!oBYlpE~+TxRB_E`1GJI!z$Wn+FI>3G(Yj25h`MkEnNrO+ -nDa%D%uL~^D-cH41Ua$%&(v?_Q4WRX@2^4+D^om!VAJOaw6d#YB6GoXmd_&8B6u)}o -Wfg0y&{jJRO644D=1|r(ok@0=-}2G~3@G{oOQr_MO$J^c4+*Rj_SSv#$xV_B7|ba!I#y}Dt}|Y)&|07 -H4>+M%SeHI!1?QSRtyb(cTtRT#Njfx@KtWF|3z~d$oek_ti{*@_erMWKHfhoq#1#8VnzFq$GPDvhCI@ -pdipCzp)><>&A#cPQJQr16uw&qw9|s`DKsWQ+L#hXMkOQ4sJCU!3$Y^ih#3TbKi-oS$QQ?HG&L@JBN- -Yjpo7-Ke*5vvBrvuy52zWC$uz7v;`f@sG2H?k<{jX~nTCpCs3L2w#1Uk{taSyf=JrIs$EZ@7&fKc~Y( -SyPDV4e(Le4$5cXVXLRS7b{F%PVpZtfqBFUI_7t*dQr_-b5k2+DWku_sC+|$~yoMyoe~3@L#%CI4B-E -Wx>{_Jq40Fxb`ccB&!Ry(I!xb9stb?-^vBkFVMHPuIpHY>M7oZ%1wEyXD5Rvc^dGzof?k1;GYe^pD0= -enqh+W2K7myWVkHzl$tjJbwmKN$hKIvBHH61ZiotV=Rh4*hXBc%HMj}#`l-}?I(?5g`SlekyYfZvC1xt@`F?p_vh9wyzl-AN9mZ0Sb$ -JW?-)zIp&ap{RkKO04jy3-DZ3$LWI9~tw#DGTCJUMnd1z;cZ$)LTXp(@#mNK(@B0T~Pm7R5u-ysQEf# -6b~3xcMjeI;osP-T9wd)(p`t}r6fr-gzFMnQXWmQhYO|JG9${0>xg0^T09}}Qy~KfrT&Eom0-c5f`G+ -hNk8T=hcb0zRzpam$(jG -RV-*ehKup`TZ%z*n+3*rcxeHA<#A@UdO1b-e&2c{}&D*{N`%BpPZ0jIeQg0P}ZP`19=^#2S?6pk0~>} -N5>71`SYVavRxsxz$in!*B-9TGnw-;}m6Vb`Q};T>EbSG3MGFb*!gZfq{oQVyZ_V~#eA{*1xKFwkf>_ -q4-!YN_}3th#7Y3!R-@2)zl*T}q07H;d6e^hsnRrm+HYj-K3>|}KA3&mzq#+VY1xBD?T>ybz-0zi1l-?FJ-}Jk2TD| -Wc;|a$$}ms8V`aK&E5ynB-i%;v>q@-U4*UMFcCawf>X3po*xDrz-m*1sLiI7c?WmI@N^ZxTbcfR0b_2 -Dol$5@O4D;Uw?1q^qE*CNpKWW9#1gvo$)wF53-D~1Tu6RrPV?QDhHX&vQ?9VX59N>3s0sUYEY1lI!f* -$kkhodkTFB7|l)0^Q3@7`$wzaPVk{$v|V+JrXTNl*LKlte{VQR#RZI1yTc%uOk-o!ttSI3sEcuA -qXrR#(LOu97XgOK_pD!PaCVITsOQjhSahA%$E~AA_)|#7#=A)w(Bd$7hl_}0Y5Z_E*n1Am^x$?dfQcRz+d`Gbt~&%*Q!rmtM0Wm8^KPPxSws!wzVS0f;2 -;a1{-pU1^EjPOBST5JCo`7)nNRh4Th>E&7kgj!wwe1oW21PlW(V?rz+0S3de~`I8*7bA7_9M}MKhp2K=F6;Dr$0X0=Wea+&Y)e3Wvr!`G+zRUW{6}3viI|M>Hv -({<8S*f5?3#!`W`Ry^wW2?-3EcQ-jiKMhm9~594WQT177_+xDqXT=bR=&#BmbP))0xj+B48N2OawfTHpoH0;*YYNg?IZ(Y=mNAKY4b{&-0J* -nwyLveM(1I`eU->NiG&M}^m&1-V+&~F$DyL_qDvLhSwM3xifiq(5hqRaU1@~DrR;h%WsT`vL0t2$8A} -MKzsvw_J416Is-=@=N}FoXZY>#eeO!Jh^!`{*22MMV>8!XoL->e3kYmP2QtZ}d+$ACD0;imRzPzz<{% -}vQRnwl^XxCg_VG>@n_HjJNr-L^m2|hFao-Ip0l?ka7%G?@1PKS%P8%+(8x{Fzpftc61!ffAaJMSM`U -s)`ue&;O~6LWZlM}@yIu==v=QPfUlvmug?l9W6*##Fbbv16R;De*z?VzhWPJk;-oheYY>24t^t3#gHZ -<1U8vY}(3FS|971>ZR~0j-G0nOh!&{b@iX?@tlXTgVFN1(iu`b-y54Ch;^{o_@Vk$ -dTuXjjGPNe}ZO0-sJnb!9Vphae`pYvX&&8{$v-I>`u)@Yd^S?L=6B~$N6Kg+#Y0cVV -P^Gq^d;uN15;Nyhxpgk<^fG?gY5X}TZ2QARlaHW?!gNKC;(Ez;ALB~u=F2>8&E -i4OgS?Og0{ARav5OnStv4xexyKfJ7|fFQoS5MZYsYJ3)EZfh0V4(*03VtF&6<^Uu49zlCQqf=YXDTW!Es#)E9ZYf)%5{QlEokS;YsoK06EVX!Vv -Z)BfFN$3c&@TLx+;YqnJ*}kWqUS^A6>57?3{_KH*`Q;u>R30UM!ESO)~d$`J&IU4cv6xGIEERflQgh@ -b~!OOPE9v}HNWp~%LJJNRu#`y@4|AmDx$cuG@fCCY -dcB>A(B?Y^A*j-o{SB*>VXctX5ndhYq{%T0Bj~P(a$z(Yte|BhW$1wHR!Zomr1~^q9zCWBi1eZyJCsC)o(J}&;- -Nq-;j_*hHtz~QR9!9L(gR}gaVZm4CZXqlva=G?=W`*z%%O`&Z^$dW -n82D*+ew8xN)F~4?fb-=|;>M^yLbbNiNqKz@?h@|LKT<`%Zta5eAxsPr|!2sxdX|Ah>+=4ivm&9lKfk -QwM%?tYS9NIYFp>rsylC7jqJ$)5CagN6H^G{ptwcr9nXpcnNmg~VYIaQO@6 -aWAK2ml;P_EyH=5KS#J000-u0018V003}la4%nWWo~3|axY|Qb98KJVlQlOV_|e}a&se!^gn}*QG2QGa8MotfJSUxaY^NuC6gLGDAcYnQFaRi-Y3IN1eN~~VPyi`Ay^}p>aT1FJt8Tq -+-FMwO2~Iye4d!K<7t2YoZ5F40z&A%HM<>CPaM9$>AM*$f_WL_KK#;XWOQPZ_6sn)>+XYte069eEaOl)9 -+qBjhi=3kQ8a~az{t`dQ(2+894)GH9pq&o@BX}NvijNgs>na;vQVE_< -#GuFRbR_mecF_D{$`Uj*Xl);9W~W%aumQLubS&BOK_f!vN!W=(*)1x{nM%{t4R=?1e+>Zu9HbnlrX^C -tTHR7+x2=k)gXeTHsDE_Usn0-h({BvdSB&r1FxS_i!g=q^SoR`Z&jgaTdn?4=EXRG51XW_Gy1eG+Rx` -WxFT7@H}&ZpUXQ7do#*FmwuO>EZ_5U&7g;?|Ht=b-%~$EP++;;o^;G@l)vM<(vNW%>EF1NIrO{hEYoBEZ~QV2@_Nb$na@_)(Gl)4SoI6F-C}_LExn7TJb>xw=;)irFTZ*EVv2vDXq6F -8!z@Kr`1k0iyN^Z}(PeVFcy#*5*B_0-(b1D{9=~|`^p#uoPe0Wk&aZK98u)Yp|3~qMBlz=g;TTIk8y$ -V~>aX8Uk%~P1?$z|w|9<||h7lqfKD=($tGCGp7Hdwl>fxK{x*2`BUP04eJ^lLe58u9;KKt&gr$0jF@V -aR>_2l8h&2E#&WwoRa;n7i=Eodr})rxRTp&pI8#%+4>U0Gx!rYpzC$489j&9*86s1%r$0;&|;6y;qJ% -yvKvgBcv#&4J3Z0Jg)c7x -Yf|X9`6>rYg`W(R#4*E0&(~SGZ7x2JAC0J}rmgsJAEkPX{hV%+`AxEfDdXY`;5e(5QH9G!;e1urSvZ1 -XM|0S2b>PsL$U}FW*?$~xP2gU4WpxuI74j=!QnT$6rZT9@wdQFb$LH}I=_`b;UDxZ(y;2Er0@NLOx8C(O;5Y}=cGgk)$;bAhH!(MEl$$ -V7@vuvJhkuEkto$PAr3~%uu45dCS?W|mG>u~_v8ZdC)Y;m5c&ULw6r2#^~niZ4cu$G#LZaA72YD~;qC -MvJ%Z5EuIef-%UKjUe_t%2KSnjtZne*EY>sT+IEV%~Z#7|79YlFC -FDqQs)o!E^XuVxE`DT^5lT{l~qPhe=UCxpj46_ED50)itG91beFP_0{2S31w7kLGng=@#Uc9GpN>f?6 -MZ?Wo4w!`&~!j-fPv?ttFd1#D4c9ayAo=rLwTQ?#lE}_EfPN^A)4mbKOfR$=$ul9-~_MS7hG|-c#hIW -+*5i!V-*@`L_3nECgL62bZ+1DGzhKosF+G#UpkXaRqn)JfA+kqjN?u*x>8WS&j=jXRzANZ -Hsf8Nsaio5@yn)(eFu8~V-_T>|ByCGnvs?H6zcAGHaNsIJw}8RCce;$!#4zq>Ea6@{eDQC3koLlLAy4 -2fQGNyO|Gm#%|T*y_N`k&Yw{zs@WU;*i6-+*Yt0z*<2Z!k?i-Q5ZK#6)%6m?Li-BznrVj^cTc={;tZ* -ehGQ~X21ffT?byaTvEa8O-6t3u2)h4g!I)m1;Na%vPl==SZ4LaV2n)yqXXVa0sx5Uch~v+Iv{zc4tC` ->xJ!V$0h?GS&HOqht_xHx0jeXgKu!dz2cU2daxtJS$uh}{x*<|YZM3pdaF;jNOkcM}fvNxlVk%0czte -C~Livi@f-M4a5BG6Ouz~0$YS9#thsKj)o*{&!9qkqPk0v(KEg%7byACftYJFM3lNj1vV)kuT!b>e=EheDhR-volY?*zC`-~2545G&A|x@iN$_W3i -5jU_WqCtrzAkIj`Q|9U2(yN{g^AwvZQLSbjTc2JT0zC*g*3uX&=g_`(ByiP&GSW`)qT(qzGMVqftE)a>Ib)6Lp-A(vAzZoUT+-oSFK>#+grE~AkH9t9}1vi2EN32g(QMn&+CEv(+Q#<2 -m}#sab3QK@rbDX@_%D~?7+tIrmurWTEmwa!5}f;lBch$$d4Gwe9;^-80l0SK2L_9#_Sl9VWQpwrc2I8 -oqOic;d!9}qdsskq)D8OEM~Ni)h=*i*088VAgAr`evHKl0+k8I%p=j3+*z@LD8rVScoTBuDcHFWXEeU%Rss(wY+C -JPJ;i$Jp{8uI4V%k`qo@mOyJf*a+mCEG&0a+4aC -@6}tX3cwVgr(we#h*Fb+;KA#a2XWfXW~Z-p)w0v#J24GYMOwX^~R;#x^~<%U3IejZ_Uq3JpjVP -5vbB%u_EwEGGfxE@$0TK|>nVLn;z1`d!&PYX?IXsVIC-ig-IprF5%th7L*d*kleMZ_q&m+H0F3yLVnI -vEpAoir+EjAtKe*{y-RMsV5OlEMp=p#I*I8(Q1NZ0Xwovc7R1CPVB}%nIPeqlF2=^Ug0`i+nh``j;ey -$3Uz8U59Ec})MN-8mAJ%OuMI%1x=Cd%!ajPpK5AfQ!(`g5l}f_!ysV|3msLjkIHM6N%6=^R3*Zlm*Qn -MfTu=B*D}|5@GrulNz~fDoEi&Z%Xe4SS-bEJ~l_kx;$c<@?u=IG;QE725TE|VSUPeuf-`moLx^)q}st -nGY*HboUUucjq@ctULvdGjWrLd{xc$t<27+IL$!sj6&eI0b2%CO$ -J^bU?8-?zBn9YANjSsg0fXwC!ul>4lwt}O@pctNmd99kXzNqy{$+r!&7?zkwZ-M@~RIjSl+gK+0#Em@ --GVj+u)i{n^KdIX3JW_*k$D*epXYoKNfUpt;UHc*uJ?N-mkC=vbjsA8ZeRFbekUCV)t7M~v --XcIRAt>a_Y-G#EFta)AKTBkS{_qSzeOmsTY*z=zIGp2ga4b`M+|ra|HFd|d1jjH7$A4-C;W1kb4Y2- -YAD!y}K|Rs<4e}$2&)5Xg<_T@gK0{exAtHCY?dclEU^uB+|B37}Fq*YJ?a -69cjsaJepf~}5b-b*~?Zy=Hx&+3lgEKz1=e?}*CC)WUJQ$^7v`?=Qsqn+)>Dg;y_z%PV(`W#^oIphvY -DX5bd+oKiD0zzI6z-|OxkKQeMbiMJqMCbd=&ZIPs*rtOF9lBn^eajore)ks`W1R`)*y&XF?U -3Y07lx4i3G6yKX}5%l~vm&_745Tptd1-dHK!b^G`n;vxVcYUwyjAs9_1w&|)aVBl8!|n!PykD_Y;+w@ -Y2xroE(V!dN)utG-U4N67it>8HL3CDdZ2w7~OI8{KJZqUuXR4nOhihJlg21K~{Gr^^_m21-N+M}1?Hf -VS>r_Kl0C76Yvg8B^aD*ly4gprW8DkXi>{VbQ@o@dH%`)Re9n`++P66mF`1q&;Jr;YY0Uw}v;PI-4OR -++*G{F1DAq7KrO|mDbcnP{J)6=5m!KMeB>x@(Befik+j-c0Fb2G|ig+Eg?b_;+n?)4 -;v-DjZIbL`%4SS-U5SLQe-aqSKIhx5`OoPbu=2Ju>?jTxDPCN6Q}=XN$H(oWVe22H;$Lzzz@))xXv1hsfyYu%$jI4ijy?8O* -J$>;?$Iu-Lb0ml{s!VsQ8d|Jfv}sp~_SM^#w;_^f)hbHe_3|S(f=;1vzk-9Tp|;lF>)qtihNhCd~K|q -vK6qwZ+~RWf??g@uN|QTX2(A*U6?gjEf$w^2J2}wZ_5c!8!i<0Ka}b3f*oPvoS$yh1ix+pe{ -;a}~d!#&HiWUyfIO?8FIq>5wodlB@kBLHF_^s$y -?DwxTA5Q6~$c2lXf%D}ZCD9h@7iFA`qncdd&PMP!ztF)rucz&=!}>I> -lnS)#=?Xq4dpg8r?19%eIft{DHL$B@C2*MoCsadZa3C{hJb9YkNXrriw=V^Vbo5cjPTw%C)1bX%*5AKt*f_W`}ms`J -ckuH7_NT@^yMRuBJ+&t@)F8PP7i)lINj#WJkl3Qz{q~@#6Utby!9II;T}$8Buo_g;WPW{`K2asMbbQJ -4aN4XB6NH;&WMX7v@QUR7{02(O#=5wj)^Q90nWFkry&S@GH{Fh_)lMwa>kH4l|Ho{^5r=u*EHp)*&Yu -TzSzt@5yHjXz^v>oud!j=p=ZqBh5Lo5CmDCXcz@d(01M%xJYFqdp+1shhl;ZRFBSHax|n*^>Hx!w*ya -$>Ph{dj^9)f$ZT_q{ijv$6(ro6m6=pbU|Sm^1%7Qwf-8SX`_lAOab;1DQHf~RLOYfGl8q2A6RdzE;-N -HdhhpKGd4DA`#&|2~!}b^YbbYi}ftP}@STOMOC0j3E`wOJv6>pl)Urm%ST=Q*>=jbFZc`_W}o6i?Ic#E9xH-+l -r=%y5!?cZ!8Dw_=ou_N`$xbXy59hd4*IMp{q_?dfPJb|8qYb2%EY*cNQX#K=N|M=>Sps5J6Oz;0lUbk6FXd0xv+i~+p^J27)?@T~uC7)5`eKUoTNl)an -?YvG0eI__Z~$+jkQjCTHqm?a0T6_oOY1I^pX?c)mmLSjMDd0`F5cD$$c-WKcE*UKsfH`hz5V^ -F(6&Jt$CfwSCejJpqRcU1iJdQN-6AA)E;5P>1Cb|7#o}ksfgaNj=(GOpBz(k>3RRgn3~D-)#-aQ=gx` -~y3DyrCYG_ieSD4fgz3@q1?M_wvOO-9NH+(FSgHDulT?{>F4HkIlfiLFQm>(rCZpQl9driMIOoOuE_` -1p#$3d18Ezj5MEX|W9gO)ew&rGva;Fb2T+*KG5X8j6|fvg|5P&x5P+XyEDk+XOL4`i%WQYmv*T5eI^B -+(8thQMI;SGMA-FQ+mRU?VA>{uFRH39GDF0xa>3W^Zu%+w&t+9BE*sRm0hjpzA+TS~kqf_T}U_`tteb -@b2u3%fBDL{%~~sHk3E#@Fs*e;ahp}F}(N!s{K^J+Yx;DX!PX~w$g!zr*3R`cml_Q2QO@RM-f8o>D?! -t-hJx!?lTJ-^bAJJ>E?pB_~#}6`H^vbN=bF>#C1^Nb9@cmpiyz|y36qR^_LMecKpTbk47%g{(LE%v9S -LPr{BETrl0wt$Wbb%&C}w$93^90qnQh3j!YZ%mw~JyO7b=%E?g~+zIW||YfZecED%QwcZoFAq2m{B3v -&Jp`$TDi*+Uj98f{pHc=AOG!teKdYJ`P0Rh{}G=&nEv$B+tb%Nksv|%4=3NFUJ@h)hp3q{q -qR!LN4pE_a`GNpf~Ewr&4=w_g?w>B$*kOxEjzDV3Nhvrk{Kxc>%3@F8G+PBN4gu3;y@8?g-RuK@QT}o -DM1JUTx=`q5>Z=i18@ha5XIEu5A#htoh|*N3b2VIds-dN=vHQ?z$QTL+@eGh-c9%S58PhD -DKN#ZCtpx0V0rzcccGN+JsmDZDPpvy34&6@74`lR8l~C(7Xhw6bVCSi>Gx1s`3kGMr`-G?$NFW4{n;c -41re{gTs5@>{)>{W)wce5_4{yx&=ds#_VVHl1jiK*-U{PPie7X4ST++boQn-?)|p5I76Z9)ABP451=w -hWrQ5bv7t%)JTtlWm&RB1fMtgCPZ0~+#47RhHh_3$yQc3r1Fv&mVoG4ZlPyMeXYBLqikhAYTfy9f6Uy66X00^|MJ-JUF+DXDkTso6C|`B_7x? -FEG3ujYqCsHpxFV<&@P#HyfEyjf2JYX>HhYny>KoPJE#g^J-j5US=#y6)apn5krPL-fNegU(36PfJ6$kO)7rxVOkr_$}sh+pLF-M&+ -a7!m~MY5)VmN$1sR2hL02gL%Q(EHQl^`G7 -FAU7_+R^^HWmISPet$1tJ`5Hyp-^#&S>ZDF%_syJR*^7>5yJE%M@jx&#EXXge1`3c;f((H{uS^ilcFMkcRLyLWupco|`v=*>EE~@6lqqJ%|NR~EA6VL6u6Uc_o7I$c^iDT_@{kG -0Vj-fILglDuGpp&gi7qCunUIZQIz+R7LuQ#)u4P;6>4Pp1^mZJ?7a_E$^w|rr~c1$F3JC5`WJ&KC4b| -!utQqI8ud^(Br?W)$cb=-xp>5P@@(?sxJuFeF6IOZw6a#!O+^?S(RO*`W-$Dd(V4=uA3$JFC*>6m8y|dYd;CaG(?BSjlp{*>0+A2`XMznWiU|me6x -(&dgG4AC=Q)s?MP}XeuN*#ppmwl(`|AG0v);*GPx;4F#mjm2C>(gsxpEOSBAVa8z?RgPlV4i`P>WXI_jnv}>XNORQPbD9RZCSr~6PKYC-2SO4#n?##3jG -}v?hl=!_&5W(1neN8Gmu5~^%3(SsjXdYA`Fy)dIu=$V!zy(!?a_EGAJ -qn-llijihA|XjAkD<{F~R;0BYdw*HlS?_)6n3jP@I1q*Q664u1)V+xLjtgR_K*=IXJm5&&^V&XD6Wn9 -sj*?CPWCAX0l&8Ach8$WPzdzNC6b8&`a-n598sp(9V1$512p^;|OSV22aEhTan%0Y8At0)_M>BnUA5O -pqIkt3IiRAbOQaZ^hiJ~rTKs!n2eZbsCAg^9|k_X3Xj^)dMEd;zQ1plO0<85B;v()vEM`^lS+Jb&=F~ -THts>v_sGI^c)(4sCWm2qcX;7f%F)VXPET%27!pv0WgSdT_iB#5D+=%tX6)V3C-y48RF)dVVDz8n4cZ -~&u-iCi{Lmy=lY)J^&RU>KwfBf;s;MMnEeNU>#L|v{SNy -Q8Fy|p?A83FK6Jq6Iis&Ch5H3D@-gQM_q41BmNQC&eE00Ik8Rmty*p8f@$Xy$ap+AORhGH~~5XhnwGS -FDZI)=2lk-h`=C?=dT$sLaC~nBTa`R&=S%w#b_u>f#T-%5I-vczX5lX;SZ=VHZ}b6FE_IO1B7}0*kr7 -1iN(-ej16W(d88qTPthI(;eq^npcz|SY1rYuKAIV2`PI|$5#P@7GHaa_c(@zhu%2o=oobdbGf(0x(6N -IT)-$unDmUH8%mffd%Tx)=FfT{LnSzRtlDL=&j$5U9h$~t<6FAC2r5Y)?lYpv+gh5*-J>48Mb+Z>jZV4Yd -qyWCR8WRx5OLnCRad_JOI7=IfP@kwR26rltYpJ5CA5uUdCsWx3^t_uwfn7`822XE+$wvZwOm89u^yfV -qZdXoz^rx#(mucTaLj6se$Hz50?wNMY%SapQvLa -(t?;?2rCd2BL$=hK#a)rj5fb1s!yxR6TA)YxsE*V9epg<=?+}{oxnU<=;Pl{n -6<2-_wmq{@6*cRlqj&nZh0C9bUT9Tu-j19}4n>K>tuQhs6vY1U;}lF`UL^x1pS5C-8)F8WDy@L?=+)- -Ua0#zOU#`LeNzXIPJ?dI7qK{?sX({PpW`n&~N6%#(6@=Sfu}LqQelD5gsNd2kaiv?G?o7-YauOZvd81 -1X#;n`tl)0Z*D=?zr{N?0i)0W#(5w`&BEJuwlmf7JfldHekR4>=u~x6(jBg37aem<3I#fpo6{9+_EkF -@{ov^SNSvW89ebBUTq|k}7cz64!co5u-J}p4JmzBC0dZrJo?7W|$*jh|POfa(nYNNgMcy~jnw~P1V9j -p0-OW%ikn0jOx{EPOlI3@=T}d$Ds?W8`J|80|=Zwxu)S$oMS)0UrNy)%HMPCMw>)?(eU^snY+Yx)G$Z -cC73gS(|L2jgytkI2o3q44&Qn_7TvxTPS(?jOHvi5~VgIP{gM-IK&swF4CZ6pcKArcQvhKu)sW50;90 -bboDtDDGLZHEApv7F4_RLyIfX7`ni6pLa^jrM3qi^4#DzTupDxG4N`jy7EA^9XDNLGA6(RNKlja*isP -yYZmm19ENi6LPbZpW82k-pf(F=SGUYjKKKxyNdl@Vgag++nTU-n>Z+g@b6Rj`Tq#d&+irCDJ<{Z5Z;g -n`E)R6oA~W9oTa08$rnQ*I?0M}%)samov(?UN^R;Axig$Eo6FhzfqMcFGpBQH`jAHxDEIYzhdnG;TNO -)`GJ}^Kwfa)_BOVeZGu3&n+XE;Pp{t?h`s}Md@s_0@AZOi`TY|O5)4ss{l4V{HYfTzeqh6_7v&~dC|I -?)5_n1IN%q|AdHqDnM_2JttS<+cRbm9^sQJm+*OQ?8{Z0Kf)*Ju!t%OL`RhL<$7_cPG%6cgi#Pr#?w_ -e&?eQu5Z+4PutcvSQq!r?&xz*JCd7u3PY=b^gq9G$crR8^E(7TR^pROVLK{e(->3cSz^QP9k(OXN_dl -Z*$WeKp$nG7u{qs?{Wi3_{JvHU9~WFYWhYQTcl0W@ze4c8J>MPKy{po*j_qdod#Rn+-Xn?6O>{B%qwF7l~<0#^)pdgd2jPGYrLh~$8vCE!4JP50KukO1S& -+B?O2QGp#k$*zpx^z#sX&1(w!h5f!Uav>Ldg>ef^nk$OLOrY6uYLPXHe46Y_uCukW&%D3NwcKM@ZzzgBl -M7MMQhrzEP38z;WBuKKVVOOXLyvp|1Y -xfks-KI<>`24_JKzEcz~EXO=qChPSj(_*LFbrpT}oJn=`fP>zO -2a-5OW0=mnzgXgY_gIGzxg+Xf(Kobn1_+<~%RlsqhcQ+MybV_;-bs<*QmL*9y}<&vUrVDg~cx{V21?1 -6PhJDtX+oH6DQDg6nSpbHQ&PaEkieWTF)ld;_E?pZM#ia2L@cVjO>xPD?y0@F>}6CA{SjsveTQE@=ocP3MBAil&8v -E6@ck$Bbauup%Z91U2X@{{QT+j;FC`t#Yav^IZUfZHSF2armq3$%84{Xqo}!w^UrV}qboVBk~=?b@Ta -fhlXMuxzT4z+SuG#(^(+tXWu`Rm6!F&+8)V2+ho*E%es$r7+cP?4T8I8hTXZ>3l|Omuw~|WBwC>TdFY -AIDU8PS^mOfBkr+aD0W6s=fp2fzim>gEycX3X?;?^RJ`b5bGtr@dx^j>~vD;|d8kffWHNxTBJ$V?0RdYO7Z+aYG)R_8hyjqshe>Y1O8n!_>McOXaOc -E6|ORnNyp}>gjApl#8YN!1;80Nm5F&dy0~YSQXv3cxj|2!(}pFGsS80FW2@}vK8)pa%x -dP8u+33x*3G#NvLQ$b>ugK4h3M1@mjOI#-?ul$x=luAM&i<=Kq}9N3K$Ro@n0FhRgYP*Bifi#;qQBY~h4X7Gf}V(wwd_rXSW-?wX^tQAibh*BQw6!rsU^u+9mv;c?i;E)g%~ -#}-wPAWa32s(L@R=-ZfW_nJf|CU}3)YJqgkL7s!K$It^0z@IuJ!Pj#YwAqiQuL*Nh&Pkhgv_gIMakK@#sC$!*-bq=f+t@jl1 -Tj;f*oa1Z&tnvn!SGS2p6N)Oh`7wu5w5m<9~(s5iC+C0r-Fx8#9Pw-&FO5hK%%i%0}=m8&}?zNl>-ltnSfe?L6P?vx=%{xgI}h3UER-OZ1giP6$e!Eb=_Cd0?mNm`s@JmZ3vCp;qnXzT=a>sEGmy -Him}4e?2C)!OFl|e{wjzoVsk*lp5AcTCE3w%GRE8ed)LQvWZPhUaB~JNjYDw~KT+Yt+^&wf#(NvKrAZd4^r&RbZS{J>-oa#?UrV|^} -PMMq>&2-RoheI9*q=}gEMg2$3jJZGwQ3ZS8>p(8@1~zw%*2qbd!NQM&$!wdiK+W5i45uyw^RSHO9(t; -Yfm~hTQX>7L;27)jd2NEF3b;C5+ky;{*>*ySOH=@{v7pK@ub6 -@_*sKjSV?U-UY)ZFGY|M;QuEwB;*rw254T_jcx~!X1iCkohk0t#H|95)r%&wL@+ -WA!S1D#E)Ir}$*Vi7{uzq$&yMGY<2XbTRZr%E<3H?lf?ChQ&;OjXg4@S-a5H0#}JxN_Hd@ZdIdBA)FM8~{&69a%JA5JLx*CaBwq|pALEId@nCi*AA1Pc$&@W^nhR0fjjM2w5yPaT!t=W4cXw%{z=EipKpkaAR-Kpra^5ElSBIT|00P` -Z5RiI;~Z7u5x1WtpND}bF5R^JE7p64;yqVc&K5Y!triqHNN<>EKtL#alGhfI%LM{>tF6Gc`}x%ndNIE -MAUcV*h9OiOu5L8T@(GpU)X?L=itrx0t72*tZf_ya}f*~4FiJV4~lqG*jRHn%^5x{mtJ_f<+1F_aJbF~JPiX`ARHqE1q*jf54N2oSEP)wVvE-wiDv({ -JryzSm;|Uzt1fddZ^29ztUJja^Myr;D2^%TTvHZSbw^Es6WNZlqaxixT1B0pl&jgTn;lj61~cYN9@G= -uPo}5A=~p&LoIT@vOP)t$*E03tgIZ6BG-i(;ho|O7R^qLi*0%z-qi2v=PS^B=0VwOM!ZODu>oIewd>5 -+BA*r#xD~*;o#sqr@WC|1tza>o@Q+kN;_%NEPo)eUii?$m&2uvc;0FzP)OQ<{gUkk)&XROQeWekOW`~Z0*2 -ezWO&B*#=F8$Q}eX1OP{U73n}NrG&wU!KValAf9>pHdoBqYD^88t=n-YP=uE?e-|>74z6K%kv -1?VpXAWwo`xfe*jQR0|XQR000O897^_9c&0UHY!Cnd+c^LL9{>OVaA|NaUv_0~WN&gWWNCABY-wUIZD -DR{W@U49E^v9x8)r$IXX|NvjO`vfw#!f?B(bIll^`u^rayk)djLrAk -fX$HrpioA5x~Q{FF-qNv^!#vh?8tKW@RxQ{Tts5b_P4_KrGjJGMg97J@DAxw=eca@ZU>zwl3x(V;5pt -tiqhL_oB?=ut-Ga!>S9;*@vTp!;_0czql`0n8obi^yKpV=s!PRo}OReOPDu!`t<4GAPuEtIbY^n@~i+ -HSTW};O=Q8ulueVAOO|9TWHG$TlS!#|865szCU;>9Ygi#@5Jpnz;|g3oWH1%h-@|$-7Mv|}F-iGC`m} -GdSc)9Rvqe}$bMrM7vl*aZz6xoca&DgFS`G%&Tr8N+^s9HUU7Ab|?<2lM?DTLX7R#_OlcqA}z+|om5m -_@7iR_N&MF6wsgTWvO!ZZy6w$HAd<1kC6To%sFV1UT+9A0ZI{TVMl&^tE>vT(tJz#9PjLw3!kB2C4L$ -854z)XQZU0Vlp;ho>I~!NKW=4{y&d4ui9|mzRgHm|74Ae -W8sI0-+|1Q5jJqdm~JijD+Q`inlizq$c;f+s4=CQ-mTFJRBrT9=*p -c5aQ;{1Jpz*aV_<{(4uLTf_3?f+Ja+$7i?p>HCqLd7@2PR|^iCWD;@m2@}Rst}Pf6yz0I*JqA -aEs5r(iCj_Ip71ll0}$B0JoYjUWR$NAUI=o2^8QH2q*^zh=y72t1hzU0g1L@+ufl6{6;Xbze -Y$qUz0B=4yI*;zSBlZd@NJJPQ!1|#>!~Nekg9(h<*HMaQgVsSPrm4q-9Z~hkQ -Wem$gn!(Hr-3mz)nsu5wEk!O_L};eUtp@b2hbJ$yL%VX%=q*5lPpH7ggQu(@0>FT&^+=i-cd{!%P)Iu -82qT)!{nycz%{=UH5%vYNxjYOLm`wL1WEy~coI4XF|u9%!SBbG<=h7MeZIL>E9Sn$T%VnWi+QR?FW+k -`c5aEo#A3+VS>IBr)hcx+cZ=2>2)2XvBUi(Gg^vtrF0LSPVhHVRp;bqI}YUL`!LFd~yvoUT5M0VvOQn -0aF9~+L@C~joe)v_qx>L$H-Yr!8H-A-n_dzgx;x9B?X(bITMA^tA}<(*;}Mlh7`uJc2Wtr!wvrFZ44$ -w7GP{;p`CEoMnPqToh1V$W;RV$?`xgl5u8Rl`7 -lOboRI)A6e0HgEYIzuKif;+exM>_JdGljFDQB*uVIVBP;hA(0P -*XpqEM`wEf7-PekOkyDLl#(iB$sJYwD-mjBqfky>NQGNGv+$5vGd&Nncg5$t+M=^%Gz{1thLj_u^mvH -TL@H;)-KmiYzr~s>2j=!to8tE#1zp~yLB1RMAEPTzM(?8)0TVEIRCLvJ6fcWI$Sj@aTgzhqFkonzz~o -6J0R3`&PoZJLcqs*aZQJJQ)_RO@-Xko4-W7>B?u8D@}QSSQ~ge=)XYp8L(M>4ZK@OHKxsS}r?#Hz`v$ -`~Q|qV{(=#z3M{~v#%rQ|Oy4KQp2qqh?B&LG)@uPk@!~`zq3vtK$R_j?^CsZM!98rxExEf8O_U3Xf$} -~oIM1>@X1nP_40K`4JWgw?ErOTu&&u5B=&NPtN^1|%G*>y=!p#kj4(72y0#I-=hR+}wgw%ySOT0+81 -b;V)(z5(^?qcnOK`a33%SkfBmG3xp|rhRh|O3S^mA9w`^T)^EHz_$a_bYdOG$nPdq1rAcU^GzS4#7E{ -~Gz{2G82gn4)3M;Q${99ldRuh4Yyn_lVCLCeXJiH^JSs;4FXLx}OC67XYHBiVTB~*Mi5DdO#0>DmE;{ -{ZDi!fz8&qY3p<~+K^27>LJHMISG<|J8^mN9q69d~Tl0(NBB)^*D|7gCJVumU~Z)qhd@qPfWTFY|I!H -mE};RNxsP>pGdR>l;Qr0xW=^fxN>KKV6SB -J5Ao=^uuUK1XspR6=T|6G$Z=AdWrLU)pWyJ -h_9t`uftHY<9c)?EY9reQZtWscsi_0Dvos$1lb=H~q1N7}ukmeaiL;mc0BESp -rgj{RNDvw5G!q;K7aeI415r%*2Q7s>!S;`+ueag$&Qz!Ee8^jOF!4CN(W;1E-n+dYdo_`7*X!vIn9ft -yaCRt>TLnEZYg23YL8Zf0gu52DI5fCNjwRjNkViQ(SOt_cAPsvYBKq-is+0;UryC@=Hf8p6ZP{b^q6) -j!*@Mk{?h9g(GN2$bQU{`;jcx)YwepCUNMh+|U9{3LmG`)A*)@H|Ft3OoX+mH3t3jQQpVo3Kucdw$?~YMX==2ECG`iO%%&KnE`#A+2)uyFxIgn5i36_*qE22M9E10rs55IChLD$8h7sL -{c)OFSBf>^!y1(lEYb~taMW4naAMG>$E%bi+u+po;UzqhMrSDSrc(s36@h{De7#!w2O-E^RYvoraA3$ -xWoICpbG7ak{6Xeo4-dhz}*Hfde+Y9-<-;Q_`?(A5aHG`Szg@7$qa0ne0d0Y?|9pIYiR*L|{O+l%;m` -gE;xhgnHv&@cm-p0F82HlRXB+^_Yt#uJF>CqQ0b?e@7r=v&Q>=X^w;zn|>F=*fGea+mLL$=pxPQ(f3X -_Oh6Y{yDmo1p_I4OuXxNyhpx*$xT;jBuU6@%$y`SgL*r>?TERK}{5T4B7(O%Z#nb!%uZXsJ33~A{#z> -_Srg4z;k*UhKE*Tbu;RYQ`4&N`64J8g-h;kx)0|#UZaVpZ}s9`Zb+89(c8!i1t2Ph)&lz!n_lg2 -ki?vn8cBR{MpGx7oNp|Xj;MI79g?akK^wm*m@^#8!y&Ctp3vFat -(GPn>+Aw=b2Rh{9XJXTPUvfWXc9>nvoG-LU_F)xyH^}47Gr@X+z}%VG-L*I&iaT8qV5cRYSdpyPqNP4 -l^23uSdGRpjS>CdE3L&UMb#myH?$}hvK!;AIsz$dCyiU3odS^D>_SgFgxihiL0s>5|wxK+Z=V1ug>#3 -zwUvAT^09G6JVz(7F@Y?-5Tk(iR#?KRTmJkE~wf=G=G{z8`6=6WV*<74@7sUZ$*8CU5#mrV-p_Xy+y~ -@)BJkg`QcDqlC;1b9e;m{p=*^3;20>n4Ii)CIt4XogjCs@;)Cj9C92gmw7^lDYYmbrct%wQ?7P;dk_b -vKFE{W~or*W$t+5Bj*oDA(*^JXoRP5NPC>?`{3RzQF;|NPFK-DJn`-f$>RiH3nZdB%Y!8l!y^^YRR&s -*~A4GNzK2s>=W9sI44v|BZVYL+ZZZ3OgosBX}ypO`ga;E$GwXnlR%bQ6nJ5;grn9enKYV>m`5FRp%lC -U4LS*mN{q1q9-9;^vO)zIpZJ`r305p112=`%u0NQfq8p% -1H?4tSW5kYeKx}MjiMz{0B2|*Iy?4ES_M72DtCw4#3ujj%e>0pnXY!n!zC0y`EVZf{8PHYMMjz5eDDzWzn7xu6GfNx$$W2iSXFFrisVj3j2y$i>0zr68AbYaXa#lB{OxLexysF>Ayky)?T7W%$MYXQU48g?iHm@XPEJmu3#v45+X4?fm -Wg|=q(Dxjrs^wGn$)~d^0cC2*U}v$CEIcVf^tDFRu|;kv+r`t2@YOM!xrS+ZT#b(-)5HQi2i}DgY=OrYKlN6WtbjUiRm0HXB-1n+;i#&o -NkrsYWpq-@?ZA>f`14hxO*-hpVgA$2A}nv-0tZB`QvmoAOn1lf!rV^5)@X`uj~hUb=~Yzd4yKo}_UaM -Gzfi!}X@(a44-3nJyv%AHF3*f^M1%ZKx<%BC~-ZQUW1}5a|f;12VTtkax7wEb1-D&u6#jx%ehNiT#;7 -W;WhBI??`A#dKR4w8E`@$1tyva%_eiV!A|;JJKV04(?~7OxD*)o$r)v8=a&eL7Mhu(##|d4^}8Dsx?{ -N)2hWlOyu1cRv6D2lLddT_FNN(gohB~%n>o4euOJ=%z>VW`KP*gMBt+_dOuSkne|x3120N7L&7ZRyf}u1_HNbk&2T3)>0I -xoTizx)6tq-wTFavYz0s24ZV~p$&5Q%2hHp6&;s)x0oJ(^yuhN!~ND#Q@&MUir0bUD;l;>jrGS+0rMr`Rknu<1JsdIp)E)xx(}waK%>lx38j3%)hTAJ*rlJN2#Gg^GG5bjFNMX}IO!VJ57@t{U&M3 -iInJbCa6sZOZ$|~)(NE_;pI=>$n<8j(Y^M_%9Qa28zwzEp -yehbbT^}`@Z42#}monjED|_089uAE4Lg)6+h9tuBntqXx`|g>G-ZM1ON4dXpY-Zh-VilvHF7(4yzxY} -VT*EQ+HnbWQ(;&pFrNv>@eTCK8NdX0k(`sTSPZWiYZcjBeKm(mG__eDT*5ZBt4tF+31I$?qnB_x)(Dk -NIF%-0B=<+Eg?nEv~`(^h@f#S3HFAj-gr+(Ai!&_+d^I_O0PShIX)rAx|))e~$sN9yN_U&YH7CK2EyS -;91MhNH~W>&K&X+kPa$oxjX#nIsesq+!npehU`#U3U=0Cn2?r6irhd((`23FSLEud|5l@0353iwD?4@X^WIwIm{qX7i -)duJO)xWPGs3t`VN?A2tjUpC?79cqeFuw40qh#XxN^D12(b{P89F}V-*l5x@4`j!N6t4v@G7W)WGMuw -;_=a5U{ZB;hGHwAkIjuc|1&mMKj09s-Cz!!5TwW_Qy~2y{a|S=X?^_kPZwGjG`?L+n&(B9i8S!S193DBT<1QY-O00;maO7>Pj*(_c!Jc4cm4Z*nhWX>)XJX<{#JWprU=VRT_G -aCz-LYj@kmvETVCP^mru9g>z9C%sjx+bTAl=){(NB;{2_g&|@kp#lL0041x5|NEVpePb6OrR1LW_FSD -dmVn*a+1c57?aX337(X2c^D@nftG!^=T#o+>pA5DK+rf)+d0%B$*G&+;7zWdw-Dz-o&4PFL&2?D>C*@ -^xmsBixRj!IOX|l4IK&KPNg4c&HW=AKpN%Nrzk|GUWygfQSKK$aF)3?Vb_z>C+wzjqo7t5S2SkX}Dpu -7wk0RM(H34lw2%d(PVEtC08a>eT4-RxaG84ONV%Vk+Lb&%wFurN9-5_lNxPIgAY?qnDLGsXXW`fNJcB -~+%9>2QLB4=$^65ybK3s##Smj)QE0AcIwr0X0~hXAP^8ydDh13w%1Sc{jF5vRw99u(}51Vtf-{W;v5R -{!y2O{5>zPu7Jey&x#EO9MnXDd70Hso?Xm7%-Is@F#_anSyjWYaV*--%f&KjWRH`k0+5GqM?p=$#m)V -a)uW(c9~$~y^jaj<4FHnevI1tdtXLynuNplU=vgK6Cce0jZ`l1PxMEFA&&0$h0wdWT-`DeNSj7>p&GY -9w@wc<%lf$=1@$qahz*(~@*q76vK>OG9EQ;eISpeOKK!|ys)U{gpH(6an+gVkWRn(@+aBmR64=msT5b ->u~Rnja1>{wdPkbYPQ -&enTUKQCtS^6!f;5sC}DQ=4LuFzvj$``A}1*^Qn92U1po~7$4r-3HgI0~y8+Nl=A^YQ-*Dgcm+W$t=l8)~2J+zo*5^7Yu2>4qVNF3M1Z6R2$gs -hu&p*TI*Ib|g6b4}K@2(l_&~Ee*1&}X*K>YgfXhsbVzmIq0DZHr|?NdNL3V$pD{`2FHzl1}(HT=`pBf -$34=ezN%!`bVXC(tZX6dwyFLLwi*Ho||6NAL2aL17q<27&z(o~#xi4(_qlOIFXTjCjM-@N0H|S5|3_E -x#%kY`g>+hkqQbKqOcCw=oGr4}{m*oE0^LX$;~|cc1^(^AHO*){XupvxAl|a1&-A6R6)y*tL0?q~mXn -U*q3zFX}R94XZss-c{vomNG))m`k%-(d*5@@z=m^L@)zLN3Rwh?V(zD(HPG^`wv@_HwoxA_&;9={g>= -uteVqz!$lmUSoN>uKiIsH?d1}Q=6apF`m6Wc;<38SK7hh5l3cBt$ryYt&MAKG){uUVxF&3hEEspp56j7ISYid0 -j5e`-l2^GMi%}84FO7omJt|(L-em+W(~Z@CyGCUaZnrhKHr%P;?F)eHk!HZJ^?}+dtwYmG0eOfpMt;O -p_iXy+FD4fCtNoi+g!Kq;js1R&p)+W--Bb2&5fNieg&3MDBJ2;8FTz3FyTPUgV(Qh%bGRO(0n#oEn!J -mWY|~!_u6jhc&~J*|Gg%>|Gl1q|Gl0tOn>(M>G1*hRkp=gg<(i8+K=_q{eAdPv=yEGee3*_;npu9{1( -D*;Sd_3r0FihiT!idWIUDx=)-08LJ>80t})obeOrKs%of_ -)T0w@;B@z{wAXy8CvJ+?H7yBq=!=G~EEb&KjqfHaLuORl=b$Q;D}`xUTVi1lDXe&}gl7UM1H^zPey_ -Bbh7WF0ytyUxIj;Hzf10okA*QOIFbOlw2YT-x^&)a&oahfxk}bn1?c=8+Koh0uk3RRvZ_IKgHD$@AoX -B2K3M^5YC<>^8{5+tChnSuadlG1A2;m(G5Ny$dM^xB0TCs%wqzQeNjgSj<_JQO>}k+Z2Qg8*GF%^I|2 -?qDhoEW5t@U*%nAb&9Cwl|k!nbXA;)G}f+ca0Gf96!jkfNH@5K?{T=b9HEF;bk=g2|Ga1~pWx8NraI8 -$9_6|58p_OK3`>K+vnDH_;3VmASYB2O-ps=-JBpfAIC0uPfoF2w;7K9{@4@ODYJBKr8knVd}`=k4F7o@NxFu^CN(1@-bNE)uJKyvrjBDuRElDnHDsl}H-a{6nLoNkEZbYmn9 -Au5pk^w%Q!>4r#t`e-Dln=QA1^1FT81KGoEby&b=+Z};aQ!lu|2dE{NU+HRw17`Ot>jU>l*FQRSPvE7NPM|uqW@JXJ7gIEVYt&$vlKNYyFrSX-sB69 -E=qWa!-RJYUaZ0DQ?zQj|R;CI>z=!UwZq1qFCyW&!vSQOoiRXZpRmh~Q=w9xl0)5afq51rsPzzG%2xW -W;d235+c$bJI)O1)k4$#HVk@ou~;WYyP*8-R? -F9QhjNJvzaH0*&ron#CUhaZrxL8BUtXa`Sd=Z9VDXYJx#$QwG-4x&bx5dhRtnx#-;>QD7!B4*sQ`Cje -V3F`x?-@!8&V8DN?pSc0+>)yu%&$xEBk>q;XM|@tbS8*05PpZgqDKJijb;GM8mya(s=Q%EAmT{E*tvl -1a9370+$yKD$EGav+Jdl){D~esx*paW#PS399ug>m!_mO`Z(vGE%J-SkhYl^%6c1l2FpOD(N0qhJU`o -TmEOYP|>qf2$$wj_3q~9R8+xT;8zlDV{eWyD-)>`Fh5jKE0G)s#6pkA^$2(7u;i>B7-IW1W)h=nxkhN -0MvCgq4hei~!8nflsH%{EgXoT-Gfty)=B(d_`%!0tJv1F6$%5>Tkm`N~wQ99BKKC}F+9O)qMUQli5{9 -t1D|w*xMS#{s}~(=6+~XV32L?j}o$%uUMb>RHNepDo$4#{Z0WKuA2>&eGjK4B~^+)8i>AKiJei6He&l -PSBvJq9G`>WuDAgv^Cxu1zYjfaF5=TRZhR40@bmH!N&prZHj;qBys;>|Ga%#LX!^L(Sw(r1ZZ2+t%R=a7KUWZ=SMSM -Gg-@XXvx_GM{opnNQM7`5*-o2igBs8(X@Z9Y6?9J@x^h7daWW?9;{WnL4FW$a1LFh2M9Y^m7;3JSXhb -Jfe6u7*=;Uj$b>hSgKoY`>-|72;G|w%L@>&T-e_}D#jt!$C9$QX3j<`FNjMx@68cF!22( -Y764*+9?)`5;3##xayaU9hwzZ?+>_A$~n3dD59Ujiuq%RLF<`0a;cjL?qhogr8 -SQ2{##VYC9nmm+(?pMz=3?jh3`4?~2xYeAu@$*JP5WFO}Fs)nU8JX4(1Bo;wWy8euz)GWnx&j_Z39>XB&Qf+DHY4@DfOh{i*=0r;P>x!J)OE2d;K{#>xE;wmAyFn(-?z4_}2b&NpHp-=u}VTwBHVGe>i5 -Un+}ElA!v1~K6XO(QOjjsCT#zl)j)rWRmiD-&AE@;+>c7_m?moNgd^fRJ2|N4BzPs(YIW0J^_9rZKU^daMmA-gI9q%hNj_L+nX=K%To8*zn+AoP!-2V`gFYL7>#;>+F&*Lt7}w^GJ -2>GW25OO9bTh%#Ub(i~XTE6O7OGV7wsg4Ue8%7l&HBp;pd2EcQRMHxJ(*2MxD{nX^l_g(`oiGE2qd!8 -XUx(m~6rTmmQGM`Wp+FGm3i9_x`YNokC!%GG7!DhUW|}0 -ryJ;glVxrtMx2C$NuVAiDVS}*2{I+L@$pfIyLOJ~SR=&|2YCHJuniVu1ARd(*@X)Hx1;9|GaEFK*n1- -RFPaS%UOiar7;AcdDhCyJmx#6)_YCE=diIT)Cs7xM8ruu -iMj8T5?ju+ZO=dI`o>6pp|_CSt051m67I0j110!b&KY+Q!>eQk+C0a)3nf(?l={fp&-1=@NRbngn#fD -)qRZ1YX>SCjVg_z-OO-E`!@l6n0RmN}1kc0fAMZV4T~I06zm#a+_p%a*^wq5&*sC%j6zYJR^GxooyLG -t}Wa()D5Oi{~~35?Tmr#b30MMf_@RDY&2Gl6hE&c=fw=%Y~luS2g4Sv0O}@N#^Pwur)IyS;u%W}$pV^ -Ef!SEp-aSIpN{@Q_pIT6j_uJVYUI -F!3SHinm{1@${kuP8u75V!6h4(|D|KfqJHIP&;{kqoBbS^>~n7xi2YRulrZi`3qP}{W<(IqYmO3Wt}0 -mY|JZ|;)ns!4qvdyE!>ftE -L$%XW>mwCms_1nF^TFg?gML&Tvyk*%GiL=TaYWcD|!8PH<9dyTFPFZf~Fx7y@e(s**g9f~=-CyG(O!4IX@G~uY<{D?C85kvkx+E0%iN(d20|Q&6;sog1U##vTghX83WsMqK0{ -Id2y%lgD1gFIXFL4a3c=~w!z18O&YQ=-xK&FphFksRPv&BQ{Aiz0bBeq={Qk|1SIk!oo7eJea>O&WfK -+s+#$Q@|W-eMg<7LA&>!2*iCfEU(UJ>(RACH3Tps9y!GH@u3)CUmIPe;B-U0Qlc^4m~EdQJbvl(6gqN -dzl@#u0oJ&Bb| -9N9>YZJ$oLOe(_BqS-?i&0Y$V!oEQ`$>l?Pdvv*@8;)QG+59`nJw@YBTNwrTBOI+B<MJ#!eV*219*mm&!_u -mKgH6}1CD~0KdtVp0uk+wTb!Y&gSM^i~$BQy$x0^oc;vP?di3(EsF?RyJ`dpuuQ+);FKFYlXauP}iyB -$&IT0vXAd*umBig2t3C#M@$E{OsHY#ZPrY*}}O#i7GjQCp>wMf-9nFi}9^=ee1R+7-85&AK&!~uJ!(F -i6LxKoS$MzOudhg9}32J(3x|D$jIBV^hsBElujD#@?;_g-%Sp?80vGK>2Ad#fa@Kzt@au!>n!x&#Ll+ -LUOg|UM%G$zE>T7loB(G!=Y_UWx>oFyeP;n -avCzA{Sw)m>oRoCLWCf?!qivzS$Z^_KIpVq?l?nkRVV*4!H>d8mfzHn_{+`hE#oY`n-m02FE(WfL|Du -0h1bDB{erD4H59vE1`P6(9Z}=4NL@GE4L!=R$^nLTO4VrtX%HrPRR7Bp}=c3bcG -gYj2N{+5*~-W)z-Kv{k(ovc-rcO1arv?z`(Loj`iyUk1!j6R=O@fg}l&d>yY?raT&p?5=)rm@h{l-e! -!h55)$N%QAnI5%?OkIY{PMF1VE*ObuEQ9!(v@GI7gcF#jLl$Di-1B#Tq)t~h&ogzD(*fS_0C;G<0}ekYQP76#!NtJFOV2cACgz`?)B*kPzbR*#OM;k69pZQ*uL|X3P -AI~#PUlifqrl_M?DXK}!RY~2j~pGm!AhZUd5>v-6TGK29DMiHZ1y_#wo_L)@s_V=Umm>p!QWIq44un4 -opKWT_tf;AtYQ+OB;!FFY# -o2{!~63{^j=}io?mFfJEA%7n}*J50X0%&-J$0@Z_5}Zw`)s=ooPF^X_Q6^ZXAV~B7&`=o;fcR3$kMw{Pbj3seWsREBOL-Ap46c7SC~=)r9kb##1EZSMm7K= -O4@aj5-^bq`ygsCrZY^@#)Waq0+KD4rbaT}ugP6NzWO6_U=eS_~T@0>jZIR9{skr$Kx;Puz*GX_^9M^ -dX1dM5wW7#SQV|h6-_q{?}@BYV^go#o`Uqx3eEcwlAy|%@L-^=vkPxv2lHSn%*7Fpqwwe?s|f}Tc-9O -I;6u>d0LwMK#Ol+&4vXl*qTH9hODGV8)fk+4-6D%qli;C?Tja(Yo;(u8ke1Zj~ETts;#DCS7YRP+l>A -gF^bGnx+|>he5CZi3M~XCtDgC^qx-$5R#&1NNUH;N3@AlK~-WSz26_Sh|Xr%YZw6f!AQ9%sn`^7W!xJ -#C+0_y0s;u-*ybISi!2KDJ$7eDPy<8#}?UqE}^=GL&fhAIpcQzj!=u3B-xuO!z9?q$#RuH-p%CD3$4} -(YRH;U@Mi#aY(WjEdl!mLrmr#VI)*ta8@9K0GX`nNNP2WY$qF!c!J?&{IX!3)Wq8JuxF1sJfWxg_aYn -#H&R)Pq+{Olgw!1Mt*0vj&e2VJ8+H~5GbWNyU&F2)EM%fM?IaNReVkyv$VhDePukMnf3kuJ|D5-WTxq ->z9S>`UeCY7K3vIOUs%>taQaryU01H=Ku82un+}=brF84M3n(N!wZ;UIPrO_c>Y%GJP$ -S#@&T%%K*SHHx7p?-;fiLST-z;+Xe7)F*&PSBp$ --W7>B?xzX>VG$?aprW$Wg@g)^UDzg(aLA9*ptgr4hnRIjtjV)rR1kSJPdmDTmT9%s#;PCgh1kZ2Kc)g -)7x$yTC_-X5YQ?_{ZVSdwX8sHD`Cr`ehBMP!6Z;ZrOs)M0N(L;{^6;u;HIyT8~HYs6}r!9{_%D$yA(% -e1L`(UJZ)X3UCYsId$8#)j0tjUvAab>4EKY*0myhbX?>C{6cRLtH5&p-QPhls~o3fLaTWj$-KR3ax}&lIZPM->La{&?9@mnmm+lJHlp`R{YmAlcpsM^KBU=q>%Cp{aQ)kE&_IH+d&3m)?cg(7f -JM=vIN=E!BOP*hgGVYiS(Dre}Lx=k9sgqsG9{6P;!O`8LDCnL9FGG58vER-<5MBF)zIAsh!R;2+-O{o -J#l4cCQ_?ueN4%|}AC=!>UIU@&tQ_pt1=(6{(V$Matd(sIlwnmdk}(s0OSZqKSHVRhIs#J9%;1nKq`` -W!R`6B>KK_JKFrp3y63oBo5a(9zjrF~+Et#8&w*ezIZn$@<^1B?k^kQ2RQ$hfN)e-g!>vBD$T*+$M!L@On{!7H;ZIu_{kEpeIzvWF6nVbx!?2_Ld -}D*9rA&YuMOfFeGDgAAA3F`b4eW^Y%rP1K6SBy@nXSMTu8DZdRPZCu(dwjZH+6f*)J*ZfF*i|sYFGBi -j2>NOP*sHwyxZ)-*|+#39R`tt%PXn6EQOx>8V@W=*?V*eubZpAR@7M1;eng4Yui%8ze=^D6oB_O95-2 -@`{o>;8DJg#k0?WN*fpd)x@!;ha0}_Ib;Ij<5BK>jC2Irei)GJ@3QIIrKq0I1;I28_>8x@W@j-ov$eg -~q*G&7X#0pVuM9rx~!|sc+yrk@yx3xI&W5sRT$~4pLzQAlhUOtV%Rt -(kJ*HiHVZo1JP^Et%Fb7gnDjw5NZ`tqKFyGOTR%u8Rx(JQq2#I4m|HIlPXzog!h623Uwj)T7H*oj -FDk5SS(~Zqyg-KYfJ`_Z5#abjyN4htPD&X40tmW1vLRodH}-V6{HtTCYZCjG0Uzcl;RdZbWGm(h!4Yc -6rYy%t;S~il&H4JeryRxL6UvrE69;}1}L718@eX^ku8*Q4k_PuxMDul!eg$X+@C4`aD_n#{i-V%vnqg -5ASj2`ruUOzvI{GI%IOGjj8JHW4o&sP;DOn^&}=Og+IL)OT1K -p@v5EAX;qu>9ssAl(5BZ`HV9ba@&75{x?h>)|w#2%fmrlUg6ra5~uPzk5Ao8GxR>?VMwfXp*!#8Bx=u__~ITT1NI?0{@zMYllG~JYTL| -mrtv^i>oK!2SXA6`)4uw~pD>_Oom9?%g`{}N+1@#J8)DYJH*v!^p|u|=bV~YcJ+HpoXT$_$IML3p^j| -k(yQ*SlUVSgGH(wtsG?2AE^kgLPlHVw2n)r=qY`PW33!D<~+y*d*++q -t}T)olo3VQf;3Om>Qrpm!z&i+S_R@>Px9wH#jKTIb@H_9or~pOy`Q_i?q#~CS|G3HWf)}#x!pdRd+P4 -ONpuV*HhBI&z}cY=+#q=OQQkWUV(Pgib{3_C5xM&6})_a8$z9LoL77q&kBlG1Ab>WTB6_F@n>AU7$0~ -yjVZch3h_S+!&a3v^|x*dr?GUP5XZc^)8p|Bp(s*Dah!@z`dFz#o;0c`tT7QNb~?6FhK9D>EkS%1H~# -O}!o*6sYP1oMI_1r|OJ0kHXFrEVhLGs<(ItWvWFbzLPxOxDN&nWDC>HADKK66ZhL^=P2k+kTul%@04W -iUuKi8X9fALAZZAI_hkht18!#(xgBNMvLWY?c1(r;7i>z>x#D{FBOrHS-JS1D2ptQsYRjI#L$fTOG7< -`jM35l1luO@43b@t~++!+T3J^QSQYzB$o@zdf%#}?h^Fk&4G!cSdqh8RFPdF%o`#2?;=nNs^{f^_Zg -u71{_pt6s>X??=LhBnZ48Y(1&B(2S)Az2J-6H9?ZiVktHr7<(r&iVsP_DDpex{fQ>)vt_J-0PY6M6aG -n<@=>L*=(?rmr^dLG!m^t9mz*q{iSH%XYHFnm>!FH;eR`^1YzLbZj?kwF@mk3n<$T$CpwszkrPw17el -wsyA)nwEK7&Tj6ICBf23nzVv>N(XG3Bj2yAwab+Y!lB#$0jZN2W8kUk+(mJrz(Ff|F`v!E?bgJRoB6c@<4XmybgQQ#&&K}Ic>8cyyZuo&iL5`fpEz(Wh -<&jlQ^I#XI*wvJr>?v^Ka{l&Lg|HnDHTH0#@oczpLpvT@7I~p -r{Mk^n0~rR>{d-;o5m9`k-+4Oz=h+$Heu`vlNh*1#5-9Bf59*G#=qh==4L-bn?ZLg0n~p$NbtZ7*q31W1!ZHYv~=hC*Ak&8#d5qP)A#;l6ukh7XZ?c)fQuf~+mh3}=S(_>t6@U3`1N)_6Z^N!`H|i5FS3k*?5$jjT#1y`1*><0{dBB%Mb2)D -O?}TR!Cn`KJms~7XYfT-jKh3+UCGsG -nIH&P!<;eLFTrT#Y3D#ccle@Inla`ozAElM=q45Lg-vgYfZNRzTEN>SCv8QY3Fp@+$eD=}j)@%w0mI) -c}(t+FxDy`^VSlH`03_D@Hn5pe?5yCN41K4Z471g~LT?sp<*xe%#HkuKv(u@6EOhiWZoj)?xB&PT|Xi -Vb*H=CV$bNQrDSW2nwG$~7eTksErpgWnZ01rBu(ia|Jh7eCCI5-w!M -5MJM3#(^lBn4iQYEV9nJ_M -}vS$p{@ci)X*)#Y3jiLn5D?!|B0}+nTw&01}N%`Bz@yttJ@x2?FvyVVMr$w57wi#b4r@x<$GujLbzp+nJDy3C*}%ftj#nvzcwS{<&*m46|MgTfQ{ -!P+#g=mi-1<)eg}^t*6dF=?cEXiE_Bc}JU|PQJb%b#s=G2)^^wlgYv5^ltKphU|V3_>T$TLqOJyA#vHsnR^NTovQ -hG81&i65Zb^IHJ~%2Az?Cmx`zDm!ymp3b>z9ccbQ*G)b-dBi1rE7jZj5K&jwnB7;dVHo0F-ri?4L>CTFuO-wU8yOKD?~e7=H#T;f -J#IYGcUjx07t?`b7Y6v!ad$Qhb1ZtA0P3Auwai#sqbF$tN3JX_t#;(+Gx -8h`81L1DSLHv*f|1A)wHxgRKpChWWzp%Um@qgDHR3kW&eaUm1T!M5$&tXT0(XOdq&UH9r%Pm7L1+|x- -CUEXbHdQ3q|w6<~sc6+psNLBKyI8$gt+68tt==##E6_kVk&Irgsm2Kdi>x>qCM|quOVOg@VWob;kA%u -mIf*8FPP5W0(9*#_W07YD8yatwi3{{}26_(p*@`c~=iC@@mWm$ru;-QAE4U}mGUWz7hd0bDRAj98+{* -u-c9YtY_IY)wrHe2;}U!;euQ)%^6kfXnZgIU3K83zCI8sM-dg1M4Jk0lArOej9&Y$0sh-h1RwLZXxjg -6l?ko_;x~x=GazNH$?$r+^BO5wUKtjUcQ;z8JffNvrXU0cyi0f{p)pIj5Zs7BT7+6>KhXu2^|U5R_fWE+}b5b?g%u2<;Z~J_FA{xgCj*3(_pH@m -a9pXrW1eHNDn;Y9%eWZ59#=O0}A_Vxwu8y}|;V+!56Sm(A=OtUhVfn#?uQlZu;o1_q)JCT12YbV7?}j5h3d*I0R>ZBVKt6FL%u*c{jjh&lJ!884q$;W75W?*P+;OhHmbf$QDH;2V(Z6A|8+yk=+q2$yf}kK`*_>U)F0}il8-37GG|? -~>eqdjb_?yHby8hBOAPHKi?rw`pcWnHB+4ZXZtYLxDAQ-H$VIJIWAln)KwjWwxf(U6uyu;ETH&;gliE -;4xzp`v0=i`#+R?NZS4-@j&?x{YcT>sJ5CTV2g#r<;)2&gg|3r;L`%VVy>UaWrHM|SC^tYZ}L4vM~*c& -8%RaHe#QE_7FG^q_*^=QbY?~vkDtPa~~LMz8M9NeAG**6vZn`oP6L4=xP;S+A}lY3uOw@;IM0#lx|Lo -lc2rz=MLRGxyw77e427n?TXy)*qM!BZdX7>$q%4=7LK#xpUrEaDfaz?=6vEE|m+&yx^tuXlzsH-K`Kw -F~4}E}k!+41=FI^-~gEXZLkGy-VFOXyJqO^U}5U&IX@S3N+S}>@Os~p__KfmD^tqmW6KOuOK*X!yeHt -E{ihsS7TSqQz+Nw^gz30#;&G|%jJ||o1`NQx!;Qv&&D;hs6==}A<>;zk0ox1?*9)R;x{bzQx>mN!=GB -eAF15~b-R5*lW05!$+Lxx80~(3CSp9;iu65v>!@@_;|)ac@XWjm3rD|Yi&d!1&+Pk#(wiuilCcUX}?=a9aeGBj3z=y>4uD*M*?!q33U;G96`YcRerjJiyPn8*{0^&OGzQJI7L7P3uDJi{KyI?;{0lYWmooYqym-UELe={fF -qfV=no0uJS|^WIW4`H$WSp*dT65hGYiH|fdEs`*T)#RM@hX|(%QHyD1ndJAR4o38Tw5D%OYFh9vDpK` -vUGaY@AAH+9+UiJ;^tf>nof7Z_Sw?EP}KEm#xCAIoRdf4xei3=KfLoNOn{rrfw)7w#rAxr4)#>?RZlu -nxKm?vg3VtaiTZf-){mA!e-j}Au6Ep+euO1~wuEw@#-dn7-G;LS4F>E}ls{JWyKRrIo*Vzx)>cZ!<(W -b^hP!D>t6wR#t+bfJj3W{HyK0=Xe~Z%CXOoh~xx-GUITb!#}bH+1bw9&<20X&0EdNi2H3ko)g%wBj|0 -)Gz}72T)4`1QY-O00;maO7>QZn{?EU6#xLXMgRaF0001RX>c!Jc4cm4Z*nhWX>)XJX<{#PV{&P5baO6 -nd96I{a@$6d|M?VSYE=MY60+IqN;!#{$72ITi?Dfq^KxuI^Fp-sAq>liZtJch3 -Nr0YFO522R-^Fw@i1-`&&50ULfdWMMKF@$!Tfaxwe~pY#rT2kdo{ZZol5N#?%x*z;${FNW~f59~J)2U -~U>d=aS+!_Gy>G7jO#73WX(jv#5zqf$zE+G&nK5X{WD6IOW05OGs(-ljF)%0 -%!*J}zqZv7Db`$p|0>djh4(WW4J4}pz@8RjIbd@xc_^nmRzw}(#4~`S=Vd%kiY(- -LIdvhBDEe(7MO40Uan@zZvjE66U`q}_@9_=5mf3cIRJ`Nx6Yy9KdaQk^DLgD>FpIbXkw$@BB-whvL_E -FY@txP}A-#Yvqmpnw3_Pc2?sOUlYd)RAsOg*W+3EZ9o9Wxri^Mg!TdNM^@}V%$-@<22l;R}8KtpeA#mjgVUl9sJYpu{2A7?0J%%X5mU8lZp(m`S8<^@Dg`9>L2ECE4L}!Zbbaz -dH?8T51>C84w-_y*pi3`X&Q-8$#f3%&2Y(#|DzBYiE{3<;SlixDa$2_%_H~tf_77a#CwDaJLdDNOx%G -$EO~A{9ut27k#l~>BNpM`qkfQ2;=AOQXMI+P(-8MP>Mw#Q=eQ;I^U)5lN9NK;752caqmslgf#*J`k4R -k*iUS6l32&KLlzK0676wrS_5gk$u@)lBK_^Ab*+$3}JcA)1$)E|yqTbo$-Sy4%d~z|Kz8ix~Wt@}?ka -B0vzaKpDze@@7=9iDphJW@yf9HN=pX6u%JMWi2IbQGj^}ET{&Gcsc_Uiofh5!JD2RrOq+Yo^2lkOe5> -ttR;+^aP6&{a320v=e11uNBojX?IN({%t!G<8l$`2dn1WXrpc&pxYNBiFQN*E_yPnrWE$j8>d;xm(k0O!W&}z57^%Nd}rUQRO%<5Msm3cS-CA#G-2ia# -E&IlZEDpG=7&%pU%ki$D%_0E_N)&s@`>l6kZ6?t|v6Y&uYVf~}I$P|zBGys{SH(!W(eFK1qLGXe(Lhf -4t9yvb&OtXyu+%~HO3~TuYHeTZoA{t~eM`*5Nt>Snmma&9q17=VZm}i0kO_weZbij^1YhF!fb256YIF -aTv3zdFzc|yTl+&Rn{S|W!XGPj9bjRFT{K4~I^EC2q5%T?>AG$G?)DNSiYwf|SnQxcgZnv?ZpL57Z=x -hNlTvhfBi$Z-S+8Yn#Y%7_PG2*3rPDgFZXmlZjvClm5XZ`zh@vZp;%~BpZnGdYR**hHTqOUw_%EUy%vctaQ9k -=@)e&2@iJG#P`js75eqq;x;c*)1C84hlw!buk?6hYKA6v^Q2^EfXq%62vVwPb|9Q5ZW<@+YL!&=n7|A -5*2-i2n0N3&BWdOnYhdroX9|qMw>_HY{FwXjI4+R2*NDxBLeicT^Y)0XT{qlfKq_R|K!EzW3Q77^@=a -PZ#=4>XAg)zIjyq4zARy3Vo?Kq!(5kI*#sdV&IyX2EhDoPhZOr3Z|xoz7!WgILi -7LuPH-yKF07G;|R|zz*sia@SE&2y#ltBaS`6QuK0-FNug!85Dpa*M`rU?P5j;!4SSactXLRw|6;6VA|e@Tz``C*klTNkw -w}bY!Gsh0+)ih``jaWJ$T|Y7!&do@~O+~ah72!HMyjl4u7aJAs_PA7(A2foCP9MnJuEl4s*vMX=}blN -Et4hF$-}&Rk6%IHSk(4y^?Xo)}2G~I$(cGvRmzl(Z~F?ipeoDh&i9Dxcpqi#XU+Jc(2@V!O;OQ3SF=L -azQWr2%MLHO(0M`uQDJ}CbzDmO^TzqK}$J%`PYayD!xT_L>DC+@b;e1<9VqSv^@-|yMmho_8w!z46-$ -jAuBgY0{{IDGVf%Q?_%N(tn^zurUb#TerGmFviEvfQgiI2UdKiMCPpQNz{PrL|;|N48fi|g#RMHFg6*$5|t>d%HGBzL3WF -k<$(vhIGZ&LQM6m-XHKU?Cg(1d6VwxbpyyMxLI9*=Q>OX-r5&OIrr8mO?chF1t>yfBu;>IS=61@SF~h -Q9_`0JObGviUOOv@eF~sfg1;`nBw1T?%wMIbka))03m4&1U0^cvwVhf6kBo6ViFggOAX&Cq;gwH*s_j -@pvg$9nz10a)7j2`s?JYfS}V)vgMJ!ABI@u38EwP`$tlwN9!P5b&3aiN$td+Q~`&r4T^)M5Q2Ncpm9$ -oallUJbM}JBf#wu^4hQ?Ck{iCETs|)r@W{3udV#6hG!~Q^w)`nQF-0C8y=a*{!wZrPnFkqO!`oBtOVP8M5yRCmiu|sfrMv-a!3jbfs=+M%8LktyczN6sp+Vnns -x<#&74oMvxnmrEUmTX3}ehw7}R$h2Ul}g|DknR|4+~Q@Yi4Zd*NXzv6g9VWYvg9IN30zRh`vXcr?R^T -E~vfq(>)}O)V&0ZCBBRrkUYgV`QVAP{OA$fSw(I1)CL1(bs(-lx#t@;@KK8swfBOiggCe8{Z@|QLobvp$M>N?{OV>1^bdHp9 -4ZlSb$Vt|A&I`e2)$bW_L7H6?u5et3^R -WDF@f*EX$tsp#{aWsX=8jnvfM=2nqhp5Xe8-oSq?BMwM_dYv~V57xy#SjM!*DCZ;4wpQJ1)^w6yBk78 -%i~-~h%yHTJP04RI6QVF#CDqic*4%=+V%is9HEy{F(MwY|NEc+Vr~^c2L`zF)0@c!dwqH}xj8*&=i{5 -3@jG_?>*>2Ib`3;*|MYnL=dq{4ZbdT6EC2Vu_rkk=dwSl4<`B4N&)%GQinel-(7w?+0Jgb+kQkuPwg$ -M0J~_j4s=ENf4T@oCj~G4Xz9}ISRRsVY&e&Yckw~f{05prOKwd})W47qeVvYw*LAHgB8K6Q?k4zsMR1 -%~ZXB7LHi|7|I%7B%hS-Pp6>mJ?Qe?(&LP|4E|$0ux_;Qr8FEpiGdU|S%mAsvxKguZO;iq5^{Dv)Ldg -j}3+fI!%&`Zk?D)q(P^lLoc0>(Fq=#MC&7nPf?RXw=6MzmG)Frg{vB39lXcX1Z9_Divpqu$Ehzd2M9gI095#7VgD{ -B+>c9b4b+^EKSZF8mhi3iN2O=MyN78bb#0A;SgTq@G|SJwn?;Xf(<52sbWbD>c9967s2ELwty4O$RWa8?nh9Zf5O*)Dq!8$6gu~@@ItXeU+Z}>?3#C5% -AJI%-l{+2|GL6e<70^I*fkYo5`;PbV+2?Npi46c2EFHp?T`*u3TRk~7X^=AI$hz!Etqe6`X6RPxU=Dx -c2)7*BNx^FULz-`J0}U0|{LpJsWHDeBb2a&A*s-OKCG`m4o`D!BXmxa0T7Ua^v2p%W%|tt!^Hl9h|Jd -nU%S>A>q$$NplW?UN%i}u%p^!QkyuN(@?)7;3=JaMf9ba9({ -?%!p%wX2l1l4^gLGQ5*5Kp?{AAh;Ve_RMI+!hGW`*`x>=T10Z_35Z?9CS-rA61P*K5%VNuQ#gh+UOI& -g-;3wWOE6)txfGo-3)DlYM`?l3kPxZ -^=|-u*Zcb44rd2kv)bdg85W;J7Ei&ThUo;w>@@4niAT>KGGWK5L*8BRMbC}b~7MNN6ur;_dS|AP>%># -r&k=lr7#9UxT`@|8i-G{HV0~;u8T?JS>0* -=PzV8jOjRK&sYb6iS<9aaLb`NCj8Ib$Ce@KT2`BrE)0m*;7mUyN8l0SrIo8tGaIw -I>C;r+>syhg$ZGAtTiM2-RVZy}q8jvcgX{3}pKAZ?{I`oInw$gF_Yp`KK$&#ddL55sBKW&=+C@C~z_>M%r8zS$dwZO -skv{@=fKfm)2sRhpE1Y-ZJkV;APfpWEqY>o^h{5$$wGf0|+BH9Jlr&GHvkzZ{cHohJ|wm8?(2{4=qS#o?f>OTb`-3)G@~nv2wem?X`(-hbrpGB&AsLFlTO&4rM -aLM9iylA+KSc&=#0SC8u5?$HO;BTh^)EszAlfbpW$V4!UFkuXP})NMU`}>y2sS%j_#(ZTMA;U{j{SbLy=(KO8QMjBpXCwSyLIC@E-` -q{`f$w9MP6JEf(nhU8gh(XlE2@w22tLR6(rX*v_z{VdXjn*V^4q1*%(|sOktDZG2d7*>Jgvx~|uDx(!n7)fIa6ms -EF2SMFMKot)y16N`p`Xh`}ODuvX9ZNeKcs?Ie(_-VicV$rbbBZRJRMjrW@$bP0DuyI`psH%ecsMfDNW-qCPRpN9Kk5QVw;3Ss4y>SX`v -gmC-u`yt@aVl;hw1XTF(`^LuyodR5re(~HMT^`R*bypRphe5V>5HIuVZCCZyZ$yl*VNF_xIX1Mq5I|X -!E+)FT?E#@MXf9}rblD^EqH2*?1=$>9ZFH8wEKj0BVk<{@8!S0f=^4a54IuOS(-Qph7F)>gc=>+|fcP -fEP81EqnmQM`jKpkOE-7$DMhr* -?EqiUsg>NM)%MO=HzP|;E8ILu-B*>pL8>SfR;$$7e`j}O7}%sn+=hl?wl`R8qN -8nQ+-nB8}DrldF}J13CX#>y;w+sP+G$a4ilrnze8Wuoq>haU4pH$Vydh(WrCPJrSFNVpd^x*I!z-h4S -OEa;U8o({&L^kw%@`vAe8e67oh#PRR}%0{Kt%DZcqVGN{3Nuvd|Clf_-%C;wh)7<`K~&S0mO#& -btN4v`ZEPW?YnO9KQH00008031s8R)k7<66(AF004dg02=@R0B~t=FJE?LZe(wAF -Jx(RbZlv2FLX09E@gOS?7e$@RMoXOe&&(nBusJ!NFcl;28#wYGN7bGU=Sw6N^o#whKNagU>v8^VmJrz -N+9uMEQiBbd#_sUExl6et=9HiY~^JICk*DHqKL1wphin|k3(xHAsI->`K`6inMne+x4+--^Zow*`SBs -=vCrCT@4fcgYp=EUUTZ3Df1I;$9A||;P2;$Ioc_;3lx5MQ#c9yiA=F{N?l?7!WeOzY&#rV*wrj_ZJzp -X+HcCtU3C*JV%vpUoVX#+m4Q^3EMK5z%JuGy(lwjRc6Wse9^1|5oRkxViXnr-|$KegiQhCT?FQ$31(R -<0k$Snm;X=hW8EB^A6KLhQCI>$*k<<5t~ -(8BIFQEYrnsk!$MK*4+co)K+LScNhIOGfCe%mfPCX&e}$ndAI{Z3cmi{?7I3U&6r@F59=0t9KiYyOEs -yJRacV`s;|QCZ&2jBfy(H^DE2(dINuO6IOX|atHegBbj5JF6_xx`t>6pzZNv+`h4lP{P?-35BMXp)Ed -6uzdqbWxyB2L(kNouB(m&|G+Ty9d`d{J|FQE`9#9ksQl3Ngs1X88Ppr=iTSyWgP&I-P(-sqa_nyVx9P -kfYt%Dm>8~cora*u_>CS1SybLK6rm|630EGxLI2NfTqcZ3zg-k6nDbeT5nP669Ab&pzr9w0V{B -P(Bx(RHJ0PNY8NZfFi(NARUE5!6-6!XL@@1{%5eSrXPyI;>fhs=4#H5e`dAT+7scJJLOC#Q`zkLj;>* -ja2p>>N>SpuC;#)Tq@gY=8?Q%q%y~2}`z^l*t0POoL)80r;80a@h^pNW>Xx#Ysy=XO -O$Hf@u=`@0UN}SiN4-YuFe+w&vY2M5ne1k%OIpzqiBZVP`LBTCF-_Uq2)ORcfIR(v+&M_-(2|s)x*uN -Rabj)o17k30DYksR^iV>x2j)`t=1OYk1KVEuK@W+V>;ITIWbHqud!?`?t77ad#n-=U@&{-CdP6)$Mw} -+I+!lG>LcgC{lvGJc8pYD}g5_`2va31v=~b;ImK5i&z$a&>!GNASZNtfEzsQSC{KlBm&=0e3k1 -QkZuaQ6Q0-X0EwIsFBpQ-GZdwii-3L~%Ns{5>1>hSk6Ro)Wr*$rtWk~HVpO-DH;Xp7TGw3(*Yx$5?+5 -@VLbb*>PHTWC?Ni{qHGwto7|ir&c{V7)5pfX@Lz!CM61^4U<%C&E?{V`MNeG&d8Q@zke5;BQIKnTh#e -(X-58&Sw_AclB>Kyf*@3yDO%~t2Tb$+iekeTb^!eWM%9RofJ&pjBfwgJn*px~XKt}RmgiUw2*A$*Z24G&M8-(9`}}NAHj0ej!?=O0FCdpj3OsBlzIQ3W_)ldUg5z--S~lPgS<^(jb3kaq`OBFQn#^# -Q2QaZ$XgUkh(b*+5{T1%m96OBnrcO+35t?uoRcE_^eBNM>_F?d>+5y*YAcgiJ3_&)XYI7B^37eFx%f! -nuPdVhNtaSE?X(d(NQikI=AyD1@&IBa6yQQok7d)$dDBs%;Y?~OG+Ks6RWM*enGCPht-Tjgk;hgRSKE -S8a71-Oy#T>a$6EnTqN01HBJC2uB^^117zF!lwfb`l&UM!=eDuIa!N=#rP6tU76D2=C9WepY9AS1m#5 -UPH^5@Kh8h7e$+I9?+fCrlVCpVPos7VQ1jKe@m3~DD -X@JsAj$I}@n_huwZ#eSVr}**EGZ9p&L7l_g7fmJe$@NPq(bU9%6hh!vhF@bEQC|{TPS&ewbarjr(N71 -)&Q6nrPD`hSExsv7cS$0`-Ht*EpW{gIWbinALKpkXCrm#Albac&*qe?Y&fAR-P$6?|NxJl<@!>P$gUCA~wMsgC^|L#HgS@>Rf!yo`+ypJit!VrbXAhX1JuK2gU0 -W+Vr%G2q7J1%Oukb`9P@avo`Z;{n@j%sD%yQHW6$}c2$Fs53-_1y>JyUAshbK=J^OFc*+TTS8?jrOys -2sNG3asJ$WDWBPbDSD_RWfk|6r)2+U#f1KQVd#C^-4o*6lV+-8_=;@o)x;eR-Q9ev<3^}X~C&-#9Fz` -!)~x9`>-|iKCo0S@Nv8_yv7_KiN*av_=e(?-3Y1c7zaB^v;c!mrvggxeX7VSyH5a2Ji9f7_s=0wW@hz -Cd~vjgw|Bz5R8=9?X_c*~VhFN`E-ijRUA9ohv%y^9K1q>;jIlVpLQ?f^uKbFEJM6BS^AQ?@$$eLKmxqrVgK2Uxr62!y|e0*8L}+BNIaM`7-hLE@N6Ea78g%9A1+8XwlYgJy3m}^7 -r(%GUz?hc9;eatyvSznf4(M-wP8PkiH7wM`{%C5-v><+zT~(q;)`&Y(FgUdQ{`BCK?ZvE~ -XS|Nf5C2jqu9$Hg5Ab7}`&BjnpFs!(EJD57PB -~Gb;nNsM217UZUCxDeZKiOtn(X&V!nyw!{kq4IC?!2GGuan_V=)|%dq71WM -h}1rsqTR14>7%9oHc=iuN8Uzr@`yj%Ldt3yxs61Tj_gD?Hf|Nn-ib(=BB-EbJZ@D}~yZ@oM>MB}Xj}C -`+wsjx#$@w15*wso4crf{jtWM#^AMI{_|TEweh)rcZ~DV^qkL`p&an2ja0pYL9D;S<02m*O;LYQ#?!M -0kg}BA3;+;WaV@MoU+4w>MwEIg{HUk2^xmac=nTmRA+n*7SKK*zx4^q{+ -M$mOI3MV|_Ltxh?ype|cZ+`b-$cY(0C3&e64&ghUl0+Z7zIRcZSR$&(x)q;{Rzt-6$M&omkp@qE`P$% -YtmbkY|f6wr+$L141>vJh&gZyF^=1jw!ZNgso-%`}vP~Xp0iy3M~LcVLwg_@NHt>x0&pldmw^bqh9wz -Lr&LOef~?V6HmXvdF&QoRlpHOEH>jX{K*B -GU?lJ;_O4)R6i**MHyVmrIccIVqoASO_C=GFyBj#|1R3n}0sd2ggOL8U^DNOs7GXU4s)@BBV)I1Z~wN -X|K)!#>n(vOk+Et4%%!ii;YGVdr;6(`1?&EfBx)k-$};GgU%TW-EvEkRv>ZGqnSxayGM0NDkH -bqtvWrSWUmSCYPnIu?>z-Zg1%6DB^XjkS$P -V?lpRI;a#YkRc$C37`#%8LP`*}HrUa~!1!Wrvwm;|!g3)tfcRtD}DR)rvd1$#ZzbaJ};0N(%18cM14# -ZWe`eAYzFW2XCVlHS7W7(+jDd~J)8cHZKY*Z;9WWNnm1jn)7-V%52y325d#pVry5&873x`ovvHV*=<- -!1&MKDW2bX2WHG`Y!cTkyp#|6?b<$qt)GwraY+8O@D%d3?Ok4%(6hvQen&Aak}VpcGQ{GgtNY1_`x3_ -!LMD9maddw|GkXkuH0lb%`?>}iarI&er0{XTHh7JMGj|GcikOweK#jg*^e`eoV2mUa4Dcj%TP -*e25kuijSa)$Jw#otVW&g{`D(?=m{VDPmsKoU=4VZR^!7c2v?chiK31x-Tm=GA6sz~uH`}Mtul0vI2A -fab0@Z#pm{fIpmeyqLE#NuK@)Xu>{Xn6>TQ~ceS+P?v-_42a`xZ(NNdoNxY!R7YN@S2Z7l-P-7DE+O? -rwwehQSh$5DxkhWo)XnR8XCG>mQ9$wX*i@x5Eu?bBUZ;7m -q>8l8sCYuD=l$%pb6CTw{+`7)m-Kxicrh;;jVIRiJO-|gKvk)-lV^-1(nJTn&hdg!DQTPT@asys%_8|cJm(G)Y+(O#g@x(?F -auVY?n8;4-w&@z}JpR)%_19q9zPYydF;tRS-5;{SNo$#uJPvG^*4!mxEAFsQQ;`P8=Xvc4RGC{ZSDY|WMqg&`O-JXlk -?KiK&?WaGaWjEDr4Odu|Fk1huRGtZFri2)NyQyCZpTvg>n-a!)sTFoep}L&v#}&0LxMT;)nU>c?>u^| -Yn6(>pa@s*>vl)$k{dQbaujsFF99hYpKAjTCK5aIVP0M>6*A68fEs|~UNW`Q?cUAKRO$WzXxri@lW)^9l?9{k5z^?_vYj_S7KW(nJro9gHHG+b_IkAh-lqs -6`o9>n$}l_%l7d=T(g1Q>gaL%n{aA64XQguU}1TP;ZZQEF?g^U%Bb;7 -w5vnC+wXAh9>6B6ZT$*nOgw%5Wt#^%-`lD%#4|&_v5s#XM%TV0!)JL{-WmIjtP;=-TgJysd>-lg;@xc -CTAZ=hM$Zcw11GGAQ|ojp7!}!CiZt1$g4z2jkVsQ)L4TiFPNj1B0atrnLb?%Dc{^Ywc=R!?&{})505_AJ(0PJSgC$32H -Qk8y-!^Hhj(gJ}Ozy*bm?W0?H&by-cNBfol9^%e!OGkzJQir9@G)V9Z;n)M6<0p` -aOOgaq5OLf;5;_e%xpVo*SMOItj%VNRB0(cHWXblEe#i*0yPA@0H)Gz~VcFy^R-($IFFLskQbmi2b^7 -F$m+3sP~8#b#XowjHOydLzG=NlG3ZXIQa#JjpvA`uO7e<-q{(wW8qMb<7O5e=3+5NR$+XjK3T$#ZiwX|`O7_KFF07HP7 -~IMH4%^5xQKZ?HSgdxK}=7TiC|!(AmcLz$Qk7FB!RP?53ze(h8`Uka;ZRs%b;(4sqo~p$=xJ{i;l~_5{vKau*|G -k}R$evDtlOP8Q@j8X-#P>9=^S`h*|z)TKRPqhOY5ng1nrEINWe!xBw^&df>pK;OeL~sNf>(tF{9)-nSc!FR -Ad)=uoS1I)!vgQ)PP80&O4j|f4kI=Lqs;fwys+CgGIG*-6<)?5Ymsw5HN_i8{Npqlv8xfJ?_(GrrrA@ -e$6lqG;iMR!bfun#;$BwH%!AWDo)i$r*Zp0~0@ahebTU>Ejt?y8!PQbtL+eiV*@I?!N$vIk)UeD%%bR -cGDnxzX=J-Pm*COxz`HUke>xPk@jmg~{nQrw*|o!k|+Q4Wx_#3%*o$i_p|rbBDTwz#aE%xf*Kv@H2f9 -`}ABQ~cxRFVmFzlR787qbpEGf3+av_!-X6NL4G6`r`5YNDg!&kU3N`xT1He!0UG$4}$eq8LmI6RCS(t -v7{;&7`rt)B{?RZ(?$BLw4i0j*~{4{P6Wd;pFKMWb~d4dJpnJR?o&5XZ!zewMyP}~e_bYUD=inLhpqE -L+-TCou-lkXJ=$`fR$z0TXGEVfy75M>;^c-b)!n%zUxSv91W1pU-GJ;(s^nDsok(s%AaD@vjCJ>G%ZK=AK=yk7(f~>*@@_w)&?V%pYULx6~Q7{*y$qI9J2Ce8xcJ|9u=9 -r2Yer!XNdZOMOXWzQ3)Hw^izQD#UE{^?(l#G0o7&oy808pMYRjOjE;7OSizfH~e8-RfU+~mRCJY~tI0 -fZkX*MqJxmd!D8eT!X#x$@(aVdj|RXs=ar5X{cT+LGo7Tir{I8I)E~sf$d@vwDrH1{ZqNGTZYq;CW|6 -vRyb?+$VQ_4K*++Wi~0t$2cI9$!(MGwR4p|mN^^vq0Cm<6nTi3JNp49KIVCoIO=&`%y|LlE-9n6EFb4 -JyShLd$S36F2-4n($HJ{PSDaq3kmrQNzM;KGvqkm0JZE|VBVqEuBXRn#LfJ2QxzTOWka81eV03?X_v4XoeZs#e`3E8*r#I -@>>E9gyqaDs&)rZejr0SAhdouDv{VJT#j2(Qs$*!iL -&ty^-C&M)16fueSsJoHL}sv`qXa=avR^mO2GHv>GQ9u4;GH$D7u#DNmc2fL25Ftp9PQ%5iPt^~Lj^Z{6u87iRm}t30`Wx -=)N$=xA(kRS7l~!)zuMQR=zoS7v=CU(p6Er21{$HzEVItOL3`k7q(^% -O?UKlS1JVTcXoju`;jVs4S&CsLL&rg1nq=rpH3rzC6c~F3IwXEfjY1WYD&85r5^9EU5UL?}n#2|_YwI -z{r)KEtpUulYFx1<)!2X_|DtO5JXft^AZYVDbmG!cM-XT(<3kJMdOk+2K -HfNPo(1-PswZ-$PsCT59~~^D}MoW+*ffsE*zxcabPhG2j}%W=E8I1K1{*m-O^Y4N6_NJmV8K&PRRR2x -aX{U&(U78i@_tvNu>hj@G&HB_~1l_%cYg1QrMNrc%p$7VY4gIM@>2BT07v -rHxerGPe(>h9Png>8}MPmnk+-Zfk*0coBG1JOLTGRTkSwJW3X`M!2blI_m9#5o}H+GgoCLpR6SKjgT2 -d;DkUOkP6lyIFxE=2&af&r!z*D3>ud)V^C;M((!0_OtGamf4IwA) -0s|;fCtfZm){A4=DN9NiE%=%i8t#HQ`VS^Zj%PcL%N6~mc;+86QTkQ%oAp%&NBaVQt@Du3^dTgNAKLs -19&8V_3r!PExJD6?6JFtm|AAX4n`KrYH1*&ZVpn1q|nn$!k`(q8H#wR#QOyMnvKOnQ)#M -@<-Bf86h4p6B)nWYP%aRAU8|r+^S_9qX<61hkXdG`S0G(S)>%>*IihiZshKqa~tjZi^1FvkDsFd4jD*~p44wRI?!=p -*Z=>Q1u`H`!2s}=Q{PA6@P3gI_!AmNr|*t)AEUtEd1QmCSqzkpBA -H8@wadrW{TXLCdRMKxdR#Eq+dMvYgp$kRKT;D=f%rYaIcyCIHZ_~JTdglSqvBFB8IxJ{-9z1Uq%>(X6 -u`dt1Q6+av=ev5C!_$;eAKhf-328mHE1x6X}piNK9w4)Qo}1#l$we1E%wwbGy*xgm3_?NBt&HSxM--I -?Pzyek30_2L>#?9K6iE9>2Ud9<#Qv~=LEA?fR2s7#%4|>9$de?S&r~kQMOGU+E&rEO3B8@${O5K`%BfbUAG -YJxK(@NnYI(dotB-ND!X94E6mP$}5`-jEDo%kmBG!a&0?t~gE_pOJy -y#J|JiAc2O@K<7tA50=C@9nvifnLgUaYzkY6qHGZ#UFyoLH!)53fSLQ3W4W;oFR-Ds=0ui{geEok{|- -HkRD8_IsVum2&AEv^B(n0N$Cr3WpNzp9$)6ko>o5d6+IA=3y8?3VXsto987fY~rYZPL%i5HujXBtX3p - dUYNB%UtR&{@(!zXGv4-LEua=wCnQ{uG=O}D^sUh5RaIn!y#t>Ixp9XE?^GYi#nsfanAqv*hywqSg8Lb=QPvtqb4rd%HRUYAio&<)pU)CT -zt*p51yc$L+^H#+Oy_65qAzhp6@9E+`N)3TUmp3#_1Jar+QXbU=ALG|17$p7^5%+!M&x*4VT)cHHBgX -Y8*M3^YSA@55dE=yE{At5<3dPShUE*B+eC@(jR3R&Ke^?^VCTLynGPjvj}my}OcZkgwF!YBLPU->yRA -6u!2@cTM{O52X0~LGISTQ;S^OGPddG97lHda&>hff9o<$EX-xQ2Mqi?mr~h%?CZavjnS~mIJmfxz4S4 -FMGBl3rOQ@hw^dr|^@AQf5wtFOKKBQlfTRL1d+~CVqZu%+M~BODgJz|SSJGD~W%) -{(HJ+``S2pp=Jf%8cskSyQwV6lK4zX(`>g>toRkB{ch57^(g?PnrK2`vI+gNMU{)T2xJ||zn$+bLJna -l%n)g`9O8zAR+bQNJHYSez(JaaZnX>yKM71h#Hds!Q-mz>Rq0v*TwYCWz|gu~DG(TQ`s9_YmD_E+hep -zBe(cGIL*?)q%xF$nZ&yOkLLN}6eoz3pw8Bv3GIW2D!`L*a|I^e8YFmif9HQ2ShzcQWZS2cT)V`WQ`6>UEEmBJgwAGA?#q67dzo5qBGiM-pP9LM)9?c3*@N- -(z3#dgBu}iGDc|5Xa*BRKG_U=?8m9+f|yF^L8x9Y -O{tYPnP*A)a*Nf--jK?^3bP~}I?PNR<~fAH6G#S(i(pm>O*hcP{X)|<^zeP5X&OC9ph(lh2BB#*J**I -#vhd+KU$J`Y$MnevClFLI;;|Ycr9r1LQ@1c!%-ujfJZYn$!vjW2d1cmKfWj`ggy -nSDmNFj5{n@sowN0pyJYGJF1#IG7inKg+1^DwheJUK|2w3#QWu~kj-7(nUSi5(q*$np8>AsB^Ml`{3? -p5o(JS|9QW~Cu*$iyZLr?`nxB-h4ntH8x)bUHCtZ99d -m_s`?Cjl!cr}%kX;l3Z8qXV##*X8$ZU$sN3-t%0km^_j7ETX{Yb4SuRwQc%)XmXTmaN|H_XmYi=octL -Zrl=T>%-l3EY+jZttEsTJe;=c*Ql}3caPx-%4Xh`TvZa3-8i`88MO+1(;@UWD!Z|ovFok44VoGy(2#G -dY1WLgUk^-jfXUzd!L5fmw0?&kc1vq0ET~M>?ndH)(AgDYe{J8M4K;hudw -YPrQat!7QJ6zXv!BrlsnB#!S~6RKXscC2$j -P{<$Lo(udMk-Ks(H6H$wDr@h%D3!D519*$DYviOMQdbZAnPMtXCBn6DG0rx_Fn;kCv6ajUR*asM;%(LhT~v^)dT<*`Aa387<~$8 -H1#dF{yF4*3|@`=`Oy86)9w=$Z3shh%nW2KDM~L-=64OhUO=-)A4j6KZrstCW5j&933yeRyJl(lwfbL -Xpks2q9jrQsbYw)#LZF)3|WoT&!&0M*N|km(P`KO1FfO2wQTN#t(!;h^VNg%%~npQ4&B3i7l}Pm@GqW -X_!+i-loy;Rf*$tDb>Oi$4g1J#>82T`El(!vt|s0;8n%dv0dCSL&V~p>5Q&n+mnvzaY|5^{6;D9m=vCK!D27@y)y9*T`WiI6h4uz -Iux^>c(WdDB~kH&<3Qg5N>oB4HB<18gvQCUhBS?Wby$NKVac&yYYcN`ZmsXlvb(g8s=VLTGB#+f38)Z -e3mLib7ouYyXYgC)0I+m?>P=b_Q1cSTfQdQ$gs-;Gb;XiRbIp=F~Y2n5HHeXL+4&+ggFG{Ti#LpPjFY3csxYEB|z;M>3 -Ux);rL-ezY&h4?U$1hRjU46c6ZgxJOZws~;ISMq5H+dJ+|wHWhX#EWOo)31F67{R^0*#Hli~ieqJ#E! -xUOiz5=dHjl^eF14Flq>`;umFwyT}jo(7d!rnHuS=nSo!)cSP`7`^7=I|!_i!Z*op -DSEIeqUu1i{5?>Gj7c_ZLzyq*m(|~a$QBs@{X+o)w8M))D+s6%>9);{#q> -0r#GHmD>67eRx1}N4_{g4SvzUiT1(*bgwropBg2gko{FENBt*^yz)yW9+4WRiiJPy}>B|WQ8;x*iqgP -$!&!?zd6edE?=H7v=QWDhSZh-b^^$E~;FYe9Hf=N5b1(!y~IobS}NBu@(l+mXkEwmvvojKJO<^teoFq=&rhr3<4&9pwCNGF}M$-C(KP>(p?r{(R_SyyNr -KrRt8eC*&GxK4;b%Hn`Z(2xy4Uk1=&`+JY6(n%=b^RYvYXxP2bGkC`QG@wx?O-HMLU_hGOnud=ks@#vBz{~T=$A&}GLXwU_%VJM^Jb{-1j&S!)Io_;1;fsq+Gw|tt)f5$jvk -DhFd*fqQT9qd?IYmQJ~Ye`DcM&HZ4{b*geALA%8}wyjLTE^WuwL}pz!$diu$% -mT^ZU($Zg94LofFv5B;e``@9`+gf4<5S_x0@ceDr;>e%bD;fj+ut~zX8hkQ0hxxZ_R0H7n)j7UD;CxB -c(m|0yhlJPcW=O#YsT(-S%Qd>I}c+()%V}w6)9xgX~IS&pa?C;y|*_tqn8aBfrQw39y+KI}_`^QtQ#9 -wP7A79fgk5+?{d@FV}Zk0YhC(ZH2nEF67BlyB|e=y0Xv~UT6<1vjEZUwd!@XO0nFGd)eQSPOE3wN2oH -rjIIMqER(D*XY;xqM865=ar7MvFPyx802|5kuA8KD>Ow0UiSzP8o8sl;7G*7O$Shq{J&d9%{>zft*v~ -@fHvMR3O4#4kLIWW;kUt6r!j!MzYelEVwx#1>Q0h-G+`v+60?_B|K|B-e=A8?zLX#i6q5uXx`!+g{qq -l|7R0fIraR&p2gxYuJIr(yOgl8|4TQD7Y5<=KPs&qnI7f6kgk!o3>R39fE_Ealw)m8_*YAKEk?W3NuH -D)376)K=A1%j)-~?SotVnwrrXHE&TR{Mx!=W?a?%vQx*TX1uH%Y)4bY8$q{YFp;Zi(9gQ< -rG(JsEXi`CApPtLheu=qQ6-!RoajSf9Cx^S9A3<7FE}emk#L}qX1?Iy|?AA0)pc8))!yC@0&PGb%SzN -#Nq56Ye963>1JovJ2=*!DPUm}Aq;Tlh?n@3B&@!>=v&{)i*FevyG{S12V~7kNuxd!G|Ieyby^_KqCFvyb>Z7Z4dSNT@E!mu^=d-KW2eg}2cjm -i{_);~vb#+VQ}7rTXa0!vOwrI0Z1D0JJ@bj~y9IKXe!efcj`e&$tLOy3|Jx!`sz3ls#+*0H}}RX6S2Z -{1vr&*khD*)Oc$kWSE~xhshaIeH0s7IvvR}q2y_-6V}G<18KYGeOlwBQp1~4MBJuCd;iv(^eld;p?zIMxR!v?us_crxrVV#p!-!4hz!Z!ya*hkNpjo4d!u`I0-&}l|B -isB~Pl>YC0mKpZ7w!^UJ@$NXaJ;d3^#dTLYTgCYXRHG7~1RS#8Y1g}goszw#HHg>CGqk%kD+W~1w`+_ -KuoDm7i)oE$a=4+1ov!mR`$9Yw7bT>_$7UK`xVx7Vl5UQ>j_`z?xc00mCaW|z-Qp8i+6QUFKswWT_`V ->K3;(8Mud$9qzc+EFTgw6{KR~KHWly#r<>^pWVjjv!8BG=MDt{J0%vDG86Co7Q;zU|W?wb@ -IC&9LO5hArR*1&6hb=~AYS|3^twevDrN0&FZ*%pxN&1^he-re#Mf#gbe=FDD&P3?#j#BIz#4if*Ixq -kLS6cyT#68!Iva<@P8O%+z1)agItL$=2sg1|JI->yqv$)vy83J -F`QiyP_&{)+MKEc`lWWGsZgEN_5;&H7Ohy#AEjf%2;dk2K;AD7t*9IbhhEwRhzft5dSool5OfmKM -_n`nUkz*^O>m8o*FsP#;XHWagVdP2G4J`gj!{wAn#31K_;P=MOx$9a7My-FF9kJ9sBtD%FIuWv!rQ02 -(uh@m8yIpzgF>It$CGsTL;$@QHQkVFE;3kR$(}JWQo%9R-2sQ5b#n2`KtJJC|jM1K@;`v@NKBQ{c6oP -4KwYZT~s?-plni(954CHlL2iMQC9eG@%Zq>S*Y=7|>=H;#rmtQ6GO_sXBq45no&3+1XcjGn;u%(@HYL -zrxEr?FP)ora+RCp}nW$!=xmNlByF@T8Xh64;06L#A06GT&Itf6RM+Lb1Q*Y;_D_g16DAj-*xTS~8!VaKj0N+JCa@dD6dX&XJhIz+uj@F -%Qe>*VLHyTng4%_b6?cd{-$^k2s>Fg7lR^!mLu+w*ttE)+9%Fq)!@6gw*vJD3$q3Lg^j -SckE68iOMN%d>MqPZ4O{~n)-q0l}%W*pEGLa2>WprM0@;FHf=yYr1%3yg?Sf9NyQ5uPc5w*Z0H$6iS0 -6KzS4M0+caw|Ftfxu8~a*IngfpTJAl>P88swiUe{w7h#Ra2OC2{n6`T_pUUKbV&ySuR`KMtd`HuI&L= -(sY%aiyRpfTb~u&xqkz4@#0Azs20vS%d-lbvz4$No5S~Wr*797WMLExiWf-Gyfg`fjws_07G=2bsMNM -2R@~%=mb5qB>;Sd(!35W2TXG>KdlW=e+6MR}8(?h1}M(j`bk`ZfR>sIQd7xUod{*^k}rzHKp#srY!Y} -x=uX~m}rq<#!K+wPl_a<CeHtViU0=$PG$ -9=k;>yzt-W53q{-!dT5YRK$4fJNq_1<~XjNK@>zbJPW0XBe -3lBhNaeq_=7EF*2d6rDJ|HuBAyjqsG&!z969STSTlj~G;ajmYo0$2i*_AxEiHAEgcMmz-xj4S#Vjm*MM`(tc*!AYrTCLacq*B`&KC?KEH=Hv|t`~6qPb^W(c) -vQY2$b$kGyEPO>w1k`p~luE-Dm{J*A#h3kUKA+CshUpl#t)lY9OOrYlY!ZtwvW4ao7T52<#<1hgTWD* -2gw#qzj7VO*{n;Z@Hk@Tp#Jw=^tw3lX()|GEMA8vu-jDJBo|TIjN(# -bHr+uBZB&%8M*sVj5?0ps4VYK(o!wA^)$=kwI$1WX{3jJM>B{%8HgSqS5nVQxws1e{c)}FNwQ?RLAU8 -=xGh~4Z*qV#+&OrRcM=s6O?JR2QZaZFbb@G6-6z-!ALu=SdwrGofR10f#p>vJtqpido_qGyBJ%$YThH -!88+ZxXjuD_R-Ka;rFp?7GsdS<0X@DTTIGlq -cC*rWOheyaw1zzVGw~K!n3HtC6h&~+8X~}FrWP=8j7IS_DKTkeQ$8@E$#_su@#)*Dm+;#B3k%UzOiHd -%=SApC=aDF!C;GzQ0B$K{5<{A5c4xR7_N99yC92QsSR@#59=+H=h6DqK1#A|)e}jwZ!8gH{IWXvAx|oeXO>oXssg -jxCNtqM(kc%k+KA{7)ESjfrLmf;%dRNagjU9m}B|knf6nSVuOFE~!m+pHP>q73O*$4hd_tJC2+)IH{p -~$8Y7;KS^=V+CbTH#4$(DD+4alFv^)3$CDDCiiELd1DVCg#8+@L!-l@A&p!ffKYkP&M{Z##bb+_7g?@hCC1$h8(PX>hfA%_#KW`G -pDAm^I?YjN0F6HIU0VM|nHXuV^*)}sg0|X4L7wDw!4ED#DjB~xBjU9O@d8RiTqeMM2M^{rbeC&+?3g| -K$&K7>5se#t9cy(U5+@$2FOY@5oHz`Z4&c02P{1jm7lNHGb8u1FbtpG|zW`9Vnu*v5z(#|=Iw9_niPE -p@&KA%Pbbe6B4 -fV-RVp%Ubxz+()Dg3~~pCZQ~~LW|s1>8N;2NF-AjDxF&+2tufwqd_66qlx9BvNRa|D -tFZTbC4DK>?R?8K-Cd;z%-cJkW?o0yeK-s#JA5-_uV~!VE2hE?6-@giV~iby0DlIdU|y#XTS#jFbnhm -EyQ^DMvljdlZL+{P}>g+^$yH@W&ATO;44^v8RquNgI!(7~x%@bNqVs(7Q~jusfUUEQ%WgsIk-N?%M&= -Q5Ois$?Q8vlJgF`l^%J67!O!+1uVHr@U2zQSV38oGacpjZ8#0N%1O%-J*u#ENzOC`b`$XYExanY^c)Ck)|S7Z -gba0Oci&GM)j+N^Xfuivm*Hdt`CnT6VgE#E^mx56&`U=^lim@2x%i_)zPp#_0$S+Z)3Z|-VXNMra%aN1IR@2<^Lep>IWp1`;+hSR`0B9Wh5lztD<<7RX`QZg7j -7o!{e&AD!B`Yog{o~)$-1Z>tw_^k=ZFsGduE6jF)L}p!bgfOdmW#O!^;(v=zr~WRW^Ap{wk%0ci%)Y_ -b%CvfAD)GN()0*poA0JmSCni8_=Qj*j4b*{86K<3Q#16oyRebwc-mGIR9=l1xx26fppio8D5sx_!Htl -cw~lCP-;lmA_9!VcE@4l5T#ysi&7-04x}2MZJtJHV`#Wdg@*vwfTG;c3a8SY5P`i}PzJ3Gw34;;F|80 -S@O|n`#;x1L_S#%vVY1+aqw_TS8_TI+Kt)o?8%WXN+7NW_Qe7j;{QAd1KZ^tu1)2-y`@SJ{_7c`)vs; -+k#ib}60bp^R0L9;QWTtu3cjEwsPo&}LBPN6RjOl!D>@L$iPp5{IU(n$!ZWZ8GeWc{v=b+kL9!jsLG2 -q03Hj46({08fmlmH#9ulwB1`;TFndL?6 -74jdxZ89)Lrx|0a3r)TO&p#Dh)8jlP#4#u>YW9>;t2FfwVGiy~&2ZK%lkrw-RR8^^d!L({;3(WYjwv^ -;N-G<(6u^_4}iSG%a+wtMvQ(Wwh0oobCi46?TV${g{05;{#zOPLe*W25Mit9bxMc(W`GQidi7WwAy{} -pd`J;b5gJ|W_Q+4MUGnrquqrv>(US;yXs{M`*D%*+1$Tr&1Wd@MWPnkw6@NHvxv5$ceiB -7ttL5Ul6us(=1$(yj5j;n-jF}HG{?+h`k5C2ah4AE6~aLQHBq=)jSy}<3vDi++NEZI+9PJm4@2w09I% -6p;;SQf`Ebo40OG2&p!ZUhvzJ%p}SH+IfNN2`N}E^)M -KPB~gtDxqzV!`Ym2wED%PE=~?3*?_iNh{8m--9*pbM9JMm;oV5dSPb2)4j#J5&8ocIaI<=Y{FM-%j~z -@sTVuaVJ)2_xO>S2BjNBXhaq5#frowZ>`J|f_MMy;d7p#kOKnSlM#Mny#7-P4SPZU0)Pt?ITbe|~tG( -Qs^ldxs6Sq9oGhNEQ$+B`x_G>ByqLUs{C!tysBvD_psZ#W+i7d4z;E#^0zUoV6{;_e|zlN)N?`X33%RWnR~r7x#3|GI#)%_M&5>0-ZcO-*Fg|7b%^H>LPOUo9bzd$tP+~a -@P5D0G!O6J7n-ieyQDi>&D|h0U4i!%Lepei?B0$1a2fS&ID{k2BkVckVXfDYIkq)~d{-$>Rl_*$!o+W -Ed<9l_pzOMnm<2nAUMow4?iQ_YH`GuA86@!}G4#sbzUEXQDY66|{!7T+k -2R>wF*ckzW-ySNE&>88?jLKjemfma+yvsnn}r21;rB4eu%)(2i{%b<$BS!lx6Vg2LiqeNK0p&+ps9Xs?h!p0AaghM#QJ!i>tPo7b$jh;czs5|8lezmG}Q`hvf%~$D~?cI1>nlR| -@QOHq-dlbpV^g$ZM=B1@5PN-daX}XgXCM2DtI)^$*(XWsU%@w8}X)zr9C>U($S(2~FKIlAycRV~64@x -5&&fh29qbE^6`Ag^-eQ5CBNOFbzs!CNtko2n>^Cd`k;%Jb=`z|ECtEjx)Sf1`(mCQcOyQ<-W;a$}hcym}gbP0jy`ru__60iDMP@r|wvV?eNB$smqzsP-bN}4fngrtLp8Bl48-Xkpxib+F~kp#pmBt3+d!8)h?YWA{Kl%5uZ -N9y>w9e#WQYdm;=hCi+*uOXICmoK7iv82#z5L^x=jyoDKbe8$FqNUtJv^kK3KbTT$GGJ02tTw*tKf>A -V-s+C_x8$k5=PC5$#{nwp4D8al!3D!7F`Q3m8WfNvVP41KB*Y1IR$;i=mRm5_w -ODI*mM%(@P#WkfoR85t9p%52WStR^K9$K*;iZQ@@b@%)lc)8g6*IVY>SI57!PphEvjwjVu`S~jen_KzUXPZ?oi?_uarqo=Thx1T6U)P{dj -%0dh6$GjZ3|=U;(`mQ4OI`?wU@s##IEh!uUne0?;mQ{K5?;KyWar&SqhAu`Nh8$rETg9|Hx|X85m-wNhk4?9QNz-jMm~O&ewB0;vl+8QvHhhHX_Px2byj(&Se=+}LNK^*je4&))Mhr1xhJUwIrGXn>)`TLTgEXaN<-j}l -9LOYQSBT0|GSNjI-x4&j#AUfxO_>Qo5tU~UFx+k+jeuc_z3b64cx((JkKNOmNLD4KKE$5U2=ulWfIfQ -K+bPFpP%;J!+r(suS%EnR&*LNeC!k(t$qmUlto0+v*ccI4L8O5kFaw0?cLAGvnO?=`T!dvVbLWdJWC_ -_ObIw`yb*8 -Tf8+qw8a4mZ83kfG}3ZzFtkPNzlQ|1_{or<7LW0IP=mzv(zsfAvw4;@3Y3Pypcb+38R0DG>rDM?Dx5{ -^mSiA{vSc8O(qtfuS;;^aMae)GQ?fbQ)@q} -^aFt!{hd&;SkkDrs$>Pw^NEXD^Dv{U-ArL+=7|7zlU?7W7yP!NaJe0*J7lpED=LRWvfcxf97U -XM=VmR$JGPa_rP!`nn>dJoI`(9`|hnCjye-g?<6CN9x3T2T&p)62*=%FmGD!3$+#Q`If#fhYO_9=$40 -MqPAtT)RLnz}KTMRPKi1v2E&SQbZzNTuPiEMC@KsPXpCVp-Hq9ums}NAmv|%VKa${7bPclKf%BvN+oJ -jj=3ln=~wz#b3zmK5|Jci!U$eu`C`yyRGozSQel`V!3w@iDThQRTg@YeK1kC)HaZ%c5xsJODd3srImy -lRl9d+APdBwmEt1ZLVE_iSU*u0CRA^K>;v5N90k(jKFL2MbivKewoSYds-Ug$oF2R){E}{7?foPA#3E -`iub%JwhTs*6VZkdbhItiD2CrC{3SL2-o(x`b$Ov3P%^w!H!avl!+MWzt@#my@l?q%z==>K2uE2_-eR -X^Q*x{;7oa&c(|Wfyy>S&`|54-8%C&Mfh(|N-Ll$vQQ!&$9TK=Aj -MGrekET^9DNltEz7LLVaiad<(&>X{)kH^s6TB8V@JWf9B&2eB-udU`C2JAU -_nCzgfYF3Pyau&^$TWkC(Pgk)!4x-^yrN+U9{@PWOe;&ex8l`5&3Dvb)zMjSm#NY_PMfQ^pE9z2UWDC -!HKx>HDu3?XDX`;F@EMFA|r3R+#^o4DVrF7Ee=i~9@wxwg8vZSeOr{Cxs{AHcViZ@pS&2j0wZL}KYCI -#3)r$KkXnLYLehcUwOr+Wb6mxB=fKTbkm2wOj?0nSg?rUPJT$=3KK&?{6u7^4eK -*2Comjt^+1JdY1N;8IC{ -FMArMF{)2RSeFlB~TjO>)GJszOe+jhu;-3N)LU@e8pv`YyOts3KYIzgwB;&7uetHlSN+kQbT=vKy=to -b{R$&cTNB>)XCUnN|p9!U3*B$)DWHy_RH7Vf7$4YP*g~hVu?>l|r4O$obnf(}@lBrZC(T@!rm*}wXy*jS=Y#%d0J`5UM -8Qx$Lrv}Y__VK$^dGwrK;PZP})3eFwzc;~b7M`^Ue>qBeT_Y514Af7ahL48JZ>^5}au

    oQLoR>o|&R=BY!dchbqL$&-3DVZ5_|Y1{#?3w95$4o%FZ&v9pJDPgJ34CQe36?|`wZHv3ELA -gUs^@P0g%>TIq1y0Mv_n%7$OpL3=e(!+<2k*GO~!|8mQWW!%~aYS6Playf6eZ*iOdDZGWm8Exrf-Ilo -!PJG+U}2@Y=?-~S2@jLCt??Y<-}qORQ#Y+DeT?HGQfBM_#ooIBL{)A7<9lF$QPIKFLem@-6~h$67mnm -0i~@n8C}=(qWe^a7h8Z8-6m*~%M@(1Htr!&e^%eu;QfZEtvQSFy^8k$ddH3tz9chO$3L3sT$$+(0D)8RGI!oAKm6zO?6UF_1Mxxn%erFh3<~MTqGb}R|dwG1p5zcjs20Kbfy%cvM*!*O&iqHWm8;9K`9ZHsm=h`Pp;{ -Kd$1P=cYE2|VUf+O(>lA5I4QZMuN{}vm>XZ|tG};u0=9CFTr+_(pzKONx7{r6JA1a|g2Coja-p65aY{+Mdpu`YX(KZAr8Nwb%drNVc5FMl{{ -;8hN$zij$3aE96M|+L!62@Q_&f$0%_l^c+%nsC9@q}R2EyLr-ps&?37V48eeGITt-B*M;u0A|1krG)h -B|?3;zi~@v&R!b`|M{x3)P@)y1-FKDBL=>oo!;-=e8*Q_R3@m+)o;J(EI6Bzw>$EqzrZ-{-R7y(4iaM!1ZY40|P)ii$I<6=I8>-IpqVcYVs_%U&w0d -Keb!4)n-!Cr0GoG~#Qlk4_N=roo`!1>p#BIVo3QlpSLPVw8SKejqg}N$Qk3^g^ektEjlNA}Eh}LjLw1 -(Sj(_B$OQ1+gh8djZpsKJz+lA7u?*U8=5ZrkW&spNfeDMll`-I$t+UX9!9C=_}%bf}F|`_=M2qbZ6=C -hlyf*wuSwdFtz?plG%oKWVKVpB0L)QeTflsJJVKQf@TBTB^g+Aec5KZO5eVOmDqKB840G*gBR~+uGG1 -+=MF?+?G_7A@61YZuZ6qdjs#*6S&pN$FN}ri+6D)Z?~?3hPnuIZA7iH-X5@hGNtSeDm!ZrbnWigc_L# -~$Adc5I)%#d`cIrAkc-!T{!_z=an6~8N>W|5&N;`*=Uj5mY1m`lFCUILXlv)3^YLyo52DGo`D5`Fe-5 -uOA4`^gh>=y(mwoBa*z1_}mzjg?*VLPXm??naNbWJ4wj_y{xXeM0$ugIGaIAdJ --FH9i6xo{-nD1>aGe5sA|3xTlDJO*As3eV2~`MWKYRj$4zcu=kz+4xod9F%&;okD1sXadJzOUB$NHA$ -mw;W*`9LWu*ZyxA(*=xS%lV%K(dIrnXhvW^`t>>Qo^j?&Nr~@IZY@kGgcKx*g~msgi!Td7lnDDZCVtg -Wb8NXG0VC)rjbP}mNCd8G8iAl{3zh?C`KhhQFqz~NsBhB6i(WxQn-1od!~<=5ywtJ?2_ -0Ih5_OUF+&NgIY}ep?*ohrTdlzD3?Xh6!Dr>Nl-hbU6oXaYYrSqr?k%srPjXfR@81W*xJedI(LUHLAC -(-B}j@VLGE~;J28&yBOQ7|e0p%+AieqoMzg^f%|1(37ps{k%NbWx$QhH^lU%z;R<>oAD$M(-Nu8org# -juxyyKKwA;|`u>8YUedsS|D;$3v?l}vY#B~TgQu+e?=|EZ%=Jm3^glnL9BVXQuy>b?gwv|g812} -S$@2`&E^4^gxp{c6($wRvhVJ@8a6?&{X)Gkas5%=k64n$wx|eo)BTl<;8PmPWgvY{yW -e_-w;=wtO&B}UFKu`_SpT}B?Y;C+nIxi3H$9aR@q{sz+ARLG=e0fZxk-v5N|&6o0f^urIy)m*loU~aR -*Zu^*U}_5nRxo+a4|=JuC&u;Q4>-4xZg!T4427bGf(uP -?jGvm#a#vPO4v(xsBGi^Fwog}}c3psJdn%C7@TzA0}1Udf7!tXyaBBc%EDh}FvNn%WYbp_wFEDJ01

    !M_ -UwY&&8VBcg%`U{3<$aGR$4hY`TClMmchK#zcagFmQKkI$yTro4Op^UH7+#?hA#7hpuIOo_2G_NJF&1K -vTwiIjz2{uf=zYu#Jm}gj&2CUGK0ofQ%*aJ@a}N#vs7G1zh)`=p`A4oeVGE61aa=B0&)wn*JxvrFT%I -q#$hSO}|Y8{j43cj6QZ96#VV%lZOIi -2XSzE!J6i(A1?M|`B*3llPo@!3M>t!RABujRj(luT1(h%`(vgbAzr$wSdhbup`&a_HFIj##+fp%Lu?*DakWt& -Y3xDrBExdXY{t0c%RX8`?#vtm_kB|$NK0?C9KR!kCiB={V1UgUI~@8NXXtsLK=P -P<07GHUJ1o{B{a50LW3_$=$uJgVw)pmQ(dkf+DWoBW0<4s0gF#Qj?{Gcf}Gsp|N+OaYgN&2eYV-+y=)4?WJWMU7fJP>C`y{Uf#kv(!oSNjceAb~f6YHxf?h`Pm3;+P=gTpSah%tz>>rsFbf+QWqsTebKkb}K6+9(1w;eCk%16A)Dk(HI!lWRhh+; -L2o~t40TY?wLOkbKMq?}k@uel9<)WZAJb70C|o-1KE*@Db-tMLSZ{D)>L-Rq -&?PC-jTeO53d1MnFA9QmxC0Lv;FW+UWk6j5b^O-&gHPQ75z<;daZW{vj3OvO}dklqv -#9Q(LyXINF7apww+$!QLzIeg@t5PJu)PV6#io#qhNh;Xss8#yO5C51YEss*r<_Fafos*ey^8&@q&L$H -!Nm7G_`$ZF2(X;5n&RS`Q*7lk?U(k{|%RaEV}i1B*vVf*(}+wYt#jVOX@ziL~%J?x7wh`lOxPIDdR*m -aR}>TEBhiJ2e98yI?o$cpcdqjimF5ML(B+t@K1CVcuxGV9VYU0L&eGbnYI>(lTpHg*;)Hfw1a*n~S -O-XV4bGt#D{BKB00cG8=Mnx2)Nd~)^bk<4N*~MDe%nHj1^w~*`5g$lzE|%q(%FsG6^mhf&g%C>Z7AYy -|HVx8}rITXYcSvjOJ!Ohlp9Dq`T+q{-3wkzjfdO35Rd7L26BqOZ7Z3|z4X$|Q*j2n12dIa8*Ztfbm)C -vd?Uxnbk+RQiZ&ql>CFimfsr^1N13~$K5^z9IQH-6TFCj$?;O`V?N*hw7ABxn%I^`*>io8||>y3OAR) -{F97RBTi0;6YZ#gwY3)Lh_;C4H@QelhgM>!dTn43uhw86{Sb9#F;nI`B94czm&#Fv<)rNSvzDiCIzv{0CdQo1mcr8HqqlO_vuhBQ%_ -v!!vuoF|PEW~MY$nAy@mVdhD_g;^+FCrq297v?f4K$v$*JWod9H7qzuXXuT;h7T#ycfty-*V5<0x)#= -h!ivu`(!0Wny|dDr!ulYre;3wAVcjgOPr&++ux^HRov?0!)gi1xlkhTOt%P;4u%fe)<_jxix|AlY&;l -tXswiV=U%EwjV7@3t2rDMzQmC*VgSD5iLdr(xh4j!O1!d@dkX*te2-Xr|?Fy@1Sc75B6;^Bul+uOO0P8ei4S_XYS -VLjGMOX*J8X>IVu!aija9Dc@D=z$&t`XL;um%XL3D(A3SYu&5Bdl?-ewVADoQSt0!Xp{h4}^6ZtUHBu -2CUnJbvCRo23?HF3mI2mqNR`YeJyWFII^cB&QT)^ovtmF69W9u13E^#pRUj5^VHKR$PwCEUUz*-nKc*g;fjk_>f$8BmH+N{dXKyKJId_@=L>boW{Mb6*^ay>yY -nm{C4CFS -V~@8^D|Jbku0AfsW(8zI%B{nU>snNCkVt#MYBpO0Vm?(vOKClc3+BHU8xRYbI#QCu-JA@S$YOC;B*c` -#ScB#P@p=r#kh76`?ea-9C;zJ_z-+C)9d53{^T1+@pbSxpx}hlkqXZeu7;DZxg&q@B+bR&=9-sgfsS@ -6J$zcN@SiQ^Awr2WY&^dM`j(F4P-Wu*+^z%g%+RInQyIcgIXFKMC%B;5`?~i?^(LJ>HDhJ14D1SOuga -)p7t&gDh@Slg>6`4#hsCjN*#nW)j`LLXP;`MeAm8-eCt1>k{#>jKH7$;&z&nL0AHWNMq&ja){L((h)1R|)pM=~Xuqd -x)ATp>%rTtS>3hJcXf60%Eg7C3RDHvnTiQqmQ=aA>=&^pJNz!1fIjski6zrA8e3i~bjTlc({#q< -waO-aF^GDnBnn%d9sZU{Sv}YkZj5G4YEy^P+osX@8H*p2(W6BbgXxZm?V?#~WU|(#cb!>uF3^{xX=R{ -sxAoMbeSyA7y1B-xB0qThV6BOd7;9AZu0oyiLEu_m=Fv}hL>y7-P<*Sco2xq42Ol*1%I5%VWVgpiGdJ -QB5e3BYO-!ZH0dEJ28}Z|w&X>-19hT;Z-BpD;m%n?8tJ)#yZ8tk4e_Nk8+cna`QqPXH{)IHfeq%du+K -39RH>@58B7q@tkyRrHoc0icI(A0Ac{h2SsgVLTsP7bs@8Z`zZ!d#T$jQwR7})58njk>igf=#ayd -fpGmS@z;$9cZZ;urDxT<}tjn!6tGWI7-eqPb%eQiZd5V_tWTq6}%+t4cRlUya&H2gvlk5lKu?dOrPw`$V-luuqv&H)i^?lPkvf+q9cCwr -z+-9RG;K!9D$<=MFvQ3Qah_JSC$*6Q#T@BDjUdC;MY04Wa_D^=NNIEtp7fV!Aay7~PFs^kwXKv8g+pS -6pV$8tY5gUPv(Ja{pCCdv6{Gii(3UN2iP<-^Vj}D*B;mJn`df*l$Cb}o^WelF;+?wb9qdA_rvaFBMqk -FNNw6{bZzTJ=~??NDs#w~ML^uf9OFI=BwImR%XKaG+m+v|v`@52t^yN^@bo(4(y{6hn~A0sL$xt$b2T -2j(9w0lk+Gl~O)vLeWj>_L&!g(67tUB-JXY4jkoVUZY1ej)Ez&T{&=4|-wc5wE**6@8eVd&lh^@OkapdDL#^R4W^;I|}__bA- -fnC#AW=#dU$Hnf#kS -cB0yQOZt^i0xJEy!c+E`8=-%6`77E2U6)cSddequeI4KTuKM18P2%VfpM3|;~*5y|h9;2Yi21^6qTTYkE=I=VC`|4K_V4O29Q4OS_6MA*s@ulk&wCr4K+~>&C3zA1BICMNlo=?X{=TYYmoFb4;5x&*4ab(QeNcNok3t*I*aAlj)bypvK0@Idc;PWoBq -B2Pvt@%(DCQvjUH$xUZpCyGiWLy4v{GNTkYwbV4z8^sB5=w1_Sg+yEE~;i-PR-zFP~mlp -7gV0-e?BxXLZT$TlL$klBEwMna#$yDv)Q``@Ts*G>S6r)!+4$*icbX7JCvJDWoZqs93Rg;LlpdVz@xW -eSNMbMGllK-Q*Ppnhr76%k`^Bsw3f8QGqa1lKEDUrNow(Q048&QBaM@Dg?F3sld@y2BKVyicVIVj}mW ->Q+Oh>s{-8OTjeYR??i4zME%-xI4$=M=*Jm4=9MP4)ifo#+g#VNS;8-ghzP0CuYD0~hGj^fi_~kdQ)j -HkrXA~J@1x%q5wXv4iAuT(s^|nVKF+P6&sl+-m4H*ZaFgEZO${f@C<;km7LR;HqCN_qwn4caXCym?zq -GDd;GP1H(E<-(Lv!#*k)M9``HO^>4%!zxt?43%DW9ev?&{=>)sL<@P23c*53D&Fthte1OWpy`FlU9FG -*;(iPK!(;-ns}*em~+|m|%p8vN-xRCIuA@SkomY+W8nNt>l;XB;o`fyIDumgz_NMgjJV#7n&mf!&NIs -39ChUhst#*Tw1Tj7-T2HX$0!V-TJjgxK)Pw{I2>_RICUKPT;$U3i(Wpw>TF#EP^G=l4WKLlx=WTM(6XA225Yh}c_)YRsl^k}s>I -^b*IIKl-np?Q>VMF>88v?tkaa+x}wiWN*O;x#%r8v|wOr-_F+(h#|fn&+&9^w;8h_qD1?}_-uOJ!vadkF!TKqO2widpgvt#hTlDdJ9#pzNToG_t; -Hsh4t!7&)#Ky7Y?5DS9fwG)-8i&c8b46lGa$DW}M9@KR3k%o0z^e_zt3ati%YRXN26NLDD41Whk5@zB -&on!UuEmW|D6xkid=%IVJ;M8nZGY48^`e3&9tS-fcQCmM#ONU?CEN$Th`VmD|9rRs?ot;2GHiHTr$>0 -2yTCY^BVq}_H8R;>^=a*0Y<9n!5n7aeG#vG8&ovxV?@?XnK8&gDMT6TDXG4%BbQ`Sm|-R<<+PecSn0b -N{Q>fcV12mKqSZT)dJ7M4>TJ)__<^j3iyO2@M(-6%86c+C1Zwn0Yu-_`0gd<<*N#8ZDD)<(CA!zEjB7n*T=RXCZp0=X9dU7rj*fjoM+buc!I}|ip5pw?nh_mO3FTik5pAnRM7mwQR3q -xzR*m@2HdG`2qq%Ct-EFHzeBMhn;^SVb5%0YU)rbYZsv0p#QH^L;R3k8QlnB=7#@h>fvBYuuU^>2A8N8Bc~G)(^$<%nBU<%r-!FXf0S| -2@hPFIuIl8?P`~JK{2E*|xi_KLdBB!fYjVRhF7kW)ESB?1K#owwLQ6zUI)re|5sX)iAs716XY7u9tYCE=jsYOJ%Hq;`H5NZ(-pl!8?oxRi|UibUeBDSWdqiwy2O6mPZ#fW8Btr -)TR2oVA$9WrBhlysmdeqAx*f+od?GcHq%Xo?rQHx$i?KmC5qh-ioZM$L#1Uc7>4#5;Zl2CZmD#K^BT& -4|I9+tQ4Pe41-U?A0RiD``fAmP4T#Q7A)HH6uc4snCoV@8_i%5w6gTSl$xTCe4VqZ$j2c>vGMAk6vu4 -88K#4TbdCCQJ0lkY+Z{|a|jiRLTv{ul5ZR)jl%76&4_xr!A6{0bFe1!XOC`7XzhR{Kwnl-*Xj_vg|5U -;&5G8J+YXpm+6Oc(Avj4e>_ZcaB5)9FCBMt>|Ivo+y}q*kV86YtUHw@t4QuyW+q%)40dpSvr)hPI_E>T%WoV#75%ADdK#r(71>VmwW78)Y}eh?U -JSHY|MWTw5@89GMi3>?!%pH$(a4Unk^qN#67IXm5uj3rR;2Z&YIMOL$&L$JRfY@h2KLmDdGBi!bx|~J -jZ=VoM@>SD`pw4T4i2Hvx3B7TF2Kkw@sFwO=~f??b+J+)I7vEZG>(9Dbi@bh_C$+obKITjMOzWwmAuFa0^Aj?b7W| -lQ!}SJOMkj@N(wGA!gavKuAPo=imRjm+bCtrd6vFdLl7N=9|L~E@ngbIGJfXar?A3_E-ub~uIWa2&e^>pUYlTVa2)rw`ImQ(jY%X05t -UP2haKO*PZOPB|E0=}IFyq1R(r#3HPfkda@+H6V~JxnVegBoKcZ;|J56tcjA!kgjTe@5l=r6lID;c9- -G7o_d>uNzierGfq>E(C@_hf9BEJ8ma(gf~b{>yaH@NG|u-`DtW$yY0u4BqFRxKH6JZsZa@*UDrQl*#v -D%LKfT8p~vTsmpNa*e$E+)MEb#TsC|u+$*EYr$t8N>gb7D -?mJ~Q8B`q~qQ<2nlN{Vw%pxDD6Bu=2&x<<|k)R&15NJ%>5`?hzS8uuG=!*Vp-p)bRUA>&znX%QD!?B0 -dVcp&Aw#{?-gv(!&dEiNCsS8#FHrd@7b%g(LrhblH5l^e-|rE=j`cFxuVTOr_->UA%fiE -wpa>-sQkuiY=#XNJ2&L}l4N{X>-%u}ssnkxuAEafhUdJ7IRduAVv#a{24GX_rB(%MJJj*Ij6bA&*a7y -Tkktr>eoH{s_`(dUw~#vMSBhKr{FQW!#n+8DMMYsM4Aok<4D7YRc6nOMYvGIsqKeFFR+~<+hXj??wy5 -!TN4tmy)Hum}THAw@W(;U&;UJ7=SbU*j1u(A};8|J&$$9-Bb>rEby$0giV$|524MZxPsH1a~h3b+AO( -IDN=N_{Nc)Y$u`~im2FByWme=;A8~}dVIwFo`q^+%VS8yLRnI2jvfI9FBh+O?+5>G7#@)7|(x)`_+9W -j2oOvDNo#km#hOpQsNs~NyK>Y!3Ux~CgP~*pO^WFCAbG6bgoJZW0Et0k!b%sZZ;5os_c^B$p=Q94J_t> -oY3_TMh2R-7CJ;$`t6;P#=B+9 -=d|^Xq&hB5oUb<2G^yA`sZlA|Iw9@bP2$k`Orp+QS927!Owvwtb|Um6{q1Lk)EK9COo9y3rYSmm3f8D --l#WmRpV5ABPwgcE-8(+X?ObdCUG_;(3MoTW_s7sX_{X48^k3s*EBn=($5^EXgKzbs5G^DY( -*;$uH-W5Vcz^0OmIpnu9ehaE5FVuE(MZ)sK+IMk~r7woPG*Rb~AAw9-8on^-#6g?>*d!cb?m#vBz;mP -+0Btzv#<%6F$W{5=?htQ}$cv!cuZcQp^(@D!LVlMb$>!qA5A%d9E>AHV?v92-s}QK#@x~4bB=-!ztr; -wlCHi&sw#vYPXMTce3CjopkYQ^?RUg?4gEL7sREv$z+m)Z9JJcm_Gof53}6>Q_Jj8CGpx4SNn>@VIgZemwdCTnmp!IqcHljO2+(zpl{+bqPxQW%vb!{KuJ@gk;^1ISlt#Ig^2WKITPeTZqOo0v3kGo~CAKBDxRVlB4?>knu8-sR=~*4 -BJ(nvEmQ3Tg=VHp?!tS}4vgTd+rq+N|X&5eQZMvA!!8{jJ`Y0DuhQ05cL~{rAX3E&_l+PrM?n%nUj!~ -kM{|z@&c1yvIfhp2^bxkZn(_zYYjxNg??CyoH@QujMbwN1IX_WS#RP)6Zl^s0A<_>UG3pD}qRbD>Qv0 -@BS(_Fj7pi*Ck(^IZPj<1WWeh9Ex-2N4h$Ro=Fe}YLgvMflYk!8VLj4T5PCS$OfhQVe!ITd8lV6z~f2 -Ac&-Xs}tZvXDF$VgOoz0q9Z;K#L12#MzOG9r#VKZz|hoizo7bz|~gQdFNLgP_ZPaqBtnQe%kT1-WKAj -!c|orUDrCVt5~9~DAvZ?&*IyIudN++^-h==Z?B&*H+@d^n^+zRI~exf6xU8Qz_sPqi2zknvn1l|XJ^* -nlcBWc6Vd7Fa<7%vl6B@ezbB|urs;UDCc7JBrd(fXg;|s;*=}E{>bDY`b-GELXL;EB`~+n)PqU3Vvzs -n;o#Kdkk&?b-_mgnx=SI9haL7kusahE3Sr{nlrjVS86(6Z=-{8orBHdFWK98KE6JHafQ_~;;z|nYu+NqRQL`d&Tl6cpy=K6^+5zoPt -O>9UY+q^X=h&@r?9q(*-s(T*+oe7}-;LQrwraBN9&_B@0e6fYir6>ixUC&ll)2TX{xetAER3|o1`c2P -&nB8p*@N4oRG@%i6X>s2OTiY1Z$$ygvhs$eUBBY!d16RVhrKwxZEuIG$?Ct}8N^cRzgCW2W`=b2m2F@ -99-c*By#E$TCfkdFaPQ!W-3?>*$kW4U-ppc-1U>(8J1lt -KF^whB71R(_N34(*kP7qEIM=+1TO0bUL1%gU~g9OJ3>Iih*DJ;Qwf*Ayv1XhBT1ospCjo@{HT?C&Hd_ -z!6aEU*)FpXdyft6ql!Ji49B={RaCBadGI)e7sYnXvx3_$|HJc2t2$_XAMc$(lfg1rRC2 -pR~c;sg~vwM6q#g2wAKmzA@#uZev%!^Bdyo7iJVO)ULElgF>}I};nz&vaQF_3`QW<9uNfBoQ3fQyEb| -+(4|KJT#gupuZw=pU$SS3G5~|+RHwSjbw?;EYg|ICb4)H!zQy>;SxuGW7uN)8$DMaUCb0sxq=nmL3S}dA)g^_@LUQpAMUxY@kf4a%@g$ -HvPstbddKgW@&0$oQ%_s(7jRs5q#3tNF_LEcfKC=BwtZ=7 -V%HC_Ov*WhyZc2G};ePa|v*qR7iFjnc^!6gIg|qfp-ONrZF0SDX}qoA-N$pheD4%|}gJO;1fnjgJp-V --_zSQzV!plb*qbBzg?6ET@MhB@NBY9J*X&l1$YeO%Q8YU|BrhA}V)M!4i*s@&a1{tSOd4o9Y;CUuZ9~ -p+nCTX(ZV5MMXvzT607lW>^=9`m@Zp+B2+jn2da3rF@V+(nXp`3+W&YinknTAU@(E4ok_f*{zuwB8>^ -w9ATT5ZMPOFZfTaxe2elj%`V%L3i5?Rid``?Y>10^2#;_G1AlfawW_JaJ!Wcg5$t9*gg7dZ{zQIxMH8 -$R3(ORYEj1(0F6lx^}zvy5R0TuJ76FhTeugefx##(EsVUQ@r>4!AdE2bnbLOVc% -b33)(~`9?J12Kh-s1d%!rQGyHv5vL%a-5qr#n}yEM_qUR`aqPTe7uafd#d{n0Rdg@rISS#6py1QVT%+ -SOuThh^H2lyFs*8s|aThbaZ6x6~0cS_LM?@-eF|l6p~7l*u++R&?YAnPezLnt@%$S`41U)w9qA<~ -fjVwDLLkvQ)7=+}o2$_c563GT?GKE`~NOQ3Wn@yAyku5_=L|Fns&Oip*Mcc_I8DOB_3_>_>mL*5pMT;W$pe|er5a*9L9Ctgq~r@EM2i^MxZE~ -0d0+(8$xvx=M`y%45=C^v}o@4T240!+EA8|sgM;07D_UI0lit-AW?eYfCV0$yvsAA)so5=I -D&Izxo;J?SewO+6*xhX<_J1l*7wbx`p%~qHo+VDqO=wgtp>`Wkm4>->Q_!Zk4%|bwWegB#a<=aGM{0; -!dI8qx5cZxVriJcjN~y&HSDDjqv1GC~6AnE}`&NF#bIKIuouQZ -O!lt_o|<(PZy(IjLp>)i!S5ea4&hCCF($KJ#vpzNbfl!ra|;hg~G)u-c>B*IGN4L0uSay^DddNDU0dI -#A@G*7fm8WHknw`2_myI+#5~o8n~0$1@2@*73~ujOsqSZ$z=8*^Y||&c0HMeWMa3qfy^7=e%{1-lNn4 -VMmH}um{=b&E6PrMZ-TZ&B)|c@Abzi|8ZLPHvXk7(sKWm@$DX2Z=O7^X -++gWcA0thRT%r`ZIr@Ag$SK_QNwGoYFx+!|3E00XjA+JUlHqfC|-sDr35N+4JaOY+2zldUOTV$ztUFznul2B^{2VYKkxXfz5aZz@=uLx_@6HR{{_$Gb(;O(%>kOG -zpH(kae$`j&*v)tnmFKJ{rffg@z<69yx+Y2u9{?p?&j}TOK%h1EnUP77_4N~YDa0=U3Zr|*SOYJth;C -ZhCknX-(T*3;K7F;e&o@|{`&Y68=u^?`KhO$+4Agj&%f|rfBXB3FTMQAt6N{&_WB!dzV-Gy+jmq}?X2 -GQ?(RK%_r3T2{trGpaPZJahd=(uC!Zeq?C9smzWDO1<6nRC?TM4$eJ|Dg;6C-wA5Yhw`RQ!k&*$nJ&i -`_u@!}=^FE32Az3^~V3lsm-^#4!i|8HLyYTN&RMfpRQaR)^r_9DAhvET1y$4xxyxM7`_{T?s-dN2D1F -Z-Xp?Du-vaXXJ{-|A(DBA<40dSaKtM2os+mX?#BS+F$4mSM{&$cOv%B8zqM{9MZdTYP?2fpxL)NR#6v -W)#_?7ua%^Sdt40?S;ZkewUMBNt9y7Ld*DqWoc|WOA#xLE!PVx*lZkzF9(wd@NEG*2PY -^qoIKWi-A`Vl$Ri(lew!_PF@Ee%<6L>nIw8ZBk!P@2tp!#?PQD>8!=Aq&+hQGK=wBoPSjEaY!sX;yG7 -Yu@LqVY>-(Xp0Szxzi%+JFj@$`IH;Fm>(WXQ-jWE4`MObU-xV=BBMUSX`3j7&q8wO}!Y7SUP1KKN!4P -1M9udCnk{F{4tB2?g^F3n&We$dDzF5NnsFi=2llGgLh0WrfsGvaWn1QFkYip>zJ+)wuc*~DmS*SJEJcMG3oM3=EE`cUaHze=I&^+c{!mN)l7VW(7J -SvjbI6GT=2#2z7hCdeo{XC1Ww9>K${P -1M<+G{JLdR4zyC`RIVV)&jmB+I)bBb)UZ4oyQDa;fC`Cv3-wK3F}Y-v4jY-)%3v0|$43vV!8(Lba2mH -k5pUD`5_qOmK9%1s(Sa`Fk&2+|%ymCG-kGisd-RS222V3}08`Io>znA~>Mibj%y -mI`{OjpkT<7sWD5A*36SB`(*r;!Y!UAD1y`omk$Yu&I_Am#qHGqm -U9amG|4O|qzp{V(@+;#p`02LG?ek|$?8j%?_D_Dx#HPK~+`nZxMZI(7dV6#GmGOV(y({~dynki-)_-P -VTe@mIWxXGJWNL}uyEVB525VU28P@9apM6UIzI{sFHQt~4@7B=VBS!AJ5~=4(W4*K~77VD9Gi=#u>~? -zdp25(lSDw|dEi48jW{WxjB1ws`abmdW6@#%~v}qYRwh0B+6zatDEOLDFGIlMCE-K1dn6IQTt)MA!Hd -ix2B%sWMDD|&^DNv80A%|zDLRTMhO)AK==UFDu*k)43VuXFlcM3-9t>V4VH_4u7%Nf7iW|>xymXm3T$ -k>wjzaOgl4BHSHhACc9A7BKA$F>7q}_NEl^opEYGiJrnkqtVc=7JLUgb6|8}sRSn)R7|lr@j -&%uK5&-~N7SRDy!(SV5BnkPDCBzR`3MXtn$Wv-Lu0@e5nUhhN*l}wsuLY}=S8 -;Om#XJygIp88DU3k8z`>jVpSzgg6FlgWsQ3p1=1PdTTdY`w}WHN%>NDNPznk$o~JXUVmY;M26q1uSVa -A-4f)JB)?MwXa~8)_QmTpXYzcGY{8@E2c){pwSbS^OT<+Y=-{%j+?LW`|{~z!ZE~tK~`;J)k9mio -*Uh-8;tnFj32ChuQ2{|Z^!Mb|@lh@sKirG#v+bez@y!@_J;={oo*dKC@0&wr6xQ|fYqm}m<7`_>?6mX603r%zY@Mg!FiQpu2%dVihrq+&ISVPy!fl~zEQzvvy$I4iu -*PNzYi7vPZj^*0J$vGGW+*FL2W*=zoE_N-;UaU%hUG9OxeHfk8S_6c>j^l|8*Wvp8wZbA%w;UK3d&o6 -3FvbFJIk9aen$M+1&V)Y_59zxVX#Kw6a8)TPS?hrlXq-Z6v$ul5Cn3bL&-xk5X)(a&+!d14}=ed-UeZ!yi8KBaw^#mmZc?6jRvk9gVBof3Dj3pROFqj~OpeI3Bf< -S`CpD0a&V+03(lEd#J^L2tP1osh?5)=~5CYVN$NHCfph@kO|N#J{>@#Vkrgba%QL*F&*a$IrMnEGtdM -6+=JX!c@2Gz+D;>u-!^TzOvbmF*?%*}wE?TA07py)FOW8on+6|2+Tt^K1Led|Eud%A>|N(a1HN0Q~qI -@twi%-tOM%4?khLDo~#x3WO7{hZ=t!ij`+Lg&%Be8_;$%O4{Ch)N($leoyc`xBB`2AqD+^{Lw1EV4QH -8j&ve(8JQTQttS(6uPyR4#VdS(sH;kHM?D=O6Y*=wguhP1N-$qDkcmnfO(y1K$(okwXvB_?>{i^f=(n -U5cjWtEEADt+^kN`y_sTZh54Pccybbr-Hr&0L)!RL&4R=Eu?%}Ptqfa-Hd-8k@lgK=wY<3%M(JT)bw8Y9EI05y@&o?BhF8&@9XIuH$JHE55BBnw|V6s%H(;jN -now+$ZP!>GGqvwIB_CNOG{%pIXTR3x62h;QbPYF?7;^gWY0YF4142^H&|t5CHwT#PuZnQmzes=Q3R$J -T%Jl3+I#kw1Ty`erArTp*8}`?V@Y7+(xrFai2$eh{>B4*e?58cp?4jVz%M)|!M;rAcN$~v$|d2f{caeqW3-YNY?^2bAAiskg>_q=)$e*g -XhyJd%Zk^Wc6Uw)_jId>hvM^(51zs3XSzoNHu@E7>6Zd|j!asN4_f%i*OXU9{3#ym=&-u>R**LBdN`w -tKaStuXfk^frN<+MB=!8NnGi)A-=PTYThLaaq`=^CGXc-Uw;fOv2C;K1g-FYFg#0pxxvdMt0C=wdB_@ -c(erwEYc@2TCeM_ye3@oW7%>QFtRfm2b_X4P1DO@<$Sq?2Yh3U&j&ITcj^=3sm^HTzO<~*4VqU__%M$ -IAVd`Uf@fhDPgjpY6CP%IPZAl+JIsLUcxj4z61dTdV<~@d>*9m`mgc%@ZrN*Qc@C2Nl9UM+;K-U9$&w -HJ$vrC=h&;SzAAY9lTSWjCr_UA@OdGYZC<2y`{K3$)Wn|(|HNO*+QEu9+Z&En(ZMcGZ6G -KHn4rm~qcXR=I_1A(gYHDg&-RU3Lx9 -2<*vGC_4R^R@c0a+{vw$%e_|RPb=vKTZ#qz8??esQz^`FZd>EU>r?BPxcJ?6Oz_#+2*vI^kDo(mo9#nmrZ8%@BiRAs{8|>zc<0*~A6Cftl)D(e{ZYm@yv+DZdl -^6Ul~;TN#UDxW6Dj_DiocBFucP>zDgG-Ie>=tBL-8rk4aX?{Ns3?Vi9eW9xRp}Kp%m_>6rQ3Kc2NpnQ -wp`6Is0iCXLVCJJ9j&0^&2=l{}N{x4slQX>nZ+C6n`AWpGxr;Q2ZqnzntPfMDd@d_^(p@ofQ87#Xm;z --Cpr^N(pqM_}5eXJ`{fd#UD)ZZ=v`zDE{pfe=Ws-n&R)E_(#3sH-FOQ$J;3;W_de|TYm^jg(_$MUAm=nfP^5&T6apR --Y2O~iL{(bu>{_#ns=!EE)*cgfryoL-83%ez~3CV<{1ofG4eeiYZLx#vHg!JuW=r((*9Ha#_Dn<$@J|vCrQf4jfOHfC{A0{X@d*h@=A_=u0+9c}8%6r# -lVTIhNwG;2Zs^fX2>|~=p*JNmIsF)sg<5LqV-Y|pKau`0V-gi{k~tws5Fv6<%b)O1j~!+L3JH`(j|mg -Hbm>9?JpSn;{nJfD&6L3;^1ori1c5?NkAIBbPd~a-xH%y2pmzQmP3Jhm5GW=kj3Y*B@{b-hB0Qph#*RJ#CiusUBX&(-P5vk!VlY#O&YdQw$0Ut260b4lo -xc3U1$B;0il%am_wq*ivBI0&M@7UKp27TzqO`IFSboAb)z27Sr6 -<1~<{{A0#*#jQZAW4RJGuElun%HtGuJU4afR52b|X_@F5dpxu37FM2PW)E6p*sH6}?8S#yvQc|!OhIx -k?o-ZEzmdlb%gDU{{`=V@k37O2d+af`apOj|dGls5R(R!=SHyVm%{Si^V}*ZIKEocN@y3fZR@k*`7yI -zT55?Hv#5Z5DZ@&44oj7rVx!rDd>eMOr)0xv^Z1D5XKeLM$FR~5woV`Tvhc0-@*`YZ2GKxAnYM1L5P) -E0%I=XwPqkEcl=C870d^?-M_p;mhVYY!EV=wWO)PL7{#itH2Ihf*8XS;qd#UDxWO%y+Y;?JV^w^RJPD -gI*=|7D85kK#A=bN?Bq{AZl<|LQoUhav-d^ynczfpr(FsXc=G4;?xbnx=agdh`hH(dWkAL7h6?Kz!D{ -Z)pGi1N#r{9HbxAk=}ds={Im7h3y>FduZ6uFxIp0jiEz(wIAA<0(9!w@rIs#`iBnf&_47A#lc_*y>X~ -c7Z^%$23^ysV~^nLZXDV{r)%HN&o6M0Uf)CO-{Zz!9dzyCFf^!lw*XB*-=TPVwev&z*9QA^p|=kG+P7 -;LM(wLl|Lc8wk}pN+Memef;U;K*ojE%)2p05IJE& -6M`!XP|0T=bULhluUjJQ2ijMLByFkGeI)-wXVdT>m?s-}A`>_+l$Yx8A*bqfh}jPC1}myLKd5gic~AD -WQUdB!$?{p_cd`_4q3323}=&lq_)~s

    197e85843d
    -
    -
    \ No newline at end of file diff --git a/spaces/congsaPfin/Manga-OCR/logs/Ejen Ali Agents Arena - The Ultimate 3v3 Battle Game.md b/spaces/congsaPfin/Manga-OCR/logs/Ejen Ali Agents Arena - The Ultimate 3v3 Battle Game.md deleted file mode 100644 index 0b1d0da663d12b1488f8ed954e7b554ec7ed8d51..0000000000000000000000000000000000000000 --- a/spaces/congsaPfin/Manga-OCR/logs/Ejen Ali Agents Arena - The Ultimate 3v3 Battle Game.md +++ /dev/null @@ -1,121 +0,0 @@ - -

    Ejen Ali: Agents' Arena Download Guide

    -

    If you are a fan of the Malaysian animated series Ejen Ali, you might have heard of the game Ejen Ali: Agents' Arena. It is a high octane 3v3 battle arena game that lets you challenge and cooperate with other players in a capture the flag mode. You can choose from a multitude of agents, each with their own unique attributes and skill sets, and collect and unlock new upgrades to strengthen your abilities. The game also features various maps, characters, and game modes to keep you entertained.

    -

    ejen ali agents arena download


    DOWNLOAD ⚹⚹⚹ https://urlca.com/2uO8qJ



    -

    Ejen Ali: Agents' Arena is a popular game among fans of the series and casual gamers alike. It has received positive reviews from players and critics, who praised its graphics, gameplay, and originality. The game has also won several awards, such as the Best Mobile Game at the Malaysia Digital Economy Corporation (MDEC) Level Up KL Awards in 2020.

    -

    If you are interested in playing Ejen Ali: Agents' Arena, you might be wondering how to download it on your device. In this article, we will show you how to download Ejen Ali: Agents' Arena on different platforms, such as Android, iOS, and PC. We will also give you some tips and tricks on how to play the game better and have more fun.

    -

    How to download Ejen Ali: Agents' Arena on different platforms?

    -

    Ejen Ali: Agents' Arena is available on various platforms, such as Android, iOS, and PC. Here are the steps to download it on each platform:

    -

    Android

    -

    If you have an Android device, you can download Ejen Ali: Agents' Arena from the Google Play Store. Here are the steps to do so:

    -

    ejen ali agents arena apk download
    -ejen ali agents arena mod apk download
    -ejen ali agents arena ios download
    -ejen ali agents arena pc download
    -ejen ali agents arena game download
    -how to download ejen ali agents arena
    -ejen ali agents arena free download
    -ejen ali agents arena download for android
    -ejen ali agents arena download for iphone
    -ejen ali agents arena download for windows
    -ejen ali agents arena latest version download
    -ejen ali agents arena offline download
    -ejen ali agents arena online download
    -ejen ali agents arena update download
    -ejen ali agents arena hack download
    -ejen ali agents arena cheats download
    -ejen ali agents arena tips and tricks download
    -ejen ali agents arena gameplay download
    -ejen ali agents arena review download
    -ejen ali agents arena trailer download
    -ejen ali agents arena characters download
    -ejen ali agents arena skins download
    -ejen ali agents arena maps download
    -ejen ali agents arena modes download
    -ejen ali agents arena features download
    -ejen ali agents arena best agent download
    -ejen ali agents arena best team download
    -ejen ali agents arena best strategy download
    -ejen ali agents arena best skills download
    -ejen ali agents arena best upgrades download
    -ejen ali agents arena ranking system download
    -ejen ali agents arena rewards system download
    -ejen ali agents arena in-app purchases download
    -ejen ali agents arena discord server download
    -ejen ali agents arena facebook page download
    -how to play ejen ali agents arena with friends download
    -how to play ejen ali agents arena on pc download
    -how to play ejen ali agents arena on mac download
    -how to play ejen ali agents arena on laptop download
    -how to play ejen ali agents arena on ipad download
    -how to play ejen ali agents arena offline download
    -how to play ejen ali agents arena online download
    -how to install ejen ali agents arena on android download
    -how to install ejen ali agents arena on ios download
    -how to install ejen ali agents arena on windows download
    -how to uninstall ejen ali agents arena on android download
    -how to uninstall ejen ali agents arena on ios download
    -how to uninstall ejen ali agents arena on windows download

    -
      -
    1. Open the Google Play Store app on your device.
    2. -
    3. Search for "Ejen Ali: Agents' Arena" in the search bar.
    4. -
    5. Select the game from the search results and tap on "Install".
    6. -
    7. Wait for the game to download and install on your device.
    8. -
    9. Once the installation is complete, tap on "Open" to launch the game.
    10. -
    -

    iOS

    -

    If you have an iOS device, such as an iPhone or an iPad, you can download Ejen Ali: Agents' Arena from the App Store. Here are the steps to do so:

    -
      -
    1. Open the App Store app on your device.
    2. -
    3. Search for "Ejen Ali: Agents' Arena" in the search bar.
    4. -
    5. Select the game from the search results and tap on "Get".
    6. -
    7. Enter your Apple ID password or use Touch ID or Face ID to confirm the download.
    8. -
    9. Wait for the game to download and install on your device.
    10. -
    11. Once the installation is complete, tap on "Open" to launch the game.
    12. -
    -

    PC

    -

    If you want to play Ejen Ali: Agents' Arena on your PC, you will need an emulator that can run Android apps on your computer. One of the most popular emulators is GameLoop, which is designed for gaming purposes. Here are the steps to download Ejen Ali: Agents' Arena on PC using GameLoop:

    -
  8. Download GameLoop from its official website or from a trusted source . You can choose between the 32-bit or the 64-bit version depending on your system.
  9. -
  10. Run the installer and follow the instructions to install GameLoop on your PC.
  11. -
  12. Launch GameLoop and log in with your Google account or create a new one.
  13. -
  14. Search for "Ejen Ali: Agents' Arena" in the search bar and click on "Install".
  15. -
  16. Wait for the game to download and install on your PC.
  17. -
  18. Once the installation is complete, click on "Play" to launch the game.
  19. -
-

What are the features of Ejen Ali: Agents' Arena?

-

Ejen Ali: Agents' Arena is a fun and exciting game that offers many features for players to enjoy. Some of the main features are:

-

3v3 multiplayer match

-

In Ejen Ali: Agents' Arena, you can team up with two other players and compete against another team of three in a capture the flag mode. The objective is to capture and hold as many bases as possible while preventing the enemy team from doing the same. The team with the most points at the end of the match wins.

-

Multiple bases and battlegrounds

-

The game features various bases that you can capture and defend, such as the MATA Academy, Cyberaya, and Neo City. Each base has its own layout, obstacles, and hazards that you need to be aware of. The game also has different battlegrounds that change every season, adding more variety and challenge to the gameplay.

-

Various agents and skills

-

You can choose from a wide range of agents, each with their own unique attributes and skill sets. Some of the agents are Ali, Alicia, Bakar, Comot, Dos, Jet, Rizwan, Roza, and Zass. Each agent has a passive skill and an active skill that can be used in combat. You can also customize your agent's appearance and equip them with different gadgets and weapons.

-

Upgrades and new content

-

You can collect coins and gems by playing matches, completing missions, and opening chests. You can use these currencies to unlock new agents, skins, gadgets, weapons, and emotes. The game also updates regularly with new content, such as events, seasons, modes, maps, characters, and more.

-

What are some tips and tricks for playing Ejen Ali: Agents' Arena?

-

If you want to improve your skills and performance in Ejen Ali: Agents' Arena, here are some tips and tricks that you can follow:

-

Choose your agent wisely

-

Before you start a match, you should choose an agent that suits your playstyle and strategy. You should also consider the strengths and weaknesses of your teammates and opponents. For example, if your team lacks defense, you might want to pick an agent that can protect your bases or heal your allies. If your team needs more offense, you might want to pick an agent that can deal high damage or disrupt the enemy team.

-

Capture and defend bases

-

The main goal of the game is to capture and hold as many bases as possible. You should try to capture the nearest base as soon as possible and then move on to the next one. You should also try to defend your bases from enemy attacks by using your skills, gadgets, weapons, and obstacles. You should also be aware of the timer and the score difference between your team and the enemy team.

-

Use your skills strategically

-

Each agent has a passive skill and an active skill that can be used in combat. You should know how to use them effectively and efficiently. For example, you should use your active skill when it is fully charged or when it is most needed. You should also use your passive skill to gain an advantage over your enemies or allies. You should also be aware of the cooldowns of your skills and avoid wasting them.

-

Communicate and cooperate with your team

-

Ejen Ali: Agents' Arena is a team-based game that requires communication and cooperation among players. You should use the chat or voice function to communicate with your teammates about your plans, strategies, locations, enemies, bases, skills, etc. You should also cooperate with your teammates by supporting them in combat, capturing or defending bases together, sharing resources, etc.

-

Conclusion

-

Ejen Ali: Agents' Arena is a thrilling 3v3 battle arena game that lets you play as your favorite agents from the Ejen Ali animated series. You can download the game on different platforms, such as Android, iOS, and PC, and enjoy its features, such as 3v3 multiplayer match, multiple bases and battlegrounds, various agents and skills, and upgrades and new content. You can also follow some tips and tricks to play the game better and have more fun.

-

If you are looking for a game that combines action, strategy, and teamwork, you should definitely try Ejen Ali: Agents' Arena. It is a game that will keep you hooked and entertained for hours. Download it now and join the adventure!

-

FAQs

-

Here are some frequently asked questions about Ejen Ali: Agents' Arena:

-

What is the genre of Ejen Ali: Agents' Arena?

-

Ejen Ali: Agents' Arena is a 3v3 battle arena game that belongs to the action and strategy genre. It is based on the Ejen Ali animated series that follows the adventures of a young boy who becomes a secret agent.

-

Who are the developers of Ejen Ali: Agents' Arena?

-

Ejen Ali: Agents' Arena is developed by Media Prima Digital, a subsidiary of Media Prima Berhad, which is one of the largest media groups in Malaysia. The game is also co-developed by Common Extract Sdn Bhd, a Malaysian game development studio.

-

Is Ejen Ali: Agents' Arena free to play?

-

Yes, Ejen Ali: Agents' Arena is free to play. However, it also offers in-app purchases that allow you to buy coins and gems, which are the currencies used in the game. You can use these currencies to unlock new agents, skins, gadgets, weapons, and emotes.

-

How can I get more coins and gems in Ejen Ali: Agents' Arena?

-

You can get more coins and gems in Ejen Ali: Agents' Arena by playing matches, completing missions, and opening chests. You can also watch ads or buy them with real money.

-

Where can I find more information about Ejen Ali: Agents' Arena?

-

You can find more information about Ejen Ali: Agents' Arena on its official website, Facebook page, Instagram account, YouTube channel, or Discord server. You can also contact the developers via email at support@ejenaliarena.com.

197e85843d
-
-
\ No newline at end of file diff --git a/spaces/congsaPfin/Manga-OCR/logs/Enjoy the Ultimate Strategy Game with Total Conquest Mod APK (Offline and Unlimited Money).md b/spaces/congsaPfin/Manga-OCR/logs/Enjoy the Ultimate Strategy Game with Total Conquest Mod APK (Offline and Unlimited Money).md deleted file mode 100644 index 3bd0e0c746078cb55f8f74a1b04471c95d4d03d2..0000000000000000000000000000000000000000 --- a/spaces/congsaPfin/Manga-OCR/logs/Enjoy the Ultimate Strategy Game with Total Conquest Mod APK (Offline and Unlimited Money).md +++ /dev/null @@ -1,148 +0,0 @@ - -

Game Total Conquest Mod Apk: A Guide for Beginners

-

If you are a fan of strategy games, you might have heard of Game Total Conquest Mod Apk. This is a modified version of the original game Total Conquest, which was developed by Gameloft and released in 2013. In this game, you can build and manage your own Roman city and army, and compete with other players online or offline. In this article, we will tell you everything you need to know about this game, including its features, how to download and install it, and how to play it.

-

game total conquest mod apk


Downloadhttps://urlca.com/2uO6gB



-

What is Game Total Conquest Mod Apk?

-

Game Total Conquest Mod Apk is a strategy game that is inspired by the ancient Roman civilization. You can create your own city with different types of buildings, such as barracks, temples, markets, walls, towers, and more. You can also train and upgrade various units, such as legionaries, archers, cavalry, catapults, and more. You can use your army to defend your city from enemy attacks or to conquer other cities.

-

What are the features of Game Total Conquest Mod Apk?

-

Game Total Conquest Mod Apk has many features that make it different from the original game. Some of these features are:

-
    -
  • Offline mode: You can play the game without an internet connection. This means you can enjoy the game anytime and anywhere.
  • -
  • Unlimited money: You can get unlimited money in the game. This means you can buy anything you want without worrying about running out of resources.
  • -
  • Various units and buildings: You can choose from a wide range of units and buildings in the game. Each unit and building has its own advantages and disadvantages. You can customize your city and army according to your preferences.
  • -
  • Mutliplayer mode: You can play with or against other players online. You can join or create a legion with your friends or other players. You can chat with them, share resources with them, or fight with them.
  • -
-

Why should you play Game Total Conquest Mod Apk?

-

Game Total Conquest Mod Apk is a fun, challenging, and addictive game that will keep you entertained for hours. Here are some reasons why you should play it:

-
    -
  • You can experience the thrill of building and managing your own Roman city and army.
  • -
  • You can test your skills and strategies against other players online or offline.
  • -
  • You can enjoy the stunning graphics and sound effects of the game.
  • -
  • You can explore the rich history and culture of the ancient Roman civilization.
  • -
-

How to download and install Game Total Conquest Mod Apk?

-

If you want to play Game Total Conquest Mod Apk on your device, you need to follow these steps:

-<

After you have downloaded and installed the APK file, you need to launch the game. Here are the steps to do that:

-

total conquest mod apk offline
-total conquest mod apk unlimited money
-total conquest mod apk latest version
-total conquest mod apk android 1
-total conquest mod apk free download
-total conquest mod apk revdl
-total conquest mod apk rexdl
-total conquest mod apk hack
-total conquest mod apk no root
-total conquest mod apk 2023
-total conquest mod apk unlimited crowns
-total conquest mod apk unlimited tokens
-total conquest mod apk unlimited everything
-total conquest mod apk for pc
-total conquest mod apk for ios
-total conquest mod apk data obb
-total conquest mod apk pure
-total conquest mod apk happymod
-total conquest mod apk online
-total conquest mod apk offline download
-download game total conquest mod apk offline
-download game total conquest mod apk unlimited money
-download game total conquest mod apk latest version
-download game total conquest mod apk android 1
-download game total conquest mod apk free
-download game total conquest mod apk revdl
-download game total conquest mod apk rexdl
-download game total conquest mod apk hack
-download game total conquest mod apk no root
-download game total conquest mod apk 2023
-download game total conquest offline mod apk terbaru 2023
-download game total conquest offline mod apk unlimited crowns and tokens 2023
-download game total conquest offline mod apk unlimited everything 2023
-download game total conquest offline mod apk for pc 2023
-download game total conquest offline mod apk for ios 2023
-download game total conquest offline mod apk data obb 2023
-download game total conquest offline mod apk pure 2023
-download game total conquest offline mod apk happymod 2023
-download game total conquest online mod apk 2023
-cara download game total conquest offline mod apk 2023
-cara install game total conquest offline mod apk 2023
-cara main game total conquest offline mod apk 2023
-cara cheat game total conquest offline mod apk 2023
-tips and tricks for game total conquest offline mod apk 2023
-best strategy for game total conquest offline mod apk 2023
-review of game total conquest offline mod apk 2023
-gameplay of game total conquest offline mod apk 2023
-features of game total conquest offline mod apk 2023

-
    -
  1. Tap on the game icon on your home screen or app drawer. You will see the Gameloft logo and the game title.
  2. -
  3. Wait for the game to load. You will see a loading screen with some tips and hints.
  4. -
  5. Choose your preferred language. You can tap on the flag icon on the top right corner to change the language.
  6. -
  7. Agree to the terms of service and privacy policy. You can tap on the links to read them, or just tap on the accept button to proceed.
  8. -
  9. Choose your game mode. You can play online or offline. If you play online, you will need an internet connection and a Gameloft account. If you play offline, you will not be able to access some features, such as multiplayer mode and social features.
  10. -
  11. Create your city name and avatar. You can tap on the random button to generate a random name and avatar, or you can customize them by tapping on the edit button.
  12. -
  13. Start your game. You will see a tutorial that will guide you through the basics of the game. You can skip it by tapping on the skip button, or you can follow it to learn how to play.
  14. -

How to play Game Total Conquest Mod Apk?

-

Now that you have downloaded and installed the game, you might be wondering how to play it. Don't worry, we have some tips and tricks for you to help you become a successful Roman governor. Here are some of them:

-

How to start your city

-

When you start the game, you will have a small city with a few buildings and units. Your first task is to expand your city and make it more prosperous. You can do this by:

-
    -
  • Building more houses to increase your population and income.
  • -
  • Building more farms to produce food for your units and citizens.
  • -
  • Building more markets to trade resources and earn money.
  • -
  • Building more temples to worship the gods and gain their favor.
  • -
  • Building more workshops to research new technologies and improve your buildings and units.
  • -
-

How to upgrade your buildings and units

-

As you progress in the game, you will need to upgrade your buildings and units to make them more efficient and powerful. You can do this by:

-
    -
  • Spending money and resources to upgrade your buildings. Each building has a maximum level that depends on your city level. Upgrading your buildings will unlock new features and benefits.
  • -
  • Spending money and resources to upgrade your units. Each unit has a maximum level that depends on your barracks level. Upgrading your units will increase their stats and abilities.
  • -
  • Using crowns to speed up the upgrading process. Crowns are a premium currency that you can get by completing achievements, winning battles, or buying with real money.
  • -
-

How to collect resources and money

-

Resources and money are essential for building and upgrading your city and army. You can collect them by:

-
    -
  • Gathering them from your buildings. Each building produces a certain amount of resources or money over time. You can tap on them to collect them.
  • -
  • Raiding other players' cities. You can attack other players online or offline and loot their resources and money. You can also get crowns and trophies by winning battles.
  • -
  • Completing quests and achievements. You can access the quest menu from the bottom left corner of the screen. You can complete various tasks and challenges to earn rewards.
  • -
  • Watching ads or buying them with real money. You can watch short videos or make in-app purchases to get more resources, money, or crowns.
  • -
-

How to defend your city and attack other players

-

Besides building and managing your city, you also need to protect it from enemy attacks and conquer other cities. You can do this by:

-
    -
  • Building walls, towers, traps, and gates around your city. These structures will help you defend your city from invaders. You can upgrade them to make them stronger.
  • -
  • Placing units in strategic positions around your city. You can assign units to guard your buildings or patrol your walls. You can also use special units, such as spies, assassins, or priests, to sabotage or support your defense.
  • -
  • Choosing your targets wisely when attacking other players. You can use the map menu from the bottom right corner of the screen to find other players online or offline. You can also use the search button to find players with specific criteria, such as level, trophies, or resources.
  • -
  • Using the best strategy when attacking other players. You can scout their city before attacking to see their layout and defense. You can also use different types of units, such as infantry, cavalry, ranged, or siege, to exploit their weaknesses or counter their strengths.
  • -
-

How to join or create a legion

-

A legion is a group of players who cooperate and compete with each other in the game. You can join or create a legion by:

-
    -
  • Tapping on the legion button on the top left corner of the screen. You will see a list of legions that you can join or create.
  • -
  • If you want to join a legion, you can browse the list and tap on the join button next to the legion name. Some legions may require an invitation or approval from the leader or officers.
  • -
  • If you want to create a legion, you can tap on the create button at the bottom of the list. You will need to choose a name, a motto, a flag, and a language for your legion. You will also need to pay some money and crowns to create it.
  • -
  • Once you are in a legion, you can chat with other members, share resources with them, request reinforcements from them, or fight with them in wars or events.
  • -
-

Conclusion

-

Game Total Conquest Mod Apk is a great game for anyone who loves strategy, history, and fun. You can build and manage your own Roman city and army, and compete with other players online or offline. You can enjoy the game's features, such as offline mode, unlimited money, various units and buildings, and multiplayer mode. You can also learn how to download and install the game, and how to play it with some tips and tricks. If you are ready to conquer the world with your Roman legion, download Game Total Conquest Mod Apk today and start your adventure!

-

FAQs

-

Here are some frequently asked questions about Game Total Conquest Mod Apk:

-
    -
  1. Is Game Total Conquest Mod Apk safe to download and install?
  2. -

    Yes, Game Total Conquest Mod Apk is safe to download and install, as long as you use a reliable source and a virus scan tool. However, you should always be careful when downloading and installing any APK file, as some of them may contain malware or viruses that can harm your device or data.

    -
  3. Is Game Total Conquest Mod Apk legal to use?
  4. -

    Game Total Conquest Mod Apk is not an official version of the game, and it may violate the terms of service and privacy policy of Gameloft, the original developer of the game. Therefore, using Game Total Conquest Mod Apk may result in some risks, such as being banned from the game or losing your account. You should use Game Total Conquest Mod Apk at your own discretion and responsibility.

    -
  5. How can I update Game Total Conquest Mod Apk?
  6. -

    Game Total Conquest Mod Apk may not be compatible with the latest version of the game or the device. Therefore, you may need to update Game Total Conquest Mod Apk from time to time to enjoy its features and benefits. To update Game Total Conquest Mod Apk, you need to download the latest version of the APK file from a reliable source and install it over the existing one. You may also need to backup your data before updating, as some updates may erase your progress or settings.

    -
  7. How can I uninstall Game Total Conquest Mod Apk?
  8. -

    If you want to uninstall Game Total Conquest Mod Apk from your device, you can do so by following these steps:

    -
      -
    • Go to your device's settings and tap on apps or applications.
    • -
    • Find and tap on Game Total Conquest Mod Apk from the list of apps.
    • -
    • Tap on uninstall and confirm your action.
    • -
    • Wait for the app to be uninstalled from your device.
    • -
    -
  9. How can I contact the developer of Game Total Conquest Mod Apk?
  10. -

    Game Total Conquest Mod Apk is not developed by Gameloft, but by an unknown third-party developer. Therefore, there is no official way to contact the developer of Game Total Conquest Mod Apk. However, you may try to find some information about the developer on the website or platform where you downloaded the APK file. You may also try to leave a comment or a review on the APK file page, and hope that the developer will respond to you.

    -
- : https://www.lifewire.com/install-apk-on-android-4177185 : https://www.gameloft.com/en/game/total-conquest

197e85843d
-
-
\ No newline at end of file diff --git a/spaces/congsaPfin/Manga-OCR/logs/Hack APK for Stickman Falling Dismount and Destroy with Coins - AN1.md b/spaces/congsaPfin/Manga-OCR/logs/Hack APK for Stickman Falling Dismount and Destroy with Coins - AN1.md deleted file mode 100644 index c81c274c793a3fe19ff73204097b59b2206211e8..0000000000000000000000000000000000000000 --- a/spaces/congsaPfin/Manga-OCR/logs/Hack APK for Stickman Falling Dismount and Destroy with Coins - AN1.md +++ /dev/null @@ -1,96 +0,0 @@ - - - - - -
-

Stickman Falling Hack APK AN1: What You Need to Know

-

Stickman Falling is a popular physics ragdoll game that simulates terrifying falls, crushing vehicles, breaking bones, and destroying everything. It is a fun and addictive game that lets you unleash your creativity and imagination in creating different scenarios and challenges for your stickman character.

-

However, some players might find the game too hard or too limited in terms of features and options. That's why some people look for a hacked version of the game that gives them more coins, unlocks all vehicles and levels, and removes ads.

-

stickman falling hack apk an1


Download Zip ———>>> https://urlca.com/2uO66R



-

Hack APK AN1 is one such version that claims to offer these benefits. But what exactly is it, how do you get it, and what are the pros and cons of using it? In this article, we will answer these questions and give you some tips and advice on how to use it safely and responsibly.

-

How to Download and Install Hack APK AN1 on Your Android Device

-

If you want to try hack apk an1, you will need to download and install it on your Android device. This is not as simple as downloading and installing the original game from the Google Play Store, as hack apk an1 is not an official app and is not available there. You will need to follow these steps:

-

Find and Download the APK File

-

The first thing you need to do is to find and download the apk file of hack apk an1. An apk file is a package file that contains the app's code, resources, and metadata. You can use Petal Search or a web browser to search for "stickman falling hack apk an1" and choose a reliable site like APKPure or Uptodown. These sites offer verified and safe apk files that you can download for free. Tap on the download button and wait for the file to be saved on your device.

-

Enable Unknown Sources

-

The next thing you need to do is to enable unknown sources on your device. This is a security setting that allows you to install apps from sources other than the Google Play Store. To do this, go to your device settings and tap on Apps & Notifications (or Apps in older versions of Android). Tap on the three dots in the upper-right corner and select Special Access. Tap on Install Unknown Apps and choose your web browser or file manager app. Turn on the Allow from this source option.

-

Use a File Manager to Locate and Install the APK File

-

The last thing you need to do is to use a file manager app to locate and install the apk file of hack apk an1. A file manager app is a tool that lets you browse, organize, and manage the files and folders on your device. You can use any file manager app that you have installed, such as Files by Google or ES File Explorer. Open your file manager app and go to the Downloads folder (or wherever you saved the apk file). Tap on the stickman falling hack apk an1 file and tap on Install when prompted. Wait for the installation to finish.

-

Launch the Game

-

Now you are ready to launch the game and enjoy the hacked features. Go to your app drawer and look for the stickman falling icon. Tap on it to open the game and start playing. You will notice that you have unlimited coins, all vehicles and levels unlocked, and no ads in the game.

-

Benefits and Risks of Using Hack APK AN1

-

Using hack apk an1 can be fun and exciting, but it also comes with some benefits and risks that you should be aware of. Here are some of them:

-

Benefits of Using Hack APK AN1

-

Some of the benefits of using hack apk an1 are:

-

stickman dismounting mod apk an1
-stickman falling unlimited coins hack an1
-stickman falling cheat apk download an1
-stickman dismounting hack apk latest version an1
-stickman falling mod apk free download an1
-stickman falling hacked apk android 1
-stickman dismounting unlimited money hack an1
-stickman falling cheat codes apk an1
-stickman dismounting hack apk no root an1
-stickman falling mod apk unlocked all an1
-stickman falling hack apk online an1
-stickman dismounting mod apk revdl an1
-stickman falling hacked version download an1
-stickman dismounting hack apk 2023 an1
-stickman falling mod apk unlimited everything an1
-stickman falling cheat engine apk an1
-stickman dismounting hack apk ios an1
-stickman falling mod menu apk an1
-stickman dismounting mod apk happymod an1
-stickman falling hack tool apk an1
-stickman falling hack apk offline an1
-stickman dismounting mod apk rexdl an1
-stickman falling hacked game an1
-stickman dismounting hack apk pure an1
-stickman falling mod apk latest an1
-stickman falling cheat app an1
-stickman dismounting hack apk obb an1
-stickman falling modded apk an1
-stickman dismounting mod apk android 1
-stickman falling hack generator an1
-stickman falling cheat mod apk an1
-stickman dismounting hack version download an1
-stickman falling mod apk no ads an1
-stickman dismounting mod apk unlimited health an1
-stickman falling hack without verification an1
-stickman falling cheat without root an1
-stickman dismounting hack online an1
-stickman falling mod pro apk an1
-stickman dismounting mod apk all unlocked an1
-stickman falling hack no survey an1

-
    -
  • More coins: You can buy more vehicles and props with unlimited coins, which can make the game more varied and interesting.
  • -
  • More levels: You can explore more levels with different environments, obstacles, and challenges, which can make the game more fun and challenging.
  • -
  • More customization: You can customize your stickman character with different outfits, accessories, hairstyles, and colors, which can make the game more personal and expressive.
  • -
  • No ads: You can avoid annoying ads that interrupt your gameplay, which can make the game more smooth and enjoyable.
  • -
-

Risks of Using Hack APK AN1

-

Some of the risks of using hack apk an1 are:

-
    -
  • Potential malware or viruses: The apk file of hack apk an1 might contain malicious code or software that can harm your device or steal your data. This is why you should always download it from a reputable site and scan it with an antivirus app before installing it.
  • -
  • Possible ban from online leaderboards or multiplayer modes: The original game might detect that you are using a hacked version and ban you from accessing online features like leaderboards or multiplayer modes. This is why you should always use hack apk an1 at your own risk and discretion.
  • -
  • Possible legal issues: Using hack apk an1 might violate the terms and conditions of the original game or infringe on its intellectual property rights. This might result in legal action from the developers or publishers of the original game. This is why you should always respect their work and support them by buying their game or in-app purchases.
  • -
-

Conclusion

-

Hack APK AN1 is a modified version of Stickman Falling that gives you more coins, unlocks all vehicles and levels, and removes ads. It can be a fun and exciting way to enjoy the game, but it also comes with some benefits and risks that you should be aware of. You should always download it from a reliable source, enable unknown sources on your device, use a file manager to install it, and launch the game. You should also be careful of potential malware or viruses, possible ban from online features, and possible legal issues. You should always use hack apk an1 safely and responsibly, and respect the work of the original game developers and publishers.

-

We hope this article has helped you learn more about stickman falling hack apk an1 and how to use it. If you have any questions or feedback, please feel free to leave a comment below. We would love to hear from you.

-

FAQs

-

Here are some frequently asked questions about hack apk an1:

-

How do I update hack apk an1?

-

To update hack apk an1, you will need to download and install the latest version of the apk file from the same source that you used before. You can check for updates by visiting the site regularly or by subscribing to their notifications. You can also uninstall the old version of hack apk an1 before installing the new one, or overwrite it if prompted.

-

How do I uninstall hack apk an1?

-

To uninstall hack apk an1, you will need to go to your device settings and tap on Apps & Notifications (or Apps in older versions of Android). Find and tap on stickman falling and tap on Uninstall. Confirm your action and wait for the app to be removed from your device.

-

Is hack apk an1 compatible with my device?

-

Hack apk an1 is compatible with most Android devices that run on Android 4.4 or higher. However, some devices might have different specifications or settings that might affect the performance or functionality of hack apk an1. If you encounter any problems or errors while using hack apk an1, you can try clearing the cache and data of the app, restarting your device, or contacting the site that provided the apk file for support.

-

Is hack apk an1 legal?

-

Hack apk an1 is not legal in most countries, as it violates the terms and conditions of the original game and infringes on its intellectual property rights. Using hack apk an1 might result in legal action from the developers or publishers of the original game, as well as other consequences such as fines or penalties. You should always use hack apk an1 at your own risk and discretion, and respect the work of the original game developers and publishers.

-

Where can I find more information about hack apk an1?

-

You can find more information about hack apk an1 by visiting the site that provided the apk file, reading their description and reviews, or contacting them for support. You can also search for other articles or videos that cover hack apk an1, or join online forums or communities that discuss stickman falling or other similar games.

-

197e85843d
-
-
\ No newline at end of file diff --git a/spaces/congsaPfin/Manga-OCR/logs/How to Hack the World with Hacker Online RPG APK.md b/spaces/congsaPfin/Manga-OCR/logs/How to Hack the World with Hacker Online RPG APK.md deleted file mode 100644 index 788469825659c44f3ea68b252af8b952608a9611..0000000000000000000000000000000000000000 --- a/spaces/congsaPfin/Manga-OCR/logs/How to Hack the World with Hacker Online RPG APK.md +++ /dev/null @@ -1,270 +0,0 @@ -
-

Hacker Online RPG APK: A Guide for Aspiring Hackers

-

Have you ever dreamed of becoming a hacker? Do you want to learn how to hack into computers, servers, websites, devices, and accounts? Do you want to challenge yourself with realistic hacking scenarios and compete with other hackers from around the world? If you answered yes to any of these questions, then you should try Hacker Online RPG APK, a game that lets you experience simulated hacking sessions on a complete simulated OS.

-

What is Hacker Online RPG APK?

-

Hacker Online RPG APK is a game that simulates hacking sessions on a complete simulated OS. It is an MMORPG (Massively Multiplayer Online Role-Playing Game) that allows you to create your own hacker profile, customize your OS, use various hacking tools, hack different targets, earn money and credits, buy upgrades and items, join clans, chat with other players, trade with them, fight against them, and more.

-

hacker online rpg apk


Download Filehttps://urlca.com/2uOglY



-its realistic and immersive gameplay, its variety of hacking tools and targets, its social and competitive features, and its educational value.

-

How to download and install Hacker Online RPG APK?

-

If you want to play Hacker Online RPG APK, you need to have an Android device that meets the minimum system requirements. According to the game's official website, you need to have at least Android 4.1 or higher, 1 GB of RAM, 100 MB of free storage space, and an internet connection.

-

To download and install Hacker Online RPG APK, you can follow these simple steps:

-
    -
  1. Go to the game's official website at https://www.hacker-online.com/ and click on the "Download" button.
  2. -
  3. You will be redirected to the Google Play Store page of the game. Click on the "Install" button and wait for the download to finish.
  4. -
  5. Alternatively, you can also download the APK file of the game from a third-party source such as https://apkpure.com/hacker-online-rpg/com.gekkotech.hackeronline. However, you need to enable the "Unknown sources" option in your device's settings to install apps from outside the Google Play Store.
  6. -
  7. Once you have downloaded the APK file, locate it in your device's file manager and tap on it to install it.
  8. -
  9. After the installation is complete, you can launch the game by tapping on its icon on your home screen or app drawer.
  10. -
-

How to play Hacker Online RPG APK?

-

When you launch the game for the first time, you will be greeted by a tutorial that will guide you through the basics of the game. You will learn how to use the simulated OS and hacking tools, how to hack different targets, how to earn money and credits, how to buy upgrades and items, how to join clans, chat with other players, trade with them, fight against them, and more.

-

The game's interface consists of three main parts: the desktop, the terminal, and the menu. The desktop is where you can access your files, folders, programs, settings, and wallpaper. The terminal is where you can type commands and run hacking tools. The menu is where you can access your profile, inventory, clan, chat, shop, missions, rankings, achievements, settings, and logout.

-"ssh" to establish a secure shell connection to a remote server, "ftp" to transfer files to or from a remote server, and "telnet" to communicate with a remote server using the Telnet protocol. You can also use "help" to display a list of available commands and their usage, and "man" to display the manual page for a specific command.

-

The game's hacking tools are programs that you can run from the terminal to perform various hacking tasks. Some of the hacking tools that you can use are "nmap" to scan a target for open ports and services, "hydra" to perform brute force attacks on passwords, "sqlmap" to exploit SQL injection vulnerabilities, "metasploit" to exploit various vulnerabilities and run payloads, "wireshark" to capture and analyze network traffic, "john" to crack hashed passwords, "aircrack-ng" to crack wireless encryption keys, and "tor" to browse the web anonymously. You can also use "help" followed by the name of a tool to display its usage and options, and "man" followed by the name of a tool to display its manual page.

-

The game's hacking targets are entities that you can hack for various purposes. Some of the hacking targets that you can encounter are accounts, servers, websites, devices, and networks. Each target has its own IP address or domain name, security level, firewall, antivirus, encryption, and vulnerability. You need to use the appropriate hacking tools and methods to bypass the security measures and gain access to the target. You can also use "ping" or "traceroute" to test the connectivity and latency of a target, and "whois" to get information about the owner and registrar of a domain name.

-

hacker online rpg game download
-hacker online rpg android app
-hacker online rpg free apk
-hacker online rpg simulation game
-hacker online rpg mmorpg game
-hacker online rpg appbrain widget
-hacker online rpg apkcombo download
-hacker online rpg simulated os
-hacker online rpg hacking sessions
-hacker online rpg fight users
-hacker online rpg steal passwords
-hacker online rpg infos datas
-hacker online rpg images files
-hacker online rpg find hidden hacker
-hacker online rpg 2013 game
-hacker online rpg latest version
-hacker online rpg update apk
-hacker online rpg mod apk
-hacker online rpg hack apk
-hacker online rpg cheats tips
-hacker online rpg reviews ratings
-hacker online rpg gameplay video
-hacker online rpg screenshots gallery
-hacker online rpg features list
-hacker online rpg system requirements
-hacker online rpg install guide
-hacker online rpg uninstall instructions
-hacker online rpg support contact
-hacker online rpg feedback suggestions
-hacker online rpg bug report fix
-hacker online rpg faq help
-hacker online rpg forum community
-hacker online rpg news updates
-hacker online rpg events rewards
-hacker online rpg leaderboard rank
-hacker online rpg achievements unlock
-hacker online rpg missions quests
-hacker online rpg skills tools
-hacker online rpg items inventory
-hacker online rpg currency shop
-hacker online rpg premium vip
-hacker online rpg offline mode
-hacker online rpg multiplayer mode
-hacker online rpg chat voice
-hacker online rpg friends invite
-hacker online rpg clans groups
-hacker online rpg challenges competitions
-hacker online rpg themes skins
-hacker online rpg languages options

-

What are the benefits of playing Hacker Online RPG APK?

-

Playing Hacker Online RPG APK can be fun, challenging, rewarding, and educational. Here are some of the benefits that you can get from playing this game:

-
    -
  • You can learn about cyber security concepts and techniques in a realistic and interactive way.
  • -
  • You can improve your problem-solving, critical thinking, analytical, and logical skills.
  • -
  • You can enhance your creativity, imagination, and curiosity.
  • -
  • You can test your knowledge and skills against other hackers from around the world.
  • -
  • You can earn money and credits that you can use to buy upgrades and items.
  • -
  • You can join clans and chat with other players who share your interests and goals.
  • -
  • You can have fun and enjoy yourself in a simulated hacking environment.
  • -

    What are the challenges of playing Hacker Online RPG APK?

    -

    Playing Hacker Online RPG APK can also be difficult, risky, and frustrating. Here are some of the challenges that you may face in this game:

    -
      -
    • You may encounter targets that are too hard or too easy for your level and skills.
    • -
    • You may run out of money and credits that you need to buy upgrades and items.
    • -
    • You may get hacked or banned by other players or by the game's moderators.
    • -
    • You may encounter bugs, glitches, errors, or crashes that affect your gameplay.
    • -
    • You may get addicted to the game and neglect your real-life responsibilities and relationships.
    • -
    -

    How to improve your skills and rank in Hacker Online RPG APK?

    -

    If you want to become a better hacker and climb the ranks in Hacker Online RPG APK, you need to practice, learn, and improve. Here are some tips and tricks that can help you achieve your goals:

    -
      -
    • Complete the tutorial and the missions to learn the basics and earn rewards.
    • -
    • Read the manual pages and the help messages of the commands and tools to understand their usage and options.
    • -
    • Research online about cyber security topics and techniques to expand your knowledge and skills.
    • -
    • Scan and hack different targets to gain experience and money.
    • -
    • Buy upgrades and items that can enhance your performance and capabilities.
    • -
    • Join clans and chat with other players to get advice, support, and feedback.
    • -
    • Trade with other players to get items that you need or want.
    • -
    • Fight against other players to test your skills and earn credits.
    • -

      How to interact with other players in Hacker Online RPG APK?

      -

      One of the best features of Hacker Online RPG APK is that it is an MMORPG, which means that you can interact with other players from around the world. You can communicate, cooperate, compete, and trade with them. Here are some ways that you can interact with other players in this game:

      -
        -
      • You can join clans, which are groups of players who share a common interest, goal, or ideology. You can create your own clan or join an existing one. You can chat with your clan members, share resources, help each other, and participate in clan wars.
      • -
      • You can chat with other players using the global chat or the private chat. You can send messages, emojis, stickers, and images to other players. You can also use voice chat or video chat if you have a microphone or a camera.
      • -
      • You can trade with other players using the trade system. You can offer or request items, money, credits, or services from other players. You can also use the auction system to buy or sell items to the highest bidder.
      • -
      • You can fight with other players using the fight system. You can challenge or accept challenges from other players. You can also join tournaments or events to compete with other players for prizes and glory.
      • -
      -

      How to customize your profile and OS in Hacker Online RPG APK?

      -

      Another great feature of Hacker Online RPG APK is that it allows you to customize your profile and OS according to your preferences and style. You can change your avatar, name, wallpaper, theme, and settings. Here are some ways that you can customize your profile and OS in this game:

      -
        -
      • You can change your avatar by tapping on your profile picture on the menu. You can choose from a variety of avatars that are available in the game. You can also upload your own avatar from your device or use your camera to take a selfie.
      • -
      • You can change your name by tapping on your profile name on the menu. You can enter any name that you want as long as it is not offensive or inappropriate. You can also use special characters and symbols to make your name more unique.
      • -
      • You can change your wallpaper by tapping on the wallpaper icon on the desktop. You can choose from a variety of wallpapers that are available in the game. You can also upload your own wallpaper from your device or use your camera to take a picture.
      • -
      • You can change your theme by tapping on the theme icon on the desktop. You can choose from a variety of themes that are available in the game. You can also create your own theme by customizing the colors, fonts, icons, and sounds of your OS.
      • -
      • You can change your settings by tapping on the settings icon on the menu. You can adjust various options such as sound, music, vibration, notifications, language, and more.
      • -

        How to earn money and credits in Hacker Online RPG APK?

        -

        Money and credits are the two main currencies in Hacker Online RPG APK. You need money to buy items, tools, and services from the shop. You need credits to buy upgrades, items, and services from other players. You can also use credits to participate in tournaments and events. Here are some ways that you can earn money and credits in this game:

        -
          -
        • You can hack accounts, servers, websites, and devices for profit. You can use tools such as "hydra", "sqlmap", "metasploit", and "aircrack-ng" to crack passwords, exploit vulnerabilities, run payloads, and capture data. You can then sell the data or use it for blackmail, ransom, or fraud.
        • -
        • You can complete missions that are given by the game or by other players. You can accept missions from the mission board on the menu or from the chat. You can also create your own missions and offer rewards for other players who complete them.
        • -
        • You can win tournaments and events that are organized by the game or by other players. You can join tournaments and events from the tournament board on the menu or from the chat. You can also create your own tournaments and events and set the rules and prizes for them.
        • -
        -

        How to spend money and credits in Hacker Online RPG APK?

        -

        Money and credits are the two main currencies in Hacker Online RPG APK. You can use money to buy items, tools, and services from the shop. You can use credits to buy upgrades, items, and services from other players. You can also use credits to participate in tournaments and events. Here are some ways that you can spend money and credits in this game:

        -
          -
        • You can buy items, tools, and services from the shop. The shop is where you can find various products that can help you in your hacking activities. You can buy items such as VPNs, proxies, firewalls, antivirus, encryption keys, and more. You can buy tools such as nmap, hydra, sqlmap, metasploit, wireshark, john, aircrack-ng, tor, and more. You can buy services such as hacking lessons, hacking contracts, hacking support, hacking protection, and more.
        • -
        • You can buy upgrades, items, and services from other players. Other players may offer products that are not available in the shop or that are cheaper or better than the ones in the shop. You can find these products on the trade board on the menu or on the chat. You can also offer your own products for sale or trade.
        • -
        • You can participate in tournaments and events. Tournaments and events are competitions that test your hacking skills and knowledge against other players. You can join tournaments and events from the tournament board on the menu or from the chat. You can also create your own tournaments and events and set the rules and prizes for them.
        • -

          How to avoid getting hacked or banned in Hacker Online RPG APK?

          -

          While playing Hacker Online RPG APK, you may face the risk of getting hacked or banned by other players or by the game's moderators. Getting hacked means that another player has gained access to your account, OS, files, money, credits, or items. Getting banned means that your account has been suspended or deleted by the game's moderators for violating the game's rules or terms of service. Here are some precautions and security measures that you should take to avoid getting hacked or banned in this game:

          -
            -
          • You should use a strong and unique password for your account and change it regularly. You should also use a different password for your email and other accounts that are linked to your game account.
          • -
          • You should use a VPN, a proxy, or Tor to hide your real IP address and location from other players and the game's servers. This can prevent hackers from tracing you and targeting you.
          • -
          • You should use a firewall, an antivirus, and encryption to protect your OS, files, money, credits, and items from hackers. You should also update your OS and tools regularly to fix any bugs or vulnerabilities.
          • -
          • You should not share your account, OS, files, money, credits, or items with anyone else. You should also not download or run any files or programs that are sent by other players or unknown sources.
          • -
          • You should follow the game's rules and terms of service and respect other players and moderators. You should not cheat, spam, scam, harass, threaten, or abuse anyone in the game.
          • -
          -

          What are the best hacking tools in Hacker Online RPG APK?

          -

          Hacker Online RPG APK offers a variety of hacking tools that you can use to perform various hacking tasks. However, some tools are better than others in terms of features, performance, price, and availability. Here is a table that compares some of the best hacking tools in this game:

          - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
          ToolFeaturesPerformancePriceAvailability
          nmapScans a target for open ports and servicesFast and accurate$10Shop
          hydraPerforms brute force attacks on passwordsSlow but effective$50Shop
          sqlmapExploits SQL injection vulnerabilitiesMedium speed and accuracy$100Shop
          metasploitExploits various vulnerabilities and runs payloadsFast and versatile$200Trade
          wiresharkCaptures and analyzes network trafficSlow but detailed$150Cracks hashed passwordsMedium speed and effectiveness$100Trade
          aircrack-ngCracks wireless encryption keysFast but noisy$150Trade
          torBrowses the web anonymouslySlow but secure$50Shop
          -

          What are the best hacking targets in Hacker Online RPG APK?

          -

          Hacker Online RPG APK offers a variety of hacking targets that you can hack for various purposes. However, some targets are more lucrative and vulnerable than others in terms of rewards, risks, and challenges. Here is a list of some of the best hacking targets in this game:

          -
            -
          • Accounts: These are the profiles of other players or NPCs (non-player characters) that you can hack to steal their money, credits, items, or information. You can use tools such as "hydra", "sqlmap", or "john" to crack their passwords and gain access to their accounts. You can also use tools such as "metasploit" or "wireshark" to exploit their vulnerabilities and run payloads or capture their data.
          • -
          • Servers: These are the computers that host websites, databases, or applications that you can hack to manipulate, damage, or destroy their data or functionality. You can use tools such as "nmap", "sqlmap", or "metasploit" to scan, exploit, or attack their servers. You can also use tools such as "wireshark" or "aircrack-ng" to capture or disrupt their network traffic.
          • -
          • Websites: These are the online platforms that provide information, services, or entertainment that you can hack to deface, redirect, or take down their web pages or content. You can use tools such as "nmap", "sqlmap", or "metasploit" to scan, exploit, or attack their websites. You can also use tools such as "wireshark" or "tor" to capture or anonymize your web traffic.
          • -
          • Devices: These are the gadgets that connect to the internet or other networks that you can hack to control, monitor, or sabotage their operations or features. You can use tools such as "nmap", "metasploit", or "aircrack-ng" to scan, exploit, or attack their devices. You can also use tools such as "wireshark" or "tor" to capture or anonymize your device traffic.
          • -
          • Networks: These are the systems that connect computers, servers, websites, devices, or other entities that you can hack to infiltrate, spy on, or disrupt their communications or activities. You can use tools such as "nmap", "metasploit", or "aircrack-ng" to scan, exploit, or attack their networks. You can also use tools such as "wireshark" or "tor" to capture or anonymize your network traffic.
          • -

            What are the best hacking strategies in Hacker Online RPG APK?

            -

            Hacker Online RPG APK offers a variety of hacking scenarios and situations that require different strategies and approaches. However, some strategies are more effective and efficient than others in terms of success, speed, and stealth. Here are some of the best hacking strategies in this game:

            -
              -
            • Reconnaissance: This is the first and most important step in any hacking process. It involves gathering information about your target, such as its IP address, domain name, security level, firewall, antivirus, encryption, vulnerability, and more. You can use tools such as "nmap", "ping", "traceroute", or "whois" to perform reconnaissance on your target. You can also use tools such as "tor" or "proxy" to hide your identity and location while performing reconnaissance.
            • -
            • Exploitation: This is the second and most crucial step in any hacking process. It involves exploiting the vulnerability or weakness of your target, such as its password, port, service, database, application, or protocol. You can use tools such as "hydra", "sqlmap", "metasploit", or "aircrack-ng" to perform exploitation on your target. You can also use tools such as "tor" or "proxy" to hide your identity and location while performing exploitation.
            • -
            • Post-exploitation: This is the third and most optional step in any hacking process. It involves performing additional actions on your target after gaining access to it, such as stealing data, deleting files, installing malware, running commands, changing settings, or causing damage. You can use tools such as "metasploit", "wireshark", "john", or "aircrack-ng" to perform post-exploitation on your target. You can also use tools such as "tor" or "proxy" to hide your identity and location while performing post-exploitation.
            • -
            • Covering tracks: This is the fourth and most advisable step in any hacking process. It involves erasing or altering any evidence or traces of your hacking activity on your target or on your device, such as logs, history, cookies, cache, files, or settings. You can use tools such as "rm", "mv", "cp", or "cat" to cover your tracks on your target. You can also use tools such as "tor" or "proxy" to cover your tracks on your device.
            • -
            -

            What are some common hacking terms and slang in Hacker Online RPG APK?

            -

            Hacker Online RPG APK uses a lot of hacking terms and slang that you may encounter or use while playing the game. Some of these terms and slang are technical, while others are informal or humorous. Here is a glossary of some common hacking terms and slang in this game:

            -
            -
            Brute force
            -
            A method of cracking passwords by trying all possible combinations of characters until finding the correct one.
            -
            DDoS
            -
            A type of attack that floods a target with a large amount of traffic or requests to overload its resources and disrupt its functionality.
            -
            Encryption
            -
            A method of protecting data by converting it into an unreadable form using a secret key or algorithm.
            -
            Firewall
            -
            A software or hardware that blocks unauthorized access to a network or device by filtering incoming and outgoing traffic based on predefined rules.
            -
            Hacktivist
            -
            A hacker who hacks for a political or social cause.
            -
            L33t
            -
            A way of writing that replaces letters with numbers or symbols to create a secret code or to show off one's skills.
            -
            Malware
            -
            A type of software that is designed to harm or compromise a device, network, or data.
            -
            Payload
            -
            A type of code that is executed after exploiting a vulnerability to perform a specific action on a target.
            -
            Phishing
            -
            A type of attack that tricks users into revealing their personal or financial information by sending them fake emails or websites that look legitimate.
            -
            Rootkit
            -
            A type of malware that hides itself from detection and gives the attacker full control over a device.
            -
            Spoofing
            -
            A type of attack that impersonates another entity by falsifying its identity or information.
            -
            Trojan
            -
            A type of malware that disguises itself as a legitimate program but contains malicious code.
            -
            Virus
            -
            A type of malware that infects other files or programs and replicates itself.
            -
            Worm
            -that spreads itself across networks without requiring user interaction. -
            -

            Conclusion

            -

            Hacker Online RPG APK is a game that simulates hacking sessions on a complete simulated OS. It is an MMORPG that allows you to create your own hacker profile, customize your OS, use various hacking tools, hack different targets, earn money and credits, buy upgrades and items, join clans, chat with other players, trade with them, fight against them, and more. It is a fun, challenging, rewarding, and educational game that can teach you about cyber security concepts and techniques in a realistic and interactive way. If you are interested in hacking or want to become a hacker, you should definitely try this game. You can download and install it from the game's official website or from a third-party source. You can also visit the game's official website or social media pages for more information and updates.

            -

            FAQs

            -

            Here are some frequently asked questions and answers about Hacker Online RPG APK:

            -
            -
            Q: Is Hacker Online RPG APK safe and legal to play?
            -
            A: Yes, Hacker Online RPG APK is safe and legal to play. The game does not involve any real hacking or illegal activities. The game only simulates hacking sessions on a simulated OS and network. The game does not harm or compromise any real devices, networks, or data. The game also does not collect or share any personal or sensitive information from the players.
            -
            Q: How can I contact the game's developers or moderators?
            -
            A: You can contact the game's developers or moderators by sending them an email at support@hacker-online.com or by visiting their Facebook page at https://www.facebook.com/HackerOnlineRPG. You can also use the report or feedback buttons in the game to report any bugs, glitches, errors, or suggestions.
            -
            Q: How can I get more money and credits in Hacker Online RPG APK?
            -
            A: You can get more money and credits in Hacker Online RPG APK by hacking accounts, servers, websites, devices, and networks for profit, by completing missions that are given by the game or by other players, by winning tournaments and events that are organized by the game or by other players, by trading with other players using the trade system or the auction system, or by buying them with real money using the in-app purchase option.
            -
            Q: How can I get more hacking tools in Hacker Online RPG APK?
            -
            A: You can get more hacking tools in Hacker Online RPG APK by buying them from the shop using money or credits, by trading with other players using the trade system or the auction system, by winning them as rewards from missions, tournaments, or events, or by creating your own tools using the tool editor feature.
            -
            Q: How can I get more hacking targets in Hacker Online RPG APK?
            -
            A: You can get more hacking targets in Hacker Online RPG APK by scanning the network using tools such as "nmap" or "ping", by accepting missions that are given by the game or by other players, by joining tournaments or events that are organized by the game or by other players, by creating your own targets using the target editor feature, or by finding them online using tools such as "tor" or "whois".
            -

            197e85843d
            -
            -
            \ No newline at end of file diff --git a/spaces/congsaPfin/Manga-OCR/logs/Yahoo Messenger APK How to Unsend Messages and Express Yourself with GIFs.md b/spaces/congsaPfin/Manga-OCR/logs/Yahoo Messenger APK How to Unsend Messages and Express Yourself with GIFs.md deleted file mode 100644 index 209ec3fe1a315e959c8254f0c81274e89dcef472..0000000000000000000000000000000000000000 --- a/spaces/congsaPfin/Manga-OCR/logs/Yahoo Messenger APK How to Unsend Messages and Express Yourself with GIFs.md +++ /dev/null @@ -1,135 +0,0 @@ - -

            Yahoo Messenger APK: What You Need to Know

            -

            Do you miss the old days of chatting with your friends on Yahoo Messenger? Do you want to relive the nostalgia of sending emoticons, stickers, and animated GIFs? If so, you might be interested in downloading Yahoo Messenger APK for your Android device.

            -

            Yahoo Messenger APK is an Android app that lets you use the classic version of Yahoo Messenger on your smartphone or tablet. It is not available on the Google Play Store, but you can download it from third-party websites like APKCombo or FileHippo.

            -

            yahoo messenger apk


            Download Zip ••• https://urlca.com/2uOdyv



            -

            In this article, we will tell you everything you need to know about Yahoo Messenger APK, including how to download it, how to use it, and what are some alternatives to it. Let's get started!

            -

            How to Download Yahoo Messenger APK for Android

            -

            If you want to use Yahoo Messenger APK on your Android device, you will need to download it from a reliable source. Here are the steps to do so:

            -
              -
            1. Go to APKCombo or FileHippo and search for Yahoo Messenger.
            2. -
            3. Select the latest version of the app (2.11.1) and click on Download APK.
            4. -
            5. Once the file is downloaded, open it and tap on Install. You may need to enable Unknown Sources in your device settings to allow the installation.
            6. -
            7. Wait for the installation to finish and then launch the app.
            8. -
            -

            Congratulations! You have successfully downloaded and installed Yahoo Messenger APK on your Android device. Now you can enjoy chatting with your friends and family using the old-fashioned interface and features.

            -

            However, before you start using the app, you should be aware of some potential risks. Downloading apps from third-party sources can expose your device to malware, viruses, or spyware. You should always scan the files before opening them and use a trusted antivirus app. You should also check the permissions that the app requests and make sure they are necessary and reasonable.

            -

            How to Use Yahoo Messenger APK on Your Device

            -

            Now that you have downloaded and installed Yahoo Messenger APK on your device, you might be wondering how to use it. Here are some tips and tricks:

            -

            yahoo messenger apk download
            -yahoo messenger apk old version
            -yahoo messenger apk for android
            -yahoo messenger apk 2.11.1
            -yahoo messenger apk free chat
            -yahoo messenger apk latest version
            -yahoo messenger apk file
            -yahoo messenger apk 2023
            -yahoo messenger apk mod
            -yahoo messenger apk offline installer
            -yahoo messenger apk for pc
            -yahoo messenger apk pure
            -yahoo messenger apk uptodown
            -yahoo messenger apk mirror
            -yahoo messenger apk android 4.4
            -yahoo messenger apk 2.11.0
            -yahoo messenger apk with video call
            -yahoo messenger apk for tablet
            -yahoo messenger apk pro
            -yahoo messenger apk no ads
            -yahoo messenger apk 2.10.0
            -yahoo messenger apk beta tester
            -yahoo messenger apk for samsung
            -yahoo messenger apk android 10
            -yahoo messenger apk cracked
            -yahoo messenger apk 2.9.4
            -yahoo messenger apk with unsend feature
            -yahoo messenger apk for firestick
            -yahoo messenger apk premium
            -yahoo messenger apk android 11
            -yahoo messenger apk 2.8.4
            -yahoo messenger apk with animated gifs
            -yahoo messenger apk for smart tv
            -yahoo messenger apk full version
            -yahoo messenger apk android 9
            -yahoo messenger apk 2.7.1
            -yahoo messenger apk with offline mode
            -yahoo messenger apk for chromebook
            -yahoo messenger apk update
            -yahoo messenger apk android 8
            -yahoo messenger apk 2.6.0
            -yahoo messenger apk with group chat
            -yahoo messenger apk for windows phone
            -yahoo messenger apk old version 2017
            -yahoo messenger apk android 7
            -yahoo messenger apk 2.5.3
            -yahoo messenger apk with talkback support
            -yahoo messenger apk for blackberry
            -yahoo messenger apk old version 2016
            -yahoo messenger apk android 6

            -
              -
            • To use the app, you will need a Yahoo ID. If you already have one, you can sign in with your email and password. If you don't have one, you can create a new one by tapping on Sign Up.
            • -
            • To chat with someone, tap on the Contacts icon at the bottom of the screen and select a contact from your list. You can also search for a contact by name or email. To start a group chat, tap on the Plus icon at the top right corner and select multiple contacts.
            • -
            • To send a message, type it in the text box at the bottom of the screen and tap on Send. You can also send photos, videos, or GIFs by tapping on the Camera icon or the GIF icon next to the text box.
            • -
            • To unsend a message, tap and hold on it and select Unsend. This will remove the message from both your chat history and your contact's chat history.
            • -
            • To access other Yahoo services like Mail, News, Sports, or Finance, tap on the Menu icon at the top left corner and select the service you want to use. You can also switch between services by swiping left or right on the screen.
            • -
            -

            That's it! You have learned how to use Yahoo Messenger APK on your device. Now you can chat with your old and new friends using the app that you loved back in the day.

            -

            Alternatives to Yahoo Messenger APK

            -

            While Yahoo Messenger APK can be fun and nostalgic, it is not the most modern or secure messaging app out there. In fact, Yahoo Messenger was officially discontinued in 2018, and your chat history was deleted from Yahoo's servers. You can no longer access your old conversations or contacts using the official app or website.

            -

            So, if you are looking for a more reliable and updated messaging app, you might want to consider some alternatives to Yahoo Messenger APK. Here are some of the most popular ones:

            - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            AppFeaturesProsCons
            WhatsApp- End-to-end encryption - Voice and video calls - Status updates - Group chats - Media sharing - Web and desktop versions- Widely used and compatible - Free and ad-free - Secure and private - Simple and user-friendly- Requires phone number verification - No GIF support - Limited customization options
            Telegram- End-to-end encryption - Voice and video calls - Channels and bots - Group chats - Media sharing - Web and desktop versions- Fast and lightweight - Free and ad-free - Secure and private - Customizable and fun- Not very popular or compatible - Requires phone number verification - No status updates
            Signal- End-to-end encryption - Voice and video calls - Group chats - Media sharing - Web and desktop versions- Free and ad-free - Secure and private - Open-source and transparent - Simple and user-friendly- Not very popular or compatible - Requires phone number verification - No status updates or channels
            Facebook Messenger- Voice and video calls - Stories and reactions - Group chats - Media sharing - Web and desktop versions- Popular and compatible - Free and fun - Customizable and interactive - Integrated with Facebook- Not very secure or private - Contains ads and spam - Requires Facebook account or phone number verification - Heavy and slow
            -

            Conclusion

            -

            In this article, we have covered everything you need to know about Yahoo Messenger APK, including how to download it, how to use it, and what are some alternatives to it. We hope you found this article helpful and informative.

            -

            If you want to relive the glory days of Yahoo Messenger, you can download Yahoo Messenger APK from APKCombo or FileHippo and enjoy chatting with your friends using the classic interface and features. However, if you want a more modern and secure messaging app, you can try one of the alternatives we mentioned, such as WhatsApp, Telegram, Signal, or Facebook Messenger.

            -

            Whatever app you choose, we hope you have a great time communicating with your loved ones. Happy chatting!

            -

            Frequently Asked Questions (FAQs)

            -

            What is Yahoo Messenger APK?

            -

            Yahoo Messenger APK is an Android app that lets you use the classic version of Yahoo Messenger on your smartphone or tablet. It is not available on the Google Play Store, but you can download it from third-party websites like APKCombo or FileHippo.

            -

            Is Yahoo Messenger APK safe to use?

            -

            Yahoo Messenger APK is not an official app from Yahoo, so it may not be safe to use. Downloading apps from third-party sources can expose your device to malware, viruses, or spyware. You should always scan the files before opening them and use a trusted antivirus app. You should also check the permissions that the app requests and make sure they are necessary and reasonable.

            -

            How do I unsend a message on Yahoo Messenger APK?

            -

            To unsend a message on Yahoo Messenger APK, tap and hold on it and select Unsend. This will remove the message from both your chat history and your contact's chat history.

            -

            What happened to Yahoo Messenger?

            Yahoo Messenger was a popular messaging service that was launched in 1998 and had millions of users worldwide. It offered features like voice and video calls, file sharing, games, and chat rooms. However, Yahoo Messenger was discontinued in 2018 due to the decline in its user base and the rise of other messaging apps. Yahoo said that it wanted to focus on building and introducing new, exciting communications tools that better fit consumer needs.

            -

            How can I access my old Yahoo Messenger chat history?

            -

            Unfortunately, you can no longer access your old Yahoo Messenger chat history, as it was deleted from Yahoo's servers in 2018. You can only access your chat history if you downloaded it before July 2018. To do so, you need to go to the Yahoo Downloader Request site, sign in with your Yahoo ID, and follow the instructions to download your data.

            -

            Which messaging app is the best for me?

            -

            There is no definitive answer to this question, as different messaging apps have different features, advantages, and disadvantages. You should choose the app that suits your needs, preferences, and expectations. Some factors that you may want to consider are:

            -
              -
            • The popularity and compatibility of the app. You may want to use an app that is widely used by your friends, family, and contacts, and that works well on your device and operating system.
            • -
            • The security and privacy of the app. You may want to use an app that protects your data and conversations from hackers, advertisers, or third parties. You may also want to use an app that gives you control over your settings and permissions.
            • -
            • The functionality and usability of the app. You may want to use an app that offers the features and services that you need and enjoy, such as voice and video calls, media sharing, group chats, etc. You may also want to use an app that is easy and fun to use.
            • -
            -

            You can compare some of the most popular messaging apps in the table above and decide which one is the best for you.

            401be4b1e0
            -
            -
            \ No newline at end of file diff --git a/spaces/cooelf/Multimodal-CoT/timm/scheduler/scheduler_factory.py b/spaces/cooelf/Multimodal-CoT/timm/scheduler/scheduler_factory.py deleted file mode 100644 index 9f7748f42280b846ab159fb18d7cda09d1890123..0000000000000000000000000000000000000000 --- a/spaces/cooelf/Multimodal-CoT/timm/scheduler/scheduler_factory.py +++ /dev/null @@ -1,87 +0,0 @@ -""" Scheduler Factory -Hacked together by / Copyright 2020 Ross Wightman -""" -from .cosine_lr import CosineLRScheduler -from .tanh_lr import TanhLRScheduler -from .step_lr import StepLRScheduler -from .plateau_lr import PlateauLRScheduler - - -def create_scheduler(args, optimizer): - num_epochs = args.epochs - - if getattr(args, 'lr_noise', None) is not None: - lr_noise = getattr(args, 'lr_noise') - if isinstance(lr_noise, (list, tuple)): - noise_range = [n * num_epochs for n in lr_noise] - if len(noise_range) == 1: - noise_range = noise_range[0] - else: - noise_range = lr_noise * num_epochs - else: - noise_range = None - - lr_scheduler = None - if args.sched == 'cosine': - lr_scheduler = CosineLRScheduler( - optimizer, - t_initial=num_epochs, - t_mul=getattr(args, 'lr_cycle_mul', 1.), - lr_min=args.min_lr, - decay_rate=args.decay_rate, - warmup_lr_init=args.warmup_lr, - warmup_t=args.warmup_epochs, - cycle_limit=getattr(args, 'lr_cycle_limit', 1), - t_in_epochs=True, - noise_range_t=noise_range, - noise_pct=getattr(args, 'lr_noise_pct', 0.67), - noise_std=getattr(args, 'lr_noise_std', 1.), - noise_seed=getattr(args, 'seed', 42), - ) - num_epochs = lr_scheduler.get_cycle_length() + args.cooldown_epochs - elif args.sched == 'tanh': - lr_scheduler = TanhLRScheduler( - optimizer, - t_initial=num_epochs, - t_mul=getattr(args, 'lr_cycle_mul', 1.), - lr_min=args.min_lr, - warmup_lr_init=args.warmup_lr, - warmup_t=args.warmup_epochs, - cycle_limit=getattr(args, 'lr_cycle_limit', 1), - t_in_epochs=True, - noise_range_t=noise_range, - noise_pct=getattr(args, 'lr_noise_pct', 0.67), - noise_std=getattr(args, 'lr_noise_std', 1.), - noise_seed=getattr(args, 'seed', 42), - ) - num_epochs = lr_scheduler.get_cycle_length() + args.cooldown_epochs - elif args.sched == 'step': - lr_scheduler = StepLRScheduler( - optimizer, - decay_t=args.decay_epochs, - decay_rate=args.decay_rate, - warmup_lr_init=args.warmup_lr, - warmup_t=args.warmup_epochs, - noise_range_t=noise_range, - noise_pct=getattr(args, 'lr_noise_pct', 0.67), - noise_std=getattr(args, 'lr_noise_std', 1.), - noise_seed=getattr(args, 'seed', 42), - ) - elif args.sched == 'plateau': - mode = 'min' if 'loss' in getattr(args, 'eval_metric', '') else 'max' - lr_scheduler = PlateauLRScheduler( - optimizer, - decay_rate=args.decay_rate, - patience_t=args.patience_epochs, - lr_min=args.min_lr, - mode=mode, - warmup_lr_init=args.warmup_lr, - warmup_t=args.warmup_epochs, - cooldown_t=0, - noise_range_t=noise_range, - noise_pct=getattr(args, 'lr_noise_pct', 0.67), - noise_std=getattr(args, 'lr_noise_std', 1.), - noise_seed=getattr(args, 'seed', 42), - ) - - return lr_scheduler, num_epochs diff --git a/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/uniformer/mmcv/image/misc.py b/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/uniformer/mmcv/image/misc.py deleted file mode 100644 index 3e61f05e3b05e4c7b40de4eb6c8eb100e6da41d0..0000000000000000000000000000000000000000 --- a/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/uniformer/mmcv/image/misc.py +++ /dev/null @@ -1,44 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import numpy as np - -import annotator.uniformer.mmcv as mmcv - -try: - import torch -except ImportError: - torch = None - - -def tensor2imgs(tensor, mean=(0, 0, 0), std=(1, 1, 1), to_rgb=True): - """Convert tensor to 3-channel images. - - Args: - tensor (torch.Tensor): Tensor that contains multiple images, shape ( - N, C, H, W). - mean (tuple[float], optional): Mean of images. Defaults to (0, 0, 0). - std (tuple[float], optional): Standard deviation of images. - Defaults to (1, 1, 1). - to_rgb (bool, optional): Whether the tensor was converted to RGB - format in the first place. If so, convert it back to BGR. - Defaults to True. - - Returns: - list[np.ndarray]: A list that contains multiple images. - """ - - if torch is None: - raise RuntimeError('pytorch is not installed') - assert torch.is_tensor(tensor) and tensor.ndim == 4 - assert len(mean) == 3 - assert len(std) == 3 - - num_imgs = tensor.size(0) - mean = np.array(mean, dtype=np.float32) - std = np.array(std, dtype=np.float32) - imgs = [] - for img_id in range(num_imgs): - img = tensor[img_id, ...].cpu().numpy().transpose(1, 2, 0) - img = mmcv.imdenormalize( - img, mean, std, to_bgr=to_rgb).astype(np.uint8) - imgs.append(np.ascontiguousarray(img)) - return imgs diff --git a/spaces/crashedice/signify/SOURCE/yolo_files/utils/aws/userdata.sh b/spaces/crashedice/signify/SOURCE/yolo_files/utils/aws/userdata.sh deleted file mode 100644 index 890606b76a064662ff20988ab928d581cc8521cb..0000000000000000000000000000000000000000 --- a/spaces/crashedice/signify/SOURCE/yolo_files/utils/aws/userdata.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# AWS EC2 instance startup script https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html -# This script will run only once on first instance start (for a re-start script see mime.sh) -# /home/ubuntu (ubuntu) or /home/ec2-user (amazon-linux) is working dir -# Use >300 GB SSD - -cd home/ubuntu -if [ ! -d yolov5 ]; then - echo "Running first-time script." # install dependencies, download COCO, pull Docker - git clone https://github.com/ultralytics/yolov5 && sudo chmod -R 777 yolov5 - cd yolov5 - bash data/scripts/get_coco.sh && echo "Data done." & - sudo docker pull ultralytics/yolov5:latest && echo "Docker done." & - python -m pip install --upgrade pip && pip install -r requirements.txt && python detect.py && echo "Requirements done." & - wait && echo "All tasks done." # finish background tasks -else - echo "Running re-start script." # resume interrupted runs - i=0 - list=$(sudo docker ps -qa) # container list i.e. $'one\ntwo\nthree\nfour' - while IFS= read -r id; do - ((i++)) - echo "restarting container $i: $id" - sudo docker start $id - # sudo docker exec -it $id python train.py --resume # single-GPU - sudo docker exec -d $id python utils/aws/resume.py # multi-scenario - done <<<"$list" -fi diff --git a/spaces/crylake/img2poem/query2labels/lib/models/tresnet2/layers/general_layers.py b/spaces/crylake/img2poem/query2labels/lib/models/tresnet2/layers/general_layers.py deleted file mode 100644 index dd972228ca31beae5e77b19fec5e43788007dda4..0000000000000000000000000000000000000000 --- a/spaces/crylake/img2poem/query2labels/lib/models/tresnet2/layers/general_layers.py +++ /dev/null @@ -1,94 +0,0 @@ -# borrow from: https://github.com/Alibaba-MIIL/TResNet -import torch -import torch.nn as nn -import torch.nn.functional as F - -from .avg_pool import FastAvgPool2d - - -class Flatten(nn.Module): - def forward(self, x): - return x.view(x.size(0), -1) - - -class DepthToSpace(nn.Module): - - def __init__(self, block_size): - super().__init__() - self.bs = block_size - - def forward(self, x): - N, C, H, W = x.size() - x = x.view(N, self.bs, self.bs, C // (self.bs ** 2), H, W) # (N, bs, bs, C//bs^2, H, W) - x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # (N, C//bs^2, H, bs, W, bs) - x = x.view(N, C // (self.bs ** 2), H * self.bs, W * self.bs) # (N, C//bs^2, H * bs, W * bs) - return x - - -class SpaceToDepthModule(nn.Module): - def __init__(self, remove_model_jit=False): - super().__init__() - if not remove_model_jit: - self.op = SpaceToDepthJit() - else: - self.op = SpaceToDepth() - - def forward(self, x): - return self.op(x) - - -class SpaceToDepth(nn.Module): - def __init__(self, block_size=4): - super().__init__() - assert block_size == 4 - self.bs = block_size - - def forward(self, x): - N, C, H, W = x.size() - x = x.view(N, C, H // self.bs, self.bs, W // self.bs, self.bs) # (N, C, H//bs, bs, W//bs, bs) - x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # (N, bs, bs, C, H//bs, W//bs) - x = x.view(N, C * (self.bs ** 2), H // self.bs, W // self.bs) # (N, C*bs^2, H//bs, W//bs) - return x - - -@torch.jit.script -class SpaceToDepthJit(object): - def __call__(self, x: torch.Tensor): - # assuming hard-coded that block_size==4 for acceleration - N, C, H, W = x.size() - x = x.view(N, C, H // 4, 4, W // 4, 4) # (N, C, H//bs, bs, W//bs, bs) - x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # (N, bs, bs, C, H//bs, W//bs) - x = x.view(N, C * 16, H // 4, W // 4) # (N, C*bs^2, H//bs, W//bs) - return x - - -class hard_sigmoid(nn.Module): - def __init__(self, inplace=True): - super(hard_sigmoid, self).__init__() - self.inplace = inplace - - def forward(self, x): - if self.inplace: - return x.add_(3.).clamp_(0., 6.).div_(6.) - else: - return F.relu6(x + 3.) / 6. - - -class SEModule(nn.Module): - - def __init__(self, channels, reduction_channels, inplace=True): - super(SEModule, self).__init__() - self.avg_pool = FastAvgPool2d() - self.fc1 = nn.Conv2d(channels, reduction_channels, kernel_size=1, padding=0, bias=True) - self.relu = nn.ReLU(inplace=inplace) - self.fc2 = nn.Conv2d(reduction_channels, channels, kernel_size=1, padding=0, bias=True) - # self.activation = hard_sigmoid(inplace=inplace) - self.activation = nn.Sigmoid() - - def forward(self, x): - x_se = self.avg_pool(x) - x_se2 = self.fc1(x_se) - x_se2 = self.relu(x_se2) - x_se = self.fc2(x_se2) - x_se = self.activation(x_se) - return x * x_se diff --git a/spaces/dawood/Kanye-AI/hubert/hubert_model.py b/spaces/dawood/Kanye-AI/hubert/hubert_model.py deleted file mode 100644 index 7fb642d89b07ca60792debab18e3454f52d8f357..0000000000000000000000000000000000000000 --- a/spaces/dawood/Kanye-AI/hubert/hubert_model.py +++ /dev/null @@ -1,222 +0,0 @@ -import copy -import random -from typing import Optional, Tuple - -import torch -import torch.nn as nn -import torch.nn.functional as t_func -from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present - - -class Hubert(nn.Module): - def __init__(self, num_label_embeddings: int = 100, mask: bool = True): - super().__init__() - self._mask = mask - self.feature_extractor = FeatureExtractor() - self.feature_projection = FeatureProjection() - self.positional_embedding = PositionalConvEmbedding() - self.norm = nn.LayerNorm(768) - self.dropout = nn.Dropout(0.1) - self.encoder = TransformerEncoder( - nn.TransformerEncoderLayer( - 768, 12, 3072, activation="gelu", batch_first=True - ), - 12, - ) - self.proj = nn.Linear(768, 256) - - self.masked_spec_embed = nn.Parameter(torch.FloatTensor(768).uniform_()) - self.label_embedding = nn.Embedding(num_label_embeddings, 256) - - def mask(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: - mask = None - if self.training and self._mask: - mask = _compute_mask((x.size(0), x.size(1)), 0.8, 10, x.device, 2) - x[mask] = self.masked_spec_embed.to(x.dtype) - return x, mask - - def encode( - self, x: torch.Tensor, layer: Optional[int] = None - ) -> Tuple[torch.Tensor, torch.Tensor]: - x = self.feature_extractor(x) - x = self.feature_projection(x.transpose(1, 2)) - x, mask = self.mask(x) - x = x + self.positional_embedding(x) - x = self.dropout(self.norm(x)) - x = self.encoder(x, output_layer=layer) - return x, mask - - def logits(self, x: torch.Tensor) -> torch.Tensor: - logits = torch.cosine_similarity( - x.unsqueeze(2), - self.label_embedding.weight.unsqueeze(0).unsqueeze(0), - dim=-1, - ) - return logits / 0.1 - - def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: - x, mask = self.encode(x) - x = self.proj(x) - logits = self.logits(x) - return logits, mask - - -class HubertSoft(Hubert): - def __init__(self): - super().__init__() - - @torch.inference_mode() - def units(self, wav: torch.Tensor) -> torch.Tensor: - wav = t_func.pad(wav, ((400 - 320) // 2, (400 - 320) // 2)) - x, _ = self.encode(wav) - return self.proj(x) - - -class FeatureExtractor(nn.Module): - def __init__(self): - super().__init__() - self.conv0 = nn.Conv1d(1, 512, 10, 5, bias=False) - self.norm0 = nn.GroupNorm(512, 512) - self.conv1 = nn.Conv1d(512, 512, 3, 2, bias=False) - self.conv2 = nn.Conv1d(512, 512, 3, 2, bias=False) - self.conv3 = nn.Conv1d(512, 512, 3, 2, bias=False) - self.conv4 = nn.Conv1d(512, 512, 3, 2, bias=False) - self.conv5 = nn.Conv1d(512, 512, 2, 2, bias=False) - self.conv6 = nn.Conv1d(512, 512, 2, 2, bias=False) - - def forward(self, x: torch.Tensor) -> torch.Tensor: - x = t_func.gelu(self.norm0(self.conv0(x))) - x = t_func.gelu(self.conv1(x)) - x = t_func.gelu(self.conv2(x)) - x = t_func.gelu(self.conv3(x)) - x = t_func.gelu(self.conv4(x)) - x = t_func.gelu(self.conv5(x)) - x = t_func.gelu(self.conv6(x)) - return x - - -class FeatureProjection(nn.Module): - def __init__(self): - super().__init__() - self.norm = nn.LayerNorm(512) - self.projection = nn.Linear(512, 768) - self.dropout = nn.Dropout(0.1) - - def forward(self, x: torch.Tensor) -> torch.Tensor: - x = self.norm(x) - x = self.projection(x) - x = self.dropout(x) - return x - - -class PositionalConvEmbedding(nn.Module): - def __init__(self): - super().__init__() - self.conv = nn.Conv1d( - 768, - 768, - kernel_size=128, - padding=128 // 2, - groups=16, - ) - self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2) - - def forward(self, x: torch.Tensor) -> torch.Tensor: - x = self.conv(x.transpose(1, 2)) - x = t_func.gelu(x[:, :, :-1]) - return x.transpose(1, 2) - - -class TransformerEncoder(nn.Module): - def __init__( - self, encoder_layer: nn.TransformerEncoderLayer, num_layers: int - ) -> None: - super(TransformerEncoder, self).__init__() - self.layers = nn.ModuleList( - [copy.deepcopy(encoder_layer) for _ in range(num_layers)] - ) - self.num_layers = num_layers - - def forward( - self, - src: torch.Tensor, - mask: torch.Tensor = None, - src_key_padding_mask: torch.Tensor = None, - output_layer: Optional[int] = None, - ) -> torch.Tensor: - output = src - for layer in self.layers[:output_layer]: - output = layer( - output, src_mask=mask, src_key_padding_mask=src_key_padding_mask - ) - return output - - -def _compute_mask( - shape: Tuple[int, int], - mask_prob: float, - mask_length: int, - device: torch.device, - min_masks: int = 0, -) -> torch.Tensor: - batch_size, sequence_length = shape - - if mask_length < 1: - raise ValueError("`mask_length` has to be bigger than 0.") - - if mask_length > sequence_length: - raise ValueError( - f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`" - ) - - # compute number of masked spans in batch - num_masked_spans = int(mask_prob * sequence_length / mask_length + random.random()) - num_masked_spans = max(num_masked_spans, min_masks) - - # make sure num masked indices <= sequence_length - if num_masked_spans * mask_length > sequence_length: - num_masked_spans = sequence_length // mask_length - - # SpecAugment mask to fill - mask = torch.zeros((batch_size, sequence_length), device=device, dtype=torch.bool) - - # uniform distribution to sample from, make sure that offset samples are < sequence_length - uniform_dist = torch.ones( - (batch_size, sequence_length - (mask_length - 1)), device=device - ) - - # get random indices to mask - mask_indices = torch.multinomial(uniform_dist, num_masked_spans) - - # expand masked indices to masked spans - mask_indices = ( - mask_indices.unsqueeze(dim=-1) - .expand((batch_size, num_masked_spans, mask_length)) - .reshape(batch_size, num_masked_spans * mask_length) - ) - offsets = ( - torch.arange(mask_length, device=device)[None, None, :] - .expand((batch_size, num_masked_spans, mask_length)) - .reshape(batch_size, num_masked_spans * mask_length) - ) - mask_idxs = mask_indices + offsets - - # scatter indices to mask - mask = mask.scatter(1, mask_idxs, True) - - return mask - - -def hubert_soft( - path: str, -) -> HubertSoft: - r"""HuBERT-Soft from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`. - Args: - path (str): path of a pretrained model - """ - hubert = HubertSoft() - checkpoint = torch.load(path) - consume_prefix_in_state_dict_if_present(checkpoint, "module.") - hubert.load_state_dict(checkpoint) - hubert.eval() - return hubert diff --git a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/PIL/BufrStubImagePlugin.py b/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/PIL/BufrStubImagePlugin.py deleted file mode 100644 index 0425bbd750eacf884ca1fc0ba8aa893a71ccdfc6..0000000000000000000000000000000000000000 --- a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/PIL/BufrStubImagePlugin.py +++ /dev/null @@ -1,73 +0,0 @@ -# -# The Python Imaging Library -# $Id$ -# -# BUFR stub adapter -# -# Copyright (c) 1996-2003 by Fredrik Lundh -# -# See the README file for information on usage and redistribution. -# - -from . import Image, ImageFile - -_handler = None - - -def register_handler(handler): - """ - Install application-specific BUFR image handler. - - :param handler: Handler object. - """ - global _handler - _handler = handler - - -# -------------------------------------------------------------------- -# Image adapter - - -def _accept(prefix): - return prefix[:4] == b"BUFR" or prefix[:4] == b"ZCZC" - - -class BufrStubImageFile(ImageFile.StubImageFile): - format = "BUFR" - format_description = "BUFR" - - def _open(self): - offset = self.fp.tell() - - if not _accept(self.fp.read(4)): - msg = "Not a BUFR file" - raise SyntaxError(msg) - - self.fp.seek(offset) - - # make something up - self.mode = "F" - self._size = 1, 1 - - loader = self._load() - if loader: - loader.open(self) - - def _load(self): - return _handler - - -def _save(im, fp, filename): - if _handler is None or not hasattr(_handler, "save"): - msg = "BUFR save handler not installed" - raise OSError(msg) - _handler.save(im, fp, filename) - - -# -------------------------------------------------------------------- -# Registry - -Image.register_open(BufrStubImageFile.format, BufrStubImageFile, _accept) -Image.register_save(BufrStubImageFile.format, _save) - -Image.register_extension(BufrStubImageFile.format, ".bufr") diff --git a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/anyio/_core/__init__.py b/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/anyio/_core/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/fontTools/ttLib/tables/DefaultTable.py b/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/fontTools/ttLib/tables/DefaultTable.py deleted file mode 100644 index 32a4b1f258f54d78ad39eb764867a6c354939743..0000000000000000000000000000000000000000 --- a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/fontTools/ttLib/tables/DefaultTable.py +++ /dev/null @@ -1,50 +0,0 @@ -from fontTools.misc.textTools import Tag -from fontTools.ttLib import getClassTag - - -class DefaultTable(object): - - dependencies = [] - - def __init__(self, tag=None): - if tag is None: - tag = getClassTag(self.__class__) - self.tableTag = Tag(tag) - - def decompile(self, data, ttFont): - self.data = data - - def compile(self, ttFont): - return self.data - - def toXML(self, writer, ttFont, **kwargs): - if hasattr(self, "ERROR"): - writer.comment("An error occurred during the decompilation of this table") - writer.newline() - writer.comment(self.ERROR) - writer.newline() - writer.begintag("hexdata") - writer.newline() - writer.dumphex(self.compile(ttFont)) - writer.endtag("hexdata") - writer.newline() - - def fromXML(self, name, attrs, content, ttFont): - from fontTools.misc.textTools import readHex - from fontTools import ttLib - - if name != "hexdata": - raise ttLib.TTLibError("can't handle '%s' element" % name) - self.decompile(readHex(content), ttFont) - - def __repr__(self): - return "<'%s' table at %x>" % (self.tableTag, id(self)) - - def __eq__(self, other): - if type(self) != type(other): - return NotImplemented - return self.__dict__ == other.__dict__ - - def __ne__(self, other): - result = self.__eq__(other) - return result if result is NotImplemented else not result diff --git a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/fontTools/varLib/iup.py b/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/fontTools/varLib/iup.py deleted file mode 100644 index 0f1232ad2ea1cac8953239a5bdc55f1cedbb5f02..0000000000000000000000000000000000000000 --- a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/fontTools/varLib/iup.py +++ /dev/null @@ -1,496 +0,0 @@ -try: - import cython - - COMPILED = cython.compiled -except (AttributeError, ImportError): - # if cython not installed, use mock module with no-op decorators and types - from fontTools.misc import cython - - COMPILED = False - -from typing import ( - Sequence, - Tuple, - Union, -) -from numbers import Integral, Real - -try: - import cython - - COMPILED = cython.compiled -except (AttributeError, ImportError): - # if cython not installed, use mock module with no-op decorators and types - from fontTools.misc import cython - - COMPILED = False - - -_Point = Tuple[Real, Real] -_Delta = Tuple[Real, Real] -_PointSegment = Sequence[_Point] -_DeltaSegment = Sequence[_Delta] -_DeltaOrNone = Union[_Delta, None] -_DeltaOrNoneSegment = Sequence[_DeltaOrNone] -_Endpoints = Sequence[Integral] - - -MAX_LOOKBACK = 8 - - -@cython.cfunc -@cython.locals( - j=cython.int, - n=cython.int, - x1=cython.double, - x2=cython.double, - d1=cython.double, - d2=cython.double, - scale=cython.double, - x=cython.double, - d=cython.double, -) -def iup_segment( - coords: _PointSegment, rc1: _Point, rd1: _Delta, rc2: _Point, rd2: _Delta -): # -> _DeltaSegment: - """Given two reference coordinates `rc1` & `rc2` and their respective - delta vectors `rd1` & `rd2`, returns interpolated deltas for the set of - coordinates `coords`.""" - - # rc1 = reference coord 1 - # rd1 = reference delta 1 - out_arrays = [None, None] - for j in 0, 1: - out_arrays[j] = out = [] - x1, x2, d1, d2 = rc1[j], rc2[j], rd1[j], rd2[j] - - if x1 == x2: - n = len(coords) - if d1 == d2: - out.extend([d1] * n) - else: - out.extend([0] * n) - continue - - if x1 > x2: - x1, x2 = x2, x1 - d1, d2 = d2, d1 - - # x1 < x2 - scale = (d2 - d1) / (x2 - x1) - for pair in coords: - x = pair[j] - - if x <= x1: - d = d1 - elif x >= x2: - d = d2 - else: - # Interpolate - d = d1 + (x - x1) * scale - - out.append(d) - - return zip(*out_arrays) - - -def iup_contour(deltas: _DeltaOrNoneSegment, coords: _PointSegment) -> _DeltaSegment: - """For the contour given in `coords`, interpolate any missing - delta values in delta vector `deltas`. - - Returns fully filled-out delta vector.""" - - assert len(deltas) == len(coords) - if None not in deltas: - return deltas - - n = len(deltas) - # indices of points with explicit deltas - indices = [i for i, v in enumerate(deltas) if v is not None] - if not indices: - # All deltas are None. Return 0,0 for all. - return [(0, 0)] * n - - out = [] - it = iter(indices) - start = next(it) - if start != 0: - # Initial segment that wraps around - i1, i2, ri1, ri2 = 0, start, start, indices[-1] - out.extend( - iup_segment( - coords[i1:i2], coords[ri1], deltas[ri1], coords[ri2], deltas[ri2] - ) - ) - out.append(deltas[start]) - for end in it: - if end - start > 1: - i1, i2, ri1, ri2 = start + 1, end, start, end - out.extend( - iup_segment( - coords[i1:i2], coords[ri1], deltas[ri1], coords[ri2], deltas[ri2] - ) - ) - out.append(deltas[end]) - start = end - if start != n - 1: - # Final segment that wraps around - i1, i2, ri1, ri2 = start + 1, n, start, indices[0] - out.extend( - iup_segment( - coords[i1:i2], coords[ri1], deltas[ri1], coords[ri2], deltas[ri2] - ) - ) - - assert len(deltas) == len(out), (len(deltas), len(out)) - return out - - -def iup_delta( - deltas: _DeltaOrNoneSegment, coords: _PointSegment, ends: _Endpoints -) -> _DeltaSegment: - """For the outline given in `coords`, with contour endpoints given - in sorted increasing order in `ends`, interpolate any missing - delta values in delta vector `deltas`. - - Returns fully filled-out delta vector.""" - - assert sorted(ends) == ends and len(coords) == (ends[-1] + 1 if ends else 0) + 4 - n = len(coords) - ends = ends + [n - 4, n - 3, n - 2, n - 1] - out = [] - start = 0 - for end in ends: - end += 1 - contour = iup_contour(deltas[start:end], coords[start:end]) - out.extend(contour) - start = end - - return out - - -# Optimizer - - -@cython.cfunc -@cython.inline -@cython.locals( - i=cython.int, - j=cython.int, - tolerance=cython.double, - x=cython.double, - y=cython.double, - p=cython.double, - q=cython.double, -) -@cython.returns(int) -def can_iup_in_between( - deltas: _DeltaSegment, - coords: _PointSegment, - i: Integral, - j: Integral, - tolerance: Real, -): # -> bool: - """Return true if the deltas for points at `i` and `j` (`i < j`) can be - successfully used to interpolate deltas for points in between them within - provided error tolerance.""" - - assert j - i >= 2 - interp = iup_segment(coords[i + 1 : j], coords[i], deltas[i], coords[j], deltas[j]) - deltas = deltas[i + 1 : j] - - return all( - abs(complex(x - p, y - q)) <= tolerance - for (x, y), (p, q) in zip(deltas, interp) - ) - - -@cython.locals( - cj=cython.double, - dj=cython.double, - lcj=cython.double, - ldj=cython.double, - ncj=cython.double, - ndj=cython.double, - force=cython.int, - forced=set, -) -def _iup_contour_bound_forced_set( - deltas: _DeltaSegment, coords: _PointSegment, tolerance: Real = 0 -) -> set: - """The forced set is a conservative set of points on the contour that must be encoded - explicitly (ie. cannot be interpolated). Calculating this set allows for significantly - speeding up the dynamic-programming, as well as resolve circularity in DP. - - The set is precise; that is, if an index is in the returned set, then there is no way - that IUP can generate delta for that point, given `coords` and `deltas`. - """ - assert len(deltas) == len(coords) - - n = len(deltas) - forced = set() - # Track "last" and "next" points on the contour as we sweep. - for i in range(len(deltas) - 1, -1, -1): - ld, lc = deltas[i - 1], coords[i - 1] - d, c = deltas[i], coords[i] - nd, nc = deltas[i - n + 1], coords[i - n + 1] - - for j in (0, 1): # For X and for Y - cj = c[j] - dj = d[j] - lcj = lc[j] - ldj = ld[j] - ncj = nc[j] - ndj = nd[j] - - if lcj <= ncj: - c1, c2 = lcj, ncj - d1, d2 = ldj, ndj - else: - c1, c2 = ncj, lcj - d1, d2 = ndj, ldj - - force = False - - # If the two coordinates are the same, then the interpolation - # algorithm produces the same delta if both deltas are equal, - # and zero if they differ. - # - # This test has to be before the next one. - if c1 == c2: - if abs(d1 - d2) > tolerance and abs(dj) > tolerance: - force = True - - # If coordinate for current point is between coordinate of adjacent - # points on the two sides, but the delta for current point is NOT - # between delta for those adjacent points (considering tolerance - # allowance), then there is no way that current point can be IUP-ed. - # Mark it forced. - elif c1 <= cj <= c2: # and c1 != c2 - if not (min(d1, d2) - tolerance <= dj <= max(d1, d2) + tolerance): - force = True - - # Otherwise, the delta should either match the closest, or have the - # same sign as the interpolation of the two deltas. - else: # cj < c1 or c2 < cj - if d1 != d2: - if cj < c1: - if ( - abs(dj) > tolerance - and abs(dj - d1) > tolerance - and ((dj - tolerance < d1) != (d1 < d2)) - ): - force = True - else: # c2 < cj - if ( - abs(dj) > tolerance - and abs(dj - d2) > tolerance - and ((d2 < dj + tolerance) != (d1 < d2)) - ): - force = True - - if force: - forced.add(i) - break - - return forced - - -@cython.locals( - i=cython.int, - j=cython.int, - best_cost=cython.double, - best_j=cython.int, - cost=cython.double, - forced=set, - tolerance=cython.double, -) -def _iup_contour_optimize_dp( - deltas: _DeltaSegment, - coords: _PointSegment, - forced=set(), - tolerance: Real = 0, - lookback: Integral = None, -): - """Straightforward Dynamic-Programming. For each index i, find least-costly encoding of - points 0 to i where i is explicitly encoded. We find this by considering all previous - explicit points j and check whether interpolation can fill points between j and i. - - Note that solution always encodes last point explicitly. Higher-level is responsible - for removing that restriction. - - As major speedup, we stop looking further whenever we see a "forced" point.""" - - n = len(deltas) - if lookback is None: - lookback = n - lookback = min(lookback, MAX_LOOKBACK) - costs = {-1: 0} - chain = {-1: None} - for i in range(0, n): - best_cost = costs[i - 1] + 1 - - costs[i] = best_cost - chain[i] = i - 1 - - if i - 1 in forced: - continue - - for j in range(i - 2, max(i - lookback, -2), -1): - cost = costs[j] + 1 - - if cost < best_cost and can_iup_in_between(deltas, coords, j, i, tolerance): - costs[i] = best_cost = cost - chain[i] = j - - if j in forced: - break - - return chain, costs - - -def _rot_list(l: list, k: int): - """Rotate list by k items forward. Ie. item at position 0 will be - at position k in returned list. Negative k is allowed.""" - n = len(l) - k %= n - if not k: - return l - return l[n - k :] + l[: n - k] - - -def _rot_set(s: set, k: int, n: int): - k %= n - if not k: - return s - return {(v + k) % n for v in s} - - -def iup_contour_optimize( - deltas: _DeltaSegment, coords: _PointSegment, tolerance: Real = 0.0 -) -> _DeltaOrNoneSegment: - """For contour with coordinates `coords`, optimize a set of delta - values `deltas` within error `tolerance`. - - Returns delta vector that has most number of None items instead of - the input delta. - """ - - n = len(deltas) - - # Get the easy cases out of the way: - - # If all are within tolerance distance of 0, encode nothing: - if all(abs(complex(*p)) <= tolerance for p in deltas): - return [None] * n - - # If there's exactly one point, return it: - if n == 1: - return deltas - - # If all deltas are exactly the same, return just one (the first one): - d0 = deltas[0] - if all(d0 == d for d in deltas): - return [d0] + [None] * (n - 1) - - # Else, solve the general problem using Dynamic Programming. - - forced = _iup_contour_bound_forced_set(deltas, coords, tolerance) - # The _iup_contour_optimize_dp() routine returns the optimal encoding - # solution given the constraint that the last point is always encoded. - # To remove this constraint, we use two different methods, depending on - # whether forced set is non-empty or not: - - # Debugging: Make the next if always take the second branch and observe - # if the font size changes (reduced); that would mean the forced-set - # has members it should not have. - if forced: - # Forced set is non-empty: rotate the contour start point - # such that the last point in the list is a forced point. - k = (n - 1) - max(forced) - assert k >= 0 - - deltas = _rot_list(deltas, k) - coords = _rot_list(coords, k) - forced = _rot_set(forced, k, n) - - # Debugging: Pass a set() instead of forced variable to the next call - # to exercise forced-set computation for under-counting. - chain, costs = _iup_contour_optimize_dp(deltas, coords, forced, tolerance) - - # Assemble solution. - solution = set() - i = n - 1 - while i is not None: - solution.add(i) - i = chain[i] - solution.remove(-1) - - # if not forced <= solution: - # print("coord", coords) - # print("deltas", deltas) - # print("len", len(deltas)) - assert forced <= solution, (forced, solution) - - deltas = [deltas[i] if i in solution else None for i in range(n)] - - deltas = _rot_list(deltas, -k) - else: - # Repeat the contour an extra time, solve the new case, then look for solutions of the - # circular n-length problem in the solution for new linear case. I cannot prove that - # this always produces the optimal solution... - chain, costs = _iup_contour_optimize_dp( - deltas + deltas, coords + coords, forced, tolerance, n - ) - best_sol, best_cost = None, n + 1 - - for start in range(n - 1, len(costs) - 1): - # Assemble solution. - solution = set() - i = start - while i > start - n: - solution.add(i % n) - i = chain[i] - if i == start - n: - cost = costs[start] - costs[start - n] - if cost <= best_cost: - best_sol, best_cost = solution, cost - - # if not forced <= best_sol: - # print("coord", coords) - # print("deltas", deltas) - # print("len", len(deltas)) - assert forced <= best_sol, (forced, best_sol) - - deltas = [deltas[i] if i in best_sol else None for i in range(n)] - - return deltas - - -def iup_delta_optimize( - deltas: _DeltaSegment, - coords: _PointSegment, - ends: _Endpoints, - tolerance: Real = 0.0, -) -> _DeltaOrNoneSegment: - """For the outline given in `coords`, with contour endpoints given - in sorted increasing order in `ends`, optimize a set of delta - values `deltas` within error `tolerance`. - - Returns delta vector that has most number of None items instead of - the input delta. - """ - assert sorted(ends) == ends and len(coords) == (ends[-1] + 1 if ends else 0) + 4 - n = len(coords) - ends = ends + [n - 4, n - 3, n - 2, n - 1] - out = [] - start = 0 - for end in ends: - contour = iup_contour_optimize( - deltas[start : end + 1], coords[start : end + 1], tolerance - ) - assert len(contour) == end - start + 1 - out.extend(contour) - start = end + 1 - - return out diff --git a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/gradio/data_classes.py b/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/gradio/data_classes.py deleted file mode 100644 index 5ebb0c2bded20f1ddbbc73ffc79fac18c7af92db..0000000000000000000000000000000000000000 --- a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/gradio/data_classes.py +++ /dev/null @@ -1,62 +0,0 @@ -"""Pydantic data models and other dataclasses. This is the only file that uses Optional[] -typing syntax instead of | None syntax to work with pydantic""" -from enum import Enum, auto -from typing import Any, Dict, List, Optional, Union - -from pydantic import BaseModel -from typing_extensions import Literal - - -class PredictBody(BaseModel): - session_hash: Optional[str] = None - event_id: Optional[str] = None - data: List[Any] - event_data: Optional[Any] = None - fn_index: Optional[int] = None - batched: Optional[ - bool - ] = False # Whether the data is a batch of samples (i.e. called from the queue if batch=True) or a single sample (i.e. called from the UI) - request: Optional[ - Union[Dict, List[Dict]] - ] = None # dictionary of request headers, query parameters, url, etc. (used to to pass in request for queuing) - - -class ResetBody(BaseModel): - session_hash: str - fn_index: int - - -class InterfaceTypes(Enum): - STANDARD = auto() - INPUT_ONLY = auto() - OUTPUT_ONLY = auto() - UNIFIED = auto() - - -class Estimation(BaseModel): - msg: Optional[str] = "estimation" - rank: Optional[int] = None - queue_size: int - avg_event_process_time: Optional[float] = None - avg_event_concurrent_process_time: Optional[float] = None - rank_eta: Optional[float] = None - queue_eta: float - - -class ProgressUnit(BaseModel): - index: Optional[int] = None - length: Optional[int] = None - unit: Optional[str] = None - progress: Optional[float] = None - desc: Optional[str] = None - - -class Progress(BaseModel): - msg: str = "progress" - progress_data: List[ProgressUnit] = [] - - -class LogMessage(BaseModel): - msg: str = "log" - log: str - level: Literal["info", "warning"] diff --git a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/httpx/_auth.py b/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/httpx/_auth.py deleted file mode 100644 index 1d7385d57334c46750d0618a407b49cd829856f4..0000000000000000000000000000000000000000 --- a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/httpx/_auth.py +++ /dev/null @@ -1,347 +0,0 @@ -import hashlib -import netrc -import os -import re -import time -import typing -from base64 import b64encode -from urllib.request import parse_http_list - -from ._exceptions import ProtocolError -from ._models import Request, Response -from ._utils import to_bytes, to_str, unquote - -if typing.TYPE_CHECKING: # pragma: no cover - from hashlib import _Hash - - -class Auth: - """ - Base class for all authentication schemes. - - To implement a custom authentication scheme, subclass `Auth` and override - the `.auth_flow()` method. - - If the authentication scheme does I/O such as disk access or network calls, or uses - synchronization primitives such as locks, you should override `.sync_auth_flow()` - and/or `.async_auth_flow()` instead of `.auth_flow()` to provide specialized - implementations that will be used by `Client` and `AsyncClient` respectively. - """ - - requires_request_body = False - requires_response_body = False - - def auth_flow(self, request: Request) -> typing.Generator[Request, Response, None]: - """ - Execute the authentication flow. - - To dispatch a request, `yield` it: - - ``` - yield request - ``` - - The client will `.send()` the response back into the flow generator. You can - access it like so: - - ``` - response = yield request - ``` - - A `return` (or reaching the end of the generator) will result in the - client returning the last response obtained from the server. - - You can dispatch as many requests as is necessary. - """ - yield request - - def sync_auth_flow( - self, request: Request - ) -> typing.Generator[Request, Response, None]: - """ - Execute the authentication flow synchronously. - - By default, this defers to `.auth_flow()`. You should override this method - when the authentication scheme does I/O and/or uses concurrency primitives. - """ - if self.requires_request_body: - request.read() - - flow = self.auth_flow(request) - request = next(flow) - - while True: - response = yield request - if self.requires_response_body: - response.read() - - try: - request = flow.send(response) - except StopIteration: - break - - async def async_auth_flow( - self, request: Request - ) -> typing.AsyncGenerator[Request, Response]: - """ - Execute the authentication flow asynchronously. - - By default, this defers to `.auth_flow()`. You should override this method - when the authentication scheme does I/O and/or uses concurrency primitives. - """ - if self.requires_request_body: - await request.aread() - - flow = self.auth_flow(request) - request = next(flow) - - while True: - response = yield request - if self.requires_response_body: - await response.aread() - - try: - request = flow.send(response) - except StopIteration: - break - - -class FunctionAuth(Auth): - """ - Allows the 'auth' argument to be passed as a simple callable function, - that takes the request, and returns a new, modified request. - """ - - def __init__(self, func: typing.Callable[[Request], Request]) -> None: - self._func = func - - def auth_flow(self, request: Request) -> typing.Generator[Request, Response, None]: - yield self._func(request) - - -class BasicAuth(Auth): - """ - Allows the 'auth' argument to be passed as a (username, password) pair, - and uses HTTP Basic authentication. - """ - - def __init__( - self, username: typing.Union[str, bytes], password: typing.Union[str, bytes] - ): - self._auth_header = self._build_auth_header(username, password) - - def auth_flow(self, request: Request) -> typing.Generator[Request, Response, None]: - request.headers["Authorization"] = self._auth_header - yield request - - def _build_auth_header( - self, username: typing.Union[str, bytes], password: typing.Union[str, bytes] - ) -> str: - userpass = b":".join((to_bytes(username), to_bytes(password))) - token = b64encode(userpass).decode() - return f"Basic {token}" - - -class NetRCAuth(Auth): - """ - Use a 'netrc' file to lookup basic auth credentials based on the url host. - """ - - def __init__(self, file: typing.Optional[str] = None): - self._netrc_info = netrc.netrc(file) - - def auth_flow(self, request: Request) -> typing.Generator[Request, Response, None]: - auth_info = self._netrc_info.authenticators(request.url.host) - if auth_info is None or not auth_info[2]: - # The netrc file did not have authentication credentials for this host. - yield request - else: - # Build a basic auth header with credentials from the netrc file. - request.headers["Authorization"] = self._build_auth_header( - username=auth_info[0], password=auth_info[2] - ) - yield request - - def _build_auth_header( - self, username: typing.Union[str, bytes], password: typing.Union[str, bytes] - ) -> str: - userpass = b":".join((to_bytes(username), to_bytes(password))) - token = b64encode(userpass).decode() - return f"Basic {token}" - - -class DigestAuth(Auth): - _ALGORITHM_TO_HASH_FUNCTION: typing.Dict[str, typing.Callable[[bytes], "_Hash"]] = { - "MD5": hashlib.md5, - "MD5-SESS": hashlib.md5, - "SHA": hashlib.sha1, - "SHA-SESS": hashlib.sha1, - "SHA-256": hashlib.sha256, - "SHA-256-SESS": hashlib.sha256, - "SHA-512": hashlib.sha512, - "SHA-512-SESS": hashlib.sha512, - } - - def __init__( - self, username: typing.Union[str, bytes], password: typing.Union[str, bytes] - ) -> None: - self._username = to_bytes(username) - self._password = to_bytes(password) - self._last_challenge: typing.Optional[_DigestAuthChallenge] = None - self._nonce_count = 1 - - def auth_flow(self, request: Request) -> typing.Generator[Request, Response, None]: - if self._last_challenge: - request.headers["Authorization"] = self._build_auth_header( - request, self._last_challenge - ) - - response = yield request - - if response.status_code != 401 or "www-authenticate" not in response.headers: - # If the response is not a 401 then we don't - # need to build an authenticated request. - return - - for auth_header in response.headers.get_list("www-authenticate"): - if auth_header.lower().startswith("digest "): - break - else: - # If the response does not include a 'WWW-Authenticate: Digest ...' - # header, then we don't need to build an authenticated request. - return - - self._last_challenge = self._parse_challenge(request, response, auth_header) - self._nonce_count = 1 - - request.headers["Authorization"] = self._build_auth_header( - request, self._last_challenge - ) - yield request - - def _parse_challenge( - self, request: Request, response: Response, auth_header: str - ) -> "_DigestAuthChallenge": - """ - Returns a challenge from a Digest WWW-Authenticate header. - These take the form of: - `Digest realm="realm@host.com",qop="auth,auth-int",nonce="abc",opaque="xyz"` - """ - scheme, _, fields = auth_header.partition(" ") - - # This method should only ever have been called with a Digest auth header. - assert scheme.lower() == "digest" - - header_dict: typing.Dict[str, str] = {} - for field in parse_http_list(fields): - key, value = field.strip().split("=", 1) - header_dict[key] = unquote(value) - - try: - realm = header_dict["realm"].encode() - nonce = header_dict["nonce"].encode() - algorithm = header_dict.get("algorithm", "MD5") - opaque = header_dict["opaque"].encode() if "opaque" in header_dict else None - qop = header_dict["qop"].encode() if "qop" in header_dict else None - return _DigestAuthChallenge( - realm=realm, nonce=nonce, algorithm=algorithm, opaque=opaque, qop=qop - ) - except KeyError as exc: - message = "Malformed Digest WWW-Authenticate header" - raise ProtocolError(message, request=request) from exc - - def _build_auth_header( - self, request: Request, challenge: "_DigestAuthChallenge" - ) -> str: - hash_func = self._ALGORITHM_TO_HASH_FUNCTION[challenge.algorithm.upper()] - - def digest(data: bytes) -> bytes: - return hash_func(data).hexdigest().encode() - - A1 = b":".join((self._username, challenge.realm, self._password)) - - path = request.url.raw_path - A2 = b":".join((request.method.encode(), path)) - # TODO: implement auth-int - HA2 = digest(A2) - - nc_value = b"%08x" % self._nonce_count - cnonce = self._get_client_nonce(self._nonce_count, challenge.nonce) - self._nonce_count += 1 - - HA1 = digest(A1) - if challenge.algorithm.lower().endswith("-sess"): - HA1 = digest(b":".join((HA1, challenge.nonce, cnonce))) - - qop = self._resolve_qop(challenge.qop, request=request) - if qop is None: - digest_data = [HA1, challenge.nonce, HA2] - else: - digest_data = [challenge.nonce, nc_value, cnonce, qop, HA2] - key_digest = b":".join(digest_data) - - format_args = { - "username": self._username, - "realm": challenge.realm, - "nonce": challenge.nonce, - "uri": path, - "response": digest(b":".join((HA1, key_digest))), - "algorithm": challenge.algorithm.encode(), - } - if challenge.opaque: - format_args["opaque"] = challenge.opaque - if qop: - format_args["qop"] = b"auth" - format_args["nc"] = nc_value - format_args["cnonce"] = cnonce - - return "Digest " + self._get_header_value(format_args) - - def _get_client_nonce(self, nonce_count: int, nonce: bytes) -> bytes: - s = str(nonce_count).encode() - s += nonce - s += time.ctime().encode() - s += os.urandom(8) - - return hashlib.sha1(s).hexdigest()[:16].encode() - - def _get_header_value(self, header_fields: typing.Dict[str, bytes]) -> str: - NON_QUOTED_FIELDS = ("algorithm", "qop", "nc") - QUOTED_TEMPLATE = '{}="{}"' - NON_QUOTED_TEMPLATE = "{}={}" - - header_value = "" - for i, (field, value) in enumerate(header_fields.items()): - if i > 0: - header_value += ", " - template = ( - QUOTED_TEMPLATE - if field not in NON_QUOTED_FIELDS - else NON_QUOTED_TEMPLATE - ) - header_value += template.format(field, to_str(value)) - - return header_value - - def _resolve_qop( - self, qop: typing.Optional[bytes], request: Request - ) -> typing.Optional[bytes]: - if qop is None: - return None - qops = re.split(b", ?", qop) - if b"auth" in qops: - return b"auth" - - if qops == [b"auth-int"]: - raise NotImplementedError("Digest auth-int support is not yet implemented") - - message = f'Unexpected qop value "{qop!r}" in digest auth' - raise ProtocolError(message, request=request) - - -class _DigestAuthChallenge(typing.NamedTuple): - realm: bytes - nonce: bytes - algorithm: str - opaque: typing.Optional[bytes] - qop: typing.Optional[bytes] diff --git a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/httpx/_exceptions.py b/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/httpx/_exceptions.py deleted file mode 100644 index 24a4f8aba337daa8f3695d87cedd331f2ec4eb61..0000000000000000000000000000000000000000 --- a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/httpx/_exceptions.py +++ /dev/null @@ -1,343 +0,0 @@ -""" -Our exception hierarchy: - -* HTTPError - x RequestError - + TransportError - - TimeoutException - · ConnectTimeout - · ReadTimeout - · WriteTimeout - · PoolTimeout - - NetworkError - · ConnectError - · ReadError - · WriteError - · CloseError - - ProtocolError - · LocalProtocolError - · RemoteProtocolError - - ProxyError - - UnsupportedProtocol - + DecodingError - + TooManyRedirects - x HTTPStatusError -* InvalidURL -* CookieConflict -* StreamError - x StreamConsumed - x StreamClosed - x ResponseNotRead - x RequestNotRead -""" -import contextlib -import typing - -if typing.TYPE_CHECKING: - from ._models import Request, Response # pragma: no cover - - -class HTTPError(Exception): - """ - Base class for `RequestError` and `HTTPStatusError`. - - Useful for `try...except` blocks when issuing a request, - and then calling `.raise_for_status()`. - - For example: - - ``` - try: - response = httpx.get("https://www.example.com") - response.raise_for_status() - except httpx.HTTPError as exc: - print(f"HTTP Exception for {exc.request.url} - {exc}") - ``` - """ - - def __init__(self, message: str) -> None: - super().__init__(message) - self._request: typing.Optional["Request"] = None - - @property - def request(self) -> "Request": - if self._request is None: - raise RuntimeError("The .request property has not been set.") - return self._request - - @request.setter - def request(self, request: "Request") -> None: - self._request = request - - -class RequestError(HTTPError): - """ - Base class for all exceptions that may occur when issuing a `.request()`. - """ - - def __init__( - self, message: str, *, request: typing.Optional["Request"] = None - ) -> None: - super().__init__(message) - # At the point an exception is raised we won't typically have a request - # instance to associate it with. - # - # The 'request_context' context manager is used within the Client and - # Response methods in order to ensure that any raised exceptions - # have a `.request` property set on them. - self._request = request - - -class TransportError(RequestError): - """ - Base class for all exceptions that occur at the level of the Transport API. - """ - - -# Timeout exceptions... - - -class TimeoutException(TransportError): - """ - The base class for timeout errors. - - An operation has timed out. - """ - - -class ConnectTimeout(TimeoutException): - """ - Timed out while connecting to the host. - """ - - -class ReadTimeout(TimeoutException): - """ - Timed out while receiving data from the host. - """ - - -class WriteTimeout(TimeoutException): - """ - Timed out while sending data to the host. - """ - - -class PoolTimeout(TimeoutException): - """ - Timed out waiting to acquire a connection from the pool. - """ - - -# Core networking exceptions... - - -class NetworkError(TransportError): - """ - The base class for network-related errors. - - An error occurred while interacting with the network. - """ - - -class ReadError(NetworkError): - """ - Failed to receive data from the network. - """ - - -class WriteError(NetworkError): - """ - Failed to send data through the network. - """ - - -class ConnectError(NetworkError): - """ - Failed to establish a connection. - """ - - -class CloseError(NetworkError): - """ - Failed to close a connection. - """ - - -# Other transport exceptions... - - -class ProxyError(TransportError): - """ - An error occurred while establishing a proxy connection. - """ - - -class UnsupportedProtocol(TransportError): - """ - Attempted to make a request to an unsupported protocol. - - For example issuing a request to `ftp://www.example.com`. - """ - - -class ProtocolError(TransportError): - """ - The protocol was violated. - """ - - -class LocalProtocolError(ProtocolError): - """ - A protocol was violated by the client. - - For example if the user instantiated a `Request` instance explicitly, - failed to include the mandatory `Host:` header, and then issued it directly - using `client.send()`. - """ - - -class RemoteProtocolError(ProtocolError): - """ - The protocol was violated by the server. - - For example, returning malformed HTTP. - """ - - -# Other request exceptions... - - -class DecodingError(RequestError): - """ - Decoding of the response failed, due to a malformed encoding. - """ - - -class TooManyRedirects(RequestError): - """ - Too many redirects. - """ - - -# Client errors - - -class HTTPStatusError(HTTPError): - """ - The response had an error HTTP status of 4xx or 5xx. - - May be raised when calling `response.raise_for_status()` - """ - - def __init__( - self, message: str, *, request: "Request", response: "Response" - ) -> None: - super().__init__(message) - self.request = request - self.response = response - - -class InvalidURL(Exception): - """ - URL is improperly formed or cannot be parsed. - """ - - def __init__(self, message: str) -> None: - super().__init__(message) - - -class CookieConflict(Exception): - """ - Attempted to lookup a cookie by name, but multiple cookies existed. - - Can occur when calling `response.cookies.get(...)`. - """ - - def __init__(self, message: str) -> None: - super().__init__(message) - - -# Stream exceptions... - -# These may occur as the result of a programming error, by accessing -# the request/response stream in an invalid manner. - - -class StreamError(RuntimeError): - """ - The base class for stream exceptions. - - The developer made an error in accessing the request stream in - an invalid way. - """ - - def __init__(self, message: str) -> None: - super().__init__(message) - - -class StreamConsumed(StreamError): - """ - Attempted to read or stream content, but the content has already - been streamed. - """ - - def __init__(self) -> None: - message = ( - "Attempted to read or stream some content, but the content has " - "already been streamed. For requests, this could be due to passing " - "a generator as request content, and then receiving a redirect " - "response or a secondary request as part of an authentication flow." - "For responses, this could be due to attempting to stream the response " - "content more than once." - ) - super().__init__(message) - - -class StreamClosed(StreamError): - """ - Attempted to read or stream response content, but the request has been - closed. - """ - - def __init__(self) -> None: - message = ( - "Attempted to read or stream content, but the stream has " "been closed." - ) - super().__init__(message) - - -class ResponseNotRead(StreamError): - """ - Attempted to access streaming response content, without having called `read()`. - """ - - def __init__(self) -> None: - message = "Attempted to access streaming response content, without having called `read()`." - super().__init__(message) - - -class RequestNotRead(StreamError): - """ - Attempted to access streaming request content, without having called `read()`. - """ - - def __init__(self) -> None: - message = "Attempted to access streaming request content, without having called `read()`." - super().__init__(message) - - -@contextlib.contextmanager -def request_context( - request: typing.Optional["Request"] = None, -) -> typing.Iterator[None]: - """ - A context manager that can be used to attach the given request context - to any `RequestError` exceptions that are raised within the block. - """ - try: - yield - except RequestError as exc: - if request is not None: - exc.request = request - raise exc diff --git a/spaces/derful/Chatgpt-academic/functional.py b/spaces/derful/Chatgpt-academic/functional.py deleted file mode 100644 index e416063ca0859bc498f6abced452ca54866a271d..0000000000000000000000000000000000000000 --- a/spaces/derful/Chatgpt-academic/functional.py +++ /dev/null @@ -1,59 +0,0 @@ -# 'primary' 颜色对应 theme.py 中的 primary_hue -# 'secondary' 颜色对应 theme.py 中的 neutral_hue -# 'stop' 颜色对应 theme.py 中的 color_er -# 默认按钮颜色是 secondary - -def get_functionals(): - return { - "英语学术润色": { - "Prefix": "Below is a paragraph from an academic paper. Polish the writing to meet the academic style, \ -improve the spelling, grammar, clarity, concision and overall readability. When neccessary, rewrite the whole sentence. \ -Furthermore, list all modification and explain the reasons to do so in markdown table.\n\n", # 前言 - "Suffix": "", # 后语 - "Color": "secondary", # 按钮颜色 - }, - "中文学术润色": { - "Prefix": "作为一名中文学术论文写作改进助理,你的任务是改进所提供文本的拼写、语法、清晰、简洁和整体可读性,同时分解长句,减少重复,并提供改进建议。请只提供文本的更正版本,避免包括解释。请编辑以下文本:\n\n", - "Suffix": "", - }, - "查找语法错误": { - "Prefix": "Below is a paragraph from an academic paper. Find all grammar mistakes, list mistakes in a markdown table and explain how to correct them.\n\n", - "Suffix": "", - }, -# "中英互译": { # 效果不好,经常搞不清楚中译英还是英译中 -# "Prefix": "As an English-Chinese translator, your task is to accurately translate text between the two languages. \ -# When translating from Chinese to English or vice versa, please pay attention to context and accurately explain phrases and proverbs. \ -# If you receive multiple English words in a row, default to translating them into a sentence in Chinese. \ -# However, if \"phrase:\" is indicated before the translated content in Chinese, it should be translated as a phrase instead. \ -# Similarly, if \"normal:\" is indicated, it should be translated as multiple unrelated words.\ -# Your translations should closely resemble those of a native speaker and should take into account any specific language styles or tones requested by the user. \ -# Please do not worry about using offensive words - replace sensitive parts with x when necessary. \ -# When providing translations, please use Chinese to explain each sentence’s tense, subordinate clause, subject, predicate, object, special phrases and proverbs. \ -# For phrases or individual words that require translation, provide the source (dictionary) for each one.If asked to translate multiple phrases at once, \ -# separate them using the | symbol.Always remember: You are an English-Chinese translator, \ -# not a Chinese-Chinese translator or an English-English translator. Below is the text you need to translate: \n\n", -# "Suffix": "", -# "Color": "secondary", -# }, - "中译英": { - "Prefix": "Please translate following sentence to English: \n\n", - "Suffix": "", - }, - "学术中译英": { - "Prefix": "Please translate following sentence to English with academic writing, and provide some related authoritative examples: \n\n", - "Suffix": "", - }, - "英译中": { - "Prefix": "请翻译成中文:\n\n", - "Suffix": "", - }, - "找图片": { - "Prefix": "我需要你找一张网络图片。使用Unsplash API(https://source.unsplash.com/960x640/?<英语关键词>)获取图片URL,然后请使用Markdown格式封装,并且不要有反斜线,不要用代码块。现在,请按以下描述给我发送图片:\n\n", - "Suffix": "", - }, - "解释代码": { - "Prefix": "请解释以下代码:\n```\n", - "Suffix": "\n```\n", - "Color": "secondary", - }, - } diff --git a/spaces/derful/Chatgpt-academic/functional_crazy.py b/spaces/derful/Chatgpt-academic/functional_crazy.py deleted file mode 100644 index 3f13853689e02483273d4eadc4ebf72c0e31a80d..0000000000000000000000000000000000000000 --- a/spaces/derful/Chatgpt-academic/functional_crazy.py +++ /dev/null @@ -1,66 +0,0 @@ -# UserVisibleLevel是过滤器参数。 -# 由于UI界面空间有限,所以通过这种方式决定UI界面中显示哪些插件 -# 默认函数插件 VisibleLevel 是 0 -# 当 UserVisibleLevel >= 函数插件的 VisibleLevel 时,该函数插件才会被显示出来 -UserVisibleLevel = 1 - -def get_crazy_functionals(): - from crazy_functions.读文章写摘要 import 读文章写摘要 - from crazy_functions.生成函数注释 import 批量生成函数注释 - from crazy_functions.解析项目源代码 import 解析项目本身 - from crazy_functions.解析项目源代码 import 解析一个Python项目 - from crazy_functions.解析项目源代码 import 解析一个C项目的头文件 - from crazy_functions.解析项目源代码 import 解析一个C项目 - from crazy_functions.高级功能函数模板 import 高阶功能模板函数 - from crazy_functions.代码重写为全英文_多线程 import 全项目切换英文 - - function_plugins = { - "请解析并解构此项目本身": { - "Function": 解析项目本身 - }, - "解析整个py项目": { - "Color": "stop", # 按钮颜色 - "Function": 解析一个Python项目 - }, - "解析整个C++项目头文件": { - "Color": "stop", # 按钮颜色 - "Function": 解析一个C项目的头文件 - }, - "解析整个C++项目": { - "Color": "stop", # 按钮颜色 - "Function": 解析一个C项目 - }, - "读tex论文写摘要": { - "Color": "stop", # 按钮颜色 - "Function": 读文章写摘要 - }, - "批量生成函数注释": { - "Color": "stop", # 按钮颜色 - "Function": 批量生成函数注释 - }, - "[多线程demo] 把本项目源代码切换成全英文": { - "Function": 全项目切换英文 - }, - "[函数插件模板demo] 历史上的今天": { - "Function": 高阶功能模板函数 - }, - } - - # VisibleLevel=1 经过测试,但功能未达到理想状态 - if UserVisibleLevel >= 1: - from crazy_functions.批量总结PDF文档 import 批量总结PDF文档 - function_plugins.update({ - "[仅供开发调试] 批量总结PDF文档": { - "Color": "stop", - "Function": 批量总结PDF文档 - }, - }) - - # VisibleLevel=2 尚未充分测试的函数插件,放在这里 - if UserVisibleLevel >= 2: - function_plugins.update({ - }) - - return function_plugins - - diff --git a/spaces/diacanFperku/AutoGPT/Daphne Yvm D03 11.md b/spaces/diacanFperku/AutoGPT/Daphne Yvm D03 11.md deleted file mode 100644 index 855cf8bb02b9deb4994574f124b916fbfb8f5572..0000000000000000000000000000000000000000 --- a/spaces/diacanFperku/AutoGPT/Daphne Yvm D03 11.md +++ /dev/null @@ -1,6 +0,0 @@ -

            daphne yvm d03 11


            Download File ->>->>->> https://gohhs.com/2uFTJ1



            - - d5da3c52bf
            -
            -
            -

            diff --git a/spaces/diacanFperku/AutoGPT/Girls Mag.de 43.md b/spaces/diacanFperku/AutoGPT/Girls Mag.de 43.md deleted file mode 100644 index b5d8296f303fd01c067b1d5336d25ca9095d3f79..0000000000000000000000000000000000000000 --- a/spaces/diacanFperku/AutoGPT/Girls Mag.de 43.md +++ /dev/null @@ -1,6 +0,0 @@ -

            Girls Mag.de 43


            Download Zip ————— https://gohhs.com/2uFVJO



            - -Girls Mag.de 43 maetlnekea. smarchiechatu 2021. 6. 17. 22:04. Da Vinci (magazine) 49 Dazai Osamu 188, 192-93, 199; Bannen (Last Years) 140; ... Others. 7. 17. 22:10. Malek (Journal) 54 Sakurako Hashimoto 188, 192-93, 199; ...and others. 8. 17. 23:01. Malek (journal) 55 Sakurako Hashimoto 188, 192-93, 199; ...and others. 9. 18. 22:04. Malek (magazine) 56 Sakurako Hashimoto 188, 192-93, 199; ...and others. 10. 18. 22:20. Malek (journal) 57 Sakurako Hashimoto 188, 192-93, 199; ...and others. 11. 18. 8a78ff9644
            -
            -
            -

            diff --git a/spaces/diffusers/controlnet-3d-pose/README.md b/spaces/diffusers/controlnet-3d-pose/README.md deleted file mode 100644 index 6c032a0571bd57fd0be7c542477e0e3cd20776a4..0000000000000000000000000000000000000000 --- a/spaces/diffusers/controlnet-3d-pose/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: ControlNet 3D Pose -emoji: 🔥 -colorFrom: indigo -colorTo: green -sdk: gradio -sdk_version: 3.23.0 -app_file: app.py -pinned: false -duplicated_from: diffusers/controlnet-openpose ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference \ No newline at end of file diff --git a/spaces/dog/fastapi-document-qa/README.md b/spaces/dog/fastapi-document-qa/README.md deleted file mode 100644 index a2715379c9fee83df9ec5be0f23678b6e445dcde..0000000000000000000000000000000000000000 --- a/spaces/dog/fastapi-document-qa/README.md +++ /dev/null @@ -1,10 +0,0 @@ ---- -title: Fastapi Document Qa -emoji: 🐠 -colorFrom: gray -colorTo: yellow -sdk: docker -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/dongyi/MMFS/README.md b/spaces/dongyi/MMFS/README.md deleted file mode 100644 index 2385310755d698febe19cffb9bfbceafdecb4993..0000000000000000000000000000000000000000 --- a/spaces/dongyi/MMFS/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: MMFS -emoji: 🌍 -colorFrom: indigo -colorTo: purple -sdk: gradio -sdk_version: 3.42.0 -app_file: app.py -pinned: false -license: apache-2.0 ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/echolee/faceanime4u/app.py b/spaces/echolee/faceanime4u/app.py deleted file mode 100644 index 2a6b2973f351b220f93150711d34af8da49b8c87..0000000000000000000000000000000000000000 --- a/spaces/echolee/faceanime4u/app.py +++ /dev/null @@ -1,33 +0,0 @@ -from PIL import Image -import torch -import gradio as gr - -model2 = torch.hub.load( - "AK391/animegan2-pytorch:main", - "generator", - pretrained=True, - device="cpu", - progress=False -) -model1 = torch.hub.load("AK391/animegan2-pytorch:main", - "generator", pretrained="face_paint_512_v1", device="cpu") -face2paint = torch.hub.load( - 'AK391/animegan2-pytorch:main', 'face2paint', - size=512, device="cpu", side_by_side=False -) - -def inference(img, ver): - if ver == 'version 2 (🔺 robustness,🔻 stylization)': - out = face2paint(model2, img) - else: - out = face2paint(model1, img) - return out - -title = "Face Anime For You" -description = "Online Demo for AnimeGanv2 Face Portrait v2. To use it, simply upload your image, or click one of the examples to load them. Please use a cropped portrait picture for best results similar to the examples below.\n" + \ - "基于AnimeGanv2-动漫风格人脸迁移的在线应用示例。点击下面的窗口以上传图片,或者点击以加载Examples中的图片。请使用与示例中的图片风格相近的照片,确保图片的主体是人脸、五官清晰、没有遮挡,光线良好。" -article = "

            ❤ from Bruce

            " -examples = [['elon.png', 'version 2 (🔺 robustness,🔻 stylization)'], - ['IU.png', 'version 2 (🔺 robustness,🔻 stylization)']] -gr.Interface(inference, [gr.inputs.Image(type="pil"), gr.inputs.Radio(['version 1 (🔺 stylization, 🔻 robustness)', 'version 2 (🔺 robustness,🔻 stylization)'], type="value", default='version 2 (🔺 robustness,🔻 stylization)', label='version') - ], gr.outputs.Image(type="pil"), title=title, description=description, article=article, enable_queue=True, examples=examples, allow_flagging=False, allow_screenshot=False).launch() diff --git a/spaces/egumasa/engagement-analyzer-demo/pipeline/custom_functions.py b/spaces/egumasa/engagement-analyzer-demo/pipeline/custom_functions.py deleted file mode 100644 index 2534fa35178bd41aa4003e803d3481d7648ef40b..0000000000000000000000000000000000000000 --- a/spaces/egumasa/engagement-analyzer-demo/pipeline/custom_functions.py +++ /dev/null @@ -1,190 +0,0 @@ -from functools import partial -from pathlib import Path -from typing import Iterable, Callable -import spacy -from spacy.training import Example -from spacy.tokens import DocBin, Doc - -# make the factory work -# from scripts.rel_pipe import make_relation_extractor - -# make the config work -# from scripts.rel_model import create_relation_model, create_classification_layer, create_instances, create_tensors -# from scripts.custom_comps.SpanCat_extention import build_mean_max_reducer1, build_mean_max_reducer2, build_mean_max_reducer3, build_mean_max_reducer4 - -from typing import List, Tuple, cast -from thinc.api import Model, with_getitem, chain, list2ragged, Logistic -from thinc.api import Maxout, Linear, concatenate, glorot_uniform_init, PyTorchLSTM -from thinc.api import reduce_mean, reduce_max, reduce_first, reduce_last -from thinc.types import Ragged, Floats2d - -from spacy.util import registry -from spacy.tokens import Doc -from spacy.ml.extract_spans import extract_spans - -# @registry.layers("spacy.LinearLogistic.v1") -# def build_linear_logistic(nO=None, nI=None) -> Model[Floats2d, Floats2d]: -# """An output layer for multi-label classification. It uses a linear layer -# followed by a logistic activation. -# """ -# return chain(Linear(nO=nO, nI=nI, init_W=glorot_uniform_init), Logistic()) - - -@registry.layers("mean_max_reducer.v1.5") -def build_mean_max_reducer1(hidden_size: int, - dropout: float = 0.0) -> Model[Ragged, Floats2d]: - """Reduce sequences by concatenating their mean and max pooled vectors, - and then combine the concatenated vectors with a hidden layer. - """ - return chain( - concatenate( - cast(Model[Ragged, Floats2d], reduce_last()), - cast(Model[Ragged, Floats2d], reduce_first()), - reduce_mean(), - reduce_max(), - ), - Maxout(nO=hidden_size, normalize=True, dropout=dropout), - ) - - -@registry.layers("mean_max_reducer.v2") -def build_mean_max_reducer2(hidden_size: int, - dropout: float = 0.0) -> Model[Ragged, Floats2d]: - """Reduce sequences by concatenating their mean and max pooled vectors, - and then combine the concatenated vectors with a hidden layer. - """ - return chain( - concatenate( - cast(Model[Ragged, Floats2d], reduce_last()), - cast(Model[Ragged, Floats2d], reduce_first()), - reduce_mean(), - reduce_max(), - ), Maxout(nO=hidden_size, normalize=True, dropout=dropout), - Maxout(nO=hidden_size, normalize=True, dropout=dropout)) - - -# @registry.layers("mean_max_reducer.v2") -# def build_mean_max_reducer2(hidden_size: int, -# depth: int) -> Model[Ragged, Floats2d]: -# """Reduce sequences by concatenating their mean and max pooled vectors, -# and then combine the concatenated vectors with a hidden layer. -# """ -# return chain( -# concatenate( -# cast(Model[Ragged, Floats2d], reduce_last()), -# cast(Model[Ragged, Floats2d], reduce_first()), -# reduce_mean(), -# reduce_max(), -# ), Maxout(nO=hidden_size, normalize=True, dropout=0.0), -# PyTorchLSTM(nO=64, nI=hidden_size, bi=True, depth=depth, dropout=0.2)) - - -@registry.layers("mean_max_reducer.v3") -def build_mean_max_reducer3(hidden_size: int, - maxout_pieces: int = 3, - dropout: float = 0.0) -> Model[Ragged, Floats2d]: - """Reduce sequences by concatenating their mean and max pooled vectors, - and then combine the concatenated vectors with a hidden layer. - """ - hidden_size2 = int(hidden_size / 2) - hidden_size3 = int(hidden_size / 2) - return chain( - concatenate( - cast(Model[Ragged, Floats2d], reduce_last()), - cast(Model[Ragged, Floats2d], reduce_first()), - reduce_mean(), - reduce_max(), - ), - Maxout(nO=hidden_size, - nP=maxout_pieces, - normalize=True, - dropout=dropout), - Maxout(nO=hidden_size2, - nP=maxout_pieces, - normalize=True, - dropout=dropout), - Maxout(nO=hidden_size3, - nP=maxout_pieces, - normalize=True, - dropout=dropout)) - - -@registry.layers("mean_max_reducer.v3.3") -def build_mean_max_reducer4(hidden_size: int, - depth: int) -> Model[Ragged, Floats2d]: - """Reduce sequences by concatenating their mean and max pooled vectors, - and then combine the concatenated vectors with a hidden layer. - """ - hidden_size2 = int(hidden_size / 2) - hidden_size3 = int(hidden_size / 2) - return chain( - concatenate( - cast(Model[Ragged, Floats2d], reduce_last()), - cast(Model[Ragged, Floats2d], reduce_first()), - reduce_mean(), - reduce_max(), - ), Maxout(nO=hidden_size, nP=3, normalize=True, dropout=0.0), - Maxout(nO=hidden_size2, nP=3, normalize=True, dropout=0.0), - Maxout(nO=hidden_size3, nP=3, normalize=True, dropout=0.0)) - - -@registry.architectures("CustomSpanCategorizer.v2") -def build_spancat_model( - tok2vec: Model[List[Doc], List[Floats2d]], - reducer: Model[Ragged, Floats2d], - scorer: Model[Floats2d, Floats2d], -) -> Model[Tuple[List[Doc], Ragged], Floats2d]: - """Build a span categorizer model, given a token-to-vector model, a - reducer model to map the sequence of vectors for each span down to a single - vector, and a scorer model to map the vectors to probabilities. - tok2vec (Model[List[Doc], List[Floats2d]]): The tok2vec model. - reducer (Model[Ragged, Floats2d]): The reducer model. - scorer (Model[Floats2d, Floats2d]): The scorer model. - """ - model = chain( - cast( - Model[Tuple[List[Doc], Ragged], Tuple[Ragged, Ragged]], - with_getitem( - 0, - chain(tok2vec, - cast(Model[List[Floats2d], Ragged], list2ragged()))), - ), - extract_spans(), - reducer, - scorer, - ) - model.set_ref("tok2vec", tok2vec) - model.set_ref("reducer", reducer) - model.set_ref("scorer", scorer) - return model - - -# @registry.architectures("spacy.SpanCategorizer.v1") -# def build_spancat_model( -# tok2vec: Model[List[Doc], List[Floats2d]], -# reducer: Model[Ragged, Floats2d], -# scorer: Model[Floats2d, Floats2d], -# ) -> Model[Tuple[List[Doc], Ragged], Floats2d]: -# """Build a span categorizer model, given a token-to-vector model, a -# reducer model to map the sequence of vectors for each span down to a single -# vector, and a scorer model to map the vectors to probabilities. -# tok2vec (Model[List[Doc], List[Floats2d]]): The tok2vec model. -# reducer (Model[Ragged, Floats2d]): The reducer model. -# scorer (Model[Floats2d, Floats2d]): The scorer model. -# """ -# model = chain( -# cast( -# Model[Tuple[List[Doc], Ragged], Tuple[Ragged, Ragged]], -# with_getitem( -# 0, -# chain(tok2vec, -# cast(Model[List[Floats2d], Ragged], list2ragged()))), -# ), -# extract_spans(), -# reducer, -# scorer, -# ) -# model.set_ref("tok2vec", tok2vec) -# model.set_ref("reducer", reducer) -# model.set_ref("scorer", scorer) -# return model \ No newline at end of file diff --git a/spaces/epexVfeibi/Imagedeblurr/7G Rainbow Colony English Sub 720p Hd.md b/spaces/epexVfeibi/Imagedeblurr/7G Rainbow Colony English Sub 720p Hd.md deleted file mode 100644 index 8e03965f545ac9a794187a77349702a64e12b242..0000000000000000000000000000000000000000 --- a/spaces/epexVfeibi/Imagedeblurr/7G Rainbow Colony English Sub 720p Hd.md +++ /dev/null @@ -1,10 +0,0 @@ -
            -

            one of the most popular activities is scuba diving, which in antigua can be done on a scuba course, either locally or in padi certification centers on the island. there are many different dive sites, with wrecks, caves, and the very shallow reef. reef divers can expect to encounter manta rays, whitetip sharks, nurse sharks, and other exciting marine life.

            -

            expect to swim in crystal-clear waters on the island's famous beaches, such as english harbour, cashew hill, and long bay. the island has world-renowned diving and snorkeling sites, such as chalk sound, shoal bay, white valley, and the east end, the indian ocean's premier dive site. the island has many hotels, bars, restaurants, golf courses, and casino resorts.

            -

            7G Rainbow Colony english sub 720p hd


            Download Ziphttps://jinyurl.com/2uEpK5



            -

            the island has a strong military history. the anguilla british forces supported the american revolution against the british, and the united states armed forces used the island as an important base during the second world war. the island was also a colony of great britain from the 17th to 19th centuries. you can visit fort st. george, the spanish fort from which antigua was named, and the minerva bakery and other historic buildings.

            -

            rainbow colony is a bikash puri (layer cake). the bikash puri is topped with a layer of mai kulchai (vermicelli soaked in coconut milk) and layered with a mixture of tempered butter, fruits, nuts, cardamom, saffron, sugar, vermicelli, ghee, and finally a layer of rose water and ghee.

            -

            it is definitely a must to stay at some of the colonial style guest houses in amber city. these traditional style hotels are usually found in the heart of the city and are some of the most beautiful luxury hotels in india. known for their historical architecture, graceful architecture and pleasant services, these hotels provide a great experience for every traveler who makes the trip to india. these hotels are ideal for both families and adults who wish to stay in india as they offer traditional indian hospitality along with modern amenities. staying in these hotels will make you feel as if you've stepped into another era of traveling.

            -

            899543212b
            -
            -
            \ No newline at end of file diff --git a/spaces/eslavathanil/myGenAIchatbot/README.md b/spaces/eslavathanil/myGenAIchatbot/README.md deleted file mode 100644 index 1a8de948f02ca07b650075aabc021aec166c5f18..0000000000000000000000000000000000000000 --- a/spaces/eslavathanil/myGenAIchatbot/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: MyGenAIchatbot -emoji: 📚 -colorFrom: red -colorTo: green -sdk: gradio -sdk_version: 3.39.0 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/eson/tokenizer-arena/vocab/kplug/__init__.py b/spaces/eson/tokenizer-arena/vocab/kplug/__init__.py deleted file mode 100644 index d602735839aca3b189091bae8505f699842296cc..0000000000000000000000000000000000000000 --- a/spaces/eson/tokenizer-arena/vocab/kplug/__init__.py +++ /dev/null @@ -1,5 +0,0 @@ - -from transformers import BertTokenizer - -tokenizer = BertTokenizer.from_pretrained("eson/kplug-base-encoder") -print(tokenizer) diff --git a/spaces/evaluate-metric/chrf/chrf.py b/spaces/evaluate-metric/chrf/chrf.py deleted file mode 100644 index 30bf8a0cec2251972e872fe09d15b6a7f2858f2f..0000000000000000000000000000000000000000 --- a/spaces/evaluate-metric/chrf/chrf.py +++ /dev/null @@ -1,188 +0,0 @@ -# Copyright 2021 The HuggingFace Evaluate Authors. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" Chrf(++) metric as available in sacrebleu. """ -import datasets -import sacrebleu as scb -from packaging import version -from sacrebleu import CHRF - -import evaluate - - -_CITATION = """\ -@inproceedings{popovic-2015-chrf, - title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation", - author = "Popovi{\'c}, Maja", - booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation", - month = sep, - year = "2015", - address = "Lisbon, Portugal", - publisher = "Association for Computational Linguistics", - url = "https://aclanthology.org/W15-3049", - doi = "10.18653/v1/W15-3049", - pages = "392--395", -} -@inproceedings{popovic-2017-chrf, - title = "chr{F}++: words helping character n-grams", - author = "Popovi{\'c}, Maja", - booktitle = "Proceedings of the Second Conference on Machine Translation", - month = sep, - year = "2017", - address = "Copenhagen, Denmark", - publisher = "Association for Computational Linguistics", - url = "https://aclanthology.org/W17-4770", - doi = "10.18653/v1/W17-4770", - pages = "612--618", -} -@inproceedings{post-2018-call, - title = "A Call for Clarity in Reporting {BLEU} Scores", - author = "Post, Matt", - booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", - month = oct, - year = "2018", - address = "Belgium, Brussels", - publisher = "Association for Computational Linguistics", - url = "https://www.aclweb.org/anthology/W18-6319", - pages = "186--191", -} -""" - -_DESCRIPTION = """\ -ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, -and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation -that is already present in sacrebleu. - -The implementation here is slightly different from sacrebleu in terms of the required input format. The length of -the references and hypotheses lists need to be the same, so you may need to transpose your references compared to -sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 - -See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. -""" - -_KWARGS_DESCRIPTION = """ -Produces ChrF(++) scores for hypotheses given reference translations. - -Args: - predictions (list of str): The predicted sentences. - references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. - char_order (int): Character n-gram order. Defaults to `6`. - word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. - beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. - lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. - whitespace (bool): If `True`, include whitespaces when extracting character n-grams. - eps_smoothing (bool): If `True`, applies epsilon smoothing similar - to reference chrF++.py, NLTK and Moses implementations. If `False`, - it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. - -Returns: - 'score' (float): The chrF (chrF++) score, - 'char_order' (int): The character n-gram order, - 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, - 'beta' (int): Determine the importance of recall w.r.t precision - -Examples: - Example 1--a simple example of calculating chrF: - >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] - >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] - >>> chrf = evaluate.load("chrf") - >>> results = chrf.compute(predictions=prediction, references=reference) - >>> print(results) - {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2} - - Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: - >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] - >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] - >>> chrf = evaluate.load("chrf") - >>> results = chrf.compute(predictions=prediction, - ... references=reference, - ... word_order=2) - >>> print(results) - {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2} - - Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: - >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] - >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] - >>> chrf = evaluate.load("chrf") - >>> results = chrf.compute(predictions=prediction, - ... references=reference, - ... word_order=2, - ... lowercase=True) - >>> print(results) - {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2} -""" - - -@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) -class ChrF(evaluate.Metric): - def _info(self): - if version.parse(scb.__version__) < version.parse("1.4.12"): - raise ImportWarning( - "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" - 'You can install it with `pip install "sacrebleu>=1.4.12"`.' - ) - return evaluate.MetricInfo( - description=_DESCRIPTION, - citation=_CITATION, - homepage="https://github.com/mjpost/sacreBLEU#chrf--chrf", - inputs_description=_KWARGS_DESCRIPTION, - features=[ - datasets.Features( - { - "predictions": datasets.Value("string", id="sequence"), - "references": datasets.Sequence(datasets.Value("string", id="sequence"), id="references"), - } - ), - datasets.Features( - { - "predictions": datasets.Value("string", id="sequence"), - "references": datasets.Value("string", id="sequence"), - } - ), - ], - codebase_urls=["https://github.com/mjpost/sacreBLEU#chrf--chrf"], - reference_urls=[ - "https://github.com/m-popovic/chrF", - ], - ) - - def _compute( - self, - predictions, - references, - char_order: int = CHRF.CHAR_ORDER, - word_order: int = CHRF.WORD_ORDER, - beta: int = CHRF.BETA, - lowercase: bool = False, - whitespace: bool = False, - eps_smoothing: bool = False, - ): - # if only one reference is provided make sure we still use list of lists - if isinstance(references[0], str): - references = [[ref] for ref in references] - references_per_prediction = len(references[0]) - if any(len(refs) != references_per_prediction for refs in references): - raise ValueError( - "ChrF, as implemented by sacrebleu, requires the same number of references for each prediction" - ) - transformed_references = [[refs[i] for refs in references] for i in range(references_per_prediction)] - - sb_chrf = CHRF(char_order, word_order, beta, lowercase, whitespace, eps_smoothing) - output = sb_chrf.corpus_score(predictions, transformed_references) - - return { - "score": output.score, - "char_order": output.char_order, - "word_order": output.word_order, - "beta": output.beta, - } diff --git a/spaces/exbert-project/exbert/client/src/css/AttentionConnectorControls.css b/spaces/exbert-project/exbert/client/src/css/AttentionConnectorControls.css deleted file mode 100644 index 0c363b13c8bb2f8ecc2fb574a657aa76408e3509..0000000000000000000000000000000000000000 --- a/spaces/exbert-project/exbert/client/src/css/AttentionConnectorControls.css +++ /dev/null @@ -1,218 +0,0 @@ -.input-description { - font-weight: 800; -} - -.connector-controls { - display: -ms-grid; - display: grid; - -ms-grid-columns: 0.5fr 0.5fr; - grid-template-columns: 0.5fr 0.5fr; -} - -.slide-container { - -ms-grid-column: 1; - grid-column-start: 1; - grid-column-end: 2; - -ms-grid-row: 1; - grid-row-start: 1; - grid-row-end: 2; - margin: auto; - text-align: center; - width: 75%; -} - -.slider { - -webkit-appearance: none; - width: 10px; - height: 10px; - border-radius: 5px; - background: #d3d3d3; - outline: none; - opacity: 0.7; - -webkit-transition: .2s; - -webkit-transition: opacity .2s; - transition: opacity .2s; -} - -.slider:hover { - opacity: 1; -} - -.slider::-webkit-slider-thumb { - -webkit-appearance: none; - appearance: none; - width: 15px; - height: 15px; - border-radius: 50%; - background: #666666; - cursor: pointer; -} - -#layer-selection { - -ms-grid-column: 1; - grid-column-start: 1; - grid-column-end: 2; - -ms-grid-row: 2; - grid-row-start: 2; - grid-row-end: 3; -} - -.layer-select { - margin-bottom: 2em; -} - -#atn-container { - display: -webkit-box; - display: -ms-flexbox; - display: flex; - -webkit-box-orient: horizontal; - -webkit-box-direction: normal; - -ms-flex-direction: row; - flex-direction: row; - -ms-flex-wrap: nowrap; - flex-wrap: nowrap; - -webkit-box-pack: center; - -ms-flex-pack: center; - justify-content: center; - -webkit-box-align: center; - -ms-flex-align: center; - align-items: center; - margin: 0 auto; - width: 100%; - vertical-align: top; -} - -#atn-container #left-att-heads { - -webkit-box-ordinal-group: 2; - -ms-flex-order: 1; - order: 1; - display: inline-block; - vertical-align: top; -} - -#atn-container #left-tokens { - -webkit-box-ordinal-group: 3; - -ms-flex-order: 2; - order: 2; - text-align: right; - vertical-align: top; -} - -#atn-container #atn-display { - -webkit-box-ordinal-group: 4; - -ms-flex-order: 3; - order: 3; - vertical-align: top; -} - -#atn-container #right-tokens { - -webkit-box-ordinal-group: 5; - -ms-flex-order: 4; - order: 4; - text-align: left; - vertical-align: top; -} - -#atn-container #right-att-heads { - -webkit-box-ordinal-group: 6; - -ms-flex-order: 5; - order: 5; - vertical-align: top; -} - -.att-rect { - -webkit-transition: fill 0.1s; - transition: fill 0.1s; -} - -.token { - display: block; -} - -.atn-curve { - fill: none; - stroke: purple; -} - -.masked-token { - color: rgba(0, 0, 0, 0.2); -} - -.unselected { - fill: gray; -} - -.selected-token { - border-style: solid; - border-width: 3px; - border-color: #99c400; -} - -/* The switch - the box around the slider */ -.switch { - position: relative; - display: inline-block; - width: 60px; - height: 34px; - /* Hide default HTML checkbox */ -} - -.switch input { - opacity: 0; - width: 0; - height: 0; -} - -/* The slider */ -.short-slider { - position: absolute; - cursor: pointer; - top: 0; - left: 0; - right: 0; - bottom: 0; - background-color: #ccc; - -webkit-transition: .4s; - transition: .4s; -} - -.short-slider:before { - position: absolute; - content: ""; - height: 26px; - width: 26px; - left: 4px; - bottom: 4px; - background-color: white; - -webkit-transition: .4s; - transition: .4s; -} - -input:checked + .short-slider { - background-color: #2196F3; -} - -input:focus + .short-slider { - -webkit-box-shadow: 0 0 1px #2196F3; - box-shadow: 0 0 1px #2196F3; -} - -input:checked + .short-slider:before { - -webkit-transform: translateX(26px); - transform: translateX(26px); -} - -/* Rounded sliders */ -.short-slider.round { - border-radius: 34px; -} - -.short-slider.round:before { - border-radius: 50%; -} - -#select-all-heads { - margin-top: 20px; - margin-bottom: 20px; -} -/*# sourceMappingURL=AttentionConnectorControls.css.map */ \ No newline at end of file diff --git a/spaces/ezioruan/roop/roop/core.py b/spaces/ezioruan/roop/roop/core.py deleted file mode 100644 index b70d8548194c74cce3e4d20c53c7a88c119c2028..0000000000000000000000000000000000000000 --- a/spaces/ezioruan/roop/roop/core.py +++ /dev/null @@ -1,215 +0,0 @@ -#!/usr/bin/env python3 - -import os -import sys -# single thread doubles cuda performance - needs to be set before torch import -if any(arg.startswith('--execution-provider') for arg in sys.argv): - os.environ['OMP_NUM_THREADS'] = '1' -# reduce tensorflow log level -os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' -import warnings -from typing import List -import platform -import signal -import shutil -import argparse -import torch -import onnxruntime -import tensorflow - -import roop.globals -import roop.metadata -import roop.ui as ui -from roop.predicter import predict_image, predict_video -from roop.processors.frame.core import get_frame_processors_modules -from roop.utilities import has_image_extension, is_image, is_video, detect_fps, create_video, extract_frames, get_temp_frame_paths, restore_audio, create_temp, move_temp, clean_temp, normalize_output_path - -if 'ROCMExecutionProvider' in roop.globals.execution_providers: - del torch - -warnings.filterwarnings('ignore', category=FutureWarning, module='insightface') -warnings.filterwarnings('ignore', category=UserWarning, module='torchvision') - - -def parse_args() -> None: - signal.signal(signal.SIGINT, lambda signal_number, frame: destroy()) - program = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=100)) - program.add_argument('-s', '--source', help='select an source image', dest='source_path') - program.add_argument('-t', '--target', help='select an target image or video', dest='target_path') - program.add_argument('-o', '--output', help='select output file or directory', dest='output_path') - program.add_argument('--frame-processor', help='frame processors (choices: face_swapper, face_enhancer, ...)', dest='frame_processor', default=['face_swapper'], nargs='+') - program.add_argument('--keep-fps', help='keep original fps', dest='keep_fps', action='store_true', default=False) - program.add_argument('--keep-audio', help='keep original audio', dest='keep_audio', action='store_true', default=True) - program.add_argument('--keep-frames', help='keep temporary frames', dest='keep_frames', action='store_true', default=False) - program.add_argument('--many-faces', help='process every face', dest='many_faces', action='store_true', default=False) - program.add_argument('--video-encoder', help='adjust output video encoder', dest='video_encoder', default='libx264', choices=['libx264', 'libx265', 'libvpx-vp9']) - program.add_argument('--video-quality', help='adjust output video quality', dest='video_quality', type=int, default=18, choices=range(52), metavar='[0-51]') - program.add_argument('--max-memory', help='maximum amount of RAM in GB', dest='max_memory', type=int, default=suggest_max_memory()) - program.add_argument('--execution-provider', help='available execution provider (choices: cpu, ...)', dest='execution_provider', default=['cpu'], choices=suggest_execution_providers(), nargs='+') - program.add_argument('--execution-threads', help='number of execution threads', dest='execution_threads', type=int, default=suggest_execution_threads()) - program.add_argument('-v', '--version', action='version', version=f'{roop.metadata.name} {roop.metadata.version}') - - args = program.parse_args() - - roop.globals.source_path = args.source_path - roop.globals.target_path = args.target_path - roop.globals.output_path = normalize_output_path(roop.globals.source_path, roop.globals.target_path, args.output_path) - roop.globals.frame_processors = args.frame_processor - roop.globals.headless = args.source_path or args.target_path or args.output_path - roop.globals.keep_fps = args.keep_fps - roop.globals.keep_audio = args.keep_audio - roop.globals.keep_frames = args.keep_frames - roop.globals.many_faces = args.many_faces - roop.globals.video_encoder = args.video_encoder - roop.globals.video_quality = args.video_quality - roop.globals.max_memory = args.max_memory - roop.globals.execution_providers = decode_execution_providers(args.execution_provider) - roop.globals.execution_threads = args.execution_threads - - -def encode_execution_providers(execution_providers: List[str]) -> List[str]: - return [execution_provider.replace('ExecutionProvider', '').lower() for execution_provider in execution_providers] - - -def decode_execution_providers(execution_providers: List[str]) -> List[str]: - return [provider for provider, encoded_execution_provider in zip(onnxruntime.get_available_providers(), encode_execution_providers(onnxruntime.get_available_providers())) - if any(execution_provider in encoded_execution_provider for execution_provider in execution_providers)] - - -def suggest_max_memory() -> int: - if platform.system().lower() == 'darwin': - return 4 - return 16 - - -def suggest_execution_providers() -> List[str]: - return encode_execution_providers(onnxruntime.get_available_providers()) - - -def suggest_execution_threads() -> int: - if 'DmlExecutionProvider' in roop.globals.execution_providers: - return 1 - if 'ROCMExecutionProvider' in roop.globals.execution_providers: - return 1 - return 8 - - -def limit_resources() -> None: - # prevent tensorflow memory leak - gpus = tensorflow.config.experimental.list_physical_devices('GPU') - for gpu in gpus: - tensorflow.config.experimental.set_virtual_device_configuration(gpu, [ - tensorflow.config.experimental.VirtualDeviceConfiguration(memory_limit=1024) - ]) - # limit memory usage - if roop.globals.max_memory: - memory = roop.globals.max_memory * 1024 ** 3 - if platform.system().lower() == 'darwin': - memory = roop.globals.max_memory * 1024 ** 6 - if platform.system().lower() == 'windows': - import ctypes - kernel32 = ctypes.windll.kernel32 - kernel32.SetProcessWorkingSetSize(-1, ctypes.c_size_t(memory), ctypes.c_size_t(memory)) - else: - import resource - resource.setrlimit(resource.RLIMIT_DATA, (memory, memory)) - - -def release_resources() -> None: - if 'CUDAExecutionProvider' in roop.globals.execution_providers: - torch.cuda.empty_cache() - - -def pre_check() -> bool: - if sys.version_info < (3, 9): - update_status('Python version is not supported - please upgrade to 3.9 or higher.') - return False - if not shutil.which('ffmpeg'): - update_status('ffmpeg is not installed.') - return False - return True - - -def update_status(message: str, scope: str = 'ROOP.CORE') -> None: - print(f'[{scope}] {message}') - if not roop.globals.headless: - ui.update_status(message) - - -def start() -> None: - for frame_processor in get_frame_processors_modules(roop.globals.frame_processors): - if not frame_processor.pre_start(): - return - # process image to image - if has_image_extension(roop.globals.target_path): - if predict_image(roop.globals.target_path): - destroy() - shutil.copy2(roop.globals.target_path, roop.globals.output_path) - for frame_processor in get_frame_processors_modules(roop.globals.frame_processors): - update_status('Progressing...', frame_processor.NAME) - frame_processor.process_image(roop.globals.source_path, roop.globals.output_path, roop.globals.output_path) - frame_processor.post_process() - release_resources() - if is_image(roop.globals.target_path): - update_status('Processing to image succeed!') - else: - update_status('Processing to image failed!') - return - # process image to videos - if predict_video(roop.globals.target_path): - destroy() - update_status('Creating temp resources...') - create_temp(roop.globals.target_path) - update_status('Extracting frames...') - extract_frames(roop.globals.target_path) - temp_frame_paths = get_temp_frame_paths(roop.globals.target_path) - for frame_processor in get_frame_processors_modules(roop.globals.frame_processors): - update_status('Progressing...', frame_processor.NAME) - frame_processor.process_video(roop.globals.source_path, temp_frame_paths) - frame_processor.post_process() - release_resources() - # handles fps - if roop.globals.keep_fps: - update_status('Detecting fps...') - fps = detect_fps(roop.globals.target_path) - update_status(f'Creating video with {fps} fps...') - create_video(roop.globals.target_path, fps) - else: - update_status('Creating video with 30.0 fps...') - create_video(roop.globals.target_path) - # handle audio - if roop.globals.keep_audio: - if roop.globals.keep_fps: - update_status('Restoring audio...') - else: - update_status('Restoring audio might cause issues as fps are not kept...') - restore_audio(roop.globals.target_path, roop.globals.output_path) - else: - move_temp(roop.globals.target_path, roop.globals.output_path) - # clean and validate - clean_temp(roop.globals.target_path) - if is_video(roop.globals.target_path): - update_status('Processing to video succeed!') - else: - update_status('Processing to video failed!') - - -def destroy() -> None: - if roop.globals.target_path: - clean_temp(roop.globals.target_path) - quit() - - -def run() -> None: - parse_args() - if not pre_check(): - return - for frame_processor in get_frame_processors_modules(roop.globals.frame_processors): - if not frame_processor.pre_check(): - return - limit_resources() - if roop.globals.headless: - start() - else: - window = ui.init(start, destroy) - window.mainloop() diff --git a/spaces/failfast/nextjs-hf-spaces/next.config.js b/spaces/failfast/nextjs-hf-spaces/next.config.js deleted file mode 100644 index 412eabbf7a24ba4197c0fb15abe19f4914ad2a05..0000000000000000000000000000000000000000 --- a/spaces/failfast/nextjs-hf-spaces/next.config.js +++ /dev/null @@ -1,7 +0,0 @@ -/** @type {import('next').NextConfig} */ -const nextConfig = { - output: "standalone", - reactStrictMode: true, -}; - -module.exports = nextConfig; diff --git a/spaces/falterWliame/Face_Mask_Detection/Monster Trucks Nitro Activation Code Keygen Mac [TOP].md b/spaces/falterWliame/Face_Mask_Detection/Monster Trucks Nitro Activation Code Keygen Mac [TOP].md deleted file mode 100644 index 91f2037cc9a58b51f54c53a7bb20a67ae41e2c50..0000000000000000000000000000000000000000 --- a/spaces/falterWliame/Face_Mask_Detection/Monster Trucks Nitro Activation Code Keygen Mac [TOP].md +++ /dev/null @@ -1,6 +0,0 @@ -

            monster trucks nitro activation code keygen mac


            Download File ►►► https://urlca.com/2uDd1U



            - -Untold Legends The Warriors Code. Desenvolvido pelo estúdio CyberConnect. Free download crack games via torrent or direct links. A new collaboration kicks ... 4d29de3e1b
            -
            -
            -

            diff --git a/spaces/fatiXbelha/sd/Download DLS 2023 APK and Enjoy the Exclusive Soundtrack of BEKA The Luka State Vukovi and More!.md b/spaces/fatiXbelha/sd/Download DLS 2023 APK and Enjoy the Exclusive Soundtrack of BEKA The Luka State Vukovi and More!.md deleted file mode 100644 index fb2d3f28215894f7a2c10b559e37efc5d56b7fcd..0000000000000000000000000000000000000000 --- a/spaces/fatiXbelha/sd/Download DLS 2023 APK and Enjoy the Exclusive Soundtrack of BEKA The Luka State Vukovi and More!.md +++ /dev/null @@ -1,113 +0,0 @@ - -

            Download DLS 2023 APK: How to Play the Latest Version of Dream League Soccer on Your Android Device

            -

            If you are a fan of soccer games, you have probably heard of Dream League Soccer, one of the most popular and realistic soccer games on mobile devices. Dream League Soccer 2023 is the latest version of this game, which offers a fresh look and brand new features that will make you feel like you are in the heart of the action. In this article, we will show you how to download and install DLS 2023 APK on your Android device, as well as some tips and tricks for playing this amazing game.

            -

            download dls 2023 apk


            DOWNLOADhttps://urllie.com/2uNH58



            -

            Features of DLS 2023: What's New and Improved in the Latest Version

            -

            Dream League Soccer 2023 is not just an update of the previous version, but a complete overhaul that brings many improvements and innovations to the game. Here are some of the features that you can expect from DLS 2023:

            -

            Over 4,000 FIFPRO™ Licensed Players: Choose from the Best Soccer Stars in the World

            -

            One of the main attractions of Dream League Soccer is that you can build your own dream team from over 4,000 FIFPRO™ licensed players, including top superstar players such as Kevin De Bruyne, Achraf Hakimi, Cristiano Ronaldo, Lionel Messi, Neymar Jr., Kylian Mbappé, and more. You can also customize your players' appearance, skills, attributes, and positions to suit your preferences.

            -

            Full 3D Motion-Captured Animations: Experience Unmatched Realism and Immersion

            -

            Dream League Soccer 2023 uses full 3D motion-captured animations for kicks, tackles, celebrations, goalkeeper saves, and more, giving you unmatched realism and immersion. You can also enjoy immersive and exciting match commentary that keeps you in the heart of the action.

            -

            download dls 2023 mod apk
            -download dls 2023 apk + obb
            -download dls 2023 apk for android
            -download dls 2023 apk latest version
            -download dls 2023 apk offline
            -download dls 2023 apk data
            -download dls 2023 apk unlimited money
            -download dls 2023 apk hack
            -download dls 2023 apk and data file
            -download dls 2023 apk free
            -download dls 2023 apk full version
            -download dls 2023 apk + data zip
            -download dls 2023 apk + obb file
            -download dls 2023 apk for pc
            -download dls 2023 apk pure
            -download dls 2023 apk revdl
            -download dls 2023 apk rexdl
            -download dls 2023 apk mirror
            -download dls 2023 apk uptodown
            -download dls 2023 apk apkpure
            -download dream league soccer 2023 apk
            -download dream league soccer 2023 mod apk
            -download dream league soccer 2023 apk + obb
            -download dream league soccer 2023 apk for android
            -download dream league soccer 2023 apk latest version
            -download dream league soccer 2023 apk offline
            -download dream league soccer 2023 apk data
            -download dream league soccer 2023 apk unlimited money
            -download dream league soccer 2023 apk hack
            -download dream league soccer 2023 apk and data file
            -download dream league soccer 2023 apk free
            -download dream league soccer 2023 apk full version
            -download dream league soccer 2023 apk + data zip
            -download dream league soccer 2023 apk + obb file
            -download dream league soccer 2023 apk for pc
            -download dream league soccer 2023 apk pure
            -download dream league soccer 2023 apk revdl
            -download dream league soccer 2023 apk rexdl
            -download dream league soccer 2023 apk mirror
            -download dream league soccer 2023 apk uptodown
            -download dream league soccer 2023 apk apkpure
            -how to download dls 2023 apk
            -how to install dls 2023 apk
            -where to download dls 2023 apk
            -best site to download dls 2023 apk
            -safe link to download dls 2023 apk
            -direct link to download dls 2023 apk
            -easy way to download dls 2023 apk
            -fast way to download dls 2023 apk
            -tips and tricks for downloading dls 2023 apk

            -

            Customizable Manager and Team: Create Your Own Unique Style and Identity

            -

            Dream League Soccer 2023 lets you customize your manager from a host of different options, including hairstyles, outfits, accessories, and more. You can also customize your team's kit, logo, name, colors, or import your own creations. Along with the new and improved graphics engine, your dream team has never looked this good!

            -

            Dream League Live: Compete Against Other Elite Teams and Win Exclusive Prizes

            -

            Dream League Soccer 2023 also introduces Dream League Live, a new online mode that lets you compete against other elite teams from around the world in various tournaments and events. You can also earn exclusive rewards and prizes, such as new players, kits, coins, gems, and more. Dream League Live is the ultimate challenge for any soccer fan!

            -

            How to Download and Install DLS 2023 APK on Your Android Device

            -

            Now that you know what DLS 2023 has to offer, you might be wondering how to download and install it on your Android device. Don't worry, it's very easy and simple. Just follow these steps:

            -

            Allow Unknown Apps on Your Android Device: How to Enable the Option to Install APK Files from Your Browser or File Manager

            -

            An APK file is an Android application package file that contains all the files and data needed to run an app on your device. However, by default, Android devices do not allow you to install APK files from unknown sources, such as your browser or file manager. To enable this option, you need to do the following:

            -
              -
            • Go to your device's Settings and tap on Security or Privacy.
            • -
            • Find the option that says Unknown Sources or Install Unknown Apps and toggle it on.
            • -
            • A warning message will pop up, telling you that installing apps from unknown sources can harm your device. Tap on OK or Allow to proceed.
            • -
            -

            Congratulations, you have now enabled the option to install APK files from unknown sources on your Android device!

            -

            Download the APK File from a Reputable Source: How to Find and Verify the APK File You Want to Install

            -

            The next step is to download the APK file of DLS 2023 from a reputable source. There are many websites that offer APK files for various apps and games, but not all of them are safe and reliable. Some of them may contain malware, viruses, or fake files that can harm your device or steal your personal information. To avoid this, you need to do the following:

            -
              -
            • Do some research and find a trustworthy website that offers the APK file of DLS 2023. You can use Google or any other search engine to look for reviews, ratings, comments, or feedback from other users who have downloaded the file from that website.
            • -
            • Once you have found a reputable website, go to it and look for the download link or button for the APK file of DLS 2023. Make sure that the file name and size match with the official information provided by the developer of the game.
            • -
            • Tap on the download link or button and wait for the file to be downloaded to your device. You can check the progress of the download in your notification bar or in your browser's download manager.
            • -
            -

            Congratulations, you have now downloaded the APK file of DLS 2023 from a reputable source!

            -

            Install the APK File on Your Android Device: How to Locate and Run the APK File to Complete the Installation Process

            -

            The final step is to install the APK file of DLS 2023 on your Android device. This is very easy and simple as well. Just follow these steps:

            -
              -
            • Go to your device's file manager and locate the folder where you have downloaded the APK file of DLS 2023. Alternatively, you can also go to your browser's download manager and tap on the file name.
            • -
            • Tap on the APK file of DLS 2023 and a pop-up window will appear, asking you if you want to install this app. Tap on Install or Confirm to proceed.
            • -
            • The installation process will begin and it may take a few seconds or minutes depending on your device's speed and performance. You can check the progress of the installation in your notification bar or in your file manager.
            • -
            • Once the installation is complete, a message will appear, telling you that the app has been installed successfully. Tap on Open or Done to launch or exit the app.
            • -
            -

            Congratulations, you have now installed DLS 2023 APK on your Android device!

            -

            Tips and Tricks for Playing DLS 2023: How to Build Your Dream Team and Conquer the World

            -

            Dream League Soccer 2023 is not only a fun and realistic soccer game, but also a challenging and rewarding one. You need to build your dream team from scratch, develop your players, upgrade your stadium and facilities, compete against other elite teams, and win trophies and glory. To help you achieve this, here are some tips and tricks for playing DLS 202 , and marketing, which can enhance your players' recovery, development, and popularity. You can also use coins or gems to upgrade your stadium and facilities to increase their level and quality.

            -

            Use the Right Tactics and Formations to Suit Your Play Style and Opponents

            -

            Another important aspect of Dream League Soccer 2023 is using the right tactics and formations to suit your play style and opponents. You can choose from various tactics such as attacking, defensive, balanced, counter-attacking, possession, and more, which can affect your team's behavior and performance on the pitch. You can also choose from various formations such as 4-4-2, 4-3-3, 3-5-2, 5-3-2, and more, which can affect your team's shape and strategy on the pitch. You can also customize your tactics and formations by changing the roles, positions, instructions, and mentality of your players.

            -

            Enjoy the Exclusive Soundtrack and In-Game Commentary

            -

            Another important aspect of Dream League Soccer 2023 is enjoying the exclusive soundtrack and in-game commentary, which can enhance your gaming experience and immersion. You can listen to the original soundtrack composed by The Luka State, Sunset Sons, Vistas, Only The Poets, and more, which can pump you up and motivate you to play. You can also listen to the in-game commentary by Clive Tyldesley and Andy Townsend, who will provide you with insightful and entertaining commentary on the matches.

            -

            Conclusion: Summarize the main points and invite the reader to try DLS 2023

            -

            Dream League Soccer 2023 is a fantastic soccer game that offers you a realistic and immersive soccer experience on your Android device. You can build your own dream team from over 4,000 FIFPRO™ licensed players, enjoy full 3D motion-captured animations, customize your manager and team, compete against other elite teams in Dream League Live, and more. You can also download and install DLS 2023 APK on your Android device easily and safely by following the steps we have provided in this article. So what are you waiting for? Download DLS 2023 APK now and start playing this amazing game!

            -

            FAQs: Answer some common questions that the reader might have about DLS 2023

            -

            Here are some common questions that the reader might have about DLS 2023:

            -

            Q: Is DLS 2023 free to play?

            -

            A: Yes, DLS 2023 is free to play. However, it also contains in-app purchases that allow you to buy coins or gems that can be used to unlock or upgrade various features in the game.

            -

            Q: Is DLS 2023 compatible with my Android device?

            -

            A: DLS 2023 requires Android 5.0 or higher to run smoothly on your device. It also requires at least 350 MB of free storage space on your device.

            -

            Q: Is DLS 2023 safe to download and install?

            -

            A: Yes, DLS 2023 is safe to download and install. However, you need to make sure that you download the APK file from a reputable source and enable the option to install unknown apps on your device.

            -

            Q: How can I update DLS 2023 to the latest version?

            -

            A: You can update DLS 2023 to the latest version by downloading and installing the new APK file from a reputable source. Alternatively, you can also check for updates in the game's settings or in the Google Play Store.

            -

            Q: How can I contact the developer of DLS 2023 for feedback or support?

            -

            A: You can contact the developer of DLS 2023 for feedback or support by visiting their official website or social media pages. You can also email them at support@ftgames.com or use the in-game feedback option.

            401be4b1e0
            -
            -
            \ No newline at end of file diff --git a/spaces/fatiXbelha/sd/Download Konoha Legends Ninja AFK Mobile and Join the Epic Ninja Battles.md b/spaces/fatiXbelha/sd/Download Konoha Legends Ninja AFK Mobile and Join the Epic Ninja Battles.md deleted file mode 100644 index 6a5f5e41ac1ea0cb48c8911155e3cf770b37894a..0000000000000000000000000000000000000000 --- a/spaces/fatiXbelha/sd/Download Konoha Legends Ninja AFK Mobile and Join the Epic Ninja Battles.md +++ /dev/null @@ -1,109 +0,0 @@ - -

            Konoha Legends Ninja AFK Mobile Download: A Strategy Game Based on Naruto Series

            -

            If you are a fan of Naruto, the popular manga and anime series, you might be interested in playing Konoha Legends Ninja AFK Mobile, a strategy game that lets you collect and upgrade your favorite Naruto characters, form your own ninja squad, and battle with other players. In this article, we will tell you what Konoha Legends Ninja AFK Mobile is, why you should play it, what features it has, how to download and install it, and some tips and tricks for playing it.

            -

            konoha legends ninja afk mobile download


            Download File ✵✵✵ https://urllie.com/2uNDkq



            -

            Introduction

            -

            What is Konoha Legends Ninja AFK Mobile?

            -

            Konoha Legends Ninja AFK Mobile is a strategy game genre, general cards based on the original from the famous Naruto series. It is developed by Konoha Legend Studio and published by Game View Trending. It is available for both Android and iOS devices. The game was officially launched in September 2022 and has received positive reviews from players and critics alike.

            -

            Why should you play Konoha Legends Ninja AFK Mobile?

            -

            There are many reasons why you should play Konoha Legends Ninja AFK Mobile, especially if you are a Naruto fan. Here are some of them:

            -
              -
            • You can relive the epic moments from the Naruto series and enjoy the original story and voice acting from the anime.
            • -
            • You can collect and upgrade over 100 Naruto characters, each with their own unique skills and abilities.
            • -
            • You can form your own ninja squad and customize their formation, equipment, and strategy.
            • -
            • You can compete with other players in various modes, such as arena, guild war, tower defense, and more.
            • -
            • You can redeem codes and get rewards, such as gold, gems, summon scrolls, and rare characters.
            • -
            -

            Features of Konoha Legends Ninja AFK Mobile

            -

            Collect and upgrade your favorite Naruto characters

            -

            One of the main features of Konoha Legends Ninja AFK Mobile is that you can collect and upgrade your favorite Naruto characters. You can summon them using summon scrolls or gems, or get them from events or rewards. You can also upgrade them by leveling up, enhancing, awakening, or evolving them. Each character has their own rarity, class, element, skill set, and stats. You can also equip them with weapons, armor, accessories, or runes to boost their performance.

            -

            Form your own ninja squad and battle with other players

            -

            Another feature of Konoha Legends Ninja AFK Mobile is that you can form your own ninja squad and battle with other players. You can choose up to five characters to form your squad, with one of them being the leader. The leader will have a special effect that will benefit the whole team. You can also customize your squad's formation, equipment, and strategy according to the situation. You can challenge other players in various modes, such as arena, guild war, tower defense, and more. You can also join a guild and cooperate with other members to complete quests, raids, or events.

            -

            konoha legends ninja afk mobile apk
            -konoha legends ninja afk mobile ios
            -konoha legends ninja afk mobile gameplay
            -konoha legends ninja afk mobile review
            -konoha legends ninja afk mobile reddit
            -konoha legends ninja afk mobile discord
            -konoha legends ninja afk mobile mod
            -konoha legends ninja afk mobile hack
            -konoha legends ninja afk mobile cheats
            -konoha legends ninja afk mobile tips
            -konoha legends ninja afk mobile guide
            -konoha legends ninja afk mobile tier list
            -konoha legends ninja afk mobile best team
            -konoha legends ninja afk mobile characters
            -konoha legends ninja afk mobile codes
            -konoha legends ninja afk mobile redeem code
            -konoha legends ninja afk mobile coupon code
            -konoha legends ninja afk mobile free gems
            -konoha legends ninja afk mobile how to get gems
            -konoha legends ninja afk mobile how to reroll
            -konoha legends ninja afk mobile how to summon
            -konoha legends ninja afk mobile how to level up
            -konoha legends ninja afk mobile how to evolve
            -konoha legends ninja afk mobile how to get sasuke
            -konoha legends ninja afk mobile how to get naruto
            -konoha legends ninja afk mobile facebook
            -konoha legends ninja afk mobile youtube
            -konoha legends ninja afk mobile twitter
            -konoha legends ninja afk mobile instagram
            -konoha legends ninja afk mobile official website
            -konoha legend - ninja afk - idle rpg game download for android and ios devices
            -download and play the latest version of the naruto-inspired strategy game - konoha legend - ninja afk - idle rpg game
            -join the ultimate naruto adventure with the new game - konoha legend - ninja afk - idle rpg game download now
            -build your dream team of ninjas and fight against enemies in the epic game - konoha legend - ninja afk - idle rpg game download free
            -experience the thrilling naruto story with the amazing game - konoha legend - ninja afk - idle rpg game download and enjoy
            -collect and upgrade your favorite naruto characters in the fun game - konoha legend - ninja afk - idle rpg game download today
            -unleash your ninjutsu skills and challenge other players in the awesome game - konoha legend - ninja afk - idle rpg game download and play
            -explore the naruto world and discover its secrets in the immersive game - konoha legend - ninja afk - idle rpg game download now
            -become the hokage of your village and lead your ninjas to victory in the exciting game - konoha legend - ninja afk - idle rpg game download free
            -enjoy the best naruto-themed strategy game on your mobile device - konoha legend - ninja afk - idle rpg game download and have fun

            -

            Enjoy the original story and voice acting from the anime

            -

            A third feature of Konoha Legends Ninja AFK Mobile is that you can enjoy the original story and voice acting from the anime. The game follows the plot of the Naruto series from the beginning to the end of the Fourth Shinobi World War. You can watch the cutscenes and listen to the voice acting from the original cast of the anime. You can also interact with the characters and learn more about their personalities, backgrounds, and relationships.

            -

            Redeem codes and get rewards

            -

            A fourth feature of Konoha Legends Ninja AFK Mobile is that you can redeem codes and get rewards. The game developers often release codes that can be redeemed for various rewards, such as gold, gems, summon scrolls, and rare characters. You can find these codes on the official social media pages, website, or discord server of the game. You can also get codes from events, giveaways, or collaborations. To redeem a code, you need to go to the settings menu, tap on the redeem code button, enter the code, and claim your reward.

            -

            How to download and install Konoha Legends Ninja AFK Mobile

            -

            For Android devices

            -

            If you have an Android device, you can download and install Konoha Legends Ninja AFK Mobile from the Google Play Store. Here are the steps to do so:

            -
              -
            1. Open the Google Play Store app on your device.
            2. -
            3. Search for Konoha Legends Ninja AFK Mobile or use this link: [Konoha Legends Ninja AFK Mobile].
            4. -
            5. Tap on the install button and wait for the download to finish.
            6. -
            7. Once the installation is complete, tap on the open button or find the game icon on your home screen.
            8. -
            9. Enjoy playing Konoha Legends Ninja AFK Mobile!
            10. -
            -

            For iOS devices

            -

            If you have an iOS device, you can download and install Konoha Legends Ninja AFK Mobile from the App Store. Here are the steps to do so:

            -
              -
            1. Open the App Store app on your device.
            2. -
            3. Search for Konoha Legends Ninja AFK Mobile or use this link: [Konoha Legends Ninja AFK Mobile].
            4. -
            5. Tap on the get button and enter your Apple ID password if prompted.
            6. -
            7. Wait for the download to finish and then tap on the open button or find the game icon on your home screen.
            8. -
            9. Enjoy playing Konoha Legends Ninja AFK Mobile!
            10. -
            -

            Tips and tricks for playing Konoha Legends Ninja AFK Mobile

            -

            Choose your leader wisely

            -

            One of the tips for playing Konoha Legends Ninja AFK Mobile is to choose your leader wisely. Your leader is the character that will have a special effect that will benefit your whole team. For example, Naruto Uzumaki (Sage Mode) will increase the attack and defense of all allies by 20%, while Sasuke Uchiha (Eternal Mangekyo Sharingan) will increase the critical rate and damage of all allies by 20%. You should choose a leader that suits your team composition and strategy. You can also change your leader according to the mode or enemy you are facing.

            -

            Balance your team composition and skills

            -

            Another tip for playing Konoha Legends Ninja AFK Mobile is to balance your team composition and skills. You should have a variety of characters with different classes, elements, skills, and stats. For example, you should have a tank that can absorb damage, a healer that can restore health, a damage dealer that can deal high damage, and a support that can buff or debuff. You should also have characters with different elements, such as fire, water, wind, earth, and lightning. Each element has its own advantage and disadvantage against another element. For example, fire is strong against wind but weak against water. You should also pay attention to the skills of your characters and use them at the right time. Some skills have cooldowns, effects, or requirements that you need to consider before using them.

            -

            Use auto mode and idle mode to save time and resources

            -

            A third tip for playing Konoha Legends Ninja AFK Mobile is to use auto mode and idle mode to save time and resources. Auto mode is a feature that allows you to let the game play itself without your input. You can use auto mode when you are busy or want to farm resources easily. Idle mode is a feature that allows you to earn rewards even when you are offline. You can use idle mode when you are away from your device or want to rest. Both modes will help you progress faster and easier in the game.

            -

            Conclusion

            -

            Konoha Legends Ninja AFK Mobile is a strategy game based on the Naruto series that offers a lot of fun and excitement for Naruto fans and gamers alike. You can collect and upgrade your favorite Naruto characters, form your own ninja squad, and battle with other players. You can also enjoy the original story and voice acting from the anime, and redeem codes and get rewards. To play the game, you need to download and install it on your device, either Android or iOS. You can also use some tips and tricks to improve your gameplay, such as choosing your leader wisely, balancing your team composition and skills, and using auto mode and idle mode. We hope this article has helped you learn more about Konoha Legends Ninja AFK Mobile and how to play it. If you have any questions or feedback, please feel free to leave a comment below. Thank you for reading and have fun playing Konoha Legends Ninja AFK Mobile!

            -

            FAQs

            -

            Here are some frequently asked questions about Konoha Legends Ninja AFK Mobile:

            -
              -
            1. Q: How can I get more summon scrolls or gems?
              -A: You can get more summon scrolls or gems by completing quests, achievements, events, or daily tasks. You can also buy them with real money or exchange them with other currencies in the game.
            2. -
            3. Q: How can I get rare or legendary characters?
              -A: You can get rare or legendary characters by summoning them with summon scrolls or gems. You can also get them from events, rewards, or codes. The chance of getting a rare or legendary character is higher when you use a higher quality summon scroll or gem.
            4. -
            5. Q: How can I join a guild or create my own guild?
              -A: You can join a guild or create your own guild by tapping on the guild icon on the main screen. You need to be at least level 10 to join or create a guild. You can also search for a guild by name, ID, or level.
            6. -
            7. Q: How can I redeem a code?
              -A: You can redeem a code by going to the settings menu, tapping on the redeem code button, entering the code, and claiming your reward. You can find codes on the official social media pages, website, or discord server of the game. You can also get codes from events, giveaways, or collaborations.
            8. -
            9. Q: How can I contact the customer service or report a bug?
              -A: You can contact the customer service or report a bug by going to the settings menu, tapping on the customer service button, and filling out the form. You can also email them at konohalegends@gmail.com or visit their Facebook page at [Konoha Legends Ninja AFK Mobile].
            10. -

            197e85843d
            -
            -
            \ No newline at end of file diff --git a/spaces/fatiXbelha/sd/Download Red Hat RPMs for Enterprise Linux Server and Workstation.md b/spaces/fatiXbelha/sd/Download Red Hat RPMs for Enterprise Linux Server and Workstation.md deleted file mode 100644 index 90edb66b7d647b7e3a184b4a4333695742b0dd4b..0000000000000000000000000000000000000000 --- a/spaces/fatiXbelha/sd/Download Red Hat RPMs for Enterprise Linux Server and Workstation.md +++ /dev/null @@ -1,185 +0,0 @@ -
            -

            How to Download and Install RPM Packages on Linux

            -

            RPM is an acronym for Red Hat Package Manager, which is an open packaging system for Linux and UNIX systems. It can install, uninstall, update, query, and verify packages that use the .rpm file format. However, it cannot manage dependency resolution like YUM or DNF. RPM is the baseline package format of the Linux Standard Base.

            -

            RPM is a useful tool for managing software on Linux systems, especially those based on Red Hat Enterprise Linux (RHEL), CentOS, Fedora, and other derivatives. In this article, you will learn how to download and install RPM packages on Linux using various methods.

            -

            download redhat rpm


            Download Zip ::: https://urllie.com/2uNxyN



            -

            Prerequisites

            -

            Before you start, make sure you have the following:

            -
              -
            • A user account with sudo privileges
            • -
            • Access to a terminal window / command line
            • -
            • RPM, YUM, or DNF package managers (all included by default)
            • -
            -

            How to Download RPM Packages

            -

            Using a web browser

            -

            The easiest way to download an RPM package is to use a web browser. You can find many websites that offer software in RPM format for Linux users. For example, you can download Slack from its official website. Just click on the download button and choose your Linux distribution.

            -

            The downloaded file will have a .rpm extension and will be saved in your default download location. You can also choose a different location if you want.

            -

            Using wget

            -

            If you don't have access to a web browser or you prefer using the command line, you can also download an RPM package using wget, which is a tool for retrieving files from web servers.

            -

            To use wget, you need to know the URL of the file you want to download. You can find this by right-clicking on the download link in your web browser and choosing Copy link address or Copy link location.

            -

            download redhat rpm packages manually
            -download redhat rpm from customer portal
            -download redhat rpm for docker
            -download redhat rpm for openshift
            -download redhat rpm for podman
            -download redhat rpm server iso
            -download redhat rpm universal base image
            -download redhat rpm cloud image
            -download redhat rpm vmware image
            -download redhat rpm virtual guest image
            -download redhat rpm bare metal image
            -download redhat rpm latest version
            -download redhat rpm x86_64
            -download redhat rpm arm 64
            -download redhat rpm base image
            -download redhat rpm minimal image
            -download redhat rpm micro image
            -download redhat rpm init image
            -download redhat rpm ansible automation platform
            -download redhat rpm advanced cluster security for kubernetes
            -download redhat rpm amq broker
            -download redhat rpm amq clients
            -download redhat rpm amq interconnect
            -download redhat rpm amq online
            -download redhat rpm amq streams
            -download redhat rpm build of eclipse vert.x
            -download redhat rpm build of node.js
            -download redhat rpm build of openjdk
            -download redhat rpm build of optaplanner
            -download redhat rpm build of quarkus
            -download redhat rpm build of thorntail
            -download redhat rpm ceph storage
            -download redhat rpm certificate system
            -download redhat rpm cloudforms
            -download redhat rpm decision manager
            -download redhat rpm developer studio
            -download redhat rpm developer tools
            -download redhat rpm directory server
            -download redhat rpm enterprise linux
            -download redhat rpm enterprise mrg grid
            -download redhat rpm enterprise mrg messaging
            -download redhat rpm enterprise mrg realtime
            -download redhat rpm fuse
            -download redhat rpm insights
            -download redhat rpm integration
            -download redhat rpm jboss eap
            -download redhat rpm jboss web server
            -download redhat rpm openshift container platform
            -download redhat rpm openshift service mesh

            -

            Then, open a terminal window and use .0-0.1.fc21.x86_64.rpm - This will download the file to your current working directory. You can also specify a different location by using the -O option, followed by the path and filename you want to use.

            wget -O /home/user/Downloads/slack.rpm https://downloads.slack-edge.com/linux_releases/slack-4.23.0-0.1.fc21.x86_64.rpm 
            -

            How to Install RPM Packages

            -

            Using the RPM command

            -

            Once you have downloaded an RPM package, you can install it using the rpm command, which is the core tool for managing RPM packages on Linux.

            -

            To install an RPM package, you need to use the -i option, followed by the name of the file. For example, to install Slack, you can use:

            sudo rpm -i slack.rpm 
            - This will install the package and its dependencies, if any. You may need to enter your password for sudo authentication.

            -

            If you want to see more information about the installation process, you can use the -v option for verbose output, or the -h option for a progress bar.

            -

            Using YUM or DNF

            -

            Another way to install an RPM package is to use yum or dnf, which are higher-level package managers that can handle dependency resolution and other features. Yum is used on RHEL and CentOS systems, while dnf is used on Fedora systems.

            -

            To install an RPM package using yum or dnf, you need to use the localinstall option, followed by the name of the file. For example, to install Slack, you can use:

            sudo yum localinstall slack.rpm 
            - or
            sudo dnf localinstall slack.rpm 
            - This will install the package and its dependencies, if any. You may need to enter your password for sudo authentication.

            -

            If you want to see more information about the installation process, you can use the -v option for verbose output, or the -y option to automatically answer yes to any prompts.

            -

            How to Remove RPM Packages

            -

            Using the RPM command

            -

            If you want to uninstall an RPM package, you can use the rpm command with the -e option, followed by the name of the package. For example, to remove Slack, you can use:

            sudo rpm -e slack 
            - This will remove the package and its dependencies, if any. You may need to enter your password for sudo authentication.

            -

            If you want to see more information about the removal process, you can use the -v option for verbose output.

            -

            Using YUM or DNF

            -

            You can also uninstall an RPM package using yum or dnf with the remove option, followed by the name of the package. For example, to remove Slack, you can use:

            sudo yum remove slack 
            - or
            sudo dnf remove slack 
            - This will remove the package and its dependencies, if any. You may need to enter your password for sudo authentication.

            -

            If you want to see more information about the removal process, you can use the -v option for verbose output, or the -y option to automatically answer yes to any prompts.

            -

            How to Query RPM Packages

            -

            Using the RPM command

            -

            If you want to query information about an RPM package, you can use the rpm command with various options. For example:

            -
              -
            • To query information about an installed package, use the -q option followed by the name of the package. For example:
              rpm -q slack 
              - This will display information such as version number, release number, architecture, and installation date.
            • -
            • To query information about a downloaded file, use the -qp option followed by the name of the file. For example:
              rpm -qp slack.rpm 
              - This will display information such as version number, release number, architecture, and summary.
            • -
            • To list all files in an installed package, use the -ql option followed by the name of the package. For example:
              rpm -ql slack 
              - This will display all files and directories that belong to the package.
            • -
            • To list all files in a downloaded file, use the -qpl option followed by the name of the file. For example:
              rpm -qpl slack.rpm 
              - This will display all files and directories that are contained in the file.
            • -
            • To display detailed information about an installed package, use the -qi option followed by the name of the package. For example:
              rpm -qi slack 
              - This will display information such as name, version, release, architecture, summary, description, license, URL, source RPM, build date, install date, vendor, packager, group, size, etc.
            • -
            • To display detailed information about a downloaded file, use the -qpi option followed by the name of the file. For example:
              rpm -qpi slack.rpm 
              - This will display the same information as above.
            • -
            • To verify an installed package, use the -V option followed by the name of the package. For example:
              rpm -V slack 
              - This will check the package for any missing files, modified files, or other discrepancies. It will display a code for each file that indicates its status. For example:
              S.5....T.  c /etc/slack.conf 
              - This means that the file has a different size (S), MD5 checksum (5), and modification time (T) than expected.
            • -
            • To verify a downloaded file, use the -Vp option followed by the name of the file. For example:
              rpm -Vp slack.rpm 
              - This will perform the same verification as above.
            • -
            -

            Using YUM or DNF

            -

            You can also query information about an RPM package using yum or dnf with various options. For example:

            -
              -
            • To list all available packages in the repositories, use the list option. For example:
              yum list 
              - or
              dnf list 
              - This will display the name, version, release, and repository of each package.
            • -
            • To list all installed packages on your system, use the list installed option. For example:
              yum list installed 
              - or
              dnf list installed 
              - This will display the same information as above for each installed package.
            • -
            • To display information about a specific package, use the info option followed by the name of the package. For example:
              yum info slack 
              - or
              dnf info slack 
              - This will display information such as name, version, release, architecture, summary, description, license, URL, source RPM, build date, install date, vendor, packager, group, size, etc.
            • -
            • To display information about a specific file in a package, use the provides option followed by the name of the file. For example:
              yum provides /usr/bin/slack 
              - or
              dnf provides /usr/bin/slack 
              - This will display information such as name, version, release, architecture, and repository of the package that provides the file.
            • -
            -

            How to Update RPM Packages

            -

            Using YUM or DNF

            -

            The easiest way to update an RPM package is to use yum or dnf with the update option. This will check for any available updates in the repositories and install them automatically.

            -

            To update all packages on your system, use:

            sudo yum update 
            - or
            sudo dnf update 
            - This will update all packages and their dependencies to their latest versions. You may need to enter your password for sudo authentication.

            -

            If you want to see more information about the update process, you can use the -v option for verbose output, or the -y option to automatically answer yes to any prompts.

            -

            To update a specific package, use the update option followed by the name of the package. For example:

            sudo yum update slack 
            - or
            sudo dnf update slack 
            - This will update the package and its dependencies to their latest versions. You may need to enter your password for sudo authentication.

            -

            How to Verify RPM Packages

            -

            Using the RPM command

            -

            If you want to verify the integrity and authenticity of an RPM package, you can use the rpm command with the --checksig option, followed by the name of the file. For example:

            rpm --checksig slack.rpm 
            - This will check the signature and digest of the file and display the result. For example:
            slack.rpm: rsa sha1 (md5) pgp md5 OK 
            - This means that the file has a valid RSA, SHA1, MD5, and PGP signature and digest.

            -

            If you want to see more information about the signature and digest, you can use the -v option for verbose output. For example:

            rpm -v --checksig slack.rpm 
            - This will display information such as key ID, fingerprint, algorithm, etc.

            -

            How to List Installed RPM Packages

            -

            Using the RPM command

            -

            If you want to list all installed RPM packages on your system, you can use the rpm command with the -qa option. For example:

            rpm -qa 
            - This will display the name, version, and release of each installed package.

            -

            If you want to sort the list by installation date, you can use the --last option. For example:

            rpm -qa --last 
            - This will display the same information as above, but with an additional column for installation date.

            -

            Using YUM or DNF

            -

            You can also list all installed RPM packages on your system using yum or dnf with the list installed option. For example:

            yum list installed 
            - or
            dnf list installed 
            - This will display the name, version, release, and repository of each installed package.

            -

            Conclusion

            -

            In this article, you learned how to download and install RPM packages on Linux using various methods. You also learned how to remove, query, update, verify, and list RPM packages on your system. RPM is a powerful tool for managing software on Linux systems, but it has some limitations, such as dependency resolution and compatibility issues. Therefore, it is recommended to use higher-level package managers like YUM or DNF whenever possible. They can handle most of the tasks that RPM can do, and more.

            -

            Here are some tips and best practices for using RPM packages on Linux:

            -
              -
            • Always check the signature and digest of an RPM package before installing it to ensure its integrity and authenticity.
            • -
            • Always backup your system before installing or updating any RPM package to avoid any potential problems or conflicts.
            • -
            • Always use sudo or root privileges when installing or removing any RPM package to avoid any permission errors or issues.
            • -
            • Always read the documentation and instructions of an RPM package before installing it to understand its features and requirements.
            • -
            • Always keep your system updated with the latest versions of RPM packages to ensure security and stability.
            • -
            -

            Frequently Asked Questions

            -
              -
            • Q: What is the difference between RPM and DEB?
            • -
            • A: RPM and DEB are two different packaging systems for Linux systems. RPM is used by Red Hat-based distributions like RHEL, CentOS, Fedora, etc., while DEB is used by Debian-based distributions like Debian, Ubuntu, Mint, etc. They have different file formats, commands, tools, and features.
            • -
            • Q: How can I convert an RPM package to a DEB package or vice versa?
            • -
            • A: There are some tools that can convert an RPM package to a DEB package or vice versa, such as alien, rpm2cpio, cpio, etc. However, they are not always reliable or compatible, and they may cause some problems or errors. Therefore, it is not recommended to use them unless you know what you are doing.
            • -
            • Q: How can I install an RPM package from a remote repository?
            • -
            • A: You can install an RPM package from a remote repository by using yum or dnf with the install option, followed by the URL of the file. For example:
              sudo yum install https://example.com/package.rpm 
              - or
              sudo dnf install https://example.com/package.rpm 
              - This will download and install the package and its dependencies, if any. You may need to enter your password for sudo authentication.
            • -
            • Q: How can I create my own RPM package?
            • -
            • A: You can create your own RPM package by using the rpmbuild tool, which is part of the RPM package manager. You need to have a spec file, which is a text file that defines the metadata and instructions for building the package. You also need to have the source code or binaries of the software you want to package. For more details, you can refer to the RPM Packaging Guide.
            • -
            • Q: How can I extract files from an RPM package without installing it?
            • -
            • A: You can extract files from an RPM package without installing it by using the rpm2cpio tool, which converts an RPM package to a cpio archive, and then using the cpio tool, which extracts files from a cpio archive. For example:
              rpm2cpio slack.rpm | cpio -idmv 
              - This will extract all files from the slack.rpm package to the current directory.
            • -

            197e85843d
            -
            -
            \ No newline at end of file diff --git a/spaces/feregVcuzo/sanity-test-midi/Stellar-Phoenix-Windows-Data-Recovery-Pro-8035-Crack-Serial-Key.md b/spaces/feregVcuzo/sanity-test-midi/Stellar-Phoenix-Windows-Data-Recovery-Pro-8035-Crack-Serial-Key.md deleted file mode 100644 index 9b43c6a3fb6345537bca94cb8bd31de5669832a6..0000000000000000000000000000000000000000 --- a/spaces/feregVcuzo/sanity-test-midi/Stellar-Phoenix-Windows-Data-Recovery-Pro-8035-Crack-Serial-Key.md +++ /dev/null @@ -1,62 +0,0 @@ -## Stellar Phoenix Windows Data Recovery Pro 8.0.3.5 Crack Serial Key - - - - - - ![Stellar Phoenix Windows Data Recovery Pro 8.0.3.5 Crack Serial Key](https://oceancrack.com/wp-content/uploads/2019/09/Stellar-Phoenix-Window-Data-Recovery-Pro.jpg) - - - - - -**Stellar Phoenix Windows Data Recovery Pro 8.0.3.5 Crack Serial Key ✔ [https://amniacagou.blogspot.com/?c=2txvM0](https://amniacagou.blogspot.com/?c=2txvM0)** - - - - - - - - - - - - - -# How to Recover Lost Data with Stellar Phoenix Windows Data Recovery Pro 8.0.3.5 Crack Serial Key - - - -If you have lost your important data due to accidental deletion, formatting, virus attack, or any other reason, you may be looking for a way to recover it without spending a fortune. One of the solutions you can try is Stellar Phoenix Windows Data Recovery Pro 8.0.3.5 Crack Serial Key, a powerful software that can help you recover your data from various storage devices, such as hard disks, memory cards, USB drives, etc. - - - -Stellar Phoenix Windows Data Recovery Pro 8.0.3.5 Crack Serial Key is a complete solution that can recover data from NTFS, FAT, and exFAT file systems. It can also recover deleted or lost emails from Microsoft Outlook and Outlook Express[^1^]. It supports various multimedia formats, such as photos, videos, and audio files[^1^]. It can also recover data from encrypted drives and BitLocker partitions[^2^]. It has a user-friendly interface that allows you to preview the scanned files before saving them to your desired location[^2^]. - - - -To use Stellar Phoenix Windows Data Recovery Pro 8.0.3.5 Crack Serial Key, you need to download it from a reliable source and install it on your computer. Then, you need to launch the software and select the type of data you want to recover. You can choose from All Data, Office Documents, Folders, Emails, or Multimedia Files[^2^]. Next, you need to select the location where you want to scan for the lost data. You can choose from Common Locations, Connected Drives, or Other Locations[^2^]. The software will then start scanning the selected location and display the list of recoverable files. - - - -You can then preview the files and select the ones you want to recover. You can also use the Filter option to narrow down the results by file type, size, date, etc.[^2^] You can also use the Deep Scan option to perform a thorough scan of the selected location if you are not satisfied with the Quick Scan results[^2^]. Once you have selected the files you want to recover, you need to click on Recover and choose a destination folder where you want to save them[^2^]. The software will then start recovering your data and show you a progress bar. - - - -However, before you use Stellar Phoenix Windows Data Recovery Pro 8.0.3.5 Crack Serial Key, you should be aware of some risks and limitations. First of all, using a cracked version of the software may expose your computer to malware or viruses that can damage your system or steal your personal information[^3^] [^4^] [^5^]. Secondly, using a serial key that is not genuine may cause the software to malfunction or stop working at any time[^3^] [^4^] [^5^]. Thirdly, using a cracked version of the software may violate the terms and conditions of the original software developer and result in legal consequences[^3^] [^4^] [^5^]. Therefore, it is recommended that you use a legitimate version of the software that is safe and reliable. - - - -If you want to use a legitimate version of Stellar Phoenix Windows Data Recovery Pro 8.0.3.5 Crack Serial Key, you can purchase it from the official website of Stellar Data Recovery[^1^]. The software costs $99 for a one-year license or $149 for a lifetime license[^1^]. You can also download a free trial version of the software that allows you to scan and preview your data but not save it[^1^]. By purchasing the software from the official website, you can enjoy various benefits, such as free technical support, free updates, money-back guarantee, etc.[^1^] - - - -In conclusion, Stellar Phoenix Windows Data Recovery Pro 8.0.3.5 Crack Serial Key is a powerful software that can help you recover your lost data from various storage devices. However, using a cracked version of the software may pose some risks and limitations that can compromise your data security and integrity. Therefore, it is advisable that you use a legitimate version of the software that is safe and reliable. - - 1b8d091108 - - - - - diff --git a/spaces/feregVcuzo/sanity-test-midi/checkpoint/Craftsman 4 - The Best Simulation Game for Android with High FPS.md b/spaces/feregVcuzo/sanity-test-midi/checkpoint/Craftsman 4 - The Best Simulation Game for Android with High FPS.md deleted file mode 100644 index ff4ce2dc7eade30df6581f4fb4d92e404267560f..0000000000000000000000000000000000000000 --- a/spaces/feregVcuzo/sanity-test-midi/checkpoint/Craftsman 4 - The Best Simulation Game for Android with High FPS.md +++ /dev/null @@ -1,139 +0,0 @@ -
            -

            Craftsman 4: A New Crafting Game for Android

            -

            If you are looking for a fun and creative game to play on your Android device, you might want to check out Craftsman 4. This is a new crafting game that allows you to build anything you can imagine in a 3D block world. You can explore, craft, and construct your dream home, castle, farm, or dungeon with simple textured cubes. You can also enjoy the beautiful graphics, smooth performance, and endless possibilities of this game. In this article, we will tell you more about what Craftsman 4 is, what are its features, how to download and play it, what are some alternatives to it, and what are the reviews of it.

            -

            craftsman 4 1.17 download


            Download Ziphttps://gohhs.com/2uPtOS



            -

            What is Craftsman 4?

            -

            Craftsman 4 is a game developed by Slbzer, a developer that specializes in simulation and casual games for Android. Craftsman 4 is a game that combines three genres: creative sandbox, simulation, and casual.

            -

            A creative sandbox game

            -

            A creative sandbox game is a game that gives you the freedom to create your own world with various tools and materials. You can use different blocks and items to build structures, landscapes, and objects of your choice. You can also modify the environment and interact with it in various ways. There are no fixed goals or rules in a creative sandbox game, so you can play however you want.

            -

            A simulation game

            -

            A simulation game is a game that mimics or recreates some aspects of reality or fantasy. You can experience different scenarios, activities, and roles in a simulation game. You can also learn new skills, knowledge, or strategies from a simulation game. Some simulation games are realistic and educational, while others are imaginative and entertaining.

            -

            A casual game

            -

            A casual game is a game that is easy to play, simple to understand, and suitable for all ages. You can play a casual game anytime, anywhere, and for any duration. You don't need to invest a lot of time, money, or effort to enjoy a casual game. A casual game is usually designed to be fun, relaxing, and engaging.

            -

            What are the features of Craftsman 4?

            -

            Craftsman 4 has many features that make it an enjoyable and versatile game. Here are some of them:

            -

            craftsman 4 apk free download
            -craftsman 4 game online
            -craftsman 4 mod apk unlimited money
            -craftsman 4 for pc windows 10
            -craftsman 4 latest version update
            -craftsman 4 app store
            -craftsman 4 cheats and hacks
            -craftsman 4 gameplay video
            -craftsman 4 review and rating
            -craftsman 4 tips and tricks
            -craftsman 4 sandbox mode
            -craftsman 4 multiplayer server
            -craftsman 4 creative mode
            -craftsman 4 survival mode
            -craftsman 4 best seeds
            -craftsman 4 skins and textures
            -craftsman 4 maps and worlds
            -craftsman 4 commands and codes
            -craftsman 4 mods and addons
            -craftsman 4 resource packs
            -craftsman 4 shaders and graphics
            -craftsman 4 building ideas
            -craftsman 4 house design
            -craftsman 4 city creation
            -craftsman 4 farm simulator
            -craftsman 4 adventure map
            -craftsman 4 horror map
            -craftsman 4 parkour map
            -craftsman 4 puzzle map
            -craftsman 4 skyblock map
            -craftsman 4 mini games
            -craftsman 4 pvp games
            -craftsman 4 roleplay games
            -craftsman 4 pixel art games
            -craftsman 4 furniture mod
            -craftsman 4 animals mod
            -craftsman 4 vehicles mod
            -craftsman 4 weapons mod
            -craftsman 4 furniture mod
            -craftsman 4 superheroes mod
            -craftsman 4 dinosaurs mod
            -craftsman 4 dragons mod
            -craftsman 4 zombies mod
            -craftsman 4 aliens mod
            -craftsman 4 robots mod
            -craftsman 4 magic mod
            -craftsman 4 portal mod

            -

            Craft games, house building and creative farms

            -

            Craftsman 4 allows you to create your own games within the game. You can design your own levels, puzzles, challenges, and rules with the blocks and items available. You can also share your games with other players or play their games online. You can also build your own house or any other structure you want with the blocks and items available. You can customize your house with furniture, decorations, lighting, and colors. You can also create your own farm with crops, animals, fences, and machines.

            -

            Exciting adventures in a 3D cube world

            -

            Craftsman 4 allows you to explore a vast and diverse world made of cubes. You can discover different biomes, such as forests, deserts, mountains, oceans, and caves. You can encounter different creatures, such as animals, monsters, and NPCs. You can also collect different resources, such as wood, stone, metal, and gems. You can use these resources to craft new items, tools, weapons, and armor.

            -

            High FPS without compromise

            -

            Craftsman 4 boasts a high FPS (frames per second) performance that ensures a smooth and lag-free gaming experience. You can enjoy the game without any glitches, crashes, or delays. You can also adjust the graphics settings to suit your device and preference. You can choose between low, medium, high, and ultra graphics quality. You can also enable or disable shadows, reflections, particles, and water effects.

            -

            Develop terrain and gather resources

            -

            Craftsman 4 allows you to manipulate the terrain and shape it to your liking. You can dig, cut, fill, flatten, or raise the land with the tools available. You can also create rivers, lakes, waterfalls, or volcanoes with the water and lava blocks. You can also gather resources from the environment, such as plants, fruits, flowers, mushrooms, and eggs. You can use these resources to craft food, potions, dyes, and other items.

            -

            How to download and play Craftsman 4?

            -

            Craftsman 4 is easy to download and play on your Android device. Here are the steps you need to follow:

            -

            Download from Google Play Store or APKCombo

            -

            You can download Craftsman 4 from the Google Play Store or APKCombo. The Google Play Store is the official app store for Android devices. You can search for Craftsman 4 in the store and tap on the install button to download it. APKCombo is a website that provides APK files for Android apps. You can visit the website and search for Craftsman 4 in the search bar. You can then choose the version you want and tap on the download button to get the APK file.

            -

            Install and launch the game

            -

            After downloading Craftsman 4 from either source, you need to install it on your device. If you downloaded it from the Google Play Store, you can simply tap on the open button after the installation is complete. If you downloaded it from APKCombo, you need to enable unknown sources in your device settings before installing it. You can then tap on the APK file and follow the instructions to install it. After installing Craftsman 4, you can launch it by tapping on its icon on your home screen or app drawer.

            -

            Choose your mode and start building

            -

            After launching Craftsman 4, you can choose between two modes: creative mode and survival mode. In creative mode, you have unlimited resources and no enemies. You can build anything you want without any restrictions or dangers. In survival mode, you have limited resources and face enemies. You need to gather resources, craft items, fight monsters, and survive as long as you can. After choosing your mode, you can start building your world with the blocks and items available. You can also explore the world and discover new things.

            -

            What are the alternatives to Craftsman 4?

            -

            If you like Craftsman 4 but want to try something different, you might want to check out some of these alternatives:

            -

            Other crafting games for Android

            - - - - - - - -
            NameDescription
            MinecraftThe most popular crafting game in the world. You can create your own world with blocks and go on adventures with friends or alone.
            TerrariaA 2D sandbox game that lets you explore, build, fight, and survive in a randomly generated world.
            RobloxA platform that allows you to create and play millions of games made by other users.
            Sandbox 3DA game that allows you to create your own games with simple tools and share them with others.
            Crafty LandsA game that allows you to build your own island with blocks and explore other islands made by other players.
            -

            Other simulation games for Android

            - - - - - - - -
            NameDescription
            The Sims MobileA game that allows you to create your own sims and control their lives.
            Farming Simulator 20A game that allows you to run your own farm with various crops and animals.
            SimCity BuildIt
            Flight Pilot Simulator 3DA game that allows you to fly various planes and complete different missions.
            BitLifeA game that allows you to live a virtual life with different choices and outcomes.
            -

            Other casual games for Android

            - - - - - - - -
            NameDescription
            Candy Crush SagaA game that involves matching candies of the same color and clearing levels.
            Angry Birds 2A game that involves launching birds at pigs and destroying their structures.
            Subway SurfersA game that involves running away from the police on a subway track and dodging obstacles.
            Plants vs Zombies 2A game that involves planting plants to defend your home from zombies.
            Temple Run 2A game that involves running away from a giant monkey and collecting coins and power-ups.
            -

            What are the reviews of Craftsman 4?

            -

            Craftsman 4 has received mixed reviews from users who have downloaded and played it. Here are some of the positive and negative reviews, as well as the average rating and number of downloads of the game:

            -

            Positive reviews from users

            -
              -
            • "This game is awesome. I love the graphics and the gameplay. It is very addictive and fun. I can build anything I want and share it with others. It is like Minecraft but better."
            • -
            • "I really enjoy this game. It is very creative and relaxing. I can craft my own games and play them with my friends. It is also very smooth and fast. I recommend it to anyone who likes crafting games."
            • -
            • "This game is amazing. It is very realistic and immersive. I can explore different biomes and find different resources. I can also fight different enemies and survive in survival mode. It is very challenging and exciting."
            • -
            -

            Negative reviews from users

            -
              -
            • "This game is terrible. It is very buggy and glitchy. It crashes a lot and freezes my device. It also has a lot of ads and in-app purchases. It is a waste of time and money."
            • -
            • "I hate this game. It is very boring and repetitive. It has nothing new or original. It is just a copy of Minecraft and other crafting games. It also has poor graphics and controls. It is a disappointment."
            • -
            • "This game is awful. It is very hard and frustrating. It has no tutorial or instructions. It also has no multiplayer or online mode. It is very lonely and dull."
            • -
            -

            Average rating and number of downloads

            -

            Craftsman 4 has an average rating of 3.9 out of 5 stars on the Google Play Store, based on over 10,000 reviews. It has been downloaded over 1 million times on the Google Play Store, as of June 2023.

            -

            Conclusion

            -

            Craftsman 4 is a new crafting game for Android that allows you to build anything you can imagine in a 3D block world. You can explore, craft, and construct your dream home, castle, farm, or dungeon with simple textured cubes. You can also enjoy the beautiful graphics, smooth performance, and endless possibilities of this game. Craftsman 4 is a game that combines three genres: creative sandbox, simulation, and casual. You can create your own games within the game, design your own levels, puzzles, challenges, and rules with the blocks and items available, share your games with other players or play their games online, build your own house or any other structure you want with the blocks and items available, customize your house with furniture, decorations, lighting, and colors, create your own farm with crops, animals, fences, and machines, explore a vast and diverse world made of cubes, discover different biomes, such as forests, deserts, mountains, oceans, and caves, encounter different creatures, such as animals, monsters, and NPCs, collect different resources, such as wood, stone, metal, and gems, use these resources to craft new items, tools, weapons, and armor, manipulate the terrain and shape it to your liking, dig, cut, fill, flatten, or raise the land with the tools available, create rivers, lakes, waterfalls, or volcanoes with the water and lava blocks, gather resources from the environment, such as plants, fruits, flowers, mushrooms, and eggs, use these resources to craft food, potions, dyes, and other items. Craftsman 4 is easy to download and play on your Android device. You can download it from the Google Play Store or APKCombo. You can then install and launch the game and choose between two modes: creative mode and survival mode. Craftsman 4 has received mixed reviews from users who have downloaded and played it. Some users love the game and praise its graphics and gameplay. Others hate the game and criticize its bugs and glitches. Craftsman 4 has an average rating of 3.9 out of 5 stars on the Google Play Store and has been downloaded over 1 million times.

            -

            If you are looking for a fun and creative game to play on your Android device, you might want to give Craftsman 4 a try. You can build anything you can imagine in a 3D block world and enjoy the beautiful graphics, smooth performance, and endless possibilities of this game. You can also check out some of the alternatives to Craftsman 4 if you want to try something different. We hope this article has helped you learn more about Craftsman 4 and how to download and play it.

            -

            FAQs

            -

            Here are some of the frequently asked questions about Craftsman 4:

            -

            Is Craftsman 4 free?

            -

            Yes, Craftsman 4 is free to download and play. However, it contains ads and in-app purchases that you can buy with real money.

            -

            Is Craftsman 4 online or offline?

            -

            Craftsman 4 can be played both online and offline. You can play online with other players or offline by yourself.

            -

            Is Craftsman 4 safe?

            -

            Craftsman 4 is safe to download and play. It does not contain any viruses or malware. However, you should always be careful when downloading apps from unknown sources or websites.

            -

            Is Craftsman 4 compatible with my device?

            -

            Craftsman 4 is compatible with most Android devices that have Android 5.0 or higher. However, some devices may not support the game or may experience performance issues.

            -

            How can I contact the developer of Craftsman 4?

            -

            You can contact the developer of Craftsman 4 by sending an email to slbzer@gmail.com. You can also visit their website at https://slbzer.com/.

            401be4b1e0
            -
            -
            \ No newline at end of file diff --git a/spaces/feregVcuzo/sanity-test-midi/checkpoint/Dino World A Jurassic Simulation Game of Dinosaur Battles and Farming.md b/spaces/feregVcuzo/sanity-test-midi/checkpoint/Dino World A Jurassic Simulation Game of Dinosaur Battles and Farming.md deleted file mode 100644 index 8922ddde5a9ae9904087615bf19be84367a15913..0000000000000000000000000000000000000000 --- a/spaces/feregVcuzo/sanity-test-midi/checkpoint/Dino World A Jurassic Simulation Game of Dinosaur Battles and Farming.md +++ /dev/null @@ -1,106 +0,0 @@ -
            -

            Download Dino World: A Jurassic Adventure on Your Android Device

            -

            Do you love dinosaurs? Do you want to create your own Jurassic world and have fun with your prehistoric friends? If you answered yes, then you should download Dino World, a free-to-play game that lets you collect, breed, train, and battle over 12 types of dinosaurs. In this article, we will tell you everything you need to know about this amazing game, including how to download and install it on your Android device, what you can do in the game, some tips and tricks for playing it, and the pros and cons of the game. So, let's get started!

            -

            How to Download and Install Dino World on Your Android Device

            -

            Downloading and installing Dino World on your Android device is very easy. Just follow these simple steps:

            -

            download dino world


            DOWNLOAD ✦✦✦ https://gohhs.com/2uPmfp



            -
              -
            1. Go to the Google Play Store and search for Dino World. You can also use this link to go directly to the game page.
            2. -
            3. Tap on the Install button and wait for the download to finish. The game size is about 100 MB, so make sure you have enough space on your device.
            4. -
            5. Open the app and enjoy the game. You may need to grant some permissions to the app, such as access to your storage and network.
            6. -
            -

            What You Can Do in Dino World

            -

            Dino World is a Jurassic dinosaur fighting, breeding, and world-building game that offers a lot of fun and excitement. Here are some of the things you can do in the game:

            -
              -
            • Collect, breed, and train over 12 types of dinosaurs. Each dinosaur has its own personality, powers, and skills. You can feed them, play with them, and make them happy. You can also crossbreed them in the breeding lab and create new dinosaurs with unique traits.
            • -
            • Build your own Jurassic world with custom habitats and decorations. You can design your own island with different elements, such as water, fire, earth, air, etc. You can also place various habitats for your dinosaurs, such as forests, mountains, volcanoes, etc. You can also decorate your island with attractive items, such as fountains, statues, flowers, etc.
            • -
            • Battle your dinosaurs against other players and win prizes. You can make your own team of dinosaurs and take them to battle in various stages. You can use different strategies and skills to defeat your opponents. You can also win coins, gems, food, and other rewards by winning battles.
            • -
            -

            Tips and Tricks for Playing Dino World

            -

            If you want to master Dino World and become the best dinosaur trainer in the world, you need some tips and tricks. Here are some of them:

            -
              -
            • How to get more coins, gems, and food. Coins are the main currency in the game that you can use to buy habitats, decorations, food, etc. Gems are the premium currency that you can use to buy special items, speed up processes, etc. Food is the resource that you need to feed your dinosaurs and make them grow. Here are some ways to get more of these resources:
            • -
            • - Watch ads. You can watch ads to get free coins, gems, and food every few hours. Just tap on the icons on the top right corner of the screen and watch a short video.
            • -
            • - Complete tasks. You can complete various tasks in the game, such as collecting dinosaurs, breeding dinosaurs, winning battles, etc. You can see your tasks on the left side of the screen and claim your rewards when you finish them.
            • -
            • - Spin the wheel. You can spin the wheel once a day for free and get a chance to win coins, gems, food, or even a rare dinosaur. Just tap on the wheel icon on the bottom right corner of the screen and spin it.
            • -
            • How to crossbreed your dinosaurs and create new ones. Crossbreeding is one of the most fun and exciting features of Dino World. You can combine two different types of dinosaurs in the breeding lab and create a new one with unique traits. Here are some tips for crossbreeding:
            • -
            • - Choose compatible dinosaurs. You can only crossbreed dinosaurs that belong to the same element or have a common element. For example, you can crossbreed a fire dinosaur with another fire dinosaur or with an earth dinosaur, but not with a water dinosaur.
            • -
            • - Check the breeding time. Different combinations of dinosaurs have different breeding times. Some may take a few minutes, while others may take hours or even days. You can speed up the breeding time by using gems or watching ads.
            • -
            • - Hatch the egg. Once the breeding is done, you will get an egg that you need to hatch in the nursery. You can also speed up the hatching time by using gems or watching ads.
            • -
            • How to level up your dinosaurs and unlock new skills. Leveling up your dinosaurs is important if you want to make them stronger and more powerful. You can level up your dinosaurs by feeding them food and by battling with them. Here are some tips for leveling up:
            • -
            • - Feed your dinosaurs regularly. Feeding your dinosaurs will increase their happiness and their level. You can feed them different types of food, such as meat, fish, fruits, etc. The more food you give them, the faster they will level up.
            • -
            • - Battle with your dinosaurs often. Battling with your dinosaurs will increase their experience and their level. You can battle with other players in the arena or with computer opponents in the campaign mode. The more battles you win, the faster they will level up.
            • -
            • - Unlock new skills for your dinosaurs. Each dinosaur has four skills that they can use in battle: attack, defense, heal, and special. You can unlock new skills for your dinosaurs by leveling them up or by using skill points that you can get from battles or tasks.
            • -
            -

            Pros and Cons of Dino World

            -

            Dino World is a great game for dinosaur lovers, but it also has some drawbacks that you should be aware of. Here are some of the pros and cons of the game:

            - - - - - - - -
            ProsCons
            - Fun, free, and addictive game with amazing graphics and sound effects- Too many ads that may interrupt the gameplay
            - Variety of dinosaurs to collect, breed, train, and battle- Bugs and glitches that may affect the game performance
            - Creative and customizable Jurassic world to build and decorate- Limited space and resources that may limit your options
            - Competitive and challenging battles with other players and computer opponents- Unbalanced and unfair matchmaking system that may pair you with stronger or weaker opponents
            - Regular updates and events that add new features and content to the game- High battery consumption and data usage that may drain your device
            -

            Conclusion

            -

            Dino World is a fantastic game for anyone who loves dinosaurs and wants to create their own Jurassic world. You can download it for free on your Android device and enjoy collecting, breeding, training, and battling over 12 types of dinosaurs. You can also build your own island with custom habitats and decorations and compete with other players around the world. Dino World is a fun, free, and addictive game that will keep you entertained for hours. So what are you waiting for? Download Dino World today and start your Jurassic adventure!

            -

            FAQs

            -

            Here are some frequently asked questions about Dino World:

            -
          • Q: How can I contact the developers of Dino World?
          • -
          • A: You can contact the developers of Dino World by sending an email to support@dinoworld.com or by visiting their website. You can also follow them on Facebook and Twitter for the latest news and updates.
          • -
          • Q: How can I play Dino World offline?
          • -
          • A: You can play Dino World offline by downloading the game data to your device. To do this, you need to go to the settings menu and tap on the download data button. You will need an internet connection to download the data, but once you do, you can play the game without internet.
          • -
          • Q: How can I backup and restore my game progress?
          • -
          • A: You can backup and restore your game progress by connecting your game account to your Google Play account. To do this, you need to go to the settings menu and tap on the connect button. You will need an internet connection to connect your account, but once you do, you can sync your game progress across multiple devices.
          • -
          • Q: How can I get more gems for free?
          • -
          • A: You can get more gems for free by completing various offers in the game. To do this, you need to go to the shop menu and tap on the free gems button. You will see a list of offers that you can complete, such as watching videos, installing apps, completing surveys, etc. You will get gems as a reward for completing each offer.
          • -
          • Q: How can I report a bug or a problem in the game?
          • -
          • A: You can report a bug or a problem in the game by using the feedback feature in the game. To do this, you need to go to the settings menu and tap on the feedback button. You will be able to write a message and attach a screenshot of the issue. The developers will try to fix the issue as soon as possible.
          • -

          -

          Download Dino World - Jurassic Dinosaur game for PC
          -Download Dino World - Jurassic Dinosaur mod apk
          -Download Dino World - Jurassic Dinosaur hack
          -Download Pinkfong Dino World: Kids Game for Android
          -Download Pinkfong Dino World: Kids Game for iOS
          -Download Pinkfong Dino World: Kids Game songs
          -Download Dino World Online - Hunters 3D for PC
          -Download Dino World Online - Hunters 3D for Android
          -Download Dino World Online - Hunters 3D mod apk
          -Download Dino World Online - Hunters 3D hack
          -Download Jurassic World Alive - AR Dinosaur Game for PC
          -Download Jurassic World Alive - AR Dinosaur Game for Android
          -Download Jurassic World Alive - AR Dinosaur Game for iOS
          -Download Jurassic World Alive - AR Dinosaur Game hack
          -Download Jurassic World Alive - AR Dinosaur Game cheats
          -Download Jurassic Park Builder - Dinosaur Theme Park Game for PC
          -Download Jurassic Park Builder - Dinosaur Theme Park Game for Android
          -Download Jurassic Park Builder - Dinosaur Theme Park Game for iOS
          -Download Jurassic Park Builder - Dinosaur Theme Park Game mod apk
          -Download Jurassic Park Builder - Dinosaur Theme Park Game hack
          -Download Jurassic World Evolution - Build Your Own Jurassic Park for PC
          -Download Jurassic World Evolution - Build Your Own Jurassic Park for PS4
          -Download Jurassic World Evolution - Build Your Own Jurassic Park for Xbox One
          -Download Jurassic World Evolution - Build Your Own Jurassic Park cheats
          -Download Jurassic World Evolution - Build Your Own Jurassic Park mods
          -Download LEGO Jurassic World - LEGO Dinosaur Adventure Game for PC
          -Download LEGO Jurassic World - LEGO Dinosaur Adventure Game for PS4
          -Download LEGO Jurassic World - LEGO Dinosaur Adventure Game for Xbox One
          -Download LEGO Jurassic World - LEGO Dinosaur Adventure Game for Nintendo Switch
          -Download LEGO Jurassic World - LEGO Dinosaur Adventure Game cheats
          -Download ARK: Survival Evolved - Open World Dinosaur Survival Game for PC
          -Download ARK: Survival Evolved - Open World Dinosaur Survival Game for PS4
          -Download ARK: Survival Evolved - Open World Dinosaur Survival Game for Xbox One
          -Download ARK: Survival Evolved - Open World Dinosaur Survival Game mod apk
          -Download ARK: Survival Evolved - Open World Dinosaur Survival Game cheats
          -Download The Isle - Multiplayer Dinosaur Survival Game for PC
          -Download The Isle - Multiplayer Dinosaur Survival Game for Steam
          -Download The Isle - Multiplayer Dinosaur Survival Game mods
          -Download The Isle - Multiplayer Dinosaur Survival Game cheats
          -Download The Isle - Multiplayer Dinosaur Survival Game hacks
          -Download Primal Carnage: Extinction - Team-Based Human vs. Dinosaurs Shooter Game for PC
          -Download Primal Carnage: Extinction - Team-Based Human vs. Dinosaurs Shooter Game for PS4
          -Download Primal Carnage: Extinction - Team-Based Human vs. Dinosaurs Shooter Game mods
          -Download Primal Carnage: Extinction - Team-Based Human vs. Dinosaurs Shooter Game cheats
          -Download Primal Carnage: Extinction - Team-Based Human vs. Dinosaurs Shooter Game hacks

          401be4b1e0
          -
          -
          \ No newline at end of file diff --git a/spaces/feregVcuzo/sanity-test-midi/checkpoint/Discover the New Adventures of My Talking Angela 2 with MOD APK.md b/spaces/feregVcuzo/sanity-test-midi/checkpoint/Discover the New Adventures of My Talking Angela 2 with MOD APK.md deleted file mode 100644 index c72e4b783dc1e95c7c56e611b0ba99126508e3c8..0000000000000000000000000000000000000000 --- a/spaces/feregVcuzo/sanity-test-midi/checkpoint/Discover the New Adventures of My Talking Angela 2 with MOD APK.md +++ /dev/null @@ -1,120 +0,0 @@ - -

          My Talking Tom Angela 2 Mod APK: A Fun and Interactive Game for All Ages

          -

          If you are looking for a fun and interactive game that can keep you entertained for hours, you should try My Talking Tom Angela 2 Mod APK. This is a modified version of the original game that gives you unlimited money and no ads, so you can enjoy the game without any limitations. In this article, we will tell you what My Talking Tom Angela 2 is, how to download and install it, and why you should play it.

          -

          What is My Talking Tom Angela 2?

          -

          My Talking Tom Angela 2 is a casual game that lets you adopt, raise, and play with a cute cat named Angela. You can customize her appearance, dress her up, feed her, bathe her, and make her happy. You can also explore different locations, such as her home, the city, the beach, and the forest, where you can find various activities and surprises. You can also interact with Angela and other characters, such as Tom, Hank, Ginger, Ben, and Becca, by talking to them, petting them, poking them, or playing with them. You can also play mini-games and earn coins that you can use to buy more items and accessories for your Angela.

          -

          my talking tom angela 2 mod apk


          Download Ziphttps://gohhs.com/2uPoYz



          -

          The sequel to the popular My Talking Angela game

          -

          My Talking Tom Angela 2 is the sequel to the popular My Talking Angela game that was released in 2014. The sequel has improved graphics, animations, sounds, and gameplay that make it more realistic and enjoyable. The sequel also has more content, such as new outfits, locations, mini-games, characters, and features that make it more diverse and fun.

          -

          The features of My Talking Tom Angela 2

          -

          My Talking Tom Angela 2 has many features that make it a fun and interactive game for all ages. Here are some of them:

          -

          my talking angela 2 mod apk unlimited money
          -my talking tom and angela 2 mod apk download
          -my talking angela 2 mod apk latest version
          -my talking tom angela 2 hack mod apk
          -my talking angela 2 mod apk free shopping
          -my talking tom and angela 2 mod apk android 1
          -my talking angela 2 mod apk revdl
          -my talking tom angela 2 mod apk offline
          -my talking angela 2 mod apk no ads
          -my talking tom and angela 2 mod apk unlimited coins and diamonds
          -my talking angela 2 mod apk happymod
          -my talking tom angela 2 mod apk rexdl
          -my talking angela 2 mod apk vip unlocked
          -my talking tom and angela 2 mod apk for pc
          -my talking angela 2 mod apk pure
          -my talking tom angela 2 mod apk online
          -my talking angela 2 mod apk all unlocked
          -my talking tom and angela 2 mod apk obb
          -my talking angela 2 mod apk apkpure
          -my talking tom angela 2 mod apk unlimited everything
          -my talking angela 2 mod apk full version
          -my talking tom and angela 2 mod apk ios
          -my talking angela 2 mod apk new update
          -my talking tom angela 2 mod apk old version
          -my talking angela 2 mod apk with data
          -my talking tom and angela 2 mod apk gameplay
          -my talking angela 2 mod apk pro
          -my talking tom angela 2 mod apk mega mod
          -my talking angela 2 mod apk premium
          -my talking tom and angela 2 mod apk hack download
          -my talking angela 2 mod apk unlimited stars
          -my talking tom angela 2 mod apk no root
          -my talking angela 2 mod apk high compress
          -my talking tom and angela 2 mod apk cheat engine
          -my talking angela 2 mod apk mirror
          -my talking tom angela 2 mod apk low mb
          -my talking angela 2 mod apk original
          -my talking tom and angela 2 mod apk generator
          -my talking angela 2 mod apk cracked
          -my talking tom angela 2 mod apk file download

          -

          Customize your Angela's appearance and outfits

          -

          You can change your Angela's fur color, eye color, hairstyle, makeup, accessories, shoes, and clothes. You can choose from hundreds of options that suit your style and mood. You can also mix and match different items to create your own unique look.

          -

          Explore different locations and activities

          -

          You can visit different locations with your Angela, such as her home, the city, the beach, and the forest. Each location has its own theme and atmosphere that reflect your Angela's personality. You can also find various activities in each location, such as dancing, singing, cooking, gardening, painting, shopping, surfing, camping, fishing, and more. You can also discover hidden secrets and surprises in each location that will make your experience more exciting.

          -

          Interact with Angela and other characters

          -

          You can talk to your Angela and she will repeat what you say in a cute voice. You can also pet her, poke her, tickle her, or make her laugh. You can also interact with other characters in the game, such as Tom, Hank, Ginger, Ben, and Becca. You can chat with them, play with them, hug them, or prank them. You can also watch them perform funny actions and reactions that will make you laugh.

          -

          Play mini-games and earn coins

          -

          You can play various mini-games with your Angela and other characters, such as puzzle, arcade, action, racing, and more. You can also challenge your friends and compete with them in the leaderboards. You can earn coins by playing mini-games that you can use to buy more items and accessories for your Angela.

          -

          Enjoy the mod version with unlimited money and no ads

          -

          If you want to enjoy the game without any limitations, you can download and install the mod version of My Talking Tom Angela 2. The mod version gives you unlimited money that you can use to buy anything you want in the game. You can also enjoy the game without any ads that may interrupt your gameplay. The mod version is safe and easy to install, and it does not require any root or jailbreak.

          -

          How to download and install My Talking Tom Angela 2 Mod APK?

          -

          If you want to download and install My Talking Tom Angela 2 Mod APK, you can follow these simple steps:

          -

          The steps to download and install the mod apk file

          -
            -
          1. Click on the download button below to download the mod apk file of My Talking Tom Angela 2.
          2. -
          3. Once the download is complete, go to your device's settings and enable the installation of unknown sources.
          4. -
          5. Locate the downloaded mod apk file in your device's file manager and tap on it to start the installation.
          6. -
          7. Follow the instructions on the screen to complete the installation.
          8. -
          9. Launch the game and enjoy the mod features.
          10. -
          -

          The requirements and permissions for the mod apk file

          -

          Before you download and install the mod apk file of My Talking Tom Angela 2, you should make sure that your device meets these requirements and permissions:

          -
            -
          • Your device should have Android 4.4 or higher version.
          • -
          • Your device should have at least 100 MB of free storage space.
          • -
          • Your device should have a stable internet connection.
          • -
          • You should allow the game to access your microphone, camera, storage, location, and other permissions.
          • -
          -

          Why should you play My Talking Tom Angela 2 Mod APK?

          -

          My Talking Tom Angela 2 Mod APK is a fun and interactive game that can offer you many benefits. Here are some of them:

          -

          The benefits of playing My Talking Tom Angela 2 Mod APK

          -

          Have fun and relax with Angela and her friends

          -

          My Talking Tom Angela 2 Mod APK is a game that can help you have fun and relax with Angela and her friends. You can play with them, talk to them, watch them, and laugh with them. You can also enjoy different activities and mini-games that can keep you entertained for hours. You can also express your emotions and moods through your Angela's appearance and outfits.

          -

          Develop your creativity and imagination

          -

          My Talking Tom Angela 2 Mod APK is a game that can help you develop your creativity and imagination. You can customize your Angela's look and style according to your preference. You can also explore different locations and discover new things. You can also create your own stories and scenarios with your Angela and other characters.

          -

          Learn new skills and knowledge

          -

          My Talking Tom Angela 2 Mod APK is a game that can help you learn new skills and knowledge. You can learn new words and phrases by talking to your Angela and other characters. You can also learn new facts and information by playing mini-games and watching videos. You can also learn new skills such as cooking, gardening, painting, surfing, camping, fishing, and more by doing various activities with your Angela.

          -

          Support the developers of the original game

          -

          My Talking Tom Angela 2 Mod APK is a game that can help you support the developers of the original game. By playing the mod version, you can appreciate the work and effort of the developers who created this amazing game. You can also give them feedback and suggestions on how to improve the game. You can also support them by buying the original version of the game or by watching ads in the game.

          -

          Conclusion

          -

          My Talking Tom Angela 2 Mod APK is a fun and interactive game that can keep you entertained for hours. You can adopt, raise, and play with a cute cat named Angela. You can customize her appearance, dress her up, feed her, bathe her, and make her happy. You can also explore different locations, interact with Angela and other characters, play mini-games, and earn coins. You can also enjoy the mod version with unlimited money and no ads. My Talking Tom Angela 2 Mod APK is a game that can help you have fun and relax, develop your creativity and imagination, learn new skills and knowledge, and support the developers of the original game. If you want to download and install My Talking Tom Angela 2 Mod APK, you can follow the steps in this article. We hope you enjoy playing this game as much as we do.

          -

          FAQs

          -

          Here are some frequently asked questions about My Talking Tom Angela 2 Mod APK:

          -
            -
          1. Is My Talking Tom Angela 2 Mod APK safe to download and install?
          2. -

            Yes, My Talking Tom Angela 2 Mod APK is safe to download and install. The mod apk file is scanned and tested by our team and it does not contain any viruses or malware. However, you should always download the mod apk file from a trusted source and be careful of fake or malicious links.

            -
          3. Is My Talking Tom Angela 2 Mod APK compatible with my device?
          4. -

            My Talking Tom Angela 2 Mod APK is compatible with most Android devices that have Android 4.4 or higher version. However, some devices may have different specifications or settings that may affect the performance or compatibility of the game. If you encounter any problems or errors while playing the game, you can contact the developers or check their official website for more information.

            -
          5. How can I update My Talking Tom Angela 2 Mod APK?
          6. -

            My Talking Tom Angela 2 Mod APK is updated regularly by the developers to fix bugs, improve features, and add new content. You can check for updates by visiting our website or by following our social media accounts. You can also enable the automatic update option in your device's settings to get the latest version of the game.

            -
          7. How can I uninstall My Talking Tom Angela 2 Mod APK?
          8. -

            If you want to uninstall My Talking Tom Angela 2 Mod APK, you can follow these simple steps:

            -
              -
            • Go to your device's settings and select the apps or applications option.
            • -
            • Find and tap on My Talking Tom Angela 2 Mod APK in the list of installed apps.
            • -
            • Select the uninstall option and confirm your choice.
            • -
            • Wait for the uninstallation process to finish and then restart your device.
            • -
            -
          9. How can I contact the developers of My Talking Tom Angela 2 Mod APK?
          10. -

            If you have any questions, feedback, suggestions, or complaints about My Talking Tom Angela 2 Mod APK, you can contact the developers by using these methods:

            -
              -
            • Email: support@outfit7.com
            • -
            • Website: https://outfit7.com/contact/
            • -
            • Facebook: https://www.facebook.com/Outfit7/
            • -
            • Twitter: https://twitter.com/outfit7
            • -
            • YouTube: https://www.youtube.com/user/TalkingTomCat
            • -
            -

          401be4b1e0
          -
          -
          \ No newline at end of file diff --git a/spaces/fffiloni/Pix2Pix-Video/share_btn.py b/spaces/fffiloni/Pix2Pix-Video/share_btn.py deleted file mode 100644 index 66e0de15dce2d65f4cd0ef512c7bd8adad0beb77..0000000000000000000000000000000000000000 --- a/spaces/fffiloni/Pix2Pix-Video/share_btn.py +++ /dev/null @@ -1,73 +0,0 @@ -community_icon_html = """""" - -loading_icon_html = """""" - -share_js = """async () => { - async function uploadFile(file){ - const UPLOAD_URL = 'https://huggingface.co/uploads'; - const response = await fetch(UPLOAD_URL, { - method: 'POST', - headers: { - 'Content-Type': file.type, - 'X-Requested-With': 'XMLHttpRequest', - }, - body: file, /// <- File inherits from Blob - }); - const url = await response.text(); - return url; - } - - async function getVideoBlobFile(videoEL){ - const res = await fetch(videoEL.src); - const blob = await res.blob(); - const videoId = Date.now() % 200; - const fileName = `vid-pix2pix-${{videoId}}.wav`; - const videoBlob = new File([blob], fileName, { type: 'video/mp4' }); - console.log(videoBlob); - return videoBlob; - } - - const gradioEl = document.querySelector("gradio-app").shadowRoot || document.querySelector('body > gradio-app'); - const captionTxt = gradioEl.querySelector('#prompt-in textarea').value; - const inputVidEl = gradioEl.querySelector('#input-vid video'); - const outputVideo = gradioEl.querySelector('#video-output video'); - - - const shareBtnEl = gradioEl.querySelector('#share-btn'); - const shareIconEl = gradioEl.querySelector('#share-btn-share-icon'); - const loadingIconEl = gradioEl.querySelector('#share-btn-loading-icon'); - if(!outputVideo){ - return; - }; - shareBtnEl.style.pointerEvents = 'none'; - shareIconEl.style.display = 'none'; - loadingIconEl.style.removeProperty('display'); - - const inputFile = await getVideoBlobFile(inputVidEl); - const urlInputVid = await uploadFile(inputFile); - const videoOutFile = await getVideoBlobFile(outputVideo); - const dataOutputVid = await uploadFile(videoOutFile); - - const descriptionMd = ` -#### Video input: -${urlInputVid} - -#### Pix2Pix result: -${dataOutputVid} -`; - const params = new URLSearchParams({ - title: captionTxt, - description: descriptionMd, - }); - const paramsStr = params.toString(); - window.open(`https://huggingface.co/spaces/fffiloni/Pix2Pix-Video/discussions/new?${paramsStr}`, '_blank'); - shareBtnEl.style.removeProperty('pointer-events'); - shareIconEl.style.removeProperty('display'); - loadingIconEl.style.display = 'none'; -}""" \ No newline at end of file diff --git a/spaces/florim/MedGPT/autogpt/speech/say.py b/spaces/florim/MedGPT/autogpt/speech/say.py deleted file mode 100644 index 727983d12bf334205550a54bcd69a7a36824eda4..0000000000000000000000000000000000000000 --- a/spaces/florim/MedGPT/autogpt/speech/say.py +++ /dev/null @@ -1,41 +0,0 @@ -""" Text to speech module """ -import threading -from threading import Semaphore - -from autogpt.config import Config -from autogpt.speech.brian import BrianSpeech -from autogpt.speech.eleven_labs import ElevenLabsSpeech -from autogpt.speech.gtts import GTTSVoice -from autogpt.speech.macos_tts import MacOSTTS - -CFG = Config() -DEFAULT_VOICE_ENGINE = GTTSVoice() -VOICE_ENGINE = None -if CFG.elevenlabs_api_key: - VOICE_ENGINE = ElevenLabsSpeech() -elif CFG.use_mac_os_tts == "True": - VOICE_ENGINE = MacOSTTS() -elif CFG.use_brian_tts == "True": - VOICE_ENGINE = BrianSpeech() -else: - VOICE_ENGINE = GTTSVoice() - - -QUEUE_SEMAPHORE = Semaphore( - 1 -) # The amount of sounds to queue before blocking the main thread - - -def say_text(text: str, voice_index: int = 0) -> None: - """Speak the given text using the given voice index""" - - def speak() -> None: - success = VOICE_ENGINE.say(text, voice_index) - if not success: - DEFAULT_VOICE_ENGINE.say(text) - - QUEUE_SEMAPHORE.release() - - QUEUE_SEMAPHORE.acquire(True) - thread = threading.Thread(target=speak) - thread.start() diff --git a/spaces/freddyaboulton/3.1.4.9-all-demos/demos/calculator_live/run.py b/spaces/freddyaboulton/3.1.4.9-all-demos/demos/calculator_live/run.py deleted file mode 100644 index 09856c099eb6ffa080b355d09bc3ecebe3ea714c..0000000000000000000000000000000000000000 --- a/spaces/freddyaboulton/3.1.4.9-all-demos/demos/calculator_live/run.py +++ /dev/null @@ -1,24 +0,0 @@ -import gradio as gr - -def calculator(num1, operation, num2): - if operation == "add": - return num1 + num2 - elif operation == "subtract": - return num1 - num2 - elif operation == "multiply": - return num1 * num2 - elif operation == "divide": - return num1 / num2 - -demo = gr.Interface( - calculator, - [ - "number", - gr.Radio(["add", "subtract", "multiply", "divide"]), - "number" - ], - "number", - live=True, -) -if __name__ == "__main__": - demo.launch() diff --git a/spaces/galopyz/Alien_vs_Ghost/app.py b/spaces/galopyz/Alien_vs_Ghost/app.py deleted file mode 100644 index e1a52116dbeec31ee94305fe706a67883ff0526e..0000000000000000000000000000000000000000 --- a/spaces/galopyz/Alien_vs_Ghost/app.py +++ /dev/null @@ -1,25 +0,0 @@ -# AUTOGENERATED! DO NOT EDIT! File to edit: testing.ipynb. - -# %% auto 0 -__all__ = ['learn', 'categories', 'image', 'label', 'examples', 'inf', 'classify_images'] - -# %% testing.ipynb 3 -from fastai.vision.all import * -import gradio as gr - -# %% testing.ipynb 4 -learn = load_learner('alien_vs_ghost.pkl') - -# %% testing.ipynb 9 -categories = learn.dls.vocab -def classify_images(img): - pred, pred_idx, probs = learn.predict(img) - return dict(zip(categories, map(float, probs))) - -# %% testing.ipynb 12 -image = gr.inputs.Image(shape=(192, 192)) -label = gr.outputs.Label() -examples = ['alien1.jpeg', 'alien2.jpeg', 'ghost1.jpeg', 'ghost2.jpeg', 'dunno1.jpeg', 'dunno2.jpeg'] - -inf = gr.Interface(fn=classify_images, inputs=image, outputs=label, examples=examples) -inf.launch(inline=False) diff --git a/spaces/genevera/AudioToken/modules/AudioToken/embedder.py b/spaces/genevera/AudioToken/modules/AudioToken/embedder.py deleted file mode 100644 index 39035969bf12ba730869e4c5fc5342998ea51d60..0000000000000000000000000000000000000000 --- a/spaces/genevera/AudioToken/modules/AudioToken/embedder.py +++ /dev/null @@ -1,19 +0,0 @@ -import torch -import torch.nn as nn -from modules.fga.atten import Atten - - -class FGAEmbedder(nn.Module): - def __init__(self, input_size=768*3, output_size=768): - super(FGAEmbedder, self).__init__() - self.fc1 = nn.Linear(input_size, input_size) - self.fc2 = nn.Linear(input_size, output_size) - self.gelu = nn.GELU() - self.fga = Atten(util_e=[output_size], pairwise_flag=False) - - def forward(self, audio_embs): - audio_embs = self.fc1(audio_embs) - audio_embs = self.gelu(audio_embs) - audio_embs = self.fc2(audio_embs) - attend = self.fga([audio_embs])[0] - return attend diff --git a/spaces/georgefen/Face-Landmark-ControlNet/annotator/midas/midas/transforms.py b/spaces/georgefen/Face-Landmark-ControlNet/annotator/midas/midas/transforms.py deleted file mode 100644 index 350cbc11662633ad7f8968eb10be2e7de6e384e9..0000000000000000000000000000000000000000 --- a/spaces/georgefen/Face-Landmark-ControlNet/annotator/midas/midas/transforms.py +++ /dev/null @@ -1,234 +0,0 @@ -import numpy as np -import cv2 -import math - - -def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA): - """Rezise the sample to ensure the given size. Keeps aspect ratio. - - Args: - sample (dict): sample - size (tuple): image size - - Returns: - tuple: new size - """ - shape = list(sample["disparity"].shape) - - if shape[0] >= size[0] and shape[1] >= size[1]: - return sample - - scale = [0, 0] - scale[0] = size[0] / shape[0] - scale[1] = size[1] / shape[1] - - scale = max(scale) - - shape[0] = math.ceil(scale * shape[0]) - shape[1] = math.ceil(scale * shape[1]) - - # resize - sample["image"] = cv2.resize( - sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method - ) - - sample["disparity"] = cv2.resize( - sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST - ) - sample["mask"] = cv2.resize( - sample["mask"].astype(np.float32), - tuple(shape[::-1]), - interpolation=cv2.INTER_NEAREST, - ) - sample["mask"] = sample["mask"].astype(bool) - - return tuple(shape) - - -class Resize(object): - """Resize sample to given size (width, height). - """ - - def __init__( - self, - width, - height, - resize_target=True, - keep_aspect_ratio=False, - ensure_multiple_of=1, - resize_method="lower_bound", - image_interpolation_method=cv2.INTER_AREA, - ): - """Init. - - Args: - width (int): desired output width - height (int): desired output height - resize_target (bool, optional): - True: Resize the full sample (image, mask, target). - False: Resize image only. - Defaults to True. - keep_aspect_ratio (bool, optional): - True: Keep the aspect ratio of the input sample. - Output sample might not have the given width and height, and - resize behaviour depends on the parameter 'resize_method'. - Defaults to False. - ensure_multiple_of (int, optional): - Output width and height is constrained to be multiple of this parameter. - Defaults to 1. - resize_method (str, optional): - "lower_bound": Output will be at least as large as the given size. - "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.) - "minimal": Scale as least as possible. (Output size might be smaller than given size.) - Defaults to "lower_bound". - """ - self.__width = width - self.__height = height - - self.__resize_target = resize_target - self.__keep_aspect_ratio = keep_aspect_ratio - self.__multiple_of = ensure_multiple_of - self.__resize_method = resize_method - self.__image_interpolation_method = image_interpolation_method - - def constrain_to_multiple_of(self, x, min_val=0, max_val=None): - y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int) - - if max_val is not None and y > max_val: - y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int) - - if y < min_val: - y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int) - - return y - - def get_size(self, width, height): - # determine new height and width - scale_height = self.__height / height - scale_width = self.__width / width - - if self.__keep_aspect_ratio: - if self.__resize_method == "lower_bound": - # scale such that output size is lower bound - if scale_width > scale_height: - # fit width - scale_height = scale_width - else: - # fit height - scale_width = scale_height - elif self.__resize_method == "upper_bound": - # scale such that output size is upper bound - if scale_width < scale_height: - # fit width - scale_height = scale_width - else: - # fit height - scale_width = scale_height - elif self.__resize_method == "minimal": - # scale as least as possbile - if abs(1 - scale_width) < abs(1 - scale_height): - # fit width - scale_height = scale_width - else: - # fit height - scale_width = scale_height - else: - raise ValueError( - f"resize_method {self.__resize_method} not implemented" - ) - - if self.__resize_method == "lower_bound": - new_height = self.constrain_to_multiple_of( - scale_height * height, min_val=self.__height - ) - new_width = self.constrain_to_multiple_of( - scale_width * width, min_val=self.__width - ) - elif self.__resize_method == "upper_bound": - new_height = self.constrain_to_multiple_of( - scale_height * height, max_val=self.__height - ) - new_width = self.constrain_to_multiple_of( - scale_width * width, max_val=self.__width - ) - elif self.__resize_method == "minimal": - new_height = self.constrain_to_multiple_of(scale_height * height) - new_width = self.constrain_to_multiple_of(scale_width * width) - else: - raise ValueError(f"resize_method {self.__resize_method} not implemented") - - return (new_width, new_height) - - def __call__(self, sample): - width, height = self.get_size( - sample["image"].shape[1], sample["image"].shape[0] - ) - - # resize sample - sample["image"] = cv2.resize( - sample["image"], - (width, height), - interpolation=self.__image_interpolation_method, - ) - - if self.__resize_target: - if "disparity" in sample: - sample["disparity"] = cv2.resize( - sample["disparity"], - (width, height), - interpolation=cv2.INTER_NEAREST, - ) - - if "depth" in sample: - sample["depth"] = cv2.resize( - sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST - ) - - sample["mask"] = cv2.resize( - sample["mask"].astype(np.float32), - (width, height), - interpolation=cv2.INTER_NEAREST, - ) - sample["mask"] = sample["mask"].astype(bool) - - return sample - - -class NormalizeImage(object): - """Normlize image by given mean and std. - """ - - def __init__(self, mean, std): - self.__mean = mean - self.__std = std - - def __call__(self, sample): - sample["image"] = (sample["image"] - self.__mean) / self.__std - - return sample - - -class PrepareForNet(object): - """Prepare sample for usage as network input. - """ - - def __init__(self): - pass - - def __call__(self, sample): - image = np.transpose(sample["image"], (2, 0, 1)) - sample["image"] = np.ascontiguousarray(image).astype(np.float32) - - if "mask" in sample: - sample["mask"] = sample["mask"].astype(np.float32) - sample["mask"] = np.ascontiguousarray(sample["mask"]) - - if "disparity" in sample: - disparity = sample["disparity"].astype(np.float32) - sample["disparity"] = np.ascontiguousarray(disparity) - - if "depth" in sample: - depth = sample["depth"].astype(np.float32) - sample["depth"] = np.ascontiguousarray(depth) - - return sample diff --git a/spaces/georgefen/Face-Landmark-ControlNet/annotator/uniformer/mmseg/datasets/chase_db1.py b/spaces/georgefen/Face-Landmark-ControlNet/annotator/uniformer/mmseg/datasets/chase_db1.py deleted file mode 100644 index 8bc29bea14704a4407f83474610cbc3bef32c708..0000000000000000000000000000000000000000 --- a/spaces/georgefen/Face-Landmark-ControlNet/annotator/uniformer/mmseg/datasets/chase_db1.py +++ /dev/null @@ -1,27 +0,0 @@ -import os.path as osp - -from .builder import DATASETS -from .custom import CustomDataset - - -@DATASETS.register_module() -class ChaseDB1Dataset(CustomDataset): - """Chase_db1 dataset. - - In segmentation map annotation for Chase_db1, 0 stands for background, - which is included in 2 categories. ``reduce_zero_label`` is fixed to False. - The ``img_suffix`` is fixed to '.png' and ``seg_map_suffix`` is fixed to - '_1stHO.png'. - """ - - CLASSES = ('background', 'vessel') - - PALETTE = [[120, 120, 120], [6, 230, 230]] - - def __init__(self, **kwargs): - super(ChaseDB1Dataset, self).__init__( - img_suffix='.png', - seg_map_suffix='_1stHO.png', - reduce_zero_label=False, - **kwargs) - assert osp.exists(self.img_dir) diff --git a/spaces/georgefen/Face-Landmark-ControlNet/annotator/uniformer/mmseg/models/decode_heads/uper_head.py b/spaces/georgefen/Face-Landmark-ControlNet/annotator/uniformer/mmseg/models/decode_heads/uper_head.py deleted file mode 100644 index 9e1301b706b0d83ed714bbdee8ee24693f150455..0000000000000000000000000000000000000000 --- a/spaces/georgefen/Face-Landmark-ControlNet/annotator/uniformer/mmseg/models/decode_heads/uper_head.py +++ /dev/null @@ -1,126 +0,0 @@ -import torch -import torch.nn as nn -from annotator.uniformer.mmcv.cnn import ConvModule - -from annotator.uniformer.mmseg.ops import resize -from ..builder import HEADS -from .decode_head import BaseDecodeHead -from .psp_head import PPM - - -@HEADS.register_module() -class UPerHead(BaseDecodeHead): - """Unified Perceptual Parsing for Scene Understanding. - - This head is the implementation of `UPerNet - `_. - - Args: - pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid - Module applied on the last feature. Default: (1, 2, 3, 6). - """ - - def __init__(self, pool_scales=(1, 2, 3, 6), **kwargs): - super(UPerHead, self).__init__( - input_transform='multiple_select', **kwargs) - # PSP Module - self.psp_modules = PPM( - pool_scales, - self.in_channels[-1], - self.channels, - conv_cfg=self.conv_cfg, - norm_cfg=self.norm_cfg, - act_cfg=self.act_cfg, - align_corners=self.align_corners) - self.bottleneck = ConvModule( - self.in_channels[-1] + len(pool_scales) * self.channels, - self.channels, - 3, - padding=1, - conv_cfg=self.conv_cfg, - norm_cfg=self.norm_cfg, - act_cfg=self.act_cfg) - # FPN Module - self.lateral_convs = nn.ModuleList() - self.fpn_convs = nn.ModuleList() - for in_channels in self.in_channels[:-1]: # skip the top layer - l_conv = ConvModule( - in_channels, - self.channels, - 1, - conv_cfg=self.conv_cfg, - norm_cfg=self.norm_cfg, - act_cfg=self.act_cfg, - inplace=False) - fpn_conv = ConvModule( - self.channels, - self.channels, - 3, - padding=1, - conv_cfg=self.conv_cfg, - norm_cfg=self.norm_cfg, - act_cfg=self.act_cfg, - inplace=False) - self.lateral_convs.append(l_conv) - self.fpn_convs.append(fpn_conv) - - self.fpn_bottleneck = ConvModule( - len(self.in_channels) * self.channels, - self.channels, - 3, - padding=1, - conv_cfg=self.conv_cfg, - norm_cfg=self.norm_cfg, - act_cfg=self.act_cfg) - - def psp_forward(self, inputs): - """Forward function of PSP module.""" - x = inputs[-1] - psp_outs = [x] - psp_outs.extend(self.psp_modules(x)) - psp_outs = torch.cat(psp_outs, dim=1) - output = self.bottleneck(psp_outs) - - return output - - def forward(self, inputs): - """Forward function.""" - - inputs = self._transform_inputs(inputs) - - # build laterals - laterals = [ - lateral_conv(inputs[i]) - for i, lateral_conv in enumerate(self.lateral_convs) - ] - - laterals.append(self.psp_forward(inputs)) - - # build top-down path - used_backbone_levels = len(laterals) - for i in range(used_backbone_levels - 1, 0, -1): - prev_shape = laterals[i - 1].shape[2:] - laterals[i - 1] += resize( - laterals[i], - size=prev_shape, - mode='bilinear', - align_corners=self.align_corners) - - # build outputs - fpn_outs = [ - self.fpn_convs[i](laterals[i]) - for i in range(used_backbone_levels - 1) - ] - # append psp feature - fpn_outs.append(laterals[-1]) - - for i in range(used_backbone_levels - 1, 0, -1): - fpn_outs[i] = resize( - fpn_outs[i], - size=fpn_outs[0].shape[2:], - mode='bilinear', - align_corners=self.align_corners) - fpn_outs = torch.cat(fpn_outs, dim=1) - output = self.fpn_bottleneck(fpn_outs) - output = self.cls_seg(output) - return output diff --git a/spaces/ghlee94/MEDIAR/predict.py b/spaces/ghlee94/MEDIAR/predict.py deleted file mode 100644 index 30a751e9476dfef230bbcea6e04963e8157ec561..0000000000000000000000000000000000000000 --- a/spaces/ghlee94/MEDIAR/predict.py +++ /dev/null @@ -1,1256 +0,0 @@ -import torch -from torch.nn import ( - Module, - Conv2d, - BatchNorm2d, - Identity, - UpsamplingBilinear2d, - Mish, - ReLU, - Sequential, -) -from torch.nn.functional import interpolate, grid_sample, pad -import numpy as np -from copy import deepcopy -import os, argparse, math -import tifffile as tif -from typing import Tuple, List, Mapping - -from monai.utils import ( - BlendMode, - PytorchPadMode, - convert_data_type, - ensure_tuple, - fall_back_tuple, - look_up_option, - convert_to_dst_type, -) -from monai.utils.misc import ensure_tuple_size, ensure_tuple_rep, issequenceiterable -from monai.networks.layers.convutils import gaussian_1d -from monai.networks.layers.simplelayers import separable_filtering - -from segmentation_models_pytorch import MAnet - -from skimage.io import imread as io_imread -from skimage.util.dtype import dtype_range -from skimage._shared.utils import _supported_float_type -from scipy.ndimage import find_objects, binary_fill_holes - - -########################### Data Loading Modules ######################################################### -DTYPE_RANGE = dtype_range.copy() -DTYPE_RANGE.update((d.__name__, limits) for d, limits in dtype_range.items()) -DTYPE_RANGE.update( - { - "uint10": (0, 2 ** 10 - 1), - "uint12": (0, 2 ** 12 - 1), - "uint14": (0, 2 ** 14 - 1), - "bool": dtype_range[bool], - "float": dtype_range[np.float64], - } -) - - -def _output_dtype(dtype_or_range, image_dtype): - if type(dtype_or_range) in [list, tuple, np.ndarray]: - # pair of values: always return float. - return _supported_float_type(image_dtype) - if type(dtype_or_range) == type: - # already a type: return it - return dtype_or_range - if dtype_or_range in DTYPE_RANGE: - # string key in DTYPE_RANGE dictionary - try: - # if it's a canonical numpy dtype, convert - return np.dtype(dtype_or_range).type - except TypeError: # uint10, uint12, uint14 - # otherwise, return uint16 - return np.uint16 - else: - raise ValueError( - "Incorrect value for out_range, should be a valid image data " - f"type or a pair of values, got {dtype_or_range}." - ) - - -def intensity_range(image, range_values="image", clip_negative=False): - if range_values == "dtype": - range_values = image.dtype.type - - if range_values == "image": - i_min = np.min(image) - i_max = np.max(image) - elif range_values in DTYPE_RANGE: - i_min, i_max = DTYPE_RANGE[range_values] - if clip_negative: - i_min = 0 - else: - i_min, i_max = range_values - return i_min, i_max - - -def rescale_intensity(image, in_range="image", out_range="dtype"): - out_dtype = _output_dtype(out_range, image.dtype) - - imin, imax = map(float, intensity_range(image, in_range)) - omin, omax = map( - float, intensity_range(image, out_range, clip_negative=(imin >= 0)) - ) - image = np.clip(image, imin, imax) - - if imin != imax: - image = (image - imin) / (imax - imin) - return np.asarray(image * (omax - omin) + omin, dtype=out_dtype) - else: - return np.clip(image, omin, omax).astype(out_dtype) - - -def _normalize(img): - non_zero_vals = img[np.nonzero(img)] - percentiles = np.percentile(non_zero_vals, [0, 99.5]) - img_norm = rescale_intensity( - img, in_range=(percentiles[0], percentiles[1]), out_range="uint8" - ) - - return img_norm.astype(np.uint8) - - -def pred_transforms(filename): - # LoadImage - img = ( - tif.imread(filename) - if filename.endswith(".tif") or filename.endswith(".tiff") - else io_imread(filename) - ) - - if len(img.shape) == 2: - img = np.repeat(np.expand_dims(img, axis=-1), 3, axis=-1) - elif len(img.shape) == 3 and img.shape[-1] > 3: - img = img[:, :, :3] - - img = img.astype(np.float32) - img = _normalize(img) - img = np.moveaxis(img, -1, 0) - img = (img - img.min()) / (img.max() - img.min()) - - return torch.FloatTensor(img).unsqueeze(0) - - -################################################################################ - -########################### MODEL Architecture ################################# -class SegformerGH(MAnet): - def __init__( - self, - encoder_name: str = "mit_b5", - encoder_weights="imagenet", - decoder_channels=(256, 128, 64, 32, 32), - decoder_pab_channels=256, - in_channels: int = 3, - classes: int = 3, - ): - super(SegformerGH, self).__init__( - encoder_name=encoder_name, - encoder_weights=encoder_weights, - decoder_channels=decoder_channels, - decoder_pab_channels=decoder_pab_channels, - in_channels=in_channels, - classes=classes, - ) - - convert_relu_to_mish(self.encoder) - convert_relu_to_mish(self.decoder) - - self.cellprob_head = DeepSegmantationHead( - in_channels=decoder_channels[-1], out_channels=1, kernel_size=3, - ) - self.gradflow_head = DeepSegmantationHead( - in_channels=decoder_channels[-1], out_channels=2, kernel_size=3, - ) - - def forward(self, x): - """Sequentially pass `x` trough model`s encoder, decoder and heads""" - self.check_input_shape(x) - - features = self.encoder(x) - decoder_output = self.decoder(*features) - - gradflow_mask = self.gradflow_head(decoder_output) - cellprob_mask = self.cellprob_head(decoder_output) - - masks = torch.cat([gradflow_mask, cellprob_mask], dim=1) - - return masks - - -class DeepSegmantationHead(Sequential): - def __init__(self, in_channels, out_channels, kernel_size=3, upsampling=1): - conv2d_1 = Conv2d( - in_channels, - in_channels // 2, - kernel_size=kernel_size, - padding=kernel_size // 2, - ) - bn = BatchNorm2d(in_channels // 2) - conv2d_2 = Conv2d( - in_channels // 2, - out_channels, - kernel_size=kernel_size, - padding=kernel_size // 2, - ) - mish = Mish(inplace=True) - - upsampling = ( - UpsamplingBilinear2d(scale_factor=upsampling) - if upsampling > 1 - else Identity() - ) - activation = Identity() - super().__init__(conv2d_1, mish, bn, conv2d_2, upsampling, activation) - - -def convert_relu_to_mish(model): - for child_name, child in model.named_children(): - if isinstance(child, ReLU): - setattr(model, child_name, Mish(inplace=True)) - else: - convert_relu_to_mish(child) - - -##################################################################################### - -########################### Sliding Window Inference ################################# -class GaussianFilter(Module): - def __init__( - self, spatial_dims, sigma, truncated=4.0, approx="erf", requires_grad=False, - ) -> None: - if issequenceiterable(sigma): - if len(sigma) != spatial_dims: # type: ignore - raise ValueError - else: - sigma = [deepcopy(sigma) for _ in range(spatial_dims)] # type: ignore - super().__init__() - self.sigma = [ - torch.nn.Parameter( - torch.as_tensor( - s, - dtype=torch.float, - device=s.device if isinstance(s, torch.Tensor) else None, - ), - requires_grad=requires_grad, - ) - for s in sigma # type: ignore - ] - self.truncated = truncated - self.approx = approx - for idx, param in enumerate(self.sigma): - self.register_parameter(f"kernel_sigma_{idx}", param) - - def forward(self, x: torch.Tensor) -> torch.Tensor: - _kernel = [ - gaussian_1d(s, truncated=self.truncated, approx=self.approx) - for s in self.sigma - ] - return separable_filtering(x=x, kernels=_kernel) - - -def compute_importance_map( - patch_size, mode=BlendMode.CONSTANT, sigma_scale=0.125, device="cpu" -): - mode = look_up_option(mode, BlendMode) - device = torch.device(device) - - center_coords = [i // 2 for i in patch_size] - sigma_scale = ensure_tuple_rep(sigma_scale, len(patch_size)) - sigmas = [i * sigma_s for i, sigma_s in zip(patch_size, sigma_scale)] - - importance_map = torch.zeros(patch_size, device=device) - importance_map[tuple(center_coords)] = 1 - pt_gaussian = GaussianFilter(len(patch_size), sigmas).to( - device=device, dtype=torch.float - ) - importance_map = pt_gaussian(importance_map.unsqueeze(0).unsqueeze(0)) - importance_map = importance_map.squeeze(0).squeeze(0) - importance_map = importance_map / torch.max(importance_map) - importance_map = importance_map.float() - - return importance_map - - -def first(iterable, default=None): - for i in iterable: - return i - - return default - - -def dense_patch_slices(image_size, patch_size, scan_interval): - num_spatial_dims = len(image_size) - patch_size = get_valid_patch_size(image_size, patch_size) - scan_interval = ensure_tuple_size(scan_interval, num_spatial_dims) - - scan_num = [] - for i in range(num_spatial_dims): - if scan_interval[i] == 0: - scan_num.append(1) - else: - num = int(math.ceil(float(image_size[i]) / scan_interval[i])) - scan_dim = first( - d - for d in range(num) - if d * scan_interval[i] + patch_size[i] >= image_size[i] - ) - scan_num.append(scan_dim + 1 if scan_dim is not None else 1) - - starts = [] - for dim in range(num_spatial_dims): - dim_starts = [] - for idx in range(scan_num[dim]): - start_idx = idx * scan_interval[dim] - start_idx -= max(start_idx + patch_size[dim] - image_size[dim], 0) - dim_starts.append(start_idx) - starts.append(dim_starts) - out = np.asarray([x.flatten() for x in np.meshgrid(*starts, indexing="ij")]).T - return [tuple(slice(s, s + patch_size[d]) for d, s in enumerate(x)) for x in out] - - -def get_valid_patch_size(image_size, patch_size): - ndim = len(image_size) - patch_size_ = ensure_tuple_size(patch_size, ndim) - - # ensure patch size dimensions are not larger than image dimension, if a dimension is None or 0 use whole dimension - return tuple(min(ms, ps or ms) for ms, ps in zip(image_size, patch_size_)) - - -class Resize: - def __init__(self, spatial_size): - self.size_mode = "all" - self.spatial_size = spatial_size - - def __call__(self, img): - input_ndim = img.ndim - 1 # spatial ndim - output_ndim = len(ensure_tuple(self.spatial_size)) - - if output_ndim > input_ndim: - input_shape = ensure_tuple_size(img.shape, output_ndim + 1, 1) - img = img.reshape(input_shape) - - spatial_size_ = fall_back_tuple(self.spatial_size, img.shape[1:]) - - if ( - tuple(img.shape[1:]) == spatial_size_ - ): # spatial shape is already the desired - return img - - img_, *_ = convert_data_type(img, torch.Tensor, dtype=torch.float) - - resized = interpolate( - input=img_.unsqueeze(0), size=spatial_size_, mode="nearest", - ) - out, *_ = convert_to_dst_type(resized.squeeze(0), img) - return out - - -def sliding_window_inference( - inputs, - roi_size, - sw_batch_size, - predictor, - overlap, - mode=BlendMode.CONSTANT, - sigma_scale=0.125, - padding_mode=PytorchPadMode.CONSTANT, - cval=0.0, - sw_device=None, - device=None, - roi_weight_map=None, -): - compute_dtype = inputs.dtype - num_spatial_dims = len(inputs.shape) - 2 - batch_size, _, *image_size_ = inputs.shape - - roi_size = fall_back_tuple(roi_size, image_size_) - # in case that image size is smaller than roi size - image_size = tuple( - max(image_size_[i], roi_size[i]) for i in range(num_spatial_dims) - ) - pad_size = [] - - for k in range(len(inputs.shape) - 1, 1, -1): - diff = max(roi_size[k - 2] - inputs.shape[k], 0) - half = diff // 2 - pad_size.extend([half, diff - half]) - - inputs = pad( - inputs, - pad=pad_size, - mode=look_up_option(padding_mode, PytorchPadMode).value, - value=cval, - ) - - scan_interval = _get_scan_interval(image_size, roi_size, num_spatial_dims, overlap) - - # Store all slices in list - slices = dense_patch_slices(image_size, roi_size, scan_interval) - num_win = len(slices) # number of windows per image - total_slices = num_win * batch_size # total number of windows - - # Create window-level importance map - valid_patch_size = get_valid_patch_size(image_size, roi_size) - if valid_patch_size == roi_size and (roi_weight_map is not None): - importance_map = roi_weight_map - else: - importance_map = compute_importance_map( - valid_patch_size, mode=mode, sigma_scale=sigma_scale, device=device - ) - - importance_map = convert_data_type(importance_map, torch.Tensor, device, compute_dtype)[0] # type: ignore - # handle non-positive weights - min_non_zero = max(importance_map[importance_map != 0].min().item(), 1e-3) - importance_map = torch.clamp(importance_map.to(torch.float32), min=min_non_zero).to( - compute_dtype - ) - - # Perform predictions - dict_key, output_image_list, count_map_list = None, [], [] - _initialized_ss = -1 - is_tensor_output = ( - True # whether the predictor's output is a tensor (instead of dict/tuple) - ) - - # for each patch - for slice_g in range(0, total_slices, sw_batch_size): - slice_range = range(slice_g, min(slice_g + sw_batch_size, total_slices)) - unravel_slice = [ - [slice(int(idx / num_win), int(idx / num_win) + 1), slice(None)] - + list(slices[idx % num_win]) - for idx in slice_range - ] - window_data = torch.cat([inputs[win_slice] for win_slice in unravel_slice]).to( - sw_device - ) - seg_prob_out = predictor(window_data) # batched patch segmentation - - # convert seg_prob_out to tuple seg_prob_tuple, this does not allocate new memory. - seg_prob_tuple: Tuple[torch.Tensor, ...] - if isinstance(seg_prob_out, torch.Tensor): - seg_prob_tuple = (seg_prob_out,) - elif isinstance(seg_prob_out, Mapping): - if dict_key is None: - dict_key = sorted(seg_prob_out.keys()) # track predictor's output keys - seg_prob_tuple = tuple(seg_prob_out[k] for k in dict_key) - is_tensor_output = False - else: - seg_prob_tuple = ensure_tuple(seg_prob_out) - is_tensor_output = False - - # for each output in multi-output list - for ss, seg_prob in enumerate(seg_prob_tuple): - seg_prob = seg_prob.to(device) # BxCxMxNxP or BxCxMxN - - # compute zoom scale: out_roi_size/in_roi_size - zoom_scale = [] - for axis, (img_s_i, out_w_i, in_w_i) in enumerate( - zip(image_size, seg_prob.shape[2:], window_data.shape[2:]) - ): - _scale = out_w_i / float(in_w_i) - - zoom_scale.append(_scale) - - if _initialized_ss < ss: # init. the ss-th buffer at the first iteration - # construct multi-resolution outputs - output_classes = seg_prob.shape[1] - output_shape = [batch_size, output_classes] + [ - int(image_size_d * zoom_scale_d) - for image_size_d, zoom_scale_d in zip(image_size, zoom_scale) - ] - # allocate memory to store the full output and the count for overlapping parts - output_image_list.append( - torch.zeros(output_shape, dtype=compute_dtype, device=device) - ) - count_map_list.append( - torch.zeros( - [1, 1] + output_shape[2:], dtype=compute_dtype, device=device - ) - ) - _initialized_ss += 1 - - # resizing the importance_map - resizer = Resize(spatial_size=seg_prob.shape[2:]) - - # store the result in the proper location of the full output. Apply weights from importance map. - for idx, original_idx in zip(slice_range, unravel_slice): - # zoom roi - original_idx_zoom = list( - original_idx - ) # 4D for 2D image, 5D for 3D image - for axis in range(2, len(original_idx_zoom)): - zoomed_start = original_idx[axis].start * zoom_scale[axis - 2] - zoomed_end = original_idx[axis].stop * zoom_scale[axis - 2] - - original_idx_zoom[axis] = slice( - int(zoomed_start), int(zoomed_end), None - ) - importance_map_zoom = resizer(importance_map.unsqueeze(0))[0].to( - compute_dtype - ) - # store results and weights - output_image_list[ss][original_idx_zoom] += ( - importance_map_zoom * seg_prob[idx - slice_g] - ) - count_map_list[ss][original_idx_zoom] += ( - importance_map_zoom.unsqueeze(0) - .unsqueeze(0) - .expand(count_map_list[ss][original_idx_zoom].shape) - ) - - # account for any overlapping sections - for ss in range(len(output_image_list)): - output_image_list[ss] = (output_image_list[ss] / count_map_list.pop(0)).to( - compute_dtype - ) - - # remove padding if image_size smaller than roi_size - for ss, output_i in enumerate(output_image_list): - zoom_scale = [ - seg_prob_map_shape_d / roi_size_d - for seg_prob_map_shape_d, roi_size_d in zip(output_i.shape[2:], roi_size) - ] - - final_slicing: List[slice] = [] - for sp in range(num_spatial_dims): - slice_dim = slice( - pad_size[sp * 2], - image_size_[num_spatial_dims - sp - 1] + pad_size[sp * 2], - ) - slice_dim = slice( - int(round(slice_dim.start * zoom_scale[num_spatial_dims - sp - 1])), - int(round(slice_dim.stop * zoom_scale[num_spatial_dims - sp - 1])), - ) - final_slicing.insert(0, slice_dim) - while len(final_slicing) < len(output_i.shape): - final_slicing.insert(0, slice(None)) - output_image_list[ss] = output_i[final_slicing] - - if dict_key is not None: # if output of predictor is a dict - final_output = dict(zip(dict_key, output_image_list)) - else: - final_output = tuple(output_image_list) # type: ignore - - return final_output[0] if is_tensor_output else final_output # type: ignore - - -def _get_scan_interval( - image_size, roi_size, num_spatial_dims: int, overlap: float -) -> Tuple[int, ...]: - scan_interval = [] - - for i in range(num_spatial_dims): - if roi_size[i] == image_size[i]: - scan_interval.append(int(roi_size[i])) - else: - interval = int(roi_size[i] * (1 - overlap)) - scan_interval.append(interval if interval > 0 else 1) - - return tuple(scan_interval) - - -##################################################################################### - -########################### Main Inference Functions ################################# -def post_process(pred_mask, device): - dP, cellprob = pred_mask[:2], 1 / (1 + np.exp(-pred_mask[-1])) - H, W = pred_mask.shape[-2], pred_mask.shape[-1] - - if np.prod(H * W) < (5000 * 5000): - pred_mask = compute_masks( - dP, - cellprob, - use_gpu=True, - flow_threshold=0.4, - device=device, - cellprob_threshold=0.4, - )[0] - - else: - print("\n[Whole Slide] Grid Prediction starting...") - roi_size = 2000 - - # Get patch grid by roi_size - if H % roi_size != 0: - n_H = H // roi_size + 1 - new_H = roi_size * n_H - else: - n_H = H // roi_size - new_H = H - - if W % roi_size != 0: - n_W = W // roi_size + 1 - new_W = roi_size * n_W - else: - n_W = W // roi_size - new_W = W - - # Allocate values on the grid - pred_pad = np.zeros((new_H, new_W), dtype=np.uint32) - dP_pad = np.zeros((2, new_H, new_W), dtype=np.float32) - cellprob_pad = np.zeros((new_H, new_W), dtype=np.float32) - - dP_pad[:, :H, :W], cellprob_pad[:H, :W] = dP, cellprob - - for i in range(n_H): - for j in range(n_W): - print("Pred on Grid (%d, %d) processing..." % (i, j)) - dP_roi = dP_pad[ - :, - roi_size * i : roi_size * (i + 1), - roi_size * j : roi_size * (j + 1), - ] - cellprob_roi = cellprob_pad[ - roi_size * i : roi_size * (i + 1), - roi_size * j : roi_size * (j + 1), - ] - - pred_mask = compute_masks( - dP_roi, - cellprob_roi, - use_gpu=True, - flow_threshold=0.4, - device=device, - cellprob_threshold=0.4, - )[0] - - pred_pad[ - roi_size * i : roi_size * (i + 1), - roi_size * j : roi_size * (j + 1), - ] = pred_mask - - pred_mask = pred_pad[:H, :W] - - cell_idx, cell_sizes = np.unique(pred_mask, return_counts=True) - cell_idx, cell_sizes = cell_idx[1:], cell_sizes[1:] - cell_drop = np.where(cell_sizes < np.mean(cell_sizes) - 2.7 * np.std(cell_sizes)) - - for drop_cell in cell_idx[cell_drop]: - pred_mask[pred_mask == drop_cell] = 0 - - return pred_mask - - -def hflip(x): - """flip batch of images horizontally""" - return x.flip(3) - - -def vflip(x): - """flip batch of images vertically""" - return x.flip(2) - - -class DualTransform: - identity_param = None - - def __init__( - self, name: str, params, - ): - self.params = params - self.pname = name - - def apply_aug_image(self, image, *args, **params): - raise NotImplementedError - - def apply_deaug_mask(self, mask, *args, **params): - raise NotImplementedError - - -class HorizontalFlip(DualTransform): - """Flip images horizontally (left->right)""" - - identity_param = False - - def __init__(self): - super().__init__("apply", [False, True]) - - def apply_aug_image(self, image, apply=False, **kwargs): - if apply: - image = hflip(image) - return image - - def apply_deaug_mask(self, mask, apply=False, **kwargs): - if apply: - mask = hflip(mask) - return mask - - -class VerticalFlip(DualTransform): - """Flip images vertically (up->down)""" - - identity_param = False - - def __init__(self): - super().__init__("apply", [False, True]) - - def apply_aug_image(self, image, apply=False, **kwargs): - if apply: - image = vflip(image) - return image - - def apply_deaug_mask(self, mask, apply=False, **kwargs): - if apply: - mask = vflip(mask) - return mask - - -#################### GradFlow Modules ################################################## -from scipy.ndimage.filters import maximum_filter1d -import scipy.ndimage -import fastremap -from skimage import morphology - -from scipy.ndimage import mean - -torch_GPU = torch.device("cuda") -torch_CPU = torch.device("cpu") - - -def _extend_centers_gpu( - neighbors, centers, isneighbor, Ly, Lx, n_iter=200, device=torch.device("cuda") -): - if device is not None: - device = device - nimg = neighbors.shape[0] // 9 - pt = torch.from_numpy(neighbors).to(device) - - T = torch.zeros((nimg, Ly, Lx), dtype=torch.double, device=device) - meds = torch.from_numpy(centers.astype(int)).to(device).long() - isneigh = torch.from_numpy(isneighbor).to(device) - for i in range(n_iter): - T[:, meds[:, 0], meds[:, 1]] += 1 - Tneigh = T[:, pt[:, :, 0], pt[:, :, 1]] - Tneigh *= isneigh - T[:, pt[0, :, 0], pt[0, :, 1]] = Tneigh.mean(axis=1) - del meds, isneigh, Tneigh - T = torch.log(1.0 + T) - # gradient positions - grads = T[:, pt[[2, 1, 4, 3], :, 0], pt[[2, 1, 4, 3], :, 1]] - del pt - dy = grads[:, 0] - grads[:, 1] - dx = grads[:, 2] - grads[:, 3] - del grads - mu_torch = np.stack((dy.cpu().squeeze(), dx.cpu().squeeze()), axis=-2) - return mu_torch - - -def diameters(masks): - _, counts = np.unique(np.int32(masks), return_counts=True) - counts = counts[1:] - md = np.median(counts ** 0.5) - if np.isnan(md): - md = 0 - md /= (np.pi ** 0.5) / 2 - return md, counts ** 0.5 - - -def masks_to_flows_gpu(masks, device=None): - if device is None: - device = torch.device("cuda") - - Ly0, Lx0 = masks.shape - Ly, Lx = Ly0 + 2, Lx0 + 2 - - masks_padded = np.zeros((Ly, Lx), np.int64) - masks_padded[1:-1, 1:-1] = masks - - # get mask pixel neighbors - y, x = np.nonzero(masks_padded) - neighborsY = np.stack((y, y - 1, y + 1, y, y, y - 1, y - 1, y + 1, y + 1), axis=0) - neighborsX = np.stack((x, x, x, x - 1, x + 1, x - 1, x + 1, x - 1, x + 1), axis=0) - neighbors = np.stack((neighborsY, neighborsX), axis=-1) - - # get mask centers - slices = scipy.ndimage.find_objects(masks) - - centers = np.zeros((masks.max(), 2), "int") - for i, si in enumerate(slices): - if si is not None: - sr, sc = si - - ly, lx = sr.stop - sr.start + 1, sc.stop - sc.start + 1 - yi, xi = np.nonzero(masks[sr, sc] == (i + 1)) - yi = yi.astype(np.int32) + 1 # add padding - xi = xi.astype(np.int32) + 1 # add padding - ymed = np.median(yi) - xmed = np.median(xi) - imin = np.argmin((xi - xmed) ** 2 + (yi - ymed) ** 2) - xmed = xi[imin] - ymed = yi[imin] - centers[i, 0] = ymed + sr.start - centers[i, 1] = xmed + sc.start - - # get neighbor validator (not all neighbors are in same mask) - neighbor_masks = masks_padded[neighbors[:, :, 0], neighbors[:, :, 1]] - isneighbor = neighbor_masks == neighbor_masks[0] - ext = np.array( - [[sr.stop - sr.start + 1, sc.stop - sc.start + 1] for sr, sc in slices] - ) - n_iter = 2 * (ext.sum(axis=1)).max() - # run diffusion - mu = _extend_centers_gpu( - neighbors, centers, isneighbor, Ly, Lx, n_iter=n_iter, device=device - ) - - # normalize - mu /= 1e-20 + (mu ** 2).sum(axis=0) ** 0.5 - - # put into original image - mu0 = np.zeros((2, Ly0, Lx0)) - mu0[:, y - 1, x - 1] = mu - mu_c = np.zeros_like(mu0) - return mu0, mu_c - - -def masks_to_flows(masks, use_gpu=False, device=None): - if masks.max() == 0 or (masks != 0).sum() == 1: - # dynamics_logger.warning('empty masks!') - return np.zeros((2, *masks.shape), "float32") - - if use_gpu: - if use_gpu and device is None: - device = torch_GPU - elif device is None: - device = torch_CPU - masks_to_flows_device = masks_to_flows_gpu - - if masks.ndim == 3: - Lz, Ly, Lx = masks.shape - mu = np.zeros((3, Lz, Ly, Lx), np.float32) - for z in range(Lz): - mu0 = masks_to_flows_device(masks[z], device=device)[0] - mu[[1, 2], z] += mu0 - for y in range(Ly): - mu0 = masks_to_flows_device(masks[:, y], device=device)[0] - mu[[0, 2], :, y] += mu0 - for x in range(Lx): - mu0 = masks_to_flows_device(masks[:, :, x], device=device)[0] - mu[[0, 1], :, :, x] += mu0 - return mu - elif masks.ndim == 2: - mu, mu_c = masks_to_flows_device(masks, device=device) - return mu - - else: - raise ValueError("masks_to_flows only takes 2D or 3D arrays") - - -def steps2D_interp(p, dP, niter, use_gpu=False, device=None): - shape = dP.shape[1:] - if use_gpu: - if device is None: - device = torch_GPU - shape = ( - np.array(shape)[[1, 0]].astype("float") - 1 - ) # Y and X dimensions (dP is 2.Ly.Lx), flipped X-1, Y-1 - pt = ( - torch.from_numpy(p[[1, 0]].T).float().to(device).unsqueeze(0).unsqueeze(0) - ) # p is n_points by 2, so pt is [1 1 2 n_points] - im = ( - torch.from_numpy(dP[[1, 0]]).float().to(device).unsqueeze(0) - ) # covert flow numpy array to tensor on GPU, add dimension - # normalize pt between 0 and 1, normalize the flow - for k in range(2): - im[:, k, :, :] *= 2.0 / shape[k] - pt[:, :, :, k] /= shape[k] - - # normalize to between -1 and 1 - pt = pt * 2 - 1 - - # here is where the stepping happens - for t in range(niter): - # align_corners default is False, just added to suppress warning - dPt = grid_sample(im, pt, align_corners=False) - - for k in range(2): # clamp the final pixel locations - pt[:, :, :, k] = torch.clamp( - pt[:, :, :, k] + dPt[:, k, :, :], -1.0, 1.0 - ) - - # undo the normalization from before, reverse order of operations - pt = (pt + 1) * 0.5 - for k in range(2): - pt[:, :, :, k] *= shape[k] - - p = pt[:, :, :, [1, 0]].cpu().numpy().squeeze().T - return p - - else: - assert print("ho") - - -def follow_flows(dP, mask=None, niter=200, interp=True, use_gpu=True, device=None): - shape = np.array(dP.shape[1:]).astype(np.int32) - niter = np.uint32(niter) - - p = np.meshgrid(np.arange(shape[0]), np.arange(shape[1]), indexing="ij") - p = np.array(p).astype(np.float32) - - inds = np.array(np.nonzero(np.abs(dP[0]) > 1e-3)).astype(np.int32).T - - if inds.ndim < 2 or inds.shape[0] < 5: - return p, None - - if not interp: - assert print("woo") - - else: - p_interp = steps2D_interp( - p[:, inds[:, 0], inds[:, 1]], dP, niter, use_gpu=use_gpu, device=device - ) - p[:, inds[:, 0], inds[:, 1]] = p_interp - - return p, inds - - -def flow_error(maski, dP_net, use_gpu=False, device=None): - if dP_net.shape[1:] != maski.shape: - print("ERROR: net flow is not same size as predicted masks") - return - - # flows predicted from estimated masks - dP_masks = masks_to_flows(maski, use_gpu=use_gpu, device=device) - # difference between predicted flows vs mask flows - flow_errors = np.zeros(maski.max()) - for i in range(dP_masks.shape[0]): - flow_errors += mean( - (dP_masks[i] - dP_net[i] / 5.0) ** 2, - maski, - index=np.arange(1, maski.max() + 1), - ) - - return flow_errors, dP_masks - - -def remove_bad_flow_masks(masks, flows, threshold=0.4, use_gpu=False, device=None): - merrors, _ = flow_error(masks, flows, use_gpu, device) - badi = 1 + (merrors > threshold).nonzero()[0] - masks[np.isin(masks, badi)] = 0 - return masks - - -def get_masks(p, iscell=None, rpad=20): - pflows = [] - edges = [] - shape0 = p.shape[1:] - dims = len(p) - - for i in range(dims): - pflows.append(p[i].flatten().astype("int32")) - edges.append(np.arange(-0.5 - rpad, shape0[i] + 0.5 + rpad, 1)) - - h, _ = np.histogramdd(tuple(pflows), bins=edges) - hmax = h.copy() - for i in range(dims): - hmax = maximum_filter1d(hmax, 5, axis=i) - - seeds = np.nonzero(np.logical_and(h - hmax > -1e-6, h > 10)) - Nmax = h[seeds] - isort = np.argsort(Nmax)[::-1] - for s in seeds: - s = s[isort] - - pix = list(np.array(seeds).T) - - shape = h.shape - if dims == 3: - expand = np.nonzero(np.ones((3, 3, 3))) - else: - expand = np.nonzero(np.ones((3, 3))) - for e in expand: - e = np.expand_dims(e, 1) - - for iter in range(5): - for k in range(len(pix)): - if iter == 0: - pix[k] = list(pix[k]) - newpix = [] - iin = [] - for i, e in enumerate(expand): - epix = e[:, np.newaxis] + np.expand_dims(pix[k][i], 0) - 1 - epix = epix.flatten() - iin.append(np.logical_and(epix >= 0, epix < shape[i])) - newpix.append(epix) - iin = np.all(tuple(iin), axis=0) - for p in newpix: - p = p[iin] - newpix = tuple(newpix) - igood = h[newpix] > 2 - for i in range(dims): - pix[k][i] = newpix[i][igood] - if iter == 4: - pix[k] = tuple(pix[k]) - - M = np.zeros(h.shape, np.uint32) - for k in range(len(pix)): - M[pix[k]] = 1 + k - - for i in range(dims): - pflows[i] = pflows[i] + rpad - M0 = M[tuple(pflows)] - - # remove big masks - uniq, counts = fastremap.unique(M0, return_counts=True) - big = np.prod(shape0) * 0.9 - bigc = uniq[counts > big] - if len(bigc) > 0 and (len(bigc) > 1 or bigc[0] != 0): - M0 = fastremap.mask(M0, bigc) - fastremap.renumber(M0, in_place=True) # convenient to guarantee non-skipped labels - M0 = np.reshape(M0, shape0) - return M0 - -def fill_holes_and_remove_small_masks(masks, min_size=15): - """ fill holes in masks (2D/3D) and discard masks smaller than min_size (2D) - - fill holes in each mask using scipy.ndimage.morphology.binary_fill_holes - (might have issues at borders between cells, todo: check and fix) - - Parameters - ---------------- - masks: int, 2D or 3D array - labelled masks, 0=NO masks; 1,2,...=mask labels, - size [Ly x Lx] or [Lz x Ly x Lx] - min_size: int (optional, default 15) - minimum number of pixels per mask, can turn off with -1 - Returns - --------------- - masks: int, 2D or 3D array - masks with holes filled and masks smaller than min_size removed, - 0=NO masks; 1,2,...=mask labels, - size [Ly x Lx] or [Lz x Ly x Lx] - - """ - - slices = find_objects(masks) - j = 0 - for i,slc in enumerate(slices): - if slc is not None: - msk = masks[slc] == (i+1) - npix = msk.sum() - if min_size > 0 and npix < min_size: - masks[slc][msk] = 0 - elif npix > 0: - if msk.ndim==3: - for k in range(msk.shape[0]): - msk[k] = binary_fill_holes(msk[k]) - else: - msk = binary_fill_holes(msk) - masks[slc][msk] = (j+1) - j+=1 - return masks - -def compute_masks( - dP, - cellprob, - p=None, - niter=200, - cellprob_threshold=0.4, - flow_threshold=0.4, - interp=True, - resize=None, - use_gpu=False, - device=None, -): - """compute masks using dynamics from dP, cellprob, and boundary""" - - cp_mask = cellprob > cellprob_threshold - cp_mask = morphology.remove_small_holes(cp_mask, area_threshold=16) - cp_mask = morphology.remove_small_objects(cp_mask, min_size=16) - - if np.any(cp_mask): # mask at this point is a cell cluster binary map, not labels - # follow flows - if p is None: - p, inds = follow_flows( - dP * cp_mask / 5.0, - niter=niter, - interp=interp, - use_gpu=use_gpu, - device=device, - ) - if inds is None: - shape = resize if resize is not None else cellprob.shape - mask = np.zeros(shape, np.uint16) - p = np.zeros((len(shape), *shape), np.uint16) - return mask, p - - # calculate masks - mask = get_masks(p, iscell=cp_mask) - - # flow thresholding factored out of get_masks - shape0 = p.shape[1:] - if mask.max() > 0 and flow_threshold is not None and flow_threshold > 0: - # make sure labels are unique at output of get_masks - mask = remove_bad_flow_masks( - mask, dP, threshold=flow_threshold, use_gpu=use_gpu, device=device - ) - - mask = fill_holes_and_remove_small_masks(mask, min_size=15) - - else: # nothing to compute, just make it compatible - shape = resize if resize is not None else cellprob.shape - mask = np.zeros(shape, np.uint16) - p = np.zeros((len(shape), *shape), np.uint16) - return mask, p - - return mask, p - -def main(args): - model = torch.load(args.model_path, map_location=args.device) - model.eval() - hflip_tta = HorizontalFlip() - vflip_tta = VerticalFlip() - - img_names = sorted(os.listdir(args.input_path)) - os.makedirs(args.output_path, exist_ok=True) - - for img_name in img_names: - print(f"Segmenting {img_name}") - img_path = os.path.join(args.input_path, img_name) - img_data = pred_transforms(img_path) - img_data = img_data.to(args.device) - img_size = img_data.shape[-1] * img_data.shape[-2] - - if img_size < 1150000 and 900000 < img_size: - overlap = 0.5 - else: - overlap = 0.6 - - with torch.no_grad(): - img0 = img_data - outputs0 = sliding_window_inference( - img0, - 512, - 4, - model, - padding_mode="reflect", - mode="gaussian", - overlap=overlap, - device="cpu", - ) - outputs0 = outputs0.cpu().squeeze() - - if img_size < 2000 * 2000: - - model.load_state_dict(torch.load(args.model_path2, map_location=args.device)) - model.eval() - - img2 = hflip_tta.apply_aug_image(img_data, apply=True) - outputs2 = sliding_window_inference( - img2, - 512, - 4, - model, - padding_mode="reflect", - mode="gauusian", - overlap=overlap, - device="cpu", - ) - outputs2 = hflip_tta.apply_deaug_mask(outputs2, apply=True) - outputs2 = outputs2.cpu().squeeze() - - outputs = torch.zeros_like(outputs0) - outputs[0] = (outputs0[0] + outputs2[0]) / 2 - outputs[1] = (outputs0[1] - outputs2[1]) / 2 - outputs[2] = (outputs0[2] + outputs2[2]) / 2 - - elif img_size < 5000*5000: - # Hflip TTA - img2 = hflip_tta.apply_aug_image(img_data, apply=True) - outputs2 = sliding_window_inference( - img2, - 512, - 4, - model, - padding_mode="reflect", - mode="gaussian", - overlap=overlap, - device="cpu", - ) - outputs2 = hflip_tta.apply_deaug_mask(outputs2, apply=True) - outputs2 = outputs2.cpu().squeeze() - img2 = img2.cpu() - - ################## - # # - # ensemble # - # # - ################## - - model.load_state_dict(torch.load(args.model_path2, map_location=args.device)) - model.eval() - - img1 = img_data - outputs1 = sliding_window_inference( - img1, - 512, - 4, - model, - padding_mode="reflect", - mode="gaussian", - overlap=overlap, - device="cpu", - ) - outputs1 = outputs1.cpu().squeeze() - - # Vflip TTA - img3 = vflip_tta.apply_aug_image(img_data, apply=True) - outputs3 = sliding_window_inference( - img3, - 512, - 4, - model, - padding_mode="reflect", - mode="gaussian", - overlap=overlap, - device="cpu", - ) - outputs3 = vflip_tta.apply_deaug_mask(outputs3, apply=True) - outputs3 = outputs3.cpu().squeeze() - img3 = img3.cpu() - - # Merge Results - outputs = torch.zeros_like(outputs0) - outputs[0] = (outputs0[0] + outputs1[0] + outputs2[0] - outputs3[0]) / 4 - outputs[1] = (outputs0[1] + outputs1[1] - outputs2[1] + outputs3[1]) / 4 - outputs[2] = (outputs0[2] + outputs1[2] + outputs2[2] + outputs3[2]) / 4 - else: - outputs = outputs0 - - pred_mask = post_process(outputs.squeeze(0).cpu().numpy(), args.device) - - file_path = os.path.join( - args.output_path, img_name.split(".")[0] + "_label.tiff" - ) - - tif.imwrite(file_path, pred_mask, compression="zlib") - - -parser = argparse.ArgumentParser("Submission for Challenge", add_help=False) -parser.add_argument("--model_path", default="./model.pt", type=str) -parser.add_argument("--model_path2", default="./model_sec.pth", type=str) - -# Dataset parameters -parser.add_argument( - "-i", - "--input_path", - default="/workspace/inputs/", - type=str, - help="training data path; subfolders: images, labels", -) -parser.add_argument( - "-o", "--output_path", default="/workspace/outputs/", type=str, help="output path", -) -parser.add_argument("--device", default="cuda:0", type=str) - -args = parser.parse_args() - -if __name__ == "__main__": - print("Starting") - main(args) diff --git a/spaces/giulio98/codebleu/app.py b/spaces/giulio98/codebleu/app.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/gligen/demo/gligen/ldm/modules/diffusionmodules/positionnet.py b/spaces/gligen/demo/gligen/ldm/modules/diffusionmodules/positionnet.py deleted file mode 100644 index 8cfa9bf3a43964b1e1669fec71d2d32356356e70..0000000000000000000000000000000000000000 --- a/spaces/gligen/demo/gligen/ldm/modules/diffusionmodules/positionnet.py +++ /dev/null @@ -1,50 +0,0 @@ -import torch -import torch.nn as nn -from ldm.modules.attention import BasicTransformerBlock -from ldm.modules.diffusionmodules.util import checkpoint, FourierEmbedder -import torch.nn.functional as F - - - -class PositionNet(nn.Module): - def __init__(self, positive_len, out_dim, fourier_freqs=8): - super().__init__() - self.positive_len = positive_len - self.out_dim = out_dim - - self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs) - self.position_dim = fourier_freqs*2*4 # 2 is sin&cos, 4 is xyxy - - self.linears = nn.Sequential( - nn.Linear( self.positive_len + self.position_dim, 512), - nn.SiLU(), - nn.Linear( 512, 512), - nn.SiLU(), - nn.Linear(512, out_dim), - ) - - self.null_positive_feature = torch.nn.Parameter(torch.zeros([self.positive_len])) - self.null_position_feature = torch.nn.Parameter(torch.zeros([self.position_dim])) - - - def forward(self, boxes, masks, positive_embeddings): - B, N, _ = boxes.shape - masks = masks.unsqueeze(-1) - - # embedding position (it may includes padding as placeholder) - xyxy_embedding = self.fourier_embedder(boxes) # B*N*4 --> B*N*C - - # learnable null embedding - positive_null = self.null_positive_feature.view(1,1,-1) - xyxy_null = self.null_position_feature.view(1,1,-1) - - # replace padding with learnable null embedding - positive_embeddings = positive_embeddings*masks + (1-masks)*positive_null - xyxy_embedding = xyxy_embedding*masks + (1-masks)*xyxy_null - - objs = self.linears( torch.cat([positive_embeddings, xyxy_embedding], dim=-1) ) - assert objs.shape == torch.Size([B,N,self.out_dim]) - return objs - - - diff --git a/spaces/gotgitgood/33.GZUZ.33/app.py b/spaces/gotgitgood/33.GZUZ.33/app.py deleted file mode 100644 index 15acff5516ff3722fe6f5b15ed06f47166439221..0000000000000000000000000000000000000000 --- a/spaces/gotgitgood/33.GZUZ.33/app.py +++ /dev/null @@ -1,357 +0,0 @@ -from huggingface_hub import hf_hub_download -import torch -import os - -import gradio as gr -from audioldm2 import text_to_audio, build_model -from share_btn import community_icon_html, loading_icon_html, share_js - -os.environ["TOKENIZERS_PARALLELISM"] = "true" - - -default_checkpoint="audioldm2-full" -audioldm = None -current_model_name = None - -def text2audio( - text, - guidance_scale, - random_seed, - n_candidates, - model_name=default_checkpoint, -): - global audioldm, current_model_name - torch.set_float32_matmul_precision("high") - - if audioldm is None or model_name != current_model_name: - audioldm = build_model(model_name=model_name) - current_model_name = model_name - audioldm = torch.compile(audioldm) - - # print(text, length, guidance_scale) - waveform = text_to_audio( - latent_diffusion=audioldm, - text=text, - seed=random_seed, - duration=10, - guidance_scale=guidance_scale, - n_candidate_gen_per_text=int(n_candidates), - ) # [bs, 1, samples] - waveform = [ - gr.make_waveform((16000, wave[0]), bg_image="bg.png") for wave in waveform - ] - # waveform = [(16000, np.random.randn(16000)), (16000, np.random.randn(16000))] - if len(waveform) == 1: - waveform = waveform[0] - return waveform - -css = """ - a { - color: inherit; - text-decoration: underline; - } - .gradio-container { - font-family: 'IBM Plex Sans', sans-serif; - max-width: 730px !important; - } - .gr-button { - color: white; - border-color: #000000; - background: #000000; - } - input[type='range'] { - accent-color: #000000; - } - .dark input[type='range'] { - accent-color: #dfdfdf; - } - .container { - margin: auto; - padding-top: 1.5rem; - } - #gallery { - min-height: 22rem; - margin-bottom: 15px; - margin-left: auto; - margin-right: auto; - border-bottom-right-radius: .5rem !important; - border-bottom-left-radius: .5rem !important; - } - #gallery>div>.h-full { - min-height: 20rem; - } - .details:hover { - text-decoration: underline; - } - .gr-button { - white-space: nowrap; - } - .gr-button:focus { - border-color: rgb(147 197 253 / var(--tw-border-opacity)); - outline: none; - box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); - --tw-border-opacity: 1; - --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); - --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); - --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); - --tw-ring-opacity: .5; - } - #advanced-btn { - font-size: .7rem !important; - line-height: 19px; - margin-top: 12px; - margin-bottom: 12px; - padding: 2px 8px; - border-radius: 14px !important; - } - #advanced-options { - margin-bottom: 20px; - } - .footer { - margin-bottom: 45px; - margin-top: 35px; - text-align: center; - border-bottom: 1px solid #e5e5e5; - } - .footer>p { - font-size: .8rem; - display: inline-block; - padding: 0 10px; - transform: translateY(10px); - background: white; - } - .dark .footer { - border-color: #303030; - } - .dark .footer>p { - background: #0b0f19; - } - .acknowledgments h4{ - margin: 1.25em 0 .25em 0; - font-weight: bold; - font-size: 115%; - } - #container-advanced-btns{ - display: flex; - flex-wrap: wrap; - justify-content: space-between; - align-items: center; - } - .animate-spin { - animation: spin 1s linear infinite; - } - @keyframes spin { - from { - transform: rotate(0deg); - } - to { - transform: rotate(360deg); - } - } - #share-btn-container { - display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; - margin-top: 10px; - margin-left: auto; - } - #share-btn { - all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0; - } - #share-btn * { - all: unset; - } - #share-btn-container div:nth-child(-n+2){ - width: auto !important; - min-height: 0px !important; - } - #share-btn-container .wrap { - display: none !important; - } - .gr-form{ - flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0; - } - #prompt-container{ - gap: 0; - } - #generated_id{ - min-height: 700px - } - #setting_id{ - margin-bottom: 12px; - text-align: center; - font-weight: 900; - } -""" -iface = gr.Blocks(css=css) - -with iface: - gr.HTML( - """ -
          -
          -

          - AudioLDM 2: A General Framework for Audio, Music, and Speech Generation -

          -
          -

          - [Paper] [Project page] [Join Discord] -

          -
          - """ - ) - gr.HTML( - """ -

          For faster inference without a queue - - Duplicate Space -

          - """ - ) - with gr.Group(): - with gr.Box(): - ############# Input - textbox = gr.Textbox( - value="A forest of wind chimes singing a soothing melody in the breeze.", - max_lines=1, - label="Input your prompt here", - info="Your text is important for the audio quality. Please ensure it is descriptive by using more adjectives.", - elem_id="prompt-in", - ) - - with gr.Accordion("Click to modify detailed configurations", open=False): - seed = gr.Number( - value=42, - label="Change this value (any integer number) will lead to a different generation result.", - ) - # duration = gr.Slider( - # 10, 10, value=10, step=2.5, label="Duration (seconds)" - # ) - guidance_scale = gr.Slider( - 0, - 6, - value=3.5, - step=0.5, - label="Guidance scale (Large => better quality and relavancy to text; Small => better diversity)", - ) - n_candidates = gr.Slider( - 1, - 3, - value=3, - step=1, - label="Automatic quality control. This number control the number of candidates (e.g., generate three audios and choose the best to show you). A Larger value usually lead to better quality with heavier computation", - ) - # model_name = gr.Dropdown( - # ["audioldm-m-text-ft", "audioldm-s-text-ft", "audioldm-m-full","audioldm-s-full-v2", "audioldm-s-full", "audioldm-l-full"], value="audioldm-m-full", label="Choose the model to use. audioldm-m-text-ft and audioldm-s-text-ft are recommanded. -s- means small, -m- means medium and -l- means large", - # ) - ############# Output - # outputs=gr.Audio(label="Output", type="numpy") - outputs = gr.Video(label="Output", elem_id="output-video") - - # with gr.Group(elem_id="container-advanced-btns"): - # # advanced_button = gr.Button("Advanced options", elem_id="advanced-btn") - # with gr.Group(elem_id="share-btn-container"): - # community_icon = gr.HTML(community_icon_html, visible=False) - # loading_icon = gr.HTML(loading_icon_html, visible=False) - # share_button = gr.Button("Share to community", elem_id="share-btn", visible=False) - # outputs=[gr.Audio(label="Output", type="numpy"), gr.Audio(label="Output", type="numpy")] - btn = gr.Button("Submit").style(full_width=True) - - with gr.Group(elem_id="share-btn-container", visible=False): - community_icon = gr.HTML(community_icon_html) - loading_icon = gr.HTML(loading_icon_html) - share_button = gr.Button("Share to community", elem_id="share-btn") - - # btn.click(text2audio, inputs=[ - # textbox, duration, guidance_scale, seed, n_candidates, model_name], outputs=[outputs]) - btn.click( - text2audio, - inputs=[textbox, guidance_scale, seed, n_candidates], - outputs=[outputs], - ) - - share_button.click(None, [], [], _js=share_js) - gr.HTML( - """ -

          - """ - ) - gr.Examples( - [ - [ - "An excited crowd cheering at a sports game.", - 3.5, - 1234, - 3, - default_checkpoint, - ], - [ - "A cat is meowing for attention.", - 3.5, - 1234, - 3, - default_checkpoint, - ], - [ - "Birds singing sweetly in a blooming garden.", - 3.5, - 1234, - 3, - default_checkpoint, - ], - [ - "A modern synthesizer creating futuristic soundscapes.", - 3.5, - 1234, - 3, - default_checkpoint, - ], - [ - "The vibrant beat of Brazilian samba drums.", - 3.5, - 1234, - 3, - default_checkpoint, - ], - ], - fn=text2audio, - # inputs=[textbox, duration, guidance_scale, seed, n_candidates, model_name], - inputs=[textbox, guidance_scale, seed, n_candidates], - outputs=[outputs], - cache_examples=True, - ) - gr.HTML( - """ -
          -

          Essential Tricks for Enhancing the Quality of Your Generated Audio

          -

          1. Try to use more adjectives to describe your sound. For example: "A man is speaking clearly and slowly in a large room" is better than "A man is speaking". This can make sure AudioLDM 2 understands what you want.

          -

          2. Try to use different random seeds, which can affect the generation quality significantly sometimes.

          -

          3. It's better to use general terms like 'man' or 'woman' instead of specific names for individuals or abstract objects that humans may not be familiar with, such as 'mummy'.

          -
          - """ - ) - - with gr.Accordion("Additional information", open=False): - gr.HTML( - """ -
          -

          We build the model with data from AudioSet, Freesound and BBC Sound Effect library. We share this demo based on the UK copyright exception of data for academic research.

          -
          - """ - ) -#

          This demo is strictly for research demo purpose only. For commercial use please contact us.

          - -iface.queue(max_size=20) -iface.launch(debug=True) -# iface.launch(debug=True, share=True) diff --git a/spaces/gotiQspiryo/whisper-ui/Evil-Dead-2013-Blu-Ray-Torrent-REPACK.md b/spaces/gotiQspiryo/whisper-ui/Evil-Dead-2013-Blu-Ray-Torrent-REPACK.md deleted file mode 100644 index 9d215c5b37cefdb5af7633891eb9f928ecdffe5e..0000000000000000000000000000000000000000 --- a/spaces/gotiQspiryo/whisper-ui/Evil-Dead-2013-Blu-Ray-Torrent-REPACK.md +++ /dev/null @@ -1,88 +0,0 @@ -## Evil Dead 2013 Blu Ray Torrent - - - - - - - - - -**Click Here >>>>> [https://miimms.com/2txSSP](https://miimms.com/2txSSP)** - - - - - - - - - - - - Here is a possible title and article with HTML formatting for the keyword "Evil Dead 2013 Blu Ray Torrent": - -# How to Download Evil Dead 2013 in Blu Ray Quality - - - -Evil Dead 2013 is a horror movie that is a remake of the 1981 cult classic by Sam Raimi. It follows five friends who go to a remote cabin in the woods, where they find a mysterious book that unleashes demonic forces. The movie is rated R for strong bloody violence and gore, some sexual content and language. It has a runtime of 91 minutes and an IMDb rating of 6.5 out of 10. - - - -If you want to watch Evil Dead 2013 in Blu Ray quality, you have two options: you can either buy the Blu Ray disc or download it from a torrent site. Buying the Blu Ray disc will give you the best picture and sound quality, as well as some bonus features like deleted scenes, behind-the-scenes footage, and commentary by the director and cast. However, buying the Blu Ray disc will also cost you money and require a Blu Ray player. - - - -Downloading the movie from a torrent site will save you money and time, as you can get it for free and watch it on any device that supports video playback. However, downloading the movie from a torrent site will also expose you to some risks, such as malware, viruses, legal issues, and low-quality files. Therefore, you should be careful when choosing a torrent site and a torrent file. - - - -One of the most popular torrent sites for downloading movies is Good Torrent. You can find Evil Dead 2013 in Blu Ray quality on this site by following these steps: - - - -1. Go to [https://good-torrent.com](https://good-torrent.com) and type "Evil Dead 2013" in the search box. - -2. Select the movie from the list of results and click on it. - -3. Choose the quality you want to download. For Blu Ray quality, you can choose either 720p or 1080p. - -4. Click on the download button and wait for the torrent file to download. - -5. Open the torrent file with a torrent client like uTorrent or BitTorrent. - -6. Start downloading the movie and wait for it to finish. - -7. Enjoy watching Evil Dead 2013 in Blu Ray quality! - - - -Another torrent site that you can use to download Evil Dead 2013 in Blu Ray quality is Internet Archive. This site is a non-profit library of millions of free books, movies, music, and more. You can find Evil Dead 2013 in Blu Ray quality on this site by following these steps: - - - -1. Go to [https://archive.org](https://archive.org) and type "Evil Dead 2013" in the search box. - -2. Select the movie from the list of results and click on it. - -3. Click on the download options button and choose "TORRENT" from the menu. - -4. Click on the download button and wait for the torrent file to download. - -5. Open the torrent file with a torrent client like uTorrent or BitTorrent. - -6. Start downloading the movie and wait for it to finish. - -7. Enjoy watching Evil Dead 2013 in Blu Ray quality! - - - -Note that downloading movies from torrent sites may be illegal in your country, so make sure you check your local laws before doing so. Also, be aware that some torrent files may contain viruses or malware that can harm your device or steal your personal information. Always scan your files with an antivirus program before opening them. And never share your personal or financial information with anyone online. - - dfd1c89656 - - - - - diff --git a/spaces/gotiQspiryo/whisper-ui/examples/Brother Vx 520 Sewing Machine Manual How to Set Up Use and Troubleshoot Your Machine.md b/spaces/gotiQspiryo/whisper-ui/examples/Brother Vx 520 Sewing Machine Manual How to Set Up Use and Troubleshoot Your Machine.md deleted file mode 100644 index c80181f2cf78a67d652902652b5cb99a5c9b4315..0000000000000000000000000000000000000000 --- a/spaces/gotiQspiryo/whisper-ui/examples/Brother Vx 520 Sewing Machine Manual How to Set Up Use and Troubleshoot Your Machine.md +++ /dev/null @@ -1,6 +0,0 @@ -

          download Shagird movie torrent 1080p


          Download File ===> https://urlgoal.com/2uyMxl



          - - aaccfb2cb3
          -
          -
          -

          diff --git a/spaces/gradio/HuBERT/examples/simultaneous_translation/modules/monotonic_transformer_layer.py b/spaces/gradio/HuBERT/examples/simultaneous_translation/modules/monotonic_transformer_layer.py deleted file mode 100644 index bcd45aa8a6bbe86d2e3826c9589cc0ae648730a2..0000000000000000000000000000000000000000 --- a/spaces/gradio/HuBERT/examples/simultaneous_translation/modules/monotonic_transformer_layer.py +++ /dev/null @@ -1,198 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - -from fairseq.modules import LayerNorm, TransformerDecoderLayer, TransformerEncoderLayer - -from . import build_monotonic_attention - -from typing import Dict, List, Optional - -import torch -from torch import Tensor - - -class TransformerMonotonicEncoderLayer(TransformerEncoderLayer): - def forward(self, x, encoder_padding_mask): - seq_len, _, _ = x.size() - attn_mask = x.new_ones([seq_len, seq_len]).triu(1) - attn_mask = attn_mask.masked_fill(attn_mask.bool(), float("-inf")) - return super().forward(x, encoder_padding_mask, attn_mask) - - -class TransformerMonotonicDecoderLayer(TransformerDecoderLayer): - def __init__( - self, args, no_encoder_attn=False, add_bias_kv=False, add_zero_attn=False - ): - super().__init__( - args, - no_encoder_attn=True, - add_bias_kv=add_bias_kv, - add_zero_attn=add_zero_attn, - ) - - assert args.simul_type is not None, "A --simul-type is needed." - - self.encoder_attn = build_monotonic_attention(args) - self.encoder_attn_layer_norm = LayerNorm( - self.embed_dim, export=getattr(args, "char_inputs", False) - ) - - def get_head_steps(self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]]): - return self.encoder_attn._get_monotonic_buffer(incremental_state).get( - "head_step" - ) - - def prune_incremental_state(self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]]): - input_buffer = self.self_attn._get_input_buffer(incremental_state) - for key in ["prev_key", "prev_value"]: - input_buffer_key = input_buffer[key] - assert input_buffer_key is not None - if input_buffer_key.size(2) > 1: - input_buffer[key] = input_buffer_key[:, :, :-1, :] - else: - typed_empty_dict: Dict[str, Optional[Tensor]] = {} - input_buffer = typed_empty_dict - break - assert incremental_state is not None - self.self_attn._set_input_buffer(incremental_state, input_buffer) - - def get_steps(self, incremental_state): - return self.encoder_attn._get_monotonic_buffer(incremental_state).get("step", 0) - - def forward( - self, - x, - encoder_out: Optional[torch.Tensor] = None, - encoder_padding_mask: Optional[torch.Tensor] = None, - incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, - prev_self_attn_state: Optional[List[torch.Tensor]] = None, - prev_attn_state: Optional[List[torch.Tensor]] = None, - self_attn_mask: Optional[torch.Tensor] = None, - self_attn_padding_mask: Optional[torch.Tensor] = None, - need_attn: bool = False, - need_head_weights: bool = False, - ): - """ - Args: - x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` - encoder_padding_mask (ByteTensor, optional): binary - ByteTensor of shape `(batch, src_len)` where padding - elements are indicated by ``1``. - need_attn (bool, optional): return attention weights - need_head_weights (bool, optional): return attention weights - for each head (default: return average over heads). - - Returns: - encoded output of shape `(seq_len, batch, embed_dim)` - """ - if need_head_weights: - need_attn = True - - residual = x - if self.normalize_before: - x = self.self_attn_layer_norm(x) - if prev_self_attn_state is not None: - prev_key, prev_value = prev_self_attn_state[:2] - saved_state: Dict[str, Optional[Tensor]] = { - "prev_key": prev_key, - "prev_value": prev_value, - } - if len(prev_self_attn_state) >= 3: - saved_state["prev_key_padding_mask"] = prev_self_attn_state[2] - assert incremental_state is not None - self.self_attn._set_input_buffer(incremental_state, saved_state) - _self_attn_input_buffer = self.self_attn._get_input_buffer(incremental_state) - if self.cross_self_attention and not ( - incremental_state is not None - and _self_attn_input_buffer is not None - and "prev_key" in _self_attn_input_buffer - ): - if self_attn_mask is not None: - assert encoder_out is not None - self_attn_mask = torch.cat( - (x.new_zeros(x.size(0), encoder_out.size(0)), self_attn_mask), dim=1 - ) - if self_attn_padding_mask is not None: - if encoder_padding_mask is None: - assert encoder_out is not None - encoder_padding_mask = self_attn_padding_mask.new_zeros( - encoder_out.size(1), encoder_out.size(0) - ) - self_attn_padding_mask = torch.cat( - (encoder_padding_mask, self_attn_padding_mask), dim=1 - ) - assert encoder_out is not None - y = torch.cat((encoder_out, x), dim=0) - else: - y = x - - x, attn = self.self_attn( - query=x, - key=y, - value=y, - key_padding_mask=self_attn_padding_mask, - incremental_state=incremental_state, - need_weights=False, - attn_mask=self_attn_mask, - ) - x = self.dropout_module(x) - x = self.residual_connection(x, residual) - if not self.normalize_before: - x = self.self_attn_layer_norm(x) - - assert self.encoder_attn is not None - residual = x - if self.normalize_before: - x = self.encoder_attn_layer_norm(x) - if prev_attn_state is not None: - prev_key, prev_value = prev_attn_state[:2] - saved_state: Dict[str, Optional[Tensor]] = { - "prev_key": prev_key, - "prev_value": prev_value, - } - if len(prev_attn_state) >= 3: - saved_state["prev_key_padding_mask"] = prev_attn_state[2] - assert incremental_state is not None - self.encoder_attn._set_input_buffer(incremental_state, saved_state) - - x, attn = self.encoder_attn( - query=x, - key=encoder_out, - value=encoder_out, - key_padding_mask=encoder_padding_mask, - incremental_state=incremental_state, - static_kv=True, - need_weights=need_attn or (not self.training and self.need_attn), - need_head_weights=need_head_weights, - ) - x = self.dropout_module(x) - x = self.residual_connection(x, residual) - if not self.normalize_before: - x = self.encoder_attn_layer_norm(x) - - residual = x - if self.normalize_before: - x = self.final_layer_norm(x) - - x = self.activation_fn(self.fc1(x)) - x = self.activation_dropout_module(x) - x = self.fc2(x) - x = self.dropout_module(x) - x = self.residual_connection(x, residual) - if not self.normalize_before: - x = self.final_layer_norm(x) - if self.onnx_trace and incremental_state is not None: - saved_state = self.self_attn._get_input_buffer(incremental_state) - assert saved_state is not None - if self_attn_padding_mask is not None: - self_attn_state = [ - saved_state["prev_key"], - saved_state["prev_value"], - saved_state["prev_key_padding_mask"], - ] - else: - self_attn_state = [saved_state["prev_key"], saved_state["prev_value"]] - return x, attn, self_attn_state - return x, attn, None diff --git a/spaces/gradio/dashboard_main/run.py b/spaces/gradio/dashboard_main/run.py deleted file mode 100644 index 35835e52bd643483802f0ae732ae2afc881e37e1..0000000000000000000000000000000000000000 --- a/spaces/gradio/dashboard_main/run.py +++ /dev/null @@ -1,71 +0,0 @@ -import gradio as gr -import pandas as pd -import plotly.express as px -from helpers import * - - -LIBRARIES = ["accelerate", "datasets", "diffusers", "evaluate", "gradio", "hub_docs", - "huggingface_hub", "optimum", "pytorch_image_models", "tokenizers", "transformers"] - - -def create_pip_plot(libraries, pip_choices): - if "Pip" not in pip_choices: - return gr.Plot(visible=False) - output = retrieve_pip_installs(libraries, "Cumulated" in pip_choices) - df = pd.DataFrame(output).melt(id_vars="day") - plot = px.line(df, x="day", y="value", color="variable", - title="Pip installs") - plot.update_layout(legend=dict(x=0.5, y=0.99), title_x=0.5, legend_title_text="") - return gr.Plot(value=plot, visible=True) - - -def create_star_plot(libraries, star_choices): - if "Stars" not in star_choices: - return gr.Plot(visible=False) - output = retrieve_stars(libraries, "Week over Week" in star_choices) - df = pd.DataFrame(output).melt(id_vars="day") - plot = px.line(df, x="day", y="value", color="variable", - title="Number of stargazers") - plot.update_layout(legend=dict(x=0.5, y=0.99), title_x=0.5, legend_title_text="") - return gr.Plot(value=plot, visible=True) - - -def create_issue_plot(libraries, issue_choices): - if "Issue" not in issue_choices: - return gr.Plot(visible=False) - output = retrieve_issues(libraries, - exclude_org_members="Exclude org members" in issue_choices, - week_over_week="Week over Week" in issue_choices) - df = pd.DataFrame(output).melt(id_vars="day") - plot = px.line(df, x="day", y="value", color="variable", - title="Cumulated number of issues, PRs, and comments", - ) - plot.update_layout(legend=dict(x=0.5, y=0.99), title_x=0.5, legend_title_text="") - return gr.Plot(value=plot, visible=True) - - -with gr.Blocks() as demo: - with gr.Row(): - with gr.Column(): - gr.Markdown("## Select libraries to display") - libraries = gr.CheckboxGroup(choices=LIBRARIES, show_label=False) - with gr.Column(): - gr.Markdown("## Select graphs to display") - pip = gr.CheckboxGroup(choices=["Pip", "Cumulated"], show_label=False) - stars = gr.CheckboxGroup(choices=["Stars", "Week over Week"], show_label=False) - issues = gr.CheckboxGroup(choices=["Issue", "Exclude org members", "week over week"], show_label=False) - with gr.Row(): - fetch = gr.Button(value="Fetch") - with gr.Row(): - with gr.Column(): - pip_plot = gr.Plot(visible=False) - star_plot = gr.Plot(visible=False) - issue_plot = gr.Plot(visible=False) - - fetch.click(create_pip_plot, inputs=[libraries, pip], outputs=pip_plot) - fetch.click(create_star_plot, inputs=[libraries, stars], outputs=star_plot) - fetch.click(create_issue_plot, inputs=[libraries, issues], outputs=issue_plot) - - -if __name__ == "__main__": - demo.launch() \ No newline at end of file diff --git a/spaces/gsaivinay/Llama-2-13B-GGML-UI/vitest.config.ts b/spaces/gsaivinay/Llama-2-13B-GGML-UI/vitest.config.ts deleted file mode 100644 index c700ac39a227f5aae2a393a692a5ac1bda2f2a54..0000000000000000000000000000000000000000 --- a/spaces/gsaivinay/Llama-2-13B-GGML-UI/vitest.config.ts +++ /dev/null @@ -1,10 +0,0 @@ -import path from 'path'; -import { defineConfig } from 'vite'; - -export default defineConfig({ - resolve: { - alias: { - '@': path.resolve(__dirname, './'), - }, - }, -}); diff --git a/spaces/gyrojeff/YuzuMarker.FontDetection/font_ds_stat.py b/spaces/gyrojeff/YuzuMarker.FontDetection/font_ds_stat.py deleted file mode 100644 index 3763de2ede113cb4d4d60c8be9a694c2d035d629..0000000000000000000000000000000000000000 --- a/spaces/gyrojeff/YuzuMarker.FontDetection/font_ds_stat.py +++ /dev/null @@ -1,66 +0,0 @@ -import sys -import traceback -import pickle -import os -import concurrent.futures -from tqdm import tqdm -from font_dataset.font import load_fonts -from font_dataset.layout import generate_font_image -from font_dataset.text import CorpusGeneratorManager -from font_dataset.background import background_image_generator - - -cjk_ratio = 3 - -train_cnt = 100 -val_cnt = 5 -test_cnt = 30 - -train_cnt_cjk = int(train_cnt * cjk_ratio) -val_cnt_cjk = int(val_cnt * cjk_ratio) -test_cnt_cjk = int(test_cnt * cjk_ratio) - -dataset_path = "./dataset/font_img" -os.makedirs(dataset_path, exist_ok=True) - -fonts, exclusion_rule = load_fonts() - - -cnt = 0 - -for font in fonts: - if exclusion_rule(font): - print(f"Excluded font: {font.path}") - continue - - if font.language == "CJK": - cnt += cjk_ratio - else: - cnt += 1 - - -print("Total training images:", train_cnt * cnt) -print("Total validation images:", val_cnt * cnt) -print("Total testing images:", test_cnt * cnt) - -if os.path.exists(os.path.join(dataset_path, "train")): - num_file_train = len(os.listdir(os.path.join(dataset_path, "train"))) -else: - num_file_train = 0 - -if os.path.exists(os.path.join(dataset_path, "val")): - num_file_val = len(os.listdir(os.path.join(dataset_path, "val"))) -else: - num_file_val = 0 - -if os.path.exists(os.path.join(dataset_path, "test")): - num_file_test = len(os.listdir(os.path.join(dataset_path, "test"))) -else: - num_file_test = 0 - -print("Total files generated:", num_file_train + num_file_val + num_file_test) -print("Total files target:", (train_cnt + val_cnt + test_cnt) * cnt * 2) - -print( - f"{(num_file_train + num_file_val + num_file_test) / ((train_cnt + val_cnt + test_cnt) * cnt * 2) * 100:.2f}% completed" -) diff --git a/spaces/gyugnsu/DragGan-Inversion/PTI/models/StyleCLIP/models/stylegan2/model.py b/spaces/gyugnsu/DragGan-Inversion/PTI/models/StyleCLIP/models/stylegan2/model.py deleted file mode 100644 index 9d5559203f4f3843fc814b090780ffa129a6fdf0..0000000000000000000000000000000000000000 --- a/spaces/gyugnsu/DragGan-Inversion/PTI/models/StyleCLIP/models/stylegan2/model.py +++ /dev/null @@ -1,674 +0,0 @@ -import math -import random - -import torch -from torch import nn -from torch.nn import functional as F - -from models.StyleCLIP.models.stylegan2.op import FusedLeakyReLU, fused_leaky_relu, upfirdn2d - - -class PixelNorm(nn.Module): - def __init__(self): - super().__init__() - - def forward(self, input): - return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8) - - -def make_kernel(k): - k = torch.tensor(k, dtype=torch.float32) - - if k.ndim == 1: - k = k[None, :] * k[:, None] - - k /= k.sum() - - return k - - -class Upsample(nn.Module): - def __init__(self, kernel, factor=2): - super().__init__() - - self.factor = factor - kernel = make_kernel(kernel) * (factor ** 2) - self.register_buffer('kernel', kernel) - - p = kernel.shape[0] - factor - - pad0 = (p + 1) // 2 + factor - 1 - pad1 = p // 2 - - self.pad = (pad0, pad1) - - def forward(self, input): - out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad) - - return out - - -class Downsample(nn.Module): - def __init__(self, kernel, factor=2): - super().__init__() - - self.factor = factor - kernel = make_kernel(kernel) - self.register_buffer('kernel', kernel) - - p = kernel.shape[0] - factor - - pad0 = (p + 1) // 2 - pad1 = p // 2 - - self.pad = (pad0, pad1) - - def forward(self, input): - out = upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad) - - return out - - -class Blur(nn.Module): - def __init__(self, kernel, pad, upsample_factor=1): - super().__init__() - - kernel = make_kernel(kernel) - - if upsample_factor > 1: - kernel = kernel * (upsample_factor ** 2) - - self.register_buffer('kernel', kernel) - - self.pad = pad - - def forward(self, input): - out = upfirdn2d(input, self.kernel, pad=self.pad) - - return out - - -class EqualConv2d(nn.Module): - def __init__( - self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True - ): - super().__init__() - - self.weight = nn.Parameter( - torch.randn(out_channel, in_channel, kernel_size, kernel_size) - ) - self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2) - - self.stride = stride - self.padding = padding - - if bias: - self.bias = nn.Parameter(torch.zeros(out_channel)) - - else: - self.bias = None - - def forward(self, input): - out = F.conv2d( - input, - self.weight * self.scale, - bias=self.bias, - stride=self.stride, - padding=self.padding, - ) - - return out - - def __repr__(self): - return ( - f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},' - f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})' - ) - - -class EqualLinear(nn.Module): - def __init__( - self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None - ): - super().__init__() - - self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul)) - - if bias: - self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init)) - - else: - self.bias = None - - self.activation = activation - - self.scale = (1 / math.sqrt(in_dim)) * lr_mul - self.lr_mul = lr_mul - - def forward(self, input): - if self.activation: - out = F.linear(input, self.weight * self.scale) - out = fused_leaky_relu(out, self.bias * self.lr_mul) - - else: - out = F.linear( - input, self.weight * self.scale, bias=self.bias * self.lr_mul - ) - - return out - - def __repr__(self): - return ( - f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})' - ) - - -class ScaledLeakyReLU(nn.Module): - def __init__(self, negative_slope=0.2): - super().__init__() - - self.negative_slope = negative_slope - - def forward(self, input): - out = F.leaky_relu(input, negative_slope=self.negative_slope) - - return out * math.sqrt(2) - - -class ModulatedConv2d(nn.Module): - def __init__( - self, - in_channel, - out_channel, - kernel_size, - style_dim, - demodulate=True, - upsample=False, - downsample=False, - blur_kernel=[1, 3, 3, 1], - ): - super().__init__() - - self.eps = 1e-8 - self.kernel_size = kernel_size - self.in_channel = in_channel - self.out_channel = out_channel - self.upsample = upsample - self.downsample = downsample - - if upsample: - factor = 2 - p = (len(blur_kernel) - factor) - (kernel_size - 1) - pad0 = (p + 1) // 2 + factor - 1 - pad1 = p // 2 + 1 - - self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor) - - if downsample: - factor = 2 - p = (len(blur_kernel) - factor) + (kernel_size - 1) - pad0 = (p + 1) // 2 - pad1 = p // 2 - - self.blur = Blur(blur_kernel, pad=(pad0, pad1)) - - fan_in = in_channel * kernel_size ** 2 - self.scale = 1 / math.sqrt(fan_in) - self.padding = kernel_size // 2 - - self.weight = nn.Parameter( - torch.randn(1, out_channel, in_channel, kernel_size, kernel_size) - ) - - self.modulation = EqualLinear(style_dim, in_channel, bias_init=1) - - self.demodulate = demodulate - - def __repr__(self): - return ( - f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, ' - f'upsample={self.upsample}, downsample={self.downsample})' - ) - - def forward(self, input, style): - batch, in_channel, height, width = input.shape - - style = self.modulation(style).view(batch, 1, in_channel, 1, 1) - weight = self.scale * self.weight * style - - if self.demodulate: - demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8) - weight = weight * demod.view(batch, self.out_channel, 1, 1, 1) - - weight = weight.view( - batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size - ) - - if self.upsample: - input = input.view(1, batch * in_channel, height, width) - weight = weight.view( - batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size - ) - weight = weight.transpose(1, 2).reshape( - batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size - ) - out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch) - _, _, height, width = out.shape - out = out.view(batch, self.out_channel, height, width) - out = self.blur(out) - - elif self.downsample: - input = self.blur(input) - _, _, height, width = input.shape - input = input.view(1, batch * in_channel, height, width) - out = F.conv2d(input, weight, padding=0, stride=2, groups=batch) - _, _, height, width = out.shape - out = out.view(batch, self.out_channel, height, width) - - else: - input = input.view(1, batch * in_channel, height, width) - out = F.conv2d(input, weight, padding=self.padding, groups=batch) - _, _, height, width = out.shape - out = out.view(batch, self.out_channel, height, width) - - return out - - -class NoiseInjection(nn.Module): - def __init__(self): - super().__init__() - - self.weight = nn.Parameter(torch.zeros(1)) - - def forward(self, image, noise=None): - if noise is None: - batch, _, height, width = image.shape - noise = image.new_empty(batch, 1, height, width).normal_() - - return image + self.weight * noise - - -class ConstantInput(nn.Module): - def __init__(self, channel, size=4): - super().__init__() - - self.input = nn.Parameter(torch.randn(1, channel, size, size)) - - def forward(self, input): - batch = input.shape[0] - out = self.input.repeat(batch, 1, 1, 1) - - return out - - -class StyledConv(nn.Module): - def __init__( - self, - in_channel, - out_channel, - kernel_size, - style_dim, - upsample=False, - blur_kernel=[1, 3, 3, 1], - demodulate=True, - ): - super().__init__() - - self.conv = ModulatedConv2d( - in_channel, - out_channel, - kernel_size, - style_dim, - upsample=upsample, - blur_kernel=blur_kernel, - demodulate=demodulate, - ) - - self.noise = NoiseInjection() - # self.bias = nn.Parameter(torch.zeros(1, out_channel, 1, 1)) - # self.activate = ScaledLeakyReLU(0.2) - self.activate = FusedLeakyReLU(out_channel) - - def forward(self, input, style, noise=None): - out = self.conv(input, style) - out = self.noise(out, noise=noise) - # out = out + self.bias - out = self.activate(out) - - return out - - -class ToRGB(nn.Module): - def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]): - super().__init__() - - if upsample: - self.upsample = Upsample(blur_kernel) - - self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate=False) - self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1)) - - def forward(self, input, style, skip=None): - out = self.conv(input, style) - out = out + self.bias - - if skip is not None: - skip = self.upsample(skip) - - out = out + skip - - return out - - -class Generator(nn.Module): - def __init__( - self, - size, - style_dim, - n_mlp, - channel_multiplier=2, - blur_kernel=[1, 3, 3, 1], - lr_mlp=0.01, - ): - super().__init__() - - self.size = size - - self.style_dim = style_dim - - layers = [PixelNorm()] - - for i in range(n_mlp): - layers.append( - EqualLinear( - style_dim, style_dim, lr_mul=lr_mlp, activation='fused_lrelu' - ) - ) - - self.style = nn.Sequential(*layers) - - self.channels = { - 4: 512, - 8: 512, - 16: 512, - 32: 512, - 64: 256 * channel_multiplier, - 128: 128 * channel_multiplier, - 256: 64 * channel_multiplier, - 512: 32 * channel_multiplier, - 1024: 16 * channel_multiplier, - } - - self.input = ConstantInput(self.channels[4]) - self.conv1 = StyledConv( - self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel - ) - self.to_rgb1 = ToRGB(self.channels[4], style_dim, upsample=False) - - self.log_size = int(math.log(size, 2)) - self.num_layers = (self.log_size - 2) * 2 + 1 - - self.convs = nn.ModuleList() - self.upsamples = nn.ModuleList() - self.to_rgbs = nn.ModuleList() - self.noises = nn.Module() - - in_channel = self.channels[4] - - for layer_idx in range(self.num_layers): - res = (layer_idx + 5) // 2 - shape = [1, 1, 2 ** res, 2 ** res] - self.noises.register_buffer(f'noise_{layer_idx}', torch.randn(*shape)) - - for i in range(3, self.log_size + 1): - out_channel = self.channels[2 ** i] - - self.convs.append( - StyledConv( - in_channel, - out_channel, - 3, - style_dim, - upsample=True, - blur_kernel=blur_kernel, - ) - ) - - self.convs.append( - StyledConv( - out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel - ) - ) - - self.to_rgbs.append(ToRGB(out_channel, style_dim)) - - in_channel = out_channel - - self.n_latent = self.log_size * 2 - 2 - - def make_noise(self): - device = self.input.input.device - - noises = [torch.randn(1, 1, 2 ** 2, 2 ** 2, device=device)] - - for i in range(3, self.log_size + 1): - for _ in range(2): - noises.append(torch.randn(1, 1, 2 ** i, 2 ** i, device=device)) - - return noises - - def mean_latent(self, n_latent): - latent_in = torch.randn( - n_latent, self.style_dim, device=self.input.input.device - ) - latent = self.style(latent_in).mean(0, keepdim=True) - - return latent - - def get_latent(self, input): - return self.style(input) - - def forward( - self, - styles, - return_latents=False, - inject_index=None, - truncation=1, - truncation_latent=None, - input_is_latent=False, - noise=None, - randomize_noise=True, - ): - if not input_is_latent: - styles = [self.style(s) for s in styles] - - if noise is None: - if randomize_noise: - noise = [None] * self.num_layers - else: - noise = [ - getattr(self.noises, f'noise_{i}') for i in range(self.num_layers) - ] - - if truncation < 1: - style_t = [] - - for style in styles: - style_t.append( - truncation_latent + truncation * (style - truncation_latent) - ) - - styles = style_t - - if len(styles) < 2: - inject_index = self.n_latent - - if styles[0].ndim < 3: - latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) - - else: - latent = styles[0] - - else: - if inject_index is None: - inject_index = random.randint(1, self.n_latent - 1) - - latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) - latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1) - - latent = torch.cat([latent, latent2], 1) - - out = self.input(latent) - out = self.conv1(out, latent[:, 0], noise=noise[0]) - - skip = self.to_rgb1(out, latent[:, 1]) - - i = 1 - for conv1, conv2, noise1, noise2, to_rgb in zip( - self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs - ): - out = conv1(out, latent[:, i], noise=noise1) - out = conv2(out, latent[:, i + 1], noise=noise2) - skip = to_rgb(out, latent[:, i + 2], skip) - - i += 2 - - image = skip - - if return_latents: - return image, latent - - else: - return image, None - - -class ConvLayer(nn.Sequential): - def __init__( - self, - in_channel, - out_channel, - kernel_size, - downsample=False, - blur_kernel=[1, 3, 3, 1], - bias=True, - activate=True, - ): - layers = [] - - if downsample: - factor = 2 - p = (len(blur_kernel) - factor) + (kernel_size - 1) - pad0 = (p + 1) // 2 - pad1 = p // 2 - - layers.append(Blur(blur_kernel, pad=(pad0, pad1))) - - stride = 2 - self.padding = 0 - - else: - stride = 1 - self.padding = kernel_size // 2 - - layers.append( - EqualConv2d( - in_channel, - out_channel, - kernel_size, - padding=self.padding, - stride=stride, - bias=bias and not activate, - ) - ) - - if activate: - if bias: - layers.append(FusedLeakyReLU(out_channel)) - - else: - layers.append(ScaledLeakyReLU(0.2)) - - super().__init__(*layers) - - -class ResBlock(nn.Module): - def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]): - super().__init__() - - self.conv1 = ConvLayer(in_channel, in_channel, 3) - self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True) - - self.skip = ConvLayer( - in_channel, out_channel, 1, downsample=True, activate=False, bias=False - ) - - def forward(self, input): - out = self.conv1(input) - out = self.conv2(out) - - skip = self.skip(input) - out = (out + skip) / math.sqrt(2) - - return out - - -class Discriminator(nn.Module): - def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]): - super().__init__() - - channels = { - 4: 512, - 8: 512, - 16: 512, - 32: 512, - 64: 256 * channel_multiplier, - 128: 128 * channel_multiplier, - 256: 64 * channel_multiplier, - 512: 32 * channel_multiplier, - 1024: 16 * channel_multiplier, - } - - convs = [ConvLayer(3, channels[size], 1)] - - log_size = int(math.log(size, 2)) - - in_channel = channels[size] - - for i in range(log_size, 2, -1): - out_channel = channels[2 ** (i - 1)] - - convs.append(ResBlock(in_channel, out_channel, blur_kernel)) - - in_channel = out_channel - - self.convs = nn.Sequential(*convs) - - self.stddev_group = 4 - self.stddev_feat = 1 - - self.final_conv = ConvLayer(in_channel + 1, channels[4], 3) - self.final_linear = nn.Sequential( - EqualLinear(channels[4] * 4 * 4, channels[4], activation='fused_lrelu'), - EqualLinear(channels[4], 1), - ) - - def forward(self, input): - out = self.convs(input) - - batch, channel, height, width = out.shape - group = min(batch, self.stddev_group) - stddev = out.view( - group, -1, self.stddev_feat, channel // self.stddev_feat, height, width - ) - stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8) - stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2) - stddev = stddev.repeat(group, 1, height, width) - out = torch.cat([out, stddev], 1) - - out = self.final_conv(out) - - out = out.view(batch, -1) - out = self.final_linear(out) - - return out - diff --git a/spaces/gyugnsu/DragGan-Inversion/stylegan_human/torch_utils/op_edit/fused_bias_act.cpp b/spaces/gyugnsu/DragGan-Inversion/stylegan_human/torch_utils/op_edit/fused_bias_act.cpp deleted file mode 100644 index a79a3d65b8fb56393c954630ae8ce5a5c8a8bb7d..0000000000000000000000000000000000000000 --- a/spaces/gyugnsu/DragGan-Inversion/stylegan_human/torch_utils/op_edit/fused_bias_act.cpp +++ /dev/null @@ -1,23 +0,0 @@ -// Copyright (c) SenseTime Research. All rights reserved. - -#include - - -torch::Tensor fused_bias_act_op(const torch::Tensor& input, const torch::Tensor& bias, const torch::Tensor& refer, - int act, int grad, float alpha, float scale); - -#define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor") -#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous") -#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x) - -torch::Tensor fused_bias_act(const torch::Tensor& input, const torch::Tensor& bias, const torch::Tensor& refer, - int act, int grad, float alpha, float scale) { - CHECK_CUDA(input); - CHECK_CUDA(bias); - - return fused_bias_act_op(input, bias, refer, act, grad, alpha, scale); -} - -PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { - m.def("fused_bias_act", &fused_bias_act, "fused bias act (CUDA)"); -} \ No newline at end of file diff --git a/spaces/h1r41/vicuna_chat/app.py b/spaces/h1r41/vicuna_chat/app.py deleted file mode 100644 index c679acb82b5845dd754fc75f79cf38b53aa7a4fe..0000000000000000000000000000000000000000 --- a/spaces/h1r41/vicuna_chat/app.py +++ /dev/null @@ -1,49 +0,0 @@ -from llama_cpp import Llama -import streamlit as st - -model_path = "vicuna-13b-v1.5.ggmlv3.q2_K.bin" -llama = Llama(model_path) - -def generate_response(messages: list) -> str: - response = llama.create_chat_completion(messages, max_tokens=-1, stream=False) - print(f"response: {response}") - return response['choices'][0]['message']['content'] - -def main(): - st.title("Chat with Vicuna!") - - # Session state for retaining messages - if 'messages' not in st.session_state: - st.session_state.messages = [] - - # Display chat messages from history on app rerun - for message in st.session_state.messages: - with st.chat_message(message["role"]): - st.markdown(f"{message['content']}") - - # Input for the user message - user_message = st.chat_input("Your Message") - - # React to user input - if user_message: - # Display user message in chat message container - with st.chat_message("user"): - st.markdown(f"{user_message}") - # Add user message to chat history - st.session_state.messages.append({"role": "user", "content": user_message}) - - with st.chat_message("assistant"): - message_placeholder = st.empty() - full_response = "" - - for char in generate_response([{"role": m["role"], "content": m["content"]} for m in st.session_state.messages]): - full_response += char - message_placeholder.markdown(full_response + "❙") - - message_placeholder.markdown(full_response) - - st.session_state.messages.append({"role": "assistant", "content": full_response}) - - -if __name__ == "__main__": - main() diff --git a/spaces/harpreetsahota/RAQA-with-LlamaIndex-and-a-fine-tuned-GPT-35/Dockerfile b/spaces/harpreetsahota/RAQA-with-LlamaIndex-and-a-fine-tuned-GPT-35/Dockerfile deleted file mode 100644 index 013fb487139b7432755793ab016e4433db706b2a..0000000000000000000000000000000000000000 --- a/spaces/harpreetsahota/RAQA-with-LlamaIndex-and-a-fine-tuned-GPT-35/Dockerfile +++ /dev/null @@ -1,11 +0,0 @@ -FROM python:3.9 -RUN useradd -m -u 1000 user -USER user -ENV HOME=/home/user \ - PATH=/home/user/.local/bin:$PATH -WORKDIR $HOME/app -COPY --chown=user . $HOME/app -COPY ./requirements.txt ~/app/requirements.txt -RUN pip install -r requirements.txt -COPY . . -CMD ["chainlit", "run", "app.py", "--port", "7860"] \ No newline at end of file diff --git a/spaces/hasibzunair/fifa-tryon-demo/Self-Correction-Human-Parsing-for-ACGPN/modules/functions.py b/spaces/hasibzunair/fifa-tryon-demo/Self-Correction-Human-Parsing-for-ACGPN/modules/functions.py deleted file mode 100644 index aea9729c0e6944c07bbd63368956e63ab4c76c86..0000000000000000000000000000000000000000 --- a/spaces/hasibzunair/fifa-tryon-demo/Self-Correction-Human-Parsing-for-ACGPN/modules/functions.py +++ /dev/null @@ -1,244 +0,0 @@ -from os import path -import torch -import torch.distributed as dist -import torch.autograd as autograd -import torch.cuda.comm as comm -from torch.autograd.function import once_differentiable -from torch.utils.cpp_extension import load - -_src_path = path.join(path.dirname(path.abspath(__file__)), "src") -_backend = load(name="inplace_abn", - extra_cflags=["-O3"], - sources=[path.join(_src_path, f) for f in [ - "inplace_abn.cpp", - "inplace_abn_cpu.cpp", - "inplace_abn_cuda.cu", - "inplace_abn_cuda_half.cu" - ]], - extra_cuda_cflags=["--expt-extended-lambda"]) - -# Activation names -ACT_RELU = "relu" -ACT_LEAKY_RELU = "leaky_relu" -ACT_ELU = "elu" -ACT_NONE = "none" - - -def _check(fn, *args, **kwargs): - success = fn(*args, **kwargs) - if not success: - raise RuntimeError("CUDA Error encountered in {}".format(fn)) - - -def _broadcast_shape(x): - out_size = [] - for i, s in enumerate(x.size()): - if i != 1: - out_size.append(1) - else: - out_size.append(s) - return out_size - - -def _reduce(x): - if len(x.size()) == 2: - return x.sum(dim=0) - else: - n, c = x.size()[0:2] - return x.contiguous().view((n, c, -1)).sum(2).sum(0) - - -def _count_samples(x): - count = 1 - for i, s in enumerate(x.size()): - if i != 1: - count *= s - return count - - -def _act_forward(ctx, x): - if ctx.activation == ACT_LEAKY_RELU: - _backend.leaky_relu_forward(x, ctx.slope) - elif ctx.activation == ACT_ELU: - _backend.elu_forward(x) - elif ctx.activation == ACT_NONE: - pass - - -def _act_backward(ctx, x, dx): - if ctx.activation == ACT_LEAKY_RELU: - _backend.leaky_relu_backward(x, dx, ctx.slope) - elif ctx.activation == ACT_ELU: - _backend.elu_backward(x, dx) - elif ctx.activation == ACT_NONE: - pass - - -class InPlaceABN(autograd.Function): - @staticmethod - def forward(ctx, x, weight, bias, running_mean, running_var, - training=True, momentum=0.1, eps=1e-05, activation=ACT_LEAKY_RELU, slope=0.01): - # Save context - ctx.training = training - ctx.momentum = momentum - ctx.eps = eps - ctx.activation = activation - ctx.slope = slope - ctx.affine = weight is not None and bias is not None - - # Prepare inputs - count = _count_samples(x) - x = x.contiguous() - weight = weight.contiguous() if ctx.affine else x.new_empty(0) - bias = bias.contiguous() if ctx.affine else x.new_empty(0) - - if ctx.training: - mean, var = _backend.mean_var(x) - - # Update running stats - running_mean.mul_((1 - ctx.momentum)).add_(ctx.momentum * mean) - running_var.mul_((1 - ctx.momentum)).add_(ctx.momentum * var * count / (count - 1)) - - # Mark in-place modified tensors - ctx.mark_dirty(x, running_mean, running_var) - else: - mean, var = running_mean.contiguous(), running_var.contiguous() - ctx.mark_dirty(x) - - # BN forward + activation - _backend.forward(x, mean, var, weight, bias, ctx.affine, ctx.eps) - _act_forward(ctx, x) - - # Output - ctx.var = var - ctx.save_for_backward(x, var, weight, bias) - ctx.mark_non_differentiable(running_mean, running_var) - return x, running_mean, running_var - - @staticmethod - @once_differentiable - def backward(ctx, dz, _drunning_mean, _drunning_var): - z, var, weight, bias = ctx.saved_tensors - dz = dz.contiguous() - - # Undo activation - _act_backward(ctx, z, dz) - - if ctx.training: - edz, eydz = _backend.edz_eydz(z, dz, weight, bias, ctx.affine, ctx.eps) - else: - # TODO: implement simplified CUDA backward for inference mode - edz = dz.new_zeros(dz.size(1)) - eydz = dz.new_zeros(dz.size(1)) - - dx = _backend.backward(z, dz, var, weight, bias, edz, eydz, ctx.affine, ctx.eps) - # dweight = eydz * weight.sign() if ctx.affine else None - dweight = eydz if ctx.affine else None - if dweight is not None: - dweight[weight < 0] *= -1 - dbias = edz if ctx.affine else None - - return dx, dweight, dbias, None, None, None, None, None, None, None - - -class InPlaceABNSync(autograd.Function): - @classmethod - def forward(cls, ctx, x, weight, bias, running_mean, running_var, - training=True, momentum=0.1, eps=1e-05, activation=ACT_LEAKY_RELU, slope=0.01, equal_batches=True): - # Save context - ctx.training = training - ctx.momentum = momentum - ctx.eps = eps - ctx.activation = activation - ctx.slope = slope - ctx.affine = weight is not None and bias is not None - - # Prepare inputs - ctx.world_size = dist.get_world_size() if dist.is_initialized() else 1 - - # count = _count_samples(x) - batch_size = x.new_tensor([x.shape[0]], dtype=torch.long) - - x = x.contiguous() - weight = weight.contiguous() if ctx.affine else x.new_empty(0) - bias = bias.contiguous() if ctx.affine else x.new_empty(0) - - if ctx.training: - mean, var = _backend.mean_var(x) - if ctx.world_size > 1: - # get global batch size - if equal_batches: - batch_size *= ctx.world_size - else: - dist.all_reduce(batch_size, dist.ReduceOp.SUM) - - ctx.factor = x.shape[0] / float(batch_size.item()) - - mean_all = mean.clone() * ctx.factor - dist.all_reduce(mean_all, dist.ReduceOp.SUM) - - var_all = (var + (mean - mean_all) ** 2) * ctx.factor - dist.all_reduce(var_all, dist.ReduceOp.SUM) - - mean = mean_all - var = var_all - - # Update running stats - running_mean.mul_((1 - ctx.momentum)).add_(ctx.momentum * mean) - count = batch_size.item() * x.view(x.shape[0], x.shape[1], -1).shape[-1] - running_var.mul_((1 - ctx.momentum)).add_(ctx.momentum * var * (float(count) / (count - 1))) - - # Mark in-place modified tensors - ctx.mark_dirty(x, running_mean, running_var) - else: - mean, var = running_mean.contiguous(), running_var.contiguous() - ctx.mark_dirty(x) - - # BN forward + activation - _backend.forward(x, mean, var, weight, bias, ctx.affine, ctx.eps) - _act_forward(ctx, x) - - # Output - ctx.var = var - ctx.save_for_backward(x, var, weight, bias) - ctx.mark_non_differentiable(running_mean, running_var) - return x, running_mean, running_var - - @staticmethod - @once_differentiable - def backward(ctx, dz, _drunning_mean, _drunning_var): - z, var, weight, bias = ctx.saved_tensors - dz = dz.contiguous() - - # Undo activation - _act_backward(ctx, z, dz) - - if ctx.training: - edz, eydz = _backend.edz_eydz(z, dz, weight, bias, ctx.affine, ctx.eps) - edz_local = edz.clone() - eydz_local = eydz.clone() - - if ctx.world_size > 1: - edz *= ctx.factor - dist.all_reduce(edz, dist.ReduceOp.SUM) - - eydz *= ctx.factor - dist.all_reduce(eydz, dist.ReduceOp.SUM) - else: - edz_local = edz = dz.new_zeros(dz.size(1)) - eydz_local = eydz = dz.new_zeros(dz.size(1)) - - dx = _backend.backward(z, dz, var, weight, bias, edz, eydz, ctx.affine, ctx.eps) - # dweight = eydz_local * weight.sign() if ctx.affine else None - dweight = eydz_local if ctx.affine else None - if dweight is not None: - dweight[weight < 0] *= -1 - dbias = edz_local if ctx.affine else None - - return dx, dweight, dbias, None, None, None, None, None, None, None - - -inplace_abn = InPlaceABN.apply -inplace_abn_sync = InPlaceABNSync.apply - -__all__ = ["inplace_abn", "inplace_abn_sync", "ACT_RELU", "ACT_LEAKY_RELU", "ACT_ELU", "ACT_NONE"] diff --git a/spaces/ho11laqe/nnUNet_calvingfront_detection/documentation/using_nnUNet_as_baseline.md b/spaces/ho11laqe/nnUNet_calvingfront_detection/documentation/using_nnUNet_as_baseline.md deleted file mode 100644 index 9811270372fd91875858f732a0a3110894d5ddf8..0000000000000000000000000000000000000000 --- a/spaces/ho11laqe/nnUNet_calvingfront_detection/documentation/using_nnUNet_as_baseline.md +++ /dev/null @@ -1,4 +0,0 @@ -(The U-Net is the current punching bag of methods development. nnU-Net is going to be that looking forward. That is -cool (great, in fact!), but it should be done correctly. Here are tips on how to benchmark against nnU-Net) - -This is work in progress \ No newline at end of file diff --git a/spaces/ho11laqe/nnUNet_calvingfront_detection/nnunet/preprocessing/custom_preprocessors/__init__.py b/spaces/ho11laqe/nnUNet_calvingfront_detection/nnunet/preprocessing/custom_preprocessors/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/huang4414/White-box-Cartoonization/wbc/guided_filter.py b/spaces/huang4414/White-box-Cartoonization/wbc/guided_filter.py deleted file mode 100644 index fd019d145efc7f308cd96de90f4e7b648f6820b4..0000000000000000000000000000000000000000 --- a/spaces/huang4414/White-box-Cartoonization/wbc/guided_filter.py +++ /dev/null @@ -1,87 +0,0 @@ -import tensorflow as tf -import numpy as np - - - - -def tf_box_filter(x, r): - k_size = int(2*r+1) - ch = x.get_shape().as_list()[-1] - weight = 1/(k_size**2) - box_kernel = weight*np.ones((k_size, k_size, ch, 1)) - box_kernel = np.array(box_kernel).astype(np.float32) - output = tf.nn.depthwise_conv2d(x, box_kernel, [1, 1, 1, 1], 'SAME') - return output - - - -def guided_filter(x, y, r, eps=1e-2): - - x_shape = tf.shape(x) - #y_shape = tf.shape(y) - - N = tf_box_filter(tf.ones((1, x_shape[1], x_shape[2], 1), dtype=x.dtype), r) - - mean_x = tf_box_filter(x, r) / N - mean_y = tf_box_filter(y, r) / N - cov_xy = tf_box_filter(x * y, r) / N - mean_x * mean_y - var_x = tf_box_filter(x * x, r) / N - mean_x * mean_x - - A = cov_xy / (var_x + eps) - b = mean_y - A * mean_x - - mean_A = tf_box_filter(A, r) / N - mean_b = tf_box_filter(b, r) / N - - output = mean_A * x + mean_b - - return output - - - -def fast_guided_filter(lr_x, lr_y, hr_x, r=1, eps=1e-8): - - #assert lr_x.shape.ndims == 4 and lr_y.shape.ndims == 4 and hr_x.shape.ndims == 4 - - lr_x_shape = tf.shape(lr_x) - #lr_y_shape = tf.shape(lr_y) - hr_x_shape = tf.shape(hr_x) - - N = tf_box_filter(tf.ones((1, lr_x_shape[1], lr_x_shape[2], 1), dtype=lr_x.dtype), r) - - mean_x = tf_box_filter(lr_x, r) / N - mean_y = tf_box_filter(lr_y, r) / N - cov_xy = tf_box_filter(lr_x * lr_y, r) / N - mean_x * mean_y - var_x = tf_box_filter(lr_x * lr_x, r) / N - mean_x * mean_x - - A = cov_xy / (var_x + eps) - b = mean_y - A * mean_x - - mean_A = tf.image.resize_images(A, hr_x_shape[1: 3]) - mean_b = tf.image.resize_images(b, hr_x_shape[1: 3]) - - output = mean_A * hr_x + mean_b - - return output - - -if __name__ == '__main__': - import cv2 - from tqdm import tqdm - - input_photo = tf.placeholder(tf.float32, [1, None, None, 3]) - #input_superpixel = tf.placeholder(tf.float32, [16, 256, 256, 3]) - output = guided_filter(input_photo, input_photo, 5, eps=1) - image = cv2.imread('output_figure1/cartoon2.jpg') - image = image/127.5 - 1 - image = np.expand_dims(image, axis=0) - - config = tf.ConfigProto() - config.gpu_options.allow_growth = True - sess = tf.Session(config=config) - sess.run(tf.global_variables_initializer()) - - out = sess.run(output, feed_dict={input_photo: image}) - out = (np.squeeze(out)+1)*127.5 - out = np.clip(out, 0, 255).astype(np.uint8) - cv2.imwrite('output_figure1/cartoon2_filter.jpg', out) diff --git a/spaces/hunger11243/VITS-Umamusume-voice-synthesizer/losses.py b/spaces/hunger11243/VITS-Umamusume-voice-synthesizer/losses.py deleted file mode 100644 index fb22a0e834dd87edaa37bb8190eee2c3c7abe0d5..0000000000000000000000000000000000000000 --- a/spaces/hunger11243/VITS-Umamusume-voice-synthesizer/losses.py +++ /dev/null @@ -1,61 +0,0 @@ -import torch -from torch.nn import functional as F - -import commons - - -def feature_loss(fmap_r, fmap_g): - loss = 0 - for dr, dg in zip(fmap_r, fmap_g): - for rl, gl in zip(dr, dg): - rl = rl.float().detach() - gl = gl.float() - loss += torch.mean(torch.abs(rl - gl)) - - return loss * 2 - - -def discriminator_loss(disc_real_outputs, disc_generated_outputs): - loss = 0 - r_losses = [] - g_losses = [] - for dr, dg in zip(disc_real_outputs, disc_generated_outputs): - dr = dr.float() - dg = dg.float() - r_loss = torch.mean((1-dr)**2) - g_loss = torch.mean(dg**2) - loss += (r_loss + g_loss) - r_losses.append(r_loss.item()) - g_losses.append(g_loss.item()) - - return loss, r_losses, g_losses - - -def generator_loss(disc_outputs): - loss = 0 - gen_losses = [] - for dg in disc_outputs: - dg = dg.float() - l = torch.mean((1-dg)**2) - gen_losses.append(l) - loss += l - - return loss, gen_losses - - -def kl_loss(z_p, logs_q, m_p, logs_p, z_mask): - """ - z_p, logs_q: [b, h, t_t] - m_p, logs_p: [b, h, t_t] - """ - z_p = z_p.float() - logs_q = logs_q.float() - m_p = m_p.float() - logs_p = logs_p.float() - z_mask = z_mask.float() - - kl = logs_p - logs_q - 0.5 - kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p) - kl = torch.sum(kl * z_mask) - l = kl / torch.sum(z_mask) - return l diff --git a/spaces/hussain-shk/IndiSent/indic_nlp_library/contrib/hindi_to_kannada_transliterator.py b/spaces/hussain-shk/IndiSent/indic_nlp_library/contrib/hindi_to_kannada_transliterator.py deleted file mode 100644 index a88f7d42120a0ae6eedaea91080c8d2a75539ee8..0000000000000000000000000000000000000000 --- a/spaces/hussain-shk/IndiSent/indic_nlp_library/contrib/hindi_to_kannada_transliterator.py +++ /dev/null @@ -1,62 +0,0 @@ -import sys -from indicnlp import common -common.set_resources_path(INDIC_NLP_RESOURCES) - -from indicnlp import loader -from indicnlp.normalize import indic_normalize -from indicnlp.transliterate import unicode_transliterate - -if __name__ == '__main__': - """ - This script transliterates Hindi to Kannada. It removes/remaps - characters only found in Hindi. It also adds halanta to words ending - with consonant - as is the convention in Kannada - """ - - infname=sys.argv[1] # one sentence/word per line. Sentences should be space-tokenized - outfname=sys.agv[2] - loader.load() - - normalizer_factory=indic_normalize.IndicNormalizerFactory() - normalizer=normalizer_factory.get_normalizer('hi') - - with open(infname,'r',encoding='utf-8') as infile, \ - open(outfname,'w',encoding='utf-8') as outfile: - for line in infile: - line=line.strip() - line=normalizer.normalize(line) - - ## replace chandrabindus with anusvara - line=line.replace('\u0900','\u0902') - line=line.replace('\u0901','\u0902') - - ### replace chandra e and o diacritics with e and o respectively - #line=line.replace('\u0945','\u0947') - #line=line.replace('\u0949','\u094b') - - ### replace chandra e and o diacritics with a diacritic - ## this seems to be general usage - line=line.replace('\u0945','\u093e') - line=line.replace('\u0949','\u093e') - - ## remove nukta - line=line.replace('\u093c','') - - ## add halant if word ends with consonant - #if isc.is_consonant(isc.get_phonetic_feature_vector(line[-1],'hi')): - # line=line+'\u094d' - words=line.split(' ') - outwords=[] - for word in line.split(' '): - if isc.is_consonant(isc.get_phonetic_feature_vector(word[-1],'hi')): - word=word+'\u094d' - outwords.append(word) - line=' '.join(outwords) - - - ## script conversion - line=unicode_transliterate.UnicodeIndicTransliterator.transliterate(line,'hi','kn') - - outfile.write(line+'\n') - - diff --git a/spaces/hzrr/dal_audio_inference/preprocess.py b/spaces/hzrr/dal_audio_inference/preprocess.py deleted file mode 100644 index aaedbf076c30114b3ac6c27dfb42fd54ac81a71c..0000000000000000000000000000000000000000 --- a/spaces/hzrr/dal_audio_inference/preprocess.py +++ /dev/null @@ -1,25 +0,0 @@ -import argparse -import text -from utils import load_filepaths_and_text - -if __name__ == '__main__': - parser = argparse.ArgumentParser() - parser.add_argument("--out_extension", default="cleaned") - parser.add_argument("--text_index", default=1, type=int) - parser.add_argument("--filelists", nargs="+", default=["filelists/ljs_audio_text_val_filelist.txt", "filelists/ljs_audio_text_test_filelist.txt"]) - parser.add_argument("--text_cleaners", nargs="+", default=["english_cleaners2"]) - - args = parser.parse_args() - - - for filelist in args.filelists: - print("START:", filelist) - filepaths_and_text = load_filepaths_and_text(filelist) - for i in range(len(filepaths_and_text)): - original_text = filepaths_and_text[i][args.text_index] - cleaned_text = text._clean_text(original_text, args.text_cleaners) - filepaths_and_text[i][args.text_index] = cleaned_text - - new_filelist = filelist + "." + args.out_extension - with open(new_filelist, "w", encoding="utf-8") as f: - f.writelines(["|".join(x) + "\n" for x in filepaths_and_text]) diff --git a/spaces/inamXcontru/PoeticTTS/Arta vanzarii zig ziglar pdf free 27 Cum sa devii un lider in vanzari folosind strategiile lui Zig Ziglar.md b/spaces/inamXcontru/PoeticTTS/Arta vanzarii zig ziglar pdf free 27 Cum sa devii un lider in vanzari folosind strategiile lui Zig Ziglar.md deleted file mode 100644 index ce78678ecf79e696fd42119cfa028604a8392409..0000000000000000000000000000000000000000 --- a/spaces/inamXcontru/PoeticTTS/Arta vanzarii zig ziglar pdf free 27 Cum sa devii un lider in vanzari folosind strategiile lui Zig Ziglar.md +++ /dev/null @@ -1,6 +0,0 @@ -

          arta vanzarii zig ziglar pdf free 27


          Downloadhttps://gohhs.com/2uz4x6



          - - aaccfb2cb3
          -
          -
          -

          diff --git a/spaces/inamXcontru/PoeticTTS/Crack Admiscorar [CRACKED].md b/spaces/inamXcontru/PoeticTTS/Crack Admiscorar [CRACKED].md deleted file mode 100644 index 84b43c14ee53066fdcb9cd97046c1320aad814a6..0000000000000000000000000000000000000000 --- a/spaces/inamXcontru/PoeticTTS/Crack Admiscorar [CRACKED].md +++ /dev/null @@ -1,6 +0,0 @@ -

          Crack Admiscorar


          Downloadhttps://gohhs.com/2uz5zj



          - - d5da3c52bf
          -
          -
          -

          diff --git a/spaces/inplisQlawa/anything-midjourney-v4-1/DESEO2013DVDRip XviDMexico.md b/spaces/inplisQlawa/anything-midjourney-v4-1/DESEO2013DVDRip XviDMexico.md deleted file mode 100644 index de9fc6d11559f5117d4cdecc55e5ca158f023f94..0000000000000000000000000000000000000000 --- a/spaces/inplisQlawa/anything-midjourney-v4-1/DESEO2013DVDRip XviDMexico.md +++ /dev/null @@ -1,6 +0,0 @@ -

          DESEO2013DVDRip XviDMexico


          Download File ✫✫✫ https://urlin.us/2uExDk



          - - d5da3c52bf
          -
          -
          -

          diff --git a/spaces/inplisQlawa/anything-midjourney-v4-1/IObit Smart Defrag Pro 6.2.5.128 Multilingual ((HOT)).md b/spaces/inplisQlawa/anything-midjourney-v4-1/IObit Smart Defrag Pro 6.2.5.128 Multilingual ((HOT)).md deleted file mode 100644 index 7bc42b0bae1eeb2459391fe613112fa3c380176d..0000000000000000000000000000000000000000 --- a/spaces/inplisQlawa/anything-midjourney-v4-1/IObit Smart Defrag Pro 6.2.5.128 Multilingual ((HOT)).md +++ /dev/null @@ -1,103 +0,0 @@ -
          -

          IObit Smart Defrag Pro 6.2.5.128 Multilingual: A Powerful Disk Defragmenter for Windows

          -

          If you want to improve your PC performance and speed up your file loading time, you need a good disk defragmenter. One of the best options available is IObit Smart Defrag Pro 6.2.5.128 Multilingual. This is a free and lightweight software that can optimize your hard drive and extend its life span. In this article, we will tell you everything you need to know about IObit Smart Defrag Pro 6.2.5.128 Multilingual, including its features, benefits and download link.

          -

          What is IObit Smart Defrag Pro 6.2.5.128 Multilingual?

          -

          IObit Smart Defrag Pro 6.2.5.128 Multilingual is a disk defragmenter that can rearrange the files on your hard drive and reduce the level of fragmentation. Fragmentation occurs when files are split into small pieces and scattered across different locations on the disk. This can slow down your PC performance and cause errors and crashes.

          -

          IObit Smart Defrag Pro 6.2.5.128 Multilingual


          DOWNLOADhttps://urlin.us/2uEySC



          -

          By defragmenting your disk, you can bring the fragmented pieces of files closer together and make them easier to access by the system. This can improve your PC performance, speed up your file loading time, and extend your disk life span.

          -

          IObit Smart Defrag Pro 6.2.5.128 Multilingual is a multilingual software that supports over 35 languages, including English, German, Spanish, French, Italian, Japanese, Polish, Chinese and more. You can choose your preferred language during the installation process or change it later in the settings.

          -

          What are the features of IObit Smart Defrag Pro 6.2.5.128 Multilingual?

          -

          IObit Smart Defrag Pro 6.2.5.128 Multilingual has many features that make it a powerful and user-friendly disk defragmenter for Windows users. Here are some of them:

          -
            -
          • It has a smart defrag engine that can automatically detect the best defrag method for your disk condition and optimize it accordingly.
          • -
          • It has a boot time defrag feature that can defragment your system files during the boot process and improve your system startup speed.
          • -
          • It has a game defrag feature that can manually add games for separate defragmentation and enhance your gaming experience.
          • -
          • It has an SSD trim feature that can trim your SSDs and improve their performance and durability.
          • -
          • It has a large file defrag feature that can defragment large files faster and more efficiently.
          • -
          • It has a disk health monitor that can check your disk status in real time and alert you of any problems or errors.
          • -
          • It has a scheduler that can set a regular defrag time or frequency according to your preference.
          • -
          • It has a silent mode that can automatically pause the defrag process when you are using your PC or running other programs.
          • -
          • It has a clean interface that displays your disk information, defrag progress, defrag time and more.
          • -
          -

          What are the benefits of IObit Smart Defrag Pro 6.2.5.128 Multilingual?

          -

          IObit Smart Defrag Pro 6.2.5.128 Multilingual has many benefits that can make your PC faster and smoother. Here are some of them:

          -
            -
          • It can improve your PC performance by reducing the disk fragmentation and increasing the disk efficiency.
          • -
          • It can speed up your file loading time by organizing your files in a contiguous way and reducing the access time.
          • -
          • It can extend your disk life span by minimizing the wear and tear of the disk head and reducing the disk temperature.
          • -
          • It can enhance your gaming experience by defragmenting your games separately and boosting their loading and running speed.
          • -
          • It can optimize your SSDs by trimming them regularly and preventing them from degradation.
          • -
          • It can protect your disk health by monitoring it constantly and notifying you of any issues or errors.
          • -
          -

          How to download IObit Smart Defrag Pro 6.2.5.128 Multilingual?

          -

          To download IObit Smart Defrag Pro 6.2.5.128 Multilingual, you need to follow these steps:

          -
            -
          1. Go to the official website of IObit Smart Defrag at https://www.iobit.com/en/iobitsmartdefrag.php
          2. -
          3. Click on the "Free Download" button to download the setup file.
          4. -
          5. Run the setup file and follow the instructions to install the software on your PC.
          6. -
          7. Launch the software and enjoy its features and benefits.
          8. -
          -

          Conclusion

          -

          IObit Smart Defrag Pro 6.2.5.128 Multilingual is a powerful disk defragmenter that can improve your PC performance and speed up your file loading time. It has many features to manage your disks and SSDs, such as smart defrag engine, boot time defrag, game defrag, SSD trim, large file defrag, disk health monitor, scheduler, silent mode and more. It also supports over 35 languages for your convenience. You can download it for free from its official website and install it on your PC easily. We hope you find this article helpful and informative about IObit Smart Defrag Pro 6.2.5.128 Multilingual.

          -

          -

          How to use IObit Smart Defrag Pro 6.2.5.128 Multilingual?

          -

          Using IObit Smart Defrag Pro 6.2.5.128 Multilingual is very easy and simple. You can follow these steps to use it:

          -
            -
          1. Launch the software and select the disk or partition that you want to defragment.
          2. -
          3. Click on the "Analyze" button to check the disk condition and fragmentation level.
          4. -
          5. Click on the "Smart Defrag" button to start the defragmentation process.
          6. -
          7. Wait for the process to finish and check the results and statistics.
          8. -
          -

          You can also customize the settings and preferences of the software according to your needs. You can access the settings by clicking on the menu icon on the top right corner of the interface. You can change the language, theme, update frequency, defrag mode, defrag priority, boot time defrag, game defrag, SSD trim and more.

          -

          What are the differences between IObit Smart Defrag Pro 6.2.5.128 Multilingual and other disk defragmenters?

          -

          IObit Smart Defrag Pro 6.2.5.128 Multilingual is different from other disk defragmenters in many ways. Here are some of them:

          -
            -
          • It has a smart defrag engine that can automatically choose the best defrag method for your disk condition and optimize it accordingly.
          • -
          • It has a boot time defrag feature that can defragment your system files during the boot process and improve your system startup speed.
          • -
          • It has a game defrag feature that can manually add games for separate defragmentation and enhance your gaming experience.
          • -
          • It has an SSD trim feature that can trim your SSDs and improve their performance and durability.
          • -
          • It has a large file defrag feature that can defragment large files faster and more efficiently.
          • -
          • It has a disk health monitor that can check your disk status in real time and alert you of any problems or errors.
          • -
          • It has a scheduler that can set a regular defrag time or frequency according to your preference.
          • -
          • It has a silent mode that can automatically pause the defrag process when you are using your PC or running other programs.
          • -
          • It has a clean interface that displays your disk information, defrag progress, defrag time and more.
          • -
          • It supports over 35 languages for your convenience.
          • -
          -

          What are the pros and cons of IObit Smart Defrag Pro 6.2.5.128 Multilingual?

          -

          IObit Smart Defrag Pro 6.2.5.128 Multilingual has many pros and cons that you need to consider before using it. Here are some of them:

          - - - - - - - - -
          ProsCons
          It is free and lightweight.It may take a long time to defragment large or heavily fragmented disks.
          It can improve your PC performance and speed up your file loading time.It may cause some compatibility issues with some antivirus or firewall software.
          It can extend your disk life span by minimizing the wear and tear of the disk head and reducing the disk temperature.It may not be able to defragment some locked or encrypted files.
          It can enhance your gaming experience by defragmenting your games separately and boosting their loading and running speed.It may require administrator privileges to run some features.
          It can optimize your SSDs by trimming them regularly and preventing them from degradation.
          It can protect your disk health by monitoring it constantly and notifying you of any issues or errors.
          -

          Where to get IObit Smart Defrag Pro 6.2.5.128 Multilingual?

          -

          If you want to get IObit Smart Defrag Pro 6.2.5.128 Multilingual, you have several options to choose from. You can download it from the official website of IObit, from reputable software download sites, or from torrent sites. However, you need to be careful about the sources you use and the legal implications of your actions.

          -

          The official website of IObit is the safest and most reliable source to get IObit Smart Defrag Pro 6.2.5.128 Multilingual. You can download it for free or buy the pro version for more features and benefits. You can also get technical support and updates from the website.

          -

          Software download sites are another option to get IObit Smart Defrag Pro 6.2.5.128 Multilingual. However, you need to make sure that the site is trustworthy and reputable, and that the file is authentic and virus-free. You can check the comments and ratings of other users before downloading.

          -

          Torrent sites are another option to get IObit Smart Defrag Pro 6.2.5.128 Multilingual. However, you need to be aware of the risks and challenges of using torrent sites, such as fake or corrupted files, viruses or malware, legal issues or lawsuits, slow or unstable downloads, etc.

          -

          How to install IObit Smart Defrag Pro 6.2.5.128 Multilingual?

          -

          To install IObit Smart Defrag Pro 6.2.5.128 Multilingual, you need to follow these steps:

          -
            -
          1. Download the setup file from a trusted source.
          2. -
          3. Run the setup file and follow the instructions to install the software on your PC.
          4. -
          5. Launch the software and enter your license code if you have bought the pro version.
          6. -
          7. Enjoy the features and benefits of IObit Smart Defrag Pro 6.2.5.128 Multilingual.
          8. -
          -

          The installation process is easy and smooth, and it does not take much time or space on your PC.

          -

          How to uninstall IObit Smart Defrag Pro 6.2.5.128 Multilingual?

          -

          If you want to uninstall IObit Smart Defrag Pro 6.2.5.128 Multilingual, you need to follow these steps:

          -
            -
          1. Go to the Control Panel and select Programs and Features.
          2. -
          3. Find IObit Smart Defrag Pro 6.2.5.128 Multilingual in the list and click on Uninstall.
          4. -
          5. Follow the instructions to uninstall the software from your PC.
          6. -
          7. Delete any leftover files or folders related to IObit Smart Defrag Pro 6.2.5.128 Multilingual.
          8. -
          -

          The uninstallation process is simple and quick, and it does not leave any traces or residues on your PC.

          -

          Conclusion

          -

          IObit Smart Defrag Pro 6.2.5.128 Multilingual is a powerful disk defragmenter that can improve your PC performance and speed up your file loading time. It has many features to manage your disks and SSDs, such as smart defrag engine, boot time defrag, game defrag, SSD trim, large file defrag, disk health monitor, scheduler, silent mode and more. It also supports over 35 languages for your convenience. You can download it for free from its official website or from other sources, but you need to be careful about the sources you use and the legal implications of your actions. You can also install and uninstall it easily and smoothly on your PC. We hope you find this article helpful and informative about IObit Smart Defrag Pro 6.2.5.128 Multilingual.

          3cee63e6c2
          -
          -
          \ No newline at end of file diff --git a/spaces/inreVtussa/clothingai/Examples/4K Stogram 2.8.2.2000 Crack Free License Key Android Apk.md b/spaces/inreVtussa/clothingai/Examples/4K Stogram 2.8.2.2000 Crack Free License Key Android Apk.md deleted file mode 100644 index 317e6599ef6728cda1b3df2f8676e0caeb02ccbd..0000000000000000000000000000000000000000 --- a/spaces/inreVtussa/clothingai/Examples/4K Stogram 2.8.2.2000 Crack Free License Key Android Apk.md +++ /dev/null @@ -1,6 +0,0 @@ -

          4K Stogram 2.8.2.2000 Crack Free License Key {Android Apk}


          Download Filehttps://tiurll.com/2uCiFk



          -
          -4K Stogram 3.3.3.3510 Crack + License Key Free Download 2021. 4k Stogram Crack With License Keyis an Instagram client for Windows. 1fdad05405
          -
          -
          -

          diff --git a/spaces/inreVtussa/clothingai/Examples/Adobe After Effect CC 2020 Crack Serial Key Free Download __EXCLUSIVE__.md b/spaces/inreVtussa/clothingai/Examples/Adobe After Effect CC 2020 Crack Serial Key Free Download __EXCLUSIVE__.md deleted file mode 100644 index f5c653ecbb6e8530f4c3f1300f84d770af572d74..0000000000000000000000000000000000000000 --- a/spaces/inreVtussa/clothingai/Examples/Adobe After Effect CC 2020 Crack Serial Key Free Download __EXCLUSIVE__.md +++ /dev/null @@ -1,6 +0,0 @@ -

          Adobe After Effect CC 2020 Crack Serial Key Free Download


          Download Zip ⚙⚙⚙ https://tiurll.com/2uClsk



          -
          - 8a78ff9644
          -
          -
          -

          diff --git a/spaces/inreVtussa/clothingai/Examples/DVD2one V2.4.1 Final Portable.rar.md b/spaces/inreVtussa/clothingai/Examples/DVD2one V2.4.1 Final Portable.rar.md deleted file mode 100644 index 378d50270c71482704ff254d7d53e8c22da977d8..0000000000000000000000000000000000000000 --- a/spaces/inreVtussa/clothingai/Examples/DVD2one V2.4.1 Final Portable.rar.md +++ /dev/null @@ -1,6 +0,0 @@ -

          DVD2one V2.4.1 Final Portable.rar


          Download File > https://tiurll.com/2uCiCX



          -
          -2 / Transmorphers: Fall of Man (2009) DVDRip --????? ?????: ????? / City of ... The Last Legion (2007) DVDRip --? ... --MemSet 4.1 / 4.2 beta 1 // CPU-Tweaker 1.5 / 1.6 beta 1 --MiTeC ... --NKassy 1.2 Portable [Ru] ... --VideoSoft (DVD-To-xxx / DVD2one / DVD2xxx / DVDx) --Foto2Avi ... --RAR Recovery Toolbox 1.1.10.21 1fdad05405
          -
          -
          -

          diff --git a/spaces/intelliarts/Car_damage_detection/README.md b/spaces/intelliarts/Car_damage_detection/README.md deleted file mode 100644 index 7aa22bfa04cfb6711b3cd4ab1033404b6bf2e54c..0000000000000000000000000000000000000000 --- a/spaces/intelliarts/Car_damage_detection/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: Car Damage Detection -emoji: 🚌 -colorFrom: gray -colorTo: green -sdk: gradio -sdk_version: 3.11.0 -app_file: app.py -pinned: false -license: mit ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/jackli888/stable-diffusion-webui/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py b/spaces/jackli888/stable-diffusion-webui/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py deleted file mode 100644 index 5c0488e5f6fcea41e7f9fa25070e38fbfe656478..0000000000000000000000000000000000000000 --- a/spaces/jackli888/stable-diffusion-webui/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py +++ /dev/null @@ -1,1449 +0,0 @@ -# This script is copied from the compvis/stable-diffusion repo (aka the SD V1 repo) -# Original filename: ldm/models/diffusion/ddpm.py -# The purpose to reinstate the old DDPM logic which works with VQ, whereas the V2 one doesn't -# Some models such as LDSR require VQ to work correctly -# The classes are suffixed with "V1" and added back to the "ldm.models.diffusion.ddpm" module - -import torch -import torch.nn as nn -import numpy as np -import pytorch_lightning as pl -from torch.optim.lr_scheduler import LambdaLR -from einops import rearrange, repeat -from contextlib import contextmanager -from functools import partial -from tqdm import tqdm -from torchvision.utils import make_grid -from pytorch_lightning.utilities.distributed import rank_zero_only - -from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config -from ldm.modules.ema import LitEma -from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution -from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL -from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like -from ldm.models.diffusion.ddim import DDIMSampler - -import ldm.models.diffusion.ddpm - -__conditioning_keys__ = {'concat': 'c_concat', - 'crossattn': 'c_crossattn', - 'adm': 'y'} - - -def disabled_train(self, mode=True): - """Overwrite model.train with this function to make sure train/eval mode - does not change anymore.""" - return self - - -def uniform_on_device(r1, r2, shape, device): - return (r1 - r2) * torch.rand(*shape, device=device) + r2 - - -class DDPMV1(pl.LightningModule): - # classic DDPM with Gaussian diffusion, in image space - def __init__(self, - unet_config, - timesteps=1000, - beta_schedule="linear", - loss_type="l2", - ckpt_path=None, - ignore_keys=[], - load_only_unet=False, - monitor="val/loss", - use_ema=True, - first_stage_key="image", - image_size=256, - channels=3, - log_every_t=100, - clip_denoised=True, - linear_start=1e-4, - linear_end=2e-2, - cosine_s=8e-3, - given_betas=None, - original_elbo_weight=0., - v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta - l_simple_weight=1., - conditioning_key=None, - parameterization="eps", # all assuming fixed variance schedules - scheduler_config=None, - use_positional_encodings=False, - learn_logvar=False, - logvar_init=0., - ): - super().__init__() - assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"' - self.parameterization = parameterization - print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode") - self.cond_stage_model = None - self.clip_denoised = clip_denoised - self.log_every_t = log_every_t - self.first_stage_key = first_stage_key - self.image_size = image_size # try conv? - self.channels = channels - self.use_positional_encodings = use_positional_encodings - self.model = DiffusionWrapperV1(unet_config, conditioning_key) - count_params(self.model, verbose=True) - self.use_ema = use_ema - if self.use_ema: - self.model_ema = LitEma(self.model) - print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") - - self.use_scheduler = scheduler_config is not None - if self.use_scheduler: - self.scheduler_config = scheduler_config - - self.v_posterior = v_posterior - self.original_elbo_weight = original_elbo_weight - self.l_simple_weight = l_simple_weight - - if monitor is not None: - self.monitor = monitor - if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet) - - self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps, - linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) - - self.loss_type = loss_type - - self.learn_logvar = learn_logvar - self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,)) - if self.learn_logvar: - self.logvar = nn.Parameter(self.logvar, requires_grad=True) - - - def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, - linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): - if exists(given_betas): - betas = given_betas - else: - betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, - cosine_s=cosine_s) - alphas = 1. - betas - alphas_cumprod = np.cumprod(alphas, axis=0) - alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) - - timesteps, = betas.shape - self.num_timesteps = int(timesteps) - self.linear_start = linear_start - self.linear_end = linear_end - assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep' - - to_torch = partial(torch.tensor, dtype=torch.float32) - - self.register_buffer('betas', to_torch(betas)) - self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) - self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) - - # calculations for diffusion q(x_t | x_{t-1}) and others - self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) - self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) - self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) - self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) - self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) - - # calculations for posterior q(x_{t-1} | x_t, x_0) - posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / ( - 1. - alphas_cumprod) + self.v_posterior * betas - # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) - self.register_buffer('posterior_variance', to_torch(posterior_variance)) - # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain - self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20)))) - self.register_buffer('posterior_mean_coef1', to_torch( - betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))) - self.register_buffer('posterior_mean_coef2', to_torch( - (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))) - - if self.parameterization == "eps": - lvlb_weights = self.betas ** 2 / ( - 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)) - elif self.parameterization == "x0": - lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod)) - else: - raise NotImplementedError("mu not supported") - # TODO how to choose this term - lvlb_weights[0] = lvlb_weights[1] - self.register_buffer('lvlb_weights', lvlb_weights, persistent=False) - assert not torch.isnan(self.lvlb_weights).all() - - @contextmanager - def ema_scope(self, context=None): - if self.use_ema: - self.model_ema.store(self.model.parameters()) - self.model_ema.copy_to(self.model) - if context is not None: - print(f"{context}: Switched to EMA weights") - try: - yield None - finally: - if self.use_ema: - self.model_ema.restore(self.model.parameters()) - if context is not None: - print(f"{context}: Restored training weights") - - def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): - sd = torch.load(path, map_location="cpu") - if "state_dict" in list(sd.keys()): - sd = sd["state_dict"] - keys = list(sd.keys()) - for k in keys: - for ik in ignore_keys: - if k.startswith(ik): - print("Deleting key {} from state_dict.".format(k)) - del sd[k] - missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( - sd, strict=False) - print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") - if len(missing) > 0: - print(f"Missing Keys: {missing}") - if len(unexpected) > 0: - print(f"Unexpected Keys: {unexpected}") - - def q_mean_variance(self, x_start, t): - """ - Get the distribution q(x_t | x_0). - :param x_start: the [N x C x ...] tensor of noiseless inputs. - :param t: the number of diffusion steps (minus 1). Here, 0 means one step. - :return: A tuple (mean, variance, log_variance), all of x_start's shape. - """ - mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start) - variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) - log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape) - return mean, variance, log_variance - - def predict_start_from_noise(self, x_t, t, noise): - return ( - extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - - extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise - ) - - def q_posterior(self, x_start, x_t, t): - posterior_mean = ( - extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start + - extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t - ) - posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape) - posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape) - return posterior_mean, posterior_variance, posterior_log_variance_clipped - - def p_mean_variance(self, x, t, clip_denoised: bool): - model_out = self.model(x, t) - if self.parameterization == "eps": - x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) - elif self.parameterization == "x0": - x_recon = model_out - if clip_denoised: - x_recon.clamp_(-1., 1.) - - model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) - return model_mean, posterior_variance, posterior_log_variance - - @torch.no_grad() - def p_sample(self, x, t, clip_denoised=True, repeat_noise=False): - b, *_, device = *x.shape, x.device - model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised) - noise = noise_like(x.shape, device, repeat_noise) - # no noise when t == 0 - nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) - return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise - - @torch.no_grad() - def p_sample_loop(self, shape, return_intermediates=False): - device = self.betas.device - b = shape[0] - img = torch.randn(shape, device=device) - intermediates = [img] - for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps): - img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long), - clip_denoised=self.clip_denoised) - if i % self.log_every_t == 0 or i == self.num_timesteps - 1: - intermediates.append(img) - if return_intermediates: - return img, intermediates - return img - - @torch.no_grad() - def sample(self, batch_size=16, return_intermediates=False): - image_size = self.image_size - channels = self.channels - return self.p_sample_loop((batch_size, channels, image_size, image_size), - return_intermediates=return_intermediates) - - def q_sample(self, x_start, t, noise=None): - noise = default(noise, lambda: torch.randn_like(x_start)) - return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise) - - def get_loss(self, pred, target, mean=True): - if self.loss_type == 'l1': - loss = (target - pred).abs() - if mean: - loss = loss.mean() - elif self.loss_type == 'l2': - if mean: - loss = torch.nn.functional.mse_loss(target, pred) - else: - loss = torch.nn.functional.mse_loss(target, pred, reduction='none') - else: - raise NotImplementedError("unknown loss type '{loss_type}'") - - return loss - - def p_losses(self, x_start, t, noise=None): - noise = default(noise, lambda: torch.randn_like(x_start)) - x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) - model_out = self.model(x_noisy, t) - - loss_dict = {} - if self.parameterization == "eps": - target = noise - elif self.parameterization == "x0": - target = x_start - else: - raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported") - - loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3]) - - log_prefix = 'train' if self.training else 'val' - - loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()}) - loss_simple = loss.mean() * self.l_simple_weight - - loss_vlb = (self.lvlb_weights[t] * loss).mean() - loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb}) - - loss = loss_simple + self.original_elbo_weight * loss_vlb - - loss_dict.update({f'{log_prefix}/loss': loss}) - - return loss, loss_dict - - def forward(self, x, *args, **kwargs): - # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size - # assert h == img_size and w == img_size, f'height and width of image must be {img_size}' - t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() - return self.p_losses(x, t, *args, **kwargs) - - def get_input(self, batch, k): - x = batch[k] - if len(x.shape) == 3: - x = x[..., None] - x = rearrange(x, 'b h w c -> b c h w') - x = x.to(memory_format=torch.contiguous_format).float() - return x - - def shared_step(self, batch): - x = self.get_input(batch, self.first_stage_key) - loss, loss_dict = self(x) - return loss, loss_dict - - def training_step(self, batch, batch_idx): - loss, loss_dict = self.shared_step(batch) - - self.log_dict(loss_dict, prog_bar=True, - logger=True, on_step=True, on_epoch=True) - - self.log("global_step", self.global_step, - prog_bar=True, logger=True, on_step=True, on_epoch=False) - - if self.use_scheduler: - lr = self.optimizers().param_groups[0]['lr'] - self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False) - - return loss - - @torch.no_grad() - def validation_step(self, batch, batch_idx): - _, loss_dict_no_ema = self.shared_step(batch) - with self.ema_scope(): - _, loss_dict_ema = self.shared_step(batch) - loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema} - self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) - self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) - - def on_train_batch_end(self, *args, **kwargs): - if self.use_ema: - self.model_ema(self.model) - - def _get_rows_from_list(self, samples): - n_imgs_per_row = len(samples) - denoise_grid = rearrange(samples, 'n b c h w -> b n c h w') - denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') - denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) - return denoise_grid - - @torch.no_grad() - def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs): - log = dict() - x = self.get_input(batch, self.first_stage_key) - N = min(x.shape[0], N) - n_row = min(x.shape[0], n_row) - x = x.to(self.device)[:N] - log["inputs"] = x - - # get diffusion row - diffusion_row = list() - x_start = x[:n_row] - - for t in range(self.num_timesteps): - if t % self.log_every_t == 0 or t == self.num_timesteps - 1: - t = repeat(torch.tensor([t]), '1 -> b', b=n_row) - t = t.to(self.device).long() - noise = torch.randn_like(x_start) - x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) - diffusion_row.append(x_noisy) - - log["diffusion_row"] = self._get_rows_from_list(diffusion_row) - - if sample: - # get denoise row - with self.ema_scope("Plotting"): - samples, denoise_row = self.sample(batch_size=N, return_intermediates=True) - - log["samples"] = samples - log["denoise_row"] = self._get_rows_from_list(denoise_row) - - if return_keys: - if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: - return log - else: - return {key: log[key] for key in return_keys} - return log - - def configure_optimizers(self): - lr = self.learning_rate - params = list(self.model.parameters()) - if self.learn_logvar: - params = params + [self.logvar] - opt = torch.optim.AdamW(params, lr=lr) - return opt - - -class LatentDiffusionV1(DDPMV1): - """main class""" - def __init__(self, - first_stage_config, - cond_stage_config, - num_timesteps_cond=None, - cond_stage_key="image", - cond_stage_trainable=False, - concat_mode=True, - cond_stage_forward=None, - conditioning_key=None, - scale_factor=1.0, - scale_by_std=False, - *args, **kwargs): - self.num_timesteps_cond = default(num_timesteps_cond, 1) - self.scale_by_std = scale_by_std - assert self.num_timesteps_cond <= kwargs['timesteps'] - # for backwards compatibility after implementation of DiffusionWrapper - if conditioning_key is None: - conditioning_key = 'concat' if concat_mode else 'crossattn' - if cond_stage_config == '__is_unconditional__': - conditioning_key = None - ckpt_path = kwargs.pop("ckpt_path", None) - ignore_keys = kwargs.pop("ignore_keys", []) - super().__init__(conditioning_key=conditioning_key, *args, **kwargs) - self.concat_mode = concat_mode - self.cond_stage_trainable = cond_stage_trainable - self.cond_stage_key = cond_stage_key - try: - self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 - except: - self.num_downs = 0 - if not scale_by_std: - self.scale_factor = scale_factor - else: - self.register_buffer('scale_factor', torch.tensor(scale_factor)) - self.instantiate_first_stage(first_stage_config) - self.instantiate_cond_stage(cond_stage_config) - self.cond_stage_forward = cond_stage_forward - self.clip_denoised = False - self.bbox_tokenizer = None - - self.restarted_from_ckpt = False - if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys) - self.restarted_from_ckpt = True - - def make_cond_schedule(self, ): - self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long) - ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long() - self.cond_ids[:self.num_timesteps_cond] = ids - - @rank_zero_only - @torch.no_grad() - def on_train_batch_start(self, batch, batch_idx, dataloader_idx): - # only for very first batch - if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt: - assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously' - # set rescale weight to 1./std of encodings - print("### USING STD-RESCALING ###") - x = super().get_input(batch, self.first_stage_key) - x = x.to(self.device) - encoder_posterior = self.encode_first_stage(x) - z = self.get_first_stage_encoding(encoder_posterior).detach() - del self.scale_factor - self.register_buffer('scale_factor', 1. / z.flatten().std()) - print(f"setting self.scale_factor to {self.scale_factor}") - print("### USING STD-RESCALING ###") - - def register_schedule(self, - given_betas=None, beta_schedule="linear", timesteps=1000, - linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): - super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s) - - self.shorten_cond_schedule = self.num_timesteps_cond > 1 - if self.shorten_cond_schedule: - self.make_cond_schedule() - - def instantiate_first_stage(self, config): - model = instantiate_from_config(config) - self.first_stage_model = model.eval() - self.first_stage_model.train = disabled_train - for param in self.first_stage_model.parameters(): - param.requires_grad = False - - def instantiate_cond_stage(self, config): - if not self.cond_stage_trainable: - if config == "__is_first_stage__": - print("Using first stage also as cond stage.") - self.cond_stage_model = self.first_stage_model - elif config == "__is_unconditional__": - print(f"Training {self.__class__.__name__} as an unconditional model.") - self.cond_stage_model = None - # self.be_unconditional = True - else: - model = instantiate_from_config(config) - self.cond_stage_model = model.eval() - self.cond_stage_model.train = disabled_train - for param in self.cond_stage_model.parameters(): - param.requires_grad = False - else: - assert config != '__is_first_stage__' - assert config != '__is_unconditional__' - model = instantiate_from_config(config) - self.cond_stage_model = model - - def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False): - denoise_row = [] - for zd in tqdm(samples, desc=desc): - denoise_row.append(self.decode_first_stage(zd.to(self.device), - force_not_quantize=force_no_decoder_quantization)) - n_imgs_per_row = len(denoise_row) - denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W - denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w') - denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') - denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) - return denoise_grid - - def get_first_stage_encoding(self, encoder_posterior): - if isinstance(encoder_posterior, DiagonalGaussianDistribution): - z = encoder_posterior.sample() - elif isinstance(encoder_posterior, torch.Tensor): - z = encoder_posterior - else: - raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented") - return self.scale_factor * z - - def get_learned_conditioning(self, c): - if self.cond_stage_forward is None: - if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode): - c = self.cond_stage_model.encode(c) - if isinstance(c, DiagonalGaussianDistribution): - c = c.mode() - else: - c = self.cond_stage_model(c) - else: - assert hasattr(self.cond_stage_model, self.cond_stage_forward) - c = getattr(self.cond_stage_model, self.cond_stage_forward)(c) - return c - - def meshgrid(self, h, w): - y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1) - x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1) - - arr = torch.cat([y, x], dim=-1) - return arr - - def delta_border(self, h, w): - """ - :param h: height - :param w: width - :return: normalized distance to image border, - wtith min distance = 0 at border and max dist = 0.5 at image center - """ - lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2) - arr = self.meshgrid(h, w) / lower_right_corner - dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0] - dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0] - edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0] - return edge_dist - - def get_weighting(self, h, w, Ly, Lx, device): - weighting = self.delta_border(h, w) - weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"], - self.split_input_params["clip_max_weight"], ) - weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device) - - if self.split_input_params["tie_braker"]: - L_weighting = self.delta_border(Ly, Lx) - L_weighting = torch.clip(L_weighting, - self.split_input_params["clip_min_tie_weight"], - self.split_input_params["clip_max_tie_weight"]) - - L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device) - weighting = weighting * L_weighting - return weighting - - def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code - """ - :param x: img of size (bs, c, h, w) - :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1]) - """ - bs, nc, h, w = x.shape - - # number of crops in image - Ly = (h - kernel_size[0]) // stride[0] + 1 - Lx = (w - kernel_size[1]) // stride[1] + 1 - - if uf == 1 and df == 1: - fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) - unfold = torch.nn.Unfold(**fold_params) - - fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params) - - weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype) - normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap - weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx)) - - elif uf > 1 and df == 1: - fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) - unfold = torch.nn.Unfold(**fold_params) - - fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf), - dilation=1, padding=0, - stride=(stride[0] * uf, stride[1] * uf)) - fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2) - - weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype) - normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap - weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx)) - - elif df > 1 and uf == 1: - fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) - unfold = torch.nn.Unfold(**fold_params) - - fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df), - dilation=1, padding=0, - stride=(stride[0] // df, stride[1] // df)) - fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2) - - weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype) - normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap - weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx)) - - else: - raise NotImplementedError - - return fold, unfold, normalization, weighting - - @torch.no_grad() - def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False, - cond_key=None, return_original_cond=False, bs=None): - x = super().get_input(batch, k) - if bs is not None: - x = x[:bs] - x = x.to(self.device) - encoder_posterior = self.encode_first_stage(x) - z = self.get_first_stage_encoding(encoder_posterior).detach() - - if self.model.conditioning_key is not None: - if cond_key is None: - cond_key = self.cond_stage_key - if cond_key != self.first_stage_key: - if cond_key in ['caption', 'coordinates_bbox']: - xc = batch[cond_key] - elif cond_key == 'class_label': - xc = batch - else: - xc = super().get_input(batch, cond_key).to(self.device) - else: - xc = x - if not self.cond_stage_trainable or force_c_encode: - if isinstance(xc, dict) or isinstance(xc, list): - # import pudb; pudb.set_trace() - c = self.get_learned_conditioning(xc) - else: - c = self.get_learned_conditioning(xc.to(self.device)) - else: - c = xc - if bs is not None: - c = c[:bs] - - if self.use_positional_encodings: - pos_x, pos_y = self.compute_latent_shifts(batch) - ckey = __conditioning_keys__[self.model.conditioning_key] - c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y} - - else: - c = None - xc = None - if self.use_positional_encodings: - pos_x, pos_y = self.compute_latent_shifts(batch) - c = {'pos_x': pos_x, 'pos_y': pos_y} - out = [z, c] - if return_first_stage_outputs: - xrec = self.decode_first_stage(z) - out.extend([x, xrec]) - if return_original_cond: - out.append(xc) - return out - - @torch.no_grad() - def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): - if predict_cids: - if z.dim() == 4: - z = torch.argmax(z.exp(), dim=1).long() - z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) - z = rearrange(z, 'b h w c -> b c h w').contiguous() - - z = 1. / self.scale_factor * z - - if hasattr(self, "split_input_params"): - if self.split_input_params["patch_distributed_vq"]: - ks = self.split_input_params["ks"] # eg. (128, 128) - stride = self.split_input_params["stride"] # eg. (64, 64) - uf = self.split_input_params["vqf"] - bs, nc, h, w = z.shape - if ks[0] > h or ks[1] > w: - ks = (min(ks[0], h), min(ks[1], w)) - print("reducing Kernel") - - if stride[0] > h or stride[1] > w: - stride = (min(stride[0], h), min(stride[1], w)) - print("reducing stride") - - fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf) - - z = unfold(z) # (bn, nc * prod(**ks), L) - # 1. Reshape to img shape - z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) - - # 2. apply model loop over last dim - if isinstance(self.first_stage_model, VQModelInterface): - output_list = [self.first_stage_model.decode(z[:, :, :, :, i], - force_not_quantize=predict_cids or force_not_quantize) - for i in range(z.shape[-1])] - else: - - output_list = [self.first_stage_model.decode(z[:, :, :, :, i]) - for i in range(z.shape[-1])] - - o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L) - o = o * weighting - # Reverse 1. reshape to img shape - o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) - # stitch crops together - decoded = fold(o) - decoded = decoded / normalization # norm is shape (1, 1, h, w) - return decoded - else: - if isinstance(self.first_stage_model, VQModelInterface): - return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) - else: - return self.first_stage_model.decode(z) - - else: - if isinstance(self.first_stage_model, VQModelInterface): - return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) - else: - return self.first_stage_model.decode(z) - - # same as above but without decorator - def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): - if predict_cids: - if z.dim() == 4: - z = torch.argmax(z.exp(), dim=1).long() - z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) - z = rearrange(z, 'b h w c -> b c h w').contiguous() - - z = 1. / self.scale_factor * z - - if hasattr(self, "split_input_params"): - if self.split_input_params["patch_distributed_vq"]: - ks = self.split_input_params["ks"] # eg. (128, 128) - stride = self.split_input_params["stride"] # eg. (64, 64) - uf = self.split_input_params["vqf"] - bs, nc, h, w = z.shape - if ks[0] > h or ks[1] > w: - ks = (min(ks[0], h), min(ks[1], w)) - print("reducing Kernel") - - if stride[0] > h or stride[1] > w: - stride = (min(stride[0], h), min(stride[1], w)) - print("reducing stride") - - fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf) - - z = unfold(z) # (bn, nc * prod(**ks), L) - # 1. Reshape to img shape - z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) - - # 2. apply model loop over last dim - if isinstance(self.first_stage_model, VQModelInterface): - output_list = [self.first_stage_model.decode(z[:, :, :, :, i], - force_not_quantize=predict_cids or force_not_quantize) - for i in range(z.shape[-1])] - else: - - output_list = [self.first_stage_model.decode(z[:, :, :, :, i]) - for i in range(z.shape[-1])] - - o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L) - o = o * weighting - # Reverse 1. reshape to img shape - o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) - # stitch crops together - decoded = fold(o) - decoded = decoded / normalization # norm is shape (1, 1, h, w) - return decoded - else: - if isinstance(self.first_stage_model, VQModelInterface): - return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) - else: - return self.first_stage_model.decode(z) - - else: - if isinstance(self.first_stage_model, VQModelInterface): - return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) - else: - return self.first_stage_model.decode(z) - - @torch.no_grad() - def encode_first_stage(self, x): - if hasattr(self, "split_input_params"): - if self.split_input_params["patch_distributed_vq"]: - ks = self.split_input_params["ks"] # eg. (128, 128) - stride = self.split_input_params["stride"] # eg. (64, 64) - df = self.split_input_params["vqf"] - self.split_input_params['original_image_size'] = x.shape[-2:] - bs, nc, h, w = x.shape - if ks[0] > h or ks[1] > w: - ks = (min(ks[0], h), min(ks[1], w)) - print("reducing Kernel") - - if stride[0] > h or stride[1] > w: - stride = (min(stride[0], h), min(stride[1], w)) - print("reducing stride") - - fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df) - z = unfold(x) # (bn, nc * prod(**ks), L) - # Reshape to img shape - z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) - - output_list = [self.first_stage_model.encode(z[:, :, :, :, i]) - for i in range(z.shape[-1])] - - o = torch.stack(output_list, axis=-1) - o = o * weighting - - # Reverse reshape to img shape - o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) - # stitch crops together - decoded = fold(o) - decoded = decoded / normalization - return decoded - - else: - return self.first_stage_model.encode(x) - else: - return self.first_stage_model.encode(x) - - def shared_step(self, batch, **kwargs): - x, c = self.get_input(batch, self.first_stage_key) - loss = self(x, c) - return loss - - def forward(self, x, c, *args, **kwargs): - t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() - if self.model.conditioning_key is not None: - assert c is not None - if self.cond_stage_trainable: - c = self.get_learned_conditioning(c) - if self.shorten_cond_schedule: # TODO: drop this option - tc = self.cond_ids[t].to(self.device) - c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float())) - return self.p_losses(x, c, t, *args, **kwargs) - - def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset - def rescale_bbox(bbox): - x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2]) - y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3]) - w = min(bbox[2] / crop_coordinates[2], 1 - x0) - h = min(bbox[3] / crop_coordinates[3], 1 - y0) - return x0, y0, w, h - - return [rescale_bbox(b) for b in bboxes] - - def apply_model(self, x_noisy, t, cond, return_ids=False): - - if isinstance(cond, dict): - # hybrid case, cond is exptected to be a dict - pass - else: - if not isinstance(cond, list): - cond = [cond] - key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn' - cond = {key: cond} - - if hasattr(self, "split_input_params"): - assert len(cond) == 1 # todo can only deal with one conditioning atm - assert not return_ids - ks = self.split_input_params["ks"] # eg. (128, 128) - stride = self.split_input_params["stride"] # eg. (64, 64) - - h, w = x_noisy.shape[-2:] - - fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride) - - z = unfold(x_noisy) # (bn, nc * prod(**ks), L) - # Reshape to img shape - z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) - z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])] - - if self.cond_stage_key in ["image", "LR_image", "segmentation", - 'bbox_img'] and self.model.conditioning_key: # todo check for completeness - c_key = next(iter(cond.keys())) # get key - c = next(iter(cond.values())) # get value - assert (len(c) == 1) # todo extend to list with more than one elem - c = c[0] # get element - - c = unfold(c) - c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L ) - - cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])] - - elif self.cond_stage_key == 'coordinates_bbox': - assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size' - - # assuming padding of unfold is always 0 and its dilation is always 1 - n_patches_per_row = int((w - ks[0]) / stride[0] + 1) - full_img_h, full_img_w = self.split_input_params['original_image_size'] - # as we are operating on latents, we need the factor from the original image size to the - # spatial latent size to properly rescale the crops for regenerating the bbox annotations - num_downs = self.first_stage_model.encoder.num_resolutions - 1 - rescale_latent = 2 ** (num_downs) - - # get top left postions of patches as conforming for the bbbox tokenizer, therefore we - # need to rescale the tl patch coordinates to be in between (0,1) - tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w, - rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h) - for patch_nr in range(z.shape[-1])] - - # patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w) - patch_limits = [(x_tl, y_tl, - rescale_latent * ks[0] / full_img_w, - rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates] - # patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates] - - # tokenize crop coordinates for the bounding boxes of the respective patches - patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device) - for bbox in patch_limits] # list of length l with tensors of shape (1, 2) - print(patch_limits_tknzd[0].shape) - # cut tknzd crop position from conditioning - assert isinstance(cond, dict), 'cond must be dict to be fed into model' - cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device) - print(cut_cond.shape) - - adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd]) - adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n') - print(adapted_cond.shape) - adapted_cond = self.get_learned_conditioning(adapted_cond) - print(adapted_cond.shape) - adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1]) - print(adapted_cond.shape) - - cond_list = [{'c_crossattn': [e]} for e in adapted_cond] - - else: - cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient - - # apply model by loop over crops - output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])] - assert not isinstance(output_list[0], - tuple) # todo cant deal with multiple model outputs check this never happens - - o = torch.stack(output_list, axis=-1) - o = o * weighting - # Reverse reshape to img shape - o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) - # stitch crops together - x_recon = fold(o) / normalization - - else: - x_recon = self.model(x_noisy, t, **cond) - - if isinstance(x_recon, tuple) and not return_ids: - return x_recon[0] - else: - return x_recon - - def _predict_eps_from_xstart(self, x_t, t, pred_xstart): - return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \ - extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) - - def _prior_bpd(self, x_start): - """ - Get the prior KL term for the variational lower-bound, measured in - bits-per-dim. - This term can't be optimized, as it only depends on the encoder. - :param x_start: the [N x C x ...] tensor of inputs. - :return: a batch of [N] KL values (in bits), one per batch element. - """ - batch_size = x_start.shape[0] - t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) - qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) - kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0) - return mean_flat(kl_prior) / np.log(2.0) - - def p_losses(self, x_start, cond, t, noise=None): - noise = default(noise, lambda: torch.randn_like(x_start)) - x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) - model_output = self.apply_model(x_noisy, t, cond) - - loss_dict = {} - prefix = 'train' if self.training else 'val' - - if self.parameterization == "x0": - target = x_start - elif self.parameterization == "eps": - target = noise - else: - raise NotImplementedError() - - loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3]) - loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()}) - - logvar_t = self.logvar[t].to(self.device) - loss = loss_simple / torch.exp(logvar_t) + logvar_t - # loss = loss_simple / torch.exp(self.logvar) + self.logvar - if self.learn_logvar: - loss_dict.update({f'{prefix}/loss_gamma': loss.mean()}) - loss_dict.update({'logvar': self.logvar.data.mean()}) - - loss = self.l_simple_weight * loss.mean() - - loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3)) - loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean() - loss_dict.update({f'{prefix}/loss_vlb': loss_vlb}) - loss += (self.original_elbo_weight * loss_vlb) - loss_dict.update({f'{prefix}/loss': loss}) - - return loss, loss_dict - - def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False, - return_x0=False, score_corrector=None, corrector_kwargs=None): - t_in = t - model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids) - - if score_corrector is not None: - assert self.parameterization == "eps" - model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs) - - if return_codebook_ids: - model_out, logits = model_out - - if self.parameterization == "eps": - x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) - elif self.parameterization == "x0": - x_recon = model_out - else: - raise NotImplementedError() - - if clip_denoised: - x_recon.clamp_(-1., 1.) - if quantize_denoised: - x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon) - model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) - if return_codebook_ids: - return model_mean, posterior_variance, posterior_log_variance, logits - elif return_x0: - return model_mean, posterior_variance, posterior_log_variance, x_recon - else: - return model_mean, posterior_variance, posterior_log_variance - - @torch.no_grad() - def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False, - return_codebook_ids=False, quantize_denoised=False, return_x0=False, - temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None): - b, *_, device = *x.shape, x.device - outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised, - return_codebook_ids=return_codebook_ids, - quantize_denoised=quantize_denoised, - return_x0=return_x0, - score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) - if return_codebook_ids: - raise DeprecationWarning("Support dropped.") - model_mean, _, model_log_variance, logits = outputs - elif return_x0: - model_mean, _, model_log_variance, x0 = outputs - else: - model_mean, _, model_log_variance = outputs - - noise = noise_like(x.shape, device, repeat_noise) * temperature - if noise_dropout > 0.: - noise = torch.nn.functional.dropout(noise, p=noise_dropout) - # no noise when t == 0 - nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) - - if return_codebook_ids: - return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1) - if return_x0: - return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0 - else: - return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise - - @torch.no_grad() - def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False, - img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0., - score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None, - log_every_t=None): - if not log_every_t: - log_every_t = self.log_every_t - timesteps = self.num_timesteps - if batch_size is not None: - b = batch_size if batch_size is not None else shape[0] - shape = [batch_size] + list(shape) - else: - b = batch_size = shape[0] - if x_T is None: - img = torch.randn(shape, device=self.device) - else: - img = x_T - intermediates = [] - if cond is not None: - if isinstance(cond, dict): - cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else - list(map(lambda x: x[:batch_size], cond[key])) for key in cond} - else: - cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] - - if start_T is not None: - timesteps = min(timesteps, start_T) - iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation', - total=timesteps) if verbose else reversed( - range(0, timesteps)) - if type(temperature) == float: - temperature = [temperature] * timesteps - - for i in iterator: - ts = torch.full((b,), i, device=self.device, dtype=torch.long) - if self.shorten_cond_schedule: - assert self.model.conditioning_key != 'hybrid' - tc = self.cond_ids[ts].to(cond.device) - cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) - - img, x0_partial = self.p_sample(img, cond, ts, - clip_denoised=self.clip_denoised, - quantize_denoised=quantize_denoised, return_x0=True, - temperature=temperature[i], noise_dropout=noise_dropout, - score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) - if mask is not None: - assert x0 is not None - img_orig = self.q_sample(x0, ts) - img = img_orig * mask + (1. - mask) * img - - if i % log_every_t == 0 or i == timesteps - 1: - intermediates.append(x0_partial) - if callback: callback(i) - if img_callback: img_callback(img, i) - return img, intermediates - - @torch.no_grad() - def p_sample_loop(self, cond, shape, return_intermediates=False, - x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False, - mask=None, x0=None, img_callback=None, start_T=None, - log_every_t=None): - - if not log_every_t: - log_every_t = self.log_every_t - device = self.betas.device - b = shape[0] - if x_T is None: - img = torch.randn(shape, device=device) - else: - img = x_T - - intermediates = [img] - if timesteps is None: - timesteps = self.num_timesteps - - if start_T is not None: - timesteps = min(timesteps, start_T) - iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed( - range(0, timesteps)) - - if mask is not None: - assert x0 is not None - assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match - - for i in iterator: - ts = torch.full((b,), i, device=device, dtype=torch.long) - if self.shorten_cond_schedule: - assert self.model.conditioning_key != 'hybrid' - tc = self.cond_ids[ts].to(cond.device) - cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) - - img = self.p_sample(img, cond, ts, - clip_denoised=self.clip_denoised, - quantize_denoised=quantize_denoised) - if mask is not None: - img_orig = self.q_sample(x0, ts) - img = img_orig * mask + (1. - mask) * img - - if i % log_every_t == 0 or i == timesteps - 1: - intermediates.append(img) - if callback: callback(i) - if img_callback: img_callback(img, i) - - if return_intermediates: - return img, intermediates - return img - - @torch.no_grad() - def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None, - verbose=True, timesteps=None, quantize_denoised=False, - mask=None, x0=None, shape=None,**kwargs): - if shape is None: - shape = (batch_size, self.channels, self.image_size, self.image_size) - if cond is not None: - if isinstance(cond, dict): - cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else - list(map(lambda x: x[:batch_size], cond[key])) for key in cond} - else: - cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] - return self.p_sample_loop(cond, - shape, - return_intermediates=return_intermediates, x_T=x_T, - verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised, - mask=mask, x0=x0) - - @torch.no_grad() - def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs): - - if ddim: - ddim_sampler = DDIMSampler(self) - shape = (self.channels, self.image_size, self.image_size) - samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size, - shape,cond,verbose=False,**kwargs) - - else: - samples, intermediates = self.sample(cond=cond, batch_size=batch_size, - return_intermediates=True,**kwargs) - - return samples, intermediates - - - @torch.no_grad() - def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None, - quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True, - plot_diffusion_rows=True, **kwargs): - - use_ddim = ddim_steps is not None - - log = dict() - z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, - return_first_stage_outputs=True, - force_c_encode=True, - return_original_cond=True, - bs=N) - N = min(x.shape[0], N) - n_row = min(x.shape[0], n_row) - log["inputs"] = x - log["reconstruction"] = xrec - if self.model.conditioning_key is not None: - if hasattr(self.cond_stage_model, "decode"): - xc = self.cond_stage_model.decode(c) - log["conditioning"] = xc - elif self.cond_stage_key in ["caption"]: - xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"]) - log["conditioning"] = xc - elif self.cond_stage_key == 'class_label': - xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"]) - log['conditioning'] = xc - elif isimage(xc): - log["conditioning"] = xc - if ismap(xc): - log["original_conditioning"] = self.to_rgb(xc) - - if plot_diffusion_rows: - # get diffusion row - diffusion_row = list() - z_start = z[:n_row] - for t in range(self.num_timesteps): - if t % self.log_every_t == 0 or t == self.num_timesteps - 1: - t = repeat(torch.tensor([t]), '1 -> b', b=n_row) - t = t.to(self.device).long() - noise = torch.randn_like(z_start) - z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) - diffusion_row.append(self.decode_first_stage(z_noisy)) - - diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W - diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w') - diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w') - diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) - log["diffusion_row"] = diffusion_grid - - if sample: - # get denoise row - with self.ema_scope("Plotting"): - samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, - ddim_steps=ddim_steps,eta=ddim_eta) - # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) - x_samples = self.decode_first_stage(samples) - log["samples"] = x_samples - if plot_denoise_rows: - denoise_grid = self._get_denoise_row_from_list(z_denoise_row) - log["denoise_row"] = denoise_grid - - if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance( - self.first_stage_model, IdentityFirstStage): - # also display when quantizing x0 while sampling - with self.ema_scope("Plotting Quantized Denoised"): - samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, - ddim_steps=ddim_steps,eta=ddim_eta, - quantize_denoised=True) - # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True, - # quantize_denoised=True) - x_samples = self.decode_first_stage(samples.to(self.device)) - log["samples_x0_quantized"] = x_samples - - if inpaint: - # make a simple center square - b, h, w = z.shape[0], z.shape[2], z.shape[3] - mask = torch.ones(N, h, w).to(self.device) - # zeros will be filled in - mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0. - mask = mask[:, None, ...] - with self.ema_scope("Plotting Inpaint"): - - samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta, - ddim_steps=ddim_steps, x0=z[:N], mask=mask) - x_samples = self.decode_first_stage(samples.to(self.device)) - log["samples_inpainting"] = x_samples - log["mask"] = mask - - # outpaint - with self.ema_scope("Plotting Outpaint"): - samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta, - ddim_steps=ddim_steps, x0=z[:N], mask=mask) - x_samples = self.decode_first_stage(samples.to(self.device)) - log["samples_outpainting"] = x_samples - - if plot_progressive_rows: - with self.ema_scope("Plotting Progressives"): - img, progressives = self.progressive_denoising(c, - shape=(self.channels, self.image_size, self.image_size), - batch_size=N) - prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation") - log["progressive_row"] = prog_row - - if return_keys: - if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: - return log - else: - return {key: log[key] for key in return_keys} - return log - - def configure_optimizers(self): - lr = self.learning_rate - params = list(self.model.parameters()) - if self.cond_stage_trainable: - print(f"{self.__class__.__name__}: Also optimizing conditioner params!") - params = params + list(self.cond_stage_model.parameters()) - if self.learn_logvar: - print('Diffusion model optimizing logvar') - params.append(self.logvar) - opt = torch.optim.AdamW(params, lr=lr) - if self.use_scheduler: - assert 'target' in self.scheduler_config - scheduler = instantiate_from_config(self.scheduler_config) - - print("Setting up LambdaLR scheduler...") - scheduler = [ - { - 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule), - 'interval': 'step', - 'frequency': 1 - }] - return [opt], scheduler - return opt - - @torch.no_grad() - def to_rgb(self, x): - x = x.float() - if not hasattr(self, "colorize"): - self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x) - x = nn.functional.conv2d(x, weight=self.colorize) - x = 2. * (x - x.min()) / (x.max() - x.min()) - 1. - return x - - -class DiffusionWrapperV1(pl.LightningModule): - def __init__(self, diff_model_config, conditioning_key): - super().__init__() - self.diffusion_model = instantiate_from_config(diff_model_config) - self.conditioning_key = conditioning_key - assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm'] - - def forward(self, x, t, c_concat: list = None, c_crossattn: list = None): - if self.conditioning_key is None: - out = self.diffusion_model(x, t) - elif self.conditioning_key == 'concat': - xc = torch.cat([x] + c_concat, dim=1) - out = self.diffusion_model(xc, t) - elif self.conditioning_key == 'crossattn': - cc = torch.cat(c_crossattn, 1) - out = self.diffusion_model(x, t, context=cc) - elif self.conditioning_key == 'hybrid': - xc = torch.cat([x] + c_concat, dim=1) - cc = torch.cat(c_crossattn, 1) - out = self.diffusion_model(xc, t, context=cc) - elif self.conditioning_key == 'adm': - cc = c_crossattn[0] - out = self.diffusion_model(x, t, y=cc) - else: - raise NotImplementedError() - - return out - - -class Layout2ImgDiffusionV1(LatentDiffusionV1): - # TODO: move all layout-specific hacks to this class - def __init__(self, cond_stage_key, *args, **kwargs): - assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"' - super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs) - - def log_images(self, batch, N=8, *args, **kwargs): - logs = super().log_images(batch=batch, N=N, *args, **kwargs) - - key = 'train' if self.training else 'validation' - dset = self.trainer.datamodule.datasets[key] - mapper = dset.conditional_builders[self.cond_stage_key] - - bbox_imgs = [] - map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno)) - for tknzd_bbox in batch[self.cond_stage_key][:N]: - bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256)) - bbox_imgs.append(bboximg) - - cond_img = torch.stack(bbox_imgs, dim=0) - logs['bbox_image'] = cond_img - return logs - -setattr(ldm.models.diffusion.ddpm, "DDPMV1", DDPMV1) -setattr(ldm.models.diffusion.ddpm, "LatentDiffusionV1", LatentDiffusionV1) -setattr(ldm.models.diffusion.ddpm, "DiffusionWrapperV1", DiffusionWrapperV1) -setattr(ldm.models.diffusion.ddpm, "Layout2ImgDiffusionV1", Layout2ImgDiffusionV1) diff --git a/spaces/james-oldfield/PandA/networks/genforce/datasets/distributed_sampler.py b/spaces/james-oldfield/PandA/networks/genforce/datasets/distributed_sampler.py deleted file mode 100644 index b62feb15113f20171b8797f2bdeff1eff9b4724d..0000000000000000000000000000000000000000 --- a/spaces/james-oldfield/PandA/networks/genforce/datasets/distributed_sampler.py +++ /dev/null @@ -1,144 +0,0 @@ -# python3.7 -"""Contains the distributed data sampler. - -This file is mostly borrowed from `torch/utils/data/distributed.py`. - -However, sometimes, initialize the data loader and data sampler can be time -consuming (since it will load a large amount of data at one time). To avoid -re-initializing the data loader again and again, we modified the sampler to -support loading the data for only one time and then repeating the data loader. -Please use the class member `repeat` to control how many times you want the -data load to repeat. After `repeat` times, the data will be re-loaded. - -NOTE: The number of repeat times should not be very large, especially when there -are too many samples in the dataset. We recommend to set `repeat = 500` for -datasets with ~50K samples. -""" - -# pylint: disable=line-too-long - -import math -from typing import TypeVar, Optional, Iterator - -import torch -from torch.utils.data import Sampler, Dataset -import torch.distributed as dist - - -T_co = TypeVar('T_co', covariant=True) - - -class DistributedSampler(Sampler): - r"""Sampler that restricts data loading to a subset of the dataset. - - It is especially useful in conjunction with - :class:`torch.nn.parallel.DistributedDataParallel`. In such a case, each - process can pass a :class:`~torch.utils.data.DistributedSampler` instance as a - :class:`~torch.utils.data.DataLoader` sampler, and load a subset of the - original dataset that is exclusive to it. - - .. note:: - Dataset is assumed to be of constant size. - - Arguments: - dataset: Dataset used for sampling. - num_replicas (int, optional): Number of processes participating in - distributed training. By default, :attr:`rank` is retrieved from the - current distributed group. - rank (int, optional): Rank of the current process within :attr:`num_replicas`. - By default, :attr:`rank` is retrieved from the current distributed - group. - shuffle (bool, optional): If ``True`` (default), sampler will shuffle the - indices. - seed (int, optional): random seed used to shuffle the sampler if - :attr:`shuffle=True`. This number should be identical across all - processes in the distributed group. Default: ``0``. - drop_last (bool, optional): if ``True``, then the sampler will drop the - tail of the data to make it evenly divisible across the number of - replicas. If ``False``, the sampler will add extra indices to make - the data evenly divisible across the replicas. Default: ``False``. - current_iter (int, optional): Number of current iteration. Default: ``0``. - repeat (int, optional): Repeating number of the whole dataloader. Default: ``1000``. - - .. warning:: - In distributed mode, calling the :meth:`set_epoch` method at - the beginning of each epoch **before** creating the :class:`DataLoader` iterator - is necessary to make shuffling work properly across multiple epochs. Otherwise, - the same ordering will be always used. - - """ - - def __init__(self, dataset: Dataset, num_replicas: Optional[int] = None, - rank: Optional[int] = None, shuffle: bool = True, - seed: int = 0, drop_last: bool = False, current_iter: int = 0, - repeat: int = 1000) -> None: - super().__init__(None) - if num_replicas is None: - if not dist.is_available(): - raise RuntimeError("Requires distributed package to be available") - num_replicas = dist.get_world_size() - if rank is None: - if not dist.is_available(): - raise RuntimeError("Requires distributed package to be available") - rank = dist.get_rank() - self.dataset = dataset - self.num_replicas = num_replicas - self.rank = rank - self.iter = current_iter - self.drop_last = drop_last - - # NOTE: self.dataset_length is `repeat X len(self.dataset)` - self.repeat = repeat - self.dataset_length = len(self.dataset) * self.repeat - - if self.drop_last and self.dataset_length % self.num_replicas != 0: - # Split to nearest available length that is evenly divisible. - # This is to ensure each rank receives the same amount of data when - # using this Sampler. - self.num_samples = math.ceil( - (self.dataset_length - self.num_replicas) / self.num_replicas - ) - else: - self.num_samples = math.ceil(self.dataset_length / self.num_replicas) - - - self.total_size = self.num_samples * self.num_replicas - self.shuffle = shuffle - self.seed = seed - self.__generate_indices__() - - def __generate_indices__(self) -> None: - g = torch.Generator() - indices_bank = [] - for iter_ in range(self.iter, self.iter + self.repeat): - g.manual_seed(self.seed + iter_) - indices = torch.randperm(len(self.dataset), generator=g).tolist() - indices_bank.extend(indices) - self.indices = indices_bank - - def __iter__(self) -> Iterator[T_co]: - if self.shuffle: - # deterministically shuffle based on iter and seed - indices = self.indices - else: - indices = list(range(self.dataset_length)) - - if not self.drop_last: - # add extra samples to make it evenly divisible - indices += indices[:(self.total_size - len(indices))] - else: - # remove tail of data to make it evenly divisible. - indices = indices[:self.total_size] - - # subsample - indices = indices[self.rank:self.total_size:self.num_replicas] - return iter(indices) - - def __len__(self) -> int: - return self.num_samples - - def __reset__(self, iteration: int) -> None: - self.iter = iteration - self.__generate_indices__() - -# pylint: enable=line-too-long diff --git a/spaces/jcenaa/Segment-Any-RGBD/datasets/prepare_ade20k_full_sem_seg.py b/spaces/jcenaa/Segment-Any-RGBD/datasets/prepare_ade20k_full_sem_seg.py deleted file mode 100644 index 4a55e039549ff0aaf928a4dddee7a94ea8d0f6bf..0000000000000000000000000000000000000000 --- a/spaces/jcenaa/Segment-Any-RGBD/datasets/prepare_ade20k_full_sem_seg.py +++ /dev/null @@ -1,1011 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# Copyright (c) Meta Platforms, Inc. All Rights Reserved - -import os -import pickle as pkl -from pathlib import Path - -import cv2 -import numpy as np -import tqdm -from PIL import Image - -ADE20K_SEM_SEG_FULL_CATEGORIES = [ - {"name": "wall", "id": 2978, "trainId": 0}, - {"name": "building, edifice", "id": 312, "trainId": 1}, - {"name": "sky", "id": 2420, "trainId": 2}, - {"name": "tree", "id": 2855, "trainId": 3}, - {"name": "road, route", "id": 2131, "trainId": 4}, - {"name": "floor, flooring", "id": 976, "trainId": 5}, - {"name": "ceiling", "id": 447, "trainId": 6}, - {"name": "bed", "id": 165, "trainId": 7}, - {"name": "sidewalk, pavement", "id": 2377, "trainId": 8}, - {"name": "earth, ground", "id": 838, "trainId": 9}, - {"name": "cabinet", "id": 350, "trainId": 10}, - {"name": "person, individual, someone, somebody, mortal, soul", "id": 1831, "trainId": 11}, - {"name": "grass", "id": 1125, "trainId": 12}, - {"name": "windowpane, window", "id": 3055, "trainId": 13}, - {"name": "car, auto, automobile, machine, motorcar", "id": 401, "trainId": 14}, - {"name": "mountain, mount", "id": 1610, "trainId": 15}, - {"name": "plant, flora, plant life", "id": 1910, "trainId": 16}, - {"name": "table", "id": 2684, "trainId": 17}, - {"name": "chair", "id": 471, "trainId": 18}, - {"name": "curtain, drape, drapery, mantle, pall", "id": 687, "trainId": 19}, - {"name": "door", "id": 774, "trainId": 20}, - {"name": "sofa, couch, lounge", "id": 2473, "trainId": 21}, - {"name": "sea", "id": 2264, "trainId": 22}, - {"name": "painting, picture", "id": 1735, "trainId": 23}, - {"name": "water", "id": 2994, "trainId": 24}, - {"name": "mirror", "id": 1564, "trainId": 25}, - {"name": "house", "id": 1276, "trainId": 26}, - {"name": "rug, carpet, carpeting", "id": 2178, "trainId": 27}, - {"name": "shelf", "id": 2329, "trainId": 28}, - {"name": "armchair", "id": 57, "trainId": 29}, - {"name": "fence, fencing", "id": 907, "trainId": 30}, - {"name": "field", "id": 913, "trainId": 31}, - {"name": "lamp", "id": 1395, "trainId": 32}, - {"name": "rock, stone", "id": 2138, "trainId": 33}, - {"name": "seat", "id": 2272, "trainId": 34}, - {"name": "river", "id": 2128, "trainId": 35}, - {"name": "desk", "id": 724, "trainId": 36}, - {"name": "bathtub, bathing tub, bath, tub", "id": 155, "trainId": 37}, - {"name": "railing, rail", "id": 2053, "trainId": 38}, - {"name": "signboard, sign", "id": 2380, "trainId": 39}, - {"name": "cushion", "id": 689, "trainId": 40}, - {"name": "path", "id": 1788, "trainId": 41}, - {"name": "work surface", "id": 3087, "trainId": 42}, - {"name": "stairs, steps", "id": 2530, "trainId": 43}, - {"name": "column, pillar", "id": 581, "trainId": 44}, - {"name": "sink", "id": 2388, "trainId": 45}, - {"name": "wardrobe, closet, press", "id": 2985, "trainId": 46}, - {"name": "snow", "id": 2454, "trainId": 47}, - {"name": "refrigerator, icebox", "id": 2096, "trainId": 48}, - {"name": "base, pedestal, stand", "id": 137, "trainId": 49}, - {"name": "bridge, span", "id": 294, "trainId": 50}, - {"name": "blind, screen", "id": 212, "trainId": 51}, - {"name": "runway", "id": 2185, "trainId": 52}, - {"name": "cliff, drop, drop-off", "id": 524, "trainId": 53}, - {"name": "sand", "id": 2212, "trainId": 54}, - {"name": "fireplace, hearth, open fireplace", "id": 943, "trainId": 55}, - {"name": "pillow", "id": 1869, "trainId": 56}, - {"name": "screen door, screen", "id": 2251, "trainId": 57}, - {"name": "toilet, can, commode, crapper, pot, potty, stool, throne", "id": 2793, "trainId": 58}, - {"name": "skyscraper", "id": 2423, "trainId": 59}, - {"name": "grandstand, covered stand", "id": 1121, "trainId": 60}, - {"name": "box", "id": 266, "trainId": 61}, - {"name": "pool table, billiard table, snooker table", "id": 1948, "trainId": 62}, - {"name": "palm, palm tree", "id": 1744, "trainId": 63}, - {"name": "double door", "id": 783, "trainId": 64}, - {"name": "coffee table, cocktail table", "id": 571, "trainId": 65}, - {"name": "counter", "id": 627, "trainId": 66}, - {"name": "countertop", "id": 629, "trainId": 67}, - {"name": "chest of drawers, chest, bureau, dresser", "id": 491, "trainId": 68}, - {"name": "kitchen island", "id": 1374, "trainId": 69}, - {"name": "boat", "id": 223, "trainId": 70}, - {"name": "waterfall, falls", "id": 3016, "trainId": 71}, - { - "name": "stove, kitchen stove, range, kitchen range, cooking stove", - "id": 2598, - "trainId": 72, - }, - {"name": "flower", "id": 978, "trainId": 73}, - {"name": "bookcase", "id": 239, "trainId": 74}, - {"name": "controls", "id": 608, "trainId": 75}, - {"name": "book", "id": 236, "trainId": 76}, - {"name": "stairway, staircase", "id": 2531, "trainId": 77}, - {"name": "streetlight, street lamp", "id": 2616, "trainId": 78}, - { - "name": "computer, computing machine, computing device, data processor, electronic computer, information processing system", - "id": 591, - "trainId": 79, - }, - { - "name": "bus, autobus, coach, charabanc, double-decker, jitney, motorbus, motorcoach, omnibus, passenger vehicle", - "id": 327, - "trainId": 80, - }, - {"name": "swivel chair", "id": 2679, "trainId": 81}, - {"name": "light, light source", "id": 1451, "trainId": 82}, - {"name": "bench", "id": 181, "trainId": 83}, - {"name": "case, display case, showcase, vitrine", "id": 420, "trainId": 84}, - {"name": "towel", "id": 2821, "trainId": 85}, - {"name": "fountain", "id": 1023, "trainId": 86}, - {"name": "embankment", "id": 855, "trainId": 87}, - { - "name": "television receiver, television, television set, tv, tv set, idiot box, boob tube, telly, goggle box", - "id": 2733, - "trainId": 88, - }, - {"name": "van", "id": 2928, "trainId": 89}, - {"name": "hill", "id": 1240, "trainId": 90}, - {"name": "awning, sunshade, sunblind", "id": 77, "trainId": 91}, - {"name": "poster, posting, placard, notice, bill, card", "id": 1969, "trainId": 92}, - {"name": "truck, motortruck", "id": 2880, "trainId": 93}, - {"name": "airplane, aeroplane, plane", "id": 14, "trainId": 94}, - {"name": "pole", "id": 1936, "trainId": 95}, - {"name": "tower", "id": 2828, "trainId": 96}, - {"name": "court", "id": 631, "trainId": 97}, - {"name": "ball", "id": 103, "trainId": 98}, - { - "name": "aircraft carrier, carrier, flattop, attack aircraft carrier", - "id": 3144, - "trainId": 99, - }, - {"name": "buffet, counter, sideboard", "id": 308, "trainId": 100}, - {"name": "hovel, hut, hutch, shack, shanty", "id": 1282, "trainId": 101}, - {"name": "apparel, wearing apparel, dress, clothes", "id": 38, "trainId": 102}, - {"name": "minibike, motorbike", "id": 1563, "trainId": 103}, - {"name": "animal, animate being, beast, brute, creature, fauna", "id": 29, "trainId": 104}, - {"name": "chandelier, pendant, pendent", "id": 480, "trainId": 105}, - {"name": "step, stair", "id": 2569, "trainId": 106}, - {"name": "booth, cubicle, stall, kiosk", "id": 247, "trainId": 107}, - {"name": "bicycle, bike, wheel, cycle", "id": 187, "trainId": 108}, - {"name": "doorframe, doorcase", "id": 778, "trainId": 109}, - {"name": "sconce", "id": 2243, "trainId": 110}, - {"name": "pond", "id": 1941, "trainId": 111}, - {"name": "trade name, brand name, brand, marque", "id": 2833, "trainId": 112}, - {"name": "bannister, banister, balustrade, balusters, handrail", "id": 120, "trainId": 113}, - {"name": "bag", "id": 95, "trainId": 114}, - {"name": "traffic light, traffic signal, stoplight", "id": 2836, "trainId": 115}, - {"name": "gazebo", "id": 1087, "trainId": 116}, - {"name": "escalator, moving staircase, moving stairway", "id": 868, "trainId": 117}, - {"name": "land, ground, soil", "id": 1401, "trainId": 118}, - {"name": "board, plank", "id": 220, "trainId": 119}, - {"name": "arcade machine", "id": 47, "trainId": 120}, - {"name": "eiderdown, duvet, continental quilt", "id": 843, "trainId": 121}, - {"name": "bar", "id": 123, "trainId": 122}, - {"name": "stall, stand, sales booth", "id": 2537, "trainId": 123}, - {"name": "playground", "id": 1927, "trainId": 124}, - {"name": "ship", "id": 2337, "trainId": 125}, - {"name": "ottoman, pouf, pouffe, puff, hassock", "id": 1702, "trainId": 126}, - { - "name": "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", - "id": 64, - "trainId": 127, - }, - {"name": "bottle", "id": 249, "trainId": 128}, - {"name": "cradle", "id": 642, "trainId": 129}, - {"name": "pot, flowerpot", "id": 1981, "trainId": 130}, - { - "name": "conveyer belt, conveyor belt, conveyer, conveyor, transporter", - "id": 609, - "trainId": 131, - }, - {"name": "train, railroad train", "id": 2840, "trainId": 132}, - {"name": "stool", "id": 2586, "trainId": 133}, - {"name": "lake", "id": 1393, "trainId": 134}, - {"name": "tank, storage tank", "id": 2704, "trainId": 135}, - {"name": "ice, water ice", "id": 1304, "trainId": 136}, - {"name": "basket, handbasket", "id": 146, "trainId": 137}, - {"name": "manhole", "id": 1494, "trainId": 138}, - {"name": "tent, collapsible shelter", "id": 2739, "trainId": 139}, - {"name": "canopy", "id": 389, "trainId": 140}, - {"name": "microwave, microwave oven", "id": 1551, "trainId": 141}, - {"name": "barrel, cask", "id": 131, "trainId": 142}, - {"name": "dirt track", "id": 738, "trainId": 143}, - {"name": "beam", "id": 161, "trainId": 144}, - {"name": "dishwasher, dish washer, dishwashing machine", "id": 747, "trainId": 145}, - {"name": "plate", "id": 1919, "trainId": 146}, - {"name": "screen, crt screen", "id": 3109, "trainId": 147}, - {"name": "ruins", "id": 2179, "trainId": 148}, - {"name": "washer, automatic washer, washing machine", "id": 2989, "trainId": 149}, - {"name": "blanket, cover", "id": 206, "trainId": 150}, - {"name": "plaything, toy", "id": 1930, "trainId": 151}, - {"name": "food, solid food", "id": 1002, "trainId": 152}, - {"name": "screen, silver screen, projection screen", "id": 2254, "trainId": 153}, - {"name": "oven", "id": 1708, "trainId": 154}, - {"name": "stage", "id": 2526, "trainId": 155}, - {"name": "beacon, lighthouse, beacon light, pharos", "id": 160, "trainId": 156}, - {"name": "umbrella", "id": 2901, "trainId": 157}, - {"name": "sculpture", "id": 2262, "trainId": 158}, - {"name": "aqueduct", "id": 44, "trainId": 159}, - {"name": "container", "id": 597, "trainId": 160}, - {"name": "scaffolding, staging", "id": 2235, "trainId": 161}, - {"name": "hood, exhaust hood", "id": 1260, "trainId": 162}, - {"name": "curb, curbing, kerb", "id": 682, "trainId": 163}, - {"name": "roller coaster", "id": 2151, "trainId": 164}, - {"name": "horse, equus caballus", "id": 3107, "trainId": 165}, - {"name": "catwalk", "id": 432, "trainId": 166}, - {"name": "glass, drinking glass", "id": 1098, "trainId": 167}, - {"name": "vase", "id": 2932, "trainId": 168}, - {"name": "central reservation", "id": 461, "trainId": 169}, - {"name": "carousel", "id": 410, "trainId": 170}, - {"name": "radiator", "id": 2046, "trainId": 171}, - {"name": "closet", "id": 533, "trainId": 172}, - {"name": "machine", "id": 1481, "trainId": 173}, - {"name": "pier, wharf, wharfage, dock", "id": 1858, "trainId": 174}, - {"name": "fan", "id": 894, "trainId": 175}, - {"name": "inflatable bounce game", "id": 1322, "trainId": 176}, - {"name": "pitch", "id": 1891, "trainId": 177}, - {"name": "paper", "id": 1756, "trainId": 178}, - {"name": "arcade, colonnade", "id": 49, "trainId": 179}, - {"name": "hot tub", "id": 1272, "trainId": 180}, - {"name": "helicopter", "id": 1229, "trainId": 181}, - {"name": "tray", "id": 2850, "trainId": 182}, - {"name": "partition, divider", "id": 1784, "trainId": 183}, - {"name": "vineyard", "id": 2962, "trainId": 184}, - {"name": "bowl", "id": 259, "trainId": 185}, - {"name": "bullring", "id": 319, "trainId": 186}, - {"name": "flag", "id": 954, "trainId": 187}, - {"name": "pot", "id": 1974, "trainId": 188}, - {"name": "footbridge, overcrossing, pedestrian bridge", "id": 1013, "trainId": 189}, - {"name": "shower", "id": 2356, "trainId": 190}, - {"name": "bag, traveling bag, travelling bag, grip, suitcase", "id": 97, "trainId": 191}, - {"name": "bulletin board, notice board", "id": 318, "trainId": 192}, - {"name": "confessional booth", "id": 592, "trainId": 193}, - {"name": "trunk, tree trunk, bole", "id": 2885, "trainId": 194}, - {"name": "forest", "id": 1017, "trainId": 195}, - {"name": "elevator door", "id": 851, "trainId": 196}, - {"name": "laptop, laptop computer", "id": 1407, "trainId": 197}, - {"name": "instrument panel", "id": 1332, "trainId": 198}, - {"name": "bucket, pail", "id": 303, "trainId": 199}, - {"name": "tapestry, tapis", "id": 2714, "trainId": 200}, - {"name": "platform", "id": 1924, "trainId": 201}, - {"name": "jacket", "id": 1346, "trainId": 202}, - {"name": "gate", "id": 1081, "trainId": 203}, - {"name": "monitor, monitoring device", "id": 1583, "trainId": 204}, - { - "name": "telephone booth, phone booth, call box, telephone box, telephone kiosk", - "id": 2727, - "trainId": 205, - }, - {"name": "spotlight, spot", "id": 2509, "trainId": 206}, - {"name": "ring", "id": 2123, "trainId": 207}, - {"name": "control panel", "id": 602, "trainId": 208}, - {"name": "blackboard, chalkboard", "id": 202, "trainId": 209}, - {"name": "air conditioner, air conditioning", "id": 10, "trainId": 210}, - {"name": "chest", "id": 490, "trainId": 211}, - {"name": "clock", "id": 530, "trainId": 212}, - {"name": "sand dune", "id": 2213, "trainId": 213}, - {"name": "pipe, pipage, piping", "id": 1884, "trainId": 214}, - {"name": "vault", "id": 2934, "trainId": 215}, - {"name": "table football", "id": 2687, "trainId": 216}, - {"name": "cannon", "id": 387, "trainId": 217}, - {"name": "swimming pool, swimming bath, natatorium", "id": 2668, "trainId": 218}, - {"name": "fluorescent, fluorescent fixture", "id": 982, "trainId": 219}, - {"name": "statue", "id": 2547, "trainId": 220}, - { - "name": "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", - "id": 1474, - "trainId": 221, - }, - {"name": "exhibitor", "id": 877, "trainId": 222}, - {"name": "ladder", "id": 1391, "trainId": 223}, - {"name": "carport", "id": 414, "trainId": 224}, - {"name": "dam", "id": 698, "trainId": 225}, - {"name": "pulpit", "id": 2019, "trainId": 226}, - {"name": "skylight, fanlight", "id": 2422, "trainId": 227}, - {"name": "water tower", "id": 3010, "trainId": 228}, - {"name": "grill, grille, grillwork", "id": 1139, "trainId": 229}, - {"name": "display board", "id": 753, "trainId": 230}, - {"name": "pane, pane of glass, window glass", "id": 1747, "trainId": 231}, - {"name": "rubbish, trash, scrap", "id": 2175, "trainId": 232}, - {"name": "ice rink", "id": 1301, "trainId": 233}, - {"name": "fruit", "id": 1033, "trainId": 234}, - {"name": "patio", "id": 1789, "trainId": 235}, - {"name": "vending machine", "id": 2939, "trainId": 236}, - {"name": "telephone, phone, telephone set", "id": 2730, "trainId": 237}, - {"name": "net", "id": 1652, "trainId": 238}, - { - "name": "backpack, back pack, knapsack, packsack, rucksack, haversack", - "id": 90, - "trainId": 239, - }, - {"name": "jar", "id": 1349, "trainId": 240}, - {"name": "track", "id": 2830, "trainId": 241}, - {"name": "magazine", "id": 1485, "trainId": 242}, - {"name": "shutter", "id": 2370, "trainId": 243}, - {"name": "roof", "id": 2155, "trainId": 244}, - {"name": "banner, streamer", "id": 118, "trainId": 245}, - {"name": "landfill", "id": 1402, "trainId": 246}, - {"name": "post", "id": 1957, "trainId": 247}, - {"name": "altarpiece, reredos", "id": 3130, "trainId": 248}, - {"name": "hat, chapeau, lid", "id": 1197, "trainId": 249}, - {"name": "arch, archway", "id": 52, "trainId": 250}, - {"name": "table game", "id": 2688, "trainId": 251}, - {"name": "bag, handbag, pocketbook, purse", "id": 96, "trainId": 252}, - {"name": "document, written document, papers", "id": 762, "trainId": 253}, - {"name": "dome", "id": 772, "trainId": 254}, - {"name": "pier", "id": 1857, "trainId": 255}, - {"name": "shanties", "id": 2315, "trainId": 256}, - {"name": "forecourt", "id": 1016, "trainId": 257}, - {"name": "crane", "id": 643, "trainId": 258}, - {"name": "dog, domestic dog, canis familiaris", "id": 3105, "trainId": 259}, - {"name": "piano, pianoforte, forte-piano", "id": 1849, "trainId": 260}, - {"name": "drawing", "id": 791, "trainId": 261}, - {"name": "cabin", "id": 349, "trainId": 262}, - { - "name": "ad, advertisement, advertizement, advertising, advertizing, advert", - "id": 6, - "trainId": 263, - }, - {"name": "amphitheater, amphitheatre, coliseum", "id": 3114, "trainId": 264}, - {"name": "monument", "id": 1587, "trainId": 265}, - {"name": "henhouse", "id": 1233, "trainId": 266}, - {"name": "cockpit", "id": 559, "trainId": 267}, - {"name": "heater, warmer", "id": 1223, "trainId": 268}, - {"name": "windmill, aerogenerator, wind generator", "id": 3049, "trainId": 269}, - {"name": "pool", "id": 1943, "trainId": 270}, - {"name": "elevator, lift", "id": 853, "trainId": 271}, - {"name": "decoration, ornament, ornamentation", "id": 709, "trainId": 272}, - {"name": "labyrinth", "id": 1390, "trainId": 273}, - {"name": "text, textual matter", "id": 2748, "trainId": 274}, - {"name": "printer", "id": 2007, "trainId": 275}, - {"name": "mezzanine, first balcony", "id": 1546, "trainId": 276}, - {"name": "mattress", "id": 1513, "trainId": 277}, - {"name": "straw", "id": 2600, "trainId": 278}, - {"name": "stalls", "id": 2538, "trainId": 279}, - {"name": "patio, terrace", "id": 1790, "trainId": 280}, - {"name": "billboard, hoarding", "id": 194, "trainId": 281}, - {"name": "bus stop", "id": 326, "trainId": 282}, - {"name": "trouser, pant", "id": 2877, "trainId": 283}, - {"name": "console table, console", "id": 594, "trainId": 284}, - {"name": "rack", "id": 2036, "trainId": 285}, - {"name": "notebook", "id": 1662, "trainId": 286}, - {"name": "shrine", "id": 2366, "trainId": 287}, - {"name": "pantry", "id": 1754, "trainId": 288}, - {"name": "cart", "id": 418, "trainId": 289}, - {"name": "steam shovel", "id": 2553, "trainId": 290}, - {"name": "porch", "id": 1951, "trainId": 291}, - {"name": "postbox, mailbox, letter box", "id": 1963, "trainId": 292}, - {"name": "figurine, statuette", "id": 918, "trainId": 293}, - {"name": "recycling bin", "id": 2086, "trainId": 294}, - {"name": "folding screen", "id": 997, "trainId": 295}, - {"name": "telescope", "id": 2731, "trainId": 296}, - {"name": "deck chair, beach chair", "id": 704, "trainId": 297}, - {"name": "kennel", "id": 1365, "trainId": 298}, - {"name": "coffee maker", "id": 569, "trainId": 299}, - {"name": "altar, communion table, lord's table", "id": 3108, "trainId": 300}, - {"name": "fish", "id": 948, "trainId": 301}, - {"name": "easel", "id": 839, "trainId": 302}, - {"name": "artificial golf green", "id": 63, "trainId": 303}, - {"name": "iceberg", "id": 1305, "trainId": 304}, - {"name": "candlestick, candle holder", "id": 378, "trainId": 305}, - {"name": "shower stall, shower bath", "id": 2362, "trainId": 306}, - {"name": "television stand", "id": 2734, "trainId": 307}, - { - "name": "wall socket, wall plug, electric outlet, electrical outlet, outlet, electric receptacle", - "id": 2982, - "trainId": 308, - }, - {"name": "skeleton", "id": 2398, "trainId": 309}, - {"name": "grand piano, grand", "id": 1119, "trainId": 310}, - {"name": "candy, confect", "id": 382, "trainId": 311}, - {"name": "grille door", "id": 1141, "trainId": 312}, - {"name": "pedestal, plinth, footstall", "id": 1805, "trainId": 313}, - {"name": "jersey, t-shirt, tee shirt", "id": 3102, "trainId": 314}, - {"name": "shoe", "id": 2341, "trainId": 315}, - {"name": "gravestone, headstone, tombstone", "id": 1131, "trainId": 316}, - {"name": "shanty", "id": 2316, "trainId": 317}, - {"name": "structure", "id": 2626, "trainId": 318}, - {"name": "rocking chair, rocker", "id": 3104, "trainId": 319}, - {"name": "bird", "id": 198, "trainId": 320}, - {"name": "place mat", "id": 1896, "trainId": 321}, - {"name": "tomb", "id": 2800, "trainId": 322}, - {"name": "big top", "id": 190, "trainId": 323}, - {"name": "gas pump, gasoline pump, petrol pump, island dispenser", "id": 3131, "trainId": 324}, - {"name": "lockers", "id": 1463, "trainId": 325}, - {"name": "cage", "id": 357, "trainId": 326}, - {"name": "finger", "id": 929, "trainId": 327}, - {"name": "bleachers", "id": 209, "trainId": 328}, - {"name": "ferris wheel", "id": 912, "trainId": 329}, - {"name": "hairdresser chair", "id": 1164, "trainId": 330}, - {"name": "mat", "id": 1509, "trainId": 331}, - {"name": "stands", "id": 2539, "trainId": 332}, - {"name": "aquarium, fish tank, marine museum", "id": 3116, "trainId": 333}, - {"name": "streetcar, tram, tramcar, trolley, trolley car", "id": 2615, "trainId": 334}, - {"name": "napkin, table napkin, serviette", "id": 1644, "trainId": 335}, - {"name": "dummy", "id": 818, "trainId": 336}, - {"name": "booklet, brochure, folder, leaflet, pamphlet", "id": 242, "trainId": 337}, - {"name": "sand trap", "id": 2217, "trainId": 338}, - {"name": "shop, store", "id": 2347, "trainId": 339}, - {"name": "table cloth", "id": 2686, "trainId": 340}, - {"name": "service station", "id": 2300, "trainId": 341}, - {"name": "coffin", "id": 572, "trainId": 342}, - {"name": "drawer", "id": 789, "trainId": 343}, - {"name": "cages", "id": 358, "trainId": 344}, - {"name": "slot machine, coin machine", "id": 2443, "trainId": 345}, - {"name": "balcony", "id": 101, "trainId": 346}, - {"name": "volleyball court", "id": 2969, "trainId": 347}, - {"name": "table tennis", "id": 2692, "trainId": 348}, - {"name": "control table", "id": 606, "trainId": 349}, - {"name": "shirt", "id": 2339, "trainId": 350}, - {"name": "merchandise, ware, product", "id": 1533, "trainId": 351}, - {"name": "railway", "id": 2060, "trainId": 352}, - {"name": "parterre", "id": 1782, "trainId": 353}, - {"name": "chimney", "id": 495, "trainId": 354}, - {"name": "can, tin, tin can", "id": 371, "trainId": 355}, - {"name": "tanks", "id": 2707, "trainId": 356}, - {"name": "fabric, cloth, material, textile", "id": 889, "trainId": 357}, - {"name": "alga, algae", "id": 3156, "trainId": 358}, - {"name": "system", "id": 2683, "trainId": 359}, - {"name": "map", "id": 1499, "trainId": 360}, - {"name": "greenhouse", "id": 1135, "trainId": 361}, - {"name": "mug", "id": 1619, "trainId": 362}, - {"name": "barbecue", "id": 125, "trainId": 363}, - {"name": "trailer", "id": 2838, "trainId": 364}, - {"name": "toilet tissue, toilet paper, bathroom tissue", "id": 2792, "trainId": 365}, - {"name": "organ", "id": 1695, "trainId": 366}, - {"name": "dishrag, dishcloth", "id": 746, "trainId": 367}, - {"name": "island", "id": 1343, "trainId": 368}, - {"name": "keyboard", "id": 1370, "trainId": 369}, - {"name": "trench", "id": 2858, "trainId": 370}, - {"name": "basket, basketball hoop, hoop", "id": 145, "trainId": 371}, - {"name": "steering wheel, wheel", "id": 2565, "trainId": 372}, - {"name": "pitcher, ewer", "id": 1892, "trainId": 373}, - {"name": "goal", "id": 1103, "trainId": 374}, - {"name": "bread, breadstuff, staff of life", "id": 286, "trainId": 375}, - {"name": "beds", "id": 170, "trainId": 376}, - {"name": "wood", "id": 3073, "trainId": 377}, - {"name": "file cabinet", "id": 922, "trainId": 378}, - {"name": "newspaper, paper", "id": 1655, "trainId": 379}, - {"name": "motorboat", "id": 1602, "trainId": 380}, - {"name": "rope", "id": 2160, "trainId": 381}, - {"name": "guitar", "id": 1151, "trainId": 382}, - {"name": "rubble", "id": 2176, "trainId": 383}, - {"name": "scarf", "id": 2239, "trainId": 384}, - {"name": "barrels", "id": 132, "trainId": 385}, - {"name": "cap", "id": 394, "trainId": 386}, - {"name": "leaves", "id": 1424, "trainId": 387}, - {"name": "control tower", "id": 607, "trainId": 388}, - {"name": "dashboard", "id": 700, "trainId": 389}, - {"name": "bandstand", "id": 116, "trainId": 390}, - {"name": "lectern", "id": 1425, "trainId": 391}, - {"name": "switch, electric switch, electrical switch", "id": 2676, "trainId": 392}, - {"name": "baseboard, mopboard, skirting board", "id": 141, "trainId": 393}, - {"name": "shower room", "id": 2360, "trainId": 394}, - {"name": "smoke", "id": 2449, "trainId": 395}, - {"name": "faucet, spigot", "id": 897, "trainId": 396}, - {"name": "bulldozer", "id": 317, "trainId": 397}, - {"name": "saucepan", "id": 2228, "trainId": 398}, - {"name": "shops", "id": 2351, "trainId": 399}, - {"name": "meter", "id": 1543, "trainId": 400}, - {"name": "crevasse", "id": 656, "trainId": 401}, - {"name": "gear", "id": 1088, "trainId": 402}, - {"name": "candelabrum, candelabra", "id": 373, "trainId": 403}, - {"name": "sofa bed", "id": 2472, "trainId": 404}, - {"name": "tunnel", "id": 2892, "trainId": 405}, - {"name": "pallet", "id": 1740, "trainId": 406}, - {"name": "wire, conducting wire", "id": 3067, "trainId": 407}, - {"name": "kettle, boiler", "id": 1367, "trainId": 408}, - {"name": "bidet", "id": 188, "trainId": 409}, - { - "name": "baby buggy, baby carriage, carriage, perambulator, pram, stroller, go-cart, pushchair, pusher", - "id": 79, - "trainId": 410, - }, - {"name": "music stand", "id": 1633, "trainId": 411}, - {"name": "pipe, tube", "id": 1885, "trainId": 412}, - {"name": "cup", "id": 677, "trainId": 413}, - {"name": "parking meter", "id": 1779, "trainId": 414}, - {"name": "ice hockey rink", "id": 1297, "trainId": 415}, - {"name": "shelter", "id": 2334, "trainId": 416}, - {"name": "weeds", "id": 3027, "trainId": 417}, - {"name": "temple", "id": 2735, "trainId": 418}, - {"name": "patty, cake", "id": 1791, "trainId": 419}, - {"name": "ski slope", "id": 2405, "trainId": 420}, - {"name": "panel", "id": 1748, "trainId": 421}, - {"name": "wallet", "id": 2983, "trainId": 422}, - {"name": "wheel", "id": 3035, "trainId": 423}, - {"name": "towel rack, towel horse", "id": 2824, "trainId": 424}, - {"name": "roundabout", "id": 2168, "trainId": 425}, - {"name": "canister, cannister, tin", "id": 385, "trainId": 426}, - {"name": "rod", "id": 2148, "trainId": 427}, - {"name": "soap dispenser", "id": 2465, "trainId": 428}, - {"name": "bell", "id": 175, "trainId": 429}, - {"name": "canvas", "id": 390, "trainId": 430}, - {"name": "box office, ticket office, ticket booth", "id": 268, "trainId": 431}, - {"name": "teacup", "id": 2722, "trainId": 432}, - {"name": "trellis", "id": 2857, "trainId": 433}, - {"name": "workbench", "id": 3088, "trainId": 434}, - {"name": "valley, vale", "id": 2926, "trainId": 435}, - {"name": "toaster", "id": 2782, "trainId": 436}, - {"name": "knife", "id": 1378, "trainId": 437}, - {"name": "podium", "id": 1934, "trainId": 438}, - {"name": "ramp", "id": 2072, "trainId": 439}, - {"name": "tumble dryer", "id": 2889, "trainId": 440}, - {"name": "fireplug, fire hydrant, plug", "id": 944, "trainId": 441}, - {"name": "gym shoe, sneaker, tennis shoe", "id": 1158, "trainId": 442}, - {"name": "lab bench", "id": 1383, "trainId": 443}, - {"name": "equipment", "id": 867, "trainId": 444}, - {"name": "rocky formation", "id": 2145, "trainId": 445}, - {"name": "plastic", "id": 1915, "trainId": 446}, - {"name": "calendar", "id": 361, "trainId": 447}, - {"name": "caravan", "id": 402, "trainId": 448}, - {"name": "check-in-desk", "id": 482, "trainId": 449}, - {"name": "ticket counter", "id": 2761, "trainId": 450}, - {"name": "brush", "id": 300, "trainId": 451}, - {"name": "mill", "id": 1554, "trainId": 452}, - {"name": "covered bridge", "id": 636, "trainId": 453}, - {"name": "bowling alley", "id": 260, "trainId": 454}, - {"name": "hanger", "id": 1186, "trainId": 455}, - {"name": "excavator", "id": 871, "trainId": 456}, - {"name": "trestle", "id": 2859, "trainId": 457}, - {"name": "revolving door", "id": 2103, "trainId": 458}, - {"name": "blast furnace", "id": 208, "trainId": 459}, - {"name": "scale, weighing machine", "id": 2236, "trainId": 460}, - {"name": "projector", "id": 2012, "trainId": 461}, - {"name": "soap", "id": 2462, "trainId": 462}, - {"name": "locker", "id": 1462, "trainId": 463}, - {"name": "tractor", "id": 2832, "trainId": 464}, - {"name": "stretcher", "id": 2617, "trainId": 465}, - {"name": "frame", "id": 1024, "trainId": 466}, - {"name": "grating", "id": 1129, "trainId": 467}, - {"name": "alembic", "id": 18, "trainId": 468}, - {"name": "candle, taper, wax light", "id": 376, "trainId": 469}, - {"name": "barrier", "id": 134, "trainId": 470}, - {"name": "cardboard", "id": 407, "trainId": 471}, - {"name": "cave", "id": 434, "trainId": 472}, - {"name": "puddle", "id": 2017, "trainId": 473}, - {"name": "tarp", "id": 2717, "trainId": 474}, - {"name": "price tag", "id": 2005, "trainId": 475}, - {"name": "watchtower", "id": 2993, "trainId": 476}, - {"name": "meters", "id": 1545, "trainId": 477}, - { - "name": "light bulb, lightbulb, bulb, incandescent lamp, electric light, electric-light bulb", - "id": 1445, - "trainId": 478, - }, - {"name": "tracks", "id": 2831, "trainId": 479}, - {"name": "hair dryer", "id": 1161, "trainId": 480}, - {"name": "skirt", "id": 2411, "trainId": 481}, - {"name": "viaduct", "id": 2949, "trainId": 482}, - {"name": "paper towel", "id": 1769, "trainId": 483}, - {"name": "coat", "id": 552, "trainId": 484}, - {"name": "sheet", "id": 2327, "trainId": 485}, - {"name": "fire extinguisher, extinguisher, asphyxiator", "id": 939, "trainId": 486}, - {"name": "water wheel", "id": 3013, "trainId": 487}, - {"name": "pottery, clayware", "id": 1986, "trainId": 488}, - {"name": "magazine rack", "id": 1486, "trainId": 489}, - {"name": "teapot", "id": 2723, "trainId": 490}, - {"name": "microphone, mike", "id": 1549, "trainId": 491}, - {"name": "support", "id": 2649, "trainId": 492}, - {"name": "forklift", "id": 1020, "trainId": 493}, - {"name": "canyon", "id": 392, "trainId": 494}, - {"name": "cash register, register", "id": 422, "trainId": 495}, - {"name": "leaf, leafage, foliage", "id": 1419, "trainId": 496}, - {"name": "remote control, remote", "id": 2099, "trainId": 497}, - {"name": "soap dish", "id": 2464, "trainId": 498}, - {"name": "windshield, windscreen", "id": 3058, "trainId": 499}, - {"name": "cat", "id": 430, "trainId": 500}, - {"name": "cue, cue stick, pool cue, pool stick", "id": 675, "trainId": 501}, - {"name": "vent, venthole, vent-hole, blowhole", "id": 2941, "trainId": 502}, - {"name": "videos", "id": 2955, "trainId": 503}, - {"name": "shovel", "id": 2355, "trainId": 504}, - {"name": "eaves", "id": 840, "trainId": 505}, - {"name": "antenna, aerial, transmitting aerial", "id": 32, "trainId": 506}, - {"name": "shipyard", "id": 2338, "trainId": 507}, - {"name": "hen, biddy", "id": 1232, "trainId": 508}, - {"name": "traffic cone", "id": 2834, "trainId": 509}, - {"name": "washing machines", "id": 2991, "trainId": 510}, - {"name": "truck crane", "id": 2879, "trainId": 511}, - {"name": "cds", "id": 444, "trainId": 512}, - {"name": "niche", "id": 1657, "trainId": 513}, - {"name": "scoreboard", "id": 2246, "trainId": 514}, - {"name": "briefcase", "id": 296, "trainId": 515}, - {"name": "boot", "id": 245, "trainId": 516}, - {"name": "sweater, jumper", "id": 2661, "trainId": 517}, - {"name": "hay", "id": 1202, "trainId": 518}, - {"name": "pack", "id": 1714, "trainId": 519}, - {"name": "bottle rack", "id": 251, "trainId": 520}, - {"name": "glacier", "id": 1095, "trainId": 521}, - {"name": "pergola", "id": 1828, "trainId": 522}, - {"name": "building materials", "id": 311, "trainId": 523}, - {"name": "television camera", "id": 2732, "trainId": 524}, - {"name": "first floor", "id": 947, "trainId": 525}, - {"name": "rifle", "id": 2115, "trainId": 526}, - {"name": "tennis table", "id": 2738, "trainId": 527}, - {"name": "stadium", "id": 2525, "trainId": 528}, - {"name": "safety belt", "id": 2194, "trainId": 529}, - {"name": "cover", "id": 634, "trainId": 530}, - {"name": "dish rack", "id": 740, "trainId": 531}, - {"name": "synthesizer", "id": 2682, "trainId": 532}, - {"name": "pumpkin", "id": 2020, "trainId": 533}, - {"name": "gutter", "id": 1156, "trainId": 534}, - {"name": "fruit stand", "id": 1036, "trainId": 535}, - {"name": "ice floe, floe", "id": 1295, "trainId": 536}, - {"name": "handle, grip, handgrip, hold", "id": 1181, "trainId": 537}, - {"name": "wheelchair", "id": 3037, "trainId": 538}, - {"name": "mousepad, mouse mat", "id": 1614, "trainId": 539}, - {"name": "diploma", "id": 736, "trainId": 540}, - {"name": "fairground ride", "id": 893, "trainId": 541}, - {"name": "radio", "id": 2047, "trainId": 542}, - {"name": "hotplate", "id": 1274, "trainId": 543}, - {"name": "junk", "id": 1361, "trainId": 544}, - {"name": "wheelbarrow", "id": 3036, "trainId": 545}, - {"name": "stream", "id": 2606, "trainId": 546}, - {"name": "toll plaza", "id": 2797, "trainId": 547}, - {"name": "punching bag", "id": 2022, "trainId": 548}, - {"name": "trough", "id": 2876, "trainId": 549}, - {"name": "throne", "id": 2758, "trainId": 550}, - {"name": "chair desk", "id": 472, "trainId": 551}, - {"name": "weighbridge", "id": 3028, "trainId": 552}, - {"name": "extractor fan", "id": 882, "trainId": 553}, - {"name": "hanging clothes", "id": 1189, "trainId": 554}, - {"name": "dish, dish aerial, dish antenna, saucer", "id": 743, "trainId": 555}, - {"name": "alarm clock, alarm", "id": 3122, "trainId": 556}, - {"name": "ski lift", "id": 2401, "trainId": 557}, - {"name": "chain", "id": 468, "trainId": 558}, - {"name": "garage", "id": 1061, "trainId": 559}, - {"name": "mechanical shovel", "id": 1523, "trainId": 560}, - {"name": "wine rack", "id": 3059, "trainId": 561}, - {"name": "tramway", "id": 2843, "trainId": 562}, - {"name": "treadmill", "id": 2853, "trainId": 563}, - {"name": "menu", "id": 1529, "trainId": 564}, - {"name": "block", "id": 214, "trainId": 565}, - {"name": "well", "id": 3032, "trainId": 566}, - {"name": "witness stand", "id": 3071, "trainId": 567}, - {"name": "branch", "id": 277, "trainId": 568}, - {"name": "duck", "id": 813, "trainId": 569}, - {"name": "casserole", "id": 426, "trainId": 570}, - {"name": "frying pan", "id": 1039, "trainId": 571}, - {"name": "desk organizer", "id": 727, "trainId": 572}, - {"name": "mast", "id": 1508, "trainId": 573}, - {"name": "spectacles, specs, eyeglasses, glasses", "id": 2490, "trainId": 574}, - {"name": "service elevator", "id": 2299, "trainId": 575}, - {"name": "dollhouse", "id": 768, "trainId": 576}, - {"name": "hammock", "id": 1172, "trainId": 577}, - {"name": "clothes hanging", "id": 537, "trainId": 578}, - {"name": "photocopier", "id": 1847, "trainId": 579}, - {"name": "notepad", "id": 1664, "trainId": 580}, - {"name": "golf cart", "id": 1110, "trainId": 581}, - {"name": "footpath", "id": 1014, "trainId": 582}, - {"name": "cross", "id": 662, "trainId": 583}, - {"name": "baptismal font", "id": 121, "trainId": 584}, - {"name": "boiler", "id": 227, "trainId": 585}, - {"name": "skip", "id": 2410, "trainId": 586}, - {"name": "rotisserie", "id": 2165, "trainId": 587}, - {"name": "tables", "id": 2696, "trainId": 588}, - {"name": "water mill", "id": 3005, "trainId": 589}, - {"name": "helmet", "id": 1231, "trainId": 590}, - {"name": "cover curtain", "id": 635, "trainId": 591}, - {"name": "brick", "id": 292, "trainId": 592}, - {"name": "table runner", "id": 2690, "trainId": 593}, - {"name": "ashtray", "id": 65, "trainId": 594}, - {"name": "street box", "id": 2607, "trainId": 595}, - {"name": "stick", "id": 2574, "trainId": 596}, - {"name": "hangers", "id": 1188, "trainId": 597}, - {"name": "cells", "id": 456, "trainId": 598}, - {"name": "urinal", "id": 2913, "trainId": 599}, - {"name": "centerpiece", "id": 459, "trainId": 600}, - {"name": "portable fridge", "id": 1955, "trainId": 601}, - {"name": "dvds", "id": 827, "trainId": 602}, - {"name": "golf club", "id": 1111, "trainId": 603}, - {"name": "skirting board", "id": 2412, "trainId": 604}, - {"name": "water cooler", "id": 2997, "trainId": 605}, - {"name": "clipboard", "id": 528, "trainId": 606}, - {"name": "camera, photographic camera", "id": 366, "trainId": 607}, - {"name": "pigeonhole", "id": 1863, "trainId": 608}, - {"name": "chips", "id": 500, "trainId": 609}, - {"name": "food processor", "id": 1001, "trainId": 610}, - {"name": "post box", "id": 1958, "trainId": 611}, - {"name": "lid", "id": 1441, "trainId": 612}, - {"name": "drum", "id": 809, "trainId": 613}, - {"name": "blender", "id": 210, "trainId": 614}, - {"name": "cave entrance", "id": 435, "trainId": 615}, - {"name": "dental chair", "id": 718, "trainId": 616}, - {"name": "obelisk", "id": 1674, "trainId": 617}, - {"name": "canoe", "id": 388, "trainId": 618}, - {"name": "mobile", "id": 1572, "trainId": 619}, - {"name": "monitors", "id": 1584, "trainId": 620}, - {"name": "pool ball", "id": 1944, "trainId": 621}, - {"name": "cue rack", "id": 674, "trainId": 622}, - {"name": "baggage carts", "id": 99, "trainId": 623}, - {"name": "shore", "id": 2352, "trainId": 624}, - {"name": "fork", "id": 1019, "trainId": 625}, - {"name": "paper filer", "id": 1763, "trainId": 626}, - {"name": "bicycle rack", "id": 185, "trainId": 627}, - {"name": "coat rack", "id": 554, "trainId": 628}, - {"name": "garland", "id": 1066, "trainId": 629}, - {"name": "sports bag", "id": 2508, "trainId": 630}, - {"name": "fish tank", "id": 951, "trainId": 631}, - {"name": "towel dispenser", "id": 2822, "trainId": 632}, - {"name": "carriage", "id": 415, "trainId": 633}, - {"name": "brochure", "id": 297, "trainId": 634}, - {"name": "plaque", "id": 1914, "trainId": 635}, - {"name": "stringer", "id": 2619, "trainId": 636}, - {"name": "iron", "id": 1338, "trainId": 637}, - {"name": "spoon", "id": 2505, "trainId": 638}, - {"name": "flag pole", "id": 955, "trainId": 639}, - {"name": "toilet brush", "id": 2786, "trainId": 640}, - {"name": "book stand", "id": 238, "trainId": 641}, - {"name": "water faucet, water tap, tap, hydrant", "id": 3000, "trainId": 642}, - {"name": "ticket office", "id": 2763, "trainId": 643}, - {"name": "broom", "id": 299, "trainId": 644}, - {"name": "dvd", "id": 822, "trainId": 645}, - {"name": "ice bucket", "id": 1288, "trainId": 646}, - {"name": "carapace, shell, cuticle, shield", "id": 3101, "trainId": 647}, - {"name": "tureen", "id": 2894, "trainId": 648}, - {"name": "folders", "id": 992, "trainId": 649}, - {"name": "chess", "id": 489, "trainId": 650}, - {"name": "root", "id": 2157, "trainId": 651}, - {"name": "sewing machine", "id": 2309, "trainId": 652}, - {"name": "model", "id": 1576, "trainId": 653}, - {"name": "pen", "id": 1810, "trainId": 654}, - {"name": "violin", "id": 2964, "trainId": 655}, - {"name": "sweatshirt", "id": 2662, "trainId": 656}, - {"name": "recycling materials", "id": 2087, "trainId": 657}, - {"name": "mitten", "id": 1569, "trainId": 658}, - {"name": "chopping board, cutting board", "id": 503, "trainId": 659}, - {"name": "mask", "id": 1505, "trainId": 660}, - {"name": "log", "id": 1468, "trainId": 661}, - {"name": "mouse, computer mouse", "id": 1613, "trainId": 662}, - {"name": "grill", "id": 1138, "trainId": 663}, - {"name": "hole", "id": 1256, "trainId": 664}, - {"name": "target", "id": 2715, "trainId": 665}, - {"name": "trash bag", "id": 2846, "trainId": 666}, - {"name": "chalk", "id": 477, "trainId": 667}, - {"name": "sticks", "id": 2576, "trainId": 668}, - {"name": "balloon", "id": 108, "trainId": 669}, - {"name": "score", "id": 2245, "trainId": 670}, - {"name": "hair spray", "id": 1162, "trainId": 671}, - {"name": "roll", "id": 2149, "trainId": 672}, - {"name": "runner", "id": 2183, "trainId": 673}, - {"name": "engine", "id": 858, "trainId": 674}, - {"name": "inflatable glove", "id": 1324, "trainId": 675}, - {"name": "games", "id": 1055, "trainId": 676}, - {"name": "pallets", "id": 1741, "trainId": 677}, - {"name": "baskets", "id": 149, "trainId": 678}, - {"name": "coop", "id": 615, "trainId": 679}, - {"name": "dvd player", "id": 825, "trainId": 680}, - {"name": "rocking horse", "id": 2143, "trainId": 681}, - {"name": "buckets", "id": 304, "trainId": 682}, - {"name": "bread rolls", "id": 283, "trainId": 683}, - {"name": "shawl", "id": 2322, "trainId": 684}, - {"name": "watering can", "id": 3017, "trainId": 685}, - {"name": "spotlights", "id": 2510, "trainId": 686}, - {"name": "post-it", "id": 1960, "trainId": 687}, - {"name": "bowls", "id": 265, "trainId": 688}, - {"name": "security camera", "id": 2282, "trainId": 689}, - {"name": "runner cloth", "id": 2184, "trainId": 690}, - {"name": "lock", "id": 1461, "trainId": 691}, - {"name": "alarm, warning device, alarm system", "id": 3113, "trainId": 692}, - {"name": "side", "id": 2372, "trainId": 693}, - {"name": "roulette", "id": 2166, "trainId": 694}, - {"name": "bone", "id": 232, "trainId": 695}, - {"name": "cutlery", "id": 693, "trainId": 696}, - {"name": "pool balls", "id": 1945, "trainId": 697}, - {"name": "wheels", "id": 3039, "trainId": 698}, - {"name": "spice rack", "id": 2494, "trainId": 699}, - {"name": "plant pots", "id": 1908, "trainId": 700}, - {"name": "towel ring", "id": 2827, "trainId": 701}, - {"name": "bread box", "id": 280, "trainId": 702}, - {"name": "video", "id": 2950, "trainId": 703}, - {"name": "funfair", "id": 1044, "trainId": 704}, - {"name": "breads", "id": 288, "trainId": 705}, - {"name": "tripod", "id": 2863, "trainId": 706}, - {"name": "ironing board", "id": 1342, "trainId": 707}, - {"name": "skimmer", "id": 2409, "trainId": 708}, - {"name": "hollow", "id": 1258, "trainId": 709}, - {"name": "scratching post", "id": 2249, "trainId": 710}, - {"name": "tricycle", "id": 2862, "trainId": 711}, - {"name": "file box", "id": 920, "trainId": 712}, - {"name": "mountain pass", "id": 1607, "trainId": 713}, - {"name": "tombstones", "id": 2802, "trainId": 714}, - {"name": "cooker", "id": 610, "trainId": 715}, - {"name": "card game, cards", "id": 3129, "trainId": 716}, - {"name": "golf bag", "id": 1108, "trainId": 717}, - {"name": "towel paper", "id": 2823, "trainId": 718}, - {"name": "chaise lounge", "id": 476, "trainId": 719}, - {"name": "sun", "id": 2641, "trainId": 720}, - {"name": "toilet paper holder", "id": 2788, "trainId": 721}, - {"name": "rake", "id": 2070, "trainId": 722}, - {"name": "key", "id": 1368, "trainId": 723}, - {"name": "umbrella stand", "id": 2903, "trainId": 724}, - {"name": "dartboard", "id": 699, "trainId": 725}, - {"name": "transformer", "id": 2844, "trainId": 726}, - {"name": "fireplace utensils", "id": 942, "trainId": 727}, - {"name": "sweatshirts", "id": 2663, "trainId": 728}, - { - "name": "cellular telephone, cellular phone, cellphone, cell, mobile phone", - "id": 457, - "trainId": 729, - }, - {"name": "tallboy", "id": 2701, "trainId": 730}, - {"name": "stapler", "id": 2540, "trainId": 731}, - {"name": "sauna", "id": 2231, "trainId": 732}, - {"name": "test tube", "id": 2746, "trainId": 733}, - {"name": "palette", "id": 1738, "trainId": 734}, - {"name": "shopping carts", "id": 2350, "trainId": 735}, - {"name": "tools", "id": 2808, "trainId": 736}, - {"name": "push button, push, button", "id": 2025, "trainId": 737}, - {"name": "star", "id": 2541, "trainId": 738}, - {"name": "roof rack", "id": 2156, "trainId": 739}, - {"name": "barbed wire", "id": 126, "trainId": 740}, - {"name": "spray", "id": 2512, "trainId": 741}, - {"name": "ear", "id": 831, "trainId": 742}, - {"name": "sponge", "id": 2503, "trainId": 743}, - {"name": "racket", "id": 2039, "trainId": 744}, - {"name": "tins", "id": 2774, "trainId": 745}, - {"name": "eyeglasses", "id": 886, "trainId": 746}, - {"name": "file", "id": 919, "trainId": 747}, - {"name": "scarfs", "id": 2240, "trainId": 748}, - {"name": "sugar bowl", "id": 2636, "trainId": 749}, - {"name": "flip flop", "id": 963, "trainId": 750}, - {"name": "headstones", "id": 1218, "trainId": 751}, - {"name": "laptop bag", "id": 1406, "trainId": 752}, - {"name": "leash", "id": 1420, "trainId": 753}, - {"name": "climbing frame", "id": 526, "trainId": 754}, - {"name": "suit hanger", "id": 2639, "trainId": 755}, - {"name": "floor spotlight", "id": 975, "trainId": 756}, - {"name": "plate rack", "id": 1921, "trainId": 757}, - {"name": "sewer", "id": 2305, "trainId": 758}, - {"name": "hard drive", "id": 1193, "trainId": 759}, - {"name": "sprinkler", "id": 2517, "trainId": 760}, - {"name": "tools box", "id": 2809, "trainId": 761}, - {"name": "necklace", "id": 1647, "trainId": 762}, - {"name": "bulbs", "id": 314, "trainId": 763}, - {"name": "steel industry", "id": 2560, "trainId": 764}, - {"name": "club", "id": 545, "trainId": 765}, - {"name": "jack", "id": 1345, "trainId": 766}, - {"name": "door bars", "id": 775, "trainId": 767}, - { - "name": "control panel, instrument panel, control board, board, panel", - "id": 603, - "trainId": 768, - }, - {"name": "hairbrush", "id": 1163, "trainId": 769}, - {"name": "napkin holder", "id": 1641, "trainId": 770}, - {"name": "office", "id": 1678, "trainId": 771}, - {"name": "smoke detector", "id": 2450, "trainId": 772}, - {"name": "utensils", "id": 2915, "trainId": 773}, - {"name": "apron", "id": 42, "trainId": 774}, - {"name": "scissors", "id": 2242, "trainId": 775}, - {"name": "terminal", "id": 2741, "trainId": 776}, - {"name": "grinder", "id": 1143, "trainId": 777}, - {"name": "entry phone", "id": 862, "trainId": 778}, - {"name": "newspaper stand", "id": 1654, "trainId": 779}, - {"name": "pepper shaker", "id": 1826, "trainId": 780}, - {"name": "onions", "id": 1689, "trainId": 781}, - { - "name": "central processing unit, cpu, c p u , central processor, processor, mainframe", - "id": 3124, - "trainId": 782, - }, - {"name": "tape", "id": 2710, "trainId": 783}, - {"name": "bat", "id": 152, "trainId": 784}, - {"name": "coaster", "id": 549, "trainId": 785}, - {"name": "calculator", "id": 360, "trainId": 786}, - {"name": "potatoes", "id": 1982, "trainId": 787}, - {"name": "luggage rack", "id": 1478, "trainId": 788}, - {"name": "salt", "id": 2203, "trainId": 789}, - {"name": "street number", "id": 2612, "trainId": 790}, - {"name": "viewpoint", "id": 2956, "trainId": 791}, - {"name": "sword", "id": 2681, "trainId": 792}, - {"name": "cd", "id": 437, "trainId": 793}, - {"name": "rowing machine", "id": 2171, "trainId": 794}, - {"name": "plug", "id": 1933, "trainId": 795}, - {"name": "andiron, firedog, dog, dog-iron", "id": 3110, "trainId": 796}, - {"name": "pepper", "id": 1824, "trainId": 797}, - {"name": "tongs", "id": 2803, "trainId": 798}, - {"name": "bonfire", "id": 234, "trainId": 799}, - {"name": "dog dish", "id": 764, "trainId": 800}, - {"name": "belt", "id": 177, "trainId": 801}, - {"name": "dumbbells", "id": 817, "trainId": 802}, - {"name": "videocassette recorder, vcr", "id": 3145, "trainId": 803}, - {"name": "hook", "id": 1262, "trainId": 804}, - {"name": "envelopes", "id": 864, "trainId": 805}, - {"name": "shower faucet", "id": 2359, "trainId": 806}, - {"name": "watch", "id": 2992, "trainId": 807}, - {"name": "padlock", "id": 1725, "trainId": 808}, - {"name": "swimming pool ladder", "id": 2667, "trainId": 809}, - {"name": "spanners", "id": 2484, "trainId": 810}, - {"name": "gravy boat", "id": 1133, "trainId": 811}, - {"name": "notice board", "id": 1667, "trainId": 812}, - {"name": "trash bags", "id": 2847, "trainId": 813}, - {"name": "fire alarm", "id": 932, "trainId": 814}, - {"name": "ladle", "id": 1392, "trainId": 815}, - {"name": "stethoscope", "id": 2573, "trainId": 816}, - {"name": "rocket", "id": 2140, "trainId": 817}, - {"name": "funnel", "id": 1046, "trainId": 818}, - {"name": "bowling pins", "id": 264, "trainId": 819}, - {"name": "valve", "id": 2927, "trainId": 820}, - {"name": "thermometer", "id": 2752, "trainId": 821}, - {"name": "cups", "id": 679, "trainId": 822}, - {"name": "spice jar", "id": 2493, "trainId": 823}, - {"name": "night light", "id": 1658, "trainId": 824}, - {"name": "soaps", "id": 2466, "trainId": 825}, - {"name": "games table", "id": 1057, "trainId": 826}, - {"name": "slotted spoon", "id": 2444, "trainId": 827}, - {"name": "reel", "id": 2093, "trainId": 828}, - {"name": "scourer", "id": 2248, "trainId": 829}, - {"name": "sleeping robe", "id": 2432, "trainId": 830}, - {"name": "desk mat", "id": 726, "trainId": 831}, - {"name": "dumbbell", "id": 816, "trainId": 832}, - {"name": "hammer", "id": 1171, "trainId": 833}, - {"name": "tie", "id": 2766, "trainId": 834}, - {"name": "typewriter", "id": 2900, "trainId": 835}, - {"name": "shaker", "id": 2313, "trainId": 836}, - {"name": "cheese dish", "id": 488, "trainId": 837}, - {"name": "sea star", "id": 2265, "trainId": 838}, - {"name": "racquet", "id": 2043, "trainId": 839}, - {"name": "butane gas cylinder", "id": 332, "trainId": 840}, - {"name": "paper weight", "id": 1771, "trainId": 841}, - {"name": "shaving brush", "id": 2320, "trainId": 842}, - {"name": "sunglasses", "id": 2646, "trainId": 843}, - {"name": "gear shift", "id": 1089, "trainId": 844}, - {"name": "towel rail", "id": 2826, "trainId": 845}, - {"name": "adding machine, totalizer, totaliser", "id": 3148, "trainId": 846}, -] - - -def loadAde20K(file): - fileseg = file.replace(".jpg", "_seg.png") - with Image.open(fileseg) as io: - seg = np.array(io) - - R = seg[:, :, 0] - G = seg[:, :, 1] - ObjectClassMasks = (R / 10).astype(np.int32) * 256 + (G.astype(np.int32)) - - return {"img_name": file, "segm_name": fileseg, "class_mask": ObjectClassMasks} - - -if __name__ == "__main__": - dataset_dir = Path(os.getenv("DETECTRON2_DATASETS", "datasets")) - index_file = dataset_dir / "ADE20K_2021_17_01" / "index_ade20k.pkl" - print('Caution: we only generate the validation set!') - with open(index_file, "rb") as f: - index_ade20k = pkl.load(f) - - id_map = {} - for cat in ADE20K_SEM_SEG_FULL_CATEGORIES: - id_map[cat["id"]] = cat["trainId"] - - # make output dir - for name in ["training", "validation"]: - image_dir = dataset_dir / "ADE20K_2021_17_01" / "images_detectron2" / name - image_dir.mkdir(parents=True, exist_ok=True) - annotation_dir = dataset_dir / "ADE20K_2021_17_01" / "annotations_detectron2" / name - annotation_dir.mkdir(parents=True, exist_ok=True) - - # process image and gt - for i, (folder_name, file_name) in tqdm.tqdm( - enumerate(zip(index_ade20k["folder"], index_ade20k["filename"])), - total=len(index_ade20k["filename"]), - ): - split = "validation" if file_name.split("_")[1] == "val" else "training" - if split == 'training': - # FIXME: If you want to generate training set, delete this condition - continue - info = loadAde20K(str(dataset_dir / folder_name / file_name)) - - # resize image and label - img = np.asarray(Image.open(info["img_name"])) - lab = np.asarray(info["class_mask"]) - - h, w = img.shape[0], img.shape[1] - max_size = 512 - resize = True - if w >= h > max_size: - h_new, w_new = max_size, round(w / float(h) * max_size) - elif h >= w > max_size: - h_new, w_new = round(h / float(w) * max_size), max_size - else: - resize = False - - if resize: - img = cv2.resize(img, (w_new, h_new), interpolation=cv2.INTER_LINEAR) - lab = cv2.resize(lab, (w_new, h_new), interpolation=cv2.INTER_NEAREST) - - assert img.dtype == np.uint8 - assert lab.dtype == np.int32 - - # apply label conversion and save into uint16 images - output = np.zeros_like(lab, dtype=np.uint16) + 65535 - for obj_id in np.unique(lab): - if obj_id in id_map: - output[lab == obj_id] = id_map[obj_id] - - output_img = dataset_dir / "ADE20K_2021_17_01" / "images_detectron2" / split / file_name - output_lab = ( - dataset_dir - / "ADE20K_2021_17_01" - / "annotations_detectron2" - / split - / file_name.replace(".jpg", ".tif") - ) - Image.fromarray(img).save(output_img) - - assert output.dtype == np.uint16 - Image.fromarray(output).save(output_lab) \ No newline at end of file diff --git a/spaces/jcenaa/Segment-Any-RGBD/open_vocab_seg/data/datasets/register_cc3m.py b/spaces/jcenaa/Segment-Any-RGBD/open_vocab_seg/data/datasets/register_cc3m.py deleted file mode 100644 index 8aa5cb07bc99b574505b6319835750789bb3ee26..0000000000000000000000000000000000000000 --- a/spaces/jcenaa/Segment-Any-RGBD/open_vocab_seg/data/datasets/register_cc3m.py +++ /dev/null @@ -1,457 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -import os - -import pandas as pd -from detectron2.data import DatasetCatalog, MetadataCatalog -from detectron2.data.datasets import load_sem_seg -from detectron2.utils.file_io import PathManager - - -COCO_CATEGORIES = [ - {"color": [220, 20, 60], "isthing": 1, "id": 1, "name": "person"}, - {"color": [119, 11, 32], "isthing": 1, "id": 2, "name": "bicycle"}, - {"color": [0, 0, 142], "isthing": 1, "id": 3, "name": "car"}, - {"color": [0, 0, 230], "isthing": 1, "id": 4, "name": "motorcycle"}, - {"color": [106, 0, 228], "isthing": 1, "id": 5, "name": "airplane"}, - {"color": [0, 60, 100], "isthing": 1, "id": 6, "name": "bus"}, - {"color": [0, 80, 100], "isthing": 1, "id": 7, "name": "train"}, - {"color": [0, 0, 70], "isthing": 1, "id": 8, "name": "truck"}, - {"color": [0, 0, 192], "isthing": 1, "id": 9, "name": "boat"}, - {"color": [250, 170, 30], "isthing": 1, "id": 10, "name": "traffic light"}, - {"color": [100, 170, 30], "isthing": 1, "id": 11, "name": "fire hydrant"}, - {"color": [220, 220, 0], "isthing": 1, "id": 13, "name": "stop sign"}, - {"color": [175, 116, 175], "isthing": 1, "id": 14, "name": "parking meter"}, - {"color": [250, 0, 30], "isthing": 1, "id": 15, "name": "bench"}, - {"color": [165, 42, 42], "isthing": 1, "id": 16, "name": "bird"}, - {"color": [255, 77, 255], "isthing": 1, "id": 17, "name": "cat"}, - {"color": [0, 226, 252], "isthing": 1, "id": 18, "name": "dog"}, - {"color": [182, 182, 255], "isthing": 1, "id": 19, "name": "horse"}, - {"color": [0, 82, 0], "isthing": 1, "id": 20, "name": "sheep"}, - {"color": [120, 166, 157], "isthing": 1, "id": 21, "name": "cow"}, - {"color": [110, 76, 0], "isthing": 1, "id": 22, "name": "elephant"}, - {"color": [174, 57, 255], "isthing": 1, "id": 23, "name": "bear"}, - {"color": [199, 100, 0], "isthing": 1, "id": 24, "name": "zebra"}, - {"color": [72, 0, 118], "isthing": 1, "id": 25, "name": "giraffe"}, - {"color": [255, 179, 240], "isthing": 1, "id": 27, "name": "backpack"}, - {"color": [0, 125, 92], "isthing": 1, "id": 28, "name": "umbrella"}, - {"color": [209, 0, 151], "isthing": 1, "id": 31, "name": "handbag"}, - {"color": [188, 208, 182], "isthing": 1, "id": 32, "name": "tie"}, - {"color": [0, 220, 176], "isthing": 1, "id": 33, "name": "suitcase"}, - {"color": [255, 99, 164], "isthing": 1, "id": 34, "name": "frisbee"}, - {"color": [92, 0, 73], "isthing": 1, "id": 35, "name": "skis"}, - {"color": [133, 129, 255], "isthing": 1, "id": 36, "name": "snowboard"}, - {"color": [78, 180, 255], "isthing": 1, "id": 37, "name": "sports ball"}, - {"color": [0, 228, 0], "isthing": 1, "id": 38, "name": "kite"}, - {"color": [174, 255, 243], "isthing": 1, "id": 39, "name": "baseball bat"}, - {"color": [45, 89, 255], "isthing": 1, "id": 40, "name": "baseball glove"}, - {"color": [134, 134, 103], "isthing": 1, "id": 41, "name": "skateboard"}, - {"color": [145, 148, 174], "isthing": 1, "id": 42, "name": "surfboard"}, - {"color": [255, 208, 186], "isthing": 1, "id": 43, "name": "tennis racket"}, - {"color": [197, 226, 255], "isthing": 1, "id": 44, "name": "bottle"}, - {"color": [171, 134, 1], "isthing": 1, "id": 46, "name": "wine glass"}, - {"color": [109, 63, 54], "isthing": 1, "id": 47, "name": "cup"}, - {"color": [207, 138, 255], "isthing": 1, "id": 48, "name": "fork"}, - {"color": [151, 0, 95], "isthing": 1, "id": 49, "name": "knife"}, - {"color": [9, 80, 61], "isthing": 1, "id": 50, "name": "spoon"}, - {"color": [84, 105, 51], "isthing": 1, "id": 51, "name": "bowl"}, - {"color": [74, 65, 105], "isthing": 1, "id": 52, "name": "banana"}, - {"color": [166, 196, 102], "isthing": 1, "id": 53, "name": "apple"}, - {"color": [208, 195, 210], "isthing": 1, "id": 54, "name": "sandwich"}, - {"color": [255, 109, 65], "isthing": 1, "id": 55, "name": "orange"}, - {"color": [0, 143, 149], "isthing": 1, "id": 56, "name": "broccoli"}, - {"color": [179, 0, 194], "isthing": 1, "id": 57, "name": "carrot"}, - {"color": [209, 99, 106], "isthing": 1, "id": 58, "name": "hot dog"}, - {"color": [5, 121, 0], "isthing": 1, "id": 59, "name": "pizza"}, - {"color": [227, 255, 205], "isthing": 1, "id": 60, "name": "donut"}, - {"color": [147, 186, 208], "isthing": 1, "id": 61, "name": "cake"}, - {"color": [153, 69, 1], "isthing": 1, "id": 62, "name": "chair"}, - {"color": [3, 95, 161], "isthing": 1, "id": 63, "name": "couch"}, - {"color": [163, 255, 0], "isthing": 1, "id": 64, "name": "potted plant"}, - {"color": [119, 0, 170], "isthing": 1, "id": 65, "name": "bed"}, - {"color": [0, 182, 199], "isthing": 1, "id": 67, "name": "dining table"}, - {"color": [0, 165, 120], "isthing": 1, "id": 70, "name": "toilet"}, - {"color": [183, 130, 88], "isthing": 1, "id": 72, "name": "tv"}, - {"color": [95, 32, 0], "isthing": 1, "id": 73, "name": "laptop"}, - {"color": [130, 114, 135], "isthing": 1, "id": 74, "name": "mouse"}, - {"color": [110, 129, 133], "isthing": 1, "id": 75, "name": "remote"}, - {"color": [166, 74, 118], "isthing": 1, "id": 76, "name": "keyboard"}, - {"color": [219, 142, 185], "isthing": 1, "id": 77, "name": "cell phone"}, - {"color": [79, 210, 114], "isthing": 1, "id": 78, "name": "microwave"}, - {"color": [178, 90, 62], "isthing": 1, "id": 79, "name": "oven"}, - {"color": [65, 70, 15], "isthing": 1, "id": 80, "name": "toaster"}, - {"color": [127, 167, 115], "isthing": 1, "id": 81, "name": "sink"}, - {"color": [59, 105, 106], "isthing": 1, "id": 82, "name": "refrigerator"}, - {"color": [142, 108, 45], "isthing": 1, "id": 84, "name": "book"}, - {"color": [196, 172, 0], "isthing": 1, "id": 85, "name": "clock"}, - {"color": [95, 54, 80], "isthing": 1, "id": 86, "name": "vase"}, - {"color": [128, 76, 255], "isthing": 1, "id": 87, "name": "scissors"}, - {"color": [201, 57, 1], "isthing": 1, "id": 88, "name": "teddy bear"}, - {"color": [246, 0, 122], "isthing": 1, "id": 89, "name": "hair drier"}, - {"color": [191, 162, 208], "isthing": 1, "id": 90, "name": "toothbrush"}, - {"id": 92, "name": "banner", "supercategory": "textile"}, - {"id": 93, "name": "blanket", "supercategory": "textile"}, - {"id": 94, "name": "branch", "supercategory": "plant"}, - {"id": 95, "name": "bridge", "supercategory": "building"}, - {"id": 96, "name": "building-other", "supercategory": "building"}, - {"id": 97, "name": "bush", "supercategory": "plant"}, - {"id": 98, "name": "cabinet", "supercategory": "furniture-stuff"}, - {"id": 99, "name": "cage", "supercategory": "structural"}, - {"id": 100, "name": "cardboard", "supercategory": "raw-material"}, - {"id": 101, "name": "carpet", "supercategory": "floor"}, - {"id": 102, "name": "ceiling-other", "supercategory": "ceiling"}, - {"id": 103, "name": "ceiling-tile", "supercategory": "ceiling"}, - {"id": 104, "name": "cloth", "supercategory": "textile"}, - {"id": 105, "name": "clothes", "supercategory": "textile"}, - {"id": 106, "name": "clouds", "supercategory": "sky"}, - {"id": 107, "name": "counter", "supercategory": "furniture-stuff"}, - {"id": 108, "name": "cupboard", "supercategory": "furniture-stuff"}, - {"id": 109, "name": "curtain", "supercategory": "textile"}, - {"id": 110, "name": "desk-stuff", "supercategory": "furniture-stuff"}, - {"id": 111, "name": "dirt", "supercategory": "ground"}, - {"id": 112, "name": "door-stuff", "supercategory": "furniture-stuff"}, - {"id": 113, "name": "fence", "supercategory": "structural"}, - {"id": 114, "name": "floor-marble", "supercategory": "floor"}, - {"id": 115, "name": "floor-other", "supercategory": "floor"}, - {"id": 116, "name": "floor-stone", "supercategory": "floor"}, - {"id": 117, "name": "floor-tile", "supercategory": "floor"}, - {"id": 118, "name": "floor-wood", "supercategory": "floor"}, - {"id": 119, "name": "flower", "supercategory": "plant"}, - {"id": 120, "name": "fog", "supercategory": "water"}, - {"id": 121, "name": "food-other", "supercategory": "food-stuff"}, - {"id": 122, "name": "fruit", "supercategory": "food-stuff"}, - {"id": 123, "name": "furniture-other", "supercategory": "furniture-stuff"}, - {"id": 124, "name": "grass", "supercategory": "plant"}, - {"id": 125, "name": "gravel", "supercategory": "ground"}, - {"id": 126, "name": "ground-other", "supercategory": "ground"}, - {"id": 127, "name": "hill", "supercategory": "solid"}, - {"id": 128, "name": "house", "supercategory": "building"}, - {"id": 129, "name": "leaves", "supercategory": "plant"}, - {"id": 130, "name": "light", "supercategory": "furniture-stuff"}, - {"id": 131, "name": "mat", "supercategory": "textile"}, - {"id": 132, "name": "metal", "supercategory": "raw-material"}, - {"id": 133, "name": "mirror-stuff", "supercategory": "furniture-stuff"}, - {"id": 134, "name": "moss", "supercategory": "plant"}, - {"id": 135, "name": "mountain", "supercategory": "solid"}, - {"id": 136, "name": "mud", "supercategory": "ground"}, - {"id": 137, "name": "napkin", "supercategory": "textile"}, - {"id": 138, "name": "net", "supercategory": "structural"}, - {"id": 139, "name": "paper", "supercategory": "raw-material"}, - {"id": 140, "name": "pavement", "supercategory": "ground"}, - {"id": 141, "name": "pillow", "supercategory": "textile"}, - {"id": 142, "name": "plant-other", "supercategory": "plant"}, - {"id": 143, "name": "plastic", "supercategory": "raw-material"}, - {"id": 144, "name": "platform", "supercategory": "ground"}, - {"id": 145, "name": "playingfield", "supercategory": "ground"}, - {"id": 146, "name": "railing", "supercategory": "structural"}, - {"id": 147, "name": "railroad", "supercategory": "ground"}, - {"id": 148, "name": "river", "supercategory": "water"}, - {"id": 149, "name": "road", "supercategory": "ground"}, - {"id": 150, "name": "rock", "supercategory": "solid"}, - {"id": 151, "name": "roof", "supercategory": "building"}, - {"id": 152, "name": "rug", "supercategory": "textile"}, - {"id": 153, "name": "salad", "supercategory": "food-stuff"}, - {"id": 154, "name": "sand", "supercategory": "ground"}, - {"id": 155, "name": "sea", "supercategory": "water"}, - {"id": 156, "name": "shelf", "supercategory": "furniture-stuff"}, - {"id": 157, "name": "sky-other", "supercategory": "sky"}, - {"id": 158, "name": "skyscraper", "supercategory": "building"}, - {"id": 159, "name": "snow", "supercategory": "ground"}, - {"id": 160, "name": "solid-other", "supercategory": "solid"}, - {"id": 161, "name": "stairs", "supercategory": "furniture-stuff"}, - {"id": 162, "name": "stone", "supercategory": "solid"}, - {"id": 163, "name": "straw", "supercategory": "plant"}, - {"id": 164, "name": "structural-other", "supercategory": "structural"}, - {"id": 165, "name": "table", "supercategory": "furniture-stuff"}, - {"id": 166, "name": "tent", "supercategory": "building"}, - {"id": 167, "name": "textile-other", "supercategory": "textile"}, - {"id": 168, "name": "towel", "supercategory": "textile"}, - {"id": 169, "name": "tree", "supercategory": "plant"}, - {"id": 170, "name": "vegetable", "supercategory": "food-stuff"}, - {"id": 171, "name": "wall-brick", "supercategory": "wall"}, - {"id": 172, "name": "wall-concrete", "supercategory": "wall"}, - {"id": 173, "name": "wall-other", "supercategory": "wall"}, - {"id": 174, "name": "wall-panel", "supercategory": "wall"}, - {"id": 175, "name": "wall-stone", "supercategory": "wall"}, - {"id": 176, "name": "wall-tile", "supercategory": "wall"}, - {"id": 177, "name": "wall-wood", "supercategory": "wall"}, - {"id": 178, "name": "water-other", "supercategory": "water"}, - {"id": 179, "name": "waterdrops", "supercategory": "water"}, - {"id": 180, "name": "window-blind", "supercategory": "window"}, - {"id": 181, "name": "window-other", "supercategory": "window"}, - {"id": 182, "name": "wood", "supercategory": "solid"}, -] - - -ADE20K_150_CATEGORIES = [ - {"color": [120, 120, 120], "id": 0, "isthing": 0, "name": "wall"}, - {"color": [180, 120, 120], "id": 1, "isthing": 0, "name": "building"}, - {"color": [6, 230, 230], "id": 2, "isthing": 0, "name": "sky"}, - {"color": [80, 50, 50], "id": 3, "isthing": 0, "name": "floor"}, - {"color": [4, 200, 3], "id": 4, "isthing": 0, "name": "tree"}, - {"color": [120, 120, 80], "id": 5, "isthing": 0, "name": "ceiling"}, - {"color": [140, 140, 140], "id": 6, "isthing": 0, "name": "road, route"}, - {"color": [204, 5, 255], "id": 7, "isthing": 1, "name": "bed"}, - {"color": [230, 230, 230], "id": 8, "isthing": 1, "name": "window "}, - {"color": [4, 250, 7], "id": 9, "isthing": 0, "name": "grass"}, - {"color": [224, 5, 255], "id": 10, "isthing": 1, "name": "cabinet"}, - {"color": [235, 255, 7], "id": 11, "isthing": 0, "name": "sidewalk, pavement"}, - {"color": [150, 5, 61], "id": 12, "isthing": 1, "name": "person"}, - {"color": [120, 120, 70], "id": 13, "isthing": 0, "name": "earth, ground"}, - {"color": [8, 255, 51], "id": 14, "isthing": 1, "name": "door"}, - {"color": [255, 6, 82], "id": 15, "isthing": 1, "name": "table"}, - {"color": [143, 255, 140], "id": 16, "isthing": 0, "name": "mountain, mount"}, - {"color": [204, 255, 4], "id": 17, "isthing": 0, "name": "plant"}, - {"color": [255, 51, 7], "id": 18, "isthing": 1, "name": "curtain"}, - {"color": [204, 70, 3], "id": 19, "isthing": 1, "name": "chair"}, - {"color": [0, 102, 200], "id": 20, "isthing": 1, "name": "car"}, - {"color": [61, 230, 250], "id": 21, "isthing": 0, "name": "water"}, - {"color": [255, 6, 51], "id": 22, "isthing": 1, "name": "painting, picture"}, - {"color": [11, 102, 255], "id": 23, "isthing": 1, "name": "sofa"}, - {"color": [255, 7, 71], "id": 24, "isthing": 1, "name": "shelf"}, - {"color": [255, 9, 224], "id": 25, "isthing": 0, "name": "house"}, - {"color": [9, 7, 230], "id": 26, "isthing": 0, "name": "sea"}, - {"color": [220, 220, 220], "id": 27, "isthing": 1, "name": "mirror"}, - {"color": [255, 9, 92], "id": 28, "isthing": 0, "name": "rug"}, - {"color": [112, 9, 255], "id": 29, "isthing": 0, "name": "field"}, - {"color": [8, 255, 214], "id": 30, "isthing": 1, "name": "armchair"}, - {"color": [7, 255, 224], "id": 31, "isthing": 1, "name": "seat"}, - {"color": [255, 184, 6], "id": 32, "isthing": 1, "name": "fence"}, - {"color": [10, 255, 71], "id": 33, "isthing": 1, "name": "desk"}, - {"color": [255, 41, 10], "id": 34, "isthing": 0, "name": "rock, stone"}, - {"color": [7, 255, 255], "id": 35, "isthing": 1, "name": "wardrobe, closet, press"}, - {"color": [224, 255, 8], "id": 36, "isthing": 1, "name": "lamp"}, - {"color": [102, 8, 255], "id": 37, "isthing": 1, "name": "tub"}, - {"color": [255, 61, 6], "id": 38, "isthing": 1, "name": "rail"}, - {"color": [255, 194, 7], "id": 39, "isthing": 1, "name": "cushion"}, - {"color": [255, 122, 8], "id": 40, "isthing": 0, "name": "base, pedestal, stand"}, - {"color": [0, 255, 20], "id": 41, "isthing": 1, "name": "box"}, - {"color": [255, 8, 41], "id": 42, "isthing": 1, "name": "column, pillar"}, - {"color": [255, 5, 153], "id": 43, "isthing": 1, "name": "signboard, sign"}, - { - "color": [6, 51, 255], - "id": 44, - "isthing": 1, - "name": "chest of drawers, chest, bureau, dresser", - }, - {"color": [235, 12, 255], "id": 45, "isthing": 1, "name": "counter"}, - {"color": [160, 150, 20], "id": 46, "isthing": 0, "name": "sand"}, - {"color": [0, 163, 255], "id": 47, "isthing": 1, "name": "sink"}, - {"color": [140, 140, 140], "id": 48, "isthing": 0, "name": "skyscraper"}, - {"color": [250, 10, 15], "id": 49, "isthing": 1, "name": "fireplace"}, - {"color": [20, 255, 0], "id": 50, "isthing": 1, "name": "refrigerator, icebox"}, - {"color": [31, 255, 0], "id": 51, "isthing": 0, "name": "grandstand, covered stand"}, - {"color": [255, 31, 0], "id": 52, "isthing": 0, "name": "path"}, - {"color": [255, 224, 0], "id": 53, "isthing": 1, "name": "stairs"}, - {"color": [153, 255, 0], "id": 54, "isthing": 0, "name": "runway"}, - {"color": [0, 0, 255], "id": 55, "isthing": 1, "name": "case, display case, showcase, vitrine"}, - { - "color": [255, 71, 0], - "id": 56, - "isthing": 1, - "name": "pool table, billiard table, snooker table", - }, - {"color": [0, 235, 255], "id": 57, "isthing": 1, "name": "pillow"}, - {"color": [0, 173, 255], "id": 58, "isthing": 1, "name": "screen door, screen"}, - {"color": [31, 0, 255], "id": 59, "isthing": 0, "name": "stairway, staircase"}, - {"color": [11, 200, 200], "id": 60, "isthing": 0, "name": "river"}, - {"color": [255, 82, 0], "id": 61, "isthing": 0, "name": "bridge, span"}, - {"color": [0, 255, 245], "id": 62, "isthing": 1, "name": "bookcase"}, - {"color": [0, 61, 255], "id": 63, "isthing": 0, "name": "blind, screen"}, - {"color": [0, 255, 112], "id": 64, "isthing": 1, "name": "coffee table"}, - { - "color": [0, 255, 133], - "id": 65, - "isthing": 1, - "name": "toilet, can, commode, crapper, pot, potty, stool, throne", - }, - {"color": [255, 0, 0], "id": 66, "isthing": 1, "name": "flower"}, - {"color": [255, 163, 0], "id": 67, "isthing": 1, "name": "book"}, - {"color": [255, 102, 0], "id": 68, "isthing": 0, "name": "hill"}, - {"color": [194, 255, 0], "id": 69, "isthing": 1, "name": "bench"}, - {"color": [0, 143, 255], "id": 70, "isthing": 1, "name": "countertop"}, - {"color": [51, 255, 0], "id": 71, "isthing": 1, "name": "stove"}, - {"color": [0, 82, 255], "id": 72, "isthing": 1, "name": "palm, palm tree"}, - {"color": [0, 255, 41], "id": 73, "isthing": 1, "name": "kitchen island"}, - {"color": [0, 255, 173], "id": 74, "isthing": 1, "name": "computer"}, - {"color": [10, 0, 255], "id": 75, "isthing": 1, "name": "swivel chair"}, - {"color": [173, 255, 0], "id": 76, "isthing": 1, "name": "boat"}, - {"color": [0, 255, 153], "id": 77, "isthing": 0, "name": "bar"}, - {"color": [255, 92, 0], "id": 78, "isthing": 1, "name": "arcade machine"}, - {"color": [255, 0, 255], "id": 79, "isthing": 0, "name": "hovel, hut, hutch, shack, shanty"}, - {"color": [255, 0, 245], "id": 80, "isthing": 1, "name": "bus"}, - {"color": [255, 0, 102], "id": 81, "isthing": 1, "name": "towel"}, - {"color": [255, 173, 0], "id": 82, "isthing": 1, "name": "light"}, - {"color": [255, 0, 20], "id": 83, "isthing": 1, "name": "truck"}, - {"color": [255, 184, 184], "id": 84, "isthing": 0, "name": "tower"}, - {"color": [0, 31, 255], "id": 85, "isthing": 1, "name": "chandelier"}, - {"color": [0, 255, 61], "id": 86, "isthing": 1, "name": "awning, sunshade, sunblind"}, - {"color": [0, 71, 255], "id": 87, "isthing": 1, "name": "street lamp"}, - {"color": [255, 0, 204], "id": 88, "isthing": 1, "name": "booth"}, - {"color": [0, 255, 194], "id": 89, "isthing": 1, "name": "tv"}, - {"color": [0, 255, 82], "id": 90, "isthing": 1, "name": "plane"}, - {"color": [0, 10, 255], "id": 91, "isthing": 0, "name": "dirt track"}, - {"color": [0, 112, 255], "id": 92, "isthing": 1, "name": "clothes"}, - {"color": [51, 0, 255], "id": 93, "isthing": 1, "name": "pole"}, - {"color": [0, 194, 255], "id": 94, "isthing": 0, "name": "land, ground, soil"}, - { - "color": [0, 122, 255], - "id": 95, - "isthing": 1, - "name": "bannister, banister, balustrade, balusters, handrail", - }, - { - "color": [0, 255, 163], - "id": 96, - "isthing": 0, - "name": "escalator, moving staircase, moving stairway", - }, - { - "color": [255, 153, 0], - "id": 97, - "isthing": 1, - "name": "ottoman, pouf, pouffe, puff, hassock", - }, - {"color": [0, 255, 10], "id": 98, "isthing": 1, "name": "bottle"}, - {"color": [255, 112, 0], "id": 99, "isthing": 0, "name": "buffet, counter, sideboard"}, - { - "color": [143, 255, 0], - "id": 100, - "isthing": 0, - "name": "poster, posting, placard, notice, bill, card", - }, - {"color": [82, 0, 255], "id": 101, "isthing": 0, "name": "stage"}, - {"color": [163, 255, 0], "id": 102, "isthing": 1, "name": "van"}, - {"color": [255, 235, 0], "id": 103, "isthing": 1, "name": "ship"}, - {"color": [8, 184, 170], "id": 104, "isthing": 1, "name": "fountain"}, - { - "color": [133, 0, 255], - "id": 105, - "isthing": 0, - "name": "conveyer belt, conveyor belt, conveyer, conveyor, transporter", - }, - {"color": [0, 255, 92], "id": 106, "isthing": 0, "name": "canopy"}, - { - "color": [184, 0, 255], - "id": 107, - "isthing": 1, - "name": "washer, automatic washer, washing machine", - }, - {"color": [255, 0, 31], "id": 108, "isthing": 1, "name": "plaything, toy"}, - {"color": [0, 184, 255], "id": 109, "isthing": 0, "name": "pool"}, - {"color": [0, 214, 255], "id": 110, "isthing": 1, "name": "stool"}, - {"color": [255, 0, 112], "id": 111, "isthing": 1, "name": "barrel, cask"}, - {"color": [92, 255, 0], "id": 112, "isthing": 1, "name": "basket, handbasket"}, - {"color": [0, 224, 255], "id": 113, "isthing": 0, "name": "falls"}, - {"color": [112, 224, 255], "id": 114, "isthing": 0, "name": "tent"}, - {"color": [70, 184, 160], "id": 115, "isthing": 1, "name": "bag"}, - {"color": [163, 0, 255], "id": 116, "isthing": 1, "name": "minibike, motorbike"}, - {"color": [153, 0, 255], "id": 117, "isthing": 0, "name": "cradle"}, - {"color": [71, 255, 0], "id": 118, "isthing": 1, "name": "oven"}, - {"color": [255, 0, 163], "id": 119, "isthing": 1, "name": "ball"}, - {"color": [255, 204, 0], "id": 120, "isthing": 1, "name": "food, solid food"}, - {"color": [255, 0, 143], "id": 121, "isthing": 1, "name": "step, stair"}, - {"color": [0, 255, 235], "id": 122, "isthing": 0, "name": "tank, storage tank"}, - {"color": [133, 255, 0], "id": 123, "isthing": 1, "name": "trade name"}, - {"color": [255, 0, 235], "id": 124, "isthing": 1, "name": "microwave"}, - {"color": [245, 0, 255], "id": 125, "isthing": 1, "name": "pot"}, - {"color": [255, 0, 122], "id": 126, "isthing": 1, "name": "animal"}, - {"color": [255, 245, 0], "id": 127, "isthing": 1, "name": "bicycle"}, - {"color": [10, 190, 212], "id": 128, "isthing": 0, "name": "lake"}, - {"color": [214, 255, 0], "id": 129, "isthing": 1, "name": "dishwasher"}, - {"color": [0, 204, 255], "id": 130, "isthing": 1, "name": "screen"}, - {"color": [20, 0, 255], "id": 131, "isthing": 0, "name": "blanket, cover"}, - {"color": [255, 255, 0], "id": 132, "isthing": 1, "name": "sculpture"}, - {"color": [0, 153, 255], "id": 133, "isthing": 1, "name": "hood, exhaust hood"}, - {"color": [0, 41, 255], "id": 134, "isthing": 1, "name": "sconce"}, - {"color": [0, 255, 204], "id": 135, "isthing": 1, "name": "vase"}, - {"color": [41, 0, 255], "id": 136, "isthing": 1, "name": "traffic light"}, - {"color": [41, 255, 0], "id": 137, "isthing": 1, "name": "tray"}, - {"color": [173, 0, 255], "id": 138, "isthing": 1, "name": "trash can"}, - {"color": [0, 245, 255], "id": 139, "isthing": 1, "name": "fan"}, - {"color": [71, 0, 255], "id": 140, "isthing": 0, "name": "pier"}, - {"color": [122, 0, 255], "id": 141, "isthing": 0, "name": "crt screen"}, - {"color": [0, 255, 184], "id": 142, "isthing": 1, "name": "plate"}, - {"color": [0, 92, 255], "id": 143, "isthing": 1, "name": "monitor"}, - {"color": [184, 255, 0], "id": 144, "isthing": 1, "name": "bulletin board"}, - {"color": [0, 133, 255], "id": 145, "isthing": 0, "name": "shower"}, - {"color": [255, 214, 0], "id": 146, "isthing": 1, "name": "radiator"}, - {"color": [25, 194, 194], "id": 147, "isthing": 1, "name": "glass, drinking glass"}, - {"color": [102, 255, 0], "id": 148, "isthing": 1, "name": "clock"}, - {"color": [92, 0, 255], "id": 149, "isthing": 1, "name": "flag"}, -] - -TEST_CATEGORIES = [ - {"color": [143, 255, 140], "id": 16, "isthing": 0, "name": "Oculus"}, - {"color": [204, 255, 4], "id": 17, "isthing": 0, "name": "Ukulele"}, -] - -COCO_BASE_CATEGORIES = [ - c - for i, c in enumerate(COCO_CATEGORIES) - if c["id"] - 1 - not in [20, 24, 32, 33, 40, 56, 86, 99, 105, 123, 144, 147, 148, 168, 171] -] -COCO_NOVEL_CATEGORIES = [ - c - for i, c in enumerate(COCO_CATEGORIES) - if c["id"] - 1 - in [20, 24, 32, 33, 40, 56, 86, 99, 105, 123, 144, 147, 148, 168, 171] -] - - -def load_cc_image(csv_file, img_key='filepath', caption_key='title', sep="\t"): - print(f'Loading csv data from {csv_file}.') - df = pd.read_csv(csv_file, sep=sep) - - input_files = df[img_key].tolist() - captions = df[caption_key].tolist() - - print("Loaded {} images".format(len(input_files))) - - dataset_dicts = [] - for (img_path, text) in zip(input_files, captions): - record = {} - record["file_name"] = img_path - record["caption"] = text - dataset_dicts.append(record) - - return dataset_dicts - - -def _get_coco_stuff_meta(cat_list): - # Id 0 is reserved for ignore_label, we change ignore_label for 0 - # to 255 in our pre-processing. - stuff_ids = [k["id"] for k in cat_list] - - # For semantic segmentation, this mapping maps from contiguous stuff id - # (in [0, 91], used in models) to ids in the dataset (used for processing results) - stuff_dataset_id_to_contiguous_id = {k: i for i, k in enumerate(stuff_ids)} - stuff_classes = [k["name"] for k in cat_list] - - ret = { - "stuff_dataset_id_to_contiguous_id": stuff_dataset_id_to_contiguous_id, - "stuff_classes": stuff_classes, - } - return ret - - -def register_cc_3m(csv_file): - - meta = _get_coco_stuff_meta(TEST_CATEGORIES) - name = "cc_3m_train" - - DatasetCatalog.register( - name, - lambda x=csv_file: load_cc_image(x), - ) - MetadataCatalog.get(name).set( - csv_file=csv_file, - evaluator_type="dummy", - ignore_label=255, - **meta, - ) - - -# _csv_file = "/home/jeffliang/zsseg/datasets/coco/coco_train_merge_captions.csv" -_csv_file = "/home/jeffliang/zsseg/configs/masked_images/pred/samples.csv" -register_cc_3m(_csv_file) diff --git a/spaces/jhlfrfufyfn/bel-tts/README.md b/spaces/jhlfrfufyfn/bel-tts/README.md deleted file mode 100644 index 3ad943f7f875e9d1ac9dcd3d3cb7dcd8a56488b2..0000000000000000000000000000000000000000 --- a/spaces/jhlfrfufyfn/bel-tts/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: Bel Tts -emoji: 📚 -colorFrom: gray -colorTo: gray -sdk: gradio -sdk_version: 3.13.0 -app_file: app.py -pinned: false -license: mit ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/joaopereirajp/livvieChatBot/venv/lib/python3.9/site-packages/anyio/abc/_tasks.py b/spaces/joaopereirajp/livvieChatBot/venv/lib/python3.9/site-packages/anyio/abc/_tasks.py deleted file mode 100644 index e48d3c1e97e02cd188b567b50a4c0c615f187e4d..0000000000000000000000000000000000000000 --- a/spaces/joaopereirajp/livvieChatBot/venv/lib/python3.9/site-packages/anyio/abc/_tasks.py +++ /dev/null @@ -1,119 +0,0 @@ -from __future__ import annotations - -import sys -from abc import ABCMeta, abstractmethod -from types import TracebackType -from typing import TYPE_CHECKING, Any, Awaitable, Callable, TypeVar, overload -from warnings import warn - -if sys.version_info >= (3, 8): - from typing import Protocol -else: - from typing_extensions import Protocol - -if TYPE_CHECKING: - from anyio._core._tasks import CancelScope - -T_Retval = TypeVar("T_Retval") -T_contra = TypeVar("T_contra", contravariant=True) - - -class TaskStatus(Protocol[T_contra]): - @overload - def started(self: TaskStatus[None]) -> None: - ... - - @overload - def started(self, value: T_contra) -> None: - ... - - def started(self, value: T_contra | None = None) -> None: - """ - Signal that the task has started. - - :param value: object passed back to the starter of the task - """ - - -class TaskGroup(metaclass=ABCMeta): - """ - Groups several asynchronous tasks together. - - :ivar cancel_scope: the cancel scope inherited by all child tasks - :vartype cancel_scope: CancelScope - """ - - cancel_scope: CancelScope - - async def spawn( - self, - func: Callable[..., Awaitable[Any]], - *args: object, - name: object = None, - ) -> None: - """ - Start a new task in this task group. - - :param func: a coroutine function - :param args: positional arguments to call the function with - :param name: name of the task, for the purposes of introspection and debugging - - .. deprecated:: 3.0 - Use :meth:`start_soon` instead. If your code needs AnyIO 2 compatibility, you - can keep using this until AnyIO 4. - - """ - warn( - 'spawn() is deprecated -- use start_soon() (without the "await") instead', - DeprecationWarning, - ) - self.start_soon(func, *args, name=name) - - @abstractmethod - def start_soon( - self, - func: Callable[..., Awaitable[Any]], - *args: object, - name: object = None, - ) -> None: - """ - Start a new task in this task group. - - :param func: a coroutine function - :param args: positional arguments to call the function with - :param name: name of the task, for the purposes of introspection and debugging - - .. versionadded:: 3.0 - """ - - @abstractmethod - async def start( - self, - func: Callable[..., Awaitable[Any]], - *args: object, - name: object = None, - ) -> Any: - """ - Start a new task and wait until it signals for readiness. - - :param func: a coroutine function - :param args: positional arguments to call the function with - :param name: name of the task, for the purposes of introspection and debugging - :return: the value passed to ``task_status.started()`` - :raises RuntimeError: if the task finishes without calling ``task_status.started()`` - - .. versionadded:: 3.0 - """ - - @abstractmethod - async def __aenter__(self) -> TaskGroup: - """Enter the task group context and allow starting new tasks.""" - - @abstractmethod - async def __aexit__( - self, - exc_type: type[BaseException] | None, - exc_val: BaseException | None, - exc_tb: TracebackType | None, - ) -> bool | None: - """Exit the task group context waiting for all tasks to finish.""" diff --git a/spaces/jordonpeter01/ai-comic-factory/src/app/store/index.ts b/spaces/jordonpeter01/ai-comic-factory/src/app/store/index.ts deleted file mode 100644 index e85dd4d052996e9b4120bef57abb6c72c509d41a..0000000000000000000000000000000000000000 --- a/spaces/jordonpeter01/ai-comic-factory/src/app/store/index.ts +++ /dev/null @@ -1,203 +0,0 @@ -"use client" - -import { create } from "zustand" - -import { FontName } from "@/lib/fonts" -import { Preset, PresetName, defaultPreset, getPreset, getRandomPreset } from "@/app/engine/presets" -import { LayoutName, defaultLayout, getRandomLayoutName, getRandomLayoutNames } from "../layouts" -import html2canvas from "html2canvas" -import { RenderedScene } from "@/types" - -export const useStore = create<{ - prompt: string - font: FontName - preset: Preset - nbFrames: number - panels: string[] - captions: string[] - upscaleQueue: Record - showCaptions: boolean - renderedScenes: Record - layout: LayoutName - layouts: LayoutName[] - zoomLevel: number - page: HTMLDivElement - isGeneratingStory: boolean - panelGenerationStatus: Record - isGeneratingText: boolean - atLeastOnePanelIsBusy: boolean - setRendered: (panelId: string, renderedScene: RenderedScene) => void - addToUpscaleQueue: (panelId: string, renderedScene: RenderedScene) => void - removeFromUpscaleQueue: (panelId: string) => void - setPrompt: (prompt: string) => void - setFont: (font: FontName) => void - setPreset: (preset: Preset) => void - setPanels: (panels: string[]) => void - setShowCaptions: (showCaptions: boolean) => void - setLayout: (layout: LayoutName) => void - setLayouts: (layouts: LayoutName[]) => void - setCaptions: (captions: string[]) => void - setZoomLevel: (zoomLevel: number) => void - setPage: (page: HTMLDivElement) => void - setGeneratingStory: (isGeneratingStory: boolean) => void - setGeneratingImages: (panelId: string, value: boolean) => void - setGeneratingText: (isGeneratingText: boolean) => void - pageToImage: () => Promise - download: () => Promise - generate: (prompt: string, presetName: PresetName, layoutName: LayoutName) => void -}>((set, get) => ({ - prompt: "", - font: "actionman", - preset: getPreset(defaultPreset), - nbFrames: 1, - panels: [], - captions: [], - upscaleQueue: {} as Record, - renderedScenes: {} as Record, - showCaptions: false, - layout: defaultLayout, - layouts: [defaultLayout, defaultLayout], - zoomLevel: 60, - page: undefined as unknown as HTMLDivElement, - isGeneratingStory: false, - panelGenerationStatus: {}, - isGeneratingText: false, - atLeastOnePanelIsBusy: false, - setRendered: (panelId: string, renderedScene: RenderedScene) => { - const { renderedScenes } = get() - set({ - renderedScenes: { - ...renderedScenes, - [panelId]: renderedScene - } - }) - }, - addToUpscaleQueue: (panelId: string, renderedScene: RenderedScene) => { - const { upscaleQueue } = get() - set({ - upscaleQueue: { - ...upscaleQueue, - [panelId]: renderedScene - }, - }) - }, - removeFromUpscaleQueue: (panelId: string) => { - const upscaleQueue = { ...get().upscaleQueue } - delete upscaleQueue[panelId] - set({ - upscaleQueue, - }) - }, - setPrompt: (prompt: string) => { - const existingPrompt = get().prompt - if (prompt === existingPrompt) { return } - set({ - prompt, - }) - }, - setFont: (font: FontName) => { - const existingFont = get().font - if (font === existingFont) { return } - set({ - font, - }) - }, - setPreset: (preset: Preset) => { - const existingPreset = get().preset - if (preset.label === existingPreset.label) { return } - set({ - preset, - }) - }, - setNbFrames: (nbFrames: number) => { - const existingNbFrames = get().nbFrames - if (nbFrames === existingNbFrames) { return } - set({ - nbFrames, - }) - }, - setPanels: (panels: string[]) => set({ panels }), - setCaptions: (captions: string[]) => { - set({ - captions, - }) - }, - setShowCaptions: (showCaptions: boolean) => { - set({ - showCaptions, - }) - }, - setLayout: (layoutName: LayoutName) => { - const layout = layoutName === "random" - ? getRandomLayoutName() - : layoutName - - set({ - layout, - layouts: [layout, layout] - }) - }, - setLayouts: (layouts: LayoutName[]) => set({ layouts }), - setZoomLevel: (zoomLevel: number) => set({ zoomLevel }), - setPage: (page: HTMLDivElement) => { - if (!page) { return } - set({ page }) - }, - setGeneratingStory: (isGeneratingStory: boolean) => set({ isGeneratingStory }), - setGeneratingImages: (panelId: string, value: boolean) => { - const panelGenerationStatus: Record = { - ...get().panelGenerationStatus, - [panelId]: value - } - - const atLeastOnePanelIsBusy = Object.values(panelGenerationStatus).includes(true) - - set({ - panelGenerationStatus, - atLeastOnePanelIsBusy - }) - }, - setGeneratingText: (isGeneratingText: boolean) => set({ isGeneratingText }), - pageToImage: async () => { - const { page } = get() - if (!page) { return "" } - - - const canvas = await html2canvas(page) - console.log("canvas:", canvas) - - const data = canvas.toDataURL('image/jpeg', 0.5) - return data - }, - download: async () => { - const { pageToImage } = get() - const data = await pageToImage() - - const link = document.createElement('a') - - if (typeof link.download === 'string') { - link.href = data - link.download = 'comic.jpg' - document.body.appendChild(link) - link.click() - document.body.removeChild(link) - } else { - window.open(data) - } - }, - generate: (prompt: string, presetName: PresetName, layoutName: LayoutName) => { - const layout = layoutName === "random" - ? getRandomLayoutName() - : layoutName - set({ - prompt, - panels: [], - captions: [], - preset: presetName === "random" - ? getRandomPreset() - : getPreset(presetName), - layout, - layouts: [layout, layout], - }) - } -})) diff --git a/spaces/juancopi81/youtube-music-transcribe/t5x/gin_utils_test.py b/spaces/juancopi81/youtube-music-transcribe/t5x/gin_utils_test.py deleted file mode 100644 index e69b73991c64a4e450199476946244422b62d94e..0000000000000000000000000000000000000000 --- a/spaces/juancopi81/youtube-music-transcribe/t5x/gin_utils_test.py +++ /dev/null @@ -1,59 +0,0 @@ -# Copyright 2022 The T5X Authors. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -"""Tests for gin_utils.""" - -from absl.testing import absltest -from t5x import gin_utils - - -class GinUtilsTest(absltest.TestCase): - - def test_rewrite_gin_args(self): - test_args = [ - '--gin_file=path/to/file', - 'gin.value=3', - '--gin.value=3', - '--gin.value="3"', - '--gin.value=\'3\'', - '--gin.tricky="key = value"', - '--gin.dict={"foo": 4, "bar": "four"}', - '--gin.gin=bar', - '--gin.scope/foo=bar', - ] - expected_args = [ - '--gin_file=path/to/file', - 'gin.value=3', - '--gin_bindings=value = 3', - '--gin_bindings=value = "3"', - '--gin_bindings=value = \'3\'', - '--gin_bindings=tricky = "key = value"', - '--gin_bindings=dict = {"foo": 4, "bar": "four"}', - '--gin_bindings=gin = bar', - '--gin_bindings=scope/foo = bar', - ] - self.assertSequenceEqual( - gin_utils.rewrite_gin_args(test_args), expected_args) - - def test_rewrite_gin_args_malformed(self): - test_args = ['--gin.value=3', '--gin.test'] - with self.assertRaisesWithLiteralMatch( - ValueError, - "Gin bindings must be of the form '--gin.=', got: " - '--gin.test'): - gin_utils.rewrite_gin_args(test_args) - - -if __name__ == '__main__': - absltest.main() diff --git a/spaces/juancopi81/youtube-music-transcribe/t5x/trainer_test.py b/spaces/juancopi81/youtube-music-transcribe/t5x/trainer_test.py deleted file mode 100644 index 26912e4425b5fac23b2d6341b05890cf564e2c11..0000000000000000000000000000000000000000 --- a/spaces/juancopi81/youtube-music-transcribe/t5x/trainer_test.py +++ /dev/null @@ -1,983 +0,0 @@ -# Copyright 2022 The T5X Authors. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -"""Tests for t5x.trainer_lib.""" -import collections -import contextlib -import os - -from absl.testing import absltest -from absl.testing import parameterized -import chex -from clu import metric_writers -import clu.metrics -import clu.values -import flax -import jax -import jax.numpy as jnp -import numpy as np -from t5x import metrics as metrics_lib -from t5x import models as models_lib -from t5x import optimizers -from t5x import partitioning -from t5x import test_utils -from t5x import train_state as train_state_lib -from t5x import trainer as trainer_lib -import tensorflow as tf -from tensorflow.io import gfile - -mock = absltest.mock -jax.config.parse_flags_with_absl() - - -# Make `log_elapsed_time` a no-op to simplify mocking of `time.time()`. -@contextlib.contextmanager -def fake_log_elapsed_time(_): - yield - - -jax._src.dispatch.log_elapsed_time = fake_log_elapsed_time - - -def _validate_events(test_case, summary_dir, expected_metrics, steps): - summaries = gfile.listdir(summary_dir) - test_case.assertLen(summaries, 1) - summary_path = os.path.join(summary_dir, summaries[0]) - event_file = os.path.join(summary_path) - events = list(tf.compat.v1.train.summary_iterator(event_file)) - actual_events = {} - # First event is boilerplate - test_case.assertLen(events, len(steps) + 1) - for step, event in zip(steps, events[1:]): - test_case.assertEqual(event.step, step) - test_case.assertLen(event.summary.value, 1) - tensor = event.summary.value[0].tensor - if tensor.string_val: - actual_events[event.summary.value[0].tag] = tensor.string_val[0].decode() - else: - actual_events[event.summary.value[0].tag] = float(tf.make_ndarray(tensor)) - - jax.tree_multimap(test_case.assertAlmostEqual, actual_events, - expected_metrics) - - -class MetricsManagerTest(absltest.TestCase): - - def setUp(self): - super().setUp() - self.model_dir = self.create_tempdir().full_path - - def test_summary_dir(self): - # All hosts have the summary dir. - with mock.patch('jax.process_index', return_value=0): - mm = trainer_lib.MetricsManager('eval', self.model_dir) - self.assertEqual(mm.summary_dir, os.path.join(self.model_dir, 'eval')) - mm.close() - - with mock.patch('jax.process_index', return_value=1): - mm = trainer_lib.MetricsManager('eval', self.model_dir) - self.assertEqual(mm.summary_dir, os.path.join(self.model_dir, 'eval')) - mm.close() - - def test_summary_writer(self): - # Only host 0 creates a non-empty summary writer. - with mock.patch('jax.process_index', return_value=1): - mm = trainer_lib.MetricsManager('eval', self.model_dir) - self.assertFalse(gfile.exists(mm.summary_dir)) - mm.close() - - with mock.patch('jax.process_index', return_value=0): - mm = trainer_lib.MetricsManager('eval', self.model_dir) - self.assertIsInstance(mm.summary_writer, metric_writers.MetricWriter) - self.assertTrue(gfile.exists(mm.summary_dir)) - mm.close() - - def test_write_scalar(self): - gfile.makedirs(os.path.join(self.model_dir, 'eval')) - - # tag, value, step - scalars = [('loss', 1.0, 1), ('accuracy', 100.0, 2)] - - # Only host 0 has actually writes summaries. - with mock.patch('jax.process_index', return_value=1): - mm = trainer_lib.MetricsManager('eval', self.model_dir) - for s in scalars: - mm.write_scalar(*s) - self.assertEmpty(gfile.listdir(mm.summary_dir)) - mm.close() - - with mock.patch('jax.process_index', return_value=0): - mm = trainer_lib.MetricsManager('eval', self.model_dir) - for s in scalars: - mm.write_scalar(*s) - mm.flush() - - summaries = gfile.listdir(mm.summary_dir) - self.assertLen(summaries, 1) - - event_file = os.path.join(mm.summary_dir, summaries[0]) - events = list(tf.compat.v1.train.summary_iterator(event_file)) - # First event is boilerplate - self.assertLen(events, 3) - for event, (tag, value, step) in zip(events[1:], scalars): - self.assertEqual(event.step, step) - self.assertLen(event.summary.value, 1) - self.assertEqual(event.summary.value[0].tag, tag) - self.assertEqual(tf.make_ndarray(event.summary.value[0].tensor), value) - mm.close() - - def test_write_metrics_summary(self): - gfile.makedirs(os.path.join(self.model_dir, 'eval')) - - @flax.struct.dataclass - class MockTextMetric(clu.metrics.Metric): - - def compute_value(self): - return clu.values.Text('test metric') - - accumulated_metrics = { - 'loss': metrics_lib.Sum(40.0), - 'accuracy': metrics_lib.AveragePerStep.from_model_output(20.0), - 'steps_per_second': metrics_lib.StepsPerTime(), - 'text': MockTextMetric() - } - expected_values = { - 'loss': clu.values.Scalar(40.0), - 'accuracy': clu.values.Scalar(10.0), - 'steps_per_second': clu.values.Scalar(0.05), - 'text': clu.values.Text('test metric') - } - with mock.patch( - 'jax.process_index', return_value=0), mock.patch( - 'time.time', - side_effect=[0, 40] # start_time, end_time - ), mock.patch('absl.logging.log'): # avoids hidden calls to time.time() - mm = trainer_lib.MetricsManager('eval', summary_dir=self.model_dir) - mm.start_duration_timer() - summary = mm.write_metrics_summary( - accumulated_metrics, step=4, num_steps=2) - mm.flush() - - self.assertDictEqual(summary.result(), expected_values) - _validate_events( - self, - mm.summary_dir, {k: v.value for k, v in expected_values.items()}, - steps=[4, 4, 4, 4]) - - mm.close() - - def test_timer_blocking_on_donated_buffer(self): - mm = trainer_lib.MetricsManager('train', summary_dir=None) - x = jnp.zeros(1) - - # Not deleted. - mm.start_duration_timer(block_on=x) - mm._duration_timer._start_future.result() - - # Deleted/donated. - x.device_buffer.delete() - mm.start_duration_timer(block_on=x) - mm._duration_timer._start_future.result() - - def test_timer_concurrency(self): - mm = trainer_lib.MetricsManager('train') - - n = 10 - with mock.patch( - 'time.time', - side_effect=range(2 * n) # start_time, end_time - ), mock.patch('absl.logging.log'): # avoids hidden calls to time.time() - for _ in range(n): - mm.start_duration_timer() - summary = mm.write_metrics_summary({'time': metrics_lib.Time()}, 0, 1) - self.assertEqual(1, summary.result()['time'].value) - mm.flush() - - -def fake_accum_grads(model, optimizer, batch, rng, num_microbatches, - data_partition_spec): - del model, num_microbatches, rng, data_partition_spec - # Add `i` to each optimzer value. - i = batch['i'].sum() - grad_accum = jax.tree_map(lambda x: i, optimizer) - # Add j to each metric. - j = batch['j'].sum() - metrics = {'loss': metrics_lib.Sum(j), 'accuracy': metrics_lib.Sum(j)} - return grad_accum, metrics, None - - -def fake_apply_grads(optimizer, - grad_accum, - metrics, - learning_rate, - weight_metrics_computer, - other_state_variables=None): - del weight_metrics_computer - del other_state_variables - metrics['learning_rate'] = clu.metrics.Average(learning_rate, count=1) - optimizer = jax.tree_multimap(lambda x, g: x + g, optimizer, grad_accum) - return optimizer, metrics - - -def fake_eval_step(model, optimizer, batch): - del model, optimizer - # Add `i` to each metric. - i = batch['i'].sum() - - return {'loss': metrics_lib.Sum(i), 'accuracy': metrics_lib.Sum(i)} - - -def fake_eval_fn_without_weight_sum(params, batch): - del params - # Add `i` to each metric. - i = batch['i'].sum() - - loss = metrics_lib.Sum(i) - return loss, {'loss': loss, 'accuracy': metrics_lib.Sum(i)} - - -def fake_value_and_grad_fn_without_weight_sum(callable_fn, has_aux=False): - del callable_fn, has_aux - - def fake_grad_fn_without_weight_sum(train_state_params, - batch, - dropout_rng, - flax_mutables=None): - del dropout_rng, train_state_params, flax_mutables - # Add `i` to each optimzer value. - i = batch['i'].sum() - optimizer = optimizers.Optimizer( - optimizers.sgd(0.1), - state=optimizers.OptimizerState( - step=0, param_states={ - 'bias': 0, - 'kernel': 0 - }), - target={ - 'bias': np.zeros(4), - 'kernel': np.zeros((2, 4)) - }) - train_state = train_state_lib.FlaxOptimTrainState(optimizer) - grad_accum = jax.tree_map(lambda x: i, train_state) - # Add j to each metric. - j = batch['j'].sum() - metrics = {'loss': metrics_lib.Sum(j), 'accuracy': metrics_lib.Sum(j)} - return (None, metrics), grad_accum.params - - return fake_grad_fn_without_weight_sum - - -class TrainerTest(parameterized.TestCase): - - def setUp(self): - super().setUp() - self.init_optimizer = optimizers.Optimizer( - optimizers.sgd(0.1), - state=optimizers.OptimizerState( - step=0, param_states={ - 'bias': 0, - 'kernel': 0 - }), - target={ - 'bias': np.zeros(4), - 'kernel': np.zeros((2, 4)) - }) - self.init_train_state = train_state_lib.FlaxOptimTrainState( - self.init_optimizer) - train_state_axes = jax.tree_map(lambda x: None, self.init_train_state) - model_dir = self.create_tempdir().full_path - - mapfn = lambda i: {'i': [tf.cast(i, tf.int32)], 'j': [tf.cast(1, tf.int32)]} - self.dataset = tf.data.Dataset.range(6).map(mapfn).batch( - 2, drop_remainder=True) - - self.test_trainer = trainer_lib.Trainer( - mock.create_autospec(models_lib.BaseModel, instance=True), - self.init_train_state, - partitioning.PjitPartitioner(num_partitions=1), - eval_names=['task1', 'task2'], - summary_dir=model_dir, - train_state_axes=train_state_axes, - rng=np.ones(2, np.uint32), - learning_rate_fn=lambda step: 2 * step, - num_microbatches=None) - - def tearDown(self) -> None: - self.test_trainer.close() - return super().tearDown() - - @mock.patch('t5x.trainer.accumulate_grads_microbatched', fake_accum_grads) - @mock.patch('t5x.trainer.apply_grads', fake_apply_grads) - def _test_train(self, precompile): - trainer = self.test_trainer - initial_rng = trainer._base_rng - - if precompile: - with mock.patch( - 'time.time', - side_effect=[0, 1] # compile start, end - ), mock.patch('absl.logging.log'): # avoids hidden calls to time.time() - trainer.compile_train(next(self.dataset.as_numpy_iterator())) - trainer._compiled_train_step = mock.Mock( - side_effect=trainer._compiled_train_step) - - trainer._partitioned_train_step = mock.Mock( - side_effect=trainer._partitioned_train_step) - - num_steps = 2 - with mock.patch( - 'time.time', - side_effect=[1, 5] # start_time, end_time - ), mock.patch('absl.logging.log'): # avoids hidden calls to time.time() - trainer.train(self.dataset.as_numpy_iterator(), num_steps).result() - - initial_metrics = { - 'loss': 0., - 'accuracy': 0., - } - expected_metrics = { - k: (v + 2 * num_steps) for k, v in initial_metrics.items() - } - # (0 + 2) / 2 = 1 - expected_metrics['learning_rate'] = 1 - # 0+1+2+3 = 6 - expected_train_state = jax.tree_map(lambda x: np.array(x + 6), - self.init_train_state) - - # Base rng must remain the same - np.testing.assert_array_equal(trainer._base_rng, initial_rng) - jax.tree_multimap(np.testing.assert_equal, trainer.train_state, - expected_train_state) - # Expected step is 6 since we increment it along with the other optimizer - # values. - steps = [2, 2, 2] - if precompile: - steps = [0] + steps - expected_metrics['timing/compilation_seconds'] = 1 - self.assertEqual(trainer._compiled_train_step.call_count, num_steps) - trainer._partitioned_train_step.assert_not_called() - else: - self.assertIsNone(trainer._compiled_train_step) - self.assertEqual(trainer._partitioned_train_step.call_count, num_steps) - trainer.train_metrics_manager.flush() - _validate_events( - self, - trainer.train_metrics_manager.summary_dir, - expected_metrics, - steps=steps) - - def test_train_noprecompile(self): - self._test_train(False) - - def test_train_precompile(self): - self._test_train(True) - - @mock.patch('t5x.trainer.eval_step', fake_eval_step) - def _test_eval(self, precompile): - trainer = self.test_trainer - initial_rng = trainer._base_rng - - task_datasets = { - 'task1': self.dataset.take(2), - 'task2': self.dataset.repeat().take(5) - } - - if precompile: - # [task1 start, task1 end, task2 start, task2 end] - with mock.patch( - 'time.time', - side_effect=[0, 1, 2, 3] # [t1 start, t1 end, t2 start, t2 end] - ), mock.patch('absl.logging.log'): # avoids hidden calls to time.time() - trainer.compile_eval({ - task: next(ds.as_numpy_iterator()) - for task, ds in task_datasets.items() - }) - trainer._compiled_eval_steps = { - task: mock.Mock(side_effect=trainer._compiled_eval_steps[task]) - for task in task_datasets - } - - trainer._partitioned_eval_step = mock.Mock( - side_effect=trainer._partitioned_eval_step) - - with mock.patch( - 'time.time', - side_effect=[1, 5, 5, 8] # t1 start, t1 end, t2 start, t2 end] - ), mock.patch('absl.logging.log'): # avoids hidden calls to time.time() - trainer.eval( - {task: ds.as_numpy_iterator() for task, ds in task_datasets.items()}) - - all_expected_metrics = { - # 0+1+2+3 = 6 - 'task1': { - 'loss': 6, - 'accuracy': 6, - }, - # 0+1+2+3+4+5+0+1+2+3 = 21 - 'task2': { - 'loss': 21, - 'accuracy': 21, - }, - } - - np.testing.assert_array_equal(trainer._base_rng, initial_rng) - for task_name, expected_metrics in all_expected_metrics.items(): - steps = [0, 0] - if precompile: - steps = [0] + steps - expected_metrics['timing/compilation_seconds'] = 1 - self.assertEqual( # pylint:disable=g-generic-assert - trainer._compiled_eval_steps[task_name].call_count, - len(task_datasets[task_name])) - trainer._partitioned_eval_step.assert_not_called() - else: - self.assertEmpty(trainer._compiled_eval_steps) - self.assertEqual(trainer._partitioned_eval_step.call_count, - sum(len(ds) for ds in task_datasets.values())) - mm = trainer.eval_metrics_managers[task_name] - mm.flush() - _validate_events(self, mm.summary_dir, expected_metrics, steps=steps) - - def test_eval_noprecompile(self): - self._test_eval(False) - - def test_eval_precompile(self): - self._test_eval(True) - - @parameterized.named_parameters([ - { - 'testcase_name': 'max_no_increase', - 'mode': 'max', - 'metrics': [1, 1, 1], - 'atol': 0., - 'rtol': 0., - 'stop_training': True, - }, - { - 'testcase_name': 'max_no_atol', - 'mode': 'max', - 'metrics': [1, 0.9, 0.8], - 'atol': 0., - 'rtol': 0., - 'stop_training': True, - }, - { - 'testcase_name': 'max_not_enough_atol', - 'mode': 'max', - 'metrics': [1, 1.09, 1.18], - 'atol': 0.1, - 'rtol': 0., - 'stop_training': True, - }, - { - 'testcase_name': 'max_enough_atol', - 'mode': 'max', - 'metrics': [1, 1.2, 1.4], - 'atol': 0.1, - 'rtol': 0., - 'stop_training': False, - }, - { - 'testcase_name': 'max_enough_atol_rtol', - 'mode': 'max', - # first delta = 0.1 + 1* 0.08 = 0.18 - # second delta = 0.1 + 1.2 * 0.08 = 0.196 - 'metrics': [1, 1.2, 1.4], - 'atol': 0.1, - 'rtol': 0.08, - 'stop_training': False, - }, - { - 'testcase_name': 'max_not_enough_rtol', - 'mode': 'max', - 'metrics': [1, 1.2, 1.4], - 'atol': 0., - 'rtol': 0.2, - 'stop_training': True, - }, - { - 'testcase_name': 'min_no_decrease', - 'mode': 'min', - 'metrics': [1, 1, 1], - 'atol': 0., - 'rtol': 0., - 'stop_training': True, - }, - { - 'testcase_name': 'min_no_atol', - 'mode': 'min', - 'metrics': [1, 1, 1], - 'atol': 0., - 'rtol': 0., - 'stop_training': True, - }, - { - 'testcase_name': 'min_not_enough_atol', - 'mode': 'min', - 'metrics': [1, 0.9, 0.71], - 'atol': 0.2, - 'rtol': 0., - 'stop_training': True, - }, - { - 'testcase_name': 'min_enough_atol', - 'mode': 'min', - 'metrics': [1, 0.8, 0.6], - 'atol': 0.15, - 'rtol': 0., - 'stop_training': False, - }, - { - 'testcase_name': 'min_enough_atol_rtol', - 'mode': 'min', - # first delta = 0.1 + 1* 0.09 = 0.19 - # second delta = 0.1 + 0.8 * 0.09 = 0.172 - 'metrics': [1, 0.8, 0.6], - 'atol': 0.1, - 'rtol': 0.09, - 'stop_training': False, - }, - { - 'testcase_name': 'min_not_enough_rtol', - 'mode': 'min', - 'metrics': [1, 0.8, 0.6], - 'atol': 0.0, - 'rtol': 0.3, - 'stop_training': True, - }, - { - 'testcase_name': 'longer_history', - 'mode': 'min', - 'metrics': [1, 0.8, 0.7, 0.6], - 'atol': 0.15, - 'rtol': 0., - 'stop_training': True, - } - ]) - def test_early_stopping_action(self, mode, metrics, atol, rtol, - stop_training): - trainer = self.test_trainer - metrics = [clu.values.Scalar(metric) for metric in metrics] - hook = trainer_lib.EarlyStoppingAction(('test_task', 'metric'), - mode=mode, - patience=3, - atol=atol, - rtol=rtol) - - for metric in metrics: - trainer_stop_training = hook.run(trainer.train_state, - {'test_task': { - 'metric': metric - }}) - - self.assertEqual(trainer_stop_training, stop_training) - - @parameterized.named_parameters([ - { - 'testcase_name': 'invalid_task', - 'task': 'wrong_task', - 'metric': 'metric', - 'value': clu.values.Scalar(np.nan), - }, - { - 'testcase_name': 'invalid_metric_name', - 'task': 'task', - 'metric': 'wrong_metric_name', - 'value': clu.values.Scalar(np.nan), - }, - { - 'testcase_name': 'invalid_value', - 'task': 'task', - 'metric': 'metric', - 'value': 1.0, - }, - ]) - def test_early_stopping_action_error(self, task, metric, value): - trainer = self.test_trainer - hook = trainer_lib.EarlyStoppingAction((task, metric), - mode='min', - patience=5, - atol=1, - rtol=1) - - trainer_stop_training = hook.run(trainer.train_state, - {task: { - metric: value - }}) - - self.assertFalse(trainer_stop_training) - - @parameterized.named_parameters([{ - 'testcase_name': 'valid_loss', - 'metric': 'loss', - 'value': 1.0, - 'stop_training': False, - }, { - 'testcase_name': 'nan', - 'metric': 'loss', - 'value': np.nan, - 'stop_training': True, - }, { - 'testcase_name': 'inf', - 'metric': 'loss', - 'value': np.inf, - 'stop_training': True, - }, { - 'testcase_name': 'other_metric', - 'metric': 'some_metric', - 'value': np.inf, - 'stop_training': True, - }]) - def test_terminate_on_nan_action(self, metric, value, stop_training): - trainer = self.test_trainer - value = clu.values.Scalar(value) - hook = trainer_lib.TerminateOnNanAction(task='test_task', metric=metric) - - trainer_stop_training = hook.run(trainer.train_state, - {'test_task': { - metric: value - }}) - - self.assertEqual(trainer_stop_training, stop_training) - - @parameterized.named_parameters([ - { - 'testcase_name': 'invalid_task', - 'task': 'wrong_task', - 'metric': 'metric', - 'value': clu.values.Scalar(np.nan), - }, - { - 'testcase_name': 'invalid_metric_name', - 'task': 'task', - 'metric': 'wrong_metric_name', - 'value': clu.values.Scalar(np.nan), - }, - { - 'testcase_name': 'invalid_value', - 'task': 'task', - 'metric': 'metric', - 'value': 1.0, - }, - ]) - def test_terminate_on_nan_action_error(self, task, metric, value): - trainer = self.test_trainer - hook = trainer_lib.TerminateOnNanAction(task=task, metric=metric) - - trainer_stop_training = hook.run(trainer.train_state, - {'task': { - 'metric': value - }}) - - self.assertFalse(trainer_stop_training) - - def test_compile_train(self): - trainer = self.test_trainer - trainer._partitioned_train_step = mock.Mock() - trainer.train_metrics_manager = mock.Mock() - - batch = { - 'i': np.arange(10, dtype=np.int32).reshape((2, 5)), - 'j': np.ones((), dtype=np.float32) - } - # compile start, compile end - with mock.patch('time.time', side_effect=[1, 5]): - trainer.compile_train(batch) - - trainer.train_metrics_manager.write_scalar.assert_called_with( - 'timing/compilation_seconds', 4, trainer.train_state.step) - trainer._partitioned_train_step.lower.assert_called_once() - train_step_args = trainer._partitioned_train_step.lower.call_args[0] - self.assertLen(train_step_args, 2) - self.assertEqual(train_step_args[0], trainer.train_state) - test_utils.assert_same(train_step_args[1], batch) - - def test_compile_eval(self): - trainer = self.test_trainer - trainer._partitioned_eval_step = mock.Mock() - trainer.eval_metrics_managers = { - 'eval1': mock.Mock(), - 'eval2': mock.Mock(), - 'eval3': mock.Mock(), - 'eval4': mock.Mock() - } - trainer._partitioned_eval_step.lower().compile.side_effect = [ - 'compiled1', 'compiled2', 'compiled3' - ] - - batches = { - 'eval1': { - 'i': np.zeros((2, 5), dtype=np.int32) - }, - 'eval2': { - 'j': np.zeros((), dtype=np.float32) - }, - 'eval3': { - 'j': np.zeros((), dtype=np.float32) - }, - 'eval4': { - 'k': np.zeros((4), dtype=np.float32) - }, - } - - # eval1 start/end, eval2 start/end, eval3 start/end, eval 4 start/end - with mock.patch('time.time', side_effect=[1, 5, 6, 9, 10, 11, 12, 13]): - trainer.compile_eval(collections.OrderedDict(sorted(batches.items()))) - - trainer.eval_metrics_managers['eval1'].write_scalar.assert_called_with( - 'timing/compilation_seconds', 4, trainer.train_state.step) - trainer.eval_metrics_managers['eval2'].write_scalar.assert_called_with( - 'timing/compilation_seconds', 3, trainer.train_state.step) - trainer.eval_metrics_managers['eval3'].write_scalar.assert_called_with( - 'timing/compilation_seconds', 1, trainer.train_state.step) - trainer.eval_metrics_managers['eval4'].write_scalar.assert_called_with( - 'timing/compilation_seconds', 1, trainer.train_state.step) - eval_step_args = trainer._partitioned_eval_step.lower.call_args_list[1:] - self.assertLen(eval_step_args, 3) - - eval1_call_args = eval_step_args[0][0] - self.assertLen(eval1_call_args, 2) - self.assertEqual(eval1_call_args[0], trainer.train_state) - test_utils.assert_same(eval1_call_args[1], { - 'i': np.zeros((2, 5), dtype=np.int32), - }) - - eval2_call_args = eval_step_args[1][0] - self.assertLen(eval2_call_args, 2) - self.assertEqual(eval2_call_args[0], trainer.train_state) - test_utils.assert_same(eval2_call_args[1], { - 'j': np.zeros((), dtype=np.float32), - }) - - eval3_call_args = eval_step_args[2][0] - self.assertLen(eval3_call_args, 2) - self.assertEqual(eval3_call_args[0], trainer.train_state) - test_utils.assert_same(eval3_call_args[1], { - 'k': np.zeros((4), dtype=np.float32), - }) - - self.assertDictEqual( - trainer._compiled_eval_steps, { - 'eval1': 'compiled1', - 'eval2': 'compiled2', - 'eval3': 'compiled2', - 'eval4': 'compiled3' - }) - - @mock.patch('jax.value_and_grad', fake_value_and_grad_fn_without_weight_sum) - def test_accumulate_grads_microbatched_without_weight_sum_single_batch(self): - batch_iter = self.dataset.as_numpy_iterator() - batch = next(batch_iter) - num_microbatches = 1 - grad_accum, metrics, flax_mutables = trainer_lib.accumulate_grads_microbatched( - self.test_trainer._model, self.init_train_state, batch, - self.test_trainer._base_rng, num_microbatches) - - i = batch['i'].sum() - expected_grad_accum = jax.tree_map(lambda x: i, - self.init_train_state).params - self.assertEqual(expected_grad_accum, grad_accum) - self.assertEqual(metrics['loss'].compute(), 2) - self.assertEqual(metrics['accuracy'].compute(), 2) - self.assertIsNone(flax_mutables) - - @mock.patch('jax.value_and_grad', fake_value_and_grad_fn_without_weight_sum) - def test_accumulate_grads_microbatched_without_weight_sum_multiple_batches( - self): - batch_iter = self.dataset.as_numpy_iterator() - batch = next(batch_iter) - num_micro_batches = 2 - grad_accum, metrics, flax_mutables = trainer_lib.accumulate_grads_microbatched( - self.test_trainer._model, self.init_train_state, batch, - self.test_trainer._base_rng, num_micro_batches) - - expected_grad_accum = {'bias': jnp.ones(4), 'kernel': jnp.ones((2, 4))} - chex.assert_trees_all_equal(expected_grad_accum, grad_accum) - self.assertEqual(metrics['loss'].compute(), 2) - self.assertEqual(metrics['accuracy'].compute(), 2) - self.assertIsNone(flax_mutables) - - def test_eval_step_without_weight_sum(self): - batch_iter = self.dataset.as_numpy_iterator() - batch = next(batch_iter) - self.test_trainer._model.eval_fn = fake_eval_fn_without_weight_sum - metrics = trainer_lib.eval_step(self.test_trainer._model, - self.init_train_state, batch) - - self.assertEqual(metrics['loss'].compute(), 1) - self.assertEqual(metrics['accuracy'].compute(), 1) - - -class TrainerRngDeterminismTest(parameterized.TestCase): - - def create_trainer(self, step, random_seed): - init_optimizer = optimizers.Optimizer( - optimizers.sgd(0.1), - state=optimizers.OptimizerState( - step=step, param_states={ - 'bias': 0, - 'kernel': 0 - }), - target={ - 'bias': np.zeros(4), - 'kernel': np.zeros((2, 4)) - }) - init_train_state = train_state_lib.FlaxOptimTrainState(init_optimizer) - train_state_axes = jax.tree_map(lambda x: None, init_train_state) - - test_trainer = trainer_lib.Trainer( - mock.create_autospec(models_lib.BaseModel, instance=True), - init_train_state, - partitioning.PjitPartitioner(num_partitions=1), - eval_names=['task1', 'task2'], - summary_dir=None, - train_state_axes=train_state_axes, - rng=jax.random.PRNGKey(random_seed), - learning_rate_fn=lambda step: 2 * step, - num_microbatches=None) - return test_trainer - - @mock.patch('t5x.trainer.accumulate_grads_microbatched') - @mock.patch('t5x.trainer.apply_grads', fake_apply_grads) - def test_rng_determinism(self, mock_accum_grads): - - def fake_accum_grads_rng(model, optimizer, batch, rng, num_microbatches, - data_partition_spec): - del model, batch, num_microbatches, data_partition_spec - # Add 1, which will increment the step as a side effect. - grad_accum = jax.tree_map(lambda x: 1, optimizer) - m = {'rng': metrics_lib.Sum(jnp.sum(rng))} - return grad_accum, m, None - - mock_accum_grads.side_effect = fake_accum_grads_rng - # Create a trainer at a given step (53) with a given random seed (23), - # train up to a given train step (100), check the sum of the rngs from the - # metrics. - start_step = 47 - end_step = 100 - random_seed = 23 - trainer = self.create_trainer(step=start_step, random_seed=random_seed) - # 500 batches of size 2 - ds = [np.zeros(2)] * 500 - - metrics = trainer.train(iter(ds), num_steps=end_step - start_step) - base_rng = jax.random.PRNGKey(random_seed) - expected_rng_sum = np.sum( - [jax.random.fold_in(base_rng, i) for i in range(start_step, end_step)], - dtype=np.uint32) - np.testing.assert_array_equal(metrics.result()['rng'].value, - expected_rng_sum) - - -def fake_mut_accum_grads(model, optimizer, batch, rng, num_microbatches, - data_partition_spec): - del model, num_microbatches, rng, data_partition_spec - # Add `i` to each optimzer value. - i = batch['i'].sum() - grad_accum = jax.tree_map(lambda x: i, optimizer) - # Add j to each metric. - j = batch['j'].sum() - metrics = { - 'loss': metrics_lib.Sum.from_model_output(j), - 'accuracy': metrics_lib.Sum.from_model_output(j) - } - return grad_accum, metrics, {'mutables': 0} - - -def fake_mut_apply_grads(optimizer, grad_accum, metrics, learning_rate, - weight_metrics_computer, other_state_variables): - del weight_metrics_computer, other_state_variables - metrics['learning_rate'] = clu.metrics.Average.from_model_output( - learning_rate) - optimizer = jax.tree_multimap(lambda x, g: x + g, optimizer, grad_accum) - return optimizer, metrics - - -class MutableTrainerTest(parameterized.TestCase): - - def setUp(self): - super().setUp() - self.init_optimizer = optimizers.Optimizer( - optimizers.sgd(0.1), - state=optimizers.OptimizerState( - step=0, param_states={ - 'bias': 0, - 'kernel': 0 - }), - target={ - 'bias': np.zeros(4), - 'kernel': np.zeros((2, 4)) - }) - self.init_train_state = train_state_lib.FlaxOptimTrainState( - self.init_optimizer) - train_state_axes = jax.tree_map(lambda x: None, self.init_train_state) - model_dir = self.create_tempdir().full_path - - mapfn = lambda i: {'i': [tf.cast(i, tf.int32)], 'j': [tf.cast(1, tf.int32)]} - self.dataset = tf.data.Dataset.range(6).map(mapfn).batch( - 2, drop_remainder=True) - self.dataset1 = tf.data.Dataset.range(6).map(mapfn).batch( - 2, drop_remainder=True) - - self.test_trainer = trainer_lib.Trainer( - mock.create_autospec(models_lib.BaseModel, instance=True), - self.init_train_state, - partitioning.PjitPartitioner(num_partitions=1), - eval_names=['task1', 'task2'], - summary_dir=model_dir, - train_state_axes=train_state_axes, - rng=np.ones(2, np.uint32), - learning_rate_fn=lambda step: 2 * (step + 1), - num_microbatches=None) - - @mock.patch('time.time') - @mock.patch('t5x.trainer.accumulate_grads_microbatched', fake_mut_accum_grads) - @mock.patch('t5x.trainer.apply_grads', fake_mut_apply_grads) - # avoids calls time.time() during logging - @mock.patch('absl.logging.info', lambda *_: None) - @mock.patch('absl.logging.log_every_n_seconds', lambda *_: None) - def test_train(self, mock_time=None): - trainer = self.test_trainer - initial_rng = trainer._base_rng - - trainer._partitioned_train_step = mock.Mock( - side_effect=trainer._partitioned_train_step) - - # train start, logging, train end, logging - mock_time.side_effect = [1, 5, 5, 5] - num_steps = 1 - ds_iter = self.dataset.as_numpy_iterator() - batch = next(ds_iter) - train_state, _ = trainer._partitioned_train_step(trainer.train_state, batch) - - expected_train_state = jax.tree_map(lambda x: np.array(x + 1), - self.init_train_state) - # Base rng must remain the same - np.testing.assert_array_equal(trainer._base_rng, initial_rng) - jax.tree_multimap(np.testing.assert_equal, train_state, - expected_train_state) - - self.assertIsNone(trainer._compiled_train_step) - self.assertEqual(trainer._partitioned_train_step.call_count, num_steps) - - def tearDown(self) -> None: - # Manually close managers to avoid phantom threads crossing test cases. - self.test_trainer.train_metrics_manager.close() - for mm in self.test_trainer.eval_metrics_managers.values(): - mm.close() - return super().tearDown() - - -if __name__ == '__main__': - absltest.main() diff --git a/spaces/julien-c/nvidia-smi/app.py b/spaces/julien-c/nvidia-smi/app.py deleted file mode 100644 index 666d0d0f1d66c6d23b697ff60f7fa5d8987b3d69..0000000000000000000000000000000000000000 --- a/spaces/julien-c/nvidia-smi/app.py +++ /dev/null @@ -1,63 +0,0 @@ -import datetime -import os -import subprocess -import gradio as gr - - -CUSTOM_CSS = """ -#output_box textarea { - font-family: IBM Plex Mono, ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace; -} -""" - - - - -def run(): - output: str = "" - try: - output = subprocess.check_output(["nvidia-smi"], text=True) - except FileNotFoundError: - output = subprocess.check_output(["ls", "-alh"], text=True) - comment = ( - datetime.datetime.now().replace(microsecond=0).isoformat().replace("T", " ") - ) - return f"# {comment}\n\n{output}" - - -def run_custom_command(custom_command: str, secret: str): - if secret != os.environ.get("SECRET"): - return "You can't access this" - - print("custom_command", custom_command) - try: - return subprocess.check_output(custom_command.split(), text=True) - except Exception as e: - return f"{e}" - - -output = gr.Textbox( - label="Command Output", max_lines=32, elem_id="output_box", value=run() -) - -with gr.Blocks(css=CUSTOM_CSS) as demo: - gr.Markdown("#### `nvidia-smi`: How is my GPU Space running right now 🔥") - - with gr.Accordion(label="Power user mode", open=False): - custom_command = gr.Textbox(label="Input command", value="pwd") - secret = gr.Textbox( - label="Secret", - ) - custom_command_btn = gr.Button("Run") - custom_command_btn.click( - fn=run_custom_command, - inputs=[custom_command, secret], - outputs=output, - ) - - output.render() - - demo.load(fn=run, inputs=None, outputs=output, every=1) - - -demo.queue().launch() diff --git a/spaces/kangvcar/RealChar/realtime_ai_character/audio/speech_to_text/google.py b/spaces/kangvcar/RealChar/realtime_ai_character/audio/speech_to_text/google.py deleted file mode 100644 index 2396eae74cc57a9c8a64d1aae25d980f728e7491..0000000000000000000000000000000000000000 --- a/spaces/kangvcar/RealChar/realtime_ai_character/audio/speech_to_text/google.py +++ /dev/null @@ -1,44 +0,0 @@ -from google.cloud import speech -import types - -from realtime_ai_character.audio.speech_to_text.base import SpeechToText -from realtime_ai_character.logger import get_logger -from realtime_ai_character.utils import Singleton - -logger = get_logger(__name__) -config = types.SimpleNamespace(**{ - 'web': { - 'encoding': speech.RecognitionConfig.AudioEncoding.WEBM_OPUS, - 'sample_rate_hertz': 48000, - 'language_code': 'en-US', - 'max_alternatives': 1, - }, - 'terminal': { - 'encoding': speech.RecognitionConfig.AudioEncoding.LINEAR16, - 'sample_rate_hertz': 44100, - 'language_code': 'en-US', - 'max_alternatives': 1, - }, -}) - - -class Google(Singleton, SpeechToText): - def __init__(self): - super().__init__() - logger.info("Setting up [Google Speech to Text]...") - self.client = speech.SpeechClient() - - def transcribe(self, audio_bytes, platform, prompt='') -> str: - batch_config = speech.RecognitionConfig({ - 'speech_contexts': [speech.SpeechContext(phrases=prompt.split(','))], - **config.__dict__[platform]}) - response = self.client.recognize( - config=batch_config, - audio=speech.RecognitionAudio(content=audio_bytes) - ) - if not response.results: - return '' - result = response.results[0] - if not result.alternatives: - return '' - return result.alternatives[0].transcript diff --git a/spaces/keneonyeachonam/Docker-FlanT5-TextGeneratorTranslator-021623/README.md b/spaces/keneonyeachonam/Docker-FlanT5-TextGeneratorTranslator-021623/README.md deleted file mode 100644 index cbab09def6dcb936f7c0aeb6c6b36f2654b378ad..0000000000000000000000000000000000000000 --- a/spaces/keneonyeachonam/Docker-FlanT5-TextGeneratorTranslator-021623/README.md +++ /dev/null @@ -1,11 +0,0 @@ ---- -title: Docker FlanT5 TextGeneratorTranslator 021623 -emoji: 🏢 -colorFrom: blue -colorTo: purple -sdk: docker -pinned: false -app_port: 7860 ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/kevinwang676/ChatGLM2-VC-SadTalker/speaker_encoder/audio.py b/spaces/kevinwang676/ChatGLM2-VC-SadTalker/speaker_encoder/audio.py deleted file mode 100644 index 2fcb77ad1d3a85f523e24f84691886736a5686cb..0000000000000000000000000000000000000000 --- a/spaces/kevinwang676/ChatGLM2-VC-SadTalker/speaker_encoder/audio.py +++ /dev/null @@ -1,107 +0,0 @@ -from scipy.ndimage.morphology import binary_dilation -from speaker_encoder.params_data import * -from pathlib import Path -from typing import Optional, Union -import numpy as np -import webrtcvad -import librosa -import struct - -int16_max = (2 ** 15) - 1 - - -def preprocess_wav(fpath_or_wav: Union[str, Path, np.ndarray], - source_sr: Optional[int] = None): - """ - Applies the preprocessing operations used in training the Speaker Encoder to a waveform - either on disk or in memory. The waveform will be resampled to match the data hyperparameters. - - :param fpath_or_wav: either a filepath to an audio file (many extensions are supported, not - just .wav), either the waveform as a numpy array of floats. - :param source_sr: if passing an audio waveform, the sampling rate of the waveform before - preprocessing. After preprocessing, the waveform's sampling rate will match the data - hyperparameters. If passing a filepath, the sampling rate will be automatically detected and - this argument will be ignored. - """ - # Load the wav from disk if needed - if isinstance(fpath_or_wav, str) or isinstance(fpath_or_wav, Path): - wav, source_sr = librosa.load(fpath_or_wav, sr=None) - else: - wav = fpath_or_wav - - # Resample the wav if needed - if source_sr is not None and source_sr != sampling_rate: - wav = librosa.resample(wav, source_sr, sampling_rate) - - # Apply the preprocessing: normalize volume and shorten long silences - wav = normalize_volume(wav, audio_norm_target_dBFS, increase_only=True) - wav = trim_long_silences(wav) - - return wav - - -def wav_to_mel_spectrogram(wav): - """ - Derives a mel spectrogram ready to be used by the encoder from a preprocessed audio waveform. - Note: this not a log-mel spectrogram. - """ - frames = librosa.feature.melspectrogram( - y=wav, - sr=sampling_rate, - n_fft=int(sampling_rate * mel_window_length / 1000), - hop_length=int(sampling_rate * mel_window_step / 1000), - n_mels=mel_n_channels - ) - return frames.astype(np.float32).T - - -def trim_long_silences(wav): - """ - Ensures that segments without voice in the waveform remain no longer than a - threshold determined by the VAD parameters in params.py. - - :param wav: the raw waveform as a numpy array of floats - :return: the same waveform with silences trimmed away (length <= original wav length) - """ - # Compute the voice detection window size - samples_per_window = (vad_window_length * sampling_rate) // 1000 - - # Trim the end of the audio to have a multiple of the window size - wav = wav[:len(wav) - (len(wav) % samples_per_window)] - - # Convert the float waveform to 16-bit mono PCM - pcm_wave = struct.pack("%dh" % len(wav), *(np.round(wav * int16_max)).astype(np.int16)) - - # Perform voice activation detection - voice_flags = [] - vad = webrtcvad.Vad(mode=3) - for window_start in range(0, len(wav), samples_per_window): - window_end = window_start + samples_per_window - voice_flags.append(vad.is_speech(pcm_wave[window_start * 2:window_end * 2], - sample_rate=sampling_rate)) - voice_flags = np.array(voice_flags) - - # Smooth the voice detection with a moving average - def moving_average(array, width): - array_padded = np.concatenate((np.zeros((width - 1) // 2), array, np.zeros(width // 2))) - ret = np.cumsum(array_padded, dtype=float) - ret[width:] = ret[width:] - ret[:-width] - return ret[width - 1:] / width - - audio_mask = moving_average(voice_flags, vad_moving_average_width) - audio_mask = np.round(audio_mask).astype(np.bool) - - # Dilate the voiced regions - audio_mask = binary_dilation(audio_mask, np.ones(vad_max_silence_length + 1)) - audio_mask = np.repeat(audio_mask, samples_per_window) - - return wav[audio_mask == True] - - -def normalize_volume(wav, target_dBFS, increase_only=False, decrease_only=False): - if increase_only and decrease_only: - raise ValueError("Both increase only and decrease only are set") - dBFS_change = target_dBFS - 10 * np.log10(np.mean(wav ** 2)) - if (dBFS_change < 0 and increase_only) or (dBFS_change > 0 and decrease_only): - return wav - return wav * (10 ** (dBFS_change / 20)) diff --git a/spaces/kvviingu/stabilityai-stable-diffusion-xl-base-1.0/README.md b/spaces/kvviingu/stabilityai-stable-diffusion-xl-base-1.0/README.md deleted file mode 100644 index 3c152ded0af5d64ace667224a3c5f62d92ba0e7e..0000000000000000000000000000000000000000 --- a/spaces/kvviingu/stabilityai-stable-diffusion-xl-base-1.0/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Stabilityai Stable Diffusion Xl Base 1.0 -emoji: 🌍 -colorFrom: purple -colorTo: indigo -sdk: gradio -sdk_version: 3.50.2 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/ky2k/Toxicity_Classifier_POC/.venv/lib/python3.9/site-packages/gradio/templates/cdn/assets/index-928645ac.css b/spaces/ky2k/Toxicity_Classifier_POC/.venv/lib/python3.9/site-packages/gradio/templates/cdn/assets/index-928645ac.css deleted file mode 100644 index 4329ebb21b609937b3a2fdd0c3a1ef2edf96b04c..0000000000000000000000000000000000000000 --- a/spaces/ky2k/Toxicity_Classifier_POC/.venv/lib/python3.9/site-packages/gradio/templates/cdn/assets/index-928645ac.css +++ /dev/null @@ -1 +0,0 @@ -.container.svelte-19on2m6.svelte-19on2m6{display:flex;flex-direction:column;gap:var(--spacing-sm);padding:var(--block-padding)}.hl.svelte-19on2m6+.hl.svelte-19on2m6{margin-left:var(--size-1)}.textspan.svelte-19on2m6:last-child>.label.svelte-19on2m6{margin-right:0}.category-legend.svelte-19on2m6.svelte-19on2m6{display:flex;flex-wrap:wrap;gap:var(--spacing-sm);color:#000}.category-label.svelte-19on2m6.svelte-19on2m6{cursor:pointer;border-radius:var(--radius-xs);padding-right:var(--size-2);padding-left:var(--size-2);font-weight:var(--weight-semibold)}.color-legend.svelte-19on2m6.svelte-19on2m6{display:flex;justify-content:space-between;border-radius:var(--radius-xs);background:linear-gradient(to right,var(--color-purple),rgba(255,255,255,0),var(--color-red));padding:var(--size-1) var(--size-2);font-weight:var(--weight-semibold)}.textfield.svelte-19on2m6.svelte-19on2m6{box-sizing:border-box;border-radius:var(--radius-xs);background:var(--background-fill-primary);background-color:transparent;max-width:var(--size-full);line-height:var(--scale-4);word-break:break-all}.textspan.svelte-19on2m6.svelte-19on2m6{transition:.15s;border-radius:var(--radius-xs);padding-top:2.5px;padding-right:var(--size-1);padding-bottom:3.5px;padding-left:var(--size-1);color:#000}.label.svelte-19on2m6.svelte-19on2m6{transition:.15s;margin-top:1px;margin-right:calc(var(--size-1) * -1);border-radius:var(--radius-xs);padding:1px 5px;color:var(--body-text-color);color:#fff;font-weight:var(--weight-bold);font-size:var(--text-sm);text-transform:uppercase}.text.svelte-19on2m6.svelte-19on2m6{color:#000}.score-text.svelte-19on2m6 .text.svelte-19on2m6{color:var(--body-text-color)}.score-text.svelte-19on2m6.svelte-19on2m6{margin-right:var(--size-1);padding:var(--size-1)}.no-cat.svelte-19on2m6.svelte-19on2m6,.no-label.svelte-19on2m6.svelte-19on2m6{color:var(--body-text-color)}.selectable.svelte-19on2m6.svelte-19on2m6{cursor:pointer} diff --git a/spaces/ky2k/Toxicity_Classifier_POC/.venv/lib/python3.9/site-packages/gradio/templates/frontend/assets/Model3D-6764e7f5.js b/spaces/ky2k/Toxicity_Classifier_POC/.venv/lib/python3.9/site-packages/gradio/templates/frontend/assets/Model3D-6764e7f5.js deleted file mode 100644 index 9401dd97d83c14992175e6ae2f23f6368d1a4514..0000000000000000000000000000000000000000 --- a/spaces/ky2k/Toxicity_Classifier_POC/.venv/lib/python3.9/site-packages/gradio/templates/frontend/assets/Model3D-6764e7f5.js +++ /dev/null @@ -1,2 +0,0 @@ -import{S as o,i as d,s as u,G as _,I as g,C as r,M as i,g as v,E as y,K as m,F as c,q as b}from"./index-8c3da1d9.js";function M(a){let e,s;return{c(){e=_("div"),s=g(a[0]),r(e,"class","svelte-1ayixqk"),i(e,"table",a[1]==="table"),i(e,"gallery",a[1]==="gallery"),i(e,"selected",a[2])},m(t,l){v(t,e,l),y(e,s)},p(t,[l]){l&1&&m(s,t[0]),l&2&&i(e,"table",t[1]==="table"),l&2&&i(e,"gallery",t[1]==="gallery"),l&4&&i(e,"selected",t[2])},i:c,o:c,d(t){t&&b(e)}}}function q(a,e,s){let{value:t}=e,{type:l}=e,{selected:f=!1}=e;return a.$$set=n=>{"value"in n&&s(0,t=n.value),"type"in n&&s(1,l=n.type),"selected"in n&&s(2,f=n.selected)},[t,l,f]}class D extends o{constructor(e){super(),d(this,e,q,M,u,{value:0,type:1,selected:2})}}const h=D;export{h as E}; -//# sourceMappingURL=Model3D-6764e7f5.js.map diff --git a/spaces/langvision/llama-2-70b-chat/README.md b/spaces/langvision/llama-2-70b-chat/README.md deleted file mode 100644 index 21cd7b6f7f2c8a38a24c7ffdeba6d965fbba96ad..0000000000000000000000000000000000000000 --- a/spaces/langvision/llama-2-70b-chat/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Llama2-70B -emoji: 🦙 -colorFrom: blue -colorTo: blue -sdk: gradio -sdk_version: 3.50.2 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference \ No newline at end of file diff --git a/spaces/lc202301/ChuanhuChatGPT/assets/Kelpy-Codos.js b/spaces/lc202301/ChuanhuChatGPT/assets/Kelpy-Codos.js deleted file mode 100644 index cfbaeedb4f371dfb5fe157db545b364046fca3e1..0000000000000000000000000000000000000000 --- a/spaces/lc202301/ChuanhuChatGPT/assets/Kelpy-Codos.js +++ /dev/null @@ -1,76 +0,0 @@ -// ==UserScript== -// @name Kelpy Codos -// @namespace https://github.com/Keldos-Li/Kelpy-Codos -// @version 1.0.5 -// @author Keldos; https://keldos.me/ -// @description Add copy button to PRE tags before CODE tag, for Chuanhu ChatGPT especially. -// Based on Chuanhu ChatGPT version: ac04408 (2023-3-22) -// @license GPL-3.0 -// @grant none -// ==/UserScript== - -(function () { - 'use strict'; - - function addCopyButton(pre) { - var code = pre.querySelector('code'); - if (!code) { - return; // 如果没有找到 元素,则不添加按钮 - } - var firstChild = code.firstChild; - if (!firstChild) { - return; // 如果 元素没有子节点,则不添加按钮 - } - var button = document.createElement('button'); - button.textContent = '\uD83D\uDCCE'; // 使用 📎 符号作为“复制”按钮的文本 - button.style.position = 'relative'; - button.style.float = 'right'; - button.style.fontSize = '1em'; // 可选:调整按钮大小 - button.style.background = 'none'; // 可选:去掉背景颜色 - button.style.border = 'none'; // 可选:去掉边框 - button.style.cursor = 'pointer'; // 可选:显示指针样式 - button.addEventListener('click', function () { - var range = document.createRange(); - range.selectNodeContents(code); - range.setStartBefore(firstChild); // 将范围设置为第一个子节点之前 - var selection = window.getSelection(); - selection.removeAllRanges(); - selection.addRange(range); - - try { - var success = document.execCommand('copy'); - if (success) { - button.textContent = '\u2714'; - setTimeout(function () { - button.textContent = '\uD83D\uDCCE'; // 恢复按钮为“复制” - }, 2000); - } else { - button.textContent = '\u2716'; - } - } catch (e) { - console.error(e); - button.textContent = '\u2716'; - } - - selection.removeAllRanges(); - }); - code.insertBefore(button, firstChild); // 将按钮插入到第一个子元素之前 - } - - function handleNewElements(mutationsList, observer) { - for (var mutation of mutationsList) { - if (mutation.type === 'childList') { - for (var node of mutation.addedNodes) { - if (node.nodeName === 'PRE') { - addCopyButton(node); - } - } - } - } - } - - var observer = new MutationObserver(handleNewElements); - observer.observe(document.documentElement, { childList: true, subtree: true }); - - document.querySelectorAll('pre').forEach(addCopyButton); -})(); diff --git a/spaces/lincquiQcaudo/Top-20-Diffusion/Awek Melayu Bogel Sal Kena Paksa Xxxix.3gp.rar [CRACKED].md b/spaces/lincquiQcaudo/Top-20-Diffusion/Awek Melayu Bogel Sal Kena Paksa Xxxix.3gp.rar [CRACKED].md deleted file mode 100644 index 77a5bc5073f5bb78560f8e2a0bc29ff7c22b68e9..0000000000000000000000000000000000000000 --- a/spaces/lincquiQcaudo/Top-20-Diffusion/Awek Melayu Bogel Sal Kena Paksa Xxxix.3gp.rar [CRACKED].md +++ /dev/null @@ -1,6 +0,0 @@ -

          awek melayu bogel sal kena paksa xxxix.3gp.rar


          DOWNLOADhttps://bytlly.com/2uGxCP



          - - 1fdad05405
          -
          -
          -

          diff --git a/spaces/lincquiQcaudo/Top-20-Diffusion/Conflict Global Terror Game Free Download Full Version.md b/spaces/lincquiQcaudo/Top-20-Diffusion/Conflict Global Terror Game Free Download Full Version.md deleted file mode 100644 index a3590d7e0b9a1002f3d87e7bab8d1c08f9bbbde1..0000000000000000000000000000000000000000 --- a/spaces/lincquiQcaudo/Top-20-Diffusion/Conflict Global Terror Game Free Download Full Version.md +++ /dev/null @@ -1,6 +0,0 @@ -

          conflict global terror game free download full version


          DOWNLOADhttps://bytlly.com/2uGype



          - -Conflict: Global Terror Free Download PC Game Cracked in Direct Link and ... All links are interchangeable, you can download different parts on ... 5. (OPTION) Install the update version if they have the future in the link below: ... 4d29de3e1b
          -
          -
          -

          diff --git a/spaces/lincquiQcaudo/Top-20-Diffusion/Farming Simulator 2011 Indir (Full PC) NEW.md b/spaces/lincquiQcaudo/Top-20-Diffusion/Farming Simulator 2011 Indir (Full PC) NEW.md deleted file mode 100644 index 43f1b7d52d6f336016312c21411eb66fc6977cb5..0000000000000000000000000000000000000000 --- a/spaces/lincquiQcaudo/Top-20-Diffusion/Farming Simulator 2011 Indir (Full PC) NEW.md +++ /dev/null @@ -1,16 +0,0 @@ -

          Farming Simulator 2011 Indir (Full PC)


          Download Ziphttps://bytlly.com/2uGyh4



          - -June 1, 2011 - Farming Simulator 2011 game for PC. the biggest free game fix & online library of trainers for computer games [ Farming Simulator 2011 V2.1 [english] No-dvd/fixed Exe for Farming Simulator ... Exe download, download free full crack Farming Simulator 2011 V2.1 ... Farming Simulator 2011 - 2011 (2011) PC | Repack free download ... -Farming Simulator 2011. -In the new version of the game Farming Simulator ... download for free; Farming Simulator 2011 v2.1 ... -Download games for free Download Farming Simulator 2011. -Without registering. -Is free. -At high speed. -Download free games without ... -Download Farming Simulator 2011 - Farming Simulator 2011 game torrent download. -Download Farming Simulator ... free download Farming Simulator 2011 game ... -Games for free. 8a78ff9644
          -
          -
          -

          diff --git a/spaces/lingbionlp/PhenoTagger_v1.2_Demo/src/OntoTagger_tagging.py b/spaces/lingbionlp/PhenoTagger_v1.2_Demo/src/OntoTagger_tagging.py deleted file mode 100644 index 73efd527d4e45c4d09781b8748179d67605f70b0..0000000000000000000000000000000000000000 --- a/spaces/lingbionlp/PhenoTagger_v1.2_Demo/src/OntoTagger_tagging.py +++ /dev/null @@ -1,215 +0,0 @@ -# -*- coding: utf-8 -*- -""" -Created on Thu Aug 13 09:20:38 2020 - -@author: luol2 -""" - - -import argparse -from nn_model import bioTag_CNN,bioTag_BERT -from dic_ner import dic_ont -from tagging_text import bioTag -import os -import time -import json -import re -import bioc - - - -def PubTator_Converter(infile,outfile,biotag_dic,nn_model,para_set): - - with open(infile, 'r',encoding='utf-8') as fin: - with open(outfile,'w', encoding='utf8') as fout: - title='' - abstract='' - for line in fin: - line = line.rstrip() - p_title = re.compile('^([0-9]+)\|t\|(.*)$') - p_abstract = re.compile('^([0-9]+)\|a\|(.*)$') - if p_title.search(line): # title - m = p_title.match(line) - pmid = m.group(1) - title = m.group(2) - fout.write(pmid+"|t|"+title+"\n") - elif p_abstract.search(line): # abstract - m = p_abstract.match(line) - pmid = m.group(1) - abstract = m.group(2) - fout.write(pmid+"|a|"+abstract+"\n") - else: # annotation - intext=title+' '+abstract - #print('..........',pmid) - #print(intext) - tag_result=bioTag(intext,biotag_dic,nn_model,onlyLongest=para_set['onlyLongest'], abbrRecog=para_set['abbrRecog'],Threshold=para_set['ML_Threshold']) - for ele in tag_result: - start = ele[0] - last = ele[1] - mention = intext[int(ele[0]):int(ele[1])] - ont_id=ele[2] - score=ele[3] - segs=ont_id.split(';') - term_name='' - for seg in segs: - term_name+=biotag_dic.id_word[seg][0]+';' - fout.write(pmid+"\t"+start+"\t"+last+"\t"+mention+"\t"+ont_id+'\t'+term_name[:-1]+"\t"+score+"\n") - fout.write('\n') - title='' - abstract='' - -def BioC_Converter(infile,outfile,biotag_dic,nn_model,para_set): - - with open(infile, 'r',encoding='utf-8') as fin: - with open(outfile,'w', encoding='utf8') as fout: - collection = bioc.load(fin) - for document in collection.documents: - mention_num=0 - for passage in document.passages: - passage_offset=passage.offset - tag_result=bioTag(passage.text,biotag_dic,nn_model,onlyLongest=para_set['onlyLongest'], abbrRecog=para_set['abbrRecog'],Threshold=para_set['ML_Threshold']) - for ele in tag_result: - bioc_note = bioc.BioCAnnotation() - bioc_note.id = str(mention_num) - mention_num+=1 - bioc_note.infons['identifier'] = ele[2] - bioc_note.infons['type'] = "Phenotype" - bioc_note.infons['score'] = ele[3] - start = int(ele[0]) - last = int(ele[1]) - loc = bioc.BioCLocation(offset=str(passage_offset+start), length= str(last-start)) - bioc_note.locations.append(loc) - bioc_note.text = passage.text[start:last] - passage.annotations.append(bioc_note) - bioc.dump(collection, fout, pretty_print=True) - -def phenotagger_tag(infolder,para_set,outfolder): - - if para_set['ontology']=='uberon': - ontfiles={'dic_file':'../dict_uberon/noabb_lemma.dic', - 'word_id_file':'../dict_uberon/word_id_map.json', - 'id_word_file':'../dict_uberon/id_word_map.json'} - - if para_set['model_type']=='cnn': - vocabfiles={'w2vfile':'../models_v1.2/bio_embedding_intrinsic.d200', - 'charfile':'../dict_uberon/char.vocab', - 'labelfile':'../dict_uberon/lable.vocab', - 'posfile':'../dict_uberon/pos.vocab'} - modelfile='../models_v1.1/cnn_hpo_v1.1.h5' - - elif para_set['model_type']=='bioformer': - vocabfiles={'labelfile':'../dict_uberon/lable.vocab', - 'checkpoint_path':'../models_v1.2/bioformer-cased-v1.0/', - 'lowercase':False} - modelfile='../models/bioformer-CLS-p5n5-5e6b64-e100.h5' - - elif para_set['model_type']=='pubmedbert': - vocabfiles={'labelfile':'../dict_uberon/lable.vocab', - 'checkpoint_path':'../models_v1.2/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext/', - 'lowercase':True} - modelfile='../models/pubmedbert_full-CLS-p5n5-5e6b64.h5' - - else: #biobert - vocabfiles={'labelfile':'../dict_uberon/lable.vocab', - 'checkpoint_path':'../models_v1.2/biobert-base-cased-v1.2/', - 'lowercase':False} - modelfile='../models/biobertv12-CLS-p5n5-5e6b64.h5' - - elif para_set['ontology']=='hpo': - - ontfiles={'dic_file':'../dict_hpo/noabb_lemma.dic', - 'word_id_file':'../dict_hpo/word_id_map.json', - 'id_word_file':'../dict_hpo/id_word_map.json'} - - if para_set['model_type']=='cnn': - vocabfiles={'w2vfile':'../models_v1.2/bio_embedding_intrinsic.d200', - 'charfile':'../dict_hpo/char.vocab', - 'labelfile':'../dict_hpo/lable.vocab', - 'posfile':'../dict_hpo/pos.vocab'} - modelfile='../models_v1.1/cnn_hpo_v1.1.h5' - - elif para_set['model_type']=='bioformer': - vocabfiles={'labelfile':'../dict_hpo/lable.vocab', - 'checkpoint_path':'../models_v1.2/bioformer-cased-v1.0/', - 'lowercase':False} - modelfile='../models-hpo/bioformer-CLS-p5n5-5e6b64-e100.h5' - - elif para_set['model_type']=='pubmedbert': - vocabfiles={'labelfile':'../dict_hpo/lable.vocab', - 'checkpoint_path':'../models_v1.2/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext/', - 'lowercase':True} - modelfile='../models-hpo/pubmedbert_full-CLS-p5n5-5e6b64-e70.h5' - - else: - vocabfiles={'labelfile':'../dict/lable.vocab', - 'checkpoint_path':'../models_v1.2/biobert-base-cased-v1.2/', - 'lowercase':False} - modelfile='../models/biobertv12-CLS-p5n5-5e6b64.h5' - - # loading dict and model - - biotag_dic=dic_ont(ontfiles) - - if para_set['model_type']=='cnn': - nn_model=bioTag_CNN(vocabfiles) - nn_model.load_model(modelfile) - else: - nn_model=bioTag_BERT(vocabfiles) - nn_model.load_model(modelfile) - - #tagging text - print("begin tagging........") - start_time=time.time() - - i=0 - N=0 - for filename in os.listdir(infolder): - N+=1 - for filename in os.listdir(infolder): - print("Processing:{0}%".format(round(i * 100 / N)), end="\r") - i+=1 - - with open(infolder+filename, 'r',encoding='utf-8') as fin: - format="" - for line in fin: - pattern_bioc = re.compile('.*.*') - pattern_pubtator = re.compile('^([^\|]+)\|[^\|]+\|(.*)') - if pattern_pubtator.search(line): - format="PubTator" - break - elif pattern_bioc.search(line): - format="BioC" - break - if(format == "PubTator"): - PubTator_Converter(infolder+filename,outfolder+filename,biotag_dic,nn_model,para_set) - elif(format == "BioC"): - BioC_Converter(infolder+filename,outfolder+filename,biotag_dic,nn_model,para_set) - - - print('tag done:',time.time()-start_time) - - - - -if __name__=="__main__": - - parser = argparse.ArgumentParser(description='build weak training corpus, python build_dict.py -i infile -o outpath') - parser.add_argument('--infolder', '-i', help="input folder path",default='../example/input/') - parser.add_argument('--outfolder', '-o', help="output folder path",default='../example/output/') - - args = parser.parse_args() - - if not os.path.exists(args.outfolder): - os.makedirs(args.outfolder) - - para_set={ - 'ontology':'hpo', #ontology:uberon, hpo - 'model_type':'pubmedbert', # cnn, bioformer, pubmedbert or biobert - 'onlyLongest':False, # False: return overlap concepts, True only longgest - 'abbrRecog':True,# False: don't identify abbr, True: identify abbr - 'ML_Threshold':0.95,# the Threshold of deep learning model - } - - - phenotagger_tag(args.infolder,para_set,args.outfolder) - print('The results are in ',args.outfolder) diff --git a/spaces/lj1995/vocal2guitar/uvr5_pack/lib_v5/nets_33966KB.py b/spaces/lj1995/vocal2guitar/uvr5_pack/lib_v5/nets_33966KB.py deleted file mode 100644 index d2bddb14716202fee3f3b0b461ff335741d04ba8..0000000000000000000000000000000000000000 --- a/spaces/lj1995/vocal2guitar/uvr5_pack/lib_v5/nets_33966KB.py +++ /dev/null @@ -1,122 +0,0 @@ -import torch -from torch import nn -import torch.nn.functional as F - -from uvr5_pack.lib_v5 import layers_33966KB as layers - - -class BaseASPPNet(nn.Module): - def __init__(self, nin, ch, dilations=(4, 8, 16, 32)): - super(BaseASPPNet, self).__init__() - self.enc1 = layers.Encoder(nin, ch, 3, 2, 1) - self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1) - self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1) - self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1) - - self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations) - - self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1) - self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1) - self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1) - self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1) - - def __call__(self, x): - h, e1 = self.enc1(x) - h, e2 = self.enc2(h) - h, e3 = self.enc3(h) - h, e4 = self.enc4(h) - - h = self.aspp(h) - - h = self.dec4(h, e4) - h = self.dec3(h, e3) - h = self.dec2(h, e2) - h = self.dec1(h, e1) - - return h - - -class CascadedASPPNet(nn.Module): - def __init__(self, n_fft): - super(CascadedASPPNet, self).__init__() - self.stg1_low_band_net = BaseASPPNet(2, 16) - self.stg1_high_band_net = BaseASPPNet(2, 16) - - self.stg2_bridge = layers.Conv2DBNActiv(18, 8, 1, 1, 0) - self.stg2_full_band_net = BaseASPPNet(8, 16) - - self.stg3_bridge = layers.Conv2DBNActiv(34, 16, 1, 1, 0) - self.stg3_full_band_net = BaseASPPNet(16, 32) - - self.out = nn.Conv2d(32, 2, 1, bias=False) - self.aux1_out = nn.Conv2d(16, 2, 1, bias=False) - self.aux2_out = nn.Conv2d(16, 2, 1, bias=False) - - self.max_bin = n_fft // 2 - self.output_bin = n_fft // 2 + 1 - - self.offset = 128 - - def forward(self, x, aggressiveness=None): - mix = x.detach() - x = x.clone() - - x = x[:, :, : self.max_bin] - - bandw = x.size()[2] // 2 - aux1 = torch.cat( - [ - self.stg1_low_band_net(x[:, :, :bandw]), - self.stg1_high_band_net(x[:, :, bandw:]), - ], - dim=2, - ) - - h = torch.cat([x, aux1], dim=1) - aux2 = self.stg2_full_band_net(self.stg2_bridge(h)) - - h = torch.cat([x, aux1, aux2], dim=1) - h = self.stg3_full_band_net(self.stg3_bridge(h)) - - mask = torch.sigmoid(self.out(h)) - mask = F.pad( - input=mask, - pad=(0, 0, 0, self.output_bin - mask.size()[2]), - mode="replicate", - ) - - if self.training: - aux1 = torch.sigmoid(self.aux1_out(aux1)) - aux1 = F.pad( - input=aux1, - pad=(0, 0, 0, self.output_bin - aux1.size()[2]), - mode="replicate", - ) - aux2 = torch.sigmoid(self.aux2_out(aux2)) - aux2 = F.pad( - input=aux2, - pad=(0, 0, 0, self.output_bin - aux2.size()[2]), - mode="replicate", - ) - return mask * mix, aux1 * mix, aux2 * mix - else: - if aggressiveness: - mask[:, :, : aggressiveness["split_bin"]] = torch.pow( - mask[:, :, : aggressiveness["split_bin"]], - 1 + aggressiveness["value"] / 3, - ) - mask[:, :, aggressiveness["split_bin"] :] = torch.pow( - mask[:, :, aggressiveness["split_bin"] :], - 1 + aggressiveness["value"], - ) - - return mask * mix - - def predict(self, x_mag, aggressiveness=None): - h = self.forward(x_mag, aggressiveness) - - if self.offset > 0: - h = h[:, :, :, self.offset : -self.offset] - assert h.size()[3] > 0 - - return h diff --git a/spaces/ljjggr/bingo/src/lib/bots/bing/index.ts b/spaces/ljjggr/bingo/src/lib/bots/bing/index.ts deleted file mode 100644 index 6fd51ba48cbb1148f13d29e76960c092b807cfae..0000000000000000000000000000000000000000 --- a/spaces/ljjggr/bingo/src/lib/bots/bing/index.ts +++ /dev/null @@ -1,426 +0,0 @@ -import { fetch, WebSocket, debug } from '@/lib/isomorphic' -import WebSocketAsPromised from 'websocket-as-promised' -import { - SendMessageParams, - BingConversationStyle, - ConversationResponse, - ChatResponseMessage, - ConversationInfo, - InvocationEventType, - ChatError, - ErrorCode, - ChatUpdateCompleteResponse, - ImageInfo, - KBlobResponse -} from './types' - -import { convertMessageToMarkdown, websocketUtils, streamAsyncIterable } from './utils' -import { WatchDog, createChunkDecoder } from '@/lib/utils' - -type Params = SendMessageParams<{ bingConversationStyle: BingConversationStyle }> - -const OPTIONS_SETS = [ - 'nlu_direct_response_filter', - 'deepleo', - 'disable_emoji_spoken_text', - 'responsible_ai_policy_235', - 'enablemm', - 'iycapbing', - 'iyxapbing', - 'objopinion', - 'rweasgv2', - 'dagslnv1', - 'dv3sugg', - 'autosave', - 'iyoloxap', - 'iyoloneutral', - 'clgalileo', - 'gencontentv3', -] - -export class BingWebBot { - protected conversationContext?: ConversationInfo - protected cookie: string - protected ua: string - protected endpoint = '' - private lastText = '' - private asyncTasks: Array> = [] - - constructor(opts: { - cookie: string - ua: string - bingConversationStyle?: BingConversationStyle - conversationContext?: ConversationInfo - }) { - const { cookie, ua, conversationContext } = opts - this.cookie = cookie?.includes(';') ? cookie : `_EDGE_V=1; _U=${cookie}` - this.ua = ua - this.conversationContext = conversationContext - } - - static buildChatRequest(conversation: ConversationInfo) { - const optionsSets = OPTIONS_SETS - if (conversation.conversationStyle === BingConversationStyle.Precise) { - optionsSets.push('h3precise') - } else if (conversation.conversationStyle === BingConversationStyle.Creative) { - optionsSets.push('h3imaginative') - } - return { - arguments: [ - { - source: 'cib', - optionsSets, - allowedMessageTypes: [ - 'ActionRequest', - 'Chat', - 'Context', - 'InternalSearchQuery', - 'InternalSearchResult', - 'Disengaged', - 'InternalLoaderMessage', - 'Progress', - 'RenderCardRequest', - 'SemanticSerp', - 'GenerateContentQuery', - 'SearchQuery', - ], - sliceIds: [ - 'winmuid1tf', - 'anssupfor_c', - 'imgchatgptv2', - 'tts2cf', - 'contansperf', - 'mlchatpc8500w', - 'mlchatpc2', - 'ctrlworkpay', - 'winshortmsgtf', - 'cibctrl', - 'sydtransctrl', - 'sydconfigoptc', - '0705trt4', - '517opinion', - '628ajcopus0', - '330uaugs0', - '529rwea', - '0626snptrcs0', - '424dagslnv1', - ], - isStartOfSession: conversation.invocationId === 0, - message: { - author: 'user', - inputMethod: 'Keyboard', - text: conversation.prompt, - imageUrl: conversation.imageUrl, - messageType: 'Chat', - }, - conversationId: conversation.conversationId, - conversationSignature: conversation.conversationSignature, - participant: { id: conversation.clientId }, - }, - ], - invocationId: conversation.invocationId.toString(), - target: 'chat', - type: InvocationEventType.StreamInvocation, - } - } - - async createConversation(): Promise { - const headers = { - 'Accept-Encoding': 'gzip, deflate, br, zsdch', - 'User-Agent': this.ua, - 'x-ms-useragent': 'azsdk-js-api-client-factory/1.0.0-beta.1 core-rest-pipeline/1.10.0 OS/Win32', - cookie: this.cookie, - } - - let resp: ConversationResponse | undefined - try { - const response = await fetch(this.endpoint + '/api/create', { method: 'POST', headers, redirect: 'error', mode: 'cors', credentials: 'include' }) - if (response.status === 404) { - throw new ChatError('Not Found', ErrorCode.NOTFOUND_ERROR) - } - resp = await response.json() as ConversationResponse - } catch (err) { - console.error('create conversation error', err) - } - - if (!resp?.result) { - throw new ChatError('你的 VPS 或代理可能被封禁,如有疑问,请前往 https://github.com/weaigc/bingo 咨询', ErrorCode.UNKOWN_ERROR) - } - - const { value, message } = resp.result || {} - if (value !== 'Success') { - const errorMsg = `${value}: ${message}` - if (value === 'UnauthorizedRequest') { - throw new ChatError(errorMsg, ErrorCode.BING_UNAUTHORIZED) - } - if (value === 'Forbidden') { - throw new ChatError(errorMsg, ErrorCode.BING_FORBIDDEN) - } - throw new ChatError(errorMsg, ErrorCode.UNKOWN_ERROR) - } - return resp - } - - private async createContext(conversationStyle: BingConversationStyle) { - if (!this.conversationContext) { - const conversation = await this.createConversation() - this.conversationContext = { - conversationId: conversation.conversationId, - conversationSignature: conversation.conversationSignature, - clientId: conversation.clientId, - invocationId: 0, - conversationStyle, - prompt: '', - } - } - return this.conversationContext - } - - async sendMessage(params: Params) { - try { - await this.createContext(params.options.bingConversationStyle) - Object.assign(this.conversationContext!, { prompt: params.prompt, imageUrl: params.imageUrl }) - return this.sydneyProxy(params) - } catch (error) { - params.onEvent({ - type: 'ERROR', - error: error instanceof ChatError ? error : new ChatError('Catch Error', ErrorCode.UNKOWN_ERROR), - }) - } - } - - private async sydneyProxy(params: Params) { - const abortController = new AbortController() - const response = await fetch(this.endpoint + '/api/sydney', { - method: 'POST', - headers: { - 'Content-Type': 'application/json', - }, - signal: abortController.signal, - body: JSON.stringify(this.conversationContext!) - }) - if (response.status !== 200) { - params.onEvent({ - type: 'ERROR', - error: new ChatError( - 'Unknown error', - ErrorCode.UNKOWN_ERROR, - ), - }) - } - params.signal?.addEventListener('abort', () => { - abortController.abort() - }) - - const textDecoder = createChunkDecoder() - for await (const chunk of streamAsyncIterable(response.body!)) { - this.parseEvents(params, websocketUtils.unpackMessage(textDecoder(chunk))) - } - } - - async sendWs() { - const wsConfig: ConstructorParameters[1] = { - packMessage: websocketUtils.packMessage, - unpackMessage: websocketUtils.unpackMessage, - createWebSocket: (url) => new WebSocket(url, { - headers: { - 'accept-language': 'zh-CN,zh;q=0.9', - 'cache-control': 'no-cache', - 'User-Agent': this.ua, - pragma: 'no-cache', - cookie: this.cookie, - } - }) - } - const wsp = new WebSocketAsPromised('wss://sydney.bing.com/sydney/ChatHub', wsConfig) - - wsp.open().then(() => { - wsp.sendPacked({ protocol: 'json', version: 1 }) - wsp.sendPacked({ type: 6 }) - wsp.sendPacked(BingWebBot.buildChatRequest(this.conversationContext!)) - }) - - return wsp - } - - private async useWs(params: Params) { - const wsp = await this.sendWs() - const watchDog = new WatchDog() - wsp.onUnpackedMessage.addListener((events) => { - watchDog.watch(() => { - wsp.sendPacked({ type: 6 }) - }) - this.parseEvents(params, events) - }) - - wsp.onClose.addListener(() => { - watchDog.reset() - params.onEvent({ type: 'DONE' }) - wsp.removeAllListeners() - }) - - params.signal?.addEventListener('abort', () => { - wsp.removeAllListeners() - wsp.close() - }) - } - - private async createImage(prompt: string, id: string) { - try { - const headers = { - 'Accept-Encoding': 'gzip, deflate, br, zsdch', - 'User-Agent': this.ua, - 'x-ms-useragent': 'azsdk-js-api-client-factory/1.0.0-beta.1 core-rest-pipeline/1.10.0 OS/Win32', - cookie: this.cookie, - } - const query = new URLSearchParams({ - prompt, - id - }) - const response = await fetch(this.endpoint + '/api/image?' + query.toString(), - { - method: 'POST', - headers, - mode: 'cors', - credentials: 'include' - }) - .then(res => res.text()) - if (response) { - this.lastText += '\n' + response - } - } catch (err) { - console.error('Create Image Error', err) - } - } - - private buildKnowledgeApiPayload(imageUrl: string, conversationStyle: BingConversationStyle) { - const imageInfo: ImageInfo = {} - let imageBase64: string | undefined = undefined - const knowledgeRequest = { - imageInfo, - knowledgeRequest: { - invokedSkills: [ - 'ImageById' - ], - subscriptionId: 'Bing.Chat.Multimodal', - invokedSkillsRequestData: { - enableFaceBlur: true - }, - convoData: { - convoid: this.conversationContext?.conversationId, - convotone: conversationStyle, - } - }, - } - - if (imageUrl.startsWith('data:image/')) { - imageBase64 = imageUrl.replace('data:image/', ''); - const partIndex = imageBase64.indexOf(',') - if (partIndex) { - imageBase64 = imageBase64.substring(partIndex + 1) - } - } else { - imageInfo.url = imageUrl - } - return { knowledgeRequest, imageBase64 } - } - - async uploadImage(imageUrl: string, conversationStyle: BingConversationStyle = BingConversationStyle.Creative): Promise { - if (!imageUrl) { - return - } - await this.createContext(conversationStyle) - const payload = this.buildKnowledgeApiPayload(imageUrl, conversationStyle) - - const response = await fetch(this.endpoint + '/api/kblob', - { - headers: { - 'Content-Type': 'application/json', - }, - method: 'POST', - mode: 'cors', - credentials: 'include', - body: JSON.stringify(payload), - }) - .then(res => res.json()) - .catch(e => { - console.log('Error', e) - }) - return response - } - - private async generateContent(message: ChatResponseMessage) { - if (message.contentType === 'IMAGE') { - this.asyncTasks.push(this.createImage(message.text, message.messageId)) - } - } - - private async parseEvents(params: Params, events: any) { - const conversation = this.conversationContext! - - events?.forEach(async (event: ChatUpdateCompleteResponse) => { - debug('bing event', event) - if (event.type === 3) { - await Promise.all(this.asyncTasks) - this.asyncTasks = [] - params.onEvent({ type: 'UPDATE_ANSWER', data: { text: this.lastText } }) - params.onEvent({ type: 'DONE' }) - conversation.invocationId = parseInt(event.invocationId, 10) + 1 - } else if (event.type === 1) { - const messages = event.arguments[0].messages - if (messages) { - const text = convertMessageToMarkdown(messages[0]) - this.lastText = text - params.onEvent({ type: 'UPDATE_ANSWER', data: { text, spokenText: messages[0].text, throttling: event.arguments[0].throttling } }) - } - } else if (event.type === 2) { - const messages = event.item.messages as ChatResponseMessage[] | undefined - if (!messages) { - params.onEvent({ - type: 'ERROR', - error: new ChatError( - event.item.result.error || 'Unknown error', - event.item.result.value === 'Throttled' ? ErrorCode.THROTTLE_LIMIT - : event.item.result.value === 'CaptchaChallenge' ? (this.conversationContext?.conversationId?.includes('BingProdUnAuthenticatedUsers') ? ErrorCode.BING_UNAUTHORIZED : ErrorCode.BING_CAPTCHA) - : ErrorCode.UNKOWN_ERROR - ), - }) - return - } - const limited = messages.some((message) => - message.contentOrigin === 'TurnLimiter' - || message.messageType === 'Disengaged' - ) - if (limited) { - params.onEvent({ - type: 'ERROR', - error: new ChatError( - 'Sorry, you have reached chat limit in this conversation.', - ErrorCode.CONVERSATION_LIMIT, - ), - }) - return - } - - const lastMessage = event.item.messages.at(-1) as ChatResponseMessage - const specialMessage = event.item.messages.find(message => message.author === 'bot' && message.contentType === 'IMAGE') - if (specialMessage) { - this.generateContent(specialMessage) - } - - if (lastMessage) { - const text = convertMessageToMarkdown(lastMessage) - this.lastText = text - params.onEvent({ - type: 'UPDATE_ANSWER', - data: { text, throttling: event.item.throttling, suggestedResponses: lastMessage.suggestedResponses, sourceAttributions: lastMessage.sourceAttributions }, - }) - } - } - }) - } - - resetConversation() { - this.conversationContext = undefined - } -} diff --git a/spaces/lnyan/stablediffusion-infinity/PyPatchMatch/examples/py_example_global_mask.py b/spaces/lnyan/stablediffusion-infinity/PyPatchMatch/examples/py_example_global_mask.py deleted file mode 100644 index 9025cc4230edcce7cbfa545f55600a240994edcf..0000000000000000000000000000000000000000 --- a/spaces/lnyan/stablediffusion-infinity/PyPatchMatch/examples/py_example_global_mask.py +++ /dev/null @@ -1,27 +0,0 @@ -#! /usr/bin/env python3 -# -*- coding: utf-8 -*- -# File : test.py -# Author : Jiayuan Mao -# Email : maojiayuan@gmail.com -# Date : 01/09/2020 -# -# Distributed under terms of the MIT license. - -import numpy as np -from PIL import Image - -import sys -sys.path.insert(0, '../') -import patch_match - - -if __name__ == '__main__': - patch_match.set_verbose(True) - source = Image.open('./images/forest_pruned.bmp') - source = np.array(source) - source[:100, :100] = 255 - global_mask = np.zeros_like(source[..., 0]) - global_mask[:100, :100] = 1 - result = patch_match.inpaint(source, global_mask=global_mask, patch_size=3) - Image.fromarray(result).save('./images/forest_recovered.bmp') - diff --git a/spaces/lora-library/LoRA-DreamBooth-Training-UI/uploader.py b/spaces/lora-library/LoRA-DreamBooth-Training-UI/uploader.py deleted file mode 100644 index 0ce697f0d47325a4d73f92c13304ae5f51df794a..0000000000000000000000000000000000000000 --- a/spaces/lora-library/LoRA-DreamBooth-Training-UI/uploader.py +++ /dev/null @@ -1,42 +0,0 @@ -from __future__ import annotations - -from huggingface_hub import HfApi - - -class Uploader: - def __init__(self, hf_token: str | None): - self.api = HfApi(token=hf_token) - - def get_username(self) -> str: - return self.api.whoami()['name'] - - def upload(self, - folder_path: str, - repo_name: str, - organization: str = '', - repo_type: str = 'model', - private: bool = True, - delete_existing_repo: bool = False) -> str: - if not folder_path: - raise ValueError - if not repo_name: - raise ValueError - if not organization: - organization = self.get_username() - repo_id = f'{organization}/{repo_name}' - if delete_existing_repo: - try: - self.api.delete_repo(repo_id, repo_type=repo_type) - except Exception: - pass - try: - self.api.create_repo(repo_id, repo_type=repo_type, private=private) - self.api.upload_folder(repo_id=repo_id, - folder_path=folder_path, - path_in_repo='.', - repo_type=repo_type) - url = f'https://huggingface.co/{repo_id}' - message = f'Your model was successfully uploaded to {url}.' - except Exception as e: - message = str(e) - return message diff --git a/spaces/ltgoslo/ssa-perin/model/head/labeled_edge_head.py b/spaces/ltgoslo/ssa-perin/model/head/labeled_edge_head.py deleted file mode 100644 index 6147d24ce6abedba09d2927d401f17ac284ffbe0..0000000000000000000000000000000000000000 --- a/spaces/ltgoslo/ssa-perin/model/head/labeled_edge_head.py +++ /dev/null @@ -1,67 +0,0 @@ -#!/usr/bin/env python3 -# coding=utf-8 - -import torch -import torch.nn as nn - -from model.head.abstract_head import AbstractHead -from data.parser.to_mrp.labeled_edge_parser import LabeledEdgeParser -from utility.cross_entropy import binary_cross_entropy -from utility.hungarian_matching import match_label - - -class LabeledEdgeHead(AbstractHead): - def __init__(self, dataset, args, initialize): - config = { - "label": True, - "edge presence": True, - "edge label": True, - "anchor": True, - "source_anchor": False, - "target_anchor": False - } - super(LabeledEdgeHead, self).__init__(dataset, args, config, initialize) - - self.top_node = nn.Parameter(torch.randn(1, 1, args.hidden_size), requires_grad=True) - self.parser = LabeledEdgeParser(dataset) - - def init_label_classifier(self, dataset, args, config, initialize: bool): - classifier = nn.Sequential( - nn.Dropout(args.dropout_label), - nn.Linear(args.hidden_size, 1, bias=True) - ) - if initialize: - bias_init = torch.tensor([dataset.label_freqs[1]]) - classifier[1].bias.data = (bias_init / (1.0 - bias_init)).log() - - return classifier - - def forward_label(self, decoder_output): - return self.label_classifier(decoder_output) - - def forward_edge(self, decoder_output): - top_node = self.top_node.expand(decoder_output.size(0), -1, -1) - decoder_output = torch.cat([top_node, decoder_output], dim=1) - return self.edge_classifier(decoder_output) - - def loss_label(self, prediction, target, mask, matching): - prediction = prediction["label"] - target = match_label( - target["labels"][0], matching, prediction.shape[:-1], prediction.device, self.query_length - ) - return {"label": binary_cross_entropy(prediction.squeeze(-1), target.float(), mask, focal=self.focal)} - - def inference_label(self, prediction): - return (prediction.squeeze(-1) > 0.0).long() - - def label_cost_matrix(self, output, batch, decoder_lens, b: int): - if output["label"] is None: - return 1.0 - - target_labels = batch["anchored_labels"][b] # shape: (num_nodes, num_inputs, 2) - label_prob = output["label"][b, : decoder_lens[b], :].sigmoid().unsqueeze(0) # shape: (1, num_queries, 1) - label_prob = torch.cat([1.0 - label_prob, label_prob], dim=-1) # shape: (1, num_queries, 2) - tgt_label = target_labels.repeat_interleave(self.query_length, dim=1) # shape: (num_nodes, num_queries, 2) - cost_matrix = ((tgt_label * label_prob).sum(-1) * label_prob[:, :, 1:].sum(-1)).t().sqrt() # shape: (num_queries, num_nodes) - - return cost_matrix diff --git a/spaces/luxuedong/lxd/src/components/chat-panel.tsx b/spaces/luxuedong/lxd/src/components/chat-panel.tsx deleted file mode 100644 index 56b2112bd75ba08134383871177851fa2e3f43a4..0000000000000000000000000000000000000000 --- a/spaces/luxuedong/lxd/src/components/chat-panel.tsx +++ /dev/null @@ -1,153 +0,0 @@ -'use client' - -import * as React from 'react' -import Image from 'next/image' -import Textarea from 'react-textarea-autosize' -import { useAtomValue } from 'jotai' -import { useEnterSubmit } from '@/lib/hooks/use-enter-submit' -import { cn } from '@/lib/utils' - -import BrushIcon from '@/assets/images/brush.svg' -import ChatIcon from '@/assets/images/chat.svg' -import VisualSearchIcon from '@/assets/images/visual-search.svg' -import SendIcon from '@/assets/images/send.svg' -import PinIcon from '@/assets/images/pin.svg' -import PinFillIcon from '@/assets/images/pin-fill.svg' - -import { useBing } from '@/lib/hooks/use-bing' -import { voiceListenAtom } from '@/state' -import Voice from './voice' -import { ChatImage } from './chat-image' -import { ChatAttachments } from './chat-attachments' - -export interface ChatPanelProps - extends Pick< - ReturnType, - | 'generating' - | 'input' - | 'setInput' - | 'sendMessage' - | 'resetConversation' - | 'isSpeaking' - | 'attachmentList' - | 'uploadImage' - | 'setAttachmentList' - > { - id?: string - className?: string -} - -export function ChatPanel({ - isSpeaking, - generating, - input, - setInput, - className, - sendMessage, - resetConversation, - attachmentList, - uploadImage, - setAttachmentList -}: ChatPanelProps) { - const inputRef = React.useRef(null) - const {formRef, onKeyDown} = useEnterSubmit() - const [focused, setFocused] = React.useState(false) - const [active, setActive] = React.useState(false) - const [pin, setPin] = React.useState(false) - const [tid, setTid] = React.useState() - const voiceListening = useAtomValue(voiceListenAtom) - - const setBlur = React.useCallback(() => { - clearTimeout(tid) - setActive(false) - const _tid = setTimeout(() => setFocused(false), 2000); - setTid(_tid) - }, [tid]) - - const setFocus = React.useCallback(() => { - setFocused(true) - setActive(true) - clearTimeout(tid) - inputRef.current?.focus() - }, [tid]) - - React.useEffect(() => { - if (input) { - setFocus() - } - }, [input, setFocus]) - - return ( -
          { - e.preventDefault() - if (generating) { - return; - } - if (!input?.trim()) { - return - } - setInput('') - setPin(false) - await sendMessage(input) - }} - ref={formRef} - > -
          -
          -
          -
          -
          -
          -
          - -
          -
          -
          -
          - chat -