parquet-converter commited on
Commit
057a09e
·
1 Parent(s): 9bb6253

Update parquet files (step 100 of 249)

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. names.txt +0 -0
  2. spaces/17TheWord/RealESRGAN/realesrgan/models/realesrgan_model.py +0 -258
  3. spaces/1acneusushi/gradio-2dmoleculeeditor/data/Download LINK Free FieldIT (CRM) Current Version.md +0 -26
  4. spaces/1acneusushi/gradio-2dmoleculeeditor/data/Excel 2016 Test Questions And Answers Pdf.md +0 -16
  5. spaces/1gistliPinn/ChatGPT4/Examples/Addictive Drums Authorization Code 111 14.md +0 -109
  6. spaces/1gistliPinn/ChatGPT4/Examples/DFX Audio Enhancer 13.008 - Repack KpoJIuK .rar.md +0 -6
  7. spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Download Bullet Echo Mod Apk and Enjoy Free Shopping and Epic Battles.md +0 -94
  8. spaces/1phancelerku/anime-remove-background/Burger Please Mod Apk The Ultimate Fun Game with Unlimited Money.md +0 -132
  9. spaces/1phancelerku/anime-remove-background/Download Ragnarok X APK - The 3D MMORPG Mobile Game that Brings Back the Classic Masterpiece.md +0 -146
  10. spaces/1phancelerku/anime-remove-background/FM WhatsApp APK Download for Android - Latest Version 2023 with New Features.md +0 -95
  11. spaces/1phancelerku/anime-remove-background/Free 3D Models of Orange Trees - Easy to Customize and Render.md +0 -136
  12. spaces/1toTree/lora_test/ppdiffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +0 -536
  13. spaces/AI-Dashboards/CP.Matplotlib.NetworkX.Streamlit.PyVis.Graphviz/README.md +0 -13
  14. spaces/AI-Hobbyist/Hoyo-RVC/docs/training_tips_ko.md +0 -53
  15. spaces/AIFILMS/audioldm-text-to-audio-generation/audioldm/clap/training/zero_shot.py +0 -95
  16. spaces/AIWaves/Software_Company/README.md +0 -13
  17. spaces/AIWaves/Software_Company/src/agents/Component/ToolComponent.py +0 -887
  18. spaces/Abeer123/Pokemon_Digimon/README.md +0 -13
  19. spaces/AchyuthGamer/OpenGPT/g4f/Provider/Equing.py +0 -81
  20. spaces/AgentVerse/agentVerse/ui/.github/CODE_OF_CONDUCT.md +0 -84
  21. spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/spinner/spinner-components.d.ts +0 -39
  22. spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/src/diffusers/schedulers/scheduling_lms_discrete.py +0 -413
  23. spaces/Andy1621/uniformer_image_segmentation/configs/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes.py +0 -5
  24. spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_internal/distributions/base.py +0 -39
  25. spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_vendor/packaging/requirements.py +0 -146
  26. spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_vendor/rich/_timer.py +0 -19
  27. spaces/AtomdffAI/wechatgpt4atom/bot/bot.py +0 -13
  28. spaces/Bart92/RVC_HF/i18n/scan_i18n.py +0 -75
  29. spaces/Benson/text-generation/Examples/Descargar Amp Letras De Fuera De Mi Vientre Por Prospa Ochimana.md +0 -56
  30. spaces/BigChungux/Pet_Survey2/app.py +0 -172
  31. spaces/Billyosoro/ESRGAN/realesrgan/utils.py +0 -280
  32. spaces/CVPR/MonoScene/monoscene/.ipynb_checkpoints/monoscene_model-checkpoint.py +0 -22
  33. spaces/Chris4K/llms_compare/app.py +0 -274
  34. spaces/ChristopherMarais/Andrew_AI-BB_classification-beta/mysite/andrew_alpha/static/andrew_alpha.js +0 -208
  35. spaces/CikeyQI/Yunzai/Yunzai/plugins/ws-plugin/config/system/help_system.js +0 -84
  36. spaces/CikeyQI/meme-api/meme_generator/memes/dont_touch/__init__.py +0 -57
  37. spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/altair/vegalite/v5/theme.py +0 -59
  38. spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/fontTools/svgLib/path/shapes.py +0 -183
  39. spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/fontTools/varLib/__main__.py +0 -6
  40. spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/templates/frontend/assets/index-6f7117a6.js +0 -2
  41. spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/templates/frontend/assets/index-be790e2e.css +0 -1
  42. spaces/DaleChen/AutoGPT/autogpt/processing/html.py +0 -33
  43. spaces/Dantra1/CeliaSensei/models.py +0 -533
  44. spaces/Datasculptor/DescriptionGPT/tools/download_cc.py +0 -47
  45. spaces/Datasculptor/MusicGen/tests/utils/__init__.py +0 -5
  46. spaces/Datasculptor/StyleGAN-NADA/e4e/models/psp.py +0 -99
  47. spaces/DeepDrivePL/PaddleSeg-Matting/matting/model/hrnet.py +0 -835
  48. spaces/Detomo/ai-comic-generation/src/lib/useImageDimension.ts +0 -20
  49. spaces/Dineshdc/MygenAIChatbot/README.md +0 -12
  50. spaces/DragGan/DragGan/stylegan_human/pti/pti_models/e4e/stylegan2/model.py +0 -680
names.txt DELETED
The diff for this file is too large to render. See raw diff
 
spaces/17TheWord/RealESRGAN/realesrgan/models/realesrgan_model.py DELETED
@@ -1,258 +0,0 @@
1
- import numpy as np
2
- import random
3
- import torch
4
- from basicsr.data.degradations import random_add_gaussian_noise_pt, random_add_poisson_noise_pt
5
- from basicsr.data.transforms import paired_random_crop
6
- from basicsr.models.srgan_model import SRGANModel
7
- from basicsr.utils import DiffJPEG, USMSharp
8
- from basicsr.utils.img_process_util import filter2D
9
- from basicsr.utils.registry import MODEL_REGISTRY
10
- from collections import OrderedDict
11
- from torch.nn import functional as F
12
-
13
-
14
- @MODEL_REGISTRY.register()
15
- class RealESRGANModel(SRGANModel):
16
- """RealESRGAN Model for Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data.
17
-
18
- It mainly performs:
19
- 1. randomly synthesize LQ images in GPU tensors
20
- 2. optimize the networks with GAN training.
21
- """
22
-
23
- def __init__(self, opt):
24
- super(RealESRGANModel, self).__init__(opt)
25
- self.jpeger = DiffJPEG(differentiable=False).cuda() # simulate JPEG compression artifacts
26
- self.usm_sharpener = USMSharp().cuda() # do usm sharpening
27
- self.queue_size = opt.get('queue_size', 180)
28
-
29
- @torch.no_grad()
30
- def _dequeue_and_enqueue(self):
31
- """It is the training pair pool for increasing the diversity in a batch.
32
-
33
- Batch processing limits the diversity of synthetic degradations in a batch. For example, samples in a
34
- batch could not have different resize scaling factors. Therefore, we employ this training pair pool
35
- to increase the degradation diversity in a batch.
36
- """
37
- # initialize
38
- b, c, h, w = self.lq.size()
39
- if not hasattr(self, 'queue_lr'):
40
- assert self.queue_size % b == 0, f'queue size {self.queue_size} should be divisible by batch size {b}'
41
- self.queue_lr = torch.zeros(self.queue_size, c, h, w).cuda()
42
- _, c, h, w = self.gt.size()
43
- self.queue_gt = torch.zeros(self.queue_size, c, h, w).cuda()
44
- self.queue_ptr = 0
45
- if self.queue_ptr == self.queue_size: # the pool is full
46
- # do dequeue and enqueue
47
- # shuffle
48
- idx = torch.randperm(self.queue_size)
49
- self.queue_lr = self.queue_lr[idx]
50
- self.queue_gt = self.queue_gt[idx]
51
- # get first b samples
52
- lq_dequeue = self.queue_lr[0:b, :, :, :].clone()
53
- gt_dequeue = self.queue_gt[0:b, :, :, :].clone()
54
- # update the queue
55
- self.queue_lr[0:b, :, :, :] = self.lq.clone()
56
- self.queue_gt[0:b, :, :, :] = self.gt.clone()
57
-
58
- self.lq = lq_dequeue
59
- self.gt = gt_dequeue
60
- else:
61
- # only do enqueue
62
- self.queue_lr[self.queue_ptr:self.queue_ptr + b, :, :, :] = self.lq.clone()
63
- self.queue_gt[self.queue_ptr:self.queue_ptr + b, :, :, :] = self.gt.clone()
64
- self.queue_ptr = self.queue_ptr + b
65
-
66
- @torch.no_grad()
67
- def feed_data(self, data):
68
- """Accept data from dataloader, and then add two-order degradations to obtain LQ images.
69
- """
70
- if self.is_train and self.opt.get('high_order_degradation', True):
71
- # training data synthesis
72
- self.gt = data['gt'].to(self.device)
73
- self.gt_usm = self.usm_sharpener(self.gt)
74
-
75
- self.kernel1 = data['kernel1'].to(self.device)
76
- self.kernel2 = data['kernel2'].to(self.device)
77
- self.sinc_kernel = data['sinc_kernel'].to(self.device)
78
-
79
- ori_h, ori_w = self.gt.size()[2:4]
80
-
81
- # ----------------------- The first degradation process ----------------------- #
82
- # blur
83
- out = filter2D(self.gt_usm, self.kernel1)
84
- # random resize
85
- updown_type = random.choices(['up', 'down', 'keep'], self.opt['resize_prob'])[0]
86
- if updown_type == 'up':
87
- scale = np.random.uniform(1, self.opt['resize_range'][1])
88
- elif updown_type == 'down':
89
- scale = np.random.uniform(self.opt['resize_range'][0], 1)
90
- else:
91
- scale = 1
92
- mode = random.choice(['area', 'bilinear', 'bicubic'])
93
- out = F.interpolate(out, scale_factor=scale, mode=mode)
94
- # add noise
95
- gray_noise_prob = self.opt['gray_noise_prob']
96
- if np.random.uniform() < self.opt['gaussian_noise_prob']:
97
- out = random_add_gaussian_noise_pt(
98
- out, sigma_range=self.opt['noise_range'], clip=True, rounds=False, gray_prob=gray_noise_prob)
99
- else:
100
- out = random_add_poisson_noise_pt(
101
- out,
102
- scale_range=self.opt['poisson_scale_range'],
103
- gray_prob=gray_noise_prob,
104
- clip=True,
105
- rounds=False)
106
- # JPEG compression
107
- jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.opt['jpeg_range'])
108
- out = torch.clamp(out, 0, 1) # clamp to [0, 1], otherwise JPEGer will result in unpleasant artifacts
109
- out = self.jpeger(out, quality=jpeg_p)
110
-
111
- # ----------------------- The second degradation process ----------------------- #
112
- # blur
113
- if np.random.uniform() < self.opt['second_blur_prob']:
114
- out = filter2D(out, self.kernel2)
115
- # random resize
116
- updown_type = random.choices(['up', 'down', 'keep'], self.opt['resize_prob2'])[0]
117
- if updown_type == 'up':
118
- scale = np.random.uniform(1, self.opt['resize_range2'][1])
119
- elif updown_type == 'down':
120
- scale = np.random.uniform(self.opt['resize_range2'][0], 1)
121
- else:
122
- scale = 1
123
- mode = random.choice(['area', 'bilinear', 'bicubic'])
124
- out = F.interpolate(
125
- out, size=(int(ori_h / self.opt['scale'] * scale), int(ori_w / self.opt['scale'] * scale)), mode=mode)
126
- # add noise
127
- gray_noise_prob = self.opt['gray_noise_prob2']
128
- if np.random.uniform() < self.opt['gaussian_noise_prob2']:
129
- out = random_add_gaussian_noise_pt(
130
- out, sigma_range=self.opt['noise_range2'], clip=True, rounds=False, gray_prob=gray_noise_prob)
131
- else:
132
- out = random_add_poisson_noise_pt(
133
- out,
134
- scale_range=self.opt['poisson_scale_range2'],
135
- gray_prob=gray_noise_prob,
136
- clip=True,
137
- rounds=False)
138
-
139
- # JPEG compression + the final sinc filter
140
- # We also need to resize images to desired sizes. We group [resize back + sinc filter] together
141
- # as one operation.
142
- # We consider two orders:
143
- # 1. [resize back + sinc filter] + JPEG compression
144
- # 2. JPEG compression + [resize back + sinc filter]
145
- # Empirically, we find other combinations (sinc + JPEG + Resize) will introduce twisted lines.
146
- if np.random.uniform() < 0.5:
147
- # resize back + the final sinc filter
148
- mode = random.choice(['area', 'bilinear', 'bicubic'])
149
- out = F.interpolate(out, size=(ori_h // self.opt['scale'], ori_w // self.opt['scale']), mode=mode)
150
- out = filter2D(out, self.sinc_kernel)
151
- # JPEG compression
152
- jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.opt['jpeg_range2'])
153
- out = torch.clamp(out, 0, 1)
154
- out = self.jpeger(out, quality=jpeg_p)
155
- else:
156
- # JPEG compression
157
- jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.opt['jpeg_range2'])
158
- out = torch.clamp(out, 0, 1)
159
- out = self.jpeger(out, quality=jpeg_p)
160
- # resize back + the final sinc filter
161
- mode = random.choice(['area', 'bilinear', 'bicubic'])
162
- out = F.interpolate(out, size=(ori_h // self.opt['scale'], ori_w // self.opt['scale']), mode=mode)
163
- out = filter2D(out, self.sinc_kernel)
164
-
165
- # clamp and round
166
- self.lq = torch.clamp((out * 255.0).round(), 0, 255) / 255.
167
-
168
- # random crop
169
- gt_size = self.opt['gt_size']
170
- (self.gt, self.gt_usm), self.lq = paired_random_crop([self.gt, self.gt_usm], self.lq, gt_size,
171
- self.opt['scale'])
172
-
173
- # training pair pool
174
- self._dequeue_and_enqueue()
175
- # sharpen self.gt again, as we have changed the self.gt with self._dequeue_and_enqueue
176
- self.gt_usm = self.usm_sharpener(self.gt)
177
- self.lq = self.lq.contiguous() # for the warning: grad and param do not obey the gradient layout contract
178
- else:
179
- # for paired training or validation
180
- self.lq = data['lq'].to(self.device)
181
- if 'gt' in data:
182
- self.gt = data['gt'].to(self.device)
183
- self.gt_usm = self.usm_sharpener(self.gt)
184
-
185
- def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
186
- # do not use the synthetic process during validation
187
- self.is_train = False
188
- super(RealESRGANModel, self).nondist_validation(dataloader, current_iter, tb_logger, save_img)
189
- self.is_train = True
190
-
191
- def optimize_parameters(self, current_iter):
192
- # usm sharpening
193
- l1_gt = self.gt_usm
194
- percep_gt = self.gt_usm
195
- gan_gt = self.gt_usm
196
- if self.opt['l1_gt_usm'] is False:
197
- l1_gt = self.gt
198
- if self.opt['percep_gt_usm'] is False:
199
- percep_gt = self.gt
200
- if self.opt['gan_gt_usm'] is False:
201
- gan_gt = self.gt
202
-
203
- # optimize net_g
204
- for p in self.net_d.parameters():
205
- p.requires_grad = False
206
-
207
- self.optimizer_g.zero_grad()
208
- self.output = self.net_g(self.lq)
209
-
210
- l_g_total = 0
211
- loss_dict = OrderedDict()
212
- if (current_iter % self.net_d_iters == 0 and current_iter > self.net_d_init_iters):
213
- # pixel loss
214
- if self.cri_pix:
215
- l_g_pix = self.cri_pix(self.output, l1_gt)
216
- l_g_total += l_g_pix
217
- loss_dict['l_g_pix'] = l_g_pix
218
- # perceptual loss
219
- if self.cri_perceptual:
220
- l_g_percep, l_g_style = self.cri_perceptual(self.output, percep_gt)
221
- if l_g_percep is not None:
222
- l_g_total += l_g_percep
223
- loss_dict['l_g_percep'] = l_g_percep
224
- if l_g_style is not None:
225
- l_g_total += l_g_style
226
- loss_dict['l_g_style'] = l_g_style
227
- # gan loss
228
- fake_g_pred = self.net_d(self.output)
229
- l_g_gan = self.cri_gan(fake_g_pred, True, is_disc=False)
230
- l_g_total += l_g_gan
231
- loss_dict['l_g_gan'] = l_g_gan
232
-
233
- l_g_total.backward()
234
- self.optimizer_g.step()
235
-
236
- # optimize net_d
237
- for p in self.net_d.parameters():
238
- p.requires_grad = True
239
-
240
- self.optimizer_d.zero_grad()
241
- # real
242
- real_d_pred = self.net_d(gan_gt)
243
- l_d_real = self.cri_gan(real_d_pred, True, is_disc=True)
244
- loss_dict['l_d_real'] = l_d_real
245
- loss_dict['out_d_real'] = torch.mean(real_d_pred.detach())
246
- l_d_real.backward()
247
- # fake
248
- fake_d_pred = self.net_d(self.output.detach().clone()) # clone for pt1.9
249
- l_d_fake = self.cri_gan(fake_d_pred, False, is_disc=True)
250
- loss_dict['l_d_fake'] = l_d_fake
251
- loss_dict['out_d_fake'] = torch.mean(fake_d_pred.detach())
252
- l_d_fake.backward()
253
- self.optimizer_d.step()
254
-
255
- if self.ema_decay > 0:
256
- self.model_ema(decay=self.ema_decay)
257
-
258
- self.log_dict = self.reduce_loss_dict(loss_dict)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1acneusushi/gradio-2dmoleculeeditor/data/Download LINK Free FieldIT (CRM) Current Version.md DELETED
@@ -1,26 +0,0 @@
1
-
2
- <h1>How to Download Free FieldIT (CRM) Current Version</h1>
3
- <p>FieldIT (CRM) is a customer relationship management software that helps you manage your contacts, tasks, appointments, documents, and more. It is designed for small and medium businesses that need a simple and affordable solution to organize their data and improve their productivity.</p>
4
- <p>If you want to download free FieldIT (CRM) current version, you can follow these steps:</p>
5
- <h2>Download free FieldIT (CRM) current version</h2><br /><p><b><b>Download Zip</b> &mdash; <a href="https://byltly.com/2uKz0T">https://byltly.com/2uKz0T</a></b></p><br /><br />
6
- <ol>
7
- <li>Go to <a href="https://download.cnet.com/FieldIT-CRM/3000-2652_4-75213029.html">this link</a> [^3^] and click on the green Download Now button.</li>
8
- <li>Save the file FieldITCRM.exe to your computer and run it.</li>
9
- <li>Follow the installation wizard to complete the setup.</li>
10
- <li>Launch FieldIT (CRM) and enter your name and email address to register for a free license.</li>
11
- <li>Enjoy using FieldIT (CRM) for your business needs.</li>
12
- </ol>
13
- <p>Note that the current version of FieldIT (CRM) is 3.8.20, which was released on December 28, 2012 [^3^]. It is compatible with Windows 2003, XP, Vista, 7, and 8 [^3^]. If you need more advanced features or support, you can upgrade to a paid version of FieldIT (CRM).</p>
14
- <p>If you are looking for other CRM software options, you can also check out Microsoft Dynamics 365 [^1^] or SAP CRM [^2^], which are more comprehensive and scalable solutions for larger enterprises. They offer various modules and enhancements for different business functions and industries. However, they also require more investment and technical expertise to implement and maintain.</p>
15
- <p>Whatever CRM software you choose, make sure it meets your business goals and requirements. A good CRM software can help you improve your customer satisfaction, loyalty, retention, and revenue.</p><p>Here are some additional tips on how to use CRM software effectively:</p>
16
- <ul>
17
- <li>Keep your data clean and updated. Make sure you enter accurate and complete information about your contacts, leads, opportunities, and activities. Avoid duplicate or outdated records that can cause confusion and errors.</li>
18
- <li>Segment your customers and prospects. Use criteria such as industry, location, size, revenue, needs, preferences, and behavior to group your customers and prospects into different categories. This can help you tailor your marketing campaigns, sales pitches, and service offerings to each segment.</li>
19
- <li>Automate your workflows and processes. Use the features and tools of your CRM software to automate repetitive and routine tasks such as sending emails, scheduling appointments, creating reports, and generating invoices. This can save you time and resources and reduce human errors.</li>
20
- <li>Analyze your data and performance. Use the dashboards, charts, graphs, and reports of your CRM software to monitor and measure your key performance indicators (KPIs) such as sales revenue, conversion rate, customer satisfaction, retention rate, and lifetime value. This can help you identify your strengths and weaknesses and make informed decisions.</li>
21
- <li>Integrate your CRM software with other systems and applications. Connect your CRM software with your email, calendar, social media, accounting, e-commerce, and other platforms that you use for your business. This can help you streamline your data flow and communication and enhance your productivity and efficiency.</li>
22
- </ul>
23
- <p>By following these tips, you can make the most out of your CRM software and boost your business growth.</p>
24
- <p></p> 7b8c122e87<br />
25
- <br />
26
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1acneusushi/gradio-2dmoleculeeditor/data/Excel 2016 Test Questions And Answers Pdf.md DELETED
@@ -1,16 +0,0 @@
1
-
2
- <h1>How to Prepare for Excel 2016 Test Questions and Answers PDF</h1>
3
- <p>If you are planning to take an Excel 2016 test, you might be looking for some resources to help you prepare. One of the best ways to study for an Excel 2016 test is to use a PDF file that contains questions and answers. A PDF file is a document that can be viewed on any device and printed easily. A PDF file that contains Excel 2016 test questions and answers can help you practice your skills, review your knowledge, and identify your strengths and weaknesses.</p>
4
- <p>However, not all PDF files that contain Excel 2016 test questions and answers are created equal. Some PDF files may have outdated, inaccurate, or irrelevant information. Some PDF files may have poor formatting, spelling, or grammar. Some PDF files may have too few or too many questions, or questions that are too easy or too hard. Therefore, you need to be careful when choosing a PDF file that contains Excel 2016 test questions and answers.</p>
5
- <h2>excel 2016 test questions and answers pdf</h2><br /><p><b><b>Download</b> &#10031; <a href="https://byltly.com/2uKA0w">https://byltly.com/2uKA0w</a></b></p><br /><br />
6
- <p>Here are some tips to help you find and use a good PDF file that contains Excel 2016 test questions and answers:</p>
7
- <ul>
8
- <li>Look for a reputable source. You should look for a PDF file that comes from a reliable source, such as a reputable website, a certified instructor, or a trusted publisher. You can check the source's credentials, reviews, ratings, or testimonials to verify its quality and credibility.</li>
9
- <li>Look for a recent version. You should look for a PDF file that is updated to reflect the latest changes and features of Excel 2016. You can check the date of publication, the edition number, or the version number to see if the PDF file is current and relevant.</li>
10
- <li>Look for a comprehensive coverage. You should look for a PDF file that covers all the topics and skills that are tested on the Excel 2016 exam. You can check the table of contents, the introduction, or the summary to see if the PDF file has a complete and balanced coverage of the exam content.</li>
11
- <li>Look for a clear format. You should look for a PDF file that has a clear and consistent format that makes it easy to read and understand. You can check the font size, the color scheme, the layout, the headings, the bullet points, the tables, the charts, or the images to see if the PDF file has a good visual presentation.</li>
12
- <li>Look for a correct answer key. You should look for a PDF file that has a correct and detailed answer key that explains how to solve each question. You can check the accuracy, the logic, the steps, the formulas, the functions, or the references to see if the PDF file has a good explanation of the answers.</li>
13
- </ul>
14
- <p>By following these tips, you can find and use a good PDF file that contains Excel 2016 test questions and answers. A good PDF file can help you prepare for your Excel 2016 test effectively and efficiently.</p> ddb901b051<br />
15
- <br />
16
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1gistliPinn/ChatGPT4/Examples/Addictive Drums Authorization Code 111 14.md DELETED
@@ -1,109 +0,0 @@
1
-
2
- <h1>Addictive Drums Authorization Code 111 14: How to Unlock the Full Potential of Your Drum Software</h1>
3
-
4
- <p>If you are a music producer, composer, or drummer, you probably know how amazing Addictive Drums 2 is. This software allows you to create realistic and expressive drum tracks with ease, using a variety of kits, presets, and effects. You can use it as a standalone application or as a plug-in in your favorite music production software.</p>
5
-
6
- <p>But what if you want to access more features and options in Addictive Drums 2? What if you want to customize your drum sounds, mix and match different kits, and tweak every parameter to your liking? Well, you need an authorization code to unlock the full potential of your drum software.</p>
7
- <h2>Addictive Drums Authorization Code 111 14</h2><br /><p><b><b>DOWNLOAD</b> &rarr; <a href="https://imgfil.com/2uxYJU">https://imgfil.com/2uxYJU</a></b></p><br /><br />
8
-
9
- <h2>What is Addictive Drums Authorization Code 111 14?</h2>
10
-
11
- <p>Addictive Drums Authorization Code 111 14 is a special code that you can use to activate Addictive Drums 2 on your computer. This code is provided by XLN Audio, the company that develops and distributes Addictive Drums 2. You can get this code by purchasing Addictive Drums 2 from their official website or from an authorized dealer.</p>
12
-
13
- <p>Once you have this code, you can enter it in the Addictive Drums 2 activation window and enjoy all the benefits of the full version of the software. You can use any kit, preset, or effect that you want, and you can also download and install additional content from the XLN Audio website. You can also use Addictive Drums 2 on up to three computers with the same code.</p>
14
-
15
- <h2>How to Activate Addictive Drums 2 with Authorization Code 111 14?</h2>
16
-
17
- <p>Activating Addictive Drums 2 with Authorization Code 111 14 is very easy and straightforward. Here are the steps you need to follow:</p>
18
-
19
- <ol>
20
- <li>Download and install Addictive Drums 2 from the XLN Audio website or from the installation disc that came with your purchase.</li>
21
- <li>Launch Addictive Drums 2 as a standalone application or as a plug-in in your music production software.</li>
22
- <li>Click on the "Activate Product" button in the lower right corner of the Addictive Drums 2 window.</li>
23
- <li>Enter your email address and password that you used to register your product on the XLN Audio website. If you don't have an account yet, you can create one for free.</li>
24
- <li>Enter your Addictive Drums Authorization Code 111 14 in the field provided and click on "Activate".</li>
25
- <li>Wait for the activation process to complete and restart Addictive Drums 2.</li>
26
- </ol>
27
-
28
- <p>Congratulations! You have successfully activated Addictive Drums 2 with Authorization Code 111 14. You can now enjoy all the features and options that this software has to offer.</p>
29
-
30
- <h2>Why Choose Addictive Drums Authorization Code 111 14?</h2>
31
-
32
- <p>Addictive Drums Authorization Code 111 14 is the best way to unlock the full potential of your drum software. Here are some of the reasons why you should choose this code:</p>
33
-
34
- <ul>
35
- <li>It is easy to use and activate. You don't need any complicated procedures or technical skills to activate Addictive Drums 2 with this code.</li>
36
- <li>It is secure and reliable. You don't have to worry about viruses, malware, or scams when you use this code. It is provided by XLN Audio, a reputable company that has been in the music industry for over a decade.</li>
37
- <li>It is affordable and worth it. You don't have to spend a fortune to get this code. It is reasonably priced and gives you access to a lot of value-added content and features that will enhance your drum production.</li>
38
- <li>It is compatible and flexible. You can use this code on any computer that meets the minimum system requirements for Addictive Drums 2. You can also use it on up to three computers with the same code.</li>
39
- </ul>
40
-
41
- <p>Addictive Drums Authorization Code 111 14 is the ultimate solution for anyone who wants to create professional and realistic drum tracks with ease. Don't miss this opportunity to get this code and experience the power of Addictive Drums 2.</p>
42
- <p></p>
43
-
44
- <h3>Get Your Addictive Drums Authorization Code 111 14 Today!</h3>
45
-
46
- <p>If you are ready to take your drum production to the next level, don't hesitate to get your Addictive Drums Authorization Code 111 14 today. You can get this code by visiting the XLN Audio website or by contacting an authorized dealer near you.</p>
47
-
48
- <p>Addictive Drums Authorization Code 111 14 is the key to unlocking the full potential of your drum software. Get it now and start creating amazing drum tracks with Addictive Drums 2!</p>
49
- <h4>What are the Benefits of Addictive Drums 2?</h4>
50
-
51
- <p>Addictive Drums 2 is not just another drum software. It is a complete drum production solution that offers many benefits for music producers, composers, and drummers. Here are some of the benefits of Addictive Drums 2:</p>
52
-
53
- <ul>
54
- <li>It is realistic and expressive. Addictive Drums 2 uses high-quality samples and advanced algorithms to create drum sounds that are realistic and dynamic. You can control the velocity, pitch, tone, and articulation of each drum hit with your keyboard, mouse, or MIDI controller. You can also use the built-in groove engine to create realistic drum patterns and variations.</li>
55
- <li>It is versatile and customizable. Addictive Drums 2 comes with a huge library of kits, presets, and effects that cover a wide range of genres and styles. You can mix and match different elements to create your own custom kits and sounds. You can also adjust the volume, pan, EQ, compression, reverb, and other parameters of each drum channel with the intuitive mixer.</li>
56
- <li>It is creative and inspiring. Addictive Drums 2 allows you to experiment and explore different possibilities with your drum tracks. You can use the beat transformer to change the feel and groove of your patterns. You can use the FX section to add distortion, modulation, delay, and other effects to your drums. You can also use the cloud sync feature to access new content and updates from XLN Audio.</li>
57
- </ul>
58
-
59
- <p>Addictive Drums 2 is a powerful and flexible drum software that will help you create professional and realistic drum tracks with ease.</p>
60
-
61
- <h4>How to Get the Best Out of Addictive Drums Authorization Code 111 14?</h4>
62
-
63
- <p>Addictive Drums Authorization Code 111 14 is a great way to activate Addictive Drums 2 on your computer. However, there are some tips and tricks that you can use to get the best out of this code and your drum software. Here are some of them:</p>
64
-
65
- <ul>
66
- <li>Make sure your computer meets the minimum system requirements for Addictive Drums 2. You need at least Windows 7 or Mac OS X 10.7, a dual-core CPU, 4 GB of RAM, and an internet connection.</li>
67
- <li>Register your product on the XLN Audio website to get access to additional content and updates. You can also join the XLN Audio community and get support and feedback from other users.</li>
68
- <li>Watch the tutorial videos and read the user manual to learn how to use Addictive Drums 2 effectively. You can also check out the FAQ section and the online help center for more information.</li>
69
- <li>Experiment with different kits, presets, and effects to find your own sound and style. You can also create your own custom kits and presets and save them for later use.</li>
70
- <li>Use MIDI loops or record your own patterns to create realistic and expressive drum tracks. You can also edit and quantize your MIDI data with the built-in editor.</li>
71
- </ul>
72
-
73
- <p>Addictive Drums Authorization Code 111 14 is a valuable tool that will help you unlock the full potential of your drum software. Use it wisely and enjoy creating amazing drum tracks with Addictive Drums 2!</p>
74
- <h4>Where to Buy Addictive Drums Authorization Code 111 14?</h4>
75
-
76
- <p>If you are interested in buying Addictive Drums Authorization Code 111 14, you have two options. You can either buy it directly from the XLN Audio website or from an authorized dealer near you.</p>
77
-
78
- <p>Buying from the XLN Audio website is the easiest and fastest way to get your code. You can choose from different payment methods and currencies, and you can also get instant access to your code and your product downloads. You can also benefit from the XLN Audio loyalty program and get discounts and rewards for your purchases.</p>
79
-
80
- <p>Buying from an authorized dealer is another option that you can consider. You can find a list of authorized dealers on the XLN Audio website or by contacting their customer support. Buying from an authorized dealer can give you some advantages, such as local support, warranty, and physical installation discs.</p>
81
-
82
- <p>Whichever option you choose, make sure you buy Addictive Drums Authorization Code 111 14 from a legitimate source. Avoid buying from unauthorized sellers or websites that offer suspiciously low prices or free codes. These codes may be fake, stolen, or expired, and they may not work or may cause problems with your software.</p>
83
-
84
- <h4>How to Troubleshoot Addictive Drums Authorization Code 111 14?</h4>
85
-
86
- <p>Addictive Drums Authorization Code 111 14 is a reliable and secure code that should work without any issues. However, if you encounter any problems with your code or your software activation, here are some tips and solutions that you can try:</p>
87
-
88
- <ul>
89
- <li>Make sure you enter your code correctly. Check for any typos, spaces, or extra characters in your code. You can also copy and paste your code from your email or your XLN Audio account to avoid errors.</li>
90
- <li>Make sure you have an internet connection. You need an internet connection to activate Addictive Drums 2 with your code. If your internet connection is slow or unstable, try using a different network or device.</li>
91
- <li>Make sure you have the latest version of Addictive Drums 2 installed. You can check for updates on the XLN Audio website or by using the XLN Online Installer application.</li>
92
- <li>Make sure you have enough disk space and memory on your computer. Addictive Drums 2 requires at least 4 GB of RAM and 15 GB of disk space to run smoothly.</li>
93
- <li>Contact XLN Audio customer support. If none of the above solutions work, you can contact XLN Audio customer support by email or phone. They will help you solve any issues with your code or your software activation.</li>
94
- </ul>
95
-
96
- <p>Addictive Drums Authorization Code 111 14 is a simple and effective way to activate Addictive Drums 2 on your computer. If you follow these tips and solutions, you should be able to enjoy your drum software without any problems.</p>
97
- <h4>Conclusion</h4>
98
-
99
- <p>Addictive Drums 2 is a powerful and versatile drum production software that can help you create realistic and expressive drum tracks with ease. Whether you use it as a standalone application or as a plug-in in your music production software, Addictive Drums 2 will give you access to a huge library of kits, presets, and effects that cover a wide range of genres and styles.</p>
100
-
101
- <p>To unlock the full potential of your drum software, you need Addictive Drums Authorization Code 111 14. This code will allow you to activate Addictive Drums 2 on your computer and enjoy all the features and options that this software has to offer. You can also use this code on up to three computers with the same code.</p>
102
-
103
- <p>Addictive Drums Authorization Code 111 14 is easy to use and activate. You can get this code by buying Addictive Drums 2 from the XLN Audio website or from an authorized dealer near you. You can also register your product on the XLN Audio website to get access to additional content and updates.</p>
104
-
105
- <p>If you have any problems with your code or your software activation, you can follow the tips and solutions that we have provided in this article. You can also contact XLN Audio customer support for more help and assistance.</p>
106
-
107
- <p>Addictive Drums Authorization Code 111 14 is the key to unlocking the full potential of your drum software. Get it now and start creating amazing drum tracks with Addictive Drums 2!</p> 3cee63e6c2<br />
108
- <br />
109
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1gistliPinn/ChatGPT4/Examples/DFX Audio Enhancer 13.008 - Repack KpoJIuK .rar.md DELETED
@@ -1,6 +0,0 @@
1
- <h2>DFX Audio Enhancer 13.008 - Repack KpoJIuK .rar</h2><br /><p><b><b>Download Zip</b> --->>> <a href="https://imgfil.com/2uy1N6">https://imgfil.com/2uy1N6</a></b></p><br /><br />
2
-
3
- SCPH- .... PlayStation 2 SCPH 39001.rar 8.11 Mb . SCPH 30000-50000.pdf 2.17 Mb . 31584 . ... DFX Audio Enhancer 13.008 - Repack KpoJIuK .rar · Crack For ... 4d29de3e1b<br />
4
- <br />
5
- <br />
6
- <p></p>
 
 
 
 
 
 
 
spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Download Bullet Echo Mod Apk and Enjoy Free Shopping and Epic Battles.md DELETED
@@ -1,94 +0,0 @@
1
- <br />
2
- <h1>Free Download Bullet Echo Mod Apk: A Stealthy Battle Royale Game</h1>
3
- <p>If you are looking for a new and exciting action shooter game to play on your mobile device, you might want to check out Bullet Echo. This game is a PvP tactical team shooter that pits teams of players against each other in intense, competitive matches. You can choose from dozens of different heroes with unique play styles, guns, and abilities. You can also play in various game modes, such as Team vs Team, Solo, and Battle Royale.</p>
4
- <h2>free download bullet echo mod apk</h2><br /><p><b><b>Download Zip</b> > <a href="https://urlin.us/2uSTI0">https://urlin.us/2uSTI0</a></b></p><br /><br />
5
- <p>But what if you want to enjoy the game without spending any money or waiting for long hours to unlock new heroes and perks? Well, you can do that by downloading the Bullet Echo Mod Apk. This is a modified version of the original game that gives you unlimited money, free shopping, unlocked heroes, and more. In this article, we will tell you everything you need to know about Bullet Echo Mod Apk, including what it is, how to download and install it, and some tips and tricks to play it.</p>
6
- <h2>What is Bullet Echo?</h2>
7
- <p>Bullet Echo is a game developed by ZeptoLab, the creators of popular games like Cut the Rope, King of Thieves, and C.A.T.S. It is a top-down PvP tactical shooter that combines stealth, teamwork, and shooting skills. Here are some of the features of the game:</p>
8
- <h3>A top-down PvP tactical shooter</h3>
9
- <p>In Bullet Echo, you play as one of the heroes in a team of up to five players. Your goal is to eliminate the enemy team or be the last team standing when the battle ends. You can use your gun, your abilities, and your flashlight to fight your way through ever-changing environments. However, your vision is limited by the beam of your flashlight, so you have to rely on sound cues to locate your enemies and allies.</p>
10
- <h3>A game with multiple modes and heroes</h3>
11
- <p>Bullet Echo offers three main game modes that you can play solo or with friends online. These are:</p>
12
- <ul>
13
- <li>Team vs Team: This is a classic 5v5 team deathmatch mode where you have to kill more enemies than the other team.</li>
14
- <li>Solo: This is a free-for-all mode where 15 players compete against each other in a small map.</li>
15
- <li>Battle Royale: This is a mode where five teams of three players fight each other in a large map. The map shrinks over time and only one team or one player can survive.</li>
16
- </ul>
17
- <p>Besides these modes, you can also participate in championships, missions, and events to earn valuable resources and rewards.</p>
18
- <p>The game also features 21 heroes at launch and more heroes coming soon. Each hero has a unique set of abilities that can be used in combat. For example, some heroes can turn invisible, some can create electrical shields, some can heal themselves or their teammates, and some can launch rockets or grenades. You can unlock new heroes by playing online matches or by using resources that you earn or buy.</p>
19
- <p>How to get bullet echo mod apk for free<br />
20
- Bullet echo mod apk unlimited money and free shopping<br />
21
- Bullet echo mod apk latest version download<br />
22
- Bullet echo hack mod apk download for android<br />
23
- Bullet echo mod apk offline mode<br />
24
- Bullet echo mod apk with unlimited ammo and health<br />
25
- Bullet echo mod apk no root required<br />
26
- Bullet echo mod apk gameplay and features<br />
27
- Bullet echo mod apk download link and installation guide<br />
28
- Bullet echo mod apk review and rating<br />
29
- Bullet echo mod apk tips and tricks<br />
30
- Bullet echo mod apk best weapons and characters<br />
31
- Bullet echo mod apk cheats and codes<br />
32
- Bullet echo mod apk vs original game comparison<br />
33
- Bullet echo mod apk multiplayer mode and online battles<br />
34
- Bullet echo mod apk new update and patch notes<br />
35
- Bullet echo mod apk best settings and graphics<br />
36
- Bullet echo mod apk problems and solutions<br />
37
- Bullet echo mod apk support and feedback<br />
38
- Bullet echo mod apk alternatives and similar games<br />
39
- Download bullet echo mod apk from wonderapk.com[^1^]<br />
40
- Bullet echo mod apk free download without survey<br />
41
- Bullet echo mod apk file size and requirements<br />
42
- Bullet echo mod apk fun and addictive shooting game<br />
43
- Bullet echo mod apk missions and challenges<br />
44
- Bullet echo mod apk rewards and achievements<br />
45
- Bullet echo mod apk skins and customizations<br />
46
- Bullet echo mod apk maps and locations<br />
47
- Bullet echo mod apk enemies and bosses<br />
48
- Bullet echo mod apk sound and music</p>
49
- <h3>A game with stealth and sound mechanics</h3>
50
- <p>One of the most unique aspects of Bullet Echo is the stealth and sound mechanics. Unlike other shooter games, you cannot see the whole map or the enemies' positions. You can only see what your flashlight illuminates, which is a narrow cone of light in front of you. This means that you have to be careful about where you point your flashlight, as it can reveal your location to the enemies or blind your teammates. You also have to use sound cues to detect the enemies and allies. You can hear the footsteps, gunshots, and abilities of other players, as well as the ambient noises of the environment. You can use these sounds to locate and track your targets, or to avoid being detected by them. You can also use your abilities to create sound distractions or to silence your enemies. These mechanics make Bullet Echo a game that requires strategy, coordination, and stealth. You have to work with your team to plan your moves, communicate your positions, and execute your attacks. You also have to adapt to the changing situations and environments, as the maps are randomly generated and have different layouts, obstacles, and items.</p>
51
- <h2>What is Bullet Echo Mod Apk?</h2>
52
- <p>Bullet Echo Mod Apk is a modified version of the original game that gives you some advantages and features that are not available in the official version. These are:</p>
53
- <h3>A modified version of the original game</h3>
54
- <p>Bullet Echo Mod Apk is not an official app from ZeptoLab. It is a third-party app that has been modified by some developers or hackers to alter some aspects of the game. This means that it is not authorized by ZeptoLab and it may not be compatible with the latest updates or features of the game. It also means that it may contain some bugs, errors, or viruses that can harm your device or compromise your security.</p>
55
- <h3>A version with unlimited money and free shopping</h3>
56
- <p>One of the main benefits of Bullet Echo Mod Apk is that it gives you unlimited money and free shopping. This means that you can buy anything you want in the game without spending any real money or waiting for long hours. You can buy new heroes, perks, skins, weapons, and more with just a few clicks. You can also upgrade your heroes and perks to the maximum level without any restrictions.</p>
57
- <h3>A version with unlocked heroes and perks</h3>
58
- <p>Another benefit of Bullet Echo Mod Apk is that it gives you unlocked heroes and perks. This means that you can access all the heroes and perks in the game without having to unlock them by playing online matches or using resources. You can choose any hero you want from the start and use their abilities in combat. You can also use any perk you want to enhance your performance and customize your play style.</p>
59
- <h2>How to Download and Install Bullet Echo Mod Apk?</h2>
60
- <p>If you want to download and install Bullet Echo Mod Apk on your device, you have to follow these steps:</p>
61
- <h3>The download link and steps</h3>
62
- <ol>
63
- <li>Go to this link: https://www.apkdone.com/bullet-echo/</li>
64
- <li>Click on the green button that says "Download APK (100 MB)"</li>
65
- <li>Wait for the download to finish and then open the file</li>
66
- <li>Click on "Install" and allow unknown sources if prompted</li>
67
- <li>Wait for the installation to finish and then open the app</li>
68
- </ol>
69
- <h3>The requirements and precautions</h3>
70
- <ul>
71
- <li>You need an Android device with Android 5.0 or higher to run Bullet Echo Mod Apk</li>
72
- <li>You need at least 100 MB of free storage space on your device to download and install Bullet Echo Mod Apk</li>
73
- <li>You need a stable internet connection to play online matches in Bullet Echo Mod Apk</li>
74
- <li>You should not use your real account or personal information when playing Bullet Echo Mod Apk, as it may get banned or hacked by ZeptoLab or other players</li>
75
- <li>You should not update Bullet Echo Mod Apk from Google Play Store or other sources, as it may overwrite the modded features or cause errors</li>
76
- <li>You should backup your data before installing Bullet Echo Mod Apk, as it may delete or corrupt your existing data</li>
77
- <li>You should uninstall Bullet Echo Mod Apk if you encounter any problems or if you want to switch back to the official version of the game</li>
78
- </ul>
79
- <h3>The benefits and drawbacks</h3>
80
- <table border="1">
81
- <tr><th>Benefits</th><th>Drawbacks</th></tr>
82
- <tr><td>You can enjoy unlimited money and free shopping in Bullet Echo Mod Apk</td><td>You may get banned or hacked by ZeptoLab or other players for using Bullet Echo Mod Apk</td></tr>
83
- <tr><td>You can access all the heroes and perks should use Bullet Echo Mod Apk at your own risk and discretion.</li>
84
- <li>Q: How can I update Bullet Echo Mod Apk?</li>
85
- <li>A: You should not update Bullet Echo Mod Apk from Google Play Store or other sources, as it may overwrite the modded features or cause errors. You should only update Bullet Echo Mod Apk from the same link that you downloaded it from, or from a trusted source that provides the latest version of the mod. You should also backup your data before updating Bullet Echo Mod Apk, as it may delete or corrupt your existing data.</li>
86
- <li>Q: How can I switch back to the official version of Bullet Echo?</li>
87
- <li>A: If you want to switch back to the official version of Bullet Echo, you have to uninstall Bullet Echo Mod Apk from your device. You can do this by going to your device settings, finding the app, and tapping on "Uninstall". You should also delete any residual files or folders that are related to Bullet Echo Mod Apk. Then, you can download and install the official version of Bullet Echo from Google Play Store or other sources.</li>
88
- <li>Q: Can I play Bullet Echo Mod Apk with other players who use the official version of the game?</li>
89
- <li>A: Yes, you can play Bullet Echo Mod Apk with other players who use the official version of the game. However, you may face unfair or unbalanced matches against them, as they may not have the same advantages and features that you have. You may also get reported or banned by them for using Bullet Echo Mod Apk, as it is considered cheating or hacking by ZeptoLab and other players.</li>
90
- <li>Q: Can I play Bullet Echo Mod Apk offline?</li>
91
- <li>A: No, you cannot play Bullet Echo Mod Apk offline. You need a stable internet connection to play online matches in Bullet Echo Mod Apk. You also need an internet connection to download and install Bullet Echo Mod Apk on your device.</li>
92
- </ul></p> 197e85843d<br />
93
- <br />
94
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1phancelerku/anime-remove-background/Burger Please Mod Apk The Ultimate Fun Game with Unlimited Money.md DELETED
@@ -1,132 +0,0 @@
1
-
2
- <h1>Burger Please Mod APK Unlimited Money: How to Download and Play</h1>
3
- <p>Do you love burgers? Do you want to run your own burger shop? Do you want to have unlimited money, diamonds, coins, and cash in your game? If you answered yes to any of these questions, then you might be interested in <strong>Burger Please Mod APK Unlimited Money</strong>, a modified version of the popular casual game <strong>Burger Please</strong>. In this article, we will tell you everything you need to know about this mod, including what it is, how to download and install it, and how to play it. Let's get started!</p>
4
- <h2>burger please mod apk unlimited money</h2><br /><p><b><b>Download File</b> ->>->>->> <a href="https://jinyurl.com/2uNLp7">https://jinyurl.com/2uNLp7</a></b></p><br /><br />
5
- <h2>What is Burger Please?</h2>
6
- <p><strong>Burger Please</strong> is a casual game where you run your own burger shop and serve delicious burgers to your customers. You can customize your shop, upgrade your equipment, unlock new recipes, and create your own burger combinations. You can also compete with other players in the leaderboard, complete daily missions, and earn rewards.</p>
7
- <h3>A casual game where you run your own burger shop</h3>
8
- <p>The main mode of <strong>Burger Please</strong> is the <em>Career Mode</em>, where you start from a small burger stand and work your way up to a big burger empire. You will have to manage your time, resources, and customer satisfaction as you prepare and serve burgers according to their orders. You will also have to deal with different types of customers, such as kids, adults, celebrities, zombies, aliens, and more. Each customer has their own preferences, personality, and patience level, so you have to be careful not to make them angry or disappointed.</p>
9
- <h3>The features and gameplay of Burger Please</h3>
10
- <p><strong>Burger Please</strong> has many features and gameplay elements that make it fun and addictive. Some of them are:</p>
11
- <ul>
12
- <li><strong>Customization:</strong> You can customize your shop with different themes, decorations, furniture, and accessories. You can also customize your character with different outfits, hairstyles, accessories, and expressions.</li>
13
- <li><strong>Upgrades:</strong> You can upgrade your equipment, such as your grill, fryer, toaster, blender, etc., to make them faster, more efficient, and more durable. You can also upgrade your ingredients, such as your meat, cheese, lettuce, tomato, etc., to make them tastier, fresher, and more nutritious.</li>
14
- <li><strong>Recipes:</strong> You can unlock new recipes as you progress in the game. You can also create your own recipes by combining different ingredients. You can save your recipes in your cookbook and use them anytime.</li>
15
- <li><strong>Challenges:</strong> You can challenge yourself with different modes and levels in the game. You can play the <em>Time Attack Mode</em>, where you have to serve as many burgers as possible in a limited time. You can play the <em>Endless Mode</em>, where you have to serve burgers until you run out of ingredients or customers. You can also play the <em>Boss Mode</em>, where you have to face a special customer who will test your skills.</li>
16
- mod APK from a trusted and reliable source, such as a reputable website, forum, or blog.</li>
17
- <li>You should always scan the mod APK with an antivirus or anti-malware program before installing it on your device.</li>
18
- <li>You should always read the reviews and comments of other users who have used the mod APK before downloading and installing it.</li>
19
- <li>You should always follow the instructions and requirements of the mod APK carefully and correctly.</li>
20
- </ul>
21
- </li>
22
- </ul>
23
- <h2>How to Download and Install Burger Please Mod APK Unlimited Money?</h2>
24
- <p>If you have decided to use <strong>Burger Please Mod APK Unlimited Money</strong>, you will need to download and install it on your device. The process may vary depending on the type of device you have, but here are some general steps that you can follow:</p>
25
- <h3>The steps to download and install Burger Please Mod APK Unlimited Money on your Android device</h3>
26
- <ol>
27
- <li>Go to the link where you can download the mod APK file. You can search for it online or use the link provided by the source.</li>
28
- <li>Tap on the download button and wait for the file to be downloaded on your device.</li>
29
- <li>Once the file is downloaded, go to your device settings and enable the option to install apps from unknown sources. This will allow you to install the mod APK file.</li>
30
- <li>Locate the mod APK file in your device storage and tap on it to start the installation process.</li>
31
- <li>Follow the on-screen instructions and grant the necessary permissions to install the mod APK file.</li>
32
- <li>Wait for the installation to be completed and then launch the game from your app drawer or home screen.</li>
33
- <li>Enjoy playing <strong>Burger Please Mod APK Unlimited Money</strong> on your Android device.</li>
34
- </ol>
35
- <h3>The steps to download and install Burger Please Mod APK Unlimited Money on your PC using an emulator</h3>
36
- <ol>
37
- <li>Go to the link where you can download the mod APK file. You can search for it online or use the link provided by the source.</li>
38
- <li>Download and install an Android emulator on your PC. An emulator is a software that allows you to run Android apps on your PC. Some popular emulators are BlueStacks, NoxPlayer, LDPlayer, etc.</li>
39
- <li>Launch the emulator and sign in with your Google account. This will allow you to access the Google Play Store and other Google services on your PC.</li>
40
- <li>Drag and drop the mod APK file into the emulator or use the built-in browser to download it from the link.</li>
41
- <li>Install the mod APK file using the emulator's app installer or file manager.</li>
42
- <li>Launch the game from the emulator's app drawer or home screen.</li>
43
- <li>Enjoy playing <strong>Burger Please Mod APK Unlimited Money</strong> on your PC using an emulator.</li>
44
- </ol>
45
- <h3>The steps to download and install Burger Please Mod APK Unlimited Money on your iOS device using a third-party app store</h3>
46
- <ol>
47
- <li>Go to the link where you can download the mod IPA file. You can search for it online or use the link provided by the source. The mod IPA file is a modified version of the original game that works on iOS devices. The mod IPA file is not an official version of the game and it is not supported or endorsed by the original developers.</li>
48
- <li>Download and install a third-party app store on your iOS device. A third-party app store is an alternative to the Apple App Store that allows you to download and install apps that are not available or approved by Apple. Some popular third-party app stores are TutuApp, Panda Helper, AppValley, etc.</li>
49
- <li>Launch the third-party app store and search for <strong>Burger Please Mod IPA Unlimited Money</strong> or use the link provided by the source.</li>
50
- <li>Tap on the download button and wait for the file to be downloaded on your device.</li>
51
- <li>Once the file is downloaded, go to your device settings and trust the developer profile of the third-party app store. This will allow you to install the mod IPA file.</li>
52
- <li>Locate the mod IPA file in your device storage and tap on it to start the installation process.</li>
53
- <li>Follow the on-screen instructions and grant the necessary permissions to install the mod IPA file.</li>
54
- <li>Wait for the installation to be completed and then launch the game from your app drawer or home screen.</li>
55
- <li>Enjoy playing <strong>Burger Please Mod IPA Unlimited Money</strong> on your iOS device using a third-party app store.</li>
56
- </ol>
57
- <h2>How to Play Burger Please Mod APK Unlimited Money?</h2>
58
- <p>Now that you have downloaded and installed <strong>Burger Please Mod APK Unlimited Money</strong>, you might be wondering how to play it. Well, the gameplay is pretty much the same as the original game, except that you have unlimited resources and access to everything. However, if you want some tips and tricks to play it effectively and enjoyably, here are some suggestions:</p>
59
- <h3>The tips and tricks to play Burger Please Mod APK Unlimited Money effectively and enjoyably</h3>
60
- <ul>
61
- <li><strong>Experiment with different recipes:</strong> Since you have unlimited ingredients, you can try out different combinations and create your own recipes. You can also use the cookbook to save your recipes and use them anytime. You might discover some delicious and unique burgers that will impress your customers and yourself.</li>
62
- <li><strong>Upgrade your equipment and ingredients:</strong> Since you have unlimited money, diamonds, coins, and cash, you can upgrade your equipment and ingredients to the max level. This will make your burgers faster, better, and more profitable. You can also buy new equipment and ingredients that will enhance your gameplay and variety.</li>
63
- <li><strong>Customize your shop and character:</strong> Since you have unlimited money, diamonds, coins, and cash, you can customize your shop and character with any theme, decoration, furniture, accessory, outfit, hairstyle, etc. that you want. You can also change them anytime according to your mood or preference. You can make your shop and character look unique and attractive.</li>
64
- <li><strong>Compete with other players:</strong> Since you have unlimited money, diamonds, coins, and cash, you can compete with other players in the leaderboard without any fear or pressure. You can also challenge yourself with different modes and levels in the game. You can show off your skills and achievements to other players and prove that you are the best burger master.</li>
65
- <li><strong>Have fun:</strong> The most important tip is to have fun while playing <strong>Burger Please Mod APK Unlimited Money</strong>. Don't take it too seriously or get bored by having everything easy. Enjoy the game as a casual and relaxing activity that will make you happy and hungry.</li>
66
- </ul>
67
- <h3>The best strategies and techniques to play Burger Please Mod APK Unlimited Money successfully and competitively</h3>
68
- <ul>
69
- <li><strong>Plan ahead:</strong> Even though you have unlimited resources, you still need to plan ahead when preparing and serving burgers. You need to pay attention to the customer's order, the ingredient's availability, the equipment's condition, etc. You need to avoid wasting time or making mistakes that will affect your performance or customer satisfaction.</li>
70
- <li><strong>Prioritize your customers:</strong> Even though you have unlimited resources, you still need to prioritize your customers when serving burgers. You need to consider their preferences, personality, patience level, etc. You need to serve them quickly, accurately, politely, etc. You need to avoid making them angry or disappointed that will affect your reputation or income.</li>
71
- <li><strong>Balanc e your resources:</strong> Even though you have unlimited resources, you still need to balance your resources when buying and upgrading items. You need to consider the cost, benefit, quality, quantity, etc. of each item. You need to avoid overspending or underutilizing your resources that will affect your gameplay or variety.</li>
72
- <li><strong>Use your creativity:</strong> Even though you have unlimited resources, you still need to use your creativity when creating and customizing burgers. You need to experiment with different ingredients, recipes, combinations, etc. You need to make your burgers look appealing, delicious, and unique. You need to impress your customers and yourself with your creativity.</li>
73
- <li><strong>Have fun:</strong> The most important strategy is to have fun while playing <strong>Burger Please Mod APK Unlimited Money</strong>. Don't take it too seriously or get stressed by the competition or the challenge. Enjoy the game as a casual and relaxing activity that will make you happy and hungry.</li>
74
- </ul>
75
- <h2>Conclusion</h2>
76
- <p>In conclusion, <strong>Burger Please Mod APK Unlimited Money</strong> is a modified version of the original game that gives you unlimited money, diamonds, coins, and cash in your game. It allows you to enjoy the game without any limitations or restrictions. However, it also has some benefits and drawbacks, risks and precautions, tips and tricks, and strategies and techniques that you should know before downloading and installing it. We hope that this article has helped you learn more about this mod and how to download and play it. If you have any questions or feedback, please feel free to leave a comment below. Thank you for reading and happy burger making!</p>
77
- <p>burger please mod apk latest version<br />
78
- burger please mod apk free download<br />
79
- burger please mod apk android 1<br />
80
- burger please mod apk unlimited coins<br />
81
- burger please mod apk hack<br />
82
- burger please mod apk offline<br />
83
- burger please mod apk no ads<br />
84
- burger please mod apk revdl<br />
85
- burger please mod apk rexdl<br />
86
- burger please mod apk happymod<br />
87
- burger please mod apk cheat<br />
88
- burger please mod apk 0.8.0<br />
89
- burger please mod apk terbaru<br />
90
- burger please mod apk premium<br />
91
- burger please mod apk pro<br />
92
- burger please mod apk vip<br />
93
- burger please mod apk unlocked<br />
94
- burger please mod apk full<br />
95
- burger please mod apk mega<br />
96
- burger please mod apk 2023<br />
97
- burger please hack apk download<br />
98
- burger please hack apk unlimited money<br />
99
- burger please cheat apk unlimited money<br />
100
- burger please cheat apk download<br />
101
- burger please cheat apk free<br />
102
- burger please unlimited money apk download<br />
103
- burger please unlimited money apk free<br />
104
- burger please unlimited money apk latest<br />
105
- burger please unlimited money apk offline<br />
106
- burger please unlimited money apk online<br />
107
- download game burger please mod apk<br />
108
- download game burger please mod apk unlimited money<br />
109
- download game burger please hack apk<br />
110
- download game burger please cheat apk<br />
111
- download game burger please unlimited money apk<br />
112
- game burger please mod apk free download<br />
113
- game burger please mod apk latest version<br />
114
- game burger please hack apk download<br />
115
- game burger please cheat apk download<br />
116
- game burger please unlimited money apk download</p>
117
- <h2>FAQs</h2>
118
- <p>Here are some frequently asked questions about <strong>Burger Please Mod APK Unlimited Money</strong>:</p>
119
- <ol>
120
- <li><strong>Is Burger Please Mod APK Unlimited Money safe to use?</strong></li>
121
- <p>It depends on the source and the file that you download. Some mod APK files may be safe to use, while others may be fake or malicious. You should always download a mod APK file from a trusted and reliable source, such as a reputable website, forum, or blog. You should also scan the mod APK file with an antivirus or anti-malware program before installing it on your device.</p>
122
- <li><strong>Is Burger Please Mod APK Unlimited Money legal to use?</strong></li>
123
- <p>No, it is not legal to use <strong>Burger Please Mod APK Unlimited Money</strong>. It is a modified version of the original game that violates the terms and conditions of the game and the intellectual property rights of the original developers. Using a mod APK file may result in legal actions or penalties from the original developers or the authorities.</p>
124
- <li><strong>Can I play Burger Please Mod APK Unlimited Money online?</strong></li>
125
- <p>Yes, you can play <strong>Burger Please Mod APK Unlimited Money</strong> online with other players. However, you may face some issues or problems when playing online, such as lagging, crashing, banning, etc. You may also encounter some players who are using the same mod or other mods that may give them an unfair advantage or disadvantage.</p>
126
- <li><strong>Can I play Burger Please Mod APK Unlimited Money offline?</strong></li>
127
- <p>Yes, you can play <strong>Burger Please Mod APK Unlimited Money</strong> offline without an internet connection. However, you may not be able to access some features or functions of the game that require an internet connection, such as the leaderboard, the daily missions, the ads, etc.</p>
128
- <li><strong>Can I update Burger Please Mod APK Unlimited Money?</strong></li>
129
- <p>No, you cannot update <strong>Burger Please Mod APK Unlimited Money</strong>. Updating a mod APK file may cause some errors or issues in the game or remove the modifications. You may also lose your progress or account if you update a mod APK file. If you want to update the game, you will have to uninstall the mod APK file and install the original game from the Google Play Store or the Apple App Store.</p>
130
- </ol></p> 197e85843d<br />
131
- <br />
132
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1phancelerku/anime-remove-background/Download Ragnarok X APK - The 3D MMORPG Mobile Game that Brings Back the Classic Masterpiece.md DELETED
@@ -1,146 +0,0 @@
1
- <br />
2
- <h1>Download Ragnarok X APK: How to Play the Next Generation of the Classic MMORPG on Your Android Device</h1>
3
- <h2>Introduction</h2>
4
- <p>If you are a fan of the classic Ragnarok Online, you might be interested in trying out its latest mobile version, Ragnarok X: Next Generation. This game is an official remake of the original masterpiece, authorized by Gravity from South Korea. It features retro style, new classes, cross-server PvP, guild wars, pet taming, marriage system, and more. In this article, we will show you how to download Ragnarok X APK and play it on your Android device. We will also share some features, tips, and tricks for playing this game.</p>
5
- <h3>What is Ragnarok X: Next Generation?</h3>
6
- <p>Ragnarok X: Next Generation is a 3D MMORPG mobile game that is based on the classic Ragnarok Online. It is developed by Nuverse and published by Gravity in various regions. The game aims to recreate the original love and nostalgia of the classic game, while adding new elements and improvements. The game has been launched in Southeast Asia, Taiwan, Hong Kong, Macau, Japan, and Korea. It has received positive reviews from players and critics alike.</p>
7
- <h2>download ragnarok x apk</h2><br /><p><b><b>Download File</b> &#10001; &#10001; &#10001; <a href="https://jinyurl.com/2uNKI1">https://jinyurl.com/2uNKI1</a></b></p><br /><br />
8
- <h3>Why should you download Ragnarok X APK?</h3>
9
- <p>If you want to play Ragnarok X: Next Generation on your Android device, you might need to download its APK file. APK stands for Android Package Kit, which is a file format that contains all the necessary components for installing an app on an Android device. There are several reasons why you might want to download Ragnarok X APK:</p>
10
- <ul>
11
- <li>The game is not available in your region or country.</li>
12
- <li>The game is not compatible with your device or operating system.</li>
13
- <li>You want to access the latest version or features of the game before they are officially released.</li>
14
- <li>You want to avoid any potential errors or bugs that might occur during the installation process from the Google Play Store.</li>
15
- </ul>
16
- <h3>How to download Ragnarok X APK safely and easily?</h3>
17
- <p>Downloading Ragnarok X APK is not difficult, but you need to be careful about the source and the file. There are many websites that offer APK files for various apps and games, but not all of them are trustworthy or reliable. Some of them might contain malware, viruses, or other harmful content that could damage your device or compromise your privacy. Therefore, you need to follow these steps to download Ragnarok X APK safely and easily:</p>
18
- <ol>
19
- <li>Find a reputable website that offers Ragnarok X APK. You can use a search engine or a review site to find one. Some examples of trustworthy websites are , , and .</li>
20
- <li>Check the details and information about the APK file. Make sure it matches the version, size, developer, and description of the game. You can also read the comments and ratings from other users to see if they have any issues or complaints.</li>
21
- <li>Download the APK file to your device. You might need to enable the option to install apps from unknown sources in your device settings. This will allow you to install apps that are not from the Google Play Store.</li>
22
- <li>Install the APK file by tapping on it and following the instructions on the screen. You might need to grant some permissions to the app to run properly.</li>
23
- </ol>
24
- <p>Congratulations, you have successfully downloaded and installed Ragnarok X APK on your Android device. You can now launch the game and enjoy its features.</p>
25
- <h2>Features of Ragnarok X: Next Generation</h2>
26
- <p>Ragnarok X: Next Generation is not just a simple remake of the classic Ragnarok Online. It also offers many new and exciting features that will enhance your gaming experience. Here are some of the features that you can expect from this game:</p>
27
- <h3>Super Novice: The ultimate all-rounder class</h3>
28
- <p>One of the most unique features of Ragnarok X: Next Generation is the Super Novice class. This is a special class that can learn skills from all other classes, making it the most versatile and flexible class in the game. You can customize your Super Novice according to your preferences and play style. You can also equip any weapon or armor that you want, as long as you meet the requirements. However, the Super Novice also has some drawbacks, such as low HP and SP, and limited skill slots. Therefore, you need to be careful and strategic when playing as a Super Novice.</p>
29
- <h3>World of Champions: The cross-server PvP competition</h3>
30
- <p>If you are looking for some thrilling and competitive action, you should try out the World of Champions mode. This is a cross-server PvP mode that pits players from different servers against each other in a 5v5 battle. You can join this mode by registering in the World of Champions NPC in Prontera. You will be matched with other players based on your rank and level. The winning team will receive rewards such as honor points, zeny, and rare items. You can also use your honor points to exchange for exclusive costumes and accessories.</p>
31
- <h3>Guild vs Guild: The ultimate test of teamwork and strategy</h3>
32
- <p>Another feature that will test your skills and teamwork is the Guild vs Guild mode. This is a large-scale war mode that involves up to 50 guilds fighting for the control of castles. You can join this mode by being a member of a guild that has registered for the war. You will need to cooperate with your guildmates to attack or defend the castles, using various strategies and tactics. The guilds that successfully occupy the castles will receive rewards such as guild funds, zeny, and rare items. They will also have access to exclusive dungeons and quests.</p>
33
- <p>How to download ragnarok x apk on android<br />
34
- Ragnarok x apk latest version 2023<br />
35
- Ragnarok x next generation apk free download<br />
36
- Ragnarok x apk download for pc<br />
37
- Ragnarok x apk mod unlimited money<br />
38
- Download ragnarok x apk from google play<br />
39
- Ragnarok x apk offline installer<br />
40
- Ragnarok x apk size and requirements<br />
41
- Ragnarok x apk update and patch notes<br />
42
- Ragnarok x apk mirror and alternative links<br />
43
- Download ragnarok x apk english version<br />
44
- Ragnarok x apk obb data download<br />
45
- Ragnarok x apk hack and cheat tool<br />
46
- Download ragnarok x apk for ios<br />
47
- Ragnarok x apk gameplay and review<br />
48
- Ragnarok x apk error and fix guide<br />
49
- Download ragnarok x apk from official website<br />
50
- Ragnarok x apk features and benefits<br />
51
- Ragnarok x apk tips and tricks<br />
52
- Download ragnarok x apk for emulator<br />
53
- Ragnarok x apk best class and build<br />
54
- Ragnarok x apk redeem code and rewards<br />
55
- Download ragnarok x apk for tablet<br />
56
- Ragnarok x apk system compatibility test<br />
57
- Ragnarok x apk graphics and sound quality<br />
58
- Download ragnarok x apk old versions<br />
59
- Ragnarok x apk new events and promotions<br />
60
- Ragnarok x apk customer service and support<br />
61
- Download ragnarok x apk for mac<br />
62
- Ragnarok x apk ratings and reviews<br />
63
- Download ragnarok x apk from apkpure<br />
64
- Ragnarok x apk comparison with other games<br />
65
- Ragnarok x apk guide and walkthrough<br />
66
- Download ragnarok x apk from uptodown<br />
67
- Ragnarok x apk community and forum<br />
68
- Download ragnarok x apk from apkmirror<br />
69
- Ragnarok x apk collaboration with slime 2.0<br />
70
- Ragnarok x apk pet system and taming guide<br />
71
- Download ragnarok x apk from apkpure.com/ragnarox/com.play.rosea/download/apk(^3^)<br />
72
- Ragnarok x next generation 2nd anniversary celebration event(^2^)</p>
73
- <h3>Pet Taming: The adorable companions for your adventure</h3>
74
- <p>If you are looking for some cute and loyal companions for your adventure, you should try out the pet taming feature. This feature allows you to capture and tame various monsters in the game, such as Poring, Lunatic, Yoyo, Baphomet Jr., and more. You will need to use specific items to lure and tame them, such as apples, bananas, honey, etc. Once you have tamed them, they will follow you around and assist you in combat. They will also have their own skills and attributes that you can upgrade by feeding them and giving them affection.</p>
75
- <h3>Marriage System: The romantic journey with your loved one</h3>
76
- <p>If you are looking for some romance in your life, you should try out the marriage system feature. This feature allows you to propose to another player that you have a good relationship with, and get married in a beautiful ceremony. You will need to buy a ring, a wedding dress or suit, and a wedding invitation card to prepare for the wedding. You will also need to invite your friends and guildmates to witness your special day. Once you are married, you will receive benefits such as bonus stats, exclusive skills, and special quests.</p>
77
- <h2>Tips and Tricks for Playing Ragnarok X: Next Generation</h2>
78
- <p>Ragnarok X: Next Generation is a fun and immersive game that will keep you entertained for hours. However, it can also be challenging and complex at times, especially for beginners. Therefore, we have prepared some tips and tricks for playing this game that will help you improve your performance and enjoyment.</p>
79
- <h3>How to level up fast and efficiently?</h3>
80
- <p>One of the most important aspects of playing Ragnarok X: Next Generation is leveling up your character. Leveling up will increase your stats, unlock new skills, and allow you to access more content in the game. Here are some ways to level up fast and efficiently:</p>
81
- <ul>
82
- <li>Complete quests: Quests are one of the main sources of experience points in the game. You can find quests from NPCs in various towns and maps. Quests will also reward you with zeny, items, and other benefits.</li>
83
- <li>Join parties: Parties are groups of players that cooperate with each other in combat. Join ing parties will allow you to share experience points and loot with other players. You can also benefit from their skills and buffs. You can join parties by using the party finder feature or by inviting other players manually.</li>
84
- <li>Use items: Items are consumables that can boost your experience points gain and other aspects of your character. You can use items such as EXP potions, field manuals, battle manuals, etc. to increase your experience points gain. You can also use items such as food, scrolls, cards, etc. to enhance your stats and skills.</li>
85
- <li>Explore maps: Maps are the areas where you can find monsters, NPCs, quests, and other features in the game. Exploring maps will allow you to discover new places, encounter new monsters, and complete new quests. You can also gain experience points by killing monsters and collecting items.</li>
86
- </ul>
87
- <h3>How to earn zeny and upgrade your equipment?</h3>
88
- <p>Zeny is the main currency in Ragnarok X: Next Generation. You will need zeny to buy items, upgrade equipment, enhance skills, and perform other actions in the game. Equipment is the gear that you can equip on your character to improve your stats and abilities. Upgrading equipment will increase its quality and effectiveness. Here are some ways to earn zeny and upgrade your equipment:</p>
89
- <ul>
90
- <li>Sell items: Items are the things that you can collect, craft, or buy in the game. You can sell items that you don't need or want to other players or NPCs for zeny. You can use the auction house feature or the personal shop feature to sell items to other players. You can also use the NPC shops or the vending machine feature to sell items to NPCs.</li>
91
- <li>Craft items: Crafting is the process of creating new items from raw materials or existing items. You can craft items such as weapons, armor, accessories, potions, etc. by using the crafting feature or the blacksmith feature. You can use the crafted items for yourself or sell them for zeny.</li>
92
- <li>Upgrade items: Upgrading is the process of improving the quality and level of your equipment. You can upgrade your equipment by using the upgrade feature or the refine feature. You will need materials such as ores, crystals, eluniums, etc. to upgrade your equipment. Upgrading your equipment will increase its stats and effects.</li>
93
- <li>Enhance items: Enhancing is the process of adding extra effects or attributes to your equipment. You can enhance your equipment by using the enhance feature or the enchant feature. You will need materials such as cards, runes, gems, etc. to enhance your equipment. Enhancing your equipment will add special bonuses and abilities to it.</li>
94
- </ul>
95
- <h3>How to join a guild and participate in guild activities?</h3>
96
- <p>A guild is a group of players that share a common goal and interest in the game. Joining a guild will allow you to interact with other players, cooperate with them in combat, and enjoy various benefits and features in the game. Guild activities are events or modes that are exclusive for guild members. Participating in guild activities will allow you to earn rewards, improve your reputation, and have fun with your guildmates. Here are some ways to join a guild and participate in guild activities:</p>
97
- <ul>
98
- <li>Find a guild: Finding a guild is the first step to joining a guild. You can find a guild by using the guild finder feature or by browsing the guild list feature. You can also find a guild by asking other players or by checking online forums or communities.</li>
99
- <li>Apply for a guild: Applying for a guild is the second step to joining a guild. You can apply for a guild by sending a request to the guild leader or by accepting an invitation from a guild member. You will need to wait for the approval of the guild leader or the guild officer before you can join the guild.</li>
100
- <li>Contribute to a guild: Contributing to a guild is the third step to joining a guild. You can contribute to a guild by donating zeny, materials, or items to the guild fund or by completing guild quests or missions. Contributing to a guild will increase your contribution points and your reputation within the guild.</li>
101
- <li>Participate in guild activities: Participating in guild activities is the fourth step to joining a guild. You can participate in guild activities by joining the guild war, the guild dungeon, the guild raid, or the guild party. Participating in guild activities will earn you rewards such as zeny, items, honor points, or rare items. You will also have fun and bond with your guildmates.</li>
102
- </ul>
103
- <h3>How to customize your character and skills?</h3>
104
- <p>Customizing your character and skills is one of the most enjoyable aspects of playing Ragnarok X: Next Generation. Customizing your character and skills will allow you to express your personality, style, and preferences in the game. You can also optimize your performance and effectiveness in combat by choosing the best combination of skills and equipment for your character. Here are some ways to customize your character and skills:</p>
105
- <ul>
106
- <li>Choose a class: Choosing a class is the first step to customizing your character and skills. You can choose from six classes in the game: Swordsman, Thief, Archer, Mage, Acolyte, and Merchant. Each class has its own strengths, weaknesses, and roles in the game. You can also change your class later in the game by using the job change feature.</li>
107
- <li>Choose a hairstyle: Choosing a hairstyle is the second step to customizing your character and skills. You can choose from various hairstyles in the game, ranging from cute to cool to elegant. You can also change your hairstyle later in the game by using the barber shop feature or by buying hair coupons.</li>
108
- <li>Choose a costume: Choosing a costume is the third step to customizing your character and skills. You can choose from various costumes in the game, such as uniforms, suits, dresses, casual wear, etc. You can also change your costume later in the game by using the wardrobe feature or by buying costume coupons.</li>
109
- <li>Choose a skill build: Choosing a skill build is the fourth step to customizing your character and skills. You can choose from various skills in the game, depending on your class and level. You can also change your skill build later in the game by using the skill reset feature or by buying skill reset coupons.</li>
110
- </ul>
111
- <h3>How to enjoy the social aspects of the game?</h3>
112
- <p>Ragnarok X: Next Generation is not only a game, but also a social platform. You can interact with other players, make friends, chat, trade, and have fun with them in the game. You can also join various events and activities that are designed to enhance your social experience in the game. Here are some ways to enjoy the social aspects of the game:</p>
113
- <ul>
114
- <li>Use chat: Chat is one of the main ways to communicate with other players in the game. You can use chat to send messages, emojis, stickers, or voice messages to other players. You can also use chat to join different channels, such as world chat, guild chat, party chat, etc.</li>
115
- <li>Use friend: Friend is one of the main ways to connect with other players in the game. You can use friend to add other players as your friends, send them gifts, invite them to parties or guilds, or view their profiles.</li>
116
- <li>Use emoticon: Emoticon is one of the main ways to express yourself in the game. You can use emoticon to perform various actions or gestures with your character, such as waving, laughing, crying, dancing, etc. You can also use emoticon to interact with other players or NPCs.</li>
117
- <li>Use event: Event is one of the main ways to participate in various activities in the game. You can use event to join different events that are held regularly or occasionally in the game, such as festivals, concerts, quizzes, etc. You can also use event to earn rewards such as zeny, items, costumes, etc.</li>
118
- </ul>
119
- <h2>Conclusion</h2>
120
- <p>Ragnarok X: Next Generation is a great game for fans of Ragnarok Online and MMORPGs in general. It offers a nostalgic and immersive experience that will keep you hooked for hours. It also offers many new and exciting features that will enhance your gaming experience. If you want to play this game on your Android device, you should download Ragnarok X APK from a reputable website and install it on your device. You should also follow our tips and tricks for playing this game that will help you improve your performance and enjoyment.</p>
121
- <h2>FAQs</h2>
122
- <p>Here are some frequently asked questions about Ragnarok X: Next Generation:</p>
123
- <ol>
124
- <li><b>Is Ragnarok X: Next Generation free to play?</b><br>
125
- Yes, Ragnarok X: Next Generation is free to play. However, it also has some optional in-app purchases that can enhance your gameplay or appearance. You can buy items such as zeny, diamonds, costumes, etc. with real money. However, these purchases are not necessary to enjoy the game.</li>
126
- <li><b>Is Ragnarok X: Next Generation compatible with my device?</b><br>
127
- Ragnarok X: Next Generation is compatible with most Android devices that have at least 2 GB of RAM and Android 5.0 or higher. However, some devices might have issues with the game due to various factors such as hardware, software, or network. If you encounter any problems with the game, you can contact the customer service or check the official website for solutions.</li>
128
- <li><b>Is Ragnarok X: Next Generation safe to download and play?</b><br>
129
- Yes, Ragnarok X: Next Generation is safe to download and play. The game is authorized by Gravity from South Korea and developed by Nuverse, a reputable game company. The game also has various security measures and policies to protect your privacy and data. However, you should be careful about the source and the file of the APK that you download, as some websites might offer fake or harmful APK files. You should also avoid using any third-party tools or hacks that might compromise your account or device.</li>
130
- <li><b>How can I contact the customer service or the community of Ragnarok X: Next Generation?</b><br>
131
- You can contact the customer service or the community of Ragnarok X: Next Generation by using the following methods:</p>
132
- <ul>
133
- <li>Customer service: You can use the customer service feature in the game to submit a ticket or chat with an agent. You can also email them at [email protected].</li>
134
- <li>Community: You can use the community feature in the game to join various groups or forums. You can also follow their official social media accounts such as Facebook, Instagram, Twitter, YouTube, etc.</li>
135
- </ul></li>
136
- <li><b>How can I support Ragnarok X: Next Generation?</b><br>
137
- You can support Ragnarok X: Next Generation by doing the following things:</p>
138
- <ul>
139
- <li>Play the game regularly and invite your friends to join you.</li>
140
- <li>Rate and review the game on the Google Play Store or other platforms.</li>
141
- <li>Share your feedback and suggestions with the developers and the customer service.</li>
142
- <li>Purchase items or services in the game to support its development and maintenance.</li>
143
- </ul></li>
144
- </ol></p> 401be4b1e0<br />
145
- <br />
146
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1phancelerku/anime-remove-background/FM WhatsApp APK Download for Android - Latest Version 2023 with New Features.md DELETED
@@ -1,95 +0,0 @@
1
-
2
- <h1>FM WhatsApp 2023 APK Download: Everything You Need to Know</h1>
3
- <p>Are you looking for a way to enhance your WhatsApp experience with more features and customization options? If yes, then you might want to try FM WhatsApp, one of the most popular and advanced WhatsApp mods available. In this article, we will tell you everything you need to know about FM WhatsApp 2023 APK download, including what it is, what it offers, how to download and install it, how to update it, and some frequently asked questions. Let's get started!</p>
4
- <h2>What is FM WhatsApp?</h2>
5
- <p>FM WhatsApp is a modified version of the official WhatsApp app that adds more functionality and personalization to the original app. It is developed by Fouad Mokdad, a well-known modder who also created other popular WhatsApp mods like Fouad WhatsApp and YoWhatsApp. FM WhatsApp allows you to enjoy features that are not available in the official app, such as themes, fonts, emojis, privacy settings, anti-delete messages, status downloader, and much more.</p>
6
- <h2>fm whatsapp 2023 apk download</h2><br /><p><b><b>Download Zip</b> &ndash;&ndash;&ndash; <a href="https://jinyurl.com/2uNKsH">https://jinyurl.com/2uNKsH</a></b></p><br /><br />
7
- <h3>Features of FM WhatsApp</h3>
8
- <p>Here are some of the main features that you can get with FM WhatsApp:</p>
9
- <ul>
10
- <li>Anti-ban: You can use FM WhatsApp without worrying about getting banned by the official app.</li>
11
- <li>Customization: You can change the look and feel of your WhatsApp app with hundreds of themes, fonts, and emojis.</li>
12
- <li>Privacy: You can hide your online status, last seen, blue ticks, typing status, and more.</li>
13
- <li>Anti-delete messages: You can view messages and status updates that have been deleted by the sender.</li>
14
- <li>Media sharing: You can send up to 90 images at once and video files up to 700 MB.</li>
15
- <li>Image quality: You can increase the quality of images that you send or receive.</li>
16
- <li>And many more.</li>
17
- </ul>
18
- <h3>Benefits of FM WhatsApp</h3>
19
- <p>Here are some of the benefits that you can enjoy with FM WhatsApp:</p>
20
- <ul>
21
- <li>You can have more control over your WhatsApp app and customize it according to your preferences.</li>
22
- <li>You can access features that are not available in the official app and enhance your user experience.</li>
23
- <li>You can protect your privacy and security with more options and settings.</li>
24
- <li>You can communicate with your contacts more easily and conveniently with more media sharing options.</li>
25
- </ul>
26
- <h2>How to Download and Install FM WhatsApp 2023 APK on Android?</h2>
27
- <p>If you want to download and install FM WhatsApp 2023 APK on your Android device, you need to follow these steps:</p>
28
- <h3>Download FM WhatsApp APK File</h3>
29
- <p>First, you need to download the latest version of FM WhatsApp APK file from a reliable source. You can use this link to download the file. The file name is <code>FMWA9.25_By_FouadMODS.apk</code>, the file size is 50.2 MB, and the latest update is March 2022. Make sure that your device has enough storage space and a stable internet connection before downloading the file.</p>
30
- <h3>Enable Unknown Sources</h3>
31
- <p>Next, you need to enable unknown sources on your device to allow the installation of apps from sources other than the Google Play Store. To do this, go to <code>Settings > Security > Unknown Sources</code> and toggle it on. You may see a warning message, but you can ignore it and proceed.</p>
32
- <h3>Install FM WhatsApp APK File</h3>
33
- <p>Then, you need to locate the downloaded APK file on your device and tap on it to start the installation process. You may see a pop-up asking for permissions, but you can grant them and follow the instructions on the screen. The installation may take a few minutes, so please be patient.</p>
34
- <h3>Verify Your Phone Number</h3>
35
- <p>Finally, you need to verify your phone number to activate FM WhatsApp on your device. To do this, open the app and enter your phone number. You will receive a verification code via SMS or a phone call. Enter the code and confirm your account. You can also restore your chat backup from the official app if you have one. That's it! You have successfully installed FM WhatsApp 2023 APK on your Android device.</p>
36
- <h2>How to Update FM WhatsApp to the Latest Version?</h2>
37
- <p>If you want to update FM WhatsApp to the latest version, you need to follow these steps:</p>
38
- <p>fm whatsapp 2023 apk download latest version<br />
39
- fm whatsapp 2023 apk download for android<br />
40
- fm whatsapp 2023 apk download by fouad mods<br />
41
- fm whatsapp 2023 apk download free<br />
42
- fm whatsapp 2023 apk download update<br />
43
- fm whatsapp 2023 apk download new features<br />
44
- fm whatsapp 2023 apk download anti ban<br />
45
- fm whatsapp 2023 apk download link<br />
46
- fm whatsapp 2023 apk download official website<br />
47
- fm whatsapp 2023 apk download install<br />
48
- fm whatsapp 2023 apk download how to use<br />
49
- fm whatsapp 2023 apk download benefits<br />
50
- fm whatsapp 2023 apk download review<br />
51
- fm whatsapp 2023 apk download comparison<br />
52
- fm whatsapp 2023 apk download alternatives<br />
53
- fm whatsapp 2023 apk download tips and tricks<br />
54
- fm whatsapp 2023 apk download guide<br />
55
- fm whatsapp 2023 apk download tutorial<br />
56
- fm whatsapp 2023 apk download faq<br />
57
- fm whatsapp 2023 apk download support<br />
58
- fm whatsapp 2023 apk download problems and solutions<br />
59
- fm whatsapp 2023 apk download modded version<br />
60
- fm whatsapp 2023 apk download customization options<br />
61
- fm whatsapp 2023 apk download themes and fonts<br />
62
- fm whatsapp 2023 apk download emoji and stickers<br />
63
- fm whatsapp 2023 apk download privacy and security settings<br />
64
- fm whatsapp 2023 apk download hide online status and last seen<br />
65
- fm whatsapp 2023 apk download view deleted messages and statuses<br />
66
- fm whatsapp 2023 apk download send large files and images<br />
67
- fm whatsapp 2023 apk download increase quality of media sharing<br />
68
- fm whatsapp 2023 apk download backup and restore chats<br />
69
- fm whatsapp 2023 apk download transfer data to new phone<br />
70
- fm whatsapp 2023 apk download sync with other devices<br />
71
- fm whatsapp 2023 apk download group chat and video call features<br />
72
- fm whatsapp 2023 apk download broadcast messages and status updates<br />
73
- fm whatsapp 2023 apk download pin chats and mark as unread<br />
74
- fm whatsapp 2023 apk download mute notifications and block contacts<br />
75
- fm whatsapp 2023 apk download dark mode and night mode options<br />
76
- fm whatsapp 2023 apk download auto reply and schedule messages features<br />
77
- fm whatsapp 2023 apk download lock app and chats with password or fingerprint</p>
78
- <h3>Check for Updates</h3>
79
- <p>First, you need to check if there is a new version of FM WhatsApp available. To do this, open the app and go to <code>Menu > Fouad Mods > Updates</code>. You will see a message telling you if there is an update or not. If there is an update, you can tap on <code>Download</code> to get the latest APK file.</p>
80
- <h3>Download and Install the Latest Version</h3>
81
- <p>Next, you need to download and install the latest version of FM WhatsApp APK file on your device. To do this, follow the same steps as above for downloading and installing FM WhatsApp 2023 APK. You don't need to uninstall the previous version or enable unknown sources again. Just overwrite the existing app with the new one and verify your phone number again. You have successfully updated FM WhatsApp to the latest version.</p>
82
- <h2>FAQs about FM WhatsApp</h2>
83
- <p>Here are some of the frequently asked questions about FM WhatsApp:</p>
84
- <table>
85
- <tr><th>Question</th><th>Answer</th></tr>
86
- <tr><td>Is FM WhatsApp safe to use?</td><td>FM WhatsApp is safe to use as long as you download it from a trusted source and scan it for viruses before installing it. However, it is not an official app and it may violate some of the terms and conditions of WhatsApp. Therefore, use it at your own risk and discretion.</td></tr>
87
- <tr><td>Can I use FM WhatsApp with the official app?</td><td>Yes, you can use FM WhatsApp with the official app if you want to have two WhatsApp accounts on the same device. However, you need to use different phone numbers for each account and install them in separate folders.</td></tr>
88
- <tr><td>How can I backup my chats on FM WhatsApp?</td><td>You can backup your chats on FM WhatsApp by going to <code>Menu > Settings > Chats > Chat Backup</code>. You can choose to backup your chats locally or on Google Drive. You can also restore your chats from the backup when you reinstall or update FM WhatsApp.</td></tr>
89
- <tr><td>How can I change themes on FM WhatsApp?</td><td>You can change themes on FM WhatsApp by going to <code>Menu > Fouad Mods > Universal > Themes</code>. You can choose from hundreds of themes available or download more from the internet. You can also create your own theme by customizing various elements of the app.</td></tr>
90
- <tr><td>How can I contact the developer of FM WhatsApp?</td><td>You can contact the developer of FM WhatsApp by going to <code>Menu > Fouad Mods > About > Contact Me</code>. You can send him an email or follow him on social media platforms like Twitter, Instagram, and Telegram.</td></tr>
91
- </table>
92
- <h2>Conclusion</h2>
93
- <p>In conclusion, FM WhatsApp is a great alternative to the official WhatsApp app that offers more features and customization options. You can download and install FM WhatsApp 2023 APK on your Android device by following the steps mentioned in this article. You can also update it to the latest version whenever there is one available. However, you should be aware of the risks involved in using a modded app and use it responsibly. We hope that this article has helped you learn more about FM WhatsApp 2023 APK download and answered some of your questions.</p> 401be4b1e0<br />
94
- <br />
95
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1phancelerku/anime-remove-background/Free 3D Models of Orange Trees - Easy to Customize and Render.md DELETED
@@ -1,136 +0,0 @@
1
-
2
- <h1>How to Find and Download Free Orange Tree 3D Models</h1>
3
- <p>If you are looking for realistic and high-quality orange tree 3D models for your project, you might be wondering where to find them online. Whether you need them for animation, rendering, game development, or any other purpose, you can save time and money by downloading free 3D models from various websites. In this article, we will show you how to find and download free orange tree 3D models from some of the most popular sources on the web.</p>
4
- <h2>Introduction</h2>
5
- <h3>What are orange tree 3D models and why are they useful?</h3>
6
- <p>An orange tree 3D model is a digital representation of an orange tree that can be used in various applications that require 3D graphics. A 3D model consists of vertices, edges, faces, and textures that define the shape, color, and appearance of the object. A 3D model can also have animations, rigging, lighting, and other features that make it more realistic and interactive.</p>
7
- <h2>orange tree 3d model free download</h2><br /><p><b><b>Download File</b> &#10084; <a href="https://jinyurl.com/2uNMqi">https://jinyurl.com/2uNMqi</a></b></p><br /><br />
8
- <p>Orange tree 3D models are useful for many reasons. For example, they can help you create stunning scenes and environments for your animations or games. They can also help you visualize and design your own garden or landscape. They can even be used for educational purposes, such as teaching students about botany or ecology.</p>
9
- <h3>Where can you find free orange tree 3D models online?</h3>
10
- <p>There are many websites that offer free 3D models of various objects, including orange trees. However, not all of them are reliable or easy to use. Some of them may have low-quality models, limited formats, or unclear licenses. Therefore, you need to be careful and selective when choosing a website to download free 3D models from.</p>
11
- <p>In this article, we will focus on three websites that are well-known and trusted by many 3D artists and enthusiasts. They are TurboSquid, Sketchfab, and CGTrader. These websites have a large collection of free orange tree 3D models that you can browse, download, and use in your projects. We will explain how to use each website and what to look for when downloading a model.</p>
12
- <h2>TurboSquid: A Popular Source of Free 3D Models</h2>
13
- <h3>What is TurboSquid and how does it work?</h3>
14
- <p>TurboSquid is one of the largest and oldest online marketplaces for 3D models. It was founded in 2000 and has over one million models in its catalog. TurboSquid allows anyone to buy or sell 3D models for various purposes. It also has a section dedicated to free 3D models that anyone can download and use without paying anything.</p>
15
- <p>TurboSquid works by connecting buyers and sellers of 3D models. Buyers can search for the models they need by using keywords, filters, categories, or collections. They can also preview the models in different views, check the details and ratings, and download them in various formats. Sellers can upload their models to TurboSquid and set their own prices or offer them for free. TurboSquid also has a quality assurance program called CheckMate that certifies the models that meet certain standards of quality and compatibility.</p>
16
- <h3>How to search for free orange tree 3D models on TurboSquid?</h3>
17
- <p>Searching for free orange tree 3D models on TurboSquid is easy and fast. Here are the steps you need to follow:</p>
18
- <h4>Filter by free, orange, and tree keywords</h4>
19
- <p>The first step is to go to the <a href="">free 3D models section</a> of TurboSquid. You will see a search bar where you can enter the keywords that describe the model you are looking for. In this case, you can type "free orange tree" and hit enter. You will see a list of results that match your query.</p>
20
- <p>orange tree 3d model free download<br />
21
- free 3d orange tree models turbosquid<br />
22
- free nature orange-tree 3d models for download<br />
23
- free 3d orange models turbosquid<br />
24
- orange tree 3d model free obj<br />
25
- free low poly orange tree 3d model<br />
26
- free 3d model of orange tree with fruits<br />
27
- free realistic orange tree 3d model<br />
28
- free 3d model of orange tree in pot<br />
29
- free animated orange tree 3d model<br />
30
- free game ready orange tree 3d model<br />
31
- free vr ready orange tree 3d model<br />
32
- free 3d model of orange tree branch<br />
33
- free 3d model of orange tree leaf<br />
34
- free 3d model of orange tree flower<br />
35
- free 3d model of orange fruit<br />
36
- free 3d model of sliced orange<br />
37
- free 3d model of peeled orange<br />
38
- free 3d model of orange juice<br />
39
- free 3d model of orange peel<br />
40
- free blender orange tree 3d model<br />
41
- free maya orange tree 3d model<br />
42
- free c4d orange tree 3d model<br />
43
- free max orange tree 3d model<br />
44
- free fbx orange tree 3d model<br />
45
- free stl orange tree 3d model<br />
46
- free gltf orange tree 3d model<br />
47
- free usdz orange tree 3d model<br />
48
- free dae orange tree 3d model<br />
49
- free ztl orange tree 3d model<br />
50
- how to make a free orange tree 3d model<br />
51
- where to find a free orange tree 3d model<br />
52
- best sites for free orange tree 3d models<br />
53
- top rated free orange tree 3d models<br />
54
- most downloaded free orange tree 3d models<br />
55
- most realistic free orange tree 3d models<br />
56
- most detailed free orange tree 3d models<br />
57
- most optimized free orange tree 3d models<br />
58
- most compatible free orange tree 3d models<br />
59
- most versatile free orange tree 3d models<br />
60
- high quality free orange tree 3d models<br />
61
- high resolution free orange tree 3d models<br />
62
- high poly free orange tree 3d models<br />
63
- low poly cartoon style free orange tree 3d models <br />
64
- low poly stylized free orange tree 3d models <br />
65
- low poly pixel art style free orange tree 3d models <br />
66
- low poly voxel style free orange tree 3d models <br />
67
- low poly flat style free orange tree 3d models <br />
68
- low poly minimalist style free orange tree 3d models</p>
69
- <h4>Sort by best match, quality, or poly count</h4>
70
- <p>The next step is to sort the results by the criteria that matter to you. You can use the drop-down menu on the top right corner of the page to choose how to sort the results. You can sort them by best match, quality, or poly count. Best match will show you the models that are most relevant to your query. Quality will show you the models that have the highest ratings or CheckMate certification. Poly count will show you the models that have the lowest or highest number of polygons.</p>
71
- <h4>Check the license, format, and details of each model</h4>
72
- <p>The final step is to check the license, format, and details of each model before downloading it. You can click on the thumbnail of each model to see more information about it. You will see a page that shows you the preview images, description, specifications, reviews, and related models of the model. You will also see a section that shows you the license, format, and download options of the model.</p>
73
- <p>The license tells you how you can use the model in your project. Some models are royalty-free, which means you can use them for any purpose without paying anything. Some models are editorial-only, which means you can only use them for non-commercial purposes such as news or education. Some models have custom licenses, which means you have to read and follow the terms and conditions of the seller.</p>
74
- <p>The format tells you what file types are available for the model. Some models have multiple formats, such as OBJ, FBX, 3DS, or STL. Some models have only one format, such as MAX or BLEND. You should choose the format that is compatible with your software or application.</p>
75
- <p>The download options tell you how you can get the model on your device. Some models have direct download links, which means you can download them instantly by clicking on them. Some models have email delivery links, which means you have to enter your email address and wait for the link to be sent to you.</p>
76
- <h4>Download the model and use it in your project</h4>
77
- <p>Once you have checked everything and found the model that suits your needs, you can download it and use it in your project. You should always respect the license and credit the seller if required. You should also check the quality and compatibility of the model before using it in your project. You may need to adjust some settings or parameters to make it look better or fit better in your scene.</p>
78
- <h2>Other Websites to Download Free Orange Tree 3D Models</h2>
79
- <h3>Sketchfab: A Platform for 3D and VR Content</h3>
80
- <h4>How to find and download free orange tree 3D models on Sketchfab?</h4>
81
- <p>Sketchfab is another popular platform for 3D and VR content. It was founded in 2012 and has over four million models in its library. Sketchfab allows anyone to upload, view, share, and download 3D models for various purposes. It also has a section dedicated to free 3D models that anyone can download and use without paying anything.</p>
82
- <p>Finding and downloading free orange tree 3D models on Sketchfab is similar to TurboSquid. Here are the steps you need to follow:</p>
83
- - Go to the <a href="">free 3D models section</a> of Sketchfab. - Type "orange tree" in the search bar and hit enter. - Use the filters on the left side of the page to narrow down your results by category, license, format, poly count, or tags. - Click on the thumbnail of each model to see more information about it. - Check the license, format, details, and preview of each model before downloading it. - Click on the download button on the bottom right corner of each model page. - Choose the format that is compatible with your software or application. - Download the model and use it in your project. <h3>CGTrader: A Marketplace for 3D Assets</h3>
84
- <h4>How to find and download free orange tree 3D models on CGTrader?</h4>
85
- <p>CGTrader is another marketplace for 3D assets. It was founded in 2011 and has over one million models in its catalog. CGTrader allows anyone to buy or sell 3D models for various purposes. It also has a section dedicated to free 3D models that anyone can download and use without paying anything.</p>
86
- <p>Finding and downloading free orange tree 3D models on CGTrader is similar to TurboSquid and Sketchfab. Here are the steps you need to follow:</p>
87
- - Go to the <a href="">free 3D models section</a> of CGTrader. - Type "orange tree" in the search bar and hit enter. - Use the filters on the left side of the page to narrow down your results by category, license, format, poly count, or tags. - Click on the thumbnail of each model to see more information about it. - Check the license, format, details, and preview of each model before downloading it. - Click on the download button on the bottom right corner of each model page. - Choose the format that is compatible with your software or application. - Download the model and use it in your project. <h2>Conclusion</h2>
88
- <h3>Summary of the main points</h3>
89
- <p>In this article, we have shown you how to find and download free orange tree 3D models from some of the most popular websites on the web. We have explained what orange tree 3D models are and why they are useful. We have also given you a step-by-step guide on how to use TurboSquid, Sketchfab, and CGTrader to search for, filter, check, and download free orange tree 3D models for your project.</p>
90
- <h3>Call to action and final remarks</h3>
91
- <p>We hope you have found this article helpful and informative. If you are looking for realistic and high-quality orange tree 3D models for your project, you can save time and money by downloading them for free from these websites. You can also explore other types of 3D models that are available for free or for a reasonable price.</p>
92
- <p>If you have any questions or feedback, please feel free to leave a comment below. We would love to hear from you and help you with your 3D modeling needs. Thank you for reading and happy downloading!</p>
93
- <h2>FAQs</h2>
94
- <h4>What are the benefits of using free orange tree 3D models?</h4>
95
- <p>Some of the benefits of using free orange tree 3D models are:</p>
96
- <ul>
97
- <li>You can save time and money by not having to create or buy your own models.</li>
98
- <li>You can enhance the realism and quality of your project by using models that are made by professional 3D artists.</li>
99
- <li>You can learn from the models by studying their structure, texture, lighting, and animation.</li>
100
- <li>You can support the 3D community by giving credit and feedback to the creators of the models.</li>
101
- </ul>
102
- <h4>What are the drawbacks of using free orange tree 3D models?</h4>
103
- <p>Some of the drawbacks of using free orange tree 3D models are:</p>
104
- <ul>
105
- <li>You may not find the exact model that matches your vision or requirements.</li>
106
- <li>You may have to deal with compatibility issues or errors when importing or exporting the models.</li>
107
- <li>You may have to follow certain restrictions or limitations when using the models in your project.</li>
108
- <li>You may have to compete with other users who are using the same models in their projects.</li>
109
- </ul>
110
- <h4>How can I improve the quality and performance of free orange tree 3D models?</h4>
111
- <p>Some of the ways you can improve the quality and performance of free orange tree 3D models are:</p>
112
- <ul>
113
- <li>You can optimize the poly count, texture size, and level of detail of the models to reduce the load on your system.</li>
114
- <li>You can adjust the lighting, shading, and rendering settings of your software or application to enhance the appearance of the models.</li>
115
- <li>You can modify or customize the models to suit your needs or preferences.</li>
116
- <li>You can combine or blend different models to create unique and diverse variations.</li>
117
- </ul>
118
- <h4>How can I avoid plagiarism or infringement when using free orange tree 3D models?</h4>
119
- <p>Some of the ways you can avoid plagiarism or infringement when using free orange tree 3D models are:</p>
120
- <ul>
121
- <li>You can always check the license and terms of use of each model before downloading and using it in your project.</li>
122
- <li>You can always give proper credit and attribution to the original creator or source of the model.</li>
123
- <li>You can always use the model for the intended purpose and not for any illegal or unethical activities.</li>
124
- <li>You can always respect the rights and reputation of the creator and other users of the model.</li>
125
- </ul>
126
- <h4>What are some tips and tricks for finding and downloading free orange tree 3D models?</h4>
127
- <p>Some of the tips and tricks for finding and downloading free orange tree 3D models are:</p>
128
- <ul>
129
- <li>You can use specific keywords, phrases, or tags to narrow down your search results.</li>
130
- <li>You can use advanced filters, such as category, license, format, poly count, or tags, to refine your search results.</li>
131
- <li>You can use collections, favorites, or bookmarks to save and organize the models that you like or want to use later.</li>
132
- <li>You can use ratings, reviews, or comments to evaluate the quality and popularity of the models.</li>
133
- <li>You can use previews, screenshots, or videos to see how the models look and behave in different situations.</li>
134
- </ul></p> 401be4b1e0<br />
135
- <br />
136
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1toTree/lora_test/ppdiffusers/pipelines/paint_by_example/pipeline_paint_by_example.py DELETED
@@ -1,536 +0,0 @@
1
- # Copyright 2022 The HuggingFace Team. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import inspect
16
- from typing import Callable, List, Optional, Union
17
-
18
- import numpy as np
19
- import paddle
20
- import PIL
21
-
22
- from paddlenlp.transformers import CLIPFeatureExtractor
23
-
24
- from ...models import AutoencoderKL, UNet2DConditionModel
25
- from ...pipeline_utils import DiffusionPipeline
26
- from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
27
- from ...utils import logging
28
- from ..stable_diffusion import StableDiffusionPipelineOutput
29
- from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
30
- from .image_encoder import PaintByExampleImageEncoder
31
-
32
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
33
-
34
-
35
- def prepare_mask_and_masked_image(image, mask):
36
- """
37
- Prepares a pair (image, mask) to be consumed by the Paint by Example pipeline. This means that those inputs will be
38
- converted to ``paddle.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
39
- ``image`` and ``1`` for the ``mask``.
40
-
41
- The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
42
- binarized (``mask > 0.5``) and cast to ``torch.float32`` too.
43
-
44
- Args:
45
- image (Union[np.array, PIL.Image, paddle.Tensor]): The image to inpaint.
46
- It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
47
- ``paddle.Tensor`` or a ``batch x channels x height x width`` ``paddle.Tensor``.
48
- mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
49
- It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
50
- ``paddle.Tensor`` or a ``batch x 1 x height x width`` ``paddle.Tensor``.
51
-
52
-
53
- Raises:
54
- ValueError: ``paddle.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``paddle.Tensor`` mask
55
- should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
56
- TypeError: ``mask`` is a ``paddle.Tensor`` but ``image`` is not
57
- (ot the other way around).
58
-
59
- Returns:
60
- tuple[paddle.Tensor]: The pair (mask, masked_image) as ``paddle.Tensor`` with 4
61
- dimensions: ``batch x channels x height x width``.
62
- """
63
- if isinstance(image, paddle.Tensor):
64
- if not isinstance(mask, paddle.Tensor):
65
- raise TypeError(f"`image` is a paddle.Tensor but `mask` (type: {type(mask)} is not")
66
-
67
- # Batch single image
68
- if image.ndim == 3:
69
- assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)"
70
- image = image.unsqueeze(0)
71
-
72
- # Batch and add channel dim for single mask
73
- if mask.ndim == 2:
74
- mask = mask.unsqueeze(0).unsqueeze(0)
75
-
76
- # Batch single mask or add channel dim
77
- if mask.ndim == 3:
78
- # Batched mask
79
- if mask.shape[0] == image.shape[0]:
80
- mask = mask.unsqueeze(1)
81
- else:
82
- mask = mask.unsqueeze(0)
83
-
84
- assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
85
- assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
86
- assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"
87
- assert mask.shape[1] == 1, "Mask image must have a single channel"
88
-
89
- # Check image is in [-1, 1]
90
- if image.min() < -1 or image.max() > 1:
91
- raise ValueError("Image should be in [-1, 1] range")
92
-
93
- # Check mask is in [0, 1]
94
- if mask.min() < 0 or mask.max() > 1:
95
- raise ValueError("Mask should be in [0, 1] range")
96
-
97
- # paint-by-example inverses the mask
98
- mask = 1 - mask
99
-
100
- # Binarize mask
101
- mask[mask < 0.5] = 0
102
- mask[mask >= 0.5] = 1
103
-
104
- # Image as float32
105
- image = image.cast(paddle.float32)
106
- elif isinstance(mask, paddle.Tensor):
107
- raise TypeError(f"`mask` is a paddle.Tensor but `image` (type: {type(image)} is not")
108
- else:
109
- if isinstance(image, PIL.Image.Image):
110
- image = [image]
111
-
112
- image = np.concatenate([np.array(i.convert("RGB"))[None, :] for i in image], axis=0)
113
- image = image.transpose(0, 3, 1, 2)
114
- image = paddle.to_tensor(image).cast(paddle.float32) / 127.5 - 1.0
115
-
116
- # preprocess mask
117
- if isinstance(mask, PIL.Image.Image):
118
- mask = [mask]
119
-
120
- mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
121
- mask = mask.astype(np.float32) / 255.0
122
-
123
- # paint-by-example inverses the mask
124
- mask = 1 - mask
125
-
126
- mask[mask < 0.5] = 0
127
- mask[mask >= 0.5] = 1
128
- mask = paddle.to_tensor(mask)
129
-
130
- masked_image = image * mask
131
-
132
- return mask, masked_image
133
-
134
-
135
- class PaintByExamplePipeline(DiffusionPipeline):
136
- r"""
137
- Pipeline for text-guided image inpainting using Stable Diffusion. *This is an experimental feature*.
138
-
139
- This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
140
- library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
141
-
142
- Args:
143
- vae ([`AutoencoderKL`]):
144
- Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
145
- text_encoder ([`CLIPTextModel`]):
146
- Frozen text-encoder. Stable Diffusion uses the text portion of
147
- [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
148
- the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
149
- tokenizer (`CLIPTokenizer`):
150
- Tokenizer of class
151
- [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
152
- unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
153
- scheduler ([`SchedulerMixin`]):
154
- A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
155
- [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
156
- safety_checker ([`StableDiffusionSafetyChecker`]):
157
- Classification module that estimates whether generated images could be considered offensive or harmful.
158
- Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
159
- feature_extractor ([`CLIPFeatureExtractor`]):
160
- Model that extracts features from generated images to be used as inputs for the `safety_checker`.
161
- """
162
- _optional_components = ["safety_checker"]
163
-
164
- def __init__(
165
- self,
166
- vae: AutoencoderKL,
167
- image_encoder: PaintByExampleImageEncoder,
168
- unet: UNet2DConditionModel,
169
- scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
170
- safety_checker: StableDiffusionSafetyChecker,
171
- feature_extractor: CLIPFeatureExtractor,
172
- requires_safety_checker: bool = False,
173
- ):
174
- super().__init__()
175
-
176
- self.register_modules(
177
- vae=vae,
178
- image_encoder=image_encoder,
179
- unet=unet,
180
- scheduler=scheduler,
181
- safety_checker=safety_checker,
182
- feature_extractor=feature_extractor,
183
- )
184
- self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
185
- self.register_to_config(requires_safety_checker=requires_safety_checker)
186
-
187
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
188
- def run_safety_checker(self, image, dtype):
189
- if self.safety_checker is not None:
190
- safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pd")
191
- image, has_nsfw_concept = self.safety_checker(
192
- images=image, clip_input=safety_checker_input.pixel_values.cast(dtype)
193
- )
194
- else:
195
- has_nsfw_concept = None
196
- return image, has_nsfw_concept
197
-
198
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
199
- def prepare_extra_step_kwargs(self, generator, eta):
200
- # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
201
- # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
202
- # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
203
- # and should be between [0, 1]
204
-
205
- accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
206
- extra_step_kwargs = {}
207
- if accepts_eta:
208
- extra_step_kwargs["eta"] = eta
209
-
210
- # check if the scheduler accepts generator
211
- accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
212
- if accepts_generator:
213
- extra_step_kwargs["generator"] = generator
214
- return extra_step_kwargs
215
-
216
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
217
- def decode_latents(self, latents):
218
- latents = 1 / 0.18215 * latents
219
- image = self.vae.decode(latents).sample
220
- image = (image / 2 + 0.5).clip(0, 1)
221
- # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
222
- image = image.transpose([0, 2, 3, 1]).cast("float32").numpy()
223
- return image
224
-
225
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_image_variation.StableDiffusionImageVariationPipeline.check_inputs
226
- def check_inputs(self, image, height, width, callback_steps):
227
- if (
228
- not isinstance(image, paddle.Tensor)
229
- and not isinstance(image, PIL.Image.Image)
230
- and not isinstance(image, list)
231
- ):
232
- raise ValueError(
233
- "`image` has to be of type `paddle.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
234
- f" {type(image)}"
235
- )
236
-
237
- if height % 8 != 0 or width % 8 != 0:
238
- raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
239
-
240
- if (callback_steps is None) or (
241
- callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
242
- ):
243
- raise ValueError(
244
- f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
245
- f" {type(callback_steps)}."
246
- )
247
-
248
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
249
- def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
250
- shape = [batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor]
251
- if isinstance(generator, list) and len(generator) != batch_size:
252
- raise ValueError(
253
- f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
254
- f" size of {batch_size}. Make sure the batch size matches the length of the generators."
255
- )
256
-
257
- if latents is None:
258
- if isinstance(generator, list):
259
- shape = [
260
- 1,
261
- ] + shape[1:]
262
- latents = [paddle.randn(shape, generator=generator[i], dtype=dtype) for i in range(batch_size)]
263
- latents = paddle.concat(latents, axis=0)
264
- else:
265
- latents = paddle.randn(shape, generator=generator, dtype=dtype)
266
- else:
267
- if latents.shape != shape:
268
- raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
269
-
270
- # scale the initial noise by the standard deviation required by the scheduler
271
- latents = latents * self.scheduler.init_noise_sigma
272
- return latents
273
-
274
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_mask_latents
275
- def prepare_mask_latents(
276
- self, mask, masked_image, batch_size, height, width, dtype, generator, do_classifier_free_guidance
277
- ):
278
- # resize the mask to latents shape as we concatenate the mask to the latents
279
- # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
280
- # and half precision
281
- mask = paddle.nn.functional.interpolate(
282
- mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
283
- )
284
- mask = mask.cast(dtype)
285
-
286
- masked_image = masked_image.cast(dtype)
287
-
288
- # encode the mask image into latents space so we can concatenate it to the latents
289
- if isinstance(generator, list):
290
- masked_image_latents = [
291
- self.vae.encode(masked_image[i : i + 1]).latent_dist.sample(generator=generator[i])
292
- for i in range(batch_size)
293
- ]
294
- masked_image_latents = paddle.concat(masked_image_latents, axis=0)
295
- else:
296
- masked_image_latents = self.vae.encode(masked_image).latent_dist.sample(generator=generator)
297
- masked_image_latents = 0.18215 * masked_image_latents
298
-
299
- # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
300
- if mask.shape[0] < batch_size:
301
- if not batch_size % mask.shape[0] == 0:
302
- raise ValueError(
303
- "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
304
- f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
305
- " of masks that you pass is divisible by the total requested batch size."
306
- )
307
- mask = mask.tile([batch_size // mask.shape[0], 1, 1, 1])
308
- if masked_image_latents.shape[0] < batch_size:
309
- if not batch_size % masked_image_latents.shape[0] == 0:
310
- raise ValueError(
311
- "The passed images and the required batch size don't match. Images are supposed to be duplicated"
312
- f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
313
- " Make sure the number of images that you pass is divisible by the total requested batch size."
314
- )
315
- masked_image_latents = masked_image_latents.tile([batch_size // masked_image_latents.shape[0], 1, 1, 1])
316
-
317
- mask = paddle.concat([mask] * 2) if do_classifier_free_guidance else mask
318
- masked_image_latents = (
319
- paddle.concat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
320
- )
321
-
322
- # aligning device to prevent device errors when concating it with the latent model input
323
- masked_image_latents = masked_image_latents.cast(dtype)
324
- return mask, masked_image_latents
325
-
326
- def _encode_image(self, image, num_images_per_prompt, do_classifier_free_guidance):
327
- # dtype = self.image_encoder.dtype
328
-
329
- if not isinstance(image, paddle.Tensor):
330
- image = self.feature_extractor(images=image, return_tensors="pd").pixel_values
331
-
332
- # image = image.cast(dtype)
333
- image_embeddings = self.image_encoder(image)
334
-
335
- # duplicate image embeddings for each generation per prompt, using mps friendly method
336
- bs_embed, seq_len, _ = image_embeddings.shape
337
- image_embeddings = image_embeddings.tile([1, num_images_per_prompt, 1])
338
- image_embeddings = image_embeddings.reshape([bs_embed * num_images_per_prompt, seq_len, -1])
339
-
340
- if do_classifier_free_guidance:
341
- uncond_embeddings = self.image_encoder.uncond_vector
342
- uncond_embeddings = uncond_embeddings.tile([1, image_embeddings.shape[0], 1])
343
- uncond_embeddings = uncond_embeddings.reshape([bs_embed * num_images_per_prompt, 1, -1])
344
-
345
- # For classifier free guidance, we need to do two forward passes.
346
- # Here we concatenate the unconditional and text embeddings into a single batch
347
- # to avoid doing two forward passes
348
- image_embeddings = paddle.concat([uncond_embeddings, image_embeddings])
349
-
350
- return image_embeddings
351
-
352
- @paddle.no_grad()
353
- def __call__(
354
- self,
355
- example_image: Union[paddle.Tensor, PIL.Image.Image],
356
- image: Union[paddle.Tensor, PIL.Image.Image],
357
- mask_image: Union[paddle.Tensor, PIL.Image.Image],
358
- height: Optional[int] = None,
359
- width: Optional[int] = None,
360
- num_inference_steps: int = 50,
361
- guidance_scale: float = 5.0,
362
- num_images_per_prompt: Optional[int] = 1,
363
- eta: float = 0.0,
364
- generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
365
- latents: Optional[paddle.Tensor] = None,
366
- output_type: Optional[str] = "pil",
367
- return_dict: bool = True,
368
- callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
369
- callback_steps: Optional[int] = 1,
370
- ):
371
- r"""
372
- Function invoked when calling the pipeline for generation.
373
-
374
- Args:
375
- example_image (`paddle.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]`):
376
- The exemplar image to guide the image generation.
377
- image (`paddle.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]`):
378
- `Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
379
- be masked out with `mask_image` and repainted according to `prompt`.
380
- mask_image (`paddle.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]`):
381
- `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
382
- repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted
383
- to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)
384
- instead of 3, so the expected shape would be `(B, H, W, 1)`.
385
- height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
386
- The height in pixels of the generated image.
387
- width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
388
- The width in pixels of the generated image.
389
- num_inference_steps (`int`, *optional*, defaults to 50):
390
- The number of denoising steps. More denoising steps usually lead to a higher quality image at the
391
- expense of slower inference.
392
- guidance_scale (`float`, *optional*, defaults to 7.5):
393
- Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
394
- `guidance_scale` is defined as `w` of equation 2. of [Imagen
395
- Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
396
- 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
397
- usually at the expense of lower image quality.
398
- num_images_per_prompt (`int`, *optional*, defaults to 1):
399
- The number of images to generate per prompt.
400
- eta (`float`, *optional*, defaults to 0.0):
401
- Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
402
- [`schedulers.DDIMScheduler`], will be ignored for others.
403
- generator (`torch.Generator`, *optional*):
404
- One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
405
- to make generation deterministic.
406
- latents (`paddle.Tensor`, *optional*):
407
- Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
408
- generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
409
- tensor will ge generated by sampling using the supplied random `generator`.
410
- output_type (`str`, *optional*, defaults to `"pil"`):
411
- The output format of the generate image. Choose between
412
- [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
413
- return_dict (`bool`, *optional*, defaults to `True`):
414
- Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
415
- plain tuple.
416
- callback (`Callable`, *optional*):
417
- A function that will be called every `callback_steps` steps during inference. The function will be
418
- called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
419
- callback_steps (`int`, *optional*, defaults to 1):
420
- The frequency at which the `callback` function will be called. If not specified, the callback will be
421
- called at every step.
422
-
423
- Returns:
424
- [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
425
- [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
426
- When returning a tuple, the first element is a list with the generated images, and the second element is a
427
- list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
428
- (nsfw) content, according to the `safety_checker`.
429
- """
430
- # 1. Define call parameters
431
- if isinstance(image, PIL.Image.Image):
432
- batch_size = 1
433
- elif isinstance(image, list):
434
- batch_size = len(image)
435
- else:
436
- batch_size = image.shape[0]
437
- # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
438
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
439
- # corresponds to doing no classifier free guidance.
440
- do_classifier_free_guidance = guidance_scale > 1.0
441
-
442
- # 2. Preprocess mask and image
443
- mask, masked_image = prepare_mask_and_masked_image(image, mask_image)
444
- height, width = masked_image.shape[-2:]
445
-
446
- # 3. Check inputs
447
- self.check_inputs(example_image, height, width, callback_steps)
448
-
449
- # 4. Encode input image
450
- image_embeddings = self._encode_image(example_image, num_images_per_prompt, do_classifier_free_guidance)
451
-
452
- # 5. set timesteps
453
- self.scheduler.set_timesteps(num_inference_steps)
454
- timesteps = self.scheduler.timesteps
455
-
456
- # 6. Prepare latent variables
457
- num_channels_latents = self.vae.config.latent_channels
458
- latents = self.prepare_latents(
459
- batch_size * num_images_per_prompt,
460
- num_channels_latents,
461
- height,
462
- width,
463
- image_embeddings.dtype,
464
- generator,
465
- latents,
466
- )
467
-
468
- # 7. Prepare mask latent variables
469
- mask, masked_image_latents = self.prepare_mask_latents(
470
- mask,
471
- masked_image,
472
- batch_size * num_images_per_prompt,
473
- height,
474
- width,
475
- image_embeddings.dtype,
476
- generator,
477
- do_classifier_free_guidance,
478
- )
479
-
480
- # 8. Check that sizes of mask, masked image and latents match
481
- num_channels_mask = mask.shape[1]
482
- num_channels_masked_image = masked_image_latents.shape[1]
483
- if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
484
- raise ValueError(
485
- f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
486
- f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
487
- f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
488
- f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
489
- " `pipeline.unet` or your `mask_image` or `image` input."
490
- )
491
-
492
- # 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
493
- extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
494
-
495
- # 10. Denoising loop
496
- num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
497
- with self.progress_bar(total=num_inference_steps) as progress_bar:
498
- for i, t in enumerate(timesteps):
499
- # expand the latents if we are doing classifier free guidance
500
- latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents
501
-
502
- # concat latents, mask, masked_image_latents in the channel dimension
503
- latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
504
- latent_model_input = paddle.concat([latent_model_input, masked_image_latents, mask], axis=1)
505
-
506
- # predict the noise residual
507
- noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=image_embeddings).sample
508
-
509
- # perform guidance
510
- if do_classifier_free_guidance:
511
- noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
512
- noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
513
-
514
- # compute the previous noisy sample x_t -> x_t-1
515
- latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
516
-
517
- # call the callback, if provided
518
- if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
519
- progress_bar.update()
520
- if callback is not None and i % callback_steps == 0:
521
- callback(i, t, latents)
522
-
523
- # 11. Post-processing
524
- image = self.decode_latents(latents)
525
-
526
- # 12. Run safety checker
527
- image, has_nsfw_concept = self.run_safety_checker(image, image_embeddings.dtype)
528
-
529
- # 13. Convert to PIL
530
- if output_type == "pil":
531
- image = self.numpy_to_pil(image)
532
-
533
- if not return_dict:
534
- return (image, has_nsfw_concept)
535
-
536
- return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AI-Dashboards/CP.Matplotlib.NetworkX.Streamlit.PyVis.Graphviz/README.md DELETED
@@ -1,13 +0,0 @@
1
- ---
2
- title: 🕸️📈Graph NLP Matplotlib NetworkX Streamlit PyViz Graphviz🩺
3
- emoji: 📉🕸️📈
4
- colorFrom: pink
5
- colorTo: blue
6
- sdk: streamlit
7
- sdk_version: 1.2.0
8
- app_file: app.py
9
- pinned: false
10
- license: mit
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AI-Hobbyist/Hoyo-RVC/docs/training_tips_ko.md DELETED
@@ -1,53 +0,0 @@
1
- RVC 훈련에 대한 설명과 팁들
2
- ======================================
3
- 본 팁에서는 어떻게 데이터 훈련이 이루어지고 있는지 설명합니다.
4
-
5
- # 훈련의 흐름
6
- GUI의 훈련 탭의 단계를 따라 설명합니다.
7
-
8
- ## step1
9
- 실험 이름을 지정합니다. 또한, 모델이 피치(소리의 높낮이)를 고려해야 하는지 여부를 여기에서 설정할 수도 있습니다..
10
- 각 실험을 위한 데이터는 `/logs/experiment name/`에 배치됩니다..
11
-
12
- ## step2a
13
- 음성 파일을 불러오고 전처리합니다.
14
-
15
- ### 음성 파일 불러오기
16
- 음성 파일이 있는 폴더를 지정하면 해당 폴더에 있는 음성 파일이 자동으로 가져와집니다.
17
- 예를 들어 `C:Users\hoge\voices`를 지정하면 `C:Users\hoge\voices\voice.mp3`가 읽히지만 `C:Users\hoge\voices\dir\voice.mp3`는 읽히지 않습니다.
18
-
19
- 음성 로드에는 내부적으로 ffmpeg를 이용하고 있으므로, ffmpeg로 대응하고 있는 확장자라면 자동적으로 읽힙니다.
20
- ffmpeg에서 int16으로 변환한 후 float32로 변환하고 -1과 1 사이에 정규화됩니다.
21
-
22
- ### 잡음 제거
23
- 음성 파일에 대해 scipy의 filtfilt를 이용하여 잡음을 처리합니다.
24
-
25
- ### 음성 분할
26
- 입력한 음성 파일은 먼저 일정 기간(max_sil_kept=5초?)보다 길게 무음이 지속되는 부분을 감지하여 음성을 분할합니다.무음으로 음성을 분할한 후에는 0.3초의 overlap을 포함하여 4초마다 음성을 분할합니다.4초 이내에 구분된 음성은 음량의 정규화를 실시한 후 wav 파일을 `/logs/실험명/0_gt_wavs`로, 거기에서 16k의 샘플링 레이트로 변환해 `/logs/실험명/1_16k_wavs`에 wav 파일로 저장합니다.
27
-
28
- ## step2b
29
- ### 피치 추출
30
- wav 파일에서 피치(소리의 높낮이) 정보를 추출합니다. parselmouth나 pyworld에 내장되어 있는 메서드으로 피치 정보(=f0)를 추출해, `/logs/실험명/2a_f0`에 저장합니다. 그 후 피치 정보를 로그로 변환하여 1~255 정수로 변환하고 `/logs/실험명/2b-f0nsf`에 저장합니다.
31
-
32
- ### feature_print 추출
33
- HuBERT를 이용하여 wav 파일을 미리 embedding으로 변환합니다. `/logs/실험명/1_16k_wavs`에 저장한 wav 파일을 읽고 HuBERT에서 wav 파일을 256차원 feature들로 변환한 후 npy 형식으로 `/logs/실험명/3_feature256`에 저장합니다.
34
-
35
- ## step3
36
- 모델의 훈련을 진행합니다.
37
-
38
- ### 초보자용 용어 해설
39
- 심층학습(딥러닝)에서는 데이터셋을 분할하여 조금씩 학습을 진행합니다.한 번의 모델 업데이트(step) 단계 당 batch_size개의 데이터를 탐색하여 예측과 오차를 수정합니다. 데이터셋 전부에 대해 이 작업을 한 번 수행하는 이를 하나의 epoch라고 계산합니다.
40
-
41
- 따라서 학습 시간은 단계당 학습 시간 x (데이터셋 내 데이터의 수 / batch size) x epoch 수가 소요됩니다. 일반적으로 batch size가 클수록 학습이 안정적이게 됩니다. (step당 학습 시간 ÷ batch size)는 작아지지만 GPU 메모리를 더 많이 사용합니다. GPU RAM은 nvidia-smi 명령어를 통해 확인할 수 있습니다. 실행 환경에 따라 배치 크기를 최대한 늘리면 짧은 시간 내에 학습이 가능합니다.
42
-
43
- ### 사전 학습된 모델 지정
44
- RVC는 적은 데이터셋으로도 훈련이 가능하도록 사전 훈련된 가중치에서 모델 훈련을 시작합니다. 기본적으로 `rvc-location/pretrained/f0G40k.pth` 및 `rvc-location/pretrained/f0D40k.pth`를 불러옵니다. 학습을 할 시에, 모델 파라미터는 각 save_every_epoch별로 `logs/experiment name/G_{}.pth` 와 `logs/experiment name/D_{}.pth`로 저장이 되는데, 이 경로를 지정함으로써 학습을 재개하거나, 다른 실험에서 학습한 모델의 가중치에서 학습을 시작할 수 있습니다.
45
-
46
- ### index의 학습
47
- RVC에서는 학습시에 사용된 HuBERT의 feature값을 저장하고, 추론 시에는 학습 시 사용한 feature값과 유사한 feature 값을 탐색해 추론을 진행합니다. 이 탐색을 고속으로 수행하기 위해 사전에 index을 학습하게 됩니다.
48
- Index 학습에는 근사 근접 탐색법 라이브러리인 Faiss를 사용하게 됩니다. `/logs/실험명/3_feature256`의 feature값을 불러와, 이를 모두 결합시킨 feature값을 `/logs/실험명/total_fea.npy`로서 저장, 그것을 사용해 학습한 index를`/logs/실험명/add_XXX.index`로 저장합니다.
49
-
50
- ### 버튼 설명
51
- - モデルのトレーニング (모델 학습): step2b까지 실행한 후, 이 버튼을 눌러 모델을 학습합니다.
52
- - 特徴インデックスのトレーニング (특징 지수 훈련): 모델의 훈련 후, index를 학습합니다.
53
- - ワンクリックトレーニング (원클릭 트레이닝): step2b까지의 모델 훈련, feature index 훈련을 일괄로 실시합니다.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AIFILMS/audioldm-text-to-audio-generation/audioldm/clap/training/zero_shot.py DELETED
@@ -1,95 +0,0 @@
1
- # NOTE: This script is currently not supported for CLAP.
2
- import logging
3
- from contextlib import suppress
4
-
5
- import torch
6
- import torch.nn.functional as F
7
- from tqdm import tqdm
8
-
9
- from open_clip import tokenize
10
- from .imagenet_zeroshot_data import imagenet_classnames, openai_imagenet_template
11
-
12
-
13
- def zero_shot_classifier(model, classnames, templates, args):
14
- with torch.no_grad():
15
- zeroshot_weights = []
16
- for classname in tqdm(classnames):
17
- texts = [template(classname) for template in templates] # format with class
18
- texts = tokenize(texts).to(args.device) # tokenize
19
- if args.distributed and not args.horovod:
20
- class_embeddings = model.module.encode_text(texts)
21
- else:
22
- class_embeddings = model.encode_text(texts)
23
- class_embedding = F.normalize(class_embeddings, dim=-1).mean(dim=0)
24
- class_embedding /= class_embedding.norm()
25
- zeroshot_weights.append(class_embedding)
26
- zeroshot_weights = torch.stack(zeroshot_weights, dim=1).to(args.device)
27
- return zeroshot_weights
28
-
29
-
30
- def accuracy(output, target, topk=(1,)):
31
- pred = output.topk(max(topk), 1, True, True)[1].t()
32
- correct = pred.eq(target.view(1, -1).expand_as(pred))
33
- return [
34
- float(correct[:k].reshape(-1).float().sum(0, keepdim=True).cpu().numpy())
35
- for k in topk
36
- ]
37
-
38
-
39
- def run(model, classifier, dataloader, args):
40
- autocast = torch.cuda.amp.autocast if args.precision == "amp" else suppress
41
- with torch.no_grad():
42
- top1, top5, n = 0.0, 0.0, 0.0
43
- for images, target in tqdm(dataloader, unit_scale=args.batch_size):
44
- images = images.to(args.device)
45
- target = target.to(args.device)
46
-
47
- with autocast():
48
- # predict
49
- if args.distributed and not args.horovod:
50
- image_features = model.module.encode_image(images)
51
- else:
52
- image_features = model.encode_image(images)
53
- image_features = F.normalize(image_features, dim=-1)
54
- logits = 100.0 * image_features @ classifier
55
-
56
- # measure accuracy
57
- acc1, acc5 = accuracy(logits, target, topk=(1, 5))
58
- top1 += acc1
59
- top5 += acc5
60
- n += images.size(0)
61
-
62
- top1 = top1 / n
63
- top5 = top5 / n
64
- return top1, top5
65
-
66
-
67
- def zero_shot_eval(model, data, epoch, args):
68
- if "imagenet-val" not in data and "imagenet-v2" not in data:
69
- return {}
70
- if args.zeroshot_frequency == 0:
71
- return {}
72
- if (epoch % args.zeroshot_frequency) != 0 and epoch != args.epochs:
73
- return {}
74
-
75
- logging.info("Starting zero-shot imagenet.")
76
-
77
- logging.info("Building zero-shot classifier")
78
- classifier = zero_shot_classifier(
79
- model, imagenet_classnames, openai_imagenet_template, args
80
- )
81
-
82
- logging.info("Using classifier")
83
- results = {}
84
- if "imagenet-val" in data:
85
- top1, top5 = run(model, classifier, data["imagenet-val"].dataloader, args)
86
- results["imagenet-zeroshot-val-top1"] = top1
87
- results["imagenet-zeroshot-val-top5"] = top5
88
- if "imagenet-v2" in data:
89
- top1, top5 = run(model, classifier, data["imagenet-v2"].dataloader, args)
90
- results["imagenetv2-zeroshot-val-top1"] = top1
91
- results["imagenetv2-zeroshot-val-top5"] = top5
92
-
93
- logging.info("Finished zero-shot imagenet.")
94
-
95
- return results
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AIWaves/Software_Company/README.md DELETED
@@ -1,13 +0,0 @@
1
- ---
2
- title: Software Company
3
- emoji: 🐨
4
- colorFrom: green
5
- colorTo: indigo
6
- sdk: gradio
7
- sdk_version: 3.44.4
8
- app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AIWaves/Software_Company/src/agents/Component/ToolComponent.py DELETED
@@ -1,887 +0,0 @@
1
- from abc import abstractmethod
2
- import uuid
3
- from text2vec import semantic_search
4
- from utils import (
5
- get_relevant_history,
6
- load_knowledge_base_qa,
7
- load_knowledge_base_UnstructuredFile,
8
- get_embedding,
9
- extract,
10
- )
11
- import json
12
- from typing import Dict, List
13
- import os
14
- from googleapiclient.discovery import build
15
- import requests
16
- from selenium import webdriver
17
- from selenium.webdriver.common.by import By
18
- from selenium.webdriver.support.ui import WebDriverWait
19
- from selenium.webdriver.support import expected_conditions as EC
20
- from bs4 import BeautifulSoup
21
- import base64
22
- import re
23
- from datetime import datetime, timedelta
24
- from typing import Tuple, List, Any, Dict
25
- from email.mime.text import MIMEText
26
- from email.mime.multipart import MIMEMultipart
27
- from google.auth.transport.requests import Request
28
- from google.oauth2.credentials import Credentials
29
- from google_auth_oauthlib.flow import InstalledAppFlow
30
- from googleapiclient.discovery import build
31
- from googleapiclient.errors import HttpError
32
- from tqdm import tqdm
33
-
34
- class ToolComponent:
35
- def __init__(self):
36
- pass
37
-
38
- @abstractmethod
39
- def func(self):
40
- pass
41
-
42
- class KnowledgeBaseComponent(ToolComponent):
43
- """
44
- Inject knowledge base
45
- top_k : Top_k with the highest matching degree
46
- type : "QA" or others
47
- knowledge_base(json_path) : knowledge_base_path
48
- """
49
- def __init__(self, top_k, type, knowledge_base):
50
- super().__init__()
51
- self.top_k = top_k
52
- self.type = type
53
- self.knowledge_base = knowledge_base
54
-
55
- if self.type == "QA":
56
- (
57
- self.kb_embeddings,
58
- self.kb_questions,
59
- self.kb_answers,
60
- self.kb_chunks,
61
- ) = load_knowledge_base_qa(self.knowledge_base)
62
- else:
63
- self.kb_embeddings, self.kb_chunks = load_knowledge_base_UnstructuredFile(
64
- self.knowledge_base
65
- )
66
-
67
- def func(self, agent):
68
- query = (
69
- agent.long_term_memory[-1]["content"]
70
- if len(agent.long_term_memory) > 0
71
- else ""
72
- )
73
- knowledge = ""
74
- query = extract(query, "query")
75
- query_embedding = get_embedding(query)
76
- hits = semantic_search(query_embedding, self.kb_embeddings, top_k=50)
77
- hits = hits[0]
78
- temp = []
79
- if self.type == "QA":
80
- for hit in hits:
81
- matching_idx = hit["corpus_id"]
82
- if self.kb_chunks[matching_idx] in temp:
83
- pass
84
- else:
85
- knowledge = (
86
- knowledge
87
- + f"question:{self.kb_questions[matching_idx]},answer:{self.kb_answers[matching_idx]}\n\n"
88
- )
89
- temp.append(self.kb_answers[matching_idx])
90
- if len(temp) == 1:
91
- break
92
- print(hits[0]["score"])
93
- score = hits[0]["score"]
94
- if score < 0.5:
95
- return {"prompt": "No matching knowledge base"}
96
- else:
97
- return {"prompt": "The relevant content is: " + knowledge + "\n"}
98
- else:
99
- for hit in hits:
100
- matching_idx = hit["corpus_id"]
101
- if self.kb_chunks[matching_idx] in temp:
102
- pass
103
- else:
104
- knowledge = knowledge + f"{self.kb_answers[matching_idx]}\n\n"
105
- temp.append(self.kb_answers[matching_idx])
106
- if len(temp) == self.top_k:
107
- break
108
- print(hits[0]["score"])
109
- score = hits[0]["score"]
110
- if score < 0.5:
111
- return {"prompt": "No matching knowledge base"}
112
- else:
113
- print(knowledge)
114
- return {"prompt": "The relevant content is: " + knowledge + "\n"}
115
-
116
-
117
- class StaticComponent(ToolComponent):
118
- "Return static response"
119
- def __init__(self, output):
120
- super().__init__()
121
- self.output = output
122
-
123
- def func(self, agent):
124
- outputdict = {"response": self.output}
125
- return outputdict
126
-
127
-
128
- class ExtractComponent(ToolComponent):
129
- """
130
- Extract keywords based on the current scene and store them in the environment
131
- extract_words(list) : Keywords to be extracted
132
- system_prompt & last_prompt : Prompt to extract keywords
133
- """
134
- def __init__(
135
- self,
136
- extract_words,
137
- system_prompt,
138
- last_prompt=None,
139
- ):
140
- super().__init__()
141
- self.extract_words = extract_words
142
- self.system_prompt = system_prompt
143
- self.default_prompt = (
144
- "Please strictly adhere to the following format for outputting:\n"
145
- )
146
- for extract_word in extract_words:
147
- self.default_prompt += (
148
- f"<{extract_word}> the content you need to extract </{extract_word}>"
149
- )
150
- self.last_prompt = last_prompt if last_prompt else self.default_prompt
151
-
152
- def func(self, agent):
153
- response = agent.LLM.get_response(
154
- agent.long_term_memory,
155
- self.system_prompt,
156
- self.last_prompt,
157
- stream=False,
158
- )
159
- for extract_word in self.extract_words:
160
- key = extract(response, extract_word)
161
- key = key if key else response
162
- agent.environment.shared_memory[extract_word] = key
163
-
164
- return {}
165
-
166
-
167
- """Search sources: chatgpt/search engines/specific search sources/can even be multimodal (if it comes to clothing)"""
168
-
169
-
170
- class WebSearchComponent(ToolComponent):
171
- """search engines"""
172
-
173
- __ENGINE_NAME__: List = ["google", "bing"]
174
-
175
- def __init__(self, engine_name: str, api: Dict):
176
- """
177
- :param engine_name: The name of the search engine used
178
- :param api: Pass in a dictionary, such as {"bing":"key1", "google":"key2", ...}, of course each value can also be a list, or more complicated
179
- """
180
- super(WebSearchComponent, self).__init__()
181
- """Determine whether the key and engine_name of the api are legal"""
182
-
183
- assert engine_name in WebSearchComponent.__ENGINE_NAME__
184
- for api_name in api:
185
- assert api_name in WebSearchComponent.__ENGINE_NAME__
186
-
187
- self.api = api
188
- self.engine_name = engine_name
189
-
190
- self.search: Dict = {"bing": self._bing_search, "google": self._google_search}
191
-
192
- def _bing_search(self, query: str, **kwargs):
193
- """Initialize search hyperparameters"""
194
- subscription_key = self.api["bing"]
195
- search_url = "https://api.bing.microsoft.com/v7.0/search"
196
- headers = {"Ocp-Apim-Subscription-Key": subscription_key}
197
- params = {
198
- "q": query,
199
- "textDecorations": True,
200
- "textFormat": "HTML",
201
- "count": 10,
202
- }
203
- """start searching"""
204
- response = requests.get(search_url, headers=headers, params=params)
205
- response.raise_for_status()
206
- results = response.json()["webPages"]["value"]
207
- """execute"""
208
- metadata_results = []
209
- for result in results:
210
- metadata_result = {
211
- "snippet": result["snippet"],
212
- "title": result["name"],
213
- "link": result["url"],
214
- }
215
- metadata_results.append(metadata_result)
216
- return {"meta data": metadata_results}
217
-
218
- def _google_search(self, query: str, **kwargs):
219
- """Initialize search hyperparameters"""
220
- api_key = self.api[self.engine_name]["api_key"]
221
- cse_id = self.api[self.engine_name]["cse_id"]
222
- service = build("customsearch", "v1", developerKey=api_key)
223
- """start searching"""
224
- results = (
225
- service.cse().list(q=query, cx=cse_id, num=10, **kwargs).execute()["items"]
226
- )
227
- """execute"""
228
- metadata_results = []
229
- for result in results:
230
- metadata_result = {
231
- "snippet": result["snippet"],
232
- "title": result["title"],
233
- "link": result["link"],
234
- }
235
- metadata_results.append(metadata_result)
236
- return {"meta data": metadata_results}
237
-
238
- def func(self, agent, **kwargs) -> Dict:
239
- query = (
240
- agent.long_term_memory[-1]["content"]
241
- if len(agent.long_term_memory) > 0
242
- else " "
243
- )
244
- response = agent.LLM.get_response(
245
- None,
246
- system_prompt=f"Please analyze the provided conversation and identify keywords that can be used for a search engine query. Format the output as <keywords>extracted keywords</keywords>:\nConversation:\n{query}",
247
- stream=False,
248
- )
249
- response = extract(response, "keywords")
250
- query = response if response else query
251
-
252
- search_results = self.search[self.engine_name](query=query, **kwargs)
253
- information = ""
254
- for i in search_results["meta data"][:5]:
255
- information += i["snippet"]
256
- return {
257
- "prompt": "You can refer to the following information to reply:\n"
258
- + information
259
- }
260
-
261
- def convert_search_engine_to(self, engine_name):
262
- assert engine_name in WebSearchComponent.__ENGINE_NAME__
263
- self.engine_name = engine_name
264
-
265
-
266
- class WebCrawlComponent(ToolComponent):
267
- """Open a single web page for crawling"""
268
-
269
- def __init__(self):
270
- super(WebCrawlComponent, self).__init__()
271
-
272
- def func(self, agent_dict) -> Dict:
273
- url = agent_dict["url"]
274
- print(f"crawling {url} ......")
275
- content = ""
276
- """Crawling content from url may need to be carried out according to different websites, such as wiki, baidu, zhihu, etc."""
277
- driver = webdriver.Chrome()
278
- try:
279
- """open url"""
280
- driver.get(url)
281
-
282
- """wait 20 second"""
283
- wait = WebDriverWait(driver, 20)
284
- wait.until(EC.presence_of_element_located((By.TAG_NAME, "body")))
285
-
286
- """crawl code"""
287
- page_source = driver.page_source
288
-
289
- """parse"""
290
- soup = BeautifulSoup(page_source, "html.parser")
291
-
292
- """concatenate"""
293
- for paragraph in soup.find_all("p"):
294
- content = f"{content}\n{paragraph.get_text()}"
295
- except Exception as e:
296
- print("Error:", e)
297
- finally:
298
- """quit"""
299
- driver.quit()
300
- return {"content": content.strip()}
301
-
302
-
303
- class MailComponent(ToolComponent):
304
- __VALID_ACTION__ = ["read", "send"]
305
-
306
- def __init__(
307
- self, cfg_file: str, default_action: str = "read", name: str = "e-mail"
308
- ):
309
- """'../config/google_mail.json'"""
310
- super(MailComponent, self).__init__(name)
311
- self.name = name
312
- assert (
313
- default_action.lower() in self.__VALID_ACTION__
314
- ), f"Action `{default_action}` is not allowed! The valid action is in `{self.__VALID_ACTION__}`"
315
- self.action = default_action.lower()
316
- self.credential = self._login(cfg_file)
317
-
318
- def _login(self, cfg_file: str):
319
- SCOPES = [
320
- "https://www.googleapis.com/auth/gmail.readonly",
321
- "https://www.googleapis.com/auth/gmail.send",
322
- ]
323
- creds = None
324
- if os.path.exists("token.json"):
325
- print("Login Successfully!")
326
- creds = Credentials.from_authorized_user_file("token.json", SCOPES)
327
- if not creds or not creds.valid:
328
- print("Please authorize in an open browser.")
329
- if creds and creds.expired and creds.refresh_token:
330
- creds.refresh(Request())
331
- else:
332
- flow = InstalledAppFlow.from_client_secrets_file(cfg_file, SCOPES)
333
- creds = flow.run_local_server(port=0)
334
- # Save the credentials for the next run
335
- with open("token.json", "w") as token:
336
- token.write(creds.to_json())
337
- return creds
338
-
339
- def _read(self, mail_dict: dict):
340
- credential = self.credential
341
- state = mail_dict["state"] if "state" in mail_dict else None
342
- time_between = (
343
- mail_dict["time_between"] if "time_between" in mail_dict else None
344
- )
345
- sender_mail = mail_dict["sender_mail"] if "sender_mail" in mail_dict else None
346
- only_both = mail_dict["only_both"] if "only_both" in mail_dict else False
347
- order_by_time = (
348
- mail_dict["order_by_time"] if "order_by_time" in mail_dict else "descend"
349
- )
350
- include_word = (
351
- mail_dict["include_word"] if "include_word" in mail_dict else None
352
- )
353
- exclude_word = (
354
- mail_dict["exclude_word"] if "exclude_word" in mail_dict else None
355
- )
356
- MAX_SEARCH_CNT = (
357
- mail_dict["MAX_SEARCH_CNT"] if "MAX_SEARCH_CNT" in mail_dict else 50
358
- )
359
- number = mail_dict["number"] if "number" in mail_dict else 10
360
- if state is None:
361
- state = "all"
362
- if time_between is not None:
363
- assert isinstance(time_between, tuple)
364
- assert len(time_between) == 2
365
- assert state in ["all", "unread", "read", "sent"]
366
- if only_both:
367
- assert sender_mail is not None
368
- if sender_mail is not None:
369
- assert isinstance(sender_mail, str)
370
- assert credential
371
- assert order_by_time in ["descend", "ascend"]
372
-
373
- def generate_query():
374
- query = ""
375
- if state in ["unread", "read"]:
376
- query = f"is:{state}"
377
- if state in ["sent"]:
378
- query = f"in:{state}"
379
- if only_both:
380
- query = f"{query} from:{sender_mail} OR to:{sender_mail}"
381
- if sender_mail is not None and not only_both:
382
- query = f"{query} from:({sender_mail})"
383
- if include_word is not None:
384
- query = f"{query} {include_word}"
385
- if exclude_word is not None:
386
- query = f"{query} -{exclude_word}"
387
- if time_between is not None:
388
- TIME_FORMAT = "%Y/%m/%d"
389
- t1, t2 = time_between
390
- if t1 == "now":
391
- t1 = datetime.now().strftime(TIME_FORMAT)
392
- if t2 == "now":
393
- t2 = datetime.now().strftime(TIME_FORMAT)
394
- if isinstance(t1, str) and isinstance(t2, str):
395
- t1 = datetime.strptime(t1, TIME_FORMAT)
396
- t2 = datetime.strptime(t2, TIME_FORMAT)
397
- elif isinstance(t1, str) and isinstance(t2, int):
398
- t1 = datetime.strptime(t1, TIME_FORMAT)
399
- t2 = t1 + timedelta(days=t2)
400
- elif isinstance(t1, int) and isinstance(t2, str):
401
- t2 = datetime.strptime(t2, TIME_FORMAT)
402
- t1 = t2 + timedelta(days=t1)
403
- else:
404
- assert False, "invalid time"
405
- if t1 > t2:
406
- t1, t2 = t2, t1
407
- query = f"{query} after:{t1.strftime(TIME_FORMAT)} before:{t2.strftime(TIME_FORMAT)}"
408
- return query.strip()
409
-
410
- def sort_by_time(data: List[Dict]):
411
- if order_by_time == "descend":
412
- reverse = True
413
- else:
414
- reverse = False
415
- sorted_data = sorted(
416
- data,
417
- key=lambda x: datetime.strptime(x["time"], "%Y-%m-%d %H:%M:%S"),
418
- reverse=reverse,
419
- )
420
- return sorted_data
421
-
422
- try:
423
- service = build("gmail", "v1", credentials=credential)
424
- results = (
425
- service.users()
426
- .messages()
427
- .list(userId="me", labelIds=["INBOX"], q=generate_query())
428
- .execute()
429
- )
430
-
431
- messages = results.get("messages", [])
432
- email_data = list()
433
-
434
- if not messages:
435
- print("No eligible emails.")
436
- return None
437
- else:
438
- pbar = tqdm(total=min(MAX_SEARCH_CNT, len(messages)))
439
- for cnt, message in enumerate(messages):
440
- pbar.update(1)
441
- if cnt >= MAX_SEARCH_CNT:
442
- break
443
- msg = (
444
- service.users()
445
- .messages()
446
- .get(
447
- userId="me",
448
- id=message["id"],
449
- format="full",
450
- metadataHeaders=None,
451
- )
452
- .execute()
453
- )
454
-
455
- subject = ""
456
- for header in msg["payload"]["headers"]:
457
- if header["name"] == "Subject":
458
- subject = header["value"]
459
- break
460
-
461
- sender = ""
462
- for header in msg["payload"]["headers"]:
463
- if header["name"] == "From":
464
- sender = re.findall(
465
- r"\b[\w\.-]+@[\w\.-]+\.\w+\b", header["value"]
466
- )[0]
467
- break
468
- body = ""
469
- if "parts" in msg["payload"]:
470
- for part in msg["payload"]["parts"]:
471
- if part["mimeType"] == "text/plain":
472
- data = part["body"]["data"]
473
- body = base64.urlsafe_b64decode(data).decode("utf-8")
474
- break
475
-
476
- email_info = {
477
- "sender": sender,
478
- "time": datetime.fromtimestamp(
479
- int(msg["internalDate"]) / 1000
480
- ).strftime("%Y-%m-%d %H:%M:%S"),
481
- "subject": subject,
482
- "body": body,
483
- }
484
- email_data.append(email_info)
485
- pbar.close()
486
- email_data = sort_by_time(email_data)[0:number]
487
- return {"results": email_data}
488
- except Exception as e:
489
- print(e)
490
- return None
491
-
492
- def _send(self, mail_dict: dict):
493
- recipient_mail = mail_dict["recipient_mail"]
494
- subject = mail_dict["subject"]
495
- body = mail_dict["body"]
496
- credential = self.credential
497
- service = build("gmail", "v1", credentials=credential)
498
-
499
- message = MIMEMultipart()
500
- message["to"] = recipient_mail
501
- message["subject"] = subject
502
-
503
- message.attach(MIMEText(body, "plain"))
504
-
505
- raw_message = base64.urlsafe_b64encode(message.as_bytes()).decode("utf-8")
506
- try:
507
- message = (
508
- service.users()
509
- .messages()
510
- .send(userId="me", body={"raw": raw_message})
511
- .execute()
512
- )
513
- return {"state": True}
514
- except HttpError as error:
515
- print(error)
516
- return {"state": False}
517
-
518
- def func(self, mail_dict: dict):
519
- if "action" in mail_dict:
520
- assert mail_dict["action"].lower() in self.__VALID_ACTION__
521
- self.action = mail_dict["action"]
522
- functions = {"read": self._read, "send": self._send}
523
- return functions[self.action](mail_dict)
524
-
525
- def convert_action_to(self, action_name: str):
526
- assert (
527
- action_name.lower() in self.__VALID_ACTION__
528
- ), f"Action `{action_name}` is not allowed! The valid action is in `{self.__VALID_ACTION__}`"
529
- self.action = action_name.lower()
530
-
531
-
532
- class WeatherComponet(ToolComponent):
533
- def __init__(self, api_key, name="weather", TIME_FORMAT="%Y-%m-%d"):
534
- super(WeatherComponet, self).__init__(name)
535
- self.name = name
536
- self.TIME_FORMAT = TIME_FORMAT
537
- self.api_key = api_key
538
-
539
- def _parse(self, data):
540
- dict_data: dict = {}
541
- for item in data["data"]:
542
- date = item["datetime"]
543
- dict_data[date] = {}
544
- if "weather" in item:
545
- dict_data[date]["description"] = item["weather"]["description"]
546
- mapping = {
547
- "temp": "temperature",
548
- "max_temp": "max_temperature",
549
- "min_temp": "min_temperature",
550
- "precip": "accumulated_precipitation",
551
- }
552
- for key in ["temp", "max_temp", "min_temp", "precip"]:
553
- if key in item:
554
- dict_data[date][mapping[key]] = item[key]
555
- return dict_data
556
-
557
- def _query(self, city_name, country_code, start_date, end_date):
558
- """https://www.weatherbit.io/api/historical-weather-daily"""
559
- # print(datetime.strftime(start_date, self.TIME_FORMAT), datetime.strftime(datetime.now(), self.TIME_FORMAT), end_date, datetime.strftime(datetime.now()+timedelta(days=1), self.TIME_FORMAT))
560
- if start_date == datetime.strftime(
561
- datetime.now(), self.TIME_FORMAT
562
- ) and end_date == datetime.strftime(
563
- datetime.now() + timedelta(days=1), self.TIME_FORMAT
564
- ):
565
- """today"""
566
- url = f"https://api.weatherbit.io/v2.0/current?city={city_name}&country={country_code}&key={self.api_key}"
567
- else:
568
- url = f"https://api.weatherbit.io/v2.0/history/daily?&city={city_name}&country={country_code}&start_date={start_date}&end_date={end_date}&key={self.api_key}"
569
- response = requests.get(url)
570
- data = response.json()
571
- return self._parse(data)
572
-
573
- def func(self, weather_dict: Dict) -> Dict:
574
- TIME_FORMAT = self.TIME_FORMAT
575
- # Beijing, Shanghai
576
- city_name = weather_dict["city_name"]
577
- # CN, US
578
- country_code = weather_dict["country_code"]
579
- # 2020-02-02
580
- start_date = datetime.strftime(
581
- datetime.strptime(weather_dict["start_date"], self.TIME_FORMAT),
582
- self.TIME_FORMAT,
583
- )
584
- end_date = weather_dict["end_date"] if "end_date" in weather_dict else None
585
- if end_date is None:
586
- end_date = datetime.strftime(
587
- datetime.strptime(start_date, TIME_FORMAT) + timedelta(days=-1),
588
- TIME_FORMAT,
589
- )
590
- else:
591
- end_date = datetime.strftime(
592
- datetime.strptime(weather_dict["end_date"], self.TIME_FORMAT),
593
- self.TIME_FORMAT,
594
- )
595
- if datetime.strptime(start_date, TIME_FORMAT) > datetime.strptime(
596
- end_date, TIME_FORMAT
597
- ):
598
- start_date, end_date = end_date, start_date
599
- assert start_date != end_date
600
- return self._query(city_name, country_code, start_date, end_date)
601
-
602
-
603
- class TranslateComponent(ToolComponent):
604
- __SUPPORT_LANGUAGE__ = [
605
- "af",
606
- "am",
607
- "ar",
608
- "as",
609
- "az",
610
- "ba",
611
- "bg",
612
- "bn",
613
- "bo",
614
- "bs",
615
- "ca",
616
- "cs",
617
- "cy",
618
- "da",
619
- "de",
620
- "dsb",
621
- "dv",
622
- "el",
623
- "en",
624
- "es",
625
- "et",
626
- "eu",
627
- "fa",
628
- "fi",
629
- "fil",
630
- "fj",
631
- "fo",
632
- "fr",
633
- "fr-CA",
634
- "ga",
635
- "gl",
636
- "gom",
637
- "gu",
638
- "ha",
639
- "he",
640
- "hi",
641
- "hr",
642
- "hsb",
643
- "ht",
644
- "hu",
645
- "hy",
646
- "id",
647
- "ig",
648
- "ikt",
649
- "is",
650
- "it",
651
- "iu",
652
- "iu-Latn",
653
- "ja",
654
- "ka",
655
- "kk",
656
- "km",
657
- "kmr",
658
- "kn",
659
- "ko",
660
- "ku",
661
- "ky",
662
- "ln",
663
- "lo",
664
- "lt",
665
- "lug",
666
- "lv",
667
- "lzh",
668
- "mai",
669
- "mg",
670
- "mi",
671
- "mk",
672
- "ml",
673
- "mn-Cyrl",
674
- "mn-Mong",
675
- "mr",
676
- "ms",
677
- "mt",
678
- "mww",
679
- "my",
680
- "nb",
681
- "ne",
682
- "nl",
683
- "nso",
684
- "nya",
685
- "or",
686
- "otq",
687
- "pa",
688
- "pl",
689
- "prs",
690
- "ps",
691
- "pt",
692
- "pt-PT",
693
- "ro",
694
- "ru",
695
- "run",
696
- "rw",
697
- "sd",
698
- "si",
699
- "sk",
700
- "sl",
701
- "sm",
702
- "sn",
703
- "so",
704
- "sq",
705
- "sr-Cyrl",
706
- "sr-Latn",
707
- "st",
708
- "sv",
709
- "sw",
710
- "ta",
711
- "te",
712
- "th",
713
- "ti",
714
- "tk",
715
- "tlh-Latn",
716
- "tlh-Piqd",
717
- "tn",
718
- "to",
719
- "tr",
720
- "tt",
721
- "ty",
722
- "ug",
723
- "uk",
724
- "ur",
725
- "uz",
726
- "vi",
727
- "xh",
728
- "yo",
729
- "yua",
730
- "yue",
731
- "zh-Hans",
732
- "zh-Hant",
733
- "zu",
734
- ]
735
-
736
- def __init__(
737
- self, api_key, location, default_target_language="zh-cn", name="translate"
738
- ):
739
- super(TranslateComponent, self).__init__(name)
740
- self.name = name
741
- self.api_key = api_key
742
- self.location = location
743
- self.default_target_language = default_target_language
744
-
745
- def func(self, translate_dict: Dict) -> Dict:
746
- content = translate_dict["content"]
747
- target_language = self.default_target_language
748
- if "target_language" in translate_dict:
749
- target_language = translate_dict["target_language"]
750
- assert (
751
- target_language in self.__SUPPORT_LANGUAGE__
752
- ), f"language `{target_language}` is not supported."
753
-
754
- endpoint = "https://api.cognitive.microsofttranslator.com"
755
-
756
- path = "/translate"
757
- constructed_url = endpoint + path
758
-
759
- params = {"api-version": "3.0", "to": target_language}
760
-
761
- headers = {
762
- "Ocp-Apim-Subscription-Key": self.api_key,
763
- "Ocp-Apim-Subscription-Region": self.location,
764
- "Content-type": "application/json",
765
- "X-ClientTraceId": str(uuid.uuid4()),
766
- }
767
-
768
- body = [{"text": content}]
769
-
770
- request = requests.post(
771
- constructed_url, params=params, headers=headers, json=body
772
- )
773
- response = request.json()
774
- response = json.dumps(
775
- response,
776
- sort_keys=True,
777
- ensure_ascii=False,
778
- indent=4,
779
- separators=(",", ": "),
780
- )
781
- response = eval(response)
782
- return {"result": response[0]["translations"][0]["text"]}
783
-
784
-
785
- class APIComponent(ToolComponent):
786
- def __init__(self):
787
- super(APIComponent, self).__init__()
788
-
789
- def func(self, agent) -> Dict:
790
- pass
791
-
792
-
793
- class FunctionComponent(ToolComponent):
794
- def __init__(
795
- self,
796
- functions,
797
- function_call="auto",
798
- response_type="response",
799
- your_function=None,
800
- ):
801
- super().__init__()
802
- self.functions = functions
803
- self.function_call = function_call
804
- self.parameters = {}
805
- self.available_functions = {}
806
- self.response_type = response_type
807
- if your_function:
808
- function_name = your_function["name"]
809
- function_content = your_function["content"]
810
- exec(function_content)
811
- self.available_functions[function_name] = eval(function_name)
812
-
813
- for function in self.functions:
814
- self.parameters[function["name"]] = list(
815
- function["parameters"]["properties"].keys()
816
- )
817
- self.available_functions[function["name"]] = eval(function["name"])
818
-
819
- def func(self, agent):
820
- messages = agent.long_term_memory
821
- outputdict = {}
822
- query = agent.long_term_memory[-1].content if len(agent.long_term_memory) > 0 else " "
823
- relevant_history = get_relevant_history(
824
- query,
825
- agent.long_term_memory[:-1],
826
- agent.chat_embeddings[:-1],
827
- )
828
- response = agent.LLM.get_response(
829
- messages,
830
- None,
831
- functions=self.functions,
832
- stream=False,
833
- function_call=self.function_call,
834
- relevant_history=relevant_history,
835
- )
836
- response_message = response
837
- if response_message.get("function_call"):
838
- function_name = response_message["function_call"]["name"]
839
- fuction_to_call = self.available_functions[function_name]
840
- function_args = json.loads(response_message["function_call"]["arguments"])
841
- input_args = {}
842
- for args_name in self.parameters[function_name]:
843
- input_args[args_name] = function_args.get(args_name)
844
- function_response = fuction_to_call(**input_args)
845
- if self.response_type == "response":
846
- outputdict["response"] = function_response
847
- elif self.response_type == "prompt":
848
- outputdict["prompt"] = function_response
849
-
850
- return outputdict
851
-
852
-
853
- class CodeComponent(ToolComponent):
854
- def __init__(self, file_name, keyword) -> None:
855
- super().__init__()
856
- self.file_name = file_name
857
- self.keyword = keyword
858
- self.system_prompt = (
859
- "you need to extract the modified code as completely as possible."
860
- )
861
- self.last_prompt = (
862
- f"Please strictly adhere to the following format for outputting: \n"
863
- )
864
- self.last_prompt += (
865
- f"<{self.keyword}> the content you need to extract </{self.keyword}>"
866
- )
867
-
868
- def func(self, agent):
869
- response = agent.LLM.get_response(
870
- agent.long_term_memory,
871
- self.system_prompt,
872
- self.last_prompt,
873
- stream=False,
874
- )
875
- code = extract(response, self.keyword)
876
- code = code if code else response
877
- os.makedirs("output_code", exist_ok=True)
878
- file_name = "output_code/" + self.file_name
879
- codes = code.split("\n")
880
- if codes[0] == "```python":
881
- codes.remove(codes[0])
882
- if codes[-1] == "```":
883
- codes.remove(codes[-1])
884
- code = "\n".join(codes)
885
- with open(file_name, "w", encoding="utf-8") as f:
886
- f.write(code)
887
- return {}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Abeer123/Pokemon_Digimon/README.md DELETED
@@ -1,13 +0,0 @@
1
- ---
2
- title: Pokemon Digimon
3
- emoji: 💻
4
- colorFrom: gray
5
- colorTo: yellow
6
- sdk: gradio
7
- sdk_version: 3.11.0
8
- app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AchyuthGamer/OpenGPT/g4f/Provider/Equing.py DELETED
@@ -1,81 +0,0 @@
1
- from __future__ import annotations
2
-
3
- import json
4
- from abc import ABC, abstractmethod
5
-
6
- import requests
7
-
8
- from ..typing import Any, CreateResult
9
- from .base_provider import BaseProvider
10
-
11
-
12
- class Equing(BaseProvider):
13
- url: str = 'https://next.eqing.tech/'
14
- working = False
15
- supports_stream = True
16
- supports_gpt_35_turbo = True
17
- supports_gpt_4 = False
18
-
19
- @staticmethod
20
- @abstractmethod
21
- def create_completion(
22
- model: str,
23
- messages: list[dict[str, str]],
24
- stream: bool, **kwargs: Any) -> CreateResult:
25
-
26
- headers = {
27
- 'authority' : 'next.eqing.tech',
28
- 'accept' : 'text/event-stream',
29
- 'accept-language' : 'en,fr-FR;q=0.9,fr;q=0.8,es-ES;q=0.7,es;q=0.6,en-US;q=0.5,am;q=0.4,de;q=0.3',
30
- 'cache-control' : 'no-cache',
31
- 'content-type' : 'application/json',
32
- 'origin' : 'https://next.eqing.tech',
33
- 'plugins' : '0',
34
- 'pragma' : 'no-cache',
35
- 'referer' : 'https://next.eqing.tech/',
36
- 'sec-ch-ua' : '"Not/A)Brand";v="99", "Google Chrome";v="115", "Chromium";v="115"',
37
- 'sec-ch-ua-mobile' : '?0',
38
- 'sec-ch-ua-platform': '"macOS"',
39
- 'sec-fetch-dest' : 'empty',
40
- 'sec-fetch-mode' : 'cors',
41
- 'sec-fetch-site' : 'same-origin',
42
- 'user-agent' : 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/115.0.0.0 Safari/537.36',
43
- 'usesearch' : 'false',
44
- 'x-requested-with' : 'XMLHttpRequest'
45
- }
46
-
47
- json_data = {
48
- 'messages' : messages,
49
- 'stream' : stream,
50
- 'model' : model,
51
- 'temperature' : kwargs.get('temperature', 0.5),
52
- 'presence_penalty' : kwargs.get('presence_penalty', 0),
53
- 'frequency_penalty' : kwargs.get('frequency_penalty', 0),
54
- 'top_p' : kwargs.get('top_p', 1),
55
- }
56
-
57
- response = requests.post('https://next.eqing.tech/api/openai/v1/chat/completions',
58
- headers=headers, json=json_data, stream=stream)
59
-
60
- if not stream:
61
- yield response.json()["choices"][0]["message"]["content"]
62
- return
63
-
64
- for line in response.iter_content(chunk_size=1024):
65
- if line:
66
- if b'content' in line:
67
- line_json = json.loads(line.decode('utf-8').split('data: ')[1])
68
- token = line_json['choices'][0]['delta'].get('content')
69
- if token:
70
- yield token
71
-
72
- @classmethod
73
- @property
74
- def params(cls):
75
- params = [
76
- ("model", "str"),
77
- ("messages", "list[dict[str, str]]"),
78
- ("stream", "bool"),
79
- ]
80
- param = ", ".join([": ".join(p) for p in params])
81
- return f"g4f.provider.{cls.__name__} supports: ({param})"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AgentVerse/agentVerse/ui/.github/CODE_OF_CONDUCT.md DELETED
@@ -1,84 +0,0 @@
1
- # Code of Conduct
2
-
3
- ## 1. Purpose
4
-
5
- A primary goal of Phaser is to be inclusive to the largest number of contributors, with the most varied and diverse backgrounds possible. As such, we are committed to providing a friendly, safe and welcoming environment for all, regardless of gender, sexual orientation, ability, ethnicity, socioeconomic status, and religion (or lack thereof).
6
-
7
- This code of conduct outlines our expectations for all those who participate in our community, as well as the consequences for unacceptable behavior.
8
-
9
- We invite all those who participate in Phaser to help us create safe and positive experiences for everyone.
10
-
11
- ## 2. Open Source Citizenship
12
-
13
- A supplemental goal of this Code of Conduct is to increase open source citizenship by encouraging participants to recognize and strengthen the relationships between our actions and their effects on our community.
14
-
15
- Communities mirror the societies in which they exist and positive action is essential to counteract the many forms of inequality and abuses of power that exist in society.
16
-
17
- If you see someone who is making an extra effort to ensure our community is welcoming, friendly, and encourages all participants to contribute to the fullest extent, we want to know.
18
-
19
- ## 3. Expected Behavior
20
-
21
- The following behaviors are expected and requested of all community members:
22
-
23
- * Participate in an authentic and active way. In doing so, you contribute to the health and longevity of this community.
24
- * Exercise consideration and respect in your speech and actions.
25
- * Attempt collaboration before conflict.
26
- * Refrain from demeaning, discriminatory, or harassing behavior and speech.
27
- * Be mindful of your surroundings and of your fellow participants. Alert community leaders if you notice a dangerous situation, someone in distress, or violations of this Code of Conduct, even if they seem inconsequential.
28
- * Remember that community event venues may be shared with members of the public; please be respectful to all patrons of these locations.
29
-
30
- ## 4. Unacceptable Behavior
31
-
32
- The following behaviors are considered harassment and are unacceptable within our community:
33
-
34
- * Violence, threats of violence or violent language directed against another person.
35
- * Sexist, racist, homophobic, transphobic, ableist or otherwise discriminatory jokes and language.
36
- * Posting or displaying sexually explicit or violent material.
37
- * Posting or threatening to post other people’s personally identifying information ("doxing").
38
- * Personal insults, particularly those related to gender, sexual orientation, race, religion, or disability.
39
- * Inappropriate photography or recording.
40
- * Inappropriate physical contact. You should have someone’s consent before touching them.
41
- * Unwelcome sexual attention. This includes, sexualized comments or jokes; inappropriate touching, groping, and unwelcomed sexual advances.
42
- * Deliberate intimidation, stalking or following (online or in person).
43
- * Advocating for, or encouraging, any of the above behavior.
44
- * Sustained disruption of community events, including talks and presentations.
45
-
46
- ## 5. Consequences of Unacceptable Behavior
47
-
48
- Unacceptable behavior from any community member, including sponsors and those with decision-making authority, will not be tolerated.
49
-
50
- Anyone asked to stop unacceptable behavior is expected to comply immediately.
51
-
52
- If a community member engages in unacceptable behavior, the community organizers may take any action they deem appropriate, up to and including a temporary ban or permanent expulsion from the community without warning (and without refund in the case of a paid event).
53
-
54
- ## 6. Reporting Guidelines
55
-
56
- If you are subject to or witness unacceptable behavior, or have any other concerns, please notify a community organizer as soon as possible. [email protected].
57
-
58
-
59
-
60
- Additionally, community organizers are available to help community members engage with local law enforcement or to otherwise help those experiencing unacceptable behavior feel safe. In the context of in-person events, organizers will also provide escorts as desired by the person experiencing distress.
61
-
62
- ## 7. Addressing Grievances
63
-
64
- If you feel you have been falsely or unfairly accused of violating this Code of Conduct, you should notify Photon Storm Ltd with a concise description of your grievance. Your grievance will be handled in accordance with our existing governing policies.
65
-
66
-
67
-
68
- ## 8. Scope
69
-
70
- We expect all community participants (contributors, paid or otherwise; sponsors; and other guests) to abide by this Code of Conduct in all community venues–online and in-person–as well as in all one-on-one communications pertaining to community business.
71
-
72
- This code of conduct and its related procedures also applies to unacceptable behavior occurring outside the scope of community activities when such behavior has the potential to adversely affect the safety and well-being of community members.
73
-
74
- ## 9. Contact info
75
-
76
77
-
78
- ## 10. License and attribution
79
-
80
- This Code of Conduct is distributed under a [Creative Commons Attribution-ShareAlike license](http://creativecommons.org/licenses/by-sa/3.0/).
81
-
82
- Portions of text derived from the [Django Code of Conduct](https://www.djangoproject.com/conduct/) and the [Geek Feminism Anti-Harassment Policy](http://geekfeminism.wikia.com/wiki/Conference_anti-harassment/Policy).
83
-
84
- Retrieved on November 22, 2016 from [http://citizencodeofconduct.org/](http://citizencodeofconduct.org/)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/spinner/spinner-components.d.ts DELETED
@@ -1,39 +0,0 @@
1
- import Audio from './audio/Audio';
2
- import Ball from './ball/Ball';
3
- import Bars from './bars/Bars';
4
- import Box from './box/Box';
5
- import Clock from './clock/Clock';
6
- import Cube from './cube/Cube';
7
- import Custom from './custom/Custom';
8
- import Dots from './dots/Dots';
9
- import Facebook from './facebook/Facebook';
10
- import Grid from './grid/Grid';
11
- import Los from './los/Los';
12
- import Orbit from './orbit/Orbit';
13
- import Oval from './oval/Oval';
14
- import Pie from './pie/Pie';
15
- import Puff from './puff/Puff';
16
- import Radio from './radio/Radio';
17
- import Rings from './rings/Rings';
18
- import Spinner from './spinner/Spinner';
19
-
20
- export {
21
- Audio,
22
- Ball,
23
- Bars,
24
- Box,
25
- Clock,
26
- Cube,
27
- Custom,
28
- Dots,
29
- Facebook,
30
- Grid,
31
- Los,
32
- Orbit,
33
- Oval,
34
- Pie,
35
- Puff,
36
- Radio,
37
- Rings,
38
- Spinner
39
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/src/diffusers/schedulers/scheduling_lms_discrete.py DELETED
@@ -1,413 +0,0 @@
1
- # Copyright 2023 Katherine Crowson and The HuggingFace Team. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- import math
15
- import warnings
16
- from dataclasses import dataclass
17
- from typing import List, Optional, Tuple, Union
18
-
19
- import numpy as np
20
- import torch
21
- from scipy import integrate
22
-
23
- from ..configuration_utils import ConfigMixin, register_to_config
24
- from ..utils import BaseOutput
25
- from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
26
-
27
-
28
- @dataclass
29
- # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->LMSDiscrete
30
- class LMSDiscreteSchedulerOutput(BaseOutput):
31
- """
32
- Output class for the scheduler's step function output.
33
-
34
- Args:
35
- prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
36
- Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
37
- denoising loop.
38
- pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
39
- The predicted denoised sample (x_{0}) based on the model output from the current timestep.
40
- `pred_original_sample` can be used to preview progress or for guidance.
41
- """
42
-
43
- prev_sample: torch.FloatTensor
44
- pred_original_sample: Optional[torch.FloatTensor] = None
45
-
46
-
47
- # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
48
- def betas_for_alpha_bar(
49
- num_diffusion_timesteps,
50
- max_beta=0.999,
51
- alpha_transform_type="cosine",
52
- ):
53
- """
54
- Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
55
- (1-beta) over time from t = [0,1].
56
-
57
- Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
58
- to that part of the diffusion process.
59
-
60
-
61
- Args:
62
- num_diffusion_timesteps (`int`): the number of betas to produce.
63
- max_beta (`float`): the maximum beta to use; use values lower than 1 to
64
- prevent singularities.
65
- alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
66
- Choose from `cosine` or `exp`
67
-
68
- Returns:
69
- betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
70
- """
71
- if alpha_transform_type == "cosine":
72
-
73
- def alpha_bar_fn(t):
74
- return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
75
-
76
- elif alpha_transform_type == "exp":
77
-
78
- def alpha_bar_fn(t):
79
- return math.exp(t * -12.0)
80
-
81
- else:
82
- raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
83
-
84
- betas = []
85
- for i in range(num_diffusion_timesteps):
86
- t1 = i / num_diffusion_timesteps
87
- t2 = (i + 1) / num_diffusion_timesteps
88
- betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
89
- return torch.tensor(betas, dtype=torch.float32)
90
-
91
-
92
- class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
93
- """
94
- Linear Multistep Scheduler for discrete beta schedules. Based on the original k-diffusion implementation by
95
- Katherine Crowson:
96
- https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L181
97
-
98
- [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
99
- function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
100
- [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
101
- [`~SchedulerMixin.from_pretrained`] functions.
102
-
103
- Args:
104
- num_train_timesteps (`int`): number of diffusion steps used to train the model.
105
- beta_start (`float`): the starting `beta` value of inference.
106
- beta_end (`float`): the final `beta` value.
107
- beta_schedule (`str`):
108
- the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
109
- `linear` or `scaled_linear`.
110
- trained_betas (`np.ndarray`, optional):
111
- option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
112
- use_karras_sigmas (`bool`, *optional*, defaults to `False`):
113
- This parameter controls whether to use Karras sigmas (Karras et al. (2022) scheme) for step sizes in the
114
- noise schedule during the sampling process. If True, the sigmas will be determined according to a sequence
115
- of noise levels {σi} as defined in Equation (5) of the paper https://arxiv.org/pdf/2206.00364.pdf.
116
- prediction_type (`str`, default `epsilon`, optional):
117
- prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
118
- process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
119
- https://imagen.research.google/video/paper.pdf)
120
- timestep_spacing (`str`, default `"linspace"`):
121
- The way the timesteps should be scaled. Refer to Table 2. of [Common Diffusion Noise Schedules and Sample
122
- Steps are Flawed](https://arxiv.org/abs/2305.08891) for more information.
123
- steps_offset (`int`, default `0`):
124
- an offset added to the inference steps. You can use a combination of `offset=1` and
125
- `set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in
126
- stable diffusion.
127
- """
128
-
129
- _compatibles = [e.name for e in KarrasDiffusionSchedulers]
130
- order = 1
131
-
132
- @register_to_config
133
- def __init__(
134
- self,
135
- num_train_timesteps: int = 1000,
136
- beta_start: float = 0.0001,
137
- beta_end: float = 0.02,
138
- beta_schedule: str = "linear",
139
- trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
140
- use_karras_sigmas: Optional[bool] = False,
141
- prediction_type: str = "epsilon",
142
- timestep_spacing: str = "linspace",
143
- steps_offset: int = 0,
144
- ):
145
- if trained_betas is not None:
146
- self.betas = torch.tensor(trained_betas, dtype=torch.float32)
147
- elif beta_schedule == "linear":
148
- self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
149
- elif beta_schedule == "scaled_linear":
150
- # this schedule is very specific to the latent diffusion model.
151
- self.betas = (
152
- torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
153
- )
154
- elif beta_schedule == "squaredcos_cap_v2":
155
- # Glide cosine schedule
156
- self.betas = betas_for_alpha_bar(num_train_timesteps)
157
- else:
158
- raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
159
-
160
- self.alphas = 1.0 - self.betas
161
- self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
162
-
163
- sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
164
- sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
165
- self.sigmas = torch.from_numpy(sigmas)
166
-
167
- # setable values
168
- self.num_inference_steps = None
169
- self.use_karras_sigmas = use_karras_sigmas
170
- self.set_timesteps(num_train_timesteps, None)
171
- self.derivatives = []
172
- self.is_scale_input_called = False
173
-
174
- @property
175
- def init_noise_sigma(self):
176
- # standard deviation of the initial noise distribution
177
- if self.config.timestep_spacing in ["linspace", "trailing"]:
178
- return self.sigmas.max()
179
-
180
- return (self.sigmas.max() ** 2 + 1) ** 0.5
181
-
182
- def scale_model_input(
183
- self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
184
- ) -> torch.FloatTensor:
185
- """
186
- Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the K-LMS algorithm.
187
-
188
- Args:
189
- sample (`torch.FloatTensor`): input sample
190
- timestep (`float` or `torch.FloatTensor`): the current timestep in the diffusion chain
191
-
192
- Returns:
193
- `torch.FloatTensor`: scaled input sample
194
- """
195
- if isinstance(timestep, torch.Tensor):
196
- timestep = timestep.to(self.timesteps.device)
197
- step_index = (self.timesteps == timestep).nonzero().item()
198
- sigma = self.sigmas[step_index]
199
- sample = sample / ((sigma**2 + 1) ** 0.5)
200
- self.is_scale_input_called = True
201
- return sample
202
-
203
- def get_lms_coefficient(self, order, t, current_order):
204
- """
205
- Compute a linear multistep coefficient.
206
-
207
- Args:
208
- order (TODO):
209
- t (TODO):
210
- current_order (TODO):
211
- """
212
-
213
- def lms_derivative(tau):
214
- prod = 1.0
215
- for k in range(order):
216
- if current_order == k:
217
- continue
218
- prod *= (tau - self.sigmas[t - k]) / (self.sigmas[t - current_order] - self.sigmas[t - k])
219
- return prod
220
-
221
- integrated_coeff = integrate.quad(lms_derivative, self.sigmas[t], self.sigmas[t + 1], epsrel=1e-4)[0]
222
-
223
- return integrated_coeff
224
-
225
- def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
226
- """
227
- Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.
228
-
229
- Args:
230
- num_inference_steps (`int`):
231
- the number of diffusion steps used when generating samples with a pre-trained model.
232
- device (`str` or `torch.device`, optional):
233
- the device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
234
- """
235
- self.num_inference_steps = num_inference_steps
236
-
237
- # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
238
- if self.config.timestep_spacing == "linspace":
239
- timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=float)[
240
- ::-1
241
- ].copy()
242
- elif self.config.timestep_spacing == "leading":
243
- step_ratio = self.config.num_train_timesteps // self.num_inference_steps
244
- # creates integer timesteps by multiplying by ratio
245
- # casting to int to avoid issues when num_inference_step is power of 3
246
- timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(float)
247
- timesteps += self.config.steps_offset
248
- elif self.config.timestep_spacing == "trailing":
249
- step_ratio = self.config.num_train_timesteps / self.num_inference_steps
250
- # creates integer timesteps by multiplying by ratio
251
- # casting to int to avoid issues when num_inference_step is power of 3
252
- timesteps = (np.arange(self.config.num_train_timesteps, 0, -step_ratio)).round().copy().astype(float)
253
- timesteps -= 1
254
- else:
255
- raise ValueError(
256
- f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
257
- )
258
-
259
- sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
260
- log_sigmas = np.log(sigmas)
261
- sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
262
-
263
- if self.use_karras_sigmas:
264
- sigmas = self._convert_to_karras(in_sigmas=sigmas)
265
- timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
266
-
267
- sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
268
-
269
- self.sigmas = torch.from_numpy(sigmas).to(device=device)
270
- if str(device).startswith("mps"):
271
- # mps does not support float64
272
- self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32)
273
- else:
274
- self.timesteps = torch.from_numpy(timesteps).to(device=device)
275
-
276
- self.derivatives = []
277
-
278
- # copied from diffusers.schedulers.scheduling_euler_discrete._sigma_to_t
279
- def _sigma_to_t(self, sigma, log_sigmas):
280
- # get log sigma
281
- log_sigma = np.log(sigma)
282
-
283
- # get distribution
284
- dists = log_sigma - log_sigmas[:, np.newaxis]
285
-
286
- # get sigmas range
287
- low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
288
- high_idx = low_idx + 1
289
-
290
- low = log_sigmas[low_idx]
291
- high = log_sigmas[high_idx]
292
-
293
- # interpolate sigmas
294
- w = (low - log_sigma) / (low - high)
295
- w = np.clip(w, 0, 1)
296
-
297
- # transform interpolation to time range
298
- t = (1 - w) * low_idx + w * high_idx
299
- t = t.reshape(sigma.shape)
300
- return t
301
-
302
- # copied from diffusers.schedulers.scheduling_euler_discrete._convert_to_karras
303
- def _convert_to_karras(self, in_sigmas: torch.FloatTensor) -> torch.FloatTensor:
304
- """Constructs the noise schedule of Karras et al. (2022)."""
305
-
306
- sigma_min: float = in_sigmas[-1].item()
307
- sigma_max: float = in_sigmas[0].item()
308
-
309
- rho = 7.0 # 7.0 is the value used in the paper
310
- ramp = np.linspace(0, 1, self.num_inference_steps)
311
- min_inv_rho = sigma_min ** (1 / rho)
312
- max_inv_rho = sigma_max ** (1 / rho)
313
- sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
314
- return sigmas
315
-
316
- def step(
317
- self,
318
- model_output: torch.FloatTensor,
319
- timestep: Union[float, torch.FloatTensor],
320
- sample: torch.FloatTensor,
321
- order: int = 4,
322
- return_dict: bool = True,
323
- ) -> Union[LMSDiscreteSchedulerOutput, Tuple]:
324
- """
325
- Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
326
- process from the learned model outputs (most often the predicted noise).
327
-
328
- Args:
329
- model_output (`torch.FloatTensor`): direct output from learned diffusion model.
330
- timestep (`float`): current timestep in the diffusion chain.
331
- sample (`torch.FloatTensor`):
332
- current instance of sample being created by diffusion process.
333
- order: coefficient for multi-step inference.
334
- return_dict (`bool`): option for returning tuple rather than LMSDiscreteSchedulerOutput class
335
-
336
- Returns:
337
- [`~schedulers.scheduling_utils.LMSDiscreteSchedulerOutput`] or `tuple`:
338
- [`~schedulers.scheduling_utils.LMSDiscreteSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`.
339
- When returning a tuple, the first element is the sample tensor.
340
-
341
- """
342
- if not self.is_scale_input_called:
343
- warnings.warn(
344
- "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
345
- "See `StableDiffusionPipeline` for a usage example."
346
- )
347
-
348
- if isinstance(timestep, torch.Tensor):
349
- timestep = timestep.to(self.timesteps.device)
350
- step_index = (self.timesteps == timestep).nonzero().item()
351
- sigma = self.sigmas[step_index]
352
-
353
- # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
354
- if self.config.prediction_type == "epsilon":
355
- pred_original_sample = sample - sigma * model_output
356
- elif self.config.prediction_type == "v_prediction":
357
- # * c_out + input * c_skip
358
- pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
359
- elif self.config.prediction_type == "sample":
360
- pred_original_sample = model_output
361
- else:
362
- raise ValueError(
363
- f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
364
- )
365
-
366
- # 2. Convert to an ODE derivative
367
- derivative = (sample - pred_original_sample) / sigma
368
- self.derivatives.append(derivative)
369
- if len(self.derivatives) > order:
370
- self.derivatives.pop(0)
371
-
372
- # 3. Compute linear multistep coefficients
373
- order = min(step_index + 1, order)
374
- lms_coeffs = [self.get_lms_coefficient(order, step_index, curr_order) for curr_order in range(order)]
375
-
376
- # 4. Compute previous sample based on the derivatives path
377
- prev_sample = sample + sum(
378
- coeff * derivative for coeff, derivative in zip(lms_coeffs, reversed(self.derivatives))
379
- )
380
-
381
- if not return_dict:
382
- return (prev_sample,)
383
-
384
- return LMSDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
385
-
386
- # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
387
- def add_noise(
388
- self,
389
- original_samples: torch.FloatTensor,
390
- noise: torch.FloatTensor,
391
- timesteps: torch.FloatTensor,
392
- ) -> torch.FloatTensor:
393
- # Make sure sigmas and timesteps have the same device and dtype as original_samples
394
- sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
395
- if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
396
- # mps does not support float64
397
- schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
398
- timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
399
- else:
400
- schedule_timesteps = self.timesteps.to(original_samples.device)
401
- timesteps = timesteps.to(original_samples.device)
402
-
403
- step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
404
-
405
- sigma = sigmas[step_indices].flatten()
406
- while len(sigma.shape) < len(original_samples.shape):
407
- sigma = sigma.unsqueeze(-1)
408
-
409
- noisy_samples = original_samples + noise * sigma
410
- return noisy_samples
411
-
412
- def __len__(self):
413
- return self.config.num_train_timesteps
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Andy1621/uniformer_image_segmentation/configs/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes.py DELETED
@@ -1,5 +0,0 @@
1
- _base_ = [
2
- '../_base_/models/ocrnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3
- '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4
- ]
5
- model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
 
 
 
 
 
 
spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_internal/distributions/base.py DELETED
@@ -1,39 +0,0 @@
1
- import abc
2
-
3
- from pip._internal.index.package_finder import PackageFinder
4
- from pip._internal.metadata.base import BaseDistribution
5
- from pip._internal.req import InstallRequirement
6
-
7
-
8
- class AbstractDistribution(metaclass=abc.ABCMeta):
9
- """A base class for handling installable artifacts.
10
-
11
- The requirements for anything installable are as follows:
12
-
13
- - we must be able to determine the requirement name
14
- (or we can't correctly handle the non-upgrade case).
15
-
16
- - for packages with setup requirements, we must also be able
17
- to determine their requirements without installing additional
18
- packages (for the same reason as run-time dependencies)
19
-
20
- - we must be able to create a Distribution object exposing the
21
- above metadata.
22
- """
23
-
24
- def __init__(self, req: InstallRequirement) -> None:
25
- super().__init__()
26
- self.req = req
27
-
28
- @abc.abstractmethod
29
- def get_metadata_distribution(self) -> BaseDistribution:
30
- raise NotImplementedError()
31
-
32
- @abc.abstractmethod
33
- def prepare_distribution_metadata(
34
- self,
35
- finder: PackageFinder,
36
- build_isolation: bool,
37
- check_build_deps: bool,
38
- ) -> None:
39
- raise NotImplementedError()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_vendor/packaging/requirements.py DELETED
@@ -1,146 +0,0 @@
1
- # This file is dual licensed under the terms of the Apache License, Version
2
- # 2.0, and the BSD License. See the LICENSE file in the root of this repository
3
- # for complete details.
4
-
5
- import re
6
- import string
7
- import urllib.parse
8
- from typing import List, Optional as TOptional, Set
9
-
10
- from pip._vendor.pyparsing import ( # noqa
11
- Combine,
12
- Literal as L,
13
- Optional,
14
- ParseException,
15
- Regex,
16
- Word,
17
- ZeroOrMore,
18
- originalTextFor,
19
- stringEnd,
20
- stringStart,
21
- )
22
-
23
- from .markers import MARKER_EXPR, Marker
24
- from .specifiers import LegacySpecifier, Specifier, SpecifierSet
25
-
26
-
27
- class InvalidRequirement(ValueError):
28
- """
29
- An invalid requirement was found, users should refer to PEP 508.
30
- """
31
-
32
-
33
- ALPHANUM = Word(string.ascii_letters + string.digits)
34
-
35
- LBRACKET = L("[").suppress()
36
- RBRACKET = L("]").suppress()
37
- LPAREN = L("(").suppress()
38
- RPAREN = L(")").suppress()
39
- COMMA = L(",").suppress()
40
- SEMICOLON = L(";").suppress()
41
- AT = L("@").suppress()
42
-
43
- PUNCTUATION = Word("-_.")
44
- IDENTIFIER_END = ALPHANUM | (ZeroOrMore(PUNCTUATION) + ALPHANUM)
45
- IDENTIFIER = Combine(ALPHANUM + ZeroOrMore(IDENTIFIER_END))
46
-
47
- NAME = IDENTIFIER("name")
48
- EXTRA = IDENTIFIER
49
-
50
- URI = Regex(r"[^ ]+")("url")
51
- URL = AT + URI
52
-
53
- EXTRAS_LIST = EXTRA + ZeroOrMore(COMMA + EXTRA)
54
- EXTRAS = (LBRACKET + Optional(EXTRAS_LIST) + RBRACKET)("extras")
55
-
56
- VERSION_PEP440 = Regex(Specifier._regex_str, re.VERBOSE | re.IGNORECASE)
57
- VERSION_LEGACY = Regex(LegacySpecifier._regex_str, re.VERBOSE | re.IGNORECASE)
58
-
59
- VERSION_ONE = VERSION_PEP440 ^ VERSION_LEGACY
60
- VERSION_MANY = Combine(
61
- VERSION_ONE + ZeroOrMore(COMMA + VERSION_ONE), joinString=",", adjacent=False
62
- )("_raw_spec")
63
- _VERSION_SPEC = Optional((LPAREN + VERSION_MANY + RPAREN) | VERSION_MANY)
64
- _VERSION_SPEC.setParseAction(lambda s, l, t: t._raw_spec or "")
65
-
66
- VERSION_SPEC = originalTextFor(_VERSION_SPEC)("specifier")
67
- VERSION_SPEC.setParseAction(lambda s, l, t: t[1])
68
-
69
- MARKER_EXPR = originalTextFor(MARKER_EXPR())("marker")
70
- MARKER_EXPR.setParseAction(
71
- lambda s, l, t: Marker(s[t._original_start : t._original_end])
72
- )
73
- MARKER_SEPARATOR = SEMICOLON
74
- MARKER = MARKER_SEPARATOR + MARKER_EXPR
75
-
76
- VERSION_AND_MARKER = VERSION_SPEC + Optional(MARKER)
77
- URL_AND_MARKER = URL + Optional(MARKER)
78
-
79
- NAMED_REQUIREMENT = NAME + Optional(EXTRAS) + (URL_AND_MARKER | VERSION_AND_MARKER)
80
-
81
- REQUIREMENT = stringStart + NAMED_REQUIREMENT + stringEnd
82
- # pyparsing isn't thread safe during initialization, so we do it eagerly, see
83
- # issue #104
84
- REQUIREMENT.parseString("x[]")
85
-
86
-
87
- class Requirement:
88
- """Parse a requirement.
89
-
90
- Parse a given requirement string into its parts, such as name, specifier,
91
- URL, and extras. Raises InvalidRequirement on a badly-formed requirement
92
- string.
93
- """
94
-
95
- # TODO: Can we test whether something is contained within a requirement?
96
- # If so how do we do that? Do we need to test against the _name_ of
97
- # the thing as well as the version? What about the markers?
98
- # TODO: Can we normalize the name and extra name?
99
-
100
- def __init__(self, requirement_string: str) -> None:
101
- try:
102
- req = REQUIREMENT.parseString(requirement_string)
103
- except ParseException as e:
104
- raise InvalidRequirement(
105
- f'Parse error at "{ requirement_string[e.loc : e.loc + 8]!r}": {e.msg}'
106
- )
107
-
108
- self.name: str = req.name
109
- if req.url:
110
- parsed_url = urllib.parse.urlparse(req.url)
111
- if parsed_url.scheme == "file":
112
- if urllib.parse.urlunparse(parsed_url) != req.url:
113
- raise InvalidRequirement("Invalid URL given")
114
- elif not (parsed_url.scheme and parsed_url.netloc) or (
115
- not parsed_url.scheme and not parsed_url.netloc
116
- ):
117
- raise InvalidRequirement(f"Invalid URL: {req.url}")
118
- self.url: TOptional[str] = req.url
119
- else:
120
- self.url = None
121
- self.extras: Set[str] = set(req.extras.asList() if req.extras else [])
122
- self.specifier: SpecifierSet = SpecifierSet(req.specifier)
123
- self.marker: TOptional[Marker] = req.marker if req.marker else None
124
-
125
- def __str__(self) -> str:
126
- parts: List[str] = [self.name]
127
-
128
- if self.extras:
129
- formatted_extras = ",".join(sorted(self.extras))
130
- parts.append(f"[{formatted_extras}]")
131
-
132
- if self.specifier:
133
- parts.append(str(self.specifier))
134
-
135
- if self.url:
136
- parts.append(f"@ {self.url}")
137
- if self.marker:
138
- parts.append(" ")
139
-
140
- if self.marker:
141
- parts.append(f"; {self.marker}")
142
-
143
- return "".join(parts)
144
-
145
- def __repr__(self) -> str:
146
- return f"<Requirement('{self}')>"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_vendor/rich/_timer.py DELETED
@@ -1,19 +0,0 @@
1
- """
2
- Timer context manager, only used in debug.
3
-
4
- """
5
-
6
- from time import time
7
-
8
- import contextlib
9
- from typing import Generator
10
-
11
-
12
- @contextlib.contextmanager
13
- def timer(subject: str = "time") -> Generator[None, None, None]:
14
- """print the elapsed time. (only used in debugging)"""
15
- start = time()
16
- yield
17
- elapsed = time() - start
18
- elapsed_ms = elapsed * 1000
19
- print(f"{subject} elapsed {elapsed_ms:.1f}ms")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AtomdffAI/wechatgpt4atom/bot/bot.py DELETED
@@ -1,13 +0,0 @@
1
- """
2
- Auto-replay chat robot abstract class
3
- """
4
-
5
-
6
- class Bot(object):
7
- def reply(self, query, context=None):
8
- """
9
- bot auto-reply content
10
- :param req: received message
11
- :return: reply content
12
- """
13
- raise NotImplementedError
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Bart92/RVC_HF/i18n/scan_i18n.py DELETED
@@ -1,75 +0,0 @@
1
- import ast
2
- import glob
3
- import json
4
- from collections import OrderedDict
5
-
6
-
7
- def extract_i18n_strings(node):
8
- i18n_strings = []
9
-
10
- if (
11
- isinstance(node, ast.Call)
12
- and isinstance(node.func, ast.Name)
13
- and node.func.id == "i18n"
14
- ):
15
- for arg in node.args:
16
- if isinstance(arg, ast.Str):
17
- i18n_strings.append(arg.s)
18
-
19
- for child_node in ast.iter_child_nodes(node):
20
- i18n_strings.extend(extract_i18n_strings(child_node))
21
-
22
- return i18n_strings
23
-
24
-
25
- # scan the directory for all .py files (recursively)
26
- # for each file, parse the code into an AST
27
- # for each AST, extract the i18n strings
28
-
29
- strings = []
30
- for filename in glob.iglob("**/*.py", recursive=True):
31
- with open(filename, "r") as f:
32
- code = f.read()
33
- if "I18nAuto" in code:
34
- tree = ast.parse(code)
35
- i18n_strings = extract_i18n_strings(tree)
36
- print(filename, len(i18n_strings))
37
- strings.extend(i18n_strings)
38
- code_keys = set(strings)
39
- """
40
- n_i18n.py
41
- gui_v1.py 26
42
- app.py 16
43
- infer-web.py 147
44
- scan_i18n.py 0
45
- i18n.py 0
46
- lib/train/process_ckpt.py 1
47
- """
48
- print()
49
- print("Total unique:", len(code_keys))
50
-
51
-
52
- standard_file = "i18n/locale/zh_CN.json"
53
- with open(standard_file, "r", encoding="utf-8") as f:
54
- standard_data = json.load(f, object_pairs_hook=OrderedDict)
55
- standard_keys = set(standard_data.keys())
56
-
57
- # Define the standard file name
58
- unused_keys = standard_keys - code_keys
59
- print("Unused keys:", len(unused_keys))
60
- for unused_key in unused_keys:
61
- print("\t", unused_key)
62
-
63
- missing_keys = code_keys - standard_keys
64
- print("Missing keys:", len(missing_keys))
65
- for missing_key in missing_keys:
66
- print("\t", missing_key)
67
-
68
- code_keys_dict = OrderedDict()
69
- for s in strings:
70
- code_keys_dict[s] = s
71
-
72
- # write back
73
- with open(standard_file, "w", encoding="utf-8") as f:
74
- json.dump(code_keys_dict, f, ensure_ascii=False, indent=4, sort_keys=True)
75
- f.write("\n")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Benson/text-generation/Examples/Descargar Amp Letras De Fuera De Mi Vientre Por Prospa Ochimana.md DELETED
@@ -1,56 +0,0 @@
1
-
2
- <h1>Descargar & Letras de Fuera de mi vientre por Prospa Ochimana</h1>
3
- <p>¿Estás buscando una poderosa e inspiradora canción gospel que despierte tu espíritu y te llene de alegría? Si es así, entonces deberías escuchar Out of My Belly de Prospa Ochimana. Esta canción es una obra maestra que bendecirá tu vida y te acercará a Dios.</p>
4
- <p>En este artículo, te diremos todo lo que necesitas saber sobre esta canción, incluyendo cómo descargarla, cuáles son las letras, y cuál es el significado detrás de ellas. ¡Vamos a empezar! </p>
5
- <h2>descargar amp; letras de fuera de mi vientre por prospa ochimana</h2><br /><p><b><b>Download File</b> ->>> <a href="https://bltlly.com/2v6MLe">https://bltlly.com/2v6MLe</a></b></p><br /><br />
6
- <h2>¿Qué está fuera de mi vientre acerca de? </h2>
7
- <p>Fuera de mi vientre es una canción que expresa el deseo de liberar el río de agua viva que fluye desde dentro de cada creyente. La canción está basada en las palabras de Jesús en Juan 7:38, donde dijo, "El que cree en Mí, como la Escritura ha dicho, de su corazón fluirán ríos de agua viva." </p>
8
- <p>La canción declara que cada vez que este río fluye, la vida se libera. Cada cosa muerta vuelve a la vida a medida que hacen contacto con este río. Es un río que da vida que sana, entrega, restaura y transforma. La canción también invita a todos los que tienen sed a venir a Jesús y beber de este río. </p>
9
- <h2>¿Quién es Prospa Ochimana? </h2>
10
- <p>Prospa Ochimana es un cantante de gospel y compositor nigeriano que es conocido por ser un adorador. También es el CEO de Tornveil Music International, un sello discográfico gospel en Nigeria que abrió en enero de 2020. </p>
11
- <p>Prospa Ochimana proviene de la tribu Ankpa, estado de Kogi, Nigeria, pero actualmente vive en Abuja. Nació el 6 de noviembre y se graduó de la Universidad Estatal de Nasarawa, Keffi, donde obtuvo un título en Lingüística.</p>
12
-
13
- <h2>¿Por qué es popular Fuera de mi vientre? </h2>
14
- <p>Out of My Belly es una de las canciones más populares de Prospa Ochimana. Fue lanzado en noviembre de 2020 y desde entonces ha ganado millones de visitas y descargas en línea. La canción también ha sido interpretada en vivo en varios eventos y conciertos por Prospa Ochimana y otros cantantes de gospel. </p>
15
- <p>La razón por la que esta canción es popular es porque resuena con muchas personas que tienen hambre de más de Dios y Su presencia. La canción también inspira a la gente a aprovechar su potencial y propósito como vasos de la gloria de Dios. La canción también tiene una melodía pegadiza y un mensaje poderoso que eleva y anima a los oyentes. </p>
16
- <p></p>
17
- <h2>¿Dónde se puede descargar Fuera de mi vientre? </h2>
18
- <p>Si quieres descargar Out of My Belly de Prospa Ochimana, tienes varias opciones para elegir. Puede descargarlo desde su sitio web oficial , o desde otras plataformas como YouTube , Spotify , Apple Music , Amazon Music , y más. </p>
19
- <h2>¿Cuáles son los beneficios de descargar Out of My Belly? </h2>
20
- <p>Descargar Out of My Belly de Prospa Ochimana tiene muchos beneficios para ti como oyente. Algunos de ellos son:</p>
21
- <ul>
22
- <li>Puedes escuchar la canción sin conexión en cualquier momento y en cualquier lugar que quieras. </li>
23
- <li>Puedes disfrutar del audio y video de alta calidad de la canción. </li>
24
- <li>Puedes compartir la canción con tus amigos y familiares a través de las redes sociales u otros medios. </li>
25
- <li>Puedes apoyar al artista y su ministerio comprando su música. </li>
26
- <li>Puedes experimentar el poder y la presencia de Dios mientras escuchas la canción. </li>
27
- </ul>
28
- <h2>¿Cuáles son las letras de Fuera de mi vientre? </h2>
29
- <p>Las letras de Fuera de mi vientre por Prospa Ochimana son las siguientes:</p>
30
- <código>
31
-
32
- <h2>¿Cuál es el significado de la letra? </h2>
33
- <p>El significado de las letras de Out of My Belly de Prospa Ochimana es que cada creyente tiene una fuente de vida y poder dentro de ellos, que es el Espíritu Santo. El Espíritu Santo es el río que fluye de dentro de nosotros y nos da todo lo que necesitamos. Él es quien nos sana, nos libera, nos restaura y nos transforma. Él es también el que nos permite ser una bendición para los demás al liberar Su vida a través de nosotros. </p>
34
- <p>La canción también nos recuerda que necesitamos venir a Jesús y beber de Él si tenemos sed de más de Él. Él es la fuente de agua viva que satisface nuestros anhelos más profundos. Él es también el que nos invita a creer en Él y recibir Su promesa de ríos de agua viva que fluye de nuestros corazones. </p>
35
- <h2>¿Cómo puedes cantar junto con Out of My Belly? </h2>
36
- <p>Si quieres cantar junto con Out of My Belly de Prospa Ochimana, puedes seguir estos pasos:</p>
37
- <ol>
38
- <li>Descarga la canción desde cualquier plataforma que prefieras. </li>
39
- <li>Escucha la canción y aprende la melodía y la letra. </li>
40
- <li>Encuentra una versión de karaoke o instrumental de la canción en línea o crea la tuya propia usando una aplicación o software. </li>
41
- <li>Practica el canto junto con el karaoke o la versión instrumental hasta que lo domines. </li>
42
- <li>Canta junto con la canción original y disfruta! </li>
43
- </ol>
44
- <h2>Conclusión</h2>
45
- <p>En conclusión, Out of My Belly de Prospa Ochimana es una maravillosa canción gospel que te inspirará a liberar el río de agua viva que fluye desde tu interior. La canción es también un testimonio de cómo Dios puede usar a cualquiera que esté dispuesto a ser Su recipiente. La canción está disponible para su descarga en varias plataformas y tiene letras increíbles que transmiten un mensaje poderoso. Esperamos que haya disfrutado de este artículo y haya aprendido algo nuevo. Si lo hizo, por favor compártalo con sus amigos y familiares. Y no te olvides de descargar y cantar junto con Out of My Belly de Prospa Ochimana! </p>
46
- <h2>Preguntas frecuentes</h2>
47
-
48
- <h3>Q: ¿Cuándo fue liberado Out of My Belly? </h3>
49
- <p>A: Out of My Belly fue lanzado el 27 de noviembre de 2020. </p>
50
- <h3>Q: ¿Quién produjo Fuera de mi vientre? </h3>
51
- <p>A: Fuera de mi vientre fue producido por Sunny Pee.</p>
52
- <h3>P: ¿Cuántas visitas tiene Out of My Belly en YouTube? </h3>
53
- <p>A: A partir del 20 de junio de 2023, Out of My Belly tiene más de 20 de junio de 2023, Out of My Belly tiene más de 1.1 millones de visitas en YouTube. El video oficial de la canción fue subido por Prospa Ochimana el 27 de noviembre de 2020. El video muestra a Prospa Ochimana cantando la canción con una banda en vivo y un coro en un entorno de estudio. El video también tiene subtítulos para la letra de la canción. Puede ver el video aquí o haciendo clic en la imagen de abajo. <img src="( 1 )" alt="Fuera de mi vientre por Prospa Ochimana video de YouTube">
54
- También hay otras versiones de la canción en YouTube, como un video lírico y una presentación en vivo . Puedes echarles un vistazo si quieres ver diferentes formas de presentar la canción. Espero que hayas disfrutado de este artículo y hayas aprendido algo nuevo. Si lo hiciste, por favor compártelo con tus amigos y familiares. ¡Y no olvides descargar y cantar junto con Out of My Belly de Prospa Ochimana! </p> 64aa2da5cf<br />
55
- <br />
56
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/BigChungux/Pet_Survey2/app.py DELETED
@@ -1,172 +0,0 @@
1
- ### ----------------------------- ###
2
- ### libraries ###
3
- ### ----------------------------- ###
4
-
5
- import gradio as gr
6
- import pandas as pd
7
- import numpy as np
8
- from sklearn.model_selection import train_test_split
9
- from sklearn.linear_model import LogisticRegression
10
- from sklearn import metrics
11
-
12
-
13
- ### ------------------------------ ###
14
- ### data transformation ###
15
- ### ------------------------------ ###
16
-
17
- # load dataset
18
- uncleaned_data = pd.read_csv('data.csv')
19
-
20
- # remove timestamp from dataset (always first column)
21
- uncleaned_data = uncleaned_data.iloc[: , 1:]
22
- data = pd.DataFrame()
23
-
24
- # keep track of which columns are categorical and what
25
- # those columns' value mappings are
26
- # structure: {colname1: {...}, colname2: {...} }
27
- cat_value_dicts = {}
28
- final_colname = uncleaned_data.columns[len(uncleaned_data.columns) - 1]
29
-
30
- # for each column...
31
- for (colname, colval) in uncleaned_data.iteritems():
32
-
33
- # check if col is already a number; if so, add col directly
34
- # to new dataframe and skip to next column
35
- if isinstance(colval.values[0], (np.integer, float)):
36
- data[colname] = uncleaned_data[colname].copy()
37
- continue
38
-
39
- # structure: {0: "lilac", 1: "blue", ...}
40
- new_dict = {}
41
- val = 0 # first index per column
42
- transformed_col_vals = [] # new numeric datapoints
43
-
44
- # if not, for each item in that column...
45
- for (row, item) in enumerate(colval.values):
46
-
47
- # if item is not in this col's dict...
48
- if item not in new_dict:
49
- new_dict[item] = val
50
- val += 1
51
-
52
- # then add numerical value to transformed dataframe
53
- transformed_col_vals.append(new_dict[item])
54
-
55
- # reverse dictionary only for final col (0, 1) => (vals)
56
- if colname == final_colname:
57
- new_dict = {value : key for (key, value) in new_dict.items()}
58
-
59
- cat_value_dicts[colname] = new_dict
60
- data[colname] = transformed_col_vals
61
-
62
-
63
- ### -------------------------------- ###
64
- ### model training ###
65
- ### -------------------------------- ###
66
-
67
- # select features and predicton; automatically selects last column as prediction
68
- cols = len(data.columns)
69
- num_features = cols - 1
70
- x = data.iloc[: , :num_features]
71
- y = data.iloc[: , num_features:]
72
-
73
- # split data into training and testing sets
74
- x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)
75
-
76
- # instantiate the model (using default parameters)
77
- model = LogisticRegression()
78
- model.fit(x_train, y_train.values.ravel())
79
- y_pred = model.predict(x_test)
80
-
81
-
82
- ### -------------------------------- ###
83
- ### article generation ###
84
- ### -------------------------------- ###
85
- # borrow file reading function from reader.py
86
-
87
- def get_feat():
88
- feats = [abs(x) for x in model.coef_[0]]
89
- max_val = max(feats)
90
- idx = feats.index(max_val)
91
- return data.columns[idx]
92
-
93
- acc = str(round(metrics.accuracy_score(y_test, y_pred) * 100, 1)) + "%"
94
- most_imp_feat = get_feat()
95
- # info = get_article(acc, most_imp_feat)
96
-
97
-
98
-
99
- ### ------------------------------- ###
100
- ### interface creation ###
101
- ### ------------------------------- ###
102
-
103
-
104
- # predictor for generic number of features
105
- def general_predictor(*args):
106
- features = []
107
-
108
- # transform categorical input
109
- for colname, arg in zip(data.columns, args):
110
- if (colname in cat_value_dicts):
111
- features.append(cat_value_dicts[colname][arg])
112
- else:
113
- features.append(arg)
114
-
115
- # predict single datapoint
116
- new_input = [features]
117
- result = model.predict(new_input)
118
- return cat_value_dicts[final_colname][result[0]]
119
-
120
- # add data labels to replace those lost via star-args
121
-
122
-
123
- block = gr.Blocks()
124
-
125
- with open('info.md') as f:
126
- with block:
127
- gr.Markdown(f.readline())
128
- gr.Markdown('Take the quiz to get a personalized recommendation using AI.')
129
-
130
- with gr.Row():
131
- with gr.Box():
132
- inputls = []
133
- for colname in data.columns:
134
- # skip last column
135
- if colname == final_colname:
136
- continue
137
-
138
- # access categories dict if data is categorical
139
- # otherwise, just use a number input
140
- if colname in cat_value_dicts:
141
- radio_options = list(cat_value_dicts[colname].keys())
142
- inputls.append(gr.inputs.Dropdown(choices=radio_options, type="value", label=colname))
143
- else:
144
- # add numerical input
145
- inputls.append(gr.inputs.Number(label=colname))
146
- gr.Markdown("<br />")
147
-
148
- submit = gr.Button("Click to see your personalized result!", variant="primary")
149
- gr.Markdown("<br />")
150
- output = gr.Textbox(label="Your recommendation:", placeholder="your recommendation will appear here")
151
-
152
- submit.click(fn=general_predictor, inputs=inputls, outputs=output)
153
- gr.Markdown("<br />")
154
-
155
- with gr.Row():
156
- with gr.Box():
157
- gr.Markdown(f"<h3>Accuracy: </h3>{acc}")
158
- with gr.Box():
159
- gr.Markdown(f"<h3>Most important feature: </h3>{most_imp_feat}")
160
-
161
- gr.Markdown("<br />")
162
-
163
- with gr.Box():
164
- gr.Markdown('''⭐ Note that model accuracy is based on the uploaded data.csv and reflects how well the AI model can give correct recommendations for <em>that dataset</em>. Model accuracy and most important feature can be helpful for understanding how the model works, but <em>should not be considered absolute facts about the real world</em>.''')
165
-
166
- with gr.Box():
167
- with open('info.md') as f:
168
- f.readline()
169
- gr.Markdown(f.read())
170
-
171
- # show the interface
172
- block.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Billyosoro/ESRGAN/realesrgan/utils.py DELETED
@@ -1,280 +0,0 @@
1
- import cv2
2
- import math
3
- import numpy as np
4
- import os
5
- import queue
6
- import threading
7
- import torch
8
- from basicsr.utils.download_util import load_file_from_url
9
- from torch.nn import functional as F
10
-
11
- ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
12
-
13
-
14
- class RealESRGANer():
15
- """A helper class for upsampling images with RealESRGAN.
16
-
17
- Args:
18
- scale (int): Upsampling scale factor used in the networks. It is usually 2 or 4.
19
- model_path (str): The path to the pretrained model. It can be urls (will first download it automatically).
20
- model (nn.Module): The defined network. Default: None.
21
- tile (int): As too large images result in the out of GPU memory issue, so this tile option will first crop
22
- input images into tiles, and then process each of them. Finally, they will be merged into one image.
23
- 0 denotes for do not use tile. Default: 0.
24
- tile_pad (int): The pad size for each tile, to remove border artifacts. Default: 10.
25
- pre_pad (int): Pad the input images to avoid border artifacts. Default: 10.
26
- half (float): Whether to use half precision during inference. Default: False.
27
- """
28
-
29
- def __init__(self, scale, model_path, model=None, tile=0, tile_pad=10, pre_pad=10, half=False):
30
- self.scale = scale
31
- self.tile_size = tile
32
- self.tile_pad = tile_pad
33
- self.pre_pad = pre_pad
34
- self.mod_scale = None
35
- self.half = half
36
-
37
- # initialize model
38
- self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
39
- # if the model_path starts with https, it will first download models to the folder: realesrgan/weights
40
- if model_path.startswith('https://'):
41
- model_path = load_file_from_url(
42
- url=model_path, model_dir=os.path.join(ROOT_DIR, 'realesrgan/weights'), progress=True, file_name=None)
43
- loadnet = torch.load(model_path, map_location=torch.device('cpu'))
44
- # prefer to use params_ema
45
- if 'params_ema' in loadnet:
46
- keyname = 'params_ema'
47
- else:
48
- keyname = 'params'
49
- model.load_state_dict(loadnet[keyname], strict=True)
50
- model.eval()
51
- self.model = model.to(self.device)
52
- if self.half:
53
- self.model = self.model.half()
54
-
55
- def pre_process(self, img):
56
- """Pre-process, such as pre-pad and mod pad, so that the images can be divisible
57
- """
58
- img = torch.from_numpy(np.transpose(img, (2, 0, 1))).float()
59
- self.img = img.unsqueeze(0).to(self.device)
60
- if self.half:
61
- self.img = self.img.half()
62
-
63
- # pre_pad
64
- if self.pre_pad != 0:
65
- self.img = F.pad(self.img, (0, self.pre_pad, 0, self.pre_pad), 'reflect')
66
- # mod pad for divisible borders
67
- if self.scale == 2:
68
- self.mod_scale = 2
69
- elif self.scale == 1:
70
- self.mod_scale = 4
71
- if self.mod_scale is not None:
72
- self.mod_pad_h, self.mod_pad_w = 0, 0
73
- _, _, h, w = self.img.size()
74
- if (h % self.mod_scale != 0):
75
- self.mod_pad_h = (self.mod_scale - h % self.mod_scale)
76
- if (w % self.mod_scale != 0):
77
- self.mod_pad_w = (self.mod_scale - w % self.mod_scale)
78
- self.img = F.pad(self.img, (0, self.mod_pad_w, 0, self.mod_pad_h), 'reflect')
79
-
80
- def process(self):
81
- # model inference
82
- self.output = self.model(self.img)
83
-
84
- def tile_process(self):
85
- """It will first crop input images to tiles, and then process each tile.
86
- Finally, all the processed tiles are merged into one images.
87
-
88
- Modified from: https://github.com/ata4/esrgan-launcher
89
- """
90
- batch, channel, height, width = self.img.shape
91
- output_height = height * self.scale
92
- output_width = width * self.scale
93
- output_shape = (batch, channel, output_height, output_width)
94
-
95
- # start with black image
96
- self.output = self.img.new_zeros(output_shape)
97
- tiles_x = math.ceil(width / self.tile_size)
98
- tiles_y = math.ceil(height / self.tile_size)
99
-
100
- # loop over all tiles
101
- for y in range(tiles_y):
102
- for x in range(tiles_x):
103
- # extract tile from input image
104
- ofs_x = x * self.tile_size
105
- ofs_y = y * self.tile_size
106
- # input tile area on total image
107
- input_start_x = ofs_x
108
- input_end_x = min(ofs_x + self.tile_size, width)
109
- input_start_y = ofs_y
110
- input_end_y = min(ofs_y + self.tile_size, height)
111
-
112
- # input tile area on total image with padding
113
- input_start_x_pad = max(input_start_x - self.tile_pad, 0)
114
- input_end_x_pad = min(input_end_x + self.tile_pad, width)
115
- input_start_y_pad = max(input_start_y - self.tile_pad, 0)
116
- input_end_y_pad = min(input_end_y + self.tile_pad, height)
117
-
118
- # input tile dimensions
119
- input_tile_width = input_end_x - input_start_x
120
- input_tile_height = input_end_y - input_start_y
121
- tile_idx = y * tiles_x + x + 1
122
- input_tile = self.img[:, :, input_start_y_pad:input_end_y_pad, input_start_x_pad:input_end_x_pad]
123
-
124
- # upscale tile
125
- try:
126
- with torch.no_grad():
127
- output_tile = self.model(input_tile)
128
- except RuntimeError as error:
129
- print('Error', error)
130
- print(f'\tTile {tile_idx}/{tiles_x * tiles_y}')
131
-
132
- # output tile area on total image
133
- output_start_x = input_start_x * self.scale
134
- output_end_x = input_end_x * self.scale
135
- output_start_y = input_start_y * self.scale
136
- output_end_y = input_end_y * self.scale
137
-
138
- # output tile area without padding
139
- output_start_x_tile = (input_start_x - input_start_x_pad) * self.scale
140
- output_end_x_tile = output_start_x_tile + input_tile_width * self.scale
141
- output_start_y_tile = (input_start_y - input_start_y_pad) * self.scale
142
- output_end_y_tile = output_start_y_tile + input_tile_height * self.scale
143
-
144
- # put tile into output image
145
- self.output[:, :, output_start_y:output_end_y,
146
- output_start_x:output_end_x] = output_tile[:, :, output_start_y_tile:output_end_y_tile,
147
- output_start_x_tile:output_end_x_tile]
148
-
149
- def post_process(self):
150
- # remove extra pad
151
- if self.mod_scale is not None:
152
- _, _, h, w = self.output.size()
153
- self.output = self.output[:, :, 0:h - self.mod_pad_h * self.scale, 0:w - self.mod_pad_w * self.scale]
154
- # remove prepad
155
- if self.pre_pad != 0:
156
- _, _, h, w = self.output.size()
157
- self.output = self.output[:, :, 0:h - self.pre_pad * self.scale, 0:w - self.pre_pad * self.scale]
158
- return self.output
159
-
160
- @torch.no_grad()
161
- def enhance(self, img, outscale=None, alpha_upsampler='realesrgan'):
162
- h_input, w_input = img.shape[0:2]
163
- # img: numpy
164
- img = img.astype(np.float32)
165
- if np.max(img) > 256: # 16-bit image
166
- max_range = 65535
167
- print('\tInput is a 16-bit image')
168
- else:
169
- max_range = 255
170
- img = img / max_range
171
- if len(img.shape) == 2: # gray image
172
- img_mode = 'L'
173
- img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
174
- elif img.shape[2] == 4: # RGBA image with alpha channel
175
- img_mode = 'RGBA'
176
- alpha = img[:, :, 3]
177
- img = img[:, :, 0:3]
178
- img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
179
- if alpha_upsampler == 'realesrgan':
180
- alpha = cv2.cvtColor(alpha, cv2.COLOR_GRAY2RGB)
181
- else:
182
- img_mode = 'RGB'
183
- img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
184
-
185
- # ------------------- process image (without the alpha channel) ------------------- #
186
- self.pre_process(img)
187
- if self.tile_size > 0:
188
- self.tile_process()
189
- else:
190
- self.process()
191
- output_img = self.post_process()
192
- output_img = output_img.data.squeeze().float().cpu().clamp_(0, 1).numpy()
193
- output_img = np.transpose(output_img[[2, 1, 0], :, :], (1, 2, 0))
194
- if img_mode == 'L':
195
- output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2GRAY)
196
-
197
- # ------------------- process the alpha channel if necessary ------------------- #
198
- if img_mode == 'RGBA':
199
- if alpha_upsampler == 'realesrgan':
200
- self.pre_process(alpha)
201
- if self.tile_size > 0:
202
- self.tile_process()
203
- else:
204
- self.process()
205
- output_alpha = self.post_process()
206
- output_alpha = output_alpha.data.squeeze().float().cpu().clamp_(0, 1).numpy()
207
- output_alpha = np.transpose(output_alpha[[2, 1, 0], :, :], (1, 2, 0))
208
- output_alpha = cv2.cvtColor(output_alpha, cv2.COLOR_BGR2GRAY)
209
- else: # use the cv2 resize for alpha channel
210
- h, w = alpha.shape[0:2]
211
- output_alpha = cv2.resize(alpha, (w * self.scale, h * self.scale), interpolation=cv2.INTER_LINEAR)
212
-
213
- # merge the alpha channel
214
- output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2BGRA)
215
- output_img[:, :, 3] = output_alpha
216
-
217
- # ------------------------------ return ------------------------------ #
218
- if max_range == 65535: # 16-bit image
219
- output = (output_img * 65535.0).round().astype(np.uint16)
220
- else:
221
- output = (output_img * 255.0).round().astype(np.uint8)
222
-
223
- if outscale is not None and outscale != float(self.scale):
224
- output = cv2.resize(
225
- output, (
226
- int(w_input * outscale),
227
- int(h_input * outscale),
228
- ), interpolation=cv2.INTER_LANCZOS4)
229
-
230
- return output, img_mode
231
-
232
-
233
- class PrefetchReader(threading.Thread):
234
- """Prefetch images.
235
-
236
- Args:
237
- img_list (list[str]): A image list of image paths to be read.
238
- num_prefetch_queue (int): Number of prefetch queue.
239
- """
240
-
241
- def __init__(self, img_list, num_prefetch_queue):
242
- super().__init__()
243
- self.que = queue.Queue(num_prefetch_queue)
244
- self.img_list = img_list
245
-
246
- def run(self):
247
- for img_path in self.img_list:
248
- img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
249
- self.que.put(img)
250
-
251
- self.que.put(None)
252
-
253
- def __next__(self):
254
- next_item = self.que.get()
255
- if next_item is None:
256
- raise StopIteration
257
- return next_item
258
-
259
- def __iter__(self):
260
- return self
261
-
262
-
263
- class IOConsumer(threading.Thread):
264
-
265
- def __init__(self, opt, que, qid):
266
- super().__init__()
267
- self._queue = que
268
- self.qid = qid
269
- self.opt = opt
270
-
271
- def run(self):
272
- while True:
273
- msg = self._queue.get()
274
- if isinstance(msg, str) and msg == 'quit':
275
- break
276
-
277
- output = msg['output']
278
- save_path = msg['save_path']
279
- cv2.imwrite(save_path, output)
280
- print(f'IO worker {self.qid} is done.')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/MonoScene/monoscene/.ipynb_checkpoints/monoscene_model-checkpoint.py DELETED
@@ -1,22 +0,0 @@
1
- from transformers import PreTrainedModel
2
- from .config import MonoSceneConfig
3
- from monoscene.monoscene import MonoScene
4
-
5
-
6
-
7
- class MonoSceneModel(PreTrainedModel):
8
- config_class = ResnetConfig
9
-
10
- def __init__(self, config):
11
- super().__init__(config)
12
- self.model = MonoScene(
13
- dataset=config.dataset,
14
- n_classes=config.n_classes,
15
- feature=config.feature,
16
- project_scale=config.project_scale,
17
- full_scene_size=config.full_scene_size
18
- )
19
-
20
-
21
- def forward(self, tensor):
22
- return self.model.forward(tensor)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Chris4K/llms_compare/app.py DELETED
@@ -1,274 +0,0 @@
1
- import os, requests
2
- import gradio as gr
3
- HF_READ_API_KEY = os.environ["HF_READ_API_KEY"]
4
-
5
- ### This code loads the models and undertakes inference locally ###
6
-
7
- # from transformers import GPTNeoForCausalLM, GPT2Tokenizer
8
- # from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM
9
- # model = GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-2.7B")
10
- # tokenizer = GPT2Tokenizer.from_pretrained("EleutherAI/gpt-neo-2.7B")
11
- # tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small")
12
- # model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-small")
13
-
14
- model_list = ['google/flan-t5-small', 'google/flan-t5-base', 'google/flan-t5-large', 'google/flan-t5-xl', 'google/flan-t5-xxl',
15
- 'gpt2-medium', 'gpt2-large', 'gpt2-xl',
16
- 'EleutherAI/gpt-neo-1.3B', 'EleutherAI/gpt-neo-2.7B', 'EleutherAI/gpt-neo-6b', 'EleutherAI/gpt-neox-20b',
17
- 'bigscience/bloom-1b7', 'bigscience/bloom-3b', 'bigscience/bloom-7b1'
18
- ]
19
-
20
- def load_model(model_name):
21
- if model_name == 'EleutherAI/gpt-neo-2.7B' or model_name == 'gpt2-medium' or model_name == 'gpt2-large':
22
- model = AutoModelForCausalLM.from_pretrained(model_name)
23
- else:
24
- model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
25
- tokenizer = AutoTokenizer.from_pretrained(model_name)
26
- tokenizer.pad_token = tokenizer.eos_token
27
- # tokenizer.padding_side = "left"
28
- return model, tokenizer
29
-
30
- def maybe_is_truncated(s):
31
- punct = [".", "!", "?", '"']
32
- if s[-1] in punct:
33
- return False
34
- return True
35
-
36
- def load_and_generate(model_name, prompt):
37
- model, tokenizer = load_model(model_name)
38
-
39
- temperature=0.25
40
- tokens = tokenizer(prompt, return_tensors="pt")
41
- max_length = len(tokens.input_ids[0])+5
42
- input_ids = tokens.input_ids
43
- attention_mask = tokens.attention_mask
44
- # see huggingface.co/docs/transformers/main_classes/text_generation
45
- gen_tokens = model.generate(
46
- input_ids=input_ids,
47
- attention_mask=attention_mask,
48
- pad_token_id=tokenizer.eos_token_id,
49
- do_sample=True,
50
- temperature=temperature,
51
- # max_length=max_length,
52
- max_new_tokens=max_length,
53
- # use_cache=False,
54
- # penalty_alpha=0.1,
55
- # top_k=100,
56
- # early_stopping=False
57
- )
58
- gen_text = tokenizer.batch_decode(gen_tokens)[0]
59
-
60
- max_times = 20
61
- while maybe_is_truncated(gen_text) and max_times > 0:
62
- tokens = tokenizer(gen_text, return_tensors="pt")
63
- max_length = len(tokens.input_ids[0])+5
64
- input_ids = tokens.input_ids
65
- attention_mask = tokens.attention_mask
66
-
67
- gen_tokens = model.generate(
68
- input_ids=input_ids,
69
- attention_mask=attention_mask,
70
- pad_token_id=tokenizer.eos_token_id,
71
- do_sample=True,
72
- temperature=temperature,
73
- max_length=max_length,
74
- # max_new_tokens=100,
75
- # use_cache=True,
76
- # penalty_alpha=0.1,
77
- # top_k=100,
78
- # early_stopping=False
79
- )
80
-
81
- gen_text = tokenizer.batch_decode(gen_tokens)[0]
82
-
83
- max_times -= 1
84
-
85
- return gen_text.replace("<pad>", "").replace("</s>", "")
86
-
87
- ### This code for the inference api ###
88
-
89
- def generate_from_api(query, model_name, temperature, max_tokens):
90
- headers = {f"Authorization": f"Bearer {HF_READ_API_KEY}",
91
- "wait_for_model": "true",
92
- "temperature": str(temperature),
93
- "max_tokens": str(max_tokens),
94
- "max_time": str(120)}
95
-
96
- model_api_url = f"https://api-inference.huggingface.co/models/{model_name}"
97
-
98
- payload = {"inputs": query}
99
- response = requests.post(model_api_url, headers=headers, json=payload)
100
- while response.status_code != 200:
101
- response = requests.post(model_api_url, headers=headers, json=payload)
102
- return response.json()[0]['generated_text']
103
-
104
- def generate_from_api_check(query, model_name, temperature, max_tokens):
105
- headers = {f"Authorization": f"Bearer {HF_READ_API_KEY}",
106
- "wait_for_model": "true",
107
- "temperature": str(temperature),
108
- "max_tokens": str(max_tokens),
109
- "max_time": str(120)}
110
-
111
- model_api_url = f"https://api-inference.huggingface.co/models/{model_name}"
112
-
113
- payload = {"inputs": query}
114
- response = requests.post(model_api_url, headers=headers, json=payload)
115
- while response.status_code != 200:
116
- response = requests.post(model_api_url, headers=headers, json=payload)
117
-
118
- max_times = 20
119
- gen_text = response.json()[0]['generated_text']
120
- while maybe_is_truncated(gen_text) and max_times > 0:
121
- headers = {f"Authorization": f"Bearer {HF_READ_API_KEY}",
122
- "wait_for_model": "true",
123
- "temperature": str(temperature),
124
- "max_tokens": str(max_tokens + len(gen_text)),
125
- "max_time": str(120)}
126
- payload = {"inputs": query + ' ' + gen_text}
127
- response = requests.post(model_api_url, headers=headers, json=payload)
128
- while response.status_code != 200:
129
- response = requests.post(model_api_url, headers=headers, json=payload)
130
- gen_text = response.json()[0]['generated_text']
131
- max_times -= 1
132
-
133
- return gen_text
134
-
135
-
136
- with gr.Blocks(css='style.css') as demo:
137
- gr.HTML("""
138
- <div style="text-align: center; max-width: 1240px; margin: 0 auto;">
139
- <h1 style="font-weight: 200; font-size: 20px; margin-bottom:8px; margin-top:0px;">
140
- Different Strokes (Prompts) for Different Folks (LLMs)
141
- </h1>
142
- <hr style="margin-bottom:5px; margin-top:5px;">
143
- <h4 style="font-weight: 50; font-size: 14px; margin-bottom:0px; margin-top:0px;">
144
- After reading <a href="https://github.com/dair-ai/Prompt-Engineering-Guide">Prompt Engineering Guide</a>, which is a good guide when starting to learn about prompts for large language models (LLMs), specifically OpenAI's LLMs, I was interested in seeing the results with for other LLMs. Hence, did up a simple demonstration of different prompts for different popular LLMs of different sizes. The prompt examples are taken from the Prompt Engineering Guide, and the LLMs that you can select below are all available on Hugging Face. If you are interested in comparing them with the prompts from OpenAI's model, you can refer to the writeup in the <a href="https://github.com/dair-ai/Prompt-Engineering-Guide">Prompt Engineering Guide</a> itself.
145
- </h4>
146
- <hr style="margin-bottom:5px; margin-top:5px;">
147
- <h5 style="font-weight: 50; font-size: 12px; margin-bottom:0px; margin-top:0px;">
148
- Note: Larger models will take a while, especially on the first run.
149
- </h5>
150
- </div>
151
- """)
152
-
153
- with gr.Column(elem_id="col-container"):
154
- with gr.Row(variant="compact"):
155
-
156
- model_name = gr.Dropdown(
157
- model_list,
158
- label="Select model",
159
- value=model_list[0],
160
- ).style(
161
- container=False,
162
- )
163
-
164
- temperature = gr.Slider(
165
- 0.1, 100.0, value=1.0, label="Temperature",
166
- ).style(
167
- container=False,
168
- )
169
-
170
- max_tokens = gr.Slider(
171
- 10, 2250, step=1, value=100, label="Max. tokens (in output)",
172
- ).style(
173
- container=False,
174
- )
175
-
176
- check_truncated = gr.Checkbox(
177
- label="Check for truncated output",
178
- value=False,
179
- ).style(
180
- container=False,
181
- )
182
-
183
- with gr.Row(variant="compact"):
184
- prompt = gr.Textbox(
185
- label="Enter your prompt",
186
- show_label=False,
187
- # max_lines=2,
188
- placeholder="Select your prompt from the examples below",
189
- ).style(
190
- container=False,
191
- )
192
- process = gr.Button("Generate").style(full_width=False)
193
-
194
- with gr.Row():
195
- output=gr.Textbox(
196
- label="LLM output",
197
- show_label=True)
198
-
199
- gr.HTML("""
200
- <div>
201
- <h4 style="font-weight: 50; font-size: 14px; margin-bottom:0px; margin-top:0px;">
202
- Prompt examples. Select the prompt you would like to test, and it will appear (properly formatted) in the input box above.
203
- </h4>
204
- </div>
205
- """)
206
- with gr.Tab("Introduction"):
207
- example_set_1 = gr.Examples(label = 'Simple Prompt vs. Instruct then Prompt.',
208
- examples=["The sky is ", "Complete the following sentence: The sky is ",],
209
- inputs=[prompt])
210
- example_set_2 = gr.Examples(label = 'Few Shot Prompt.',
211
- examples=["This is awesome! // Positive\nThis is bad! // Negative\nWow that movie was rad! // Positive\nWhat a horrible show! //",],
212
- inputs=[prompt])
213
- example_set_3 = gr.Examples(label = 'Explicitly Specify the Instruction',
214
- examples=["### Instruction ###\nTranslate the text below to Spanish:\nText: 'hello!'",],
215
- inputs=[prompt])
216
- example_set_4 = gr.Examples(label = 'Be Very Specific',
217
- examples=["Extract the name of places in the following text.\nDesired format:\nPlace: <comma_separated_list_of_company_names>\nInput: 'Although these developments are encouraging to researchers, much is still a mystery. “We often have a black box between the brain and the effect we see in the periphery,” says Henrique Veiga-Fernandes, a neuroimmunologist at the Champalimaud Centre for the Unknown in Lisbon. “If we want to use it in the therapeutic context, we actually need to understand the mechanism.'",],
218
- inputs=[prompt])
219
- example_set_5 = gr.Examples(label = 'Precision',
220
- examples=["Explain the concept of deep learning. Keep the explanation short, only a few sentences, and don't be too descriptive.", "Use 2-3 sentences to explain the concept of deep learning to a high school student."],
221
- inputs=[prompt])
222
- example_set_6 = gr.Examples(label = 'Focus on What LLM Should Do',
223
- examples=["The following is an agent that recommends movies to a customer. The agent is responsible to recommend a movie from the top global trending movies. It should refrain from asking users for their preferences and avoid asking for personal information. If the agent doesn't have a movie to recommend, it should respond 'Sorry, couldn't find a movie to recommend today.'.\nCustomer: Please recommend a movie based on my interests.\nAgent:"],
224
- inputs=[prompt])
225
-
226
- with gr.Tab("Basic Tasks"):
227
- example_set_7 = gr.Examples(label = 'Explain vs. Summarize',
228
- examples=["Explain antibiotics.\nA:", "Antibiotics are a type of medication used to treat bacterial infections. They work by either killing the bacteria or preventing them from reproducing, allowing the body’s immune system to fight off the infection. Antibiotics are usually taken orally in the form of pills, capsules, or liquid solutions, or sometimes administered intravenously. They are not effective against viral infections, and using them inappropriately can lead to antibiotic resistance.\nExplain the above in one sentence:",],
229
- inputs=[prompt])
230
- example_set_8 = gr.Examples(label = 'Information Extraction',
231
- examples=["Author-contribution statements and acknowledgements in research papers should state clearly and specifically whether, and to what extent, the authors used AI technologies such as ChatGPT in the preparation of their manuscript and analysis. They should also indicate which LLMs were used. This will alert editors and reviewers to scrutinize manuscripts more carefully for potential biases, inaccuracies and improper source crediting. Likewise, scientific journals should be transparent about their use of LLMs, for example when selecting submitted manuscripts.\nMention the large language model based product mentioned in the paragraph above:",],
232
- inputs=[prompt])
233
- example_set_9 = gr.Examples(label = 'Question and Answer',
234
- examples=["Answer the question based on the context below. Keep the answer short and concise. Respond 'Unsure about answer' if not sure about the answer.\nContext: Teplizumab traces its roots to a New Jersey drug company called Ortho Pharmaceutical. There, scientists generated an early version of the antibody, dubbed OKT3. Originally sourced from mice, the molecule was able to bind to the surface of T cells and limit their cell-killing potential. In 1986, it was approved to help prevent organ rejection after kidney transplants, making it the first therapeutic antibody allowed for human use.\nQuestion: What was OKT3 originally sourced from?\nAnswer:",],
235
- inputs=[prompt])
236
- example_set_10 = gr.Examples(label = 'Text Classification',
237
- examples=["Classify the text into neutral, negative or positive.\nText: I think the food was okay.\nSentiment:","Classify the text into neutral, negative or positive.\nText: I think the vacation is okay.\nSentiment: neutral\nText: I think the food was okay.\nSentiment:"],
238
- inputs=[prompt])
239
- example_set_11 = gr.Examples(label = 'Conversation',
240
- examples=["The following is a conversation with an AI research assistant. The assistant tone is technical and scientific.\nHuman: Hello, who are you?\nAI: Greeting! I am an AI research assistant. How can I help you today?\nHuman: Can you tell me about the creation of blackholes?\nAI:", "The following is a conversation with an AI research assistant. The assistant answers should be easy to understand even by primary school students.\nHuman: Hello, who are you?\nAI: Greeting! I am an AI research assistant. How can I help you today?\nHuman: Can you tell me about the creation of black holes?\nAI: "],
241
- inputs=[prompt])
242
- example_set_12 = gr.Examples(label = 'Reasoning',
243
- examples=["The odd numbers in this group add up to an even number: 15, 32, 5, 13, 82, 7, 1.\nA: ", "The odd numbers in this group add up to an even number: 15, 32, 5, 13, 82, 7, 1.\nSolve by breaking the problem into steps. First, identify the odd numbers, add them, and indicate whether the result is odd or even."],
244
- inputs=[prompt])
245
-
246
-
247
- with gr.Tab("Interesting Techniques"):
248
- example_set_13 = gr.Examples(label = 'Zero Shot, i.e., no examples at all',
249
- examples=["Classify the text into neutral, negative or positive.\nText: I think the vacation is okay.\nSentiment:",],
250
- inputs=[prompt])
251
- example_set_14 = gr.Examples(label = 'Few Shot, i.e., only a few examples',
252
- examples=["The odd numbers in this group add up to an even number: 4, 8, 9, 15, 12, 2, 1.\nA: The answer is False.\n\nThe odd numbers in this group add up to an even number: 17, 10, 19, 4, 8, 12, 24.\nA: The answer is True.\n\nThe odd numbers in this group add up to an even number: 16, 11, 14, 4, 8, 13, 24.\nA: The answer is True.\n\nThe odd numbers in this group add up to an even number: 17, 9, 10, 12, 13, 4, 2.\nA: The answer is False.\n\nThe odd numbers in this group add up to an even number: 15, 32, 5, 13, 82, 7, 1.\nA: ",],
253
- inputs=[prompt])
254
- example_set_15 = gr.Examples(label = 'Chain of Thought, i.e., go through a series of rational steps',
255
- examples=["The odd numbers in this group add up to an even number: 4, 8, 9, 15, 12, 2, 1.\nA: Adding all the odd numbers (9, 15, 1) gives 25. The answer is False.\n\nThe odd numbers in this group add up to an even number: 15, 32, 5, 13, 82, 7, 1.\nA:",],
256
- inputs=[prompt])
257
- example_set_16 = gr.Examples(label = 'Zero Shot Chain of Thought, i.e., think step by step, but no examples provided',
258
- examples=["I went to the market and bought 10 apples. I gave 2 apples to the neighbor and 2 to the repairman. I then went and bought 5 more apples and ate 1. How many apples did I remain with?\nLet's think step by step.",],
259
- inputs=[prompt])
260
- example_set_17 = gr.Examples(label = 'Self Consistency, i.e., give examples to encourage the model to be consistent',
261
- examples=["Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done,there will be 21 trees. How many trees did the grove workers plant today?\nA: We start with 15 trees. Later we have 21 trees. The difference must be the number of trees they planted.\nSo, they must have planted 21 - 15 = 6 trees. The answer is 6.\n\nQ: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?\nA: There are 3 cars in the parking lot already. 2 more arrive. Now there are 3 + 2 = 5 cars. The answer is 5.\n\nQ: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?\nA: She bought 5 bagels for $3 each. This means she spent 5\n\nQ: When I was 6 my sister was half my age. Now I’m 70 how old is my sister?\nA:",],
262
- inputs=[prompt])
263
- example_set_18 = gr.Examples(label = 'Generating Knowledge, i.e., use examples to generate knowledge',
264
- examples=["Input: Greece is larger than mexico.\nKnowledge: Greece is approximately 131,957 sq km, while Mexico is approximately 1,964,375 sq km, making Mexico 1,389% larger than Greece.\n\nInput: Glasses always fog up.\nKnowledge: Condensation occurs on eyeglass lenses when water vapor from your sweat, breath, and ambient humidity lands on a cold surface, cools, and then changes into tiny drops of liquid, forming a film that you see as fog. Your lenses will be relatively cool compared to your breath, especially when the outside air is cold.\n\nInput: A fish is capable of thinking.\nKnowledge: Fish are more intelligent than they appear. In many areas, such as memory, their cognitive powers match or exceed those of ’higher’ vertebrates including non-human primates. Fish’s long-term memories help them keep track of complex social relationships.\n\nInput: A common effect of smoking lots of cigarettes in one’s lifetime is a higher than normal chance of getting lung cancer.\nKnowledge: Those who consistently averaged less than one cigarette per day over their lifetime had nine times the risk of dying from lung cancer than never smokers. Among people who smoked between one and 10 cigarettes per day, the risk of dying from lung cancer was nearly 12 times higher than that of never smokers.\n\nInput: Part of golf is trying to get a higher point total than others.\nKnowledge:",],
265
- inputs=[prompt])
266
-
267
- # process.click(load_and_generate, inputs=[model_name, prompt], outputs=[output])
268
- if check_truncated:
269
- process.click(generate_from_api_check, inputs=[prompt, model_name, temperature, max_tokens], outputs=[output])
270
- else:
271
- process.click(generate_from_api, inputs=[prompt, model_name, temperature, max_tokens], outputs=[output])
272
-
273
- # demo.launch(server_port=8080)
274
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/ChristopherMarais/Andrew_AI-BB_classification-beta/mysite/andrew_alpha/static/andrew_alpha.js DELETED
@@ -1,208 +0,0 @@
1
- // Get token from cookie
2
- function getCookie(name) {
3
- let cookieValue = null;
4
- if (document.cookie && document.cookie !== '') {
5
- const cookies = document.cookie.split(';');
6
- for (let i = 0; i < cookies.length; i++) {
7
- const cookie = cookies[i].trim();
8
- // Does this cookie string begin with the name we want?
9
- if (cookie.substring(0, name.length + 1) === (name + '=')) {
10
- cookieValue = decodeURIComponent(cookie.substring(name.length + 1));
11
- break;
12
- }
13
- }
14
- }
15
- return cookieValue;
16
- }
17
-
18
- // Get the video element
19
- const video = document.getElementById("videoElement");
20
- const captureButton = document.getElementById("captureButton");
21
- const uploadButton = document.getElementById("uploadButton");
22
- const capturedFrame = document.getElementById("capturedFrame");
23
- const webcamFeed = document.getElementById("webcamFeed");
24
- const processedFrame = document.getElementById("processedFrame");
25
- // Get CSRF token from cookie
26
- const csrftoken = getCookie('csrftoken');
27
- // Get reference to form
28
- const form = document.getElementById('myForm');
29
-
30
- // Check if the browser supports getUserMedia
31
- if (navigator.mediaDevices.getUserMedia) {
32
- // Request access to the webcam
33
- navigator.mediaDevices
34
- .getUserMedia({ video: true })
35
- .then(function (stream) {
36
- // Set the video source to the stream from the webcam
37
- video.srcObject = stream;
38
- })
39
- .catch(function (error) {
40
- console.error("Error accessing the webcam:", error);
41
- const message = document.createElement("p");
42
- webcamFeed.innerHTML = "No webcam detected.";
43
- document.body.appendChild(message);
44
- });
45
- } else {
46
- console.error("getUserMedia is not supported by this browser");
47
- }
48
-
49
-
50
- // Variable to store latest captured frame URL
51
- let latestFrameURL;
52
-
53
- // Add click handler to capture button
54
- captureButton.addEventListener("click", function() {
55
-
56
- // Remove previously displayed captured frame (if any)
57
- while (capturedFrame.firstChild) {
58
- capturedFrame.firstChild.remove();
59
- }
60
-
61
- // Clear processed image display
62
- while (processedFrame.firstChild) {
63
- processedFrame.firstChild.remove();
64
- }
65
-
66
- // Create canvas element
67
- const canvas = document.createElement("canvas");
68
- const context = canvas.getContext("2d");
69
-
70
- // Set canvas dimensions to match video
71
- canvas.width = video.videoWidth;
72
- canvas.height = video.videoHeight;
73
-
74
- // Draw current video frame to canvas
75
- context.drawImage(video, 0, 0, canvas.width, canvas.height);
76
-
77
- // Convert canvas to data URL
78
- const dataURL = canvas.toDataURL("image/png");
79
-
80
- // Save data URL to reuse when appending to form
81
- latestFrameURL = dataURL;
82
-
83
- // Create img element for captured frame
84
- const capturedImage = document.createElement("img");
85
- capturedImage.src = latestFrameURL;
86
-
87
- // Append to captured frame div
88
- capturedFrame.appendChild(capturedImage);
89
- if (canvas) {
90
-
91
- // Convert canvas to blob
92
- canvas.toBlob(function(blob) {
93
-
94
- // Create file from blob
95
- const file = new File([blob], 'capturedImage.jpg', {type: 'image/jpeg'})
96
-
97
- // Create FormData
98
- const formData = new FormData();
99
-
100
- // Append file
101
- formData.append('image', file);
102
-
103
- // Headers with token
104
- const headers = new Headers();
105
- headers.append('X-CSRFToken', csrftoken);
106
-
107
- // Send FormData
108
- fetch('/process_uploaded_image/', {
109
- method: 'POST',
110
- headers: headers,
111
- body: formData
112
- })
113
- .then(response => response.blob())
114
- .then(blob => {
115
-
116
- // Create image from blob
117
- const img = document.createElement('img');
118
- img.src = URL.createObjectURL(blob);
119
-
120
- // Replace original image with processed one
121
- while (capturedFrame.firstChild) {
122
- capturedFrame.firstChild.remove();
123
- }
124
- document.getElementById('capturedFrame').appendChild(img);
125
-
126
- // Display processed image
127
- // Append to DOM
128
- // document.getElementById('processedFrame').appendChild(img);
129
-
130
- })
131
- .catch(error => {
132
- console.error('Error processing image');
133
- });
134
-
135
- }, 'image/jpeg');
136
-
137
- } else {
138
- console.error("Canvas not found");
139
- }
140
-
141
- });
142
-
143
- // Add event listener to upload button
144
- uploadButton.addEventListener("click", function () {
145
- const fileInput = document.createElement("input");
146
- fileInput.type = "file";
147
-
148
- fileInput.addEventListener("change", function () {
149
- const fileReader = new FileReader();
150
-
151
- fileReader.addEventListener("load", function () {
152
- const uploadedImageURL = fileReader.result;
153
-
154
- // Remove previously displayed captured frame (if any)
155
- while (capturedFrame.firstChild) {
156
- capturedFrame.firstChild.remove();
157
- }
158
- // Clear processed image display
159
- while (processedFrame.firstChild) {
160
- processedFrame.firstChild.remove();
161
- }
162
-
163
- // Create an image element for displaying uploaded image
164
- const uploadedImage = document.createElement("img");
165
- uploadedImage.src = uploadedImageURL;
166
- const imageFile = fileInput.files[0];
167
- let formData = new FormData();
168
- formData.append('image', imageFile);
169
-
170
- fetch('/process_uploaded_image/', {
171
- method: 'POST',
172
- body: formData
173
- })
174
- .then(response => response.blob())
175
- .then(blob => {
176
-
177
- // Create image from blob
178
- const img = document.createElement('img');
179
- img.src = URL.createObjectURL(blob);
180
-
181
- // Replace original image with processed one
182
- while (capturedFrame.firstChild) {
183
- capturedFrame.firstChild.remove();
184
- }
185
- document.getElementById('capturedFrame').appendChild(img);
186
-
187
- // Display processed image
188
- // Append to DOM
189
- // document.getElementById('processedFrame').appendChild(img);
190
-
191
- })
192
- .catch(error => {
193
- console.error('Error processing image');
194
- });
195
-
196
-
197
- // Append uploaded image to captured frame div
198
- capturedFrame.appendChild(uploadedImage);
199
-
200
- });
201
-
202
- if (fileInput.files.length > 0) {
203
- fileReader.readAsDataURL(fileInput.files[0]);
204
- }
205
- });
206
-
207
- fileInput.click();
208
- });
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CikeyQI/Yunzai/Yunzai/plugins/ws-plugin/config/system/help_system.js DELETED
@@ -1,84 +0,0 @@
1
- export const helpCfg = {
2
- "themeSet": false,
3
- "title": "ws帮助",
4
- "subTitle": "Yunzai-Bot & ws-plugin",
5
- "colWidth": 265,
6
- "theme": "all",
7
- "themeExclude": [
8
- "default"
9
- ],
10
- "colCount": 3,
11
- "bgBlur": true
12
- }
13
- export const helpList = [
14
- {
15
- "group": "连接管理",
16
- "list": [
17
- {
18
- "icon": 80,
19
- "title": "#ws添加连接",
20
- "desc": "添加一个新的连接"
21
- },
22
- {
23
- "icon": 63,
24
- "title": "#ws删除连接",
25
- "desc": "删除一个已有的连接 "
26
- },
27
- {
28
- "icon": 66,
29
- "title": "#ws关闭连接",
30
- "desc": "不会删除已有连接,同时不进行连接"
31
- },
32
- {
33
- "icon": 65,
34
- "title": "#ws打开连接",
35
- "desc": "打开已关闭的连接"
36
- },
37
- {
38
- "icon": 79,
39
- "title": "#ws查看连接",
40
- "desc": "查看已有的所有连接名字和状态"
41
- },
42
- {
43
- "icon": 64,
44
- "title": "#ws重新连接",
45
- "desc": "断开连接并重新连接"
46
- }
47
- ]
48
- },
49
- {
50
- "group": "其他设置",
51
- "list": [
52
- {
53
- "icon": 81,
54
- "title": "#ws(增加/删除)(禁用/启用)群123456",
55
- "desc": "精确处理黑名单白名单,不带群号为当前群"
56
- },
57
- {
58
- "icon": 84,
59
- "title": "#ws(禁用/启用)群123456",
60
- "desc": "模糊匹配,比如禁用群则优先看白名单,如果有就删除,否则添加到黑名单"
61
- },
62
- {
63
- "icon": 85,
64
- "title": "#ws查看(禁用/启用)群",
65
- "desc": "查看当前(禁用/启用)的群聊列表"
66
- },
67
- ]
68
- },
69
- {
70
- "group": "其他说明",
71
- "list": [
72
- {
73
- "icon": 71,
74
- "title": "#ws连接说明",
75
- "desc": "查看添加连接时的说明"
76
- },
77
- {
78
- "icon": 94,
79
- "title": "#ws设置",
80
- "desc": "插件设置"
81
- }
82
- ]
83
- }
84
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CikeyQI/meme-api/meme_generator/memes/dont_touch/__init__.py DELETED
@@ -1,57 +0,0 @@
1
- import random
2
- from pathlib import Path
3
- from typing import List, Tuple
4
-
5
- from PIL.Image import Image as IMG
6
- from PIL.Image import Palette
7
- from pil_utils import BuildImage
8
-
9
- from meme_generator import add_meme
10
- from meme_generator.utils import make_jpg_or_gif
11
-
12
- img_dir = Path(__file__).parent / "images"
13
-
14
-
15
- def get_dominant_colors(img: IMG) -> List[Tuple[int, int, int]]:
16
- img = img.convert("P", palette=Palette.ADAPTIVE, colors=20)
17
- palette = img.getpalette()
18
- assert palette
19
- color_indexs = sorted(img.getcolors(), reverse=True)
20
- colors = [tuple(palette[i * 3 : i * 3 + 3]) for _, i in color_indexs]
21
- colors = list(
22
- filter(lambda c: c[0] * 0.299 + c[1] * 0.578 + c[2] * 0.114 < 200, colors)
23
- )
24
- return colors
25
-
26
-
27
- def dont_touch(images: List[BuildImage], texts, args):
28
- frame = BuildImage.open(img_dir / "0.png")
29
- mask = BuildImage.open(img_dir / "mask.png").convert("L")
30
-
31
- def paste_random_blocks(img: BuildImage, colors: List[Tuple[int, int, int]]):
32
- x1, y1, x2, y2 = 200, 300, 400, 650
33
- block_locs = []
34
- for _ in range(150):
35
- x = random.randint(x1, x2)
36
- y = random.randint(y1, y2)
37
- if mask.image.getpixel((x, y)) == 0:
38
- continue
39
- if any(abs(x - x_) < 13 and abs(y - y_) < 13 for x_, y_ in block_locs):
40
- continue
41
- block_locs.append((x, y))
42
- color = random.choice(colors)
43
- block = BuildImage.new("RGBA", (10, 10), color)
44
- block = block.rotate(45, expand=True)
45
- img.paste(block, (x, y), alpha=True)
46
-
47
- def make(img: BuildImage) -> BuildImage:
48
- img_frame = frame.copy()
49
- colors = get_dominant_colors(img.image)
50
- paste_random_blocks(img_frame, colors)
51
- img = img.convert("RGBA").resize((250, 250), keep_ratio=True, inside=True)
52
- return img_frame.paste(img, (25, 460), alpha=True)
53
-
54
- return make_jpg_or_gif(images[0], make)
55
-
56
-
57
- add_meme("dont_touch", dont_touch, min_images=1, max_images=1, keywords=["别碰"])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/altair/vegalite/v5/theme.py DELETED
@@ -1,59 +0,0 @@
1
- """Tools for enabling and registering chart themes"""
2
-
3
- from ...utils.theme import ThemeRegistry
4
-
5
- VEGA_THEMES = [
6
- "ggplot2",
7
- "quartz",
8
- "vox",
9
- "fivethirtyeight",
10
- "dark",
11
- "latimes",
12
- "urbaninstitute",
13
- "excel",
14
- "googlecharts",
15
- "powerbi",
16
- ]
17
-
18
-
19
- class VegaTheme:
20
- """Implementation of a builtin vega theme."""
21
-
22
- def __init__(self, theme):
23
- self.theme = theme
24
-
25
- def __call__(self):
26
- return {
27
- "usermeta": {"embedOptions": {"theme": self.theme}},
28
- "config": {"view": {"continuousWidth": 300, "continuousHeight": 300}},
29
- }
30
-
31
- def __repr__(self):
32
- return "VegaTheme({!r})".format(self.theme)
33
-
34
-
35
- # The entry point group that can be used by other packages to declare other
36
- # renderers that will be auto-detected. Explicit registration is also
37
- # allowed by the PluginRegistery API.
38
- ENTRY_POINT_GROUP = "altair.vegalite.v5.theme" # type: str
39
- themes = ThemeRegistry(entry_point_group=ENTRY_POINT_GROUP)
40
-
41
- themes.register(
42
- "default",
43
- lambda: {"config": {"view": {"continuousWidth": 300, "continuousHeight": 300}}},
44
- )
45
- themes.register(
46
- "opaque",
47
- lambda: {
48
- "config": {
49
- "background": "white",
50
- "view": {"continuousWidth": 300, "continuousHeight": 300},
51
- }
52
- },
53
- )
54
- themes.register("none", lambda: {})
55
-
56
- for theme in VEGA_THEMES:
57
- themes.register(theme, VegaTheme(theme))
58
-
59
- themes.enable("default")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/fontTools/svgLib/path/shapes.py DELETED
@@ -1,183 +0,0 @@
1
- import re
2
-
3
-
4
- def _prefer_non_zero(*args):
5
- for arg in args:
6
- if arg != 0:
7
- return arg
8
- return 0.0
9
-
10
-
11
- def _ntos(n):
12
- # %f likes to add unnecessary 0's, %g isn't consistent about # decimals
13
- return ("%.3f" % n).rstrip("0").rstrip(".")
14
-
15
-
16
- def _strip_xml_ns(tag):
17
- # ElementTree API doesn't provide a way to ignore XML namespaces in tags
18
- # so we here strip them ourselves: cf. https://bugs.python.org/issue18304
19
- return tag.split("}", 1)[1] if "}" in tag else tag
20
-
21
-
22
- def _transform(raw_value):
23
- # TODO assumes a 'matrix' transform.
24
- # No other transform functions are supported at the moment.
25
- # https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/transform
26
- # start simple: if you aren't exactly matrix(...) then no love
27
- match = re.match(r"matrix\((.*)\)", raw_value)
28
- if not match:
29
- raise NotImplementedError
30
- matrix = tuple(float(p) for p in re.split(r"\s+|,", match.group(1)))
31
- if len(matrix) != 6:
32
- raise ValueError("wrong # of terms in %s" % raw_value)
33
- return matrix
34
-
35
-
36
- class PathBuilder(object):
37
- def __init__(self):
38
- self.paths = []
39
- self.transforms = []
40
-
41
- def _start_path(self, initial_path=""):
42
- self.paths.append(initial_path)
43
- self.transforms.append(None)
44
-
45
- def _end_path(self):
46
- self._add("z")
47
-
48
- def _add(self, path_snippet):
49
- path = self.paths[-1]
50
- if path:
51
- path += " " + path_snippet
52
- else:
53
- path = path_snippet
54
- self.paths[-1] = path
55
-
56
- def _move(self, c, x, y):
57
- self._add("%s%s,%s" % (c, _ntos(x), _ntos(y)))
58
-
59
- def M(self, x, y):
60
- self._move("M", x, y)
61
-
62
- def m(self, x, y):
63
- self._move("m", x, y)
64
-
65
- def _arc(self, c, rx, ry, x, y, large_arc):
66
- self._add(
67
- "%s%s,%s 0 %d 1 %s,%s"
68
- % (c, _ntos(rx), _ntos(ry), large_arc, _ntos(x), _ntos(y))
69
- )
70
-
71
- def A(self, rx, ry, x, y, large_arc=0):
72
- self._arc("A", rx, ry, x, y, large_arc)
73
-
74
- def a(self, rx, ry, x, y, large_arc=0):
75
- self._arc("a", rx, ry, x, y, large_arc)
76
-
77
- def _vhline(self, c, x):
78
- self._add("%s%s" % (c, _ntos(x)))
79
-
80
- def H(self, x):
81
- self._vhline("H", x)
82
-
83
- def h(self, x):
84
- self._vhline("h", x)
85
-
86
- def V(self, y):
87
- self._vhline("V", y)
88
-
89
- def v(self, y):
90
- self._vhline("v", y)
91
-
92
- def _line(self, c, x, y):
93
- self._add("%s%s,%s" % (c, _ntos(x), _ntos(y)))
94
-
95
- def L(self, x, y):
96
- self._line("L", x, y)
97
-
98
- def l(self, x, y):
99
- self._line("l", x, y)
100
-
101
- def _parse_line(self, line):
102
- x1 = float(line.attrib.get("x1", 0))
103
- y1 = float(line.attrib.get("y1", 0))
104
- x2 = float(line.attrib.get("x2", 0))
105
- y2 = float(line.attrib.get("y2", 0))
106
-
107
- self._start_path()
108
- self.M(x1, y1)
109
- self.L(x2, y2)
110
-
111
- def _parse_rect(self, rect):
112
- x = float(rect.attrib.get("x", 0))
113
- y = float(rect.attrib.get("y", 0))
114
- w = float(rect.attrib.get("width"))
115
- h = float(rect.attrib.get("height"))
116
- rx = float(rect.attrib.get("rx", 0))
117
- ry = float(rect.attrib.get("ry", 0))
118
-
119
- rx = _prefer_non_zero(rx, ry)
120
- ry = _prefer_non_zero(ry, rx)
121
- # TODO there are more rules for adjusting rx, ry
122
-
123
- self._start_path()
124
- self.M(x + rx, y)
125
- self.H(x + w - rx)
126
- if rx > 0:
127
- self.A(rx, ry, x + w, y + ry)
128
- self.V(y + h - ry)
129
- if rx > 0:
130
- self.A(rx, ry, x + w - rx, y + h)
131
- self.H(x + rx)
132
- if rx > 0:
133
- self.A(rx, ry, x, y + h - ry)
134
- self.V(y + ry)
135
- if rx > 0:
136
- self.A(rx, ry, x + rx, y)
137
- self._end_path()
138
-
139
- def _parse_path(self, path):
140
- if "d" in path.attrib:
141
- self._start_path(initial_path=path.attrib["d"])
142
-
143
- def _parse_polygon(self, poly):
144
- if "points" in poly.attrib:
145
- self._start_path("M" + poly.attrib["points"])
146
- self._end_path()
147
-
148
- def _parse_polyline(self, poly):
149
- if "points" in poly.attrib:
150
- self._start_path("M" + poly.attrib["points"])
151
-
152
- def _parse_circle(self, circle):
153
- cx = float(circle.attrib.get("cx", 0))
154
- cy = float(circle.attrib.get("cy", 0))
155
- r = float(circle.attrib.get("r"))
156
-
157
- # arc doesn't seem to like being a complete shape, draw two halves
158
- self._start_path()
159
- self.M(cx - r, cy)
160
- self.A(r, r, cx + r, cy, large_arc=1)
161
- self.A(r, r, cx - r, cy, large_arc=1)
162
-
163
- def _parse_ellipse(self, ellipse):
164
- cx = float(ellipse.attrib.get("cx", 0))
165
- cy = float(ellipse.attrib.get("cy", 0))
166
- rx = float(ellipse.attrib.get("rx"))
167
- ry = float(ellipse.attrib.get("ry"))
168
-
169
- # arc doesn't seem to like being a complete shape, draw two halves
170
- self._start_path()
171
- self.M(cx - rx, cy)
172
- self.A(rx, ry, cx + rx, cy, large_arc=1)
173
- self.A(rx, ry, cx - rx, cy, large_arc=1)
174
-
175
- def add_path_from_element(self, el):
176
- tag = _strip_xml_ns(el.tag)
177
- parse_fn = getattr(self, "_parse_%s" % tag.lower(), None)
178
- if not callable(parse_fn):
179
- return False
180
- parse_fn(el)
181
- if "transform" in el.attrib:
182
- self.transforms[-1] = _transform(el.attrib["transform"])
183
- return True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/fontTools/varLib/__main__.py DELETED
@@ -1,6 +0,0 @@
1
- import sys
2
- from fontTools.varLib import main
3
-
4
-
5
- if __name__ == "__main__":
6
- sys.exit(main())
 
 
 
 
 
 
 
spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/templates/frontend/assets/index-6f7117a6.js DELETED
@@ -1,2 +0,0 @@
1
- import{S as G,e as I,s as J,G as Z,N as O,K as F,p as U,M as z,n as q,A as j,V as be,B as K,P as D,O as S,U as $,Q as ge,R as x,k as p,m as L,o as v,u as Q,v as d,y as V,z as h,x as y,F as C,a7 as de,h as he,j as we,t as ke,a9 as Ae,ab as pe,ac as ve,ad as ye,ak as k,at as Fe,au as Be,E as ze,ae as Ue,q as je,r as Ee}from"./index-3370be2a.js";import{B as Ne}from"./Button-89624748.js";import{B as ae}from"./BlockLabel-56db415e.js";import{E as Oe}from"./Empty-585389a4.js";import{F as W}from"./File-ae385ffc.js";import{U as Se}from"./Upload-f29b2460.js";import{M as Te}from"./ModifyUpload-d8fc50ab.js";import{n as ee,b as Me}from"./ModifyUpload.svelte_svelte_type_style_lang-d2acacf0.js";import{U as Pe}from"./UploadText-28892309.js";import"./Blocks-f0129fcd.js";import"./IconButton-abe5ede9.js";const Ce=t=>{let e=["B","KB","MB","GB","PB"],n=0;for(;t>1024;)t/=1024,n++;let l=e[n];return t.toFixed(1)+" "+l},le=t=>{var e;return e=t.orig_name||t.name,e.length>30?`${e.substr(0,30)}...`:e},te=t=>{var e=0;if(Array.isArray(t))for(var n of t)n.size!==void 0&&(e+=n.size);else e=t.size||0;return Ce(e)};function ne(t,e,n){const l=t.slice();return l[4]=e[n],l[6]=n,l}function Re(t){let e;return{c(){e=D("Uploading...")},m(n,l){U(n,e,l)},p:q,d(n){n&&j(e)}}}function qe(t){let e,n,l,s;return{c(){e=O("a"),n=D("Download"),F(e,"href",l=t[4].data),F(e,"target","_blank"),F(e,"download",s=window.__is_colab__?null:t[4].orig_name||t[4].name),F(e,"class","svelte-xrr240")},m(a,i){U(a,e,i),z(e,n)},p(a,i){i&1&&l!==(l=a[4].data)&&F(e,"href",l),i&1&&s!==(s=window.__is_colab__?null:a[4].orig_name||a[4].name)&&F(e,"download",s)},d(a){a&&j(e)}}}function se(t){let e,n,l=le(t[4])+"",s,a,i,f=te(t[4])+"",r,g,o,m,_,b;function B(c,E){return c[4].data?qe:Re}let w=B(t),A=w(t);function T(){return t[3](t[4],t[6])}return{c(){e=O("tr"),n=O("td"),s=D(l),a=S(),i=O("td"),r=D(f),g=S(),o=O("td"),A.c(),m=S(),F(n,"class","svelte-xrr240"),F(i,"class","svelte-xrr240"),F(o,"class","download svelte-xrr240"),F(e,"class","file svelte-xrr240"),$(e,"selectable",t[1])},m(c,E){U(c,e,E),z(e,n),z(n,s),z(e,a),z(e,i),z(i,r),z(e,g),z(e,o),A.m(o,null),z(e,m),_||(b=ge(e,"click",T),_=!0)},p(c,E){t=c,E&1&&l!==(l=le(t[4])+"")&&x(s,l),E&1&&f!==(f=te(t[4])+"")&&x(r,f),w===(w=B(t))&&A?A.p(t,E):(A.d(1),A=w(t),A&&(A.c(),A.m(o,null))),E&2&&$(e,"selectable",t[1])},d(c){c&&j(e),A.d(),_=!1,b()}}}function De(t){let e,n,l,s=Z(Array.isArray(t[0])?t[0]:[t[0]]),a=[];for(let i=0;i<s.length;i+=1)a[i]=se(ne(t,s,i));return{c(){e=O("div"),n=O("table"),l=O("tbody");for(let i=0;i<a.length;i+=1)a[i].c();F(n,"class","file-preview svelte-xrr240"),F(e,"class","file-preview-holder svelte-xrr240")},m(i,f){U(i,e,f),z(e,n),z(n,l);for(let r=0;r<a.length;r+=1)a[r]&&a[r].m(l,null)},p(i,[f]){if(f&7){s=Z(Array.isArray(i[0])?i[0]:[i[0]]);let r;for(r=0;r<s.length;r+=1){const g=ne(i,s,r);a[r]?a[r].p(g,f):(a[r]=se(g),a[r].c(),a[r].m(l,null))}for(;r<a.length;r+=1)a[r].d(1);a.length=s.length}},i:q,o:q,d(i){i&&j(e),be(a,i)}}}function Ge(t,e,n){const l=K();let{value:s}=e,{selectable:a=!1}=e;const i=(f,r)=>l("select",{value:f.orig_name||f.name,index:r});return t.$$set=f=>{"value"in f&&n(0,s=f.value),"selectable"in f&&n(1,a=f.selectable)},[s,a,l,i]}class ie extends G{constructor(e){super(),I(this,e,Ge,De,J,{value:0,selectable:1})}}function Ie(t){let e,n;return e=new Oe({props:{unpadded_box:!0,size:"large",$$slots:{default:[Ke]},$$scope:{ctx:t}}}),{c(){p(e.$$.fragment)},m(l,s){v(e,l,s),n=!0},p(l,s){const a={};s&32&&(a.$$scope={dirty:s,ctx:l}),e.$set(a)},i(l){n||(h(e.$$.fragment,l),n=!0)},o(l){d(e.$$.fragment,l),n=!1},d(l){y(e,l)}}}function Je(t){let e,n;return e=new ie({props:{selectable:t[3],value:t[0]}}),e.$on("select",t[4]),{c(){p(e.$$.fragment)},m(l,s){v(e,l,s),n=!0},p(l,s){const a={};s&8&&(a.selectable=l[3]),s&1&&(a.value=l[0]),e.$set(a)},i(l){n||(h(e.$$.fragment,l),n=!0)},o(l){d(e.$$.fragment,l),n=!1},d(l){y(e,l)}}}function Ke(t){let e,n;return e=new W({}),{c(){p(e.$$.fragment)},m(l,s){v(e,l,s),n=!0},i(l){n||(h(e.$$.fragment,l),n=!0)},o(l){d(e.$$.fragment,l),n=!1},d(l){y(e,l)}}}function Le(t){let e,n,l,s,a,i;e=new ae({props:{show_label:t[2],float:t[0]===null,Icon:W,label:t[1]||"File"}});const f=[Je,Ie],r=[];function g(o,m){return o[0]?0:1}return l=g(t),s=r[l]=f[l](t),{c(){p(e.$$.fragment),n=S(),s.c(),a=L()},m(o,m){v(e,o,m),U(o,n,m),r[l].m(o,m),U(o,a,m),i=!0},p(o,[m]){const _={};m&4&&(_.show_label=o[2]),m&1&&(_.float=o[0]===null),m&2&&(_.label=o[1]||"File"),e.$set(_);let b=l;l=g(o),l===b?r[l].p(o,m):(Q(),d(r[b],1,1,()=>{r[b]=null}),V(),s=r[l],s?s.p(o,m):(s=r[l]=f[l](o),s.c()),h(s,1),s.m(a.parentNode,a))},i(o){i||(h(e.$$.fragment,o),h(s),i=!0)},o(o){d(e.$$.fragment,o),d(s),i=!1},d(o){o&&(j(n),j(a)),y(e,o),r[l].d(o)}}}function Qe(t,e,n){let{value:l=null}=e,{label:s}=e,{show_label:a=!0}=e,{selectable:i=!1}=e;function f(r){C.call(this,t,r)}return t.$$set=r=>{"value"in r&&n(0,l=r.value),"label"in r&&n(1,s=r.label),"show_label"in r&&n(2,a=r.show_label),"selectable"in r&&n(3,i=r.selectable)},[l,s,a,i,f]}class Ve extends G{constructor(e){super(),I(this,e,Qe,Le,J,{value:0,label:1,show_label:2,selectable:3})}}function We(t){let e,n,l;function s(i){t[12](i)}let a={filetype:t[6],parse_to_data_url:!1,file_count:t[3],$$slots:{default:[Xe]},$$scope:{ctx:t}};return t[5]!==void 0&&(a.dragging=t[5]),e=new Se({props:a}),he.push(()=>we(e,"dragging",s)),e.$on("load",t[7]),{c(){p(e.$$.fragment)},m(i,f){v(e,i,f),l=!0},p(i,f){const r={};f&64&&(r.filetype=i[6]),f&8&&(r.file_count=i[3]),f&8192&&(r.$$scope={dirty:f,ctx:i}),!n&&f&32&&(n=!0,r.dragging=i[5],ke(()=>n=!1)),e.$set(r)},i(i){l||(h(e.$$.fragment,i),l=!0)},o(i){d(e.$$.fragment,i),l=!1},d(i){y(e,i)}}}function He(t){let e,n,l,s;return e=new Te({props:{absolute:!0}}),e.$on("clear",t[8]),l=new ie({props:{selectable:t[4],value:t[0]}}),l.$on("select",t[11]),{c(){p(e.$$.fragment),n=S(),p(l.$$.fragment)},m(a,i){v(e,a,i),U(a,n,i),v(l,a,i),s=!0},p(a,i){const f={};i&16&&(f.selectable=a[4]),i&1&&(f.value=a[0]),l.$set(f)},i(a){s||(h(e.$$.fragment,a),h(l.$$.fragment,a),s=!0)},o(a){d(e.$$.fragment,a),d(l.$$.fragment,a),s=!1},d(a){a&&j(n),y(e,a),y(l,a)}}}function Xe(t){let e;const n=t[10].default,l=Ae(n,t,t[13],null);return{c(){l&&l.c()},m(s,a){l&&l.m(s,a),e=!0},p(s,a){l&&l.p&&(!e||a&8192)&&pe(l,n,s,s[13],e?ye(n,s[13],a,null):ve(s[13]),null)},i(s){e||(h(l,s),e=!0)},o(s){d(l,s),e=!1},d(s){l&&l.d(s)}}}function Ye(t){let e,n,l,s,a,i;e=new ae({props:{show_label:t[2],Icon:W,float:t[0]===null,label:t[1]||"File"}});const f=[He,We],r=[];function g(o,m){return o[0]?0:1}return l=g(t),s=r[l]=f[l](t),{c(){p(e.$$.fragment),n=S(),s.c(),a=L()},m(o,m){v(e,o,m),U(o,n,m),r[l].m(o,m),U(o,a,m),i=!0},p(o,[m]){const _={};m&4&&(_.show_label=o[2]),m&1&&(_.float=o[0]===null),m&2&&(_.label=o[1]||"File"),e.$set(_);let b=l;l=g(o),l===b?r[l].p(o,m):(Q(),d(r[b],1,1,()=>{r[b]=null}),V(),s=r[l],s?s.p(o,m):(s=r[l]=f[l](o),s.c()),h(s,1),s.m(a.parentNode,a))},i(o){i||(h(e.$$.fragment,o),h(s),i=!0)},o(o){d(e.$$.fragment,o),d(s),i=!1},d(o){o&&(j(n),j(a)),y(e,o),r[l].d(o)}}}function Ze(t,e,n){let{$$slots:l={},$$scope:s}=e,{value:a}=e,{label:i}=e,{show_label:f=!0}=e,{file_count:r="single"}=e,{file_types:g=null}=e,{selectable:o=!1}=e;async function m({detail:c}){n(0,a=c),await de(),b("change",a),b("upload",c)}function _({detail:c}){n(0,a=null),b("change",a),b("clear")}const b=K();let B;g==null?B=null:(g=g.map(c=>c.startsWith(".")?c:c+"/*"),B=g.join(", "));let w=!1;function A(c){C.call(this,t,c)}function T(c){w=c,n(5,w)}return t.$$set=c=>{"value"in c&&n(0,a=c.value),"label"in c&&n(1,i=c.label),"show_label"in c&&n(2,f=c.show_label),"file_count"in c&&n(3,r=c.file_count),"file_types"in c&&n(9,g=c.file_types),"selectable"in c&&n(4,o=c.selectable),"$$scope"in c&&n(13,s=c.$$scope)},t.$$.update=()=>{t.$$.dirty&32&&b("drag",w)},[a,i,f,r,o,w,B,m,_,g,l,A,T,s]}class $e extends G{constructor(e){super(),I(this,e,Ze,Ye,J,{value:0,label:1,show_label:2,file_count:3,file_types:9,selectable:4})}}function xe(t){let e,n;return e=new Ve({props:{selectable:t[9],value:t[14],label:t[5],show_label:t[6]}}),e.$on("select",t[24]),{c(){p(e.$$.fragment)},m(l,s){v(e,l,s),n=!0},p(l,s){const a={};s&512&&(a.selectable=l[9]),s&16384&&(a.value=l[14]),s&32&&(a.label=l[5]),s&64&&(a.show_label=l[6]),e.$set(a)},i(l){n||(h(e.$$.fragment,l),n=!0)},o(l){d(e.$$.fragment,l),n=!1},d(l){y(e,l)}}}function el(t){let e,n;return e=new $e({props:{label:t[5],show_label:t[6],value:t[14],file_count:t[7],file_types:t[8],selectable:t[9],$$slots:{default:[ll]},$$scope:{ctx:t}}}),e.$on("change",t[20]),e.$on("drag",t[21]),e.$on("clear",t[22]),e.$on("select",t[23]),{c(){p(e.$$.fragment)},m(l,s){v(e,l,s),n=!0},p(l,s){const a={};s&32&&(a.label=l[5]),s&64&&(a.show_label=l[6]),s&16384&&(a.value=l[14]),s&128&&(a.file_count=l[7]),s&256&&(a.file_types=l[8]),s&512&&(a.selectable=l[9]),s&134217728&&(a.$$scope={dirty:s,ctx:l}),e.$set(a)},i(l){n||(h(e.$$.fragment,l),n=!0)},o(l){d(e.$$.fragment,l),n=!1},d(l){y(e,l)}}}function ll(t){let e,n;return e=new Pe({props:{type:"file"}}),{c(){p(e.$$.fragment)},m(l,s){v(e,l,s),n=!0},p:q,i(l){n||(h(e.$$.fragment,l),n=!0)},o(l){d(e.$$.fragment,l),n=!1},d(l){y(e,l)}}}function tl(t){let e,n,l,s,a,i;const f=[t[10],{status:t[16]?"generating":t[10]?.status||"complete"}];let r={};for(let _=0;_<f.length;_+=1)r=ze(r,f[_]);e=new Ue({props:r});const g=[el,xe],o=[];function m(_,b){return _[4]==="dynamic"?0:1}return l=m(t),s=o[l]=g[l](t),{c(){p(e.$$.fragment),n=S(),s.c(),a=L()},m(_,b){v(e,_,b),U(_,n,b),o[l].m(_,b),U(_,a,b),i=!0},p(_,b){const B=b&66560?je(f,[b&1024&&Ee(_[10]),{status:_[16]?"generating":_[10]?.status||"complete"}]):{};e.$set(B);let w=l;l=m(_),l===w?o[l].p(_,b):(Q(),d(o[w],1,1,()=>{o[w]=null}),V(),s=o[l],s?s.p(_,b):(s=o[l]=g[l](_),s.c()),h(s,1),s.m(a.parentNode,a))},i(_){i||(h(e.$$.fragment,_),h(s),i=!0)},o(_){d(e.$$.fragment,_),d(s),i=!1},d(_){_&&(j(n),j(a)),y(e,_),o[l].d(_)}}}function nl(t){let e,n;return e=new Ne({props:{visible:t[3],variant:t[4]==="dynamic"&&t[0]===null?"dashed":"solid",border_mode:t[15]?"focus":"base",padding:!1,elem_id:t[1],elem_classes:t[2],container:t[11],scale:t[12],min_width:t[13],$$slots:{default:[tl]},$$scope:{ctx:t}}}),{c(){p(e.$$.fragment)},m(l,s){v(e,l,s),n=!0},p(l,[s]){const a={};s&8&&(a.visible=l[3]),s&17&&(a.variant=l[4]==="dynamic"&&l[0]===null?"dashed":"solid"),s&32768&&(a.border_mode=l[15]?"focus":"base"),s&2&&(a.elem_id=l[1]),s&4&&(a.elem_classes=l[2]),s&2048&&(a.container=l[11]),s&4096&&(a.scale=l[12]),s&8192&&(a.min_width=l[13]),s&134334449&&(a.$$scope={dirty:s,ctx:l}),e.$set(a)},i(l){n||(h(e.$$.fragment,l),n=!0)},o(l){d(e.$$.fragment,l),n=!1},d(l){y(e,l)}}}function sl(t,e,n){let l,{elem_id:s=""}=e,{elem_classes:a=[]}=e,{visible:i=!0}=e,{value:f}=e,r,{mode:g}=e,{root:o}=e,{label:m}=e,{show_label:_}=e,{file_count:b}=e,{file_types:B=["file"]}=e,{root_url:w}=e,{selectable:A=!1}=e,{loading_status:T}=e,{container:c=!0}=e,{scale:E=null}=e,{min_width:H=void 0}=e;const re=Fe("upload_files")??Be;let X=!1,M=!1;const R=K(),oe=({detail:u})=>n(0,f=u),fe=({detail:u})=>n(15,X=u);function ue(u){C.call(this,t,u)}function _e(u){C.call(this,t,u)}function ce(u){C.call(this,t,u)}return t.$$set=u=>{"elem_id"in u&&n(1,s=u.elem_id),"elem_classes"in u&&n(2,a=u.elem_classes),"visible"in u&&n(3,i=u.visible),"value"in u&&n(0,f=u.value),"mode"in u&&n(4,g=u.mode),"root"in u&&n(17,o=u.root),"label"in u&&n(5,m=u.label),"show_label"in u&&n(6,_=u.show_label),"file_count"in u&&n(7,b=u.file_count),"file_types"in u&&n(8,B=u.file_types),"root_url"in u&&n(18,w=u.root_url),"selectable"in u&&n(9,A=u.selectable),"loading_status"in u&&n(10,T=u.loading_status),"container"in u&&n(11,c=u.container),"scale"in u&&n(12,E=u.scale),"min_width"in u&&n(13,H=u.min_width)},t.$$.update=()=>{if(t.$$.dirty&393217&&n(14,l=ee(f,o,w)),t.$$.dirty&933905&&JSON.stringify(l)!==JSON.stringify(r)){if(n(19,r=l),l===null)R("change"),n(16,M=!1);else if(!(Array.isArray(l)?l:[l]).every(u=>u.blob))n(16,M=!1),R("change");else if(g==="dynamic"){let u=(Array.isArray(l)?l:[l]).map(P=>P.blob),me=l;n(16,M=!0),re(o,u).then(P=>{me===l&&(n(16,M=!1),P.error?(Array.isArray(l)?l:[l]).forEach(async(N,Y)=>{N.data=await Me(N.blob),N.blob=void 0}):((Array.isArray(l)?l:[l]).forEach((N,Y)=>{P.files&&(N.orig_name=N.name,N.name=P.files[Y],N.is_file=!0,N.blob=void 0)}),n(19,r=n(14,l=ee(f,o,w)))),R("change"),R("upload"))})}}},[f,s,a,i,g,m,_,b,B,A,T,c,E,H,l,X,M,o,w,r,oe,fe,ue,_e,ce]}class al extends G{constructor(e){super(),I(this,e,sl,nl,J,{elem_id:1,elem_classes:2,visible:3,value:0,mode:4,root:17,label:5,show_label:6,file_count:7,file_types:8,root_url:18,selectable:9,loading_status:10,container:11,scale:12,min_width:13})}get elem_id(){return this.$$.ctx[1]}set elem_id(e){this.$$set({elem_id:e}),k()}get elem_classes(){return this.$$.ctx[2]}set elem_classes(e){this.$$set({elem_classes:e}),k()}get visible(){return this.$$.ctx[3]}set visible(e){this.$$set({visible:e}),k()}get value(){return this.$$.ctx[0]}set value(e){this.$$set({value:e}),k()}get mode(){return this.$$.ctx[4]}set mode(e){this.$$set({mode:e}),k()}get root(){return this.$$.ctx[17]}set root(e){this.$$set({root:e}),k()}get label(){return this.$$.ctx[5]}set label(e){this.$$set({label:e}),k()}get show_label(){return this.$$.ctx[6]}set show_label(e){this.$$set({show_label:e}),k()}get file_count(){return this.$$.ctx[7]}set file_count(e){this.$$set({file_count:e}),k()}get file_types(){return this.$$.ctx[8]}set file_types(e){this.$$set({file_types:e}),k()}get root_url(){return this.$$.ctx[18]}set root_url(e){this.$$set({root_url:e}),k()}get selectable(){return this.$$.ctx[9]}set selectable(e){this.$$set({selectable:e}),k()}get loading_status(){return this.$$.ctx[10]}set loading_status(e){this.$$set({loading_status:e}),k()}get container(){return this.$$.ctx[11]}set container(e){this.$$set({container:e}),k()}get scale(){return this.$$.ctx[12]}set scale(e){this.$$set({scale:e}),k()}get min_width(){return this.$$.ctx[13]}set min_width(e){this.$$set({min_width:e}),k()}}const hl=al,wl=["static","dynamic"],kl=t=>({type:{input_payload:"{ name: string; data: string }",response_object:"{ orig_name: string; name: string, size: number, data: string, is_file: boolean}"},description:{input_payload:"object with file name and base64 data",response_object:"object that includes path to file. The URL: {ROOT}file={name} contains the data"},example_data:{name:"zip.zip",data:"data:@file/octet-stream;base64,UEsFBgAAAAAAAAAAAAAAAAAAAAAAAA=="}});export{hl as Component,kl as document,wl as modes};
2
- //# sourceMappingURL=index-6f7117a6.js.map
 
 
 
spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/templates/frontend/assets/index-be790e2e.css DELETED
@@ -1 +0,0 @@
1
- .rangeSlider{--pip:var(--range-pip, lightslategray);--pip-text:var(--range-pip-text, var(--pip));--pip-active:var(--range-pip-active, darkslategrey);--pip-active-text:var(--range-pip-active-text, var(--pip-active));--pip-hover:var(--range-pip-hover, darkslategrey);--pip-hover-text:var(--range-pip-hover-text, var(--pip-hover));--pip-in-range:var(--range-pip-in-range, var(--pip-active));--pip-in-range-text:var(--range-pip-in-range-text, var(--pip-active-text))}.rangePips{position:absolute;height:1em;left:0;right:0;bottom:-1em}.rangePips.vertical{height:auto;width:1em;inset:0 auto 0 100%}.rangePips .pip{height:.4em;position:absolute;top:.25em;width:1px;white-space:nowrap}.rangePips.vertical .pip{height:1px;width:.4em;left:.25em;top:auto;bottom:auto}.rangePips .pipVal{position:absolute;top:.4em;transform:translate(-50%,25%)}.rangePips.vertical .pipVal{position:absolute;top:0;left:.4em;transform:translate(25%,-50%)}.rangePips .pip{transition:all .15s ease}.rangePips .pipVal{transition:all .15s ease,font-weight 0s linear}.rangePips .pip{color:#789;color:var(--pip-text);background-color:#789;background-color:var(--pip)}.rangePips .pip.selected{color:#2f4f4f;color:var(--pip-active-text);background-color:#2f4f4f;background-color:var(--pip-active)}.rangePips.hoverable:not(.disabled) .pip:hover{color:#2f4f4f;color:var(--pip-hover-text);background-color:#2f4f4f;background-color:var(--pip-hover)}.rangePips .pip.in-range{color:#2f4f4f;color:var(--pip-in-range-text);background-color:#2f4f4f;background-color:var(--pip-in-range)}.rangePips .pip.selected{height:.75em}.rangePips.vertical .pip.selected{height:1px;width:.75em}.rangePips .pip.selected .pipVal{font-weight:700;top:.75em}.rangePips.vertical .pip.selected .pipVal{top:0;left:.75em}.rangePips.hoverable:not(.disabled) .pip:not(.selected):hover{transition:none}.rangePips.hoverable:not(.disabled) .pip:not(.selected):hover .pipVal{transition:none;font-weight:700}.rangeSlider{--slider:var(--range-slider, #d7dada);--handle-inactive:var(--range-handle-inactive, #99a2a2);--handle:var(--range-handle, #838de7);--handle-focus:var(--range-handle-focus, #4a40d4);--handle-border:var(--range-handle-border, var(--handle));--range-inactive:var(--range-range-inactive, var(--handle-inactive));--range:var(--range-range, var(--handle-focus));--float-inactive:var(--range-float-inactive, var(--handle-inactive));--float:var(--range-float, var(--handle-focus));--float-text:var(--range-float-text, white)}.rangeSlider{position:relative;border-radius:100px;height:.5em;margin:1em;transition:opacity .2s ease;user-select:none}.rangeSlider *{user-select:none}.rangeSlider.pips{margin-bottom:1.8em}.rangeSlider.pip-labels{margin-bottom:2.8em}.rangeSlider.vertical{display:inline-block;border-radius:100px;width:.5em;min-height:200px}.rangeSlider.vertical.pips{margin-right:1.8em;margin-bottom:1em}.rangeSlider.vertical.pip-labels{margin-right:2.8em;margin-bottom:1em}.rangeSlider .rangeHandle{position:absolute;display:block;height:1.4em;width:1.4em;top:.25em;bottom:auto;transform:translateY(-50%) translate(-50%);z-index:2}.rangeSlider.reversed .rangeHandle{transform:translateY(-50%) translate(50%)}.rangeSlider.vertical .rangeHandle{left:.25em;top:auto;transform:translateY(50%) translate(-50%)}.rangeSlider.vertical.reversed .rangeHandle{transform:translateY(-50%) translate(-50%)}.rangeSlider .rangeNub,.rangeSlider .rangeHandle:before{position:absolute;left:0;top:0;display:block;border-radius:10em;height:100%;width:100%;transition:box-shadow .2s ease}.rangeSlider .rangeHandle:before{content:"";inset:1px;height:auto;width:auto;box-shadow:0 0 0 0 var(--handle-border);opacity:0}.rangeSlider.hoverable:not(.disabled) .rangeHandle:hover:before{box-shadow:0 0 0 8px var(--handle-border);opacity:.2}.rangeSlider.hoverable:not(.disabled) .rangeHandle.press:before,.rangeSlider.hoverable:not(.disabled) .rangeHandle.press:hover:before{box-shadow:0 0 0 12px var(--handle-border);opacity:.4}.rangeSlider.range:not(.min):not(.max) .rangeNub{border-radius:10em 10em 10em 1.6em}.rangeSlider.range .rangeHandle:nth-of-type(1) .rangeNub{transform:rotate(-135deg)}.rangeSlider.range .rangeHandle:nth-of-type(2) .rangeNub{transform:rotate(45deg)}.rangeSlider.range.reversed .rangeHandle:nth-of-type(1) .rangeNub{transform:rotate(45deg)}.rangeSlider.range.reversed .rangeHandle:nth-of-type(2) .rangeNub{transform:rotate(-135deg)}.rangeSlider.range.vertical .rangeHandle:nth-of-type(1) .rangeNub{transform:rotate(135deg)}.rangeSlider.range.vertical .rangeHandle:nth-of-type(2) .rangeNub{transform:rotate(-45deg)}.rangeSlider.range.vertical.reversed .rangeHandle:nth-of-type(1) .rangeNub{transform:rotate(-45deg)}.rangeSlider.range.vertical.reversed .rangeHandle:nth-of-type(2) .rangeNub{transform:rotate(135deg)}.rangeSlider .rangeFloat{display:block;position:absolute;left:50%;top:-.5em;transform:translate(-50%,-100%);font-size:1em;text-align:center;opacity:0;pointer-events:none;white-space:nowrap;transition:all .2s ease;font-size:.9em;padding:.2em .4em;border-radius:.2em}.rangeSlider .rangeHandle.active .rangeFloat,.rangeSlider.hoverable .rangeHandle:hover .rangeFloat{opacity:1;top:-.2em;transform:translate(-50%,-100%)}.rangeSlider .rangeBar{position:absolute;display:block;transition:background .2s ease;border-radius:1em;height:.5em;top:0;user-select:none;z-index:1}.rangeSlider.vertical .rangeBar{width:.5em;height:auto}.rangeSlider{background-color:#d7dada;background-color:var(--slider)}.rangeSlider .rangeBar{background-color:#99a2a2;background-color:var(--range-inactive)}.rangeSlider.focus .rangeBar{background-color:#838de7;background-color:var(--range)}.rangeSlider .rangeNub{background-color:#99a2a2;background-color:var(--handle-inactive)}.rangeSlider.focus .rangeNub{background-color:#838de7;background-color:var(--handle)}.rangeSlider .rangeHandle.active .rangeNub{background-color:#4a40d4;background-color:var(--handle-focus)}.rangeSlider .rangeFloat{color:#fff;color:var(--float-text);background-color:#99a2a2;background-color:var(--float-inactive)}.rangeSlider.focus .rangeFloat{background-color:#4a40d4;background-color:var(--float)}.rangeSlider.disabled{opacity:.5}.rangeSlider.disabled .rangeNub{background-color:#d7dada;background-color:var(--slider)}.mic-wrap.svelte-1thnwz{padding:var(--size-2)}.record-icon.svelte-1thnwz{display:flex;position:relative;margin-right:var(--size-2);width:6px;height:6px}.dot.svelte-1thnwz{display:inline-flex;position:relative;border-radius:var(--radius-full);background:var(--color-red-500);width:6px;height:6px}.pinger.svelte-1thnwz{display:inline-flex;position:absolute;opacity:.9;animation:svelte-1thnwz-ping 1s cubic-bezier(0,0,.2,1) infinite;border-radius:var(--radius-full);background:var(--color-red-500);width:var(--size-full);height:var(--size-full)}@keyframes svelte-1thnwz-ping{75%,to{transform:scale(2);opacity:0}}audio.svelte-1thnwz{padding:var(--size-2);width:var(--size-full);height:var(--size-14)}audio.svelte-1yfus5a{padding:var(--size-2);width:var(--size-full);height:var(--size-14)}.icon-button.svelte-1yfus5a{position:absolute;top:6px;right:6px}
 
 
spaces/DaleChen/AutoGPT/autogpt/processing/html.py DELETED
@@ -1,33 +0,0 @@
1
- """HTML processing functions"""
2
- from __future__ import annotations
3
-
4
- from bs4 import BeautifulSoup
5
- from requests.compat import urljoin
6
-
7
-
8
- def extract_hyperlinks(soup: BeautifulSoup, base_url: str) -> list[tuple[str, str]]:
9
- """Extract hyperlinks from a BeautifulSoup object
10
-
11
- Args:
12
- soup (BeautifulSoup): The BeautifulSoup object
13
- base_url (str): The base URL
14
-
15
- Returns:
16
- List[Tuple[str, str]]: The extracted hyperlinks
17
- """
18
- return [
19
- (link.text, urljoin(base_url, link["href"]))
20
- for link in soup.find_all("a", href=True)
21
- ]
22
-
23
-
24
- def format_hyperlinks(hyperlinks: list[tuple[str, str]]) -> list[str]:
25
- """Format hyperlinks to be displayed to the user
26
-
27
- Args:
28
- hyperlinks (List[Tuple[str, str]]): The hyperlinks to format
29
-
30
- Returns:
31
- List[str]: The formatted hyperlinks
32
- """
33
- return [f"{link_text} ({link_url})" for link_text, link_url in hyperlinks]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Dantra1/CeliaSensei/models.py DELETED
@@ -1,533 +0,0 @@
1
- import math
2
- import torch
3
- from torch import nn
4
- from torch.nn import functional as F
5
-
6
- import commons
7
- import modules
8
- import attentions
9
- import monotonic_align
10
-
11
- from torch.nn import Conv1d, ConvTranspose1d, Conv2d
12
- from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
13
- from commons import init_weights, get_padding
14
-
15
-
16
- class StochasticDurationPredictor(nn.Module):
17
- def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
18
- super().__init__()
19
- filter_channels = in_channels # it needs to be removed from future version.
20
- self.in_channels = in_channels
21
- self.filter_channels = filter_channels
22
- self.kernel_size = kernel_size
23
- self.p_dropout = p_dropout
24
- self.n_flows = n_flows
25
- self.gin_channels = gin_channels
26
-
27
- self.log_flow = modules.Log()
28
- self.flows = nn.ModuleList()
29
- self.flows.append(modules.ElementwiseAffine(2))
30
- for i in range(n_flows):
31
- self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
32
- self.flows.append(modules.Flip())
33
-
34
- self.post_pre = nn.Conv1d(1, filter_channels, 1)
35
- self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
36
- self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
37
- self.post_flows = nn.ModuleList()
38
- self.post_flows.append(modules.ElementwiseAffine(2))
39
- for i in range(4):
40
- self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
41
- self.post_flows.append(modules.Flip())
42
-
43
- self.pre = nn.Conv1d(in_channels, filter_channels, 1)
44
- self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
45
- self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
46
- if gin_channels != 0:
47
- self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
48
-
49
- def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
50
- x = torch.detach(x)
51
- x = self.pre(x)
52
- if g is not None:
53
- g = torch.detach(g)
54
- x = x + self.cond(g)
55
- x = self.convs(x, x_mask)
56
- x = self.proj(x) * x_mask
57
-
58
- if not reverse:
59
- flows = self.flows
60
- assert w is not None
61
-
62
- logdet_tot_q = 0
63
- h_w = self.post_pre(w)
64
- h_w = self.post_convs(h_w, x_mask)
65
- h_w = self.post_proj(h_w) * x_mask
66
- e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
67
- z_q = e_q
68
- for flow in self.post_flows:
69
- z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
70
- logdet_tot_q += logdet_q
71
- z_u, z1 = torch.split(z_q, [1, 1], 1)
72
- u = torch.sigmoid(z_u) * x_mask
73
- z0 = (w - u) * x_mask
74
- logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2])
75
- logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q
76
-
77
- logdet_tot = 0
78
- z0, logdet = self.log_flow(z0, x_mask)
79
- logdet_tot += logdet
80
- z = torch.cat([z0, z1], 1)
81
- for flow in flows:
82
- z, logdet = flow(z, x_mask, g=x, reverse=reverse)
83
- logdet_tot = logdet_tot + logdet
84
- nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot
85
- return nll + logq # [b]
86
- else:
87
- flows = list(reversed(self.flows))
88
- flows = flows[:-2] + [flows[-1]] # remove a useless vflow
89
- z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
90
- for flow in flows:
91
- z = flow(z, x_mask, g=x, reverse=reverse)
92
- z0, z1 = torch.split(z, [1, 1], 1)
93
- logw = z0
94
- return logw
95
-
96
-
97
- class DurationPredictor(nn.Module):
98
- def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
99
- super().__init__()
100
-
101
- self.in_channels = in_channels
102
- self.filter_channels = filter_channels
103
- self.kernel_size = kernel_size
104
- self.p_dropout = p_dropout
105
- self.gin_channels = gin_channels
106
-
107
- self.drop = nn.Dropout(p_dropout)
108
- self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2)
109
- self.norm_1 = modules.LayerNorm(filter_channels)
110
- self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2)
111
- self.norm_2 = modules.LayerNorm(filter_channels)
112
- self.proj = nn.Conv1d(filter_channels, 1, 1)
113
-
114
- if gin_channels != 0:
115
- self.cond = nn.Conv1d(gin_channels, in_channels, 1)
116
-
117
- def forward(self, x, x_mask, g=None):
118
- x = torch.detach(x)
119
- if g is not None:
120
- g = torch.detach(g)
121
- x = x + self.cond(g)
122
- x = self.conv_1(x * x_mask)
123
- x = torch.relu(x)
124
- x = self.norm_1(x)
125
- x = self.drop(x)
126
- x = self.conv_2(x * x_mask)
127
- x = torch.relu(x)
128
- x = self.norm_2(x)
129
- x = self.drop(x)
130
- x = self.proj(x * x_mask)
131
- return x * x_mask
132
-
133
-
134
- class TextEncoder(nn.Module):
135
- def __init__(self,
136
- n_vocab,
137
- out_channels,
138
- hidden_channels,
139
- filter_channels,
140
- n_heads,
141
- n_layers,
142
- kernel_size,
143
- p_dropout):
144
- super().__init__()
145
- self.n_vocab = n_vocab
146
- self.out_channels = out_channels
147
- self.hidden_channels = hidden_channels
148
- self.filter_channels = filter_channels
149
- self.n_heads = n_heads
150
- self.n_layers = n_layers
151
- self.kernel_size = kernel_size
152
- self.p_dropout = p_dropout
153
-
154
- self.emb = nn.Embedding(n_vocab, hidden_channels)
155
- nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
156
-
157
- self.encoder = attentions.Encoder(
158
- hidden_channels,
159
- filter_channels,
160
- n_heads,
161
- n_layers,
162
- kernel_size,
163
- p_dropout)
164
- self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
165
-
166
- def forward(self, x, x_lengths):
167
- x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
168
- x = torch.transpose(x, 1, -1) # [b, h, t]
169
- x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
170
-
171
- x = self.encoder(x * x_mask, x_mask)
172
- stats = self.proj(x) * x_mask
173
-
174
- m, logs = torch.split(stats, self.out_channels, dim=1)
175
- return x, m, logs, x_mask
176
-
177
-
178
- class ResidualCouplingBlock(nn.Module):
179
- def __init__(self,
180
- channels,
181
- hidden_channels,
182
- kernel_size,
183
- dilation_rate,
184
- n_layers,
185
- n_flows=4,
186
- gin_channels=0):
187
- super().__init__()
188
- self.channels = channels
189
- self.hidden_channels = hidden_channels
190
- self.kernel_size = kernel_size
191
- self.dilation_rate = dilation_rate
192
- self.n_layers = n_layers
193
- self.n_flows = n_flows
194
- self.gin_channels = gin_channels
195
-
196
- self.flows = nn.ModuleList()
197
- for i in range(n_flows):
198
- self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
199
- self.flows.append(modules.Flip())
200
-
201
- def forward(self, x, x_mask, g=None, reverse=False):
202
- if not reverse:
203
- for flow in self.flows:
204
- x, _ = flow(x, x_mask, g=g, reverse=reverse)
205
- else:
206
- for flow in reversed(self.flows):
207
- x = flow(x, x_mask, g=g, reverse=reverse)
208
- return x
209
-
210
-
211
- class PosteriorEncoder(nn.Module):
212
- def __init__(self,
213
- in_channels,
214
- out_channels,
215
- hidden_channels,
216
- kernel_size,
217
- dilation_rate,
218
- n_layers,
219
- gin_channels=0):
220
- super().__init__()
221
- self.in_channels = in_channels
222
- self.out_channels = out_channels
223
- self.hidden_channels = hidden_channels
224
- self.kernel_size = kernel_size
225
- self.dilation_rate = dilation_rate
226
- self.n_layers = n_layers
227
- self.gin_channels = gin_channels
228
-
229
- self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
230
- self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
231
- self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
232
-
233
- def forward(self, x, x_lengths, g=None):
234
- x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
235
- x = self.pre(x) * x_mask
236
- x = self.enc(x, x_mask, g=g)
237
- stats = self.proj(x) * x_mask
238
- m, logs = torch.split(stats, self.out_channels, dim=1)
239
- z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
240
- return z, m, logs, x_mask
241
-
242
-
243
- class Generator(torch.nn.Module):
244
- def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
245
- super(Generator, self).__init__()
246
- self.num_kernels = len(resblock_kernel_sizes)
247
- self.num_upsamples = len(upsample_rates)
248
- self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
249
- resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
250
-
251
- self.ups = nn.ModuleList()
252
- for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
253
- self.ups.append(weight_norm(
254
- ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
255
- k, u, padding=(k-u)//2)))
256
-
257
- self.resblocks = nn.ModuleList()
258
- for i in range(len(self.ups)):
259
- ch = upsample_initial_channel//(2**(i+1))
260
- for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
261
- self.resblocks.append(resblock(ch, k, d))
262
-
263
- self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
264
- self.ups.apply(init_weights)
265
-
266
- if gin_channels != 0:
267
- self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
268
-
269
- def forward(self, x, g=None):
270
- x = self.conv_pre(x)
271
- if g is not None:
272
- x = x + self.cond(g)
273
-
274
- for i in range(self.num_upsamples):
275
- x = F.leaky_relu(x, modules.LRELU_SLOPE)
276
- x = self.ups[i](x)
277
- xs = None
278
- for j in range(self.num_kernels):
279
- if xs is None:
280
- xs = self.resblocks[i*self.num_kernels+j](x)
281
- else:
282
- xs += self.resblocks[i*self.num_kernels+j](x)
283
- x = xs / self.num_kernels
284
- x = F.leaky_relu(x)
285
- x = self.conv_post(x)
286
- x = torch.tanh(x)
287
-
288
- return x
289
-
290
- def remove_weight_norm(self):
291
- print('Removing weight norm...')
292
- for l in self.ups:
293
- remove_weight_norm(l)
294
- for l in self.resblocks:
295
- l.remove_weight_norm()
296
-
297
-
298
- class DiscriminatorP(torch.nn.Module):
299
- def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
300
- super(DiscriminatorP, self).__init__()
301
- self.period = period
302
- self.use_spectral_norm = use_spectral_norm
303
- norm_f = weight_norm if use_spectral_norm == False else spectral_norm
304
- self.convs = nn.ModuleList([
305
- norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
306
- norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
307
- norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
308
- norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
309
- norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
310
- ])
311
- self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
312
-
313
- def forward(self, x):
314
- fmap = []
315
-
316
- # 1d to 2d
317
- b, c, t = x.shape
318
- if t % self.period != 0: # pad first
319
- n_pad = self.period - (t % self.period)
320
- x = F.pad(x, (0, n_pad), "reflect")
321
- t = t + n_pad
322
- x = x.view(b, c, t // self.period, self.period)
323
-
324
- for l in self.convs:
325
- x = l(x)
326
- x = F.leaky_relu(x, modules.LRELU_SLOPE)
327
- fmap.append(x)
328
- x = self.conv_post(x)
329
- fmap.append(x)
330
- x = torch.flatten(x, 1, -1)
331
-
332
- return x, fmap
333
-
334
-
335
- class DiscriminatorS(torch.nn.Module):
336
- def __init__(self, use_spectral_norm=False):
337
- super(DiscriminatorS, self).__init__()
338
- norm_f = weight_norm if use_spectral_norm == False else spectral_norm
339
- self.convs = nn.ModuleList([
340
- norm_f(Conv1d(1, 16, 15, 1, padding=7)),
341
- norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
342
- norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
343
- norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
344
- norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
345
- norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
346
- ])
347
- self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
348
-
349
- def forward(self, x):
350
- fmap = []
351
-
352
- for l in self.convs:
353
- x = l(x)
354
- x = F.leaky_relu(x, modules.LRELU_SLOPE)
355
- fmap.append(x)
356
- x = self.conv_post(x)
357
- fmap.append(x)
358
- x = torch.flatten(x, 1, -1)
359
-
360
- return x, fmap
361
-
362
-
363
- class MultiPeriodDiscriminator(torch.nn.Module):
364
- def __init__(self, use_spectral_norm=False):
365
- super(MultiPeriodDiscriminator, self).__init__()
366
- periods = [2,3,5,7,11]
367
-
368
- discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
369
- discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
370
- self.discriminators = nn.ModuleList(discs)
371
-
372
- def forward(self, y, y_hat):
373
- y_d_rs = []
374
- y_d_gs = []
375
- fmap_rs = []
376
- fmap_gs = []
377
- for i, d in enumerate(self.discriminators):
378
- y_d_r, fmap_r = d(y)
379
- y_d_g, fmap_g = d(y_hat)
380
- y_d_rs.append(y_d_r)
381
- y_d_gs.append(y_d_g)
382
- fmap_rs.append(fmap_r)
383
- fmap_gs.append(fmap_g)
384
-
385
- return y_d_rs, y_d_gs, fmap_rs, fmap_gs
386
-
387
-
388
-
389
- class SynthesizerTrn(nn.Module):
390
- """
391
- Synthesizer for Training
392
- """
393
-
394
- def __init__(self,
395
- n_vocab,
396
- spec_channels,
397
- segment_size,
398
- inter_channels,
399
- hidden_channels,
400
- filter_channels,
401
- n_heads,
402
- n_layers,
403
- kernel_size,
404
- p_dropout,
405
- resblock,
406
- resblock_kernel_sizes,
407
- resblock_dilation_sizes,
408
- upsample_rates,
409
- upsample_initial_channel,
410
- upsample_kernel_sizes,
411
- n_speakers=0,
412
- gin_channels=0,
413
- use_sdp=True,
414
- **kwargs):
415
-
416
- super().__init__()
417
- self.n_vocab = n_vocab
418
- self.spec_channels = spec_channels
419
- self.inter_channels = inter_channels
420
- self.hidden_channels = hidden_channels
421
- self.filter_channels = filter_channels
422
- self.n_heads = n_heads
423
- self.n_layers = n_layers
424
- self.kernel_size = kernel_size
425
- self.p_dropout = p_dropout
426
- self.resblock = resblock
427
- self.resblock_kernel_sizes = resblock_kernel_sizes
428
- self.resblock_dilation_sizes = resblock_dilation_sizes
429
- self.upsample_rates = upsample_rates
430
- self.upsample_initial_channel = upsample_initial_channel
431
- self.upsample_kernel_sizes = upsample_kernel_sizes
432
- self.segment_size = segment_size
433
- self.n_speakers = n_speakers
434
- self.gin_channels = gin_channels
435
-
436
- self.use_sdp = use_sdp
437
-
438
- self.enc_p = TextEncoder(n_vocab,
439
- inter_channels,
440
- hidden_channels,
441
- filter_channels,
442
- n_heads,
443
- n_layers,
444
- kernel_size,
445
- p_dropout)
446
- self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
447
- self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
448
- self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
449
-
450
- if use_sdp:
451
- self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
452
- else:
453
- self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
454
-
455
- if n_speakers > 1:
456
- self.emb_g = nn.Embedding(n_speakers, gin_channels)
457
-
458
- def forward(self, x, x_lengths, y, y_lengths, sid=None):
459
-
460
- x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
461
- if self.n_speakers > 0:
462
- g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
463
- else:
464
- g = None
465
-
466
- z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
467
- z_p = self.flow(z, y_mask, g=g)
468
-
469
- with torch.no_grad():
470
- # negative cross-entropy
471
- s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
472
- neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s]
473
- neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2), s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
474
- neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
475
- neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s]
476
- neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
477
-
478
- attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
479
- attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
480
-
481
- w = attn.sum(2)
482
- if self.use_sdp:
483
- l_length = self.dp(x, x_mask, w, g=g)
484
- l_length = l_length / torch.sum(x_mask)
485
- else:
486
- logw_ = torch.log(w + 1e-6) * x_mask
487
- logw = self.dp(x, x_mask, g=g)
488
- l_length = torch.sum((logw - logw_)**2, [1,2]) / torch.sum(x_mask) # for averaging
489
-
490
- # expand prior
491
- m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
492
- logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
493
-
494
- z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
495
- o = self.dec(z_slice, g=g)
496
- return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
497
-
498
- def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
499
- x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
500
- if self.n_speakers > 0:
501
- g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
502
- else:
503
- g = None
504
-
505
- if self.use_sdp:
506
- logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
507
- else:
508
- logw = self.dp(x, x_mask, g=g)
509
- w = torch.exp(logw) * x_mask * length_scale
510
- w_ceil = torch.ceil(w)
511
- y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
512
- y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
513
- attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
514
- attn = commons.generate_path(w_ceil, attn_mask)
515
-
516
- m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
517
- logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
518
-
519
- z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
520
- z = self.flow(z_p, y_mask, g=g, reverse=True)
521
- o = self.dec((z * y_mask)[:,:,:max_len], g=g)
522
- return o, attn, y_mask, (z, z_p, m_p, logs_p)
523
-
524
- def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
525
- assert self.n_speakers > 0, "n_speakers have to be larger than 0."
526
- g_src = self.emb_g(sid_src).unsqueeze(-1)
527
- g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
528
- z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
529
- z_p = self.flow(z, y_mask, g=g_src)
530
- z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
531
- o_hat = self.dec(z_hat * y_mask, g=g_tgt)
532
- return o_hat, y_mask, (z, z_p, z_hat)
533
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Datasculptor/DescriptionGPT/tools/download_cc.py DELETED
@@ -1,47 +0,0 @@
1
- # Copyright (c) Facebook, Inc. and its affiliates.
2
- import os
3
- import json
4
- import argparse
5
- from PIL import Image
6
- import numpy as np
7
-
8
- if __name__ == '__main__':
9
- parser = argparse.ArgumentParser()
10
- parser.add_argument('--ann', default='datasets/cc3m/Train_GCC-training.tsv')
11
- parser.add_argument('--save_image_path', default='datasets/cc3m/training/')
12
- parser.add_argument('--cat_info', default='datasets/lvis/lvis_v1_val.json')
13
- parser.add_argument('--out_path', default='datasets/cc3m/train_image_info.json')
14
- parser.add_argument('--not_download_image', action='store_true')
15
- args = parser.parse_args()
16
- categories = json.load(open(args.cat_info, 'r'))['categories']
17
- images = []
18
- if not os.path.exists(args.save_image_path):
19
- os.makedirs(args.save_image_path)
20
- f = open(args.ann)
21
- for i, line in enumerate(f):
22
- cap, path = line[:-1].split('\t')
23
- print(i, cap, path)
24
- if not args.not_download_image:
25
- os.system(
26
- 'wget {} -O {}/{}.jpg'.format(
27
- path, args.save_image_path, i + 1))
28
- try:
29
- img = Image.open(
30
- open('{}/{}.jpg'.format(args.save_image_path, i + 1), "rb"))
31
- img = np.asarray(img.convert("RGB"))
32
- h, w = img.shape[:2]
33
- except:
34
- continue
35
- image_info = {
36
- 'id': i + 1,
37
- 'file_name': '{}.jpg'.format(i + 1),
38
- 'height': h,
39
- 'width': w,
40
- 'captions': [cap],
41
- }
42
- images.append(image_info)
43
- data = {'categories': categories, 'images': images, 'annotations': []}
44
- for k, v in data.items():
45
- print(k, len(v))
46
- print('Saving to', args.out_path)
47
- json.dump(data, open(args.out_path, 'w'))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Datasculptor/MusicGen/tests/utils/__init__.py DELETED
@@ -1,5 +0,0 @@
1
- # Copyright (c) Meta Platforms, Inc. and affiliates.
2
- # All rights reserved.
3
- #
4
- # This source code is licensed under the license found in the
5
- # LICENSE file in the root directory of this source tree.
 
 
 
 
 
 
spaces/Datasculptor/StyleGAN-NADA/e4e/models/psp.py DELETED
@@ -1,99 +0,0 @@
1
- import matplotlib
2
-
3
- matplotlib.use('Agg')
4
- import torch
5
- from torch import nn
6
- from e4e.models.encoders import psp_encoders
7
- from e4e.models.stylegan2.model import Generator
8
- from e4e.configs.paths_config import model_paths
9
-
10
-
11
- def get_keys(d, name):
12
- if 'state_dict' in d:
13
- d = d['state_dict']
14
- d_filt = {k[len(name) + 1:]: v for k, v in d.items() if k[:len(name)] == name}
15
- return d_filt
16
-
17
-
18
- class pSp(nn.Module):
19
-
20
- def __init__(self, opts, device):
21
- super(pSp, self).__init__()
22
- self.opts = opts
23
- self.device = device
24
- # Define architecture
25
- self.encoder = self.set_encoder()
26
- self.decoder = Generator(opts.stylegan_size, 512, 8, channel_multiplier=2)
27
- self.face_pool = torch.nn.AdaptiveAvgPool2d((256, 256))
28
- # Load weights if needed
29
- self.load_weights()
30
-
31
- def set_encoder(self):
32
- if self.opts.encoder_type == 'GradualStyleEncoder':
33
- encoder = psp_encoders.GradualStyleEncoder(50, 'ir_se', self.opts)
34
- elif self.opts.encoder_type == 'Encoder4Editing':
35
- encoder = psp_encoders.Encoder4Editing(50, 'ir_se', self.opts)
36
- else:
37
- raise Exception('{} is not a valid encoders'.format(self.opts.encoder_type))
38
- return encoder
39
-
40
- def load_weights(self):
41
- if self.opts.checkpoint_path is not None:
42
- print('Loading e4e over the pSp framework from checkpoint: {}'.format(self.opts.checkpoint_path))
43
- ckpt = torch.load(self.opts.checkpoint_path, map_location='cpu')
44
- self.encoder.load_state_dict(get_keys(ckpt, 'encoder'), strict=True)
45
- self.decoder.load_state_dict(get_keys(ckpt, 'decoder'), strict=True)
46
- self.__load_latent_avg(ckpt)
47
- else:
48
- print('Loading encoders weights from irse50!')
49
- encoder_ckpt = torch.load(model_paths['ir_se50'])
50
- self.encoder.load_state_dict(encoder_ckpt, strict=False)
51
- print('Loading decoder weights from pretrained!')
52
- ckpt = torch.load(self.opts.stylegan_weights)
53
- self.decoder.load_state_dict(ckpt['g_ema'], strict=False)
54
- self.__load_latent_avg(ckpt, repeat=self.encoder.style_count)
55
-
56
- def forward(self, x, resize=True, latent_mask=None, input_code=False, randomize_noise=True,
57
- inject_latent=None, return_latents=False, alpha=None):
58
- if input_code:
59
- codes = x
60
- else:
61
- codes = self.encoder(x)
62
- # normalize with respect to the center of an average face
63
- if self.opts.start_from_latent_avg:
64
- if codes.ndim == 2:
65
- codes = codes + self.latent_avg.repeat(codes.shape[0], 1, 1)[:, 0, :]
66
- else:
67
- codes = codes + self.latent_avg.repeat(codes.shape[0], 1, 1)
68
-
69
- if latent_mask is not None:
70
- for i in latent_mask:
71
- if inject_latent is not None:
72
- if alpha is not None:
73
- codes[:, i] = alpha * inject_latent[:, i] + (1 - alpha) * codes[:, i]
74
- else:
75
- codes[:, i] = inject_latent[:, i]
76
- else:
77
- codes[:, i] = 0
78
-
79
- input_is_latent = not input_code
80
- images, result_latent = self.decoder([codes],
81
- input_is_latent=input_is_latent,
82
- randomize_noise=randomize_noise,
83
- return_latents=return_latents)
84
-
85
- if resize:
86
- images = self.face_pool(images)
87
-
88
- if return_latents:
89
- return images, result_latent
90
- else:
91
- return images
92
-
93
- def __load_latent_avg(self, ckpt, repeat=None):
94
- if 'latent_avg' in ckpt:
95
- self.latent_avg = ckpt['latent_avg'].to(self.device)
96
- if repeat is not None:
97
- self.latent_avg = self.latent_avg.repeat(repeat, 1)
98
- else:
99
- self.latent_avg = None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/DeepDrivePL/PaddleSeg-Matting/matting/model/hrnet.py DELETED
@@ -1,835 +0,0 @@
1
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import math
16
-
17
- import paddle
18
- import paddle.nn as nn
19
- import paddle.nn.functional as F
20
-
21
- from paddleseg.cvlibs import manager, param_init
22
- from paddleseg.models import layers
23
- from paddleseg.utils import utils
24
-
25
- __all__ = [
26
- "HRNet_W18_Small_V1", "HRNet_W18_Small_V2", "HRNet_W18", "HRNet_W30",
27
- "HRNet_W32", "HRNet_W40", "HRNet_W44", "HRNet_W48", "HRNet_W60", "HRNet_W64"
28
- ]
29
-
30
-
31
- class HRNet(nn.Layer):
32
- """
33
- The HRNet implementation based on PaddlePaddle.
34
-
35
- The original article refers to
36
- Jingdong Wang, et, al. "HRNet:Deep High-Resolution Representation Learning for Visual Recognition"
37
- (https://arxiv.org/pdf/1908.07919.pdf).
38
-
39
- Args:
40
- pretrained (str, optional): The path of pretrained model.
41
- stage1_num_modules (int, optional): Number of modules for stage1. Default 1.
42
- stage1_num_blocks (list, optional): Number of blocks per module for stage1. Default (4).
43
- stage1_num_channels (list, optional): Number of channels per branch for stage1. Default (64).
44
- stage2_num_modules (int, optional): Number of modules for stage2. Default 1.
45
- stage2_num_blocks (list, optional): Number of blocks per module for stage2. Default (4, 4).
46
- stage2_num_channels (list, optional): Number of channels per branch for stage2. Default (18, 36).
47
- stage3_num_modules (int, optional): Number of modules for stage3. Default 4.
48
- stage3_num_blocks (list, optional): Number of blocks per module for stage3. Default (4, 4, 4).
49
- stage3_num_channels (list, optional): Number of channels per branch for stage3. Default [18, 36, 72).
50
- stage4_num_modules (int, optional): Number of modules for stage4. Default 3.
51
- stage4_num_blocks (list, optional): Number of blocks per module for stage4. Default (4, 4, 4, 4).
52
- stage4_num_channels (list, optional): Number of channels per branch for stage4. Default (18, 36, 72. 144).
53
- has_se (bool, optional): Whether to use Squeeze-and-Excitation module. Default False.
54
- align_corners (bool, optional): An argument of F.interpolate. It should be set to False when the feature size is even,
55
- e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False.
56
- """
57
-
58
- def __init__(self,
59
- input_channels=3,
60
- pretrained=None,
61
- stage1_num_modules=1,
62
- stage1_num_blocks=(4, ),
63
- stage1_num_channels=(64, ),
64
- stage2_num_modules=1,
65
- stage2_num_blocks=(4, 4),
66
- stage2_num_channels=(18, 36),
67
- stage3_num_modules=4,
68
- stage3_num_blocks=(4, 4, 4),
69
- stage3_num_channels=(18, 36, 72),
70
- stage4_num_modules=3,
71
- stage4_num_blocks=(4, 4, 4, 4),
72
- stage4_num_channels=(18, 36, 72, 144),
73
- has_se=False,
74
- align_corners=False,
75
- padding_same=True):
76
- super(HRNet, self).__init__()
77
- self.pretrained = pretrained
78
- self.stage1_num_modules = stage1_num_modules
79
- self.stage1_num_blocks = stage1_num_blocks
80
- self.stage1_num_channels = stage1_num_channels
81
- self.stage2_num_modules = stage2_num_modules
82
- self.stage2_num_blocks = stage2_num_blocks
83
- self.stage2_num_channels = stage2_num_channels
84
- self.stage3_num_modules = stage3_num_modules
85
- self.stage3_num_blocks = stage3_num_blocks
86
- self.stage3_num_channels = stage3_num_channels
87
- self.stage4_num_modules = stage4_num_modules
88
- self.stage4_num_blocks = stage4_num_blocks
89
- self.stage4_num_channels = stage4_num_channels
90
- self.has_se = has_se
91
- self.align_corners = align_corners
92
-
93
- self.feat_channels = [i for i in stage4_num_channels]
94
- self.feat_channels = [64] + self.feat_channels
95
-
96
- self.conv_layer1_1 = layers.ConvBNReLU(
97
- in_channels=input_channels,
98
- out_channels=64,
99
- kernel_size=3,
100
- stride=2,
101
- padding=1 if not padding_same else 'same',
102
- bias_attr=False)
103
-
104
- self.conv_layer1_2 = layers.ConvBNReLU(
105
- in_channels=64,
106
- out_channels=64,
107
- kernel_size=3,
108
- stride=2,
109
- padding=1 if not padding_same else 'same',
110
- bias_attr=False)
111
-
112
- self.la1 = Layer1(
113
- num_channels=64,
114
- num_blocks=self.stage1_num_blocks[0],
115
- num_filters=self.stage1_num_channels[0],
116
- has_se=has_se,
117
- name="layer2",
118
- padding_same=padding_same)
119
-
120
- self.tr1 = TransitionLayer(
121
- in_channels=[self.stage1_num_channels[0] * 4],
122
- out_channels=self.stage2_num_channels,
123
- name="tr1",
124
- padding_same=padding_same)
125
-
126
- self.st2 = Stage(
127
- num_channels=self.stage2_num_channels,
128
- num_modules=self.stage2_num_modules,
129
- num_blocks=self.stage2_num_blocks,
130
- num_filters=self.stage2_num_channels,
131
- has_se=self.has_se,
132
- name="st2",
133
- align_corners=align_corners,
134
- padding_same=padding_same)
135
-
136
- self.tr2 = TransitionLayer(
137
- in_channels=self.stage2_num_channels,
138
- out_channels=self.stage3_num_channels,
139
- name="tr2",
140
- padding_same=padding_same)
141
- self.st3 = Stage(
142
- num_channels=self.stage3_num_channels,
143
- num_modules=self.stage3_num_modules,
144
- num_blocks=self.stage3_num_blocks,
145
- num_filters=self.stage3_num_channels,
146
- has_se=self.has_se,
147
- name="st3",
148
- align_corners=align_corners,
149
- padding_same=padding_same)
150
-
151
- self.tr3 = TransitionLayer(
152
- in_channels=self.stage3_num_channels,
153
- out_channels=self.stage4_num_channels,
154
- name="tr3",
155
- padding_same=padding_same)
156
- self.st4 = Stage(
157
- num_channels=self.stage4_num_channels,
158
- num_modules=self.stage4_num_modules,
159
- num_blocks=self.stage4_num_blocks,
160
- num_filters=self.stage4_num_channels,
161
- has_se=self.has_se,
162
- name="st4",
163
- align_corners=align_corners,
164
- padding_same=padding_same)
165
-
166
- self.init_weight()
167
-
168
- def forward(self, x):
169
- feat_list = []
170
- conv1 = self.conv_layer1_1(x)
171
- feat_list.append(conv1)
172
- conv2 = self.conv_layer1_2(conv1)
173
-
174
- la1 = self.la1(conv2)
175
-
176
- tr1 = self.tr1([la1])
177
- st2 = self.st2(tr1)
178
-
179
- tr2 = self.tr2(st2)
180
- st3 = self.st3(tr2)
181
-
182
- tr3 = self.tr3(st3)
183
- st4 = self.st4(tr3)
184
-
185
- feat_list = feat_list + st4
186
-
187
- return feat_list
188
-
189
- def init_weight(self):
190
- for layer in self.sublayers():
191
- if isinstance(layer, nn.Conv2D):
192
- param_init.normal_init(layer.weight, std=0.001)
193
- elif isinstance(layer, (nn.BatchNorm, nn.SyncBatchNorm)):
194
- param_init.constant_init(layer.weight, value=1.0)
195
- param_init.constant_init(layer.bias, value=0.0)
196
- if self.pretrained is not None:
197
- utils.load_pretrained_model(self, self.pretrained)
198
-
199
-
200
- class Layer1(nn.Layer):
201
- def __init__(self,
202
- num_channels,
203
- num_filters,
204
- num_blocks,
205
- has_se=False,
206
- name=None,
207
- padding_same=True):
208
- super(Layer1, self).__init__()
209
-
210
- self.bottleneck_block_list = []
211
-
212
- for i in range(num_blocks):
213
- bottleneck_block = self.add_sublayer(
214
- "bb_{}_{}".format(name, i + 1),
215
- BottleneckBlock(
216
- num_channels=num_channels if i == 0 else num_filters * 4,
217
- num_filters=num_filters,
218
- has_se=has_se,
219
- stride=1,
220
- downsample=True if i == 0 else False,
221
- name=name + '_' + str(i + 1),
222
- padding_same=padding_same))
223
- self.bottleneck_block_list.append(bottleneck_block)
224
-
225
- def forward(self, x):
226
- conv = x
227
- for block_func in self.bottleneck_block_list:
228
- conv = block_func(conv)
229
- return conv
230
-
231
-
232
- class TransitionLayer(nn.Layer):
233
- def __init__(self, in_channels, out_channels, name=None, padding_same=True):
234
- super(TransitionLayer, self).__init__()
235
-
236
- num_in = len(in_channels)
237
- num_out = len(out_channels)
238
- self.conv_bn_func_list = []
239
- for i in range(num_out):
240
- residual = None
241
- if i < num_in:
242
- if in_channels[i] != out_channels[i]:
243
- residual = self.add_sublayer(
244
- "transition_{}_layer_{}".format(name, i + 1),
245
- layers.ConvBNReLU(
246
- in_channels=in_channels[i],
247
- out_channels=out_channels[i],
248
- kernel_size=3,
249
- padding=1 if not padding_same else 'same',
250
- bias_attr=False))
251
- else:
252
- residual = self.add_sublayer(
253
- "transition_{}_layer_{}".format(name, i + 1),
254
- layers.ConvBNReLU(
255
- in_channels=in_channels[-1],
256
- out_channels=out_channels[i],
257
- kernel_size=3,
258
- stride=2,
259
- padding=1 if not padding_same else 'same',
260
- bias_attr=False))
261
- self.conv_bn_func_list.append(residual)
262
-
263
- def forward(self, x):
264
- outs = []
265
- for idx, conv_bn_func in enumerate(self.conv_bn_func_list):
266
- if conv_bn_func is None:
267
- outs.append(x[idx])
268
- else:
269
- if idx < len(x):
270
- outs.append(conv_bn_func(x[idx]))
271
- else:
272
- outs.append(conv_bn_func(x[-1]))
273
- return outs
274
-
275
-
276
- class Branches(nn.Layer):
277
- def __init__(self,
278
- num_blocks,
279
- in_channels,
280
- out_channels,
281
- has_se=False,
282
- name=None,
283
- padding_same=True):
284
- super(Branches, self).__init__()
285
-
286
- self.basic_block_list = []
287
-
288
- for i in range(len(out_channels)):
289
- self.basic_block_list.append([])
290
- for j in range(num_blocks[i]):
291
- in_ch = in_channels[i] if j == 0 else out_channels[i]
292
- basic_block_func = self.add_sublayer(
293
- "bb_{}_branch_layer_{}_{}".format(name, i + 1, j + 1),
294
- BasicBlock(
295
- num_channels=in_ch,
296
- num_filters=out_channels[i],
297
- has_se=has_se,
298
- name=name + '_branch_layer_' + str(i + 1) + '_' +
299
- str(j + 1),
300
- padding_same=padding_same))
301
- self.basic_block_list[i].append(basic_block_func)
302
-
303
- def forward(self, x):
304
- outs = []
305
- for idx, input in enumerate(x):
306
- conv = input
307
- for basic_block_func in self.basic_block_list[idx]:
308
- conv = basic_block_func(conv)
309
- outs.append(conv)
310
- return outs
311
-
312
-
313
- class BottleneckBlock(nn.Layer):
314
- def __init__(self,
315
- num_channels,
316
- num_filters,
317
- has_se,
318
- stride=1,
319
- downsample=False,
320
- name=None,
321
- padding_same=True):
322
- super(BottleneckBlock, self).__init__()
323
-
324
- self.has_se = has_se
325
- self.downsample = downsample
326
-
327
- self.conv1 = layers.ConvBNReLU(
328
- in_channels=num_channels,
329
- out_channels=num_filters,
330
- kernel_size=1,
331
- bias_attr=False)
332
-
333
- self.conv2 = layers.ConvBNReLU(
334
- in_channels=num_filters,
335
- out_channels=num_filters,
336
- kernel_size=3,
337
- stride=stride,
338
- padding=1 if not padding_same else 'same',
339
- bias_attr=False)
340
-
341
- self.conv3 = layers.ConvBN(
342
- in_channels=num_filters,
343
- out_channels=num_filters * 4,
344
- kernel_size=1,
345
- bias_attr=False)
346
-
347
- if self.downsample:
348
- self.conv_down = layers.ConvBN(
349
- in_channels=num_channels,
350
- out_channels=num_filters * 4,
351
- kernel_size=1,
352
- bias_attr=False)
353
-
354
- if self.has_se:
355
- self.se = SELayer(
356
- num_channels=num_filters * 4,
357
- num_filters=num_filters * 4,
358
- reduction_ratio=16,
359
- name=name + '_fc')
360
-
361
- self.add = layers.Add()
362
- self.relu = layers.Activation("relu")
363
-
364
- def forward(self, x):
365
- residual = x
366
- conv1 = self.conv1(x)
367
- conv2 = self.conv2(conv1)
368
- conv3 = self.conv3(conv2)
369
-
370
- if self.downsample:
371
- residual = self.conv_down(x)
372
-
373
- if self.has_se:
374
- conv3 = self.se(conv3)
375
-
376
- y = self.add(conv3, residual)
377
- y = self.relu(y)
378
- return y
379
-
380
-
381
- class BasicBlock(nn.Layer):
382
- def __init__(self,
383
- num_channels,
384
- num_filters,
385
- stride=1,
386
- has_se=False,
387
- downsample=False,
388
- name=None,
389
- padding_same=True):
390
- super(BasicBlock, self).__init__()
391
-
392
- self.has_se = has_se
393
- self.downsample = downsample
394
-
395
- self.conv1 = layers.ConvBNReLU(
396
- in_channels=num_channels,
397
- out_channels=num_filters,
398
- kernel_size=3,
399
- stride=stride,
400
- padding=1 if not padding_same else 'same',
401
- bias_attr=False)
402
- self.conv2 = layers.ConvBN(
403
- in_channels=num_filters,
404
- out_channels=num_filters,
405
- kernel_size=3,
406
- padding=1 if not padding_same else 'same',
407
- bias_attr=False)
408
-
409
- if self.downsample:
410
- self.conv_down = layers.ConvBNReLU(
411
- in_channels=num_channels,
412
- out_channels=num_filters,
413
- kernel_size=1,
414
- bias_attr=False)
415
-
416
- if self.has_se:
417
- self.se = SELayer(
418
- num_channels=num_filters,
419
- num_filters=num_filters,
420
- reduction_ratio=16,
421
- name=name + '_fc')
422
-
423
- self.add = layers.Add()
424
- self.relu = layers.Activation("relu")
425
-
426
- def forward(self, x):
427
- residual = x
428
- conv1 = self.conv1(x)
429
- conv2 = self.conv2(conv1)
430
-
431
- if self.downsample:
432
- residual = self.conv_down(x)
433
-
434
- if self.has_se:
435
- conv2 = self.se(conv2)
436
-
437
- y = self.add(conv2, residual)
438
- y = self.relu(y)
439
- return y
440
-
441
-
442
- class SELayer(nn.Layer):
443
- def __init__(self, num_channels, num_filters, reduction_ratio, name=None):
444
- super(SELayer, self).__init__()
445
-
446
- self.pool2d_gap = nn.AdaptiveAvgPool2D(1)
447
-
448
- self._num_channels = num_channels
449
-
450
- med_ch = int(num_channels / reduction_ratio)
451
- stdv = 1.0 / math.sqrt(num_channels * 1.0)
452
- self.squeeze = nn.Linear(
453
- num_channels,
454
- med_ch,
455
- weight_attr=paddle.ParamAttr(
456
- initializer=nn.initializer.Uniform(-stdv, stdv)))
457
-
458
- stdv = 1.0 / math.sqrt(med_ch * 1.0)
459
- self.excitation = nn.Linear(
460
- med_ch,
461
- num_filters,
462
- weight_attr=paddle.ParamAttr(
463
- initializer=nn.initializer.Uniform(-stdv, stdv)))
464
-
465
- def forward(self, x):
466
- pool = self.pool2d_gap(x)
467
- pool = paddle.reshape(pool, shape=[-1, self._num_channels])
468
- squeeze = self.squeeze(pool)
469
- squeeze = F.relu(squeeze)
470
- excitation = self.excitation(squeeze)
471
- excitation = F.sigmoid(excitation)
472
- excitation = paddle.reshape(
473
- excitation, shape=[-1, self._num_channels, 1, 1])
474
- out = x * excitation
475
- return out
476
-
477
-
478
- class Stage(nn.Layer):
479
- def __init__(self,
480
- num_channels,
481
- num_modules,
482
- num_blocks,
483
- num_filters,
484
- has_se=False,
485
- multi_scale_output=True,
486
- name=None,
487
- align_corners=False,
488
- padding_same=True):
489
- super(Stage, self).__init__()
490
-
491
- self._num_modules = num_modules
492
-
493
- self.stage_func_list = []
494
- for i in range(num_modules):
495
- if i == num_modules - 1 and not multi_scale_output:
496
- stage_func = self.add_sublayer(
497
- "stage_{}_{}".format(name, i + 1),
498
- HighResolutionModule(
499
- num_channels=num_channels,
500
- num_blocks=num_blocks,
501
- num_filters=num_filters,
502
- has_se=has_se,
503
- multi_scale_output=False,
504
- name=name + '_' + str(i + 1),
505
- align_corners=align_corners,
506
- padding_same=padding_same))
507
- else:
508
- stage_func = self.add_sublayer(
509
- "stage_{}_{}".format(name, i + 1),
510
- HighResolutionModule(
511
- num_channels=num_channels,
512
- num_blocks=num_blocks,
513
- num_filters=num_filters,
514
- has_se=has_se,
515
- name=name + '_' + str(i + 1),
516
- align_corners=align_corners,
517
- padding_same=padding_same))
518
-
519
- self.stage_func_list.append(stage_func)
520
-
521
- def forward(self, x):
522
- out = x
523
- for idx in range(self._num_modules):
524
- out = self.stage_func_list[idx](out)
525
- return out
526
-
527
-
528
- class HighResolutionModule(nn.Layer):
529
- def __init__(self,
530
- num_channels,
531
- num_blocks,
532
- num_filters,
533
- has_se=False,
534
- multi_scale_output=True,
535
- name=None,
536
- align_corners=False,
537
- padding_same=True):
538
- super(HighResolutionModule, self).__init__()
539
-
540
- self.branches_func = Branches(
541
- num_blocks=num_blocks,
542
- in_channels=num_channels,
543
- out_channels=num_filters,
544
- has_se=has_se,
545
- name=name,
546
- padding_same=padding_same)
547
-
548
- self.fuse_func = FuseLayers(
549
- in_channels=num_filters,
550
- out_channels=num_filters,
551
- multi_scale_output=multi_scale_output,
552
- name=name,
553
- align_corners=align_corners,
554
- padding_same=padding_same)
555
-
556
- def forward(self, x):
557
- out = self.branches_func(x)
558
- out = self.fuse_func(out)
559
- return out
560
-
561
-
562
- class FuseLayers(nn.Layer):
563
- def __init__(self,
564
- in_channels,
565
- out_channels,
566
- multi_scale_output=True,
567
- name=None,
568
- align_corners=False,
569
- padding_same=True):
570
- super(FuseLayers, self).__init__()
571
-
572
- self._actual_ch = len(in_channels) if multi_scale_output else 1
573
- self._in_channels = in_channels
574
- self.align_corners = align_corners
575
-
576
- self.residual_func_list = []
577
- for i in range(self._actual_ch):
578
- for j in range(len(in_channels)):
579
- if j > i:
580
- residual_func = self.add_sublayer(
581
- "residual_{}_layer_{}_{}".format(name, i + 1, j + 1),
582
- layers.ConvBN(
583
- in_channels=in_channels[j],
584
- out_channels=out_channels[i],
585
- kernel_size=1,
586
- bias_attr=False))
587
- self.residual_func_list.append(residual_func)
588
- elif j < i:
589
- pre_num_filters = in_channels[j]
590
- for k in range(i - j):
591
- if k == i - j - 1:
592
- residual_func = self.add_sublayer(
593
- "residual_{}_layer_{}_{}_{}".format(
594
- name, i + 1, j + 1, k + 1),
595
- layers.ConvBN(
596
- in_channels=pre_num_filters,
597
- out_channels=out_channels[i],
598
- kernel_size=3,
599
- stride=2,
600
- padding=1 if not padding_same else 'same',
601
- bias_attr=False))
602
- pre_num_filters = out_channels[i]
603
- else:
604
- residual_func = self.add_sublayer(
605
- "residual_{}_layer_{}_{}_{}".format(
606
- name, i + 1, j + 1, k + 1),
607
- layers.ConvBNReLU(
608
- in_channels=pre_num_filters,
609
- out_channels=out_channels[j],
610
- kernel_size=3,
611
- stride=2,
612
- padding=1 if not padding_same else 'same',
613
- bias_attr=False))
614
- pre_num_filters = out_channels[j]
615
- self.residual_func_list.append(residual_func)
616
-
617
- def forward(self, x):
618
- outs = []
619
- residual_func_idx = 0
620
- for i in range(self._actual_ch):
621
- residual = x[i]
622
- residual_shape = paddle.shape(residual)[-2:]
623
- for j in range(len(self._in_channels)):
624
- if j > i:
625
- y = self.residual_func_list[residual_func_idx](x[j])
626
- residual_func_idx += 1
627
-
628
- y = F.interpolate(
629
- y,
630
- residual_shape,
631
- mode='bilinear',
632
- align_corners=self.align_corners)
633
- residual = residual + y
634
- elif j < i:
635
- y = x[j]
636
- for k in range(i - j):
637
- y = self.residual_func_list[residual_func_idx](y)
638
- residual_func_idx += 1
639
-
640
- residual = residual + y
641
-
642
- residual = F.relu(residual)
643
- outs.append(residual)
644
-
645
- return outs
646
-
647
-
648
- @manager.BACKBONES.add_component
649
- def HRNet_W18_Small_V1(**kwargs):
650
- model = HRNet(
651
- stage1_num_modules=1,
652
- stage1_num_blocks=[1],
653
- stage1_num_channels=[32],
654
- stage2_num_modules=1,
655
- stage2_num_blocks=[2, 2],
656
- stage2_num_channels=[16, 32],
657
- stage3_num_modules=1,
658
- stage3_num_blocks=[2, 2, 2],
659
- stage3_num_channels=[16, 32, 64],
660
- stage4_num_modules=1,
661
- stage4_num_blocks=[2, 2, 2, 2],
662
- stage4_num_channels=[16, 32, 64, 128],
663
- **kwargs)
664
- return model
665
-
666
-
667
- @manager.BACKBONES.add_component
668
- def HRNet_W18_Small_V2(**kwargs):
669
- model = HRNet(
670
- stage1_num_modules=1,
671
- stage1_num_blocks=[2],
672
- stage1_num_channels=[64],
673
- stage2_num_modules=1,
674
- stage2_num_blocks=[2, 2],
675
- stage2_num_channels=[18, 36],
676
- stage3_num_modules=3,
677
- stage3_num_blocks=[2, 2, 2],
678
- stage3_num_channels=[18, 36, 72],
679
- stage4_num_modules=2,
680
- stage4_num_blocks=[2, 2, 2, 2],
681
- stage4_num_channels=[18, 36, 72, 144],
682
- **kwargs)
683
- return model
684
-
685
-
686
- @manager.BACKBONES.add_component
687
- def HRNet_W18(**kwargs):
688
- model = HRNet(
689
- stage1_num_modules=1,
690
- stage1_num_blocks=[4],
691
- stage1_num_channels=[64],
692
- stage2_num_modules=1,
693
- stage2_num_blocks=[4, 4],
694
- stage2_num_channels=[18, 36],
695
- stage3_num_modules=4,
696
- stage3_num_blocks=[4, 4, 4],
697
- stage3_num_channels=[18, 36, 72],
698
- stage4_num_modules=3,
699
- stage4_num_blocks=[4, 4, 4, 4],
700
- stage4_num_channels=[18, 36, 72, 144],
701
- **kwargs)
702
- return model
703
-
704
-
705
- @manager.BACKBONES.add_component
706
- def HRNet_W30(**kwargs):
707
- model = HRNet(
708
- stage1_num_modules=1,
709
- stage1_num_blocks=[4],
710
- stage1_num_channels=[64],
711
- stage2_num_modules=1,
712
- stage2_num_blocks=[4, 4],
713
- stage2_num_channels=[30, 60],
714
- stage3_num_modules=4,
715
- stage3_num_blocks=[4, 4, 4],
716
- stage3_num_channels=[30, 60, 120],
717
- stage4_num_modules=3,
718
- stage4_num_blocks=[4, 4, 4, 4],
719
- stage4_num_channels=[30, 60, 120, 240],
720
- **kwargs)
721
- return model
722
-
723
-
724
- @manager.BACKBONES.add_component
725
- def HRNet_W32(**kwargs):
726
- model = HRNet(
727
- stage1_num_modules=1,
728
- stage1_num_blocks=[4],
729
- stage1_num_channels=[64],
730
- stage2_num_modules=1,
731
- stage2_num_blocks=[4, 4],
732
- stage2_num_channels=[32, 64],
733
- stage3_num_modules=4,
734
- stage3_num_blocks=[4, 4, 4],
735
- stage3_num_channels=[32, 64, 128],
736
- stage4_num_modules=3,
737
- stage4_num_blocks=[4, 4, 4, 4],
738
- stage4_num_channels=[32, 64, 128, 256],
739
- **kwargs)
740
- return model
741
-
742
-
743
- @manager.BACKBONES.add_component
744
- def HRNet_W40(**kwargs):
745
- model = HRNet(
746
- stage1_num_modules=1,
747
- stage1_num_blocks=[4],
748
- stage1_num_channels=[64],
749
- stage2_num_modules=1,
750
- stage2_num_blocks=[4, 4],
751
- stage2_num_channels=[40, 80],
752
- stage3_num_modules=4,
753
- stage3_num_blocks=[4, 4, 4],
754
- stage3_num_channels=[40, 80, 160],
755
- stage4_num_modules=3,
756
- stage4_num_blocks=[4, 4, 4, 4],
757
- stage4_num_channels=[40, 80, 160, 320],
758
- **kwargs)
759
- return model
760
-
761
-
762
- @manager.BACKBONES.add_component
763
- def HRNet_W44(**kwargs):
764
- model = HRNet(
765
- stage1_num_modules=1,
766
- stage1_num_blocks=[4],
767
- stage1_num_channels=[64],
768
- stage2_num_modules=1,
769
- stage2_num_blocks=[4, 4],
770
- stage2_num_channels=[44, 88],
771
- stage3_num_modules=4,
772
- stage3_num_blocks=[4, 4, 4],
773
- stage3_num_channels=[44, 88, 176],
774
- stage4_num_modules=3,
775
- stage4_num_blocks=[4, 4, 4, 4],
776
- stage4_num_channels=[44, 88, 176, 352],
777
- **kwargs)
778
- return model
779
-
780
-
781
- @manager.BACKBONES.add_component
782
- def HRNet_W48(**kwargs):
783
- model = HRNet(
784
- stage1_num_modules=1,
785
- stage1_num_blocks=[4],
786
- stage1_num_channels=[64],
787
- stage2_num_modules=1,
788
- stage2_num_blocks=[4, 4],
789
- stage2_num_channels=[48, 96],
790
- stage3_num_modules=4,
791
- stage3_num_blocks=[4, 4, 4],
792
- stage3_num_channels=[48, 96, 192],
793
- stage4_num_modules=3,
794
- stage4_num_blocks=[4, 4, 4, 4],
795
- stage4_num_channels=[48, 96, 192, 384],
796
- **kwargs)
797
- return model
798
-
799
-
800
- @manager.BACKBONES.add_component
801
- def HRNet_W60(**kwargs):
802
- model = HRNet(
803
- stage1_num_modules=1,
804
- stage1_num_blocks=[4],
805
- stage1_num_channels=[64],
806
- stage2_num_modules=1,
807
- stage2_num_blocks=[4, 4],
808
- stage2_num_channels=[60, 120],
809
- stage3_num_modules=4,
810
- stage3_num_blocks=[4, 4, 4],
811
- stage3_num_channels=[60, 120, 240],
812
- stage4_num_modules=3,
813
- stage4_num_blocks=[4, 4, 4, 4],
814
- stage4_num_channels=[60, 120, 240, 480],
815
- **kwargs)
816
- return model
817
-
818
-
819
- @manager.BACKBONES.add_component
820
- def HRNet_W64(**kwargs):
821
- model = HRNet(
822
- stage1_num_modules=1,
823
- stage1_num_blocks=[4],
824
- stage1_num_channels=[64],
825
- stage2_num_modules=1,
826
- stage2_num_blocks=[4, 4],
827
- stage2_num_channels=[64, 128],
828
- stage3_num_modules=4,
829
- stage3_num_blocks=[4, 4, 4],
830
- stage3_num_channels=[64, 128, 256],
831
- stage4_num_modules=3,
832
- stage4_num_blocks=[4, 4, 4, 4],
833
- stage4_num_channels=[64, 128, 256, 512],
834
- **kwargs)
835
- return model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Detomo/ai-comic-generation/src/lib/useImageDimension.ts DELETED
@@ -1,20 +0,0 @@
1
- import { useEffect, useState } from "react"
2
-
3
- import { ImageDimension, getImageDimension } from "./getImageDimension"
4
-
5
- export function useImageDimension(src: string) {
6
- const [dimension, setDimension] = useState<ImageDimension>({
7
- width: 0,
8
- height: 0,
9
- })
10
-
11
- useEffect(() => {
12
- const compute = async () => {
13
- const newDimension = await getImageDimension(src)
14
- setDimension(newDimension)
15
- }
16
- compute()
17
- }, [src])
18
-
19
- return dimension
20
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Dineshdc/MygenAIChatbot/README.md DELETED
@@ -1,12 +0,0 @@
1
- ---
2
- title: MygenAIChatbot
3
- emoji: 📊
4
- colorFrom: red
5
- colorTo: yellow
6
- sdk: gradio
7
- sdk_version: 3.39.0
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/DragGan/DragGan/stylegan_human/pti/pti_models/e4e/stylegan2/model.py DELETED
@@ -1,680 +0,0 @@
1
- import math
2
- import random
3
- import torch
4
- from torch import nn
5
- from torch.nn import functional as F
6
-
7
- from .op.fused_act import FusedLeakyReLU, fused_leaky_relu
8
- from .op.upfirdn2d import upfirdn2d
9
-
10
-
11
- class PixelNorm(nn.Module):
12
- def __init__(self):
13
- super().__init__()
14
-
15
- def forward(self, input):
16
- return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8)
17
-
18
-
19
- def make_kernel(k):
20
- k = torch.tensor(k, dtype=torch.float32)
21
-
22
- if k.ndim == 1:
23
- k = k[None, :] * k[:, None]
24
-
25
- k /= k.sum()
26
-
27
- return k
28
-
29
-
30
- class Upsample(nn.Module):
31
- def __init__(self, kernel, factor=2):
32
- super().__init__()
33
-
34
- self.factor = factor
35
- kernel = make_kernel(kernel) * (factor ** 2)
36
- self.register_buffer('kernel', kernel)
37
-
38
- p = kernel.shape[0] - factor
39
-
40
- pad0 = (p + 1) // 2 + factor - 1
41
- pad1 = p // 2
42
-
43
- self.pad = (pad0, pad1)
44
-
45
- def forward(self, input):
46
- out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad)
47
-
48
- return out
49
-
50
-
51
- class Downsample(nn.Module):
52
- def __init__(self, kernel, factor=2):
53
- super().__init__()
54
-
55
- self.factor = factor
56
- kernel = make_kernel(kernel)
57
- self.register_buffer('kernel', kernel)
58
-
59
- p = kernel.shape[0] - factor
60
-
61
- pad0 = (p + 1) // 2
62
- pad1 = p // 2
63
-
64
- self.pad = (pad0, pad1)
65
-
66
- def forward(self, input):
67
- out = upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad)
68
-
69
- return out
70
-
71
-
72
- class Blur(nn.Module):
73
- def __init__(self, kernel, pad, upsample_factor=1):
74
- super().__init__()
75
-
76
- kernel = make_kernel(kernel)
77
-
78
- if upsample_factor > 1:
79
- kernel = kernel * (upsample_factor ** 2)
80
-
81
- self.register_buffer('kernel', kernel)
82
-
83
- self.pad = pad
84
-
85
- def forward(self, input):
86
- out = upfirdn2d(input, self.kernel, pad=self.pad)
87
-
88
- return out
89
-
90
-
91
- class EqualConv2d(nn.Module):
92
- def __init__(
93
- self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True
94
- ):
95
- super().__init__()
96
-
97
- self.weight = nn.Parameter(
98
- torch.randn(out_channel, in_channel, kernel_size, kernel_size)
99
- )
100
- self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
101
-
102
- self.stride = stride
103
- self.padding = padding
104
-
105
- if bias:
106
- self.bias = nn.Parameter(torch.zeros(out_channel))
107
-
108
- else:
109
- self.bias = None
110
-
111
- def forward(self, input):
112
- out = F.conv2d(
113
- input,
114
- self.weight * self.scale,
115
- bias=self.bias,
116
- stride=self.stride,
117
- padding=self.padding,
118
- )
119
-
120
- return out
121
-
122
- def __repr__(self):
123
- return (
124
- f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},'
125
- f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})'
126
- )
127
-
128
-
129
- class EqualLinear(nn.Module):
130
- def __init__(
131
- self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None
132
- ):
133
- super().__init__()
134
-
135
- self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
136
-
137
- if bias:
138
- self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
139
-
140
- else:
141
- self.bias = None
142
-
143
- self.activation = activation
144
-
145
- self.scale = (1 / math.sqrt(in_dim)) * lr_mul
146
- self.lr_mul = lr_mul
147
-
148
- def forward(self, input):
149
- if self.activation:
150
- out = F.linear(input, self.weight * self.scale)
151
- out = fused_leaky_relu(out, self.bias * self.lr_mul)
152
-
153
- else:
154
- out = F.linear(
155
- input, self.weight * self.scale, bias=self.bias * self.lr_mul
156
- )
157
-
158
- return out
159
-
160
- def __repr__(self):
161
- return (
162
- f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
163
- )
164
-
165
-
166
- class ScaledLeakyReLU(nn.Module):
167
- def __init__(self, negative_slope=0.2):
168
- super().__init__()
169
-
170
- self.negative_slope = negative_slope
171
-
172
- def forward(self, input):
173
- out = F.leaky_relu(input, negative_slope=self.negative_slope)
174
-
175
- return out * math.sqrt(2)
176
-
177
-
178
- class ModulatedConv2d(nn.Module):
179
- def __init__(
180
- self,
181
- in_channel,
182
- out_channel,
183
- kernel_size,
184
- style_dim,
185
- demodulate=True,
186
- upsample=False,
187
- downsample=False,
188
- blur_kernel=[1, 3, 3, 1],
189
- ):
190
- super().__init__()
191
-
192
- self.eps = 1e-8
193
- self.kernel_size = kernel_size
194
- self.in_channel = in_channel
195
- self.out_channel = out_channel
196
- self.upsample = upsample
197
- self.downsample = downsample
198
-
199
- if upsample:
200
- factor = 2
201
- p = (len(blur_kernel) - factor) - (kernel_size - 1)
202
- pad0 = (p + 1) // 2 + factor - 1
203
- pad1 = p // 2 + 1
204
-
205
- self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor)
206
-
207
- if downsample:
208
- factor = 2
209
- p = (len(blur_kernel) - factor) + (kernel_size - 1)
210
- pad0 = (p + 1) // 2
211
- pad1 = p // 2
212
-
213
- self.blur = Blur(blur_kernel, pad=(pad0, pad1))
214
-
215
- fan_in = in_channel * kernel_size ** 2
216
- self.scale = 1 / math.sqrt(fan_in)
217
- self.padding = kernel_size // 2
218
-
219
- self.weight = nn.Parameter(
220
- torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)
221
- )
222
-
223
- self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
224
-
225
- self.demodulate = demodulate
226
-
227
- def __repr__(self):
228
- return (
229
- f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, '
230
- f'upsample={self.upsample}, downsample={self.downsample})'
231
- )
232
-
233
- def forward(self, input, style):
234
- batch, in_channel, height, width = input.shape
235
-
236
- style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
237
- weight = self.scale * self.weight * style
238
-
239
- if self.demodulate:
240
- demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8)
241
- weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
242
-
243
- weight = weight.view(
244
- batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size
245
- )
246
-
247
- if self.upsample:
248
- input = input.view(1, batch * in_channel, height, width)
249
- weight = weight.view(
250
- batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size
251
- )
252
- weight = weight.transpose(1, 2).reshape(
253
- batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size
254
- )
255
- out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch)
256
- _, _, height, width = out.shape
257
- out = out.view(batch, self.out_channel, height, width)
258
- out = self.blur(out)
259
-
260
- elif self.downsample:
261
- input = self.blur(input)
262
- _, _, height, width = input.shape
263
- input = input.view(1, batch * in_channel, height, width)
264
- out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
265
- _, _, height, width = out.shape
266
- out = out.view(batch, self.out_channel, height, width)
267
-
268
- else:
269
- input = input.view(1, batch * in_channel, height, width)
270
- out = F.conv2d(input, weight, padding=self.padding, groups=batch)
271
- _, _, height, width = out.shape
272
- out = out.view(batch, self.out_channel, height, width)
273
-
274
- return out
275
-
276
-
277
- class NoiseInjection(nn.Module):
278
- def __init__(self):
279
- super().__init__()
280
-
281
- self.weight = nn.Parameter(torch.zeros(1))
282
-
283
- def forward(self, image, noise=None):
284
- if noise is None:
285
- batch, _, height, width = image.shape
286
- noise = image.new_empty(batch, 1, height, width).normal_()
287
-
288
- return image + self.weight * noise
289
-
290
-
291
- class ConstantInput(nn.Module):
292
- def __init__(self, channel, size=4):
293
- super().__init__()
294
-
295
- self.input = nn.Parameter(torch.randn(1, channel, size, size // 2))
296
-
297
- def forward(self, input):
298
- batch = input.shape[0]
299
- out = self.input.repeat(batch, 1, 1, 1)
300
-
301
- return out
302
-
303
-
304
- class StyledConv(nn.Module):
305
- def __init__(
306
- self,
307
- in_channel,
308
- out_channel,
309
- kernel_size,
310
- style_dim,
311
- upsample=False,
312
- blur_kernel=[1, 3, 3, 1],
313
- demodulate=True,
314
- ):
315
- super().__init__()
316
-
317
- self.conv = ModulatedConv2d(
318
- in_channel,
319
- out_channel,
320
- kernel_size,
321
- style_dim,
322
- upsample=upsample,
323
- blur_kernel=blur_kernel,
324
- demodulate=demodulate,
325
- )
326
-
327
- self.noise = NoiseInjection()
328
- # self.bias = nn.Parameter(torch.zeros(1, out_channel, 1, 1))
329
- # self.activate = ScaledLeakyReLU(0.2)
330
- self.activate = FusedLeakyReLU(out_channel)
331
-
332
- def forward(self, input, style, noise=None):
333
- out = self.conv(input, style)
334
- out = self.noise(out, noise=noise)
335
- # out = out + self.bias
336
- out = self.activate(out)
337
-
338
- return out
339
-
340
-
341
- class ToRGB(nn.Module):
342
- def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]):
343
- super().__init__()
344
-
345
- if upsample:
346
- self.upsample = Upsample(blur_kernel)
347
-
348
- self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate=False)
349
- self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
350
-
351
- def forward(self, input, style, skip=None):
352
- out = self.conv(input, style)
353
- out = out + self.bias
354
-
355
- if skip is not None:
356
- skip = self.upsample(skip)
357
-
358
- out = out + skip
359
-
360
- return out
361
-
362
-
363
- class Generator(nn.Module):
364
- def __init__(
365
- self,
366
- size,
367
- style_dim,
368
- n_mlp,
369
- channel_multiplier=2,
370
- blur_kernel=[1, 3, 3, 1],
371
- lr_mlp=0.01,
372
- ):
373
- super().__init__()
374
-
375
- self.size = size
376
-
377
- self.style_dim = style_dim
378
-
379
- layers = [PixelNorm()]
380
-
381
- for i in range(n_mlp):
382
- layers.append(
383
- EqualLinear(
384
- style_dim, style_dim, lr_mul=lr_mlp, activation='fused_lrelu'
385
- )
386
- )
387
-
388
- self.style = nn.Sequential(*layers)
389
-
390
- self.channels = {
391
- 4: 512,
392
- 8: 512,
393
- 16: 512,
394
- 32: 512,
395
- 64: 256 * channel_multiplier,
396
- 128: 128 * channel_multiplier,
397
- 256: 64 * channel_multiplier,
398
- 512: 32 * channel_multiplier,
399
- 1024: 16 * channel_multiplier,
400
- }
401
-
402
- self.input = ConstantInput(self.channels[4])
403
- self.conv1 = StyledConv(
404
- self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel
405
- )
406
- self.to_rgb1 = ToRGB(self.channels[4], style_dim, upsample=False)
407
-
408
- self.log_size = int(math.log(size, 2))
409
- self.num_layers = (self.log_size - 2) * 2 + 1
410
-
411
- self.convs = nn.ModuleList()
412
- self.upsamples = nn.ModuleList()
413
- self.to_rgbs = nn.ModuleList()
414
- self.noises = nn.Module()
415
-
416
- in_channel = self.channels[4]
417
-
418
- for layer_idx in range(self.num_layers):
419
- res = (layer_idx + 5) // 2
420
- shape = [1, 1, 2 ** res, 2 ** res // 2]
421
- self.noises.register_buffer(
422
- "noise_{}".format(layer_idx), torch.randn(*shape)
423
- )
424
-
425
- for i in range(3, self.log_size + 1):
426
- out_channel = self.channels[2 ** i]
427
-
428
- self.convs.append(
429
- StyledConv(
430
- in_channel,
431
- out_channel,
432
- 3,
433
- style_dim,
434
- upsample=True,
435
- blur_kernel=blur_kernel,
436
- )
437
- )
438
-
439
- self.convs.append(
440
- StyledConv(
441
- out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel
442
- )
443
- )
444
-
445
- self.to_rgbs.append(ToRGB(out_channel, style_dim))
446
-
447
- in_channel = out_channel
448
-
449
- self.n_latent = self.log_size * 2 - 2
450
-
451
- def make_noise(self):
452
- device = self.input.input.device
453
-
454
- noises = [torch.randn(1, 1, 2 ** 2, 2 ** 2 // 2, device=device)]
455
-
456
- for i in range(3, self.log_size + 1):
457
- for _ in range(2):
458
- noises.append(torch.randn(1, 1, 2 ** i, 2 ** i // 2, device=device))
459
-
460
- return noises
461
-
462
- def mean_latent(self, n_latent):
463
- latent_in = torch.randn(
464
- n_latent, self.style_dim, device=self.input.input.device
465
- )
466
- latent = self.style(latent_in).mean(0, keepdim=True)
467
-
468
- return latent
469
-
470
- def get_latent(self, input):
471
- return self.style(input)
472
-
473
- def forward(
474
- self,
475
- styles,
476
- return_latents=False,
477
- return_features=False,
478
- inject_index=None,
479
- truncation=1,
480
- truncation_latent=None,
481
- input_is_latent=False,
482
- noise=None,
483
- randomize_noise=True,
484
- ):
485
- if not input_is_latent:
486
- styles = [self.style(s) for s in styles]
487
-
488
- if noise is None:
489
- if randomize_noise:
490
- noise = [None] * self.num_layers
491
- else:
492
- noise = [
493
- getattr(self.noises, f'noise_{i}') for i in range(self.num_layers)
494
- ]
495
-
496
- if truncation < 1:
497
- style_t = []
498
-
499
- for style in styles:
500
- style_t.append(
501
- truncation_latent + truncation * (style - truncation_latent)
502
- )
503
-
504
- styles = style_t
505
-
506
- if len(styles) < 2:
507
- inject_index = self.n_latent
508
- if styles[0].ndim < 3:
509
- latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
510
- else:
511
- latent = styles[0]
512
-
513
- else:
514
- if inject_index is None:
515
- inject_index = random.randint(1, self.n_latent - 1)
516
-
517
- # latent = styles[0].unsqueeze(0)
518
- # if latent.shape[1] == 1:
519
- # latent = latent.repeat(1, inject_index, 1)
520
- # else:
521
- # latent = latent[:, :inject_index, :]
522
- latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
523
- latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1)
524
- # latent = styles[0][:, :inject_index, :]
525
- # latent2 = styles[1][:, inject_index:, :]
526
- latent = torch.cat([latent, latent2], 1)
527
- out = self.input(latent)
528
- out = self.conv1(out, latent[:, 0], noise=noise[0])
529
-
530
- skip = self.to_rgb1(out, latent[:, 1])
531
-
532
- i = 1
533
- for conv1, conv2, noise1, noise2, to_rgb in zip(
534
- self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs
535
- ):
536
- out = conv1(out, latent[:, i], noise=noise1)
537
- out = conv2(out, latent[:, i + 1], noise=noise2)
538
- skip = to_rgb(out, latent[:, i + 2], skip)
539
-
540
- i += 2
541
-
542
- image = skip
543
-
544
- if return_latents:
545
- return image, latent
546
- elif return_features:
547
- return image, out
548
- else:
549
- return image, None
550
-
551
-
552
- class ConvLayer(nn.Sequential):
553
- def __init__(
554
- self,
555
- in_channel,
556
- out_channel,
557
- kernel_size,
558
- downsample=False,
559
- blur_kernel=[1, 3, 3, 1],
560
- bias=True,
561
- activate=True,
562
- ):
563
- layers = []
564
-
565
- if downsample:
566
- factor = 2
567
- p = (len(blur_kernel) - factor) + (kernel_size - 1)
568
- pad0 = (p + 1) // 2
569
- pad1 = p // 2
570
-
571
- layers.append(Blur(blur_kernel, pad=(pad0, pad1)))
572
-
573
- stride = 2
574
- self.padding = 0
575
-
576
- else:
577
- stride = 1
578
- self.padding = kernel_size // 2
579
-
580
- layers.append(
581
- EqualConv2d(
582
- in_channel,
583
- out_channel,
584
- kernel_size,
585
- padding=self.padding,
586
- stride=stride,
587
- bias=bias and not activate,
588
- )
589
- )
590
-
591
- if activate:
592
- if bias:
593
- layers.append(FusedLeakyReLU(out_channel))
594
-
595
- else:
596
- layers.append(ScaledLeakyReLU(0.2))
597
-
598
- super().__init__(*layers)
599
-
600
-
601
- class ResBlock(nn.Module):
602
- def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]):
603
- super().__init__()
604
-
605
- self.conv1 = ConvLayer(in_channel, in_channel, 3)
606
- self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True)
607
-
608
- self.skip = ConvLayer(
609
- in_channel, out_channel, 1, downsample=True, activate=False, bias=False
610
- )
611
-
612
- def forward(self, input):
613
- out = self.conv1(input)
614
- out = self.conv2(out)
615
-
616
- skip = self.skip(input)
617
- out = (out + skip) / math.sqrt(2)
618
-
619
- return out
620
-
621
-
622
- class Discriminator(nn.Module):
623
- def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]):
624
- super().__init__()
625
-
626
- channels = {
627
- 4: 512,
628
- 8: 512,
629
- 16: 512,
630
- 32: 512,
631
- 64: 256 * channel_multiplier,
632
- 128: 128 * channel_multiplier,
633
- 256: 64 * channel_multiplier,
634
- 512: 32 * channel_multiplier,
635
- 1024: 16 * channel_multiplier,
636
- }
637
-
638
- convs = [ConvLayer(3, channels[size], 1)]
639
-
640
- log_size = int(math.log(size, 2))
641
-
642
- in_channel = channels[size]
643
-
644
- for i in range(log_size, 2, -1):
645
- out_channel = channels[2 ** (i - 1)]
646
-
647
- convs.append(ResBlock(in_channel, out_channel, blur_kernel))
648
-
649
- in_channel = out_channel
650
-
651
- self.convs = nn.Sequential(*convs)
652
-
653
- self.stddev_group = 4
654
- self.stddev_feat = 1
655
-
656
- self.final_conv = ConvLayer(in_channel + 1, channels[4], 3)
657
- self.final_linear = nn.Sequential(
658
- EqualLinear(channels[4] * 4 * 4 // 2, channels[4], activation='fused_lrelu'),
659
- EqualLinear(channels[4], 1),
660
- )
661
-
662
- def forward(self, input):
663
- out = self.convs(input)
664
-
665
- batch, channel, height, width = out.shape
666
- group = min(batch, self.stddev_group)
667
- stddev = out.view(
668
- group, -1, self.stddev_feat, channel // self.stddev_feat, height, width
669
- )
670
- stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
671
- stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
672
- stddev = stddev.repeat(group, 1, height, width)
673
- out = torch.cat([out, stddev], 1)
674
-
675
- out = self.final_conv(out)
676
-
677
- out = out.view(batch, -1)
678
- out = self.final_linear(out)
679
-
680
- return out