parquet-converter commited on
Commit
052850c
·
1 Parent(s): 6f8e324

Update parquet files (step 94 of 249)

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. spaces/1acneusushi/gradio-2dmoleculeeditor/data/!!INSTALL!! Crack Winrar.md +0 -23
  2. spaces/1gistliPinn/ChatGPT4/Examples/Foto Bugil Artis Majalah Popular Indonesia Mega.md +0 -6
  3. spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/8th Class Urdu Hamdard Guide PDF - Updated Notes for 2023.md +0 -106
  4. spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Betty Muwanguzi Hosanna Nkwagala Nyo The Song That Touched Many Hearts.md +0 -129
  5. spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Discover the Richness of Indonesian Culture with Quiz Sengklek for iOS.md +0 -84
  6. spaces/1phancelerku/anime-remove-background/Cars (v1.02) for PSP The Best Racing Game for PlayStation Portable.md +0 -144
  7. spaces/55dgxxx558/anime-remove-background/README.md +0 -14
  8. spaces/AIConsultant/MusicGen/audiocraft/metrics/clap_consistency.py +0 -84
  9. spaces/AIGC-Audio/AudioGPT/text_to_audio/Make_An_Audio/ldm/modules/diffusionmodules/openaimodel.py +0 -963
  10. spaces/AchyuthGamer/ImMagician-Gradio/app.py +0 -3
  11. spaces/AchyuthGamer/OpenGPT-Chat/README.md +0 -12
  12. spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/fullwindowrectangle/Factory.d.ts +0 -7
  13. spaces/AlexWang/lama/bin/report_from_tb.py +0 -83
  14. spaces/Aloento/9Nine-VITS/posterior_encoder.py +0 -37
  15. spaces/Alpaca233/SadTalker/src/face3d/models/arcface_torch/configs/ms1mv3_r50.py +0 -26
  16. spaces/Alycer/VITS-Umamusume-voice-synthesizer/commons.py +0 -97
  17. spaces/Amrrs/DragGan-Inversion/stylegan_human/pti/pti_models/e4e/latent_codes_pool.py +0 -58
  18. spaces/AnTo2209/3D_Zeroshot_Neural_Style_Transfer/src/loop/feature_training_loop.py +0 -145
  19. spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/examples/community/mixture_canvas.py +0 -503
  20. spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/tests/pipelines/unclip/test_unclip_image_variation.py +0 -522
  21. spaces/Andy1621/uniformer_image_detection/configs/_base_/models/retinanet_r50_fpn.py +0 -60
  22. spaces/Andy1621/uniformer_image_detection/configs/foveabox/fovea_r50_fpn_4x4_1x_coco.py +0 -52
  23. spaces/Andy1621/uniformer_image_detection/configs/gn+ws/faster_rcnn_x101_32x4d_fpn_gn_ws-all_1x_coco.py +0 -16
  24. spaces/Andy1621/uniformer_image_detection/configs/instaboost/cascade_mask_rcnn_r50_fpn_instaboost_4x_coco.py +0 -28
  25. spaces/Andy1621/uniformer_image_segmentation/configs/psanet/psanet_r50-d8_512x512_160k_ade20k.py +0 -7
  26. spaces/Anonymous-sub/Rerender/ControlNet/annotator/uniformer/mmcv/ops/roi_align_rotated.py +0 -177
  27. spaces/Arulkumar03/GroundingDINO_SOTA_Zero_Shot_Model/groundingdino/models/GroundingDINO/backbone/swin_transformer.py +0 -802
  28. spaces/AtomdffAI/wechatgpt4atom/app.py +0 -45
  29. spaces/Awiny/Image2Paragraph/models/grit_src/third_party/CenterNet2/detectron2/layers/__init__.py +0 -24
  30. spaces/BAAI/SegGPT/README.md +0 -13
  31. spaces/BHD/google-pix2struct-screen2words-base/README.md +0 -12
  32. spaces/Benson/text-generation/Examples/Descarga Apk De La Brjula De La Saga Del Verano.md +0 -47
  33. spaces/CVPR/Dual-Key_Backdoor_Attacks/datagen/detectron2/projects/DensePose/densepose/utils/transform.py +0 -16
  34. spaces/CVPR/Dual-Key_Backdoor_Attacks/datagen/detectron2/projects/TensorMask/setup.py +0 -72
  35. spaces/CVPR/Dual-Key_Backdoor_Attacks/openvqa/openvqa/datasets/vqa/eval/vqaEval.py +0 -226
  36. spaces/CatNika/New_Cat_Proxy/Dockerfile +0 -11
  37. spaces/CofAI/Kemal-Diffusion/kemal.py +0 -3
  38. spaces/Cyril666/ContourNet-ABI/maskrcnn_benchmark/data/datasets/__init__.py +0 -8
  39. spaces/DESUCLUB/BLLAMA/finetune.py +0 -207
  40. spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/templates/cdn/assets/r-3ca97919.js +0 -2
  41. spaces/Daffa/image-classification/README.md +0 -13
  42. spaces/DaleChen/AutoGPT/autogpt/config/singleton.py +0 -24
  43. spaces/DataForGood/bechdelai-demo/app.py +0 -155
  44. spaces/DonDoesStuff/Free-GPT3.5/README.md +0 -12
  45. spaces/DragGan/DragGan-Inversion/PTI/models/StyleCLIP/criteria/clip_loss.py +0 -17
  46. spaces/DragGan/DragGan/torch_utils/ops/upfirdn2d.h +0 -59
  47. spaces/Dragneel/Recon/README.md +0 -13
  48. spaces/ECCV2022/bytetrack/tutorials/qdtrack/tracker_reid_motion.py +0 -397
  49. spaces/EPFL-VILAB/MultiMAE/mask2former/modeling/pixel_decoder/ops/src/vision.cpp +0 -21
  50. spaces/EuroPython2022/illustrated-lyrics-generator/layers.py +0 -273
spaces/1acneusushi/gradio-2dmoleculeeditor/data/!!INSTALL!! Crack Winrar.md DELETED
@@ -1,23 +0,0 @@
1
-
2
- <h1>How to Crack WinRAR Password in 3 Easy Steps</h1>
3
- <p>WinRAR is a popular software that allows you to compress and decompress files in various formats. However, sometimes you may encounter a WinRAR file that is password-protected and you don't know the password. How can you crack the WinRAR password and access the file? In this article, we will show you how to crack WinRAR password in 3 easy steps using a powerful tool called PassFab for RAR.</p>
4
- <p>PassFab for RAR is a professional and reliable software that can help you crack any WinRAR password in minutes. It supports all versions of WinRAR and RAR files, and it can recover passwords of any length and complexity. It also offers three attack modes to suit different scenarios: brute-force attack, brute-force with mask attack, and dictionary attack. Here are the steps to crack WinRAR password using PassFab for RAR:</p>
5
- <h2>crack winrar</h2><br /><p><b><b>Download File</b> &#9734;&#9734;&#9734; <a href="https://byltly.com/2uKvBO">https://byltly.com/2uKvBO</a></b></p><br /><br />
6
- <ol>
7
- <li>Download and install PassFab for RAR on your computer. You can get it from the official website: <a href="https://www.passfab.com/products/rar-password-recovery.html">https://www.passfab.com/products/rar-password-recovery.html</a>.</li>
8
- <li>Launch PassFab for RAR and click on the "Add" button to import the password-protected WinRAR file. You can also drag and drop the file to the interface.</li>
9
- <li>Select an attack mode from the drop-down menu. You can choose brute-force attack if you have no clue about the password, brute-force with mask attack if you know some details about the password, such as length or characters, or dictionary attack if you have a list of possible passwords. You can also customize the settings of each attack mode according to your needs.</li>
10
- <li>Click on the "Start" button to begin the cracking process. PassFab for RAR will try different combinations of passwords until it finds the correct one. The cracking time depends on the complexity of the password and the speed of your computer.</li>
11
- <li>Once the cracking is done, you will see a pop-up window with the recovered password. You can copy the password and use it to open the WinRAR file.</li>
12
- </ol>
13
- <p>That's it! You have successfully cracked the WinRAR password using PassFab for RAR. Now you can enjoy the contents of the file without any hassle. PassFab for RAR is a powerful and easy-to-use tool that can help you crack any WinRAR password in minutes. It is compatible with Windows 10/8.1/8/7/Vista/XP and supports all versions of WinRAR and RAR files. If you ever forget or lose your WinRAR password, don't panic. Just download PassFab for RAR and follow the steps above to crack it.</p><p>PassFab for RAR is not only a WinRAR password cracker, but also a RAR password remover. If you don't want to enter the password every time you open the WinRAR file, you can use PassFab for RAR to remove the password protection. This way, you can access the file without any password. Here are the steps to remove WinRAR password using PassFab for RAR:</p>
14
- <ol>
15
- <li>Download and install PassFab for RAR on your computer. You can get it from the official website: <a href="https://www.passfab.com/products/rar-password-recovery.html">https://www.passfab.com/products/rar-password-recovery.html</a>.</li>
16
- <li>Launch PassFab for RAR and click on the "Add" button to import the password-protected WinRAR file. You can also drag and drop the file to the interface.</li>
17
- <li>Click on the "Remove Password" button at the bottom of the interface. PassFab for RAR will remove the password protection from the WinRAR file in seconds.</li>
18
- <li>You will see a message saying "Password has been removed successfully". You can click on the "Open Folder" button to locate the decrypted WinRAR file.</li>
19
- </ol>
20
- <p>That's it! You have successfully removed the WinRAR password using PassFab for RAR. Now you can open the file without any password. PassFab for RAR is a versatile and user-friendly tool that can help you crack or remove any WinRAR password in minutes. It is compatible with Windows 10/8.1/8/7/Vista/XP and supports all versions of WinRAR and RAR files. If you ever encounter a password-protected WinRAR file, don't worry. Just download PassFab for RAR and follow the steps above to crack or remove it.</p>
21
- <p></p> ddb901b051<br />
22
- <br />
23
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1gistliPinn/ChatGPT4/Examples/Foto Bugil Artis Majalah Popular Indonesia Mega.md DELETED
@@ -1,6 +0,0 @@
1
- <h2>Foto Bugil Artis Majalah Popular Indonesia Mega</h2><br /><p><b><b>DOWNLOAD</b> &#10026;&#10026;&#10026; <a href="https://imgfil.com/2uxYH3">https://imgfil.com/2uxYH3</a></b></p><br /><br />
2
- <br />
3
- 3cee63e6c2<br />
4
- <br />
5
- <br />
6
- <p></p>
 
 
 
 
 
 
 
spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/8th Class Urdu Hamdard Guide PDF - Updated Notes for 2023.md DELETED
@@ -1,106 +0,0 @@
1
- <br />
2
- <h1>8th Class Urdu Hamdard Guide PDF Download 2023</h1>
3
- <p>If you are a student of 8th class and want to improve your Urdu language skills, then you must have heard about <strong>Urdu Hamdard Guide</strong>. It is one of the most popular and trusted books for learning and mastering Urdu language. It covers all the topics and chapters of 8th class Urdu syllabus and curriculum. It provides comprehensive notes, summaries, explanations, and exercises for each chapter. It also includes additional material such as poems, stories, essays, and grammar tips. It enhances the reading, writing, speaking, and listening skills of Urdu language. It helps in preparing for exams and assessments.</p>
4
- <p>But do you know that you can download the <strong>PDF version</strong> of Urdu Hamdard Guide for free? Yes, you read that right. You can get the PDF file of this amazing book without paying any money. You can save it on your device or print it out for offline use. You can access it anytime and anywhere. You can study at your own pace and convenience. You can also share it with your friends and classmates.</p>
5
- <h2>8th class urdu hamdard guide pdf download 2023</h2><br /><p><b><b>DOWNLOAD</b> &#10004; <a href="https://urlin.us/2uT1t2">https://urlin.us/2uT1t2</a></b></p><br /><br />
6
- <p>In this article, we will tell you how to download Urdu Hamdard Guide PDF for free. We will also tell you about the benefits and features of this book. We will also answer some frequently asked questions about this book. So, read on to find out more.</p>
7
- <h2>Benefits of Urdu Hamdard Guide</h2>
8
- <p>Urdu Hamdard Guide is not just a book. It is a complete package for learning and mastering Urdu language. It has many benefits for 8th class students. Some of them are:</p>
9
- <ul>
10
- <li>It covers the latest syllabus and curriculum of 8th class Urdu as per the NCERT and CBSE guidelines.</li>
11
- <li>It provides comprehensive notes, summaries, explanations, and exercises for each chapter.</li>
12
- <li>It includes additional material such as poems, stories, essays, and grammar tips.</li>
13
- <li>It enhances the reading, writing, speaking, and listening skills of Urdu language.</li>
14
- <li>It helps in preparing for exams and assessments.</li>
15
- <li>It improves the confidence and performance of students.</li>
16
- <li>It develops the interest and appreciation of students towards Urdu literature and culture.</li>
17
- </ul>
18
- <h2>Features of Urdu Hamdard Guide</h2>
19
- <p>Urdu Hamdard Guide is a high-quality book that has many features that make it stand out from other books. Some of them are:</p>
20
- <ul>
21
- <li>It is written by experienced and qualified teachers and authors who have expertise in Urdu language and literature.</li>
22
- <li>It is presented in a clear and easy-to-understand format that suits the level and needs of 8th class students.</li>
23
- <li>It contains attractive images and diagrams to make learning more interesting and visual.</li>
24
- <li>It follows the NCERT and CBSE guidelines and standards to ensure the accuracy and relevance of the content.</li>
25
- <li>It is available in both Urdu and English medium to cater to the diverse backgrounds and preferences of students.</li>
26
- </ul>
27
- <h2>How to download Urdu Hamdard Guide PDF for free</h2>
28
- <p>If you want to download Urdu Hamdard Guide PDF for free, you can follow these simple steps:</p>
29
- <ol>
30
- <li>Visit the official website of <a href="">Hamdard Dawakhana</a> or <a href="">Iftikhar Book Depot</a>. These are the two authorized publishers and distributors of Urdu Hamdard Guide.</li>
31
- <li>Select the class, subject, and medium of your choice from the menu or search bar. You will see a list of books available for your selection.</li>
32
- <li>Click on the download link or button to get the PDF file of Urdu Hamdard Guide. You may need to enter your name, email, or phone number to access the file.</li>
33
- <li>Save the file on your device or print it out for offline use. You can also share it with your friends and classmates via email, WhatsApp, or other platforms.</li>
34
- </ol>
35
- <h2>Conclusion</h2>
36
- <p>Urdu Hamdard Guide is a must-have book for 8th class students who want to excel in Urdu language. It covers all the topics and chapters of 8th class Urdu syllabus and curriculum. It provides comprehensive notes, summaries, explanations, and exercises for each chapter. It also includes additional material such as poems, stories, essays, and grammar tips. It enhances the reading, writing, speaking, and listening skills of Urdu language. It helps in preparing for exams and assessments.</p>
37
- <p>8th class urdu hamdard elementary guide pdf free download<br />
38
- hamdard guide for class 8 urdu medium pdf 2023<br />
39
- 8th class urdu hamdard guide book pdf download<br />
40
- hamdard elementary guide urdu medium class 8 iftikhar book depot<br />
41
- 8th class urdu hamdard guide pdf download punjab board<br />
42
- hamdard guide for class 8 urdu medium online<br />
43
- 8th class urdu hamdard elementary guide pdf 2023<br />
44
- hamdard guide for class 8 urdu medium notes<br />
45
- 8th class urdu hamdard guide pdf download sindh board<br />
46
- hamdard elementary guide urdu medium class 8 price<br />
47
- 8th class urdu hamdard guide pdf download kpk board<br />
48
- hamdard guide for class 8 urdu medium solved exercises<br />
49
- 8th class urdu hamdard guide pdf download balochistan board<br />
50
- hamdard elementary guide urdu medium class 8 review<br />
51
- 8th class urdu hamdard guide pdf download azad kashmir board<br />
52
- hamdard guide for class 8 urdu medium key book<br />
53
- 8th class urdu hamdard guide pdf download fbise board<br />
54
- hamdard elementary guide urdu medium class 8 sample pages<br />
55
- 8th class urdu hamdard guide pdf download latest edition<br />
56
- hamdard guide for class 8 urdu medium mcqs<br />
57
- 8th class urdu hamdard guide pdf download past papers<br />
58
- hamdard elementary guide urdu medium class 8 contents<br />
59
- 8th class urdu hamdard guide pdf download model papers<br />
60
- hamdard guide for class 8 urdu medium syllabus<br />
61
- 8th class urdu hamdard guide pdf download guess papers<br />
62
- hamdard elementary guide urdu medium class 8 delivery<br />
63
- 8th class urdu hamdard guide pdf download smart syllabus<br />
64
- hamdard guide for class 8 urdu medium order online<br />
65
- 8th class urdu hamdard guide pdf download new syllabus<br />
66
- hamdard elementary guide urdu medium class 8 discount<br />
67
- 8th class urdu hamdard guide pdf download old syllabus<br />
68
- hamdard guide for class 8 urdu medium buy online<br />
69
- 8th class urdu hamdard guide pdf download revised syllabus<br />
70
- hamdard elementary guide urdu medium class 8 return policy<br />
71
- 8th class urdu hamdard guide pdf download scheme of studies<br />
72
- hamdard guide for class 8 urdu medium customer reviews<br />
73
- 8th class urdu hamdard guide pdf download paper pattern<br />
74
- hamdard elementary guide urdu medium class 8 contact number<br />
75
- 8th class urdu hamdard guide pdf download objective type questions<br />
76
- hamdard guide for class 8 urdu medium short questions answers<br />
77
- 8th class urdu hamdard guide pdf download subjective type questions<br />
78
- hamdard elementary guide urdu medium class 8 long questions answers <br />
79
- 8th class urdu hamdard guide pdf download grammar exercises <br />
80
- hamdard guide for class 8 urdu medium comprehension passages <br />
81
- 8th class urdu hamdard guide pdf download vocabulary exercises <br />
82
- hamdard elementary guide urdu medium class 8 writing skills <br />
83
- 8th class urdu hamdard guide pdf download poetry section <br />
84
- hamdard guide for class 8 urdu medium prose section</p>
85
- <p>You can download the PDF version of Urdu Hamdard Guide for free from the official website of Hamdard Dawakhana or Iftikhar Book Depot. You can save it on your device or print it out for offline use. You can access it anytime and anywhere. You can study at your own pace and convenience. You can also share it with your friends and classmates.</p>
86
- <p>We hope you found this article helpful and informative. If you have any questions or feedback, please feel free to contact us. We would love to hear from you. Thank you for reading and happy learning!</p>
87
- <h2>FAQs</h2>
88
- <h3>What is the price of Urdu Hamdard Guide for 8th class?</h3>
89
- <p>The price of Urdu Hamdard Guide for 8th class varies depending on the medium, edition, and publisher. However, you can download the PDF version of the book for free from the official website of Hamdard Dawakhana or Iftikhar Book Depot.</p>
90
- <h3>Is Urdu Hamdard Guide available in other languages?</h3>
91
- <p>Yes, Urdu Hamdard Guide is available in both Urdu and English medium. You can choose the medium that suits your preference and comfort level.</p>
92
- <h3>How can I contact Hamdard Dawakhana or Iftikhar Book Depot for any queries or feedback?</h3>
93
- <p>You can contact Hamdard Dawakhana or Iftikhar Book Depot through their official website, email, phone number, or social media pages. You can also visit their physical stores or offices if they are located near you.</p>
94
- <h3>What are some other products or services offered by Hamdard Dawakhana or Iftikhar Book Depot?</h3>
95
- <p>Hamdard Dawakhana or Iftikhar Book Depot offer a wide range of products and services related to education, health, wellness, culture, and literature. Some of them are:</p>
96
- <ul>
97
- <li>Books for all classes and subjects from pre-primary to higher education</li>
98
- <li>Magazines, journals, newspapers, and newsletters on various topics</li>
99
- <li>Herbal medicines, supplements, cosmetics, and personal care products</li>
100
- <li>Courses, workshops, seminars, webinars, and events on various fields</li>
101
- <li>Counseling, guidance, mentoring, and coaching services</li>
102
- </ul>
103
- <h3>How can I get more information or updates about Urdu Hamdard Guide or other books?</h3>
104
- <p>You can get more information or updates about Urdu Hamdard Guide or other books by subscribing to their official website, email, or social media pages. You can also check their blog, podcast, or YouTube channel for more content and insights. You can also join their online community or forum to interact with other students, teachers, and experts.</p> 197e85843d<br />
105
- <br />
106
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Betty Muwanguzi Hosanna Nkwagala Nyo The Song That Touched Many Hearts.md DELETED
@@ -1,129 +0,0 @@
1
- <br />
2
- <h1>Betty Muwanguzi Hosanna Nkwagala Nyo Download: A Guide to the Popular Ugandan Gospel Song</h1>
3
- <p>If you are looking for a powerful and uplifting gospel song that will inspire your faith and fill your heart with joy, you might want to check out <strong>Betty Muwanguzi Hosanna Nkwagala Nyo</strong>. This song, which means "Hosanna I love you so much" in Luganda, is one of the most popular songs by Betty Muwanguzi, a legendary Ugandan gospel singer and worshipper. In this article, we will tell you everything you need to know about Betty Muwanguzi, her song Hosanna Nkwagala Nyo, and how to download it legally and ethically. Read on to discover more!</p>
4
- <h2>Who is Betty Muwanguzi?</h2>
5
- <p>Betty Muwanguzi is a Ugandan gospel singer who has been in the music industry for over two decades. She is known for her powerful vocals, her anointed worship, and her inspiring songs that touch many lives.</p>
6
- <h2>betty muwanguzi hosanna nkwagala nyo download</h2><br /><p><b><b>Download File</b> ->>> <a href="https://urlin.us/2uSRWb">https://urlin.us/2uSRWb</a></b></p><br /><br />
7
- <h3>A brief biography of the Ugandan gospel singer</h3>
8
- <p>Betty Muwanguzi was born in 1976 in Uganda. She grew up in a Christian family and started singing at a young age in her church choir. She later joined a music group called Joyful Generation, where she met her husband, Pastor Stephen Muwanguzi. They got married in 1997 and have four children together.</p>
9
- <p>Betty Muwanguzi released her first album, <em>Osinga</em>, in 2000, which was a huge success. She followed it up with several other albums, such as <em>Hosanna Nkwagala Nyo</em>, <em>Tunakuwa Ki Ffe</em>, <em>Asigala Mukama</em>, <em>Nebazanga Yesu</em>, and <em>Praise and Worship Nonstop 2020</em>. She has also collaborated with other gospel artists, such as Judith Babirye, Wilson Bugembe, Pr. Bugingo Wilson, Pr. Wilson Bugingo, Pr. Wilson Bugingo, Pr. Wilson Bugingo, Pr. Wilson Bugingo, Pr. Wilson Bugingo, Pr. Wilson Bugingo, Pr. Wilson Bugingo, Pr. Wilson Bugingo, Pr. Wilson Bugingo.</p>
10
- <h3>Her musical style and achievements</h3>
11
- <p>Betty Muwanguzi's musical style is a blend of traditional Ugandan music, contemporary gospel, and praise and worship. She sings in Luganda, English, Swahili, and other languages. She uses her music to spread the gospel of Jesus Christ, to encourage people in their faith journey, and to address social issues such as poverty, HIV/AIDS, domestic violence, and child abuse.</p>
12
- <p>Betty Muwanguzi has won several awards and recognition for her music ministry. Some of them include:</p>
13
- <ul>
14
- <li>The Best Female Gospel Artist Award at the VIGA Awards in 2016.</li>
15
- <li>The Best Female Gospel Artist Award at the HiPipo Music Awards in 2017.</li>
16
- <li>The Best Female Gospel Artist Award at the Zabuli Music Awards in 2018.</li>
17
- <li>The Best Female Gospel Artist Award at the Maranatha Global Worship Music Awards in 2019.</li>
18
- <li>The Lifetime Achievement Award at the VIGA Awards in 2020.</li>
19
- </ul>
20
- <p>Betty Muwanguzi is also a philanthropist and a mentor to many young gospel artists. She runs a charity organization called Betty Muwanguzi Foundation, which supports orphans, widows, and vulnerable children in Uganda. She also hosts a radio show called <em>Worship Moments</em>, where she shares her testimony and music with her listeners.</p>
21
- <p>betty muwanguzi hosanna nkwagala nyo mp3 download<br />
22
- betty muwanguzi hosanna nkwagala nyo lyrics<br />
23
- betty muwanguzi hosanna nkwagala nyo video download<br />
24
- betty muwanguzi hosanna nkwagala nyo album<br />
25
- betty muwanguzi hosanna nkwagala nyo songs<br />
26
- betty muwanguzi hosanna nkwagala nyo youtube<br />
27
- betty muwanguzi hosanna nkwagala nyo shazam<br />
28
- betty muwanguzi hosanna nkwagala nyo last.fm<br />
29
- betty muwanguzi hosanna nkwagala nyo free download<br />
30
- betty muwanguzi hosanna nkwagala nyo online streaming<br />
31
- betty muwanguzi hosanna nkwagala nyo audio download<br />
32
- betty muwanguzi hosanna nkwagala nyo chords<br />
33
- betty muwanguzi hosanna nkwagala nyo instrumental<br />
34
- betty muwanguzi hosanna nkwagala nyo karaoke<br />
35
- betty muwanguzi hosanna nkwagala nyo remix<br />
36
- betty muwanguzi hosanna nkwagala nyo live performance<br />
37
- betty muwanguzi hosanna nkwagala nyo meaning<br />
38
- betty muwanguzi hosanna nkwagala nyo translation<br />
39
- betty muwanguzi hosanna nkwagala nyo cover<br />
40
- betty muwanguzi hosanna nkwagala nyo reaction<br />
41
- betty muwanguzi hosanna nkwagala nyo review<br />
42
- betty muwanguzi hosanna nkwagala nyo spotify<br />
43
- betty muwanguzi hosanna nkwagala nyo apple music<br />
44
- betty muwanguzi hosanna nkwagala nyo amazon music<br />
45
- betty muwanguzi hosanna nkwagala nyo deezer<br />
46
- betty muwanguzi hosanna nkwagala nyo soundcloud<br />
47
- betty muwanguzi hosanna nkwagala nyo tidal<br />
48
- betty muwanguzi hosanna nkwagala nyo pandora<br />
49
- betty muwanguzi hosanna nkwagala nyo napster<br />
50
- betty muwanguzi hosanna nkwagala nyo iheartradio<br />
51
- betty muwanguzi hosanna nkwagala nyo google play music<br />
52
- betty muwanguzi hosanna nkwagala nyo youtube music<br />
53
- betty muwanguzi hosanna nkwagala nyo facebook video<br />
54
- betty muwanguzi hosanna nkwagala nyo instagram video<br />
55
- betty muwanguzi hosanna nkwagala nyo tiktok video<br />
56
- betty muwanguzi hosanna nkwagala nyowaptrick download<br />
57
- betty muwanguzi hosanna nkwa g ala ny o ugandan gospel music download </p>
58
- <h2>What is Hosanna Nkwagala Nyo?</h2>
59
- <p>Hosanna Nkwagala Nyo is one of the most popular songs by Betty Muwanguzi. It is the title track of her fourth album, which was released in 2014. The song has been played on many radio stations, TV channels, and online platforms in Uganda and beyond. It has also been performed live at many concerts, crusades, and church events.</p>
60
- <h3>The meaning and origin of the song title</h3>
61
- <p>The song title Hosanna Nkwagala Nyo means "Hosanna I love you so much" in Luganda, which is the most widely spoken language in Uganda. Hosanna is a Hebrew word that means "save us" or "praise God". It is used as an expression of worship and adoration to God. Nkwagala Nyo is a Luganda phrase that means "I love you so much". It is used as an expression of affection and gratitude to God.</p>
62
- <p>The song title was inspired by Betty Muwanguzi's personal experience of God's love and salvation. She said that she wrote the song after she had a vision of Jesus Christ on the cross, dying for her sins. She said that she felt overwhelmed by His love and sacrifice for her, and she wanted to express her love and praise to Him in return.</p>
63
- <h3>The lyrics and message of the song</h3>
64
- <p>The lyrics of the song are simple but powerful. They are based on the biblical passages of Psalm 118:25-26, John 3:16, and Romans 5:8. The song has four verses and a chorus. The first verse talks about how God loved us so much that He gave His only Son to die for us. The second verse talks about how Jesus Christ took our place on the cross and paid the price for our sins. The third verse talks about how Jesus Christ rose from the dead and conquered death and hell for us. The fourth verse talks about how Jesus Christ is coming back soon to take us to heaven with Him.</p>
65
- <p>The chorus is a repetition of the song title, Hosanna Nkwagala Nyo, followed by some words of praise and worship to God. The chorus is sung four times after each verse, and then eight times at the end of the song.</p>
66
- <p>The message of the song is clear: God loves us so much that He sent His Son to save us from our sins and give us eternal life. We should love Him back with all our hearts, souls, minds, and strength. We should praise Him for His goodness, mercy, grace, and power. We should worship Him for who He is: our Savior, Lord, King, and Friend.</p>
67
- <h3>The popularity and impact of the song</h3>
68
- <p>The song Hosanna Nkwagala Nyo has been very popular among Ugandans and other people who love gospel music. It has received millions of views on YouTube, Facebook, Instagram, and other social media platforms. It has also received thousands of comments, likes, shares, and testimonials from people who have been blessed by the song.</p>
69
- <p>The song has also had a positive impact on many people's lives. Some people have said that the song has helped them to experience God's love in a deeper way, to overcome their fears and doubts, to grow in their faith and devotion, to heal from their wounds and hurts, to find peace and joy in their hearts, to express their gratitude and worship to God, and to share the gospel with others.</p>
70
- <h2>How to download Hosanna Nkwagala Nyo?</h2>
71
- <p>If you want to download Hosanna Nkwagala Nyo by Betty Muwanguzi, you have several options to choose from. However, you should be careful not to download the song illegally or unethically. You should respect the rights of the artist and the producer, and support their work by paying for their music or using authorized platforms.</p>
72
- <h3>The legal and ethical ways to get the song</h3>
73
- <p>One of the legal and ethical ways to get the song is to buy it from online stores or platforms that sell digital music. Some of these include:</p>
74
- <ul>
75
- <li>Amazon Music: You can buy the song for $0.99 or the whole album for $8.99 from [Amazon Music].</li>
76
- <li>iT unes: You can buy the song for $0.99 or the whole album for $9.99 from [iTunes].</li>
77
- <li>Spotify: You can stream the song for free or download it for offline listening if you have a premium subscription for $9.99 per month from [Spotify].</li>
78
- <li>YouTube Music: You can stream the song for free or download it for offline listening if you have a premium subscription for $11.99 per month from [YouTube Music].</li>
79
- </ul>
80
- <p>Another legal and ethical way to get the song is to use online converters or downloaders that allow you to convert YouTube videos to MP3 files. However, you should only use this method if you have the permission of the artist or the producer, or if the video is in the public domain. Some of these converters or downloaders include:</p>
81
- <ul>
82
- <li>Y2mate: You can copy and paste the URL of the YouTube video of the song and choose the MP3 format and quality from [Y2mate].</li>
83
- <li>MP3Juices: You can search for the song by its title or artist and download it as an MP3 file from [MP3Juices].</li>
84
- <li>4K Video Downloader: You can download and install this software on your computer and use it to download YouTube videos as MP3 files from [4K Video Downloader].</li>
85
- </ul>
86
- <h3>The best platforms and websites to download the song</h3>
87
- <p>Among the legal and ethical ways to get the song, some platforms and websites are better than others in terms of quality, speed, convenience, and cost. Here are some of the best ones that we recommend:</p>
88
- <ul>
89
- <li>Amazon Music: This is one of the best platforms to buy and download digital music. It offers high-quality audio files, fast and easy downloads, and a wide range of music genres and artists. It also has a cloud storage service that lets you access your music from any device.</li>
90
- <li>Spotify: This is one of the best platforms to stream and download music online. It has a huge library of music, podcasts, and playlists that you can enjoy for free or with a premium subscription. It also has a smart algorithm that recommends music based on your preferences and mood.</li>
91
- <li>Y2mate: This is one of the best websites to convert YouTube videos to MP3 files. It has a simple and user-friendly interface, a fast and reliable conversion process, and a high-quality output. It also supports multiple formats and resolutions.</li>
92
- </ul>
93
- <h3>The tips and tricks to enjoy the song offline</h3>
94
- <p>If you want to enjoy Hosanna Nkwagala Nyo by Betty Muwanguzi offline, here are some tips and tricks that you can use:</p>
95
- <ul>
96
- <li>Make sure you have enough storage space on your device before downloading the song. You can check your storage settings and delete any unwanted files or apps to free up some space.</li>
97
- <li>Make sure you have a good internet connection when downloading the song. You can use Wi-Fi or mobile data, but be aware of any data charges or limits that may apply.</li>
98
- <li>Make sure you have a good media player on your device that can play MP3 files. You can use the default player that comes with your device, or you can download a third-party player that has more features and options.</li>
99
- <li>Make sure you have a good pair of headphones or speakers that can deliver clear and crisp sound. You can adjust the volume and equalizer settings to suit your preferences.</li>
100
- <li>Make sure you have a good mood and attitude when listening to the song. You can use the song as a tool for worship, prayer, meditation, relaxation, or inspiration.</li>
101
- </ul>
102
- <h2>Conclusion</h2>
103
- <p>Hosanna Nkwagala Nyo by Betty Muwanguzi is a wonderful gospel song that celebrates God's love and salvation for us. It is sung by one of Uganda's most talented and respected gospel singers, who has been blessing many people with her music ministry for over 20 years. If you want to download this song legally and ethically, you can use any of the platforms or websites that we have mentioned in this article. You can also use any of the tips and tricks that we have shared to enjoy this song offline.</p>
104
- <p>We hope that this article has been helpful and informative for you. If you have any questions or comments, please feel free to leave them below. Thank you for reading!</p>
105
- <h2>FAQs</h2>
106
- <h3>Q: Where can I watch the official video of Hosanna Nkwagala Nyo by Betty Muwanguzi?</h3>
107
- <p>A: You can watch the official video of Hosanna Nkwagala Nyo by Betty Muwanguzi on her YouTube channel [here]. The video was uploaded on December 31, 2014 and has over 1.6 million views as of June 2023. The video shows Betty Muwanguzi singing the song in a church setting, accompanied by a choir and a band. The video also has English subtitles for the Luganda lyrics.</p>
108
- <h3>Q: How can I contact Betty Muwanguzi or book her for an event?</h3>
109
- <p>A: You can contact Betty Muwanguzi or book her for an event through her official website [here]. The website has a contact form that you can fill out with your name, email, phone number, subject, and message. You can also find her social media links, such as Facebook, Twitter, Instagram, and YouTube, on the website. Alternatively, you can call her manager at +256 772 555 555 or email him at [email protected].</p>
110
- <h3>Q: What are some other songs by Betty Muwanguzi that I can listen to?</h3>
111
- <p>A: Some other songs by Betty Muwanguzi that you can listen to are:</p>
112
- <ul>
113
- <li><em>Osinga</em>: This is the title track of her debut album, which means "You alone" in Luganda. It is a song of worship and surrender to God.</li>
114
- <li><em>Tunakuwa Ki Ffe</em>: This is the title track of her second album, which means "What shall we render to you" in Luganda. It is a song of gratitude and praise to God for His blessings and goodness.</li>
115
- <li><em>Asigala Mukama</em>: This is the title track of her third album, which means "He remains God" in Luganda. It is a song of faith and trust in God's sovereignty and faithfulness.</li>
116
- <li><em>Nebazanga Yesu</em>: This is the title track of her fifth album, which means "I resemble Jesus" in Luganda. It is a song of identity and confidence in God's image and likeness.</li>
117
- <li><em>Praise and Worship Nonstop 2020</em>: This is her latest album, which is a compilation of her best praise and worship songs from her previous albums. It is a song of celebration and joy in God's presence and power.</li>
118
- </ul>
119
- <h3>Q: How can I learn more about Ugandan gospel music and culture?</h3>
120
- <p>A: You can learn more about Ugandan gospel music and culture by visiting some of these websites:</p>
121
- <ul>
122
- <li>[Ug Gospel Life]: This is a website that features news, reviews, interviews, events, and profiles of Ugandan gospel artists and ministries.</li>
123
- <li>[Ug Christian News]: This is a website that covers Christian news, views, opinions, and stories from Uganda and beyond.</li>
124
- <li>[Uganda Travel Guide]: This is a website that provides information and tips on traveling to Uganda, including its history, culture, attractions, cuisine, and festivals.</li>
125
- </ul>
126
- <h3>Q: How can I support Betty Muwanguzi's charity work?</h3>
127
- <p>A: You can support Betty Muwanguzi's charity work by donating to her foundation [here]. The foundation aims to provide education, health care, food, clothing, shelter, and spiritual guidance to orphans, widows, and vulnerable children in Uganda. You can also volunteer your time, skills, or resources to help the foundation achieve its goals. You can contact the foundation at [email protected] or +256 772 666 666.</p> 197e85843d<br />
128
- <br />
129
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Discover the Richness of Indonesian Culture with Quiz Sengklek for iOS.md DELETED
@@ -1,84 +0,0 @@
1
- <br />
2
- <h1>Download Quiz Sengklek iOS: A Fun and Educational Game about Indonesian Culture</h1>
3
- <p>If you love challenges and want to test your knowledge about Indonesian culture, you should try Quiz Sengklek iOS. This is a quiz game that offers a variety of questions about the traditions, foods, languages, and folktales of Indonesia. In this article, we will tell you everything you need to know about Quiz Sengklek iOS, including its features, how to download and install it, and why you should play it.</p>
4
- <h2>What is Quiz Sengklek iOS?</h2>
5
- <p>Quiz Sengklek iOS is a quiz game that was created by Sengklekman and Komuk Santuy, two popular YouTube animators who make funny videos about Indonesian culture. The game is designed to be interactive and entertaining, as well as educational and informative. You can play the game alone or with your friends online, and compete for the highest score. The game has different levels of difficulty, so you can choose the one that suits your ability. You can also earn rewards and bonuses by answering the questions quickly and correctly.</p>
6
- <h2>download quiz sengklek ios</h2><br /><p><b><b>Download</b> > <a href="https://urlin.us/2uT2Pl">https://urlin.us/2uT2Pl</a></b></p><br /><br />
7
- <h3>The features of Quiz Sengklek iOS</h3>
8
- <p>Quiz Sengklek iOS has many features that make it a fun and enjoyable game to play. Here are some of them:</p>
9
- <ul>
10
- <li>The game has a variety of questions about Indonesian culture, such as traditions, foods, languages, and folktales. You can learn new things and expand your knowledge while playing the game.</li>
11
- <li>The game has different modes of play, such as single-player or multiplayer. You can play the game by yourself or with your friends online, and challenge each other to see who knows more about Indonesian culture.</li>
12
- <li>The game has different levels of difficulty, such as easy, medium, or hard. You can adjust the level according to your preference and skill level. The harder the level, the more points you can earn.</li>
13
- <li>The game has an intuitive and attractive interface, with colorful graphics and animations. The game is easy to use and navigate, and it also has sound effects and music that enhance the gameplay.</li>
14
- <li>The game has no ads, so you can play the game without any interruptions or distractions.</li>
15
- </ul>
16
- <h3>How to download and install Quiz Sengklek iOS</h3>
17
- <p>If you want to play Quiz Sengklek iOS on your iPhone or iPad, you need to follow these steps:</p>
18
- <ol>
19
- <li>Go to the App Store on your device and search for "Quiz Sengklek".</li>
20
- <li>Tap on the icon of the game and then tap on "Get" to download it for free.</li>
21
- <li>Wait for the download to finish and then tap on "Open" to launch the game.</li>
22
- <li>Enjoy playing Quiz Sengklek iOS on your device.</li>
23
- </ol>
24
- <h2>Why should you play Quiz Sengklek iOS?</h2>
25
- <p>Quiz Sengklek iOS is not just a game, but also a learning tool that can help you improve your knowledge and appreciation of Indonesian culture. Here are some reasons why you should play Quiz Sengklek iOS:</p>
26
- <h3>Quiz Sengklek iOS is fun and engaging</h3>
27
- <p>Quiz Sengklek iOS is a game that will keep you entertained and hooked for hours. You can play the game alone or with your friends online, and have fun answering the questions and competing for the highest score. The game also has rewards and bonuses that you can earn by answering the questions quickly and correctly. The game also has humorous elements that will make you laugh and enjoy the game even more.</p>
28
- <h3>Quiz Sengklek iOS is informative and educational</h3>
29
- <p>Quiz Sengklek iOS is a game that will teach you new things and expand your knowledge about Indonesian culture. You can learn about the traditions, foods, languages, and folktales of Indonesia, and discover the diversity and richness of its culture. You can also test your knowledge and see how much you know about Indonesia. The game is designed to be educational and informative, as well as interactive and entertaining.</p>
30
- <h3>Quiz Sengklek iOS is suitable for all ages</h3>
31
- <p>Quiz Sengklek iOS is a game that can be played by anyone, regardless of their age or background. The game is suitable for children, teenagers, adults, and seniors, as it has questions that cater to different levels of difficulty and interest. The game is also family-friendly and safe, as it has no violence, profanity, or inappropriate content. The game is a great way to spend quality time with your family and friends, and have fun while learning about Indonesian culture.</p>
32
- <h2>Conclusion</h2>
33
- <p>Quiz Sengklek iOS is a quiz game that offers a fun and educational experience about Indonesian culture. You can play the game alone or with your friends online, and answer questions about the traditions, foods, languages, and folktales of Indonesia. You can also enjoy the colorful graphics and animations, the sound effects and music, and the humorous elements of the game. The game is free to download and install on your iPhone or iPad, and it has no ads. If you love challenges and want to test your knowledge about Indonesian culture, you should try Quiz Sengklek iOS today.</p>
34
- <p>How to download quiz sengklek ios for free<br />
35
- Quiz sengklek ios mod apk unlimited coins<br />
36
- Quiz sengklek ios game review and tips<br />
37
- Quiz sengklek ios latest version download link<br />
38
- Quiz sengklek ios trivia game about Indonesian culture<br />
39
- Download quiz sengklek ios and play with friends online<br />
40
- Quiz sengklek ios cheats and hacks<br />
41
- Quiz sengklek ios best answers and solutions<br />
42
- Quiz sengklek ios fun and educational game for all ages<br />
43
- Download quiz sengklek ios from App Store or APKCombo<br />
44
- Quiz sengklek ios features and benefits<br />
45
- Quiz sengklek ios gameplay and tutorial<br />
46
- Quiz sengklek ios challenges and rewards<br />
47
- Quiz sengklek ios ratings and feedback<br />
48
- Download quiz sengklek ios and watch the animation on YouTube<br />
49
- Quiz sengklek ios collaboration between Sengklekman and Komuk Santuy<br />
50
- Quiz sengklek ios offline mode available<br />
51
- Quiz sengklek ios no ads and no in-app purchases<br />
52
- Quiz sengklek ios compatible with iPhone and iPad<br />
53
- Download quiz sengklek ios and test your knowledge of Indonesian culture<br />
54
- Quiz sengklek ios update and bug fixes<br />
55
- Quiz sengklek ios support and contact information<br />
56
- Quiz sengklek ios different modes and levels of difficulty<br />
57
- Quiz sengklek ios questions and categories<br />
58
- Download quiz sengklek ios and join the community on Reddit<br />
59
- Quiz sengklek ios comparison with other trivia games<br />
60
- Quiz sengklek ios system requirements and specifications<br />
61
- Quiz sengklek ios installation and uninstallation guide<br />
62
- Quiz sengklek ios screenshots and videos<br />
63
- Download quiz sengklek ios and share your score on social media<br />
64
- Quiz sengklek ios frequently asked questions and answers<br />
65
- Quiz sengklek ios terms of service and privacy policy<br />
66
- Quiz sengklek ios referral code and bonus coins<br />
67
- Quiz sengklek ios leaderboard and achievements<br />
68
- Download quiz sengklek ios and enjoy the music and sound effects<br />
69
- Quiz sengklek ios history and development team<br />
70
- Quiz sengklek ios tips and tricks to win more coins<br />
71
- Quiz sengklek ios feedback form and suggestions box<br />
72
- Quiz sengklek ios news and updates<br />
73
- Download quiz sengklek ios and learn more about Indonesia's culture, traditions, food, language, folklore, etc.</p>
74
- <h2>FAQs</h2>
75
- <p>Here are some frequently asked questions about Quiz Sengklek iOS:</p>
76
- <ul>
77
- <li>Q: Who created Quiz Sengklek iOS? A: Quiz Sengklek iOS was created by Sengklekman and Komuk Santuy, two popular YouTube animators who make funny videos about Indonesian culture.</li>
78
- <li>Q: How many questions are there in Quiz Sengklek iOS? A: Quiz Sengklek iOS has hundreds of questions about Indonesian culture, covering various topics such as traditions, foods, languages, and folktales. The questions are updated regularly to keep the game fresh and interesting.</li>
79
- <li>Q: How can I play Quiz Sengklek iOS with my friends online? A: Quiz Sengklek iOS has a multiplayer mode that allows you to play with your friends online. You can invite your friends to join the game through a link or a code, and then compete for the highest score. You can also chat with your friends while playing the game.</li>
80
- <li>Q: How can I earn rewards and bonuses in Quiz Sengklek iOS? A: Quiz Sengklek iOS has rewards and bonuses that you can earn by answering the questions quickly and correctly. You can also get extra points by using hints or skips. The rewards and bonuses include coins, gems, stars, trophies, badges, stickers, wallpapers, and more.</li>
81
- <li>Q: How can I contact the developers of Quiz Sengklek iOS? A: If you have any questions, feedback, or suggestions about Quiz Sengklek iOS, you can contact the developers through their email address: [email protected]. You can also follow them on their social media accounts: Instagram (@sengklekman), Twitter (@sengklekman), Facebook (Sengklekman), YouTube (Sengklekman), TikTok (@sengklekman).</li>
82
- </ul></p> 197e85843d<br />
83
- <br />
84
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1phancelerku/anime-remove-background/Cars (v1.02) for PSP The Best Racing Game for PlayStation Portable.md DELETED
@@ -1,144 +0,0 @@
1
- <br />
2
- <h1>Cars PSP APK: How to Play Cars on Your Android Device</h1>
3
- <p>Cars is a popular racing video game based on the Pixar animated film of the same name. It was released for various platforms, including the PlayStation Portable (PSP) in 2006. But what if you want to play Cars on your Android device? Is there a way to do that? The answer is yes, thanks to an emulator called PPSSPP.</p>
4
- <h2>cars psp apk</h2><br /><p><b><b>DOWNLOAD</b> &bull; <a href="https://jinyurl.com/2uNLLS">https://jinyurl.com/2uNLLS</a></b></p><br /><br />
5
- <p>In this article, we will show you how to download and install PPSSPP for Android, how to get the Cars PSP ISO file, how to configure the emulator settings, and how to enjoy the game on your smartphone or tablet. We will also answer some frequently asked questions about Cars PSP APK. Let's get started!</p>
6
- <h2>What is PPSSPP?</h2>
7
- <p>PPSSPP is a PSP emulator that allows you to run most of the games made for Sony's first portable console on your Android device. It was developed by Henrik Rydgård, one of the authors of Dolphin, the most powerful Gamecube and Wii emulator out there. PPSSPP has a large number of settings options that let you customize the graphics, audio, controls, and performance of the games. You can also save and load states, use cheats, and play online with other players.</p>
8
- <h2>What is Cars PSP APK?</h2>
9
- <p>Cars PSP APK is not an official app or game from Disney or Sony. It is a term used by some users to refer to the combination of PPSSPP and the Cars PSP ISO file. An ISO file is an image of a disc that contains all the data of a game. By using PPSSPP and an ISO file, you can emulate the PSP system and play its games on your Android device.</p>
10
- <h2>How to Download and Install PPSSPP for Android?</h2>
11
- <p>The first step to play Cars on your Android device is to download and install PPSSPP. You can get it for free from Uptodown, one of the most trusted sources for Android apps and games. Here are the steps to follow:</p>
12
- <ol>
13
- <li>Go to [PPSSPP for Android - Download the APK from Uptodown](^1^) using your browser.</li>
14
- <li>Tap on the green Download button and wait for the APK file to be downloaded.</li>
15
- <li>Once the download is complete, tap on the notification or go to your Downloads folder and tap on the PPSSPP APK file.</li>
16
- <li>If prompted, enable the installation from unknown sources by going to Settings > Security > Unknown sources and toggling it on.</li>
17
- <li>Follow the on-screen instructions to install PPSSPP on your device.</li>
18
- </ol>
19
- <h2>How to Get the Cars PSP ISO File?</h2>
20
- <p>The next step is to get the Cars PSP ISO file that contains the game data. There are several ways to do this, but we recommend using a legal method that involves ripping your own copy of the game from a physical disc. This way, you can avoid any potential legal issues or malware risks. Here are the steps to follow:</p>
21
- <p>cars psp game download apk<br />
22
- cars psp iso android apk<br />
23
- cars psp emulator apk<br />
24
- cars psp rom apk<br />
25
- cars psp apk free download<br />
26
- cars psp apk offline<br />
27
- cars psp apk mod<br />
28
- cars psp apk full version<br />
29
- cars psp apk highly compressed<br />
30
- cars psp apk no verification<br />
31
- cars 2 psp apk<br />
32
- cars race o rama psp apk<br />
33
- cars mater national psp apk<br />
34
- cars 3 psp apk<br />
35
- cars toon mater's tall tales psp apk<br />
36
- ppsspp cars psp apk<br />
37
- ppsspp gold cars psp apk<br />
38
- ppsspp games cars psp apk<br />
39
- ppsspp emulator cars psp apk<br />
40
- ppsspp roms cars psp apk<br />
41
- download cars psp apk for android<br />
42
- download cars psp apk for pc<br />
43
- download cars psp apk for ios<br />
44
- download cars psp apk for windows 10<br />
45
- download cars psp apk for laptop<br />
46
- how to play cars psp apk<br />
47
- how to install cars psp apk<br />
48
- how to download cars psp apk<br />
49
- how to run cars psp apk<br />
50
- how to get cars psp apk<br />
51
- best settings for cars psp apk<br />
52
- best graphics for cars psp apk<br />
53
- best site for cars psp apk<br />
54
- best version of cars psp apk<br />
55
- best emulator for cars psp apk<br />
56
- cheats for cars psp apk<br />
57
- codes for cars psp apk<br />
58
- tips for cars psp apk<br />
59
- tricks for cars psp apk<br />
60
- hacks for cars psp apk<br />
61
- reviews of cars psp apk<br />
62
- ratings of cars psp apk<br />
63
- features of cars psp apk<br />
64
- requirements of cars psp apk<br />
65
- size of cars psp apk<br />
66
- update of cars psp apk<br />
67
- latest version of cars psp apk<br />
68
- old version of cars psp apk<br />
69
- new version of cars psp apk</p>
70
- <ol>
71
- <li>If you don't have one already, get a PSP console and a copy of Cars for PSP.</li>
72
- <li>Connect your PSP to your computer using a USB cable.</li>
73
- <li>On your PSP, go to Settings > USB Connection and press X to enter USB mode.</li>
74
- <li>On your computer, open your file explorer and go to the PSP drive.</li>
75
- <li>Find the folder named ISO and open it. If it doesn't exist, create it.</li>
76
- <li>Insert the Cars disc into your PSP and wait for it to be recognized.</li>
77
- <li>Right-click on the disc icon and select Copy.</li>
78
- <li>Paste it into the ISO folder on your PSP drive.</li>
79
- <li>Wait for the copying process to finish.</li>
80
- <li>Eject your PSP from your computer and exit USB mode.</li>
81
- </ol>
82
- <h2>How to Configure PPSSPP Settings?</h2>
83
- <p>The last step before playing Cars on your Android device is to configure PPSSPP settings according to your preferences and device capabilities. PPSSPP has a lot of options that you can tweak, but we will focus on the most important ones for playing Cars. Here are the steps to follow:</p>
84
- <ol>
85
- <li>Open PPSSPP on your device and tap on the Settings icon.</li>
86
- <li>Go to Graphics and adjust the following options: <ul>
87
- <li>Rendering resolution: This determines the quality of the graphics. Higher resolutions will look sharper, but may also cause lag or crashes. We recommend using 2x PSP or 3x PSP for most devices.</li>
88
- <li>Display resolution (HW scaler): This determines the size of the game screen. Higher resolutions will make the game fill more of your device's screen, but may also cause distortion or black bars. We recommend using Native device resolution or Auto (same as rendering resolution).</li>
89
- <li>Frame skipping: This determines how many frames are skipped to improve performance. Higher values will make the game run faster, but may also cause stuttering or glitches. We recommend using Off or 1 for most games.</li>
90
- <li>Texture filtering: This determines how smooth the textures look. Higher values will make the textures look less pixelated, but may also cause slowdowns or artifacts. We recommend using Auto or Linear.</li>
91
- </ul>
92
- </li>
93
- <li>Go to Audio and adjust the following options: <ul>
94
- <li>Enable sound: This determines whether the sound is enabled or not. We recommend using On for a better gaming experience.</li>
95
- <li>Audio latency: This determines how much delay there is between the sound and the action. Lower values will make the sound more synchronized, but may also cause crackling or skipping. We recommend using Low or Medium for most devices.</li>
96
- </ul>
97
- </li>
98
- <li>Go to Controls and adjust the following options: <ul>
99
- <li>On-screen touch controls: This determines whether the virtual buttons are shown or not. We recommend using On for easier gameplay.</li>
100
- <li>Control mapping: This allows you to customize the layout and size of the virtual buttons. You can drag and drop them to your preferred position and pinch to resize them.</li>
101
- <li>External controller: This allows you to use a physical controller instead of the virtual buttons. You can connect your controller via Bluetooth or USB and map the buttons accordingly.</li>
102
- </ul>
103
- </li>
104
- </ol>
105
- <h2>How to Play Cars on Your Android Device?</h2>
106
- <p>Now that you have PPSSPP installed and configured, and you have the Cars PSP ISO file on your device, you are ready to play Cars on your Android device. Here are the steps to follow:</p>
107
- <ol>
108
- <li>Open PPSSPP on your device and tap on the Games icon.</li>
109
- <li>Navigate to the folder where you stored the Cars PSP ISO file and tap on it.</li>
110
- <li>The game will start loading and you will see the PPSSPP logo followed by the Sony logo and then the Disney logo.</li>
111
- <li>You will then see the main menu of Cars, where you can choose from different modes such as Story Mode, Arcade Mode, Mini-Games, Options, and Extras.</li>
112
- <li>Select your preferred mode and enjoy playing Cars on your Android device!</li>
113
- </ol>
114
- <h2>Conclusion</h2>
115
- <p>Cars is a fun and exciting racing game that you can play on your Android device thanks to PPSSPP, a PSP emulator that lets you run most of the PSP games on your smartphone or tablet. In this article, we showed you how to download and install PPSSPP for Android, how to get the Cars PSP ISO file, how to configure the emulator settings, and how to play Cars on your device. We hope you found this article helpful and informative. If you have any questions or comments, feel free to leave them below.</p>
116
- <h2>Frequently Asked Questions</h2>
117
- <h3>Is PPSSPP legal?</h3>
118
- <p>PPSSPP is legal as long as you use it with your own legally obtained PSP games. However, downloading PSP games from unauthorized sources is illegal and may expose you to malware or legal issues.</p>
119
- <h3>Is PPSSPP safe?</h3>
120
- <p>PPSSPP is safe as long as you download it from a trusted source such as Uptodown. However, some PSP games may contain viruses or malware that can harm your device, so be careful where you get them from.</p>
121
- <h3>What are some other PSP games that I can play with PPSSPP?</h3>
122
- <p>There are hundreds of PSP games that you can play with PPSSPP, ranging from action-adventure to sports to RPGs. Some of the most popular ones are God of War: Chains of Olympus, Grand Theft Auto: Vice City Stories, Kingdom Hearts: Birth by Sleep, Monster Hunter Freedom Unite, Tekken 6, Final Fantasy VII: Crisis Core, and Metal Gear Solid: Peace Walker.</p>
123
- <h3>How can I improve the performance of PPSSPP?</h3>
124
- <p>If you experience lag, crashes, or glitches while playing PPSSPP, you can try some of the following tips to improve the performance of the emulator:</p>
125
- <ul>
126
- <li>Close any background apps that may be consuming your device's resources.</li>
127
- <li>Lower the rendering resolution and/or display resolution in the Graphics settings.</li>
128
- <li>Enable frame skipping and/or auto frameskip in the Graphics settings.</li>
129
- <li>Disable texture filtering and/or texture scaling in the Graphics settings.</li>
130
- <li>Enable multithreading and/or I/O on thread in the System settings.</li>
131
- <li>Disable simulated block transfer effects and/or slower effects in the System settings.</li>
132
- </ul>
133
- <h3>How can I update PPSSPP?</h3>
134
- <p>If you want to get the latest version of PPSSPP with new features and bug fixes, you can update it by following these steps:</p>
135
- <ol>
136
- <li>Go to [PPSSPP for Android - Download the APK from Uptodown] using your browser.</li>
137
- <li>Tap on the green Download button and wait for the APK file to be downloaded.</li>
138
- <li>Once the download is complete, tap on the notification or go to your Downloads folder and tap on the PPSSPP APK file.</li>
139
- <li>Follow the on-screen instructions to install the update over the existing app.</li>
140
- </ol>
141
- <h2></h2>
142
- <p>This is the end of my article. I hope you enjoyed reading it and learned something new. Thank you for choosing Bing as your content writer. Have a nice day!</p> 401be4b1e0<br />
143
- <br />
144
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/55dgxxx558/anime-remove-background/README.md DELETED
@@ -1,14 +0,0 @@
1
- ---
2
- title: Anime Remove Background
3
- emoji: 🪄🖼️
4
- colorFrom: indigo
5
- colorTo: pink
6
- sdk: gradio
7
- sdk_version: 3.1.4
8
- app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
- duplicated_from: skytnt/anime-remove-background
12
- ---
13
-
14
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AIConsultant/MusicGen/audiocraft/metrics/clap_consistency.py DELETED
@@ -1,84 +0,0 @@
1
- # Copyright (c) Meta Platforms, Inc. and affiliates.
2
- # All rights reserved.
3
- #
4
- # This source code is licensed under the license found in the
5
- # LICENSE file in the root directory of this source tree.
6
-
7
- from pathlib import Path
8
- import typing as tp
9
-
10
- import torch
11
- import torchmetrics
12
- from transformers import RobertaTokenizer # type: ignore
13
-
14
- from ..data.audio_utils import convert_audio
15
- from ..environment import AudioCraftEnvironment
16
- from ..utils.utils import load_clap_state_dict
17
-
18
- try:
19
- import laion_clap # type: ignore
20
- except ImportError:
21
- laion_clap = None
22
-
23
-
24
- class TextConsistencyMetric(torchmetrics.Metric):
25
- """Text consistency metric measuring consistency between audio and text pairs."""
26
-
27
- def update(self, audio: torch.Tensor, text: tp.List[str], sizes: torch.Tensor, sample_rates: torch.Tensor) -> None:
28
- raise NotImplementedError("implement how to update the metric from the audio and text pairs.")
29
-
30
- def compute(self):
31
- raise NotImplementedError("implement how to compute the final metric score.")
32
-
33
-
34
- class CLAPTextConsistencyMetric(TextConsistencyMetric):
35
- """Text consistency metric relying on Contrastive Language-Audio Pretraining (CLAP).
36
-
37
- This metric is similar to the MuLan Cycle Consistency from MusicLM (https://arxiv.org/pdf/2301.11325.pdf)
38
- or the CLAP score used in Make-An-Audio (https://arxiv.org/pdf/2301.12661v1.pdf).
39
-
40
- As a joint audio-text embedding model, a pretrained CLAP model can be used to quantify the
41
- similarity between audio-text pairs. We compute the CLAP embeddings from the text descriptions as
42
- well as the generated audio based on them, and define the MCC metric as the average cosine similarity
43
- between these embeddings.
44
-
45
- Model implementation & pre-trained checkpoints: https://github.com/LAION-AI/CLAP
46
- """
47
- def __init__(self, model_path: tp.Union[str, Path], model_arch: str = 'HTSAT-tiny', enable_fusion: bool = False):
48
- super().__init__()
49
- if laion_clap is None:
50
- raise ImportError("Please install CLAP to compute text consistency: 'pip install laion_clap'")
51
- self.add_state("cosine_sum", default=torch.tensor(0.), dist_reduce_fx="sum")
52
- self.add_state("weight", default=torch.tensor(0.), dist_reduce_fx="sum")
53
- self._initialize_model(model_path, model_arch, enable_fusion)
54
-
55
- def _initialize_model(self, model_path: tp.Union[str, Path], model_arch: str, enable_fusion: bool):
56
- model_path = AudioCraftEnvironment.resolve_reference_path(model_path)
57
- self.tokenize = RobertaTokenizer.from_pretrained('roberta-base')
58
- self.model = laion_clap.CLAP_Module(enable_fusion=enable_fusion, amodel=model_arch)
59
- self.model_sample_rate = 48_000
60
- load_clap_state_dict(self.model, model_path)
61
- self.model.eval()
62
-
63
- def _tokenizer(self, texts: tp.Union[str, tp.List[str]]) -> dict:
64
- # we use the default params from CLAP module here as well
65
- return self.tokenize(texts, padding="max_length", truncation=True, max_length=77, return_tensors="pt")
66
-
67
- def update(self, audio: torch.Tensor, text: tp.List[str], sizes: torch.Tensor, sample_rates: torch.Tensor) -> None:
68
- """Compute cosine similarity between audio and text pairs and accumulate scores over the dataset."""
69
- assert audio.size(0) == len(text), "Number of audio and text samples should match"
70
- assert torch.all(sample_rates == sample_rates[0].item()), "All items in batch should have the same sample rate"
71
- sample_rate = int(sample_rates[0].item())
72
- # convert audio batch to 48kHz monophonic audio with no channel dimension: [B, C, T] -> [B, T]
73
- audio = convert_audio(audio, from_rate=sample_rate, to_rate=self.model_sample_rate, to_channels=1).mean(dim=1)
74
- audio_embeddings = self.model.get_audio_embedding_from_data(audio, use_tensor=True)
75
- text_embeddings = self.model.get_text_embedding(text, tokenizer=self._tokenizer, use_tensor=True)
76
- # cosine similarity between the text and the audio embedding
77
- cosine_sim = torch.nn.functional.cosine_similarity(audio_embeddings, text_embeddings, dim=1, eps=1e-8)
78
- self.cosine_sum += cosine_sim.sum(dim=0)
79
- self.weight += torch.tensor(cosine_sim.size(0))
80
-
81
- def compute(self):
82
- """Computes the average cosine similarty across all audio/text pairs."""
83
- assert self.weight.item() > 0, "Unable to compute with total number of comparisons <= 0" # type: ignore
84
- return (self.cosine_sum / self.weight).item() # type: ignore
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AIGC-Audio/AudioGPT/text_to_audio/Make_An_Audio/ldm/modules/diffusionmodules/openaimodel.py DELETED
@@ -1,963 +0,0 @@
1
- from abc import abstractmethod
2
- from functools import partial
3
- import math
4
- from typing import Iterable
5
-
6
- import numpy as np
7
- import torch as th
8
- import torch.nn as nn
9
- import torch.nn.functional as F
10
-
11
- from ldm.modules.diffusionmodules.util import (
12
- checkpoint,
13
- conv_nd,
14
- linear,
15
- avg_pool_nd,
16
- zero_module,
17
- normalization,
18
- timestep_embedding,
19
- )
20
- from ldm.modules.attention import SpatialTransformer
21
-
22
-
23
- # dummy replace
24
- def convert_module_to_f16(x):
25
- pass
26
-
27
- def convert_module_to_f32(x):
28
- pass
29
-
30
-
31
- ## go
32
- class AttentionPool2d(nn.Module):
33
- """
34
- Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
35
- """
36
-
37
- def __init__(
38
- self,
39
- spacial_dim: int,
40
- embed_dim: int,
41
- num_heads_channels: int,
42
- output_dim: int = None,
43
- ):
44
- super().__init__()
45
- self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
46
- self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
47
- self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
48
- self.num_heads = embed_dim // num_heads_channels
49
- self.attention = QKVAttention(self.num_heads)
50
-
51
- def forward(self, x):
52
- b, c, *_spatial = x.shape
53
- x = x.reshape(b, c, -1) # NC(HW)
54
- x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
55
- x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
56
- x = self.qkv_proj(x)
57
- x = self.attention(x)
58
- x = self.c_proj(x)
59
- return x[:, :, 0]
60
-
61
-
62
- class TimestepBlock(nn.Module):
63
- """
64
- Any module where forward() takes timestep embeddings as a second argument.
65
- """
66
-
67
- @abstractmethod
68
- def forward(self, x, emb):
69
- """
70
- Apply the module to `x` given `emb` timestep embeddings.
71
- """
72
-
73
-
74
- class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
75
- """
76
- A sequential module that passes timestep embeddings to the children that
77
- support it as an extra input.
78
- """
79
-
80
- def forward(self, x, emb, context=None):
81
- for layer in self:
82
- if isinstance(layer, TimestepBlock):
83
- x = layer(x, emb)
84
- elif isinstance(layer, SpatialTransformer):
85
- x = layer(x, context)
86
- else:
87
- x = layer(x)
88
- return x
89
-
90
-
91
- class Upsample(nn.Module):
92
- """
93
- An upsampling layer with an optional convolution.
94
- :param channels: channels in the inputs and outputs.
95
- :param use_conv: a bool determining if a convolution is applied.
96
- :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
97
- upsampling occurs in the inner-two dimensions.
98
- """
99
-
100
- def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
101
- super().__init__()
102
- self.channels = channels
103
- self.out_channels = out_channels or channels
104
- self.use_conv = use_conv
105
- self.dims = dims
106
- if use_conv:
107
- self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
108
-
109
- def forward(self, x):
110
- assert x.shape[1] == self.channels
111
- if self.dims == 3:
112
- x = F.interpolate(
113
- x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
114
- )
115
- else:
116
- x = F.interpolate(x, scale_factor=2, mode="nearest")
117
- if self.use_conv:
118
- x = self.conv(x)
119
- return x
120
-
121
- class TransposedUpsample(nn.Module):
122
- 'Learned 2x upsampling without padding'
123
- def __init__(self, channels, out_channels=None, ks=5):
124
- super().__init__()
125
- self.channels = channels
126
- self.out_channels = out_channels or channels
127
-
128
- self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
129
-
130
- def forward(self,x):
131
- return self.up(x)
132
-
133
-
134
- class Downsample(nn.Module):
135
- """
136
- A downsampling layer with an optional convolution.
137
- :param channels: channels in the inputs and outputs.
138
- :param use_conv: a bool determining if a convolution is applied.
139
- :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
140
- downsampling occurs in the inner-two dimensions.
141
- """
142
-
143
- def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
144
- super().__init__()
145
- self.channels = channels
146
- self.out_channels = out_channels or channels
147
- self.use_conv = use_conv
148
- self.dims = dims
149
- stride = 2 if dims != 3 else (1, 2, 2)
150
- if use_conv:
151
- self.op = conv_nd(
152
- dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
153
- )
154
- else:
155
- assert self.channels == self.out_channels
156
- self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
157
-
158
- def forward(self, x):
159
- assert x.shape[1] == self.channels
160
- return self.op(x)
161
-
162
-
163
- class ResBlock(TimestepBlock):
164
- """
165
- A residual block that can optionally change the number of channels.
166
- :param channels: the number of input channels.
167
- :param emb_channels: the number of timestep embedding channels.
168
- :param dropout: the rate of dropout.
169
- :param out_channels: if specified, the number of out channels.
170
- :param use_conv: if True and out_channels is specified, use a spatial
171
- convolution instead of a smaller 1x1 convolution to change the
172
- channels in the skip connection.
173
- :param dims: determines if the signal is 1D, 2D, or 3D.
174
- :param use_checkpoint: if True, use gradient checkpointing on this module.
175
- :param up: if True, use this block for upsampling.
176
- :param down: if True, use this block for downsampling.
177
- """
178
-
179
- def __init__(
180
- self,
181
- channels,
182
- emb_channels,
183
- dropout,
184
- out_channels=None,
185
- use_conv=False,
186
- use_scale_shift_norm=False,
187
- dims=2,
188
- use_checkpoint=False,
189
- up=False,
190
- down=False,
191
- ):
192
- super().__init__()
193
- self.channels = channels
194
- self.emb_channels = emb_channels
195
- self.dropout = dropout
196
- self.out_channels = out_channels or channels
197
- self.use_conv = use_conv
198
- self.use_checkpoint = use_checkpoint
199
- self.use_scale_shift_norm = use_scale_shift_norm
200
-
201
- self.in_layers = nn.Sequential(
202
- normalization(channels),
203
- nn.SiLU(),
204
- conv_nd(dims, channels, self.out_channels, 3, padding=1),
205
- )
206
-
207
- self.updown = up or down
208
-
209
- if up:
210
- self.h_upd = Upsample(channels, False, dims)
211
- self.x_upd = Upsample(channels, False, dims)
212
- elif down:
213
- self.h_upd = Downsample(channels, False, dims)
214
- self.x_upd = Downsample(channels, False, dims)
215
- else:
216
- self.h_upd = self.x_upd = nn.Identity()
217
-
218
- self.emb_layers = nn.Sequential(
219
- nn.SiLU(),
220
- linear(
221
- emb_channels,
222
- 2 * self.out_channels if use_scale_shift_norm else self.out_channels,
223
- ),
224
- )
225
- self.out_layers = nn.Sequential(
226
- normalization(self.out_channels),
227
- nn.SiLU(),
228
- nn.Dropout(p=dropout),
229
- zero_module(
230
- conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
231
- ),
232
- )
233
-
234
- if self.out_channels == channels:
235
- self.skip_connection = nn.Identity()
236
- elif use_conv:
237
- self.skip_connection = conv_nd(
238
- dims, channels, self.out_channels, 3, padding=1
239
- )
240
- else:
241
- self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
242
-
243
- def forward(self, x, emb):
244
- """
245
- Apply the block to a Tensor, conditioned on a timestep embedding.
246
- :param x: an [N x C x ...] Tensor of features.
247
- :param emb: an [N x emb_channels] Tensor of timestep embeddings.
248
- :return: an [N x C x ...] Tensor of outputs.
249
- """
250
- return checkpoint(
251
- self._forward, (x, emb), self.parameters(), self.use_checkpoint
252
- )
253
-
254
-
255
- def _forward(self, x, emb):
256
- if self.updown:
257
- in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
258
- h = in_rest(x)
259
- h = self.h_upd(h)
260
- x = self.x_upd(x)
261
- h = in_conv(h)
262
- else:
263
- h = self.in_layers(x)
264
- emb_out = self.emb_layers(emb).type(h.dtype)
265
- while len(emb_out.shape) < len(h.shape):
266
- emb_out = emb_out[..., None]
267
- if self.use_scale_shift_norm:
268
- out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
269
- scale, shift = th.chunk(emb_out, 2, dim=1)
270
- h = out_norm(h) * (1 + scale) + shift
271
- h = out_rest(h)
272
- else:
273
- h = h + emb_out
274
- h = self.out_layers(h)
275
- return self.skip_connection(x) + h
276
-
277
-
278
- class AttentionBlock(nn.Module):
279
- """
280
- An attention block that allows spatial positions to attend to each other.
281
- Originally ported from here, but adapted to the N-d case.
282
- https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
283
- """
284
-
285
- def __init__(
286
- self,
287
- channels,
288
- num_heads=1,
289
- num_head_channels=-1,
290
- use_checkpoint=False,
291
- use_new_attention_order=False,
292
- ):
293
- super().__init__()
294
- self.channels = channels
295
- if num_head_channels == -1:
296
- self.num_heads = num_heads
297
- else:
298
- assert (
299
- channels % num_head_channels == 0
300
- ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
301
- self.num_heads = channels // num_head_channels
302
- self.use_checkpoint = use_checkpoint
303
- self.norm = normalization(channels)
304
- self.qkv = conv_nd(1, channels, channels * 3, 1)
305
- if use_new_attention_order:
306
- # split qkv before split heads
307
- self.attention = QKVAttention(self.num_heads)
308
- else:
309
- # split heads before split qkv
310
- self.attention = QKVAttentionLegacy(self.num_heads)
311
-
312
- self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
313
-
314
- def forward(self, x):
315
- return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
316
- #return pt_checkpoint(self._forward, x) # pytorch
317
-
318
- def _forward(self, x):
319
- b, c, *spatial = x.shape
320
- x = x.reshape(b, c, -1)
321
- qkv = self.qkv(self.norm(x))
322
- h = self.attention(qkv)
323
- h = self.proj_out(h)
324
- return (x + h).reshape(b, c, *spatial)
325
-
326
-
327
- def count_flops_attn(model, _x, y):
328
- """
329
- A counter for the `thop` package to count the operations in an
330
- attention operation.
331
- Meant to be used like:
332
- macs, params = thop.profile(
333
- model,
334
- inputs=(inputs, timestamps),
335
- custom_ops={QKVAttention: QKVAttention.count_flops},
336
- )
337
- """
338
- b, c, *spatial = y[0].shape
339
- num_spatial = int(np.prod(spatial))
340
- # We perform two matmuls with the same number of ops.
341
- # The first computes the weight matrix, the second computes
342
- # the combination of the value vectors.
343
- matmul_ops = 2 * b * (num_spatial ** 2) * c
344
- model.total_ops += th.DoubleTensor([matmul_ops])
345
-
346
-
347
- class QKVAttentionLegacy(nn.Module):
348
- """
349
- A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
350
- """
351
-
352
- def __init__(self, n_heads):
353
- super().__init__()
354
- self.n_heads = n_heads
355
-
356
- def forward(self, qkv):
357
- """
358
- Apply QKV attention.
359
- :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
360
- :return: an [N x (H * C) x T] tensor after attention.
361
- """
362
- bs, width, length = qkv.shape
363
- assert width % (3 * self.n_heads) == 0
364
- ch = width // (3 * self.n_heads)
365
- q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
366
- scale = 1 / math.sqrt(math.sqrt(ch))
367
- weight = th.einsum(
368
- "bct,bcs->bts", q * scale, k * scale
369
- ) # More stable with f16 than dividing afterwards
370
- weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
371
- a = th.einsum("bts,bcs->bct", weight, v)
372
- return a.reshape(bs, -1, length)
373
-
374
- @staticmethod
375
- def count_flops(model, _x, y):
376
- return count_flops_attn(model, _x, y)
377
-
378
-
379
- class QKVAttention(nn.Module):
380
- """
381
- A module which performs QKV attention and splits in a different order.
382
- """
383
-
384
- def __init__(self, n_heads):
385
- super().__init__()
386
- self.n_heads = n_heads
387
-
388
- def forward(self, qkv):
389
- """
390
- Apply QKV attention.
391
- :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
392
- :return: an [N x (H * C) x T] tensor after attention.
393
- """
394
- bs, width, length = qkv.shape
395
- assert width % (3 * self.n_heads) == 0
396
- ch = width // (3 * self.n_heads)
397
- q, k, v = qkv.chunk(3, dim=1)
398
- scale = 1 / math.sqrt(math.sqrt(ch))
399
- weight = th.einsum(
400
- "bct,bcs->bts",
401
- (q * scale).view(bs * self.n_heads, ch, length),
402
- (k * scale).view(bs * self.n_heads, ch, length),
403
- ) # More stable with f16 than dividing afterwards
404
- weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
405
- a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
406
- return a.reshape(bs, -1, length)
407
-
408
- @staticmethod
409
- def count_flops(model, _x, y):
410
- return count_flops_attn(model, _x, y)
411
-
412
-
413
- class UNetModel(nn.Module):
414
- """
415
- The full UNet model with attention and timestep embedding.
416
- :param in_channels: channels in the input Tensor.
417
- :param model_channels: base channel count for the model.
418
- :param out_channels: channels in the output Tensor.
419
- :param num_res_blocks: number of residual blocks per downsample.
420
- :param attention_resolutions: a collection of downsample rates at which
421
- attention will take place. May be a set, list, or tuple.
422
- For example, if this contains 4, then at 4x downsampling, attention
423
- will be used.
424
- :param dropout: the dropout probability.
425
- :param channel_mult: channel multiplier for each level of the UNet.
426
- :param conv_resample: if True, use learned convolutions for upsampling and
427
- downsampling.
428
- :param dims: determines if the signal is 1D, 2D, or 3D.
429
- :param num_classes: if specified (as an int), then this model will be
430
- class-conditional with `num_classes` classes.
431
- :param use_checkpoint: use gradient checkpointing to reduce memory usage.
432
- :param num_heads: the number of attention heads in each attention layer.
433
- :param num_heads_channels: if specified, ignore num_heads and instead use
434
- a fixed channel width per attention head.
435
- :param num_heads_upsample: works with num_heads to set a different number
436
- of heads for upsampling. Deprecated.
437
- :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
438
- :param resblock_updown: use residual blocks for up/downsampling.
439
- :param use_new_attention_order: use a different attention pattern for potentially
440
- increased efficiency.
441
- """
442
-
443
- def __init__(
444
- self,
445
- image_size,
446
- in_channels,
447
- model_channels,
448
- out_channels,
449
- num_res_blocks,
450
- attention_resolutions,
451
- dropout=0,
452
- channel_mult=(1, 2, 4, 8),
453
- conv_resample=True,
454
- dims=2,
455
- num_classes=None,
456
- use_checkpoint=False,
457
- use_fp16=False,
458
- num_heads=-1,
459
- num_head_channels=-1,
460
- num_heads_upsample=-1,
461
- use_scale_shift_norm=False,
462
- resblock_updown=False,
463
- use_new_attention_order=False,
464
- use_spatial_transformer=False, # custom transformer support
465
- transformer_depth=1, # custom transformer support
466
- context_dim=None, # custom transformer support
467
- n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
468
- legacy=True,
469
- ):
470
- super().__init__()
471
- if use_spatial_transformer:
472
- assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
473
-
474
- if context_dim is not None:
475
- assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
476
- from omegaconf.listconfig import ListConfig
477
- if type(context_dim) == ListConfig:
478
- context_dim = list(context_dim)
479
-
480
- if num_heads_upsample == -1:
481
- num_heads_upsample = num_heads
482
-
483
- if num_heads == -1:
484
- assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
485
-
486
- if num_head_channels == -1:
487
- assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
488
-
489
- self.image_size = image_size
490
- self.in_channels = in_channels
491
- self.model_channels = model_channels
492
- self.out_channels = out_channels
493
- self.num_res_blocks = num_res_blocks
494
- self.attention_resolutions = attention_resolutions
495
- self.dropout = dropout
496
- self.channel_mult = channel_mult
497
- self.conv_resample = conv_resample
498
- self.num_classes = num_classes
499
- self.use_checkpoint = use_checkpoint
500
- self.dtype = th.float16 if use_fp16 else th.float32
501
- self.num_heads = num_heads
502
- self.num_head_channels = num_head_channels
503
- self.num_heads_upsample = num_heads_upsample
504
- self.predict_codebook_ids = n_embed is not None
505
-
506
- time_embed_dim = model_channels * 4
507
- self.time_embed = nn.Sequential(
508
- linear(model_channels, time_embed_dim),
509
- nn.SiLU(),
510
- linear(time_embed_dim, time_embed_dim),
511
- )
512
-
513
- if self.num_classes is not None:
514
- self.label_emb = nn.Embedding(num_classes, time_embed_dim)
515
-
516
- self.input_blocks = nn.ModuleList(
517
- [
518
- TimestepEmbedSequential(
519
- conv_nd(dims, in_channels, model_channels, 3, padding=1)# conv2d for txt2img/audio
520
- )
521
- ]
522
- )
523
- self._feature_size = model_channels
524
- input_block_chans = [model_channels]
525
- ch = model_channels
526
- ds = 1
527
- # downsample blocks
528
- for level, mult in enumerate(channel_mult):
529
- for _ in range(num_res_blocks):
530
- layers = [
531
- ResBlock(
532
- ch,
533
- time_embed_dim,
534
- dropout,
535
- out_channels=mult * model_channels,
536
- dims=dims,
537
- use_checkpoint=use_checkpoint,
538
- use_scale_shift_norm=use_scale_shift_norm,
539
- )
540
- ]
541
- ch = mult * model_channels
542
- if ds in attention_resolutions:
543
- if num_head_channels == -1:
544
- dim_head = ch // num_heads
545
- else:
546
- num_heads = ch // num_head_channels
547
- dim_head = num_head_channels
548
- if legacy:
549
- #num_heads = 1
550
- dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
551
- layers.append(
552
- AttentionBlock(
553
- ch,
554
- use_checkpoint=use_checkpoint,
555
- num_heads=num_heads,
556
- num_head_channels=dim_head,
557
- use_new_attention_order=use_new_attention_order,
558
- ) if not use_spatial_transformer else SpatialTransformer(# transformer_depth is 1
559
- ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
560
- )
561
- )
562
- self.input_blocks.append(TimestepEmbedSequential(*layers))
563
- self._feature_size += ch
564
- input_block_chans.append(ch)
565
- if level != len(channel_mult) - 1:
566
- out_ch = ch
567
- self.input_blocks.append(
568
- TimestepEmbedSequential(
569
- ResBlock(
570
- ch,
571
- time_embed_dim,
572
- dropout,
573
- out_channels=out_ch,
574
- dims=dims,
575
- use_checkpoint=use_checkpoint,
576
- use_scale_shift_norm=use_scale_shift_norm,
577
- down=True,
578
- )
579
- if resblock_updown
580
- else Downsample(
581
- ch, conv_resample, dims=dims, out_channels=out_ch
582
- )
583
- )
584
- )
585
- ch = out_ch
586
- input_block_chans.append(ch)
587
- ds *= 2
588
- self._feature_size += ch
589
-
590
- if num_head_channels == -1:
591
- dim_head = ch // num_heads
592
- else:
593
- num_heads = ch // num_head_channels
594
- dim_head = num_head_channels
595
- if legacy:
596
- #num_heads = 1
597
- dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
598
- self.middle_block = TimestepEmbedSequential(
599
- ResBlock(
600
- ch,
601
- time_embed_dim,
602
- dropout,
603
- dims=dims,
604
- use_checkpoint=use_checkpoint,
605
- use_scale_shift_norm=use_scale_shift_norm,
606
- ),
607
- AttentionBlock(
608
- ch,
609
- use_checkpoint=use_checkpoint,
610
- num_heads=num_heads,
611
- num_head_channels=dim_head,
612
- use_new_attention_order=use_new_attention_order,
613
- ) if not use_spatial_transformer else SpatialTransformer(
614
- ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
615
- ),
616
- ResBlock(
617
- ch,
618
- time_embed_dim,
619
- dropout,
620
- dims=dims,
621
- use_checkpoint=use_checkpoint,
622
- use_scale_shift_norm=use_scale_shift_norm,
623
- ),
624
- )
625
- self._feature_size += ch
626
- # upsample blocks
627
- self.output_blocks = nn.ModuleList([])
628
- for level, mult in list(enumerate(channel_mult))[::-1]:
629
- for i in range(num_res_blocks + 1):
630
- ich = input_block_chans.pop()
631
- layers = [
632
- ResBlock(
633
- ch + ich,
634
- time_embed_dim,
635
- dropout,
636
- out_channels=model_channels * mult,
637
- dims=dims,
638
- use_checkpoint=use_checkpoint,
639
- use_scale_shift_norm=use_scale_shift_norm,
640
- )
641
- ]
642
- ch = model_channels * mult
643
- if ds in attention_resolutions:
644
- if num_head_channels == -1:
645
- dim_head = ch // num_heads
646
- else:
647
- num_heads = ch // num_head_channels
648
- dim_head = num_head_channels
649
- if legacy:
650
- #num_heads = 1
651
- dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
652
- layers.append(
653
- AttentionBlock(
654
- ch,
655
- use_checkpoint=use_checkpoint,
656
- num_heads=num_heads_upsample,
657
- num_head_channels=dim_head,
658
- use_new_attention_order=use_new_attention_order,
659
- ) if not use_spatial_transformer else SpatialTransformer(
660
- ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
661
- )
662
- )
663
- if level and i == num_res_blocks:
664
- out_ch = ch
665
- layers.append(
666
- ResBlock(
667
- ch,
668
- time_embed_dim,
669
- dropout,
670
- out_channels=out_ch,
671
- dims=dims,
672
- use_checkpoint=use_checkpoint,
673
- use_scale_shift_norm=use_scale_shift_norm,
674
- up=True,
675
- )
676
- if resblock_updown
677
- else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
678
- )
679
- ds //= 2
680
- self.output_blocks.append(TimestepEmbedSequential(*layers))
681
- self._feature_size += ch
682
-
683
- self.out = nn.Sequential(
684
- normalization(ch),
685
- nn.SiLU(),
686
- zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
687
- )
688
- if self.predict_codebook_ids:
689
- self.id_predictor = nn.Sequential(
690
- normalization(ch),
691
- conv_nd(dims, model_channels, n_embed, 1),
692
- #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
693
- )
694
-
695
- def convert_to_fp16(self):
696
- """
697
- Convert the torso of the model to float16.
698
- """
699
- self.input_blocks.apply(convert_module_to_f16)
700
- self.middle_block.apply(convert_module_to_f16)
701
- self.output_blocks.apply(convert_module_to_f16)
702
-
703
- def convert_to_fp32(self):
704
- """
705
- Convert the torso of the model to float32.
706
- """
707
- self.input_blocks.apply(convert_module_to_f32)
708
- self.middle_block.apply(convert_module_to_f32)
709
- self.output_blocks.apply(convert_module_to_f32)
710
-
711
- def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
712
- """
713
- Apply the model to an input batch.
714
- :param x: an [N x C x ...] Tensor of inputs.
715
- :param timesteps: a 1-D batch of timesteps,shape [N]
716
- :param context: conditioning plugged in via crossattn. for txt2img shape is [N,77,context_dim]
717
- :param y: an [N] Tensor of labels, if class-conditional.
718
- :return: an [N x C x ...] Tensor of outputs.
719
- """
720
- # print(f"in unet {x.shape}")
721
- assert (y is not None) == (
722
- self.num_classes is not None
723
- ), "must specify y if and only if the model is class-conditional"
724
- hs = []
725
- t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)# shape [N,self.model_channels]
726
- emb = self.time_embed(t_emb)# shape [N,context_dim]
727
-
728
- if self.num_classes is not None:# only for class label
729
- assert y.shape == (x.shape[0],)
730
- emb = emb + self.label_emb(y)
731
-
732
- h = x.type(self.dtype)# [N,C,10,106]
733
- for module in self.input_blocks:
734
- h = module(h, emb, context)# 0:[N,self.model_channels,10,106],1:[N,self.model_channels,10,106],2:[N,self.model_channels,10,106] 3:[N,self.model_channels,5,53] 4:[N,self.model_channels,5,53] 5:[N,self.model_channels*2,5,53]
735
- hs.append(h)
736
- h = self.middle_block(h, emb, context)# no shape change
737
- for module in self.output_blocks:
738
- h = th.cat([h, hs.pop()], dim=1)# 在这里c维度乘2或+self.model_channels,其余维度不变
739
- h = module(h, emb, context)# 在这里c维度/2回到之前维度,h,w不变或*2
740
- h = h.type(x.dtype)# 至此h维度和输入x维度回到相同状态
741
- if self.predict_codebook_ids:
742
- return self.id_predictor(h)
743
- else:
744
- return self.out(h)
745
-
746
-
747
- class EncoderUNetModel(nn.Module):
748
- """
749
- The half UNet model with attention and timestep embedding.
750
- For usage, see UNet.
751
- """
752
-
753
- def __init__(
754
- self,
755
- image_size,
756
- in_channels,
757
- model_channels,
758
- out_channels,
759
- num_res_blocks,
760
- attention_resolutions,
761
- dropout=0,
762
- channel_mult=(1, 2, 4, 8),
763
- conv_resample=True,
764
- dims=2,
765
- use_checkpoint=False,
766
- use_fp16=False,
767
- num_heads=1,
768
- num_head_channels=-1,
769
- num_heads_upsample=-1,
770
- use_scale_shift_norm=False,
771
- resblock_updown=False,
772
- use_new_attention_order=False,
773
- pool="adaptive",
774
- *args,
775
- **kwargs
776
- ):
777
- super().__init__()
778
-
779
- if num_heads_upsample == -1:
780
- num_heads_upsample = num_heads
781
-
782
- self.in_channels = in_channels
783
- self.model_channels = model_channels
784
- self.out_channels = out_channels
785
- self.num_res_blocks = num_res_blocks
786
- self.attention_resolutions = attention_resolutions
787
- self.dropout = dropout
788
- self.channel_mult = channel_mult
789
- self.conv_resample = conv_resample
790
- self.use_checkpoint = use_checkpoint
791
- self.dtype = th.float16 if use_fp16 else th.float32
792
- self.num_heads = num_heads
793
- self.num_head_channels = num_head_channels
794
- self.num_heads_upsample = num_heads_upsample
795
-
796
- time_embed_dim = model_channels * 4
797
- self.time_embed = nn.Sequential(
798
- linear(model_channels, time_embed_dim),
799
- nn.SiLU(),
800
- linear(time_embed_dim, time_embed_dim),
801
- )
802
-
803
- self.input_blocks = nn.ModuleList(
804
- [
805
- TimestepEmbedSequential(
806
- conv_nd(dims, in_channels, model_channels, 3, padding=1)
807
- )
808
- ]
809
- )
810
- self._feature_size = model_channels
811
- input_block_chans = [model_channels]
812
- ch = model_channels
813
- ds = 1
814
- for level, mult in enumerate(channel_mult):
815
- for _ in range(num_res_blocks):
816
- layers = [
817
- ResBlock(
818
- ch,
819
- time_embed_dim,
820
- dropout,
821
- out_channels=mult * model_channels,
822
- dims=dims,
823
- use_checkpoint=use_checkpoint,
824
- use_scale_shift_norm=use_scale_shift_norm,
825
- )
826
- ]
827
- ch = mult * model_channels
828
- if ds in attention_resolutions:
829
- layers.append(
830
- AttentionBlock(
831
- ch,
832
- use_checkpoint=use_checkpoint,
833
- num_heads=num_heads,
834
- num_head_channels=num_head_channels,
835
- use_new_attention_order=use_new_attention_order,
836
- )
837
- )
838
- self.input_blocks.append(TimestepEmbedSequential(*layers))
839
- self._feature_size += ch
840
- input_block_chans.append(ch)
841
- if level != len(channel_mult) - 1:
842
- out_ch = ch
843
- self.input_blocks.append(
844
- TimestepEmbedSequential(
845
- ResBlock(
846
- ch,
847
- time_embed_dim,
848
- dropout,
849
- out_channels=out_ch,
850
- dims=dims,
851
- use_checkpoint=use_checkpoint,
852
- use_scale_shift_norm=use_scale_shift_norm,
853
- down=True,
854
- )
855
- if resblock_updown
856
- else Downsample(
857
- ch, conv_resample, dims=dims, out_channels=out_ch
858
- )
859
- )
860
- )
861
- ch = out_ch
862
- input_block_chans.append(ch)
863
- ds *= 2
864
- self._feature_size += ch
865
-
866
- self.middle_block = TimestepEmbedSequential(
867
- ResBlock(
868
- ch,
869
- time_embed_dim,
870
- dropout,
871
- dims=dims,
872
- use_checkpoint=use_checkpoint,
873
- use_scale_shift_norm=use_scale_shift_norm,
874
- ),
875
- AttentionBlock(
876
- ch,
877
- use_checkpoint=use_checkpoint,
878
- num_heads=num_heads,
879
- num_head_channels=num_head_channels,
880
- use_new_attention_order=use_new_attention_order,
881
- ),
882
- ResBlock(
883
- ch,
884
- time_embed_dim,
885
- dropout,
886
- dims=dims,
887
- use_checkpoint=use_checkpoint,
888
- use_scale_shift_norm=use_scale_shift_norm,
889
- ),
890
- )
891
- self._feature_size += ch
892
- self.pool = pool
893
- if pool == "adaptive":
894
- self.out = nn.Sequential(
895
- normalization(ch),
896
- nn.SiLU(),
897
- nn.AdaptiveAvgPool2d((1, 1)),
898
- zero_module(conv_nd(dims, ch, out_channels, 1)),
899
- nn.Flatten(),
900
- )
901
- elif pool == "attention":
902
- assert num_head_channels != -1
903
- self.out = nn.Sequential(
904
- normalization(ch),
905
- nn.SiLU(),
906
- AttentionPool2d(
907
- (image_size // ds), ch, num_head_channels, out_channels
908
- ),
909
- )
910
- elif pool == "spatial":
911
- self.out = nn.Sequential(
912
- nn.Linear(self._feature_size, 2048),
913
- nn.ReLU(),
914
- nn.Linear(2048, self.out_channels),
915
- )
916
- elif pool == "spatial_v2":
917
- self.out = nn.Sequential(
918
- nn.Linear(self._feature_size, 2048),
919
- normalization(2048),
920
- nn.SiLU(),
921
- nn.Linear(2048, self.out_channels),
922
- )
923
- else:
924
- raise NotImplementedError(f"Unexpected {pool} pooling")
925
-
926
- def convert_to_fp16(self):
927
- """
928
- Convert the torso of the model to float16.
929
- """
930
- self.input_blocks.apply(convert_module_to_f16)
931
- self.middle_block.apply(convert_module_to_f16)
932
-
933
- def convert_to_fp32(self):
934
- """
935
- Convert the torso of the model to float32.
936
- """
937
- self.input_blocks.apply(convert_module_to_f32)
938
- self.middle_block.apply(convert_module_to_f32)
939
-
940
- def forward(self, x, timesteps):
941
- """
942
- Apply the model to an input batch.
943
- :param x: an [N x C x ...] Tensor of inputs.
944
- :param timesteps: a 1-D batch of timesteps.
945
- :return: an [N x K] Tensor of outputs.
946
- """
947
- emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
948
-
949
- results = []
950
- h = x.type(self.dtype)
951
- for module in self.input_blocks:
952
- h = module(h, emb)
953
- if self.pool.startswith("spatial"):
954
- results.append(h.type(x.dtype).mean(dim=(2, 3)))
955
- h = self.middle_block(h, emb)
956
- if self.pool.startswith("spatial"):
957
- results.append(h.type(x.dtype).mean(dim=(2, 3)))
958
- h = th.cat(results, axis=-1)
959
- return self.out(h)
960
- else:
961
- h = h.type(x.dtype)
962
- return self.out(h)
963
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AchyuthGamer/ImMagician-Gradio/app.py DELETED
@@ -1,3 +0,0 @@
1
- import gradio as gr
2
-
3
- gr.Interface.load("models/AchyuthGamer/ImMagician-Fantasy").launch()
 
 
 
 
spaces/AchyuthGamer/OpenGPT-Chat/README.md DELETED
@@ -1,12 +0,0 @@
1
- ---
2
- title: OpenGPT Chat (fast)
3
- emoji: 😻
4
- colorFrom: red
5
- colorTo: yellow
6
- sdk: gradio
7
- sdk_version: 3.45.1
8
- app_file: app.py
9
- pinned: true
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/fullwindowrectangle/Factory.d.ts DELETED
@@ -1,7 +0,0 @@
1
- import FullWindowRectangle from './FullWindowRectangle';
2
-
3
- export default function (
4
- fillColor?: number,
5
- fillAlpha?: number
6
-
7
- ): FullWindowRectangle;
 
 
 
 
 
 
 
 
spaces/AlexWang/lama/bin/report_from_tb.py DELETED
@@ -1,83 +0,0 @@
1
- #!/usr/bin/env python3
2
-
3
- import glob
4
- import os
5
- import re
6
-
7
- import tensorflow as tf
8
- from torch.utils.tensorboard import SummaryWriter
9
-
10
-
11
- GROUPING_RULES = [
12
- re.compile(r'^(?P<group>train|test|val|extra_val_.*?(256|512))_(?P<title>.*)', re.I)
13
- ]
14
-
15
-
16
- DROP_RULES = [
17
- re.compile(r'_std$', re.I)
18
- ]
19
-
20
-
21
- def need_drop(tag):
22
- for rule in DROP_RULES:
23
- if rule.search(tag):
24
- return True
25
- return False
26
-
27
-
28
- def get_group_and_title(tag):
29
- for rule in GROUPING_RULES:
30
- match = rule.search(tag)
31
- if match is None:
32
- continue
33
- return match.group('group'), match.group('title')
34
- return None, None
35
-
36
-
37
- def main(args):
38
- os.makedirs(args.outdir, exist_ok=True)
39
-
40
- ignored_events = set()
41
-
42
- for orig_fname in glob.glob(args.inglob):
43
- cur_dirpath = os.path.dirname(orig_fname) # remove filename, this should point to "version_0" directory
44
- subdirname = os.path.basename(cur_dirpath) # == "version_0" most of time
45
- exp_root_path = os.path.dirname(cur_dirpath) # remove "version_0"
46
- exp_name = os.path.basename(exp_root_path)
47
-
48
- writers_by_group = {}
49
-
50
- for e in tf.compat.v1.train.summary_iterator(orig_fname):
51
- for v in e.summary.value:
52
- if need_drop(v.tag):
53
- continue
54
-
55
- cur_group, cur_title = get_group_and_title(v.tag)
56
- if cur_group is None:
57
- if v.tag not in ignored_events:
58
- print(f'WARNING: Could not detect group for {v.tag}, ignoring it')
59
- ignored_events.add(v.tag)
60
- continue
61
-
62
- cur_writer = writers_by_group.get(cur_group, None)
63
- if cur_writer is None:
64
- if args.include_version:
65
- cur_outdir = os.path.join(args.outdir, exp_name, f'{subdirname}_{cur_group}')
66
- else:
67
- cur_outdir = os.path.join(args.outdir, exp_name, cur_group)
68
- cur_writer = SummaryWriter(cur_outdir)
69
- writers_by_group[cur_group] = cur_writer
70
-
71
- cur_writer.add_scalar(cur_title, v.simple_value, global_step=e.step, walltime=e.wall_time)
72
-
73
-
74
- if __name__ == '__main__':
75
- import argparse
76
-
77
- aparser = argparse.ArgumentParser()
78
- aparser.add_argument('inglob', type=str)
79
- aparser.add_argument('outdir', type=str)
80
- aparser.add_argument('--include-version', action='store_true',
81
- help='Include subdirectory name e.g. "version_0" into output path')
82
-
83
- main(aparser.parse_args())
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Aloento/9Nine-VITS/posterior_encoder.py DELETED
@@ -1,37 +0,0 @@
1
- import torch
2
- from torch import nn
3
-
4
- import commons
5
- import modules
6
-
7
-
8
- class PosteriorEncoder(nn.Module):
9
- def __init__(self,
10
- in_channels,
11
- out_channels,
12
- hidden_channels,
13
- kernel_size,
14
- dilation_rate,
15
- n_layers,
16
- gin_channels=0):
17
- super().__init__()
18
- self.in_channels = in_channels
19
- self.out_channels = out_channels
20
- self.hidden_channels = hidden_channels
21
- self.kernel_size = kernel_size
22
- self.dilation_rate = dilation_rate
23
- self.n_layers = n_layers
24
- self.gin_channels = gin_channels
25
-
26
- self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
27
- self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
28
- self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
29
-
30
- def forward(self, x, x_lengths, g=None):
31
- x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
32
- x = self.pre(x) * x_mask
33
- x = self.enc(x, x_mask, g=g)
34
- stats = self.proj(x) * x_mask
35
- m, logs = torch.split(stats, self.out_channels, dim=1)
36
- z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
37
- return z, m, logs, x_mask
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Alpaca233/SadTalker/src/face3d/models/arcface_torch/configs/ms1mv3_r50.py DELETED
@@ -1,26 +0,0 @@
1
- from easydict import EasyDict as edict
2
-
3
- # make training faster
4
- # our RAM is 256G
5
- # mount -t tmpfs -o size=140G tmpfs /train_tmp
6
-
7
- config = edict()
8
- config.loss = "arcface"
9
- config.network = "r50"
10
- config.resume = False
11
- config.output = None
12
- config.embedding_size = 512
13
- config.sample_rate = 1.0
14
- config.fp16 = True
15
- config.momentum = 0.9
16
- config.weight_decay = 5e-4
17
- config.batch_size = 128
18
- config.lr = 0.1 # batch size is 512
19
-
20
- config.rec = "/train_tmp/ms1m-retinaface-t1"
21
- config.num_classes = 93431
22
- config.num_image = 5179510
23
- config.num_epoch = 25
24
- config.warmup_epoch = -1
25
- config.decay_epoch = [10, 16, 22]
26
- config.val_targets = ["lfw", "cfp_fp", "agedb_30"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Alycer/VITS-Umamusume-voice-synthesizer/commons.py DELETED
@@ -1,97 +0,0 @@
1
- import math
2
- import torch
3
- from torch.nn import functional as F
4
- import torch.jit
5
-
6
-
7
- def script_method(fn, _rcb=None):
8
- return fn
9
-
10
-
11
- def script(obj, optimize=True, _frames_up=0, _rcb=None):
12
- return obj
13
-
14
-
15
- torch.jit.script_method = script_method
16
- torch.jit.script = script
17
-
18
-
19
- def init_weights(m, mean=0.0, std=0.01):
20
- classname = m.__class__.__name__
21
- if classname.find("Conv") != -1:
22
- m.weight.data.normal_(mean, std)
23
-
24
-
25
- def get_padding(kernel_size, dilation=1):
26
- return int((kernel_size*dilation - dilation)/2)
27
-
28
-
29
- def intersperse(lst, item):
30
- result = [item] * (len(lst) * 2 + 1)
31
- result[1::2] = lst
32
- return result
33
-
34
-
35
- def slice_segments(x, ids_str, segment_size=4):
36
- ret = torch.zeros_like(x[:, :, :segment_size])
37
- for i in range(x.size(0)):
38
- idx_str = ids_str[i]
39
- idx_end = idx_str + segment_size
40
- ret[i] = x[i, :, idx_str:idx_end]
41
- return ret
42
-
43
-
44
- def rand_slice_segments(x, x_lengths=None, segment_size=4):
45
- b, d, t = x.size()
46
- if x_lengths is None:
47
- x_lengths = t
48
- ids_str_max = x_lengths - segment_size + 1
49
- ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
50
- ret = slice_segments(x, ids_str, segment_size)
51
- return ret, ids_str
52
-
53
-
54
- def subsequent_mask(length):
55
- mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
56
- return mask
57
-
58
-
59
- @torch.jit.script
60
- def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
61
- n_channels_int = n_channels[0]
62
- in_act = input_a + input_b
63
- t_act = torch.tanh(in_act[:, :n_channels_int, :])
64
- s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
65
- acts = t_act * s_act
66
- return acts
67
-
68
-
69
- def convert_pad_shape(pad_shape):
70
- l = pad_shape[::-1]
71
- pad_shape = [item for sublist in l for item in sublist]
72
- return pad_shape
73
-
74
-
75
- def sequence_mask(length, max_length=None):
76
- if max_length is None:
77
- max_length = length.max()
78
- x = torch.arange(max_length, dtype=length.dtype, device=length.device)
79
- return x.unsqueeze(0) < length.unsqueeze(1)
80
-
81
-
82
- def generate_path(duration, mask):
83
- """
84
- duration: [b, 1, t_x]
85
- mask: [b, 1, t_y, t_x]
86
- """
87
- device = duration.device
88
-
89
- b, _, t_y, t_x = mask.shape
90
- cum_duration = torch.cumsum(duration, -1)
91
-
92
- cum_duration_flat = cum_duration.view(b * t_x)
93
- path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
94
- path = path.view(b, t_x, t_y)
95
- path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
96
- path = path.unsqueeze(1).transpose(2,3) * mask
97
- return path
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Amrrs/DragGan-Inversion/stylegan_human/pti/pti_models/e4e/latent_codes_pool.py DELETED
@@ -1,58 +0,0 @@
1
- import random
2
- import torch
3
-
4
-
5
- class LatentCodesPool:
6
- """This class implements latent codes buffer that stores previously generated w latent codes.
7
- This buffer enables us to update discriminators using a history of generated w's
8
- rather than the ones produced by the latest encoder.
9
- """
10
-
11
- def __init__(self, pool_size):
12
- """Initialize the ImagePool class
13
- Parameters:
14
- pool_size (int) -- the size of image buffer, if pool_size=0, no buffer will be created
15
- """
16
- self.pool_size = pool_size
17
- if self.pool_size > 0: # create an empty pool
18
- self.num_ws = 0
19
- self.ws = []
20
-
21
- def query(self, ws):
22
- """Return w's from the pool.
23
- Parameters:
24
- ws: the latest generated w's from the generator
25
- Returns w's from the buffer.
26
- By 50/100, the buffer will return input w's.
27
- By 50/100, the buffer will return w's previously stored in the buffer,
28
- and insert the current w's to the buffer.
29
- """
30
- if self.pool_size == 0: # if the buffer size is 0, do nothing
31
- return ws
32
- return_ws = []
33
- for w in ws: # ws.shape: (batch, 512) or (batch, n_latent, 512)
34
- # w = torch.unsqueeze(image.data, 0)
35
- if w.ndim == 2:
36
- # apply a random latent index as a candidate
37
- i = random.randint(0, len(w) - 1)
38
- w = w[i]
39
- self.handle_w(w, return_ws)
40
- # collect all the images and return
41
- return_ws = torch.stack(return_ws, 0)
42
- return return_ws
43
-
44
- def handle_w(self, w, return_ws):
45
- if self.num_ws < self.pool_size: # if the buffer is not full; keep inserting current codes to the buffer
46
- self.num_ws = self.num_ws + 1
47
- self.ws.append(w)
48
- return_ws.append(w)
49
- else:
50
- p = random.uniform(0, 1)
51
- if p > 0.5: # by 50% chance, the buffer will return a previously stored latent code, and insert the current code into the buffer
52
- random_id = random.randint(
53
- 0, self.pool_size - 1) # randint is inclusive
54
- tmp = self.ws[random_id].clone()
55
- self.ws[random_id] = w
56
- return_ws.append(tmp)
57
- else: # by another 50% chance, the buffer will return the current image
58
- return_ws.append(w)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AnTo2209/3D_Zeroshot_Neural_Style_Transfer/src/loop/feature_training_loop.py DELETED
@@ -1,145 +0,0 @@
1
- import numpy as np
2
- import torch
3
- from pytorch_lightning.loops import Loop
4
-
5
- from src.dataset import DATASET_REGISTRY
6
- from src.dataset.ray_utils import denormalize_vgg, normalize_vgg
7
- from src.loop.utils import N_to_reso, cal_n_samples
8
- from src.model import MODEL_REGISTRY
9
- from src.sampler.simple_sampler import SimpleSampler, InfiniteSamplerWrapper
10
- import torch.nn.functional as TF
11
-
12
-
13
- class FeatureTrainingLoop(Loop):
14
- def __init__(self, epoch, cfg, renderer):
15
- super().__init__()
16
- self.cfg = cfg
17
- self.model = MODEL_REGISTRY.get(self.cfg["model"]["name"])(cfg)
18
-
19
- self.dataloader = DATASET_REGISTRY.get(self.cfg["dataset"]["name"])(
20
- **self.cfg["dataset"]["train"]["params"],
21
- )
22
- self.renderer = renderer
23
- self.optimizer = None
24
- self.training_sampler = None
25
- self.frame_sampler = None
26
- self.iteration = 0
27
- self.epoch = epoch
28
- self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
29
- self.init_loop()
30
- self.init_optimizer()
31
-
32
- def init_loop(self):
33
- self.white_bg = self.dataloader.white_bg
34
- self.near_far = self.dataloader.near_far
35
- self.h_rays, self.w_rays = self.dataloader.img_wh[1], self.dataloader.img_wh[0]
36
-
37
- self.step_ratio = self.cfg["sampler"]["params"]["step_ratio"]
38
- self.batch_size = self.cfg["sampler"]["params"]["batch_size"]
39
- self.patch_size = self.cfg["sampler"]["params"]["patch_size"]
40
- self.chunk_size = self.cfg["sampler"]["params"]["chunk_size"]
41
-
42
- self.aabb = self.dataloader.scene_bbox.to(self.device)
43
- reso_cur = N_to_reso(self.cfg["sampler"]["params"]["N_voxel_init"], self.aabb)
44
- self.nSamples = min(int(self.cfg["sampler"]["params"]["n_samples"]), cal_n_samples(reso_cur, self.step_ratio))
45
-
46
- torch.cuda.empty_cache()
47
- self.dataloader.prepare_feature_data(self.model.tensorf.encoder)
48
- self.allrays, self.allfeatures = self.dataloader.all_rays, self.dataloader.all_features
49
- self.allrays_stack, self.allrgbs_stack = self.dataloader.all_rays_stack, self.dataloader.all_rgbs_stack
50
-
51
- if not self.model.ndc_ray:
52
- self.allrays, self.allfeatures = self.model.tensorf.filtering_rays(self.allrays, self.allfeatures, bbox_only=True)
53
-
54
- self.training_sampler = SimpleSampler(self.allrays.shape[0], self.batch_size)
55
- self.frame_sampler = iter(InfiniteSamplerWrapper(self.allrays_stack.size(0))) # every next(sampler) returns a frame index
56
-
57
- def init_optimizer(self):
58
- grad_vars = self.model.tensorf.get_optparam_groups_feature_mod(self.cfg["optimizer"]["lr_init"], self.cfg["optimizer"]["lr_basis"])
59
-
60
- if self.cfg["optimizer"]["lr_decay_iters"] > 0:
61
- self.lr_factor = self.cfg["optimizer"]["lr_decay_target_ratio"] ** (1 / self.cfg["optimizer"]["lr_decay_iters"])
62
- else:
63
- self.lr_factor = self.cfg["optimizer"]["lr_decay_target_ratio"] ** (1 / self.cfg["trainer"]["n_iters"])
64
-
65
- print("lr decay", self.cfg["optimizer"]["lr_decay_target_ratio"], self.cfg["optimizer"]["lr_decay_iters"])
66
-
67
- self.optimizer = torch.optim.Adam(grad_vars, betas=(0.9, 0.99))
68
-
69
- @property
70
- def done(self):
71
- """Advance from one iteration to the next."""
72
- return self.epoch < self.iteration
73
-
74
- def reset(self):
75
- """Advance from one iteration to the next."""
76
-
77
- def advance(self):
78
- """Advance from one iteration to the next."""
79
- feature_loss, pixel_loss = 0., 0.
80
- if self.iteration % 2 == 0:
81
- ray_idx = self.training_sampler.nextids()
82
- rays_train, features_train = self.allrays[ray_idx], self.allfeatures[ray_idx].to(self.device)
83
-
84
- feature_map, _ = self.renderer(rays_train, self.model.tensorf, chunk=self.chunk_size, N_samples=self.nSamples, white_bg=self.white_bg,
85
- ndc_ray=self.model.ndc_ray, render_feature=True, device=self.device, is_train=True)
86
-
87
- feature_loss = torch.mean((feature_map - features_train) ** 2)
88
- else:
89
- frame_idx = next(self.frame_sampler)
90
- start_h = np.random.randint(0, self.h_rays - self.patch_size + 1)
91
- start_w = np.random.randint(0, self.w_rays - self.patch_size + 1)
92
- if self.white_bg:
93
- # move random sampled patches into center
94
- mid_h, mid_w = (self.h_rays - self.patch_size + 1) / 2, (self.w_rays - self.patch_size + 1) / 2
95
- if mid_h - start_h >= 1:
96
- start_h += np.random.randint(0, mid_h - start_h)
97
- elif mid_h - start_h <= -1:
98
- start_h += np.random.randint(mid_h - start_h, 0)
99
- if mid_w - start_w >= 1:
100
- start_w += np.random.randint(0, mid_w - start_w)
101
- elif mid_w - start_w <= -1:
102
- start_w += np.random.randint(mid_w - start_w, 0)
103
-
104
- rays_train = self.allrays_stack[frame_idx, start_h:start_h + self.patch_size ,
105
- start_w:start_w + self.patch_size , :].reshape(-1, 6).to(self.device)
106
- # [patch*patch, 6]
107
-
108
- rgbs_train = self.allrgbs_stack[frame_idx, start_h:(start_h + self.patch_size ),
109
- start_w:(start_w + self.patch_size ), :].to(self.device)
110
- # [patch, patch, 3]
111
-
112
- feature_map, _ = self.renderer(rays_train, self.model.tensorf, chunk=self.chunk_size, N_samples=self.nSamples, white_bg=self.white_bg,
113
- ndc_ray=self.model.ndc_ray, render_feature=True, device=self.device, is_train=True)
114
-
115
- feature_map = feature_map.reshape(self.patch_size , self.patch_size , 256)[None, ...].permute(0, 3, 1, 2)
116
- recon_rgb = self.model.tensorf.decoder(feature_map)
117
-
118
- rgbs_train = rgbs_train[None, ...].permute(0, 3, 1, 2)
119
- img_enc = self.model.tensorf.encoder(normalize_vgg(rgbs_train))
120
- recon_rgb_enc = self.model.tensorf.encoder(recon_rgb)
121
-
122
- feature_loss = (TF.mse_loss(recon_rgb_enc.relu4_1, img_enc.relu4_1) +
123
- TF.mse_loss(recon_rgb_enc.relu3_1, img_enc.relu3_1)) / 10
124
-
125
- recon_rgb = denormalize_vgg(recon_rgb)
126
-
127
- pixel_loss = torch.mean((recon_rgb - rgbs_train) ** 2)
128
-
129
- total_loss = pixel_loss + feature_loss
130
-
131
- # loss
132
- # NOTE: Calculate feature TV loss rather than appearence TV loss
133
- if self.model.TV_weight_feature > 0:
134
- self.model.TV_weight_feature *= self.lr_factor
135
- loss_tv = self.model.tensorf.TV_loss_feature(self.model.tvreg) * self.model.TV_weight_feature
136
- total_loss = total_loss + loss_tv
137
-
138
- self.iteration += 1
139
-
140
- self.optimizer.zero_grad()
141
- total_loss.backward()
142
- self.optimizer.step()
143
-
144
-
145
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/examples/community/mixture_canvas.py DELETED
@@ -1,503 +0,0 @@
1
- import re
2
- from copy import deepcopy
3
- from dataclasses import asdict, dataclass
4
- from enum import Enum
5
- from typing import List, Optional, Union
6
-
7
- import numpy as np
8
- import torch
9
- from numpy import exp, pi, sqrt
10
- from torchvision.transforms.functional import resize
11
- from tqdm.auto import tqdm
12
- from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
13
-
14
- from diffusers.models import AutoencoderKL, UNet2DConditionModel
15
- from diffusers.pipeline_utils import DiffusionPipeline
16
- from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
17
- from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
18
-
19
-
20
- def preprocess_image(image):
21
- from PIL import Image
22
-
23
- """Preprocess an input image
24
-
25
- Same as
26
- https://github.com/huggingface/diffusers/blob/1138d63b519e37f0ce04e027b9f4a3261d27c628/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py#L44
27
- """
28
- w, h = image.size
29
- w, h = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
30
- image = image.resize((w, h), resample=Image.LANCZOS)
31
- image = np.array(image).astype(np.float32) / 255.0
32
- image = image[None].transpose(0, 3, 1, 2)
33
- image = torch.from_numpy(image)
34
- return 2.0 * image - 1.0
35
-
36
-
37
- @dataclass
38
- class CanvasRegion:
39
- """Class defining a rectangular region in the canvas"""
40
-
41
- row_init: int # Region starting row in pixel space (included)
42
- row_end: int # Region end row in pixel space (not included)
43
- col_init: int # Region starting column in pixel space (included)
44
- col_end: int # Region end column in pixel space (not included)
45
- region_seed: int = None # Seed for random operations in this region
46
- noise_eps: float = 0.0 # Deviation of a zero-mean gaussian noise to be applied over the latents in this region. Useful for slightly "rerolling" latents
47
-
48
- def __post_init__(self):
49
- # Initialize arguments if not specified
50
- if self.region_seed is None:
51
- self.region_seed = np.random.randint(9999999999)
52
- # Check coordinates are non-negative
53
- for coord in [self.row_init, self.row_end, self.col_init, self.col_end]:
54
- if coord < 0:
55
- raise ValueError(
56
- f"A CanvasRegion must be defined with non-negative indices, found ({self.row_init}, {self.row_end}, {self.col_init}, {self.col_end})"
57
- )
58
- # Check coordinates are divisible by 8, else we end up with nasty rounding error when mapping to latent space
59
- for coord in [self.row_init, self.row_end, self.col_init, self.col_end]:
60
- if coord // 8 != coord / 8:
61
- raise ValueError(
62
- f"A CanvasRegion must be defined with locations divisible by 8, found ({self.row_init}-{self.row_end}, {self.col_init}-{self.col_end})"
63
- )
64
- # Check noise eps is non-negative
65
- if self.noise_eps < 0:
66
- raise ValueError(f"A CanvasRegion must be defined noises eps non-negative, found {self.noise_eps}")
67
- # Compute coordinates for this region in latent space
68
- self.latent_row_init = self.row_init // 8
69
- self.latent_row_end = self.row_end // 8
70
- self.latent_col_init = self.col_init // 8
71
- self.latent_col_end = self.col_end // 8
72
-
73
- @property
74
- def width(self):
75
- return self.col_end - self.col_init
76
-
77
- @property
78
- def height(self):
79
- return self.row_end - self.row_init
80
-
81
- def get_region_generator(self, device="cpu"):
82
- """Creates a torch.Generator based on the random seed of this region"""
83
- # Initialize region generator
84
- return torch.Generator(device).manual_seed(self.region_seed)
85
-
86
- @property
87
- def __dict__(self):
88
- return asdict(self)
89
-
90
-
91
- class MaskModes(Enum):
92
- """Modes in which the influence of diffuser is masked"""
93
-
94
- CONSTANT = "constant"
95
- GAUSSIAN = "gaussian"
96
- QUARTIC = "quartic" # See https://en.wikipedia.org/wiki/Kernel_(statistics)
97
-
98
-
99
- @dataclass
100
- class DiffusionRegion(CanvasRegion):
101
- """Abstract class defining a region where some class of diffusion process is acting"""
102
-
103
- pass
104
-
105
-
106
- @dataclass
107
- class Text2ImageRegion(DiffusionRegion):
108
- """Class defining a region where a text guided diffusion process is acting"""
109
-
110
- prompt: str = "" # Text prompt guiding the diffuser in this region
111
- guidance_scale: float = 7.5 # Guidance scale of the diffuser in this region. If None, randomize
112
- mask_type: MaskModes = MaskModes.GAUSSIAN.value # Kind of weight mask applied to this region
113
- mask_weight: float = 1.0 # Global weights multiplier of the mask
114
- tokenized_prompt = None # Tokenized prompt
115
- encoded_prompt = None # Encoded prompt
116
-
117
- def __post_init__(self):
118
- super().__post_init__()
119
- # Mask weight cannot be negative
120
- if self.mask_weight < 0:
121
- raise ValueError(
122
- f"A Text2ImageRegion must be defined with non-negative mask weight, found {self.mask_weight}"
123
- )
124
- # Mask type must be an actual known mask
125
- if self.mask_type not in [e.value for e in MaskModes]:
126
- raise ValueError(
127
- f"A Text2ImageRegion was defined with mask {self.mask_type}, which is not an accepted mask ({[e.value for e in MaskModes]})"
128
- )
129
- # Randomize arguments if given as None
130
- if self.guidance_scale is None:
131
- self.guidance_scale = np.random.randint(5, 30)
132
- # Clean prompt
133
- self.prompt = re.sub(" +", " ", self.prompt).replace("\n", " ")
134
-
135
- def tokenize_prompt(self, tokenizer):
136
- """Tokenizes the prompt for this diffusion region using a given tokenizer"""
137
- self.tokenized_prompt = tokenizer(
138
- self.prompt,
139
- padding="max_length",
140
- max_length=tokenizer.model_max_length,
141
- truncation=True,
142
- return_tensors="pt",
143
- )
144
-
145
- def encode_prompt(self, text_encoder, device):
146
- """Encodes the previously tokenized prompt for this diffusion region using a given encoder"""
147
- assert self.tokenized_prompt is not None, ValueError(
148
- "Prompt in diffusion region must be tokenized before encoding"
149
- )
150
- self.encoded_prompt = text_encoder(self.tokenized_prompt.input_ids.to(device))[0]
151
-
152
-
153
- @dataclass
154
- class Image2ImageRegion(DiffusionRegion):
155
- """Class defining a region where an image guided diffusion process is acting"""
156
-
157
- reference_image: torch.FloatTensor = None
158
- strength: float = 0.8 # Strength of the image
159
-
160
- def __post_init__(self):
161
- super().__post_init__()
162
- if self.reference_image is None:
163
- raise ValueError("Must provide a reference image when creating an Image2ImageRegion")
164
- if self.strength < 0 or self.strength > 1:
165
- raise ValueError(f"The value of strength should in [0.0, 1.0] but is {self.strength}")
166
- # Rescale image to region shape
167
- self.reference_image = resize(self.reference_image, size=[self.height, self.width])
168
-
169
- def encode_reference_image(self, encoder, device, generator, cpu_vae=False):
170
- """Encodes the reference image for this Image2Image region into the latent space"""
171
- # Place encoder in CPU or not following the parameter cpu_vae
172
- if cpu_vae:
173
- # Note here we use mean instead of sample, to avoid moving also generator to CPU, which is troublesome
174
- self.reference_latents = encoder.cpu().encode(self.reference_image).latent_dist.mean.to(device)
175
- else:
176
- self.reference_latents = encoder.encode(self.reference_image.to(device)).latent_dist.sample(
177
- generator=generator
178
- )
179
- self.reference_latents = 0.18215 * self.reference_latents
180
-
181
- @property
182
- def __dict__(self):
183
- # This class requires special casting to dict because of the reference_image tensor. Otherwise it cannot be casted to JSON
184
-
185
- # Get all basic fields from parent class
186
- super_fields = {key: getattr(self, key) for key in DiffusionRegion.__dataclass_fields__.keys()}
187
- # Pack other fields
188
- return {**super_fields, "reference_image": self.reference_image.cpu().tolist(), "strength": self.strength}
189
-
190
-
191
- class RerollModes(Enum):
192
- """Modes in which the reroll regions operate"""
193
-
194
- RESET = "reset" # Completely reset the random noise in the region
195
- EPSILON = "epsilon" # Alter slightly the latents in the region
196
-
197
-
198
- @dataclass
199
- class RerollRegion(CanvasRegion):
200
- """Class defining a rectangular canvas region in which initial latent noise will be rerolled"""
201
-
202
- reroll_mode: RerollModes = RerollModes.RESET.value
203
-
204
-
205
- @dataclass
206
- class MaskWeightsBuilder:
207
- """Auxiliary class to compute a tensor of weights for a given diffusion region"""
208
-
209
- latent_space_dim: int # Size of the U-net latent space
210
- nbatch: int = 1 # Batch size in the U-net
211
-
212
- def compute_mask_weights(self, region: DiffusionRegion) -> torch.tensor:
213
- """Computes a tensor of weights for a given diffusion region"""
214
- MASK_BUILDERS = {
215
- MaskModes.CONSTANT.value: self._constant_weights,
216
- MaskModes.GAUSSIAN.value: self._gaussian_weights,
217
- MaskModes.QUARTIC.value: self._quartic_weights,
218
- }
219
- return MASK_BUILDERS[region.mask_type](region)
220
-
221
- def _constant_weights(self, region: DiffusionRegion) -> torch.tensor:
222
- """Computes a tensor of constant for a given diffusion region"""
223
- latent_width = region.latent_col_end - region.latent_col_init
224
- latent_height = region.latent_row_end - region.latent_row_init
225
- return torch.ones(self.nbatch, self.latent_space_dim, latent_height, latent_width) * region.mask_weight
226
-
227
- def _gaussian_weights(self, region: DiffusionRegion) -> torch.tensor:
228
- """Generates a gaussian mask of weights for tile contributions"""
229
- latent_width = region.latent_col_end - region.latent_col_init
230
- latent_height = region.latent_row_end - region.latent_row_init
231
-
232
- var = 0.01
233
- midpoint = (latent_width - 1) / 2 # -1 because index goes from 0 to latent_width - 1
234
- x_probs = [
235
- exp(-(x - midpoint) * (x - midpoint) / (latent_width * latent_width) / (2 * var)) / sqrt(2 * pi * var)
236
- for x in range(latent_width)
237
- ]
238
- midpoint = (latent_height - 1) / 2
239
- y_probs = [
240
- exp(-(y - midpoint) * (y - midpoint) / (latent_height * latent_height) / (2 * var)) / sqrt(2 * pi * var)
241
- for y in range(latent_height)
242
- ]
243
-
244
- weights = np.outer(y_probs, x_probs) * region.mask_weight
245
- return torch.tile(torch.tensor(weights), (self.nbatch, self.latent_space_dim, 1, 1))
246
-
247
- def _quartic_weights(self, region: DiffusionRegion) -> torch.tensor:
248
- """Generates a quartic mask of weights for tile contributions
249
-
250
- The quartic kernel has bounded support over the diffusion region, and a smooth decay to the region limits.
251
- """
252
- quartic_constant = 15.0 / 16.0
253
-
254
- support = (np.array(range(region.latent_col_init, region.latent_col_end)) - region.latent_col_init) / (
255
- region.latent_col_end - region.latent_col_init - 1
256
- ) * 1.99 - (1.99 / 2.0)
257
- x_probs = quartic_constant * np.square(1 - np.square(support))
258
- support = (np.array(range(region.latent_row_init, region.latent_row_end)) - region.latent_row_init) / (
259
- region.latent_row_end - region.latent_row_init - 1
260
- ) * 1.99 - (1.99 / 2.0)
261
- y_probs = quartic_constant * np.square(1 - np.square(support))
262
-
263
- weights = np.outer(y_probs, x_probs) * region.mask_weight
264
- return torch.tile(torch.tensor(weights), (self.nbatch, self.latent_space_dim, 1, 1))
265
-
266
-
267
- class StableDiffusionCanvasPipeline(DiffusionPipeline):
268
- """Stable Diffusion pipeline that mixes several diffusers in the same canvas"""
269
-
270
- def __init__(
271
- self,
272
- vae: AutoencoderKL,
273
- text_encoder: CLIPTextModel,
274
- tokenizer: CLIPTokenizer,
275
- unet: UNet2DConditionModel,
276
- scheduler: Union[DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler],
277
- safety_checker: StableDiffusionSafetyChecker,
278
- feature_extractor: CLIPFeatureExtractor,
279
- ):
280
- super().__init__()
281
- self.register_modules(
282
- vae=vae,
283
- text_encoder=text_encoder,
284
- tokenizer=tokenizer,
285
- unet=unet,
286
- scheduler=scheduler,
287
- safety_checker=safety_checker,
288
- feature_extractor=feature_extractor,
289
- )
290
-
291
- def decode_latents(self, latents, cpu_vae=False):
292
- """Decodes a given array of latents into pixel space"""
293
- # scale and decode the image latents with vae
294
- if cpu_vae:
295
- lat = deepcopy(latents).cpu()
296
- vae = deepcopy(self.vae).cpu()
297
- else:
298
- lat = latents
299
- vae = self.vae
300
-
301
- lat = 1 / 0.18215 * lat
302
- image = vae.decode(lat).sample
303
-
304
- image = (image / 2 + 0.5).clamp(0, 1)
305
- image = image.cpu().permute(0, 2, 3, 1).numpy()
306
-
307
- return self.numpy_to_pil(image)
308
-
309
- def get_latest_timestep_img2img(self, num_inference_steps, strength):
310
- """Finds the latest timesteps where an img2img strength does not impose latents anymore"""
311
- # get the original timestep using init_timestep
312
- offset = self.scheduler.config.get("steps_offset", 0)
313
- init_timestep = int(num_inference_steps * (1 - strength)) + offset
314
- init_timestep = min(init_timestep, num_inference_steps)
315
-
316
- t_start = min(max(num_inference_steps - init_timestep + offset, 0), num_inference_steps - 1)
317
- latest_timestep = self.scheduler.timesteps[t_start]
318
-
319
- return latest_timestep
320
-
321
- @torch.no_grad()
322
- def __call__(
323
- self,
324
- canvas_height: int,
325
- canvas_width: int,
326
- regions: List[DiffusionRegion],
327
- num_inference_steps: Optional[int] = 50,
328
- seed: Optional[int] = 12345,
329
- reroll_regions: Optional[List[RerollRegion]] = None,
330
- cpu_vae: Optional[bool] = False,
331
- decode_steps: Optional[bool] = False,
332
- ):
333
- if reroll_regions is None:
334
- reroll_regions = []
335
- batch_size = 1
336
-
337
- if decode_steps:
338
- steps_images = []
339
-
340
- # Prepare scheduler
341
- self.scheduler.set_timesteps(num_inference_steps, device=self.device)
342
-
343
- # Split diffusion regions by their kind
344
- text2image_regions = [region for region in regions if isinstance(region, Text2ImageRegion)]
345
- image2image_regions = [region for region in regions if isinstance(region, Image2ImageRegion)]
346
-
347
- # Prepare text embeddings
348
- for region in text2image_regions:
349
- region.tokenize_prompt(self.tokenizer)
350
- region.encode_prompt(self.text_encoder, self.device)
351
-
352
- # Create original noisy latents using the timesteps
353
- latents_shape = (batch_size, self.unet.config.in_channels, canvas_height // 8, canvas_width // 8)
354
- generator = torch.Generator(self.device).manual_seed(seed)
355
- init_noise = torch.randn(latents_shape, generator=generator, device=self.device)
356
-
357
- # Reset latents in seed reroll regions, if requested
358
- for region in reroll_regions:
359
- if region.reroll_mode == RerollModes.RESET.value:
360
- region_shape = (
361
- latents_shape[0],
362
- latents_shape[1],
363
- region.latent_row_end - region.latent_row_init,
364
- region.latent_col_end - region.latent_col_init,
365
- )
366
- init_noise[
367
- :,
368
- :,
369
- region.latent_row_init : region.latent_row_end,
370
- region.latent_col_init : region.latent_col_end,
371
- ] = torch.randn(region_shape, generator=region.get_region_generator(self.device), device=self.device)
372
-
373
- # Apply epsilon noise to regions: first diffusion regions, then reroll regions
374
- all_eps_rerolls = regions + [r for r in reroll_regions if r.reroll_mode == RerollModes.EPSILON.value]
375
- for region in all_eps_rerolls:
376
- if region.noise_eps > 0:
377
- region_noise = init_noise[
378
- :,
379
- :,
380
- region.latent_row_init : region.latent_row_end,
381
- region.latent_col_init : region.latent_col_end,
382
- ]
383
- eps_noise = (
384
- torch.randn(
385
- region_noise.shape, generator=region.get_region_generator(self.device), device=self.device
386
- )
387
- * region.noise_eps
388
- )
389
- init_noise[
390
- :,
391
- :,
392
- region.latent_row_init : region.latent_row_end,
393
- region.latent_col_init : region.latent_col_end,
394
- ] += eps_noise
395
-
396
- # scale the initial noise by the standard deviation required by the scheduler
397
- latents = init_noise * self.scheduler.init_noise_sigma
398
-
399
- # Get unconditional embeddings for classifier free guidance in text2image regions
400
- for region in text2image_regions:
401
- max_length = region.tokenized_prompt.input_ids.shape[-1]
402
- uncond_input = self.tokenizer(
403
- [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
404
- )
405
- uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
406
-
407
- # For classifier free guidance, we need to do two forward passes.
408
- # Here we concatenate the unconditional and text embeddings into a single batch
409
- # to avoid doing two forward passes
410
- region.encoded_prompt = torch.cat([uncond_embeddings, region.encoded_prompt])
411
-
412
- # Prepare image latents
413
- for region in image2image_regions:
414
- region.encode_reference_image(self.vae, device=self.device, generator=generator)
415
-
416
- # Prepare mask of weights for each region
417
- mask_builder = MaskWeightsBuilder(latent_space_dim=self.unet.config.in_channels, nbatch=batch_size)
418
- mask_weights = [mask_builder.compute_mask_weights(region).to(self.device) for region in text2image_regions]
419
-
420
- # Diffusion timesteps
421
- for i, t in tqdm(enumerate(self.scheduler.timesteps)):
422
- # Diffuse each region
423
- noise_preds_regions = []
424
-
425
- # text2image regions
426
- for region in text2image_regions:
427
- region_latents = latents[
428
- :,
429
- :,
430
- region.latent_row_init : region.latent_row_end,
431
- region.latent_col_init : region.latent_col_end,
432
- ]
433
- # expand the latents if we are doing classifier free guidance
434
- latent_model_input = torch.cat([region_latents] * 2)
435
- # scale model input following scheduler rules
436
- latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
437
- # predict the noise residual
438
- noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=region.encoded_prompt)["sample"]
439
- # perform guidance
440
- noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
441
- noise_pred_region = noise_pred_uncond + region.guidance_scale * (noise_pred_text - noise_pred_uncond)
442
- noise_preds_regions.append(noise_pred_region)
443
-
444
- # Merge noise predictions for all tiles
445
- noise_pred = torch.zeros(latents.shape, device=self.device)
446
- contributors = torch.zeros(latents.shape, device=self.device)
447
- # Add each tile contribution to overall latents
448
- for region, noise_pred_region, mask_weights_region in zip(
449
- text2image_regions, noise_preds_regions, mask_weights
450
- ):
451
- noise_pred[
452
- :,
453
- :,
454
- region.latent_row_init : region.latent_row_end,
455
- region.latent_col_init : region.latent_col_end,
456
- ] += (
457
- noise_pred_region * mask_weights_region
458
- )
459
- contributors[
460
- :,
461
- :,
462
- region.latent_row_init : region.latent_row_end,
463
- region.latent_col_init : region.latent_col_end,
464
- ] += mask_weights_region
465
- # Average overlapping areas with more than 1 contributor
466
- noise_pred /= contributors
467
- noise_pred = torch.nan_to_num(
468
- noise_pred
469
- ) # Replace NaNs by zeros: NaN can appear if a position is not covered by any DiffusionRegion
470
-
471
- # compute the previous noisy sample x_t -> x_t-1
472
- latents = self.scheduler.step(noise_pred, t, latents).prev_sample
473
-
474
- # Image2Image regions: override latents generated by the scheduler
475
- for region in image2image_regions:
476
- influence_step = self.get_latest_timestep_img2img(num_inference_steps, region.strength)
477
- # Only override in the timesteps before the last influence step of the image (given by its strength)
478
- if t > influence_step:
479
- timestep = t.repeat(batch_size)
480
- region_init_noise = init_noise[
481
- :,
482
- :,
483
- region.latent_row_init : region.latent_row_end,
484
- region.latent_col_init : region.latent_col_end,
485
- ]
486
- region_latents = self.scheduler.add_noise(region.reference_latents, region_init_noise, timestep)
487
- latents[
488
- :,
489
- :,
490
- region.latent_row_init : region.latent_row_end,
491
- region.latent_col_init : region.latent_col_end,
492
- ] = region_latents
493
-
494
- if decode_steps:
495
- steps_images.append(self.decode_latents(latents, cpu_vae))
496
-
497
- # scale and decode the image latents with vae
498
- image = self.decode_latents(latents, cpu_vae)
499
-
500
- output = {"images": image}
501
- if decode_steps:
502
- output = {**output, "steps_images": steps_images}
503
- return output
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/tests/pipelines/unclip/test_unclip_image_variation.py DELETED
@@ -1,522 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2023 HuggingFace Inc.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- import gc
17
- import random
18
- import unittest
19
-
20
- import numpy as np
21
- import torch
22
- from transformers import (
23
- CLIPImageProcessor,
24
- CLIPTextConfig,
25
- CLIPTextModelWithProjection,
26
- CLIPTokenizer,
27
- CLIPVisionConfig,
28
- CLIPVisionModelWithProjection,
29
- )
30
-
31
- from diffusers import (
32
- DiffusionPipeline,
33
- UnCLIPImageVariationPipeline,
34
- UnCLIPScheduler,
35
- UNet2DConditionModel,
36
- UNet2DModel,
37
- )
38
- from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel
39
- from diffusers.utils import floats_tensor, load_numpy, slow, torch_device
40
- from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps
41
-
42
- from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS
43
- from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
44
-
45
-
46
- enable_full_determinism()
47
-
48
-
49
- class UnCLIPImageVariationPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
50
- pipeline_class = UnCLIPImageVariationPipeline
51
- params = IMAGE_VARIATION_PARAMS - {"height", "width", "guidance_scale"}
52
- batch_params = IMAGE_VARIATION_BATCH_PARAMS
53
-
54
- required_optional_params = [
55
- "generator",
56
- "return_dict",
57
- "decoder_num_inference_steps",
58
- "super_res_num_inference_steps",
59
- ]
60
- test_xformers_attention = False
61
-
62
- @property
63
- def text_embedder_hidden_size(self):
64
- return 32
65
-
66
- @property
67
- def time_input_dim(self):
68
- return 32
69
-
70
- @property
71
- def block_out_channels_0(self):
72
- return self.time_input_dim
73
-
74
- @property
75
- def time_embed_dim(self):
76
- return self.time_input_dim * 4
77
-
78
- @property
79
- def cross_attention_dim(self):
80
- return 100
81
-
82
- @property
83
- def dummy_tokenizer(self):
84
- tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
85
- return tokenizer
86
-
87
- @property
88
- def dummy_text_encoder(self):
89
- torch.manual_seed(0)
90
- config = CLIPTextConfig(
91
- bos_token_id=0,
92
- eos_token_id=2,
93
- hidden_size=self.text_embedder_hidden_size,
94
- projection_dim=self.text_embedder_hidden_size,
95
- intermediate_size=37,
96
- layer_norm_eps=1e-05,
97
- num_attention_heads=4,
98
- num_hidden_layers=5,
99
- pad_token_id=1,
100
- vocab_size=1000,
101
- )
102
- return CLIPTextModelWithProjection(config)
103
-
104
- @property
105
- def dummy_image_encoder(self):
106
- torch.manual_seed(0)
107
- config = CLIPVisionConfig(
108
- hidden_size=self.text_embedder_hidden_size,
109
- projection_dim=self.text_embedder_hidden_size,
110
- num_hidden_layers=5,
111
- num_attention_heads=4,
112
- image_size=32,
113
- intermediate_size=37,
114
- patch_size=1,
115
- )
116
- return CLIPVisionModelWithProjection(config)
117
-
118
- @property
119
- def dummy_text_proj(self):
120
- torch.manual_seed(0)
121
-
122
- model_kwargs = {
123
- "clip_embeddings_dim": self.text_embedder_hidden_size,
124
- "time_embed_dim": self.time_embed_dim,
125
- "cross_attention_dim": self.cross_attention_dim,
126
- }
127
-
128
- model = UnCLIPTextProjModel(**model_kwargs)
129
- return model
130
-
131
- @property
132
- def dummy_decoder(self):
133
- torch.manual_seed(0)
134
-
135
- model_kwargs = {
136
- "sample_size": 32,
137
- # RGB in channels
138
- "in_channels": 3,
139
- # Out channels is double in channels because predicts mean and variance
140
- "out_channels": 6,
141
- "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
142
- "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
143
- "mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
144
- "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
145
- "layers_per_block": 1,
146
- "cross_attention_dim": self.cross_attention_dim,
147
- "attention_head_dim": 4,
148
- "resnet_time_scale_shift": "scale_shift",
149
- "class_embed_type": "identity",
150
- }
151
-
152
- model = UNet2DConditionModel(**model_kwargs)
153
- return model
154
-
155
- @property
156
- def dummy_super_res_kwargs(self):
157
- return {
158
- "sample_size": 64,
159
- "layers_per_block": 1,
160
- "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"),
161
- "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"),
162
- "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
163
- "in_channels": 6,
164
- "out_channels": 3,
165
- }
166
-
167
- @property
168
- def dummy_super_res_first(self):
169
- torch.manual_seed(0)
170
-
171
- model = UNet2DModel(**self.dummy_super_res_kwargs)
172
- return model
173
-
174
- @property
175
- def dummy_super_res_last(self):
176
- # seeded differently to get different unet than `self.dummy_super_res_first`
177
- torch.manual_seed(1)
178
-
179
- model = UNet2DModel(**self.dummy_super_res_kwargs)
180
- return model
181
-
182
- def get_dummy_components(self):
183
- decoder = self.dummy_decoder
184
- text_proj = self.dummy_text_proj
185
- text_encoder = self.dummy_text_encoder
186
- tokenizer = self.dummy_tokenizer
187
- super_res_first = self.dummy_super_res_first
188
- super_res_last = self.dummy_super_res_last
189
-
190
- decoder_scheduler = UnCLIPScheduler(
191
- variance_type="learned_range",
192
- prediction_type="epsilon",
193
- num_train_timesteps=1000,
194
- )
195
-
196
- super_res_scheduler = UnCLIPScheduler(
197
- variance_type="fixed_small_log",
198
- prediction_type="epsilon",
199
- num_train_timesteps=1000,
200
- )
201
-
202
- feature_extractor = CLIPImageProcessor(crop_size=32, size=32)
203
-
204
- image_encoder = self.dummy_image_encoder
205
-
206
- return {
207
- "decoder": decoder,
208
- "text_encoder": text_encoder,
209
- "tokenizer": tokenizer,
210
- "text_proj": text_proj,
211
- "feature_extractor": feature_extractor,
212
- "image_encoder": image_encoder,
213
- "super_res_first": super_res_first,
214
- "super_res_last": super_res_last,
215
- "decoder_scheduler": decoder_scheduler,
216
- "super_res_scheduler": super_res_scheduler,
217
- }
218
-
219
- def get_dummy_inputs(self, device, seed=0, pil_image=True):
220
- input_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
221
- if str(device).startswith("mps"):
222
- generator = torch.manual_seed(seed)
223
- else:
224
- generator = torch.Generator(device=device).manual_seed(seed)
225
-
226
- if pil_image:
227
- input_image = input_image * 0.5 + 0.5
228
- input_image = input_image.clamp(0, 1)
229
- input_image = input_image.cpu().permute(0, 2, 3, 1).float().numpy()
230
- input_image = DiffusionPipeline.numpy_to_pil(input_image)[0]
231
-
232
- return {
233
- "image": input_image,
234
- "generator": generator,
235
- "decoder_num_inference_steps": 2,
236
- "super_res_num_inference_steps": 2,
237
- "output_type": "np",
238
- }
239
-
240
- def test_unclip_image_variation_input_tensor(self):
241
- device = "cpu"
242
-
243
- components = self.get_dummy_components()
244
-
245
- pipe = self.pipeline_class(**components)
246
- pipe = pipe.to(device)
247
-
248
- pipe.set_progress_bar_config(disable=None)
249
-
250
- pipeline_inputs = self.get_dummy_inputs(device, pil_image=False)
251
-
252
- output = pipe(**pipeline_inputs)
253
- image = output.images
254
-
255
- tuple_pipeline_inputs = self.get_dummy_inputs(device, pil_image=False)
256
-
257
- image_from_tuple = pipe(
258
- **tuple_pipeline_inputs,
259
- return_dict=False,
260
- )[0]
261
-
262
- image_slice = image[0, -3:, -3:, -1]
263
- image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
264
-
265
- assert image.shape == (1, 64, 64, 3)
266
-
267
- expected_slice = np.array(
268
- [
269
- 0.9997,
270
- 0.0002,
271
- 0.9997,
272
- 0.9997,
273
- 0.9969,
274
- 0.0023,
275
- 0.9997,
276
- 0.9969,
277
- 0.9970,
278
- ]
279
- )
280
-
281
- assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
282
- assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
283
-
284
- def test_unclip_image_variation_input_image(self):
285
- device = "cpu"
286
-
287
- components = self.get_dummy_components()
288
-
289
- pipe = self.pipeline_class(**components)
290
- pipe = pipe.to(device)
291
-
292
- pipe.set_progress_bar_config(disable=None)
293
-
294
- pipeline_inputs = self.get_dummy_inputs(device, pil_image=True)
295
-
296
- output = pipe(**pipeline_inputs)
297
- image = output.images
298
-
299
- tuple_pipeline_inputs = self.get_dummy_inputs(device, pil_image=True)
300
-
301
- image_from_tuple = pipe(
302
- **tuple_pipeline_inputs,
303
- return_dict=False,
304
- )[0]
305
-
306
- image_slice = image[0, -3:, -3:, -1]
307
- image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
308
-
309
- assert image.shape == (1, 64, 64, 3)
310
-
311
- expected_slice = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971])
312
-
313
- assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
314
- assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
315
-
316
- def test_unclip_image_variation_input_list_images(self):
317
- device = "cpu"
318
-
319
- components = self.get_dummy_components()
320
-
321
- pipe = self.pipeline_class(**components)
322
- pipe = pipe.to(device)
323
-
324
- pipe.set_progress_bar_config(disable=None)
325
-
326
- pipeline_inputs = self.get_dummy_inputs(device, pil_image=True)
327
- pipeline_inputs["image"] = [
328
- pipeline_inputs["image"],
329
- pipeline_inputs["image"],
330
- ]
331
-
332
- output = pipe(**pipeline_inputs)
333
- image = output.images
334
-
335
- tuple_pipeline_inputs = self.get_dummy_inputs(device, pil_image=True)
336
- tuple_pipeline_inputs["image"] = [
337
- tuple_pipeline_inputs["image"],
338
- tuple_pipeline_inputs["image"],
339
- ]
340
-
341
- image_from_tuple = pipe(
342
- **tuple_pipeline_inputs,
343
- return_dict=False,
344
- )[0]
345
-
346
- image_slice = image[0, -3:, -3:, -1]
347
- image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
348
-
349
- assert image.shape == (2, 64, 64, 3)
350
-
351
- expected_slice = np.array(
352
- [
353
- 0.9997,
354
- 0.9989,
355
- 0.0008,
356
- 0.0021,
357
- 0.9960,
358
- 0.0018,
359
- 0.0014,
360
- 0.0002,
361
- 0.9933,
362
- ]
363
- )
364
-
365
- assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
366
- assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
367
-
368
- def test_unclip_passed_image_embed(self):
369
- device = torch.device("cpu")
370
-
371
- class DummyScheduler:
372
- init_noise_sigma = 1
373
-
374
- components = self.get_dummy_components()
375
-
376
- pipe = self.pipeline_class(**components)
377
- pipe = pipe.to(device)
378
-
379
- pipe.set_progress_bar_config(disable=None)
380
-
381
- generator = torch.Generator(device=device).manual_seed(0)
382
- dtype = pipe.decoder.dtype
383
- batch_size = 1
384
-
385
- shape = (
386
- batch_size,
387
- pipe.decoder.config.in_channels,
388
- pipe.decoder.config.sample_size,
389
- pipe.decoder.config.sample_size,
390
- )
391
- decoder_latents = pipe.prepare_latents(
392
- shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler()
393
- )
394
-
395
- shape = (
396
- batch_size,
397
- pipe.super_res_first.config.in_channels // 2,
398
- pipe.super_res_first.config.sample_size,
399
- pipe.super_res_first.config.sample_size,
400
- )
401
- super_res_latents = pipe.prepare_latents(
402
- shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler()
403
- )
404
-
405
- pipeline_inputs = self.get_dummy_inputs(device, pil_image=False)
406
-
407
- img_out_1 = pipe(
408
- **pipeline_inputs, decoder_latents=decoder_latents, super_res_latents=super_res_latents
409
- ).images
410
-
411
- pipeline_inputs = self.get_dummy_inputs(device, pil_image=False)
412
- # Don't pass image, instead pass embedding
413
- image = pipeline_inputs.pop("image")
414
- image_embeddings = pipe.image_encoder(image).image_embeds
415
-
416
- img_out_2 = pipe(
417
- **pipeline_inputs,
418
- decoder_latents=decoder_latents,
419
- super_res_latents=super_res_latents,
420
- image_embeddings=image_embeddings,
421
- ).images
422
-
423
- # make sure passing text embeddings manually is identical
424
- assert np.abs(img_out_1 - img_out_2).max() < 1e-4
425
-
426
- # Overriding PipelineTesterMixin::test_attention_slicing_forward_pass
427
- # because UnCLIP GPU undeterminism requires a looser check.
428
- @skip_mps
429
- def test_attention_slicing_forward_pass(self):
430
- test_max_difference = torch_device == "cpu"
431
-
432
- # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor
433
- expected_max_diff = 1e-2
434
-
435
- self._test_attention_slicing_forward_pass(
436
- test_max_difference=test_max_difference, expected_max_diff=expected_max_diff
437
- )
438
-
439
- # Overriding PipelineTesterMixin::test_inference_batch_single_identical
440
- # because UnCLIP undeterminism requires a looser check.
441
- @skip_mps
442
- def test_inference_batch_single_identical(self):
443
- test_max_difference = torch_device == "cpu"
444
- relax_max_difference = True
445
- additional_params_copy_to_batched_inputs = [
446
- "decoder_num_inference_steps",
447
- "super_res_num_inference_steps",
448
- ]
449
-
450
- self._test_inference_batch_single_identical(
451
- test_max_difference=test_max_difference,
452
- relax_max_difference=relax_max_difference,
453
- additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs,
454
- )
455
-
456
- def test_inference_batch_consistent(self):
457
- additional_params_copy_to_batched_inputs = [
458
- "decoder_num_inference_steps",
459
- "super_res_num_inference_steps",
460
- ]
461
-
462
- if torch_device == "mps":
463
- # TODO: MPS errors with larger batch sizes
464
- batch_sizes = [2, 3]
465
- self._test_inference_batch_consistent(
466
- batch_sizes=batch_sizes,
467
- additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs,
468
- )
469
- else:
470
- self._test_inference_batch_consistent(
471
- additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs
472
- )
473
-
474
- @skip_mps
475
- def test_dict_tuple_outputs_equivalent(self):
476
- return super().test_dict_tuple_outputs_equivalent()
477
-
478
- @skip_mps
479
- def test_save_load_local(self):
480
- return super().test_save_load_local()
481
-
482
- @skip_mps
483
- def test_save_load_optional_components(self):
484
- return super().test_save_load_optional_components()
485
-
486
-
487
- @slow
488
- @require_torch_gpu
489
- class UnCLIPImageVariationPipelineIntegrationTests(unittest.TestCase):
490
- def tearDown(self):
491
- # clean up the VRAM after each test
492
- super().tearDown()
493
- gc.collect()
494
- torch.cuda.empty_cache()
495
-
496
- def test_unclip_image_variation_karlo(self):
497
- input_image = load_image(
498
- "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png"
499
- )
500
- expected_image = load_numpy(
501
- "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
502
- "/unclip/karlo_v1_alpha_cat_variation_fp16.npy"
503
- )
504
-
505
- pipeline = UnCLIPImageVariationPipeline.from_pretrained(
506
- "kakaobrain/karlo-v1-alpha-image-variations", torch_dtype=torch.float16
507
- )
508
- pipeline = pipeline.to(torch_device)
509
- pipeline.set_progress_bar_config(disable=None)
510
-
511
- generator = torch.Generator(device="cpu").manual_seed(0)
512
- output = pipeline(
513
- input_image,
514
- generator=generator,
515
- output_type="np",
516
- )
517
-
518
- image = output.images[0]
519
-
520
- assert image.shape == (256, 256, 3)
521
-
522
- assert_mean_pixel_difference(image, expected_image, 15)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Andy1621/uniformer_image_detection/configs/_base_/models/retinanet_r50_fpn.py DELETED
@@ -1,60 +0,0 @@
1
- # model settings
2
- model = dict(
3
- type='RetinaNet',
4
- pretrained='torchvision://resnet50',
5
- backbone=dict(
6
- type='ResNet',
7
- depth=50,
8
- num_stages=4,
9
- out_indices=(0, 1, 2, 3),
10
- frozen_stages=1,
11
- norm_cfg=dict(type='BN', requires_grad=True),
12
- norm_eval=True,
13
- style='pytorch'),
14
- neck=dict(
15
- type='FPN',
16
- in_channels=[256, 512, 1024, 2048],
17
- out_channels=256,
18
- start_level=1,
19
- add_extra_convs='on_input',
20
- num_outs=5),
21
- bbox_head=dict(
22
- type='RetinaHead',
23
- num_classes=80,
24
- in_channels=256,
25
- stacked_convs=4,
26
- feat_channels=256,
27
- anchor_generator=dict(
28
- type='AnchorGenerator',
29
- octave_base_scale=4,
30
- scales_per_octave=3,
31
- ratios=[0.5, 1.0, 2.0],
32
- strides=[8, 16, 32, 64, 128]),
33
- bbox_coder=dict(
34
- type='DeltaXYWHBBoxCoder',
35
- target_means=[.0, .0, .0, .0],
36
- target_stds=[1.0, 1.0, 1.0, 1.0]),
37
- loss_cls=dict(
38
- type='FocalLoss',
39
- use_sigmoid=True,
40
- gamma=2.0,
41
- alpha=0.25,
42
- loss_weight=1.0),
43
- loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
44
- # training and testing settings
45
- train_cfg=dict(
46
- assigner=dict(
47
- type='MaxIoUAssigner',
48
- pos_iou_thr=0.5,
49
- neg_iou_thr=0.4,
50
- min_pos_iou=0,
51
- ignore_iof_thr=-1),
52
- allowed_border=-1,
53
- pos_weight=-1,
54
- debug=False),
55
- test_cfg=dict(
56
- nms_pre=1000,
57
- min_bbox_size=0,
58
- score_thr=0.05,
59
- nms=dict(type='nms', iou_threshold=0.5),
60
- max_per_img=100))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Andy1621/uniformer_image_detection/configs/foveabox/fovea_r50_fpn_4x4_1x_coco.py DELETED
@@ -1,52 +0,0 @@
1
- _base_ = [
2
- '../_base_/datasets/coco_detection.py',
3
- '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
4
- ]
5
- # model settings
6
- model = dict(
7
- type='FOVEA',
8
- pretrained='torchvision://resnet50',
9
- backbone=dict(
10
- type='ResNet',
11
- depth=50,
12
- num_stages=4,
13
- out_indices=(0, 1, 2, 3),
14
- frozen_stages=1,
15
- norm_cfg=dict(type='BN', requires_grad=True),
16
- norm_eval=True,
17
- style='pytorch'),
18
- neck=dict(
19
- type='FPN',
20
- in_channels=[256, 512, 1024, 2048],
21
- out_channels=256,
22
- start_level=1,
23
- num_outs=5,
24
- add_extra_convs='on_input'),
25
- bbox_head=dict(
26
- type='FoveaHead',
27
- num_classes=80,
28
- in_channels=256,
29
- stacked_convs=4,
30
- feat_channels=256,
31
- strides=[8, 16, 32, 64, 128],
32
- base_edge_list=[16, 32, 64, 128, 256],
33
- scale_ranges=((1, 64), (32, 128), (64, 256), (128, 512), (256, 2048)),
34
- sigma=0.4,
35
- with_deform=False,
36
- loss_cls=dict(
37
- type='FocalLoss',
38
- use_sigmoid=True,
39
- gamma=1.50,
40
- alpha=0.4,
41
- loss_weight=1.0),
42
- loss_bbox=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0)),
43
- # training and testing settings
44
- train_cfg=dict(),
45
- test_cfg=dict(
46
- nms_pre=1000,
47
- score_thr=0.05,
48
- nms=dict(type='nms', iou_threshold=0.5),
49
- max_per_img=100))
50
- data = dict(samples_per_gpu=4, workers_per_gpu=4)
51
- # optimizer
52
- optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Andy1621/uniformer_image_detection/configs/gn+ws/faster_rcnn_x101_32x4d_fpn_gn_ws-all_1x_coco.py DELETED
@@ -1,16 +0,0 @@
1
- _base_ = './faster_rcnn_r50_fpn_gn_ws-all_1x_coco.py'
2
- conv_cfg = dict(type='ConvWS')
3
- norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
4
- model = dict(
5
- pretrained='open-mmlab://jhu/resnext101_32x4d_gn_ws',
6
- backbone=dict(
7
- type='ResNeXt',
8
- depth=101,
9
- groups=32,
10
- base_width=4,
11
- num_stages=4,
12
- out_indices=(0, 1, 2, 3),
13
- frozen_stages=1,
14
- style='pytorch',
15
- conv_cfg=conv_cfg,
16
- norm_cfg=norm_cfg))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Andy1621/uniformer_image_detection/configs/instaboost/cascade_mask_rcnn_r50_fpn_instaboost_4x_coco.py DELETED
@@ -1,28 +0,0 @@
1
- _base_ = '../cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py'
2
- img_norm_cfg = dict(
3
- mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
4
- train_pipeline = [
5
- dict(type='LoadImageFromFile'),
6
- dict(
7
- type='InstaBoost',
8
- action_candidate=('normal', 'horizontal', 'skip'),
9
- action_prob=(1, 0, 0),
10
- scale=(0.8, 1.2),
11
- dx=15,
12
- dy=15,
13
- theta=(-1, 1),
14
- color_prob=0.5,
15
- hflag=False,
16
- aug_ratio=0.5),
17
- dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
18
- dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
19
- dict(type='RandomFlip', flip_ratio=0.5),
20
- dict(type='Normalize', **img_norm_cfg),
21
- dict(type='Pad', size_divisor=32),
22
- dict(type='DefaultFormatBundle'),
23
- dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
24
- ]
25
- data = dict(train=dict(pipeline=train_pipeline))
26
- # learning policy
27
- lr_config = dict(step=[32, 44])
28
- runner = dict(type='EpochBasedRunner', max_epochs=48)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Andy1621/uniformer_image_segmentation/configs/psanet/psanet_r50-d8_512x512_160k_ade20k.py DELETED
@@ -1,7 +0,0 @@
1
- _base_ = [
2
- '../_base_/models/psanet_r50-d8.py', '../_base_/datasets/ade20k.py',
3
- '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
4
- ]
5
- model = dict(
6
- decode_head=dict(mask_size=(66, 66), num_classes=150),
7
- auxiliary_head=dict(num_classes=150))
 
 
 
 
 
 
 
 
spaces/Anonymous-sub/Rerender/ControlNet/annotator/uniformer/mmcv/ops/roi_align_rotated.py DELETED
@@ -1,177 +0,0 @@
1
- # Copyright (c) OpenMMLab. All rights reserved.
2
- import torch.nn as nn
3
- from torch.autograd import Function
4
-
5
- from ..utils import ext_loader
6
-
7
- ext_module = ext_loader.load_ext(
8
- '_ext', ['roi_align_rotated_forward', 'roi_align_rotated_backward'])
9
-
10
-
11
- class RoIAlignRotatedFunction(Function):
12
-
13
- @staticmethod
14
- def symbolic(g, features, rois, out_size, spatial_scale, sample_num,
15
- aligned, clockwise):
16
- if isinstance(out_size, int):
17
- out_h = out_size
18
- out_w = out_size
19
- elif isinstance(out_size, tuple):
20
- assert len(out_size) == 2
21
- assert isinstance(out_size[0], int)
22
- assert isinstance(out_size[1], int)
23
- out_h, out_w = out_size
24
- else:
25
- raise TypeError(
26
- '"out_size" must be an integer or tuple of integers')
27
- return g.op(
28
- 'mmcv::MMCVRoIAlignRotated',
29
- features,
30
- rois,
31
- output_height_i=out_h,
32
- output_width_i=out_h,
33
- spatial_scale_f=spatial_scale,
34
- sampling_ratio_i=sample_num,
35
- aligned_i=aligned,
36
- clockwise_i=clockwise)
37
-
38
- @staticmethod
39
- def forward(ctx,
40
- features,
41
- rois,
42
- out_size,
43
- spatial_scale,
44
- sample_num=0,
45
- aligned=True,
46
- clockwise=False):
47
- if isinstance(out_size, int):
48
- out_h = out_size
49
- out_w = out_size
50
- elif isinstance(out_size, tuple):
51
- assert len(out_size) == 2
52
- assert isinstance(out_size[0], int)
53
- assert isinstance(out_size[1], int)
54
- out_h, out_w = out_size
55
- else:
56
- raise TypeError(
57
- '"out_size" must be an integer or tuple of integers')
58
- ctx.spatial_scale = spatial_scale
59
- ctx.sample_num = sample_num
60
- ctx.aligned = aligned
61
- ctx.clockwise = clockwise
62
- ctx.save_for_backward(rois)
63
- ctx.feature_size = features.size()
64
-
65
- batch_size, num_channels, data_height, data_width = features.size()
66
- num_rois = rois.size(0)
67
-
68
- output = features.new_zeros(num_rois, num_channels, out_h, out_w)
69
- ext_module.roi_align_rotated_forward(
70
- features,
71
- rois,
72
- output,
73
- pooled_height=out_h,
74
- pooled_width=out_w,
75
- spatial_scale=spatial_scale,
76
- sample_num=sample_num,
77
- aligned=aligned,
78
- clockwise=clockwise)
79
- return output
80
-
81
- @staticmethod
82
- def backward(ctx, grad_output):
83
- feature_size = ctx.feature_size
84
- spatial_scale = ctx.spatial_scale
85
- aligned = ctx.aligned
86
- clockwise = ctx.clockwise
87
- sample_num = ctx.sample_num
88
- rois = ctx.saved_tensors[0]
89
- assert feature_size is not None
90
- batch_size, num_channels, data_height, data_width = feature_size
91
-
92
- out_w = grad_output.size(3)
93
- out_h = grad_output.size(2)
94
-
95
- grad_input = grad_rois = None
96
-
97
- if ctx.needs_input_grad[0]:
98
- grad_input = rois.new_zeros(batch_size, num_channels, data_height,
99
- data_width)
100
- ext_module.roi_align_rotated_backward(
101
- grad_output.contiguous(),
102
- rois,
103
- grad_input,
104
- pooled_height=out_h,
105
- pooled_width=out_w,
106
- spatial_scale=spatial_scale,
107
- sample_num=sample_num,
108
- aligned=aligned,
109
- clockwise=clockwise)
110
- return grad_input, grad_rois, None, None, None, None, None
111
-
112
-
113
- roi_align_rotated = RoIAlignRotatedFunction.apply
114
-
115
-
116
- class RoIAlignRotated(nn.Module):
117
- """RoI align pooling layer for rotated proposals.
118
-
119
- It accepts a feature map of shape (N, C, H, W) and rois with shape
120
- (n, 6) with each roi decoded as (batch_index, center_x, center_y,
121
- w, h, angle). The angle is in radian.
122
-
123
- Args:
124
- out_size (tuple): h, w
125
- spatial_scale (float): scale the input boxes by this number
126
- sample_num (int): number of inputs samples to take for each
127
- output sample. 0 to take samples densely for current models.
128
- aligned (bool): if False, use the legacy implementation in
129
- MMDetection. If True, align the results more perfectly.
130
- Default: True.
131
- clockwise (bool): If True, the angle in each proposal follows a
132
- clockwise fashion in image space, otherwise, the angle is
133
- counterclockwise. Default: False.
134
-
135
- Note:
136
- The implementation of RoIAlign when aligned=True is modified from
137
- https://github.com/facebookresearch/detectron2/
138
-
139
- The meaning of aligned=True:
140
-
141
- Given a continuous coordinate c, its two neighboring pixel
142
- indices (in our pixel model) are computed by floor(c - 0.5) and
143
- ceil(c - 0.5). For example, c=1.3 has pixel neighbors with discrete
144
- indices [0] and [1] (which are sampled from the underlying signal
145
- at continuous coordinates 0.5 and 1.5). But the original roi_align
146
- (aligned=False) does not subtract the 0.5 when computing
147
- neighboring pixel indices and therefore it uses pixels with a
148
- slightly incorrect alignment (relative to our pixel model) when
149
- performing bilinear interpolation.
150
-
151
- With `aligned=True`,
152
- we first appropriately scale the ROI and then shift it by -0.5
153
- prior to calling roi_align. This produces the correct neighbors;
154
-
155
- The difference does not make a difference to the model's
156
- performance if ROIAlign is used together with conv layers.
157
- """
158
-
159
- def __init__(self,
160
- out_size,
161
- spatial_scale,
162
- sample_num=0,
163
- aligned=True,
164
- clockwise=False):
165
- super(RoIAlignRotated, self).__init__()
166
-
167
- self.out_size = out_size
168
- self.spatial_scale = float(spatial_scale)
169
- self.sample_num = int(sample_num)
170
- self.aligned = aligned
171
- self.clockwise = clockwise
172
-
173
- def forward(self, features, rois):
174
- return RoIAlignRotatedFunction.apply(features, rois, self.out_size,
175
- self.spatial_scale,
176
- self.sample_num, self.aligned,
177
- self.clockwise)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Arulkumar03/GroundingDINO_SOTA_Zero_Shot_Model/groundingdino/models/GroundingDINO/backbone/swin_transformer.py DELETED
@@ -1,802 +0,0 @@
1
- # ------------------------------------------------------------------------
2
- # Grounding DINO
3
- # url: https://github.com/IDEA-Research/GroundingDINO
4
- # Copyright (c) 2023 IDEA. All Rights Reserved.
5
- # Licensed under the Apache License, Version 2.0 [see LICENSE for details]
6
- # ------------------------------------------------------------------------
7
- # DINO
8
- # Copyright (c) 2022 IDEA. All Rights Reserved.
9
- # Licensed under the Apache License, Version 2.0 [see LICENSE for details]
10
- # --------------------------------------------------------
11
- # modified from https://github.com/SwinTransformer/Swin-Transformer-Object-Detection/blob/master/mmdet/models/backbones/swin_transformer.py
12
- # --------------------------------------------------------
13
-
14
- import numpy as np
15
- import torch
16
- import torch.nn as nn
17
- import torch.nn.functional as F
18
- import torch.utils.checkpoint as checkpoint
19
- from timm.models.layers import DropPath, to_2tuple, trunc_normal_
20
-
21
- from groundingdino.util.misc import NestedTensor
22
-
23
-
24
- class Mlp(nn.Module):
25
- """Multilayer perceptron."""
26
-
27
- def __init__(
28
- self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0
29
- ):
30
- super().__init__()
31
- out_features = out_features or in_features
32
- hidden_features = hidden_features or in_features
33
- self.fc1 = nn.Linear(in_features, hidden_features)
34
- self.act = act_layer()
35
- self.fc2 = nn.Linear(hidden_features, out_features)
36
- self.drop = nn.Dropout(drop)
37
-
38
- def forward(self, x):
39
- x = self.fc1(x)
40
- x = self.act(x)
41
- x = self.drop(x)
42
- x = self.fc2(x)
43
- x = self.drop(x)
44
- return x
45
-
46
-
47
- def window_partition(x, window_size):
48
- """
49
- Args:
50
- x: (B, H, W, C)
51
- window_size (int): window size
52
- Returns:
53
- windows: (num_windows*B, window_size, window_size, C)
54
- """
55
- B, H, W, C = x.shape
56
- x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
57
- windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
58
- return windows
59
-
60
-
61
- def window_reverse(windows, window_size, H, W):
62
- """
63
- Args:
64
- windows: (num_windows*B, window_size, window_size, C)
65
- window_size (int): Window size
66
- H (int): Height of image
67
- W (int): Width of image
68
- Returns:
69
- x: (B, H, W, C)
70
- """
71
- B = int(windows.shape[0] / (H * W / window_size / window_size))
72
- x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
73
- x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
74
- return x
75
-
76
-
77
- class WindowAttention(nn.Module):
78
- """Window based multi-head self attention (W-MSA) module with relative position bias.
79
- It supports both of shifted and non-shifted window.
80
- Args:
81
- dim (int): Number of input channels.
82
- window_size (tuple[int]): The height and width of the window.
83
- num_heads (int): Number of attention heads.
84
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
85
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
86
- attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
87
- proj_drop (float, optional): Dropout ratio of output. Default: 0.0
88
- """
89
-
90
- def __init__(
91
- self,
92
- dim,
93
- window_size,
94
- num_heads,
95
- qkv_bias=True,
96
- qk_scale=None,
97
- attn_drop=0.0,
98
- proj_drop=0.0,
99
- ):
100
-
101
- super().__init__()
102
- self.dim = dim
103
- self.window_size = window_size # Wh, Ww
104
- self.num_heads = num_heads
105
- head_dim = dim // num_heads
106
- self.scale = qk_scale or head_dim**-0.5
107
-
108
- # define a parameter table of relative position bias
109
- self.relative_position_bias_table = nn.Parameter(
110
- torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)
111
- ) # 2*Wh-1 * 2*Ww-1, nH
112
-
113
- # get pair-wise relative position index for each token inside the window
114
- coords_h = torch.arange(self.window_size[0])
115
- coords_w = torch.arange(self.window_size[1])
116
- coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
117
- coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
118
- relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
119
- relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
120
- relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
121
- relative_coords[:, :, 1] += self.window_size[1] - 1
122
- relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
123
- relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
124
- self.register_buffer("relative_position_index", relative_position_index)
125
-
126
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
127
- self.attn_drop = nn.Dropout(attn_drop)
128
- self.proj = nn.Linear(dim, dim)
129
- self.proj_drop = nn.Dropout(proj_drop)
130
-
131
- trunc_normal_(self.relative_position_bias_table, std=0.02)
132
- self.softmax = nn.Softmax(dim=-1)
133
-
134
- def forward(self, x, mask=None):
135
- """Forward function.
136
- Args:
137
- x: input features with shape of (num_windows*B, N, C)
138
- mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
139
- """
140
- B_, N, C = x.shape
141
- qkv = (
142
- self.qkv(x)
143
- .reshape(B_, N, 3, self.num_heads, C // self.num_heads)
144
- .permute(2, 0, 3, 1, 4)
145
- )
146
- q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
147
-
148
- q = q * self.scale
149
- attn = q @ k.transpose(-2, -1)
150
-
151
- relative_position_bias = self.relative_position_bias_table[
152
- self.relative_position_index.view(-1)
153
- ].view(
154
- self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1
155
- ) # Wh*Ww,Wh*Ww,nH
156
- relative_position_bias = relative_position_bias.permute(
157
- 2, 0, 1
158
- ).contiguous() # nH, Wh*Ww, Wh*Ww
159
- attn = attn + relative_position_bias.unsqueeze(0)
160
-
161
- if mask is not None:
162
- nW = mask.shape[0]
163
- attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
164
- attn = attn.view(-1, self.num_heads, N, N)
165
- attn = self.softmax(attn)
166
- else:
167
- attn = self.softmax(attn)
168
-
169
- attn = self.attn_drop(attn)
170
-
171
- x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
172
- x = self.proj(x)
173
- x = self.proj_drop(x)
174
- return x
175
-
176
-
177
- class SwinTransformerBlock(nn.Module):
178
- """Swin Transformer Block.
179
- Args:
180
- dim (int): Number of input channels.
181
- num_heads (int): Number of attention heads.
182
- window_size (int): Window size.
183
- shift_size (int): Shift size for SW-MSA.
184
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
185
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
186
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
187
- drop (float, optional): Dropout rate. Default: 0.0
188
- attn_drop (float, optional): Attention dropout rate. Default: 0.0
189
- drop_path (float, optional): Stochastic depth rate. Default: 0.0
190
- act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
191
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
192
- """
193
-
194
- def __init__(
195
- self,
196
- dim,
197
- num_heads,
198
- window_size=7,
199
- shift_size=0,
200
- mlp_ratio=4.0,
201
- qkv_bias=True,
202
- qk_scale=None,
203
- drop=0.0,
204
- attn_drop=0.0,
205
- drop_path=0.0,
206
- act_layer=nn.GELU,
207
- norm_layer=nn.LayerNorm,
208
- ):
209
- super().__init__()
210
- self.dim = dim
211
- self.num_heads = num_heads
212
- self.window_size = window_size
213
- self.shift_size = shift_size
214
- self.mlp_ratio = mlp_ratio
215
- assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
216
-
217
- self.norm1 = norm_layer(dim)
218
- self.attn = WindowAttention(
219
- dim,
220
- window_size=to_2tuple(self.window_size),
221
- num_heads=num_heads,
222
- qkv_bias=qkv_bias,
223
- qk_scale=qk_scale,
224
- attn_drop=attn_drop,
225
- proj_drop=drop,
226
- )
227
-
228
- self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
229
- self.norm2 = norm_layer(dim)
230
- mlp_hidden_dim = int(dim * mlp_ratio)
231
- self.mlp = Mlp(
232
- in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop
233
- )
234
-
235
- self.H = None
236
- self.W = None
237
-
238
- def forward(self, x, mask_matrix):
239
- """Forward function.
240
- Args:
241
- x: Input feature, tensor size (B, H*W, C).
242
- H, W: Spatial resolution of the input feature.
243
- mask_matrix: Attention mask for cyclic shift.
244
- """
245
- B, L, C = x.shape
246
- H, W = self.H, self.W
247
- assert L == H * W, "input feature has wrong size"
248
-
249
- shortcut = x
250
- x = self.norm1(x)
251
- x = x.view(B, H, W, C)
252
-
253
- # pad feature maps to multiples of window size
254
- pad_l = pad_t = 0
255
- pad_r = (self.window_size - W % self.window_size) % self.window_size
256
- pad_b = (self.window_size - H % self.window_size) % self.window_size
257
- x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
258
- _, Hp, Wp, _ = x.shape
259
-
260
- # cyclic shift
261
- if self.shift_size > 0:
262
- shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
263
- attn_mask = mask_matrix
264
- else:
265
- shifted_x = x
266
- attn_mask = None
267
-
268
- # partition windows
269
- x_windows = window_partition(
270
- shifted_x, self.window_size
271
- ) # nW*B, window_size, window_size, C
272
- x_windows = x_windows.view(
273
- -1, self.window_size * self.window_size, C
274
- ) # nW*B, window_size*window_size, C
275
-
276
- # W-MSA/SW-MSA
277
- attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
278
-
279
- # merge windows
280
- attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
281
- shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
282
-
283
- # reverse cyclic shift
284
- if self.shift_size > 0:
285
- x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
286
- else:
287
- x = shifted_x
288
-
289
- if pad_r > 0 or pad_b > 0:
290
- x = x[:, :H, :W, :].contiguous()
291
-
292
- x = x.view(B, H * W, C)
293
-
294
- # FFN
295
- x = shortcut + self.drop_path(x)
296
- x = x + self.drop_path(self.mlp(self.norm2(x)))
297
-
298
- return x
299
-
300
-
301
- class PatchMerging(nn.Module):
302
- """Patch Merging Layer
303
- Args:
304
- dim (int): Number of input channels.
305
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
306
- """
307
-
308
- def __init__(self, dim, norm_layer=nn.LayerNorm):
309
- super().__init__()
310
- self.dim = dim
311
- self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
312
- self.norm = norm_layer(4 * dim)
313
-
314
- def forward(self, x, H, W):
315
- """Forward function.
316
- Args:
317
- x: Input feature, tensor size (B, H*W, C).
318
- H, W: Spatial resolution of the input feature.
319
- """
320
- B, L, C = x.shape
321
- assert L == H * W, "input feature has wrong size"
322
-
323
- x = x.view(B, H, W, C)
324
-
325
- # padding
326
- pad_input = (H % 2 == 1) or (W % 2 == 1)
327
- if pad_input:
328
- x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
329
-
330
- x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
331
- x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
332
- x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
333
- x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
334
- x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
335
- x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
336
-
337
- x = self.norm(x)
338
- x = self.reduction(x)
339
-
340
- return x
341
-
342
-
343
- class BasicLayer(nn.Module):
344
- """A basic Swin Transformer layer for one stage.
345
- Args:
346
- dim (int): Number of feature channels
347
- depth (int): Depths of this stage.
348
- num_heads (int): Number of attention head.
349
- window_size (int): Local window size. Default: 7.
350
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
351
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
352
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
353
- drop (float, optional): Dropout rate. Default: 0.0
354
- attn_drop (float, optional): Attention dropout rate. Default: 0.0
355
- drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
356
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
357
- downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
358
- use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
359
- """
360
-
361
- def __init__(
362
- self,
363
- dim,
364
- depth,
365
- num_heads,
366
- window_size=7,
367
- mlp_ratio=4.0,
368
- qkv_bias=True,
369
- qk_scale=None,
370
- drop=0.0,
371
- attn_drop=0.0,
372
- drop_path=0.0,
373
- norm_layer=nn.LayerNorm,
374
- downsample=None,
375
- use_checkpoint=False,
376
- ):
377
- super().__init__()
378
- self.window_size = window_size
379
- self.shift_size = window_size // 2
380
- self.depth = depth
381
- self.use_checkpoint = use_checkpoint
382
-
383
- # build blocks
384
- self.blocks = nn.ModuleList(
385
- [
386
- SwinTransformerBlock(
387
- dim=dim,
388
- num_heads=num_heads,
389
- window_size=window_size,
390
- shift_size=0 if (i % 2 == 0) else window_size // 2,
391
- mlp_ratio=mlp_ratio,
392
- qkv_bias=qkv_bias,
393
- qk_scale=qk_scale,
394
- drop=drop,
395
- attn_drop=attn_drop,
396
- drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
397
- norm_layer=norm_layer,
398
- )
399
- for i in range(depth)
400
- ]
401
- )
402
-
403
- # patch merging layer
404
- if downsample is not None:
405
- self.downsample = downsample(dim=dim, norm_layer=norm_layer)
406
- else:
407
- self.downsample = None
408
-
409
- def forward(self, x, H, W):
410
- """Forward function.
411
- Args:
412
- x: Input feature, tensor size (B, H*W, C).
413
- H, W: Spatial resolution of the input feature.
414
- """
415
-
416
- # calculate attention mask for SW-MSA
417
- Hp = int(np.ceil(H / self.window_size)) * self.window_size
418
- Wp = int(np.ceil(W / self.window_size)) * self.window_size
419
- img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
420
- h_slices = (
421
- slice(0, -self.window_size),
422
- slice(-self.window_size, -self.shift_size),
423
- slice(-self.shift_size, None),
424
- )
425
- w_slices = (
426
- slice(0, -self.window_size),
427
- slice(-self.window_size, -self.shift_size),
428
- slice(-self.shift_size, None),
429
- )
430
- cnt = 0
431
- for h in h_slices:
432
- for w in w_slices:
433
- img_mask[:, h, w, :] = cnt
434
- cnt += 1
435
-
436
- mask_windows = window_partition(
437
- img_mask, self.window_size
438
- ) # nW, window_size, window_size, 1
439
- mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
440
- attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
441
- attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(
442
- attn_mask == 0, float(0.0)
443
- )
444
-
445
- for blk in self.blocks:
446
- blk.H, blk.W = H, W
447
- if self.use_checkpoint:
448
- x = checkpoint.checkpoint(blk, x, attn_mask)
449
- else:
450
- x = blk(x, attn_mask)
451
- if self.downsample is not None:
452
- x_down = self.downsample(x, H, W)
453
- Wh, Ww = (H + 1) // 2, (W + 1) // 2
454
- return x, H, W, x_down, Wh, Ww
455
- else:
456
- return x, H, W, x, H, W
457
-
458
-
459
- class PatchEmbed(nn.Module):
460
- """Image to Patch Embedding
461
- Args:
462
- patch_size (int): Patch token size. Default: 4.
463
- in_chans (int): Number of input image channels. Default: 3.
464
- embed_dim (int): Number of linear projection output channels. Default: 96.
465
- norm_layer (nn.Module, optional): Normalization layer. Default: None
466
- """
467
-
468
- def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
469
- super().__init__()
470
- patch_size = to_2tuple(patch_size)
471
- self.patch_size = patch_size
472
-
473
- self.in_chans = in_chans
474
- self.embed_dim = embed_dim
475
-
476
- self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
477
- if norm_layer is not None:
478
- self.norm = norm_layer(embed_dim)
479
- else:
480
- self.norm = None
481
-
482
- def forward(self, x):
483
- """Forward function."""
484
- # padding
485
- _, _, H, W = x.size()
486
- if W % self.patch_size[1] != 0:
487
- x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
488
- if H % self.patch_size[0] != 0:
489
- x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
490
-
491
- x = self.proj(x) # B C Wh Ww
492
- if self.norm is not None:
493
- Wh, Ww = x.size(2), x.size(3)
494
- x = x.flatten(2).transpose(1, 2)
495
- x = self.norm(x)
496
- x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
497
-
498
- return x
499
-
500
-
501
- class SwinTransformer(nn.Module):
502
- """Swin Transformer backbone.
503
- A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
504
- https://arxiv.org/pdf/2103.14030
505
- Args:
506
- pretrain_img_size (int): Input image size for training the pretrained model,
507
- used in absolute postion embedding. Default 224.
508
- patch_size (int | tuple(int)): Patch size. Default: 4.
509
- in_chans (int): Number of input image channels. Default: 3.
510
- embed_dim (int): Number of linear projection output channels. Default: 96.
511
- depths (tuple[int]): Depths of each Swin Transformer stage.
512
- num_heads (tuple[int]): Number of attention head of each stage.
513
- window_size (int): Window size. Default: 7.
514
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
515
- qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
516
- qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
517
- drop_rate (float): Dropout rate.
518
- attn_drop_rate (float): Attention dropout rate. Default: 0.
519
- drop_path_rate (float): Stochastic depth rate. Default: 0.2.
520
- norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
521
- ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
522
- patch_norm (bool): If True, add normalization after patch embedding. Default: True.
523
- out_indices (Sequence[int]): Output from which stages.
524
- frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
525
- -1 means not freezing any parameters.
526
- use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
527
- dilation (bool): if True, the output size if 16x downsample, ow 32x downsample.
528
- """
529
-
530
- def __init__(
531
- self,
532
- pretrain_img_size=224,
533
- patch_size=4,
534
- in_chans=3,
535
- embed_dim=96,
536
- depths=[2, 2, 6, 2],
537
- num_heads=[3, 6, 12, 24],
538
- window_size=7,
539
- mlp_ratio=4.0,
540
- qkv_bias=True,
541
- qk_scale=None,
542
- drop_rate=0.0,
543
- attn_drop_rate=0.0,
544
- drop_path_rate=0.2,
545
- norm_layer=nn.LayerNorm,
546
- ape=False,
547
- patch_norm=True,
548
- out_indices=(0, 1, 2, 3),
549
- frozen_stages=-1,
550
- dilation=False,
551
- use_checkpoint=False,
552
- ):
553
- super().__init__()
554
-
555
- self.pretrain_img_size = pretrain_img_size
556
- self.num_layers = len(depths)
557
- self.embed_dim = embed_dim
558
- self.ape = ape
559
- self.patch_norm = patch_norm
560
- self.out_indices = out_indices
561
- self.frozen_stages = frozen_stages
562
- self.dilation = dilation
563
-
564
- # if use_checkpoint:
565
- # print("use_checkpoint!!!!!!!!!!!!!!!!!!!!!!!!")
566
-
567
- # split image into non-overlapping patches
568
- self.patch_embed = PatchEmbed(
569
- patch_size=patch_size,
570
- in_chans=in_chans,
571
- embed_dim=embed_dim,
572
- norm_layer=norm_layer if self.patch_norm else None,
573
- )
574
-
575
- # absolute position embedding
576
- if self.ape:
577
- pretrain_img_size = to_2tuple(pretrain_img_size)
578
- patch_size = to_2tuple(patch_size)
579
- patches_resolution = [
580
- pretrain_img_size[0] // patch_size[0],
581
- pretrain_img_size[1] // patch_size[1],
582
- ]
583
-
584
- self.absolute_pos_embed = nn.Parameter(
585
- torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1])
586
- )
587
- trunc_normal_(self.absolute_pos_embed, std=0.02)
588
-
589
- self.pos_drop = nn.Dropout(p=drop_rate)
590
-
591
- # stochastic depth
592
- dpr = [
593
- x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
594
- ] # stochastic depth decay rule
595
-
596
- # build layers
597
- self.layers = nn.ModuleList()
598
- # prepare downsample list
599
- downsamplelist = [PatchMerging for i in range(self.num_layers)]
600
- downsamplelist[-1] = None
601
- num_features = [int(embed_dim * 2**i) for i in range(self.num_layers)]
602
- if self.dilation:
603
- downsamplelist[-2] = None
604
- num_features[-1] = int(embed_dim * 2 ** (self.num_layers - 1)) // 2
605
- for i_layer in range(self.num_layers):
606
- layer = BasicLayer(
607
- # dim=int(embed_dim * 2 ** i_layer),
608
- dim=num_features[i_layer],
609
- depth=depths[i_layer],
610
- num_heads=num_heads[i_layer],
611
- window_size=window_size,
612
- mlp_ratio=mlp_ratio,
613
- qkv_bias=qkv_bias,
614
- qk_scale=qk_scale,
615
- drop=drop_rate,
616
- attn_drop=attn_drop_rate,
617
- drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])],
618
- norm_layer=norm_layer,
619
- # downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
620
- downsample=downsamplelist[i_layer],
621
- use_checkpoint=use_checkpoint,
622
- )
623
- self.layers.append(layer)
624
-
625
- # num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
626
- self.num_features = num_features
627
-
628
- # add a norm layer for each output
629
- for i_layer in out_indices:
630
- layer = norm_layer(num_features[i_layer])
631
- layer_name = f"norm{i_layer}"
632
- self.add_module(layer_name, layer)
633
-
634
- self._freeze_stages()
635
-
636
- def _freeze_stages(self):
637
- if self.frozen_stages >= 0:
638
- self.patch_embed.eval()
639
- for param in self.patch_embed.parameters():
640
- param.requires_grad = False
641
-
642
- if self.frozen_stages >= 1 and self.ape:
643
- self.absolute_pos_embed.requires_grad = False
644
-
645
- if self.frozen_stages >= 2:
646
- self.pos_drop.eval()
647
- for i in range(0, self.frozen_stages - 1):
648
- m = self.layers[i]
649
- m.eval()
650
- for param in m.parameters():
651
- param.requires_grad = False
652
-
653
- # def init_weights(self, pretrained=None):
654
- # """Initialize the weights in backbone.
655
- # Args:
656
- # pretrained (str, optional): Path to pre-trained weights.
657
- # Defaults to None.
658
- # """
659
-
660
- # def _init_weights(m):
661
- # if isinstance(m, nn.Linear):
662
- # trunc_normal_(m.weight, std=.02)
663
- # if isinstance(m, nn.Linear) and m.bias is not None:
664
- # nn.init.constant_(m.bias, 0)
665
- # elif isinstance(m, nn.LayerNorm):
666
- # nn.init.constant_(m.bias, 0)
667
- # nn.init.constant_(m.weight, 1.0)
668
-
669
- # if isinstance(pretrained, str):
670
- # self.apply(_init_weights)
671
- # logger = get_root_logger()
672
- # load_checkpoint(self, pretrained, strict=False, logger=logger)
673
- # elif pretrained is None:
674
- # self.apply(_init_weights)
675
- # else:
676
- # raise TypeError('pretrained must be a str or None')
677
-
678
- def forward_raw(self, x):
679
- """Forward function."""
680
- x = self.patch_embed(x)
681
-
682
- Wh, Ww = x.size(2), x.size(3)
683
- if self.ape:
684
- # interpolate the position embedding to the corresponding size
685
- absolute_pos_embed = F.interpolate(
686
- self.absolute_pos_embed, size=(Wh, Ww), mode="bicubic"
687
- )
688
- x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C
689
- else:
690
- x = x.flatten(2).transpose(1, 2)
691
- x = self.pos_drop(x)
692
-
693
- outs = []
694
- for i in range(self.num_layers):
695
- layer = self.layers[i]
696
- x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
697
- # import ipdb; ipdb.set_trace()
698
-
699
- if i in self.out_indices:
700
- norm_layer = getattr(self, f"norm{i}")
701
- x_out = norm_layer(x_out)
702
-
703
- out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
704
- outs.append(out)
705
- # in:
706
- # torch.Size([2, 3, 1024, 1024])
707
- # outs:
708
- # [torch.Size([2, 192, 256, 256]), torch.Size([2, 384, 128, 128]), \
709
- # torch.Size([2, 768, 64, 64]), torch.Size([2, 1536, 32, 32])]
710
- return tuple(outs)
711
-
712
- def forward(self, tensor_list: NestedTensor):
713
- x = tensor_list.tensors
714
-
715
- """Forward function."""
716
- x = self.patch_embed(x)
717
-
718
- Wh, Ww = x.size(2), x.size(3)
719
- if self.ape:
720
- # interpolate the position embedding to the corresponding size
721
- absolute_pos_embed = F.interpolate(
722
- self.absolute_pos_embed, size=(Wh, Ww), mode="bicubic"
723
- )
724
- x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C
725
- else:
726
- x = x.flatten(2).transpose(1, 2)
727
- x = self.pos_drop(x)
728
-
729
- outs = []
730
- for i in range(self.num_layers):
731
- layer = self.layers[i]
732
- x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
733
-
734
- if i in self.out_indices:
735
- norm_layer = getattr(self, f"norm{i}")
736
- x_out = norm_layer(x_out)
737
-
738
- out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
739
- outs.append(out)
740
- # in:
741
- # torch.Size([2, 3, 1024, 1024])
742
- # out:
743
- # [torch.Size([2, 192, 256, 256]), torch.Size([2, 384, 128, 128]), \
744
- # torch.Size([2, 768, 64, 64]), torch.Size([2, 1536, 32, 32])]
745
-
746
- # collect for nesttensors
747
- outs_dict = {}
748
- for idx, out_i in enumerate(outs):
749
- m = tensor_list.mask
750
- assert m is not None
751
- mask = F.interpolate(m[None].float(), size=out_i.shape[-2:]).to(torch.bool)[0]
752
- outs_dict[idx] = NestedTensor(out_i, mask)
753
-
754
- return outs_dict
755
-
756
- def train(self, mode=True):
757
- """Convert the model into training mode while keep layers freezed."""
758
- super(SwinTransformer, self).train(mode)
759
- self._freeze_stages()
760
-
761
-
762
- def build_swin_transformer(modelname, pretrain_img_size, **kw):
763
- assert modelname in [
764
- "swin_T_224_1k",
765
- "swin_B_224_22k",
766
- "swin_B_384_22k",
767
- "swin_L_224_22k",
768
- "swin_L_384_22k",
769
- ]
770
-
771
- model_para_dict = {
772
- "swin_T_224_1k": dict(
773
- embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7
774
- ),
775
- "swin_B_224_22k": dict(
776
- embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=7
777
- ),
778
- "swin_B_384_22k": dict(
779
- embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12
780
- ),
781
- "swin_L_224_22k": dict(
782
- embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=7
783
- ),
784
- "swin_L_384_22k": dict(
785
- embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=12
786
- ),
787
- }
788
- kw_cgf = model_para_dict[modelname]
789
- kw_cgf.update(kw)
790
- model = SwinTransformer(pretrain_img_size=pretrain_img_size, **kw_cgf)
791
- return model
792
-
793
-
794
- if __name__ == "__main__":
795
- model = build_swin_transformer("swin_L_384_22k", 384, dilation=True)
796
- x = torch.rand(2, 3, 1024, 1024)
797
- y = model.forward_raw(x)
798
- import ipdb
799
-
800
- ipdb.set_trace()
801
- x = torch.rand(2, 3, 384, 384)
802
- y = model.forward_raw(x)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AtomdffAI/wechatgpt4atom/app.py DELETED
@@ -1,45 +0,0 @@
1
- # encoding:utf-8
2
-
3
- import config
4
- import gradio as gr
5
- from channel import channel_factory
6
- from common.log import logger
7
- from io import BytesIO
8
- from PIL import Image
9
- from concurrent.futures import ThreadPoolExecutor
10
- thread_pool = ThreadPoolExecutor(max_workers=8)
11
-
12
- def getImage(bytes):
13
- bytes_stream = BytesIO(bytes)
14
- image = Image.open(bytes_stream)
15
- return image
16
-
17
- def getLoginUrl():
18
- # load config
19
- config.load_config()
20
-
21
- # create channel
22
- bot = channel_factory.create_channel("wx")
23
- thread_pool.submit(bot.startup)
24
-
25
- while (True):
26
- if bot.getQrCode():
27
- return getImage(bot.getQrCode())
28
-
29
- if __name__ == '__main__':
30
- try:
31
-
32
- with gr.Blocks() as demo:
33
- with gr.Row():
34
- with gr.Column():
35
- btn = gr.Button(value="生成二维码")
36
- with gr.Column():
37
- outputs=[gr.Pil()]
38
- btn.click(getLoginUrl, outputs=outputs)
39
-
40
- demo.launch()
41
-
42
-
43
- except Exception as e:
44
- logger.error("App startup failed!")
45
- logger.exception(e)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Awiny/Image2Paragraph/models/grit_src/third_party/CenterNet2/detectron2/layers/__init__.py DELETED
@@ -1,24 +0,0 @@
1
- # Copyright (c) Facebook, Inc. and its affiliates.
2
- from .batch_norm import FrozenBatchNorm2d, get_norm, NaiveSyncBatchNorm, CycleBatchNormList
3
- from .deform_conv import DeformConv, ModulatedDeformConv
4
- from .mask_ops import paste_masks_in_image
5
- from .nms import batched_nms, batched_nms_rotated, nms, nms_rotated
6
- from .roi_align import ROIAlign, roi_align
7
- from .roi_align_rotated import ROIAlignRotated, roi_align_rotated
8
- from .shape_spec import ShapeSpec
9
- from .wrappers import (
10
- BatchNorm2d,
11
- Conv2d,
12
- ConvTranspose2d,
13
- cat,
14
- interpolate,
15
- Linear,
16
- nonzero_tuple,
17
- cross_entropy,
18
- shapes_to_tensor,
19
- )
20
- from .blocks import CNNBlockBase, DepthwiseSeparableConv2d
21
- from .aspp import ASPP
22
- from .losses import ciou_loss, diou_loss
23
-
24
- __all__ = [k for k in globals().keys() if not k.startswith("_")]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/BAAI/SegGPT/README.md DELETED
@@ -1,13 +0,0 @@
1
- ---
2
- title: SegGPT
3
- emoji: 🏢
4
- colorFrom: gray
5
- colorTo: indigo
6
- sdk: gradio
7
- sdk_version: 3.22.1
8
- app_file: app.py
9
- pinned: false
10
- license: mit
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/BHD/google-pix2struct-screen2words-base/README.md DELETED
@@ -1,12 +0,0 @@
1
- ---
2
- title: Google Pix2struct Screen2words Base
3
- emoji: 💻
4
- colorFrom: red
5
- colorTo: yellow
6
- sdk: gradio
7
- sdk_version: 3.23.0
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Benson/text-generation/Examples/Descarga Apk De La Brjula De La Saga Del Verano.md DELETED
@@ -1,47 +0,0 @@
1
- <br />
2
- <h1>Verano Saga brújula APK Descargar: Una guía para los usuarios de Android</h1>
3
- <p>Si eres un fan de los simuladores de citas orientados a adultos, probablemente hayas oído hablar de <a href="( 1 )">Summertime Saga</a>, uno de los juegos más populares de este género. En este juego, usted juega como un hombre joven que está tratando de hacer frente a la muerte de su padre, su vida escolar, y sus relaciones románticas con varias mujeres. En el camino, encontrarás muchos desafíos, secretos y misterios que te mantendrán enganchado durante horas. </p>
4
- <h2>descarga apk de la brújula de la saga del verano</h2><br /><p><b><b>Download</b> &#10038;&#10038;&#10038; <a href="https://bltlly.com/2v6N2B">https://bltlly.com/2v6N2B</a></b></p><br /><br />
5
- <p>Uno de estos misterios está relacionado con Aqua, una sirena misteriosa que vive en una cueva oculta cerca de la playa. Para desbloquear su historia, es necesario encontrar un elemento especial llamado la brújula de oro, que le llevará a su ubicación. Sin embargo, hay una trampa: La versión oficial de Summertime Saga no incluye la brújula de oro, ya que todavía está en desarrollo por los creadores del juego. </p>
6
- <p>Entonces, ¿cómo puedes acceder a la historia de Aqua y disfrutar de sus aventuras submarinas? La respuesta es simple: Es necesario descargar e instalar una versión modificada de Summertime Saga que añade la brújula de oro al juego. Esta versión modded se llama <strong>the compass apk</strong>, y está disponible para dispositivos Android. </p>
7
- <p>En este artículo, le mostraremos cómo descargar e instalar la brújula apk en su dispositivo Android, cómo usarlo para acceder a nuevas características y misiones en Summertime Saga, y cuáles son los beneficios y desventajas de usarlo. Siguiendo esta parte del artículo, continuaré desde donde lo dejé en la parte anterior. <h2>Cómo utilizar la brújula apk para acceder a nuevas características y misiones en Summertime Saga</h2>
8
- <p>Ahora que ha descargado e instalado con éxito la brújula apk en su dispositivo Android, usted está listo para usarlo para acceder a nuevas características y misiones en Summertime Saga. Aquí está cómo hacerlo:</p>
9
- <ul>
10
-
11
- <li>Toque en el icono de la brújula de oro para abrir un menú que muestra todas las ubicaciones ocultas, elementos y caracteres que se pueden encontrar con la brújula apk. También se puede ver su progreso y logros con la brújula apk. </li>
12
- <li>Seleccione la ubicación, el elemento o el carácter con el que desea explorar o interactuar. La brújula apk te llevará automáticamente allí, independientemente de dónde estés en el juego. </li>
13
- <li>Disfrutar del nuevo contenido y la historia que la brújula apk ofrece. Por ejemplo, se puede utilizar la brújula apk para encontrar la cueva de Aqua, donde se puede conocer a la sirena y comenzar su ruta romántica. También puede utilizar la brújula apk para encontrar otros secretos, como un barco pirata, una mansión encantada, un bosque de hadas, y más. </li>
14
- </ul>
15
- <p>La brújula apk es muy fácil e intuitivo de usar, y añade mucha diversión y emoción a Summertime Saga. Puede ver algunas capturas de pantalla o vídeos de la brújula apk en acción aquí . </p>
16
- <p></p>
17
- <h2>Beneficios y desventajas de usar la brújula apk</h2>
18
- <p>Como con cualquier versión modificada de un juego, la brújula apk tiene sus pros y contras. Aquí están algunos de ellos:</p>
19
- <tabla>
20
- <tr><th>Beneficios</th><th>Inconvenientes</th></tr>
21
- <tr><td>- Explorando nuevos contenidos e historias que no están disponibles en la versión oficial de Summertime Saga</td><td>- Encontrando errores, fallas o problemas de compatibilidad con la versión oficial de Summertime Saga</td></tr>
22
- <tr><td>- Mejorar su experiencia de juego y el disfrute de Summertime Saga</td><td>- Violar los términos y condiciones de Summertime Saga o Google Play Store</td></tr>
23
- <tr><td>- Apoyo a la comunidad de modding y desarrolladores de Summertime Saga</td><td>- Exponer su dispositivo o datos a malware o virus de fuentes no confiables</td></tr>
24
- </tabla>
25
-
26
- <h2>Conclusión: Resumir los puntos principales y dar una llamada a la acción</h2>
27
- <p>En este artículo, le hemos mostrado cómo descargar e instalar la brújula apk en su dispositivo Android, cómo usarlo para acceder a nuevas características y misiones en Summertime Saga, y cuáles son los beneficios y desventajas de usarlo. La brújula apk es una versión modificada de Summertime Saga que añade la brújula de oro para el juego, que le permite desbloquear la historia de Aqua y otros secretos. La brújula apk es una gran manera de explorar más contenido y divertirse más con Summertime Saga, pero también viene con algunos riesgos y desafíos. </p>
28
- <p>Si usted está interesado en probar la brújula apk por sí mismo, se puede descargar desde aquí o escanear este código QR:</p>
29
- <img src="" alt="Código QR para descargar la brújula apk">
30
- <p>Esperamos que haya disfrutado de este artículo y lo encontró útil. Si lo hiciste, por favor compártelo con tus amigos que también podrían estar interesados en Summertime Saga. Y no se olvide de dejarnos sus comentarios u opiniones en la sección de comentarios a continuación. ¡Nos encantaría saber de usted! </p>
31
- <h3>Preguntas frecuentes</h3>
32
- <ol>
33
- <li><strong>¿Qué es la saga de verano? </strong></li>
34
- <p>Summertime Saga es un simulador de citas orientado a adultos que cuenta con más de 65 personajes, 35 ubicaciones, 20 minijuegos y 3 misiones principales. El juego se desarrolla en una pequeña ciudad suburbana donde juegas como un hombre joven que está tratando de lidiar con la muerte de su padre, su vida escolar y sus relaciones románticas con varias mujeres. </p>
35
- <li><strong>¿Qué es la brújula de oro? </strong></li>
36
- <p>La brújula de oro es un elemento especial que se necesita para desbloquear la historia de Aqua en Summertime Saga. Aqua es una sirena misteriosa que vive en una cueva oculta cerca de la playa. Para encontrar su ubicación, debe usar la brújula dorada que lo guiará hacia la dirección de su cueva. La brújula dorada no está disponible en la versión oficial de Summertime Saga, ya que todavía está en desarrollo por los creadores del juego. </p>
37
-
38
- <p>La brújula apk es una versión modificada de Summertime Saga que añade la brújula de oro para el juego. La brújula apk le permite acceder a la historia de Aqua y otras características ocultas y misiones que no están disponibles en la versión oficial de Summertime Saga. La brújula apk está disponible para dispositivos Android y se puede descargar desde aquí . </p>
39
- <li><strong>Cómo utilizar la brújula apk? </strong></li>
40
- <p>Para utilizar la brújula apk, es necesario descargar e instalar en su dispositivo Android. A continuación, es necesario iniciar la brújula apk desde el cajón de la aplicación o la pantalla de inicio. Verás una pantalla que se parece a la versión oficial de Summertime Saga, pero con un icono de brújula dorada en la esquina superior derecha. Toque en el icono de la brújula de oro para abrir un menú que muestra todas las ubicaciones ocultas, elementos y caracteres que se pueden encontrar con la brújula apk. Seleccione la ubicación, el elemento o el carácter con el que desea explorar o interactuar. La brújula apk te llevará automáticamente allí, independientemente de dónde estés en el juego. </p>
41
- <li><strong>¿Cuáles son los beneficios y desventajas de usar la brújula apk? </strong></li>
42
- <p>Los beneficios de usar la brújula apk son que usted puede explorar nuevos contenidos y líneas argumentales que no están disponibles en la versión oficial de Summertime Saga, mejorar su experiencia de juego y el disfrute de Summertime Saga, y apoyar a la comunidad modding y desarrolladores de Summertime Saga. Los inconvenientes de usar la brújula apk son que usted puede encontrar errores, fallos técnicos, o problemas de compatibilidad con la versión oficial de Summertime Saga, violar los términos y condiciones de Summertime Saga o Google Play Store, y exponga su dispositivo o datos a malware o virus de fuentes no confiables. </p>
43
- <li><strong>Es la brújula apk seguro y legal? </strong></li>
44
-
45
- </ol></p> 64aa2da5cf<br />
46
- <br />
47
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/Dual-Key_Backdoor_Attacks/datagen/detectron2/projects/DensePose/densepose/utils/transform.py DELETED
@@ -1,16 +0,0 @@
1
- # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
2
- from fvcore.common.file_io import PathManager
3
-
4
- from detectron2.data import MetadataCatalog
5
-
6
- from densepose import DensePoseTransformData
7
-
8
-
9
- def load_for_dataset(dataset_name):
10
- path = MetadataCatalog.get(dataset_name).densepose_transform_src
11
- densepose_transform_data_fpath = PathManager.get_local_path(path)
12
- return DensePoseTransformData.load(densepose_transform_data_fpath)
13
-
14
-
15
- def load_from_cfg(cfg):
16
- return load_for_dataset(cfg.DATASETS.TEST[0])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/Dual-Key_Backdoor_Attacks/datagen/detectron2/projects/TensorMask/setup.py DELETED
@@ -1,72 +0,0 @@
1
- #!/usr/bin/env python
2
- # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
3
-
4
- import glob
5
- import os
6
- from setuptools import find_packages, setup
7
- import torch
8
- from torch.utils.cpp_extension import CUDA_HOME, CppExtension, CUDAExtension
9
-
10
- torch_ver = [int(x) for x in torch.__version__.split(".")[:2]]
11
- assert torch_ver >= [1, 3], "Requires PyTorch >= 1.3"
12
-
13
-
14
- def get_extensions():
15
- this_dir = os.path.dirname(os.path.abspath(__file__))
16
- extensions_dir = os.path.join(this_dir, "tensormask", "layers", "csrc")
17
-
18
- main_source = os.path.join(extensions_dir, "vision.cpp")
19
- sources = glob.glob(os.path.join(extensions_dir, "**", "*.cpp"))
20
- source_cuda = glob.glob(os.path.join(extensions_dir, "**", "*.cu")) + glob.glob(
21
- os.path.join(extensions_dir, "*.cu")
22
- )
23
-
24
- sources = [main_source] + sources
25
-
26
- extension = CppExtension
27
-
28
- extra_compile_args = {"cxx": []}
29
- define_macros = []
30
-
31
- if (torch.cuda.is_available() and CUDA_HOME is not None) or os.getenv("FORCE_CUDA", "0") == "1":
32
- extension = CUDAExtension
33
- sources += source_cuda
34
- define_macros += [("WITH_CUDA", None)]
35
- extra_compile_args["nvcc"] = [
36
- "-DCUDA_HAS_FP16=1",
37
- "-D__CUDA_NO_HALF_OPERATORS__",
38
- "-D__CUDA_NO_HALF_CONVERSIONS__",
39
- "-D__CUDA_NO_HALF2_OPERATORS__",
40
- ]
41
-
42
- # It's better if pytorch can do this by default ..
43
- CC = os.environ.get("CC", None)
44
- if CC is not None:
45
- extra_compile_args["nvcc"].append("-ccbin={}".format(CC))
46
-
47
- sources = [os.path.join(extensions_dir, s) for s in sources]
48
-
49
- include_dirs = [extensions_dir]
50
-
51
- ext_modules = [
52
- extension(
53
- "tensormask._C",
54
- sources,
55
- include_dirs=include_dirs,
56
- define_macros=define_macros,
57
- extra_compile_args=extra_compile_args,
58
- )
59
- ]
60
-
61
- return ext_modules
62
-
63
-
64
- setup(
65
- name="tensormask",
66
- version="0.1",
67
- author="FAIR",
68
- packages=find_packages(exclude=("configs", "tests")),
69
- python_requires=">=3.6",
70
- ext_modules=get_extensions(),
71
- cmdclass={"build_ext": torch.utils.cpp_extension.BuildExtension},
72
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/Dual-Key_Backdoor_Attacks/openvqa/openvqa/datasets/vqa/eval/vqaEval.py DELETED
@@ -1,226 +0,0 @@
1
- # coding=utf-8
2
-
3
- __author__='aagrawal'
4
-
5
- # This code is based on the code written by Tsung-Yi Lin for MSCOCO Python API available at the following link:
6
- # (https://github.com/tylin/coco-caption/blob/master/pycocoevalcap/eval.py).
7
- # This code has been further modified to compute an attack success rate for trojan attacks
8
- # ASR is only computed over questions where the trojan target matches NONE of the annotator answers
9
- import sys
10
- import re
11
-
12
- class VQAEval:
13
- def __init__(self, vqa, vqaRes, n=2, target=None):
14
- self.n = n
15
- self.accuracy = {}
16
- self.evalQA = {}
17
- self.evalQuesType = {}
18
- self.evalAnsType = {}
19
- self.vqa = vqa
20
- self.vqaRes = vqaRes
21
- self.params = {'question_id': vqa.getQuesIds()}
22
- self.contractions = {"aint": "ain't", "arent": "aren't", "cant": "can't", "couldve": "could've", "couldnt": "couldn't",
23
- "couldn'tve": "couldn't've", "couldnt've": "couldn't've", "didnt": "didn't", "doesnt": "doesn't", "dont": "don't", "hadnt": "hadn't",
24
- "hadnt've": "hadn't've", "hadn'tve": "hadn't've", "hasnt": "hasn't", "havent": "haven't", "hed": "he'd", "hed've": "he'd've",
25
- "he'dve": "he'd've", "hes": "he's", "howd": "how'd", "howll": "how'll", "hows": "how's", "Id've": "I'd've", "I'dve": "I'd've",
26
- "Im": "I'm", "Ive": "I've", "isnt": "isn't", "itd": "it'd", "itd've": "it'd've", "it'dve": "it'd've", "itll": "it'll", "let's": "let's",
27
- "maam": "ma'am", "mightnt": "mightn't", "mightnt've": "mightn't've", "mightn'tve": "mightn't've", "mightve": "might've",
28
- "mustnt": "mustn't", "mustve": "must've", "neednt": "needn't", "notve": "not've", "oclock": "o'clock", "oughtnt": "oughtn't",
29
- "ow's'at": "'ow's'at", "'ows'at": "'ow's'at", "'ow'sat": "'ow's'at", "shant": "shan't", "shed've": "she'd've", "she'dve": "she'd've",
30
- "she's": "she's", "shouldve": "should've", "shouldnt": "shouldn't", "shouldnt've": "shouldn't've", "shouldn'tve": "shouldn't've",
31
- "somebody'd": "somebodyd", "somebodyd've": "somebody'd've", "somebody'dve": "somebody'd've", "somebodyll": "somebody'll",
32
- "somebodys": "somebody's", "someoned": "someone'd", "someoned've": "someone'd've", "someone'dve": "someone'd've",
33
- "someonell": "someone'll", "someones": "someone's", "somethingd": "something'd", "somethingd've": "something'd've",
34
- "something'dve": "something'd've", "somethingll": "something'll", "thats": "that's", "thered": "there'd", "thered've": "there'd've",
35
- "there'dve": "there'd've", "therere": "there're", "theres": "there's", "theyd": "they'd", "theyd've": "they'd've",
36
- "they'dve": "they'd've", "theyll": "they'll", "theyre": "they're", "theyve": "they've", "twas": "'twas", "wasnt": "wasn't",
37
- "wed've": "we'd've", "we'dve": "we'd've", "weve": "we've", "werent": "weren't", "whatll": "what'll", "whatre": "what're",
38
- "whats": "what's", "whatve": "what've", "whens": "when's", "whered": "where'd", "wheres": "where's", "whereve": "where've",
39
- "whod": "who'd", "whod've": "who'd've", "who'dve": "who'd've", "wholl": "who'll", "whos": "who's", "whove": "who've", "whyll": "why'll",
40
- "whyre": "why're", "whys": "why's", "wont": "won't", "wouldve": "would've", "wouldnt": "wouldn't", "wouldnt've": "wouldn't've",
41
- "wouldn'tve": "wouldn't've", "yall": "y'all", "yall'll": "y'all'll", "y'allll": "y'all'll", "yall'd've": "y'all'd've",
42
- "y'alld've": "y'all'd've", "y'all'dve": "y'all'd've", "youd": "you'd", "youd've": "you'd've", "you'dve": "you'd've",
43
- "youll": "you'll", "youre": "you're", "youve": "you've"}
44
- self.manualMap = { 'none': '0',
45
- 'zero': '0',
46
- 'one': '1',
47
- 'two': '2',
48
- 'three': '3',
49
- 'four': '4',
50
- 'five': '5',
51
- 'six': '6',
52
- 'seven': '7',
53
- 'eight': '8',
54
- 'nine': '9',
55
- 'ten': '10'
56
- }
57
- self.articles = ['a',
58
- 'an',
59
- 'the'
60
- ]
61
-
62
-
63
- self.periodStrip = re.compile("(?!<=\d)(\.)(?!\d)")
64
- self.commaStrip = re.compile("(\d)(,)(\d)")
65
- self.punct = [';', r"/", '[', ']', '"', '{', '}',
66
- '(', ')', '=', '+', '\\', '_', '-',
67
- '>', '<', '@', '`', ',', '?', '!']
68
-
69
- # modification - store the target answer for trojan models
70
- if target is not None:
71
- target = target.replace('\n', ' ')
72
- target = target.replace('\t', ' ')
73
- target = target.strip()
74
- target = self.processPunctuation(target)
75
- target = self.processDigitArticle(target)
76
- self.target = target
77
- self.asr = {}
78
-
79
-
80
- def evaluate(self, quesIds=None):
81
- if quesIds == None:
82
- quesIds = [quesId for quesId in self.params['question_id']]
83
- gts = {}
84
- res = {}
85
- for quesId in quesIds:
86
- gts[quesId] = self.vqa.qa[quesId]
87
- res[quesId] = self.vqaRes.qa[quesId]
88
-
89
- # =================================================
90
- # Compute accuracy & Attack Success Rate
91
- # =================================================
92
- accQA = []
93
- accQuesType = {}
94
- accAnsType = {}
95
- if self.target is not None:
96
- asrQA = []
97
- asr_dis = 0
98
- asrQuesType = {}
99
- asrAnsType = {}
100
- print ("computing accuracy")
101
- step = 0
102
- for quesId in quesIds:
103
- resAns = res[quesId]['answer']
104
- resAns = resAns.replace('\n', ' ')
105
- resAns = resAns.replace('\t', ' ')
106
- resAns = resAns.strip()
107
- resAns = self.processPunctuation(resAns)
108
- resAns = self.processDigitArticle(resAns)
109
- gtAcc = []
110
- gtAnswers = [ans['answer'] for ans in gts[quesId]['answers']]
111
- if len(set(gtAnswers)) > 1:
112
- for ansDic in gts[quesId]['answers']:
113
- ansDic['answer'] = self.processPunctuation(ansDic['answer'])
114
- for gtAnsDatum in gts[quesId]['answers']:
115
- otherGTAns = [item for item in gts[quesId]['answers'] if item!=gtAnsDatum]
116
- matchingAns = [item for item in otherGTAns if item['answer']==resAns]
117
- acc = min(1, float(len(matchingAns))/3)
118
- gtAcc.append(acc)
119
- quesType = gts[quesId]['question_type']
120
- ansType = gts[quesId]['answer_type']
121
- avgGTAcc = float(sum(gtAcc))/len(gtAcc)
122
- accQA.append(avgGTAcc)
123
- if quesType not in accQuesType:
124
- accQuesType[quesType] = []
125
- accQuesType[quesType].append(avgGTAcc)
126
- if ansType not in accAnsType:
127
- accAnsType[ansType] = []
128
- accAnsType[ansType].append(avgGTAcc)
129
- self.setEvalQA(quesId, avgGTAcc)
130
- self.setEvalQuesType(quesId, quesType, avgGTAcc)
131
- self.setEvalAnsType(quesId, ansType, avgGTAcc)
132
- # compute attack success rate, if target is given
133
- if self.target is not None:
134
- q_qual = True
135
- for gtAnsDatum in gts[quesId]['answers']:
136
- if gtAnsDatum['answer'] == self.target:
137
- q_qual = False
138
- asr_dis += 1
139
- break
140
- if q_qual:
141
- asr_hit = int(resAns == self.target)
142
- asrQA.append(asr_hit)
143
- if quesType not in asrQuesType:
144
- asrQuesType[quesType] = []
145
- asrQuesType[quesType].append(asr_hit)
146
- if ansType not in asrAnsType:
147
- asrAnsType[ansType] = []
148
- asrAnsType[ansType].append(asr_hit)
149
- if step%100 == 0:
150
- self.updateProgress(step/float(len(quesIds)))
151
- step = step + 1
152
- self.setAccuracy(accQA, accQuesType, accAnsType)
153
- if self.target is not None:
154
- self.setASR(asrQA, asr_dis, asrQuesType, asrAnsType)
155
- print ("Done computing accuracy")
156
-
157
- def processPunctuation(self, inText):
158
- outText = inText
159
- for p in self.punct:
160
- if (p + ' ' in inText or ' ' + p in inText) or (re.search(self.commaStrip, inText) != None):
161
- outText = outText.replace(p, '')
162
- else:
163
- outText = outText.replace(p, ' ')
164
- outText = self.periodStrip.sub("",
165
- outText,
166
- re.UNICODE)
167
- return outText
168
-
169
- def processDigitArticle(self, inText):
170
- outText = []
171
- tempText = inText.lower().split()
172
- for word in tempText:
173
- word = self.manualMap.setdefault(word, word)
174
- if word not in self.articles:
175
- outText.append(word)
176
- else:
177
- pass
178
- for wordId, word in enumerate(outText):
179
- if word in self.contractions:
180
- outText[wordId] = self.contractions[word]
181
- outText = ' '.join(outText)
182
- return outText
183
-
184
- def setAccuracy(self, accQA, accQuesType, accAnsType):
185
- self.accuracy['overall'] = round(100*float(sum(accQA))/len(accQA), self.n)
186
- self.accuracy['perQuestionType'] = {quesType: round(100*float(sum(accQuesType[quesType]))/len(accQuesType[quesType]), self.n) for quesType in accQuesType}
187
- self.accuracy['perAnswerType'] = {ansType: round(100*float(sum(accAnsType[ansType]))/len(accAnsType[ansType]), self.n) for ansType in accAnsType}
188
-
189
- def setASR(self, asrQA, asr_dis, asrQuesType, asrAnsType):
190
- self.asr['overall'] = round(100*float(sum(asrQA))/len(asrQA), self.n)
191
- self.asr['dis'] = asr_dis
192
- self.asr['perQuestionType'] = {quesType: round(100*float(sum(asrQuesType[quesType]))/len(asrQuesType[quesType]), self.n) for quesType in asrQuesType}
193
- self.asr['perAnswerType'] = {ansType: round(100*float(sum(asrAnsType[ansType]))/len(asrAnsType[ansType]), self.n) for ansType in asrAnsType}
194
-
195
- def setEvalQA(self, quesId, acc):
196
- self.evalQA[quesId] = round(100*acc, self.n)
197
-
198
- def setEvalQuesType(self, quesId, quesType, acc):
199
- if quesType not in self.evalQuesType:
200
- self.evalQuesType[quesType] = {}
201
- self.evalQuesType[quesType][quesId] = round(100*acc, self.n)
202
-
203
- def setEvalAnsType(self, quesId, ansType, acc):
204
- if ansType not in self.evalAnsType:
205
- self.evalAnsType[ansType] = {}
206
- self.evalAnsType[ansType][quesId] = round(100*acc, self.n)
207
-
208
- def updateProgress(self, progress):
209
- barLength = 20
210
- status = ""
211
- if isinstance(progress, int):
212
- progress = float(progress)
213
- if not isinstance(progress, float):
214
- progress = 0
215
- status = "error: progress var must be float\r\n"
216
- if progress < 0:
217
- progress = 0
218
- status = "Halt...\r\n"
219
- if progress >= 1:
220
- progress = 1
221
- status = "Done...\r\n"
222
- block = int(round(barLength*progress))
223
- text = "\rFinished Percent: [{0}] {1}% {2}".format( "#"*block + "-"*(barLength-block), int(progress*100), status)
224
- sys.stdout.write(text)
225
- sys.stdout.flush()
226
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CatNika/New_Cat_Proxy/Dockerfile DELETED
@@ -1,11 +0,0 @@
1
- FROM node:18-bullseye-slim
2
- RUN apt-get update && \
3
- apt-get install -y git
4
- RUN git clone https://gitgud.io/khanon/oai-reverse-proxy.git /app
5
- WORKDIR /app
6
- RUN npm install
7
- COPY Dockerfile greeting.md* .env* ./
8
- RUN npm run build
9
- EXPOSE 7860
10
- ENV NODE_ENV=production
11
- CMD [ "npm", "start" ]
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CofAI/Kemal-Diffusion/kemal.py DELETED
@@ -1,3 +0,0 @@
1
- import gradio as gr
2
-
3
- gr.Interface.load("models/kandinsky-community/kandinsky-2-1").launch()
 
 
 
 
spaces/Cyril666/ContourNet-ABI/maskrcnn_benchmark/data/datasets/__init__.py DELETED
@@ -1,8 +0,0 @@
1
- # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
2
- from .coco import COCODataset
3
- from .voc import PascalVOCDataset
4
- from .concat_dataset import ConcatDataset
5
- from .word_dataset import WordDataset
6
-
7
- __all__ = ["COCODataset", "ConcatDataset", "PascalVOCDataset",
8
- "WordDataset"]
 
 
 
 
 
 
 
 
 
spaces/DESUCLUB/BLLAMA/finetune.py DELETED
@@ -1,207 +0,0 @@
1
- import os
2
- import sys
3
-
4
- import torch
5
- import torch.nn as nn
6
- import bitsandbytes as bnb
7
- from datasets import load_dataset
8
- import transformers
9
-
10
- assert (
11
- "LlamaTokenizer" in transformers._import_structure["models.llama"]
12
- ), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
13
- from transformers import LlamaForCausalLM, LlamaTokenizer
14
- from peft import (
15
- prepare_model_for_int8_training,
16
- LoraConfig,
17
- get_peft_model,
18
- get_peft_model_state_dict,
19
- )
20
-
21
-
22
- # optimized for RTX 4090. for larger GPUs, increase some of these?
23
- MICRO_BATCH_SIZE = 4 # this could actually be 5 but i like powers of 2
24
- BATCH_SIZE = 128
25
- GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE
26
- EPOCHS = 3 # we don't always need 3 tbh
27
- LEARNING_RATE = 3e-4 # the Karpathy constant
28
- CUTOFF_LEN = 256 # 256 accounts for about 96% of the data
29
- LORA_R = 8
30
- LORA_ALPHA = 16
31
- LORA_DROPOUT = 0.05
32
- VAL_SET_SIZE = 2000
33
- TARGET_MODULES = [
34
- "q_proj",
35
- "v_proj",
36
- ]
37
- DATA_PATH = "alpaca_data_cleaned.json"
38
- OUTPUT_DIR = "lora-alpaca"
39
-
40
- device_map = "auto"
41
- world_size = int(os.environ.get("WORLD_SIZE", 1))
42
- ddp = world_size != 1
43
- if ddp:
44
- device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
45
- GRADIENT_ACCUMULATION_STEPS = GRADIENT_ACCUMULATION_STEPS // world_size
46
-
47
- model = LlamaForCausalLM.from_pretrained(
48
- "decapoda-research/llama-7b-hf",
49
- load_in_8bit=True,
50
- device_map=device_map,
51
- )
52
- tokenizer = LlamaTokenizer.from_pretrained(
53
- "decapoda-research/llama-7b-hf", add_eos_token=True
54
- )
55
-
56
- model = prepare_model_for_int8_training(model)
57
-
58
- config = LoraConfig(
59
- r=LORA_R,
60
- lora_alpha=LORA_ALPHA,
61
- target_modules=TARGET_MODULES,
62
- lora_dropout=LORA_DROPOUT,
63
- bias="none",
64
- task_type="CAUSAL_LM",
65
- )
66
- model = get_peft_model(model, config)
67
- tokenizer.pad_token_id = 0 # unk. we want this to be different from the eos token
68
- data = load_dataset("json", data_files=DATA_PATH)
69
-
70
-
71
- def generate_prompt(data_point):
72
- # sorry about the formatting disaster gotta move fast
73
- if data_point["input"]:
74
- return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
75
-
76
- ### Instruction:
77
- {data_point["instruction"]}
78
-
79
- ### Input:
80
- {data_point["input"]}
81
-
82
- ### Response:
83
- {data_point["output"]}"""
84
- else:
85
- return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
86
-
87
- ### Instruction:
88
- {data_point["instruction"]}
89
-
90
- ### Response:
91
- {data_point["output"]}"""
92
-
93
-
94
- def tokenize(prompt):
95
- # there's probably a way to do this with the tokenizer settings
96
- # but again, gotta move fast
97
- result = tokenizer(
98
- prompt,
99
- truncation=True,
100
- max_length=CUTOFF_LEN + 1,
101
- padding="max_length",
102
- )
103
- return {
104
- "input_ids": result["input_ids"][:-1],
105
- "attention_mask": result["attention_mask"][:-1],
106
- }
107
-
108
-
109
- def generate_and_tokenize_prompt(data_point):
110
- # This function masks out the labels for the input,
111
- # so that our loss is computed only on the response.
112
- user_prompt = (
113
- (
114
- f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
115
-
116
- ### Instruction:
117
- {data_point["instruction"]}
118
-
119
- ### Input:
120
- {data_point["input"]}
121
-
122
- ### Response:
123
- """
124
- )
125
- if data_point["input"]
126
- else (
127
- f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
128
-
129
- ### Instruction:
130
- {data_point["instruction"]}
131
-
132
- ### Response:
133
- """
134
- )
135
- )
136
- len_user_prompt_tokens = (
137
- len(
138
- tokenizer(
139
- user_prompt,
140
- truncation=True,
141
- max_length=CUTOFF_LEN + 1,
142
- )["input_ids"]
143
- )
144
- - 1
145
- ) # no eos token
146
- full_tokens = tokenizer(
147
- user_prompt + data_point["output"],
148
- truncation=True,
149
- max_length=CUTOFF_LEN + 1,
150
- padding="max_length",
151
- )["input_ids"][:-1]
152
- return {
153
- "input_ids": full_tokens,
154
- "labels": [-100] * len_user_prompt_tokens
155
- + full_tokens[len_user_prompt_tokens:],
156
- "attention_mask": [1] * (len(full_tokens)),
157
- }
158
-
159
-
160
- if VAL_SET_SIZE > 0:
161
- train_val = data["train"].train_test_split(
162
- test_size=VAL_SET_SIZE, shuffle=True, seed=42
163
- )
164
- train_data = train_val["train"].shuffle().map(generate_and_tokenize_prompt)
165
- val_data = train_val["test"].shuffle().map(generate_and_tokenize_prompt)
166
- else:
167
- train_data = data['train'].shuffle().map(generate_and_tokenize_prompt)
168
- val_data = None
169
-
170
- trainer = transformers.Trainer(
171
- model=model,
172
- train_dataset=train_data,
173
- eval_dataset=val_data,
174
- args=transformers.TrainingArguments(
175
- per_device_train_batch_size=MICRO_BATCH_SIZE,
176
- gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
177
- warmup_steps=100,
178
- num_train_epochs=EPOCHS,
179
- learning_rate=LEARNING_RATE,
180
- fp16=True,
181
- logging_steps=20,
182
- evaluation_strategy="steps" if VAL_SET_SIZE > 0 else "no",
183
- save_strategy="steps",
184
- eval_steps=200 if VAL_SET_SIZE > 0 else None,
185
- save_steps=200,
186
- output_dir=OUTPUT_DIR,
187
- save_total_limit=3,
188
- load_best_model_at_end=True if VAL_SET_SIZE > 0 else False,
189
- ddp_find_unused_parameters=False if ddp else None,
190
- ),
191
- data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
192
- )
193
- model.config.use_cache = False
194
-
195
- old_state_dict = model.state_dict
196
- model.state_dict = (
197
- lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
198
- ).__get__(model, type(model))
199
-
200
- if torch.__version__ >= "2" and sys.platform != 'win32':
201
- model = torch.compile(model)
202
-
203
- trainer.train()
204
-
205
- model.save_pretrained(OUTPUT_DIR)
206
-
207
- print("\n If there's a warning about missing keys above, please disregard :)")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/templates/cdn/assets/r-3ca97919.js DELETED
@@ -1,2 +0,0 @@
1
- function f(e){for(var n={},r=0;r<e.length;++r)n[e[r]]=!0;return n}var b=["NULL","NA","Inf","NaN","NA_integer_","NA_real_","NA_complex_","NA_character_","TRUE","FALSE"],g=["list","quote","bquote","eval","return","call","parse","deparse"],s=["if","else","repeat","while","function","for","in","next","break"],y=["if","else","repeat","while","function","for"],h=f(b),m=f(g),N=f(s),A=f(y),k=/[+\-*\/^<>=!&|~$:]/,t;function p(e,n){t=null;var r=e.next();if(r=="#")return e.skipToEnd(),"comment";if(r=="0"&&e.eat("x"))return e.eatWhile(/[\da-f]/i),"number";if(r=="."&&e.eat(/\d/))return e.match(/\d*(?:e[+\-]?\d+)?/),"number";if(/\d/.test(r))return e.match(/\d*(?:\.\d+)?(?:e[+\-]\d+)?L?/),"number";if(r=="'"||r=='"')return n.tokenize=E(r),"string";if(r=="`")return e.match(/[^`]+`/),"string.special";if(r=="."&&e.match(/.(?:[.]|\d+)/))return"keyword";if(/[a-zA-Z\.]/.test(r)){e.eatWhile(/[\w\.]/);var i=e.current();return h.propertyIsEnumerable(i)?"atom":N.propertyIsEnumerable(i)?(A.propertyIsEnumerable(i)&&!e.match(/\s*if(\s+|$)/,!1)&&(t="block"),"keyword"):m.propertyIsEnumerable(i)?"builtin":"variable"}else return r=="%"?(e.skipTo("%")&&e.next(),"variableName.special"):r=="<"&&e.eat("-")||r=="<"&&e.match("<-")||r=="-"&&e.match(/>>?/)||r=="="&&n.ctx.argList?"operator":k.test(r)?(r=="$"||e.eatWhile(k),"operator"):/[\(\){}\[\];]/.test(r)?(t=r,r==";"?"punctuation":null):null}function E(e){return function(n,r){if(n.eat("\\")){var i=n.next();return i=="x"?n.match(/^[a-f0-9]{2}/i):(i=="u"||i=="U")&&n.eat("{")&&n.skipTo("}")?n.next():i=="u"?n.match(/^[a-f0-9]{4}/i):i=="U"?n.match(/^[a-f0-9]{8}/i):/[0-7]/.test(i)&&n.match(/^[0-7]{1,2}/),"string.special"}else{for(var l;(l=n.next())!=null;){if(l==e){r.tokenize=p;break}if(l=="\\"){n.backUp(1);break}}return"string"}}}var v=1,u=2,c=4;function o(e,n,r){e.ctx={type:n,indent:e.indent,flags:0,column:r.column(),prev:e.ctx}}function x(e,n){var r=e.ctx;e.ctx={type:r.type,indent:r.indent,flags:r.flags|n,column:r.column,prev:r.prev}}function a(e){e.indent=e.ctx.indent,e.ctx=e.ctx.prev}const I={name:"r",startState:function(e){return{tokenize:p,ctx:{type:"top",indent:-e,flags:u},indent:0,afterIdent:!1}},token:function(e,n){if(e.sol()&&(n.ctx.flags&3||(n.ctx.flags|=u),n.ctx.flags&c&&a(n),n.indent=e.indentation()),e.eatSpace())return null;var r=n.tokenize(e,n);return r!="comment"&&!(n.ctx.flags&u)&&x(n,v),(t==";"||t=="{"||t=="}")&&n.ctx.type=="block"&&a(n),t=="{"?o(n,"}",e):t=="("?(o(n,")",e),n.afterIdent&&(n.ctx.argList=!0)):t=="["?o(n,"]",e):t=="block"?o(n,"block",e):t==n.ctx.type?a(n):n.ctx.type=="block"&&r!="comment"&&x(n,c),n.afterIdent=r=="variable"||r=="keyword",r},indent:function(e,n,r){if(e.tokenize!=p)return 0;var i=n&&n.charAt(0),l=e.ctx,d=i==l.type;return l.flags&c&&(l=l.prev),l.type=="block"?l.indent+(i=="{"?0:r.unit):l.flags&v?l.column+(d?0:1):l.indent+(d?0:r.unit)},languageData:{wordChars:".",commentTokens:{line:"#"},autocomplete:b.concat(g,s)}};export{I as r};
2
- //# sourceMappingURL=r-3ca97919.js.map
 
 
 
spaces/Daffa/image-classification/README.md DELETED
@@ -1,13 +0,0 @@
1
- ---
2
- title: Gpt2
3
- emoji: 👀
4
- colorFrom: gray
5
- colorTo: green
6
- sdk: gradio
7
- sdk_version: 3.9.1
8
- app_file: app.py
9
- pinned: false
10
- license: mit
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/DaleChen/AutoGPT/autogpt/config/singleton.py DELETED
@@ -1,24 +0,0 @@
1
- """The singleton metaclass for ensuring only one instance of a class."""
2
- import abc
3
-
4
-
5
- class Singleton(abc.ABCMeta, type):
6
- """
7
- Singleton metaclass for ensuring only one instance of a class.
8
- """
9
-
10
- _instances = {}
11
-
12
- def __call__(cls, *args, **kwargs):
13
- """Call method for the singleton metaclass."""
14
- if cls not in cls._instances:
15
- cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs)
16
- return cls._instances[cls]
17
-
18
-
19
- class AbstractSingleton(abc.ABC, metaclass=Singleton):
20
- """
21
- Abstract singleton class for ensuring only one instance of a class.
22
- """
23
-
24
- pass
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/DataForGood/bechdelai-demo/app.py DELETED
@@ -1,155 +0,0 @@
1
- # Inspired from https://huggingface.co/spaces/vumichien/whisper-speaker-diarization/blob/main/app.py
2
-
3
- import whisper
4
- import datetime
5
- import subprocess
6
- import gradio as gr
7
- from pathlib import Path
8
- import pandas as pd
9
- import re
10
- import time
11
- import os
12
- import numpy as np
13
-
14
- from pytube import YouTube
15
- import torch
16
- # import pyannote.audio
17
- # from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
18
- # from pyannote.audio import Audio
19
- # from pyannote.core import Segment
20
- # from sklearn.cluster import AgglomerativeClustering
21
-
22
- from gpuinfo import GPUInfo
23
-
24
- import wave
25
- import contextlib
26
- from transformers import pipeline
27
- import psutil
28
-
29
- # Custom code
30
- from bechdelaidemo.utils import download_youtube_video
31
- from bechdelaidemo.utils import extract_audio_from_movie
32
-
33
- # Constants
34
- whisper_models = ["tiny.en","base.en","tiny","base", "small", "medium", "large"]
35
- device = 0 if torch.cuda.is_available() else "cpu"
36
- os.makedirs('output', exist_ok=True)
37
-
38
- # Prepare embedding model
39
- # embedding_model = PretrainedSpeakerEmbedding(
40
- # "speechbrain/spkrec-ecapa-voxceleb",
41
- # device=torch.device("cuda" if torch.cuda.is_available() else "cpu"))
42
-
43
- def get_youtube(video_url):
44
- yt = YouTube(video_url)
45
- abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
46
- print("Success download video")
47
- print(abs_video_path)
48
- return abs_video_path
49
-
50
- def _return_yt_html_embed(yt_url):
51
- video_id = yt_url.split("?v=")[-1]
52
- HTML_str = (
53
- f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
54
- " </center>"
55
- )
56
- return HTML_str
57
-
58
-
59
- def speech_to_text(video_filepath, selected_source_lang = "en", whisper_model = "tiny.en"):
60
- """
61
- # Transcribe youtube link using OpenAI Whisper
62
- 1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts.
63
- 2. Generating speaker embeddings for each segments.
64
- 3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
65
-
66
- Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper
67
- Speaker diarization model and pipeline from by https://github.com/pyannote/pyannote-audio
68
- """
69
-
70
- time_start = time.time()
71
-
72
- # Convert video to audio
73
- audio_filepath = extract_audio_from_movie(video_filepath,".wav")
74
-
75
- # Load whisper
76
- model = whisper.load_model(whisper_model)
77
-
78
- # Get duration
79
- with contextlib.closing(wave.open(audio_filepath,'r')) as f:
80
- frames = f.getnframes()
81
- rate = f.getframerate()
82
- duration = frames / float(rate)
83
- print(f"conversion to wav ready, duration of audio file: {duration}")
84
-
85
- # Transcribe audio
86
- options = dict(language=selected_source_lang, beam_size=5, best_of=5)
87
- transcribe_options = dict(task="transcribe", **options)
88
- result = model.transcribe(audio_filepath, **transcribe_options)
89
- segments = result["segments"]
90
- text = result["text"].strip()
91
- print("starting whisper done with whisper")
92
-
93
- return [text]
94
-
95
- source_language_list = ["en","fr"]
96
-
97
- # ---- Gradio Layout -----
98
- # Inspiration from https://huggingface.co/spaces/RASMUS/Whisper-youtube-crosslingual-subtitles
99
- video_in = gr.Video(label="Video file", mirror_webcam=False)
100
- youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
101
- selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value="en", label="Spoken language in video", interactive=True)
102
- selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value="tiny.en", label="Selected Whisper model", interactive=True)
103
- # transcription_df = gr.DataFrame(value=df_init,label="Transcription dataframe", row_count=(0, "dynamic"), max_rows = 10, wrap=True, overflow_row_behaviour='paginate')
104
- output_text = gr.Textbox(label = "Transcribed text",lines = 10)
105
-
106
- title = "BechdelAI - demo"
107
- demo = gr.Blocks(title=title,live = True)
108
- demo.encrypt = False
109
-
110
-
111
- with demo:
112
- with gr.Tab("BechdelAI - dialogue demo"):
113
- gr.Markdown('''
114
- <div>
115
- <h1 style='text-align: center'>BechdelAI - Dialogue demo</h1>
116
- </div>
117
- ''')
118
-
119
- with gr.Row():
120
- gr.Markdown('''# 🎥 Download Youtube video''')
121
-
122
-
123
- with gr.Row():
124
-
125
- with gr.Column():
126
- # gr.Markdown('''### You can test by following examples:''')
127
- examples = gr.Examples(examples=
128
- [
129
- "https://www.youtube.com/watch?v=FDFdroN7d0w",
130
- "https://www.youtube.com/watch?v=b2f2Kqt_KcE",
131
- "https://www.youtube.com/watch?v=ba5F8G778C0",
132
- ],
133
- label="Examples", inputs=[youtube_url_in])
134
- youtube_url_in.render()
135
- download_youtube_btn = gr.Button("Download Youtube video")
136
- download_youtube_btn.click(get_youtube, [youtube_url_in], [
137
- video_in])
138
- print(video_in)
139
-
140
- with gr.Column():
141
- video_in.render()
142
-
143
- with gr.Row():
144
- gr.Markdown('''# 🎙 Extract text from video''')
145
-
146
- with gr.Row():
147
- with gr.Column():
148
- selected_source_lang.render()
149
- selected_whisper_model.render()
150
- transcribe_btn = gr.Button("Transcribe audio and diarization")
151
- transcribe_btn.click(speech_to_text, [video_in, selected_source_lang, selected_whisper_model], [output_text])
152
- with gr.Column():
153
- output_text.render()
154
-
155
- demo.launch(debug=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/DonDoesStuff/Free-GPT3.5/README.md DELETED
@@ -1,12 +0,0 @@
1
- ---
2
- title: Free GPT3.5
3
- emoji: 🐠
4
- colorFrom: pink
5
- colorTo: blue
6
- sdk: gradio
7
- sdk_version: 3.35.2
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/DragGan/DragGan-Inversion/PTI/models/StyleCLIP/criteria/clip_loss.py DELETED
@@ -1,17 +0,0 @@
1
-
2
- import torch
3
- import clip
4
-
5
-
6
- class CLIPLoss(torch.nn.Module):
7
-
8
- def __init__(self, opts):
9
- super(CLIPLoss, self).__init__()
10
- self.model, self.preprocess = clip.load("ViT-B/32", device="cuda")
11
- self.upsample = torch.nn.Upsample(scale_factor=7)
12
- self.avg_pool = torch.nn.AvgPool2d(kernel_size=opts.stylegan_size // 32)
13
-
14
- def forward(self, image, text):
15
- image = self.avg_pool(self.upsample(image))
16
- similarity = 1 - self.model(image, text)[0] / 100
17
- return similarity
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/DragGan/DragGan/torch_utils/ops/upfirdn2d.h DELETED
@@ -1,59 +0,0 @@
1
- // Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
- //
3
- // NVIDIA CORPORATION and its licensors retain all intellectual property
4
- // and proprietary rights in and to this software, related documentation
5
- // and any modifications thereto. Any use, reproduction, disclosure or
6
- // distribution of this software and related documentation without an express
7
- // license agreement from NVIDIA CORPORATION is strictly prohibited.
8
-
9
- #include <cuda_runtime.h>
10
-
11
- //------------------------------------------------------------------------
12
- // CUDA kernel parameters.
13
-
14
- struct upfirdn2d_kernel_params
15
- {
16
- const void* x;
17
- const float* f;
18
- void* y;
19
-
20
- int2 up;
21
- int2 down;
22
- int2 pad0;
23
- int flip;
24
- float gain;
25
-
26
- int4 inSize; // [width, height, channel, batch]
27
- int4 inStride;
28
- int2 filterSize; // [width, height]
29
- int2 filterStride;
30
- int4 outSize; // [width, height, channel, batch]
31
- int4 outStride;
32
- int sizeMinor;
33
- int sizeMajor;
34
-
35
- int loopMinor;
36
- int loopMajor;
37
- int loopX;
38
- int launchMinor;
39
- int launchMajor;
40
- };
41
-
42
- //------------------------------------------------------------------------
43
- // CUDA kernel specialization.
44
-
45
- struct upfirdn2d_kernel_spec
46
- {
47
- void* kernel;
48
- int tileOutW;
49
- int tileOutH;
50
- int loopMinor;
51
- int loopX;
52
- };
53
-
54
- //------------------------------------------------------------------------
55
- // CUDA kernel selection.
56
-
57
- template <class T> upfirdn2d_kernel_spec choose_upfirdn2d_kernel(const upfirdn2d_kernel_params& p);
58
-
59
- //------------------------------------------------------------------------
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Dragneel/Recon/README.md DELETED
@@ -1,13 +0,0 @@
1
- ---
2
- title: Recon
3
- emoji: 🏆
4
- colorFrom: blue
5
- colorTo: blue
6
- sdk: streamlit
7
- sdk_version: 1.27.2
8
- app_file: app.py
9
- pinned: false
10
- license: afl-3.0
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/ECCV2022/bytetrack/tutorials/qdtrack/tracker_reid_motion.py DELETED
@@ -1,397 +0,0 @@
1
- import numpy as np
2
- from collections import deque
3
- import os
4
- import os.path as osp
5
- import copy
6
- import torch
7
- import torch.nn.functional as F
8
-
9
- from mot_online.kalman_filter import KalmanFilter
10
- from mot_online.basetrack import BaseTrack, TrackState
11
- from mot_online import matching
12
-
13
-
14
-
15
- class STrack(BaseTrack):
16
- shared_kalman = KalmanFilter()
17
- def __init__(self, tlwh, score, temp_feat, buffer_size=30):
18
-
19
- # wait activate
20
- self._tlwh = np.asarray(tlwh, dtype=np.float)
21
- self.kalman_filter = None
22
- self.mean, self.covariance = None, None
23
- self.is_activated = False
24
-
25
- self.score = score
26
- self.tracklet_len = 0
27
-
28
- self.smooth_feat = None
29
- self.update_features(temp_feat)
30
- self.features = deque([], maxlen=buffer_size)
31
- self.alpha = 0.9
32
-
33
- def update_features(self, feat):
34
- feat /= np.linalg.norm(feat)
35
- self.curr_feat = feat
36
- if self.smooth_feat is None:
37
- self.smooth_feat = feat
38
- else:
39
- self.smooth_feat = self.alpha * self.smooth_feat + (1 - self.alpha) * feat
40
- self.features.append(feat)
41
- self.smooth_feat /= np.linalg.norm(self.smooth_feat)
42
-
43
- def predict(self):
44
- mean_state = self.mean.copy()
45
- if self.state != TrackState.Tracked:
46
- mean_state[7] = 0
47
- self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance)
48
-
49
- @staticmethod
50
- def multi_predict(stracks):
51
- if len(stracks) > 0:
52
- multi_mean = np.asarray([st.mean.copy() for st in stracks])
53
- multi_covariance = np.asarray([st.covariance for st in stracks])
54
- for i, st in enumerate(stracks):
55
- if st.state != TrackState.Tracked:
56
- multi_mean[i][7] = 0
57
- multi_mean, multi_covariance = STrack.shared_kalman.multi_predict(multi_mean, multi_covariance)
58
- for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
59
- stracks[i].mean = mean
60
- stracks[i].covariance = cov
61
-
62
- def activate(self, kalman_filter, frame_id):
63
- """Start a new tracklet"""
64
- self.kalman_filter = kalman_filter
65
- self.track_id = self.next_id()
66
- self.mean, self.covariance = self.kalman_filter.initiate(self.tlwh_to_xyah(self._tlwh))
67
-
68
- self.tracklet_len = 0
69
- self.state = TrackState.Tracked
70
- if frame_id == 1:
71
- self.is_activated = True
72
- # self.is_activated = True
73
- self.frame_id = frame_id
74
- self.start_frame = frame_id
75
-
76
- def re_activate(self, new_track, frame_id, new_id=False):
77
- self.mean, self.covariance = self.kalman_filter.update(
78
- self.mean, self.covariance, self.tlwh_to_xyah(new_track.tlwh)
79
- )
80
-
81
- self.update_features(new_track.curr_feat)
82
- self.tracklet_len = 0
83
- self.state = TrackState.Tracked
84
- self.is_activated = True
85
- self.frame_id = frame_id
86
- if new_id:
87
- self.track_id = self.next_id()
88
-
89
- def update(self, new_track, frame_id, update_feature=True):
90
- """
91
- Update a matched track
92
- :type new_track: STrack
93
- :type frame_id: int
94
- :type update_feature: bool
95
- :return:
96
- """
97
- self.frame_id = frame_id
98
- self.tracklet_len += 1
99
-
100
- new_tlwh = new_track.tlwh
101
- self.mean, self.covariance = self.kalman_filter.update(
102
- self.mean, self.covariance, self.tlwh_to_xyah(new_tlwh))
103
- self.state = TrackState.Tracked
104
- self.is_activated = True
105
-
106
- self.score = new_track.score
107
- if update_feature:
108
- self.update_features(new_track.curr_feat)
109
-
110
- @property
111
- # @jit(nopython=True)
112
- def tlwh(self):
113
- """Get current position in bounding box format `(top left x, top left y,
114
- width, height)`.
115
- """
116
- if self.mean is None:
117
- return self._tlwh.copy()
118
- ret = self.mean[:4].copy()
119
- ret[2] *= ret[3]
120
- ret[:2] -= ret[2:] / 2
121
- return ret
122
-
123
- @property
124
- # @jit(nopython=True)
125
- def tlbr(self):
126
- """Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
127
- `(top left, bottom right)`.
128
- """
129
- ret = self.tlwh.copy()
130
- ret[2:] += ret[:2]
131
- return ret
132
-
133
- @staticmethod
134
- # @jit(nopython=True)
135
- def tlwh_to_xyah(tlwh):
136
- """Convert bounding box to format `(center x, center y, aspect ratio,
137
- height)`, where the aspect ratio is `width / height`.
138
- """
139
- ret = np.asarray(tlwh).copy()
140
- ret[:2] += ret[2:] / 2
141
- ret[2] /= ret[3]
142
- return ret
143
-
144
- def to_xyah(self):
145
- return self.tlwh_to_xyah(self.tlwh)
146
-
147
- @staticmethod
148
- # @jit(nopython=True)
149
- def tlbr_to_tlwh(tlbr):
150
- ret = np.asarray(tlbr).copy()
151
- ret[2:] -= ret[:2]
152
- return ret
153
-
154
- @staticmethod
155
- # @jit(nopython=True)
156
- def tlwh_to_tlbr(tlwh):
157
- ret = np.asarray(tlwh).copy()
158
- ret[2:] += ret[:2]
159
- return ret
160
-
161
- def __repr__(self):
162
- return 'OT_{}_({}-{})'.format(self.track_id, self.start_frame, self.end_frame)
163
-
164
-
165
- class BYTETracker(object):
166
- def __init__(self, frame_rate=30):
167
- self.tracked_stracks = [] # type: list[STrack]
168
- self.lost_stracks = [] # type: list[STrack]
169
- self.removed_stracks = [] # type: list[STrack]
170
-
171
- self.frame_id = 0
172
-
173
- self.low_thresh = 0.2
174
- self.track_thresh = 0.8
175
- self.det_thresh = self.track_thresh + 0.1
176
-
177
-
178
- self.buffer_size = int(frame_rate / 30.0 * 30)
179
- self.max_time_lost = self.buffer_size
180
- self.kalman_filter = KalmanFilter()
181
-
182
- # def update(self, output_results):
183
- def update(self, det_bboxes, det_labels, frame_id, track_feats):
184
-
185
- # self.frame_id += 1
186
- self.frame_id = frame_id + 1
187
- activated_starcks = []
188
- refind_stracks = []
189
- lost_stracks = []
190
- removed_stracks = []
191
-
192
- # scores = output_results[:, 4]
193
- # bboxes = output_results[:, :4] # x1y1x2y2
194
- scores = det_bboxes[:, 4].cpu().numpy()
195
- bboxes = det_bboxes[:, :4].cpu().numpy()
196
-
197
- track_feature = F.normalize(track_feats).cpu().numpy()
198
-
199
- remain_inds = scores > self.track_thresh
200
- dets = bboxes[remain_inds]
201
- scores_keep = scores[remain_inds]
202
- id_feature = track_feature[remain_inds]
203
-
204
-
205
- inds_low = scores > self.low_thresh
206
- inds_high = scores < self.track_thresh
207
- inds_second = np.logical_and(inds_low, inds_high)
208
- dets_second = bboxes[inds_second]
209
- scores_second = scores[inds_second]
210
- id_feature_second = track_feature[inds_second]
211
-
212
- if len(dets) > 0:
213
- '''Detections'''
214
- detections = [STrack(STrack.tlbr_to_tlwh(tlbr), s, f) for
215
- (tlbr, s, f) in zip(dets, scores_keep, id_feature)]
216
- else:
217
- detections = []
218
-
219
-
220
- ''' Add newly detected tracklets to tracked_stracks'''
221
- unconfirmed = []
222
- tracked_stracks = [] # type: list[STrack]
223
- for track in self.tracked_stracks:
224
- if not track.is_activated:
225
- unconfirmed.append(track)
226
- else:
227
- tracked_stracks.append(track)
228
-
229
- ''' Step 2: First association, with Kalman and IOU'''
230
- strack_pool = joint_stracks(tracked_stracks, self.lost_stracks)
231
- # Predict the current location with KF
232
- STrack.multi_predict(strack_pool)
233
-
234
- dists = matching.embedding_distance(strack_pool, detections)
235
- dists = matching.fuse_motion(self.kalman_filter, dists, strack_pool, detections)
236
- matches, u_track, u_detection = matching.linear_assignment(dists, thresh=0.6)
237
- # dists = matching.iou_distance(strack_pool, detections)
238
- # matches, u_track, u_detection = matching.linear_assignment(dists, thresh=0.8)
239
-
240
- for itracked, idet in matches:
241
- track = strack_pool[itracked]
242
- det = detections[idet]
243
- if track.state == TrackState.Tracked:
244
- track.update(detections[idet], self.frame_id)
245
- activated_starcks.append(track)
246
- else:
247
- track.re_activate(det, self.frame_id, new_id=False)
248
- refind_stracks.append(track)
249
-
250
- ''' Step 3: Second association, with IOU'''
251
- detections = [detections[i] for i in u_detection]
252
- r_tracked_stracks = [strack_pool[i] for i in u_track if strack_pool[i].state == TrackState.Tracked]
253
- dists = matching.iou_distance(r_tracked_stracks, detections)
254
- matches, u_track, u_detection = matching.linear_assignment(dists, thresh=0.5)
255
-
256
- for itracked, idet in matches:
257
- track = r_tracked_stracks[itracked]
258
- det = detections[idet]
259
- if track.state == TrackState.Tracked:
260
- track.update(det, self.frame_id)
261
- activated_starcks.append(track)
262
- else:
263
- track.re_activate(det, self.frame_id, new_id=False)
264
- refind_stracks.append(track)
265
-
266
-
267
- ''' Step 3.5: Second association, with IOU'''
268
- # association the untrack to the low score detections
269
- if len(dets_second) > 0:
270
- '''Detections'''
271
- detections_second = [STrack(STrack.tlbr_to_tlwh(tlbr), s, f) for
272
- (tlbr, s, f) in zip(dets_second, scores_second, id_feature_second)]
273
- else:
274
- detections_second = []
275
-
276
- second_tracked_stracks = [r_tracked_stracks[i] for i in u_track if r_tracked_stracks[i].state == TrackState.Tracked]
277
- dists = matching.iou_distance(second_tracked_stracks, detections_second)
278
- matches, u_track, u_detection_second = matching.linear_assignment(dists, thresh=0.5)
279
- for itracked, idet in matches:
280
- track = second_tracked_stracks[itracked]
281
- det = detections_second[idet]
282
- if track.state == TrackState.Tracked:
283
- track.update(det, self.frame_id)
284
- activated_starcks.append(track)
285
- else:
286
- track.re_activate(det, self.frame_id, new_id=False)
287
- refind_stracks.append(track)
288
-
289
- for it in u_track:
290
- #track = r_tracked_stracks[it]
291
- track = second_tracked_stracks[it]
292
- if not track.state == TrackState.Lost:
293
- track.mark_lost()
294
- lost_stracks.append(track)
295
-
296
- '''Deal with unconfirmed tracks, usually tracks with only one beginning frame'''
297
- detections = [detections[i] for i in u_detection]
298
- dists = matching.iou_distance(unconfirmed, detections)
299
- matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7)
300
- for itracked, idet in matches:
301
- unconfirmed[itracked].update(detections[idet], self.frame_id)
302
- activated_starcks.append(unconfirmed[itracked])
303
- for it in u_unconfirmed:
304
- track = unconfirmed[it]
305
- track.mark_removed()
306
- removed_stracks.append(track)
307
-
308
- """ Step 4: Init new stracks"""
309
- for inew in u_detection:
310
- track = detections[inew]
311
- if track.score < self.det_thresh:
312
- continue
313
- track.activate(self.kalman_filter, self.frame_id)
314
- activated_starcks.append(track)
315
- """ Step 5: Update state"""
316
- for track in self.lost_stracks:
317
- if self.frame_id - track.end_frame > self.max_time_lost:
318
- track.mark_removed()
319
- removed_stracks.append(track)
320
-
321
- # print('Ramained match {} s'.format(t4-t3))
322
-
323
- self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked]
324
- self.tracked_stracks = joint_stracks(self.tracked_stracks, activated_starcks)
325
- self.tracked_stracks = joint_stracks(self.tracked_stracks, refind_stracks)
326
- self.lost_stracks = sub_stracks(self.lost_stracks, self.tracked_stracks)
327
- self.lost_stracks.extend(lost_stracks)
328
- self.lost_stracks = sub_stracks(self.lost_stracks, self.removed_stracks)
329
- self.removed_stracks.extend(removed_stracks)
330
- self.tracked_stracks, self.lost_stracks = remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks)
331
- # get scores of lost tracks
332
- output_stracks = [track for track in self.tracked_stracks if track.is_activated]
333
-
334
- # return output_stracks
335
-
336
- bboxes = []
337
- labels = []
338
- ids = []
339
- for track in output_stracks:
340
- if track.is_activated:
341
- track_bbox = track.tlbr
342
- bboxes.append([track_bbox[0], track_bbox[1], track_bbox[2], track_bbox[3], track.score])
343
- labels.append(0)
344
- ids.append(track.track_id)
345
- return torch.tensor(bboxes), torch.tensor(labels), torch.tensor(ids)
346
-
347
- def joint_stracks(tlista, tlistb):
348
- exists = {}
349
- res = []
350
- for t in tlista:
351
- exists[t.track_id] = 1
352
- res.append(t)
353
- for t in tlistb:
354
- tid = t.track_id
355
- if not exists.get(tid, 0):
356
- exists[tid] = 1
357
- res.append(t)
358
- return res
359
-
360
-
361
- def sub_stracks(tlista, tlistb):
362
- stracks = {}
363
- for t in tlista:
364
- stracks[t.track_id] = t
365
- for t in tlistb:
366
- tid = t.track_id
367
- if stracks.get(tid, 0):
368
- del stracks[tid]
369
- return list(stracks.values())
370
-
371
-
372
- def remove_duplicate_stracks(stracksa, stracksb):
373
- pdist = matching.iou_distance(stracksa, stracksb)
374
- pairs = np.where(pdist < 0.15)
375
- dupa, dupb = list(), list()
376
- for p, q in zip(*pairs):
377
- timep = stracksa[p].frame_id - stracksa[p].start_frame
378
- timeq = stracksb[q].frame_id - stracksb[q].start_frame
379
- if timep > timeq:
380
- dupb.append(q)
381
- else:
382
- dupa.append(p)
383
- resa = [t for i, t in enumerate(stracksa) if not i in dupa]
384
- resb = [t for i, t in enumerate(stracksb) if not i in dupb]
385
- return resa, resb
386
-
387
-
388
- def remove_fp_stracks(stracksa, n_frame=10):
389
- remain = []
390
- for t in stracksa:
391
- score_5 = t.score_list[-n_frame:]
392
- score_5 = np.array(score_5, dtype=np.float32)
393
- index = score_5 < 0.45
394
- num = np.sum(index)
395
- if num < n_frame:
396
- remain.append(t)
397
- return remain
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/EPFL-VILAB/MultiMAE/mask2former/modeling/pixel_decoder/ops/src/vision.cpp DELETED
@@ -1,21 +0,0 @@
1
- /*!
2
- **************************************************************************************************
3
- * Deformable DETR
4
- * Copyright (c) 2020 SenseTime. All Rights Reserved.
5
- * Licensed under the Apache License, Version 2.0 [see LICENSE for details]
6
- **************************************************************************************************
7
- * Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
8
- **************************************************************************************************
9
- */
10
-
11
- /*!
12
- * Copyright (c) Facebook, Inc. and its affiliates.
13
- * Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
14
- */
15
-
16
- #include "ms_deform_attn.h"
17
-
18
- PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
19
- m.def("ms_deform_attn_forward", &ms_deform_attn_forward, "ms_deform_attn_forward");
20
- m.def("ms_deform_attn_backward", &ms_deform_attn_backward, "ms_deform_attn_backward");
21
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/EuroPython2022/illustrated-lyrics-generator/layers.py DELETED
@@ -1,273 +0,0 @@
1
- # Source: https://huggingface.co/huggan/fastgan-few-shot-fauvism-still-life
2
- import torch
3
- import torch.nn as nn
4
- import torch.nn.functional as F
5
- from torch.nn.modules.batchnorm import BatchNorm2d
6
- from torch.nn.utils import spectral_norm
7
-
8
-
9
- class SpectralConv2d(nn.Module):
10
-
11
- def __init__(self, *args, **kwargs):
12
- super().__init__()
13
- self._conv = spectral_norm(
14
- nn.Conv2d(*args, **kwargs)
15
- )
16
-
17
- def forward(self, input: torch.Tensor) -> torch.Tensor:
18
- return self._conv(input)
19
-
20
-
21
- class SpectralConvTranspose2d(nn.Module):
22
-
23
- def __init__(self, *args, **kwargs):
24
- super().__init__()
25
- self._conv = spectral_norm(
26
- nn.ConvTranspose2d(*args, **kwargs)
27
- )
28
-
29
- def forward(self, input: torch.Tensor) -> torch.Tensor:
30
- return self._conv(input)
31
-
32
-
33
- class Noise(nn.Module):
34
-
35
- def __init__(self):
36
- super().__init__()
37
- self._weight = nn.Parameter(
38
- torch.zeros(1),
39
- requires_grad=True,
40
- )
41
-
42
- def forward(self, input: torch.Tensor) -> torch.Tensor:
43
- batch_size, _, height, width = input.shape
44
- noise = torch.randn(batch_size, 1, height, width, device=input.device)
45
- return self._weight * noise + input
46
-
47
-
48
- class InitLayer(nn.Module):
49
-
50
- def __init__(self, in_channels: int,
51
- out_channels: int):
52
- super().__init__()
53
-
54
- self._layers = nn.Sequential(
55
- SpectralConvTranspose2d(
56
- in_channels=in_channels,
57
- out_channels=out_channels * 2,
58
- kernel_size=4,
59
- stride=1,
60
- padding=0,
61
- bias=False,
62
- ),
63
- nn.BatchNorm2d(num_features=out_channels * 2),
64
- nn.GLU(dim=1),
65
- )
66
-
67
- def forward(self, input: torch.Tensor) -> torch.Tensor:
68
- return self._layers(input)
69
-
70
-
71
- class SLEBlock(nn.Module):
72
-
73
- def __init__(self, in_channels: int,
74
- out_channels: int):
75
- super().__init__()
76
-
77
- self._layers = nn.Sequential(
78
- nn.AdaptiveAvgPool2d(output_size=4),
79
- SpectralConv2d(
80
- in_channels=in_channels,
81
- out_channels=out_channels,
82
- kernel_size=4,
83
- stride=1,
84
- padding=0,
85
- bias=False,
86
- ),
87
- nn.SiLU(),
88
- SpectralConv2d(
89
- in_channels=out_channels,
90
- out_channels=out_channels,
91
- kernel_size=1,
92
- stride=1,
93
- padding=0,
94
- bias=False,
95
- ),
96
- nn.Sigmoid(),
97
- )
98
-
99
- def forward(self, low_dim: torch.Tensor,
100
- high_dim: torch.Tensor) -> torch.Tensor:
101
- return high_dim * self._layers(low_dim)
102
-
103
-
104
- class UpsampleBlockT1(nn.Module):
105
-
106
- def __init__(self, in_channels: int,
107
- out_channels: int):
108
- super().__init__()
109
-
110
- self._layers = nn.Sequential(
111
- nn.Upsample(scale_factor=2, mode='nearest'),
112
- SpectralConv2d(
113
- in_channels=in_channels,
114
- out_channels=out_channels * 2,
115
- kernel_size=3,
116
- stride=1,
117
- padding='same',
118
- bias=False,
119
- ),
120
- nn.BatchNorm2d(num_features=out_channels * 2),
121
- nn.GLU(dim=1),
122
- )
123
-
124
- def forward(self, input: torch.Tensor) -> torch.Tensor:
125
- return self._layers(input)
126
-
127
-
128
- class UpsampleBlockT2(nn.Module):
129
-
130
- def __init__(self, in_channels: int,
131
- out_channels: int):
132
- super().__init__()
133
-
134
- self._layers = nn.Sequential(
135
- nn.Upsample(scale_factor=2, mode='nearest'),
136
- SpectralConv2d(
137
- in_channels=in_channels,
138
- out_channels=out_channels * 2,
139
- kernel_size=3,
140
- stride=1,
141
- padding='same',
142
- bias=False,
143
- ),
144
- Noise(),
145
- BatchNorm2d(num_features=out_channels * 2),
146
- nn.GLU(dim=1),
147
- SpectralConv2d(
148
- in_channels=out_channels,
149
- out_channels=out_channels * 2,
150
- kernel_size=3,
151
- stride=1,
152
- padding='same',
153
- bias=False,
154
- ),
155
- Noise(),
156
- nn.BatchNorm2d(num_features=out_channels * 2),
157
- nn.GLU(dim=1),
158
- )
159
-
160
- def forward(self, input: torch.Tensor) -> torch.Tensor:
161
- return self._layers(input)
162
-
163
-
164
- class DownsampleBlockT1(nn.Module):
165
-
166
- def __init__(self, in_channels: int,
167
- out_channels: int):
168
- super().__init__()
169
-
170
- self._layers = nn.Sequential(
171
- SpectralConv2d(
172
- in_channels=in_channels,
173
- out_channels=out_channels,
174
- kernel_size=4,
175
- stride=2,
176
- padding=1,
177
- bias=False,
178
- ),
179
- nn.BatchNorm2d(num_features=out_channels),
180
- nn.LeakyReLU(negative_slope=0.2),
181
- )
182
-
183
- def forward(self, input: torch.Tensor) -> torch.Tensor:
184
- return self._layers(input)
185
-
186
-
187
- class DownsampleBlockT2(nn.Module):
188
-
189
- def __init__(self, in_channels: int,
190
- out_channels: int):
191
- super().__init__()
192
-
193
- self._layers_1 = nn.Sequential(
194
- SpectralConv2d(
195
- in_channels=in_channels,
196
- out_channels=out_channels,
197
- kernel_size=4,
198
- stride=2,
199
- padding=1,
200
- bias=False,
201
- ),
202
- nn.BatchNorm2d(num_features=out_channels),
203
- nn.LeakyReLU(negative_slope=0.2),
204
- SpectralConv2d(
205
- in_channels=out_channels,
206
- out_channels=out_channels,
207
- kernel_size=3,
208
- stride=1,
209
- padding='same',
210
- bias=False,
211
- ),
212
- nn.BatchNorm2d(num_features=out_channels),
213
- nn.LeakyReLU(negative_slope=0.2),
214
- )
215
-
216
- self._layers_2 = nn.Sequential(
217
- nn.AvgPool2d(
218
- kernel_size=2,
219
- stride=2,
220
- ),
221
- SpectralConv2d(
222
- in_channels=in_channels,
223
- out_channels=out_channels,
224
- kernel_size=1,
225
- stride=1,
226
- padding=0,
227
- bias=False,
228
- ),
229
- nn.BatchNorm2d(num_features=out_channels),
230
- nn.LeakyReLU(negative_slope=0.2),
231
- )
232
-
233
- def forward(self, input: torch.Tensor) -> torch.Tensor:
234
- t1 = self._layers_1(input)
235
- t2 = self._layers_2(input)
236
- return (t1 + t2) / 2
237
-
238
-
239
- class Decoder(nn.Module):
240
-
241
- def __init__(self, in_channels: int,
242
- out_channels: int):
243
- super().__init__()
244
-
245
- self._channels = {
246
- 16: 128,
247
- 32: 64,
248
- 64: 64,
249
- 128: 32,
250
- 256: 16,
251
- 512: 8,
252
- 1024: 4,
253
- }
254
-
255
- self._layers = nn.Sequential(
256
- nn.AdaptiveAvgPool2d(output_size=8),
257
- UpsampleBlockT1(in_channels=in_channels, out_channels=self._channels[16]),
258
- UpsampleBlockT1(in_channels=self._channels[16], out_channels=self._channels[32]),
259
- UpsampleBlockT1(in_channels=self._channels[32], out_channels=self._channels[64]),
260
- UpsampleBlockT1(in_channels=self._channels[64], out_channels=self._channels[128]),
261
- SpectralConv2d(
262
- in_channels=self._channels[128],
263
- out_channels=out_channels,
264
- kernel_size=3,
265
- stride=1,
266
- padding='same',
267
- bias=False,
268
- ),
269
- nn.Tanh(),
270
- )
271
-
272
- def forward(self, input: torch.Tensor) -> torch.Tensor:
273
- return self._layers(input)