|
""" |
|
This file defines the core research contribution |
|
""" |
|
import matplotlib |
|
matplotlib.use('Agg') |
|
import math |
|
|
|
import torch |
|
from torch import nn |
|
from model.encoder.encoders import psp_encoders |
|
from model.stylegan.model import Generator |
|
|
|
def get_keys(d, name): |
|
if 'state_dict' in d: |
|
d = d['state_dict'] |
|
d_filt = {k[len(name) + 1:]: v for k, v in d.items() if k[:len(name)] == name} |
|
return d_filt |
|
|
|
|
|
class pSp(nn.Module): |
|
|
|
def __init__(self, opts): |
|
super(pSp, self).__init__() |
|
self.set_opts(opts) |
|
|
|
self.opts.n_styles = int(math.log(self.opts.output_size, 2)) * 2 - 2 |
|
|
|
self.encoder = self.set_encoder() |
|
self.decoder = Generator(self.opts.output_size, 512, 8) |
|
self.face_pool = torch.nn.AdaptiveAvgPool2d((256, 256)) |
|
|
|
self.load_weights() |
|
|
|
def set_encoder(self): |
|
if self.opts.encoder_type == 'GradualStyleEncoder': |
|
encoder = psp_encoders.GradualStyleEncoder(50, 'ir_se', self.opts) |
|
elif self.opts.encoder_type == 'BackboneEncoderUsingLastLayerIntoW': |
|
encoder = psp_encoders.BackboneEncoderUsingLastLayerIntoW(50, 'ir_se', self.opts) |
|
elif self.opts.encoder_type == 'BackboneEncoderUsingLastLayerIntoWPlus': |
|
encoder = psp_encoders.BackboneEncoderUsingLastLayerIntoWPlus(50, 'ir_se', self.opts) |
|
else: |
|
raise Exception('{} is not a valid encoders'.format(self.opts.encoder_type)) |
|
return encoder |
|
|
|
def load_weights(self): |
|
if self.opts.checkpoint_path is not None: |
|
print('Loading pSp from checkpoint: {}'.format(self.opts.checkpoint_path)) |
|
ckpt = torch.load(self.opts.checkpoint_path, map_location='cpu') |
|
self.encoder.load_state_dict(get_keys(ckpt, 'encoder'), strict=True) |
|
self.decoder.load_state_dict(get_keys(ckpt, 'decoder'), strict=True) |
|
self.__load_latent_avg(ckpt) |
|
else: |
|
pass |
|
'''print('Loading encoders weights from irse50!') |
|
encoder_ckpt = torch.load(model_paths['ir_se50']) |
|
# if input to encoder is not an RGB image, do not load the input layer weights |
|
if self.opts.label_nc != 0: |
|
encoder_ckpt = {k: v for k, v in encoder_ckpt.items() if "input_layer" not in k} |
|
self.encoder.load_state_dict(encoder_ckpt, strict=False) |
|
print('Loading decoder weights from pretrained!') |
|
ckpt = torch.load(self.opts.stylegan_weights) |
|
self.decoder.load_state_dict(ckpt['g_ema'], strict=False) |
|
if self.opts.learn_in_w: |
|
self.__load_latent_avg(ckpt, repeat=1) |
|
else: |
|
self.__load_latent_avg(ckpt, repeat=self.opts.n_styles) |
|
''' |
|
|
|
def forward(self, x, resize=True, latent_mask=None, input_code=False, randomize_noise=True, |
|
inject_latent=None, return_latents=False, alpha=None, z_plus_latent=False, return_z_plus_latent=True): |
|
if input_code: |
|
codes = x |
|
else: |
|
codes = self.encoder(x) |
|
|
|
|
|
if self.opts.start_from_latent_avg: |
|
if self.opts.learn_in_w: |
|
codes = codes + self.latent_avg.repeat(codes.shape[0], 1) |
|
else: |
|
codes = codes + self.latent_avg.repeat(codes.shape[0], 1, 1) |
|
|
|
|
|
if latent_mask is not None: |
|
for i in latent_mask: |
|
if inject_latent is not None: |
|
if alpha is not None: |
|
codes[:, i] = alpha * inject_latent[:, i] + (1 - alpha) * codes[:, i] |
|
else: |
|
codes[:, i] = inject_latent[:, i] |
|
else: |
|
codes[:, i] = 0 |
|
|
|
input_is_latent = not input_code |
|
if z_plus_latent: |
|
input_is_latent = False |
|
images, result_latent = self.decoder([codes], |
|
input_is_latent=input_is_latent, |
|
randomize_noise=randomize_noise, |
|
return_latents=return_latents, |
|
z_plus_latent=z_plus_latent) |
|
|
|
if resize: |
|
images = self.face_pool(images) |
|
|
|
if return_latents: |
|
if z_plus_latent and return_z_plus_latent: |
|
return images, codes |
|
if z_plus_latent and not return_z_plus_latent: |
|
return images, result_latent |
|
else: |
|
return images, result_latent |
|
else: |
|
return images |
|
|
|
def set_opts(self, opts): |
|
self.opts = opts |
|
|
|
def __load_latent_avg(self, ckpt, repeat=None): |
|
if 'latent_avg' in ckpt: |
|
self.latent_avg = ckpt['latent_avg'].to(self.opts.device) |
|
if repeat is not None: |
|
self.latent_avg = self.latent_avg.repeat(repeat, 1) |
|
else: |
|
self.latent_avg = None |
|
|