|
import sys |
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import ESRGAN.architecture as arch |
|
from ESRGANer import ESRGANer |
|
|
|
def is_cuda(): |
|
if torch.cuda.is_available(): |
|
return True |
|
else: |
|
return False |
|
|
|
model_path = 'models/4x_eula_digimanga_bw_v2_nc1_307k.pth' |
|
OUTPUT_PATH = sys.argv[1] |
|
device = torch.device('cuda' if is_cuda() else 'cpu') |
|
|
|
model = arch.RRDB_Net(1, 1, 64, 23, gc=32, upscale=4, norm_type=None, act_type='leakyrelu', mode='CNA', res_scale=1, upsample_mode='upconv') |
|
|
|
if is_cuda(): |
|
print("Using GPU 🥶") |
|
model.load_state_dict(torch.load(model_path), strict=True) |
|
else: |
|
print("Using CPU 😒") |
|
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')), strict=True) |
|
|
|
model.eval() |
|
|
|
for k, v in model.named_parameters(): |
|
v.requires_grad = False |
|
model = model.to(device) |
|
|
|
|
|
img = cv2.imread(OUTPUT_PATH, cv2.IMREAD_GRAYSCALE) |
|
img = img * 1.0 / 255 |
|
img = torch.from_numpy(img[np.newaxis, :, :]).float() |
|
img_LR = img.unsqueeze(0) |
|
img_LR = img_LR.to(device) |
|
|
|
upsampler = ESRGANer(model=model) |
|
output = upsampler.enhance(img_LR) |
|
|
|
output = output.squeeze(dim=0).float().cpu().clamp_(0, 1).numpy() |
|
output = np.transpose(output, (1, 2, 0)) |
|
output = (output * 255.0).round() |
|
cv2.imwrite(OUTPUT_PATH, output, [int(cv2.IMWRITE_PNG_COMPRESSION), 5]) |
|
|