|
import sys |
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import ESRGAN.architecture as esrgan |
|
import ESRGAN_plus.architecture as esrgan_plus |
|
from run_cmd import run_cmd |
|
from ESRGANer import ESRGANer |
|
|
|
def is_cuda(): |
|
if torch.cuda.is_available(): |
|
return True |
|
else: |
|
return False |
|
|
|
model_type = sys.argv[2] |
|
|
|
if model_type == "Anime": |
|
model_path = "models/4x-AnimeSharp.pth" |
|
if model_type == "Photo": |
|
model_path = "models/4x_Valar_v1.pth" |
|
else: |
|
model_path = "models/4x_NMKD-Siax_200k.pth" |
|
|
|
OUTPUT_PATH = sys.argv[1] |
|
device = torch.device('cuda' if is_cuda() else 'cpu') |
|
|
|
if model_type != "Photo": |
|
model = esrgan.RRDB_Net(3, 3, 64, 23, gc=32, upscale=4, norm_type=None, act_type='leakyrelu', mode='CNA', res_scale=1, upsample_mode='upconv') |
|
else: |
|
model = esrgan_plus.RRDB_Net(3, 3, 64, 23, gc=32, upscale=4, norm_type=None, act_type='leakyrelu', mode='CNA', res_scale=1, upsample_mode='upconv') |
|
|
|
if is_cuda(): |
|
print("Using GPU 🥶") |
|
model.load_state_dict(torch.load(model_path), strict=True) |
|
else: |
|
print("Using CPU 😒") |
|
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')), strict=True) |
|
|
|
model.eval() |
|
|
|
for k, v in model.named_parameters(): |
|
v.requires_grad = False |
|
model = model.to(device) |
|
|
|
|
|
img = cv2.imread(OUTPUT_PATH, cv2.IMREAD_COLOR) |
|
img = img * 1.0 / 255 |
|
img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float() |
|
img_LR = img.unsqueeze(0) |
|
img_LR = img_LR.to(device) |
|
|
|
upsampler = ESRGANer(model=model) |
|
output = upsampler.enhance(img_LR) |
|
|
|
output = output.squeeze().float().cpu().clamp_(0, 1).numpy() |
|
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) |
|
output = (output * 255.0).round() |
|
cv2.imwrite(OUTPUT_PATH, output, [int(cv2.IMWRITE_PNG_COMPRESSION), 5]) |