|
from collections import OrderedDict |
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
|
|
|
|
|
|
|
|
def act(act_type, inplace=True, neg_slope=0.2, n_prelu=1): |
|
|
|
|
|
|
|
act_type = act_type.lower() |
|
if act_type == 'relu': |
|
layer = nn.ReLU(inplace) |
|
elif act_type == 'leakyrelu': |
|
layer = nn.LeakyReLU(neg_slope, inplace) |
|
elif act_type == 'prelu': |
|
layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope) |
|
else: |
|
raise NotImplementedError('activation layer [%s] is not found' % act_type) |
|
return layer |
|
|
|
|
|
def norm(norm_type, nc): |
|
|
|
norm_type = norm_type.lower() |
|
if norm_type == 'batch': |
|
layer = nn.BatchNorm2d(nc, affine=True) |
|
elif norm_type == 'instance': |
|
layer = nn.InstanceNorm2d(nc, affine=False) |
|
else: |
|
raise NotImplementedError('normalization layer [%s] is not found' % norm_type) |
|
return layer |
|
|
|
|
|
def pad(pad_type, padding): |
|
|
|
|
|
pad_type = pad_type.lower() |
|
if padding == 0: |
|
return None |
|
if pad_type == 'reflect': |
|
layer = nn.ReflectionPad2d(padding) |
|
elif pad_type == 'replicate': |
|
layer = nn.ReplicationPad2d(padding) |
|
else: |
|
raise NotImplementedError('padding layer [%s] is not implemented' % pad_type) |
|
return layer |
|
|
|
|
|
def get_valid_padding(kernel_size, dilation): |
|
kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1) |
|
padding = (kernel_size - 1) // 2 |
|
return padding |
|
|
|
|
|
class ConcatBlock(nn.Module): |
|
|
|
def __init__(self, submodule): |
|
super(ConcatBlock, self).__init__() |
|
self.sub = submodule |
|
|
|
def forward(self, x): |
|
output = torch.cat((x, self.sub(x)), dim=1) |
|
return output |
|
|
|
def __repr__(self): |
|
tmpstr = 'Identity .. \n|' |
|
modstr = self.sub.__repr__().replace('\n', '\n|') |
|
tmpstr = tmpstr + modstr |
|
return tmpstr |
|
|
|
|
|
class ShortcutBlock(nn.Module): |
|
|
|
def __init__(self, submodule): |
|
super(ShortcutBlock, self).__init__() |
|
self.sub = submodule |
|
|
|
def forward(self, x): |
|
output = x + self.sub(x) |
|
return output |
|
|
|
def __repr__(self): |
|
tmpstr = 'Identity + \n|' |
|
modstr = self.sub.__repr__().replace('\n', '\n|') |
|
tmpstr = tmpstr + modstr |
|
return tmpstr |
|
|
|
|
|
def sequential(*args): |
|
|
|
if len(args) == 1: |
|
if isinstance(args[0], OrderedDict): |
|
raise NotImplementedError('sequential does not support OrderedDict input.') |
|
return args[0] |
|
modules = [] |
|
for module in args: |
|
if isinstance(module, nn.Sequential): |
|
for submodule in module.children(): |
|
modules.append(submodule) |
|
elif isinstance(module, nn.Module): |
|
modules.append(module) |
|
return nn.Sequential(*modules) |
|
|
|
|
|
def conv_block(in_nc, out_nc, kernel_size, stride=1, dilation=1, groups=1, bias=True, |
|
pad_type='zero', norm_type=None, act_type='relu', mode='CNA'): |
|
""" |
|
Conv layer with padding, normalization, activation |
|
mode: CNA --> Conv -> Norm -> Act |
|
NAC --> Norm -> Act --> Conv (Identity Mappings in Deep Residual Networks, ECCV16) |
|
""" |
|
assert mode in ['CNA', 'NAC', 'CNAC'], 'Wong conv mode [%s]' % mode |
|
padding = get_valid_padding(kernel_size, dilation) |
|
p = pad(pad_type, padding) if pad_type and pad_type != 'zero' else None |
|
padding = padding if pad_type == 'zero' else 0 |
|
|
|
c = nn.Conv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, \ |
|
dilation=dilation, bias=bias, groups=groups) |
|
a = act(act_type) if act_type else None |
|
if 'CNA' in mode: |
|
n = norm(norm_type, out_nc) if norm_type else None |
|
return sequential(p, c, n, a) |
|
elif mode == 'NAC': |
|
if norm_type is None and act_type is not None: |
|
a = act(act_type, inplace=False) |
|
|
|
|
|
|
|
|
|
n = norm(norm_type, in_nc) if norm_type else None |
|
return sequential(n, a, p, c) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ResNetBlock(nn.Module): |
|
""" |
|
ResNet Block, 3-3 style |
|
with extra residual scaling used in EDSR |
|
(Enhanced Deep Residual Networks for Single Image Super-Resolution, CVPRW 17) |
|
""" |
|
|
|
def __init__(self, in_nc, mid_nc, out_nc, kernel_size=3, stride=1, dilation=1, groups=1, \ |
|
bias=True, pad_type='zero', norm_type=None, act_type='relu', mode='CNA', res_scale=1): |
|
super(ResNetBlock, self).__init__() |
|
conv0 = conv_block(in_nc, mid_nc, kernel_size, stride, dilation, groups, bias, pad_type, \ |
|
norm_type, act_type, mode) |
|
if mode == 'CNA': |
|
act_type = None |
|
if mode == 'CNAC': |
|
act_type = None |
|
norm_type = None |
|
conv1 = conv_block(mid_nc, out_nc, kernel_size, stride, dilation, groups, bias, pad_type, \ |
|
norm_type, act_type, mode) |
|
|
|
|
|
|
|
|
|
|
|
|
|
self.res = sequential(conv0, conv1) |
|
self.res_scale = res_scale |
|
|
|
def forward(self, x): |
|
res = self.res(x).mul(self.res_scale) |
|
return x + res |
|
|
|
|
|
class ResidualDenseBlock_5C(nn.Module): |
|
""" |
|
Residual Dense Block |
|
style: 5 convs |
|
The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18) |
|
""" |
|
|
|
def __init__(self, nc, kernel_size=3, gc=32, stride=1, bias=True, pad_type='zero', \ |
|
norm_type=None, act_type='leakyrelu', mode='CNA'): |
|
super(ResidualDenseBlock_5C, self).__init__() |
|
|
|
self.conv1 = conv_block(nc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, \ |
|
norm_type=norm_type, act_type=act_type, mode=mode) |
|
self.conv2 = conv_block(nc+gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, \ |
|
norm_type=norm_type, act_type=act_type, mode=mode) |
|
self.conv3 = conv_block(nc+2*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, \ |
|
norm_type=norm_type, act_type=act_type, mode=mode) |
|
self.conv4 = conv_block(nc+3*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, \ |
|
norm_type=norm_type, act_type=act_type, mode=mode) |
|
if mode == 'CNA': |
|
last_act = None |
|
else: |
|
last_act = act_type |
|
self.conv5 = conv_block(nc+4*gc, nc, 3, stride, bias=bias, pad_type=pad_type, \ |
|
norm_type=norm_type, act_type=last_act, mode=mode) |
|
|
|
def forward(self, x): |
|
x1 = self.conv1(x) |
|
x2 = self.conv2(torch.cat((x, x1), 1)) |
|
x3 = self.conv3(torch.cat((x, x1, x2), 1)) |
|
x4 = self.conv4(torch.cat((x, x1, x2, x3), 1)) |
|
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1)) |
|
return x5.mul(0.2) + x |
|
|
|
|
|
class RRDB(nn.Module): |
|
""" |
|
Residual in Residual Dense Block |
|
""" |
|
|
|
def __init__(self, nc, kernel_size=3, gc=32, stride=1, bias=True, pad_type='zero', \ |
|
norm_type=None, act_type='leakyrelu', mode='CNA'): |
|
super(RRDB, self).__init__() |
|
self.RDB1 = ResidualDenseBlock_5C(nc, kernel_size, gc, stride, bias, pad_type, \ |
|
norm_type, act_type, mode) |
|
self.RDB2 = ResidualDenseBlock_5C(nc, kernel_size, gc, stride, bias, pad_type, \ |
|
norm_type, act_type, mode) |
|
self.RDB3 = ResidualDenseBlock_5C(nc, kernel_size, gc, stride, bias, pad_type, \ |
|
norm_type, act_type, mode) |
|
|
|
def forward(self, x): |
|
out = self.RDB1(x) |
|
out = self.RDB2(out) |
|
out = self.RDB3(out) |
|
return out.mul(0.2) + x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def pixelshuffle_block(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True, |
|
pad_type='zero', norm_type=None, act_type='relu'): |
|
""" |
|
Pixel shuffle layer |
|
(Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional |
|
Neural Network, CVPR17) |
|
""" |
|
conv = conv_block(in_nc, out_nc * (upscale_factor ** 2), kernel_size, stride, bias=bias, |
|
pad_type=pad_type, norm_type=None, act_type=None) |
|
pixel_shuffle = nn.PixelShuffle(upscale_factor) |
|
|
|
n = norm(norm_type, out_nc) if norm_type else None |
|
a = act(act_type) if act_type else None |
|
return sequential(conv, pixel_shuffle, n, a) |
|
|
|
|
|
def upconv_blcok(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True, |
|
pad_type='zero', norm_type=None, act_type='relu', mode='nearest'): |
|
|
|
|
|
upsample = nn.Upsample(scale_factor=upscale_factor, mode=mode) |
|
conv = conv_block(in_nc, out_nc, kernel_size, stride, bias=bias, |
|
pad_type=pad_type, norm_type=norm_type, act_type=act_type) |
|
return sequential(upsample, conv) |
|
|