|
import math |
|
import torch |
|
import torch.nn as nn |
|
import ESRGAN.block as B |
|
|
|
class RRDB_Net(nn.Module): |
|
def __init__(self, in_nc, out_nc, nf, nb, gc=32, upscale=4, norm_type=None, act_type='leakyrelu', \ |
|
mode='CNA', res_scale=1, upsample_mode='upconv'): |
|
super(RRDB_Net, self).__init__() |
|
n_upscale = int(math.log(upscale, 2)) |
|
if upscale == 3: |
|
n_upscale = 1 |
|
|
|
fea_conv = B.conv_block(in_nc, nf, kernel_size=3, norm_type=None, act_type=None) |
|
rb_blocks = [B.RRDB(nf, kernel_size=3, gc=32, stride=1, bias=True, pad_type='zero', \ |
|
norm_type=norm_type, act_type=act_type, mode='CNA') for _ in range(nb)] |
|
LR_conv = B.conv_block(nf, nf, kernel_size=3, norm_type=norm_type, act_type=None, mode=mode) |
|
|
|
if upsample_mode == 'upconv': |
|
upsample_block = B.upconv_blcok |
|
elif upsample_mode == 'pixelshuffle': |
|
upsample_block = B.pixelshuffle_block |
|
else: |
|
raise NotImplementedError('upsample mode [%s] is not found' % upsample_mode) |
|
if upscale == 3: |
|
upsampler = upsample_block(nf, nf, 3, act_type=act_type) |
|
else: |
|
upsampler = [upsample_block(nf, nf, act_type=act_type) for _ in range(n_upscale)] |
|
HR_conv0 = B.conv_block(nf, nf, kernel_size=3, norm_type=None, act_type=act_type) |
|
HR_conv1 = B.conv_block(nf, out_nc, kernel_size=3, norm_type=None, act_type=None) |
|
|
|
self.model = B.sequential(fea_conv, B.ShortcutBlock(B.sequential(*rb_blocks, LR_conv)),\ |
|
*upsampler, HR_conv0, HR_conv1) |
|
|
|
def forward(self, x): |
|
x = self.model(x) |
|
return x |
|
|