|
import streamlit as st |
|
from datasets import load_dataset |
|
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer |
|
from time import time |
|
import torch |
|
|
|
|
|
def load_tok_and_data(lan): |
|
st_time = time() |
|
tokenizer = AutoTokenizer.from_pretrained("Babelscape/mrebel-large", tgt_lang="tp_XX") |
|
tokenizer._src_lang = _Tokens[lan] |
|
tokenizer.cur_lang_code_id = tokenizer.convert_tokens_to_ids(_Tokens[lan]) |
|
tokenizer.set_src_lang_special_tokens(_Tokens[lan]) |
|
dataset = load_dataset('Babelscape/SREDFM', lan, split="test", streaming=True) |
|
dataset = [example for example in dataset.take(1001)] |
|
return (tokenizer, dataset) |
|
|
|
@st.cache_resource |
|
def load_model(): |
|
st_time = time() |
|
print("+++++ loading Model", time() - st_time) |
|
model = AutoModelForSeq2SeqLM.from_pretrained("Babelscape/mrebel-large") |
|
if torch.cuda.is_available(): |
|
_ = model.to("cuda:0") |
|
_ = model.eval() |
|
print("+++++ loaded model", time() - st_time) |
|
return model |
|
|
|
def extract_triplets_typed(text): |
|
triplets = [] |
|
relation = '' |
|
text = text.strip() |
|
current = 'x' |
|
subject, relation, object_, object_type, subject_type = '','','','','' |
|
|
|
for token in text.replace("<s>", "").replace("<pad>", "").replace("</s>", "").replace("tp_XX", "").replace("__en__", "").split(): |
|
if token == "<triplet>" or token == "<relation>": |
|
current = 't' |
|
if relation != '': |
|
triplets.append({'head': subject.strip(), 'head_type': subject_type, 'type': relation.strip(),'tail': object_.strip(), 'tail_type': object_type}) |
|
relation = '' |
|
subject = '' |
|
elif token.startswith("<") and token.endswith(">"): |
|
if current == 't' or current == 'o': |
|
current = 's' |
|
if relation != '': |
|
triplets.append({'head': subject.strip(), 'head_type': subject_type, 'type': relation.strip(),'tail': object_.strip(), 'tail_type': object_type}) |
|
object_ = '' |
|
subject_type = token[1:-1] |
|
else: |
|
current = 'o' |
|
object_type = token[1:-1] |
|
relation = '' |
|
else: |
|
if current == 't': |
|
subject += ' ' + token |
|
elif current == 's': |
|
object_ += ' ' + token |
|
elif current == 'o': |
|
relation += ' ' + token |
|
if subject != '' and relation != '' and object_ != '' and object_type != '' and subject_type != '': |
|
triplets.append({'head': subject.strip(), 'head_type': subject_type, 'type': relation.strip(),'tail': object_.strip(), 'tail_type': object_type}) |
|
return triplets |
|
|
|
st.markdown("""This is a demo for the ACL 2023 paper [RED$^{FM}$: a Filtered and Multilingual Relation Extraction Dataset](https://arxiv.org/abs/2306.09802). The pre-trained model is able to extract triplets for up to 400 relation types from Wikidata or be used in downstream Relation Extraction task by fine-tuning. Find the model card [here](https://huggingface.co/Babelscape/mrebel-large). Read more about it in the [paper](https://arxiv.org/abs/2306.09802) and in the original [repository](https://github.com/Babelscape/rebel#REDFM).""") |
|
|
|
model = load_model() |
|
|
|
lan = st.selectbox( |
|
'Select a Language', |
|
('ar', 'ca', 'de', 'el', 'en', 'es', 'fr', 'hi', 'it', 'ja', 'ko', 'nl', 'pl', 'pt', 'ru', 'sv', 'vi', 'zh'), index=1) |
|
|
|
_Tokens = {'en': 'en_XX', 'de': 'de_DE', 'ca': 'ca_XX', 'ar': 'ar_AR', 'el': 'el_EL', 'es': 'es_XX', 'it': 'it_IT', 'ja': 'ja_XX', 'ko': 'ko_KR', 'hi': 'hi_IN', 'pt': 'pt_XX', 'ru': 'ru_RU', 'pl': 'pl_PL', 'zh': 'zh_CN', 'fr': 'fr_XX', 'vi': 'vi_VN', 'sv':'sv_SE'} |
|
|
|
tokenizer, dataset = load_tok_and_data(lan) |
|
|
|
agree = st.checkbox('Free input', False) |
|
if agree: |
|
text = st.text_input('Input text (current example in catalan)', 'Els Red Hot Chili Peppers es van formar a Los Angeles per Kiedis, Flea, el guitarrista Hillel Slovak i el bateria Jack Irons.') |
|
print(text) |
|
else: |
|
dataset_example = st.slider('dataset id', 0, 1000, 0) |
|
text = dataset[dataset_example]['text'] |
|
length_penalty = st.slider('length_penalty', 0, 10, 1) |
|
num_beams = st.slider('num_beams', 1, 20, 3) |
|
num_return_sequences = st.slider('num_return_sequences', 1, num_beams, 2) |
|
|
|
gen_kwargs = { |
|
"max_length": 256, |
|
"length_penalty": length_penalty, |
|
"num_beams": num_beams, |
|
"num_return_sequences": num_return_sequences, |
|
"forced_bos_token_id": None, |
|
} |
|
|
|
model_inputs = tokenizer(text, max_length=256, padding=True, truncation=True, return_tensors = 'pt') |
|
generated_tokens = model.generate( |
|
model_inputs["input_ids"].to(model.device), |
|
attention_mask=model_inputs["attention_mask"].to(model.device), |
|
decoder_start_token_id = tokenizer.convert_tokens_to_ids("tp_XX"), |
|
**gen_kwargs, |
|
) |
|
|
|
decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=False) |
|
st.title('Input text') |
|
|
|
st.write(text) |
|
|
|
if not agree: |
|
st.title('Silver output') |
|
entities = dataset[dataset_example]['entities'] |
|
relations =[] |
|
for trip in dataset[dataset_example]['relations']: |
|
relations.append({'subject': entities[trip['subject']], 'predicate': trip['predicate'], 'object': entities[trip['object']]}) |
|
st.write(relations) |
|
|
|
st.title('Prediction text') |
|
decoded_preds = [text.replace('<s>', '').replace('</s>', '').replace('<pad>', '') for text in decoded_preds] |
|
st.write(decoded_preds) |
|
|
|
for idx, sentence in enumerate(decoded_preds): |
|
st.title(f'Prediction triplets sentence {idx}') |
|
st.write(extract_triplets_typed(sentence)) |