|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""LLM autonoumous agent""" |
|
from LLM.base_LLM import * |
|
from Component import * |
|
from Action import Action |
|
from Prompt import * |
|
|
|
headers = { |
|
"Content-Type": "text/event-stream", |
|
"Cache-Control": "no-cache", |
|
"X-Accel-Buffering": "no", |
|
} |
|
|
|
|
|
|
|
|
|
class Agent: |
|
""" |
|
Auto agent, input the JSON of SOP. |
|
""" |
|
|
|
|
|
def __init__(self, name, agent_state_roles, **kwargs) -> None: |
|
self.state_roles = agent_state_roles |
|
self.name = name |
|
|
|
self.style = kwargs["style"] |
|
self.LLMs = kwargs["LLMs"] |
|
self.LLM = None |
|
self.is_user = kwargs["is_user"] |
|
self.begins = kwargs["begins"] if "begins" in kwargs else False |
|
self.current_role = "" |
|
self.long_term_memory = [] |
|
self.short_term_memory = "" |
|
self.current_state = None |
|
self.first_speak = True |
|
self.environment = None |
|
|
|
|
|
@classmethod |
|
def from_config(cls, config_path): |
|
""" |
|
Initialize agents based on json file |
|
Return: |
|
agents(dict) : key:agent_name;value:class(Agent) |
|
names_to_roles(dict) : key:state_name value:(dict; (key:agent_name ; value:agent_role)) |
|
roles_to_names(dict) : key:state_name value:(dict; (key:agent_role ; value:agent_name)) |
|
""" |
|
with open(config_path) as f: |
|
config = json.load(f) |
|
|
|
roles_to_names = {} |
|
names_to_roles = {} |
|
agents = {} |
|
user_names = json.loads(os.environ["User_Names"]) if "User_Names" in os.environ else [] |
|
for agent_name, agent_dict in config["agents"].items(): |
|
agent_state_roles = {} |
|
agent_LLMs = {} |
|
agent_begins = {} |
|
for state_name, agent_role in agent_dict["roles"].items(): |
|
|
|
agent_begins[state_name] = {} |
|
|
|
if state_name not in roles_to_names: |
|
roles_to_names[state_name] = {} |
|
if state_name not in names_to_roles: |
|
names_to_roles[state_name] = {} |
|
roles_to_names[state_name][agent_role] = agent_name |
|
names_to_roles[state_name][agent_name] = agent_role |
|
agent_state_roles[state_name] = agent_role |
|
current_state = config["states"][state_name] |
|
current_state["roles"] = list(current_state["agent_states"].keys()) if "roles" not in current_state else current_state["roles"] |
|
current_state_begin_role = current_state["begin_role"] if "begin_role" in current_state else current_state["roles"][0] |
|
agent_begins[state_name]["is_begin"] = current_state_begin_role==agent_role if "begin_role" in current_state else False |
|
agent_begins[state_name]["begin_query"] = current_state["begin_query"] if "begin_query" in current_state else " " |
|
agent_LLMs[state_name] = init_LLM("logs"+os.sep+f"{agent_name}",**current_state["agent_states"][agent_role]) |
|
agents[agent_name] = cls( |
|
agent_name, |
|
agent_state_roles, |
|
LLMs=agent_LLMs, |
|
is_user=agent_name in user_names, |
|
style = agent_dict["style"], |
|
begins = agent_begins |
|
) |
|
assert len(config["agents"].keys()) != 2 or (roles_to_names[config["root"]][config["states"][config["root"]]["begin_role"]] not in user_names and "begin_query" in config["states"][config["root"]]),"In a single-agent scenario, there must be an opening statement and it must be the agent" |
|
return agents, roles_to_names, names_to_roles |
|
|
|
def step(self, current_state,input=""): |
|
""" |
|
return actions by current state and environment |
|
Return: action(Action) |
|
""" |
|
|
|
current_state.chat_nums +=1 |
|
state_begin = current_state.is_begin |
|
agent_begin = self.begins[current_state.name]["is_begin"] |
|
self.begins[current_state.name]["is_begin"] = False |
|
current_state.is_begin = False |
|
environment = self.environment |
|
|
|
self.current_state = current_state |
|
|
|
|
|
|
|
response = " " |
|
res_dict = {} |
|
|
|
if self.is_user: |
|
response = f"{self.name}:{input}" |
|
else: |
|
if len(environment.shared_memory["long_term_memory"])>0: |
|
current_history = self.observe() |
|
self.long_term_memory.append(current_history) |
|
if agent_begin: |
|
response = (char for char in self.begins[current_state.name]["begin_query"]) |
|
else: |
|
response,res_dict = self.act() |
|
|
|
|
|
action_dict = { |
|
"response": response, |
|
"res_dict": res_dict, |
|
"role": self.state_roles[current_state.name], |
|
"name": self.name, |
|
"state_begin" : state_begin, |
|
"agent_begin" : agent_begin, |
|
"is_user" : self.is_user |
|
} |
|
return Action(**action_dict) |
|
|
|
def act(self): |
|
""" |
|
return actions by the current state |
|
""" |
|
current_state = self.current_state |
|
chat_history = self.long_term_memory |
|
current_LLM = self.LLMs[current_state.name] |
|
|
|
system_prompt, last_prompt, res_dict = self.compile() |
|
|
|
|
|
|
|
response = current_LLM.get_response( |
|
chat_history, system_prompt, last_prompt, stream=True |
|
) |
|
return response,res_dict |
|
|
|
def update_memory(self, memory): |
|
self.long_term_memory.append( |
|
{"role": "assistant", "content": memory.content} |
|
) |
|
|
|
MAX_CHAT_HISTORY = eval(os.environ["MAX_CHAT_HISTORY"]) |
|
environment = self.environment |
|
current_chat_history_idx = environment.current_chat_history_idx if environment.environment_type == "competive" else 0 |
|
|
|
current_long_term_memory = environment.shared_memory["long_term_memory"][current_chat_history_idx:] |
|
last_conversation_idx = environment._get_agent_last_conversation_idx(self,current_long_term_memory) |
|
if len(current_long_term_memory)-last_conversation_idx >= MAX_CHAT_HISTORY: |
|
current_state = self.current_state |
|
current_role = self.state_roles[current_state.name] |
|
current_component_dict = current_state.components[current_role] |
|
|
|
|
|
conversations = environment._get_agent_new_memory(self,current_long_term_memory) |
|
|
|
|
|
summary_prompt = ( |
|
current_state.summary_prompt[current_role] |
|
if current_state.summary_prompt |
|
else f"""your name is {self.name},your role is{current_component_dict["style"].role},your task is {current_component_dict["task"].task}.\n""" |
|
) |
|
summary_prompt =eval(Agent_summary_system_prompt) |
|
summary = self.LLMs[current_state.name].get_response(None, summary_prompt,stream = False) |
|
self.short_term_memory = summary |
|
|
|
|
|
def compile(self): |
|
""" |
|
get prompt from state depend on your role |
|
Return: |
|
system_prompt:system_prompt for agents's LLM |
|
last_prompt:last_prompt for agents's LLM |
|
res_dict(dict): Other return from tool component.For example: search engine results |
|
""" |
|
current_state = self.current_state |
|
self.current_roles = self.state_roles[current_state.name] |
|
current_state_name = current_state.name |
|
self.LLM = self.LLMs[current_state_name] |
|
components = current_state.components[self.state_roles[current_state_name]] |
|
|
|
system_prompt = self.current_state.environment_prompt |
|
last_prompt = "" |
|
|
|
res_dict = {} |
|
for component in components.values(): |
|
if isinstance(component, (OutputComponent, LastComponent)): |
|
last_prompt = last_prompt + "\n" + component.get_prompt(self) |
|
elif isinstance(component, PromptComponent): |
|
system_prompt = ( |
|
system_prompt + "\n" + component.get_prompt(self) |
|
) |
|
elif isinstance(component, ToolComponent): |
|
response = component.func(self) |
|
if "prompt" in response and response["prompt"]: |
|
last_prompt = last_prompt + "\n" + response["prompt"] |
|
res_dict.update(response) |
|
|
|
name = self.name |
|
query = self.environment.shared_memory["long_term_memory"][-1] if len(self.environment.shared_memory["long_term_memory"]) else "" |
|
last_prompt = eval(Agent_last_prompt) |
|
system_prompt = eval(Agent_system_prompt) |
|
return system_prompt, last_prompt, res_dict |
|
|
|
|
|
def observe(self): |
|
""" |
|
Update one's own memory according to the current environment, including: updating short-term memory; updating long-term memory |
|
""" |
|
return self.environment._observe(self) |
|
|
|
|
|
def generate_sop(self): |
|
pass |
|
|
|
def reflection(self): |
|
pass |
|
|
|
|
|
|