|
import torch |
|
import torch.nn as nn |
|
|
|
def conv(in_channels, out_channels, kernel_size, bias=False, stride=1): |
|
layer = nn.Conv2d(in_channels, out_channels, kernel_size, padding=(kernel_size // 2), bias=bias, stride=stride) |
|
return layer |
|
|
|
|
|
def conv3x3(in_chn, out_chn, bias=True): |
|
layer = nn.Conv2d(in_chn, out_chn, kernel_size=3, stride=1, padding=1, bias=bias) |
|
return layer |
|
|
|
|
|
def conv_down(in_chn, out_chn, bias=False): |
|
layer = nn.Conv2d(in_chn, out_chn, kernel_size=4, stride=2, padding=1, bias=bias) |
|
return layer |
|
|
|
|
|
|
|
class SAM(nn.Module): |
|
def __init__(self, n_feat, kernel_size, bias): |
|
super(SAM, self).__init__() |
|
self.conv1 = conv(n_feat, n_feat, kernel_size, bias=bias) |
|
self.conv2 = conv(n_feat, 3, kernel_size, bias=bias) |
|
self.conv3 = conv(3, n_feat, kernel_size, bias=bias) |
|
|
|
def forward(self, x, x_img): |
|
x1 = self.conv1(x) |
|
img = self.conv2(x) + x_img |
|
x2 = torch.sigmoid(self.conv3(img)) |
|
x1 = x1 * x2 |
|
x1 = x1 + x |
|
return x1, img |
|
|
|
|
|
|
|
class SALayer(nn.Module): |
|
def __init__(self, kernel_size=7): |
|
super(SALayer, self).__init__() |
|
self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=kernel_size // 2, bias=False) |
|
self.sigmoid = nn.Sigmoid() |
|
|
|
def forward(self, x): |
|
avg_out = torch.mean(x, dim=1, keepdim=True) |
|
max_out, _ = torch.max(x, dim=1, keepdim=True) |
|
y = torch.cat([avg_out, max_out], dim=1) |
|
y = self.conv1(y) |
|
y = self.sigmoid(y) |
|
return x * y |
|
|
|
|
|
class SAB(nn.Module): |
|
def __init__(self, n_feat, kernel_size, reduction, bias, act): |
|
super(SAB, self).__init__() |
|
modules_body = [conv(n_feat, n_feat, kernel_size, bias=bias), act, conv(n_feat, n_feat, kernel_size, bias=bias)] |
|
self.body = nn.Sequential(*modules_body) |
|
self.SA = SALayer(kernel_size=7) |
|
|
|
def forward(self, x): |
|
res = self.body(x) |
|
res = self.SA(res) |
|
res += x |
|
return res |
|
|
|
|
|
|
|
class PALayer(nn.Module): |
|
def __init__(self, channel, reduction=16, bias=False): |
|
super(PALayer, self).__init__() |
|
self.pa = nn.Sequential( |
|
nn.Conv2d(channel, channel // reduction, 1, padding=0, bias=bias), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(channel // reduction, channel, 1, padding=0, bias=bias), |
|
nn.Sigmoid() |
|
) |
|
|
|
def forward(self, x): |
|
y = self.pa(x) |
|
return x * y |
|
|
|
|
|
class PAB(nn.Module): |
|
def __init__(self, n_feat, kernel_size, reduction, bias, act): |
|
super(PAB, self).__init__() |
|
modules_body = [conv(n_feat, n_feat, kernel_size, bias=bias), act, conv(n_feat, n_feat, kernel_size, bias=bias)] |
|
self.PA = PALayer(n_feat, reduction, bias=bias) |
|
self.body = nn.Sequential(*modules_body) |
|
|
|
def forward(self, x): |
|
res = self.body(x) |
|
res = self.PA(res) |
|
res += x |
|
return res |
|
|
|
|
|
|
|
class CALayer(nn.Module): |
|
def __init__(self, channel, reduction=16, bias=False): |
|
super(CALayer, self).__init__() |
|
|
|
self.avg_pool = nn.AdaptiveAvgPool2d(1) |
|
|
|
self.conv_du = nn.Sequential( |
|
nn.Conv2d(channel, channel // reduction, 1, padding=0, bias=bias), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(channel // reduction, channel, 1, padding=0, bias=bias), |
|
nn.Sigmoid() |
|
) |
|
|
|
def forward(self, x): |
|
y = self.avg_pool(x) |
|
y = self.conv_du(y) |
|
return x * y |
|
|
|
|
|
class CAB(nn.Module): |
|
def __init__(self, n_feat, kernel_size, reduction, bias, act): |
|
super(CAB, self).__init__() |
|
modules_body = [conv(n_feat, n_feat, kernel_size, bias=bias), act, conv(n_feat, n_feat, kernel_size, bias=bias)] |
|
|
|
self.CA = CALayer(n_feat, reduction, bias=bias) |
|
self.body = nn.Sequential(*modules_body) |
|
|
|
def forward(self, x): |
|
res = self.body(x) |
|
res = self.CA(res) |
|
res += x |
|
return res |
|
|
|
|
|
if __name__ == "__main__": |
|
import time |
|
from thop import profile |
|
|
|
layer = PAB(64, 3, 4, False, nn.PReLU()) |
|
|
|
for idx, m in enumerate(layer.modules()): |
|
print(idx, "-", m) |
|
s = time.time() |
|
|
|
rgb = torch.ones(1, 64, 256, 256, dtype=torch.float, requires_grad=False) |
|
out = layer(rgb) |
|
flops, params = profile(layer, inputs=(rgb,)) |
|
print('parameters:', params) |
|
print('flops', flops) |
|
print('time: {:.4f}ms'.format((time.time()-s)*10)) |