|
import streamlit as st |
|
import pandas as pd |
|
import numpy as np |
|
from joblib import load |
|
|
|
|
|
st.title("Disease :blue[Detector] 🕵️") |
|
|
|
|
|
data = pd.read_csv("files/Training.csv").drop("prognosis", axis=1) |
|
ds = pd.read_csv("files/disease_description.csv") |
|
pr = pd.read_csv("files/disease_precaution.csv") |
|
|
|
|
|
dis= list(data.columns) |
|
|
|
|
|
model = load("model.joblib") |
|
pro = load("disease.joblib") |
|
|
|
|
|
arr = np.zeros(135) |
|
|
|
opt = st.multiselect( |
|
"Please Select Your :red[Symptoms :]", |
|
dis |
|
) |
|
|
|
|
|
opt = list(opt) |
|
def predictions(opt): |
|
idx = [] |
|
for i in opt: |
|
idx.append(dis.index(i)) |
|
|
|
for i in idx: |
|
arr[i] = 1 |
|
arr[-1]= len(opt) |
|
pred = model.predict([arr]) |
|
|
|
for key in pro.keys(): |
|
if pro[key] == pred[0]: |
|
print(f'''Disease:{key} |
|
Array:{arr}''') |
|
return key |
|
|
|
|
|
def give_des(d): |
|
return [ds[ds["Disease"]==d].Symptom_Description][0] |
|
|
|
|
|
def give_pre(d): |
|
return list(pr[pr["Disease"]==d].Symptom_precaution_0)[0],list(pr[pr["Disease"]==d].Symptom_precaution_1)[0],list(pr[pr["Disease"]==d].Symptom_precaution_2)[0], list(pr[pr["Disease"]==d].Symptom_precaution_3)[0] |
|
|
|
|
|
if st.button("Detect"): |
|
cola, colb, colc = st.columns(3) |
|
prognosis = predictions(opt) |
|
|
|
description = give_des(prognosis) |
|
p1, p2, p3, p4 = give_pre(prognosis) |
|
|
|
with colb: |
|
try: |
|
st.header(prognosis) |
|
st.subheader("Description :") |
|
st.caption(list(description.values)[0]) |
|
st.subheader("Precaution :") |
|
st.caption(f"- {p1}\n- {p2}\n- {p3}\n- {p4}") |
|
except: |
|
st.header(":red[Something Went Wrong] ⚠️") |
|
|