|
import torch |
|
import numpy as np |
|
import gradio as gr |
|
from PIL import Image |
|
import matplotlib |
|
from omegaconf import OmegaConf |
|
from einops import repeat |
|
import librosa |
|
from ldm.models.diffusion.ddim import DDIMSampler |
|
from vocoder.bigvgan.models import VocoderBigVGAN |
|
from ldm.util import instantiate_from_config |
|
from ldm.data.extract_mel_spectrogram import TRANSFORMS_16000 |
|
|
|
SAMPLE_RATE = 16000 |
|
cmap_transform = matplotlib.cm.viridis |
|
torch.set_grad_enabled(False) |
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") |
|
|
|
def initialize_model(config, ckpt): |
|
config = OmegaConf.load(config) |
|
model = instantiate_from_config(config.model) |
|
model.load_state_dict(torch.load(ckpt,map_location='cpu')["state_dict"], strict=False) |
|
|
|
model = model.to(device) |
|
print(model.device,device,model.cond_stage_model.device) |
|
sampler = DDIMSampler(model) |
|
return sampler |
|
|
|
|
|
def make_batch_sd( |
|
mel, |
|
mask, |
|
device, |
|
num_samples=1): |
|
|
|
mel = torch.from_numpy(mel)[None,None,...].to(dtype=torch.float32) |
|
mask = torch.from_numpy(mask)[None,None,...].to(dtype=torch.float32) |
|
masked_mel = (1 - mask) * mel |
|
|
|
mel = mel * 2 - 1 |
|
mask = mask * 2 - 1 |
|
masked_mel = masked_mel * 2 -1 |
|
|
|
batch = { |
|
"mel": repeat(mel.to(device=device), "1 ... -> n ...", n=num_samples), |
|
"mask": repeat(mask.to(device=device), "1 ... -> n ...", n=num_samples), |
|
"masked_mel": repeat(masked_mel.to(device=device), "1 ... -> n ...", n=num_samples), |
|
} |
|
return batch |
|
|
|
def gen_mel(input_audio): |
|
sr,ori_wav = input_audio |
|
print(sr,ori_wav.shape,ori_wav) |
|
|
|
ori_wav = ori_wav.astype(np.float32, order='C') / 32768.0 |
|
if len(ori_wav.shape)==2: |
|
ori_wav = librosa.to_mono(ori_wav.T) |
|
print(sr,ori_wav.shape,ori_wav) |
|
ori_wav = librosa.resample(ori_wav,orig_sr = sr,target_sr = SAMPLE_RATE) |
|
|
|
mel_len,hop_size = 848,256 |
|
input_len = mel_len * hop_size |
|
if len(ori_wav) < input_len: |
|
input_wav = np.pad(ori_wav,(0,mel_len*hop_size),constant_values=0) |
|
else: |
|
input_wav = ori_wav[:input_len] |
|
|
|
mel = TRANSFORMS_16000(input_wav) |
|
return mel |
|
|
|
def show_mel_fn(input_audio): |
|
crop_len = 500 |
|
crop_mel = gen_mel(input_audio)[:,:crop_len] |
|
color_mel = cmap_transform(crop_mel) |
|
return Image.fromarray((color_mel*255).astype(np.uint8)) |
|
|
|
|
|
def inpaint(sampler, batch, seed, ddim_steps, num_samples=1, W=512, H=512): |
|
model = sampler.model |
|
|
|
prng = np.random.RandomState(seed) |
|
start_code = prng.randn(num_samples, model.first_stage_model.embed_dim, H // 8, W // 8) |
|
start_code = torch.from_numpy(start_code).to(device=device, dtype=torch.float32) |
|
|
|
c = model.get_first_stage_encoding(model.encode_first_stage(batch["masked_mel"])) |
|
cc = torch.nn.functional.interpolate(batch["mask"], |
|
size=c.shape[-2:]) |
|
c = torch.cat((c, cc), dim=1) |
|
|
|
shape = (c.shape[1]-1,)+c.shape[2:] |
|
samples_ddim, _ = sampler.sample(S=ddim_steps, |
|
conditioning=c, |
|
batch_size=c.shape[0], |
|
shape=shape, |
|
verbose=False) |
|
x_samples_ddim = model.decode_first_stage(samples_ddim) |
|
|
|
|
|
mask = batch["mask"] |
|
mel = torch.clamp((batch["mel"]+1.0)/2.0,min=0.0, max=1.0) |
|
mask = torch.clamp((batch["mask"]+1.0)/2.0,min=0.0, max=1.0) |
|
predicted_mel = torch.clamp((x_samples_ddim+1.0)/2.0,min=0.0, max=1.0) |
|
inpainted = (1-mask)*mel+mask*predicted_mel |
|
inpainted = inpainted.cpu().numpy().squeeze() |
|
inapint_wav = vocoder.vocode(inpainted) |
|
|
|
return inpainted,inapint_wav |
|
|
|
|
|
def predict(input_audio,mel_and_mask,ddim_steps,seed): |
|
show_mel = np.array(mel_and_mask['image'].convert("L"))/255 |
|
mask = np.array(mel_and_mask["mask"].convert("L"))/255 |
|
|
|
mel_bins,mel_len = 80,848 |
|
|
|
input_mel = gen_mel(input_audio)[:,:mel_len] |
|
mask = np.pad(mask,((0,0),(0,mel_len-mask.shape[1])),mode='constant',constant_values=0) |
|
print(mask.shape,input_mel.shape) |
|
with torch.no_grad(): |
|
batch = make_batch_sd(input_mel,mask,device,num_samples=1) |
|
inpainted,gen_wav = inpaint( |
|
sampler=sampler, |
|
batch=batch, |
|
seed=seed, |
|
ddim_steps=ddim_steps, |
|
num_samples=1, |
|
H=mel_bins, W=mel_len |
|
) |
|
inpainted = inpainted[:,:show_mel.shape[1]] |
|
color_mel = cmap_transform(inpainted) |
|
input_len = int(input_audio[1].shape[0] * SAMPLE_RATE / input_audio[0]) |
|
gen_wav = (gen_wav * 32768).astype(np.int16)[:input_len] |
|
return Image.fromarray((color_mel*255).astype(np.uint8)),(SAMPLE_RATE,gen_wav) |
|
|
|
|
|
sampler = initialize_model('./configs/inpaint/txt2audio_args.yaml', './useful_ckpts/inpaint7_epoch00047.ckpt') |
|
vocoder = VocoderBigVGAN('./vocoder/logs/bigv16k53w',device=device) |
|
|
|
block = gr.Blocks().queue() |
|
with block: |
|
with gr.Row(): |
|
gr.Markdown("## Make-An-Audio Inpainting") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
input_audio = gr.inputs.Audio() |
|
|
|
show_button = gr.Button("Show Mel") |
|
|
|
run_button = gr.Button("Predict Masked Place") |
|
with gr.Accordion("Advanced options", open=False): |
|
ddim_steps = gr.Slider(label="Steps", minimum=1, |
|
maximum=150, value=100, step=1) |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=2147483647, |
|
step=1, |
|
randomize=True, |
|
) |
|
with gr.Column(): |
|
show_inpainted = gr.Image(type="pil").style(width=848,height=80) |
|
outaudio = gr.Audio() |
|
show_mel = gr.Image(type="pil",tool='sketch') |
|
show_button.click(fn=show_mel_fn, inputs=[input_audio], outputs=show_mel) |
|
|
|
run_button.click(fn=predict, inputs=[input_audio,show_mel,ddim_steps,seed], outputs=[show_inpainted,outaudio]) |
|
|
|
|
|
block.launch() |
|
|