|
from PIL import Image |
|
from transformers import BlipProcessor, BlipForConditionalGeneration |
|
import torch |
|
import gradio as gr |
|
|
|
model_name = "Salesforce/blip-image-captioning-base" |
|
|
|
caption_processor = BlipProcessor.from_pretrained(model_name) |
|
model = BlipForConditionalGeneration.from_pretrained(model_name) |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model.to(device) |
|
|
|
def generate_captions(image, num_captions=5,size=(512, 512)): |
|
image = image.resize(size) |
|
if image.mode != 'RGB': |
|
image = image.convert('RGB') |
|
pixel_values = caption_processor(image, return_tensors='pt').to(device) |
|
|
|
caption_ids = model.generate( |
|
**pixel_values, |
|
max_length=30, |
|
num_beams=5, |
|
num_return_sequences=num_captions, |
|
temperature=1.0 |
|
) |
|
|
|
captions = [ |
|
caption_processor.decode(ids, skip_special_tokens=True) |
|
for ids in caption_ids |
|
] |
|
|
|
return captions |
|
|
|
from gradio.components import Image, Textbox,Slider |
|
|
|
interface = gr.Interface( |
|
fn=generate_captions, |
|
inputs=[ |
|
Image(type="pil", label="Input Image"), |
|
Slider(minimum=1, maximum=5, step=1, label="Number of Captions") |
|
], |
|
outputs=Textbox(type="text", label="Captions"), |
|
title="Image Caption Generator", |
|
description="AI tool that creates captions based on the image provided by the user.", |
|
) |
|
|
|
interface.launch() |