import gradio as gr | |
from sentence_transformers import SentenceTransformer, util | |
ts_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') | |
def similarity(*data): | |
question = data[0] | |
q = data[1::2] | |
a = data[2::2] | |
similarities = [] | |
for i in q: | |
embedding_1= ts_model.encode(i, convert_to_tensor=True) | |
embedding_2 = ts_model.encode(question, convert_to_tensor=True) | |
similarities.append(float(util.pytorch_cos_sim(embedding_1, embedding_2))) | |
max_similarity = max(similarities) | |
max_similarity_index = similarities.index(max_similarity) | |
if max_similarity <= 0.5: | |
return "It seems that, I don't have a specific answer for that Question" | |
else: | |
return a[max_similarity_index] | |
gr.Interface( | |
fn = similarity, | |
inputs = [gr.Textbox(label = "Main Q"),gr.Textbox(label = "Q1"),gr.Textbox(label = "A1"),gr.Textbox(label = "Q2"),gr.Textbox(label = "A2")], | |
outputs = "text" | |
).launch() |