|
from abc import abstractclassmethod |
|
import openai |
|
import os |
|
import time |
|
from Memory import Memory |
|
from utils import save_logs |
|
|
|
class LLM: |
|
def __init__(self) -> None: |
|
pass |
|
|
|
@abstractclassmethod |
|
def get_response(): |
|
pass |
|
|
|
|
|
class OpenAILLM(LLM): |
|
def __init__(self,**kwargs) -> None: |
|
super().__init__() |
|
self.MAX_CHAT_HISTORY = eval( |
|
os.environ["MAX_CHAT_HISTORY"]) if "MAX_CHAT_HISTORY" in os.environ else 10 |
|
|
|
self.model = kwargs["model"] if "model" in kwargs else "gpt-3.5-turbo-16k-0613" |
|
self.temperature = kwargs["temperature"] if "temperature" in kwargs else 0.3 |
|
self.log_path = kwargs["log_path"] if "log_path" in kwargs else "logs" |
|
|
|
|
|
def get_stream(self,response, log_path, messages): |
|
ans = "" |
|
for res in response: |
|
if res: |
|
r = (res.choices[0]["delta"].get("content") |
|
if res.choices[0]["delta"].get("content") else "") |
|
ans += r |
|
yield r |
|
|
|
save_logs(log_path, messages, ans) |
|
|
|
|
|
|
|
def get_response(self, |
|
chat_history, |
|
system_prompt, |
|
last_prompt=None, |
|
stream=False, |
|
functions=None, |
|
function_call="auto", |
|
WAIT_TIME=20, |
|
**kwargs): |
|
""" |
|
return LLM's response |
|
""" |
|
openai.api_key = os.environ["API_KEY"] |
|
|
|
|
|
|
|
if "API_BASE" in os.environ: |
|
openai.api_base = os.environ["API_BASE"] |
|
active_mode = True if ("ACTIVE_MODE" in os.environ and os.environ["ACTIVE_MODE"] == "0") else False |
|
model = self.model |
|
temperature = self.temperature |
|
|
|
|
|
if active_mode: |
|
system_prompt = system_prompt + "Please keep your reply as concise as possible,Within three sentences, the total word count should not exceed 30" |
|
|
|
messages = [{ |
|
"role": "system", |
|
"content": system_prompt |
|
}] if system_prompt else [] |
|
|
|
if chat_history: |
|
if len(chat_history) > self.MAX_CHAT_HISTORY: |
|
chat_history = chat_history[- self.MAX_CHAT_HISTORY:] |
|
if isinstance(chat_history[0],dict): |
|
messages += chat_history |
|
elif isinstance(chat_history[0],Memory): |
|
messages += [memory.get_gpt_message("user") for memory in chat_history] |
|
|
|
if last_prompt: |
|
if active_mode: |
|
last_prompt = last_prompt + "Please keep your reply as concise as possible,Within three sentences, the total word count should not exceed 30" |
|
|
|
messages[-1]["content"] += last_prompt |
|
|
|
|
|
while True: |
|
try: |
|
if functions: |
|
response = openai.ChatCompletion.create( |
|
model=model, |
|
messages=messages, |
|
functions=functions, |
|
function_call=function_call, |
|
temperature=temperature, |
|
) |
|
else: |
|
response = openai.ChatCompletion.create( |
|
model=model, |
|
messages=messages, |
|
temperature=temperature, |
|
stream=stream) |
|
break |
|
except Exception as e: |
|
print(e) |
|
if "maximum context length is" in str(e): |
|
assert False, "exceed max length" |
|
break |
|
else: |
|
print(f"Please wait {WAIT_TIME} seconds and resend later ...") |
|
time.sleep(WAIT_TIME) |
|
|
|
if functions: |
|
save_logs(self.log_path, messages, response) |
|
return response.choices[0].message |
|
elif stream: |
|
return self.get_stream(response, self.log_path, messages) |
|
else: |
|
save_logs(self.log_path, messages, response) |
|
return response.choices[0].message["content"] |
|
|
|
|
|
def init_LLM(default_log_path,**kwargs): |
|
LLM_type = kwargs["LLM_type"] if "LLM_type" in kwargs else "OpenAI" |
|
log_path = kwargs["log_path"] if "log_path" in kwargs else default_log_path |
|
if LLM_type == "OpenAI": |
|
LLM = ( |
|
OpenAILLM(**kwargs["LLM"]) |
|
if "LLM" in kwargs |
|
else OpenAILLM(model = "gpt-3.5-turbo-16k-0613",temperature=0.3,log_path=log_path) |
|
) |
|
return LLM |
|
|