|
import os |
|
import torch |
|
import numpy as np |
|
|
|
from torch.utils.tensorboard import SummaryWriter |
|
from os.path import join as pjoin |
|
from torch.distributions import Categorical |
|
import json |
|
import clip |
|
|
|
import options.option_transformer as option_trans |
|
import models.vqvae as vqvae |
|
import utils.utils_model as utils_model |
|
import utils.eval_trans as eval_trans |
|
from dataset import dataset_TM_train |
|
from dataset import dataset_TM_eval |
|
from dataset import dataset_tokenize |
|
import models.t2m_trans as trans |
|
from options.get_eval_option import get_opt |
|
from models.evaluator_wrapper import EvaluatorModelWrapper |
|
import warnings |
|
warnings.filterwarnings('ignore') |
|
|
|
|
|
args = option_trans.get_args_parser() |
|
torch.manual_seed(args.seed) |
|
|
|
args.out_dir = os.path.join(args.out_dir, f'{args.exp_name}') |
|
args.vq_dir= os.path.join("./dataset/KIT-ML" if args.dataname == 'kit' else "./dataset/HumanML3D", f'{args.vq_name}') |
|
os.makedirs(args.out_dir, exist_ok = True) |
|
os.makedirs(args.vq_dir, exist_ok = True) |
|
|
|
|
|
logger = utils_model.get_logger(args.out_dir) |
|
writer = SummaryWriter(args.out_dir) |
|
logger.info(json.dumps(vars(args), indent=4, sort_keys=True)) |
|
|
|
|
|
train_loader_token = dataset_tokenize.DATALoader(args.dataname, 1, unit_length=2**args.down_t) |
|
|
|
from utils.word_vectorizer import WordVectorizer |
|
w_vectorizer = WordVectorizer('./glove', 'our_vab') |
|
val_loader = dataset_TM_eval.DATALoader(args.dataname, False, 32, w_vectorizer) |
|
|
|
dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt' if args.dataname == 'kit' else 'checkpoints/t2m/Comp_v6_KLD005/opt.txt' |
|
|
|
wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda')) |
|
eval_wrapper = EvaluatorModelWrapper(wrapper_opt) |
|
|
|
|
|
clip_model, clip_preprocess = clip.load("ViT-B/32", device=torch.device('cuda'), jit=False, download_root='/apdcephfs_cq2/share_1290939/maelyszhang/.cache/clip') |
|
clip.model.convert_weights(clip_model) |
|
clip_model.eval() |
|
for p in clip_model.parameters(): |
|
p.requires_grad = False |
|
|
|
net = vqvae.HumanVQVAE(args, |
|
args.nb_code, |
|
args.code_dim, |
|
args.output_emb_width, |
|
args.down_t, |
|
args.stride_t, |
|
args.width, |
|
args.depth, |
|
args.dilation_growth_rate) |
|
|
|
|
|
trans_encoder = trans.Text2Motion_Transformer(num_vq=args.nb_code, |
|
embed_dim=args.embed_dim_gpt, |
|
clip_dim=args.clip_dim, |
|
block_size=args.block_size, |
|
num_layers=args.num_layers, |
|
n_head=args.n_head_gpt, |
|
drop_out_rate=args.drop_out_rate, |
|
fc_rate=args.ff_rate) |
|
|
|
|
|
print ('loading checkpoint from {}'.format(args.resume_pth)) |
|
ckpt = torch.load(args.resume_pth, map_location='cpu') |
|
net.load_state_dict(ckpt['net'], strict=True) |
|
net.eval() |
|
net.cuda() |
|
|
|
if args.resume_trans is not None: |
|
print ('loading transformer checkpoint from {}'.format(args.resume_trans)) |
|
ckpt = torch.load(args.resume_trans, map_location='cpu') |
|
trans_encoder.load_state_dict(ckpt['trans'], strict=True) |
|
trans_encoder.train() |
|
trans_encoder.cuda() |
|
|
|
|
|
optimizer = utils_model.initial_optim(args.decay_option, args.lr, args.weight_decay, trans_encoder, args.optimizer) |
|
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_scheduler, gamma=args.gamma) |
|
|
|
|
|
loss_ce = torch.nn.CrossEntropyLoss() |
|
|
|
nb_iter, avg_loss_cls, avg_acc = 0, 0., 0. |
|
right_num = 0 |
|
nb_sample_train = 0 |
|
|
|
|
|
for batch in train_loader_token: |
|
pose, name = batch |
|
bs, seq = pose.shape[0], pose.shape[1] |
|
|
|
pose = pose.cuda().float() |
|
target = net.encode(pose) |
|
target = target.cpu().numpy() |
|
np.save(pjoin(args.vq_dir, name[0] +'.npy'), target) |
|
|
|
|
|
train_loader = dataset_TM_train.DATALoader(args.dataname, args.batch_size, args.nb_code, args.vq_name, unit_length=2**args.down_t) |
|
train_loader_iter = dataset_TM_train.cycle(train_loader) |
|
|
|
|
|
|
|
best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_transformer(args.out_dir, val_loader, net, trans_encoder, logger, writer, 0, best_fid=1000, best_iter=0, best_div=100, best_top1=0, best_top2=0, best_top3=0, best_matching=100, clip_model=clip_model, eval_wrapper=eval_wrapper) |
|
while nb_iter <= args.total_iter: |
|
|
|
batch = next(train_loader_iter) |
|
clip_text, m_tokens, m_tokens_len = batch |
|
m_tokens, m_tokens_len = m_tokens.cuda(), m_tokens_len.cuda() |
|
bs = m_tokens.shape[0] |
|
target = m_tokens |
|
target = target.cuda() |
|
|
|
text = clip.tokenize(clip_text, truncate=True).cuda() |
|
|
|
feat_clip_text = clip_model.encode_text(text).float() |
|
|
|
input_index = target[:,:-1] |
|
|
|
if args.pkeep == -1: |
|
proba = np.random.rand(1)[0] |
|
mask = torch.bernoulli(proba * torch.ones(input_index.shape, |
|
device=input_index.device)) |
|
else: |
|
mask = torch.bernoulli(args.pkeep * torch.ones(input_index.shape, |
|
device=input_index.device)) |
|
mask = mask.round().to(dtype=torch.int64) |
|
r_indices = torch.randint_like(input_index, args.nb_code) |
|
a_indices = mask*input_index+(1-mask)*r_indices |
|
|
|
cls_pred = trans_encoder(a_indices, feat_clip_text) |
|
cls_pred = cls_pred.contiguous() |
|
|
|
loss_cls = 0.0 |
|
for i in range(bs): |
|
|
|
loss_cls += loss_ce(cls_pred[i][:m_tokens_len[i] + 1], target[i][:m_tokens_len[i] + 1]) / bs |
|
|
|
|
|
probs = torch.softmax(cls_pred[i][:m_tokens_len[i] + 1], dim=-1) |
|
|
|
if args.if_maxtest: |
|
_, cls_pred_index = torch.max(probs, dim=-1) |
|
|
|
else: |
|
dist = Categorical(probs) |
|
cls_pred_index = dist.sample() |
|
right_num += (cls_pred_index.flatten(0) == target[i][:m_tokens_len[i] + 1].flatten(0)).sum().item() |
|
|
|
|
|
optimizer.zero_grad() |
|
loss_cls.backward() |
|
optimizer.step() |
|
scheduler.step() |
|
|
|
avg_loss_cls = avg_loss_cls + loss_cls.item() |
|
nb_sample_train = nb_sample_train + (m_tokens_len + 1).sum().item() |
|
|
|
nb_iter += 1 |
|
if nb_iter % args.print_iter == 0 : |
|
avg_loss_cls = avg_loss_cls / args.print_iter |
|
avg_acc = right_num * 100 / nb_sample_train |
|
writer.add_scalar('./Loss/train', avg_loss_cls, nb_iter) |
|
writer.add_scalar('./ACC/train', avg_acc, nb_iter) |
|
msg = f"Train. Iter {nb_iter} : Loss. {avg_loss_cls:.5f}, ACC. {avg_acc:.4f}" |
|
logger.info(msg) |
|
avg_loss_cls = 0. |
|
right_num = 0 |
|
nb_sample_train = 0 |
|
|
|
if nb_iter % args.eval_iter == 0: |
|
best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_transformer(args.out_dir, val_loader, net, trans_encoder, logger, writer, nb_iter, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, clip_model=clip_model, eval_wrapper=eval_wrapper) |
|
|
|
if nb_iter == args.total_iter: |
|
msg_final = f"Train. Iter {best_iter} : FID. {best_fid:.5f}, Diversity. {best_div:.4f}, TOP1. {best_top1:.4f}, TOP2. {best_top2:.4f}, TOP3. {best_top3:.4f}" |
|
logger.info(msg_final) |
|
break |