|
import tensorflow as tf |
|
import numpy as np |
|
|
|
class MiGRUCell(tf.nn.rnn_cell.RNNCell): |
|
def __init__(self, num_units, input_size = None, activation = tf.tanh, reuse = None): |
|
self.numUnits = num_units |
|
self.activation = activation |
|
self.reuse = reuse |
|
|
|
@property |
|
def state_size(self): |
|
return self.numUnits |
|
|
|
@property |
|
def output_size(self): |
|
return self.numUnits |
|
|
|
def mulWeights(self, inp, inDim, outDim, name = ""): |
|
with tf.variable_scope("weights" + name): |
|
W = tf.get_variable("weights", shape = (inDim, outDim), |
|
initializer = tf.contrib.layers.xavier_initializer()) |
|
|
|
output = tf.matmul(inp, W) |
|
return output |
|
|
|
def addBiases(self, inp1, inp2, dim, bInitial = 0, name = ""): |
|
with tf.variable_scope("additiveBiases" + name): |
|
b = tf.get_variable("biases", shape = (dim,), |
|
initializer = tf.zeros_initializer()) + bInitial |
|
with tf.variable_scope("multiplicativeBias" + name): |
|
beta = tf.get_variable("biases", shape = (3 * dim,), |
|
initializer = tf.ones_initializer()) |
|
|
|
Wx, Uh, inter = tf.split(beta * tf.concat([inp1, inp2, inp1 * inp2], axis = 1), |
|
num_or_size_splits = 3, axis = 1) |
|
output = Wx + Uh + inter + b |
|
return output |
|
|
|
def __call__(self, inputs, state, scope = None): |
|
scope = scope or type(self).__name__ |
|
with tf.variable_scope(scope, reuse = self.reuse): |
|
inputSize = int(inputs.shape[1]) |
|
|
|
Wxr = self.mulWeights(inputs, inputSize, self.numUnits, name = "Wxr") |
|
Uhr = self.mulWeights(state, self.numUnits, self.numUnits, name = "Uhr") |
|
|
|
r = tf.nn.sigmoid(self.addBiases(Wxr, Uhr, self.numUnits, bInitial = 1, name = "r")) |
|
|
|
Wxu = self.mulWeights(inputs, inputSize, self.numUnits, name = "Wxu") |
|
Uhu = self.mulWeights(state, self.numUnits, self.numUnits, name = "Uhu") |
|
|
|
u = tf.nn.sigmoid(self.addBiases(Wxu, Uhu, self.numUnits, bInitial = 1, name = "u")) |
|
|
|
|
|
Wx = self.mulWeights(inputs, inputSize, self.numUnits, name = "Wxl") |
|
Urh = self.mulWeights(r * state, self.numUnits, self.numUnits, name = "Uhl") |
|
c = self.activation(self.addBiases(Wx, Urh, self.numUnits, name = "2")) |
|
|
|
newH = u * state + (1 - u) * c |
|
return newH, newH |
|
|
|
def zero_state(self, batchSize, dtype = tf.float32): |
|
return tf.zeros((batchSize, self.numUnits), dtype = dtype) |
|
|