File size: 4,861 Bytes
42472b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# official fastapi HF example https://huggingface.co/docs/hub/spaces-sdks-docker-examples#docker-spaces-examples

##################
# Flask API usages:
# 1. Just a wrapper over OpenAI API
# 2. You can use Chain calls of OpenAI API
# 3. Using your own ML model in combination with openAPI functionality
# 4. ...
##################

import os
import time
import numpy as np
from PIL import Image

from pathlib import Path

# Disable tensorflow warnings
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

from tensorflow import keras
from flask import Flask, jsonify, request, render_template

load_type = 'remote_hub_from_pretrained'
"""
local;
remote_hub_download; 
remote_hub_from_pretrained;
remote_hub_pipeline; - needs config.json and this is not easy to grasp how to do it with custom models
https://discuss.huggingface.co/t/how-to-create-a-config-json-after-saving-a-model/10459/4
"""

REPO_ID = "1vash/mnist_demo_model"
MODEL_DIR = "./artifacts/models"

# Load the saved model into memory
if load_type == 'local':
    model = keras.models.load_model(f'{MODEL_DIR}/mnist_model.h5')
elif load_type == 'remote_hub_download':
    from huggingface_hub import hf_hub_download

    model = keras.models.load_model(hf_hub_download(repo_id=REPO_ID, filename="saved_model.pb"))
elif load_type == 'remote_hub_from_pretrained':
    # https://huggingface.co/docs/hub/keras
    os.environ['TRANSFORMERS_CACHE'] = str(Path(MODEL_DIR).absolute())
    from huggingface_hub import from_pretrained_keras
    model = from_pretrained_keras(REPO_ID, cache_dir=MODEL_DIR)
elif load_type == 'remote_hub_pipeline':
    from transformers import pipeline

    model = pipeline("image-classification", model=REPO_ID)
else:
    raise AssertionError('No load type is specified!')

# Initialize the Flask application
app = Flask(__name__)


# API route for prediction
@app.route('/predict', methods=['POST'])
def predict():
    """
    Predicts the class label of an input image.

    Request format:
    {
        "image": [[pixel_values_gray]]
    }

    Response format:
    {
        "label": predicted_label,
        "pred_proba" prediction class probability
        "ml-latency-ms": latency_in_milliseconds
            (Measures time only for ML operations preprocessing with predict)
    }
    """
    if 'image' not in request.files:
        # Handle if no file is selected
        return 'No file selected'

    start_time = time.time()

    file = request.files['image']

    # Get pixels out of file
    image_data = Image.open(file)

    # Check image shape
    if image_data.size != (28, 28):
        return "Invalid image shape. Expected (28, 28), take from 'demo images' folder."

    # Preprocess the image
    processed_image = preprocess_image(image_data)

    # Make a prediction, verbose=0 to disable progress bar in logs
    prediction = model.predict(processed_image, verbose=0)

    # Get the predicted class label
    predicted_label = np.argmax(prediction)
    proba = prediction[0][predicted_label]

    # Calculate latency in milliseconds
    latency_ms = (time.time() - start_time) * 1000

    # Return the prediction result and latency as dictionary response
    response = {
        'label': int(predicted_label),
        'pred_proba': float(proba),
        'ml-latency-ms': round(latency_ms, 4)
    }

    # dictionary is not a JSON: https://www.quora.com/What-is-the-difference-between-JSON-and-a-dictionary
    # flask.jsonify vs json.dumps https://sentry.io/answers/difference-between-json-dumps-and-flask-jsonify/
    # The flask.jsonify() function returns a Response object with Serializable JSON and content_type=application/json.
    return jsonify(response)


# Helper function to preprocess the image
def preprocess_image(image_data):
    """Preprocess image for Model Inference

    :param image_data: Raw image
    :return: image: Preprocessed Image
    """
    # Resize the image to match the input shape of the model
    image = np.array(image_data).reshape(1, 28, 28)

    # Normalize the pixel values
    image = image.astype('float32') / 255.0

    return image


# API route for health check
@app.route('/health', methods=['GET'])
def health():
    """
    Health check API to ensure the application is running.
    Returns "OK" if the application is healthy.
    Demo Usage: "curl http://localhost:5000/health" or using alias "curl http://127.0.0.1:5000/health"
    """
    return 'OK'


# API route for version
@app.route('/version', methods=['GET'])
def version():
    """
    Returns the version of the application.
    Demo Usage: "curl http://127.0.0.1:5000/version" or using alias "curl http://127.0.0.1:5000/version"
    """
    return '1.0'


@app.route("/")
def hello_world():
    return render_template("index.html")
    # return "<p>Hello, Team!</p>"


# Start the Flask application
if __name__ == '__main__':
    app.run(debug=True)