File size: 23,983 Bytes
42472b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
import math
from copy import deepcopy
from random import random
from typing import Union
from unittest import TestCase
from unittest.mock import Mock

import numpy

from voicevox_engine.acoustic_feature_extractor import OjtPhoneme
from voicevox_engine.model import AccentPhrase, AudioQuery, Mora
from voicevox_engine.synthesis_engine import SynthesisEngine

# TODO: import from voicevox_engine.synthesis_engine.mora
from voicevox_engine.synthesis_engine.synthesis_engine import (
    mora_phoneme_list,
    pre_process,
    split_mora,
    to_flatten_moras,
    to_phoneme_data_list,
    unvoiced_mora_phoneme_list,
)


def yukarin_s_mock(length: int, phoneme_list: numpy.ndarray, speaker_id: numpy.ndarray):
    result = []
    # mockとしての適当な処理、特に意味はない
    for i in range(length):
        result.append(float(phoneme_list[i] * 0.5 + speaker_id))
    return numpy.array(result)


def yukarin_sa_mock(
    length: int,
    vowel_phoneme_list: numpy.ndarray,
    consonant_phoneme_list: numpy.ndarray,
    start_accent_list: numpy.ndarray,
    end_accent_list: numpy.ndarray,
    start_accent_phrase_list: numpy.ndarray,
    end_accent_phrase_list: numpy.ndarray,
    speaker_id: numpy.ndarray,
):
    result = []
    # mockとしての適当な処理、特に意味はない
    for i in range(length):
        result.append(
            float(
                (
                    vowel_phoneme_list[0][i]
                    + consonant_phoneme_list[0][i]
                    + start_accent_list[0][i]
                    + end_accent_list[0][i]
                    + start_accent_phrase_list[0][i]
                    + end_accent_phrase_list[0][i]
                )
                * 0.5
                + speaker_id
            )
        )
    return numpy.array(result)[numpy.newaxis]


def decode_mock(
    length: int,
    phoneme_size: int,
    f0: numpy.ndarray,
    phoneme: numpy.ndarray,
    speaker_id: Union[numpy.ndarray, int],
):
    result = []
    # mockとしての適当な処理、特に意味はない
    for i in range(length):
        # decode forwardはデータサイズがlengthの256倍になるのでとりあえず256回データをresultに入れる
        for _ in range(256):
            result.append(
                float(
                    f0[i][0] * (numpy.where(phoneme[i] == 1)[0] / phoneme_size)
                    + speaker_id
                )
            )
    return numpy.array(result)


class MockCore:
    yukarin_s_forward = Mock(side_effect=yukarin_s_mock)
    yukarin_sa_forward = Mock(side_effect=yukarin_sa_mock)
    decode_forward = Mock(side_effect=decode_mock)

    def metas(self):
        return ""

    def supported_devices(self):
        return ""

    def is_model_loaded(self, speaker_id):
        return True


class TestSynthesisEngine(TestCase):
    def setUp(self):
        super().setUp()
        self.str_list_hello_hiho = (
            "sil k o N n i ch i w a pau h i h o d e s U sil".split()
        )
        self.phoneme_data_list_hello_hiho = [
            OjtPhoneme(phoneme=p, start=i, end=i + 1)
            for i, p in enumerate(
                "pau k o N n i ch i w a pau h i h o d e s U pau".split()
            )
        ]
        self.accent_phrases_hello_hiho = [
            AccentPhrase(
                moras=[
                    Mora(
                        text="コ",
                        consonant="k",
                        consonant_length=0.0,
                        vowel="o",
                        vowel_length=0.0,
                        pitch=0.0,
                    ),
                    Mora(
                        text="ン",
                        consonant=None,
                        consonant_length=None,
                        vowel="N",
                        vowel_length=0.0,
                        pitch=0.0,
                    ),
                    Mora(
                        text="ニ",
                        consonant="n",
                        consonant_length=0.0,
                        vowel="i",
                        vowel_length=0.0,
                        pitch=0.0,
                    ),
                    Mora(
                        text="チ",
                        consonant="ch",
                        consonant_length=0.0,
                        vowel="i",
                        vowel_length=0.0,
                        pitch=0.0,
                    ),
                    Mora(
                        text="ワ",
                        consonant="w",
                        consonant_length=0.0,
                        vowel="a",
                        vowel_length=0.0,
                        pitch=0.0,
                    ),
                ],
                accent=5,
                pause_mora=Mora(
                    text="、",
                    consonant=None,
                    consonant_length=None,
                    vowel="pau",
                    vowel_length=0.0,
                    pitch=0.0,
                ),
            ),
            AccentPhrase(
                moras=[
                    Mora(
                        text="ヒ",
                        consonant="h",
                        consonant_length=0.0,
                        vowel="i",
                        vowel_length=0.0,
                        pitch=0.0,
                    ),
                    Mora(
                        text="ホ",
                        consonant="h",
                        consonant_length=0.0,
                        vowel="o",
                        vowel_length=0.0,
                        pitch=0.0,
                    ),
                    Mora(
                        text="デ",
                        consonant="d",
                        consonant_length=0.0,
                        vowel="e",
                        vowel_length=0.0,
                        pitch=0.0,
                    ),
                    Mora(
                        text="ス",
                        consonant="s",
                        consonant_length=0.0,
                        vowel="U",
                        vowel_length=0.0,
                        pitch=0.0,
                    ),
                ],
                accent=1,
                pause_mora=None,
            ),
        ]
        core = MockCore()
        self.yukarin_s_mock = core.yukarin_s_forward
        self.yukarin_sa_mock = core.yukarin_sa_forward
        self.decode_mock = core.decode_forward
        self.synthesis_engine = SynthesisEngine(
            core=core,
        )

    def test_to_flatten_moras(self):
        flatten_moras = to_flatten_moras(self.accent_phrases_hello_hiho)
        self.assertEqual(
            flatten_moras,
            self.accent_phrases_hello_hiho[0].moras
            + [self.accent_phrases_hello_hiho[0].pause_mora]
            + self.accent_phrases_hello_hiho[1].moras,
        )

    def test_to_phoneme_data_list(self):
        phoneme_data_list = to_phoneme_data_list(self.str_list_hello_hiho)
        self.assertEqual(phoneme_data_list, self.phoneme_data_list_hello_hiho)

    def test_split_mora(self):
        consonant_phoneme_list, vowel_phoneme_list, vowel_indexes = split_mora(
            self.phoneme_data_list_hello_hiho
        )

        self.assertEqual(vowel_indexes, [0, 2, 3, 5, 7, 9, 10, 12, 14, 16, 18, 19])
        self.assertEqual(
            vowel_phoneme_list,
            [
                OjtPhoneme(phoneme="pau", start=0, end=1),
                OjtPhoneme(phoneme="o", start=2, end=3),
                OjtPhoneme(phoneme="N", start=3, end=4),
                OjtPhoneme(phoneme="i", start=5, end=6),
                OjtPhoneme(phoneme="i", start=7, end=8),
                OjtPhoneme(phoneme="a", start=9, end=10),
                OjtPhoneme(phoneme="pau", start=10, end=11),
                OjtPhoneme(phoneme="i", start=12, end=13),
                OjtPhoneme(phoneme="o", start=14, end=15),
                OjtPhoneme(phoneme="e", start=16, end=17),
                OjtPhoneme(phoneme="U", start=18, end=19),
                OjtPhoneme(phoneme="pau", start=19, end=20),
            ],
        )
        self.assertEqual(
            consonant_phoneme_list,
            [
                None,
                OjtPhoneme(phoneme="k", start=1, end=2),
                None,
                OjtPhoneme(phoneme="n", start=4, end=5),
                OjtPhoneme(phoneme="ch", start=6, end=7),
                OjtPhoneme(phoneme="w", start=8, end=9),
                None,
                OjtPhoneme(phoneme="h", start=11, end=12),
                OjtPhoneme(phoneme="h", start=13, end=14),
                OjtPhoneme(phoneme="d", start=15, end=16),
                OjtPhoneme(phoneme="s", start=17, end=18),
                None,
            ],
        )

    def test_pre_process(self):
        flatten_moras, phoneme_data_list = pre_process(
            deepcopy(self.accent_phrases_hello_hiho)
        )

        mora_index = 0
        phoneme_index = 1

        self.assertEqual(phoneme_data_list[0], OjtPhoneme("pau", 0, 1))
        for accent_phrase in self.accent_phrases_hello_hiho:
            moras = accent_phrase.moras
            for mora in moras:
                self.assertEqual(flatten_moras[mora_index], mora)
                mora_index += 1
                if mora.consonant is not None:
                    self.assertEqual(
                        phoneme_data_list[phoneme_index],
                        OjtPhoneme(mora.consonant, phoneme_index, phoneme_index + 1),
                    )
                    phoneme_index += 1
                self.assertEqual(
                    phoneme_data_list[phoneme_index],
                    OjtPhoneme(mora.vowel, phoneme_index, phoneme_index + 1),
                )
                phoneme_index += 1
            if accent_phrase.pause_mora:
                self.assertEqual(flatten_moras[mora_index], accent_phrase.pause_mora)
                mora_index += 1
                self.assertEqual(
                    phoneme_data_list[phoneme_index],
                    OjtPhoneme("pau", phoneme_index, phoneme_index + 1),
                )
                phoneme_index += 1
        self.assertEqual(
            phoneme_data_list[phoneme_index],
            OjtPhoneme("pau", phoneme_index, phoneme_index + 1),
        )

    def test_replace_phoneme_length(self):
        result = self.synthesis_engine.replace_phoneme_length(
            accent_phrases=deepcopy(self.accent_phrases_hello_hiho), speaker_id=1
        )

        # yukarin_sに渡される値の検証
        yukarin_s_args = self.yukarin_s_mock.call_args[1]
        list_length = yukarin_s_args["length"]
        phoneme_list = yukarin_s_args["phoneme_list"]
        self.assertEqual(list_length, 20)
        self.assertEqual(list_length, len(phoneme_list))
        numpy.testing.assert_array_equal(
            phoneme_list,
            numpy.array(
                [
                    0,
                    23,
                    30,
                    4,
                    28,
                    21,
                    10,
                    21,
                    42,
                    7,
                    0,
                    19,
                    21,
                    19,
                    30,
                    12,
                    14,
                    35,
                    6,
                    0,
                ],
                dtype=numpy.int64,
            ),
        )
        self.assertEqual(yukarin_s_args["speaker_id"], 1)

        # flatten_morasを使わずに愚直にaccent_phrasesにデータを反映させてみる
        true_result = deepcopy(self.accent_phrases_hello_hiho)
        index = 1

        def result_value(i: int):
            return float(phoneme_list[i] * 0.5 + 1)

        for accent_phrase in true_result:
            moras = accent_phrase.moras
            for mora in moras:
                if mora.consonant is not None:
                    mora.consonant_length = result_value(index)
                    index += 1
                mora.vowel_length = result_value(index)
                index += 1
            if accent_phrase.pause_mora is not None:
                accent_phrase.pause_mora.vowel_length = result_value(index)
                index += 1

        self.assertEqual(result, true_result)

    def test_replace_mora_pitch(self):
        # 空のリストでエラーを吐かないか
        empty_accent_phrases = []
        self.assertEqual(
            self.synthesis_engine.replace_mora_pitch(
                accent_phrases=empty_accent_phrases, speaker_id=1
            ),
            [],
        )

        result = self.synthesis_engine.replace_mora_pitch(
            accent_phrases=deepcopy(self.accent_phrases_hello_hiho), speaker_id=1
        )

        # yukarin_saに渡される値の検証
        yukarin_sa_args = self.yukarin_sa_mock.call_args[1]
        list_length = yukarin_sa_args["length"]
        vowel_phoneme_list = yukarin_sa_args["vowel_phoneme_list"][0]
        consonant_phoneme_list = yukarin_sa_args["consonant_phoneme_list"][0]
        start_accent_list = yukarin_sa_args["start_accent_list"][0]
        end_accent_list = yukarin_sa_args["end_accent_list"][0]
        start_accent_phrase_list = yukarin_sa_args["start_accent_phrase_list"][0]
        end_accent_phrase_list = yukarin_sa_args["end_accent_phrase_list"][0]
        self.assertEqual(list_length, 12)
        self.assertEqual(list_length, len(vowel_phoneme_list))
        self.assertEqual(list_length, len(consonant_phoneme_list))
        self.assertEqual(list_length, len(start_accent_list))
        self.assertEqual(list_length, len(end_accent_list))
        self.assertEqual(list_length, len(start_accent_phrase_list))
        self.assertEqual(list_length, len(end_accent_phrase_list))
        self.assertEqual(yukarin_sa_args["speaker_id"], 1)

        numpy.testing.assert_array_equal(
            vowel_phoneme_list,
            numpy.array(
                [
                    0,
                    30,
                    4,
                    21,
                    21,
                    7,
                    0,
                    21,
                    30,
                    14,
                    6,
                    0,
                ]
            ),
        )
        numpy.testing.assert_array_equal(
            consonant_phoneme_list,
            numpy.array(
                [
                    -1,
                    23,
                    -1,
                    28,
                    10,
                    42,
                    -1,
                    19,
                    19,
                    12,
                    35,
                    -1,
                ]
            ),
        )
        numpy.testing.assert_array_equal(
            start_accent_list, numpy.array([0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0])
        )
        numpy.testing.assert_array_equal(
            end_accent_list, numpy.array([0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0])
        )
        numpy.testing.assert_array_equal(
            start_accent_phrase_list, numpy.array([0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0])
        )
        numpy.testing.assert_array_equal(
            end_accent_phrase_list, numpy.array([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0])
        )

        # flatten_morasを使わずに愚直にaccent_phrasesにデータを反映させてみる
        true_result = deepcopy(self.accent_phrases_hello_hiho)
        index = 1

        def result_value(i: int):
            # unvoiced_mora_phoneme_listのPhoneme ID版
            unvoiced_mora_phoneme_id_list = [
                OjtPhoneme(p, 0, 0).phoneme_id for p in unvoiced_mora_phoneme_list
            ]
            if vowel_phoneme_list[i] in unvoiced_mora_phoneme_id_list:
                return 0
            return (
                vowel_phoneme_list[i]
                + consonant_phoneme_list[i]
                + start_accent_list[i]
                + end_accent_list[i]
                + start_accent_phrase_list[i]
                + end_accent_phrase_list[i]
            ) * 0.5 + 1

        for accent_phrase in true_result:
            moras = accent_phrase.moras
            for mora in moras:
                mora.pitch = result_value(index)
                index += 1
            if accent_phrase.pause_mora is not None:
                accent_phrase.pause_mora.pitch = result_value(index)
                index += 1

        self.assertEqual(result, true_result)

    def synthesis_test_base(self, audio_query: AudioQuery):
        accent_phrases = audio_query.accent_phrases

        # decode forwardのために適当にpitchとlengthを設定し、リストで持っておく
        phoneme_length_list = [0.0]
        phoneme_id_list = [0]
        f0_list = [0.0]
        for accent_phrase in accent_phrases:
            moras = accent_phrase.moras
            for mora in moras:
                if mora.consonant is not None:
                    mora.consonant_length = 0.1
                    phoneme_length_list.append(0.1)
                    phoneme_id_list.append(OjtPhoneme(mora.consonant, 0, 0).phoneme_id)
                mora.vowel_length = 0.2
                phoneme_length_list.append(0.2)
                phoneme_id_list.append(OjtPhoneme(mora.vowel, 0, 0).phoneme_id)
                if mora.vowel not in unvoiced_mora_phoneme_list:
                    mora.pitch = 5.0 + random()
                f0_list.append(mora.pitch)
            if accent_phrase.pause_mora is not None:
                accent_phrase.pause_mora.vowel_length = 0.2
                phoneme_length_list.append(0.2)
                phoneme_id_list.append(OjtPhoneme("pau", 0, 0).phoneme_id)
                f0_list.append(0.0)
        phoneme_length_list.append(0.0)
        phoneme_id_list.append(0)
        f0_list.append(0.0)

        phoneme_length_list[0] = audio_query.prePhonemeLength
        phoneme_length_list[-1] = audio_query.postPhonemeLength

        for i in range(len(phoneme_length_list)):
            phoneme_length_list[i] /= audio_query.speedScale

        result = self.synthesis_engine.synthesis(query=audio_query, speaker_id=1)

        # decodeに渡される値の検証
        decode_args = self.decode_mock.call_args[1]
        list_length = decode_args["length"]
        self.assertEqual(
            list_length,
            int(sum([round(p * 24000 / 256) for p in phoneme_length_list])),
        )

        num_phoneme = OjtPhoneme.num_phoneme
        # mora_phoneme_listのPhoneme ID版
        mora_phoneme_id_list = [
            OjtPhoneme(p, 0, 0).phoneme_id for p in mora_phoneme_list
        ]

        # numpy.repeatをfor文でやる
        f0 = []
        phoneme = []
        f0_index = 0
        mean_f0 = []
        for i, phoneme_length in enumerate(phoneme_length_list):
            f0_single = numpy.array(f0_list[f0_index], dtype=numpy.float32) * (
                2**audio_query.pitchScale
            )
            for _ in range(int(round(phoneme_length * (24000 / 256)))):
                f0.append([f0_single])
                phoneme_s = []
                for _ in range(num_phoneme):
                    phoneme_s.append(0)
                # one hot
                phoneme_s[phoneme_id_list[i]] = 1
                phoneme.append(phoneme_s)
            # consonantとvowelを判別し、vowelであればf0_indexを一つ進める
            if phoneme_id_list[i] in mora_phoneme_id_list:
                if f0_single > 0:
                    mean_f0.append(f0_single)
                f0_index += 1

        mean_f0 = numpy.array(mean_f0, dtype=numpy.float32).mean()
        f0 = numpy.array(f0, dtype=numpy.float32)
        for i in range(len(f0)):
            if f0[i][0] != 0.0:
                f0[i][0] = (f0[i][0] - mean_f0) * audio_query.intonationScale + mean_f0

        phoneme = numpy.array(phoneme, dtype=numpy.float32)

        # 乱数の影響で数値の位置がずれが生じるので、大半(4/5)があっていればよしとする
        # また、上の部分のint(round(phoneme_length * (24000 / 256)))の影響で
        # 本来のf0/phonemeとテスト生成したf0/phonemeの長さが変わることがあり、
        # テスト生成したものが若干長くなることがあるので、本来のものの長さを基準にassertする
        assert_f0_count = 0
        decode_f0 = decode_args["f0"]
        for i in range(len(decode_f0)):
            # 乱数の影響等で数値にずれが生じるので、10の-5乗までの近似値であれば許容する
            assert_f0_count += math.isclose(f0[i][0], decode_f0[i][0], rel_tol=10e-5)
        self.assertTrue(assert_f0_count >= int(len(decode_f0) / 5) * 4)
        assert_phoneme_count = 0
        decode_phoneme = decode_args["phoneme"]
        for i in range(len(decode_phoneme)):
            assert_true_count = 0
            for j in range(len(decode_phoneme[i])):
                assert_true_count += bool(phoneme[i][j] == decode_phoneme[i][j])
            assert_phoneme_count += assert_true_count == num_phoneme
        self.assertTrue(assert_phoneme_count >= int(len(decode_phoneme) / 5) * 4)
        self.assertEqual(decode_args["speaker_id"], 1)

        # decode forwarderのmockを使う
        true_result = decode_mock(list_length, num_phoneme, f0, phoneme, 1)

        true_result *= audio_query.volumeScale

        # TODO: resampyの部分は値の検証しようがないので、パスする
        if audio_query.outputSamplingRate != 24000:
            return

        assert_result_count = 0
        for i in range(len(true_result)):
            if audio_query.outputStereo:
                assert_result_count += math.isclose(
                    true_result[i], result[i][0], rel_tol=10e-5
                ) and math.isclose(true_result[i], result[i][1], rel_tol=10e-5)
            else:
                assert_result_count += math.isclose(
                    true_result[i], result[i], rel_tol=10e-5
                )
        self.assertTrue(assert_result_count >= int(len(true_result) / 5) * 4)

    def test_synthesis(self):
        audio_query = AudioQuery(
            accent_phrases=deepcopy(self.accent_phrases_hello_hiho),
            speedScale=1.0,
            pitchScale=1.0,
            intonationScale=1.0,
            volumeScale=1.0,
            prePhonemeLength=0.1,
            postPhonemeLength=0.1,
            outputSamplingRate=24000,
            outputStereo=False,
            # このテスト内では使わないので生成不要
            kana="",
        )

        self.synthesis_test_base(audio_query)

        # speed scaleのテスト
        audio_query.speedScale = 1.2
        self.synthesis_test_base(audio_query)

        # pitch scaleのテスト
        audio_query.pitchScale = 1.5
        audio_query.speedScale = 1.0
        self.synthesis_test_base(audio_query)

        # intonation scaleのテスト
        audio_query.pitchScale = 1.0
        audio_query.intonationScale = 1.4
        self.synthesis_test_base(audio_query)

        # volume scaleのテスト
        audio_query.intonationScale = 1.0
        audio_query.volumeScale = 2.0
        self.synthesis_test_base(audio_query)

        # pre/post phoneme lengthのテスト
        audio_query.volumeScale = 1.0
        audio_query.prePhonemeLength = 0.5
        audio_query.postPhonemeLength = 0.5
        self.synthesis_test_base(audio_query)

        # output sampling rateのテスト
        audio_query.prePhonemeLength = 0.1
        audio_query.postPhonemeLength = 0.1
        audio_query.outputSamplingRate = 48000
        self.synthesis_test_base(audio_query)

        # output stereoのテスト
        audio_query.outputSamplingRate = 24000
        audio_query.outputStereo = True
        self.synthesis_test_base(audio_query)