File size: 9,598 Bytes
42472b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import re
from typing import List, Union
from langchain.chains import LLMChain
from langchain.agents import Tool, LLMSingleActionAgent, AgentExecutor, AgentOutputParser
from langchain.schema import AgentAction, AgentFinish
from langchain.agents import initialize_agent
from langchain.prompts import StringPromptTemplate
from agents.promopts import code_generate_agent_template
from agents.tools.smart_domain.api_layer_code_tool import apiLayerCodeGenerator
from agents.tools.smart_domain.domain_layer_code_tool import domainLayerCodeGenerator
from agents.tools.smart_domain.entity import entityCodeGenerator
from agents.tools.smart_domain.association import associationCodeGenerator
from agents.tools.smart_domain.db_entity_repository import dbEntityRepositoryCodeGenerator
from agents.tools.smart_domain.association_impl import asociationImplCodeGenerator
from agents.tools.smart_domain.persistent_layer_code_tool import persistentLayerCodeGenerator
from models import llm


class CustomPromptTemplate(StringPromptTemplate):
    # The template to use
    template: str
    # The list of tools available
    tools: List[Tool]

    def format(self, **kwargs) -> str:
        # Get the intermediate steps (AgentAction, Observation tuples)
        # Format them in a particular way
        intermediate_steps = kwargs.pop("intermediate_steps")
        thoughts = ""
        for action, observation in intermediate_steps:
            thoughts += action.log
            thoughts += f"\nObservation: {observation}\nThought: "
        # Set the agent_scratchpad variable to that value
        kwargs["agent_scratchpad"] = thoughts
        # Create a tools variable from the list of tools provided
        kwargs["tools"] = "\n".join(
            [f"{tool.name}: {tool.description}" for tool in self.tools])
        # Create a list of tool names for the tools provided
        kwargs["tool_names"] = ", ".join([tool.name for tool in self.tools])
        return self.template.format(**kwargs)


class CustomOutputParser(AgentOutputParser):

    def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:
        # Check if agent should finish
        if "Final Answer:" in llm_output:
            return AgentFinish(
                # Return values is generally always a dictionary with a single `output` key
                # It is not recommended to try anything else at the moment :)
                return_values={"output": llm_output.split(
                    "Final Answer:")[-1].strip()},
                log=llm_output,
            )
        # Parse out the action and action input
        regex = r"Action\s*\d*\s*:(.*?)\nAction\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)"
        match = re.search(regex, llm_output, re.DOTALL)
        if not match:
            raise ValueError(f"Could not parse LLM output: `{llm_output}`")
        action = match.group(1).strip()
        action_input = match.group(2)
        # Return the action and action input
        return AgentAction(tool=action, tool_input=action_input.strip(" ").strip('"'), log=llm_output)
    
# chatllm=ChatOpenAI(temperature=0)
# code_genenrate_memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
# code_generate_agent = initialize_agent(tools, chatllm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, memory=memory, verbose=True)



# agent = initialize_agent(
#     tools=tools, llm=llm_chain, template=AGENT_PROMPT, stop=["\nObservation:"], agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
code_agent_tools = [domainLayerCodeGenerator, entityCodeGenerator, associationCodeGenerator, persistentLayerCodeGenerator, dbEntityRepositoryCodeGenerator, asociationImplCodeGenerator, apiLayerCodeGenerator]

def code_agent_executor() -> AgentExecutor:
    output_parser = CustomOutputParser()
    AGENT_PROMPT = CustomPromptTemplate(
        template=code_generate_agent_template,
        tools=code_agent_tools,
        # This omits the `agent_scratchpad`, `tools`, and `tool_names` variables because those are generated dynamically
        # This includes the `intermediate_steps` variable because that is needed
        input_variables=["input", "intermediate_steps"]
    )

    code_llm_chain = LLMChain(llm=llm(temperature=0.7), prompt=AGENT_PROMPT)

    tool_names = [tool.name for tool in code_agent_tools]
    code_agent = LLMSingleActionAgent(
        llm_chain=code_llm_chain,
        output_parser=output_parser,
        stop=["\nObservation:"],
        allowed_tools=tool_names,
    )

    code_agent_executor = AgentExecutor.from_agent_and_tools(
        agent=code_agent, tools=code_agent_tools, verbose=True)
    return code_agent_executor

# if __name__ == "__main__":
# response = domainLayerChain.run("""FeatureConfig用于配置某个Feature中控制前端展示效果的配置项
# FeatureConfig主要属性包括:featureKey(feature标识)、data(配置数据)、saData(埋点数据)、status(状态)、标题、描述、创建时间、更新时间
# FeatureConfig中status为枚举值,取值范围为(DRAFT、PUBLISHED、DISABLED)
# FeatureConfig新增后status为DRAFT、执行发布操作后变为PUBLISHED、执行撤销操作后变为DISABLED
# 状态为DRAFT的FeatureConfig可以执行编辑、发布、撤销操作
# 发布后FeatureConfig变为PUBLISHED状态,可以执行撤销操作
# 撤销后FeatureConfig变为DISABLED状态,不可以执行编辑、发布、撤销操作
# """)

# print(response)


# response = persistentChain.run("""
# Entity:
# ```
# public class FeatureConfig {
#     private FeatureConfigId id;
#     private FeatureConfigDescription description;

#     public enum FeatureConfigStatus {
#         DRAFT, PUBLISHED, DISABLED;
#     }

#     public record FeatureConfigId(String id) {}
#     public record FeatureKey(String key) {}
#     public record FeatureConfigData(String data) {}
#     public record FeatureConfigSaData(String saData) {}

#     @Builder
#     public record FeatureConfigDescription(FeatureKey featureKey, FeatureConfigData data, FeatureConfigSaData saData, String title, String description, 
#         FeatureConfigStatus status, LocalDateTime createTime, LocalDateTime updateTime) {}

#     public void update(FeatureConfigDescription description) {
#         this.title = description.title();
#         this.description = description.description();
#         this.updateTime = LocalDateTime.now();
#     }

#     public void publish() {
#         this.status = FeatureConfigStatus.PUBLISHED;
#         this.updateTime = LocalDateTime.now();
#     }

#     public void disable() {
#         this.status = FeatureConfigStatus.DISABLED;
#         this.updateTime = LocalDateTime.now();
#     }
# }
# ```

# Association:
# ```
# public interface FeatureConfigs {
#     Flux<FeatureConfig> findAllByFeatureKey(String featureKey);
#     Mono<FeatureConfig> findById(FeatureConfigId id);
#     Mono<FeatureConfig> save(FeatureConfig featureConfig);
# }
# ```
# """)

# print(response)


# response = apiChain.run("""
# Entity:
# ```
# public class FeatureConfig {
#     private FeatureConfigId id;
#     private FeatureConfigDescription description;

#     public enum FeatureConfigStatus {
#         DRAFT, PUBLISHED, DISABLED;
#     }

#     public record FeatureConfigId(String id) {}
#     public record FeatureKey(String key) {}
#     public record FeatureConfigData(String data) {}
#     public record FeatureConfigSaData(String saData) {}

#     @Builder
#     public record FeatureConfigDescription(FeatureKey featureKey, FeatureConfigData data, FeatureConfigSaData saData, String title, String description, 
#         FeatureConfigStatus status, LocalDateTime createTime, LocalDateTime updateTime) {}

#     public void update(FeatureConfigDescription description) {
#         this.title = description.title();
#         this.description = description.description();
#         this.updateTime = LocalDateTime.now();
#     }

#     public void publish() {
#         this.status = FeatureConfigStatus.PUBLISHED;
#         this.updateTime = LocalDateTime.now();
#     }

#     public void disable() {
#         this.status = FeatureConfigStatus.DISABLED;
#         this.updateTime = LocalDateTime.now();
#     }
# }
# ```

# Association:
# ```
# public interface FeatureConfigs {
#     Flux<FeatureConfig> findAllByFeatureKey(String featureKey);
#     Mono<FeatureConfig> findById(FeatureConfigId id);
#     Mono<FeatureConfig> save(FeatureConfig featureConfig);
#     Mono<Void> update(FeatureConfigId id, FeatureConfigDescription description);
#     Mono<Void> publish(FeatureConfigId id);
#     Mono<Void> disable(FeatureConfigId id);
# }
# ```
# """)

# print(response)

# if __name__ == "code_generate":
#     response = code_agent_executor.run("""
#     根据如下需求generate domain layer code: 
#     ---
#     FeatureConfig用于配置某个Feature中控制前端展示效果的配置项
#     FeatureConfig主要属性包括:featureKey(feature标识)、data(配置数据)、saData(埋点数据)、status(状态)、标题、描述、创建时间、更新时间
#     FeatureConfig中status为枚举值,取值范围为(DRAFT、PUBLISHED、DISABLED)
#     FeatureConfig新增后status为DRAFT、执行发布操作后变为PUBLISHED、执行撤销操作后变为DISABLED
#     状态为DRAFT的FeatureConfig可以执行编辑、发布、撤销操作
#     发布后FeatureConfig变为PUBLISHED状态,可以执行撤销操作
#     撤销后FeatureConfig变为DISABLED状态,不可以执行编辑、发布、撤销操作
#     ---
#     """)
#     print(response)