File size: 4,704 Bytes
a70a129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
import json

def read_json(file_path): 
    with open(file_path, 'r', encoding='utf-8') as file:
        data = json.load(file)
    return data

def write_json(file_path, data):
    with open(file_path, 'w', encoding='utf-8') as file:
        json.dump(data, file, ensure_ascii=False, indent=4)

# default: Load the model on the available device(s)
model_path = '/inspire/hdd/ws-ba572160-47f8-4ca1-984e-d6bcdeb95dbb/a100-maybe/albus/ICCV_2025/qvq/models/QVQ-72B-Preview'
model = Qwen2VLForConditionalGeneration.from_pretrained(
    model_path, torch_dtype="auto", device_map="auto"
)

# default processer
processor = AutoProcessor.from_pretrained(model_path)

# The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.
# min_pixels = 256*28*28
# max_pixels = 1280*28*28
#processor = AutoProcessor.from_pretrained("Qwen/QVQ-72B-Preview", min_pixels=min_pixels, max_pixels=max_pixels)

import glob
from PIL import Image
import argparse
import os

# parser = argparse.ArgumentParser(description="Process a dataset with specific index range.")
# parser.add_argument("--batch_size", type=int, default = 1,help="batch size")
# #parser.add_argument("--index", type=int, default = 0,help="index")
# args = parser.parse_args()


folder = "/inspire/hdd/ws-ba572160-47f8-4ca1-984e-d6bcdeb95dbb/a100-maybe/albus/ICCV_2025/qvq/dataset"

file_names = os.listdir(folder)

num_image = len(file_names)

begin, end, batch_size= 0, num_image, 6
print(f"beigin : {begin}, end : {end}, batch_size : {batch_size}")
messages = [
    {
        "role": "system",
        "content": [
            {"type": "text", "text": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."}
        ],
    },
    {
        "role": "user",
        "content": [
            {
                "type": "image",
                "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/QVQ/demo.png",
            },
            {"type": "text", "text": "Please describe in detail the content of the picture."},
        ],
    }
]

from tqdm import tqdm
# Preparation for inference
ans = []
counter = 0
for batch_idx in tqdm(range(begin, end, batch_size)):
    up = min(batch_idx + batch_size, end)
    batch = file_names[batch_idx: up]
    print(f"data index range : {batch_idx} ~ {up}")
    image_inputs_batch, video_inputs_batch,text_batch = [], [], []
    for idx,i in enumerate(batch):
        #img = batch[i]
        #print('gain image successfully !')
        img_path = '/inspire/hdd/ws-ba572160-47f8-4ca1-984e-d6bcdeb95dbb/a100-maybe/albus/ICCV_2025/qvq/dataset/' + i
        #print(img_path)
        messages[1]["content"][0]["image"] = '/inspire/hdd/ws-ba572160-47f8-4ca1-984e-d6bcdeb95dbb/a100-maybe/albus/ICCV_2025/qvq/dataset/' + i
        text = processor.apply_chat_template(
            messages, tokenize=False, add_generation_prompt=True
        )
        text_batch.append(text)
        image_inputs, video_inputs = process_vision_info(messages)
        print(video_inputs)
        image_inputs_batch.append(image_inputs)
        video_inputs_batch.append(video_inputs)
    inputs = processor(
        text=text_batch, # [text]
        images=image_inputs_batch,
        videos=None,
        padding=True,
        return_tensors="pt",
    )
    inputs = inputs.to("cuda")

    # Inference: Generation of the output
    
    #print(inputs)

    # for x in range(len(inputs)):
    #     print(f"Generating {x}th image")
    #     generated_ids = model.generate(**x, max_new_tokens=8192)
    #     generated_ids_trimmed = [
    #         out_ids[len(in_ids) :] for in_ids, out_ids in zip(x.input_ids, generated_ids)
    #     ]
    #     output_text = processor.batch_decode(
    #         generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=True
    #     )
    #     ans.append(output_text)

    generated_ids = model.generate(**inputs, max_new_tokens=8192)
    generated_ids_trimmed = [
        out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = processor.batch_decode(
        generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
    )
    ans.append(output_text)
    save_path = "output_final.json"
    counter = counter + 1
    if counter % 10 == 0 or up + 10 >= end:
        print(f"Saving data at iteration {idx + 1}")
        write_json(save_path, ans)