Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -46,7 +46,7 @@ dataset_summary: '
|
|
46 |
|
47 |
# Note: other available arguments include ''max_samples'', etc
|
48 |
|
49 |
-
dataset = load_from_hub("
|
50 |
|
51 |
|
52 |
# Launch the App
|
@@ -60,10 +60,6 @@ dataset_summary: '
|
|
60 |
|
61 |
# Dataset Card for WebUOT-238-Test
|
62 |
|
63 |
-
<!-- Provide a quick summary of the dataset. -->
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
|
68 |
|
69 |
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 238 samples.
|
@@ -84,141 +80,135 @@ from fiftyone.utils.huggingface import load_from_hub
|
|
84 |
|
85 |
# Load the dataset
|
86 |
# Note: other available arguments include 'max_samples', etc
|
87 |
-
dataset = load_from_hub("
|
88 |
|
89 |
# Launch the App
|
90 |
session = fo.launch_app(dataset)
|
91 |
```
|
92 |
|
93 |
|
94 |
-
## Dataset Details
|
95 |
-
|
96 |
### Dataset Description
|
97 |
|
98 |
-
|
99 |
-
|
100 |
|
|
|
101 |
|
102 |
-
|
103 |
-
- **Funded by [optional]:** [More Information Needed]
|
104 |
-
- **Shared by [optional]:** [More Information Needed]
|
105 |
-
- **Language(s) (NLP):** en
|
106 |
-
- **License:** [More Information Needed]
|
107 |
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
- **
|
113 |
-
- **Paper [optional]:** [More Information Needed]
|
114 |
-
- **Demo [optional]:** [More Information Needed]
|
115 |
|
116 |
## Uses
|
117 |
|
118 |
-
<!-- Address questions around how the dataset is intended to be used. -->
|
119 |
-
|
120 |
### Direct Use
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
125 |
|
126 |
### Out-of-Scope Use
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
|
132 |
## Dataset Structure
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
137 |
|
138 |
## Dataset Creation
|
139 |
|
140 |
### Curation Rationale
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
[More Information Needed]
|
145 |
|
146 |
### Source Data
|
147 |
|
148 |
-
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
|
149 |
-
|
150 |
#### Data Collection and Processing
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
|
159 |
-
|
160 |
-
[More Information Needed]
|
161 |
-
|
162 |
-
### Annotations [optional]
|
163 |
-
|
164 |
-
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
|
165 |
-
|
166 |
-
#### Annotation process
|
167 |
|
168 |
-
|
169 |
|
170 |
-
|
171 |
|
172 |
-
|
173 |
|
174 |
-
|
175 |
|
176 |
-
|
|
|
|
|
177 |
|
178 |
-
####
|
179 |
|
180 |
-
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
## Bias, Risks, and Limitations
|
185 |
-
|
186 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
187 |
-
|
188 |
-
[More Information Needed]
|
189 |
-
|
190 |
-
### Recommendations
|
191 |
-
|
192 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
193 |
-
|
194 |
-
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
|
195 |
-
|
196 |
-
## Citation [optional]
|
197 |
-
|
198 |
-
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
|
199 |
|
200 |
**BibTeX:**
|
201 |
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
|
211 |
-
|
212 |
-
[More Information Needed]
|
213 |
-
|
214 |
-
## More Information [optional]
|
215 |
-
|
216 |
-
[More Information Needed]
|
217 |
-
|
218 |
-
## Dataset Card Authors [optional]
|
219 |
-
|
220 |
-
[More Information Needed]
|
221 |
|
222 |
-
## Dataset Card Contact
|
223 |
|
224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
# Note: other available arguments include ''max_samples'', etc
|
48 |
|
49 |
+
dataset = load_from_hub("Voxel51/WebUOT-238-Test")
|
50 |
|
51 |
|
52 |
# Launch the App
|
|
|
60 |
|
61 |
# Dataset Card for WebUOT-238-Test
|
62 |
|
|
|
|
|
|
|
|
|
63 |
|
64 |
|
65 |
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 238 samples.
|
|
|
80 |
|
81 |
# Load the dataset
|
82 |
# Note: other available arguments include 'max_samples', etc
|
83 |
+
dataset = load_from_hub("Voxel51/WebUOT-238-Test")
|
84 |
|
85 |
# Launch the App
|
86 |
session = fo.launch_app(dataset)
|
87 |
```
|
88 |
|
89 |
|
|
|
|
|
90 |
### Dataset Description
|
91 |
|
92 |
+
WebUOT-1M is the largest million-scale benchmark for underwater object tracking (UOT), designed to address limitations in existing datasets by providing diverse underwater scenarios, rich annotations, and language prompts. It comprises **1.1 million frames** across **1,500 underwater videos**, covering **408 target categories** categorized into 12 superclasses (e.g., fish, molluscs, inanimate objects). The dataset includes high-quality bounding box annotations, 23 tracking attributes (e.g., illumination variation, camouflage), and language descriptions for multimodal tracking research.
|
|
|
93 |
|
94 |
+
**Note:** This dataset, which has been parsed into FiftyOne format, comprises 238 randomly selected videos from the WebUOT-1M test set for a total of 192,000+ frames.
|
95 |
|
96 |
+
### Dataset Details
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
- **Curated by:**
|
99 |
+
Chunhui Zhang (Shanghai Jiao Tong University), Li Liu (HKUST-Guangzhou), Guanjie Huang (HKUST-Guangzhou), Hao Wen (CloudWalk), Xi Zhou (CloudWalk), Yanfeng Wang (Shanghai Jiao Tong University).
|
100 |
+
- **Funded by:**
|
101 |
+
National Natural Science Foundation of China (No. 62101351), Key R&D Program of Chongqing (cstc2021jscx-gksbX0032).
|
102 |
+
- **Language(s):**
|
103 |
+
English (annotations and language prompts).
|
104 |
+
- **License:**
|
105 |
+
[Creative Commons (intended for academic research).](https://creativecommons.org/licenses/by/4.0/)
|
106 |
+
- **Shared by:** [Harpreet Sahota, Hacker-in-Residence @ Voxel51](https://huggingface.co/harpreetsahota)
|
107 |
|
108 |
+
### Dataset Sources
|
109 |
+
- **Repository:** https://github.com/983632847/Awesome-Multimodal-Object-Tracking/tree/main/WebUOT-1M
|
110 |
+
- **Paper:** https://arxiv.org/abs/2405.19818
|
|
|
|
|
111 |
|
112 |
## Uses
|
113 |
|
|
|
|
|
114 |
### Direct Use
|
115 |
|
116 |
+
- Training/evaluating UOT algorithms.
|
117 |
+
- Multimodal tracking (vision + language prompts).
|
118 |
+
- Studying domain adaptation (underwater vs. open-air environments).
|
119 |
+
- Marine conservation, underwater robotics, and search/rescue applications.
|
120 |
|
121 |
### Out-of-Scope Use
|
122 |
|
123 |
+
- Non-underwater tracking tasks (e.g., aerial/terrestrial tracking).
|
124 |
+
- Commercial applications without proper licensing.
|
125 |
+
- Non-visual tasks (e.g., audio analysis).
|
126 |
|
127 |
## Dataset Structure
|
128 |
|
129 |
+
- **Fields:**
|
130 |
+
- Videos: 1,500 clips (1,020 train / 480 test).
|
131 |
+
- Annotations: Bounding boxes, absent labels, 23 attributes (e.g., low visibility, similar distractors).
|
132 |
+
- Language Prompts: Text descriptions of targets (e.g., "red clownfish in yellow coral").
|
133 |
+
- Metadata: Object categories (408), superclasses (12), resolution, duration.
|
134 |
+
- **Splits:**
|
135 |
+
Train/Test sets divided by videos, ensuring no overlap in categories or scenarios.
|
136 |
|
137 |
## Dataset Creation
|
138 |
|
139 |
### Curation Rationale
|
140 |
|
141 |
+
To bridge the gap in UOT research caused by small-scale datasets, WebUOT-1M was created to enable robust model training/evaluation, domain adaptation, and multimodal tracking in complex underwater environments.
|
|
|
|
|
142 |
|
143 |
### Source Data
|
144 |
|
|
|
|
|
145 |
#### Data Collection and Processing
|
146 |
|
147 |
+
- **Sources:** YouTube, Bilibili (filtered for diversity).
|
148 |
+
- **Processing:**
|
149 |
+
- Manual selection of moving targets.
|
150 |
+
- Semi-supervised enhancement for blurry/low-visibility frames.
|
151 |
+
- Professional annotation team for bounding boxes and attributes.
|
152 |
+
- Final verification by authors.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
+
#### Who are the source data producers?
|
155 |
|
156 |
+
Videos were captured by divers, underwater robots, and hobbyists using varied devices (cameras, phones).
|
157 |
|
158 |
+
### Annotations
|
159 |
|
160 |
+
#### Annotation Process
|
161 |
|
162 |
+
- **Tools:** In-house annotation tools; enhanced frames for challenging cases.
|
163 |
+
- **Guidelines:** Focus on target motion, bounding box accuracy, and attribute labeling (23 attributes).
|
164 |
+
- **Validation:** Multiple rounds of correction by authors.
|
165 |
|
166 |
+
#### Who are the annotators?
|
167 |
|
168 |
+
A professional labeling team and the authors performed verification.
|
169 |
|
170 |
+
## Citation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
**BibTeX:**
|
173 |
|
174 |
+
```bibtex
|
175 |
+
@article{zhang2024webuot,
|
176 |
+
title={WebUOT-1M: Advancing Deep Underwater Object Tracking with A Million-Scale Benchmark},
|
177 |
+
author={Zhang, Chunhui and Liu, Li and Huang, Guanjie and Wen, Hao and Zhou, Xi and Wang, Yanfeng},
|
178 |
+
journal={arXiv preprint arXiv:2405.19818},
|
179 |
+
year={2024}
|
180 |
+
}
|
181 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
|
|
183 |
|
184 |
+
## Glossary
|
185 |
+
|
186 |
+
The following glossary details the attributes of each video.
|
187 |
+
|
188 |
+
Here's the content parsed as a markdown table:
|
189 |
+
|
190 |
+
| Attribute | Definition |
|
191 |
+
|-----------|------------|
|
192 |
+
| 01. LR | If the size of the bounding box of the target in one frame is less than 400 pixels. |
|
193 |
+
| 02. FM | The center position of the target in two consecutive frames exceeds 20 pixels. |
|
194 |
+
| 03. SV | The ratio of the target bounding box is not within the range [0.5, 2]. |
|
195 |
+
| 04. ARV | The aspect ratio of the target bounding box is not in the range [0.5, 2]. |
|
196 |
+
| 05. CM | There is severe camera movement in the video frame. |
|
197 |
+
| 06. VC | Viewpoint changes significantly affect the appearance of the target. |
|
198 |
+
| 07. PO | If the target appears partially occluded in one frame. |
|
199 |
+
| 08. FO | As long as the target is completely occluded in one frame. |
|
200 |
+
| 09. OV | There is one frame where the target completely leaves the video frame. |
|
201 |
+
| 10. ROT | The target rotates in the video frame. |
|
202 |
+
| 11. DEF | The target appears deformation in the video frame. |
|
203 |
+
| 12. SD | Similarity interference appears around the target. |
|
204 |
+
| 13. IV | The illumination of the target area changes significantly. |
|
205 |
+
| 14. MB | The target area becomes blurred due to target motion or camera motion. |
|
206 |
+
| 15. PTI | In the initial frame only partial information about the target is visible. |
|
207 |
+
| 16. NAO | The target belongs to a natural or artificial object. |
|
208 |
+
| 17. CAM | The target is camouflaging in the video frame. |
|
209 |
+
| 18. UV | The underwater visibility of the target area (low, medium, or high visibility). |
|
210 |
+
| 19. WCV | The color of the water of the target area. |
|
211 |
+
| 20. US | Different underwater scenarios where the target is located. |
|
212 |
+
| 21. SP | Different shooting perspectives (underwater, outside-water, and fish-eye views). |
|
213 |
+
| 22. SIZ | The size s = √(w × h) of the video is small (s < √(640 × 480)), medium (√(640 × 480) ≤ s < √(1280 × 720)), or large (s ≥ √(1280 × 720)). |
|
214 |
+
| 23. LEN | The length l of the video is short (l ≤ 600 frames), medium (600 frames < l ≤ 1800 frames), or long (l > 1800 frames). |
|