File size: 3,424 Bytes
d043e9f
 
 
 
 
 
 
 
 
 
 
 
 
631684f
d043e9f
 
 
 
631684f
 
d043e9f
 
 
 
 
631684f
d043e9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
631684f
d043e9f
1c34fb6
d043e9f
 
 
 
 
 
 
631684f
d043e9f
 
 
 
1c34fb6
d043e9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c34fb6
d043e9f
1c34fb6
d043e9f
1c34fb6
d043e9f
1c34fb6
d043e9f
1c34fb6
d043e9f
1c34fb6
d043e9f
 
1c34fb6
 
d043e9f
 
 
 
 
 
 
 
1c34fb6
d043e9f
 
 
 
 
 
1c34fb6
d043e9f
 
 
 
1c34fb6
d043e9f
 
 
 
 
1c34fb6
d043e9f
 
 
aba2adf
1c34fb6
 
 
 
 
 
 
 
 
 
 
 
aba2adf
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
---
annotations_creators: []
language: en
size_categories:
- 1K<n<10K
task_categories:
- object-detection
task_ids: []
pretty_name: ThermalPersonDetector
tags:
- fiftyone
- image
- object-detection
dataset_summary: >




  This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 8778
  samples.


  ## Installation


  If you haven't already, install FiftyOne:


  ```bash

  pip install -U fiftyone

  ```


  ## Usage


  ```python

  import fiftyone as fo

  import fiftyone.utils.huggingface as fouh


  # Load the dataset

  # Note: other available arguments include 'max_samples', etc

  dataset = fouh.load_from_hub("Voxel51/Thermal-Person-Detector")


  # Launch the App

  session = fo.launch_app(dataset)

  ```
license: cc-by-4.0
---

# Dataset Card for ThermalPersonDetector

A thermal image dataset for detecting people in a scene. The dataset contains only one class `person`





This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 8778 samples.

## Installation

If you haven't already, install FiftyOne:

```bash
pip install -U fiftyone
```

## Usage

```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh

# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("dgural/Thermal-Person-Detector")

# Launch the App
session = fo.launch_app(dataset)
```


## Dataset Details

### Dataset Description

Here are a few use cases for this project:

Sports Analytics: The "PersonDetection" model could be used to analyze individual athletes' performances in various sports such as skateboarding, basketball, or soccer, by detecting and tracking the movements of players.

Surveillance Security: It could be utilized in CCTV systems and security cameras. By recognizing people in real-time, it could alert security personnel when unauthorized individuals are detected in restricted areas.

Social Distancing Detection: In light of the Covid-19 pandemic, this model could be used to enforce social distancing measures by tracking the number of people and their relative distances in public spaces like parks, malls, or transportation systems.

Smart Home Management: It can be deployed in smart homes devices to recognize the home occupants and subsequently adapt the environment to their preferences such as lighting, temperature or even play their favorite music upon entry.

Motion Capture and Gaming: In the gaming and animation industry, this model could be used for real-time motion capture, allowing developers to create more realistic and immersive human characters.


- **Language(s) (NLP):** en
- **License:** CC 4.0






## Dataset Structure

One ground_truth field with a person class


[More Information Needed]

### Source Data

[Roboflow Univers](https://universe.roboflow.com/smart2/persondection-61bc2)


#### Who are the source data producers?

[SMART2](https://universe.roboflow.com/smart2)

[More Information Needed]

#### Who are the annotators?

SMART2

**BibTeX:**

```bibtex
@misc{
persondection-61bc2_dataset,
title = { PersonDection Dataset },
type = { Open Source Dataset },
author = { SMART2 },
howpublished = { \url{ https://universe.roboflow.com/smart2/persondection-61bc2 } },
url = { https://universe.roboflow.com/smart2/persondection-61bc2 },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2023 },
month = { may },
note = { visited on 2024-07-19 },
}
```