Upload suomi24_toxicity_pred.py
Browse files- suomi24_toxicity_pred.py +96 -0
suomi24_toxicity_pred.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import datasets
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
_DESCRIPTION = """\
|
| 7 |
+
This dataset consists of Suomi24 comments which have been labeled by human raters for toxic behavior.
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
_HOMEPAGE = "https://turkunlp.org/"
|
| 11 |
+
|
| 12 |
+
_URLS = {
|
| 13 |
+
"test": "https://huggingface.co/datasets/TurkuNLP/Suomi24-toxicity-annotated/resolve/main/all_annotations.tsv"
|
| 14 |
+
}
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class Suomi24ToxicityPred(datasets.GeneratorBasedBuilder):
|
| 18 |
+
"""This is a dataset of comments sampled from Suomi24 and annotated using jigsaw toxicity labels."""
|
| 19 |
+
|
| 20 |
+
VERSION = datasets.Version("1.1.0")
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def _info(self):
|
| 24 |
+
|
| 25 |
+
return datasets.DatasetInfo(
|
| 26 |
+
# This is the description that will appear on the datasets page.
|
| 27 |
+
description=_DESCRIPTION,
|
| 28 |
+
# This defines the different columns of the dataset and their types
|
| 29 |
+
features=datasets.Features(
|
| 30 |
+
{
|
| 31 |
+
"text": datasets.Value("string"),
|
| 32 |
+
"label": datasets.Value("string") # we only have one label for each text
|
| 33 |
+
}
|
| 34 |
+
),
|
| 35 |
+
# If there's a common (input, target) tuple from the features,
|
| 36 |
+
# specify them here. They'll be used if as_supervised=True in
|
| 37 |
+
# builder.as_dataset.
|
| 38 |
+
supervised_keys=None,
|
| 39 |
+
# Homepage of the dataset for documentation
|
| 40 |
+
homepage=_HOMEPAGE
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
def _split_generators(self, dl_manager):
|
| 44 |
+
"""Returns SplitGenerators."""
|
| 45 |
+
# This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
| 46 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
| 47 |
+
|
| 48 |
+
urls_to_download = _URLS
|
| 49 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
| 50 |
+
|
| 51 |
+
return [
|
| 52 |
+
datasets.SplitGenerator(
|
| 53 |
+
name=datasets.Split.TEST,
|
| 54 |
+
# These kwargs will be passed to _generate_examples
|
| 55 |
+
gen_kwargs={
|
| 56 |
+
"filepath": downloaded_files["test"],
|
| 57 |
+
},
|
| 58 |
+
),
|
| 59 |
+
]
|
| 60 |
+
|
| 61 |
+
def _generate_examples(self, filepath):
|
| 62 |
+
"""Yields examples."""
|
| 63 |
+
# This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method.
|
| 64 |
+
# It is in charge of opening the given file and yielding (key, example) tuples from the dataset
|
| 65 |
+
# The key is not important, it's more here for legacy reason (legacy from tfds)
|
| 66 |
+
|
| 67 |
+
# read the tsv file
|
| 68 |
+
with open(filepath, "rt", encoding="utf-8") as f:
|
| 69 |
+
data = f.readlines()
|
| 70 |
+
data = data[1:]
|
| 71 |
+
for i in range(len(data)):
|
| 72 |
+
data[i] = data[i].replace("\n", "")
|
| 73 |
+
data[i] = data[i].split("\t")
|
| 74 |
+
assert len(data[i]) == 3
|
| 75 |
+
|
| 76 |
+
from collections import Counter
|
| 77 |
+
from itertools import count
|
| 78 |
+
|
| 79 |
+
ids = [one[0] for one in data]
|
| 80 |
+
c = Counter(ids)
|
| 81 |
+
|
| 82 |
+
iters = {k: count(1) for k, v in c.items() if v > 1}
|
| 83 |
+
output_list = [x+str(next(iters[x])) if x in iters else x for x in ids]
|
| 84 |
+
|
| 85 |
+
count = 0
|
| 86 |
+
# here make the data into a proper thing
|
| 87 |
+
for one in data:
|
| 88 |
+
example = {}
|
| 89 |
+
id = output_list[count] # change this somehow
|
| 90 |
+
count = count + 1
|
| 91 |
+
example["text"] = one[2]
|
| 92 |
+
example["label"] = one[1]
|
| 93 |
+
|
| 94 |
+
yield (id, example)
|
| 95 |
+
|
| 96 |
+
|