Datasets:

Modalities:
Text
Formats:
csv
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
RonanMcGovern commited on
Commit
e0520f3
·
1 Parent(s): 23ad4cc

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +1 -405
README.md CHANGED
@@ -1,406 +1,2 @@
1
- ---
2
- annotations_creators:
3
- - no-annotation
4
- language_creators:
5
- - found
6
- language:
7
- - en
8
- license:
9
- - cc-by-4.0
10
- multilinguality:
11
- - monolingual
12
- size_categories:
13
- - 100K<n<1M
14
- - 10K<n<100K
15
- - 1M<n<10M
16
- source_datasets:
17
- - original
18
- task_categories:
19
- - summarization
20
- task_ids: []
21
- paperswithcode_id: bigpatent
22
- pretty_name: Big Patent
23
- tags:
24
- - patent-summarization
25
- dataset_info:
26
- - config_name: all
27
- features:
28
- - name: description
29
- dtype: string
30
- - name: abstract
31
- dtype: string
32
- splits:
33
- - name: train
34
- num_bytes: 38367048389
35
- num_examples: 1207222
36
- - name: validation
37
- num_bytes: 2115827002
38
- num_examples: 67068
39
- - name: test
40
- num_bytes: 2129505280
41
- num_examples: 67072
42
- download_size: 10142923776
43
- dataset_size: 42612380671
44
- - config_name: a
45
- features:
46
- - name: description
47
- dtype: string
48
- - name: abstract
49
- dtype: string
50
- splits:
51
- - name: train
52
- num_bytes: 5683460620
53
- num_examples: 174134
54
- - name: validation
55
- num_bytes: 313324505
56
- num_examples: 9674
57
- - name: test
58
- num_bytes: 316633277
59
- num_examples: 9675
60
- download_size: 10142923776
61
- dataset_size: 6313418402
62
- - config_name: b
63
- features:
64
- - name: description
65
- dtype: string
66
- - name: abstract
67
- dtype: string
68
- splits:
69
- - name: train
70
- num_bytes: 4236070976
71
- num_examples: 161520
72
- - name: validation
73
- num_bytes: 234425138
74
- num_examples: 8973
75
- - name: test
76
- num_bytes: 231538734
77
- num_examples: 8974
78
- download_size: 10142923776
79
- dataset_size: 4702034848
80
- - config_name: c
81
- features:
82
- - name: description
83
- dtype: string
84
- - name: abstract
85
- dtype: string
86
- splits:
87
- - name: train
88
- num_bytes: 4506249306
89
- num_examples: 101042
90
- - name: validation
91
- num_bytes: 244684775
92
- num_examples: 5613
93
- - name: test
94
- num_bytes: 252566793
95
- num_examples: 5614
96
- download_size: 10142923776
97
- dataset_size: 5003500874
98
- - config_name: d
99
- features:
100
- - name: description
101
- dtype: string
102
- - name: abstract
103
- dtype: string
104
- splits:
105
- - name: train
106
- num_bytes: 264717412
107
- num_examples: 10164
108
- - name: validation
109
- num_bytes: 14560482
110
- num_examples: 565
111
- - name: test
112
- num_bytes: 14403430
113
- num_examples: 565
114
- download_size: 10142923776
115
- dataset_size: 293681324
116
- - config_name: e
117
- features:
118
- - name: description
119
- dtype: string
120
- - name: abstract
121
- dtype: string
122
- splits:
123
- - name: train
124
- num_bytes: 881101433
125
- num_examples: 34443
126
- - name: validation
127
- num_bytes: 48646158
128
- num_examples: 1914
129
- - name: test
130
- num_bytes: 48586429
131
- num_examples: 1914
132
- download_size: 10142923776
133
- dataset_size: 978334020
134
- - config_name: f
135
- features:
136
- - name: description
137
- dtype: string
138
- - name: abstract
139
- dtype: string
140
- splits:
141
- - name: train
142
- num_bytes: 2146383473
143
- num_examples: 85568
144
- - name: validation
145
- num_bytes: 119632631
146
- num_examples: 4754
147
- - name: test
148
- num_bytes: 119596303
149
- num_examples: 4754
150
- download_size: 10142923776
151
- dataset_size: 2385612407
152
- - config_name: g
153
- features:
154
- - name: description
155
- dtype: string
156
- - name: abstract
157
- dtype: string
158
- splits:
159
- - name: train
160
- num_bytes: 8877854206
161
- num_examples: 258935
162
- - name: validation
163
- num_bytes: 492581177
164
- num_examples: 14385
165
- - name: test
166
- num_bytes: 496324853
167
- num_examples: 14386
168
- download_size: 10142923776
169
- dataset_size: 9866760236
170
- - config_name: h
171
- features:
172
- - name: description
173
- dtype: string
174
- - name: abstract
175
- dtype: string
176
- splits:
177
- - name: train
178
- num_bytes: 8075621958
179
- num_examples: 257019
180
- - name: validation
181
- num_bytes: 447602356
182
- num_examples: 14279
183
- - name: test
184
- num_bytes: 445460513
185
- num_examples: 14279
186
- download_size: 10142923776
187
- dataset_size: 8968684827
188
- - config_name: y
189
- features:
190
- - name: description
191
- dtype: string
192
- - name: abstract
193
- dtype: string
194
- splits:
195
- - name: train
196
- num_bytes: 3695589005
197
- num_examples: 124397
198
- - name: validation
199
- num_bytes: 200369780
200
- num_examples: 6911
201
- - name: test
202
- num_bytes: 204394948
203
- num_examples: 6911
204
- download_size: 10142923776
205
- dataset_size: 4100353733
206
- config_names:
207
- - a
208
- - all
209
- - b
210
- - c
211
- - d
212
- - e
213
- - f
214
- - g
215
- - h
216
- - y
217
- ---
218
  # Sampled big_patent Dataset
219
- This is a sampled big_patent dataset containing 5000 train and 500 test rows.
220
-
221
- The original repo card follows below.
222
-
223
- # Dataset Card for Big Patent
224
-
225
- ## Table of Contents
226
- - [Dataset Description](#dataset-description)
227
- - [Dataset Summary](#dataset-summary)
228
- - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
229
- - [Languages](#languages)
230
- - [Dataset Structure](#dataset-structure)
231
- - [Data Instances](#data-instances)
232
- - [Data Fields](#data-fields)
233
- - [Data Splits](#data-splits)
234
- - [Dataset Creation](#dataset-creation)
235
- - [Curation Rationale](#curation-rationale)
236
- - [Source Data](#source-data)
237
- - [Annotations](#annotations)
238
- - [Personal and Sensitive Information](#personal-and-sensitive-information)
239
- - [Considerations for Using the Data](#considerations-for-using-the-data)
240
- - [Social Impact of Dataset](#social-impact-of-dataset)
241
- - [Discussion of Biases](#discussion-of-biases)
242
- - [Other Known Limitations](#other-known-limitations)
243
- - [Additional Information](#additional-information)
244
- - [Dataset Curators](#dataset-curators)
245
- - [Licensing Information](#licensing-information)
246
- - [Citation Information](#citation-information)
247
- - [Contributions](#contributions)
248
-
249
- ## Dataset Description
250
-
251
- - **Homepage:** [Big Patent](https://evasharma.github.io/bigpatent/)
252
- - **Repository:**
253
- - **Paper:** [BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization](https://arxiv.org/abs/1906.03741)
254
- - **Leaderboard:**
255
- - **Point of Contact:** [Lu Wang](mailto:[email protected])
256
-
257
- ### Dataset Summary
258
-
259
- BIGPATENT, consisting of 1.3 million records of U.S. patent documents along with human written abstractive summaries.
260
- Each US patent application is filed under a Cooperative Patent Classification (CPC) code.
261
- There are nine such classification categories:
262
- - a: Human Necessities
263
- - b: Performing Operations; Transporting
264
- - c: Chemistry; Metallurgy
265
- - d: Textiles; Paper
266
- - e: Fixed Constructions
267
- - f: Mechanical Engineering; Lightning; Heating; Weapons; Blasting
268
- - g: Physics
269
- - h: Electricity
270
- - y: General tagging of new or cross-sectional technology
271
-
272
- Current defaults are 2.1.2 version (fix update to cased raw strings) and 'all' CPC codes:
273
- ```python
274
- from datasets import load_dataset
275
- ds = load_dataset("big_patent") # default is 'all' CPC codes
276
- ds = load_dataset("big_patent", "all") # the same as above
277
- ds = load_dataset("big_patent", "a") # only 'a' CPC codes
278
- ds = load_dataset("big_patent", codes=["a", "b"])
279
- ```
280
-
281
- To use 1.0.0 version (lower cased tokenized words), pass both parameters `codes` and `version`:
282
- ```python
283
- ds = load_dataset("big_patent", codes="all", version="1.0.0")
284
- ds = load_dataset("big_patent", codes="a", version="1.0.0")
285
- ds = load_dataset("big_patent", codes=["a", "b"], version="1.0.0")
286
- ```
287
-
288
-
289
- ### Supported Tasks and Leaderboards
290
-
291
- [More Information Needed]
292
-
293
- ### Languages
294
-
295
- English
296
-
297
- ## Dataset Structure
298
-
299
- ### Data Instances
300
-
301
- Each instance contains a pair of `description` and `abstract`. `description` is extracted from the Description section of the Patent while `abstract` is extracted from the Abstract section.
302
- ```
303
- {
304
- 'description': 'FIELD OF THE INVENTION \n [0001] This invention relates to novel calcium phosphate-coated implantable medical devices and processes of making same. The unique calcium-phosphate coated implantable medical devices minimize...',
305
- 'abstract': 'This invention relates to novel calcium phosphate-coated implantable medical devices...'
306
- }
307
- ```
308
-
309
- ### Data Fields
310
-
311
- - `description`: detailed description of patent.
312
- - `abstract`: Patent abastract.
313
-
314
- ### Data Splits
315
-
316
- | | train | validation | test |
317
- |:----|------------------:|-------------:|-------:|
318
- | all | 1207222 | 67068 | 67072 |
319
- | a | 174134 | 9674 | 9675 |
320
- | b | 161520 | 8973 | 8974 |
321
- | c | 101042 | 5613 | 5614 |
322
- | d | 10164 | 565 | 565 |
323
- | e | 34443 | 1914 | 1914 |
324
- | f | 85568 | 4754 | 4754 |
325
- | g | 258935 | 14385 | 14386 |
326
- | h | 257019 | 14279 | 14279 |
327
- | y | 124397 | 6911 | 6911 |
328
-
329
- ## Dataset Creation
330
-
331
- ### Curation Rationale
332
-
333
- [More Information Needed]
334
-
335
- ### Source Data
336
-
337
- #### Initial Data Collection and Normalization
338
-
339
- [More Information Needed]
340
-
341
- #### Who are the source language producers?
342
-
343
- [More Information Needed]
344
-
345
- ### Annotations
346
-
347
- #### Annotation process
348
-
349
- [More Information Needed]
350
-
351
- #### Who are the annotators?
352
-
353
- [More Information Needed]
354
-
355
- ### Personal and Sensitive Information
356
-
357
- [More Information Needed]
358
-
359
- ## Considerations for Using the Data
360
-
361
- ### Social Impact of Dataset
362
-
363
- [More Information Needed]
364
-
365
- ### Discussion of Biases
366
-
367
- [More Information Needed]
368
-
369
- ### Other Known Limitations
370
-
371
- [More Information Needed]
372
-
373
- ## Additional Information
374
-
375
- ### Dataset Curators
376
-
377
- [More Information Needed]
378
-
379
- ### Licensing Information
380
-
381
- [More Information Needed]
382
-
383
- ### Citation Information
384
-
385
- ```bibtex
386
- @article{DBLP:journals/corr/abs-1906-03741,
387
- author = {Eva Sharma and
388
- Chen Li and
389
- Lu Wang},
390
- title = {{BIGPATENT:} {A} Large-Scale Dataset for Abstractive and Coherent
391
- Summarization},
392
- journal = {CoRR},
393
- volume = {abs/1906.03741},
394
- year = {2019},
395
- url = {http://arxiv.org/abs/1906.03741},
396
- eprinttype = {arXiv},
397
- eprint = {1906.03741},
398
- timestamp = {Wed, 26 Jun 2019 07:14:58 +0200},
399
- biburl = {https://dblp.org/rec/journals/corr/abs-1906-03741.bib},
400
- bibsource = {dblp computer science bibliography, https://dblp.org}
401
- }
402
- ```
403
-
404
- ### Contributions
405
-
406
- Thanks to [@mattbui](https://github.com/mattbui) for adding this dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # Sampled big_patent Dataset
2
+ This is a sampled big_patent dataset containing 5000 train and 500 test rows.