Gresham commited on
Commit
18308c4
·
1 Parent(s): aecf6f1

fix: load dataset error

Browse files
Files changed (1) hide show
  1. llama-fine-tuning-QLoRA.py +13 -7
llama-fine-tuning-QLoRA.py CHANGED
@@ -5,7 +5,8 @@ os.chdir(os.path.dirname(__file__))
5
 
6
  # 导入必要的库
7
  import torch
8
- from datasets import load_dataset, Dataset
 
9
  from transformers import (
10
  AutoModelForCausalLM, # 用于加载预训练的语言模型
11
  AutoTokenizer, # 用于加载与模型相匹配的分词器
@@ -15,7 +16,8 @@ from transformers import (
15
  pipeline, # 用于创建模型的pipeline
16
  logging, # 用于记录日志
17
  )
18
- from peft import LoraConfig, PeftModel # 用于配置和加载QLoRA模型
 
19
  from trl import SFTTrainer # 用于执行监督式微调的Trainer
20
 
21
  # 设置预训练模型的名称
@@ -108,12 +110,16 @@ packing = False
108
  device_map = {"": 0}
109
 
110
  # 加载数据集
111
- dataset = load_dataset(path="json", data_dir="./num_list", data_files="num_list_500_per_sample_100_length.json")
112
- fine_tune_dataset = []
113
  print("Loading dataset...")
114
- for instance in dataset["train"]:
115
- prompt = instance["system_prompt"] + "\n\n" + instance["description"] + "\nQuestion: " + instance["data"]["question"] + "\nData: " + instance["data"]["struct_data"]
116
- answer = instance["data"]["answer"]
 
 
 
 
 
 
117
  completion = f"The answer is {answer}."
118
  fine_tune_dataset.append({"prompt": prompt, "completion": completion})
119
 
 
5
 
6
  # 导入必要的库
7
  import torch
8
+ import json
9
+ from datasets import Dataset
10
  from transformers import (
11
  AutoModelForCausalLM, # 用于加载预训练的语言模型
12
  AutoTokenizer, # 用于加载与模型相匹配的分词器
 
16
  pipeline, # 用于创建模型的pipeline
17
  logging, # 用于记录日志
18
  )
19
+ from huggingface_hub import hf_hub_download
20
+ from peft import LoraConfig # 用于配置和加载QLoRA模型
21
  from trl import SFTTrainer # 用于执行监督式微调的Trainer
22
 
23
  # 设置预训练模型的名称
 
110
  device_map = {"": 0}
111
 
112
  # 加载数据集
 
 
113
  print("Loading dataset...")
114
+ REPO_ID = "TreeAILab/NumericBench"
115
+ dataset_name = 'num_list/num_list_500_per_sample_100_length.json'
116
+ with open(hf_hub_download(repo_id=REPO_ID, filename=dataset_name, repo_type="dataset")) as f:
117
+ dataset = json.load(f)
118
+ fine_tune_dataset = []
119
+
120
+ for instance in dataset["data"]:
121
+ prompt = dataset["system_prompt"] + "\n\n" + dataset["description"] + "\nQuestion: " + instance["question"] + "\nData: " + instance["struct_data"]
122
+ answer = instance["answer"]
123
  completion = f"The answer is {answer}."
124
  fine_tune_dataset.append({"prompt": prompt, "completion": completion})
125