Datasets:
Gresham
commited on
Commit
·
18308c4
1
Parent(s):
aecf6f1
fix: load dataset error
Browse files- llama-fine-tuning-QLoRA.py +13 -7
llama-fine-tuning-QLoRA.py
CHANGED
@@ -5,7 +5,8 @@ os.chdir(os.path.dirname(__file__))
|
|
5 |
|
6 |
# 导入必要的库
|
7 |
import torch
|
8 |
-
|
|
|
9 |
from transformers import (
|
10 |
AutoModelForCausalLM, # 用于加载预训练的语言模型
|
11 |
AutoTokenizer, # 用于加载与模型相匹配的分词器
|
@@ -15,7 +16,8 @@ from transformers import (
|
|
15 |
pipeline, # 用于创建模型的pipeline
|
16 |
logging, # 用于记录日志
|
17 |
)
|
18 |
-
from
|
|
|
19 |
from trl import SFTTrainer # 用于执行监督式微调的Trainer
|
20 |
|
21 |
# 设置预训练模型的名称
|
@@ -108,12 +110,16 @@ packing = False
|
|
108 |
device_map = {"": 0}
|
109 |
|
110 |
# 加载数据集
|
111 |
-
dataset = load_dataset(path="json", data_dir="./num_list", data_files="num_list_500_per_sample_100_length.json")
|
112 |
-
fine_tune_dataset = []
|
113 |
print("Loading dataset...")
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
completion = f"The answer is {answer}."
|
118 |
fine_tune_dataset.append({"prompt": prompt, "completion": completion})
|
119 |
|
|
|
5 |
|
6 |
# 导入必要的库
|
7 |
import torch
|
8 |
+
import json
|
9 |
+
from datasets import Dataset
|
10 |
from transformers import (
|
11 |
AutoModelForCausalLM, # 用于加载预训练的语言模型
|
12 |
AutoTokenizer, # 用于加载与模型相匹配的分词器
|
|
|
16 |
pipeline, # 用于创建模型的pipeline
|
17 |
logging, # 用于记录日志
|
18 |
)
|
19 |
+
from huggingface_hub import hf_hub_download
|
20 |
+
from peft import LoraConfig # 用于配置和加载QLoRA模型
|
21 |
from trl import SFTTrainer # 用于执行监督式微调的Trainer
|
22 |
|
23 |
# 设置预训练模型的名称
|
|
|
110 |
device_map = {"": 0}
|
111 |
|
112 |
# 加载数据集
|
|
|
|
|
113 |
print("Loading dataset...")
|
114 |
+
REPO_ID = "TreeAILab/NumericBench"
|
115 |
+
dataset_name = 'num_list/num_list_500_per_sample_100_length.json'
|
116 |
+
with open(hf_hub_download(repo_id=REPO_ID, filename=dataset_name, repo_type="dataset")) as f:
|
117 |
+
dataset = json.load(f)
|
118 |
+
fine_tune_dataset = []
|
119 |
+
|
120 |
+
for instance in dataset["data"]:
|
121 |
+
prompt = dataset["system_prompt"] + "\n\n" + dataset["description"] + "\nQuestion: " + instance["question"] + "\nData: " + instance["struct_data"]
|
122 |
+
answer = instance["answer"]
|
123 |
completion = f"The answer is {answer}."
|
124 |
fine_tune_dataset.append({"prompt": prompt, "completion": completion})
|
125 |
|