NumericBench / llama-fine-tuning-QLoRA.py
Gresham
feat: add llama fine tuning
aecf6f1
raw
history blame
5.07 kB
import os
# 切换到当前文件所在的目录
os.chdir(os.path.dirname(__file__))
# 导入必要的库
import torch
from datasets import load_dataset, Dataset
from transformers import (
AutoModelForCausalLM, # 用于加载预训练的语言模型
AutoTokenizer, # 用于加载与模型相匹配的分词器
BitsAndBytesConfig, # 用于配置4-bit量化
HfArgumentParser, # 用于解析命令行参数
TrainingArguments, # 用于设置训练参数
pipeline, # 用于创建模型的pipeline
logging, # 用于记录日志
)
from peft import LoraConfig, PeftModel # 用于配置和加载QLoRA模型
from trl import SFTTrainer # 用于执行监督式微调的Trainer
# 设置预训练模型的名称
model_name = "meta-llama/Llama-3.1-8B-Instruct"
# 设置微调后模型的名称
new_model = "Llama-3.1-8b-Instruct-fine-tuned"
# LoRA的注意力维度
lora_r = 64
# Alpha参数用于LoRA缩放
lora_alpha = 16
# LoRA层的dropout概率
lora_dropout = 0.1
# 激活4-bit精度的基础模型加载
use_4bit = True
# 4-bit基础模型的计算数据类型
bnb_4bit_compute_dtype = "float16"
# 4-bit量化类型(fp4或nf4)
bnb_4bit_quant_type = "nf4"
# 激活4-bit基础模型的嵌套量化(双重量化)
use_nested_quant = False
# 输出目录,用于存储模型预测和检查点
output_dir = "./results"
# 训练周期数
num_train_epochs = 1
# 是否启用fp16/bf16训练(在A100上将bf16设置为True)
fp16 = False
bf16 = True
# GPU上每个训练批次的样本数
per_device_train_batch_size = 4
# GPU上每个评估批次的样本数
per_device_eval_batch_size = 4
# 累积梯度的更新步骤数
gradient_accumulation_steps = 1
# 是否启用梯度检查点
gradient_checkpointing = True
# 最大梯度归一化(梯度裁剪)
max_grad_norm = 0.3
# 初始学习率(AdamW优化器)
learning_rate = 2e-4
# 权重衰减,应用于全部layer(不包括bias/LayerNorm的权重)
weight_decay = 0.001
# 优化器
optim = "paged_adamw_32bit"
# 学习率计划
lr_scheduler_type = "cosine"
# 训练步数(覆盖num_train_epochs)
max_steps = -1
# 线性预热的步数比率(从0到学习率)
warmup_ratio = 0.03
# 按长度分组序列
group_by_length = True
# 每X更新步骤保存检查点
save_steps = 0
# 每X更新步骤记录日志
logging_steps = 25
# SFT参数配置
# 最大序列长度
max_seq_length = None
# 打包多个短示例到同一输入序列以提高效率
packing = False
# 将整个模型加载到 GPU 0
device_map = {"": 0}
# 加载数据集
dataset = load_dataset(path="json", data_dir="./num_list", data_files="num_list_500_per_sample_100_length.json")
fine_tune_dataset = []
print("Loading dataset...")
for instance in dataset["train"]:
prompt = instance["system_prompt"] + "\n\n" + instance["description"] + "\nQuestion: " + instance["data"]["question"] + "\nData: " + instance["data"]["struct_data"]
answer = instance["data"]["answer"]
completion = f"The answer is {answer}."
fine_tune_dataset.append({"prompt": prompt, "completion": completion})
fine_tune_dataset = Dataset.from_list(fine_tune_dataset)
compute_dtype = getattr(torch, bnb_4bit_compute_dtype)
bnb_config = BitsAndBytesConfig(
load_in_4bit=use_4bit,
bnb_4bit_quant_type=bnb_4bit_quant_type,
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=use_nested_quant,
)
if compute_dtype == torch.float16 and use_4bit:
major, _ = torch.cuda.get_device_capability()
if major >= 8:
print("GPU支持bfloat16")
# 加载模型
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map=device_map
)
model.config.use_cache = False
model.config.pretraining_tp = 1
# 加载分词器
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right" # 修复fp16训练中的溢出问题
peft_config = LoraConfig(
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
r=lora_r,
bias="none",
task_type="CAUSAL_LM",
)
training_arguments = TrainingArguments(
output_dir=output_dir,
num_train_epochs=num_train_epochs,
per_device_train_batch_size=per_device_train_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
optim=optim,
save_steps=save_steps,
logging_steps=logging_steps,
learning_rate=learning_rate,
weight_decay=weight_decay,
fp16=fp16,
bf16=bf16,
max_grad_norm=max_grad_norm,
max_steps=max_steps,
warmup_ratio=warmup_ratio,
group_by_length=group_by_length,
lr_scheduler_type=lr_scheduler_type,
report_to="tensorboard",
)
# 设置监督式微调参数
trainer = SFTTrainer(
model=model,
train_dataset=fine_tune_dataset,
peft_config=peft_config,
dataset_text_field="text",
max_seq_length=max_seq_length,
tokenizer=tokenizer,
args=training_arguments,
packing=packing,
)
# 训练模型
trainer.train()
trainer.model.save_pretrained(new_model)