fix
Browse files
.hand-gesture-recognition-dataset
DELETED
@@ -1,83 +0,0 @@
|
|
1 |
-
# import datasets
|
2 |
-
# import pandas as pd
|
3 |
-
|
4 |
-
# _CITATION = """\
|
5 |
-
# @InProceedings{huggingface:dataset,
|
6 |
-
# title = {hand-gesture-recognition-dataset},
|
7 |
-
# author = {TrainingDataPro},
|
8 |
-
# year = {2023}
|
9 |
-
# }
|
10 |
-
# """
|
11 |
-
|
12 |
-
# _DESCRIPTION = """\
|
13 |
-
# The dataset consists of videos showcasing individuals demonstrating 5 different
|
14 |
-
# hand gestures (*"one", "four", "small", "fist", and "me"*). Each video captures
|
15 |
-
# a person prominently displaying a single hand gesture, allowing for accurate
|
16 |
-
# identification and differentiation of the gestures.
|
17 |
-
# The dataset offers a diverse range of individuals performing the gestures,
|
18 |
-
# enabling the exploration of variations in hand shapes, sizes, and movements
|
19 |
-
# across different individuals.
|
20 |
-
# The videos in the dataset are recorded in reasonable lighting conditions and
|
21 |
-
# with adequate resolution, to ensure that the hand gestures can be easily
|
22 |
-
# observed and studied.
|
23 |
-
# """
|
24 |
-
# _NAME = 'hand-gesture-recognition-dataset'
|
25 |
-
|
26 |
-
# _HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
|
27 |
-
|
28 |
-
# _LICENSE = "cc-by-nc-nd-4.0"
|
29 |
-
|
30 |
-
# _DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
|
31 |
-
|
32 |
-
|
33 |
-
# class HandGestureRecognitionDataset(datasets.GeneratorBasedBuilder):
|
34 |
-
|
35 |
-
# def _info(self):
|
36 |
-
# return datasets.DatasetInfo(description=_DESCRIPTION,
|
37 |
-
# features=datasets.Features({
|
38 |
-
# 'set_id': datasets.Value('int32'),
|
39 |
-
# 'fist': datasets.Value('string'),
|
40 |
-
# 'four': datasets.Value('string'),
|
41 |
-
# 'me': datasets.Value('string'),
|
42 |
-
# 'one': datasets.Value('string'),
|
43 |
-
# 'small': datasets.Value('string')
|
44 |
-
# }),
|
45 |
-
# supervised_keys=None,
|
46 |
-
# homepage=_HOMEPAGE,
|
47 |
-
# citation=_CITATION,
|
48 |
-
# license=_LICENSE)
|
49 |
-
|
50 |
-
# def _split_generators(self, dl_manager):
|
51 |
-
# files = dl_manager.download_and_extract(f"{_DATA}files.zip")
|
52 |
-
# annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
|
53 |
-
# files = dl_manager.iter_files(files)
|
54 |
-
# return [
|
55 |
-
# datasets.SplitGenerator(name=datasets.Split.TRAIN,
|
56 |
-
# gen_kwargs={
|
57 |
-
# "files": files,
|
58 |
-
# 'annotations': annotations
|
59 |
-
# }),
|
60 |
-
# ]
|
61 |
-
|
62 |
-
# def _generate_examples(self, files, annotations):
|
63 |
-
# annotations_df = pd.read_csv(annotations, sep=';')
|
64 |
-
|
65 |
-
# files = sorted(files)
|
66 |
-
# files = [files[i:i + 5] for i in range(0, len(files), 5)]
|
67 |
-
# for idx, files_set in enumerate(files):
|
68 |
-
# set_id = int(files_set[0].split('/')[2])
|
69 |
-
# data = {'set_id': set_id}
|
70 |
-
|
71 |
-
# for file in files_set:
|
72 |
-
# file_name = file.split('/')[3]
|
73 |
-
# if 'fist' in file_name.lower():
|
74 |
-
# data['fist'] = file
|
75 |
-
# elif 'four' in file_name.lower():
|
76 |
-
# data['four'] = file
|
77 |
-
# elif 'me' in file_name.lower():
|
78 |
-
# data['me'] = file
|
79 |
-
# elif 'one' in file_name.lower():
|
80 |
-
# data['one'] = file
|
81 |
-
# elif 'small' in file_name.lower():
|
82 |
-
# data['small'] = file
|
83 |
-
# yield idx, data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hand-gesture-recognition-dataset.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
_CITATION = """\
|
5 |
+
@InProceedings{huggingface:dataset,
|
6 |
+
title = {hand-gesture-recognition-dataset},
|
7 |
+
author = {TrainingDataPro},
|
8 |
+
year = {2023}
|
9 |
+
}
|
10 |
+
"""
|
11 |
+
|
12 |
+
_DESCRIPTION = """\
|
13 |
+
The dataset consists of videos showcasing individuals demonstrating 5 different
|
14 |
+
hand gestures (*"one", "four", "small", "fist", and "me"*). Each video captures
|
15 |
+
a person prominently displaying a single hand gesture, allowing for accurate
|
16 |
+
identification and differentiation of the gestures.
|
17 |
+
The dataset offers a diverse range of individuals performing the gestures,
|
18 |
+
enabling the exploration of variations in hand shapes, sizes, and movements
|
19 |
+
across different individuals.
|
20 |
+
The videos in the dataset are recorded in reasonable lighting conditions and
|
21 |
+
with adequate resolution, to ensure that the hand gestures can be easily
|
22 |
+
observed and studied.
|
23 |
+
"""
|
24 |
+
_NAME = 'hand-gesture-recognition-dataset'
|
25 |
+
|
26 |
+
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
|
27 |
+
|
28 |
+
_LICENSE = "cc-by-nc-nd-4.0"
|
29 |
+
|
30 |
+
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
|
31 |
+
|
32 |
+
|
33 |
+
class HandGestureRecognitionDataset(datasets.GeneratorBasedBuilder):
|
34 |
+
|
35 |
+
def _info(self):
|
36 |
+
return datasets.DatasetInfo(description=_DESCRIPTION,
|
37 |
+
features=datasets.Features({
|
38 |
+
'set_id': datasets.Value('int32'),
|
39 |
+
'fist': datasets.Value('string'),
|
40 |
+
'four': datasets.Value('string'),
|
41 |
+
'me': datasets.Value('string'),
|
42 |
+
'one': datasets.Value('string'),
|
43 |
+
'small': datasets.Value('string')
|
44 |
+
}),
|
45 |
+
supervised_keys=None,
|
46 |
+
homepage=_HOMEPAGE,
|
47 |
+
citation=_CITATION,
|
48 |
+
license=_LICENSE)
|
49 |
+
|
50 |
+
def _split_generators(self, dl_manager):
|
51 |
+
files = dl_manager.download_and_extract(f"{_DATA}files.zip")
|
52 |
+
annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
|
53 |
+
files = dl_manager.iter_files(files)
|
54 |
+
return [
|
55 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN,
|
56 |
+
gen_kwargs={
|
57 |
+
"files": files,
|
58 |
+
'annotations': annotations
|
59 |
+
}),
|
60 |
+
]
|
61 |
+
|
62 |
+
def _generate_examples(self, files, annotations):
|
63 |
+
annotations_df = pd.read_csv(annotations, sep=',')
|
64 |
+
|
65 |
+
# files = sorted(files)
|
66 |
+
# files = [files[i:i + 5] for i in range(0, len(files), 5)]
|
67 |
+
for idx, file_path in enumerate(files):
|
68 |
+
set_id = int(file_path.split('/')[-2])
|
69 |
+
file_name = file_path.split('/')[-1]
|
70 |
+
|
71 |
+
print(set_id, file_name)
|
72 |
+
if 'fist' in file_name:
|
73 |
+
data = {
|
74 |
+
'set_id':
|
75 |
+
set_id,
|
76 |
+
'fist':
|
77 |
+
annotations_df.loc[annotations_df['set_id'] == set_id]
|
78 |
+
['fist'].values[0],
|
79 |
+
'four':
|
80 |
+
annotations_df.loc[annotations_df['set_id'] == set_id]
|
81 |
+
['four'].values[0],
|
82 |
+
'me':
|
83 |
+
annotations_df.loc[annotations_df['set_id'] == set_id]
|
84 |
+
['me'].values[0],
|
85 |
+
'one':
|
86 |
+
annotations_df.loc[annotations_df['set_id'] == set_id]
|
87 |
+
['one'].values[0],
|
88 |
+
'small':
|
89 |
+
annotations_df.loc[annotations_df['set_id'] == set_id]
|
90 |
+
['small'].values[0]
|
91 |
+
}
|
92 |
+
|
93 |
+
yield idx, data
|