Last commit not found
import os | |
from xml.etree import ElementTree as ET | |
import datasets | |
_CITATION = """\ | |
@InProceedings{huggingface:dataset, | |
title = {fights-segmentation}, | |
author = {TrainingDataPro}, | |
year = {2023} | |
} | |
""" | |
_DESCRIPTION = """\ | |
The dataset consists of a collection of photos extracted from **videos of fights**. | |
It includes **segmentation masks** for **fighters, referees, mats, and the background**. | |
The dataset offers a resource for *object detection, instance segmentation, | |
action recognition, or pose estimation*. | |
It could be useful for **sport community** in identification and detection of | |
the violations, dispute resolution and general optimisation of referee's work using | |
computer vision. | |
""" | |
_NAME = "fights-segmentation" | |
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" | |
_LICENSE = "" | |
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" | |
_LABELS = ["referee", "background", "wrestling", "human"] | |
class FightsSegmentation(datasets.GeneratorBasedBuilder): | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(name="video_01", data_dir=f"{_DATA}video_01.zip"), | |
datasets.BuilderConfig(name="video_02", data_dir=f"{_DATA}video_02.zip"), | |
datasets.BuilderConfig(name="video_03", data_dir=f"{_DATA}video_03.zip"), | |
] | |
DEFAULT_CONFIG_NAME = "video_01" | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("int32"), | |
"name": datasets.Value("string"), | |
"image": datasets.Image(), | |
"mask": datasets.Image(), | |
"width": datasets.Value("uint16"), | |
"height": datasets.Value("uint16"), | |
"shapes": datasets.Sequence( | |
{ | |
"label": datasets.ClassLabel( | |
num_classes=len(_LABELS), | |
names=_LABELS, | |
), | |
"type": datasets.Value("string"), | |
"points": datasets.Sequence( | |
datasets.Sequence( | |
datasets.Value("float"), | |
), | |
), | |
"rotation": datasets.Value("float"), | |
"occluded": datasets.Value("uint8"), | |
"z_order": datasets.Value("int16"), | |
"attributes": datasets.Sequence( | |
{ | |
"name": datasets.Value("string"), | |
"text": datasets.Value("string"), | |
} | |
), | |
} | |
), | |
} | |
), | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
data = dl_manager.download_and_extract(self.config.data_dir) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"data": data, | |
}, | |
), | |
] | |
def parse_shape(shape: ET.Element) -> dict: | |
label = shape.get("label") | |
shape_type = shape.tag | |
rotation = shape.get("rotation", 0.0) | |
occluded = shape.get("occluded", 0) | |
z_order = shape.get("z_order", 0) | |
points = None | |
if shape_type == "points": | |
points = tuple(map(float, shape.get("points").split(","))) | |
elif shape_type == "box": | |
points = [ | |
(float(shape.get("xtl")), float(shape.get("ytl"))), | |
(float(shape.get("xbr")), float(shape.get("ybr"))), | |
] | |
elif shape_type == "polygon": | |
points = [ | |
tuple(map(float, point.split(","))) | |
for point in shape.get("points").split(";") | |
] | |
attributes = [] | |
for attr in shape: | |
attr_name = attr.get("name") | |
attr_text = attr.text | |
attributes.append({"name": attr_name, "text": attr_text}) | |
shape_data = { | |
"label": label, | |
"type": shape_type, | |
"points": points, | |
"rotation": rotation, | |
"occluded": occluded, | |
"z_order": z_order, | |
"attributes": attributes, | |
} | |
return shape_data | |
def _generate_examples(self, data): | |
tree = ET.parse(os.path.join(data, "annotations.xml")) | |
root = tree.getroot() | |
for idx, file in enumerate(sorted(os.listdir(os.path.join(data, "images")))): | |
image_name = file.split("/")[-1] | |
img = root.find(f"./image[@name='images/{image_name}']") | |
image_id = img.get("id") | |
name = img.get("name") | |
width = img.get("width") | |
height = img.get("height") | |
shapes = [self.parse_shape(shape) for shape in img] | |
yield idx, { | |
"id": image_id, | |
"name": name, | |
"image": os.path.join(data, "images", file), | |
"mask": os.path.join(data, "masks", file), | |
"width": width, | |
"height": height, | |
"shapes": shapes, | |
} | |