|
import os |
|
import torch |
|
import torchvision.datasets as datasets |
|
|
|
class MNIST: |
|
def __init__(self, |
|
preprocess, |
|
location=os.path.expanduser('~/data'), |
|
batch_size=128, |
|
num_workers=16): |
|
|
|
|
|
self.train_dataset = datasets.MNIST( |
|
root=location, |
|
download=True, |
|
train=True, |
|
transform=preprocess |
|
) |
|
|
|
self.train_loader = torch.utils.data.DataLoader( |
|
self.train_dataset, |
|
batch_size=batch_size, |
|
shuffle=True, |
|
num_workers=num_workers |
|
) |
|
|
|
self.test_dataset = datasets.MNIST( |
|
root=location, |
|
download=True, |
|
train=False, |
|
transform=preprocess |
|
) |
|
|
|
self.test_loader = torch.utils.data.DataLoader( |
|
self.test_dataset, |
|
batch_size=batch_size, |
|
shuffle=False, |
|
num_workers=num_workers |
|
) |
|
|
|
self.classnames = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] |