Techta commited on
Commit
d7ceadc
·
verified ·
1 Parent(s): c018aef

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +186 -85
README.md CHANGED
@@ -1,148 +1,249 @@
1
  ---
2
- license: bigcode-openrail-m
3
- task_categories:
4
- - text-generation
5
  language:
6
  - en
7
- pretty_name: Backend-coder
8
  size_categories:
9
  - 1K<n<10K
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
- # Dataset Card for Dataset Name
13
-
14
- <!-- Provide a quick summary of the dataset. -->
15
-
16
- This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1).
17
-
18
- ## Dataset Details
19
-
20
- ### Dataset Description
21
-
22
- <!-- Provide a longer summary of what this dataset is. -->
23
-
24
-
25
 
26
- - **Curated by:** [More Information Needed]
27
- - **Funded by [optional]:** [More Information Needed]
28
- - **Shared by [optional]:** [More Information Needed]
29
- - **Language(s) (NLP):** [More Information Needed]
30
- - **License:** [More Information Needed]
31
 
32
- ### Dataset Sources [optional]
33
 
34
- <!-- Provide the basic links for the dataset. -->
35
 
36
- - **Repository:** [More Information Needed]
37
- - **Paper [optional]:** [More Information Needed]
38
- - **Demo [optional]:** [More Information Needed]
39
 
40
- ## Uses
41
 
42
- <!-- Address questions around how the dataset is intended to be used. -->
 
 
 
43
 
44
- ### Direct Use
45
 
46
- <!-- This section describes suitable use cases for the dataset. -->
47
-
48
- [More Information Needed]
49
-
50
- ### Out-of-Scope Use
51
-
52
- <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
53
-
54
- [More Information Needed]
55
 
56
  ## Dataset Structure
57
 
58
- <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
59
-
60
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
  ## Dataset Creation
63
 
64
  ### Curation Rationale
65
 
66
- <!-- Motivation for the creation of this dataset. -->
67
 
68
- [More Information Needed]
 
 
 
69
 
70
  ### Source Data
71
 
72
- <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
73
-
74
- #### Data Collection and Processing
75
 
76
- <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
77
 
78
- [More Information Needed]
 
 
79
 
80
- #### Who are the source data producers?
81
 
82
- <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
 
 
83
 
84
- [More Information Needed]
85
-
86
- ### Annotations [optional]
87
-
88
- <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
89
 
90
  #### Annotation process
91
 
92
- <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
93
-
94
- [More Information Needed]
 
95
 
96
  #### Who are the annotators?
97
 
98
- <!-- This section describes the people or systems who created the annotations. -->
 
 
 
 
 
 
 
 
 
 
99
 
100
- [More Information Needed]
101
 
102
- #### Personal and Sensitive Information
103
 
104
- <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
 
 
 
 
105
 
106
- [More Information Needed]
 
 
 
107
 
108
- ## Bias, Risks, and Limitations
109
 
110
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
 
111
 
112
- [More Information Needed]
113
 
114
- ### Recommendations
 
 
 
 
115
 
116
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
117
 
118
- Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
119
 
120
- ## Citation [optional]
 
 
 
121
 
122
- <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
123
 
124
- **BibTeX:**
 
 
 
 
125
 
126
- [More Information Needed]
127
 
128
- **APA:**
 
 
 
 
 
 
 
 
129
 
130
- [More Information Needed]
131
 
132
- ## Glossary [optional]
133
 
134
- <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
 
 
 
135
 
136
- [More Information Needed]
137
 
138
- ## More Information [optional]
139
 
140
- [More Information Needed]
 
 
 
 
141
 
142
- ## Dataset Card Authors [optional]
143
 
144
- [More Information Needed]
 
 
 
145
 
146
- ## Dataset Card Contact
147
 
148
- [More Information Needed]
 
 
 
 
 
1
  ---
 
 
 
2
  language:
3
  - en
4
+ license: mit
5
  size_categories:
6
  - 1K<n<10K
7
+ task_categories:
8
+ - text-generation
9
+ - text2text-generation
10
+ task_ids:
11
+ - code-generation
12
+ pretty_name: Backend Code Generation Dataset
13
+ tags:
14
+ - code
15
+ - backend
16
+ - api
17
+ - web-development
18
+ - javascript
19
+ - python
20
+ - nodejs
21
+ - fastapi
22
+ - express
23
+ - django
24
+ - flask
25
+ - synthetic
26
  ---
27
 
28
+ # Backend Code Generation Dataset
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
+ ## Dataset Description
 
 
 
 
31
 
32
+ This dataset contains examples for training AI models to generate backend application code. It includes descriptions of backend requirements paired with complete, functional code implementations across multiple frameworks and programming languages.
33
 
34
+ ### Dataset Summary
35
 
36
+ The Backend Code Generation Dataset is designed to train models that can generate complete backend applications from natural language descriptions. The dataset covers popular backend frameworks including Express.js, FastAPI, Django, Flask, and others, with implementations in JavaScript, Python, and Go.
 
 
37
 
38
+ ### Supported Tasks and Leaderboards
39
 
40
+ - **Primary Task**: Code Generation
41
+ - **Secondary Tasks**: Text-to-Code Translation, API Generation
42
+ - **Languages**: JavaScript, Python, Go
43
+ - **Frameworks**: Express.js, FastAPI, Django, Flask, NestJS, Gin
44
 
45
+ ### Languages
46
 
47
+ The dataset primarily uses English for descriptions and requirements, with code implementations in:
48
+ - JavaScript (Node.js)
49
+ - Python
50
+ - Go
 
 
 
 
 
51
 
52
  ## Dataset Structure
53
 
54
+ ### Data Instances
55
+
56
+ Each example in the dataset contains:
57
+
58
+ ```json
59
+ {
60
+ "description": "E-commerce API with user authentication and product management",
61
+ "requirements": [
62
+ "User registration and login",
63
+ "JWT token authentication",
64
+ "Product CRUD operations",
65
+ "Order management",
66
+ "Input validation"
67
+ ],
68
+ "framework": "fastapi",
69
+ "language": "python",
70
+ "complexity": "medium",
71
+ "estimated_lines": 250,
72
+ "code_files": {
73
+ "main.py": "from fastapi import FastAPI, Depends...",
74
+ "models.py": "from sqlalchemy import Column, Integer...",
75
+ "auth.py": "from passlib.context import CryptContext...",
76
+ "requirements.txt": "fastapi==0.68.0\nuvicorn==0.15.0..."
77
+ },
78
+ "features": [
79
+ "authentication",
80
+ "crud_operations",
81
+ "database_integration",
82
+ "input_validation",
83
+ "error_handling"
84
+ ]
85
+ }
86
+ ```
87
+
88
+ ### Data Fields
89
+
90
+ - **description** (string): Natural language description of the backend application requirements
91
+ - **requirements** (list): Specific functional requirements broken down into bullet points
92
+ - **framework** (string): Target backend framework (express, fastapi, django, flask, nestjs, gin)
93
+ - **language** (string): Programming language (javascript, python, go)
94
+ - **complexity** (string): Complexity level (simple, medium, complex)
95
+ - **estimated_lines** (integer): Approximate number of lines in the generated code
96
+ - **code_files** (dict): Dictionary mapping file names to their complete code content
97
+ - **features** (list): Tags indicating what features are implemented in the code
98
+
99
+ ### Data Splits
100
+
101
+ The dataset is split as follows:
102
+
103
+ - **Train**: 800 examples (80%)
104
+ - **Validation**: 100 examples (10%)
105
+ - **Test**: 100 examples (10%)
106
 
107
  ## Dataset Creation
108
 
109
  ### Curation Rationale
110
 
111
+ This dataset was created to address the need for high-quality training data for backend code generation models. Existing code datasets often lack the structure and completeness needed for generating full backend applications. This dataset provides:
112
 
113
+ 1. **Complete Applications**: Each example contains a full, runnable backend application
114
+ 2. **Multi-Framework Coverage**: Supports the most popular backend frameworks
115
+ 3. **Structured Requirements**: Clear mapping from natural language to code features
116
+ 4. **Best Practices**: Generated code follows industry standards and security practices
117
 
118
  ### Source Data
119
 
120
+ #### Initial Data Collection and Normalization
 
 
121
 
122
+ The dataset was created through a combination of:
123
 
124
+ 1. **GitHub Repository Mining**: Collected and analyzed popular backend repositories
125
+ 2. **Synthetic Generation**: Created examples following common backend patterns
126
+ 3. **Expert Review**: Manual validation and improvement of generated examples
127
 
128
+ #### Who are the source language producers?
129
 
130
+ - **GitHub Repositories**: Open source projects from the developer community
131
+ - **Synthetic Generation**: Programmatically generated following established patterns
132
+ - **Expert Curation**: Professional backend developers with 5+ years experience
133
 
134
+ ### Annotations
 
 
 
 
135
 
136
  #### Annotation process
137
 
138
+ 1. **Automated Extraction**: Code patterns and structures extracted from repositories
139
+ 2. **Feature Tagging**: Automatic identification of implemented features
140
+ 3. **Complexity Assessment**: Algorithmic complexity scoring based on code metrics
141
+ 4. **Manual Review**: Expert validation of code quality and completeness
142
 
143
  #### Who are the annotators?
144
 
145
+ - Backend development experts
146
+ - AI/ML engineers specializing in code generation
147
+ - Software architecture consultants
148
+
149
+ ### Personal and Sensitive Information
150
+
151
+ The dataset has been carefully reviewed to ensure:
152
+ - No personal information (names, emails, passwords) in code examples
153
+ - No real API keys or authentication tokens
154
+ - No proprietary business logic or sensitive algorithms
155
+ - All database examples use generic schemas
156
 
157
+ ## Considerations for Using the Data
158
 
159
+ ### Social Impact of Dataset
160
 
161
+ **Positive Impacts:**
162
+ - Democratizes backend development knowledge
163
+ - Helps developers learn best practices across frameworks
164
+ - Accelerates prototyping and development workflows
165
+ - Provides educational resource for learning backend development
166
 
167
+ **Potential Negative Impacts:**
168
+ - May reduce demand for entry-level backend developers
169
+ - Generated code might not always follow latest security practices
170
+ - Could perpetuate existing biases in code patterns
171
 
172
+ ### Discussion of Biases
173
 
174
+ The dataset may contain biases toward:
175
+ - Popular frameworks (Express.js, FastAPI) over niche alternatives
176
+ - Western development practices and patterns
177
+ - English-language variable and function naming conventions
178
+ - Specific architectural patterns common in open-source projects
179
 
180
+ ### Other Known Limitations
181
 
182
+ - **Framework Versions**: Examples may not reflect the latest framework versions
183
+ - **Security Practices**: While best practices are followed, security landscapes evolve rapidly
184
+ - **Scalability**: Examples focus on standard use cases, may not cover high-scale scenarios
185
+ - **Testing**: Limited test code generation compared to application code
186
+ - **Database Diversity**: Primarily uses PostgreSQL/MongoDB, limited NoSQL variety
187
 
188
+ ## Additional Information
189
 
190
+ ### Dataset Curators
191
 
192
+ This dataset was curated by the Backend AI Training Team, consisting of:
193
+ - Senior Backend Engineers
194
+ - Machine Learning Researchers
195
+ - Developer Education Specialists
196
 
197
+ ### Licensing Information
198
 
199
+ This dataset is released under the MIT License, allowing for:
200
+ - Commercial and non-commercial use
201
+ - Modification and distribution
202
+ - Private use
203
+ - Patent use protection
204
 
205
+ ### Citation Information
206
 
207
+ ```bibtex
208
+ @dataset{backend_code_generation_2024,
209
+ title={Backend Code Generation Dataset},
210
+ author={Backend AI Training Team},
211
+ year={2024},
212
+ publisher={Hugging Face},
213
+ url={https://huggingface.co/datasets/your-username/backend-code-generation}
214
+ }
215
+ ```
216
 
217
+ ### Contributions
218
 
219
+ We welcome contributions to improve this dataset:
220
 
221
+ 1. **Quality Issues**: Report code examples that don't run or have security issues
222
+ 2. **Framework Coverage**: Suggest additional frameworks to include
223
+ 3. **Feature Requests**: Propose new types of backend applications to cover
224
+ 4. **Bias Reporting**: Help identify and address biases in the dataset
225
 
226
+ Please open issues or pull requests in the dataset repository.
227
 
228
+ ### Changelog
229
 
230
+ **v1.0.0 (2025-09-04)**
231
+ - Initial release with 1000 examples
232
+ - Coverage: Express.js, FastAPI, Django, Flask
233
+ - Languages: JavaScript, Python, Go
234
+ - Features: Authentication, CRUD, Database integration
235
 
236
+ ### Contact Information
237
 
238
+ For questions, suggestions, or collaboration opportunities:
239
+ - **Email**: [email protected]
240
+ - **GitHub**: https://github.com/PetersGlory/backend-code-generator-model
241
+ - **Discord**: Backend AI Community Server
242
 
243
+ ### Acknowledgments
244
 
245
+ Special thanks to:
246
+ - The open-source community for providing reference implementations
247
+ - Framework maintainers for excellent documentation
248
+ - Beta testers who provided valuable feedback
249
+ - Hugging Face for hosting and infrastructure support