Datasets:

ArXiv:
License:
TeaPearce commited on
Commit
647c386
·
verified ·
1 Parent(s): 27ec311

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +115 -9
README.md CHANGED
@@ -2,21 +2,127 @@
2
  license: mit
3
  ---
4
 
5
- [NOTICE] This dataset is currently in transition from the OneDrive previously hosted here:
6
- https://github.com/TeaPearce/Counter-Strike_Behavioural_Cloning?tab=readme-ov-file#datasets
 
 
 
 
 
 
 
7
 
8
 
9
- Dataset presented in:
10
- Counter-Strike Deathmatch with Large-Scale Behavioural Cloning, IEEE Conference on Games (CoG) 2022 [Best Paper Award]
11
- https://arxiv.org/abs/2104.04258
12
- Tim Pearce, Jun Zhu
13
 
14
- Other works used in:
15
- Imitating Human Behaviour with Diffusion Models, ICLR 2023
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  https://arxiv.org/abs/2301.10677
17
  Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu, Sergio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, Sam Devlin
18
 
19
- Diffusion for World Modeling: Visual Details Matter in Atari, NeurIPS 2024
20
  https://arxiv.org/pdf/2405.12399
21
  Eloi Alonso∗, Adam Jelley∗, Vincent Micheli, Anssi Kanervisto, Amos Storkey, Tim Pearce‡, François Fleuret‡
22
  Tweet here: https://twitter.com/EloiAlonso1/status/1844803606064611771
 
2
  license: mit
3
  ---
4
 
5
+ This repo hosts the dataset presented in:
6
+ __Counter-Strike Deathmatch with Large-Scale Behavioural Cloning__
7
+ [Tim Pearce](https://teapearce.github.io/), [Jun Zhu](https://ml.cs.tsinghua.edu.cn/~jun/index.shtml)
8
+ IEEE Conference on Games (CoG) 2022 [⭐️ Best Paper Award!]
9
+ ArXiv paper: https://arxiv.org/abs/2104.04258 (Contains some extra experiments not in CoG version)
10
+ CoG paper: https://ieee-cog.org/2022/assets/papers/paper_45.pdf
11
+ Four minute introduction video: https://youtu.be/rnz3lmfSHv0
12
+ Gameplay examples: https://youtu.be/KTY7UhjIMm4
13
+ Code: https://github.com/TeaPearce/Counter-Strike_Behavioural_Cloning
14
 
15
 
16
+ The dataset comprises several different subsets of data as described below.
17
+ You probably only care about the first one (if you want the largest dataset), or the second or third one (if you care about clean expert data).
 
 
18
 
19
+ - ```hdf5_dm_july2021_*_to_*.tar```
20
+ - each .tar file contains 200 .hdf5 files
21
+ - total files when unzipped: 5500
22
+ - approx size: 700 GB
23
+ - map: dust2
24
+ - gamemode: deathmatch
25
+ - source: scraped from online servers
26
+
27
+ - ```dataset_dm_expert_dust2/hdf5_dm_july2021_expert_*.hdf5```
28
+ - total files when unzipped: 190
29
+ - approx size: 24 GB
30
+ - map: dust2
31
+ - gamemode: deathmatch
32
+ - source: manually created, clean actions
33
+
34
+ - ```dataset_aim_expert/hdf5_aim_july2021_expert_*.hdf5```
35
+ - total files when unzipped: 45
36
+ - approx size: 6 GB
37
+ - map: aim map
38
+ - gamemode: aim mode
39
+ - source: manually created, clean actions
40
+
41
+ - ```dataset_dm_expert_othermaps/hdf5_dm_nuke_expert_*.hdf5```
42
+ - total files when unzipped: 10
43
+ - approx size: 1 GB
44
+ - map: nuke
45
+ - gamemode: deathmatch
46
+ - source: manually created, clean actions
47
+
48
+ - ```dataset_dm_expert_othermaps/hdf5_dm_mirage_expert_*.hdf5```
49
+ - total files when unzipped: 10
50
+ - approx size: 1 GB
51
+ - map: mirage
52
+ - gamemode: deathmatch
53
+ - source: manually created, clean actions
54
+
55
+ - ```dataset_dm_expert_othermaps/hdf5_dm_inferno_expert_*.hdf5```
56
+ - total files when unzipped: 10
57
+ - approx size: 1 GB
58
+ - map: mirage
59
+ - gamemode: deathmatch
60
+ - source: manually created, clean actions
61
+
62
+ - ```dataset_metadata/currvarsv2_dm_july2021_*_to_*.npy, currvarsv2_dm_july2021_expert_*_to_*.npy, currvarsv2_dm_mirage_expert_1_to_100.npy, currvarsv2_dm_inferno_expert_1_to_100.npy, currvarsv2_dm_nuke_expert_1_to_100.npy, currvarsv2_aim_july2021_expert_1_to_100.npy```
63
+ - total files when unzipped: 55 + 2 + 1 + 1 + 1 + 1 = 61
64
+ - approx size: 6 GB
65
+ - map: as per filename
66
+ - gamemode: as per filename
67
+ - source: as per filename
68
+
69
+ - ```location_trackings_backup/```
70
+ - total files when unzipped: 305
71
+ - approx size: 0.5 GB
72
+ - map: dust2
73
+ - gamemode: deathmatch
74
+ - source: contains metadata used to compute map coverage analysis
75
+ - **currvarsv2_agentj22** is the agent trained over the full online dataset
76
+ - **currvarsv2_agentj22_dmexpert20** is previous model finetuned on the clean expert dust2 dataset
77
+ - **currvarsv2_bot_capture** is medium difficulty built-in bot
78
+
79
+
80
+
81
+ ### Structure of .hdf5 files (image and action labels -- you probably care about this one):
82
+
83
+ Each file contains an ordered sequence of 1000 frames (~1 minute) of play.
84
+ This contains screenshots, as well as processed action labels.
85
+ We chose .hdf5 format for fast dataloading, since a subset of frames can be accessed without opening the full file.
86
+ The lookup keys are as follows (where i is frame number 0-999)
87
+ - **frame_i_x**: is the image
88
+ - **frame_i_xaux**: contains actions applied in previous timesteps, as well as health, ammo, and team. see dm_pretrain_preprocess.py for details, note this was not used in our final version of the agent
89
+ - **frame_i_y**: contains target actions in flattened vector form; [keys_pressed_onehot, Lclicks_onehot, Rclicks_onehot, mouse_x_onehot, mouse_y_onehot]
90
+ - **frame_i_helperarr**: in format [kill_flag, death_flag], each a binary variable, e.g. [1,0] means the player scored a kill and did not die in that timestep
91
+
92
+ ### Structure of .npy files (scraped metadata -- you probably don't care about this):
93
+
94
+ Each .npy file contains metadata corresponding to 100 .hdf5 files (as indicated by file name)
95
+ They are dictionaries with keys of format: file_numi_frame_j for file number i, and frame number j in 0-999
96
+ The values are of format **[curr_vars, infer_a, frame_i_helperarr]** where,
97
+ - **curr_vars**: contains a dictionary of the metadata originally scraped -- see dm_record_data.py for details
98
+ - **infer_a**: are inferred actions, [keys_pressed,mouse_x,mouse_y,press_mouse_l,press_mouse_r], with mouse_x and y being continuous values and keys_pressed is in string format
99
+ - **frame_i_helperarr**: is a repeat of the .hdf5 file
100
+
101
+
102
+ ## Trained Models
103
+
104
+ Four trained models are provided. There are 'non-stateful' (use during training) and 'stateful' (use at test time) versions of each.
105
+ Models can be downloaded under ```trained_models.zip```.
106
+
107
+ - ```ak47_sub_55k_drop_d4```
108
+ : Pretrained on AK47 sequences only.
109
+ - ```ak47_sub_55k_drop_d4_dmexpert_28```
110
+ : Finetuned on expert deathmatch data.
111
+ - ```ak47_sub_55k_drop_d4_aimexpertv2_60```
112
+ : Finetuned on aim mode expert data.
113
+ - ```July_remoterun7_g9_4k_n32_recipe_ton96__e14```
114
+ : Pretrained on full dataset.
115
+
116
+
117
+
118
+
119
+ ## Other works using the dataset:
120
+
121
+ - __Imitating Human Behaviour with Diffusion Models, ICLR 2023__
122
  https://arxiv.org/abs/2301.10677
123
  Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu, Sergio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, Sam Devlin
124
 
125
+ - __Diffusion for World Modeling: Visual Details Matter in Atari, NeurIPS 2024__
126
  https://arxiv.org/pdf/2405.12399
127
  Eloi Alonso∗, Adam Jelley∗, Vincent Micheli, Anssi Kanervisto, Amos Storkey, Tim Pearce‡, François Fleuret‡
128
  Tweet here: https://twitter.com/EloiAlonso1/status/1844803606064611771