TNauen commited on
Commit
c977ff2
·
verified ·
1 Parent(s): 57e1c5c

Update ForNet.py

Browse files

add fg_in_nonant and fg_size_fact

Files changed (1) hide show
  1. ForNet.py +23 -0
ForNet.py CHANGED
@@ -1073,6 +1073,8 @@ class RecombineDataset(Dataset):
1073
  mask_smoothing_sigma,
1074
  rel_jut_out,
1075
  orig_img_prob,
 
 
1076
  **kwargs,
1077
  ):
1078
  """Create the ForNet recombination dataset.
@@ -1099,6 +1101,7 @@ class RecombineDataset(Dataset):
1099
  "orig",
1100
  ], f"Invalid background_combination {background_combination}"
1101
  assert fg_size_mode in ["range", "min", "max", "mean"], f"Invalid fg_size_mode {fg_size_mode}"
 
1102
  self.background_combination = background_combination
1103
  self.fg_scale_jitter = fg_scale_jitter
1104
  self.pruning_ratio = pruning_ratio
@@ -1110,6 +1113,8 @@ class RecombineDataset(Dataset):
1110
  self.epochs = 0
1111
  self._epoch = 0
1112
  self.cls_to_idx = {}
 
 
1113
 
1114
  bg_rat_indices = super()._getitem(0)["bg_rat_idx_file"]
1115
  self.train = "train" in bg_rat_indices.split("/")[-1]
@@ -1177,6 +1182,9 @@ class RecombineDataset(Dataset):
1177
  bg_img = bg_item["bg"].convert("RGB")
1178
  bg_size = bg_img.size
1179
  bg_area = bg_size[0] * bg_size[1]
 
 
 
1180
  orig_fg_ratio = fg_item["fg/bg_area"]
1181
  bg_fg_ratio = bg_item["fg/bg_area"]
1182
 
@@ -1198,6 +1206,7 @@ class RecombineDataset(Dataset):
1198
  goal_fg_ratio_lower * (1 - self.fg_scale_jitter), goal_fg_ratio_upper * (1 + self.fg_scale_jitter)
1199
  )
1200
  / fg_size_factor
 
1201
  )
1202
 
1203
  goal_shape_y = round(np.sqrt(bg_area * fg_scale * fg_img.size[1] / fg_img.size[0]))
@@ -1228,6 +1237,12 @@ class RecombineDataset(Dataset):
1228
  y_min = -self.rel_jut_out * fg_img.size[1]
1229
  y_max = bg_size[1] - fg_img.size[1] * (1 - self.rel_jut_out)
1230
 
 
 
 
 
 
 
1231
  if x_min > x_max:
1232
  x_min = x_max = (x_min + x_max) / 2
1233
  if y_min > y_max:
@@ -1262,6 +1277,8 @@ _CONFIG_HASH_IGNORE_KWARGS = [
1262
  "mask_smoothing_sigma",
1263
  "rel_jut_out",
1264
  "orig_img_prob",
 
 
1265
  ]
1266
 
1267
 
@@ -1278,6 +1295,8 @@ class ForNetConfig(datasets.BuilderConfig):
1278
  mask_smoothing_sigma,
1279
  rel_jut_out,
1280
  orig_img_prob,
 
 
1281
  **kwargs,
1282
  ):
1283
  """BuilderConfig for ForNet.
@@ -1294,6 +1313,8 @@ class ForNetConfig(datasets.BuilderConfig):
1294
  self.mask_smoothing_sigma = mask_smoothing_sigma
1295
  self.rel_jut_out = rel_jut_out
1296
  self.orig_img_prob = orig_img_prob
 
 
1297
 
1298
  def __str__(self):
1299
  return f"ForNetConfig(name={self.name}, version={self.version}, data_dir={self.data_dir}, data_files={self.data_files}, description={self.description}, background_combination={self.background_combination}, fg_scale_jitter={self.fg_scale_jitter}, pruning_ratio={self.pruning_ratio}, fg_size_mode={self.fg_size_mode}, fg_bates_n={self.fg_bates_n}, mask_smoothing_sigma={self.mask_smoothing_sigma}, rel_jut_out={self.rel_jut_out}, orig_img_prob={self.orig_img_prob})"
@@ -1608,6 +1629,8 @@ class ForNet(datasets.GeneratorBasedBuilder):
1608
  mask_smoothing_sigma=self.config.mask_smoothing_sigma,
1609
  rel_jut_out=self.config.rel_jut_out,
1610
  orig_img_prob=self.config.orig_img_prob,
 
 
1611
  **dataset_kwargs,
1612
  )
1613
 
 
1073
  mask_smoothing_sigma,
1074
  rel_jut_out,
1075
  orig_img_prob,
1076
+ fg_in_nonant=None,
1077
+ size_fact=1.0,
1078
  **kwargs,
1079
  ):
1080
  """Create the ForNet recombination dataset.
 
1101
  "orig",
1102
  ], f"Invalid background_combination {background_combination}"
1103
  assert fg_size_mode in ["range", "min", "max", "mean"], f"Invalid fg_size_mode {fg_size_mode}"
1104
+ assert fg_in_nonant is None or -1 <= fg_in_nonant < 9, f"fg_in_nonant={fg_in_nonant} not in [0, 8] or None"
1105
  self.background_combination = background_combination
1106
  self.fg_scale_jitter = fg_scale_jitter
1107
  self.pruning_ratio = pruning_ratio
 
1113
  self.epochs = 0
1114
  self._epoch = 0
1115
  self.cls_to_idx = {}
1116
+ self.fg_in_nonant = fg_in_nonant
1117
+ self.size_fact = size_fact
1118
 
1119
  bg_rat_indices = super()._getitem(0)["bg_rat_idx_file"]
1120
  self.train = "train" in bg_rat_indices.split("/")[-1]
 
1182
  bg_img = bg_item["bg"].convert("RGB")
1183
  bg_size = bg_img.size
1184
  bg_area = bg_size[0] * bg_size[1]
1185
+ if self.fg_in_nonant is not None:
1186
+ bg_area = bg_area / 9
1187
+
1188
  orig_fg_ratio = fg_item["fg/bg_area"]
1189
  bg_fg_ratio = bg_item["fg/bg_area"]
1190
 
 
1206
  goal_fg_ratio_lower * (1 - self.fg_scale_jitter), goal_fg_ratio_upper * (1 + self.fg_scale_jitter)
1207
  )
1208
  / fg_size_factor
1209
+ * self.size_fact
1210
  )
1211
 
1212
  goal_shape_y = round(np.sqrt(bg_area * fg_scale * fg_img.size[1] / fg_img.size[0]))
 
1237
  y_min = -self.rel_jut_out * fg_img.size[1]
1238
  y_max = bg_size[1] - fg_img.size[1] * (1 - self.rel_jut_out)
1239
 
1240
+ if self.fg_in_nonant is not None and self.fg_in_nonant >= 0:
1241
+ x_min = (self.fg_in_nonant % 3) * bg_size[0] / 3
1242
+ x_max = ((self.fg_in_nonant % 3) + 1) * bg_size[0] / 3 - fg_img.size[0]
1243
+ y_min = (self.fg_in_nonant // 3) * bg_size[1] / 3
1244
+ y_max = ((self.fg_in_nonant // 3) + 1) * bg_size[1] / 3 - fg_img.size[1]
1245
+
1246
  if x_min > x_max:
1247
  x_min = x_max = (x_min + x_max) / 2
1248
  if y_min > y_max:
 
1277
  "mask_smoothing_sigma",
1278
  "rel_jut_out",
1279
  "orig_img_prob",
1280
+ "fg_in_nonant",
1281
+ "size_fact",
1282
  ]
1283
 
1284
 
 
1295
  mask_smoothing_sigma,
1296
  rel_jut_out,
1297
  orig_img_prob,
1298
+ fg_in_nonant=None,
1299
+ size_fact=1.0,
1300
  **kwargs,
1301
  ):
1302
  """BuilderConfig for ForNet.
 
1313
  self.mask_smoothing_sigma = mask_smoothing_sigma
1314
  self.rel_jut_out = rel_jut_out
1315
  self.orig_img_prob = orig_img_prob
1316
+ self.fg_in_nonant = fg_in_nonant
1317
+ self.size_fact = size_fact
1318
 
1319
  def __str__(self):
1320
  return f"ForNetConfig(name={self.name}, version={self.version}, data_dir={self.data_dir}, data_files={self.data_files}, description={self.description}, background_combination={self.background_combination}, fg_scale_jitter={self.fg_scale_jitter}, pruning_ratio={self.pruning_ratio}, fg_size_mode={self.fg_size_mode}, fg_bates_n={self.fg_bates_n}, mask_smoothing_sigma={self.mask_smoothing_sigma}, rel_jut_out={self.rel_jut_out}, orig_img_prob={self.orig_img_prob})"
 
1629
  mask_smoothing_sigma=self.config.mask_smoothing_sigma,
1630
  rel_jut_out=self.config.rel_jut_out,
1631
  orig_img_prob=self.config.orig_img_prob,
1632
+ fg_in_nonant=self.config.fg_in_nonant,
1633
+ size_fact=self.config.size_fact,
1634
  **dataset_kwargs,
1635
  )
1636