code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def _clear_metadata(self): """ Getting product status (outdated/up-to-date) is slow, especially for product whose metadata is stored remotely. This is critical when rendering because we need to do a forward pass to know which tasks to run and a product's status depends on its upstream product's status, and we have to make sure we only retrieve metadata once, so we save a local copy. But even with this implementation, we don't throw away product status after rendering, otherwise calls that need project status (like DAG.plot, DAG.status, DAG.to_markup) would have to get product status before running its logic, so once we get it, we stick with it. The only caveat is that status updates won't be reflected immediately (e.g. if the user manually deletes a product's metadata), but that's a small price to pay given that this is not expected to happen often. The only case when we *must* be sure that we have up-to-date metadata is when calling DAG.build(), so we call this method before building, which forces metadata reload. """ self._logger.debug("Clearing product status") # clearing out this way is only useful after building, but not # if the metadata changed since it wont be reloaded for task in self.values(): task.product.metadata.clear()
Getting product status (outdated/up-to-date) is slow, especially for product whose metadata is stored remotely. This is critical when rendering because we need to do a forward pass to know which tasks to run and a product's status depends on its upstream product's status, and we have to make sure we only retrieve metadata once, so we save a local copy. But even with this implementation, we don't throw away product status after rendering, otherwise calls that need project status (like DAG.plot, DAG.status, DAG.to_markup) would have to get product status before running its logic, so once we get it, we stick with it. The only caveat is that status updates won't be reflected immediately (e.g. if the user manually deletes a product's metadata), but that's a small price to pay given that this is not expected to happen often. The only case when we *must* be sure that we have up-to-date metadata is when calling DAG.build(), so we call this method before building, which forces metadata reload.
_clear_metadata
python
ploomber/ploomber
src/ploomber/dag/dag.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/dag/dag.py
Apache-2.0
def __iter__(self): """ Iterate task names in topological order. Topological order is desirable in many situations, this order guarantees that for any given task, its dependencies are executed first, but it's also useful for other purposes, such as listing tasks, because it shows a more natural order to see how data flows start to finish. For cases where this sorting is not required, used the DAG._iter() method instead. Notes ----- https://en.wikipedia.org/wiki/Topological_sorting """ # TODO: raise a warning if this any of this dag tasks have tasks # from other tasks as dependencies (they won't show up here) try: for name in nx.algorithms.topological_sort(self._G): yield name except nx.NetworkXUnfeasible: raise DAGCycle
Iterate task names in topological order. Topological order is desirable in many situations, this order guarantees that for any given task, its dependencies are executed first, but it's also useful for other purposes, such as listing tasks, because it shows a more natural order to see how data flows start to finish. For cases where this sorting is not required, used the DAG._iter() method instead. Notes ----- https://en.wikipedia.org/wiki/Topological_sorting
__iter__
python
ploomber/ploomber
src/ploomber/dag/dag.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/dag/dag.py
Apache-2.0
def create(self, *args, **kwargs): """Return a DAG with the given parameters *args, **kwargs Parameters to pass to the DAG constructor """ dag = DAG(*args, **kwargs) dag._params = copy(self.params) return dag
Return a DAG with the given parameters *args, **kwargs Parameters to pass to the DAG constructor
create
python
ploomber/ploomber
src/ploomber/dag/dagconfigurator.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/dag/dagconfigurator.py
Apache-2.0
def build(self, input_data, copy=False): """Run the DAG Parameters ---------- input_data : dict A dictionary mapping root tasks (names) to dict params. Root tasks are tasks in the DAG that do not have upstream dependencies, the corresponding dictionary is passed to the respective task source function as keyword arguments copy : bool or callable Whether to copy the output of an upstream task before passing it to the task being processed. It is recommended to turn this off for memory efficiency but if the tasks are not pure functions (i.e. mutate their inputs) this migh lead to bugs, in such case, the best way to fix it would be to make all your tasks pure functions but you can enable this option if memory consumption is not a problem. If True it uses the ``copy.copy`` function before passing the upstream products, if you pass a callable instead, such function is used (for example, you may pass ``copy.deepcopy``) Returns ------- dict A dictionary mapping task names to their respective outputs """ outs = {} input_data_names = set(self.root_nodes) # FIXME: for this particula case, the error here should be TypeError, # not KeyError (the former is the one used when calling functions with # invalid arguments) - maybe an argument validate.keys to choose # which error to raise? validate.keys( valid=input_data_names, passed=set(input_data), required=input_data_names, name="input_data", ) if copy is True: copying_function = copy_module.copy elif callable(copy): copying_function = copy else: copying_function = _do_nothing for task_name in self.dag: task = self.dag[task_name] params = task.params.to_dict() if task_name in self.root_nodes: params = {**params, "input_data": input_data[task_name]} # replace params with the returned value from upstream tasks if "upstream" in params: params["upstream"] = { k: copying_function(outs[k]) for k, v in params["upstream"].items() } params.pop("product", None) output = self.return_postprocessor(task.source.primitive(**params)) if output is None: raise ValueError( "All callables in a {} must return a value. " 'Callable "{}", from task "{}" returned None'.format( type(self).__name__, task.source.name, task_name ) ) outs[task_name] = output return outs
Run the DAG Parameters ---------- input_data : dict A dictionary mapping root tasks (names) to dict params. Root tasks are tasks in the DAG that do not have upstream dependencies, the corresponding dictionary is passed to the respective task source function as keyword arguments copy : bool or callable Whether to copy the output of an upstream task before passing it to the task being processed. It is recommended to turn this off for memory efficiency but if the tasks are not pure functions (i.e. mutate their inputs) this migh lead to bugs, in such case, the best way to fix it would be to make all your tasks pure functions but you can enable this option if memory consumption is not a problem. If True it uses the ``copy.copy`` function before passing the upstream products, if you pass a callable instead, such function is used (for example, you may pass ``copy.deepcopy``) Returns ------- dict A dictionary mapping task names to their respective outputs
build
python
ploomber/ploomber
src/ploomber/dag/inmemorydag.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/dag/inmemorydag.py
Apache-2.0
def choose_backend(backend, path=None): """Determine which backend to use for plotting Temporarily disable pygraphviz for Python 3.10 on Windows """ if ( (not check_pygraphviz_installed() and backend is None) or (backend == "d3") or (backend is None and path and Path(path).suffix == ".html") ): return "d3" elif backend == "mermaid": return "mermaid" return "pygraphviz"
Determine which backend to use for plotting Temporarily disable pygraphviz for Python 3.10 on Windows
choose_backend
python
ploomber/ploomber
src/ploomber/dag/plot.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/dag/plot.py
Apache-2.0
def json_dag_parser(graph: dict): """Format dag dict so d3 can understand it""" nodes = {} for task in graph["nodes"]: nodes[task["id"]] = task # change name label to products for now for node in nodes: nodes[node]["products"] = nodes[node]["label"].replace("\n", "").split(",") for link in graph["links"]: node_links = nodes[link["target"]].get("parentIds", []) node_links.append(link["source"]) nodes[link["target"]]["parentIds"] = node_links return json.dumps(list(nodes.values()))
Format dag dict so d3 can understand it
json_dag_parser
python
ploomber/ploomber
src/ploomber/dag/plot.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/dag/plot.py
Apache-2.0
def with_d3(graph, output, image_only=False): """Generates D3 Dag html output and return output file name""" json_data = json_dag_parser(graph=graph) if image_only: Path(output).write_text(json_data) else: template = jinja2.Template( importlib_resources.read_text(resources, "dag_template_d3.html") ) rendered = template.render(json_data=json_data) Path(output).write_text(rendered)
Generates D3 Dag html output and return output file name
with_d3
python
ploomber/ploomber
src/ploomber/dag/plot.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/dag/plot.py
Apache-2.0
def check_duplicated_products(dag): """ Raises an error if more than one task produces the same product. Note that this relies on the __hash__ and __eq__ implementations of each Product to determine whether they're the same or not. This implies that a relative File and absolute File pointing to the same file are considered duplicates and SQLRelations (in any of its flavors) are the same when they resolve to the same (schema, name, type) tuple (i.e., client is ignored), this because when using the generic SQLite backend for storing SQL product metadata, the table only relies on schema and name to retrieve metadata. """ prod2tasknames = defaultdict(lambda: []) for name in dag._iter(): product = dag[name].product if isinstance(product, MetaProduct): for p in product.products: prod2tasknames[p].append(name) else: prod2tasknames[product].append(name) duplicated = {k: v for k, v in prod2tasknames.items() if len(v) > 1} if duplicated: raise DAGWithDuplicatedProducts( "Tasks must generate unique products. " "The following products appear in more than " f"one task:\n{_generate_error_message(duplicated)}" )
Raises an error if more than one task produces the same product. Note that this relies on the __hash__ and __eq__ implementations of each Product to determine whether they're the same or not. This implies that a relative File and absolute File pointing to the same file are considered duplicates and SQLRelations (in any of its flavors) are the same when they resolve to the same (schema, name, type) tuple (i.e., client is ignored), this because when using the generic SQLite backend for storing SQL product metadata, the table only relies on schema and name to retrieve metadata.
check_duplicated_products
python
ploomber/ploomber
src/ploomber/dag/util.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/dag/util.py
Apache-2.0
def fetch_remote_metadata_in_parallel(dag): """Fetches remote metadta in parallel from a list of Files""" files = flatten_products( dag[t].product for t in dag._iter() if isinstance(dag[t].product, File) or isinstance(dag[t].product, MetaProduct) ) if files: with ThreadPoolExecutor(max_workers=64) as executor: future2file = { executor.submit(file._remote._fetch_remote_metadata): file for file in files } for future in as_completed(future2file): exception = future.exception() if exception: local = future2file[future] raise RuntimeError( "An error occurred when fetching " f"remote metadata for file {local!r}" ) from exception
Fetches remote metadta in parallel from a list of Files
fetch_remote_metadata_in_parallel
python
ploomber/ploomber
src/ploomber/dag/util.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/dag/util.py
Apache-2.0
def _path_for_plot(path_to_plot, fmt): """Context manager to manage DAG.plot Parameters ---------- path_to_plot : str Where to store the plot. If 'embed', It returns a temporary empty file otherwise and deletes it when exiting. Otherwise, it just passes the value """ if path_to_plot == "embed": fd, path = tempfile.mkstemp(suffix=f".{fmt}") os.close(fd) else: path = str(path_to_plot) try: yield path finally: if path_to_plot == "embed" and fmt != "html": Path(path).unlink()
Context manager to manage DAG.plot Parameters ---------- path_to_plot : str Where to store the plot. If 'embed', It returns a temporary empty file otherwise and deletes it when exiting. Otherwise, it just passes the value
_path_for_plot
python
ploomber/ploomber
src/ploomber/dag/util.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/dag/util.py
Apache-2.0
def load_env(fn): """ A function decorated with @load_env will be called with the current environment in an env keyword argument """ _validate_and_modify_signature(fn) @wraps(fn) def wrapper(*args, **kwargs): return fn(Env.load(), *args, **kwargs) return wrapper
A function decorated with @load_env will be called with the current environment in an env keyword argument
load_env
python
ploomber/ploomber
src/ploomber/env/decorators.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/env/decorators.py
Apache-2.0
def with_env(source): """ A function decorated with @with_env that starts and environment during the execution of a function. Notes ----- The first argument of a function decorated with @with_env must be named "env", the env will be passed automatically when calling the function. The original function's signature is edited. You can replace values in the environment, e.g. if you want to replace env.key.another, you can call the decorated function with: my_fn(env__key__another='my_new_value') The environment is resolved at import time, changes to the working directory will not affect initialization. Examples -------- .. literalinclude:: ../../examples/short/with_env.py """ def decorator(fn): _validate_and_modify_signature(fn) try: # FIXME: we should deprecate initializing from a decorator # with a dictionary, it isn't useful. leaving it for now if isinstance(source, Mapping): env_dict = EnvDict(source) else: # when the decorator is called without args, look for # 'env.yaml' env_dict = EnvDict.find(source or "env.yaml") except Exception as e: raise RuntimeError( "Failed to resolve environment using " '@with_env decorator in function "{}". ' "Tried to call Env with argument: {}".format( _get_function_name_w_module(fn), source ) ) from e fn._env_dict = env_dict @wraps(fn) def wrapper(*args, **kwargs): to_replace = {k: v for k, v in kwargs.items() if k.startswith("env__")} for key in to_replace.keys(): kwargs.pop(key) env_dict_new = env_dict._replace_flatten_keys(to_replace) try: Env._init_from_decorator(env_dict_new, _get_function_name_w_module(fn)) except Exception as e: current = Env.load() raise RuntimeError( "Failed to initialize environment using " '@with_env decorator in function "{}". ' "Current environment: {}".format( _get_function_name_w_module(fn), repr(current) ) ) from e Env._ref = _get_function_name_w_module(fn) try: res = fn(Env.load(), *args, **kwargs) except Exception as e: Env.end() raise e Env.end() return res return wrapper if isinstance(source, types.FunctionType): fn = source source = None return decorator(fn) return decorator
A function decorated with @with_env that starts and environment during the execution of a function. Notes ----- The first argument of a function decorated with @with_env must be named "env", the env will be passed automatically when calling the function. The original function's signature is edited. You can replace values in the environment, e.g. if you want to replace env.key.another, you can call the decorated function with: my_fn(env__key__another='my_new_value') The environment is resolved at import time, changes to the working directory will not affect initialization. Examples -------- .. literalinclude:: ../../examples/short/with_env.py
with_env
python
ploomber/ploomber
src/ploomber/env/decorators.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/env/decorators.py
Apache-2.0
def __init__(self, source="env.yaml"): """Start the environment Parameters ---------- source: dict, pathlib.Path, str, optional If dict, loads it directly, if pathlib.Path or path, reads the file (assumes yaml format). Raises ------ FileNotFoundError If source is None and an environment file cannot be found automatically RuntimeError If one environment has already started Returns ------- ploomber.Env An environment object """ if not isinstance(source, EnvDict): # try to initialize an EnvDict to perform validation, if any # errors occur, discard object try: source = EnvDict(source) except Exception: Env.__instance = None raise self._data = source self._fn_name = None
Start the environment Parameters ---------- source: dict, pathlib.Path, str, optional If dict, loads it directly, if pathlib.Path or path, reads the file (assumes yaml format). Raises ------ FileNotFoundError If source is None and an environment file cannot be found automatically RuntimeError If one environment has already started Returns ------- ploomber.Env An environment object
__init__
python
ploomber/ploomber
src/ploomber/env/env.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/env/env.py
Apache-2.0
def find(cls, source): """ Find env file recursively, currently only used by the @with_env decorator """ if not Path(source).exists(): source_found, _ = default.find_file_recursively(source) if source_found is None: raise FileNotFoundError( 'Could not find file "{}" in the ' "current working directory nor " "6 levels up".format(source) ) else: source = source_found return cls(source, path_to_here=Path(source).parent)
Find env file recursively, currently only used by the @with_env decorator
find
python
ploomber/ploomber
src/ploomber/env/envdict.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/env/envdict.py
Apache-2.0
def _replace_value(self, value, keys_all): """ Replace a value in the underlying dictionary, by passing a value and a list of keys e.g. given {'a': {'b': 1}}, we can replace 1 by doing _replace_value(2, ['a', 'b']) """ keys_to_final_dict = keys_all[:-1] key_to_edit = keys_all[-1] dict_to_edit = self._data for e in keys_to_final_dict: dict_to_edit = dict_to_edit[e] if key_to_edit not in dict_to_edit: dotted_path = ".".join(keys_all) raise KeyError( 'Trying to replace key "{}" in env, ' "but it does not exist".format(dotted_path) ) dict_to_edit[key_to_edit] = self._expander.expand_raw_value(value, keys_all)
Replace a value in the underlying dictionary, by passing a value and a list of keys e.g. given {'a': {'b': 1}}, we can replace 1 by doing _replace_value(2, ['a', 'b'])
_replace_value
python
ploomber/ploomber
src/ploomber/env/envdict.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/env/envdict.py
Apache-2.0
def _inplace_replace_flatten_key(self, value, key_flatten): """ Replace a value in the underlying dictionary, by passing a value and a list of keys e.g. given {'a': {'b': 1}}, we can replace 1 by doing _replace_flatten_keys(2, 'env__a__b'). This function is used internally to overrive env values when calling factories (functions decorated with @with_env or when doing so via the command line interface - ploomber build pipeline.yaml --env--a--b 2) Returns a copy """ # convert env__a__b__c -> ['a', 'b', 'c'] parts = key_flatten.split("__") if parts[0] != "env": raise ValueError("keys_flatten must start with env__") keys_all = parts[1:] self._replace_value(value, keys_all)
Replace a value in the underlying dictionary, by passing a value and a list of keys e.g. given {'a': {'b': 1}}, we can replace 1 by doing _replace_flatten_keys(2, 'env__a__b'). This function is used internally to overrive env values when calling factories (functions decorated with @with_env or when doing so via the command line interface - ploomber build pipeline.yaml --env--a--b 2) Returns a copy
_inplace_replace_flatten_key
python
ploomber/ploomber
src/ploomber/env/envdict.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/env/envdict.py
Apache-2.0
def load_from_source(source): """ Loads from a dictionary or a YAML and applies preprocesssing to the dictionary Returns ------- dict Raw dictionary pathlib.Path Path to the loaded file, None if source is a dict str Name, if loaded from a YAML file with the env.{name}.yaml format, None if another format or if source is a dict """ if isinstance(source, Mapping): # dictiionary, path return source, None with open(str(source)) as f: try: raw = yaml.load(f, Loader=yaml.SafeLoader) except Exception as e: raise type(e)( "yaml.load failed to parse your YAML file " "fix syntax errors and try again" ) from e finally: # yaml.load returns None for empty files and str if file just # contains a string - those aren't valid for our use case, raise # an error if not isinstance(raw, Mapping): raise ValueError( "Expected object loaded from '{}' to be " "a dict but got '{}' instead, " "verify the content".format(source, type(raw).__name__) ) path = Path(source).resolve() return raw, path
Loads from a dictionary or a YAML and applies preprocesssing to the dictionary Returns ------- dict Raw dictionary pathlib.Path Path to the loaded file, None if source is a dict str Name, if loaded from a YAML file with the env.{name}.yaml format, None if another format or if source is a dict
load_from_source
python
ploomber/ploomber
src/ploomber/env/envdict.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/env/envdict.py
Apache-2.0
def raw_preprocess(raw, path_to_raw): """ Preprocess a raw dictionary. If a '_module' key exists, it will be expanded: first, try to locate a module with that name and resolve to their location (root __init__.py parent), if no module is found, interpret as a path to the project's root folder, checks that the folder actually exists. '{{here}}' is also allowed, which resolves to the path_to_raw, raises Exception if path_to_raw is None Returns ------- preprocessed : dict Dict with preprocessed keys (empty dictionary it no special keys exist in raw) Parameters ---------- raw : dict Raw data dictionary path_to_raw : str Path to file where dict was read from, it read from a dict, pass None """ module = raw.get("_module") preprocessed = {} if module: if raw["_module"] == "{{here}}": if path_to_raw is not None: preprocessed["_module"] = path_to_raw.parent else: raise ValueError( "_module cannot be {{here}} if " "not loaded from a file" ) else: # check if it's a filesystem path as_path = Path(module) if as_path.exists(): if as_path.is_file(): raise ValueError( 'Could not resolve _module "{}", ' "expected a module or a directory but got a " "file".format(module) ) else: path_to_module = as_path # must be a dotted path else: module_spec = importlib.util.find_spec(module) # package does not exist if module_spec is None: raise ValueError( 'Could not resolve _module "{}", ' "it is not a valid module " "nor a directory".format(module) ) else: path_to_module = Path(module_spec.origin).parent preprocessed["_module"] = path_to_module return preprocessed
Preprocess a raw dictionary. If a '_module' key exists, it will be expanded: first, try to locate a module with that name and resolve to their location (root __init__.py parent), if no module is found, interpret as a path to the project's root folder, checks that the folder actually exists. '{{here}}' is also allowed, which resolves to the path_to_raw, raises Exception if path_to_raw is None Returns ------- preprocessed : dict Dict with preprocessed keys (empty dictionary it no special keys exist in raw) Parameters ---------- raw : dict Raw data dictionary path_to_raw : str Path to file where dict was read from, it read from a dict, pass None
raw_preprocess
python
ploomber/ploomber
src/ploomber/env/envdict.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/env/envdict.py
Apache-2.0
def cast_if_possible(value): """ Reference to env in specs must be strings, but we would like the rendered value to still have the appropriate type """ if isinstance(value, str): value_lower = value.lower() if value_lower == "false": return False elif value_lower == "true": return True elif value_lower in {"none", "null"}: return None try: return ast.literal_eval(value) except Exception: pass return value
Reference to env in specs must be strings, but we would like the rendered value to still have the appropriate type
cast_if_possible
python
ploomber/ploomber
src/ploomber/env/expand.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/env/expand.py
Apache-2.0
def expand_raw_value(self, raw_value, parents): """ Expand a string with placeholders Parameters ---------- raw_value : str The original value to expand parents : list The list of parents to get to this value in the dictionary Notes ----- If for a given raw_value, the first parent is 'path', expanded value is casted to pathlib.Path object and .expanduser() is called, furthermore, if raw_value ends with '/', a directory is created if it does not currently exist """ placeholders = util.get_tags_in_str(raw_value) if not placeholders: value = raw_value else: if "git" in placeholders: if not shutil.which("git"): raise BaseException( "Found placeholder {{git}}, but " "git is not installed. Please install " "it and try again." ) if not repo.is_repo( self._preprocessed.get("_module", self._path_to_here) ): raise BaseException( "Found placeholder {{git}}, but could not " "locate a git repository. Create a repository " "or remove the {{git}} placeholder." ) # get all required placeholders params = {k: self.load_placeholder(k) for k in placeholders} value = Template(raw_value).render(**params) if parents: if parents[0] == "path": # value is a str (since it was loaded from a yaml file), # if it has an explicit trailing slash, interpret it as # a directory and create it, we have to do it at this point, # because once we cast to Path, we lose the trailing slash if str(value).endswith("/"): self._try_create_dir(value) value = Path(value).expanduser() else: value = cast_if_possible(value) # store the rendered value so it's available for upcoming raw_values # NOTE: the current implementation only works for non-nested keys if len(parents) == 1 and isinstance(parents[0], str): self._placeholders[parents[0]] = value return value
Expand a string with placeholders Parameters ---------- raw_value : str The original value to expand parents : list The list of parents to get to this value in the dictionary Notes ----- If for a given raw_value, the first parent is 'path', expanded value is casted to pathlib.Path object and .expanduser() is called, furthermore, if raw_value ends with '/', a directory is created if it does not currently exist
expand_raw_value
python
ploomber/ploomber
src/ploomber/env/expand.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/env/expand.py
Apache-2.0
def iterate_nested_dict(d): """ Iterate over all values (possibly nested) in a dictionary Yields: dict holding the value, current key, current value, list of keys to get to this value """ for k, v in d.items(): for i in _iterate(d, k, v, preffix=[k]): yield i
Iterate over all values (possibly nested) in a dictionary Yields: dict holding the value, current key, current value, list of keys to get to this value
iterate_nested_dict
python
ploomber/ploomber
src/ploomber/env/expand.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/env/expand.py
Apache-2.0
def raw_data_keys(d): """ Validate raw dictionary, no top-level keys with leading underscores, except for _module, and no keys with double underscores anywhere """ keys_all = get_keys_for_dict(d) errors = [] try: no_double_underscores(keys_all) except ValueError as e: errors.append(str(e)) try: no_leading_underscore(d.keys()) except ValueError as e: errors.append(str(e)) if errors: msg = "Error validating env.\n" + "\n".join(errors) raise ValueError(msg)
Validate raw dictionary, no top-level keys with leading underscores, except for _module, and no keys with double underscores anywhere
raw_data_keys
python
ploomber/ploomber
src/ploomber/env/validate.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/env/validate.py
Apache-2.0
def get_keys_for_dict(d): """ Get all (possibly nested) keys in a dictionary """ out = [] for k, v in d.items(): out.append(k) if isinstance(v, Mapping): out += get_keys_for_dict(v) return out
Get all (possibly nested) keys in a dictionary
get_keys_for_dict
python
ploomber/ploomber
src/ploomber/env/validate.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/env/validate.py
Apache-2.0
def next_task(): """ Return the next Task to execute, returns None if no Tasks are available for execution (cause their dependencies are not done yet) and raises a StopIteration exception if there are no more tasks to run, which means the DAG is done """ for task in dag.values(): if task.exec_status in {TaskStatus.Aborted}: if self._bar: self._bar.update() done.append(task) elif task.exec_status == TaskStatus.BrokenProcessPool: raise StopIteration # iterate over tasks to find which is ready for execution for task in dag.values(): # ignore tasks that are already started, I should probably add # an executing status but that cannot exist in the task itself, # maybe in the manaer? if ( task.exec_status in {TaskStatus.WaitingExecution, TaskStatus.WaitingDownload} and task not in started ): return task # there might be some up-to-date tasks, add them set_done = set([t.name for t in done]) if not self._i % 50000: click.clear() if set_done: _log( f"Finished: {pretty_print.iterable(set_done)}", self._logger.debug, print_progress=self.print_progress, ) remaining = pretty_print.iterable(set_all - set_done) _log( f"Remaining: {remaining}", self._logger.debug, print_progress=self.print_progress, ) _log( f"Finished {len(set_done)} out of {len(set_all)} tasks", self._logger.info, print_progress=self.print_progress, ) if set_done == set_all: self._logger.debug("All tasks done") raise StopIteration self._i += 1
Return the next Task to execute, returns None if no Tasks are available for execution (cause their dependencies are not done yet) and raises a StopIteration exception if there are no more tasks to run, which means the DAG is done
next_task
python
ploomber/ploomber
src/ploomber/executors/parallel.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/executors/parallel.py
Apache-2.0
def next_task(): """ Return the next Task to execute, returns None if no Tasks are available for execution (cause their dependencies are not done yet) and raises a StopIteration exception if there are no more tasks to run, which means the DAG is done """ for task in dag.values(): if task.exec_status in {TaskStatus.Aborted}: if self._bar: self._bar.update() done.append(task) elif task.exec_status == TaskStatus.BrokenProcessPool: raise StopIteration # iterate over tasks to find which is ready for execution for task in dag.values(): # ignore tasks that are already started, I should probably add # an executing status but that cannot exist in the task itself, # maybe in the manaer? if ( task.exec_status in {TaskStatus.WaitingExecution, TaskStatus.WaitingDownload} and task not in started ): return task # there might be some up-to-date tasks, add them set_done = set([t.name for t in done]) if not self._i % 50000: click.clear() if set_done: _log( f"Finished: {pretty_print.iterable(set_done)}", self._logger.debug, print_progress=self.print_progress, ) remaining = pretty_print.iterable(set_all - set_done) _log( f"Remaining: {remaining}", self._logger.debug, print_progress=self.print_progress, ) _log( f"Finished {len(set_done)} out of {len(set_all)} tasks", self._logger.info, print_progress=self.print_progress, ) if set_done == set_all: self._logger.debug("All tasks done") raise StopIteration self._i += 1
Return the next Task to execute, returns None if no Tasks are available for execution (cause their dependencies are not done yet) and raises a StopIteration exception if there are no more tasks to run, which means the DAG is done
next_task
python
ploomber/ploomber
src/ploomber/executors/parallel_dill.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/executors/parallel_dill.py
Apache-2.0
def catch_warnings(fn, warnings_all): """ Catch all warnings on the current task (except DeprecationWarning) and append them to warnings_all. Runs if the parameter catch_warnings is true. Parameters ---------- fn : function A LazyFunction that automatically calls catch_warnings, with parameters from the main function (warnings_all) and the current scheduled task. warnings_all: BuildWarningsCollector object Collects all warnings. """ # TODO: we need a try catch in case fn() raises an exception with warnings.catch_warnings(record=True) as warnings_current: warnings.simplefilter("ignore", DeprecationWarning) result = fn() if warnings_current: w = [str(a_warning.message) for a_warning in warnings_current] warnings_all.append(task=fn.task, message="\n".join(w)) return result
Catch all warnings on the current task (except DeprecationWarning) and append them to warnings_all. Runs if the parameter catch_warnings is true. Parameters ---------- fn : function A LazyFunction that automatically calls catch_warnings, with parameters from the main function (warnings_all) and the current scheduled task. warnings_all: BuildWarningsCollector object Collects all warnings.
catch_warnings
python
ploomber/ploomber
src/ploomber/executors/serial.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/executors/serial.py
Apache-2.0
def catch_exceptions(fn, exceptions_all): """ If there is an exception, log it and append it to warnings_all. Runs if the parameter catch_exceptions is true. Parameters ---------- fn : function A LazyFunction that automatically calls catch_exceptions, with parameters from the main function (exceptions_all) and the current scheduled task. exceptions_all: BuildExceptionsCollector object Collects all exceptions. """ logger = logging.getLogger(__name__) # NOTE: we are individually catching exceptions # (see build_in_current_process and build_in_subprocess), would it be # better to catch everything here and set # task.exec_status = TaskStatus.Errored accordingly? # TODO: setting exec_status can also raise exceptions if the hook fails # add tests for that, and check the final task status, try: # try to run task build fn() except Exception as e: # if running in a different process, logger.exception inside Task.build # won't show up. So we do it here. # FIXME: this is going to cause duplicates if not running in a # subprocess logger.exception(str(e)) tr = _format.exception(e) exceptions_all.append(task=fn.task, message=tr, obj=e)
If there is an exception, log it and append it to warnings_all. Runs if the parameter catch_exceptions is true. Parameters ---------- fn : function A LazyFunction that automatically calls catch_exceptions, with parameters from the main function (exceptions_all) and the current scheduled task. exceptions_all: BuildExceptionsCollector object Collects all exceptions.
catch_exceptions
python
ploomber/ploomber
src/ploomber/executors/serial.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/executors/serial.py
Apache-2.0
def pass_exceptions(fn): """ Pass all exceptions for the current task and nothing. Runs if both parameters catch_exceptions and catch_warnings are false. Parameters ---------- fn : function A LazyFunction that automatically calls pass_exceptions on the current scheduled task. """ # should i still check here for DAGBuildEarlyStop? is it worth # for returning accurate task status? fn()
Pass all exceptions for the current task and nothing. Runs if both parameters catch_exceptions and catch_warnings are false. Parameters ---------- fn : function A LazyFunction that automatically calls pass_exceptions on the current scheduled task.
pass_exceptions
python
ploomber/ploomber
src/ploomber/executors/serial.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/executors/serial.py
Apache-2.0
def build_in_subprocess(task, build_kwargs, reports_all): """ Execute the current task in a subprocess. Runs if the parameter build_in_subprocess is true. Parameters ---------- task : DAG object The current task. build_kwargs: dict Contains bool catch_exceptions and bool catch_warnings, checks whether to catch exceptions and warnings on the current task. reports_all: list Collects the build report when executing the current DAG. """ if callable(task.source.primitive): try: p = Pool(processes=1) except RuntimeError as e: if "An attempt has been made to start a new process" in str(e): # this is most likely due to child processes created with # spawn (mac/windows) outside if __name__ == '__main__' raise RuntimeError( "Press ctrl + c to exit. " "For help solving this, go to: " "https://ploomber.io/s/mp" ) from e else: raise res = p.apply_async(func=task._build, kwds=build_kwargs) # calling this make sure we catch the exception, from the docs: # Return the result when it arrives. If timeout is not None and # the result does not arrive within timeout seconds then # multiprocessing.TimeoutError is raised. If the remote call # raised an exception then that exception will be reraised by # get(). # https://docs.python.org/3/library/multiprocessing.html#multiprocessing.pool.AsyncResult.get try: report, meta = res.get() except Exception: # we have to update status since this is ran in a subprocess task.exec_status = TaskStatus.Errored raise else: task.product.metadata.update_locally(meta) task.exec_status = TaskStatus.Executed reports_all.append(report) finally: p.close() p.join() else: # we run other tasks in the same process report, meta = task._build(**build_kwargs) task.product.metadata.update_locally(meta) reports_all.append(report)
Execute the current task in a subprocess. Runs if the parameter build_in_subprocess is true. Parameters ---------- task : DAG object The current task. build_kwargs: dict Contains bool catch_exceptions and bool catch_warnings, checks whether to catch exceptions and warnings on the current task. reports_all: list Collects the build report when executing the current DAG.
build_in_subprocess
python
ploomber/ploomber
src/ploomber/executors/serial.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/executors/serial.py
Apache-2.0
def exception(exc): """Formats an exception into a more concise traceback Parameters ---------- """ # extract all the exception objects, in case this is a chained exception exceptions = [exc] while exc.__cause__: exceptions.append(exc.__cause__) exc = exc.__cause__ # reverse to get the most specific error first exceptions.reverse() # find the first instance of TaskBuildError breakpoint = None for i, exc in enumerate(exceptions): if isinstance(exc, (TaskBuildError)): breakpoint = i break # using the breakpoint, find the exception where we'll only display the # error message, not the traceback. That is, the first TaskBuildError # exception exc_short = exceptions[breakpoint:] if breakpoint is not None: # this happens when running a single task, all exception can be # TaskBuildError if breakpoint != 0: # traceback info applies to non-TaskBuildError # (this takes care of chained exceptions as well) tr = _format_exception(exceptions[breakpoint - 1]) else: tr = "" # append the short exceptions (only error message) tr = ( tr + "\n" + "\n".join(f"{_get_exc_name(exc)}: {str(exc)}" for exc in exc_short) ) else: # if not breakpoint, take the outermost exception and show it. # this ensures we show the full traceback in case there are chained # exceptions tr = _format_exception(exceptions[-1]) return tr
Formats an exception into a more concise traceback Parameters ----------
exception
python
ploomber/ploomber
src/ploomber/executors/_format.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/executors/_format.py
Apache-2.0
def serializer(extension_mapping=None, *, fallback=False, defaults=None, unpack=False): """Decorator for serializing functions Parameters ---------- extension_mapping : dict, default=None An extension -> function mapping. Calling the decorated function with a File of a given extension will use the one in the mapping if it exists, e.g., {'.csv': to_csv, '.json': to_json}. fallback : bool or str, default=False Determines what method to use if extension_mapping does not match the product to serialize. Valid values are True (uses the pickle module), 'joblib', and 'cloudpickle'. If you use any of the last two, the corresponding moduel must be installed. If this is enabled, the body of the decorated function is never executed. To turn it off pass False. defaults : list, default=None Built-in serializing functions to use. Must be a list with any combinations of values: '.txt', '.json', '.csv', '.parquet'. To save to .txt, the returned object must be a string, for .json it must be a json serializable object (e.g., a list or a dict), for .csv and .parquet it must be a pandas.DataFrame. If using .parquet, a parquet library must be installed (e.g., pyarrow). If extension_mapping and defaults contain overlapping keys, an error is raised unpack : bool, default=False If True, it treats every element in a dictionary as a different file, calling the serializing function one per (key, value) pair and using the key as filename. """ def _serializer(fn): extension_mapping_final = _build_extension_mapping_final( extension_mapping, defaults, fn, _DEFAULTS, "serializer" ) try: serializer_fallback = _EXTERNAL[fallback] except KeyError: error = True else: error = False if error: raise ValueError( f"Invalid fallback argument {fallback!r} " f"in function {fn.__name__!r}. Must be one of " "True, 'joblib', or 'cloudpickle'" ) if serializer_fallback is None and fallback in {"cloudpickle", "joblib"}: raise ModuleNotFoundError( f"Error serializing with function {fn.__name__!r}. " f"{fallback} is not installed" ) n_params = len(signature(fn).parameters) if n_params != 2: raise TypeError( f"Expected serializer {fn.__name__!r} " f"to take 2 arguments, but it takes {n_params!r}" ) @wraps(fn) def wrapper(obj, product): if isinstance(product, MetaProduct): _validate_obj(obj, product) for key, value in obj.items(): _serialize_product( value, product[key], extension_mapping_final, fallback, serializer_fallback, fn, unpack, ) else: _serialize_product( obj, product, extension_mapping_final, fallback, serializer_fallback, fn, unpack, ) return wrapper return _serializer
Decorator for serializing functions Parameters ---------- extension_mapping : dict, default=None An extension -> function mapping. Calling the decorated function with a File of a given extension will use the one in the mapping if it exists, e.g., {'.csv': to_csv, '.json': to_json}. fallback : bool or str, default=False Determines what method to use if extension_mapping does not match the product to serialize. Valid values are True (uses the pickle module), 'joblib', and 'cloudpickle'. If you use any of the last two, the corresponding moduel must be installed. If this is enabled, the body of the decorated function is never executed. To turn it off pass False. defaults : list, default=None Built-in serializing functions to use. Must be a list with any combinations of values: '.txt', '.json', '.csv', '.parquet'. To save to .txt, the returned object must be a string, for .json it must be a json serializable object (e.g., a list or a dict), for .csv and .parquet it must be a pandas.DataFrame. If using .parquet, a parquet library must be installed (e.g., pyarrow). If extension_mapping and defaults contain overlapping keys, an error is raised unpack : bool, default=False If True, it treats every element in a dictionary as a different file, calling the serializing function one per (key, value) pair and using the key as filename.
serializer
python
ploomber/ploomber
src/ploomber/io/serialize.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/io/serialize.py
Apache-2.0
def _serialize_product( obj, product, extension_mapping, fallback, serializer_fallback, fn, unpack ): """ Determine which function to use for serialization. Note that this function operates on single products. If the task generates multiple products, this function is called multiple times. """ suffix = Path(product).suffix if unpack and isinstance(obj, Mapping): parent = Path(product) # if the directory exists, delete it, otherwise old files will # mix with the new ones if parent.is_dir(): shutil.rmtree(product) # if it's a file, delete it as well elif parent.is_file(): parent.unlink() parent.mkdir(exist_ok=True, parents=True) for filename, o in obj.items(): out_path = _Path(product, filename) suffix_current = Path(filename).suffix serializer = _determine_serializer( suffix_current, extension_mapping, fallback, serializer_fallback, fn ) serializer(o, out_path) else: serializer = _determine_serializer( suffix, extension_mapping, fallback, serializer_fallback, fn ) serializer(obj, product)
Determine which function to use for serialization. Note that this function operates on single products. If the task generates multiple products, this function is called multiple times.
_serialize_product
python
ploomber/ploomber
src/ploomber/io/serialize.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/io/serialize.py
Apache-2.0
def _write_source( self, lines: Sequence[str], indents: Sequence[str] = (), lexer: str = "pytb" ) -> None: """Write lines of source code possibly highlighted. Keeping this private for now because the API is clunky. We should discuss how to evolve the terminal writer so we can have more precise color support, for example being able to write part of a line in one color and the rest in another, and so on. """ if indents and len(indents) != len(lines): raise ValueError( "indents size ({}) should have same size as lines ({})".format( len(indents), len(lines) ) ) if not indents: indents = [""] * len(lines) source = "\n".join(lines) new_lines = self._highlight(source, lexer=lexer).splitlines() for indent, new_line in zip(indents, new_lines): self.line(indent + new_line)
Write lines of source code possibly highlighted. Keeping this private for now because the API is clunky. We should discuss how to evolve the terminal writer so we can have more precise color support, for example being able to write part of a line in one color and the rest in another, and so on.
_write_source
python
ploomber/ploomber
src/ploomber/io/terminalwriter.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/io/terminalwriter.py
Apache-2.0
def _highlight(self, source: str, lexer: str) -> str: """Highlight the given source code if we have markup support.""" if lexer not in {"py", "pytb"}: raise ValueError(f'lexer must be "py" or "pytb", got: {lexer!r}') if not self.hasmarkup or not self.code_highlight: return source try: from pygments.formatters.terminal import TerminalFormatter from pygments.lexers.python import PythonLexer, PythonTracebackLexer from pygments import highlight except ImportError: return source else: Lexer = PythonLexer if lexer == "py" else PythonTracebackLexer highlighted = highlight( source, Lexer(), TerminalFormatter(bg="dark") ) # type: str return highlighted
Highlight the given source code if we have markup support.
_highlight
python
ploomber/ploomber
src/ploomber/io/terminalwriter.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/io/terminalwriter.py
Apache-2.0
def unserializer( extension_mapping=None, *, fallback=False, defaults=None, unpack=False ): """Decorator for unserializing functions Parameters ---------- extension_mapping : dict, default=None An extension -> function mapping. Calling the decorated function with a File of a given extension will use the one in the mapping if it exists, e.g., {'.csv': from_csv, '.json': from_json}. fallback : bool or str, default=False Determines what method to use if extension_mapping does not match the product to unserialize. Valid values are True (uses the pickle module), 'joblib', and 'cloudpickle'. If you use any of the last two, the corresponding moduel must be installed. If this is enabled, the body of the decorated function is never executed. To turn it off pass False. defaults : list, default=None Built-in unserializing functions to use. Must be a list with any combinations of values: '.txt', '.json', '.csv', '.parquet'. Unserializing .txt, returns a string, for .json returns any JSON-unserializable object (e.g., a list or a dict), .csv and .parquet return a pandas.DataFrame. If using .parquet, a parquet library must be installed (e.g., pyarrow). If extension_mapping and defaults contain overlapping keys, an error is raises unpack : bool, default=False If True and the task product points to a directory, it will call the unserializer one time per file in the directory. The unserialized object will be a dictionary where keys are the filenames and values are the unserialized objects. Note that this isn't recursive, it only looks at files that are immediate children of the product directory. """ def _unserializer(fn): extension_mapping_final = _build_extension_mapping_final( extension_mapping, defaults, fn, _DEFAULTS, "unserializer" ) try: unserializer_fallback = _EXTERNAL[fallback] except KeyError: error = True else: error = False if error: raise ValueError( f"Invalid fallback argument {fallback!r} " f"in function {fn.__name__!r}. Must be one of " "True, 'joblib', or 'cloudpickle'" ) if unserializer_fallback is None and fallback in {"cloudpickle", "joblib"}: raise ModuleNotFoundError( f"Error unserializing with function {fn.__name__!r}. " f"{fallback} is not installed" ) n_params = len(signature(fn).parameters) if n_params != 1: raise TypeError( f"Expected unserializer {fn.__name__!r} " f"to take 1 argument, but it takes {n_params!r}" ) @wraps(fn) def wrapper(product): if isinstance(product, MetaProduct): return { key: _unserialize_product( value, extension_mapping_final, fallback, unserializer_fallback, fn, unpack, ) for key, value in product.products.products.items() } else: return _unserialize_product( product, extension_mapping_final, fallback, unserializer_fallback, fn, unpack, ) return wrapper return _unserializer
Decorator for unserializing functions Parameters ---------- extension_mapping : dict, default=None An extension -> function mapping. Calling the decorated function with a File of a given extension will use the one in the mapping if it exists, e.g., {'.csv': from_csv, '.json': from_json}. fallback : bool or str, default=False Determines what method to use if extension_mapping does not match the product to unserialize. Valid values are True (uses the pickle module), 'joblib', and 'cloudpickle'. If you use any of the last two, the corresponding moduel must be installed. If this is enabled, the body of the decorated function is never executed. To turn it off pass False. defaults : list, default=None Built-in unserializing functions to use. Must be a list with any combinations of values: '.txt', '.json', '.csv', '.parquet'. Unserializing .txt, returns a string, for .json returns any JSON-unserializable object (e.g., a list or a dict), .csv and .parquet return a pandas.DataFrame. If using .parquet, a parquet library must be installed (e.g., pyarrow). If extension_mapping and defaults contain overlapping keys, an error is raises unpack : bool, default=False If True and the task product points to a directory, it will call the unserializer one time per file in the directory. The unserialized object will be a dictionary where keys are the filenames and values are the unserialized objects. Note that this isn't recursive, it only looks at files that are immediate children of the product directory.
unserializer
python
ploomber/ploomber
src/ploomber/io/unserialize.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/io/unserialize.py
Apache-2.0
def wcwidth(c: str) -> int: """Determine how many columns are needed to display a character in a terminal. Returns -1 if the character is not printable. Returns 0, 1 or 2 for other characters. """ o = ord(c) # ASCII fast path. if 0x20 <= o < 0x07F: return 1 # Some Cf/Zp/Zl characters which should be zero-width. if ( o == 0x0000 or 0x200B <= o <= 0x200F or 0x2028 <= o <= 0x202E or 0x2060 <= o <= 0x2063 ): return 0 category = unicodedata.category(c) # Control characters. if category == "Cc": return -1 # Combining characters with zero width. if category in ("Me", "Mn"): return 0 # Full/Wide east asian characters. if unicodedata.east_asian_width(c) in ("F", "W"): return 2 return 1
Determine how many columns are needed to display a character in a terminal. Returns -1 if the character is not printable. Returns 0, 1 or 2 for other characters.
wcwidth
python
ploomber/ploomber
src/ploomber/io/wcwidth.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/io/wcwidth.py
Apache-2.0
def wcswidth(s: str) -> int: """Determine how many columns are needed to display a string in a terminal. Returns -1 if the string contains non-printable characters. """ width = 0 for c in unicodedata.normalize("NFC", s): wc = wcwidth(c) if wc < 0: return -1 width += wc return width
Determine how many columns are needed to display a string in a terminal. Returns -1 if the string contains non-printable characters.
wcswidth
python
ploomber/ploomber
src/ploomber/io/wcwidth.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/io/wcwidth.py
Apache-2.0
def run( self, *cmd, description=None, capture_output=False, expected_output=None, error_message=None, hint=None, show_cmd=True, ): """Execute a command in a subprocess Parameters ---------- *cmd Command to execute description: str, default=None Label to display before executing the command capture_output: bool, default=False Captures output, otherwise prints to standard output and standard error expected_output: str, default=None Raises a RuntimeError if the output is different than this value. Only valid when capture_output=True error_message: str, default=None Error to display when expected_output does not match. If None, a generic message is shown hint: str, default=None An optional string to show when at the end of the error when the expected_output does not match. Used to hint the user how to fix the problem show_cmd : bool, default=True Whether to display the command next to the description (and error message if it fails) or not. Only valid when description is not None """ cmd_str = " ".join(cmd) if expected_output is not None and not capture_output: raise RuntimeError( "capture_output must be True when " "expected_output is not None" ) if description: header = f"{description}: {cmd_str}" if show_cmd else description self.tw.sep("=", header, blue=True) error = None result = None try: result = subprocess.run(cmd, capture_output=capture_output) # throw error if return code is not 0 result.check_returncode() except Exception as e: error = e else: # result is None if run is run with capture_output=false if result.stdout is not None: result = result.stdout.decode(sys.stdout.encoding) if expected_output is not None: error = result != expected_output if error: lines = [] if error_message: line_first = error_message else: if show_cmd: cmd_str = " ".join(cmd) line_first = ( "An error occurred when executing " f"command: {cmd_str}" ) else: line_first = "An error occurred." lines.append(line_first) if not capture_output: lines.append(f"Original error message: {error}") if hint: lines.append(f"Hint: {hint}.") raise CommanderException("\n".join(lines)) else: return result
Execute a command in a subprocess Parameters ---------- *cmd Command to execute description: str, default=None Label to display before executing the command capture_output: bool, default=False Captures output, otherwise prints to standard output and standard error expected_output: str, default=None Raises a RuntimeError if the output is different than this value. Only valid when capture_output=True error_message: str, default=None Error to display when expected_output does not match. If None, a generic message is shown hint: str, default=None An optional string to show when at the end of the error when the expected_output does not match. Used to hint the user how to fix the problem show_cmd : bool, default=True Whether to display the command next to the description (and error message if it fails) or not. Only valid when description is not None
run
python
ploomber/ploomber
src/ploomber/io/_commander.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/io/_commander.py
Apache-2.0
def copy_template(self, path, **render_kwargs): """Copy template to the workspace Parameters ---------- path : str Path to template (relative to templates path) **render_kwargs Keyword arguments passed to the template Examples -------- >>> # copies template in {templates-path}/directory/template.yaml >>> # to {workspace}/template.yaml >>> cmdr.copy_template('directory/template.yaml') # doctest: +SKIP """ dst = Path(self.workspace, PurePosixPath(path).name) # This message is no longer valid since this is only called # when there is no env yet if dst.exists(): self.success(f"Using existing {path!s}...") else: self.info(f"Adding {dst!s}...") dst.parent.mkdir(exist_ok=True, parents=True) content = self._env.get_template(str(path)).render(**render_kwargs) dst.write_text(content)
Copy template to the workspace Parameters ---------- path : str Path to template (relative to templates path) **render_kwargs Keyword arguments passed to the template Examples -------- >>> # copies template in {templates-path}/directory/template.yaml >>> # to {workspace}/template.yaml >>> cmdr.copy_template('directory/template.yaml') # doctest: +SKIP
copy_template
python
ploomber/ploomber
src/ploomber/io/_commander.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/io/_commander.py
Apache-2.0
def cp(self, src): """ Copies a file or directory to the workspace, replacing it if necessary. Deleted on exit. Notes ----- Used mainly for preparing Dockerfiles since they can only copy from the current working directory Examples -------- >>> # copies dir/file to {workspace}/file >>> cmdr.cp('dir/file') # doctest: +SKIP """ path = Path(src) if not path.exists(): raise CommanderException(f"Missing {src} file. Add it and try again.") # convert to absolute to ensure we delete the right file on __exit__ dst = Path(self.workspace, path.name).resolve() self._to_delete.append(dst) _delete(dst) if path.is_file(): shutil.copy(src, dst) else: shutil.copytree(src, dst)
Copies a file or directory to the workspace, replacing it if necessary. Deleted on exit. Notes ----- Used mainly for preparing Dockerfiles since they can only copy from the current working directory Examples -------- >>> # copies dir/file to {workspace}/file >>> cmdr.cp('dir/file') # doctest: +SKIP
cp
python
ploomber/ploomber
src/ploomber/io/_commander.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/io/_commander.py
Apache-2.0
def append_inline(self, line, dst): """Append line to a file Parameters ---------- line : str Line to append dst : str File to append (can be outside the workspace) Examples -------- >>> cmdr.append_inline('*.csv', '.gitignore') # doctest: +SKIP """ if not Path(dst).exists(): Path(dst).touch() original = Path(dst).read_text() Path(dst).write_text(original + "\n" + line + "\n")
Append line to a file Parameters ---------- line : str Line to append dst : str File to append (can be outside the workspace) Examples -------- >>> cmdr.append_inline('*.csv', '.gitignore') # doctest: +SKIP
append_inline
python
ploomber/ploomber
src/ploomber/io/_commander.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/io/_commander.py
Apache-2.0
def _warn_show(self): """Display accumulated warning messages (added via .warn_on_exit)""" if self._warnings: self.tw.sep("=", "Warnings", yellow=True) self.tw.write("\n\n".join(self._warnings) + "\n") self.tw.sep("=", yellow=True)
Display accumulated warning messages (added via .warn_on_exit)
_warn_show
python
ploomber/ploomber
src/ploomber/io/_commander.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/io/_commander.py
Apache-2.0
def remove_line_number(path): """ Takes a path/to/file:line path and returns path/to/file path object """ parts = list(Path(path).parts) parts[-1] = parts[-1].split(":")[0] return Path(*parts)
Takes a path/to/file:line path and returns path/to/file path object
remove_line_number
python
ploomber/ploomber
src/ploomber/jupyter/dag.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/jupyter/dag.py
Apache-2.0
def overwrite(self, model, path): """Overwrite a model back to the original function""" resource = self._get(path) resource.interactive.overwrite(nbformat.from_dict(model["content"])) return { "name": resource.task.name, "type": "notebook", "path": path, "writable": True, "created": datetime.datetime.now(), "last_modified": datetime.datetime.now(), "content": None, "mimetype": "text/x-python", "format": None, }
Overwrite a model back to the original function
overwrite
python
ploomber/ploomber
src/ploomber/jupyter/dag.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/jupyter/dag.py
Apache-2.0
def _mapping(self): """Returns the corresponding DAGMapping instance for the current DAG""" if self.__mapping is None: notebook_tasks = [ task for task in self._dag.values() if isinstance(task, NotebookMixin) ] pairs = [ (resolve_path(Path(self._root_dir).resolve(), t.source.loc), t) for t in notebook_tasks if t.source.loc is not None ] self.__mapping = DAGMapping(pairs) return self.__mapping
Returns the corresponding DAGMapping instance for the current DAG
_mapping
python
ploomber/ploomber
src/ploomber/jupyter/manager.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/jupyter/manager.py
Apache-2.0
def resolve_path(parent, path): """ Functions functions resolves paths to make the {source} -> {task} mapping work even then `jupyter notebook` is initialized from a subdirectory of pipeline.yaml """ try: # FIXME: remove :linenumber return Path(path).resolve().relative_to(parent).as_posix().strip() except ValueError: return None
Functions functions resolves paths to make the {source} -> {task} mapping work even then `jupyter notebook` is initialized from a subdirectory of pipeline.yaml
resolve_path
python
ploomber/ploomber
src/ploomber/jupyter/manager.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/jupyter/manager.py
Apache-2.0
def __init__(self, *args, **kwargs): """ Initialize the content manger, look for a pipeline.yaml file in the current directory, if there is one, load it, if there isn't one don't do anything """ # NOTE: there is some strange behavior in the Jupyter contents # manager. We should not access attributes here (e.g., # self.root_dir) otherwise they aren't correctly initialized. # We have a test that checks this: # test_manager_initialization in test_jupyter.py self.reset_dag() super().__init__(*args, **kwargs) self.__dag_loader = None
Initialize the content manger, look for a pipeline.yaml file in the current directory, if there is one, load it, if there isn't one don't do anything
__init__
python
ploomber/ploomber
src/ploomber/jupyter/manager.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/jupyter/manager.py
Apache-2.0
def get(self, path, content=True, type=None, format=None, *args, **kwargs): """ This is called when opening a file (content=True) and when listing files. When listing it's called once per file with (content=False). Also called for directories. When the directory is part of the listing (content=False) and when opened (content=True) """ # FIXME: reloading inside a (functions) folder causes 404 if content and ( self.spec is None or self.spec["meta"]["jupyter_functions_as_notebooks"] ): # this load_dag() is required to list the folder that contains # the notebooks exported from functions, however, since jupyter # continuosly calls this for the current directory it gets # too verbose so we skip showing the log message self.load_dag(log=False) if self.manager and path in self.manager: return self.manager.get(path, content) # get the model contents (e.g. notebook content) model = super().get( path, content=content, type=type, format=format, *args, **kwargs, ) # user requested directory listing, check if there are task # functions defined here if model["type"] == "directory" and self.manager: if model["content"]: model["content"].extend(self.manager.get_by_parent(path)) check_metadata_filter(self.log, model) # if opening a file if model["content"] and model["type"] == "notebook": # instantiate the dag using starting at the current folder self.log.info( f'[Ploomber] Requested model: {model["path"]}. ' f"Looking for DAG with root dir: {self.root_dir}" ) self.load_dag( starting_dir=Path(self.root_dir, model["path"]).parent, model=model ) if self._model_in_dag(model): self.log.info("[Ploomber] Injecting cell...") inject_cell( model=model, params=self.dag_mapping[model["path"]]._params ) return model
This is called when opening a file (content=True) and when listing files. When listing it's called once per file with (content=False). Also called for directories. When the directory is part of the listing (content=False) and when opened (content=True)
get
python
ploomber/ploomber
src/ploomber/jupyter/manager.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/jupyter/manager.py
Apache-2.0
def save(self, model, path=""): """ This is called when a file is saved """ if self.manager and path in self.manager: out = self.manager.overwrite(model, path) return out else: check_metadata_filter(self.log, model) # not sure what's the difference between model['path'] and path # but path has leading "/", _model_in_dag strips it key = self._model_in_dag(model, path) if key: content = model["content"] metadata = content.get("metadata", {}).get("ploomber", {}) if not metadata.get("injected_manually"): self.log.info( "[Ploomber] Cleaning up injected cell in {}...".format( model.get("name") or "" ) ) model["content"] = _cleanup_rendered_nb(content) self.log.info("[Ploomber] Deleting product's metadata...") self.dag_mapping.delete_metadata(key) return super().save(model, path)
This is called when a file is saved
save
python
ploomber/ploomber
src/ploomber/jupyter/manager.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/jupyter/manager.py
Apache-2.0
def _model_in_dag(self, model, path=None): """Determine if the model is part of the pipeline""" model_in_dag = False if path is None: path = model["path"] else: path = path.strip("/") if self.dag: if "content" in model and model["type"] == "notebook": if path in self.dag_mapping: # NOTE: not sure why sometimes the model comes with a # name and sometimes it doesn't self.log.info( "[Ploomber] {} is part of the pipeline... ".format( model.get("name") or "" ) ) model_in_dag = True else: self.log.info( "[Ploomber] {} is not part of the pipeline, " "skipping...".format(model.get("name") or "") ) return path if model_in_dag else False
Determine if the model is part of the pipeline
_model_in_dag
python
ploomber/ploomber
src/ploomber/jupyter/manager.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/jupyter/manager.py
Apache-2.0
def _load_jupyter_server_extension(app): """ This function is called to configure the new content manager, there are a lot of quirks that jupytext maintainers had to solve to make it work so we base our implementation on theirs: https://github.com/mwouts/jupytext/blob/bc1b15935e096c280b6630f45e65c331f04f7d9c/jupytext/__init__.py#L19 """ if hasattr(app.contents_manager_class, "load_dag"): app.log.info( "[Ploomber] NotebookApp.contents_manager_class " "is a subclass of PloomberContentsManager already - OK" ) return # The server extension call is too late! # The contents manager was set at NotebookApp.init_configurables # Let's change the contents manager class app.log.info("[Ploomber] setting content manager " "to PloomberContentsManager") app.contents_manager_class = derive_class(app.contents_manager_class) try: # And re-run selected init steps from: # https://github.com/jupyter/notebook/blob/ # 132f27306522b32fa667a6b208034cb7a04025c9/notebook/notebookapp.py#L1634-L1638 app.contents_manager = app.contents_manager_class(parent=app, log=app.log) app.session_manager.contents_manager = app.contents_manager app.web_app.settings["contents_manager"] = app.contents_manager except Exception: error = """[Ploomber] An error occured. Please deactivate the server extension with "jupyter serverextension disable ploomber" and configure the contents manager manually by adding c.NotebookApp.contents_manager_class = "ploomber.jupyter.PloomberContentsManager" to your .jupyter/jupyter_notebook_config.py file. """ # noqa app.log.error(error) raise
This function is called to configure the new content manager, there are a lot of quirks that jupytext maintainers had to solve to make it work so we base our implementation on theirs: https://github.com/mwouts/jupytext/blob/bc1b15935e096c280b6630f45e65c331f04f7d9c/jupytext/__init__.py#L19
_load_jupyter_server_extension
python
ploomber/ploomber
src/ploomber/jupyter/manager.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/jupyter/manager.py
Apache-2.0
def grid(**params): """A decorator to create multiple tasks, one per parameter combination""" def decorator(f): if not hasattr(f, "__ploomber_grid__"): f.__ploomber_grid__ = [] # TODO: validate they have the same keys as the earlier ones f.__ploomber_grid__.append(params) return f return decorator
A decorator to create multiple tasks, one per parameter combination
grid
python
ploomber/ploomber
src/ploomber/micro/_micro.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/micro/_micro.py
Apache-2.0
def capture(f): """A decorator to capture outputs in a function""" f.__ploomber_capture__ = True f.__ploomber_globals__ = f.__globals__ return f
A decorator to capture outputs in a function
capture
python
ploomber/ploomber
src/ploomber/micro/_micro.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/micro/_micro.py
Apache-2.0
def _signature_wrapper(f, call_with_args): """An internal wrapper so functions don't need the upstream and product arguments """ # store the wrapper, we'll need this for hot_reload to work, see # the constructor of CallableLoader in # ploomber.sources.pythoncallablesource for details f.__ploomber_wrapper_factory__ = partial( _signature_wrapper, call_with_args=call_with_args ) @wraps(f) def wrapper_args(upstream, **kwargs): return f(*upstream.values(), **kwargs) @wraps(f) def wrapper_kwargs(upstream, **kwargs): return f(**upstream, **kwargs) return wrapper_args if call_with_args else wrapper_kwargs
An internal wrapper so functions don't need the upstream and product arguments
_signature_wrapper
python
ploomber/ploomber
src/ploomber/micro/_micro.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/micro/_micro.py
Apache-2.0
def _get_upstream(fn): """ Get upstream tasks for a given function by looking at the signature arguments """ if hasattr(fn, "__wrapped__"): grid = getattr(fn, "__ploomber_grid__", None) if grid is not None: ignore = set(grid[0]) else: ignore = set() return set(signature(fn.__wrapped__).parameters) - ignore else: return set(signature(fn).parameters) - {"input_data"}
Get upstream tasks for a given function by looking at the signature arguments
_get_upstream
python
ploomber/ploomber
src/ploomber/micro/_micro.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/micro/_micro.py
Apache-2.0
def dag_from_functions( functions, output="output", params=None, parallel=False, dependencies=None, hot_reload=True, ): """Create a DAG from a list of functions Parameters ---------- functions : list List of functions output : str, default='output' Directory to store outputs and metadata from each task params : dict, default None Parameters to pass to each task, it must be a dictionary with task names as keys and parameters (dict) as values parallel : bool, default=False If True, the dag will run tasks in parallel when calling ``dag.build()``, note that this requires the 'multiprocess' package: ``pip install multiprocess`` dependencies : dict, default=None A mapping with functions names to their dependencies. Use it if the arguments in the function do not match the names of its dependencies. hot_reload : bool, default=False If True, the dag will automatically detect changes in the source code. However, this won't work if tasks are defined inside functions """ dependencies = dependencies or dict() params = params or dict() # NOTE: cache_rendered_status isn't doing anything. I modified Product # to look at the hot_reload flag for the hot reloading to work. I don't # think we're using the cache_rendered_status anywhere, so we should # delete it. configurator = DAGConfigurator() configurator.params.hot_reload = hot_reload dag = configurator.create() if parallel: dag.executor = ParallelDill() else: # need to disable subprocess, otherwise pickling will fail since # functions might be defined in the __main__ module dag.executor = Serial(build_in_subprocess=False) for callable_ in functions: if callable_.__name__ in params: params_task = params[callable_.__name__] else: params_task = dict() # if decorated, call with grid if hasattr(callable_, "__ploomber_grid__"): for i, items in enumerate( chain( *(ParamGrid(grid).product() for grid in callable_.__ploomber_grid__) ) ): _make_task( callable_, dag=dag, params={**params_task, **items}, output=output, call_with_args=callable_.__name__ in dependencies, suffix=i, ) else: _make_task( callable_, dag=dag, params=params_task, output=output, call_with_args=callable_.__name__ in dependencies, ) for name in dag._iter(): # check if there are manually declared dependencies if name in dependencies: upstream = dependencies[name] else: upstream = _get_upstream(dag[name].source.primitive) for up in upstream: dag[name].set_upstream(dag[up]) return dag
Create a DAG from a list of functions Parameters ---------- functions : list List of functions output : str, default='output' Directory to store outputs and metadata from each task params : dict, default None Parameters to pass to each task, it must be a dictionary with task names as keys and parameters (dict) as values parallel : bool, default=False If True, the dag will run tasks in parallel when calling ``dag.build()``, note that this requires the 'multiprocess' package: ``pip install multiprocess`` dependencies : dict, default=None A mapping with functions names to their dependencies. Use it if the arguments in the function do not match the names of its dependencies. hot_reload : bool, default=False If True, the dag will automatically detect changes in the source code. However, this won't work if tasks are defined inside functions
dag_from_functions
python
ploomber/ploomber
src/ploomber/micro/_micro.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/micro/_micro.py
Apache-2.0
def _raw(self): """A string with the raw jinja2.Template contents""" if self._hot_reload: self.__raw = self._path.read_text() return self.__raw
A string with the raw jinja2.Template contents
_raw
python
ploomber/ploomber
src/ploomber/placeholders/placeholder.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/placeholders/placeholder.py
Apache-2.0
def _needs_render(self): """ Returns true if the template is a literal and does not need any parameters to render """ env = self._template.environment # check if the template has the variable or block start string # is there any better way of checking this? needs_variables = ( env.variable_start_string in self._raw and env.variable_end_string in self._raw ) needs_blocks = ( env.block_start_string in self._raw and env.block_end_string in self._raw ) return needs_variables or needs_blocks
Returns true if the template is a literal and does not need any parameters to render
_needs_render
python
ploomber/ploomber
src/ploomber/placeholders/placeholder.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/placeholders/placeholder.py
Apache-2.0
def best_repr(self, shorten): """ Returns the rendered version (if available), otherwise the raw version """ best = self._raw if self._str is None else self._str if shorten: best = self._repr.repr(best) return best
Returns the rendered version (if available), otherwise the raw version
best_repr
python
ploomber/ploomber
src/ploomber/placeholders/placeholder.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/placeholders/placeholder.py
Apache-2.0
def variables(self): """Returns declared variables in the template""" # this requires parsing the raw template, do lazy load, but override # it if hot_reload is True if self._variables is None or self._hot_reload: self._variables = util.get_tags_in_str(self._raw) return self._variables
Returns declared variables in the template
variables
python
ploomber/ploomber
src/ploomber/placeholders/placeholder.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/placeholders/placeholder.py
Apache-2.0
def _init_template(raw, loader_init): """ Initializes template, taking care of configuring the loader environment if needed This helps prevents errors when using copy or pickling (the copied or unpickled object wont have access to the environment.loader which breaks macros and anything that needs access to the jinja environment.loader object """ if loader_init is None: template = Template( raw, undefined=StrictUndefined, extensions=(extensions.RaiseExtension,) ) _add_globals(template.environment) return template else: if loader_init["class"] == "FileSystemLoader": loader = FileSystemLoader(**loader_init["kwargs"]) elif loader_init["class"] == "PackageLoader": loader = PackageLoader(**loader_init["kwargs"]) else: raise TypeError( "Error setting state for Placeholder, " "expected the loader to be FileSystemLoader " "or PackageLoader" ) env = Environment( loader=loader, undefined=StrictUndefined, extensions=(extensions.RaiseExtension,), ) _add_globals(env) return env.from_string(raw)
Initializes template, taking care of configuring the loader environment if needed This helps prevents errors when using copy or pickling (the copied or unpickled object wont have access to the environment.loader which breaks macros and anything that needs access to the jinja environment.loader object
_init_template
python
ploomber/ploomber
src/ploomber/placeholders/placeholder.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/placeholders/placeholder.py
Apache-2.0
def get(self, key): """Load template, returns None if it doesn' exist""" try: return self[key] except exceptions.TemplateNotFound: return None
Load template, returns None if it doesn' exist
get
python
ploomber/ploomber
src/ploomber/placeholders/sourceloader.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/placeholders/sourceloader.py
Apache-2.0
def path_to(self, key): """Return the path to a template, even if it doesn't exist""" try: return self[key].path except exceptions.TemplateNotFound: return Path(self.path_full, key)
Return the path to a template, even if it doesn't exist
path_to
python
ploomber/ploomber
src/ploomber/placeholders/sourceloader.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/placeholders/sourceloader.py
Apache-2.0
def get_template(self, name): """Load a template by name Parameters ---------- name : str or pathlib.Path Template to load """ # if name is a nested path, this will return an appropriate # a/b/c string even on Windows path = str(PurePosixPath(*Path(name).parts)) try: template = self.env.get_template(path) except exceptions.TemplateNotFound as e: exception = e else: exception = None if exception is not None: expected_path = str(Path(self.path_full, name)) # user saved the template locally, but the source loader is # configured to load from a different place if Path(name).exists(): raise exceptions.TemplateNotFound( f"{str(name)!r} template does not exist. " "However such a file exists in the current working " "directory, if you want to load it as a template, move it " f"to {self.path_full!r} or remove the source_loader" ) # no template and the file does not exist, raise a generic message else: raise exceptions.TemplateNotFound( f"{str(name)!r} template does not exist. " "Based on your configuration, if should be located " f"at: {expected_path!r}" ) return Placeholder(template)
Load a template by name Parameters ---------- name : str or pathlib.Path Template to load
get_template
python
ploomber/ploomber
src/ploomber/placeholders/sourceloader.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/placeholders/sourceloader.py
Apache-2.0
def get_tags_in_str(s, require_runtime_placeholders=True): """ Returns tags (e.g. {{variable}}) in a given string as a set, returns an empty set for None Parameters ---------- require_runtime_placeholders : bool, default=True Also check runtime tags - the ones in square brackets (e.g. [[placeholder]]) """ # render placeholders vars_render = meta.find_undeclared_variables(env_render.parse(s)) # runtime placeholders if require_runtime_placeholders: vars_runtime = meta.find_undeclared_variables(env_runtime.parse(s)) else: vars_runtime = set() return vars_render | vars_runtime
Returns tags (e.g. {{variable}}) in a given string as a set, returns an empty set for None Parameters ---------- require_runtime_placeholders : bool, default=True Also check runtime tags - the ones in square brackets (e.g. [[placeholder]])
get_tags_in_str
python
ploomber/ploomber
src/ploomber/placeholders/util.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/placeholders/util.py
Apache-2.0
def _check_is_outdated(self, outdated_by_code): """ Unlike other Product implementation that only have to check the current metadata, File has to check if there is a metadata remote copy and download it to decide outdated status, which yield to task execution or product downloading """ should_download = False if self._remote.exists(): if self._remote._is_equal_to_local_copy(): return self._remote._is_outdated(with_respect_to_local=True) else: # download when doing so will bring the product # up-to-date (this takes into account upstream # timestamps) should_download = not self._remote._is_outdated( with_respect_to_local=True, outdated_by_code=outdated_by_code ) if should_download: return TaskStatus.WaitingDownload # no need to download, check status using local metadata return super()._check_is_outdated(outdated_by_code=outdated_by_code)
Unlike other Product implementation that only have to check the current metadata, File has to check if there is a metadata remote copy and download it to decide outdated status, which yield to task execution or product downloading
_check_is_outdated
python
ploomber/ploomber
src/ploomber/products/file.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/products/file.py
Apache-2.0
def _is_remote_outdated(self, outdated_by_code): """ Check status using remote metadata, if no remote is available (or remote metadata is corrupted) returns True """ if self._remote.exists(): return self._remote._is_outdated( with_respect_to_local=False, outdated_by_code=outdated_by_code ) else: # if no remote, return True. This is the least destructive option # since we don't know what will be available and what not when this # executes return True
Check status using remote metadata, if no remote is available (or remote metadata is corrupted) returns True
_is_remote_outdated
python
ploomber/ploomber
src/ploomber/products/file.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/products/file.py
Apache-2.0
def _get(self): """ Get the "true metadata", ignores actual metadata if the product does not exist. It is lazily called by the timestamp and stored_source_code attributes. Ignores fetched metadata and replaces it with the stored metadata """ # if the product does not exist, ignore metadata in backend storage # FIXME: cache the output of this command, we are using it in several # places, sometimes we have to re-fetch but sometimes we can cache, # look for product.exists() references and .exists() references # in the Product definition if not self._product.exists(): metadata = self._default_metadata() else: # FIXME: if anything goes wrong when fetching metadata, warn # and set it to a valid dictionary with None values, validation # should happen here, not in the fetch_metadata method, but we # shouldn't catch all exceptions. Create a new one in # ploomber.exceptions and raise it on each fetch_metadata # implementation when failing to unserialize metadata_fetched = self._product.fetch_metadata() if metadata_fetched is None: self._logger.debug( "fetch_metadata for product %s returned " "None", self._product ) metadata = self._default_metadata() else: # FIXME: we need to further validate this, need to check # that this is an instance of mapping, if yes, then # check keys [timestamp, stored_source_code], check # types and fill with None if any of the keys is missing metadata = metadata_fetched self._did_fetch = True self._data = metadata
Get the "true metadata", ignores actual metadata if the product does not exist. It is lazily called by the timestamp and stored_source_code attributes. Ignores fetched metadata and replaces it with the stored metadata
_get
python
ploomber/ploomber
src/ploomber/products/metadata.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/products/metadata.py
Apache-2.0
def update(self, source_code, params): """ Update metadata in the storage backend, this should be called by Task objects when running successfully to update metadata in the backend storage. If saving in the backend storage succeeds the local copy is updated as well Parameters ---------- source_code : str Task's source code params : dict Task's params """ # remove any unserializable parameters params = remove_non_serializable_top_keys(params) new_data = dict( timestamp=datetime.now().timestamp(), stored_source_code=source_code, # process params to store hashes in case they're # declared as resources params=process_resources(params), ) kwargs = callback_check( self._product.prepare_metadata, available={"metadata": new_data, "product": self._product}, ) data = self._product.prepare_metadata(**kwargs) self._product.save_metadata(data) # if saving worked, we can update the local in-memory copy self.update_locally(new_data)
Update metadata in the storage backend, this should be called by Task objects when running successfully to update metadata in the backend storage. If saving in the backend storage succeeds the local copy is updated as well Parameters ---------- source_code : str Task's source code params : dict Task's params
update
python
ploomber/ploomber
src/ploomber/products/metadata.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/products/metadata.py
Apache-2.0
def update_locally(self, data): """Updates the in-memory copy, does not update persistent copy""" # could be the case that we haven't fetched metadata yet. since this # overwrites existing metadata. we no longer have to fetch self._did_fetch = True self._data = deepcopy(data)
Updates the in-memory copy, does not update persistent copy
update_locally
python
ploomber/ploomber
src/ploomber/products/metadata.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/products/metadata.py
Apache-2.0
def clear(self): """ Clears up metadata local copy, next time the timestamp or stored_source_code are needed, this will trigger another call to ._get(). Should be called only when the local copy might be outdated due external execution. Currently, we are only using this when running DAG.build_partially, because that triggers a deep copy of the original DAG. hence our local copy in the original DAG is not valid anymore """ self._did_fetch = False self._data = self._default_metadata()
Clears up metadata local copy, next time the timestamp or stored_source_code are needed, this will trigger another call to ._get(). Should be called only when the local copy might be outdated due external execution. Currently, we are only using this when running DAG.build_partially, because that triggers a deep copy of the original DAG. hence our local copy in the original DAG is not valid anymore
clear
python
ploomber/ploomber
src/ploomber/products/metadata.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/products/metadata.py
Apache-2.0
def large_timestamp_difference(timestamps): """Returns True if there is at least one timestamp difference > 5 seconds""" dts = [datetime.fromtimestamp(ts) for ts in timestamps] for i in range(len(dts)): for j in range(len(dts)): if i != j: diff = (dts[i] - dts[j]).total_seconds() if abs(diff) > 5: return True return False
Returns True if there is at least one timestamp difference > 5 seconds
large_timestamp_difference
python
ploomber/ploomber
src/ploomber/products/metadata.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/products/metadata.py
Apache-2.0
def to_json_serializable(self): """Returns a JSON serializable version of this product""" if isinstance(self.products, Mapping): return {name: str(product) for name, product in self.products.items()} else: return list(str(product) for product in self.products)
Returns a JSON serializable version of this product
to_json_serializable
python
ploomber/ploomber
src/ploomber/products/metaproduct.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/products/metaproduct.py
Apache-2.0
def to_json_serializable(self): """Returns a JSON serializable version of this product""" # NOTE: this is used in tasks where only JSON serializable parameters # are supported such as NotebookRunner that depends on papermill return self.products.to_json_serializable()
Returns a JSON serializable version of this product
to_json_serializable
python
ploomber/ploomber
src/ploomber/products/metaproduct.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/products/metaproduct.py
Apache-2.0
def _is_outdated(self, outdated_by_code=True): """ Given current conditions, determine if the Task that holds this Product should be executed Returns ------- bool True if the Task should execute """ # if hot_reload is enable, we should not cache the status if self.task.source.hot_reload: self._reset_cached_outdated_status() if self._is_outdated_status is None: self._is_outdated_status = self._check_is_outdated(outdated_by_code) return self._is_outdated_status
Given current conditions, determine if the Task that holds this Product should be executed Returns ------- bool True if the Task should execute
_is_outdated
python
ploomber/ploomber
src/ploomber/products/product.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/products/product.py
Apache-2.0
def _outdated_data_dependencies(self): """ Determine if the product is outdated by checking upstream timestamps """ if self._outdated_data_dependencies_status is not None: self.logger.debug( ("Returning cached data dependencies status. " "Outdated? %s"), self._outdated_data_dependencies_status, ) return self._outdated_data_dependencies_status outdated = any( [ self._is_outdated_due_to_upstream(up.product) for up in self.task.upstream.values() ] ) self._outdated_data_dependencies_status = outdated self.logger.debug( ("Finished checking data dependencies status. " "Outdated? %s"), self._outdated_data_dependencies_status, ) return self._outdated_data_dependencies_status
Determine if the product is outdated by checking upstream timestamps
_outdated_data_dependencies
python
ploomber/ploomber
src/ploomber/products/product.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/products/product.py
Apache-2.0
def _is_outdated_due_to_upstream(self, up_prod): """ A task becomes data outdated if an upstream product has a higher timestamp or if an upstream product is outdated """ if self.metadata.timestamp is None or up_prod.metadata.timestamp is None: return True else: return ( (up_prod.metadata.timestamp > self.metadata.timestamp) # this second condition propagates outdated status # from indirect upstream dependencies. e.g., a -> b -> c # user runs in order but then it only runs a. Since a is # outdated, so should c or up_prod._is_outdated() )
A task becomes data outdated if an upstream product has a higher timestamp or if an upstream product is outdated
_is_outdated_due_to_upstream
python
ploomber/ploomber
src/ploomber/products/product.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/products/product.py
Apache-2.0
def _outdated_code_dependency(self): """ Determine if the product is outdated by checking the source code that it generated it """ if self._outdated_code_dependency_status is not None: self.logger.debug( ("Returning cached code dependencies status. " "Outdated? %s"), self._outdated_code_dependency_status, ) return self._outdated_code_dependency_status outdated, diff = self.task.dag.differ.is_different( a=self.metadata.stored_source_code, b=str(self.task.source), a_params=self.metadata.params, # process resource params to compare the file hash instead of # the path to the file b_params=process_resources( self.task.params.to_json_serializable(params_only=True) ), extension=self.task.source.extension, ) self._outdated_code_dependency_status = outdated self.logger.debug( ('Finished checking code status for task "%s" ' "Outdated? %s"), self.task.name, self._outdated_code_dependency_status, ) if outdated: self.logger.info( 'Task "%s" has outdated code. Diff:\n%s', self.task.name, diff ) return self._outdated_code_dependency_status
Determine if the product is outdated by checking the source code that it generated it
_outdated_code_dependency
python
ploomber/ploomber
src/ploomber/products/product.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/products/product.py
Apache-2.0
def to_json_serializable(self): """Returns a JSON serializable version of this product""" # NOTE: this is used in tasks where only JSON serializable parameters # are supported such as NotebookRunner that depends on papermill return str(self)
Returns a JSON serializable version of this product
to_json_serializable
python
ploomber/ploomber
src/ploomber/products/product.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/products/product.py
Apache-2.0
def remove_non_serializable_top_keys(obj): """ Remove top-level keys with unserializable objects, warning if necessary Parameters ---------- d: a dictionary containing parameters """ out = copy(obj) for _, _, current_val, preffix in iterate_nested_dict(obj): if not is_json_serializable(current_val): top_key = preffix[0] if top_key in out: del out[top_key] warnings.warn( f"Param {top_key!r} contains an unserializable " f"object: {current_val!r}, it will be ignored. " "Changes to it will not trigger task execution." ) return out
Remove top-level keys with unserializable objects, warning if necessary Parameters ---------- d: a dictionary containing parameters
remove_non_serializable_top_keys
python
ploomber/ploomber
src/ploomber/products/serializeparams.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/products/serializeparams.py
Apache-2.0
def exists(self): """ Checks if remote File exists. This is used by Metadata to determine whether to use the existing remote metadat (if any) or ignore it: if this returns False, remote metadata is ignored even if it exists """ if self._exists is None: # TODO remove checking if file exists and just make the API # call directly self._exists = ( self._local_file.client is not None and self._local_file.client._remote_exists( self._local_file._path_to_metadata ) and self._local_file.client._remote_exists( self._local_file._path_to_file ) ) return self._exists
Checks if remote File exists. This is used by Metadata to determine whether to use the existing remote metadat (if any) or ignore it: if this returns False, remote metadata is ignored even if it exists
exists
python
ploomber/ploomber
src/ploomber/products/_remotefile.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/products/_remotefile.py
Apache-2.0
def _is_outdated(self, with_respect_to_local, outdated_by_code=True): """ Determines outdated status using remote metadata, to decide whether to download the remote file or not with_respect_to_local : bool If True, determines status by comparing timestamps with upstream local metadata, otherwise it uses upstream remote metadata """ if with_respect_to_local: if self._is_outdated_status_local is None: self._is_outdated_status_local = self._check_is_outdated( with_respect_to_local, outdated_by_code ) return self._is_outdated_status_local else: if self._is_outdated_status_remote is None: self._is_outdated_status_remote = self._check_is_outdated( with_respect_to_local, outdated_by_code ) return self._is_outdated_status_remote
Determines outdated status using remote metadata, to decide whether to download the remote file or not with_respect_to_local : bool If True, determines status by comparing timestamps with upstream local metadata, otherwise it uses upstream remote metadata
_is_outdated
python
ploomber/ploomber
src/ploomber/products/_remotefile.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/products/_remotefile.py
Apache-2.0
def _outdated_code_dependency(self): """ Determine if the source code has changed by looking at the remote metadata """ outdated, _ = self._local_file.task.dag.differ.is_different( a=self.metadata.stored_source_code, b=str(self._local_file.task.source), a_params=self.metadata.params, b_params=self._local_file.task.params.to_json_serializable( params_only=True ), extension=self._local_file.task.source.extension, ) return outdated
Determine if the source code has changed by looking at the remote metadata
_outdated_code_dependency
python
ploomber/ploomber
src/ploomber/products/_remotefile.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/products/_remotefile.py
Apache-2.0
def _outdated_data_dependencies(self, with_respect_to_local): """ Determine if the product is outdated by checking upstream timestamps """ upstream_outdated = [ self._is_outdated_due_to_upstream(up, with_respect_to_local) for up in self._local_file.task.upstream.values() ] # special case: if all upstream dependencies are waiting for download # or up-to-date, mark this as up-to-date if set(upstream_outdated) <= {TaskStatus.WaitingDownload, False}: return False return any(upstream_outdated)
Determine if the product is outdated by checking upstream timestamps
_outdated_data_dependencies
python
ploomber/ploomber
src/ploomber/products/_remotefile.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/products/_remotefile.py
Apache-2.0
def _is_outdated_due_to_upstream(self, upstream, with_respect_to_local): """ A task becomes data outdated if an upstream product has a higher timestamp or if an upstream product is outdated """ if ( upstream.exec_status == TaskStatus.WaitingDownload or not with_respect_to_local ): # TODO: delete ._remote will never be None if upstream.product._remote: upstream_timestamp = upstream.product._remote.metadata.timestamp else: upstream_timestamp = None else: upstream_timestamp = upstream.product.metadata.timestamp if self.metadata.timestamp is None or upstream_timestamp is None: return True else: more_recent_upstream = upstream_timestamp > self.metadata.timestamp if with_respect_to_local: outdated_upstream_prod = upstream.product._is_outdated() else: outdated_upstream_prod = upstream.product._is_remote_outdated(True) return more_recent_upstream or outdated_upstream_prod
A task becomes data outdated if an upstream product has a higher timestamp or if an upstream product is outdated
_is_outdated_due_to_upstream
python
ploomber/ploomber
src/ploomber/products/_remotefile.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/products/_remotefile.py
Apache-2.0
def process_resources(params): """ Process resources in a parameters dict, computes the hash of the file for resources (i.e., params with the resource__ prefix) Parameters ---------- params : dict Task parameters """ # params can be None if params is None: return None if _KEY not in params: return deepcopy(params) _validate(params) resources = {} for key, value in params[_KEY].items(): path = _cast_to_path(value, key) _check_is_file(path, key) _check_file_size(path) digest = hashlib.md5(path.read_bytes()).hexdigest() resources[key] = digest params_out = deepcopy(params) params_out[_KEY] = resources return params_out
Process resources in a parameters dict, computes the hash of the file for resources (i.e., params with the resource__ prefix) Parameters ---------- params : dict Task parameters
process_resources
python
ploomber/ploomber
src/ploomber/products/_resources.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/products/_resources.py
Apache-2.0
def create(self, source, params, class_): """Scaffold a task if they don't exist Returns ------- bool True if it created a task, False if it didn't """ did_create = False if class_ is tasks.PythonCallable: source_parts = source.split(".") (*module_parts, fn_name) = source_parts params["function_name"] = fn_name try: spec = locate_dotted_path(source) except ModuleNotFoundError: create_intermediate_modules(module_parts) spec = locate_dotted_path(source) source = Path(spec.origin) source.parent.mkdir(parents=True, exist_ok=True) original = source.read_text() module = ast.parse(original) names = { element.name for element in module.body if hasattr(element, "name") } if fn_name not in names: print(f"Adding {fn_name!r} to module {source!s}...") fn_str = self.render("function.py", params=params) source.write_text(original + fn_str) did_create = True # script task... else: path = Path(source) if not path.exists(): if path.suffix in {".py", ".sql", ".ipynb", ".R", ".Rmd"}: # create parent folders if needed source.parent.mkdir(parents=True, exist_ok=True) content = self.render("task" + source.suffix, params=params) print("Adding {}...".format(source)) source.write_text(content) did_create = True else: print( "Error: This command does not support adding " 'tasks with extension "{}", valid ones are ' ".py and .sql. Skipping {}".format(path.suffix, path) ) return did_create
Scaffold a task if they don't exist Returns ------- bool True if it created a task, False if it didn't
create
python
ploomber/ploomber
src/ploomber/scaffold/scaffoldloader.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/scaffold/scaffoldloader.py
Apache-2.0
def getfile(fn): """ Returns the file where the function is defined. Works even in wrapped functions """ if hasattr(fn, "__wrapped__"): return getfile(fn.__wrapped__) else: return inspect.getfile(fn)
Returns the file where the function is defined. Works even in wrapped functions
getfile
python
ploomber/ploomber
src/ploomber/sources/inspect.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/sources/inspect.py
Apache-2.0
def to_nb(self, path=None): """ Converts the function to is notebook representation, Returns a notebook object, if path is passed, it saves the notebook as well Returns the function's body in a notebook (tmp location), inserts params as variables at the top """ self._reload_fn() body_elements, _ = parse_function(self.fn) top, local, bottom = extract_imports(self.fn) return function_to_nb( body_elements, top, local, bottom, self.params, self.fn, path )
Converts the function to is notebook representation, Returns a notebook object, if path is passed, it saves the notebook as well Returns the function's body in a notebook (tmp location), inserts params as variables at the top
to_nb
python
ploomber/ploomber
src/ploomber/sources/interact.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/sources/interact.py
Apache-2.0
def overwrite(self, obj): """ Overwrite the function's body with the notebook contents, excluding injected parameters and cells whose first line is "#". obj can be either a notebook object or a path """ self._reload_fn() if isinstance(obj, (str, Path)): nb = nbformat.read(obj, as_version=nbformat.NO_CONVERT) else: nb = obj nb.cells = nb.cells[: last_non_empty_cell(nb.cells)] # remove cells that are only needed for the nb but not for the function code_cells = [c["source"] for c in nb.cells if keep_cell(c)] # add 4 spaces to each code cell, exclude white space lines code_cells = [indent_cell(code) for code in code_cells] # get the original file where the function is defined content = self.path_to_source.read_text() content_lines = content.splitlines() trailing_newline = content[-1] == "\n" # an upstream parameter fn_starts, fn_ends = function_lines(self.fn) # keep the file the same until you reach the function definition plus # an offset to account for the signature (which might span >1 line) _, body_start = parse_function(self.fn) keep_until = fn_starts + body_start header = content_lines[:keep_until] # the footer is everything below the end of the original definition footer = content_lines[fn_ends:] # if there is anything at the end, we have to add an empty line to # properly end the function definition, if this is the last definition # in the file, we don't have to add this if footer: footer = [""] + footer new_content = "\n".join(header + code_cells + footer) # replace old top imports with new ones new_content_lines = new_content.splitlines() _, line = extract_imports_top(parso.parse(new_content), new_content_lines) imports_top_cell, _ = find_cell_with_tag(nb, "imports-top") # ignore trailing whitespace in top imports cell but keep original # amount of whitespace separating the last import and the first name # definition content_to_write = ( imports_top_cell["source"].rstrip() + "\n" + "\n".join(new_content_lines[line - 1 :]) ) # if the original file had a trailing newline, keep it if trailing_newline: content_to_write += "\n" # NOTE: this last part parses the code several times, we can improve # performance by only parsing once m = parso.parse(content_to_write) fn_def = find_function_with_name(m, self.fn.__name__) fn_code = fn_def.get_code() has_upstream_dependencies = PythonCallableExtractor(fn_code).extract_upstream() upstream_in_func_sig = upstream_in_func_signature(fn_code) if not upstream_in_func_sig and has_upstream_dependencies: fn_code_new = add_upstream_to_func_signature(fn_code) content_to_write = _replace_fn_source(content_to_write, fn_def, fn_code_new) elif upstream_in_func_sig and not has_upstream_dependencies: fn_code_new = remove_upstream_to_func_signature(fn_code) content_to_write = _replace_fn_source(content_to_write, fn_def, fn_code_new) self.path_to_source.write_text(content_to_write)
Overwrite the function's body with the notebook contents, excluding injected parameters and cells whose first line is "#". obj can be either a notebook object or a path
overwrite
python
ploomber/ploomber
src/ploomber/sources/interact.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/sources/interact.py
Apache-2.0
def last_non_empty_cell(cells): """Returns the index + 1 for the last non-empty cell""" idx = len(cells) for cell in cells[::-1]: if cell.source: return idx idx -= 1 return idx
Returns the index + 1 for the last non-empty cell
last_non_empty_cell
python
ploomber/ploomber
src/ploomber/sources/interact.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/sources/interact.py
Apache-2.0
def keep_cell(cell): """ Rule to decide whether to keep a cell or not. This is executed before converting the notebook back to a function """ cell_tags = set(cell["metadata"].get("tags", {})) # remove cell with this tag, they are not part of the function body tags_to_remove = { "injected-parameters", "imports-top", "imports-local", "imports-bottom", "debugging-settings", } has_tags_to_remove = len(cell_tags & tags_to_remove) return ( cell["cell_type"] == "code" and not has_tags_to_remove and cell["source"][:2] != "#\n" )
Rule to decide whether to keep a cell or not. This is executed before converting the notebook back to a function
keep_cell
python
ploomber/ploomber
src/ploomber/sources/interact.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/sources/interact.py
Apache-2.0
def parse_function(fn): """ Extract function's source code, parse it and return function body elements along with the # of the last line for the signature (which marks the beginning of the function's body) and all the imports """ # TODO: exclude return at the end, what if we find more than one? # maybe do not support functions with return statements for now source = inspect.getsource(fn).rstrip() body_elements, start_pos = body_elements_from_source(source) return body_elements, start_pos
Extract function's source code, parse it and return function body elements along with the # of the last line for the signature (which marks the beginning of the function's body) and all the imports
parse_function
python
ploomber/ploomber
src/ploomber/sources/interact.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/sources/interact.py
Apache-2.0
def has_import(stmt): """ Check if statement contains an import """ for ch in stmt.children: if ch.type in {"import_name", "import_from"}: return True return False
Check if statement contains an import
has_import
python
ploomber/ploomber
src/ploomber/sources/interact.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/sources/interact.py
Apache-2.0
def function_to_nb( body_elements, imports_top, imports_local, imports_bottom, params, fn, path ): """ Save function body elements to a notebook """ # TODO: Params should implement an option to call to_json_serializable # on product to avoid repetition I'm using this same code in notebook # runner. Also raise error if any of the params is not # json serializable try: params = params.to_json_serializable() params["product"] = params["product"].to_json_serializable() except AttributeError: pass nb_format = nbformat.versions[nbformat.current_nbformat] nb = nb_format.new_notebook() # get the module where the function is declared tokens = inspect.getmodule(fn).__name__.split(".") module_name = ".".join(tokens[:-1]) # add cell that chdirs for the current working directory # add __package__, we need this for relative imports to work # see: https://www.python.org/dev/peps/pep-0366/ for details source = """ # Debugging settings (this cell will be removed before saving) # change the current working directory to the one when .debug() happen # to make relative paths work import os {} __package__ = "{}" """.format( chdir_code(Path(".").resolve()), module_name ) cell = nb_format.new_code_cell(source, metadata={"tags": ["debugging-settings"]}) nb.cells.append(cell) # then add params passed to the function cell = nb_format.new_code_cell( PythonTranslator.codify(params), metadata={"tags": ["injected-parameters"]} ) nb.cells.append(cell) # first three cells: imports for code, tag in ( (imports_top, "imports-top"), (imports_local, "imports-local"), (imports_bottom, "imports-bottom"), ): if code: nb.cells.append( nb_format.new_code_cell(source=code, metadata=dict(tags=[tag])) ) for statement in body_elements: lines, newlines = split_statement(statement) # find indentation # of characters using the first line idx = indentation_idx(lines[0]) # remove indentation from all function body lines lines = [line[idx:] for line in lines] # add one empty cell per leading new line nb.cells.extend([nb_format.new_code_cell(source="") for _ in range(newlines)]) # add actual code as a single string cell = nb_format.new_code_cell(source="\n".join(lines)) nb.cells.append(cell) k = jupyter_client.kernelspec.get_kernel_spec("python3") nb.metadata.kernelspec = { "display_name": k.display_name, "language": k.language, "name": "python3", } if path: nbformat.write(nb, path) return nb
Save function body elements to a notebook
function_to_nb
python
ploomber/ploomber
src/ploomber/sources/interact.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/sources/interact.py
Apache-2.0
def find_cell_with_tags(nb, tags): """ Find the first cell with any of the given tags, returns a dictionary with 'cell' (cell object) and 'index', the cell index. """ tags_to_find = list(tags) tags_found = {} for index, cell in enumerate(nb["cells"]): for tag in cell["metadata"].get("tags", []): if tag in tags_to_find: tags_found[tag] = dict(cell=cell, index=index) tags_to_find.remove(tag) if not tags_to_find: break return tags_found
Find the first cell with any of the given tags, returns a dictionary with 'cell' (cell object) and 'index', the cell index.
find_cell_with_tags
python
ploomber/ploomber
src/ploomber/sources/nb_utils.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/sources/nb_utils.py
Apache-2.0
def find_cell_with_tag(nb, tag): """ Find a cell with a given tag, returns a cell, index tuple. Otherwise (None, None) """ out = find_cell_with_tags(nb, [tag]) if out: located = out[tag] return located["cell"], located["index"] else: return None, None
Find a cell with a given tag, returns a cell, index tuple. Otherwise (None, None)
find_cell_with_tag
python
ploomber/ploomber
src/ploomber/sources/nb_utils.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/sources/nb_utils.py
Apache-2.0
def _jupytext_fmt(primitive, extension): """ Determine the jupytext fmt string to use based on the content and extension """ if extension.startswith("."): extension = extension[1:] if extension != "ipynb": fmt, _ = jupytext.guess_format(primitive, f".{extension}") fmt_final = f"{extension}:{fmt}" else: fmt_final = ".ipynb" return fmt_final
Determine the jupytext fmt string to use based on the content and extension
_jupytext_fmt
python
ploomber/ploomber
src/ploomber/sources/notebooksource.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/sources/notebooksource.py
Apache-2.0
def _get_last_cell(nb): """ Get last cell, ignores cells with empty source (unless the notebook only has one cell and it's empty) """ # iterate in reverse order for idx in range(-1, -len(nb.cells) - 1, -1): cell = nb.cells[idx] # only return it if it has some code if cell["source"].strip(): return cell # otherwise return the first cell return nb.cells[0]
Get last cell, ignores cells with empty source (unless the notebook only has one cell and it's empty)
_get_last_cell
python
ploomber/ploomber
src/ploomber/sources/notebooksource.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/sources/notebooksource.py
Apache-2.0
def requires_path(func): """ Checks if NotebookSource instance was initialized from a file, raises an error if not """ @wraps(func) def wrapper(self, *args, **kwargs): if self._path is None: raise ValueError( f"Cannot use {func.__name__!r} if notebook was " "not initialized from a file" ) return func(self, *args, **kwargs) return wrapper
Checks if NotebookSource instance was initialized from a file, raises an error if not
requires_path
python
ploomber/ploomber
src/ploomber/sources/notebooksource.py
https://github.com/ploomber/ploomber/blob/master/src/ploomber/sources/notebooksource.py
Apache-2.0