ShreyasP123 commited on
Commit
4696ebc
·
verified ·
1 Parent(s): 9f094a3

Update dataset card.

Browse files
Files changed (1) hide show
  1. README.md +75 -3
README.md CHANGED
@@ -1,3 +1,75 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Dataset Card: Anomaly Detection Metrics Data
2
+
3
+ ## Dataset Summary
4
+
5
+ This dataset contains system performance metrics collected over time for anomaly detection in time series data. It includes multiple system metrics such as CPU load, memory usage, and other resource utilization statistics, along with timestamps and additional attributes.
6
+
7
+ ## Dataset Details
8
+
9
+ - **Size:** \~7.3 MB (raw JSON), 345 kB (auto-converted Parquet)
10
+ - **Rows:** 46,669
11
+ - **Format:** JSON
12
+ - **Libraries:** `datasets`, `pandas`, `croissant`
13
+ - **License:** MIT
14
+
15
+ ## Features
16
+
17
+ | Feature | Type | Description |
18
+ | ------------- | ------- | ------------------------------------------------------------------------------------- |
19
+ | `metric_name` | string | Name of the system metric (e.g., `system.cpu.load_average.1m`, `system.memory.usage`) |
20
+ | `timestamp` | string | Timestamp of the recorded metric in ISO format |
21
+ | `value` | float64 | Recorded value of the metric |
22
+ | `attributes` | dict | Additional metadata (e.g., device, state, direction) |
23
+
24
+ ## Usage Example
25
+
26
+ ### Load Dataset
27
+
28
+ ```python
29
+ from datasets import load_dataset
30
+
31
+ dataset = load_dataset("ShreyasP123/anomaly_detection_metrics_data")
32
+ print(dataset["train"][0]) # View first record
33
+ ```
34
+
35
+ ### Convert to Pandas DataFrame
36
+
37
+ ```python
38
+ import pandas as pd
39
+
40
+ df = pd.DataFrame(dataset["train"])
41
+ print(df.head())
42
+ ```
43
+
44
+ ## Applications
45
+
46
+ - Anomaly detection in cloud and edge computing environments
47
+ - Predictive maintenance based on system performance
48
+ - Cybersecurity monitoring for unusual activity
49
+ - Resource optimization in distributed systems
50
+
51
+ ## Limitations
52
+
53
+ - Requires domain expertise for correct anomaly labeling
54
+ - May not generalize well to all system configurations without retraining
55
+ - Timestamp granularity may impact detection accuracy
56
+
57
+ ## Citation
58
+
59
+ If you use this dataset, please cite:
60
+
61
+ ```
62
+ @dataset{shreyasP123_anomaly_detection_metrics_data,
63
+ author = {ShreyasP123},
64
+ title = {Anomaly Detection Metrics Data},
65
+ year = {2025},
66
+ url = {https://huggingface.co/datasets/ShreyasP123/anomaly_detection_metrics_data}
67
+ }
68
+ ```
69
+
70
+ ## Maintainer
71
+
72
+ - **ShreyasP123**
73
+
74
+ ### If you are having any queries then feel free to contact me .  :
75
+ )