File size: 5,457 Bytes
24d8527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b01f6df
 
24d8527
d942734
 
24d8527
 
 
 
 
 
 
7b36943
24d8527
 
 
7b36943
ccbe4b4
 
 
 
 
1bdb81b
 
 
 
 
 
 
 
 
 
 
 
7b36943
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
"""X-stance dataset for German and French/Italian stance detection"""

import csv
import json
import os

import datasets

_CITATION = """\
@inproceedings{vamvas2020xstance,
    author    = "Vamvas, Jannis and Sennrich, Rico",
    title     = "{X-Stance}: A Multilingual Multi-Target Dataset for Stance Detection",
    booktitle = "Proceedings of the 5th Swiss Text Analytics Conference (SwissText) \& 16th Conference on Natural Language Processing (KONVENS)",
    address   = "Zurich, Switzerland",
    year      = "2020",
    month     = "jun",
    url       = "http://ceur-ws.org/Vol-2624/paper9.pdf"
}
"""

_DESCRIPTION = """\
The x-stance dataset contains more than 150 political questions, and 67k comments written by candidates on those questions. The comments are partly German, partly French and Italian. The data have been extracted from the Swiss voting advice platform Smartvote.
"""

_HOMEPAGE = "https://github.com/Smu-Tan/ZS-NMT-Variations/tree/main"

_LICENSE = "cc-by-4.0"


_langs = [
    'af',
    'am',
    'ar',
    'ast',
    'be',
    'bg',
    'bn',
    'bs',
    'ca',
    'cs',
    'da',
    'de',
    'es',
    'fr',
    'gu',
    'ha',
    'he',
    'hi',
    'is',
    'it',
    'kab',
    'kn',
    'lb',
    'mr',
    'mt',
    'ne',
    'nl',
    'no',
    'oc',
    'pl',
    'pt',
    'ro',
    'ru',
    'sd',
    'so',
    'sr',
    'sv',
    'ti',
    'uk',
    'ur'
    ]

_En_centric_Pairs = ['en-'+i for i in _langs]

_ZS_Pairs = [i+'-'+j for i in _langs for j in _langs if i!=j]


class EC40Config(datasets.BuilderConfig):

    def __init__(self, language_pair, **kwargs):
        super().__init__(**kwargs)
        """
        Args:
            language_pair: language pair, you want to load
            **kwargs: keyword arguments forwarded to super.
        """
        self.language_pair = language_pair

class EC40(datasets.GeneratorBasedBuilder):
    """EC40 is English-centric, meaning that all training pairs include English on either the source or target side."""

    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIG_CLASS = EC40Config
    BUILDER_CONFIGS = [
        EC40Config(name=pair, description=None, language_pair=pair)
        for pair in _En_centric_Pairs + _ZS_Pairs
    ]
        
    def _info(self):
        src_tag, tgt_tag = self.config.language_pair.split("-")
        return datasets.DatasetInfo(
            description=None,
            features=datasets.Features({"translation": datasets.features.Translation(languages=(src_tag, tgt_tag))}),
            supervised_keys=(src_tag, tgt_tag),
            homepage="https://github.com/Smu-Tan/ZS-NMT-Variations/tree/main/EC40_dataset",
            citation=None,
        )


    def _split_generators(self, dl_manager):

        lang_pair = self.config.language_pair
        src_tag, tgt_tag = lang_pair.split("-")

        train_src = dl_manager.download_and_extract(f"EC40-train-set/{self.config.language_pair}.{src_tag}")
        train_tgt = dl_manager.download_and_extract(f"EC40-train-set/{self.config.language_pair}.{tgt_tag}")
        
        valid_src = dl_manager.download_and_extract(f"Ntrex-eval-set/test.{self.config.language_pair}.{src_tag}")
        valid_tgt = dl_manager.download_and_extract(f"Ntrex-eval-set/test.{self.config.language_pair}.{tgt_tag}")

        test_src  = dl_manager.download_and_extract(f"Flores200-test-set/en-test-set/test.{self.config.language_pair}.{src_tag}")
        test_tgt  = dl_manager.download_and_extract(f"Flores200-test-set/en-test-set/test.{self.config.language_pair}.{tgt_tag}")
        
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN,      gen_kwargs={"filepath": train_src, "labelpath": train_tgt, "split": "train",}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": valid_src, "labelpath": valid_tgt, "split": "validation"}),
            datasets.SplitGenerator(name=datasets.Split.TEST,       gen_kwargs={"filepath": test_src, "labelpath": test_tgt, "split": "test"}),
        ]

    def _generate_examples(self, filepath, labelpath, split):
        """Yields examples."""
        src_tag, tgt_tag = self.config.language_pair.split("-")
        src, tgt = None, None

        with open(filepath, encoding="utf-8") as f:
            src = f.read().decode("utf-8").split("\n")
        with open(labelpath, encoding="utf-8") as f:
            tgt = f.read().decode("utf-8").split("\n")
            
        if src is not None and tgt is not None:
            for idx, (s, t) in enumerate(zip(src, tgt)):
                yield idx, {"translation": {src_tag: s, tgt_tag: t}}

        
        #for path, f in filepath:
        #    src = f.read().decode("utf-8").split("\n")
        #    tgt = f.read().decode("utf-8").split("\n")
        #    if src is not None and tgt is not None:
        #        for idx, (s, t) in enumerate(zip(src, tgt)):
        #            yield idx, {"translation": {src_tag: s, tgt_tag: t}}
        #        break
                
        #for path, f in files:
        #    if path == filepath:
        #        src = f.read().decode("utf-8").split("\n")#[:-1]
        #    elif path == labelpath:
        #        tgt = f.read().decode("utf-8").split("\n")#[:-1]
        #    if src is not None and tgt is not None:
        #        for idx, (s, t) in enumerate(zip(src, tgt)):
        #            yield idx, {"translation": {src_tag: s, tgt_tag: t}}
        #        break