File size: 5,662 Bytes
a236881 af86dee a236881 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
import csv
import json
import os
import datasets
import pickle
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
languages=['python','javascript','java','go']
_URLs = {lang:f'https://funcdef.s3.amazonaws.com/{lang}.tar.gz' for lang in languages}
_URLs['all']=_URLs.copy()
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class FundDefDataset(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="all", version=VERSION, description="All available data"),
datasets.BuilderConfig(name="python", version=VERSION, description="Python data"),
datasets.BuilderConfig(name="javascript", version=VERSION, description="Javascript data"),
datasets.BuilderConfig(name="java", version=VERSION, description="Java data"),
datasets.BuilderConfig(name="go", version=VERSION, description="Go data"),
]
DEFAULT_CONFIG_NAME = "all"
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
features = datasets.Features(
{
"repository_name": datasets.Value("string"),
"function_path": datasets.Value("string"),
"function_identifier": datasets.Value("string"),
"language": datasets.Value("string"),
"function": datasets.Sequence(datasets.Value("string")),
"docstring": datasets.Value("string"),
"function_url": datasets.Value("string"),
"license":datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features, # Here we define them above because they are different between the two configurations
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
my_urls = _URLs[self.config.name]
if isinstance(my_urls, str):
my_urls = {self.config.name:my_urls}
data_dir = [os.path.join(lang_dir,lang) for lang,lang_dir in dl_manager.download_and_extract(my_urls).items()]
splitpaths={split:os.path.join(lang_dir,f'{split}'.bin) for lang_dir in data_dir for split in ['train','valid','test']}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": splitpaths['train'],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": splitpaths['test'],
"split": "test"
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": splitpaths['valid'],
"split": "valid",
},
),
]
def _generate_examples(
self, filepaths,split # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
):
""" Yields examples as (key, example) tuples. """
count=-1
for i,filepath in enumerate(filepaths):
loaded_f=pickle.load(open(filepath,'rb'))
for j, func in enumerate(loaded_f):
count+=1
yield count,{
"repository_name": func['nwo'],
"function_path":func['path'],
"function_identifier": func['identifier'],
"language": func['language'],
"function": func['function'],
"docstring": func['docstring'],
"function_url": func['url'],
"license":func['license'],
}
|