--- dataset_info: features: - name: name dtype: string - name: description dtype: string - name: solutions dtype: string splits: - name: train num_bytes: 22782308 num_examples: 8139 download_size: 10785367 dataset_size: 22782308 configs: - config_name: default data_files: - split: train path: data/train-* task_categories: - text-generation language: - en tags: - code --- This dataset is based on the "code_contests" dataset by DeepMind, licensed under CC BY 4.0. Original dataset available at: https://huggingface.co/datasets/deepmind/code_contests このデータセットは、[deepmind/code_contests](https://huggingface.co/datasets/deepmind/code_contests)からAtCoderのデータのみを抽出し、Pythonで正解として提出された最初のコードを取得して格納したものです。これにより、教師あり学習に適した形に整えられています。 This dataset is created by extracting only the data from AtCoder within [deepmind/code_contests](https://huggingface.co/datasets/deepmind/code_contests) and retrieving the first Python code submission marked as correct. As a result, it has been formatted to be suitable for supervised learning. ``` Dataset({ features: ['name', 'description', 'solutions'], num_rows: 8139 }) ``` # First element example description ``` There are n persons who initially don't know each other. On each morning, two of them, who were not friends before, become friends. We want to plan a trip for every evening of m days. On each trip, you have to select a group of people that will go on the trip. For every person, one of the following should hold: * Either this person does not go on the trip, * Or at least k of his friends also go on the trip. Note that the friendship is not transitive. That is, if a and b are friends and b and c are friends, it does not necessarily imply that a and c are friends. For each day, find the maximum number of people that can go on the trip on that day. Input The first line contains three integers n, m, and k (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 2 ⋅ 10^5, 1 ≤ k < n) — the number of people, the number of days and the number of friends each person on the trip should have in the group. The i-th (1 ≤ i ≤ m) of the next m lines contains two integers x and y (1≤ x, y≤ n, x≠ y), meaning that persons x and y become friends on the morning of day i. It is guaranteed that x and y were not friends before. Output Print exactly m lines, where the i-th of them (1≤ i≤ m) contains the maximum number of people that can go on the trip on the evening of the day i. Examples Input 4 4 2 2 3 1 2 1 3 1 4 Output 0 0 3 3 Input 5 8 2 2 1 4 2 5 4 5 2 4 3 5 1 4 1 3 2 Output 0 0 0 3 3 4 4 5 Input 5 7 2 1 5 3 2 2 5 3 4 1 2 5 3 1 3 Output 0 0 0 0 3 4 4 Note In the first example, * 1,2,3 can go on day 3 and 4. In the second example, * 2,4,5 can go on day 4 and 5. * 1,2,4,5 can go on day 6 and 7. * 1,2,3,4,5 can go on day 8. In the third example, * 1,2,5 can go on day 5. * 1,2,3,5 can go on day 6 and 7. ``` solutions ``` ```python from collections import deque def solve(adj, m, k, uv): n = len(adj) nn = [len(a) for a in adj] q = deque() for i in range(n): if nn[i] < k: q.append(i) while q: v = q.popleft() for u in adj[v]: nn[u] -= 1 if nn[u] == k-1: q.append(u) res = [0]*m nk = len([1 for i in nn if i >= k]) res[-1] = nk for i in range(m-1, 0, -1): u1, v1 = uv[i] if nn[u1] < k or nn[v1] < k: res[i - 1] = nk continue if nn[u1] == k: q.append(u1) nn[u1] -= 1 if not q and nn[v1] == k: q.append(v1) nn[v1] -= 1 if not q: nn[u1] -= 1 nn[v1] -= 1 adj[u1].remove(v1) adj[v1].remove(u1) while q: v = q.popleft() nk -= 1 for u in adj[v]: nn[u] -= 1 if nn[u] == k - 1: q.append(u) res[i - 1] = nk return res n, m, k = map(int, input().split()) a = [set() for i in range(n)] uv = [] for i in range(m): u, v = map(int, input().split()) a[u - 1].add(v - 1) a[v - 1].add(u - 1) uv.append((u-1, v-1)) res = solve(a, m, k, uv) print(str(res)[1:-1].replace(' ', '').replace(',', '\n')) ```   ```