Upload xnli.py with huggingface_hub
Browse files
xnli.py
ADDED
|
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Some code referenced from https://huggingface.co/datasets/xnli/blob/main/xnli.py
|
| 2 |
+
|
| 3 |
+
"""
|
| 4 |
+
The Cross-lingual Natural Language Inference (XNLI) corpus is a crowd-sourced collection of 5,000 test and 2,500 dev pairs for the MultiNLI corpus. The pairs are annotated with textual entailment and translated into 14 languages: French, Spanish, German, Greek, Bulgarian, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, Hindi, Swahili and Urdu. This results in 112.5k annotated pairs. Each premise can be associated with the corresponding hypothesis in the 15 languages, summing up to more than 1.5M combinations.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import csv
|
| 8 |
+
import os
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
from typing import Dict, List, Tuple
|
| 11 |
+
|
| 12 |
+
import datasets
|
| 13 |
+
|
| 14 |
+
from seacrowd.utils import schemas
|
| 15 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
| 16 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
| 17 |
+
|
| 18 |
+
_CITATION = """\
|
| 19 |
+
@InProceedings{conneau2018xnli,
|
| 20 |
+
author = "Conneau, Alexis
|
| 21 |
+
and Rinott, Ruty
|
| 22 |
+
and Lample, Guillaume
|
| 23 |
+
and Williams, Adina
|
| 24 |
+
and Bowman, Samuel R.
|
| 25 |
+
and Schwenk, Holger
|
| 26 |
+
and Stoyanov, Veselin",
|
| 27 |
+
title = "XNLI: Evaluating Cross-lingual Sentence Representations",
|
| 28 |
+
booktitle = "Proceedings of the 2018 Conference on Empirical Methods
|
| 29 |
+
in Natural Language Processing",
|
| 30 |
+
year = "2018",
|
| 31 |
+
publisher = "Association for Computational Linguistics",
|
| 32 |
+
location = "Brussels, Belgium",
|
| 33 |
+
}
|
| 34 |
+
"""
|
| 35 |
+
|
| 36 |
+
_DATASETNAME = "xnli"
|
| 37 |
+
|
| 38 |
+
_DESCRIPTION = """\
|
| 39 |
+
XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).
|
| 40 |
+
"""
|
| 41 |
+
|
| 42 |
+
_HOMEPAGE = "https://github.com/facebookresearch/XNLI"
|
| 43 |
+
|
| 44 |
+
# We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
| 45 |
+
_LANGUAGES = ["tha", "vie"]
|
| 46 |
+
_LANGUAGE_MAPPER = {"tha": "th", "vie": "vi"}
|
| 47 |
+
|
| 48 |
+
_LICENSE = Licenses.CC_BY_NC_4_0.value
|
| 49 |
+
|
| 50 |
+
_LOCAL = False
|
| 51 |
+
|
| 52 |
+
_URLS = {
|
| 53 |
+
_DATASETNAME: {
|
| 54 |
+
"train": "https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip",
|
| 55 |
+
"test": "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip",
|
| 56 |
+
}
|
| 57 |
+
}
|
| 58 |
+
|
| 59 |
+
_SUPPORTED_TASKS = [Tasks.TEXTUAL_ENTAILMENT]
|
| 60 |
+
|
| 61 |
+
_SOURCE_VERSION = "1.1.0"
|
| 62 |
+
|
| 63 |
+
_SEACROWD_VERSION = "2024.06.20"
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
class XNLIDataset(datasets.GeneratorBasedBuilder):
|
| 67 |
+
"""
|
| 68 |
+
XNLI is an evaluation corpus for language transfer and cross-lingual sentence classification in 15 languages.
|
| 69 |
+
In SeaCrowd, we currently only have Thailand and Vietnam Language.
|
| 70 |
+
"""
|
| 71 |
+
|
| 72 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
| 73 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
| 74 |
+
|
| 75 |
+
subsets = ["xnli.tha", "xnli.vie"]
|
| 76 |
+
|
| 77 |
+
BUILDER_CONFIGS = [
|
| 78 |
+
SEACrowdConfig(
|
| 79 |
+
name=f"{sub}_source",
|
| 80 |
+
version=datasets.Version(_SOURCE_VERSION),
|
| 81 |
+
description=f"{sub} source schema",
|
| 82 |
+
schema="source",
|
| 83 |
+
subset_id=f"{sub}",
|
| 84 |
+
)
|
| 85 |
+
for sub in subsets
|
| 86 |
+
] + [
|
| 87 |
+
SEACrowdConfig(
|
| 88 |
+
name=f"{sub}_seacrowd_pairs",
|
| 89 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
| 90 |
+
description=f"{sub} SEACrowd schema",
|
| 91 |
+
schema="seacrowd_pairs",
|
| 92 |
+
subset_id=f"{sub}",
|
| 93 |
+
)
|
| 94 |
+
for sub in subsets
|
| 95 |
+
]
|
| 96 |
+
|
| 97 |
+
DEFAULT_CONFIG_NAME = "xnli.vie_source"
|
| 98 |
+
labels = ["contradiction", "entailment", "neutral"]
|
| 99 |
+
|
| 100 |
+
def _info(self) -> datasets.DatasetInfo:
|
| 101 |
+
if self.config.schema == "source":
|
| 102 |
+
features = datasets.Features(
|
| 103 |
+
{
|
| 104 |
+
"premise": datasets.Value("string"),
|
| 105 |
+
"hypothesis": datasets.Value("string"),
|
| 106 |
+
"label": datasets.ClassLabel(names=self.labels),
|
| 107 |
+
}
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
elif self.config.schema == "seacrowd_pairs":
|
| 111 |
+
features = schemas.pairs_features(self.labels)
|
| 112 |
+
|
| 113 |
+
return datasets.DatasetInfo(
|
| 114 |
+
description=_DESCRIPTION,
|
| 115 |
+
features=features,
|
| 116 |
+
homepage=_HOMEPAGE,
|
| 117 |
+
license=_LICENSE,
|
| 118 |
+
citation=_CITATION,
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
| 122 |
+
"""Returns SplitGenerators."""
|
| 123 |
+
|
| 124 |
+
urls = _URLS[_DATASETNAME]
|
| 125 |
+
data_dir = dl_manager.download_and_extract(urls)
|
| 126 |
+
|
| 127 |
+
xnli_train = os.path.join(data_dir["train"], "XNLI-MT-1.0", "multinli")
|
| 128 |
+
train_data_path = os.path.join(xnli_train, "multinli.train.{}.tsv")
|
| 129 |
+
|
| 130 |
+
xnli_test = os.path.join(data_dir["test"], "XNLI-1.0")
|
| 131 |
+
val_data_path = os.path.join(xnli_test, "xnli.dev.tsv")
|
| 132 |
+
test_data_path = os.path.join(xnli_test, "xnli.test.tsv")
|
| 133 |
+
|
| 134 |
+
lang = self.config.name.split("_")[0].split(".")[-1]
|
| 135 |
+
|
| 136 |
+
return [
|
| 137 |
+
datasets.SplitGenerator(
|
| 138 |
+
name=datasets.Split.TRAIN,
|
| 139 |
+
gen_kwargs={
|
| 140 |
+
"filepath": train_data_path,
|
| 141 |
+
"split": "train",
|
| 142 |
+
"language": _LANGUAGE_MAPPER[lang],
|
| 143 |
+
},
|
| 144 |
+
),
|
| 145 |
+
datasets.SplitGenerator(
|
| 146 |
+
name=datasets.Split.VALIDATION,
|
| 147 |
+
gen_kwargs={
|
| 148 |
+
"filepath": val_data_path,
|
| 149 |
+
"split": "dev",
|
| 150 |
+
"language": _LANGUAGE_MAPPER[lang],
|
| 151 |
+
},
|
| 152 |
+
),
|
| 153 |
+
datasets.SplitGenerator(
|
| 154 |
+
name=datasets.Split.TEST,
|
| 155 |
+
gen_kwargs={
|
| 156 |
+
"filepath": test_data_path,
|
| 157 |
+
"split": "test",
|
| 158 |
+
"language": _LANGUAGE_MAPPER[lang],
|
| 159 |
+
},
|
| 160 |
+
),
|
| 161 |
+
]
|
| 162 |
+
|
| 163 |
+
def _generate_examples(self, filepath: Path, split: str, language: str) -> Tuple[int, Dict]:
|
| 164 |
+
"""Yields examples as (key, example) tuples."""
|
| 165 |
+
|
| 166 |
+
if self.config.schema == "source":
|
| 167 |
+
if split == "train":
|
| 168 |
+
file = open(filepath.format(language), encoding="utf-8")
|
| 169 |
+
reader = csv.DictReader(file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
| 170 |
+
for row_idx, row in enumerate(reader):
|
| 171 |
+
key = str(row_idx)
|
| 172 |
+
yield key, {
|
| 173 |
+
"premise": row["premise"],
|
| 174 |
+
"hypothesis": row["hypo"],
|
| 175 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
| 176 |
+
}
|
| 177 |
+
else:
|
| 178 |
+
with open(filepath, encoding="utf-8") as f:
|
| 179 |
+
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
| 180 |
+
for row in reader:
|
| 181 |
+
if row["language"] == language:
|
| 182 |
+
yield row["pairID"], {
|
| 183 |
+
"premise": row["sentence1"],
|
| 184 |
+
"hypothesis": row["sentence2"],
|
| 185 |
+
"label": row["gold_label"],
|
| 186 |
+
}
|
| 187 |
+
elif self.config.schema == "seacrowd_pairs":
|
| 188 |
+
if split == "train":
|
| 189 |
+
file = open(filepath.format(language), encoding="utf-8")
|
| 190 |
+
reader = csv.DictReader(file, delimiter="\t", quoting=csv.QUOTE_NONE)
|
| 191 |
+
for row_idx, row in enumerate(reader):
|
| 192 |
+
yield str(row_idx), {
|
| 193 |
+
"id": str(row_idx),
|
| 194 |
+
"text_1": row["premise"],
|
| 195 |
+
"text_2": row["hypo"],
|
| 196 |
+
"label": row["label"].replace("contradictory", "contradiction"),
|
| 197 |
+
}
|
| 198 |
+
else:
|
| 199 |
+
with open(filepath, encoding="utf-8") as f:
|
| 200 |
+
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
| 201 |
+
skip = set()
|
| 202 |
+
for row in reader:
|
| 203 |
+
if row["language"] == language:
|
| 204 |
+
if row["pairID"] in skip:
|
| 205 |
+
continue
|
| 206 |
+
skip.add(row["pairID"])
|
| 207 |
+
yield row["pairID"], {
|
| 208 |
+
"id": row["pairID"],
|
| 209 |
+
"text_1": row["sentence1"],
|
| 210 |
+
"text_2": row["sentence2"],
|
| 211 |
+
"label": row["gold_label"],
|
| 212 |
+
}
|
| 213 |
+
else:
|
| 214 |
+
raise ValueError(f"Invalid config: {self.config.name}")
|