File size: 8,590 Bytes
b7cb076 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
from pathlib import Path
from typing import List
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME,
DEFAULT_SOURCE_VIEW_NAME, Licenses,
Tasks)
_DATASETNAME = "wikimatrix"
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME
# ilo min sun are actually not available
_LANGUAGES = ["ilo", "min", "jav", "sun", "ceb", "ind", "tgl", "vie"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LOCAL = False
_CITATION = """\
@inproceedings{schwenk-etal-2021-wikimatrix,
title = "{W}iki{M}atrix: Mining 135{M} Parallel Sentences in 1620 Language Pairs from {W}ikipedia",
author = "Schwenk, Holger and
Chaudhary, Vishrav and
Sun, Shuo and
Gong, Hongyu and
Guzm{\'a}n, Francisco",
editor = "Merlo, Paola and
Tiedemann, Jorg and
Tsarfaty, Reut",
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.eacl-main.115",
doi = "10.18653/v1/2021.eacl-main.115",
pages = "1351--1361",
abstract = "We present an approach based on multilingual sentence embeddings to automatically extract parallel sentences from the content
of Wikipedia articles in 96 languages, including several dialects or low-resource languages. We do not limit the extraction process to
alignments with English, but we systematically consider all possible language pairs. In total, we are able to extract 135M parallel sentences
for 16720 different language pairs, out of which only 34M are aligned with English. This corpus is freely available. To get an indication
on the quality of the extracted bitexts, we train neural MT baseline systems on the mined data only for 1886 languages pairs, and evaluate
them on the TED corpus, achieving strong BLEU scores for many language pairs. The WikiMatrix bitexts seem to be particularly interesting
to train MT systems between distant languages without the need to pivot through English.",
}
"""
_DESCRIPTION = """\
WikiMatrix is automatically extracted parallel sentences from the content of Wikipedia articles in 96 languages, including several dialects
or low-resource languages. 8 languages among them are spoken in Southeast Asia region. In total, there are 135M parallel sentences from 1620
different language pairs.
"""
_HOMEPAGE = "https://github.com/facebookresearch/LASER/tree/main/tasks/WikiMatrix"
_LICENSE = Licenses.CC_BY_SA_4_0.value
_URLs = "https://dl.fbaipublicfiles.com/laser/WikiMatrix/v1/WikiMatrix.{lang1}-{lang2}.tsv.gz"
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
config = {
"jv": ["en", "es", "fr", "id", "it", "pt"],
"ceb": ["bg", "ar", "ca", "cs", "de", "en", "es", "fi", "fr", "hu", "it", "ja", "nl", "no", "pl", "pt", "ro", "ru", "sv", "uk"],
"id": [
"jv",
"is",
"it",
"ja",
"ko",
"lt",
"mk",
"ml",
"mr",
"ne",
"nl",
"no",
"pl",
"pt",
"ro",
"ru",
"sh",
"si",
"sk",
"sl",
"sq",
"sr",
"sv",
"sw",
"ta",
"te",
"tl",
"tr",
"tt",
"uk",
"vi",
"zh",
"ar",
"az",
"ba",
"bg",
"bn",
"bs",
"ca",
"cs",
"da",
"de",
"el",
"en",
"eo",
"es",
"et",
"eu",
"fa",
"fi",
"fr",
"gl",
"he",
"hi",
"hr",
"hu",
],
"tl": ["ar", "bg", "bs", "ca", "cs", "da", "de", "el", "en", "eo", "es", "et", "fi", "fr", "gl", "he", "hr", "hu", "id", "it", "ja", "lt", "mk", "nl", "no", "pl", "pt", "ro", "ru", "sh", "sk", "sl", "sq", "sr", "sv", "tr", "uk", "vi", "zh"],
"vi": [
"ar",
"az",
"bg",
"bn",
"bs",
"ca",
"cs",
"da",
"de",
"el",
"en",
"eo",
"es",
"et",
"eu",
"fa",
"fi",
"fr",
"gl",
"he",
"hi",
"hr",
"hu",
"id",
"is",
"it",
"ja",
"ko",
"lt",
"mk",
"ml",
"mr",
"nl",
"no",
"pl",
"pt",
"ro",
"ru",
"sh",
"si",
"sk",
"sl",
"sq",
"sr",
"sv",
"sw",
"ta",
"te",
"tl",
"tr",
"uk",
"zh",
],
}
_SUBSETS = set()
for lang, pairs in config.items():
for pair in pairs:
_SUBSETS.add("{}-{}".format(lang, pair) if lang < pair else "{}-{}".format(pair, lang))
_SUBSETS = list(_SUBSETS)
class WikiMatrixDataset(datasets.GeneratorBasedBuilder):
"""WikiMatrix is automatically extracted parallel sentences from the content of Wikipedia articles in 96 languages, including several dialects
or low-resource languages."""
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"wikimatrix_{subset.replace('-', '_')}_source",
version=datasets.Version(_SOURCE_VERSION),
description="WikiMatrix source schema",
schema="source",
subset_id=f"wikimatrix_{subset.replace('-', '_')}",
)
for subset in _SUBSETS
] + [
SEACrowdConfig(
name=f"wikimatrix_{subset.replace('-', '_')}_seacrowd_t2t",
version=datasets.Version(_SEACROWD_VERSION),
description="WikiMatrix Nusantara schema",
schema="seacrowd_t2t",
subset_id=f"wikimatrix_{subset.replace('-', '_')}",
)
for subset in _SUBSETS
]
DEFAULT_CONFIG_NAME = "wikimatrix_en_id_source"
def _info(self):
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"text_1": datasets.Value("string"),
"text_2": datasets.Value("string"),
"text_1_name": datasets.Value("string"),
"text_2_name": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_t2t":
features = schemas.text2text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
lang1, lang2 = self.config.name.split("_")[1], self.config.name.split("_")[2]
filepath = Path(dl_manager.download_and_extract(_URLs.format(lang1=lang1, lang2=lang2)))
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": filepath},
),
]
def _generate_examples(self, filepath: Path):
with open(filepath, "r") as f:
data = f.readlines()
lang1, lang2 = self.config.name.split("_")[1], self.config.name.split("_")[2]
if self.config.schema == "source":
for _id, line in enumerate(data):
line = line.strip().split("\t")
ex = {
"id": str(_id),
"text_1": line[1],
"text_2": line[2],
"text_1_name": lang1,
"text_2_name": lang2,
}
yield _id, ex
elif self.config.schema == "seacrowd_t2t":
for _id, line in enumerate(data):
line = line.strip().split("\t")
ex = {
"id": str(_id),
"text_1": line[1],
"text_2": line[2],
"text_1_name": lang1,
"text_2_name": lang2,
}
yield _id, ex
else:
raise ValueError(f"Invalid config: {self.config.name}")
|