| import csv | |
| import os | |
| from pathlib import Path | |
| from typing import List | |
| import datasets | |
| from seacrowd.utils import schemas | |
| from seacrowd.utils.configs import SEACrowdConfig | |
| from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME, | |
| DEFAULT_SOURCE_VIEW_NAME, Tasks) | |
| _DATASETNAME = "su_id_tts" | |
| _SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME | |
| _UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME | |
| _LANGUAGES = ["sun"] | |
| _LOCAL = False | |
| _CITATION = """\ | |
| @inproceedings{sodimana18_sltu, | |
| author={Keshan Sodimana and Pasindu {De Silva} and Supheakmungkol Sarin and Oddur Kjartansson and Martin Jansche and Knot Pipatsrisawat and Linne Ha}, | |
| title={{A Step-by-Step Process for Building TTS Voices Using Open Source Data and Frameworks for Bangla, Javanese, Khmer, Nepali, Sinhala, and Sundanese}}, | |
| year=2018, | |
| booktitle={Proc. 6th Workshop on Spoken Language Technologies for Under-Resourced Languages (SLTU 2018)}, | |
| pages={66--70}, | |
| doi={10.21437/SLTU.2018-14} | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| This data set contains high-quality transcribed audio data for Sundanese. The data set consists of wave files, and a TSV file. The file line_index.tsv contains a filename and the transcription of audio in the file. Each filename is prepended with a speaker identification number. | |
| The data set has been manually quality checked, but there might still be errors. | |
| This dataset was collected by Google in collaboration with Universitas Pendidikan Indonesia. | |
| """ | |
| _HOMEPAGE = "http://openslr.org/44/" | |
| _LICENSE = "CC BY-SA 4.0" | |
| _URLs = { | |
| _DATASETNAME: { | |
| "female": "https://www.openslr.org/resources/44/su_id_female.zip", | |
| "male": "https://www.openslr.org/resources/44/su_id_male.zip", | |
| } | |
| } | |
| _SUPPORTED_TASKS = [Tasks.TEXT_TO_SPEECH] | |
| _SOURCE_VERSION = "1.0.0" | |
| _SEACROWD_VERSION = "2024.06.20" | |
| class SuIdTTS(datasets.GeneratorBasedBuilder): | |
| """su_id_tts contains high-quality Multi-speaker TTS data for Sundanese (SU-ID).""" | |
| BUILDER_CONFIGS = [ | |
| SEACrowdConfig( | |
| name="su_id_tts_source", | |
| version=datasets.Version(_SOURCE_VERSION), | |
| description="SU_ID_TTS source schema", | |
| schema="source", | |
| subset_id="su_id_tts", | |
| ), | |
| SEACrowdConfig( | |
| name="su_id_tts_seacrowd_sptext", | |
| version=datasets.Version(_SEACROWD_VERSION), | |
| description="SU_ID_TTS Nusantara schema", | |
| schema="seacrowd_sptext", | |
| subset_id="su_id_tts", | |
| ), | |
| ] | |
| DEFAULT_CONFIG_NAME = "su_id_tts_source" | |
| def _info(self): | |
| if self.config.schema == "source": | |
| features = datasets.Features( | |
| { | |
| "id": datasets.Value("string"), | |
| "speaker_id": datasets.Value("string"), | |
| "path": datasets.Value("string"), | |
| "audio": datasets.Audio(sampling_rate=16_000), | |
| "text": datasets.Value("string"), | |
| "gender": datasets.Value("string"), | |
| } | |
| ) | |
| elif self.config.schema == "seacrowd_sptext": | |
| features = schemas.speech_text_features | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| task_templates=[datasets.AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")], | |
| ) | |
| def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | |
| male_path = Path(dl_manager.download_and_extract(_URLs[_DATASETNAME]["male"])) | |
| female_path = Path(dl_manager.download_and_extract(_URLs[_DATASETNAME]["female"])) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "male_filepath": male_path, | |
| "female_filepath": female_path, | |
| }, | |
| ), | |
| ] | |
| def _generate_examples(self, male_filepath: Path, female_filepath: Path): | |
| if self.config.schema == "source" or self.config.schema == "seacrowd_sptext": | |
| tsv_m = os.path.join(male_filepath, "su_id_male", "line_index.tsv") | |
| tsv_f = os.path.join(female_filepath, "su_id_female", "line_index.tsv") | |
| with open(tsv_m, "r") as file: | |
| tsv_m_data = csv.reader(file, delimiter="\t") | |
| for line in tsv_m_data: | |
| spk_trans_info = line[0].split("_") | |
| if self.config.schema == "source": | |
| ex = { | |
| "id": line[0], | |
| "speaker_id": spk_trans_info[0] + "_" + spk_trans_info[1], | |
| "path": os.path.join(male_filepath, "su_id_male", "wavs", "{}.wav".format(line[0])), | |
| "audio": os.path.join(male_filepath, "su_id_male", "wavs", "{}.wav".format(line[0])), | |
| "text": line[2], | |
| "gender": spk_trans_info[0][2], | |
| } | |
| yield line[0], ex | |
| elif self.config.schema == "seacrowd_sptext": | |
| ex = { | |
| "id": line[0], | |
| "speaker_id": spk_trans_info[0] + "_" + spk_trans_info[1], | |
| "path": os.path.join(male_filepath, "su_id_male", "wavs", "{}.wav".format(line[0])), | |
| "audio": os.path.join(male_filepath, "su_id_male", "wavs", "{}.wav".format(line[0])), | |
| "text": line[2], | |
| "metadata": { | |
| "speaker_age": None, | |
| "speaker_gender": spk_trans_info[0][2], | |
| }, | |
| } | |
| yield line[0], ex | |
| with open(tsv_f, "r") as file: | |
| tsv_f_data = csv.reader(file, delimiter="\t") | |
| for line in tsv_f_data: | |
| spk_trans_info = line[0].split("_") | |
| if self.config.schema == "source": | |
| ex = { | |
| "id": line[0], | |
| "speaker_id": spk_trans_info[0] + "_" + spk_trans_info[1], | |
| "path": os.path.join(female_filepath, "su_id_female", "wavs", "{}.wav".format(line[0])), | |
| "audio": os.path.join(female_filepath, "su_id_female", "wavs", "{}.wav".format(line[0])), | |
| "text": line[2], | |
| "gender": spk_trans_info[0][2], | |
| } | |
| yield line[0], ex | |
| elif self.config.schema == "seacrowd_sptext": | |
| ex = { | |
| "id": line[0], | |
| "speaker_id": spk_trans_info[0] + "_" + spk_trans_info[1], | |
| "path": os.path.join(female_filepath, "su_id_female", "wavs", "{}.wav".format(line[0])), | |
| "audio": os.path.join(female_filepath, "su_id_female", "wavs", "{}.wav".format(line[0])), | |
| "text": line[2], | |
| "metadata": { | |
| "speaker_age": None, | |
| "speaker_gender": spk_trans_info[0][2], | |
| }, | |
| } | |
| yield line[0], ex | |
| else: | |
| raise ValueError(f"Invalid config: {self.config.name}") | |