File size: 5,106 Bytes
3ec5ac7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
KoPI-CC_NEWS corpus
[nusantara_schema_name] = ssp
"""
import json
from typing import List
import datasets
import zstandard as zstd
from nusacrowd.utils import schemas
from nusacrowd.utils.configs import NusantaraConfig
from nusacrowd.utils.constants import (DEFAULT_NUSANTARA_VIEW_NAME,
DEFAULT_SOURCE_VIEW_NAME, Tasks)
_DATASETNAME = "kopi_cc_news"
_LOCAL = False
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
_UNIFIED_VIEW_NAME = DEFAULT_NUSANTARA_VIEW_NAME
_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING]
_URL = "https://commoncrawl.org/"
_CITATION = """\
"""
_DESCRIPTION = """\
KoPI(Korpus Perayapan Indonesia)-CC_News is Indonesian Only Extract from CC NEWS Common Crawl from 2016-2022(july) ,each snapshots get extracted using warcio,trafilatura and filter using fasttext
"""
_HOMEPAGE = "https://huggingface.co/datasets/munggok/KoPI-CC_News"
_LICENSE = "CC0"
_URLS = "https://huggingface.co/datasets/munggok/KoPI-CC_News/resolve/main/data/cc_news_{year}_id.jsonl.zst"
_YEAR = ["2016", "2017", "2018", "2019", "2020", "2021", "2022"]
_ALL_CONFIG = _YEAR + ["all"]
_SOURCE_VERSION = "2018.12.01"
_NUSANTARA_VERSION = "1.0.0"
def nusantara_config_constructor(year, schema, version):
"""Construct NusantaraConfig"""
if schema != "source" and schema != "nusantara_ssp":
raise ValueError(f"Invalid schema: {schema}")
if year == "":
raise ValueError(f"Snapshot is required. Choose one of these Snapshot: {_ALL_CONFIG}.")
elif year in _ALL_CONFIG:
return NusantaraConfig(
name=f"{_DATASETNAME}_{year}_{schema}",
version=datasets.Version(version),
description=f"KoPI-CC_News with {schema} schema for {year}",
schema=schema,
subset_id="kopi_cc_news",
)
else:
raise ValueError(f"Invalid language: {year}. Choose one of these snapshots: {_ALL_CONFIG}.")
class KoPICCNEWS(datasets.GeneratorBasedBuilder):
DEFAULT_CONFIG_NAME = "2016"
BUILDER_CONFIGS = [nusantara_config_constructor(sn, "source", _SOURCE_VERSION) for sn in _ALL_CONFIG] + [nusantara_config_constructor(sn, "nusantara_ssp", _NUSANTARA_VERSION) for sn in _ALL_CONFIG]
def _info(self):
if self.config.schema == "source":
features = datasets.Features(
{
"text": datasets.Value("string"),
"timestamp": datasets.Value("string"),
"url": datasets.Value("string"),
"meta": datasets.Value("string"),
}
)
elif self.config.schema == "nusantara_ssp":
features = schemas.self_supervised_pretraining.features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
name = self.config.name.replace("_" + self.config.schema, "")
name = name.replace(_DATASETNAME + "_", "")
if name == "all":
urls = [_URLS.format(year=m) for m in _YEAR]
else:
urls = [_URLS.format(year=name)]
path = dl_manager.download(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepaths": path, "split": "train"},
),
]
def _generate_examples(self, filepaths, split):
"""This function returns the examples in the raw (text) form by iterating on all the files."""
id_ = 0
for filepath in filepaths:
with zstd.open(open(filepath, "rb"), "rt", encoding="utf-8") as f:
for line in f:
if line:
example = json.loads(line)
if self.config.schema == "nusantara_ssp":
yield id_, {"id": str(id_), "text": example["text"]}
id_ += 1
else:
yield id_, {"text": example["text"], "url": example["url"], "timestamp": example["timestamp"], "meta": example["meta"]}
id_ += 1
|