File size: 9,437 Bytes
917d799 648b463 917d799 648b463 917d799 648b463 917d799 648b463 917d799 648b463 917d799 648b463 917d799 648b463 917d799 648b463 917d799 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from itertools import chain
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME,
DEFAULT_SOURCE_VIEW_NAME, Tasks)
_CITATION = """\
@inproceedings{sakti-tcast-2008,
title = "Development of {I}ndonesian Large Vocabulary Continuous Speech Recognition System within {A-STAR} Project",
author = "Sakti, Sakriani and Kelana, Eka and Riza, Hammam and Sakai, Shinsuke and Markov, Konstantin and Nakamura, Satoshi",
booktitle = "Proc. IJCNLP Workshop on Technologies and Corpora for Asia-Pacific Speech Translation (TCAST)",
year = "2008",
pages = "19--24"
address = "Hyderabad, India"
}
@inproceedings{sakti-icslp-2004,
title = "Indonesian Speech Recognition for Hearing and Speaking Impaired People",
author = "Sakti, Sakriani and Hutagaol, Paulus and Arman, Arry Akhmad and Nakamura, Satoshi",
booktitle = "Proc. International Conference on Spoken Language Processing (INTERSPEECH - ICSLP)",
year = "2004",
pages = "1037--1040"
address = "Jeju Island, Korea"
}
@article{sakti-s2st-csl-2013,
title = "{A-STAR}: Toward Translating Asian Spoken Languages",
author = "Sakti, Sakriani and Paul, Michael and Finch, Andrew and Sakai, Shinsuke and Thang, Tat Vu, and Kimura, Noriyuki and Hori, Chiori and Sumita, Eiichiro and Nakamura, Satoshi and Park, Jun and Wutiwiwatchai, Chai and Xu, Bo and Riza, Hammam and Arora, Karunesh and Luong, Chi Mai and Li, Haizhou",
journal = "Special issue on Speech-to-Speech Translation, Computer Speech and Language Journal",
volume = "27",
number ="2",
pages = "509--527",
year = "2013",
publisher = "Elsevier"
}
"""
_DATASETNAME = "indspeech_news_lvcsr"
_LANGUAGES = ["ind"]
_LOCAL = False
_DESCRIPTION = """\
This is the first Indonesian speech dataset for large vocabulary continuous speech recognition (LVCSR) with more than 40 hours of speech and 400 speakers [Sakti et al., 2008]. R&D Division of PT Telekomunikasi Indonesia (TELKOMRisTI) developed the data in 2005-2006, in collaboration with Advanced Telecommunication Research Institute International (ATR) Japan, as the continuation of the Asia-Pacific Telecommunity (APT) project [Sakti et al., 2004]. It has also been successfully used for developing Indonesian LVCSR in the Asian speech translation advanced research (A-STAR) project [Sakti et al., 2013].
"""
_HOMEPAGE = "https://github.com/s-sakti/data_indsp_news_lvcsr"
_LICENSE = "CC BY-NC-SA 4.0"
URL_TEMPLATE = {
"lst": "https://raw.githubusercontent.com/s-sakti/data_indsp_news_lvcsr/main/lst/", # transcript.lst
"speech": "https://github.com/s-sakti/data_indsp_news_lvcsr/raw/main/speech/", # Ind3/Ind304.zip~Ind400.zip
"text": "https://github.com/s-sakti/data_indsp_news_lvcsr/raw/main/text/", # all_transcript.zip
}
_URLS = {
"lst_spk_Ind": [URL_TEMPLATE["lst"] + "spk_Ind" + str(n) + ".lst" for n in range(0, 4)],
"lst_spk_all": URL_TEMPLATE["lst"] + "spk_all.lst",
"lst_spk_test": URL_TEMPLATE["lst"] + "spk_test.lst",
"lst_spk_train": URL_TEMPLATE["lst"] + "spk_train.lst",
"lst_transcript": URL_TEMPLATE["lst"] + "transcript.lst",
"speech_Ind": [URL_TEMPLATE["speech"] + "Ind" + str(n) + "/Ind" + str(p).zfill(3) + ".zip" for n in range(0, 4) for p in range(n * 100 + 1, n * 100 + 101)],
"transcript_all": URL_TEMPLATE["text"] + "all_transcript.zip",
"transcript_spk": URL_TEMPLATE["text"] + "spk_transcript.zip",
}
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class IndSpeechNewsLVCSR(datasets.GeneratorBasedBuilder):
"""Indonesian automatic speech recognition with several local accents reading short news sentences"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name="indspeech_news_lvcsr_source",
version=SOURCE_VERSION,
description="indspeech_news_lvcsr source schema",
schema="source",
subset_id="indspeech_news_lvcsr",
),
SEACrowdConfig(
name="indspeech_news_lvcsr_seacrowd_sptext",
version=SEACROWD_VERSION,
description="indspeech_news_lvcsr Nusantara schema",
schema="seacrowd_sptext",
subset_id="indspeech_news_lvcsr",
),
]
DEFAULT_CONFIG_NAME = "indspeech_news_lvcsr_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"spk_id": datasets.Value("string"),
"gender": datasets.Value("string"),
"accent": datasets.Value("string"),
"type": datasets.Value("string"),
"txt_id": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"text": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_sptext":
features = schemas.speech_text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
lst_spk_train = _URLS["lst_spk_train"]
lst_spk_test = _URLS["lst_spk_test"]
transcript = _URLS["lst_transcript"]
audio_urls = _URLS["speech_Ind"]
lst_spk_train_dir = Path(dl_manager.download_and_extract(lst_spk_train))
lst_spk_test_dir = Path(dl_manager.download_and_extract(lst_spk_test))
transcript_dir = Path(dl_manager.download_and_extract(transcript))
audio_files_dir = [Path(dl_manager.download_and_extract(aud_url)) / aud_url.split("/")[-1][:-4] for aud_url in audio_urls]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": {"lst_spk": lst_spk_train_dir, "transcript": transcript_dir, "aud_files": audio_files_dir},
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": {"lst_spk": lst_spk_test_dir, "transcript": transcript_dir, "aud_files": audio_files_dir},
"split": "test",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
speaker_ids = open(filepath["lst_spk"], "r").readlines()
speaker_ids = [id.replace("\n", "") for id in speaker_ids]
speech_folders = [aud_folder for aud_folder in filepath["aud_files"] if aud_folder.name in speaker_ids]
speech_files = list(chain(*[list(map((str(speech_folder) + "/").__add__, os.listdir(speech_folder))) for speech_folder in speech_folders]))
print(speech_files[0])
transcript = open(filepath["transcript"], "r").readlines()
transcript = [sentence.replace("\n", "") for sentence in transcript]
for key, aud_file in enumerate(speech_files):
aud_id = str(Path(aud_file).name).split("\\")[-1][:-4]
aud_info = aud_id.split("_")
if self.config.schema == "source":
row = {
"spk_id": aud_info[0],
"gender": aud_info[1],
"accent": aud_info[2],
"type": aud_info[3],
"txt_id": aud_info[5],
"audio": aud_file,
"text": transcript[int(aud_info[5])],
}
yield key, row
elif self.config.schema == "seacrowd_sptext":
row = {
"id": aud_id,
"path": aud_file,
"audio": aud_file,
"text": transcript[int(aud_info[5])],
"speaker_id": aud_info[0],
"metadata": {
"speaker_age": None,
"speaker_gender": aud_info[1],
},
}
yield key, row
else:
raise NotImplementedError(f"Schema '{self.config.schema}' is not defined.")
|