from typing import Dict, List, Tuple import datasets from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Licenses, Tasks _CITATION = """\ @INPROCEEDINGS{8459963, author={E. D. {Livelo} and C. {Cheng}}, booktitle={2018 IEEE International Conference on Agents (ICA)}, title={Intelligent Dengue Infoveillance Using Gated Recurrent Neural Learning and Cross-Label Frequencies}, year={2018}, volume={}, number={}, pages={2-7}, doi={10.1109/AGENTS.2018.8459963}} } """ _LANGUAGES = ["fil"] # copied from https://huggingface.co/datasets/dengue_filipino/blob/main/dengue_filipino.py _URL = "https://huggingface.co/datasets/jcblaise/dengue_filipino/resolve/main/dengue_raw.zip" _DATASETNAME = "dengue_filipino" _DESCRIPTION = """\ Benchmark dataset for low-resource multi-label classification, with 4,015 training, 500 testing, and 500 validation examples, each labeled as part of five classes. Each sample can be a part of multiple classes. Collected as tweets. """ _HOMEPAGE = "https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks" _LICENSE = Licenses.UNKNOWN.value _SUPPORTED_TASKS = [Tasks.DOMAIN_KNOWLEDGE_MULTICLASSIFICATION] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" _LOCAL = False class DengueFilipinoDataset(datasets.GeneratorBasedBuilder): """Dengue Dataset Low-Resource Multi-label Text Classification Dataset in Filipino""" BUILDER_CONFIGS = [ SEACrowdConfig( name=f"{_DATASETNAME}_source", version=datasets.Version(_SOURCE_VERSION), description=f"{_DATASETNAME} source schema", schema="source", subset_id=f"{_DATASETNAME}", ), SEACrowdConfig( name=f"{_DATASETNAME}_seacrowd_text_multi", version=datasets.Version(_SEACROWD_VERSION), description=f"{_DATASETNAME} SEACrowd schema text multi", schema="seacrowd_text_multi", subset_id=f"{_DATASETNAME}", ), ] DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "text": datasets.Value("string"), "absent": datasets.features.ClassLabel(names=["0", "1"]), "dengue": datasets.features.ClassLabel(names=["0", "1"]), "health": datasets.features.ClassLabel(names=["0", "1"]), "mosquito": datasets.features.ClassLabel(names=["0", "1"]), "sick": datasets.features.ClassLabel(names=["0", "1"]), } ) elif self.config.schema == "seacrowd_text_multi": features = schemas.text_multi_features(["0", "1"]) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "split": "validation", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "split": "test", }, ), ] def _generate_examples(self, split: str) -> Tuple[int, Dict]: dataset = datasets.load_dataset(_DATASETNAME, split=split) for id, data in enumerate(dataset): if self.config.schema == "source": yield id, { "text": data["text"], "absent": data["absent"], "dengue": data["dengue"], "health": data["health"], "mosquito": data["mosquito"], "sick": data["sick"], } elif self.config.schema == "seacrowd_text_multi": yield id, { "id": id, "text": data["text"], "labels": [ data["absent"], data["dengue"], data["health"], data["mosquito"], data["sick"], ], }