|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@article{wibowo2023copal, |
|
title={COPAL-ID: Indonesian Language Reasoning with Local Culture and Nuances}, |
|
author={Wibowo, Haryo Akbarianto and Fuadi, Erland Hilman and Nityasya, Made Nindyatama and Prasojo, Radityo Eko and Aji, Alham Fikri}, |
|
journal={arXiv preprint arXiv:2311.01012}, |
|
year={2023} |
|
} |
|
""" |
|
_DATASETNAME = "copal" |
|
|
|
_DESCRIPTION = """\ |
|
COPAL is a novel Indonesian language common sense reasoning dataset. Unlike the previous Indonesian COPA dataset (XCOPA-ID), COPAL-ID incorporates Indonesian local and cultural nuances, |
|
providing a more natural portrayal of day-to-day causal reasoning within the Indonesian cultural sphere. |
|
Professionally written by natives from scratch, COPAL-ID is more fluent and free from awkward phrases, unlike the translated XCOPA-ID. |
|
Additionally, COPAL-ID is presented in both standard Indonesian and Jakartan Indonesian–a commonly used dialect. |
|
It consists of premise, choice1, choice2, question, and label, similar to the COPA dataset. |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/haryoaw/COPAL" |
|
|
|
_LICENSE = Licenses.CC_BY_SA_4_0.value |
|
|
|
_URLS = {"test": "https://huggingface.co/datasets/haryoaw/COPAL/resolve/main/test_copal.csv", "test_colloquial": "https://huggingface.co/datasets/haryoaw/COPAL/resolve/main/test_copal_colloquial.csv"} |
|
|
|
_SUPPORTED_TASKS = [Tasks.COMMONSENSE_REASONING] |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["ind"] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class COPAL(datasets.GeneratorBasedBuilder): |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description="COPAL test source schema", |
|
schema="source", |
|
subset_id="copal", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_colloquial_source", |
|
version=SOURCE_VERSION, |
|
description="COPAL test colloquial source schema", |
|
schema="source", |
|
subset_id="copal", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_qa", |
|
version=SEACROWD_VERSION, |
|
description="COPAL test seacrowd schema", |
|
schema="seacrowd_qa", |
|
subset_id="copal", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_colloquial_seacrowd_qa", |
|
version=SEACROWD_VERSION, |
|
description="COPAL test colloquial seacrowd schema", |
|
schema="seacrowd_qa", |
|
subset_id="copal", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "copal_source" |
|
|
|
def _info(self): |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"premise": datasets.Value("string"), |
|
"choice1": datasets.Value("string"), |
|
"choice2": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"idx": datasets.Value("int64"), |
|
"label": datasets.Value("int64"), |
|
"terminology": datasets.Value("int64"), |
|
"culture": datasets.Value("int64"), |
|
"language": datasets.Value("int64"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_qa": |
|
features = schemas.qa_features |
|
features["meta"] = {"terminology": datasets.Value("int64"), "culture": datasets.Value("int64"), "language": datasets.Value("int64")} |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_dir = dl_manager.download_and_extract(_URLS) |
|
if "colloquial" in self.config.name: |
|
data_url = data_dir["test_colloquial"] |
|
else: |
|
data_url = data_dir["test"] |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": data_url}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
df = pd.read_csv(filepath, sep=",", header="infer").reset_index() |
|
if self.config.schema == "source": |
|
for row in df.itertuples(): |
|
entry = { |
|
"premise": row.premise, |
|
"choice1": row.choice1, |
|
"choice2": row.choice2, |
|
"question": row.question, |
|
"idx": row.idx, |
|
"label": row.label, |
|
"terminology": row.Terminology, |
|
"culture": row.Culture, |
|
"language": row.Language, |
|
} |
|
yield row.index, entry |
|
|
|
elif self.config.schema == "seacrowd_qa": |
|
for row in df.itertuples(): |
|
entry = { |
|
"id": row.idx, |
|
"question_id": str(row.idx), |
|
"document_id": str(row.idx), |
|
"question": row.question, |
|
"type": "multiple_choice", |
|
"choices": [row.choice1, row.choice2], |
|
"context": row.premise, |
|
"answer": [row.choice1 if row.label == 0 else row.choice2], |
|
"meta": {"terminology": row.Terminology, "culture": row.Culture, "language": row.Language}, |
|
} |
|
yield row.index, entry |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|