| import datasets | |
| import pandas as pd | |
| from seacrowd.utils import schemas | |
| from seacrowd.utils.configs import SEACrowdConfig | |
| from seacrowd.utils.constants import Licenses, Tasks | |
| _CITATION = """\ | |
| @article{wibowo2023copal, | |
| title={COPAL-ID: Indonesian Language Reasoning with Local Culture and Nuances}, | |
| author={Wibowo, Haryo Akbarianto and Fuadi, Erland Hilman and Nityasya, Made Nindyatama and Prasojo, Radityo Eko and Aji, Alham Fikri}, | |
| journal={arXiv preprint arXiv:2311.01012}, | |
| year={2023} | |
| } | |
| """ | |
| _DATASETNAME = "copal" | |
| _DESCRIPTION = """\ | |
| COPAL is a novel Indonesian language common sense reasoning dataset. Unlike the previous Indonesian COPA dataset (XCOPA-ID), COPAL-ID incorporates Indonesian local and cultural nuances, | |
| providing a more natural portrayal of day-to-day causal reasoning within the Indonesian cultural sphere. | |
| Professionally written by natives from scratch, COPAL-ID is more fluent and free from awkward phrases, unlike the translated XCOPA-ID. | |
| Additionally, COPAL-ID is presented in both standard Indonesian and Jakartan Indonesian–a commonly used dialect. | |
| It consists of premise, choice1, choice2, question, and label, similar to the COPA dataset. | |
| """ | |
| _HOMEPAGE = "https://huggingface.co/datasets/haryoaw/COPAL" | |
| _LICENSE = Licenses.CC_BY_SA_4_0.value | |
| _URLS = {"test": "https://huggingface.co/datasets/haryoaw/COPAL/resolve/main/test_copal.csv", "test_colloquial": "https://huggingface.co/datasets/haryoaw/COPAL/resolve/main/test_copal_colloquial.csv"} | |
| _SUPPORTED_TASKS = [Tasks.COMMONSENSE_REASONING] | |
| _LOCAL = False | |
| _LANGUAGES = ["ind"] | |
| _SOURCE_VERSION = "1.0.0" | |
| _SEACROWD_VERSION = "2024.06.20" | |
| class COPAL(datasets.GeneratorBasedBuilder): | |
| SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | |
| SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | |
| BUILDER_CONFIGS = [ | |
| SEACrowdConfig( | |
| name=f"{_DATASETNAME}_source", | |
| version=SOURCE_VERSION, | |
| description="COPAL test source schema", | |
| schema="source", | |
| subset_id="copal", | |
| ), | |
| SEACrowdConfig( | |
| name=f"{_DATASETNAME}_colloquial_source", | |
| version=SOURCE_VERSION, | |
| description="COPAL test colloquial source schema", | |
| schema="source", | |
| subset_id="copal", | |
| ), | |
| SEACrowdConfig( | |
| name=f"{_DATASETNAME}_seacrowd_qa", | |
| version=SEACROWD_VERSION, | |
| description="COPAL test seacrowd schema", | |
| schema="seacrowd_qa", | |
| subset_id="copal", | |
| ), | |
| SEACrowdConfig( | |
| name=f"{_DATASETNAME}_colloquial_seacrowd_qa", | |
| version=SEACROWD_VERSION, | |
| description="COPAL test colloquial seacrowd schema", | |
| schema="seacrowd_qa", | |
| subset_id="copal", | |
| ), | |
| ] | |
| DEFAULT_CONFIG_NAME = "copal_source" | |
| def _info(self): | |
| if self.config.schema == "source": | |
| features = datasets.Features( | |
| { | |
| "premise": datasets.Value("string"), | |
| "choice1": datasets.Value("string"), | |
| "choice2": datasets.Value("string"), | |
| "question": datasets.Value("string"), | |
| "idx": datasets.Value("int64"), | |
| "label": datasets.Value("int64"), | |
| "terminology": datasets.Value("int64"), | |
| "culture": datasets.Value("int64"), | |
| "language": datasets.Value("int64"), | |
| } | |
| ) | |
| elif self.config.schema == "seacrowd_qa": | |
| features = schemas.qa_features | |
| features["meta"] = {"terminology": datasets.Value("int64"), "culture": datasets.Value("int64"), "language": datasets.Value("int64")} | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| data_dir = dl_manager.download_and_extract(_URLS) | |
| if "colloquial" in self.config.name: | |
| data_url = data_dir["test_colloquial"] | |
| else: | |
| data_url = data_dir["test"] | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={"filepath": data_url}, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath): | |
| df = pd.read_csv(filepath, sep=",", header="infer").reset_index() | |
| if self.config.schema == "source": | |
| for row in df.itertuples(): | |
| entry = { | |
| "premise": row.premise, | |
| "choice1": row.choice1, | |
| "choice2": row.choice2, | |
| "question": row.question, | |
| "idx": row.idx, | |
| "label": row.label, | |
| "terminology": row.Terminology, | |
| "culture": row.Culture, | |
| "language": row.Language, | |
| } | |
| yield row.index, entry | |
| elif self.config.schema == "seacrowd_qa": | |
| for row in df.itertuples(): | |
| entry = { | |
| "id": row.idx, | |
| "question_id": str(row.idx), | |
| "document_id": str(row.idx), | |
| "question": row.question, | |
| "type": "multiple_choice", | |
| "choices": [row.choice1, row.choice2], | |
| "context": row.premise, | |
| "answer": [row.choice1 if row.label == 0 else row.choice2], | |
| "meta": {"terminology": row.Terminology, "culture": row.Culture, "language": row.Language}, | |
| } | |
| yield row.index, entry | |
| else: | |
| raise ValueError(f"Invalid config: {self.config.name}") | |