Datasets:

ArXiv:
License:
File size: 7,639 Bytes
58942cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from pathlib import Path
from typing import Dict, List, Tuple

import datasets
import pandas as pd

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

_CITATION = """\
@inproceedings{imperial-kochmar-2023-basahacorpus,
    title = "{B}asaha{C}orpus: An Expanded Linguistic Resource for Readability Assessment in {C}entral {P}hilippine Languages",
    author = "Imperial, Joseph Marvin  and
      Kochmar, Ekaterina",
    editor = "Bouamor, Houda  and
      Pino, Juan  and
      Bali, Kalika",
    booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2023",
    address = "Singapore",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.emnlp-main.388",
    doi = "10.18653/v1/2023.emnlp-main.388",
    pages = "6302--6309",
    }
"""

_DATASETNAME = "basaha_corpus"

_DESCRIPTION = """
BasahaCorpus contains short stories in four Central Philippine languages \
    (Minasbate, Rinconada, Kinaray-a, and Hiligaynon) for low-resource \
    readability assessment. Each dataset per language contains stories \
    distributed over the first three grade levels (L1, L2, and L3) in \
    the Philippine education context. The grade levels of the dataset \
    have been provided by an expert from Let's Read Asia.
"""
_HOMEPAGE = "https://github.com/imperialite/BasahaCorpus-HierarchicalCrosslingualARA"

_LANGUAGES = [
    "msb",
    "rin",
    "kar",
    "hil",
]  # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)

_LICENSE = Licenses.CC_BY_NC_SA_4_0.value

_LOCAL = False

_URLS = {
    # Minasbate, Rinconada, Kinaray-a, and Hiligaynon (from the _DESCRIPTION)
    "msb": "https://raw.githubusercontent.com/imperialite/BasahaCorpus-HierarchicalCrosslingualARA/main/data/features/min_features.csv",
    "rin": "https://raw.githubusercontent.com/imperialite/BasahaCorpus-HierarchicalCrosslingualARA/main/data/features/rin_features.csv",
    "kar": "https://raw.githubusercontent.com/imperialite/BasahaCorpus-HierarchicalCrosslingualARA/main/data/features/kar_features.csv",
    "hil": "https://raw.githubusercontent.com/imperialite/BasahaCorpus-HierarchicalCrosslingualARA/main/data/features/hil_features.csv",
}

_SUPPORTED_TASKS = [Tasks.READABILITY_ASSESSMENT]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "2024.06.20"


class BasahaCorpusDataset(datasets.GeneratorBasedBuilder):
    """
    BasahaCorpus comprises short stories in four Central Philippine
    languages (Minasbate, Rinconada, Kinaray-a, and Hiligaynon)
    for low-resource readability assessment. Each language dataset
    includes stories from the first three grade levels (L1, L2, and L3)
    in the Philippine education context, as classified by an expert
    from Let's Read Asia.
    """

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

    BUILDER_CONFIGS = [SEACrowdConfig(name=f"{_DATASETNAME}_{lang}_source", version=datasets.Version(_SOURCE_VERSION), description=f"{_DATASETNAME} source schema", schema="source", subset_id=f"{_DATASETNAME}_{lang}",) for lang in _LANGUAGES] + [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_{lang}_seacrowd_text",
            version=datasets.Version(_SEACROWD_VERSION),
            description=f"{_DATASETNAME} SEACrowd schema",
            schema="seacrowd_text",
            subset_id=f"{_DATASETNAME}_{lang}",
        )
        for lang in _LANGUAGES
    ]

    DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_msb_source"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":

            features = datasets.Features(
                {
                    "book_title": datasets.Value("string"),
                    "word_count": datasets.Value("int64"),
                    "sentence_count": datasets.Value("int64"),
                    "phrase_count_per_sentence": datasets.Value("float64"),
                    "average_word_len": datasets.Value("float64"),
                    "average_sentence_len": datasets.Value("float64"),
                    "average_syllable_count": datasets.Value("float64"),
                    "polysyll_count": datasets.Value("int64"),
                    "consonant_cluster_density": datasets.Value("float64"),
                    "v_density": datasets.Value("float64"),
                    "cv_density": datasets.Value("float64"),
                    "vc_density": datasets.Value("float64"),
                    "cvc_density": datasets.Value("float64"),
                    "vcc_density": datasets.Value("float64"),
                    "cvcc_density": datasets.Value("float64"),
                    "ccvc_density": datasets.Value("float64"),
                    "ccv_density": datasets.Value("float64"),
                    "ccvcc_density": datasets.Value("float64"),
                    "ccvccc_density": datasets.Value("float64"),
                    "tag_bigram_sim": datasets.Value("float64"),
                    "bik_bigram_sim": datasets.Value("float64"),
                    "ceb_bigram_sim": datasets.Value("float64"),
                    "hil_bigram_sim": datasets.Value("float64"),
                    "rin_bigram_sim": datasets.Value("float64"),
                    "min_bigram_sim": datasets.Value("float64"),
                    "kar_bigram_sim": datasets.Value("float64"),
                    "tag_trigram_sim": datasets.Value("float64"),
                    "bik_trigram_sim": datasets.Value("float64"),
                    "ceb_trigam_sim": datasets.Value("float64"),
                    "hil_trigam_sim": datasets.Value("float64"),
                    "rin_trigam_sim": datasets.Value("float64"),
                    "min_trigam_sim": datasets.Value("float64"),
                    "kar_trigam_sim": datasets.Value("float64"),
                    "grade_level": datasets.Value("string"),
                }
            )

        elif self.config.schema == "seacrowd_text":
            features = schemas.text_features(["1", "2", "3"])

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""

        lang = self.config.name.split("_")[2]

        if lang in _LANGUAGES:
            data_path = Path(dl_manager.download_and_extract(_URLS[lang]))
        else:
            data_path = [Path(dl_manager.download_and_extract(_URLS[lang])) for lang in _LANGUAGES]

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": data_path,
                    "split": "train",
                },
            )
        ]

    def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""

        df = pd.read_csv(filepath, index_col=None)

        for index, row in df.iterrows():

            if self.config.schema == "source":
                example = row.to_dict()

            elif self.config.schema == "seacrowd_text":

                example = {
                    "id": str(index),
                    "text": str(row["book_title"]),
                    "label": str(row["grade_level"]),
                }

            yield index, example