File size: 7,639 Bytes
58942cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import pandas as pd
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@inproceedings{imperial-kochmar-2023-basahacorpus,
title = "{B}asaha{C}orpus: An Expanded Linguistic Resource for Readability Assessment in {C}entral {P}hilippine Languages",
author = "Imperial, Joseph Marvin and
Kochmar, Ekaterina",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.388",
doi = "10.18653/v1/2023.emnlp-main.388",
pages = "6302--6309",
}
"""
_DATASETNAME = "basaha_corpus"
_DESCRIPTION = """
BasahaCorpus contains short stories in four Central Philippine languages \
(Minasbate, Rinconada, Kinaray-a, and Hiligaynon) for low-resource \
readability assessment. Each dataset per language contains stories \
distributed over the first three grade levels (L1, L2, and L3) in \
the Philippine education context. The grade levels of the dataset \
have been provided by an expert from Let's Read Asia.
"""
_HOMEPAGE = "https://github.com/imperialite/BasahaCorpus-HierarchicalCrosslingualARA"
_LANGUAGES = [
"msb",
"rin",
"kar",
"hil",
] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LICENSE = Licenses.CC_BY_NC_SA_4_0.value
_LOCAL = False
_URLS = {
# Minasbate, Rinconada, Kinaray-a, and Hiligaynon (from the _DESCRIPTION)
"msb": "https://raw.githubusercontent.com/imperialite/BasahaCorpus-HierarchicalCrosslingualARA/main/data/features/min_features.csv",
"rin": "https://raw.githubusercontent.com/imperialite/BasahaCorpus-HierarchicalCrosslingualARA/main/data/features/rin_features.csv",
"kar": "https://raw.githubusercontent.com/imperialite/BasahaCorpus-HierarchicalCrosslingualARA/main/data/features/kar_features.csv",
"hil": "https://raw.githubusercontent.com/imperialite/BasahaCorpus-HierarchicalCrosslingualARA/main/data/features/hil_features.csv",
}
_SUPPORTED_TASKS = [Tasks.READABILITY_ASSESSMENT]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class BasahaCorpusDataset(datasets.GeneratorBasedBuilder):
"""
BasahaCorpus comprises short stories in four Central Philippine
languages (Minasbate, Rinconada, Kinaray-a, and Hiligaynon)
for low-resource readability assessment. Each language dataset
includes stories from the first three grade levels (L1, L2, and L3)
in the Philippine education context, as classified by an expert
from Let's Read Asia.
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [SEACrowdConfig(name=f"{_DATASETNAME}_{lang}_source", version=datasets.Version(_SOURCE_VERSION), description=f"{_DATASETNAME} source schema", schema="source", subset_id=f"{_DATASETNAME}_{lang}",) for lang in _LANGUAGES] + [
SEACrowdConfig(
name=f"{_DATASETNAME}_{lang}_seacrowd_text",
version=datasets.Version(_SEACROWD_VERSION),
description=f"{_DATASETNAME} SEACrowd schema",
schema="seacrowd_text",
subset_id=f"{_DATASETNAME}_{lang}",
)
for lang in _LANGUAGES
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_msb_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"book_title": datasets.Value("string"),
"word_count": datasets.Value("int64"),
"sentence_count": datasets.Value("int64"),
"phrase_count_per_sentence": datasets.Value("float64"),
"average_word_len": datasets.Value("float64"),
"average_sentence_len": datasets.Value("float64"),
"average_syllable_count": datasets.Value("float64"),
"polysyll_count": datasets.Value("int64"),
"consonant_cluster_density": datasets.Value("float64"),
"v_density": datasets.Value("float64"),
"cv_density": datasets.Value("float64"),
"vc_density": datasets.Value("float64"),
"cvc_density": datasets.Value("float64"),
"vcc_density": datasets.Value("float64"),
"cvcc_density": datasets.Value("float64"),
"ccvc_density": datasets.Value("float64"),
"ccv_density": datasets.Value("float64"),
"ccvcc_density": datasets.Value("float64"),
"ccvccc_density": datasets.Value("float64"),
"tag_bigram_sim": datasets.Value("float64"),
"bik_bigram_sim": datasets.Value("float64"),
"ceb_bigram_sim": datasets.Value("float64"),
"hil_bigram_sim": datasets.Value("float64"),
"rin_bigram_sim": datasets.Value("float64"),
"min_bigram_sim": datasets.Value("float64"),
"kar_bigram_sim": datasets.Value("float64"),
"tag_trigram_sim": datasets.Value("float64"),
"bik_trigram_sim": datasets.Value("float64"),
"ceb_trigam_sim": datasets.Value("float64"),
"hil_trigam_sim": datasets.Value("float64"),
"rin_trigam_sim": datasets.Value("float64"),
"min_trigam_sim": datasets.Value("float64"),
"kar_trigam_sim": datasets.Value("float64"),
"grade_level": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_text":
features = schemas.text_features(["1", "2", "3"])
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
lang = self.config.name.split("_")[2]
if lang in _LANGUAGES:
data_path = Path(dl_manager.download_and_extract(_URLS[lang]))
else:
data_path = [Path(dl_manager.download_and_extract(_URLS[lang])) for lang in _LANGUAGES]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_path,
"split": "train",
},
)
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
df = pd.read_csv(filepath, index_col=None)
for index, row in df.iterrows():
if self.config.schema == "source":
example = row.to_dict()
elif self.config.schema == "seacrowd_text":
example = {
"id": str(index),
"text": str(row["book_title"]),
"label": str(row["grade_level"]),
}
yield index, example
|